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Preface

This book describes a novel approach in the study of quantum gravity (QG)

state-sum models, which is based on the application of the effective action

method from quantum field theory. Related to that is a study of the effect

of a non-trivial path-integral (PI) measure on the PI finiteness, as well as

a study on the dependence of the semi-classical expansion of the effective

action on the PI measure.

Another novelty is a detailed study of the idea that the spacetime at

small distances is not a smooth manifold but a piecewise linear (PL) mani-

fold corresponding to a triangulation of a smooth manifold. This is a radical

departure from the standard approach in PLQG, where the PL structure,

i.e. the triangulation, is assumed to be non-physical and an auxiliary tool

serving to define a QG theory on a smooth manifold. The main advantage

of this paradigm shift is that finite QG path integrals can be constructed,

while the semi-classical limit can be explored by using the effective action

formalism. A smooth spacetime is then interpreted as an approximation

to a PL manifold when the maximal edge length is small and the num-

ber of spacetime cells is large. The corresponding effective action can be

then approximated by the usual QFT effective action with a cutoff, where

the cutoff is determined by the average edge length in the spacetime tri-

angulation. A further consequences of the idea that the spacetime is a PL

manifold is that the cosmological constant has a continuous spectrum, and

that the spectrum contains the observed value of the cosmological constant.

We also describe some implications for quantum cosmology.

A description of higher gauge theory formulation of general relativity

is also given, since the corresponding state-sum models do not suffer from

the problems found in the spin-foam models of QG. These new state-sum

models are called spin-cube models, and they are categorical generalizations

v
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of the spin-foam models, since one labels the edges, the triangles and the

tetrahedra in a triangulation with representations of a 2-group, which is a

categorical generalization of a group.

A major part of the book is devoted to the results obtained by the

authors in the period from 2009 to 2016, and some more recent results have

been also included. The book contains descriptions of the main PLQG

approaches, but the emphasis is on a more detailed description of the Regge

PLQG and the corresponding effective action. Our book can serve as an

introductory text for a further research, so that it can be useful for young

researchers, as well as for other researchers who are interested in this area.

We would like to thank John Barrett, Louis Crane, Laurent Freidel,

Renate Loll, Steven Carlip, Ignatios Antoniadis and Hermann Nicolai for

conversations over the years, who helped us to clarify our ideas.

Lisbon, March 2023

Aleksandar Miković and Marko Vojinović
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ing between definite and superposed causal orders
Nikola Paunković1 and Marko Vojinović2

1Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Avenida
Rovisco Pais 1049-001, Lisboa, Portugal

2Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

We study the notion of causal orders
for the cases of (classical and quantum)
circuits and spacetime events. We show
that every circuit can be immersed into
a classical spacetime, preserving the com-
patibility between the two causal struc-
tures. Using the process matrix formalism,
we analyse the realisations of the quan-
tum switch using 4 and 3 spacetime events
in classical spacetimes with fixed causal
orders, and the realisation of a gravita-
tional switch with only 2 spacetime events
that features superpositions of different
gravitational field configurations and their
respective causal orders. We show that
the current quantum switch experimen-
tal implementations do not feature super-
positions of causal orders between space-
time events, and that these superpositions
can only occur in the context of super-
posed gravitational fields. We also dis-
cuss a recently introduced operational no-
tion of an event, which does allow for
superpositions of respective causal orders
in flat spacetime quantum switch imple-
mentations. We construct two observables
that can distinguish between the quantum
switch realisations in classical spacetimes,
and gravitational switch implementations
in superposed spacetimes. Finally, we dis-
cuss our results in the light of the modern
relational approach to physics.

1 Introduction

The notion of causality is one of the most promi-
nent in science, and also in philosophy of Nature.

Nikola Paunković: npaunkov@math.tecnico.ulisboa.pt
Marko Vojinović: vmarko@ipb.ac.rs

Its treatment separates Aristotelian from the
modern physics, and its formal meaning within
the latter is likely to have played a significant role,
over the past centuries since Galileo, in forming
our current everyday understanding of the no-
tion of causality. While in Newtonian physics
the cause-effect relations were encompassed by
a rather simple linear and absolute time, Ein-
stein’s analysis of causal relations was pivotal in
the formulation of the theory of relativity. But it
was quantum mechanics (QM) that, through the
EPR argument [1], further formalised by Bell [2],
showed how quantum nonlocality, rooted in the
superposition principle of QM, revolutionised our
everyday notion of causality. Finally, strong the-
oretical evidence that, when combining the two
fundamental theories of the modern physics, one
is to expect explicit dynamical nonlocal effects in
quantum gravity (QG), shows that our basic un-
derstanding of causality and causal orders might
be crucial in the development of new physics.

Recently, causal orders were, mainly within
the quantum information community, discussed
in the context of controlled operations. In par-
ticular, it was argued that the quantum switch,
a specific controlled operation introduced in [3],
exhibits superpositions of causal orders, not only
in the context of quantised gravity, where gen-
uine superpositions of different states of gravity
are present, but also in the experimental realisa-
tions performed in classical spacetimes with fixed
causal structure [4, 5, 6]. Note that the notion of
causal order discussed in these papers is different
from the causal order of the underlying space-
time structure. We discuss in detail the relation
between the two.

In this paper, we analyse the notion of causal
orders in the context of classical and quantum
circuits, and relate it to the spacetime causal
structures. We prove that each circuit can be

Accepted in Quantum 2020-05-12, click title to verify. Published under CC-BY 4.0. 1

https://quantum-journal.org/?s=Causal%20orders,%20quantum%20circuits%20and%20spacetime:%20distinguishing%20between%20definite%20and%20superposed%20causal%20orders&reason=title-click
https://quantum-journal.org/?s=Causal%20orders,%20quantum%20circuits%20and%20spacetime:%20distinguishing%20between%20definite%20and%20superposed%20causal%20orders&reason=title-click
https://orcid.org/0000-0002-9345-4321
https://orcid.org/0000-0001-6977-4870
mailto:npaunkov@math.tecnico.ulisboa.pt
mailto:vmarko@ipb.ac.rs


realised in a classical spacetime, preserving the
fixed causal relations of the former, with respect
to the causal relations between spacetime events
of the latter (see the next section for the de-
tails of the theorem). Further, we analyse pos-
sible realisations of the quantum switch, show-
ing that those performed in everyday labs do
not feature superpositions of causal orders be-
tween spacetime events (consistent with our the-
orem), but rather standard non-relativistic quan-
tum mechanical (coherent) superpositions of dif-
ferent evolutions of a system. On the other hand,
we argue that genuine superpositions of different
causal orders are indeed to be expected within
the QG scenario, where superpositions of differ-
ent states of the gravitational field, with their cor-
responding causal orders, are manifestly allowed
(Hardy was one of the first to discuss the notion
of superpositions of causal orders in the context of
QG [7]). In addition, we explicitly construct two
distinct observables that can distinguish between
the realisations of the quantum switch in classi-
cal spacetimes, and implementations of the grav-
itational switch in superposed spacetimes. This
way, we show that the two notions of causal or-
ders, namely one discussed in [4, 5, 6] and the
other discussed in this paper, can be experimen-
tally distinguished, in contrast to the opposite
claim present in the literature [4]. Finally, we
discuss our results in the context of the relational
approach to physics.

The layout of the paper is as follows. In Sec-
tion 2, we introduce the notion of causal order
for circuits, and prove the Theorem of the circuit
immersion in classical spacetimes. Section 3 is
devoted to the analysis of the quantum switch im-
plementations in classical spacetimes that do not
feature superpositions of spacetime causal orders,
as well as implementations in the context of QG.
In Section 4, we compare the quantum switch
implementations discussed, and introduce observ-
ables that can distinguish between those that fea-
ture superpositions of spacetime causal orders,
and those that do not. Section 5 is devoted to
the discussion of the superpositions of causal or-
ders in the context of the relational approach to
physics. Finally, in Section 6, we present and dis-
cuss the results, provide some final remarks, and
list possible future research directions.

2 Causal orders
We begin by discussing circuits and their realisa-
tions in (classical) spacetimes with well defined
fixed causal orders. Given a directional acyclic
graph G = (I, E), where I is the set of graph
nodes, and E = {(u, v) |u, v ∈ I} is the set of
its directed edges (arrows pointing from u to v
representing the wires of the circuit), a circuit C
over the set of operations G is a pair C = (G, g),
where the mapping g : I → G assigns operations
to each node. Depending on the type of the op-
erations from G, we will call the circuit classical
(if the operations are, say, classical logic gates),
or quantum (if the operations are, say, unitaries,
measurements, etc.).

The fact thatG is directional and acyclic allows
one to define a partial order ≺I over the set I as

u ≺I v
def⇐⇒(

∃ n ∈ N ∧ {u ≡ u1, u2, . . . , un ≡ v} ⊂ I
)

(
∀ i ∈ {1, 2, . . . , n−1}

)
(ui, ui+1) ∈ E , (1)

representing the causal relation between the
graph nodes. Next, we define the set of gates of
the circuit C as GC = {gu ≡ (u, g(u)) |u ∈ I}. The
induced causal order between the circuit gates ≺C
is by definition given as

gu ≺C gv
def⇐⇒ u ≺I v . (2)

Moreover, since there exists a canonical bijection
between I and GC , the order relations ≺I and ≺C
are isomorphic.

Finally, we can introduce the set M of all
spacetime events, which is assumed to be a tra-
ditional 4D manifold. On this spacetime mani-
fold we assume to have a gravitational field, de-
scribed in a standard way, using a metric tensor
gµν . The metric is assumed to be of Minkowski
signature, such that the metric-induced light cone
structure determines a partial order relation be-
tween nearby events, denoted ≺gM (or simply ≺M
when the choice of the metric is implicit). Note
that the causal order over the spacetime events is
not an intrinsic property of the spacetime mani-
fold itself, but rather determined by the metric,
i.e., the configuration of the gravitational field
living on the manifold.

One might pose a question if, given a formal cir-
cuit C with gates GC , it is possible to realise it in a
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lab — if it is possible to “immerse” it into space-
time. More precisely, given an arbitrary space-
time manifold M, our goal is to study if there
exists an order-preserving map P : GC →M, i.e.,
if the partial order relations satisfy

gu ≺C gv =⇒ P(gu) ≺M P(gv) , (3)

for every gu, gv ∈ GC . To that end, we formu-
late the following theorem (the proof is given in
Appendix A).

Theorem. Any circuit C can be immersed into
a globally hyperbolic spacetime manifoldM, such
that its relation of partial order ≺C is preserved
by the relation of spacetime events ≺M.

Regarding the physical interpretation of the
Theorem, note that it assigns a spacetime point
to each gate in a circuit, as opposed to a point in
3D space. Since each spatially localised appara-
tus may perform the same operation more than
once, at different moments in time, it may then
correspond to several different gates of the circuit,
and thus several different nodes of the graph, in-
stead of just one. In other words, a single piece
of experimental equipment does not always corre-
spond to a single gate of a circuit.

In addition to the above comment, note that
in reality each operation actually takes place in
some finite volume of both space and time. How-
ever, in theoretical arguments it is convenient to
approximate this finite spacetime volume with a
single point, ignoring the size and time of activ-
ity of the device performing the operation. We
adopt this approximation throughout this paper.

Circuits are seen as operations acting upon cer-
tain inputs to obtain the corresponding outputs.
Usually, the initial/final states (which include in-
structions, measurement results, etc.) are de-
picted by the wires. But in our approach, the
input state is prepared by the “initial gate” I,
while the output state is obtained by the “final
gate” F . This way, the circuit C is seen as an
operation OC acting from I to F .

Note that, given a circuit C, the corresponding
overall operation OC (as well as the input and
the output gates I and F) is uniquely defined.
The opposite is not the case: given the operation
O, one can design different circuits C, C′, . . . that
achieve it. To see this, let us consider the simplest
case of the operation which satisfies O = O2 ◦O1,
where ◦ represents the composition of operations.

This operation can be trivially achieved by the
two circuits: (i) C, which consists of three nodes
— node i whose gate I prepares the input state,
node o that applies the gate go = O, and node f
whose gate F outputs either the quantum state,
the classical outcome(s), or the combination of
the two; (ii) C12, which consists of four nodes —
nodes i and f that perform the same operations
as before, and two intermediate nodes o1 and o2
that perform go1 = O1 and go2 = O2, respec-
tively. For simplicity, here and elsewhere in the
text, by O we denote both the operation and the
gate that implements it. The two situations are
depicted in the following diagrams (see Figure 1).

i

I = gi

o

O = go

f

F = gf

i

I

o1

O1

o2

O2

f

F

Figure 1: Implementing operation O with a single gate
(upper diagram), and by two consecutive gates O1 and
O2 (lower diagram).

Finally, in recent literature one can find a no-
tion of an event which is different from the no-
tion of a spacetime point [3, 4, 5, 6, 8, 9, 10, 11].
Namely, one can talk about events as interactions
between the quantum system under consideration
and the apparatus in the lab. This is motivated
by the operational approach to physics, where the
interactions between objects are taken as funda-
mental. Then, one can introduce the relation of
partial order, which reflects the causal relation-
ships between such events. Of course, in general,
this causal order does not need to coincide with
the spacetime causal order. Throughout this pa-
per, if not explicitly stated otherwise, by causal
order we mean the order between the spacetime
points, which due to our Theorem can also be re-
garded as the order between the circuit gates. We
discuss the difference between the two notions of
causal orders in Section 4.

3 Quantum switch

The most prominent feature of quantum systems
is that they can be found in coherent superposi-
tions of states. This allows for applying the so-
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called control operations. For simplicity, let us
assume that operations O are unitaries, denoted
as U . Given a control system C in a superposi-
tion |ϕ〉C = a|0〉C + b|1〉C (with 〈0|1〉C = 0), the
control operation

UCT = |0〉C〈0| ⊗ U0 + |1〉C〈1| ⊗ U1 (4)

transforms the initial product state |Ψi〉CT =
|ϕ〉C ⊗ |ψi〉T between the control and the target
systems into the final entangled state |Ψf 〉CT =
a|0〉C ⊗ U0|ψi〉T + b|1〉C ⊗ U1|ψi〉T . A simple re-
alisation of such operation by a circuit consisting
of three gates is shown below (see Figure 2).

i

I

o

UCT

f

F

wC

wT

wC

wT

Figure 2: Controlled operation UCT . Applying operation
Ub on a system in the wire wT controlled by the state
|b〉 on a system in the wire wC , with b = 0, 1.

Here, the first node and the corresponding gate
prepares the initial superposition of the control
system, the second implements UCT , and the
third is either an identity, a measurement on the
two systems, or a combination (say, a measure-
ment of the target qubit, while leaving the control
intact). In order to allow for the description of
quantum superpositions, we introduce the notion
of a vacuum in the analysis of quantum circuits,
as is done for example in [12] (for technical de-
tails, see Appendix B).

As noted above, given the operation, many dif-
ferent circuits can achieve it. Indeed, in standard
optical implementations of the above controlled
operation (4), the control qubit is spanned by
two spatial modes of a photon, while the target
one is its polarisation degree of freedom. The
initial superposition state of the control qubit is
prepared by a beam splitter, while the two opera-
tions U0 and U1 are implemented locally in Alice’s
and Bob’s laboratories. Note that, since the con-
trol qubit is achieved by the means of two spatial
modes of a single photon, while the target qubit
is, being the photon’s polarisation, “attached to”
the control, the target is formally achieved by two
degrees of freedom (two wires), one assigned to
Alice (TA), and the other to Bob (TB). Thus, in
such a realization, the control degree of freedom
is redundant in the circuit diagram and can be

omitted. Nevertheless, since we will later discuss
the case of the gravitational quantum switch, in
which the gravitational degree of freedom plays
the role of the control, here we keep its corre-
sponding wire and gate in the diagram, as pre-
sented below (see Figure 3).

i

I

a

U0

b

U1

tA

TA

tB

TB

cf

TC

wTA

wTB

C

F

Figure 3: Implementation of the controlled operation
using the spatial degree of freedom as a control.

The final gate F consists of three “elementary
gates”, represented by the circuit nodes tA and tB
for the two target wires, and the node cf for the
final control wire.

An important instance of controlled operations
is the so-called quantum switch, for which the two
controlled operations are given by U0 = UV and
U1 = V U , where U and V are two arbitrary uni-
taries [3]. Having two pairs of equipment, one
applying U and the other V , it is straightforward
to implement the quantum switch through the
circuit similar to the one above, which instead of
two gates, one in the node a applying U0, and an-
other in node b applying U1, contains four gates
placed in the nodes aU , aV , bV and bU (see Fig-
ure 4).

i

I

aU

U

bV

V

aV

V

bU

U

tA

TA

tB

TB

cf

TC

wTA

wTB

C

F

Figure 4: The quantum switch.

The question arises, is it possible to achieve
the same using less resources, say, using only two
such pieces of equipment, located in two different
points (regions) of 3D space? Indeed, it is possible

Accepted in Quantum 2020-05-12, click title to verify. Published under CC-BY 4.0. 4



to do so, and recently a number of implementa-
tions of the quantum switch were performed in
flat Minkowski spacetime [4, 5, 6]. Nevertheless,
such implementations still correspond to circuits
that implement U0 and U1 by four, rather than
two gates. The difference is that, when immersing
it in a flat spacetime, the two pairs of gates are
now distinguished only by the temporal, rather
than all four spacetime coordinates. Thus, one
cannot talk of superpositions of causal orders be-
tween spacetime events in such implementations,
as flat (indeed, any globally hyperbolic) space-
time has a manifestly fixed causal order. To im-
plement U0 and U1 of the quantum switch by a
circuit that consists of two gates only (and thus
two corresponding spacetime points), one needs
a superposition of gravitational fields with differ-
ent (incompatible) causal orders. In the following
two subsections, we analyse in more detail the “4-
event” and the “3-event” implementations of the
quantum switch, while the “2-event” case is dis-
cussed in the last subsection (the numbers 4, 3
and 2 refer to the numbers of spacetime events
corresponding to distinct gates used to achieve U0
and U1). A detailed mathematical description us-
ing the process matrix formalism [8], is presented
in the Appendices C, D and E.

Following the previously mentioned distinction
between the spacetime event and the operational
notion of the event, the 4-event and 3-event quan-
tum switch implementations will have a descrip-
tion within the operational approach that is dif-
ferent from the spacetime description. In particu-
lar, in such approach these two implementations
of quantum switch would feature only 2 opera-
tionally defined events, and thus the superposi-
tion of the corresponding causal orders.

3.1 4-event process

The realisations of the quantum switch are per-
formed in table-top experiments in the gravita-
tional field of the Earth, and can be for all prac-
tical purposes considered as being performed in
flat Minkowski spacetime. In such experiments,
Alice performs the unitary U in her localised lab-
oratory, and Bob performs V in his separate lo-
calised laboratory, such that both are stationary
with respect to each other and the Earth. The
operations are applied on a single particle that
arrives from the beam splitter, in a superposition
of trajectories towards Alice and Bob, and, upon

the exchange between the two agents, is finally
recombined on the same beam splitter (for sim-
plicity, we chose one beam splitter, but the whole
analysis equally holds for two spatially separated
beam splitters), and then measured. Below, we
present a spacetime diagram of this experimen-
tal realisation of the quantum switch, which also
represents a circuit of the implementation scheme
(see Figure 5).

space

timeti t1 t2 tf

Alice

Bob

beam
splitter

I F

A

B′B

A′

Figure 5: Spacetime diagram, as well as the circuit repre-
sentation, of the 4-event implementation of the quantum
switch.

Black horizontal lines represent world lines for
Alice and Bob, as well as the global time coordi-
nate line at the bottom. The black vertical line
represents global space coordinate line. Quantum
gates are represented by big dots. The composite
gate I consists of the two preparation gates and
the initial beam splitter gate, while F consists of
the final beam splitter gate and the target gates
that perform the final measurements (for details,
see Appendix C). For simplicity, from now on we
omit writing the labels of the nodes and keep only
the labels of the corresponding circuit gates. The
two histories of the particle exchanged between
Alice and Bob, representing Alice’s and Bob’s
wires, are full lines coloured in blue and red, re-
spectively.

From the diagram we can see that in the blue
history we have the following chain of gates

I ≺C A ≺C B′ ≺C F , (5)

while for the red history we have

I ≺C B ≺C A′ ≺C F . (6)

In total, there are four spacetime events involving
Alice’s and Bob’s actions on the particle (gates),
namely A, B, A′ and B′. Thus, we call the above
diagram the “4-event diagram”. This setup was
already discussed in the literature (see the very
end of the Supplementary Notes of [13]).
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In order to compare the cases of the quantum
and the gravitational switches, it would be in-
teresting to analyse the two examples within re-
cently introduced powerful process matrix formal-
ism [8]. To do so, one needs to formulate the for-
malism involving the vacuum state (see Appendix
B for details). The straightforward application of
the formalism to the 4-event case is in full accord
with the experimental results, as demonstrated in
Appendix C.

3.2 3-event process
One can imagine that instead of two, one of the
agents implements only one gate. For example,
by conveniently choosing the velocity of the par-
ticle along its trajectory between Alice and Bob,
we can identify Bob’s two gates,

B ≡ B′ . (7)

We thus arrive to the new spacetime diagram
and the associated circuit, called the “3-event di-
agram” (see Figure 6).

space

timeti t1 tB t2 tf

Alice

Bob

beam
splitter

I F

A

B

A′

Figure 6: Spacetime diagram, as well as the circuit repre-
sentation, of the 3-event implementation of the quantum
switch.

Now, the obvious question is the following —
can we, in addition to (7), impose also that

A ≡ A′ , (8)

i.e., also identify Alice’s gates into a single space-
time event? In flat Minkowski spacetime, the an-
swer is negative. Namely, by simply looking at
the 3-event diagram one can see that the trajec-
tory of the particle between Alice and Bob would
require either superluminal speed, or backwards-
in-time trajectory in at least one history (note
that the diagram assumes that light propagates
along the lines that form the 45◦ angle with the
coordinate axes). This is also seen directly from
inequalities (5) and (6): identifying both A ≡ A′

and B ≡ B′ would lead to requiring that both
A ≺C B and B ≺C A are satisfied, i.e., A ≡ B.
As guaranteed by our Theorem from Section 2, in
a curved spacetime it is also impossible to make
both identifications (7) and (8), at least if space-
time were globally hyperbolic. Finally, as in the
4-event case, here also the process matrix formal-
ism is consistent with the experimental results,
see Appendix D.

3.3 2-event process — gravitational switch

Despite the conclusion of the previous subsection,
within the framework of quantum gravity one is
allowed to construct superpositions of different
gravitational field configurations, leading to su-
perpositions of different causal structures for the
spacetime manifold. The assumption of super-
positions of different gravitational field configu-
rations is common to all models of QG. Other
than that, we will not have any additional as-
sumptions, and thus our approach does not de-
pend on any particular QG model.

In what follows, for the sake of concreteness, we
assume the “traditional” approach to the formu-
lation of the QG formalism. Namely, we assume
that there exists a smooth 4D manifold, called
spacetime, and denoted as M. Quantum fields,
including the gravitational field, live on top of
M. The gravitational field is described either via
the metric or via some other degrees of freedom
(for example, tetrads and spin connection), such
that the metric is a function of these. We call
this kind of construction “traditional” because it
represents a minimal deviation from the mathe-
matical structure of quantum field theory (QFT)
in flat Minkowski spacetime, in the sense of pre-
serving the underlying manifold structure. A QG
model implementing this approach is, for exam-
ple, the asymptotic safety framework [14]. Of
course, we do not aim to provide a full-fledged
model of QG, but rather to only specify the sta-
tus of the manifold structure within it. As an
alternative, in Subsection 5.2, we will discuss the
relational framework of QG in which the mani-
fold structure does not exist a priori, but is emer-
gent from relational properties of quantum fields
themselves. Finally, note that the discussion of
the flat-spacetime cases in the previous sections
implicitly assumes the traditional point of view
on spacetime manifold. Nevertheless, it has to
be compatible with the semiclassical limit of any
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viable QG model.
As a consequence of the superposition of causal

structures in QG, it is possible to achieve a gravi-
tational switch, which implements the same quan-
tum switch as described above, with a circuit con-
sisting (in addition to the initial and final gates
I and F) of only two gates: the Alice’s gate A
that applies U , and Bob’s gate B that applies V .
Superposing two gravity-matter states, such that
in the first the spacetime geometry (described by
the metric tensor g0) establishes the causal struc-
ture

I ≺g0
M A ≺g0

M B ≺g0
M F , (9)

while in the second (described by the metric g1)
it is

I ≺g1
M B ≺g1

M A ≺g1
M F , (10)

the overall circuit applies operations U0 = UV
and U1 = V U , conditioned on the state of gravity.
As a side note, it is clear from (9) and (10) that
superpositions of the spacetime causal orders can
occur only in the framework of quantum gravity.

Such a switch was previously introduced by
Zych et al. [15], in the context of two spacetimes
which are solutions of the Einstein equations. In
their proposal, the beam splitter acted only on
the gravitational degree of freedom (and the ac-
companied source, the planet), while leaving the
rest of the matter, in particular the particle, Al-
ice and Bob, unaffected. Upon the final beam
splitter recombination, the matter is left in an
incoherent mixture of two states proportional to
{U , V } |Ψ〉 and [U , V ] |Ψ〉. Subsequently, the
mass (along with its gravitational degrees of free-
dom) is being measured in the superposition ba-
sis. Upon a post-selection conditioned on the out-
come of the measurement, the matter is again in
a pure state.

Another way to obtain a genuine superposition
of two different causal orders is by using a spa-
tially delocalised beam splitter, that acts on both
gravitational and matter fields. This can be de-
picted by the following 2-event diagram (see Fig-
ure 7).

The yellow region in this diagram represents
a compact piece of spacetime where the gravita-
tional field is in a superposition of the two distinct
states, and plays the role of the control degree of
freedom. Along the boundary of that region, both
gravitational configurations smoothly join into a
single configuration outside. The boundary of the

particleAlice Bob

A

B

I

F

Figure 7: Spacetime diagram of the 2-event implemen-
tation of the gravitational switch. Note that formally
this is not a circuit diagram, as the control wire, im-
plemented by the state of the gravitational field in the
yellow region, is missing.

yellow region thus acts as a beam splitter for any-
thing that enters, and again (in the recombining
role) for anything that exits. Therefore, all world-
lines (namely, of Alice, Bob and the particle) are
doubled inside the yellow region. The blue and
red colours represent their spacetime trajectories
in two different gravitational field backgrounds,
respectively.

We model our gravitational switch such that
the overall output state is the product between
the state of the gravitational field and the state
of the particle. The state of the particle is of
the form (αUV + βV U)|Ψ〉, obtained without
performing final selective measurement. In par-
ticular, in order to compare it with the other
quantum switch realizations, we choose either
{U , V } |Ψ〉 or [U , V ] |Ψ〉. In order to achieve
this, the gravitational switch should act upon all
degrees of freedom, both gravitational and mat-
ter. Note that our gravitational switch does re-
quire certain fine tuning, in the sense that the
whole, delocalised beam splitter, that acts non-
trivially on the whole joint gravity-matter sys-
tem, is designed for the particular pair of opera-
tions applied by Alice and Bob: only for those op-
erations, the beam splitter will output the prod-
uct state between gravity and matter. Otherwise,
the output will be the entangled gravity-matter
state, like in the cases of the optical quantum
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switch and the gravitational switch introduced by
Zych et al. (before the final selective measure-
ment). Still, the process matrix describing the
gravitational switch itself is independent of the
choice of the gate operations of the agents. See
Appendix E for details.

The question whether this kind of diagram is
admissible in some theory of quantum gravity
is nontrivial, and model dependent, on several
grounds. First, it is impossible to construct this
diagram by superposing two classical configura-
tions of gravitational field, such that each config-
uration satisfies Einstein equations. The reason is
simple — assuming that the gravitational field is
specified outside the yellow region, Einstein equa-
tions have a unique solution (up to diffeomor-
phism symmetry) for the compact yellow region,
given such a boundary condition. Therefore, one
cannot have two different solutions to superpose
inside. The only two options are to either super-
pose one on-shell and one off-shell configuration
of gravity, or two off-shell configurations. This
scenario can arguably be considered within the
path integral framework for quantum gravity.

Second, the question of the particle trajectory
is nontrivial. Namely, given one gravitational
configuration in which the particle has the space-
time causal structure (9), corresponding to the
blue history, it is not obvious that there can ex-
ist another gravitational configuration (with the
same boundary conditions at the edge of the yel-
low region), in which the particle has the space-
time causal structure (10), corresponding to the
red history. Even if one admits arbitrary off-shell
configurations of gravity, it may turn out that
the order of events inside the yellow region must
be fixed by the boundary conditions. The only
viable way to answer this question is to try and
construct an explicit example of two geometries
implementing (9) and (10) for the same boundary
conditions. Numerical investigations are under-
way to explore this possibility.

4 Distinguishing 2-, 3-, and 4-event re-
alisations of the quantum switch

In a number of both theoretical proposals [3,
8, 9, 10, 11], as well as experimental realisa-
tions [4, 5, 6] of the quantum switch, it is claimed
that they feature genuine superpositions of causal
orders. The reason for this is the introduction of

an alternative, operational notion of the event,
which differs from a spacetime point. The moti-
vation for this lies in the claim that the individual
spacetime points A and A′ (and B and B′) do not
have an operational meaning. In words of the au-
thors of [4] (see the Discussion section):

“The results of the experiment confirm
that such [which way] information is not
available anywhere and that the inter-
pretation of the experiment in terms of
four, causally-ordered events cannot be
given any operational meaning. If, on
the other hand, one requires events to be
defined operationally, in terms of mea-
surable interactions with physical sys-
tems [...], then the experiment should be
described in terms of only two events —
a single use of each of the two gates.”

While it is obvious that the mentioned which-
way information is not available in the quantum
switch experiment, in what follows we argue that
this does not imply that one cannot give an oper-
ational meaning to spacetime points, even in the
context of the quantum switch in classical geome-
tries.

Below, we first present a critical analysis of the
arguments behind introducing the operational
notion of event. Then, we show how one can
experimentally, at least in principle, distinguish
2-, 3-, and 4-event realisations of the quantum
switch.

It is the operational approach to understand-
ing spacetime, applied within the framework of
relationalism (see Section 5 for a detailed discus-
sion of the relation between the two frameworks),
that is arguably the main argument for introduc-
ing the alternative notion of an event. This new
notion of an event gives rise to the superposition
of respective causal orders in the realisations of
the quantum switch even in classical spacetimes.
Assuming that the smooth (classical) spacetime
is an emergent phenomenon, in the operational
approach one considers “closed laboratories” [8]
as the primal entities within which one can lo-
cally apply standard quantum mechanics, while
their connections form the relations from which
the spacetime emerges. Indeed, it seems that the
process matrix formalism was developed precisely
with this idea in mind: to be a mathematical
tool in analysing the emergence of the spacetime
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through the relations between the closed labo-
ratories. We would like to note that, as shown
in Appendices C, D and E, the mentioned for-
malism is also fully applicable within the stan-
dard formulation of quantum mechanics in clas-
sical Minkowski spacetime.

Given that in the case of coherent superposi-
tions of the two paths (a particle first goes to Al-
ice, then to Bob, and vice versa) it is not possible
to know which of the two has actually been taken,
one may conclude that one cannot distinguish be-
tween spacetime events A and A′, and that the
two are operationally given by the single action
of a spatially localised laboratory. However, this
point of view is at odds with our understanding of
the ordinary double slit experiment. Namely, by
exchanging the roles of time and space, and fol-
lowing the above logic, applied to the case of the
standard double slit experiment, one could anal-
ogously conclude that, since in order to obtain
the interference pattern at the screen one must
not (and thus cannot) learn which slit the parti-
cle went through, the two slits represent one and
the same operational “lab”, and one operational
point (region) in space.

Let us explain our argument in slightly more
detail. Consider first the optical quantum switch.
Here, a particle passes through Alice’s lab, de-
scribed by the two spacetime points, (xA, t) and
(xA, t′). Any attempt to distinguish the times t
and t′ at which the particle passes through Al-
ice’s lab would destroy the superposition. Con-
sider now the standard double slit experiment.
Here, a particle passes through the two slits, de-
scribed by the two spacetime points, (xL, t) and
(xR, t). Any attempt to distinguish the positions
of the slits xL and xR through which the parti-
cle passes would destroy the superposition. Note
that by exchanging the roles of space and time,
the descriptions of the above two situations are
essentially identical.

According to the operational approach, as a
consequence of the above, one should describe
Alice’s actions in the optical quantum switch in
terms of only one operational event. Thus, analo-
gously, one should also describe the particle pass-
ing through the slits in terms of only one oper-
ational event. However, such interpretation of
the double slit experiment is, to the best of our
knowledge, absent from the literature.

Note also that the 3-event realisation of the

quantum switch offers a natural alternative in-
terpretation of this phenomenon, as a well known
time double slit experiment [16]. Indeed, the two
events (gates) A and A′ play the role of the two
time-like slits, while the event (gate) B separates
the two in the same way the closed shutter sepa-
rates the two time-like slits in the time double slit
experiment. This comes as no surprise: quantum
superpositions are in general accompanied by the
interference effects, and the quantum switch is,
as already emphasised in Section 3, just another
instance of a superposition of two different states
of the standard quantum mechanics in Minkowski
spacetime.

The operational interpretation of identifying
the events A and A′ in the current experimental
realisations of the quantum switch indeed seems
to be a tempting proposal. Nevertheless, we
would like to point out that in fact it does not
resolve any open problem. In addition, being sim-
ilar to Mach’s ideas, it too may be at odds with
the theory of general relativity (GR), see Subsec-
tion 5.1 for a detailed discussion.

4.1 Distinguishing by decohering the particle

In the above quote from [4], the authors claim
that in order to directly distinguish points A and
A′ (as well as B and B′), one must destroy the su-
perposition in the apparatus. Conversely, being
unable to distinguish those points in any exper-
iment that maintains superposition and realises
the quantum switch, one cannot give them op-
erational meaning. Therefore, those spacetime
points are redundant in the theory, and each pair
should be replaced by a single operational event.
In this subsection, we discuss this type of an ar-
gument. In the next, we give an explicit example
of an observable that does distinguish such space-
time points without obtaining the which way in-
formation.

Let us study one concrete way of distinguishing
the mentioned pairs of points, which decoheres
the particle. For simplicity, we will analyse the
4- and 2-event cases only. To this end, we will in-
troduce a third agent, Alice’s and Bob’s Friend.
At each run of the quantum switch experiment,
Alice will, independently and at random, decide
whether just to apply her operation onto the par-
ticle, or in addition to that, send a photon to
Friend. The same holds for Bob. In 25% of the
cases, both agents just perform their respective
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operations, thus performing the quantum switch.
Next, in the 25% of the cases, both agents de-
cide, in addition to applying their respective op-
erations, to send the photons to Friend, who de-
tects them in his spatially localised lab. The re-
maining 50% of the cases are essentially the same
as the previous ones, so for simplicity we omit
their analysis.

First, we present the spacetime diagram of the
4-event quantum switch for the case when the
agents decide to send the photons to Friend (see
Figure 8).

space

timeti t1 t2 tf

Friend

Alice

Bob

I F

A

B′

FA FB′

B

A′

FB FA′

Figure 8: Distinguishing spacetime points by decohering
the particle in the 4-event quantum switch. The dotted
(dashed) lines represent photons sent by Alice (Bob) to
Friend.

The photons coming from Alice are dotted,
while the photons coming from Bob are dashed.
By knowing the geometry of the whole exper-
iment, Friend would be able to measure, in a
generic setup, four different times of the photon
arrivals: tA and tA′ for spacetime points FA and
FA′ , and two more for the photons sent by Bob.

On the other hand, in the case of the 2-event
gravitational switch realisation, Friend would de-
tect only two times of the photons’ arrival. Be-
low, we extend the diagram of the gravitational
switch we introduced in Section 3.3, by adding
the photons sent to Friend. In order to indicate
the fact that the events A and A′, etc., are in this
setup indeed identified, we write the tilde over the
corresponding letters A, B and F (see Figure 9).

Clearly, the two situations are experimentally
distinguishable.

Nevertheless, as noted in [4], one might argue
that, since the photons sent to Friend in the 4-
event case decohere the particle in the switch, this
situation does not correspond to the experiment
in which the coherence is maintained. Therefore,
in the latter, the pair of spacetime events A and

Friend particleAlice Bob

Ã

B̃

F̃A

F̃B

I

F

Figure 9: Distinguishing spacetime points by decohering
the particle in the 2-event gravitational switch. The
dotted (dashed) lines represent photons sent by Alice
(Bob) to Friend.

A′ still ought to be substituted with a single op-
erational event (and analogously for B and B′).

However, even if instead of spacetime points
one decides to talk about operational events, such
a framework should still be consistent with the
experimentally tested theories, GR in particular.
According to GR, in flat spacetime (or in any
classical configuration of the gravitational field),
regardless of whether we decohere the particle
or not, both experiments feature four spacetime
points, such that A and B (as well as A′ and
B′) can be considered to be simultaneous (see
Figure 8). Therefore, the time of execution of
both experiments is δt = t2 − t1 + C, where
C ≡ (t1 − ti) + (tf − t2). Note that the time
period t2 − t1 represents the travel time of the
particle from one laboratory to the other, and is
therefore strictly positive.

From the operational point of view, the de-
cohered version of the experiment also features
four operational events, and is thus manifestly
consistent with the GR description. Note that
a decohered version of the switch still features
only two events per run: in a classical mixture
between “Alice’s event before Bob’s event” and
“Bob’s event before Alice’s event” each run fea-
tures just two events, and the duration of the
overall experiment in each run is the time be-
tween the two events of that run (plus the above
constant C).
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On the other hand, if the coherence were main-
tained, the operational point of view features only
two operational events, one per laboratory. Then,
the total time of execution of the experiment
ought to be δτ = 0 +C, which is clearly different
from the GR prediction. The total time of execu-
tion of the quantum switch experiment is a mea-
surable quantity. This means that one can eas-
ily determine whether this time is δτ or δt. The
former outcome invalidates GR, which would ne-
cessitate the formulation of an alternative theory.
Note that in this case, a sheer decision to either
decohere a particle or not would allow agents to
influence the time flow in their labs. Moreover,
it raises the question of the time flow in nearby
labs isolated from the experiment during its exe-
cution. The latter outcome poses the problem of
the precise formulation of an operational theory
such that the experiment which features only two
operational events lasts precisely the same time
as the experiment which features four operational
events.

4.2 Distinguishing without decohering the par-
ticle
In addition to the above argument, supported by
the experimental setup presented in the previous
subsection, by erasing the which way information
it is possible for Friend to distinguish the 4-event
and the 2-event realisations even when the “full”
quantum switch is executed. For that, one needs
to supply Friend with a photon non-demolition
measurement. This is in principle possible to con-
struct, although in practice a bit challenging. It
thus might be technically easier to use some par-
ticles other than photons for sending signals to
Friend.

By agreeing in advance of the particular ex-
perimental setup, Friend would be able to pre-
dict the distinct times of arrival of the pho-
tons, tFA

, tFA′ , tFB
and tFB′ in the 4-event case,

and tF̃A
, tF̃B

in the 2-event case, thus defining
the states of the two photons that arrive to his
lab: |FA, FB′〉 , |FA′ , FB〉, and |F̃A, F̃B〉, respec-
tively. Let us define HA≺B′ = span{|FA, FB′〉},
HB≺A′ = span{|FA′ , FB〉}, and HA≺B∧B≺A =
span{|F̃A, F̃B〉}. Then, the relevant Hilbert space
of the two photons is

Hph = HA≺B′ ⊕HB≺A′ ⊕HA≺B∧B≺A . (11)

Let us define P<, P> and P= as orthogonal pro-

jectors onto HA≺B′ , HB≺A′ and HA≺B∧B≺A, re-
spectively. One can then define a dichotomic pho-
ton non-demolition orthogonal observable per-
formed by Friend on the two photons in his lab-
oratory:

M = 1 · (P< + P>) + 0 · P= . (12)

Provided that the experimental setup is either
that of the 4-event, or the 2-event type, such mea-
surement would not change the state of the ex-
perimental setup (the interferometer, the particle
in it, and the photons in the Friend’s apparatus),
while still leaking the information to Friend (via
the measurement outcome) about the type of the
quantum switch realisation. Finally, by perform-
ing the quantum erasing procedure [17, 18], the
which way information is lost, and the final state
of the particle is restored to a coherent superpo-
sition.

Let us examine this more formally. Let the
two states of the particle in the quantum switch
be |R〉 and |B〉, corresponding to the red and
the blue trajectory, respectively. After I, the
state of the particle in the quantum switch is

1√
2(|R〉 + |B〉). As the particle passes through

Alice’s and Bob’s labs, two photons are emitted,
which arrive at the Friend’s lab. The overall state
of the particle and the two photons in the 2-event
quantum switch is then

1√
2

(
|R〉+ |B〉

)
|F̃A, F̃B〉. (13)

The particle in the quantum switch is in super-
position of the two paths, and it stays so upon
measuring M and obtaining the result 0.

On the other hand, the overall state of the par-
ticle and the two photons in the 4-event quan-
tum switch is, upon the photons’ arrival in the
Friend’s lab, given by

1√
2

(
|R〉|FA′ , FB〉+ |B〉|FA, FB′〉

)
(14)

= 1
2
√

2

[(
|R〉+ |B〉

)(
|FA′ , FB〉+ |FA, FB′〉

)
+
(
|R〉 − |B〉

)(
|FA′ , FB〉 − |FA, FB′〉

)]
.

The particle is now decohered by the two pho-
tons, and it remains so upon measuring M and
obtaining 1 as the result. Therefore, to erase the
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which way information, Friend has to perform an
additional measurement in the basis

|±〉 = 1√
2

(
|FA′ , FB〉 ± |FA, FB′〉

)
, (15)

thus collapsing the state of the particle in one of
the two pure states

1√
2

(
|R〉 ± |B〉

)
. (16)

Knowing the outcome of the measurement of M ,
Friend can post-select the output of the particle
coming out of the quantum switch. Alternatively,
in the case of obtaining the |−〉 result, Friend can
change the relative phase between the two of the
particle’s superposed states.

4.3 Other types of gravitational switches
It is important to note that the framework of QG
also allows for the construction of 3- and 4-event
switches, in addition to the 2-event one. This is
straightforward to see, for example by immersing
the above 3- or 4-event spacetime diagram into a
superposition of different geometries.

Moreover, all of these gravitational switches
may give different outcomes when measuring the
observable M , given by (12), followed by the
quantum erasing procedure (15). The criteria
to necessarily obtain the outcome 0 are: (i) that
the photons in red and blue histories meet at the
boundary of the yellow region, and (ii) from that
point on they recombine into a single photon his-
tory. Depending on the details of their construc-
tion, all gravitational switches either may or may
not satisfy the criteria (i) and (ii). On the other
hand, no quantum switch realisations in classical
spacetimes with definite causal order could ever
yield result 0. Finally, we note that even though
some of 2-event gravitational switches may give
the outcome 1 when measuring M , it does not
necessarily mean that there exist no other observ-
able that could distinguish them from the 4-event
quantum switches in a classical geometry. This is
a matter for further research.

Detailed graphical visualisations of various
gravitational switches are presented in the Ap-
pendix F.

5 Relational approach to physics
In the light of the operational framework, which
suggests the substitution of the spacetime events

A and A′ with a single operational event (and
analogously for B and B′), it is important to
comment on one different but related approach
to understanding spacetime, called relationalism.
Note that by this promotion of operational events
as fundamental entities that ought to replace and
play the role of the spacetime events, effectively
means the identification of A with A′, and B with
B′. In this section, we first present a historical re-
view of the relational approach to physics. Then,
we discuss the operational framework within the
context of the modern approach to relationalism.

5.1 Mach principle and the history of relation-
alism
The idea of relationalism is an old one, it traces
back at least as far as Decartes, and is very im-
portant in human thought, in particular in the
history of physics. It was brought back to science
by Mach in the second half of the XIX century
(for an overview and history of the Mach prin-
ciple and the relational approach to space, from
its origins in ancient Greece, see for example [19]
and the references therein). Based on the Leibniz
ideas of a relational world, Mach formulated his
famous Mach principle, an intuitively reasonable
approach in analysing physics, and space(time)
relations in particular. One of the main charac-
teristics of the Mach principle is that (see [20],
page 17):

“Space as such plays no role in physics;
it is merely an abstraction from the to-
tality of spatial relations between mate-
rial objects.”

The same formulation can be found in [21],
slightly re-phrased as “Mach7: If you take away
all matter, there is no more space.” It is interest-
ing to note that the authors attribute this formu-
lation to A. S. Eddington [22], page 164.

As discussed at the beginning of Section 4, in
the operational approach one attributes the ulti-
mate existence to the “closed laboratories” only,
while their mutual relations, epitomised by the
process matrix, are then giving rise to higher level
emergent entities. This clearly shows striking
similarities between the Mach’s and the opera-
tional approaches to space(time).

Mach’s ideas were crucial for Einstein in formu-
lating the theory of relativity. And while many
of Mach’s predictions were indeed realised in the
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new theory, some of them were not. Mach’s idea
that the matter is the basic entity, and that by
abstracting the relations between the objects the
space emerges, led him to the following state-
ment: if the matter in the universe were finite
and had 3D rotational symmetry, it would be im-
possible to determine its angular momentum (in-
deed, even talking about it would have no mean-
ing). This is a plausible idea. Nevertheless, it
does not hold in general relativity (GR), where
one can find two solutions of the Einstein equa-
tions for the isolated black hole (the stationary
Schwarzschild solution and the rotating Kerr so-
lution [23]). Moreover, while according to the
Mach principle the matter completely determines
the space, this is not the case in GR: not only that
there exists a solution for the gravitational field
in the absence of matter (when the stress-energy
tensor T is identically zero), but the solution is
not unique, as it depends on the boundary con-
ditions as well (i.e., flat Minkowski spacetime is
not the only solution — gravitational waves be-
ing a possible alternative [23]). This also holds
for the general T 6= 0 case, as there too boundary
conditions play an important role. Thus, matter
does not fully determine the inertia, as should ac-
cording to Mach principle, which states that the
inertia of a massive body is given solely in terms
of its relations with the other massive bodies.

Motivated by giving the ultimate reality to ma-
terial objects only (closed laboratories in the case
of the operational approach), Mach formulated
the above list of claims. Nevertheless, they were
later shown not to hold in GR. Provided the sim-
ilarities between the Mach ideas and the oper-
ational approach, the latter might face similar
problems as well. We thus believe that introduc-
ing the operationalist notion of an event should
be accompanied by more elaborate proposals of
new physical hypotheses and theories. We hope
that our discussion may serve as a small step to-
wards achieving this goal.

5.2 Modern approach to relationalism

In contrast to the historical approach to relation-
alism and Mach’s ideas, that sounded plausible
at the time but ultimately failed with the devel-
opment of GR, the more elaborate modern ap-
proach to relationalism is epitomised in the words
of Carlo Rovelli (see Section 2.3 of [24]):

“The world is made up of fields. Phys-
ically, these do not live on spacetime.
They live, so to say, on one another.
No more fields on spacetime, just fields
on fields.”

In particular, the modern relational approach to
spacetime defines a particular spacetime point
by the physical processes that are “happening
at that point”. More technically, given an or-
dered set of classical fields φ ≡ (φ1, . . . , φn) used
to describe physics in a given classical theoreti-
cal framework, one traditionally starts from some
spacetime point x̃ and evaluates the fields at that
point, φ̃i = φi(x̃), obtaining an n-tuple of num-
bers (φ̃1, . . . , φ̃n). The idea of relationalism does
the opposite — one starts from n-tuples of field
values, and then defines a spacetime point us-
ing an n-tuple, x̃ ≡ (φ̃1, . . . , φ̃n), so that the
same equation φ̃i = φi(x̃) holds. The question
of how to operationally relate values of differ-
ent fields, and assign and distribute them into
n-tuples, is a matter of a separate study [25].
In this work, we assume that this problem is al-
ready solved. Moreover, note that fields φ need
not be observable, due to potential gauge symme-
tries (for example, the electromagnetic potential
Aµ and the metric gµν). To that end, we intro-
duce an ordered set of gauge invariant functions
O(φ) ≡ (O1(φ), . . . ,Om(φ)), where m ≥ n (for
example, the electromagnetic field strength Fµν
and the curvature Rλµνρ), and define a spacetime
point as an m-tuple of their values Õ.

Unless the physical system features some global
symmetry, each m-tuple Õ defines a unique point
in spacetime. Note that, in the context of GR,
the absence of global symmetries is actually the
generic case. Thus, the essential feature of this
definition is that it does not make sense to say
that the same m-tuple of field strengths can oc-
cur in two different spacetime points, since “both”
spacetime points in question are defined in terms
of the one and the same m-tuple, and therefore
represent a single point.

Moving from classical to the quantum frame-
work, where no system has predetermined phys-
ical properties independent of observation, one
needs to talk about observables. Given an or-
dered set of quantum fields φ ≡ (φ1, . . . , φn), one
constructs one specific complete set of compatible
observables O ≡ (O1(φ), . . . .Om(φ)), where

• compatible means that all observables mutu-
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ally commute, [Oi , Oj ] = 0 for every i and
j, while

• complete means that the eigenspaces com-
mon for all these observables are nondegener-
ate, i.e., they are one-dimensional subspaces
of the total Hilbert space.

Here, by “specific” we mean the set of observ-
ables which depend only on fields φ, but not on
their conjugated momenta. This fixes the co-
ordinate representation, such that each common
eigenvector corresponds to one classical configu-
ration of fields. The outcomes of the measure-
ments of these observables can then be grouped
intom-tuples and used to define individual space-
time points, as in the classical case above, thus
giving rise to an emergent classical spacetime. On
the other hand, if the state is not an eigenvector
of O, one cannot speak of a single classical con-
figuration of fields, and thus the notion of emer-
gent spacetime and its points ceases to make sense
globally, according to the relational approach. At
most, one could speak of a superposition of clas-
sical configurations and corresponding emergent
spacetimes, but without any natural way to re-
late spacetime points across different branches in
the superposition. Nevertheless, this does not
mean that establishing such a relation is impos-
sible for certain subregions of spacetime. Indeed,
the whole non-yellow “outside” part of the grav-
itational switch picture from Subsection 3.3 rep-
resents a subregion with a locally classical config-
uration and thus well defined spacetime points.

In order to better appreciate the relational def-
inition of spacetime points given above, it is in-
structive to look at the realisation of spacetime
in the context of a relational quantum gravity
model, such as a spinfoam model in the Loop
Quantum Gravity (LQG) framework [24, 26].
There, the spacetime is “built” out of the spin
foam — a lattice-like structure with vertices,
edges and faces, each labeled by the eigenvalues
of particular field operators that “live” on these
structures, depicted as follows (see Figure 10):

For example, the area operator, which is a func-
tion of the gravitational field, has eigenvalues de-
termined by a half-integer label j ∈ N/2, and each
face of the spin foam carries one such label, spec-
ifying the area of the surface dual to that face.
In particular, the spectrum of the area operator

jfjf ′ ιε

ιε′

Figure 10: A piece of a spin foam diagram. The field
j labels the faces f, f ′, . . . , while the field ι labels the
edges ε, ε′, . . . , of the diagram.

is given as

A(j) = 8πγl2p
∑
f

√
jf (jf + 1) , (17)

where lp is the Planck length, γ is the Barbero-
Immirzi parameter, while the sum goes over all
faces f of the spin foam that intersect the surface
whose area we are interested in, see [24, 26] for
details. All other physical observables similarly
provide appropriate labels for each vertex, edge
and face of the spin foam. Since edges and faces
meet at vertices, a given vertex carries labels of
all observables of all edges and faces that are con-
nected to that vertex. These observables form the
complete set of compatible observables O, and
their eigenvalues label each vertex, determining
the identity of that vertex. In other words, each
labeled vertex of a spin foam defines a “spacetime
point”, and if two vertices have completely identi-
cal properties in the sense of their labels and their
connectedness to neighbouring objects, they ac-
tually represent the one and the same vertex.

At first sight, it is tempting to apply the ideas
of relational spacetime to the case of the quan-
tum switch, as follows. At the spacetime event
A, Alice interacts with the particle as it enters
and exits her lab, while at the spacetime event
A′ Alice also interacts (in exactly the same way)
with the same particle. The idea of relational
spacetime then might suggest that one should de-
fine the spacetime events A and A′ by the phys-
ical event of interaction between Alice and the
particle. Since this interaction is the same in
both cases, one ought to identify the two points,
A ≡ A′, and claim that both of these correspond
to the same spacetime event, defined by the inter-
action between Alice and the particle. The same
argument applies to Bob, and events B and B′.

Unfortunately, this argument is not fully in line

Accepted in Quantum 2020-05-12, click title to verify. Published under CC-BY 4.0. 14



with relationalism. The reason lies in the fact
that the interaction between Alice and the parti-
cle (and also between Bob and the particle) does
not meet the criteria given in the above relational
definition of a spacetime point. Namely, neither
Alice, nor Bob, performs a measurement of a com-
plete set of compatible observables O. The men-
tioned interaction with the particle is merely a
subset of this. In particular, the interaction of
Alice with the particle does not uniquely fix the
state of, say, the gravitational field, or the elec-
tromagnetic field, or the Higgs field, etc. There-
fore, it may happen that the measurement out-
comes of the whole set of observables O at space-
time events A and A′ are still mutually distinct,
thereby defining the events A and A′ as two dis-
tinguishable spacetime points. In order to be cer-
tain that A and A′ are really the same spacetime
event, Alice would need to measure the complete
set of observables O, and convince herself that
the results of all those measurements at A and at
A′ are identical. The mere interaction with the
particle is not enough to achieve this, and the
experimental setups such as [4, 5, 6] obviously
fall short of accounting for the state of all other
possible physical fields that Alice and Bob can
interact with, in addition to the interaction with
the particle.

We see that, when applied to the case of the
quantum switch in classical gravitational field,
the relational framework is at odds with the op-
erational approach — the former distinguishes A
and A′ while the latter regards them as iden-
tical. This is because the matter fields of the
particle are in a superposition of two classical
configurations. Similarly, in the case of the 2-
event gravitational switch introduced in Subsec-
tion 3.3, the overall state of gravity and matter is
a superposition of two distinct classical configu-
rations. Therefore, within the relational frame-
work, it is not possible to talk about a single
emergent spacetime, nor to compare the points
that belong to different branches. This is differ-
ent from the operational approach, which aims
to identify points from different branches. It is
also different from the traditional approach, since
the latter postulates a unique classical spacetime
manifold.

Note that, if understood as an interpretation,
relational framework ought to have all experi-
mental predictions the same as those from the

traditional approach. Thus, the observable con-
structed in Subsection 4.2 should distinguish the
quantum from the gravitational switch, in the
same way as in the traditional approach. On
the other hand, potential new physics formu-
lated based on the relational framework might,
or might not, feature different experimental pre-
dictions.

It is important to emphasise that, as dis-
cussed in Subsection 4.3, various realisations of
the quantum switch are possible by superposing
different causal orders in the framework of QG.
In particular, regarding the 2-event realisations,
one can consider the following diagram (see Fig-
ure 11):

particleAlice Bob

A

B

I

F

Figure 11: Spacetime diagram of a version of a 2-event
gravitational switch, in which Alice and Bob perform
their respective operations in the regions of spacetime
with a single gravitational configuration.

This diagram features two classical spacetime
subregions surrounding Alice’s and Bob’s labo-
ratories. As such, Alice and Bob can measure
the complete set of compatible observables within
their laboratories, without obtaining which-way
information and destroying the superposition.
Therefore, even from the relational point of view,
this represents an implementation of a 2-event
gravitational switch. Note that in this case Alice
and Bob do not even need Friend in order to verify
the 2-event nature of their gravitational switch.

It is interesting to observe that this realisa-
tion of the quantum switch implements the op-
erational idea of a 2-event quantum switch, in
terms of closed laboratories. However, to achieve
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such an implementation, it is necessary to have
a genuine superposition of metric-induced space-
time causal orders in the yellow region of space-
time, which does not feature in experimental re-
alisations [4, 5, 6].

6 Conclusions

In this paper, we analysed the notion of causal or-
ders both in classical and quantum worlds, with
the emphasis on the latter. We defined the no-
tion of the causal order for the case of (classical
and quantum) circuits, in terms of partial order-
ing between the nodes of the circuit’s underlying
graph that defines the cause-effect structure. We
discussed the possibility of implementing an ab-
stract circuit in the real world, showing that it
is always possible to do so for the case of a glob-
ally hyperbolic (classical) spacetime, in which the
circuit’s causal order is preserved by the metric-
induced relation between the spacetime events.

The superposition principle of quantum me-
chanics offers the possibility of controlled oper-
ations, in particular the quantum switch, whose
experimental realisations have been claimed to
present genuine superpositions of causal orders.
Within the process matrix formalism, we have
analysed the 4- and 3-event realisations of the
quantum switch in classical spacetimes with fixed
spacetime causal orders, and the 2-event realisa-
tion of a gravitational switch that features super-
positions of different gravitational field configu-
rations and their respective spacetime causal or-
ders. To that end, we have extended the process
matrix formalism, by introducing the notion of a
vacuum state. Our analysis shows that the pro-
cess matrix formalism can explain the quantum
switch realisations within the standard physics,
and is thus consistent with it.

Thus, as a consequence of our Theorem, and
the analysis of the quantum switch implementa-
tions, we argued that, in contrast to the grav-
itational switch, the current experimental im-
plementations do not feature superpositions of
spacetime causal orders, and that they are vari-
ants of the time double slit experiment. More-
over, by explicitly constructing two different ob-
servables, presented in Sections 4.1 and 4.2, re-
spectively, we showed that it is possible to ex-
perimentally distinguish between different reali-
sations of the quantum switch.

Finally, in Section 5, we analysed the rela-
tion among the traditional QFT approach to QG
(used throughout this paper), the operational
point of view, and the relational framework of
QG. On the example of the quantum switch, we
showed that the operational viewpoint, while con-
sistent with the approach advocated by Mach, is
nevertheless at odds with the modern relational
framework. On the other hand, the traditional
QFT approach and the relational framework may
or may not be compatible, depending on the con-
crete realisation of the quantum switch. In par-
ticular, for the specific realisation of the gravi-
tational switch given in Subsection 5.2, the two
frameworks are compatible in the prediction that
Alice and Bob can locally (without the help of
Friend) verify that the switch is implemented on
2 events.

In a recent work [27], the authors report on
a violation of the causal inequality [8] in flat
Minkowski spacetime with a definite causal or-
der. To achieve it, they consider laboratories
that are localised in space only, while delocalised
in time. Therefore, their alternative notion of a
“closed laboratory”, and that considered in [8],
do not coincide, this way manifestly violating
the conditions necessary for the causal inequal-
ity to hold. For the same reason, the scenario
considered in [27] falls out of the scope of the
current work as well. Additionally, in another re-
cent work [28], the author discusses the quantum
switch in terms of the time-delocalised quantum
subsystems and operations, and generalises it to
more complex quantum circuits and processes.
The results of these two papers deserve further
analysis and remain to be a subject of future re-
search.

Exploring possible generalisations of our The-
orem, as suggested at the end of Appendix A,
presents a straightforward future line of research.
Also, one could further analyse the process ma-
trix formalism, in particular by exploring the sit-
uations in which the operational approach inter-
pretation fails to describe the known processes.
Or, to search for the opposite — the instances
of physical processes that cannot be explained
by the process matrix formalism, when applied
within the standard physics. In order to show
that the process matrix formalism is perfectly
suitable for describing the quantum switch im-
plementations within the standard physics, we
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formulated its version that features the vacuum
state. One can thus further study possible gen-
eralisations of this formalism and its applica-
tions to the cases that go beyond simple non-
relativistic mechanics. Finally, motivated by our
analysis and discussion from Subsections 4.1 and
5.1, one can try to formulate alternative theories
that would be consistent with the experimentally
tested known physics (GR in particular), while at
the same time substituting the spacetime events
A and A′, from the quantum switch realisations
in classical spacetimes, with a single operational
event (and analogously for B and B′).
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A Proof of the Theorem
Here we give an explicit constructive proof of the Theorem from the main text.

Given the graph G, we begin the proof by partitioning its set of nodes I into disjoint subsets, in the
following way. Since the graph is finite, we introduce the subset M1 ⊂ I which consists of all minimal
nodes of the graph G:

M1 = {u ∈ I | (¬∃v ∈ I) v ≺I u} . (18)

Since all nodes in M1 are minimal, there is no order relation ≺I between any two of them. Therefore,
we can intuitively understand them as “simultaneous”. As a next step, we remove these nodes and the
corresponding edges from G, reducing it to a subgraph G2 = (I2, E2), where

I2 = I\N1 , E2 = {(u, v) |u, v ∈ I2 , (u, v) ∈ E} . (19)

Then we repeat the construction for the graph G2, obtaining the new minimal set M2, and the next
subgraph G3, in an analogous way. Since the graph G is finite, after a certain finite number of steps we
will exhaust all nodes in I, ending up with a partition of “simultaneous” subsets M1, . . . ,Mm (m ∈ N),
such that

(∀i 6= j) Mi ∩Mj = ∅ ,
m⋃
i=1

Mi = I . (20)

Once we have partitioned the set of nodes I into subsets, we turn to the construction of the immersing
map P : I →M, in the following way. Since spacetime is globally hyperbolic, we can writeM = Σ×R,
where Σ is a spatial 3-dimensional hypersurface, and R is timelike. Without loss of generality, one can
then introduce a foliation of spacetime into a family of such hypersurfaces, denoted Σt and labeled
by a parameter t ∈ R. Start from some initial parameter t1, and choose a compact subset St1 ⊂ Σt1 .
Denoting the number of elements in the partition Mi as ‖Mi‖, we pick in an arbitrary way the set of
‖M1‖ points ~xk ∈ St1 (here, k = 1, . . . , ‖M1‖), and define the map P to assign a node from M1 to each
point ~xk in a one-to-one fashion:

P (uk) = (t1, ~xk) ∈M , k = 1, . . . , ‖M1‖ . (21)

Once this assignment has been defined, construct a future-pointing light cone from each spacetime
point (t1, ~xk). Then we find a new hypersurface, Σt2 , which contains a common intersection with all
constructed light cones, and denote this intersection St2 ⊂ Σt2 . In this way, by construction, all points
(t1, ~xk) are in the past of all points in St2 ,

(t1, ~xk) ≺M St2 , k = 1, . . . , ‖M1‖ . (22)

Now extend the definition of P such that it assigns the nodes from the next partition, M2, to a
randomly chosen set of points in St2 in a similar way as before, then construct a set of light cones from
them, and repeat the construction for all partitions Mi. Constructed in this way, the map P ensures
that for every pair of nodes u, v ∈ I, we have

u ≺I v =⇒ P (u) ≺M P (v) , ∀u, v ∈ I . (23)

Once we have constructed the map P : I →M satisfying (23), using the definition (2), it induces the
map P : GC →M, which satisfies the required statement (3).

This completes the proof. �

Note that, while the causal order ≺M indeed preserves the causal order ≺C , it is “stronger” in the
sense that it may introduce additional relations between the images of nodes, which do not hold in the
graph itself. Indeed, the construction of the map P in the above proof is such that each image of a
node from some given partitionMi is in the causal past of all images from the previous partitionMi−1,
which is not necessarily the case for the nodes themselves. One might study if the causal orders over
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the set of nodes and over the set of its images can be equivalent, i.e., if the opposite implication from
equation (23) also holds (in this case the immersion P is called an embedding of G intoM). Whether
such an embedding exists for all hyperbolic spacetimes, or at least for some, is an open question.

Next, one could also discuss the generalisation of the above theorem to the case of countably infinite
graphs G. However, for our purposes, the existence of a partially ordered map P over the set of finite
graphs will suffice.

Regarding the proof itself, one can formulate an alternative (and simpler) approach to the proof of
the theorem. Namely, one can first prove that every circuit can be immersed into the flat Minkowski
spacetime. Then, knowing that the sufficiently small neighbourhood of every spacetime point in an
arbitrary manifold M can be well approximated with its tangent space, one can always immerse the
whole circuit into this small neighbourhood. However, this implies that the geometric size of the circuit
can be considered negligible compared to the curvature scale of the manifold, which may render such
implementation practically unfeasible. Moreover, this alternative approach does not cover the cases
where one actually wants the scale of the circuit to be comparable to the curvature scale. Specifically, if
one wishes to employ the circuit to study gravitational phenomena, its gates must be distributed across
spacetime precisely in a way that is sensitive to curvature. Therefore, the construction of the map P
used in the proof of the theorem is more general than the construction in this alternative approach.

Finally, given the construction in the proof, the gates of the set of minimal nodes M1 define the
initial gate I, the set of maximal nodesMm define the final gate F , while the the gates of the remaining
intermediary sets of nodes M2, . . .Mm−1 define the operation OC . This is illustrated in the diagram
below (see Figure 12).

time

i1 i2 . . . i‖M1‖
I

f1 f2 . . . f‖Mm‖ F

· · · · · · OC

Figure 12: The spacetime diagram of the circuit C, with the initial gate I, the operation gate OC , and the final
gate F .

B Qutrit states, operators and bases

The notion of a qubit can be generalised from a 2-dimensional Hilbert space to a d-dimensional Hilbert
space. The generalised object is called “qudit” in d dimensions [29]. Since we are interested in describing
ordinary 2-dimensional qubits with an additional vacuum state, it is natural to consider qudits in d = 3,
called “qutrits”. We introduce the following notation for the basis states of a qutrit in H3 = C3:

|0〉 ≡

 1
0
0

 , |1〉 ≡

 0
1
0

 , |v〉 ≡

 0
0
1

 . (24)

The states |0〉 and |1〉 will be understood as the usual computational basis for a 2-dimensional qubit,
while the state |v〉 will represent the vacuum, i.e., the “absence of a qubit”. In cases when we take
sums over the basis vectors, we will assume that the vacuum state carries the index 2, i.e., |v〉 ≡ |2〉,
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so that we can write
2∑
i=0
|i〉 = |0〉+ |1〉+ |v〉 , and

1∑
i=0
|i〉 = |0〉+ |1〉 . (25)

Using this notation, we write the unnormalised maximally correlated states for the qutrit and the qubit
as

|1〉〉 =
2∑
i=0
|i〉|i〉 = |0〉|0〉+ |1〉|1〉+ |v〉|v〉 ∈ H3 ⊗H3 , |1〉〉 =

1∑
i=0
|i〉|i〉 = |0〉|0〉+ |1〉|1〉 ∈ H2 ⊗H2 ,

(26)
so that

|1〉〉 = |1〉〉+ |v〉|v〉 . (27)
One can also introduce the standard Hilbert-Schmidt basis in the space L(H3) of linear operators

on H3. This basis consists of 9 matrices 3× 3, labeled as λ0, . . . , λ8, as follows:

• the three symmetric matrices

λ1 =
√

3
2

 0 1 0
1 0 0
0 0 0

 , λ2 =
√

3
2

 0 0 1
0 0 0
1 0 0

 , λ3 =
√

3
2

 0 0 0
0 0 1
0 1 0

 , (28)

• the three antisymmetric matrices

λ4 =
√

3
2

 0 −i 0
i 0 0
0 0 0

 , λ5 =
√

3
2

 0 0 −i
0 0 0
i 0 0

 , λ6 =
√

3
2

 0 0 0
0 0 −i
0 i 0

 , (29)

• and the three diagonal matrices

λ7 =
√

3
2

 1 0 0
0 −1 0
0 0 0

 , λ8 = 1√
2

 1 0 0
0 1 0
0 0 −2

 , λ0 =

 1 0 0
0 1 0
0 0 1

 . (30)

The matrix λ0 is the unit matrix, while λ1, . . . , λ8 are self-adjoint, traceless, and orthogonal with
respect to the standard scalar product:

λ†i = λi , Trλi = 0 , Trλ†iλj = 3δij , i = 1, . . . , 8 . (31)

They represent the generators of the SU(3) group, and are known as the Gell-Mann matrices (up to a
normalisation factor

√
3/2).

If we denote Hv as the 1-dimensional vacuum-spanned subspace of H3, one can see that L(H2) ⊕
L(Hv) ⊂ L(H3). In particular, if we denote the standard Pauli matrices as σx, σy, σz and the unit
2× 2 matrix as I2, they form the basis in L(H2), and the qubit basis can thus be constructed as

√
2
3λ1 =

 σx
0
0

0 0 0

 , √
2
3λ4 =

 σy
0
0

0 0 0

 , √
2
3λ7 =

 σz
0
0

0 0 0

 , (32)

along with

2
3λ0 +

√
2

3 λ8 =

 I2
0
0

0 0 0

 . (33)

Also, the vacuum space L(Hv) is one-dimensional, and the basis is

1
3λ0 −

√
2

3 λ8 =

 0 0 0
0 0 0
0 0 1

 . (34)
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C Process matrix evaluation
Let us give an explicit step by step evaluation of the probability distribution for the 4-event process
discussed in the text, using the process matrix formalism. The complete spacetime diagram of the
process is given as (see Figure 13):

space

timeti t1 t2 tf

Alice

Bob

beam
splitter

Si Sf

A

B′B

A′

PA

PB

I

TA

TB

F

Figure 13: Spacetime diagram of the 4-event implementation of the quantum switch. The internal structures of the
composite gates I and F are explicitly depicted.

The composite event I consists of the two preparation events PA, PB, and the initial beam splitting
event Si, while F consists of the recombination event Sf and the measurement events TA and TB.

The corresponding circuit diagram is obtained from the above one by promoting each event of
interaction to a gate, and the propagation of each particle to a channel. This leads to the following
circuit diagram (see Figure 14):

PA

PB
Si

A

B

A′

B′

Sf

TA

TB

I F

Figure 14: Circuit diagram of the 4-event implementation of the quantum switch. The internal structures of the
composite gates I and F are explicitly depicted.

Its structure is in one-to-one correspondence with the spacetime diagram for the 4-event process,
where the preparation and measurement spacetime events I and F have been split into three sub-gates
each, for clarity.

The operations on each of the gates are given as follows. The preparation gate PA maps from the
input Hilbert space PAI

to the output Hilbert space PAO
, and analogously for gate PB. The input

spaces are trivial, dimPAI
= dimPBI

= 1, while each output space is spanned by vectors |0〉, |1〉
and |v〉. Here, |0〉 and |1〉 represent the two orthogonal qubit states (say, vertical and horizontal
polarisations along certain axis in 3D space), while |v〉 is the vacuum state, representing the absence
of particles in the corresponding arm of the interferometer. The operations performed at these gates,
PA = |Ψ〉 and PB = |v〉, specify the initial conditions for the rest of the circuit diagram, and are
described by the Choi-Jamiołkowski (CJ) states as

|P ∗A〉〉PAI
PAO = |Ψ∗〉PAO , |P ∗B〉〉PBI

PBO = |v〉PBO . (35)

Here, ∗ denotes the complex conjugation.
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Analogously, the target gates TA and TB facilitate the final measurement outcomes of the circuit
diagram. The input spaces TAI

and TBI
are three-dimensional, spanned over the two qubit states and

the vacuum, while the output spaces are one-dimensional. The operations performed at these gates,
Tα = 〈α| and Tβ = 〈β|, read out the measurement results α, β ∈ {0, 1, v}. The corresponding CJ states
are given as

|T ∗α〉〉
TAI

TAO = |α〉TAI , |T ∗β 〉〉
TBI

TBO = |β〉TBI . (36)

The gates A, A′, B and B′ perform the unitaries U and V . The input and output spaces AI and AO
of the Alice’s gate A are both spanned by vectors |0〉, |1〉 and |v〉, and analogously for the input and
output spaces of the remaining three gates. Assuming that in her (spatially) local laboratory Alice
performs the unitary U on the particle’s internal degree of freedom, the induced operation between
the three-dimensional spaces AI and AO that include the vacuum states is given by

ŨAOAI = UAOAIPAIAI
01 + IAOAIPAIAI

v , (37)

where PAIAI
01 = |0〉AI 〈0|AI + |1〉AI 〈1|AI , PAIAI

v = |v〉AI 〈v|AI , and IAOAI represents the identity map
between the Hilbert spaces AO and AI . The analogous construction also holds for the gate A′, so the
respective CJ states for the gates A and A′ are then given by:

|Ũ∗〉〉AIAO =
[
IAIAI ⊗ (Ũ∗)AOAI

]
|1〉〉AIAI ,

|Ũ∗〉〉A
′
IA

′
O =

[
IA

′
IA

′
I ⊗ (Ũ∗)A′

OA
′
I

]
|1〉〉A

′
IA

′
I .

(38)

Here, the “transport vector” is given by (for details of the process matrix formalism for the case of
three-dimensional spaces — qutrits, see Appendix B):

|1〉〉 = |0〉|0〉+ |1〉|1〉+ |v〉|v〉 . (39)

Bob performs V in his (spatially) local laboratory, and therefore the CJ states for the gates B and B′

are given as:

|Ṽ ∗〉〉BIBO =
[
IBIBI ⊗ (Ṽ ∗)BOBI

]
|1〉〉BIBI ,

|Ṽ ∗〉〉B
′
IB

′
O =

[
IB

′
IB

′
I ⊗ (Ṽ ∗)B′

OB
′
I

]
|1〉〉B

′
IB

′
I .

(40)

The gates Si and Sf act as beam splitters, i.e., they both perform the same Hadamard operation
H, given as follows. The beam splitter input and output spaces consist of the Alice’s and Bob’s
factor spaces. For the case of the Alice’s input space, we have SAI

= span{|0〉SAI , |1〉SAI , |v〉SAI }, and
analogously for the output space, as well as for Bob’s factor spaces. The overall input and output
beam splitter spaces are therefore defined as SI = S(AB)I

= SAI
⊗SBI

and SO = S(AB)O
= SAO

⊗SBO
.

Finally, the unitary matrix associated to gate S representing the action of the balanced Hadamard
beam splitter is given by:

HSOSI = 1√
2

(
|0〉SAO |v〉SBO + |v〉SAO |0〉SBO

)
〈0|SAI 〈v|SBI

+ 1√
2

(
|1〉SAO |v〉SBO + |v〉SAO |1〉SBO

)
〈1|SAI 〈v|SBI

+ 1√
2

(
|0〉SAO |v〉SBO − |v〉SAO |0〉SBO

)
〈v|SAI 〈0|SBI

+ 1√
2

(
|1〉SAO |v〉SBO − |v〉SAO |1〉SBO

)
〈v|SAI 〈1|SBI .

(41)

The beam splitter acts such that the system coming from the Alice’s side comes into an equal super-
position of the two output spatial modes coming to Alice and Bob, with zero relative phase, while the
system coming from the Bob’s side (blue line) comes into an equal superposition of the two output
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spatial modes with relative phase π. Thus, in the output space the correlation between the Alice’s and
Bob’s vacuum state is the opposite as in the input case. The corresponding CJ state is then

|H∗〉〉SISO =
[
ISISI ⊗ (H∗)SOSI

]
|1〉〉SISI , (42)

where the transport vector |1〉〉 for the beam splitter, when projected to a single-particle subspace, is
given by

|1〉〉 = |0v〉|0v〉+ |1v〉|1v〉+ |v0〉|v0〉+ |v1〉|v1〉 . (43)

Note that the full transport vector contains nine terms instead of the above four, but for the purpose
of this paper, we do not need those five additional terms.

The process vector encodes the wires between the gates, and it is being constructed by taking the
tensor product over appropriate transport vectors |1〉〉 for Alice’s and Bob’s qutrits, see equations (26)
and (27), such that each transport vector corresponds to one wire in the circuit diagram, connecting
the output of the source gate to the input of the target gate. The process vector is thus given as:

|W4-event〉〉 = |1〉〉PAO
Si

AI |1〉〉PBO
Si

BI︸ ︷︷ ︸
initial

|1〉〉S
i
AO

AI |1〉〉AOB
′
I |1〉〉B

′
OS

f
BI︸ ︷︷ ︸

blue

|1〉〉S
i
BO

BI |1〉〉BOA
′
I |1〉〉A

′
OS

f
AI︸ ︷︷ ︸

red

|1〉〉S
f
AO

TAI |1〉〉S
f
BO

TBI︸ ︷︷ ︸
final

.
(44)

One can now evaluate the probability distribution

p(α, β) =
∥∥∥M(α, β)

∥∥∥2
, (45)

where the probability amplitudeM(α, β) is constructed by acting with the tensor product of all gate
operations (35), (42), (38), (40), (42) and (36), on the process vector (44). Since each of the gate
operations acts in its own part of the total Hilbert space, the order of application of these operations
is immaterial, and we are free to choose the most convenient one.

To see what happens when the operations (35) of the preparation gates act on the process vector,
let us evaluate the action of |P ∗A〉〉

PAI
PAO on |1〉〉PAO

Si
AI :

〈〈P ∗A|
PAI

PAO |1〉〉PAO
Si

AI = 〈Ψ∗|PAO

2∑
k=0
|k〉PAO |k〉S

i
AI =

2∑
k=0

(
〈Ψ|k〉

)∗
|k〉S

i
AI = |Ψ〉S

i
AI . (46)

An analogous calculation can be performed for |P ∗B〉〉
PBI

PBO , so the action of both preparation opera-
tions (35) on the process vector (44) evaluates to:(

〈〈P ∗A|
PAI

PAO ⊗ 〈〈P ∗B|
PBI

PBO

)
|W4-event〉〉 =

|Ψ〉S
i
AI |v〉S

i
BI |1〉〉S

i
AO

AI |1〉〉AOB
′
I |1〉〉B

′
OS

f
BI︸ ︷︷ ︸

blue

|1〉〉S
i
BO

BI |1〉〉BOA
′
I |1〉〉A

′
OS

f
AI︸ ︷︷ ︸

red

|1〉〉S
f
AO

TAI |1〉〉S
f
BO

TBI︸ ︷︷ ︸
final

.

(47)

Next one acts with the initial Hadamard operation (42) on this process vector, transforming it into(
〈〈P ∗A|

PAI
PAO ⊗ 〈〈P ∗B|

PBI
PBO ⊗ 〈〈S∗|S

i
(AB)I

Si
(AB)O

)
|W4-event〉〉 =

1√
2

(
|Ψ〉AI |v〉BI + |v〉AI |Ψ〉BI

)
|1〉〉AOB

′
I |1〉〉B

′
OS

f
BI︸ ︷︷ ︸

blue

|1〉〉BOA
′
I |1〉〉A

′
OS

f
AI︸ ︷︷ ︸

red

|1〉〉S
f
AO

TAI |1〉〉S
f
BO

TBI︸ ︷︷ ︸
final

≡ |WQS4〉〉 .

(48)
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The resulting process vector is the outcome of the action of the composite gate I on (44), before the
actions of Alice and Bob (note that often in the literature this is taken as the initial process vector in
the analysis):

|WQS4〉〉 = 1√
2

(
|Ψ〉AI |v〉BI + |v〉AI |Ψ〉BI

)
|1〉〉AOB

′
I |1〉〉BOA

′
I |1〉〉(A

′
OB

′
O)S(AB)I |1〉〉S(AB)O

T(AB)I . (49)

Continuing the computation, the action of the remaining gate operations (38), (40), (36) and (42) on
the process vector (49) gives us the probability amplitude,

M(α, β) ≡(
〈〈Ũ∗|AIAO ⊗ 〈〈Ũ∗|A

′
IA

′
O ⊗ 〈〈Ṽ ∗|BIBO ⊗ 〈〈Ṽ ∗|B

′
IB

′
O ⊗ 〈〈H∗|SISO ⊗ 〈〈T ∗α|

TAI
TAO ⊗ 〈〈T ∗β |

TBI
TBO

)
|WQS4〉〉 .

(50)
Let us now calculate the action of 〈〈Ũ∗|AIAO on (49):

〈〈Ũ∗|AIAO |WQS4〉〉 = 〈〈1|AIAI

[
IAIAI ⊗ (ŨT )AOAI

]
|WQS4〉〉 . (51)

Looking at the structure of the process vector, one sees that the resulting new process vector will have
the form

〈〈Ũ∗|AIAO |WQS4〉〉 = 1√
2

(
|X〉B

′
I |v〉BI + |Y 〉B

′
I |Ψ〉BI

)
|1〉〉BOA

′
I |1〉〉(A

′
OB

′
O)S(AB)I |1〉〉S(AB)O

T(AB)I , (52)

where |X〉B
′
I and |Y 〉B

′
I are shorthands for the expressions

|X〉B
′
I ≡ 〈〈1|AIAI

[
IAIAI ⊗ (ŨT )AOAI

]
|Ψ〉AI |1〉〉AOB

′
I (53)

and
|Y 〉B

′
I ≡ 〈〈1|AIAI

[
IAIAI ⊗ (ŨT )AOAI

]
|v〉AI |1〉〉AOB

′
I , (54)

which need to be evaluated. The explicit computation of the first expression goes as follows:

|X〉B
′
I = 〈〈1|AIAI

[
IAIAI ⊗ (ŨT )AOAI

]
|Ψ〉AI |1〉〉AOB

′
I

=
2∑

k=0
〈k|AI 〈k|AI

[
IAIAI ⊗ (ŨT )AOAI

]
|Ψ〉AI

2∑
m=0
|m〉AO |m〉B

′
I

=
2∑

m=0

[ 2∑
k=0

(
〈k|AI IAIAI |Ψ〉AI

) (
〈k|AI (ŨT )AOAI |m〉AO

)]
|m〉B

′
I

=
2∑

m=0

[ 2∑
k=0
〈k|Ψ〉AI 〈m|AO ŨAOAI |k〉AI

]
|m〉B

′
I

=
2∑

m=0

[
〈m|AO ŨAOAI |Ψ〉AI

]
|m〉B

′
I .

(55)

Using (37), the coefficient in the brackets can be evaluated as

〈m|AO ŨAOAI |Ψ〉AI = 〈m|AO

(
UAOAIPAIAI

01 + IAOAIPAIAI
v

)
|Ψ〉AI = 〈m|U |Ψ〉 , (56)

since PAIAI
01 |Ψ〉AI = |Ψ〉AI and PAIAI

v |Ψ〉AI = 0. Thus, we have

|X〉B
′
I =

2∑
m=0
〈m|U |Ψ〉 |m〉B

′
I = U |Ψ〉B

′
I ≡ |UΨ〉B

′
I . (57)
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The computation of |Y 〉B
′
I proceeds in an analogous way to (55), and the result is

|Y 〉B
′
I =

2∑
m=0

[
〈m|AO ŨAOAI |v〉AI

]
|m〉B

′
I . (58)

Again, using (37), the coefficient in the brackets can be evaluated as

〈m|AO ŨAOAI |v〉AI = 〈m|AO

(
UAOAIPAIAI

01 + IAOAIPAIAI
v

)
|v〉AI = 〈m|v〉 = δmv , (59)

since PAIAI
01 |v〉AI = 0 and PAIAI

v |v〉AI = |v〉AI . Thus, we have

|Y 〉B
′
I =

2∑
m=0

δmv |m〉B
′
I = |v〉B

′
I . (60)

Finally, substituting (57) and (60) back into (52), we obtain:

〈〈Ũ∗|AIAO |WQS4〉〉 = 1√
2

(
|UΨ〉B

′
I |v〉BI + |v〉B

′
I |Ψ〉BI

)
|1〉〉BOA

′
I |1〉〉(A

′
OB

′
O)S(AB)I |1〉〉S(AB)O

T(AB)I . (61)

One should note, comparing (61) with (49), that the action of the gate A operation onto the process
vector effectively performs the following transformation,

|Ψ〉AI → |UΨ〉AO → |UΨ〉B
′
I , |v〉AI → |v〉AO → |v〉B

′
I , (62)

where the transport vector |1〉〉AOB
′
I has been utilised for “transporting” the state from the output AO

of gate A to the input B′I of the gate B′, in line with the spacetime diagram. This scheme repeats
itself with the action of all remaining gate operations on (61). In particular, the subsequent action of
the gate B operation gives:(

〈〈Ṽ ∗|BIBO ⊗ 〈〈Ũ∗|AIAO
)
|WQS4〉〉 =

1√
2

(
|UΨ〉B

′
I |v〉A

′
I + |v〉B

′
I |VΨ〉A

′
I

)
|1〉〉(A

′
OB

′
O)S(AB)I |1〉〉S(AB)O

T(AB)I , (63)

which can also be verified with an explicit calculation similar to the above. Continuing on, the opera-
tions at the gates A′ and B′ give:(

〈〈Ṽ ∗|B
′
IB

′
O ⊗ 〈〈Ũ∗|A

′
IA

′
O ⊗ 〈〈Ṽ ∗|BIBO ⊗ 〈〈Ũ∗|AIAO

)
|WQS4〉〉 =

1√
2

(
|V UΨ〉SBI |v〉SAI + |v〉SBI |UVΨ〉SAI

)
|1〉〉S(AB)O

T(AB)I .
(64)

Next, the action of the beam splitter at the gate Sf gives(
〈〈H̃∗|SISO ⊗ 〈〈Ṽ ∗|B

′
IB

′
O ⊗ 〈〈Ũ∗|A

′
IA

′
O ⊗ 〈〈Ṽ ∗|BIBO ⊗ 〈〈Ũ∗|AIAO

)
|WQS4〉〉 =

1
2

1∑
i=0

(
〈i| {U , V } |Ψ〉 |i〉TAI |v〉TBI + 〈i| [U , V ] |Ψ〉 |v〉TAI |i〉TBI

)
.

(65)

Finally, the action of the operations of the target gates TA and TB gives us the probability amplitude
as a function of the measurement outcomes α and β,

M(α, β) ≡(
〈〈Ũ∗|AIAO ⊗ 〈〈Ũ∗|A

′
IA

′
O ⊗ 〈〈Ṽ ∗|BIBO ⊗ 〈〈Ṽ ∗|B

′
IB

′
O ⊗ 〈〈H∗|SISO ⊗ 〈〈T ∗α|

TAI
TAO ⊗ 〈〈T ∗β |

TBI
TBO

)
|WQS4〉〉
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= 1
2
[
δβv〈α| {U , V } |Ψ〉+ δαv〈β| [U , V ] |Ψ〉

]
. (66)

At this point we can employ (45) and calculate the probability distribution,

p(α, β) = 1
4
[
δβv

∣∣∣〈α| {U , V } |Ψ〉∣∣∣2 + δαv
∣∣∣〈β| [U , V ] |Ψ〉

∣∣∣2 ] , (67)

where we have used the fact that the vacuum state |v〉 is orthogonal to both {U , V } |Ψ〉 and
[U , V ] |Ψ〉. In particular, we see that for i ∈ {0, 1} we have

p(i, v) = 1
4

∣∣∣〈i| {U , V } |Ψ〉∣∣∣2 , p(v, i) = 1
4

∣∣∣〈i| [U , V ] |Ψ〉
∣∣∣2 , (68)

while all other choices of α and β give p(α, β) = 0. The total probability that Alice will detect a
particle is given by the marginal

pA =
2∑
i=1

p(i, v) = 1
2
(
1 + Re 〈Ψ|U †V †UV |Ψ〉

)
, (69)

while the corresponding total probability that Bob will detect a particle is

pB =
2∑
i=1

p(v, i) = 1
2
(
1− Re 〈Ψ|U †V †UV |Ψ〉

)
. (70)

As a final point, we can verify that the probability distribution is correctly normalised. Using the fact
that the only nonzero values for the probability are given in (68), we have

ptotal =
2∑

α=0

2∑
β=0

p(α, β) = p(0, v) + p(1, v)︸ ︷︷ ︸
pA

+ p(v, 0) + p(v, 1)︸ ︷︷ ︸
pB

= 1 , (71)

as expected.
Instead of recombining the particle on the second beam splitter, one can consider the case in which

the final gate F consists only of local measurements performed onto a particle in the Alice’s and
Bob’s paths. In this case, the final gate is equivalent to two target gates TA and TB. Given that all
the processes considered are pure, the corresponding process vector for the 4-event quantum switch
implementation is given as (in order to compare the current with the previous works, we present the
process that starts after I, as was done in, say, [9]):

|WQS4〉〉 = 1√
2

(
|Ψ〉AI |v〉BI + |v〉AI |Ψ〉BI

)
|1〉〉AOB

′
I |1〉〉BOA

′
I |1〉〉A

′
OTAI |1〉〉B

′
OTBI . (72)

D 3-event process vector
The detailed spacetime diagram for the 3-event quantum switch is given below (see Figure 15).

The process vector for this case is obtained from (44) by identifying the spacetime positions of the
gates B and B′, yet keeping the corresponding Hilbert spaces in the mathematical description (i.e.,
keeping the dimensionality of the problem). Thus, the corresponding circuit is identical to the 4-event
circuit, and the process vector has the identical mathematical form as in the case of four gates. In
order to emphasise the physical difference between the two cases, instead of BI/O and B′I/O, we write
BI1/O1 and BI2/O2 , respectively:

|W3-event〉〉 = |1〉〉PAO
Si

AI |1〉〉PBO
Si

BI︸ ︷︷ ︸
initial

|1〉〉S
i
AO

AI |1〉〉AOBI2 |1〉〉BO2S
f
BI︸ ︷︷ ︸

blue

|1〉〉S
i
BO

BI1 |1〉〉BO1A
′
I |1〉〉A

′
OS

f
AI︸ ︷︷ ︸

red

|1〉〉S
f
AO

TAI |1〉〉S
f
BO

TBI︸ ︷︷ ︸
final

.
(73)

The final probability distribution is identical to the one for the 4-event process, given by (67).
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Figure 15: Spacetime diagram of the 3-event implementation of the quantum switch. The internal structures of the
composite gates I and F are explicitly depicted.

E 2-event
In this Appendix we present process vectors for the two gravitational switches discussed in the main
text. First, the process vector of the gravitational switch without recombination [15], is given by (since
the “control” is now played by gravity, it is thus denoted as G, instead of C):

|WQS2〉〉 = 1√
2

(
|0〉G|Ψ〉AI |1〉〉AOBI |1〉〉BOTBI + |1〉G|Ψ〉BI |1〉〉BOAI |1〉〉AOTAI

)
|1〉〉GTGI . (74)

It is then straightforward to obtain the process vector for the case of recombining only the gravity on
the final beam splitter Sf (a part of a bigger final gate F), obtaining the analogue of (49), while the
particle is not being recombined. Note that in this case the introduction of the vacuum state is not
necessary, as in each branch of superposition all gates are acting upon a particle.

In contrast to the above case, the process vector describing the gravitational 2-event quantum switch
with the recombination of both gravity and the particle is given as follows:

|W (r)
QS2
〉〉 = 1√

2

(
|0〉G|Ψ〉AI |1〉〉AOBI |1〉〉BOSPI + |1〉G|Ψ〉BI |1〉〉BOAI |1〉〉AOSPI

)
⊗|1〉〉GSGI |1〉〉(SGO

SPO
)(TGI

TPI
).

(75)

Here, P stands for “the particle” (whose corresponding input space SPI
is isomorphic to the tensor

product of Alice’s and Bob’s output spaces, SPI
' AO⊗BO), and S stands for a “beam splitter” (whose

corresponding input space is SI = SGI
⊗ SPI

, and analogously for the output space).
While defining the spaces SGI/O

, SPI/O
, TGI

, TPI
, and the vector |1〉〉(SGO

SPO
)(TGI

TPO
) is straight-

forward, it is not so for the “final” recombination vector |U∗BS〉〉
(SGI

SPI
)(SGO

SPO
). Namely, note that in

our gravitational switch all degrees of freedom, both gravitational and matter, are recombined by UBS
such that, by acting on the beam splitter input entangled state,

|Ψi〉SGI
SPI = 1√

2

(
|0〉SGI ⊗

[
UV |Ψ〉SPI

]
+ |1〉SGI ⊗

[
V U |Ψ〉SPI

])
, (76)

the overall output state is a product one, of the form

|Ψo〉SGO
SPO = |Γ〉SGO ⊗ (αUV + βV U) |Ψ〉SPO , (77)

where |Γ〉SGO is some (not necessarily classical) state of gravity. The above evolution is, at least in
principle, allowed by the quantum laws, which is all that we need to know regarding the action of UBS
at this point. Its action on the rest of the overall Hilbert space is, for the purpose of our argument,
irrelevant, and can thus be chosen arbitrarily.
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Finally, we would like to note that the same type of the 4-, or 3-event quantum switches in classical
spacetimes can also be defined, resulting in the same type of the output state as (77), with the gravity
degree of freedom being replaced by any additional matter degree of freedom that plays the role of the
control.

F Various implementations of the gravitational switch
In this Appendix we present a few representative additional constructions of the gravitational quantum
switch. First, we start with a 2-event switch for which the requirement (i) from Subsection 4.3 is not
satisfied. It is obvious from the diagram on the left that each of the photon’s superposed trajectories
fail to meet at the boundary region, violating requirement (i), see the left diagram of Figure 16. Next,
we proceed with the 2-event implementation for which requirement (i) is satisfied, but the requirement
(ii) is not, since the superposed trajectories fail to recombine. This is depicted on the right diagram
of Figure 16.

Finally, we present a 4-event implementation for which both requirements (i) and (ii) are satisfied
(see Figure 17).

Of course, other variations are possible as well.

Friend particleAlice Bob

Ã
B̃F̃A

F̃A

F̃B
F̃B

I

F

Friend particleAlice Bob

Ã
B̃F̃A

F̃A

F̃B
F̃B

I

F

Figure 16: The spacetime diagrams of a 2-event gravitational switch implementations, with Friend’s measurements,
which fail to distinguish them from the optical implementation of the quantum switch.

Friend particleAlice Bob

A

A′

B

B′FAA′

FBB′

I

F

Figure 17: The spacetime diagram of a 4-event gravitational switch implementation, with Friend’s measurement,
which fails to distinguish it from the 2-event implementation of the gravitational switch.
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This work overviews the single-particle
two-way communication protocol recently
introduced by del Santo and Dakić (dSD),
and analyses it using the process matrix
formalism. We give a detailed account of
the importance and the operational mean-
ing of the interaction of an agent with
the vacuum — in particular its role in
the process matrix description. Our anal-
ysis shows that the interaction with the
vacuum should be treated as an opera-
tion, on equal footing with all other in-
teractions. This raises the issue of count-
ing such operations in an operational man-
ner. Motivated by this analysis, we apply
the process matrix formalism to capped
Fock spaces using the framework of second
quantisation, in order to characterise pro-
tocols with an indefinite number of identi-
cal particles.

1 Introduction

In recent years there have been advances in quan-
tum information theory related to new techniques
for discussing quantum circuits and quantum
computation. One of those techniques is the re-
cently developed process matrix formalism [1].
This formalism is general enough to describe all
known quantum processes, in particular the su-
perposed orders of operations in a quantum cir-
cuit. Moreover, its most prominent feature is
that it allows for a description of more general
situations of indefinite causal orders of spacetime

Ricardo Faleiro: ricardofaleiro@tecnico.ulisboa.pt
Nikola Paunković: npaunkov@math.tecnico.ulisboa.pt
Marko Vojinović: vmarko@ipb.ac.rs

points. A formal example of such a process has
been introduced and discussed in [1], leading to
the violation of the so-called causal inequalities.
The latter represent device-independent condi-
tions that need to be satisfied in order for a given
process to have a well-defined causal order. It
is still an open question whether such a process
is physical and can be realised in nature. Also,
a lot of attention in the literature has been de-
voted to the quantum switch operation, which has
been discussed through both theoretical descrip-
tions [2, 3, 4, 5] and experimental implementa-
tions [6, 7, 8].

One of the interesting aspects of the quantum
switch is that it gives rise to a superposition of or-
ders of quantum operations. In a recent work [9],
the difference between the superposition of orders
of quantum operations and the superposition of
causal orders in spacetime was discussed in detail,
and it was demonstrated that the latter can in
principle be realised only in the context of quan-
tum gravity (see also [10, 11, 12]). The detailed
analysis of the causal structure of the quantum
switch has revealed one important qualitative as-
pect of the process matrix description — in order
to properly account for the causal structure of
an arbitrary process, it is necessary to introduce
the notion of the quantum vacuum as a possible
physical state. Otherwise, the naive application
of the process matrix formalism may suggest a
misleading conclusion that quantum switch im-
plementations in flat spacetime feature genuine
superpositions of spacetime causal orders. This
demonstrates the importance of the concept of
vacuum in quantum information processing. Re-
garding the general role of the vacuum in quan-
tum circuits and optical experiments, see [13] and
[14, 15], respectively, and the references therein.
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Simultaneously with these developments, an-
other interesting quantum process has been re-
cently proposed [16] by del Santo and Dakić
— dSD protocol (see also subsequent theoretical
[17, 18] and experimental work [19]). As it turns
out, while this process enables Alice and Bob to
guess each other’s input bits with certainty by
exchanging a single particle only once, it cannot
be correctly described within the process matrix
formalism without the introduction of the inter-
action between the vacuum and the apparatus as
an operation. Thus, it represents an additional
motivation to introduce the vacuum state into
the process matrix formalism, independent of the
reasons related to the description of the quantum
switch process.

