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Proton–proton collision events occur 40 million times 
per second at the particle detectors at the CERN Large Hadron 
Collider (LHC)1. The largest general-purpose particle detec-

tors at the LHC, ATLAS2 and CMS3, discard most of the collision 
events with online selection systems, as a result of bandwidth 
limitations. These systems consist of two stages: the level-1 trigger 
(L1T)4–7, where algorithms are deployed as programmable logic on 
custom electronic boards equipped with field-programmable gate 
arrays (FPGAs), and the high-level trigger (HLT), where selection 
algorithms asynchronously process the events accepted by the L1T 
on commercially available CPUs. The event rate is reduced from 
40 MHz to around 100 kHz within a few microseconds at the first 
selection stage, L1T. When designing searches for collisions con-
taining new physics (for example, dark matter production), physi-
cists typically consider specific scenarios motivated by theoretical 
considerations. This supervised strategy has proven to be success-
ful when dealing with theory-motivated searches, as was the case 
with the search for the Higgs boson8,9. Conversely, this approach 
may become a limiting factor in the absence of a strong theoreti-
cal prior. For this reason, there are several community efforts to 
investigate unsupervised machine learning (ML) techniques for 
new physics searches10,11. These investigate the use of autoencod-
ers (AEs) and variational autoencoders (VAEs) for offline process-
ing12,13, and therefore do not consider constraints such as resource 
use and latency. Early suggestions to use AEs in HEP for anomaly 
detection14,15 are not easily adapted to an L1T environment. For 
instance, refs. 14,15 require access to the momenta of all jet particle 
constituents, something that is not available now and will only be 
partly available (for example, first eight candidates) in the future. 
Refs. 16,17 propose integrating unsupervised learning algorithms in 

the online selection system of the CMS and ATLAS experiments, in 
order to preserve rare events that would not otherwise be selected, 
in a special data stream.

While the primary focus for online unsupervised learning so far 
has been for the HLT, this strategy could be more effective if deployed 
in the L1T, that is, before any selection bias is introduced. Due to the 
extreme latency and computing resource constraints of the L1T, only 
relatively simple, mostly theory-motivated selection algorithms are 
currently deployed. These usually include requirements on the min-
imum energy of a physics object, such as a reconstructed lepton or a 
jet, effectively excluding lower-energy events from further process-
ing. Instead, by deploying a new-physics model agnostic algorithm 
that selects events based on their degree of abnormality, we can 
collect data in a signal-model-independent way. Such an anomaly 
detection (AD) algorithm is required to have extremely low latency 
because of the restrictions imposed by the L1T.

Many recent efforts for translating ML algorithms into FPGA 
firmware are reviewed extensively in refs. 18–20. However, many of 
these toolflows result in implementations that are not optimized 
for the L1T systems or do not apply to HEP AE architectures. For 
example, FINN21,22 focuses on dataflow-style implementations of 
convolutional neural networks (CNNs), which may not achieve the 
low latency and high throughput required for L1T applications. It 
is by construction limited to Xilinx FPGAs, while hls4ml backends 
targeting different HLS libraries (Quartus for Intel and Katapult 
for ASIC design) are under development. Other efforts, Conifer23 
(also developed by the hls4ml team) and fwXmachina24, feature a 
custom implementation of boosted decision trees on FPGAs, which 
achieves the desired L1T constraints, but does not extend to neural 
network implementations.
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To study the physics of fundamental particles and their interactions, the Large Hadron Collider was constructed at CERN, where 
protons collide to create new particles measured by detectors. Collisions occur at a frequency of 40 MHz, and with an event 
size of roughly 1 MB it is impossible to read out and store the generated amount of data from the detector and therefore a 
multi-tiered, real-time filtering system is required. In this paper, we show how to adapt and deploy deep-learning-based autoen-
coders for the unsupervised detection of new physics signatures in the challenging environment of a real-time event selection 
system at the Large Hadron Collider. The first-stage filter, implemented on custom electronics, decides within a few micro-
seconds whether an event should be kept or discarded. At this stage, the rate is reduced from 40 MHz to about 100 kHz. We 
demonstrate the deployment of an unsupervised selection algorithm on this custom electronics, running in as little as 80 ns and 
enhancing the signal-over-background ratio by three orders of magnitude. This work enables the practical deployment of these 
networks during the next data-taking campaign of the Large Hadron Collider.
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Recent developments of the hls4ml library allow us to consider 
the possibility of deploying AE-based AD algorithms on the FPGAs 
mounted on the L1T boards. The hls4ml library is an open-source 
software, developed to translate neural networks25–29 and boosted 
decision trees30 into FPGA firmware. A fully on-chip implementa-
tion of the ML model is used in order to stay within the 1μs latency 
budget imposed by a typical L1T system. Additionally, the initia-
tion interval (II) of the algorithm should be within 150ns, which is 
related to the bunch-crossing time for the upcoming period of the 
LHC operations5. Since there are several L1T algorithms deployed 
per FPGA, each of them should use much less than the avail-
able resources. With its interface to QKERAS31, hls4ml supports 
quantization-aware training (QAT)32, which makes it possible to 
drastically reduce the FPGA resource consumption while preserv-
ing accuracy. Using hls4ml, we can compress neural networks to fit 
the limited resources of an FPGA.

The aim of this work is the development of a fast algo-
rithm to define a dataset enriched in anomalies, without using 
physics-motivated expectations about new physics to define the 
anomaly. Once collected, these data could be visually inspected or 
analysed with model-agnostic techniques, for example, those pro-
posed in refs. 33,34, or even with traditional model-dependent searches 
(provided an understanding of the bias imposed by the online selec-
tion on the offline event distribution). We focus on AEs, with spe-
cific emphasis on VAEs12,13. We consider both fully connected and 
convolutional architectures, and discuss how to compress the model 
through pruning35–37, the removal of unnecessary operations, and 
quantization26,38–45, the reduction of the precision of operations.

As discussed in ref. 16, one can train (V)AE on a given data 
sample by minimizing a measure of the distance between the input 
and the output (the loss function). This strategy, which is very com-
mon when using (V)AEs for anomaly detection46, brings practical 
challenges when considering a deployment on FPGAs. The use of 
high-level features is not optimal because it requires time-consuming 
data preprocessing. The situation is further complicated for VAEs, 
which require a random sampling from a Gaussian distribution in 
the latent space. Furthermore, one has to buffer the input data on 
chip while the output is generated by the FPGA processing in order 
to compute the distance afterwards. To deal with all of these aspects, 
we explore different approaches and compare the accuracy, latency 
and resource consumption of the various methods.

In addition, we discuss how to customize the model compres-
sion in order to better accommodate for unsupervised learning. 
Previously, we showed that QAT can result in a large reduction 
in resource consumption with minor accuracy loss for supervised 
algorithms28,32. In this paper, we extend and adapt that compression 
workflow to deal with the specific challenge of compressing autoen-
coders used for AD. Several approaches are possible:

•	 Post-training quantization (PTQ)25,36,47–50, consists of applying a 
fixed-point precision to a floating-point baseline model. This is 
the simplest quantization approach, typically resulting in good 
algorithm stability, at the cost of losing performance.

•	 QAT, consists of imposing the fixed-point precision constraint 
at training time, for example, using the QKERAS or Brevitas51 
libraries. This approach typically allows one to limit the accu-
racy loss when imposing a higher level of quantization, finding 
a better weight configuration than what one can get with PTQ.

•	 Knowledge distillation with QAT changes the quantized-model 
optimization strategy by reframing the problem as knowledge 
distillation 52–55.

•	 Anomaly classification with QAT; approximated loss regression 
with QAT could be turned into a classification problem.

In this paper, we focus on the first two approaches, leaving the 
investigation of the other approaches to future work.

Data samples
This study follows the setup of refs. 16,56. The dataset (with its defini-
tion and limitations) are taken from ref. 16. We adapt the data for-
mat to make it more consistent with inputs received in the L1T (as 
opposed to the HLT) and show that one can do at L1T what ref. 16  
proposed for the HLT. Perhaps surprisingly, this is indeed pos-
sible due to recent progress made on deploying neural networks 
on FPGAs. We use a data sample that represents a typical proton–
proton collision dataset that has been pre-filtered by requiring the 
presence of an electron or a muon with a transverse momentum 
pT > 23 GeV and a pseudo-rapidity ∣η∣ < 3 (electron) and ∣η∣ < 2.1 
(muon). These requirements were introduced to reduce the data-
set size to a manageable level, such that we could generate it with 
our limited computing resources. In a real-life application, no pT 
requirement of this kind would be applied. The η requirements 
would stay since they are intrinsic consequences of the detector 
geometry. In addition to the background-like sample, we consider 
the four benchmark new physics scenarios discussed in ref. 16:

•	 A leptoquark (LQ) with a mass of 80 GeV, decaying to a b quark 
and a τ lepton 57,

•	 A neutral scalar boson (A) with a mass of 50 GeV, decaying 
to two off-shell Z bosons, each forced to decay to two leptons: 
A → 4ℓ58,

•	 A scalar boson with a mass of 60 GeV, decaying to two tau lep-
tons: h0 → ττ59,

•	 A charged scalar boson with a mass of 60 GeV, decaying to a tau 
lepton and a neutrino: h± → τν60.

These four processes are used to evaluate the accuracy of the 
trained models. A detailed description of the dataset can be found 
in ref. 61. In total, the background sample 62 consists of 8 million 
events. Of these, 50% are used for training, 40% for testing and 10% 
for validation.

Autoencoder models
We consider two classes of architecture: one based on dense 
feed-forward neural networks (DNNs) and one using CNNs. Both 
start from the (pT, η, ϕ) values for 18 reconstructed objects (ordered 
as 4 muons, 4 electrons and 10 jets), the ϕ and magnitude of the 
missing transverse energy (MET), forming together an input of 
shape (19, 3) where MET η values are zero-padded by construc-
tion (η is zero for transverse quantities). For events with fewer than 
the maximum number of muons, electrons or jets, the input is also 
zero-padded, as commonly done in the L1T algorithm logic.

In order to account for resource consumption and latency of the 
data pre-processing step, we use a batch normalization layer63 as the 
first layer for each model. For both architectures, CNN and DNN, 
we consider both a plain AE and a VAE. In the AE, the encoder 
provides directly the coordinates of the given input, projected in the 
latent space. In the VAE, the encoder returns the mean values −→μ  
and the standard deviation −→σ  of the N-dimensional Gaussian dis-
tribution that represents the latent-space probability density func-
tion associated with a given event.

For the DNN model (shown on the top plot in Extended Data 
Fig. 1), all of the inputs are batch-normalized and passed through a 
stack of three fully connected layers, with 32, 16 and 3 nodes. The 
output of each layer is followed by a batch normalization layer and 
activated by a leaky ReLU function64. The decoder consists of a stack 
of three layers, with 16, 32 and 57 nodes. As for the encoder, we use 
a batch normalization layer between the fully connected layer and 
its activation. The last layer has no activation function, while leaky 
ReLU is used for the others.

The CNN AE architecture is shown on the bottom plot in 
Extended Data Fig. 1. The encoder takes as input the single-channel 
2D array of three-vector including the two MET-related features 
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(magnitude and ϕ angle) and zeros for MET η, resulting in a total 
input size of 19 × 3 × 1. It should be emphasized that we are not 
using image data, rather treating tabular data as a 2D image to make 
it possible to explore CNN architectures. The input is scaled by a 
batch normalization layer and then processed by a stack of two 
CNN blocks, each including a 2D convolutional layer followed by a 
ReLU65 activation function. The first layer has 16 3 × 3 kernels, with-
out padding to ensure that pT, η and ϕ inputs do not share weights. 
The second layer has 32 3 × 1 kernels. Both layers have no bias 
parameters and a stride set to one. The output of the second CNN 
block is flattened and passed to a DNN layer, with eight neurons 
and no activation, which represents the latent space. The decoder 
takes this as input to a dense layer with 64 nodes and ReLU activa-
tion, and reshapes it into a 2 × 1 × 32 table. The following architec-
ture mirrors the encoder architecture with two CNN blocks with the 
same number of filters as in the encoder and with ReLU activation. 
Both are followed by an upsampling layer, in order to mimic the 
result of a transposed convolutional layer. Finally, one convolutional 
layer with a single filter and no activation function is added. Its out-
put is interpreted as the AE-reconstructed input.

The CNN and DNN VAEs are derived from the AEs, including 
the −→μ  and −→σ  Gaussian sampling in the latent space.

All models are implemented in TENSORFLOW, and trained on 
the background dataset by minimizing a customized mean squared 

error (MSE) loss with the Adam66 optimizer. In order to aid the net-
work learning process, we use a dataset with standardized pT as a 
target, so that all the quantities are O(1). To account for physical 
boundaries of η and ϕ, for those features a re-scaled tanh activation 
is used in the loss computation. In addition, the sum in the MSE loss 
is modified in order to ignore the zero-padding entries of the input 
dataset and the corresponding outputs. When training the VAE, the 
loss is changed to:

L = (1− β)MSE(Output, Input) + βDKL(
−→μ ,−→σ ) , (1)

where MSE labels the reconstruction loss (also used in the AE 
training), DKL is the Kullback–Leibler regularization term67 usually 
adopted for VAEs

DKL(
−→μ ,−→σ ) = −1

2
∑

i

(
log (σ2

i )− σ
2
i − μ

2
i + 1

)
, (2)

and β is a hyperparameter defined in the range [0, 1]68.
Both models are trained for 100 epochs with a batch size of 1,024, 

using early stopping if there is no improvement in the loss observed 
after ten epochs. All models are trained with floating point preci-
sion on an NVIDIA RTX2080 GPU. We refer to these as the baseline 
floating-point (BF) models.
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Fig. 1 | Model performance at floating-point precision. ROC curves of four AD scores (IO AD for AE and VAE models, Rz and DKL ADs for the VAE models) 
for the CNN (left) and DNN (right) models, obtained from the two new physics benchmark models: LQ → bτ (top) and A → 4ℓ (bottom).
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Anomaly detection scores
An autoencoder is optimized to retain the minimal set of informa-
tion needed to reconstruct an accurate estimate of the input. During 
inference, an autoencoder might have problems generalizing to 
topologies it was not exposed to during training. Selecting events 
where the autoencoder output is far from the given input is often 
seen as an effective AD algorithm. The simplest solution is to use 
the same metric that defines the training loss function. In our case, 
we use the modified MSE between the input and the output. We 
refer to this strategy as input–output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot simply 
exploit an IO AD strategy since this would require sampling ran-
dom numbers on the FPGA. One could generate pseudo-random 
numbers exploiting meta information (for example, the event num-
ber) or symmetries in data (for example, the ϕ coordinate of one of 
the objects). This might imply a limitation on the dimensionality of 
the latent space, which might impact performance. Moreover, one 
would have to store random numbers on the FPGA, which would 
consume resources and increase the latency. We did not explore this 
possibility further. Instead, we consider an alternative strategy by 
defining an AD score based on the −→μ  and −→σ  values returned by the 
encoder (see equation (1)). In particular, we consider two options: 
the KL divergence term entering the VAE loss (see equation (2)) 
and the z-score of the origin −→0  in the latent space with respect to 

a Gaussian distribution centred at −→μ  with standard deviation −→σ  
(ref. 10):

Rz =
∑

i

μ2
i

σ2
i
. (3)

These two AD scores have several benefits we take advantage of: 
Gaussian sampling is avoided; we save significant resources and 
latency by not evaluating the decoder; and we do not need to buf-
fer the input data for computation of the MSE. During the model 
optimization, we tune β so that we obtain (on the benchmark sig-
nal models) comparable performance for the DKL AD score and the 
IO AD score of the VAE. In practice, one should train the model 
using real data, which might contain a very small fraction of signal. 
Previous studies have verified16 that small rates of signal contamina-
tion have little effect on the training. One would use simulated sig-
nals in the same manner as in this paper to tune model parameters. 
Such a procedure would not bias the architecture choice towards 
specific signals, given the low dependence of the optimal β value on 
the nature of the anomaly.

Performance at floating-point precision
The model performance is assessed using the four new physics 
benchmark signals. The anomaly-detection scores considered in 
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Fig. 2 | Model performance at floating-point precision. ROC curves of four AD scores (IO AD for AE and VAE models, Rz and DKL ADs for the VAE models) 
for the CNN (left) and DNN (right) models, obtained from two new physics benchmark models: h± → τν (top) and h0 → ττ (bottom).
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this paper are IO AD for the AE models, Rz and DKL ADs for the 
VAE models. For completeness, results obtained from the IO AD 
score of the VAE models are also shown. The receiver operating 
characteristic (ROC) curves in Figs. 1 and 2 show the true positive 
rate (TPR) as a function of the false positive rate (FPR), computed 
by changing the lower threshold applied on the different anomaly 
scores. We further quantify the AD performance quoting the area 
under the ROC curve (AUC) and the TPR corresponding to an FPR 
working point of 10−5 (see Table 1), which on this dataset corre-
sponds to the reduction of the background rate to approximately 
1,000 events per month.

Even if the VAE-DKL TPR is smaller than the corresponding 
full-precision model for certain benchmark signals, the TPR values 
are similar after pruning. So, we conclude that DKL can be used as 
an anomaly metric for the rest of this work. The Rz metric performs 
worse and is therefore not included in the following studies.

Model compression
We compress the BF model by pruning the dense and convolu-
tional layers by 50% of their connections, following the a pre-
viously reported procedure28. Pruning is enforced using the 
polynomial decay implemented in TENSORFLOW pruning API, 
a KERAS-based69 interface consisting of a simple drop-in replace-
ment of KERAS layers. A sparsity of 50% is targeted, meaning 
only 50% of the weights are retained in the pruned layers and the 
remaining ones are set to zero. The pruning is set to start from the 
fifth epoch of the training to ensure the model is closer to a stable 
minimum before removing weights deemed unimportant. By prun-
ing the BF model layers to a target sparsity of 50%, the number of 
floating-point operations required when evaluating the model, can 
be significantly reduced. We refer to the resulting model as the base-
line pruned (BP) model. For the VAE, only the encoder is pruned, 
since only that will be deployed on FPGA. The BP models are taken 
as a reference to evaluate the resource saving of the following com-
pression strategies, including QAT and PTQ.

Furthermore, we perform a QAT of each model described in 
‘Autoencoder models’, implementing them in the QKERAS library32. 
The bit precision is scanned between 2 and 16 with a 2-bit step. 
When quantizing a model, we also impose a pruning of the dense 
(convolutional) layers by 50%, as done for the DNN (CNN) BP 
models. The results of QAT are compared to results obtained by 
applying a fixed-point precision to a BP floating-point model (that 
is using PTQ), using the same bit precision scan.

Performance of the quantized models, both for QAT and PTQ, 
is assessed using the TPR obtained for an FPR of 10−5 for the given 
precision. The bottom plots in Fig. 3 and Extended Data Fig. 2 show 
ratios of QAT performance quantities obtained for each bit width 

with respect to the BP model performance of the AE and VAE, 
respectively. The top plots show ratios of PTQ performance quanti-
ties obtained in the same manner as for QAT.

Based on these ratio plots, the precision used for the final model 
is chosen. The performance of the VAEs is not stable as a function 
of bit width, since the AD figure of merit used for inference (DKL) 
is different from those minimized during the QAT training (VAE 
IO + DKL). Therefore, we use PTQ compression for both DNN and 
CNN VAEs because they show stable results as a function of the bit 
width. For autoencoders, both quantization approaches show stable 
results, and therefore we choose quantization-aware training. For 
all the models a bit width of 8 is chosen, apart from the CNN VAE 
for which a bit width of 4 is found to be the best. The performance 
numbers for the chosen models are summarized in Table 2.

Porting the algorithm to FPGAs
The models described above are translated into firmware using 
hls4ml, then synthesized with Vivado HLS 2020.170, targeting a 
Xilinx Virtex UltraScale+ VU9P (xcvu9p-flgb2104-2-e) FPGA with 
a clock frequency of 200 MHz. In order to have fair resource and 
latency estimations, obtained from the HLS C simulation we have 
implemented custom layers in hls4ml, which in the case of AE com-
putes the loss function between the input and network output and 
for VAE computes the DKL term of the loss.

A summary of the accuracy, resource consumption, and latency 
for the QAT DNN and CNN BP AE models, and the PTQ DNN and 
CNN BP VAE models is shown in Table 3. We find the resources 
are less than about 12% of the available FPGA resources, except for 
the CNN AE, which uses up to 47% of the look-up tables (LUTs). 
Moreover, the latency is less than about 365ns for all models except 
the CNN AE, which has a latency of 1,480 ns. The II for all models 
is within the required 115ns, again except the CNN AE. Based on 
these, both types of architectures with both types of autoencoders 
are suitable for application at the LHC L1T, except for the CNN AE, 
which consumes too much of the resources.

Since the performance of all the models under study are of a simi-
lar level, we choose the ‘best’ model based on the smallest resource 
consumption, which turns out to be DNN VAE. This model was 
integrated into the emp–fwk infrastructure firmware for LHC trigger 
boards71, targeting a Xilinx VCU118 development kit, with the same 
VU9P FPGA as previously discussed. Data were loaded into onboard 
buffers mimicking the manner in which data arrives from optical 
fibres in the L1T system. The design was operated at 240 MHz, and the 
model predictions observed at the output were consistent with those 
captured from the HLS C simulation. For this model we also provide 
resource and latency estimates for a Xilinx Virtex 7 690 FPGA, which 
is the FPGA most widely used in the current CMS trigger.

Table 1 | Performance assessment of the CNN and DNN models, for different AD scores and different new physics benchmark 
scenarios

Model AD score TPR @ FPR 10−5 (%) AUC (%)

LQ → bτ A → 4ℓ h± → τν h0 → ττ LQ → bτ A → 4ℓ h± → τν h0 → ττ

CNN VAE IO 0.09 6.19 0.10 0.11 92 95 95 85

DKL 0.03 1.63 0.08 0.09 93 93 93 82

Rz 0.01 0.48 0.04 0.04 93 93 93 82

CNN AE IO 0.06 3.89 0.08 0.09 96 97 96 88

DNN VAE IO 0.08 5.33 0.08 0.10 93 95 95 85

DKL 0.05 3.78 0.08 0.10 93 95 94 84

Rz 0.07 4.90 0.07 0.10 85 91 87 74

DNN AE IO 0.05 3.47 0.06 0.09 95 96 96 88

The best-performing autoencoder model for each anomaly is highlighted in bold.
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Conclusions
We discussed how to extend new physics detection strategies at the 
LHC with autoencoders deployed in the L1T infrastructure of the 
experiments. In particular, we show how one could deploy a deep 
neural network or convolutional neural network AE on a FPGA 
using the hls4ml library, within a O(1)μs latency and with small 
resource utilization once the model is quantized and pruned. We 
show that one can retain accuracy by compressing the model at 
training time. Moreover, we discuss different strategies to identify 
potential anomalies. We show that one could perform the AD with 
a VAE using the projected representation of a given input in the 
latent space, which has several advantages for an FPGA implemen-
tation: (1) no need to sample Gaussian-distributed pseudorandom 
numbers (preserving the deterministic outcome of the trigger deci-
sion) and (2) no need to run the decoder in the trigger, resulting in 
a significant resource saving.

The DNN (V)AE models use less than 5% of the Xilinx VU9P 
resources and the corresponding latency is within 130ns, while 
the CNN VAE uses less than 12% and the corresponding latency is 
365ns. All three models have the initiation interval within the strict 
limit imposed by the frequency of bunch crossing at the LHC. With 
this work, we have identified and finalized the necessary ingredients 

to deploy (V)AEs in the L1T of the LHC experiments for Run 3 to 
accelerate the search for unexpected signatures of new physics.

The aim is to use these algorithms in the trigger in order to cre-
ate a catalogue of anomalous events that researchers could explore, 
for example, with clustering techniques. Furthermore, one could 
perform traditional data analysis, provided a (non-trivial) under-
standing of the effect of the trigger selection on the kinematic dis-
tribution. In presence of a good description of the loss distribution, 
the approach used in ref. 72 could be adopted.

Data availability
The data used in this study are openly available at Zenodo57–60,62.

Code availability
The QKeras library is available at github.com/google/qkeras, where 
the work presented here is using QKeras version 0.9.0. The hls4ml 
library with custom layers used in the paper are under AE_L1_paper 
branch and available at https://github.com/fastmachinelearning/
hls4ml/tree/AE_L1_paper.
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Table 2 | Performance assessment of the quantized and pruned CNN and DNN models, for different AD scores and different new 
physics benchmark scenarios

Model AD score TPR @ FPR 10−5[%] AUC[%]

LQ → bτ A → 4ℓ h± → τν h0 → ττ LQ → bτ A → 4ℓ h± → τν h0 → ττ

CNN AE QAT 4 bits IO 0.09 5.96 0.10 0.13 94 96 96 88

CNN VAE PTQ 8 bits DKL 0.05 2.56 0.06 0.12 84 84 85 71

DNN AE QAT 8 bits IO 0.08 5.48 0.09 0.11 95 96 96 88

DNN VAE PTQ 8 bits DKL 0.08 3.41 0.09 0.08 92 94 94 81
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Fig. 3 | Compressed model performance. TPR ratios versus model bit width for the AE CNN (left) and DNN (right) models tested on four new physics 
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Extended Data Fig. 1 | Network architectures. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models 
are derived introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).
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Extended Data Fig. 2 | TPR ratios for different bit width. TPR ratios versus model bit width for the VAE CNN (left) and DNN (right) models tested on four 
new physics benchmark models, using DKL as figure of merit for PTQ (top) and QAT (bottom) strategies.
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With edge computing, real-time inference of deep neu-
ral networks (DNNs) on custom hardware has become 
increasingly relevant. Smartphone companies are 

incorporating artificial intelligence (AI) chips in their design 
for on-device inference to improve user experience and tighten 
data security, and the autonomous vehicle industry is turning to 
application-specific integrated circuits (ASICs) to keep the latency 
low. Although the typical acceptable latency for real-time infer-
ence in applications like those above is O(1)ms (refs. 1,2), other 
applications may require submicrosecond inference. For example, 
high-frequency trading machine learning (ML) algorithms are  
running on field-programmable gate arrays (FPGAs) to make  
decisions within nanoseconds3. At the extreme inference spectrum 
end of both the low latency (as in high-frequency trading) and  
limited area (as in smartphone applications) is the processing  
of data from proton–proton collisions at the Large Hadron Collider 
(LHC) at CERN4. In the particle detectors around the LHC  
ring, tens of terabytes of data per second are produced from  
collisions occurring every 25 ns. This extremely large data rate is 
reduced by a real-time event filter processing system—the trig-
ger—which decides whether each discrete collision event should be 
kept for further analysis or be discarded. Data are buffered close to 
the detector while the processing occurs, with a maximum latency 
of O(1) μs to make the trigger decision. High selection accuracy  
in the trigger is crucial to keep only the most interesting events 
while keeping the output bandwidth low, reducing the event rate 
from 40 MHz to 100 kHz. In 2027, the LHC will be upgraded  
from its current state, capable of producing up to one billion  
proton–proton collisions per second, to the so-called High 
Luminosity-LHC (HL-LHC)5. This will involve increasing the  
number of proton collisions occurring every second by a factor of 

five to seven, ultimately resulting in a total amount of accumulated 
data one order of magnitude higher than what is possible with the 
current collider. With this extreme increase, ML solutions are being 
explored as fast approximations of the algorithms currently in use 
to minimize the latency and maximize the precision of tasks that 
can be performed.

Hardware used for real-time inference in particle detec-
tors usually has limited computational capacity due to size con-
straints. Incorporating resource-intensive models without a loss in  
performance poses a great challenge. In recent years, many devel-
opments have aimed at providing efficient inference from an algo-
rithmic point of view. This includes compact network design6–10, 
weight and filter pruning11,12 or quantization. In post-training 
quantization13–17, the pre-trained model parameters are trans-
lated into lower-precision equivalents. However, this process 
is, by definition, lossy, and it sacrifices model performance. 
Therefore, solutions to do quantization-aware training have 
been suggested18–27. In these, a fixed numerical representation is  
adopted for the whole model, and the model training is performed 
enforcing this constraint during weight optimization. More 
recently28–31, it has been argued that some layers may be more 
accommodating for aggressive quantization, whereas others may 
require more expensive arithmetic. This suggests that per-layer 
heterogeneous quantization is the optimal way to achieve higher 
accuracy at low resource cost, but it may require further specializa-
tion of hardware resources.

In this Article, we introduce a novel workflow for finding  
the optimal heterogeneous quantization per layer and per  
parameter type for a given model, and deploy that model on 
FPGA hardware. Through minimal code changes, the model  
footprint is minimized while retaining high accuracy, and then 

Automatic heterogeneous quantization of deep 
neural networks for low-latency inference on the 
edge for particle detectors
Claudionor N. Coelho Jr1, Aki Kuusela2, Shan Li2, Hao Zhuang2, Jennifer Ngadiuba   3, 
Thea Klaeboe Aarrestad   4 ✉, Vladimir Loncar4,5, Maurizio Pierini4, Adrian Alan Pol   4 and 
Sioni Summers4

Although the quest for more accurate solutions is pushing deep learning research towards larger and more complex algorithms, 
edge devices demand efficient inference and therefore reduction in model size, latency and energy consumption. One technique 
to limit model size is quantization, which implies using fewer bits to represent weights and biases. Such an approach usually 
results in a decline in performance. Here, we introduce a method for designing optimally heterogeneously quantized versions 
of deep neural network models for minimum-energy, high-accuracy, nanosecond inference and fully automated deployment 
on chip. With a per-layer, per-parameter type automatic quantization procedure, sampling from a wide range of quantizers, 
model energy consumption and size are minimized while high accuracy is maintained. This is crucial for the event selection 
procedure in proton–proton collisions at the CERN Large Hadron Collider, where resources are strictly limited and a latency 
of O(1) μs is required. Nanosecond inference and a resource consumption reduced by a factor of 50 when implemented on 
field-programmable gate array hardware are achieved.
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translated into low-latency firmware. This Article makes the follow-
ing contributions:

•	 We implement a range of quantization methods in a common 
library, providing a broad base from which optimal quantiza-
tions can easily be sampled.

•	 We introduce a novel method for finding the optimal hetero
geneous quantization for a given model, resulting in minimum 
area or minimum power DNNs while maintaining high accuracy.

•	 We have made these methods available online in easy-to-use 
libraries, called QKeras and AutoQKeras60, where simple drop-in 
replacement of Keras32 layers makes it straightforward for users 
to transform Keras models to their equivalent deep heterogene-
ously quantized versions, which are trained quantization-aware. 
Using AutoQKeras, a user can trade off accuracy by model size 
reduction (for example, area or energy).

•	 We have added support for quantized QKeras models in the 
library, hls4ml13, which converts these pre-trained quantized 
models into highly parallel FPGA firmware for ultralow-latency 
inference.

To demonstrate the substantial practical advantages of these tools  
for high-energy physics and other inference on the edge applications:

•	 We conduct an experiment consisting of classifying events in an 
extreme environment, namely the triggering of proton–proton 
collisions at the CERN LHC, where resources are limited and a 
maximum latency of O(1)μs is imposed.

•	 We show that inference within 60 ns and a reduction of the model 
resource consumption by a factor of 50 can be achieved through 
automatic heterogeneous quantization, while maintaining simi-
lar accuracy (within 3% of the floating-point model accuracy).

•	 We show that the original floating-point model accuracy can 
be maintained for homogeneously quantized DNNs down to a 
bit-width of six while reducing resource consumption by up to 
75% through quantization-aware training with QKeras.

The proposed pipeline provides a novel, automatic end-to-end 
flow for deploying ultralow-latency, low-area DNNs on chip. This 
will be crucial for the deployment of ML models on FPGAs in parti-
cle detectors and other fields with extreme inference and low-power 
requirements.

In the remainder of the Article we discuss previous work related 
to model quantization and model compression with a focus on work 
related to triggering in particle detectors, we uncover the novel 
library for training ultralow-latency optimally heterogeneously 
quantized DNNs (QKeras), we describe the procedure of auto-
matic quantization for optimizing model size and accuracy simul-
taneously and, finally, we deploy these optimally quantized QKeras 
models on an FPGA and evaluate their performance.

Motivation
The hardware triggering system in a particle detector at the CERN 
LHC is one of the most extreme environments in which one can 
imagine deploying DNNs. Latency is restricted to O(1) μs, gov-
erned by the frequency of particle collisions and the number of 
on-detector buffers. The system consists of a limited amount of 
FPGA resources, all of which are located in underground caverns 
50–100 m below the ground surface, where they work on thousands 
of different tasks in parallel. Because of the high number of tasks 
being performed, limited cooling capabilities, limited space in the 
cavern and the limited number of processors, algorithms must be 
kept as resource-economic as possible. To minimize the latency and 
maximize the precision of tasks that can be performed in the hard-
ware trigger, ML solutions are being explored as fast approximations 
of the algorithms currently in use. To simplify the implementation 

of these, a general library for converting pre-trained ML models 
into FPGA or ASIC firmware has been developed—hls4ml13. The 
package comprises a library of optimized C++ code for common 
network layers, which can be synthesized through a high-level syn-
thesis (HLS) tool. Converters are provided for multiple model for-
mats, like TensorFlow33, Keras32, PyTorch34 and ONNX35.

Although there are other libraries for the translation of ML mod-
els to FPGA firmware, as summarized in refs. 36–39, hls4ml targets 
extreme low-latency inference to stay within the strict constraints 
of O(1) μs imposed by the hardware trigger systems. In addition, 
the unique aspect of hls4ml is the support for multiple HLS-vendor 
backends like Xilinx Vivado HLS, Intel Quartus HLS40 and Mentor 
Catapult HLS41, all of which are in use at the LHC experiments. The 
Vivado HLS backend is the most advanced and therefore the one 
used in this Article.

The hls4ml inference architecture is introduced in ref. 13. A 
model-specific, layer-unrolled architecture is used to produce 
ultralow-latency, resource-efficient inference engines for particle 
physics. The computation for each NN layer is carried out in dis-
tinct hardware elements of the target device, which allows for high 
computational throughput through the layer pipeline, as well as a 
fine-grained configuration of each layer (including quantization). 
A simple handle, named ‘Reuse Factor’ enables users to control 
the parallelization of the computation, again at a per-layer level. In 
the fully parallel model, using a Reuse Factor of 1, each individual 
multiplication of the NN layers is carried out on different resources 
(whether FPGA digital signal processors (DSPs) or lookup tables 
(LUTs)). With a Reuse Factor greater than 1, multiplication elements 
are reused sequentially to reduce the resource cost, at the expense 
of latency and throughput. This simple handle enables rapid design 
space exploration as well as configurability to target-specific con-
straints in the available resources, latency and throughput.

In addition, data access at the NN input and output, as well as data 
movement between NN layers, can be configured to be fully parallel 
or fully serial. The former option is used to target ultralow-latency, 
high-throughput inference in the real-time processing of particle 
physics experiments, while the latter can be used to fit larger NN 
models within the available FPGA resources when ultralow latency 
is not as much of a constraint.

The hls4ml library is implemented as a Python package to facili-
tate ease of use for non-experts, as well as consistency with other 
popular deep learning libraries. The first step in the conversion 
into FPGA firmware consists of translating a given model into an 
internal representation of the network graph. During this conver-
sion, user-specified optimization configurations are attached to the 
model, such as the choice of quantization and parallelization. The 
internal representation is written out into an HLS project, assign-
ing the appropriate layers of the target NN and the user configu-
ration. This HLS project can then be synthesized with the FPGA 
vendor tools, generating an IP core that can be used in the target 
application. Many commonly used NN layers are supported: Dense, 
Convolution, BatchNormalization and several Activation layers. In 
addition, domain-specific layers can be easily added, one example 
being compressed distance-weighted graph networks42.

In hls4ml, the precision used to represent weights, biases, activa-
tions and other components is configurable through post-training 
quantization, replacing the floating-point values by lower-precision 
fixed-point ones. This allows compression of the model size, but to 
some extent sacrifices accuracy. Recently, support for binary and 
ternary precision DNNs43 trained quantization-aware has been 
included in the library. This greatly reduces the model size, but 
requiring such an extremely low precision of each parameter type 
sacrifices accuracy and generalization.

As demonstrated in refs. 28–31, mixed-precision quantization (that 
is, keeping some layers at higher precision and some at lower preci-
sion) is a promising approach to achieve smaller models with high 
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accuracy. However, finding the optimal heterogeneous quantiza-
tion per layer and per parameter type, here referred to as ‘quantiza-
tion configuration’, is extremely challenging, with the search space 
increasing exponentially with the number of layers in a model30. 
A solution for finding the mixed quantization configuration that 
yields the best generalization and accuracy using the Hessian spec-
trum is proposed in ref. 30. For ML applications in hardware trig-
gering systems, the resources one has at disposal, as well as the 
minimum tolerable model accuracy, are usually known. Finding 
the best model for a given task is therefore a fine compromise 
between the desired model compression and accuracy with respect 
to the floating-point-based model. Both factors must be considered 
when tuning quantization. The goal of this work is thus to provide a 
method for finding the optimal mixed-precision configuration for a 
given model, accounting for both the desired model size and accu-
racy when optimizing the architecture, and to transform these into 
highly parallel firmware for ultralow-latency inference on chip.

Related work
Closely related to the work presented here are the FINN44 and 
FINN-R45 frameworks from Xilinx Research Labs, which aim to 
deploy quantized neural networks on Xilinx FPGAs. The same 
group have also developed a library for quantization-aware train-
ing, Brevitas46, based on PyTorch model formats. The LogicNets 
design flow47, also from Xilinx Research Labs, allows for the train-
ing of quantized DNNs that map to highly efficient Xilinx FPGA 
implementations. A comparison between the approach presented 
here and LogicNets is provided in the section ‘Ultralow-latency, 
quantized model on FPGA hardware’. The FP-DNN48 framework 
takes TensorFlow33-described DNNs as input and maps them onto 
FPGAs. The open-source alternative, DNNWeaver49, automati-
cally generates accelerator Verilog code using optimized templates. 
Other frameworks focusing on the mapping of convolutional 
architectures onto efficient hardware design include Snowflake50, 
fpgaConvNet51–53 and ref. 54. For other work on FPGA DNN infer-
ence, we refer to refs. 36–39,55. TensorFlow Lite56 is a set of tools for 
on-device inference with low latency and small binary sizes, tar-
geting mobile, embedded and Internet of Things (IoT) devices. 
Currently, TensorFlow Lite supports deployment on Android and 
iOS devices, embedded Linux and microcontrollers.

Our approach differs from those above with its emphasis on 
being a multi-backend tool, embracing a fully on-chip design to 
target the microsecond latency imposed in physics experiments. 
The hls4ml library is completely open-source, and aims to provide 
domain scientists with easy-to-use software for deploying highly 
efficient ML algorithms on hardware.

In HAQ28, a hardware-aware automated framework for quanti-
zation is introduced. The automization procedure consists of com-
puting the curvature of the weight space of a layer, assuming a low 
curvature will require a lower bit precision for the weights. Our 
approach differs from HAQ by combining reduced bit precision 
with filter or neuron unit tuning, where the number of filters or 
neurons can be automatically tuned during the scan. In this case, the 
problem becomes highly nonlinear, and we therefore take advan-
tage of an AutoML-type of approach. A Bayesian optimization or  

randomized search is performed to find a solution that encompasses 
the precision used for the weights and activations, and the number 
of units or filters of the layer.

Particle identification in the hardware trigger
A crucial task performed by the trigger system that could be greatly 
improved by a ML algorithm, both in terms of latency and accu-
racy, is the identification and classification of particles coming from 
each proton–proton collision. In this Article, we analyse the pub-
licly available dataset introduced in refs. 13,57. Here, a dataset58 for 
the discrimination of jets, a collimated spray of particles, stemming 
from the decay and/or hadronization of five different particles was 
presented. This consists of quark (q), gluon (g), W boson, Z boson 
and top (t) jets, each represented by 16 physics-motivated high-level 
features. In ref. 13, this dataset was used to train a DNN for deploy-
ment on a Xilinx FPGA. This model was compressed through 
post-training quantization to further reduce the FPGA resource 
consumption and provides a baseline to measure the benefits of 
quantization-aware training with heterogeneous quantization, over 
post-training quantization.

Adopting the same architecture as in ref. 13, we use a fully con-
nected neural network consisting of three hidden layers (64, 32 and 
32 nodes, respectively) with rectified linear unit (ReLU) activation 
functions. The architecture is shown in Extended Data Fig. 1. The 
output layer has five nodes, yielding a probability for each of the five 
classes through a softmax activation function. The model definition 
in TensorFlow Keras is given in Listing 1.

As in ref. 13, the weights of this network are homogeneously 
quantized post-training to a fixed-point precision yielding the best 
compromise between accuracy, latency and resource consump-
tion. This is found to be a fixed-point precision, or bit-width, of 
14 bits with 6 integer bits, in the following referred to as 〈14, 6〉. 
We refer to this configuration as the baseline full model (BF). We 
then train a second pruned version of the BF model, here referred 
to as baseline pruned (BP). This model has 70% of its weights set to 
zero through an iterative process where small weights are removed 
using the TensorFlow Pruning application programming inter-
face59, following ref. 13. This reduces the model size and resource 
consumption considerably, as all zero-multiplications are excluded 
during the firmware implementation. We then create one hetero-
geneously quantized version of the BP model, where each layer is 
quantized independently post-training to yield the highest accu-
racy possible at the lowest resource cost. We start with an initial 
configuration of the model quantization using a wide bit-width, 
then iteratively reduce the bit-width until reaching a threshold in 
accuracy loss relative to the initial floating-point model, evaluated 
on the training set. We iterate over the model in layer order, finding 
the appropriate precision for weights, biases and output of a given 
layer, before moving to the next. We apply a more strict thresh-
old in accuracy for earlier layers, because each round of precision 
reduction only degrades the accuracy. In this case we restrict to a 
1% accuracy difference in the first layer, loosening to 2% for the 
final layer. This model is referred to as the baseline heterogeneous 
(BH) model. A summary of the per-layer quantizations for the 
baselines is provided in Table 1.

Table 1 | Per-layer quantization for post-training quantized models

Model Precision

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

BF/BP 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉 〈14, 6〉

BHa w:〈8, 3〉 b:〈4, 2〉 〈13, 7〉 〈7, 2〉 〈10, 5〉 〈5, 2〉 〈8, 4〉 w:〈7, 3〉 b:〈4, 1〉 〈16, 6〉

When different precision is used for weights and biases, the quantization is listed as w and b, respectively.
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From ref. 13, we know that a post-training quantization of this 
model results in a degradation in model accuracy. The smaller the 
model footprint is made through post-training quantization, the 
larger the accuracy degradation becomes. To overcome this, we 
develop a novel library that, through minimal code changes, allows 
us to create deep heterogeneously quantized versions of the Keras 
model, trained quantization-aware.

In addition, as the amount of available resources on chip  
is known in advance, we want to find the optimal model for a  
given use-case allowing a trade-off between model accuracy  
and resource consumption. We therefore design a method for  
performing automatic quantization, minimizing the model area 
while maximizing accuracy simultaneously through a novel loss 
function. These solutions, simple heterogeneous quantization- 
aware training and automatic quantization are explained in the  
following sections.

Keras32 is a high-level application programming interface 
designed for building and training deep learning models. It is used 
for fast prototyping, advanced research and production. To simplify 
the procedure of quantizing Keras models, we introduce QKeras60: 
a quantization extension to Keras that provides a drop-in replace-
ment for layers performing arithmetic operations. This allows for 
efficient training of quantized versions of Keras models.

QKeras is designed using the design principle of Keras—that 
is, being user-friendly, modular, extensible and minimally intru-
sive to Keras native functionality. The code is based on the work 
of refs. 18,22, but provides a substantial extension to these. This 
includes providing a richer set of layers (for instance, including 
ternary and stochastic ternary quantization), extending the func-
tionality by providing functions to aid the estimation of model area 
and energy consumption, allowing for simple conversion between 
non-quantized and quantized networks, and providing a method 
for performing automatic quantization. Importantly, the library 
is written in such a way that all the QKeras layers maintain a true 
drop-in replacement for Keras ones so that minimal code changes 
are necessary, greatly simplifying the quantization process. During 
quantization, QKeras uses the straight-through estimator19, where 
the forward pass applies the quantization functions and the back-
ward pass assumes the quantization as the identity function to make 
the gradient differentiable.

For the model in Listing 1, creating a deep quantized version 
requires just a few code changes. An example conversion is shown 
in Listing 2.

Listing 1. Defining a model in Keras: TensorFlow Keras model 
definition

from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.layers import BatchNormalization
x = Input((16))
x = Dense(64)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = Dense(5)(x)
x = Activation(‘softmax’)(x)

Obtaining optimal heterogeneous quantization
The necessary code modifications consist of typing Q in front of 
the original Keras data manipulation layer name and specifying the 
appropriate quantization type, for instance, the kernel_quantizer 
and bias_quantizer parameters in a QDense layer. We change only 
data manipulation layers that perform some form of computation 
that may change the data input type and create variables (trainable 
or not). Data transport layers, namely layers performing some form 
of change of data ordering, without modifying the data itself, remain 
the same, for example Flatten. When quantizers are not specified, 
no quantization is applied to the layer and it behaves as the unquan-
tized Keras layer. The only exception is the QBatchNormalization 
layer. Here, when no quantizers are specified, a power-of-2 quan-
tizer is used for the trainable parameters of the batch normaliza-
tion layer, γ and β, as well as for the emperical variance σ, while 
the emperical mean μ remains unquantized. This has worked best 
when attempting to implement quantization efficiently in hardware 
and software (γ and σ become shift registers and β maintains the 
dynamic range aspect of the centre parameter)

Listing 2. Defining a model in QKeras: quantized QKeras 
model example.

from tensorflow.keras.layers import Input, Activation
from qkeras import quantized_bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization
x = Input((16))
�x = QDense(64, kernel_quantizer = quantized_bits(6,0,alpha=1),   
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(32, kernel_quantizer = quantized_bits(6,0,alpha=1), 
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(32, kernel_quantizer = quantized_bits(6,0,alpha=1), 
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = QBatchNormalization()(x)
x = QActivation(‘quantized_relu(6,0)’)(x)
�x = QDense(5, kernel_quantizer = quantized_bits(6,0,alpha=1), 
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x = Activation(‘softmax’)(x)
The second code change is to pass appropriate quantizers, for 

example quantized_bits. In the example above, QKeras is instructed 
to quantize the kernel and bias to a bit-width of 6 and 0 integer 
bits. The parameter alpha can be used to change the absolute scale 
of the weights while keeping them discretized within the chosen 
bit-width. For example, in a binary network, rather than using 
the representations ±1, one can use ±alpha. In QKeras, by setting 
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Fig. 1 | Quantized ReLU function in QKeras. The quantized_relu function 
as implemented in QKeras for 2-bit (purple), 3-bit (green and blue) and 
6-bit (yellow) precision and for 0 or 1 integer bits. The unquantized ReLU 
function is shown for comparison (orange).
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alpha=‘auto’, we also allow for the value of alpha to be computed 
during training from the absolute scale of the weights in ques-
tion. Further details are provided in the Methods and illustrated in 
Extended Data Fig. 2.

QKeras works by tagging all variables, weights and biases created  
by Keras, as well as the output of arithmetic layers, with quantized 
functions. Quantized functions are specified directly as layer para
meters and then passed to QActivation, which acts as a merged 
quantization and activation function. Quantizers and activation 
layers are treated interchangeably. To minimize code changes, 
the quantizers’ parameters have carefully crafted and pre-defined 
defaults or are computed internally for optimal set-up.

The quantized_bits quantizer used above performs mantissa 
quantization:

2int−b+1clip(round(x× 2b−int−1),−2b−1, 2b−1
− 1), (1)

where x is the input, b specifies the number of bits for the quantiza-
tion, and ‘int’ specifies how many bits of bits are to the left of the 
decimal point.

The quantizer used for the activation functions in Listing 2, quan-
tized_relu, is a quantized version of ReLU61. Two input parameters 
are passed, namely the precision, in this case 6 bits, and number of 
integer bits, in this case zero, respectively. The class has further attri-
butes, for instance allowing for stochastic rounding of the activation 
function, all of which are described in detail in ref. 60. Figure 1 shows 
the quantized ReLU function for three different bit-widths and two 
different numbers of integer bits.

Through simple code changes like those above, a large variety of 
quantized models can be created. A full list of quantizers and layers 
is provided in the Methods and listed in Extended Data Fig. 3 or in 
the QKeras code repository60.

We use QKeras to create a range of deep homogeneously quan-
tized models, trained quantization-aware and based on the same 
architecture as the baseline model, which will provide a direct com-
parison between post-training quantization and models trained 
using QKeras. The model in Listing 2 is an example of such a homo-
geneously quantized model. Finally, we want to create an optimally 
heterogeneously quantized QKeras model with a considerably 
reduced resource consumption, without compromising the model 
accuracy. The search space for finding such a configuration is large 
and exponential in layers. We therefore attempt to automatize the 
process by allowing users to scan through all the available quantiz-
ers in QKeras to find the configuration that fits the available chip 
area while maintaining high accuracy.

Resource-aware automatic quantization
As described in the section ‘Motivation’, there are several meth-
ods for finding the optimal quantization configuration for a given 
model. These usually proceed by calculating the sensitivity of a 
given layer to quantization through evaluation of how small distur-
bances within that layer influence the loss function.

Often, as for example in refs. 29,30, only maximization of the model’s 
accuracy and ability to generalize is considered. However, when doing 
inference on the edge, resources are often limited and shared between 
multiple applications. This is the case in particle detectors, where a 
single FPGA is used to perform multiple different tasks. The desired 
accuracy and size constraints of the model in question are known 
in advance, and it is desirable to optimize the precision configura-
tion considering both model accuracy and size. Some methods, like 
HAQ28, do perform such a hardware-aware optimization. However, 
only the weight precision per layer is considered. When models are 
strongly quantized, it is often the case that more or fewer filters in con-
volutional layers, or neurons in densely connected layers, are neces-
sary. A fine-tuning of the number of units per layer is therefore crucial 
to achieve the highest possible accuracy at the lowest resource cost.

In this Article, we introduce a method for performing automatic 
quantization where the user can trade off model area or energy con-
sumption by accuracy in an application-specific way. The per-layer 
weight precision as well as the number of neurons or filters per layer 
are optimized simultaneously. By defining a forgiving factor based 
on the tolerated drop in accuracy for a given reduction in resource 
cost, the best quantization configuration and number of units per 
layer, for a set of given size or energy constraints, can be found. We 
consider both energy minimization and bit-size minimization as a 
goal in the optimization.

Approximating relative model energy consumption. To target a 
reduction in model energy consumption, a high-level estimate of 
the model energy is needed. Here, we only concern ourselves with 
the difference in energy consumption when comparing models 
using different quantizations, and not the absolute energy, as this is 
highly hardware-specific. To this end, we assume an energy model 
where the energy consumption of a given layer is defined as

Elayer = Einput + Eparameters + EMAC + Eoutput.

These correspond to the energy cost of reading inputs (Einput), 
parameters (Eparameters) and output (Eoutput) and the energy required 
to perform multiply-and-accumulate (MAC) operations (EMAC). 
For the first three, in a similar way to compulsory accesses in cache 
analysis62, we only consider the first access to the data, as only com-
pulsory accesses are independent of the hardware architecture and 
memory hierarchy of an accelerator, when comparing models using 
the same architecture. We also assume a fully unrolled implemen-
tation on the hardware (as is the case with hls4ml). For the MAC 
energy estimation, we only consider the energy needed to compute 
the MAC. We do not include the energy usage of registers, or glue 
and pipeline logic that will affect the overall energy profile of the 
device. For a given architecture, this energy consumption is known, 
and here we assume a 45 nanometre processor and follow the energy 
table given in ref. 63.

Although this model provides a good initial estimate, it has 
high variance concerning the actual energy consumption one finds 
in practice, especially for different architectural implementations. 
However, when comparing the energy of two different models, 
or models of different quantizations, both implemented in the 
same technology, this simple energy model is sufficient. The rea-
son for this is that one can assume that the real energy of a layer 
is some linear combination of the high-level energy model, that is, 
EReallayer = k1 × Elayer + k2, where k1 and k2 are constants that depend 
on the architecture of the accelerator and the implementation pro-
cess technology. The slope can be considered as a factor account-
ing for the additional storage needed to keep the model running, 
and the offset corresponds to logic that is required to perform the 
operations. When comparing the energy consumption of two lay-
ers with different quantizations, L1 and L2, for the same model 
architecture, we have that ERealL1 > ERealL2  if, and only if, the estimated 
energy EL1 > EL2.

For these reasons, only relative energy estimates are considered 
during the automatic quantization, and users cannot target a spe-
cific energy value.

To facilitate easy estimation of the relative energy consumption 
or model bit size when comparing different QKeras models, we have 
implemented a tool in the QKeras library, QTools, which performs 
both data type map generation and energy consumption estimation. 
A data type map for weights, biases, multipliers and so on, is gen-
erated for each layer, and includes operation types, variable sizes, 
quantizer types and bits. The output is an estimate of the per-layer 
energy consumption in picojoules, as well as a dictionary of data 
types per layer. Included in the energy calculation is a set of other 
tunable specifications, such as whether parameters and activations 
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are stored on static random-access memory (SRAM) or dynamic 
random-access memory (DRAM), or whether data are loaded from 
DRAM to SRAM. The precision of the input can also be defined for 
a better energy estimate. A full list of options is available in ref. 60. 
The QTools library provides an additional metric for model tuning 
when both accuracy and energy consumption, or model size, need 
to be considered.

Defining a forgiving factor. With the high-level estimate of a  
given layer’s energy consumption provided by QTools, we define a 
forgiving factor (FF) to be targeted during automatic quantization 
of the model, providing a total loss function that combines energy 
cost and accuracy. The FF allows one to tolerate a degradation in a 
given metric, such as model accuracy, if the model gain in terms of 
some other metric, like model size, is considerably larger. Here, we 
allow the forgiving metric to be either minimization of the model 
bit size or minimization of the model energy consumption. The FF 
is defined as

FF = 1+∆acc × logR
(
S× Cref

Ctrial

)
, (2)

where Δacc is the tolerated reduction in accuracy in percent, R is the 
factor stating how much smaller energy the optimized model must 
have compared to the original model (as a multiplicative factor to 
the FF metric) and S is a parameter to reduce the reference size, 
effectively forcing the tuner to choose smaller models. Parameters 
Cref and Ctrial refer to the cost (energy or bits) of the reference model 
and the quantization trial model being tested, respectively. The FF 
can be interpreted in the following way: if we have a linear tolerance 
for model accuracy degradation (or any other performance metric), 
we should be able to find a multiple of that degradation in terms of 
the cost reduction of the implementation. This enables an automatic 
quantization procedure to compensate for the loss in accuracy when 
comparing two models, by acting as a multiplicative factor.

Automatic quantization and rebalancing are then performed by 
treating quantization and rebalancing of an existing DNN as a hyper 
parameter search in Keras Tuner64 using random search, hyper-
band65 or Gaussian processes. We design an extension to Keras 
Tuner called AutoQKeras, which integrates the FF defined in equa-
tion (2) and the energy estimation provided by QTools. This allows 
for simultaneously tuning of the model quantization configura-
tion and the model architecture. For example, AutoQKeras allows 
for tuning of the number of filters in convolutional layers and the 
number of neurons in densely connected layers. This fine-tuning is 
critical, as when models are strongly quantized, more or fewer filters 
might be needed. Fewer filters might be necessary in cases where a 
set of filter coefficients are quantized to the same value.

Consider the example of quantizing two sets of filter coeffi
cients, [−0.3, 0.2, 0.5, 0.15] and [−0.5, 0.4, 0.1, 0.65]. If we apply a  
binary quantizer with scale = ⌈log2(

∑
|w|
N )⌉, where w are the filter  

coefficients and N is the number of coefficients, we will end up with 
the same filter binary([−0.3, 0.2, 0.5, 0.15]) = binary([−0.5, 0.4, 0.1, 
0.65]) = [−1, 1, 1, 1] × 0.5. In this case, we are assuming a scale is a 
power-of-2 number so that it can be efficiently implemented as a 
shift operation. On the other hand, more filters might be needed 
as deep quantization drops information. To recover some of the 
boundary regions in layers that perform feature extraction, more 
filters might be needed when the layer is quantized. Finally, certain 
layers are undesirable to quantize, often the last layer of a network. 
In principle, we do not know if by quantizing a layer we need more 
or fewer filters or neurons and, as a result, there are advantages to 
treating these problems as co-dependent problems, as we may be 
able to achieve a lower number of resources. Note that AutoQKeras 
does not completely remove model layers.

In AutoQKeras, one can specify which layers to quantize by spec-
ifying the index of the corresponding layer in Keras. If attempting 
to quantize the full model in a single shot, the search space becomes 
very large. In AutoQKeras, there are two methods to cope with this: 
grouping layers to use the same choice of quantization or quantiza-
tion by blocks. For the former, regular expressions can be provided 
to specify layer names that should be grouped to use the same quan-
tization. In the latter case, blocks are quantized sequentially, either 
from inputs to outputs or by quantizing higher energy blocks first. If 
blocks are quantized one by one, assuming each block has N choices 
and the model consists of B blocks, one only needs to try N × B, 
rather than NB options. Although this is an approximation, it is a 
reasonable trade-off considering the explosion of the search space 
for individual filter selections, weight and activation quantization.

Whether to quantize sequentially from inputs to outputs or start-
ing from the block that has the highest energy impact depends on 
the model. For example, for a network like ResNet66, and if filter 
tuning is desirable, one needs to group the layers by the ResNet 
block definition and quantize the model sequentially to preserve the 
number of channels for the residual block. A few optimizations are 
performed automatically during model training. First, we dynami-
cally reduce the learning rate for the blocks that have already been 
quantized so that they are still allowed to train, but at a slower pace. 
Also, we dynamically adjust the learning rate for the layer we are 
trying to quantize as opposed to the learning rate of the unquan-
tized layers. Finally, we transfer the weights of the model blocks we 
have already quantized, whenever possible (when shapes remain the 
same).

We then use AutoQKeras to find the optimal quantization configu
rations for the baseline model for extremely resource-constrained 
situations, one targeting a minimization of the model’s footprint in 
terms of model energy (QE) and one minimizing the footprint in 
terms of model bit size (QB), using the different available targets  
in AutoQKeras. We want to reduce the resource footprint by at 
least a factor of four while allowing the accuracy to drop by at most 
5%. We also allow for tuning of the number of neurons for each 
dense layer, for the same reason given above for model filter tuning.  

Table 2 | Per-layer quantization and relative energy consumption for automatically quantized QKeras models, showing per-layer 
quantization configuration and the relative model energy consumption for the AutoQKeras energy optimized (QE) and AutoQKeras 
bits optimized (QB) models, compared to the simple homogeneously quantized model, Q6

Model Accuracy (%) Precision E
EQ6

Bits
BitsQ6

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

QE 72.3 〈4, 0〉 〈4, 2〉 Ternary 〈3, 1〉 〈2, 1〉 〈4, 2〉 w: Stoc. bin. b: 
〈8, 3〉

〈16, 6〉 0.27 0.18

QB 72.8 〈4, 0〉 〈4, 2〉 Stoc. bin. 〈4, 2〉 Ternary 〈3, 1〉 Stoc. bin. 〈16, 6〉 0.25 0.17

Q6 74.8 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 〈6, 0〉 1.00 1.00

When different precision is used for weights and biases, the quantization is listed as w and b, respectively. Stoc. bin., stochastic binary quantization.
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The model is quantized sequentially per block, where one block 
consists of a Dense layer and a ReLU layer. The resulting quanti-
zation configuration is listed in Table 2. A very aggressive quanti-
zation configuration is obtained for both optimizations, with both 
binary and ternary quantizers and a bit-width of four at maximum 
for kernels. Despite the large search space, the obtained configura-
tions are very similar, as is to be expected due to the strong cor-
relation between model energy and bit size. Whenever an input or 
the kernel has one (binary) or two (ternary) bits, we can completely 
eliminate multiplication operations in an implementation, saving 
valuable multiplier resources.

The preferred number of neurons per layer is half that of the 
original (32, 16, 16 rather than 64, 32, 32).

We then compare the relative energy consumption and bit size 
of the QE and QB models as computed with QTools with respect to 
the simple homogeneously quantized model using a 6-bit precision 
in Listing 2, hereby referred to as Q6.

The QE and QB model energy consumption is reduced by 75% 
when compared to the Q6 model and, despite the aggressive quan-
tization and reduction in neurons per layer, only a ~3% degrada-
tion in accuracy is observed for both. The total bit size is reduced 
by 80%. The QB model obtains a slightly smaller energy footprint 
than the QE model, alluding to some degree of randomness when 
scanning such a large search space. The relative power consump-
tion when implemented on FPGA hardware will be discussed in the  
section ‘Ultralow-latency, quantized model on FPGA hardware’.

All the models presented so far are trained minimizing the cat-
egorical cross-entropy loss67 using the Adam optimizer68. A learn-
ing rate of 0.0001 is set as the starting learning rate. If there is no 
improvement in the loss for ten epochs, the learning rate is reduced 
by 50% until a minimum learning rate of 10−6 is reached. The batch 
size is 1,024 and the training proceeds for 100 epochs. The train-
ing time for the models trained quantization-aware with QKeras is 
increased by ×1.5 with respect to the Keras equivalent.

For particle detector trigger applications, it is often desirable to 
operate the algorithm at very low false positive rates (FPRs), ensur-
ing that only the most interesting events are kept while staying 
within the available trigger bandwidth. In Extended Data Fig. 4, 
the classification performances of the BF, Q6, QE and QB models 
for two different target classes, top (t) and gluon (g), are compared. 
These classes were chosen as the ones where the original network, 
introduced in ref. 13, had the highest and lowest area under the curve 
(AUC) scores, respectively. Specifically, the receiver operating char-
acteristic (ROC) curves of FPR versus true positive rate (TPR), and 
the corresponding AUC, are shown. The classification performance 
of the Q6 model is almost identical to that of the BF model for FPRs 
down to 0.1%. The QE and QB models perform slightly worse, with 

AUC scores 0.02 points lower than for Q6 and BF. For a fixed FPR 
of 1%, the TPR for BF/Q6 is 60% and is 55% for QE/QB. No nota-
ble degradation at very low FPR, where typical trigger algorithms 
would be operated, is observed.

With AutoQKeras, we give the user full flexibility to optimize 
the quantization configuration for a given use-case. An estimate 
of the model size and energy consumption can be computed using 
QTools and the user can then proceed by instructing AutoQKeras 
as to how much energy or bits it is desirable to save, given a certain 
accuracy-drop tolerance. Going from a pre-defined Keras model to 
an optimally quantized version (based on available resources) that 
is ready for chip implementation is made extremely simple through 
these libraries.

The final, crucial step in this process is to take these quantized 
models and make it simple to deploy them in the trigger system 
FPGAs (or any hardware) while making sure the circuit layout is 
optimal for the ultralow-latency constraint. We will address this in 
the following section.

Ultralow-latency, quantized model on FPGA hardware
To achieve ultralow-latency inference of QKeras models on FPGA 
firmware, we introduce full integration of QKeras layers in the 
hls4ml library. The libraries, together, provide a streamlined pro-
cess for bringing quantized Keras models into particle detector trig-
gering systems, while staying within the strict latency and resource 
constraints and performing high-accuracy inference.

When converting a QKeras model to an HLS project, the model 
quantization configuration is passed to hls4ml and enforced on 
the FPGA firmware. This ensures that the use of specific, arbitrary 
precision in the QKeras model is maintained during inference. For 
example, when using a quantizer with a given alpha parameter (that 
is, scaled weights), hls4ml inserts an operation to rescale the layer 
output. For binary and ternary weights and activations, the same 
strategies as in ref. 43 are used. With binary layers, the arithmetical 
value of −1 is encoded as 0, allowing the product to be expressed 
as an XNOR operation. The full workflow starting from a baseline 
TensorFlow Keras model and up until FPGA firmware generation 
is shown in Fig. 2. This illustrates how, through two simple steps, 
Keras models can be translated into ultra-compressed, highly paral-
lel FPGA firmware.

We now compare the accuracy, latency and resource consump-
tion of the different models derived so far: the BF, BP and BH mod-
els derived without using QKeras, two models optimized using 
AutoQKeras minimizing the model energy consumption (QE) 
and model bit consumption (QB), as well as a range of homoge-
neously quantized QKeras models scanning bit-widths from 3 to 16. 
Each model is trained using QKeras version 0.7.4, translated into  

TensorFlow Keras model
Accuracy 

requirement
Resource 

constraints

AutoQKeras
optimization

QKeras
quantizers

QTools
estimates

Quantization 
configuration hls4ml

Fixed-point translation 
Parallelization 

Firmware generation

KTuner
API

QKeras
model

HLS project

Fig. 2 | The QKeras and hls4ml workflow. The full workflow starting from a baseline TensorFlow Keras Model, which is then converted into an optimally 
quantized equivalent through QKeras and AutoQKeras. This model is then translated into highly parallel firmware with hls4ml.
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firmware using hls4ml version 0.2.1, and then synthesized with 
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA 
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy. 
The resources at disposal on the FPGA are DSPs, LUTs, block ran-
dom access memory (BRAM) and flip-flops. In this case, the BRAM 
is only used as a LUT read-only memory for calculating the final 
softmax function and is the same for all models, namely 1.5 units, 
corresponding to a total of 54 kb. For larger NNs using a higher reuse 
factor and longer latency, BRAM may also be used to store model 
weights. The estimated resource consumption and latency from logic 
synthesis, together with the model accuracy, are listed in Table 3. A 
fully parallel implementation is used, with an initiation interval—the 
number of clock cycles between new data inputs—of 1 in all cases. 
Resource utilization is quoted in the percentage of total available 
resources, with absolute numbers quoted in parentheses.

The most resource-efficient model is the AutoQKeras QE model, 
reducing the DSP usage by ~98%, LUT usage by ~80% and flip-flop 
usage by ~90%. The accuracy drop is less than 3%, despite using half 
the number of neurons per layer and the overall lower precision. 
The extreme reduction of DSP utilization is especially interesting 
as, on the FPGA, DSPs are scarce and usually become the critical 
resource for ML applications. DSPs are used for all MAC operations, 
but, if the precision of the incoming numbers is much lower than 
the DSP precision (which, in this case, is 18 bits) MAC operations 
are moved to LUTs. This is an advantage, as a representative FPGA 
for the LHC trigger system has O(103) DSPs compared to O(106) 
LUTs. If the bulk of multiplication operations is moved to LUTs, this 
allows for deeper and more complex models to be implemented. In 
our case, the critical resource reduces from 56% of DSPs for the 
baseline to 3.4% of LUTs for the 6-bit QKeras trained model with 
the same accuracy. The latency is O(10) ns for all models.

In the final two columns of Table 3, we compare the relative 
energy estimation from QTools with the post place-and-route power 
report from Vivado for the three QKeras models, in both cases rela-
tive to the Q6 model. Because the target clock frequency and model 
initiation interval are identical across these models, the inference 
rate is the same and taking the ratio of the power is equivalent to 
taking the ratio of the energy. Very good agreement between the 
QTools relative energy estimates and the Vivado relative power esti-
mates is observed for the QE and QB models, and the energy order-
ing is the same for all models.

We compare the results obtained using the QKeras and hls4ml 
workflow to LogicNets47, another work on extreme low-latency, 
low-resource, fully unfolded (initiation interval = 1) FPGA imple-
mentations. The metrics are those quoted in Table 3. Two LogicNets 

models have been evaluated: one using the same architecture as in 
this Article, JSC-M and another using a larger architecture (32, 64, 
192, 192, 16 numbers of neurons), JSC-L. For JSC-M, an accuracy 
of 70.6% is quoted, 1.7 points lower than the most resource-efficient 
model using QKeras and hls4ml, QE. In addition, QE uses 1.2× 
fewer LUTs than JSC-M. No DSPs are used in LogicNets, compared 
to the 66 DSPs in use by the QE model.

The latency has only been evaluated for JSC-L and is quoted to 
be 13 ns, using a clock frequency of 384 MHz. The final softmax 
function has been removed from this estimate. In high-energy phys-
ics experiments, the final softmax layer is crucial because trigger 
thresholds are usually set based on an algorithm’s FPR. The thresh-
old on the FPR is usually set as high as the trigger bandwidth allows, 
maximizing the TPR while staying within the bandwith-budget.

For a clock period of 5 ns, the QE model has a latency of 55 ns, 
reduced to 45 ns when ignoring the final softmax layer. The JSC-L 
model has a latency of 13 ns for a clock period of 2.6 ns.

Finally, we compare the accuracy and resource consumption 
of a range of homogeneously quantized QKeras models, scanning 
bit-widths from 3 to 16. In Fig. 3 (left) the accuracy relative to the 
baseline model evaluated with floating-point precision is shown as 
a function of bit-width. This is shown for the accuracy as evalu-
ated offline using TensorFlow QKeras (green line) and the accuracy 
as evaluated on the FPGA (orange line). We compare this to the 
performance achievable using the baseline model and post-training 
quantization (purple dashed line). The markers represent the 
accuracy of the baseline, baseline pruned, baseline heterogeneous 
and AutoQKeras optimized models (again emphasizing that the 
AutoQKeras models use half as many neurons per layer as the base-
line Keras model). Models trained with QKeras retain performance 
very close to the baseline using as few as 6 bits for all weights, biases 
and activations. Accuracy degrades slightly down to 98% of the 
baseline accuracy at a precision of 3 bits.

Post-training homogeneous quantization of the baseline model 
shows a much more notable accuracy loss, with accuracy rapidly 
falling away below 14 bits. The model resource utilization as a func-
tion of bit-width for homogeneously quantized QKeras models is 
shown in the right plot in Fig. 3. The switch from DSPs to LUTs 
mentioned above is clearly visible: below a bit-width of ~10, MAC 
operations are moved from the DSPs to the LUTs and the critical 
resource consumption is considerably reduced. For example, in this 
case, using a model quantized to 6-bit precision will maintain the 
same accuracy while reducing resource consumption by ~70%. The 
symbols in Fig. 3 show the resource consumption of the heteroge-
neously quantized models. The only model comparable in accuracy 
and resource consumption to the AutoQKeras optimized models, 

Table 3 | Performance on a Xilinx VU9P FPGA (2), showing model accuracy, latency, resource utilization and relative energy estimate 
for six different models

Model Accuracy (%) Latencyc 
(ns)

Latency (clock 
cycles)

DSP (%) LUT (%) FF (%) EQK
EQK( Q6 )

PHLS
PHLS( Q6 )

BF 74.4 45 9 56.0 (1,826) 5.2 (48,321) 0.8 (20,132) – –

BP 74.8 70 14 7.7 (526) 1.5 (17,577) 0.4 (10,548) – –

BH 73.2 70 14 1.3 (88) 1.3 (15,802) 0.3 (8,108) – –

Q6 74.8 55 11 1.8 (124) 3.4 (39,782) 0.3 (8,128) 1.00 1.00

QE 72.3 55 11 1.0 (66) 0.8 (9,149) 0.1 (1,781) 0.27 0.30

QB 71.9 70 14 1.0 (69) 0.9 (11,193) 0.1 (1,771) 0.25 0.25

LogicNets JSC-M47 70.6 NAa NA 0 (0) 1.2 (14,428) 0.02 (440) – –

LogicNets JSC-L47 71.8 13b 5 0 (0) 3.2 (37,931) 0.03 (810) – –
aNot evaluated. bUsing a clock frequency of 384 MHz. cThe latency is evaluated for a clock cycle of 200 MHz. Resources are listed as percentage of total, with absolute numbers quoted in parentheses. The 
energy is estimated relative to the Q6 model and correspond to the relative energy computed using QTools (second to last column) and the relative power estimate from the post place-and-route report 
from Vivado (last column).

Nature Machine Intelligence | VOL 3 | August 2021 | 675–686 | www.nature.com/natmachintell682



ArticlesNATuRE MACHinE InTELLigEnCE

QE and QB, is the baseline heterogeneous (BH). However, in con-
trast to the QKeras models, BH has been pruned to a weight sparsity 
of 70%, which further reduces the resource consumption (all zero 
multiplications are removed). In addition, the process of manually 
quantizing a model post-training is time-consuming and cumber-
some, and not guaranteed to always succeed due to its lossy nature. 
AutoQKeras and hls4ml allow us to quantize automatically through 
quantization-aware training, with specific tolerances in terms of 
accuracy and area, greatly simplifying the process.

In ref. 69, the QKeras and hls4ml workflow has been dem-
onstrated on convolutional architectures benchmarked on the 
Streetview House Numbers dataset70, both on large FPGAs and small 
system-on-chip FPGAs. High accuracy matching the floating-point 
model accuracy can be maintained down to 6-bit precision with 
QKeras, executed with a latency of 5 μs. For larger convolutional 
architectures like ResNet66, hls4ml does not scale due to the very 
low latency target and the fully on-chip implementation used to 
obtain this. Our main application is the efficient implementation of 
smaller, custom models targeting latencies of O(10) ns to O(1) μs.

