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Autoencoders on field-programmable gate arrays
for real-time, unsupervised new physics detection
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To study the physics of fundamental particles and their interactions, the Large Hadron Collider was constructed at CERN, where
protons collide to create new particles measured by detectors. Collisions occur at a frequency of 40 MHz, and with an event
size of roughly 1 MB it is impossible to read out and store the generated amount of data from the detector and therefore a
multi-tiered, real-time filtering system is required. In this paper, we show how to adapt and deploy deep-learning-based autoen-
coders for the unsupervised detection of new physics signatures in the challenging environment of a real-time event selection
system at the Large Hadron Collider. The first-stage filter, implemented on custom electronics, decides within a few micro-
seconds whether an event should be kept or discarded. At this stage, the rate is reduced from 40 MHz to about 100 kHz. We
demonstrate the deployment of an unsupervised selection algorithm on this custom electronics, running in as little as 80 ns and
enhancing the signal-over-background ratio by three orders of magnitude. This work enables the practical deployment of these

networks during the next data-taking campaign of the Large Hadron Collider.

per second at the particle detectors at the CERN Large Hadron

Collider (LHC)'. The largest general-purpose particle detec-
tors at the LHC, ATLAS? and CMS?, discard most of the collision
events with online selection systems, as a result of bandwidth
limitations. These systems consist of two stages: the level-1 trigger
(L1T)*7, where algorithms are deployed as programmable logic on
custom electronic boards equipped with field-programmable gate
arrays (FPGAs), and the high-level trigger (HLT), where selection
algorithms asynchronously process the events accepted by the L1T
on commercially available CPUs. The event rate is reduced from
40 MHz to around 100 kHz within a few microseconds at the first
selection stage, L1T. When designing searches for collisions con-
taining new physics (for example, dark matter production), physi-
cists typically consider specific scenarios motivated by theoretical
considerations. This supervised strategy has proven to be success-
ful when dealing with theory-motivated searches, as was the case
with the search for the Higgs boson®’. Conversely, this approach
may become a limiting factor in the absence of a strong theoreti-
cal prior. For this reason, there are several community efforts to
investigate unsupervised machine learning (ML) techniques for
new physics searches'®'’. These investigate the use of autoencod-
ers (AEs) and variational autoencoders (VAEs) for offline process-
ing'>", and therefore do not consider constraints such as resource
use and latency. Early suggestions to use AEs in HEP for anomaly
detection'*"” are not easily adapted to an L1T environment. For
instance, refs. '*'° require access to the momenta of all jet particle
constituents, something that is not available now and will only be
partly available (for example, first eight candidates) in the future.
Refs. ' propose integrating unsupervised learning algorithms in

Proton—proton collision events occur 40 million times

the online selection system of the CMS and ATLAS experiments, in
order to preserve rare events that would not otherwise be selected,
in a special data stream.

While the primary focus for online unsupervised learning so far
has been for the HLT, this strategy could be more effective if deployed
in the L1T, that is, before any selection bias is introduced. Due to the
extreme latency and computing resource constraints of the L1T, only
relatively simple, mostly theory-motivated selection algorithms are
currently deployed. These usually include requirements on the min-
imum energy of a physics object, such as a reconstructed lepton or a
jet, effectively excluding lower-energy events from further process-
ing. Instead, by deploying a new-physics model agnostic algorithm
that selects events based on their degree of abnormality, we can
collect data in a signal-model-independent way. Such an anomaly
detection (AD) algorithm is required to have extremely low latency
because of the restrictions imposed by the L1T.

Many recent efforts for translating ML algorithms into FPGA
firmware are reviewed extensively in refs. '“*°. However, many of
these toolflows result in implementations that are not optimized
for the L1T systems or do not apply to HEP AE architectures. For
example, FINN?"** focuses on dataflow-style implementations of
convolutional neural networks (CNNs), which may not achieve the
low latency and high throughput required for L1T applications. It
is by construction limited to Xilinx FPGAs, while hls4ml backends
targeting different HLS libraries (Quartus for Intel and Katapult
for ASIC design) are under development. Other efforts, Conifer*
(also developed by the hls4ml team) and fwXmachina®, feature a
custom implementation of boosted decision trees on FPGAs, which
achieves the desired L1T constraints, but does not extend to neural
network implementations.
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Recent developments of the hls4ml library allow us to consider
the possibility of deploying AE-based AD algorithms on the FPGAs
mounted on the L1T boards. The hls4ml library is an open-source
software, developed to translate neural networks** and boosted
decision trees™ into FPGA firmware. A fully on-chip implementa-
tion of the ML model is used in order to stay within the 1ps latency
budget imposed by a typical L1T system. Additionally, the initia-
tion interval (II) of the algorithm should be within 150ns, which is
related to the bunch-crossing time for the upcoming period of the
LHC operations®. Since there are several L1T algorithms deployed
per FPGA, each of them should use much less than the avail-
able resources. With its interface to QKERAS", hls4ml supports
quantization-aware training (QAT)¥, which makes it possible to
drastically reduce the FPGA resource consumption while preserv-
ing accuracy. Using hls4ml, we can compress neural networks to fit
the limited resources of an FPGA.

The aim of this work is the development of a fast algo-
rithm to define a dataset enriched in anomalies, without using
physics-motivated expectations about new physics to define the
anomaly. Once collected, these data could be visually inspected or
analysed with model-agnostic techniques, for example, those pro-
posed in refs. ****, or even with traditional model-dependent searches
(provided an understanding of the bias imposed by the online selec-
tion on the offline event distribution). We focus on AEs, with spe-
cific emphasis on VAEs'>"*. We consider both fully connected and
convolutional architectures, and discuss how to compress the model
through pruning®-, the removal of unnecessary operations, and
quantization’***-*%, the reduction of the precision of operations.

As discussed in ref. ', one can train (V)AE on a given data
sample by minimizing a measure of the distance between the input
and the output (the loss function). This strategy, which is very com-
mon when using (V)AEs for anomaly detection*, brings practical
challenges when considering a deployment on FPGAs. The use of
high-level features is not optimal because it requires time-consuming
data preprocessing. The situation is further complicated for VAEs,
which require a random sampling from a Gaussian distribution in
the latent space. Furthermore, one has to buffer the input data on
chip while the output is generated by the FPGA processing in order
to compute the distance afterwards. To deal with all of these aspects,
we explore different approaches and compare the accuracy, latency
and resource consumption of the various methods.

In addition, we discuss how to customize the model compres-
sion in order to better accommodate for unsupervised learning.
Previously, we showed that QAT can result in a large reduction
in resource consumption with minor accuracy loss for supervised
algorithms***. In this paper, we extend and adapt that compression
workflow to deal with the specific challenge of compressing autoen-
coders used for AD. Several approaches are possible:

+ Post-training quantization (PTQ)****, consists of applying a
fixed-point precision to a floating-point baseline model. This is
the simplest quantization approach, typically resulting in good
algorithm stability, at the cost of losing performance.

+ QAT, consists of imposing the fixed-point precision constraint
at training time, for example, using the QKERAS or Brevitas®’
libraries. This approach typically allows one to limit the accu-
racy loss when imposing a higher level of quantization, finding
a better weight configuration than what one can get with PTQ.

« Knowledge distillation with QAT changes the quantized-model
optimization strategy by reframing the problem as knowledge
distillation **-.

o Anomaly classification with QAT; approximated loss regression
with QAT could be turned into a classification problem.

In this paper, we focus on the first two approaches, leaving the
investigation of the other approaches to future work.

ARTICLES

Data samples

This study follows the setup of refs. '**°. The dataset (with its defini-
tion and limitations) are taken from ref. '°. We adapt the data for-
mat to make it more consistent with inputs received in the L1T (as
opposed to the HLT) and show that one can do at L1T what ref. '°
proposed for the HLT. Perhaps surprisingly, this is indeed pos-
sible due to recent progress made on deploying neural networks
on FPGAs. We use a data sample that represents a typical proton—
proton collision dataset that has been pre-filtered by requiring the
presence of an electron or a muon with a transverse momentum
pr>23GeV and a pseudo-rapidity |5 <3 (electron) and || <2.1
(muon). These requirements were introduced to reduce the data-
set size to a manageable level, such that we could generate it with
our limited computing resources. In a real-life application, no p;
requirement of this kind would be applied. The 5 requirements
would stay since they are intrinsic consequences of the detector
geometry. In addition to the background-like sample, we consider
the four benchmark new physics scenarios discussed in ref. ':

o Aleptoquark (LQ) with a mass of 80 GeV, decaying to a b quark
and a 7 lepton 7/,

o A neutral scalar boson (A) with a mass of 50GeV, decaying
to two oft-shell Z bosons, each forced to decay to two leptons:
A— 4%,

+ A scalar boson with a mass of 60 GeV, decaying to two tau lep-
tons: h° — 77%,

o A charged scalar boson with a mass of 60 GeV, decaying to a tau
lepton and a neutrino: h* — 7.

These four processes are used to evaluate the accuracy of the
trained models. A detailed description of the dataset can be found
in ref. °. In total, the background sample ** consists of 8 million
events. Of these, 50% are used for training, 40% for testing and 10%
for validation.

Autoencoder models

We consider two classes of architecture: one based on dense
feed-forward neural networks (DNNs) and one using CNNs. Both
start from the (py, 77, ¢) values for 18 reconstructed objects (ordered
as 4 muons, 4 electrons and 10 jets), the ¢ and magnitude of the
missing transverse energy (MET), forming together an input of
shape (19, 3) where MET # values are zero-padded by construc-
tion (7 is zero for transverse quantities). For events with fewer than
the maximum number of muons, electrons or jets, the input is also
zero-padded, as commonly done in the L1T algorithm logic.

In order to account for resource consumption and latency of the
data pre-processing step, we use a batch normalization layer® as the
first layer for each model. For both architectures, CNN and DNN,
we consider both a plain AE and a VAE. In the AE, the encoder
provides directly the coordinates of the given input, projected in the
latent space. In the VAE, the encoder returns the mean values
and the standard deviation & of the N-dimensional Gaussian dis-
tribution that represents the latent-space probability density func-
tion associated with a given event.

For the DNN model (shown on the top plot in Extended Data
Fig. 1), all of the inputs are batch-normalized and passed through a
stack of three fully connected layers, with 32, 16 and 3 nodes. The
output of each layer is followed by a batch normalization layer and
activated by a leaky ReLU function®. The decoder consists of a stack
of three layers, with 16, 32 and 57 nodes. As for the encoder, we use
a batch normalization layer between the fully connected layer and
its activation. The last layer has no activation function, while leaky
ReLU is used for the others.

The CNN AE architecture is shown on the bottom plot in
Extended Data Fig. 1. The encoder takes as input the single-channel
2D array of three-vector including the two MET-related features
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Fig. 1| Model performance at floating-point precision. ROC curves of four AD scores (I0 AD for AE and VAE models, R, and Dy, ADs for the VAE models)
for the CNN (left) and DNN (right) models, obtained from the two new physics benchmark models: LQ — bz (top) and A — 47 (bottom).

(magnitude and ¢ angle) and zeros for MET #, resulting in a total
input size of 193X 1. It should be emphasized that we are not
using image data, rather treating tabular data as a 2D image to make
it possible to explore CNN architectures. The input is scaled by a
batch normalization layer and then processed by a stack of two
CNN blocks, each including a 2D convolutional layer followed by a
ReLU* activation function. The first layer has 16 3 X 3 kernels, with-
out padding to ensure that p,,  and ¢ inputs do not share weights.
The second layer has 32 31 kernels. Both layers have no bias
parameters and a stride set to one. The output of the second CNN
block is flattened and passed to a DNN layer, with eight neurons
and no activation, which represents the latent space. The decoder
takes this as input to a dense layer with 64 nodes and ReLU activa-
tion, and reshapes it into a 2x 1x 32 table. The following architec-
ture mirrors the encoder architecture with two CNN blocks with the
same number of filters as in the encoder and with ReLU activation.
Both are followed by an upsampling layer, in order to mimic the
result of a transposed convolutional layer. Finally, one convolutional
layer with a single filter and no activation function is added. Its out-
put is interpreted as the AE-reconstructed input.

The CNN and DNN VAEs are derived from the AEs, including
the 7/ and @ Gaussian sampling in the latent space.

All models are implemented in TENSORFLOW, and trained on
the background dataset by minimizing a customized mean squared

156

error (MSE) loss with the Adam® optimizer. In order to aid the net-
work learning process, we use a dataset with standardized p; as a
target, so that all the quantities are O(1). To account for physical
boundaries of 77 and ¢, for those features a re-scaled tanh activation
is used in the loss computation. In addition, the sum in the MSE loss
is modified in order to ignore the zero-padding entries of the input
dataset and the corresponding outputs. When training the VAE, the
loss is changed to:

L = (1 — f)MSE(Output, Input) + fDxr(#, @), (1)
where MSE labels the reconstruction loss (also used in the AE

training), Dy, is the Kullback-Leibler regularization term®” usually
adopted for VAEs

Dx.(H, @) = —%Z (log (67) — 67 — ul + 1), (2)

i

and f is a hyperparameter defined in the range [0, 1]°.

Both models are trained for 100 epochs with a batch size of 1,024,
using early stopping if there is no improvement in the loss observed
after ten epochs. All models are trained with floating point preci-
sion on an NVIDIA RTX2080 GPU. We refer to these as the baseline
floating-point (BF) models.
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Fig. 2 | Model performance at floating-point precision. ROC curves of four AD scores (IO AD for AE and VAE models, R, and Dy, ADs for the VAE models)
for the CNN (left) and DNN (right) models, obtained from two new physics benchmark models: h* — zv (top) and h°® — 7z (bottom).

Anomaly detection scores

An autoencoder is optimized to retain the minimal set of informa-
tion needed to reconstruct an accurate estimate of the input. During
inference, an autoencoder might have problems generalizing to
topologies it was not exposed to during training. Selecting events
where the autoencoder output is far from the given input is often
seen as an effective AD algorithm. The simplest solution is to use
the same metric that defines the training loss function. In our case,
we use the modified MSE between the input and the output. We
refer to this strategy as input-output (I0) AD.

In the case of a VAE deployed in the L1T, one cannot simply
exploit an IO AD strategy since this would require sampling ran-
dom numbers on the FPGA. One could generate pseudo-random
numbers exploiting meta information (for example, the event num-
ber) or symmetries in data (for example, the ¢ coordinate of one of
the objects). This might imply a limitation on the dimensionality of
the latent space, which might impact performance. Moreover, one
would have to store random numbers on the FPGA, which would
consume resources and increase the latency. We did not explore this
possibility further. Instead, we consider an alternative strategy by
defining an AD score based on the 77 and @ values returned by the
encoder (see equation (1)). In particular, we consider two options:
the KL divergence term enteri;lg the VAE loss (see equation (2))
and the z-score of the origin 0 in the latent space with respect to
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a Gaussian distribution centred at 7/ with standard deviation &
(ref. '):
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These two AD scores have several benefits we take advantage of:
Gaussian sampling is avoided; we save significant resources and
latency by not evaluating the decoder; and we do not need to buf-
fer the input data for computation of the MSE. During the model
optimization, we tune f so that we obtain (on the benchmark sig-
nal models) comparable performance for the Dy, AD score and the
IO AD score of the VAE. In practice, one should train the model
using real data, which might contain a very small fraction of signal.
Previous studies have verified' that small rates of signal contamina-
tion have little effect on the training. One would use simulated sig-
nals in the same manner as in this paper to tune model parameters.
Such a procedure would not bias the architecture choice towards
specific signals, given the low dependence of the optimal f value on
the nature of the anomaly.

Performance at floating-point precision
The model performance is assessed using the four new physics

benchmark signals. The anomaly-detection scores considered in
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Table 1| Performance assessment of the CNN and DNN models, for different AD scores and different new physics benchmark

scenarios
Model AD score TPR @ FPR107° (%) AUC (%)
LQ— bz A—4¢ h*->w h°— 77 LQ— bt A—4¢ ht->w h°—> 77
CNN VAE 10 0.09 6.19 0.10 0.1 92 95 95 85
Da 0.03 1.63 0.08 0.09 93 93 93 82
R, 0.01 0.48 0.04 0.04 93 93 93 82
CNN AE 10 0.06 3.89 0.08 0.09 96 97 96 88
DNN VAE 10 0.08 5.33 0.08 0.0 93 95 95 85
Dy, 0.05 3.78 0.08 0.10 93 95 94 84
R, 0.07 4.90 0.07 0.0 85 91 87 74
DNN AE 10 0.05 3.47 0.06 0.09 95 96 96 88

The best-performing autoencoder model for each anomaly is highlighted in bold.

this paper are IO AD for the AE models, R, and Dy; ADs for the
VAE models. For completeness, results obtained from the IO AD
score of the VAE models are also shown. The receiver operating
characteristic (ROC) curves in Figs. 1 and 2 show the true positive
rate (TPR) as a function of the false positive rate (FPR), computed
by changing the lower threshold applied on the different anomaly
scores. We further quantify the AD performance quoting the area
under the ROC curve (AUC) and the TPR corresponding to an FPR
working point of 10~ (see Table 1), which on this dataset corre-
sponds to the reduction of the background rate to approximately
1,000 events per month.

Even if the VAE-D; TPR is smaller than the corresponding
full-precision model for certain benchmark signals, the TPR values
are similar after pruning. So, we conclude that Dy, can be used as
an anomaly metric for the rest of this work. The R, metric performs
worse and is therefore not included in the following studies.

Model compression

We compress the BF model by pruning the dense and convolu-
tional layers by 50% of their connections, following the a pre-
viously reported procedure”. Pruning is enforced using the
polynomial decay implemented in TENSORFLOW pruning API,
a KERAS-based® interface consisting of a simple drop-in replace-
ment of KERAS layers. A sparsity of 50% is targeted, meaning
only 50% of the weights are retained in the pruned layers and the
remaining ones are set to zero. The pruning is set to start from the
fifth epoch of the training to ensure the model is closer to a stable
minimum before removing weights deemed unimportant. By prun-
ing the BF model layers to a target sparsity of 50%, the number of
floating-point operations required when evaluating the model, can
be significantly reduced. We refer to the resulting model as the base-
line pruned (BP) model. For the VAE, only the encoder is pruned,
since only that will be deployed on FPGA. The BP models are taken
as a reference to evaluate the resource saving of the following com-
pression strategies, including QAT and PTQ.

Furthermore, we perform a QAT of each model described in
‘Autoencoder models, implementing them in the QKERAS library™.
The bit precision is scanned between 2 and 16 with a 2-bit step.
When quantizing a model, we also impose a pruning of the dense
(convolutional) layers by 50%, as done for the DNN (CNN) BP
models. The results of QAT are compared to results obtained by
applying a fixed-point precision to a BP floating-point model (that
is using PTQ), using the same bit precision scan.

Performance of the quantized models, both for QAT and PTQ,
is assessed using the TPR obtained for an FPR of 10~ for the given
precision. The bottom plots in Fig. 3 and Extended Data Fig. 2 show
ratios of QAT performance quantities obtained for each bit width

with respect to the BP model performance of the AE and VAE,
respectively. The top plots show ratios of PTQ performance quanti-
ties obtained in the same manner as for QAT.