Moreover, while the dSD protocol employs only
one photon, it is also relevant for multiphoton
processes, which opens the question of the treat-
ment of identical particles within the process ma-
trix formalism. Also, taking into account the
presence of the vacuum state, one is steered to-
wards the application of the abstract process ma-
trix formalism to systems with variable number of
identical particles, to the second quantisation and
ultimately generalisation to quantum field the-
ory (QFT). See also a related work on the causal
boxes framework [20].

In this work we give a detailed description and
treatment of dSD protocol within the process ma-
trix formalism. We analyse in detail the role of
the vacuum in the protocol and the formalism,
and its operational interpretation. Specifically,
our aim is to discuss the following question:

Is the interaction with the vacuum an operation,
or not?

Our analysis of dSD protocol leads to a conclusion
that the interaction with the vacuum should be
considered an operation. The alternative would
mean that one could extract information from
the system at the final moment of the protocol
without performing an operation at all. Since
the same physical situation should always be de-
scribed in the same way, we conclude that the
interaction with the vacuum should be treated as
an operation, and thus as a resource, in all quan-
tum information protocols. This includes the op-
tical implementation of the quantum switch pro-
tocol, leading one to infer that it features four,
rather than just two operations, as was claimed in

a number of papers [3, 4, 5, 6, 7, 8]. In addition,
we make use of the dSD protocol as an illumina-
tive example to apply the process matrix formal-
ism to multipartite systems of identical particles.

The paper is organised as follows. In Section 2
we give a short overview of the process matrix
formalism and the dSD protocol. Section 3 is
devoted to the process matrix formalism descrip-
tion of dSD protocol, and to the discussion of the
operational role and importance of the vacuum
state for its description. In particular, in Sub-
section 3.4 we present the argument for our main
conclusion, namely that the interaction with the
vacuum should be considered an operation. In
Section 4 we provide the basic rules for the appli-
cation of the process matrix formalism to identi-
cal multiparticle systems. Section 5 is devoted
to the summary of our results, discussion and
prospects for future research. The Appendix con-
tains various technical details of the calculations.

2 State of the art

In this section, we present an overview of the
relevant background results. First, we give a
short introduction to the process matrix formal-
ism, and then we present the dSD protocol. This
overview is not intended to be complete or self-
contained, but merely of informative type. The
reader should consult the literature for more de-
tails.

2.1 The process matrix formalism

The process matrix formalism is based on an idea
of a set of laboratories, interacting with the out-
side world by exchanging quantum systems. Each
laboratory is assumed to be spatially local in the
sense that one can consider its size negligible for
the problem under discussion. Inside the labora-
tory, it is assumed that the ordinary laws of quan-
tum theory hold. The laboratory interacts with
the outside world by receiving an input quantum
system and by sending an output quantum sys-
tem. Inside the laboratory, the input and output
quantum systems are being manipulated using
the notion of an instrument, denoting the most
general operation one can perform over quantum
systems. Each interaction is also assumed to be
localised in time, such that each operation of a
given laboratory has a separate spacetime point
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assigned to it (see Subsection 3.4 for a discus-
sion of time delocalised laboratories and opera-
tions [21]). Thus, we introduce the notion of a
gate, which represents the action of an instru-
ment at a given spacetime point (see Section 2
of [9]); for simplicity, both the gate and its cor-
responding spacetime point will be denoted by
the same symbol, G. By GI and GO we denote
the Hilbert spaces of the input and the output
quantum systems, respectively. These Hilbert
spaces are assumed to be finite-dimensional or
trivial. The action of the instrument is described
by an operator, MG

x,a : GI ⊗ G∗I → GO ⊗ G∗O,
which may depend on some classical input in-
formation a available to the gate G, and some
readouts x of eventual measurement results that
may take place in G. Thus, the instrument maps
a generic mixed input state ρI into the output
state ρO =MG

x,a(ρI).
Given such a setup, one defines a process, de-

noted W, as a functional over the instruments of
all gates, as

p(x, y, . . . |a, b, . . . ) =W(MG(1)
x,a ⊗MG(2)

y,b ⊗ . . . ) ,

where p(x, y, . . . |a, b, . . . ) represents the proba-
bility of obtaining measurement results x, y, . . . ,
given the inputs a, b, . . . . In order for the right-
hand side to be interpreted as a probability dis-
tribution, the process W must satisfy three basic
axioms,

W ≥ 0 ,

TrW =
∏

i
dimG

(i)
O ,

W = PG(W) ,

(1)

where PG is a certain projector onto a subspace
of
⊗
i

(
G

(i)
I ⊗G

(i)
O

)
which, together with the sec-

ond requirement, ensures the normalisation of the
probability distribution (see [3] for details).

In order to have a computationally manage-
able formalism, one often employs the Choi-
Jamiołkowski (CJ) map over the instrument oper-
ations, such that a given operationMG

x,a is being
represented by a matrix,

MG
x,a =

[ (
I ⊗MG

x,a

)
(|1〉〉〈〈1|)

]T
∈ (GI ⊗GO)⊗ (GI ⊗GO)∗,

(2)

where

|1〉〉 ≡
∑
i

|i〉 ⊗ |i〉 ∈ GI ⊗GI (3)

is the so-called transport vector, representing the
non-normalised maximally entangled state, and
I is the identity operator. Then, one can de-
scribe the process W using the process matrix W
to write

p(x, y, . . . |a, b, . . . ) =

Tr
[
(MG1

x,a ⊗M
G2
y,b ⊗ . . . )W

]
.

(4)

Finally, if an instrumentMG
x,a is linear, one can

also use a corresponding “vector” notation (see
Appendix A.1 in [3]),

|(MG
x,a)∗〉〉 ≡

[
I ⊗ (MG

x,a)∗
]
|1〉〉 ∈ GI⊗GO , (5)

so that

MG
x,a = |(MG

x,a)∗〉〉〈〈(MG
x,a)∗| . (6)

In cases where all instruments are linear, and
in addition the process matrix W is a one-
dimensional projector, one can introduce the the
corresponding process vector |W 〉〉, such thatW =
|W 〉〉〈〈W |, and rewrite (4) in the form:

p(x, y, . . . |a, b, . . . ) =∥∥∥(〈〈MG(1)∗
x,a | ⊗ 〈〈MG(2)∗

y,b | ⊗ . . .
)
|W 〉〉

∥∥∥2
.

(7)

2.2 The dSD protocol
In a recent paper [16], del Santo and Dakić have
introduced a protocol which allows two agents to
guess each other’s input bits with certainty by
exchanging a single particle only once. The pro-
tocol goes as follows. Initially, a single particle
is prepared in a superposition state of being sent
to Alice and being sent to Bob. Upon receiving
the particle, both Alice and Bob perform unitary
operations on it, encoding their bits of informa-
tion, a and b, respectively, about the outcomes of
their coin tosses. They do this by changing the
local phase of the particle by (−1)a and (−1)b.
The particle is subsequently forwarded to a beam
splitter, and after that again to Alice and Bob,
who now measure the presence or absence of the
particle.

This way, the state of the particle stays in co-
herent superposition of different paths in a Mach-
Zehnder interferometer. The interference of its
paths gives rise to deterministic outcome that de-
pends on the relative phase eiφ = (−1)a⊕b be-
tween the two branches: in case φ = 0, the parti-
cle will end up in Alice’s laboratory, while other-
wise it will end in Bob’s. Thus, knowing their own
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inputs and the outcomes of their local measure-
ments, both agents can determine each other’s in-
puts, allowing for two-way communication using
only one particle. This is clearly impossible in
classical physics, demonstrating yet another ex-
ample of the advantage of quantum over classical
strategies.

The crucial aspect of the protocol lies in the
fact that the absence of the particle represents
a useful piece of information for an agent. This
gives rise to the notion of the vacuum state as
a carrier of information, playing the central role
in the protocol. Thus, in order to describe the
protocol using the process matrix formalism, one
has to incorporate the notion of the vacuum in
the formalism itself. We show this in detail in
the next section.

It is interesting to note that the crucial role of
the vacuum plays an important part not only in
the dSD protocol, but also in a completely dif-
ferent setup that has been discussed a lot in re-
cent literature, namely the quantum switch [2].
As analysed in detail in [9], if one takes care to
distinguish the two temporal positions of a given
laboratory and introduces the notion of a vac-
uum explicitly, one can demonstrate that the op-
tical implementations of the quantum switch in
flat spacetime do not feature any superposition
of causal orders induced by the spacetime met-
ric. Instead, it was argued that superpositions
of spacetime causal orders can be present only
within the context of a theory of quantum grav-
ity. As we shall see below, the notion of the inter-
action with the vacuum will prove essential to the
process matrix description of the dSD protocol as
well.

3 Process matrix description of the
dSD protocol

3.1 The spacetime diagram

We begin by drawing the spacetime diagram of
the process corresponding to the dSD protocol
(see Figure 1).

At the initial time ti the laser L creates a pho-
ton and shoots it towards the beam splitter S,
which at time t1 performs the Hadamard opera-
tion and entangles it with the incoming vacuum
state (described by the dotted arrow from the
grey gate V ). The entangled state of the pho-

space

time

ti

t1

t2

t3

tf

0 Alice Bob

A

A′

B

B′

S

S′

L V

Figure 1: The complete spacetime diagram of the pro-
cess corresponding to the dSD protocol.

ton and the vacuum continues on towards Alice’s
and Bob’s gates A and B, respectively. At time
t2, Alice and Bob generate their random bits a
and b, and encode them into the phase of the in-
coming photon-vacuum system. The system then
proceeds to the beam splitter S′ which again per-
forms the Hadamard operation at time t3. The
photon-vacuum system then proceeds to the gates
A′ and B′, where it is measured at time tf by Al-
ice and Bob, respectively. Note that the spatial
distance ∆l between Alice and Bob is precisely
equal to the time distance between the generation
of the random bits and the final measurements,

∆l = c(tf − t2) ,

so that a single photon has time to traverse the
space between Alice and Bob only once. Also,
note that the gate V , which generates the vac-
uum state, corresponds to a “trivial instrument”,
since the vacuum does not require any physical
device to be generated. Nevertheless, the vacuum
is still a legitimate physical state of the EM field,
so the appropriate gate V has to be formally in-
troduced and accounted for in the process matrix
formalism calculations.

3.2 Formulation of the process matrix
Based on the spacetime diagram, we formulate
the process matrix description as follows. All
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spacetime points, where interaction between the
EM field and some apparatus may happen, are
assigned a gate and an operation which describes
the interaction. Each gate has an input and out-
put Hilbert space, as follows:

L : C → LO ,
V : C → VO ,

S : SI → SO ,
S′ : S′I → S′O ,

A : AI → AO ,
B : BI → BO ,

A′ : A′I → C ,
B′ : B′I → C .

The initial gates, L and V , have trivial input
spaces and nontrivial output spaces. The final
gates, A′ and B′, have trivial output spaces and
nontrivial input spaces. The gates A and B have
nontrivial input and output spaces. Each non-
trivial space is isomorphic toH1⊕H0 ⊂ F , where
H0 and H1 are the vacuum and single-excitation
subspaces of the Fock space F in perturbative
QED. Namely, by design of the dSD protocol, Al-
ice and Bob may exchange at most one photon,
which means that multiparticle Hilbert subspaces
of the Fock space can be omitted. Moreover, the
resulting probability distribution of the experi-
ment outcomes does not in principle depend on
the frequency or the polarisation of the photon in
use, so we can approximate the single-excitation
space as a one-dimensional Hilbert space. Given
that the vacuum Hilbert space H0 is by definition
one-dimensional, we can write

H0 = span{|0〉} ≡ C , H1 ≈ span{|1〉} ≡ C ,

so that H0 ⊕ H1 ≡ C ⊕ C. Here, |0〉 and |1〉
denote the states of the vacuum and the photon
in the occupation number basis of the Fock space.
Therefore, we have

LO ∼= VO ∼= AI ∼= AO ∼=
BI ∼= BO ∼= A′I

∼= B′I
∼= C⊕ C .

Finally, the input and output spaces of beam
splitters S and S′ are “doubled”, since a beam
splitter operates over two inputs to produce two
outputs. In particular,

SI = SLI ⊗ SVI ,
SO = SAO ⊗ SBO ,

S′I = S′AI ⊗ S′BI ,
S′O = S′AO ⊗ S′BO ,

where again

SLI
∼= SVI

∼= SAO
∼= SBO

∼=
S′AI
∼= S′BI

∼= S′AO
∼= S′BO

∼= C⊕ C .

With all relevant Hilbert spaces defined, we for-
mulate the action of each gate, using the CJ map
in the form (5). The gates L and V simply gen-
erate the photon and the vacuum,

|L∗〉〉LO = |1〉LO , |V ∗〉〉VO = |0〉VO , (8)

where ∗ is the complex conjugation. The action
of the beam splitters is

|S∗〉〉SISO =
[
ISISI ⊗ (H∗)SOSI

]
|1〉〉SISI , (9)

and

|S′∗〉〉S
′
IS

′
O =

[
IS

′
IS

′
I ⊗ (H∗)S′

OS
′
I

]
|1〉〉S

′
IS

′
I , (10)

where the Hadamard operator for S is defined as

HSOSI =
1√
2

(
|1〉S

A
O |0〉S

B
O + |0〉S

A
O |1〉S

B
O

)
〈1|S

L
I 〈0|S

V
I

+ 1√
2

(
|1〉S

A
O |0〉S

B
O − |0〉S

A
O |1〉S

B
O

)
〈0|S

L
I 〈1|S

V
I ,

and analogously for HS′
OS

′
I . The unit operator is

denoted as I. Next, in the gates A and B, Alice
and Bob generate their random bits a and b, and
encode them into the phase of the photon. The
corresponding actions are defined as

|A∗〉〉AIAO =
[
IAIAI ⊗ (A∗)AOAI

]
|1〉〉AIAI , (11)

and

|B∗〉〉BIBO =
[
IBIBI ⊗ (B∗)BOBI

]
|1〉〉BIBI , (12)

where

AAOAI = (−1)a|1〉AO〈1|AI ⊕ |0〉AO〈0|AI ,

and

BBOBI = (−1)b|1〉BO〈1|BI ⊕ |0〉BO〈0|BI .

Finally, the gates A′ and B′ describe Alice’s and
Bob’s measurement of the incoming state in the
occupation number basis,

|A′∗〉〉A
′
I = |a′〉 , |B′∗〉〉B

′
I = |b′〉 , (13)

where their respective measurement outcomes a′

and b′ take values from the set {0, 1}, depending
on whether the vacuum or the photon has been
measured, respectively.

After specifying the actions of the gates, the
last step is the construction of the process vector
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|WdSD〉〉 itself. The dSD protocol assumes that
the state of the photon remains unchanged dur-
ing its travel between the gates. Therefore, the
process vector will be a tensor product of trans-
port vectors (3), one for each line connecting two
gates in the spacetime diagram. The input and
output spaces of the gates connected by the line
determine the spaces of the corresponding trans-
port vector. Thus, the total process vector is:

|WdSD〉〉 =

|1〉〉LOS
L
I |1〉〉VOS

V
I |1〉〉S

A
OAI |1〉〉S

B
OBI

|1〉〉AOS
′A
I |1〉〉BOS

′B
I |1〉〉S

′A
O A′

I |1〉〉S
′B
O B′

I .

(14)

3.3 Evaluation of the probability distribution

Now that the process vector and the operations
of all gates have been specified in detail, we can
evaluate the probability distribution

p(a′, b′|a, b) = ‖M‖2 , (15)

where the probability amplitude M is obtained
by taking the scalar product of |WdSD〉〉 with the
tensor product of all gates, see (7). It is most in-
structive to perform the computation iteratively,
taking the partial scalar product of |WdSD〉〉 with
each gate, one by one. The explicit calculation
of each step is based on two lemmas from Ap-
pendix A.

We begin by taking the partial scalar prod-
uct of (14) and the preparation gates (8). Using

Lemma 1 from Appendix A, we obtain:(
〈〈L∗|LO ⊗ 〈〈V ∗|VO

)
|WdSD〉〉 =

|1〉S
L
I |0〉S

V
I |1〉〉S

A
OAI |1〉〉S

B
OBI

|1〉〉AOS
′A
I |1〉〉BOS

′B
I |1〉〉S

′A
O A′

I |1〉〉S
′B
O B′

I .

Next we take the partial scalar product with the
beam splitter S gate operation (9). Using Lemma
2 from Appendix A, we obtain:(
〈〈S∗|SISO ⊗ 〈〈L∗|LO ⊗ 〈〈V ∗|VO

)
|WdSD〉〉 =

1√
2

(
|1〉AI |0〉BI + |0〉AI |1〉BI

)
|1〉〉AOS

′A
I |1〉〉BOS

′B
I |1〉〉S

′A
O A′

I |1〉〉S
′B
O B′

I .

Now we apply the Alice’s gate operation (11) to
obtain:(
〈〈A∗|AIAO ⊗ 〈〈S∗|SISO⊗
〈〈L∗|LO ⊗ 〈〈V ∗|VO

)
|WdSD〉〉 =

1√
2

(
(−1)a|1〉S

′A
I |0〉BI + |0〉S

′A
I |1〉BI

)
|1〉〉BOS

′B
I |1〉〉S

′A
O A′

I |1〉〉S
′B
O B′

I .

Similarly, applying Bob’s gate (12) we get:(
〈〈B∗|BIBO ⊗ 〈〈A∗|AIAO ⊗ 〈〈S∗|SISO⊗

〈〈L∗|LO ⊗ 〈〈V ∗|VO

)
|WdSD〉〉 =

1√
2

(
(−1)a|1〉S

′A
I |0〉S

′B
I + (−1)b|0〉S

′A
I |1〉S

′B
I

)
|1〉〉S

′A
O A′

I |1〉〉S
′B
O B′

I .

The next step is the application of the second
beam splitter gate (10). After a little bit of alge-
bra, the result is:

(
〈〈S′∗|S

′
IS

′
O ⊗ 〈〈B∗|BIBO ⊗ 〈〈A∗|AIAO ⊗ 〈〈S∗|SISO ⊗ 〈〈L∗|LO ⊗ 〈〈V ∗|VO

)
|WdSD〉〉 =

(−1)a + (−1)b

2 |1〉A
′
I |0〉B

′
I + (−1)a − (−1)b

2 |0〉A
′
I |1〉B

′
I .

Finally, applying the measurement gates (13), we
obtain the complete probability amplitude,

M = (−1)a + (−1)b

2 δa′1δb′0

+(−1)a − (−1)b

2 δa′0δb′1 ,

and substituting this into (15), we obtain the de-

sired probability distribution of the dSD process:

p(a′, b′|a, b) = 1 + (−1)a+b

2 δa′1δb′0

+1− (−1)a+b

2 δa′0δb′1 .

From the probability distribution we can now
conclude that there are two distinct possibilities:
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either Alice detects the photon and Bob does not,
a′ = 1, b′ = 0, or vice versa, a′ = 0, b′ = 1. In
the first case, because total probability must be
equal to one, we have

1 + (−1)a+b

2 = 1 , 1− (−1)a+b

2 = 0 .

The only solution to these equations is a = b,
which means that Alice and Bob have initially
generated equal bits. Since both know the prob-
ability distribution and their own bit, they both
know each other’s bit as well, with certainty. In
the second case, when Bob detects the photon,
we instead have

1 + (−1)a+b

2 = 0 , 1− (−1)a+b

2 = 1 ,

and the only solution is a 6= b, meaning that
Alice and Bob have initially generated opposite
bits. Again, both parties know the probability
distribution and their own bit, and therefore each
other’s bit as well, with certainty.

In order to formalise this result, one can also
introduce the parity π ≡ a ⊕ b and rewrite the
probability distribution in the form

p(a′, b′|π) = 1 + (−1)π

2 δa′1δb′0

+1− (−1)π

2 δa′0δb′1 .
(16)

Thus, if Alice detects the photon, then π is even,
while if Bob detects the photon, π must be odd.
In both cases, they can “guess” each other’s bits
with certainty by calculating

x = π ⊕ a , y = π ⊕ b ,

where x is Alice’s prediction of the value of Bob’s
bit, and y is Bob’s prediction of the value of Al-
ice’s bit. Therefore, the probability of guessing
each other’s input bit is

psuccess ≡ p(x = b ∧ y = a) = 1 . (17)

3.4 Analysis of the process matrix description
— operational interpretation of the vacuum

After we have given the detailed process matrix
description of the dSD protocol and derived the
result (17), we analyse in more detail the role of
the vacuum in the formalism, giving its opera-
tional interpretation.

In order to clarify the exposition, let us give an
overview of the argument, as follows:

• In the next paragraph below, we analyse the
role of the vacuum in the dSD protocol, and
conclude that the interaction with the vac-
uum should be regarded as an operation, on
the same footing with all other interactions.

• In the following four paragraphs, we discuss
the optical implementation of the quantum
switch protocol, which also features interac-
tions between the agents and the vacuum.
Since the same physical situation should al-
ways be described in the same way, we con-
clude that the interaction with the vacuum
should be treated as an operation in this pro-
tocol as well. Thus, the protocol features a
total of four, rather than two, operations.

• Finally, in the remaining three paragraphs,
we discuss the alternative point of view,
namely that the interaction with the vacuum
is not regarded as an operation. This is the
case in the method for counting operations
proposed in [22]. We conclude that it would
then mean that in the dDS protocol an agent
could extract information from the system at
tf without performing an operation at all.

In the dSD protocol four operations (gates),
A,A′, B and B′ are performed (see Figure 1).
Note that for each choice of input bits a and b
one of the two operations performed, A′ and B′,
is of a special form: it represents the absence of
the particle. This gives rise to an operational in-
terpretation of the vacuum state as a carrier of
information, playing the central role in the proto-
col — the very interaction between the apparatus
and the vacuum (the absence of a particle) plays
exactly the same role in this protocol as any other
operation, i.e., not detecting a particle (“seeing
the vacuum”) is an operation on its own. From
the mathematical point of view, supported by the
structure of the process vector (14) that explicitly
features the vacuum state, it is perfectly natural
to consider the interaction between the appara-
tus and the vacuum state on equal footing with
the interaction between the apparatus and the
field excitation (i.e., the particle). Both inter-
actions equally represent operations. Therefore,
one should regard the interaction with the vac-
uum as a resource, in the same way as the inter-
action with the particle.

Let us now consider the optical quantum
switch, a similar protocol in which the notion of
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Figure 2: The complete spacetime diagram of the pro-
cess corresponding to the optical quantum switch. Upon
receiving the photon, Alice rotates its polarisation by the
unitary U . Analogously, Bob performs rotation V on the
photon entering his lab.

the vacuum also plays a role. Current optical
implementations of the quantum switch feature
four spacetime points, the same as the dSD pro-
tocol [9, 10, 11, 12], thus having the similar type
of the spacetime schematic description, see Fig-
ure 2. However, by introducing the notion of time
delocalised operations it was argued that the op-
tical switch implements only two operations, U
in spacetime points A or A′, and V in spacetime
points B or B′ [21]. Nevertheless, the optical
switch features the same apparatus-vacuum inter-
action as the one from the dSD protocol: when-
ever the particle is in, say, the blue branch, and
the operations U and V are applied at spacetime
points A and B′, respectively, Alice’s and Bob’s
labs experience the interaction with the vacuum
at spacetime points B and A′ (and analogously
for the red branch). Therefore, the treatment of
the vacuum in the optical quantum switch is mu-
tually incoherent with the treatment of the vac-
uum in the dSD protocol.

Our analysis can thus serve as motivation for a
search towards a more coherent treatment of the

vacuum within the operational approach, since
the same physical situation — interaction be-
tween the apparatus and the vacuum — is cur-
rently treated differently in the descriptions of the
two protocols.

One might consider the following possible chain
of inference. From the examples of both the quan-
tum switch and the dSD protocol, we have that
unitary operations (be it “genuine rotations” U
and V , as well as phase flips ±I) are considered to
be operations. From the example of the dSD pro-
tocol, we see that the interaction with the vacuum
is an operation as well. Further, in reference [21]
it was argued that the optical switch features two
“time-delocalised operations”, U and V . Thus, by
the same token, it follows that within this opera-
tional approach the optical switch should feature
two additional “time-delocalised operations”: in-
teractions with the vacuum, one performed by
Alice, and the other by Bob (see Appendix B).
Therefore, the protocol features a total of four,
rather than two, operations. Note that this is a
possible treatment of the vacuum, which still fea-
tures superposition of orders of operations U and
V in the optical switch.

It is obvious that the interaction with the vac-
uum plays a prominent role in achieving the goal
of the dSD protocol — communication between
Alice and Bob. But interactions with the vac-
uum are also crucial in the optical switch. Indeed,
without those operations, it would be impossible
to achieve superposition of orders of operations
U and V in flat spacetime with fixed causal order
of spacetime points [9].

In [22] the so-called “flag” systems were intro-
duced to count the number of operations per-
formed in a lab without destroying the superpo-
sition, which count only one operation per each
lab of the optical switch. Note though that using
this method, which effectively counts the number
of times a particle enters the lab, one would count
three rather than four operations in the dSD pro-
tocol. This means that either the method is not
appropriate, or in fact the dSD protocol features
three, instead of four operations. In the case of
the former, it would be useful to introduce a for-
mal operational definition of a general method of
counting operations, given that the above “flag”
method cannot count interactions with the vac-
uum. In the case of the latter, it would mean that
one could extract the information from the sys-
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tem at tf without performing an operation at all.
Indeed, if the interaction between the vacuum

and the apparatus would not be considered an
operation, an issue with formulating the process
vector for the dSD protocol would arise. The one
we formulated in (14) contains input and out-
put Hilbert spaces associated with the interac-
tion between the vacuum and the detectors. It is
not possible to formulate a process matrix for the
dSD protocol that would feature three operations,
without the mentioned interaction with the vac-
uum. Namely, depending on the choice of input
bits a and b, the photon will end up either in Al-
ice’s or Bob’s lab, rendering it impossible to know
in advance which of the two agents is supposed
to perform the final operation. Thus, it is not
possible to formulate a process matrix which fea-
tures only one operation at the final moment tf .
Note that the process matrices themselves were
introduced as the main tool for describing quan-
tum processes in the operational approach. In
other words, the impossibility of formulating the
main operational tool for the dSD protocol with-
out introducing the interaction with the vacuum
as an operation, suggests that the latter should
be considered as an operation in that protocol.

Note that, if the dSD and the optical switch
protocols featured incoherent mixtures of the two
possible paths instead of coherent superpositions,
then one could formulate the corresponding pro-
cess matrices without treating the interaction
with the vacuum as an operation, indeed with-
out even mentioning the vacuum at all. These
would be purely classical processes, which would
not feature any interference effects. In general,
ommiting the vacuum is a natural point of view
in classical physics. However, if one wants to de-
scribe quantum physics, the notions of the vac-
uum and its interaction with the apparatus are
unavoidable.

4 Identical particles

The above analysis shows that the vacuum state
plays a physically relevant role in transmitting
information, and cannot be ignored. From the
point of view of QFT this is a perfectly natu-
ral state of affairs, but from the point of view of
quantum mechanics (QM) it is not, since the no-
tion of vacuum as a physical state does not exist
in QM a priori, and needs to be explicitly intro-

duced by hand. Moreover, in QFT one can natu-
rally study systems of indefinite number of iden-
tical particles. Therefore, as a first step towards
the generalization of the process matrix formal-
ism to QFT, we apply the existing abstract pro-
cess matrix formalism to the representation of the
second quantization.

In this section, we give basic elements of
the process matrix formalism, when applied to
systems of identical particles. In order to
avoid working with (anti-)symmetrised vectors
of multi-particle states that contain non-physical
entanglement whenever two or more identical
particles are fully distinguishable (say, one pho-
ton is in Alice’s, and another in Bob’s lab), we
will use the representation of the second quanti-
sation in which the effects of particle statistics are
governed by the creation and annihilation (anti-
)commutation rules. First, we need to move from
the single-particle Hilbert spaces associated to
the gates and the process matrix to the corre-
sponding capped Fock spaces.

To each gate G, we assign the input/output
Fock spaces, GI/O, given in terms of the vacuum
state |0〉 and the single-particle Hilbert spaces
GI/O. The single-particle input Hilbert space is
given as

GI = span{|i〉 = a†i |0〉 | i = 1, 2, . . . dI},

such that its creation and annihilation opera-
tors satisfy the standard (anti-)commutation re-
lations,

[a†i , a
†
j ]± = [ai, aj ]± = 0 , [ai, a†j ]± = δij , (18)

where [_ ,_]+ stands for anti-commutator, and
[_ ,_]− for commutator. The overall bosonic in-
put Fock space is then

GI =
∞⊕
`=0

GI(`), (19)

where GI(0) = span{|0〉} is the zero-particle,
GI(1) = GI the single-particle, and

GI(`) = {[(a†1)s1 ...(a†dI
)sdI ]|0〉 | s1 + ...+ sdI

= `}

are the `-particle orthogonal subspaces of the in-
put Fock space. For fermions, each si ∈ {0, 1},
and the orthogonal sum in Equation (19) goes un-
til dI , instead of ∞. For a given gate, the output
Fock space GO is defined analogously, and we de-
note its creation and annihilation operators as ã†i
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and ãi, respectively, in order to distinguish them
from the corresponding operators in GI .

Our formalism is constructed for quantum cir-
cuits which consist of finite number of gates.
This means that we work in the approximation
of a finite number of spacetime points, as op-
posed to the standard QFT where one works with
an uncountably infinitely many spacetime points.
Thus, given the algebra (18) for the creation and
annihilation operators at a single gate, the full
algebra across all gates is normalised to a Kro-
necker delta, instead of the standard Dirac delta
function. Moreover, the operators in (18) are op-
erators in coordinate space, as opposed to the
momentum space operators which are standard
in QFT, since they create and annihilate modes
at a given gate (i.e., a given spacetime point),
instead of modes with a given momentum. Tak-
ing into account our assumption of finite number
of gates, the single-particle Hilbert spaces GI/O
are finite-dimensional, i.e., dI/O ∈ N. Since the
gates are distinguishable, the modes assigned to
different gates always (anti-)commute.

We restrict ourselves to the Minkowski space-
time, so that the global Poincaré symmetry im-
plies that the vacuum state |0〉 is identical across
different gates, as well as between input and out-
put Fock spaces for a given gate. In this sense,
each gate is assumed to be stationary in some
inertial reference frame, since the Fock spaces of
non-inertial gates would be subject to the Un-
ruh effect. We leave the discussion of non-inertial
gates and spacetimes with more general geome-
tries for future work.

Once the Fock spaces have been defined, we
pass on to the process matrix description of gate
operations. Since a process matrix has to sat-
isfy the normalisation rule (1), the correspond-
ing input and output spaces have to be finite-
dimensional. To that end, we restrict ourselves
to capped Fock spaces, which contain only a fi-
nite number of elements in the sum (19), denoted
N ∈ N. Together with the fact that dI/O is finite,
it follows that the capped Fock spaces are finite-
dimensional. A gate operation is represented via
a CJ isomorphism of the corresponding operator
between the input and the output capped Fock
spaces, defined in equation (2),

M =
[

(I ⊗M) (|1〉〉〈〈1|)
]T
, (20)

where the transport vector

|1〉〉 =
N∑
k=0
|1k〉〉 , (21)

is given in terms of k-transport vectors defined as

|1k〉〉 =
∑[ d∏

i=1

(a†i )si

√
si!

]
⊗
[ d∏
i=1

(a†i )si

√
si!

]
|0〉 , (22)

where the sum is taken over all si satisfying the
constraint s1 + ...+ sd = k.

One special case of the general formula (20)
is the case where gates destroy all coherence be-
tween k-particle sectors, for example by measur-
ing the number of particles,

M =
N∑
k=0

[
(I ⊗Mk) (|1k〉〉〈〈1k|)

]T
, (23)

where Mk represents the k-particle operator for
the gate. The above gate represents a classical
mixture of operations on each k-particle sector,
as opposed to coherent superpositions of them.

Another special case of (20), which does pre-
serve the coherence between k-particle sectors, is
represented by linear operations. For a linear gate
operation, one can analogously use the “vector”
formalism, and the generalisation of the CJ vec-
tor (5). With a slight abuse of notation, usingM
to denote the operator instead of its superopera-
tor, we can now write

|M∗〉〉 =
[
I ⊗M∗

]
|1〉〉

=
N∑

k,k′,k′′=0

[
Ik ⊗M∗k′

]
|1k′′〉〉

=
N∑
k=0

[
Ik ⊗M∗k

]
|1k〉〉 ,

since it is assumed that by definition[
Ik ⊗M∗k′

]
|1k′′〉〉 ≡ 0 , k′′ /∈ {k, k′} .

Now, using (6) one can rewrite (20) into the form

M = |M∗〉〉〈〈M∗|

=
N∑

k,k′=0

[
Ik ⊗M∗k

]
|1k〉〉〈〈1k′ |

[
Ik′ ⊗M∗k′

]†
,

which is clearly different from the case (23), since
it contains off-diagonal elements which preserve
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coherence between k-particle sectors. One con-
crete example of this special case is the dSD pro-
tocol, discussed in the previous Section. Another
example is a single-particle unitary operator

U =
∑
i,j

uij ã
†
iaj .

Then, its capped Fock-space generalisation is
given as

M =
N∑
k=0
Mk = |0〉〈0|+

N∑
k=1

1
k! : U⊗k : ,

where : U⊗k : is the normal ordering of U⊗k.
Given the capped Fock spaces and actions of

instruments in all gates, a process matrix is de-
fined in the same way as in Section 2, according to
Eq. (4). A process matrix maps the tensor prod-
uct of output spaces for all gates into the tensor
product of input spaces for all gates. For exam-
ple, if the process under consideration is a quan-
tum circuit (see Section 2 of [9]), the correspond-
ing process matrix can be represented as a tensor
product of transport vectors, each corresponding
to a wire connecting two gates. Transport vec-
tors are defined in the same way as (21), where
in (22) the first set of creation operators corre-
sponds to the input space of the wire, while the
second set corresponds to its output space. Given
that a wire is connecting two gates, its input and
output spaces correspond to the output and input
subspaces of the two gates, respectively. A gate
can in general have multiple incoming or outgoing
wires attached to it. Therefore, its input (output)
space is a tensor product of all output (input)
spaces of the corresponding wires.

5 Conclusions

5.1 Summary of the results

In this work we have presented a detailed account
of the dSD protocol, formulating it within the
process matrix formalism. Analysing the role of
the vacuum state in the dSD protocol and its pro-
cess matrix description, we gave the operational
interpretation of the vacuum. Our analysis shows
that the interaction with the vacuum should be
treated as an operation, on equal footing with all
other interactions, thus representing a resource
in quantum information protocols (including, for

example, [23, 24]). As a consequence, the opti-
cal implementation of the quantum switch proto-
col features four rather than just two operations,
in contrast to what was claimed in the literature
[3, 4, 5, 6, 7, 8]. Furthermore, we have applied the
process matrix formalism to the second quantisa-
tion framework restricted to capped Fock spaces,
providing the description of systems of identical
particles.

5.2 Discussion

The first important point of this work is the ne-
cessity of explicitly introducing the interaction
with the vacuum as a legitimate operation in the
dSD protocol, on equal footing with any other op-
eration. Indeed, the very lack of detection of the
particle in the protocol provides an equal amount
of information as its detection (explicit interac-
tion). As a consequence, instead of interpret-
ing the absence of particle as noninteraction, one
should interpret it as the interaction between the
vacuum and the apparatus, and thus as an oper-
ation. Including the interaction with the vacuum
as an operation poses a question of the method of
counting operations in a given protocol, since the
operations corresponding to the interaction with
the vacuum cannot be counted.

The introduction of the vacuum into the pro-
cess matrix formalism gives a natural motivation
to extend the latter to the case of identical par-
ticles, both bosons and fermions, which is the
second important point of this work. However,
note that while employing the formalism of sec-
ond quantisation, our construction still features
only a discrete number of gates. This discrete-
ness means that we still work in particle ontology
(i.e., mechanics). Nevertheless, our construction
is an important first step towards defining the
process matrix formalism in field ontology, i.e.,
fully fledged QFT.

5.3 Future lines of investigation

As mentioned in the discussion, a natural next
line of investigation would be a generalisation of
the process matrix formalism to full, or at least
perturbative, QFT. This would include an anal-
ysis of non-inertial gates and the corresponding
Unruh effect. In addition, a mathematically rig-
orous formulation of the axioms for the process
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matrix description in Fock spaces is also an im-
portant topic to be addressed. While the primary
interest in process matrices lies in their applica-
tion to higher order processes [25, 26], their gen-
eralisation to QFT would also be of great interest.
Finally, addressing in more detail the interaction
between the agent and the vacuum within the op-
erational approach is an interesting topic of future
research.
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A Two lemmas for the process matrix evaluation
Lemma 1. Let |Ψ∗〉〉XO = |Ψ∗〉XO represent a gate which has no input, while it prepares the state
|Ψ〉 ∈ XO as its output. Then, the scalar product of that vector and the transport vector |1〉〉XOYI is
given as:

XO〈〈Ψ∗|1〉〉XOYI = |Ψ〉YI .

Proof. Using the fact that the transport vector is an unnormalized maximally entangled state, the
explicit calculation goes as follows:

XO〈〈Ψ∗|1〉〉XOYI = 〈Ψ∗|XO
∑
k

|k〉XO |k〉YI

=
∑
k

〈Ψ∗|k〉 |k〉YI

=
∑
k

〈k|Ψ〉 |k〉YI

= |Ψ〉YI ,

where we have used the unit decomposition I =
∑
k

|k〉〈k| and the fact that 〈Ψ∗|k〉 = 〈Ψ|k〉∗ = 〈k|Ψ〉.
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Figure 3: Two branches of the coherent superposition of the optical switch protocol.

Lemma 2. Let
|U∗〉〉XIXO =

[
IXIXI ⊗ (U∗)XOXI

]
|1〉〉XIXI

represent a gate which performs the operation U : XI → XO, and let |W 〉〉 = |Ψ〉XI |1〉〉XOYI . Then the
scalar product of the two is

XIXO〈〈U∗|W 〉〉 =
(
U |Ψ〉

)YI

.

Proof. Again using the expansion of the transport vectors as unnormalized maximally entangled states,
the explicit calculation goes as follows:

XIXO〈〈U∗|W 〉〉 = 〈〈1|XIXI

[
IXIXI ⊗ (UT )XIXO

]
|Ψ〉XI |1〉〉XOYI

=
∑
k

〈k|XI 〈k|XI

[
IXIXI ⊗ (UT )XIXO

]
|Ψ〉XI

∑
m

|m〉XO |m〉YI

=
∑
k,m

(
〈k|XI IXIXI |Ψ〉XI

)(
〈k|XI (UT )XIXO |m〉XO

)
|m〉YI

=
∑
k,m

(
〈k|Ψ〉

)(
〈m|U |k〉

)
|m〉YI

=
∑
m

〈m|U
(∑

k

|k〉〈k|
)
|Ψ〉 |m〉YI

=
∑
m

〈m|U |Ψ〉 |m〉YI

=
(
U |Ψ〉

)YI

,

where we have again used the unit decomposition and the fact that 〈k|UT |m〉 = 〈m|U |k〉.

B Time-delocalised operations in the optical switch
Figure 3 depicts two branches coherently superposed in the optical switch. The left diagram represents
the branch in which the photon first enters Alice’s lab, and then Bob’s. On the right, the photon first
visits Bob’s lab, and then Alice’s. Whenever the photon enters Alice’s lab, she applies unitary U (in
A, left diagram, or A′, right diagram), while Bob interacts with the vacuum (in B, left diagram, or B′,
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right diagram). Analogously, whenever the photon enters Bob’s lab, he applies unitary V (in B, right
diagram, or B′, left diagram), while Alice interacts with the vacuum (in A, right diagram, or A′, left
diagram).

Since applying the unitaries in a quantum protocol are operations, and since in the optical switch
they are applied by Alice (U) and Bob (V ) at two different times, we say that the optical switch
features two time-delocalised operations U (at A and A′) and V (at B and B′).

Since the interaction with the vacuum in the dSD protocol is an operation, and since in the optical
switch it is applied by Alice and Bob at two different times, one can say that the optical switch
features two time-delocalised operations of the interaction with the vacuum (at A and A′, as well as
at B and B′).
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1 Introduction

Within the Loop Quantum Gravity framework, one studies the nonperturbative quantiza-
tion of gravity, both canonically and covariantly, see [1–4] for an overview and a compre-
hensive introduction. The covariant approach focuses on defining the path integral for the
gravitational field by considering a triangulation of a spacetime manifold and specifying
the path integral as a discrete state sum of the gravitational field configurations living on
the simplices in the triangulation. This quantization technique is usually referred to as the
spinfoam quantization method, and it can be divided into three major steps:

1. first, one writes the classical action S[g] as a topological BF -like action plus simplicity
constraints,

2. then one uses the algebraic structure underlying the topological sector of the action
to define a topological state sum Z,
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3. and finally, one deforms the topological state sum by imposing simplicity constraints,
thus promoting it into a path integral for a physical theory.

Spinfoam models for gravity are usually constructed by constraining the topological gauge
theory known as BF theory, obtaining the Plebanski formulation of general relativity [5].
For example, in 3 dimensions, the prototype spinfoam model is known as the Ponzano-
Regge model [6]. In 4 dimensions there are multiple models, such as the Barrett-Crane
model [7, 8], the Ooguri model [9], and the most sophisticated EPRL/FK model [10, 11]
(see also [12–14]). All these models aim to define a viable theory of a quantum gravitational
field alone, without matter fields. The attempts to include matter fields have had limited
success [15], mainly because the mass terms cannot be expressed in the theory due to the
absence of the tetrad fields from the topological BF sector of the theory.

In order to overcome this problem, a new approach has been developed within the
framework of higher gauge theory (for a review of higher gauge theory, see [16, 17], and
for its applications in physics see [18–29]). Within higher gauge theory formalism, one
generalizes the BF action, based on some Lie group, to an 2BF action based on the
2-group structure. Within this approach [30], one rewrites the action for general relativity
as a constrained 2BF action, such that the tetrad fields are present in the topological
sector. This result opened up the possibility to couple all matter fields to gravity in
a straightforward way. Nevertheless, the matter fields could not be naturally expressed
using the underlying algebraic structure of a 2-group, rendering the spinfoam quantization
method only half-implementable, since the matter sector of the classical action could not
be expressed as a topological term plus a simplicity constraint, which means that the steps
2 and 3 above could not be performed for the matter sector of the action.

This final issue has recently been resolved in [31], where one more step in the categorical
ladder is performed in order to generalize the underlying algebraic structure from a 2-
group to a 3-group (see also [32] for the 4-group formulation). This generalization then
naturally gives rise to the so-called 3BF action, which proves to be suitable for a unified
description of both gravity and matter fields. The first step of the spinfoam quantization
program is carried out in [31] where the suitable gauge 3-groups have been specified, and the
corresponding constrained 3BF actions constructed so that the desired classical dynamics
of the gravitational and matter fields are obtained. A reader interested in the construction
of the constrained 2BF actions describing the Yang-Mills field and Einstein-Cartan gravity,
and 3BF actions describing the Klein-Gordon, Dirac, Weyl, and Majorana fields, each
coupled to gravity in the standard way, is referred to [30, 31].

In this paper, we focus our attention on the second step of the spinfoam quantization
program: we will construct a triangulation independent topological state sum Z, based on
the classical 3BF action for a general 3-group and a 4-dimensional spacetime manifoldM4.
This state sum coincides with Porter’s TQFT [33, 34] for d = 4 and n = 3. In order to
verify that the constructed state sum is topological, we analyze its behavior under Pachner
moves [35]. Pachner moves are local changes of a triangulation that preserve topology,
such that any two triangulations of the same manifold are connected by a finite number of
Pachner moves. In 4 dimensions, there are five different Pachner moves: the 3 − 3 move,

– 2 –
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4− 2 move, and 5− 1 move, and their inverses. After defining the state sum, we calculate
its behavior under these Pachner moves. We obtain that the state sum Z remains the
same, proving that it is a topological invariant of the underlying 4-dimensional manifold.
This construction thus completes the second step of the quantization procedure. Our result
paves the way for the third step of the covariant quantization procedure and a formulation
of a quantum theory of gravity and matter by imposing the simplicity constraints on the
state sum. We leave the third step for future work.

The layout of the paper is as follows. In section 2 we review the pure and the con-
strained nBF theories describing some of the physically relevant models — the constrained
2BF actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained
3BF actions describing the Klein-Gordon and Dirac fields coupled to Yang-Mills fields and
gravity in the standard way. In section 3, we review the relevant algebraic tools involved
in the description of higher gauge theory, 2-crossed modules, and 3-gauge theory. Start-
ing from the notion of Lie 3-groups, we generalize the integral picture of gauge theory
to a 3-gauge theory that involves curves, surfaces, and volumes labeled with elements of
non-Abelian groups. In section 4, we define the discrete state sum model of topological
higher gauge theory in dimension d = 4. The model is defined for any closed and oriented
combinatorial 4-dimensional manifold M4. The proof that the state sum is invariant un-
der the Pachner moves and thus independent of the chosen triangulation is presented in
appendix B.

Notations and conventions throughout the paper are as follows. The local Lorentz
indices are denoted by the Latin letters a, b, c, . . . , that take values 0, 1, 2, 3, and are raised
and lowered using the Minkowski metric ηab with signature (−,+,+,+). The spacetime
indices are denoted by the Greek letters µ, ν, . . . , and are raised and lowered by the space-
time metric gµν = ηabe

a
µe
b
ν , where eaµ denotes the tetrad fields. If G is a finite group,∫

G dg = 1/|G|
∑
g∈G denotes the normalized sum over all group elements, while δG denotes

the corresponding δ-distribution on G. The δ-distribution is defined for every element
g ∈ G such that δG(g) = |G| if g is the unit element of the group, i.e. , g = e, and δG(g) = 0
if it is not, i.e. , g 6= e. If G is a Lie group,

∫
G dg and δG denote the Haar measure and the

δ-distribution on G, respectively. The set of all k-simplices, 0 ≤ k ≤ d, is denoted by Λk.
The set of vertices Λ0 is finite and ordered, and every k-simplex is labeled by (k+1)-tuples
of vertices (i0 . . . ik), where i0, . . . , ik ∈ Λ0 such that i0 < · · · < ik.

2 Review of the classical theory

2.1 Topological nBF theories

For a given Lie group G whose Lie algebra g is equipped with the G-invariant symmetric
nondegenerate bilinear form 〈_ ,_〉g, and for a given 4-dimensional spacetime manifold
M4, one can introduce the BF action as

SBF =
∫
M4
〈B ∧ F 〉g , (2.1)

where 2-form F ≡ dα + α ∧ α is the curvature for the g-valued connection 1-form α ∈
A1(M4 , g) and 2-form B ∈ A2(M4 , g) is an g-valued Lagrange multiplier. Varying the
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action (2.1) with respect to the Lagrange multiplier B and the connection α, one obtains
the equations of motion of the theory,

F = 0 , ∇B ≡ dB + α ∧B = 0 . (2.2)

From the first equation of motion, one sees that α is a flat connection, which then, together
with the second equation of motion, implies that B is constant. Therefore, the theory given
by the BF action has no local propagating degrees of freedom, i.e., the theory is topological.
For more details about the BF theory see [5, 36, 37].

Within the framework of Higher Gauge Theory, by passing from the notion of a gauge
group to the notion of a gauge 2-group, one defines the categorical generalization of the
BF action, called the 2BF action. A 2-group has a naturally associated notion of a 2-
connection (α , β), described by the usual g-valued 1-form α ∈ A1(M4 , g) and an h-valued
2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie group H. The 2-connection
gives rise to the so-called fake 2-curvature (F ,G), where F is a g-valued fake curvature
2-form F ∈ A2(M4 , g) and G is an h-valued curvature 3-form G ∈ A3(M4 , h), defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (2.3)

Representing the 2-group as a crossed-module (H ∂→ G ,B), and seeing the next section for
the definition and notation, one introduces a 2BF action using the fake 2-curvature (2.3) as

S2BF =
∫
M4
〈B ∧ F〉g + 〈C ∧ G〉h , (2.4)

where the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are Lagrange multipliers,
and 〈_ ,_〉g and 〈_ ,_〉h denote the G-invariant symmetric nondegenerate bilinear forms
for the algebras g and h, respectively. Similarly as in the case of the BF theory, varying
the 2BF action (2.4) with respect to the Lagrange multipliers B and C one obtains the
equations of motion,

F = 0 , G = 0 , (2.5)

i.e. , the conditions that the curvature 2-form F and the curvature 3-form G vanish, while
varying with respect to the connections α and β one obtains

∇B + C ∧T β = 0 , ∇C − ∂(B) = 0 . (2.6)

Similar to the case of the BF action, the 2BF action defines a topological theory, i.e., a
theory with no propagating degrees of freedom, see [38–41] for review and references.

Continuing the categorical ladder one step further, one can generalize the 2BF ac-
tion to the 3BF action, by passing from the notion of a 2-group to the notion of a 3-
group. Representing the 3-group with a 2-crossed module (L δ→ H

∂→ G ,B , {_ ,_}p),
and seeing next section for definition and notation, one can define a 3-connection as an
ordered triple (α, β, γ), where α, β, and γ are appropriate algebra-valued differential forms,
α ∈ A1(M4, g), β ∈ A2(M4, h), and γ ∈ A3(M4, l). The corresponding fake 3-curvature
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(F ,G,H) is defined as:

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ ,

H = dγ + α ∧B γ + {β ∧ β}p .
(2.7)

Then, similar to the construction of BF and 2BF actions, one defines the 3BF action as

S3BF =
∫
M4
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (2.8)

where g, h, and l denote the Lie algebras corresponding to the Lie groups G, H, and L and
the forms 〈_,_〉g, 〈_,_〉h, and 〈_,_〉l are G-invariant symmetric nondegenerate bilinear
forms on g, h, and l, respectively. The variables B ∈ A2(M4, g), C ∈ A1(M4, h), and
D ∈ A0(M4, l) are Lagrange multipliers, and their associated equations of motion are the
conditions that the 3-curvature (F ,G,H) vanishes,

F = 0 , G = 0 , H = 0 . (2.9)

Additionally, varying with respect to the 3-connection variables α, β, and γ one gets:

∇B + C ∧T β −D ∧S γ = 0 , (2.10)

∇C − ∂(B)−D ∧(χ1+χ2) β = 0 , (2.11)
∇D + δ(C) = 0 . (2.12)

For further details see [22, 42, 43] for the definition of the 3-group, and [31] for the definition
of the pure 3BF action.

All the above actions are topological, in the sense that they do not contain any local
propagating degrees of freedom [44, 45]. In this sense, they are not very interesting for the
description of realistic physics, which should feature nontrivial dynamics. Nevertheless, by
choosing the convenient underlying 2-crossed module structure and imposing the appropri-
ate simplicity constraints onto the degrees of freedom present in the 3BF action, one can
obtain the nontrivial classical dynamics of the gravitational and matter fields, as we will
see in the following subsection.

2.2 Models with relevant dynamics

Let us review how one can employ the n-group structure to introduce the topological nBF
actions corresponding to gravity and matter fields, as well as the form of the appropriate
simplicity constraints to be imposed on these fields to obtain the classical dynamics.

First we review the most important constrained 2BF actions. We begin by rewriting
general relativity as a constrained 2BF action based on the underlying Poincaré 2-group.
The Poincaré 2-group is equivalent to a crossed module (H ∂→ G,B), where the groups are
choosen as G = SO(3, 1) and H = R4, and the map ∂ is trivial. The action B is a natural
action of SO(3, 1) on R4, defined as

Mab B Pc = η[bcPa] , (2.13)
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where Mab and Pa are the generators of groups SO(3, 1) and R4, respectively. The ac-
tion B of SO(3, 1) on itself is given via conjugation, by definition of a crossed module.
Then, Poincaré 2-group gives rise to the 2-connection (α, β), given by the algebra-valued
differential forms

α = ωabMab , β = βaPa , (2.14)

where we have interpreted the connection 1-form αab as the ordinary spin connection ωab.
Also, the corresponding 2-curvature (F ,G) is given as

F = (dωab + ωac ∧ ωcb)Mab ≡ RabMab ,

G = (dβa + ωab ∧ βb)Pa ≡ ∇βaPa ≡ GaPa ,
(2.15)

where we can recognize the standard Riemann curvature 2-form Rab in F . Having these
variables in hand, one defines 2BF action (2.4) for the Poincaré 2-group as

S2BF =
∫
M4

Bab ∧Rab + ea ∧∇βa . (2.16)

Here, the crucial insight is that the Lagrange multiplier fields Ca can be identified with the
tetrads [30], since one can show that 1-forms Ca transform in the same way as the tetrad
1-forms ea under the Lorentz transformations and diffeomorphisms. One can now construct
the action for general relativity by simply adding the additional simplicity constraint term
to the action (2.16):

S =
∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (2.17)

Here λab is a Lagrange multiplier 2-form associated to the simplicity constraint term, and
lp is the Planck length. It is straightforward to show that the corresponding equations
of motion reduce to vacuum Einstein field equations. Thus the action (2.17) is classically
equivalent to general relativity. The construction of the action (2.17) is analogous to the
Plebanski model, where general relativity is constructed by adding a simplicity constraint
to the BF theory based on the Lorentz group. However, one clear advantage of this model
over the Plebanski model is that the tetrads are explicitly present in the topological sector
of the action. Upon the covariant quantization, tetrads are therefore fundamental, off-shell
quantities, in contrast to the Plebanski model where they appear only on-shell, as solutions
of the classical equations of motion. The off-shell presence of the tetrads facilitates the
straightforward coupling of the matter fields to gravity, and thus overcomes the problems
present in the spinfoam models [15].

The Poincaré 2-group can be easily extended to include the coupling of the SU(N)
Yang-Mills fields to gravity [31]. To achieve this, one constructs the crossed module (H ∂→
G,B), where the groups are chosen as G = SO(3, 1)× SU(N) and H = R4, while the map
∂ remains trivial, as before. The action B of the group G on H is such that the SO(3, 1)
subgroup acts on R4 via the vector representation (2.13), while the action of the SU(N)
subgroup is trivial,

τI B Pa = 0 , (2.18)
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where τI are the SU(N) generators. This crossed module yields the 2-connection (α, β),
where algebra-valued 1-form α and algebra valued 2-form β are defined as follows,

α = ωabMab +AIτI , β = βaPa , (2.19)

where we can identify the gauge connection 1-form AI . This connection gives rise to the
2-curvature (F ,G), where F as defined as

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK , (2.20)

while the curvature G for β remains the same as before. Given these variables, the Lagrange
multiplier B in the first term of the topological action (2.4) also splits into two pieces
corresponding to the direct product of the group G, giving

S2BF =
∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (2.21)

where 2-form BI ∈ A2(M4 , su(N)) is the second piece of the Lagrange multiplier. To
obtain the non-trivial classical dynamics for gravity and the Yang-Mills field, we add the
appropriate simplicity constraint terms to the action (2.21), and construct the constrained
2BF action:

S =
∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λI ∧

(
BI −

12
g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.

(2.22)

Here, the first row is the topological sector and the familiar simplicity constraint for gravity
from (2.17), while the second row contains the appropriate simplicity constraints for Yang
Mills field, featuring the Lagrange multipliers λI and ζabI . The action (2.22) provides two
dynamical equations — the equation for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (2.23)

where Γ λµν is the standard Levi-Civita connection, and an equation for ea which is the
Einstein field equation with the SU(N) gauge field source term,

Rµν − 1
2g

µνR = 8πl2p Tµν , Tµν ≡ − 1
4g
(
Fρσ

IF ρσIg
µν + 4FµρIFρνI

)
. (2.24)

In this way, we see that both gravity and gauge fields can be successfully represented within
a unified framework of higher gauge theory, based on a 2-group structure. A generalization
from SU(N) Yang-Mills case to the more complicated cases, such as SU(3)×SU(2)×U(1),
is straightforward.

Let us now review how one can use the 3-group structure and the corresponding con-
strained 3BF theory to describe general relativity coupled to Klein-Gordon and Dirac
fields. To describe a single real Klein-Gordon field coupled to gravity, one begins by spec-
ifying a 2-crossed module (L δ→ H

∂→ G ,B , {_ ,_}p), as follows. The groups are given as
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G = SO(3, 1), H = R4, and L = R. The group G acts on H via the vector representation,
and on L via the trivial representation. The maps ∂ and δ are chosen to be trivial, as well
as the Peiffer lifting. Given this choice of a 2-crossed module, the 3-connection (α , β , γ)
takes the form

α = ωabMab , β = βaPa , γ = γI , (2.25)

where I is the sole generator of the Lie group L. This 3-connection gives rise to the fake
3-curvature (F ,G,H),

F = RabMab , G = ∇βaPa , H = dγ . (2.26)

The importance of the 3BF theory for this choice of the 2-crossed module lies in the fact
that the Lagrange multiplier D can transform as a scalar with respect to Lorentz symmetry,
Mab B I = 0, and it transforms as a scalar with respect to diffeomorphisms since D is also
a 0-form. In other words, one can interpret the Lagrange multiplier D to be a real scalar
field, D ≡ φ, and write the topological 3BF action (2.8) as:

S3BF =
∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ . (2.27)

In order to obtain the Klein-Gordon field φ of mass m coupled to gravity in the standard
way, the appropriate simplicity constraints are imposed, and the constrained 3BF action
takes the form:

S =
∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2Habce
a ∧ eb ∧ ec

)
+ Λab ∧

(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1
2 · 4!m

2φ2εabcde
a ∧ eb ∧ ec ∧ ed .

(2.28)

The first row is the topological sector (2.27) and the simplicity constraint for gravity from
the action (2.17), the second row contains two new simplicity constraints featuring the
Lagrange multiplier 1-forms λ and Λab and the 0-form Habc, and the third row features the
mass term for the scalar field. The action (2.28) has two dynamical equations of motion
— the equation for the scalar field φ is the covariant Klein-Gordon equation,(

∇µ∇µ −m2
)
φ = 0 , (2.29)

while the equation for the tetrads ea is the Einstein field equation with the scalar field
source term,

Rµν − 1
2g

µνR = 8πl2p Tµν , Tµν ≡ ∂µφ∂νφ− 1
2g

µν
(
∂ρφ∂

ρφ+m2φ2
)
. (2.30)

We see that the obtained theory is classically equivalent to general relativity coupled to a
scalar field. Most importantly, one sees that the choice of the group L dictates the matter
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content of the theory, while the action B of G on L specifies the transformation properties
of the matter fields.

Finally, in order to describe the Dirac field coupled to Einstein-Cartan gravity, the
2-crossed module (L δ→ H

∂→ G ,B , {_ ,_}p) has to be chosen as follows. The groups are
G = SO(3, 1). H = R4, and L = R8(G), where G is the algebra of complex Grassmann
numbers. The maps ∂, δ, and the Peiffer lifting are trivial, as before. The action of the
group G on H is via vector representation, and on L via spinor representation, in the
following way. Denoting the eight generators of the Lie group R8(G) as Pα and Pα, where
the bispinor index α takes the values 1, . . . , 4, the action B of G on L is given explicitly as

Mab B Pα = 1
2(σab)βαPβ , Mab B Pα = −1

2(σab)αβP β , (2.31)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices. This choice of the 2-crossed

module gives rise to the 3-connection (α , β , γ), defined as

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (2.32)

where the 3-connection 3-forms γα and γ̄α should not be confused with the Dirac matrices
γa due to different types of indices. The 3-curvature (F ,G ,H) is given as:

F = RabMab , G = ∇βaPa ,

H =
(
dγα + 1

2ω
ab(σab)αβγβ

)
Pα +

(
dγ̄α −

1
2ω

abγ̄β(σab)βα
)
Pα ≡ (

→
∇γ)αPα + (γ̄

←
∇)αPα .

(2.33)

As in the case of the scalar field, the choice of the group L and action B of G on L dictates
the matter content of the theory and its transformation properties. The group L prescribes
that D contains eight independent real anticommuting matter fields as its components.
Then, since D is a 0-form and it transforms according to the spinorial representation of
SO(3, 1), these eight real Grassmann-valued fields can be identified with the four complex
Dirac bispinor fields, and one can write the corresponding topological 3BF action as:

S3BF =
∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψα + ψ̄α(

→
∇γ)α . (2.34)

In order to obtain the action that gives us the dynamics of Einstein-Cartan theory of
gravity coupled to a Dirac field, we add the following simplicity constraints:

S =
∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψα + ψ̄α(

→
∇γ)α − λab ∧

(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6εabcde
a ∧ eb ∧ ec(ψ̄γd)α

)
+ λ̄α ∧

(
γα + i

6εabcde
a ∧ eb ∧ ec(γdψ)α

)
− 1

12mψ̄ψ εabcde
a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ

aψ εabcde
b ∧ ec ∧ βd.

(2.35)

The topological sector is in the first row, as well as the gravitational simplicity constraint,
the second row contains the new simplicity constraints for the Dirac field, while the third
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row contains the mass term for the Dirac field and a term that ensures the correct coupling
between the torsion and the spin of the Dirac field. Varying the action (2.35), one obtains
the following dynamical equations of motion — the equations for ψ and ψ̄ which are the
standard covariant Dirac equation and its conjugate,

(iγaeµa
→
∇µ −m)ψ = 0 , ψ̄(i

←
∇µeµaγa +m) = 0 , (2.36)

and the differential equation of motion for ea which is the Einstein field equation with a
Dirac field source term,

Rµν − 1
2g

µνR = 8πl2p Tµν , Tµν ≡ i

2 ψ̄γ
a
↔
∇νeµaψ −

1
2g

µνψ̄
(
iγa
↔
∇ρeρa − 2m

)
ψ , (2.37)

where
↔
∇ =

→
∇−

←
∇. Moreover, one obtains the desired equation of motion for the torsion,

Ta ≡ ∇ea = 2πl2psa , sa = iεabcde
b ∧ ecψ̄γ5γ

dψ , (2.38)

where sa is the Dirac spin 2-form. The equations of motion (2.36), (2.37), and (2.38) are
precisely the equations of motion of the Einstein-Cartan-Dirac theory.

The natural presence of a scalar and Dirac field in the 3BF action is an essential
property of the specific choices of the 3-group structures in a 4-dimensional spacetime,
just like the existence of the tetrad field ea in the topological 2BF action is an essential
property of the 2BF action and the Poincaré 2-group. In this way, both the scalar field
and the Dirac field appear in the topological sector of the action, making the quantization
procedure feasible. Similarly, one can introduce Weyl and Majorana fields as well, see [31].

3 A review of 2-groups and 3-groups

As we have seen in the previous section, the gauge symmetry of 3-gauge theory is described
by an algebraic structure known as a 3-group. In this section, we present the relevant
definition of the 3-group, and we briefly explain how this structure is used to equip curves,
surfaces, and volumes with holonomies. The results obtained in this section are necessary
for the construction of the topological invariant, which will be studied in section IV.

3.1 3-Groups

In the category theory, a 2-group is defined as a 2-category consisting of only one object,
where all the morphisms and 2-morphisms are invertible. It has been shown that every
strict 2-group is equivalent to a crossed module (H ∂→ G ,B).

A pre-crossed module (H ∂→ G ,B) of groups G and H, is given by a group map
∂ : H → G, together with a left action B of G on both groups, by automorphisms, such
that the group G acts on itself via conjugation, i.e. , for each g1, g2 ∈ G,

g1 B g2 = g1g2g
−1
1 ,

and for each h1 , h2 ∈ H and g ∈ G the following identity holds:

g∂hg−1 = ∂(g B h) .
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In a pre-crossed module the Peiffer commutator is defined as:

〈h1 , h2〉p = h1h2h
−1
1 ∂(h1) B h−1

2 . (3.1)

A pre-crossed module is said to be a crossed module if all of its Peiffer commutators are
trivial, which is to say that the Peiffer identity is satisfied:

(∂h1) B h2 = h1h2h
−1
1 . (3.2)

Continuing the categorical generalization one step further, one can generalize the no-
tion of a 2-group to the notion of a 3-group. Similar to the definition of a group and a
2-group within the category theory formalism, a 3-group is defined as a 3-category with
only one object, where all morphisms, 2-morphisms, and 3-morphisms are invertible. More-
over, in analogy with how a crossed module encodes a strict 2-group, it has been proved
that a semistrict 3-group — Gray group is equivalent to a 2-crossed module [42, 46].

A 2-crossed module (L δ→ H
∂→ G, B, {_, _}p) is a chain complex of groups, given by

three groups G, H, and L, together with maps ∂ and δ,

L
δ→ H

∂→ G ,

such that ∂δ = 1G, an action B of the group G on all three groups, and a map {_ ,_}p
called the Peiffer lifting:

{_ ,_}p : H ×H → L .

The maps ∂ and δ, and the Peiffer lifting are G-equivariant, i.e. , for each g ∈ G and h ∈ H

g B ∂(h) = ∂(g B h) , g B δ(l) = δ(g B l) ,

and for each h1, h2 ∈ H and g ∈ G:

g B {h1 , h2}p = {g B h1, g B h2}p .

The action of the group G on the groupsH and L is a smooth left action by automorphisms,
i.e. , for each g, g1, g2 ∈ G, h1, h2 ∈ H, l1, l2 ∈ L and k ∈ H,L,

g1B(g2Bk) = (g1g2)Bk , gB(h1h2) = (gBh1)(gBh2) , gB(l1l2) = (gB l1)(gB l2) .

The action of the group G on itself is again via conjugation. Further, the following identities
are satisfied:

δ({h1, h2}p) = 〈h1 , h2〉p , ∀h1, h2 ∈ H ; (3.3a)
[l1, l2] = {δ(l1) , δ(l2)}p , ∀l1 , l2 ∈ L , where [l, k] = lkl−1k−1;

(3.3b)

{h1h2, h3}p = {h1, h2h3h
−1
2 }p∂(h1) B {h2, h3}p , ∀h1, h2, h3 ∈ H ;

(3.3c)

{h1, h2h3}p = {h1, h2}p{h1, h3}p{〈h1, h3〉−1
p , ∂(h1) B h2}p , ∀h1, h2, h3 ∈ H ;

(3.3d)

{δ(l), h}p{h, δ(l)}p = l(∂(h) B l−1) , ∀h ∈ H , ∀l ∈ L . (3.3e)
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In a 2-crossed module the structure (L δ→ H, B′) is a crossed module, with action of the
group H on the group L defined for each h ∈ H and l ∈ L as:

hB′ l = l {δ(l)−1, h}p ,

and it follows that the Peiffer identity is satisfied for each l1, l2 ∈ L:

δ(l1) B′ l2 = l1 l2 l
−1
1 .

However, the structure (H ∂→ G ,B) in the general case does not form a crossed module, but
a pre-crossed module, and for each h, h′ ∈ H the Peiffer commutator does not necessarily
vanish.

The following identities hold, for each h1, h2, h3 ∈ H [42]:

{h1h2, h3}p = (h1 B
′ {h2, h3}p){h1, ∂(h2) B h3}p , (3.4)

{h1, h2h3}p = {h1, h2}p(∂(h1) B h2) B′ {h1, h3}p , (3.5)

and are of prime importance for the proof of the Pachner moves invariance. By using the
condition (3.3e) of the definition of a 2-crossed module, it follows that for each h ∈ H and
l ∈ L the following identity holds:

{h, δ(l)−1}p = (hB′ l−1)(∂(h) B l) . (3.6)

Moreover, for each h1, h2 ∈ H,

{h1, h2}−1
p = h1 B

′ {h−1
1 , ∂(h1) B h2}p , (3.7)

{h1, h2}−1
p = ∂(h1) B {h−1

1 , h1h2h
−1
1 }p , (3.8)

{h1, h2}−1
p = (h1h2h

−1
1 ) B′ {h1, h

−1
2 }p , (3.9)

{h1, h2}−1
p = (∂(h1) B h2) B′ {h1, h

−1
2 }p . (3.10)

A reader interested in more details about 3-groups is referred to [43].

3.2 3-gauge theory

In this subsection, we will describe how the language of 3-gauge theory can be used in
order to define compositions of labeled paths, surfaces, and volumes. In a 3-gauge theory,
one labels geometric objects at three levels. Curves are labeled by elements of G. Their
composition and orientation reversal is defined as in conventional gauge theory. In addition,
surfaces are labeled with elements of H, and volumes are labeled with the elements of L.
The reader interested in the formulation of a 2-gauge theory is referred to [47].

Curves are labeled with the elements of G, and the elements are composed as in the
ordinary gauge theory, i.e. , for each g1, g2 ∈ G,

• •
g1

vv •
g2

vv = • •
g1g2
vv

,

the composition of the elements results in the element g1g2 ∈ G. The orientation of a curve
can be reversed if it is labeled by the inverse element g−1 instead.
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Surfaces are labeled with the elements h ∈ H. For each surface, we choose two reference
points on the boundary, and split the boundary into two curves, the source curve labeled
with g1 ∈ G, and the target curve labeled with g2 ∈ G, as demonstrated in the diagram

• •

g1

xx

g2

ff h�� .

The 2-arrow h ∈ H maps the curve g1 ∈ G to the curve ∂(h)g1 ∈ G,

• •
1•

xx

∂h

ff h�� •

g1

xx

g1

ff 1g�� = • •

g1

xx

∂(h)g1

ff h�� ,

so that the label h ∈ H of the surface is required to satisfy the following condition:

∂(h) = g2g
−1
1 . (3.11)

The orientation of the surface can be reversed and labeled with the inverse element instead,

• •

g1

xx

g2

ff
KS
h−1 ,

while the orientation reversal of the curves leads to the surface element labeled with h̃ =
g−1

1 B h−1:

•
g−1

1
''

g−1
2

77 •h̃�� .

One can now compose 2-morphisms vertically. Let us denote the source and the target of
the k-arrow (k = 1, 2) of the 2-morphism h as ∂−k (h) and ∂+

k (h), respectively. Then, the
vertical composition of 2-morphisms (g1, h1) and (g2, h2), when they are compatible, i.e. ,
when ∂+

2 (h1) = ∂−2 (h2),

• •

g

�� g2oo

g3

[[

h1��

h2��

= • •

g1

zz

g3

dd h2h1
��

,

results in a 2-morphism (g1, h2h1),

(g2, h2)#2(g1, h1) = (g1, h2h1) . (3.12)

An important operation is known as whiskering. One can whisker a 2-morphism h

with a morphism g1 by attaching the whisker g1 to the surface h from the left, i.e. , such
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that ∂−1 (g1) = ∂+
1 (h),

• •g1oo •

g2

xx

g′2

ff h
��

= • •

g1g2

vv

g1g′2

hh g1Bh
��

,

which results in the 2-morphism with the source curve g1g2 and target curve g1g
′
2, carrying

the label g1 Bh. Similarly, by attaching whisker g2 to a surface h from the right, i.e. , such
that ∂−1 (h) = ∂+

1 (g2),

• •

g1

xx

g′1

ff h
��

•g2oo = • •

g1g2

vv

g′1g2

hh h
��

,

one obtains the 2-morphism with the source curve g1g2 and target curve g′1g2, carrying the
label h.

The volumes are labeled with the elements l ∈ L. Let us denote the source and the
target of the k-arrow (k = 1, 2, 3) of the 3-morphism l as ∂−k (l) and ∂+

k (l), respectively.
For each volume, we split the boundary into two surfaces, the source surface labeled with
∂−3 (l) = h1 and the target surface labeled with ∂+

3 (l) = h2. On the common boundary of
the source and target surface, we choose two reference points, and split the boundary into
two curves, the source curve labeled with ∂−2 (l) = g1 and the target curve labeled with
∂+

2 (l) = g2, as demonstrated in the diagram below

• •

g1

��

g2

XX h1
��

l
V • •

g1

��

g2

XX h2
��

,

so that the volume label l ∈ L is required to satisfy the following condition:

δ(l) = h2h
−1
1 . (3.13)

The orientation of the volume can be reversed if one labels it with the inverse element l−1:

• •

g1

��

g2

XX h1
��

l−1

W • •

g1

��

g2

XX h2
��

,

while the orientation reversal of the curves and surfaces leads to the surface element labeled
with l̃ = g−1

1 B l,

•

g−1
2

??

g−1
1

��
•g−1

1 Bh1

KS
l̃
V •

g−1
2

??

g−1
1

��
•g−1

1 Bh2

KS

.
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One can compose two 3-morphisms via the upward composition (visualizing a third
axis, orthogonal to the plane of the paper, as the direction up). The upward composition
of 3-morphisms (g1, h1, l1) and (g1, h2, l2), when they are compatible, i.e. , when ∂+

3 (l1) =
∂−3 (l2),

• •

g1

��

g2

XX h1
��

l1
V • •

g1

��

g2

XX h2
��

l2
V • •

g1

��

g2

XX h3
��

= • •

g1

��

g2

XX h1
��

l2l1
V • •

g1

��

g2

XX h3
��

,

results in a 3-morphism (g1, h1, l2l1):

(g1, h2, l2)#3(g1, h1, l1) = (g1, h1, l2l1) . (3.14)

The upward composition of 3-morphisms is associative, and for every h ∈ H there is a
3-morphism that is an identity for the upward composition of 3-morphisms

• •

g1

��

g2

\\ h��

1h

V • •

g1

��

g2

\\ h�� .

The vertical composition of two 3-morphisms (g1, h1, l1) and (g2, h2, l2), when they are
compatible, i.e. , when ∂+

2 (l1) = ∂−2 (l2),

• •

g1

��
g2

oo
h1�� l1

V • •

g1

��
g2

oo
h′1��

• •

g3

__
g2oo
h2��

l2
V • •

g3

__
g2oo
h′2��

,

results in a 3-morphism (g1, h2h1, l2(h2 B′ l1)),

• •

g1

xx

g3

ff h2h1

��

l2(h2B′l1)
V • •

g1

xx

g3

ff δ
(
l2(h2B′l1)

)
h2h1

��
.

One can write, for (g1, h1, l1) and (g2, h2, l2),

(g2, h2, l2)#2(g1, h1, l1) = (g1, h2h1, l2(h2 B
′ l1)) . (3.15)

The vertical composition of 3-morphisms is an associative operation. Composition of 3-
morphisms is invariant under the change of order of upward composition and vertical
composition of 3-morphisms, i.e. ,(

(g2, h
′
2, l
′
2)#3(g2, h2, l2)

)
#2
(
(g1, h

′
1, l
′
1)#3(g1, h1, l1)

)
=
(
(g2, h

′
2, l
′
2)#2(g1, h

′
1, l
′
1)
)
#3
(
(g2, h2, l2)#2(g1, h1, l1)

)
,

(3.16)
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which is demonstrated in the diagram notation, where the diagram

• •

g1

��
g2

oo
h1�� l1

V • •

g1

��
g2

oo
h′1�� l′1

V • •

g1

��
g2

oo
h′′1��

• •

g3

XX
g2oo
h2��

l2
V • •

g3

XX
g2oo
h′2��

l′2
V • •

g3

XX
g2oo
h′′2��

uniquely determines the 3-morphism. The proof of the equation (3.16) is given in the
appendix A.

One can whisker the 3-morphisms with morphisms and 2-morphisms. Whiskering of a
3-morphism by a morphism from the left is the composition of a volume l ∈ L and curve
g1 ∈ G from the left, when they are compatible, i.e. , when ∂+

1 (l) = ∂−1 (g1),

• •g1oo •

g2

��

g′2

XX h1
��

l
V • •g1oo •

g2

��

g′2

XX h2
��

= • •

g1g2

��

g1g′2

__ g1Bh1

��

g1Bl
V • •

g1g2

��

g1g′2

__ g1Bh2

��
.

The composition results in a 3-morphism:

g1#1(g2, h1, l) = (g1g2, g1 B h1, g1 B l) . (3.17)

Similarly, one can whisker a 3-morphism by a morphism from the right, when they are
compatible, i.e. , ∂−1 (l) = ∂+

1 (g2),

• •

g1

��

g′1

XX h1
��

•g2oo
l
V • •

g1

��

g′1

XX h2
��

•g2oo = • •

g1g2

��

g′1g2

__ h1

��

l
V • •

g1g2

��

g′1g2

__ h2

��
,

which results in the 3-morphism:

(g1, h1, l)#1g2 = (g1g2, h1, l) . (3.18)

Whiskering of a 3-morphism with a 2-morphisms from below, when they are compatible,
i.e. , ∂+

2 (l) = ∂−2 (h2), is formed as a vertical composition of 3-morphisms (g1, h1, l) and
(g2, h2, 1h2),

• •

g1

��
g2

oo
h1�� l

V • •

g1

��
g2

oo
h′1��

• •

g3

__
g2oo
h2��

1h2
V • •

g3

__
g2oo
h2��

,
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which results in a 3-morphism

• •

g1

��

g3

__ h2h1

��

h2B′l
V • •

g1

{{

g3

cc δ(h2B′l)h2h1
��

.

One writes,
(g2, h2)#2(g1, h1, l) = (g1, h2h1, h2 B

′ l) . (3.19)

Whiskering a 3-morphism by 2-morphism from above, when they are compatible, i.e. ,
when ∂−2 (l) = ∂+

2 (h1), is formed as a vertical composition of 3-morphisms (g1, h1, 1h1) and
(g2, h2, l),

• •

g1

��
g2

oo
h1�� 1h1

V • •

g1

��
g2

oo
h1��

• •

g3

[[
g2oo

h2��

l
V • •

g3

[[
g2oo

h′2��

,

which results in a 3-morphism,

• •

g1

��

g3

[[ h2h1

��

l
V • •

g1

��

g3

[[ δ(l)h2h1
��

.

One obtains
(g2, h2, l)#2(g1, h1) = (g1, h2h1, l) . (3.20)

The interchanging 3-arrow is the horizontal composition of two 2-morphisms h1 and h2,
when they are compatible, i.e. , when ∂−1 (h1) = ∂+

1 (h2),

• •

g1

xx

g′1

ff h1�� •

g2

xx

g′2

ff h2�� ,

that results in a 3-morphism l, with source surface

∂−3 (l) =
(
(g1, h1)#1g

′
2
)
#2
(
g1#1(g2, h2)

)
,

and target surface
∂+

3 (l) =
(
g′1#1(g2, h2)

)
#2
(
(g1, h1)#1g2

)
,

• •

g1

xx

g′1

ff h1�� •

g2

xx

g′2

ff h2�� = • •

g1g2

ww

g′1g
′
2

gg h1g1Bh2
��

l
V • •

g1g2

ww

g′1g
′
2

gg g′1Bh2h1
��

.
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One obtains,
(g1, h1)#1(g2, h2) = (g1g2, h1g1 B h2, l) , (3.21)

where the 3-morphism l is Peiffer lifting {h1, g1 B h2}−1
p . Using the condition (3.13), one

obtains (
(∂(h1)g1) B h2

)
h1 = δ(l)h1

(
g1 B h2

)
, (3.22)

and from the definition of the Peiffer commutator, the identity (3.1), and the property (3.3a)
of the 2-crossed module, i.e. , δ({h1, h2}p) = 〈h1 , h2〉p, one obtains

δ(l)−1 = h1g1 B h2h
−1
1 (∂(h1)g1) B h2

−1 = 〈h1, g1 B h2〉p = δ({h1, g1 B h2}p) . (3.23)

Given any collection of curves, surfaces, and volumes, a configuration of 3-gauge theory
is an assignment of elements of G to the curves, elements of H to the surfaces, and elements
of L to volumes so that the following conditions hold:

1. For each surface labeled by h ∈ H, one has that ∂(h) = g2g
−1
1 where g1 and g2 are

the source and target curve, respectively;

2. For each volume labeled by l ∈ L, one has that δ(l) = h2h
−1
1 , where h1 and h2 are

the source and target surface, respectively;

3. For each 4-simplex labeled by (jk`mn) ∈ Λ4, the volume holonomy around it is
trivial.

The defined configurations can be viewed as the classical configurations of 3-gauge theory
or, in a path integral quantum theory, these are the configurations over which one integrates
in the path integral.

3.3 Gauge invariant quantities

In subsection 3.2, we have introduced a number of operations by which we can combine
labeled paths, surfaces, and volumes, in order to calculate the composition of elementary
paths, surfaces, and volumes, to arbitrarily large ones. In this subsection, we will make use
of these compositions in order to construct gauge invariant quantities that are associated
with closed paths, surfaces, and volumes. In Lemmas 3.1, 3.2, and 3.3, this procedure is
used for the boundary path of a triangle, the boundary surface of a tetrahedron, and the
boundary volume of the 4-simplex. The result of Lemma 3.1 is already derived for the case
of 2-groups and remains unchanged in the 3-gauge theory, see [38]. The higher flatness
condition for the boundary surface of a tetrahedron derived in [38], is generalized for the
case of 3-groups is Lemma 3.2. One of the main results of the paper is Lemma 3.3 where
we derived the higher flatness condition for the boundary volume of the 4-simplex.

Lemma 3.1. Let us consider a triangle, (jk`). The edges (jk) , j < k, are labeled by group
elements gjk ∈ G and the triangle (jk`) , j < k < `, by element hjk` ∈ H. Consider the
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diagram (3.24).

l• k•
gkl

xx
•j

gjk
ww

gjl

\\
hjkl	�

= l• l•
1•

vv

∂(hjkl)

hh hjkl�� k•
gkl

xx
•j

gjk
ww

gklgjk

ZZ
1gklgjk


�

= l• k•
gkl

xx
•j

gjk
ww

∂(hjkl) gklgjk

\\
hjkl	�

.

(3.24)
The curve γ1 = gk`gjk is the source and the curve γ2 = gj` is the target of the surface
morphism Σ : γ1 → γ2, labeled by the group element hjk`, i.e. ,

gj` = ∂(hjk`)gk`gjk . (3.25)

Lemma 3.2. Let us consider a tetrahedron, (jk`m). The edges (jk) , j < k, are labeled
by group elements gjk ∈ G and the triangles (jk`) , j < k < `, by elements hjk` ∈ H,
and the tetrahedron (jk`m) , j < k < ` < m by the group element ljk`m ∈ L. We have
oriented the triangles (jk`) so that they have the source is gk`gjk and the target is gj`, i.e.
gj` = ∂(hjk`)gk`gjk .

Let us first cut the tetrahedron surface along the edge (jm). This determines the
ordering of the vertical composition of the constituent surfaces. One just has to make
sure that all surfaces are composable, i.e. , they have the suitable reference points and the
correct orientation in order to compose them vertically.

Consider the diagram (3.26). We first move the curve from gk`gjk to the curve gj`.
At this stage, one cannot compose the result with the triangle (j`m), and one first has to
whisker it from the left by g`m. Now the two morphisms are vertically composable, and
this moves the curve to gjm. The following 2-morphism is obtained

m• •`g`moo •k
gk`

xx
•j

gjk
ww

gj`

\\
hjk`	�

gjm

\\

hj`m�

= (g`mgj`, hj`m)#2

(
g`m#1(gk`gjk, hjk`)

)
=
(
g`mgk`gjk, hj`m(g`m B hjk`)

)
.

(3.26)

Let us then consider the diagram (3.27). We first move the curve from g`mgk` to
the curve gkm. At this stage, one cannot compose the result with the triangle (jkm),
and one first has to whisker it from the right by gjk. Now the two morphisms are verti-
cally composable, and this moves the curve to gjm. The following 2-morphism is obtained

m• •`
g`m

yy
•k

gk`
xx

gkm

\\
hk`m	�

•j
gjkoo

gjm

\\
hjkm
��

= (gkmgjk, hjkm)#2
(
(g`mgk`, hk`m)#1gjk

)
= (g`mgk`gjk, hjkmhk`m) .

(3.27)

The two surfaces have the same source and target, Σ1 : g`mgk`gjk → gjm and Σ2 :
g`mgk`gjk → gjm. Now, transition from the surface shown on the diagram (3.26) to
the surface shown on the diagram (3.27) is given by the volume morphism V : Σ1 → Σ2
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determined by the group element ljk`m, i.e. ,

(g`mgk`gjk, hjkmhk`m) =
(
g`mgk`gjk, δ(ljk`m)hj`m(g`m B hjk`)

)
, (3.28)

that gives the relation,

hjkmhk`m = δ(ljk`m)hj`m(g`m B hjk`) . (3.29)

Lemma 3.3. Let us consider a 4-simplex, (jk`mn). The edges (jk) , j < k, are labeled
by group elements gjk ∈ G, the triangles (jk`) , j < k < `, by elements hjk` ∈ H, and the
tetrahedrons (jk`m) , j < k < ` < m, by the group element ljk`m ∈ L. We have oriented
the triangles (jk`) so that the source curve is gk`gjk and the target curve is gj`, i.e. , gj` =
∂(hjk`)gk`gjk , and the tetrahedrons (jk`m) so that the source surface is hj`m(g`m B hjk`)
and the target surface is hjkmhk`m, i.e. , hjkmhk`m = δ(ljk`m)hj`m(g`m B hjk`).

Let us first cut the 4-simplex volume along the surface hjmngmn B (hj`mg`m B hjk`).
This surface determines the ordering of the vertical composition of the constituent vol-
umes. We have to make sure that all volumes are composable, i.e. , they have the suitable
reference points and the correct orientation in order to compose them vertically. First,
let us consider the diagram (3.30). We first move the surface from hj`mg`m B hjk` to
surface hjkmhk`m with the 3-arrow ljk`m. To compose the resulting 3-morphism with the
surface hjmn one must first whisker it from the left with gmn. The obtained 3-morphism
(gmng`mgk`gjk, gmn B (hj`mg`m B hjk`), gmn B ljk`m) can be whiskered from below with the
2-morphism (gmngjm, hjmn), and the resulting 3-morphism is (gmng`mgk`gjk, hjmngmn B
(hj`mg`mBhjk`), hjmnB′ (gmnB ljk`m)), with the source surface hjmngmnB(hj`mg`mBhjk`)
and the target surface hjmngmn B (hjkmhk`m),

n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx
•j

gjk
ww

gj`

\\
hjk`	�

gjm

\\
hj`m�

gjn

ZZ

hjmn
��

hjmnB′(gmnBljk`m)
V n• •m

gmn

xx
•`

g`m
yy

•k
gk`

xx

gkm

\\
hk`m	�

•j
gjk

ww

gjm

\\

gjn

ZZ
hjkm
��hjmn

��

.

(3.30)
Let us move the surface to hjknhkmngm`Bhk`m, see diagram (3.31). To do that, we consider
the 3-morphism (gmngkmgjk, hjmngmnBhjkm, ljkmn) with the source surface hjmngmnBhjkm
and target surface hjknhkmn. This 3-morphism can be whiskered from above with the 2-
morphism (gmng`mgk`gjk, gmnBhk`m), and the obtained 3-morphism is (gmng`mgk`gjk, hjmn
gmnB(hjkmhk`m), ljkmn), with the source surface hjmngmnB(hjkmhk`m) and target surface
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hjknhkmngmn B hk`m,

n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx

gkm

\\
hk`m	�

•j
gjk

ww

gjm

\\

gjn

ZZ
hjkm
��hjmn

��

ljkmn

V n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx

gkm

\\

gkn

\\

hk`m	�

•j
gjk

ww

gjn

ZZ

hkmn
��

hjkn

 (

.

(3.31)
Next, we want to move the surface hjknhkmngmnBhk`m to surface hjknhk`nh`mn, as shown
on the diagram (3.32). We whisker the 3-morphism (gmng`mgk`, hkmngmn B hk`m, lk`mn),
with the source surface hkmngmn B hk`m and target surface hk`nh`mn, with the morphism
gjk from the right, obtaining the 3-morphism (gmng`mgk`gjk, hkmngmnBhk`m, lk`mn). Now,
we whisker this 3-morphism with the 2-morphism (gkngjk, hjkn) from below, and we obtain
the 3-morphism (gmng`mgk`gjk, hjknhkmngmn B hk`m, hjkn B′ lk`mn),

n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx

gkm

\\

gkn

\\

hk`m	�

•j
gjk

ww

gjn

ZZ

hkmn
��

hjkn

 (

hjknB′lk`mn

V n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx

gkn

\\
hk`n

�#

•j
gjk

ww

gjn

ZZ

h`mn��

hjkn

 (

.

(3.32)
The mapping of the surface hjknhk`nh`mn to the surface hj`ng`n B hjk`h`mn in shown on
the diagram (3.33). The 3-morphism with the appropriate source and target is constructed
by whiskering the 3-morphism (g`ngk`gjk, hjknhk`n, l−1

jk`n) with 2-morphism (gmng`mgk`gjk,
h`mn) from above. The obtained 3-morphism is (gmng`mgk`gjk, hjknhk`nh`mn, l−1

jk`n),

n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx

gkn

\\
hk`n

�#

•j
gjk

ww

gjn

ZZ

h`mn��

hjkn

 (

l−1
jk`n

V n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx
•j

gjk
ww

gj`

\\

gjn

ZZ

hjk`
�h`mn��
hj`n


�

.

(3.33)
Next we map the surface hj`ng`n B hjk`h`mn to the surface hj`nh`mn(gmng`m) B hjk`, see
the diagram (3.34). We use the inverse interchanging 2-arrow composition to map the
surface g`n B hjk`h`mn to the surface h`mn(gmng`m) B hjk`, resulting in the 3-morphism
(gmng`mgk`gjk, g`nBhjk`h`mn, {h`mn, (gmng`m)Bhjk`}p). Next, we whisker the obtained 3-
morphism with the 2-morphism (g`ngj`, hj`n) from below. The obtained 3-morphism with
the appropriate source and target surfaces is (gmng`mgk`gjk, hj`ng`n B hjk`h`mn, hj`n B′
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{h`mn, (gmng`m) B hjk`}p),

n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx
•j

gjk
ww

gj`

\\

gjn

ZZ

hjk`
�h`mn��
hj`n


�

hj`nB′{h`mn,(gmng`m)Bhjk`}p
V n• •m

gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx
•j

gjk
ww

gj`

\\

gjn

ZZ

hjk`
�h`mn��
hj`n


�

.

(3.34)
Finally, we construct the 3-morphism that maps the surface hj`nh`mn(gmng`m)Bhjk` to the
starting surface hjmngmnB(hj`mg`mBhjk`). To obtain the 3-morphism with the appropriate
source and target surfaces we first move the surface hj`nh`mn to the surface hjmngmn B
hj`m with the 3-arrow (gmng`mgj`, hj`nh`mn, l−1

j`mn). Next, we whisker the 3-morphism
(gmng`mgj`, hj`nh`mn, l−1

j`mn) with the 2-morphism (gmng`mgk`gjk, (gmng`m) B hjk`) from
above. The obtained 3-morphism (gmng`mgk`gjk, hj`nh`mn(gmng`m) B hjk`, l

−1
j`mn) moves

the surface to the starting surface, as shown on the diagram (3.35),

n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx
•j

gjk
ww

gj`

\\

gjn

ZZ

hjk`
�h`mn��
hj`n


�

l−1
j`mn

V n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx
•j

gjk
ww

gj`

\\
hjk`	�

gjm

\\
hj`m�

gjn

ZZ

hjmn
��

.

(3.35)
After the upward composition of the 3-morphisms given by the diagrams (3.30)–(3.35), the
obtained 3-morphism is:

(gmng`mgk`gjk, hj`nh`mn(gmng`m) B hjk`, l
−1
j`mn)#3

(gmng`mgk`gjk, g`n B hjk`h`mn, hj`n B
′ {h`mn, (gmng`m) B hjk`}p)#3

(gmng`mgk`gjk, hjknhk`nh`mn, l−1
jk`n)#3

(gmng`mgk`gjk, hjknhkmngm` B hk`m, hjkn B
′ ljkmn)#3

(gmng`mgk`gjk, hjmngmn B (hjkmhk`m), ljkmn)#3

(gmng`mgk`gjk, hjmngmn B (hj`mg`m B hjk`), hjmn B′ (gmn B ljk`m))
= (gmng`mgk`gjk, hjmngmn B (hj`mg`m B hjk`), l−1

j`mn hj`n B
′ {h`mn, (gmng`m) B hjk`}p

l−1
jk`n(hjkn B′ lk`mn)ljkmnhjmn B′ (gmn B ljk`m)) .

(3.36)

The obtained 3-morphism is the identity morphism with source and target surface V1 =
V2 = hjmngmn B (hj`mg`m B hjk`), i.e. ,

l−1
j`mn hj`n B

′ {h`mn, (gmng`m) B hjk`}p l−1
jk`n(hjkn B′ lk`mn)ljkmnhjmn B′ (gmn B ljk`m) = e .

(3.37)
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4 Quantization of the topological 3BF theory

In conventional BF theory, one chooses the action in such a way that the theory does not
depend on any background field, but only the spacetime manifold. The classical field equa-
tions of the theory require the gauge connection to be flat, i.e. , in terms of the holonomy
variables, that any null-homotopic closed curve corresponds to the identity of the gauge
group. In the framework of higher gauge theory, specifically 2-gauge theory, one general-
izes this idea by imposing the higher flatness condition requiring that the surface holonomy
around the boundary 2-sphere of any 3-ball be trivial instead. One can continue further
categorical generalization by choosing a 3-group structure to describe the gauge symmetry
of the theory, and formulate a 3BF theory whose equations of motion impose a higher flat-
ness condition for a 3-curvature (F ,G,H). In this section, a combinatorial description of
such model for any triangulation of any smooth manifold of dimension d = 4 is presented.
This model coincides with Porter’s abstract definition of a TQFT [33] for d = 4 and n = 3,
which is itself a generalization of Yetter’s work [48, 49].

Let us show how to construct a state sum model from the classical action (2.8) by
the usual heuristic spinfoam quantization procedure. We consider the path integral for the
action S3BF ,

Z =
∫
DαDβDγDBDC DD exp

(
i

∫
M4
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l

)
. (4.1)

The formal integration over the Lagrange multipliers B, C, and D leads to:

Z = N
∫
DαDβDγ δ(F)δ(G)δ(H) . (4.2)

Similarly to conventional gauge theory, the connection 1-form α ∈ A1(M4, g) is discretized
by colouring the edges ε = (jk) ∈ Λ1 of the triangulation with group elements gε ∈ G. The
connection 2-form β ∈ A2(M4 , h) is represented by group elements h∆ ∈ H coloring the
triangles ∆ = (jk`) ∈ Λ2. The connection 3-form γ ∈ A3(M4 , l) is represented by group
elements lτ ∈ L coloring the tetrahedrons τ = (jk`m) ∈ Λ3.

The path integral measures of (4.1) are discretized by replacing∫
Dα 7→

∏
(jk)∈Λ1

∫
G
dgjk , (4.3)

∫
Dβ 7→

∏
(jk`)∈Λ2

∫
H
dhjk`, (4.4)

∫
Dγ 7→

∏
(jk`m)∈Λ3

∫
L
dljk`m , (4.5)

where dgjk, dhjk`, and dljk`m denote integration with respect to the Haar measures of
G, H, and L, respectively. The vanishing fake curvature condition is discretized on each
triangle (jkl) ∈ Λ2 by discretizing δ(F). When passing from a smooth manifold to its
triangulation, the δ distribution is defined over the appropriate set of simplices as follows,

δ(F) =
∏

(jk`)∈Λ2

δG(gjk`) , (4.6)
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where for each (jkl) ∈ Λ2 the δ-function δG(gjkl) is given by:

δG(gjk`) = δG
(
∂(hjk`) gk` gjk g−1

j`

)
. (4.7)

Similarly, on the triangulated manifold the condition δ(G) on the fake curvature 3-form
reads

δ(G) =
∏

(jk`m)∈Λ3

δH(hjk`m) , (4.8)

where for every tetrahedron (jk`m) ∈ Λ3 one has:

δH(hjk`m) = δH
(
δ(ljk`m)hj`m (g`m B hjk`)h−1

k`m h
−1
jkm

)
. (4.9)

Finally, the condition δ(H) is discretized as

δ(H) =
∏

(jk`mn)∈Λ4

δL(ljk`mn) , (4.10)

where for each 4-simplex (jk`mn) ∈ Λ4 one has:

δL(ljk`mn) = δL
(
l−1
j`mnhj`nB

′{h`mn,(gmng`m)Bhjk`}p l−1
jk`n(hjknB′ lk`mn)ljkmnhjmnB′(gmnBljk`m)

)
.