Conclusion and future work
We have introduced a novel library, QKeras, providing a simple 
method for uncovering optimally heterogeneously quantized DNNs 
for a set of given resource or accuracy constraints. Through simple 
replacement of Keras layers, models with heterogeneous per-layer, 
per-parameter type precision, chosen from a wide range of novel 
quantizers, can be defined and trained quantization-aware. A model 
optimization algorithm that considers both model area and accuracy 
is presented, allowing users to maximize the model performance 
given a set of resource constraints, crucial for high-performance 
inference on edge. Support for these quantized models has been 
implemented in hls4ml, providing the necessary chip layout instruc-
tion components to enable ultrafast inference of these tiny-footprint 
models on a chip. We have demonstrated how on-chip resource 
consumption can be reduced by a factor of 50 without much loss in 
model accuracy while performing inference within O(10) ns. The 
methods presented here provide crucial tools for inference on the 
extreme low-area and low-latency edge, like that in particle detec-
tors where a latency of O(1) μs is enforced. Taking a pre-trained 
model and making it suitable for hardware implementation on the 
edge, both in terms of latency and size, is one of the bottlenecks 
for bringing ML applications into extremely constrained computing 

environments (for example, a detector at a particle collider), and 
the workflow presented here will allow for a streamlined and simple 
process, ultimately resulting in a great improvement in the quality 
of physics data collected in the future.

The generality and flexibility of the QKeras+hls4ml work-
flow opens up a wide array of possible future work. This includes 
integration with other quantization libraries targeting non-FPGA 
hardware, such as TensorFlow Lite, as well as those targeting FPGA 
synthesis, such as FINN (and the quantization library Brevitas) and 
HAQ. In addition, while the energy estimator provides a good base-
line for relative energy consumption, as demonstrated, we hope to 
extend the library to provide more device-specific absolute energy 
estimates. We also plan to explore using a combination of block 
energy and the curvature of the weight space, as done in HAQ, when 
quantizing a network one block at a time. Finally, work is ongoing to 
use the QKeras+hls4ml workflow to deploy ML algorithms for the 
next data-taking period at CERN LHC both on FPGAs and ASICs.

Methods
Additional layers, quantizers and methods in QKeras. In this section, we will 
give an overview of the available layers, quantizers and methods in QKeras. A 
summary of available layers in QKeras is listed in Extended Data Fig. 3.

For several quantizers (including quantized_bits), a parameter called  
keep_negative can be set.

If keep_negative is true, negative numbers are not clipped. With a lower 
number of bits, the rounding adds more bias to the number system. Reference 71 
suggested using stochastic rounding, which uses the fractional part of the number 
as a probability to round the number up or down.

Stochastic rounding for quantized_bits quantizers can be turned on by setting 
use_stochastic_rounding = True. However, when an efficient hardware or software 
implementation is considered, this flag should be avoided in activation functions as 
it may affect the implementation efficiency.

Activations have been migrated to QActivation, but activation parameters 
passed directly in convolutional and dense layers will be recognized as well.

The bernoulli and stochastic functions rely on stochastic versions of the 
activation functions, so they are best suited for weights and biases. They draw a 
random number with uniform distribution from sigmoid of the input x, adding 
additional regularization. The result is based on the expected value of the 
activation function. The temperature parameter determines the steepness of the 
sigmoid function.

The quantizers quantized_relu and quantized_tanh are quantized versions of 
ReLU61 and tanh functions, respectively.

The quantized_po2 and quantized_relu_po2 quantizers perform exponent 
quantization, as defined in ref. 72. The main advantage of this quantizer is that it 
provides a representation that is very efficient for multiplication. The parameter 
max_value defines maximum value.
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Fig. 3 | Performance on a Xilinx VU9P FPGA. Relative accuracy (left) and resource utilization (right) as a function of bit-width. The right-hand panel shows 
the metrics for the heterogeneously quantized models. The relative accuracy is evaluated with respect to the floating-point baseline model. Resources are 
expressed as a percentage of the targeted FPGA, a Xilinx VU9P.
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It should also be noted that the QSeparableConv2D layer is implemented as a 
depthwise, followed by pointwise quantized expansions, which is an extended form 
of the SeparableConv2D implementation of MobileNet73. The reason we chose to 
use this version is that MobileNet’s SeparableConv2D has an activation between 
the depthwise convolution and the pointwise convolution, where we need to at 
least apply some form of quantization.

Besides the drop-in replacement of Keras layers, we have written a few utility 
functions.

The model_quantize function converts a non-quantized model into a quantized 
version, by applying a specified configuration for layers and activations. The 
method model_save_quantized_weights saves the quantized weights in the model 
compatible with an inference or writes the quantized weights in the file filename 
for production. The method load_qmodel loads and compiles the quantized Keras 
model. The methods print_model_sparsity and print_qstats print sparsity for the 
pruned layers in the model and statistics of the number of operations per operation 
type and layer. Meanwhile, quantized_model_debug allows for debugging and 
plotting model weights and activations. Finally, extract_model_operations 
estimates which operations are required for each layer of the quantized model, for 
example xor, mult, adder and so on.

Variance shift handling in QKeras. A critical aspect when training quantized 
versions of tensors and trainable parameters is the variance shift. During training 
with very few bits, the variance may shift a lot from its initialization. With popular 
initialization methods, such as glorot_normal, during the initial steps of the 
training, all of the output tensors will become zero. Consequently, the network will 
not be trained. For example, in a VGG network74, the fully connected layers have 
4,096 elements, and any quantized representation with fewer than 6 bits will turn 
the output of these layers to 0, as log2(

√
(4, 096)) = 6. For layer i and minimum 

quantization threshold Δ, the weights wi are quantized by quantizer(wi) operation. 
When the gradient is computed, the quantized weights will appear as a result of 
the chain rule computation, as depicted in Extended Data Fig. 2. With the absolute 
values of all weights below Δ, the gradient will vanish in all layers that transitively 
generate the inputs to layer i. This applies to any large DNN.

QKeras mitigates this challenge by rescaling the initialized weights 
appropriately. The parameter alpha is used as a scaling factor. It can be considered 
as a way to compute a shared exponent when used in weights75. It can be set 
to a given value manually, or overridden by setting it to auto or auto_po2. 
With alpha = ‘auto’, we compute the scale as ∑q(x)x/∑q(x)q(x) as in ref. 24 for 
the quantization function q, with a different value for each output channel or 
output dimension of tensor x. This provides a learned scaling factor that can be 
used during training. With alpha = ‘auto_po2’19, the scaling factor is set to be a 
power-of-2 number.

For the ternary and stochastic_ternary quantizers, we iterate between scale 
computation and threshold computation, as presented in ref. 76, which searches for 
the threshold and scale tolerant to different input distributions. This is especially 
important when we need to consider that the threshold shifts depending on 
the input distribution, affecting the scale as well, as pointed out by ref. 77. When 
computing the scale in these quantizers with alpha = ‘auto’, we compute the scale 
as a floating-point number. With alpha = ‘auto_po2’, we enforce the scale to be a 
power of 2, meaning that an actual hardware or software implementation can be 
performed by just shifting the result of the convolution or dense layer to the right 
or left by checking the sign of the scale (positive shifts left, negative shifts right), 
and taking the log2 of the scale. This behaviour is compatible with shared exponent 
approaches, as it performs a shift adjustment to the channel.

Data availability
The data used in this study are openly available at Zenodo58 from https://doi.
org/10.5281/zenodo.3602260.

Code availability
The QKeras library, which also includes AutoQKeras and QTools, is available 
from https://github.com/google/qkeras (the work presented here uses 
QKeras version 0.7.4). Examples on how to run the library are available in the 
notebook subdirectory. The hls4ml library is available at https://github.com/
fastmachinelearning/hls4ml and all versions ≥0.2.1 support QKeras models 
(the work presented here is based on version 0.2.1). For examples on how to use 
QKeras models in hls4ml, the notebook part4_quantization at https://github.com/
fastmachinelearning/hls4ml-tutorial serves as a general introduction.
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Extended Data Fig. 1 | Model architecture and quantization. Model architecture for the fully-connected NN architecture under study. The numbers in 
brackets are the precisions used for each layer, quoted as 〈B, I〉, where B is the precision in bits and I the number of integer bits. When different precision 
is used for weights and biases, the quantization is listed as w and b, respectively. These have been obtained using the per-layer, per-parameter type 
automatic quantization procedure described in Section VI.
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Extended Data Fig. 2 | Variance shift. Variance shift and the effect of initialization in gradient descent.
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Extended Data Fig. 3 | Layers and quantisers in QKeras. List of available layers and quantizers in QKeras.
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Extended Data Fig. 4 | ROC curves for the models under study. ROC curves of false positive rate (FPR) versus true positive rate (TPR) for the Baseline Full 
(BF), quantized 6-bit (Q6), AutoQKeras Energy Optimized (QE) and AutoQKeras Bits Optimized (QB) models.
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a b s t r a c t

We present OpenMP versions of C and Fortran programs for solving the Gross–Pitaevskii equation for
a rotating trapped Bose–Einstein condensate (BEC) in two (2D) and three (3D) spatial dimensions. The
programs can be used to generate vortex lattices and study dynamics of rotating BECs. We use the split-
step Crank–Nicolson algorithm for imaginary- and real-time propagation to calculate stationary states
and BEC dynamics, respectively. The simulation input parameters for the C programs are provided
via input files, while for the Fortran programs they are given at the beginning of each program and
therefore their change requires recompilation of the corresponding program. The programs propagate
the condensate wave function and calculate several relevant physical quantities, such as the energy,
the chemical potential, and the root-mean-square sizes. The imaginary-time propagation starts with
an analytic wave function with one vortex at the trap center, modulated by a random phase at
different space points. Nevertheless, the converged wave function for a rapidly rotating BEC with
a large number of vortices is most efficiently calculated using the pre-calculated converged wave
function of a rotating BEC containing a smaller number of vortices as the initial state rather than
using an analytic wave function with one vortex as the initial state. These pre-calculated initial states
exhibit rapid convergence for fast-rotating condensates to states containing multiple vortices with
an appropriate phase structure. This is illustrated here by calculating vortex lattices with up to 61
vortices in 2D and 3D. Outputs of the programs include calculated physical quantities, as well as the
wave function and different density profiles (full density, integrated densities in lower dimensions,
and density cross-sections). The provided real-time propagation programs can be used to study the
dynamics of a rotating BEC using the imaginary-time stationary wave function as the initial state.
We also study the efficiency of parallelization of the present OpenMP C and Fortran programs with
different compilers.
Program summary
Program title: BEC-GP-ROT-OMP, consisting of: (1) BEC-GP-ROT-OMP-C package, containing programs
(i) bec-gp-rot-2d-th and (ii) bec-gp-rot-3d-th; (2) BEC-GP-ROT-OMP-F package, containing programs
(i) bec-gp-rot-2d-th and (ii) bec-gp-rot-3d-th.
Program files doi: http://dx.doi.org/10.17632/cw7tkn22v2.2
Licensing provisions: Apache License 2.0
Programming language: OpenMP C; OpenMP Fortran. The C programs are tested with the GNU, Intel,
PGI, Oracle, and Clang compiler, and the Fortran programs are tested with the GNU, Intel, PGI, and
Oracle compiler.
Nature of problem: The present Open Multi-Processing (OpenMP) C and Fortran programs solve the
time-dependent nonlinear partial differential Gross–Pitaevskii (GP) equation for a trapped rotating
Bose–Einstein condensate in two (2D) and three (3D) spatial dimensions in a fully anisotropic traps.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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Solution method: We employ the split-step Crank–Nicolson algorithm to discretize the time-dependent
GP equation in space and time. The discretized equation is then solved by imaginary- or real-time
propagation, employing adequately small space and time steps, to yield the solution of stationary and
non-stationary problems, respectively.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Previously published Fortran [1] and C [2] programs, and their
OpenMP extensions [3,4] are now popular tools for solving the
Gross–Pitaevskii (GP) equation and are enjoying widespread use.
These programs have been later extended to the more com-
plex scenario of dipolar atoms [5]. The C programs have been
adapted to run even faster on modern multi-core computers
using general-purpose graphic processing units with Nvidia CUDA
and computer clusters using Message Passing Interface (MPI) [6].
In this paper, we present new OpenMP C and Fortran programs
to solve the GP equation for a rotating trapped Bose–Einstein
condensate (BEC) and to generate a vortex lattice, based on our
earlier work [3,4]. This is a problem of general interest for both
theoreticians [7,8] and experimentalists [9].

The GP equation for a rotating trapped BEC can be conve-
niently solved by the imaginary- [10–12] and real-time evolu-
tion [13] methods. The solution algorithms rely on transforming
the GP equation to the rotating frame, where the rotating BEC
with vortices becomes a stationary state [7] and the standard
imaginary-time approach can be applied [10]. In the real-time
approach [13], a dissipation has to be included in the GP equa-
tion to generate the vortices. The imaginary-time approach [10]
does not require any dissipation, is simpler to implement and is
found to converge faster and lead to accurate results. Here we
provide combined imaginary- and real-time programs in two (2D)
and three (3D) spatial dimensions without any dissipation [10].
The present imaginary-time program already involves complex
variables and is hence combined together with the real-time
program. The choice of the type of propagation is made through
an input parameter. The imaginary-time approach should be used
to solve the GP equation for the rotating BEC and to generate
the stationary vortex lattice. A subsequent study of the non-
stationary dynamics of the rotating BEC should be done using the
real-time propagation. Here we provide C and Fortran programs
for the solution of the GP equation for a rotating BEC in a fully
anisotropic 3D trap by imaginary- and real-time propagation. We
also present C and Fortran programs for the reduced GP equation
in 2D, appropriate for a disk-shaped BEC under a tight axial
(z-direction) trapping. We use the split-step Crank–Nicolson
scheme for solving the GP equation, as in Refs. [1,2].

The imaginary-time algorithm employs a time iteration loop
of an initial state until the convergence is reached [1]. The usual
initial states are analytic wave functions, generally with one
vortex at the center of the trap. However, such an analytic initial
function may exhibit slow convergence and often may lead to
an inappropriate final vortex lattice structure. We will use an
analytic initial function modulated by a random phase at different
space points and show that this procedure is essential in address-
ing the convergence issues, as well as in obtaining the correct
vortex lattice structure for a given set of system parameters.
Moreover, the GP equation of a rapidly rotating BEC with a very
large number of vortices, viz. Figs. 2(c) and (d) with 37 and 61
vortices, faces a convergence difficulty even after random phase
modulation. In this latter case, when a pre-calculated converged
wave function of the rotating BEC with a smaller number of vor-
tices is used as the initial state, the convergence of the algorithm

is vastly improved, resulting in the reduction of more than 90%
in execution time.

In Section 2 we present the GP equation for a rotating BEC
in an anisotropic trap. We present the mean-field model and
a general scheme for its numerical solution. The reduced 2D
GP equation appropriate for a disk-shaped rotating BEC is also
presented there. The details about the computer programs, and
their input/output files, etc. are given in Section 3. The numerical
method and results are given in Section 4, where we illustrate
the generation of vortex lattices by employing the imaginary-time
propagation in rapidly rotating trapped BECs with different an-
gular frequencies and interaction strengths (nonlinearities). The
stability of these vortex lattices is demonstrated in real-time
propagation using the corresponding converged solution obtained
by the imaginary-time propagation as initial states. The effi-
ciency of parallelization of the present OpenMP programs in
multi-core computers using the GNU and Intel compilers is also
demonstrated there. Finally, a brief summary is given in Section 5.

2. The Gross–Pitaevskii equation for a rotating condensate

A non-rotating BEC made up of N atoms, each of mass m, can
be described by the following mean-field GP equation for a wave
function φ(r, t) at the space point r at time t [8]

ih̄
∂φ(r, t)
∂t

=

[
−

h̄2

2m
∇

2
r +

1
2
mω2(γ 2x2 + ν2y2 + λ2z2)

+
4π h̄2aN

m
|φ(r, t)|2

]
φ(r, t), i =

√
−1, (1)

where r ≡ (ρρρ, z) ≡ (x, y, z), a is the atomic s-wave scattering
length, and ω is the reference trapping frequency, with γ , ν, λ
representing the trap anisotropies along the x, y, z directions,
respectively. The normalization condition is

∫
dr|φ(r, t)|2 = 1.

This equation can be derived from the energy functional [8]

E[φ] =

∫
dr

[
h̄2

2m
|∇rφ|

2
+

1
2
mω2(γ 2x2 + ν2y2 + λ2z2)|φ|

2

+
2π h̄2aN

m
|φ|

4
]
. (2)

The formation of a vortex lattice in a rapidly rotating BEC
can be conveniently calculated in the rotating frame, where the
generated vortex lattice forms a stationary state, which can be
obtained by the imaginary-time propagation method. Such a dy-
namical equation in the rotating frame can be written if we note
that the Hamiltonian in the rotating frame is given by H =

H0 − ΩLz [14], where H0 is the laboratory frame Hamiltonian,
Ω is the angular frequency of rotation around the z axis, and
Lz = ih̄(y∂/∂x − x∂/∂y) is the z component of the angular
momentum. Consequently, the GP equation in the rotating frame
has the explicit form [8,10,11,13,15,16]

ih̄
∂φ(r, t)
∂t

=

[
−

h̄2

2m
∇

2
r +

1
2
mω2(γ 2x2 + ν2y2 + λ2z2)

+
4π h̄2aN

m
|φ(r, t)|2 −ΩLz

]
φ(r, t). (3)



76 R. Kishor Kumar, V. Lončar, P. Muruganandam et al. / Computer Physics Communications 240 (2019) 74–82

Using the transformations r′ = r/l, l =
√
h̄/(mω), a′

= a/l,
t ′ = ωt , φ′

= l−3/2φ, Ω ′
= Ω/ω, and L′

z = Lz/h̄, we obtain the
following convenient dimensionless form of the above equation:

i
∂φ(r, t)
∂t

=

[
−

1
2
∇

2
r +

1
2
(γ 2x2 + ν2y2 + λ2z2)

+ g3D|φ(r, t)|2 −ΩLz
]
φ(r, t), g3D = 4πNa, (4)

where we have dropped the primes from the transformed dimen-
sionless variables. We note that Eq. (4) can also be derived from
the dimensionless energy functional [8]

E[φ] =

∫
dr

[
1
2
|∇rφ|

2
+

1
2
(γ 2x2 + ν2y2 + λ2z2)|φ|

2

+
1
2
g3D|φ|

4
− φ∗ΩLzφ

]
, (5)

obtained using the same transformations and expressing the en-
ergy in units of h̄ω. All derivations and results presented in the
following are using these dimensionless variables.

A convenient equation for a quasi-2D disk-shaped BEC under
a strong harmonic confinement in the z direction (λ ≫ γ , ν) can
be derived using the following ansatz for the wave function [17]:

φ(r, t) = ψ(ρρρ, t) ×
1

(πd2z )1/4
exp

(
−

z2

2d2z

)
, dz =

√
1
λ
, (6)

where we assume that because of the strong confinement the
dynamics in the z direction will be frozen to a time-independent
Gaussian of width dz , and that the relevant dynamics will evolve
only in the x-y plane. If we substitute the ansatz (6) to Eq. (4),
we can integrate out the z variable and obtain the corresponding
dynamical equation in 2D, valid for a quasi-2D rotating BEC in a
disk-shaped trap [1,17]:

i
∂ψ(ρρρ, t)
∂t

=

[
−

1
2
∇

2
ρρρ +

1
2
(γ 2x2 + ν2y2) + g2D|ψ(ρρρ, t)|2

− ΩLz]ψ(ρρρ, t), g2D =
4πaN

√
λ

√
2π

, (7)

with the normalization condition
∫
dρρρ|ψ(ρρρ, t)|2 = 1. The energy

functional corresponding to Eq. (7) is

E[ψ] =

∫
dρρρ

[
1
2
|∇ρρρψ |

2
+

1
2
(γ 2x2 + ν2y2)|ψ |

2

+
1
2
g2D|ψ |

4
− ψ∗ΩLzψ

]
. (8)

We use the split-step Crank–Nicolson algorithm for the so-
lution of the GP equations (4) and (7). This approach has been
elaborated in detail in Ref. [1]. In the following we describe the
necessary modifications for the 2D equation (7). We follow the
identical prescription in 3D. Noting that Lz = ih̄(y∂/∂x − x∂/∂y),
we split the Hamiltonian into three parts:

H ≡ H1 + H2 + H3, (9)

H1 =
1
2
(γ 2x2 + ν2y2) + g2D|ψ |

2, (10)

H2 = −
1
2
∂

∂x2
− iΩy

∂

∂x
, (11)

H3 = −
1
2
∂

∂y2
+ iΩx

∂

∂y
. (12)

In this approach we perform the time propagation over infinites-
imally small time step first over only the part H1, and then over
the part H2, and finally over the part H3 of the Hamiltonian.
Essentially, we split Eq. (7) into

i
∂ψ

∂t
= H1ψ, i

∂ψ

∂t
= H2ψ, i

∂ψ

∂t
= H3ψ, (13)

and perform the time propagation over these three sub-equations
successively and independently of each other, in the given order.

We first solve the first of Eqs. (13) starting from an initial state
ψ(ρρρ, t0) at t = t0 to obtain the first intermediate solution after
an infinitesimal time step ∆. Then this intermediate solution is
used as an initial value to solve the second of Eqs. (13), yielding
the second intermediate solution at the time t = t0 +∆, which is
then used to propagate the third of Eqs. (13) over the infinitesimal
time ∆ to yield the final solution at t = t0+∆, after one full time
iteration of Eq. (7). This procedure is repeated n times to get the
final solution at time tfinal = t0 + n∆.

The first equation of (13) with H1 has the analytic solution [1],
which we denote by ψk+1/3 when propagating between the time
steps k and k + 1. Similarly, we denote by ψk+2/3 the wave
function after the time propagation with respect to H2, and finally
by ψk+1 after additional propagation with respect to H3, i.e., after
one full time iteration. Following Ref. [1] and using notations
therein, we discretize the second equation of (13) for H2 alone
as

i
ψ

k+2/3
i − ψ

k+1/3
i

∆
= −

1
2

1
2h2

x

{ (
ψ

k+2/3
i+1 − 2ψk+2/3

i

+ ψ
k+2/3
i−1

)
+

(
ψ

k+1/3
i+1 − 2ψk+1/3

i + ψ
k+1/3
i−1

) }
−

iΩyj
4hx

{(
ψ

k+2/3
i+1 − ψ

k+2/3
i−1

)
+

(
ψ

k+1/3
i+1 − ψ

k+1/3
i−1

)}
, (14)

where ψ t
i = ψ(xi, yj, t) refers to the wave function value at the

spatial grid point determined by x ≡ xi = −Nxhx/2 + ihx, yj =

−Nyhy/2 + jhy, i = 0, 1, 2, . . . ,Nx, and j = 0, 1, 2, . . . ,Ny.
Here hx, hy are the space steps along the x and y directions,
respectively, and t = k + 1/3 or k + 2/3 refers to the time
iteration [1], connecting the present (k + 1/3) to the future (k +

2/3) in propagation with respect to H2.
The above procedure results in a set of tridiagonal equations

(14) in ψk+2/3
i+1 , ψk+2/3

i , and ψk+2/3
i−1 at time tk+2/3, which are solved

using the proper boundary conditions [1]. The tridiagonal equa-
tions are written explicitly as A−

i ψ
k+2/3
i−1 +A0

i ψ
k+2/3
i +A+

i ψ
k+2/3
i+1 =

bi, where

bi =
i∆
4h2

x

(
ψ

k+1/3
i+1 − 2ψk+1/3

i + ψ
k+1/3
i−1

)
−
∆Ωyj
4hx

(
ψ

k+1/3
i+1 − ψ

k+1/3
i−1

)
+ ψ

k+1/3
i , (15)

A0
i = 1 +

i∆
2h2

x
, A−

i = −
i∆
4hx

(
1
hx

− iΩyj

)
,

A+

i = −
i∆
4hx

(
1
hx

+ iΩyj

)
. (16)

The discretization for H3 is performed similarly. The tridiagonal
set of equations above is very similar to Eqs. (34) and (35) of
Ref. [1], and the real-time propagation routine is programmed
and solved in identical fashion after a straightforward modifi-
cation to include the extra terms due to a non-zero value of
Ω in these equations. The imaginary-time propagation routine
corresponds to a transformation t → −it or ∆ → −i∆ [1] and
hence can be obtained by replacing i∆ → ∆ in Eqs. (15) and
(16) in the real-rime routine, which is performed in our combined
real- and imaginary-time programs by the selection parameter
OPTION_RE_IM.

Instead of evaluating the real energies from Eqs. (5) and (8) in
3D and 2D involving complex algebra over complex wave func-
tions, it is convenient to write a real expression for the energy.
To calculate the energy and the chemical potential, we write the
two coupled nonlinear equations for the real and imaginary parts
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of the wave function (ψ = ψR + iψI ), viz. Eqs. (2.1) of Ref. [15].
The equation satisfied by the real part is

i
∂ψR(x, y; t)

∂t
=

[
−

1
2
∇

2
+

1
2
(γ 2x2 + ν2y2)

+ g2D|ψ(x, y; t)|2
]
ψR(x, y; t) +Ω

(
y
∂

∂x
− x

∂

∂y

)
ψI (x, y; t).

(17)

In this equation ψR is not normalized to unity. Using Eq. (17), the
energy and the chemical potential can be expressed in 2D as

1∫
dxdyψ2

R

∫
dρρρ

[
−

1
2
(∇ρρρψR)2 +

1
2
(γ 2x2 + ν2y2)ψ2

R

+ αg2D(ψ2
R + ψ2

I )ψ
2
R +ΩψR

(
y
∂

∂x
− x

∂

∂y

)
ψI

]
, (18)

where the value α = 1 corresponds to the chemical potential
µ, and the value α = 1/2 to the energy E per atom. A similar
expression for energy and chemical potential in 3D is

1∫
drφ2

R

∫
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[
−

1
2
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1
2
(γ 2x2 + ν2y2 + λ2z2)φ2

R

+ αg3D(φ2
R + φ2

I )φ
2
R +ΩφR

(
y
∂

∂x
− x

∂

∂y

)
φI

]
. (19)

Eqs.(18) and (19) are equivalent to Eqs. (5) and (8) and in-
volve algebra of real functions. Hence these equations lead to
far more accurate numerical results than the previous set of
expressions. Specifically, the calculation of the rotational energy
and the kinetic energy term involving derivatives and gradients
of a complex wave function in Eqs. (5) and (8) can be numerically
problematic.

The initial wave function in the imaginary-time programs is
taken to be one containing a single vortex at the center, aligned
with the z axis. Explicitly, for the 2D and 3D programs, we take,
respectively

ψinitial(x, y) =
x + iy√
πd2xy

exp
(

−
x2 + y2

2d2xy
+2π iR(x, y)

)
,

φinitial(x, y, z) = ψinitial(x, y)
1

(πd2z )1/4
exp

(
−

z2

2d2z

)
, (20)

where dxy and dz are width parameters in the x-y plane and in
the z direction, and R(x, y) is a random number. In numerical
calculation, the random phase ensures that the number of vor-
tices changes by units of one, as parameters, e.g., nonlinearity and
angular frequency, are changed. Without the random phase, the
number of vortices changes by units of two or multiples of two.
In fact, any localized normalizable initial function modulated by a
random phase at different space points, e.g., a Gaussian function
without any vortices, obtained by setting (x+ iy) = 1 in Eq. (20),
will lead to the same vortex lattice as the initial function (20) with
one vortex. Without the random phase these functions usually
will lead to different results [16].

3. Details about the programs

All input data (number of atoms, scattering length, harmonic
oscillator trap length, trap anisotropy, etc.) are conveniently
placed at the beginning of each Fortran program, as before [3].
Hence after changing the input data in a Fortran program a
recompilation is required. The C programs use external input
files that contain all parameters, and their adjustment does not
require a recompilation. The source programs are located in the
directory src within the corresponding package directory (BEC-
GP-ROT-OMP-C for the C programs and BEC-GP-ROT-OMP-F for

the Fortran ones). They can be compiled by the make command
using the makefile in the corresponding package root directory.
The examples of produced output files can be found in the
directory output, although some large density files are omitted,
to save space. The programs use an initial state with repeatable
random phase. A different random phase can be generated by
changing the variable SEED in the subroutine Initialize for the
Fortran programs, or in the corresponding input file for the C
programs. The provided Fortran output files are calculated with
SEED = 13 using the one-vortex initial function (20). The change
of the variable SEED implies a different initial function, thus
changing the output files. In the Fortran programs, the random
phase is included by the integer parameter RANDOM: the value 0
excludes the random phase and 1 includes it. The integer parame-
ter FUNCTION permits the selection of a Gaussian or a one-vortex
initial function: the value 0 selects a Gaussian function and 1
selects the one-vortex function (20). For the C programs, the input
files contain variables providing the same functionality, which
is explained there. After running a program and obtaining the
results, one can use the file fig*.gnu in the directory output
to visualize the density profiles, relying on a popular software
package gnuplot. These files are used by invoking the command
gnuplot fig*.gnu to obtain an eps figure of the generated
vortex lattice. Depending on the density file to be plotted, one has
to adjust the corresponding line in the fig*.gnu file. Currently it
is set to use the density file provided as an example and already
present in the BEC-GP-ROT-OMP distribution.

The output files are conveniently named such that their
contents can be easily identified, following the naming conven-
tion introduced in Ref. [3]. For example, a file named <code>-
out.txt, where <code> is a name of the individual program,
represents the general output file containing input data, time
and space steps, nonlinearity, energy, and chemical potential.
A file named <code>-den2d.txt is the output file with the
reduced (integrated) 2D condensate density. There are output
files for reduced (integrated) 1D densities for different programs.
Typically, a user first solves the stationary problem using the
imaginary-time programs, and then uses the real-time programs
to read the pre-calculated stationary wave function and to study
the dynamics. To read the pre-calculated wave function the pa-
rameter NSTP should be set to zero. In this way one can also run
the imaginary time program with a pre-calculated wave function.
The supplied programs have the pre-defined value NSTP = 1 and
use the analytic wave function (20) as the initial state. In each
program the selection for imaginary- or real-time propagation
is done by setting the parameter OPTION_RE_IM to 1 or 2,
respectively. If the imaginary-time propagation is thus selected,
the programs run either by using an initial analytic input function
(if NSTP is not set to zero) or by employing a pre-calculated wave
function (if NSTP is set to zero). The real-time propagation can
successfully work only with a meaningful initial wave function,
usually assuming that NSTP = 0 is set, and that the program
will read a pre-calculated wave function by the earlier performed
imaginary-time propagation. The reader is advised to consult
our previous publication where a complete description of the
output files is given [4]. The calculation is essentially done in the
NPAS time loop, which are in the Fortran programs conveniently
divided into 10 equal intervals (NPAS/10). The output files for
the reduced 2D densities at the end of each of these intervals are
saved as files <code>*-den-j.txt, where j=1,. . . ,10. If neces-
sary, one can further customize this by changing and recompiling
the Fortran programs. In the C programs the selection of output
files is done through the input file, when one can set the desired
frequency of saving the output densities, as well as the types
of density profiles to be saved. A README.md file, included in
the corresponding root directory for C and Fortran, explains the
procedure to compile and run the programs in more detail.
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The supplied 2D programs are preset to run the imaginary-
time propagation using the space steps DX=DY =0.05, numbers
of space points NX=NY=256, g2D = 100,Ω = 0.8, the trap
parameters γ = ν = 1. The 3D programs use DX=DY =0.05,
DZ=0.025, NX=NY=256, NZ=32, γ = ν = 1, λ = 100, g2D =

100, g3D = g2D
√
2π/λ = 25.0662827. The large trap parameter λ

ensures a disk-shaped BEC, which enables a comparison of the 3D
results for the integrated density over the z coordinate with the
2D density profile. This also reduces a transversal instability of the
3D vortex lines. The time steps used are ∆ = 0.00025 (imaginary
time) and 0.0001 (real time), numbers of time iterations are
NPAS=3,000,000 and NSTP=1 (imaginary time) and NSTP=0 (to
run real- or imaginary-time propagation with a pre-calculated
wave function as an input). To achieve the convergence in some
cases (large nonlinearity g2D, g3D and Ω), one may need to in-
crease the values of NX, NY, NPAS, and reduce the space and time
steps DX, DY, DZ and DT accordingly. Note that the actual spatial
grid used contains (NX+1)×(NY+1) or (NX+1)×(NY+1)×(NZ+1)
points, since in each dimension the grid index takes the values
from 0 to NX, etc. Therefore, the produced output files also
contain the data for such grid sizes.

The function (20) always leads to a converged solution after
a large number of time iterations in imaginary-time propagation.
A Gaussian wave function given as an input in imaginary-time
propagation would sometimes face a convergence difficulty and
should not be used. Therefore the programs by default use a
better initial state, containing one vortex at the center. Once a
stationary vortex lattice is obtained for a specific nonlinearity and
angular frequency by imaginary-time propagation, the final wave
function so obtained should be used as the initial state for the
generation of vortex lattices by imaginary-time propagation with
larger nonlinearities and/or angular frequencies. For example,
to generate closed hexagonal vortex lattices of 19, 37, and 61
vortices in the panels (b), (c) and (d) of Figs. 2 and 5 in the
next section, respectively, we have used the previously calculated
initial states of 7, 19, and 37 vortices in the corresponding panels
(a), (b), and (c), respectively. Such a choice of dynamically gen-
erated multi-vortex initial state with a proper phase distribution
enhances the convergence of the numerical scheme enormously
compared to the propagation starting from a single-vortex initial
state. The reduction in the execution time for the calculation done
in this fashion could be as much as 99%. The size of the conden-
sate increases as the nonlinearity and/or the angular frequencyΩ
are increased. To accommodate a larger condensate, the number
of space points NX, NY, etc. should be appropriately increased.
To read a pre-calculated wave function by setting NSTP to zero,
the grid size in the used wave function file should match exactly
the number of points used in the current program. The supplied
programs assume equal numbers of space step points in both
imaginary- and real-time propagation, and in C programs this
is configurable through the input files. If the grid sizes in the
two calculations are different, the user can customize the pro-
grams to accommodate this. For instance, in Fortran programs the
READ statement in the subroutine INITIALIZE should be changed,
for instance, from I=0,NX to I= NX2-NXOLD2,NX2+NXOLD2,1,
where NXOLD2 is the NX2 value of the previous calculation with
a smaller number of grid points.

4. Numerical results

To test the programs and to demonstrate their usage, we
have generated vortex-lattice structures using the imaginary-
time programs and then ran the real-time programs starting
from the previously obtained imaginary-time wave functions as
inputs. First, we numerically calculate the critical angular fre-
quency Ωc , for the generation of a single vortex, using the initial

Fig. 1. Critical angular frequency Ωc for the generation of a single vortex using
function (20) with random phase versus nonlinearity g2D for a rotating BEC in
2D. For Ω < Ωc no vortex is generated.

function (20), for a rotating BEC in 2D for different nonlinearities
g2D. Without the random phase in the initial wave function this
threshold cannot be calculated, as, then, a single vortex continues
to exist forΩ < Ωc . The result is displayed in Fig. 1. The displayed
result is the average over several runs.

We next numerically study the 2D vortex lattice in a rotating
BEC using the imaginary-time propagation. The imaginary-time
propagation with the supplied 2D program bec-gp-rot-2d-th uses
the wave function (20) as the initial state and the parameters
g2D = 100 and Ω = 0.8. The generated vortex lattice with
seven vortices arranged in a triangular lattice in the shape of
a closed hexagon is exhibited in Fig. 2(a) through the contour
density plot. In Fig. 2(b) we illustrate the 2D vortex lattice with
19 vortices arranged in a triangular lattice in the shape of a closed
hexagonal form obtained with parameters g2D = 100, Ω = 0.95.
To illustrate the convergence of the imaginary-time propagation
we show in Figs. 3(a)–(d) the 2D density profiles at different
times, using the analytic wave function (20) as the initial state
and employing the parameters g2D = 100, Ω = 0.95, the same
as in Fig. 2(b). This scheme shows a slow convergence and the
vortex lattice structure practically remains the same from the
panel 3(a) for 2 × 105 time steps to the panel 3(c) for 8 × 105

time steps with 19 vortices, before converging to the desired
solution in the panel 3(d) after 12 × 105 time steps, containing
19 vortices. The convergence can be highly enhanced if we use
the final converged state with a smaller number of vortices as
the initial state of a calculation where a larger number of vortices
is expected, either because the parameters g2D or Ω or both are
larger. In Fig. 3(e)–(h) we demonstrate this and show the vortex
lattice evolution of the rotating BEC for the same parameters
g2D = 100, Ω = 0.95 as in the panels 3(a)–(d), but starting
from the initial state with seven vortices, obtained in Fig. 2(a)
for g2D = 100, Ω = 0.8. In Fig. 3 we see that the convergence
in this case is achieved much faster. In practical terms, in panels
3(c) after 20,000 time steps or 3(d) after 30,000 time steps of the
imaginary-time propagation the convergence is already reached.
The reduction in execution time in the later scheme resulting in
Figs. 3(e)–(h) compared to the former resulting in Figs. 3(a)–(d)
could be very large, viz. 12×105 time iterations and 30,000 time
iterations in the two schemes.

In Figs. 2(b)–(d) we illustrate 2D vortex lattices with 19, 37,
and 61 vortices, respectively, arranged in triangular lattices in
the shape of a closed hexagonal form obtained with parameters
g2D = 100, Ω = 0.95 in 2(b), g2D = 500, Ω = 0.92 in 2(c),
and g2D = 500, Ω = 0.978 in 2(d). As already suggested above,
the vortex lattices of Figs. 2(b), (c), and (d) were obtained using
the final wave functions of Fig. 2(a), (b), and (c), respectively, as
the initial states, to speed up the convergence. We demonstrate
the stability of the obtained vortex lattices using the real-time
propagation for 500 time units in Figs. 2(e)–(h).
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Fig. 2. Contour plots of the density |ψ(x, y)|2 for the generated vortex lattices by the 2D imaginary-time propagation of Eq. (7) for (a) g2D = 100, Ω = 0.8, (b)
g2D = 100, Ω = 0.95, (c) g2D = 500, Ω = 0.92, and (d) g2D = 500, Ω = 0.978. Panels (e), (f), (g), and (h) display these vortex lattices, respectively, after the
additional real-time propagation for 500 units of time using the corresponding imaginary-time wave function as input. The employed trap parameters are ν = γ = 1,
the space steps are DX=DY=0.05, and the time steps are 0.00025 in imaginary time and 0.0001 in real time. The size of the condensate increases as Ω increases
from (a) to (b) and from (c) to (d), and as g2D increases from (b) to (c). The space grids used are (a) 257 × 257, (b) 321 × 321, (c) 401 × 401, and (d) 441 × 441.

Fig. 3. The convergence of calculation from snapshots at different time steps during the imaginary-time propagation of the 2D equation (7) to generate a vortex
lattice for parameters g2D = 100, Ω = 0.95. Numerical simulation used the initial state (20), and the panels correspond to (a) 2 × 105 , (b) 4 × 105 , (c) 8 × 105 , and
(d) 12 × 105 time steps. For the same parameters, a much faster convergence is obtained in a simulation using as the initial function the converged wave function
from Fig. 2(a), obtained for g2D = 100, Ω = 0.8. The panels correspond to (e) 5000, (f) 10,000, (g) 20,000, and (h) 30,000 time steps. The employed time step is
0.00025, the space steps DX=DY=0.05, and the grid size used is 321 × 321 in all panels.

In Figs. 4 we show the increase of the number of vortices
with the increase of the angular frequency Ω for a fixed g2D =

100 as obtained with the one-vortex initial function and the
Gaussian initial function, both modulated by a random phase at
different space points. The number of vortices and their orien-
tation in space are identical with both functions, although the
energy varies a little from one initial function to another. If the
random-phase modulation is removed, these two functions lead
to different number of vortices, whereas with the random-phase
modulation these functions usually lead to the same number of
vortices, viz. Fig. 4.

In Figs. 5 we present the z-integrated reduced 2D density∫
dz |φ(x, y, z)|2, calculated from the 3D imaginary-time runs,

with 7, 19, 37, and 61 vortices for the parameters: (a) g2D = 100,
Ω = 0.8, (b) g2D = 100, Ω = 0.95, (c) g2D = 500, Ω = 0.92,
and (d) g2D = 500, Ω = 0.978. The vortex lattices of Figs. 5(b)–
(d) were generated, as before, by the imaginary-time propagation
of Eq. (4) until the convergence using the final wave function
of Figs. 5(a)–(c) as the initial states, respectively. Figs. 5(e)–(h)

illustrate the same reduced densities obtained from the 3D real-
time runs after 100 time units using as inputs the final converged
imaginary-time wave function of Figs. 5(a)–(d), respectively. The
agreement between the imaginary- and the real-time densities
demonstrates the stability of the vortex-lattice structures and the
employed algorithm. The 2D densities of Figs. 5 are quite similar
to those in Fig. 2 with the same 2D nonlinearity and the same
angular frequency. To the best of our knowledge, such a clean
61-vortex lattice, viz. Fig. 5(d), is obtained for the first time here
in the simulation of the 3D GP equation (4).

In Table 1 we show the energy and the chemical potential of
the BECs of Figs. 2(a) and 5(a) calculated starting from the analytic
function (20) as the initial state. We also give the energy and
the chemical potential of the BECs of Figs. 2(b)–(d) and 5(b)–(d),
calculated with the converged wave functions of Figs. 2(a)–(c) and
5(a)–(c), respectively, as the initial states. The 2D energy values
E = 3.190 and 2.209 shown in Table 1 for g2D = 100 andΩ = 0.8
and 0.95, respectively, are in good agreement with the energies
E = 3.1904 and 2.2106 reported in Fig. 6 of Ref. [15]. The authors
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Fig. 4. Contour plots of the density |ψ(x, y)|2 for the generated vortex lattices by the 2D imaginary-time propagation of Eq. (7) for g2D = 100, and (a) Ω = 0.65,
(b) Ω = 0.74, (c) Ω = 0.76, and (d) Ω = 0.78 obtained with the one-vortex initial state (20). Panels (e), (f), (g), and (h) display these vortex lattices, respectively,
obtained with the Gaussian initial state. The employed trap parameters are ν = γ = 1, the space steps are DX=DY=0.05, the time step is 0.00025 and the space grid
is 257 × 257.

Fig. 5. Contour plots of the density profiles for the generated vortex lattices by the 3D imaginary-time propagation of Eq. (4) for (a) g2D = 100, g3D ≡ g2D
√
2π/λ =

25.0662827, Ω = 0.8, (b) g2D = 100, g3D = 25.0662827, Ω = 0.95, (c) g2D = 500, g3D = 125.33141, Ω = 0.92, and (d) g2D = 500, g3D = 125.33141, Ω = 0.978. Panels
(e), (f), (g), and (h) display these vortex lattices, respectively, after the additional real-time propagation for 100 units of time using the corresponding imaginary-time
wave function as input. The employed trap parameters are ν = γ = 1, λ = 100, the space steps are DX=DY=0.05, DZ=0.025, and the time steps are 0.00025 in
imaginary time and 0.0001 in real time. The space grids used are (a) 257 × 257 × 33, (b) 321 × 321 × 33, (c) 401 × 401 × 33, and (d) 451 × 451 × 33.

Table 1
Energy E and chemical potential µ for the rotating BECs in 2D and 3D shown in
Figs. 2 and 5, respectively. For parameters g2D = 100, Ω = 0.8 the calculation is
performed with the initial state (20). For the BECs from panels (b), (c), and (d)
in Figs. 2 and 5 the calculation is performed with the converged wave functions
of the corresponding panels (a), (b), and (c) as the initial states.

g2D = 100 g2D = 100 g2D = 500 g2D = 500
Ω = 0.8 Ω = 0.95 Ω = 0.92 Ω = 0.978

µ (2D) 4.351 2.871 6.257 4.198
E (2D) 3.190 2.209 4.424 2.951
µ (3D) 54.32 52.85 56.20 54.17
E (3D) 53.17 52.19 54.40 52.94

of Ref. [16] also calculated the 2D energy and the chemical poten-
tial and we verified using the same parameters that the present
energies and chemical potentials are in qualitative agreement
with their calculations.

We have tested the performance and scalability of our pro-
grams on a modern 8-core Intel Xeon E5-2670 CPUs with 32 GB of
RAM. The nodes used for testing contain two CPUs, which allowed
us to study the performance of our programs on up to 16 CPU

cores. The testing was done at the PARADOX supercomputing
facility of the Institute of Physics Belgrade.

For both the C and the Fortran programs the execution time
in the beginning reduces rapidly as the number of threads (used
CPU cores) is increased. But eventually the gain in the execution
time saturates. This is illustrated in Fig. 6, where we plot the
execution time versus the number of threads for both the C and
the Fortran programs using GNU 7.2.0 and Intel 17.0.4 compilers,
respectively. For both compilers, for a large number of threads
the C programs are faster. For a small number of threads (four or
less), the Fortran programs compiled with the GNU compiler are
faster, whereas for the Intel compiler all programs have similar
performance, with the C programs being slightly faster.

For a quantitative estimate of the performance we now study
the speedup and the efficiency of the programs using different
compilers for a calculation: GNU GCC 7.2.0, Intel C 17.0.4, GNU
Fortran 7.2.0, and Intel Fortran 17.0.4. The speedup is defined as
the ratio T (1)/T (n) where T (n) is the execution time of a run with
n threads. The efficiency is the ratio T (1)/[nT (n)], indicating how
many of the threads the computer is effectively utilizing. These
are illustrated in Fig. 7 for GNU GCC, Intel GCC, GNU Fortran,
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Fig. 6. Wall-clock execution times of BEC-GP-ROT-OMP programs for imaginary-time propagation in 3D (bec-gp-rot-3d-th), compiled with (a) GNU compiler and (b)
Intel compiler, as functions of the number of OpenMP threads. The execution times given here are for one iteration, calculated as averages using runs with 1000
iterations (in milliseconds, excluding initialization and input/output operations, as reported by each program) and with the grid size 257 × 257 × 33.

Fig. 7. Speedup in the execution time and scaling efficiency of BEC-GP-ROT-OMP programs for imaginary-time propagation in 3D (bec-gp-rot-3d-th), compared to
single-threaded runs for (a) C program compiled with the GNU compiler, (b) C program compiled with the Intel compiler, (c) Fortran program compiled with the
GNU compiler, and (d) Fortran program compiled with the Intel compiler. The speedup is calculated as a ratio of the wall-clock execution times T (1)/T (n) for a
single-threaded run and a run with n threads, and the scaling efficiency is calculated as a fraction of the obtained speedup compared to a theoretical maximum n.
Grid size used for testing is 257 × 257 × 33.

and Intel Fortran compilers, respectively. For a large number of
threads, the C programs, viz. plots 7(a)–(b), are more scalable,
with large speedup and efficiency compared to the Fortran pro-
grams, viz. plots 7(c)–(d). The programs in both programming
languages are quite efficient and optimized, but a user should use
the specific program and compiler with which he/she has more
experience and feels more comfortable.

5. Summary and conclusions

We have presented the efficient OpenMP C and Fortran pro-
grams for solving the GP equation for a rotating BEC and use them
to calculate the vortex lattices of a rotating BEC by solving the GP
equation in the rotating frame. We provide two sets of programs
— one for a 3D BEC and the other for a quasi-2D BEC. Each of
these programs is capable of executing both the imaginary- and
the real-time propagation. We use the split-step Crank–Nicolson
algorithm and the programs are based on our earlier OpenMP C
and Fortran programs of Ref. [4] for a non-rotating BEC. We solve
the GP equation by the imaginary-time propagation with the
analytic wave function (20) as the initial state to generate a vortex
lattice with a small number of vortices. To solve the GP equation

with a large number of vortices it is much more efficient to use a
converged wave function with a smaller number of vortices as the
initial state, rather than the analytic function (20). However, the
solution can be obtained with any initial state. Nevertheless, the
convergence with one initial state could be much faster than with
another initial state. For example, to solve the 2D GP equation (7)
with parameters g2D = 100 and Ω = 0.95 by the imaginary-time
propagation using the initial function (20) and obtain the vortex
lattice with 19 vortices, one needs 12 × 105 time iterations, viz.
Fig. 3. For the same calculation using the pre-calculated vortex
lattice with 7 vortices it is sufficient to use only 30,000 time
iterations. Although both the C and the Fortran programs produce
equivalent results, on a multi-core computer with more than 8
cores, the C programs compiled with both the GCC and the Intel
compiler yield a more efficient and faster performance.

The localized normalizable initial function (20) has a random
phase at each grid point (x, y) which is necessary to obtain a
converged vortex lattice with any number of vortices – even or
odd – independent of the initial function. If the random phase is
removed from the initial function, the one-vortex initial function
(20) leads to a vortex lattice with an odd number of vortices and
a Gaussian initial function leads to a vortex lattice with an even
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number of vortices. Any localized normalizable initial function
with random phase as in Eq. (20), e.g., a Gaussian function or a
function with one vortex, usually leads to the same vortex lat-
tice. Without the random phase these functions lead to different
vortex lattices.
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Abstract
We present the implementation of binary and ternary neural networks in the hls4ml library,
designed to automatically convert deep neural network models to digital circuits with
field-programmable gate arrays (FPGA) firmware. Starting from benchmark models trained with
floating point precision, we investigate different strategies to reduce the network’s resource
consumption by reducing the numerical precision of the network parameters to binary or ternary.
We discuss the trade-off between model accuracy and resource consumption. In addition, we show
how to balance between latency and accuracy by retaining full precision on a selected subset of
network components. As an example, we consider two multiclass classification tasks: handwritten
digit recognition with the MNIST data set and jet identification with simulated proton-proton
collisions at the CERN Large Hadron Collider. The binary and ternary implementation has similar
performance to the higher precision implementation while using drastically fewer FPGA resources.

1. Introduction

Field-programmable gate arrays (FPGAs) are an efficient and flexible processing solution to perform low
latency and high bandwidth inference of deep neural networks (DNNs). Their design is extremely functional
to parallelize the mathematical operations typical of DNN inference tasks, namely matrix multiplication and
activation function application. FPGAs can be reprogrammed, which offers advantages in terms of flexibility
with respect to application-specific integrated circuits (ASICs). At the same time, they share some of the
advantages offered by ASICs, such as low power consumption and speed.

Typically, FPGAs are used to emulate generic digital circuits as a preliminary step toward the design of
custom ASICs or as an alternative to them. For instance, hundreds of FPGAs are used as custom electronic
logic to process in real time the proton-proton collisions at the CERN Large Hadron Collider (LHC). With
beams colliding every 25 ns and thanks to a built-in buffering system, a typical LHC experiment hasO(1) µs
to decide whether to keep or discard a given event. This real-time decision-taking system, referred to as the
level-1 (L1) trigger, consists of a set of digital circuits implementing physics-motivated rule-based selection
algorithms. Currently, these algorithms are deployed on FPGAs, mounted on custom electronics boards.

The severe L1 latency constraint prevents the LHC experimental collaborations from deploying complex
rule-based algorithms on the L1 FPGA boards. Machine learning (ML) solutions, and in particular DNNs,
are currently being investigated as fast-to-execute and parallelisable approximations of rule-based
algorithms. For instance, the CMS collaboration has deployed boosted decision trees (BDTs) in the L1 trigger
electronic logic [1]. Following this approach, one could train a DNN to process a given input (e.g. energy

© 2020 The Author(s). Published by IOP Publishing Ltd
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deposits in a calorimeter) and return the output of an event reconstruction algorithm (e.g. to regress the
energy of the incoming particle that caused these energy deposits or to identify its nature). Because the
complexity of LHC collision events is going to increase after the upcoming high-luminosity upgrade, we
expect this approach to become more prevalent.

In order to facilitate the deployment of DNNs in the L1 trigger systems of high energy physics (HEP)
experiments, we developed a software library, hls4ml, to convert a DNN model into FPGA firmware
through an automatic workflow [2]. In HEP, the deployment of deep learning (DL) models on FPGAs has
been discussed in the context of the online data-selection system of the LHC experiments. Alternative
solutions based on VHDL [3] have been explored. Similar studies and comparable results have been shown
in reference [4].

The hls4ml design is characterized by two aspects: (i) a reliance on high-level synthesis (HLS) backends,
in order to fully automate the workflow from a trained model to FPGA firmware; (ii) a target of
fully-on-chip logic, which enables the latency to be within typical values ofO(1) µs. Our ultimate goal is to
support the most popular DNN model ingredients (layers, activation functions, etc) and an interface to the
most popular DL training libraries, directly (e.g. for TensorFlow [5], Keras [6], and PyTorch [7]) or
through the ONNX [8] interface. The library is under development and many of these ingredients are already
supported. While hls4ml was initially conceived for LHC applications, its potential use cases go well beyond
HEP. In general, hls4ml provides a user-friendly interface to deploy custom DNNmodels on FPGAs, used as
co-processing accelerators or as digital circuits in resource-constrained, low-latency computing
environments.

In addition, the hls4ml library supports the deployment of BDTs on FPGAs [9]. A BDT trained on
high-level features can often reach similar performances than small fully-connected neural networks. On the
other hand, neural networks offer the possibility to directly process the raw data, saving time and resources
that would be otherwise spent to compute the input features. Depending on the use case, a developer would
decide which workflow better fits her needs.

The main challenge in deploying a DNN model on an FPGA is the limited computational resources.
Typically, one would reuse resources for the inference operations across multiple clock cycles, at the price of a
larger latency. The reuse factor quantifies how many times a resource is reused and is equal to the initiation
interval (II) for that operation. A complementary approach consists of compressing the model, e.g. by
reducing the number of operations needed in the inference step (pruning) or their cost (e.g. quantizing the
network using a reduced numerical representation). Comprehensive reviews of these techniques can be
found in reference [10, 11]. In a previous publication [2], we showed that pruning [12, 13] and
quantization [12, 14] allow one to execute simple fully-connected DNN models with state-of-the-art
performance on a specific LHC problem within a latency ofO(100) ns, while using only a fraction of the
FPGA resources. In this paper, we investigate how a similar result can be obtained with binary and ternary
networks [15–17], following closely the studies presented in references [15, 18, 19]. Network parameters in
binary (ternary) networks assume values+1 or−1 (+1, 0, or−1). They can be represented with one bit
(two bits), resulting in a much smaller resource consumption.

In this study, we consider two benchmark problems: MNIST digit classification, which allows a direct
comparison with previous literature [18]; the jet tagging problem used as benchmark in our previous
study [2] as well as by other groups [4]. The jet tagging problem is particularly relevant for applications at the
LHC. Traditional algorithms for jet tagging are too complex to run within L1 latency constraint. Developing
resource-friendly ultrafast solutions for jet tagging would drastically increase the L1 selection quality for
all-jet collision events. One should keep in mind that our LHC jet data set represents a simplification of more
complex realistic conditions. It does not take into account the time and resources one would spend to
compute the input features. In the future, the extension of the hls4ml library to more complex architectures
will allow to consider more realistic use cases, with raw data being directly processes by compressed models.

This paper is structured as follows: section 2 introduces the benchmark problems and data sets. The
implementation of binary and ternary networks in hls4ml is described in section 3. Section 4 describes the
different model architectures considered in this study, while their application to the two benchmark
classification problems is discussed in section 5. The summary and outlook are given in section 6.

2. Benchmarkmodels and data sets

We consider two benchmark classification tasks: a digit recognition task with the MNIST data set [20] and
the LHC jet tagging task discussed in reference [2].

The MNIST data set consists of images of hand-written digits. Each image is represented as a 28× 28
pixel array, storing the gray-scale content of each pixel in the original image. For our purpose, we flatten the
2D array to a 1D array, concatenating each row of the image to the right to the previous one. The derived 1D
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Figure 1. Network architecture for the baseline MNIST (top) and LHC jet (bottom) classifiers used as benchmark models in this
study.

Figure 2. Classification performance evaluated on the testing sample of the baseline MNIST (top) and LHC jet (bottom)
classifiers used as benchmark models in this study: ROC curves (left) and normalized confusion matrices (right). On the left,
numbers in parentheses correspond to the AUC of each class. On the right, the text is omitted for bins corresponding to a false
positive rate below 1%.

array is passed as input to a multilayer perceptron (MLP) [21] with an input (output) layer of 784 (10) nodes
and three hidden layers with 128 nodes each. Rectified linear unit (ReLU) activation functions [22] are used
for the hidden layer nodes, while a softmax activation function is used for the output layer. The MNIST data
set comes divided into training-and-validation samples (with 60,000 images) and a testing samples (with
10,000 images). We use 75% of the training-and-validation data set for training, and the remaining 25% for
validation.

The other benchmark task consists of classifying jets from a set of 16 physics-motivated high-level
features, as described in references [2, 23]. The input data set consists of simulated jets with an energy of
order 1 TeV, originating from light quarks (q), gluons (g),W bosons, Z bosons, or top quarks (t) produced
in proton-proton collisions at a center-of-mass energy of 13 TeV. Jets are clustered using the anti-kT
algorithm [24], with distance parameter R= 0.8. For each jet, the 16 high level features are computed and
given as input to a multiclass MLP classifier. The data set is available in the Zenodo repository [25]. More
details on the data set can be found in references [2, 23, 26]. The data set consists of approximately 1 million
examples and is split in three parts: 20% for test, 60% for training, and 20% for validation. The network
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Table 1. Classification performance evaluated on the testing sample of the baseline MNIST and LHC jet classifiers used as benchmark
models in this study: AUC and per-class accuracy.

MNIST Jet tagging

Class AUC Accuracy [%] Class AUC Accuracy [%]

0 0.9997 99.7 g 0.939 89
1 0.9995 99.8
2 0.9991 99.6 q 0.904 85
3 0.9993 99.6
4 0.9996 99.6 W 0.946 91
5 0.9994 99.6
6 0.9992 99.6 Z 0.939 92
7 0.9996 99.6
8 0.9994 99.4 t 0.958 93
9 0.9991 99.5

receives as input the 16 high-level features and processes them through a MLP with three hidden layers of 64,
32, and 32 nodes with ReLU activation functions. The output layer consists of five nodes with softmax
activation. The five output values correspond to the probability that a given jet belongs to one of the five jet
classes.

The architectures of the baseline MNIST and LHC jet classifiers are illustrated in figure 1. Both are
implemented and trained with Keras in floating point precision (FPP). Their performance is shown in
figure 2 in terms of receiver operating characteristic (ROC) curves and normalized confusion matrices. The
area under the curve (AUC) of each ROC curve is quoted in the figure, as well as in table 1, where the
corresponding accuracy values are also given. Following convention, we define the model accuracy as the
fraction of correctly labeled examples, also referred to as true positives (TP)

∑C
i=1TPi

N
, (1)

where the sum runs over the number of classes C and N is the total number of examples. The accuracy per
class is calculated taking into account also the true negatives (TN), i.e. the examples not belonging to that
class and that have been predicted in one of the other classes

∑C
i=1TPi +TNi

N
. (2)

In practice, the computation of the model or per-class accuracy is done applying an Arg Max function to
the array of scores returned by the network and comparing it to the corresponding target array. The total
accuracy of the MNIST and LHC jet classifiers, computed across all categories, are found to be 98% and 75%,
respectively.

These baseline architectures were chosen in order to provide a reasonable performance while keeping the
resource utilization within a manageable level. The state-of-the-art performance on MNIST reaches higher
accuracy than the models considered here. However, these models are extremely lightweight in terms of their
small number of parameters, and low precision. They are therefore optimized for their small footprint of
resources and latency in the FPGA inference. Similarly, any jet classifier algorithm with accuracy ~ 60− 70%,
like the one we consider, would be of great benefit for LHC experiments: since the majority of jets produced
at the LHC comes from quarks and gluons, our baseline model would allow one to select> 80% ofW, Z, and
t jets while reducing the required bandwidth by a factor ~ 10, saving resources that could be used to extend
the physics program of the experiment in other directions.

We consider these models as examples, which are not intended to represent the best reachable
performance for a given use case. No architecture optimization was attempted, since the focus of this study is
on their implementation on hardware and relative performance drop rather than on absolute performance.

3. Implementing binary and ternary networks in hls4ml

Binary and ternary networks are extreme examples of quantized neural networks [2]. A network is quantized
when its parameters (operations) are represented (performed) with reduced numerical precision. This
precision could be the same across the full network or specific to each component (e.g. for different layers).
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Figure 3. Activation functions used to define the models described in Section 4: binary tanh (top-left), ternary tanh (top-right),
ReLU (bottom-left) and clipped ReLU (bottom-right).

Table 2. Left: All possible products between A and B with values constrained to± 1. Right: The corresponding truth-table when the
quantities A and B are each encoded with 1 bit, and the XNOR operation is used for the product.

A B A×B A B A⊕B

−1 −1 1 0 0 1
−1 1 −1 0 1 0
1 −1 −1 1 0 0
1 1 1 1 1 1

Quantization reduces the computing resources of model inference and its level can be tuned to yield little or
no loss in model performance. In the case of binary (ternary) networks, each weight assumes a value of+1 or
−1 (+1, 0, or−1). Two- and three-valued activation functions are used after each layer, acting as discrete
versions of the tanh function. As alternatives, we also investigate a standard ReLU function as well as its
clipped version [27], defined as min(ReLU(x),ymax), with ymax being a positive hyperparameter. In our study,
we fix ymax = 1. The four functions are shown in figure 3.

In order to convert the models described in Sections 2, we rely on the MLP-related functionalities offered
by the hls4ml library, discussed at length in reference [2]. In addition to that, we exploit a set of custom
implementations [18], specific to binary and ternary networks, that allow one to speed up the execution of
the building-block architecture shown in figure 4. The implementation of these solutions is integrated in
recent versions of the hls4ml library, starting with the v0.1.6 tag of the GitHub repository [28]. With
respect to the work presented in reference [2], this version provides a special support for large dense layers
containing hundreds of nodes as in the models we consider in this study. This functionality will be described
in more detail in a future publication.

Binary networks use 1-bit representations for both weights and activations. In this case, the product
between two quantities can be optimized as an extremely lightweight operation. By encoding an arithmetical
value of ‘−1’ as ‘0’, the product can be expressed as an XNOR operation. As described in table 2, an XNOR
filter returns 0 when the two input values are different and 1 otherwise. For models using ternary weights or
greater than 1 bit for activations, the much larger FPGA logic is always used rather than digital signal
processing (arithmetic) blocks (DSPs), whose number is typically limited.

The binary and ternary tanh activation functions are implemented by testing the sign (in the case of
binary tanh) or sign and magnitude (for ternary tanh) of the input and yielding the corresponding value± 1
or 0 as seen in figure 3. A binary or ternary tanh activation layer preceded by a batch normalization (BN)
layer [29] can be further optimized. The BN layer shifts the output of the dense layers to the range of values
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Figure 4. The MLP architecture used in this study, consisting of a sequence of repeating blocks. Each block, fully connected to the
previous and following one, consists of a dense layer, a BN layer, and an activation layer. The last block does not have an activation
layer.

in which the activation function is non-linear, enhancing the network’s capability of modeling non-linear
responses. The usual BN transformation y for an input x is

y=
x−µ√
σ2 + ϵ

γ+β, (3)

given the mean µ, variance σ2, scale γ, and shift β learned during the network training. For a BN followed by
a binary tanh activation, the sign of y is enough to determine a node output value. To avoid calculating the
scaling of x using FPGA DSPs, the four BN parameters are used to compute the value of x at which y flips
sign. This calculation is performed at compilation time, when the model is converted to HLS firmware using
hls4ml. Similarly, the two values of x around which the output of the ternary tanh activation changes are
also calculated at compilation time. In the FPGA, each node output is then simply compared against these
precomputed thresholds, outputting the corresponding± 1, or 0. An additional optimization step sets the
type of x in the HLS implementation to integer with a bit width corresponding to the largest integer expected
for each binary/ternary layer, found at compilation time. This procedure further saves FPGA resources.

The binary and ternary layers considered for this work are fully integrated and compatible with the
hls4ml package. While not explored here, the package also supports models mixing binary/ternary layers
with higher precision layers for fully customized networks.

4. Binarization and ternarization strategies

Given a full-precision model, one could follow different strategies to turn it into a binary or ternary model.
One could just replace each full-precision component by the corresponding binary/ternary element, in order
to minimize resource utilization. This might result in a loss of accuracy. As an alternative, one could train a
binary/ternary model with arbitrarily large architecture, in order to match the accuracy obtained at full
precision, at a cost of a larger latency and resource consumption. The ultimate strategy to follow depends on
the use case. In this work, we present a few options, covering these two extremes and intermediate solutions.

In this work, we focus on binary/ternary MLPs. The basic structure for the adopted architectures is
shown in figure 4. Each model consists of a sequence of blocks, each composed of a dense, BN, and activation
layer. For binary and ternary tanh, a BN+ activation layer sequence can be implemented at small resource
cost (see section 3), which makes this choice particularly convenient for fast inference on edge devices.

The binarization/ternarization of a given model can be done in different ways, e.g. preserving the model
architectures or its performance. As a consequence, for each benchmark problem we consider seven models:

• Baseline: the three-layer MLP described in section 2.
• Binarized (BNN): a binary version of the baseline model, built preserving the model architecture (number
of layers and nodes) while applying the following changes: use a binary representation (± 1) for the weights;
replace the inner-layer ReLU activation functions with a binary tanh (see figure 3); introduce BN layers in
between the binary dense layers and the activation functions; remove the softmax activation function in the
output layer.

• Ternarized (TNN): a ternary version of the baselinemodel, built preserving themodel architecture (number
of layers and nodes) while applying the following changes: use a ternary representation (−1, 0,+1) for the
weights; replace the inner-layer ReLU activation functions with a ternary tanh (see figure 3); introduce
BN layers in between the ternary dense layers and the activation functions; remove the softmax activation
function in the output layer.
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• Best BNN: same structure as the BNN model, but with more nodes in each layer to improve performance.
We obtain this model with a Bayesian optimization performed using GPyOpt [30], finalized to minimize
the validation loss in the training process.

• Best TNN: same structure as the TNN model, but with the number of nodes per layer chosen through a
Bayesian optimization of the architecture, as for the best BNN model.

• Hybrid BNN: same as the BNNmodel, but with ReLU or clipped ReLU activation functions rather than the
binary tanh of figure 3.

• Hybrid TNN: same as the TNNmodel, but with ReLU or clipped ReLU activation functions rather than the
ternary tanh of figure 3.

The baseline model is taken as a benchmark of ideal performance and the other models represent
different strategies toward a more resource-friendly representation. The BNN and TNN models are simple
translations of the baseline model. They are designed to reduce the resource consumption, at the potential
cost of a performance drop. The best models are designed to match (as close as possible) the performance of
the baseline model, which might result in a larger resource consumption with respect to what the BNN and
TNNmodels achieve. The hybrid models are a compromise between the two approaches. The fixed-precision
conversion is applied only to the weights and biases of the nodes in the dense layers, while ReLU or clipped
ReLU activation functions are used. Given the relatively small resources used by the ReLU/clipped ReLU
activations, the hybrid models allow one to reach performance closer to the baseline model without inflating
the number of nodes and, consequently, numerical operations. The best BNN and TNN models are only
presented for the LHC jet problem, since in that case the simple binarization or ternarization of the baseline
model result in a substantial performance loss. The effect is much milder for the MNIST classification
problem, so that the binary and ternary architectures are not re-optimized for in that case.

Not all of the operations or intermediate outputs of a binary (ternary) are represented in binary (ternary)
precision, e.g. the output of a ReLU activation function in a hybrid model. For this reason, in the following
we discuss bit precision and network quantization even in the context of binary and ternary models.

All models are implemented in Keras [6], with TensorFlow [5] as a backend using the implementation
in [19] for binary and ternary layers, which we also cross-checked with QKeras [31] with similar results. The
network training was performed on an NVIDIA Tesla V100 GPU. During training, binary/ternary precision
is employed during forward propagation, while full precision is used during backward propagation. The
baseline models of section 2 are trained minimizing a categorical cross entropy. The binary and ternary
models are trained minimizing a hinge loss function [32]. While the hinge loss has been found to give the
best performance for binary/ternary networks [15–17], the same choice for the baseline models is arbitrary.
We have verified that the baseline models trained with the hinge loss after replacing the last softmax layer
(figure 1) with a dense plus BN layers yield similar results in terms of both accuracy and resource usage.

5. Experiments

The results presented below are synthesized with the Vivado HLS version 2 018.2 for a Xilinx Virtex
Ultrascale 9+ FPGA with part number xcvu9p-flga2104-2L-e. The clock frequency is fixed at 200 MHz,
which is typical for the LHC L1 triggers. For this configuration we study the FPGA resources used by the
models described in section 4. There are four main resource categories: the on-board FPGA memory
(BRAM), DSPs, and registers and programmable logic (flip-flops, or FFs, and lookup tables, or LUTs). Unless
otherwise specified, the quoted results are derived after the HLS compilation step. The network
implementation is further refined by the logic synthesis. This step transforms the Register Transfer Level
(RTL) design created by the HLS compiler into a gate-level implementation, applying additional
optimizations that result in a more accurate assessment of the resource utilization. We verified that this final
step does not affect the accuracy while it reduces the resource consumption.

All results quoted in this section are taken from the numerical simulation of the synthesized firmware.
This numerical simulation is one of the tools provided by the FPGA vendor and gives bit-identical results to
running on a physical device. On the other hand, running on a physical device is a much more consuming
operation. Given the large number of tests considered in this study, we omitted this last step, mainly for
practical reasons.

5.1. Handwritten digits classification
We first evaluate the performance of the HLS neural network implementation for the models described in
section 4 with different fixed-point precisions by scanning the number of both integer (I) and fractional (F)
bits. In the following, a given choice of fixed-point precision is specified as ⟨T, I⟩, where T= I+ F is the total
number of allocated bits. For each case, the minimum number of bits yielding an accuracy above 90% after
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Table 3. Accuracy and AUCs of the different MNIST-classification models described in section 4 before and after quantization, for the
fixed point precision settings chosen for this study. Both the numbers of integer (I) and fractional (F) bits are specified, using the
notation ⟨I+ F, I⟩. For each case, the AUCs are reported as the range spanned by the classes with lowest and highest identification
performance.

Floating point precision Fixed point precision

Model AUC Accuracy [%] Number of bits AUC Accuracy [%]

Baseline 0.999 1–0.999 7 98 ⟨18,8⟩ 0.991 9–0.995 9 95
BNN 0.986 9–0.997 9 93 ⟨16,8⟩ 0.986 0–0.997 6 93
TNN 0.992 1–0.999 2 95 ⟨16,6⟩ 0.991 8–0.999 2 95
Hybrid BNN (ReLU) 0.995 3–0.999 0 95 ⟨16,10⟩ 0.995 6–0.998 9 95
Hybrid TNN (ReLU) 0.997 0–0.999 3 96 ⟨16,10⟩ 0.997 1–0.999 3 96
Hybrid BNN (clipped ReLU) 0.982 7–0.998 3 95 ⟨16,10⟩ 0.982 8–0.998 3 95
Hybrid TNN (clipped ReLU) 0.985 7–0.998 9 96 ⟨16,10⟩ 0.985 9–0.998 8 96

Figure 5. Profile of the range of output values of each layer, sampled during inference on the test data set, for the baseline (left)
and BNN (right) MNIST models. For each layer, the box represents the quartiles of the distribution, while the line shows the
median. The lines extending beyond the box show the minimum and maximum values. The gray shaded areas represent the range
covered by the allocated fixed point precision for each layer. In the left plot, these ranges correspond to the precision specified at
compilation (⟨18,8⟩). On the right plot, an optimization procedure implemented in hls4ml for binary and ternary networks
automatically adapts the precision of each layer to match the range covered by the output distribution; as the batch normalization
(BN) layer is merged with the binary tanh in the HLS implementation, its output precision is 1 bit. Dense, BN, and activation
layers are presented in order from the input (top) to the output (bottom).

quantization is considered. We then study the latency and resource utilization in these configurations. Table 3
shows a comparison of the performance obtained for the baseline, binary, and ternary models, in terms of
accuracy and AUCs, before and after quantization.

For binary and ternary models, the hls4ml library applies a further level of per-layer customization of
the fixed-point representation, to match the numerical precision of each layer separately, as discussed in
section 3. The outcome of this optimization is shown in the right plot of figure 5 for the BNN model, where
the gray areas cover different numerical ranges for different layers, despite the common precision specified at
compilation (⟨16,8⟩ in this case). During the optimization, the inputs and the outputs are still represented by
the fixed-point precision specified by the user, while the precision of the other network components is
optimized.

When quantizing a model, one should allocate I and F bits so that the range of values one can cover
overlaps with the range of values returned by the network layers, in order to reduce the impact on accuracy.
This is shown in the left plot of figure 5, where the profile of output values returned by each layer of the
baseline model is compared to the range covered by the allocated fixed-point precision. For each layer, we
consider the distribution of the output values obtained running the network on a test sample. In the figure,
the box represents the quartiles of the distribution, while the line inside the box shows the median. The lines
extending beyond the box show the minimum and maximum values. The gray area represents the numerical
range covered by the allocated precision. Overall, the optimized precision matched the bulk of the output
values at each layer. The only exception is observed for the output layer. In this case, the allocated precision
(gray area in the last row of the left plot in figure 5) does not cover the bulk of values returned by the layer
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Figure 6. Profile of the range of output values of each layer, sampled during inference on the test data set, for the hybrid
BNN+ReLU model quantized to 16-bit precision, when 10 (left) or 6 (right) bits are used for the integer part. For each layer, the
box represents the quartiles of the distribution, while the line shows the median. The lines extending beyond the box show the
minimum and maximum values. The gray shaded areas represent the range covered by the allocated fixed-point precision for each
layer. Dense, batch normalization (BN), and activation layers are presented in order from the input (top) to the output (bottom).