Based on these ratio plots, the precision used for the final model
is chosen. The performance of the VAEs is not stable as a function
of bit width, since the AD figure of merit used for inference (Dy,)
is different from those minimized during the QAT training (VAE
IO + Dy;). Therefore, we use PTQ compression for both DNN and
CNN VAEs because they show stable results as a function of the bit
width. For autoencoders, both quantization approaches show stable
results, and therefore we choose quantization-aware training. For
all the models a bit width of 8 is chosen, apart from the CNN VAE
for which a bit width of 4 is found to be the best. The performance
numbers for the chosen models are summarized in Table 2.

Porting the algorithm to FPGAs

The models described above are translated into firmware using
hls4ml, then synthesized with Vivado HLS 2020.1°, targeting a
Xilinx Virtex UltraScale+ VU9P (xcvu9p-flgh2104-2-e) FPGA with
a clock frequency of 200 MHz. In order to have fair resource and
latency estimations, obtained from the HLS C simulation we have
implemented custom layers in hls4ml, which in the case of AE com-
putes the loss function between the input and network output and
for VAE computes the Dy; term of the loss.

A summary of the accuracy, resource consumption, and latency
for the QAT DNN and CNN BP AE models, and the PTQ DNN and
CNN BP VAE models is shown in Table 3. We find the resources
are less than about 12% of the available FPGA resources, except for
the CNN AE, which uses up to 47% of the look-up tables (LUTs).
Moreover, the latency is less than about 365ns for all models except
the CNN AE, which has a latency of 1,480 ns. The II for all models
is within the required 115ns, again except the CNN AE. Based on
these, both types of architectures with both types of autoencoders
are suitable for application at the LHC L1T, except for the CNN AE,
which consumes too much of the resources.

Since the performance of all the models under study are of a simi-
lar level, we choose the ‘best’ model based on the smallest resource
consumption, which turns out to be DNN VAE. This model was
integrated into the emp-fwk infrastructure firmware for LHC trigger
boards”, targeting a Xilinx VCU118 development kit, with the same
VU9P FPGA as previously discussed. Data were loaded into onboard
buffers mimicking the manner in which data arrives from optical
fibres in the L1T system. The design was operated at 240 MHz, and the
model predictions observed at the output were consistent with those
captured from the HLS C simulation. For this model we also provide
resource and latency estimates for a Xilinx Virtex 7 690 FPGA, which
is the FPGA most widely used in the current CMS trigger.
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Fig. 3 | Compressed model performance. TPR ratios versus model bit width for the AE CNN (left) and DNN (right) models tested on four new physics
benchmark models, using mean squared error as figure of merit for PTQ (top) and QAT (bottom) strategies.

Table 2 | Performance assessment of the quantized and pruned CNN and DNN models, for different AD scores and different new

physics benchmark scenarios

Model AD score TPR @ FPR 10°[%] AUC[%]

LQ— bt A—4¢ h*—>w h°— 77 LQ— bt A—4¢ h*—>w h°—> 77
CNN AE QAT 4 bits 10 0.09 596 0.10 013 94 96 96 88
CNN VAE PTQ 8 bits Dy 0.05 2.56 0.06 012 84 84 85 7
DNN AE QAT 8 bits 10 0.08 548 0.09 omn 95 96 96 88
DNN VAE PTQ 8 bits Bha 0.08 341 0.09 0.08 92 94 94 81

Conclusions

We discussed how to extend new physics detection strategies at the
LHC with autoencoders deployed in the L1T infrastructure of the
experiments. In particular, we show how one could deploy a deep
neural network or convolutional neural network AE on a FPGA
using the hls4ml library, within a O(1)us latency and with small
resource utilization once the model is quantized and pruned. We
show that one can retain accuracy by compressing the model at
training time. Moreover, we discuss different strategies to identify
potential anomalies. We show that one could perform the AD with
a VAE using the projected representation of a given input in the
latent space, which has several advantages for an FPGA implemen-
tation: (1) no need to sample Gaussian-distributed pseudorandom
numbers (preserving the deterministic outcome of the trigger deci-
sion) and (2) no need to run the decoder in the trigger, resulting in
a significant resource saving.

The DNN (V)AE models use less than 5% of the Xilinx VU9P
resources and the corresponding latency is within 130ns, while
the CNN VAE uses less than 12% and the corresponding latency is
365ns. All three models have the initiation interval within the strict
limit imposed by the frequency of bunch crossing at the LHC. With
this work, we have identified and finalized the necessary ingredients

to deploy (V)AEs in the L1T of the LHC experiments for Run 3 to
accelerate the search for unexpected signatures of new physics.

The aim is to use these algorithms in the trigger in order to cre-
ate a catalogue of anomalous events that researchers could explore,
for example, with clustering techniques. Furthermore, one could
perform traditional data analysis, provided a (non-trivial) under-
standing of the effect of the trigger selection on the kinematic dis-
tribution. In presence of a good description of the loss distribution,
the approach used in ref. 7> could be adopted.

Data availability
The data used in this study are openly available at Zenodo™ ",

Code availability

The QKeras library is available at github.com/google/qkeras, where
the work presented here is using QKeras version 0.9.0. The hls4ml
library with custom layers used in the paper are under AE_L1_paper
branch and available at https://github.com/fastmachinelearning/
hls4ml/tree/AE_L1_paper.
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Table 3 | Resource utilization and latency for the quantized and pruned DNN and CNN (V)AE models

Model Hardware DSP [%] LUT [%] FF [%] BRAM [%] Latency [ns] Il [ns]
DNN AE QAT 8 bits Xilinx VU9P 2 5 1 05 130 5
CNN AE QAT 4 bits Xilinx VU9P 8 47 6 1,480 895
DNN VAE? PTQ 8 bits Xilinx VUSP 1 0.5 0.3 80 5
DNN VAE PTQ 8 bits Xilinx V7-690 3 0.4 205 5
CNN VAE PTQ 8 bits Xilinx VUOP 10 12 4 2 365 15

Resources are based on the Vivado estimates from Vivado HLS 2020.1 for a clock period of 5ns on Xilinx VU9P. 2For the DNN VAE model, resources estimation is also provided based on Xilinx V7-690
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Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the
edge for particle detectors
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Although the quest for more accurate solutions is pushing deep learning research towards larger and more complex algorithms,
edge devices demand efficient inference and therefore reduction in model size, latency and energy consumption. One technique
to limit model size is quantization, which implies using fewer bits to represent weights and biases. Such an approach usually
results in a decline in performance. Here, we introduce a method for designing optimally heterogeneously quantized versions
of deep neural network models for minimum-energy, high-accuracy, nanosecond inference and fully automated deployment
on chip. With a per-layer, per-parameter type automatic quantization procedure, sampling from a wide range of quantizers,
model energy consumption and size are minimized while high accuracy is maintained. This is crucial for the event selection
procedure in proton-proton collisions at the CERN Large Hadron Collider, where resources are strictly limited and a latency
of O(1) ps is required. Nanosecond inference and a resource consumption reduced by a factor of 50 when implemented on

field-programmable gate array hardware are achieved.

ith edge computing, real-time inference of deep neu-

ral networks (DNNs) on custom hardware has become

increasingly relevant. Smartphone companies are
incorporating artificial intelligence (AI) chips in their design
for on-device inference to improve user experience and tighten
data security, and the autonomous vehicle industry is turning to
application-specific integrated circuits (ASICs) to keep the latency
low. Although the typical acceptable latency for real-time infer-
ence in applications like those above is O(1) ms (refs. '?), other
applications may require submicrosecond inference. For example,
high-frequency trading machine learning (ML) algorithms are
running on field-programmable gate arrays (FPGAs) to make
decisions within nanoseconds’. At the extreme inference spectrum
end of both the low latency (as in high-frequency trading) and
limited area (as in smartphone applications) is the processing
of data from proton-proton collisions at the Large Hadron Collider
(LHC) at CERN" In the particle detectors around the LHC
ring, tens of terabytes of data per second are produced from
collisions occurring every 25ns. This extremely large data rate is
reduced by a real-time event filter processing system—the trig-
ger—which decides whether each discrete collision event should be
kept for further analysis or be discarded. Data are buffered close to
the detector while the processing occurs, with a maximum latency
of O(1) ps to make the trigger decision. High selection accuracy
in the trigger is crucial to keep only the most interesting events
while keeping the output bandwidth low, reducing the event rate
from 40MHz to 100kHz. In 2027, the LHC will be upgraded
from its current state, capable of producing up to one billion
proton-proton collisions per second, to the so-called High
Luminosity-LHC (HL-LHC)’. This will involve increasing the
number of proton collisions occurring every second by a factor of

five to seven, ultimately resulting in a total amount of accumulated
data one order of magnitude higher than what is possible with the
current collider. With this extreme increase, ML solutions are being
explored as fast approximations of the algorithms currently in use
to minimize the latency and maximize the precision of tasks that
can be performed.

Hardware used for real-time inference in particle detec-
tors usually has limited computational capacity due to size con-
straints. Incorporating resource-intensive models without a loss in
performance poses a great challenge. In recent years, many devel-
opments have aimed at providing efficient inference from an algo-
rithmic point of view. This includes compact network design®°,
weight and filter pruning'-'? or quantization. In post-training
quantization’®-", the pre-trained model parameters are trans-
lated into lower-precision equivalents. However, this process
is, by definition, lossy, and it sacrifices model performance.
Therefore, solutions to do quantization-aware training have
been suggested'®*. In these, a fixed numerical representation is
adopted for the whole model, and the model training is performed
enforcing this constraint during weight optimization. More
recently’®~’', it has been argued that some layers may be more
accommodating for aggressive quantization, whereas others may
require more expensive arithmetic. This suggests that per-layer
heterogeneous quantization is the optimal way to achieve higher
accuracy at low resource cost, but it may require further specializa-
tion of hardware resources.

In this Article, we introduce a novel workflow for finding
the optimal heterogeneous quantization per layer and per
parameter type for a given model, and deploy that model on
FPGA hardware. Through minimal code changes, the model
footprint is minimized while retaining high accuracy, and then

'Palo Alto Networks, Palo Alto, CA, USA. ?Google LLC, Mountain View, CA, USA. 3California Institute of Technology (Caltech), Pasadena, CA, USA.
“European Organization for Nuclear Research (CERN), Geneva, Switzerland. °Institute of Physics, Belgrade, Serbia. ®e-mail: thea.aarrestad@cern.ch
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translated into low-latency firmware. This Article makes the follow-
ing contributions:

o We implement a range of quantization methods in a common
library, providing a broad base from which optimal quantiza-
tions can easily be sampled.

« We introduce a novel method for finding the optimal hetero-
geneous quantization for a given model, resulting in minimum
area or minimum power DNNs while maintaining high accuracy.

o We have made these methods available online in easy-to-use
libraries, called QKeras and AutoQKeras®, where simple drop-in
replacement of Keras* layers makes it straightforward for users
to transform Keras models to their equivalent deep heterogene-
ously quantized versions, which are trained quantization-aware.
Using AutoQKeras, a user can trade off accuracy by model size
reduction (for example, area or energy).

o We have added support for quantized QKeras models in the
library, hls4ml", which converts these pre-trained quantized
models into highly parallel FPGA firmware for ultralow-latency
inference.

To demonstrate the substantial practical advantages of these tools
for high-energy physics and other inference on the edge applications:

o We conduct an experiment consisting of classifying events in an
extreme environment, namely the triggering of proton-proton
collisions at the CERN LHC, where resources are limited and a
maximum latency of O(1)ps is imposed.

o Weshow that inference within 60 ns and a reduction of the model
resource consumption by a factor of 50 can be achieved through
automatic heterogeneous quantization, while maintaining simi-
lar accuracy (within 3% of the floating-point model accuracy).

o We show that the original floating-point model accuracy can
be maintained for homogeneously quantized DNNs down to a
bit-width of six while reducing resource consumption by up to
75% through quantization-aware training with QKeras.

The proposed pipeline provides a novel, automatic end-to-end
flow for deploying ultralow-latency, low-area DNNs on chip. This
will be crucial for the deployment of ML models on FPGAs in parti-
cle detectors and other fields with extreme inference and low-power
requirements.

In the remainder of the Article we discuss previous work related
to model quantization and model compression with a focus on work
related to triggering in particle detectors, we uncover the novel
library for training ultralow-latency optimally heterogeneously
quantized DNNs (QKeras), we describe the procedure of auto-
matic quantization for optimizing model size and accuracy simul-
taneously and, finally, we deploy these optimally quantized QKeras
models on an FPGA and evaluate their performance.

Motivation

The hardware triggering system in a particle detector at the CERN
LHC is one of the most extreme environments in which one can
imagine deploying DNNs. Latency is restricted to O(1) ps, gov-
erned by the frequency of particle collisions and the number of
on-detector buffers. The system consists of a limited amount of
FPGA resources, all of which are located in underground caverns
50-100m below the ground surface, where they work on thousands
of different tasks in parallel. Because of the high number of tasks
being performed, limited cooling capabilities, limited space in the
cavern and the limited number of processors, algorithms must be
kept as resource-economic as possible. To minimize the latency and
maximize the precision of tasks that can be performed in the hard-
ware trigger, ML solutions are being explored as fast approximations
of the algorithms currently in use. To simplify the implementation
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of these, a general library for converting pre-trained ML models
into FPGA or ASIC firmware has been developed—hls4ml'’. The
package comprises a library of optimized C++ code for common
network layers, which can be synthesized through a high-level syn-
thesis (HLS) tool. Converters are provided for multiple model for-
mats, like TensorFlow™, Keras™, PyTorch’ and ONNX*.

Although there are other libraries for the translation of ML mod-
els to FPGA firmware, as summarized in refs. ***, hls4ml targets
extreme low-latency inference to stay within the strict constraints
of O(1) ps imposed by the hardware trigger systems. In addition,
the unique aspect of hls4ml is the support for multiple HLS-vendor
backends like Xilinx Vivado HLS, Intel Quartus HLS* and Mentor
Catapult HLS*, all of which are in use at the LHC experiments. The
Vivado HLS backend is the most advanced and therefore the one
used in this Article.

The hls4ml inference architecture is introduced in ref. . A
model-specific, layer-unrolled architecture is used to produce
ultralow-latency, resource-efficient inference engines for particle
physics. The computation for each NN layer is carried out in dis-
tinct hardware elements of the target device, which allows for high
computational throughput through the layer pipeline, as well as a
fine-grained configuration of each layer (including quantization).
A simple handle, named ‘Reuse Factor’ enables users to control
the parallelization of the computation, again at a per-layer level. In
the fully parallel model, using a Reuse Factor of 1, each individual
multiplication of the NN layers is carried out on different resources
(whether FPGA digital signal processors (DSPs) or lookup tables
(LUTs)). With a Reuse Factor greater than 1, multiplication elements
are reused sequentially to reduce the resource cost, at the expense
of latency and throughput. This simple handle enables rapid design
space exploration as well as configurability to target-specific con-
straints in the available resources, latency and throughput.

In addition, data access at the NN input and output, as well as data
movement between NN layers, can be configured to be fully parallel
or fully serial. The former option is used to target ultralow-latency,
high-throughput inference in the real-time processing of particle
physics experiments, while the latter can be used to fit larger NN
models within the available FPGA resources when ultralow latency
is not as much of a constraint.

The hls4ml library is implemented as a Python package to facili-
tate ease of use for non-experts, as well as consistency with other
popular deep learning libraries. The first step in the conversion
into FPGA firmware consists of translating a given model into an
internal representation of the network graph. During this conver-
sion, user-specified optimization configurations are attached to the
model, such as the choice of quantization and parallelization. The
internal representation is written out into an HLS project, assign-
ing the appropriate layers of the target NN and the user configu-
ration. This HLS project can then be synthesized with the FPGA
vendor tools, generating an IP core that can be used in the target
application. Many commonly used NN layers are supported: Dense,
Convolution, BatchNormalization and several Activation layers. In
addition, domain-specific layers can be easily added, one example
being compressed distance-weighted graph networks*.

In hls4ml, the precision used to represent weights, biases, activa-
tions and other components is configurable through post-training
quantization, replacing the floating-point values by lower-precision
fixed-point ones. This allows compression of the model size, but to
some extent sacrifices accuracy. Recently, support for binary and
ternary precision DNNs* trained quantization-aware has been
included in the library. This greatly reduces the model size, but
requiring such an extremely low precision of each parameter type
sacrifices accuracy and generalization.

As demonstrated in refs. **-*!, mixed-precision quantization (that
is, keeping some layers at higher precision and some at lower preci-
sion) is a promising approach to achieve smaller models with high
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Table 1| Per-layer quantization for post-training quantized models

ARTICLES

Model Precision

Dense RelU Dense RelU Dense RelU Dense Softmax
BF/BP (14, 6) (14, 6) (14, 6) (14, 6) (14, 6) (14, 6) (14, 6) (14, 6)
BH? wi(8, 3) b:(4, 2) (13,7) (7,2) (10, 5) (5,2) (8,4) wi(7, 3) b:(4,1) (16, 6)

When different precision is used for weights and biases, the quantization is listed as w and b, respectively.

accuracy. However, finding the optimal heterogeneous quantiza-
tion per layer and per parameter type, here referred to as ‘quantiza-
tion configuration, is extremely challenging, with the search space
increasing exponentially with the number of layers in a model*.
A solution for finding the mixed quantization configuration that
yields the best generalization and accuracy using the Hessian spec-
trum is proposed in ref. **. For ML applications in hardware trig-
gering systems, the resources one has at disposal, as well as the
minimum tolerable model accuracy, are usually known. Finding
the best model for a given task is therefore a fine compromise
between the desired model compression and accuracy with respect
to the floating-point-based model. Both factors must be considered
when tuning quantization. The goal of this work is thus to provide a
method for finding the optimal mixed-precision configuration for a
given model, accounting for both the desired model size and accu-
racy when optimizing the architecture, and to transform these into
highly parallel firmware for ultralow-latency inference on chip.

Related work

Closely related to the work presented here are the FINN* and
FINN-R* frameworks from Xilinx Research Labs, which aim to
deploy quantized neural networks on Xilinx FPGAs. The same
group have also developed a library for quantization-aware train-
ing, Brevitas*, based on PyTorch model formats. The LogicNets
design flow", also from Xilinx Research Labs, allows for the train-
ing of quantized DNNs that map to highly efficient Xilinx FPGA
implementations. A comparison between the approach presented
here and LogicNets is provided in the section ‘Ultralow-latency,
quantized model on FPGA hardware’ The FP-DNN* framework
takes TensorFlow”’-described DNNs as input and maps them onto
FPGAs. The open-source alternative, DNNWeaver”, automati-
cally generates accelerator Verilog code using optimized templates.
Other frameworks focusing on the mapping of convolutional
architectures onto efficient hardware design include Snowflake™,
fpgaConvNet”~* and ref. **. For other work on FPGA DNN infer-
ence, we refer to refs. >, TensorFlow Lite™ is a set of tools for
on-device inference with low latency and small binary sizes, tar-
geting mobile, embedded and Internet of Things (IoT) devices.
Currently, TensorFlow Lite supports deployment on Android and
iOS devices, embedded Linux and microcontrollers.

Our approach differs from those above with its emphasis on
being a multi-backend tool, embracing a fully on-chip design to
target the microsecond latency imposed in physics experiments.
The hls4ml library is completely open-source, and aims to provide
domain scientists with easy-to-use software for deploying highly
efficient ML algorithms on hardware.