(4.11)
The identities (4.7), (4.9), and (4.11) are the results of Lemmas 3.1, 3.2, and 3.3, respec-
tively.

After substituting the expressions for discretized measures (4.3)–(4.5) and
δ-functions (4.6), (4.8), and (4.10) into the equation (4.2) one obtains:

Z =N
∏

(jk)∈Λ1

∫
G

dgjk
∏

(jk`)∈Λ2

∫
H

dhjk`
∏

(jk`m)∈Λ3

∫
L

dljk`m

( ∏
(jk`)∈Λ2

δG
(
gjk`

))( ∏
(jk`m)∈Λ3

δH
(
hjk`m

))( ∏
(jk`mn)∈Λ4

δL
(
ljk`mn

))
.

(4.12)
By inserting (4.7), (4.9), and (4.11) into (4.12), we obtain an explicit expression for the
state sum over a given triangulation of the manifold M4. This expression can be made
independent of the triangulation if one appropriately chooses the constant factor N , ob-
tained after the integration over the Lagrange multipliers B, C, and D. This is done by
requiring that the state sum is invariant under the Pachner moves, which leads us to the
appropriate form of the constant factor N , as given by the definition 4.1.

Definition 4.1. LetM4 be a compact and oriented combinatorial d-manifold, d = 4, and
(L δ→ H

∂→ G ,B , {_ ,_}pf) be a 2-crossed module. The state sum of topological higher
gauge theory is defined by

Z = |G|−|Λ0|+|Λ1|−|Λ2||H||Λ0|−|Λ1|+|Λ2|−|Λ3| |L|−|Λ0|+|Λ1|−|Λ2|+|Λ3|−|Λ4|

×
(∏

(jk)∈Λ1

∫
G
dgjk

)(∏
(jk`)∈Λ2

∫
H
dhjk`

)(∏
(jk`m)∈Λ3

∫
L
dljk`m

)
×
(∏

(jk`)∈Λ2 δG
(
∂(hjk`) gk` gjk g−1

j`

))(∏
(jk`m)∈Λ3 δH

(
δ(ljk`m)hj`m (g`m B hjk`)h−1

k`m h
−1
jkm

))
×
(∏

(jk`mn)∈Λ4 δL
(
l−1
j`mn hj`n B

′ {h`mn, (gmng`m) B hjk`}p l−1
jk`n(hjkn B′ lk`mn)ljkmnhjmn B′ (gmn B ljk`m)

))
.

(4.13)
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Here we integrate over gjk ∈ G for every edge (jk) ∈ Λ1, over hjk` ∈ H for ev-
ery triangle (jk`) ∈ Λ2 and over ljklm for every tetrahedron (jk`m) ∈ Λ3 . The δ-
distributions under the integral impose the following conditions. First, the condition
that ∂(hjk`) gk` gjk = gj` for each triangle (jk`) ∈ Λ2, i.e. , that each surface label hjk`
has got the appropriate source and target, see Lemma 3.1. Second, the condition that
hjkm hk`m = δ(ljk`m)hj`m (g`m B hjk`) for each tetrahedron (jk`m) ∈ Λ3, i.e. , that each
volume label ljk`m has got the appropriate source and target, see Lemma 3.2. Finally, the
condition that the volume holonomy around every 4-simplex (jk`mn) ∈ Λ4 is trivial, i.e. ,
that l−1

j`mn hj`n B′ {h`mn, (gmng`m) B hjk`}p l−1
jk`n(hjkn B′ lk`mn)ljkmnhjmn B′ (gmn B ljk`m)

is equal to the neutral element of the group L for each 4-simplex (jk`mn) ∈ Λ4, see
Lemma 3.3.

Theorem 4.2. LetM4 be a closed and oriented combinatorial 4-manifold and (L δ→ H
∂→

G ,B , {_ ,_}pf) be a 2-crossed module. The state sum (4.13) is invariant under Pachner
moves.

The statements of Pachner move invariance are formulated in the following subsections,
while corresponding proofs are given in the appendix B.

4.1 Pachner move 1↔ 5

(3)

(2)

(6)

(5)

(4)

1↔ 5

(3)

(2)

(6)

(5)

(4)•
(1)

Let us verify that the state sum (4.13) is invariant under 1 − 5 Pachner move. Since
the partition function is independent of the total order of vertices, let us fix the ordering
and verify the move in only one case. Let us denote the vertices of the 4-simplex on the
left hand side of the 1 − 5 Pachner move as (23456). Then, adding a vertex 1 on the
right hand side of the Pachner move one obtains five 4-simplices M4 = {(13456), (12456),
(12356), (12346), (12345)}. On the r.h.s. there are tetrahedrons M3 = {(1234), (1235),
(1236), (1245), (1246), (1256), (1345), (1346), (1356), (1456)}, triangles (jk`) ∈M2 = {(123),
(124), (125), (126), (134), (135), (136), (145), (146), (156)}, edges (jk) ∈ M1 = {(12), (13),
(14), (15), (16)} and vertices (j) ∈ M0 = {(1)}. All other simplices are present on both
sides of the move.
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|Λ0| |Λ1| |Λ2| |Λ3| |Λ4|
l.h.s. 5 10 10 5 1
r.h.s. 6 15 20 15 5

Table 1. Number of vertices |Λ0|, edges |Λ1|, triangles |Λ2|, tetrahedrons |Λ3|, and 4-simplices |Λ4|
on both sides of the 1↔ 5 move.

If the 1− 5 Pachner move does not change the state sum (4.13), then the state sum of
the right hand side,

Z1↔5
right = |G|−11|H|−4|L|−1

∫
G5

∏
(jk)∈M1

dgjk

∫
H10

∏
(jk`)∈M2

dhjk`

∫
L10

∏
(jklm)∈M3

dljklm

·
( ∏

(jk`)∈M2

δG(gjk`)
)( ∏

(jk`m)∈M3

δH(hjk`m)
)( ∏

(jk`mn)∈M4

δL(ljk`mn)
)
Zremainder ,

(4.14)

should be equal to the state sum of the left hand side,

Z1↔5
left = |G|−5|H|0|L|−1δL(l23456)Zremainder . (4.15)

Here, the prefactors |G|−|Λ0|+|Λ1|−|Λ2|, |H||Λ0|−|Λ1|+|Λ2|−|Λ3|, and |L|−|Λ0|+|Λ1|−|Λ2|+|Λ3|−|Λ4|

are |G|−11|H|−4|L|−1 on the r.h.s. and |G|−5|H|0|L|−1 on the l.h.s., as obtained by counting
the numbers of the k-simplices on both sides of the 1− 5 move, shown in the table 1. The
Zremainder denotes the part of the state sum that is the same on both sides of the move,
and thus irrelevant for the proof of invariance. The proof that Zleft = Zright is given in the
appendix B.

4.2 Pachner move 2↔ 4
(3)(2)

(1)

(4) (5)

(6)

2↔ 4

(3)(2)

(1)

(4) (5)

(6)

In order to verify the state sum (4.13) invariance under 2 − 4 Pachner move, we order
the vertices in such a way that on the l.h.s. of the move we have two 4-simplices M left

4 =
{(23456), (12345)}, while on the r.h.s. we have four 4-simplices M right

4 = {(12346), (12356),
(12456), (13456)}. On the l.h.s. we have one tetrahedron M left

3 = {(2345)}, whereas on the
r.h.s. there are six tetrahedrons M right

3 = {(1236), (1246), (1256), (1346), (1356), (1456)}.
All other tetrahedrons appear on both sides of the move. On the r.h.s. there are triangles
M right

2 = {(126), (136), (146), (156)}, and one edge M right
1 = {(16)}, while the rest of the

triangles and edges appear on both sides of the move.
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|Λ0| |Λ1| |Λ2| |Λ3| |Λ4|
l.h.s. 6 14 16 9 2
r.h.s. 6 15 20 14 4

Table 2. Number of vertices |Λ0|, edges |Λ1|, triangles |Λ2|, tetrahedrons |Λ3|, and 4-simplices |Λ4|
on both sides of the 2↔ 4 move.

On the l.h.s. there is the state sum,

Z2↔4
left = |G|−8|H|−1|L|−1

∫
L
dl2345δH(h2345)

( ∏
(jk`mn)∈M left

4

δL(ljk`mn)
)
Zremainder , (4.16)

whereas on the r.h.s. the state sum reads:

Z2↔4
right = |G|−11|H|−3|L|−1

∫
G
dg16

∫
H4
dh126dh136dh146dh156

∫
L
dl1236dl1246dl1256dl1346dl1356dl1456( ∏

(jk`)∈Mright
2

δG(gjk`)
)( ∏

(jk`m)∈Mright
3

δH(hjk`m)
)( ∏

(jk`mn)∈Mright
4

δL(ljk`mn)
)
Zremainder.

(4.17)
Here the prefactors |G|−8|H|−1|L|−1 on the l.h.s. and |G|−11|H|−3|L|−1 on the r.h.s. are
obtained by counting the numbers of k-simplices on both sides of the 2− 4 move, as shown
in the table 2. The term Zremainder denotes the part of the state sum that is identical on
both sides of the move, as before. The proof that Zleft = Zright is given in the appendix B.

4.3 Pachner move 3↔ 3

(2)(4)

(1)

(6) (3)

(5)

3↔ 3

(2)(4)

(1)

(6) (3)

(5)

In order to verify the state sum invariance under 3 − 3 Pachner move, we order the
vertices in such a way that on the l.h.s. of the 3 − 3 move, we have three 4-simplices
M left

4 = {(23456), (13456), (12456)}, whereas on the r.h.s. we have the 4-simplicesM right
4 =

{(12356), (12346), (12345)}. On the l.h.s. there are tetrahedrons M left
3 = {(1456), (2456),

(3456)}, and on the r.h.s. M right
3 = {(1234), (1235), (1236)}. One notices that the six

tetrahedrons form the common boundary of both sides of the move, whereas on each side
there are three tetrahedrons shared by two 4-simplices. On the l.h.s. one has the triangle
M left

2 = {(456)} and on the r.h.s. the triangle M right
3 = {(123)}. All other triangles appear

on both sides of the move.
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Therefore on the l.h.s. there is the state sum,

Z3↔3
left =

∫
H
dh456

∫
L3
dl1456dl2456dl3456δG(g456) δH(h3456)δH(h2456)δH(h1456)

δL(l23456)δL(l13456)δL(l12456)Zremainder ,
(4.18)

whereas on the r.h.s. the state sum reads

Z3↔3
right =

∫
H
dh123

∫
L3
dl1234dl1235dl1236δG(g123) δH(h1234)δH(h1235)δH(h1236)

δL(l12356)δL(l12346)δL(l12345)Zremainder .
(4.19)

The numbers of k-simplices agree on both sides of the 3 − 3 move for all k, and the
prefactors play no role in this case, therefore they are part of the Zremainder. The proof
that Zleft = Zright is given in the appendix B.

We obtain that the state sum given by the definition 4.1 is invariant under all three
Pachner moves, and thus independent of triangulation of the underlying 4-dimensional
manifold (see appendix B for the proof).

5 Conclusions

Let us summarize the results of the paper. In section 2 we reviewed the pure the constrained
2BF actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained
3BF actions describing the Klein-Gordon and Dirac fields coupled to Yang-Mills fields
and gravity in the standard way. In section 3, we reviewed the relevant algebraic tools
involved in the description of higher gauge theory, 2-crossed modules, and 3-gauge theory
and generalized the integral picture of an ordinary gauge theory to a 3-gauge theory that
involves curves, surfaces, and volumes labeled with elements of non-Abelian groups. We
have also proved three key results, stated in Lemmas 3.1, 3.2, and 3.3, which are crucial
for the construction of the invariant state sum. In section 4, we have presented the two
main results of the paper. First, we constructed a triangulation independent state sum Z

of a topological higher gauge theory for a general 3-group and a 4-dimensional spacetime
manifold M4. Second, we proved the theorem that the constructed state sum is indeed
independent of the choice of triangulation, i.e., that it is a genuine topological invariant.

The constructed state sum coincides with Porter’s TQFT [33, 34] for d = 4 and
n = 3. The proof that the state sum is invariant under the local changes of triangulation
called the Pachner moves and thus independent of the chosen triangulation is presented in
appendix B. It is obtained that the state sum is invariant under all five different Pachner
moves: the 3 − 3 move, 4 − 2 move, and 5 − 1 move, and their inverses. The state sum
constructed this way can be thought of as a combinatorial construction of a topological
quantum field theory (TQFT) in the sense of Atiyah’s axioms, a topic that is beyond the
scope of this paper and will be studied in a future work.

In order to finish the second step of the spinfoam quantization procedure, however, the
generalizations of the Peter-Weyl and Plancharel theorems to 2-groups and 3-groups are
required, which so far represent open problems. Namely, these theorems should provide
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a decomposition of a function on a 3-group into a sum over the corresponding irreducible
representations of a 3-group. In this way, the spectrum of labels for the simplices, i.e. , the
domain of values of the fields living on the simplices of the triangulation, would be specified.
Nonetheless, one can still try to guess the irreducible representations of 3-groups, as was
done for example in the case of 2-groups in the spincube model of quantum gravity [30],
or obtain the state sum using other techniques, see for example [50–52]).

However, if one wants to describe a real physical theory, i.e. , the theory which contains
local propagating degrees of freedom, one needs to construct the nontopological state sum,
with the non-trivial dynamics. To do so, once the topological state sum is constructed, the
final third step of the spinfoam quantization procedure is to impose the constraints that
deform the topological theory into a realistic theory of gravity coupled to matter fields (as
defined in [31]) at the quantum level. We leave the construction of the constrained state
sum model for future work.

In addition to the above topics, there are also many other possible applications of the
invariant state sum, both in physics and mathematics.
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A Proof of the invariance identity

Let us prove the identity (3.16). Using the definitions of the upward composition (3.14)
and the vertical composition (3.15) of the 3-morphisms, one obtains that the left-hand side
of the equation (3.16) is equal to:

(
(g2, h

′
2, l
′
2)#3(g2, h2, l2)

)
#2
(
(g1, h

′
1, l
′
1)#3(g1, h1, l1)

)
=
(
g2, h2, l

′
2l2
)
#2
(
g1, h1, l

′
1l1
)

=
(
g1, h2h1, l

′
2l2 h2 B

′ (l′1l1)
)
.

(A.1)

The right-hand side of the equation (3.16) is equal to:

(
(g2, h

′
2, l
′
2)#2(g1, h

′
1, l
′
1)
)
#3
(
(g2, h2, l2)#2(g1, h1, l1)

)
=
(
g1, h

′
2h
′
1, l
′
2h
′
2 B
′ l′1
)
#3
(
g1, h2h1, l2h2 B

′ l1
)

=
(
g1, h2h1, l

′
2 h
′
2 B
′ l′1 l2 h2 B

′ l1
)

(h′2 = δ(l2)h2)
=
(
g1, h2h1, l

′
2 (δ(l2)h2) B′ l′1 l2 h2 B

′ l1
)

eq. (A.3)
=
(
g1, h2h1, l

′
2 δ(l2) B′ (h2 B

′ l′1) l2 h2 B
′ l1
)

(Peiffer identity)
=
(
g1, h2h1, l

′
2 l2(h2 B

′ l′1)l−1
2 l2 h2 B

′ l1
)

(l−1
2 l2 = e)

=
(
g1, h2h1, l

′
2 l2h2 B

′ l′1 h2 B
′ l1
)

eq. (A.4)
=
(
g1, h2h1, l

′
2 l2h2 B

′ (l′1l1)
)
,

(A.2)

– 29 –



J
H
E
P
0
7
(
2
0
2
2
)
1
0
5

where in the third and sixth line we use the identities

(h1h2) B′ l = h1 B
′ (h2 B

′ l), ∀h1, h2 ∈ H, ∀l ∈ L , (A.3)
hB′ (l1l2) = hB′ l1 hB′ l2, ∀h ∈ H, ∀l1, l2 ∈ L . (A.4)

This proves the equation (3.16).

B Proof of Pachner move invariance

In this section, a self contained proof in terms of Pachner moves that the partition func-
tion (4.13) is independent of the chosen triangulation is presented.

B.1 Pachner move 1↔ 5

On the left hand side of the move there is the integrand δL(l23456):

δL(l23456) = δL
(
l2346

−1(h236 B′ l3456)l2356h256 B′ (g56 B l2345)l2456
−1h246 B′ {h456, (g56g45) B h234}p

)
.

(B.1)
Let us examine the right hand side of the move, given by the equation (4.14). First, one
integrates out g12 using δG(g123), g13 using δG(g134), g14 using δG(g145), and g15 using
δG(g156), and obtains:

g12 = g−1
23 ∂(h123)−1 g13 ,

g13 = g−1
34 ∂(h134)−1 g14 ,

g14 = g−1
45 ∂(h145)−1 g15 ,

g15 = g−1
56 ∂(h156)−1 g16 .

(B.2)

One integrates out h123 using δH(h1234), h124 using δH(h1245), h125 using δH(h1256), h134
using δH(h1345), h135 using δH(h1356), and h145 using δH(h1456), and obtains:

h123 = g−1
34 B h−1

134 g
−1
34 B δ(l1234)−1 g−1

34 B h124 g
−1
34 B h234 ,

h124 = g−1
45 B h−1

145 g
−1
45 B δ(l1245)−1 g−1

45 B h125 g
−1
45 B h245 ,

h125 = g−1
56 B h−1

156 g
−1
56 B δ(l1256)−1 g−1

56 B h126 g
−1
56 B h256 ,

h134 = g−1
45 B h−1

145 g
−1
45 B δ(l1345)−1 g−1

45 B h135 g
−1
45 B h345 ,

h135 = g−1
56 B h−1

156 g
−1
56 B δ(l1356)−1 g−1

56 B h136 g
−1
56 B h356 ,

h145 = g−1
56 B h−1

156 g
−1
56 B δ(l1456)−1 g−1

56 B h146 g
−1
56 B h456 .

(B.3)

The δ-functions on the group G now read δG(e)6. Let us show this. First, for δG(g124) one
obtains

δG(g124) = δG
(
∂(h124) g24 g12 g

−1
14

)
= δG

(
∂(h124) g24 g

−1
23 ∂(h123)−1 g13 g

−1
14

)
= δG

(
∂(h124) g24 g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134) g34 g13 g

−1
14

)
= δG

(
∂(h124) g24 g

−1
23 g

−1
34 (g34 g

−1
23 g

−1
24 ) ∂(h124)−1 e

)
= δG(e) ,

(B.4)
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Next, for δ-function δG(g125) one obtains,

δG(g125) = δG
(
∂(h125) g25 g12 g

−1
15

)
,

= δG
(
∂(h125) g25 g

−1
23 ∂(h123)−1 g13 g

−1
15

)
= δG

(
∂(h125) g25 g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134) g34 g13 g

−1
15

)
= δG

(
∂(h125) g25 g

−1
23 g

−1
34 ∂(h234)−1g−1

45 (∂(h245)−1∂(h125)−1∂(h145)) g45g14 g
−1
15

)
= δG

(
∂(h125) g25 g

−1
23 g

−1
34 (g34 g

−1
23 g

−1
24 )g−1

45 (g45 g
−1
24 g

−1
25 )∂(h125)−1e

)
= δG(e) .

(B.5)

Similarly, δG(g126) becomes

δG(g126) = δG
(
∂(h126)g26g12g

−1
16
)

= δG
(
∂(h126)g26g

−1
23 ∂(h123)−1g13g

−1
16
)

= δG
(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134)g34g13g

−1
16
)

= δG
(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1g−1

45 (∂(h245)−1∂(h125)−1∂(h145))g45∂(h134)g34g13g
−1
16
)

= δG
(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1g−1

45 (∂(h245)−1g−1
56 ∂(h256)−1∂(h126)−1∂(h156)g56

∂(h145))g45g14g
−1
16
)

= δG
(
∂(h126)g26g

−1
23 g

−1
34 (g34g

−1
23 g

−1
24 )g−1

45 (g45g
−1
24 g

−1
25 )g−1

56 (g56g
−1
25 g

−1
26 )∂(h126)−1

(g16g
−1
15 g

−1
56 )g56g15g

−1
16
)

= δG(e),
(B.6)

and δG(g135) now reads,

δG(g135) = δG
(
∂(h135) g35 g13 g

−1
15

)
,

= δG
(
∂(h135) g35 g

−1
34 ∂(h134)−1 g14 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1∂(h145) g45 g14 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1 ∂(h145) g45 g

−1
45 ∂(h145)−1 g15 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 (g45 g

−1
34 g

−1
35 )∂(h135)−1

)
= δG(e) ,

(B.7)
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while δG(g136) reads:

δG(g136) = δG
(
∂(h136) g36 g13 g

−1
16
)

= δG
(
∂(h136) g36 g

−1
34 ∂(h134)−1 g14 g

−1
16
)

= δG
(
∂(h136) g36 g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1∂(h145) g45 g14 g

−1
16
)

= δG
(
∂(h136) g36 g

−1
34 g

−1
45 ∂(h345)−1g−1

56 (∂(h356)−1∂(h136)−1∂(h156)) g56∂(h145) g45 g14 g
−1
16
)

= δG
(
∂(h136) g36 g

−1
34 g

−1
45 (g45 g

−1
34 g

−1
35 )g−1

56 (g56 g
−1
35 g

−1
36 )∂(h136)−1e

)
= δG(e) .

(B.8)
Finally, the δ-function δG(g146) reads:

δG(g146) = δG
(
∂(h146) g46 g14 g

−1
16

)
= δG

(
∂(h146) g46 (g−1

45 ∂(h145)−1 g15) g−1
16

)
= δG

(
∂(h146) g46 g

−1
45 ∂(h145)−1 (g−1

56 ∂(h156)−1 g16) g−1
16

)
= δG

(
∂(h146) g46 g

−1
45 g

−1
56 ∂(h456)−1∂(h146)−1∂(h156)g56 (g−1

56 ∂(h156)−1 g16) g−1
16

)
= δG(e) .

(B.9)

Next, one integrates out l1235 using δL(l12345), l1236 using δL(l12346), l1246 using δL(l12456),
and l1346 using δL(l13456), and obtains

l1235 = (h125 B
′ l2345)l1245h145 B

′ (g45 B l1234)l−1
1345 h135 B

′ {h345, (g45g34) B h123}p , (B.10)
l1236 = (h126 B

′ l2346)l1246h146 B
′ (g46 B l1234)l−1

1346 h136 B
′ {h346, (g46g34) B h123}p , (B.11)

l1246 = (h126 B
′ l2456)l1256h156 B

′ (g56 B l1245)l1456
−1 h146 B

′ {h456, (g56g45) B h124}p ,
(B.12)

l1346 = (h136 B
′ l3456)l1356h156 B

′ (g56 B l1345)l1456
−1 h146 B

′ {h456, (g56g45) B h134}p .
(B.13)

Let us now show that the remaining δ-functions on the group H equal δH(e)4. First,
δH(h1235) becomes:

δH(h1235)=δH
(
δ(l1235)h135(g35Bh123)h−1

235h
−1
125
)

=δH
(
δ
(
(h125B

′l2345)l1245h145B
′(g45Bl1234)l−1

1345h135B
′{h345,(g45g34)Bh123}p

)
h135(g35Bh123)h−1

235h
−1
125

)
=δH

((
h125δ(l2345)h−1

125δ(l1245)h145(g45Bδ(l1234))h−1
145δ(l1345)−1h135δ({h345,(g45g34)Bh123}p)h−1

135
)

h135(g35Bh123)h−1
235h

−1
125

)
=δH

(
h235h345(g45Bh

−1
234)h−1

245h
−1
125h125h245(g45Bh

−1
124)h−1

145h145(g45B(h124h234(g34Bh
−1
123)h−1

134))

h−1
145(h145(g45Bh134)h−1

345h
−1
135)h135δ({h345,(g45g34)Bh123}p)h−1

135h135(g35Bh123)h−1
235

)
=δH(h345

(
(g45g34)Bh−1

123
)
h−1

345δ({h345,(g45g34)Bh123}p)(g35Bh123).
(B.14)

Here, one uses the following identity

δ{h1 , h2}p(∂(h1) B h2)h1h
−1
2 h−1

1 = e . (B.15)
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Substituting g35 = ∂(h345)g45g34, and applying the (B.15) identity for h1 = h345 and
h2 = (g45g34) B h123, one obtains

δH(h1235) = δH(e). (B.16)

Similarly, one obtains for δH(h1236):

δH(h1236)=δH
(
δ(l1236)h136(g36Bh123)h−1

236h
−1
126
)

=δH
(
δ
(
(h126B

′l2346)l1246h146B
′(g46Bl1236l

−1
1346h136B

′{h346,(g46g34)Bh123}p
)
h136(g36Bh123)h−1

236h
−1
126

)
=δH

((
h126δ(l2346)h−1

126δ(l1246)h146(g46Bδ(l1234))h−1
146δ(l1346)−1h136δ({h346,(g46g34)Bh123}p)h−1

136
)

h136(g36Bh123)h−1
236h

−1
126

)
=δH

(
h236h346(g46Bh

−1
234)h−1

246h
−1
126h126h246(g46Bh

−1
124)h−1

146h146(g46B(h124h234(g34Bh
−1
123)h−1

134))

h−1
146(h146(g46Bh134)h−1

346h
−1
136)h136δ({h346,(g46g34)Bh123}p)h−1

136h136(g36Bh123)h−1
236

)
=δH(h346

(
(g46g34)Bh−1

123
)
h−1

346δ({h346,(g46g34)Bh123}p)(g36Bh123).
(B.17)

Substituting g36 = ∂(h346)g46g34, and applying the (B.15) identity for h1 = h346 and
h2 = (g46g34) B h123, one obtains

δH(h1236) = δH(e) . (B.18)

Similarly, one obtains that δH(h1246) = δH(h1346) = δH(e). The remaining δ-function on
the group L δL(l12356) reads:

δL(l12356) = δL

(
l1236

−1(h126B
′ l2356)l1256h156B

′ (g56B l1235)l1356
−1h136B

′ {h356, (g56g35)Bh123}p
)
.

(B.19)
After substituting the equations (B.10), (B.11), (B.12), and (B.13), one obtains:

δL(l12356)=δL
(
h136 B

′ {h346, (g46g34) B h123}−1
p (h136 B

′ l3456)l1356h156 B
′ (g56 B l1345)l1456

−1

h146 B
′ {h456, (g56g45) B h134}ph146 B

′ (g46 B l1234)−1h146 B
′ {h456, (g56g45) B h124}−1

p l1456

h156 B
′ (g56 B l1245)−1l−1

1256(h126 B
′ l2456)−1(h126 B

′ l2346
−1)(h126 B

′ l2356)l1256

h156 B
′ (g56 B ((h125 B

′ l2345)l1245h145 B
′ (g45 B l1234)l−1

1345h135 B
′ {h345, (g45g34) B h123}p))

l1356
−1h136 B

′ {h356, (g56g35) B h123}p
)
.

(B.20)

Using the identity (3.4) the delta function δL(l12356) becomes:

δL(l12356) = δL
(
(h136B

′ l3456)l1356h156B
′(g56Bl1345)l1456

−1

h146B
′{h456,(g56g45)Bh134}ph146B

′(g46Bl1234)−1h146B
′{h456,(g56g45)Bh124}−1

p l1456

δ(h156B
′(g56Bl1245)−1)B′

((
δ(l1256)−1h126

)
B′
(
l−1
2456l

−1
2346l2356

)
h156B

′(g56B(h125B
′ l2345))

)
h156B

′(g56B(h145B
′(g45Bl1234)l−1

1345))l1356
−1(h136h346)B′{h−1

346h356g56Bh345,

(g56g45g34)Bh123}p
)
.

(B.21)
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Commuting the elements, one obtains

δL(l12356) = δL

(
(h156B

′(g56Bδ(l1245)−1)δ(l1256)−1h126)B′
(
l−1
2456l

−1
2346l2356h256B

′(g56Bl2345)
)

h156B
′(g56B(h145B

′(g45Bl1234)l−1
1345)

)
l1356

−1(h136h346)B′{h−1
346h356g56Bh345,(g56g45g34)Bh123}p

h136B
′ l3456l1356h156B

′(g56Bl1345)(δ(l1456)−1h146)B′
(
{h456,(g56g45)Bh134}p

)
(δ(l1456)−1h146)B′

(
(g46Bl1234)−1)(δ(l1456)−1h146)B′{h456,(g56g45)Bh124}−1

p

)
.

(B.22)

The tetrahedron (3456) is part of the integrand on both sides of the move, so using the
condition (4.9) for δH(h3456) one can write h−1

346h356g56 B h345 = h−1
346 B′ δ(l3456)−1h456.

Then, using the identity (3.4) one obtains that

{h−1
346h356g56Bh345,(g56g45g34)Bh123}p = {h−1

346B
′δ(l3456)−1h456,(g56g45g34)Bh123}p

=
(
h−1

346B
′δ(l3456)−1)B′{h456,(g56g45g34)Bh123}p

{h−1
346B

′δ(l3456)−1,(g46g34)Bh123}p

=h−1
346B

′ l−1
3456{h456,(g56g45g34)Bh123}p(

(g46g34)Bh123h
−1
346
)
B′ l3456 ,

(B.23)

where in the last row the definition of the action B′ is used. Substituting the equation (B.23)
in the equation (B.22) one obtains

δL(l12356)=δL
(
(h156B

′(g56Bδ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)B′
(
l−1
2346l2356h256B

′(g56Bl2345)l−1
2456

)
h156B

′(g56B(h145B
′(g45Bl1234)))(h156B

′(g56Bδ(l1345)−1)δ(l1356)−1h136δ(l3456)−1h346)B′(
{h456,(g56g45g34)Bh123}p((g46g34)Bh123)B′l3456

)
(δ(l1456)−1h146)B′

(
{h456,(g56g45)Bh134}p

)
(δ(l1456)−1h146)B′

(
(g46Bl1234)−1)(δ(l1456)−1h146)B′{h456,(g56g45)Bh124}−1

p

)
.

(B.24)
Commuting the element l3456 to the end of the expression, one obtains
δL(l12356)=δL

(
(h156B

′(g56Bδ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)B′
(
l−1
2346l2356h256B

′(g56Bl2345)l−1
2456

)
h156B

′(g56B(h145B
′(g45Bl1234)))(h156B

′(g56Bδ(l1345)−1)δ(l1356)−1h136δ(l3456)−1h346)B′(
{h456,(g56g45g34)Bh123}p

)
(δ(l1456)−1h146)B′

(
{h456,(g56g45)Bh134}p

)
(δ(l1456)−1h146)B′

(
(g46Bl1234)−1)(δ(l1456)−1h146)B′{h456,(g56g45)Bh124}−1

p

(h156g56Bh145h246g46Bh234h
−1
346)B′l3456

))
.

(B.25)
Acting to the whole expression with (h156B′ (g56Bδ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)−1B′,
one obtains,

δL(l12356)=δL
(
l−1
2346l2356h256B

′(g56Bl2345)l−1
2456

(
h246h456(g56g45)Bh−1

124
)
B′(

(g56g45)Bl1234
(
(g56g45)Bh134h

−1
456
)
B′{h456,(g56g45g34)Bh123}p

h−1
456B

′{h456,(g56g45)Bh134}ph−1
456Bg46Bl

−1
1234

(
h−1

456g46Bh124
)
B′{h456,(g56g45)Bh−1

124}p
)

(h246g46Bh234h
−1
346)B′l3456.

(B.26)
Using the identity (3.5) for {h456, (g56g45) B (h134g34 B h123)}p,

{h456, (g56g45)B(h134g34Bh123)}p = {h456, (g56g45)Bh134}p(g46Bh134)B′{h456, (g56g45g34)Bh123}p ,

(B.27)
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one obtains:

δL(l12356) = δL
(
l−1
2346l2356h256 B

′ (g56 B l2345)l−1
2456h246 B

′
((
h456(g56g45) B h−1

124
)
B′(

(g56g45) B l1234h
−1
456 B

′ {h456, (g56g45) B (h134g34 B h123)}p

h−1
456 B g46 B l−1

1234

)
{h456, (g56g45) B h−1

124}p
)
(h246g46 B h234h

−1
346) B′ l3456) .

(B.28)

Using the identity (3.5) for {h456, (g56g45) B (h−1
124δ(l1234)h134g34 B h123)}p one obtains the

terms featuring l1234 cancel, i.e. ,

δL(l12356)=δL
(
l−1
2346l2356h256B

′(g56Bl2345)l−1
2456

h246B
′{h456,(g56g45)B(h−1

124δ(l1234)h134g34Bh123)}p(h246g46Bh234h
−1
346)B′l3456

=δL
(
l2346

−1l2356h256B
′(g56Bl2345)l2456

−1h246B
′{h456,(g56g45)Bh234}p(δ(l2346)−1h236)B′l3456)

)
=δL(l23456),

(B.29)
the delta function δL(l12356) on the r.h.s. reduces to the delta function δL(l23456) of the
l.h.s. The integrations over l1234, l1245, l1256, l1345, l1356, and l1456 are trivial, and finally
one obtains,

r.h.s. = δG(e)6δH(e)4δL(l23456) = |G|6|H|4δL(l23456) . (B.30)

The prefactors |G|−11|H|−4|L|−1 on the r.h.s. and |G|−5|H|0|L|−1 on the l.h.s., compensate
for left-over factors.

B.2 Pachner move 2↔ 4

On the left hand side of the move one has the following integrals and the integrand,∫
L
dl2345δH(h2345)δL(l23456)δL(l12345). (B.31)

Integrating out l2345 using δL(l12345), one obtains

l2345 = h125
−1 B′

(
l1235h135 B

′ {h345, (g45g34) B h123}−1
p l1345h145 B

′ (g45 B l1234)−1l−1
1245

)
.

(B.32)
The δ-function δH(h2345) now reads,

δH(h2345) = δH
(
δ(l2345)h245 (g45 B h234)h−1

345 h
−1
235

)
= δH

(
h125

−1δ(l1235)h135δ({h345, (g45g34) B h123}−1
p )h−1

135δ(l1345)h145(g45 B δ(l1234))−1h−1
145

δ(l1245)−1h125h245 (g45 B h234)h−1
345 h

−1
235
)
.

(B.33)
Using the identity (4.9) for the tetrahedrons (1235), (1345), (1234), and (1245), the equa-
tion (B.33) reduces to:

δH(h2345) = δH
(
h125

−1h125 h235 (g35 B h−1
123)h−1

135h135δ({h345, (g45g34) B h123}−1
p )h−1

135h135 h345 (g45 B h−1
134)

h−1
145h145g45 B (h134(g34 B h123)h−1

234h
−1
124)h−1

145h145(g45 B h124)h−1
245h

−1
125h125h245 (g45 B h234)h−1

345 h
−1
235
)

= δH
(
(g35 B h−1

123) δ({h345, (g45g34) B h123}−1
p )h345 (g45g34) B h123) h−1

345
)
.

(B.34)
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Here, one uses the following identity

δ{h1 , h2}p(∂(h1) B h2)h1h
−1
2 h−1

1 = e , (B.35)

for h1 = h345 and h2 = (g45g34) B h123, and the identity g35 = ∂(h345)g45g34, and obtains

δH(h2345) = δH(e) . (B.36)

The remaining δ-function δL(l23456), reads

δL(l23456) = δL
(
l2346

−1(h236 B
′ l3456)l2356h256 B

′ (g56 B l2345)l2456
−1h246 B

′ {h456, (g56g45) B h234}p
)
.

(B.37)
Substituting the equation (B.33), one obtains

δL(l23456) = δL
(
l2346

−1(h236 B
′ l3456)l2356h256 B

′
(
g56 B

(
h125

−1 B′
(
l1235h135 B

′ {h345, (g45g34) B h123}−1
p

l1345h145 B
′ (g45 B l1234)−1l−1

1245
)))

l2456
−1h246 B

′ {h456, (g56g45) B h234}p
)
.

(B.38)
Commuting the elements one obtains

δL(l23456) = δL
(
l2456

−1l2346
−1l2356(h256g56 B h125

−1) B′ g56 B l1235
(
h256g56 B h125

−1g56 B h135
)
B′(

(g35 B h123h
−1
356) B′ l3456){g56 B h345, (g56g45g34) B h123}−1

p

(g56 B h345(g56g45) B (h123h
−1
234)h−1

456) B′ {h456, (g56g45) B h234}p
)

(h256g56 B h125
−1) B′ g56 B l1345(h256g56 B h125

−1g56 B h145) B′ ((g56g45) B l1234)−1

(h256g56 B h125
−1) B′ g56 B l−1

1245

)
.

(B.39)
Finally, the l.h.s. reads:

l.h.s. = δH(e)δL(l23456) = |H|δL(l23456) . (B.40)

Let us now examine the right hand side of the move, i.e. , the integral (4.17). First,
one integrates out g16 using δG(g126), and obtains

g16 = ∂(h126) g26 g12 . (B.41)

Next, one integrates out h126 using δH(h1236), h136 using δH(h1346), and h146 using δH(h1456),
and obtains

h126 = δ(l1236)h136 (g36 B h123)h−1
236 ,

h136 = δ(l1346)h146 (g46 B h134)h−1
346 ,

h146 = δ(l1456)h156 (g56 B h145)h−1
456 .

(B.42)

The remaining δ-functions on the group G reduces to δG(e)3. The δ-function δG(g136)

δG(g136) = δG
(
∂(h136) g36 g13 g

−1
16
)
, (B.43)
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after substituting the equation (B.41) reads:

δG(g136) = δG
(
∂(h136) g36 g13 g

−1
12 g

−1
26 ∂(h126)−1) . (B.44)

Using the equations (B.42) for h126, and h136, and h146, and the identity ∂(δl) = 0 for every
element l ∈ L, the δ-function δG(g136) reduces to δG(e) after implementing the identity (4.7)
for the triangles (156), (145), (456) (134), (346), (236), and (123). Similarly, one obtains
δG(g146) = δG(g156) = δG(e).

One integrates out l1236 using δL(l12346) and obtains

l1236 = (h126 B
′ l2346)l1246h146 B

′ (g46 B l1234)l−1
1346 h136 B

′ {h346, (g46g34)Bh123}p, (B.45)

l1246 using δL(l12456) and obtains

l1246 = (h126B
′ l2456)l1256h156B

′(g56Bl1245)l1456
−1 h146B

′{h456, (g56g45)Bh124}p, (B.46)

and l1346 using δL(l13456) and obtains

l1346 = (h136B
′ l3456)l1356h156B

′(g56Bl1345)l1456
−1 h146B

′{h456, (g56g45)Bh134}p. (B.47)

The remaining δ-functions on H reduce on δH(e)3, similarly as in the case of 1−5 Pachner
move, i.e. , one obtains δH(h1256) = δH(h1356) = δH(h1456) = δH(e). For the remaining
δ-function δL(l12356),

δL(l12356) = δL
(
l1236

−1(h126 B
′ l2356)l1256h156 B

′ (g56 B l1235)l1356
−1h136 B

′ {h356, (g56g35) B h123}p
)
,

(B.48)
one obtains, after substituting the equations (B.45), (B.46), and (B.47), the following

δL(l12356) = δL
(
h136 B

′ {h346, (g46g34) B h123}p−1l1346h146 B
′ (g46 B l1234)−1l−1

1246(h126 B
′ l2346)−1

(h126 B
′ l2356)l1256h156 B

′ (g56 B l1235)l1356
−1h136 B

′ {h356, (g56g35) B h123}p
)

= δL
(
(h126 B

′ l2456)−1(h126 B
′ l2346)−1(h126 B

′ l2356)(h256g56 B h125
−1) B′ l1235

δ(l1256) B′
(
δ(l1356)−1 B′

(
h136 B

′ {h356, (g56g35) B h123}p(h136h346) B′ {h−1
346, g36 B h123}p

(h136 B
′ l3456)

)
h156 B

′ (g56 B l1345)l1456
−1 h146 B

′ {h456, (g56g45) B h134}ph146 B
′ (g46 B l1234)−1

h146 B
′ {h456, (g56g45) B h124}−1

p l1456h156 B
′ (g56 B l1245)−1

))
.

(B.49)
Commuting the elements in order to match the l.h.s. of the move, i.e. , the δ-function given
by the equation (B.39), and using the identity (3.4), i.e. ,

{h−1
346h356, (g56g35) B h123}p = h−1

346 B
′ {h356, (g56g35) B h123}p{h−1

346, g36 B h123}p , (B.50)

one obtains

δL(l12356) = δL
(
(h126 B

′ l2456)−1(h126 B
′ l2346)−1(h126 B

′ l2356)(h126h256g56 B h125
−1) B′ l1235

δ(l1256) B′
(
δ(l1356)−1 B′

(
(h136h346) B′ {h−1

346h356, (g56g35) B h123}p(h136 B
′ l3456)

)
h156 B

′ (g56 B l1345)(δ(l1456)−1 h146) B′
(
{h456, (g56g45) B h134}p(g46 B l1234)−1

{h456, (g56g45) B h124}−1
p
)
h156 B

′ (g56 B l1245)−1
))
.

(B.51)
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Using the identity (3.4) again one rewrites the following term as

(h136h346) B′ {h−1
346h356, (g56g35) B h123}p(h136 B

′ l3456) =
(h136h346) B′ {h−1

346 B
′ δ(l3456)−1h456g56 B h−1

345, (g56g35) B h123}p(h136 B
′ l3456) =

(h136 B
′ δ(l3456)−1h136h346) B′

(
{h456g56 B h−1

345, (g56g35) B h123}p((g46g34) B h123h
−1
346) B′ l−1

3456
)
,

(B.52)
and substituting it in the equation (B.51) the δ-function becomes:

δL(l12356) = δL
(
(h126 B

′ l2456)−1(h126 B
′ l2346)−1(h126 B

′ l2356)(h126h256g56 B h125
−1) B′ l1235

δ(l1256) B′
(
(δ(l1356)−1h136 B

′ δ(l3456)−1h136h346)B′(
{h456g56 B h−1

345, (g56g35) B h123}p((g46g34) B h123h
−1
346) B′ l3456)

)
(h156g56 B h135g56 B (h345g45 B h−1

134)h−1
456) B′

(
{h456, (g56g45) B h134}p(g46 B l1234)−1

{h456, (g56g45) B h124}−1
p
))

(h126h256g56 B h125
−1) B′

(
h156 B

′ (g56 B l1345)(g56 B l1245)−1)) .
(B.53)

Commuting the elements l3456 and {h456g56 B h345, (g56g35) B h123}p, and using the iden-
tity (3.4) to rewrite this Peiffer lifting, one obtains

δL(l12356) = δL
(
(h126 B

′ l2456)−1(h126 B
′ l2346)−1(h126 B

′ l2356)(h126h256g56 B h125
−1) B′ l1235(

h126h256g56 B h125
−1h135(g56g35) B h123g56 B h−1

356) B′ g56 B l3456

(h126h256g56 B h−1
125g56 B h135g56 B h345) B′

(
{g56 B h−1

345, (g56g35) B h123}p

h−1
456 B

′ {h456, (g56g45g34) B h123}p((g56g45) B h−1
134h

−1
456) B′

(
{h456, (g56g45) B h134}p(g46 B l1234)−1

{h456, (g56g45) B h124}−1
p
))

(h126h256g56 B h125
−1) B′

(
h156 B

′ (g56 B l1345)(g56 B l1245)−1)) .
(B.54)

After the similar transformations as in the case of 1−5 move, commuting the element l1234
so that the order of the elements matches the order in the expression (B.39), and acting
to the whole expression with h−1

126 one obtains

δL(l12356) = δL
(
l2456

−1l2346
−1l2356(h256g56 B h125

−1) B′ g56 B l1235
(
h256g56 B h125

−1g56 B h135
)
B′(

(g35 B h123h
−1
356) B′ l3456){g56 B h345, (g56g45g34) B h123}−1

p (g56 B h345(g56g45) B (h123h
−1
234)h−1

456)B′

{h456, (g56g45) B h234}p
)
(h256g56 B h125

−1) B′ g56 B l1345

(h256g56 B h125
−1g56 B h145) B′ ((g56g45) B l1234)−1(h256g56 B h125

−1) B′ g56 B l−1
1245

)
.

(B.55)
which is precisely the equation (B.39). The remaining integration over the element h156 of
the group H and remaining integration over the three elements of the group L, l1246, l1256,
and l1356, are trivial, yielding the result on the r.h.s. to:

r.h.s. = δG(e)3 δH(e)3 δL(l12356) = |G|3 |H|3 δL(l12356) . (B.56)

The prefactors are |G|−8|H|−1|L|−1 on the l.h.s., and |G|−11|H|−3|L|−1 on the r.h.s. com-
pensate for the left-over factors.
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B.3 Pachner move 3↔ 3

Let us first investigate the r.h.s. of the move. First, one integrates out the l1235, exploiting
δL(l12345) and obtains

l1235 = (h125B
′ l2345)l1245h145B

′(g45Bl1234)l1345
−1 h135B

′{h345, (g45g34)Bh123}p, (B.57)

and one integrates out l1236, exploiting δL(l12356) and obtains

l1236 = (h126B
′ l2356)l1256h156B

′ (g56B l1235)l1356
−1h′136B{h356, (g56g35)Bh123}p. (B.58)

Next, one integrates out h123, exploiting δH(l1234) and obtains:

h123 = g−1
34 B h−1

134 g
−1
34 B δ(l1234)−1 g−1

34 B h124 g
−1
34 B h234. (B.59)

The δ-function δG(g123), when using the equation (B.59) reads

δG(g123) = δG
(
g−1

34 B ∂(h134)−1 g−1
34 B ∂(δ(l1234))−1 g−1

34 B ∂(h124) g−1
34 B ∂(h234) g23 g12 g

−1
13
)
,

(B.60)
which then using the condition ∂δ = 0, reduces to

δG(g123) = δG
(
∂(h134)−1 ∂(h124) ∂(h234) g−1

34 g23 g12 g
−1
13 g34

)
. (B.61)

Using the condition (4.7) for the triangles (134), (124), and (234), it finally reduces to

δG(g123) = δG
(
e
)
. (B.62)

For the δ-function δH(h1235), one obtains, after using the equation (B.57):

δH(h1235) = δH
(
(h125δ(l2345)h−1

125)δ(l1245)(h145(g45 B δ(l1234))h−1
145)δ(l1345)−1

h135 B
′ {h345, g35 B h123}p h135((g35g34

−1) B (h−1
134 δ(l1234)−1 h124 h234))h−1

235 h
−1
125

)
.

(B.63)
Using the δ-functions δL(h2345), δL(h1245), and δL(h1345), that appear on both sides of the
move, and are thus part of the integrand,

δ(l2345) = h235 h345 (g45 B h−1
234)h−1

245 ,

δ(l1245) = h125 h245 (g45 B h−1
124)h−1

145 ,

δ(l1345)−1 = h145 (g45 B h134)h−1
345 h

−1
135 ,

(B.64)

one obtains:

δH(h1235) = δH
(
h125h235 h345 (g45 B h−1

234)h−1
245h

−1
125h125 h245 (g45 B h−1

124)h−1
145h145(g45 B δ(l1234))h−1

145

h145 (g45 B h134)h−1
345 h

−1
135h135 B δ({h345, (g45g34) B h123}p)

h135 ((g35g34
−1) B (h−1

134δ(l1234)−1 h124 h234))h−1
235 h

−1
125

)
= δH

(
h345(g45g34) B h−1

123 h
−1
345δ({h345, (g45g34) B h123}p) (g35 B h123)

)
.

(B.65)
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Substituting g35 = ∂(h345)g45g34, and applying the identity

δ{h1 , h2}p(∂(h1) B h2)h1h
−1
2 h−1

1 = e , (B.66)

for h1 = h345 and h2 = (g45g34) B h123, one obtains

δH(h1235) = δH(e). (B.67)

Similarly, one obtains that δH(h1236) = δH(e). The remaining δ-function δH(l12346) reads

δL(l12346) = δL
(
l1236

−1(h126 B′ l2346)l1246h146 B′ (g46 B l1234)l1346
−1 h136 B′ {h346, (g46g34) B h123}p

)
.

(B.68)
After substituting the equation (B.58), and then the equation (B.57), one obtains:

δL(l12346) = δL
(
h136 B

′ {h356, (g56g35) B h123}−1
p l1356h156 B

′ (g56 B l1235)−1l−1
1256h126 B

′ l−1
2356

(h126 B
′ l2346)l1246h146 B

′ (g46 B l1234)l1346
−1h136 B

′ {h346, (g46g34) B h123}p
)

= δL
(
h136 B

′ {h356, (g56g35) B h123}−1
p l1356

h156 B
′ (g56 B ((h125 B

′ l2345)l1245h145 B
′ (g45 B l1234)l1345

−1 h135 B
′ {h345, (g45g34) B h123}p))−1

l−1
1256h126 B

′ l−1
2356(h126 B

′ l2346)l1246h146 B
′ (g46 B l1234)l1346

−1h136 B
′ {h346, (g46g34) B h123}p

)
.

(B.69)
After commuting the elements, i.e. , using the Peiffer identity for the crossed module (L δ→
H,B′), one obtains

δL(l12346) = δL
(
h136 B

′ {h356, (g56g35) B h123}−1
p

(δ(l1356)h156g56 B h135) B′ g56 B {h345, (g45g34) B h123}−1
p l1356h156 B

′ (g56 B l1345)
(h156g56 B h145) B′ ((g56g45) B l1234)−1h156 B

′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l−1
2345)l−1

1256

h126 B
′ l−1

2356(h126 B
′ l2346)l1246h146 B

′ (g46 B l1234)l1346
−1h136 B

′ {h346, (g46g34) B h123}p
)

= δL
(
(δ(l1346)−1h136) B′ {h346, (g46g34) B h123}p(δ(l1346)−1h136) B′ {h356, (g56g35) B h123}−1

p

((δ(l1346)−1δ(l1356)h156g56 B h135) B′ g56 B {h345, (g45g34) B h123}−1
p

(δ(l1346)−1δ(l1356)h156 B
′ (g56 B δ(l1345))h156g56 B h145) B′ ((g56g45) B l1234)−1l−1

1346

l1356h156 B
′ (g56 B l1345)h156 B

′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l−1
2345)

l−1
1256h126 B

′ l−1
2356(h126 B

′ l2346)l1246h146 B
′ (g46 B l1234)

)
.

(B.70)
Using the identity (3.7) one obtains that

{h346, (g46g34) B h123}p = h346 B
′ {h−1

346, g36 B h123}−1
p . (B.71)

Using a variant of the identity (3.4), i.e. , that

{h1h2h3, h4}−1
p = {h1, ∂(h2h3)Bh4}−1

p h1B
′{h2, ∂(h2)Bh4}−1

p (h1h2)B′{h3, h4}−1
p , (B.72)

one obtains that

{h−1
346 h356 (g56 B h345), (g56g45g34) B h123}−1

p = {h−1
346, (g46g34) B h123}−1

p h−1
346 B

′ {h356, (g56g35) B h123}−1
p

(h−1
346h356) B′ {g56 B h345, (g56g45g34) B h123}−1

p ,

(B.73)
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rendering the expression (B.70) to

δL(l12346) = δL
(
(h146g46 B h134) B′ {h−1

346 h356 (g56 B h345), (g56g45g34) B h123}−1
p

(δ(l1346)−1δ(l1356)h156 B
′ (g56 B δ(l1345))h156g56 B h145) B′ ((g56g45) B l1234)−1

l−1
1346l1356h156 B

′ (g56 B l1345)h156 B
′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l−1

2345)l−1
1256

h126 B
′ l−1

2356(h126 B
′ l2346)l1246h146 B

′ (g46 B l1234)
)
.

(B.74)
Substituting the equation (B.59), and using the identity (3.5), one obtains that the expres-
sion,

{h−1
346 h356 (g56 B h345), (g56g45g34) B h123}−1

p = {h−1
346 h356 (g56 B h345), (g56g45) B ((h−1

134 B
′ δ(l1234)−1)h−1

134h124h234}−1
p

= (g46 B (h−1
134 B

′ δ(l1234)−1)) B′ {h−1
346 h356 (g56 B h345), (g56g45)B

(h−1
134h124h234)}−1

p {h−1
346 h356 (g56 B h345), (g56g45) B (h−1

134 B
′ δ(l1234)−1)}−1

p ,

(B.75)
using the identity (3.9), i.e. , that

{h−1
346 h356 (g56 B h345), (g56g45) B (h−1

134 B
′ δ(l1234)−1)}−1

p = g46 B (h−1
134 B

′ l−1
1234)(h−1

346 h356

(g56 B h345)) B′ ((g56g45) B (h−1
134 B

′ l1234)) ,
(B.76)

reduces to

{h−1
346 h356 (g56 B h345), (g56g45g34) B h123}−1

p = g46 B (h−1
134 B

′ δ(l1234)−1)
{h−1

346 h356 (g56 B h345), (g56g45) B (h−1
134h124h234)}−1

p

(h−1
346 h356 (g56 B h345)) B′ ((g56g45) B (h−1

134 B
′ l1234)) .
(B.77)

Substituting this result in the expression (B.74) the terms featuring l1234 cancel, and finally
the delta function δL(l12346) reads:

δL(l12346) = δL
(
(h146g46 B h134) B′ {h−1

346 h356 (g56 B h345), (g56g45) B (h−1
134h124h234)}−1

p l−1
1346l1356

h156 B
′ (g56 B l1345)h156 B

′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l−1
2345)

l−1
1256h126 B

′ l−1
2356(h126 B

′ l2346)l1246
)
.

(B.78)
One obtains that the integration over l1234 is trivial, and the r.h.s. of the move finally reads

r.h.s. = δG(e)δH(e)2δL
(
h156 B

′ (g56 B l1245)−1 h156 B
′ (g56 B (h125 B

′ l2345))−1 l−1
1256

h126 B
′ l−1

2356(h126 B
′ l2346)l1246(h146g46 B h134)B′

{h−1
346 h356 (g56 B h345), (g56g45) B (h−1

134h124h234)}−1
p l−1

1346l1356h156 B
′ (g56 B l1345) .

(B.79)

The integral of the l.h.s. reads∫
H dh456

∫
L3 dl1456dl2456dl3456δG(g456) δH(h3456)δH(h2456)δH(h1456)δL(l23456)δL(l13456)δL(l12456) .

(B.80)
First, one integrates out the l1456, exploiting δL(l13456) and obtains

l1456 = h146B{h456, (g56g45)Bh134}l1346
−1(h136B

′ l3456)l1356h156B
′ (g56B l1345). (B.81)
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Next, one integrates out the l2456, exploiting δL(l23456) and obtains

l2456 = h246 B {h456, (g56g45) B h234}l2346
−1(h236 B

′ l3456)l2356h256 B
′ (g56 B l2345) . (B.82)

Next, one integrates out h456, exploiting δH(h3456) and obtains

h456 = h−1
346 δ(l3456)h356 (g56 B h345) . (B.83)

Using the equation (B.83), one obtains that

δG(g456) = δG
(
∂(h346)−1 ∂(h356) g56 B ∂(h345) g56 g45 g

−1
46
)
, (B.84)

which, using the identity (4.7) for triangles (346), (356), and (345), reduces to:

δG(g456) = δG
(
e
)
. (B.85)

Similarly as done for the right-hand side of the move, one shows that δH(h1456), when using
the equation (B.81), and δH(h2456), when using the equation (B.82), reduce to δH(e)2. The
remaining δL(l12456) now reads

δL(l12456) = δL
(
l1246

−1(h126 B′ l2456)l1256h156 B′ (g56 B l1245)l1456
−1 h146 B {h456, (g56g45) B h124}p

)
.

(B.86)
Substituting the equations (B.81) and (B.82), one obtains

δL(l12456) = δL
(
l1246

−1(h126 B
′ (h246 B {h456,(g56g45) B h234}pl2346

−1(h236 B
′ l3456)l2356

h256 B
′ (g56 B l2345)))l1256h156 B

′ (g56 B l1245)h156 B
′ (g56 B l1345)−1l−1

1356(h136 B
′ l3456)−1

l1346h146 B {h456,(g56g45) B h134}−1
p h146 B {h456,(g56g45) B h124}p

)
.

(B.87)
After commuting the elements, i.e. , using the Peiffer identity for the crossed module (L δ→
H,B′), one obtains

δL(l12456) = δL
(
(δ(l1246)−1h126h246) B {h456, (g56g45) B h234}p(δ(l1246)−1h126 B δ(l2346)−1h126h236) B′ l3456

l−1
1246h126 B

′ l2346
−1h126 B

′ l2356(h126h256) B′ (g56 B l2345) )
l1256h156 B

′ (g56 B l1245)h156 B
′ (g56 B l1345)−1l−1

1356l1346(δ(l1346)−1h136) B′ l3456
−1

h146 B {h456, (g56g45) B h134}−1
p h146 B {h456, (g56g45) B h124}p

)
.

(B.88)
Using the identity (3.10) for the inverse of the element {h456, (g56g45) B h134}−1

p , and then
the variant of the identity (3.5), i.e. , that is,

{h1, h2h3h4}p = {h1, h2}p(∂(h1) B h2) B′ {h1, h3}p(∂(h1) B (h2h3)) B′ {h1, h4}p , (B.89)

one obtains

{h456, (g56g45) B (h−1
134h124h234)}p = {h456, (g56g45) B h−1

134}p(g46 B h−1
134) B′ {h456, (g56g45) B h124}p

(g46 B (h−1
134h124)) B′ {h456, (g56g45) B h124}p ,

(B.90)
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rendering the equation (B.88) to

δL(l12456) = δL
(
(δ(l1246)−1h126 B δ(l2346)−1h126h236) B′ l3456

l−1
1246h126 B

′ l2346
−1h126 B

′ l2356(h126h256) B′ (g56 B l2345) )
l1256h156 B

′ (g56 B l1245)h156 B
′ (g56 B l1345)−1l−1

1356l1346(δ(l1346)−1h136) B′ l3456
−1

(h146g46 B h134) B′ {h456, (g56g45) B (h−1
134h124h234)}p

)
.

(B.91)
Using the equation (B.83), and the identities (3.4) and (3.6), similarly as for the r.h.s. of the
move, one obtains that the terms featuring l3456 cancel, i.e. , the delta function δL(l12456)
reads

δL(l12456) = δL
(
l−1
1246h126 B

′ l2346
−1h126 B

′ l2356(h126h256) B′ (g56 B l2345))l1256h156 B
′ (g56 B l1245)

h156 B
′ (g56 B l1345)−1l−1

1356l1346(h146g46 B h134) B′ {h456, (g56g45) B (h−1
134h124h234)}p

)
.

(B.92)
It follows that the integral over l3456 is now trivial and l.h.s. of the move finally reduces to:

l.h.s. = δG(e)δH(e)2δL
(
h126 B

′ l2346l1246(h146g46 B h134) B′ {h456, (g56g45) B (h−1
134h124h234)}−1

p

l−1
1346 l1356 h156 B

′ (g56 B l1345)h156 B
′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l2345)−1

l−1
1256 h126 B

′ l−1
2356

)
.

(B.93)
The expressions (B.79) and (B.86) are the same, which proves the invariance of the state
sum (4.1) under the Pachner move 3− 3. The numbers of k-simplices agree on both sides
of the 3− 3 move for all k, and the prefactors play no role in this case.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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Abstract
The higher category theory can be employed to generalize the BF action to
the so-called 3BF action, by passing from the notion of a gauge group to the
notion of a gauge three-group. In this work we determine the full gauge sym-
metry of the 3BF action. To that end, the complete Hamiltonian analysis of
the 3BF action for an arbitrary semistrict Lie three-group is performed, by
using the Dirac procedure. The Hamiltonian analysis is the first step towards
a canonical quantization of a 3BF theory. This is an important stepping-stone
for the quantization of the complete standard model of elementary particles
coupled to Einstein–Cartan gravity, formulated as a 3BF action with suitable
simplicity constraints. We show that the resulting gauge symmetry group con-
sists of the familiar G-, H-, and L-gauge transformations, as well as additional
M- and N-gauge transformations, which have not been discussed in the existing
literature.

Keywords: quantum gravity, higher gauge theory, higher category theory, three-
group, BF action, 3BF action, gauge symmetry
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1. Introduction

Among the most important open problems in contemporary theoretical physics is the problem
of quantization of the gravitational field. Within the framework of loop quantum gravity (LQG),
one of the most prominent candidates for the quantum theory of gravity, the study of nonper-
turbative quantization has evolved in two directions: the canonical and the covariant approach.
See [1–4] for an overview and a comprehensive introduction to the theory.

The covariant quantization approach focuses on defining the gravitational path integral of
the theory:

Zgr =

∫
Dg eiSgr[g]. (1)

In order to give the rigorous definition of the path integral, the classical action of the the-
ory Sgr is written as a sum of the topological BF action, i.e. the action with no propagating
degrees of freedom, and the part featuring the simplicity constraints, i.e. sum of products of
Langrange multipliers and the corresponding simplicity constraints imposed on the variables of
the topological part of the action. Next, one defines the path-integral of the topological theory
given by the BF action, using the topological quantum field theory (TQFT) formalism. Once a
path-integral is defined for the topological sector, it is deformed into a non-topological theory,
by imposing the simplicity constraints. This quantization technique is known as the spinfoam
quantization method.
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The spinfoam quantization procedure has been successfully employed in various theories,
including the three-dimensional topological Ponzano–Regge model of quantum gravity [5], the
four-dimensional topological Ooguri model [6], the Barrett–Crane model of gravity in four
dimensions [7–9], and others. The most successful among these is the renowned EPRL/FK
model [10, 11], which had been specifically formulated to correspond to the quantum theory
of gravity obtained by the canonical loop quantization, where a state of the gravitational field
is described by the so-called spin network.

However, note that all mentioned models, formulated as constrained BF actions, are theories
of pure gravity, without matter fields. Recently, as an endeavor to formulate a theory that unifies
all the known interactions, one interesting new avenue of research has been opened, based on a
categorical generalization of the BF action in the context of higher gauge theory (HGT) formal-
ism [12]. One novel candidate discussed in the literature [13], uses the three-group structure to
formulate the 3BF action as a categorical generalization of the BF theory. Then, modifying the
pure 3BF action by adding the appropriate simplicity constraints, one obtains the constrained
3BF action, describing the theory of all the fields present in the standard model coupled in a
standard way to Einstein–Cartan gravity.

Once the appropriate classical theory has been constructed, one needs to quantize it by con-
structing a topological state sum Z using the algebraic structure underlying the topological
sector of the constrained 3BF action, i.e. the underlying two-crossed module. This construc-
tion has been recently carried out in [14], where a triangulation independent state sum Z of
a topological HGT for an arbitrary two-crossed module and a four-dimensional closed and
orientable spacetime manifold M4 is defined. Once the topological state sum is formulated,
one could proceed to modify the amplitudes of the state sum in order to impose the simplicity
constraints and obtain the state sum describing the full theory. In this way one would finally
arrive at the rigorous definition of a path integral given by the equation (1).

In addition to the covariant approach, one can also study the constrained 3BF action, using
the canonical quantization. This approach focuses on defining the quantum theory via a triple
(H,A, W), i.e. the Hilbert space of states H, the algebra of observablesA, and the dynamics W
given by the transition amplitudes. Specifically, in canonical LQG, the algebra of fields that are
promoted to the quantum operators is chosen to be the algebra based on the holonomies of the
gravitational connection. However, in the case of the 3BF theory, the notion of connection is
generalized to the notion of three-connection, which makes its canonical quantization approach
an interesting avenue of research. The first step toward the canonical quantization of the theory
is the Hamiltonian analysis, resulting in the algebra of first-class and second-class constraints.
The first-class constraints become conditions on the physical states determining the Hilbert
space, while the Hamiltonian constraint determines the dynamics.

The results presented in this paper are the natural continuation of the results presented in
[13]. The main result is the calculation of the full symmetry group of the pure 3BF action. To
that end, the complete Hamiltonian analysis of the 3BF action for a semistrict Lie three-group
is performed by using the Dirac procedure (see [15] for an overview and a comprehensive
introduction to the Hamiltonian analysis). It is a generalization of the Hamiltonian analysis
of a 2BF action performed in [16–19], and of the Hamiltonian analysis for the special case
of a two-crossed module corresponding to the theory of scalar electrodynamics, carried out
in [20]. The analysis of the Hamiltonian structure of the theory gives us the algebra of first-
class and second-class constraints present in the theory. As usual, the first-class constraints
generate gauge transformations, which do not change the physical state of the system. Using
the Castellani’s procedure, one can find the generator of the gauge transformations in the the-
ory on a spatial hypersurface. Then, the results obtained by this method are generalized to the
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whole spacetime. The complete gauge symmetry, consisting of five types of finite gauge trans-
formations, along with the proofs that they are indeed the gauge symmetries of 3BF action,
is presented. With these results in hand, the structure of the full gauge symmetry group is
analyzed, and its corresponding Lie algebra is determined.

The obtained results give rise to a connection between the gauge symmetry group of the
3BF action, and its underlining three-group structure, establishing a duality between the two.
This analysis is an important step towards the study of the gauge symmetry group of the theory
of gravity with matter, formulated as the constrained 3BF action [13], as well as its canonical
quantization. Furthermore, it is important for the overall understanding of the physical meaning
of the three-group structure and its interpretation as the underlining symmetry of the pure 3BF
action, which represents a basis for the constrained 3BF action describing the physical theory.

The layout of the paper is as follows. In section 2, we give a brief overview of BF and
2BF theories, and introduce the 3BF action. Section 3 contains the Hamiltonian analysis for
the 3BF theory. In subsection 3.1, the canonical structure of the theory is obtained, while in
subsection 3.2 the resulting first-class and second-class constraints present in the theory, as
well as the algebra of constraints, are presented. In the subsection 3.3 we analyze the Bianchi
identities (BI) that the first-class constraints satisfy, which enforce restrictions in the sense of
Hamiltonian analysis, and reduce the number of independent first-class constraints present in
the theory. We then proceed with the counting of the physical degrees of freedom. Finally,
this section concludes with the subsection 3.4 where we construct the generator of the gauge
symmetries for the topological theory, based on the calculations done in section 3.2.

Section 4 contains the main results of our paper and is devoted to the analysis of the sym-
metries of the 3BF action. Having results of the subsection 3.4 in hand, we find the form
variations of all variables and their canonical momenta, and use that result to determine all
gauge transformations of the theory. This is done in four steps. The subsection 4.1 deals with
the gauge group G, and the corresponding G-gauge transformations. In subsection 4.2 we dis-
cuss the gauge group H̃L which consists of the H-gauge and L-gauge transformations (familiar
from [21]), while the subsection 4.3 examines the novel M-gauge and N-gauge transformations
which also arise in the theory. The results of the subsections 4.1–4.3 are summarized in sub-
section 4.4, where the complete structure of the symmetry group is presented, including its Lie
algebra. Our concluding remarks are given in section 5, containing a summary and a discussion
of the obtained results, as well as possible future lines of investigation. The appendices contain
various technical details concerning three-groups, additional relations of the constraint alge-
bra, the computation of the generator of gauge symmetries, form-variations of all fields and
momenta, and some other technical details.

Our notation and conventions are as follows. Spacetime indices, denoted by the mid-
alphabet Greek letters μ, ν, . . . , are raised and lowered by the spacetime metric gμν . The spatial
part of these is denoted with lowercase mid-alphabet Latin indices i, j, . . . , and the time com-
ponent is denoted with 0. The indices that are counting the generators of groups G, H, and L
are denoted with initial Greek letters α, β, . . . , lowercase initial Latin letters a, b, c, . . . , and
uppercase Latin indices A, B, C, . . . , respectively. The antisymmetrization over two indices is
denoted as A[a1|a2...an−1|an] =

1
2

(
Aa1a2...an−1an − Aana2...an−1a1

)
, while the total antisymmetriza-

tion is denoted as A[a1...an] =
1
n!

∑
σ∈Sn

(−1)sgn(σ)Aaσ(1)...aσ(n) . Likewise, the symmetrization over
two indices is denoted as A(a1|a2...an−1|an) =

1
2

(
Aa1a2...an−1an + Aana2...an−1a1

)
, while the total sym-

metrization is denoted as A(a1...an) =
1
n!

∑
σ∈Sn

Aaσ(1)...aσ(n) . We work in the natural system of
units, defined by c = h̄ = 1 and G = l2p, where lp is the Planck length. All additional notation
and conventions used throughout the paper are explicitly defined in the text where they appear.
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2. The 3BF theory

Given a Lie group G and its corresponding Lie algebra g, one can introduce the so-called BF
action as

SBF =

∫
M4

〈B ∧ F〉g, (2)

where F ≡ dα+ α ∧ α is the curvature two-form for the algebra-valued connection one-form
α ∈ A1(M4, g) on a trivial principal G-bundle over a four-dimensional compact and orientable
spacetime manifold M4, and B ∈ A2(M4, g) is a Lagrange multiplier two-form. The 〈_, _〉g
denotes the G-invariant bilinear symmetric nondegenerate form on g. For more details see
[22–24].

Varying the action (2) with respect to the Lagrange multiplier B and the connection α, one
obtains the equations of motion,

F = 0, ∇B ≡ dB + α ∧ B = 0. (3)

These equations of motion imply that α is a flat connection, while the Lagrange multiplier B is
a constant field. Therefore, the theory given by the BF action has no local propagating degrees
of freedom, i.e. the theory is topological.

Within the framework of HGT, one can define the categorical generalization of the BF action
to the so-called 2BF action, by passing from the notion of a gauge group to the notion of a
gauge two-group, see [25–27]. In the category theory, a two-group is defined as a two-category
consisting of only one object, where all the morphisms and two-morphisms are invertible. It

has been shown that every strict two-group is equivalent to a crossed module (H
∂−→ G, �),

where G and H are groups, δ is a homomorphism from H to G, while � : G × H → H is an

action of G on H. Given a crossed-module (H
∂−→ G, �), one can introduce a generalization of

the BF action, the so-called 2BF action [25, 26]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h, (4)

where the two-form B ∈ A2(M4, g) and the one-form C ∈ A1(M4, h) are Lagrange multi-
pliers, and h is a Lie algebra of the Lie group H. The variables F ∈ A2(M4, g) and G ∈
A3(M4, h) define the fake two-curvature (F ,G) for the two-connection (α, β) on a trivial prin-
cipal two-bundle over a four-dimensional compact and oriented spacetime manifold M4. See
[28] for a rigorous definition. Here the two-connection (α, β) is given by g-valued one-form
α ∈ A1(M4, g) and an h-valued two-form β ∈ A2(M4, h):

F = dα+ α ∧ α− ∂β, G = dβ + α ∧� β. (5)

The two-curvature (F ,G) is called fake, because of the additional term ∂β, see [12]. Also,
〈_, _〉g and 〈_, _〉h denote the G-invariant bilinear symmetric nondegenerate forms for the alge-
bras g and h, respectively. See [25, 26] for review and references. Varying the 2BF action (4)
with respect to variables B and C one obtains the equations of motion

F = 0, G = 0, (6)

while varying with respect to α and β one obtains

dBα − fαβ
γBγ ∧ αβ − �αa

bCb ∧ βa = 0, (7)
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dCa − ∂a
αBα + �αa

bCb ∧ αα = 0. (8)

Here, the coefficients fαβ
γ are the structure constants of the algebra g, �αa

b are the coefficients
of the action � of the algebra g on h, while ∂a

α are the coefficients of the map ∂, given in the
bases of algebras g and h (see the equations (10)–(12) below). Similarly to the case of the BF
action, the 2BF action defines a topological theory, i.e. a theory with no propagating degrees
of freedom, see [16, 19].

Continuing the categorical generalization one step further, one can generalize the notion of
a two-group to the notion of a three-group. Similarly to the definition of a group and a two-
group within the category theory formalism, a three-group is defined as a three-category with
only one object, where all morphisms, two-morphisms, and three-morphisms are invertible.
Moreover, analogously as a strict two-group is equivalent to a crossed-module, it has been
proved that a semistrict three-group is equivalent to a two-crossed module [29].

A Lie two-crossed module, denoted as (L
δ−→ H

∂−→ G, �, {_, _}pf) (see appendix A for the
precise definition), is an algebraic structure specified by three Lie groups G, H, and L, together
with the homomorphisms δ : L → H and ∂ : H → G, an action � of the group G on all three
groups, and a G-equivariant map, called the Peiffer lifting:

{_, _}pf : H × H → L.

In order for this structure to be a three-group, the structure constants of algebras g, h, and l,
together with the maps ∂ and δ, the action �, and the Peiffer lifting, must satisfy certain axioms,
see [13]. Here g, h, and l denote the Lie algebras corresponding to the Lie groups G, H, and L.

Analogously to the definition of a two-connection given in [28], one can define a three-
connection as follows. Given a two-crossed module and a four-dimensional compact and ori-
entable spacetime manifold M4, one can introduce a trivial principal three-bundle using the
two-crossed module as a fiber over the base manifoldM4. See [21, 29] for the precise definition
of a corresponding three-holonomy. This gives rise to a three-connection, which can be repre-
sented as an ordered triple (α, β, γ), where α, β, and γ are algebra-valued differential forms,
α ∈ A1(M4, g), β ∈ A2(M4, h), and γ ∈ A3(M4, l). The corresponding fake three-curvature
(F ,G,H) is defined as:

F = dα+ α ∧ α− ∂β, G = dβ + α ∧� β − δγ, H = dγ + α ∧� γ + {β ∧ β}pf.

(9)

Similarly as in the case of the 2BF theory, the three-curvature (F ,G,H) is called fake, because
of the additional terms ∂β, δγ, and {β ∧ β}pf. Fixing the bases in algebras g, h, and l as τα ∈ g,
ta ∈ h, and TA ∈ l, one defines the structure constants

[τα, τβ] = fαβ
γ τγ , [ta, tb] = fab

c tc, [TA, TB] = fAB
C TC, (10)

maps ∂ : H → G and δ : L → H as

∂(ta) = ∂a
α τα, δ(TA) = δA

a ta, (11)

and an action of g on the generators of g, h, and l as

τα � τβ = fαβ
γ τγ , τα � ta = �αa

b tb, τα � TA = �αA
B TB, (12)

respectively. To define the Peiffer lifting in a basis, one specifies the coefficients Xab
A:

{ta, tb}pf = Xab
ATA. (13)

6
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Writing the curvature in the bases of the corresponding algebras and differential forms

F =
1
2
Fα

μνταdxμ ∧ dxν , G =
1
3!
Ga

μνρtadxμ ∧ dxν ∧ dxρ,

H =
1
4!
HA

μνρσTAdxμ ∧ dxν ∧ dxρ ∧ dxσ,

one obtains the corresponding components:

Fα
μν = ∂μα

α
ν − ∂να

α
μ + fβγ

ααβ
μα

γ
ν − βa

μν∂a
α,

Ga
μνρ = ∂μβ

a
νρ + ∂νβ

a
ρμ + ∂ρβ

a
μν

+ αα
μβ

b
νρ�αb

a + αα
νβ

b
ρμ�αb

a + αα
ρβ

b
μν�αb

a − γA
μνρδA

a,

HA
μνρσ = ∂μγ

A
νρσ − ∂νγ

A
ρσμ + ∂ργ

A
σμν − ∂σγ

A
μνρ

+ 2βa
μνβ

b
ρσX(ab)

A − 2βa
μρβ

b
νσX(ab)

A + 2βa
μσβ

b
νρX(ab)

A

+ αα
μγ

B
νρσ�αB

A − αα
νγ

B
ρσμ�αB

A + αα
ργ

B
σμν�αB

A

− αα
σγ

B
μνρ�αB

A.

(14)

Then, similarly to the construction of BF and 2BF actions, one can define the gauge
invariant topological 3BF action, with the underlying structure of a three-group. For
the four-dimensional compact and orientable manifold M4 and the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), that gives rise to three-curvature (9), one defines the 3BF action
as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l, (15)

where B ∈ A2(M4, g), C ∈ A1(M4, h), and D ∈ A0(M4, l) are Lagrange multipliers. The
forms 〈_, _〉g, 〈_, _〉h, and 〈_, _〉l are G-invariant bilinear symmetric nondegenerate forms on g,
h, and l, respectively. Note that in the case of a semisimple Lie algebra, a natural choice for this
bilinear form is the Killing form. However, one can also choose it differently, and moreover
for a solvable Lie algebra one can introduce a non-trivial bilinear form, despite the fact that
the Killing form is degenerate in this case. Fixing the basis in algebras g, h, and l, as defined
in (10), the forms 〈_, _〉g, 〈_, _〉h, and 〈_, _〉l map pairs of basis vectors of algebras g, h, and l,
to the metrics on their vector spaces, gαβ , gab, and gAB:

〈τα, τβ〉g = gαβ , 〈ta, tb〉h = gab, 〈TA, TB〉l = gAB. (16)

As the symmetric maps are nondegenerate, the inverse metrics gαβ , gab, and gAB are well
defined, and are used to raise and lower indices of the corresponding algebras.

Varying the action (15) with respect to Lagrange multipliers Bα, Ca, and DA one obtains the
equations of motion

Fα = 0, Ga = 0, HA = 0, (17)
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while varying with respect to the three-connection variables αα, βa, and γA one gets:

dBα − fαβ
γBγ ∧ αβ − �αa

bCb ∧ βa + �αB
ADA ∧ γB = 0, (18)

dCa − ∂a
αBα + �αa

bCb ∧ αα + 2X(ab)
ADA ∧ βb = 0, (19)

dDA − �αA
BDB ∧ αα + δA

aCa = 0. (20)

For further details see [21, 29, 30] for the definition of the three-group, and [13] for the
definition of the pure 3BF action.

Choosing the convenient underlying two-crossed module structure and imposing the appro-
priate simplicity constraints onto the degrees of freedom present in the 3BF action, one can
obtain the non-trivial classical dynamics of the gravitational and matter fields. A reader inter-
ested in the construction of the constrained 2BF actions describing the Yang–Mills field and
Einstein–Cartan gravity, and 3BF actions describing the Klein–Gordon, Dirac, Weyl and Majo-
rana fields coupled to gravity in the standard way, is referred to [13, 27]. One can also introduce
higher dimensional, nBF actions, see for example [31]. Various properties of these models have
been studied in [32–34]. Naturally, if one is interested in theories defined on a four-dimensional
spacetime manifold, there is an upper limit on the order of the differential forms one can use
to construct a n-connection, and in four dimensions that is n = 3.

3. Hamiltonian analysis of the 3BF theory

In this section, the canonical structure of the theory is presented, with the resulting first-class
and second-class constraints present in the theory. The algebra of Poisson brackets between all,
the first-class and the second-class constraints, is obtained. We will use this result to calculate
the total number of degrees of freedom in the theory, and in order to do that, we will have to
analyse the BI that the first-class constraints satisfy, which enforce restrictions in the sense of
Hamiltonian analysis. They reduce the number of independent first-class constraints present
in the theory, thus increasing the number of degrees of freedom. We will obtain that the pure
3BF theory is topological, i.e. there are no local propagating degrees of freedom. Finally, we
will finish this section with the construction of the generator of gauge symmetries of the 3BF
action, which is used to calculate the form-variations of all the variables and their canonical
momenta. This result will be crucial for finding the gauge symmetries of 3BF action, which
will be a topic of section 4.

3.1. Canonical structure and Hamiltonian

Assuming that the spacetime manifold M4 is globally hyperbolic, the Lagrangian on a spatial
foliation Σ3 of spacetime M4 corresponding to the 3BF action (15) is given as:

L3BF =

∫
Σ3

d3�x εμνρσ
(

1
4

Bα
μν Fβ

ρσ gαβ +
1
3!

Ca
μ Gb

νρσ gab +
1
4!

DAHB
μνρσgAB

)
.

(21)

8
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For the Lagrangian (21), the canonical momenta corresponding to all variables Bα
μν , αα

μ, Ca
μ,

βa
μν , DA, and γA

μνρ are:

π(B)α
μν =

δL
δ∂0Bα

μν
= 0,

π(α)αμ =
δL

δ∂0αα
μ
=

1
2
ε0μνρBανρ,

π(C)a
μ =

δL
δ∂0Ca

μ
= 0,

π(β)a
μν =

δL
δ∂0βa

μν

= −ε0μνρCaρ,

π(D)A =
δL

δ∂0DA
= 0,

π(γ)A
μνρ =

δL
δ∂0γA

μνρ

= ε0μνρDA.

(22)

These momenta give rise to the six primary constraints of the theory, since none of them can
be inverted for the time derivatives of the variables,

P(B)α
μν ≡ π(B)α

μν ≈ 0,

P(α)αμ ≡ π(α)αμ −
1
2
ε0μνρBανρ ≈ 0,

P(C)a
μ ≡ π(C)a

μ ≈ 0,

P(β)a
μν ≡ π(β)a

μν + ε0μνρCaρ ≈ 0,

P(D)A ≡ π(D)A ≈ 0,

P(γ)A
μνρ ≡ π(γ)A

μνρ − ε0μνρDA ≈ 0.

(23)

Employing the following fundamental Poisson brackets,

{Bα
μν(�x ) , π(B)β

ρσ(�y) } = 2δαβδ
ρ
[μ|δ

σ
|ν] δ

(3)(�x −�y),

{αα
μ(�x ) , π(α)βν(�y) } = δαβ δ

ν
μ δ

(3)(�x −�y),

{Ca
μ(�x ) , π(C)b

ν(�y) } = δa
bδ

ν
μ δ

(3)(�x −�y),

{βa
μν(�x ) , π(β)b

ρσ(�y) } = 2δa
b δ

ρ
[μ|δ

σ
|ν] δ

(3)(�x −�y),

{DA(�x ) , π(D)B(�y) } = δA
B δ(3)(�x −�y),

{ γA
μνρ(�x ) , π(γ)B

στξ(�y) } = 3!δA
B δσ[μδ

τ
ν δ

ξ
ρ] δ

(3)(�x −�y),

(24)

9
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one obtains the algebra of primary constraints:

{P(B)α jk(�x) , P(α)β i(�y) } = ε0i jk gαβ(�x) δ(3)(�x −�y),

{P(C)a
k(�x) , P(β)b

i j(�y) } = −ε0i jk gab(�x) δ(3)(�x −�y),

{P(D)A(�x) , P(γ)B
i jk(�y) } = ε0i jk gAB(�x) δ(3)(�x −�y).

(25)

Note that all other Poisson brackets vanish. The canonical, on-shell Hamiltonian is given by
the following expression:

Hc =

∫
Σ3

d3�x

[
1
2
π(B)αμν ∂0Bα

μν + π(α)αμ ∂0α
α
μ + π(C)a

μ ∂0Ca
μ

+
1
2
π(β)a

μν ∂0β
a
μν + π(D)A ∂0DA +

1
3!
π(γ)A

μνρ ∂0γ
A
μνρ

]
− L.

(26)

Employing the definition of the curvature components (14), the Hamiltonian (26) can be written
as the sum of terms that are equal to the product of the primary constraints and time derivatives
of the variables, and the remainder. As the primary constraints are zero on-shell, the terms
multiplying the time derivatives vanish, and the canonical Hamiltonian becomes:

Hc = −
∫
Σ3

d3�x ε0i jk

[
1
2

Bα0i Fα
jk +

1
6

Ca0 Ga
i jk+ βa

0i

(
∇ jCak −

1
2
∂a

αBα jk + βb
jk DA X(ab)

A

)

+
1
2
αα

0

(
∇iBα jk − Cai �αb

a βb
jk +

1
3

DA �αB
A γB

i jk

)
+

1
2
γA

0i j

(
∇kDA + Cak δA

a
)]

.

(27)

Adding to the canonical Hamiltonian the product of the Lagrange multipliersλ and the primary
constraints, for every primary constraint, one gets the total, off-shell Hamiltonian:

HT = Hc+

∫
Σ3

d3�x

[
1
2
λ(B)αμνP(B)αμν + λ(α)αμP(α)αμ+ λ(C)a

μP(C)a
μ +

1
2
λ(β)a

μνP(β)a
μν

+ λ(D)AP(D)A +
1
3!
λ(γ)A

μνρP(γ)A
μνρ

]
.

(28)

3.2. Consistency conditions and algebra of constraints

In order for primary constraints to be preserved during the evolution of the system, they must
satisfy the consistency conditions,

Ṗ ≡ {P , HT } ≈ 0, (29)

10
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for every primary constraint P. Imposing this condition on primary constraints P(B)α0i, P(α)α0,
P(C)a

0, P(β)a
0i, and P(γ)A

0i j, one obtains the secondary constraints S,

S(F )αi ≡ 1
2
ε0i jkFα jk ≈ 0,

S(∇B)α ≡ 1
2
ε0i jk

(
∇[iBα jk] − Ca[i �αb

a βb
jk] +

1
3

DA �αB
A γB

i jk

)
≈ 0,

S(G)a ≡ 1
6
ε0i jkGai jk ≈ 0,

S(∇C)a
i ≡ ε0i jk

(
∇[ j|Ca|k] −

1
2
∂a

αBα jk + βb
jk DA X(ab)

A

)
≈ 0,

S(∇D)A
i j ≡ ε0i jk

(
∇kDA + Cak δA

a
)
≈ 0,

(30)

while in the case of the constraints P(α)αk, P(B)α jk, P(β)a
jk, P(C)a

k, P(γ)A
i jk, and P(D)A the

corresponding consistency conditions determine the following Lagrange multipliers:

λ(B)αi j ≈ ∇iBα0 j −∇ jBα0i + Ca0β
b

i j�αb
a + Cbi�

b
α aβ

a
0 j

− Cb j�
b

α aβ
a

0i + gβγ
ααβ

0Bγ
i j + DBγ

A
0i j�

B
α A,

λ(α)αi ≈ ∇iα
α

0 + ∂a
αβa

0i,

λ(C)a
i ≈ ∇iC

a
0 + Cb

i�
a

α bα
α

0 − 2βb0iDAX(ba)A + Bα0i∂
aα,

λ(β)a
i j ≈ ∇iβ

a
0 j −∇ jβ

a
0i − βb

i j�αb
aαα

0 + γA
0i jδA

a,

λ(D)A ≈ αα
0DB�αA

B − Ca0δA
a,

λ(γ)A
i jk ≈ −2βa

0iβ
b

jkX(ab)
A + 2βa

0 jβ
b

ikX(ab)
A − 2βa

0kβ
b

i jX(ab)
A

− αα
0 �αB

AγB
i jk +∇iγ

A
0 jk −∇ jγ

A
0ik +∇kγ

A
0i j.

(31)

Note that the rest of the Lagrange multipliers

λ(B)α0i, λ(α)α0, λ(C)a
0, λ(β)a

0i, λ(γ)A
0i j, (32)

remain undetermined.
Further, as the secondary constraints must also be preserved during the evolution of the

system, the consistency conditions of secondary constraints must be enforced. However, no
tertiary constraints arise from these conditions (see equation (B.1) in appendix B), leading the
iterative procedure to an end. Finally, the total Hamiltonian can be written in the following
form:

11
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HT =

∫
Σ3

d3�x

[
λ(B)α0i Φ(B)αi + λ(α)α Φ(α)α + λ(C)a

0 Φ(C)a + λ(β)a
0i Φ(β)a

i

+
1
2
λ(γ)A

0i jΦ(γ)A
i j − Bα0i Φ(F )ai − αα0 Φ(∇B)α − Ca0 Φ(G)a

− βa0i Φ(∇C)ai − 1
2
γA0i j Φ(∇D)Ai j

]
,

(33)

where

Φ(B)αi = P(B)α0i,

Φ(α)α = P(α)α0,

Φ(C)a = P(C)a
0,

Φ(β)a
i = P(β)a

0i,

Φ(γ)A
i j = P(γ)A

0i j,

Φ(F )αi = S(F )αi −∇ jP(B)αi j − P(C)a
i∂aα,

Φ(G)a = S(G)a +∇iP(C)a
i − 1

2
βbi j �

b
α aP(B)αi j + P(D)AδAa,

Φ(∇C)a
i = S(∇C)a

i −∇ jP(β)a
i j + Cbj �

b
α aP(B)αi j

− ∂a
αP(α)α

i + 2DAX(ab)
AP(C)bi + βb

jkX(ab)
AP(γ)A

i jk,

Φ(∇B)α = S(∇B)α +∇iP(α)αi − 1
2

fαγ
βBβ i jP(B)γi j − Cbi �αa

bP(C)ai

− 1
2
βbi j �αa

bP(β)ai j − P(D)ADB �αA
B +

1
3!

P(γ)A
i jkγB

i jk �αB
A,

Φ(∇D)A
i j = S(∇D)A

i j +∇kP(γ)A
i jk − P(β)a

i jδA
a − P(B)αi j � B

α ADB,

(34)

are the first-class constraints. The second-class constraints in the theory are:

χ(B)α
jk = P(B)α

jk, χ(C)a
i = P(C)a

i, χ(D)A = P(D)A,

χ(α)αi = P(α)αi, χ(β)a
i j = P(β)a

i j, χ(γ)A
i jk = P(γ)A

i jk.

(35)

12
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The PB algebra of the first-class constraints is given by

{Φ(F )αi(�x) , Φ(∇B)β(�y) } = fβγ
α Φ(F )γi(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , Φ(∇B)β(�y) } = fαβ
γ Φ(∇B)γ(�x) δ(3)(�x −�y),

{Φ(G)a(�x) , Φ(∇C)b
i(�y) } = −�αb

a Φ(F )αi(�x) δ(3)(�x −�y),

{Φ(∇C)a
i(�x) , Φ(∇C)b

j(�y) } = −2X(ab)
A Φ(∇D)A

i j(�x) δ(3)(�x −�y),

{Φ(G)a(�x) , Φ(∇B)α(�y) } = �αb
a Φ(G)b(�x) δ(3)(�x −�y),

{Φ(∇C)ai(�x) , Φ(∇B)α(�y) } = �αb
a Φ(∇C)bi(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , Φ(∇D)A
i j(�y) } = �αA

BΦ(∇D)B
i j(�x)δ(3)(�x −�y).

(36)

The algebra between the first and the second class constraints is given in the appendix B,
equation (B.2).

With the algebra of the constraints in hand, one can proceed to calculate the generator of
gauge symmetries of the action. The generator will be used to calculate the form-variations of
all the variables and their canonical momenta, which will help us find the finite gauge sym-
metries of the action. Additionally, we can determine the number of independent parameters
of gauge transformations, since usually all the first class constraints generate unphysical trans-
formations of dynamical variables, i.e. that to each parameter of the gauge symmetry there
corresponds one first-class constraint. However, before we embark on the construction of the
symmetry generator, we will devote some attention to the number of local propagating degrees
of freedom in the theory, in order to determine if the 3BF action is topological or not.

3.3. Number of degrees of freedom

In this subsection, we will show that the structure of the constraints implies that there are no
local degrees of freedom in a 3BF theory. To that end, let us first specify all the BI present in
the theory.

The two-form curvatures corresponding to one-forms α and C, given by

Fα = dαα + fβγ
α αβ ∧ αγ , Ta = dCa + �αb

a αα ∧ Cb, (37)

satisfy the BI:

ελμνρ ∇μFα
νρ = 0, (38)

ελμνρ
(
∇μTa

νρ − �αb
aFα

μνCb
ρ

)
= 0. (39)

Similarly, the three-form curvatures corresponding to two-forms B and β, given by

Sα = dBα + fβγ
α αβ ∧ Bγ , Ga = dβa + �αb

a αα ∧ ββ , (40)

13
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Table 1. The fields present in the 3BF theory.

αα
μ βa

μν γA
μνρ Bα

μν Ca
μ DA

4p 6q 4r 6p 4q r

Table 2. Second-class constraints in the 3BF theory.

χ(B)α jk χ(C)a
i χ(D)A χ(α)αi χ(β)a

i j χ(γ)A
i jk

3p 3q r 3p 3q r

satisfy the BI:

ελμνρ
(

2
3
∇λ Sα

μνρ − fβγ
αFβ

λμ Bγ
νρ

)
= 0, (41)

ελμνρ
(

2
3
∇λ Ga

μνρ − �αb
a Fα

λμ β
b
νρ

)
= 0. (42)

Finally, defining the one-form curvature for D,

QA = dDA + �αB
Aαα ∧ DB, (43)

one can write the corresponding BI for QA:

ελμνρ
(
∇νQA

ρ −
1
2
�αB

AFα
νρD

B

)
= 0. (44)

These BI play an important role in determining the number of degrees of freedom present
in the theory.

As the general theory states, if there are N fields in the theory, F independent first-class
constraints per space point, and S independent second-class constraints per space point, the
number of independent field components, i.e. the number of the physical degrees of freedom
present in the theory, is given by:

n = N − F − S
2
. (45)

Let pdenote the dimensionality of the group G, q the dimensionality of the group H, and r the
dimensionality of the group L. Determining the number of fields present in the 3BF theory, by
counting the field components listed in table 1, one obtains N = 10(p+ q) + 5r. Similarly, one
determines the number of independent components of the second-class constraints by counting
the components listed in table 2 and obtains S = 6(p+ q) + 2r. However, when counting the
number of the first-class constraints F one notes they are not all mutually independent. Namely,
one can prove the following identities, as a consequence of the BI.

Taking the derivative of Φ(F )α
i one obtains

∇iΦ(F )αi + ∂a
αΦ(G)a =

1
2
ε0i jk∇iF

α
jk −

1
2

fβγ
αFβ

i jP(B)i j. (46)

This relation gives

∇iΦ(F )αi + ∂a
αΦ(G)a = 0, (47)

14



Class. Quantum Grav. 39 (2022) 135009 T Radenkovíc and M Vojinovíc

since the first term on the right-hand side of (46) is zero off-shell because εi jk ∇iFa
jk = 0 are the

λ = 0 components of BI (38), and the second term on the right-hand side is also zero off-shell,
since it is a product of two constraints:

1
2

fβγ
αFβ

i jP(B)i j =
1
2

fβγ
αε0i jkS(F )βkP(B)i j = 0. (48)

The relation (47) means that p components of the first-class constraints Φ(F )αi and Φ(G)a are
not independent of the others. Furthermore, taking the derivative of Φ(∇C)a

i one obtains

∇iΦ(∇C)a
i + Cbi�αa

bΦ(F )αi + ∂a
αΦ(∇B)α − βb

i jX(ab)
AΦ(∇D)A

i j − 2DAX(ab)
A Φ(G)b

=
1
2
ε0i jk

(
∇iTa jk − �αb

aFα
jkCb

i

)
− 1

2
ε0i jk �αa

b P(B)α i j S(∇C)bk

+ ε0i jkX(ab)
A P(C)b

i S(∇D)A jk +
1
3
ε0i jkX(ab)

A P(γ)A
i jk S(G)b +

1
2
ε0i jk�αa

b P(β)b
i j S(F )αk.

(49)

Noting that the right-hand side of (49) is zero off-shell as the λ = 0 components of the BI (39),
and the remaining terms on the right-hand side are zero off-shell as products of two constraints,
one obtains the following relation:

∇iΦ(∇C)a
i + Cbi�αa

bΦ(F )αi + ∂a
αΦ(∇B)α − βb

i jX(ab)
AΦ(∇D)A

i j − 2DAX(ab)
AΦ(β)b = 0.

(50)

This relation means that q components of the constraintsΦ(∇C)a
i,Φ(F )αi,Φ(∇B)α,Φ(∇D)A

i j,
and Φ(β)b, are not independent of the others, further lowering the number of the independent
first-class constraints. Finally, the following relation is satisfied

∇ jΦ(∇D)A
i j − �αB

ADBΦ(F )αi − δA
aΦ(∇C)a

i

= ε0i jk

(
∇ jQA

k +
1
2
�αA

BFα jkDB

)
+

1
2
ε0 jkl �αB

A P(γ)B
i jk S(F )αl

− 1
2
ε0 jkl �αB

A P(B)αi j S(∇D)B
kl.