Table 4. Comparison of the resource utilization for the MNIST-classification models described in section 4, together with timing
information. Resources estimated by the HLS compiler (C) and obtained by the logic synthesis (S) are quoted for a chosen initiation
interval (II).

DSPs [%] FFs [%] LUTs [%] BRAMs [%]

Model II Latency [ns] C S C S C S C S

Baseline 28 315 130 100 18 8 69 54 126 61
BNN 14 200 0 0 5 7 155 18 46 16
TNN 14 190 0 0 6 7 174 22 52 16
Hybrid BNN (ReLU) 14 200 1 0.16 7 9 215 31 52 16
Hybrid TNN (ReLU) 14 200 1 1 7 10 217 35 52 16
Hybrid BNN (clipped ReLU) 14 200 1 2 7 8 215 29 52 16
Hybrid TNN (clipped ReLU) 14 200 1 1 7 9 215 31 52 16

(red box in the figure). This happens whenever a given example is associated to a specific class with a score
close to 1, so that the other values are pushed close to 0 and out of the supported range. In practice, this fact
would not alter the classification outcome in inference. For instance, this would not be a problematic aspect
when operating this algorithm through the Arg Max function, associating a given example to the class with
the largest output.

For the baseline model, the quantization from floating-point precision to ⟨18,8⟩ results in an accuracy
drop from 98% to 95%. This is almost entirely induced by the softmax activation function applied to the last
layer and it results from the limited precision of the LUT implementing the exp functions in the softmax.
This parameter is hard-coded in the version of hls4ml used for this study. One could avoid this accuracy
loss by removing the softmax function at the end of the HLS implementation of the inference, as long as
there is interest only on which class has the biggest score and not on the individual scores. An alternative
option is to further optimize the precision of the LUT implementing the softmax activation function. In this
case, we verified that a ⟨18,8⟩ quantization baseline with ⟨22,10⟩ precision for the softmax LUT recovers an
accuracy of 97% without affecting the resources. The ability to externally configure the precision of the
softmax LUT will be implemented in future versions of hls4ml.

For the hybrid BNN/TNN models, the same number of bits used for the BNN/TNN cases allows one to
achieve the FPP accuracy, at the condition of allocating more integer (10 instead of 6) and less fractional (6
instead of 10) bits. This behaviour can be understood from figure 6, which shows the range of outputs
returned by each hybrid BNN layer. While for I= 10 the allocated precision spans the full range of outputs
returned by each layer, frequent overflows are observed for the Dense 1, Dense 3 and Dense 4 layers when we
set I= 6.

Table 4 provides a comparison of the resource utilization and latency for the configurations presented in
table 3. For each configuration, we quote both the resource utilization estimated by the HLS compiler and
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Figure 7. Comparison of the resource utilization estimated by the HLS compiler and obtained by the logic synthesis versus the
maximum latency achieved by the design for the BNN and baseline MNIST-classification models. The TNN model gives similar
resource utilization as the BNN and is omitted.

those obtained by the logic synthesis. In the table, the II represents the number of clock cycles needed before
the algorithm may accept a new set of inputs. In our study, the II value is fixed by requiring that the resulting
resource utilization is below the maximum allowed on the target FPGA. Lower II values would result in a
network design that would not fit the device. Larger II values would result in higher latency.

At the very low latency values (O(100) ns) that we are targeting, BNN/TNN models allow one to reach
competitive performance while saving most of the FPGA resources. About half of the observed accuracy loss
can be recovered using hybrid BNN/TNN models, paying a small price in terms of DSPs utilization, induced
by an explicit allocation of a BN layers before the ReLU/clipped ReLU activation functions rather than the
bit-shift implementation described in section 3. A further optimization of the BN operations for hybrid
models could in principle push the DSPs utilization closer to zero.

The LUTs usage is largely overestimated by the HLS compiler for all binary and ternary NNmodels, while
it is found to be well within the available resources after the logic synthesis. Hybrid models require more
LUTs with respect to the standard BNN/TNN, because of the wider data bit width at the input of each binary
or ternary layer.

Figure 7 shows the dependence of the resource utilization on the maximum latency achieved by the
design (controlled by the II) for the baseline and BNN models. Results for the TNN model are very close to
the BNN ones. For all latency values, the resources used by the BNN/TNN models are typically reduced with
respect to the baseline model. In particular, the number of DSPs used is greatly reduced for latency values up
to a few µs. For higher latency values, the II is large enough to allow a small usage of DSPs even for the
baseline model. In that case, the advantage of using a binary or ternary quantization would be minor. Due to
technical aspects of the implementation of very-wide dense layers in hls4ml, it is not possible to configure
the model to run with smaller latency values than those shown.

As a final test, we train a larger BNN model consisting of three dense layers with 256 nodes each, as in the
study of reference [18], allowing for a direct comparison of our implementation of a binary architecture with
what presented there. The hls4ml implementation of this model yields a total accuracy of 95% for both
floating-point and fixed-point precision, where the latter is fixed to ⟨16,6⟩. With an II of 28, we obtain a
maximum latency of 0.31 µs with a resource utilization comparable to that in reference [18]. In particular,
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Table 5. Accuracy and AUCs of the different LHC jet tagging models described in section 4 before and after quantization, for fixed-point
precision ⟨I+ F, I⟩ chosen for this study. For each case, the AUCs are reported as the range spanned by the classes with lowest and
highest identification performance.

Floating point precision Fixed point precision

Model Architecture AUC Accuracy [%] Number of bits AUC Accuracy [%]

Baseline 16×64×32×32×5 0.904–0.958 75 ⟨16,6⟩ 0.900–0.955 75
BNN 16×64×32×32×5 0.794–0.891 58 ⟨16,6⟩ 0.794–0.891 58
TNN 16×64×32×32×5 0.854–0.915 67 ⟨16,6⟩ 0.854–0.915 67
Best BNN 16×448×224×224×5 0.886–0.937 72 ⟨16,6⟩ 0.884–0.938 72
Best TNN 16×128×64×64×64×5 0.886–0.931 72 ⟨16,6⟩ 0.886–0.930 72
Hybrid BNN (ReLU) 16×64×32×32×5 0.862–0.920 69 ⟨16,6⟩ 0.862–0.919 69
Hybrid TNN (ReLU) 16×64×32×32×5 0.874–0.934 70 ⟨16,6⟩ 0.874–0.934 70
Hybrid BNN 16×64×32×32×5 0.852–0.916 67 ⟨16,6⟩ 0.852–0.916 67
(clipped ReLU)
Hybrid TNN 16×64×32×32×5 0.874–0.921 70 ⟨16,6⟩ 0.874–0.921 70
(clipped ReLU)

Table 6. Comparison of the resource utilization for the LHC jet-tagging models described in section 4, together with timing information.
Resources estimated by the HLS compiler (C) and obtained by the logic synthesis (S) are quoted for a chosen initiation interval (II).

DSPs [%] FFs [%] LUTs [%] BRAMs [%]

Model II Latency [ns] C S C S C S C S

Baseline 1 60 60 57 1 1 7 5 0 0
BNN 1 40 0 0 0 0 3 1 0 0
TNN 1 40 0 0 0 0 4 1 0 0
Best BNN 16 205 0 0 1 3 128 8 12 0
Best TNN 1 55 0 0 0 0 14 3 0 0
Hybrid BNN (ReLU) 1 50 2 2 0 0 6 2 0 0
Hybrid TNN (ReLU) 1 50 2 2 0 0 7 2 0 0
Hybrid BNN (clipped ReLU) 1 50 2 2 0 0 6 2 0 0
Hybrid TNN (clipped ReLU) 1 50 2 2 0 0 7 2 0 0

the deployed model obtained with hls4ml after the logic synthesis utilizes 0% DSPs, 7% FFs, 23% LUTs, and
16% BRAMs on a Xilinx Virtex Ultrascale 9+ FPGA card.

5.2. LHC jet identification
As a second benchmark example, we consider the LHC jet-tagging problem introduced in section 2 and
study all the binarization/ternarization strategies described in section 4. For all models a fixed-point
precision of ⟨16,6⟩ is sufficient to reproduce the FPP accuracy after quantization. The AUCs and accuracy
before and after quantization are reported in table 5 for all models, while a comparison of the resource
utilization is found in table 6.

Unlike what is seen for the MNIST digit classification, the simple binarization/ternarization of the
baseline model results in a big accuracy loss. This is partially mitigated by the use of ReLU and clipped ReLU
activations. As an alternative approach, we also consider optimized binary and ternary architectures (best
models in table 5), fixed through a Bayesian optimization of the network hyperparameters. The result of the
Bayesian hyperparameter optimization for BNN and TNN converges to architectures with about 40 and 4
times more parameters with respect to the baseline architecture, respectively. With these larger architectures,
binary and ternary methods almost match, with a moderate loss in accuracy. Optimizing the architecture of
the binary and ternary models yields comparable precisions, but with a different resource balance (e.g. DSPs
vs. LUTs), offering an alternative that might better fit certain use cases.

The results of tables 5 and 6 confirm that ternary networks generally offer a better resource vs. accuracy
balance than binary networks, with a minimal (often negligible) additional resource cost and a comparable
(sometimes smaller) latency. In terms of FPGA resources, even the large architecture of the best TNN model
results in a limited resource usage, well below the baseline model. Instead, the largest best BNN model
requires a higher II value to fit the FPGA resource boundaries. The latency is kept within the ~ 1 µs
boundary we target, but is significantly larger than what is achieved by the best TNN and the baseline
models. The best TNN model gives the same accuracy as the best BNN model, with the same latency as the
baseline model but with a drastic reduction of DSP utilization.
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6. Summary and Outlook

We presented the implementation of binary and ternary networks in the hls4ml library, designed to
automatically convert a given neural network model into firmware of an FPGA card. Using two benchmark
classification examples (handwritten digit recognition on the MNIST data set and jet identification at the
LHC), we discuss different strategies to convert a given model into a binary or a ternary model. We showed
how binary and ternary networks allow one to preserve competitive performance (in terms of accuracy) while
drastically reducing the resource utilization on the card and, at the same time, keeping the inference latency
atO(100) ns. When compared to binary models, ternary models reach accuracy values much closer to the
original baseline models, at a typically smaller resource cost and comparable latency. Model binarization and
ternarization are competitive alternatives to other compression approaches (e.g. pruning) and represent the
ultimate resource saving in terms of network quantization. They offer a qualitative advantage of keeping DSP
utilization at a minimum, and offer an interesting opportunity to deploy complex architectures on resource
constrained environments, such as the L1 trigger system of a typical collider physics experiment.
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Abstract
We introduce an automated tool for deploying ultra low-latency, low-power deep neural networks
with convolutional layers on field-programmable gate arrays (FPGAs). By extending the hls4ml
library, we demonstrate an inference latency of 5µs using convolutional architectures, targeting
microsecond latency applications like those at the CERN Large Hadron Collider. Considering
benchmark models trained on the Street View House Numbers Dataset, we demonstrate various
methods for model compression in order to fit the computational constraints of a typical FPGA
device used in trigger and data acquisition systems of particle detectors. In particular, we discuss
pruning and quantization-aware training, and demonstrate how resource utilization can be
significantly reduced with little to no loss in model accuracy. We show that the FPGA critical
resource consumption can be reduced by 97% with zero loss in model accuracy, and by 99% when
tolerating a 6% accuracy degradation.

1. Introduction

The hls4ml library [1, 2] is an open source software designed to facilitate the deployment of machine
learning (ML) models on field-programmable gate arrays (FPGAs), targeting low-latency and low-power
edge applications. Taking as input a neural network model, hls4ml generates C/C++ code designed to be
transpiled into FPGA firmware by processing it with a high-level synthesis (HLS) library. The development of
hls4ml was historically driven by the need to integrate ML algorithms in the first stage of the real-time data
processing of particle physics experiments operating at the CERN Large Hadron Collider (LHC). The LHC
produces high-energy proton collisions (or events) every 25 ns, each consisting of about 1 MB of raw data.
Since this throughput is overwhelming for the currently available processing and storage resources, the LHC
experiments run a real-time event selection system, the so-called level-1 trigger (L1T), to reduce the event
rate from 40 MHz to 100 kHz [3–6]. Due to the size of the buffering system, the L1T system operates with a
fixed latency ofO(1 µs). While hls4ml excels as a tool to automatically generate low-latency ML firmware

© 2021 The Author(s). Published by IOP Publishing Ltd
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for L1T applications, it also offers interesting opportunities for edge-computing applications beyond particle
physics whenever efficient, e.g. low power or low latency, on-sensor edge processing is required.

The hls4ml software is structured with a set of different back-ends, each supporting a different HLS
library and targeting different FPGA vendors. So far, new development has been focused on the Vivado
HLS [7] back-end targeting Xilinx FPGAs. We have demonstrated this workflow for fully-connected, or
dense, neural networks (DNNs) [1], binary and ternary networks [8], boosted decision trees [9], and graph
neural networks [10, 11]. The hls4ml library accepts models from TENSORFLOW [12], KERAS [13],
PYTORCH [14], and via the ONNX interface [15]. It has recently been interfaced to QKERAS [16], in order to
support quantization-aware training (QAT) allowing the user to better balance resource utilization and
accuracy.

The hls4ml design focuses on fully-on-chip deployment of neural network architectures. This avoids the
latency overhead incurred by data transmission between the embedded processing elements and off-chip
memory, reducing the overall inference latency. Conversely, this approach constrains the size and complexity
of the models that the HLS conversion can easily support. Nevertheless, complex architectures can be
supported, as discussed in [10, 11] in the case of graph neural networks.

In this paper, we introduce support for convolutional neural networks (CNNs), through the
implementation of streaming-based novel convolutional and pooling layers.

Given the larger number of operations associated to each convolutional layer, a successful deployment on
FPGA relies on model compression, through pruning and quantization. The hls4ml library supports both
these forms of compression through removal of all zero-multiplications during the firmware implementation
(a feature of HLS we take advantage of when designing the layer implementation), and through its interface
with QKERAS [16].

We demonstrate the QKERAS + hls4ml workflow on a digit classifier trained on the Street View
House Numbers (SVHN) dataset [17], with a depth and input size appropriate for the latency- and
resource-restricted triggering systems at LHC.

This paper is organized as follows: section 2 describes related works. Section 3 introduces the
stream-based implementation of CNN layers; section 4 describes the SVHN dataset. The benchmark model
is introduced in section 5, while results obtained by pruning and quantization (after and during training) are
presented in sections 6 and 7, respectively. Section 8 discusses the model porting to FPGAs. Conclusions are
given in section 9.

2. Related work

An early attempt to deploy CNNs on FPGAs for particle physics was shown in [18], and surveys of other
existing toolflows for mapping CNNs on FPGAs are given in [19–22]. The FINN [23, 24] framework from
Xilinx Research Labs is designed to explore quantized CNN inference on FPGAs, with emphasis on
generating dataflow-style architectures customized for each network. It includes tools for training quantized
NNs such as BREVITAS [25], the FINN compiler, and the finn-hlslib Vivado HLS library of FPGA components
for QNNs. The fpgaConvNet library [26–29] converts CNNs specified in Caffe [30] or Torch formats into
generated Xilinx Vivado HLS code with a streaming architecture. FP-DNN [31] is a framework that takes
TENSORFLOW [12]-described CNNs as input, and generates the hardware implementations on FPGA boards
with register transfer level (RTL)-HLS hybrid templates. DNNWeaver [32] is an open-source alternative,
which also supports CNNs specified in Caffe format and automatically generates the accelerator Verilog code
using hand-optimized Verilog templates with a high degree of portability. Caffeine [33] is another CNN
accelerator for Caffe-specified models targeting Xilinx devices that support a co-processing environment
with a PCIe interface between the FPGA and a host. Snowflake [34] is a scalable and efficient CNN
accelerator with models specified in Torch [35] and a single, sequential computation architecture designed to
perform at near-peak hardware utilization targeting Xilinx system-on-chips (SoCs). In [36], an FPGA-based
accelerator design to execute CNNs is proposed, leveraging TENSORFLOW for model description and
exploiting reuse along all dimensions with a 1D systolic array of processing elements. The NullHop [37]
accelerator architecture takes advantage of sparse computation in convolutional layers to significantly speed
up inference times. A flexible, efficient 3D neuron array architecture for CNNs on FPGAs is presented
in [38], describing a technique to optimize its parameters including on-chip buffer sizes for a given set of
resource constraint for modern FPGAs. Vitis AI [39] is Xilinx’s development platform for AI inference on
Xilinx hardware platforms, consisting of optimized IP cores, tools, libraries, models, and example designs for
both edge devices and Alveo cards.

Our approach is distinct from many of those above with its emphasis on being a completely open-source
and multi-backend tool. In addition, a fully on-chip design is embraced in order to target the microsecond
latency imposed in LHC physics experiments.
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3. Convolutional layers implementation in hls4ml

A direct implementation of a two-dimensional convolutional layer (Conv2D) requires six nested loops over
image height H, widthW, number of input channels C, number of output filters N, and filter height J and
width K [22]. In particular, calculating one element of the V ×U ×N output tensor Y of a Conv2D layer
from the H×W ×C input tensor X, J×K ×C×N weight tensorW, and length-N bias vector β requires
three nested loops16,

Y[v,u,n] = β[n] +
C∑

c=1

J∑

j=1

K∑

k=1

X [v+ j,u+ k, c]W [j,k, c,n] , (1)

and repeating the calculation for all output elements {u,v,n} ∈ × [1,V]× [1,U]× [1,N] requires three
additional nested loops. For simplicity, we assume J=K (square kernel) in the remainder of this paper.

Without additional optimizations, a plain implementation of these nested loops would result in high
latency because, in the RTL implementation, one clock cycle is required to move from an outer loop to an
inner loop, and another one to move from an inner loop to an outer loop. This is usually addressed with loop
pipelining. However, pipelining an outer loop requires completely parallelizing (or unrolling) all nested inner
loops, which significantly increases the size of the RTL implementation and the resources used. This
approach is then feasible only for very small input sizes or model architectures. Utilizing this direct approach,
the total number of unrolled loop iterations (the product K2VUN) was limited to be less 4096 to avoid the
Vivado HLS partitioning limit.

While the direct implementation has the advantage of not requiring extra memory for temporary
storage, on most modern computing architectures convolution is implemented using general matrix
multiplication, with algorithms like im2col and kn2row [40]. In im2col, each input window is flattened into
a column vector and stacked together to form the input matrix, while the kernels are flattened into row
vectors and concatenated to form the weight matrix. Matrix multiplication can then be performed using the
accelerated library available on the platform, for example using the routines from basic linear algebra
subprograms. While this approach can be implemented on FPGAs using HLS, the design choices of hls4ml,
particularly the decision to store all tensors on the chip itself, mean this approach requires additional
O(K2HWC) units of memory, either as block random access memory (BRAM) or registers, to store the input
matrix. Additionally, to achieve the lowest latency, hls4ml completely partitions the input arrays into
individual registers as this allows access to each element within the same clock cycle. This strategy works well
for fully connected layers but in case of convolutional layers the input tensor is usually much larger.
Following this strategy, one would quickly reach the partitioning limit of Vivado HLS. Relaxing this
constraint and using block or cyclic partitioning to create multiple array slices presents another challenge as
the access pattern between consecutive layers of the model has to be consistent, otherwise scheduling issues
arise and the design may fail to meet timing constraints.

To avoid these limitations, we have implemented convolutional layers using streams. Streams are
synthesized in hardware as first in, first out (FIFO) buffers and as they do not require additional address
management, they consume less resources than designs based on arrays. Since streams only allow sequential
access, and have additional limitations on the reads and writes from different tasks (C++ functions), this
requires re-implementing most of the neural network layers in hls4ml to support sequential processing.

Our implementation uses an approach similar to the im2col algorithm. However, it does not build the
entire input matrix, and rather considers one column vector at a time. This allows us to reuse the existing
matrix-vector multiplication functions of hls4ml. In order to use streams for this implementation, a special
C++ class hls::stream<> provided in Vivado HLS is used. Given an H×W ×C input image tensor, we
create a stream of HW items where each item is an array containing the C elements. This scheme allows us to
efficiently read from the stream and construct column vectors. Because it usually takes one cycle to read or
write one element of the stream, the latency of the layer will be at least HW cycles.

Processing input sequentially through streams requires that we buffer all values that we wish to reuse at a
later stage as an internal state. For a two-dimensional convolution, we need to buffer all values between the
first and last element of the convolutional kernel, or sliding window, as shown on the left in figure 1. The
buffer can be defined as an array in C++ and implemented by the HLS compiler as a shift register, however
this approach requires keeping track of the position in the array, further complicating the implementation.
We choose a simpler approach using streams. We create K2 streams, corresponding to the size of the sliding
window, and buffer values at the appropriate position in the window as they stream in. The depth of these

16 Note that in practice X in equation (1) is shifted by e.g.
(
J+1
2
, K+1

2

)
in order to be symmetric around (v, u).
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Figure 1. The image on the left shows an illustration of the sliding window buffer. All elements (yellow) of one kernel window
(blue) are buffered to compute one output element (green). The right image shows the computation of the binary mask (an
instruction) for one input element. The highlighted element (light blue) contributes four times to the sliding window in different
positions, with the mask having bits set at the appropriate locations. The bits of the mask are concatenated and stored in a 9-bit
unsigned integer, in this example the number 27 (00 001 1011 in binary).

Figure 2. Example of compression of the instruction array. The left image shows the binary mask corresponding to each pixel,
here represented as an integer rather than as a bit sequence. The shown values are specific of a 3× 3 kernel with unit stride.
Instruction duplicates are highlighted by the bold-line rectangles. On the right image, we reduce the instruction array by
computing the instruction array of a 5× 5 image, which has no duplicates, and translating the position of the element in the
input array to the compressed array.

streams is determined by the width of the output image and the square kernel size. Once we reach an element
that is at the last position of a sliding window, we can compute one output by reading from the buffer. This is
highly efficient as we can read the entire column vector in one clock cycle. With the column vector prepared,
we can invoke the multiplication with the weight matrix and store the result in the output stream.

While the algorithm described so far allows us to process larger inputs than a plain implementation
would, significant resources are allocated for accounting, e.g. the position of the element in the sliding
window or handling of the corners of the input image, and this prevents pipelining of loops at the desired
latency. We address this issue by eliminating all branching code that handles these special cases, along with
their associated state variables, leaving only the internal sliding window buffer. Instead, we pre-compute the
positions in the sliding window where a given input element is used, and store this information as a binary
mask, represented as a K2-bit unsigned integer. In the mask we set bits corresponding to every position in the
sliding window where the input element is used, and leave the remaining bits unset (equal to 0), as illustrated
on the right in figure 1. This mask can be used as an instruction on how to populate the sliding window
buffer, eliminating the need for all branching code. The procedure is applied to every element of the input
image, and stored in the instruction array. The instruction array can be significantly compressed by
eliminating duplicates and translating the position of the element in the input array to the compressed array.
As an example of the compression scheme, figure 2 illustrates how every convolution with a 3× 3 kernel and
unit stride can be represented with only H ′ ×W ′ = 5× 5 instructions, regardless of the input image size
(H×W).

For the pooling layers, a similar technique is used to collect the data in sliding window buffers. As the
most common form of pooling assumes a stride equal to the pooling region size (i.e. no overlaps between
pooled regions), we create a simpler and more optimal instruction-encoding scheme for this case. Unlike
convolution, in both max and average pooling operation, we do not need the position of elements in the
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sliding window, only which window they belong to. This allows us to create a simple lookup table (LUT) of
H+W elements without the need for translation of the position of the input element.

4. Dataset

To demonstrate the functionality of CNNs in hls4ml, we consider as a benchmark example a digit classifier
trained on the SVHN Dataset [17]. The SVHN dataset consists of cropped real-world images of house
numbers extracted from Google Street View images, in a format similar to that of the MNIST [41] dataset.
However, it presents a much more challenging real-world problem, as illustrated by the examples shown in
figure 3. The numbers are part of natural scene images, possibly with other digits appearing as a background
on the two sides of the central one, different colors and focus, orientation, etc.

All the images are in RGB format and have been cropped to 32× 32 pixels. Unlike MNIST, more than one
digit can be present in the same image. In these cases, the center digit is used to assign a label to the image,
which is then used as ground truth when training the classifier. Each image can belong to one of ten classes,
corresponding to digits ‘0’ through ‘9.’ As a preprocessing step, we divide each pixel by the max RGB value of
255 in order to have numbers in the range between zero and one. We then standardize the input images to
have a mean of zero and unit variance by applying a per-pixel scaling factor computed from the full training
dataset. The same scaling is applied to the test set.

The SVHN dataset consists of 604 388 images for training (of which 531 131 are considered extra data
that are slightly easier to classify) and 26 032 images for testing.

Training is performed using a k-fold cross-validation procedure. The training dataset is split in ten
training and validation samples such that 10% of the training set is used for validation and the remaining
90% for training. Training and validation is then repeated k times until each fold of the training set has been
used to evaluate the accuracy of the model. Model-performance figures of merit (e.g. accuracy, true and false
positive rates (FPRs), etc) are defined considering the mean across the ten folds on the test set. The
corresponding uncertainty is quantified through the standard deviation across the ten folds.

5. Baseline model

Keeping in mind that the model is designed for deployment on the resource limited environment of an
FPGA, we limit the depth and complexity of the baseline model while preserving reasonable performance. As
a target, we aimed at a test error close to 5%, where state-of-the-art test error lies between 1% and
5% [42–47]. To reduce the overall model latency as much as possible, models with fewer large layers (wider)
are preferred over models with several smaller layers (deeper). This is due to the parallel nature of the FPGA,
making it more resource-efficient to process one large layer in parallel over several small ones sequentially.
The dependency of inference latency and resource consumption for increasing depth and width will be
further discussed in section 8.

A Bayesian optimization over the model hyperparameters is performed using KERAS TUNER [48]. The first
few layers are chosen to be 2D convolutional blocks. Each block consists of a convolutional layer followed by
a max pooling layer, a batch normalization [49] layer, and a rectified linear unit (ReLU) [50, 51] activation
function. The optimization range is set so that the maximum number of loop iterations per layer is below the
unroll limit described in section 3 in order to achieve the lowest possible latency. Pooling layers are used to
keep the size of the final dense layers small.

The convolutional blocks are followed by a series of fully-connected layers, the amount of layers and their
size again determined through the hyperparameter optimization. A final ten-node dense layer, activated by a
softmax function, returns the probability for a given image to be assigned to each of the ten classes. The result
of the Bayesian optimization, shown in figure 4, consists of three convolutional blocks and two dense layers.
The convolutional layers in the three blocks have 16, 16, and 24 filters, respectively, and each has a kernel size
of 3× 3. The pooling layers have a size of 2× 2. The two hidden dense layers consist of 42 and 64 neurons,
with batch normalization and ReLU activation. The model is implemented in TENSORFLOW [12], using the
KERAS API [13]. To reduce the number of required operations, the bias term is removed from all layers, except
for the final output layer, while keeping batch normalization on to prevent internal covariate shift [49].

We refer to this model as the baseline floating-point (BF) model. The number of floating-point
operations (FLOPs) and weights for each convolutional or dense layer is listed in table 1. In addition, an
estimate of the per-layer energy consumption and the layer size in bits is quoted. These estimates are
obtained using QTOOLS [16], a library for estimating model size and energy consumption, assuming a 45 nm
process [52]. Despite the first dense layer having the most weights, the number of FLOPs and the energy
consumption is significantly higher in the convolutional layers due to the much larger number of
multiply-accumulate operations performed. The per-layer summaries does not include results for batch
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Figure 3. Examples of digit images extracted from the SVHN train (three leftmost images) and test (three rightmost images)
datasets.

Figure 4. The neural network architecture, chosen through a Bayesian optimization over the hyperparameters, for classifying
digits from the SVHN dataset. Each convolutional block consists of a convolutional layer, max pooling, batch normalization, and
ReLU activation. The convolutional layers in the three convolutional blocks use 16, 16, and 24 filters, respectively, and each has a
kernel size of 3× 3. The pooling layers have a size of 2× 2. The convolutional blocks are followed by two fully-connected layers
consisting of 42 and 64 neurons, with batch normalization and ReLU activation. The bias term is removed from all layers except
the final output layer.

Table 1. Number of trainable weights, floating-point operations, energy consumption and layer size in bits for each convolutional or
dense layer (not including the activation layers). Batch normalization and pooling layers are not included as they are negligible in size
and energy consumption in comparison. The energy is estimated assuming a 45 nm process using QTOOLS. The total energy and bit size
includes all model layers.

Layer name Layer type Input shape Weights MFLOPs Energy (nJ) Bit size

Conv 0 Conv2D (32, 32, 3) 432 0.778 1795 3456
Conv 1 Conv2D (15, 15, 16) 2304 0.779 1802 18 432
Conv 2 Conv2D (6, 6, 16) 3456 0.110 262 27 648
Dense 0 Dense (96) 4032 0.008 26 32 256
Dense 1 Dense (42) 2688 0.005 17 21 504
Output Dense (64) 65 0.001 4 5200
Model total 12 858 1.71 3918 170 816

normalization or pooling layers, as the contribution from these are negligible in comparison. The total
model energy and bit size includes all layers of the model.

The training is performed minimizing the categorical crossentropy loss [53] using the Adam
optimizer [54]. The optimal learning rate is obtained using the hyperparameter optimization described
above, found to be 0.003, and is set as the starting learning rate. If there is no improvement in the loss for five
epochs, the learning rate is reduced by 90% until a minimum learning rate of 10−6 is reached. The batch size
is 1024 and the training takes at most 100 epochs. Early stopping is enabled when no improvement in the
validation loss is observed across ten epochs.

6. Compression by pruning

Weight pruning is an established strategy to compress a neural network and consequently reducing its
resource utilization. One strategy, magnitude-based pruning, consists of eliminating redundant weights in
the weight tensors by setting the value of the smallest weights in a tensor to zero [1, 55–59]. All zero-weight
multiplications are omitted by the HLS library when translating the network into firmware, consequently
saving significant FPGA resources.

Pruning is enforced using the TENSORFLOW pruning API, a KERAS-based interface consisting of a simple
drop-in replacement of KERAS layers. A sparsity of 50% is targeted, meaning only 50% of the weights are
retained in the pruned layer and the remaining ones are set to zero. Before pruning, the weights of each layer
are initialized to the weights of the corresponding model without pruning (i.e. fine-tuning pruning), ensuring
the model is in a stable minimum before removing weights deemed unimportant. Each model is pruned
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Figure 5. The weights per layer for the the BF model (left) and the baseline pruned (BP) model (right). The BP model is derived
by starting from the BF model and repeating the training while applying a pruning procedure with a target sparsity of 50% for
each layer.

Figure 6. ROC curves of FPR versus true positive rate (TPR) for the BF model (left) and the BP model (right). Training is
performed using k-fold cross validation, with k= 10. For each digit, the solid line corresponds to the mean and the band to the
standard deviation across the ten folds. The area under the curve (AUC) is reported in the legend and is defined as the mean
across the ten folds with an uncertainty given by the standard deviation.

starting from the 10th epoch, with the target sparsity gradually increasing to the desired 50% with a
polynomial decay of the pruning rate [60].

By pruning the BF model layers as listed in table 1 to a target sparsity of 50%, the number of FLOPs
required when evaluating the model, can be significantly reduced. We refer to the resulting model as the BP
model.

The distribution of the weight values per layer for the BF and BP models are shown in figure 5. The effect
of pruning is seen by comparing the two distributions: the smallest magnitude weights of the BF weight
distribution migrate to the spike at zero in the BP weight distribution, while the two tails remain populated,
with most of the weights falling in the interval [−1.5, 1.5].

Figure 6 compares the classification performance of the BF and BP models. Specifically, it shows the
receiver operating characteristic (ROC) curves and the corresponding AUC for each digit. In addition, we
consider the model accuracy, i.e. how often the predictions (after taking the argmax of the output neurons)
equals the labels. For each ROC, the solid line corresponds to the mean across the ten folds and the
uncertainty to the standard deviation. The mean accuracy and standard deviation across the ten folds is also
reported on the plot. Despite removing 50% of the weights for the BP model, the model accuracy is
comparable between the BF and BP models.
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These models serve as our reference models. The accuracy, latency and resource consumption of these
will be discussed in section 8. In general, we observe a significant reduction in FPGA resource consumption
for pruned models, as zero-weight multiplications are optimized away by the HLS compiler. Because pruning
has little impact on the model accuracy (as demonstrated in figure 6), pruning is always recommended
before translation into FPGA firmware with hls4ml.

7. Compression by quantization

To further limit the model footprint, we reduce the numerical precision of the model weights before FPGA
deployment. During training, one typically relies on single- or double-precision floating-point arithmetic,
i.e. 32 or 64 bit precision. However, when deploying a deep neural network on FPGA, reduced precision
fixed-point arithmetic (quantization) is often used in order to minimize resource consumption and latency.
It has been shown that deep neural networks experience little accuracy loss when QAT is applied, even up to
binary quantization of weights [61].

When a quantized model is deployed on an FPGA, all its weights, biases, and activation functions are
converted to fixed-point precision before being deployed. This is referred to as post-training quantization
(PTQ). The chosen precision is a new tunable hyperparameter. The hls4ml library allows users to specify
different numerical precisions for different components of the network (known as heterogeneous
quantization). For instance, it is found that severe PTQ of the activation functions typically results in a
greater reduction of accuracy than severe PTQ of the weights [8]. By default, hls4ml assumes 16 total bits
for every layer, 6 of which are dedicated to the integer part (⟨16,6⟩ precision).

In this paper, we consider two approaches to network quantization: PTQ of a floating-point model, and
QAT, resulting in a model already optimized for fixed-point precision. Both methods will be described in the
following and the result on hardware discussed in detail in section 8. To summarize, we observe a significant
reduction in accuracy using PTQ, with no prediction power remaining below a bit width of 14. Using QAT,
however, high accuracy is maintained down to extremely narrow bit widths of 3–4. The latency and resource
consumption are similar for the two methods (with certain caveats that will be discussed in section 8), and
QAT is therefore the preferred solution for model quantization before deployment with hls4ml.

7.1. Post-training quantization
The hls4ml library converts model weights and biases from floating-point to fixed-point precision, applying
the same quantization to the whole network or setting the precision per layer and per parameter type. Bit
width and number of integer bits must be tuned carefully to prevent compromising the model accuracy. For
each component, an appropriate precision is selected by studying the floating-point weight profiles, i.e. the
range of input or output values spanned by the testing data for the trained model, component by
component. In order to minimize the impact of quantization on accuracy, the precision can be tuned so that
the numerical representation adequately covers the range of values observed in the floating-point activation
profile.

As an example, the by-layer weight profiles of the BF model is shown in figure 7, for both layer weights
(left) and outputs (right) using the testing data. The last letter in the label indicates which type of weight is
being profiled, where w is for weights and b is for bias. Learnable bias parameters are only included in the
final dense layer. The other bias terms are introduced by the fusing of a batch normalization and a dense
layer. The gray bands illustrate the numerical range covered by the default ⟨16,6⟩ precision. No gray band is
visible for the Flatten layer as no operations changing the data is performed. Also no gray band is visible for
the 4th and 5th batch normalization layer outputs as these are fused with the dense layers.

Typically, extreme PTQ results in a sizeable accuracy loss. The increased spacing between representable
numbers enforces a severe weight rounding that leads to a significant reduction in the model accuracy once
the resolution becomes too coarse. The amount of compression one can reach by this procedure is balanced
by the need to preserve the model accuracy, and how much model accuracy reduction can be tolerated is an
application-specific question.

We use PTQ to generate a range of compressed models, further discussed in section 8, scanning bit
widths from 16 to 1, with 6 integer bits.

7.2. Quantization-aware training
QAT [62] is an efficient procedure to limit accuracy loss while reducing the numerical precision of the
network components. Here, quantized weights and biases are used in the training during the forward pass,
while full precision is used in the backward pass in order to facilitate the drift toward the optimal point in the
loss minimization (known as the straight-through estimator) [63]. The hls4ml library supports QAT through
its interface to QKERAS [16].
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Figure 7. Layer weight (left) and output (right) numerical values per layer for the BF model for a subset of the test data. The gray
band represents the coverage of the default precision of ⟨16,6⟩.

We train a range of quantized QKERAS models using the same architecture as in figure 4, imposing a
common bit width across the model. We scan the bit width from 16 to 3, as well as train a ternary and a
binary quantized model. We refer to these models as QKeras (Q) models. In addition, we train pruned
versions of these models, targeting a sparsity of 50%. These are referred to as QKeras Pruned (QP) models.

Only convolutional layers, dense layers, and activation functions are quantized. The batch normalization
layers are not quantized during training, as support for the QKERAS quantized equivalent of the KERAS batch
normalization layer is not supported in hls4ml at the time of this writing. Support for this is planned for a
future version of hls4ml. Batch normalization layers in the QAT models are therefore set to the default
precision of ⟨16,6⟩ by hls4ml. The final softmax layer is also kept at the default precision of ⟨16,6⟩ in order
to not compromise the classification accuracy.

Finally, we define a heterogeneously quantized model using AUTOQKERAS [16], a library for automatic
heterogeneous quantization. The AUTOQKERAS library treats the layer precision as a hyperparameter, and
finds the quantization which minimizes the model bit size while maximizing the model accuracy. By allowing
AUTOQKERAS to explore different quantization settings for different parts of a given network, we obtain an
optimal heterogeneously quantized QKERAS model. A Bayesian optimization is performed over a range of
quantizers available in QKERAS, targeting a 50% reduction in model bit size. At the same time, the number of
filters per convolutional layer and neurons per dense layer is re-optimized as quantization tends to lead to a
preference for either (1) more filters as information is lost during quantization or (2) less filters due to some
filters effectively being the same after quantization.

The optimization process is shown in figure 8, where the model bit size versus the model validation
accuracy is shown for all the models tested in the automatic quantization procedure, showing the different
quantization configurations for each of the convolutional layers. The size of the markers correspond to the
number of filters used for a given convolutional layer in that trial. The colors correspond to different type of
quantizers (binary, ternary of mantissa quantization using different bit widths). The model yielding the best
accuracy versus size trade-off is marked by a red arrow. The number of filters per convolutional layer for the
selected model is (4, 16, 12), compared to the original (16, 16, 24) for the BF and BP models, and the number
of neurons per dense layer is (15, 16) compared to (42, 64) in the original model. Table 2 summarizes the
quantization configuration found to be optimal by AUTOQKERAS, and the corresponding model energy
consumption estimated using QTOOLS. We note that this model uses almost 90% less energy than the
original. We train two versions of this model: an unpruned version (AQ), and a pruned version (AQP). The
latter model is the same as AQ, but additionally pruned to a target sparsity of 50%.

Figure 9 shows the ROC curves for the AQ and AQP models. The curves show a slightly lower
classification accuracy than those in figure 6, with AUCs differing by approximately 1%.

The numerical values spanned by the AQ model is shown in figure 10 for layer weights (left) and outputs
(right). In contrast to those showed in figure 7, different bit widths are now used for the different layers, in
correspondence with the bit width used in QKERAS.
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Figure 8. Relation between accuracy and model bit size for an ensemble of trial models, resulting from a Bayesian optimization
performed over layer quantizers and number of filters, using AUTOQKERAS. Each figure corresponds to a given quantization and
filter configuration tested for the first (top left), second (top right) and third (bottom) convolutional layer. The size of each
marker corresponds to the number of filters tested for that layer, and the color to the quantization (binary, ternary or mantissa
quantization). The red arrow indicates the model yielding the best accuracy versus size trade-off.

Table 2. Per-layer heterogeneous quantization configuration obtained with AUTOQKERAS, the total estimated energy consumption and
model size in bits of the AutoQ (AQ) model. The energy is estimated assuming a 45 nm process using QTOOLS.

Precision per layer

Model Conv2D ReLU Conv2D ReLU Conv2D ReLU Dense ReLU Dense ReLU Dense Softmax
Energy
(nJ) Bit size

AQ ⟨4,0⟩ ⟨3,1⟩ ⟨4,0⟩ ⟨3,1⟩ ⟨4,0⟩ ⟨8,4⟩ ⟨4,0⟩ ⟨4,2⟩ ⟨4,0⟩ ⟨8,2⟩ ⟨6,0⟩ ⟨16,6⟩ 465 45 240

Figure 11 summarizes the effects of pruning and quantization. Here, we show the median accuracy and
upper and lower quartiles across the ten folds of the unpruned (red) and pruned (green) quantized models,
for different choices of bit widths and for the AQ (AQP) models. The unquantized baseline models are
shown for reference (BF or BP). For bit widths above four, pruning to 50% sparsity has very little impact on
the model accuracy. At very low bit widths, however, pruning negatively impacts the model performance.
The accuracy is constant down to four bit precision, with marginal accuracy loss down to three bits. Using
ternary quantization, the model accuracy drops to 87%–88% and has a higher statistical uncertainty. When
quantizing down to binary precision, the model accuracy is reduced to 72% for the unpruned model and
64% for the pruned model. The significant reduction in accuracy due to pruning for binary networks is due
to too little information being available in the network to accurately classify unseen data. A large spread in
model accuracy for the binary network across the ten folds is observed, indicating that the model is less
robust to fluctuations in the training dataset. As demonstrated in [8], this can be mitigated by increasing the
model size (more filters and neurons per layer). The AQ models obtain a slightly lower accuracy than the
baselines, but uses, as will be demonstrated in section 8, significantly fewer resources.

Due to the results above, it is recommended that users prune and quantize models using QAT through
QKERAS, before proceeding with FPGA deployment with hls4ml.
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Figure 9. ROC curves of FPR versus TPR for the AQ model (left) and the AutoQ Pruned (AQP) model (right). Training is
performed using k-fold cross validation, with k= 10. For each digit, the solid line corresponds to the mean across the ten folds
and the band to the standard deviation. The mean AUC across the ten folds is reported in the legend. The mean accuracy and it is
standard deviation across the ten folds is reported as well.

Figure 10. Layer weights (left) and output (right) numerical values per layer for the AQ model using a subset of the training data.
The gray band represents the range covered by the fixed precision per layer in hls4ml.

8. FPGA porting

The models described above are translated into firmware using hls4ml version 0.5.0, and then synthesized
with Vivado HLS 2020.1, targeting a Xilinx Virtex UltraScale+ VU9P (xcvu9pflgb2104-2L) FPGA with a
clock frequency of 200 MHz. For the QKERAS quantized models, the sign is not accounted for when setting
the bit width per layer during QAT, so layers quantized with total bit width b in QKERAS are therefore
implemented as fixed-point numbers with total bit width b+ 1 in hls4ml. We compare the model accuracy,
latency, and on-chip resource consumption. The accuracy after translating the model into C/C++ code with
hls4ml (solid line) for the different models, is shown in figure 12 and compared to the accuracy evaluated
using KERAS. No pre-synthesis results are shown for the BF and BP models, as these are quantized during
synthesis. Nearly perfect agreement in evaluated accuracy before and after synthesis is observed for the Q and
QP models and the translation into fixed-point precision is lossless.

While the accuracy of the Q and QP models trained via QAT remains high down to a bit width of three,
the accuracy of the PTQ models fall off sharply with decreasing bit width and have almost no discrimination
power for bit widths smaller than 14. PTQ has a higher negative impact on the unpruned models, indicating
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Figure 11. Accuracy for unpruned (red) and pruned (yellow) models for binary (B) and ternary (T) precisions, homogeneously
quantized models with bit widths between 3 and 16, the heterogeneously quantized models AQ and AQP, compared to the BF and
BP models. The black line represents the median, and the box extends from the lower to upper quartile values across the ten folds.

Figure 12.Model accuracy as a function of bit width for the BF, BP, Q and QP models. The heterogeneously quantized models AQ
and AQP are shown in the sidebar.

that rounding errors are the biggest cause for accuracy degradation. The heterogeneously quantized models
AQ and AQP have slightly lower accuracy than the baseline ⟨16,6⟩model.

We then study the resource consumption and latency of the different models after logic-synthesis. The
resources available on the FPGA are digital signal processors (DSPs), LUTs, BRAMs, and flip-flops (FFs). In
figure 13, the resource consumption relative to the total available resources is shown. Here, a fully parallel
implementation is used where each multiplier is used exactly once, which can be achieved by setting the reuse
factor R [1] to 1 for each layer in hls4ml.

The DSP consumption is slightly higher for the Q and QP models than the BF and BP models due to the
batch normalization layers in the QAT models being fixed to ⟨16,6⟩.

Below a bit width of 10, the DSP consumption is significantly reduced as multiplications are performed
using LUTs. DSPs are usually the limiting resource for FPGA inference, and we observe that through QAT,
the DSP consumption can be reduced from one hundred percent down to a few percent with no loss in
model accuracy (as demonstrated in figure 12). Above a bit width of 10, almost all the DSPs on the device are
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Figure 13. Resource consumption as a function of bit width for the BF, BP, Q, and QP models. The heterogeneously quantized AQ
and AQP models are displayed in the right sub-plot. The model DSP (top left), LUT (top right), FF (bottom left) and BRAM
(bottom right) consumption is shown.

in use for the Q and QP models. This routing is a choice of Vivado HLS during optimization of the circuit
layout. This is also the reason why pruning appears to have relatively little impact for these models: the DSPs
are maximally used and the remaining multiplications are performed with LUTs. The QP models use
significantly fewer LUT resources than the unpruned equivalent. The point where most multiplications are
moved from DSPs to LUTs is marked by a steep drop in DSP consumption starting at a bit width of 10.

The heterogeneously quantized models, AQ and AQP, consume very little FPGA resources, comparable to
that of the Q and QP models quantized to a bit width of three. All models use very few FFs, below 4% of the
total budget. The BRAM consumption is also small and below 4% for all models. Some dependence on bit
width can be traced back to how operations are mapped to the appropriate resources through internal
optimizations in HLS. Depending on the length and the bit width of the FIFO buffers used for the
convolutional layer sliding window, HLS will decide whether to place the operation on BRAMs or LUTs and
migration between the two is expected. Most of the BRAMs, are spent on channels, the output of different
layers.

The latency and II for all models is shown in figure 14. A total latency of about 5 µs is observed for all
models, similar to the II. The latency is independent of bit width when running at a fixed clock period. We
leave it for future studies to explore running the board at higher clock frequencies.

A summary of the accuracy, resource consumption and latency for the BF and BP models quantized to a
bit width of 14, the Q and QP models quantized to a bit width of 7 and the heterogeneously quantized AQ
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Figure 14. The model latency (left) and initiation interval (right) as a function of bit width for the BF, BP, Q, and QP models. The
heterogeneously quantized AQ and AQP models are displayed in the right sub-plot.

Table 3. Accuracy, resource consumption and latency for the BF and BP models quantized to a bit width of 14, the Q and QP models
quantized to a bit width of 7 and the heterogeneously quantized AQ and AQP models. The numbers in parentheses correspond to the
total amount of resources used.

FPGA: Xilinx Virtex UltraScale+ VU9P

Model Accuracy DSP (%) LUT (%) FF (%) BRAM (%) Latency (cc) II (cc)

BF 14-bit 0.87 93.23 (6377) 19.36 (228 823) 3.40 (80 278) 3.08 (66.5) 1035 (5.2 µs) 1030
BP 14-bit 0.93 48.85 (3341) 12.27 (145 089) 2.77 (65 482) 3.08 (66.5) 1035 (5.2 µs) 1030
Q 7-bit 0.94 2.56 (175) 12.77 (150 981) 1.51 (35 628) 3.10 (67.0) 1034 (5.2 µs) 1029
QP 7-bit 0.94 2.54 (174) 9.40 (111 152) 1.38 (32 554) 3.10 (67.0) 1035 (5.2 µs) 1030
AQ 0.88 1.05 (72) 4.06 (48 027) 0.64 (15 242) 1.5 (32.5) 1059 (5.3 µs) 1029
AQP 0.88 1.02 (70) 3.28 (38 795) 0.63 (14 802) 1.4 (30.5) 1059 (5.3 µs) 1029

and AQP models, is shown in table 3. Resource utilization is quoted as a fraction of the total available
resources on the FPGA, and the absolute number of resources used is quoted in parenthesis. The accuracy of
the post-training quantized BF and BP models drops below 50% for bit widths narrower than 14 and can not
be used for inference. The QAT models, Q and QP, quantized to a bit width of 7 maintain a high accuracy
despite using only a fraction of the available FPGA resources. The models using the fewest resources are the
AQ and AQP heterogeneously quantized models, reducing the DSP consumption by 99% while maintaining
a relatively high accuracy. Finding the best trade-off between model size and accuracy in an application-
specific way can be done using AUTOQKERAS, as demonstrated in section 7.

To further reduce the resource consumption, the reuse factor R can be increased. This comes at the cost
of higher latency. The model latency and resource consumption as a function of bit width and for different
reuse factors for the QP models are shown in figure 15. The latency and II increase with R, while the DSP
consumption goes down. The LUT consumption is minimally affected by the reuse factor, consistent with the
results reported in [1]. The BRAM consumption is the same for all reuse factors, around 3%, and therefore
not plotted. The corresponding study for the BF, BP and Q models can be found in appendix.

A summary of the latency and resource consumption for different reuse factors for all the models at a
fixed bit width of 16 is shown in figure 16. The latency has a linear dependence on the reuse factor, as
expected because each multiplier is used in series one reuse factor at the time. The DSP consumption
decreases as∼1/R for all models. The first point deviates from this as the maximum number of DSPs are in
use, effectively reaching a plateau. The LUT consumption is high for a reuse factor of one, complimenting the
ceiling reached in DSP consumption at a reuse of one, since the multiplications that do not fit on DSP are
moved to LUTs. The FF consumption is flat as a function of reuse factor. The BRAM consumption does not
depend on the reuse factor and is the same for all models, around 3%. We leave it up to hls4ml users to find
the optimal trade-off between inference latency and resource consumption for a given application through
tuning of the reuse factor.
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Figure 15. Latency (top left), initiation interval (top right), DSP (middle left), LUT (middle right), FF (bottom) consumption as a
function of bit width and for different reuse factors for the QP models.

Although particle physics experiments mostly use large FPGAs, the hls4ml library can be readily used
for smaller FPGAs, like those found on SoC or internet-of-things (IoT) devices, through increasing the reuse
factor. To demonstrate this, we synthesize and deploy the smallest model that retains the original model
accuracy, QP 7-bit, onto a low-cost TUL PYNQ-Z2 development board, equipped with a Xilinx Zynq
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Figure 16. The model latency (top left), DSP (top right), LUT (bottom left) and FF (bottom right) consumption as a function of
reuse factor for a fixed bit width of 16 for the Baseline (BF), BP, Q, and QP models.

Table 4. Resource consumption and latency for the QP 7-bit model on a Xilinx Zynq XC7Z020 SoC. A clock frequency of 100 MHz is
used.

FPGA: Xilinx Zynq XC7Z020 SoC

DSP LUT FF BRAM (18 kb) Latency (cc) II (cc) frame/s

Available 220 53 200 106 400 280 — — —
Used 213 (96.82%) 48 259 (90.71%) 35 118 (33.01%) 122 (43.57%) 17 085 (171 µs) 16 385 2831

XC7Z020 SoC (FPGA part number xc7z020clg400-1). This FPGA is significantly smaller than the Xilinx
Virtex UltraScale+ VU9P, and consists of 13 300 logic slices, each with four 6-input LUTs and 8 FFs, 630 kB
of BRAM, and 220 DSP slices. As expected, a large reuse factor is needed in order to fit the QP 7-bit model
onto the Zynq XC7Z020. For a clock frequency of 100 MHz, the resulting inference latency is 171 µs and up
to 2831 image classifications per second. This implementation uses a total of 91% of the LUTs, 97% of the
DSPs, 33% of the FFs, and 44% of the BRAM. A summary is provided in table 4. This demonstrates the
flexibility of hls4ml to accommodate SoC/IoT use cases, which can demand smaller FPGAs and tolerate
millisecond latencies.

Finally, in figure 17 we study the resource consumption and latency as a function of the input size for a
single convolutional layer with varying number of filters and kernel sizes. Three input channels are always
assumed and the input height (H) and width (W) is varied between 10 and 256, such that the input size is
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Figure 17. The DSP usage (top left), LUT usage (top right) and latency (bottom) as a function of the input image height (H) and
width (W) for a single convolutional layer with varying kernel size and number of filters. Three color channels are assumed such
that the input size corresponds to (H×W × 3). A default precision for all weights and outputs of ⟨16,6⟩ is assumed.

H×W × 3. A precision of ⟨16,6⟩ is assumed for all models to illustrate the dependency of latency/resources
on the given layer configurations, although, as we have demonstrated above, resources can be significantly
reduced using QAT. The DSP and LUT consumption is constant as a function of the input size, but increases
with the number of filters used and the kernel size, due to the higher number of multiplications that need to
be performed simultaneously. The latency increases linearly with the input size, but does not depend on the
kernel size or the number of filters. We also show the latency as a function of the depth of the model in
figure 18. For simplicity, we assume an input size of 30× 30× 3, 16 filters and a kernel size of 3× 3 for each
convolutional layer. The precision is fixed to ⟨16,6⟩ or ⟨7,1⟩. The DSP consumption scales linearly with the
model depth until the maximum number of DSPs are used. When all DSPs are in use, multiplications are
moved onto LUTs, seen as a change of slope in the LUT consumption versus model depth. The inference
latency increases linearly with the model depth.

Figures 17 and 18 summarize how input size and model architecture affects the inference latency and
resource consumption. Through increasing the reuse factor, smaller FPGAs can be targeted through a
trade-off between latency and resource consumption. Support for QAT through and pruning further reduce
the model footprint. The hls4ml library is therefore capable of providing generic, multi-backend support
for a wide range of hardware and latency constraints.
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Figure 18. The DSP usage (top left), LUT usage (top right) and latency (bottom) as a function of the model depth for models
using a precision of ⟨16,6⟩ and ⟨7,1⟩. An input size of (30× 30× 3) is always assumed and each convolutional layer consists of
16 filters and a kernel size of (3× 3).

9. Conclusions

We have presented the extension of hls4ml to support CNN architectures for transpilation to FPGA designs,
through a stream-based implementation of convolutional and pooling layers. A fully on-chip design is used
in order to provide for microsecond latency applications, like those at the CERN LHC. Taking as a
benchmark example a CNN classifier trained on the SVHN, we show how compression techniques at
training time (pruning and QAT) reduce the resource utilization of the FPGA-converted models, while
retaining to a large extent the floating-point precision baseline accuracy. Once converted to FPGA firmware
using hls4ml, these models can be executed with 5 µs latency and a comparable initiation interval, while
consuming less than 10% of the FPGA resources. We demonstrate the flexibility and scalability of hls4ml to
accommodate CNN architectures of varying sizes, and offer solutions both for small SoC FPGAs and for the
larger FPGAs used in particle physics experiments. This work enables domain ML specialists to design
hardware-optimized ML algorithms for low-latency, low-power, or radiation-hard systems, for instance
particle physics trigger systems, autonomous vehicles, or inference accelerators for space applications.
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The hls4ml library is available at https://github.com/fastmachinelearning/hls4ml and archived in the
Zenodo platform at 10.5281/zenodo.4161550. The work presented here is based on the Bartsia release,
version 0.5.0. For examples on how to use hls4ml, the notebooks in https://github.com/
fastmachinelearning/hls4ml-tutorial serve as a general introduction. The QKERAS library, which also includes
AUTOQKERAS and QTOOLS, is available at https://github.com/google/qkeras.

The SVHN dataset [17] can be downloaded at http://ufldl.stanford.edu/housenumbers or through
TENSORFLOW Datasets at www.tensorflow.org/datasets/catalog/svhn_cropped.
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Appendix. Performance versus bit width and reuse factor

Figures 19–21 show the model latency, initiation interval, DSP, LUT and FF consumption as a function of bit
width and for different reuse factors for the BF, BP and Q models, respectively. A similar behavior is observed
for all models, where the latency roughly scales with one unit of reuse factor and the DSP consumption scales
as the inverse of the reuse factor. The BRAM consumption does not depend on the reuse factor.

Figure 19. The model latency (top left), initiation interval (top right), DSP (middle left), LUT (middle right) and FF (bottom)
consumption as a function of bit width and for different reuse factors for the BF model.
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Figure 20. The model latency (top left), initiation interval (top right), DSP (middle left), LUT (middle right) and FF (bottom
left)consumption as a function of bit width and for different reuse factors for the BP model.

For the BF models in figure 19, there is an unexpected drop in DSP consumption at a bit width of 12 for
models using a reuse factor of one. For this model, only 13% of the DSPs (corresponding to 876 units) are
used, whereas the same mode with a reuse factor of six uses 19% of the available DSPs (corresponding to a
total of 1311). We would expect models with higher reuse factors to use fewer resources and not vice versa.
This unexpected behavior is only observed for one data point. We have investigated things to the extent
possible, but can only map the results back to how resources are allocated within HLS.
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Figure 21. The model latency (top left), initiation interval (top right), DSP (middle left), LUT (middle right) and FF (bottom)
consumption as a function of bit width and for different reuse factors for the QKeras (Q) model.

For the Q models in figure 21, the DSP consumption (middle left) of the models using a reuse factor of
one and those using a reuse factor of two overlap above a bit width of ten. The reason for this is that the
maximum number of DSPs are reached for both model types, and multiplications are therefore forced to
other resources. This effect can be seen in the LUT consumption (middle right), where the model using a
reuse factor of 1 uses significantly more LUTs than the other models.
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Abstract— Despite advances in the programmable logic capa-
bilities of modern trigger systems, a significant bottleneck
remains in the amount of data to be transported from the
detector to off-detector logic where trigger decisions are made.
We demonstrate that a neural network (NN) autoencoder model
can be implemented in a radiation-tolerant application-specific
integrated circuit (ASIC) to perform lossy data compression alle-
viating the data transmission problem while preserving critical
information of the detector energy profile. For our application,
we consider the high-granularity calorimeter from the Compact
Muon Solenoid (CMS) experiment at the CERN Large Hadron
Collider. The advantage of the machine learning approach is in
the flexibility and configurability of the algorithm. By changing
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the NN weights, a unique data compression algorithm can
be deployed for each sensor in different detector regions and
changing detector or collider conditions. To meet area, perfor-
mance, and power constraints, we perform quantization-aware
training to create an optimized NN hardware implementation.
The design is achieved through the use of high-level synthesis
tools and the hls4ml framework and was processed through
synthesis and physical layout flows based on a low-power (LP)-
CMOS 65-nm technology node. The flow anticipates 200 Mrad
of ionizing radiation to select gates and reports a total area
of 3.6 mm2 and consumes 95 mW of power. The simulated
energy consumption per inference is 2.4 nJ. This is the first
radiation-tolerant on-detector ASIC implementation of an NN
that has been designed for particle physics applications.

Index Terms— Application-specific integrated circuit (ASIC),
artificial intelligence (AI), autoencoder, hardware accelerator,
high-level synthesis (HLS), Large Hadron Collider (LHC),
machine learning (ML), single-event effect (SEE) mitigation.

I. INTRODUCTION

BREAKTHROUGHS in the precision and speed of sensing
instrumentation are impactful on advances in scientific

methodologies and theories. Thus, a common paradigm across
many scientific disciplines in physics has been to increase
the resolution of the sensing equipment in order to increase
either the robustness or the sensitivity of the experiment itself.
This demand for increasingly higher sensitivity in experiments,
along with advances in the design of state-of-the-art sensing
systems, has resulted in rapidly growing big data pipelines
such that transmission of acquired data to the processing unit
via conventional methods is no longer feasible. Data trans-
mission is commonly much less efficient than data process-
ing. Therefore, placing data compression and processing as
close as possible to data creation while maintaining physics
performance is a crucial task in modern physics experiments.

At the CERN Large Hadron Collider (LHC) and its high
luminosity upgrade (HL-LHC), extreme collision rates present
extreme challenges for data processing and transmission at
multiple stages in detector readout and trigger systems. As the
initial stage in the data chain, the on-detector (front-end)
electronics that readout detector sensors must operate with
low latency and low-power (LP) dissipation in a high-radiation
environment, necessitating the use of application-specific
integrated circuits (ASICs). In order to mitigate the ini-
tial bottleneck of moving data from front-end ASICs to
off-detector (back-end) systems based on field-programmable
gate arrays (FPGAs), front-end ASICs must provide edge com-

0018-9499 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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puting resources to efficiently use limited bandwidth through
real-time processing and identification of interesting data.
Front-end data compression algorithms have historically relied
on zero-suppression, threshold-based selection, and sorting or
summing of data.

Artificial intelligence (AI), and, more specifically, machine
learning (ML), has recently been demonstrated to be a pow-
erful tool for data compression, processing, and analysis in
physics [1]–[4] and many other domains. While progress
has been made toward generic real-time processing through
inference, including boosted decision trees and neural net-
works (NNs) using FPGAs in off-detector electronics [5], [6],
ML methods have not yet been used to address the significant
bottleneck in the transport of data from front-end ASICs to
back-end FPGAs.

The high-granularity endcap calorimeter (HGCAL) [7] cur-
rently under construction by the Compact Muon Solenoid
(CMS) experiment [8] for eventual use at HL-LHC pro-
vides an excellent example of the big data challenges
facing high-energy physics. As an imaging calorimeter,
the HGCAL includes over six million readout channels, pro-
viding an unprecedented level of segmentation for calorimetry
at high-energy colliders. In order to provide input to the
real-time event filtering (trigger) system of CMS, the HGCAL
transmits a stream of trigger data at a frequency of 40 MHz,
resulting in massive data rates. At data creation, two ASICs are
used to digitize and encode trigger data before transmission
to back-end FPGAs for further processing.

In this article, we explore the application of ML algorithms
to the task of processing large amounts of data with low
latency and LP in a high-radiation environment in order to
maximize the efficient use of limited bandwidth. We focus on
an ASIC implementation of an autoencoder algorithm that uses
a configurable NN to efficiently compress and encode data
automatically before transmission. Subsequent stages of data
processing can either decode the data or continue analyzing
the encoded data. In our ASIC implementation, the NN
architecture is fixed, but exceptional flexibility in application is
preserved by making the NN weights programmable. We apply
our methodology to the specific front-end data transmission
challenge of the CMS HGCAL, showing that the advantage
of our approach lies in the flexibility and configurability of
the algorithm, which allows us to generate unique data com-
pression algorithms depending on HGCAL sensor geometry,
sensor location on the detector and the corresponding occu-
pancy and signal patterns, changing accelerator conditions,
or changing detector conditions.

The remainder of this article is organized as follows.
In Section II, we introduce the HGCAL challenge in
greater detail and outline our conceptual approach. Then,
in Section III, we elaborate on the design and training of the
autoencoder NN for the specific case of the CMS HGCAL
detector. In Section IV, we present the digital implementation
of the trained NN in the ASIC. Finally, we summarize our
work and discuss future directions in Section V.

II. SYSTEM CONSTRAINTS AND CONCEPT

The HGCAL is a major upgrade of the CMS endcap
calorimeter planned for the HL-LHC and provides a fitting

Fig. 1. Simplified version of the internal flow of the autoencoder compression
task, which takes the module energy deposits, normalizes them to the sum of
the energy in the module, and then performs shape encoding.

demonstrator for the ASIC ML accelerator technology. The
HGCAL is described in detail in [7]; relevant implementation
details that have changed since the publication of [7] are
updated in this article.

This “imaging calorimeter,” which includes over 600 m2

of active silicon and over six million readout channels,
is composed of 50 layers of active shower-sampling media
interleaved with the dense absorber. The active medium of
the 28-layer front electromagnetic compartment is silicon,
while the 22-layer rear hadronic compartment includes both
silicon and plastic scintillators. Silicon layers are tiled with
8′′ hexagonal sensor modules, with each module including 48
logical trigger cells (TCs) arranged in three 4 × 4 matrices,
as shown in Fig. 1. While the NN can be configured for both
the silicon and scintillator geometries, silicon geometry is used
throughout this article to illustrate the concepts.

To provide input to the CMS trigger system, data must be
transmitted from the on-sensor analog-to-digital ASICs to the
all-FPGA back-end detector electronics system at the nomi-
nal HL-LHC collision rate of 40 MHz. Because bandwidth
constraints prohibit transmission of data for all 48 TCs at
40 MHz, a front-end concentrator ASIC (ECON-T) is being
developed to compress a single sensor’s information before
transmission to the back-end trigger electronics. Each sensor
module produces 7 bits of floating-point charge data for each
of the 48 TCs at 40 MHz. Thus, the lossy compression task
of the ECON-T ASIC is to aggregate the 48 7-bit signals
from a sensor and compress the data into a range spanning
48–144 bits while maximally preserving the energy pattern
of the sensor. The range of the output bits depends on the
location of the sensor module in the detector and the number
of links available for a given ECON-T ASIC to transmit the
data. The number of links allocated will roughly correspond
to the average sensor occupancy, which varies by two orders
of magnitude over all sensor locations. The exact task depends
on the handling of data framing and TC address information
and on whether the ECON-T algorithm operates with fixed
or variable latency. The ECON-T design provides the user a
choice among three expert algorithms for TC compression,
including TC threshold application, sorting and selection of
highest energy TC, and aggregation of adjacent TCs. Unused
algorithms are clock-gated to conserve power.

The ECON-T ASIC is being developed for the LP-CMOS
65-nm feature size technology and is under active development
for CMS. Because it is located on-detector in a high-radiation
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environment, its design also requires tolerance to single-event
effects. The allocated footprint for the fabrication of this chip
is approximately 5 × 5 mm2. It is expected that sufficient area
will be available for potential inclusion of our NN compression
logic with an approximate area of 4 mm2. The constraints for
the compression algorithms are that they should accept new
input data at 40 MHz and complete processing in 50 ns. The
power budget of the task is less than 100 mW.

Our contribution is an NN to perform the ECON-T com-
pression task. It is a central tenet of our design that the
compression algorithm is reconfigurable. Because we are
implementing a design for an ASIC, the architecture of the NN
will be fixed, but the weights of the NN need to be configurable
such that the algorithm itself is adaptable. This has several
advantages. Through reconfiguration, we will be able to do
the following.

1) Enable more computationally complex compression
algorithms, which could improve overall physics per-
formance or allow more flexible algorithms.

2) Customize the compression algorithm of each sensor
based on its location within the detector.

3) Adapt the compression algorithm for changing detector
and collider conditions (for example, if the detector loses
a channel or has a noisy channel, it can be accounted
for, or if the collider has more pileup than expected,
the algorithm can be adjusted to deal with new or
unexpected conditions without catastrophic failure).

For our compression algorithm, we choose to utilize an
autoencoder architecture. It provides a generic and flexible
compression solution, consisting of two NNs: an encoder and a
decoder. The encoding network maps inputs to an intermediate
latent representation with lower dimensionality than the space
of inputs, after which the decoding network aims to recover
the original signal. In the HGCAL application, the encod-
ing NN would compress HGCAL data on the ASIC before
transmission to the calorimeter trigger FPGAs for subsequent
decoding. Ultimately, in the final realistic system, we do not
anticipate using a full autoencoder architecture because FPGA
resources on the back-end FPGA system will not be sufficient
to do full decoding for every sensor. However, in the absence
of understanding how best to use the latent representation
later in the processing chain, we optimize performance for an
autoencoder because it is a reasonable proxy for the encoder
NN encapsulating the salient sensor features such that the
image can be decoded from the latent representation. Finally,
in Fig. 1, the compression task is split into two parts: an
overall normalization over the entire sensor to preserve the
total energy in the sensor and the NN shape encoder, which
encodes the energy pattern across the sensor.

For the automated design tool flow, it is very important
to have a rapid codesign loop between the NN algorithm
training and the implementation in hardware in order to under-
stand whether the algorithm is meeting system constraints for
power, area, and performance simultaneously. To achieve this,
we use hls4ml [5] that translates NNs trained in common
open-source ML software frameworks into register transfer
level (RTL) using high-level synthesis (HLS) tools [9]. The
efficacy of this approach will be described in greater detail in
Section IV.

III. ALGORITHM DESIGN AND PERFORMANCE
Our task is to design an algorithm that will reproduce the

energy pattern in the sensor while simultaneously adhering to
hardware constraints, i.e., fitting in the available area within
the ECON-T ASIC chip while complying with system latency
and power constraints. Because we are training the algorithm
based on a single sensor’s energy pattern, we will not be
able to optimize for multisensor physics performance, such as
particle energy resolution. Ultimately, the physics performance
may determine the final system optimization; however, it is
beyond the scope of this study. Therefore, our target is to
design an algorithm that reproduces the original sensor energy
pattern as accurately as possible through the autoencoder
compression-and-decompression bottleneck.

There are a number of elements needed to design our
compression algorithm: a sample of events for training and
validation, a preprocessing and normalization block, an opti-
mized NN architecture, and metrics for evaluating the NN
performance, both for determining the training loss and the
final network evaluation. An essential aspect of the train-
ing procedure is quantization-aware training (QAT), i.e., we
approximate bit-accurate reduced precision for all of the
NN calculations during training. QAT is known to be much
more performant than posttraining quantization (PTQ), where
the training is done using 32-bit floating-point operations,
which are then truncated posttraining to fixed-point or integer
representations. In a previous study of the QKeras [10]
tool, QAT was performed for an LHC trigger task. It was
found that, with PTQ, the minimum bit width possible without
loss of performance was 14 bits, while, with QAT, the same
performance could be achieved with 6-bit weights. Thus, PTQ
would lead to a more than fourfold increase in the area of
an ASIC design based on the bit operations hardware design
metric [11]. Therefore, we use QKeras for training the NNs
in this study.

Training Sample: Test energy patterns in the sensors are
simulated using top-quark-pair events overlaid with 200 simul-
taneous collisions per bunch crossing (BX) in the CMS soft-
ware framework [12]. These simulated events create a sample
of typical energy patterns in the HGCAL sensors, which we
use as a realistic proxy for the sensor data.

Preprocessing: The compression task is factorized into
normalization and shape extraction components, as illustrated
in Fig. 1. The first stage of ECON-T processing for all
algorithms is to expand the 7-bit floating-point TC data to
the inherent 22-bit fixed-point TC data. The sum value of
all 48 TC is identified and used to normalize the charge
distribution across the full sensor (and the sum of TC charge
is included in the final data payload to allow subsequent
interpretation of normalized TC data). The normalized NN
inputs are truncated to 8 bits to allow a more compact
NN implementation while ensuring that any omitted cells
constitute less than 1% of the total energy recorded within
a module.

NN Architecture: The encoding NN architecture con-
sists of successive layers that sequentially process the
input data. Convolutional layers are used to extract spatial
features from images through the application of filters: matri-
ces of configurable parameters. While convolutional layers
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use relatively few parameters, convolution requires many
multiply-accumulate operations (MACs). Conversely, a fully
connected layer multiplies a vector of input elements by a
matrix of configurable weights, generally requiring more con-
figurable parameters and fewer MACs than a convolution. The
impact of the choice of precision for all internal parameters
(constrained by the available area on the chip) is accounted
for by training inherently quantized models with the QKeras
package [10]. Because the HGCAL sensor data compression
task takes as input an image data representation, we consider
a convolutional NN layer as a natural approach. Typical con-
volutions rely on the input being in a Cartesian representation
though other shapes can be explored in future work. Here,
we map the hexagonal sensor shape to a more typical Cartesian
arrangement, as illustrated in Fig. 2, which simplifies the
training and hardware implementation.

Training and Performance Metrics: The performance of
the autoencoder is based on how well the original image
is reproduced after encoding and decoding. We quantify
the difference between raw and decoded HGCAL data with
the energy mover’s distance (EMD) [13]. Given a particular
normalized energy distribution, one may physically relocate
some energy fraction d E by a spatial distance dx , leading
to a new distribution with an associated rearrangement cost
d Edx . This notion can be extended to define an “optimal
transport” between two energy distributions A and B, as a
remapping that minimizes this total rearrangement cost, EMD
(A,B). While the performance of the autoencoder is assessed
with EMD, taking into account the complete hexagonal sensor
geometry, this metric is not used directly in the algorithm
training, as it involves nondifferentiable and computationally
intensive operations. Models are instead trained with a modi-
fied χ2 loss function incorporating cell-to-cell distances, as a
fast approximation of EMD. Specifically, individual TCs are
resummed into all physical groups of approximately 2 × 2
and 3 × 3 “super-cells” based on the full hexagonal cells with
corresponding χ2 values computed for the coarsened images.
The total loss sums each such χ2 together, resulting in a
comparatively lenient penalty when misreconstruction occurs
only on small spatial scales. Including these additional χ2

terms in the training procedure is found to yield significant
improvements to the autoencoder performance, as measured
with EMD. To ensure an unbiased NN optimization, the data
are randomly partitioned into separate samples for training
(80%) and validation (20%), with training termination set by
the loss observed in the validation sample.

A. Baseline Encoder Model

A simple encoding NN with a single convolutional and
dense layer architecture is investigated. Normalized inputs
from hexagonal sensors are arranged into three arrays of
4 × 4 to form a regular geometry. The convolution layer
consists of eight 3 × 3 × 3 kernel matrices, giving an 8
× 4 × 4 output after convolution. It was found that more
than eight kernel matrices brought negligible performance
improvement. These 128 values are flattened and fed through
a dense layer to yield 16 9-bit output values. Rectified linear
unit (ReLU) activations [14], [15] are applied before and after

Fig. 2. Mapping the hexagonal sensor geometry to potential Cartesian
representations for convolutional layer operations.