In HAQ®, a hardware-aware automated framework for quanti-
zation is introduced. The automization procedure consists of com-
puting the curvature of the weight space of a layer, assuming a low
curvature will require a lower bit precision for the weights. Our
approach differs from HAQ by combining reduced bit precision
with filter or neuron unit tuning, where the number of filters or
neurons can be automatically tuned during the scan. In this case, the
problem becomes highly nonlinear, and we therefore take advan-
tage of an AutoML-type of approach. A Bayesian optimization or

randomized search is performed to find a solution that encompasses
the precision used for the weights and activations, and the number
of units or filters of the layer.

Particle identification in the hardware trigger

A crucial task performed by the trigger system that could be greatly
improved by a ML algorithm, both in terms of latency and accu-
racy, is the identification and classification of particles coming from
each proton-proton collision. In this Article, we analyse the pub-
licly available dataset introduced in refs. '**. Here, a dataset™ for
the discrimination of jets, a collimated spray of particles, stemming
from the decay and/or hadronization of five different particles was
presented. This consists of quark (gq), gluon (g), W boson, Z boson
and top (1) jets, each represented by 16 physics-motivated high-level
features. In ref. 1°, this dataset was used to train a DNN for deploy-
ment on a Xilinx FPGA. This model was compressed through
post-training quantization to further reduce the FPGA resource
consumption and provides a baseline to measure the benefits of
quantization-aware training with heterogeneous quantization, over
post-training quantization.

Adopting the same architecture as in ref. '*, we use a fully con-
nected neural network consisting of three hidden layers (64, 32 and
32 nodes, respectively) with rectified linear unit (ReLU) activation
functions. The architecture is shown in Extended Data Fig. 1. The
output layer has five nodes, yielding a probability for each of the five
classes through a softmax activation function. The model definition
in TensorFlow Keras is given in Listing 1.

As in ref. V, the weights of this network are homogeneously
quantized post-training to a fixed-point precision yielding the best
compromise between accuracy, latency and resource consump-
tion. This is found to be a fixed-point precision, or bit-width, of
14 bits with 6 integer bits, in the following referred to as (14, 6).
We refer to this configuration as the baseline full model (BF). We
then train a second pruned version of the BF model, here referred
to as baseline pruned (BP). This model has 70% of its weights set to
zero through an iterative process where small weights are removed
using the TensorFlow Pruning application programming inter-
face™, following ref. **. This reduces the model size and resource
consumption considerably, as all zero-multiplications are excluded
during the firmware implementation. We then create one hetero-
geneously quantized version of the BP model, where each layer is
quantized independently post-training to yield the highest accu-
racy possible at the lowest resource cost. We start with an initial
configuration of the model quantization using a wide bit-width,
then iteratively reduce the bit-width until reaching a threshold in
accuracy loss relative to the initial floating-point model, evaluated
on the training set. We iterate over the model in layer order, finding
the appropriate precision for weights, biases and output of a given
layer, before moving to the next. We apply a more strict thresh-
old in accuracy for earlier layers, because each round of precision
reduction only degrades the accuracy. In this case we restrict to a
1% accuracy difference in the first layer, loosening to 2% for the
final layer. This model is referred to as the baseline heterogeneous
(BH) model. A summary of the per-layer quantizations for the
baselines is provided in Table 1.
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Fig. 1| Quantized ReLU function in QKeras. The quantized_relu function
as implemented in QKeras for 2-bit (purple), 3-bit (green and blue) and
6-bit (yellow) precision and for O or 1integer bits. The unquantized ReLU
function is shown for comparison (orange).

From ref. *, we know that a post-training quantization of this
model results in a degradation in model accuracy. The smaller the
model footprint is made through post-training quantization, the
larger the accuracy degradation becomes. To overcome this, we
develop a novel library that, through minimal code changes, allows
us to create deep heterogeneously quantized versions of the Keras
model, trained quantization-aware.

In addition, as the amount of available resources on chip
is known in advance, we want to find the optimal model for a
given use-case allowing a trade-off between model accuracy
and resource consumption. We therefore design a method for
performing automatic quantization, minimizing the model area
while maximizing accuracy simultaneously through a novel loss
function. These solutions, simple heterogeneous quantization-
aware training and automatic quantization are explained in the
following sections.

Keras™ is a high-level application programming interface
designed for building and training deep learning models. It is used
for fast prototyping, advanced research and production. To simplify
the procedure of quantizing Keras models, we introduce QKeras®:
a quantization extension to Keras that provides a drop-in replace-
ment for layers performing arithmetic operations. This allows for
efficient training of quantized versions of Keras models.

QKeras is designed using the design principle of Keras—that
is, being user-friendly, modular, extensible and minimally intru-
sive to Keras native functionality. The code is based on the work
of refs. ', but provides a substantial extension to these. This
includes providing a richer set of layers (for instance, including
ternary and stochastic ternary quantization), extending the func-
tionality by providing functions to aid the estimation of model area
and energy consumption, allowing for simple conversion between
non-quantized and quantized networks, and providing a method
for performing automatic quantization. Importantly, the library
is written in such a way that all the QKeras layers maintain a true
drop-in replacement for Keras ones so that minimal code changes
are necessary, greatly simplifying the quantization process. During
quantization, QKeras uses the straight-through estimator'’, where
the forward pass applies the quantization functions and the back-
ward pass assumes the quantization as the identity function to make
the gradient differentiable.

For the model in Listing 1, creating a deep quantized version
requires just a few code changes. An example conversion is shown
in Listing 2.
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Listing 1. Defining a model in Keras: TensorFlow Keras model
definition

from tensorflow.keras.layers import Input

from tensorflow.keras.layersimport Dense, Activation

from tensorflow.keras.layers import BatchNormalization

x=Input((16))

x=Dense(64)(x)

x=BatchNormalization()(x)

x=Activation(‘relu’)(x)

x=Dense(32)(x)

x=BatchNormalization()(x)

x=Activation(‘relu’)(x)

x=Dense(32)(x)

x=BatchNormalization()(x)

x=Activation(‘relu’)(x)

x=Dense(5)(x)

x= Activation(‘softmax’)(x)

Obtaining optimal heterogeneous quantization

The necessary code modifications consist of typing Q in front of
the original Keras data manipulation layer name and specifying the
appropriate quantization type, for instance, the kernel quantizer
and bias_quantizer parameters in a QDense layer. We change only
data manipulation layers that perform some form of computation
that may change the data input type and create variables (trainable
or not). Data transport layers, namely layers performing some form
of change of data ordering, without modifying the data itself, remain
the same, for example Flatten. When quantizers are not specified,
no quantization is applied to the layer and it behaves as the unquan-
tized Keras layer. The only exception is the QBatchNormalization
layer. Here, when no quantizers are specified, a power-of-2 quan-
tizer is used for the trainable parameters of the batch normaliza-
tion layer, y and f, as well as for the emperical variance o, while
the emperical mean y remains unquantized. This has worked best
when attempting to implement quantization efficiently in hardware
and software (y and o become shift registers and f maintains the
dynamic range aspect of the centre parameter)

Listing 2. Defining a model in QKeras: quantized QKeras
model example.

from tensorflow.keras.layers import Input, Activation

from gkerasimport quantized_bits

from qkerasimport QDense, QActivation

from gkeras import QBatchNormalization

x=Input((16))

x=QDense(64, kernel_quantizer = quantized_bits(6,0,alpha=1),

bias_quantizer = quantized_bits(6,0,alpha=1))(x)

x=QBatchNormalization()(x)

x= QActivation(‘quantized_relu(6,0)’)(x)

x=QDense(32,kernel_quantizer = quantized_bits(6,0,alpha=1),

bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x=QBatchNormalization()(x)
x=QActivation(‘quantized_relu(6,0)’)(x)
x=QDense(32,kernel_quantizer = quantized_bits(6,0,alpha=1),
bias_quantizer = quantized_bits(6,0,alpha=1))(x)
x=QBatchNormalization()(x)
x=QActivation(‘quantized_relu(6,0)")(x)

x=QDense(5, kernel_quantizer = quantized_bits(6,0,alpha=1),

bias_quantizer = quantized_bits(6,0,alpha=1))(x)

x= Activation(‘softmax’)(x)

The second code change is to pass appropriate quantizers, for
example quantized_bits. In the example above, QKeras is instructed
to quantize the kernel and bias to a bit-width of 6 and 0 integer
bits. The parameter alpha can be used to change the absolute scale
of the weights while keeping them discretized within the chosen
bit-width. For example, in a binary network, rather than using
the representations +1, one can use #alpha. In QKeras, by setting
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alpha="‘auto, we also allow for the value of alpha to be computed
during training from the absolute scale of the weights in ques-
tion. Further details are provided in the Methods and illustrated in
Extended Data Fig. 2.

QKeras works by tagging all variables, weights and biases created
by Keras, as well as the output of arithmetic layers, with quantized
functions. Quantized functions are specified directly as layer para-
meters and then passed to QActivation, which acts as a merged
quantization and activation function. Quantizers and activation
layers are treated interchangeably. To minimize code changes,
the quantizers’ parameters have carefully crafted and pre-defined
defaults or are computed internally for optimal set-up.

The quantized_bits quantizer used above performs mantissa
quantization:

20 i (round(x x 207", —201 20 Ly (1)

where x is the input, b specifies the number of bits for the quantiza-
tion, and ‘int’ specifies how many bits of bits are to the left of the
decimal point.

The quantizer used for the activation functions in Listing 2, quan-
tized_relu, is a quantized version of ReLU®". Two input parameters
are passed, namely the precision, in this case 6 bits, and number of
integer bits, in this case zero, respectively. The class has further attri-
butes, for instance allowing for stochastic rounding of the activation
function, all of which are described in detail in ref. *°. Figure 1 shows
the quantized ReLU function for three different bit-widths and two
different numbers of integer bits.

Through simple code changes like those above, a large variety of
quantized models can be created. A full list of quantizers and layers
is provided in the Methods and listed in Extended Data Fig. 3 or in
the QKeras code repository®.

We use QKeras to create a range of deep homogeneously quan-
tized models, trained quantization-aware and based on the same
architecture as the baseline model, which will provide a direct com-
parison between post-training quantization and models trained
using QKeras. The model in Listing 2 is an example of such a homo-
geneously quantized model. Finally, we want to create an optimally
heterogeneously quantized QKeras model with a considerably
reduced resource consumption, without compromising the model
accuracy. The search space for finding such a configuration is large
and exponential in layers. We therefore attempt to automatize the
process by allowing users to scan through all the available quantiz-
ers in QKeras to find the configuration that fits the available chip
area while maintaining high accuracy.

Resource-aware automatic quantization

As described in the section ‘Motivation, there are several meth-
ods for finding the optimal quantization configuration for a given
model. These usually proceed by calculating the sensitivity of a
given layer to quantization through evaluation of how small distur-
bances within that layer influence the loss function.

Often, as for example in refs. 2, only maximization of the model’s
accuracy and ability to generalize is considered. However, when doing
inference on the edge, resources are often limited and shared between
multiple applications. This is the case in particle detectors, where a
single FPGA is used to perform multiple different tasks. The desired
accuracy and size constraints of the model in question are known
in advance, and it is desirable to optimize the precision configura-
tion considering both model accuracy and size. Some methods, like
HAQ?, do perform such a hardware-aware optimization. However,
only the weight precision per layer is considered. When models are
strongly quantized, it is often the case that more or fewer filters in con-
volutional layers, or neurons in densely connected layers, are neces-
sary. A fine-tuning of the number of units per layer is therefore crucial
to achieve the highest possible accuracy at the lowest resource cost.
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In this Article, we introduce a method for performing automatic
quantization where the user can trade off model area or energy con-
sumption by accuracy in an application-specific way. The per-layer
weight precision as well as the number of neurons or filters per layer
are optimized simultaneously. By defining a forgiving factor based
on the tolerated drop in accuracy for a given reduction in resource
cost, the best quantization configuration and number of units per
layer, for a set of given size or energy constraints, can be found. We
consider both energy minimization and bit-size minimization as a
goal in the optimization.

Approximating relative model energy consumption. To target a
reduction in model energy consumption, a high-level estimate of
the model energy is needed. Here, we only concern ourselves with
the difference in energy consumption when comparing models
using different quantizations, and not the absolute energy, as this is
highly hardware-specific. To this end, we assume an energy model
where the energy consumption of a given layer is defined as

Elayer = Einput + Eparameters + Emac + Eoutput~

These correspond to the energy cost of reading inputs (E,,.),
parameters (E,,umeers) and output (E,,y,,) and the energy required
to perform multiply-and-accumulate (MAC) operations (Ey,c)-
For the first three, in a similar way to compulsory accesses in cache
analysis®, we only consider the first access to the data, as only com-
pulsory accesses are independent of the hardware architecture and
memory hierarchy of an accelerator, when comparing models using
the same architecture. We also assume a fully unrolled implemen-
tation on the hardware (as is the case with hls4ml). For the MAC
energy estimation, we only consider the energy needed to compute
the MAC. We do not include the energy usage of registers, or glue
and pipeline logic that will affect the overall energy profile of the
device. For a given architecture, this energy consumption is known,
and here we assume a 45 nanometre processor and follow the energy
table given in ref. *.

Although this model provides a good initial estimate, it has
high variance concerning the actual energy consumption one finds
in practice, especially for different architectural implementations.
However, when comparing the energy of two different models,
or models of different quantizations, both implemented in the
same technology, this simple energy model is sufficient. The rea-
son for this is that one can assume that the real energy of a layer
is some linear combination of the high-level energy model, that is,
Eﬁ;‘fr = ki X Epayer + k2, where k; and k, are constants that depend
on the architecture of the accelerator and the implementation pro-
cess technology. The slope can be considered as a factor account-
ing for the additional storage needed to keep the model running,
and the offset corresponds to logic that is required to perform the
operations. When comparing the energy consumption of two lay-
ers with different quantizations, L1 and L2, for the same model
architecture, we have that EX! > ERX if, and only if, the estimated
energy E;, > E|,.

For these reasons, only relative energy estimates are considered
during the automatic quantization, and users cannot target a spe-
cific energy value.

To facilitate easy estimation of the relative energy consumption
or model bit size when comparing different QKeras models, we have
implemented a tool in the QKeras library, QTools, which performs
both data type map generation and energy consumption estimation.
A data type map for weights, biases, multipliers and so on, is gen-
erated for each layer, and includes operation types, variable sizes,
quantizer types and bits. The output is an estimate of the per-layer
energy consumption in picojoules, as well as a dictionary of data
types per layer. Included in the energy calculation is a set of other
tunable specifications, such as whether parameters and activations
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Table 2 | Per-layer quantization and relative energy consumption for automatically quantized QKeras models, showing per-layer
quantization configuration and the relative model energy consumption for the AutoQKeras energy optimized (QE) and AutoQKeras
bits optimized (QB) models, compared to the simple homogeneously quantized model, Q6

Model  Accuracy (%) Precision o .
Dense RelU Dense RelU Dense RelU Dense Softmax
QE 723 (4,0) (4,2) Ternary (3,1) (2,1) (4,2) w: Stoc. bin. b: (16, 6) 0.27 0.18
(8,3)
QB 72.8 (4,0) (4,2) Stoc. bin. (4,2) Ternary 3.1 Stoc. bin. (16, 6) 0.25 017
Q6 74.8 (6,0) (6,0) (6,0) (6,0) (6,0) (6,0) (6,0) (6,0) 1.00 1.00

When different precision is used for weights and biases, the quantization is listed as w and b, respectively. Stoc. bin., stochastic binary quantization.

are stored on static random-access memory (SRAM) or dynamic
random-access memory (DRAM), or whether data are loaded from
DRAM to SRAM. The precision of the input can also be defined for
a better energy estimate. A full list of options is available in ref. *.
The QTools library provides an additional metric for model tuning
when both accuracy and energy consumption, or model size, need
to be considered.

Defining a forgiving factor. With the high-level estimate of a
given layer’s energy consumption provided by QTools, we define a
forgiving factor (FF) to be targeted during automatic quantization
of the model, providing a total loss function that combines energy
cost and accuracy. The FF allows one to tolerate a degradation in a
given metric, such as model accuracy, if the model gain in terms of
some other metric, like model size, is considerably larger. Here, we
allow the forgiving metric to be either minimization of the model
bit size or minimization of the model energy consumption. The FF
is defined as

where A, is the tolerated reduction in accuracy in percent, R is the
factor stating how much smaller energy the optimized model must
have compared to the original model (as a multiplicative factor to
the FF metric) and S is a parameter to reduce the reference size,
effectively forcing the tuner to choose smaller models. Parameters
C.;and C,, refer to the cost (energy or bits) of the reference model
and the quantization trial model being tested, respectively. The FF
can be interpreted in the following way: if we have a linear tolerance
for model accuracy degradation (or any other performance metric),
we should be able to find a multiple of that degradation in terms of
the cost reduction of the implementation. This enables an automatic
quantization procedure to compensate for the loss in accuracy when
comparing two models, by acting as a multiplicative factor.

Automatic quantization and rebalancing are then performed by
treating quantization and rebalancing of an existing DNN as a hyper
parameter search in Keras Tuner® using random search, hyper-
band®® or Gaussian processes. We design an extension to Keras
Tuner called AutoQKeras, which integrates the FF defined in equa-
tion (2) and the energy estimation provided by QTools. This allows
for simultaneously tuning of the model quantization configura-
tion and the model architecture. For example, AutoQKeras allows
for tuning of the number of filters in convolutional layers and the
number of neurons in densely connected layers. This fine-tuning is
critical, as when models are strongly quantized, more or fewer filters
might be needed. Fewer filters might be necessary in cases where a
set of filter coefficients are quantized to the same value.

Consider the example of quantizing two sets of filter coeffi-
cients, [—0.3, 0.2, 0.5, 0.15] and [—0.5, 0.4, 0.1, 0.65]. If we apply a

binary quantizer with scale = [log, ( ,\‘,wl )], where w are the filter
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coefficients and N is the number of coefficients, we will end up with
the same filter binary([—0.3, 0.2, 0.5, 0.15]) =binary([—0.5, 0.4, 0.1,
0.65])=[-1, 1, 1, 1] X 0.5. In this case, we are assuming a scale is a
power-of-2 number so that it can be efficiently implemented as a
shift operation. On the other hand, more filters might be needed
as deep quantization drops information. To recover some of the
boundary regions in layers that perform feature extraction, more
filters might be needed when the layer is quantized. Finally, certain
layers are undesirable to quantize, often the last layer of a network.
In principle, we do not know if by quantizing a layer we need more
or fewer filters or neurons and, as a result, there are advantages to
treating these problems as co-dependent problems, as we may be
able to achieve a lower number of resources. Note that AutoQKeras
does not completely remove model layers.

In AutoQKeras, one can specify which layers to quantize by spec-
ifying the index of the corresponding layer in Keras. If attempting
to quantize the full model in a single shot, the search space becomes
very large. In AutoQKeras, there are two methods to cope with this:
grouping layers to use the same choice of quantization or quantiza-
tion by blocks. For the former, regular expressions can be provided
to specify layer names that should be grouped to use the same quan-
tization. In the latter case, blocks are quantized sequentially, either
from inputs to outputs or by quantizing higher energy blocks first. If
blocks are quantized one by one, assuming each block has N choices
and the model consists of B blocks, one only needs to try NxB,
rather than N® options. Although this is an approximation, it is a
reasonable trade-off considering the explosion of the search space
for individual filter selections, weight and activation quantization.