(51)

Since the first term on the right-hand side is precisely the λ = 0 component of the BI (44),
while the second and third terms are equal to zero as products of two constraints, this gives:

∇ jΦ(∇D)A
i j − �αB

ADBΦ(F )αi − δA
aΦ(∇C)a

i = 0. (52)

This relation suggests that 3r components of the primary constraints Φ(∇D)A
i j, Φ(F )αi, and

Φ(C)a
i are not independent of the others. However, this is slightly misleading, since the

covariant derivative of the BI (44) is automatically satisfied as a consequence of the BI (38),

ελμνρDB �αB
A∇μFα

νρ = 0, (53)
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Table 3. First-class constraints in the 3BF theory.

Φ(B)αi Φ(C)a Φ(α)α Φ(β)a
i Φ(γ)A

i j Φ(F)αi Φ(G)a Φ(∇C)ai Φ(∇B)α Φ(∇D)A
i j

3p q p 3q 3r 3p− p q 3q − q p 3r − 2r

which means that there are in fact only 2r components of the constraint (52). A formal
proof of this statement would involve evaluating the Wronskian of all first-class constraints,
and is out of the scope of this paper.

The number of independent components of first-class constraints is determined by counting
the components listed in table 3, and then subtracting the number of independent relations (47),
(50) and (52).

Bearing the previous analysis in mind, one obtains the number of independent first-class
constraints:

F = 8(p+ q) + 6r − p− q − 2r = 7(p+ q) + 4r.

Finally, using the definition (45), the number of degrees of freedom in the 3BF theory is:

n = 10(p+ q) + 5r − 7(p+ q) − 4r − 6(p+ q) + 2r
2

= 0. (54)

Therefore, there are no local propagating degrees of freedom in a 3BF theory.

3.4. Symmetry generator

The unphysical transformations of dynamical variables are often referred to as gauge trans-
formations. The gauge transformations are local, meaning that the parameters of the transfor-
mations are arbitrary functions of space and time. We shall now construct the generator of all
gauge symmetries of the theory governed by the total Hamiltonian (33), using the Castellani’s
algorithm (see chapter 5 in [15] for a comprehensive overview of the procedure). The details
of the construction are given in appendix C, and the following result is obtained

G =

∫
Σ3

d3�x

(
(∇0εg

α) (G̃1)α + εg
α (G̃0)α + (∇0ε

a
h i) (H̃1)a

i
+ ε a

h i (H̃0)a
i
+

1
2

(∇0ε
A
l i j) (L̃1)A

i j

+
1
2
ε A
l i j (L̃0)A

i j
+ (∇0ε

α
m i) (M̃1)α

i
+ ε α

m i (M̃0)α
i
+ (∇0εn

a) (Ñ1)a + εn
a(Ñ0)a

)
,

(55)
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where

(G̃1)α = −Φ(α)α,

(G̃0)α = −
(

fαγ
βBβ0iΦ(B)γ i + Ca0 �αb

aΦ(C)b0 + βa0i �αb
aΦ(β)b0i

− 1
2
γA

0i j �αA
BΦ(γ)B

i j − Φ(∇B)α

)
,

(H̃1)a
i
= −Φ(β)a

i,

(H̃0)a
i
= Cb0 �αa

bΦ(B)αi − 2βb
0 jX(ab)

AΦ(γ)A
i j +Φ(∇C)a

i,

(L̃1)a
i j
= Φ(γ)A

i j,

(L̃0)a
i j
= −Φ(∇D)A

i j,

(M̃1)α
i
= −Φ(B)αi,

(M̃0)α
i
= Φ(F )α

i,

(Ñ1)a = −Φ(C)a,

(Ñ0)a = βb0i �αa
bΦ(B)αi +Φ(G)a,

(56)

and εg
α, ε a

h i, ε
A
l i j, ε

α
m i, and εn

a are the independent parameters of the gauge transformations.
The obtained gauge generator (55) is then employed to calculate the form variations of

variables and their corresponding canonical momenta, denoted as A(t,�x), using the following
equation,

δ0A(t,�x) = {A(t,�x), G}. (57)

The form variations of all fields and canonical momenta are given in appendix E,
equation (E.2), while the algebra of the generators (56) is obtained in the appendix B,
equations (B.4)–(B.10). However, one must bear in mind that the gauge generator (55) is the
generator of the symmetry transformations on a slice of spacetime, i.e. on a hypersurface Σ3.
Having in hand all these results, specifically the form variations of all variables and their canon-
ical momenta (E.2), we can determine the full gauge symmetry of the theory, which will be
done in the next section.

4. Symmetries of the 3BF action

In order to systematically describe all gauge transformations of the 3BF action, we will discuss
in turn each set of gauge parameters εg

α, ε a
h i, ε

A
l i j, ε

α
m i, and εn

a, appearing in (55). The
subsection 4.1 deals with the gauge group G, and the G-gauge transformations, which are
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already familiar from the ordinary BF theory. In subsection 4.2 we discuss the gauge group
H̃L which consists of the H-gauge and L-gauge transformations, familiar from the previous
literature [21], while the subsection 4.3 examines the M-gauge and N-gauge transformations
which are also present in the theory. Finally, the results of the subsections 4.1–4.3 will be
summarized in the subsection 4.4, where we will present the complete structure of the gauge
symmetry group.

4.1. Gauge group G

First, consider the infinitesimal transformation with the parameter εg
α, given by the form

variations

δ0α
α
μ = − ∂μεg

α − fβγ
ααβ

μεg
γ , δ0Bα

μν = fβγ
αεg

βBγ
μν ,

δ0β
a
μν = �αb

aεg
αβb

μν , δ0Ca
μ = �αb

aεg
αCb

μ,

δ0γ
A
μνρ = �αB

Aεg
αγB

μνρ, δ0DA = �αB
Aεg

αDB,

(58)

which is analogous to writing the transformation as:

α→ α′ = α−∇εg, B → B′ = B − [B, εg],

β → β′ = β + εg � β, C → C′ = C + εg � C,

γ → γ ′ = γ + εg � γ, D → D′ = D + εg � D.

(59)

Based on these infinitesimal transformations, one can extrapolate the finite symmetry transfor-
mations, defined in the theorem 1.

Theorem 1 (G-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a gauge symmetry,

α→ α′ = Adgα+ gdg−1, B → B′ = gBg−1,

β → β′ = g � β, C → C′ = g � C,

γ → γ ′ = g � γ, D → D′ = g � D,

(60)

where g = exp(εg · Ĝ) = exp(εgαĜα) ∈ G, and εg : M4 → g is the parameter of the
transformation.

Proof. Note that if one considers an element of the group, g ∈ G, the transformations of the
theorem 1 give rise to the following three-curvature transformation

F →F′ = gFg−1, G → G′ = g � G, H→H′ = g �H, (61)
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and the invariance of the 3BF action under this transformation follows from the G-invariance
of the symmetric bilinear forms on g, h, and l. _

Let us consider two subsequent infinitesimal G-gauge transformations, determined by the
small parameters εαg1

and εβg2. To calculate the commutator between the generators of the G-
gauge transformations, we will make use of the Baker–Campbell–Hausdorff (BCH) formula
in the case when the parameters of the transformations are small

eε
α

g 1Ĝαeε
β

g 2Ĝβ = eε
α

g 1Ĝα+ε
β

g 2Ĝβ+
1
2 ε

α
g 1 ε

β
g 2 [Ĝα,Ĝβ ]+O(ε 3

g ), (62)

from which it follows:

eε
α

g 1Ĝαeε
β

g 2Ĝβ − eε
β

g 2Ĝβeε
α

g 1Ĝα = ε α
g 1 ε

β
g 2 [Ĝα, Ĝβ] + O(ε 3

g ). (63)

Using the equation (63), we obtain that the generators of the G-gauge transformations defined
in the theorem 1 satisfy the following commutation relations:

[Ĝα, Ĝβ] = fαβ
γĜγ , (64)

where fαβ
γ are the structure constants of the algebra g. By noting that there exists an iso-

morphism between generators Ĝα
∼= τα, one establishes that the group of the G-gauge trans-

formations from the theorem 1 is the same as the group G of the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf). This is an important result, which will not be true for the remaining
symmetry transformations, as we shall see below.

4.2. The gauge group H̃L

Let us now consider the form variations of the variables corresponding to the parameter ε a
h i.

For example, one can see from the equation (E.2) that the form-variation of the variables αα
0

and αα
i are:

δ0α
α

o = 0, δ0α
α

i = −∂a
αε a

h i. (65)

Taking into account that the action of the generator (55) gives the symmetry transformations on
one hypersurfaceΣ3 with the time component of the parameter equal to zero, ε a

h 0 = 0, one can
extrapolate that for parameter of the spacetime gauge transformations ε a

h μ, the form-variation
of the variable αα

μ is given as:

δ0α
α
μ = −∂a

αε a
h μ, (66)

and similarly for the rest of the variables. Thus, the infinitesimal symmetry transformations in
the whole spacetime corresponding to the parameter ε a

h μ are given by the form variations:

δ0α
α
μ = −∂a

αε a
h μ, δ0Bα

μν = 2Ca[μ|ε
b

h |ν] �βb
agαβ ,

δ0β
a
μν = −2∇[μ|ε

a
h |ν], δ0Ca

μ = 2DAX(ab)
Aε b

h μ,

δ0γ
A
μνρ = 3!βa

[μνε
b

h ρ]X(ab)
A, δ0D = 0.

(67)
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For these infinitesimal transformations one obtains the finite symmetry transformations given
in theorem 2.

Theorem 2 (H-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a symmetry:

α→ α′ = α− ∂εh, β → β′ = β −∇′εh − εh ∧ εh,

γ → γ ′ = γ + {β′, εh}pf + {εh, β}pf, B → B′ = B − C′∧T εh − εh∧Dεh∧DD,

C → C′ = C − D∧X1εh − D∧X2εh, D → D′ = D.

(68)

where εh ∈ A1(M4, h) is an arbitrary h-valued one-form, and ∇′ denotes the covariant
derivative with respect to the connection α′. The maps T , D, X1, and X2 are defined in
appendix D.

Proof. Note that the three-curvature transforms as

F →F′ = F ,

G → G′ = G − F∧� εh,

H→H′ = H + {G′, εh}pf − {εh,G}pf.

(69)

Taking into account the transformations of the three-curvature (69) and the transformations of
the Lagrange multipliers, the action S3BF transforms as:

S′
3BF = S3BF +

∫
M4

(
−〈C′∧T εh,F〉g − 〈εh∧Dεh∧DD,F〉g

− 〈C′,F∧� εh〉h − 〈D∧X1εh,G〉h − 〈D∧X2εh,G〉h
+ 〈D, {G, εh}pf〉l − 〈D, {F∧� εh, εh}pf〉l − 〈D, {εh,G}pf〉l

)
.

(70)

Using the definitions of the maps T ,D, X1, and X2, given in appendix D, one sees that the
terms in the parentheses cancel, specifically the first term with the third, second with seventh,
fourth with eighth, and fifth with the sixth term. _

The H-gauge transformations do not form a group. Namely, one can check that the two con-
secutive H-gauge transformations do not give a transformation of the same kind, i.e. the closure
axiom of the group is not satisfied. This is analogous to the well-known structure of Lorentz
group, where boost transformations are not closed, and thus do not form a group. Indeed, one
must consider both rotations and boosts to obtain the set of transformations that forms the
Lorentz group. In the case of the H-gauge transformations, we will show that together with
the H-gauge transformations one needs to consider the transformations corresponding to the
parameter ε A

l i j. From the equation (E.2) one reads the form-variations on a space hypersur-
face Σ3 corresponding to this parameter. Similarly as it is done in the case of the H-gauge
transformations, one extrapolates that the form-variations for all the variables corresponding
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to the parameter ε A
l μν are given as:

δ0α
α
μ = 0,

δ0Bα
μν = −DA �βB

Aε B
l μνgαβ ,

δ0β
a
μν = δA

aεA
l μν ,

δ0Ca
μ = 0, δ0γ

A
μνρ = ∇με

A
l νρ −∇νε

A
l μρ +∇ρε

A
l μν ,

δ0DA = 0.

(71)

These infinitesimal transformations correspond to the finite symmetry transformations defined
in theorem 3.

Theorem 3 (L-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a symmetry

α→ α′ = α, B → B′ = B + D∧Sεl,
β → β′ = β + δεl, C → C′ = C,
γ → γ ′ = γ +∇εl, D → D′ = D,

(72)

where εl ∈ A2(M4, l) is an arbitrary l-valued two-form, and the map S is defined in
appendix D.

Proof. Note that the three-curvature transforms as

F →F′ = F ,
G → G′ = G,
H→H′ = H+ F∧� εl.

(73)

Taking into account the transformations (73) and the transformations of the Lagrange multi-
pliers, the action transforms as:

S′
3BF = S3BF +

∫
M4

(
〈D∧Sεl,F〉g + 〈D,F∧� εl〉l

)
. (74)

According to the definition of the map S, the terms in the parentheses cancel. _
Let us denote the generators of the H-gauge transformations given by the theorem 2 and

the L-gauge transformations given by the theorem 3 as Ĥa
μ

and L̂A
μν

, respectively. As we have
commented above, one can now check that the transformations defined in the theorem 2, i.e.
the H-gauge transformations, do not form a group. If one performs two consecutive H-gauge
transformations, defined with parameters εh1 and εh2, one obtains

eεh1·Ĥeεh2·Ĥ − eεh2·Ĥeεh1·Ĥ = 2 ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf) · L̂, (75)

where εh · Ĥ = ε a
h μĤ μ

a and εl · L̂ = 1
2 ε

A
l μν L̂A

μν
. Using the equation analogous to BCH

formula (63), one obtains that the commutator of the generators of two H-gauge
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transformations is the generator of an L-gauge transformation (see appendix F for the details
of the calculation):[

Ĥa
μ
, Ĥb

ν
]
= 2X(ab)

AL̂A
μν
. (76)

Next, note that the transformations defined in theorem 3 are the linear transformations,
and the two subsequent L-gauge transformations give one L-gauge transformation with the
parameter εl1 + εl2. Formally, one can write the previous statement as

eεl1·L̂eεl2 ·L̂ = e(εl1+εl2)·L̂, (77)

which leads to the conclusion that the generators of the L-gauge transformations are mutually
commuting: [

L̂A
μν

, L̂B
ρσ
]
= 0. (78)

Thus, the L-gauge transformations form an abelian group, which will be denoted as L̃. Accord-
ing to the index structure of the parameters and generators, we can conclude that the group L̃
is isomorphic to R

6r, where r is the dimension of the group L:

L̃ ∼= R
6r. (79)

Our analogy with the case of the Lorentz group can once again prove useful, since the closure
of the L-gauge transformations resembles the fact that the composition of two rotations is a
rotation. The abelian group L̃ should not be confused with the non-abelian group L of the

two-crossed module (L
δ−→ H

∂−→ G, �, {_, _}pf).
Let us now examine the relationship between H-gauge transformations and L-gauge

transformations. The following result,

eεh·Ĥeεl·L̂ = eεl·L̂eεh ·Ĥ , (80)

leads to the conclusion that the commutator of generators of the H-gauge transformations and
generators of the L-gauge transformations vanishes:[

Ĥa
μ
, L̂A

νρ
]
= 0. (81)

From the closure of the algebra (76), (78) and (81), one can conclude that the H-gauge trans-
formations together with the L-gauge transformations form a group, which will be denoted as
H̃L. Lastly, the action of the group G on the H-gauge and L-gauge transformations is examined
by calculating the expressions:

[εg · Ĝ, εh · Ĥ] = (εg � εh) · Ĥ, [εg · Ĝ, εl · L̂] = (εg � εl) · L̂, (82)

which lead to the following commutators:[
Ĝα, Ĥa

μ
]
= �αa

b Ĥ μ
b ,

[
Ĝα, L̂A

μν
]
= �αA

B L̂ μν
B .

(83)

Theorems 1–3 represent the G-, H-, and L-gauge transformations, which are already familiar
from the previous literature (see for example [21, 30]).
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4.3. The gauge groups M and N

Next, consider the infinitesimal transformation with the parameter ε α
m i, given by the form

variations in appendix E. In a similar manner as done in the previous subsection, one establishes
that the form variations obtained as a result of the Hamiltonian analysis are transformations on
one hypersurfaceΣ3, from which one can guess the symmetry in the whole spacetime. Keeping
in mind that the variations on the hypersurface have the time component of the parameter set to
ε α
m 0 = 0, one extrapolates the form-variations of the whole spacetime for the parameter ε α

m μ

to be:

δ0α
α
μ = 0,

δ0Bα
μν = −2∇[μ|ε

α
m |ν],

δ0β
a
μν = 0,

δ0Ca
μ = −∂a

αε
α

m μ,

δ0γ
A
μνρ = 0,

δ0DA = 0.

(84)

Based on this result, one obtains the finite symmetry transformations in the whole spacetime,
as defined in theorem 4, which we will refer to as the M-gauge transformations.

Theorem 4 (M-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a symmetry

α→ α′ = α,

B → B′ = B −∇εm,

β → β′ = β,

Ca → C′a = Ca − ∂a
αεm

α,

γ → γ ′ = γ,

D → D′ = D,

(85)

where εm ∈ A1(M4, g) is an arbitrary g-valued one-form.

Proof. Consider the transformation of the 3BF action under the transformations of the
variables defined in the theorem 4. One obtains:

S′
3BF = S3BF +

∫
M4

d4x εμνρσ
(
−1

2
(∇με

α
m ν)Fαρσ −

1
3!
∂a

αε
α

m μGaνρσ

)
. (86)

Using the definition of three-curvature, given by the expressions (14), one obtains:

S′
3BF = S3BF +

∫
M4

d4x εμνρσ
(
−1

2
(∇με

α
m ν)

(
Fαρσ − ∂a

αβaρσ

)

− 1
3!
∂a

αε
α

m μ

(
3∇νβaρσ − δA

aγAνρσ

))
.

(87)
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Taking into account that the second and the third term cancel, while the last term is
zero because of the identity (A.1), the expression reduces to:

S′
3BF = S3BF − 1

2

∫
M4

d4x εμνρσε α
m μ∇νFαρσ. (88)

Finally, the term εμνρσ∇νFαρσ = 0 is the BI (38). One concludes that the action S3BF is invariant
under the transformation defined in theorem 4. �

Note that the transformations defined in theorem 4 are linear transformations, and the two
subsequent M-gauge transformations give one M-gauge transformation with the parameter
εm1 + εm2. Denoting the generators of the M-gauge transformations as M̂α

μ
, one can now write

the previous statement formally as:

eεm1·M̂eεm2 ·M̂ = e(εm1+εm2)·M̂ , (89)

where εm · M̂ = ε α
m μM̂α

μ
, leading to the conclusion that:

[
M̂α

μ
, M̂β

ν
]
= 0. (90)

Thus, the M-gauge transformations form an abelian group, which will be denoted as M̃. Accord-
ing to the index structure of its parameters and generators, we see that this group is isomorphic
to R

4p, where p is the dimension of the group G:

M̃ ∼= R
4p. (91)

Next, one can examine the relationship of M-gauge transformations with the G, H, and L-
gauge transformations defined in the previous subsections. Specifically, considering the G-
gauge symmetry generators, one finds

[εg · Ĝ, εm · M̂] = (εg � εm) · M̂, (92)

obtaining the result:

[
Ĝα, M̂β

μ
]
= fαβ

γM̂γ
μ
. (93)

Considering the H- and L-gauge transformations, one obtains

eεh·Ĥeεm ·M̂ = eεm ·M̂eεh·Ĥ , (94)

eεl·L̂eεm ·M̂ = eεm ·M̂eεl·L̂, (95)

leading to the conclusion that the generators of the M-gauge transformations commute
with both the generators of H-gauge transformations and the generators of the L-gauge
transformations:[

Ĥa, M̂α
μ
]
= 0,

[
L̂A

μν
, M̂α

ρ
]
= 0. (96)
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Finally, examining the infinitesimal transformation corresponding to the parameter εn
a,

given by the form-variations as calculated in (E.2),

δ0α
α
μ = 0,

δ0Bα
μν = βbμν �α′a

bεn
agαα′

,

δ0β
a
μν = 0,

δ0Ca
μ = −∇μεn

a,

δ0γ
A
μνρ = 0,

δ0DA = δA
aεn

a.

(97)

one obtains the theorem 5, the symmetry transformations which will be referred to as N-gauge
transformations. Note that the N-gauge transformations are simultaneously the transformations
in the whole spacetime, since the parameter does not carry spacetime indices.

Theorem 5 (N-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a symmetry

α→ α′ = α,

B → B′ = B − β∧T εn,

β → β′ = β,

C → C′ = C −∇εn,

γ → γ ′ = γ,

DA → D′A = DA + δA
aεn

a,

(98)

where εn : M4 → h is an arbitrary h-valued zero-form.

Proof. Under the transformations defined in theorem 5, the action is transformed as follows:

S′
3BF = S3BF +

∫
M4

dx4εμνρσ
(

1
4
βbμν �αa

bεn
aFα

ρσ −
1
3!

(∇μεn
a)Gaνρσ

+
1
4!
δA

aεn
aHA μνρσ

)
. (99)

Using the expressions for the three-curvature defined in (9), one obtains

S′
3BF = S3BF +

∫
M4

dx4εμνρσ
(

1
4
βbμν �αa

bεn
a
(
Fα

ρσ − ∂c
αβc

ρσ

)

− 1
3!

(∇μεn
a)
(
3∇νβaρσ − δA

aγA νρσ

)
+

1
4!
δA

aε
a
(
4∇μγA νρσ + 6X(bc)Aβ

b
μνβ

c
ρσ

))
.

(100)
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Here, after one partial integration the last term in the first row of the equation (100)
cancels with the first term in the second row, while taking into account the identity

1
2
εμνρσ(∇ν∇μεn

a)βaρσ = −1
4
εμνρσβbρσ �αa

bεn
aFα

μν , (101)

the first term and the third term also cancel, leading to the following expression:

S′
3BF = S3BF +

∫
M4

dx4εμνρσ
(

1
4
εna �α(b|

a∂|c)
αβb

μνβ
c
ρσ

+
1
4
εnaδA

aX(bc)
Aβb

μνβ
c
ρσ

)
. (102)

Here, the remaining two terms vanish because of the symmetrized form of the identity (A.6):

�α(b|
a∂|c)

α + δA
aX(bc)

A = f (bc)
a = 0,

as a consequence of the antisymmetry of the structure constants. One concludes that the S3BF

action is invariant under the transformations defined in theorem 5. �
The N-gauge transformations defined in theorem 5 define the group which will be denoted

as Ñ. Note that these transformations are also linear, and the composition of two N-gauge trans-
formations gives one N-gauge transformation with the parameter εn1 + εn2. The generators of
the group Ñ will be denoted with N̂a, and one can write these results as:

eεn1 ·N̂eεn2 ·N̂ = e(εn1+εn2)·N̂ , (103)

where εn · N̂ = εa
nN̂a, leading to the conclusion that:

[N̂a, N̂b] = 0. (104)

It follows that the group Ñ is abelian, and the index structure of parameters and generators
indicates that it is isomorphic to R

q, where q is the dimension of the group H. Therefore,

Ñ ∼= R
q. (105)

Next, one can examine the relationship of the N-gauge transformations with the G, H, L,
and M-gauge transformations. First, considering the G-gauge transformations one obtains:

[εg · Ĝ, εn · N̂] = (εg � εn) · N̂, (106)

from which it follows:

[Ĝα, N̂a] = �αa
b N̂b. (107)

Let us now examine the relationship between N-gauge transformations and H-gauge
transformations, calculating the following expression:

eεh·Ĥeεn·N̂ − eεn·N̂eεh ·Ĥ = −(εn∧T εh) · M̂, (108)

where the proof is given in appendix F. One obtains that the commutator between the gen-
erators of H-gauge transformation and N-gauge transformation is the generator of M-gauge
transformation:[

Ĥa
μ
, N̂b

]
= �αa

bM̂αμ. (109)
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Analogously, one can check that the following is satisfied

eεl·L̂eεn·N̂ = eεn·N̂eεl·L̂, eεm·M̂eεn·N̂ = eεn·N̂eεm·M̂ , (110)

leading to the conclusion that the generators of L-gauge, M-gauge, and N-gauge transforma-
tions mutually commute, i.e.[

M̂α
μ
, N̂a

]
= 0,

[
L̂A

μν
, N̂a

]
= 0. (111)

This concludes the calculation of the algebra of generators.

4.4. Structure of the symmetry group

Summarizing the results of the previous subsections, one can write the algebra of the generators
of the full gauge symmetry group as follows.

• The algebra g of the group G of the two-crossed module (L
δ−→ H

∂−→ G, �, {_, _}pf):

[Ĝα, Ĝβ] = fαβ
γĜγ. (112)

• The algebra of the group H̃L consisting of the generators of H- and L-gauge transforma-
tions:

[Ĥa
μ
, Ĥb

ν
] = 2X(ab)

AL̂A
μν

,

[L̂A
μν

, L̂B
ρσ

] = 0,

[Ĥa
μ
, L̂A

νρ
] = 0.

(113)

• The algebra of the generators of M-gauge transformations:

[M̂α
μ
, M̂β

ν
] = 0. (114)

• The algebra of the generators of N-gauge transformations:

[N̂a, N̂b] = 0. (115)

• The commutators between the generators of the groups M̃ and Ñ:

[M̂α
μ
, N̂a] = 0. (116)

• The action of the generators of the group H̃L on the generators of M- and N-gauge
transformations:

[Ĥa
μ
, N̂b] = �αa

bM̂αμ,

[Ĥa
μ
, M̂α

ν
] = 0,

[L̂A
νρ

, M̂α
μ
] = 0,

[L̂A
μν

, N̂a] = 0.

(117)
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Figure 1. Relevant subgroups of the symmetry group G3BF . The invariant subgroups are
boxed.

• The action of the generators of the group G on the generators of H-, L-, M-, and N-gauge
transformations:

[
Ĝα, Ĥa

μ
]
= �αa

b Ĥb
μ
,

[
Ĝα, L̂A

μν
]
= �αA

BL̂B
μν

,

[
Ĝα, M̂β

μ
]
= fαβ

γM̂γ
μ
,

[
Ĝα, N̂a

]
= �αa

b N̂b.

(118)

Based on the equations (112)–(118), one can investigate the symmetry group structure. On
the Hesse-like diagram shown in figure 1, we have included only the relevant subgroups of the
whole symmetry group G3BF, where the invariant subgroups are boxed.

Let us remember that the subgroup is an invariant subgroup, or equivalently a normal sub-
group, if it is invariant under conjugation by members of the group of which it is a subgroup.
Formally, one says the group H is an invariant subgroup of the group G if H is a subgroup
of G, i.e. H � G, and for all h ∈ H and g ∈ G, the conjugation of the element of H with the
element of G is an element of H, i.e. ∃h′ ∈ H such that ghg−1 = h′. On the level of algebra, the
corresponding object is an ideal. Formally written, an algebra A is a subalgebra of an algebra
L with respect to the multiplication in L, i.e. [A, A] ⊂ A. Then, a subalgebra A of L is an ideal
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in L if its elements, multiplied with any element of the algebra, give again an element of the
subalgebra, i.e. [A, L] ⊂ A.

With the above definitions in mind, note first that the groups L̃, M̃, and Ñ, are subgroups
of the full symmetry group G3BF. The groups L̃ and M̃ are invariant subgroups, since the only
nontrivial commutators between the generators L̂A

μν
, and M̂α

μ
, are with the generators of the

group G̃, and are equal to some linear combinations of the generators of L̃, and M̃, respectively.
The group Ñ is not an invariant subgroup, since the commutator between the generators N̂a and
Ĥa

μ
are linear combinations of the generators M̂α

μ
. However, the generators of the groups Ñ

and M̃ are mutually commuting, and the group Ñ is an invariant subgroup of the product of the
groups M̃ and Ñ, which makes this product a direct product. The obtained group Ñ × M̃ is an
invariant subgroup of the whole symmetry group.

On the other hand, we saw that the H-gauge transformations together with the L-gauge trans-
formations form the group H̃L. This group is not an invariant subgroup of the whole symmetry
group G3BF, because of the commutator of the generators Ĥa

μ
and N̂b. Similarly as before, one

can join these two subgroups, of which one is invariant and one is not, using a semidirect prod-
uct, to obtain a subgroup H̃L � (Ñ × M̃), that will as a result be an invariant subgroup of the
complete symmetry group G3BF. Here, the product is semidirect because the group H̃L is not an
invariant subgroup of the group H̃L � (Ñ × M̃), due to the commutator between the generators
Ĥa

μ
and N̂b.

Finally, following the same line of reasoning, one adds the G-gauge transformations and
obtains the complete gauge symmetry group G3BF as:

G3BF = G̃ � (H̃L � (Ñ × M̃)). (119)

This concludes the analysis of the group of gauge symmetries for the 3BF action.

5. Conclusions

5.1. Summary of the results

Let us summarize the results of the paper. In section 2, we have introduced a generalization of
the BF theory in the framework of higher category theory, the 3BF theory. Section 3 contains
the Hamiltonian analysis for the 3BF theory. In subsection 3.1, the basic canonical structure
and the total Hamiltonian are obtained, while in subsection 3.2 the complete Hamiltonian anal-
ysis of the 3BF theory is performed, resulting in the first-class and second-class constraints of
the theory, as well as their Poisson brackets. In the subsection 3.3 we have discussed the BI
and also the generalized BI, since they enforce restrictions and reduce the number of inde-
pendent first-class constraints present in the theory, and having those identities in mind, the
counting of the dynamical degrees of freedom has been performed. As expected, it was estab-
lished that the considered 3BF action is a topological theory. Finally, this section concludes
with the subsection 3.4 where we have constructed the generator of the gauge symmetries for
the topological theory, based on the calculations done in section 3.2, and we have found the
form-variations for all the variables and their canonical momenta, listed in the appendix E,
equation (E.2).

In section 4, the main results of our paper are presented. With the material of the sub-
section 3.2 in hand, after obtaining the form variations of all variables and their canoni-
cal momenta, we proceeded to find all the gauge symmetries of the theory. The subsec-
tion 4.1 examined the gauge group G, and the G-gauge transformations. In subsection 4.2 we
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discussed the gauge group H̃L which gives the H-gauge and L-gauge transformations, while in
the subsection 4.3 we analyzed the M-gauge and N-gauge transformations which represent a
novel result. The results of the subsections 4.1–4.3 are summarized in subsection 4.4, where
the complete structure of the symmetry group had been presented. The known G-, H-, and L-
gauge transformations have been rigorously defined in theorems 1–3, while the two novel M-
and N-gauge transformations, have been defined in theorems 4 and 5. The Lie algebra of the
full gauge symmetry group G3BF has also been obtained.

5.2. Discussion

One of the most important consequences of our results is the relationship between a two-
crossed module and a symmetry group of the corresponding 3BF action, which we denoted
as a duality. In particular, from the Lie algebra of the symmetry group G3BF one sees that
the structure constants depend on the choices of groups G, H, and L of the two-crossed mod-
ule, on the action �, and on the symmetric part of the Peiffer lifting. However, G3BF does not
depend on the antisymmetric part of the Peiffer lifting, nor on the homomorphisms ∂ and δ.
This means that in principle one can have several different two-crossed modules dual to the
same symmetry group. Therefore, the term ‘duality’ is used in a loose sense, since there is
no one-to-one correspondence between a two-crossed module and a symmetry group of the
corresponding 3BF action. In addition, this result allows one to implement a strategy for the
construction of a two-crossed module, by first specifying the choice of the group G3BF, and
then supplying the additional information about the homomorphisms and the antisymmetric
part of the Peiffer lifting, in a way that satisfies all axioms in the definition of a two-crossed
module.

Another important topic for discussion is the following. From the fact that the 3BF action
is formulated in a manifestly covariant way, using differential forms, it should be obvious that
the diffeomorphisms are a symmetry of the theory. However, by looking at the structure of the
gauge group G3BF, one does not immediately see whether Diff(M4,R) is its subgroup. In fact,
this issue is subtle, and it deserves some discussion.

It is easy to see that every action, which depends on at least two fields φ1(x) and φ2(x), is
invariant under the following transformation, determined by the Henneaux–Teitelboim (HT)
parameter εHT (see [35] for details and naming),

δ0
HTφ1 = εHT(x)

δS
δφ2

, δ0
HTφ2 = −εHT(x)

δS
δφ1

, (120)

which can be easily verified by calculating the variation of the action:

δHTS[φ1,φ2] =
δS
δφ1

δ0
HTφ1 +

δS
δφ2

δ0
HTφ2 = 0. (121)

Since this invariance is present even in theories with no gauge symmetry, it is not associated
with constraints, and thus not present in the generator of gauge symmetries (55), see [35] for
details.

Now, let us consider the diffeomorphism transformation

xμ → x′μ = xμ + ξμ(x), (122)

where the parameter ξμ(x) is an arbitrary function, which we will consider to be infinitesimal.
Also, let us denote all parameters of the gauge group collectively as εi(x). If diffeomorphisms
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are a symmetry of the action, then for every field φ(x) in the theory, and every parameter of
the diffeomorphisms ξμ(x), there should exist a choice of the parameters εi(x) and εHT(x), such
that:

(δ0
gauge + δ0

HT + δ0
diff)φ = 0. (123)

In other words, if the diffeomorphisms are a symmetry of the theory, their form variations
should be expressible as gauge form variations combined with HT form variations:

δ0
diff φ = −δ0

gaugeφ− δ0
HTφ. (124)

In our case, the 3BF action depends on the fields αα
μ, βa

μν , γA
μνρ, Bα

μν , Ca
μ, and DA. The

HT parameters εHTαβ
μνρ, εHTab

μνρ, and εHTAB
μνρ are defined via the following form variations,

analogous to (120):

δ0
HTαα

μ =
1
2
εHTαβ

μνρ
δS

δBβ
νρ

,

δ0
HTBα

μν = −εHTαβ
ρμν

δS
δαβ

ρ
,

δ0
HTβa

μν = εHTab
μνρ

δS
δCb

ρ
,

δ0
HTCa

μ = −1
2
εHTab

νρμ
δS

δβb
νρ

,

δ0
HTγA

μνρ = εHTAB
μνρ

δS
δDB

,

δ0
HTDA = − 1

3!
εHTAB

μνρ
δS

δγB
μνρ

,

(125)

while the gauge parameters εgα, εha
μ, εlA μν , εmα

μ, and εa
n are defined in theorems 1–5. Given

these, there indeed exists a choice of these parameters, such that (123) is satisfied for all fields.
Specifically, if one chooses the gauge parameters as

εg
α = −ξλαα

λ,

ε a
h μ = ξλβa

μλ,

εA
l μν = ξλγA

μνλ,

ε α
m μ = ξλBα

μλ,

εn
a = −ξλCa

λ,

(126)

and the HT parameters as

εHTαβ
μνρ = ξλgαβεμνρλ,

εHTab
μνρ = ξλgabελμνρ,

εHTAB
μνρ = ξλgABεμνρλ, (127)
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one can obtain, using (124), precisely the standard form variations corresponding to
diffeomorphisms:

δ0
diffαα

μ = −∂μξ
λαα

λ − ξλ∂λα
α
μ,

δ0
diffβa

μν = −∂μξ
λβa

λν − ∂νξ
λβa

μλ − ξλ∂λβ
a
μν ,

δ0
diffγA

μνρ = −∂μξ
λγA

λνρ − ∂νξ
λγA

μλρ − ∂ρξ
λγA

μνλ − ξλ∂λγ
A
μνρ,

δ0
diffBα

μν = −∂μξ
λBα

λν − ∂νξ
λBα

μλ − ξλ∂λBα
μν ,

δ0
diffCa

μ = −∂μξ
λCa

λ − ξλ∂λCa
μ,

δ0
diffDA = −ξλ∂λDA.

(128)

This establishes that diffeomorphisms are indeed contained in the full gauge symmetry group
G3BF, up to the HT transformations, which are always a symmetry of the theory.

5.3. Future lines of investigation

Based on the results obtained in this work, one can imagine various additional topics for further
research.

First, since we have obtained that the pure 3BF theory is a topological theory, it does not
describe a realistic physical theory which ought to contain local propagating degrees of free-
dom. To build a realistic physical theory, one introduces the degrees of freedom by imposing
the simplicity constraints on the topological action. In our previous work [13], we have formu-
lated the classical actions that manifestly distinguish the topological sector from the simplicity
constraints, for all the fields present in the standard model coupled to Einstein–Cartan gravity.
Specifically, we have defined the constrained 2BF actions describing the Yang–Mills field and
Einstein–Cartan gravity, and also the constrained 3BF actions describing the Klein–Gordon,
Dirac, Weyl and Majorana fields coupled to gravity in the standard way. The natural con-
tinuation of this line of research would be the Hamiltonian analysis of all such constrained
3BF models of gravity coupled to various matter fields, and the study of their canonical
quantization.

On the other hand, as an alternative to the canonical quantization, one may choose the spin-
foam quantization approach, and define the path integral of the theory as the state sum for
the Regge-discretized 3BF action. The topological nature of the 3BF action, together with the
structure of the gauge three-group, should ensure that such a sum is a topological invariant, i.e.
that it is triangulation independent. This construction was recently carried out in [14], where the
3BF state sum for a general two-crossed module and a closed and orientable four-dimensional
manifold M4 is defined. Unfortunately, in order to rigorously define this state sum, one needs
the higher category generalizations of the Peter–Weyl and Plancherel theorems, from ordinary
groups to the cases of two-groups and three-groups. These theorems ought to determine the
domains of various labels living on simplices of the triangulation, as a consequence of the rep-
resentation theory of three-groups. Until these mathematical results are obtained, one can try to
guess the appropriate structure of the irreducible representations of a three-group and construct
the topological invariant Z for the 3BF topological action, in analogy with what was done in
the case of 2BF theory, see [25, 27]. Once the topological state sum is obtained, one can pro-
ceed to impose the simplicity constraints, and thus construct the state sum corresponding to the
tentative quantum theory of gravity with matter. The classical action for gravity and matter is
formulated in [13] in a way that explicitly distinguishes between the topological sector and the
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simplicity constraints sector of the action, making the procedure of imposing the constraints
straightforward.

Next, it would be useful to investigate in more depth the mathematical structure and prop-
erties of the simplicity constraints, in particular their role as the gauge fixing conditions for the
symmetry group G3BF. The simplicity constraints should explicitly break the symmetry group
G3BF to the subgroup corresponding to the constrained 3BF theory, which may then be further
spontaneously broken by the Higgs mechanism.

One of the results obtained in this work is a duality between the gauge symmetry
group of the 3BF action, G3BF, and the underlining three-group, i.e. the two-crossed mod-

ule (L
δ−→ H

∂−→ G, �, {_, _}pf). This duality should be better understood. On one hand, the
group G3BF can provide further insight into the construction of the TQFT state sum, i.e. a topo-
logical invariant corresponding to the underlining three-group structure. On the other hand,
this duality is interesting from the perspective of pure mathematics, since it can provide deeper
insight in the structure of three-groups. In addition, one could expect that the 3BF theory would
have a three-group of higher gauge symmetries, but it is not obvious if the five types of gauge
transformations can form a three-group structure or not. This is an important topic for future
research.

Finally, in [31] it was pointed out that it may be useful to make one more step in the cate-
gorical generalization, and consider a 4BF theory as a description of a quantum gravity model
with matter fields. One could then calculate the gauge group of the 4BF action, and compare
the results with the results obtained for the 3BF theory.

The list is not conclusive, and there may be many other interesting topics to study.
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Appendix A. Two-crossed module

Definition (Differential two-crossed module). A differential two-crossed module is given by
an exact sequence of Lie algebras:

l
δ−→ h

∂−→ g,

together with left action � of g on g, h, and l, by derivations, and on itself via adjoint
representation, and a g-equivariant bilinear map called the Peiffer lifting:

{_, _}pf : h× h→ l.
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Fixing the basis in the algebras as TA ∈ l, ta ∈ h and τα ∈ g:

[TA, TB] = fAB
C TC, [ta, tb] = fab

c tc, [τα, τβ] = fαβ
γ τγ ,

one defines the maps ∂ and δ as:

∂(ta) = ∂a
α τα, δ(TA) = δA

a ta,

and the action of g on the generators of l, h, and g is, respectively:

τα � TA = �αA
B TB, τα � ta = �αa

b tb, τα � τβ = �αβ
γ τγ.

The coefficients Xab
A are introduced as:

{ta, tb}pf = Xab
ATA.

The maps ∂ and δ satisfy the following identity:

∂a
α δA

a = 0. (A.1)

Note that when η is a g-valued differential form and ω is l-, h-, or g-valued differential form,
the previous action is defined as:

η∧�ω = ηα ∧ ωA�αA
B TB,

η∧�ω = ηα ∧ ωa�αa
b tb,

η∧�ω = ηα ∧ ωβ fαβ
γ τγ ,

where the forms are multiplied via the wedge product ∧, while the generators of G act on the
generators of the three groups via the action �.

The following identities are satisfied:

(i) In the differential crossed module (L
δ−→ H, �′) the action �′ of h on l is defined for each

h ∈ h and l ∈ l as:

h�′l = −{δ(l), h}pf,

or written in the basis where ta�′TA = �′aA
BTB the previous identity becomes:

�′aA
B
= −δA

bXba
B; (A.2)

(ii) The action of g on itself is via adjoint representation:

�αβ
γ = fαβ

γ ; (A.3)

(iii) The action of g on h and l is equivariant, i.e. the following identities are satisfied:

∂a
β fαβ

γ = �αa
b∂b

γ , δA
a �αa

b = �αA
BδB

b; (A.4)

(iv) The Peiffer lifting is g-equivariant, i.e. for each h1, h2 ∈ h and g ∈ g:

g � {h1, h2}pf = {g � h1, h2}pf + {h1, g � h2}pf,

34



Class. Quantum Grav. 39 (2022) 135009 T Radenkovíc and M Vojinovíc

or written in the basis:

Xab
B�αB

A = �αa
cXcb

A + �αb
cXac

A; (A.5)

(v) δ({h1, h2}pf) = 〈h1, h2〉p, ∀ h1, h2 ∈ h.
The map (h1, h2) ∈ h× h→ 〈h1, h2〉p ∈ h is bilinear g-equivariant map called the Peiffer

paring, i.e. all h1, h2 ∈ h and g ∈ g satisfy the following identity:

g � 〈h1, h2〉p = 〈g � h1, h2〉p + 〈h1, g � h2〉p.

Fixing the basis the identity becomes:

Xab
AδA

c = fab
c − ∂a

α�αb
c; (A.6)

(vi) [l1, l2] = {δ(l1), δ(l2)}pf, ∀ l1, l2 ∈ l, i.e.

fAB
C = δA

aδB
bXab

C; (A.7)

(vii){[h1, h2], h3}pf = ∂(h1) � {h2, h3}pf + {h1, [h2, h3]}pf − ∂(h2) � {h1, h3}pf −
{h2, [h1, h3]}pf, ∀ h1, h2, h3 ∈ h, i.e.

{[h1, h2], h3}pf = {∂(h1) � h2, h3}pf − {∂(h2) � h1, h3}pf

− {h1, δ{h2, h3}pf}pf + {h2, δ{h1, h3}pf}pf, (A.8)

fab
dXdc

B = ∂a
αXbc

A�αA
B + Xad

B fbc
d − ∂b

α�αA
BXac

A − Xbd
B fac

d; (A.9)

(viii) {h1, [h2, h3]}pf =
{
δ{h1, h2}pf, h3

}
pf
−
{
δ{h1, h3}pf, h2

}
pf

, ∀ h1, h2, h3 ∈ h, i.e.

Xad
A fbc

d = Xab
BδB

dXdc
A − Xac

BδB
dXdb

A; (A.10)

(ix) {δ(l), h}pf + {h, δ(l)}pf = −∂(h) � l, ∀ l ∈ l, ∀ h ∈ h, i.e.

δA
aXab

B + δA
aXba

B = −∂b
α�αA

B. (A.11)

A reader interested in more details about three-groups is referred to [21, 30].
The structure constants satisfy the Jacobi identities

fαγ
δ fβε

γ = 2 fα[β|
γ fγ|ε]

δ ,

fad
c fbe

d = 2 f a[b|
d fd|e]

c,

fAD
C fBE

D = 2 f A[B|
D fD|E]

C.

(A.12)

Also, the following relations are useful:

fβγ
α�αb

a = 2�[β|c
a�|γ]b

c, fβγ
α�αB

A = 2�[β|C
A�|γ]B

C. (A.13)
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Appendix B. Additional relations of the constraint algebra

In this appendix the useful technical results used in the subsection 3.2 are given. First, since
the secondary constraints, given by the equation (30), must be preserved during the evolution
of the system, the consistency conditions of secondary constraints must be enforced. However,
no tertiary constraints arise from these conditions, since one obtains the following PB:

{S(F )αi, HT} = fβγ
αS(F )βiαγ

0,

{S(∇B)α, HT} = fβγαBγ
0kS(F )βk + fβα

γαβ
0S(∇B)γ + Ca0�αb

aS(G)b

− �αa
bβa

0kS(∇C)b
k +

1
2
�α

B
Aγ

A
0 jkS(∇D)B

jk,

{S(G)a, HT} = �αb
aβb

0kS(F )αk − αα
0�αb

aS(G)b,

{S(∇C)a
i, HT} = Cb0�α

b
aS(F )αi + �αa

bαα
0S(∇C)b

i + 2X(ab)
Aβb

0 jS(∇D)A
i j,

{S(∇D)A
i j, HT} = αα

0�αA
BS(∇D)B

i j.

(B.1)

The PB between the first-class constraints, given by the equation (34), and the second-class
constraints, given by the equation (35), are given by:

{Φ(F )αi(�x) , χ(α)β j(�y) } = − fβγ
α χ(B)γi j(�x) δ(3)(�x −�y),

{Φ(G)a(�x) , χ(α)α
i(�y) } = �αb

a χ(C)bi(�x) δ(3)(�x −�y),

{Φ(G)a(�x) , χ(β)b
i j(�y ) } = −�αb

a χ(B)αi j(�x) δ(3)(x − y),

{Φ(∇C)ai(�x) , χ(α)α
j(�y) } = −�αb

a χ(β)bi j(�x) δ(3)(�x −�y),

{Φ(∇C)ai(�x) , χ(β)b
jk(�y) } = 2X(ac)Agbc χ(γ)A

i jk(�x) δ(3)(�x −�y),

{Φ(∇C)ai(�x) , χ(C)b
j(�y) } = �αb

a χ(B)αi j(�x) δ(3)(�x −�y),

{Φ(∇C)ai(�x) , χ(D)A(�y) } = 2X(ab)
A χ(C)b

i(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , χ(α)β
i(�y) } = fβγ

α χ(α)γi(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , χ(β)a
i j(�y) } = gαβ�βa

b χ(β)b
i j(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , χ(γ)A
i jk(�y) } = gαβ�βA

B χ(γ)B
i jk(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , χ(B)β
i j(�y) } = fβγα χ(B)γi j(�x) δ(3)(�x −�y).

{Φ(∇B)α(�x) , χ(C)a
i(�y) } = −�αb

a χ(C)b
i(�x) δ(3)(�x −�y).

{Φ(∇B)α(�x) , χ(D)A(�y) } = gαβ�βA
B χ(D)B(�x) δ(3)(�x −�y),

{Φ(∇D)Ai j(�x) , χ(α)α
k(�y) } = �αB

Aχ(γ)Bi jk(�x) δ(3)(�x −�y),

{Φ(∇D)Ai j(�x) , χ(D)B(�y) } = −�αB
Aχ(B)αi j(�x) δ(3)(�x −�y).

(B.2)

Finally, it is useful to calculate PB between the first-class constraints, given by the
equation (34), and the total Hamiltonian, given by the equation (33):
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{Φ(F )αi, HT} = fβγ
αΦ(F )βiαγ

0,

{Φ(∇B)α, HT} = fβγαBγ
0kΦ(F )βk + fβα

γαβ
0Φ(∇B)γ + Ca0�αb

aΦ(G)b

− �αa
bβa

0kΦ(∇C)b
k +

1
2
�α

B
Aγ

A
0 jkΦ(∇D)B

jk,

{Φ(G)a, HT} = �αb
aβb

0kΦ(F )αk − αα
0�αb

aΦ(G)b,

{Φ(∇C)a
i, HT} = Cb0�α

b
aΦ(F )αi + �αa

bαα
0Φ(∇C)b

i + 2X(ab)
Aβb

0 jΦ(∇D)A
i j,

{Φ(∇D)A
i j, HT} = αα

0�αA
BΦ(∇D)B

i j.

(B.3)

The calculated PB brackets given by the equation (B.3) will be useful for calculation of the gen-
erator of gauge symmetries (55). With these results one can proceed to the construction of the
gauge symmetry generator on one hypersurface Σ3 given in the equation (55), and ultimately
obtain the finite gauge symmetry of the whole spacetime.

The PB algebra of gauge symmetry generators (M̃0)α
i
, (M̃1)α

i
, (G̃0)α, (G̃1)α, (H̃0)a

i
, (H̃1)a

i
,

(Ñ0)a, (Ñ1)a, (L̃0)A
i j

, and (L̃1)A
i j

, as defined in (56), is:

{(G̃0)α(�x), (G̃0)β(�y)} = fαβ
γ(G̃0)γ δ(3)(�x −�y), (B.4)

{(H̃0)a
i
(�x ), (H̃0)b

j
(�y)} = 2X(ab)

A(L̃0)A
i j
δ(3)(�x −�y), (B.5)

{(H̃0)a
i
(�x ), (H̃1)b

j
(�y )} = 2X(ab)

A(L̃1)A
i j
δ(3)(�x −�y ), (B.6)

{(H̃0)a
i
(�x ), (Ñ0)b(�y )} = �αa

b(M̃0)αi δ(3)(�x −�y ), (B.7)

{(H̃1)a
i
(�x), (Ñ0)b(�y )} = �αa

b(M̃1)αi δ(3)(�x −�y ), (B.8)

{(H̃0)a(�x), (Ñ1)bi(�y )} = �αa
b(M̃1)αi δ(3)(�x −�y), (B.9)

{(G̃0)α(�x), (M̃0)β
i
(�y )} = fαβ

γ(M̃0)γ
i
δ(3)(�x −�y), (B.10)

{(G̃0)α(�x), (M̃1)β
i
(�y )} = fαβ

γ(M̃1)γ
i
δ(3)(�x −�y), (B.11)

{ (G̃0)α(�x) , (H̃1)a
i
(�y) } = �αa

b (H̃1)b
i
(�x) δ(3)(�x −�y), (B.12)

{ (G̃0)α(�x) , (H̃0)a
i
(�y) } = �αa

b (H̃0)b
i
(�x) δ(3)(�x −�y), (B.13)

{ (G̃0)α(�x) , (Ñ1)a(�y) } = �αa
b (Ñ1)b(�x) δ(3)(�x −�y), (B.14)

{ (G̃0)α(�x) , (Ñ0)a(�y) } = �αa
b (Ñ0)b(�x) δ(3)(�x −�y), (B.15)

{ (G̃0)α(�x) , (L̃0)A
i j

(�y) } = �αA
B(L̃0)B

i j
(�x) δ(3)(�x −�y). (B.16)

The gauge symmetry group has the following structure. First, the groups M̃1 × M̃0, Ñ1 × Ñ0

and L̃1 × L̃0 with the corresponding algebras a1, a2 and a3, respectively, where:
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Figure B1. The symmetry group GΣ3 of the Poisson bracket algebra in the phase space.
The invariant subgroups are boxed.

a1 = span{(M̃1)α
i} ⊕ span{(M̃0)α

i},

a2 = span{(Ñ1)a} ⊕ span{(Ñ0)a},

a3 = span{(L̃1)A
i j} ⊕ span{(L̃0)A

i j},

(B.17)

are the subgroups of the full symmetry group G̃Σ3 . Besides, the subgroups L̃1 × L̃0 and M̃1 ×
M̃0 are the invariant subgroups. The group Ñ1 × Ñ0 is not an invariant subgroup of the whole
symmetry group, since the Poisson brackets {(H̃0)a

i
(�x), (Ñ0)b(�y)} and {(H̃1)a

i
(�x), (Ñ0)b(�y)}

are equal to some linear combinations of the generators of M̃1 × M̃0. Nevertheless, one can
form a direct product (Ñ1 × Ñ0) × (M̃1 × M̃0), since the generators of these groups are mutu-
ally commuting, giving a group which is an invariant subgroup of the complete symmetry
group.

Next, consider a subgroup H̃LΣ3
determined by the algebra spanned by the generators

(L̃1)A
i j

, (L̃0)A
i j

, (H̃1)a
i
, and (H̃0)a

i
. This group is not invariant subgroup of the whole symme-

try group, because of the PB {(H̃0)a
i
(�x), (Ñ0)b(�y)} and {(H̃1)a

i
(�x), (Ñ0)b(�y)}, due to the same

argument as before. Now, one can join these two subgroups, of which one is invariant and one
is not, using a semidirect product into an invariant subgroup HL � ((N1 × N0) × (M1 × M0)),
determined by the algebra a4:

a4 = span{(M̃0)α
i
, (M̃1)α

i
, (H̃0)a

i
, (H̃1)a

i
, (Ñ0)a, (Ñ1)a, (L̃0)A

i j
, (L̃1)A

i j}.
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Finally, following the same line of reasoning, one adds the group G̃1 × G̃0 and obtains
the full gauge symmetry group G̃Σ3 to be equal to:

G̃Σ3 = (G̃1 × G̃0) �
(
H̃L � ((Ñ1 × Ñ0) × (M̃1 × M̃0))

)
.

The complete symmetry group structure is shown in the figure B1 appendix B. Here, the
invariant subgroups of the whole symmetry group are boxed.

Appendix C. Construction of the symmetry generator

When one substitutes the generators (56) into the equation (55), one obtains the gauge generator
of the 3BF theory in the following form

G = −
∫
Σ3

d3�x

(
(∇0ε

α
m i)Φ(B)αi − ε α

m iΦ(F )α
i + (∇0εg

α)Φ(α)α

+ εg
α
(

fαγ
βBβ0iΦ(B)γi + Ca0�αb

aΦ(C)b0 + βa0i�αb
aΦ(β)b0i

− 1
2
γA

0i j�αA
BΦ(γ)B

i j − Φ(∇B)α

)
+ (∇0εn

a)Φ(C)a

− εn
a
(
βb0i�αa

bΦ(B)αi +Φ(G)a + (∇0ε
a

h i)Φ(β)a
i
)

− ε a
h i

(
Cb0�αa

bΦ(B)αi − 2βb
0 jX(ab)

AΦ(γ)A
i j +Φ(∇C)a

i
)

− 1
2

(∇0ε
A
l i j)Φ(γ)A

i j +
1
2
εA
l i jΦ(∇D)A

i j

)
,

(C.1)

where εgα, ε a
hi , εA

li j, ε
α

mi , and εn
a are the independent parameters of the gauge transformations.

The generator of gauge transformations (C.1) in 3BF theory given by the action (15), is
obtained by the Castellani’s procedure, requiring the following requirements to be met

G1 = CPFC, (C.2)

G0 + {G1, HT} = CPFC, (C.3)

{G0, HT} = CPFC, (C.4)

where CPFC denotes some first-class constraints, and assuming that the generator has the
following structure:

G =

∫
Σ3

d3�x

(
ε̇ α
m i(G1)mα

i + ε α
m i(G0)mα

i + ε̇ α
g (G1)gα + εg

α(G0)gα

+ ε̇ a
h i(G1)ha

i + ε a
h i(G0)ha

i + ε̇ a
n (G1)na + εn

a(G0)na

+
1
2
ε̇ A
l i j(G1)lAi j +

1
2
εA
l i j(G0)lAi j

)
.

(C.5)
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The first step of Castellani’s procedure, imposing the set of conditions

(G1)mα
i = CPFC,

(G1)gα = CPFC,

(G1)ha
i = CPFC,

(G1)na = CPFC,

(G1)lAi j = CPFC,

(C.6)

is satisfied with a natural choice:

(G1)mα
i = −Φ(B)αi,

(G1)gα = −Φ(α)α,

(G1)ha
i = −Φ(C)αi,

(G1)na = −Φ(β)a,

(G1)lAi j = Φ(γ)A
i j.

(C.7)

It remains to determine the five generators G0.
The Castellani’s second condition for the generator (G0)mα

i gives:

(G0)mα
i − {Φ(B)α

i, HT} = (CPFC)α
i,

(G0)mα
i − Φ(F )αi = (CPFC)αi,

(C.8)

that is (G0)mα
i = (CPFC)αi +Φ(F )α

i. Subsequently, from the Castellani’s third condition it
follows

{(G0)mα
i, HT} = (CPFC1)αi,

{(CPFC)α
i +Φ(F )α

i, HT} = (CPFC1)α
i,

{(CPFC)αi, HT} − fβγαα
β

0Φ(F )γi = (CPFC1)αi,

(C.9)

which gives

(CPFC)α
i = fβγαα

β
0Φ(B)γi.

It follows that the generator is:

(G0)mα
i = fβγαα

β
0Φ(B)γi +Φ(F )α

i. (C.10)

The Castellani’s second condition for the generator (G0)gα gives:

(G0)gα − {Φ(α)α, HT} = (CPFC)α,

(G0)gα − Φ(∇B)α = (CPFC)α,
(C.11)

40



Class. Quantum Grav. 39 (2022) 135009 T Radenkovíc and M Vojinovíc

that is (G0)gα = (CPFC)α +Φ(∇B)α. Subsequently, from the Castellani’s third condition
it follows

{(G0)gα, HT} = (CPFC1)α,

{(CPFC)α +Φ(∇B)α, HT} = (CPFC1)α,

{(CPFC)α, HT}+ Bβ0i fαγ
βΦ(F )γi − αβ

0 fαβ
γΦ(∇B)γ + Ca0�αb

aΦ(G)b

+ βa0i�αb
aΦ(∇C)bi − 1

2
γA

0i j�αA
BΦ(∇D)B

i j = (CPFC1)α,

(C.12)

which gives

(CPFC)α = −Bβ0i fαγ
βΦ(B)γi + αβ

0 fαβ
γΦ(α)γ − Ca0 �αb

aΦ(C)b

− βa0i �αb
aΦ(β)bi +

1
2
γA

0i j �αA
BΦ(γ)B

i j.

It follows that the generator is:

(G0)gα = −Bβ0i fαγ
βΦ(B)γi + αβ

0 fαβ
γΦ(α)γ − Ca0�αb

aΦ(C)b

− βa0i�αb
aΦ(β)bi +

1
2
γA

0i j�αA
BΦ(γ)B

i j +Φ(∇B)α.
(C.13)

The Castellani’s second condition for the generator (G0)na gives

(G0)na − {Φ(C)a, HT} = (CPFC)a,

(G0)na − Φ(G)a = (CPFC)a,
(C.14)

that is (G0)na = (CPFC)a +Φ(G)a. Subsequently, from the Castellani’s third condition it
follows

{(G0)na, HT} = (CPFC1)a,

{(CPFC)a +Φ(G)a, HT} = (CPFC1)a,

{(CPFC)a, HT}+ αα
0�αa

bΦ(G)b − βb0i�αa
bΦ(F )αi = (CPFC1)a,

(C.15)

which gives

(CPFC)a = −αα
0�αa

bΦ(C)b + βb0i�αa
bΦ(B)αi.

It follows that the generator is:

(G0)na = −αα
0�αa

bΦ(C)b + βb0i�αa
bΦ(B)αi +Φ(G)a.

The Castellani’s second condition for the generator (G0)ha
i gives:

(G0)ha
i − {Φ(β)a

i, HT} = (CPFC)a
i,

(G0)ha
i − Φ(∇C)a

i = (CPFC)a
i,

(C.16)
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that is (G0)ha
i = (CPFC)a

i +Φ(∇C)a
i. Subsequently, from the Castellani’s third condition it

follows

{(G0)ha
i, HT} = (CPFC1)a

i,

{(CPFC)a
i +Φ(∇C)a

i, HT} = (CPFC1)a
i,

{(CPFC)a
i, HT}+ αα

0�αa
bΦ(∇C)b

i − Cb0�αa
bΦ(F )αi + 2βb

0 jX(ab)
AΦ(∇D)A

i j = (CPFC1)a
i,

which gives

(CPFC)a
i = −αα

0�αa
bΦ(β)b

i + Cb0�αa
bΦ(B)αi − 2βb

0 jX(ab)
AΦ(γ)A

i j.

It follows that the generator is:

(G0)ha
i = −αα

0 �αa
bΦ(β)b

i + Cb0 �αa
bΦ(B)αi − 2βb

0 jX(ab)
AΦ(γ)A

i j +Φ(∇C)a
i.

The Castellani’s second condition for the generator (G0)lAi j gives:

(G0)lAi j + {Φ(γ)A
i j, HT} = (CPFC)A

i j,

(G0)lA
i j +Φ(∇D)A

i j = (CPFC)A
i j,

(C.17)

that is (G0)lAi j = (CPFC)A
i j − Φ(∇D)A

i j. Subsequently, from the Castellani’s third condition it
follows:

{(G0)lAi j, HT} = (CPFC1)A
i j,

{(CPFC)A
i j − Φ(∇D)A

i j, HT} = (CPFC1)A
i j,

{(CPFC)A
i j, HT} − αα

0�αA
BΦ(∇D)B

i j = (CPFC1)A
i j,

(C.18)

which gives

(CPFC)A
i j = αα

0�αA
BΦ(γ)B

i j.

It follows that the generator is:

(G0)lA
i j = αα

0�αA
BΦ(γ)B

i j − Φ(∇D)A
i j. (C.19)

At this point, it is useful to summarize the results, and introduce the new notation:

ε̇ α
m i(G1)mα

i + ε α
m i(G0)mα

i = −∇0εm
α

iΦ(B)αi + ε α
m iΦ(F )αi

= ∇0εm
α

i(M̃1)α
i
+ ε α

m i(M̃0)α
i
.

(C.20)

Note that the time derivative of the parameter combines with some of the other terms into a
covariant derivative in the time directions.
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For the second part of the total generator one obtains:

αε̇g(G1)gα + εg
α(G0)gα

= −αε̇gΦ(α)α − εg
α

(
Bβ0i fαγ

βΦ(B)γi − αβ
0 fαβ

γΦ(α)γ+ Ca0�αb
aΦ(C)b

+ βa0i�αb
aΦ(β)b

i − 1
2
γA

0i j�αA
BΦ(γ)B

i j − Φ(∇B)α

)

= −∇0εg
αΦ(α)α − εg

α

(
Bβ0i fαγ

βΦ(B)γi+ Ca0�αb
aΦ(C)b

+ βa0i�αb
aΦ(β)b

i − 1
2
γA

0i j�αA
BΦ(γ)B

i j − Φ(∇B)α

)

= ∇0εg
α(G̃1)α + εg

α(G̃0)α.

(C.21)

Furthermore, it follows:

ε̇ a
hi (G1)ha

i + ε a
h i(G0)ha

i = −∇0εh
a

iΦ(β)α
i + ε a

h i

(
Cb0�αa

bΦ(B)αi

− 2βb
0 jX(ab)

AΦ(γ)A
i j +Φ(∇C)a

i
)

= ∇0εh
a

i(H̃1)a
i
+ ε a

h i(H̃0)a
i
,

(C.22)

ε̇n
a(G1)na + εn

a(G0)na = −∇0εn
aΦ(C)a + εn

a(βb0i �αa
bΦ(B)αi +Φ(G)a)

= ∇0εn
a(Ñ1)a + εn

a(Ñ0)a.

(C.23)

Finally, one gets:

1
2
ε̇ A
li j(G1)lA

i j +
1
2
εA
l i j(G0)lA

i j =
1
2
ε̇ A
li jΦ(γ)A

i j +
1
2
εA
l i jα

α
0�αA

BΦ(γ)B
i j

− 1
2
εA
l i jΦ(∇D)A

i j

=
1
2
∇0ε

A
l i jΦ(γ)A

i j − 1
2
εA
l i jΦ(∇D)A

i j

=
1
2
∇0ε

A
l i j(L̃1)A

i j
+

1
2
εA
l i j(L̃0)A

i j
.

(C.24)

Appendix D. Definitions of maps T , S, D, X1, and X2

Given G-invariant symmetric non-degeneratebilinear forms in g and h, one can define a bilinear
antisymmetric map T : h× h→ g by the rule:

〈T (h1, h2), g〉g = −〈h1, g � h2〉h, ∀ h1, h2 ∈ h, ∀ g ∈ g.
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Written in basis:

T (ta, tb) = Tab
ατα,

where the components of the map T are:

Tab
α = −gac�βb

cgαβ.

See [26] for more properties and the construction of 2BF invariant topological action using this
map.

The transformations of the Lagrange multipliers and the 3BF invariant topological action is
defined via maps

S : l× l→ g, X1 : l× h→ h, X2 : l× h→ h, D : h× h× l→ g,

as it is defined in [13]. The map S : l× l→ g is defined by the rule:

〈S(l1, l2), g〉g = −〈l1, g � l2〉l, ∀ l1, ∀ l2 ∈ l, ∀ g ∈ g.

Written in the basis:

S(TA, TB) = SAB
ατα,

the defining relation for S becomes:

SAB
α = −�β[BC gA]Cgαβ.

Given two l-valued forms η and ω, one can define a g-valued form:

ω∧Sη = ωA ∧ ηBSAB
ατα.

Using this map, the transformations of the Lagrange multipliers under L-gauge are defined in
[13].

Further, to define the transformations of the Lagrange multipliers under H-gauge transfor-
mations the bilinear map X1 : l× h→ h is defined:

〈X1(l, h1), h2〉h = −〈l, {h1, h2}〉l, ∀ h1, h2 ∈ h, ∀ l ∈ l,

and bilinear map X2 : l× h→ h by the rule:

〈X2(l, h2), h1〉h = −〈l, {h1, h2}〉l, ∀ h1, h2 ∈ h, ∀ l ∈ l.
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As far as the bilinear maps X1 and X2 one can define the coefficients in the basis as:

X1(TA, ta) = X1 Aa
b tb, X2(TA, ta) = X2 Aa

b tb.

When written in the basis the defining relations for the maps X1 and X2 become:

X1Ab
c = −Xba

BgABgac, X2Ab
c = −Xab

BgABgac.

Given l-valued differential form ω and h-valued differential form η, one defines a h-valued
form as:

ω∧X1η = ωA ∧ ηaX1Aa
btb, ω∧X2η = ωA ∧ ηaX2Aa

btb.

Finally, a trilinear map D : h× h× l→ g is needed:

〈D(h1, h2, l), g〉g = −〈l, {g � h1, h2}〉l, ∀ h1, h2 ∈ h, ∀ l ∈ l, ∀ g ∈ g,

One can define the coefficients of the trilinear map as:

D(ta, tb, TA) = DabA
ατα,

and the defining relation for the map D expressed in terms of coefficients becomes:

DabA
β = −�αa

cXcb
BgABgαβ.

Given two h-valued forms ω and η, and l-valued form ξ, the g-valued form is given by the
formula:

ω∧Dη∧Dξ = ωa ∧ ηb ∧ ξADabA
βτβ.

With these maps in hand, the transformations of the Lagrange multipliers under H-gauge
transformations are defined, see [13].

Appendix E. Form-variations of all fields and momenta

The obtained gauge generator (55) is employed to calculate the form variations of variables
and their corresponding canonical momenta, denoted as A(t,�x), using the following equation,

δ0A(t,�x) = {A(t,�x), G}. (E.1)
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The computed form variations are given as follows:

δ0Bα
0i = −∇0ε

α
mi + f α

βγ εg
βBγ

0i δ0π(B)0i
α = fαβ

γεg
βπ(B) 0i

γ ,

+ εn
a�αa

bβb0i + ε a
hi �αa

bCb0,

δ0Bα
i j = −2∇[i|ε

α
m| j] + fβγαεgβBγ

i j − εA
li j �αA

BDB δ0π(B)αi j = fαβγεgβπ(B) i j
γ ,

+ εn
a �αa

bβbi j + 2ε a
h [ j| �αa

bCb|i],

δ0α
α

0 = −∇0εg
α, δ0π(α)0

α = fαβ
γεβm iπ(B)γ

0i + fαβ
γεg

βπ(α)γ
0

+ �αb
aεn

bπ(C)0
a + �αb

aεb
h iπ(β)i

a

− 1
2
�αB

AεB
l i jπ(γ) 0i j

A ,

δ0α
α

i = −∇iεg
α − ∂a

αε a
hi , δ0π(α)i

α = fαβ
γεβm jπ(B) i j

γ + fαβ
γεg

βπ(α) i
γ

+ �αb
αεn

bπ(C)i
a + �αb

αε b
h jπ(β)i j

a

− 1
2
�αB

Aε B
l jkπ(γ)i jk

A − ε0i jk∇ jεmαk ,

− 1
2
ε0i jkεn

a �αb
aβb

jk,

δ0Ca
0 = −∇0εn

a + εg
α �αb

aCb
0, δ0π(C)0

a = −εg
α �αa

bπ(C)0
b + εhbi �αa

bπ(B)α0i,

δ0Ca
i = −∇iεn

a + εg
α �αb

aCb
i δ0π(C)i

a = −εg
α �αa

bπ(C)i
b + εhb j �αa

bπ(B)αi j,

− ε α
mi ∂

a
α + 2εb

h i DA X(bc)
Agac,

δ0β
a

0i = −∇0ε
a

hi + εg
α �αb

aβb0i, δ0π(β) 0i
a = −εg

α �αa
bπ(β) 0i

b + εnb�αa
bπ(B)α0i

− 2ε b
h jX(ab)

Aπ(γ)0i j
A ,

δ0β
a

i j = −2∇[i|ε
a

h| j] + εg
α �αb

aβb
i j + εA

li jδA
a, δ0π(β)a

i j = −εg
α�αa

bπ(β)b
i j + εnb �αa

bπ(B)αi j

− 2ε b
hkX(ab)

Aπ(γ) i jk
A

+ ε0i jk∇kεna + ε0i jkε a
hk∂aα,

δ0γ
A

0i j = εg
αγB

0i j �αB
A +∇0ε

A
li j δ0π(γ)A

0i j = −εg
α �αA

B π(γ)B
0i j,

− 4ε a
h [i|β

b
0| j] X(ab)

A,

δ0γ
A

i jk = εg
αγB

i jk �αB
A +∇iε

A
l jk δ0π(γ)A

i jk = −εg
α �αA

B π(γ)B
i jk + εoi jkδaAεn

a,

−∇ jε
A

lik +∇kε
A
li j + 3!ε a

h[i β
b

jk] X(ab)
A,

δ0DA = εn
aδa

A + εg
αDB �αB

A, δ0π(D)A = −2ε a
hi X(ab)Aπ(C)bi

− 1
2
εlB

i j �αA
Bπ(B)α0i j

− εg
α �αA

Bπ(D)B

(E.2)
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Appendix F. Symmetry algebra calculations

To obtain the structure of the symmetry group of the 3BF action, as presented in the subsec-
tion 4.4, one has to calculate the commutators between the generators of all the symmetries,
i.e. the G-, H-, L-, M-, and N-gauge symmetries. This process is described in the subsec-
tions 4.1–4.3, while details of the calculation which are not straightforward will be given in
the following.

F.1. Commutator [H, H]

Let us derive the commutator of the generators of the H-gauge transformations, i.e. the
equation (76). After transforming the variables under H-gauge transformations for the param-
eter εh1 one obtains the following

α′ = α− ∂εh1, (F.1)

β′ = β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1, (F.2)

γ ′ = γ + {β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1, εh1}pf + {εh1, β}pf, (F.3)

B′ = B − (C − D∧X1εh1 − D∧X2εh1)∧T εh1 − εh1∧Dεh1∧DD, (F.4)

C′ = C − D∧X1εh1 − D∧X2εh1, (F.5)

D′ = D, (F.6)

and transforming the variables once more for the parameter εh2 one obtains:

α′′ = α− ∂εh1 − ∂εh2,

β′′ = β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1 −
α−∂εh1−∂εh2

∇ εh2 − εh2 ∧ εh2,

γ ′′ = γ + {β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1, εh1}pf + {εh1, β}pf

+ {β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1 −
α−∂εh1−∂εh2

∇ εh2 − εh2 ∧ εh2, εh2}pf

+ {εh2, β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1}pf,

B′′ = B − (C − D∧X1εh1 − D∧X2εh1)∧T εh1 − εh1∧Dεh1∧DD

− (C − D∧X1εh1 − D∧X2εh1 − D∧X1εh2 − D∧X2εh2)∧T εh2

− εh2∧Dεh2∧DD,

C′′ = C − D∧X1εh1 − D∧X2εh1 − D∧X1εh2 − D∧X2εh2,

D′′ = D.

(F.7)
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It is easy to see that for variables αα
μ, Ca

μ and DA the following is obtained:

eεh1·Heεh2·Hαα
μ = eεh2·Heεh1 ·Hαα

μ,
eεh1 ·Heεh2·HCa

μ = eεh2·Heεh1 ·HCa
μ,

eεh1·Heεh2·HDA = eεh2·Heεh1 ·HDA.
(F.8)

For the remaining variables, βa
μν , γA

μνρ and Bα
μν , after subtracting (appendix F.1) and the

corresponding equation where εh1 ↔ εh2, one obtains:

(
eεh1·Heεh2 ·H − eεh2·Heεh1·H

) 1
2
βa

μν = ∂b
αε b

h2 [μ|ε
c

h1 |ν]�αc
a − ∂b

αε b
h1 [μ|ε

c
h2 |ν] �αc

a

= 2δA
a X(bc)

Aε b
h1 [μ|ε

c
h2 |ν]

= δA
a({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)A

μν ,

(
eεh1·Heεh2·H − eεh2·Heεh1·H

) 1
3!
γA

μνρ = 2(∂[με
a

h1ν
)ε b

h2ρ]X(ab)
A + 2ε a

h1[ν(∂με
b

h2ρ])X(ab)
A

+ 2αα
[με

a
h1ν

ε b
h2ρ]X(ab)

B �αB
A

= ∇[μ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)
A
νρ],(

eεh1 ·Heεh2·H − eεh2 ·Heεh1 ·H
) 1

2
Bα

μν = DAε a
h2[μ|ε

b
h1|ν](X1Aa

c + X2Aa
c)Tcb

α

− DAε b
h1[μ|ε

a
h2|ν](X1Ab

c + X2Ab
c)Tca

α

= −2DAε
a

h1[μ|ε
b

h2|ν] (X(ac)
A�αb

c + X(bc)
A �αa

c)

= −2DAε
a

h1[μ|ε
b

h2|ν]X(ab)
B �αB

A

=
(
D∧S({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)αμν·

(F.9)

Comparing (F.8) and (F.9) with (72), one concludes that the commutator of two H-gauge
transformations is the L-gauge transformation with the parameter εA

l μν = 4εh1
a

[μ|εh2
b
|ν]X(ac)

A:

eεh1·Heεh2·H − eεh2·Heεh1·H = 2 ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf) · L̂. (F.10)

F.2. Commutator [H, N]

Let us calculate the commutator between the generators of H-gauge transformation and N-
gauge transformation, i.e. derive the equation (109). This is done by calculating the expressions

(
eεh·Heεn·N − eεn·Neεh ·H)A, (F.11)

for all variables A present in the theory. It is easy to see that for variables αα
μ, βa

μν , γA
μνρ, and

DA the following is obtained:
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eεh·Heεn·Nαα
μ = eεn·Neεh ·Hαα

μ,

eεh·Heεn·Nβa
μν = eεn·Neεh ·Hβa

μν ,

eεh·Heεn·NγA
μνρ = eεn·Neεh ·HγA

μνρ,

eεh·Heεn·NDA = eεn·Neεh ·HDA.

(F.12)

For the remaining variables, Bα
μν and Ca

μ, after the H-gauge transformation one obtains the
following:

B′ = B − (C − D∧χ1εh − D∧χ2εh)∧τ εh − εh∧Dεh∧DD, (F.13)

C′ = C − D∧χ1εh − D∧χ2εh. (F.14)

Next, transforming those variables with N-gauge transformation one obtains:

B′′ = B′ − β′∧T εn

= B − (C − D∧χ1εh − D∧χ2εh)∧τ εh − εh∧Dεh∧DD

− (β −
{αα−∂a

αεa
h
}

∇εh − εh ∧ εh)∧T εn,

C′′ = C′ −
{αα−∂a

αεa
h
}

∇ εn

= C − D∧χ1εh − D∧χ2εh −
{αα−∂a

αεa
h
}

∇ εn.

(F.15)

Let us now exchange the order of transformations, and first transform the variables with N-
gauge transformation,

B· = B − β∧T εn, (F.16)

C· = C −∇εn, (F.17)

and then with H-gauge transformation:

B·· = B· − (C· − D·∧χ1εh − D·∧χ2εh)∧τ εh − εh∧Dεh∧DD·

= B − β∧T εn −
(
C −∇εn − (D + δεn)∧χ1εh

− (D + δεn)∧χ2εh
)
∧τ εh − εh∧Dεh∧D(D + δεn),

C·· = C· − D·∧χ1εh − D·∧χ2εh

= C −∇εn − (D + δεn)∧χ1εh − (D + δεn)∧χ2εh.

(F.18)

After subtracting (F.15) and (F.18) one obtains:
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(
eεh·Heεn·N − eεn·Neεh ·H)Bα = ∇εa

n ∧ εh
bTab

α + δA
aε

a
nεh

b ∧ εh
dX1Ab

cTcd
α

+ δA
aε

a
nεh

b ∧ εh
dX2Ab

cTcd
α − εh

a ∧ εh
bδA

cεn
cDAab

α,

−∇εa
h ∧ εb

nTab
α + ∂a

βεa
h �βc

bεc
hε

d
nTbd

α − εa
h ∧ εb

h fab
cεd

nTcd
α,(

eεh·Heεn·N − eεn·Neεh ·H)Cc = −(δA
aε

a
n) ∧ εb

hX1Ab
c − (δA

aε
a
n) ∧ εb

hX2Ab
c − ∂a

βεa
h �βb

cεb
n,

(F.19)

where after using the definitions of the maps T , D, χ1, and χ2 one obtains the result(
eεh·Heεn·N − eεn·Neεh ·H)Bα = ∇εa

n ∧ εh
bTab

α −∇εa
h ∧ εb

nTab
α

= ∇(εn∧T εh)α,(
eεh·Heεn·N − eεn·Neεh ·H)Cc = ∂c

α(εn∧T εh)α,

(F.20)

Comparing (F.12) and (F.20) with (85), one obtains that:(
eεh·Heεn·N − eεn·Neεh ·H) = −(εn∧T εh) · M. (F.21)
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[31] Miković A and Vojinović M 2021 Standard model and four-groups Europhys. Lett. 133 61001
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1 Introduction

The quantization of the gravitational field is one of the most prominent open problems in

modern theoretical physics. Within the Loop Quantum Gravity framework, one can study

the nonperturbative quantization of gravity, both canonically and covariantly, see [1–3] for

an overview and a comprehensive introduction. The covariant approach focuses on the

definition of the path integral for the gravitational field,

Z =

∫
Dg eiS[g] , (1.1)

by considering a triangulation of a spacetime manifold, and defining the path integral as

a discrete state sum of the gravitational field configurations living on the simplices in the

triangulation. This quantization technique is known as the spinfoam quantization method,

and roughly goes along the following lines:

1. first, one writes the classical action S[g] as a topological BF action plus a simplicity

constraint,
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2. then one uses the algebraic structure (a Lie group) underlying the topological sector

of the action to define a triangulation-independent state sum Z,

3. and finally, one imposes the simplicity constraints on the state sum, promoting it

into a path integral for a physical theory.

This quantization prescription has been implemented for various choices of the action, the

Lie group, and the spacetime dimension. For example, in 3 dimensions, the prototype

spinfoam model is known as the Ponzano-Regge model [4]. In 4 dimensions there are

multiple models, such as the Barrett-Crane model [5, 6], the Ooguri model [7], and the

most sophisticated EPRL/FK model [8, 9]. All these models aim to define a viable theory

of quantum gravity, with variable success. However, virtually all of them are focused on

pure gravity, without matter fields. The attempts to include matter fields have had limited

success [10], mainly because the mass terms could not be expressed in the theory due to

the absence of the tetrad fields from the BF sector of the theory.

In order to resolve this issue, a new approach has been developed, using the categorical

generalization of the BF action, within the framework of higher gauge theory (see [11] for a

review). In particular, one uses the idea of a categorical ladder to promote the BF action,

which is based on some Lie group, into a 2BF action, which is based on the so-called 2-group

structure. If chosen in a suitable way, the 2-group structure should hopefully introduce

the tetrad fields into the action. This approach has been successfully implemented [12],

rewriting the action for general relativity as a constrained 2BF action, such that the tetrad

fields are present in the topological sector. This result opened up a possibility to couple

all matter fields to gravity in a straightforward way. Nevertheless, the matter fields could

not be naturally expressed using the underlying algebraic structure of a 2-group, rendering

the spinfoam quantization method only half-implementable, since the matter sector of the

classical action could not be expressed as a topological term plus a simplicity constraint,

which means that the steps 2 and 3 above could not be performed for the matter sector of

the action.

We address this problem in this paper. As we will show, it turns out that it is necessary

to perform one more step in the categorical ladder, generalizing the underlying algebraic

structure from a 2-group to a 3-group. This generalization then naturally gives rise to the

so-called 3BF action, which proves to be suitable for a unified description of both gravity

and matter fields. The steps of the categorical ladder can be conveniently summarized in

the following table:

categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed differential Lie

2BF theory tetrad fields
module crossed module

Lie 3-group
Lie 2-crossed differential Lie

3BF theory
scalar and

module 2-crossed module fermion fields
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Once the suitable gauge 3-group has been specified and the corresponding 3BF action

constructed, the most important thing that remains, in order to complete the step 1 of the

spinfoam quantization programme, is to impose appropriate simplicity constraints onto

the degrees of freedom present in the 3BF action, so that we obtain the desired classical

dynamics of the gravitational and matter fields. Then one can proceed with steps 2 and 3

of the spinfoam quantization, hopefully ending up with a viable model of quantum gravity

and matter.

In this paper, we restrict our attention to the first of the above steps: we will construct a

constrained 3BF action for the cases of Klein-Gordon, Dirac, Weyl and Majorana fields, as

well as Yang-Mills and Proca vector fields, all coupled to the Einstein-Cartan gravity in the

standard way. This construction will lead us to an unexpected novel result. As we shall see,

the scalar and fermion fields will be naturally associated to a new gauge group, generalizing

the notion of a gauge group in the Yang-Mills theory, which describes vector bosons. This

new group opens up a possibility to use it as an algebraic way of classifying matter fields,

describing the structures such as quark and lepton families, and so on. The insight into

the existence of this new gauge group is the consequence of the categorical ladder and

is one of the main results of the paper. However, given the complexity of the algebraic

properties of 3-groups, we will restrict ourselves only to the reconstruction of the already

known theories, such as the Standard Model (SM), in the new framework. In this sense, any

potential explanation of the spectrum of matter fields in the SM will be left for future work.

The layout of the paper is as follows. In subsection 2.1 we will give a short overview

of the constrained BF actions, including the well-known example of the Plebanski action

for general relativity, and a completely new example of the Yang-Mills theory rewritten

as a constrained BF model. In the subsection 2.2 we also introduce the formalism of the

constrained 2BF actions, reviewing the example of general relativity as a constrained 2BF

action, first introduced in [12]. In addition, we will demonstrate how to couple gravity in

a natural way within the formalism of 2-groups. Section 3 contains the main results of

the paper and is split into 4 subsections. The subsection 3.1 introduces the formalism of

3-groups, and the definition and properties of a 3BF action, including the three types of

gauge transformations. The subsection 3.2 focuses on the construction of a constrained

3BF action which describes a single real scalar field coupled to gravity. It provides the

most elementary example of the insight that matter fields correspond to a gauge group.

Encouraged by these results, in the subsection 3.3 we construct the constrained 3BF action

for the Dirac field coupled to gravity and specify its gauge group. Finally, the subsection 3.4

deals with the construction of the constrained 3BF action for the Weyl and Majorana fields

coupled to gravity, thereby covering all types of fields potentially relevant for the Standard

Model and beyond. After the construction of all building blocks, in section 4 we apply

the results of sections 2 and 3 to construct the constrained 3BF action corresponding to

the full Standard Model coupled to Einstein-Cartan gravity. Finally, section 5 is devoted

to the discussion of the results and the possible future lines of research. The appendices

contain some mathematical reminders and technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted

by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the

– 3 –
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Minkowski metric ηab with signature (−,+,+,+). Spacetime indices are denoted by the

Greek letters µ, ν, . . . , and are raised and lowered by the spacetime metric gµν = ηabe
a
µe
b
ν ,

where eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other indices that

appear in the paper are dependent on the context, and their usage is explicitly defined in

the text where they appear. A lot of additional notation is defined in appendix A. We work

in the natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck length.

2 BF and 2BF models, ordinary gauge fields and gravity

Let us begin by giving a short review of BF and 2BF theories in general. For additional

information on these topics, see for example [11, 13–18].

2.1 BF theory

Given a Lie group G and its corresponding Lie algebra g, one can introduce the so-called

BF action as

SBF =

∫
M4

〈B ∧ F〉g . (2.1)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connection 1-form α ∈
A1(M4 , g) on some 4-dimensional spacetime manifold M4. In addition, B ∈ A2(M4 , g)

is a Lagrange multiplier 2-form, while 〈 , 〉g denotes the G-invariant bilinear symmetric

nondegenerate form.

From the structure of (2.1), one can see that the action is diffeomorphism invariant,

and it is usually understood to be gauge invariant with respect to G. In addition to these

properties, the BF action is topological, in the following sense. Varying the action (2.1)

with respect to Bβ and αβ , where the index β counts the generators of g (see appendix A

for notation and conventions), one obtains the equations of motion of the theory,

F = 0 , ∇B ≡ dB + α ∧B = 0 . (2.2)

From the first equation of motion, one immediately sees that α is a flat connection, which

then together with the second equation of motion implies that B is constant. Therefore,

there are no local propagating degrees of freedom in the theory, and one then says that the

theory is topological.

Usually, in physics one is interested in theories which are nontopological, i.e., which

have local propagating degrees of freedom. In order to transform the BF action into

such a theory, one adds an additional term to the action, commonly called the simplicity

constraint. A very nice example is the Yang-Mills theory for the SU(N) group, which can

be rewritten as a constrained BF theory in the following way:

S =

∫
BI∧F I+λI∧

(
BI−

12

g
MabIδ

a∧δb
)

+ζabI
(
MabIεcdefδ

c∧δd∧δe∧δf−gIJF J∧δa∧δb
)
.

(2.3)

Here F ≡ dA+A∧A is again the curvature 2-form for the connection A ∈ A1(M4 , su(N)),

and B ∈ A2(M4 , su(N)) is the Lagrange multiplier 2-form. The Killing form gIJ ≡
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〈τI , τJ〉su(N) ∝ fIKLfJLK is used to raise and lower the indices I, J, . . . which count the gen-

erators of SU(N), where f IJ
K are the structure constants for the su(N) algebra. In addition

to the topological B ∧ F term, we also have two simplicity constraint terms, featuring the

Lagrange multiplier 2-form λI and the Lagrange multiplier 0-form ζabI . The 0-form MabI

is also a Lagrange multiplier, while g is the coupling constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global coordinate frame

in which its components are equal to the Kronecker symbol δaµ (hence the notation δa).

The 1-form δa plays the role of a background field, and defines the global spacetime metric,

via the equation

ηµν = ηabδ
a
µδ
b
ν , (2.4)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the coordinate system

is global, the spacetime manifold M4 is understood to be flat. The indices a, b, . . . are

local Lorentz indices, taking values 0, . . . , 3. Note that the field δa has all the properties

of the tetrad 1-form ea in the flat Minkowski spacetime. Also note that the action (2.3) is

manifestly diffeomorphism invariant and gauge invariant with respect to SU(N), but not

background independent, due to the presence of δa.

The equations of motion are obtained by varying the action (2.3) with respect to the

variables ζabI , MabI , A
I , BI , and λI , respectively (note that we do not take the variation

of the action with respect to the background field δa):

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (2.5)

−12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (2.6)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJIKζabKδa ∧ δb ∧AJ = 0 , (2.7)

FI + λI = 0 , (2.8)

BI −
12

g
MabIδ

a ∧ δb = 0 , (2.9)

From the algebraic equations (2.5), (2.6), (2.8) and (2.9) one obtains the multipliers as

functions of the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I cd , λIab = F Iab , BIab =

1

2g
εabcdF I

cd .

(2.10)

Here we used the notation FIab = FIµνδa
µδb

ν , where we used the fact that δaµ is invertible,

and similarly for other variables. Using these equations and the differential equation (2.7)

one obtains the equation of motion for gauge field AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + fJK
IAJρF

Kρµ = 0 . (2.11)

This is precisely the classical equation of motion for the free Yang-Mills theory. Note that

in addition to the Yang-Mills theory, one can easily extend the action (2.3) in order to

describe the massive vector field and obtain the Proca equation of motion. This is done

by adding a mass term

− 1

4!
m2AIµA

I
νη
µνεabcdδ

a ∧ δb ∧ δc ∧ δd (2.12)

– 5 –



J
H
E
P
1
0
(
2
0
1
9
)
2
2
2

to the action (2.3). Of course, this term explicitly breaks the SU(N) gauge symmetry of

the action.

Another example of the constrained BF theory is the Plebanski action for general

relativity [15], see also [13] for a recent review. Starting from a gauge group SO(3, 1), one

constructs a constrained BF action as

S =

∫
M4

Bab ∧Rab + φabcdB
ab ∧Bcd . (2.13)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the usual Lagrange

multiplier 2-form, while φabcd is the Lagrange multiplier 0-form corresponding to the sim-

plicity constraint term Bab ∧ Bcd. It can be shown that the variation of this action with

respect to Bab, ω
ab and φabcd gives rise to equations of motion which are equivalent to

vacuum general relativity. However, the tetrad fields appear in the model as a solution

to the simplicity constraint equation of motion Bab ∧ Bcd = 0. Thus, being intrinsically

on-shell objects, they are not present in the action and cannot be quantized. This renders

the Plebanski model unsuitable for coupling of matter fields to gravity [10, 12, 19]. Never-

theless, as a model for pure gravity, the Plebanski model has been successfully quantized

in the context of spinfoam models, see [1, 2, 8, 9] for details and references.

2.2 2BF theory

In order to circumvent the issue of coupling of matter fields, a recent promising approach

has been developed [12, 19–23] in the context of higher category theory [11]. In particular,

one employs the higher category theory construction to generalize the BF action to the

so-called 2BF action, by passing from the notion of a gauge group to the notion of a gauge

2-group. In order to introduce it, let us first give a short review of the 2-group formalism.

In the framework of category theory, the group as an algebraic structure can be under-

stood as a specific type of category, namely a category with only one object and invertible

morphisms [11]. The notion of a category can be generalized to the so-called higher cat-

egories, which have not only objects and morphisms, but also 2-morphisms (morphisms

between morphisms), and so on. This process of generalization is called the categorical

ladder. Similarly to the notion of a group, one can introduce a 2-group as a 2-category

consisting of only one object, where all the morphisms and 2-morphisms are invertible. It

has been shown that every strict 2-group is equivalent to a crossed module (H
∂→ G ,B),

see appendix A for definition. Here G and H are groups, δ is a homomorphism from H to

G, while B : G×H → H is an action of G on H.

An important example of this structure is a vector space V equipped with an isometry

group O. Namely, V can be regarded as an Abelian Lie group with addition as a group

operation, so that a representation of O on V is an action B of O on the group V , giving

rise to the crossed module (V
∂→ O ,B), where the homomorphism ∂ is chosen to be trivial,

i.e., it maps every element of V into a unit of O. We will make use of this example below

to introduce the Poincaré 2-group.

Similarly to the case of an ordinary Lie group G which has a naturally associated

notion of a connection α, giving rise to a BF theory, the 2-group structure has a naturally
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associated notion of a 2-connection (α , β), described by the usual g-valued 1-form α ∈
A1(M4 , g) and an h-valued 2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie

group H. The 2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (2.14)

Here α ∧B β means that α and β are multiplied as forms using ∧, and simultaneously

multiplied as algebra elements using B, see appendix A. The curvature pair (F ,G) is called

fake because of the presence of the ∂β term in the definition of F , see [11] for details.

Using these variables, one can introduce a new action as a generalization of the BF

action, such that it is gauge invariant with respect to both G and H groups. It is called

the 2BF action and is defined in the following way [16, 17]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h , (2.15)

where the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are Lagrange multipliers.

Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear symmetric nondegenerate forms for

the algebras g and h, respectively. As a consequence of the axiomatic structure of a crossed

module (see appendix A), the bilinear form 〈 , 〉h is H-invariant as well. See [16, 17] for

review and references.

Similarly to the BF action, the 2BF action is also topological, which can be seen from

equations of motion. Varying with respect to B and C one obtains

F = 0 , G = 0 , (2.16)

while varying with respect to α and β one obtains the equations for the multipliers,

dBα − gαβγBγ ∧ αβ −Bαa
bCb ∧ βa = 0 , (2.17)

dCa − ∂aαBα + Bαa
bCb ∧ αα = 0 . (2.18)

One can either show that these equations have only trivial solutions, or one can use the

Hamiltonian analysis to show that there are no local propagating degrees of freedom (see

for example [21, 22]), demostrating the topological nature of the theory.

An example of a 2-group relevant for physics is the Poincaré 2-group, which is con-

structed using the aforementioned example of a vector space equipped with an isometry

group. One constructs a crossed module by choosing

G = SO(3, 1) , H = R4 , (2.19)

while B is a natural action of SO(3, 1) on R4, and the map ∂ is trivial. The 2-connection

(α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (2.20)

where ωab is the spin connection, while Mab and Pa are the generators of groups SO(3, 1)

and R4, respectively. The corresponding 2-curvature in this case is given by

F = (dωab+ωac∧ωcb)Mab ≡ RabMab , G = (dβa+ωab∧βb)Pa ≡ ∇βaPa ≡ GaPa , (2.21)

– 7 –



J
H
E
P
1
0
(
2
0
1
9
)
2
2
2

where we have evaluated ∧B using the equation Mab B Pc = η[bcPa]. Note that, since ∂ is

trivial, the fake curvature is the same as ordinary curvature. Using the bilinear forms

〈Mab,Mcd〉g = ηa[cηbd] , 〈Pa, Pb〉h = ηab , (2.22)

one can show that 1-forms Ca transform in the same way as the tetrad 1-forms ea under

the Lorentz transformations and diffeomorphisms, so the fields Ca can be identified with

the tetrads. Then one can rewrite the 2BF action (2.15) for the Poincaré 2-group as

S2BF =

∫
M4

Bab ∧Rab + ea ∧∇βa . (2.23)

In order to obtain general relativity, the topological action (2.23) can be modified by

adding a convenient simplicity constraint, like it is done in the BF case:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (2.24)

Here λab is a Lagrange multiplier 2-form associated to the simplicity constraint term, and

lp is the Planck length. Varying the action (2.24) with respect to Bab, ea, ωab, βa and λab,

one obtains the following equations of motion:

Rab − λab = 0 , (2.25)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (2.26)

∇Bab − e[a ∧ βb] = 0 , (2.27)

∇ea = 0 , (2.28)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 . (2.29)

The only dynamical fields are the tetrads ea, while all other fields can be algebraically

determined, as follows. From the equations (2.28) and (2.29) we obtain that ∇Bab = 0,

from which it follows, using the equation (2.27), that e[a ∧ βb] = 0. Assuming that the

tetrads are nondegenerate, e ≡ det(eaµ) 6= 0, it can be shown that this is equivalent to

the condition βa = 0 (for the proof see appendix in [12]). Therefore, from the equa-

tions (2.25), (2.27), (2.28) and (2.29) we obtain

λabµν = Rabµν , βaµν = 0 , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4ab

µ . (2.30)

Here the Ricci rotation coefficients are defined as

4ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (2.31)

where

cabc = eµbe
ν
c (∂µe

a
ν − ∂νeaµ) . (2.32)
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Finally, the remaining equation (2.26) reduces to

εabcdR
bc ∧ ed = 0 , (2.33)

which is nothing but the vacuum Einstein field equation Rµν − 1
2gµνR = 0. Therefore, the

action (2.24) is classically equivalent to general relativity.

The main advantage of the action (2.24) over the Plebanski model and similar ap-

proaches lies in the fact that the tetrad fields are explicitly present in the topological

sector of the theory. This allows one to couple matter fields in a straightforward way, as

demonstrated in [12]. However, one can do even better, and couple gauge fields to gravity

within a unified framework of 2-group formalism.