Fig. 3. Autoencoder NN architecture and data flow for the baseline encoder
model.

the dense layer. This leads to a total of 2288 weight parameters
(dominated by the 2064 parameters used to configure the
dense layer), each of which is specified with 6-bit precision.
A single inference requires a total of 4448 MACs, with
similar requirements from the convolution (2400) and dense
layers (2048). The size and complexity of this baseline model
are constrained by area, on-chip memory and interfaces, and
power, which impose additional optimization considerations.
The encoder architecture with the reconfigurable weights is
illustrated in Fig. 3.

B. Optimization Considerations and Comparisons

While the presence of a single convolutional layer is critical
for good physics performance of the algorithm (approximated
by the EMD between input and decoded images), adding more
filters or additional convolutional layers only weakly improves
physics performance, at the expense of significantly increased
area. Changes in the number and size of the dense layers yield
more dramatic differences.

Fig. 4 shows a sweep over the number of dense layer
outputs, where remaining aspects of the design are fixed
based on hardware constraints: the precision of outputs and
weights are coherently varied to ensure that both the total
number of outputs and the weight bits are fixed. Architec-
tures featuring many outputs with lower relative precision
consistently outperform their counterparts. The autoencoder
is robust across a variety of conditions and performs well in
the high-occupancy regime, which poses the greatest challenge
for trigger reconstruction.
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Fig. 4. Median EMD for decoded HGCAL images from the validation
dataset, as a function of sensor occupancy for six NN configurations. Vertical
lines (suppressed for the 160-bit configurations) denote 68% EMD intervals.
Occupancy is defined as the number of TCs with signals exceeding one
minimum ionizing particle divided by coshη, where η is the pseudorapidity
of the TC. (Results are shown for the version of NN with the maximum
of 10 bits for each of 16 outputs rather than 9 bits, as described in the text.)

Reconfigurability: Fig. 4 also demonstrates how the same
NN encoder can be reoptimized and configured for new
data-taking conditions, by comparing sensors in detector
regions requiring low and high throughputs. The maximum
data throughput of 144 bits from 16 9-bit outputs can
be reduced through fully configurable selective truncation.
Expected use cases include transmission of (48, 80, 112,
and 144) bits from 16 (3, 4, 7, and 9)-bit outputs though
the network can also be configured to transmit fewer than
16 outputs or a mix of precisions.

IV. IMPLEMENTATION METHODOLOGY AND RESULTS

In this section, we detail the implementation of the trained
NN described in Section III in the ECON-T ASIC. We discuss
the design and verification flow, the architectural and design
exploration, steps required for deployment in a radiation envi-
ronment, design performance metrics, and, finally, the imple-
mentation results.

A. Algorithm to Accelerator Development

For our design flow, we adopted the hls4ml framework [5]
to automate the mapping of ML models onto reconfigurable
logic. For this work, we extended hls4ml to our ASIC flow.
Traditionally, hardware designers utilize hardware description
languages (HDLs) and a level of abstraction known as the
RTL. In recent years, HLS has become an alternative for
generating hardware modules from code written in program-
ming languages, such as C/C++. HLS comes with significant
benefits: it raises the level of abstraction and reduces the
simulation time; it simplifies the verification phases; and
finally, it makes the exploration and evaluation of design
alternatives easier. The original flow of hls4ml generates
state-of-the-art synthesizable C++ code and HLS directives
from the ML-model specifications. The generated code is then
fed into the Vivado HLS tool to generate an accelerator in
HDL RTL code for the deployment on Xilinx FPGAs [16].
We extended hls4ml to support Mentor’s Catapult HLS [17]

TABLE I

AREA BREAKDOWN FOR PIPELINED IMPLEMENTATIONS. THE RESULTS

ARE FROM CATAPULT HLS ESTIMATIONS, AND AREAS ARE IN μM2

tool and target our specific 65-nm LP-CMOS technology for
ASIC fabrication. We integrated the HLS-generated code with
a SystemVerilog RTL IP of the programmable I2C peripheral.1

We finally created a component database and layout to be
incorporated into the ECON-T ASIC top-level assembly using
a digital implementation flow. The standard flow was modified
to accommodate automatic triple modular redundancy (TMR)
implementation for HLS-generated RTL integrated with other
SystemVerilog modules.

We complemented our design flow with a robust validation
and verification methodology across the various refinement
steps. We validated the C++ HLS code against the QKeras
trained model to guarantee the model’s functional correctness.
Earlier in the design flow, we also performed dynamic and sta-
tic verification of the synthesizable specifications: we checked
design rules with static analysis of the C++ HLS code (Men-
tor CDesignChecker [19]), measured coverage metrics (Mentor
CCov [19]), and, finally, ran simulation-based equivalence
checking. For the HLS-generated RTL code, we followed a
more traditional simulation-based verification to ensure opti-
mized power, area, and speed.

B. Architectural Exploration

hls4ml coupled with the industry-standard Catapult HLS
(ver. 10.6) tool allowed us to explore the cost and performance
tradeoffs of various microarchitectural hardware implementa-
tions for our ML model. We decided on a pipelined imple-
mentation for our accelerator to increase concurrent execution
as an early design decision. A pipelined design can process
new inputs every N clock cycles, where N is the initiation
interval (II) of the design. Table I shows the area breakdown
for different II values (1, 2, 4, and 8). It is noticeable that,
although the area is higher for II = 1, the required resources
are mostly functional logic to implement a highly parallel data-
path, i.e., there are no multiplexers (MUXs). A higher II value
implies less design parallelism and more functional-resource
reuse. This choice reduces the overall area, but the resource
breakdown shows an increase in control logic (MUX) and
registers. II of 1 was ultimately selected so that new inputs
may be processed in sync with a single clock operating at
40-MHz LHC crossing frequency.

We used a fixed-point representation (ac_fixed [20]) for
the input, intermediate, and output parameters of our ML
model designed with hls4ml. This choice provided us with
a high degree of flexibility for exploring the area and accuracy
tradeoff of the ML-model hardware implementations obtained
with HLS. The RTL schematics for the encoder block are

1The authors use controller/peripheral in place of master/slave when
referring to such I2C devices or processes [18].
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Fig. 5. Encoder RTL schematics and the basic structure of the convolution
and dense layers can be seen at the schematic level on the left, and zoomed
in images are provided for the output and MAC portions on the right.

shown in Fig. 5. The basic structure of the convolution and
dense layers can be seen at the schematic level. The top right
and bottom right diagrams are zoomed-in portions of this
schematic depicting the output and MACs.

C. Digital Implementation in a Radiation Environment

The digital design consists of three major functional blocks:
1) a converter that is a classical module designed with HLS;
2) an encoder that uses hls4ml; and 3) an I2C peripheral
that uses a SystemVerilog RTL code. The converter is used for
normalizing the 48 (22 b) inputs to 48 (8 b). An encoder is
used for data classification and further compression to 16 (9 b)
outputs. To have a flexible and reconfigurable algorithm, all
the parameters (13 728 b) can be set up via the I2C interface
on-chip. The programming of the I2C peripheral takes less
than 50 μs corresponding to a total of 1716 I2C clock cycles,
utilizing an 8-b input bus. Once the weights are set up,
the algorithm adds a total latency of 2 BX cycles to the
trigger path—one cycle to convert and another cycle to encode
resulting in total inference latency of 50 ns and a new input
accepted every 25 ns.

1) Integrated Converter, Encoder, and I2C Peripheral: An
integrated approach to the development is needed in order
to avoid routing congestion of connecting the weights to the
appropriate layers across the encoder. The floor plan of the
digital implementation occupying 2.4 mm × 1.5 mm is shown
in Fig. 6. The converter logic is located near the data input at
the top of the design, and the majority of the area is occupied
by the encoder, interleaved with the distributed I2C network.

2) Design Considerations for Total Ionizing Dose Perfor-
mance: Apart from all requirements considered above, our
design must guarantee on-detector circuit reliability in the
high-radiation environment of HL-LHC [21], [22]. The cir-
cuitry should withstand a total ionizing dose of approximately
200 Mrad over the lifetime of the experiment along with
high single-event effect (SEE) rates [23]–[25]. Since previous
measurement results have indicated that the average time delay
of all cells from the 65-nm LP process library increases after

Fig. 6. Design floor plan with an integrated converter, encoder, and I2C
peripheral occupying a total area of 3.6 mm2. The converter is highlighted
in gray, the I2C peripheral is highlighted in white, and the rest of the area is
occupied by the encoder.

Fig. 7. TMR scheme used for the encoder and converter. Each register is
triplicated, and a majority voter determines the output.

200 Mrad irradiation [26], minimum size cells are avoided.
Normal Vt standard cell technology library is used. The
implementation uses concurrent multimode multicorner static
timing analysis for ensuring performance. The foundry worst
case libraries are a good stand-in for modeling radiation
damage. All weights are stored in registers, and no static
random access memories (SRAMs) or dual interlocked storage
cell (DICE) [27] are used.

3) Single-Event Effect Mitigation: Mitigating SEEs is a
critical step in the ASIC implementation for effective perfor-
mance in the HL-LHC environment. Several techniques have
been proposed and used over the years to tackle this specific
problem [28]–[30].

TMR is a well-known technique to protect digital circuits
against the undesirable effects of SEEs [31], [32]. Depending
on the functionality of the block autocorrection features might
be required for registers which store data.

We have used two different TMR implementations: simple
TMR with triplicated registers and a majority voter for the data
path shown in Fig. 7 and fully triplicating the entire module,
as shown in Fig. 8, for the I2C peripheral for storing weights.

Since new data arrives at the encoder block every 25 ns,
no autocorrection techniques are required. On the other hand,
the values of the weights set by the I2C peripheral (parame-
ters of the NN) are vital as they are central to the vector
multiplications used in NNs. Once programmed these are
not expected to change over long periods of time, hence,
autocorrection techniques are used to ensure that register errors
due to single-event upsets (SEUs) do not accumulate over
time. As shown in Fig. 8, all combinational logic within the
module is triplicated, which is used by three majority voters
to form the inputs to triplicated registers. The feedback from
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TABLE II

DESIGN (D) AND VERIFICATION (V) METRICS FROM MODEL GENERATION TO VERIFIED IP

Fig. 8. Full module triplication is used for the I2C peripheral. All combina-
tional logic within the module is triplicated, which is used by three majority
voters to form the inputs to triplicated registers. The feedback from the output
of the registers enables autocorrection and protects against accumulating errors
due to SEUs over time.

the output of the registers enables autocorrection. This method
does require the I2C peripheral to be clocked periodically.

Performance Metrics and Implementation Results

Table II lists metrics characterizing our design flow, such
as the time spent for the design (D) and validation/verification
(V) stages, the number of iterations, and the complexity
of design representation at each stage. The table illus-
trates the main steps required to create a full and validated
design. A codesign approach requires being able to have
a rapid transition between each step to inform the other
steps.

The HLS model description requires approximately
1000 lines of code. This stage is fast (∼1 s) but requires
several hundred iterations to optimize the algorithm perfor-
mance, driven by the physics goals. The HLS stage determines
the level of parallelism in the design, choice of pipelining,
resource reuse factor, and clock frequency. This directly
impacts the total area, power consumption, and latency of the
design. One hot encoding of finite state machines for robust
SEU prevention also needs to be introduced at this stage. Clock
gating is employed to save system-level power. The digital
implementation stage is time-intensive, requiring ∼65 h of
design and verification to meet the speed and area constraints
with fewer iterations.

The final implementation results are presented in Table III.
While there are challenges due to technology choices in

TABLE III

KEY SIMULATION PERFORMANCE PARAMETERS OF THE DESIGN

making a comparison with our design in an FPGA, we con-
sider a fully unrolled FPGA implementation on a typ-
ical Xilinx Kintex Ultrascale FPGA device. Considering
algorithm block power only and depending on configura-
tion choices, an equivalent FPGA implementation consumes
roughly 2.5–5 W with a latency of ∼300 ns [5] compared to
the ASIC implementation, which consumes 95 mW. The ASIC
implementation is expected to provide more than an order of
magnitude improvement in power with a reduction in latency.

V. CONCLUSION

A design methodology spanning from ML model genera-
tion to ASIC IP block creation has been presented. An LP,
low-latency reconfigurable data compression algorithm based
on a convolutional NN has been processed through synthesis
and physical layout flows based on a 65-nm LP-CMOS
process, designed to withstand radiation environments of up
to 200 Mrad.

For the ECON-T ASIC, our task is to perform efficient lossy
compression of an HGCAL sensor energy pattern to transmit
data to off-detector electronics. Compression is accomplished
using an NN autoencoder consisting of convolution and dense
NN layers. Optimal design and training of the algorithm are
performed using QAT techniques to achieve good physics
performance while optimizing for LP and area.

The encoder architecture set by the model requires approx-
imately 225 000 MAC to perform vector multiplications every
25 ns. In order to optimize for LP operation while maintaining
data throughput of 40 MHz, a highly parallel architecture is
chosen at the expense of a larger area. The energy consumption
per inference is 2.38 nJ. The final design consists of 800k gates
and occupies a total area of 3.6 mm2.

The design demonstrates how complex NN architectures
can be implemented on the front-end ASICs with realistic
area constraints, allowing for minimal loss of information in
the trigger data stream. Furthermore, we show that, in spite
of a fixed ASIC implementation, ML algorithms can still be
designed with sufficient flexibility to enable reconfiguration
for new operational conditions. Apart from that, the I2C block
allows real-time reconfiguration of weights, thus facilitating
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the first steps toward real-time embedded AI. This is the first
time that a radiation-tolerant on-detector ASIC implementation
of an NN has been designed for particle physics applications.

We look forward to the inclusion of the design IP in the
ECON-T ASIC fabrication. This would allow us to test the
design in a physical chip. Beyond the ECON-T ASIC, there
is vast potential for future work using our design methodology,
including other domain applications and adaptations for ultra-
LP, longer latency applications; other technology nodes and
design considerations; and more types of NN architectures,
which could be scaled out to larger and more complex designs.
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Abstract
In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators
for real-time semantic segmentation tasks relevant for autonomous driving. Considering
compressed versions of the ENet convolutional neural network architecture, we demonstrate a
fully-on-chip deployment with a latency of 4.9 ms per image, using less than 30% of the available
resources on a Xilinx ZCU102 evaluation board. The latency is reduced to 3 ms per image when
increasing the batch size to ten, corresponding to the use case where the autonomous vehicle
receives inputs frommultiple cameras simultaneously. We show, through aggressive filter reduction
and heterogeneous quantization-aware training, and an optimized implementation of
convolutional layers, that the power consumption and resource utilization can be significantly
reduced while maintaining accuracy on the Cityscapes dataset.

1. Introduction

Deep Learning has strongly reshaped computer vision in the last decade, bringing the accuracy of image
recognition applications to unprecedented levels. Improved pattern recognition capabilities have had a
significant impact on the advancement of research in science and technology. Many of the challenges faced
by future scientific experiments, such as the CERN High Luminosity Large Hadron Collider [1] or the Square
Kilometer Array observatory [2], and technological challenges faced by, for example, the automotive
industry, will require the capability of processing large amounts of data in real-time, often through edge
computing devices with strict latency and power-consumption constraints. This requirement has generated
interest in the development of energy-effective neural networks, resulting in efforts like tinyML [3], which
aims to reduce power consumption as much as possible without negatively affecting the model accuracy.

Advances in deep learning for computer vision have had a crucial impact on the development of
autonomous vehicles, enabling the vehicles to perceive their environment at ever-increasing levels of
accuracy and detail. Deep neural networks are used for finding patterns and extracting relevant information
from camera images, such as the precise location of the surrounding vehicles and pedestrians. In order for an
autonomous vehicle to drive safely and efficiently, it must be able to react fast and make quick decisions.

© 2022 The Author(s). Published by IOP Publishing Ltd
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This imposes strict latency requirements on the neural networks that are deployed to run inference on
resource-limited embedded hardware in the vehicle.

In addition to algorithmic development, computer vision for autonomous vehicles has benefited from
technological advances in parallel computing architecture [4]. The possibility of performing network
training and inference on graphics processing units (GPUs) has made large and complex networks
computationally affordable and testable on real-life problems. Due to their high efficiency, GPUs have
become a common hardware choice in the automotive industry for on-vehicle deep learning inference.

Going beyond GPUs, as embedded computer vision-based systems are being developed and deployed in
an emerging number of industries, including automotive, healthcare and surveillance, deep learning
hardware accelerators are also utilizing field-programmable gate arrays (FPGAs) and application specific
integrated circuits (ASICs). Such accelerators are also exploiting the possibility to parallelize the vast number
of operations, thereby reducing latency and increasing throughput. In contrast to ASICs, for which the
design cannot be modified upon fabrication, FPGAs are flexible and reconfigurable, and commonly used for
prototyping and validating ASIC implementations. To fairly compare the performance and efficiency
between GPUs and FPGAs is very difficult due to the strong dependence on the details of, for example, the
implementation, open software support, data transfers and hardware design. See [5] for a recent survey on
efficient semantic segmentation networks using GPUs.

In this paper, we investigate the possibility of exploiting FPGAs as a low-power, inference-optimized
alternative to GPUs. By applying aggressive filter-reduction and quantization of the model bit precision at
training time, and by introducing a highly optimized firmware implementation of convolutional layers, we
achieve the compression required to fit semantic segmentation models on FPGAs. We do so by exploiting and
improving the hls4ml library, which provides an automatic conversion of a given Deep Neural Network into
C++ code, which is given as input to a high level synthesis (HLS) library. The HLS library then translates
this into FPGA firmware, to be deployed on hardware. Originally developed for scientific applications in
particle physics that require sub-microsecond latency [6–12], hls4ml has been successfully applied outside
the domain of scientific research [13, 14], specifically in the context of tinyML applications [15].

Applying model compression at training time is crucial in order to minimize resource-consumption and
maximize the model accuracy. To do so, we rely on quantization-aware training (QAT) through the
QKeras [16] library, which has been interfaced to hls4ml in order to guarantee an end-to-end optimal
training-to-inference workflow [13].

As a baseline, we start from the ENet [17] architecture, designed specifically to perform pixel-wise
semantic segmentation for tasks requiring low latency operations. We modify the architecture, removing
resource-consuming asymmetric convolutions, and dilated or strided convolutions. In addition, we apply
filter ablation and quantization at training time. Finally, we optimize the implementation of convolutional
layers in hls4ml in order to significantly reduce the resource consumption. With these steps, we obtain a
good balance between resource utilization and accuracy, enabling us to deploy the whole network on a Xilinx
ZCU102 evaluation board [18].

This paper is organized as follows: The baseline dataset and model are described in sections 2 and 3,
respectively. The model compression and the specific optimization necessary to port the compressed model
to the FPGA are described in sections 4 and 5. Conclusions are given in section 6.

2. Dataset

Our experiments are performed using the Cityscapes dataset [19], which involves 5000 traffic scene images
collected in 50 different cities with varying road types and seasons. These images have fine-grained semantic
segmentation annotations with pixel-level classification labels. We have limited ourselves to the four
semantic classes Road, Car, Person and Background. According to the standard Cityscapes split, 2975 images
are used for training, 500 for validation and 1525 for testing. We crop and resize the original images to have
an input resolution of 240×152 pixels. As a pre-processing step, we normalize all pixel values (integer values
in the range [0, 255]) to be in the [0, 1] range by dividing each one by 256. In this way all inputs are smaller
than one and can be represented by a fixed-point datatype using only 8 bits (log2(256)) (see section 4). An
example image from the dataset is shown in figure 1, together with a visualization of its semantic
segmentation mask.

For evaluation metrics we use two typical figures of merit for semantic segmentation:

• The model accuracy (Acc), defined as Acc= TP+TN
TP+TN+FP+FN , where TP, TN, FP, and FN are the fraction of

true positives, true negatives, false positives, and false negatives, respectively.
• Themean of the class-wise Intersection overUnion (mIoU), i.e. the average across classes of the Intersection-
Over-Union (defined as IOU= TP

TP+FP+FN ).
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Figure 1. An downsampled image from the Cityscapes dataset (left) and the corresponding semantic segmentation target (right),
in which the pixels belong to one of the classes {background (blue), road (teal), car (yellow), person (red)}.

Table 1.Model architecture parametrized by the number of filters in the bottlenecks f i, with i= 1, . . . ,5.

Layer Type Output resolution

Initial Downsample f0 × 120× 76
3× bottleneck 1 Downsample f1 × 60× 38
3× bottleneck 2 Downsample f2 × 30× 19
3× bottleneck 3 f3 × 30× 19
3× bottleneck 4 Upsample f4 × 60× 38
3× bottleneck 5 Upsample f5 × 120× 76
Final Upsample 4× 240× 152

Figure 2. Initial (left) and final (right) block architecture. In the two diagrams, conv(k, f ) represents a convolutional layer with f
k× k filters; maxpool(k) and upsample(k) represent a k× kmax pooling or upsample layer, respectively; and pad(p) represents
padding by p pixels in the lower and right directions.

3. Baseline model

The architecture we use is inspired by a fully convolutional residual network called Efficient Neural Network
(ENet) [17]. This network was designed for low latency and minimal resource usage. It is designed as a
sequence of blocks, summarized in table 1. The initial block, shown in the left figure in figure 2, encodes the
input into a 32× 120× 76 tensor, which is then processed by a set of sequential blocks of bottlenecks. The
first three blocks constitute the downsampling encoder, where each block consists of a series of layers as

3



Mach. Learn.: Sci. Technol. 3 (2022) 045011 N Ghielmetti et al

Figure 3. Downsample encoder (left) and upsample decoder (right) blocks. In the figures, Conv(k, f ) represents a convolutional
layer with f k× k filters, Maxpool(k) represents a k× kmax pooling layer, Upsample(k) represents a k× k upsampling layer, and
Pad(p) represents padding by p pixels in the lower and right directions. Blue boxes represent convolutional and batch
normalization layers that in the model used are single merged layers.

summarized in the left diagram in figure 3. The final two blocks provide an upsampling decoder, as illustrated
in the right diagram in figure 3. The final block is shown in the right diagram of figure 2.

Some differences from the original architecture in [17] is that we do not use asymmetric, dilated, or
strided convolutions. To further reduce the resource usage, we use three bottlenecks per block instead of five,
and we merge convolutional layers with batch normalization layers by rescaling convolutional filter weights
with batch normalization parameters (implemented through a QConv2DBatchnorm layer). When we use
QAT, this allows us to directly quantize the merged weights during the forward pass, rather than quantizing
the batch normalization parameters and the convolutional filters separately. This merging of layers saves
resources on the FPGA, since only the merged weights are used. Performing the merging already during
training, ensures that the weights used during training and during inference are quantized the same way. The
baseline ENet model is obtained fixing the six f hyperparameters of table 1 to (32,64,64,64,128,48). This
choice results in an architecture with 1.1× 106 parameters, yielding a mIoU= 63.2% and an accuracy of
91.5%.

Note that, in a real world application, such as autonomous driving, this computer vision task of
performing frame-by-frame semantic segmentation constitutes only a sub-task in the full software stack. For
example, the outputs of this network will typically need to be transformed into 3d world coordinates and
tracked over time before being sent to the planning and decision-making modules. Hence, the
single-frame-based metrics, such as accuracy and mIoU, are primarily used to compare different semantic
segmentation models, but they are insufficient for gauging the performance of the full autonomous driving
stack in real world driving.

4. Model compression

We consider two compression techniques for the model at hand: filter-wise homogeneous pruning, obtained
by reducing the number of filters on all the convolutional layers; and quantization, i.e. reducing the number

4
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Table 2. Architecture reduction through internal filter ablation and corresponding performance. As a reference, the baseline architecture
is reported on the first row. Highlighted in bold the three models considered further in this work.

Model name f i f 1 f 2 f 3 f 4 f 5 Parameters mIoU (%) Accuracy (%)

Enet 32 64 64 64 128 48 1.1× 106 63.2 91.5
Enet16 32 16 16 16 16 16 5× 104 54.3 87.9
Enet12 32 12 12 12 12 12 3× 104 52.0 86.8
Enet8 32 8 8 8 8 8 1.4× 104 49.4 85.6
Enet6 32 6 6 6 6 6 9× 103 45.9 84.0
Enet4 32 4 4 4 4 4 5× 103 36.6 81.5

of bits allocated for the numerical representation of the network components and the output of each layer
computation.

In addition, we use the AutoQKeras library [13], distributed with QKeras, to optimize the numerical
representation of each component at training time as a hyperparameter. This is done using a mathematical
model of the inference power consumption as a constraint in the loss function.

4.1. Filter multiplicity reduction
Normally, network pruning consists of zeroing specific network parameters that have little impact on the
model performance. This could be done at training time or after training. In the case of convolutional layers,
a generic pruning of the filter kernels would result in sparse kernels. It would then be difficult to take
advantage of pruning during inference. To deal with this, filter ablation (i.e. the removal of an entire kernel)
was introduced [20]. When filter ablation is applied, one usually applies a restructuring algorithm (e.g. Keras
Surgeon [21]) to rebuild the model into the smaller-architecture model that one would use at inference. In
this work, we take a simpler (and more drastic) approach: we treat the number of filters in the convolutional
layers as a single hyperparameter, fixed across the entire network. We then reduce its value and repeat the
training, looking for a good compromise between accuracy and resource requirements.

We repeat the procedure with different target filter multiplicities. The result of this procedure is
summarized in table 2, where different pruning configurations are compared to the baseline Enet model.

Out of these models, we select two configurations that would be affordable on the FPGA at hand: a
four-filters (Enet4) and an eight-filter (Enet8) configuration. As a reference for comparison, we also consider
one version with 16 filters, Enet16, despite it being too large to be deployed on the FPGA in question. We
then proceed by quantizing these models through QAT to further reduce the resource consumption.

4.2. Homogeneous quantization-aware training
Homogeneous QAT consists of repeating the model training while forcing the numerical representation of its
weight and activation functions to a fixed ⟨T, I⟩ precision, where T is the total number of bits and I is the
number of integer bits. This is done using the straight-through estimator, where quantization functions are
applied to weights and activations during the forward pass of the training, but then assuming the
quantization is the identity function in the backward pass, as the quantization function is not differentiable.
The model training then converges to a minimum that might not be the absolute minimum of the
full-precision training, but that would minimize the performance loss once quantization is applied. For a
complete overview on quantization methods for neural networks, see [22].

In practice, we perform a homogeneous QAT replacing each layer of the model with its QKeras
equivalent and exploiting the existing QKeras-to-hls4ml interface for FPGA deployment.

We study the impact of QAT for T ∈ 2,4,8 with I= 0, on the pruned models described above (Enet4,
Enet8 and Enet16). The resulting performance is shown in table 3, where we label the three quantization
configurations as Q2, Q4 and Q8, respectively.

The resulting resource utilization for Enet4 and Enet8 falls within the regime of algorithms that we could
deploy on the target FPGA. We observe similar drops in accuracy when going from full precision to Q8 and
from Q4 to Q2, but little differences between the Q4 and Q8 models. In this respect, Q4 would offer a better
compromise between accuracy and resources than Q8.

Out of these, the models with the highest accuracy and mIoU that would be feasible to fit on the FPGA, is
the 8 filter model quantized to 8 bits (Enet8Q8) and the 8 filter model quantized to 4 bits (Enet8Q4).

The quantization of the model does not have to be homogeneous across layers. In fact, it has been
demonstrated that a heterogeneous quantization is the best way to maintain high accuracy at low
resource-cost [23]. We therefore define one final model with an optimized combination of quantizers.
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Table 3.Homogeneously and heterogeneously quantized models with indicated bitwidth, filter architecture and number of parameters,
together with their validation mean IOU trained with quantization aware training using QKeras. The corresponding values before
quantization (from table 2) are also reported in the three first rows.

Model name Quantization f i f 1 f 2 f 3 f 4 f 5 Parameters mIoU (%) Accuracy (%)

Enet16 — 32 16 16 16 16 16 5× 104 54.3 87.9
Enet8 — 32 8 8 8 8 8 1.4× 104 49.4 85.6
Enet4 — 32 4 4 4 4 4 5× 103 36.6 81.5
Enet16Q8 8 32 16 16 16 16 16 5× 104 35.0 79.1
Enet8Q8 8 32 8 8 8 8 8 1.4× 104 33.4 77.1
Enet4Q8 8 32 4 4 4 4 4 5× 103 13.6 53.8
Enet16Q4 4 32 16 16 16 16 16 5× 104 34.1 77.9
Enet8Q4 4 32 8 8 8 8 8 1.4× 104 33.9 77.6
Enet4Q4 4 32 4 4 4 4 4 5× 103 13.5 53.6
Enet16Q2 2 32 16 16 16 16 16 5× 104 27.4 68.6
Enet8Q2 2 32 8 8 8 8 8 1.4× 104 28.7 71.1
Enet4Q2 2 32 4 4 4 4 4 5× 103 13.4 53.5
EnetHQ Heterogeneous 8 2 4 8 4 3 5.3× 103 36.8 81.1

Figure 4. Validation accuracy versus number of bits for the models tested during heterogeneous QAT with AUTOQKERAS, for the
six blocks in the network. The circle size represents the number of filters, while the color refers to the median bits for the
convolutions in the corresponding block. Details on the grid of options considered in the optimization are given in the text.

4.3. Heterogeneous quantization aware training
Heterogeneous QAT consists in applying different quantization to different network components. For deep
networks, one typically deals with the large number of possible configurations by using an optimization
library. In our case, we use AUTOQKERAS [13]. In AUTOQKERAS, a hyperparameter search over individual layer
quantization conditions and filter counts is performed. Since the model contains skip connections, the scan
over number of filters needs to be handled with care. In particular, we use the block features of AUTOQKERAS

to ensure that the filter count matches throughout a bottleneck, so that the tensor addition of the skip
connection will have valid dimensions.

The search for best hyperparameters, including the choice of indivdual quantizers for kernels and
activations, is carried out using a Bayesian strategy where the balance between accuracy and resource usage is
controlled by targeting a metric derived from them both [13]. In our search we permit e.g. a 4% decrease in
accuracy if the resource usage also is halved at the same time.

The hyperparameter scan is done sequentially over the blocks, i.e. the Bayesian search over quantization
and filter count of the initial layer is performed first and is then frozen for the hyperparameter scan of the first
bottleneck and so on. The rest of the model is kept in floating point until everything in the end is quantized.

Figure 4 shows the outcome of the heterogeneous QAT, in terms of validation accuracy and total number
of bits for the six blocks in the network. The optimal configuration search is performed taking as a baseline
the Enet4 model, scanning the kernel bits in {4,8} and fixing the number of kernels to four times a by-layer
multiplicative chosen in {0.5,0.75,1.0,1.25,1.5,1.75,2.0}. The optimal configuration (EnetHQ) is obtained
for fi = 8, f1 = 2, f2 = 4, f3 = 8, f4 = 4, and f5 = 3, resulting in 4.7× 103 parameters, a mIoU= 36.8% and an
accuracy of 81.1%. Out of all the quantized models, both homogeneous and heterogeneous, this is the one
which performs the best.

6



Mach. Learn.: Sci. Technol. 3 (2022) 045011 N Ghielmetti et al

 

 

Figure 5. Schematic representation of the new hls4ml implementation of Convolutional layers, as described in the text.

Table 4. Comparison of previous and proposed hls4ml implementation of the convolutional layer, in terms of relative reduction of
resource utilization. The estimates are made targeting an xczu9eg-2ffvb1156 MPSoC device on a ZCU102 development kit.

Implementation BRAM DSP FF LUT

Encoded [14] 4752 5632 195 344 291 919
Line buffer 4064 5632 176 620 305 494
Improvement −15% 0% −1% +5%

5. FPGA implementation, deployment and results

5.1. Resource-efficient convolution algorithm
The hls4ml library has an implementation of convolutional layers that is aimed at low-latency designs [14].
However, this implementation comes at the expense of high resource utilization. This is due to the number of
times pixels of the input image are replicated to maintain the state of a sliding input window. For
convolutional layers operating on wider images, like in our case, this overhead can be prohibitively large. In
order to reduce the resource consumption of the convolutional layers of the model, we introduce a new
algorithm that is more resource efficient.

The new implementation, dubbed ‘line buffer’, uses shift registers to keep track of previously seen pixels.
The primary advantage of the line buffer implementation over the previous one is the reduction of the size of
the buffer needed to store the replicated pixels. For an image of size H×W, with a convolution kernel of size
K × L, the line buffer allocates K − 1 buffers (chain of shift registers) of depthW for the rows of the image,
while the previous implementation allocates K2 buffers of depth K× (W−K+ 1) for the elements in the
sliding input window.

The algorithm is illustrated on figure 5. Initially, each new pixel read from the input image stream is
pushed into the shift register chain. If the shift register is full, the first element will be popped and it will be
pushed into the next shift register in chain. The process is repeated for all K − 1 shift registers in the chain.
The popped pixels are stacked with the input pixel into a column vector and are pushed as the rightmost
column of the input window. The pixels popped from the leftmost column of the input window are not used
further. In our implementation, the propagation of new pixels through the shift register chain and the
insertion into the sliding input window are completed in a single clock cycle, making the implementation as
efficient as the existing hls4ml implementation.

To compute the output from the populated sliding input window, we rely on the existing routines of
hls4ml. We rely on a set of counters to keep track of input window state to know when to produce an
output. The algorithm for maintaining the chain of shift registers and populating the sliding input window
can be adapted for use in the pooling layers as well.

To compare the two implementations, we consider the resource utilization of an ENet bottleneck block
consisting of 8 filters, implemented using either method. The results are summarized in table 4. We observe a
substantial reduction in block random access memory (BRAM) usage, at the price of a small increase in
look-up table (LUT) utilization.
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Table 5. Effect of FIFO depth optimization on FPGA resource usage and model latency. The values in the table are taken from Vivado
HLS estimates of resource usage. A comparison using physical resource usage is unfeasible since the model without optimization cannot
be synthesized. The estimates are made targeting an xczu9eg-2ffvb1156 MPSoC device on a ZCU102 development kit.

Optimisation BRAM LUT FF DSP Latency

No 7270 676 760 230 913 228 3.577 ms
Yes 1398 437 559 146 392 228 3.577 ms
Improvement −81% −35% −37% 0% 0%

Table 6. Accuracy, mIoU, latency and resource utilization for the EnetHQ, Enet8Q4 and Enet8Q8 models. The latency is quoted for a
batch size b= 1 and b= 10. Resources are expressed as a percentage of those available on the xczu9eg-2ffvb1156 MPSoC device on the
ZCU102 development kit. The last row is a comparison to work presented in [24].

Model Acc. mIoU

Latency (ms)

BRAM LUT FF DSPb= 1 b= 10

EnetHQ 81.1% 36.8 % 4.9 30.6 224.5 (25%) 76 718 (30%) 87 059 (16%) 450 (18%)
Enet8Q4 77.6% 33.9 % 4.8 30.2 342.0 (37%) 166 741 (61%) 90 536 (16%) 0
Enet8Q8 77.1% 33.4 % 4.8 30.0 508.5 (56%) 126 458 (46%) 134 385 (25%) 1502 (60%)
ENet [24] — 63.1% 30.38 (720)a — 257 62 599 192 212 689
a The former is without considering data transfer, pre- and post-processing. The number in parenthesis includes these additional

overheads, averaged over 58 images, and is more comparable to the numbers we present.

5.2. FIFO depth optimization
With the dataflow compute architecture of hls4ml, layer compute units are connected with FIFOs,
implemented as memories in the FPGA. These FIFOs contribute to the overall resource utilisation of the
design. The read and write pattern of these FIFOs depends on the dataflow through the model, which is not
predictable before the design has been scheduled by the HLS compiler, and is generally complex. With
previous hls4ml releases, these memories have therefore been assigned a depth corresponding to the
dimensions of the tensor in the model graph as a safety precaution.

To optimize this depth and thereby reduce resource consumption, we implemented an additional step in
the compilation of the model to hardware. By using the clock-cycle accurate RTL simulation of the scheduled
design, we can monitor the actual occupancy of each FIFO in the model when running the simulation over
example images. This enables us to extract and set the correct size of the FIFOs, reducing memory usage
compared to the baseline.

By applying this procedure, we observe a memory efficiency

∑
lOl∑
l Fl

= 19.5%, where the index l runs

across the layers, Ol is the observed occupancy for the lth layer, and Fl is the corresponding FIFO depth. The

corresponding mean occupancy is found to be
∑

l

Ol

Fl
= 4.7%.

We then resize every FIFO to its observed maximum occupancy and rerun the C-Synthesis, thereby
saving FPGA resources and allowing larger models to fit on the FPGA. Table 5 shows the impact of such an
optimization on the FPGA resources for one example model, Enet8Q8, demonstrating a significant
reduction of resources, which are BRAM, LUT, flip-flop (FF), digital signal processor (DSP).

5.3. Results
The hardware we target is a Zynq UltraScale+MPSoC device (xczu9eg-2ffvb1156) on a ZCU102
development kit, which targets automotive applications. After reducing the FPGA resource consumption
through the methods described above, the highest accuracy models highlighted in table 3 are synthesized.
These are the homogeneously quantized Enet8Q8 and Enet8Q4 models, as well as the heterogeneously
quantized EnetHQ model. To find the lowest latency implementation, we run several attempts varying the
reuse factor (RF) and the clock period. The RF indicates how many times a multiplier can be reused (zero for
a fully parallel implementation). Lower RF leads to lower latency, but higher resource usage. We targeted
reuse factors of 10, 20, 50, 100, and clock periods of 5, 7, 10 ns. For each model, we then chose the
configuration yielding the lowest latency. For Enet8Q8, this is a target clock period of 7 ns and RF= 10. For
Enet8Q4 and EnetHQ we use a clock period of 7 ns and RF= 6.

Inference performance of this model was measured on the ZCU102 target device. The final latency and
resource utilization report is shown in table 6.

We measured the time taken by the accelerator to produce a prediction on batches of images, with batch
sizes of b= 1 and b= 10. The same predictions have been executed 105 times, and the time average is taken as
the latency. The single image latency (batch size of 1) is 4.8–4.9 ms for all three models. Exploiting the data
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flow architecture, the latency to process images in a batch size of 10 is less than 10 times the latency observed
for a batch size of 1. While in a real-world deployment of this model the latency to return the predictions of a
single image is the most important metric, a system comprised of multiple cameras may be able to benefit
from the speedup of batched processing by batching over the images captured simultaneously from different
cameras. The model with the highest accuracy and lowest resource consumption is the heterogeneously
quantized EnetHQ model. This model has an mIoU of 36.8% and uses less than 30% of the total resources.

Similar work on performing semantic segmentation on FPGAs include [24] and a comparison is given in
table 6. Here, the original ENet model [17] is trained and evaluated on the Cityscapes dataset, and then
deployed on a Xilinx Zynq 7035 FPGA using the Xilinx Vitis AI Deep Learning Processor Unit (DPU). There
are some crucial differences between the approach taken here and that of [24]. In order to achieve the lowest
possible latency, we implement a fully on-chip design with high layer parallelism. We optimize for latency,
rather than frame rate, such that in a real-life application the vehicle response time could be minimized.
Keeping up with the camera frame rate is a minimal requirement, but a latency lower than the frame interval
can be utilized. In our approach, each layer is implemented as a separate module and data is streamed
through the architecture layer by layer. Dedicated per-layer buffers ensure that just enough data is buffered in
order to feed the next layer. This is highly efficient, but limits the number of layers that can be implemented
on the FPGA. Consequently, in order to fit onto the FPGA in question, our model is smaller and achieves a
lower mIoU. Jia et al [24] does not quote a latency, but a frame rate. A best-case latency is then computed as
the inverse of this frame rate, which corresponds to 30.38 ms. However, this does not include any overhead
latency like data transfer, pre- and post-processing. Including these, the average time per image increases to
720 ms.

6. Conclusions

In this paper, we demonstrate that we can perform semantic segmentation on a single FPGA on a Zynq
MPSoC device using a compressed version of ENet. The network is compressed using automatic
heterogeneous quantization at training time and a filter ablation procedure, and is then evaluated on the
Cityscapes dataset. Inference is executed on hardware with a latency of 4.9 ms per image, utilizing 18% of the
DSPs, 30% of the LUTs, 16% of the FFs and 25 % of the BRAMs. Processing the images in batches of ten
results in a latency of 30 ms per batch, which is significantly faster than ten times the single-image batch
inference latency. This is relevant when batching over images captured from different cameras
simultaneously. By introducing an improved implementation of convolutional layers in hls4ml, we
significantly reduce resource consumption, allowing for a fully-on-chip deployment of larger convolutional
neural networks. This avoids latency overhead caused by data transfers between off-chip memory and FPGA
processing elements, or between multiple devices. Also taking into account the favorable power-efficiency of
FPGAs, we conclude that FPGAs offer highly interesting, low-power alternatives to GPUs for on-vehicle deep
learning inference and other computer vision tasks requiring low-power and low-latency.
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Abstract
We apply object detection techniques based on deep convolutional blocks to end-to-end jet
identification and reconstruction tasks encountered at the CERN large hadron collider (LHC).
Collision events produced at the LHC and represented as an image composed of calorimeter and
tracker cells are given as an input to a Single Shot Detection network. The algorithm, named
PFJet-SSD performs simultaneous localization, classification and regression tasks to cluster jets and
reconstruct their features. This all-in-one single feed-forward pass gives advantages in terms of
execution time and an improved accuracy w.r.t. traditional rule-based methods. A further gain is
obtained from network slimming, homogeneous quantization, and optimized runtime for meeting
memory and latency constraints of a typical real-time processing environment. We experiment
with 8-bit and ternary quantization, benchmarking their accuracy and inference latency against a
single-precision floating-point. We show that the ternary network closely matches the performance
of its full-precision equivalent and outperforms the state-of-the-art rule-based algorithm. Finally,
we report the inference latency on different hardware platforms and discuss future applications.

1. Introduction

The world’s largest and most powerful particle accelerator, the CERN large hadron collider (LHC) [1],
operates at a nominal proton-proton collision rate of 40 MHz. Due to storage constraints and technological
limitations (e.g. fast enough read-out electronics), the volume of recorded data must be significantly reduced
by the experiments operating around the accelerator ring. To this purpose, a set of algorithms collectively
referred to as the trigger system are typically used to filter the incoming data stream. Trigger algorithms are
designed to reduce the rate of recorded collision events (e.g. the collection of sensor readouts at each bunch
crossing) while preserving the physics reach of the experiments. For example, at the Compact Muon
Solenoid (CMS) experiment, the trigger system [2, 3] is structured in two stages using increasingly complex
information and more refined algorithms:

• the Level 1 (L1) Trigger, implemented on custom-designed electronics; reduces the 40 MHz input to a
100 kHz rate in<10 µs.

• the high level trigger (HLT), a collision reconstruction software running on a computer farm; reduces the
100 kHz rate output of the L1 trigger to 1 kHz in<150 ms.

With the planned LHC high-luminosity upgrade [4], the number of proton-proton collisions per second
will surge approximately four-fold. The latency of legacy reconstruction algorithms will increase by more

© 2022 The Author(s). Published by IOP Publishing Ltd
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than the factor of three as they may suffer from execution time scaling worse than linearly [5]. Along with the
computing infrastructure upgrades, it is worth investigating solutions that could execute many tasks at once,
while retaining accuracy and benefiting from the additional speedup offered by parallel computing
architectures. Deep neural networks, such as those used for computer vision tasks, are an obvious candidate
in this endeavour.

The majority of particles produced in LHC events are unstable and immediately decay to lighter particles.
The new particles can decay themselves to others in a so-called decay chain. Such a process terminates
when the decay products are stable particles, e.g. charged pions. This collimated shower of particles with
adjacent trajectories is called a jet. Jets are central to many physics studies at the LHC experiments [6–9].
In particular, a successful physics program requires aggregating particles into jets (jet clustering), an accurate
determination of the jet momentum (momentum measurement) and the identification of which particle kind
started the shower (jet tagging) [10–13].

In this work, we show how jet clustering, momentum measurement, and tagging could all be handled
simultaneously on parallel computing architectures. Besides the practical advantages of our approach, one
could benefit from multitask learning when accomplishing more tasks at once [14]. For instance, a classifier
and a regression running at once can learn that calibration constants depend on the nature of the jet, an issue
which is now handled with ad-hoc post-processing [15], i.e. when factorizing the reconstruction problem to
energy regression and tagging the overall performance may drop for both. Our main contributions are as
follows:

• We introduce thePFJet-SSD algorithm to perform localization, classification and additional regression tasks
on jets in a single feed-forward pass (concurrently, or single-shot). We combine ideas from different fields
of deep learning, i.e. object detection, attention mechanisms, network slimming and quantization.

• We report acceleration on different computing architectures.
• We generate and publicly share a dataset of simulated LHC collisions, pre-processed to be suited for com-
puter vision applications similar to those discussed in this work, as well as for point-cloud end-to-end recon-
struction. The dataset is available on Zenodo [16] and it is accompanied by annotated jet labels, to be used
as ground truth during training.

We use the CMS detector and trigger system as an illustrative example. One could apply the same
approach to other detectors, adapting the architecture to the detector granularity and latency constraints.
The dataset, instructions, and code to fully reproduce our results are available at https://github.com/
AdrianAlan/PF-Jet-SSD.

The remainder of this paper is structured as follows. In section 2 we review the key building blocks for this
work, i.e. jet images, single-shot detection, attention mechanisms, and efficient model design. In section 3 we
introduce the PFJet-SSD model and its quantized variants. In section 4 we describe the dataset and the
training procedure. Finally, in sections 5 and 6 we discuss the results and future directions, respectively.

2. Techniques

In this section, we review the background techniques for this work, i.e. jet images, single-shot detection,
attention mechanism and designing efficient inference networks with pruning and quantization. We
examined architecture suggestions from [17], which lists methods for designing efficient networks for
computer vision tasks achieving state-of-the-art results. Some of these methods, e.g. GELU activation
layer [18], are currently unsupported by SensPro, our target hardware (see section 5.2). Thus we excluded
them from this work but we suggest they are examined in further optimization studies.

2.1. Jet images
Traditional approaches to jet tagging rely on features, such as jet substructure, designed by experts that detect
characteristic energy deposit patterns [19–27]. In recent years, several studies applied computer vision for
event reconstruction at particle colliders, e.g. [28–43]. This was obtained by projecting the lower level
detector measurements of the emanating particles onto a cylindrical detector and then unwrapping the inner
surface of the calorimeter on a rectangle. Such information was further interpreted as an image with
calorimeter cells as pixels, where pixel intensity maps the energy deposit of the cell, i.e. jet images. This
approach was also applied to end-to-end reconstruction, considering not just the individual jet but the whole
event [44, 45]. Building on these works, we extend the end-to-end reconstruction to include a localization
task, merging the jet clustering and classification tasks in a single operation. Centralized computing
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environments are the only viable options for this: end-to-end approaches require as input a raw data
representation, which is not available with reduced analysis data formats. For this reason, we also consider
how the model could be compressed to reduce computing footprint, having in mind an approach optimized
for a trigger application.

2.2. Single shot detection
Object detection is a fundamental task in computer vision. It is defined as the classification of objects from
predefined categories in the image along with their precise spatial locations. The spatial location and extent
of an object can be defined coarsely using a bounding box, which is an axis-aligned rectangle tightly
bounding the object. Modern object detection focuses on using primarily convolutional neural networks
(CNNs) as the building block. Deep learning object detection achieved state-of-the-art results in tasks such
as face [46] or pedestrian detection [47]. For a general survey on this subject, see [48, 49].

Deep-learning-based object detection models are typically divided into one- [50–54] or two-stage
[55–59] detectors. Two-stage detectors generate a sparse set of regions with a high probability of an object
being present first (region proposals), followed by a simple classification step. This two-step process is
inefficient for real-time applications, due to task serialization. Single-step approaches classify and regress
object locations concurrently (in a single feed-forward pass) and as such tend to achieve lower accuracy than
two-stage detectors but are simpler and significantly more latency and memory efficient, hence having
greater applicability to online problems.

The single-shot multibox detector (SSD) [60], is a simple one-stage, anchor-based detector. First, a set of
default regions in an image with a fixed shape and size is predefined to discretize the output space of
bounding boxes, called anchors. These anchors have a diverse set of shapes to detect objects with different
dimensions, i.e. multiple scales and aspect ratios. Based on the ground truth, the object locations are
matched with the most appropriate anchors to obtain the supervision signal for the anchor estimation. At
inference, each anchor is refined by four box coordinates (width, height, x and y offsets) and predicts the
categorical probabilities. To avoid a huge number of negative proposals dominating training gradients, hard
negative mining is used to train the network, which fixes the foreground and background ratio [61]6.
Alternatively, a focal loss [52] could be used. In this case, the price to pay would be more hyperparameters to
tune. The SSD architecture is fully convolutional, with initial layers based on a pre-trained backbone
architecture, such as VGG-16 [62], followed by extra convolutional and pooling layers which progressively
decrease image size and thus increase the receptive field. The information in the last layer may be too coarse
spatially to allow precise localization and at the same time, detecting large objects in shallow layers is
non-optimal without large enough receptive fields. As a countermeasure for this issue, the SSD performs
detection over multiple scales by operating on multiple feature maps, i.e. at different depths of the network.
Each of these feature maps is responsible for detecting objects according to their receptive field. To detect
large objects and increase receptive fields extra convolutional feature maps were added to the backbone
architecture. The final prediction is made by merging all detection results from different feature maps
followed by a non-maximum suppression (NMS) [60] step and producing the final detection information.
NMS removes duplicate predictions originating from multiple anchors.

2.3. Attentionmechanisms
Visual attention gates (AGs), e.g. [63–65], learn to suppress feature activations in irrelevant regions in an
input image without additional supervision. At inference, the gates generate soft region proposals to
highlight salient features useful for a specific task. Recently, the performance of deep CNNs on visual tasks
was improved with scale-aware [66, 67], spatial-aware [68, 69] and channel-wise [70, 71] attention. On the
contrary, most of the attention modules inevitably increase model complexity. Efficient channel attention
(ECA) gate [72] is a soft attention mechanism that addresses this issue. It avoids dimensionality reduction
and captures cross-channel interaction efficiently. ECA gate ω is given by ω = σ(W⊙ g(y)), where y ∈ RC is
the feature map activation with channels C, g is channel-wise global average pooling, σ is the Sigmoid
function andW is a weight tensor of a 1D convolution of filter size k.

2.4. Quantization
Optimizing deep neural networks for efficient inference is an essential task in modern machine learning
pipelines due to limitations presented by edge devices. Models should provide high accuracy with a

6 By background we refer to the areas without target objects, i.e. jets.
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minimum of computing time and resources. Apart from accelerating inference online, e.g. through
parallelization or hardware optimizations, models can be optimized offline, through compression [73].

Network compression [74] is a common technique to reduce the number of operations and model size,
energy consumption, and over-training of deep neural networks. As neural network synapses and neurons
can be redundant, compression techniques attempt to reduce the total number of them, effectively reducing
multipliers. Several approaches have been successfully deployed without much loss in accuracy, including
selective removal of parameters based on a particular ranking and regularization, i.e. parameter
pruning [75–77], compact network architectures [78–80], and reducing the precision of operations and
operands, i.e. quantization [81–88].

It has been observed that reducing the precision of the calculations, i.e. weights and biases, has little
impact on performance compared to speedup and resource usage gains. This includes moving away from
32-bit floating-point calculations (or full-precision, FP) to fixed points, reducing bit-width and weight
sharing. An example of a very aggressive strategy is reducing weight precision to ternary values restricted to
{−1,0,1} only, called ternary weight network (TWN) [89]. The quantization is performed during training,
using a straight-through estimator [81], where ternary weights are used during the forward and backward
propagation but not during the parameter update. To quantize the full precision weightsW to ternary ones
W∗ , TWN uses a threshold value∆:

W∗ =





+1 if W>∆
0 if |W| ≤∆,

−1 if W<−∆

with approximated solution∆∗ ≈ 0.7 · E(|W|), where E is the expectation value. To make the network
perform well, TWNminimizes the Euclidian distance betweenW andW∗ along a non-negative scaling factor
α that can be implemented with per-network, per-layer or per-channel granularity, transforming the weights
to αW∗. For any∆ the optimal α is computed as: α∗

∆ = 1
I∆

∑
i∈I∆ |Wi|, where I∆ = {i

∣∣|Wi|>∆} and |I∆|
denotes number of elements in I∆.

3. Methodology

The PFJet-SSD architecture is shown in figure 1. We modify the original SSD architecture [60] and Jet-SSD
architecture proposed in [90]. Having in mind an HLT application with a typical latency of≈150 ms, we
extend the event image representation to include the information from the charged-particle reconstruction.
We do so by adding a tracker channel to the image, in front of the calorimeter channels already introduced
in [90]. We use a lightweight MobileNet architecture [78] as a backbone for our detector which replaces the
convolution operation with a combination of depthwise and pointwise versions. Each convolution is
followed by a batch normalization [91, 92] and parametric rectified linear unit (PReLU) [93] activation
layers. We use the AveragePool layer to decrease the size of the feature map. The extra convolutional layers
proposed by the original SSD do not contribute to accurate detection (recall the remark about the increasing
receptive field from section 2.2). This is due to the size of the jets. As done in [90] we remove these layers
already at the training time. Retaining the deeper layers of the backbone, i.e. Block10 and Block11, does
not show improvements at inference but is necessary during training due to additional signals during
back-propagation. Hence, these deeper layers are only purged after training, i.e. the concatenation layer
ignores them only at inference. This alone reduces the number of parameters in the final model by
approximately 30%.

We add two new modules to the network. First, the initial convolutional layer is now followed by spatial
dropout [94] (with p= 0.1). Second, we attach the ECA gate [72] (with k= 3) before the localization
classification regression (LCR) layer.

The detection head, which is the concatenation of LCR layers, outputs correspond to jet class, localization
(η and ϕ offsets) and pT value (see the definitions in section 4.1). One might easily extend this output to
include jet mass regression as well (we left this out for simplicity). Each row in the detection head
corresponds to an anchor box, i.e. fixed position in the image. For localization, we regress only the centre of
the jet, as we can determine its size from its class. For wide jets we assume∆R= 0.8–46 px, for narrow jets
∆R= 0.4–23 px. This allows us to set only one scale and one aspect ratio for anchors in each feature map
which reduces the complexity of the network. The detection head is an input to the NMS layer.

We use magnitude pruning [95] during training to find the optimal allocation of resources between
layers. Unstructured pruning generality leads to a higher compression rate and/or higher accuracy when
compared to the structured version, but it requires special software or hardware accelerators to fully benefit
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Figure 1. PFJet-SSD architecture. The convolution block (3 × 3 convolution followed by batch normalization and PReLU
activation) is in yellow, the average pooling (2 × 2 kernel) is in red, the detection head which is the output layer is in blue. ω is the
attention module and⌢ is the concatenation. The numbers indicate the number of output channels in each block. Block10 and
Block11 are removed at inference.

from it. Since the outcome of an unstructured pruning is a sparse tensor, one needs a dedicated way to handle
sparse memory access on hardware to turn pruning compression into a computational advantage at inference
time. We use an alternative, a version of structured pruning that removes whole channels in a convolutional
block slimming the network without increasing sparsity. We target the hardware implementation that
benefits from fusing batch normalization and convolution parameters at runtime. Doing so, the target filter
weightsW of block l areWl = γlW

conv
l , where theWconv are the weights of the convolution and γ is the scale

parameter of the affine transformation of the subsequent batch normalization layer. We thus add a
regularizer that pushes the influence of filters down through batch normalization γ L1 penalty, similarly
to [77, 96]. We scale this penalty based on the number of operationsO in each layer. The sparsifying
regularizer G(γ) is calculated as G(γ) =

∑
l |γl|Ol. We mark channels to prune based on the γ distribution in

each layer, using the rule: |γl|< µ|γl| −σ2|γl|, where µ|γl| =
1
N

∑N
i=1 |γi

l |, σ2|γl| =
√

1
N

∑N
i=1(|γi

l | −µ|γl|)
2 andN

is the number of channels for each layer. When this rule is not sufficient to remove the specified number of
channels we simply select the remaining ones based on ascending magnitudes of γ.

Also during training, we quantize the network to homogeneous 8-bit fixed point precision for both
weights and activations and 2-bit TWN with layer- and channel-dependent scaling factors. For the latter, we
experimented with a grace period of frozen quantization for which the∆ and α parameters remain
unchanged. Training TWN in this manner may offer greater stability, i.e. weights have time to adjust to new
parameters, but in our case, the final results did not improve.

4. Experiments

In this section, we review the experimental dataset and training procedure used for the experiments:

4.1. Dataset
The input dataset consists of 13 TeV proton-proton collision events, in which Randall-Sundrum (RS)
gravitons with 3.5 TeV mass are produced. This is a proxy of a sample that would give us jets of various kinds
and populating a large spectrum of pT ranges, i.e. RS gravitons decay to bb̄, gg, qq, HH, WW, ZZ, or t̄t final
states. The choice of this particular process is motivated by the possibility of creating well-defined jet pairs
belonging to specific jet classes and with the same kinematic properties across classes. In addition to the hard
collision, parasitic pileup collisions are also simulated, overlapping minimum bias events. The number of
pileup collisions is sampled from a Poisson distribution. We note that this process populates a large spectrum
of pT ranges.

The detector effects and hadronization have an important effect on a jet substructure. Events are
generated with Pythia [97]. We use the CMS Delphes [98] description to mimic the effect of detector
reconstruction. To apply this algorithm to another detector (e.g. ATLAS), one would have to modify the
geometry of the input layer to match the detector geometry. In addition, one would have to repeat the
training. Other effects (e.g. theoretical uncertainties related to hadronization models) would be detector
independent. These kinds of uncertainties also affect rule-based algorithms and are usually neglected at the
trigger stage, where they are subdominant. These uncertainties are measured with data control samples at the
analysis stage and, usually, they are mitigated by applying a selection on the offline object so that the trigger
behaviour is stable. The same set of state-of-the-art procedures could be applied to the algorithm we present.
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Figure 2. An example input to the PFJet-SSD network: tracker information and energy deposits in CMS electromagnetic
calorimeter (ECAL) and hadronic calorimeter (HCAL) translated to a two-dimensional image. The white bounding boxes
correspond to ground truth with target label and momentum.

Being all this part of a standard data analysis workflow (and beyond the scope of this paper), we do not
comment on this further.

The core of the CMS detector is a multi-layer silicon tracking device, operating in a 4 T magnetic field.
Two calorimeter layers surround the tracker: the lead tungstate crystal ECAL is designed to stop particles
whose main interaction is electromagnetic (photons and electrons); the brass and scintillator HCAL is
designed to stop hadrons. They give a measurement of the energy of particles (charged and neutrals). Each of
them is composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η)
coverage provided by the barrel and endcap detectors. The calorimeter cells (towers) in the barrel region
together with tracker cells are arranged in a fixed discrete space with fine segmentation in η and ϕ, where ϕ is
the translated azimuthal angle. A more detailed description of the CMS detector, together with a definition
of the coordinate system used and the relevant kinematic variables, can be found in [99].

Before the LHC, jets were usually reconstructed from their calorimeter deposits (known as CaloJet). With
the start of the LHC, the CMS particle flow (PF) algorithm [100] demonstrated that the additional
information from track reconstruction could increase the accuracy of jet reconstruction. In CMS, this was
crucial to compensate for the poor energy resolution of the HCAL. In the long term, this strategy was found
to be effective beyond jet momentum measurement, since the angular resolution of the tracking algorithm
provided valuable information for jet tagging and substructure algorithms.

The PF algorithm for jet reconstruction was eventually adopted also by the ATLAS experiment [101].
Taking this as our starting point, we build our event image starting from the PF jet constituents (as returned
by the Delphes PF algorithm), arranging the particles in three groups: charged particles, used to create the
tracker channel; photons and electrons, used for the ECAL channel; neutral hadrons, used for the HCAL
channel. In a real-life application, one could use the same approach or build the channels from the raw
detector hits in the tracker, ECAL, and HCAL. The best approach to follow depends on the context of the
application (e.g. online vs offline).

We unwrap the cylindrical detector to compose the final image which is formed by translating the
calorimeter energy deposits and tracker momentum into pixels using ECAL granularity, which results in
340× 360× 3 pixel samples. An example is shown in figure 2. Some previous studies on jet images
implemented data pre-processing steps such as translation, rotation, re-pixelation, or inversion. However, in
our study, we only limit the input to η ∈ (−3,3) and standardize pixel intensities.

Jet labels are obtained using generator-level information. We assign the jet η (pseudo-rapidity and not
rapidity as it is normally done in L1 trigger reconstruction), ϕ and pT (transverse momentum)
measurements to the properties of the same particle. The minimum jet pT in the dataset is 7 GeV. Details on
the dataset profile are given in table 1 which describes the jet statistics across datasets. Figure 3 shows the pT ,
η and ϕ distributions.

4.2. Training procedure
The PFJet-SSD network is implemented on NVidia Tesla GPUs using PyTorch [102]. For training, we use
stochastic gradient descent with an initial learning rate of 10−3 with momentum set to 0.9 and weight decay
to 0.0005. We train the network for 100 epochs with a batch size of 25, decreasing the learning rate by a factor
of 2 after every 10 epochs after the 20th epoch. We use 90k and 36k samples for training and validation,
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Table 1. Number of samples in the datasets.

Train Validation Test

t jets 59 388 23 802 59 392
W/Z jets 118 701 47 493 118 832
H jets 59 967 23 997 59 978∑

238 056 (41.6%) 95 192 (16.7%) 238 202(41.6%)

Figure 3. Dataset profile as a function of pT (left), η (middle) and ϕ (right).

respectively. The training is performed in mixed-precision to speed up computation and distributed across 3
GPUs. Thus, we replace the standard batch normalization layer with the SyncBatchNorm layer provided by
PyTorch to synchronize statistics across the machines while training.

We minimize the following cost function:

LSSD = Lc +Ll +Lr,

where the Lc is the classification loss, the Ll is the localization loss, the Lr is the regression loss. We use
cross-entropy with smooth labels (α= 0.1) for classification [103], and Huber loss [57] (δ= 1) for
localization and regression.

A common challenge when training object detection models from scratch is the insufficient amount of
training data which may lead to overfitting7. Thus it is common to see practitioners pre-loading weights
from pre-trained classification models on the real-world ImageNet [104] dataset. We found that such a
procedure slows down our learning as the real-world images have little relation to our calorimeter images.
The full precision network (FPN) can learn faster by using Xavier uniform initialization [105] (which helps
with the sparsity of the input). We also augment the training dataset by random flips along η and ϕ
dimensions, which we find to greatly stabilize the training. We did not experiment with other augmentation
techniques such as changing brightness, contrast, saturation and hue as jets are not invariant to such
transitions. The experiments with other commonly used techniques such as Mix-Up [106] or Mosaic [107]
yield subpar results, again. This is likely because of the different nature of our input.

We perform five steps of iterative pruning, each with 20 epochs of retraining a gradually decreasing
number of channels in each block. We then retrain the network for the last time for 100 epochs. We found
out that pre-loading FPN weights when training the quantized versions, i.e. TWN and 8-bit fixed-precision
(INT8) network, greatly speeds up convergence.

7 That is not a problem in our case as we can generate more events with low cost.
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Figure 4. Two examples of the PFJet-SSD at inference for two events with the input image and highlighted true labels (left) and
predicted bounding boxes (right). The overlapping boxes in the second event correspond to the t→ bW decay where two jets,
t and W, are very close.

5. Results

In this section, we present the detection and latency performance of PFJet-SSD.

5.1. Detection performance
As a proof of concept, we investigate the tagging of the top-quark (t), W and Z bosons (V) and Higgs boson
(H) jet. An example of the PFJet-SSD output is shown in figure 4. PFJet-SSD outputs predicted categorical
label, prediction confidence and the centre coordinates of the object. In object detection true positive is
defined as prediction with predicted category equal to the ground truth label and intersection over union
(IoU) above the predefined threshold, usually 0.5. Successful prediction meets both criteria, otherwise, it is
considered as a missed detection. In our case we substitute the IoU requirement with the distance metric
d=

√
∆ϕ2+∆η2 < 33 pixels as we regress only the centre of the box and box dimensions are universal

across target classes.
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Figure 5. Precision-Recall curves for the baseline algorithm and three flavours of the PFJet-SSDmodel. The inference is performed
on original, non-mixed samples (top), two mixed events in superposition (middle), three mixed events in superposition (bottom).

Our investigation into inference does not find any systematic issues. Occlusion, such as the one in
t→ bW decay, where jets are near, is not an obstacle against correct detection. Also, the jets close to the image
edges are, generally, correctly classified.

To evaluate the model we use precision (or positive predictive value, PPV, TP
TP+FP ) and recall (true positive

rate, TPR) curve, and an average precision metric (AP), see figure 5. Intuitively, precision measures how
accurate the predictions are while recall measures the quality of the positive predictions. Collectively, they
determine how well the found set of jets corresponds to the set we expect to find. To draw a precision-recall
(PR) curve, the predictions are first sorted in order of confidence followed by calculation of PPVs and TPRs
for each confidence threshold. We held out 90k samples as our test dataset. The TWN network results are
closely matching the results of the FPN. TWN benefits from the long retraining period, as it yields marginally
better AP. For performance details across target jet classes see table 2.

For non-mixed samples in figure 5 TWN and FPN remarkably agree and yield an appealing precision for
any given recall. Fix-point INT8 network drops in detection precision hinting that the network is sensitive to
activation but not weight quantization. Hence, in the future, a mixed-precision should be explored as it is
likely that not all layers contribute equally to this reduced performance. All flavours of the PFJet-SSD
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Table 2. Detection performance for the baseline and PFJet-SSD algorithms, reporting the number of parameters (NoP), the number of
operations (NoOps), the precision of weights/activations (W/A), average precision (AP) and precision at 0.3 (P@R= .3) and 0.5
(P@R= .5) recall. The table does not report parameters and bit precision for the baseline as it is a non-parametric method: not
applicable (N/A). The baseline is also unable to reach 0.3 and 0.5 in several cases: no statistics (N/S).

Physics baseline

PFJet-SSD

FPN TWN INT8

NoP N/A 111 228
NoOps N/A 1.095G
W/A N/A 32/32 2/32 8/8
AP .161 .848 .857 .566
t jet AP .420 .865 .872 .473

P@R= .3 .736 .985 .988 .531
P@R= .5 .627 .975 .980 .453

W/Z jet AP .245 .847 .859 .629
P@R= .3 .584 .944 .955 .673
P@R= .5 N/S .929 .943 .653

H jet AP .107 .860 .872 .335
P@R= .3 N/S .992 .996 .453
P@R= .5 N/S .978 .986 .400

outperform the physics baseline. We also experimented with two and three events overlaid as the input to the
network. This creates much noisier input and results in visibly reduced performance of PFJet-SSD. However,
the network was not trained on such samples and such a drop is expected. Besides, the difference between
two and three mixed events is minor. In the future, we suggest training the network with Mix-Up [106] or
Mosaic [107] augmentations (techniques for mixing multiple samples) which could improve performance
on noisier inputs.

Throughout, we compare PFJet-SSD to the baseline which is a physics-based algorithm combining a jet
soft-drop mass [108],m, selection (under a specific mass hypothesis) and threshold requirement on the
appropriate ratio of N-subjettiness [109] variables, τ . In particular, we require 105<m< 210 GeV for t jets
and use the τ3/τ2 N-subjettiness ratio as a score defined in [0,1]. With this score we make a performance
assessment that we can directly compare to that obtained with the PFJet-SSD algorithm. Similarly, we require
65<m< 105 GeV for V jets and 105<m< 140 GeV for H jets, using the τ2/τ1 N-subjettiness ratio as a
score for these baseline taggers. This physics-motivated baseline has performance that is typical of a
rule-based state-of-the-art substructure jet tagger, with the typical recall of 0.3 for the precision of 0.6.

Figure 6 shows the dependence of the precision at fixed recall across different jet classes. The precision is
rather flat in all cases. The TWN results match closely the FPN ones, while an overall drop in performance
(approximately constant across η, ϕ, and pT) is observed for the INT8 network. A drop is observed at the
boundaries of the η region, as a consequence of jets leaking out of acceptance at the edge of the endcaps
(missing information of a part of the shower). Such a drop is not observed in the ϕ dimension suggesting
that the network can handle the periodicity of the image. The precision across pT stays relatively flat,
however, the sudden drop in the high pT region of V jets is due to the low number of samples in that region,
see the details in section 4. Notice that the drop in TRP at low jet pT for top, W/Z, and H tagging is induced
by transition from a boosted-jet to a resolved jets regime. Despite the fact that there so far little use of
boosted jets from heavy particles in this low pT regime, it is interesting to notice that the drop in efficiency of
the PFJet-SSD in the low-pT regime is less pronounced than for the baseline algorithm, which could be
interesting to increase the reconstruction efficiency in transition between boosted and resolved topologies.

Figure 7 shows the residual in the determination of η and ϕ and the ratio of the reconstructed-to-true jet
pT , as a function of the jet pT for the different classes.

Finally, we visualize the most repeating filters of the TWN in figure 8. Remarkably, the network optimizes
to use a set very similar to the commonly used ones, e.g. smoothing, corner detection or edge detection
filters.

5.2. Latency and power measurements
We investigate the latency and throughput of the proposed algorithm on architectures where parallel
computing is more adequate. We compare the baseline, running native PyTorch inference on the Intel Xeon
Silver 4114 CPU with ONNX accelerated version and TensorRT optimized version on Nvidia Tesla V100.
Results are given in figure 9, separately for CPUs and GPUs. Having in mind an offline application, one could
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Figure 6. Precision at 30% Recall (PPV@R= 0.3) for t (top), V (centre) and H (bottom) jets as a function of η (left), ϕ (middle)
and pT (right). For each block of figures (t, V, and (H), we show results for the FPN, TWN, and INT8 models.

maximize the throughput by running the network at once across batches of events, e.g. implementing the
inference-as-a-service concept discussed in [110].

While the inference-as-a-service paradigm could also be implemented online, the current design of HLT
farms foresees that processing parallelization is achieved by sending different events to different computing
units. In this context, the batch size is constrained to one, since the inference of the proposed SSD model
happens per event. In this case, execution on CPU would be borderline, within the average event processing
latency but consuming most of it. On the other hand, moving the execution to a GPU would reduce the
execution time to negligible levels. This could be particularly interesting under the assumption that GPUs
would be used to run the local reconstruction [111–113] and the creation of PF candidates [114].

Deep learning inference at scale requires high power consumption, especially with the use of GPUs and
CPUs. It is possible to keep the power and die area at more manageable levels by deploying an AI-specific
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Figure 7. Displacement in η, ϕ, and relative pT regression error (bottom row) for top (top), V (centre) and H (bottom) jets, as a
function of generator-level η (left), ϕ (middle) and pT (right). For each block of figures (top, V, and Higgs), we show results for
the FPN (top), TWN, and INT8 models.

hardware platform as used in edge devices. Since edge devices usually operate on batteries where power is a
limited resource, AI-specific hardware platforms for edge devices are highly power efficient. With smaller die
areas, manufacturing costs and power consumption can be reduced.

SensPro is a family of ultra-light AI DSPs that can perform efficient inference while consuming only a
fraction of the power and area used by GPUs and CPUs. CEVA’s hardware platform for jet detection consists
of a stack of ten SensPro (SP) DSP cores. Each core delivers 2 TOPS. An additional SP core is added to serve
as a controller. This solution delivers 20 TOPS and can run TWN natively, reaching latency comparable to a
GPU running an 8-bit network. This proposed layout has orders of magnitude lower area and power
consumption than GPU and CPU, see table 3. The SP ultra-light solution can also be synthesized to an FPGA
and used in collision detection.
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Figure 8.Most common filters of the PFJet-SSD TWN.

Figure 9. Comparison of inference latency and throughput for different versions of PFJet-SSD running on different platforms.

Table 3. Die area, power and latency measurements for different hardware architectures. The latency is measured for inference on a
single input. The reason for this is that collision detection is done sequentially in real-time. The input data is fed to the network directly
from the sensor without storing it.

Die area (mm2) Power (W) Latency (ms)

DSP CEVA SP1000 2x8 0.77 0.75 8.5
DSP CEVA 10xSP1000+ Controller 2x8 8.47 8.25 0.9
GPU Nvidia Tesla V100 8x8 815 250 1.1
CPU Intel Xeon Silver 4114. 32float 4294 85 134

6. Conclusions

We propose a fast and lightweight detection algorithm for jet tagging and reconstruction based on computer
vision techniques. Naturally high precision and generalization are required, but nuisance factors of variations
can break the algorithm. That makes this problem hard. Intra-class variations, such as perspective distortion,

13



Mach. Learn.: Sci. Technol. 3 (2022) 025016 A A Pol et al

e.g. rotation; densely arranged jets (occlusion); or blurred signatures (the detector response may not be clear)
are common challenges. Besides, as jets are small objects, a reappearing issue with object detectors and
background pileup may further disturb their visual appearance. Thus, robustness to detector effects, its
imperfections and failures is required.