Whether to quantize sequentially from inputs to outputs or start-
ing from the block that has the highest energy impact depends on
the model. For example, for a network like ResNet®, and if filter
tuning is desirable, one needs to group the layers by the ResNet
block definition and quantize the model sequentially to preserve the
number of channels for the residual block. A few optimizations are
performed automatically during model training. First, we dynami-
cally reduce the learning rate for the blocks that have already been
quantized so that they are still allowed to train, but at a slower pace.
Also, we dynamically adjust the learning rate for the layer we are
trying to quantize as opposed to the learning rate of the unquan-
tized layers. Finally, we transfer the weights of the model blocks we
have already quantized, whenever possible (when shapes remain the
same).

We then use AutoQKeras to find the optimal quantization configu-
rations for the baseline model for extremely resource-constrained
situations, one targeting a minimization of the model’s footprint in
terms of model energy (QE) and one minimizing the footprint in
terms of model bit size (QB), using the different available targets
in AutoQKeras. We want to reduce the resource footprint by at
least a factor of four while allowing the accuracy to drop by at most
5%. We also allow for tuning of the number of neurons for each
dense layer, for the same reason given above for model filter tuning.
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Fig. 2 | The QKeras and his4ml workflow. The full workflow starting from a baseline TensorFlow Keras Model, which is then converted into an optimally
quantized equivalent through QKeras and AutoQKeras. This model is then translated into highly parallel firmware with his4ml.

The model is quantized sequentially per block, where one block
consists of a Dense layer and a ReLU layer. The resulting quanti-
zation configuration is listed in Table 2. A very aggressive quanti-
zation configuration is obtained for both optimizations, with both
binary and ternary quantizers and a bit-width of four at maximum
for kernels. Despite the large search space, the obtained configura-
tions are very similar, as is to be expected due to the strong cor-
relation between model energy and bit size. Whenever an input or
the kernel has one (binary) or two (ternary) bits, we can completely
eliminate multiplication operations in an implementation, saving
valuable multiplier resources.

The preferred number of neurons per layer is half that of the
original (32, 16, 16 rather than 64, 32, 32).

We then compare the relative energy consumption and bit size
of the QE and QB models as computed with QTools with respect to
the simple homogeneously quantized model using a 6-bit precision
in Listing 2, hereby referred to as Q6.

The QE and QB model energy consumption is reduced by 75%
when compared to the Q6 model and, despite the aggressive quan-
tization and reduction in neurons per layer, only a ~3% degrada-
tion in accuracy is observed for both. The total bit size is reduced
by 80%. The QB model obtains a slightly smaller energy footprint
than the QE model, alluding to some degree of randomness when
scanning such a large search space. The relative power consump-
tion when implemented on FPGA hardware will be discussed in the
section ‘Ultralow-latency, quantized model on FPGA hardware’

All the models presented so far are trained minimizing the cat-
egorical cross-entropy loss®” using the Adam optimizer®. A learn-
ing rate of 0.0001 is set as the starting learning rate. If there is no
improvement in the loss for ten epochs, the learning rate is reduced
by 50% until a minimum learning rate of 10~ is reached. The batch
size is 1,024 and the training proceeds for 100 epochs. The train-
ing time for the models trained quantization-aware with QKeras is
increased by 1.5 with respect to the Keras equivalent.

For particle detector trigger applications, it is often desirable to
operate the algorithm at very low false positive rates (FPRs), ensur-
ing that only the most interesting events are kept while staying
within the available trigger bandwidth. In Extended Data Fig. 4,
the classification performances of the BE Q6, QE and QB models
for two different target classes, top (¢) and gluon (g), are compared.
These classes were chosen as the ones where the original network,
introduced in ref. °, had the highest and lowest area under the curve
(AUC) scores, respectively. Specifically, the receiver operating char-
acteristic (ROC) curves of FPR versus true positive rate (TPR), and
the corresponding AUC, are shown. The classification performance
of the Q6 model is almost identical to that of the BF model for FPRs
down to 0.1%. The QE and QB models perform slightly worse, with
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AUC scores 0.02 points lower than for Q6 and BE For a fixed FPR
of 1%, the TPR for BF/Q6 is 60% and is 55% for QE/QB. No nota-
ble degradation at very low FPR, where typical trigger algorithms
would be operated, is observed.

With AutoQKeras, we give the user full flexibility to optimize
the quantization configuration for a given use-case. An estimate
of the model size and energy consumption can be computed using
QTools and the user can then proceed by instructing AutoQKeras
as to how much energy or bits it is desirable to save, given a certain
accuracy-drop tolerance. Going from a pre-defined Keras model to
an optimally quantized version (based on available resources) that
is ready for chip implementation is made extremely simple through
these libraries.

The final, crucial step in this process is to take these quantized
models and make it simple to deploy them in the trigger system
FPGAs (or any hardware) while making sure the circuit layout is
optimal for the ultralow-latency constraint. We will address this in
the following section.

Ultralow-latency, quantized model on FPGA hardware

To achieve ultralow-latency inference of QKeras models on FPGA
firmware, we introduce full integration of QKeras layers in the
hls4ml library. The libraries, together, provide a streamlined pro-
cess for bringing quantized Keras models into particle detector trig-
gering systems, while staying within the strict latency and resource
constraints and performing high-accuracy inference.

When converting a QKeras model to an HLS project, the model
quantization configuration is passed to hls4ml and enforced on
the FPGA firmware. This ensures that the use of specific, arbitrary
precision in the QKeras model is maintained during inference. For
example, when using a quantizer with a given alpha parameter (that
is, scaled weights), hls4ml inserts an operation to rescale the layer
output. For binary and ternary weights and activations, the same
strategies as in ref. ** are used. With binary layers, the arithmetical
value of —1 is encoded as 0, allowing the product to be expressed
as an XNOR operation. The full workflow starting from a baseline
TensorFlow Keras model and up until FPGA firmware generation
is shown in Fig. 2. This illustrates how, through two simple steps,
Keras models can be translated into ultra-compressed, highly paral-
lel FPGA firmware.

We now compare the accuracy, latency and resource consump-
tion of the different models derived so far: the BE, BP and BH mod-
els derived without using QKeras, two models optimized using
AutoQKeras minimizing the model energy consumption (QE)
and model bit consumption (QB), as well as a range of homoge-
neously quantized QKeras models scanning bit-widths from 3 to 16.
Each model is trained using QKeras version 0.7.4, translated into
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Table 3 | Performance on a Xilinx VU9P FPGA (2), showing model accuracy, latency, resource utilization and relative energy estimate
for six different models

Model Accuracy (%) Latency* Latency (clock DSP (%) LUT (%) FF (%) %K?’ié‘s) ﬁ
(ns) cycles)

BF 74.4 45 9 56.0 (1,826) 5.2 (48,321) 0.8 (20132) = =

BP 74.8 70 14 7.7 (526) 1.5 (17,577) 0.4 (10,548) = =

BH 73.2 70 14 1.3(88) 1.3(15,802) 0.3(8,108) = =

Q6 74.8 55 1 1.8 (124) 3.4 (39,782) 0.3(8,128) 1.00 1.00
QE 72.3 55 1 1.0 (66) 0.8 (9,149) 0.1Q1,781) 0.27 0.30
QB 71.9 70 14 1.0 (69) 0.9 (11,193) 01,771 0.25 0.25
LogicNets JSC-M*’ 70.6 NA? NA 00 1.2 (14,428) 0.02 (440) = =
LogicNets JSC-L*’ 71.8 82 5 00 3.2(3793D 0.03(810) = =

2Not evaluated. ®Using a clock frequency of 384 MHz. <The latency is evaluated for a clock cycle of 200 MHz. Resources are listed as percentage of total, with absolute numbers quoted in parentheses. The
energy is estimated relative to the Q6 model and correspond to the relative energy computed using QTools (second to last column) and the relative power estimate from the post place-and-route report

from Vivado (last column).

firmware using hls4ml version 0.2.1, and then synthesized with
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy.
The resources at disposal on the FPGA are DSPs, LUTs, block ran-
dom access memory (BRAM) and flip-flops. In this case, the BRAM
is only used as a LUT read-only memory for calculating the final
softmax function and is the same for all models, namely 1.5 units,
corresponding to a total of 54 kb. For larger NNs using a higher reuse
factor and longer latency, BRAM may also be used to store model
weights. The estimated resource consumption and latency from logic
synthesis, together with the model accuracy, are listed in Table 3. A
fully parallel implementation is used, with an initiation interval—the
number of clock cycles between new data inputs—of 1 in all cases.
Resource utilization is quoted in the percentage of total available
resources, with absolute numbers quoted in parentheses.

The most resource-efficient model is the AutoQKeras QE model,
reducing the DSP usage by ~98%, LUT usage by ~80% and flip-flop
usage by ~90%. The accuracy drop is less than 3%, despite using half
the number of neurons per layer and the overall lower precision.
The extreme reduction of DSP utilization is especially interesting
as, on the FPGA, DSPs are scarce and usually become the critical
resource for ML applications. DSPs are used for all MAC operations,
but, if the precision of the incoming numbers is much lower than
the DSP precision (which, in this case, is 18 bits) MAC operations
are moved to LUTs. This is an advantage, as a representative FPGA
for the LHC trigger system has O(10%) DSPs compared to O(10°)
LUTs. If the bulk of multiplication operations is moved to LUTS, this
allows for deeper and more complex models to be implemented. In
our case, the critical resource reduces from 56% of DSPs for the
baseline to 3.4% of LUTs for the 6-bit QKeras trained model with
the same accuracy. The latency is O(10) ns for all models.

In the final two columns of Table 3, we compare the relative
energy estimation from QTools with the post place-and-route power
report from Vivado for the three QKeras models, in both cases rela-
tive to the Q6 model. Because the target clock frequency and model
initiation interval are identical across these models, the inference
rate is the same and taking the ratio of the power is equivalent to
taking the ratio of the energy. Very good agreement between the
QTools relative energy estimates and the Vivado relative power esti-
mates is observed for the QE and QB models, and the energy order-
ing is the same for all models.

We compare the results obtained using the QKeras and hls4ml
workflow to LogicNets*”, another work on extreme low-latency,
low-resource, fully unfolded (initiation interval=1) FPGA imple-
mentations. The metrics are those quoted in Table 3. Two LogicNets
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models have been evaluated: one using the same architecture as in
this Article, JSC-M and another using a larger architecture (32, 64,
192, 192, 16 numbers of neurons), JSC-L. For JSC-M, an accuracy
of 70.6% is quoted, 1.7 points lower than the most resource-efficient
model using QKeras and hls4ml, QE. In addition, QE uses 1.2X
fewer LUTs than JSC-M. No DSPs are used in LogicNets, compared
to the 66 DSPs in use by the QE model.

The latency has only been evaluated for JSC-L and is quoted to
be 13 ns, using a clock frequency of 384 MHz. The final softmax
function has been removed from this estimate. In high-energy phys-
ics experiments, the final softmax layer is crucial because trigger
thresholds are usually set based on an algorithm’s FPR. The thresh-
old on the FPR is usually set as high as the trigger bandwidth allows,
maximizing the TPR while staying within the bandwith-budget.

For a clock period of 5ns, the QE model has a latency of 55ns,
reduced to 45ns when ignoring the final softmax layer. The JSC-L
model has a latency of 13 ns for a clock period of 2.6 ns.

Finally, we compare the accuracy and resource consumption
of a range of homogeneously quantized QKeras models, scanning
bit-widths from 3 to 16. In Fig. 3 (left) the accuracy relative to the
baseline model evaluated with floating-point precision is shown as
a function of bit-width. This is shown for the accuracy as evalu-
ated offline using TensorFlow QKeras (green line) and the accuracy
as evaluated on the FPGA (orange line). We compare this to the
performance achievable using the baseline model and post-training
quantization (purple dashed line). The markers represent the
accuracy of the baseline, baseline pruned, baseline heterogeneous
and AutoQKeras optimized models (again emphasizing that the
AutoQKeras models use half as many neurons per layer as the base-
line Keras model). Models trained with QKeras retain performance
very close to the baseline using as few as 6 bits for all weights, biases
and activations. Accuracy degrades slightly down to 98% of the
baseline accuracy at a precision of 3 bits.

Post-training homogeneous quantization of the baseline model
shows a much more notable accuracy loss, with accuracy rapidly
falling away below 14 bits. The model resource utilization as a func-
tion of bit-width for homogeneously quantized QKeras models is
shown in the right plot in Fig. 3. The switch from DSPs to LUTs
mentioned above is clearly visible: below a bit-width of ~10, MAC
operations are moved from the DSPs to the LUTs and the critical
resource consumption is considerably reduced. For example, in this
case, using a model quantized to 6-bit precision will maintain the
same accuracy while reducing resource consumption by ~70%. The
symbols in Fig. 3 show the resource consumption of the heteroge-
neously quantized models. The only model comparable in accuracy
and resource consumption to the AutoQKeras optimized models,
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Fig. 3 | Performance on a Xilinx VU9P FPGA. Relative accuracy (left) and resource utilization (right) as a function of bit-width. The right-hand panel shows
the metrics for the heterogeneously quantized models. The relative accuracy is evaluated with respect to the floating-point baseline model. Resources are

expressed as a percentage of the targeted FPGA, a Xilinx VU9P.

QE and QB, is the baseline heterogeneous (BH). However, in con-
trast to the QKeras models, BH has been pruned to a weight sparsity
of 70%, which further reduces the resource consumption (all zero
multiplications are removed). In addition, the process of manually
quantizing a model post-training is time-consuming and cumber-
some, and not guaranteed to always succeed due to its lossy nature.
AutoQKeras and hls4ml allow us to quantize automatically through
quantization-aware training, with specific tolerances in terms of
accuracy and area, greatly simplifying the process.

In ref. ©, the QKeras and hls4ml workflow has been dem-
onstrated on convolutional architectures benchmarked on the
Streetview House Numbers dataset’, both on large FPGAs and small
system-on-chip FPGAs. High accuracy matching the floating-point
model accuracy can be maintained down to 6-bit precision with
QKeras, executed with a latency of 5ps. For larger convolutional
architectures like ResNet®, hls4ml does not scale due to the very
low latency target and the fully on-chip implementation used to
obtain this. Our main application is the efficient implementation of
smaller, custom models targeting latencies of O(10) ns to O(1) ps.

Conclusion and future work

We have introduced a novel library, QKeras, providing a simple
method for uncovering optimally heterogeneously quantized DNNs
for a set of given resource or accuracy constraints. Through simple
replacement of Keras layers, models with heterogeneous per-layer,
per-parameter type precision, chosen from a wide range of novel
quantizers, can be defined and trained quantization-aware. A model
optimization algorithm that considers both model area and accuracy
is presented, allowing users to maximize the model performance
given a set of resource constraints, crucial for high-performance
inference on edge. Support for these quantized models has been
implemented in hls4ml, providing the necessary chip layout instruc-
tion components to enable ultrafast inference of these tiny-footprint
models on a chip. We have demonstrated how on-chip resource
consumption can be reduced by a factor of 50 without much loss in
model accuracy while performing inference within O(10) ns. The
methods presented here provide crucial tools for inference on the
extreme low-area and low-latency edge, like that in particle detec-
tors where a latency of O(1) ps is enforced. Taking a pre-trained
model and making it suitable for hardware implementation on the
edge, both in terms of latency and size, is one of the bottlenecks
for bringing ML applications into extremely constrained computing
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environments (for example, a detector at a particle collider), and
the workflow presented here will allow for a streamlined and simple
process, ultimately resulting in a great improvement in the quality
of physics data collected in the future.

The generality and flexibility of the QKeras+hls4ml work-
flow opens up a wide array of possible future work. This includes
integration with other quantization libraries targeting non-FPGA
hardware, such as TensorFlow Lite, as well as those targeting FPGA
synthesis, such as FINN (and the quantization library Brevitas) and
HAQ. In addition, while the energy estimator provides a good base-
line for relative energy consumption, as demonstrated, we hope to
extend the library to provide more device-specific absolute energy
estimates. We also plan to explore using a combination of block
energy and the curvature of the weight space, as done in HAQ, when
quantizing a network one block at a time. Finally, work is ongoing to
use the QKeras+hls4ml workflow to deploy ML algorithms for the
next data-taking period at CERN LHC both on FPGAs and ASICs.

Methods

Additional layers, quantizers and methods in QKeras. In this section, we will
give an overview of the available layers, quantizers and methods in QKeras. A
summary of available layers in QKeras is listed in Extended Data Fig. 3.

For several quantizers (including quantized_bits), a parameter called
keep_negative can be set.

If keep_negative is true, negative numbers are not clipped. With a lower
number of bits, the rounding adds more bias to the number system. Reference "'
suggested using stochastic rounding, which uses the fractional part of the number
as a probability to round the number up or down.

Stochastic rounding for quantized_bits quantizers can be turned on by setting
use_stochastic_rounding = True. However, when an efficient hardware or software
implementation is considered, this flag should be avoided in activation functions as
it may affect the implementation efficiency.

Activations have been migrated to QActivation, but activation parameters
passed directly in convolutional and dense layers will be recognized as well.

The bernoulli and stochastic functions rely on stochastic versions of the
activation functions, so they are best suited for weights and biases. They draw a
random number with uniform distribution from sigmoid of the input x, adding
additional regularization. The result is based on the expected value of the
activation function. The temperature parameter determines the steepness of the
sigmoid function.

The quantizers quantized_relu and quantized_tanh are quantized versions of
ReLU* and tanh functions, respectively.

The quantized_po2 and quantized_relu_po2 quantizers perform exponent
quantization, as defined in ref. 2. The main advantage of this quantizer is that it
provides a representation that is very efficient for multiplication. The parameter
max_value defines maximum value.
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It should also be noted that the QSeparableConv2D layer is implemented as a
depthwise, followed by pointwise quantized expansions, which is an extended form
of the SeparableConv2D implementation of MobileNet”*. The reason we chose to
use this version is that MobileNet’s SeparableConv2D has an activation between
the depthwise convolution and the pointwise convolution, where we need to at
least apply some form of quantization.

Besides the drop-in replacement of Keras layers, we have written a few utility
functions.

The model_quantize function converts a non-quantized model into a quantized
version, by applying a specified configuration for layers and activations. The
method model_save_quantized_weights saves the quantized weights in the model
compatible with an inference or writes the quantized weights in the file filename
for production. The method load_gmodel loads and compiles the quantized Keras
model. The methods print_model_sparsity and print_qstats print sparsity for the
pruned layers in the model and statistics of the number of operations per operation
type and layer. Meanwhile, quantized_model_debug allows for debugging and
plotting model weights and activations. Finally, extract_model_operations
estimates which operations are required for each layer of the quantized model, for
example xor, mult, adder and so on.

Variance shift handling in QKeras. A critical aspect when training quantized
versions of tensors and trainable parameters is the variance shift. During training
with very few bits, the variance may shift a lot from its initialization. With popular
initialization methods, such as glorot_normal, during the initial steps of the
training, all of the output tensors will become zero. Consequently, the network will
not be trained. For example, in a VGG network™, the fully connected layers have
4,096 elements, and any quantized representation with fewer than 6 bits will turn
the output of these layers to 0, as log, (1/(4, 096)) = 6. For layer i and minimum
quantization threshold 4, the weights w; are quantized by quantizer(w,) operation.
When the gradient is computed, the quantized weights will appear as a result of
the chain rule computation, as depicted in Extended Data Fig. 2. With the absolute
values of all weights below 4, the gradient will vanish in all layers that transitively
generate the inputs to layer i. This applies to any large DNN.