Let us demonstrate this on the example of the SU(N) Yang-Mills theory. Begin by

modifying the Poincaré 2-group structure to include the SU(N) gauge group, as follows.

We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R4 , (2.34)

and we define the action B of the group G in the following way. As in the case of the

Poincaré 2-group, it acts on itself via conjugation. Next, it acts on H such that the

SO(3, 1) subgroup acts on R4 via the vector representation, while the action of SU(N)

subgroup is trivial. The map ∂ also remains trivial, as before. The 2-connection (α, β)

now obtains the form which reflects the structure of the group G,

α = ωabMab +AIτI , β = βaPa , (2.35)

where AI is the gauge connection 1-form, while τI are the SU(N) generators. The curvature

for α is thus

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (2.36)

The curvature for β remains the same as before, since the action B of SU(N) on R4 is

trivial, i.e., τI B Pa = 0. Finally, the product structure of the group G implies that its

Killing form 〈 , 〉g reduces to the Killing forms for the SO(3, 1) and SU(N), along with the

identity 〈Mab, τI〉g = 0.

Given a crossed module defined in this way, its corresponding topological 2BF ac-

tion (2.15) becomes

S2BF =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (2.37)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. In order to transform this

topological action into action with nontrivial dynamics, we again introduce the appropriate

simplicity constraints. The constraint giving rise to gravity is the same as in (2.24), while

the constraint for the gauge fields is given as in the action (2.3) with the substitution

δa → ea:

S =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
(2.38)

+ λI ∧
(
BI −

12

g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.
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It is crucial to note that the action (2.38) is a combination of the pure gravity action (2.24)

and the Yang-Mills action (2.3), such that the nondynamical background field δa from (2.3)

gets promoted to a dynamical field ea. The relationship between these fields has already

been hinted at in the equation (2.4), which describes the connection between δa and the

flat spacetime metric ηµν . Once promoted to ea, this field becomes dynamical, while the

equation (2.4) becomes the usual relation between the tetrad and the metric,

gµν = ηabe
a
µe
b
ν , (2.39)

further confirming that the Lagrange multiplier Ca should be identified with the tetrad.

Moreover, the total action (2.38) now becomes background independent, as expected in

general relativity. All this is a consequence of the fact that the tetrad field is explicitly

present in the topological sector of the action (2.24), establishing an improvement over the

Plebanski model.

By varying the action (2.38) with respect to the variables Bab, ωab, βa, λab, ζ
abI , MabI ,

BI , λ
I , AI , and ea, we obtain the following equations of motion, respectively:

Rab − λab = 0 , (2.40)

∇Bab − e[a ∧ βb] = 0 , (2.41)

∇ea = 0 , (2.42)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (2.43)

MabIεcdefe
c ∧ ed ∧ ee ∧ ef − FI ∧ ea ∧ eb = 0 , (2.44)

−12

g
λI ∧ ea ∧ eb + ζabIεcdefe

c ∧ ed ∧ ee ∧ ef = 0 , (2.45)

FI + λI = 0 , (2.46)

BI −
12

g
MabIe

a ∧ eb = 0 , (2.47)

−dBI +BK ∧ gJIKAJ + d(ζabI ea ∧ eb)− ζabK ea ∧ eb ∧ gJIKAJ = 0 , (2.48)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed − 24

g
MabIλ

I ∧ eb

+4ζef
I
Mef Iεabcde

b ∧ ec ∧ ed − 2ζab
IFI ∧ eb = 0 . (2.49)

In the above system of equations, we have two dynamical equations for ea and AI , while

all other variables are algebraically determined from these. In particular, from equa-

tions (2.40)–(2.47), we have:

λabµν =Rabµν , βaµν =0, ωabµ=4abµ , λabI =FabI , BµνI =− e

2g
εµνρσF

ρσ
I , (2.50)

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , MabI =− 1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

Then, substituting all these into (2.48) and (2.49) we obtain the differential equation of

motion for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (2.51)
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where Γ λµν is the standard Levi-Civita connection, and a differential equation of motion

for ea,

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ − 1

4g

(
Fρσ

IF ρσIg
µν + 4FµρIFρ

νI
)
. (2.52)

The system of equations (2.50)–(2.52) is equivalent to the system (2.40)–(2.49). Note that

we have again obtained that βa = 0, as in the pure gravity case.

In this way, we see that both gravity and gauge fields can be represented within a

unified framework of higher gauge theory based on a 2-group structure.

3 3BF models, scalar and fermion matter fields

While the structure of a 2-group can successfully accommodate both gravitational and

gauge fields, unfortunately it cannot include other matter fields, such as scalars or fermions.

In order to construct a unified description of all matter fields within the framework of higher

gauge theory, we are led to make a further generalization, passing from the notion of a 2-

group to the notion of a 3-group. As it turns out, the 3-group structure is a perfect fit

for the description of all fields that are present in the Standard Model, coupled to gravity.

Moreover, this structure gives rise to a new gauge group, which corresponds to the choice

of the scalar and fermion fields present in the theory. This is a novel and unexpected result,

which has the potential to open up a new avenue of research with the aim of explaining

the structure of the matter sector of the Standard Model and beyond.

In order to demonstrate this in more detail, we first need to introduce the notion of

a 3-group, which we will afterward use to construct constrained 3BF actions describing

scalar and fermion fields on an equal footing with gravity and gauge fields.

3.1 3-groups and topological 3BF action

Similarly to the concepts of a group and a 2-group, one can introduce the notion of a

3-group in the framework of higher category theory, as a 3-category with only one object

where all the morphisms, 2-morphisms and 3-morphisms are invertible. It has been proved

that a strict 3-group is equivalent to a 2-crossed module [24], in the same way as a 2-group

is equivalent to a crossed module.

A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,B , { , }), is a algebraic structure

specified by three Lie groups G, H and L, together with the homomorphisms δ and ∂, an

action B of the group G on all three groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. See appendix A for more details.

In complete analogy to the construction of BF and 2BF topological actions, one

can define a gauge invariant topological 3BF action for the manifold M4 and 2-crossed

module (L
δ→ H

∂→ G ,B , { , }). Given g, h and l as Lie algebras corresponding to the

groups G, H and L, one can introduce a 3-connection (α, β, γ) given by the algebra-valued
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differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding

fake 3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ , H = dγ + α ∧B γ + {β ∧ β} . (3.1)

see [24, 25] for details. Then, a 3BF action is defined as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (3.2)

where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange multipliers. The

forms 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric nondegenerate forms on

g, h and l, respectively. Under certain conditions, the forms 〈 , 〉h and 〈 , 〉l are also

H-invariant and L-invariant, see appendix B for details.

One can see that varying the action with respect to the variables B, C and D, one

obtains the equations of motion

F = 0 , G = 0 , H = 0 , (3.3)

while varying with respect to α, β, γ one obtains

dBα − gαβγBγ ∧ αβ −Bαa
bCb ∧ βa + BαB

ADA ∧ γB = 0 , (3.4)

dCa − ∂aαBα + Bαa
bCb ∧ αα + 2X{ab}

ADA ∧ βb = 0 , (3.5)

dDA −BαA
BDB ∧ αα + δA

aCa = 0 . (3.6)

Regarding the gauge transformations, the 3BF action is invariant with respect to

three different types of transformations, generated by the groups G, H and L, respectively.

Under the G-gauge transformations, the 3-connection transforms as

α′ = g−1αg + g−1dg , β′ = g−1 B β , γ′ = g−1 B γ , (3.7)

where g : M4 → G is an element of the G-principal bundle over M4. Next, under the

H-gauge transformations, generated by η ∈ A1(M4 , h), the 3-connection transforms as

α′ = α+ ∂η , β′ = β + dη + α′ ∧B η − η ∧ η , γ′ = γ − {β′ ∧ η} − {η ∧ β} . (3.8)

Finally, under the L-gauge transformations, generated by θ ∈ A2(M4 , l), the 3-connection

transforms as

α′ = α , β′ = β − δθ , γ′ = γ − dθ − α ∧ θ . (3.9)

As a consequence of the definition (3.1) and the above transformation rules, the curvatures

transform under the G-gauge transformations as

F → g−1Fg , G → g−1 B G , H → g−1 BH , (3.10)

under the H-gauge transformations as

F → F , G → G + F ∧B η , H → H− {G′ ∧ η}+ {η ∧ G} , (3.11)
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and under the L-gauge transformations as

F → F , G → G , H → H−F ∧B θ . (3.12)

For more details, the reader is referred to [25].

In order to make the action (3.2) gauge invariant with respect to the transforma-

tions (3.7), (3.8) and (3.9), the Lagrange multipliers B, C and D must transform under

the G-gauge transformations as

B → g−1Bg , C → g−1 B C , D → g−1 BD , (3.13)

under the H-gauge transformations as

B → B+C ′∧T η−η∧D η∧DD , C → C+D∧X1 η+D∧X2 η , D → D , (3.14)

while under the L-gauge transformations they transform as

B → B −D ∧S θ , C → C , D → D . (3.15)

See appendix B for details, for the definition of the maps T , D, X1, X2, S, and for the

notation of the ∧T , ∧D, ∧X1 , ∧X2 , and ∧S products.

3.2 Constrained 3BF action for a real Klein-Gordon field

Once the topological 3BF action is specified, we can proceed with the construction of the

constrained 3BF action, describing a realistic case of a scalar field coupled to gravity. In

order to perform this construction, we have to define a specific 2-crossed module which

gives rise to the topological sector of the action, and then we have to impose convenient

simplicity constraints.

We begin by defining a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows. The

groups are given as

G = SO(3, 1) , H = R4 , L = R . (3.16)

The group G acts on itself via conjugation, on H via the vector representation, and on L

via the trivial representation. This specifies the definition of the action B. The map ∂ is

chosen to be trivial, as before. The map δ is also trivial, that is, every element of L is

mapped to the identity element of H. Finally, the Peiffer lifting is trivial as well, mapping

every ordered pair of elements in H to an identity element in L. This specifies one concrete

2-crossed module.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γI , (3.17)

where I is the sole generator of the Lie group R. From (3.1), the fake 3-curvature (F ,G ,H)

reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (3.18)
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where we used the fact that G acts trivially on L, that is, Mab B I = 0. The topological

3BF action (3.2) now becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (3.19)

where the bilinear form for L is 〈I, I〉l = 1.

It is important to note that the Lagrange multiplier D in (3.2) is a 0-form and trans-

forms trivially with respect to G, H and L gauge transformations for our choice of the

2-crossed module, as can be seen from (3.13), (3.14) and (3.15). Thus, D has all the hall-

mark properties of a real scalar field, allowing us to make identification between them, and

conveniently relabel D into φ in (3.19). This is a crucial property of the 3-group structure

in a 4-dimensional spacetime and is one of the main results of the paper. It follows the

line of reasoning used in recognizing the Lagrange multiplier Ca in the 2BF action for the

Poincaré 2-group as a tetrad field ea. It is also important to stress that the choice of the

third gauge group, L, dictates the number and the structure of the matter fields present in

the action. In this case, L = R implies that we have only one real scalar field, correspond-

ing to a single generator I of R. The trivial nature of the action B of SO(3, 1) on R also

implies that φ transforms as a scalar field. Finally, the scalar field appears as a degree of

freedom in the topological sector of the action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, in order to obtain nontrivial dynamics, we need

to impose convenient simplicity constraints on the variables in the action (3.19). Since we

are interested in obtaining the scalar field φ of mass m coupled to gravity in the standard

way, we choose the action in the form:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed . (3.20)

Note that the first row is the topological sector (3.19), the second row is the familiar

simplicity constraint for gravity from the action (2.24), the third row contains the new

simplicity constraints corresponding to the Lagrange multiplier 1-forms λ and Λab and

featuring the Lagrange multiplier 0-form Habc, while the fourth row is the mass term for

the scalar field.

Varying the total action (3.20) with respect to the variables Bab, ωab, βa, λab, Λab, γ,

λ, Habc, φ and ea one obtains the equations of motion:

Rab − λab = 0 , (3.21)

∇Bab − e[a ∧ βb] = 0 , (3.22)

∇ea = 0 , (3.23)
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Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.24)

Habcε
cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb = 0 , (3.25)

dφ− λ = 0 , (3.26)

γ − 1

2
Habce

a ∧ eb ∧ ec = 0 , (3.27)

−1

2
λ ∧ ea ∧ eb ∧ ec + εcdefΛab ∧ ed ∧ ee ∧ ef = 0 , (3.28)

dγ − d(Λab ∧ ea ∧ eb)−
1

4!
m2φεabcde

a ∧ eb ∧ ec ∧ ed = 0 , (3.29)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
3

2
Habcλ ∧ eb ∧ ec + 3HdefεabcdΛef ∧ eb ∧ ec

−2Λab ∧ dφ ∧ eb − 2
1

4!
m2φεabcde

b ∧ ec ∧ ed = 0 . (3.30)

The dynamical degrees of freedom are ea and φ, while the remaining variables are alge-

braically determined in terms of them. Specifically, the equations (3.21)–(3.28) give

λabµν = Rabµν , ωabµ = 4ab
µ , γµνρ = −e

2
εµνρσ∂

σφ ,

Λabµ =
1

12e
gµλε

λνρσ∂νφe
a
ρe
b
σ , βaµν = 0 , Babµν =

1

8πl2p
εabcde

c
µe
d
ν ,

Habc =
1

6e
εµνρσ∂µφe

a
νe
b
ρe
c
σ , λµ = ∂µφ .

(3.31)

Note that from the equations (3.22), (3.23) and (3.24) it follows that βa = 0, as in the

pure gravity case. The equation of motion (3.29) reduces to the covariant Klein-Gordon

equation for the scalar field, (
∇µ∇µ −m2

)
φ = 0 . (3.32)

Finally, the equation of motion (3.30) for ea becomes:

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ ∂µφ∂νφ− 1

2
gµν

(
∂ρφ∂

ρφ+m2φ2
)
. (3.33)

The system of equations (3.21)–(3.30) is equivalent to the system of equations (3.31)–(3.33).

Note that in addition to the correct covariant form of the Klein-Gordon equation, we have

also obtained the correct form of the stress-energy tensor for the scalar field.

3.3 Constrained 3BF action for the Dirac field

Now we pass to the more complicated case of the Dirac field. We first define a 2-crossed

module (L
δ→ H

∂→ G ,B , { , }) as follows. The groups are:

G = SO(3, 1) , H = R4 , L = R8(G) , (3.34)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ and the Peiffer

lifting are trivial. The action of the group G on itself is given via conjugation, on H

via vector representation, and on L via spinor representation, as follows. Denoting the
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8 generators of the Lie group R8(G) as Pα and Pα, where the index α takes the values

1, . . . , 4, the action of G on L is thus given explicitly as

Mab B Pα =
1

2
(σab)

β
αPβ , Mab B Pα = −1

2
(σab)

α
βP

β , (3.35)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the anticommutation

rule {γa , γb} = −2ηab.

As in the case of the scalar field, the choice of the group L dictates the matter content

of the theory, while the action B of G on L specifies its transformation properties. To see

this explicitly, let us construct the corresponding 3BF action. The 3-connection (α , β , γ)

now takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (3.36)

while the 3-curvature (F ,G ,H), defined in (3.1), is given as

F = RabMab ,G = ∇βaPa , (3.37)

H =

(
dγα +

1

2
ωab(σab)

α
βγ

β

)
Pα +

(
dγ̄α −

1

2
ωabγ̄β(σab)

β
α

)
Pα ≡ (

→
∇γ)αPα + (γ̄

←
∇)αP

α ,

where we have used (3.35). The bilinear form 〈 , 〉l is defined as

〈Pα, Pβ〉l = 0 , 〈Pα, P β〉l = 0 , 〈Pα, P β〉l = −δβα , 〈Pα, Pβ〉l = δαβ . (3.38)

Note that, for general A,B ∈ l, we can write

〈A,B〉l = AIBJgIJ , 〈B,A〉l = BJAIgJI . (3.39)

Since we require the bilinear form to be symmetric, the two expressions must be equal.

However, since the coefficients in l are Grassmann numbers, we have AIBJ = −BJAI , so

it follows that gIJ = −gJI . Hence the antisymmetry of (3.38).

Now we use the properties of the group L and the action B of G on L to recognize

the physical nature of the Lagrange multiplier D in (3.2). Indeed, the choice of the group

L dictates that D contains 8 independent complex Grassmannian matter fields as its com-

ponents. Moreover, due to the fact that D is a 0-form and that it transforms according

to the spinorial representation of SO(3, 1), we can identify its components with the Dirac

bispinor fields, and write

D = ψαPα + ψ̄αP
α , (3.40)

where it is assumed that ψ and ψ̄ are independent fields, as usual. This is again an

illustration of the fact that information about the structure of the matter sector in the

theory is specified by the choice of the group L in the 2-crossed module, and another main

result of the paper.

Given all of the above, now we can finally write the 3BF action (3.2) corresponding

to this choice of the 2-crossed module as

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (3.41)
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In order to promote this action into a full theory of gravity coupled to Dirac fermions, we

add the convenient constraint terms to the action, as follows:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α
)

+ λ̄α ∧
(
γα +

i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

− 1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd . (3.42)

Here the first row is the topological sector, the second row is the gravitational simplicity

constraint term from (2.24), while the third row contains the new simplicity constraints for

the Dirac field corresponding to the Lagrange multiplier 1-forms λα and λ̄α. The fourth row

contains the mass term for the Dirac field, and a term which ensures the correct coupling

between the torsion and the spin of the Dirac field, as specified by the Einstein-Cartan

theory. Namely, we want to ensure that the torsion has the form

Ta ≡ ∇ea = 2πl2psa , (3.43)

where

sa = iεabcde
b ∧ ecψ̄γ5γdψ (3.44)

is the spin 2-form. Of course, other couplings should also be straightforward to imple-

ment, but we choose this particular coupling because we are interested in reproducing the

standard Einstein-Cartan gravity coupled to the Dirac field.

Varying the action (3.42) with respect to Bab, λ
ab, γ̄α, γα, λα, λ̄α, ψ̄α, ψα, ea, βa and

ωab one obtains the equations of motion:

Rab − λab = 0 , (3.45)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.46)

(
→
∇ψ)α − λα = 0 , (3.47)

(ψ̄
←
∇)α − λ̄α = 0 , (3.48)

γ̄α −
i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α = 0 , (3.49)

γα +
i

6
εabcde

a ∧ eb ∧ ec(γdψ)α = 0 , (3.50)

dγα + ωαβ ∧ γβ +
i

6
λβ ∧ εabcdea ∧ eb ∧ ecγdαβ +

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψα

+i2πl2pεabcde
a ∧ eb ∧ βc(γ5γdψ)α = 0 , (3.51)

dγ̄α − γ̄β ∧ ωβα +
i

6
λ̄β ∧ εabcdea ∧ eb ∧ ecγdβα −

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψ̄α

−i2πl2pεabcdea ∧ eb ∧ βc(ψ̄γ5γd)α = 0 , (3.52)
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∇βa + 2εabcdλ
bc ∧ ed − i

2
εabcdλ

α ∧ eb ∧ ec(ψ̄γd)α +
i

2
εabcdλ̄α ∧ eb ∧ ec(γdψ)α

−1

3
εabcde

b ∧ ec ∧ edmψ̄ψ − 4πl2piεabcde
b ∧ βcψ̄γ5γdψ = 0 , (3.53)

∇ea − i2πl2pεabcdeb ∧ ecψ̄γ5γdψ = 0 , (3.54)

∇Bab − e[a ∧ βb] + γ̄
1

8
[γa, γb]ψ + ψ̄

1

8
[γa, γb]γ = 0 . (3.55)

The dynamical degrees of freedom are ea, ψα and ψ̄α, while the remaining variables are

determined in terms of the dynamical variables, and are given as:

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = (

→
∇µψ)α , λ̄αµ = (ψ̄

←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe
b
νe
c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcdeaµebνecρ(γdψ)α , (3.56)

λabµν = Rabµν , ωabµ = 4ab
µ +Kab

µ .

Here Kab
µ is the contorsion tensor, constructed in the standard way from the torsion tensor,

whereas from (3.54) we have

Ta ≡ ∇ea = 2πl2psa , (3.57)

which is precisely the desired equation (3.43). Further, from the equation (3.46) one obtains

∇Bab = − 1

8πl2p
εabcd (ec ∧∇ed) . (3.58)

Substituting this expression in the equation (3.55) it follows that

2εabcde
c ∧
(
− 1

16πl2p
∇ed +

1

8
sd
)
− e[a ∧ βb] = 0 . (3.59)

The expression in the parentheses is equal to zero, according to the equation (3.54). From

the remaining term e[a ∧ βb] = 0 it again follows that

β = 0 . (3.60)

Using this result, the equation of motion (3.51) for fermions becomes

i

6
εabcde

a ∧ eb ∧
(

2ec ∧ γd
→
∇+

im

2
ec ∧ ed − 3(∇ec)γd

)
ψ = 0 . (3.61)

Using equation (3.54), the last term in the parentheses vanishes, and the equation reduces

to the covariant Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (3.62)

where eµa is the inverse tetrad. Similarly, the equation (3.52) gives the conjugated Dirac

equation:

ψ̄(i
←
∇µeµaγa +m) = 0 . (3.63)
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Finally, the equation of motion (3.53) for tetrad field reduces to

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ i

2
ψ̄γν

↔
∇aeµaψ −

1

2
gµνψ̄

(
iγa
↔
∇ρeρa − 2m

)
ψ , (3.64)

Here, we used the notation
↔
∇ =

→
∇−

←
∇. The system of equations (3.45)–(3.55) is equivalent

to the system of equations (3.56), (3.60), (3.62)–(3.64). As we expected, the equations

of motion (3.57), (3.62), (3.63) and (3.64) are precisely the equations of motion of the

Einstein-Cartan theory coupled to a Dirac field.

3.4 Constrained 3BF action for the Weyl and Majorana fields

A general solution of the Dirac equation is not an irreducible representation of the Lorentz

group, and one can rewrite Dirac fermions as left-chiral and right-chiral fermion fields that

both retain their chirality under Lorentz transformations, implying their irreducibility.

Hence, it is useful to rewrite the action for left and right Weyl spinors as a constrained

3BF action. For simplicity, we will discuss only left-chiral spinor field, while the right-

chiral field can be treated analogously. Both Weyl and Majorana fermions can be treated

in the same way, the only difference being the presence of an additional mass term in the

Majorana action.

We being by defining a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows. The

groups are:

G = SO(3, 1) , H = R4 , L = R4(G) . (3.65)

The maps ∂, δ and the Peiffer lifting are trivial. The action B of the group G on G, H

and L is given in the same way as for the Dirac case, whereas the spinorial representation

reduces to

Mab B Pα =
1

2
(σab)

α
βP

β , Mab B Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (3.66)

where σab = −σ̄ab = 1
4(σaσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in which ~σ denotes

the set of three Pauli matrices. The four generators of the group L are denoted as Pα and

Pα̇, where the Weyl indices α, α̇ take values 1, 2.

The 3-connection (α , β , γ) now takes the form corresponding to this choice of Lie

groups,

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (3.67)

while the fake 3-curvature (F ,G ,H) defined in (3.1) is

F = RabMab , G = ∇βaPa , (3.68)

H =

(
dγα +

1

2
ωab(σab)βαγβ

)
Pα +

(
dγ̄α̇ +

1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇

)
P α̇ ≡ (

→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

Introducing the spinor fields ψα and ψ̄α̇ via the Lagrange multiplier D as

D = ψαP
α + ψ̄α̇Pα̇ , (3.69)

and using the bilinear form 〈 , 〉l for the group L,

〈Pα, P β〉l = εαβ , 〈Pα̇, Pβ̇〉l = εα̇β̇ , 〈Pα, Pβ̇〉l = 0 , 〈Pα̇, P β〉l = 0 , (3.70)
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where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita symbols, the

topological 3BF action (3.2) for spinors coupled to gravity becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (3.71)

In order to obtain the suitable equations of motion for the Weyl spinors, we again introduce

appropriate simplicity constraints, so that the action becomes:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γα +

i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇

)
− λ̄α̇ ∧

(
γ̄α̇ +

i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ
)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄dα̇βψβ) . (3.72)

The new simplicity constraints are in the third row, featuring the Lagrange multiplier

1-forms λα and λ̄α̇. Also, using the coupling between the Dirac field and torsion from

Einstein-Cartan theory as a model, the term in the fourth row is chosen to ensure that the

coupling between the Weyl spin tensor

sa ≡ iεabcdeb ∧ ec ψασdαβ̇ψ̄
β̇ , (3.73)

and torsion is given as:

Ta = 4πl2psa . (3.74)

The case of the Majorana field is introduced in exactly the same way, albeit with an

additional mass term in the action, of the form:

− 1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (3.75)

Varying the action (3.72) with respect to the variables Bab, λ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα,

ψ̄α̇, ea, βa and ωab one again obtains the complete set of equations of motion, displayed

in the appendix C. The only dynamical degrees of freedom are ψα, ψ̄α̇ and ea, while the

remaining variables are algebraically determined in terms of these as:

λabµν = Rabµν , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄α̇ , (3.76)

γαµνρ = iεabcde
a
µe
b
νe
c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe
b
νe
c
ρσ̄

dα̇βψβ , ωabµ = 4abµ +Kabµ .

In addition, one also maintains the result β = 0 as before. Finally, the equations of motion

for the dynamical fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄β̇ = 0 , (3.77)

and

Rµν − 1

2
gµνR = 8πl2p T

µν , (3.78)
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where

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄ − gµν

1

2

(
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄

)
. (3.79)

Here we have suppressed the spinor indices. In the case of the Majorana field, the equations

of motion (3.76) remain the same, while the equations of motion for ψα and ψ̄α̇ take the

form

iσaαβ̇e
µ
a∇µψ̄β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (3.80)

whereas the stress-energy tensor takes the form

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

− gµν 1

2

[
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −

1

2
m
(
ψψ + ψ̄ψ̄

)]
.

(3.81)

4 The Standard Model

The Standard Model 3-group can be defined as:

G = SO(3, 1)×SU(3)×SU(2)×U(1) , H = R4 , L = R4(C)×R64(G)×R64(G)×R64(G) ,

(4.1)

where C denotes the field of complex numbers. The motivation for this choice of the group

L is given in the table below.

1. lepton generation

red color

1. quark generation

green color

1. quark generation

blue color

1. quark generation(
νe

e−

)
L

(
ur

dr

)
L

(
ug

dg

)
L

(
ub

db

)
L

(νe)R (ur)R (ug)R (ub)R

(e−)R (dr)R (dg)R (db)R

We see that in order to introduce one generation of matter one needs to provide 16

spinors, or equivalently the group L has to be chosen as L = R64(G). As there are three

generations of matter, the part of the group L that corresponds to the fermion fields in

the theory is chosen to be L = R64(G)×R64(G)×R64(G). To define the Higgs sector one

needs two complex scalar fields

(
φ+

φ0

)
, or equivalently the scalar sector of the group L is

given as L = R4(C).

The maps ∂, δ and the Peiffer lifting are trivial. The action of the group G on itself

is given via conjugation. The action of the SO(3, 1) subgroup of G on H is via vector

representation and the action of SU(3)× SU(2)×U(1) subgroup on H is via trivial repre-

sentation. The action of the SO(3, 1) on L is via trivial representation for the generators

corresponding to the scalar fields, i.e. the R4(C) subgroup of L, and via spinor represen-

tation for the every quadruple of generators corresponding to the fermion fields, given as
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in the section 3. The information how spinors transform under the SU(3) × SU(2)× U(1)

group is encoded in the action of that subgroup of G on L, as specified in the table above.

For simplicity, in the following, only one family of the lepton sector and only electroweak

part of the gauge sector of the Standard model is considered.

The groups are chosen as:

G = SO(3, 1)× SU(2)×U(1) , H = R4 , Lleptons = R16(G)× R4(C) . (4.2)

The 3-connection then takes the form

α = ωabMab +W ITI +AY , β = βaPa ,

γ = γα
L̃PαL̃ + γα̇L̃Pα̇

L̃ + γα
R̃PαR̃ + γα̇R̃Pα̇

R̃ + γãPã .
(4.3)

Here the indices I, J, . . . take the values 1, 2, 3 and counts the Pauli matrices, generators

of the group SU(2), the indices L̃, L̃′, . . . take the values 1, 2 and count the components of

left doublet, R̃ denotes the right singlet (e−)R and right singlet (νe)R, and indices ã, b̃, . . .

take values 1, 2 and count the components of the scalar doublet. It is also useful to define

ĩ = (L̃, R̃) which takes values 1, . . . , 4.

The action of the group G on L is defined as:

Mab B Pαi =
1

2
(σab)

α
βP

β
i , Mab B Pα̇i =

1

2
(σ̄ab)

β̇
α̇Pβ̇i , Mab B Pã = 0 ,

TI B PαL̃ =
1

2
(σI)

L̃′

L̃P
α
L̃′ , TI B Pα̇L̃ =

1

2
(σI)

L̃′

L̃Pα̇L̃′ ,

TI B PαR̃ = 0 , TI B Pα̇R̃ = 0 , TI B Pã =
1

2
(σI)

b̃
ãPb̃ ,

Y B PαL̃ = −PαL̃ , Y B PαeR = −2PαeR , Y B PανR = −2PανR , Y B Pã = Pã ,

Y B Pα̇L̃ = −Pα̇L̃ , Y B Pα̇eR = −2Pα̇eR , Y B Pα̇νR = −2Pα̇νR . (4.4)

The 3-curvatures are given as:

F = RabMab + F ITI + FY , G = ∇βaPa ,

H = (
→
∇γL̃)αP

α
L̃ + (γ̄L̃

←
∇)α̇P α̇

L̃ + (
→
∇γR̃)αP

α
R̃ + (γ̄R̃

←
∇)α̇P α̇

R̃ + dγãPã .
(4.5)

The topological 3BF action is defined as:

S =

∫
BabR

ab +BIF
I +BF + ea∇βa + ψαĩ(

→
∇γ ĩ)α + ψ̄α̇

ĩ(γ̄ ĩ
←
∇)α̇ + φãdγã . (4.6)

At this point, it is useful to simplify the notation and denote all indices of the group G by

α̂, of the group H by â and L by Â. In order to promote this action to a full theory of

first lepton family coupled to electroweak gauge fields, Higgs field, and gravity, we again
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introduce the appropriate simplicity constraint, as follows

S =

∫
Bα̂ ∧ F α̂ + eâ ∧ Gâ +DÂ ∧H

Â

+
(
Bα̂ − Cα̂β̂Mcdβ̂e

c ∧ ed
)
∧ λα̂ −

(
γÂ − e

a ∧ eb ∧ ecCÂ
B̂MabcB̂

)
∧ λÂ

+ ζabα̂ ∧
(
Mab

α̂εcdefec ∧ ed ∧ ee ∧ ef − F α̂ ∧ ec ∧ ed
)

+ ζabÂ ∧
(
Mabc

Âεcdefed ∧ ee ∧ ef − F Â ∧ ea ∧ eb
)

− εabcdea ∧ eb ∧ ec ∧ ed
(
YÂB̂ĈD

ÂDB̂DĈ +MÂB̂D
ÂDB̂ + LÂB̂ĈD̂D

ÂDB̂DĈDD̂
)

− 4πi l2p εabcde
a ∧ eb ∧ βcDÂT

dÂ
B̂D

B̂ , (4.7)

where:

Bα̂ =
[
Bab BI B

]
, F α̂ =

[
Rab FI F

]
T , DÂ =

[
ψαL̃ ψ̄α̇L̃ ψ

α
R ψ̄α̇R φã

]
,

HÂ =
[

(
→
∇γL̃)α (γ̄L̃

←
∇)α̇ (

→
∇γR̃)α (γ̄R̃

←
∇)α̇ dγã

]
T , γÂ =

[
γαL̃ γ̄α̇L̃ γ

α
R̃ γ̄α̇R̃ γã

]
,

λα̂ =
[
−λab λI λ

]
T , ζcdα̂ =

[
0 ζcdI ζ

cd
]
, ζabÂ =

[
ζab 0 0

]
,

λÂ =
[
λαL λ̄

α̇
L λαR λ̄α̇R λã

]
T , Mcdα̂ =

[
εabcd McdI Mcd

]
,

MabcÂ =
[
εabcdσ

d
αβ̇ψ̄

β̇
L εabcdσ̄

dα̇βψβL εabcdσ
d
αβ̇ψ̄

β̇
R εabcdσ̄

dα̇βψβR Mabcã

]
.

The matrices Cα̂β̂ , CÂB̂, MÂB̂, YÂB̂Ĉ , LÂB̂ĈD̂ and T dÂB̂ are constant matrices, and

carry the information about gauge coupling constants, mass of the Higgs field, Yukawa

couplings and mixing angles, Higgs self-coupling constant and torsion coupling, respectively.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short reminder

of the BF theory and described how one can use it to construct the action for general

relativity (the well known Plebanski model), and the action for the Yang-Mills theory

in flat spacetime, in a novel way. Passing on to higher gauge theory, we have reviewed

the formalism of 2-groups and the corresponding 2BF theory, using it again to construct

the action for general relativity (a model first described in [12]), and the unified action

of general relativity and Yang-Mills theory, both naturally described using the 2-group

formalism. With this background material in hand, in section 3 we have used the idea

of a categorical ladder yet again, generalizing the 2BF theory to 3BF theory, with the

underlying structure of a 3-group instead of a 2-group. This has led us to the main insight

that the scalar and fermion fields can be specified using a gauge group, namely the third

gauge group, denoted L, present in the 2-crossed module corresponding to a given 3-group.

This has allowed us to single out specific gauge groups corresponding to the Klein-Gordon,

Dirac, Weyl and Majorana fields, and to construct the relevant constrained 3BF actions

that describe all these fields coupled to gravity in the standard way.
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The obtained results represent the fundamental building blocks for the construction of

the complete Standard Model of elementary particles coupled to Einstein-Cartan gravity

as a 3BF action with suitable simplicity constraints, as demonstrated in section 4. In

this way, we can complete the first step of the spinfoam quantization programme for the

complete theory of gravity and all matter fields, as specified in the Introduction. This is

a clear improvement over the ordinary spinfoam models based on an ordinary constrained

BF theory.

In addition to this, the gauge group which determines the matter spectrum of the

theory is a completely novel structure, not present in the Standard Model. This new

gauge group stems from the 3-group structure of the theory, so it is not surprising that

it is invisible in the ordinary formulation of the Standard Model, since the latter does

not use any 3-group structure in an explicit way. In this paper, we have discussed the

choices of this group which give rise to all relevant matter fields, and these can simply be

directly multiplied to give the group corresponding to the full Standard Model, encoding

the quark and lepton families and all other structure of the matter spectrum. However,

the true potential of the matter gauge group lies in a possibility of nontrivial unification

of matter fields, by choosing it to be something other than the ordinary product of its

component groups. For example, instead of choosing R8(G) for the Dirac field, one can try a

noncommutative SU(3) group, which also contains 8 generators, but its noncommutativity

requires that the maps δ and { , } be nontrivial, in order to satisfy the axioms of a

2-crossed module. This, in turn, leads to a distinction between 3-curvature and fake 3-

curvature, which can have consequences for the dynamics of the theory. In this way, by

studying nontrivial choices of a 3-group, one can construct various different 3-group-unified

models of gravity and matter fields, within the context of higher gauge theory. This idea

resembles the ordinary grand unification programme within the framework of the standard

gauge theory, where one constructs various different models of vector fields by making

various choices for the Yang-Mills gauge group. The detailed discussion of these 3-group

unified models is left for future work.

As far as the spinfoam quantization programme is concerned, having completed the

step 1 (as outlined in the Introduction), there is a clear possibility to complete the steps 2

and 3 as well. First, the fact that the full action is written completely in terms of differential

forms of various degrees, allows us to adapt it to a triangulated spacetime manifold, in the

sense of Regge calculus. In particular, all fields and their field strengths present in the

3BF action can be naturally associated to the appropriate d-dimensional simplices of a

4-dimensional triangulation, by matching 0-forms to vertices, 1-forms to edges, etc. This

leads us to the following table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄α̃ Ga

4 4-simplex vertex 4-form H, Hα̃, H̄α̃
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Once the classical Regge-discretized topological 3BF action is constructed, one can

attempt to construct a state sum Z which defines the path integral for the theory. The

topological nature of the pure 3BF action, together with the underlying structure of the 3-

group, should ensure that such a state sum Z is a topological invariant, in the sense that it is

triangulation independent. Unfortunately, in order to perform this step precisely, one needs

a generalization of the Peter-Weyl and Plancharel theorems to 2-groups and 3-groups, a

mathematical result that is presently still missing. The purpose of the Peter-Weyl theorem

is to provide a decomposition of a function on a group into a sum over the corresponding

irreducible representations, which ultimately specifies the appropriate spectrum of labels

for the d-simplices in the triangulation, fixing the domain of values for the fields living on

those d-simplices. In the case of 2-groups and especially 3-groups, the representation theory

has not been developed well enough to allow for such a construction, with a consequence of

the missing Peter-Weyl theorem for 2-groups and 3-groups. However, until the theorem is

proved, we can still try to guess the appropriate structure of the irreducible representations

of the 2- and 3-groups, as was done for example in [12], leading to the so-called spincube

model of quantum gravity.

Finally, if we remember that for the purpose of physics we are not really interested in a

topological theory, but instead in one which contains local propagating degrees of freedom,

we are therefore not really engaged in constructing a topological invariant Z, but rather

a state sum which describes nontrivial dynamics. In particular, we need to impose the

simplicity constraints onto the state sum Z, which is the step 3 of the spinfoam quantization

programme. In light of that, one of the main motivations and also main results of our paper

was to rewrite the action for gravity and matter in a way that explicitly distinguishes the

topological sector from the simplicity constraints. Imposing the constraints is therefore

straightforward in the context of a 3-group gauge theory, and completing this step would

ultimately lead us to a state sum corresponding to a tentative theory of quantum gravity

with matter. This is also a topic for future work.

In the end, let us also mention that aside from the unification and quantization pro-

grammes, there is also a plethora of additional studies one can perform with the constrained

3BF action, such as the analysis of the Hamiltonian structure of the theory (suitable for

a potential canonical quantization programme), the idea of imposing the simplicity con-

straints using a spontaneous symmetry breaking mechanism, and finally a detailed study

of the mathematical structure and properties of the simplicity constraints. This list is of

course not conclusive, and there may be many more interesting related topics to study in

both physics and mathematics.
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A Category theory, 2-groups and 3-groups

Definition 1 (Pre-crossed module and crossed module) A pre-crossed module

(H
∂→ G ,B) of groups G and H, is given by a group map ∂ : H → G, together with a

left action B of G on H, by automorphisms, such that for each h1 , h2 ∈ H and g ∈ G the

following identity hold:

g∂hg−1 = ∂(g B h) .

In a pre-crossed module the Peiffer commutator is defined as:

〈h1 , h2〉p = h1h2h
−1
1 ∂(h1) B h−12 .

A pre-crossed module is said to be a crossed module if all of its Peiffer commutators are

trivial, which is to say that

(∂h) B h′ = hh′h−1 ,

i.e. the Peiffer identity is satisfied.

Definition 2 (2-crossed module) A 2-crossed module (L
δ→ H

∂→ G, B, {−, −}) is

given by three groups G, H and L, together with maps ∂ and δ such that:

L
δ→ H

∂→ G ,

where ∂δ = 1, an action B of the group G on all three groups, and an G-equivariant map

called the Peiffer lifting:

{− ,−} : H ×H → L .

The following identities are satisfied:

1. The maps ∂ and δ are G-equivariant, i.e. for each g ∈ G and h ∈ H:

g B ∂(h) = ∂(g B h) , g B δ(l) = δ(g B l) ,

the action of the group G on the groups H and L is a smooth left action by automor-

phisms, i.e. for each g, g1, g2 ∈ G, h1, h2 ∈ H, l1, l2 ∈ L and e ∈ H,L:

g1B(g2Be) = (g1g2)Be , gB(h1h2) = (gBh1)(gBh2) , gB(l1l2) = (gBl1)(gBl2) ,

and the Peiffer lifting is G-equivariant, i.e. for each h1, h2 ∈ H and g ∈ G:

g B {h1 , h2} = {g B h1, g B h2} ;

2. the action of the group G on itself is via conjugation, i.e. for each g , g0 ∈ G:

g B g0 = g g0 g
−1 ;
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3. In a 2-crossed module the structure (L
δ→ H, B′) is a crossed module, with action of

the group H on the group L is defined for each h ∈ H and l ∈ L as:

hB′ l = l {δ(l)−1, h} ,

but (H
∂→ G ,B) may not be one, and the Peiffer identity does not necessary hold.

However, when ∂ is chosen to be trivial and group H Abelian, the Peiffer identity is

satisfied, i.e. for each h, h′ ∈ H:

δ(h) B h′ = hh′ h−1 ;

4. δ({h1, h2}) = 〈h1 , h2〉p, ∀h1, h2 ∈ H,

5. [l1, l2] = {δ(l1) , δ(l2)}, ∀l1 , l2 ∈ L. Here, the notation [l, k] = lkl−1k−1 is used;

6. {h1h2, h3} = {h1, h2h3h−12 }∂(h1) B {h2, h3}, ∀h1, h2, h3 ∈ H;

7. {h1, h2h3} = {h1, h2}{h1, h3}{〈h1, h3〉−1p , ∂(h1) B h2}, ∀h1, h2, h3 ∈ H;

8. {δ(l), h}{h, δ(l)} = l(∂(h) B l−1), ∀h ∈ H , ∀l ∈ L.

Definition 3 (Differential pre-crossed module, differential crossed module)

A differential pre-crossed module (h
∂→ g ,B) of algebras g and h is given by a Lie algebra

map ∂ : h→ g together with an action B of g on h such that for each h ∈ h and g ∈ g:

∂(g B h) = [g, ∂(h)] .

The action B of g on h is on left by derivations, i.e. for each h1, h2 ∈ h and each g ∈ g:

g B [h1, h2] = [g B h1, h2] + [h1, g B h2] .

In a differential pre-crossed module, the Peiffer commutators are defined for each h1, h2 ∈ h

as:

〈h1, h2〉p = [h1, h2]− ∂(h1) B h2 .

The map (h1, h2) ∈ h× h→ 〈h1, h2〉p ∈ h is bilinear g-equivariant map called the Peiffer

paring, i.e. all h1 , h2 ∈ h and g ∈ g satisfy the following identity:

g B 〈h1 , h2〉p = 〈g B h1 , h2〉+ 〈h1 , g B h2〉p .

A differential pre-crossed module is said to be a differential crossed module if all of its

Peiffer commutators vanish, which is to say that for each h1, h2 ∈ h:

∂(h1) B h2 = [h1, h2] .

Definition 4 (Differential 2-crossed module) A differential 2-crossed module is given

by a complex of Lie algebras:

l
δ→ h

∂→ g ,
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together with left action B of g on h, l, by derivations, and on itself via adjoint represen-

tation, and a g-equivariant bilinear map called the Peiffer lifting:

{− , −} : h× h→ l

Fixing the basis in algebra TA ∈ l, ta ∈ h and τα ∈ g:

[TA, TB] = fAB
C TC , [ta, tb] = fab

c tc , [τα, τβ ] = fαβ
γ τγ ,

one defines the maps ∂ and δ as:

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta ,

and action of g on the generators of l, h and g is, respectively:

τα B TA = BαA
B TB , τα B ta = Bαa

b tb , τα B τβ = Bαβ
γ τγ .

Note that when η is g-valued differential form and ω is l, h or g valued differential form

the previous action is defined as:

η B ω = ηα ∧ ωA BαA
B TB , η B ω = ηα ∧ ωa Bαa

b tb , η B ω = ηα ∧ ωβfαβγ τγ .

The coefficients Xab
A are introduced as:

{ta, tb} = Xab
ATA .

The following identities are satisfied:

1. In the differential crossed module (L
δ→ H ,B′) the action B′ of h on l is defined for

each h ∈ h and l ∈ l as:

hB′ l = −{δ(l), h} ,

or written in the basis where ta B′ TA = B′aABTB the previous identity becomes:

B′aA
B

= −δAbXba
B ;

2. The action of g on itself is via adjoint representation:

Bαβ
γ = fαβ

γ ;

3. The action of g on h and l is equivariant, i.e. the following identities are satisfied:

∂a
βfαβ

γ = Bαa
b∂b

γ , δA
a Bαa

b = BαA
BδB

b ;

4. The Peiffer lifting is g-equivariant, i.e. for each h1, h2 ∈ h and g ∈ g:

g B {h1, h2} = {g B h1, h2}+ {h1, g B h2} ,

or written in the basis:

Xab
BBαB

A = Bαa
cXcb

A + Bαb
cXac

A ;
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5. δ({h1, h2}) = 〈h1, h2〉 p , ∀h1, h2 ∈ h, i.e.

Xab
AδA

c = fab
c − ∂aαBαb

c ;

6. [l1, l2] = {δ(l1), δ(l2)} , ∀l1, l2 ∈ l, i.e.

fAB
C = δA

aδB
bXab

C ;

7. {[h1, h2], h3} = ∂(h1)B {h2, h3}+ {h1, [h2, h3]}−∂(h2)B {h1, h3}−{h2, [h1, h3]} ,
∀h1, h2, h3 ∈ h, i.e.

{[h1, h2], h3} = {∂(h1)Bh2, h3}−{∂(h2)Bh1, h3}−{h1, δ{h2, h3}}+{h2, δ{h1, q, h3}},

fab
dXdc

B = ∂a
αXbc

ABαA
B +Xad

Bfbc
d − ∂bαBαA

BXac
A −Xbd

Bfac
d ;

8. {h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} , ∀h1, h2, h3 ∈ h, i.e.

Xad
Afbc

d = Xab
BδB

dXdc
A −Xac

BδB
dXdb

A ;

9. {δ(l), h}+ {h, δ(l)} = −∂(h) B l , ∀l ∈ l , ∀h ∈ h, i.e.

δA
aXab

B + δA
aXba

B = −∂bαBαA
B .

Note that the property 6. implies that either trivial map δ or the trivial Peiffer lifting imply

that L is an Abelian group. Conversely, if L is Abelian, property 6. implies that either the

map δ or the Peiffer lifting is trivial, or both.

In the case of an Abelian group H and trivial map ∂, among the aforementioned

properties the only non-trivial remaining are:

1. δ{h1, h2} = 0 , ∀h1 , h2 ∈ h ;

2. [l1, l2] = {δ(l1), δ(l2)} , ∀l1 , l2 ∈ l ;

3. {δ(l), h} = −{h, δ(l)} , ∀h ∈ h , ∀l ∈ l .

A reader intrested in more details about 3-groups is referred to [25].

B The construction of gauge-invariant actions for 3BF theory

Symmetric bilinear invariant nondegenerate forms are defined as:

〈TA , TB〉l = gAB , 〈ta , tb〉h = gab , 〈τα , τβ〉g = gαβ .

They satisfy the following properties:

• 〈 , 〉g is G-invariant:

〈gταg−1 , gτβg−1〉g = 〈τα , τβ〉g , ∀g ∈ G ;
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• 〈 , 〉h is G-invariant:

〈g B ta , g B tb〉h = 〈ta , tb〉h , ∀g ∈ G ,

and, when (H
∂→ G ,B) is a crossed module, consequently H-invariant:

〈htah−1 , htbh−1〉h = 〈∂(h) B ta , ∂(h) B tb〉h = 〈ta , tb〉h , ∀h ∈ H ;

• 〈 , 〉l is G-invariant:

〈g B TA , g B TB〉l = 〈TA , TB〉l , ∀g ∈ G ,

and in the case when the Peiffer lifting or the map δ is trivial consequently H-

invariant:

〈hB′ TA , hB′ TB〉l = 〈TA − {δ(TA), h} , TB − {δ(TB), h}〉l = 〈TA , TB〉l , ∀h ∈ H .

From the H-invariance of 〈 , 〉l and properties of a crossed module (L
δ→ H ,B′)

follows L-invariance:

〈lTAl−1 , lTBl−1〉l = 〈δ(l) B′ TA , δ(l) B′ TB〉l = 〈TA , TB〉l , ∀l ∈ L .

From the invariance of the bilinear forms follows the existence of gauge-invariant topological

3BF action of the form:

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧ H〉l , (B.1)

where B ∈ A2(M4 , g), C ∈ A1(M4 , h) and D ∈ A0(M4 , l) are Lagrange multipliers, and

F ∈ A2(M4 , g), G ∈ A3(M4 , h) and H ∈ A4(M4 , l) are curvatures defined as in (3.1).

Written in the basis:

F =
1

2
Fαµνταdxµ ∧ dxν , G =

1

3!
Gaµνρtadxµ ∧ dxν ∧ dxρ ,

H =
1

4!
HAµνρσTAdxµ ∧ dxν ∧ dxρ ∧ dxσ ,

the coefficients are:

Fαµν = ∂µα
α
ν − ∂νααµ + fβγ

ααβµα
γ
ν − βaµν∂aα ,

Gaµνρ = ∂µβ
a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν

+ ααµβ
b
νρBαb

a + αανβ
b
ρµBαb

a + ααρβ
b
µνBαb

a − γAµνρδAa ,
HAµνρσ = ∂µγ

A
νρσ − ∂νγAρσµ + ∂ργ

A
σµν − ∂σγAµνρ

+ 2βaµνβ
b
ρσX{ab}

A − 2βaµρβ
b
νσX{ab}

A + 2βaµσβ
b
νρX{ab}

A

+ ααµγ
B
νρσBαB

A − αανγBρσµBαB
A + ααργ

B
σµνBαB

A − αασγBµνρBαB
A .

Note that the wedge product A ∧ B when A is a 0-form and B is a p-form is defined

as A ∧B = 1
p!ABµ1...µpdxµ1 ∧ · · · ∧ xµp .
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Given G-invariant symmetric non-degenerate bilinear forms in g and h, one can define

a bilinear antisymmetric map T : h× h→ g by the rule:

〈T (h1, h2) , g〉g = −〈h1, g B h2〉h, ∀h1, h2 ∈ h , ∀g ∈ g .

See [17] for more properties and the construction of 2BF invariant topological action using

this map. To define 3BF invariant topological action one has to first define a bilinear

antisymmetric map S : l× l→ g by the rule:

〈S(l1, l2), g〉g = −〈l1, g B l2〉l , ∀l1, ∀l2 ∈ l , ∀g ∈ g .

Note that 〈 , 〉g is non-degenerate and

〈l1, g B l2〉l = −〈g B l1, l2〉l = −〈l2, g B l1〉l , ∀g ∈ g, ∀l1, l2 ∈ l .

Morever, given g ∈ G and l1, l2 ∈ l one has:

S(g B l1, g B l2) = g S(l1, l2) g
−1 ,

since for each g ∈ g and l1, l2 ∈ l:

〈g, g−1S(g B l1 , g B l2)g〉g = 〈ggg−1, S(g B l1, g B l2)〉g
= −〈(g g g−1) B g B l1, g B l2〉l
= −〈g B l1 , l2〉l = 〈g ,S(l1, l2)〉g ,

where the following mixed relation has been used:

g B (g B l) = (g g g−1) B g B l . (B.2)

We thus have the following identity:

S(g B l1, l2) + S(l1, g B l2) = [g, S(l1, l2)] .

As far as the bilinear antisymmetric map S : l × l→ g, one can write it in the basis:

S(TA, TB) = SABατα ,

so that the defining relation for S becomes the relation:

SABαgαβ = −Bα[B
CgA]C .

Given two l-valued forms η and ω, one can define a g-valued form:

ω ∧S η = ωA ∧ ηBSABατα .

Now one can define the transformations of the Lagrange multipliers under L-gauge trans-

formations (3.15).
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Further, to define the transformations of the Lagrange multipliers under H-gauge

transformations one needs to define the bilinear map X1 : l× h→ h by the rule:

〈X1(l, h1), h2〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l ,

and bilinear map X2 : l× h→ h by the rule:

〈X2(l, h2), h1〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l .

As far as the bilinear maps X1 and X2 one can define the coefficients in the basis as:

X1(TA, ta) = X1Aa
b tb , X2(TA, ta) = X2Aa

b tb .

When written in the basis the defining relations for the maps X1 and X2 become:

X1Ab
cgac = −Xba

BgAB , X2Ab
cgac = −Xab

BgAB .

Given l-valued differential form ω and h-valued differential form η, one defines a h-valued

form as:

ω ∧X1 η = ωA ∧ ηaX1Aa
btb , ω ∧X2 η = ωA ∧ ηaX2Aa

btb .

Given any g ∈ G, l ∈ l and h ∈ h one has:

X1(g B l, g−1 B h) = g B X1(l, h) , X2(g B l, g B h) = g−1 B X2(l, h) ,

since for each h1, h2 ∈ h and l ∈ l:

〈h2, g−1 B X1(g B l, g B h1)〉h = 〈g B h2, X1(g B l, g B h1)〉h = 〈g B l, {g B h1, g B h2}〉l
〈g B l, g B {h1, h2}〉l = 〈l, {h1, h2}〉l = 〈h2, X1(l, h1)〉h ,

and similarly for X 2. Finaly, one needs to define a trilinear map D : h× h× l→ g by the

rule:

〈D(h1, h2, l), g〉g = −〈l, {g B h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g ,

One can define the coefficients of the trilinear map as:

D(ta, tb, TA) = DabAατα ,

and the defining relation for the map D expressed in terms of coefficients becomes:

DabAβgαβ = −Bαa
cXcb

BgAB .

Given two h-valued forms ω and η, and l-valued form ξ, the g-valued form is given by the

formula:

ω ∧D η ∧D ξ = ωa ∧ ηb ∧ ξADabAβτβ .

The following compatibility relation between the maps X1 and D hold:

〈D(h1, h2, l), g〉g = 〈X1(l, g B h1), h2〉h , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g , (B.3)
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which one can prove valid from the defining relations in terms of the coefficients. One can

demonstrate that for each h1, h2 ∈ h, l ∈ l and g ∈ G:

D(g B h1, g B h2, g B l) = gD(h1, h2, l) g
−1 ,

since for each h1, h2 ∈ h, l ∈ l, g ∈ g and g ∈ G:

〈g−1D(g B h1, g B h2, g B l)g, g〉g = 〈D(g B h1, g B h2, g B l), ggg−1〉g
= 〈X1(g B l, ggg−1 B g B h1), g B h2〉h
= 〈X1(g B l, g B g B h1), g B h2〉h
= 〈g B X1(l, g B h1), g B h2〉h
= 〈X1(l, g B h1), h2〉h
= 〈D(h1, h2, l) , g〉g ,

where the relation (B.2) and the compatibility relation (B.3) were used. We thus have for

each h1, h2 ∈ h, l ∈ l and g ∈ g the following identity:

D(g B h1, h2, l) +D(h1, g B h2, l) +D(h1, h2, g B l) = [g, D(h1, h2, l)] .

Now one can define the transformations of the Lagrange multipliers under H-gauge trans-

formations as in (3.14).

C The equations of motion for the Weyl and Majorana fields

The action for the Weyl spinor field coupled to gravity is given by (3.72). The variation of

this action with respect to the variables Bab, λ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇, ea, βa and ωab

one obtains the complete set of equations of motion, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

∇ψα + λα = 0 ,

∇ψ̄α̇ + λ̄α̇ = 0 ,

−γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇ = 0 ,

−γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ = 0 ,

∇γα −
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇λ̄
β̇ = 0 ,

∇γ̄α̇ − i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βλβ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcde

b ∧ ec ∧ (λ̄α̇σ̄
dα̇βψβ + λασdαβ̇ψ̄

β̇)

−8πil2pεabcde
bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,
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∇ea − 4πl2pεabcde
b ∧ ec ∧ (ψ̄α̇σ̄

dα̇βψβ) = 0 ,

∇Bab − e[a ∧ βb] −
1

2
γσabα

βψβ −
1

2
γ̄α̇σ̄

abα̇
β̇ψ̄

β̇ = 0 .

In the case of the Majorana field, one adds the mass term (3.75) to the action (3.72). Then,

the variation of the action with respect to Bab, ψ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇I , ea, βa and ωab

gives the equations of motion for the Majorana case, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

−∇ψα + λα = 0 ,

−∇ψ̄α̇ + λα̇ = 0 ,

γα − i

6
εabcde

a ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α = 0 ,

γ̄α̇ −
i

6
εabcde

a ∧ eb ∧ ecψβ(σd)βα̇ = 0 ,

∇γα +
i

6
εabcdλ

β̇ ∧ ea ∧ eb ∧ ec(σd)αβ̇ −
1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα

−4iπl2pεabcde
a ∧ eb ∧ βcψ̄β̇(σ̄d)β̇α = 0 ,

∇γ̄α̇ +
i

6
εabcdλβ ∧ ea ∧ eb ∧ ec(σ̄d)α̇β −

1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα̇

−4iπl2pεabcde
a ∧ eb ∧ βcψβ(σd)βα̇ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcdλα ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α +

i

2
εabcdλ

α̇ ∧ eb ∧ ecψβ(σd)βα̇

−1

3
mεabcde

b ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇)− 8πil2pεabcde

bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇ea − 4iπl2pεabcde
b ∧ ec

(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇Bab − e[a ∧ βb] −
1

2
ψα(σab)α

βγβ −
1

2
ψ̄α̇(σ̄ab)α̇β̇ γ̄

β̇ = 0 .
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1 Introduction

The formulation of the theory of quantum gravity (QG) is one of the most fundamental
open problems in modern theoretical physics. In models of QG, as in any quantum theory,
superpositions of states are allowed. In a tentative “theory of everything”, which includes
both gravity and matter at a fundamental quantum level, superpositions of product gravity-
matter states are particularly interesting. Entangled states are highly nonclassical, and
as such are especially relevant because they give rise to a drastically different behavior of
matter from what one would expect based on classical intuition, as confirmed by numerous
examples from the standard quantum mechanics (QM). Therefore, it is interesting to study
such states in the context of a QG coupled to matter, in particular the Schrödinger cat-like
states. Moreover, a recent study [1] suggests that physically allowed states of a gravity-matter
system are generically entangled due to gauge invariance, providing additional motivation for
our study.

In standard QM, entanglement is generically a consequence of the interaction. Nev-
ertheless, there exist situations which give rise to entanglement even without interaction.
For example, the Pauli exclusion principle in the case of identical particles generates entan-
glement without an interaction, giving rise to an effective force (also called the “exchange
interaction”). We investigate in detail whether an entanglement between gravity and matter
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could also be described as a certain type of an effective interaction, and if so, what are its
aspects and details. In order to study this problem, we analyze the motion of a free test par-
ticle in a gravitational field. In general relativity (GR), this motion is described by a geodesic
trajectory. However, we show that in the presence of the gravity-matter entanglement, the
resulting effective interaction causes a deviation from a classical geodesic trajectory. In par-
ticular, we generalize the standard derivation of a geodesic equation from the case of classical
gravity to the case of a full QG model, and derive the equation of motion for a particle which
contains a non-geodesic term, reflecting the presence of the entanglement-induced effective
interaction. The effects we discuss are purely quantum with respect to both gravity and
matter, unlike previous studies of quantum matter in classical curved spacetime [2–5].

As a consequence of the modified equation of motion for a particle, we also discuss
the status of the equivalence principle in the context of QG, and a possible violation of its
weak flavor.

The paper is organized as follows. Section 2 is devoted to a review of the derivation
of the geodesic equation in classical gravity, particularly in GR. The multipole formalism is
employed and the geodesic equation for a particle is derived from the covariant conservation
of the stress-energy tensor. In section 3 we generalize this procedure and derive our main
results. Subsection 3.1 contains the general setup, the abstract quantum gravity framework
that will be used, and the main assumptions. In subsection 3.2 we discuss the effective
covariant conservation equation, which receives a correction to the classical one, due to the
quantum gravity effects. In subsection 3.3 we put everything together and derive our main
result — the effective equation of motion for a point particle, with the leading quantum
correction. In subsection 3.4 we discuss the consistency of the assumptions that enter the
approximation scheme used to derive the effective equation of motion. Section 4 is devoted
to the discussion of the consequences of our results in the context of the weak equivalence
principle. For the purpose of clarity, in subsection 4.1 we first provide the definitions of
various flavors of the equivalence principle. Then, in subsection 4.2 we discuss the status
of the equivalence principle in the context of quantum gravity and the results obtained
in section 3. Subsection 4.3 provides further analysis of universality and equality between
inertial and gravitational masses, in the context of the Newtonian approximation. Finally,
section 5 contains our conclusions, discussion of the results and possible lines of further
research. In the Appendix we give a short review of the multipole formalism used in the
main text, with some mathematical details.

Our notation and conventions are as follows. We will work in the natural system of
units in which c = ~ = 1 and G = l2p, where lp is the Planck length and G is the New-
ton’s gravitational constant. By convention, the metric of spacetime will have the spacelike
Lorentz signature (−,+,+,+). The spacetime indices are denoted with lowercase Greek let-
ters µ, ν, . . . and take the values 0, 1, 2, 3. These can be split into the timelike index 0 and the
spacelike indices denoted with lowercase Latin letters i, j, k, . . . which take the values 1, 2, 3.
The Lorentz-invariant metric tensor is denoted as ηµν . Quantum operators always carry a

hat, φ̂(x), ĝ(x), etc. The parentheses around indices indicate symmetrization with respect
to those indices, while brackets indicate antisymmetrization:

A(µν) ≡
1

2
(Aµν +Aνµ) , A[µν] ≡

1

2
(Aµν −Aνµ) .

Finally, we will systematically denote the values of functions with parentheses, f(x), while
functionals will be denoted with brackets, F [φ].

– 2 –



J
C
A
P
0
9
(
2
0
1
9
)
0
5
7

2 Geodesic equation in general relativity

In the context of the classical theories of gravity, like GR, the question of deriving the
geodesic equation for a particle has initially been studied by Einstein, Infeld and Hoffmann [6],
Mathisson [7], Lubánski [8], Fock [9], and others. Slightly later, the question was revisited
in the seminal paper by Papapetrou [10], with generalizations followed by a number of au-
thors [11–22], developing the so-called multipole formalism, see the appendix A. Recently, the
multipole formalism has been reformulated in a manifestly covariant language and extended
from pointlike objects to strings, membranes and further to p-branes, with general equations
of motion studied in Riemann and Riemann-Cartan spaces [23–28]. Today, the multipole for-
malism and the resulting classes of effective equations of motion have found applications in a
wide range of topics, from string theory [29] to cosmology [30] to blackbrane dynamics [31–33]
to elasticity and the studies of the shape of red blood cells in biological systems [34].

In this section we will demonstrate the application of the multipole formalism in its
crudest single pole approximation, and employ it to derive the geodesic equation of motion
for a point particle in classical Riemannian spacetime. The results presented in this section
are well known in the literature, and illustrate the derivation procedure of the geodesic motion
for a point particle. After reviewing the standard results in this section, in section 3 the same
procedure will be utilized to study the quantum gravity case.

The derivation procedure is based on two main assumptions. The first assumption is
that the matter fields have internal dynamics such that they form particle-like kink solutions
which are stable (i.e., non-decaying) across the spacetime regions under consideration. If that
is the case, one can employ the multipole formalism and expand the stress-energy tensor into
a series of derivatives of the Dirac δ function as (see the appendix A for details):

Tµν(x) =

∫
C
dτ

[
Bµν(τ)

δ(4)(x− z(τ))√
−g

+∇ρ

(
Bµνρ(τ)

δ(4)(x− z(τ))√
−g

)
+ . . .

]
. (2.1)

Here we assume that the stress-energy tensor of matter fields has nonzero value only near some
timelike curve C represented by parametric equations xµ = zµ(τ), where τ is a parameter
counting the points along the curve C. In that case, the B-coefficients in the δ series will
be smaller and smaller with each new term in the series. We introduce a series of smallness
scales for the coefficients,

Bµν ∼ O0 , Bµνρ ∼ O1 , Bµνρσ ∼ O2 , . . .

such that one can consider the multipole scales to behave as

O0 � O1 � O2 � . . . (2.2)

Next we choose to work in the so-called single pole approximation, in which all quantities of
order O1 and higher can be neglected. It is also assumed that the typical radius of curvature
of spacetime near the curve C will be large enough not to interfere in the internal dynamics
of the matter fields along C and break the kink configuration apart. Physically speaking,
the sequence of inequalities (2.2) states that one can systematically approximate the full
solution of the matter field equations of motion by neglecting various degrees of freedom
which describe the “size” and “shape” of the kink compared to its orbital motion (i.e.,
motion along the curve C). Given this setup, in the single pole approximation the matter
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fields are in a configuration that looks like a point particle traveling along a worldline curve
C, and terms of order O1 and higher can be dropped from the stress-energy tensor, giving:

Tµν(x) =

∫
C
dτ Bµν(τ)

δ(4)(x− z(τ))√
−g

. (2.3)

The second assumption is the validity of the local Poincaré invariance for the matter
field equations. Namely, the classical action which describes the gravity-matter system can
be generally written as

S[g, φ] = SG[g] + SM [g, φ] ,

where g and φ denote gravitational and matter degrees of freedom, respectively, and it is
generally considered to feature local Poincaré invariance. Our assumption is that the matter
action SM and the gravitational action SG are invariant even taken separately. If this is the
case, the Noether theorem gives us the covariant conservation of the stress-energy tensor of
matter fields,

∇νTµν = 0 . (2.4)

Taken together, assumptions (2.3) and (2.4) are sufficient to establish two results:

(a) that the parametric functions z(τ) of the curve C satisfy the geodesic equation,

d2zλ(τ)

dτ2
+ Γ λµν

dzµ(τ)

dτ

dzν(τ)

dτ
= 0 , (2.5)

where Γ λµν is the Christoffel connection for the background spacetime metric gµν , and

(b) that the leading order coefficient Bµν(τ) in the stress-energy tensor for the particle has
the form

Bµν(τ) = muµ(τ)uν(τ) , (2.6)

where m ∈ R\{0} is an arbitrary constant parameter, while uµ is the normalized
tangent vector to the curve C,

uµ ≡ dzµ(τ)

dτ
, uµuνgµν = −1 .

In order to demonstrate these two statements, we start from (2.4), contract it with an
arbitrary test function fµ(x) of compact support, and integrate over the whole spacetime,∫

M4

d4x
√
−g fµ∇νTµν = 0 .

Then we perform the partial integration to move the covariant derivative from the stress-
energy tensor to the test function. The boundary term vanishes since the test function has
compact support, giving ∫

M4

d4x
√
−g Tµν∇νfµ = 0 .

Then we substitute (2.3), switch the order of integrations and perform the integral over
spacetime M4, ending up with ∫

C
dτBµν∇νfµ = 0 . (2.7)
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The spacetime covariant derivative of the test function can be split into a component tangent
to the curve C and a component orthogonal to it, in the following way. Using the identity

δλµ = −uλuµ + P λ⊥µ , (2.8)

where −uλuµ and P λ⊥µ are projectors along uµ and orthogonal to uµ, respectively, we rewrite
the derivative of fν as

∇νfµ = −uν∇fµ + f⊥νµ , (2.9)

where ∇ ≡ uλ∇λ is the covariant derivative in the direction of the curve C, while f⊥νµ ≡
P λ⊥ν∇λfµ is a quantity orthogonal to the curve C with respect to its first index. Substitut-
ing (2.9) into (2.7), and performing another partial integration, we find∫

C
dτ
[
fµ∇(Bµνuν) +Bµνf⊥νµ

]
= 0 ,

where the boundary term again vanishes due to the compact support of the test function.
Given that the values of fµ and f⊥νµ are both arbitrary and mutually independent along

the curve C, the coefficients multiplying them must each be zero. The first term gives us

∇(Bµνuν) = 0 , (2.10)

while the second term, knowing that f⊥νµ is orthogonal to the curve C in its first index, gives

BµνP λ⊥ν = 0 . (2.11)

Focus first on (2.11). Knowing that Bµν is symmetric, we can use (2.8) to decompose it into
orthogonal and parallel components with respect to its two indices,

Bµν = Bµν
⊥ +Bµ

⊥u
ν +Bν

⊥u
µ +Buµuν ,

where Bµν
⊥ , Bµ

⊥ and B are unknown coefficients, the first two being orthogonal to the curve
C in all their indices. Substituting this expansion into (2.11), one finds that

Bµν
⊥ = 0 , Bµ

⊥ = 0 ,

leaving the scalar B as the only nonzero component of Bµν . Changing the notation from B
to m, one obtains

Bµν(τ) = m(τ)uµuν . (2.12)

This equation looks very similar to (2.6) but is still not equivalent to it, since the coefficient
m(τ) is still not known to be a constant.

Next, focus on (2.10). Substituting (2.12), it reduces to

∇(muµ) = 0 . (2.13)

Projecting onto the tangent direction uµ and using the identity uµ∇uµ = 0, one obtains

∇m ≡ dm

dτ
= 0 , (2.14)

establishing that the parameter m is actually a constant. Given this, equation (2.13) re-
duces to

∇uµ = 0 . (2.15)
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Remembering that ∇ ≡ uλ∇λ and expanding the covariant derivative, we see that this is the
geodesic equation (2.5). Finally, (2.14) and (2.12) together give (2.6), which completes the
proof of statements (a) and (b).

There are three general remarks one should make regarding the above procedure. The
first remark is about the physical interpretation and properties of the free parameter m.
Namely, it can be given the interpretation of the total mass of the particle — substituting (2.6)
into the stress-energy tensor (2.3) and integrating the T 00 component over the volume of the
spatial hypersurface orthogonal to uµ, one can easily verify that the total rest-energy of the
matter fields at a given time is equal to m. Note, however, that the sign of m is not fixed
to be positive. This is not surprising, since the covariant conservation equation (2.4) and
the stress-energy tensor (2.3) do not contain any information (or assumption) about the
positivity of energy. Instead, the positive energy condition m > 0 has to be established from
the full matter field equations, which take into account the internal dynamics of the matter
fields that make up the particle.

The second remark is about the metric gµν of the background geometry. When dis-
cussing the motion of a particle, the background geometry is usually assumed to be fixed,
and backreaction of the gravitational field of the particle itself is not taken into account, lead-
ing to the notion of a “test particle”. However, ignoring the backreaction is not a necessary
assumption. Namely, one can take the full stress-energy tensor of the matter fields which form
the kink solution (as opposed to the approximate single pole stress-energy tensor (2.3)), put
it as a source into the Einstein’s field equations and solve for the metric gµν . The resulting
metric does include the backreaction, and can then be reinserted into the geodesic equation
for the particle. Note that this procedure is self-consistent, since the geodesic motion of the
particle is a consequence of the covariant conservation equation (2.4) which is in turn itself a
consequence of Einstein’s field equations. Also note that the metric gµν obtained in this way
does not necessarily give rise to the black hole geometry in the neighborhood of the particle.
This is because the Schwarzschild radius of the kink may be (and usually is) much smaller
than the scale O1 which defines the precision of the single pole approximation (2.3). A simple
example would be the motion of a planet around the Sun — in the single pole approximation,
the radius of the planet (itself far larger than the planet’s gravitational radius) is considered
to be of the order O1 and the planet is treated as a pointlike object, but the spacetime metric
used in the geodesic equation can still take into account the planet’s gravitational field in
addition to the field of the Sun.

The third remark is about going beyond the single pole approximation. This has been
studied in detail in the literature [10–21, 25–28], so here we merely point out the main
physical interpretation. Namely, keeping the second term in the multipole expansion (2.1)
physically amounts to giving the particle a nonzero “thickness”, in the sense that its internal
angular momentum can be considered nonzero. In the resulting equation of motion for the
particle, this angular momentum couples to the spacetime curvature tensor, giving rise to
a deviation from the geodesic motion. This can intuitively be understood as an effect of
tidal forces acting across the scale of the kink’s width, pushing it off the geodesic trajectory.
Similarly, including quadrupole and higher order terms in (2.1) takes into account additional
internal degrees of freedom of the kink, which also couple to spacetime geometry and produce
a further deviation from geodesic motion.

The above review of the multipole formalism, and its application to the derivation of
the geodesic equation in GR, will be used in the next section to discuss the corrections to
the motion of a particle stemming from quantum gravity. As we shall see, these quantum
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corrections will give rise to additional terms in the effective equation of motion for a particle,
pushing it slightly off the geodesic trajectory, even in the single pole approximation.

3 Geodesic equation in quantum gravity

In this section we discuss the motion of a particle within the framework of quantum gravity.
The exposition is structured into four parts — first, we introduce the abstract quantum
gravity formalism, and give some technical details about the description of the states. In the
second part, we discuss the quantum version of the covariant conservation equation of the
stress-energy tensor. In the third part we adapt the derivation presented in section 2 to the
quantum formalism, and obtain the effective equation of motion for the particle. Finally, in
the fourth part we discuss the self-consistency assumptions that go into the calculation.

3.1 Preliminaries and the setup

We work in the so-called generic abstract quantum gravity setup, as follows. Starting from
the Heisenberg picture for the description of quantum systems, we assume that gravitational
degrees of freedom are described by some gravitational field operators ĝ(x), while matter
degrees of freedom are described by matter field operators φ̂(x), where x represents the
coordinates of some point on a 4-dimensional spacetime manifoldM4. Both sets of operators
have their corresponding canonically conjugate momentum operators, π̂g(x) and π̂φ(x), such
that the usual canonical commutation relations hold. The total (kinematical) Hilbert space
of the theory is Hkin = HG ⊗ HM , where the gravitational and matter Hilbert spaces HG
and HM are spanned by the bases of eigenvectors for the operators ĝ and φ̂, respectively.
The total state of the system, |Ψ〉 ∈ Hkin, does not depend on x, in line with the Heisenberg
picture framework.

There are several important points that need to be emphasized regarding the above
setup. First, we do not explicitly state what are the fundamental degrees of freedom ĝ for
the gravitational field. They can be chosen in many different ways, giving rise to different
models of quantum gravity. Since we aim to present the analysis of geodesic motion which is
model-independent, we refrain from specifying what are the fundamental degrees of freedom
ĝ. Instead, we merely assume that the operators describing the spacetime geometry, i.e.,
the metric, connection, curvature, etc., depend somehow on ĝ and π̂g, and are expressible as
operator functions in terms of them:

ĝµν = ĝµν(ĝ, π̂g) , Γ̂ λµν = Γ̂ λµν(ĝ, π̂g) , R̂λµνρ = R̂λµνρ(ĝ, π̂g) , . . .

When discussing these geometric operators, for simplicity we will usually not explicitly write
their (ĝ, π̂g)-dependence.

Second, in order for any operator function to be well defined, some operator ordering
has to be assumed. However, since we aim to work in an abstract model-independent QG
formalism, we do not choose any particular ordering, but merely assume that one such
ordering has been fixed. In a similar fashion, we also simply assume that all operators and
spaces are well defined, convergent, and otherwise specified in enough mathematical detail to
have a well defined and unique QG model. In a nutshell, our calculations are formal, in the
sense that one should be able to repeat them in a detailed fashion if one is given a specific
model of QG. This also means that our analysis and results should not depend on any of
these details, but are rather common to a large class of QG models, and are based only on
very few assumptions given above.
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Third, we employ a natural distinction between gravitational and matter degrees of
freedom. Namely, whereas geometric operators such as metric, curvature, and so on, depend
only on ĝ and π̂g, matter operators like field strengths, stress-energy tensor, etc., will gener-

ically be operator functions of both ĝ, π̂g, and the fundamental matter degrees of freedom φ̂
and π̂φ. In other words, we assume that the separation between gravity and matter present
in the classical theory, described by an action of the form

Stotal[g, φ] = Sgravity[g] + Smatter[g, φ] ,

remains present also in the full quantum regime. That is to say, we assume that one can
construct a theory of quantum gravity without matter fields, using only gravitational degrees
of freedom g, so that this theory gives sourceless Einstein’s equations of GR in the classical
limit. Once such a pure-QG model has been constructed, we assume one can couple matter
φ to it without changing the structure of the gravitational sector, obtaining the full QG
model which features Einstein’s equations with appropriate matter sources in the classical
limit. While we do not consider this to be a strong assumption, we feel that it is nevertheless
important to spell it out explicitly, since there may exist some QG models which fail to satisfy
it, and our analysis may be inapplicable to such models.

After the introduction of the above conceptual setup, we turn to some more practical
details. For the purpose of discussing geodesic motion, we are mostly interested in the
effective classical theory of the abstract QG introduced above. To that end, the main objects
of attention are classical states of gravity and matter, denoted by |Ψ〉 ∈ HG ⊗ HM . By
classical, we mean that the “effective classical” values for the metric tensor and the matter
stress-energy tensor, given by the expectation values of the corresponding operators

gµν = 〈Ψ|ĝµν |Ψ〉 , Tµν = 〈Ψ|T̂µν |Ψ〉 (3.1)

satisfy classical Einstein equations of the GR. A recent study suggests that physical states of
gravity and matter are generically entangled [1]. For our analysis, we do not need to assume
that the overall gravity-matter state is separable, and thus we will work with a generic state
|Ψ〉 (see appendix B for the discussion of the separable case).

For the purpose of our paper, we will consider a toy example state, defined as

|Ψ〉 = α|Ψ〉+ β|Ψ̃〉 , (3.2)

where |Ψ̃〉 is some other classical state analogous to |Ψ〉, but giving different expectation
values for the classical metric and stress-energy tensors:

g̃µν = 〈Ψ̃|ĝµν |Ψ̃〉 , T̃µν = 〈Ψ̃|T̂µν |Ψ̃〉 . (3.3)

One can see that our toy-example state (3.2) is a Schrödinger-cat type of state, describing a
coherent superposition of two classical configurations of gravitational and matter fields. It
will become evident later on that qualitative conclusions of the paper do not depend on the
fact that (3.2) has precisely two terms in the sum. Choosing the state with three, four or more
terms will lead to analogous conclusions, although quantitative details of the computation
may become technically more involved.

Given that (3.2) is a Schrödinger-cat type of state, there are some phenomenological
restrictions on the values of the independent parameters β and S ≡ 〈Ψ|Ψ̃〉. Namely, in
the ordinary experimental situations we basically never observe this kind of states, which
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means that the overall entangled state |Ψ〉 looks pretty much like a classical state, say
the state |Ψ〉. In other words, we want the fidelity between these two states to be large,
F (|Ψ〉, |Ψ〉) = |〈Ψ|Ψ〉| ≈ 1. From (3.2) we obtain

〈Ψ|Ψ〉 = α+ βS ≡ κ .

Define |Ψ⊥〉, such that
|Ψ̃〉 = S|Ψ〉+ ε|Ψ⊥〉 ,

〈Ψ|Ψ⊥〉 = 0 and ε =
√

1− |S|2. Thus,

F 2 = |〈Ψ|Ψ〉|2 = 1− η2 , (3.4)

where we introduce the small parameter

η ≡ βε .

Here, we have used the normalization condition for the entangled state (3.2),

〈Ψ|Ψ〉 = α2 + β2 + 2αβRe(S) = 1 .

Given the above definitions for κ and η, we can rewrite the total state (3.2) as

|Ψ〉 = κ|Ψ〉+ η|Ψ⊥〉 , (3.5)

where |κ|2 = F 2 = 1 − η2. The physical requirement of large fidelity implies that we study
the limit |κ| ≈ 1, η → 0. We will therefore systematically expand the expectation values of
all operators into power series in η, up to order O(η2).

At this point we can evaluate the expectation values for the metric and stress-energy
operators in the state (3.5), obtaining

gµν = 〈Ψ|ĝµν |Ψ〉 = (1− η2)gµν + η2〈Ψ⊥|ĝµν |Ψ⊥〉+ 2ηRe
(
κ〈Ψ⊥|ĝµν |Ψ〉

)
, (3.6)

Tµν = 〈Ψ|T̂µν |Ψ〉 = (1− η2)Tµν + η2〈Ψ⊥|T̂µν |Ψ⊥〉+ 2ηRe
(
κ〈Ψ⊥|T̂µν |Ψ〉

)
. (3.7)

It is easy to see that interference terms from the above expressions are generically nonvan-
ishing. Indeed, even if, say, κ〈Ψ⊥|ĝµν |Ψ〉 were purely imaginary, a simple change of relative
phase between |Ψ〉 and |Ψ̃〉 would give rise to a nontrivial real part. Namely, given a fixed
choice of |Ψ̃〉, the set of choices for |Ψ〉 for which the interference term is purely imaginary
is of measure zero compared to the full set of possible phase shifts of |Ψ〉. An analogous
argument applies for κ〈Ψ⊥|T̂µν |Ψ〉 as well. For a detailed analysis, see appendix C.

Let us denote the metric and stress-energy interference terms as ḡµν and T̄µν , respec-
tively. Since we want to expand (3.6) and (3.7) into power series in η up to linear order, we
can write

ḡµν ≡ 2 Re
(
κ〈Ψ⊥|ĝµν |Ψ〉

)
= hµν +O(η) , (3.8)

T̄µν ≡ 2 Re
(
κ〈Ψ⊥|T̂µν |Ψ〉

)
= tµν +O(η) . (3.9)

Here, hµν and tµν are η-independent parts of ḡµν and T̄µν . Thus, we can finally write:

gµν = gµν + η hµν +O(η2) , (3.10)

Tµν = Tµν + η tµν +O(η2) . (3.11)
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In what follows, we will refer to the classical state |Ψ〉 as the dominant state, while the
other classical state |Ψ̃〉 will be called the sub-dominant state. To justify this terminology,
recall the above requirement (3.4) that the overall entangled state |Ψ〉 looks like the classical
state |Ψ〉, i.e., F 2 = 1 − η2, with the parameter η ≡ βε being small. Therefore, in the case
β → 0 and ε finite, the state |Ψ̃〉 enters (3.2) with a very small contribution, and is thus
sub-dominant. On the other hand, in the case when β is finite and ε → 0, the states |Ψ〉
and |Ψ̃〉 are essentially indistinguishable, and their roles can be exchanged, as either can be
considered sub-dominant to the other. By convention, we choose |Ψ̃〉 to again play the role
of the sub-dominant state.

While in any quantum theory entangled states are allowed, note that when considering
a product state of the gravity-matter system (i.e., the case η = 0), there is a danger that
such a state may fail to be gauge invariant, as argued in [1]. So we need to introduce at
least a small sub-dominant state, in order to ensure the gauge invariance of the total state.
The simplest possible candidate state which describes the classical physics sufficiently well,
and simultaneously stands a chance of being gauge invariant, is the genuinely entangled
state (3.2), with β 6= 0 and |Ψ̃〉 6= |Ψ〉, leading to η being very small, but nonzero.

Regarding the effective entangled metric and stress-energy tensors (3.10) and (3.11), it
is important to stress that they do not satisfy classical Einstein’s equations of GR. Namely,
we assume that Einstein’s equations are separately satisfied by the metric and stress-energy
tensors (3.1) coming from the classical state |Ψ〉, and by the metric and stress-energy ten-
sors (3.3) coming from the other classical state |Ψ̃〉, as two different classical solutions:

Rµν(g)− 1

2
gµνR(g) = 8πl2p Tµν , Rµν(g̃)− 1

2
g̃µνR(g̃) = 8πl2p T̃µν .

However, due to the nonlinearity of Einstein’s equations, and due to the presence of the
interference terms hµν and tµν in (3.10) and (3.11), quantities gµν and Tµν do not satisfy
Einstein’s equations, as long as η 6= 0. This leads us to the following physical interpreta-
tion. First, it is natural to expand all quantities as corrections to the dominant classical
configuration (gµν , Tµν), including the equation of motion for a point particle. Second, as we
shall see in the remainder of the text, given that (gµν ,Tµν) contains quantum gravity cor-
rections through the interference terms, the presence of these quantum corrections in (3.10)
and (3.11) will introduce an “effective force” term into the effective equation of motion for
the particle. Finally, this effective force term will be pushing the particle off the geodesic
trajectory defined by the classical dominant metric gµν .

3.2 Effective covariant conservation equation

After the discussion of the general QG setup and the state (3.2), we move on to the discussion
of the quantum analog of the covariant conservation equation (2.4). As in the classical theory,
our basic assumption is that the matter sector of our QG model features local Poincaré
invariance, i.e., that this symmetry is preserved at the quantum level. This assumption gives
rise to a Gupta-Bleuler-like condition on the physical states, in the form

〈Ψ|∇̂ν T̂µν |Ψ〉 = 0 , (3.12)

where ∇̂µ is the covariant derivative operator, defined by promoting the metric appearing in
the Christoffel symbols into a corresponding operator. In general, the action of the stress-
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energy operator on the state |Ψ〉 can be written1 as

T̂µν |Ψ〉 = T µν |Ψ〉+ ∆T µν |Ψ⊥〉 , (3.13)

where T µν and ∆T µν are the expectation value and the uncertainty of the operator T̂µν in
the state |Ψ〉, respectively,

T µν ≡ 〈Ψ|T̂µν |Ψ〉 , ∆T µν ≡
√
〈Ψ|

(
T̂µν

)2
|Ψ〉 −

(
〈Ψ|T̂µν |Ψ〉

)2
,

while |Ψ⊥〉 is some state orthogonal to |Ψ〉. Note that the equation of the form (3.13)
is completely general, holding for any stress-energy operator acting on an arbitrary state.
Substituting (3.13) into (3.12), we obtain

∇νT
µν + 〈Ψ|∇̂ν |Ψ⊥〉∆T µν = 0 , (3.14)

where ∇ν is the expectation value of the operator ∇̂ν ,

∇ν ≡ 〈Ψ|∇̂ν |Ψ〉 .

At this point we need to make one more assumption. Namely, we assume that the error
scale of the single pole approximation is bigger than the uncertainty of the stress-energy
operator, ∆T µν . Symbolically,

O1 & ∆T µν . (3.15)

This means that in the single pole approximation we do not see the effects of the quantum
fluctuations of matter fields. Intuitively, this is a reasonable assumption in most cases. For
example, in the case of the kink solution describing the hydrogen atom, the scale on which
one can detect quantum fluctuations (i.e., the Lamb shift effects) is much smaller than the
size of the atom itself (i.e., the radius of the first Bohr orbit). Therefore, we expect that if our
single pole approximation ignores the size of the atom itself, it also ignores the corresponding
quantum fluctuations. An analogous assumption is made in relation to the uncertainty of
the metric operator ĝµν ,

O1 & ∆gµν , (3.16)

given that the quantum gravity fluctuations can arguably also be ignored in the single pole
approximation.

Applying (3.15) to (3.14), in the single pole approximation the second term can be
dropped, leading to the effective classical covariant conservation equation,

∇νT
µν = 0 . (3.17)

In a similar fashion, one can employ (3.16) to drop the off-diagonal components in the
Christoffel symbol operators, leading to an effective classical expression

Γ λµν =
1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) , (3.18)

where gµν ≡ 〈Ψ|ĝµν |Ψ〉 is the effective classical metric and gµν is its inverse matrix.

1Given any self-adjoint operator Â and any state |Ψ〉, one can write

Â|Ψ〉 = a|Ψ〉+ b|Ψ⊥〉 ,

where 〈Ψ|Ψ⊥〉 ≡ 0 and a, b ∈ C. Multiplying this equation by 〈Ψ| and by 〈Ψ|Â from the left, one easily obtains
that a and b are the expectation value and the uncertainty of the operator Â in the state |Ψ〉, respectively.
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With effective classical expressions (3.17) and (3.18) in hand, we can now employ (3.10)
and (3.11) to expand them into the dominant and correction parts. First we use (3.10) and
gµλg

λν = δνµ to find the inverse entangled metric gµν = gµν − ηgµρgνσhρσ +O(η2), and then
substitute into (3.18) to obtain

Γ λµν = Γ λµν +
η

2
gλσ (∇µhσν +∇νhσµ −∇σhµν) +O(η2) , (3.19)

where the Christoffel symbols in ordinary ∇µ are defined with respect to the dominant
classical metric gµν . Then, expanding (3.17) into the form

∂νT
µν + Γ µσνT

σν + Γ νσνT
µσ = 0 ,

we substitute (3.11) and (3.19), and after a bit of algebra we rewrite it as:

∇νTµν + η

[
∇νtµν + T σν

(
∇σhµν −

1

2
∇µhνσ

)
+

1

2
Tµσ∇σhνν

]
+O(η2) = 0 . (3.20)

This equation is the one we sought out — it represents the analog of the classical covariant
conservation equation (2.4), while taking into account the interference terms between the
two classical states in (3.2), approximated to the linear order in η.

As a final step, (3.20) can be rewritten in a more compact form. For convenience,
introduce the following shorthand notation (see our conventions from the last paragraph of
the Introduction),

Fµνσ ≡ ∇(σh
µ
ν) −

1

2
∇µhνσ , (3.21)

and also note that

F ννσ =
1

2
∇σhνν +

1

2
∇νhνσ −

1

2
∇νhνσ =

1

2
∇σhνν ,

so that, dropping the term O(η2), equation (3.20) is rewritten as:

∇ν (Tµν + ηtµν) + 2ηF (µ
νσT

ν)σ = 0 . (3.22)

The equation (3.22) represents the effective classical covariant conservation law for the
stress-energy tensor, with the included quantum correction, represented to first order in η.
It is the starting point for the remainder of our analysis, and replaces equation (2.4) in the
derivation of the equation of motion for a point particle.

Finally, note that the quantum correction term in (3.22) has two distinct parts — one
part comes from the quantum correction to the dominant classical stress-energy tensor, i.e.,
the interference term tµν , while the other part comes from the quantum correction to the
dominant classical metric, i.e., the interference term hµν . This latter quantum correction
enters through the Christoffel connection terms present in the covariant derivative. As we
shall see in the next subsection, its presence will be crucial for the “force term” in the equation
of motion for the particle, responsible for the deviation from the classical geodesic trajectory.

3.3 Effective equation of motion

We are now ready to derive the equation of motion for a particle in the single pole approxi-
mation, using the technique presented in section 2. However, instead of (2.4), we start from
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the effective covariant conservation law (3.22), which contains the quantum correction terms.
Throughout, we assume the following relation of scales,

O(η) > O1 ≥ O(η2) .

In other words, we assume that the quantum correction terms linear in η are not smaller
than the width of our particle, since otherwise one could simply ignore them and recover the
classical geodesic motion for the particle.

Repeating the method of section 2, we begin by contracting (3.22) with an arbitrary
test function fµ(x) of compact support, and integrating over the whole spacetime,∫

M4

d4x
√
−g fµ

[
∇ν (Tµν + ηtµν) + 2ηF (µ

νσT
ν)σ
]

= 0 .

We then perform the partial integration to move the covariant derivative from the stress-
energy tensors to the test function. As before, the boundary term vanishes since the test
function has compact support, giving∫

M4

d4x
√
−g
[
− (Tµν + ηtµν)∇νfµ + 2ηF (µ

νσT
ν)σfµ

]
= 0 . (3.23)

Now we need to model the dominant and correction parts of the stress-energy tensor.
For the dominant part, it is straightforward to assume the single pole approximation, as was
done in the classical case:

Tµν(x) =

∫
C
dτBµν(τ)

δ(4)(x− z(τ))√
−g

. (3.24)

Regarding the correction term, we also use the single pole approximation,

tµν(x) =

∫
C
dτB̄µν(τ)

δ(4)(x− z(τ))√
−g

, (3.25)

but one should note that in the case of tµν it is less obvious why this approximation is
adequate, and requires some justification. However, in order to focus on the derivation of
the particle equation of motion, for the moment we simply adopt (3.25), and postpone the
analysis and the meaning of this approximation for subsection 3.4.

Then we substitute (3.24) and (3.25) into (3.23), switch the order of integrations and
perform the integral over spacetime M4, ending up with∫

C
dτ
[
−
(
Bµν + ηB̄µν

)
∇νfµ + 2ηF (µ

νσB
ν)σfµ

]
= 0 . (3.26)

The next step is to employ the identity (2.9) to separate the tangential and orthogonal
components of the derivative of the test function. Substituting it into (3.26), and performing
another partial integration, we find∫

C
dτ
[ (
Bµν + ηB̄µν

)
f⊥νµ +

[
∇
(
Bµνuν + ηB̄µνuν

)
− 2ηF (µ

νσB
ν)σ
]
fµ

]
= 0 ,

where the boundary term again vanishes due to the compact support of the test function.
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After these transformations, we make use of the same argument that both fµ and f⊥νµ
are arbitrary and mutually independent along the curve C, concluding that the coefficients
multiplying them must each be zero. The first term gives us

∇
(
Bµνuν + ηB̄µνuν

)
− 2ηF (µ

νσB
ν)σ = 0 , (3.27)

while the second term, knowing that f⊥νµ is orthogonal to the curve C in its first index, gives(
Bµν + ηB̄µν

)
P λ⊥ν = 0 .

As in the previous case, given that Bµν and B̄µν are symmetric, one can decompose them
into tangential and orthogonal components using (2.8), and then from (2.11) read off that
all orthogonal components must be zero, concluding that

Bµν + ηB̄µν = (B + ηB̄)uµuν ≡ m(τ)uµuν , (3.28)

where again we emphasized that the parameter m may depend on the particle’s proper time τ .

Next, substituting this into (3.27) and neglecting the term O(η2), we obtain

∇ (muµ) + ηmuσ (Fµνσu
ν + F ννσu

µ) = 0 . (3.29)

Projecting onto the tangent direction uµ and using the identity uµ∇uµ = 0, one obtains

∇m = ηmuσ
(
uνuλF

λ
νσ − F ννσ

)
, (3.30)

establishing that, in contrast to the classical case, here the parameter m fails to be constant.
Substituting this back into the equation (3.29), after some simple algebra we obtain

∇uµ + ηuνuσPµ⊥λF
λ
νσ = 0 ,

where the parameter m cancels out of the equation. As a final step, introducing the shorthand
notation Fµ⊥νσ ≡ P

µ
⊥λF

λ
νσ, we can rewrite the equation of motion in its final form

∇uµ + ηuνuσFµ⊥νσ = 0 . (3.31)

The presence of the orthogonal projector in the second term should not be surprising. Namely,
since acceleration must always be orthogonal to the velocity, the second term in the equation
must also be orthogonal to velocity, and this is guaranteed by the presence of the orthogo-
nal projector.

Equations (3.28), (3.30) and (3.31) are the main result of this paper, and we discuss
them in turn. Equation (3.28) determines the structure of the stress-energy tensor describing
the point particle, as a function of tangent vectors of its world line and a scalar parameter
m(τ). Formally, it has the same form as its classical counterpart (2.12), and provision-
ally the parameter m may be even called effective mass. Namely, in the rest frame of the
particle, integration of the T 00 component of the entangled stress-energy tensor over the
3-dimensional spatial hypersurface can be interpreted as the total rest-energy of the kink
configuration of fields that represents the particle. This terminology is of course provisional,
since all these notions are merely a part of the semiclassical approximation of the full quantum
gravity description.
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Equation (3.30) determines the proper time evolution of the parameterm(τ). In contrast
to the classical case, where m(τ) was determined by (2.14) to be a constant, here we see
that its time derivative is proportional to (covariant derivatives of) the interference term
hµν between the dominant and sub-dominant classical geometry, via (3.21). If one puts
η = 0, (3.30) reduces to the classical case, as expected. The interference between the two
geometries gives rise to an effective force that is responsible for the change in time of the
particle’s effective mass. Since the particle is (effectively) not isolated, its total energy is
therefore not conserved, in the sense of equation (3.30).

Finally, and most importantly, equation (3.31) represents the effective equation of mo-
tion of the particle, determining its world line. It has the form of the classical geodesic
equation (2.15) with an additional correction term proportional to η and to the interfer-
ence term hµν . This additional term represents an effective force, pushing the particle off
the classical geodesic trajectory. It is analogous to the notion of the “exchange interaction”
force in molecular physics, in the region where the wavefunctions of the two electrons in a
molecule overlap.

In our case, however, the force term is determined by the interference between the two
classical spacetime and matter configurations superposed in the state (3.2), and in particular
by the off-diagonal components of the metric operator ĝµν , see (3.8). It is thus a pure
quantum gravity effect, a consequence of the nontrivial structure of the metric operator. Of
course, the detailed properties and the magnitude of the force term depend on the choice of
the two classical gravity-matter configurations and on the details of the quantization of the
gravitational field.

3.4 Consistency of the approximation scheme

Regarding the analysis and the derivation of the effective equation of motion for a particle
discussed in the previous subsection, there is one issue that we should reflect on. It is related
to the additional consistency conditions that stem from our assumption that the quantum
correction to the stress-energy tensor is approximated with a single pole term (3.25).