Even after a successful proof-of-concept deployment to production will still produce challenges as many
of the problems lay outside of the simulation. More importantly, the real-time detection requirements force
further investigations into more optimizations on algorithm and hardware runtime.

The PFJet-SSD paves the way for solving these issues. The algorithm did not experience accuracy drops
during pruning, suggesting that the depth of the network is more important than the width. The number of
channels can likely be reduced further and thus speed up computations. We observed a gap between TWN
and INT8 performance which suggests to us that the optimal quantization level could be achieved through
mixed-precision, a possible direction for future studies.

From the physics point of view, the algorithm manifests an interesting behaviour in low momentum
regions out of reach for the baseline model, see high precision results in figure 6, which could help increasing
the reconstruction efficiency for all-hadronic decays of heavy particles in the transition regime between
boosted and resolved topologies.
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Abstract
Recurrent neural networks have been shown to be effective architectures for many tasks in high
energy physics, and thus have been widely adopted. Their use in low-latency environments has,
however, been limited as a result of the difficulties of implementing recurrent architectures on
field-programmable gate arrays (FPGAs). In this paper we present an implementation of two types
of recurrent neural network layers—long short-term memory and gated recurrent unit—within
the hls4ml framework. We demonstrate that our implementation is capable of producing effective
designs for both small and large models, and can be customized to meet specific design
requirements for inference latencies and FPGA resources. We show the performance and
synthesized designs for multiple neural networks, many of which are trained specifically for jet
identification tasks at the CERN Large Hadron Collider.

1. Introduction

Machine learning (ML) has seen a huge expansion in its range of uses over the last decade. It is difficult to
find a field of industry or science that has not at least explored ML in some capacity. One particular field
where ML usage has seen widespread interest is in high energy physics, which benefits from complex
multidimensional problems, large datasets of accurate simulation, and substantial existing computing
infrastructure. These all contribute to a field which has adopted ML algorithms for many aspects of research.
While most ML algorithms in high energy physics are run using central processing units (CPUs) and
graphics processing units (GPUs) which provide inference latencies in the milliseconds, field-programmable
gate arrays (FPGAs) and application-specific integrated circuits (ASICs) have begun to be used for those
applications that demand low latencies [1–4]. Up to now recurrent neural networks (RNNs) have received
relatively little attention for these low latency applications, despite their success in many physics tasks and
prevalence in the field at large.

RNNs are neural network architectures that treat their inputs as a sequence with a well-defined order.
RNNs act successively on each entry of the input sequence, utilizing the same set of weights in each step,
allowing for RNNs to act on sequences of variable length. Most modern RNN applications utilize one of two
recurrent layer implementations: long-short term memory layer (LSTM) [5] or gated recurrent unit layers
(GRU) [6]. Both LSTMs and GRUs contain forget gates, which avoid vanishing gradient problems [7] and
allows for long-distance correlations to be learned by the algorithm. These RNN models, often employed to
treat time-series signal processing problems, have been successfully employed by physicists to handle
different types of data. For example, RNN architectures have been utilized to represent hadronic showers
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(jets) in collider events, aiding on tasks of identifying different jet types by using their constituents to form
sequences [8–10]; have been applied to finding interaction vertices in lepton colliders [11]; and have been
explored as monitoring tools for the CERN Large Hadron Collider (LHC) superconducting magnets [12]. In
general, RNNs have critical applications also outside the realm of collider physics, having been applied,
among others, to gravitational waves detection experiments [13], to neutrino detectors from nuclear
reactors [14], and to the reconstruction of quantum dynamics of superconducting qubits [15].

In this paper, we focus on particle physics datasets produced by the LHC at CERN [16]. Collisions within
the LHC occur at 40MHz, making it impossible to readout and store the entire collisions record. To handle
this rate, LHC experiments filter out only interesting events through an online selection system called the
trigger. These systems are usually set in two stages, where the first stage (Level-1 trigger or L1T) needs to
operate at 40MHz with a latency of O(1µs). The selections performed at these stages need to ensure that
interesting events are kept, while discarding common, non-interesting events, which occur several orders of
magnitude more frequently than the former. Therefore, utilizing complex algorithms such as RNNs is of
utmost importance.

The severe constraints of the trigger prevent the usage of CPUs and GPUs. Instead, custom low-latency
hardware such as FPGAs and ASICs must be deployed to meet the latency requirements and offer the
flexibility to adapt to changing conditions. These devices are also able to take advantage of high parallelism
making their designs both efficient and fast. ML inference in this regime has not seen much support due to
its specialized nature, but some tools specifically designed for ultra-low latency inference have emerged [17].
Support in this area has focused primarily on dense and convolutional layers, owing to their versatility and
popularity. In this work we present a generalized and flexible implementation of RNNs written in high level
synthesis (HLS) for the hls4ml package [18]. The implementation supports a wide range of RNN sizes, design
requirements, and is capable of translating both GRUs and LSTMs trained in the Keras framework [19].
Using three different benchmark neural network models of varying size, we show that ultra-low latency
inference can be achieved within the resource limitations of modern FPGAs. This integration into hls4ml
opens the door for much wider usage of RNNs for low latency applications. While the focus in this work is
on applications in physics, we note that there is also a demand for low-power efficient RNNs in industry as
well.

2. Related work

Previous work in the realm of fast RNN inference on FPGAs has focused largely on millisecond-latency
inferences [20–23]. However, for the applications discussed above we are interested primarily in latencies in
the microsecond range, or faster. Some previous work has explored this design space in the context of
low-power sparse LSTMs [24], small LSTMs for real-time energy reconstruction [25], RNNs for
gravitation-wave experiments [26], and highly quantized RNNs [27]. In contrast, the work in this paper is
focused on general support for both large and small LSTMs and GRUs for problems with a range of latency
and device constraints. The examples we use are largely chosen from the high energy physics domain, but the
applicability is by no means limited to this field. The work is built on top of HLS and the hls4ml framework.

HLS tools are designed to simplify the use of FPGAs by automatically transforming algorithms written in
C into the register-transfer level (RTL) [28]. There are multiple advantages of these tools. One substantial
advantage is that they allow users without a knowledge of highly technical Verilog/VHDL languages to
generate effective RTL [29]. Additionally, they can greatly simplify the effort required in prototyping designs,
especially those that are complex. FPGA manufacturers like Xilinx and Altera have their own HLS compilers
for their devices. There also exist open-source compilers, such as Catapult HLS [30]. In this work we use the
Vivado/Vitis compiler from Xilinx [31, 32].

The hls4ml framework is built on top of HLS compilers, and is capable of converting neural network
models into fully-ready HLS projects. The details of the HLS design, in particular the resources and latency,
can be controlled through multiple tunable parameters in hls4ml. These are important to allow a flexible
design flow that performs well for a wide range of network sizes, architectures, and FPGAs. They also allow
the design to be optimized for the target use case. hls4ml already has support for multilayer perceptrons,
convolutional neural networks (CNNs), graph neural networks, and several other architectures. Building on
hls4ml allows for models with these architectures to be interfaced with the models in this paper.
Furthermore, extensive work has been done to hls4ml to ensure that matrix multiplications and other core
ML components are optimized. Our work uses the hls4ml design flow in order to leverage these existing
framework capabilities.
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Figure 1. Schematics of the two RNN modes: static (left) and non-static (right). A sketch of the latency and pipelining is shown at
the bottom for each mode, and illustrates the latency advantage of non-static mode at the cost of resources.

3. Implementation details

RNNs at their core are comprised of many standard operations in ML. Our implementation relies on this fact
to avoid re-implementing any unnecessary operations in the hls4ml framework. Taking the LSTM, we see
that each state update requires 4 distinct matrix multiplications, given by

it = σ(Wixt +Uiht−1 + bi)

ft = σ(Wfxt +Ufht−1 + bf)

ot = σ(Woxt +Uoht−1 + bo)

ct = tanh(Wcxt +Ucht−1 + bc) (1)

whereW and U are the weight matrices (denoted as the kernel and recurrent kernel, respectively), b are the
biases for the input gate, forget gate, output gate, and cell state, respectively, xt is the input at time-step t, and
ht−1 is the computed recurrence value from the previous state. Each of the operations involvingW and U in
equation (1) are standard matrix-vector multiplications and the activation functions can be taken directly
from the hls4ml library and integrated into the LSTM-specific layer implementations. The GRU is composed
of two gates (update and reset) and a hidden state, but the weights of the kernel and recurrent kernel for the
gates are again packaged together and can thus be handled together with one dense layer call each. The
remaining operations to complete a state update for both an LSTM and a GRU are Hadamard products,
which is not part of the existing hls4ml library of operations. In this paper, we implemented an
HLS-optimized Hadamard product. Because many of the operations in our implementation are taken from
the existing hls4ml framework, we are able to trivially support the standard tuning knobs for reuse and
precision.

In addition to the pre-existing hls4ml methods for adjusting resources and latency, RNNs introduce an
additional possibility which we refer to as ‘static’ and ‘non-static’, shown in figure 1. In static mode, a single
RNN block is created, which processes every input for every sequence. This block stores the necessary state
vectors internally, and outputs the final result at the end of the sequence. Since there is only one RNN block in
static mode, the resources are kept to a minimum. However, the initiation interval (II) of the design increases
linearly with the length of the sequence since a new RNN inference cannot begin until the previous inference
is complete; in other words, the II is equal to the latency. In contrast to static mode, non-static mode creates
RNN blocks for each input in the sequence, and the necessary state vectors are passed from one RNN block
to another. This results in a resource utilization that is a factor of the sequence length larger than the resource
utilization in static mode. For large RNNs, or inference with long sequences, this means that static mode can
be the only viable option. However, for those RNNs for which it is possible to use non-static mode, the II can
be dramatically reduced with respect to static mode since non-static mode allows a new inference to begin
once the first RNN block has finished processing the first input from the previous inference. This reduces the
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II by a factor of the length of the sequence, and thus increases the overall throughput of the RNN layer by the
same factor. Further increases in throughput are possible when the II of a single RNN block can be made
small since in this case each individual block may be used simultaneously by distinct inferences. While not
implemented in this paper, we note that multiple inferences can be cached during static mode when the
initiation interval of a single RNN block is less than its latency, thus allowing for higher throughput.

4. Benchmark studies

In order to measure the performance of the hls4ml translation of the RNN-based architectures, we use three
different tasks as benchmarks. The sizes of the networks are chosen such that they span a range of use cases,
input dimensions, and numbers of weights. The first benchmark is a binary classifier with approximately
4000 parameters, trained to classify jets of particles coming from top-quark decays. The second benchmark is
a multi-class classifier, with approximately 50 000 parameters, trained for heavy-flavor jet identification using
the reconstructed trajectories of charged particles (tracks) within a jet. The final benchmark is also a
multi-class classifier with approximately 130 000 parameters, trained to classify sequences of strokes into five
different image classes. Each benchmark is studied with two models using LSTM and GRU recurrent layers,
respectively. All the models are trained using Keras and TensorFlow. A summary of each of these models is
given in table 1, and details are given in the following sections.

4.1. Top quark tagging
The top quark tagging algorithm is trained to classify top quarks from light-flavor quarks using simulated
events generated at

√
s= 13 TeV for comparison to LHC performance. Algorithms designed for this task

could be utilized in the Level-1 trigger systems of LHC experiments to help increase the acceptance for these
types of interesting decays. Their use would require algorithm latencies of less than approximately a few
microseconds in order to fit within system constraints.

The data [33] used for training and testing consists of parton-level scattering processes with top
quark-antiquark pair (tt) and light-flavor quark-antiquark pair (qq) final states that are generated at
leading-order using MadGraph [34] with the NNPDF23LO1 parton distribution functions [35]. The
transverse momenta (pT) of the partons are generated in a window with energy spread given by
δpT/pT = 0.01, centered at 1 TeV. These parton-level events are then decayed and showered using
Pythia8 [36] (version 8.212) with the Monash 2013 tune [37], including the contribution from the
underlying event. A custom detector simulation is used which reproduces the main resolution effects
relevant for jet substructure reconstruction through particle level smearing and granularization. We used a
configuration for a ‘CMS-like’ detector as described in [38]. Jets are clustered using the anti-kT algorithm,
with a distance parameter of 0.8. Only low level features are used in this study. Particles inside a jet are
ordered according to their pT and up to 20 particles are used in this study. For each particle six features are
use: pT, pseudorapidity (η), azimuthal angle (ϕ), energy, relative angular distance from the jet axis, particle
ID given by the generator. The generated events are split into training (95%) and testing (5%), and during
training 20% of the training data is used for validation.

Two networks are trained for identifying the jets coming from top-quark decay. The padded sequence of
particles, with maximum length of 20, is fed into a recurrent layer with an output size of 20. The output from
the final recurrent layer is passed through a dense layer of size 64 before sending it to the output layer. The
recurrent layer used sigmoid and hyperbolic tangent activation functions. The activation function for the
hidden layers is rectified linear unit (ReLU) [39] while the output layer activation function is a sigmoid
function. The binary cross-entropy loss function is minimized with L1 (10−5) and L2 (10−4) regularization
of the weights using the Adam algorithm [40] with a learning rate of 2×10−4 and a batch size of 246. The
two models use different recurrent layers; one uses GRU and the other uses LSTM. There are total 3089 and
3569 trainable parameters for the LSTM and GRU models, respectively.

4.2. Jet flavor tagging
The jet flavor tagging algorithm was trained on Compact Muon Solenoid (CMS) experiment open data
samples containing top quark pairs decaying hadronically with center-of-mass energy of 7 TeV [41]. These
events are rich in bottom quark jets (b jets), charm quark jets (c jets) and jets from light quarks and gluons
(light jets), and so are optimal for training this class of algorithms. Jets are labeled b jets if they contain
bottom quarks, c jets if they do not contain bottom quarks but contain charm quarks, and light jets if they do
not contain bottom or charm quarks. The main feature that separates b jets (and c jets) from light jets is the
presence of the displaced vertex corresponding to the decay of the hadron containing the b (or c) quark.
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Table 1. Network hyperparameters and total number of trainable parameters for different benchmark models.

Benchmark
Sequence
length

Input
vector
size

Hidden
vector
size

Dense
layer
sizes

output
vector
size

Trainable parameters

Non-RNN
layers LSTM GRU

Top quark tagging 20 6 20 64 1 1409 2160 1680
Jet flavor tagging 15 6 120 50/10 3 6593 60,960 46,080
QuickDraw 100 3 128 256/128 5 66,565 67,584 51,072

These hadrons can travel significant distances before decaying due to their mass, depending on their
momenta. The algorithm proposed here aims to identify the presence of tracks that are consistent with these
displaced vertices with the usage of an RNN architecture. This strategy is inspired by the RNNIP algorithm
used by the ATLAS experiment [8].

In this study, we consider jets reconstructed with the anti-kt algorithm with a distance parameter of 0.5,
with transverse momenta larger than 30GeV and absolute pseudorapidities less than 2.0. Tracks with
transverse momenta larger than 1GeV are associated to the nearest jet according to the angular distance∆R;
a maximum∆R of 0.5 is required for association. Tracks within a jet are ordered by the significance of their
transverse impact parameter (S(d0)), and only the first 15 tracks are used by the algorithm. Each track is
represented by a vector of the following features: relative transverse momentum (pT(track)/pT(jet));
∆R(track, jet); transverse and longitudinal impact parameters (d0, dz) and their significances (S(d0), S(dz)).

Flavor tagging models were constructed using Keras/TensorFlow, using either GRU or LSTM layers. The
padded sequence of tracks, with maximum length of 15, is fed into either one recurrent layer (GRU or
LSTM) with 120 hidden units. The recurrent layer outputs a representation of the padded sequence directly
into two dense layers with ReLU activation function, with 50 and 10 hidden layers. The following layer
outputs the probabilities of a jet to be classified as either a b jet, c jet or light jet; it contains three output
nodes with softmax activation function. The training is performed with a categorical cross-entropy loss, with
30% of the training data retained as the validation dataset and used for early stopping based on the accuracy
metric. The GRU (LSTM) architecture contains 52 673 (67 553) trainable parameters, of which 46 080
(60 960) are in the recurrent layer.

4.3. Quickdraw dataset
The QuickDraw dataset [42] is a collection of 50 million drawings in 345 categories created by Google and
contributed by players of the game Quick! Draw. In this game, users are asked to draw a specified drawing in
under 15 s. The drawings are recorded as a time-stamped sequence of the strokes from which the drawing is
created. For each 15 s stroke the x and y coordinates of the pen are recorded 100 times. The coordinates along
with the timestamp make up the network inputs. While 345 different drawing categories exist, we use only 5
for our tests; these are ants, butterflies, bees,mosquitos and snails. Contrary to other popular representations
of images, the QuickDraw dataset is completely stroke-based. We train two RNNs to classify these sequences
into each respective category. We use these networks as proxies for any networks acting on large sequences of
low-dimensional inputs. For example, these networks could be used to identify and classify tracks based on
the sequence of their hits, or incident particles based on their showers in finely-segmented calorimeters. For
example, networks developed by the ATLAS experiment to identify showers originating from pions take as
input a low dimensional set of up to 100 clusters [43]. Although these particular applications are not
appropriate for the Level-1 trigger environment, running these algorithms at later stages in the trigger for a
whole event could still require low latencies under a millisecond depending on the exact application.

The two networks process the sequence of 100 stroke inputs from the QuickDraw dataset with a
recurrent layer whose output size is 128. The final recurrent layer output is passed through two dense layers
of sizes 256 and 128, respectively, before being sent to the final output layer. Dropout layers are placed before
the two dense layers to regularize during training. The recurrent layer uses a hyperbolic tangent activation
function, the dense layers use ReLU activations, and the output is a five-class softmax layer. The only
difference in the two networks is that in one the recurrent layer is a GRU and in the other it is an LSTM.
These networks have total sizes of 117 637 and 134 149 trainable parameters, respectively. The two networks
perform well and show top-1 area under the curve (AUC)5 that are nearly identical, approximately 99% for
each of the five classes.

5 AUC measures the area under the receiver operating characteristic (ROC) curve.
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Figure 2. Ratios of the fixed-point and floating-point AUCs as function of fractional bits for the (a) top quark tagging, (b) jet
flavor tagging, and (c) QuickDraw models. The precision of the integer part is kept fixed to 6 (blue), 8 (orange), 10 (green), and
12 (red) bits. All four lines overlap for the top quark tagging GRU (dashed) and LSTM (solid) models.

5. Performance, resource and latency estimation

The models described in section 4 are translated into HLS using the hls4ml framework. Vivado HLS 2019.2 is
used for HLS synthesis with the synthesis clock frequency set to 200MHz. For the top quark tagging and jet
flavor tagging models we use a Xilinx Kintex UltraScale FPGA (part number xcku115-flvb2104-2-i)
as the target device and for the Quickdraw models we use a Xilinx Alveo U250 (part number xcu250-
figd2104-2-e). For each of the three benchmark models a range of different settings are considered
simultaneously to accurately profile the full design space. These settings modify the quantization of the model
by adjusting the fixed-point data type and modify the degree of parallelism of the design by using the hls4ml
reuse parameter. Finally, we also consider the static and non-static implementations discussed in section 3.

5.1. Quantization
The weights and biases in trained models are typically stored with 32-bit floating-point precision. However,
32-bit floating-point calculations are often not required for optimal network inference, and are costly to
implement on FPGAs. Other quantization techniques can offer more efficient ways of compressing neural
networks by reducing the number of bits used to represent the weights and biases, ideally with no or minimal
loss in performance. In hls4ml, all the inputs, weights, biases, sums, and outputs of each layer are represented
as fixed-point numbers. In this scheme the amount of bits used to store the integer and decimal components
of the number are configured, such that, for example, an unsigned fixed point number with 4 integer bits and
3 fractional points is capable of storing values between 0 and 15.875 with a granularity of 0.125. The total
numbers of bits is also referred to as the precision of the fixed-point number. Hls4ml allows a different
precision to be chosen for the computations and internal values of each individual layer; for the sake of
consistency we fix the precision to be the same for all layers in the scans below. We do find that it is necessary
to increase the precision and size of the lookup table (LUT) used for the softmax computation at the end of
the flavor-tagging and QuickDraw models, but this has a minimal impact on the overall resource usage.

The optimal precision for each model depends on the training details, the specific task, and the inputs.
All the models are quantized only after training, a method referred to as ‘post-training quantization’ (PTQ).
For each model we profile the performance of the synthesized design from hls4ml as a function of the bit
precision of the weights and activation functions. Figure 2 shows the ratio of the AUC from the quantized
model to the AUC from the floating-point model as a function of fractional bits while keeping the precision
of the integer part fixed to 6, 8, 10, or 12 bits.

The best performance for each model, measured by the AUC ratio, is generally achieved with at least 10
fractional bits irrespective of the values of the integer bit. For the top quark and flavor tagging models, 6
integer bits are sufficient, while the QuickDraw models require at least 10 integer bits. For further results in
this paper, we fix the integer bits for each model to these values. We note that there is a small performance
degradation in the GRU models after quantization for all three benchmark cases. The difference is
particularly visible for the top quark tagging model, but it is less than 5%. It is possible that
quantization-aware training or sequence masking could potentially enable models with lower precision to
perform as well as or better than the ones we present in this paper.
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Table 2.Minimum and maximum latencies for the top quark tagging model.

Model Latency (µs) R= (6,5) (µs) R= (12,10) (µs) R= (30,20) (µs) R= (60,60 [40]) (µs)

GRU 1.7–1.7 2.4–6.5 3.2–7.3 5.0–9.1 8.0–12.1
LSTM 1.7–1.7 2.7–6.8 3.5–7.6 5.3–9.4 8.3–12.4

Table 3.Minimum and maximum latencies for the jet flavor tagging model.

Model R= (48,40) (µs) R= (90,60) (µs) R= (120,120) (µs) R= (240,240) (µs)

GRU 6.7–24.8 9.8–27.9 11.5–29.6 20.5–38.6
LSTM 6.9–25.0 10.1–28.2 11.7–29.8 20.7–38.8

Table 4.Minimum and maximum latencies for the QuickDraw model.

Model R= (48,32) (µs) R= (96,64) (µs) R= (192,128) (µs) R= (384,384 [256]) (µs)

GRU 35.4–164.0 59.4–188.0 107.0–235.0 203.0–331.0
LSTM 35.9–164.0 59.9–188.0 107.0–236.0 203.0–332.0

Figure 3. DSP utilization as a function of total width for the (a) top quark tagging, (b) jet flavor tagging (c) QuickDraw model.
Performance of both GRU (dashed) and LSTM (solid) models are shown. DSP utilization with latency strategy is shown only for
the top quark tagging models and all other lines correspond to different reuse factors. The DSPs available in the target FPGA for
each model are shown in the black dashed horizontal line.

5.2. Parallelization
The other main tuning knob besides the precision is the amount of parallelism employed during weight
matrix multiplication. This is controlled in hls4ml through a parameter called ‘reuse’. Specifically, reuse is the
number of multiplication operations each digital signal processing (DSP) block must do for a given matrix
multiply. Setting reuse to 1, i.e. the fully parallel case, means that each multiplication is done by its own DSP
and can happen simultaneously. Increasing the reuse factor reduces the number of DSPs that are required,
but increases the latency and initiation interval of the layer computation in proportion to the reuse. All three
benchmark models are synthesized with different values of the reuse factor (R) and fractional bit precision.
The results are expressed for different FPGA resource categories: onboard FPGA memory (BRAM), DSPs,
and registers and programmable logic like flip-flops (FFs) and LUTs. In hls4ml, a model can either be
synthesized to minimize the latency (latency strategy) or the resource utilization (resource strategy). For large
models with 40 k or more trainable parameters it becomes difficult to synthesize the models with the latency
strategy, and so resource strategy must be used. With resource strategy the design is optimized for low
resource utilization by reusing existing hardware to complete operations in multiple stages. Out of the three
benchmark models only the top quark tagging model is small enough to be synthesized with both latency
and resource strategies, whereas only resource strategy is used for the other two models. The minimum and
maximum latencies for each model are shown in tables 2–4. The amounts of DSPs, FFs, and LUTs for each
model are shown for different reuse factor values in figures 3–5, respectively. The resource utilization is
shown as a function of total width, which is the sum of the integer and fractional bits used to represent the
weights and biases of each layer of the neural network. In these results the reuse factor values are written in
the form R= (X,Y), where X and Y correspond to the reuse factors for the kernel and recurrent kernel
matrix multiplications discussed in equation (1). The numbers shown in the square brackets correspond to

7



Mach. Learn.: Sci. Technol. 4 (2023) 025004 E E Khoda et al

Figure 4. FF utilization as a function of total width for the (a) top quark tagging, (b) jet flavor tagging (c) QuickDraw model.
Performance of both GRU (dashed) and LSTM (solid) models are shown. FF utilization with latency strategy is shown only for
the top quark tagging models and all other lines correspond to different reuse factors. The FFs available in the target FPGA for
each model are shown in the black dashed horizontal line.

Figure 5. LUT utilization as a function of total width for the (a) top quark tagging, (b) jet flavor tagging (c) QuickDraw model.
Performance of both GRU (dashed) and LSTM (solid) models are shown. LUT utilization with latency strategy is shown only for
the top quark tagging models and all other lines correspond to different reuse factors. The LUTs available in the target FPGA for
each model are shown in the black dashed horizontal line.

reuse factor for the LSTM layer in the case when the reuse factor differs between the LSTM and GRU
implementations.

We observe that all resources generally increase with smaller values of R and increased precision. In the
case of FFs and LUTs, this increase is roughly linear, while for DSPs the utilization remains flat until the
precision exceeds the DSP input width. The latency, on the other hand, follows a scaling inverse to that of the
FFs and LUTs with respect to the reuse. Thus, as with other architectures supported under hls4ml, reuse can
be used to reduce FFs and LUTs at the expense of latency. This simple scaling is critical for allowing users to
tune the resource usage and latency such that the synthesized designs to meet desired requirements. The
latency strategy adds another finer option to this tuning space for latency-limited tasks, but comes at the cost
of larger resource usage. As expected we find that the GRUmodels use approximately 1/4 less resources when
compared to the LSTMmodels. This is a result of the 3:4 ratio between the number of matrix multiplications
in GRU and LSTMmodels. Finally, it is important to note that the results shown in this paper are from HLS
synthesis. When running Vivado synthesis we observe a reduction in LUT usage between 20% and 65% and
in FF usage between 10% and 20%. This is particularly important to note in the case of the larger flavor
tagging and QuickDraw models where the estimated LUT usages from HLS synthesis are quite large.

For the top quark tagging models we observe that designs with maximal quantized performance can be
implemented on one SLR of a Xilinx Virtex Ultrascale+ VU9P board, the planned future device for an
upgrade to the CMS Level-1 trigger [44]. We observe slightly larger resource usage for the flavor tagging
models, as expected, but still within the resource constraints of a single SLR of a VU9P board. In both cases
the latencies for the designs are also within the task requirements. For the QuickDraw models, the estimates
from Vivado synthesis suggest that maximal quantized performance could be implemented on a Xilinx Alveo
U250, a popular device for the types of coprocessor applications we envision for these models. Extrapolating
from the initiation interval (II), we find the average throughput of the QuickDraw LSTMmodel is between
4300 to 9700 events/second. Tests of the batch 1 inference for the same model using an Nvidia Tesla V100
GPU yield a throughput of 660 events/second Increasing the batch size to 10 increases the throughput to
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Figure 6. Resource usage of DSPs (a), FFs (b), and LUTs (c) for the top quark tagging model in static and non-static mode with
solid and dashed lines, respectively. The resources available in the target FPGA are shown in the black dashed horizontal line.

Table 5.Minimum and maximum latencies and initiation intervals for the top quark tagging model in both static and non-static mode.

Model Static latency (µs) Non-static latency (µs) Static II Non-static II

GRU 1.7–1.7 1.6–1.6 315 1
LSTM 1.6–1.6 1.5–1.5 314 1

7700 events/second, comparable with the FPGA throughput. The throughput increases further by a factor of
five to approximately 30 000 if the batch size is increased to 100. While it is unsurprising that GPU inference
at large batch sizes is able to outperform an FPGA, many physics tasks are inherently low-batch problems.
This is because each event must be processed separately and latency is extremely important, therefore the
maximal batch size is dictated by the amount of inferences necessary only for a single event. For example,
algorithms to classify particle-induced showers in a detector need only to be run once every event if the
algorithm can use the full detector information in one pass. Thus, a factor of ten improvement in the FPGA
inference for batch-1 inference is highly relevant for future trigger applications.

5.3. Static and non-static comparison
In order to study the impacts of the static and non-static modes discussed in section 3 we limit our
consideration to the top quark tagging models. As shown in figure 6, resource usage for non-static mode
increases dramatically compared to static mode. For even moderate-sized models, non-static mode requires
too many resources to be feasible. In the case of the top quark tagging model we see that non-static mode is
able to fit within the available resources of the chip only for very small bitwidths. However, table 5 confirms
that although non-static mode offers similar overall latency to static mode, the initiation interval (II) in
non-static mode is reduced from 315 (314) to 1 for the GRU (LSTM) models. This results in a increased
throughput for non-static mode by a factor of more than 300. The increased throughput of non-static mode
would be vital for Level-1 trigger applications that run inferences at rates of up to 40MHz. While this
particular top quark tagging model suffers in performance using a total bitwidth of 10 (6 integer and 4
fractional bits in this case), there are multiple options, such as per-layer quantization or quantization-aware
training, that were not considered for this study but could potentially allow a performant version of this
model to be synthesized in non-static mode.

6. Summary and outlook

RNNs have shown substantial success for many tasks in particle physics. They are particularly well-suited to
those problems involving sequences of particle or detector signals, outperforming densely connected deep
neural networks (DNNs) [45] and convolutional neural networks (CNNs) [46] on certain jet classification
tasks. In spite of this success, RNNs have not seen the widespread adoption in ultra-low latency
environments in physics when compared to DNNs and CNNs. This difference is owed in part to tools such as
hls4ml that simplify the adaptation of the latter models from Keras to HLS. The support for GRUs and
LSTMs in hls4ml that we present in this work represents the removal of a major barrier to the use of RNNs in
ultra-low latency environments. This has ramifications not only for high energy physics but also other
research areas where RNNs have become popular. While we have focused on the usage of hls4ml with FPGAs,
it is important to note that hls4ml can also be used to create ASIC designs [47], and thus this work also
allows for the possibility of RNN usage on ASICs as well.
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The implementation we present in hls4ml in this work maintains the main tuning features of hls4ml,
namely the reuse factor and per-layer bit precision. This is necessary to allow the customization of the
synthesized design to meet the needs of a given task. The benchmark models chosen cover a range of sizes,
latencies, and problems, and showcase the quality of the hls4ml support for a variety of realistic scenarios.
We also add an RNN-specific tuning parameter to hls4ml called the RNN mode, with static and non-static
settings capable of further adjusting the behavior of the synthesized design. While we show that this work is
capable of producing results with high accuracy, there are multiple possibilities for future development. In
particular, we observe that even small RNN models can require a substantial amount of resources to
implement. While the PTQ scheme we have used here is able to minimize resources to a certain extent, other
methods, such as quantization-aware training, have shown that even more resource reduction can be possible
with little to no cost to performance. This is perhaps even more true for RNNs than dense neural networks
due to the repeated use of the recurrent layer weights. Other techniques such as masking are also a possible
method for reducing both resource usage and dependence on small weight values (high bit precision).

The recurrent or repeating nature of many modern algorithms, such as RNNs, transformers and graph
neural networks, make them very difficult to be run, particularly at low latency, on FPGAs. In this work, we
present the successful deployment of RNNs in models with number of trainable parameters ranging from
O(1 k) toO(100 k) achieving latencies ofO(1µs) toO(100µs). This represents an important step in
enabling support in hls4ml for more complex architectures with recursive computations.
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AIgean, pronounced like the sea, is an open framework to build and deploy machine learning (ML) algorithms
on a heterogeneous cluster of devices (CPUs and FPGAs). We leverage two open source projects: Galapagos,
for multi-FPGA deployment, and hls4ml, for generating ML kernels synthesizable using Vivado HLS. AIgean
provides a full end-to-end multi-FPGA/CPU implementation of a neural network. The user supplies a high-
level neural network description, and our tool flow is responsible for the synthesizing of the individual layers,
partitioning layers across different nodes, as well as the bridging and routing required for these layers to com-
municate. If the user is an expert in a particular domain and would like to tinker with the implementation
details of the neural network, we define a flexible implementation stack for ML that includes the layers of
Algorithms, Cluster Deployment & Communication, and Hardware. This allows the user to modify specific
layers of abstraction without having to worry about components outside of their area of expertise, highlight-
ing the modularity of AIgean. We demonstrate the effectiveness of AIgean with two use cases: an autoencoder,
and ResNet-50 running across 10 and 12 FPGAs. AIgean leverages the FPGA’s strength in low-latency com-
puting, as our implementations target batch-1 implementations.
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1 INTRODUCTION
The interest in using FPGAs for computing at scale has become desirable because of the need for
increased performance and reducing power. The flagship example of this is the Microsoft Catapult
project that has led to an FPGA being deployed in every Microsoft server [1]. FPGAs at Microsoft
are used for search engine acceleration, in a machine learning (ML) framework for applications
within the data center as well as for many network and packet-processing tasks.

A distinguishing feature of the Catapult architecture is that the FPGAs can directly communicate
with other FPGAs and CPUs as peers on the network versus the more common accelerator model
for FPGAs where the FPGAs are attached to a CPU and only accessible through the CPU. The peer
model is more efficient for applications that are large enough to span multiple FPGAs requiring low-
latency communication between the FPGAs. Although Microsoft has shown significant success in
scaling up and using multiple FPGAs in a single application, such as Project Brainwave [2, 3] used
for real-time AI, there is no public description of how the applications are built and deployed to
the FPGAs, and the platform and tools are not available for others to build their own applications.
There is also no known equivalent open source platform available where someone can build their
own version of Brainwave.

Brainwave has shown how useful multi-FPGA implementations can be as they leverage having
all their weights in on-chip memory as opposed to accessing memory in off-chip DRAM. Having
a framework to be able to build custom circuits, like the one in Brainwave, will allow users to
create their own networks, which at the moment is quite difficult due to the lack of abstractions
within FPGA systems. On top of being able to access on-chip memory, within an infinitely large
fabric available through a multi-FPGA framework we could unroll all our computations completely,
or to any desired level of unrolling. This will enable the construction of very low latency, high
throughput networks that can run at batch 1. In this work, it is our hope to provide the abstraction
of an infinitely large FPGA fabric by abstracting the difficulties of network-connected FPGAs. This
article leads to a broad range of possible applications where low-latency, large AI inference is
needed to process information in real time. Examples include systems controls, web search, real-
time physics applications, and medical image processing.

For this work, we define a cluster of network-connected FPGAs, (i.e., all FPGAs have direct
connections to the network) as a multi-FPGA cluster. By this definition, Brainwave is a multi-FPGA
application.

The focus of this article is to describe how we created AIgean, which is an open source platform
that can be used to build multi-FPGA ML applications on multi-FPGA clusters. AIgean provides the
user with multiple layers of abstraction. The user can use AIgean as a black box that takes neural
net descriptions as inputs and get an output of programmed FPGAs. Our black box is responsible
for the creation of IP cores, communication protocols, partitioning the neural net across multiple
devices, and finally generating the final bitstreams of all FPGAs. Our focus with AIgean is ease
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of use as well as modularity. However, the parts of the black box are implemented as a stack of
abstraction layers and can be further customized by users who are experts in the various layers.
This stack is built in modular pieces, which also allows for alternative implementations at each
layer. In particular, a user can modify the architecture of a particular convolution layer, and imple-
ment the layer in hardware on an FPGA or in software on a processor. The communications layer
can be modified to use different protocols, such as UDP, TCP/IP, layer 2 Ethernet, PCIe, parallel
buses between devices, or any custom protocol. A change at any of the layers of AIgean does not
affect any of the other layers, especially the application layer at the top of the stack. This provides
portability between platforms, particularly across different types of FPGAs.

We started with two open source projects: hls4ml [4] and Galapagos [5, 6]. By using hls4ml,
we can convert ML descriptions into C++ code synthesizable with high-level synthesis (HLS).
Galapagos is a framework for deploying streaming computation kernels onto a cluster of heteroge-
neous devices [5, 6], especially FPGAs, which are particularly suited to streaming computation. We
define streaming as communication via streams of data moving from one kernel to another where
the processing is effectively done on-the-fly versus a mechanism like a source kernel writing to
memory and the destination kernel reading from that memory.

Although conceptually AIgean is a combination of two existing platforms, a significant effort
was required to integrate the two platforms. Initially, the idea seemed straightforward, but when
considering the details, much more is required. Hls4ml was not initially designed to build the
layers of the network as individual cores and required significant enhancements to enable the
output of separate cores. The interfaces between layers needed to comply with the streaming
interfaces required by Galapagos, and the output cores had to be put into a directory structure
suitable for processing by Galapagos. Galapagos had not been tested with a large application, and
the deployment of a large neural network was the first attempt at doing so. We then realized that
for very large applications, an automated partitioner is required and Galapagos was enhanced to
have a new layer that can do the partitioning. The first partitioner is only enough to build AIgean,
but significant future work can enhance it in many ways. These contributions would not have
come to light without AIgean and are important considerations for developing future application
frameworks that leverage Galapagos.

An important contribution of this work is to describe that effort and more generally show the
challenges of building multi-FPGA application frameworks that can be customizable and portable
across multiple kinds of FPGA hardware. The main outcome is an ML platform that enables ML
practitioners to use familiar tools and map them to a multi-FPGA cluster without needing to do
any hardware design. We contrast AIgean with the current vendor ML flows [7, 8] that only target
a few FPGAs hosted in a single server and lack the ability to scale easily.

Our contributions in this work are as follows:
(1) A fully push-button flow to take an ML network input from popular ML tools and deploy the

network to a multi-FPGA/CPU back-end. Abstracted away from the user is the creation of
the hardware IP cores for the given ML network, the partitioning of these IP cores, and the
connecting and routing between them. Some of the core functionality was already handled
by hls4ml and Galapagos, but large modifications and additions were required for scaling
out to using multiple FPGAs.

(2) Modifications to hls4ml to generate separate IP cores for each layer and the automatic in-
clusion of a bridge to combine the many parallel streams between the hls4ml cores into the
single stream supported by the Galapagos framework. The bridges are created at compile
time as the width of the bridges are dependent on the number of dimensions in the layer the
user wants to deploy.
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(3) Galapagos modifications to add the partitioning layer of the stack. This layer decides how
many FPGAs are required and where to place the IP cores generated by our modified hls4ml.
Our first partitioner is a simple greedy partitioner leaving a lot of room for future research
into partitioners that can produce more efficient results. A partitioner is required within our
AIgean stack to enable the seamless push-button flow from front-end to multi-node back-
end. Given that the partitioner is a separate abstraction layer, changing the partitioner can
be done without requiring any changes in the other layers.

(4) A framework that allows for incremental development and deployment of an ML applica-
tion because we can seamlessly integrate hardware and software IP cores. For example, the
first step to deploying an ML network is to do it entirely in software targeting a multi-CPU
back-end. By simply changing a configuration file, layers of the network can be incremen-
tally switched from running in software to running on FPGAs. Eventually, all layers can be
targeted for FPGAs, or the user may choose to run with a heterogeneous implementation
where some layers are in software and some are in hardware.

(5) A large use case of ResNet-50 deployed with two configurations, one with 10 FPGAs and the
other with 12 FPGAs. Changing between these implementations is done by changing only a
few lines of hls4ml code and re-running the flow. This is also a case study that demonstrates
the effort required to create a multi-FPGA application on the Galapagos platform.

(6) A fully integrated hardware and application layer stack that starts with FPGA shells, the
layer in the FPGA that abstracts the application logic from the specifics of each FPGA board,
the hardware middleware layer that deals with the connectivity between IP cores, a commu-
nications layer that implements the desired networking protocol between IP cores instanti-
ated on different CPUs or FPGAs, and an application layer that takes ML networks as input
and generates the required IP cores. These carefully defined abstraction layers provide an
excellent research platform for experts at each layer to tinker and make each layer better.
AIgean is available as open source to enable further research at all the layers of its stack and
can be downloaded at https://github.com/UofT-HPRC/AIgean.

In Section 2, we describe related work, followed by Section 3, where we provide an overview of
hls4ml and Galapagos. We describe the implementation and tool flow of AIgean in Section 4 and
present some results in Section 5. Future work is described in Section 6, and, finally, we present
conclusions in Section 7.

2 RELATED WORK
We describe AIgean as a platform that can be used to build heterogeneous ML implementations
with a particular focus on using FPGAs and CPUs. As a platform, AIgean spans the full computing
stack from the hardware to the tools used to create the inputs to AIgean. We have built AIgean
with the goal of making it flexible and modifiable at all levels of the stack to enable research and
continued improvement. With this view, we present the related work according to our model of
the full ML computing stack. We first describe the model and then present the related work as it
fits within our model.

2.1 The ML Computing Stack
The ML computing stack is shown in Figure 1. At the top of the stack, we have a wide range of Ap-
plications & Algorithms, many of these applications having strict performance constraints. At the
Cluster Deployment & Communication layer of the stack, we have petabytes of data being trans-
ferred, and at the Hardware layer, we have many mathematical operations (typically matrix/vector
multiplications) implemented on a computing substrate ranging from programmable processors to
custom hardware. Each layer of this stack provides its challenges. For example, at the Applications
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Fig. 1. Abstraction stack for common ML frameworks.

layer, the user has to decide which error rates are acceptable for their given application. At the
Communication layer, the user has to decide how they will connect their devices (consisting of
computing devices as well as sensors gathering data). Finally, at the low-level Hardware layer, the
user may want to make optimizations on bit-level operations for their given application or define
different levels of parallelism. There are opportunities for research at all levels of this stack.

2.2 Software ML Frameworks
We define software frameworks as those that mainly target CPUs and GPUs that are programmed
via software. Leading software ML frameworks include TensorFlow [9], Torch [10], and Caffe [11].
They provide the users with libraries in various programming languages (e.g., Python, C++) to
describe their ML applications. These frameworks then compile the applications into a series of in-
structions to be executed. Furthermore, they offer an interface to create custom layers that can be
compiled into instructions to run on different back-end devices. Finally, they also support connec-
tivity across multiple devices. For example, TensorFlow provides an API [12] to run on distributed
clusters, where the communication between different devices (CPUs, GPUs, and TPUs [13]) is ei-
ther through the CPU network link, through NVLink [14] (i.e., a proprietary link between certain
NVIDIA GPUs), or via a direct network link. NVIDIA also provides the NVIDIA Collective Com-
munication Library [15], which implements multi-GPU and multi-node communication primitives
optimized for NVIDIA GPUs and networking. This enables scaling GPU computations across large
numbers of GPUs available on a network and is supported by several popular deep learning frame-
works. Note that in the current implementation of the NVIDIA Collective Communication Library,
the GPUs do not have direct connections to the network, unlike what we are able to do with FP-
GAs. The GPUs connect to the server’s network interface through PCIe. We expect that with the
acquisition of Mellanox by NVIDIA [16], GPUs will soon also be able to access the network directly
and bypass the need for a PCIe transfer.

These frameworks have a high level of customization at the application level. They also allow
the users to input custom instructions, but the underlying hardware circuitry is limited to CPU,
GPU, and TPU computation and cannot be modified.
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2.3 FPGA Overlay Frameworks
Frameworks such as the Xilinx ML Suite and the Intel Deep Learning Accelerator (DLA) pro-
vide overlays implemented on FPGAs [17, 18]. An overlay is essentially a programmable engine
implemented on the FPGA, which has a limited level of customization. These suites are integrated
in existing OpenCL development environments (IDEs), Xilinx SDAccel [19], and Intel OpenCL [20].

The OpenCL IDEs use HLS to improve the accessibility of the design of accelerators for FPGAs
over traditional approaches based on VHDL or Verilog, which are time consuming and unfamil-
iar to most ML experts. In addition, these suites both provide libraries for Direct Memory Access
(DMA), buffers, and communication channels, and abstract the underlying hardware, such as de-
vice drivers, PCIe link, interconnect, and accelerator placement [21]. These frameworks are similar
to the Software ML Frameworks except they add the capability to customize the processor by tun-
ing the overlay architecture on the FPGA.

Nurvitadhi et al. [22] describe a platform that supports multiple PCIe-connected FPGAs in a sin-
gle server. They build a software stack on top of the Intel OPAE [23] and tightly couple operations
on the CPU with operations on the FPGA. Their goal is to implement low-latency neural machine
translation and do this by keeping the model in on-chip memories to avoid slower off-chip mem-
ory accesses. The ability to leverage multiple FPGAs makes this feasible. This work shows how to
leverage the communication layer implemented with PCIe to target multiple FPGA overlays, but
their scalability is limited by the number of boards available in one node.

These frameworks allow application developers to seamlessly deploy ML applications on FPGAs
thanks to mature software and hardware development environments. However, on the one hand,
the high level of abstraction through overlays minimizes the FPGA design time, and on the other
hand, it reduces the user control of the generated hardware. With respect to the MS stack we define
in Figure 1, these overlay frameworks allow some flexibility in the algorithms and limited flexibility
in the hardware. Depending on the hooks available, a user can implement different supported
layers to make their own customizations. The hardware flexibility is quite limited as an IP core is
already generated. Some frameworks allow the user to modify the IP core through parameters, but
this is generally limited in flexibility.

2.4 FPGA ML Core Generators
In this category of work, the focus is at the hardware level of our ML stack where the goal is to
make it easier to generate cores for ML computations. These cores must then be integrated into
a system that provides the full ML computing stack. Here, we present open source tools1 that
generate ML accelerators as third-party IPs to be integrated into FPGA projects.

CHaiDNN [24] is an ML library for the acceleration of deep neural networks on Xilinx UltraScale
MPSoCs. The library provides a subset of ML operators to be synthesized with Vivado HLS and
uses 6/8-bit integer arithmetic. Pynq DL [25] provides only a configurable IP for the convolution
on Xilinx Zynq SoCs. FINN [26] is a framework for the implementation of binary neural networks
that use a dataflow architecture. PipeCNN [27] is an OpenCL-based FPGA accelerator for large-
scale CNNs and uses pipelined functional kernels to achieve improved throughput in inference
computation. The design is scalable both in performance and hardware resources, and thus can be
deployed on a variety of FPGA platforms. HLSLibs [28] is a set of libraries implemented in standard
C++ for bit-accurate HLS design. Many of the library operators (e.g., MatMult, SoftMax, Sigmoid)
can be easily integrated into the design of ML accelerators. Recently, CNN implementations similar
to the design in this article have been produced for low bit precision CNNs [29] and for sparse

1We report only tools publicly available on GitHub and with a high user rating (Star Metric).
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CNNs [30]. These solutions provide more flexibility as the developer, in some cases, can modify
the generated cores, as well as integrate additional circuitry around the provided IP cores. However,
this design flow is only accessible to those with hardware design knowledge.

With respect to the ML stack, ML core generators provide full flexibility of the hardware and
supported algorithms. However, they provide very little when it comes to support for integrating
systems at a much larger scale, as it is the user’s responsibility to integrate the generated cores
into their larger design.

2.5 ML Computing on Multi-FPGA Clusters
In a multi-FPGA cluster, all FPGAs are network connected, and Brainwave [2, 3] built on top
of Microsoft’s Catapult network-connected FPGA framework [1] is the most successful and well
known. Each FPGA contains a customizable overlay. The focus of Brainwave is to minimize latency.
Thus, the entire processing only uses on-chip memory and resources, and the neural network is
partitioned across multiple FPGAs accordingly. The links between the network-connected FPGAs
use Catapult’s 40-Gb/s custom Lightweight-Transport-Layer, a lightweight reliability layer on top
of a communication protocol similar to that of UDP. When characterizing Brainwave using the
stack defined in Figure 1, it can be observed that Brainwave also provides a flexible Application
layer as multiple types of neural networks are supported. Brainwave is limited to the Lightweight-
Transport-Layer for cluster communication between FPGAs, but this is still an improvement over
frameworks that force all accelerator communication through a CPU. Finally, Brainwave provides
some flexibility at synthesis time to customize precision, vector size, number of data lanes, and
the size of the matrix-vector tile engine. These works allow users to scale a large ML framework
across multiple nodes, providing the cluster deployment layer in the ML stack. These works also
support a number of layers allowing for the user to customize their algorithm. However due to
the scale, there is little hardware flexibility, as the parameterization happens at the node level as
opposed to the level of the IP core.

2.6 Where AIgean Fits
Although AIgean can be used with a single FPGA, it best fits the category of Section 2.5, or ML Com-
puting on Multi-FPGA Clusters, and has a similar goal as Brainwave. Both platforms use network-
connected FPGAs in a peer-to-peer configuration. Brainwave uses a programmable overlay that
has some parameterization that can be invoked at the time the overlay is synthesized and can im-
plement many different ML networks depending on the program that is loaded. AIgean synthesizes
custom hardware cores and implements each ML network directly in hardware, so changing an ML
network will take much longer than recompiling the program for an overlay. With AIgean, there is
the ability for researchers to experiment at the hardware implementation layer with hls4ml, the
possibility to experiment with the communication protocols used, and to specify how the compu-
tation kernels are deployed. All of the related works provide some layer of the ML stack defined
in Figure 1. AIgean is the only work that can provide support at all of these layers, allowing users
to parameterize at the IP core level and at the cluster level, and support many algorithms. This is
all made possible by the layered approach used by AIgean and because everything is available as
open source.

3 BACKGROUND
The goal of AIgean is to provide a scalable platform for implementing ML applications using mul-
tiple FPGAs. We use hls4ml to build the ML cores and Galapagos as the substrate for deploying
an application across multiple FPGAs. In this section, we present the background required to un-
derstand hls4ml and Galapagos before describing how they are integrated into the platform we
call AIgean.
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3.1 Hls4ml
We need a way to implement hardware ML-inference cores that can take specifications from com-
mon ML frameworks. We choose hls4ml [4] because it can translate the specification of ML models
from common frameworks such as Keras [31], PyTorch [32], ONNX-formatted models [33], and
the quantized version of KERAS, QKERAS [34], into Register-Transfer Level (RTL) implemen-
tations for FPGAs using HLS tools [35]. In our experiments, we use Vivado HLS [36] as the hls4ml
back-end though the flow can be extended to other HLS tools. Hls4ml currently has support for
Vivado HLS, Quartus HLS, and Mentor Catapult HLS [37].

At the start of the AIgean development, hsl4ml was a tool that was only targeted to implement
ML applications that fit on a single FPGA. In this section, we describe the baseline capabilities of
hls4ml, and in Section 4.2, we describe the changes we made to integrate hls4ml into AIgean. A
more detailed description of the changes to hls4ml is found in Appendix A.1.

An ML designer prepares a neural network for a specific task, such as image classification, in
Keras or PyTorch. After an iterative training phase that ends when the target accuracy/error goals
are met, the ML designer releases a final model to be deployed for inference. The model is usually
described as two files in standard formats: a JSON file for the model architecture, and an HDF5
file for the model weights and biases. These are the inputs for hls4ml. At this point, a hardware
designer can fine-tune the hls4ml project and push-button translate it into a complete Vivado HLS
specification (C++ and TCL files) to be synthesized and implemented for a target FPGA.

The hardware designer faces the challenge of creating an optimal FPGA implementation from
the given ML model. The hls4ml framework exposes a crafted set of configuration parameters
(HLS knobs) to balance the FPGA resource usage and the latency and throughput goals. The design
of ML-inference accelerators using HLS is simplified with hls4ml by hiding the large variety of
HLS knobs and providing carefully optimized layer implementations for HLS.

The conversion from deep learning model to HLS-based software is done by constructing a cus-
tom intermediate network representation that is amenable to low-latency design. From this inter-
mediate representation, HLS code is generated with design guidelines specified in a configuration
file. Optimized HLS implementations of neural network layers are generated, with the optimiza-
tion dependent on specified configuration parameters. The code is thoroughly modular, and most
optimizations can be tuned after the HLS code generation. Hls4ml has been used to construct MLP
networks, CNNs, Graph neural networks, RNNs, and BDTs [38–41].

The hls4ml design flow explicitly focuses on batch-1 processing. Larger batch processing is not
considered. The design flow is similar to the FINN architecture [26, 42] in that model-specific layers
are implemented. A critical element of the design of hls4ml is to allow for very low latency imple-
mentation of ML algorithms with a low initiation interval.2 As a consequence, hls4ml generates
an HLS firmware implementation of the neural network on a layer-by-layer basis. Each layer corre-
sponds to a different firmware block, and therefore individual layers can be run concurrently. This
design paradigm differs from most other FPGA deep learning implementations, such as Xilinx ML
Suite, where the same firmware blocks are repeatedly used to perform the inference computations
over many layers of a neural network. Separation of the layers into separate firmware blocks is
particularly tractable for multiprocessor use since layers can easily be split into separate IP blocks
without any modifications in the algorithm design or changes in resource usage. We leveraged this
capability for AIgean.

The trade-off among latency, initiation interval, and resource usage determines the paralleliza-
tion of the accelerator logic (and vice versa). In hls4ml, this trade-off is configured with a single

2In HLS, the initiation interval specifies the number of clock cycles between the introduction of new inputs in a pipeline.
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Fig. 2. The AIgean stack. It includes an Application layer on top of the previously developed Galapagos
stack [6].

configuration parameter—the reuse factor. The choice of a value for the reuse factor affects the
initiation interval of the RTL pipelines and the number of critical resources (e.g., DSPs) in each
layer of the neural network.

Within the hls4ml implementation, the reuse factor dictates the number of times a single DSP
is reused within a single matrix multiplication. This factor translates directly to the number of
resources that each layer uses. In particular, both the DSP usage and the number of BRAM parti-
tions will scale with the reuse. By scaling the reuse factor value, the designer can explore various
implementations. A reuse factor of 1 generates a completely parallel implementation (lowest la-
tency); a reuse factor of R, generates an implementation with 1/R fewer DSPs (lower resource
usage) and BRAM partitions. Designers may choose a larger value for reuse factor in the case of
limited resources and a smaller value when they can afford higher parallelism.

For the development of AIgean, a number of improvements were made within hls4ml. These
developments include:
• Streaming dataflow between the layers (with Galapagos)
• Optimized large layers for the Dense/Linear Layer, CNN Layer, Pooling Layer, Split Layer,

and Merge Layer
• Modified Reuse Factor for CNN throughput
• Weight reconfiguration through the use of external block RAM ports

Finally, the generated ML accelerators have interfaces that are system agnostic. In Section 4,
we illustrate our extension to the Galapagos flow that enables a designer to rapidly prototype ML
accelerators and deploy them in a Galapagos system with minimal effort.

3.2 AIgean Stack
AIgean is a development stack for deploying ML applications across multi-FPGA and CPU clus-
ters. This logically can be seen as a superset of the Galapagos development stack with a specific
application layer. Galapagos is a hardware stack that provides customization at different levels
of abstraction [6]. The main goal of Galapagos is to abstract the low-level hardware plumbing
required to deploy an application across multiple FPGAs while also providing the ability to port
applications across multiple FPGA platforms (i.e., platforms built using different FPGA cards with
different networking infrastructures). We know of no other platform that can take as input just
the computation kernels and a logical description of the connections between the kernels and
then generate all of the FPGA bitstreams with all of the network connectivity included. Without
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Galapagos, an application developer with a multi-FPGA cluster would need to be an expert in
hardware design. In addition to building the computation kernels, the developer would need to
incorporate into their design the interfaces to the on-board memory, the network interfaces, the
network protocol hardware (most likely hardware UDP or TCP/IP cores), and configure Ethernet
MAC addresses, IP addresses, the routing information for moving data between kernels, as well
as build all of the packet formatting and protocol translation between the computation kernels.
The FPGA vendor platforms for OpenCL [19, 20] are usable by non-hardware application develop-
ers because they abstract away these details. Galapagos does the equivalent abstraction, but for a
multi-FPGA cluster environment. By building on Galapagos for AIgean, we can leverage the multi-
FPGA abstraction that is provided by Galapagos, and can focus on the integration of hls4ml and
not worry about the low-level hardware plumbing required.

The structure of Galapagos is analogous to a traditional software or networking stack, with each
layer of the stack providing an API for the layer above. The lower the layer in the stack, the closer
it is to the physical hardware. Figure 2 shows the AIgean stack.

Physical hardware and connectivity. This layer represents the physical hardware that runs appli-
cations, and for this work we focus on the FPGAs. Aside from implementing the computations in
FPGA logic, we can also implement different forms of connectivity. In Galapagos, we can use PCIe,
10G SFP+ Ethernet, 100G QSFP28 Ethernet, and L1 circuit switching. For Ethernet, we can select
TCP/IP, UDP, and raw L2 Ethernet. Once configured in this lower level, typical software and ML
practitioners can work at a higher level of abstraction.

Hypervisor. The hypervisor3 abstracts away the I/O interfaces of a single FPGA so that the hard-
ware applications only needs to connect to a standardized interface, and they can then be im-
plemented on any FPGA that has the same hypervisor. This is the key requirement that enables
applications to be portable across multiple hardware platforms enabled with Galapagos. In the
same way, the hypervisor in the software world provides an abstraction of the hardware and some
level of services, typically I/O and memory.

Middleware. This layer connects the different devices within the Galapagos cluster and sets the
off-chip network communication protocols between them. Within Galapagos, computation kernels
can address each other and are agnostic of their placement.

Communication layer. The communication layer provides the APIs with the ability to send pack-
ets using the connections laid out by the middleware. Galapagos transmits packets using the AXI-
Stream protocol [43]. All of the kernels within the cluster can reach any other kernel via AXI-
Stream. Since the middleware layer provides the network address translation functionalities to
convert AXI-Stream into off-chip network packets using the desired network communication, the
network details and locations of kernels are abstracted away from the user. In software, this is
the role of network-socket libraries or other network and communication protocols such as the
Message Passing Interface (MPI) [44].

Application layer. For AIgean, the application layer is the ML layer provided by hls4ml and the
tools used to generate the inputs to hls4ml.

4 IMPLEMENTATION AND TOOL FLOW
The implementation of AIgean requires a significant effort to create a seamless integration of
hls4ml, which builds hardware cores for ML, and Galapagos, which builds multi-FPGA applica-
tions. We had to make substantial modifications to hls4ml so that it generated streaming cores,
and we needed to build the adaptation layer that can take output from hls4ml and convert it into
the format for input to Galapagos. Furthermore, as part of this work, we implemented a number of

3In Microsoft terminology, this layer is called the shell [1].
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Fig. 3. The AIgean flow. The components in the black box are abstracted away for the average users.

improvements to both hls4ml and Galapagos to further optimize the functionality of both systems.
In this section, we highlight the details of our AIgean tool flow along with the specific changes to
hls4ml and Galapagos required to integrate them into AIgean.

4.1 Tool Flow
The stages of the AIgean tool flow are visually presented in Figure 3. The AIgean automated flow
provides a black box that takes an ML model to a CPU/FPGA cluster. In the following sections, we
highlight the inner components of the black box because they can be modified by domain experts
working within each part of the tool flow to explore a large design space relevant to their interests.

Each of these stages corresponds to layers of the abstraction stack for common ML frameworks
we described in Figure 1. The stages are described as follows.
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4.1.1 Implementation-Agnostic Model Tooling. This stage of the flow corresponds to the top
layer of the ML stack, Applications & Algorithms. This layer of the stack is for the data scientist
and ML experts, where they can tune their network for a given accuracy independent of the imple-
mentation and performance. For a given application, the users will decide on the algorithms they
wish to use for their ML implementation. Using their application-specific test data, they can de-
termine a suitable accuracy for a given neural network, independent of the implementation being
done in hardware or software. Once a model is trained with the appropriate precision and perfor-
mance requirements, AIgean will take this model and perform a full conversion to a distributed
deep learning inference engine.

4.1.2 HLS Layer Implementation. At this stage, the input from the previous stage is transformed
by hls4ml into RTL synthesizable C++ code that can be executed as software to verify functional
behavior. It is at the discretion of the user to select the granularity of the IP blocks generated,
where the finest granularity the user can select is at the boundary of the neural net layers. A
coarse granularity can limit flexibility in partitioning networks across multiple devices and may
create IP blocks that are too large, but it is simpler. The user will also select the reuse factor, where
a lower reuse factor unrolls the implementation of the IP blocks to use more DSP and BRAMs. Once
the user tunes these cores for their resources, the functional correctness of the individual IP blocks
can be verified by running the code in software. Users who wish to tinker with implementations
of individual layers can work at this level.

In Section 5, we explore two different IP core implementations of ResNet-50 as an example.
This part of the flow first generates a directory structure with many sub-directories, and each sub-
directory is for an individual IP core (one IP core per layer), containing the HLS source code and
build files. The top-level directory also has a build file, and then the user can then do a parallel
build across all sub-directories of all the IP cores. For our ResNet-50 case study in Section 5.5,
the generation of the directory structure and HLS source files can take on the order of minutes,
whereas the HLS can take on the order of a few hours. The HLS also does an out-of-context place
and route so that we can get a more accurate resource utilization that is then used in the partitioner.

4.1.3 Layer Partitioning. At this stage, the user begins with IP cores described in C++ that
were generated from hls4ml. Each IP core is input to the HLS tool to generate RTL, which is
then placed and routed out of context—that is, as a stand-alone circuit, from which an estimate of
resource usage is generated for each IP core. Using these estimates, the user can allocate one or
more IP cores to FPGAs. We have implemented a simple partitioning tool within Galapagos that
can automate the placement of IP cores on FPGAs. Galapagos can take IP cores labeled as “floating”
IPs within the cluster and place them on any available FPGA. Our implementation of this is a simple
greedy algorithm by using the resource estimation of the IP cores and available resources on the
respective FPGAs. Once the IP cores are partitioned, our tool analyzes the graph to investigate
the edges between FPGA node boundaries. Based on the boundaries, our tool places an hls4ml-to-
Galapagos bridge that is custom made to fit the dimensions on the output and input FPGAs. This is
needed as an hls4ml kernel has a parallel stream for each dimension tensor, whereas a Galapagos
kernel has a single stream.

This is our first implementation of this partitioner and leaves much more room for future work
focused on the partitioning. Given that the partitioner is a separate abstraction layer, changing the
partitioner can be done without requiring any changes in the other layers. The partitioner is also
implemented within Galapagos as this is independent of the ML use case and can be applied to
other domain spaces.

Once we get a partitioning from our Galapagos partitioner, our AIgean-specific bridging cores
then provide bridging based on the kernels that occur at the edges of each FPGA. This is done
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separately by our ML to Galapagos layer (ML2G) as the bridges required at each edge is specific
to the partitioning as we have a different bridge depending on the width of the ML kernel on the
edge. The hls4ml bridge is explained in detail in Section 4.2. Once the bridges have been appended
to the partitioned cluster, we can generate bitstreams or model the partitioned cluster in software.
The output of this layer is the Galapagos configuration files, describing all the kernels and their
connectivity. In our case study, in ResNet-50 this can take on the order of a few seconds.

4.1.4 Software Cluster Implementation. This stage is optional but highly recommended for het-
erogeneous development. The underlying Galapagos framework can wrap HLS synthesizable C++
code with software libraries to enable network socket communication. The underlying Galapagos
software library [45] translates Galapagos stream packets into network packets in a user-specified
off-chip network protocol (e.g., UDP, TCP). We describe the underlying Galapagos framework in
Appendix A.3. Galapagos can be seen as using the standard AXI-streaming protocol, typically used
for streaming kernels within a single Xilinx FPGA. There is also basic routing with a destination
field within AXI-stream. Galapagos can take AXI-stream and encapsulate packets with higher-
level protocols to get the convenience of a single device AXI-stream but over multiple nodes. The
user at this stage can create a homogeneous cluster partitioned across multiple software nodes
(with each software node taking the place of a hardware node), recreating the network topology
the user wishes to have for their heterogeneous deployment. All the network connections, binary
generation, and deployment are automated with the underlying Galapagos framework.

4.1.5 Heterogeneous Cluster Implementation. Once the neural network is partitioned across
multiple software nodes and shown to be working correctly, the user can then migrate parts of
their software deployment into hardware nodes. This is done by simply changing a parameter in
one of the Galapagos files to indicate that an IP core should be implemented in hardware rather
than run in software. Since Galapagos ensures that both software and hardware nodes use the
same protocol, the migration is seamless. The migration of cores from software to hardware can
be done in an iterative process as the generation of hardware bitstreams can be a time-consuming
process. The outputs of this stage are the final bitstreams. For each FPGA, the IP cores are put
together and synthesized to a bitstream. In our ResNet-50 case study, this took on the order of a
couple of hours.

4.2 Hls4ml Modifications
The full details of the modifications implemented in hls4ml are specified in Appendix A.1. In
particular, we modified hls4ml to produce HLS cores with streaming interfaces so that they can
fit with the streaming model of Galapagos. As part of these modifications, an auxiliary channel is
added between layers to allow for network inference to reset in the middle of an inference. This
additional option is useful for multi-FPGA implementations where data streams are vulnerable
and can be interrupted. Additionally, hls4ml was extended to have the option of large CNN layers
with millions of weights. The previous CNN implementation was intended for low-latency use
and could not support as many weights. The core of hls4ml, including the fully connected layers
and activation functions, remain the same and are embedded in the streaming implementation.
As a consequence, the full functionality of hls4ml is preserved in this streaming implementation,
allowing for a broad range of models to be implemented.

Further optimizations are applied for ResNet-50, including the fusing of batchnorm layers with
the convolutional layers and the compression of 8-bit weights into single 16-bit weights so that
DSP multiplier units can be used and the total number of needed multiplications is halved. Finally,
an additional configuration parameter is added to the autogeneration that allows for approximate
tuning of the reuse factor to obtain the desired CNN throughput. With this new option, the tuning
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Fig. 4. An hls4ml kernel can be surrounded by custom bridges to make it possible for off-chip
communication.

factor for the network is defined by the desired throughput in operational clocks and the reuse
factor is adjusted so that every layer achieves the desired throughput. As a result of the throughput
tuning, the reuse factor will be adjusted to ensure the inter-layer latency is roughly the same.
A balanced throughput avoids significant bottlenecks between the layers. The full details of the
throughput tuning is described in Appendix A.1.

The hls4ml streams have no side channels. There are only the data payload (e.g., fixed-point
data) and ready/valid signals between kernels. This kind of stream suffices for point-to-point con-
nections within one FPGA. However, off-chip communication between cores requires additional
routing information. Galapagos IP cores use HLS streams with side channels to provide routing
information (i.e., destination). The destination field that is used in Galapagos by default is 16 bits,
but this is configurable depending on the number of IP cores we have in our cluster. We designed
bridges to transform hls4ml streams to Galapagos streams by adding the additional routing in-
formation and packing the data in larger-bit-width Galapagos streams. These bridges convert a
single tensor consisting of many parallel AXI streams, with one stream per dimension, into a sin-
gle large bit width stream for off-chip communication. Since the bridge’s size is dependent on the
hls4ml IP core (the bridges input size depends on the number of streams), this also needs to be
auto-generated. A visual representation of this can be seen in Figure 4.

Furthermore, with the processing of streams, it allows us to send flits of data corresponding to
different images within the same packet, allowing for a more efficient use of bandwidth. These
streams are also configurable by allowing the user to configure how many AXIS stream flits4 to
pack within one network packet. This solution can be significant for FPGA-CPU links where it is
crucial to amortize the cost of network communication on the CPU, due to the overhead added by
the Linux network stack.

4.3 Galapagos Modifications
To explore the design space of large ML networks (like ResNet-50) across multiple FPGAs, we
developed an automated partitioner to work with the rest of the Galapagos framework. When we
turned to ResNet-50 to implement a very large network, it quickly became clear that we needed
an automated means for partitioning a large application to make the best use of the resources. Our
first partitioner is described in Section 4.1.3 and is not specific for just hls4ml kernels but can be
used for any streaming kernels that require placement.

The original Galapagos framework supported 10G TCP and L2 Ethernet for off-chip communica-
tion. We designed a bridge to provide the option for 100G UDP cores to increase the performance

4A flit is the amount of data transferred in one clock cycle in an AXIS stream.
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Fig. 5. The IP cores providing the bridging in Galapagos.

of our network links and to reduce the probability of the network communication being the bot-
tleneck. This enhances the capability of any application using Galapagos, not just AIgean.

To support 100G, we also improved the portability within Galapagos to support multiple bit-
widths of data. The prior bridging within Galapagos assumes all kernels communicate over AXI-
stream with a destination side channel. However, due to the additional required bridge needed to
allow hls4ml kernels to communicate over AXI-stream with a destination side channel, we needed
to modify Galapagos to include support for the insertion of application-specific bridging. This is
shown in Figure 5. For more details on the bridging provided within Galapagos, please refer to
Appendix A.3. In this case, one of such application-layer bridges is the hls4ml bridge described in
Section 4.2. An application-layer bridge transforms an application-layer protocol into Galapagos
packets. There is a configuration control path for the user to adjust the properties of the bridge.
For the network bridge, it allows users to adjust the routing between kernels by allowing the user
to adjust the mapping of destinations to IP addresses.

A major goal of AIgean and Galapagos is the ease of development. Galapagos offers functional
portability of cores between hardware and software by implementing software libraries to model
the hardware routers and bridges shown in Figure 5. The software library (i.e., libGalapagos) is
described in the work of Tarafdar and Chow [45]. Furthermore, Galapagos allows fast simulations
of the cluster thanks to the combination of the HLS IP cores (in C++) and libGalapagos for the
connections between cores. When we designed the additional cores and bridges for AIgean (e.g.,
100G UDP core), we also implemented the libGalapagos equivalent of these cores to maintain
functional portability. On top of prototyping the entire cluster in software, we have also added
the ability to simulate the entire cluster in RTL. We designed an RTL model of a network switch
that is configurable and can simulate the latency between network links. This capability has been
invaluable during the development of AIgean as a platform but would not be required during the
normal use of AIgean. The combined efforts of both these frameworks result in a fully configurable
design space exploration tool of multi-node heterogeneous ML clusters.

5 RESULTS
This section presents the outcomes of our efforts to build AIgean. It is important to emphasize
that the initial goal of this work is to build a platform to enable the development of multi-FPGA
ML applications. The performance results that we report here demonstrate that AIgean is working,
and even with our first example applications, the results are reasonable. For this work, we claim
success if we are able to easily build ML applications and map them to multiple network-connected
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FPGAs. There is much room to tune for application performance given a working AIgean, and we
will now be using AIgean to explore opportunities for tuning and to build other kinds of networks.

We first describe the hardware testbed used for our experiments and discuss the ease of use of
AIgean in its current state with a case study we did for our own experiments. Then we present
more quantitative results by addressing the physical limits of the communication links, and finally
we present the current performance results of our first applications starting with a small network
to illustrate the latency benefits of using network-connected FPGAs and then for ResNet-50 as a
test to see whether we can implement a very large network.

5.1 Hardware Testbed and Tools
Our hardware testbed comprises Supermicro servers with Intel Xeon E5-2650V4 CPUs and 64 GB
of memory. The FPGA boards we have available are Alpha Data 8K5s with a Xilinx KU115-2
FPGA, Fidus Sidewinders with Xilinx ZU19EG FPGAs, and Xilinx Alveo U200 and U250 cards with
XCU200 and XCU250 FPGAs, respectively. We have 16 Sidewinders mounted in a 16-slot PCIe chas-
sis, and the other boards are mounted in PCIe slots of our servers. For the network interconnect,
we have two Dell S4048-ON 10G and two Z9100-ON 100G switches. The servers are connected to
a 10G switch and the FPGA boards are mostly connected to 100G switches. For the AIgean tests
reported here, we used Vivado 2019.1 and Sidewinder FPGA boards connected to 100G switches.

The SDAccel platform we used was on an Amazon f1.2xlarge instance using SDAccel v2018.2.
For those tests, hls4ml was used to generate the cores, and they were invoked as OpenCL kernels
using SDAccel. The GPU tests used an Nvidia 1080Ti.

5.2 Ease of Use Case Study
While working on this article, we have gone through several iterations of different layers of the
stack. One iteration involved optimizing our HLS library to use DSPs more efficiently, with the
same functionality. We describe the results in Section 5.5, but we would like to discuss the steps
required to change our cluster implementation between the two IP core implementations. This
change was done in the hls4ml level, particularly the domain of a hardware expert looking to op-
timize the hardware implementation of a particular IP core. Following the change, we ran hls4ml
generating a directory structure and a makefile, with a subdirectory per IP core. At this point, we
can build at the top-level makefile by typing “make,” and this will rebuild all IP cores that have
changed their implementation. Then we point our IP core directory to the rest of the AIgean flow
and type “make.” This will then partition the IP cores, add the bridges, and generate the bitstreams.
This case study shows that an expert in the IP core generation only has to focus on their layer of
abstraction and then rebuild the entire cluster by typing “make” twice.