QKeras mitigates this challenge by rescaling the initialized weights
appropriately. The parameter alpha is used as a scaling factor. It can be considered
as a way to compute a shared exponent when used in weights™. It can be set
to a given value manually, or overridden by setting it to auto or auto_po2.

With alpha = ‘auto, we compute the scale as Y q(x)x/ Y q(x)q(x) as in ref. ** for
the quantization function g, with a different value for each output channel or
output dimension of tensor x. This provides a learned scaling factor that can be
used during training. With alpha=‘auto_po2’", the scaling factor is set to be a
power-of-2 number.

For the ternary and stochastic_ternary quantizers, we iterate between scale
computation and threshold computation, as presented in ref. °, which searches for
the threshold and scale tolerant to different input distributions. This is especially
important when we need to consider that the threshold shifts depending on
the input distribution, affecting the scale as well, as pointed out by ref. 7. When
computing the scale in these quantizers with alpha = ‘auto, we compute the scale
as a floating-point number. With alpha=‘auto_po2’, we enforce the scale to be a
power of 2, meaning that an actual hardware or software implementation can be
performed by just shifting the result of the convolution or dense layer to the right
or left by checking the sign of the scale (positive shifts left, negative shifts right),
and taking the log, of the scale. This behaviour is compatible with shared exponent
approaches, as it performs a shift adjustment to the channel.

Data availability
The data used in this study are openly available at Zenodo™® from https://doi.
org/10.5281/zen0do.3602260.

Code availability

The QKeras library, which also includes AutoQKeras and QTools, is available
from https://github.com/google/qkeras (the work presented here uses

QKeras version 0.7.4). Examples on how to run the library are available in the
notebook subdirectory. The hls4ml library is available at https://github.com/
fastmachinelearning/hls4ml and all versions >0.2.1 support QKeras models

(the work presented here is based on version 0.2.1). For examples on how to use
QKeras models in hls4ml, the notebook part4_quantization at https://github.com/
fastmachinelearning/hls4ml-tutorial serves as a general introduction.
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Extended Data Fig. 1| Model architecture and quantization. Model architecture for the fully-connected NN architecture under study. The numbers in
brackets are the precisions used for each layer, quoted as (B, /), where B is the precision in bits and I the number of integer bits. When different precision

is used for weights and biases, the quantization is listed as w and b, respectively. These have been obtained using the per-layer, per-parameter type
automatic quantization procedure described in Section VI.
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Extended Data Fig. 2 | Variance shift. Variance shift and the effect of initialization in gradient descent.
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ARTICLE INFO ABSTRACT

Article history: We present OpenMP versions of C and Fortran programs for solving the Gross-Pitaevskii equation for
Received 13 September 2018 a rotating trapped Bose-Einstein condensate (BEC) in two (2D) and three (3D) spatial dimensions. The
Received in revised form 14 February 2019 programs can be used to generate vortex lattices and study dynamics of rotating BECs. We use the split-

Accepted 8 March 2019

Available online 18 March 2019 step Crank-Nicolson algorithm for imaginary- and real-time propagation to calculate stationary states

and BEC dynamics, respectively. The simulation input parameters for the C programs are provided

Keywords: via input files, while for the Fortran programs they are given at the beginning of each program and
Rotating Bose-Einstein condensate therefore their change requires recompilation of the corresponding program. The programs propagate
Gross-Pitaevskii equation the condensate wave function and calculate several relevant physical quantities, such as the energy,
zp;irto-;il;ngrank—Nicolson scheme the chemical potential, and the root-mean-square sizes. The imaginary-time propagation starts with

an analytic wave function with one vortex at the trap center, modulated by a random phase at
OpenMP different space points. Nevertheless, the converged wave function for a rapidly rotating BEC with
Partial differential equation a large number of vortices is most efficiently calculated using the pre-calculated converged wave
Vortex lattice function of a rotating BEC containing a smaller number of vortices as the initial state rather than
using an analytic wave function with one vortex as the initial state. These pre-calculated initial states
exhibit rapid convergence for fast-rotating condensates to states containing multiple vortices with
an appropriate phase structure. This is illustrated here by calculating vortex lattices with up to 61
vortices in 2D and 3D. Outputs of the programs include calculated physical quantities, as well as the
wave function and different density profiles (full density, integrated densities in lower dimensions,
and density cross-sections). The provided real-time propagation programs can be used to study the
dynamics of a rotating BEC using the imaginary-time stationary wave function as the initial state.
We also study the efficiency of parallelization of the present OpenMP C and Fortran programs with
different compilers.

Program summary

Program title: BEC-GP-ROT-OMP, consisting of: (1) BEC-GP-ROT-OMP-C package, containing programs
(i) bec-gp-rot-2d-th and (ii) bec-gp-rot-3d-th; (2) BEC-GP-ROT-OMP-F package, containing programs
(i) bec-gp-rot-2d-th and (ii) bec-gp-rot-3d-th.

Program files doi: http://dx.doi.org/10.17632/cw7tkn22v2.2

Licensing provisions: Apache License 2.0

Programming language: OpenMP C; OpenMP Fortran. The C programs are tested with the GNU, Intel,
PGI, Oracle, and Clang compiler, and the Fortran programs are tested with the GNU, Intel, PGI, and
Oracle compiler.

Nature of problem: The present Open Multi-Processing (OpenMP) C and Fortran programs solve the
time-dependent nonlinear partial differential Gross-Pitaevskii (GP) equation for a trapped rotating
Bose-Einstein condensate in two (2D) and three (3D) spatial dimensions in a fully anisotropic traps.

Fortran programs
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Solution method: We employ the split-step Crank-Nicolson algorithm to discretize the time-dependent
GP equation in space and time. The discretized equation is then solved by imaginary- or real-time
propagation, employing adequately small space and time steps, to yield the solution of stationary and
non-stationary problems, respectively.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Previously published Fortran [1] and C [2] programs, and their
OpenMP extensions [3,4] are now popular tools for solving the
Gross-Pitaevskii (GP) equation and are enjoying widespread use.
These programs have been later extended to the more com-
plex scenario of dipolar atoms [5]. The C programs have been
adapted to run even faster on modern multi-core computers
using general-purpose graphic processing units with Nvidia CUDA
and computer clusters using Message Passing Interface (MPI) [6].
In this paper, we present new OpenMP C and Fortran programs
to solve the GP equation for a rotating trapped Bose-Einstein
condensate (BEC) and to generate a vortex lattice, based on our
earlier work [3,4]. This is a problem of general interest for both
theoreticians [7,8] and experimentalists [9].

The GP equation for a rotating trapped BEC can be conve-
niently solved by the imaginary- [10-12] and real-time evolu-
tion [13] methods. The solution algorithms rely on transforming
the GP equation to the rotating frame, where the rotating BEC
with vortices becomes a stationary state [7] and the standard
imaginary-time approach can be applied [10]. In the real-time
approach [13], a dissipation has to be included in the GP equa-
tion to generate the vortices. The imaginary-time approach [10]
does not require any dissipation, is simpler to implement and is
found to converge faster and lead to accurate results. Here we
provide combined imaginary- and real-time programs in two (2D)
and three (3D) spatial dimensions without any dissipation [10].
The present imaginary-time program already involves complex
variables and is hence combined together with the real-time
program. The choice of the type of propagation is made through
an input parameter. The imaginary-time approach should be used
to solve the GP equation for the rotating BEC and to generate
the stationary vortex lattice. A subsequent study of the non-
stationary dynamics of the rotating BEC should be done using the
real-time propagation. Here we provide C and Fortran programs
for the solution of the GP equation for a rotating BEC in a fully
anisotropic 3D trap by imaginary- and real-time propagation. We
also present C and Fortran programs for the reduced GP equation
in 2D, appropriate for a disk-shaped BEC under a tight axial
(z-direction) trapping. We use the split-step Crank-Nicolson
scheme for solving the GP equation, as in Refs. [1,2].

The imaginary-time algorithm employs a time iteration loop
of an initial state until the convergence is reached [1]. The usual
initial states are analytic wave functions, generally with one
vortex at the center of the trap. However, such an analytic initial
function may exhibit slow convergence and often may lead to
an inappropriate final vortex lattice structure. We will use an
analytic initial function modulated by a random phase at different
space points and show that this procedure is essential in address-
ing the convergence issues, as well as in obtaining the correct
vortex lattice structure for a given set of system parameters.
Moreover, the GP equation of a rapidly rotating BEC with a very
large number of vortices, viz. Figs. 2(c) and (d) with 37 and 61
vortices, faces a convergence difficulty even after random phase
modulation. In this latter case, when a pre-calculated converged
wave function of the rotating BEC with a smaller number of vor-
tices is used as the initial state, the convergence of the algorithm

is vastly improved, resulting in the reduction of more than 90%
in execution time.

In Section 2 we present the GP equation for a rotating BEC
in an anisotropic trap. We present the mean-field model and
a general scheme for its numerical solution. The reduced 2D
GP equation appropriate for a disk-shaped rotating BEC is also
presented there. The details about the computer programs, and
their input/output files, etc. are given in Section 3. The numerical
method and results are given in Section 4, where we illustrate
the generation of vortex lattices by employing the imaginary-time
propagation in rapidly rotating trapped BECs with different an-
gular frequencies and interaction strengths (nonlinearities). The
stability of these vortex lattices is demonstrated in real-time
propagation using the corresponding converged solution obtained
by the imaginary-time propagation as initial states. The effi-
ciency of parallelization of the present OpenMP programs in
multi-core computers using the GNU and Intel compilers is also
demonstrated there. Finally, a brief summary is given in Section 5.

2. The Gross-Pitaevskii equation for a rotating condensate

A non-rotating BEC made up of N atoms, each of mass m, can
be described by the following mean-field GP equation for a wave
function ¢(r, t) at the space point r at time t [8]

dg(r, t n? 1
in ¢§)t ) _ [—vaf + Ema)z(yzx2 +v%y? +24%2%)
4mh*aN . J—
7|¢(l‘, t)|2] ¢(rvt)a 1= _15 (1)

where r = (p,z) = (x,y,z), a is the atomic s-wave scattering
length, and w is the reference trapping frequency, with y, v, A
representing the trap anisotropies along the x,y,z directions,
respectively. The normalization condition is j drjg(r, t)> = 1.
This equation can be derived from the energy functional [8]
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The formation of a vortex lattice in a rapidly rotating BEC
can be conveniently calculated in the rotating frame, where the
generated vortex lattice forms a stationary state, which can be
obtained by the imaginary-time propagation method. Such a dy-
namical equation in the rotating frame can be written if we note
that the Hamiltonian in the rotating frame is given by H =
Hy — 2L, [14], where H, is the laboratory frame Hamiltonian,
£2 is the angular frequency of rotation around the z axis, and
L, = ih(yd/ox — xd/dy) is the z component of the angular
momentum. Consequently, the GP equation in the rotating frame
has the explicit form [8,10,11,13,15,16]

. 09(r, t) h? 1
ih 9t = I:_zrn 3_;{_ 5rnwz(yZXZ_,r_vzyz +)\222)
4mh*aN
+ T|¢(l‘, ) — 9in| o(r, t). (3)
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Using the transformations r' = r/l, | = /h/(mw),d = a/l,
t' = wt, ¢ =172¢, 2' = 2/w, and L, = L,/h, we obtain the
following convenient dimensionless form of the above equation:

L 0g(r, t) 1o 1, 55 55 .2
i =|—-=V —(y“x Az
ot oV T 2()/ +vy  + )
+ gaplo(r, 0)* — 2L, | $(r, t), gsp = 47 Na, (4)

where we have dropped the primes from the transformed dimen-
sionless variables. We note that Eq. (4) can also be derived from
the dimensionless energy functional [8]

E[¢] = f dr Dwﬁ + %(yzxz +v2y? 4+ 222%) |

1
+ 5g30|¢>|4 —¢*9Lz¢] (5)

obtained using the same transformations and expressing the en-
ergy in units of hw. All derivations and results presented in the
following are using these dimensionless variables.

A convenient equation for a quasi-2D disk-shaped BEC under
a strong harmonic confinement in the z direction (A > y, v) can
be derived using the following ansatz for the wave function [17]:

1 z2 1
o(r, t) = ¥(p, t) x W exp <_2d§> , 4= \/;, (6)

where we assume that because of the strong confinement the
dynamics in the z direction will be frozen to a time-independent
Gaussian of width d,, and that the relevant dynamics will evolve
only in the x-y plane. If we substitute the ansatz (6) to Eq. (4),
we can integrate out the z variable and obtain the corresponding
dynamical equation in 2D, valid for a quasi-2D rotating BEC in a
disk-shaped trap [1,17]:

0y (p, t) 1, , 1 5, 2.2 2
- ===V — ,t
1 Y 3 Ve + 2(1/ x“+v7y°)+ gpl¥(p, t)l
4maN+/A
— QL]v¥(p,t), gp= ﬁ, (7)

with the normalization condition f dp|y(p, t)]* = 1. The energy
functional corresponding to Eq. (7) is

1 1
Ely] = /dp [zw,,w2 + 5(y2x2 + 022y |?

1
+ §g20|1ﬁ|4 - w*mzw]. (8)

We use the split-step Crank-Nicolson algorithm for the so-
lution of the GP equations (4) and (7). This approach has been
elaborated in detail in Ref. [1]. In the following we describe the
necessary modifications for the 2D equation (7). We follow the
identical prescription in 3D. Noting that L, = ii(yd/dx — xd/dy),
we split the Hamiltonian into three parts:

H = Hi + H, + Hs, (9)

Hy = S0 4 v9) + gl P, (10)

Hy = -0 gyl (1)
2 9x? ax’

Hy = -2 Liox (12)
2 dy? ay

In this approach we perform the time propagation over infinites-
imally small time step first over only the part Hy, and then over
the part H,, and finally over the part H3 of the Hamiltonian.
Essentially, we split Eq. (7) into

oy oy Oy

i— = HY, i— =Hyy, i— = Hsy, 13
iy 1V i 2 e £V (13)

and perform the time propagation over these three sub-equations
successively and independently of each other, in the given order.

We first solve the first of Eqs. (13) starting from an initial state
v(p, tp) at t = ty to obtain the first intermediate solution after
an infinitesimal time step A. Then this intermediate solution is
used as an initial value to solve the second of Egs. (13), yielding
the second intermediate solution at the time t = ty + A, which is
then used to propagate the third of Egs. (13) over the infinitesimal
time A to yield the final solution at t = ty+ A, after one full time
iteration of Eq. (7). This procedure is repeated n times to get the
final solution at time tgn, = to + nA.

The first equation of (13) with H; has the analytic solution [1],
which we denote by y*+1/3 when propagating between the time
steps k and k + 1. Similarly, we denote by *+%/3 the wave
function after the time propagation with respect to H,, and finally
by y*+! after additional propagation with respect to Hs, i.e., after
one full time iteration. Following Ref. [1] and using notations
therein, we discretize the second equation of (13) for H, alone
as

k+2/3 k+1/3

.I/fi+/ _1//i+/ 11 k+2/3 _ o k+2/3

T T | T
X

n wlﬁzﬁ) n (wil:r]m _ Zwik+1/3 + 1pik_+]1/3) }

i2y;
(- e) s ()] s
where ¥} = y¥(x;, y;, t) refers to the wave function value at the
spatial grid point determined by x = x; = —Nh,/2 + ih,,y; =
—Nyh,/2 + jhy, i = 0,1,2,...,Ny, and j = 0,1,2,...,N,.
Here hy, h, are the space steps along the x and y directions,
respectively, and t = k + 1/3 or k + 2/3 refers to the time
iteration [1], connecting the present (k + 1/3) to the future (k +
2/3) in propagation with respect to H,.

The above procedure results in a set of tridiagonal equations
(14)in 22, w2, and ;7" at time i3, which are solved
using the proper boundary conditions [1]. The tridiagonal equa-
tions are written explicitly as A” /2> + A0y T2 4 Aty KT =
b;, where

1A /a3 k+1/3 k+1/3
b; = (wijl/ _21/,1‘+/ +1/fi<—+1/)

a
AS2y;
_ Yj (I/Iili—llﬁ_wik:lﬁ) +1/jik+1/3’ (15)
4h,
A°—1+ii R LI
P o BT Tan \n )
ia (1
A =———+iy). 16
i an, (hx + .VJ> (16)

The discretization for Hs is performed similarly. The tridiagonal
set of equations above is very similar to Egs. (34) and (35) of
Ref. [1], and the real-time propagation routine is programmed
and solved in identical fashion after a straightforward modifi-
cation to include the extra terms due to a non-zero value of
£2 in these equations. The imaginary-time propagation routine
corresponds to a transformation t — —it or A — —iA [1] and
hence can be obtained by replacing iA — A in Egs. (15) and
(16) in the real-rime routine, which is performed in our combined
real- and imaginary-time programs by the selection parameter
OPTION_RE_IM.

Instead of evaluating the real energies from Eqgs. (5) and (8) in
3D and 2D involving complex algebra over complex wave func-
tions, it is convenient to write a real expression for the energy.
To calculate the energy and the chemical potential, we write the
two coupled nonlinear equations for the real and imaginary parts
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of the wave function (¢ = vy + i), viz. Egs. (2.1) of Ref. [15].
The equation satisfied by the real part is

OYr(x, y; t) 1o 1 55, 25
RELE AR, PNV Z
i o SV 2()/ X +v7y?)

9 ad
+ Galv(x, y: OF | vr(x, y: t) + 2 (y— — x— ) ¥i(x,y: 1)
ax ay
(17)
In this equation v is not normalized to unity. Using Eq. (17), the
energy and the chemical potential can be expressed in 2D as
1

[ dxdy i}

a 0
+ ag(Vg + VIV + Qe (Voo — x| i |, (18)
0x ay
where the value « = 1 corresponds to the chemical potential
u, and the value « = 1/2 to the energy E per atom. A similar
expression for energy and chemical potential in 3D is

1 1
/ dp [—me 0%+

1 1 1
m / dr I:—Z(Vr¢R)2 + E(szz + szz + )LZZZWI%
0

+ aga(dq + ¢ )br + 2or (y3 - x—) ¢1] : (19)
ax ay

Eqs.(18) and (19) are equivalent to Egs. (5) and (8) and in-
volve algebra of real functions. Hence these equations lead to
far more accurate numerical results than the previous set of
expressions. Specifically, the calculation of the rotational energy
and the kinetic energy term involving derivatives and gradients
of a complex wave function in Egs. (5) and (8) can be numerically
problematic.

The initial wave function in the imaginary-time programs is
taken to be one containing a single vortex at the center, aligned
with the z axis. Explicitly, for the 2D and 3D programs, we take,

respectively
i X2 2
ty exp| — +y +2riR(x,y) |,
wd? 2dy,
Xy

X
VYinitial(X, ) =

1 z?
Ginitial(X, ¥, Z2) = Vinitial(X, J’)W exp <_2d§) , (20)

where d,, and d, are width parameters in the x-y plane and in
the z direction, and R(x,y) is a random number. In numerical
calculation, the random phase ensures that the number of vor-
tices changes by units of one, as parameters, e.g., nonlinearity and
angular frequency, are changed. Without the random phase, the
number of vortices changes by units of two or multiples of two.
In fact, any localized normalizable initial function modulated by a
random phase at different space points, e.g., a Gaussian function
without any vortices, obtained by setting (x +iy) = 1 in Eq. (20),
will lead to the same vortex lattice as the initial function (20) with
one vortex. Without the random phase these functions usually
will lead to different results [16].