Namely, the two stress-energy tensors that enter the derivation of the effective equation
of motion — the classical dominant stress-energy tensor Tµν , and the interference stress-
energy tensor tµν — can in general be written in the single pole approximation as:

Tµν =

∫
C
dτ Bµν(τ)

δ(4)(x− z(τ))√
−g

+O1(T ) , (3.32)

tµν =

∫
C
dτ B̄µν(τ)

δ(4)(x− z(τ))√
−g

+O1(t) . (3.33)

Note that we have introduced two different O1 scales, one for each tensor. This is because,
although we assume that both can be expanded into the δ series around the same curve C,
each tensor may have different “width”, or in other words, the two configurations of matter
fields may be such that they can be well approximated with a single pole term up to a priori
two different O1 scales. In particular, if one chooses the O1 scale to write Tµν in a single pole
approximation, O1 = O1(T ), it is not obvious that tµν can also be approximated by a single
pole term, compared to the same scale, and vice versa. Therefore, there is an assumption
about the relationship between scales that we have made when we used expressions (3.24)
and (3.25) in the derivation of the effective equation of motion.
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Looking at the structure of the equation (3.23) into which (3.24) and (3.25) have been
substituted, the consistency condition for the approximation scheme can be written as

O1 ≡ O1(T ) ≥ ηO1(t) . (3.34)

In particular, if this inequality were not valid, the dipole term in (3.33) would contribute
to (3.23) with a magnitude comparable to the single pole term of (3.32), and it would be
inconsistent to ignore it in the derivation of the effective equation of motion.

The consistency condition (3.34) can be rewritten into a more explicit form. Substitut-
ing (3.33) and (3.9) into (3.34), we get

O1(T ) ≥ η

[
2 Re

(
〈Ψ⊥|T̂µν |Ψ〉

)
−
∫
C
dτ B̄µν(τ)

δ(4)(x− z(τ))√
−g

]
.

In addition, one can use (3.28) and (3.32) to eliminate the coefficient B̄µν in favor of Tµν

and m(τ), which are arguably more observable, obtaining

O1(T ) ≥ 2ηRe
(
〈Ψ⊥|T̂µν |Ψ〉

)
+ Tµν −

∫
C
dτ m(τ)uµuν

δ(4)(x− z(τ))√
−g

. (3.35)

This inequality should be interpreted as follows. Given an explicit model of quantum
gravity, and within it an explicit configuration of matter fields that make up a particle, one
can estimate all three quantities on the right-hand side of (3.35), namely the off-diagonal
components of the stress-energy operator, its expectation value in the dominant classical
state, and the total mass of the particle, respectively. Then, the consistency condition (3.35)
gives a lower bound on the scale O1, which represents an estimate of the error when discussing
the effective equation of motion for the particle. In other words, the equation of motion can
be considered to be approximately valid only across scales much larger than the O1 scale,
bounded from below by inequality (3.35).

Finally, if one needs better precision than the scale determined by (3.35), one should
take into account the dipole term in (3.33) and rederive a more precise form of the equation of
motion. Still better precision would be obtained by including the dipole term in (3.32), which
would amount to the equation of motion in the full pole-dipole approximation, and so on.

4 Status of the weak equivalence principle

In light of the results of section 3, it is important to discuss the status of the equivalence
principle (EP). Throughout the literature, one can find various different formulations of
EP, in various flavors such as weak, medium-strong, strong, and so on (see [35, 36] for a
review, and [2–5, 37, 38] for various examples). Often these formulations and flavors are
interpretation-dependent, and it is not always clear whether they are mutually equivalent or
not, and what are the underlying assumptions and definitions used to express them.

Needless to say, such situation is less than satisfactory [35, 36], and in order to circum-
vent it, in this section we opt to specify one particular definition of the weak and strong
equivalence principles (WEP and SEP, respectively) and to use this definition in the rest
of the text. We do not aspire to claim that our definition is either equivalent to, or in any
sense better than, other definitions present in the literature, and may not even correspond
to the usual usage of the terminology. But for the purpose of clarity, it is prudent to fix
one definition and stick to it. Therefore, in light of the results obtained in section 3, in this
section we discuss the status of WEP defined as below.
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4.1 Definition and flavors of the equivalence principle

The purpose of the equivalence principle is to prescribe the coupling of matter to gravity [39].
Its precise formulation therefore depends on the particular choice of the gravitational and
matter degrees of freedom which one uses to describe matter and gravity. For the purpose
of this paper, we assume that the classical limit of quantum gravity corresponds to general
relativity, which means that in this limit the fundamental gravitational degrees of freedom
give rise to a nonflat spacetime metric. Given any choice of the gravitational degrees of
freedom that belong to this class, in the classical framework one can formulate the equivalence
principle as a two-step recipe to couple matter to gravity (we will discuss the quantum
framework in subsection 4.2).

Start from the classical equation of motion for matter degrees of freedom in flat space-
time, written symbolically as

Dflat[φ, ηµν ] = 0 , (4.1)

where φ denotes the matter degrees of freedom, ηµν is the Minkowski metric, while Dflat is
an appropriate functional describing the equation of motion for φ in flat spacetime and is
assumed to be local. Given this equation of motion, couple it to gravity as follows:

1. Rewrite the equation of motion in a manifestly diffeomorphism-invariant form, typically
by a change of variables to a generic curvilinear coordinate system,

Dcurvilinear[φ, g
(0)
µν ] = 0 ,

where g
(0)
µν is still the flat spacetime metric, appropriately transformed from ηµν , and

similarly for Dcurvilinear.

2. Promote the curvilinear equation of motion to the equation of motion in curved space-

time by replacing the flat spacetime metric g
(0)
µν with an arbitrary metric gµν ,

Dcurvilinear[φ, gµν ] = 0 ,

thereby specifying the equation of motion for matter coupled to gravity.

The first step describes the matter equation of motion from a perspective of a generic curvi-
linear (or “arbitrarily accelerated”) coordinate system, reflecting the principle of general
relativity. The second step simply promotes that same equation to curved spacetime as it
stands, with no additional coupling of any kind. This can be loosely formulated as a state-
ment of local equivalence between gravity and acceleration, which is how the EP historically
got its name. Also, note that these two steps operationally correspond to the standard
minimal coupling prescription [39].

It is important to stress the local nature of EP, which manifests itself in the assump-
tion that the initial equation of motion (4.1) is local, and that the EP essentially does not
change it at all, at any given point in spacetime. This has one important implication — the
gravitational degrees of freedom manifest themselves only through nonlocal measurements,
as tidal effects induced by spacetime curvature. We will return to this point and comment
more on it later in the text.

Depending on the further specification of the matter degrees of freedom, one can dis-
tinguish between various flavors of the EP. For example, if one talks about the mechanics
of point particles, one can start from the Newton’s first law of motion, which states that
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in the absence of any forces, a particle has a straight-line trajectory in Minkowski space-
time. According to the step 1 above, the differential equation for a straight line in a generic
curvilinear coordinate system is the geodesic equation,

d2zλ

dτ2
+ Γ λ(0)µν

dzµ

dτ

dzµ

dτ
= 0 ,

where the index (0) on the Christoffel symbol indicates that it is calculated using the metric

g
(0)
µν , which is obtained by a curvilinear coordinate transformation from the Minkowski metric
ηµν . Then, according to step 2, one again writes the same equation, only dropping the
requirement of flat spacetime metric,

d2zλ

dτ2
+ Γ λµν

dzµ

dτ

dzµ

dτ
= 0 ,

so that this time the Christoffel symbol is calculated using an arbitrary metric gµν , and now
encodes the interaction with the gravitational degrees of freedom. So one starts from the
Newton’s first law of motion for a particle in the absence of the gravitational field, and ends
up with a geodesic equation in the presence of the gravitational field. We define this flavor
of the EP as the weak equivalence principle (WEP).

Instead of mechanical particles, one can study matter degrees of freedom described
by a field theory. For example, if one starts from the equation of motion for a single real
scalar field,

(ηµν∂µ∂ν −m)φ = 0 ,

according to the step 1 of the EP, one can rewrite it in a general curvilinear coordinate
system as (

gµν(0)∇µ∇ν −m
)
φ = 0 ,

where the Christoffel symbol inside the covariant derivative is again calculated using the

flat-space metric g
(0)
µν . Then, according to step 2 of the EP, this equation is promoted to

curved spacetime as it stands, leading to

(gµν∇µ∇ν −m)φ = 0 ,

where now the covariant derivative is given with respect to an arbitrary metric gµν describing
curved spacetime. Thus one arrives to the equation of motion for a scalar field coupled to
gravity. We define this flavor of the EP as the strong equivalence principle (SEP).

So in short, WEP is a statement about mechanical systems such as particles and small
bodies, while SEP is a statement about fields. We emphasize again that the above definitions
may or may not correspond to what is known in other literature as WEP and SEP, depending
on the particular source one compares our definitions to. For example, one can often find
a definition of WEP as a statement about equality of inertial and gravitational masses.
As another example, one can also find a definition of WEP as Galileo’s statement that the
acceleration of a particle due to the gravitational field is independent of the particle’s internal
details such as mass or chemical composition, a property also called universality, emphasizing
the fact that gravitation interacts with all types of particles in the same way. For an excellent
review of the various formulations and flavors of EP present in the literature, see [35].

In relation to these alternative formulations of WEP, one should note two comments.
First, while the notion of “gravitational mass” may be useful in the context of Newtonian
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theory, in frameworks such as GR it is not useful, since the source in Einstein’s equations is
the whole stress-energy tensor, rather than any particular mass-like parameter. This renders
any definition of WEP which relies on the notion of the gravitational mass unsuitable for
analysis in a fundamental QG framework. Second, one can argue (see for example [35]) that
the property of universality is implicitly present even without gravitational interaction, in
the Newton’s first law of motion. Namely, the first Newton’s law can be formulated more
precisely as follows: in the absence of any forces, a particle has a straight-line trajectory in
Minkowski spacetime, regardless of its internal details such as mass or chemical composition.
The Newton’s first law is never spelled out in this way in textbooks, making room for a point
of view that universality has something to do with gravity or the EP. However, if one accepts
our definition of WEP given above, it is more natural to say that universality is a property of
Newtonian mechanics, and is merely being preserved by the WEP when one lifts the straight-
line equation of motion to curved spacetime. So from this point of view, one should arguably
say that WEP is merely compatible with universality, rather than equivalent to it.

Given all these reasons, and despite the fact that these alternative definitions of WEP
may be suitable in various other contexts, they are not quite adequate for the analysis given
in this paper. We therefore choose to retain our own definition of WEP, while the principles
of universality and equality between inertial and gravitational mass will be called as such.
They are discussed in more detail in subsection 4.3.

4.2 Equivalence principle and quantum theory

Adopting the above definitions of WEP and SEP, it is important to discuss their relationship.
From the perspective of the classical field theory (CFT), the notion of a particle can be
introduced as a localized kink-like configuration of matter fields, described as a solution of
the (usually quite complicated) matter field equations. One can then employ the apparatus
of multipole formalism and describe the evolution of this kink configuration in the single
pole approximation, as was discussed in section 2. Using this method, one can recover the
equation of motion for a particle in classical mechanics (CM) as an approximation of the field
theory. Moreover, all this can be done before or after the application of the EP, leading to
the following diagram:

CFTη CMη

CFTg CMg

single pole approx.

SEP WEP

single pole approx.

Here the indices η and g indicate that equations of motion in a given theory are written in
flat and in curved spacetime, respectively.

The question whether this diagram commutes is nontrivial. Namely, on one hand, one
can start from a flat-space classical field theory, approximate it to derive the equations of
motion for a particle in flat-space classical mechanics, and then invoke WEP to reach classical
mechanics coupled to gravity. On the other hand, one can first invoke SEP to couple matter
to gravity at the field theory level, and then approximate it to derive the equation of motion
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for a particle in curved spacetime. A priori, there is no guarantee that one will reach the
same equation of motion for a particle in curved spacetime using both methods.

It is in fact the existence of the local Poincaré symmetry that leads to the commutativity
of the diagram. Namely, as was discussed in section 2, in the curved spacetime local Poincaré
symmetry gives rise to the covariant conservation equation for the stress-energy tensor of
matter fields, and this is all one needs to reach the geodesic equation as an equation of
motion for the particle, in the sense that one does not need to know the full matter field
equations in curved spacetime. This establishes the 〈SEP→ single pole〉 path of the diagram.
On the other hand, in flat spacetime one can also perform the calculation of section 2, this
time using the ordinary (noncovariant) conservation equation for the stress-energy tensor,
which is a consequence not of the local, but rather of the global Poincaré invariance of
Minkowski spacetime. Repeating the calculation of section 2 with the symbolic substitutions
g → η and ∇ → ∂, it is not hard to conclude that one will obtain the equation of motion
for a straight line in flat spacetime, again without knowing all details of the full matter field
equations in flat spacetime. Then, applying WEP as discussed in subsection 4.1, one reaches
the geodesic equation in curved spacetime. This establishes the 〈single pole → WEP〉 path
of the diagram, concluding that the resulting equation of motion for the particle is the same
in both cases, i.e., that the diagram commutes.

Let us also note that, going beyond the single pole approximation, WEP is known to
be violated, with SEP remaining valid. For example, in the pole-dipole approximation, it is
well known that the analogous diagram

CFTη CMη

CFTg CMg

pole-dipole approx.

SEP WEP

pole-dipole approx.

fails to commute. Namely, the 〈SEP → pole-dipole〉 path leads to an effective equation of
motion for the particle in which there is an explicit coupling of the particle’s total angular
momentum to the spacetime curvature [10]. On the other hand, the 〈pole-dipole → WEP〉
path produces the equation of motion without the curvature term. Thus, in the pole-dipole
approximation, WEP fails to reproduce the correct equation of motion, since the particle is
coupled to gravity in a nonminimal way, in spite of the fact that the fields which make up the
particle are still minimally coupled to gravity, in line with SEP. Of course, this situation is to
be expected, given that in the pole-dipole approximation the particle is no longer completely
pointlike, and the coupling of the angular momentum to the curvature can be understood
as a tidal effect of gravity across the “width” of the particle. On the other hand, one can
instead argue that it would be wrong to apply WEP to the pole-dipole equation of motion for
a particle. Namely, despite the fact that the latter is formally still local, it describes an object
that is “less-than-perfectly pointlike”, in the sense that its stress-energy tensor is proportional
not only to a δ function but also to its derivative. From that point of view, one should not
be allowed to apply the two-step prescription of EP defined above. Either way, the bottom
line is that one can either declare WEP as violated or as inapplicable beyond the single pole
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approximation, but it cannot be declared as valid. This results in the noncommutativity of
the above diagram.

Let us now turn to the quantum theory. Starting first from some quantum field theory
(QFTη) which describes the fundamental matter fields in Minkowski spacetime, one can take
its classical limit, giving rise to some effective classical field theory (ECFTη). Then, assuming
that the latter features kink solutions, one can describe those using the single pole approxima-
tion, leading to classical mechanics (CMη) of the corresponding particles. Finally, applying
WEP one couples those particles to gravity. The resulting equation of motion will always
be a geodesic equation, assuming that the initial QFT and all subsequent approximations
respect the global Poincaré invariance of Minkowski spacetime. This symmetry guarantees
the conservation of the stress-energy tensor of the matter fields throughout the sequence of
approximations, leading invariably to the geodesic equation of motion for the particle.

On the other hand, it is arguably more appropriate to take an alternative, more fun-
damental route — start from some fundamental quantum gravity (QG) model, and take the
classical limit leading to some effective classical field theory (ECFTg) for both matter and
gravity. Then, again assuming that this theory features kink solutions, employ the single
pole approximation to obtain the classical mechanics for the particle in the gravitational
field (CMg). Note that this is in fact precisely the program that was performed in section 3,
leading to the non-geodesic equation of motion (3.31) for the particle. In effect, one can
conclude that the following diagram fails to commute:

QFTη ECFTη CMη

QG ECFTg CMg

classical limit

QSEP

single pole approx.

WEP

classical limit single pole approx.

As a side comment, note that the dashed QSEP arrow represents some hypothetical map
leading from a QFT in Minkowski spacetime to a full-blown model of QG, according to a
notion that might be called a “quantum strong equivalence principle”. It is unclear whether
such a principle exists or not, let alone what its formulation is supposed to be, even if one
is given precisely defined models of QFT and QG in question. We introduce it here simply
for completeness, speculating that such a notion should exist, as a generalization of SEP
from classical to quantum physics. It is also convenient to introduce it, in order to close the
diagram and discuss its commutativity.

It is important to stress the reason why this diagram does not commute. Recalling the
details of section 3, the local Poincaré symmetry is assumed to be respected at the funda-
mental level of QG and onwards, just like in the classical case. Moreover, the single pole
approximation is used, avoiding any nonminimal coupling of the tidal forces that may be
present. And yet, in spite of all that, the resulting equation of motion is not a geodesic.
Looking at the equation of motion (3.31), the reason for this is the nontrivial interference
between classical states describing two classical configurations of matter, and more impor-
tantly, of gravity. In other words, the deviation from the geodesic motion is a pure quantum
gravity effect — it is not present in the classical case, nor in the case of quantum matter in
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classical Minkowski spacetime. A testimony of this fact is the quantum correction term for
the metric (3.8), which features off-diagonal matrix elements of the metric operator ĝµν :

hµν = 2 Re
(
κ〈Ψ⊥|ĝµν |Ψ〉

)
+O(η) .

In this sense, due to the noncommutativity of the above diagram, one can argue that
(within the discussed framework) quantum gravity violates the weak equivalence principle.
Nevertheless, we would like to stress that our discussion regarding both strong and weak
equivalence principles, based on the above prescription from subsection 4.1, is inherently
classical. Indeed, in steps 1 and 2 which define the implementation of EP, one considers
classical equations of motion. In our case, such definition suffices, as our entangled state (3.2)
consists of a dominant and a sub-dominant term. Thus, we could expand our entangled
equations (3.10) and (3.11) around the dominant classical terms, and discuss WEP in such a
scenario. In fact, according to the definition of WEP, in general one can discuss its violation
only with respect to some (perhaps unspecified, but assumed) classical spacetime metric. In
our case, this role is played by the dominant classical metric gµν .

In the more general case of superpositions of states which are more equally weighted,
α ≈ β, and which consist of almost orthogonal states, 〈Ψ|Ψ̃〉 ≈ 0, one cannot single out
a preferred classical metric, and therefore the classical definitions of SEP and WEP are
inapplicable in this regime. Therefore, both equivalence principles ought to be extended to
their respective quantum domains, denoted QSEP and QWEP respectively, in the sense of
the following diagram:

QFTη QMη

QG QMg

quantum particle approx.

QSEP QWEP

quantum particle approx.

Note that here all arrows are dashed, indicating the speculative nature of all these maps.
Also, QMg represents a hypothetical theory of quantum particles coupled to a quantum
gravitational field.

In this highly quantum regime (α ≈ β and 〈Ψ|Ψ̃〉 ≈ 0), one could try to define the
quantum weak equivalence principle (QWEP) in terms of the classical WEP, applied sepa-
rately to each “branch” in the superposition. As long as the two “branches” |Ψ〉 and |Ψ̃〉 are
themselves classical states, corresponding to the respective solutions of Einstein’s equations,
such a definition might seem suitable. Note that this approach is compatible with the notion
of a superposed observer (see recent work [40] and the references therein). However, the
formulation of the quantum strong and weak equivalence principles for the case of generic
non-classical quantum states is an open question, outside of the scope of the current work.

Finally, the quantum version of the single pole approximation, called “quantum par-
ticle approximation” in the diagram above, is also not well defined — neither conceptually
nor technically. Essentially, the whole diagram represents merely a speculation about the
prescriptions which ought to map between the respective theories. In addition, like in the
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previous cases, the commutativity of the diagram (i.e., the violation of QWEP, given the
validity of QSEP) would also be an open question. In some sense, the QSEP would represent
a “true” equivalence principle, while QWEP would be a particle-like approximate image of
QSEP. Being approximate, QWEP could possibly be violated in some cases, giving rise to
noncommutativity of the diagram.

4.3 Universality, gravitational and inertial mass

In light of the results of section 3, in addition to the discussion of WEP violation, it is also
important to discuss the status of the principle of universality, and the principle of equality
between inertial and gravitational masses. In order to discuss them, it is instructive to study
the Newtonian limit of the effective equation of motion (3.31), as follows.

We define the Newtonian limit in the standard way [39] — by assuming small spacetime
curvature, nonrelativistic motion, and ignoring the backreaction of the particle on the back-
ground spacetime geometry. These approximations are implemented in the following way.
First, ignoring the backreaction of the particle allows us to choose the dominant classical
metric gµν as specified by the Newtonian line element

ds2 = −
(

1− 2GM

r

)
dt2 + dx2 + dy2 + dz2 , (4.2)

where xµ ≡ (t, x, y, z) are spacetime coordinates, M is the mass of the gravitational source,
r ≡

√
x2 + y2 + z2, and G ≡ l2p is Newton’s gravitational constant. We will discuss the

motion of a test-particle in this background, given by the effective equation of motion (3.31).
Second, the assumption of nonrelativistic motion of the particle allows us to neglect its
spacelike velocity,

uk ≡ dzk

dτ
≈ 0 ,

leaving only the timelike component u0 ≡ dz0/dτ nonzero (the position of the particle zµ(τ)
should not be confused with the label for the third spatial coordinate z ≡ x3). Finally,
the assumption of small spacetime curvature allows us to neglect all terms of order O(M2)
and higher.

Given this setup, one can easily calculate all nonzero Christoffel symbols corresponding
to the dominant metric, obtaining:

Γ 0
0k = Γ 0

k0 = Γ k00 =
GM

r3
xk , k ∈ {1, 2, 3} .

One can then employ them to write the time and space components for the particle’s effective
equation of motion (3.31). Using (2.8) and (3.21), after some straightforward algebra, the
time component of the equation of motion reduces to

d2z0(τ)

dτ2
= 0 ,

owing to the normalization condition uµuνgµν = −1 and the presence of the orthogonal
projector in (3.31). Using convenient initial conditions, this equation can be integrated to
make an identification between the proper time τ and the time component of the particle’s
parametric equation of trajectory xµ = zµ(τ) as

t = z0(τ) = τ ,
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reflecting the notion of global universal time of Newtonian theory. Using this result, one can
show that the space components of the particle’s equation of motion obtain the following
form (note that the spacelike indices can be raised and lowered at will, since the spatial part
of the metric (4.2) is a unit matrix):

d2zk

dτ2
+
GM

r3
zk + η

[
∂0h0k −

1

2
∂kh00 −

GM

r3
zjhjk

]
= 0 . (4.3)

Note that here r has been evaluated at the position of the particle, r =
√
zkzk, and similarly

for the gradients of h0k and h00. The first two terms in the equation come from the classical
geodesic part ∇uk in (3.31), while the third term is the quantum correction, coming from
the effective force term ηuνuσF k⊥νσ.

The most important aspect of equation (4.3) is the similarity between the second term
of the classical part and the final term of the quantum correction. The spacelike components
hjk can be separated into the trace and traceless part,

hjk ≡
1

3
hii δjk + h̃ij , h̃kk ≡ 0 ,

and the trace can be grouped together with the classical term, giving

d2zk

dτ2
+
GM

r3
zk
(

1− 1

3
ηhii

)
+ η

[
∂0h0k −

1

2
∂kh00 −

GM

r3
zj h̃jk

]
= 0 . (4.4)

Finally, multiplying the whole equation (4.4) with an arbitrary positive number, called the
particle’s inertial mass and denoted mI , it takes the form of the Newton’s second law
of motion,

mI
d2zk

dτ2
= −mI

(
1− 1

3
ηhii

)
GM

r3
zk − ηmI

[
∂0h0k −

1

2
∂kh00 −

GM

r3
zj h̃jk

]
. (4.5)

One can recognize two force terms on the right-hand side. The second term is of purely
quantum origin, and represents the effective force acting on the particle ultimately due to
the presence of the quantum state |Ψ̃〉 in (3.2). It has a non-Newtonian form, in the sense
that none of its parts can be grouped together with the first force term, as was done with
the trace part. The first force term, however, can be recognized as the classical Newton’s
gravitational force law, provided that one defines the ratio between the gravitational mass
mG and the inertial mass mI of the particle as

mG

mI
≡
(

1− 1

3
ηhii

)
. (4.6)

At this point we are ready to discuss the principles of universality and of the equality
between gravitational and inertial masses. To begin with, it is obvious from (4.6) that the
gravitational mass is equal to the inertial mass only up to a quantum correction term. This
term contains the trace of spatial components of the metric interference tensor hµν , defined
by equation (3.8), from which we obtain:

hii = 2δij Re
(
κ〈Ψ⊥|ĝij |Ψ〉

)
+O(η) . (4.7)
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It is crucial to notice that, in addition to the dependence of the off-diagonal matrix element
of the metric operator, this expression also depends on the matter fields (which are present
in |Ψ〉 and |Ψ⊥〉), including the particle itself. Therefore, the term in the parentheses in (4.6)
cannot be reabsorbed into the constants G and M , since these describe the external source of
gravity which should remain independent of the properties of the test particle. Thus, the only
possibility to cast the first force term in (4.5) into the form of the Newton’s law of gravitation,
is to define the ratio between the gravitational and the inertial mass as in (4.6). As a
consequence, the principle of equality between gravitational and inertial masses is violated
by the presence of the correction term coming from quantum gravity.

A similar argument can be made regarding the principle of universality. One may
cancel away the inertial mass from the Newton’s law (4.5), returning to (4.4) which describes
the acceleration of the particle in the presence of an external gravitational field. Again,
the presence of (4.7) in the classical gravitational acceleration term guarantees that this
term depends not only on the external gravitational source, but also on the structure of the
test particle itself. Moreover, the remaining quantum correction terms also depend on hµν ,
and therefore they too carry information about the internal structure of the particle. In
this sense, test particles described by different matter configurations may therefore display
different accelerations, given the same background gravitational field. This means that the
principle of universality is violated by the presence of the quantum gravity correction terms.

As a final comment, we should also note that mI (and consequently mG as well) is a
completely free parameter in the Newtonian setup, and should be determined by the interac-
tions of nongravitational type. In particular, the Newtonian framework does not allow us to
connect mI ,mG with the effective mass m of the particle, discussed in the context of (3.28)
and (3.30). This is because the total rest-energy of a particle is an inherently relativistic
concept, not defined in Newtonian mechanics. On the other hand, if one goes to the rela-
tivistic framework, the notions of inertial and gravitational masses become ill-defined, since
gravitational interaction cannot be described anymore by a mere force law in the Newtonian
sense. Therefore, the relationship between m on one side, and both mI , mG on the other
side, remains undefined.

5 Conclusions

5.1 Summary of the results

In this paper, we have discussed the effective motion of a point particle within the framework
of quantum gravity, in particular the case where both matter and gravity are in a quantum
superposition of the Schrödinger cat type. In section 2 we gave a recapitulation of the
results of the classical theory, introducing the multipole formalism framework and illustrating
the derivation of the geodesic equation for the motion of a particle in GR. Section 3 was
devoted to the generalization of these results to the realm of the full quantum gravity. In
subsection 3.1 we introduced the abstract quantum gravity framework, discussed the model
of the superposition of two classical states, and established the main assumptions for the
derivation of the effective equation of motion. In subsection 3.2 we have analyzed in detail
the quantum version of the equation for the covariant conservation of stress-energy tensor,
which is a crucial ingredient in the derivation of the effective equation of motion. The explicit
derivation of the equation of motion itself was then given in subsection 3.3, giving rise to the
main results of the paper — the equation for the stress-energy kernel (3.28), the equation
for the time-evolution of the particle’s mass (3.30), and the effective equation of motion for
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the particle (3.31). Most importantly, the effective equation of motion turns out to contain a
non-geodesic term, giving rise to an effective force acting on the particle, as a consequence of
the interference terms between the two classical states of the gravity-matter system. The last
subsection 3.4 discusses the self-consistency of the assumptions used in the above analysis,
giving rise to the equation (3.35) for the error estimate of the single pole approximation scale.

In light of the nongeodesic motion established in section 3, it is important to discuss it
in the context of the equivalence principle. This topic was taken up in section 4. After we
have defined various flavors of the equivalence principle in subsection 4.1, the main analysis
was presented in subsection 4.2, discussing a possible violation of (various forms of) the
weak equivalence principle, as a consequence of the nongeodesic correction to the equation
of motion (3.31). Also, given the inherently classical nature of the equivalence principle,
we have also speculated on possible generalizations to the quantum realm, introducing the
notions of the quantum strong and weak equivalence principles, albeit without giving explicit
statements about their definitions. Finally, in subsection 4.3 we have discussed the notions of
universality and equality between inertial and gravitational masses in the context of quantum
gravity, by studying the Newtonian limit of the equation of motion (3.31). This analysis gave a
clear interpretation that both universality and the equality between gravitational and inertial
masses are violated in our context, corroborating the conclusions of the abstract analysis of
the EP given in subsection 4.2.

5.2 Discussion of the results

By far the most interesting topic to discuss in the context of the equation of motion (3.31)
is how to estimate the magnitude of the nongeodesic term. As far as the analysis of this
paper goes, we can only say that this term is very small, given that it is proportional to η,
which is in turn bounded from above by phenomenological argument that we do not observe
superpositions of the gravitational field in nature. However, aside from this qualitative
argument, in order to estimate the actual magnitude of the nongeodesic term one would need
to go beyond the abstract quantum gravity formalism, and construct an explicit quantum
gravity model coupled to matter fields, find some explicit kink solutions of the matter sector,
and then calculate the overlap terms and the off-diagonal interference terms of the metric
operator. Of course, any estimate obtained in such a way would be model-dependent. We
consider this to be a feature of the abstract quantum gravity approach, since the magnitude
of the nongeodesic term represents one way to operationally distinguish between different QG
models. In other words, one could use equation (3.31) to experimentally test and compare
these models, at least in principle. Probably the most obvious such test would employ
equation (4.6) which relates the gravitational and inertial mass of the particle.

One result that was not discussed in detail is the nonconservation law for the effective
mass of the particle, (3.30). However, it is not really surprising that the particle’s total rest
energy fails to be constant in the presence of gravity-matter entanglement. As (3.30) tells
us, the nonconservation is actually a consequence of the additional effective force, which is
itself a consequence of the quantum interference between two classical geometries and matter
states. Nevertheless, it would indeed be interesting to study the mass nonconservation in
more detail.

It is also important to discuss the generalization of our results from the case of the
superposition of two classical states to many classical states. In particular, one could discuss
the case where the state |Ψ̃〉 in (3.2) is not a single classical state, but a superposition of
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many classical states,

|Ψ̃〉 =
∑
i

γi|Ψi〉 .

As long as we maintain the assumption that the fidelity F (|Ψ〉, |Ψ〉) ≈ 1, it is straightforward
to see that all our results and conclusions still hold in the generic case. Therefore, there is no
substantial difference in the analysis of a state which is a superposition of two classical states,
compared to the analysis of a superposition of many classical states, as long as one of them
is dominant while all others are sub-dominant. Note that in this case, even when β is finite
and ε→ 0, the role of the metrics generated by |Ψ〉 and |Ψ̃〉 cannot be exchanged anymore,
as the latter generically does not satisfy Einstein’s equations. This fixes the choice of |Ψ〉 as
the dominant state. A detailed quantitative description is technically more complicated, but
qualitatively all results will hold for both types of states.

5.3 Future lines of research

One of the main lines of future work would be to perform a similar analysis as was done in
this paper, but keeping the η2 terms. This would naturally include the sub-dominant effective
metric and stress-energy (3.3), giving qualitatively new insight into the notion of quantum
superpositions of two classical geometries. That analysis might provide clues about the prop-
erties of quantum gravity which could arguably hold even in the equal-weight superpositions
of two classical states, defined by the choice α ≈ β ≈ 1/

√
2 in (3.2).

Alternatively, one could repeat the analysis of this paper, but in a pole-dipole approx-
imation. This would also lead to novel effects, one of which might be a coupling of various
quantum interference terms to the spacetime curvature and the angular momentum of the
particle, generalizing the classical pole-dipole equation of motion [10].

Also, given that the multipole formalism is also applicable to Riemann-Cartan space-
times [19–22], the analysis of this paper could be generalized to include coupling of quantum
interference terms to spacetime torsion and the spin of the particle.

Finally, one could further discuss a more general setup in which the off-diagonal terms
in the covariant conservation equation (3.14) are not ignored, in the sense of going beyond
the approximations (3.15) and (3.16).

In addition to all of the above, one important line of research would be to study possible
connections to experiments. First, one should study the counterpart of the so-called geodesic
deviation equation. Namely, in GR, the geodesic motion as such is not observable, as a
consequence of the equivalence principle. As we have emphasized in subsection 4.1, the
EP dictates that the only way to observe gravitational degrees of freedom is via nonlocal
measurements, which are not encoded in the geodesic equation. Therefore, what one can
actually observe is the change in the relative separation of two nearby geodesic trajectories,
due to the tidal effects. This is in turn described by the geodesic deviation equation, which
explicitly features the Riemann curvature tensor. In our case, the equation of motion (3.31)
is not a geodesic, but is still local in character, in the sense that it does contain gravitational
degrees of freedom at the given point, but still it does not combine gravitational degrees of
freedom of two or more points. Thus, one ought to compare the trajectories of two nearby
particles, both following a trajectory determined by (3.31). The equation governing the
separation between two particles in such a setup would be a counterpart to the geodesic
deviation equation of GR with a corresponding quantum correction term. It should be
derived and studied in detail, in order to better understand what effects could be in principle
directly experimentally observable.
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Second, one could also test our results by measuring the violation of the universality and
of the equality of the gravitational and the inertial mass in the semiclassical Newtonian limit.

The above list of possible topics for further research is of course not exhaustive — one can
probably study various additional aspects and topics related to this work, in particular giving
more precise meaning to the notions of the quantum strong and weak equivalence principles.

Acknowledgments

NP acknowledges the support of SQIG (Security and Quantum Information Group), the
Instituto de Telecomunicações (IT) Research Unit, Ref. UID/EEA/50008/2019, funded
by Fundação para a Ciência e Tecnologia (FCT), project H2020 SPARTA, and the FCT
projects Confident PTDC/EEI-CTP/4503/2014, QuantumMining POCI-01-0145-FEDER-
031826 and Predict PTDC/CCI-CIF/29877/2017, supported by the European Regional De-
velopment Fund (FEDER) through the Competitiveness and Internationalization Opera-
tional Programme (COMPETE 2020), and by the Regional Operational Program of Lis-
bon, as well as the bilateral scientific cooperation between Portugal and Serbia through
the project “Noise and measurement errors in multi-party quantum security protocols”, no.
451-03-01765/2014-09/04 supported by the Foundation for Science and Technology (FCT),
Portugal, and the Ministry of Education, Science and Technological Development of the
Republic of Serbia. FCT grant CEECIND/04594/2017 is also acknowledged.

MV was supported by the project ON171031 of the Ministry of Education, Science and
Technological Development of the Republic of Serbia, by the bilateral scientific cooperation
between Portugal and Serbia through the project “Quantum Gravity and Quantum Integrable
Models — 2015-2016”, no. 451-03-01765/2014-09/24 supported by the Foundation for Science
and Technology (FCT), Portugal, and the Ministry of Education, Science and Technological
Development of the Republic of Serbia, by the bilateral scientific cooperation between Austria
and Serbia through the project “Causality in Quantum Mechanics and Quantum Gravity —
2018-2019”, no. 451-03-02141/2017-09/02 supported by the Austrian Academy of Sciences
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A Short review of the multipole formalism

In this appendix we give a short review of the multipole formalism, providing some basic
motivation for its introduction and a few elementary properties. A more rigorous treatment
and more details can be found in [25].

The multipole formalism revolves around the idea of expanding a function into a series of
derivatives of the Dirac δ function, or δ series for short. Perhaps the easiest way to understand
the δ series is to introduce it as a Fourier transform of a power series. For example, given a
real-valued function f(x), one can write it as a Fourier transform of f̃(k) as

f(x) =

∫
R
dk f̃(k) eikx . (A.1)
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In principle, we can expand f̃(k) into power series as

f̃(k) =

∞∑
n=0

cnk
n ,

where cn are some coefficients, substitute the expansion back into (A.1), and integrate term
by term. Using the identity

kneikx = (−i)n ∂
n

∂xn
eikx

and the integral representation of the Dirac δ function

δ(x) =
1

2π

∫
R
dk eikx ,

we obtain

f(x) =

∞∑
n=0

cn

∫
R
dk kn eikx =

∞∑
n=0

(−i)ncn
dn

dxn

∫
R
dk eikx

=

∞∑
n=0

2π(−i)ncn
dn

dxn
δ(x) ≡

∞∑
n=0

bn
dn

dxn
δ(x) .

In the last step, we have merely renamed the coefficients in the expansion.
The above example is the most elementary construction of the δ series, providing some

intuition. It is straightforward to see that one can generalize the procedure to perform the
expansion around an arbitrary point z instead of zero, such that

f(x) =

∞∑
n=0

bn
dn

dxn
δ(x− z) .

The coefficients bn can be evaluated using the inverse formula,

bn =
(−1)n

n!

∫
R
dx (x− z)nf(x) , (A.2)

and are usually called n-th order moments of the function f(x). From (A.2) one sees that the
δ series is well defined for every function f(x), which falls off to zero faster than any power
of x at both infinities.

Let us study an instructive example. Let the function f(x) be an ordinary Gaussian,
peaked around the point x0,

f(x) =
1√
π
e−(x−x0)2 .

One can evaluate the coefficients in the corresponding δ series using (A.2) to obtain:

bn =



n/2∑
k=0

(z − x0)n−2k

4k k! (n− 2k)!
for even n ,

−
(n−1)/2∑
k=0

(z − x0)n−2k

4k k! (n− 2k)!
for odd n .
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It is important to note the following property — if the expansion point z does not coincide
with the peak of the Gaussian, x0, the magnitude of the coefficients bn in general grows with
n. For example, if z − x0 = 2, we have

f(x) = δ(x− z)− 2
d

dx
δ(x− z) +

9

4

d2

dx2
δ(x− z)− 11

6

d3

dx3
δ(x− z) +

115

96

d4

dx4
δ(x− z) + . . .

However, if the expansion point coincides with the peak, z − x0 = 0, the magnitude of the
coefficients falls off as n grows:

f(x) = δ(x− z) +
1

4

d2

dx2
δ(x− z) +

1

32

d4

dx4
δ(x− z) +

1

384

d6

dx6
δ(x− z) + . . .

From this simple example one can infer an important property of δ series — the coefficients
bn decrease as n grows, if the expansion point is near the peak of the function f(x). Turning
the argument around, if we require that the coefficients decrease with n,

|bn| > |bn+1| , ∀n ∈ N0 ,

this places a restriction on the possible values of the expansion point z. This is the crucial
property of the δ series, and is being used to define the “position of the particle” which
corresponds to a distribution of matter fields described by a localized function f(x).

Also, assuming that the expansion point z has been chosen to be near the peak of
the function, the decreasing nature of the coefficients bn allows one to approximate the
function f(x) by a truncated series. This formalizes the intuitive idea that if one looks at
some localized distribution of matter fields from “far away”, it will look roughly as a point
particle. The truncation point then quantifies the amount of “internal structure” that is
known about f(x). One can therefore study the function f(x) at various approximation
levels: the single pole approximation,

f(x) ∼ b0δ(x− z) ,

the pole-dipole approximation,

f(x) ∼ b0δ(x− z) + b1
d

dx
δ(x− z) ,

the pole-dipole-quadrupole approximation,

f(x) ∼ b0δ(x− z) + b1
d

dx
δ(x− z) + b2

d2

dx2
δ(x− z) ,

and so on.
It is completely straightforward to generalize the δ series to three (or more) dimensions,

with the δ series of a function f(~x) around the point ~z defined as

f(~x) =

∞∑
n=0

bi1...inn

∂

∂xi1
. . .

∂

∂xin
δ(3)(~x− ~z) . (A.3)

Here the indices i1, . . . in take values 1, 2 and 3, and the inverse formula for the coefficients is

bi1...inn =
(−1)n

n!

∫
R3

d3x (xi1 − zi1) . . . (xin − zin)f(~x) . (A.4)
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For example, in electrostatics, one can expand the charge density ρ(~x) localized around the
point ~z = 0 as

ρ(~x) = b0δ
(3)(~x) + bi1

∂

∂xi
δ(3)(~x) + . . .

According to (A.4), the coefficients are

b0 =

∫
R3

d3x ρ(~x) ≡ Q , ~b1 = −
∫
R3

d3x~xρ(~x) ≡ −~p ,

where we recognize the total charge Q and the electrostatic dipole moment ~p of the source.
Thus we have

ρ(~x) = Qδ(3)(~x)− ~p · ∇δ(3)(~x) + . . .

Substituting the δ series expansion of ρ(~x) into the formula for the electrostatic potential,

ϕ(~r) =

∫
R3

d3x
ρ(~x)

|~r − ~x|
,

and evaluating the integral, one obtains the familiar expression for the multipole expansion
in electrostatics [41]:

ϕ(~r) =
Q

|~r|
+
~p · ~r
|~r|3

+ . . .

This example also illustrates what type of approximation is achieved with the truncation of
the δ series.

Next we generalize to time-dependent functions. If the function f(~x) evolves in time,
while remaining localized in space, one can expand it into δ series by choosing the most
convenient reference point z(t) at each moment of time,

f(~x, t) =
∞∑
n=0

bi1...in(t)
∂

∂xi1
. . .

∂

∂xin
δ(3)(~x− ~z(t)) , (A.5)

where t ∈ R is a time variable, and the coefficients b are now time-dependent. Then one can
introduce the proper time τ , and use the identity∫

R
dτ δ(t− τ) = 1

to rewrite (A.5) in a 4-dimensional manifestly Lorentz-invariant form

f(x) =

∫
R
dτ

∞∑
n=0

bµ1...µn(τ)∂µ1 . . . ∂µnδ
(4)(x− z(τ)) , (A.6)

where we have relabeled (~x, t) ≡ x, introduced z0(τ) = τ , used shorthand notation ∂µ ≡
∂/∂xµ, and defined b0 = b00 = b000 = · · · = 0, since the time derivatives do not actually
appear in (A.5). The introduction of these auxiliary timelike components of the b-coefficients,
demanded by Lorentz invariance, gives rise to an additional gauge symmetry of the expan-
sion coefficients, since only the “spatial” components carry nontrivial information about the
function f(x). This additional gauge symmetry is called extra symmetry 1, and is studied in
detail in [25].
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Finally, one can make one more generalization, and introduce the notion of a δ series
around a p-brane, a (p + 1)-dimensional submanifold living in a D-dimensional spacetime
manifold. Namely, we have seen that one can expand a function into a δ series around a point
and around a one-dimensional line (equations (A.3) and (A.6), respectively). Generalizing in
that direction, one can introduce the world-trajectory of a p-dimensional object through D-
dimensional spacetime M, with parametric equations xµ = zµ(ξa) describing the trajectory
as a (p + 1)-dimensional submanifold Σ ⊂ M. Here µ ∈ {0, . . . , D − 1} and a ∈ {0, . . . p},
where xµ are coordinates on M while ξa are intrinsic coordinates on Σ. Then, given a
function f(x) whose support is localized near the submanifold Σ, one can write its δ series
expansion around Σ in a fully diffeomorphism- and reparametrization-invariant way as:

f(x) =

∫
Σ
dp+1ξ

√
−γ

∞∑
n=0

∇µ1 . . .∇µn

[
Bµ1...µn(ξ)

δ(D)(x− z(ξ))√
−g

]
. (A.7)

Here γ is the determinant of the induced metric γab = gµνu
µ
auνb on Σ, where gµν is the

metric on M and uµa ≡ ∂zµ/∂ξa are the tangent vectors of Σ. Note that, in order to ensure
the correct tensorial behavior, the B-coefficients have been moved inside the action of the
covariant derivatives. Namely, despite the fact that the covariant derivatives act with respect
to x and B’s do not depend on x, covariant derivatives still act nontrivially on B’s with the
connection terms. For similar reasons, the term

√
−g has been introduced to combine with

the δ function into a quantity which transforms as a scalar under diffeomorphisms. Its
introduction amounts merely to a suitable redefinition of B’s and does not modify the δ
series in any nontrivial way.

The fully general δ series (A.7) has been studied in detail in [25]. For the purpose of
the discussion given in the main text of this paper, we are interested in the case of a particle,
i.e., a (p = 0)-brane, moving along a 1-dimensional timelike curve C which is a submanifold
of the (D = 4)-dimensional spacetimeM. In this case, there is only one intrinsic coordinate
on C, denoted ξ0 ≡ τ , only one tangent vector

uµ0 ≡
∂zµ(ξ)

∂ξ0
=
dzµ(τ)

dτ
= uµ ,

while the induced metric tensor is a 1× 1 matrix γ00 = gµνu
µ
0u

ν
0 . The parametrization of the

curve C with the coordinate τ can be chosen to fix the reparametrization gauge symmetry
via the gauge-fixing condition γ00 = −1, which is actually the natural normalization of the
tangent vector, gµνu

µuν = −1. Finally, one can then apply the δ series expansion (A.7) to
the stress-energy tensor Tµν(x) of the matter fields as

Tµν(x) =

∫
C
dτ

∞∑
n=0

∇ρ1 . . .∇ρn

[
Bµνρ1...ρn(τ)

δ(D)(x− z(τ))√
−g

]
.

Note that the coefficients B now carry two additional indices inherited from the stress-energy
tensor. In the single pole approximation, one drops all terms in the sum except the n = 0
term, truncating the series to the form

Tµν(x) =

∫
C
dτ Bµν(τ)

δ(D)(x− z(τ))√
−g

,

as used in the main text.
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B Separable classical states

As mentioned in the main text, a recent study suggests that physical states of gravity and
matter are generically entangled [1]. In this appendix, we analyze a simple, yet possibly
intriguing, consequence of the assumption that the overall classical gravity-matter state can
be approximated by (or indeed is) the product of the gravity and the matter classical states,
|Ψ〉 = |g〉 ⊗ |φ〉, where |g〉 ∈ HG and |φ〉 ∈ HM are classical states for the gravity and the
matter sector, respectively (and analogously for |Ψ̃〉).

To begin with we introduce the overlaps as follows:

SG ≡ 〈g|g̃〉 , SM ≡ 〈φ|φ̃〉 , S ≡ 〈Ψ|Ψ̃〉 = SGSM .

Note that, since in (3.2) only the relative phase between |Ψ〉 and |Ψ̃〉 is important, we
can reabsorb the phases of the coefficients α and β into |Ψ〉 and |Ψ̃〉, respectively. In this
way, we have α, β ∈ R, while only the overlap S between the two coherent states carries
the information about the relative phase, and is therefore complex. Moreover, since S is a
product between SG and SM , the phase of S can be distributed between SG and SM in an
arbitrary way. A convenient choice is to have the phase in the matter sector, so that SG ∈ R
and SM ∈ C. Next, we can decompose |g̃〉 and |φ̃〉 into parts proportional to and orthogonal
to |g〉 and |φ〉, respectively,

|g̃〉 = SG|g〉+ εG|g⊥〉 , |φ̃〉 = SM |φ〉+ εM |φ⊥〉 , (B.1)

where 〈g|g⊥〉 ≡ 0, 〈φ|φ⊥〉 ≡ 0, and

εG ≡
√

1− (SG)2 , εM ≡
√

1− |SM |2 .

Note that εG, εM ∈ R. Additionally, one can use (B.1) to rewrite |Ψ̃〉 into the form

|Ψ̃〉 = S|Ψ〉+ ε|Ψ⊥〉 ,

where

ε =
√
ε2M + ε2G − ε2M ε2G ,

and

|Ψ⊥〉 =
εMSG
ε
|g〉 ⊗ |φ⊥〉+

εGSM
ε
|g⊥〉 ⊗ |φ〉+

εGεM
ε
|g⊥〉 ⊗ |φ⊥〉 . (B.2)

Note that in the cases when SG and SM are large (and consequently εG and εM are small),
we can neglect the final term from (B.2), obtaining the Schmidt form of the “orthogonal
correction” of the state |Ψ̃〉, with respect to |Ψ〉. It is interesting to observe that such a
state is always necessarily entangled, as its entanglement entropy is always bigger than zero.
In other words, to obtain a nearby classical product state of gravity and matter |Ψ̃〉, one
has to perturb the original (classical product) state |Ψ〉 with an entangled state |Ψ⊥〉 ≈
ε−1εMSG|g〉 ⊗ |φ⊥〉+ ε−1εGSM |g⊥〉 ⊗ |φ〉.

C Phase of interference terms

In this appendix, we analyze the expressions for the expectation values of the metric and
the stress-energy tensors in the entangled state (3.5), given by (3.6) and (3.7), respectively.
We show that their third, interference, terms are generically different from zero, and thus
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contain non-trivial contributions linear in η. Since the two terms have the same form, we
will consider the case of the metric operator only.

By writing κ = |κ|eiϕκ = Feiϕκ and 〈Ψ⊥|ĝµν |Ψ〉 = |〈Ψ⊥|ĝµν |Ψ〉|eiϕg , the third term
of (3.6) has the form

2ηRe
(
κ〈Ψ⊥|ĝµν |Ψ〉

)
= 2ηF |〈Ψ⊥|ĝµν |Ψ〉| cos(ϕκ + ϕg) . (C.1)

In case ϕκ +ϕg = ±π/2, i.e., the interference term is zero, then for any other generic choice
of |Ψ′〉 = eiδ|Ψ〉, we have that ϕ′κ + ϕ′g 6= ±π/2.

Indeed, changing |Ψ〉 → |Ψ′〉 = eiδ|Ψ〉 induces the change of the other classical state

|Ψ̃〉 = S|Ψ〉+ ε|Ψ⊥〉 −→ |Ψ̃′〉 = S|Ψ′〉+ ε|Ψ⊥〉 = S′|Ψ〉+ ε|Ψ⊥〉

with S′ = Seiδ = |S|ei(ϕs+δ) (where S = |S|eiϕs), but the orthogonal state |Ψ⊥〉 does not
change. Thus, the phase of the matrix element from (C.1) changes to ϕ′g = ϕg + δ. On

the other hand, the phase of κ changes to ϕ′κ = ϕκ + δ̃ (note that δ̃ is a function of δ,
see below). Since

κ = α+ β|S|eiϕs = |κ|eiϕκ ,

κ′ = α+ β|S|ei(ϕs+δ) = |κ|eiϕ′
κ ,

it is obvious that for a generic choice of the parameters, i.e., in but a discrete number of points,
we have δ̃ = ϕ′k−ϕk 6= −δ, obtaining ϕ′κ+ϕ′g = (ϕs+ϕκ)+(δ+ δ̃) = ±π/2+(δ+ δ̃) 6= ±π/2.

Thus, the linear correction to (3.6), and to (3.7) as well, is zero only for a discrete
number of the relative phases between the classical states |Ψ〉 and |Ψ̃〉. Otherwise, it is
generically non-trivial.
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Abstract

We perform the complete Hamiltonian analysis of the BFCG action for 

general relativity. We determine all the constraints of the theory and classify 

them into the first-class and the second-class constraints. We also show how 

the canonical formulation of BFCG general relativity reduces to the Einstein–

Cartan and triad canonical formulations. The reduced phase space analysis 

also gives a 2-connection which is suitable for the construction of a spin-foam 

basis which will be a categorical generalization of the spin-network basis 

from loop quantum gravity.

Keywords: BFCG model, Poincaré 2-group, general relativity, Hamiltonian 

analysis, algebra of constraints, spin-cube model, spin-foam model

1. Introduction

Among the fundamental problems of modern theoretical physics, by far the most prominent 

one is the construction of the tentative theory of quantum gravity (QG). There are many 

approaches to QG, one of which is called loop quantum gravity (LQG), see [1–4]. As with 

any other physical system, the quantization of the gravitational field can be performed either 

canonically, using the Hamiltonian framework, or covariantly, using the Lagrangian, i.e. 

the path integral framework. Within the LQG approach, in the canonical framework [2] one 

chooses the connection variables and their momenta as fundamental fields for gravity, and 

uses them to construct an appropriate physical Hilbert space, giving rise to the spin-network 

states. In the covariant framework, one puts the connection variables onto a spacetime trian-

gulation, see [3, 4], and uses this construction to define a path integral for gravity, giving rise 

to the spin-foam (SF) models.

BFCG
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The BFCG  formulation of GR [5] was invented in order to find a categorical generaliza-

tion of the SF models. A categorical generalization of a SF model is called a spin-cube model, 

since the path integral is based on a colored 3-complex where the colors are the representa-

tions of a 2-group [5, 6]. The 2-group, see [7] for a review and references, replaces the Lorentz 

group, and becomes the fundamental algebraic structure. The reason for introducing spin-cube 

models was that the SF models have two problems. One problem is that the classical limit of 

a SF model is described by the area-Regge action [6, 8]. The second problem is that the fer-

mions cannot be coupled to a SF model [5]. These two problems are caused by the fact that 

the tetrads are absent from the Plebanski action, see [3, 9–11], which is used as the classical 

action to build the SF amplitudes. The BFCG  action for GR is a categorical generalization of 

the Plebanski action, and the BFCG  action contains both the B field and the tetrads [5].

The path integral quantization of BFCG  GR reduces to the Regge path integral [6]. 

However, in the case of the canonical quantization, it is not known what kind of theories can 

be obtained. It was argued in [12] that a spin-foam basis should exist, as a categorical generali-

zation of the spin-network basis from LQG, but in order to rigorously prove such a statement, 

one needs a canonical formulation of the BFCG  GR theory. The canonical analysis of BFCG  

GR action is much more complicated than the canonical analysis of the Einstein–Hilbert 

action. One can see what kind of canonical analysis will be necessary from the canonical 

analysis of simpler but related actions given by the unconstrained BFCG  action [13] or the 

Einstein–Cartan action [14].

In this paper we present the Hamiltonian analysis of the BFCG  GR theory in full detail. 

Despite being straightforward, the calculations involved are quite nontrivial, so it is important 

to perform the full analysis in a systematic manner. Due to the amount of material presented, 

subsequent topics such as quantization schemes and similar have been postponed for future 

work, while the present paper deals only with the canonical structure of the classical theory.

The paper is organized as follows. In section 2 we give an overview of the BFCG  GR 

action, discuss the Lagrange equations of motion, and prepare for the Hamiltonian analysis. 

The first part of the Hamiltonian analysis is done in section 3. We evaluate the conjugate 

momenta for the fields, obtain the primary constraints and construct the Hamiltonian of the 

theory. Then we impose consistency conditions on on all constraints in turn, giving rise to a 

full set of primary, secondary and tertiary constraints, along with some determined Lagrange 

multipliers. Section 4 is devoted to the second part of the Hamiltonian analysis—the separa-

tion of the constraints into first and second class, computing their algebra, and determining the 

number of physical degrees of freedom. Building on these results, in section 5 we discuss vari-

ous avenues for the elimination of the second class constraints from the theory, gauge fixing 

conditions and the analysis of the first class constraints, and the resulting possible reductions 

of the phase space of the theory. Section 6 contains our concluding remarks, discussion of the 

results and future lines of research. The appendix contains four sections with a lot of technical 

details about the calculations performed in the main text.

Our notation and conventions are as follows. The spacetime indices are denoted with 

lowercase Greek alphabet letters from the middle of the alphabet λ,µ, ν, ρ, . . . and take the 

values 0, 1, 2, 3. When discussing the foliation of spacetime into space and time, the spa-

cetime indices are split as µ = (0, i), where the lowercase indices from the middle of the 

Latin alphabet i, j, k, . . . take only spacelike values 1, 2, 3. The Poincaré group indices are 

denoted with lowercase letters from the beginning of the Latin alphabet, a, b, c, . . . and take 

the values 0, 1, 2, 3, while their spacelike counterparts are denoted by the lower-case Greek 

letters from the beginning of the alphabet α,β, . . ., and take the values 1, 2, 3. The group 

indices are raised and lowered with the Minkowski metric ηab = diag(−1, 1, 1, 1). Capital 

Latin indices A, B, C, . . . represent multi-index notation, and are used to count the second 

A Mikoviü�et alClass. Quantum Grav. 36 (2019) 015005



3

class constraints, fields and momenta, and various other objects, depending on the context. 

Antisymmetrization is denoted with the square brackets around the indices with the 1/2 fac-

tor, X[ab] ≡ (Xab − Xba) /2. In order to simplify the notation involving Poisson brackets, we 

will adopt the following convention. The left quantity in every Poisson bracket is assumed to 

be evaluated at the point x = (t,�x), while the right quantity at the point y = (t,�y). In addition, 

we use the shorthand notation for the 3-dimensional Dirac delta function δ(3)
≡ δ(3)(�x −�y). 

For example, an expression

{Uα(t,�x) , Vβ(t,�y) } = Wαβ(t,�x)δ(3)(�x −�y) + Zαβi(t,�x) ∂iδ
(3)(�x −�y), (1)

where ∂i = ∂/∂xi , can be written more compactly as

{Uα , Vβ } = Wαβδ(3) + Zαβi ∂iδ
(3), (2)

usually without any ambiguity. In the rare ambiguous cases, the expressions will be written 

more explicitly. This notation will be used systematically unless stated otherwise.

2. BFCG action for GR

Given a Lie group G  and its Lie algebra g, and the g-valued connection one-form A on a space-

time manifold M, the BF  action (see [15] for a review and applications to gravity)

SBF =

∫

M

〈B ∧ F〉g, (3)

describes the dynamics of flat connections, where F = dA + A ∧ A is the curvature two-form. 

B is a g-valued Lagrange multiplier two-form and 〈, 〉g represents the invariant nondegener-

ate symmetric bilinear form in g. The BF  theory relevant for the construction of spin-foam 

models is based on the Lorentz group SO(3, 1). A categorical generalization of the BF  theory 

is based on the concept of a strict 2-group, which is a pair of groups (G,H) with certain maps 

between them (see [7] for details). The corresponding theory of flat 2-connections is called the 

BFCG  theory [16, 17], and its dynamics is given by the action

SBFCG =

∫

M

[〈B ∧ F〉g + 〈C ∧ G〉h] . (4)

The second term in (4) consists of a h-valued one-form Lagrange multiplier C, and a curvature 

three-form G = dβ + A ∧ β for the h-valued two-form β, where h is the Lie algebra of the 

group H. The pair (A,β) is called the 2-connection for the 2-group, while the pair (F, G) is the 

corresponding 2-curvature. The 〈, 〉h is the invariant nondegenerate symmetric bilinear form 

in h, which is g-invariant.

The Poincaré 2-group, defined by G = SO(3, 1) and H = R
4, is relevant for GR since the 

Einstein equations can be obtained from a constrained BFCG  action [5], given by

SGR =

∫

M

[〈B ∧ R〉g + 〈e ∧ G〉h − 〈φ ∧ (B − ⋆(e ∧ e))〉g] . (5)

Here we have relabeled C ≡ e and F ≡ R, since in the case of the Poincaré 2-group these 

fields have the interpretation of the tetrad field and the curvature two-form for the spin con-

nection A ≡ ω. The g-valued two-form φ is an additional Lagrange multiplier, featuring in the 

simplicity constraint term. The ⋆ is the Hodge dual operator for the Minkowski space.
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The action (5) can be written as

SGR =

∫

M

[

Bab ∧ Rab + ea
∧ Ga − φab

∧
(

Bab − εabcd ec
∧ ed

)]

, (6)

where the curvatures Rab and Ga are given by

Rab = dωab + ωa
c ∧ ωcb, (7)

Ga = ∇βa
≡ dβa + ωa

b ∧ βb. (8)

The action (6) can even be extended to include the cosmological constant, and it is related to 

the MacDowell–Mansouri action [18–22], see appendix E for details.

It is convenient to introduce the torsion 2-form

Ta = ∇ea
≡ dea + ωa

b ∧ eb, (9)

so that one can rewrite the action as

SPGT =

∫

M

[

Bab ∧ Rab + βa
∧ Ta − φab

∧
(

Bab − εabcd ec
∧ ed

)]

 (10)

by using the integration by parts. The action (10) is a constrained BF  action for the Poincaré 

group, since the tetrads and the spin connection can be considered as components of a Poincaré 

group connection, while the curvature and the torsion are the components of the Poincaré 

group curvature [12]. This equivalence of a Poincaré gauge theory formulation to a 2-group 

gauge theory formulation is specific to 4 spacetime dimensions only.

The relationship between the topological, unconstrained versions of the actions (6) and (10) has 

been discussed in detail in [13]. There, a real parameter ξ was introduced to interpolate between 

the two actions, the full Hamiltonian analysis was performed, and the implications of the param-

eter ξ for the structure of the resulting phase space were studied in detail. It is noteworthy that the 

actions (6) and (10) differ from the actions discussed in [13] only by the presence of the simplic-

ity constraint term, which is the same for both actions and does not contain any time derivatives. 

Therefore, the presence of the simplicity constraint does not change any results of [13] pertaining 

to the ξ parameter, and all conclusions related to ξ given in [13] carry over unmodified to the con-

strained actions (6) and (10) discussed in this paper. Given this situation, we opt not to introduce 

and discuss the ξ parameter again in this paper, and refer the reader to [13] instead.

It is clear that the actions (6) and (10) give rise to the same set of equations of motion, 

since these do not depend on the boundary. Taking the variation of (6) with respect to all the 

variables, one obtains

δB : Rab − φab = 0, (11)

δβ : Ta = 0, (12)

δe : Ga + 2εabcd φ
bc
∧ ed = 0, (13)

δω : ∇Bab
− e[a ∧ βb] = 0, (14)

δφ : Bab − εabcd ec ∧ ed = 0, (15)

where the covariant exterior derivative of Bab is defined as

∇Bab
≡ dBab + ωa

c ∧ Bcb + ωb
c ∧ Bac. (16)
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One can simplify the equations of motion in the following way. Taking the covariant exterior 

derivative of (15) and using (12) one obtains ∇Bab = 0. Substituting this into (14) one further 

obtains e[a ∧ βb] = 0. Under the assumption that det(ea
µ) �= 0, it follows that βa = 0 (see 

appendix in [5] for proof), and therefore also Ga = 0. As a consequence, we see that the equa-

tions of motion (11)–(15) are equivalent to the following system:

 •  the equation that determines the multiplier φab in terms of curvature,

φab = Rab, (17)

 •  the equation that determines the multiplier Bab in terms of tetrads,

Bab = εabcd ec
∧ ed, (18)

 •  the equation that determines βa,

βa = 0, (19)

 •  the equation for the torsion,

Ta = 0, (20)

 •  and the Einstein field equation,

εabcd Rbc
∧ ed = 0. (21)

Finally, for the convenience of the Hamiltonian analysis, we need to rewrite both the action 

and the equations of motion in a local coordinate frame. Choosing dxµ as basis one-forms, we 

can expand the fields in the standard fashion:

ea = ea
µdxµ, ωab = ωab

µdxµ, (22)

Bab =
1

2
Bab

µνdxµ ∧ dxν , βa =
1

2
βa

µνdxµ ∧ dxν , φab =
1

2
φab

µνdxµ ∧ dxν .

 (23)

Similarly, the field strengths for ω, e and β are

Rab =
1

2
Rab

µνdxµ ∧ dxν ,

Ta =
1

2
Ta

µνdxµ ∧ dxν ,

Ga =
1

6
Ga

µνρdxµ ∧ dxν ∧ dxρ.

 

(24)

Using the relations (7)–(9), we can write the component equations

Rab
µν = ∂µω

ab
ν − ∂νω

ab
µ + ωa

cµω
cb

ν − ωa
cνω

cb
µ,

Ta
µν = ∂µea

ν − ∂νea
µ + ωa

bµeb
ν − ωa

bνeb
µ,

Ga
µνρ = ∂µβ

a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν + ωa

bµβ
b
νρ + ωa

bνβ
b
ρµ + ωa

bρβ
b
µν .

 (25)

Substituting expansions (22)–(24) into the action, we obtain

S =

∫

M

d4x εµνρσ
[

1

4
BabµνRab

ρσ +
1

6
eaµGa

νρσ −
1

4
φab

µν

(

Babρσ − 2εabcd ec
ρed

σ

)

]

. (26)
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Assuming that the spacetime manifold has the topology M = Σ× R, where Σ is a 3-dimen-

sional spacelike hypersurface, from the above action we can read off the Lagrangian, which is 

the integral of the Lagrangian density over the hypersurface Σ:

L =

∫

Σ

d3x εµνρσ
[

1

4
BabµνRab

ρσ +
1

6
eaµGa

νρσ −
1

4
φab

µν

(

Babρσ − 2εabcd ec
ρed

σ

)

]

. (27)

Finally, the component form of equations of motion (17)–(21) is:

φab
µν = Rab

µν , Babµν = 2εabcd ec
µed

ν ,

βa
µν = 0, Ta

µν = 0,

ελµνρεabcd Rbc
µνed

ρ = 0.

 

(28)

3. Hamiltonian analysis

Now we turn to the Hamiltonian analysis. A detailed review of the general formalism can be 

found in [14], chapter V. In addition, a good pedagogical example of the Hamiltonian analysis 

which is relevant for our case is the topological BFCG  gravity [13].

3.1. Primary constraints and the Hamiltonian

As a first step, we calculate the momenta π corresponding to the field variables Bab
µν, φab

µν, 

ea
µ, ωab

µ and βa
µν . Differentiating the action (26) with respect to the time derivative of the 

appropriate fields, we obtain the momenta as follows:

π(B)ab
µν =

δS

δ∂0Bab
µν

= 0,

π(φ)ab
µν =

δS

δ∂0φab
µν

= 0,

π(e)a
µ =

δS

δ∂0ea
µ

= 0,

π(ω)ab
µ =

δS

δ∂0ωab
µ

= ε0µνρBabνρ,

π(β)a
µν =

δS

δ∂0βa
µν

= −ε0µνρeaρ.

 

(29)

None of the momenta can be solved for the corresponding ‘velocities’, so they all give rise to 

primary constraints:

P(B)ab
µν

≡ π(B)ab
µν ≈ 0,

P(φ)ab
µν

≡ π(φ)ab
µν ≈ 0,

P(e)a
µ

≡ π(e)a
µ ≈ 0,

P(ω)ab
µ

≡ π(ω)ab
µ
− ε0µνρBabνρ ≈ 0,

P(β)a
µν

≡ π(β)a
µν + ε0µνρeaρ ≈ 0.

 

(30)

A Mikoviü�et alClass. Quantum Grav. 36 (2019) 015005



7

The weak, on-shell equality is denoted ‘≈’, as opposed to the strong, off-shell equality which 

is denoted by the usual symbol ‘=’.

Next we introduce the fundamental simultaneous Poisson brackets between the fields and 

their conjugate momenta,

{Bab
µν , π(B)cd

ρσ } = 4δa
[cδ

b
d]δ

ρ

[µδ
σ

ν]δ
(3),

{φab
µν , π(φ)cd

ρσ } = 4δa
[cδ

b
d]δ

ρ

[µδ
σ

ν]δ
(3),

{ ea
µ , π(e)b

ν } = δa
bδ

ν

µ
δ(3),

{ωab
µ , π(ω)cd

ν } = 2δa
[cδ

b
d]δ

ν

µ
δ(3),

{βa
µν , π(β)b

ρσ } = 2δa
bδ

ρ

[µδ
σ

ν]δ
(3),

 

(31)

and we employ them to calculate the algebra of primary constraints,

{P(B)abjk , P(ω)cd
i } = 4ε0ijkδa

[cδ
b
d]δ

(3),

{P(e)ak , P(β)b
ij } = −ε0ijkδa

bδ
(3),

 

(32)
while all other Poisson brackets vanish.

Next we construct the canonical, on-shell Hamiltonian:

Hc =

∫

Σ

d3
�x

[

1

4
π(B)ab

µν∂0Bab
µν +

1

4
π(φ)ab

µν∂0φ
ab

µν + π(e)a
µ∂0ea

µ

+
1

2
π(ω)ab

µ∂0ω
ab

µ +
1

2
π(β)a

µν∂0β
a
µν

]

− L.

 

(33)

The factors 1/4 and 1/2 are introduced to prevent overcounting of variables. Using (25) and 

(27), one can rearrange the expressions such that all velocities are multiplied by primary con-

straints, and therefore vanish from the Hamiltonian. After some algebra, the resulting expres-

sion can be written as

Hc = −

∫

Σ

d3
�x ε0ijk

[

1

2
Bab0i

(

Rab
jk − φab

jk

)

+ ea
0

(

1

6
Gaijk + εabcd φ

bc
ije

d
k

)

+
1

2
βa0kTa

ij +
1

2
ωab0

(

∇iB
ab

jk − ea
iβ

b
jk

)

−
1

2
φab

0i

(

Babjk − 2εabcd ec
je

d
k

)

]

,

 

(34)

up to a boundary term. The canonical Hamiltonian does not depend on any momenta, but only 

on fields and their spatial derivatives. Finally, introducing Lagrange multipliers λ for each of 

the primary constraints, we construct the total, off-shell Hamiltonian:

HT = Hc +

∫

Σ

d3
�x

[

1

4
λ(B)ab

µνP(B)ab
µν +

1

4
λ(φ)ab

µνP(φ)ab
µν

+λ(e)a
µP(e)a

µ +
1

2
λ(ω)ab

µP(ω)ab
µ +

1

2
λ(β)a

µνP(β)a
µν

]

.

 

(35)

3.2. Consistency procedure

We proceed with the calculation of the consistency requirements for the constraints. The con-

sistency requirement is that the time derivative of each constraint (or equivalently its Poisson 

bracket with the total Hamiltonian (35)) must vanish on-shell. This requirement can either 
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give rise to a new constraint, or determine some multiplier, or be satisfied identically. In our 

case, the consistency requirements give rise to a complicated chain structure, depicted in the 

following diagram:

Here every arrow represents one consistency requirement, and numbers on the arrows denote 

the order in which we will discuss them. Steps 8 and 16 involve multiple constraints simulta-

neously, and will require special consideration. Primary, secondary and tertiary constraints are 

denoted as P , S  and T , respectively.

We begin by discussing consistency conditions 1–7,

Ṗ(β)a
0i
≈ 0, Ṗ(B)ab

0i
≈ 0, Ṗ(φ)ab

ij
≈ 0, Ṗ(φ)ab

0i
≈ 0,

Ṗ(B)ab
ij
≈ 0, Ṗ(β)a

ij
≈ 0, Ṗ(ω)ab

i
≈ 0.

 (36)

Calculating the corresponding Poisson brackets with the total Hamiltonian, these give rise to 

the following secondary constraints,

S(T)ai
≡ ε0ijkTa

jk ≈ 0,

S(Rφ)abi
≡ ε0ijk

(

Rab
jk − φab

jk

)

≈ 0,

S(Bee)abij
≡ ε0ijk

(

Bab
0k − 2εabcd ec0edk

)

≈ 0,

S(Bee)abi
≡ ε0ijk

(

Bab
jk − 2εabcd ecjedk

)

≈ 0,

 

(37)

and determine the following multipliers,

λ(ω)ab
i ≈ ∇iω

ab
0 + φab

0i,

λ(e)a
i ≈ ∇ie

a
0 − ωa

b0eb
i,

λ(B)ab
ij ≈ 4εabcd

(

∇[iec0 − ωcf 0e f
[i

)

edj] + e[a0β
b]

ij − 2e[a[iβ
b]

0j].

 

(38)

In step 8 we discuss the consistency conditions

Ṡ(Bee)abi
≈ 0, Ṗ(ω)ab

0
≈ 0, (39)

simultaneously. Calculating the time derivatives, we obtain

ε0ijk
(

e[a0β
b]

jk − 2e[ajβ
b]

0k

)

≈ 0, ε0ijk e[aiβ
b]

jk ≈ 0, (40)

which can be jointly written as a covariant equation

εµνρσ e[aνβ
b]
ρσ ≈ 0. (41)

A Mikoviü�et alClass. Quantum Grav. 36 (2019) 015005



9

With the assumption that det(ea
µ) �= 0, this can be solved for βa, giving a set of very simple 

tertiary constraints:

T(β)a
µν ≡ βa

µν ≈ 0. (42)

At this point we can immediately analyze the consistency step 9 as well. Taking the time 

derivative of (42), one easily determines the corresponding multipliers,

λ(β)a
µν ≈ 0. (43)

Next, in steps 10 and 11, from the consistency conditions for the remaining two primary 

constraints,

Ṗ(e)a
0
≈ 0, Ṗ(e)a

i
≈ 0, (44)

we obtain two new secondary constraints,

S(eR)a ≡ ε0ijkεabcdeb
iR

cd
jk ≈ 0,

S(eRφ)a
i

≡ ε0ijkεabcd

(

eb
0Rcd

jk − 2eb
jφ

cd
0k

)

≈ 0.
 (45)

In step 12 we need to discuss the consistency condition for the constraint S(eR)a. After a 

straightforward but tedious calculation, one eventually ends up with the following expression:

Ṡ(eR)a = ∇iS(eRφ)a
i + ωb

a0S(eR)b + 2εabcdφ
cd

0kS(T)bk, (46)

up to terms proportional to primary constraints. Since the time derivative is already expressed 

as a linear combination of constraints, the consistency condition is trivially satisfied, which is 

denoted with a zero in the diagram above.

Moving on to steps 13–15, the consistency conditions

Ṡ(Rφ)abi
≈ 0, Ṡ(Bee)abij

≈ 0, Ṡ(T)ai
≈ 0, (47)

determine the multipliers

λ(φ)ab
jk ≈ 2ω[a

c0Rb]c
jk + 2∇[ jφ

ab
0k],

λ(B)ab0k ≈ 2εabcd

[

ed
kλ(e)

c
0 − ed

0∇kec
0 + ωc

f 0ed
0e f

k

]

,
 (48)

and another tertiary constraint

T(eRφ)ai
≡ ε0ijk

(

Rab
jkeb0 + 2φab

0jebk

)

≈ 0. (49)

Now we turn to step 16. At this point there are only two constraints, T(eRφ)ai and S(eRφ)ai, 

whose consistency conditions have not been discussed yet. To this end, note that these two 

constraints can be rewritten into a very similar form,

S(eRφ)a
i = εabcdε

0ijk
(

eb
0Rcd

jk − 2eb
jφ

cd
0k

)

,

T(eRφ)a
i = ηacηbdε

0ijk
(

eb
0Rcd

jk − 2eb
jφ

cd
0k

)

,
 (50)

where the identical expression in parentheses is contracted with εabcd  in the first constraint and 

with ηacηbd  in the second. This suggests that we should discuss their consistency conditions 

simultaneously. As suggested in the diagram above, we will first rewrite these 24 constraints 

(50) into a system of 18 + 6 constraints (to be denoted T(eRφ)abk and T(eRφ)jk respectively) 

as follows. Given that the tetrad ea
µ is nondegenerate, we can freely multiply the constraints 

with it and split the index µ into space and time components. The µ = 0 part is
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ea
0S(eRφ)a

i = −2εabcdε
0ijkea

0eb
jφ

cd
0k,

ea
0T(eRφ)a

i = −2ηacηbdε
0ijkea

0eb
jφ

cd
0k,

 (51)

where the curvature terms have automatically vanished, while the µ = m part is

ea
mS(eRφ)a

i = ea
mεabcdε

0ijk
(

eb
0Rcd

jk − 2eb
jφ

cd
0k

)

,

ea
mT(eRφ)a

i = ea
mηacηbdε

0ijk
(

eb
0Rcd

jk − 2eb
jφ

cd
0k

)

.
 (52)

The system of 18 constraints (52) can be shown to be equivalent to the following constraint:

T(eRφ)ab
k ≡ φab

0k − e f
0Rcd

ijF
abij

fcdk, (53)

where Fabij
fcdk is a complicated function of ea

i only. The proof that the system (52) is equiva-

lent to (53) is given in appendix C, and the explicit expression for Fabij
fcdk is given in equa-

tion  (C.27). Second, introducing the shorthand notation Kabcd ∈ {εabcd, ηacηbd} and using 

(53), we define

T(eRφ)i
≡ −2Kabcdε

0ijkea
0eb

je
f
0Rgh

mnFcdmn
fghk, (54)

which represents a set of 3 + 3 = 6 constraints equivalent to (51). However, a straightforward 

and meticulous (albeit very long) calculation shows that the expression (54) is already a linear 

combination of known constraints and Bianchi identities, and is thus already weakly equal to 

zero. Therefore, T(eRφ)i is not a new independent constraint, and its consistency condition is 

automatically satisfied.

Summing up the step 16, we have replaced the set of constraints (50) by an equivalent set 

(53). It thus follows that the consistency conditions for S(eRφ)a
i  and T(eRφ)a

i are equivalent 

to the consistency condition for T(eRφ)ab
k . Consequently, in step 17, we find that the consist-

ency condition

Ṫ(eRφ)ab
k ≈ 0 (55)

determines the multiplier λ(φ)ab
0k as

λ(φ)ab
0k ≈ λ(e) f

0Rcd
ijF

abij
fcdk + 2e f

0

[

Rc
hijω

hd
0 +∇iφ

cd
0j

]

Fabij
fcdk

+ e f
0Rcd

ij

∂Fabij
fcdk

∂eh
m

(

∇meh
0 − ωh

g0eg
m

)

.
 

(56)

This concludes the consistency procedure for all constraints.

3.3. Results

Let us sum up the results of the consistency procedure. We have determined the full set of 

constraints and multipliers as follows: the primary constraints are

P(B)ab
µν , P(φ)ab

µν , P(β)a
µν , P(ω)ab

µ, P(e)a
µ, (57)

and they have 36, 36, 24, 24 and 16 components, respectively, or 136 in total. The secondary 

constraints are

S(T)ai, S(Rφ)abi, S(Bee)abij, S(Bee)abi, S(eR)a, (58)

and they have 12 + 18 + 18 + 18 + 4 = 70 components in total. The tertiary constraints are

T(β)a
µν , T(eRφ)ab

i (59)
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and they have 24 + 18 = 42 components. In addition, the determined multipliers are

λ(B)ab
µν , λ(φ)ab

µν , λ(β)a
µν , λ(ω)ab

i, λ(e)a
i, (60)

and they have 36 + 36 + 24 + 18 + 12 = 126 components. Finally, there are 10 remaining 

undetermined multipliers,

λ(ω)ab
0, λ(e)a

0. (61)

In total, there are C = 136 + 70 + 42 = 248 constraints, 126 determined and 10 undetermined 

multipliers, the latter corresponding to the 10 parameters of the local Poincaré symmetry of 

the action.

4. The physical degrees of freedom

Once we have found all the constraints in the theory, we need to classify each constraint as 

a first-class or a second-class constraint. While some of the second class constraints can be 

identified from (32), the classification is not easy since constraints are unique only up to linear 

combinations. The most efficient way to tabulate all first class constraints is to substitute all 

determined multipliers into the total Hamiltonian (35) and rewrite it in the form

HT =

∫

d3
�x

[

1

2
λ(ω)ab

0 Φ(ω)ab + λ(e)a
0 Φ(e)a +

1

2
ωab

0 Φ(T)ab + ea
0 Φ(R)a

]

.

 (62)

The quantities Φ are linear combinations of the constraints, and they must all be of the first 

class, since the total Hamiltonian weakly commutes with all constraints. Written in terms of 

the primary and the secondary constraints, the first-class constraints are given by

Φ(ω)ab = P(ω)ab0,

Φ(e)a = P(e)a
0 +

1

2
Rcd

ijF
fbij

acdkP(φ)fb
0k + εabcdeb

kP(B)cd0k,

Φ(T)ab = 4εabcdeciS(T)d
i
−∇iS(Bee)abi + ε0ijke[aiT(β)

b]
jk

+2εabcde f
iecjP(B)fd

ij
−∇iP(ω)

abi + 2e[aiP(e)
b]i

−R[ac
ijP(φ)c

b]ij,

Φ(R)a = −S(eR)a + Rc
hijω

hd
0F fbij

acdkP(φ)fb
0k

+Rcd
ij

∂F fbij
acdk

∂eh
m

(

∇meh
0 − ωh

g0eg
m

)

P(φ)fb
0k

−ε0ijk
∇iT(β)ajk + εabcdeb

i∇jP(B)
cdij

−∇iP(e)a
i

+εabcd

(

∇keb
0 − ωb

f 0e f
k

)

P(B)cd0k

+
1

2
Rcd

ijF
fbij

acdk

[

S(Bee)fb
k + P(ω)fb

k +∇mP(φ)fb
km

−2∇m

(

ee
0Fghmk

efbnP(φ)gh
0n
)]

.

 

(63)

The constraints (63) are the first-class constraints in the theory. The remaining constraints 

are of the second class
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χ(T)ai = S(T)ai,

χ(Rφ)abi = S(Rφ)abi,

χ(Bee)abij = S(Bee)abij,

χ(Bee)abi = S(Bee)abi,

χ(β)a
µν = T(β)a

µν ,

χ(eRφ)ab
i = T(eRφ)ab

i.

χ(B)ab
µν = P(B)ab

µν ,

χ(φ)ab
µν = P(φ)ab

µν ,

χ(β)a
µν = P(β)a

µν ,

χ(ω)ab
i = P(ω)ab

i,

χ(e)a
i = P(e)a

i.

 (64)

Note that χ(β)a
µν  and χ(β)a

µν  are different constraints, despite similar notation. Of 

course, there is no possibility of confusion since we will never raise or lower spacetime indi-

ces of these constraints in the rest of this paper. Also, note that despite the fact that there are 

12 components of χ(T)ai, only 6 of them can be considered second class, since the other 6 are 

part of the first class constraint Φ(T)ab.

At this point we can count the physical degrees of freedom. Given a field theory with N  

fields whose canonical formulation possesses F  first-class constraints, one can gauge fix F  

fields. The second-class constraints do not generate any gauge symmetries and S  second-class 

constraints are equivalent to vanishing of S/2 fields and S/2 canonically conjugate momenta. 

Hence the number of independent (physical) fields is given by

n = N − F −
S

2
. (65)

The number of field components for each of the fundamental fields is

ωab
µ βa

µν ea
µ Bab

µν φab
µν

24 24 16 36 36

which gives the total N = 136. The number of components of the first class constraints is

Φ(e)a Φ(ω)ab Φ(R)a Φ(T)ab

4 6 4 6

which gives the total of F = 20. Similarly, the number of components for the second class 

constraints is

χ(Rφ)abi χ(Bee)abij χ(Bee)abi χ(β)a
µν χ(eRφ)ab

i

18 18 18 24 18

and

χ(B)ab
µν χ(φ)ab

µν χ(β)a
µν χ(ω)ab

i χ(e)a
i χ(T)ai

36 36 24 18 12 12 − 6

where we have denoted that only 6 of the total 12 components of χ(T)ai are independent. 

Thus the total number of independent second class constraints is S = 228. This number can 

also be deduced as the difference between the previously counted total number of constraints 

C = 248 and the number of first class constraints F = 20.

Finally, substituting N , F  and S  into (65), we obtain:

n = 136 − 20 −
228

2
= 2. (66)

We conclude that the theory has two physical degrees of freedom, as expected for general 

relativity.
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At this point it is convenient to rewrite the last term in (62) in the traditional ADM form. 

This is done by projecting the constraint Φ(R)a onto the hypersurface Σ and its orthogonal 

direction. Using the inverse tetrad eµa, define the unit vector na orthogonal to Σ as

na ≡

e0
a

√

−g00
 (67)

where g00
≡ ηabe0

ae0
b is the time-time component of the inverse metric gµν. The vector na 

is thus normalized, nana = −1, and we can define the orthogonal and parallel projectors with 

respect to Σ as

Pa
⊥b ≡ −nanb, Pa

‖b ≡ δa
b + nanb. (68)

One can then employ these projectors to rewrite the final term in (62) as

ea
0Φ(R)a = ea

0

(

Pb
⊥a + Pb

‖a

)

Φ(R)b

= −ea
0nanbΦ(R)b + ea

0Pb
‖a (e

µ
bec

µ) Φ(R)c

=
[

ea
0na

] [

−nbΦ(R)b

]

+
[

ea
0Pb

‖aei
b

] [

ec
iΦ(R)c

]

+
[

ea
0Pb

‖ae0
b

] [

ec
0Φ(R)c

]

= NH⊥ + N iDi.
 

(69)

Note that the final term in the second-to-last equality drops out because 

Pb
‖ae0

b =
√

−g00Pb
‖anb ≡ 0. In the last equality we have introduced the well known ADM 

lapse and shift functions,

N ≡ ea
0na =

1
√

−g00
, N i

≡ ea
0Pb

‖aei
b = −

g0i

g00
, (70)

and we have split the constraint Φ(R)a into the scalar constraint and 3-diffeomorphism 

constraint,

H⊥ ≡ −nbΦ(R)b, Di ≡ ec
iΦ(R)c. (71)

The constraints Φ(T)ab are equivalent to the local Lorentz constraints J ab, which generate 

the local Lorentz transformations, and together with the 10 momentum constraints Φ(ω)ab and 

Φ(e)a, one can use the scalar constraint H⊥ and the 3-diffeomorphism constraint Di to find the 

Poisson bracket algebra of the first-class constraints. This algebra takes the form

{J ab(x) , J cd(y) } =
1

2

[

ηa[cJ d]b(x)− ηb[cJ d]a(x)
]

δ(3),

{Di(x) , Dj(y) } =
[

Di(x) +Di(y)
]

∂jδ
(3) + Rab

ij(x)Jab(x) δ
(3),

{Di(x) , H⊥(y) } =
[

H⊥(x) +H⊥(y)
]

∂iδ
(3) + Rab

i0(x)Jab(x) δ
(3),

{H⊥(x) , H⊥(y) } =
[

g̃ij(x)Dj(x) + g̃ij(y)Dj(y)
]

∂iδ
(3),

 

(72)

while all other first-class Poisson brackets are zero, see [23]. Here it is assumed that x ≡ (t,�x), 

y ≡ (t,�y) and δ(3)
≡ δ(3)(�x −�y), while g̃ij is the 3D inverse metric, defined in appendix B.

The Poisson brackets between the second class constraints and the Poisson brackets 

between the first and the second class constraints can be calculated, but we do not give their 

explicit form because we do not need these Poisson brackets for the purposes of this paper. 

Their generic structure is given by
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{χI(x) , χJ(y) } = ∆IJ(x, y) + ∆̃IJ(x, y), (73)

and

{ΦA(x) , χI(y) } = fAI
B(x, y) ΦB(x) + f̃AI

B(x, y) ΦB(y)

+fAI
J(x, y)χJ(x) + f̃AI

J(x, y)χJ(y).
 (74)

If we denote all the fields collectively as θN = (ea
µ,ωab

µ,βa
µν , Bab

µν ,φab
µν) and their corre-

sponding momenta as πN = (π(e)a
µ,π(ω)ab

µ,π(β)a
µν ,π(B)ab

µν ,π(φ)ab
µν), we can denote 

∆ and f  as generalized functions of the type

F(θ(x),π(x))δ(3) + Fi(θ(x),π(x)) ∂iδ
(3) + · · ·

so that all the coefficients are evaluated at the point x, while ∆̃ and f̃  as

F(θ(y),π(y))δ(3) + Fi(θ(y),π(y)) ∂iδ
(3) + · · ·

so that all the coefficients are evaluated at the point y.

5. The phase space reductions

The results of the Hamiltonian analysis imply that the BFCG  GR action (6) can be written as

S0 =

∫ t2

t1

dt

∫

Σ

d3x

[

πN θ̇
N
− λ(e)a

0Φ(e)a −
1

2
λ(ω)ab

0Φ(ω)ab

−ea
0Φ(R)a −

1

2
ωab

0Φ(T)ab − µLχL

]

,

 

(75)

where χL  counts over the set of all second-class constraints (64), while µL are Lagrange mul-

tipliers for the second-class constraints.

This action can be reduced to an action for a smaller number of canonical variables by par-

tially solving some of the constraints. Solving M first-class constraints φm = 0 requires that 

we make M gauge-fixing conditions Gm = 0, such that {Gm, Gm′} = 0 and det{Gm,φm′} �= 0. 

We can then solve the equations φm = 0 for the momenta π(Gm). The simplest way to do this 

is to chose Gm to be a set of M coordinates θm, and then to solve the corresponding M first-

class constraints φm = 0 for the momenta πm. As far as the second-class constraints are con-

cerned, we can solve 2K  of them for K  coordinates and their K  momenta.

It is not difficult to see that one can solve the following 192 second-class constraints

χ(B)ab
µν

≡ π(B)ab
µν ≈ 0,

χ(φ)ab
µν

≡ π(φ)ab
µν ≈ 0,

χ(β)a
µν ≡ βa

µν ≈ 0,

χ(β)a
µν

≡ π(β)a
µν + ε0µνρeaρ ≈ 0,

χ(Bee)abij
≡ ε0ijk

(

Bab
0k − 2εabcdec0edk

)

≈ 0,

χ(Bee)abi
≡ ε0ijk

(

Bab
jk − 2εabcdecjedk

)

≈ 0,

χ(Rφ)abi
≡ ε0ijk

(

Rab
jk − φab

jk

)

≈ 0,

χ(eRφ)ab
i ≡ φab

0i − e f
0Rcd

jkFabjk
fcdi ≈ 0,

 (76)
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for (B,β,φ) and their momenta. This will give (B,β,φ) and their momenta as functions of 

the canonical coordinates (e,ω,π(e),π(ω)) so that one obtains a reduced phase-space (RPS) 

theory described by the action

S1 =

∫

d4x

[

π(e)a
µ ėa

µ +
1

2
π(ω)ab

µ ω̇ab
µ − λ(e)a

0Φ̃(e)a −
1

2
λ(ω)ab

0Φ̃(ω)ab

−ea
0Φ̃(R)a −

1

2
ωab

0Φ̃(T)ab − µLχ̃L

]

,

 

(77)

where C̃ denotes a constraint C on the RPS (e,ω,π(e),π(ω)). There are still 20 first-

class constraints, namely Φ̃(ω)ab, Φ̃(e)a, Φ̃(T)ab, Φ̃(R)a, and 36 second-class constraints 

χ̃L = (χ̃(e)a
i, χ̃(ω)ab

i, χ̃(T)ai) on the RPS, so that S1 is equivalent to the Hamiltonian form of 

the Einstein–Cartan action [14].

One would like to understand a reduction of S1 to an action for the triads and spatial spin 

connections (eαi,ω
αβ

i). This can be done by gauge fixing ea
0 = 0 and solving the corre-

sponding momenta from Φ̃(e)a = 0. One can also gauge fix ωab
0 = 0 and eliminate the corre-

sponding momenta from Φ̃(ω)ab = 0, as well as to set e0
i = 0 and eliminate the corresponding 

momenta from Φ̃(T)0α = 0. Note that here we have split the group indices into space and time 

components, a = (0,α) where α = 1, 2, 3, see appendix B for details and the notation.

As far as the second-class constraints χ̃L  are concerned, one can eliminate ω0 α
i and the 

corresponding momenta from

χ̃(ω)0α
i = 0, χ̃(e)a

i = 0, χ̃(T)0i = 0. (78)

Note that there are 24 constraints in (78), but there are six relations among them, so that we 

have only 18 independent constraints.

Solving the constraints (78) leads to a RPS based on (eαi,ω
αβ

i) ∼= (eαi,ω
α

i) and their 

momenta. However, there are still 7 first-class constraints

Φ̃(R)a = 0, Φ̃(T)αβ = 0, (79)

and 18 second-class constraints

χ̃(T)αi = 0, χ̃(ω)αβ
i = 0. (80)

The corresponding action is given by

S2 =

∫

d4x

[

π(e)α
iėαi + π(ω)α

iω̇α
i − NH̃⊥ − N i

D̃i −
1

2
ωαβ

0J̃αβ − µLχ̃L

]

,

 (81)

where χ̃L = (χ̃(T)αi, χ̃(ω)αβ
i) and ωα

i ≡
1
2
εαβγωβγi.

We can further eliminate ωα
i  and their momenta from the 18 second-class constraints (80) 

so that one obtains a RPS based on (e,π(e)) variables and the action

S3 =

∫

d4x

[

π(e)α
iėαi − NH̃⊥ − N i

D̃i −
1

2
ωαβ

0J̃αβ

]

. (82)

This action corresponds to the triad Hamiltonian formulation of general relativity. The ADM 

formulation is obtained by using the 3D metric gij ≡ ea
ieaj = eαieαj  and the corresponding 

momenta. The ADM variables are invariant under the local rotations generated by J̃ αβ, so 

that the corresponding action is given by
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S4 =

∫

d4x
[

π(g)ij ġij − NH̃⊥ − N i
D̃i

]

, (83)

where H⊥ and Di are the ADM constraints.

6. Conclusions

We found all the constraints and determined the Lagrange multipliers for the BFCG  GR action 

(6). We also determined the total Hamiltonian (62), the first-class constraints (63), the second-

class constraints (64) and the algebra of the constraints (72)–(74). The obtained constraints 

also give the correct number of the physical DOF, see (66). We also showed how the other 

known canonical formulations of GR, namely Einstein–Cartan, triad and ADM, arise from 

the canonical formulation of BFCG  GR by performing the RPS analysis. This analysis also 

gave a new canonical formulation for GR, namely the action S2, which is based on the reduced 

phase space of triads and SO(3) connections and their canonically conjugate momenta.

Since the main motivation for finding a canonical formulation of the BFCG  GR theory 

is the construction of a spin-foam basis which will be a categorical generalization of the 

spin-network basis from LQG, then the results of the RPS analysis in section 5 are of great 

importance for this goal. Namely, in order to construct such a spin-foam basis one needs a 

2-connection (A,β) for the Euclidean 2-group (SO(3),R3) on the spatial manifold Σ, see 

[12]. This makes the RPS space (eαi,ω
αβ

i,π(e)α
i,π(ω)αβ

i) and the corresponding action S2 a 

natural starting point for the canonical quantization. Furthermore, this RPS provides a natural 

2-connection on Σ 

(Aαβ
i ,βα

ij) = (ωαβ
i, ǫijkẽkα ), (84)

where ẽk
α are the inverse triads.

Hence one can use the 2-holonomy invariants for the 2-connection (84) associated to 

embedded 2-graphs in Σ, see [24], in order to construct the wavefunctions corresponding 

to the spin-foam basis. However, the existence of the second-class constraints χm will com-

plicate the task of obtaining the physical Hilbert space. One can avoid the second-class con-

straints by using the Dirac brackets, but this may produce non-canonical commutators among 

the fields and their canonical momenta. If one wants to preserve the Heisenberg algebra of 

the canonical variables, then one can use the Gupta–Bleuler quantization approach, where the 

second-class constraints would be imposed weakly, as 〈Ψ|χ̂m|Ψ〉 = 0.

A simpler approach to the problem of second-class constraints in quantum theory is to 

solve classically the second-class constraints χm, which is equivalent to using the (eαi,π(e)α
i) 

RPS and the action S3. Then the spin connection ωαβ
i becomes a function of the triads and the 

components of the 2-connection (84) will still commute as operators, so that a spin-foam basis 

can be constructed, and the e-representation will be the most convenient for this.

Note that in the triad formulation of GR the Ashtekar variables can be defined via a series 

of canonical transformations,

(eαi,π(e)α
i) → (ẽi

α ,π(ẽ)i
α) →

(

f (ζ)Ei
α = |e|3 ẽi

α , Aα
i = ω(e)αi +

ζ

|e|3
π(ẽ)i

α
)

, (85)

where |e|3 = det(eαi) and for ζ =
√

−1, f (ζ) = 1 [25] while for ζ ∈ R, f (ζ) = ζ  [26]. Then 

one can define the spin-network basis by using spin-network graphs and the associated holo-

nomies for the connection A, see [1]. This suggests that the Ashtekar variables could be also 

a natural starting point for the construction of a spin-foam basis. However, the corresponding 

2-connection components
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Aαβ
i = ǫαβγAγi, βα

ij = ǫijkEkα, (86)

will not commute as operators and one has to use again the 2-connection (84).

Let us also note that the results obtained about the Hamiltonian structure of the theory 

can be important if one considers minisuperspace or midisuperspace models of quantum 

gravity, as is commonly done in the context of cosmology. For example, in Loop Quantum 

Cosmology (for a review, see [27–30] and references therein), one typically performs some 

type of symmetry reduction or gauge fixing prior to quantization, and then considers a result-

ing quantum-mechanical model of the Universe. However, in this work we have discussed 

only pure gravity, without matter fields. For this reason, our results are not directly applicable 

in the context of cosmology, since cosmological models without matter fields are not realistic. 