5.3 Communication Protocol
In this section, we present the latency and throughput measurements for different link configu-
rations. This is to provide some understanding of the penalties for communication over network
links. For communication between nodes, we can use a 100G UDP core [46] or a 10G UDP core [47]
on the FPGA. These are interchangeable within our framework by the user. The 100G core uses
a 512-bit interface as compared to the 64-bit interface for the 10G core. The CPU NIC we use is a
10G SFP NIC [48], even when communicating to a 100G FPGA. The specific FPGA board we are
using is the Fidus Sidewinder with an MPSoC FPGA [49]. For latency measurements, we send a
single flit of data (8 bytes) using the four different types of links listed in Table 1. The results in
Table 1 involving software are shown with the 100G UDP core on the FPGA, but similar results
are observed when using the 10G UDP core. From hardware to software, we observe the FPGA
outputting at 100 Gb/s, but we experience packet drop in the software when doing the throughput
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Table 1. Round-Trip Latencies and Throughputs
of Three Different Links

Link Latency Throughput
Software to Hardware 0.029 ms 0.244 Gb/s

Hardware to Hardware QSFP 0.00017 ms 100 Gb/s
Hardware to Hardware SFP 0.0003 ms 10 Gb/s

Hardware to Software 0.0203 ms N/A

Table 2. Autoencoder Resources Compared to Target FPGA Resources

Initiation Interval DSPs BRAMs LUTs Flip-Flops
Autoencoder Resources 552 768 35.9 MB 1.02M 335K
F1 Resources Per FPGA – 9.2K 72.6 MB 1.29M 2.59M
Sidewinder Resources Per FPGA – 1.9K 34.6 MB 522K 1.04M

measurement. Observe that the links involving software are limited by the CPU network stack and
library implementation, whereas the FPGA-to-FPGA links can transfer at the full network band-
width. Note that the results in Table 1 are for the raw throughput, including the protocol headers,
which is why it is possible to achieve the full link bandwidth when using the FPGAs.

5.4 Autoencoder
Here we describe our first small multi-FPGA network implemented with AIgean. We consider
an example network with applications for high-energy physics. Specifically, our network is an
autoencoder designed to detect anomalous events, potentially from new physics. An autoencoder
is an unsupervised learning technique that leverages a neural network where a bottleneck in the
shape of the network forces a compressed representation of the original input. Details about the
model and use cases can be found in Appendix A.2.

This network is a very interesting size for our studies, as it can be implemented on a single
FPGA, but this requires a high degree of resource reuse that necessarily increases the inference
latency. When splitting the network across multiple FPGAs, we can adjust the throughput and
latency of the network by changing the reuse factor and compiling the network across multiple
FPGAs. The network split across multiple FPGAs will have a higher throughput but incurs some
latency from the transfer of the intermediate results.

The resources for the autoencoder network are shown in Table 2 along with the resources avail-
able on the FPGAs we used. To test this autoencoder, we considered two separate implementations
of the network: an implementation using an AWS F1-instance (VU9P FPGA) using SDAccel, and
a second implementation using AIgean on three Sidewinder (ZU19EG FPGA) boards. What is no-
table is that the single FPGA implementation would not be able to fit on a single Sidewinder board,
and it would have to be spread over multiple FPGAs for the chosen reuse factor. The single FPGA
implementation also requires more than one super logic region, and as a consequence has difficulty
meeting timing when compiled on the F1 instance with SDAccel.

Table 3 highlights the results from implementing the autoencoder on various devices as well as
on a single FPGA using SDAccel and three FPGAs using AIgean.

Our 1-FPGA autoencoder is clocked at 125 MHz at a low reuse factor when using SDAccel. Lim-
itations in our version of SDAccel, as well as the resources required for the FPGA, prevented us
from using a higher clock speed. For the 3-FPGA version, we used AIgean and were able to achieve
200 MHz for two of the FPGAs and 190 MHz for the third one. We did not try to improve it, so we
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Table 3. Round-Trip Latency of a Single Batch Inference

Device Latency (ms)
Xeon E5-2650V4 3.3
Nvidia 1080Ti 2.5
1 FPGA Implemented in SDAccel (125 MHz) 0.24
3 FPGAs Implemented in AIgean (190 MHz) 0.08
3 FPGAs Implemented in AIgean (125 MHz) 0.12

will use 190 MHz since that is the limitation. To make a fair comparison to the 1-FPGA implemen-
tation, we scale the AIgean latency by the ratio of clock speeds and get 0.08 × 190/125 = 0.12ms,
which is still 0.24/0.12 = 2 times better than the latency using SDAccel. This shows that there is
still a significant architectural advantage to using multiple FPGAs and is not unexpected because
more resources are available. The performance increase with three FPGAs can be attributed to
(a) the use of networking to directly communicate with the FPGA, yielding low latency, and (b)
less demanding resources per FPGA since only one-third of the model is implemented on each
FPGA.

The implementations of this model on both a single FPGA and the full three FPGAs have an initi-
ation interval of 552 clocks and require roughly the same resources (the reuse factor is the same). In
other words, the three FPGAs are capable of processing a new image every 2.76 μs (362 KHz). Such
a throughput approaches the demands needed for real-time processing of anomalies at the LHC.
Although the single FPGA implementation with SDAccel has a potential throughput that is half
that of the 3-FPGA implementation, achieving this throughput would require efficiently buffering
the inputs and outputs by sending larger batches of calls on and off the FPGA through the DDR and
PCIe transfers. As a consequence, the individual (batch-1) latency would be significantly degraded
for the final throughput to approach half that of the 3-FPGA implementation.

5.5 ResNet-50
To test AIgean on a much larger network, we have developed a multi-FPGA implementation of
ResNet-50 [50]. The flexibility provided by AIgean allows us to target a high throughput imple-
mentation whereby we unroll the multiplication in each CNN layer at a rate corresponding to the
number of pixels that are being used in each respective CNN layer. This allows for the design of
ResNet-50 that can be balanced across the different CNN layers to have a uniform throughput.

Most of ResNet-50’s architecture can be broken down into many sub-blocks consisting of a Split,
two to three convolutions followed by a Relu, and an addition operator as shown in Figure 6. The
dashed boxes represent the IP block granularity that we have used within our implementations.

We have two implementations of ResNet-50: the first requires 12 Sidewinder boards using int-8
precision (ranging from 80% to about 90% of the resources used on each FPGA); the second is more
DSP efficient and requires 10 Sidewinder boards using int-8 precision as well. We have one FPGA
available to use as a 100G data generator that can feed inputs at line rate to the FPGAs. For the
12-FPGA configuration, we tested in a piece-wise fashion.5 We have tested the traffic generator
and the first 10 of 12 FPGAs followed by testing the traffic generator and the remaining 2 FPGAs.
We have verified that the full 10-FPGA configuration and the piece-wise 12-FPGA configuration
can run at 660 images per second.

Table 4 summarizes the throughput and latency results of our full 12-FPGA implementation
of ResNet-50. When the source data is coming from the CPU, we observe that the maximum

5We could not get access to enough boards.
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Fig. 6. Sub-blocks found throughout ResNet-50 and our IP cores.

Table 4. Performance of Different Layers and Implementations at Batch 1

Implementation Throughput Latency
AIgean Using 400 images/s 7 ms
CPU/FPGA network
AIgean Using 660 images/s 1.9 ms
FPGA Data Generator
Microsoft Brainwave Batch 1 559 images/s 10 ms

[51]
Nvidia V100 GPU Mixed Precision Batch 1 250 images/s 5.9 ms

[51]

throughput is only 400 images per second with a latency of 7 ms due to the bandwidth limitation
between the CPU and the FPGA (5-ms latency between the CPU and the FPGA). To demonstrate
the full performance achievable with the FPGAs, we use the FPGA data generator and observe a
throughput of 660 images per second with a latency of about 1.9 ms. The latency is determined
through a simulation of the full ResNet-50 network where each layer is separately run in parallel.
The network delay between each FPGA is estimated from Table 1 using the QSFP. For 10 hops,
the total network delay would be 0.0017 ms, which is insignificant compared to the computation
latency. The next row gives the values for Microsoft’s Brainwave [51]. For the latency of Brain-
wave, we quote the end-to-end latency determined from sending an image to a Brainwave server
and then receiving the result for a CPU within the same computing cluster. The final row shows
the performance for an Nvidia V100 GPU using the mixed precision implementation of ResNet-50
applied for batch 1. The latency and throughput quoted is obtained through the use of the Triton
inference server with a client on the same machine. As a consequence, the latency numbers in-
clude the PCIe transfer time in addition to the network inference. Equivalent numbers quoted by
Nvidia yield a batch-2 latency of 1 ms with a throughput of 2,000 images per second for the same
model [52]; batch 1 latency is not quoted.

Table 5 summarizes the resources used for our 12-FPGA implementation. Note that this was
partitioned with our greedy partitioning scheme that uses a heuristic of 80% utilization before
allocating the next FPGA. The 10-FPGA configuration is very similar in terms of resources but
with half the DSPs. Some other noteworthy details are that a number of the layers early in the
network are smaller, and we can see that the FPGAs are DSP limited as compared to the larger
layers later in the network being logic limited. The highest resource utilized for each FPGA is
shown in bold, representing the limiting factor of each FPGA (with exception of the last FPGA that
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Table 5. Resource Utilization Percentage of Each FPGA
and Total Resources Available Per FPGA

FPGA FLip-Flops LUTs DSPs BRAM
Number (%) (%) (%) (%)

0 31.8 40.1 71.5 1.73
1 26.7 35.1 74.8 11.9
2 11.12 12.06 74.8 0.68
3 49.3 66.6 65.0 6.90
4 38.3 50.9 71.5 2.00
5 20.5 23.2 78.5 14.0
6 54.0 72.6 65.0 7.08
7 57.3 75.9 65.0 10.1
8 60.1 78.2 68.3 13.8
9 58.9 76.5 52.0 7.26
10 44.5 57.4 58.5 5.12
11 30.9 39.9 38.7 8.72

Total Absolute Resources 5.05 M 3.28 M 15.4 K 31.5 MB
Used Across All FPGAs

Total Resources 1.04 M 522 K 1.9 K 34.6 MB
Available Per FPGA

is not fully used.). For perspective, the total resources available on an individual FPGA are shown
at the bottom of Table 5. This FPGA is approximately equivalent to a single SLR of the VU9P FPGA
in the Amazon F1 instance (each VU9P having three SLRs) [53]. For further perspective, we can
also compare this to the Xilinx Alveo U250 [54]. Our current utilization is DSP limited, and we
could fit our entire ResNet-50 implementation on two Alveo U250 boards, where the U250 board
has 12.2K DSPs.

Last, we would like to contrast this implementation with previous implementations of ResNet-
50. The design flow of AIgean differs from previous 8-bit implementations of ResNet-50 in that
no overlay is used, and each layer is implemented separately. In this scenario, it is possible to
continuously stream images through the implementation without having to wait for an image to
be complete. With the overlay architecture, the images are streamed through each layer to a buffer
and then subsequent layers are loaded and the next layer is streamed. As a consequence, a scheme
is needed for buffering of each input. Additionally, some time is needed to switch between layers.
With the AIgean design flow, the whole network exists on the FPGA fabric, and so images can be
continuously pumped through. This leads to a more efficient use of multiplier resources, at a cost
of additional resources to route individual layers together. Since images are continuously pumped
through, we achieve batch-1 streaming. Additionally, since we are continuously pumping images
through, the amount of buffering between the layers is limited to just the partial image that is
needed for matrix multiplications of the CNN applied to nearby pixels.

To understand the efficient use of resources, we compute the total number of multiplication op-
erations needed for a perfectly efficient FPGA clocked at 200 MHz. With our implementation of
ResNet-50, we find a total of 4B multiplications, which if we divide by 3 ×105 clocks to achieve a
1.5-ms latency at 200 MHz yields a total of 13,500 multiplications per cycle. Our current implemen-
tation uses 15,419 DSPs, which is slightly more due to the fact that many of the individual layers are
tuned to a latency that is actually below 1.5 ms. The number of DSPs can be reduced through two
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means: first, through the sharing of DSPs, which is only partially implemented here, and second,
through the use of a faster clock frequency. The sharing of DSPs would lead to roughly a factor
of 2 reduction in DSPs. A faster clock frequency would yield a lower latency for the same number
of DSPs. Since each multiplier unit is mapped directly to a specific multiplication within the net-
work, the only way to inefficiently use the DSP resources results from the case where an allowed
reuse parameter for a specific latency is not near the desired throughput and, as a consequence,
the individual layer has a significantly lower latency than its neighboring layers.

Adjustment of the reuse parameter effectively modifies the initiation interval of each layer. A
reuse factor of 5,000, corresponds to a layer that has an initiation interval of 5,000. To efficiently
adjust the reuse parameters with hls4ml, the reuse needs to split the dense matrix multiply em-
bedded within the layer across DSPs so as to maintain a regular systolic-array architecture. As a
consequence, optimal implementations of the reuse can only be certain numbers, which is deter-
mined by the number of input and output features of each layer. Our current implementation is
near ideal since 1.5 ms allows for a consistent set of reuse values that are near the 1.5-ms ideal
latency point. To achieve a higher throughput, we need to adjust the reuse factor to the desired
throughput and re-implement the whole design. Although this procedure requires a lot of comput-
ing, the whole procedure is automated through the AIgean design flow.

When adjusting the reuse factor, we observe a direct correlation with the number of DSPs. Halv-
ing the reuse factor will halve the initiation interval of the matrix multiply within a layer, and it
will also double the number of DSPs. Flip-Flops, and LUTs will not change as significantly since
they largely exist to store partial images. BlockRAMs are used primarily to store weights of the
neural network on the FPGA. Their second use is to act as a buffer between layers. As a conse-
quence, the BlockRAM resources will not change significantly with reuse factor. In this current
implementation, since DSP sharing of the multiplications is only partially used, the resulting re-
sources are more consistent with a ResNet-50 implementation having a latency of roughly half the
observed latency (0.75 ms).

Faster implementations of ResNet-50 are possible by adjusting the reuse factor. However, for
CNNs, a lower bound is present in the current, pixel-by-pixel implementation of the algorithm. The
lower bound results from the fact that for each pixel that streams through the algorithm, there is a
one clock latency. Furthermore, there is an additional latency of three clocks to prepare the inputs
to run the matrix multiplication. For layers within the network, where there are many pixels, such
as the first layer, the ultimate latency is limited by these operations. Applying this limit to the first
layer of ResNet-50, we find that the single layer throughput is bounded to be greater than roughly
0.4 ms. Lower single-inference latencies can still be achieved by splitting the image into sub-images
and simultaneously streaming these sub-image streams into separate, cloned implementations of
the chosen layer. Although the use of multiple streams effectively reduces the single inference
throughput by the (number of streams)−1, it has the added cost of increasing the resources by the
number of streams.

6 FUTURE WORK
The work demonstrated within this article is the first prototype of what is possible with an open
multi-FPGA ML platform. This leaves much room to improve in all areas of the ML stack in Figure 1.
Within the hardware section, there leaves much room for optimization of the IP cores themselves.
Furthermore, the potential for splitting images into multiple streams can effectively block any
throughput limitation at the cost of large resource usage, as well as larger throughput.

Once the IP cores are further optimized, it is our hope that the communication once again is the
bottleneck. When this is the case, then we should explore more intelligent partitioning schemes
that limit communication across the FPGA boundary. At the moment, this is a greedy solution
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looking solely at resource utilization without taking into consideration the communication pat-
terns between IP cores within the cluster.

Finally, hls4ml has the flexibility to run a broad range of other network architectures including
transformer networks [55] and binary/ternary networks [56]. This work and new developments
with hls4ml can be directly integrated into the AIgean flow. We can now explore a broad range of
deep learning architectures with many different sizes across multiple FPGAs.

7 CONCLUSION
AIgean is a platform for mapping ML applications onto a cluster of network-connected FPGAs. This
is much more scalable and has higher performance for computing than using the FPGA vendor
tools, which are principally targeted at a single server with a handful of PCIe-connected FPGAs.
Results from our initial implementations of actual networks show the benefits of using FPGAs
for low-latency applications. We have also built two implementations of ResNet-50 to show that
AIgean can implement very large networks.

The structure of AIgean is a number of abstraction layers spanning the entire computing stack
from the ML development layer at the top to the physical hardware layer at the computing and
communication layer implemented in the FPGA. This gives multiple opportunities to optimize
the computing stack and for research depending on the area of interest and the design expertise
available—that is, from ML algorithms down to low-level hardware design.

The layered approach makes it easier to implement AIgean because it is possible to leverage
the Galapagos multi-FPGA platform and only add an additional application bridge to the Galapa-
gos library. It also makes it possible to quickly add automation in the translation of the hls4ml
protocols and interfaces to the Galapagos protocol.

By leveraging Galapagos, AIgean is also portable to other FPGA platforms as long as the low-
level hypervisor layer in the FPGA is created. AIgean also leverages the ability of Galapagos to
deploy computing kernels to either CPUs or FPGAs such that an application can be first debugged
and characterized entirely in software before committing all or parts of it to FPGA hardware.

The experience of developing AIgean has demonstrated the challenges of building a multi-FPGA
application development platform that is portable across many FPGA boards, but it proves that it
is feasible in a reasonable amount of time.

AIgean is available as an open source project and can be downloaded at https://github.com/UofT-
HPRC/AIgean.

A APPENDIX
This is an appendix covering details on both hls4ml and Galapagos as well as the details about the
models we used in Section 5.

A.1 HLS4ML

Hls4ml was initially designed to address the necessity for ultra low latency inference. In this con-
text, it was developed to allow for the possibility of deep neural network inference at timescales
below 1μs that are pipelined with initiation intervals that are a few tens of nanoseconds. Such
low-latency, high throughput networks are required to process information at the Large Hadron
Collider in an all FPGA system with an approximate throughput of 1 Petabit/s. In this context, algo-
rithms were explicitly designed to achieve the fastest possible latency at the cost of utilizing more
hardware. In place of reusing network layers, deep neural networks are unrolled on the processor
to allow for sequential, batch-1 processing of network inferences with initiation intervals smaller
than the total network latency. As a result of this design flow, the focus on hls4ml was towards
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the development of small networks that used a large amount of resources but that could also run
at very low latencies.

Extending this paradigm to larger networks, such as ResNet-50, was not considered part of the
scope of hls4ml since such large networks would require resources greater than a single FPGA.
As a consequence, hls4ml did not contain large layer implementations. However, with AIgean,
through the distribution of a single network across many FPGAs, the possibility of extensive, low-
latency networks under the hls4ml design flow is achievable. Consequently, hls4ml was exten-
sively adapted to handle these large networks to create AIgean. In particular, we created or heavily
adapted implementations of many new layers of hls4ml, including:
• Dense/Linear Layer
• CNN Layer
• Pooling Layer
• Split Layer
• Merge Layer

These layers make up the core of most deep neural networks used. Furthermore, the large layer
design flow established through the development of AIgean will enable the fast implementation of
other layers following the AIgean implementations. In this appendix, we will outline the various
adaptations needed in hls4ml to run a wide variety of algorithms at large scales. Furthermore, we
will comment on new features added to hls4ml that enhance the core software framework and
enables large model, high throughput implementations.

A.1.1 Design Flow. To enable large CNN layers within hls4ml, the flow of hls4ml was re-
factorized to work at longer latencies. In the original hls4ml implementation, to run NNs at ultra
fast latencies, layers were connected through large arrays written simultaneously. For AIgean, we
added the option of streaming arrays that allow for the outputs to be arrays of streams, which are
then interfaced with Galapagos. Arrays of streams allow for the ability to stream out partial results
between layers. This element is crucial for processing data under a CNN where the application of
the same CNN kernel is repeated many times on a different part of a larger image. Arrays of
streams differ from other network architectures, particularly FINN [26], in that there is still the
potential for substantial throughput between layers since the array size can be adjusted to the
latency requirements.

A.1.2 Neural Network Weights. Within hls4ml, the NN weights are compiled and embedded
within the HLS project. While this feature can allow for optimized place and route of neural net-
works that account for unstructured pruning, this adds a complexity to the HLS compilation that
can substantially slow down the compilation time. To avoid this and to have the added flexibility
of weight updates, we have added the functionality to treat the weights as external Block RAM or
UltraRAM ports. The use of external ports keep the total HLS compilation time to under one hour
per layer.

A.1.3 Dense/Linear Layer. A single dense (tf notation) or linear (PyTorch notation) layer is the
core of most NN implementations where matrix multiplication is performed. In hls4ml, this con-
sists of a systolic array with a dedicated size compiled directly for that designed layer. In particular,
the parameter reuse is built into the dense layer construction, and it dictates the size of the sys-
tolic array through the use of DSPs. To adapt the dense layer for AIgean we added the possibility
of streaming between layers. To account for partial images of streams, we embedded NN flattening
within the dense layer. The dense layer multiplications were modified to allow for the option of
merging two 8-bit multiplies into one single DSP operation [57].
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A.1.4 CNN Layer. To avoid large outputs and to improve the overall throughput, a new CNN
layer was developed, which operates on an image pixel by pixel. In this scenario, images are
streamed through an array of streams between layers, with each depth element in the stream
corresponding to a single pixel of an image. Pixels are then streamed one at a time into a layer,
and the resulting output pixel is streamed to the next set of layers. The partial image is stored
within a layer using a line buffer implementation. The line buffer is implemented as an array of
shift registers, and we rely on the specialized HLS shift register objects to ensure the final imple-
mentation uses explicit shift register logic elements (SRLs). The line buffer is further optimized
to store the minimal number of pixels required by the kernel size (Convolution kernel height ×
row). An intermediate buffer is also used to store the kernel window before the matrix multiply
needed for the convolution kernel. The matrix multiplication within the CNN kernel uses the de-
fault dense layer within hls4ml. The total latency before the kernel matrix multiplication takes
three clocks (one for reading the inputs, one for the appreciation of the shift register, and one for
filling the kernel window).

The reuse factor for the CNN kernel, thus, defines the reuse per output pixel (i.e., the reuse is
tied to the matrix multiplication for the Kernel). For the base implementation, the overall latency
of the convolution kernel is five clocks per output pixel + the additional reuse factor for the dense
layer. This five-clock overhead can be reduced for small networks by utilizing a fully partitioned
line buffer at the cost of more resources. Zero Padding for the individual layers is built into the
layer implementations.

A.1.5 Pooling Layer. In addition to a CNN layer implementation, a pooling layer is added fol-
lowing the same data flow as in the CNNs (array of streams). The pooling layer implementation is
similar to the CNN layer, except that it performs pooling instead of the convolution kernel matrix
multiplication present in the CNN.

A.1.6 Split/Merge Layers. To allow for the possibility of ResNet-50, split and merge layers are
added to hls4ml using the array of streams data flow. Since the splitting of arrays of streams
can use a large number of resources, the split and merge layers are generated with the ability to
time-multiplex and de-multiplex the streams. This leads to a longer latency to perform the layer
operation. However, the throughput for these layers is typically heavily subdominant to other
layers in a network.

A.1.7 Reuse Factor. Hls4ml has one main tuneable parameter, the reuse factor. The reuse factor
defines the usage parameter for how often a DSP is reused within a matrix multiply. For example,
a reuse factor of 25 implies that a single DSP will be used 25 times to perform single matrix mul-
tiplication. As a consequence, the initiation interval of the layer with reuse 25 would be 25 clocks.
Furthermore, the number of DSPs used would be equal to the total number of multiplications in
that layer divided by the reuse factor. To ensure a regular architecture, the reuse factor needs to
be a multiple of the number of total multiplications used in the layer. As an example, consider the
last convolutional layer in ResNet-50. This layer consists of matrix multiplication of a (1 × 1 pixel
kernel) with 512 input features and 2048 output features or 1.04M multiplications. For a 0.25ms
implementation of ResNet-50, a reuse factor of 1024 is used, leading to an initiation interval of
1024 clocks, and 1024 DSPs without DSP merging, and 512 with DSP merging. Furthermore, this
convolution kernel is run on a 7 × 7 input image or 49 separate times on ResNet-50 leading to a
total latency of exactly 0.25ms.

The reuse factor for the CNN points directly to the reuse factor of the Dense layer implemen-
tation. This reuse factor of the dense layer has two internal implementations depending on the
size of the reuse factor. For instances where the reuse factor is smaller than the number of input
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features, the systolic array is split across the input regions so that neighbouring multiplications
are accumulated into the same or adjacent output feature. For instances where the reuse factor
is larger than the number of inputs, the systolic array is split across the output feature. The in-
put features are multiplexed and multiplied before being accumulated across the output features.
These optimizations were chosen to ensure optimal resource usage in the matrix multiply to allow
for large matrix multiplications with millions of weights. As a consequence of these choices, cer-
tain reuse factors that are multiples of the inputs and outputs are particularly resource optimized.
Within hls4ml code generation, an automatic adjustment of reuse factor is performed to allow for
the nearest optimized reuse factor for that layer.

To allow for a balanced throughput between the layers, we have modified the reuse factor for
AIgean kernels to account for the per layer throughput. Instead of defining the DSP reuse factor
for the network, the reuse factor per layer is dynamically computed based on a desired per-layer
throughput for the total network. To compute the optimized reuse factor, we rely on an analytic
formula of the total layer throughput based on the reuse factor. This analytic formula yielding the
total throughput per layer, R, in clocks, is defined as

R = Npixel

(
6 + NinNout

r

)
(1)

Where in this case, r is the reuse factor per layer, and Npixel is the number of pixels in a CNN layer,
Nin is the number of input features and Nout is the number of output features. The additional 6
approximates the number of clocks per pixel that a single layer requires to perform a shift and fill
and reuse one matrix multiply; this presents a lower bound on the latency for a single CNN layer
of 6Npixel. Ultimately, this limitation is soft since multiple CNN layers can be used on separate parts
of an image. Within the hls4ml configuration, the throughput latency R is defined in clocks before
the project generation, and then the reuse factors are automatically computed in the project gen-
eration. As a consequence, to change the throughput, one need only adjust to the desired latency
R, regenerate and recompile the project.

A.2 Models
In this appendix, we present a detailed description of each NN model used in this paper. The choice
of these architectures is partly motivated by use in high energy physics, where low-latency deep
neural network inference is an essential tool for operation. As a consequence, we comment on the
model architecture and its application to problems within physics.

A.2.1 Autoencoder. Autoencoders are unsupervised networks often used to identify anomalous
features. By creating an information bottleneck within the network, autoencoders can compress
and classify detector level information. The autoencoder considered in this example is capable
of identifying LHC collisions that occur anomalously at the LHC. In particular, this network can
identify top quark pair productions, Higgs boson pair production, and other more exotic final
states.

At the Large Hadron Collider, this network has a direct application through the integration
of data scouting/trigger level analyses [58]. Data scouting is a process whereby partially recon-
structed collisions are read out and processed to investigate collisions that are normally thrown
out in the LHC data flow chain. This technique is particularly powerful in the search for Dark Mat-
ter [59]. In this case, events can be analyzed at a rate as large as 40 MHz, and the autoencoder can
be used to create an “anomaly stream” at a reduced rate. With a maximum data rate of the order
of 50 Terabits per second within the LHC trigger “scouting” stream, throughput and low latency
are critical, since any delay in even a single inference would require significantly larger buffers.
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Distribution of this system onto multiple FPGAs brings a significant advantage since it would allow
for very low latency while preserving the ability to pipeline events with small initiation interval.

The autoencoder network is trained using events that involve known and understood physics
processes. Thus, any event that cannot be encoded and decoded accurately is a potential candidate
for new physics searches. The inputs and outputs to the network are 276 expert event features. The
number of hidden features in the first layer is 276. The second layer goes down by 1/3 to 184, the
third by 1/2 to 92, and remains having 92 features for the next 6 layers before the hidden features
expand back symmetrically to 276 output features. The compression factor in the bottleneck is
thus 3, and in total, the network consists of 12 fully connected layers and over 300,000 weights.
Between the fully connected layers Relu activation is used.

A.2.2 ResNet-50. Lastly, we consider the well-known ResNet-50 benchmark. ResNet-50 is a
deep neural network used for image processing [60]. The ResNet-50 architecture has been shown
to have a lot of versatility. In particular, quantized ResNet-50 has been retrained for the process
of top quark identification within high energy physics, leading to results that are comparable to
world leading algorithms [61]. More recently, ResNet-50 has become the standard algorithm for
benchmarking algorithm performance. With the development of a quantized neural network, the
8-bit implementation of ResNet-50 has taken over the floating point implementation as the stan-
dard benchmarking algorithm for neural network inference. The 8-bit ResNet-50 has been shown
to yield almost identical performance to the full ResNet-50 implementation with the added advan-
tage of 8-bit operations.

For the implementation of ResNet-50 considered in this paper, we use the 8-bit implementation.
The network consists of 50 convolutional layers, 2 pooling layers, a dense layer, 16 merge layers,
16 split layers, and 50 batch normalization layers. To minimize the total amount of computation,
the batch normalization layers are fused with the convolutional layers. ResNet-50 takes an input
image that is 224 × 224 pixels and will iteratively reduce the size of the image from 224 × 224 to
a final image that is 7 × 7 pixels. The total number of multiplications present in ResNet-50 is 4.8
Billion. For a target throughput of 650 Hz, this translates to 3.1 trillion multiplications per second or
15000 continuous multiplications at 200 MHz. In the AIgean implementation, we perform two 8-bit
multiplications per DSP. As a consequence, we require 7.5k DSPs for the full implementation if we
have 100% efficiency. Our actual usage is 9.9k DSPs, corresponding to an aggregate 77% efficiency.
The reason for the 77% efficient computation, and not higher, is a result of the fact that the ResNet-
50 target design was actually synthesized for a throughput faster than 1.5 ms per image to ensure
the target latency is met. The latency range of each layer ranges between 1.0 ms to 1.4 ms, with
most layers having a throughput of 1.3 ms.

A.3 Galapagos
Galapagos is a heterogeneous deployment stack that allows users to deploy streaming IP cores on
a cluster of FPGAs and CPUs. First we will describe the high-level abstraction model of Galapagos
and then delve into each layer of abstraction that we implemented.

A.3.1 High-Level Abstraction. The end goal of Galapagos is to be able to overlay a data flow
graph of streaming IP cores to a cluster of devices, without the user having to worry about how
to physically connect these IP cores amongst each other on one device as well as across devices.
These IP cores should be able to address their destinations with respect to their target IP core,
independent to how and where the IP core is implemented and placed. The IP cores themselves
use AXI-stream to communicate with each other, with a destination side-channel. This is typically
used within a single FPGA for routing amongst AXI-stream kernels. Our goal is to be able to
provide this seamlessly across many devices to provide the user an abstraction similar to a single
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Fig. 7. An overview of Galapagos. The user provides the implementation and network agnostic data flow
graph of streaming IP cores, and our tool flow implements the right hand side, with the appropriate bridging
to connect the devices together.

Fig. 8. An example of the lowest level of abstraction. With the abstraction provided, all of these streaming
devices have a consistent interface and can communicate with one another

device. This can be seen as AXI-stream over the data center. We accomplish this by automating
the encapsulation and decapsulation of AXI-stream packets with higher level network protocols.
Figure 7 shows the high-level overview of Galapagos. On the left-hand side is a placement and
implementation agnostic data-flow graph of streaming IP cores, and the right-hand side is how they
are placed and implemented. Prior to this work the user had to provide configuration parameters
to define the mapping of kernels to devices, but even that is now abstracted away with a partitioner.
While the vendor tool kits provide the ability to add networking to a design [62, 63] the application
must be explicitly aware of the networking.

Galapagos is built from the bottom up through several layers of the stack. From the bottom,
individual devices are abstracted to appear to be streaming devices. This is shown in Figure 8. We
have implemented this on different FPGAs and CPUs but this could be extended to other devices
such as IoT sensors. Once each device is abstracted we can connect them together seamlessly at
the protocol level. Furthermore we can look at a finer granularity of IP cores that can run on
these devices, and even migrate implementations of these nodes as long as they have a consistent
interface. Galapagos provides higher levels of abstraction to place streaming IP cores on these
devices and connect and route amongst these IP cores on one device as well as target multiple
devices. This is done through the implementation of the following layers of the stack: Physical
Hardware and Connectivity, Hypervisor, Middleware Layer, and the Communication Layer.
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Fig. 9. Two examples of “data centers” where we deployed Galapagos.

A.3.2 Physical Hardware and Connectivity. This layer of the stack refers to the physical devices
you would have in your cluster and how they are connected. Currently we have created clusters of
FPGAs (The Fidus Sidwinder, Alphadata 7v3, Pynq ZC702), x86 CPUs, and connectivity using 1G
Ethernet, 10G SFP, and 100G QSFP. Currently the requirement for these devices is to have some
connection to the network that we can connect to a network switch, but even this requirement can
be abstracted in some way by the Hypervisor above. We have tested the same abstraction layers on
these different devices to show the consistency of our higher levels of abstraction. Two examples
of Galapagos setups can be seen in Figure 9.

A.3.3 Hypervisor. This layer of the stack refers to the abstraction of the physical device to
standardize their interfaces to appear like Figure 8. Our standard model assumes a control path
and a data path. The control path is used for configuration, programming, and monitoring the
devices. Typically in our FPGAs we either use PCIe for FPGAs that do not have a tightly coupled
ARM (Alphadata 7v3), or AXI for FPGAs with a tightly coupled ARM (Fidus Sidewinder, Pynq
ZC702). The data path is used by the application IP cores to communicate off-chip to other nodes
within the cluster. For the hypervisor to comply with the rest of the layers of the stack, it has to
provide an AXI-stream interface. This standardization makes it simple for a user to add their own
board within the stack. All they would need to do is provide an AXI-stream interface that can
connect to a network switch. An example FPGA hypervisor is shown in Figure 10.

A.3.4 Middleware and Communication Layers. The middleware is responsible for partitioning
the kernels onto different FPGAs. This was previously done by a user-specified configuration, that
provides a hint to the our middleware layer to place kernels on different devices. However we
now automate this partitioning. This is described in Section 4.1.3. Once we have the placement
of kernels, the middleware then places bridges to allow for kernels to communicate off-chip. The
hypervisor guarantees an AXI-stream without a side channel available for the destination field.
However with a Galapagos router and bridge we can take AXI-stream packets destined for off-chip
and append the destination as a header. The Galapagos router has a routing table that specifies the
location of all kernels by destination within the cluster. Furthermore, the off-chip communication
can be done over various network communication protocols, handled by the communication layer.
Depending on the destination FPGA, our network bridge encapsulates the packet with the correct
network header. The network bridge is specific for each off-chip communication protocol the user
wishes to support. If the user wishes to implement Galapagos on top of their own network protocol,
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Fig. 10. An example Galapagos FPGA Hypervisor.

Fig. 11. Automated Middleware IP cores in Galapagos.

they would need to supply a bridge that can translate their network packets into AXI-stream pack-
ets with a Galapagos header. The formation of the Galapagos router, routing table, and network
bridges is all automated. The IP cores generated by the Middleware are shown in Figure 11.
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Deep neural networks use skip connections to improve training convergence. However, these skip connections are costly
in hardware, requiring extra bufers and increasing on- and of-chip memory utilization and bandwidth requirements. In
this paper, we show that skip connections can be optimized for hardware when tackled with a hardware-software codesign
approach. We argue that while a network’s skip connections are needed for the network to learn, they can later be removed
or shortened to provide a more hardware eicient implementation with minimal to no accuracy loss. We introduce Tailor,
a codesign tool whose hardware-aware training algorithm gradually removes or shortens a fully trained network’s skip
connections to lower their hardware cost. Tailor improves resource utilization by up to 34% for BRAMs, 13% for FFs, and 16%
for LUTs for on-chip, datalow-style architectures. Tailor increases performance by 30% and reduces memory bandwidth by
45% for a 2D processing element array architecture.

CCS Concepts: · Hardware → Hardware-software codesign; · Computer systems organization → Neural networks.

Additional Key Words and Phrases: Hardware-software co-design, neural networks

1 INTRODUCTION
Convolutional neural networks (NNs) often rely on skip connectionsÐidentity functions that combine the outputs
of diferent layersÐto improve training convergence [17, 45]. Skip connections help mitigate the vanishing
gradient problem [4, 15] that occurs when training large CNNs, which helps increase the network’s accuracy.
Skip connections allow NNs to have fewer ilters/weights than architectures that lack skip connections [17], such
as VGG [43].

However, skip connections are generally detrimental to hardware eiciency. They have an irregular design
that is ill-suited for hardware acceleration. This is due to their long lifetimes, which span several NN layers,
increasing memory utilization and bandwidth requirements. This is particularly true in ResNets [17], which
introduced skip connections that spanned across ive layers: two convolutions, two batch normalizations (BNs),
and a ReLU activation [16, 34] (see Fig. 1a). The skip connection involves minimal computationÐit is either the
identity or a 1×1 convolutional layer for scalingÐbut it extends the necessary lifespan of the input data. Thus,
we must store skip connection data for the duration of time needed to compute the ive NN layers. In total, a
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(a) Traditional (b) Shortened (c) None

Fig. 1. Neural networks with traditional skip connections, like ResNet (a), have ineficient hardware implementations because
the skip connection data must be preserved in memory during five layers of computation. This irregular topology increases
memory resources and bandwidth. A more regular topology with reduced skip connection lifetimes would use fewer resources.
Tailor achieves this by shortening skip connections (b) or by eliminating them completely (c). Skip connections are in red.

model’s skip connection data accounts for ∼10% of its memory bandwidth either on or of chip. Bufering skip
connections on chip increases on-chip memory utilization, whereas moving them of chip not only increases
of-chip memory bandwidth but also requires extra control logic for scheduling [29, 30].

Optimizing skip connections requires careful hardware-software codesign. Skip connections are crucial for
model convergence; naively removing them to reduce hardware resources leads to low accuracy [32, 50]. Instead,
we must codesign how the model is (1) trained and (2) implemented in hardware to achieve a model that is both
accurate and resource-eicient.

We develop Tailor, a codesign method that gradually alters a NN’s skip connections during training to produce
a highly accurate and resource-eicient NN. Our results in Sec. 4 show that Tailor can remove or shorten skip
connections to achieve topologically regular NNs (Fig. 1b and 1c) that substantially reduce hardware resources,
reduce memory bandwidth, and increase performance with minimal to no accuracy loss.

Tailor takes an existing pre-trained model and reduces the hardware complexity of its skip connections with
minimal to no accuracy loss. Moreover, Tailor exploits the lexiblity of the FPGA architecture to customize the
skip connection memories, which is not possible on a GPU or CPU. Tailor accomplishes this dynamically during
retraining in one of two ways: (1) SkipRemover removes the skip connections altogether (Fig. 1c) to eliminate
all associated hardware complications or (2) SkipShortener shortens each skip connection by splitting it into
multiple shorter ones (Fig. 1b).

We evaluate Tailor’s applicability and beneit on ResNets [17, 18] and QuartzNets [23]Ðtwo important classes
of NNs that contain skip connections of varying lengths. We also study implementing skip connections with an
on-chip, datalow-style FPGA architecture using hls4ml [2, 12] and a 2D array of multiply-accumulate processing
elements. Tailor reduces resource utilization of hls4ml architectures by up to 34% for BRAMs, 13% for FFs, and
16% for LUTs. Tailor increases the performance of 2D array architecture by 30% and reduces memory bandwidth
by 45%..

Tailor’s hardware-software codesign approach reduces hardware complexity and resources by altering skip
connections dynamically during retraining. Our contributions are:
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• the Tailor software methodology of removing or shortening skip connections from existing NNs with
minimal to no loss in accuracy,

• the Tailor hardware designs that exploit FPGA-speciic architecture optimizations, which are not possible
on GPU/CPU, to produce less resource-intensive skip connection implementations,

• experiments demonstrating that SkipShortener and SkipRemover models are implemented more ei-
ciently with better performance and resource utilization than their traditional skip connection counterparts,

• and public release of the Tailor hardware-software codesign framework [1].
In Sec. 2, we review related work. In Sec. 3, we explain how Tailor’s NN alterations optimize the hardware

architecture. We then describe Tailor’s two training methods, SkipRemover and SkipShortener, that alter
skip connections with little to no loss in accuracy. Sec. 4 provides training, quantization, and hardware results
for SkipRemover and SkipShortener. Sec. 5 discusses the tradeofs Tailor presents between accuracy and
hardware resource reductions. Sec. 6 concludes the paper.

2 BACKGROUND

2.1 Removing Skip Connections
While skip connection removal has been studied before [8, 25, 32, 50, 51], prior work is lacking in several ways:
(1) preliminary work [32, 50, 51] only studies shallow models (up to 34 layers); (2) Li et al. [25] do not remove
all of the skip connections in the models they evaluate; (3) Ding et al. [8] and Li et al. [25] both have limited
architectural evaluations (e.g., GPU & mobile) that do not consider the highly customized skip connections
memories enabled by FPGAs; and (4) Ding et al. [8] require starting with an entirely new NN topology whose
skip connections are removable.

Monti et al. [32] start with a standard ResNet and introduce a new training method. This method uses an
objective function that penalizes the skip connections and phases them out by the end of the training. This
technique has only been applied to smaller ResNets (18 to 34 layers) with a small decrease in accuracy between
0.5 and 3%.

Zagoruyko and Komodakis [50] also develop a method for removing skip connections in a NN. They replace
skip connections with Dirac parameterization, creating a new NN called DiracNet. The Dirac parameterization is
shown in Eq. 1,

DiracNet [50]: � = � (� +��) (1)
ResNet [17]: � = � + � (��) , (2)

where � (·) is the nonlinear activation function,� is the layer weight matrix, � is the layer input, and � is the
layer output. For ease of comparison with ResNets, Eq. 2 is simpliied to show only one convolutional layer. In
fact, skip connections in ResNets hop over more than one convolutional layer, while in DiracNets, the identity
mapping is over one single convolutional layer. Therefore, the weights and the identity mapping of the input can
be folded because � +�� = (� +� )� . This change requires DiracNets to widen the NN layers in the ResNets
that they started with. The authors showed that their technique could be used to create models with up to 34
layers. Although it works for shallower models, DiracNets show a decrease in accuracy between 0.5% and 1.5%
compared to ResNets. In contrast, SkipRemover eliminates skip connections without widening the layers in the
NN and does not need to make this accuracy tradeof.

Li et al. [25] develop residual distillation (RD), which is a modiied knowledge distillation framework. RD
starts with a ResNet as the teacher and a plain CNN without skip connections as the student. Unlike standard
knowledge distillation, RD passes the teacher’s gradients to the student during training. This difers from Tailor
because RD starts with a student model without skip connections, whereas Tailor gradually modiies a model’s
skip connections every few epochs during training without sharing gradients. Moreover, while RD removes all
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skip connections from models evaluated on simpler datasets like CIFAR-10 and CIFAR-100 [24], it fails to remove
all skip connections in its ImageNet evaluation, leaving 18% of them in the network, which is a costly choice. In
our ImageNet evaluation (see Sec. 4.1), our SkipRemover method removes all skip connections with minimal
accuracy loss.

Ding et al. [8] introduce a new model architecture RepVGG, which trains using 3×3 convolutional layers that
are each skipped over by both a 1×1 convolution and an identity connection. At inference time, these connections
can be re-parameterized into the parameters of the 3×3 convolutional layers. While RepVGG is more accurate
than our SkipRemover model, it requires starting from their specialized training model architecture. This is costly
to developers who have already trained a model with skip connections on their dataset. Similarly, transferring
a pre-trained RepVGG model to a new dataset via transfer learning can be time-consuming given the many
diferent methods [36, 47, 52] to evaluate. As such, Tailor is ideal for these developers because it modiies the
skip connections of an existing pre-trained model to be more resource-eicient with minimal to no accuracy loss.
Developers can leverage the training they have already done and need not start from scratch with a brand new
RepVGG architecture.

2.2 Simplifying Skip Connection Hardware
ShuleNet [28], DiracDeltaNet [48], and DenseNet [20] simplify skip connections by making them concatenative,
i.e., they concatenate, rather than add, the skip connection data to the output of a layer. Concatenative skip
connections take advantage of the fact that spatially consecutive memory accesses are typically faster than
random accesses. This concatenation and of-chip data movement is possible using a simple controller (e.g., DMA
engine).

Tailor uses two techniques to simplify the skip connection hardware. SkipRemover eliminates all logic
and memory needed for a skip connection, making them less expensive than concatenative skip connections.
Careful retraining allows skip connection removal in smaller networks with no degradation in accuracy. For
larger networks, SkipShortener shortens the additive skip connections. By reducing their lifespans, the hard-
ware implementation requires fewer resources. SkipShortener is not necessarily simpler than ShuleNet [28]
or DiracDeltaNet [48]. However, these concatenative skip connections have only been evaluated on image
classiication and object detection tasks. In our work, we demonstrate our SkipRemover and SkipShortener
methods on multifarious NNs and classiication tasks, namely image-classifying ResNets of varying depths, DNA-
basecalling QuartzNet-5×5, and automatic-speech-recognizing QuartzNet-10×5. With respect to DenseNet [20],
SkipShortener ResNets use much less memory and bandwidth because DenseNet relies on signiicantly more
skip connections throughout its NN. Given a NN with � layers, DenseNet needs the memory and bandwidth to
execute �(� + 1)/2 concatenative skip connections, compared with SkipShortener ResNets’ mere � skip connec-
tions. With so many more skip connections, DenseNet is more expensive for hardware than SkipShortener
ResNets.

Finally, all these techniques simplify skip connection hardware from the outset, building their models with
modiied skip connections and then training them from scratch. Tailor difers because its hardware-aware
training method dynamically alters the skip connections every few epochs during training, taking advantage of
what the NN has learned with skip connections. Thus Tailor allows the NN to gradually adapt to shortened skip
connections (SkipShortener) or none at all (SkipRemover).

3 TAILOR
Skip connections are important for training (to provide good accuracy), yet complicate implementation (requiring
additional hardware resources and reducing performance). Tailor modiies skip connections to make their
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(a) Traditional skip connection architecture

(b) No skip connection architecture (c) Shortened skip architecture

Fig. 2. The hls4ml hardware architectures for traditional, shortened, and no skip connections. hls4ml pipelines each layer as
is common for latency-critical tasks in resource-constrained environments [2, 12]. The three architectures correspond to a
ResNet implemented with a traditional skip connection (a), shortened skip connections (b), and no skip connections (c). Note
that we combine the batch normalization parameters with the kernel, as is commonly done [21].

hardware implementation more eicient. Tailor uses a retraining method that gradually alters the network,
resulting in little to no loss in accuracy.

3.1 Hardware Design
Fig. 2 shows three hardware implementations for NNs with traditional, shortened, and no-skip connections.
The implementations correspond to accelerators produced by hls4mlÐa tool that translates Python models into
high-level synthesis code [11]. hls4ml creates a separate datapath for each layer and performs task-level pipelining
across the layers. The layers communicate using FIFOs (AXI streams). Everything encapsulated by a dashed
line resides in one pipeline stage. The inputs are fed into the architecture using a stream, and the results are
given as an output stream. The weights are all stored on-chip, and all the internal results are stored on-chip.
We evaluate each of these designs on FPGA later in Sec. 4.2 along with another style of architecture using a 2D
array of processing elements. Tailor allows us to trade of between accuracy, performance, and resource usage
through co-design of the neural network using hardware-aware training.

Fig. 2a shows the hardware needed to implement a single ResNet’s skip connection. Note that in all of the
designs shown in Fig. 2, we fuse the batch normalization parameters with the kernel, as is commonly done [21].
To be low latency and high throughput, the design uses task-level pipelining (i.e., the HLS datalow pragma) for
each NN layer, or a small grouping of layers, and streams the data between each datalow stage using irst-in
irst-out bufers (FIFOs). Since FIFOs can only be read from once, skip connections complicate the design. We
must spend a datalow stage on cloning the skip connection data from its input FIFO into two other FIFOs so that
it can be read twice for its two datapaths. The irst path goes through a collection of convolutional and ReLU
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layers, and the second stores the data in a FIFO exclusive to skip connections (skip FIFO). Once the data has gone
through the irst path, we read from the skip FIFO to perform the addition to complete the skip connection’s
identity function. As such, implementing a skip connection on chip requires several extra FIFOs for handling the
skip connection data, and this in turn increases on-chip memory resource utilization.

Ideally, we would eliminate the skip connections. As seen in Fig. 2b, without skip connections, we cut the
number of datalow stages in half (no more Clone, Add, or ReLU stages) and use less than half of the requisite
FIFOs compared with Fig. 2a. All we need to do is pass the data through the convolutional and ReLU layers. This
reduces resource utilization by up to 16% (see Sec. 4.2).

It may not be possible to remove the skip connections because they are essential for training convergence.
In these cases, shortening the skip connections can simplify their hardware implementation. Fig. 2c shows a
modiied network with shortened skip connections such that each skip connection’s lifespan resides within a single
datalow stage. We do not need additional datalow stages to clone skip connection data. The shorter lifespans
allow the shortened skip connections to be stored in shift registers, which can be implemented using the more
abundant FFs as opposed to BRAMs, which is used in the traditional skip connection’s hardware design. In this
way, we exploit the short skip connections’ lifetimes and use simpler, more eicient hardware memories to
implement them (see Sec. 4.2). As such, we achieve a similar architecture to the version without skip connections
(Fig. 2b), and similarly reduce resources spent on additional datalow stages and FIFOs in Fig. 2a. SkipShortener
is thus more resource-eicient than the traditional skip connection design. In fact, SkipShortener provides a
tradeof between the SkipRemover and traditional designs because it uses more resources than SkipRemover but
less than the traditional one (see Sec. 4.2). But as we later show in Sec. 4.1, SkipShortener maintains accuracy
in cases where SkipRemover accuracy drops of. Thus, SkipShortener allows for design space exploration to
balance accuracy and resource usage.

When used with hls4ml, Tailor reduces resource consumption without changing the performance. This is a
consequence of hls4ml’s datalow design; the resources we remove are not on the critical pathÐthey are operating
in parallel to the critical path. A datalow design uses task-level pipelining, so reducing the resources spent on
stages not on the critical path does not help or hurt overall throughput. Based on our Vivado co-simulation
results, the clone stage executes in microseconds while the convolutional layer executes in milliseconds, an
order of magnitude diference. Therefore, removing the clone bufer (Fig. 2b) or implementing it more eiciently
(Fig. 2c) will not afect the overall datalow latency because its latency is an order of magnitude less than the
convolution’s latency. This means Tailor’s resource reductions do not increase or decrease latency or throughput
for this architecture style, as later shown in Tab. 7.

Another prevalent style of FPGA CNN architectures instantiates a 2D processing element (PE) array and
iteratively programs the convolutions and other operations onto that PE array. We call this style of computation
a Reconigurable DNN Architecture. Fig. 3 provides an example architecture used in our experiments. We build
this architecture using DeepSoCFlow 1. Following the taxonomy described in [22], the reconigurable DNN
architecture is a 2D array of processing elements that optimally perform standard convolution and matrix
multiplication with high data reuse. The datalow is primarily output stationary while prioritizing maximal
weight reuse and also reusing inputs to an extent. The engine performs ixed-point computations, where the
input, weight, and output bit widths are adjustable as synthesis parameters, along with the number of rows and
columns of processing elements. The weights rotator prefetches the weights of the next iteration into one block of
on-chip memory while the other bank delivers weights, rotating them hundreds of times for maximal data reuse.
The Pixel Shifter shifts perform vertical convolution. Partial sums are shifted to the PE on the right to compute
horizontal convolution. The results are streamed out through the output DMA to the of-chip memory. The
runtime controller would perform the residual addition, quantization, and activation on the processing system

1https://github.com/abarajithan11/deepsoclow
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Fig. 3. (a) A Reconfigurable DNN Architecture synthesized on a ZCU102 FPGA development board. The architecture has
a 2D array of processing elements that are iteratively programmed to compute layer operations. The controller runtime
programs the DMA engines to load of-chip inputs and weights and store the intermediate and final results of-chip. (b) The
processing elements (PE) are a multiply-accumulate datapath.

side while the engine computes the next iteration. Our implementation uses the ARM processor available in the
Zynq chip. FPGAs without processors could instantiate a softcore processor to perform the controller runtime
operations.

The Tailor optimizations have diferent efects on the Reconigurable DNN architecture as compared to
hls4ml architecture. The Reconigurable DNN architecture computes skip connections by loading input data from
of-chip memory and performing the required operations upon it (addition, convoluation) Thus, unlike in hls4ml,
removing a skip connection does not change the architecture; instead it changes how computations are mapped
to that architecture. Skip connection removal eliminates the need to fetch the skip connection data and perform
the associated convolution and addition operations. This increases the overall performance as we describe in
Sec. 4.

3.2 Hardware-aware Training
It is diicult to modify a NN’s skip connections without reducing accuracy. Naively removing all skip connections
before or after training a NN is detrimental to its accuracy. Instead, Tailor consists of two training algorithms,
SkipRemover and SkipShortener, that gradually alter a NN’s skip connections on the lyÐremoving or shortening
them every few epochsÐin order to make them resource-eicient. Gradually altering the model during training
tempers the performance drop of removing or shortening the skip connections, yielding minimal to no loss in
accuracy as well as signiicant advantages in the hardware implementation, as described above.
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(a) SkipRemover

(b) SkipShortener

Fig. 4. Three iterations in the SkipRemover and SkipShortener algorithms as applied to a ResNet. In this example, skip
connections are altered every � epochs and � |�. Each pill block represents a set of convolutional, BN, and ReLU layers, and
the skip connections are in red. L is the KD loss function defined in Eq. 3. Only the student model is used for inference.

Tailor’s iterative learning approach inetunes the altered NNs using a compression method known as knowledge
distillation (KD) [19]. KD distills the knowledge of a larger, more complex NN (the teacher) into a smaller, simpler
NN (the student). While the student model is training, it compares its output to the teacher model’s output
and thus learns from the teacher to perform better. KD provides impressive results for compressing NNs for
various applications [31, 41, 44]. In traditional KD, the teacher model is already trained, and the student model is
trained to match the teacher’s behavior by replicating its output. The student achieves this by training with a
loss function

L = (1 − �)G(ℓ, �) + �H(�, �) (3)

where G and H are distance functions, � and � are student and teacher output vectors respectively, ℓ is the correct
label vector, and � is a tunable parameter [19].

With this idea in mind, both SkipRemover and SkipShortener start with two identical pre-trained NNs
with traditional skip connections, where one serves as the teacher and the other serves as the student. During
the retraining stage, SkipRemover removes a given skip connection every few epochs. SkipShortener takes a
similar iterative approach and, every few epochs, splits a given skip connection into multiple shorter ones. The
skip connections are removed or shortened starting from the irst skip connection encountered in the NN (from
the input) to the last.

Fig. 4 visualizes both SkipRemover’s (Fig. 4a) and SkipShortener’s (Fig. 4b) training algorithms for a ResNet-
style NN. During training, we remove (SkipRemover) or shorten (SkipShortener) one of the student’s skip
connections every � epochs. If � is divisible by � (as in Fig. 4), then at epoch �, the student has had �/� skip
connections altered, and we are viewing the next two skip connections to be modiied in the student model:
the (�/�) + 1st and (�/�) + 2nd. At epoch � + � , the (�/�) + 1st skip connection is altered (removed under
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SkipRemover or split into two shorter skip connections under SkipShortener). The NN then trains for � epochs
so that the student model can improve its weights given the latest model topology. Afterwards, at epoch � + 2� ,
the (�/�) + 2nd skip connection is similarly altered. During the entire skip modiication retraining process, the
student uses the KD loss function L deined in Eq. 3 to learn from the teacher and the true labels. The teacher’s
model topology and weights remain ixed during training. Once all skip connections have been altered, the
student model continues training under KD for the remaining number of training epochs as deined by the user.
Only the student model is used for inference.

Tailor is novel because it dynamically transforms skip connections every few epochs during training. This
is an instance of hardware-aware training because the skip connection are slowly altered speciically to reduce
hardware resources, as previously discussed in Sec. 3.1. The gradual skip connection alterations allow the NN to
take advantage of what it has learned with skip connections, so that it can dynamically adapt to shortened skip
connections (SkipShortener) or none at all (SkipRemover). Alg. 1 describes Tailor’s hardware-aware training
process.

Algorithm 1: Hardware-aware Training
1 set ����� // REMOVE or SHORTEN

2 let � = how often to modify a skip connection
3 teacher = pre-trained model
4 student = pre-trained model
5 let current-skip = student’s irst skip connection from the input side
6 let current-layers = all layers skipped by current-skip
7 Function SkipRemover(current-skip):

// see Fig. 4a

8 remove current-skip
9 return student model’s next skip connection from the input side

10 Function SkipShortener(current-skip, current-layers):
// see Fig. 4b

11 Split current-skip into ���(current-layers) skip connections
12 current-skip = student model’s next skip connection from the input side
13 current-layers = student’s next layers skipped by the new current-skip
14 return current-skip, current-layers
15 for � in epochs do
16 if � ≠ 0 and � mod � = 0 then
17 if ����� == REMOVE then
18 current-skip = SkipRemover(current-skip)
19 else if ����� == SHORTEN then
20 current-skip, current-layers = SkipShortener(current-skip, current-layers)
21 end
22 train student using Eq. 3
23 end
24 save the student model
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(a) CIFAR-10 (b) CIFAR-100 (c) SVHN

Fig. 5. Top-1 accuracy of SkipRemover and SkipShortener ResNets of increasing depth on various datasets. łBaselinež refers
to an unmodified ResNet with conventional skip connections.

4 RESULTS
We evaluate Tailor on two popular kinds of NNs that rely on skip connections: ResNets [17] and QuartzNets [23].
We study the efects of Tailor on model accuracy, quantization, and hardware resource utilization.

4.1 Training results
To evaluate how Tailor afects a NN’s accuracy, we train ResNets and QuartzNets of varying depths using our
SkipRemover and SkipShortener algorithms in PyTorch [39]. The ResNets range from 20 to 110 layers and are
trained on the CIFAR-10 [24], CIFAR-100 [24], and SVHN [35] datasets. We also evaluate ResNet50, which has a
diferent skip connection topology than standard ResNets, on the ImageNet dataset [7]. The QuartzNets span
between 29 and 54 layers. Their structure is determined by the number and lifetimes of their skip connections.
For instance, a QuartzNet-10×5 has 10 skip connections that each have a lifetime of 5 sets of layers. We train a
QuartzNet-5×5 on the Oxford Nanopore Reads dataset [42], a DNA basecalling task. We also train a QuartzNet-
10×5 on the LibriSpeech dataset [37], an automatic speech recognition (ASR) task, which converts speech audio
to text. ASR tasks are assessed using word error rate (WER), which measures the percent of words that the
model predicted incorrectly. In all of our ResNet and QuartzNet-10×5 training experiments, we set � = 3 in
Alg. 1, so skip connections are removed or shortened every three epochs. For QuartzNet-5×5, we set � = 1
instead because it trains better this way. For the ResNets, we set G and H in Eq. 3 to categorical cross entropy and
mean-squared error, respectively, and set � = 0.35. For the QuartzNets, we set Eq. 3’s parameters similarly, except
for G, which we set to connectionist temporal classiication loss, which is used to train diicult tasks involving
sequence alignment (like DNA basecalling and ASR). Note that in our training results, łBaselinež refers to the
unmodiied NN counterpart with conventional skip connections.

Fig. 5 shows that SkipRemover works well for ResNet-44 and smaller, at times even outperforming its baseline
(traditional skip connection model). However, its accuracy drops as the number of layers increases. This indicates
that shallower NNs do not need skip connections for these classiication tasks, but they become more necessary
for deeper networks. SkipShortener mostly outperforms the baseline on all three datasets, even on deep models.

4.1.1 Ablation Studies. We also perform ablation studies in which we remove key parts of Tailor to understand
why they are critical to minimizing accuracy loss. One key part of SkipRemover/SkipShortener is the dynamic
skip connection removal/shortening that occurs every few epochs during training under KD. We thus take away
this dynamic model alteration by irst altering the NNs to have either no skip connections or shortened skip
connections. These pre-modiied NNs are then trained under KD only. Another key part of SkipRemover and
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(a) Skip-less models (b) Shortened-skip models

Fig. 6. Accuracy results for ResNets whose skip connections are all altered before training (apart from SkipRemover and
SkipShortener) on CIFAR-10. łFrom scratchž means training with randomly initialized weights without KD. łKD onlyž means
training without dynamic skip alterations.

Table 1. Top-1 accuracy of ResNet-50 on the ImageNet dataset. ∗RD [25] only removes 82% of the skip connections.

Model Accuracy (%)
ResNet-50 75.85
No skips (from scratch) 58.36
No skips (KD only) 69.40
Residual distillation (RD)∗ [25] 76.08
RepVGG-A2 [8] 76.48
SkipRemover 75.36

SkipShortener is KD. We evaluate how skip-less and shortened-skip NNs perform without KD, training from
randomly initialized weights (i.e., from scratch).

For ResNets trained on CIFAR-10, SkipRemover and SkipShortener usually yield better results than either
normal training or using KD-only on a statically pre-modiied network on CIFAR-10 per Fig. 6a and Fig. 6b.
The diference between all of the approaches in the igures is minimal for smaller models, but it becomes more
apparent as NN depth increases. For instance, skip-less ResNet-110 under regular training yields an accuracy of
26.02% versus SkipRemover, which achieves an accuracy of 90.68%, a 64.66% diference. SkipRemover marginally
outperforms regular training and KD-only on smaller skip-less models, but performs much better in comparison
as the networks deepen. SkipShortener also generally performs better than the other two approaches for
shortened skip models. Regular training mostly lags behind both KD and SkipShortener for shortened skip
models.

For ResNet-50 on ImageNet, we only apply SkipRemover because it uses an irregular skip connection architec-
ture known as a łbottleneck blockž to reduce the number of parameters [17]. This block has a skip connection
spanning three layers: a 1×1 convolution, then a 3×3 convolution, then another 1×1 convolution (Fig. 7a). This
irregular topology is not optimal for SkipShortener because it requires the majority of the shortened skip
connections to pass through extra downsampling 1×1 convolutions to match the activation tensor shapes, signii-
cantly increasing the number of model parameters. As such, for ResNets with bottleneck blocks, like ResNet-50,
we recommend SkipRemover. As seen in Tab. 1, SkipRemover incurs a 0.49% accuracy loss compared to the
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(a) ResNet-50 block (b) Tailor (c) RD [25] (d) RepVGG [8]

Fig. 7. Comparing Tailor’s ResNet-50 skip removal method with residual distillation (RD) [25] and RepVGG [8]. The dashed
portions are only used during training and are later removed, leaving the final inference NNs, indicated by bolder lines. Note
that Tailor (b) removes skip connections from a pretrained ResNet-50 (a). RD does the same but uses a modified KD method
that does not remove the 1×1 convolution addition (c). RepVGG starts training from a diferent NN topology altogether (d).

traditional ResNet-50. Compared to prior work such as RD [25] and RepVGG [8], SkipRemover has slightly lower
accuracy (at most 1.12% accuracy diference)2.

Nevertheless, SkipRemover has two advantages compared with these methods. First, SkipRemover removes
all skip connections from ResNet-50, whereas RD only removes 82% of them. RD does not remove the 1×1
convolution addition used for downsampling (see Fig. 7c), which is particularly detrimental. In our experiments
on hls4ml architectures, Vivado HLS estimates that ResNet-50’s large 1×1 convolution skip connection consumes
as many resources as the layers it skips over, efectively doubling resource consumption for that skip connection
block. Although Vivado HLS has a tendency to overestimate the actual place-and-route (P&R) resource utilization,
these estimates demonstrate that performing the 1×1 convolution is a nontrivial task that signiicantly afects
resource consumption. Second, SkipRemover removes the skip connections from an existing pre-trained model,
whereas RepVGG requires developers to adopt a new model topology (see Fig. 7d). If developers do not already
have a model on hand, RepVGG is a better option. However, if developers already have a ResNet trained for their
speciic dataset, it is advantageous to use SkipRemover if they can aford a small accuracy loss. This prevents
starting from scratch with RepVGG, which could require extensive hyperparameter tuning. Even inetuning a
pre-trained RepVGG model to a new dataset using transfer learning is time consuming, as it is unclear which of

2Ding et al [8] introduce RepVGG models of varying depths. We compare against RepVGG-A2 because it is about the same size as ResNet-50.
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Table 2. Top-1 accuracy of uartzNet-5×5 on the Oxford Nanopore Reads dataset.

Model Accuracy (%)
QuartzNet-5×5 95.107
No skips (from scratch) 94.475
No skips (KD only) 94.863
SkipRemover 95.086
Shortened skips (from scratch) 95.019
Shortened skips (KD only) 95.016
SkipShortener 94.902

Table 3. Word error rate (WER) of uartzNet-10×5 on LibriSpeech dataset. This includes clear (łdev-cleanž) and noisy
(łdev-otherž) audio samples. łÐž indicates the model failed to converge.

Model
dev-clean
WER (%)

dev-other
WER (%)

QuartzNet-10×5 5.56 16.63
No skips (from scratch) Ð Ð
No skips (KD only) Ð Ð
SkipRemover Ð Ð
Shortened skips (from scratch) 6.40 17.68
Shortened skips (KD only) 7.14 19.95
SkipShortener 7.86 21.16

the many methods [36, 47, 52] would work best. Instead, SkipRemover allows developers to take advantage of
their existing work and achieve a more resource-eicient model.

For QuartzNet-5×5, the SkipRemover model performs the bestÐonly 0.021% from the baseline (Tab. 2). These
results all have high accuracy likely because DNA basecalling is an easier sequence alignment task (only four
classes) and the model is more than suicient. For a harder ASR task like LibriSpeech, QuartzNet-10×5 fails to
converge without skip connections. Since the model must translate audio samples to text, the audio samples can
be noisy, making ASR harder. LibriSpeech, in fact, divides its test samples into łdev-cleanž for clearly spoken
samples and łdev-otherž for noisy samples. With such a challenging task, it is not possible to remove the skip
connections (like with DNA basecalling). Nonetheless, QuartzNet-10×5 performs well under SkipShortener, as
it is within 2% of the baseline WER (Tab. 3). For both QuartzNet-5×5 and -10×5, the best performing shortened
skip connection model was one whose skip connections were shortened irst and then trained from scratch.
While SkipShortener has minimal accuracy loss for both QuartzNets, we recommend training a model with
shortened skip connections from scratch for this task.

Overall, SkipRemover and SkipShortener perform better than either training on randomly initialized weights
or training with KD only. For harder tasks like ASR though, training a shortened-skip model from scratch is
a better choice. Nevertheless, the success of SkipRemover and SkipShortener lies in augmenting KD with
dynamic skip alterations.

4.2 Hardware Results
We irst quantize ResNets ranging from 20 to 56 layers deep to see how Tailor’s accuracy fares under reduced
precision. We then evaluate Tailor’s efects on hardware resources and latency by performing a case study on
ResNet-20-style skip connections implemented using the hls4ml architecture, i.e., the designs illustrated in Fig. 2.

ACM Trans. Reconig. Technol. Syst.



14 • Weng, et al.

We select this style of skip connection because it is the fundamental building block of ResNets that range from
20 to 110 layers. In our case study, we vary the bit precision and number of ilters to see how Tailor scales up.
Based on how Tailor’s resource reductions scale, designers can understand how Tailor extrapolates to their
own hardware designs. We report latency as well as P&R resource results on the Alveo U200 FPGA accelerator
card (part no. xcu200-fsgd2104-2-e). For end-to-end application results, we evaluate the beneits of Tailor on
two diferent styles of CNN architectures. The irst uses the hls4ml tool to generate architectures. The second is
the Reconigurable DNN EngineÐa 2D array of processing elements. Both styles of architectures are described in
Sec. 3.1.

4.2.1 uantization. The parameters of a hardware-accelerated NN are typically quantized from loating-point to
ixed-point precision [6, 33, 48].
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Fig. 8. uantized accuracy results for 8-bit and 4-bit fixed point using Brevitas.

Quantizing deep NNs with minimal accuracy loss is a largely manual and time-consuming task [14]. We use
Brevitas [38] to quantize our SkipRemover and SkipShortener ResNets with depths of 20 to 56 from 32-bit
loating-point (loat32) to 8-bit and 4-bit ixed-point precision on the CIFAR-10 dataset. We modiied Tailor’s
hardware-aware training algorithm where the teacher continues to use loating-point representation whereas
the student is quantized. This results in the student undergoing quantization-aware training. In Fig. 8, we ind
that SkipShortener ResNets consistently outperform traditional ResNets under Brevitas quantization-aware
training by 0.5%. SkipRemover ResNets start to sufer from the lack of bits as they get deeper, with accuracy
dropping to random classiication for ResNet-56. But, Brevitas is only one of dozens of ways to quantize neural
networks [9, 10, 14, 33, 46], so it may be the case that a SkipRemover ResNet-56 requires a diferent method of
quantization to achieve a quantized accuracy similar to its loat32 counterpart.

4.2.2 FPGA Evaluation. Our irst study looks solely at one ResNet block. The second study performs an end-to-end
implementation of ResNet8 and ResNet50.

For our case study on a ResNet skip connection blocks (see designs in Fig. 2), we evaluate Tailor at ap_fixed<8,3>
and ap_fixed<16,6> precisions using the hls4ml architecture. Under both bitwidths, we increase the number of
ilters for all designs from 16 to 32 to 64. This way, we can understand how Tailor scales with the number of
ilters. We use hls4ml [12] to translate these hardware designs into Vivado HLS, targeting the Alveo U200 FPGA
accelerator card. hls4ml uses task-level pipelining (i.e., HLS datalow) for each NN layer, or small group of layers
and streams data between datalow stages using FIFOs. hls4ml also exposes a knob known as reuse factor, which
determines how often multipliers are reused in a design. To fairly compare our designs as the number of ilters
increases, we ix the reuse factor to 576. We then synthesize our designs to report P&R resource utilization as
well as co-simulation latency results. Lastly, we run the designs on the U200 to verify correctness.
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Table 4. Place-and-route resource utilization of a skip connection block as the number of filters increases for ⟨8, 3⟩ precision
on an Alveo U200. SkipRemover reduces LUT and FF usage, whereas SkipShortener trades an increase in FFs for a decrease
in LUTs. T = Traditional, R = SkipRemover, S = SkipShortener.

# ilters LUT FF DSP BRAM
T R S T R S T/R/S T/R/S

16 9,984 8,482 9,764 8,654 7,841 8,916 0 18.5
32 19,566 16,512 18,993 16,183 14,506 16,489 0 36.5
64 42,688 36,882 42,121 31,124 27,815 31,850 0 82

(a) LUT (b) FF

Fig. 9. Percent resource utilization of a ⟨8, 3⟩ skip connection block at various filter sizes on an Alveo U200. DSPs and BRAMs
remain the same across the three designs, so they are not shown. SkipRemover and SkipShortener LUT and FF reductions
scale linearly, as expected.

(a) LUT (b) FF

Fig. 10. Resource utilization normalized to the traditional design of a ⟨8, 3⟩ skip connection block at various filter sizes. DSPs
and BRAMs remain the same across the three designs, so they are not shown. SkipRemover and SkipShortener LUT and FF
reductions scale proportionally, as expected.

Under 8-bit precision, we ind that both SkipRemover and SkipShortener reduce resources. Tab. 4 summarizes
our P&R results. Since our model uses 8-bit precision, we see that all of our models exhibit low DSP usage and
higher LUT and FF utilization. This is because Vivado HLS maps multiplications on datatypes that are less than
10 bits to LUTs instead of DSPs, as noted by [2, 48]. It is possible to pack two 8-bit weights into a DSP [13], but
this is out of scope and orthogonal to the efects Tailor has on hardware. Furthermore, all of the traditional and
Tailor designs use the same amount of BRAMs with respect to the number of ilters because here the BRAMs are
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Table 5. Place-and-route resource utilization of a skip connection block as the number of filters increases for ⟨16, 6⟩ precision
on an Alveo U200. SkipRemover reduces resources across the board, whereas SkipShortener trades an increase in LUTs for a
decrease in FFs and BRAMs. T = Traditional, R = SkipRemover, S = SkipShortener.

# ilters LUT FF DSP BRAM
T R S T R S T/R/S T R S

16 14,733 13,320 14,933 17,044 14,935 16,438 12 60.5 52.5 42.5
32 28,498 25,330 28,184 32,923 28,747 31,764 48 124 108 84.5
64 55,699 50,074 55,720 64,564 56,263 62,252 192 267.5 235.5 203.5

used solely for on-chip weight storage, which does not difer across design. Nonetheless, SkipRemover decreases
LUT usage by up to 16% and FF usage by up to 11% compared with the traditional design (Fig. 10). These resource
savings represent the extra hardware needed to implement a skip connection and subsequently the resources
saved. As previously mentioned in Sec. 3.1, the extra datalow stages that carry out a skip connection are no
longer necessary. More importantly, SkipRemover’s savings scale linearly as the number of ilters increases
from 16 to 64 (Fig. 9). SkipShortener’s resource reductions present a tradeof, increasing FFs by 2% in exchange
for decreasing LUTs by 3% (Fig. 10). SkipShortener lowers LUT utilization because the lifespan of each skip
connection lasts only one datalow stage instead of the traditional two. This means we need not spend extra logic
on the datalow stages needed to copy the skip connections to bufers that last longer than one stage. However,
since the shortened skip connection now fully resides in a single datalow stage (previously described in Fig. 2c),
this requires some extra FFs. This represents the tradeof SkipShortener provides at 8-bit precision: some extra
FFs for fewer LUTs. These resource tradeofs also scale linearly as the number of ilters scales up, as seen in Fig. 9.