3. Details about the programs

All input data (number of atoms, scattering length, harmonic
oscillator trap length, trap anisotropy, etc.) are conveniently
placed at the beginning of each Fortran program, as before [3].
Hence after changing the input data in a Fortran program a
recompilation is required. The C programs use external input
files that contain all parameters, and their adjustment does not
require a recompilation. The source programs are located in the
directory src within the corresponding package directory (BEC—
GP-ROT-0MP-C for the C programs and BEC-GP-ROT-0MP-F for

the Fortran ones). They can be compiled by the make command
using the makefile in the corresponding package root directory.
The examples of produced output files can be found in the
directory output, although some large density files are omitted,
to save space. The programs use an initial state with repeatable
random phase. A different random phase can be generated by
changing the variable SEED in the subroutine Initialize for the
Fortran programs, or in the corresponding input file for the C
programs. The provided Fortran output files are calculated with
SEED = 13 using the one-vortex initial function (20). The change
of the variable SEED implies a different initial function, thus
changing the output files. In the Fortran programs, the random
phase is included by the integer parameter RANDOM: the value 0
excludes the random phase and 1 includes it. The integer parame-
ter FUNCTION permits the selection of a Gaussian or a one-vortex
initial function: the value O selects a Gaussian function and 1
selects the one-vortex function (20). For the C programs, the input
files contain variables providing the same functionality, which
is explained there. After running a program and obtaining the
results, one can use the file fig*.gnu in the directory output
to visualize the density profiles, relying on a popular software
package gnuplot. These files are used by invoking the command
gnuplot fig*.gnu to obtain an eps figure of the generated
vortex lattice. Depending on the density file to be plotted, one has
to adjust the corresponding line in the fig*. gnu file. Currently it
is set to use the density file provided as an example and already
present in the BEC-GP-ROT-0MP distribution.

The output files are conveniently named such that their
contents can be easily identified, following the naming conven-
tion introduced in Ref. [3]. For example, a file named <code>-
out.txt, where <code> is a name of the individual program,
represents the general output file containing input data, time
and space steps, nonlinearity, energy, and chemical potential.
A file named <code>-den2d.txt is the output file with the
reduced (integrated) 2D condensate density. There are output
files for reduced (integrated) 1D densities for different programs.
Typically, a user first solves the stationary problem using the
imaginary-time programs, and then uses the real-time programs
to read the pre-calculated stationary wave function and to study
the dynamics. To read the pre-calculated wave function the pa-
rameter NSTP should be set to zero. In this way one can also run
the imaginary time program with a pre-calculated wave function.
The supplied programs have the pre-defined value NSTP = 1 and
use the analytic wave function (20) as the initial state. In each
program the selection for imaginary- or real-time propagation
is done by setting the parameter OPTION_RE_IM to 1 or 2,
respectively. If the imaginary-time propagation is thus selected,
the programs run either by using an initial analytic input function
(if NSTP is not set to zero) or by employing a pre-calculated wave
function (if NSTP is set to zero). The real-time propagation can
successfully work only with a meaningful initial wave function,
usually assuming that NSTP = O is set, and that the program
will read a pre-calculated wave function by the earlier performed
imaginary-time propagation. The reader is advised to consult
our previous publication where a complete description of the
output files is given [4]. The calculation is essentially done in the
NPAS time loop, which are in the Fortran programs conveniently
divided into 10 equal intervals (NPAS/10). The output files for
the reduced 2D densities at the end of each of these intervals are
saved as files <code>*-den-j.txt, where j=1,...,10. If neces-
sary, one can further customize this by changing and recompiling
the Fortran programs. In the C programs the selection of output
files is done through the input file, when one can set the desired
frequency of saving the output densities, as well as the types
of density profiles to be saved. A README.md file, included in
the corresponding root directory for C and Fortran, explains the
procedure to compile and run the programs in more detail.



78 R. Kishor Kumar, V. Loncar, P. Muruganandam et al. / Computer Physics Communications 240 (2019) 74-82

The supplied 2D programs are preset to run the imaginary-
time propagation using the space steps DX=DY =0.05, numbers
of space points NX=NY=256, g,p = 100,22 = 0.8, the trap
parameters y = v = 1. The 3D programs use DX=DY =0.05,
DZ=0.025, NX=NY=256, NZ=32, y = v = 1,1 = 100,gp =
100, g3p = gap~/27 /X = 25.0662827. The large trap parameter A
ensures a disk-shaped BEC, which enables a comparison of the 3D
results for the integrated density over the z coordinate with the
2D density profile. This also reduces a transversal instability of the
3D vortex lines. The time steps used are A = 0.00025 (imaginary
time) and 0.0001 (real time), numbers of time iterations are
NPAS=3,000,000 and NSTP=1 (imaginary time) and NSTP=0 (to
run real- or imaginary-time propagation with a pre-calculated
wave function as an input). To achieve the convergence in some
cases (large nonlinearity gp, g3p and £2), one may need to in-
crease the values of NX, NY, NPAS, and reduce the space and time
steps DX, DY, DZ and DT accordingly. Note that the actual spatial
grid used contains (NX+1)x(NY+1) or (NX+1)x(NY+1)x(NZ+1)
points, since in each dimension the grid index takes the values
from 0 to NX, etc. Therefore, the produced output files also
contain the data for such grid sizes.

The function (20) always leads to a converged solution after
a large number of time iterations in imaginary-time propagation.
A Gaussian wave function given as an input in imaginary-time
propagation would sometimes face a convergence difficulty and
should not be used. Therefore the programs by default use a
better initial state, containing one vortex at the center. Once a
stationary vortex lattice is obtained for a specific nonlinearity and
angular frequency by imaginary-time propagation, the final wave
function so obtained should be used as the initial state for the
generation of vortex lattices by imaginary-time propagation with
larger nonlinearities and/or angular frequencies. For example,
to generate closed hexagonal vortex lattices of 19, 37, and 61
vortices in the panels (b), (c) and (d) of Figs. 2 and 5 in the
next section, respectively, we have used the previously calculated
initial states of 7, 19, and 37 vortices in the corresponding panels
(a), (b), and (c), respectively. Such a choice of dynamically gen-
erated multi-vortex initial state with a proper phase distribution
enhances the convergence of the numerical scheme enormously
compared to the propagation starting from a single-vortex initial
state. The reduction in the execution time for the calculation done
in this fashion could be as much as 99%. The size of the conden-
sate increases as the nonlinearity and/or the angular frequency §2
are increased. To accommodate a larger condensate, the number
of space points NX, NY, etc. should be appropriately increased.
To read a pre-calculated wave function by setting NSTP to zero,
the grid size in the used wave function file should match exactly
the number of points used in the current program. The supplied
programs assume equal numbers of space step points in both
imaginary- and real-time propagation, and in C programs this
is configurable through the input files. If the grid sizes in the
two calculations are different, the user can customize the pro-
grams to accommodate this. For instance, in Fortran programs the
READ statement in the subroutine INITIALIZE should be changed,
for instance, from I=0,NX to I= NX2-NXOLD2,NX2+NX0LD2, 1,
where NXOLD2 is the NX2 value of the previous calculation with
a smaller number of grid points.

4. Numerical results

To test the programs and to demonstrate their usage, we
have generated vortex-lattice structures using the imaginary-
time programs and then ran the real-time programs starting
from the previously obtained imaginary-time wave functions as
inputs. First, we numerically calculate the critical angular fre-
quency £2, for the generation of a single vortex, using the initial

0.4 n n n

02 T T T
100 200 300 400 500

92p

Fig. 1. Critical angular frequency §2. for the generation of a single vortex using
function (20) with random phase versus nonlinearity gp for a rotating BEC in
2D. For £2 < £2, no vortex is generated.

function (20), for a rotating BEC in 2D for different nonlinearities
gop. Without the random phase in the initial wave function this
threshold cannot be calculated, as, then, a single vortex continues
to exist for £2 < £2.. The result is displayed in Fig. 1. The displayed
result is the average over several runs.

We next numerically study the 2D vortex lattice in a rotating
BEC using the imaginary-time propagation. The imaginary-time
propagation with the supplied 2D program bec-gp-rot-2d-th uses
the wave function (20) as the initial state and the parameters
gp = 100 and 2 = 0.8. The generated vortex lattice with
seven vortices arranged in a triangular lattice in the shape of
a closed hexagon is exhibited in Fig. 2(a) through the contour
density plot. In Fig. 2(b) we illustrate the 2D vortex lattice with
19 vortices arranged in a triangular lattice in the shape of a closed
hexagonal form obtained with parameters g,p = 100, £2 = 0.95.
To illustrate the convergence of the imaginary-time propagation
we show in Figs. 3(a)-(d) the 2D density profiles at different
times, using the analytic wave function (20) as the initial state
and employing the parameters g,p = 100, £2 = 0.95, the same
as in Fig. 2(b). This scheme shows a slow convergence and the
vortex lattice structure practically remains the same from the
panel 3(a) for 2 x 10> time steps to the panel 3(c) for 8 x 10°
time steps with 19 vortices, before converging to the desired
solution in the panel 3(d) after 12 x 10° time steps, containing
19 vortices. The convergence can be highly enhanced if we use
the final converged state with a smaller number of vortices as
the initial state of a calculation where a larger number of vortices
is expected, either because the parameters g,p or §2 or both are
larger. In Fig. 3(e)-(h) we demonstrate this and show the vortex
lattice evolution of the rotating BEC for the same parameters
gp = 100, 2 = 0.95 as in the panels 3(a)-(d), but starting
from the initial state with seven vortices, obtained in Fig. 2(a)
for g;p = 100, £2 = 0.8. In Fig. 3 we see that the convergence
in this case is achieved much faster. In practical terms, in panels
3(c) after 20,000 time steps or 3(d) after 30,000 time steps of the
imaginary-time propagation the convergence is already reached.
The reduction in execution time in the later scheme resulting in
Figs. 3(e)-(h) compared to the former resulting in Figs. 3(a)-(d)
could be very large, viz. 12 x 10° time iterations and 30,000 time
iterations in the two schemes.

In Figs. 2(b)-(d) we illustrate 2D vortex lattices with 19, 37,
and 61 vortices, respectively, arranged in triangular lattices in
the shape of a closed hexagonal form obtained with parameters
&p = 100, 2 = 0.95 in 2(b), gp = 500, 2 = 0.92 in 2(c),
and gop = 500, 2 = 0.978 in 2(d). As already suggested above,
the vortex lattices of Figs. 2(b), (c), and (d) were obtained using
the final wave functions of Fig. 2(a), (b), and (c), respectively, as
the initial states, to speed up the convergence. We demonstrate
the stability of the obtained vortex lattices using the real-time
propagation for 500 time units in Figs. 2(e)-(h).
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Fig. 2. Contour plots of the density |y(x, y)|*> for the generated vortex lattices by the 2D imaginary-time propagation of Eq. (7) for (a) gup = 100, 2 = 0.8, (b)
gp = 100, 2 = 0.95, (c) gop = 500, £2 = 0.92, and (d) gop = 500, £2 = 0.978. Panels (e), (f), (g), and (h) display these vortex lattices, respectively, after the
additional real-time propagation for 500 units of time using the corresponding imaginary-time wave function as input. The employed trap parameters are v =y = 1,
the space steps are DX=DY=0.05, and the time steps are 0.00025 in imaginary time and 0.0001 in real time. The size of the condensate increases as §2 increases
from (a) to (b) and from (c) to (d), and as gyp increases from (b) to (c). The space grids used are (a) 257 x 257, (b) 321 x 321, (c) 401 x 401, and (d) 441 x 441.
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Fig. 3. The convergence of calculation from snapshots at different time steps during the imaginary-time propagation of the 2D equation (7) to generate a vortex
lattice for parameters g,p = 100, £2 = 0.95. Numerical simulation used the initial state (20), and the panels correspond to (a) 2 x 10%, (b) 4 x 10°, (c) 8 x 10°, and
(d) 12 x 10° time steps. For the same parameters, a much faster convergence is obtained in a simulation using as the initial function the converged wave function
from Fig. 2(a), obtained for g,p = 100, £2 = 0.8. The panels correspond to (e) 5000, (f) 10,000, (g) 20,000, and (h) 30,000 time steps. The employed time step is
0.00025, the space steps DX=DY=0.05, and the grid size used is 321 x 321 in all panels.

In Figs. 4 we show the increase of the number of vortices
with the increase of the angular frequency £2 for a fixed g,p =
100 as obtained with the one-vortex initial function and the
Gaussian initial function, both modulated by a random phase at
different space points. The number of vortices and their orien-
tation in space are identical with both functions, although the
energy varies a little from one initial function to another. If the
random-phase modulation is removed, these two functions lead
to different number of vortices, whereas with the random-phase
modulation these functions usually lead to the same number of
vortices, viz. Fig. 4.

In Figs. 5 we present the z-integrated reduced 2D density
f dz |¢(x, y, z)|?, calculated from the 3D imaginary-time runs,
with 7, 19, 37, and 61 vortices for the parameters: (a) gop = 100,
2 = 0.8, (b) gop = 100, £2 = 0.95, (c) gop = 500, 2 = 0.92,
and (d) gop = 500, £2 = 0.978. The vortex lattices of Figs. 5(b)-
(d) were generated, as before, by the imaginary-time propagation
of Eq. (4) until the convergence using the final wave function
of Figs. 5(a)-(c) as the initial states, respectively. Figs. 5(e)-(h)

illustrate the same reduced densities obtained from the 3D real-
time runs after 100 time units using as inputs the final converged
imaginary-time wave function of Figs. 5(a)-(d), respectively. The
agreement between the imaginary- and the real-time densities
demonstrates the stability of the vortex-lattice structures and the
employed algorithm. The 2D densities of Figs. 5 are quite similar
to those in Fig. 2 with the same 2D nonlinearity and the same
angular frequency. To the best of our knowledge, such a clean
61-vortex lattice, viz. Fig. 5(d), is obtained for the first time here
in the simulation of the 3D GP equation (4).

In Table 1 we show the energy and the chemical potential of
the BECs of Figs. 2(a) and 5(a) calculated starting from the analytic
function (20) as the initial state. We also give the energy and
the chemical potential of the BECs of Figs. 2(b)-(d) and 5(b)-(d),
calculated with the converged wave functions of Figs. 2(a)-(c) and
5(a)-(c), respectively, as the initial states. The 2D energy values
E = 3.190 and 2.209 shown in Table 1 for g,p = 100 and £2 = 0.8
and 0.95, respectively, are in good agreement with the energies
E = 3.1904 and 2.2106 reported in Fig. 6 of Ref. [ 15]. The authors
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Fig. 4. Contour plots of the density | (x,y)|> for the generated vortex lattices by the 2D imaginary-time propagation of Eq. (7) for g,p = 100, and (a) £2 = 0.65,
(b) £2 =0.74, (c) £2 = 0.76, and (d) §2 = 0.78 obtained with the one-vortex initial state (20). Panels (e), (f), (g), and (h) display these vortex lattices, respectively,
obtained with the Gaussian initial state. The employed trap parameters are v = y = 1, the space steps are DX=DY=0.05, the time step is 0.00025 and the space grid

is 257 x 257.
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Fig. 5. Contour plots of the density profiles for the generated vortex lattices by the 3D imaginary-time propagation of Eq. (4) for (a) gop = 100, g3p = gap/27 /A =
25.0662827, 2 = 0.8, (b) gop = 100, g3p = 25.0662827, 2 = 0.95, (c) gop = 500, g3p = 125.33141, £2 = 0.92, and (d) gop = 500, g3p = 125.33141, £2 = 0.978. Panels
(e), (f), (g), and (h) display these vortex lattices, respectively, after the additional real-time propagation for 100 units of time using the corresponding imaginary-time
wave function as input. The employed trap parameters are v = y = 1, A = 100, the space steps are DX=DY=0.05, DZ=0.025, and the time steps are 0.00025 in
imaginary time and 0.0001 in real time. The space grids used are (a) 257 x 257 x 33, (b) 321 x 321 x 33, (c) 401 x 401 x 33, and (d) 451 x 451 x 33.

Table 1

Energy E and chemical potential u for the rotating BECs in 2D and 3D shown in
Figs. 2 and 5, respectively. For parameters g,p = 100, §2 = 0.8 the calculation is
performed with the initial state (20). For the BECs from panels (b), (c), and (d)
in Figs. 2 and 5 the calculation is performed with the converged wave functions
of the corresponding panels (a), (b), and (c) as the initial states.

gp = 100 &p = 100 &p = 500 &p = 500
2 =038 2 =0.95 2 =0.92 2 =0.978
n (2D) 4.351 2.871 6.257 4,198
E (2D) 3.190 2.209 4.424 2.951
1 (3D) 5432 5285 56.20 5417
E (3D) 53.17 52.19 54.40 52.94

of Ref. [16] also calculated the 2D energy and the chemical poten-
tial and we verified using the same parameters that the present
energies and chemical potentials are in qualitative agreement
with their calculations.

We have tested the performance and scalability of our pro-
grams on a modern 8-core Intel Xeon E5-2670 CPUs with 32 GB of
RAM. The nodes used for testing contain two CPUs, which allowed
us to study the performance of our programs on up to 16 CPU

cores. The testing was done at the PARADOX supercomputing
facility of the Institute of Physics Belgrade.

For both the C and the Fortran programs the execution time
in the beginning reduces rapidly as the number of threads (used
CPU cores) is increased. But eventually the gain in the execution
time saturates. This is illustrated in Fig. 6, where we plot the
execution time versus the number of threads for both the C and
the Fortran programs using GNU 7.2.0 and Intel 17.0.4 compilers,
respectively. For both compilers, for a large number of threads
the C programs are faster. For a small number of threads (four or
less), the Fortran programs compiled with the GNU compiler are
faster, whereas for the Intel compiler all programs have similar
performance, with the C programs being slightly faster.

For a quantitative estimate of the performance we now study
the speedup and the efficiency of the programs using different
compilers for a calculation: GNU GCC 7.2.0, Intel C 17.0.4, GNU
Fortran 7.2.0, and Intel Fortran 17.0.4. The speedup is defined as
the ratio T(1)/T(n) where T(n) is the execution time of a run with
n threads. The efficiency is the ratio T(1)/[nT(n)], indicating how
many of the threads the computer is effectively utilizing. These
are illustrated in Fig. 7 for GNU GCC, Intel GCC, GNU Fortran,



)

wn)

m

=7

—
(%3
(=

—_
(=3
(=]

(%)
(=3
=3

250

S>3
(=3
=3

R. Kishor Kumar, V. Loncar, P. Muruganandam et al. / Computer Physics Communications 240 (2019) 74-82

execution time
i
(=}

(=]

(@)

T T T T
i - GNUGCC720 |
—&— GNU Fortran 7.2.0 |
1 | 1 I |
0 4 6 8 10 12 14 16
number of threads

81

175 T T T T T T
@ 150+ —-©— Intel C17.0.4 B
£ —@— Intel Fortran 17.0.4
o 125F
g 100
§ 75F
=
2 sof
%
K o5t

O | 1 1 | 1 I |
0 2 4 6 8 10 12 14 16

(b) number of threads

Fig. 6. Wall-clock execution times of BEC-GP-ROT-OMP programs for imaginary-time propagation in 3D (bec-gp-rot-3d-th), compiled with (a) GNU compiler and (b)
Intel compiler, as functions of the number of OpenMP threads. The execution times given here are for one iteration, calculated as averages using runs with 1000
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Fig. 7. Speedup in the execution time and scaling efficiency of BEC-GP-ROT-OMP programs for imaginary-time propagation in 3D (bec-gp-rot-3d-th), compared to
single-threaded runs for (a) C program compiled with the GNU compiler, (b) C program compiled with the Intel compiler, (c) Fortran program compiled with the
GNU compiler, and (d) Fortran program compiled with the Intel compiler. The speedup is calculated as a ratio of the wall-clock execution times T(1)/T(n) for a
single-threaded run and a run with n threads, and the scaling efficiency is calculated as a fraction of the obtained speedup compared to a theoretical maximum n.