Repeating our analysis with included matter fields therefore represents an interesting avenue 

for further research.
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Appendix A. Bianchi identities

Recalling the definitions of the torsion and curvature 2-forms,

Ta = dea + ωa
b ∧ eb, Rab = dωab + ωa

c ∧ ωcb, (A.1)

one can take the exterior derivative of Ta and Ra, and use the property dd ≡ 0 to obtain the 

following two identities:

∇Ta
≡ dTa + ωa

b ∧ Tb = Ra
b ∧ eb,

∇Rab
≡ dRab + ωa

c ∧ Rcb + ωb
c ∧ Rac = 0.

 (A.2)

These two identities are universally valid for torsion and curvature, and are called Bianchi 

identities. By expanding all quantities into components as

Ta =
1

2
Ta

µνdxµ ∧ dxν , Rab =
1

2
Rab

µνdxµ ∧ dxν , (A.3)

ea = ea
µdxµ, ωab = ωab

µdxµ, (A.4)

and using the formula dxµ ∧ dxν ∧ dxρ ∧ dxσ = εµνρσd4x, one can rewrite the Bianchi identi-

ties in component form as

ελµνρ
(

∇µTa
νρ − Ra

bµνeb
ρ

)

= 0, (A.5)
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and

ελµνρ∇µRab
νρ = 0. (A.6)

For the purpose of Hamiltonian analysis, one can split the Bianchi identities into those 

which do not feature a time derivative and those that do. The time-independent pieces are 

obtained by taking λ = 0 components:

ε0ijk
(

∇iT
a

jk − Ra
bije

b
k

)

= 0, (A.7)

ε0ijk
∇iR

ab
jk = 0. (A.8)

These identities are valid as off-shell, strong equalities for every spacelike slice in spacetime, 

and can be enforced in all calculations involving the Hamiltonian analysis. The time-depen-

dent pieces are obtained by taking λ = i components:

ε0ijk
(

∇0Ta
jk − 2∇jT

a
0k − 2Ra

b0je
b

k − Ra
bjkeb

0

)

= 0, (A.9)

and

ε0ijk
(

∇0Rab
jk − 2∇jR

ab
0k

)

= 0. (A.10)

Due to the fact that they connect geometries of different spacelike slices in spacetime, they 

cannot be enforced off-shell. Instead, they can be derived from the Hamiltonian equations of 

motion of the theory.

In light of the Bianchi identities, we should note that the action (6) features three more 

fields, βa, Bab and φab, which also have field strengths Ga, ∇Bab, ∇φab , and for which one can 

similarly derive Bianchi-like identities,

∇Ga = Ra
b ∧ βb,

∇
2Bab = Ra

c ∧ Bcb + Rb
c ∧ Bac,

∇
2φab = Ra

c ∧ φcb + Rb
c ∧ φac.

 (A.11)

However, due to the fact that all three fields are two-forms, in 4-dimensional spacetime these 

identities will be single-component equations, with no free spacetime indices,

ελµνρ
(

2

3
∇λGa

µνρ − Ra
bµνβ

b
νρ

)

= 0, (A.12)

and similarly for ∇2Bab and ∇2φab . Therefore, these equations necessarily feature time deriv-

atives of the fields, and do not have a purely spatial counterpart to (A.7) and (A.8). In this 

sense, like the time-dependent pieces of the Bianchi identities, they do not enforce any restric-

tions in the sense of the Hamiltonian analysis, but can instead be derived from the equations of 

motion and expressions for the Lagrange multipliers.

Appendix B. Inverse tetrad and metric

We perform the split of the group indices into space and time components as a = (0,α) where 

α = 1, 2, 3, and write the tetrad ea
µ as a 1 + 3 matrix
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ea
µ =









e0
0 e0

m

eα0 eαm









. (B.1)

Then the inverse tetrad eµb can be expressed in terms of the 3D inverse tetrad ẽm
β as

eµb =















1

σ
−

1

σ
ẽm

β e0
m

−
1

σ
ẽm

α eα0 ẽm
β +

1

σ
(ẽm

α eα0)
(

ẽk
β e0

k

)















, (B.2)

where

σ ≡ e0
0 − e0

kẽk
α eα0 (B.3)

is the 1 × 1 Schur complement [31] of the 4 × 4 matrix ea
µ. By definition, the 3D tetrad satis-

fies the identities

eαmẽm
β = δαβ , eαmẽn

α = δn
m. (B.4)

In addition, if we denote e ≡ det ea
µ and e3≡ det eαm, the Schur complement σ satisfies the 

Schur determinant formula

e = σe3, (B.5)

which can be proved as follows.

Given any square matrix divided into blocks as

∆ =

[

A B

C M

]

 (B.6)

such that A and M are square matrices and M has an inverse, we can use the Aitken block 

diagonalization formula [31]
[

I −BM−1

0 I

] [

A B

C M

] [

I 0

−M−1C I

]

=

[

S 0

0 M

]

, (B.7)

where

S = A − BM−1C (B.8)

is called the Schur complement of the matrix ∆. The Aitken formula can be written in the 

compact form

P∆Q = S ⊕ M, (B.9)

where P  and Q are the above triangular matrices. Taking the determinant, we obtain

detP det∆detQ = det S detM. (B.10)

Since the determinant of a triangular matrix is the product of its diagonal elements, we have 

detP = detQ = 1, which then gives the famous Schur determinant formula:

det∆ = det S detM. (B.11)
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Now, performing the 1 + 3 block splitting of the tetrad matrix ∆ = [ea
µ]4×4, we obtain the 

Schur complement S = [σ]1×1, while M = [eαm]3×3. The Schur determinant formula then 

gives

e = σe3, (B.12)

which completes the proof.

Similarly to the tetrad, one can perform a 1 + 3 split of the metric gµν,

gµν =









g00 g0j

gi0 gij









. (B.13)

The inverse metric gµν can be expressed in terms of the 3D inverse metric g̃ij as

gµν =















1

ρ
−

1

ρ
g̃ing0i

−
1

ρ
g̃mjg0j g̃mn +

1

ρ

(

g̃mjg0j

) (

g̃ing0i

)















, (B.14)

where

ρ ≡ g00 − g0ig̃
ijg0j (B.15)

is the 1 × 1 Schur complement of gµν. By definition, the 3D metric satisfies the identity

gijg̃
jk = δk

i . (B.16)

In addition, if we denote g ≡ det gµν and g3 ≡ det gij, the Schur complement ρ satisfies the 

Schur determinant formula

g = ρg3. (B.17)

The components of the metric can of course be written in terms of the components of the 

tetrad,

gµν = ηabea
µeb

ν . (B.18)

Regarding the inverse metric, the only nontrivial identity is between g̃ij and ẽi
α. Introducing 

the convenient notation eα ≡ ẽi
α e0

i, it reads:

g̃ij = ẽi
α ẽj

β

[

ηαβ +
eαeβ

1 − eγeγ

]

. (B.19)

The relationship between determinants and Schur complements is:

g = −e2, g3 = (e3)
2
(1 − eαeα) , ρ =

σ
2

eαeα − 1
. (B.20)

Finally, there is one more useful identity,

g0jg̃
ij = ẽi

α eα0 −
σ

1 − eβeβ
ẽi
α eα, (B.21)

which can be easily proved with some patient calculation and the other identities above.
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Appendix C. Solving the system of equations

In order to show that the constraints (52) are equivalent to the constraint (53), we proceed as 

follows. Introducing the shorthand notation Kabcd ∈ {εabcd, ηacηbd}, we can rewrite (52) in a 

convenient form

ea
mKabcdε

0ijk
(

eb
0Rcd

jk − 2eb
jφ

cd
0k

)

≈ 0. (C.1)

Next we multiply it with the Levi-Civita symbol ε0iln in order to cancel the ε0ijk , relabel the 

index m → i and obtain

Kabcd

(

ea
ie

b
jφ

cd
0k − ea

ie
b

kφ
cd

0j

)

≈ Kabcdea
ie

b
0Rcd

jk. (C.2)

The antisymmetrization in jk  indices can be eliminated by writing each equation three times 

with cyclic permutations of indices ijk , then adding the first two permutations and subtracting 

the third. This gives:

Kabcdea
ie

b
jφ

cd
0k ≈ Kabcdea

0

[

1

2
eb

kRcd
ij − eb

[iR
cd

j]k

]

. (C.3)

Introducing the shorthand notation Pijk  and Qijk  for the expression on the right-hand side as

Pijk ≡ ηacηbdea
0

[

1

2
eb

kRcd
ij − eb

[iR
cd

j]k

]

,

Qijk ≡ εabcdea
0

[

1

2
eb

kRcd
ij − eb

[iR
cd

j]k

]

,

 (C.4)

our system can be rewritten as

ηacηbdea
ie

b
jφ

cd
0k ≈ Pijk, εabcdea

ie
b

jφ
cd

0k ≈ Qijk. (C.5)

This system consists of 18 equations for the 18 variables φab
0k . We look for a solution in the 

form

φcd
0k = AcdmnPmnk + BcdmnQmnk, (C.6)

where the coefficients Acdmn  and Bcdmn  are to be determined, for arbitrarily given values of Pijk  

and Qijk . Substituting (C.6) into (C.5) we obtain
[

ηacηbdea
ie

b
jA

cdmn − δ
[m
i δ

n]
j

]

Pmnk +
[

ηacηbdea
ie

b
jB

cdmn
]

Qmnk ≈ 0,
[

εabcdea
ie

b
jA

cdmn
]

Pmnk +
[

εabcdea
ie

b
jB

cdmn − δ
[m
i δ

n]
j

]

Qmnk ≈ 0.
 (C.7)

Since Pmnk and Qmnk are considered arbitrary, the expressions in the brackets must vanish, giv-

ing the following equations for Acdmn ,

ηacηbdea
ie

b
jA

cdmn
≈ δ

[m
i δ

n]
j , εabcdea

ie
b

jA
cdmn

≈ 0, (C.8)

and for Bcdmn ,

ηacηbdea
ie

b
jB

cdmn
≈ 0, εabcdea

ie
b

jB
cdmn

≈ δ
[m
i δ

n]
j . (C.9)

Focus first on (C.8). The first equation can be rewritten in the form

eciedjA
cdmn

≈ δ
[m
i δ

n]
j , (C.10)
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and we want to rewrite the second equation in a similar form as well. In order to do that, we 

need to get rid of the Levi-Civita symbol on the left-hand side, by virtue of the identity

det(eaµ)εabcd = εµνρσeaµebνecρedσ . (C.11)

Noting that det(eaµ) = det(ηabeb
µ) = − det(ea

µ) = −e and introducing the metric 

gµν ≡ ea
µeaν, we can multiply this identity with ea

ie
b

j  to obtain:

εabcdea
ie

b
j = −

1

e
εµνρσgµigνjecρedσ . (C.12)

Substituting this into the second equation in (C.8) gives

εµνρσgµigνjecρedσAcdmn
≈ 0. (C.13)

Next we expand the ρ and σ indices into space and time components as ρ = (0, k) and σ = (0, l) 
to obtain

2εµν0lgµigνjec0edlA
cdmn + εµνklgµigνjeckedlA

cdmn
≈ 0. (C.14)

The second term on the left can be evaluated using (C.10), which gives:

2εµν0lgµigνjec0edlA
cdmn + εµνmngµigνj ≈ 0. (C.15)

The Levi-Civita symbol in the first term is nonzero only if µν  are spatial indices, so we can 

write

2εrs0lgrigsjec0edlA
cdmn + εµνmngµigνj ≈ 0. (C.16)

At this point we need to introduce 3D inverse metric, g̃ij, and to split the group indices into 

3 + 1 form a = (0,α) where α = 1, 2, 3, see appendix B. Multiplying (C.16) with two inverse 

spatial metrics and another Levi-Civita symbol, we can finally rewrite it as:

ec0ediA
cdmn

≈ g0jg̃
j[mδ

n]
i . (C.17)

The goal of all these transformations was to rewrite the system (C.8) into the form

eciedjA
cdmn

≈ δ
[m
i δ

n]
j , ec0ediA

cdmn
≈ g0jg̃

j[mδ
n]
i . (C.18)

At this point we can expand the group indices on the left-hand side into 3 + 1 form, to obtain:

eγieδjA
γδmn +

(

e0
jeδi − e0

ieδj

)

A0δmn ≈ δ
[m
i δ

n]
j , (C.19)

eγ0eδjA
γδmn +

(

e0
jeδ0 − e0

0eδj

)

A0δmn ≈ g0kg̃k[mδ
n]
j . (C.20)

Now we multiply (C.19) with ẽi
α eα0 and subtract it from (C.20). The first terms on the left 

cancel, and (C.20) becomes

−σeδjA
0δmn ≈ g0kg̃k[m

δ
n]
j − ẽ[mα δ

n]
j eα0, (C.21)

where σ is the 1 × 1 Schur complement matrix of the tetrad ea
µ (see appendix B). Multiplying 

with another inverse 3D tetrad and using the identity (B.21), we finally obtain the first half of 

the coefficients A:

A0αmn
≈

1

1 − eγeγ
ẽ[mδ ẽn]α eδ . (C.22)
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Finally, substituting this back into (C.19) and multiplying with two more inverse 3D tetrads 

we obtain the second half of the coefficients A:

Aαβmn
≈ ẽ[mα ẽn]β +

eδ

1 − eγeγ

[

eαẽ[mδ ẽn]β
− eβ ẽ[mδ ẽn]α

]

. (C.23)

Next we turn to the system (C.9) for coefficients B. The method to solve it is completely 

analogous to the above method of solving (C.8), and we will not repeat all the steps, but rather 

only quote the final result:

B0βmn
≈

1

4
ε0βγδ

[

ẽm
γ ẽn

δ + 2ẽ[mα ẽn]
δ

eαeγ

1 − eǫeǫ

]

, (C.24)

and

Bαβmn
≈

1

2

1

1 − eǫeǫ
ε0αβγ ẽ[mγ ẽn]

δ eδ . (C.25)

To conclude, by determining the A and B coefficients in (C.6) we have managed to solve 

the original system of equations (C.1) for φab
0k . Substituting (C.4) into (C.6) the expression 

for φab
0k  can be arranged into the form

φab
0k ≈ e f

0Rcd
mnFabmn

fcdk, (C.26)

where

Fabmn
fcdk ≡

1

2

[

Aabmnηfcedk − 2Aabimηfcediδ
n
k

+ Babmnεfhcdeh
k − 2Babimεfhcdeh

iδ
n
k

]

,

 

(C.27)

and coefficients A and B are specified by (C.22)–(C.25). Note that (C.27) depends only on ea
i 

components of the metric (in a very complicated way), while the dependence of φab
0k  on ea

0 

and ωab
i is factored out in (C.26).

Appendix D. Levi-Civita identity

The identity for the Levi-Civita symbol in 4 dimensions used in the main text is:

A[aεb]cdf C
cDdF f = −

1

2
εabcdAf

[

CdD f Fc + CcDdF f + C f DcFd
]

. (D.1)

The proof goes as follows. Denote the left-hand side of the identity as

Kab ≡ A[aεb]cdf C
cDdF f

 (D.2)

and take the dual to obtain:

εaba′b′Kab = εaba′b′εbcdf AaCcDdF f . (D.3)

Next expand the product of two Levi-Civita symbols into Kronecker deltas and use them to 

contract the vectors A, C, D and F :

εaba′b′Kab = 2
[

(A · D)F[a′Cb′] + (A · F)C[a′Db′] + (A · C)D[a′Fb′]
]

. (D.4)
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Now take the dual again, i.e. contract with εa′b′cd to obtain

−4Kcd = εa′b′cdε
aba′b′Kab

= 2εa′b′cd

[

(A · D)F[a′Cb′] + (A · F)C[a′Db′] + (A · C)D[a′Fb′]
]

.

 (D.5)
Finally, multiply by −1/4 and relabel the indices to obtain

Kab = −
1

2
εabcdAf

[

CdD f Fc + CcDdF f + C f DcFd
]

, (D.6)

which proves the identity.

Appendix E. Relation between the BFCG and the MacDowell–Mansouri 

models

Given that the constrained BFCG  action (6) is equivalent to GR, it is a straightforward exer-

cise to include a cosmological constant term:

SGRΛ =

∫

M

[

Bab ∧ Rab + ea
∧ Ga − φab

∧
(

Bab − εabcd ec
∧ ed

)

−
Λ

6
εabcd ea

∧ eb
∧ ec

∧ ed

]

,

 

(E.1)

Working out the corresponding equations of motion, one obtains the same set (17)–(20) as for 

the action (6), except for the Einstein field equation (21) which is modified into

εabcd

(

Rbc
−

Λ

3
eb ∧ ec

)

∧ ed
= 0,

 (E.2)

which can in turn be rewritten into the standard component form

Rµν −
1

2
R gµν + Λ gµν = 0.

 (E.3)

Here the parameter Λ ∈ R is the cosmological constant.

It is interesting to note that one can obtain the MacDowell–Mansouri action for GR  

[18–22] from the action (E.1). In particular, the relationship between (E.1) and the MacDowell–

Mansouri action is analogous to the relationship between the Palatini and Einstein–Hilbert 

actions, respectively, as we shall now demonstrate. To this end, first add and subtract a term 

ζBab ∧ ea
∧ eb to (E.1), where ζ = ±1, and rewrite it in the form

SGRΛ =

∫

M

[

Bab ∧
(

Rab
− ζea ∧ eb

)

+ ea
∧ Ga − φab

∧
(

Bab − εabcd ec
∧ ed

)

+ea
∧ eb

∧

(

ζBab −
Λ

6
εabcd ec

∧ ed

)]

.

 

(E.4)

Next we perform the partial integration over the ea
∧ Ga  term, and rewrite the action as

SGRΛ =

∫

M

[

Bab ∧
(

Rab
− ζea ∧ eb

)

+ βa
∧∇ea − φab

∧
(

Bab − εabcd ec
∧ ed

)

+ea
∧ eb

∧

(

ζBab −
Λ

6
εabcd ec

∧ ed

)]

.

 

(E.5)
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Now we want to eliminate the Lagrange multiplier φab from the action. This is performed in 

analogy with the way the Palatini action is transformed into the Einstein–Hilbert action—we 

take the variation of the action with respect to φab to obtain the corresponding equation of 

motion, and then substitute this equation back into the action. The equation of motion is alge-

braic rather than differential,

Bab = εabcdec
∧ ed, (E.6)

which suggests that no propagating degrees of freedom will be lost upon substituting it back 

into the action. So we solve it for the product of two tetrads,

ea
∧ eb = −

1

4
εabcdBcd, (E.7)

and substitute it back into (E.5), eliminating the product of the tetrads from all terms except 

the first one, to obtain:

S =

∫

M

[

Bab ∧
(

Rab
− ζea ∧ eb

)

+ βa
∧∇ea +

Λ− 6ζ

24
εabcd Bab

∧ Bcd

]

.

 (E.8)

Note that the term containing φab has vanished from the action, while the final term has been 

transformed into the B ∧ B term.

Finally, to see that (E.8) is actually the MacDowell–Mansouri action, introduce the follow-

ing change of variables:

BAB
≡









Bab βa

2

−
βb

2
0









, AAB
≡









ωab ea

−eb 0









, (E.9)

and

FAB
≡ dAAB + AA

C ∧ ACB =









Rab
− ζea

∧ eb
∇ea

−∇eb 0









, VA
≡















0

0

0

0

1















. (E.10)

These represent the 5-dimensional 2-form BAB, connection 1-form AA, its field strength 2-form 

FAB and a 0-form VA. The capital Latin indices take values 0, 1, 2, 3, 5, and we can also intro-

duce the 5-dimensional Levi-Civita symbol εABCDE , which is related to the ordinary 4-dimen-

sional one as εabcd5 ≡ εabcd . Using all this, the action (E.8) can be rewritten into the form

S =

∫

M

[

BAB ∧ FAB +
Λ− 6ζ

24
Bab

∧ Bcd εABCDE VE

]

, (E.11)

which is manifestly covariant with respect to the action of the groups SO(4, 1) or SO(3, 2), 
depending on the choice of ζ = ±1, which enters the 5-dimensional metric

ηAB ≡













−1

1

1

1

ζ













, (E.12)
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where the off-diagonal values are assumed to be zero. The action (E.11) is precisely the 

BF-form ulation of the MacDowell–Mansouri action [18–22], as we have set out to demonstrate.
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Abstract

We show that, as a consequence of the local Poincaré symmetry, gravity and 

matter fields have to be entangled, unless the overall action is carefully fine-

tuned. First, we present a general argument, applicable to any particular theory 

of quantum gravity with matter, by performing the analysis in the abstract 

nonperturbative canonical framework, demonstrating the nonseparability 

of the scalar constraint, thus promoting the entangled states as the physical 

ones. Also, within the covariant framework, using a particular toy model, we 

show explicitly that the Hartle–Hawking state in the Regge model of quantum 

gravity is entangled. Our result is potentially relevant for the quantum-

to-classical transition, taken within the framework of the decoherence 

programme: due to the gauge symmetry requirements, the matter does not 

decohere, it is by default decohered by gravity. Generically, entanglement 

is a consequence of interaction. This new entanglement could potentially, 

in form of an ‘effective interaction’, bring about corrections to the weak 

equivalence principle, further confirming that spacetime as a smooth four-

dimensional manifold is an emergent phenomenon. Finally, the existence of 

the gauge-protected entanglement between gravity and matter could be seen 

as a criterion for a plausible theory of quantum gravity, and in the case of 

perturbative quantisation approaches, a confirmation of the persistence of the 

manifestly broken gauge symmetry.

Keywords: quantum entanglement, quantum gravity, diffeomorphism 

invariance, scalar constraint
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1. Introduction

The unsolved problems of formulating quantum theory of gravity (QG) and interpreting 

quant um mechanics (QM) are arguably the two most prominent ones of the modern theor-

etical physics. So far, most of the approaches to solve the two were studied independently. 

Indeed, the majority of the interpretations of QM do not involve explicit dynamical effects 

(with notable exceptions of the spontaneous collapse and the de Broglie–Bohm theories), 

while the researchers from the QG community often just adopt some particular interpretation 

of QM, assuming that it contains no unresolved issues. Nevertheless, the two problems share 

a number of similar unsolved questions and counter-intuitive features. A prominent example is 

nonlocality: entanglement-based nonlocality in QM, as well as the anticipated explicit dynam-

ical nonlocality in QG (a consequence of quantum superpositions of different gravitational 

fields, i.e. different spacetimes and their respective causal orders). Another prominent issue 

relevant for both standard QM and QG is the quantum-to-classical transition and the related 

measurement problem.

In relation to the latter, decoherence is in QM the standard approach to the emergence of 

classicality: due to huge complexity of macroscopic (‘classical’) systems and the surround-

ing environment (bath), the ( for all practical purposes) inevitable interaction between the 

two leads to the entanglement and the loss of coherence. While technically this is completely 

within the standard QM, when coupled with additional assumptions, such as the many-world 

interpretation (likely to be the predominant within the community working on decoherence 

and quantum-to-classical transition), the decoherence offers a possible solution to the meas-

urement problem. In an alternative approach, problems with quantising gravity led to the 

half century old idea of gravitationally induced objective collapse of the wave function [1] 

(for an overview, see for example [2], chapter III.B): roughly speaking, due to the position 

uncertainty of massive bodies, which are the sources of gravitational field, the latter exhib-

its quantum fluctuations that decohere the matter, forcing it (or, rather both the matter and 

gravity) to collapse in a well defined (classical) state. Without invoking objective collapse, 

decoherence of quantum matter by purely classical gravity was studied in [3, 4]. In the context 

of perturbative quantum gravity, the topic of gravitationally induced decoherence of matter, 

taken purely within the scope of standard QM (i.e. in the same fashion in which macroscopic 

bodies decohere due to inevitable interaction with surrounding photons, neutrinos, microwave 

background radiation, etc), became recently an intensive field of research [5], see also [6] 

and the references therein for decoherence in the context of cosmological inflation. In addi-

tion, a lot of research focuses on entanglement induced by the presence of horizons in curved 

spacetime, in approaches based on the holography conjecture and in the studies of the black 

hole information problem [7] (for a review, see recent lecture notes [8]). In particular, these 

approaches study the entanglement between the degrees of freedom (both gravitational and 

matter) on the two sides of the horizon.

In this paper we study the entanglement between gravitational and matter fields, in the 

context of an abstract nonperturbative theory of quantum gravity, as well as on the example 

of the Hartle–Hawking state in the Regge quantum gravity model, and show that the two 

fields should always be entangled. Our approach is different from the standard one, studied in 

the perturbative framework: instead of ‘for all practical purposes’ inevitable fast interaction-

induced decoherence from initially product states between two sub-systems [5, 9–13], we 

show that the gauge symmetry requirements (coming in particular from the local Poincaré 

symmetry) secure the entangled states between matter and gravity as physical states. We call 

the latter the gauge-protected decoherence, in contrast to the dynamical decoherence of the 

former. In addition, unlike the horizon-based studies, we discuss the entanglement between 
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the gravitational and the matter degrees of freedom, rather than between the two specially 

chosen regions of spacetime.

Our analysis rests on two main assumptions. First, we assume the validity of the local 

Poincaré symmetry at the quantum level. In the classical field theory, the local Poincaré sym-

metry is a formalisation of the principle of general relativity, which is one of the foundational 

principles of Einstein’s theory of gravity. It is therefore natural to assume that this gauge sym-

metry exists at the quantum level as well. Second, at the classical level we assume the validity 

of the equivalence principle, which is also the main ingredient of Einstein’s general relativity. 

In particular, we assume its ‘strong’ version, namely that the equivalence principle applies to 

all matter fields (i.e. all non-gravitational fields) present in nature.

Given these two assumptions, we focus on the general nonperturbative abstract canonical 

quantisation of the gravitational and matter fields, thus giving a generic model-independent 

argument for a theory of quantum gravity with matter. We analyse the consequences of the 

local Poincaré symmetry-enforced scalar, 3-diffeomorphism and local Lorentz constraints on 

the structure of the total Hilbert space of the theory. Namely, since the physical states must be 

invariant with respect to the gauge symmetry, the constraints induce the Gupta–Bleuler-like 

conditions on the state vectors. Based on the equivalence principle, we then show that the par-

ticular non-separable form of the scalar constraint renders typical product states non-invariant. 

Thus, it eliminates the product states from the physical Hilbert space of the quantum theory, 

unless the interaction between gravity and matter is specifically designed to circumvent the 

non-invariance of product states. In this way, the local Poincaré symmetry protects the exist-

ence of entanglement between the gravitational and matter fields.

In order to verify our results obtained within the abstract canonical framework, we also 

study the covariant (i.e. path integral) quantisation. In particular, knowing that the Hartle–
Hawking state [14] satisfies the scalar constraint, and is therefore an element of the physical 

Hilbert space, we explicitly test whether the matter and gravitational fields are entangled for 

this state vector. We perform the calculation in the Regge quantum gravity model, since it is 

one of the simplest models which provide an explicit definition of the gravitational path int-

egral with matter, and show that the gravitational and matter fields are indeed entangled for the 

Hartle–Hawking state constructed on a simple toy example triangulation.

Therefore, our analysis shows that either gravity and matter fields are indeed entangled, 

or there exists an additional, unknown property of the action, implementing the fine tuning 

needed to allow for the invariance of separable states.

The paper is organised as follows. Section 2 is divided into three subsections. The first is 

devoted to the recapitulation of the Hamiltonian structure of Poincaré gauge theories. The 

second outlines the procedure of nonperturbative canonical quantisation of constrained sys-

tems and its application to the case of gravity with matter fields. In the third subsection we use 

those results to show that the scalar constraint suppresses the existence of separable states of 

a matter-gravity system. In section 3, we present a standard entanglement criterion for pure 

bipartite quantum states and discuss it, within the framework of the path integral quantisation, 

for the case of the Hartle–Hawking state of quantum fields of gravity and matter. In section 4, 

we first introduce the Regge model of quantum gravity, and then apply it to evaluate the 

entanglement criterion for the Hartle–Hawking state, demonstrating that gravity and matter 

are indeed entangled in this state. Finally, in section 5 we present the summary of the results, 

their discussion, and possible future lines of research.

It is important to stress that the gauge-protected entanglement is not an automatic con-

sequence of the universal coupling between gravity and matter, or the fact that matter fields 

are always defined over some background spacetime geometry. For example, in perturbative 

gravity approach, it is quite possible to write the separable state between gravity and matter as
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|Ψ〉 = |g〉 ⊗ |φ〉,

where |g〉 is the graviton state vector, while |φ〉 is the state vector of a scalar particle (both vec-

tors obtained by acting with graviton and scalar creation operators on the Minkowski vacuum 

state |0〉 ≡ |0〉G ⊗ |0〉M). The reason why such a state can be considered legitimate is that 

local Poincaré symmetry is explicitly broken in the perturbative gravity approach, with both 

matter and gravity being treated as spin-zero and spin-two fields, respectively, living on a 

Minkowski spacetime manifold. A similar situation arises in perturbative string theory, where 

local Poincaré symmetry is also manifestly broken. However, in quantum gravity models 

where the local Poincaré symmetry is not violated, our analysis shows that a generic product 

state between gravity and matter would fail to be gauge invariant. Thus, the gauge-protected 

entanglement between gravity and matter is a nontrivial statement and a consequence of local 

Poincaré symmetry, rather than an automatic property of matter fields living on a spacetime 

manifold.

Our notation and conventions are as follows. We will work in the natural system of units 

in which c = � = 1 and G = l2p, where lp is the Planck length. By convention, the metric of 

spacetime will have the spacelike Lorentz signature (−,+,+,+). The spacetime indices are 

denoted with lowercase Greek letters µ, ν, . . . and take the values 0, 1, 2, 3. The spatial part 

of these, taking values 1, 2, 3, will be denoted with lowercase Latin letters i, j, . . . from the 

middle of the alphabet. The SO(3, 1) group indices will be denoted with the lowercase Latin 

letters a, b, . . . from the beginning of the alphabet, and take the values 0, 1, 2, 3. The Lorentz-

invariant metric tensor is denoted as ηab. The capital Latin indices A, B, . . . count the field 

components in a particular representation of the SO(3, 1) group, and take the values from 1 

up to the dimension of that representation. Quantum operators will always carry a hat, φ̂(x), 

ĝ(x), etc. Finally, we will systematically denote the values of functions with parentheses, f (x), 
while functionals will be denoted with brackets, F[φ].

2. Entanglement from the scalar constraint

This section is dedicated to the analysis of the constraints imposed by the relativity and equiv-

alence principles. In section 2.1 we briefly recapitulate the classical Hamiltonian structure of 

gravitational interaction, followed by a short review of canonical quantisation, presented in 

section 2.2. After that, in section 2.3 we present the main result of our paper: we show that 

the scalar constraint, and possibly the 3-diffeomorphism constraint, bring about the generic 

entanglement between gravity and matter.

2.1. Hamiltonian structure of Poincaré gauge theories

We begin with a short review of the Hamiltonian structure of gravitational interaction, based 

on the local Poincaré symmetry. This subsection is aimed to be only a review of the main 

results, so we will skip all proofs and derivations. The details of the Hamiltonian structure for 

Poincaré gauge theories (PGT) can be found in many textbooks, see for example [15], chapter 

V, and the references therein.

We will assume a foliation of spacetime into space and time, with the spacetime topol-

ogy M4 = Σ3 × R, where Σ3 is the 3D hypersurface. For the purpose of generality, we will 

describe the gravitational field as g(x) and matter fields as φ(x), without specifying their exact 

field content, except in examples. A typical example would be the Einstein–Cartan gravity 

coupled to a Dirac matter field, so that the choice of fundamental gravitational fields g would 
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be the tetrads ea
µ(x) and the spin connection ωab

µ(x), while the choice for the fundamental 

matter field φ would be a Dirac fermion field ψ(x). However, other choices for g and φ are also 

possible, for example the metric tensor gµν for gravity and the electromagnetic potential Aµ 

for matter, etc. Since our analysis is largely independent of such choices, we will stick to the 

abstract notation g and φ, assuming that one can apply our analysis to each particular concrete 

choice of fundamental fields.

Given the above notation, we will assume that the action of the theory can be written as

S[g,φ] = SG[g] + SM[g,φ], (1)

where SG[g] is the action of the pure gravitational field, while SM[g,φ] is the action of the 

matter fields coupled to gravity. Since the spacetime metric must both be a function of the 

gravitational field g and is always present in the definition of the dynamics of matter fields, 

the action for the matter fields cannot contain terms independent of g. This elementary fact 

is the crux of our main argument below, and is justified by the equivalence principle, which 

dictates how matter couples to gravity.

To a large extent, we also do not need to specify the details of the actions SG[g] and SM[g,φ]. 
We will only assume that the action (1) belongs to the PGT class of theories, i.e. that it is 

invariant with respect to local Poincaré group P(4) = R
4
⋉ SO(3, 1). Every theory belonging 

to the PGT class has the Hamiltonian with the following general structure [15]:

H =

∫

Σ3

d3�x
[

NC + N i
Ci + Nab

Cab

]

, (2)

up to a 3-divergence. Here N, Ni and Nab are Lagrange multipliers, the first two of which are 

commonly known as lapse and shift functions. The quantities C, Ci  and Cab are usually known 

as the scalar constraint, 3-diffeomorphism constraint, and the local Lorentz constraint (some-

times also called the Gauss constraint), respectively. They are a (g,φ)-field representation of 

the 10 generators of the Poincaré group P(4), in particular the time translation generator, the 

three space translation generators, and six local Lorentz generators (rotations and boosts). 

Note that the Hamiltonian (2) is always a linear combination of these constraints.

The constraints in (2) have the structure similar to the structure of the gravity-matter action 

(1), namely

C = C
G(g,πg) + C

M(g,πg,φ,πφ),

Ci = C
G
i (g,πg) + C

M
i (g,πg,φ,πφ),

Cab = C
G
ab(g,πg) + C

M
ab(g,πg,φ,πφ),

 

(3)

where πg and πφ are the momenta canonically conjugated to the fields g and φ, respectively, 

defined as functional derivatives of the action with respect to the time-derivatives of the fields,

πg(x) =
δS

δ∂0g(x)
, πφ(x) =

δS

δ∂0φ(x)
.

The general dependence (3) on the fields and momenta reflects the corresponding dependence 

in (1).

The exact forms of the gravitational terms of the constraints, namely CG, CG
i  and CG

ab, will 

be immaterial for our main argument presented in the section 2.3 below. In contrast, the struc-

ture of the matter terms CM, CM
i  and CM

ab will be crucial, so we discuss it here in more detail. 

Choose a matter field such that it transforms according to some specific irreducible transfor-

mation of the Poincaré group, and denote it as φA(x), where the capital index A counts the field 
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components in that representation. Then the 3-diffeo constraint CM
i  and the Gauss constraint 

CM
ab are given as

CM
i (g,πg,φ,πφ) = πφA∇i

A
Bφ

B,

CM
ab(g,πg,φ,πφ) = πφA(Mab)

A
Bφ

B,
 (4)

where ∇i
A

B is a covariant derivative for the irreducible representation according to which the 

field φ transforms, while (Mab)
A

B is the representation of the generator Mab of the Lorentz 

group SO(3, 1) in the same representation. In general, the covariant derivative depends on the 

spacetime metric or connection, which is a function of the fundamental gravitational fields 

g, and possibly their momenta πg. The Lorentz group generators, on the other hand, do not 

depend on the spacetime geometry, so the Gauss constraint is actually independent of g and 

πg, and we can write CM
ab(g,πg,φ,πφ) = CM

ab(φ,πφ).
In order to illustrate the two constraints, we will write (4) for the scalar and Dirac fields, as 

the most elementary examples. In the case of the scalar field, we write φA(x) = ϕ(x), where 

the index A takes only a single value. The covariant derivative acts on the scalar field as an 

ordinary derivative, while the representation of the Lorentz generators is trivial, so we can 

write

C
M
i (ϕ,πϕ) = πϕ∂iϕ, C

M
ab(ϕ,πϕ) = πϕϕ. (5)

We see that in the case of the scalar field, both constraints are independent of the gravitational 

fields and their momenta. In the case of the Dirac fields, we write φA(x) = (ψA(x), ψ̄A(x)), 
where the index A now represents the spinorial index, and we will omit writing it. The covari-

ant derivative acts on the Dirac field in the standard way,

→

∇µψ ≡ ∂µψ +
1

2
ωab

µσabψ,

ψ̄
←

∇µ ≡ ∂µψ̄ −
1

2
ωab

µψ̄σab,
 (6)

where ωab
µ is the spin connection, σab = 1

4
[γa, γb], and γa are the standard Dirac gamma-

matrices satisfying the anticommutation relation {γa, γb} = −2ηab. The representation of 

the Lorentz generators for the case of the Dirac field is Mab = σab. Denoting the conjugate 

momentum for ψ as π̄ and conjugate momentum for ψ̄ as π, we can write the constraints (4) 

as:

CM
i (ω,ψ, π̄, ψ̄,π) = π̄

→

∇iψ + (ψ̄
←

∇i)π,

CM
ab(ψ, π̄, ψ̄,π) = π̄σabψ − ψ̄σabπ.

 (7)

Note that here, unlike in the scalar field example, the 3-diffeo constraint contains the spin con-

nection ωab
µ, which is a part of the gravitational field g = (ea

µ,ωab
µ) for the Einstein–Cartan 

gravity.

In contrast to the 3-diffeo and Gauss constraints (4), the scalar constraint CM has a more 

complicated form,

C
M(g,πg,φ,πφ) = πφA∇⊥

A
Bφ

B
−

1

N
LM(g,πg,φ,πφ), (8)

where the matter Lagrangian density is defined via

SM[g,φ] =

∫

d4xLM(g, ∂g,φ, ∂φ),
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and ∇⊥ ≡ nµ∇µ is the covariant derivative in the direction of the timelike vector nµ orthogo-

nal to the spacelike hypersurface Σ3. The vector nµ obviously depends on the spacetime met-

ric gµν, and is thus a function of the fundamental gravitational fields g.

There are several things to note regarding the scalar constraint (8). First, it is clear that 

NCM  is the Legendre transformation of the Lagrangian density LM with respect to the ‘veloc-

ity’ N∇⊥φ. Second, in contrast to the constraints (4), which depend only on the symmetry 

transformation properties of the fields, the form of the scalar constraint (8) depends also on 

the choice of the matter Lagrangian density LM, and is therefore described by the dynamics 

of the matter fields coupled to gravity. And third, the scalar constraint CM always necessarily 

depends on the gravitational fields g, in contrast to the 3-diffeo constraint which may or may 

not depend on g, and the Gauss constraint which never depends on g. As we already suggested 

above, this is because the Lagrangian of the matter fields coupled to gravity always contains 

the gravitational degrees of freedom, courtesy of the equivalence principle.

Let us illustrate this dependence of CM on the gravitational fields g in the case of the 

Dirac field. The action for the Dirac field φ = (ψ, ψ̄) coupled to the gravitational fields 

g = (ea
µ,ωab

µ) is given as

SM[e,ω,ψ, ψ̄] =

∫

d4x e

(

i

2
ψ̄γaeµa

↔

∇µψ − mψ̄ψ

)

, (9)

where e is the determinant of the tetrad ea
µ, while eµa is the inverse tetrad. In addition, 

↔

∇µ ≡
→

∇µ−
←

∇µ, and the covariant derivatives 
→

∇µ and 
←

∇µ act to the right and to the left as 

defined in (6), from which one can see that the action also explicitly depends on the connec-

tion ωab
µ. From the action one can read off the Lagrangian density, and calculate the scalar 

constraint (8) as

C
M(e,ω,ψ, ψ̄) = −

e

N

(

i

2
ψ̄γaeµa (δ

µ

ν
+ nµnν)

↔

∇νψ − mψ̄ψ

)

.

Note that the quantity δµ
ν
+ nµnν is a projector to the hypersurface Σ3.

2.2. Canonical quantisation

Having discussed the Hamiltonian structure of the action (1), we now pass on to a short descrip-

tion of the canonical quantisation of the theory. The quantisation of an arbitrary physical sys-

tem with constraints is performed in the standard way, using the Dirac’s procedure [16, 17]  

(see [15] for a review). One begins by classifying all constraints of the theory into the first and 

the second class. The second class constraints are then eliminated by passing from the Poisson 

brackets to the Dirac brackets. The first class constraints remain and represent the generators 

of the gauge symmetry. In general, the Hamiltonian of the theory can be written as

H = H0 + λA
CA, (10)

where λA are Lagrange multipliers, CA are first class constraints, and H0 is the part of the 

Hamiltonian which describes the evolution of the physical degrees of freedom. Given all this, 

the quantisation is performed in the Heisenberg picture, promoting fundamental fields φ(x) 

to quantum mechanical operators φ̂(x), and introducing the state vectors |Ψ〉 ∈ Hkin, where 

Hkin is the kinematical Hilbert space of the theory. The Dirac brackets between the fields and 

their momenta are then promoted to the commutators of the corresponding operators. The 

Hamiltonian, being a functional of the fields and momenta, also becomes an operator, provid-

ing the usual Heisenberg equations of motion for the field operators,
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i
∂φ̂(x)

∂t
= [φ̂(x), Ĥ].

Finally, the kinematical Hilbert space Hkin is projected onto its gauge invariant subspace 

Hphys, by requiring that every state vector |Ψ〉 ∈ Hphys is annihilated by the generators of the 

gauge symmetry group,

ĈA|Ψ〉 = 0.

In quantum electrodynamics these conditions are known as Gupta–Bleuler quantisation con-

ditions [18, 19]. This requirement ensures that the gauge symmetry of the classical theory 

remains to be a symmetry of the quantum theory as well.

Of course, one cannot hope to implement the above quantisation programme in full detail for 

the general action (1), especially without the detailed specification of the fundamental degrees 

of freedom that define the theory. Instead, we assume that the quantisation programme has 

been carried out in detail, and that all quantities we will write are well defined. This approach 

has one important feature and one important drawback. The feature is generality—our main 

argument for the inevitable entanglement between gravity and matter, to be presented in sec-

tion 2.3, should hold for every particular quantum theory constructed in the above way, as it 

does not actually depend on the details of the quantisation. The drawback is abstractness—in 

using such a general formalism and making a flat assumption that all details are well defined, 

we lose the capability to provide any concrete examples. That said, in section 4 we discuss 

one rigorously defined example of a theory of quantum gravity with matter (Regge quantum 

gravity), and demonstrate the entanglement between gravity and matter fields. Unlike the 

canonical quantisation discussed in this section, that example will be done in the framework 

of the path integral quantisation.

Keeping this disclaimer in mind, we proceed along the lines outlined above and perform 

the canonical quantisation. The most prominent property of our model is the structure of the 

Hilbert space of the theory. The initial kinematical Hilbert space Hkin = HG ⊗HM has a natu-

ral product structure between the gravitational and matter Hilbert spaces, since we have two 

sets of fields, ĝ and φ̂, corresponding to gravity and matter, respectively. Thus, we have a natu-

rally preferred bipartite physical system, because gravitational and matter degrees of freedom 

can be fully distinguished from each other. Second, in order to preserve the Poincaré gauge 

symmetry of the theory at the quantum level, we have to pass from the kinematical Hilbert 

space to the gauge invariant, physical Hilbert space Hphys. By definition, a state |Ψ〉 ∈ Hkin is 

an element of Hphys iff it satisfies

Ĉab|Ψ〉 ≡
[

C
G
ab(ĝ, π̂g) + C

M
ab(φ̂, π̂φ)

]

|Ψ〉 = 0,

Ĉi|Ψ〉 ≡
[

C
G
i (ĝ, π̂g) + C

M
i (ĝ, π̂g, φ̂, π̂φ)

]

|Ψ〉 = 0,

 

(11)

and

Ĉ|Ψ〉 ≡
[

C
G(ĝ, π̂g) + C

M(ĝ, π̂g, φ̂, π̂φ)
]

|Ψ〉 = 0. (12)

As stated above, we assume that the operators Ĉab, Ĉi  and Ĉ are well defined, that operator 

ordering choice has been fixed, as well as all other necessary technical choices, in order for 

the expressions above to make sense mathematically.

We argue that, due to these constraint equations, there are no states in Hphys which can be 

written as product states of the form |ΨG〉 ⊗ |ΨM〉, where |ΨG〉 ∈ HG and |ΨM〉 ∈ HM, i.e. 

the states in Hphys are entangled. We focus on the scalar constraint (12), while the constraints 
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(11) are either irrelevant or redundant for our analysis. This main argument of our paper is 

presented in the next subsection.

2.3. Entanglement

Given a state vector |Ψ〉 ∈ Hkin = HG ⊗HM , it is an element of the physical Hilbert space 

Hphys if it satisfies the Gauss and 3-diffeo constraints (11) and the scalar constraint (12). 

Choosing the eigenbases {|g〉} and {|φ〉} of the quantum field operators ĝ and φ̂, respectively, 

we can work in the so-called field representation, defined as

〈g|ĝ = g〈g|, 〈g|π̂g = −i
δ

δg
〈g|,

〈φ|φ̂ = φ〈φ|, 〈φ|π̂φ = −i
δ

δφ
〈φ|.

 
(13)

Acting on (12) with 〈g,φ| ≡ 〈g| ⊗ 〈φ| from the left, the scalar constraint becomes a functional 

partial differential equation of Wheeler–DeWitt type:
[

CG

(

g,−i δ
δg

)

+ CM

(

g,−i δ
δg

,φ,−i δ
δφ

)]

Ψ[g,φ] = 0, (14)

where Ψ[g,φ] ≡ 〈g,φ|Ψ〉 is the wavefunctional of the combined gravity-matter system. We 

now try to look for a separable state, in the form |Ψ〉 = |ΨG〉 ⊗ |ΨM〉, where |ΨG〉 ∈ HG and 

|ΨM〉 ∈ HM, as a solution of this equation. Using the field representation (13), we write the 

wavefunctional Ψ[g,φ] as

Ψ[g,φ] ≡ 〈g,φ|Ψ〉

= (〈g| ⊗ 〈φ|) (|ΨG〉 ⊗ |ΨM〉)

= 〈g|ΨG〉〈φ|ΨM〉

≡ ΨG[g]ΨM[φ].

 

(15)

Equation (14) can have separable solutions Ψ[g,φ] = ΨG[g]ΨM[φ] if the functional differ-

ential operator CM  can be written as a product of two operators, denoted KG and KM, depend-

ing only on (g, δ
δg
) and on (φ, δ

δφ
), respectively,

CM

(

g,−i δ
δg

,φ,−i δ
δφ

)

= KG

(

g, δ
δg

)

KM

(

φ, δ
δφ

)

. (16)

If such operators KG and KM exist so that (16) holds, the scalar constraint equation (14) can 

be rewritten as

ΨM[φ] CG

(

g,−i δ
δg

)

ΨG[g] = −

[

KG

(

g, δ
δg

)

ΨG[g]
] [

KM

(

φ, δ
δφ

)

ΨM[φ]
]

.

Dividing this with ΨM[φ] KG

(

g, δ
δg

)

ΨG[g], assuming it is well-defined, we obtain

1

KG

(

g, δ
δg

)

ΨG[g]
CG

(

g,−i δ
δg

)

ΨG[g] = −
1

ΨM[φ]
KM

(

φ, δ
δφ

)

ΨM[φ] = A,

where A is a constant, since the terms on the left and the right of the first equality depend on 

different sets of variables. Therefore, the above equation splits into two independent equations,
[

CG

(

g,−i δ
δg

)

− A KG

(

g, δ
δg

)]

ΨG[g] = 0,
[

KM

(

φ, δ
δφ

)

+ A
]

ΨM[φ] = 0,
 

(17)

N Paunković and M VojinovićClass. Quantum Grav. 35 (2018) 185015



10

which are to be solved independently for ΨG[g] and ΨM[φ], thus providing a separable solution 

of (14).

The whole procedure above rests on the assumption (16) that the matter part CM  of the 

scalar constraint operator can be written as a product of two operators KG and KM. Our main 

argument is to demonstrate that the assumption (16) is never satisfied for the usual matter 

fields, due to the universal nature of the coupling of gravity to matter, ultimately dictated by 

the equivalence principle. Namely, given the structure of the classical scalar constraint for 

matter (8), the corresponding operator can be written as

C
M(ĝ, π̂g, φ̂, π̂φ) = π̂φA∇̂⊥

A
Bφ̂

B
−

1

N
LM(ĝ, π̂g, φ̂, π̂φ), (18)

where a certain ordering of the operators is assumed. The constraint (18) features the operator-

valued matter Lagrangian LM. Therefore, in order to demonstrate that CM  does not satisfy the 

separability criterion (16) it is enough to demonstrate that the matter Lagrangian does not 

satisfy it. This can be done on a case-by-case basis, for each particular matter field. Invoking 

the equivalence principle, we can write the operator-valued Lagrangian for the scalar field 

coupled to gravity as

LM(ĝ, ϕ̂, ∂ϕ̂) =
1

2
ê
[

ĝµν(∂µϕ̂)(∂νϕ̂)− m2ϕ̂2 + U(ϕ̂)
]

,

where ê is the square-root of the minus determinant operator of the metric tensor,

ê ≡

[

1

4!
ε
αβγδ

ε
µνρσĝαµĝβν ĝγρĝδσ

]
1
2

,

and U is some interaction potential of the scalar field. Ignoring the multiplicative factor ê that 

acts only on HG, the Lagrangian is a sum of two types of terms: the kinetic term, containing 

the inverse metric ĝµν, and the mass and potential terms not featuring the gravitational field 

in any form. The sum cannot therefore be factored into the form KG(ĝ)KM(φ̂, ∂φ̂), since the 

Lagrangian is not a homogeneous function of the gravitational degrees of freedom. Even in 

the case of the massless free scalar field, i.e. when m  =  0 and U  =  0, the kinetic term is a sum 

of several different components of the metric and the derivatives of the scalar field,

ĝ00(∂0ϕ̂)(∂0ϕ̂) + ĝ01(∂0ϕ̂)(∂1ϕ̂) + ĝ12(∂1ϕ̂)(∂2ϕ̂) + . . .

and this still cannot be factored into a product of two operators KG and KM.

In the case of the Dirac field, again invoking the equivalence principle, the operator-valued 

Lagrangian is given by (9),

LM(ê, ω̂, ψ̂, ˆ̄ψ) = ê

(

i

2
ˆ̄ψγaêµa

↔̂

∇µψ̂ − m ˆ̄ψψ̂

)

.

Like in the case of the scalar field, the kinetic and mass terms in the Lagrangian depend dif-

ferently on the gravitational fields êa
µ and ω̂ab

µ, and LM cannot be factored. Moreover, the 

kinetic term itself cannot be factored, since it is a sum of two terms (see equations (6)), only 

one of which contains the spin connection ω̂ab
µ.

Next, the operator-valued Lagrangian for the electromagnetic field coupled to gravity has 

the form

LM(ĝ, Â, ∂Â) = −
1

4
ê ĝµρĝνσF̂µν F̂ρσ,
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where F̂µν ≡ ∂µÂν − ∂ν Âµ. Applying the same argument as in the case of the free massless 

scalar field, this Lagrangian also cannot be factored into the form KGKM. The same argument 

also applies to the case of the non-Abelian Yang–Mills Lagrangians.

Summing up, given the ways the matter fields are coupled to gravity, based on the equiva-

lence principle, we conclude that the separability criterion (16) is never satisfied for the physi-

cally relevant cases of scalar, spinor and vector fields. Therefore, according to the discussion 

above, the scalar constraint (12) should not admit separable state vectors into Hphys.

Regarding the above analysis, it is important to emphasize the following. Namely, one 

should note that it is in principle possible for equation (14) to have product state solutions 

(15) despite the fact that it does not satisfy the separability criterion (16). In other words, the 

criterion (16) is a sufficient condition for the existence of product state solutions of (14), but 

it is not necessary, so its violation does not strictly imply the absence of product state solu-

tions. Nevertheless, given the arguably highly complex structure of equation (14)—meaning 

that it represents a nonlinear functional partial differential equation of at least second order in 

g and φ—it is natural to regard any potential product state solutions as completely accidental. 

Moreover, it is questionable if the boundary conditions required for such solutions correspond 

to any realistic physical situation in nature, i.e. they could be irrelevant for realistic physics. 

Due to all these arguments, the existence of product state solutions, in spite of the violation of 

the separability criterion (16), is in our opinion an extraordinary claim, and as such requires 

extraordinary evidence. In other words, the burden of proof is in fact with the statement that 

any product state solution exists, rather than the opposite. Consequently, product states (15) 

are generically not elements of Hphys, and even if one can prove that there exist some product 

states which do happen to belong to Hphys, such states would arguably be completely acci-

dental, with questionable relevance for physics. Otherwise, if there exists a whole class of 

separable states which solve (14) despite the violation of the criterion (16), there must be some 

deep eluding property of the scalar constraint equation, which is both completely unknown 

and very interesting to study.

Finally, while it turns out that the analysis of the scalar constraint equation  (12) is suf-

ficient for our conclusions, let us briefly mention the status of the remaining two constraint 

equations (11). First, the Gauss constraint Ĉab obviously admits separable state vectors. On 

the other hand, the situation with the 3-diffeo constraint Ĉi  is more complicated, and the con-

clusion depends on the type of the field. For example, in the case of the scalar field, from (5) 

we read that ĈM
i  depends only on the scalar field and its momentum, which means that the 

constraint equation does admit separable state vectors. However, in the case of the Dirac field, 

from (7) we read that ĈM
i  depends on the spin connection in addition to the Dirac field, and this 

dependence is not homogeneous in the spin connection, see (6). Thus, the 3-diffeo constraint 

equation does not admit separable state vectors. However, the behaviour of the Gauss and 

3-diffeo constraint equations is redundant for our argument, since the scalar constraint equa-

tion (12) already suppresses separable state vectors for all fields, due to the dynamical form of 

the coupling of matter to gravity. Therefore, our initial assumption of local Poincaré symmetry 

can be weakened to the localisation of its translational subgroup, while the generators of the 

local Lorentz subgroup are irrelevant for our argument.

3. Entanglement in the path integral framework

In the previous section we have discussed the gauge-protected entanglement within the frame-

work of the canonical quantisation of the gravitational field with matter. In this section, we 

focus instead on the path integral framework of quantisation. We analyse the entanglement 
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on the example of the Hartle–Hawking state, which is known to satisfy all constraints of the 

theory. In the next section, we are going to apply the results of this section to the concrete case 

of Regge quantum gravity.

First, we discuss an entanglement criterion for the case of pure overall state of the gravity 

and matter fields. We begin with a brief recapitulation of basic results from the standard QM 

and quantum information theory. A pure bipartite state |Ψ〉12 ∈ H1 ⊗H2 of systems 1 and 2 

can be written in the Schmidt bi-orthogonal form (see, for example [20]):

|Ψ〉12 =
∑

i

√
ri|αi〉1 ⊗ |βi〉2,

 (19)

where {|αi〉1} and {|βi〉2} are two sets of mutually orthogonal states from H1 and H2, respec-

tively. The partial sub-system states are then given as

ρ̂1 =
∑

i

ri|αi〉1 ⊗ 〈αi|1,
 (20)

for the system 1, and analogously for the system 2. Squaring ρ̂1, we have

ρ̂2
1 =

∑

i

r2
i |αi〉1 ⊗ 〈αi|1.

 (21)

If the overall state |Ψ〉12 is separable (i.e. a simple product state), the above sum in (20) will be 

trivial, consisting of a single projector onto the ray |α1〉1 ⊗ 〈α1|1, with r1  =  1. Thus, we have 

that ρ̂2
1 = ρ̂1, or simply, Tr ρ̂2

1 = Tr ρ̂1 = 1. In case the state |Ψ〉12 is entangled, the sum (20) 

will consist of more than just one term, resulting in (∀ i) ri < 1. Therefore, (∀ i) r2
i < ri, and 

we finally have

Tr ρ̂2
1 =

∑

i

r2
i <

∑

i

ri = Tr ρ̂1 = 1.
 (22)

Due to the symmetry of the Schmidt form (19), the same is valid for the system 2 (for the 

formal proof of the above entanglement criterion (22), see for example [20]).

After this recapitulation of the standard results from QM, we proceed with the analysis of 

the bipartite system of the gravity (G) and matter (M) fields, applying the above entanglement 

criterion (22) to the case of quantum fields. For simplicity, we omit the subscripts G and M for 

pure states of gravity and matter, respectively.

Let Hkin = HG ⊗HM be the combined kinematical gravity-matter Hilbert space. Denote 

the bases in HG and HM as {|g〉} and {|φ〉}, respectively. These are the eigenbases of the 

corre sponding quantum field operators ĝ and φ̂, evaluated on the 3D boundary Σ3 = ∂M4 

of the 4D spacetime manifold M4. The general state vector |Ψ〉 ∈ Hkin of the gravity-matter 

system can then be written as

|Ψ〉 =
∫

Dg

∫

DφΨ[g,φ] |g〉 ⊗ |φ〉, (23)

where Ψ[g,φ] = 〈g,φ|Ψ〉 is called the wavefunctional (in analogy to wavefunction from 

quant um mechanics), and the functional integrals over gravitational degrees of freedom g and 

matter degrees of freedom φ are assumed to be well defined in some way (in section 4 we 

present an explicit example of this). The bases {|g〉} and {|φ〉} are assumed to be orthonormal, 

satisfying

〈g|g′〉 = δ[g − g′], 〈φ|φ′〉 = δ[φ− φ′], (24)

where the Dirac delta functional is assumed to satisfy the formal functional integral identities
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∫

Dg F[g] δ[g − g′] = F[g′],
∫

DφF[φ] δ[φ− φ′] = F[φ′],
 

(25)

for any functionals F[g] and F[φ] belonging to some suitable relevant class.

From the state (23) one can construct a reduced density matrix ρ̂M  for matter fields, 

by taking the partial trace over gravitational degrees of freedom of the full density matrix 

ρ̂ ≡ |Ψ〉 ⊗ 〈Ψ|, as

ρ̂M = TrG ρ̂ =

∫

Dg 〈g|
(

|Ψ〉 ⊗ 〈Ψ|
)

|g〉.

Substituting (23) we get

ρ̂M =

∫

Dg

∫

Dg′

∫

Dφ′

∫

Dg′′

∫

Dφ′′

Ψ∗[g′,φ′] Ψ[g′′,φ′′] 〈g|
(

|g′′〉 ⊗ |φ′′〉 ⊗ 〈g′| ⊗ 〈φ′|
)

|g〉.

Using (24) and (25), the expression for the reduced density matrix can be evaluated to

ρ̂M =

∫

Dg

∫

Dφ′

∫

Dφ′′ Ψ∗[g,φ′]Ψ[g,φ′′] |φ′′〉 ⊗ 〈φ′|. (26)

Taking the square and using (24) and (25) again, one obtains

ρ̂2
M =

∫

Dg

∫

Dg′

∫

Dφ′

∫

Dφ′′

∫

Dφ′′′

Ψ∗[g,φ′] Ψ[g,φ′′] Ψ∗[g′,φ′′′] Ψ[g′,φ′] |φ′′〉 ⊗ 〈φ′′′|.

Finally, taking the trace over matter fields,

TrM ρ̂2
M =

∫

Dφ 〈φ|ρ̂2
M|φ〉,

we get

TrM ρ̂2
M =

∫

Dg

∫

Dg′
∫

Dφ

∫

Dφ′ Ψ∗[g,φ′] Ψ[g,φ] Ψ∗[g′,φ] Ψ[g′,φ′].

 

(27)

Now we want to evaluate (27) for one specific state, namely the Hartle–Hawking state, 

denoted |ΨHH〉. This state is known to satisfy the scalar constraint equation  (12), see [14], 

and thus belongs to the physical Hilbert space Hphys. Our aim is to demonstrate that the 

Hartle–Hawking state is nonseparable, and the strategy is to argue that TrM ρ̂2
M < 1 for 

ρ̂ = |ΨHH〉 ⊗ 〈ΨHH|. The Hartle–Hawking state is defined by specifying the wavefunctional 

Ψ[g,φ] in (23) as

ΨHH[g,φ] = N

∫

DG

∫

DΦ eiStot[g,φ,G,Φ]. (28)

Here N  is a normalisation constant, the variables G and Φ (denoted with the capital letters) 

live in the bulk spacetime M4, while g and φ (denoted with lowercase letters) live on the 

boundary Σ3 = ∂M4, as before. The path integrals are taken over the bulk while keeping the 

boundary fields constant. Finally, the total action functional Stot has the following structure
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Stot[g,φ, G,Φ] = SG[g, G] + SM[g,φ, G,Φ], (29)

where SG is the action for the gravitational field (for example the Einstein–Hilbert action with 

a cosmological constant), while SM is the action for the matter fields coupled to gravity—
hence its dependence on both the gravitational and matter fields. See [14] for details on the 

construction of the expression (28).

In order to analyse the expression (27) more efficiently, it is convenient to introduce the 

following quantity,

Z[φ,φ′] ≡

∫

DgΨHH[g,φ]Ψ∗

HH[g,φ′], (30)

which represents the matrix element of the reduced density matrix ρ̂M . Namely, by evaluating 

(26) for the Hartle–Hawking state, one obtains

ρ̂M =

∫

Dφ

∫

Dφ′ Z[φ,φ′] |φ〉 ⊗ 〈φ′|. (31)

In addition, Z[φ,φ′] has an important geometric structure. Namely, one can consider two 

copies of the spacetime manifold M4, where the boundary Σ3 of the first copy features the 

fields g,φ, while the boundary of the second copy features the fields g,φ′, i.e. such that the 

gravitational field g is the same, while matter fields φ and φ′ are different on the boundaries. 

Then one takes the second copy of M4, inverts it with respect to the boundary Σ3 (the result is 

denoted as M̄4), and glues it to the first copy along the common boundary, to obtain a mani-

fold M4 ∪ M̄4, which has no boundary. This can be illustrated by the following diagrams:

M4

Σ3 M̄4

Σ3

M4

M̄4

Σ3

The quantity Z[φ,φ′] is then obtained by integrating over all gravitational degrees of freedom, 

and all bulk matter degrees of freedom, weighted by the kernel eiStot  of the Hartle–Hawking 

wavefunction (28). This construction is important because the trace of Z[φ,φ′] is the state sum 

of the gravitational and matter fields over the manifold M4 ∪ M̄4:
∫

Dφ Z[φ,φ] = Z ≡

∫

DG

∫

DΦ eiS[G,Φ]. (32)

Here, S[G,Φ] is the total gravity-matter action similar to (29), defined over the manifold 

M4 ∪ M̄4, and thus features no boundary fields. From (30)–(32) it is then easy to see that the 

normalization of the state sum, Z  =  1, and simultaneously the normalization of the reduced 

density matrix, Tr ρ̂M = 1, i.e.
∫

Dφ Z[φ,φ] = 1, (33)

are equivalent to the normalisation of the Hartle–Hawking state, 〈ΨHH|ΨHH〉 = 1. Finally, 

from the definition (30) it is easy to see that Z[φ,φ′] is self-adjoint,

Z[φ,φ′] = Z∗[φ′,φ],

as the matrix elements of the density matrix ρ̂M  are supposed to be.
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Returning to the evaluation of (27) for the Hartle–Hawking state, one can use (30) to 

rewrite it into the compact form

TrM ρ̂2
M =

∫

Dφ

∫

Dφ′
∣

∣Z[φ,φ′]
∣

∣

2
. (34)

At this point the general analysis cannot proceed any further, since the right-hand side cannot 

be evaluated explicitly without specifying the details of the theory. The calculation will there-

fore proceed further in the next section, where we consider one detailed model of quantum 

gravity with matter.

Despite the inability to evaluate the integral (34) in the general case, one can give a qualita-

tive argument that the result is not equal to one, leading to the nonseparability of the Hartle–
Hawking state. Namely, given the definition (28) of the Hartle–Hawking state, it is easy to see 

that it essentially depends on two quantities—the normalisation constant N , and the choice 

of the action Stot. The normalisation constant is fixed by the requirement that (33) holds. This 

leaves the value of the integral (34) depending solely on the choice of the classical action of 

the theory. It is qualitatively straightforward to see that different choices of the action will 

lead to different values of TrM ρ̂2
M, so any generic choice of Stot is likely to give TrM ρ̂2

M < 1. A 

tentative choice for (29) would be the Einstein–Hilbert action for SG and the Standard Model 

of elementary particle physics for SM, based on the gauge group SU(3)× SU(2)× U(1). 
However, we know that the Standard Model action is incomplete, for example due to the fact 

that dark matter is not included in the description. Therefore, the choice of the classical action 

is a sort of a moving target, and it is unlikely that any candidate action we choose will give 

TrM ρ̂2
M = 1. In this sense, one can only conclude that in a generic case the Hartle–Hawking 

state is nonseparable, supporting the abstract argument from section 2.

Finally, let us note that our assumption of local Poincaré gauge symmetry implies that we 

are discussing the Lorentzian path integral formulation of the theory. In contrast, within the 

Euclidean approach, the Hartle–Hawking state has some problematic characteristics, see for 

example [21] and references therein.

4. Regge quantum gravity example

In this section we will present a short review of the Regge quantum gravity model coupled 

to scalar matter, and then use this model to evaluate (34) for the Hartle–Hawking state. The 

Regge quantum gravity model is intimately connected to the covariant loop quantum gravity 

research framework [22, 23], its generalisations [24–26], and various related research areas 

[27, 28] (see also [29] for an interesting connection to the noncommutative geometry approach 

in the 3D case). Nevertheless, it can be introduced and studied as a simple standalone model of 

quantum gravity independent of any other context, as was done in [30], where some prelimi-

nary results regarding the entanglement in the Hartle–Hawking state have been announced.

4.1. Formalism of Regge quantum gravity

The Regge quantum gravity model is arguably the simplest toy-model of quantum gravity 

constructed by providing a rigorous definition for the gravitational path integral, generically 

denoted as

ZG = N

∫

Dg eiSEH[g],
 (35)
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where SEH[g] is the Einstein–Hilbert action for general relativity. The construction of the path 

integral follows Feynman’s original idea of path integral definition-by-discretisation. We begin 

by passing from a smooth 4D spacetime manifold M4 to a piecewise-linear 4D manifold, 

most commonly a triangulation T(M4). This structure naturally features 4-simplices σ as basic 

building blocks, which themselves consist of tetrahedra τ, triangles ∆, edges ε and vertices v. 

The invariant quantities associated to these objects are the 4-volume of the  4-simplex (4)Vσ, 

the 3-volume of the tetrahedron (3)Vτ , the area of the triangle A∆ and the length of the edge lǫ, 

respectively, while the vertices do not have nontrivial quantities assigned to them.

It is important to emphasise that the edge lengths are most fundamental of all these quanti-

ties, since one can always uniquely express (4)Vσ, (3)Vτ  and A∆ as functions of lǫ. For exam-

ple, the most well-known is the Heron formula for the area of a triangle in terms of its three 

edge lengths,

A∆(l) =
√

s(s − l1)(s − l2)(s − l3), s ≡
l1 + l2 + l3

2
,

where the three edges ǫ = 1, 2, 3 belong to the triangle ∆.

Given a spacetime triangulation, the Einstein–Hilbert action of general relativity,

SEH[g] = −
1

16πl2p

∫

M4

d4x
√

−g R(g),

can be reformulated in terms of edge lengths of the triangulation as the Regge action

SR[l] = −

1

8πl2p

∑

∆∈T(M4)

A∆(l)δ∆(l),

where δ∆ is the so-called deficit angle at triangle ∆, measuring the amount of spacetime cur-

vature around ∆. See [31] and [27] for details and a review.

Once the classical action for general relativity has been adapted to a piecewise-linear mani-

fold structure, we can take the edge lengths of the edges in the triangulation as the fundamen-

tal degrees of freedom of the theory, and define the gravitational path integral (35) as:

ZG = N

∫

D

∏

ǫ∈T(M4)

dlǫ µ(l)e
iSR[l]. (36)

Here N  is a normalisation constant, while µ(l) is the measure term which ensures the conv-

ergence of the state sum ZG. For the purpose of this paper, we choose the exponential measure

µ(l) = exp



−

1

L4
µ

∑

σ∈T(M4)

(4)Vσ(l)



 , (37)

where Lµ > 0 is a constant and a free parameter of the model (see [32–34] for motivation and 

analysis). Note that the sum of the 4-volumes of all 4-simplices gives the total 4-volume of the 

triangulation T(M4), and will sometimes be denoted simply as V4.

The choice of edge lengths as the fundamental gravitational degrees of freedom in (36) 

determines the integration domain D as a subset of the Cartesian product (R+
0 )

E , where E is 

the total number of edges in T(M4), while R+
0  is the maximum integration domain of each 

individual edge length. We should note that D is a strict subset of (R+
0 )

E  due to the presence 

of triangle inequalities which must be satisfied for all triangles, tetrahedra and 4-simplices in 

a given triangulation.
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Once we have defined the gravitational path integral (35) via the state sum (36), it is 

straightforward to generalise this definition to the situation which includes matter fields. For 

simplicity, we will discuss only a single real scalar field ϕ, although it is not a problem to 

include other fields as well. The path integral we are interested in can be denoted as

ZG+M = N

∫

Dg

∫

Dϕ eiStot[g,ϕ], (38)

where Stot[g,ϕ] is the sum of the Einstein–Hilbert action and the action for the scalar field in 

curved spacetime,

Stot[g,ϕ] = −

1

16πl2p

∫

M4

d4x
√

−g R(g)

+
1

2

∫

M4

d4x
√

−g
[

gµν(∂µϕ)(∂νϕ) + m2ϕ2 + U(ϕ)
]

,

where U(ϕ) is a self-interaction potential of the scalar field. The corresponding lattice version 

of this action is given as

Stot[l,ϕ] = −

1

8πl2p

∑

∆∈T(M4)

A∆(l)δ∆(l)+

+
1

2

∑

σ∈T(M4)

(4)Vσ(l)g
µν

(σ)(l)∂ϕµ∂ϕν

+
1

2

∑

v∈T(M4)

(4)V∗
v
(l)

[

m2ϕ2
v
+ U(ϕv)

]

.

 

(39)

Here, a value of the scalar field ϕv ∈ R is assigned to each vertex v ∈ T(M4). Given any 

4-simplex σ ∈ T(M4), one can label its five vertices as 0, 1, 2, 3, 4, and then define a skew-

coordinate system taking the vertex 4 as the origin and edges 4  −  0, 4  −  1, 4  −  2, 4  −  3, 

respectively as coordinate lines for coordinates xµ, µ ∈ {0, 1, 2, 3}. In these coordinates, the 

derivative ∂µϕ is replaced by the finite difference between the values of the field at the vertex 

v = µ and at the coordinate origin of the 4-simplex σ (divided by the distance between them),

∂ϕµ ≡
ϕµ − ϕ4

lµ4

.

In addition, the metric tensor between vertices µ and ν is given in terms of edge lengths as

g(σ)
µν

(l) ≡
l2
µ4 + l2

ν4 − l2
µν

2lµ4lν4

,

while g
µν

(σ)(l) is its inverse matrix. Finally, (4)V∗

v
(l) is the 4-volume of the 4-cell surrounding 

the vertex v in the Poincaré dual lattice of the triangulation T(M4).
After we have defined the classical action on T(M4), we finally proceed to define the path 

integral (38) as the state sum:

ZG+M = N

∫

∏

ǫ∈T(M4)

dlǫ µ(l)

∫

∏

v∈T(M4)

dϕv eiStot[l,ϕ]. (40)

Here, the domain of integration for the scalar field is the Cartesian product RV , where V  is the 

total number of vertices in the triangulation.

N Paunković and M VojinovićClass. Quantum Grav. 35 (2018) 185015



18

The state sum (40) defines one concrete QG model, called the Regge quantum gravity 

model. While it goes without saying that this is just a toy model, it is nevertheless a realistic 

one, since it is finite and has a correct semiclassical continuum limit (see [32] for proofs). 

Therefore it can be used to study various aspects of quantum gravity, including the entangle-

ment between gravity and matter fields, as we discuss next.

4.2. Calculation of the trace formula

Having formulated the Regge quantum gravity model and having the state sum (40) in hand, 

we can proceed to study the entanglement between gravity and matter, in particular by evalu-

ating the expression for the trace of ρ̂2
M  given by equation (34). In order to evaluate it, we first 

need to formulate the Hartle–Hawking state (28) in the framework of Regge quantum gravity 

model, then work out the matrix elements of the reduced density matrix (30), and finally plug 

them into (34) to obtain a number. If this number is different from 1, we can conclude that 

the Hartle–Hawking state features entanglement between the gravitational and matter fields.

We begin by formulating the Hartle–Hawking state (28). Consider a 4-manifold M4 with 

a nontrivial boundary Σ3 = ∂M4, such that the triangulation T(M4) induces a triangula-

tion T(Σ3) on the boundary. In this sense we can distinguish the vertices, edges, areas, and 

tetrahedra which belong to the boundary triangulation T(Σ3) (from now on shortly called 

‘boundary’, and denoted as ∂T ), from the vertices, edges, areas, tetrahedra and 4-simplices 

belonging to T(M4) but not to T(Σ3) (from now on shortly called ‘bulk’, and denoted as T). 

Since the Regge quantum gravity model encodes gravitational degrees of freedom as lengths 

of the edges, and matter degrees of freedom as real numbers attached to vertices, we can eas-

ily split them into boundary variables lǫ,ϕv and bulk variables Lǫ,Φv , where we maintain our 

previous convention to denote the bulk variables with capital letters and boundary variables 

with lowercase letters.

Given the bulk and the boundary, we use the formulation of the Regge quantum gravity 

state sum (40) to write down the Hartle–Hawking wavefunction as

ΨHH[l,ϕ] = N

∫

∏

ǫ∈T

dLǫ µ(l, L)

∫

∏

v∈T

dΦv eiStot[l,ϕ,L,Φ]. (41)

Next we want to construct the matrix elements of the reduced density matrix (30). To this end, 

we need two copies of the Hartle–Hawking state: one with matter fields ϕv on the boundary 

∂T  of the bulk T, and the other with matter fields ϕ′

v
 on the boundary ∂T  of the bulk T̄  defined 

as the mirror-reflection of T with respect to the boundary ∂T . This mirror-reflection gives rise 

to an additional overall minus sign in the action (39) which is then cancelled by the complex 

conjugation of the imaginary unit in the exponent of the second Hartle–Hawking wavefunc-

tion in (30). Integrating over the boundary edge lengths, we end up with:

Z[ϕ,ϕ′] = |N |2
∫

∏

ǫ∈T∪T̄∪∂T

dLǫ µ(L)

∫

∏

v∈T∪T̄

dΦv eiStot[ϕ,ϕ′,L,Φ]. (42)

Note that all edge lengths are being integrated over in the ‘total’ triangulation T ∪ T̄ ∪ ∂T  

(and we have thus denoted them all with a capital letter L for simplicity). In contrast, the scalar 

field is being integrated only over the two bulks T ∪ T̄ , while the boundary scalar field values 

ϕ,ϕ′ remain fixed on two identical copies of the boundary ∂T . Also, note that

Stot[ϕ,ϕ′, L,Φ] ≡ Stot[ϕ, L,Φ]
∣

∣

∣

T∪∂T
+ Stot[ϕ

′, L,Φ]
∣

∣

∣

T̄∪∂T
,
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where the boundary edge lengths l have been relabelled as L and reabsorbed into the set of 

bulk edge lengths.

The next step one should perform is to take the trace of (42) and equate it to 1 as in (33), in 

order to make sure that the Hartle–Hawking wavefunction (41) is properly normalised. This 

leads to the equation

|N |2
∫

∏

ǫ∈T∪T̄∪∂T

dLǫ µ(L)

∫

∏

v∈T∪T̄∪∂T

dΦv eiStot[L,Φ]
= 1,

which determines the normalisation constant N  up to an overall phase factor. Note that the 

boundary scalar fields ϕ have been integrated over and consequently reabsorbed into the bulk 

variables Φ, similarly to edge lengths L. Both the integration over L and the integration over 

Φ is now being performed over the ‘total’ triangulation T ∪ T̄ ∪ ∂T  which has no boundary.

As the final step of the construction of the trace formula (34), we substitute (42) and N  

into it, to obtain:

TrM ρ̂2
M =

∫

∏

v∈∂T

dϕv

∫

∏

v∈∂T

dϕ′

v

∣

∣

∣

∣

∣

∣

∫

∏

ǫ∈T∪T̄∪∂T

dLǫ µ(L)

∫

∏

v∈T∪T̄

dΦv eiStot[ϕ,ϕ′,L,Φ]

∣

∣

∣

∣

∣

∣

2





∫

∏

ǫ∈T∪T̄∪∂T

dLǫ µ(L)

∫

∏

v∈T∪T̄∪∂T

dΦv eiStot[L,Φ]





2
. (43)

This is the final expression we set out to derive. It represents a concrete realisation of the trace 

formula (34), it is completely well defined, and can in principle be evaluated. In practice, 

though, for a generic choice of the triangulation, this expression is very hard to evaluate even 

numerically. Therefore, in what follows we shall enforce some very hard approximations in 

order to make it more manageable for study. Nevertheless, by looking at the structure of the 

numerator and the denominator, one can already see that the two expressions can be equal to 

each other only in some very special cases, if at all. However, the dependence of the action Stot 

on the boundary and bulk variables is such that one cannot rely on any special mathematical 

properties of the action which could help make the final result be 1, for a generic choice of the 

spacetime triangulation. In this sense, we can conjecture already at this level that in generic 

cases we have

TrM ρ̂2
M < 1,

as we wanted to demonstrate.

But in order to give a more convincing argument, let us study a special case and try to 

evaluate this trace to the very end. The simplest possible example of a triangulation T is a sin-

gle 4-simplex. Labelling its vertices as 1, 2, 3, 4, 5, we can depict it with a following diagram:

1

23

4

5

The 4-simplex has five boundary tetrahedra, namely

τ1234, τ1235, τ1245, τ1345, τ2345.
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The first tetrahedron, τ1234, is depicted with thick edges, and we will choose it to be the bound-

ary ∂T . Since we do not want the four remaining tetrahedra to belong to the boundary, we will 

glue them onto each other in pairs, as

τ1235 ≡ τ1245, τ1345 ≡ τ2345.

This means that every point in τ1235 is identified with the corresponding point in τ1245, and 

similarly with the other pair of tetrahedra. In this way we obtain a manifold with a nontrivial 

topology, but described with only five vertices and one boundary tetrahedron. In order for this 

gluing to be consistent, the gravitational and matter degrees of freedom living on T ∪ ∂T  must 

satisfy the following constraints:

l14 = l23 = l24 = l13, L25 = L15, L45 = L35,

ϕ2 = ϕ1, ϕ4 = ϕ3.
 (44)

This leaves us with the following independent degrees of freedom living on the 4-simplex:

l12, l13, L15, l34, L35, ϕ1, ϕ3, Φ5,

where we have denoted the bulk degrees of freedom with capital letters and boundary degrees 

of freedom with lowercase letters. The 4-simplex diagram above is the graphical representa-

tion of the Hartle–Hawking wavefunction ΨHH[l,ϕ] (41).

Next we construct T̄ . Since the boundary tetrahedron ∂T  defines a single 3-dimensional 

hypersurface, there is precisely one axis in 4-dimensional space which is orthogonal to ∂T . 

Performing the reflection of T with respect to ∂T  is therefore identical to reversing the orienta-

tion of this orthogonal axis. In this way we construct another 4-simplex, with vertices labeled 

1, 2, 3, 4, 6 and depicted as

1

23

4

6

One can see that the main difference between the 4-simplex σ12346 and the previously con-

structed 4-simplex σ12345 is that the vertex 6 is on the ‘opposite side’ of the tetrahedron τ1234 

as compared to the vertex 5 of σ12345.

Like we did for σ12345, we again want to glue the boundary tetrahedra pairwise, so that only 

the tetrahedron τ1234 remains as the boundary ∂T̄ . The pairwise gluing of tetrahedra

τ1236 ≡ τ1246, τ1346 ≡ τ2346

gives rise to the constraints

l14 = l23 = l24 = l13, L26 = L16, L46 = L36,

ϕ′

2 = ϕ′

1, ϕ′

4 = ϕ′

3,

where only the constraints containing the vertex 6 are additional to (44). This leaves us with 

the following independent degrees of freedom living on σ12346:

l12, l13, L16, l34, L36, ϕ′

1, ϕ′

3, Φ6.

As noted in the general discussion leading to equation (43), the matter degrees of freedom 

on the boundary of T are different than the corresponding degrees of freedom living on the 

boundary of T̄ , despite the fact that the boundary is identical, ∂T̄ ≡ ∂T . To that end, we have 

added a prime to ϕ in the above equations. Like for the 4-simplex σ12345, the diagram of the 
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4-simplex σ12346 above is the graphical representation of the (complex-conjugate) Hartle–
Hawking wavefunction Ψ∗

HH[l,ϕ
′].

At this point we are ready to glue T and T̄  along the common boundary ∂T , to obtain the 

manifold T ∪ T̄ ∪ ∂T  which has no boundary. It is depicted on the diagram below.

1

23

4

5

6

It consists of two 4-simplices σ12345 and σ12346 constructed above and glued along the common 

tetrahedron τ1234. The full set of independent gravitational degrees of freedom is

l12, l13, l34, L15, L16, L35, L36,

while the independent matter degrees of freedom are

ϕ1, ϕ3, ϕ′

1, ϕ′

3, Φ5, Φ6.

This diagram is the graphical representation for the matrix element Z[ϕ,ϕ′] of the reduced 

density matrix ρ̂M  (see equations (42) and (30)).

Applying the general trace formula (43) to our case then gives

TrM ρ̂2
M =

∫

dϕ1dϕ3dϕ′

1dϕ′

3

∣

∣

∣

∣

∫

d7Lµ(L)

∫

dΦ5dΦ6 eiStot[ϕ,ϕ′,L,Φ]

∣

∣

∣

∣

2

(
∫

d7Lµ(L)

∫

d4
Φ eiStot[L,Φ]

)2
, (45)

where

d7L ≡ dl12dl13dl34dL15dL16dL35dL36,

and

d4Φ ≡ dϕ1dϕ3dΦ5dΦ6.

Note that the action in the denominator is evaluated using ϕ′

1 = ϕ1 and ϕ′

3 = ϕ3, as explained 

in the general discussion above. In order to make the equation (45) fully explicit, we need to 

choose the values of the free parameters in the classical action (39) and the measure (37). The 

parameters of the action are the Planck length lp, the mass m of the scalar field, and the self-

interaction potential U(ϕ). For the purpose of this example, the simplest possible choice is the 

free massless scalar field, so that we have

lp = 10−35 m, m = 0, U(ϕ) = 0.

Second, the measure (37) contains a single free parameter Lµ. This parameter can be con-

nected to the value of the effective cosmological constant Λ, via the relation

Λ =
l2p

2L4
µ

,
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see [32–34] for details. Taking the observed value Λ = 10−52 m−2 (also often quoted as a 

dimensionless product Λl2p = 10−122), we obtain

Lµ = 10−5 m.

Using these numeric values of the parameters, the right-hand side of (45) is fully specified, 

and can be evaluated using a computer. However, in order to render the calculation more man-

ageable, for the purpose of this paper we instead choose to evaluate (45) with Lµ = 10−33 m, 

which corresponds to a larger cosmological constant, Λl2p = 10−8, to speed up the conv ergence 

of the Monte-Carlo integration method. The result is strictly less than one,

TrM ρ̂2
M = 0.977 ± 0.002,

as we had set out to demonstrate. Note that, although close to one, the above result is: (i) 

strictly smaller than one (within the computational error); (ii) obtained within extremely sim-

plified toy model whose system consists of only two 4-simplices of spacetime. Thus, our 

result can serve as a proof of principle that gravity-matter entanglement is always present. 

The total amount of such entanglement in realistic models, as well as its spatial distribution, 

remains to be further explored. Namely, note that even though the approximation of prod-

uct gravity-matter states has been up to now successfully applied, the overall entanglement 

between the two systems, considered within complex realistic situations/models, does not at 

all have to be small, nor its effects negligible. Indeed, the standard entanglement that is con-

sidered to cause the decoherence of matter by the environment and the quantum-to-classical 

transition has profoundly striking effects, despite the fact of being difficult to characterise, 

evaluate and manipulate.

5. Conclusions

5.1. Summary of the results

We analyse the quantum gravity coupled to the most common matter fields (namely, scalar, 

spinor and vector fields), and show that the gravity and matter are generically entangled, as a 

consequence of the nonseparability of the scalar constraint C, and in some cases the 3-diffeo 

constraint CM
i . Thus, simple separable gravity-matter product states are excluded from the 

physical Hilbert space, unless the constraint equations feature some deep unknown property 

which allows for the invariance of a whole class of product states. We demonstrate this in 

two different ways: (i) within the general abstract nonperturbative canonical formalism, by 

directly analysing the mathematical structure of the constraints, and (ii) within the path int-

egral formalism, by directly checking for entanglement of the Hartle–Hawking state in the 

Regge model of quantum gravity.

5.2. Discussion of the results

This gauge-protected decoherence due to the entanglement (in contrast to the standard ‘for all 

practical purposes’ dynamical one) offers a possibly deeper fundamental explanation of the 

long-standing problem of the quantum-to-classical transition: the matter does not decohere, it 

is by default decohered.

Any potential entanglement, either dynamical or gauge-protected one, depends on the 

details of the coupling between matter and gravity. For the purpose of this paper, the coupling 

is prescribed by the strong equivalence principle, which states that the equations of motion for 
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all matter fields must locally be identical to the equations of motion for those fields in flat spa-

cetime. This is implemented by choosing the action for matter fields with minimal coupling 

prescription, and employed in both the canonical and the path integral frameworks. We should 

stress that the validity of the strong equivalence principle is a sufficient, but potentially not a 

necessary assumption for our main result. Namely, it is plausible that nonminimal coupling 

choices, involving explicit spacetime curvature terms in the matter Lagrangian, could also 

lead to the conclusion that entanglement between gravity and matter is unavoidable. However, 

it is also possible that one could come up with some particular complicated choice of non-

minimal coupling which does admit some nonentagled states. In order to avoid complicating 

the analysis with such cases, given that nonminimal coupling between gravity and matter has 

absolutely no experimental evidence in its favor so far, we have chosen to assume the validity 

of the strong equivalence principle throughout the paper.

In standard QM entanglement is a generic consequence of the interaction. Nevertheless, 

there exist alternative mechanisms for creating it, such as the indistinguishability of identi-

cal particles, leading to effective ‘exchange interactions’. This new gauge-protected gravity-

matter entanglement can thus introduce additional ‘effective interaction’, which can possibly 

result in corrections to Einstein’s weak equivalence principle (see for example [35]).

It is interesting to note that a possible peculiar impact of the quantised gravity to the 

whole decoherence programme was already inferred in Zurek’s seminal paper [36], where 

on page 1520 the author writes: (the assumption of pairwise interactions) ‘is customary and 

clear, even though it may prevent one from even an approximate treatment of the gravi-

tational interaction beyond its Newtonian pairwise form’. Our result confirms Zurek’s 

disclaimer—gravity (environment E) is generically entangled with the whole matter (both 

the system S  and the apparatus A), that way allowing for non-trivial tripartite system-

apparatus-environment effective interaction of the form HSAE, explicitly excluded in [36]. 

In other words, the environ ment (spacetime) interaction with the matter could potentially 

disturb the system-apparatus correlations, thus violating the stability criterion of a faithful 

measurement (see [37], p 1271).

As a consequence of generic gravity-matter entanglement, the effective interaction 

between gravity and matter forbids the existence of a single background spacetime. Thus, 

when  concerning quantum effects of gravity, one cannot talk of ‘matter in a point of space’, 
confirming the conjecture that spacetime is an ‘emergent phenomenon’. In contrast to this, 

Penrose argues that spacetime, seen as a (four-dimensional) differentiable manifold, does not 

support superpositions of massive bodies and the corresponding (relative) states of gravity 

(i.e. the gravity-matter entanglement), leading to the objective collapse onto the product states 

of matter and (classical) spacetime [38]. Our result can therefore be treated as a possible cri-

terion for a plausible candidate theory of quantum gravity.

Finally, not allowing product states between the matter and gravity is in tune with the rela-

tional approach to physics [22], in particular to quantum gravity (note that the original name 

for the many-world interpretation of QM was the ‘Relative State’ Formulation of Quantum 

Mechanics [39]). See also [40] for an interesting treatment of relative state and decoherence 

approaches.

5.3. Relation to common quantum gravity research programs

In order to discuss our results in the context of various quantum gravity research programs, 

note that the gauge-protected entanglement between gravity and matter should exist in any 

model of quantum gravity with matter which respects local Poincaré symmetry. In this sense, 

various approaches to quantum gravity can be classified into four distinct categories.
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 (i)  The first category represents models which explicitly respect (or at least aim to respect) 

local Poincaré symmetry. These include nonperturbative string theory/M-theory [41–43], 

loop quantum gravity [22, 23], Wheeler–DeWitt quantization [44, 45], and similar 

approaches.

 (ii)  The second category represents models in which local Poincaré symmetry is explicitly 

broken. These include perturbative quantum gravity [46], petrurbative string theory [43], 

causal dynamical triangulations approach [28], doubly-special relativity models [47], 

Hořava–Lifshitz gravity [48], various nonrelativistic quantization proposals, and so on.

 (iii)  The third category represents models in which it is not clear whether local Poincaré sym-

metry is broken or not. For example, in the asymptotic safety approach [49] this may 

depend on the properties of the fixed point. In noncommutative geometry [50, 51] it 

depends on the particular choice of the algebra. In higher-derivative theories and theories 

with propagating torsion [52] it may depend on various details of the model, etc.

 (iv)  Finally, the fourth category represents models which have not been developed enough to 

allow for coupling of matter fields. In models like entropic gravity [53, 54] and causal set 

theory [55, 56], it is not obvious how to couple matter fields to gravity, and whether this 

coupling would violate local Poincaré invariance or not.

It should be clear that our results apply to the first category of quantum gravity models, 

while for other three categories it either does not apply, or it is an open question. We should 

also state that the validity of local Poincaré symmetry is ultimately an experimental question, 

one over which various quantum gravity proposals may disagree.

In relation to the previous comment, it is worthwhile to also discuss the impact of pos-

sible anomalies to the gauge protected entanglement. As we have discussed in the final para-

graph of section 2, the entanglement is a consequence of the scalar constraint Ĉ, see (12), 

and for certain types of matter fields also of the 3-diffeo constraint Ĉi  in (11), while the local 

Lorentz constraint Ĉab in (11) does not require entanglement. From this one can see that if the 

theory features anomalies due to the breaking of the 4D diffeomorphism symmetry, one can-

not impose Ĉ and Ĉi  as the Gupta–Bleuler-like conditions on the Hilbert space of the theory, 

and thus all subsequent results regarding the entanglement are void. In short, there cannot 

be any gauge protected entanglement if there is no relevant gauge symmetry to begin with. 

Nevertheless, if the theory features anomalies due to the breaking of the local Lorentz or any 

internal symmetries, while maintaining diffeomoprhism symmetry at the quantum level, the 

gauge protected entanglement will not be influenced by the anomaly.

5.4. Future lines of research

One of the main lines of future work would be to perform a detailed numerical analysis of 

Tr ρ̂2
M and the von Neumann entropy S(ρ̂M) for the Hartle–Hawking state (either within the 

Regge, or some other QG model). The latter quantity, called the entropy of entanglement, rep-

resents the measure of the entanglement in pure and bipartite states [57], in our case between 

gravity and matter in the Hartle–Hawking state. The precise numerical deviation of the Tr ρ̂2
M 

from its maximal value 1 could indicate in which cases this new entanglement has relevant 

physical consequences. This way, it would be possible to determine the boundaries of validity 

of the assumption of the product gravity-matter states of the form |G〉|M〉, which has been up 

to now used in numerous studies (analogously to the case of determining the regimes in which 

two coherent states become effectively orthogonal). In connection to this, one could analyse 

in more detail quantitatively to what extent the gauge-protected gravity-matter entanglement 
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constrains the existence of macroscopic superpositions, and its effect to the quantum-to-clas-

sical transition (see the related work [3, 4, 9, 58–60]).

Further, studying the structure of the gauge-imposed entanglement for a tripartite system of 

gravity-matter-EM fields might bring qualitatively new effects. Unlike the case of pure bipar-

tite states, where any two entangled states could be obtained from each other by local opera-

tions and classical communication (LOCC), thus forming a single class of entangled states and 

providing a unique measure of entanglement, the multipartite entanglement has a more com-

plex structure. Indeed, in the tripartite case, in addition to the trivial classes of purely bipartite 

entanglement, say, |a〉(|b1c1〉+ |b2c2〉), genuine tripartite entanglement consists of a number 

of inequivalent classes of entangled states: in the simplest case of three qubits we have two 

classes of tripartite entanglement, represented by the states |GHZ〉 = (|0 0 0〉+ |1 1 1〉)/
√

2 

and |W〉 = (|0 0 1〉+ |0 1 0〉+ |100〉)/
√

3, which cannot be obtained from each other by the 

means of LOCC, but as soon as neither of the subsystems is a qubit, there exist infinitely many 

inequivalent classes [61].

It would also be interesting to see how other QG candidates incorporate the general gravity 

constraints regarding the entanglement with matter, in particular the string theory. Namely, 

perturbative string theory is formulated by manifestly breaking the gauge symmetry (a con-

sequence of perturbative expansion of the gravitational field). The existence of the gravity-

matter entanglement in, say Hartle–Hawking state, would then present a strong argument 

that the gauge symmetry can be restored in a tentative nonperturbative formulation of string 

theory. In connection to this, one could analyse the entanglement between different space-

time regions induced by the gauge-protected gravity-matter entanglement, and compare it to 

that present in theories based on the AdS/CFT correspondence and the holographic principle 

[7, 8]. Namely, entanglement is a property of a quantum state with respect to a particular 

factorisation of a composite system into its factor sub-systems. To illustrate this, consider a 

particle in a two-dimensional plane. Given orthogonal axes x and y of a 2D plane, the Hilbert 

space of the system is given by H = Hx ⊗Hy, and the equal spatial superposition (for sim-

plicity, we omit the overall normalisation constant) |ϕ〉 ∼ (|a〉x + |b〉x)|0〉y, with a, b ∈ R, 

is clearly separable, with respect to the given factorisation of H. Nevertheless, with respect 

to any other factorisation of H, defined by any other axes X and Y inducing the Hilbert-

space factorisation H = HX ⊗HY , the system is entangled. As an example, for axes X and Y 

obtained by rotating x and y by −π/4, the same state of the system is maximally entangled, 

|ϕ〉 ∼ (|a/
√

2〉X|a/
√

2〉Y + |b/
√

2〉X|b/
√

2〉Y) (for the entanglement in the second quantisa-

tion formalism, and its dependence on the choice of fundamental modes, see for example 

[62]). Following the above example, one might expect that the existence of the entangle-

ment between gravity and matter would induce the entanglement between two generic space-

time regions (each containing a portion of both gravitational and matter degrees of freedom). 

Possible relationship between this, gauge-protected entanglement, and that present as a con-

sequence of assumptions that do not explicitly rely on the existence of local Poincaré sym-

metry (holography and the AdS/CFT correspondence) would indicate interesting fundamental 

connections that could help breaching the long-standing gap between quantum mechanics and 

general relativity.

Finally, detecting gravity-matter entanglement in the experiment might not be that far from 

the reach of the current or the near-future technology, see [63] for a recent proposal of testing 

gravitational decoherence. Proposing, and possibly performing, experiments to distinguish 

different contributions of the gravitational interaction to the decoherence of matter, in par-

ticular the generic one based on the gauge symmetry constraints, presents a relevant direction 

of further research.
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Abstract: When discussing the gauge symmetries of any theory, the Henneaux–Teitelboim trans-
formations are often underappreciated or even completely ignored, due to their on-shell triviality.
Nevertheless, these gauge transformations play an important role in understanding the structure of
the full gauge symmetry group of any theory, especially regarding the subgroup of diffeomorphisms.
We give a review of the Henneaux–Teitelboim transformations and the resulting gauge group in the
general case and then discuss its role in the applications to the class of topological theories called nBF
models, relevant for the constructions of higher gauge theories and quantum gravity.