We ind more dramatic resource reductions when we look at our 16-bit designs. Tab. 5 summarizes our P&R
results. In contrast with our 8-bit designs, at higher precision, our designs rely more on DSPs and BRAMs. This
time the BRAMs are used not only to store weights on chip but also to implement the FIFOs that connect the
datalow stages. Therefore, as we tailor the datalow stages according to each design (e.g., SkipRemover or
SkipShortener), the BRAMs now also relect these changes. At its best, SkipRemover lowers LUTs by 11%, FFs
by 13%, and BRAMs by 13%. Without a skip connection to implement, SkipRemover uses fewer resources than
the traditional design. The DSPs remains unchanged because they are used solely for the convolutional layers’
multiplications and not the skip connection, which is also the case for SkipShortener.

Similar to the 8-bit designs, SkipShortener presents a resource tradeofÐthis time trading a small increase
in LUTs (at most 1%) for decreases in FFs and BRAMs. In the best case, SkipShortener reduces LUTs by 1%,
FFs by 4%, and BRAMs by 34%. While SkipShortener uses fewer LUTs than the traditional case for 32 ilters,
SkipShortener pays about a 1% increase in LUTs for 16 and 64 ilters in exchange for decreases in FFs and
BRAMs. This small disparity is likely an artifact of the heuristics Vivado P&R uses to allocate resources. Again,
these resource tradeofs and savings are possible because the shortened skip connections can be implemented
within a single datalow stage due to its reduced lifetime. Tab. 6 shows that the lifetime of each shortened skip
connection is a little less than half the lifetime of the traditional one. With shorter lifetimes, we ind that the
SkipShortener’s skip connections’ FIFOs can now be implemented using shift registers instead of BRAMs, which
is what the traditional design still uses (Tab. 6). Shift registers are much more eicient memories compared to
BRAMs. As such, it is advantageous to hardware designers to consider how SkipShortener provides opportunity
to implement skip connections with a more eicient memory architecture like shift registers. This leads to
30ś34% fewer BRAMs than the traditional design, even as the number of ilters scales up. While in this case
SkipShortener uses fewer BRAMs than SkipRemover does, SkipShortener ofsets this diference by using
more FFs than SkipRemover does. For both SkipRemover and SkipShortener, resource utilization (and the
associated reductions) scale linearly, as seen in Fig. 11.
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(a) LUT (b) FF (c) BRAM

Fig. 11. Percent resource utilization of a ⟨16, 6⟩ skip connection block at various filter sizes on an Alveo U200. SkipRemover
and SkipShortener resource reductions scale linearly, as expected.

Fig. 12. Resource utilization normalized to the traditional design of a ⟨16, 6⟩ skip connection block at various filter sizes. The
SkipRemover and SkipShortener resource savings scale proportionally as the number of filters scales up.

Table 6. FIFO depths of a single skip connection hardware design at 16-bit precision. SkipRemover has no skip connections,
so it has no skip connection FIFOs.

Hardware Design FIFO Depth FIFO Implementation
Traditional 69 BRAM
SkipRemover 0 Ð
SkipShortener 1st skip 33 Shift Register
SkipShortener 2nd skip 34 Shift Register

Table 7. Latency co-simulation results of a skip connection block at ⟨8, 3⟩ and ⟨16, 6⟩ precision. The latency for the Traditional,
SkipRemover, and SkipShortener designs are the same for each number of filters because they all rely on task-level pipelining
that reuses multipliers at the same rate (576×).

# ilters Latency (ms)
Traditional/SkipRemover/SkipShortener

16 23.38
32 23.05
64 22.39

Tailor does not afect latency for hls4ml architectures. As seen in Tab. 7, for each number of ilters, all
designs exhibit the same latency, according to co-simulation on an Alveo U200. The slight decrease in latency
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as the number of ilters scales is due to an increase in DSPs and a higher degree of parallelism. As discussed in
Sec. 3.1, hls4ml designs pipeline their tasks. The convolutions’ multiplication tasks dominate the overall datalow
latency. The tasks that SkipRemover eliminates and SkipShortener implements more eiciently, namely the
skip connection cloning and addition stages, have signiicantly lower latency than the convolutions and are thus
not on the critical path. The throughput thus remains the same.

By shortening skip connections, we reduce their lifespans, which provides an opportunity for simplifying
their hardware implementation speciically for hls4ml architectures. However, shortening skip connections is not
beneicial for all architectures. As seen in Tab. 8, shortening skip connections is worse for both GPU and CPU
because doing so increases of-chip memory accesses. These extra accesses lower throughput by 5% on GPU and
2% on CPU. On FPGAs with hls4ml architectures, however, we can modify the architecture to take advantage of
shortened skip connections, reducing resource consumption without negatively afecting throughput (Tab. 8).

Table 8. Normalized throughput of a ResNet20. The GPU and CPU both were run with batch size = 64, whereas FPGA
was run with batch size = 1. Throughput is normalized column-wise to the top entry. GPU = 1080Ti. CPU = AMD Ryzen 9
5900X. FPGA = Alveo U200. SkipRemover increases GPU and CPU throughput because it decreases of-chip memory accesses.
SkipShortener, however, decreases GPU and CPU throughput because it increases of-chip memory accesses. For a fully
on-chip, dataflowed FPGA architecture, neither SkipRemover nor SkipShortener have any efect on throughput.

Model GPU CPU FPGA
Traditional skip connections 1× 1× 1×
SkipRemover 1.11× 1.03× 1×
SkipShortener 0.95× 0.98× 1×

We performed two studies to understand how Tailor performs for end-to-end implementations of ResNet
models. The irst is ResNet8 from MLPerf Tiny that was designed in hls4ml [3, 5]. The second is ResNet50
implemented on the Reconigurable DNN architecture.

The ResNet8 model targets the Alveo U200. It uses 16-bit ixed-point representation with six integer bits. The
reuse factor for the layers was hand-tuned to 72, which directly afects the resource usage and latency of the
layers. The reuse factor is one of the more important knobs for design space exploration in hls4ml and is often
hand-tuned to maximize resource usage of the platform while optimizing the overall network performance.

Table 9. MLPerf Tiny ResNet8 model implemented using hls4ml with skip connection, with shortened skip connections, and
without skip connections.

With Skip Connections Shortened Skip Connections Without Skip Connections
Accuracy (%) 87.39 87.93 87.62
LUTs 158609 165699 144206
FFs 196012 204914 181768
DSP48s 1083 1083 1043
BRAMs 173 158.5 156

Tab. 9 shows the resource usage results for the ResNet8 model with skip connections, with shortened skip
connections, and without skip connections. Removing the skip connections has clear beneits across all the
resources. Shortening the skip connections reduces BRAMs while increasing LUTs and FFs. Both the shortened
skip connections and the removed skip connections models show improved accuracy over traditional skip
connections. In all cases, the latency remains the same, requiring 304,697 cycles running at 100 MHz (approximately
3ms/inference).
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Our second full model case study implemented a Reconigurable DNN architecture on the ZCU102 development
board which contains a Zynq UltraScale+ MPSoC. The Reconigurable DNN array is conigured to have 7 rows ×
96 columns for a total of 672 of processing elements (PEs) that support 8-bit inputs and 8-bit weights. Each PE
contains a multiplier and an accumulator implemented using DSPs on FPGA fabric. Input pixels and weights
are streamed into the engine as AXI-Stream packets. Images are processed in batches of 7, to increase the reuse
and reduce memory accesses. The Reconigurable DNN architecture was synthesized, placed & routed at a clock
frequency of 250 MHz on a ZCU102. The architecture with 7 × 96 = 672 PEs used 49057 LUTs (18%), 81446 lip
lops (15%), 114 BRAMs (13%), and 1344 DSPs (53%) on the FPGA fabric.

We implemented a ResNet50 model with and without skip connections on a 672-element Reconigurable
DNN architecture running on the ZCU102. Tab. 10 shows the performance of ResNet50. Removing the skip
connections largely beneits the performance due to the removal of the 1 × 1 convolution blocks. Removing
the skip connections also removes those layers, which no longer need to be scheduled on the PE array. The
results are much better performance in terms of all metrics: approximately 30% increases in FPS and latency and
approximately 45% decrease in memory accesses.

Table 10. ResNet50 performance with and without skip connections on the Reconfigurable DNN architecture. The architecture
has 672 processing elements and runs on the ZCU102 development board at 250 MHz.

With skip connections Without skip connections
Accuracy (%) 75.85 75.36
Frames per second (FPS) 28.69 37.47
Time per image (s) 0.035 0.027
Latency (s) 0.244 0.187
Memory access per image (Mb) 140.95 92.71

5 DISCUSSION
With these results in hand, designers can now consider which accuracy versus resource tradeofs they are willing
to make during the hardware-software codesign process.

SkipRemover provides minimal accuracy loss while reducing resource consumption and increasing performanceÐ
a win-win scenario. As seen in Sec. 4.1, SkipRemover ResNet-50 is only 0.49% less accurate than the baseline on
ImageNet. But, SkipRemover is less efective on deeper NNs (such as QuartzNet-10×5 and ResNet-110). In fact,
QuartzNet-10×5 fails to converge when trained under SkipRemover. For such deep NNs trained on diicult tasks
like ASR, skip connections are instrumental in training convergence [17]. By removing skip connections, we
expect and see a degradation in accuracy for deeper NNs. This degradation is not as drastic for other tasks. For
instance, ResNet-110 still converges when trained using SkipRemover, but it is 3.72% less accurate on CIFAR-10
and 9.61% less accurate on CIFAR-100, compared to the original baseline model. We propose this tradeof between
NN size and SkipRemover performance as an additional consideration during design space exploration. In
response, SkipShortener is more suitable for deeper NNs when SkipRemover is less efective. SkipShortener
maintains accuracy comparable to its original skip connection models and reduces resource requirements by up
to 34% compared to the traditional skip connection model.

Based on our hls4ml evaluation, designers can extrapolate to their own designs because, as we have shown
in Fig. 9 and Fig. 11, the resource usage and savings scale linearly as the number of ilters grows. We have also
shown that at the higher 16-bit precision, Tailor provides signiicant resource reductions, so if designers need
more precision, Tailor’s savings will follow. If they need lower 8-bit precision, SkipRemover still manages to
lower the 8-bit designs’ LUTs by 16% and FFs by 11%. Even SkipShortener decreases LUTs by 3% despite a
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2% increase in FFs, though these smaller resource savings are ofset by its overall higher accuracy performance
compared with SkipRemover. As a result, it is up to the designer to consider how to best apply Tailor’s codesign
methods given their accuracy and resource requirements.

5.1 Theoretical Understanding
Prior work investigated why skip connections are so helpful to ResNets. Veit et al [45] argue that ResNets
behave like ensembles of smaller subnetworks that vary in depth and allow the NN to train and converge more
easily. Li et al [26] and Yao et al [49] show that introducing skip connections make the NN loss landscape to be
much smoother and have less nonconvexity. They show that naively removing these skip connections causes an
explosion of nonconvexity in the loss landscape, which makes training signiicantly more diicult. We conirm
these results in our ablation studies (Sec. 4.1), as accuracy indeed drops when skip connections are removed
naively. With both KD and SkipRemover, we see an improvement in accuracy. Since the student is trying to
mimic the teacher’s outputs, it is possible that the teacher’s outputs guide the student in such a way that prevents
the loss landscape from becoming less smooth. Theoretical work from Lin et al [27] has proven that a ResNet
with one-neuron hidden layers is a universal approximator. This work suggests that adding more neurons to the
hidden layers creates an over-parameterized ResNet. Since stochastic gradient descent performs better in the
presence of over-parameterization, having more neurons per hidden layer increases training eiciency, making it
easier to converge. This work also argues that a ResNet is essentially a sparse version of a fully connected NN
because the identity skip connections create simpler paths within the ResNet, which was similarly posited by
Lin et al [27]. Given that CNNs and ResNets have both been proven to be universal approximators [27, 40], this
implies that there exists a set of parameters for a CNN that can mimic a ResNet such that they equal the same
function. It is mainly easier to ind a well performing ResNet because Lin et al [27] showed that one-neuron
hidden layers is suicient for a ResNet to be a universal approximator.

5.2 Future Work
In our work, Tailor has taken removing and shortening skip connections to their extremes: it either fully
removes or fully shortens all the skip connections in a NN. It would be worthwhile to understand the accuracy
versus resource utilization tradeof under less extreme cases, e.g., removing only half of the skip connections. It
would also be interesting to mix SkipRemover and SkipShortener together to try and recover accuracy in the
instances when SkipRemover fails. These approaches may help address SkipRemover’s scalability issues and
strike a balance between SkipShortener’s high accuracy and SkipRemover’s resource savings and performance
improvements.

6 CONCLUSION
Tailor introduces two new methods, SkipRemover and SkipShortener, that alters NNs with skip connections
dynamically during retraining to it better on hardware, achieving resource-eicient inference with minimal
to no loss in accuracy. With SkipRemover, NNs no longer need to rely on skip connections for high accuracy
during inference. With SkipShortener, we retrain NNs to use shorter skip connections with minimal to no loss
in accuracy. Shortening skip connections is beneicial for hardware architectures generated by the hls4ml tool as
it reduces the skip connection lifetime. We demonstrate FPGA resource consumption reductions of up to 34%
for BRAMs, 13% for FFs, and 16% for LUTs. We show that Tailor is also valuable for optimizing 2D PE array
architectures. SkipRemover increases performance by 30% and decreases memory bandwidth by 45%. Designers
can decide which accuracy versus resource tradeofs ofered by SkipRemover and SkipShortener are suitable
to their design requirements. As a result, Tailor is another tool in the hardware-software codesign toolbox for
designers to use when building customized accelerators.
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1 Introduction

Starting with the work of the MiniBooNE collaboration [1, 2], Boosted Decision Trees (BDTs)
have been extremely prevalent within the field of High Energy Physics (HEP) [3], used mainly for
regression and classification tasks, both in event reconstruction and subsequent data analysis. In the
high-profile discovery of the Higgs boson, BDTs were used to increase the sensitivity of the CMS
analysis in the decay channel of the Higgs to two photons [4], and have been used significantly in
further analyses of Higgs properties.

At the Large Hadron Collider (LHC) experiments, proton collisions occur at such a frequency
that the full rate of data cannot be stored. With the LHC delivering collisions every 25 ns, the
experiments CMS and ATLAS have to deal with tens of terabytes of data produced each second.
Each experiment operates an online data reduction system, called the trigger, to filter out only a
fraction of events for further analysis. Due to the extreme data rates, this processingmust necessarily
be extremely fast, and since the rejected events can never be recovered, the selection must be highly
robust.

The CMS and ATLAS experiments deploy a two-stage trigger system, starting with the Level-1
Trigger (L1T) performing a first selection, with a second High Level Trigger (HLT) performing a
more refined selection. The L1T must process each LHC event, at the full 40 MHz collision rate,
and return its decision within approximately 10 µs, the latency for which the event data can be
buffered. Due to these constraints, the L1T is implemented using high speed electronics, consisting
of ASICs and FPGAs on custom cards, with high-speed optical interconnects.

Recently, Deep Neural Networks (DNNs) have been investigated as an alternative to BDTs
for HEP applications,1 due to their superior performance and the increasing availability of parallel

1For an extensive discussion of use cases, see ref. [5] and references therein.
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processors capable of high throughput training and inference. Despite the large amount of studies
showing interesting use cases for DNN applications, the number of DNN models deployed in the
central data processing of the LHC experiments during previous LHC running was very limited.
This was mainly due to the lack of optimal deployment solutions that would meet the strong
constraints of central processing systems (e.g., real-time event selection in the trigger systems),
both in terms of latency and computing resource footprint.

Previously, we introduced the hls4ml library to facilitate the deployment of DNN models on
L1T systems [6]. The aim of that work was to establish an automatic workflow to convert a given
DNN model into an electronic circuit, evaluated on an FPGA through a fully-on-chip firmware
implementation. The workflow consists of converting a given NN model into an expertly written
C++ code, which is then converted to an FPGA firmware by a High Level Synthesis (HLS) tool
(e.g., Xilinx Vivado HLS). In ref. [6], we demonstrated how a DNN model for jet identification at
the LHC could be compressed and quantized, to run on an FPGA with 75 ns latency.

In this work, we present an extension of the hls4ml library to also support BDTs.2 As
shall be seen in the following sections 2 and 3, the BDT implementation in FPGAs is capable of
achieving similar performance to a DNN, with a relatively lightweight usage of device resources.
The critical FPGA resource for BDTs is Look Up Tables (LUTs), whereas the availability of DSPs
for multiplication is the limiting factor for DNNs. Given this, the BDT can be seen as a lightweight
solution which is complementary to a DNN.

Another motivation for the introduction of BDTs is the need to support the legacy of the LHC
Run II: as of today, BDTs are still the most commonly used ML algorithm for LHC experiments.
For instance, the LHCb collaboration makes extensive use of BDTs (as well as neural networks) in
their trigger, which runs in software only. To accelerate the computation, a binned BDT method,
Bonsai BDT, is used [7].

BDTs remain a particularly appealing solution for use in the earliest processing stages at LHC
experiments, thanks to their good performance with relatively low computational cost. The first use
case of an ML technique in the L1T of an LHC experiment was a BDT used to perform a regression
of muon pT for the CMS L1T endcap muon trigger [8]. The technique gave a three-times reduction
in rate for the trigger threshold compared to the previous approach, removing unwanted low pT
muons. An external DRAM of 1.2 GB was used as a look-up-table (LUT) to store the pre-computed
BDT output for every variation in the input variables. The LUT was filled offline and queried with
low latency online. The solution proposed in this paper would allow an on-chip implementation
going beyond a full-LUT approach.

Other works have implemented ensembles of Decision Trees (BDTs and Random Forests) for
FPGAs [9–13]. These generally target applications of FPGA accelerated inference in a combined
CPU-FPGA system, where the relevant performance goals are throughput and energy consumption.
Further, the use of external memories and traversal over trees by fetching nodes from memory gives
these approaches flexibility and scalability. The work of [9] and [10], in particular, is designed to
be scalable to very large ensembles in a way that the implementation in this paper is not. In the
context of targeting LHC triggers, however, the main performance goal is of extremely low latency,
and secondly to maintain a modest resource usage.

2The project code can be accessed at: https://github.com/hls-fpga-machine-learning/hls4ml/tree/bdt.
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Figure 1. Left: the solid curves show signal efficiency vs. isidentification rate using a BDT with 100 trees
of depth 4 for the five jet classes: gluon, quark, W boson, Z boson, and top quark. The dashed curves show
the performance of the 3 layer MLP from [6]. Right: confusion matrix for the BDT.

2 Building Boosted Decision Trees with hls4ml

In the previouswork on translation of neural networks to FPGAfirmwarewith hls4ml, we presented
a demonstration data set for discrimination of quarks (q), gluons (g), W and Z bosons, and top
(t) jets [14]. The data consist of a set of 16 physics-motivated high-level features, representing
information of the event jet substructure. With this information at hand, one can distinguish
traditional single-prong q and g jets from two- (W and Z) and three-prong jets

This problem is typical of searches for physics beyond the standard model at ATLAS and
CMS. To our knowledge there is no algorithm currently employed in the L1T systems of these two
experiments that exploits this kind of substructure information to select events with multi-prong
jets. This data set provides a benchmark on which to evaluate the classifier performance and its
realisation in FPGA implementation as an example application for the L1T. We use the same data
set in this work to prepare a classifier, this time a BDT.

We performed the BDT training using the scikit-learn package [15], randomly splitting
the data set into training (80%) and testing (20%) partitions. A BDT with 100 estimators and a
maximum depth of 4 was found to give similar performance to the DNN model trained on the same
data set, providing a useful point of comparison. The cross-entropy loss function was used.

The resulting receiver operating characteristic (ROC) curve is shown in figure 1, displaying the
background misidentification efficiency (false-positive rate) as a function of the signal efficiency
(true-positive rate) for five jet selectors, defined using the five scores returned by the BDT for the
five jet categories. Overall, the trained BDT reaches state-of-the-art discrimination performance,
with a small performance loss with respect to the DNN model of ref. [6].

The operations used in inference of a BDT are very different from those used for a neural
network. While a (fully connected) neural network comprises a series of matrix-vector products and
evaluations of non-linear activation functions, the BDT inference involves evaluating decision paths

– 3 –
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over many decision trees. This tree traversal requires comparisons against thresholds, effectively
partitioning the feature space. In terms of the number of parameters, the trained BDT with 100
estimators of depth 4, and 5 classes, is summarised by 7,500 threshold values, and 8,000 scores.
The fully connected neural network presented in [6], with the same 16 inputs, 5 outputs, and three
hidden layers of 64, 32, and 32 neurons, has 4,389 trainable parameters. A BDT is only able to
make cuts orthogonal to the feature axes, while the activation functions of a neural network add
non-linearity to the classification.

We use this model as a benchmark example to show the use of hls4ml to derive an FPGA
firmware implementation.

3 Implementation and performance

3.1 FPGA implementation

Decision Trees in hls4ml are implemented as an unrolled tree of decisions, as illustrated in figure 2.
Each node in the tree performs a comparison of one of the input features against a constant threshold,
learned in training. These thresholds are statically fixed in the logic of the FPGA firmware, rather
than being fetched from an external memory. Nodes pass the results of the comparison (true or false)
to their children. The decision path is then encoded by the series of Boolean values propagated
along the nodes. By construction, only a single leaf node can be activated, and the index of the active
leaf is use to address a small look-up-table containing the tree scores for each path. These scores
map to the probability that the given input features correspond to a certain class. For multiclass
classification, each ‘estimator’ uses as many decision trees as the number of classes, while only one
tree per estimator would be used for a binary classification problem.

The score of the BDT ensemble is the sum of scores of all of the decision trees. Since each
decision tree is independent, a high degree of parallelisation is possible in the FPGA. The sum is
performed with a balanced adder tree, reducing the scores to their sum in a pair-wise tree structure.
The implementation of BDTs in hls4ml targets low latency applications, such as LHC hardware
triggers, by executing all trees, and all decisions within each tree, in parallel.

We developed two code implementations, both targeting the architecture described. The first
uses Xilinx’s Vivado HLS, written in C++, and the second is developed at the Register-Transfer
Level (RTL), using VHDL.3 Generally, an RTL implementation does not benefit from some of the
features of Vivado HLS, such as automatic pipelining depending on the target clock frequency, and
easy loop rolling/un-rolling. However, the RTL implementation synthesises to more reliable results
for ‘large’ BDTs, as will be seen in the section 3.3. Both implementations are fully pipelined,
capable of an ‘initiation interval’ of 1 clock cycle.

A trained BDT, with specific features, thresholds and scores for each tree, can be evaluated
with the FPGA implementation described above using hls4ml. Models trained and exported from
the scikit-learn, xgboost [17], and TMVA [18] packages are supported. From the FPGA code
produced, which is either using Vivado HLS or VHDL, the user is then able to run the usual FPGA
vendor workflow to integrate the BDT into a specific project and compile to a bitfile.

3For an introduction to FPGA concepts and terminology, see ref. [16].
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Figure 2. Schematic of the implementation of decision trees in hls4ml, showing a single tree with depth of
2. The x are the node features, and t the thresholds. The ‘¬’ is the unary ‘not’ operator, and ‘&’ the binary
‘and’. The Boolean leaf activations are concatenated and used to address a look-up-table of output scores.
The labels ‘a’, ‘b’, ‘c’, and ‘d’ on the schematic correspond to the respective labelled leaf nodes of the tree
represented at the bottom left.

3.2 Varying the precision

The generic, programmable-logic cells in FPGAs support completely customised data representa-
tions. Floating point types are supported, but generally require more resources, latency, and achieve
lower clock frequencies than integer types. The fixed point representation uses integer operations,
but with a radix point in the number to represent fractional values. In the FPGA, any bitwidth and
radix position may be used. A narrower bitwidth will enable smaller resource usage.

– 5 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
5
0
2
6

5 10 15 20 25 30
Number of bits

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

 / 
E

xp
ec

te
d 

AU
C

g
q
w
z
t

Figure 3. The ratio of Area Under the Curve (AUC) obtained from the fixed point implementation to the
AUC expected from the floating point software, as a function of the fixed point bitwidth used, for each of the
five tag categories. The ratio saturates at around 15 bits.

The trade-off for using narrower bitwidths is a loss of precision. The loss of discriminating
power is investigated by measuring the ratio of the AUC obtained testing with fixed point represen-
tation to the area under the ROC curve (AUC) from the original floating point, and shown in figure 3
as a function of the bitwidth, for the benchmark jet-classification BDT introduced in section 2. The
number of integer bits was kept at 4 for all bitwidths, as required by the range of the features and
scores in the data to avoid overflow. A significant reduction in AUC is seen for bitwidths of 10
and below. The AUC with fixed point variables reaches 99% of the AUC with floating point for
all taggers with 11 bits. Below 10 bits the behaviour becomes unstable, as numerical rounding
effects cause unpredictable misclassification. The consequences of the bitwidth on resource usage
are discussed in the next section.

3.3 Performance and cost

We studied the FPGA resource utilisation and inference latency using BDTs trained on the jet
classification task described in section 2. These metrics are expected to vary with the number
of trees and their depth. Other hyperparameters, while having an impact on the classification
performance, do not affect these FPGA performance metrics. All HLS evaluations of BDTs were
built for a Xilinx vu9p-flgb2104-2L-e FPGA at 200 MHz target clock frequency. FPGAs of this
size or similar could be used in future LHC upgrades, and would generally be used to execute several
algorithms (including feature pre-processing) as well as any ML inference. All features, thresholds,
and scores were encoded with 18 bits, which is sufficient to achieve identical classification results
to the scikit-learn original, as was shown in section 3.2.

The resource utilisation of LUTs, FFs, DSPs, and BRAMs for the benchmark BDT with 100
estimators and a depth of 4 is shown in table 1. This utilisation is reported after running the
logic synthesis step with the VHDL implementation. The inference latency for this ensemble is 12
clock cycles, corresponding to 60 ns execution time at the chosen target clock frequency. This is
compatible with the requirements for use in the L1T system.

– 6 –
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Figure 4. Dependence of LUT usage (top row), inference latency (bottom left), and synthesis time (bottom
right) on the number of estimators of the BDT, with depth fixed at 3. The top right plot is a view of the
same data as the top left, with reduced range. Different stages of synthesis are shown: C-Synthesis estimate
of HLS (HLS CS), utilisation report after Logic Synthesis step of RTL produced by HLS (HLS LS), and
utilisation report after Logic Synthesis of the VHDL implementation (VHDL LS).

Table 1. Resource usage of the BDT with 100 estimators of depth 4.

Resource LUTs FFs DSPs BRAMs
Number Used 96148 42802 0 0
Percentage of VU9P 8.1 1.8 0 0

Figure 4 shows the variation in resource usage with the number of estimators, ne, of the
BDT, with the depth fixed at 3. Each estimator uses as many trees as the number of classes, in
this case of the jet classification dataset, five. Only one tree per estimator would be used for a
binary classification problem, reducing the resource cost by a factor five in such cases. For the
VHDL implementation, the utilisation is reported after logic synthesis with Vivado. For the HLS
implementation, the Vivado HLS resource estimate after C-synthesis is reported, as well as the
result after executing logic synthesis on the produced RTL with Vivado. The HLS estimate of LUT
and FF usage tend to be larger than the eventual usage after the full synthesis and implementation
workflow. Pipelining of the HLS implementation is determined by the Vivado HLS compiler during
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the C-synthesis step, placing registers optimally to achieve timing closure. The latency of the HLS
implementation is set during this step, and not affected by later execution of logic synthesis.

Up to ne = 150, the LUT utilisation for both implementations increases linearly, with the HLS
implementation using slightly fewer than the VHDL version (referring to the utilisation reported
after Vivado synthesis). With ne > 150, the LUT usage of the HLS implementation increases
dramatically, and the Vivado synthesis of the produced RTL also yields poor results. In this regime,
the LUT usage of the VHDL implementation continues to increase linearly with ne.

The inference latency of the VHDL implementation increases logarithmically with ne, as the
depth of the balanced adder tree used to sum tree score increases. TheHLS implementation inference
latency is more constant, as HLS packs the adder tree into a single cycle for most ensemble sizes.
For ne > 150 the latency of the HLS result increases significantly. The VHDL implementation
latency is typically longer than the latency achieved by the HLS. The VHDL is pipelined to achieve
timing closure at higher clock frequencies than the 200 MHz target used for the HLS.

The time taken to synthesise the BDT increases linearly with ne for the VHDL implementation,
taking 40 minutes for the 1000 estimators ensemble. The HLS C synthesis time increases expo-
nentially with the number of estimators, with synthesis for 200 estimators taking 21 hours. Vivado
synthesis times for the HLS RTL output are significantly faster than the HLS C Synthesis which
must run before, and increase linearly with the number of estimators.

Figure 5 shows the dependence of the same FPGA performance metrics on the maximum depth
of the BDT, with ne fixed at 10. The LUT usage increases exponentially with depth, with each
additional layer in the trees adding as many nodes as there are above it. As before, the HLS estimate
of the LUTs is high compared with the report after synthesising the produced RTL with Vivado.
The LUT usage of the VHDL and Vivado-synthesized HLS are very similar, until at maximum
depth of 6, the HLS implementation resource usage suddenly increases. At the same point, the
latency and synthesis time drastically increase. The latency of the VHDL implementation increases
linearly, with one extra clock cycle per depth. Synthesis time increases exponentially with depth,
with the synthesis for a depth of 10 taking 27 hours.

3.4 Resource model

Given the expected scaling of LUTswith model hyperparameters— linear with ne and exponentially
(base two) with depth — we analytically describe the resource usage using the following relation:

r = k0 · ne + k1 · ne · 2d,

where r is the resource usage (LUTs), ne the number of estimators, d the tree depth, and k0, k1 are
unknown constants. The term linear in ne represents the resource of the adder-tree which grows
with the number of trees. The term linear in ne and exponential with d represents the logic used
for the trees, of which there are ne, while the number of decision nodes doubles at each layer in
depth. Other hyperparameters — such as the loss function, learning rate, and number of features
—may impact the classification performance of the model, but would not affect the resource usage.
A fit to the measurements of trained and synthesised BDTs using the VHDL implementation was
performed, yielding:

r = 22 · ne + 53 · ne · 2d .

– 8 –
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Figure 5. Dependence of LUT usage (top row), inference latency (bottom left), and synthesis time (bottom
right) on the maximum depth of the BDT, with 10 estimators. The top right plot is a view of the same data
as the top left, with reduced range. Different stages of synthesis are shown: C-Synthesis estimate of HLS
(HLS CS), utilisation report after Logic Synthesis step of RTL produced by HLS (HLS LS), and utilisation
report after Logic Synthesis of the VHDL implementation (VHDL LS).

All features, thresholds and scores were encoded with 18 bits. Figure 6 shows this scaling model
over the measured BDT results used for the single-parameter scans in figures 4 and 5, showing good
agreement.

3.5 Varying clock frequency and precision

Vivado HLS automatically pipelines FPGA designs, according to the target clock period specified
by the developer. When using the HLS workflow, the hls4ml library allows the user to choose a
target clock period for the BDT model. Generally, a faster target clock frequency requires more
pipeline stages, so more clock cycles will be needed to perform the inference. The left plot of
figure 7 shows the pipeline depth increasing with target clock frequency from 6 clock cycles at
100 MHz to 29 cycles at 500 MHz. The single inference latency in nanoseconds (the product of the
latency in clock cycles and the clock period) is relatively constant with the target clock frequency.
The lowest single inference latency is 52 ns at 250 MHz while the highest is 62.2 ns at 450 MHz.
Using a higher clock frequency will achieve overall faster inference when classifying several input
feature vectors, since the initiation interval is 1 in all cases.
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Figure 7. Left: latency — in clock cycles and nanoseconds — of the benchmark BDT model with 100
estimators of depth 4, as a function of the target clock frequency. Right: resource usage as a function of the
bitwidth used for all features, thresholds and scores.

The variation of resource usage with the bitwidth is shown in the right plot of figure 7 for LUTs,
the dominant resource used for BDTs. Four integer bits were used in all cases, as in figure 3. The
increase in resource usage with bitwidth is approximately linear, but with a significant step change
transitioning from 14 to 15 bits.

The benchmark model, as well as scans over the number of estimators and maximum depth,
were evaluated using 18 bits. From figure 3 this can be seen to be comfortably sufficient to give
numerically equivalent results to the CPU evaluation of the model. Using 14 bits, the ratio between
Area Under the ROC Curve (AUC) achieved with the FPGA versus CPU inference is above 99.9%
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for all classes. For many applications, this performance will be adequate, and the resource saving
seen in figure 7 from using 14 bits or below can be taken advantage of. In other cases, for example
selecting rare signals with a large background, the extra precision from using more bits may be
desirable to maintain reliable, stable performance not susceptible to numeric effects.

4 Summary and outlook

We presented the implementation of BDT conversion to FPGA firmware in the hls4ml library.
Taking as an example amulticlass classification problem fromhigh energy physics (the identification
of boosted jets based on substructure information), we show how a state-of-the-art algorithm could
be deployed on an FPGA with a typical inference time of 12 clock cycles (i.e., 60 ns at a clock
frequency of 200 MHz). We discussed the dependence of the FPGA resource usage and inference
latency upon the model hyperparemeters, presenting a model which predicts the resource usage
well. We compared an HLS-based implementation to a VHDL one, as a function of the model size.
Both the workflows are supported in hls4ml. The presented workflow provides a resource effective
alternative to Neural Network deployment, which we discussed in a previous publication [6].
Compared to a Neural Network applied to the same problem, a BDT is able to achieve very
similar performance, with a comparable inference latency. The implementation of BDTs in the
FPGA utilises LUTs most heavily, while the Neural Network predominantly uses DSPs. This
functionality of the hls4ml library could support an efficient deployment of algorithms analogous
to that described in ref. [8], which took data at the CMS experiment during the LHC Run II.
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Abstract. In recent years, several studies have demonstrated the benefit of us-
ing deep learning to solve typical tasks related to high energy physics data tak-
ing and analysis. In particular, generative adversarial networks are a good can-
didate to supplement the simulation of the detector response in a collider envi-
ronment. Training of neural network models has been made tractable with the
improvement of optimization methods and the advent of GP-GPU well adapted
to tackle the highly-parallelizable task of training neural nets. Despite these
advancements, training of large models over large data sets can take days to
weeks. Even more so, finding the best model architecture and settings can take
many expensive trials. To get the best out of this new technology, it is impor-
tant to scale up the available network-training resources and, consequently, to
provide tools for optimal large-scale distributed training. In this context, our de-
velopment of a new training workflow, which scales on multi-node/multi-GPU
architectures with an eye to deployment on high performance computing ma-
chines is described. We describe the integration of hyper parameter optimiza-
tion with a distributed training framework using Message Passing Interface, for
models defined in keras [12] or pytorch [13]. We present results on the speedup
of training generative adversarial networks trained on a data set composed of
the energy deposition from electron, photons, charged and neutral hadrons in a
fine grained digital calorimeter.

1 Introduction

Deep neural networks (DNN) are machine learning models with many parameters that are
effectively trained using stochastic gradient descent methods. The power of DNN at executing
challenging tasks learned from data is very attractive to the most diverse fields of science,
business and society at large, and notably in High Energy Physics (HEP). In recent years,
there have been a significant number of articles reporting promising results with applying
deep learning to HEP challenges. DNN can be used in supervised learning, an approach with
which one wants to learn, from a training data set, a mapping from a set of input features to
a set of target features, in order to predict future target values on previously not seen data.

Within the context of unsupervised learning and generative models, multiple neural net-
works can be trained concurrently in the generative adversarial (GAN) scheme [1]. In this
scheme a neural network is generating featured data starting from random numbers, and a

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
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second neural network is set to distinguish between generated samples and the data from an
initial data set. Upon convergence the generative model is able to generate new data that looks
statistically identical to the presented training data. Training GAN with large input data sets
and a large input space turns out to be very intensive, taking several hours per epoch. Such
generative model have had tremendous publicity recently in the field of data science thanks
to their great success in generating complex data (images mostly) and application of such
models in the field of high energy physics are showing great promises [3].

Deep models require quite large data set so as to be trained (because of the large number
of parameters to be adjusted) : even with the large boost given by general purpose graphical
units (GP-GPU), training remains quite a computing intensive task that may last from days
to weeks to converge, if not worse. Therefore we explore several parallelism approaches
to the stochastic gradient descent method in order to speed up further the training of neural
networks.

In training GAN, as in training other neural network models, the choice of some parame-
ters of the models that cannot be learned with stochastic gradient (such as batch size, learning
rate, number of hidden layers, ...) are left for optimization. Trial and errors optimization on
such hyper parameters is time consuming and requires a rather high level of educated ex-
pertise. In this work, we explore the use of Bayesian optimization with a Gaussian process
assumption for the prior, as well as an evolutionary algorithm on the hyper parameters.

This document is structured as follows, we provide the relevant details of artificial neural
network and generative adversarial networks in section 2 as well as details on stochastic
gradient descent in section 3. The problem of hyper parameter optimization is described in
section 5. The directions of distributed training are explored in section 4 and results obtained
at various facilities are provided in section 6. We conclude with some outlook on distributed
training and optimization in section 7.

2 Neural Networks and Generative Adversarial Network

Among the many mathematical models in the field of machine learning, Artificial neural
network (ANN) are a type of model initially inspired from the biological functioning of the
brain. Such a model is composed of an input layer with as many nodes (neurons) as desired
input features, an output layer with a number of neurons in adequacy with the problem that
one wishes to solve and one or multiple internal layers composed of internal nodes arranged
in a variety of topology [2]. The only restriction to the topology and computation will be
clear from section 5 with the necessity of having a differentiable computation graph.

ANN can be used for supervised learning, a task for which one possesses a target fea-
ture (boolean for classification, continuous for regression) which one wishes to learn, from
a corpus of training data, and then predict on unseen similar data. On the other hand, with
unsupervised learning, one may wish to train a model that learns the structure of a data set so
as to be able to generate new samples, that statistically resemble the original data. Such mod-
els are particularly attractive because, even though they might be hard to train, as a one time
process, generating new data can be significantly faster, by several orders of magnitude, than
existing simulation software. In the context of the resource constraint computing model for
the High Luminosity Large Hadron Collider, these models, even with reduced fidelity, could
enable the production of the large data set of simulated collisions required during analysis.

One class of generative model is the so called Generative Adversarial Network [1] com-
posed of two ANN. The first one is the generative model (generator) which produces new
data from numerical vectors drawn at random from pre-determined distributions and aiming
at mimicing sample drawn from the original data set. It is however hard to train such model
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ANN can be used for supervised learning, a task for which one possesses a target fea-
ture (boolean for classification, continuous for regression) which one wishes to learn, from
a corpus of training data, and then predict on unseen similar data. On the other hand, with
unsupervised learning, one may wish to train a model that learns the structure of a data set so
as to be able to generate new samples, that statistically resemble the original data. Such mod-
els are particularly attractive because, even though they might be hard to train, as a one time
process, generating new data can be significantly faster, by several orders of magnitude, than
existing simulation software. In the context of the resource constraint computing model for
the High Luminosity Large Hadron Collider, these models, even with reduced fidelity, could
enable the production of the large data set of simulated collisions required during analysis.

One class of generative model is the so called Generative Adversarial Network [1] com-
posed of two ANN. The first one is the generative model (generator) which produces new
data from numerical vectors drawn at random from pre-determined distributions and aiming
at mimicing sample drawn from the original data set. It is however hard to train such model

with traditional methods because of the absence of a tractable metric to estimate the good-
ness of identity of the generated data and the original data. The second ANN, the so called
discriminator, is set to classify properly the generated data and the original data. It therefore
takes input from the output space of the generator and produces a label on the origin of the
input (fake or original). The two ANN are trained in an alternating fashion, the discriminator
is exposed to the original data and generated samples while the generator is trained with the
loss of the discriminator with generated samples labelled as original. During this procedure
the generator is trained to fool the discriminator. Further in depth details on GAN can be
found in [1].

3 Model Training with Stochastic Gradient Descent

ANN parameters are learned from data through an optimization procedure aiming at maxi-
mizing likelihood or minimizing errors of the model, cast as a minimization of a loss function.
A standard method in convex optimization is gradient descent, during which the parameter
space if navigated by taking infinitesimal steps on the opposite direction of the gradient of
the loss with respect to the parameters of the model. By having ANN models and loss func-
tion fully differentiable, one can compute the gradient analytically and is left with only the
evaluation of these gradients. Mini-batch Stochastic gradient descent (SGD) is an algorithm
that computes the direction of stepping not from the gradient of a single sample but from a
collection of samples ("batch"). The optimization of the loss function of an ANN is not a
convex optimization problem, however stochastic gradient descent have shown great success
in finding good parameters for ANN [4]. An epoch indicates a cycle of the SGD where all
batches of the training data set have been taken into account. Several epochs are usually
needed to achieve convergence of the model.

Further manipulations can be performed on the batch gradients in the optimizer algorithm
in order to reach faster convergence: these algorithms are driven by various parameters, such
as the learning rate (measuring the step size in the parameter space). Further information on
optimizers are available in [5].

4 Distributed Training

In this section we present several ways for parallel computation of the gradients needed for
SGD. One can leverage these levels of parallelism on high performance computing (HPC)
centers composed of many nodes with high bandwidth connectivity and obtain a shorter time
to solution. The computation and communication is orchestrated using the MPI [6] frame-
work, abstracting the communication protocols from the computation. An MPI program is
executed over multiple processes, running on multiple physical hosts on the cluster. We call
each process a worker, and it does not matter a priori if they get executed on the same phys-
ical node. Depending on the topology of the HPC, there can be more than one GP-GPU per
physical host, and we enforce that we do not get more than one process associated with one
GP-GPU. De-facto, in the following, each worker is referring to a process with at least one
dedicated GP-GPU attached. Results of applying the following techniques are reported in
section 6.

4.1 Batch Parallelism

In the scheme of the SGD, with a small batch size, the effective gradient is very noisy due
to statistical fluctuations over the small number of gradients averaged. It is therefore neces-
sary to have a sufficiently large batch size. Even with ever growing memory in GP-GPU, the

3

EPJ Web of Conferences 214, 06025 (2019)	 https://doi.org/10.1051/epjconf/201921406025
CHEP 2018



amount of input data and network information might become larger than the available mem-
ory, preventing from doing efficient computation on GP-GPU. When faced with this situation,
the batch can be divided in sub-batches and distributed to multiple workers. The gradients
then are efficiently gathered for the averaging over the batch. We use the Horovod [7] library,
developed by Uber, efficiently implementing this process, with modifications that we brought
to the library interface. With these modifications, sub-groups of ranks can be individually
initialized and work in concert for batch parallelism. This therefore allowed each sub-group
to work on the computation of the gradient of one batch. HPC topology with many GP-GPU
per node are well suited for this method since the communication can be implemented very
efficiently with GPU-2-GPU fast communication such as Nvlink [8]. In summary, batch par-
allelism enables running SGD with significant batch size when the GP-GPU memory is a
limiting factor.

4.2 Data Parallelism

The SGD algorithm is sequential in the successive batches used to compute updates to the
model parameters. The computation of the gradient for multiple batches can however be
distributed from a master process to multiple processes so as to calculate them in parallel.
One of the immediate points, to be noted about doing so, is that all workers are calculating
the gradient evaluated for the set of model parameters, over different batches of data. Af-
ter successive update of the parameter of the master model with the gradients computed in
this manner, one updates a set of hyper parameters using gradients calculated on outdated
hyper parameter values. This generates, if not mitigated algorithmically, the staleness of the
gradients and loss of convergence at fixed number of epochs. Observation of such effect is
available in [6] and can be mitigated with dedicated algorithm like the one in [10]. There is
a trade-off between the speedup obtained with computing the gradient from multiple batches
and the degradation of the convergence rate of the model. In summary, data parallelism is
having the gradient of many batches done in parallel and integrated to a master model.

4.3 Model Parallelism

Deep neural networks can turn up very large, with billions of parameters. It might be grown at
a point at which the amount of memory required is too large (assuming a fixed batch size that
itself fits on the device, see section 4.1 otherwise). By virtue of the chain rule in calculating
the gradient of the loss, the calculation can be factorized by layers of the ANN. It is therefore
effectively possible to distribute part of the computation graphs corresponding to successive
layers of the model to several devices, with the need to only communicate the activation of
the layer at the boundaries. We use the native functionality of tensorflow [11] to put part
of the computation graph on different device, in the case of multiple GP-GPU per node. In
summary, model parallelism allows to spread the forward and backward passes of SGD over
mutliple devices.

5 Model Parameter Optimization

There are however parameters of the models that cannot be adjusted using SGD and that have
significant impact on model performance. Such parameters are for example learning rate of
the optimizer or the number of nodes in internal layers of the ANN. These parameters are
often called hyper-parameters to differentiate them from the other parameters. The hyper
parameters are often scanned by a developer while looking for a set with good performance
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after training, and such scanning is a lengthy, painful and sometimes random process. Such
search can be replaced with a full grid search but is computationally prohibitive in large
hyper-parameter space dimension. Gradient descent is often not a possible algorithm because
of the discreetness of hyper parameters. Below, we give details of two methods commonly
used for hyper parameter optimization. It should be noted that it is not necessary to use the
loss function previously defined as the performance metric of the model. Any other metric
may be use to quantify the performance of the model, and be used as figure of merit (FOM)
during hyper parameter optimization. Specifically, this figure of merit does not need to be
differentiable. We eventually provide details of the cross validation procedure, as a must for
model comparison.

5.1 Bayesian Optimization using Gaussian Process Prior

A method commonly used for hyper parameter optimization is using Bayesian optimization
with modeling the FOM with Gaussian processes. Details of the algorithms can be found in
[14]. We use the scikit-optimize implementation [15] of the optimizer, which one queries for
values of the hyper parameters to evaluate the performance for. With successive sampling
of the hyper parameter space, the optimizer gets better at providing suggestions close to the
optimal hyper parameters. The complexity of this algorithms grows as the cube of the number
of sampling points and can become prohibitive for large hyper parameter space in which the
convergence is taking multiple sampling iterations. While the process of trial and error is
essentially sequential, multiple set of hyper parameters can be evaluated simultaneously.

5.2 Evolutionary Algorithms

Another class of algorithms used for hyper parameters optimization is based on genetic
evolution[16]. We implement a simple version where the hyper parameters are trivially en-
coded as the chromosone vector and the FOM is trivially mapped to the fitness of a chromo-
some The algorithm starts with an initial population of chromosomes taken at random within
the allowed space, a fraction of chromosome with best fitness are kept to carry on producing
the next generation. The population of the next generation is created from random linear
interpolation from fittest chromosomes and additional mutation are obtained by moving the
chromosome at random within an infinitesimal volume. The fitness of the next generation
is evaluated and the process is repeated for a certain number of iterations. This algorithm is
expensive in the number of evaluation calls (training of a model to convergence) but can have
an advantage over the previous method when the hyper optimization requires many iterations.
The algorithm is sequential in the successive generation, but fully parallel in evaluating the
fitness of a given generation.

5.3 Cross Validation

The training of ANN is subject to some level of fluctuation due to the initial random weights
and numerical rounding happening during SGD. There is another stochastic component in
batch parallelism (see section 4.2) where gradients are considered in an order driven by com-
putation time on each node. The performance of a model is usually evaluated on the vali-
dation set, distinct from the training one: its finite size and choice introduces a bias in the
measured performance. One can estimate both performance uncertainties using the K-split
cross validation algorithm in which the initial data set is plit into multiple parts that are use
to concurrently evaluate the performance of a choice of model hyper parameters. The initial
datset is divided in K parts (a.k.a. splits): K-1 splits are used for training, the remaining one
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is left out for validation. One can quote the average performance over the K FOM values
obtained with the K-splits cross validation. The training and evaluation of the different mod-
els are trivially parallel, and one can leverage large number of nodes at an HPC to run cross
validation in the same time it would take to train one model, with the advantage of having a
better estimate of the performance.

6 Results

We report here on scaling performance obtained in training a GAN on 3D calorimetry simu-
lated data on several supercomputers and using libraries implementing different schemes of
distributed training. Further details on the model and data set are available in [17].

We report scaling performance using the mpi-learn [19] package adapted to train GAN
models, and with the extension for performing hyper-parameter optimization in mpi-opt
[22]. The original paper reported quasi-linear scaling up to 8-15 workers [19]. The GAN
training was performed on PiZ Daint [20] and Titan [21] supercomputers equipped with
NVIDIA®V100 GP-GPU and K20 respectively. As can be seen in figure 1 the preliminary
results on scaling for GAN is not great with a factor of about 1:2 speedup per worker up to 20
workers, and 20x speedup with 100 workers. We have observed no degradation of the fidelity
of the trained model up to using 15 workers. In the current setup this is not the most efficient
use of the resource as the speed up is not linear, but still provide a significant improvement
over using a single node. We hypothesize that the deviation from a linear speed-up is due to
the fact that the workload for the workers is too small and that most time is spend with the
master handling the weights update and communication to the workers. Better understand-
ing of the scaling would require further in depth analysis, which the authors are planning as
future work.
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Figure 1. Speed up of training a 3D calorimeter energy deposition generative adversarial network, as a
function of the number of training processes and with respect to training with one process only. Results
obtained when running on CSCS Piz Daint (left) and ORNL Titan (right).

7 Discussion

In this article, we review the technicalities of training neural networks on distributed systems.
We present several ways to parallelise training of neural networks, including Generative Ad-
versarial Networks. We describe methods to perform hyper parameter optimization, imple-
mented in a python library for deployment on HPC resource. We report results on scaling of
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We report scaling performance using the mpi-learn [19] package adapted to train GAN
models, and with the extension for performing hyper-parameter optimization in mpi-opt
[22]. The original paper reported quasi-linear scaling up to 8-15 workers [19]. The GAN
training was performed on PiZ Daint [20] and Titan [21] supercomputers equipped with
NVIDIA®V100 GP-GPU and K20 respectively. As can be seen in figure 1 the preliminary
results on scaling for GAN is not great with a factor of about 1:2 speedup per worker up to 20
workers, and 20x speedup with 100 workers. We have observed no degradation of the fidelity
of the trained model up to using 15 workers. In the current setup this is not the most efficient
use of the resource as the speed up is not linear, but still provide a significant improvement
over using a single node. We hypothesize that the deviation from a linear speed-up is due to
the fact that the workload for the workers is too small and that most time is spend with the
master handling the weights update and communication to the workers. Better understand-
ing of the scaling would require further in depth analysis, which the authors are planning as
future work.
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Figure 1. Speed up of training a 3D calorimeter energy deposition generative adversarial network, as a
function of the number of training processes and with respect to training with one process only. Results
obtained when running on CSCS Piz Daint (left) and ORNL Titan (right).

7 Discussion

In this article, we review the technicalities of training neural networks on distributed systems.
We present several ways to parallelise training of neural networks, including Generative Ad-
versarial Networks. We describe methods to perform hyper parameter optimization, imple-
mented in a python library for deployment on HPC resource. We report results on scaling of

distributed training on two supercomputers, obtaining promising speedup without noticeable
degradation in model fidelity.

The authors continue to work on detailed validation and optimization of these preliminary
results, subject to resource availability (large scale training benchmarking are expensive on
resource allocation), toward releasing a turn-key software for distributed training and opti-
mization of neural networks using keras, tensorflow and pytorch.
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Abstract. Deep Learning techniques are being studied for different applications by the HEP
community: in this talk, we discuss the case of detector simulation. The need for simulated
events, expected in the future for LHC experiments and their High Luminosity upgrades, is
increasing dramatically and requires new fast simulation solutions. Here we present updated
results on the development of 3DGAN, one of the first examples using three-dimensional
convolutional Generative Adversarial Networks to simulate high granularity electromagnetic
calorimeters. In particular, we report on two main aspects: results on the simulation of a
more general, realistic physics use case and on data parallel strategies to distribute the training
process across multiple nodes on public cloud resources.

1. Introduction and Related Work
High Energy Physics (HEP) relies heavily on Monte Carlo simulation in order to model complex
processes. However the detailed Monte Carlo approach is both time and resource intensive:
currently more than 50% of the Worldwide LHC Grid [1] resources are devoted to simulation
[2]. The need in terms of simulated data is expected to increase by a factor 100× for the High
Luminosity LHC [3] and fast simulation alternatives are being investigated. Existing techniques,
based, for example, on parametrization [4, 5, 6] can reach different speed-ups while retaining
various levels of accuracy.

Detailed simulation of high granularity calorimeters is particularly time-consuming, however,
their output, a pattern of energy depositions in the different cells, can be interpreted as pixel
intensities in a three-dimensional image. Particle characteristics, such as its type, energy and
incident angle are input to the simulation process and can be used to condition the training of
Deep Neural Networks and obtain models capable of generating the desired output according
to a specific set of input parameters. Image generation is an important aspect of machine
learning: a number of approaches exists including Generative Adversarial Networks (GAN).
GANs implement the idea of adversarial training for generating sharp and realistic images [7];
their application to HEP simulation was introduced by the LAGAN [8] and the CaloGAN [9]
models. In this case particle showers for simplified calorimeters were simulated as sets of two-
dimensional images. Since then, several studies have tested the application of GANs to HEP
simulations (for example [10, 11]).

Our previous work [12, 13] introduced the simulation of an example of high granularity
calorimeter using true 3D convolutions to further exploit the correlations in the volumetric
space. We demonstrated the benefits of such an approach by training a network to generate
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calorimeter energy showers according to the primary particle energy entering the calorimeter
at a fixed (orthogonal angle). Here we generalise these results to a more realistic use case
considering a particle entering the detector with a variable incident angle. Thus, our network
learns a joint distribution of both the primary energy and the incident angle, it reproduces a
detector volume that is 4× larger and it introduces domain knowledge in order to reach a high
level of accuracy. We also present updated results on the data parallel approach we used to train
our network on distributed systems. Our final goal is to prove that, by using meta-optimization
and hyper-parameters scans, it is possible to tune the network architectures to simulate different
detectors. In this perspective, an efficient training process becomes essential and the accent
should therefore be on optimizing the computing resources needed to train the networks, studying
parallelization and cross-platform development. This report is organised as follows: firstly we
introduce our 3D convolutional GAN model, the data set and the training strategy. Section 3
summarises some example results obtained from the validation of physics performance. Section
4 discusses the implementation of a data parallel training approach together with preliminary
scaling benchmarks on public cloud resources. We then conclude with a brief outlook on our
plans for future development.

2. The 3D convolutional GAN
The 3DGAN model, described in [12], represents a first proof of concept of the possibility to
use 3D convolutional GANs to simulate high granularity calorimeters. It addresses, however,
an extremely simplified use case: the 3D image is limited in size and the simulated particles
enter the detector with a fixed 90◦ angle. The primary particle energy is used to condition the
training process, loosely following the ACGAN [14] approach. The Hadamard product between
the energy and the latent space vector is calculated and used as an input to the generator
network. At the same time, the loss function includes a constraint on the total deposited energy
[15, 16].

This work extends the scope of [12] and simulates more realistic particles entering the detector
with a variable incident angle and generating images that are 4× larger in size. Here, the GAN
learns an angle-energy multivariate distribution and therefore the training is conditioned using
both the incident angle and energy. As explained below, the 3DGAN architecture and the
corresponding loss functions are modified to take into account physics based constraints.

2.1. Data set
The training data are generated in an effort to provide a common realistic data set that can
be used to foster development of different Deep Learning and Machine Learning applications,
from classification and regression networks to improve physics analysis to generative models for
simulation. This data simulate a high granularity electromagnetic calorimeter (ECAL), designed
in the context of the detector studies for the CLIC accellerator project [17], and they consist
of a regular grid of 5.1mm3 cells and an inner calorimeter radius of 1.5m. Further details can
be found in [18, 16].

Here, we show results obtained using 140, 000 showers produced by single electrons with
a primary energy (Ep) range of 100 − 200 GeV and incident angle (θ) uniformly distributed
between 60◦ and 120◦. The final result is a three dimensional 51 × 51 × 25 pixelized image
centered around the barycenter of the shower: Figure 1 (a) presents 2D projections on the xy,
xz and yz planes for Geant4 events. 1 Typically only a small fraction of cells (below 20%)
receives some energy depositions and the size of the deposit can vary over a very large range
(spanning more than 10 orders of magnitude). This high sparsity and large dynamic range

1 The z axis lies along the detector depth and x, y are the transverse axes.
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represent huge challenges compared to the typical RGB image generation problem where the
pixel dynamic range is limited.

2.2. Architecture
A general GAN is made of two components, a discriminator and a generator: as explained in
[12], the 3DGAN generator and discriminator networks consist of four 3D convolution layers.
The discriminator has 16 filters with 5 × 6 × 6 kernels and leaky ReLU activation functions
in each layer. A batch normalization layer is added after the activation in all except the first
layer. The output of the final convolution layer is flattened and connected to a sigmoid neuron
corresponding to the GAN real/fake output as well as a linear unit performing energy regression.
The generator has a latent vector of size 256. The first convolution layer has 64 filters with
6×6×8 kernels. The next two layers have 6 filters of 5×8×8 and 3×5×8 kernels respectively.
The last layer has a single filter of 2 × 2 × 2 kernel. Leaky ReLU activation functions are used
in all but the last layer that uses a ReLU. Batch normalization layers were added after the first
and the second layer. The RMSprop [19] optimiser is used to train the network. The model is
implemented in Keras [20] and Tensorflow v1.2 [21].

2.3. The loss function
As shown by the equation below, the loss function is build as a sum of several terms pertaining
to the discriminator real/fake probability (LG), the primary particle energy regression task (LP )
and a constraints on the total deposited energy (LE), the pixel intensity spectrum (LB) and the
incident angles measurement (LA). W are the corresponding weights, balancing the individual
contributions.

LTot = WGLG +WPLP +WALA +WELE +WBLB

Extending the approach in [12], the last two quantities introduce domain-related terms in
the loss function and they are essential in order to achieve the required level of accuracy over
a very large pixel intensity dynamic range. LG is implemented as a binary cross entropy, while
a mean absolute percentage error is used for the primary energy,the deposited energy and the
pixel intensity spectrum loss terms. The mean absolute error is used for the incident angle loss
term.

2.4. The data preparation step and training process
Given the large pixel dynamic range, shown in figure 2 , we do not normalize the training data,
instead we slightly reduce the dynamic range by applying a power function using an exponent
smaller than one. The exponent is treated as a hyper-parameter and adjusted, to a value of
0.85, through a trial-and-error procedure. This procedure is essential to improve the description
of the lower end of the pixel intensity spectrum.

The adversarial approach designs the training as a competition between the discriminator
and the generator [7]. We adopt a balanced approach, by training the discriminator and the
generator alternatively using the same number of steps. Initially, the discriminator is trained
on a batch of real images and a batch of generated images (and label switching is applied [22]).
Then, the generator is trained twice while keeping the discriminator weights fixed. Training
on a single NVIDIA GeForce GTX 1080 card for one epoch requires about two hours and the
training runs for 60 epochs.

3. Validation and Optimization
As a preliminary check we visually verify that 3DGAN can reproduce typical energy deposition
patterns for different energy and incident angle values. Figure 1 shows some examples: it
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compares 2D energy shower projections on the xy, xz and yz planes, as predicted by Geant4
and 3DGAN.
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Figure 1. Geant4 vs. GAN generated events with similar primary energies and angles; a)
Geant4 events ; b) generated events.

Figure 2 shows the Geant4/GAN ratio of the total energy deposited in the calorimeter as
a function of the primary particle energy (a) and the single cell energy spectrum in linear (b)
and logarithmic scale (c). It can be seen that, overall, GAN reproduces correctly the total
energy deposited in the calorimeter and that single cell energies agree down to MeV values.
As expected, the lower end of the spectrum is harder to simulate. Figure 3 (left) shows the
Geant4 - GAN correlation difference calculated for different quantities (such as shower shapes
distributions, deposited energy, incident angle, primary particle energy, etc.. ) as predicted
by GAN and Geant4. It can be seen that the 3DGAN can correctly reproduce most internal
correlations.

4. Distributed Training on public cloud
As Deep Learning models increase in complexity, model size and training time, the role played by
distributed training becomes of primary importance: 3DGAN, for example, sums up to slightly
more than a million parameters and it reaches convergence in about 5 days of training.

Several different algorithms for distributed training have been developed in recent years.
Generally these algorithms work by splitting the training load across multiple concurrent
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Figure 2. Geant4 vs. GAN comparison for 100-200 GeV primary particle energies; a) total
energy deposited in calorimeter; b) single cell energy; c) single cell energy in log scale.
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Figure 3. a) Geant4 - GAN difference between internal correlations calculated for several
shower features; b) Speed up of training 3DGAN on the orthogonal incident angle sample, as a
function of the number of MPI workers and with respect to training with one MPI worker.

processes, either threads on a single machine or jobs spread across separate nodes [23]. In
order to reduce the training time we have interfaced 3DGAN to several frameworks, including
Horovod [24] and mpi-learn [25], and benchmarked the parallel training process on different
HPC systems [26, 23, 12].

Here we report on updated results on 3DGAN scaling performance on public clouds. Several
initiatives exist that aim at understanding how the scientific community can integrate public
clouds in their computing models. The European Commission funded project Helix Nebula
Science Cloud (HNSciCloud) [27], for example, explored an hybrid cloud model linking together
commercial cloud service providers and research organisations’ in-house resources in order
to provide an innovative vision for supporting the growing computing needs of the research
community.

We have created a mpi-learn based docker [28] image and integrated it to kubernetes [29]
and kubeflow [30] in order to smoothly deploy our workload on commercial cloud providers
(for example Exoscale 2, equipped with NVIDIA P100 GPUs), via the HNSciCloud project.
Results are shown in figure 3 (right): we have tested different deployment configurations and no
overhead, due to the docker, kubernetes or kubeflow additional layer, has been observed. We
have also compared the speedup performance obtained running on external cloud (blue) and on
a small local set of GPUs, available in CERN Openstack (green) and we observed no difference in
timing. Training time is significatly reduced, but the current speed-up is not linear. A possible
explanation is that the workload for the workers is too small with respect to communication
time and weights updates processing by the master. Analysis and optimisation of resource usage
is part of our on-going work.

5. Summary and Plans
We presented updated results on the development and optimisation of our 3DGAN model:
a three-dimensional convolutional Generative Adversarial Network for electromagnetic shower
simulations in high granularity calorimeters. In particular, we have obtained results within 10%
of Geant4 by introducing specific physics-related terms in the loss function and proved that our
network can learn complex joint distributions. We have developed a fast deployment framework,
based on commercially available platforms, such as kubernetes and kubeflow, to parallelise the

2 https://www.exoscale.com
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3DGAN training process across distributed resources available on public cloud. We obtained
promising results that suggest that alternatives to in-house resources could be used to efficiently
perform this kind of tasks.

In order to further optimise 3DGAN performance and extend it to the simulation of different
calorimeter geometries we are currently developing a hyper-parameter optimisation framework
based on genetic algorithms.
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Abstract—This paper presents novel reconfigurable architec-
tures for reducing the latency of recurrent neural networks
(RNNs) that are used for detecting gravitational waves. Gravita-
tional interferometers such as the LIGO detectors capture cosmic
events such as black hole mergers which happen at unknown
times and of varying durations, producing time-series data. We
have developed a new architecture capable of accelerating RNN
inference for analyzing time-series data from LIGO detectors.
This architecture is based on optimizing the initiation intervals
(II) in a multi-layer LSTM (Long Short-Term Memory) net-
work, by identifying appropriate reuse factors for each layer. A
customizable template for this architecture has been designed,
which enables the generation of low-latency FPGA designs with
efficient resource utilization using high-level synthesis tools. The
proposed approach has been evaluated based on two LSTM
models, targeting a ZYNQ 7045 FPGA and a U250 FPGA.
Experimental results show that with balanced II, the number
of DSPs can be reduced up to 42% while achieving the same
IIs. When compared to other FPGA-based LSTM designs, our
design can achieve about 4.92 to 12.4 times lower latency.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) are a type of archi-
tecture specialized for processing ordered data, for example
time-series data. These networks have applications in speech
recognition [1], DNA sequence analysis, and physics exper-
iments [2, 3]. An exciting physics experiment concerns the
detection of gravitational waves, predicted by Albert Einstein
a hundred years ago. The first detected wave came from a
collision between two black holes, reaching the earth after
1.3 billion years. The detectors at the Laser Interferometer
Gravitational-Wave Observatory (LIGO) produce time-series
data, as they capture cosmic events such as black hole mergers
which happen at unknown times and of varying durations.
Accelerating RNN inference using reconfigurable accelerators
such as FPGAs would enable sophisticated processing, such
as anomaly detection, to run in real time on the data stream
from the detector and generate a fast response. Among the
many RNN variants, the most popular one is Long Short-Term
Memory (LSTM). FPGAs have been used to speed up the
inference of RNNs/LSTMs [1, 4, 5, 6, 7], which offer benefits
of low latency and low power consumption compared to CPUs
or GPUs.

Fig. 1: Unbalanced layer IIs among various cascaded layers
in an RNN model

However, existing LSTM accelerators cannot support low-
latency and effective multi-layer execution, especially when
targeting small LSTM models with requirements of ultra low
latency and ultra high throughput for scientific applications.
Many existing FPGA-based LSTM accelerators are designed
with the same idea as their GPU counterparts, which utilize a
single computational engine architecture where the engine is
designed to run one block or layer at one time, and the whole
network is processed by running the engine repeatedly [5, 6].
Their design consists of arranging computing resources to
form a single core with many processing elements, leveraging
data level parallelism. For example, Brainwave [5] is a single-
threaded neural processing unit (NPU) which has 96,000 pro-
cessing elements (PEs). However, when the size of the targeted
LSTM layer is small, these hardware resources will not be
fully utilized, e.g., when targeting a small LSTM layer, the
Brainwave hardware utilization is lower than 1% [5], while the
utilization of the NPU can be lower than 15% [6]. Moreover,
since a single engine is used, the various layers must have the
same amount of parallelism which is not flexible to take full
advantage of the customizability of FPGAs. Thus, this work
applies a layer-wise architecture to map all the LSTM layers
on-chip and perform the computation for different layers on
their own unit with independent optimization to achieve low
latency and high system throughput.

Unlike CNN inference designs [8, 9] which only have
forward datapaths and can be fully pipelined, there are feed-
back datapaths in RNN inference and data dependencies exist
between the current timestep and the next timestep. Unrolling
the timesteps fully may help, however the sequence length
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(timestep) of an LSTM model is usually larger than the
number of layers [10], e.g., 1500 timesteps in an LSTM
layer in DeepSpeech [11], which makes the full unrolling
of timesteps impractical on FPGAs because of the limited
hardware resources.

To accelerate an RNN model with multiple LSTM layers,
this work proposes coarse grained pipelining with balanced II
(initiation interval) to improve system throughput and reduce
latency. This is achieved by identifying appropriate reuse
factors for each layer, resulting in fast response and enhanced
resolution for processing sensor data. It can achieve the best
(smallest) system level II for a neural network with multiple
LSTM layers on a given FPGA. The II is the number of clock
cycles before a unit can accept new inputs and is generally the
most critical performance metric in systems [12]. A perfect
pipeline has II = 1 cycle, as this is required to keep all
pipeline stages busy. However, the II of an LSTM layer is
generally larger than one because of the data dependencies.
For a model with multiple layers in sequence, the initiation
interval of this model is decided by the largest II among
all the layers [13], as shown in Fig. 1. The unbalanced IIs
in various layers result in hardware inefficiency and low
throughput. Accelerating a deep LSTM model is challenging
since the computation load varies greatly among layers and
data dependency exists both time-wise and layer-wise.

Our approach is to ensure all the layer IIs are balanced to
eliminate system stall, so that the system becomes a coarse
grained seamless pipeline. It increases pipeline parallelism
by performing more computations without increasing latency,
and without introducing additional memory traffic or storage.
Unbalanced IIs in a pipeline is a common issue, but few
studies address balancing IIs in the context of accelerating
multi-layer DNNs, especially for RNNs/LSTMs. The proposed
coarse-grained pipelining is similar to layer parallelism but
the granularity in our approach does not need to cover an
entire layer. An LSTM layer can still be divided into multiple
blocks with pipeline parallelism. In addition, a customizable
template for this architecture has been designed, which enables
the generation of low-latency FPGA designs with efficient
resource utilization using high-level synthesis (HLS) tools.
Moreover, We develop an optimization algorithm such that,
given the dimensions of the LSTM layers and a resource
budget, computes a partitioning of the FPGA resources for
an efficient

To the best of our knowledge, this is the first work to pro-
pose balancing IIs for a coarse-grained pipelined architecture
to enable fast multi-layer LSTM data analysis in gravitational
wave experiments. This work could help improve performance
of next generation Gravitational Wave detectors.

We make the following contributions in this paper:
• A novel technique for balancing IIs of multi-layer LSTM

inference to increase hardware efficiency and system
throughput for data analysis in gravitational wave exper-
iments.

• A scalable and low latency LSTM template which enables
the generation of low-latency FPGA designs with efficient

Fig. 2: Structure of an LSTM cell

resource utilization by HLS tools. We open source the
templates with some examples1.

• A comprehensive evaluation of the proposed method and
hardware architecture.

The specific RNN layered structure and coefficients are
LIGO specific, but the need for low latency would benefit
many other applications, especially those requiring real-time
response, e.g., low latency would benefit the Large Hadron
Collider (LHC) physics [14], adaptive radiotherapy [15] and
electronic trading [16]. The proposed techniques can be
adapted to address these other applications.

II. BACKGROUND AND PRELIMINARIES

RNNs/LSTMs have been shown to have useful properties
with many significant applications. This study follows the
standard LSTM cell [4, 5, 6]. 2 shows an LSTM cell. It
consists of three main parts. At the front, there are four LSTM
gates which perform matrix-vector multiplication (MVM),
followed by activation functions. While in the tail, there are
a few element-wise operations. The hidden state ht, which
will be fed back from the tail to the front, is produced by the
following equations:

it = σ(Wi[xt, ht−1] + bi), ft = σ(Wf [xt, ht−1] + bf )

gt = tanh(Wg[xt, ht−1] + bu), ot = σ(Wo[xt, ht−1] + bo)

ct = ft � ct−1 + it � gt, ht = ot � tanh(ct)

Here, σ, tanh and � stand for the sigmoid function, the
hyperbolic tangent function and element-wise multiplication
respectively. i, f, g and o represent the input, forget, input
modulation and output gate respectively. The input modulation
gate is often considered as a sub-part of the input gate.
The input vector and hidden vector are combined so that W
represents the weight matrix for both vectors. Bias term is
represented as b. The output ct is the internal memory cell
state and ht is the output of the cell, also called the hidden
vector, which is passed to the next timestep or next layer.

III. DESIGN AND OPTIMIZATION METHODOLOGY

This section analyzes unbalanced II issues and introduces
several optimizations for multi-layer RNN designs. We define
a few parameters, as shown in Table I for later calculations.

1https://github.com/walkieq/RNN HLS
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TABLE I: System Parameters
IIsys System initiation interval
TS Timestep number
iiN Timestep loop initiation interval in the LSTM layer N
IIN Initiation interval for layer N
LTN Latency of a single timestep loop for layer N
LTα Latency of the unit α; α could be mult / mvm / tail / σ
xt The input vector x at timestep t

ht The hidden vector h at timestep t

Wx LSTM gates weight matrix for input vector.
Wh LSTM gates weight matrix for hidden vector.
Lx Number of elements in the input vector x
Lh Number of elements in the hidden vector h
Rx Reuse factor for MVM involving LSTM input vector xt

Rh Reuse factor for MVM involving LSTM hidden vector ht

Rt Reuse factor for LSTM tail unit

Fig. 3: Overview of the LSTM-based autoencoder

A. LSTM-based autoencoder for gravitational wave detection

Fig. 3 shows an overview of the LSTM-based autoencoder
used for gravitational wave detection. The models and the
dataset are available on GitHub [17, 18]. The autoencoder
consists of two components, an encoder and decoder. The
encoder learns to transform data from the input layer into a
latent-space representation, which acts as a data ”bottleneck”.
The decoder then reconstructs the output of the reduced latent
representation as close as possible to its original input. When
the error between input and reconstructed values is high, the
input is flagged as anomalous. In this work, an LSTM-based
autoencoder is used as an unsupervised prediction model to
detect the anomalies for gravitational waves. This works by
only training the LSTM-autoencoder to encode and decode
normal background conditions at the LIGO interferometers.
When an event containing a gravitational wave passes through
the autoencoder, the model cannot encode and decode the
additional strain provided by the gravitational wave. Both the
encoder and decoder have two LSTM layers. A TimeDis-
tributed dense layer is applied before the data output.

B. System II for multi-layer LSTM networks

Accelerating a deep LSTM model which has multiple layers
is challenging since the computation varies greatly among
layers and data dependencies exist both time-wise and layer-
wise. An efficient technique to improve throughput and reuse
computational resources is to pipeline hardware units. If each
input can overlap with itself, we can achieve simultaneously
inference parallelism within a run by coarse grained pipelining
as shown in Fig. 1.

However, a naive implementation can result in a large
number of idle cycles due to inter-layer dependencies since the

Fig. 4: Overview of the method used to balance IIs

pipeline is not seamless; a particular layer might stall until the
previous layer finishes. The unbalanced IIs in various layers
results in hardware inefficiency and low system throughput.
Typically, the particular layer with the largest II should be
optimized since it dominates the system II. Generally, the II
cycles can be reduced if more hardware resources are allocated
to that particular layer by adding more parallelisms. So the
targeted layer should be allocated as many hardware resources
as possible. However, the hardware resources on a given FPGA
is limited, which means that the other layers may occupy less
hardware resources. When the resources for a layer decrease,
the II of that layer will increase. Then this layer may become
the one that has the largest II and dominates the design. Thus,
the optimal case is that all the layers have the same II, in which
scenario the design utilizes the hardware resources efficiently
and achieves the highest system throughput as shown in Fig. 4.