Grid size used for testing is 257 x 257 x 33.

and Intel Fortran compilers, respectively. For a large number of
threads, the C programs, viz. plots 7(a)-(b), are more scalable,
with large speedup and efficiency compared to the Fortran pro-
grams, viz. plots 7(c)-(d). The programs in both programming
languages are quite efficient and optimized, but a user should use
the specific program and compiler with which he/she has more
experience and feels more comfortable.

5. Summary and conclusions

We have presented the efficient OpenMP C and Fortran pro-
grams for solving the GP equation for a rotating BEC and use them
to calculate the vortex lattices of a rotating BEC by solving the GP
equation in the rotating frame. We provide two sets of programs
— one for a 3D BEC and the other for a quasi-2D BEC. Each of
these programs is capable of executing both the imaginary- and
the real-time propagation. We use the split-step Crank-Nicolson
algorithm and the programs are based on our earlier OpenMP C
and Fortran programs of Ref. [4] for a non-rotating BEC. We solve
the GP equation by the imaginary-time propagation with the
analytic wave function (20) as the initial state to generate a vortex
lattice with a small number of vortices. To solve the GP equation

with a large number of vortices it is much more efficient to use a
converged wave function with a smaller number of vortices as the
initial state, rather than the analytic function (20). However, the
solution can be obtained with any initial state. Nevertheless, the
convergence with one initial state could be much faster than with
another initial state. For example, to solve the 2D GP equation (7)
with parameters g,p = 100 and 2 = 0.95 by the imaginary-time
propagation using the initial function (20) and obtain the vortex
lattice with 19 vortices, one needs 12 x 10° time iterations, viz.
Fig. 3. For the same calculation using the pre-calculated vortex
lattice with 7 vortices it is sufficient to use only 30,000 time
iterations. Although both the C and the Fortran programs produce
equivalent results, on a multi-core computer with more than 8
cores, the C programs compiled with both the GCC and the Intel
compiler yield a more efficient and faster performance.

The localized normalizable initial function (20) has a random
phase at each grid point (x,y) which is necessary to obtain a
converged vortex lattice with any number of vortices — even or
odd - independent of the initial function. If the random phase is
removed from the initial function, the one-vortex initial function
(20) leads to a vortex lattice with an odd number of vortices and
a Gaussian initial function leads to a vortex lattice with an even
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number of vortices. Any localized normalizable initial function
with random phase as in Eq. (20), e.g., a Gaussian function or a
function with one vortex, usually leads to the same vortex lat-
tice. Without the random phase these functions lead to different
vortex lattices.
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Abstract

We present the implementation of binary and ternary neural networks in the hl1s4m1 library,
designed to automatically convert deep neural network models to digital circuits with
field-programmable gate arrays (FPGA) firmware. Starting from benchmark models trained with
floating point precision, we investigate different strategies to reduce the network’s resource
consumption by reducing the numerical precision of the network parameters to binary or ternary.
We discuss the trade-off between model accuracy and resource consumption. In addition, we show
how to balance between latency and accuracy by retaining full precision on a selected subset of
network components. As an example, we consider two multiclass classification tasks: handwritten
digit recognition with the MNIST data set and jet identification with simulated proton-proton
collisions at the CERN Large Hadron Collider. The binary and ternary implementation has similar
performance to the higher precision implementation while using drastically fewer FPGA resources.

1. Introduction

Field-programmable gate arrays (FPGAs) are an efficient and flexible processing solution to perform low
latency and high bandwidth inference of deep neural networks (DNNs). Their design is extremely functional
to parallelize the mathematical operations typical of DNN inference tasks, namely matrix multiplication and
activation function application. FPGAs can be reprogrammed, which offers advantages in terms of flexibility
with respect to application-specific integrated circuits (ASICs). At the same time, they share some of the
advantages offered by ASICs, such as low power consumption and speed.

Typically, FPGAs are used to emulate generic digital circuits as a preliminary step toward the design of
custom ASICs or as an alternative to them. For instance, hundreds of FPGAs are used as custom electronic
logic to process in real time the proton-proton collisions at the CERN Large Hadron Collider (LHC). With
beams colliding every 25 ns and thanks to a built-in buffering system, a typical LHC experiment has O(1) us
to decide whether to keep or discard a given event. This real-time decision-taking system, referred to as the
level-1 (L1) trigger, consists of a set of digital circuits implementing physics-motivated rule-based selection
algorithms. Currently, these algorithms are deployed on FPGAs, mounted on custom electronics boards.

The severe L1 latency constraint prevents the LHC experimental collaborations from deploying complex
rule-based algorithms on the L1 FPGA boards. Machine learning (ML) solutions, and in particular DNNs,
are currently being investigated as fast-to-execute and parallelisable approximations of rule-based
algorithms. For instance, the CMS collaboration has deployed boosted decision trees (BDTs) in the L1 trigger
electronic logic [1]. Following this approach, one could train a DNN to process a given input (e.g. energy

© 2020 The Author(s). Published by IOP Publishing Ltd
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deposits in a calorimeter) and return the output of an event reconstruction algorithm (e.g. to regress the
energy of the incoming particle that caused these energy deposits or to identify its nature). Because the
complexity of LHC collision events is going to increase after the upcoming high-luminosity upgrade, we
expect this approach to become more prevalent.

In order to facilitate the deployment of DNNs in the L1 trigger systems of high energy physics (HEP)
experiments, we developed a software library, h1s4ml, to convert a DNN model into FPGA firmware
through an automatic workflow [2]. In HEP, the deployment of deep learning (DL) models on FPGAs has
been discussed in the context of the online data-selection system of the LHC experiments. Alternative
solutions based on VHDL [3] have been explored. Similar studies and comparable results have been shown
in reference [4].

The hls4ml design is characterized by two aspects: (i) a reliance on high-level synthesis (HLS) backends,
in order to fully automate the workflow from a trained model to FPGA firmware; (ii) a target of
fully-on-chip logic, which enables the latency to be within typical values of O(1) us. Our ultimate goal is to
support the most popular DNN model ingredients (layers, activation functions, etc) and an interface to the
most popular DL training libraries, directly (e.g. for TensorFlow [5], Keras [6], and PyTorch [7]) or
through the ONNX [8] interface. The library is under development and many of these ingredients are already
supported. While h1s4ml was initially conceived for LHC applications, its potential use cases go well beyond
HEDP. In general, h1s4ml provides a user-friendly interface to deploy custom DNN models on FPGAs, used as
co-processing accelerators or as digital circuits in resource-constrained, low-latency computing
environments.

In addition, the h1s4ml library supports the deployment of BDTs on FPGAs [9]. A BDT trained on
high-level features can often reach similar performances than small fully-connected neural networks. On the
other hand, neural networks offer the possibility to directly process the raw data, saving time and resources
that would be otherwise spent to compute the input features. Depending on the use case, a developer would
decide which workflow better fits her needs.

The main challenge in deploying a DNN model on an FPGA is the limited computational resources.
Typically, one would reuse resources for the inference operations across multiple clock cycles, at the price of a
larger latency. The reuse factor quantifies how many times a resource is reused and is equal to the initiation
interval (II) for that operation. A complementary approach consists of compressing the model, e.g. by
reducing the number of operations needed in the inference step (pruning) or their cost (e.g. quantizing the
network using a reduced numerical representation). Comprehensive reviews of these techniques can be
found in reference [10, 11]. In a previous publication [2], we showed that pruning [12, 13] and
quantization [12, 14] allow one to execute simple fully-connected DNN models with state-of-the-art
performance on a specific LHC problem within a latency of O(100) ns, while using only a fraction of the
FPGA resources. In this paper, we investigate how a similar result can be obtained with binary and ternary
networks [15-17], following closely the studies presented in references [15, 18, 19]. Network parameters in
binary (ternary) networks assume values +1 or —1 (41, 0, or —1). They can be represented with one bit
(two bits), resulting in a much smaller resource consumption.

In this study, we consider two benchmark problems: MNIST digit classification, which allows a direct
comparison with previous literature [18]; the jet tagging problem used as benchmark in our previous
study [2] as well as by other groups [4]. The jet tagging problem is particularly relevant for applications at the
LHC. Traditional algorithms for jet tagging are too complex to run within L1 latency constraint. Developing
resource-friendly ultrafast solutions for jet tagging would drastically increase the L1 selection quality for
all-jet collision events. One should keep in mind that our LHC jet data set represents a simplification of more
complex realistic conditions. It does not take into account the time and resources one would spend to
compute the input features. In the future, the extension of the hls4ml library to more complex architectures
will allow to consider more realistic use cases, with raw data being directly processes by compressed models.

This paper is structured as follows: section 2 introduces the benchmark problems and data sets. The
implementation of binary and ternary networks in h1s4m1 is described in section 3. Section 4 describes the
different model architectures considered in this study, while their application to the two benchmark
classification problems is discussed in section 5. The summary and outlook are given in section 6.

2. Benchmark models and data sets

We consider two benchmark classification tasks: a digit recognition task with the MNIST data set [20] and
the LHC jet tagging task discussed in reference [2].

The MNIST data set consists of images of hand-written digits. Each image is represented as a 28 x 28
pixel array, storing the gray-scale content of each pixel in the original image. For our purpose, we flatten the
2D array to a 1D array, concatenating each row of the image to the right to the previous one. The derived 1D

2
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Figure 1. Network architecture for the baseline MNIST (top) and LHC jet (bottom) classifiers used as benchmark models in this
study.
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Figure 2. Classification performance evaluated on the testing sample of the baseline MNIST (top) and LHC jet (bottom)
classifiers used as benchmark models in this study: ROC curves (left) and normalized confusion matrices (right). On the left,
numbers in parentheses correspond to the AUC of each class. On the right, the text is omitted for bins corresponding to a false
positive rate below 1%.

array is passed as input to a multilayer perceptron (MLP) [21] with an input (output) layer of 784 (10) nodes
and three hidden layers with 128 nodes each. Rectified linear unit (ReLU) activation functions [22] are used
for the hidden layer nodes, while a softmax activation function is used for the output layer. The MNIST data
set comes divided into training-and-validation samples (with 60,000 images) and a testing samples (with
10,000 images). We use 75% of the training-and-validation data set for training, and the remaining 25% for
validation.

The other benchmark task consists of classifying jets from a set of 16 physics-motivated high-level
features, as described in references [2, 23]. The input data set consists of simulated jets with an energy of
order 1 TeV, originating from light quarks (q), gluons (g), W bosons, Z bosons, or top quarks (¢) produced
in proton-proton collisions at a center-of-mass energy of 13 TeV. Jets are clustered using the anti-kr
algorithm [24], with distance parameter R = 0.8. For each jet, the 16 high level features are computed and
given as input to a multiclass MLP classifier. The data set is available in the Zenodo repository [25]. More
details on the data set can be found in references [2, 23, 26]. The data set consists of approximately 1 million
examples and is split in three parts: 20% for test, 60% for training, and 20% for validation. The network
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Table 1. Classification performance evaluated on the testing sample of the baseline MNIST and LHC jet classifiers used as benchmark
models in this study: AUC and per-class accuracy.

MNIST Jet tagging

Class AUC Accuracy [%] Class AUC Accuracy [%]
0 0.9997 99.7 g 0.939 89
1 0.9995 99.8

2 0.9991 99.6 q 0.904 85
3 0.9993 99.6

4 0.9996 99.6 w 0.946 91
5 0.9994 99.6

6 0.9992 99.6 Z 0.939 92
7 0.9996 99.6

8 0.9994 99.4 t 0.958 93
9 0.9991 99.5

receives as input the 16 high-level features and processes them through a MLP with three hidden layers of 64,
32, and 32 nodes with ReLU activation functions. The output layer consists of five nodes with softmax
activation. The five output values correspond to the probability that a given jet belongs to one of the five jet
classes.

The architectures of the baseline MNIST and LHC jet classifiers are illustrated in figure 1. Both are
implemented and trained with Keras in floating point precision (FPP). Their performance is shown in
figure 2 in terms of receiver operating characteristic (ROC) curves and normalized confusion matrices. The
area under the curve (AUC) of each ROC curve is quoted in the figure, as well as in table 1, where the
corresponding accuracy values are also given. Following convention, we define the model accuracy as the
fraction of correctly labeled examples, also referred to as true positives (TP)

c
> iy TP
= (1
where the sum runs over the number of classes C and N is the total number of examples. The accuracy per
class is calculated taking into account also the true negatives (TN), i.e. the examples not belonging to that

class and that have been predicted in one of the other classes

S2¢ TP; + TN;

N (2)

In practice, the computation of the model or per-class accuracy is done applying an Arg Max function to
the array of scores returned by the network and comparing it to the corresponding target array. The total
accuracy of the MNIST and LHC jet classifiers, computed across all categories, are found to be 98% and 75%,
respectively.

These baseline architectures were chosen in order to provide a reasonable performance while keeping the
resource utilization within a manageable level. The state-of-the-art performance on MNIST reaches higher
accuracy than the models considered here. However, these models are extremely lightweight in terms of their
small number of parameters, and low precision. They are therefore optimized for their small footprint of
resources and latency in the FPGA inference. Similarly, any jet classifier algorithm with accuracy ~ 60 — 70%,
like the one we consider, would be of great benefit for LHC experiments: since the majority of jets produced
at the LHC comes from quarks and gluons, our baseline model would allow one to select > 80% of W, Z, and
t jets while reducing the required bandwidth by a factor ~ 10, saving resources that could be used to extend
the physics program of the experiment in other directions.

We consider these models as examples, which are not intended to represent the best reachable
performance for a given use case. No architecture optimization was attempted, since the focus of this study is
on their implementation on hardware and relative performance drop rather than on absolute performance.

3. Implementing binary and ternary networks in h1s4ml

Binary and ternary networks are extreme examples of quantized neural networks [2]. A network is quantized
when its parameters (operations) are represented (performed) with reduced numerical precision. This
precision could be the same across the full network or specific to each component (e.g. for different layers).
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Figure 3. Activation functions used to define the models described in Section 4: binary tanh (top-left), ternary tanh (top-right),
ReLU (bottom-left) and clipped ReLU (bottom-right).

Table 2. Left: All possible products between A and B with values constrained to £ 1. Right: The corresponding truth-table when the
quantities A and B are each encoded with 1 bit, and the XNOR operation is used for the product.

A B AXB A B ADB

-1 -1 1 0 0 1

—1 1 —1 0 1 0
1 —1 —1 1 0 0
1 1 1 1 1 1

Quantization reduces the computing resources of model inference and its level can be tuned to yield little or
no loss in model performance. In the case of binary (ternary) networks, each weight assumes a value of 41 or
—1(+1, 0, or —1). Two- and three-valued activation functions are used after each layer, acting as discrete
versions of the tanh function. As alternatives, we also investigate a standard ReLU function as well as its
clipped version [27], defined as min(ReLU(x), ¥max ), With ymay being a positive hyperparameter. In our study,
we fiX ¥max = 1. The four functions are shown in figure 3.

In order to convert the models described in Sections 2, we rely on the MLP-related functionalities offered
by the hls4m1 library, discussed at length in reference [2]. In addition to that, we exploit a set of custom
implementations [ 18], specific to binary and ternary networks, that allow one to speed up the execution of
the building-block architecture shown in figure 4. The implementation of these solutions is integrated in
recent versions of the h1s4m1l library, starting with the v0. 1. 6 tag of the GitHub repository [28]. With
respect to the work presented in reference [2], this version provides a special support for large dense layers
containing hundreds of nodes as in the models we consider in this study. This functionality will be described
in more detail in a future publication.

Binary networks use 1-bit representations for both weights and activations. In this case, the product
between two quantities can be optimized as an extremely lightweight operation. By encoding an arithmetical
value of ‘—1’ as ‘0, the product can be expressed as an XNOR operation. As described in table 2, an XNOR
filter returns 0 when the two input values are different and 1 otherwise. For models using ternary weights or
greater than 1 bit for activations, the much larger FPGA logic is always used rather than digital signal
processing (arithmetic) blocks (DSPs), whose number is typically limited.

The binary and ternary tanh activation functions are implemented by testing the sign (in the case of
binary tanh) or sign and magnitude (for ternary tanh) of the input and yielding the corresponding value + 1
or 0 as seen in figure 3. A binary or ternary tanh activation layer preceded by a batch normalization (BN)
layer [29] can be further optimized. The BN layer shifts the output of the dense layers to the range of values
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Figure 4. The MLP architecture used in this study, consisting of a sequence of repeating blocks. Each block, fully connected to the
previous and following one, consists of a dense layer, a BN layer, and an activation layer. The last block does not have an activation
layer.

in which the activation function is non-linear, enhancing the network’s capability of modeling non-linear
responses. The usual BN transformation y for an input x is

X—p
it B, 3)
given the mean y, variance o2, scale 7y, and shift 3 learned during the network training. For a BN followed by
a binary tanh activation, the sign of y is enough to determine a node output value. To avoid calculating the
scaling of x using FPGA DSPs, the four BN parameters are used to compute the value of x at which y flips
sign. This calculation is performed at compilation time, when the model is converted to HLS firmware using
h1ls4ml. Similarly, the two values of x around which the output of the ternary tanh activation changes are
also calculated at compilation time. In the FPGA, each node output is then simply compared against these
precomputed thresholds, outputting the corresponding + 1, or 0. An additional optimization step sets the
type of x in the HLS implementation to integer with a bit width corresponding to the largest integer expected
for each binary/ternary layer, found at compilation time. This procedure further saves FPGA resources.

The binary and ternary layers considered for this work are fully integrated and compatible with the
hls4ml package. While not explored here, the package also supports models mixing binary/ternary layers
with higher precision layers for fully customized networks.

4. Binarization and ternarization strategies

Given a full-precision model, one could follow different strategies to turn it into a binary or ternary model.
One could just replace each full-precision component by the corresponding binary/ternary element, in order
to minimize resource utilization. This might result in a loss of accuracy. As an alternative, one could train a
binary/ternary model with arbitrarily large architecture, in order to match the accuracy obtained at full
precision, at a cost of a larger latency and resource consumption. The ultimate strategy to follow depends on
the use case. In this work, we present a few options, covering these two extremes and intermediate solutions.

In this work, we focus on binary/ternary MLPs. The basic structure for the adopted architectures is
shown in figure 4. Each model consists of a sequence of blocks, each composed of a dense, BN, and activation
layer. For binary and ternary tanh, a BN+ activation layer sequence can be implemented at small resource
cost (see section 3), which makes this choice particularly convenient for fast inference on edge devices.

The binarization/ternarization of a given model can be done in different ways, e.g. preserving the model
architectures or its performance. As a consequence, for each benchmark problem we consider seven models:

e Baseline: the three-layer MLP described in section 2.

e Binarized (BNN): a binary version of the baseline model, built preserving the model architecture (number
of layers and nodes) while applying the following changes: use a binary representation (= 1) for the weights;
replace the inner-layer ReLU activation functions with a binary tanh (see figure 3); introduce BN layers in
between the binary dense layers and the activation functions; remove the softmax activation function in the
output layer.

o Ternarized (TNN): aternary version of the baseline model, built preserving the model architecture (number
of layers and nodes) while applying the following changes: use a ternary representation (—1,0,4-1) for the
weights; replace the inner-layer ReLU activation functions with a ternary tanh (see figure 3); introduce
BN layers in between the ternary dense layers and the activation functions; remove the softmax activation
function in the output layer.
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e Best BNN: same structure as the BNN model, but with more nodes in each layer to improve performance.
We obtain this model with a Bayesian optimization performed using GPyOpt [30], finalized to minimize
the validation loss in the training process.

e Best TNN: same structure as the TNN model, but with the number of nodes per layer chosen through a
Bayesian optimization of the architecture, as for the best BNN model.

e Hybrid BNN: same as the BNN model, but with ReLU or clipped ReLU activation functions rather than the
binary tanh of figure 3.

e Hybrid TNN: same as the TNN model, but with ReLU or clipped ReLU activation functions rather than the
ternary tanh of figure 3.

The baseline model is taken as a benchmark of ideal performance and the other models represent
different strategies toward a more resource-friendly representation. The BNN and TNN models are simple
translations of the baseline model. They are designed to reduce the resource consumption, at the potential
cost of a performance drop. The best models are designed to match (as close as possible) the performance of
the baseline model, which might result in a larger resource consumption with respect to what the BNN and
TNN models achieve. The hybrid models are a compromise between the two approaches. The fixed-precision
conversion is applied only to the weights and biases of the nodes in the dense layers, while ReLU or clipped
ReLU activation functions are used. Given the relatively small resources used by the ReLU/clipped ReLU
activations, the hybrid models allow one to reach performance closer to the baseline model without inflating
the number of nodes and, consequently, numerical operations. The best BNN and TNN models are only
presented for the LHC jet problem, since in that case the simple binarization or ternarization of the baseline
model result in a substantial performance loss. The effect is much milder for the MNIST classification
problem, so that the binary and ternary architectures are not re-optimized for in that case.

Not all of the operations or intermediate outputs of a binary (ternary) are represented in binary (ternary)
precision, e.g. the output of a ReLU activation function in a hybrid model. For this reason, in the following
we discuss bit precision and network quantization even in the context of binary and ternary models.

All models are implemented in Keras [6], with TensorFlow [5] as a backend using the implementation
in [19] for binary and ternary layers, which we also cross-checked with QKeras [31] with similar results. The
network training was performed on an NVIDIA Tesla V100 GPU. During training, binary/ternary precision
is employed during forward propagation, while full precision is used during backward propagation. The
baseline models of section 2 are trained minimizing a categorical cross entropy. The binary and ternary
models are trained minimizing a hinge loss function [32]. While the hinge loss has been found to give the
best performance for binary/ternary networks [15-17], the same choice for the baseline models is arbitrary.
We have verified that the baseline models trained with the hinge loss after replacing the last softmax layer
(figure 1) with a dense plus BN layers yield similar results in terms of both accuracy and resource usage.

5. Experiments

The results presented below are synthesized with the Vivado HLS version 2 018.2 for a Xilinx Virtex
Ultrascale 9+ FPGA with part number xcvu9p-flga2104-2L-e. The clock frequency is fixed at 200 MHz,
which is typical for the LHC L1 triggers. For this configuration we study the FPGA resources used by the
models described in section 4. There are four main resource categories: the on-board FPGA memory
(BRAM), DSPs, and registers and programmable logic (flip-flops, or FFs, and lookup tables, or LUTs). Unless
otherwise specified, the quoted results are derived after the HLS compilation step. The network
implementation is further refined by the logic synthesis. This step transforms the Register Transfer Level
(RTL) design created by the HLS compiler into a gate-level implementation, applying additional
optimizations that result in a more accurate assessment of the resource utilization. We verified that this final
step does not affect the accuracy while it reduces the resource consumption.

All results quoted in this section are taken from the numerical simulation of the synthesized firmware.
This numerical simulation is one of the tools provided by the FPGA vendor and gives bit-identical results to
running on a physical device. On the other hand, running on a physical device is a much more consuming
operation. Given the large number of tests considered in this study, we omitted this last step, mainly for
practical reasons.

5.1. Handwritten digits classification

We first evaluate the performance of the HLS neural network implementation for the models described in
section 4 with different fixed-point precisions by scanning the number of both integer (I) and fractional (F)
bits. In the following, a given choice of fixed-point precision is specified as (T,I), where T = I+ F is the total
number of allocated bits. For each case, the minimum number of bits yielding an accuracy above 90% after
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Table 3. Accuracy and AUC:s of the different MNIST-classification models described in section 4 before and after quantization, for the
fixed point precision settings chosen for this study. Both the numbers of integer (I) and fractional (F) bits are specified, using the
notation (I 4 F,I). For each case, the AUCs are reported as the range spanned by the classes with lowest and highest identification
performance.

Floating point precision Fixed point precision
Model AUC Accuracy [%]  Number of bits AUC Accuracy [%]
Baseline 0.999 1-0.9997 98 (18,8) 0.9919-0.9959 95
BNN 0.986 9-0.997 9 93 (16,8) 0.986 0-0.997 6 93
TNN 0.9921-0.999 2 95 (16,6) 0.991 8-0.999 2 95
Hybrid BNN (ReLU) 0.9953-0.999 0 95 (16,10) 0.9956-0.998 9 95
Hybrid TNN (ReLU) 0.997 0-0.999 3 96 (16,10) 0.997 1-0.999 3 96
Hybrid BNN (clipped ReLU)  0.9827-0.998 3 95 (16, 10> 0.982 8-0.998 3 95
Hybrid TNN (clipped ReLU)  0.9857-0.998 9 96 (16,10) 0.9859-0.998 8 96
Baseline, 1=8, F=10 BNN, I=8, F=8
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Figure 5. Profile of the range of output values of each layer, sampled during inference on the test data set, for the baseline (left)
and BNN (right) MNIST models. For each layer, the box represents the quartiles of the distribution, while the line shows the
median. The lines extending beyond the box show the minimum and maximum values. The gray shaded areas represent the range
covered by the allocated fixed point precision for each layer. In the left plot, these ranges correspond to the precision specified at
compilation ((18,8)). On the right plot, an optimization procedure implemented in h1s4ml for binary and ternary networks
automatically adapts the precision of each layer to match the range covered by the output distribution; as the batch normalization
(BN) layer is merged with the binary tanh in the HLS implementation, its output precision is 1 bit. Dense, BN, and activation
layers are presented in order from the input (top) to the output (bottom).

quantization is considered. We then study the latency and resource utilization in these configurations. Table 3
shows a comparison of the performance obtained for the baseline, binary, and ternary models, in terms of
accuracy and AUCs, before and after quantization.

For binary and ternary models, the h1s4ml library applies a further level of per-layer customization of
the fixed-point representation, to match the numerical precision of each layer separately, as discussed in
section 3. The outcome of this optimization is shown in the right plot of figure 5 for the BNN model, where
the gray areas cover different numerical ranges for different layers, despite the common precision specified at
compilation ({16, 8) in this case). During the optimization, the inputs and the outputs are still represented by
the fixed-point precision specified by the user, while the precision of the other network components is
optimized.

When quantizing a model, one should allocate I and F bits so that the range of values one can cover
overlaps with the range of values returned by the network layers, in order to reduce the impact on accuracy.
This is shown in the left plot of figure 5, where the profile of output values returned by each layer of the
baseline model is compared to the range covered by the allocated fixed-point precision. For each layer, we
consider the distribution of the output values obtained running the network on a test sample. In the figure,
the box represents the quartiles of the distribution, while the line inside the box shows the median. The lines
extending beyond the box show the minimum and maximum values. The gray area represents the numerical
range covered by the allocated precision. Overall, the optimized precision matched the bulk of the output
values at each layer. The only exception is observed for the output layer. In this case, the allocated precision
(gray area in the last row of the left plot in figure 5) does not cover the bulk of values returned by the layer
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Figure 6. Profile of the range of output values of each layer, sampled during inference on the test data set, for the hybrid
BNN+ReLU model quantized to 16-bit precision, when 10 (left) or 6 (right) bits are used for the integer part. For each layer, the
box represents the quartiles of the distribution, while the line shows the median. The lines extending beyond the box show the
minimum and maximum values. The gray shaded areas represent the range covered by the allocated fixed-point precision for each
layer. Dense, batch normalization (BN), and activation layers are presented in order from the input (top) to the output (bottom).

Table 4. Comparison of the resource utilization for the MNIST-classification models described in section 4, together with timing
information. Resources estimated by the HLS compiler (C) and obtained by the logic synthesis (S) are quoted for a chosen initiation
interval (II).

DSPs [%)] FFs [%)] LUTs [%)] BRAMs [%)]
Model II Latency [ns] C S C S C S C S
Baseline 28 315 130 100 18 8 69 54 126 61
BNN 14 200 0 0 5 7 155 18 46 16
TNN 14 190 0 0 6 7 174 22 52 16
Hybrid BNN (ReLU) 14 200 1 0.16 7 9 215 31 52 16
Hybrid TNN (ReLU) 14 200 1 1 7 10 217 35 52 16
Hybrid BNN (clipped ReLU) 14 200 1 2 7 8 215 29 52 16
Hybrid TNN (clipped ReLU) 14 200 1 1 7 9 215 31 52 16

(red box in the figure). This happens whenever a given example is associated to a specific class with a score
close to 1, so that the other values are pushed close to 0 and out of the supported range. In practice, this fact
would not alter the classification outcome in inference. For instance, this would not be a problematic aspect
when operating this algorithm through the Arg Max function, associating a given example to the class with
the largest output.

For the baseline model, the quantization from floating-point precision to (18, 8) results in an accuracy
drop from 98% to 95%. This is almost entirely induced by the softmax activation function applied to the last
layer and it results from the limited precision of the LUT implementing the exp functions in the softmax.
This parameter is hard-coded in the version of hl1s4ml used for this study. One could avoid this accuracy
loss by removing the softmax function at the end of the HLS implementation of the inference, as long as
there is interest only on which class has the biggest score and not on the individual scores. An alternative
option is to further optimize the precision of the LUT implementing the softmax activation function. In this
case, we verified that a (18,8) quantization baseline with (22, 10) precision for the softmax LUT recovers an
accuracy of 97% without affecting the resources. The ability to externally configure the precision of the
softmax LUT will be implemented in future versions of hls4ml.

For the hybrid BNN/TNN models, the same number of bits used for the BNN/TNN cases allows one to
achieve the FPP accuracy, at the condition of allocating more integer (10 instead of 6) and less fractional (6
instead of 10) bits. This behaviour can be understood from figure 6, which shows the range of outputs
returned by each hybrid BNN layer. While for I = 10 the allocated precision spans the full range of outputs
returned by each layer, frequent overflows are observed for the Dense 1, Dense 3 and Dense 4 layers when we
set]=6.

Table 4 provides a comparison of the resource utilization and latency for the configurations presented in
table 3. For each configuration, we quote both the resource utilization estimated by the HLS compiler and
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Figure 7. Comparison of the resource utilization estimated by the HLS compiler and obtained by the logic synthesis versus the
maximum latency achieved by the design for the BNN and baseline MNIST-classification models. The TNN model gives similar
resource utilization as the BNN and is omitted.

those obtained by the logic synthesis. In the table, the II represents the number of clock cycles needed before
the algorithm may accept a new set of inputs. In our study, the II value is fixed by requiring that the resulting
resource utilization is below the maximum allowed on the target FPGA. Lower II values would result in a
network design that would not fit the device. Larger II values would result in higher latency.

At the very low latency values (O(100) ns) that we are targeting, BNN/TNN models allow one to reach
competitive performance while saving most of the FPGA resources. About half of the observed accuracy loss
can be recovered using hybrid BNN/TNN models, paying a small price in terms of DSPs utilization, induced
by an explicit allocation of a BN layers before the ReLU/clipped ReLU activation functions rather than the
bit-shift implementation described in section 3. A further optimization of the BN operations for hybrid
models could in principle push the DSPs utilization closer to zero.

The LUTs usage is largely overestimated by the HLS compiler for all binary and ternary NN models, while
it is found to be well within the available resources after the logic synthesis. Hybrid models require more
LUTSs with respect to the standard BNN/TNN, because of the wider data bit width at the input of each binary
or ternary layer.

Figure 7 shows the dependence of the resource utilization on the maximum latency achieved by the
design (controlled by the II) for the baseline and BNN models. Results for the TNN model are very close to
the BNN ones. For all latency values, the resources used by the BNN/TNN models are typically reduced with
respect to the baseline model. In particular, the number of DSPs used is greatly reduced for latency values up
to a few ps. For higher latency values, the II is large enough to allow a small usage of DSPs even for the
baseline model. In that case, the advantage of using a binary or ternary quantization would be minor. Due to
technical aspects of the implementation of very-wide dense layers in h1s4m1, it is not possible to configure
the model to run with smaller latency values than those shown.

As a final test, we train a larger BNN model consisting of three dense layers with 256 nodes each, as in the
study of reference [18], allowing for a direct comparison of our implementation of a binary architecture with
what presented there. The h1s4ml implementation of this model yields a total accuracy of 95% for both
floating-point and fixed-point precision, where the latter is fixed to (16,6). With an II of 28, we obtain a
maximum latency of 0.31 ps with a resource utilization comparable to that in reference [18]. In particular,
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Table 5. Accuracy and AUCs of the different LHC jet tagging models described in section 4 before and after quantization, for fixed-point
precision (I+ F,I) chosen for this study. For each case, the AUCs are reported as the range spanned by the classes with lowest and
highest identification performance.

Floating point precision Fixed point precision

Model Architecture AUC  Accuracy [%] Number of bits ~ AUC  Accuracy [%]
Baseline 16x64%x32%x32X%5 0.904-0.958 75 <l6,6> 0.900-0.955 75
BNN 16x64x32%32X%5 0.794-0.891 58 <16,6> 0.794-0.891 58
TNN 16X64%32X32%5 0.854-0.915 67 <16,6> 0.854-0.915 67
Best BNN 16x448x224%x224x5 0.886-0.937 72 (16,6) 0.884-0.938 72
Best TNN 16x128x64x64x64x5 0.886-0.931 72 (16,6) 0.886-0.930 72
Hybrid BNN (ReLU) 16x64%x32%x32X%5 0.862—0.920 69 <167 6> 0.862-0.919 69
Hybrid TNN (ReLU) 16x64x32%x32x%5 0.874-0.934 70 <16, 6> 0.874-0.934 70
Hybrid BNN 16x64x32%32x%5 0.852-0.916 67 (16,6) 0.852-0.916 67
(clipped ReLU)

Hybrid TNN 16xX64%x32%x32X5 0.874-0.921 70 <16, 6> 0.874-0.921 70
(clipped ReLU)

Table 6. Comparison of the resource utilization for the LHC jet-tagging models described in section 4, together with timing information.
Resources estimated by the HLS compiler (C) and obtained by the logic synthesis (S) are quoted for a chosen initiation interval (II).

DSPs [%] FFs [%] LUTs [%] BRAM; [%)]
Model I Latency [ns] C S C S C S C S
Baseline 1 60 60 57 1 1 7 5 0 0
BNN 1 40 0 0 0 0 3 1 0 0
TNN 1 40 0 0 0 0 4 1 0 0
Best BNN 16 205 0 0 1 3 128 8 12 0
Best TNN 1 55 0 0 0 0 14 3 0 0
Hybrid BNN (ReLU) 1 50 2 2 0 0 6 2 0 0
Hybrid TNN (ReLU) 1 50 2 2 0 0 7 2 0 0
Hybrid BNN (clipped ReLU) 1 50 2 2 0 0 6 2 0 0
Hybrid TNN (clipped ReLU) 1 50 2 2 0 0 7 2 0 0

the deployed model obtained with h1s4ml after the logic synthesis utilizes 0% DSPs, 7% FFs, 23% LUTs, and
16% BRAMSs on a Xilinx Virtex Ultrascale 9+ FPGA card.

5.2. LHC jet identification

As a second benchmark example, we consider the LHC jet-tagging problem introduced in section 2 and
study all the binarization/ternarization strategies described in section 4. For all models a fixed-point
precision of (16, 6) is sufficient to reproduce the FPP accuracy after quantization. The AUCs and accuracy
before and after quantization are reported in table 5 for all models, while a comparison of the resource
utilization is found in table 6.

Unlike what is seen for the MNIST digit classification, the simple binarization/ternarization of the
baseline model results in a big accuracy loss. This is partially mitigated by the use of ReLU and clipped ReLU
activations. As an alternative approach, we also consider optimized binary and ternary architectures (best
models in table 5), fixed through a Bayesian optimization of the network hyperparameters. The result of the
Bayesian hyperparameter optimization for BNN and TNN converges to architectures with about 40 and 4
times more parameters with respect to the baseline architecture, respectively. With these larger architectures,
binary and ternary methods almost match, with a moderate loss in accuracy. Optimizing the architecture of
the binary and ternary models yields comparable precisions, but with a different resource balance (e.g. DSPs
vs. LUTS), offering an alternative that might better fit certain use cases.

The results of tables 5 and 6 confirm that ternary networks generally offer a better resource vs. accuracy
balance than binary networks, with a minimal (often negligible) additional resource cost and a comparable
(sometimes smaller) latency. In terms of FPGA resources, even the large architecture of the best TNN model
results in a limited resource usage, well below the baseline model. Instead, the largest best BNN model
requires a higher II value to fit the FPGA resource boundaries. The latency is kept within the ~ 1 us
boundary we target, but is significantly larger than what is achieved by the best TNN and the baseline
models. The best TNN model gives the same accuracy as the best BNN model, with the same latency as the
baseline model but with a drastic reduction of DSP utilization.
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6. Summary and Outlook

We presented the implementation of binary and ternary networks in the h1s4ml library, designed to
automatically convert a given neural network model into firmware of an FPGA card. Using two benchmark
classification examples (handwritten digit recognition on the MNIST data set and jet identification at the
LHC), we discuss different strategies to convert a given model into a binary or a ternary model. We showed
how binary and ternary networks allow one to preserve competitive performance (in terms of accuracy) while
drastically reducing the resource utilization on the card and, at the same time, keeping the inference latency
at O(100) ns. When compared to binary models, ternary models reach accuracy values much closer to the
original baseline models, at a typically smaller resource cost and comparable latency. Model binarization and
ternarization are competitive alternatives to other compression approaches (e.g. pruning) and represent the
ultimate resource saving in terms of network quantization. They offer a qualitative advantage of keeping DSP
utilization at a minimum, and offer an interesting opportunity to deploy complex architectures on resource
constrained environments, such as the L1 trigger system of a typical collider physics experiment.
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