Besides, we find that we do not need to unroll every unit in
order to achieve the lowest II. Some hardware resources can
be saved from the units which do not require full unrolling.
And then these saved hardware resources can be reallocated
to the other units which dominate the system to achieve low
initiation intervals. As shown in Fig. 4, the hardware resources
for layer 1 can be reduced so that the saved resources can be
reallocated for layer 0. The IIlayer1 is increased to II ′layer1
while the IIlayer0 which is the largest can be reduced to
II ′layer0 so that the final system IIsys can be reduced.

Partitioning FPGA resources to enhance throughput has
been studied for CNNs [8, 9, 19, 20] but they do not touch
the RNNs and the recurrent nature as well as the data
dependencies in RNN computations, which are absent from
CNNs. We develop an optimization algorithm such that, given
the dimensions of the LSTM layers and a resource budget,
computes a partitioning of the FPGA resources for an efficient
and balanced high-performance design. Our algorithm runs in
seconds and produces a set of reuse factors [14]. We then
use these factors to parameterize an LSTM template design
specified using HLS to form a complete multi-layer LSTM
implementation. Since all the layers have the same II, we only
need to focus on the optimization for a single LSTM layer.
The layer II and system II are

IIN = iiN × TS (1)
IIsys = max(II0, II1, ..., IIN ) (2)

The original IIN should be IIN = iiN ×TS+(LTN − iiN ).
However, the extra (LTN − iiN ) cycles can be eliminated
after using the rewind for Vivado HLS #pragma pipeline.
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Fig. 5: An LSTM layer after performing the transformation

The rewind is an optional keyword that enables rewinding,
or continuous loop pipelining with no pause between the
end of one loop iteration and the start of the next iteration.
So the proposed balancing method has two benefits. First,
it improves throughput due to pipelining. Second, it reduces
system latency since if the LSTM loop initiation interval, iiN ,
can be reduced by 1 cycle, then the system latency can be
reduced by TS cycles in total according to Equation (1).

C. The II of a single LSTM layer

This work splits one LSTM layer into two sub-layers. The
first one is the mvm x which has no data dependencies and
performs MVM operations for the LSTM gates involving the
input vectors while the second one includes all the others
which form a loop with data dependencies, as shown in Fig. 5.
For accelerating LSTM layers used for gravitational wave
detection, the system is designed to achieve the average
latency (system II) as small as possible. To achieve the lowest
system II, fully unrolling the neural network model is an
effective method which utilizes a multiplier only once in the
computation of a layer. E.g., a fully connected (FC) layer with
input size num in and output size num out can achieve the
lowest latency if there are num in × num out multipliers.
This is the most parallel and fast way a layer can be computed.
It has been demonstrated in the HLS4ML based DNN designs
for particle physics [14]. However, unlike forward computation
in the FC layers used in the design of [14], there are data
dependencies in LSTM computations.

After we have split the LSTM layer into two sub-layers,
the two can be pipelined as shown in Fig. 6. According to
the discussion in Section III-B, the optimal case is when the
two sub-layers have the same II. Since the second sub-layer is
complex and its II is usually larger than the one of the first sub-
layer, the parallelism for the first sub-layer does not need to
be as large as possible, resulting in a reduction of the number
of multipliers needed to process the mvm x unit. The saved
multipliers can then be reallocated for other layers to achieve
a lower system II. Reducing the parallelism of mvm x does
not hurt the system latency. Normally, each input vector can
finish the calculation in the shadow region of processing the ht

because of the pipelining. Besides, the cycles for processing
the first mvm x can be eliminated when calculating the layer
II because of the keyword of rewind in Vivado HLS.

While the second sub-layer may seem complex, if the design
is split into more sub-layers, these sub-layers cannot be coarse
grained pipelined. The reason is that the start of the next

Fig. 6: Coarse grained pipelining in an LSTM layer

Fig. 7: Timestep overlapping

iteration needs the result from the current iteration, as shown
by the red arrows in Fig. 6

D. Overlapping the computations in cascaded LSTM layers

In the proposed coarse grained pipelining, the processing
of the cascaded LSTM layers can be overlapped. The second
layer does not need to wait for the whole sequence of hidden
vectors to be ready. Just one hidden vector from the former
LSTM layer is sufficient to start the calculation of the next
LSTM layer as shown in Fig. 7. It helps to reduce the overall
system latency. It has to be noted that the LSTM2 can only
start after the LSTM1 calculation is completed, since only the
last timestep hidden vector is returned in LSTM1, which is
decided by the structure of the autoencoder.

IV. IMPLEMENTATION

A. HLS implementation

This work maps all the layers on-chip and different layers
run in a fashion of coarse grained pipelining to increase the
system throughput. Besides, this work always seeks to achieve
extremely low latency by utilizing as many hardware resources
as possible. However, because of the data dependencies be-
tween different timesteps in LSTM calculation, the initiation
interval is typically larger than 1. In this case, HLS will
automatically increase the initiation interval until it can find a
feasible schedule. For complex codes it is common to partition
functionality into multiple modules, streaming data between
them through explicit interfaces. Smaller components are more
modular, making them easier to reuse, debug and verify. The
effort required by the HLS tool to schedule code sections
increases dramatically with a large number of operations that
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need to be considered for the dependency and pipelining
analysis. Scheduling logic in smaller chunks is thus beneficial
for compilation time and sometimes also for system latency.
Our experiments show that inlining every function, especially
the mvm x and mvm h in the LSTM gates , brings large II
when the involved matrices are large.

The trade-off between latency, throughput and FPGA re-
source usage is determined by the parallelization of the in-
ference calculation. This work adopts the reuse factor used
in [14] to fine tune the parallelism, which is configured to
set the number of times a multiplier is used in the com-
putation of a module. In one extreme, all multiplications
can be performed simultaneously using a maximal number
of multipliers, while alternatively in the other extreme, one
can use only one multiplier and perform the multiplications
sequentially; between these extremes the user can fine tune
algorithm throughput versus resource usage.With a reuse factor
of one, the computation is fully parallel. With a reuse factor
of R, 1

R of the computation is done at a time with a factor of
1
R fewer multipliers.

The total number of multiplications required to infer a given
LSTM layer using 16-bit is:

DSPlayer =
4× Lx× Lh

Rx
+

4× Lh2

Rh
+ 4× Lh (3)

DSPmodel =
N∑

layer=1

DSPlayer ≤ DSPtotal (4)

Compared with the number of multipliers used in LSTM gates,
the one required in the LSTM tail unit is small so the Rt is
set to 1. Otherwise, 4×Lh

Rt
should be used in Equation (3).

Besides, since the LSTM cell status, ct−1, is represented in
32-bit, the ft×ct−1 in the LSTM tail needs two Xilinx DSPs to
implement one multiplier. Thus, the LSTM tail unit consumes
4×Lh DSPs. The activation function sigmoid is implemented
using BRAM-based lookup tables with a range of precomputed
input values. The hyperbolic tangent function is implemented
as piecewise linear function [21, 22] to reduce the latency. In
the next subsection, we introduce our method for determining
Rx and Rh with a given FPGAs.

B. Design space exploration

FPGA multipliers are pipelined; therefore, the latency of
one MVM computation, LTmvm, is approximately

LTmvm = LTmult + (R− 1)× IImult (5)

where LTmult is the latency of the multiplier, IImult is
the initiation interval of the multiplier, which is one cycle
in this work. Equation (5) is approximate because, in some
cases, additional cycles could be introduced for signal routing.
Besides, the Vivado HLS tool will replace a multiplier by an
adder when the corresponding weight is simple.

As we discussed in Section III, the optimal case is that the
two sub-layers in an LSTM layer have the same II, which
results in Equation (6).

IIsublayer = LTmvm x = LTmvm h + LTσ + LTtail (6)

Fig. 8: Pareto frontier

where LTmvm x and LTmvm h are the latencies of the MVM
units involving input vectors x and hidden vectors h respec-
tively. LTσ is the latency of the sigmoid function and LTtail

is the latency of the LSTM tail unit. These units are shown
in Fig. 5. If we substitute the Equation (5) into Equation (6)
and then we get

Rx = Rh + LTσ + LTtail. (7)

The architecture designed in this section serves as a baseline
to deploy our methodology, whose goal is to find Pareto-
optimal sets of reuse factors of the proposed accelerator to
achieve a good trade-off between our design objectives, which
are hardware resources, energy, and performance. To achieve
low latency, the reuse factors should be as small as possible
since when they decrease the parallelism increases, leading to
high throughput. However, when reuse factors decrease, the
required hardware resources increase and may easily exceed
the number of total hardware resources on an FPGA. If we
substitute the Equation (7) and Equation (3) into Equation (4),
we can get a quadratic inequality of Rh, which gives the
minimum Rh for a given number of DSPs.

Fig. 8 illustrates the exploration results of an LSTM layer
with (Lx,Lh) = (32, 32) and different values of reuse factors,
which are from 1 to 10. The red line represents the cases
with the same Rx and Rh. The blue line shows the cases
with balanced IIs, where Rx and Rh meet the constraint
in Equation (7). For simplicity, LTσ is set to 3 and the LTtail is
5. Please note that LTσ and LTtail are both system dependent
and can vary depending on clock frequency and FPGA devices.
After balancing IIs, the Pareto frontier moves from red line to
blue line. With the proposed technique, we can achieve a same
II with less DSP usage (from point A to point C) or we can
achieve a better II (from point A to point B) as shown in Fig. 8.

V. EVALUATION AND ANALYSIS

This section presents the performance of the RNN models
developed for gravitational wave detection on two generations
of Xilinx FPGAs demonstrating the scalability of the proposed
optimization.
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Fig. 9: AUCs and ROC curves for various autoencoders

A. Experimental setup

Simulated gravitational waves are generated using the
GGWD library [23]. Noise is generated at a specified power
spectral density (PSD) to mimic normal detector background
conditions using PyCBC [24]. This approach to simulated data
generation ignores glitches, blips, and other transient sources
of detector noise, though this algorithm can be re-purposed for
identifying these detector glitches with unsupervised methods.
Signal events are generated simulating GW production from
compact binary coalescences using PyCBC [24], which itself
uses algorithms from LIGO’s LAL Suite [25]. Signal events
containing GWs were created overlaying simulated GWs, with
the SEOBNRv4 Approximant, on top of detector noise. This
provides an analogous situation to a real GW, in which the
strain from the incoming wave is recorded in combination
with the normal detector noise. Data are then whitened and
band-passed, then normalized. The training set has 240K
gravitational wave events. The validation set and test set have
60k and 50k events respectively. To study the performance
and limitations of the proposed optimizations and hardware
architecture, the designs are implemented using Vivado HLS
19.2. Two generations of Xilinx FPGAs, the ZYNQ 7045 and
U250, are evaluated and compared with previous work.

B. Model accuracy

To quantify the performance of the autoencoders for
anomaly detection implemented by various neural networks,
we use the AUC metric, or area under the Receiver Oper-
ating Characteristic (ROC) curve, as shown in Fig. 9, with
higher AUC corresponding to better performance. The default
timestep [17] of 100 is used. AUC is a common metric for
evaluating models as it is classification-threshold-invariant.
The threshold for flagging an anomaly by its loss spike can
be calculated by setting a false positive rate (FPR) on noise
events. The higher the threshold for detecting an anomaly,
the lower the FPR will be. This threshold can be used to
calculate the corresponding true positive rate (TPR) on signal
events. We observe that the LSTM-based autoencoder has the
highest AUC, and hence the best performance, among the

TABLE II: Performance comparison of the FPGA designs
Z1 Z2 Z3 U1 U2 U3

FPGA Zynq 7045 U250
DSP
total

900 12,288

Rh 1 2 1 1 1 4
Rx 1 2 9 1 9 12

LUT
used

45k
(21%)

45k
(21%)

43k
(20%)

449k
(26%)

463k
(27%)

516k
(30%)

DSP
used

1,058
(118%)

578
(64%)

744
(83%)

11,123
(91%)

9,021
(73%)

2,713
(22%)

iilayer
cycles

9 10 9 12 12 13

IIlayer
cycles

72 80 72 96 96 104

unsupervised designs [17] with various NN layers, including
GRU, CNN and DNN. Additionally, Qkeras [26] is used to
quantize the LSTM-based autoencoder to 16-bit. We find this
precision to have a negligible effect on the NN performance.

C. Performance and efficiency comparison

To illustrate the benefits of our proposed approach, two
LSTM-based autoencoders are evaluated. The first one is a
small autoencoder which has the same architecture as the one
used in gravitational wave detection described in Section III-A
but only has two LSTM layers, each having 9 hidden units.
The results are shown in Table II. It is running at 100MHz
with 8 timesteps. The weights and input are 16 bits. The bias
and LSTM cell status are both 32 bits to keep the accuracy.
To achieve the lowest latency, the reuse factors should be set
to one so that all the operations are unrolled, e.g., the design
Z1 in Table II. However the required number of DSPs exceed
the one of the total DSPs on this FPGA. One may increase
the re-use factor from one to two to fit the design into this
FPGA device. However the cost is that now the timestep loop
initiation interval, iilayer, increases by one cycle which results
in TS cycles increase for the layer II, e.g., the design Z2
in Table II. However, it is not necessary to fully unroll all
units in order to achieve the lowest latency. Some hardware
resources can be saved from the units which do not require
full unrolling and can be allocated to the other units which
are dominating to achieve low latency.

With the proposed balancing of IIs, some of the DSPs
resources can be rearranged from implementing mvm x to
mvm h to achieve lower latency, e.g., the design Z3. So
this design can still achieve the lowest II like the case with
full unrolling, and it is still able to fit in this FPGA device
as shown in Table II, showing the benefits of balanced IIs.
Besides, with heterogeneous reuse factors, the parallelism of
the design can be fine-tuned to make the trade-off between
latency, throughput and FPGA hardware resources as shown
in Fig. 10. With the balanced II, the number of DSPs can be
reduced up to 42% while achieving the same IIs.

Besides, to show the adaptability of our technique, the
nominal autoencoder [17] developed for gravitational wave de-
tection is implemented using a larger FPGA, U250, running at
300MHz with 8 timesteps. It has four LSTM layers which have
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Fig. 10: Initiation intervals and DSP numbers using various
reuse factor Rh on Zynq 7045

a number of hidden units equal to 32, 8, 8, 32 respectively and
one TimeDistributed dense layer before the output. Since the
U250 has 12,288 DSPs, the whole fully unrolled autoencoder
can be fit into this FPGA with both Rx and Rh set to one,
shown as the design U1 in Table II. With our technique of
balancing IIs, the DSPs of the design U2 can be reduced by
2102 while achieving the same design IIs and same design
throughput. After HLS synthesis, the II is slightly larger than
the one estimated by the performance model since the DSP
usage is very high and some additional cycles are incurred for
signal routing. The design U3 is an interesting version with
reuse factors (Rh, Rx) as (4, 12). It achieves a slightly worse
II, as shown in Table II, however it consumes 3.3 and 4.1
times less DSPs than design U2 and design U1 respectively.
Sometimes, the user may only care about the latency of the
LSTM running on the FPGAs, then they can just take the
point that gives them the lowest latency with most resources.
However, if the user can bear with a slightly reduced latency
then they can choose a smaller and cheaper FPGA as shown
in Table II. One can choose between using less resources but
increasing latency and vice versa. Please note because of the
data dependence, the iilayer could be hard to optimize to 1.
However, it could be further optimized to a smaller value using
fast multipliers or fast activation functions. We leave that for
future work since it has a limited impact on the conclusions
we draw from our study in this paper.

To compare the performance of the proposed design on
FPGA with other platforms, we implement the same LSTM-
based autoencoder on Intel CPU and NVIDIA GPU. The
AVX2 vector instructions are enabled for the CPU while the
CuDNN libraries are enabled for the GPU. Compared with
the designs running on CPU and GPU, our FPGA design
runs much faster, as shown in Table III. We are processing
each inference sequentially (batch 1) since requests need to
be processed as soon as they arrive. The GPUs provide large
throughput by running many parallel inferences but may not
perform well when the batch is small, especially there are
data dependencies in LSTMs. However, FPGAs work fast on
a single inference with a fully unrolled tailor-made design.

TABLE III: Latency comparison of the FPGA design versus
CPU and GPU

CPU GPU This work
Platform Intel E2620 TITAN X U250
Precision F32 F32 16 Fixed
Latency 39.7 ms 32.1 ms 0.40 us

TABLE IV: Comparison with previous FPGA-based LSTM
designs for anomaly detection and physics

[28], 2018 [27], 2020 This work This work

FPGA
Kintex7
K410T

KU115 U250 U250

Model
Single
Layer

Single
Layer

Single
Layers

Four
Layers

Application
Domain

Anomaly
Detection

Physics -
Anomaly
Detection

LSTM hidden
units Lh

32 16 32 32,8,8,32

DSPs 1091 2374 2221 9021
Preci. (bits) 16 fixed 16 fixed 16 fixed 16 fixed
Freq. (MHz) 155 200 300 300
Latency (us) 4.27 1.35 0.343 0.867

Some other HLS-based RNN/LSTM accelerators on FPGAs
are compared with ours in Table IV. In this table, we focus
on latency since the throughput, power or power efficiency of
the other designs are not reported. Our design achieves 4.92
to 12.4 times lower latency compared to the state-of-the-art
FPGA designs targeting anomaly detection. Our single-layer
design, with a similar amount of DSP resources to another
design [27], is 3.9 times faster as shown in Table IV. Note
that because of the structure of an autoencoder, the processing
of the encoder and the decoder cannot be overlapped, which
increases the end-to-end latency of the design. Nevertheless,
we still achieve better latency than the others which contain
only one LSTM layer. Moreover, while the other designs
report Vivado HLS synthesis latency, we report the RTL co-
simulation latency which is likely to be more accurate.

VI. RELATED WORK

A latency-optimized LSTM-based anomaly detection is pro-
posed in [28] on FPGAs and we achieve 4.9 times faster than
it. [14] proposes the HLS4ML tool and introduces a deep FC-
layer model for substructure-based jet tagging in LHC physics.
[27] introduces HLS LSTMs for the same physics problem.

Partitioning FPGA resources to improve throughput has
been studied for CNNs [8, 9, 19, 20], but they do not touch the
RNNs and the recurrent nature and data dependency in RNN
computations which are absent in CNNs. The FiC-RNN [29]
proposes to accelerate multi-layer RNNs using an FPGA
cluster, in which each RNN layer occupies a single FPGAs.
The authors in [10] put each LSTM layer on each multi-core
to achieve coarse grained pipelining. In [30, 31, 32, 33], the
batching technique is used to improve the hardware throughput
and utilization for LSTM inferences. However, latency can
suffer since different inputs may not come at the same time,
meaning that a newly arrived request has to wait until the
batch is formed, which imposes a significant latency penalty.
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Some of the previous studies [1, 34, 35, 36, 37, 38] are
focusing on weight pruning and model compression to achieve
good performance and efficiency. Some researchers use low
bitwidth, even binarized, datapaths [30, 39, 40] and investi-
gate the trade-off between precision and performance. These
studies are orthogonal to our proposed approach and hardware
architecture. These techniques can be complementary to our
approach to achieve even lower latency of RNN inferences on
FPGAs.

VII. CONCLUSIONS AND FUTURE WORK

This paper aims to pioneer new data analysis architectures
to support next-generation low-latency anomaly detection on
time series data, relevant to many fundamental physics exper-
iments including gravitational wave detection. We present a
novel approach for minimizing the initiation intervals for the
execution of a multi-layer LSTM network by optimizing the
reuse factors for each layer. Results show latency reduction of
up to 12.4 times over the existing FPGA-based LSTM design.
Current and future work includes exploring the use of new
FPGA resources such as the AI Engines [41] and the AI Tensor
Blocks [42], and incorporating the proposed approach into the
design of the data analysis architecture for next-generation
gravitational wave detectors.
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Abstract. We apply object detection techniques based on Convolutional Neu-
ral Networks to jet reconstruction and identification at the CERN Large Hadron
Collider. In particular, we focus on CaloJet reconstruction, representing each
event as an image composed of calorimeter cells and using a Single Shot De-
tection network, called Jet-SSD. The model performs simultaneous localization
and classification and additional regression tasks to measure jet features. We in-
vestigate Ternary Weight Networks with weights constrained to {-1, 0, 1} times
a layer- and channel-dependent scaling factors. We show that the quantized
version of the network closely matches the performance of its full-precision
equivalent.

1 Introduction

The majority of particles produced at the CERN Large Hadron Collider (LHC) are unstable
and immediately decay in different particles. When quarks and gluons are produced, QCD
confinement prevents them from travelling across the detector. Instead, they shower other
quarks and gluons, eventually hadronizing into particles. The result of this process is a jet,
a collimated showers of particles with adjacent trajectories. Jets are key in many physics
analyses done on the data collected by the LHC experiments, e.g. [1–4]. The procedure of
classifying the origin of these jets, i.e. the nature of the particle that initiated the shower,
known as jet tagging [5–8] is a fundamental task for collision reconstruction at the LHC.
Similarly, it is important to determine the jet energy, momentum, and mass.

Traditional approaches to jet tagging rely on features designed by experts that detect
characteristic energy deposition patterns [9–17]. In recent years, several studies projected
the lower level detector measurements of the emanating particles into an image, known as
jet images. This opened the path to applying computer vision and machine learning tech-
niques [18–30], with particular attention to Convolutional Neural Networks (CNNs) [31].

The goal of this paper is to extend this approach to the problem of jet clustering, e.g., to
replace FastJet [32] on computing architectures where parallel computing is more adequate.
At the same time, we aim at demonstrating that jet clustering, mass measurement, and tag-
ging could all be handled simultaneously. Besides the practical advantages of a single-shot
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Figure 1. The architecture of the SSD network, proposed by [49].

approach to jet reconstruction, one would benefit from mutual learning when accomplishing
more tasks at once. For instance, a classifier and a regression running at once can learn that
calibration constants depend on the nature of the jet, an issue that is not handled with ad-hoc
post-processing (see [33] as an example).

With the luminosity increase expected in the future, traditional reconstruction algorithms
might suffer from execution time scaling worse than linearly with the number of collisions
happening in one bunch crossing. For this reason, it is worth investigating solutions that could
execute many tasks at once, while retaining accuracy and benefiting from the additional speed
up offered by parallel computing architectures. Deep neural networks, such as those used for
computing vision tasks, are an obvious candidate.

On the other hand, memory consumption is also an important aspect to keep under con-
trol. To this purpose, we investigate the use of extreme quantization, up to ternary precision,
which is applied already at training time to retain accuracy.

The remainder of this paper is structured as follows. In Sections 2 and 3 we briefly review
single-shot detection and efficient model design techniques. In Section 4 we introduce the
dataset and in Section 5 model architecture, implementation details and training procedure.
Finally, in Section 6 we present the evaluation metric and results.

2 Single-shot object detection

Object detection is a fundamental task in computer vision. It is defined as the classification
of objects from predefined categories in the image along with their precise spatial locations.
The spatial location and extent of an object can be defined coarsely using a bounding box,
which is an axis-aligned rectangle tightly bounding the object. Instead, a precise pixel-wise
segmentation mask corresponds to the segmentation task.

Starting from Overfeat Network [34], the field of object detection focused on using pri-
marily CNNs as a building block, achieving state-of-the-art results in tasks such as face [35]
or pedestrian detection [36]. For a general survey on this subject, see [37, 38].

The deep learning-based object detection models are divided into two groups: one [39–
43] or two [44–48] stage detectors. Two-stage detectors tend to achieve better accuracy, while
one-stage detectors are simpler and faster, hence more suitable to online tasks.

The Single Shot Mulibox Detector (SSD) [49], shown in Figure 1, is a simple one-stage,
anchor-based detector. First, a set of default regions in an image with a fixed shape and size
is predefined to discretize the output space of bounding boxes, called anchors. These anchors
have a diverse set of shapes to detect objects with different dimensions, i.e multiple scales
and aspect ratios. At each location, the same amount of anchors is defined. Based on the
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segmentation mask corresponds to the segmentation task.

Starting from Overfeat Network [34], the field of object detection focused on using pri-
marily CNNs as a building block, achieving state-of-the-art results in tasks such as face [35]
or pedestrian detection [36]. For a general survey on this subject, see [37, 38].

The deep learning-based object detection models are divided into two groups: one [39–
43] or two [44–48] stage detectors. Two-stage detectors tend to achieve better accuracy, while
one-stage detectors are simpler and faster, hence more suitable to online tasks.

The Single Shot Mulibox Detector (SSD) [49], shown in Figure 1, is a simple one-stage,
anchor-based detector. First, a set of default regions in an image with a fixed shape and size
is predefined to discretize the output space of bounding boxes, called anchors. These anchors
have a diverse set of shapes to detect objects with different dimensions, i.e multiple scales
and aspect ratios. At each location, the same amount of anchors is defined. Based on the

ground truth, the object locations are matched with the most appropriate anchors to obtain
the supervision signal for the anchor estimation.

During training, each anchor is refined by four box coordinates offsets (width, height, x
and y) optimized by localization loss (a smooth L1 loss) and predict the categorical proba-
bilities (including background), optimized by classification loss (categorical cross-entropy).
To avoid a huge number of negative proposals dominating training gradients, hard negative
mining is used to train the network, which fixes the foreground and background ratio.

The SSD architecture is fully convolutional, with initial layers based on a pre-trained
backbone architecture, such as VGG-16 [50], followed by extra convolutional layers, pro-
gressively decreasing in size. The information in the last layer may be too coarse spatially
to allow precise localization and at the same time, detecting large objects in shallow layers
is non-optimal without large enough receptive fields. SSD performs detection over multiple
scales by operating on multiple feature maps, i.e. at different depths of the network. Each of
these feature maps is responsible for detecting objects according to their receptive field.

The final prediction is made by merging all detection results from different feature maps
followed by a non-maximum suppression (NMS) step to produce the final detection. NMS
removes duplicate predictions originating from multiple anchors.

3 Efficient inference

Network compression [51] is a common technique to reduce the number of operations, model
size, energy consumption, and over-training of deep neural networks. As neural network
synapses and neurons can be redundant, compression techniques attempt to reduce the total
number of them, effectively reducing multipliers. Several approaches have been successfully
deployed without much loss in accuracy, including parameter pruning [52–54] (selective re-
moval of parameters based on a particular ranking and regularization), low-rank factorisa-
tion [55–57] (using matrix decomposition to estimate informative parameters), compact net-
work architectures [58–61], and knowledge distillation [62] (training a compact network with
distilled knowledge of a large network).

A particularly successful compression technique is weight quantization [63–71], which is
reducing the precision of operations and operands. It has been observed that 32-bit floating-
point calculations or full-precision (FP) are not needed at inference to achieve optimal per-
formance. Thus, reducing the precision of the calculations, i.e. weights and biases, has little
impact on performance compared to speed up and resource usage. This includes moving
away from floating point to fixed point, reducing bit-width and weight sharing. An exam-
ple of a very aggressive strategy is reducing weight precision to ternary values restricted to
{−1, 0, 1} only, called Ternary Weight Network (TWN) [68]. The quantization is performed
during training, using a straight-through estimator [63], where ternary weights are used dur-
ing the forward and backward propagation but not during the parameters update. To make
the network perform well, TWNs minimize the Euclidian distance between full precision
weights and the ternary ones with the use of a non-negative layer- and channel-dependent
scaling factor α.

4 Dataset

The CERN LHC experiments implement a real-time selection process, called trigger [72],
to store a fraction of the events for further analysis. Jets are useful for many measurements
and physics searches. A truly minimal approach to perform identification and tagging is with
jet images. Generally, jets need a component of tracks as well to be properly reconstructed.
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However, one could reconstruct the calorimeter part alone (known as CaloJet). The energy
measurements of the emanating particles can be projected onto a cylindrical detector and
represented as images by unfolding the inner surface of the calorimeter on a rectangle, and
using the crystals as pixels, as in [73].

The detector effects and hadronization have an important effect on the jet substructure.
In this work, we use an emulation of the Compact Muon Solenoid (CMS) apparatus as a
reference. There are two calorimeters within the solenoid volume of the CMS detector. A lead
tungstate crystal Electromagnetic Calorimeter (ECAL) is designed to stop particles whose
main interaction is electromagnetic (photons, electrons). A brass and scintillator Hadronic
Calorimeter (HCAL) is designed to stop hadrons. They give a measurement of the energy
of particles (charged and neutrals). Each of them is composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity range (η) coverage provided by
the barrel (η ≤ 1.4) and endcap detectors (1.4 < |η| ≤ 3.0). A more detailed description of
the CMS detector, together with a definition of the coordinate system used and the relevant
kinematic variables, can be found in [74].

This study aims at identifying different kinds of jets. To this purpose, we consider 13 TeV
proton-proton collision events, in which RS gravitons decay to bb̄, HH, WW, ZZ, or tt̄ final
states. Events are generated with Pythia [75] and the CMS detector effects are emulated using
the Delphes [76] library. In addition to the hard collision, parasitic pileup collisions are also
simulated, overlapping minimum bias events. The number of pileup collisions is sampled
from a Poisson distribution. The calorimeter cells (towers) in the barrel region are arranged
in a fixed discrete space with fine segmentation in η, φ, where φ is the translated azimuthal
angle. The final image is formed by translating the calorimeter energy deposits into pixels,
which results in a 340 × 360 pixel image. The intensity of each pixel is proportional to the
sum of the energy of the corresponding cell. The previous studies on jet images implemented
data pre-processing steps such as translation, rotation, re-pixelation, or inversion. However,
in our study we only limit the input to barrel and endcap section, η ∈ (−3, 3), and normalize
pixel intensities to a fixed range <0, 1>, using maximum scaling. The ground truth labels
for jets above threshold momentum (30 GeV/c for b and 200 GeV/c for the jets from boosted
heavy particles) are obtained using a simple cone algorithm, i.e. associating together particles
whose trajectories lie within a circle of radius R = 0.4 from the jet centre.

As a proof of concept, we investigate the tagging of the bottom (b) W boson (W),
Higgs boson (H), or top quark (t) jet. An example input, energy deposits translated to two-
dimensional images with two channels (corresponding to ECAL and HCAL) together with
marked ground truth bounding boxes is shown in Figure 2.

5 Model, implementation and training procedure

The Jet-SSD architecture is shown in Figure 3. Several modifications are applied to the orig-
inal architecture [49]. Due to target hardware constraints, all filters in convolution layers are
of size 3×3 with no dilatation and all pooling layers have 2×2 filters. Each convolution block
is followed by batch normalization [77, 78] and parametric rectified linear unit (PReLU) lay-
ers. To compress the model we use half of the channels of the VGG-16 in each layer. We
also remove bias from all convolution layers. The extra layers proposed by the original paper
do not contribute to accurate detection due to the size of jets and thus they are removed at
the training. Retaining the deeper layers in the base network does not show improvements in
the final detection results either, but they are critical during training due to additional signal
during back-propagation. Hence, we only purge them at inference.

The Jet-SSD network is implemented on an NVidia Tesla GPU using PyTorch [79]. For
training, we use stochastic gradient descent with an initial learning rate of 10−3 with momen-
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the CMS detector, together with a definition of the coordinate system used and the relevant
kinematic variables, can be found in [74].

This study aims at identifying different kinds of jets. To this purpose, we consider 13 TeV
proton-proton collision events, in which RS gravitons decay to bb̄, HH, WW, ZZ, or tt̄ final
states. Events are generated with Pythia [75] and the CMS detector effects are emulated using
the Delphes [76] library. In addition to the hard collision, parasitic pileup collisions are also
simulated, overlapping minimum bias events. The number of pileup collisions is sampled
from a Poisson distribution. The calorimeter cells (towers) in the barrel region are arranged
in a fixed discrete space with fine segmentation in η, φ, where φ is the translated azimuthal
angle. The final image is formed by translating the calorimeter energy deposits into pixels,
which results in a 340 × 360 pixel image. The intensity of each pixel is proportional to the
sum of the energy of the corresponding cell. The previous studies on jet images implemented
data pre-processing steps such as translation, rotation, re-pixelation, or inversion. However,
in our study we only limit the input to barrel and endcap section, η ∈ (−3, 3), and normalize
pixel intensities to a fixed range <0, 1>, using maximum scaling. The ground truth labels
for jets above threshold momentum (30 GeV/c for b and 200 GeV/c for the jets from boosted
heavy particles) are obtained using a simple cone algorithm, i.e. associating together particles
whose trajectories lie within a circle of radius R = 0.4 from the jet centre.

As a proof of concept, we investigate the tagging of the bottom (b) W boson (W),
Higgs boson (H), or top quark (t) jet. An example input, energy deposits translated to two-
dimensional images with two channels (corresponding to ECAL and HCAL) together with
marked ground truth bounding boxes is shown in Figure 2.

5 Model, implementation and training procedure

The Jet-SSD architecture is shown in Figure 3. Several modifications are applied to the orig-
inal architecture [49]. Due to target hardware constraints, all filters in convolution layers are
of size 3×3 with no dilatation and all pooling layers have 2×2 filters. Each convolution block
is followed by batch normalization [77, 78] and parametric rectified linear unit (PReLU) lay-
ers. To compress the model we use half of the channels of the VGG-16 in each layer. We
also remove bias from all convolution layers. The extra layers proposed by the original paper
do not contribute to accurate detection due to the size of jets and thus they are removed at
the training. Retaining the deeper layers in the base network does not show improvements in
the final detection results either, but they are critical during training due to additional signal
during back-propagation. Hence, we only purge them at inference.

The Jet-SSD network is implemented on an NVidia Tesla GPU using PyTorch [79]. For
training, we use stochastic gradient descent with an initial learning rate of 10−3 with momen-

Figure 2. Energy deposits in CMS ECAL and HCAL translated to a two-dimensional image, an exam-
ple input to the SSD network. The red bounding boxes correspond to ground truth with target label and
momentum.

Figure 3. Jet-SSD architecture: input (in blue), convolution block, i.e. convolution layer followed by
batch normalization and PReLU activation (in yellow), average pooling (in red) and output layer (in
green). The numbers indicate the number of output channels in each block. The part of the network
highlighted by dashed lines is used only during the training step.

tum set to 0.9 and weight regularization to 0.0005. We train the network for 100 epochs with
a batch size of 25, decreasing the learning rate by a factor of 2 after 20, 30, 50, 60, 70, 80 and
90 epochs. We use 90k and 30k samples for training and validation, respectively. The training
is performed in mixed-precision to speed up computation and distributed across 3 GPUs.

The full precision network (FPN) is trained from scratch using Xavier uniform initializa-
tion [80] (which helps with the sparsity of the input) as the pre-trained classification models
on the real-world ImageNet [81] dataset have little relation to our calorimeter images. A com-
mon challenge when training models from scratch is the insufficient amount of training data
which may lead to overfitting. However, it is not a problem in our case: the training dataset
is large enough and, if overfitting occurred, we can go back and generate an even larger one.
For TWN training we find out that pre-loading trained FPN weights greatly speeds up the
process. And per-layer and per-channel scaling factor α improves the results.

The final detection layer returns a classification label (background, b, W/H or t jet) and
three regression values. Two of them correspond to the centre of the jet, i.e. offset in η and φ
plane from the anchor. The last one is jet mass regression which is an example of an auxiliary
function that Jet-SSD can be tasked with.
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Figure 4. An example of the Jet-SSD at inference for one event with the input calorimeter image and
highlighted true labels (top) and prediction bounding boxes (bottom). The fractional number next to the
categorical label corresponds to the network confidence score.

6 Results

An example of the Jet-SSD in action is shown in Figure 4. Jet-SSD outputs predicted cate-
gorical label of the object, confidence and bounding boxes. In object detection true positive
is defined as prediction with category equal to the ground truth label and Intersection over
Union (IoU) above the predefined threshold, in our case 0.5. Successful prediction meets
both criteria, otherwise, it is considered as a false negative.

To evaluate the model we use precision and recall (true positive rate), and average pre-
cision (AP) metric, which is computed for each category separately. Classification tasks
usually report on the receiver operator characteristic (ROC) curve, which is a function of the
false positive rate (fall-out or the background efficiency) as a function of the true positive
rate (sensitivity or signal efficiency). In the case of object detection, the false positive rate is
not very informative as there is a big imbalance between positive and negative class (there
are no objects in most locations). Thus, the false positive rate is replaced by precision or
positive predictive value (PPV). Intuitively, precision measures how accurate the predictions
while recall measures the quality of the positive predictions. To draw a precision-recall (PR)
curve, the predictions are first sorted in order of confidence followed by calculation of posi-
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Figure 5. Jet-SSD PR curve and AP values for three target categories (b, W-H and t) and two weights
precision (FPN and TWN).

tive predictive value and true positive rate for each confidence threshold. For the relationship
between ROC and PR curve, see [82].

The PR curve of Jet-SSD, evaluated on a held-out test dataset consisting of 90k samples,
is shown in Figure 5. The TWN results are closely matching the results of the FPN, which is
reflected in an AP score. To calculate the value of AP, the maximum precision is calculated
for the recall values that range from 0 to 1 with a step size of 0.1 and finally averaging
over the results. From the PR curve, we can conclude that t jets are the easiest to identify
while b jets detection is lacking. The result is not surprising for two reasons. Firstly, b jets
have a lower momentum threshold, making the energy deposits more challenging to detect.
Secondly, CNN based object detection is more challenging as the scale of the target object
decreases; and b jets have a smaller radius than t, W and H jets. The latter issue can be further
mitigated as small scale object detection is an active research field in machine learning (for
example [83]).

Finally, we report the mean and median localization error in φ and η and the relative
error in mass regression. These results are shown in Figure 6. The φ localization error is
smaller than η due to input information loss. Remind that we limit input in η dimension.
In the case when the jet centre is close to the edge, i.e. |η| ≈ 3.0, part of the information
is lost beyond image boundaries. Due to the cylindrical structure of the detector, this is not
happening in φ dimension. Furthermore, we notice that the error does not decrease with pT

for η for which we don not find a reason. Finally, the mass regression relative error can be
further decreased with re-balancing of the SSD training loss, i.e. increasing regression error
contribution to back-propagation by introducing a new scaling hyper-parameter β: loss =
classi f ication + localization + β × auxiliary, where β > 1.

7 Conclusions

In this paper, we introduced Jet-SSD, a deep learning network able to simultaneously localize,
tag and estimate the mass of jets, a collimated spray of particles produced in high energy
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Figure 6. The mean (µ) and median (Q2) localization error in η (left column), φ (centre column) and
relative error in mass regression between ground truth (GT) and Jet-SSD output (SSD) for FPN and
TWN versions. The results are reported for each class independently: b jets (top row), W-H jets (centre
row) and t jest (bottom row). All results are calculated as a function of pT .

physics experiments. We showed that the compressed model via quantized weights to ternary
values with layer- and channel-dependent scaling factor closely matches the performance of
the full precision model. We seek to examine the performance of the network on dedicated
hardware.
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Abstract.
The CMS experiment will be upgraded to maintain physics sensitivity and exploit the

improved performance of the High Luminosity LHC. Part of this upgrade will see the first
level (Level-1) trigger use charged particle tracks reconstructed within the full outer silicon
tracker volume as an input for the first time and new algorithms are being designed to make
use of these tracks. One such algorithm is primary vertex finding which is used to identify
the hard scatter in an event and separate the primary interaction from additional simultaneous
interactions. This work presents a novel approach to regress the primary vertex position and
to reject tracks from additional soft interactions, which uses an end-to-end neural network.
This neural network possesses simultaneous knowledge of all stages in the reconstruction chain,
which allows for end-to-end optimisation. The improved performance of this network versus a
baseline approach in the primary vertex regression and track-to-vertex classification is shown.
A quantised and pruned version of the neural network is deployed on an FPGA to match the
stringent timing and computing requirements of the Level-1 Trigger.

1. Introduction
The HL-LHC will produce up to 200 simultaneous proton-proton interactions per bunch crossing
(pile-up) in the CMS detector. While most proton-proton interactions are inelastic, a hard
scatter, which reveals the interactions CMS aims to probe, is far rarer making the identification
of this primary interaction key for triggering. Due to the increased Pile-Up (PU), the CMS Level-
1 (L1) Trigger is to be upgraded [1] and novel algorithms are being developed to maintain the
physics sensitivity of the detector. Part of the L1 Trigger upgrade is to introduce track finding,
which will use outer tracker modules [2] to reconstruct tracks with a transverse momentum (pT)
> 2GeV. This information can be used to separate the Primary Vertex (PV) from PU. The
main downstream user of the PV is Pile-Up Per Particle Identification (PUPPI) [3] which will
perform calculations on the tracks associated to this vertex. This makes the PV regression and
the association of tracks to this vertex important to utilise the physics performance of the PUPPI
algorithm while reducing the impact of PU [1]. As with the current system, the L1 trigger will
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be implemented on custom hardware running FPGAs with strict resource limitations. Thanks
to larger front-end buffers, the latency will be increased to 12.5 µs which when combined with
more powerful FPGAs allows for more complex algorithms to be used.

While simple histogramming and cut-based methods can lead to effective vertexing strategies
and are well within the latency budget they do not take into account all the information from
the track finder and so are susceptible to non-genuine tracks, called fakes, and the differences in
track parameter resolution in different regions of the detector [4]. Modern Deep Neural Networks
(DNNs) are able to find optimal solutions from low-level information such as track features thus
skipping the lengthy development processes of more traditional approaches. Tools such as hls4ml
[5] and QKeras [6] allow these DNNs to be compressed to fit in FPGA hardware.

2. Baseline Approach
The PV is the location of the hard proton-proton scatter in an event. Offline, it is defined as
the reconstructed vertex with the highest sum of track p2T [7].

The baseline approach to vertex finding bins all tracks in z0 weighted by their pT in a 256-bin
histogram spanning a z0 range of -15 to 15 cm, as is shown in Fig. 1. Where z0 is defined as the
distance of a reconstructed track from the beamspot, along the beam line. A three-bin window
is then passed across this histogram to find the three consecutive bins with the highest combined
pT. The centre of the middle of these three bins is returned as the PV. While this method is
fast (a latency of 30 clock cycles at 360MHz) and has low resource usage, it has some key issues.
The first is the lack of correction for the degradation in z0 resolution for high η tracks, which
leads to a worsening of the resolution of the PV. Secondly, it does not account for high pT fakes
which, when associated with clusters of PU tracks, can appear as high pT vertices.

Figure 1. A single simulated event of a hadronic tt decay with PU of 200 showing all
tracks histogrammed in z0 weighted by pT and coloured by their track type. Also shown is
the reconstructed PV using the baseline approach and true generator PV.

The baseline approach to track-to-vertex association uses an η - dependent window in z0
around the PV. This is reasonably effective with a true positive rate (correctly assigning PV
tracks to the PV) of 91% and a false positive rate (assigning either a PU or fake track to the
vertex) of 10%. Again, this method is fast and simple but fails to take into account more complex
track features, such as the quality of the track fit, and is therefore heavily dependent on the
resolution of the tracks it is provided.
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3. End-to-End Neural Network Approach
The end-to-end Neural Network (NN) approach uses the same concepts as the baseline approach
and expands on them with interconnected neural networks that are trainable end-to-end as shown
in Fig. 2. Instead of weighting by pT in a 256 bin histogram, a three layer DNN is used to learn
an ideal weight function per track from input track features. The features used are the track
pT, η and the output of a BDT trained to distinguish non-genuine and real tracks [8] (labelled
as MVA in eq. 1). These learned track weights are then used in combination with the track’s z0
to fill a histogram. This histogram is used as the input to a 1D convolution of kernel size three,
depth one and stride one. The convolved histogram is passed through an ArgMax to obtain the
bin position with the largest entry, as in the baseline approach.

Figure 2. End-to-end network
architecture showing the three distinct
networks in colour as well as the
position of the histogram layer and
ArgMax.

Instead of a cut-based approach to track-to-vertex
association a three layer DNN is used, which uses the
same input track features as the weight network and
additionally the distance from the PV to the track in
z0. Using a SoftMax final output activation, a likelihood
that a track belongs to the PV is returned.

3.1. Back-Propagation
The end-to-end network is trained in one cycle with a
two part loss function. The first is a Huber loss [9]
for the event level regression of the PV versus the true
generator-level vertex. The second is a binary cross
entropy loss that is used at the track level comparing
the output track-to-vertex association probability to
the simulation truth track label. These two losses are
equally weighted.

Part of the end-to-end network is a histogram that is
filled with a learnt track weight, which is convolved and
the peak found. This contains two custom operations
where the differential of the loss function with respect
to the network weights are needed. The first is the
histogram where each bin hi has the input of the learnt
weight w and the track’s z0. The bins are filled as:

hi =
tracks∑

j=0

δ(j ∈ bin i) w(pT,j , ηj ,MV Aj) (1)

resulting in the following gradients

∂hi
∂z0

= 0 and
∂hi
∂w

=
tracks∑

j=0

δ(j ∈ bin i) (2)

which are implemented as custom TensorFlow [10] operations.
The second part of the PV regression is the peak finding of a convolved histogram. This in a

forward pass is simply an ArgMax operation that finds the index of the highest member of a 256
element vector. However, in order to back-propagate the regression loss function the differential
of this with respect to its inputs is needed which, for a standard ArgMax, is undefined. Instead,
a soft ArgMax is used which combines a SoftMax, a linear layer, and a final sum to find the
ArgMax of the input vector. The soft ArgMax of a vector x with N total elements is defined as:
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N∑

i=0

i
exi/T

∑N
j=0 e

xj/T
(3)

where T is a tuned hyperparameter of the network which allows this layer to return an
approximate one-hot encoding.

4. Performance
The end-to-end approach outperforms the baseline approach in several key metrics. The first is
the PV regression. Figure 3 shows the NN approaches in red and blue outperform the baseline
in black especially in the tails of the residual where the improved filtering of fake tracks has
reduced the number of high pT clusters appearing to be the PV. Secondly, the NN outperforms
the baseline approach in assigning tracks to this PV. The receiver operating characteristic (ROC)
curve in Fig. 4 demonstrates that for a fixed false positive rate of 10 % the NN approach has a
true positive rate of 96 % versus the baseline rate of 91 %.

Figure 3. True PV - Recon-
structed PV for the Baseline and
NN approaches. NN refers to the
floating point approach while QNN
is the quantised approach described
in Section 5.

Figure 4. Receiver Operating
Characteristic (ROC) curve for the
Baseline and NN approaches to
track to vertex association. Shown
as true positive rate versus false
postive rate.

5. Firmware Implementation
The hls4ml [5] package is used to realise this network in FPGA firmware. As the network
has custom histogram layers, these were not converted with hls4ml but instead existing VHDL
firmware from the baseline approach was reused. This means the network is split into three
parts when it is converted: a weight network that takes input tracks and outputs a learnt
weight; a pattern network that convolves the histogram created from the tracks; and an
association network that outputs a probability the track is from the vertex, these seperate
networks are highlighted in Fig. 2. As the latency budget is small, parts of the network will
be implemented multiple times to exploit the parallelism of the L1 architecture, notably the
weight and association networks that work on a track-by-track level and so will be replicated
18 times. The replication of elements of the network means the size in FPGA resources of the
partial networks is critical for their use in firmware. A variety of tools were used to reduce
the size of the network. Firstly, regularization introduced a loss function that penalizes the
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absolute value of the weights [11]. Secondly, pruning iteratively removed weights close to zero to
remove unnecessary weights, keeping the overall network size small [12]. Finally, quantization
aware training using the QKeras [6] package uses fixed point numbers for network parameters
with restricted bitwidths, which, when passed to hls4ml, reduced the required resources for the
network.

The final resource usages for a Xilinx UltraScale+ VU9P with a clock frequency of 360MHz
are shown in Table 1. Both an unquantised and quantised version of each part of the network are
shown, demonstrating the effectiveness of quantised aware training and pruning of the networks,
especially in reducing the Digital Signal Processor (DSP) usage which is the limiting factor in
these FPGAs. Also shown in Figs. 3 and 4 is the performance of the full quantised network
in red, demonstrating no loss in performance when moving from an unquantised to quantised
network.

Table 1. Resource usage and latencies of a Xilinx VU9P running at 360MHz for the floating
point Neural Network (NN) and the quantised and pruned version (Q) with their expected
number of replications. Also included is the baseline approach, the NN approaches are additional
to these resources and latency as they use existing parts of the baseline firmware. These resource
usages are estimates from a Vivado synthesis of the networks and the latencies from a C-
Simulation.

Network Latency
(ns)

Initiation
Interval
(ns)

LUTs % DSPs % BRAMs % FFs %

NN (Q) Weights 22 (14) 2.7 (2.7) 2.52 (0.90) 19.98 (0.00) 0.00 (0.00) 0.72 (0.36)
NN (Q) Pattern 58 (42) 51 (35) 4.27 (4.43) 3.74 (0.00) 5.28 (5.28) 3.22 (3.15)
NN (Q) Assoc. 30 (25) 2.7 (2.7) 0.54 (7.92) 107.64 (0.54) 0.00 (0.00) 2.70 (2.34)
Baseline 44 2.7 2.40 0.00 1.90 1.40

6. Conclusion
The HL-LHC will see up to 200 PU conditions for the LHC experiments. To maintain the physics
performance of the detector and exploit the high integrated luminosity, the CMS experiment
is being upgraded. Upgrades to the L1 Trigger system will see charged particle tracks within
the full outer silicon tracker volume used for track matching and global event variables such as
the primary vertex, which is necessary to separate the hard interaction from pile-up. This work
introduces a novel approach to PV finding and association of tracks to the PV using an end-to-
end neural network that learns both the PV position and the likelihood of a track originating
from this PV. The network uses a custom histogram layer and soft ArgMax to ensure that the
loss functions can be back-propagated and is shown to outperform the baseline approach in key
metrics. Finally, the implementation of this network in an FPGA is discussed and the effective
use of QKeras and pruning to reduce the overall resource usage is demonstrated.
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We present ultra low-latency Deep Neural Networks with large convolutional layers on FPGAs using the
hls4ml library. Taking benchmark models trained on public datasets, we discuss various options to reduce the
model size and, consequently, the FPGA resource consumption: pruning, quantization to fixed precision, and
extreme quantization down to binary or ternary precision. We demonstrate how inference latencies of O(10)
micro seconds can be obtained while high accuracy is maintained
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A recent effort to explore a neural network inference in FPGAs using High-Level Synthesis language (HLS),
focusing on low-latency applications in triggering subsystems of the LHC, resulted in a framework called
hls4ml. Deep Learning model converted to HLS using the hls4ml framework can be executed on CPUs, but
have subpar performance. We present an extension of hls4ml using the new Intel oneAPI toolkit that converts
deep learning models into high-performance Data Parallel C++ optimized for Intel x86 CPUs. We show that
inference time on Intel CPUs is improved hundreds of times over previous HLS-based implementation, and
several times over unmodified Keras/TensorFlow.
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Applications & Algorithms
Neural Net Layers (Conv2D, Dense, ReLU, SoftMax, …), 
Quantization, Compression, Pruning, …

Cluster Deployment & Communication
Physical connections (PCIe, Ethernet, …),
Network speeds and protocols (100Gb/s UDP, TCP, …)

Hardware
Systolic array, Multiplier, Shifter, 
Memory architecture & configuration, …

Fig. 1. Abstraction Stack for common Machine Learning Frameworks.

Machine learning (ML) in the past decade has been one
of the most popular topics of research within the computing
community. Interest within the computing field ranges across
all levels of the computation stack. We show this stack in
Figure 1. This work introduces an open framework, called
AIgean, to build and deploy machine learning (ML) algorithms
on a heterogeneous cluster of devices (CPUs and FPGAs).
Users can flexibly modify any layer of the machine learning
stack in Figure 1 to suit their need. This allows both machine
learning domain experts to focus on higher algorithmic layers,
and distributed systems experts to create the communication
layers below.

We leverage two open-source projects: Galapagos [3], for
multi-FPGA deployment and hls4ml [1], for generating
machine learning kernels synthesizable using Vivado HLS. We
use particle detection in the physics domain to provide the first
driving applications that help us to characterize the framework.
To use AIgean, the user provides a machine learning algorithm
and the resources of their cluster. Then AIgean converts the
algorithm into appropriate IP cores and provides the off-chip
communication between devices. HLS4ml was adapted to
provide streaming interfaces. This fits the Galapagos model
and works well with single inference. We designed a bridge
from hls4ml to Galapagos to convert fixed-point streams into
Galapagos streams that can be received from any compute

kernel within our cluster.
We demonstrate the effectiveness of AIgean with two use

cases: a small network running on a single network-connected
FPGA and an autoencoder running on three FPGAs, and com-
pare to SDAccel [4]. Our small neural-network single-FPGA
implementation can implement a single inference in 0.08 ms
as opposed to 2.9 ms in SDAccel, highlighting the efficacy of a
network-connected accelerator for a single inference case. Our
3-FPGA autoencoder implementation performs a batch-size of
2400 inferences in 0.08 ms as opposed to 0.26 ms on a single
FPGA in SDAccel, showing the need for multi-FPGA fabrics
as it allows users to target large implementations of their
machine learning circuitry, these implementations can perform
better than smaller implementations. Multi-FPGA fabrics also
make it possible to implement large networks such as ResNet-
50, which is work in progress. Preliminary results before any
optimizations have been applied shows that we can achieve
a throughput of 200 images/s using 5 FPGAs, which can
be compared to Brainwave, which has a throughput of 559
images/s [2]. We expect our results to improve significantly
once we apply optimizations.
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Looking for new physics in the LHC hardware
trigger with Deep Autoencoders

Monday, 29 November 2021 17:20 (20 minutes)

We show how to adapt and deploy anomaly detection algorithms based on deep autoencoders, for the unsu-
pervised detection of new physics signatures in the extremely challenging environment of a real-time event
selection system at the Large Hadron Collider (LHC). We demonstrate that new physics signatures can be en-
hanced by three orders of magnitude, while staying within the strict latency and resource constraints of a typi-
cal LHC event filtering system. This would allow for collecting datasets potentially enriched with high-purity
contributions from new physics processes. Through per-layer, highly parallel implementations of network
layers, support for autoencoder-specific losses on FPGAs and latent space based inference, we demonstrate
that anomaly detection can be performed in as little as 80 ns using less than 3% of the logic resources in the
Xilinx Virtex VU9P FPGA. Opening the way to real-life applications of this idea during the next data-taking
campaign of the LHC.

Significance
This talk is cover the material in the paper https://arxiv.org/abs/2108.03986, where we explore for the first
time in the LHC hardware trigger the potential of unsupervised and semi-supervised techniques for detecting
new physics signatures, most notably anomaly detection algorithms enhanced with deep learning. Using such
algorithms, one can learn how to identify out- of-distribution events directly from the LHC data. One can then
select the most anomalous events, which are the most likely to contain new physics signatures, into a special
data stream of anomalous events. The complications come from the fact that such algorithm have to fit into
the strict restrictions of Level-1 trigger, in particular, it should have latency of O(1) μs, take up small fraction
of the FPGA resources and have initial interval smaller than LHC bunch-crossing (i.e. 25 ns).
We have successfully designed such an algorithm and tested it performance on a several potential new physics
scenarios with ability to enhance such signals by three orders of magnitude, while keeping the algorithm’s
performance is as fast as 80 ns, with initial interval of just 5 ns using less than 3% of FPGA resources.
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Machine Learning at 40 MHz with hls4ml

Thehls4ml project started to bring Neural Network inference to the L1 trigger system of the LHC experiments.
Since its initial proposal, the library has grown, integrating support for multiple backends, multiple network
architectures (convolutional, recurrent, graph), extreme quantization (binary and ternary networks), and mul-
tiple applications (classification, regression, anomaly detection). Thanks to a collaboration with Google, it
was interfaced to QKeras to enhance network compression capabilities through quantization aware training.
In this talk we review the status of the project and its new features and its possible applications for LHC Run
III and High-Luminosity LHC.

Significance
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Lightweight Jet Identification and Reconstruction as
an Object Detection Task

In this contribution, we apply deep learning object detection techniques based on convolutional blocks to jet
identification and reconstruction problem encountered at the CERN Large Hadron Collider. Particles recon-
structed through the Particle Flow algorithm can be represented as an image composed of calorimeter and
tracker cells as an input to a Single Shot Detection network. The algorithm, called PFJet-SSD is able to perform
localization, classification and additional regression tasks to measure jet features in a single feed-forward pass.
Besides this parallelization, we gain additional acceleration from network slimming, homogeneous quantiza-
tion and optimized runtime for meeting memory and latency constraints. We compare the Ternary Weight
Network (TWN) with weights constrained to {−1, 0, 1} with per layer- and channel-dependent scaling fac-
tors to networks running with an 8-bit fixed point and a 32-bit floating-point precision. We show that the
TernaryWeight Network closelymatches the performance of its full-precision equivalent while all the variants
of PFJet-SSD outperform the physics baseline. Finally, we report the inference latency on different hardware
platforms and discuss future applications.

Significance
The proposed PFJet-SSD solution builds on the previously proposed Jet-SSD algorithm (in Reference). Besides
multiple architectural changes (e.g. grouped convolutions, attention modules), PFJet-SSD tackles a more chal-
lenging dataset (with added pile-up). We introduce a physics baseline and present accuracy for multiple quan-
tization setups. We compare inference latency estimates for multiple hardware platforms/runtimes. With
these results, we are able to discuss the feasibility of the deployment of PFJet-SSD in the production system.
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Ultra-low latency recurrent neural network inference
on FPGAs for physics applications with hls4ml

Thursday, 27 October 2022 11:00 (30 minutes)

Recurrent neural networks have been shown to be effective architectures for many tasks in high energy
physics, and thus have been widely adopted. Their use in low-latency environments has, however, been
limited as a result of the difficulties of implementing recurrent architectures on field-programmable gate ar-
rays (FPGAs). In this paper we present an implementation of two types of recurrent neural network layers-
long short-term memory and gated recurrent unit- within the hls4ml [1] framework. We demonstrate that
our implementation is capable of producing effective designs for both small and large models, and can be
customized to meet specific design requirements for inference latencies and FPGA resources. We show the
performance and synthesized designs for multiple neural networks, many of which are trained specifically
for jet identification tasks at the CERN Large Hadron Collider.

[1] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for particle physics”, JINST 13 (2018)
P07027, arXiv:1804.06913

Significance
RNNs have shown substantial success for many tasks in particle physics. They are particularly well-suited
to those problems involving sequences of particle or detector signals, outperforming densely connected deep
neural networks (DNNs) and convolution neural networks (CNNs) on certain jet classification tasks. In spite
of this success, RNNs have not seen widespread adoption in ultra-low latency environments in physics when
compared to DNNs and CNNs. This difference is owed in part to tools such as hls4ml that simplify the adapta-
tion of the latter models from Keras to HLS.The support for GRUs and LSTMs in hls4ml that we present in this
work represents the removal of a major barrier to the use of RNNs in ultra-low latency environments. This
has ramifications not only for high energy physics but also other research areas where RNNs have become
popular. While we have focused on the usage of hls4ml with FPGAs, it is important to note that hls4ml can
also be used to create ASIC designs, and thus this work also allows for the possibility of RNN usage on ASICs
as well. The recurrent or repeating nature of many modern algorithms, such as RNNs, transformers and graph
neural networks, make them very difficult to be run, particularly at low latency, on FPGAs. In this work, we
present the successful deployment of RNNs in models with number of trainable parameters ranging from O(1
k) to O(100 k) achieving latencies of O(1 s) to O(100s). This represents an important step in enabling support
in hls4ml for more complex architectures with recursive computations.

References
https://arxiv.org/abs/2207.00559

Experiment context, if any



Primary authors: WANG,Aaron; VERNIERI, Caterina (SLACNational Accelerator Laboratory (US)); PAIKARA,
Chaitanya (University ofWashington); RANKIN, Dylan Sheldon (Massachusetts Inst. of Technology (US)); KHODA,
ElhamE (University ofWashington (US)); KAGAN,Michael Aaron (SLACNational Accelerator Laboratory (US)); HAR-
RIS, Philip Coleman (Massachusetts Inst. of Technology (US)); TEIXEIRA DE LIMA, Rafael (SLAC National Accel-
erator Laboratory (US)); RAO, Richa (University of Washington); HAUCK, Scott; HSU, Shih-Chieh (University of
Washington Seattle (US)); SUMMERS, Sioni Paris (CERN); LONCAR, Vladimir (CERN)

Presenter: KHODA, Elham E (University of Washington (US))

Session Classification: Poster session with coffee break

Track Classification: Track 1: Computing Technology for Physics Research



Fast Machine Learning for Science Workshop 2022
Contribution ID: 41 Type: not specified

Design and first test results of a reconfigurable
autoencoder on an ASIC for data compression at the

HL-LHC
Monday, 3 October 2022 14:00 (5 minutes)

The High Granularity Calorimeter (HGCAL) is a new subdetector of the CMS experiment in development as
part of the upgrades for the High Luminosity LHC. The HGCAL readout system includes the Endcap Trigger
Concentrator (ECON-T) ASIC, responsible for algorithmically reducing the immense data volume associated
with the trigger patch of this six-million channel “imaging”calorimeter. To accomplish the data reduction, a
reconfigurable autoencoder algorithm has been implemented in the ECON-T. The design, optimization, and
implementation of this neural network encoder and first test results of the functionality within the ECON-T
ASIC prototype are presented.
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Quantized ONNX (QONNX)
Monday, 3 October 2022 14:15 (15 minutes)

One of the products of the cooperation between the hls4ml and FINN groups isQuantized ONNX (QONNX), a
simple but flexible method to represent uniform quantization in ONNX. Its goal is to provide a high-level repre-
sentation that can be targeted by training frameworks while minimizing reliance on implementation-specific
details. It should also be lightweight, only adding a small number of operators. QONNX accomplishes this by
being in the fused quantize-dequantize (QDQ) style. The main operator is the Quant operator, which takes
a bitwidth, scale, and zero-offset to quantize an input tensor and then immediately dequantizes it, undoing
the scale and zero offset. The resulting values are (quantized) floating point numbers, which can be used by
standard ONNX operators. There is also a BipolarQuant operator, which is like the regular Quant operator
but specialized for binary quantization. Finally there is a Trunc operator to truncate the least significant bits.
Currently Brevitas, a PyTorch research library for quantization-aware training (QAT), and QKeras, a Keras
library for QAT, can produce QONNX. HAWQ support is being added, and is the focus of a separate abstract.

The FINN and hls4ml groups also worked on a common set of utilities to ease the ingestion of QONNX by
the FINN and hls4ml software. These utilities simplify the ONNX graphs by doing such things as folding
constants, inferring dimensions, making sure nodes are named—commonly referred to as cleaning. FINN and
hls4ml also prefer convolution data to be in a channels-last format, so we have a common pass to convert the
ONNX graphs to a channels-last format using custom operators. We also have some common optimizers to,
for example, change Gemm operators to lower level MatMul and Add operators so that FINN and hls4ml do
not need to handle Gemm explicitly.

We will also present how hls4ml ingests QONNX. Given the high-level nature of QONNX, a direct imple-
mentation, dequantizing right after quantizing, does not map well to hardware. Instead, hls4ml makes use
of optimizers to convert the abstract graph to something that can be more easily implemented on an FPGA
or ASIC. In particular, the scale and zero-point in a quantization and in dequantization, if not one and zero
respectively, are logically stripped from the quantization operation, resulting in three operations: scale and
offset, quantization, and unscale and de-offset. The unscaling can then often be propagated down across lin-
ear operations like matrix multiplies or convolutions, to produce quantized dense or convolution layers. As
an optimization, for power-of-two scales and zero offsets, we can offload the scale propagation to the HLS
compiler by using fixed precision numbers, and for quantized constant weights, we can merge the scale/offset
and quantization into the weights, only leaving an unscale and de-offset node if needed.

We also introduce a QONNX model zoo to share quantized neural networks in the QONNX format.
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Fast recurrent neural networks on FPGAs with
hls4ml

Tuesday, 4 October 2022 14:45 (15 minutes)

Recurrent neural networks have been shown to be effective architectures for many tasks in high energy
physics, and thus have been widely adopted. Their use in low-latency environments has, however, been
limited as a result of the difficulties of implementing recurrent architectures on field-programmable gate ar-
rays (FPGAs). In this paper we present an implementation of two types of recurrent neural network layers-
long short-term memory and gated recurrent unit- within the hls4ml [1] framework. We demonstrate that
our implementation is capable of producing effective designs for both small and large models, and can be
customized to meet specific design requirements for inference latencies and FPGA resources. We show the
performance and synthesized designs for multiple neural networks, many of which are trained specifically
for jet identification tasks at the CERN Large Hadron Collider.

[1] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for particle physics”, JINST 13 (2018)
P07027, arXiv:1804.06913
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End-to-End Vertex Finding for the CMS Level-1
Trigger

Monday, 3 October 2022 16:00 (15 minutes)

TheHigh Luminosity LHC provides a challenging environment for fast trigger algorithms; increased numbers
of proton-proton interactions per collision will introduce more background energy in the detectors making
triggering on interesting physics signatures more challenging. To help mitigate the effect of this higher back-
ground the highest energy interaction in an event can be found and other detector signatures can be associated
with it. This primary vertex finding at the CMS Level-1 trigger will be performed within a latency of 250 ns.
This work presents an end-to-end neural network based approach to vertex finding and track to vertex associ-
ation. The network possesses simultaneous knowledge of all stages in the reconstruction chain, which allows
for end-to-end optimisation. A quantised and pruned version of the neural network, split into three separate
sub networks, is deployed on an FPGA using the hls4ml tools rerun through Xilinx vitis hls to take advantage
of optimised pipelining. A custom hls4ml tool for convolutional neural networks that allows fully parallel
input is used to ensure the strict latency requirements are met. Hardware demonstration of the network on a
prototype Level-1 trigger processing board will also be shown.
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Design and first test results of the CMS HGCAL
ECON-T ASIC including an autoencoder-inspired
neural network for on-detector data compression

Tuesday, 20 September 2022 16:40 (20 minutes)

The CMS experiment will replace its endcap calorimeters with a High Granularity Endcap Calorimeter (HG-
CAL) as part of the upgrades for High Luminosity LHC. The HGCAL readout system includes the Endcap
Trigger Concentrator (ECON-T) ASIC to help manage the immense data volume associated with the trigger
path of this six-million channel “imaging”calorimeter. Each ECON-T ASIC handles 15.36 Gbps of HGCROC
trigger data and performs up to 12x data reduction by means of four user-selectable algorithms for data selec-
tion or compression. The design and first test results of the ECON-T ASIC are presented.

Summary (500 words)
The HGCAL is a 47-layer sampling calorimeter composed of a front electromagnetic (ECAL) section and rear
hadronic section, including both silicon and plastic scintillator as active materials. The trigger readout system
consists of the HGCROC ASIC for digitization, the ECON-T ASIC for data reduction, and the lpGBT ASIC for
data serialization to 10.24 Gbps. With approximately 6 million readout channels, 10 bits of charge and 10 bits
of time information per channel per LHC bunch crossing, the inherent data volume is approximately 5 petabits
per second. This volume is reduced to about 300 Tb/s by reading out every other layer in the ECAL section,
4x or 9x ganging of sensor channels into trigger cells (TC) within the HGCROC, and using a 7-bit floating
point encoding for each TC. The ECON-T ASIC further reduces the data volume to approximately 40 Tb/s by
means of four user-selectable algorithms for data selection or compression, which allows readout of the entire
HGCAL trigger pathwith about 9k optical links at 10.24 Gbps each. The ECON-TASIC is required to operate in
a radiation environment up to 200 Mrad, with power consumption of 2.5 mW per channel (500 mW per ASIC),
and latency of 500 ns. The ECON-T algorithms include a threshold algorithm, which reads out TC exceeding
a programmable threshold; a super-TC algorithm which combines data from adjacent TC; a ranked-choice
algorithm which sorts and reads out the largest TC up to a programmable number of TC; and an autoencoder-
inspired, configurable neural network which provides lossy data compression up to 7x. The ECON-T ASIC
was fabricated in 2021 as a full functionality prototype. Functionality and radiation testing began in December
2021. The design as well as results of full functionality testing and radiation characterization are presented.
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Graph Neural Networks on FPGAs with HLS4ML
Monday, 25 September 2023 18:10 (5 minutes)

Graph structures are a natural representation of data in many fields of research, including particle and nuclear
physics experiments, and graph neural networks (GNNs) are a popular approach to extract information from
that. Simultaneously, there is often a need for very low-latency evaluation of GNNs on FPGAs. The HLS4ML
framework for translating machine learning models from industry-standard Python implementations into
optimized HLS code suitable for FPGA applications has been extended to support GNNs constructed using
PyTorch Geometric (PyG). To that end, the parsing of general PyTorch models using symbolic tracing using
the torch.FX package has been added to HLS4ML. This approach has been extended to enable parsing of PyG
models and support for GNN-specific operations has been implemented. To demonstrate the performance of
the GNN implementation in HLS4ML, a network for track reconstruction in the sPHENIX experiment is used.
Future extensions, such as an interface to quantization-aware training with Brevitas, are discussed.
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Jets as sets or graphs: Fast jet classification on FPGAs
for efficient triggering at the HL-LHC

Monday, 25 September 2023 17:40 (5 minutes)

The upcoming high-luminosity upgrade of the LHC will lead to a factor of five increase in instantaneous
luminosity during proton-proton collisions. Consequently, the experiments situated around the collider ring,
such as the CMS experiment, will record approximately ten times more data. Furthermore, the luminosity
increase will result in significantly higher data complexity, thus making more sophisticated and efficient real-
time event selection algorithms an unavoidable necessity in the future of the LHC.

One particular facet of the looming increase in data complexity is the availability of information pertaining to
the individual constituents of a jet at the first stage of the event filtering system, known as the level-1 trigger.
Therefore, more intricate jet identification algorithms that utilise this additional constituent information can
be designed if they meet the strict latency, throughput, and resource requirements. In this work, we construct,
deploy, and compare fast machine-learning algorithms, including graph- and set-based models, that exploit
jet constituent data on field-programmable gate arrays (FPGAs) to perform jet classification. The latencies and
resource consumption of the studied models are reported. Through quantization-aware training and efficient
FPGA implementations, we show that O(100) ns inference of complex models like graph neural networks and
deep sets is feasible at low resource cost.
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Hardware-aware pruning of real-time neural
networks with hls4ml Optimization API
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Neural networks achieve state-of-the art performance in image classification, medical analysis, particle physics
and many more application areas. With the ever-increasing need for faster computation and lower power con-
sumption, driven by real-time systems and Internet-of-Things (IoT), field-programmable gate arrays (FPGAs)
have emerged as suitable accelerators for deep learning applications. Due to the high computational complex-
ity and memory footprint of neural networks, various compression techniques, such as pruning, quantisation
and knowledge distillation, have been proposed in literature. Pruning sparsifies a neural network, reducing
the number of multiplications and memory. However, unstructured pruning often fails to capture properties
of the underlying hardware, bottlenecking improvements and causing load-balance inefficiency on FPGAs.

We propose a hardware-centric formulation of pruning, by formulating it as a knapsack problem with parallelisation-
aware tensor structures. The primary emphasis is on real-time inference, with latencies of order 1µs. We
evaluate our method on a range of tasks, including jet tagging at CERN’s Large Hadron Collider and fast im-
age classification (SVHN, Fashion MNIST). The proposed method achieves reductions ranging between 55%
and 92% in digital signal processing blocks (DSPs) and up to 81% in block memory (BRAM), with inference
latencies ranging between 105ns and 205µs.

The proposed algorithms are integrated with hls4ml and open-sourced with an Apache 2.0 licence, enabling
an end-to-end tool for hardware-aware pruning and real-time inference. Furthermore, the tools are readily
integrated with QKeras, enabling pruning and inference of models trained with quantisation-aware train-
ing. Compared to TensorFlow Model Optimization, hls4ml Optimization API offers advanced functionality,
including support for structured pruning, gradient-based ranking methods and integration with model reduc-
tion libraries, such as Keras Surgeon. Furthermore, by enabling multiple levels of pruning granularity, the
software can target a wide range of hardware platforms. Through integration with hls4ml, an open-source,
end-to-end system is built, allowing practitioners from a wide range of fields to compress and accelerate neural
networks suited for their applications.
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Deep neural networks employ skip connections – identity functions that combine the outputs of different layers-to improve training

convergence; however, these skip connections are costly to implement in hardware. In particular, for inference accelerators on resource-

limited platforms, they require extra buffers, increasing not only on- and off-chip memory utilization but also memory bandwidth

requirements. Thus, a network that has skip connections costs more to deploy in hardware than one that has none. We argue that, for

certain classification tasks, a network's skip connections are needed for the network to learn but not necessary for inference after

convergence. We thus explore removing skip connections from a fully-trained network to mitigate their hardware cost. From this

investigation, we introduce a fine-tuning/retraining method that adapts a network's skip connections – by either removing or shortening

them-to make them fit better in hardware with minimal to no loss in accuracy. With these changes, we decrease resource utilization by up

to 34% for BRAMs, 7% for FFs, and 12% LUTs when implemented on an FPGA.
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