Keywords: gauge symmetry; trivial gauge transformations; nBF theory; Chern–Simons theory;
diffeomorphism symmetry

1. Introduction

In modern theoretical physics, gauge symmetries play a very prominent role. The
two most-fundamental theories we have, which describe almost all observed phenomena
in nature—namely Einstein’s theory of general relativity and the Standard Model of ele-
mentary particle physics—are gauge theories. From Maxwell’s electrodynamics to various
approaches to quantum gravity, gauge theories play a central role, and gauge symmetry
represents one of their most-important aspects. In light of this, there is one class of gauge
transformations that is often slightly neglected in the literature, due to their specific nature
and properties.

In order to introduce this particular gauge symmetry in the most-elementary way
possible, let us look at the following simple example. Every action S[φ1, φ2], which depends
on the fields φ1(x) and φ2(x), is invariant under the following gauge transformation:

δ0φ1(x) = ε(x)
δS

δφ2(x)
, δ0φ2(x) = −ε(x)

δS
δφ1(x)

, (1)

as one can see by calculating the variation of the action:

δS[φ1, φ2] =
δS
δφ1

δ0φ1 +
δS
δφ2

δ0φ2 = 0 . (2)

This gauge symmetry exists for every action that is a functional of at least two fields,
irrespective of any other gauge symmetry that the action may or may not have. In the
literature, this symmetry is often called trivial gauge symmetry, since the form variations of
the fields are identically zero on-shell. This is in contrast to all other gauge symmetries,
which perform some nontrivial change of the fields on-shell.

It should be noted that, being trivial on-shell, the above transformations cannot
play a role in obtaining any predictions about observables in a given theory, due to the
intrinsic on-shell nature of the physical observables. For example, in practical situations
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of scattering experiments and measurements of cross-sections, this trivial symmetry is
irrelevant. Nevertheless, when constructing a new theory, in general, the off-shell properties
of the theory are important. As a typical example, path integral quantization prescription
depends not only on the classical equations of motion, but on the whole action of the theory.
In this sense, while these trivial transformations are not relevant for making predictions,
they do have methodological relevance and value in theory construction, despite their
on-shell triviality.

For example, these transformations in fact represent a very important part of the
gauge symmetry for any theory and play a crucial role in various contexts, such as in
the Batalin–Vilkovisky formalism (see [1] for a review and also the original papers [2–6]),
or when discussing the diffeomorphism symmetry of the BF-like class of theories [7–11].
Furthermore, in general, a commutator of two ordinary gauge transformations will remain
an ordinary gauge transformation only up to the above trivial transformations, meaning
that the latter are important for the algebraic closure of all gauge transformations into
a group.

To the best of our knowledge, the most-complete treatment and discussion of the
above gauge transformations can be found in the book [12] by Marc Henneaux and Claudio
Teitelboim. Therefore, in this paper, we opted to call them Henneaux–Teitelboim (HT)
transformations. This naming can also be justified with the paper [7] by Gary Horowitz
(published two years before the book [12]), where the author attributes these transfor-
mations to Henneaux and Teitelboim in a footnote and thanks them “for explaining this
to me”.

Regarding terminology, we should also note that we use the terms “gauge symmetry”
and “gauge transformations” with a certain level of charity. Namely, one could argue that
there are two distinct types of local symmetries—those that are obtained by a localization
procedure from a corresponding global symmetry group (the procedure of “gauging” a
global symmetry) and those that are intrinsically local, not obtained by any such localization
procedure. It is not known whether HT symmetry belongs to the former or the latter class,
since a global symmetry whose localization would give rise to HT transformations has not
yet been shown to exist. Either way, in the literature, there is no established terminology
that distinguishes the two classes of symmetries, and most often, both are called “gauge
symmetries”. Therefore, in what follows, for a lack of better terminology, we will adhere to
this practice and describe HT transformations as a gauge symmetry.

In some of the modern approaches to the problem of quantum gravity based on the
spinfoam formalism of loop quantum gravity [13,14], as well as in other applications of
the so-called higher gauge theory (see [15] for a review and [16] for an application to
quantum gravity), the description of gauge symmetry is being extended from the notion
of a Lie group to different algebraic structures, called 2-groups, 3-groups, and in general,
n-groups [17–27]. In this context, it is important to revisit and study the specific class of HT
gauge symmetries, since they provide a nontrivial insight into the properties of these more
general algebraic structures, as well as the physics behind the symmetries they describe.

The purpose of this paper is to provide a review of HT transformations in general and
then discuss their properties and applications in two concrete models—the Chern–Simons
theory and the 3BF theory. The Chern–Simons case is simple enough to serve as an illustra-
tive toy example, while the 3BF theory represents a basis for the construction of a realistic
theory of quantum gravity with matter within the context of the spinfoam formalism (see
also [16,28–32]), discussing that its HT symmetry represents an important stepping stone
towards the goal of a more realistic theory. The main result of this work represents a
clarification of the structure of the gauge symmetry of a pure topological 3BF action, as
well as the corresponding symmetry for the constrained 2BF action, which is classically
equivalent to Einstein’s general relativity. We also discuss in detail the relationship between
diffeomorphism symmetry and the HT symmetry for the Chern–Simons and 3BF theories
and offer some conceptual suggestions regarding the notion of gauge symmetry as it is
being used in the literature.



Universe 2023, 9, 281 3 of 19

The layout of the paper is as follows. In Section 2, we give a review of the general
theory of HT transformations and their main properties. Section 3 is devoted to the example
of HT symmetry in Chern–Simons theory, which is convenient due to its simplicity. In
Section 4, we discuss the main case of HT symmetry in the 3BF and 2BF theories, which
are important for applications in quantum gravity models. Finally, Section 5 contains an
overview of the results, future research directions, and some concluding remarks.

The notation and conventions in the paper are as follows. When important, we assume
the (−,+,+,+) signature of the spacetime metric. The Greek indices from the middle of
the alphabet, λ, µ, ν, . . . , represent spacetime indices and take values 0, 1, . . . , D− 1, where
D is the dimension of the spacetime manifoldMD under consideration. The Greek indices
from the beginning of the alphabet, α, β, γ, . . . , represent group indices, as well as Latin
indices a, b, c, . . . and uppercase Latin indices A, B, C, . . . and I, J, K, . . . . All these indices
will be assigned to various Lie groups under consideration. Lowercase Latin indices from
the middle of the alphabet, i, j, k, . . . , are generic and will be used to count all fields in a
given theory or for some other purpose depending on the context. Throughout the paper,
we denote the space of algebra-valued differential p-forms as

Ap(M, a) ≡ Λp(M)⊗ a ,

where Λp(M) is the ordinary space of differential p-forms over the manifoldM, while a is
some Lie algebra.

2. Review of HT Symmetry

We begin by studying some basic general properties of HT transformations. After
the definition, we demonstrate that the group of HT transformations represents a normal
subgroup of the total gauge group of a given theory, and we discuss the triviality of HT
transformations and that they exhaust all possible trivial transformations. Finally, before
moving on to concrete theories, we study the subtleties of the dependence of HT symmetry
on the choice of the action.

2.1. Definition of HT Transformations

Given an action S[φi] as a functional of fields φi(x) (i ∈ {1, . . . , N} where we assume
N > 2), the infinitesimal HT transformation is defined as

φi(x)→ φ′i(x) = φi(x) + δ0φi(x) , (3)

where the form variations of the fields are defined as

δ0φi(x) = εij(x)
δS

δφj(x)
. (4)

The variation of the action under HT transformations then gives

δS =
δS
δφi δ0φi =

δS
δφi

δS
δφj εij . (5)

If the HT parameters are chosen to be antisymmetric,

εij(x) = −εji(x) , (6)

the variation of the action (5) is identically zero, and HT transformations (4) represent a
gauge symmetry of the theory.

The most-striking thing in the above definition is the fact that we did not specify the
action in any way. Aside from the assumption N > 2, which excludes only actions describ-
ing a single real scalar field, every action is invariant with respect to the HT transformations.
In other words, HT transformations are a gauge symmetry of essentially every theory.
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The second striking property of the definition is that the form variations of fields
become zero on-shell, according to (4). In this sense, the HT symmetry is sometimes called
trivial symmetry, in contrast to ordinary gauge symmetries that a theory may have, which
transform the fields in a nontrivial way on-shell. Triviality is also the reason why HT gauge
symmetry does not feature in any way in the Hamiltonian analysis of a theory, so only the
presence of ordinary gauge symmetries can be deduced from the Hamiltonian formalism.

2.2. HT Symmetry Group and Its Properties

There are two general properties that can be formulated for HT transformations. The
first is that HT transformations form a normal subgroup within the full group of gauge
symmetries, while the second is that HT transformations exhaust the set of all possible
trivial transformations. The consequence of these properties is that one can always write
the total symmetry group of any theory as

Gtotal = Gnontrivial n GHT , (7)

where Gnontrivial is the symmetry group of ordinary gauge transformations (if there are any),
GHT is the HT symmetry group, and the symbol n stands for a semidirect product. One
can also reformulate (7) as

Gnontrivial = Gtotal/GHT , (8)

so that the group of ordinary gauge symmetries is represented as a quotient group.
The easiest way to demonstrate (7) is to prove that the Lie algebra corresponding to

GHT represents an ideal within the Lie algebra corresponding to Gtotal. To that end, pick an
arbitrary form variation of fields that represents a symmetry of the action and write it in
the form

δ̂0φi(x) = Fi(x) , such that δ̂S =
δS
δφi Fi ≡ 0 . (9)

Then, using (4), we can take concatenated variations of this form variation and the HT form
variation as

δ0δ̂0φi =
δFi

δφj
δS
δφk εjk ,

and

δ̂0δoφi =
δ

δφk

(
εij δS

δφj

)
Fk =

δεij

δφk
δS
δφj Fk + εij δ

δφj

(
δS
δφk Fk

)
− εij δS

δφk
δFk

δφj .

The term in the second parentheses is zero by (9), so the commutator of two-form varia-
tions becomes

[δ0 , δ̂0]φ
i =

(
εjk δFi

δφj − εji δFk

δφj −
δεik

δφj Fj

)
δS
δφk , (10)

which is again an HT transformation, since the expression in the parentheses is antisym-
metric with respect to indices i, k. Therefore, the commutator is always an element of HT
algebra, which means that HT algebra itself is an ideal of the total symmetry algebra. At
the Lie group level, this translates into (7).

The second general property is the statement that there are no other trivial transfor-
mations beside the HT transformations. Assuming that some transformation described by
the form variation δ̄0φi is a gauge symmetry of the action that vanishes on-shell, i.e., that
it satisfies

δS
δφi δ̄0φi = 0 , and δ̄0φi ≈ 0 ,

then one can prove that this transformation is an HT transformation, i.e., there exists a
choice of antisymmetric HT parameters εij such that the form variation δ̄0φi is of type (4):

δ̄0φi = εij δS
δφj .

(11)
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Provided certain suitable regularity conditions for the action S, this statement can be
rigorously formulated as a theorem. However, we omitted the proof since it is technical
and off topic for the purposes of this paper. The interested reader can find the details of
both the theorem and the proof in [12], Appendix 10.A.2.

To sum up, the first property (10) tells us that one can always factorize the total gauge
symmetry group into the form (7), while the second property (11) guarantees that the
quotient group (8) contains only nontrivial gauge transformations. This factorization of the
total symmetry group is a key result that lays the groundwork for any subsequent analysis
of HT transformations in particular and gauge symmetry in general.

2.3. Dependence of HT Symmetry on the Action

The final property of HT transformations that needs to be discussed is their depen-
dence on the choice of the action. Suppose we are given some action Sold[φ

i], where
i ∈ {1, . . . , N}, which has the corresponding HT transformation described as in (4):

δold
0 φi = εij δSold

δφj . (12)

Now, suppose that we modify that action into another one, Snew[φi, χk], where k ∈ {N +
1, . . . , N + M}, by adding an extra term to the old action:

Snew[φ
i, χk] = Sold[φ

i] + Sextra[φ
i, χk] . (13)

Here, χj are additional fields that may be introduced into the new action. The HT transfor-
mation corresponding to the new action can be written in the block-matrix form, made of
blocks of sizes N and M, as follows: δnew

0 φi

δnew
0 χk

 =

 εij ζ il

θkj ψkl




δSnew

δφj

δSnew

δχl

 ,
i, j ∈ {1, . . . , N} ,
k, l ∈ {N + 1, . . . , N + M} .

(14)

Here, ε = −εT is an antisymmetric N× N block of parameters εij, ζ is a rectangular N×M
block of parameters ζ il , θ is a rectangular M × N block such that θ = −ζT , and finally,
ψ = −ψT is an antisymmetric M×M block of parameters ψkl . Overall, the total parameter
matrix is antisymmetric, as required by (6).

The question one can now study is what is the relation between the two HT gauge
symmetry groups Gold

HT and Gnew
HT that correspond to the two actions. In practice, this

question is most often relevant in cases when one introduces the piece Sextra as a gauge-
fixing term, whose purpose is to break the ordinary gauge symmetry down to its subgroup:

Gnew
nontrivial ⊂ Gold

nontrivial .

Naively, one might expect a similar relationship between the HT symmetry groups, Gnew
HT ⊂

Gold
HT . However, looking at (12) and (14), this is obviously wrong. Namely, if M > 1, the HT

symmetry of the new action is larger than the HT symmetry of the old action. Counting the
number of independent parameters of both, one easily sees that

dim(Gold
HT) =

N(N − 1)
2

, dim(Gnew
HT ) =

(N + M)(N + M− 1)
2

,

so that the only possible relationship would be the opposite, Gold
HT ⊂ Gnew

HT . However, in
fact, this can also be shown to be wrong. Namely, one can choose the extra parameters ζ, θ
and ψ to be zero in (14), reducing it to the form that is formally similar to (12):

δnew
0 φi = εij δSnew

δφj .
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However, taking into account the relationship (13) between the two actions, the HT trans-
formation takes the form

δnew
0 φi = εij δSold

δφj + εij δSextra

δφj ,

which is explicitly different from (12), due to the presence of the term Sextra in the action.
Therefore, the gauge group Gold

HT is not a subgroup of Gnew
HT either.

The overall conclusion is that introducing additional terms to the action changes the
total gauge symmetry in a nontrivial way. On the one hand, the ordinary gauge symmetry
group typically becomes smaller due to explicit symmetry breaking by the extra term. On
the other hand, the HT gauge symmetry group may become larger if the extra term contains
additional fields, but either way becomes different, as a consequence of the very presence
of the extra term. Given this, one can conclude that the total symmetry groups for the
two actions will always be mutually different:

Gnew
total = G

new
nontrivial n G

new
HT 6= Gold

total = G
old
nontrivial n G

old
HT .

Specifically, one cannot claim that the group Gold
total is being broken down into Gnew

total as its
subgroup; such a relationship may hold exclusively for the quotient groups of ordinary
gauge transformations.

In the next two sections, we will turn to explicit examples of all general properties
and features of the HT symmetry that have been discussed above. Moreover, we will also
discuss some additional particular properties, such as the fact that some nontrivial gauge
subgroups of Gtotal are not simultaneously subgroups of Gnontrivial, which is a consequence
of the semidirect product in (7). One such example will be the diffeomorphism symmetry
in the Chern–Simons and 3BF actions.

Let us conclude this section with one conceptual comment. Throughout the literature,
the typical practice is to always take the quotient between the total and HT symmetry
groups as in (8), in order to isolate the nontrivial gauge transformations, and call the
latter simply as the “gauge symmetry” of a theory. This approach is in fact advocated
for in [12]. However, we believe that this practice can be misleading and that one should
instead describe the group Gtotal as “the gauge symmetry” of a theory, explicitly including
the HT subgroup as a legitimate gauge symmetry group. Namely, despite the fact that
it is often called “trivial”, the consequences of its presence in Gtotal are far from trivial.
Granted, it may often be enough to discuss the gauge symmetry on-shell, and then, one
can indeed calculate all symmetry transformations only “up to equations of motion”, with
no mention of the HT subgroup. However, whenever one needs to discuss the gauge
transformations off-shell, the HT subgroup simply cannot be ignored anymore. Typical
situations include the Batalin–Vilkovisky formalism [1], various generalizations of gauge
symmetry in the context of higher gauge theories and quantum gravity [33], and even the
traditional contexts such as the Coleman–Mandula theorem [34]. The situations in which
HT transformations play a significant role may be rare, but nevertheless, they tend to be
important. Thus, in our opinion, it would be prudent to always be aware that, for any given
theory, its total gauge symmetry group is in fact bigger, and more feature-rich, than just the
group of ordinary gauge transformations that are typically discussed in the literature.

3. HT Symmetry in Chern–Simons Theory

As an illustrative example of the general properties of HT symmetry from the previous
section, let us discuss the HT transformations for the simple case of the Chern–Simons
theory. The Chern–Simons theory represents an excellent toy example since it is well known
in the literature and most readers should be familiar with it.
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Given any Lie group G, its corresponding Lie algebra g, and a three-dimensional
manifoldM3, the Chern–Simons theory can be defined as a topological field theory over a
trivial principal bundle G →M3, given by the action:

SCS =
∫
M3

〈A ∧ dA〉g +
1
3
〈A ∧ [A ∧ A]〉g . (15)

Here, A ∈ A1(M3, g) is a g-valued connection one-form over a manifoldM3, and 〈_ , _〉g
is a G-invariant symmetric nondegenerate bilinear form on g. One often rewrites the
Chern–Simons action within the framework of the enveloping algebra of g, introducing the
notion of a trace as

Tr(XY) ≡ 〈X , Y〉g ,

for every X, Y ∈ g. Then, the Chern–Simons action can be rewritten as

SCS =
∫
M3

Tr
(

A ∧ dA +
2
3

A ∧ A ∧ A
)

, (16)

where, for the second term, one employs the identity Tr(X[Y, Z]) = Tr(XYZ)− Tr(XZY)
for every X, Y, Z ∈ g.

The gauge symmetry of the Chern–Simons action consists of G-gauge transformations,
determined with the parameters εg

I(x). Using the basis of generators TI to expand the
connection A into components as

A = AI
µ(x)dxµ ⊗ TI ,

the form variation of the connection components AI
µ corresponding to gauge transforma-

tions can then be written as

δ0 AI
µ = ∂µεg

I − f JK
Iεg

J AK
µ , (17)

where f JK
I are the structure constants corresponding to the generators TI . Therefore, the

gauge symmetry of the Chern–Simons theory is usually quoted as the initially chosen Lie
group G:

GCS = G . (18)

However, as we have seen in the previous section, this is not the complete set of gauge
transformations, and the total gauge group should in fact be

Gtotal = GCS n GHT . (19)

Let us define the HT transformations for the Chern–Simons action (15). If we denote
the dimension of the Lie algebra g as dim(g) = p, the number of independent field
components AI

µ is N = 3p. The HT transformation is then defined with the HT parameters
εI J

µν(x) as

δ0 AI
µ = εI J

µν
δS

δAJ
ν

. (20)

The requirement that the variation of the action vanishes:

δS =
δS

δAI
µ

δS
δAJ

ν
εIJ

µν = 0 ,

enforces the antisymmetry restriction on the HT parameters:

εI J
µν = −εJ I

νµ .

Note that this equation can be satisfied in two different ways—the parameters can be either
antisymmetric with respect to group indices I J and symmetric with respect to spacetime
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indices µν, or vice versa. We, therefore, have two possible choices for their symmetry
properties. The first possibility is defined as

εI J
µν = εI J

νµ = −εJ I
µν = −εJ I

νµ , (21)

while the second possibility is defined as

εI J
µν = εJ I

µν = −εI J
νµ = −εJ I

νµ . (22)

Varying the action, one obtains an explicit form of the HT transformation:

δ0 AI
µ = εI J

µνενρσ
(

∂ρ AJ σ − ∂σ AJ ρ + fKL J AK
ρ AL

σ

)
. (23)

In order to demonstrate that HT transformations have highly nontrivial implications,
despite being trivial on-shell, it is instructive to discuss diffeomorphisms. Namely, looking
at the action (15), one expects that the theory has diffeomorphism symmetry, since it is
formulated in a manifestly covariant way using differential forms. However, one can check
that diffeomorphisms are not a subgroup of the ordinary gauge symmetry group GCS given
by (18), but nevertheless can be obtained as a subgroup of the total gauge group (19). In
other words, one can demonstrate that

Di f f (M3) 6⊂ GCS , but Di f f (M3) ⊂ Gtotal = GCS n GHT .

Let us examine this in detail. The diffeomorphism transformation

xµ → x′µ = xµ + ξµ(x) , (24)

determined by the parameter ξµ(x) represents a subgroup Di f f (M) of the full gauge
symmetry of some given action, if for every field φ(x) in the theory and every choice of
diffeomorphism parameters ξµ(x), there exists a choice of the gauge parameters εgauge(x)
and the HT parameters εHT(x), such that:

δ0
diff φ = δ0

gaugeφ + δ0
HTφ . (25)

In other words, if a theory has diffeomorphism symmetry, the diffeomorphism form
variations of all the fields in the theory should be expressible in terms of their ordinary
gauge and HT form variations.

In the case of Chern–Simons theory, this can be demonstrated explicitly. If one chooses
the gauge parameters εg

I and the HT parameters εI J
µν as

εg
I = −ξλ AI

λ , εI J
µν = −1

2
ξλελµνgI J , (26)

where gI J is the inverse of gI J ≡ 〈TI , TJ〉g, one can apply Equations (25) using (17) and (23)
to reproduce precisely the well-known diffeomorphism form variation of the connection
AI

µ:
δ0

diff AI
µ = −AI

λ∂µξλ − ξλ∂λ AI
µ . (27)

Therefore, as expected, despite the fact that Di f f (M3) 6⊂ GCS, one obtains that Di f f (M3) ⊂
Gtotal = GCS n GHT . Note that the choice of HT parameters in (26) is nontrivial, which
emphasizes the role of HT transformations and the fact that the full group of gauge sym-
metries is Gtotal rather than GCS. As we shall see in the next section, this property is not
specific only to the Chern–Simons theory.

4. HT Symmetry in 3BF Theory

After discussing the Chern–Simons theory as a toy example, we move to the more
important case of the 3BF theory. This theory is relevant for building models of quantum
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gravity; see [8,20,21,33,35]. Therefore, it is important to study its gauge symmetry and, in
particular, the role of HT transformations.

4.1. Review of the 3BF Theory

Analogous to the fact that Chern–Simons theory is a topological theory based on a
Lie group and a 3-dimensional manifold, the 3BF theory is also a topological theory based
on a notion of a three-group and a 4-dimensional manifold. The notion of a three-group
represents a categorical generalization of the notion of a group, in the context of higher
gauge theory (HGT); see [15] for a review and motivation. For the purpose of defining the
3BF theory, we are interested in particular in a strict Lie three-group, which is known to be
isomorphic to a so-called Lie two-crossed module; see [17–19] for details.

A Lie two-crossed module, denoted as (L δ→ H ∂→ G ,B , {_ , _}pf), is an algebraic
structure specified by three Lie groups G, H, and L, together with the homomorphisms
δ : L → H and ∂ : H → G, an action B of the group G on all three groups, and a
G-equivariant map, called the Peiffer lifting:

{_ , _}pf : H × H → L .

In order for this structure to form a two-crossed module, the structure constants of algebras
g, h, and l (the Lie algebras corresponding to the Lie groups G, H, and L, respectively), as
well as the maps ∂ and δ, the action B, and the Peiffer lifting, must satisfy certain axioms;
see [20] for details.

Given a two-crossed module and a four-dimensional compact and orientable spacetime
manifoldM4, one can introduce the notion of a trivial principal three-bundle, in analogy
with the notion of a trivial principal bundle constructed from an ordinary Lie group and a
manifold; see [15]. Then, one can introduce the notion of a three-connection, an ordered
triple (α, β, γ), where α, β, and γ are algebra-valued differential forms, α ∈ A1(M4, g),
β ∈ A2(M4, h), and γ ∈ A3(M4, l); see [17–19]. The corresponding fake hree-curvature
(F ,G,H) is defined as:

F = dα + α ∧ α− ∂β , G = dβ + α ∧B β− δγ ,

H = dγ + α ∧B γ + {β ∧ β}pf .
(28)

Then, for a four-dimensional manifoldM4, one can define the gauge-invariant topological

3BF action, based on the structure of a two-crossed module (L δ→ H ∂→ G ,B , {_ , _}pf), by
the action

S3BF =
∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (29)

where B ∈ A2(M4, g), C ∈ A1(M4, h), and D ∈ A0(M4, l) are Lagrange multipliers and
F ∈ A2(M4, g), G ∈ A3(M4, h), and H ∈ A4(M4, l) represent the fake three-curvature
given by Equation (28). The forms 〈_ , _〉g, 〈_ , _〉h, and 〈_ , _〉l are G-invariant symmetric
nondegenerate bilinear forms on g, h, and l, respectively. The action (29) is an example of
the so-called higher gauge theory.

By choosing the three bases of generators τα ∈ g, ta ∈ h, and TA ∈ l of the three respec-
tive Lie algebras, one can expand all fields in the theory into components as

B =
1
2

Bα
µν(x)dxµ ∧ dxν ⊗ τα , α = αα

µ(x)dxµ ⊗ τα ,

C = Ca
µ(x)dxµ ⊗ ta , β =

1
2

βa
µν(x)dxµ ∧ dxν ⊗ ta ,

D = DA(x)TA , γ =
1
3!

γA
µνρ(x)dxµ ∧ dxν ∧ dxρ ⊗ TA .
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One can also make use of the following notation for the components of all maps present in
the theory, in the same three bases:

[τα , τβ] = fαβ
γτγ , gαβ = 〈τα , τβ〉g , τα B τβ = Bαβ

γτγ , δTA = δA
ata ,

[ta , tb] = fab
ctc , gab = 〈ta , tb〉h , τα B ta = Bαa

btb , ∂ta = ∂a
ατα ,

[TA , TB] = fAB
CTC , gAB = 〈TA , TB〉l , τα B TA = BαA

BTB , {ta , tb}pf = Xab
ATA .

The complete gauge symmetry of the 3BF action was studied in [8] using the tech-
niques of Hamiltonian analysis. It consists of five types of gauge transformations, G-, H-,
L-, M-, and N-gauge transformations, determined with the independent parameters εg

α(x),
εh

a
µ(x), εl

A
µν(x), εm

α
µ(x), and εn

a(x), respectively. The form variations of the fields B, C,
D, α, β, and γ, obtained in [8] are given as follows:

δ0Bα
µν = fβγ

αεg
βBγ

µν + 2Ca[µ|εh
b
|ν] Bβb

agαβ − DA BβB
Aεl

B
µνgαβ − 2∇[µ|εm

α
|ν]

+βbµν Bβa
bεn

agαβ ,

δ0Ca
µ = Bαb

aεg
αCb

µ + 2DAX(ab)
Aεh

b
µ − ∂a

αεm
α

µ −∇µεn
a ,

δ0DA = BαB
Aεg

αDB + δA
aεn

a ,

δ0αα
µ = −∂µεg

α − fβγ
ααβ

µεg
γ − ∂a

αεh
a

µ ,

δ0βa
µν = Bαb

aεg
αβb

µν − 2∇[µ|εh
a
|ν] + δA

aεl
A

µν ,

δ0γA
µνρ = BαB

Aεg
αγB

µνρ + 3!βa
[µνεh

b
ρ]X(ab)

A +∇µεl
A

νρ −∇νεl
A

µρ +∇ρεl
A

µν .

(30)

The gauge transformations (30) form a group G3BF:

G3BF = G̃ n (H̃L n (Ñ × M̃)) , (31)

where G̃ denotes the group of G-gauge transformations, the H-gauge transformations
together with the L-gauge transformations form the group H̃L, while M̃ and Ñ are the
groups of M- and N-gauge transformations, respectively. All these groups are determined
from the structure of the initial chosen two-crossed module that defines the theory; see [8]
for details.

However, as we have seen in the general theory in Section 2 and in the example
of the Chern–Simons theory in Section 3, the symmetry group G3BF determined by the
Hamiltonian analysis does not include HT transformations, and therefore, the total gauge
group should in fact be

Gtotal = G3BF n GHT . (32)

4.2. Explicit HT Transformations

Let us explicitly define the HT transformations for the 3BF action (29). If we denote
the dimensions of the Lie algebras g, h, l as

dim(g) = p , dim(h) = q , dim(l) = r ,

the number of independent field components in the theory can be counted according to the
following table:

Bα
µν Ca

µ DA αα
µ βa

µν γA
µνρ

6p 4q r 4p 6q 4r

The total number of independent field components is, therefore,

N = 6p + 4q + r + 4p + 6q + 4r = 10p + 10q + 5r .
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Let φi denote all field components, where i = 1, 2, . . . , N. We can write the fields schemati-
cally as a column-matrix with six blocks:

φi =



Bα
µν

Ca
µ

DA

αα
µ

βa
µν

γA
µνρ

 .

The HT transformation is then defined via the parameters εij(x) as

δ0φi = εij δS
δφj .

The requirement that the variation of the action vanishes enforces the antisymmetry restric-
tion on the parameters, εij = −εji, for all i, j ∈ {1, . . . , N}. These transformations can be
represented more explicitly as a tensorial 6× 6 block-matrix equation, in the following form:



δ0Bα
µν

δ0Ca
µ

δ0DA

δ0αα
µ

δ0βa
µν

δ0γA
µνρ


=



εαβ
µνσλ εαb

µνσ εαB
µν εαβ

µνσ εαb
µνσλ εαB

µνσλξ

µaβ
µσλ εab

µσ εaB
µ εaβ

µσ εab
µσλ εaB

µσλξ

µAβ
σλ µAb

σ εAB εAβ
σ εAb

σλ εAB
σλξ

µαβ
µσλ µαb

µσ µαB
µ εαβ

µσ εαb
µσλ εαB

µσλξ

µaβ
µνσλ µab

µνσ µaB
µν µaβ

µνσ εab
µνσλ εaB

µνσλξ

µAβ
µνρσλ µAb

µνρσ µAB
µνρ µAβ

µνρσ µAb
µνρσλ εAB

µνρσλξ





1
2

δS
δBβ

σλ

δS
δCb

σ

δS
δDB

δS
δαβ

σ

1
2

δS
δβb

σλ

1
3!

δS
δγB

σλξ


. (33)

The coefficients multiplying the variations of the action in the column on the right-hand
side are there to compensate the overcounting of the independent field components. Due
to the antisymmetry of HT parameters, all µ blocks (below the diagonal) are determined in
terms of the ε blocks (above the diagonal), as follows. For the first column of the parameter
matrix in (33), we have:

µbα
σµν = −εαb

µνσ , µBα
µν = −εαB

µν , µβα
σµν = −εαβ

µνσ ,

µbα
σλµν = −εαb

µνσλ , µBα
σλξµν = −εαB

µνσλξ .
(34)

For the second column, we have:

µBa
µ = −εaB

µ , µβa
σµ = −εaβ

µσ ,

µba
σλµ = −εab

µσλ , µBa
σλξµ = −εaB

µσλξ .
(35)

The µ parameters in the third column are determined via:

µβA
σ = −εAβ

σ , µbA
σλ = −εAb

σλ , µBA
σλξ = −εAB

σλξ , (36)

while the remaining µ parameters in the fourth and fifth columns are determined as:

µbα
σλµ = −εαb

µσλ , µBα
σλξµ = −εαB

µσλξ , µBa
σλξµν = −εaB

µνσλξ . (37)
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Finally, in addition to all these, the parameters in the blocks on the diagonal also have to
satisfy certain antisymmetry relations, specifically:

εαβ
µνσλ = −εβα

σλµν , εab
µσ = −εba

σµ , εAB = −εBA ,

εαβ
µσ = −εβα

σµ , εab
µνσλ = −εba

σλµν , εAB
µνρσλξ = −εBA

σλξµνρ .
(38)

Like in the example of the Chern–Simons theory from the previous section, these antisym-
metry relations can be satisfied in various multiple ways. All those possibilities are allowed,
as long as the identities (38) are satisfied. The final ingredient in (33) is the expressions for
the variation of the action with respect to the fields, and these are given as follows:

δS
δBβ

νρ
=

1
2

ενρστFβστ ,

δS
δCb

ρ
=

1
3!

ερστλGbστλ ,

δS
δDB =

1
4!

εστλξHBστλξ ,

δS
δαβ

ρ
=

1
2

ερτλξ

(
∇τ Bβλξ −Bβa

bCbτ βa
λξ +

1
3
BβB

ADAγB
τλξ

)
,

δS
δβb

νρ
= ενρστ

(
∇σCbτ −

1
2

∂b
αBαστ + X(ab)

ADAβb
στ

)
,

δS
δγB

µνρ
= εµνρσ(∇σDB + δB

aCaσ) .

(39)

4.3. Diffeomorphisms

As in the case of the Chern–Simons theory, it is instructive to discuss diffeomorphism
symmetry. The 3BF action (29) obviously is diffeomorphism invariant, since it is formulated
in a manifestly covariant way, using differential forms. However, one can check that
the diffeomorphisms are not a subgroup of the gauge symmetry group G3BF given by
Equation (31), but nevertheless can be obtained as a subgroup of the total gauge group (32):

Di f f (M4) 6⊂ G3BF , but Di f f (M4) ⊂ Gtotal = G3BF n GHT . (40)

Let us demonstrate this. Like in the Chern–Simons case, we want to demonstrate that the
form variation of all fields corresponding to diffeomorphisms can be obtained as a suitable
combination of the form variations for the ordinary gauge transformations (30) and the
HT transformations (33). In other words, for an arbitrary choice of the diffeomorphism
parameters ξµ(x) from (24), Equation (25) should hold in the case of the 3BF theory as well:

δ0
diff φ = δ0

gaugeφ + δ0
HTφ . (41)

Indeed, this can be shown by a suitable choice of parameters. Regarding the parame-
ters of the gauge transformations (30), the appropriate choice is given as:

εg
α = ξλαα

λ , εh
a

µ = −ξλβa
µλ , εl

A
µν = −ξλγA

µνλ ,

εm
α

µ = −ξλBα
µλ , εn

a = ξλCa
λ .

(42)
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Regarding the parameters of the HT transformations (33), we chose the following special
case, with the majority of the parameters equated to zero:

δ0Bα
µν

δ0Ca
µ

δ0DA

δ0αα
µ

δ0βa
µν

δ0γA
µνρ


=



0 0 0 εαβ
µνσ 0 0

0 0 0 0 εab
µσλ 0

0 0 0 0 0 εAB
σλξ

µαβ
µσλ 0 0 0 0 0

0 µab
µνσ 0 0 0 0

0 0 µAB
µνρ 0 0 0





1
2

δS
δBβ

σλ

δS
δCb

σ

δS
δDB

δS
δαβ

σ

1
2

δS
δβb

σλ

1
3!

δS
δγB

σλξ


. (43)

Of course, due to antisymmetry, the nonzero µ blocks take negative values of the corre-
sponding ε blocks, in accordance with (34), (35), and (36). The three independent nonzero ε
blocks are chosen as

εαβ
µνσ = ξρgαβεµνσρ , εab

µσλ = ξρgabερµσλ , εAB
σλξ = ξρgABεσλξρ . (44)

Finally, substituting (42) and (44) into (30) and (43), respectively, and then substituting all
those results into (41), after a certain amount of work, one obtains precisely the standard
form variations corresponding to diffeomorphisms:

δ0
diffBα

µν = −Bα
λν∂µξλ − Bα

µλ∂νξλ − ξλ∂λBα
µν ,

δ0
diffCa

µ = −Ca
λ∂µξλ − ξλ∂λCa

µ ,

δ0
diffDA = −ξλ∂λDA ,

δ0
diffαα

µ = −αα
λ∂µξλ − ξλ∂λαα

µ ,

δ0
diffβa

µν = −βa
λν∂µξλ − βa

µλ∂νξλ − ξλ∂λβa
µν ,

δ0
diffγA

µνρ = −γA
λνρ∂µξλ − γA

µλρ∂νξλ − γA
µνλ∂ρξλ − ξλ∂λγA

µνρ .

(45)

This establishes both relations (40), as we set out to demonstrate. We note again that the
HT transformations play a crucial role in obtaining the result, since we had to choose the
parameters (44) in a nontrivial manner.

4.4. Symmetry Breaking in 2BF Theory

Let us now turn to the topic of symmetry breaking and the way it influences HT
transformations. To that end, we studied the topological 2BF action, which is a special case
of the 3BF action (29) without the last term:

S2BF =
∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h . (46)

In order to be even more concrete, let us fix a two-crossed module structure with the
following choice of groups:

G = SO(3, 1) , H = R4 , L = {e} .

In other words, we interpret group G as the Lorentz group, group H as the spacetime
translations group, while group L is trivial, for simplicity. This choice corresponds to
the so-called Poincaré two-group; see [16] for details. Since the generators of the Lorentz
group can be conveniently counted using the antisymmetric combinations of indices from
the group of translations, instead of the G-group indices α, we shall systematically write
[ab] ∈ {01, 02, 03, 12, 13, 23}, where a, b ∈ {0, 1, 2, 3} are H-group indices, and the brackets
denote antisymmetrization. With a further change in notation from the connection 1-form
α to the spin-connection 1-form ω, the curvature 2-form F (α) to R(ω), and interpreting
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the Lagrange multiplier 1-form C as the tetrad 1-form e, the 2BF action can be rewritten in
new notation as

S2BF =
∫
M4

B[ab] ∧ R[ab] + ea ∧ Ga . (47)

The ordinary gauge symmetry group for this action has a form similar to (31):

G2BF = G̃ n (H̃ n (Ñ × M̃)) , (48)

while the total group of gauge symmetries is extended by the HT transformations, so that

Gtotal = G2BF n GHT . (49)

The explicit HT transformations are written as a tensorial 4× 4 block-matrix equation, in
the form

δ0B[ab]
µν

δ0ea
µ

δ0ω[ab]
µ

δ0βa
µν


=



ε[ab][cd]
µνσλ ε[ab]c

µνσ ε[ab][cd]
µνσ ε[ab]c

µνσλ

µa[cd]
µσλ εac

µσ εa[cd]
µσ εac

µσλ

µ[ab][cd]
µσλ µ[ab]c

µσ ε[ab][cd]
µσ ε[ab]c

µσλ

µa[cd]
µνσλ µac

µνσ µa[cd]
µνσ εac

µνσλ





1
4

δS
δB[cd]

σλ

δS
δec

σ

1
2

δS
δω[cd]

σ

1
2

δS
δβc

σλ


, (50)

where the usual antisymmetry rules apply. Here, we have

δS
δB[cd]

σλ

= εµνσλR[cd]µν ,

δS
δω[cd]

σ
= εσµνρ

(
∇µB[cd]νρ − e[c|µβ|d]νρ

)
,

δS
δec

σ
=

1
2

εσµνρ∇µβcνρ ,

δS
δβc

σλ
= εµνσλ∇µecν .

(51)

The 2BF action (46) is topological, in the sense that it has no local propagating degrees
of freedom. In this sense, it does not represent a theory of any realistic physics. In order
to construct a more realistic theory, one proceeds by introducing the so-called simplicity
constraint term into the action, which changes the equations of motion of the theory so that
it does have nontrivial degrees of freedom. An example is the action

SGR =
∫
M4

B[ab] ∧ R[ab] + ea ∧∇βa − λ[ab] ∧
(

B[ab] − 1
16πl2

p
εabcdec ∧ ed

)
, (52)

where the new constraint term features another Lagrange multiplier two-form λ[ab]. By
virtue of the simplicity constraint, the theory becomes equivalent to general relativity, in
the sense that the corresponding equations of motion reduce to vacuum Einstein field
equations (see [16] for the analysis and proof). In this sense, constraint terms of various
types are important when building more realistic theories; see [20] for more examples.

However, adding the simplicity constraint term also changes the gauge symmetry
of the theory. In particular, it breaks the gauge group G2BF from (48) down to one of its
subgroups, so that the symmetry group of the action SGR is

GGR ⊂ G2BF . (53)

This is expected and unsurprising. What is less obvious, however, is that the group of HT
transformations G̃HT of the action SGR is not a subgroup of the HT group GHT of the original
action S2BF:

G̃HT 6⊂ GHT , (54)
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which implies that
GGR

total 6⊂ G
2BF
total , (55)

despite (53).
Let us demonstrate this. Since the action (52) features an additional field λ[ab]

µν(x),
the HT transformations (50) have to be modified to take this into account and obtain the
following 5× 5 block-matrix form:

δ0B[ab]
µν

δ0ea
µ

δ0ω[ab]
µ

δ0βa
µν

δ0λ[ab]
µν


=



ε[ab][cd]
µνσλ ε[ab]c

µνσ ε[ab][cd]
µνσ ε[ab]c

µνσλ ζ [ab][cd]
µνσξ

µa[cd]
µσλ εac

µσ εa[cd]
µσ εac

µσλ ζa[cd]
µσξ

µ[ab][cd]
µσλ µ[ab]c

µσ ε[ab][cd]
µσ ε[ab]c

µσλ ζ [ab][cd]
µσξ

µa[cd]
µνσλ µac

µνσ µa[cd]
µνσ εac

µνσλ ζa[cd]
µνσξ

θ[ab][cd]
µνσλ θ[ab]c

µνσ θ[ab][cd]
µνσ θ[ab]c

µνσλ ψ[ab][cd]
µνσξ





1
4

δSGR
δB[cd]

σλ
δSGR
δec

σ

1
2

δSGR
δω[cd]

σ

1
2

δSGR
δβc

σλ

1
4

δSGR
δλ[cd]

σξ


, (56)

where
δSGR

δB[cd]
σλ

= εµνσλ
(

R[cd]µν − λ[cd]µν

)
,

δSGR

δω[cd]
σ

= εσµνρ
(
∇µB[cd]νρ − e[c|µβ|d]νρ

)
,

δSGR
δec

σ
=

1
2

εσµνρ
(
∇µβcνρ +

1
8πl2

p
εabcdλ[ab]

µνed
ρ

)
,

δSGR
δβc

σλ
= εµνσλ∇µecν ,

δSGR

δλ[cd]
σξ

= −εσξµν
(

B[cd]µν −
1

8πl2
p

εabcdea
µeb

ν

)
.

(57)

We can now investigate the differences in the form of HT transformations for the
topological and constrained theory. First, comparing (56) to (50), we see that the HT
transformations in the constrained theory feature more gauge parameters than are present
in the topological theory. Namely, compared to S2BF, the action SGR features an extra
Lagrange multiplier two-form λ[ab], which extends the matrix of HT parameters from
4× 4 blocks to 5× 5 blocks, and, therefore, introduces the new parameters ζ and ψ (and θ,
which are the negative of ζ due to antisymmetry). This means that the group G̃HT for the
constrained theory is larger than the group GHT for the topological theory. On the one hand,
this immediately proves (54) and, consequently, (55). On the other hand, one can ask the
opposite question—given that G̃HT is larger than GHT , is the latter maybe a subgroup of
the former?

The answer to this question is negative:

GHT 6⊂ G̃HT , (58)

which together with (54) implies our final conclusion:

GHT 6= G̃HT . (59)

In order to demonstrate (58), we can try to set all extra parameters ζ, ψ, and θ to zero
in (56), reducing it to the same form as (50). This would naively suggest that GHT indeed
is a subgroup of G̃HT . However, upon closer inspection, we can observe that this is not
true, since the functional derivatives (57) are different from (51). Namely, even taking into
account that the choice ζ = ψ = θ = 0 eliminates the fifth equation from (57), the first
four equations are still different from their counterparts (51) because of the presence of the
Lagrange multiplier λ[ab] in the action. The Lagrange multiplier is a field in the theory, and
generically, it is not zero, since it is determined by the equation of motion:

λ[ab]
µν = R[ab]

µν .
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Therefore, the HT transformations (56) in fact cannot be reduced to the HT transformations
(50) by setting the extra parameters equal to zero, which proves (58) and (59).

The overall consequences from the above analysis are as follows. The topological
action S2BF has a large ordinary gauge group G2BF and a small HT symmetry group GHT .
When one changes the action to SGR by adding a simplicity constraint term, two things
happen—the ordinary gauge group breaks down to its subgroup GGR, so that it becomes
smaller, while the HT symmetry group grows larger to a completely different group G̃HT . In
effect, the total gauge groups for the two actions are intrinsically different:

G2BF
total = G2BF n GHT 6= GGR

total = GGR n G̃HT ,

in the sense that neither is a subgroup of the other. This conclusion is often overlooked
in the literature, which mostly puts emphasis on the symmetry breaking of the ordinary
gauge group down to its subgroup.

Let us state here, without proof, that the action (52) represents an example of a non-
topological action, for which one can also demonstrate a property analogous to (40), that
diffeomorphisms are not a subgroup of its ordinary gauge group, but are a subgroup
of the total gauge group. Simply put, given that the simplicity constraint term in (52)
breaks the ordinary gauge symmetry group G2BF into its subgroup GGR (see (53)), one can
expect that diffeomorphisms are not a subgroup of GGR, since they are not a subgroup of
the larger group G2BF of the topological action (46). Nevertheless, since the action (52) is
written in a manifestly covariant form, diffeomorphisms are certainly a symmetry of the
action and, thus, must be a subgroup of the total gauge group GGR

total = GGR n G̃HT , in line
with the statement analogous to (40). We leave the details of the proof as an exercise for
the reader. The point of this analysis was to demonstrate that the interplay (40) between
diffeomorphisms and the HT symmetry is a generic property of a large class of actions,
including the physically relevant ones, and not limited to examples of topological theories
such as the Chern–Simons or nBF models.

As the last comment, let us remark that, in fact, almost all conclusions discussed for the
cases of the Chern–Simons, 3BF, and 2BF theories are not really specific to these concrete
cases. One can easily generalize our analysis to any other theory, and the conclusions
should remain unchanged, except maybe in some corner cases.

5. Conclusions

Let us review the results. In Section 2, we gave a short overview of HT gauge symme-
try and discussed its most-important general properties. First, the HT group is a normal
subgroup of the total group of gauge symmetries of any given action. Second, HT transfor-
mations exhaust all “trivial” (i.e., vanishing on-shell) symmetries, in the sense that there
are no trivial symmetries that are not of the HT type. Finally, adding additional terms into
the action substantially changes the HT group, often enlarging it. This may be considered
a counterintuitive result, since usually adding additional terms in the action serves the
purpose of fixing the gauge and, thus, is meant to reduce the gauge symmetry, rather than
to enlarge it.

After these general results, in Section 3, we discussed the HT symmetry of the Chern–
Simons action, which is a convenient toy example that neatly displays the general features
from Section 2. Special attention was given to the issue of diffeomorphisms, and it was
shown that, while they are not a subgroup of the ordinary gauge group of the Chern–Simons
action, they nevertheless do represent a proper subgroup of the total gauge symmetry, and
the HT subgroup plays a nontrivial role in demonstrating this.

Section 4 was devoted to the study of HT symmetry in the 2BF and 3BF theories, which
are relevant for the constructions of realistic quantum gravity models within the generalized
spinfoam approach and higher gauge theory. After a brief review and introduction to the
notion of three-groups and the 3BF theory, appropriate HT transformations were explicitly
constructed, complementing the ordinary group of gauge symmetries of the 3BF action
based on a given three-group. This gave us the total gauge symmetry group for this class
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of theories. We again discussed the issue of diffeomorphisms and demonstrated again that
they are a subgroup of the total gauge group, without being a subgroup of the ordinary
gauge group, just like in the case of the Chern–Simons theory. Finally, we introduced a
completely concrete example of the 2BF theory based on the Poincaré two-group, which
becomes classically equivalent to Einstein’s general relativity when one introduces the
additional term into the action, called the simplicity constraint. As argued in general in
Section 2, the presence of this constraint breaks the ordinary gauge group down into its
subgroup, while simultaneously enlarging the HT group, since it introduces an additional
Lagrange multiplier field into the action. This represents an explicit example of the general
statement from Section 2 that the total gauge symmetry group changes nontrivially, as
opposed to simply breaking down to its subgroup.

It should be noted that the analysis and results discussed here do not cover everything
that can be said about HT symmetry. Among the topics not covered, one can mention the
question of an explicit form of finite HT transformations, as opposed to infinitesimal ones.
Can one write down finite HT transformations in closed form, either for some conveniently
chosen action or maybe even in general? A related topic is the explicit evaluation of the
commutator of two HT transformations, or equivalently, the structure constants of the HT
Lie algebra, or in yet other words, the multiplication rule in the group GHT . Is the group
Abelian or not and for which choices of the action? Finally, one would also like to know the
topological properties of the group GHT , i.e., its global structure. All these are potentially
interesting topics for future research.

As a particularly interesting topic for future research, we should mention the nontrivial
change of the HT symmetry group when additional terms are being added to the action. In
Section 4.4, we briefly demonstrated that HT symmetry does change in a nontrivial way, on
the example action (52). Nevertheless, the precise properties and the physical interpretation
of this change are yet to be studied in full and for a general choice of the action. This topic
is the subject of ongoing research.

Finally, we would like to reiterate the differences in two possible approaches to the
notion of “the gauge symmetry” of a theory. The overwhelmingly common approach
throughout the literature is to factor out the HT group and work only with the ordinary,
nontrivial gauge group as the relevant symmetry. Admittedly, this approach does feature a
certain level of appeal due to its simplicity and economy, since it does not have to deal with
HT symmetry at all. Nevertheless, there are important situations where this is not enough,
and one really needs to take into account the total gauge symmetry group, which includes
HT transformations. As a rule, these situations always involve the gauge symmetry off-
shell, either for the purpose of quantization or otherwise. A typical example is the Batalin–
Vilkovisky formalism, where one needs to explicitly keep track of HT transformations
throughout the whole analysis. Another situation, which was discussed here in more detail,
is the question of diffeomorphism symmetry, where HT transformations are required in
order to prove that diffeomorphisms are a symmetry of the theory even off-shell. This is
especially relevant for building quantum gravity models. Finally, the third scenario would
be the discussion of the Coleman–Mandula theorem. One of the main assumptions of the
theorem is that the Poincaré group is a subgroup of the full symmetry group of the theory.
Given this assumption, and a number of other assumptions, the theorem implies that the
full symmetry group must be a direct product of the Poincaré subgroup and the internal
symmetry subgroup. In certain cases of theories (such as the 3BF action), the full symmetry
group is not explicitly expressed as such a direct product, and moreover, it is not obvious
that the Poincaré group is a subgroup of the full symmetry group to begin with. Therefore,
in order to verify whether the above assumption of the theorem is satisfied, one needs
to inspect if the Poincaré group is or is not a subgroup of the full symmetry group. At
this point, one may run into a scenario similar to diffeomorphisms: the Poincaré group
may fail to be a subgroup of the ordinary gauge group, but still be a subgroup of the total
gauge group, once the HT symmetry is taken into account. In this sense, HT symmetry
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may become relevant for the proper analysis and application of the Coleman–Mandula
theorem in certain contexts. This topic is the subject of ongoing research [34].

All of the above arguments suggest that it may be prudent to abandon the common
approach of factoring out the HT group and instead adopt the description of the symmetry
with the total gauge group, which includes HT transformations on equal footing as the
ordinary gauge transformations. In the long run, this may be a conceptually cleaner
approach. However, either way, we believe that HT symmetry is relevant for the overall
symmetry structure of a theory and that better understanding of its properties can add
value to and benefit research.
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Abstract: We give a general overview of various flavours of the equivalence principle in classical
and quantum physics, with special emphasis on the so-called weak equivalence principle, and
contrast its validity in mechanics versus field theory. We also discuss its generalisation to a theory of
quantum gravity. Our analysis suggests that only the strong equivalence principle can be considered
fundamental enough to be generalised to a quantum gravity context since all other flavours of
equivalence principle hold only approximately already at the classical level.

Keywords: equivalence principle; general relativity; quantum gravity

1. Introduction

Quantum mechanics (QM) and general relativity (GR) are the two cornerstones of
modern physics. Yet, merging them together in a quantum theory of gravity (QG) is still
elusive despite the nearly century-long efforts of vast numbers of physicists and mathe-
maticians. While the majority of the attempts were focused on trying to formulate the full
theory of quantised gravity, such as string theory, loop quantum gravity, non-commutative
geometry, and causal set theory, to name a few, a number of recent studies embraced a
rather more modest approach by exploring possible consequences of basic features and
principles of QM and GR, and their status, in a tentative theory of QG. Acknowledging that
the superposition principle, as a defining characteristic of any quantum theory, must be fea-
tured in QG as well, led to a number of papers studying gravity-matter entanglement [1–7],
genuine indefinite causal orders [8–15], quantum reference frames [16–20] and deforma-
tions of Lorentz symmetry [21–25], to name a few major research directions. Exploring
spatial superpositions of masses, and in general gravitational fields, led to the analysis of
the status of various versions of the equivalence principle, and their exact formulations in
the context of QG. In particular, in [26], it was shown that the weak equivalence principle
(WEP) should generically be violated in the presence of a specific type of superpositions of
gravitational fields, describing small quantum fluctuations around a dominant classical
geometry. On the other hand, a number of recent studies propose generalisations of WEP
to QG framework (see for example [16,20,27–31]), arguing that it remains satisfied in such
scenarios, a result seemingly at odds with [26] (for details, see the discussion from Section 5).

The modern formulation of WEP is given in terms of a test particle and it’s trajectory:
it is a theorem within the mathematical formulation of GR stating that the trajectory of a
test particle satisfies the so-called geodesic equation [32–46], while it is violated within the
context of QG, as shown in [26]. In this paper, we present a brief overview of WEP in GR
and a critical analysis of the notions of particle and trajectory in both classical and quantum
mechanics, as well as in the corresponding field theories.Our analysis demonstrates that
WEP, as well as all other flavours of the equivalence principle (EP) aside from the strong
one (SEP), hold only approximately. From this we conclude that neither WEP nor any other
flavour of EP (aside from SEP) can be considered a viable candidate for generalisation to
the quantum gravity framework.
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The paper is organised as follows. In Section 2, we give a brief historical overview of
various flavours of the equivalence principle, with a focus on WEP. In Section 3, we analyse
the notion of a trajectory in classical and quantum mechanics, while in Section 4 we discuss
the notion of a particle in field theory and QG. Finally, in the Conclusion, we briefly review
and discuss our results, and present possible future lines of research.

2. Equivalence Principle in General Relativity

The equivalence principle is one of the most fundamental principles in modern physics.
It is one of the two cornerstone building blocks for GR, the other being the principle of
general relativity. While its importance is well understood in the context of gravity, it
is often underappreciated in the context of other fundamental interactions. In addition,
there have been numerous studies and everlasting debates about whether EP holds also in
quantum physics, if it should be generalised to include quantum phenomena or not, etc.
Finally, EP has been historically formulated in a vast number of different ways, which are
often not mutually equivalent, leading to a lot of confusion about the actual statement of
the principle and its physical content [47–53]. Given the importance of EP, and the amount
of confusion around it, it is important to try and help clarify these issues.

The equivalence principle is best introduced by stating its purpose—in its traditional
sense, the purpose of EP is to prescribe the interaction between gravity and all other fields in
nature, collectively called matter (by “matter” we assume not just fermionic and scalar fields,
but also gauge vector bosons, i.e., nongravitational interaction fields). This is important
to state explicitly since EP is often mistakenly portrayed as a property of gravity alone,
without any reference to matter. In a more general, less traditional, and often not appreci-
ated sense, the purpose of EP is to prescribe the interaction between any gauge field and all
other fields in nature (namely fermionic and scalar matter, as well as other gauge fields,
including gravity), which we will reflect on briefly in the case of electrodynamics below.

Given such a purpose, let us for the moment concentrate on the gravitational ver-
sion of EP, and provide its modern formulation, as it is known and understood today.
The statement of the equivalence principle is the following:

The equations of motion for matter coupled to gravity remain locally identical to the
equations of motion for matter in the absence of gravity.

This kind of statement requires some unpacking and comments.

• When comparing the equations of motion in the presence and in the absence of
gravity, the claim that they remain identical may naively suggest that gravity does not
influence the motion of matter in any way whatsoever. However, on closer inspection,
the statement is that the two sets of equations remain locally identical, emphasising
that the notion of locality is a crucial feature of the EP. While equations of motion are
already local in nature (since they are usually expressed as partial differential equations
of finite order), the actual interaction between matter and gravity enters only when
integrating those equations to find a solution (see Appendix A for a detailed example).

• In order to compare the equations of motion for matter in the presence of gravity
to those in its absence, the equations themselves need to be put in a suitable form
(typically expressed in general curvilinear coordinates, as tensor equations). The state-
ment of EP relies on a theorem that this can always be achieved, first noted by Erich
Kretschmann [54].

• Despite being dominantly a statement about the interaction between matter and grav-
ity, EP also implicitly suggests that the best way to describe the gravitational field is as
a property of the geometry of spacetime, such as its metric [55]. In that setup, EP can
be reformulated as a statement of minimal coupling between gravity and matter, stating
that equations of motion for matter may depend on the spacetime metric and its first
derivatives, but not on its (antisymmetrised) second derivatives, i.e., the spacetime
curvature does not explicitly appear in the equations of motion for matter.
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• The generalisation of EP to other gauge fields is completely straightforward, by re-
placing the role of gravity with some other gauge field, and suitably redefining what
matter is. For example, in electrodynamics, the EP can be formulated as follows:

The equations of motion for matter coupled to the electromagnetic field remain locally
identical to the equations of motion for matter in the absence of the electromagnetic field.

This statement can also be suitably reformulated as the minimal coupling between
the electromagnetic (EM) field and matter, i.e., coupling matter to the electromagnetic
potential Aµ but not to the corresponding field strength Fµν = ∂µ Aν − ∂ν Aµ. This
is in fact the standard way the EM field is coupled to matter (see Appendix A for
an illustrative example). Even more generally, the gauge field sector of the whole
Standard Model of elementary particles (SM) is built using the minimal coupling pre-
scription, meaning that the suitably generalised version of the EP actually prescribes
the interaction between matter and all fundamental interactions in nature, namely
strong, weak, electromagnetic and gravitational. In this sense, EP is a cornerstone
principle for the whole fundamental physics, as we understand it today.

Of course, much more can be said about the statement of EP, its consequences, and var-
ious other details. However, in this work, our attention will focus on the so-called weak
equivalence principle (WEP), which is a reformulation of EP applied to matter which consists
of mechanical particles. To that end, it is important to understand various flavours and
reformulations of EP that have appeared through history.

As with any deep concept in physics, EP has been expressed historically through
a painstaking cycle of formulating it in a precise way, understanding the formulation,
understanding the drawbacks of that formulation, coming up with a better formulation,
and repeating. In this sense, EP, as quoted above, is a modern product of long and
meticulous refinement over several generations of scientists. Needless to say, each step in
that process made its way into contemporary physics textbooks, leading to a plethora of
different formulations of EP that have accumulated in the literature over the years. This
can bring about a lot of confusion about what EP actually states [47–50] since various
formulations from old and new literature may often be not merely phrased differently,
but in fact substantively inequivalent. To that end, let us comment on several of the
most common historical statements of EP (for a more detailed historical overview and
classification, see [56,57]), and their relationship with the modern version:

• Equality of gravitational and inertial mass. This is one of the oldest variants of EP,
going back to Newton’s law of universal gravitation. The statement claims that the
“gravitational charge” of a body is the same as the body’s resistance to acceleration,
in the sense that the mass appearing on the left-hand side of Newton’s second law
of motion exactly cancels the mass appearing in Newton’s gravitational force law on
the right-hand side. This allows one to relate it to the modern version of EP, in the
sense that a suitably accelerated observer could rewrite Newton’s law of motion as the
equation for a free particle, exploiting the cancellation of the “intertial force” and the
gravitational force on the right-hand side of the equation. Unfortunately, this version
of EP is intrinsically nonrelativistic, and applicable only in the context of Newtonian
gravity since already in GR the source of gravity becomes the full stress-energy tensor
of matter fields, rather than just the total mass. Finally, this principle obviously fails
when applied to photons, as demonstrated by the gravitational bending of light.

• Universality of free fall. Going back all the way to Galileo, this statement claims that the
interaction between matter and gravity does not depend on any intrinsic property of
matter itself, such as its mass, angular momentum, chemical composition, temperature,
or any other property, leading to the idea that gravity couples universally (i.e., in the
same way) to all matter. Formulated from experimental observations by Galileo, its
validity is related to the quality of experiments used to verify it. As we shall see below,
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in a precise enough setting, one can experimentally observe direct coupling between
the angular momentum of a body and spacetime curvature [32–46], invalidating
the statement.

• Local equality between gravity and inertia. Often called Einstein’s equivalence principle,
the statement claims that a local and suitably isolated observer cannot distinguish
between accelerating and being at rest in a uniform gravitational field. While this state-
ment is much closer in spirit to the modern formulation of EP, it obscures the crucial
aspect of the principle — coupling of matter to gravity. Namely, in this formulation,
it is merely implicit that the only way an observer can attempt to distinguish gravity
from inertia is by making local experiments using some form of matter, i.e., studying
the equations of motion of matter in the two situations and trying to distinguish them
by observing whether or not matter behaves differently. Moreover, the statement is
often discussed in the context of mechanics, arguing that any given particle does not
distinguish between gravity and inertia. This has two main pitfalls—first, the reliance
on particles is very misleading (as we will discuss below in much more detail), and sec-
ond, it implicitly suggests that gravity and inertia are the same phenomenon, which is
completely false. Namely, inertia can be understood as a specific form of gravity, but a
general gravitational field cannot be simulated by inertia, since inertia cannot account
for tidal effects of inhomogeneous configurations of gravity.

• Weak equivalence principle. Stating that the equations of motion of particles do not
depend on spacetime curvature, or equivalently, that the motion of a free particle is
always a geodesic trajectory in spacetime, WEP is in fact an application of modern
EP to mechanical point-like particles (i.e., test particles). One can argue that, as far
as the notion of a point-like particle is a well-defined concept in physics, WEP is
a good principle. Nevertheless, as we will discuss below in detail, the notion of a
point-like particle is an idealisation that does not actually have any counterpart in
reality, in either classical or quantum physics. Regarding a realistic particle (with
nonzero size), WEP never holds, due to the explicit effect of gravitational tidal forces
across the particle’s size. In this sense, WEP can be considered at best an approximate
principle, which can be assumed to hold only in situations where particle size can be
approximated to zero.

• Strong equivalence principle. This version of the principle states that the equations of
motion of all fundamental fields in nature do not depend on spacetime curvature
(see [55], Section 16.2, page 387). To the best of our knowledge so far, fields are indeed
the most fundamental building blocks in modern physics (such as SM), while the
strength of the gravitational field is indeed described by spacetime curvature (as in
GR). In this sense, the statement of SEP is actually an instance of EP applied to field
theory, and as such equivalent to the modern statement of EP. So far, all our knowledge
of natural phenomena is consistent with the validity of SEP.

As can be seen from the above review, various formulations of EP are both mutually
inequivalent and have different domains of applicability. Specifically, only SEP holds
universally, while all other flavours of EP hold only approximately. In the remainder of
the paper, we focus on the study of WEP since recently it gained a lot of attention in the
literature [20,27–29,31], primarily in the context of its generalisation to a “quantum WEP”,
and in the context of a related question of particle motion in a quantum superposition of
different gravitational configurations, the latter being a scenario that naturally arises in
QG. Since WEP is stated in terms of a test particle and its trajectory, in order to try and
generalise it to the scope of QG one should first analyse these two notions in classical and
quantum mechanics and field theory in more detail.

3. The Notion of Trajectory in Classical and Quantum Mechanics

A trajectory of a physical system in three-dimensional space is a set of points that form
a line, usually parameterised by time. More formally, a trajectory is a set {(x(t), y(t), z(t)) ∈
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R3|t ∈ [ti, t f ] ⊂ R∧ ti < t f }, given by three smooth functions x, y, z : R 7→ R. Depending
on the nature of the system, the choice of points that form its trajectory may vary.

In classical mechanics, one often considers an ideal “point-like particle” localised in one
spatial point (x(t), y(t), z(t)) at each moment of time t, in which case the choice of the points
forming the system’s trajectory is obvious. In the case of systems continuously spread
over certain volumes (“rigid bodies”, or “objects”) or composite systems consisting of
several point-like particles or bodies, it is natural to consider their centres of mass as points
that form the trajectory. While this definition is natural, widely accepted, and formally
applicable to any classical mechanical system, there are cases in which the very notion of a
trajectory loses its intuitive, as well as useful, meaning.

Consider for example an electrical dipole, i.e., a system of two point-like particles
with equal masses and opposite electrical charges, separated by the distance `(t). As long
as this distance stays “small” and does not vary significantly with time, the notion of a
trajectory of a dipole, defined as the set of centres of mass of the two particles, does meet
our intuition, and can be useful. Informally, if the trajectories of each of the two particles
are “close” to each other, they can be approximated, and consequently represented, by the
trajectory of the system’s centre of mass. However, if the separate trajectories of the two
particles diverge, one going to the “left”, and another to the “right”, one could hardy talk
of a trajectory of such a composite system, although the set of locations of its centres of
mass is still well defined. In fact, the dipole itself ceases to make physical sense when the
distance between its constituents is large.

Moving to the realm of quantum mechanics, due to the superposition principle, even
the ideal point-like particles do not have a well-defined position, which is further quantified
by the famous Heisenberg uncertainty relations. Thus, the trajectory of point-like particles
(and any system that in a given regime can be approximated to be point-like) is defined as
a set of expectation values of the position operator. Like in the case of composite classical
systems, here as well the definition of a trajectory of a point-like particle is mathematically
always well defined, yet for a very similar reason is applicable only to certain cases. Namely,
in order to give a useful meaning to the above definition of trajectory, the system considered
must be well localised. Consider for example the double-slit experiment, in which the point-
like particle is highly delocalised so that we say that its trajectory is not well defined, even
though the set of the expectation values of the position operator is.

We see that, while in mechanics both the notions of a particle and its trajectory are
rather straightforward and always well defined, the latter make sense only if our system
is well localised in space (see for example [58], where the authors analyse the effects of
wave-packet spreading to the notion of a trajectory).

4. The Notion of a Particle in Field Theory

While in classical mechanics a point-like particle is always well localised, we have
seen that in the quantum case one must introduce an additional constraint in order for it to
be considered localised—the particle should be represented by a wave-packet. The source
for this requirement lies in the fact that quantum particles, although mechanical, are
represented by a wavefunction. Thus, it is only to be expected that when moving to the realm
of the field ontology, the notion of a particle becomes even more involved and technical.

In field theory, the fundamental concept is the field, rather than a particle. The notion
of a particle is considered a derived concept, and in fact in QFT one can distinguish two
vastly different phenomena that are called “particles”.

The first notion of a particle is an elementary excitation of a free field. For example,
the state

|Ψ〉 = â†(~k)|0〉 ,

is called a single particle state of the field, or a plane-wave-particle. It has the following properties:

• It is an eigenstate of the particle number operator for the eigenvalue 1.
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• It has a sharp value of the momentum~k, and corresponds to a completely delocalised
plane wave configuration of the field.

• It has no centre of mass, and no concept of “position” in space since the “position
operator” is not a well-defined concept for the field.

• States of this kind are said to describe elementary particles, understood as asymptotic
free states of past and future infinity, in the context of the S-matrix for scattering
processes. An example of a real scalar particle of this type would be the Higgs particle.
For fields of other types (Dirac fields, vector fields, etc.) examples would be an electron,
a photon, a neutrino, an asymptotically free quark, and so on. Essentially, all particles
tabulated in the Standard Model of elementary particles are of this type.

Note that all the above notions are defined within the scope of free field theory,
and do not carry over to interacting field theory. In other words, free field theory is a
convenient idealisation, which does not really reflect realistic physics. One should therefore
understand the concept of a plane-wave-particle in this sense, merely as a convenient
mathematical approximation. Moreover, the particle number operator is not an invariant
quantity, as demonstrated by the Unruh effect. We should also emphasise that in an
interacting QFT, the proper way to understand the notion of a particle is as a localised
wave-packet, interacting with its virtual particle cloud, which does have a position in space
and whose momentum is defined through its group velocity. In this sense, the particle as a
wave-packet could be better interpreted as a kink, discussed below.

The second notion of the particle in field theory is a bound state of fields, also called a
kink solution. This requires an interacting theory since interactions are necessary to form
bound states. This kind of configuration of fields has the following properties:

• It is not an eigenstate of the particle number operator, and the expectation value of
this operator is typically different from 1.

• It is usually well localised in space, and does not have a sharp value of momentum.
• As long as the kink maintains a stable configuration (i.e., as long as it does not decay),

one can in principle assign to it the concept of size, and as a consequence also the
concepts of centre of mass, position in space, and trajectory. In this sense, a kink can play
the role of a test particle.

• States of this kind are said to describe composite particles. Given an interacting theory
such as the Standard Model, under certain circumstances quarks and gluons form
bound states called a proton and a neutron. Moreover, protons and neutrons further
form bound states called atomic nuclei, which together with electrons and photons
form atoms, molecules, and so on.

For a kink, the notions of centre of mass, position in space and size are described
only as classical concepts, i.e., as expectation values of certain field operators, such as the
stress-energy tensor. Moreover, given the nonzero size of the kink, its centre of mass and
position are not uniquely defined, even classically, since in relativity different observers
would assign different points as the centre of mass.

Given the two notions of particles in QFT, one can describe two different corresponding
notions of WEP. In principle, one first needs to apply SEP in order to couple the matter
fields to gravity, at the fundamental level. Assuming this is completed, the motions of
both the plane-wave-particles and kink particles can be derived from the combined set of
Einstein’s equations and matter field equations, without any appeal to any notion of WEP.
In this sense, once the trajectory of the particle in the background gravitational field has
been determined from the field equations, one can verify as a theorem whether the particle
satisfies WEP or not.

Specifically, in the case of a matter field coupled to general relativity such that it locally
resembles a plane wave, one can apply the WKB approximation to demonstrate that the
wave 4-vector kµ(x), orthogonal to the wavefront at its every point x ∈ R4, will satisfy a
geodesic equation,

kµ(x)∇µkλ(x) = 0 . (1)
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However, given that the plane-wave-particle is completely delocalised in space, the fact
that the wave 4-vector satisfies the geodesic equation could hardly be interpreted as “the
particle following a geodesic trajectory”, and thus obeying WEP. Indeed, identifying the
vector field orthogonal to the wavefront to the notion of “particle’s trajectory” is at best an
abuse of terminology.

Next, in the case of the kink particle coupled to general relativity, one assumes the
configuration of the background gravitational field is such that the particle maintains its
structure and that its size can be completely neglected. One can then apply the procedure
given in [26,32–46] to demonstrate that the 4-vector uµ(τ), tangent to the kink’s world line
(i.e., its trajectory), will satisfy a geodesic equation (τ ∈ R represents kink’s proper time),

uµ(τ)∇µuλ(τ) = 0 . (2)

Thus, one concludes that the kink obeys WEP as a theorem in field theory, without the
necessity to actually postulate it.

Note the crucial difference between Equations (1) and (2)—while the former features
4-dimensional variable x, the latter is given in terms of only 1-dimensional proper time
τ. This reflects the fact that the plane-wave-particle is a highly delocalised object, with no
well-defined position and trajectory, while the kink is a highly localised object, with a
well-defined position and trajectory. As a consequence, WEP can be formulated only for
the kink, and not for the plane-wave particle.

In the case of the kink, it is also important to emphasise that the zero-size approxi-
mation of the kink is crucial. Namely, without this assumption, the particle will feel the
tidal forces of gravity across its size, effectively coupling its angular momentum Jµν(τ) to
the curvature of the background gravitational field [32–46] (see also [59] for a more refined
analysis of tidal effects). This will give rise to an equation of motion for the kink of the form

uµ(τ)∇µuλ(τ) = Rλ
µρσuµ(τ)Jρσ(τ) , (3)

which features explicit coupling to curvature (absent from (2)) and thus fails to obey WEP.
In this sense, for realistic kink solutions WEP is always violated, and can be considered to
hold only as an approximation when the size of the particle can be completely neglected
compared to the radius of curvature of the background gravitational field. If in addition
the kink has negligible total energy, it can be used as a point-like test particle.

In the above discussion, while matter fields are described as quantum, using QFT,
the background gravitational field is considered to be completely classical. It should
therefore not be surprising that WEP may fail to hold if one allows the gravitational field to
be quantum, such as matter fields, and one needs to revisit all steps of the above analysis
from the perspective of QG. In fact, the case of the kink particle has been studied in precisely
this scenario [26], and it has been shown that if the background gravitational field is in a
specific type of quantum superposition of different configurations, the kink will fail to obey
WEP even in the zero size approximation. Simply put, the equation of motion for the kink
will contain extra terms due to the interference effects between superposed configurations
of gravity, giving rise to an effective force that pushes the kink off the geodesic trajectory.
Moreover, of course, similar to the case of classical gravity, the resulting conclusion is a
theorem, which follows from the fundamental field equations of the theory. One of the
assumptions of that theorem is that the field equations allow for kink solutions in the first
place. Namely, it is entirely possible that in quantum gravity particles cannot be localised at
all, as opposed to the classical case where such an approximation can be feasible. If that is
the case, then one cannot even formulate (i.e., generalise from classical theory) the notion of
WEP in a quantum gravity setup. However, one can instead assume that kink solutions do
exist, as was performed in [26], where a particular superposition of gravitational fields was
considered, describing small quantum fluctuations around a dominant classical geometry.
It was then argued that such superpositions are compatible with the approximation of a
well-defined localised particle (see the discussion around Equations (2.2) and (3.15), as well
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as Section 3.4 of that paper). As it turns out, even in such cases the trajectory of the kink
fails to obey WEP. Therefore, the generalisations of WEP and other approximate versions
of EP are not the best candidates for analysing the properties of quantum gravity.

Moreover, the assumption of a well-defined notion of a particle in the QG framework
can also be supported from the point of view of nonrelativistic limit. Namely, in [4,5]
an experiment was proposed in which the effects of QG fluctuations are expected to be
observable, by measuring the motion of nonrelativistic particles. Furthermore, an exten-
sion of this experiment was also suggested [60], which aims to determine the potential
difference between gravitational and inertial masses of those particles in such a setup.
In fact, the relation between the two types of masses in the nonrelativistic limit has also
been previously analysed in [26], predicting their difference due to quantum fluctuations
of geometry. In this sense, the notion of a kink should make sense even in the QG setup,
at least in the nonrelativistic limit.

For the case of the plane-wave-particle travelling through the superposed background
of two gravitational field configurations, the analysis of the equation of motion for the
wave-vector field kµ(x), in the sense of [26,32–46], has not been performed so far (to the
best of our knowledge). However, in principle, one can expect a similar interference term to
appear in the WKB analysis, and give rise to a non-geodesic equation for the wave 4-vector
as well. In this sense, it is to be expected that generically even the wavefronts of such
plane-wave-particles would fail to obey WEP.

5. Conclusions and Discussion

In this paper, we give an overview of the equivalence principle and its various flavours
formulated historically, with a special emphasis on the weak equivalence principle. We
performed a critical analysis of the notions of particle and trajectory in various frameworks
of physics, showing that the notion of a point-like particle and its trajectory are not always
well defined. This in turn suggests that WEP might not be the best starting point for
generalisation to QG, as we argue in more detail below.

As discussed in Section 4, in [26] it was shown that if superpositions of states of
gravity and matter are allowed, WEP can be violated. It is important to note that the cases
considered in [26] feature a specific type of superposition of three groups of states: the first
consists of a single so-called dominant state—a classical state whose expectation values of
the metric and the stress-energy tensors satisfy Einstein field equations; the second consists
of states similar to the dominant one, with arbitrary coefficients; and the third consists of
states quasi-orthogonal to the dominant one, but with negligible coefficients. Only then
one may talk of a (well-localised) trajectory of the test particle in the overall superposed
state and consequently about the straightforward generalisation of the classical WEP to
the realm of QG. Considering that for the dominant state, being classical, the trajectory of
the test particle follows the corresponding geodesic, we see that in the superposed state its
trajectory would deviate from the geodesic of the dominant state, thus violating WEP. Note that,
as discussed in Section 4, this deviation, in addition to classically weighted trajectories of
the individual branches, also features purely quantum (i.e., off-diagonal) interference terms.

On the other hand, a number of recent studies propose generalisations of WEP to
QG framework, arguing that it remains satisfied in such scenarios, a result seemingly at
odds with [26]. For example, in [29–31], the authors consider superpositions of an arbitrary
number of classical quasi-orthogonal states with arbitrary coefficients, arguing that since
WEP is valid in each classical branch, it is valid in its superposition as well. If taken as a
definition of what it means that a certain principle is satisfied in a superposition of different
quantum states, then the above statement is manifestly true. As such, being a definition,
it tells little about physics—it merely rephrases one statement (“principle A is separately
satisfied in all branches of a superposition”) with another, simpler (“principle A is satisfied
in a superposition”). Namely, note that in [29,30], such a generalised version of EP plays no
functional role in the analyses conducted in those papers. What does play a functional role
is the statement of one version of classical EP (specifically, local equality between gravity
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and inertia) applied to each particular state in a superposition. All physically relevant (and
otherwise interesting) conclusions of the two papers could be equally obtained without
ever talking about the generalised EP. In addition, in [31] EP itself is not even the main
focus of the paper, and its generalisation is just introduced in analogy to the analysis of
the conservation laws, which is itself an interesting topic. On the other hand, in the case of
weakly superposed gravitational fields, such as in proposed experiments [4,5], the violation
of the equality of inertial and gravitational masses is to be expected [26,60]. Moreover,
following the spirit of the above definition, one could be misled to conclude that the notions
of the particle’s position and trajectory are always well-defined, as long as they are defined
in each (quasi-classical) branch of the superposition.

An alternative approach to the generalisation of EP to the quantum domain was
proposed in [16,20,27,28]. In those works, the authors discuss the coupling of a spatially
delocalised wave-particle to gravity, with the aim of generalising such a scenario to QG.
To that end, they prove a theorem which essentially states that for such a delocalised
wave-particle, even when it is entangled with the gravitational field, one can always find a
quantum reference frame transformation, such that in the vicinity of a given spacetime point
one has a locally inertial coordinate system. The theorem employs the novel techniques
of quantum reference frames (QRF) to generalise to the quantum domain the well-known
result from differential geometry, that in the infinitesimal neighbourhood of any spacetime
point one can always choose a locally inertial coordinate system.

The authors then employ the theorem to generalise one flavour of EP to the quantum
domain. Specifically, even if the wave-particle is entangled with the gravitational field, one
can use the appropriate QRF transformation to switch to a locally inertial coordinate sys-
tem, and then in that system “all the (nongravitational) laws of physics must take on their
familiar non-relativistic form”. Here, to the best of our understanding, the phrase “non-
gravitational laws of physics” refers to the equations of motion for a quantum-mechanical
wave-particle, while “non-relativistic form” means that these equations of motion take the
same form as in special-relativistic context.

Our understanding is that the above wave-particle generalisation of EP lies somewhere
“in between” mechanics and field theory, i.e., it is in a sense stronger than WEP, which
discusses particles, but weaker than SEP, which discusses full-blown matter fields. Since
it refers to wave-particles rather than kinks, our analysis of WEP and its reliance on the
particle trajectory does not apply to this version of EP.

The methodology in [16,20,27,28] is that one should try to generalise even approximate
flavours of EP, as a stopgap result in a bigger research programme, in the hope that they
may still shed some light on QG. This is of course a legitimate methodology, and from
that point of view these kinds of generalisations of EP to the quantum domain represent
interesting results. Nevertheless, we also believe it would be preferable to formulate a
generalisation of SEP, and in a way which does not appeal to reference frames at all, since
that would be closer to the essence of the statement of EP, as discussed in Section 2.

To conclude, our analysis suggests that, instead of trying to generalise various ap-
proximate formulations of EP, one should rather talk of operationally verifiable statements
regarding the (in)equality of gravitational and inertial masses, possible deviation from the
geodesic motion of test particles, the universality of free fall, etc., and study other principles
and their possible generalisations to QG, such as SEP (see Section 4.2 in [26]), background
independence, quantum nonlocality, and so on.
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Appendix A

Here, we provide a detailed example of the two applications of the EP. First, we discuss
the gravitational EP and apply it to a real scalar field, giving all mathematical details and
discussing various related aspects such as locality, symmetry localisation, and so on. Then,
we turn to the application of the gauge field generalisation of EP, using electrodynamics
as an example. We describe how one can couple matter to an EM field, mimicking the
previous gravitational example, and emphasize the analogy between the gravitational and
EM case at each step. Note also that the non-Abelian gauge fields can be studied in exactly
the same way. Finally, we discuss the case of test particles, and the violation of the WEP in
both gravitational and electromagnetic cases.

Throughout this section, we assume that the Minkowski metric ηµν has signature
(−,+,+,+).

Appendix A.1. The Gravitational Case

Let us begin with an example of a real scalar field in Minkowski spacetime, and apply
the equivalence principle by coupling it to gravity. The equation of motion in this case is
the ordinary Klein–Gordon equation,(

ηµν∂µ∂ν −m2
)

φ(x) = 0 . (A1)

As it stands, it describes the free scalar field in Minkowski spacetime, in an inertial
coordinate system. In order to couple it to gravity (in the framework of GR), we first rewrite
this equation into an arbitrary curvilinear coordinate system, as(

g̃µν∇̃µ∇̃ν −m2
)

φ(x̃) = 0 . (A2)

Here the covariant derivative ∇̃µ is defined in terms of the Levi-Civita connection,

Γ̃λ
µν =

1
2

g̃λσ
(
∂µ g̃νσ + ∂ν g̃µσ − ∂σ g̃µν

)
, (A3)

which is in turn defined in terms of the curvilinear Minkowski metric g̃µν. Note that the tilde
symbol denotes the fact that this metric has been obtained by a coordinate transformation
x̃µ = x̃µ(x) from the Minkowski metric in an inertial coordinate system, ηµν,

g̃µν =
∂xρ

∂x̃µ

∂xσ

∂x̃ν
ηρσ , (A4)
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and, therefore, if one were to evaluate the Riemann curvature tensor using g̃µν and Γ̃λ
µν,

according to the equation

Rλ
ρµν = ∂µ Γ̃λ

ρν − ∂ν Γ̃λ
ρµ + Γ̃λ

σµ Γ̃σ
ρν − Γ̃λ

σν Γ̃σ
ρµ , (A5)

one would obtain that Rλ
µνρ = 0 at every point in spacetime since transforming into a

different coordinate system cannot induce the curvature of spacetime.
Now one can apply EP (in this example specifically SEP) in order to couple the scalar

field to gravity. The statement of SEP is that, in the presence of a gravitational field (i.e.,
in curved spacetime), the equation of motion for the scalar field should locally retain
the same form as in the absence of the gravitational field (i.e., in flat spacetime). Since
Equation (A2) depends only on the field at a given spacetime point and its first and
second derivatives at the same point, the equation is in fact local—it is defined within an
infinitesimal neighbourhood of a single point. Given this, EP states that the corresponding
equation of motion in the presence of gravity should have precisely the same form:(

gµν∇µ∇ν −m2
)

φ(x) = 0 . (A6)

The absence of the tilde now denotes the fact that the covariant derivative ∇µ is
defined in terms of a generic Levi-Civita connection Γλ

µν which is in turn defined in
terms of a generic metric gµν, which does not necessarily satisfy (A4). In other words, EP
postulates that the Equation (A6) now holds even in curved spacetime since for a generic
metric and connection, the Riemann curvature tensor need not be equal to zero everywhere.
The interaction between the scalar field and gravity, as postulated by EP and implemented
in Equation (A6), is also known in the literature as the minimal coupling prescription [61].

In order to convince oneself that the preparation step of transforming (A1) to (A2)
is trivial in the sense that it does not introduce any substantial modification of (A1),
one can additionally demonstrate that (A6) is in fact locally equivalent to (A1) as well.
Namely, according to a theorem in differential geometry (see for example the end of
Chapter 85 in [62]), at any specific spacetime point x0 one can choose the locally inertial
coordinate system, in which the generic metric gµν, the corresponding connection Γλ

µν and
consequently also the covariant derivative ∇µ take their usual Minkowski values,

gµν(x0) = ηµν , Γλ
µν(x0) = 0 , ∇µ

∣∣∣
x=x0

= ∂µ , (A7)

so that in the infinitesimal neighbourhood of the point x0 Equation (A6) obtains the form
precisely equal to (A1).

However, note that when integrating (A6), one must take into account that spacetime is
curved since integration is a nonlocal operation, and the locally inertial coordinate system
cannot eliminate spacetime curvature. Therefore, the solutions of (A6) will in general be
different from solutions of (A1), indicating the physical interaction of the scalar field with
gravity, despite the fact that the form of the equation of motion is identical in both cases.

Another thing that should be emphasised is that EP itself is not a mathematical
theorem, but rather a principle with physical content, since it can be either satisfied or
violated. Specifically, we could have prescribed a different coupling of the scalar field to
gravity, such that in curved spacetime its equation of motion takes for example the form(

gµν∇µ∇ν −m2 + R2 + K2
)

φ(x) = 0 , (A8)

where R ≡ Rµν
µν and K ≡ RµνρσRµνρσ are the curvature scalar and Kretschmann invariant,

respectively. This equation is not equivalent to (A2) and there is no coordinate system
in which it can take the form (A1) since R and K are invariants. In this sense, (A8) is an
example of a scalar field coupled to gravity such that EP is violated. This type of interaction
between matter and gravity is also known in the literature as non-minimal coupling [61].
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Finally, we should note that the transformation from (A1) to (A2) amounts to what
is also known in the literature as symmetry localisation [61]. In particular, one can verify
that (A1) remains invariant with respect to the group R4 of global translations,

xµ → x̃µ = xµ + ζµ , (ζ ∈ R4) , (A9)

while (A2) remains invariant with respect to the group Di f f (R4) of spacetime diffeomor-
phisms, obtained by localisation of the translational symmetry group,

xµ → x̃µ = xµ + ζµ(x) ≡ x̃µ(x) , (A10)

which represent general curvilinear coordinate transformations, used in (A4). One can
explicitly verify that all three Equations (A2), (A6) and (A8) remain invariant with respect
to local translations (A10) while describing no coupling to gravity, coupling to gravity that
satisfies EP, and coupling to gravity that violates EP, respectively. In this sense, contrary to
a common misconception (often stated in the literature) that symmetry localisation gives
rise to interactions, one can say that the process of symmetry localisation does not introduce
nor prescribe interactions in any way whatsoever. In particular, a direct counterexample is
the Equation (A4), which manifestly does obey local translational symmetry, while it does
not give rise to any interaction whatsoever (see below for the analogous counterexample in
electrodynamics).

Appendix A.2. The Electromagnetic Case

Let us begin with an example of a Dirac field in Minkowski spacetime, and apply the
generalised equivalence principle by coupling it to the EM field. The equation of motion in
this case is the ordinary Dirac equation,(

iγµ∂µ −m
)
ψ(x) = 0 , (A11)

where γµ are standard Dirac gamma matrices, satisfying the anticommutator identity of the
Clifford algebra {γµ, γν} = −2ηµν. As it stands, Equation (A11) describes the free Dirac
field, not coupled to an EM field in any way. Note that it is invariant with respect to global
U(1) transformations, defined as

ψ→ ψ′ = e−iλψ , e−iλ ∈ U(1) , λ ∈ R . (A12)

In order to couple it to standard Maxwell electrodynamics, we first rewrite this equa-
tion into a form which is invariant with respect to local U(1) transformations,

ψ→ ψ′ = e−iλ(x)ψ , ∂µ → D̃µ = ∂µ + i∂µλ(x) , (A13)

so that the equation takes the form(
iγµD̃µ −m

)
ψ(x) = 0 , (A14)

Note that here, D̃ denotes the covariant derivative with respect to the “pure gauge”
connection

Ãµ ≡ ∂µλ(x) , (A15)

where λ(x) denotes the arbitrary gauge function. Moreover, note that (A11) is analogous
to (A1), (A14) is analogous to (A2), while the global and local U(1) gauge transforma-
tions (A12) and (A13) are EM analogues of the global and local spacetime translations (A9)
and (A10) from the gravitational case. Finally, note that if one were to evaluate the electro-
magnetic Faraday field strength tensor using Ãµ from (A15), according to the equation

Fµν = ∂µ Ãν − ∂ν Ãµ , (A16)
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one would obtain that Fµν = 0 at every point in spacetime since the potential that is a pure
gauge cannot induce an EM field. Here (A16) is analogous to (A5).

Once the Dirac equation in the form (A14) is in hand, one can apply the electromagnetic
generalisation of EP in order to couple the Dirac field to an EM field. The statement of EP,
in this case, is that in the presence of an EM field, the equation of motion for the Dirac field
should locally retain the same form as in the absence of the EM field. Since Equation (A14)
depends only on the field at a given spacetime point and its first derivatives at the same
point, it is therefore defined within an infinitesimal neighbourhood of a single point—in
other words, it is local. Given this, electromagnetic EP states that the corresponding
equation of motion in the presence of EM field should have precisely the same form (the
analogue of (A6)): (

iγµDµ −m
)
ψ(x) = 0 . (A17)

The absence of the tilde now denotes the fact that the covariant derivative
Dµ ≡ ∂µ + iAµ is defined in terms of a generic U(1) connection Aµ which does not
necessarily satisfy (A15), but does obey the usual gauge transformation rule,

Aµ → A′µ = Aµ + ∂µλ(x) . (A18)

In other words, electromagnetic EP postulates that the Equation (A17) holds even in
the presence of an EM field since for a generic connection Aµ the Faraday tensor may not
be equal to zero everywhere. The interaction between the Dirac field and the EM field as
postulated by the electromagnetic EP and implemented in Equation (A17) is again known
in the literature as the minimal coupling prescription [61,63].

If one wishes to convince oneself that the preparation step of transforming (A11) to (A14)
is trivial in the sense that it does not introduce any substantial modification of (A11), one
can additionally demonstrate that (A17) is in fact locally equivalent to (A11). To do this,
at any specific spacetime point x0 one can choose the following U(1) gauge,

λ(x) = −Aµ(x0)xµ , (A19)

so that, according to (A18)

A′µ(x) = Aµ(x)− ∂µ(Aν(x0)xν) ⇒ A′µ(x0) = 0 , Dµ

∣∣∣
x=x0

= ∂µ . (A20)

This choice of gauge is the EM analogue of the choice of a locally inertial coordinate
system (A7). Substituting this into the primed version of (A17) and evaluating the whole
equation at x = x0, it reduces precisely to the form (A11) in the infinitesimal neighbourhood
at that point, despite the presence of nonzero EM field.

Again note that when integrating (A17), one must take into account that the EM
field is nonzero since integration is a nonlocal operation, and the choice of gauge (A19)
eliminates the EM potential from (A17) only at the point x0, while the Faraday tensor is
gauge invariant. Therefore, the solutions of (A17) will in general be different from solutions
of (A11), indicating the physical interaction of the Dirac field with EM field, despite the
fact that the form of the equation of motion for the Dirac field is identical in both cases.

As in the case of gravity, we should emphasise that the electromagnetic EP is not a
mathematical theorem, but rather a principle with physical content, since it can be either
satisfied of violated. Specifically, we could have prescribed a different coupling of the Dirac
field to electrodynamics, such that in the presence of an EM field its equation of motion
takes for example the form (analogue of (A8))(

iγµDµ −m + I1 + I2
)
ψ(x) = 0 , (A21)

where I1 ≡ FµνFµν and I2 ≡ εµνρσFµνFρσ are the two fundamental invariants of the Faraday
tensor. This equation is not equivalent to (A14), and there exists no local U(1) gauge in
which it could take the form (A11), since I1 and I2 are invariants. In this sense, (A21) is
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an example of a Dirac field coupled to the EM field such that the electromagnetic EP is
violated. This is also known in the literature as non-minimal coupling [61,63].

Finally, we should also note that the transformation from (A11) to (A14) amounts
to what is also known in the literature as symmetry localisation [61,63]. Specifically, one
can explicitly verify that all three Equations (A14), (A17) and (A21) remain invariant with
respect to local U(1) gauge transformations, while describing no coupling to an EM field,
coupling to an EM field that satisfies the electromagnetic EP, and coupling to an EM field
that violates electromagnetic EP, respectively. In this sense, one can again say that the
process of symmetry localisation does not introduce nor prescribe interactions in any way
whatsoever. In the case of electrodynamics and other gauge theories, this is quite often
misrepresented in literature—the step of symmetry localisation is silently joined together
with the step of applying the electromagnetic version of EP; thus, in the end, giving rise
to an interacting theory, and the resulting presence of the interaction is then mistakenly
attributed to the localisation of symmetry, rather than to the application of EP. Similar to
the gravitational case above, the equation of motion (A14) is an explicit counterexample to
such an attribution, since it does have local U(1) symmetry, but does not have any interaction
with an EM field.

Appendix A.3. The Test Particle Case

The last topic we should address is the context in which the statement of electromag-
netic EP is compatible with the existence of the Lorentz force law, acting on charged test
particles. Namely, one often distinguishes the motion of a test particle in a gravitational
field from a motion of a test particle in an EM field, by comparing the geodesic Equation (2)

uµ(τ)∇µuλ(τ) = 0 , (A22)

where uµ is the 4-velocity of the test particle, with the Lorentz force equation

uµ(τ)∇µuλ(τ) =
q
m

Fλρ uρ(τ) , (A23)

where q/m is the charge-to-mass ratio of a test particle moving in an external EM field,
described by the Faraday tensor Fµν. A typical conclusion one draws from this comparison
is that the interaction with the EM field gives rise to a “real force”, while the interaction
with the gravitational field does not.

However, it is highly misleading to compare (A22) to (A23) in the first place. Namely,
as we have discussed in detail in Section 4, in field theory the notion of a particle can be
defined only approximately, and this applies equally for electrodynamics as well as for
gravity. Specifically, given the example discussed above, of a Dirac field coupled to an
EM field via Equation (A17), we have seen that in the infinitesimal neighbourhood of a
given point x0 one can completely gauge away any presence of the coupling to EM field
from (A17). In this sense, the notion of a test particle that satisfies (A23) cannot be identified
with an idealised point-particle, that has exactly zero size. Instead, the realistic test particle
is a wave-packet configuration of a Dirac field (a kink), and as such has a small but nonzero
size. As it evolves, the different parts of the wave-packet are subject to interaction with the
EM potential Aµ at different points of spacetime, giving rise to an effective non-minimal
coupling with the Faraday tensor Fµν. This is completely analogous to the case of a test
particle with small but nonzero size interacting with spacetime curvature due to tidal
forces—both effects are equally nonlocal since both kinks have nonzero size. On the other
hand, a test particle that satisfies (A22) represents an idealised point-particle (a leading
order approximation in the multipole expansion of the matter field), i.e., a kink which thus
has precisely zero size.

In this sense, the Lorentz force Equation (A23) rather ought to be compared with the
Papapetrou Equation (3),

uµ(τ)∇µuλ(τ) = Rλ
µρσ uµ(τ)Jρσ(τ) . (A24)



Universe 2022, 8, 598 15 of 16

Indeed, one can see quite a reasonable analogy between (A23) and (A24). There are
of course small technical differences due to the precise nature of the coupling to various
moments of the kink, but nevertheless, the two equations are strikingly similar. Given this,
while one can still draw the conclusion that the interaction of a kink with the EM field gives
rise to a “real force”, one can draw precisely the same conclusion for the interaction of a kink
with the gravitational field. There is no distinction between gravity and the other gauge
interactions at this level—all four interactions in nature (strong, weak, electromagnetic
and gravitational) are equally “real”. In addition, all four interactions satisfy EP at the
fundamental field theory level (i.e., in the sense of strong generalised EP), while at the level
of mechanics, a corresponding weak generalised EP is manifestly violated in all four cases.
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26. Pipa, F.; Paunković, N.; Vojinović, M. Entanglement-induced deviation from the geodesic motion in quantum gravity. J. Cosmol.

Astropart. Phys. 2019, 2019, 57. [CrossRef]
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Abstract – We show that a categorical generalization of the the Poincaré symmetry which is based
on the n-crossed modules becomes natural and simple when n = 3 and that the corresponding
3-form and 4-form gauge fields have to be a Dirac spinor and a Lorentz scalar, respectively.
Hence by using a Poincaré 4-group we naturally incorporate fermionic and scalar matter into the
corresponding 4-connection. The internal symmetries can be included into the 4-group structure
by using a 3-crossed module based on the SL(2, C)×K group, so that for K = U(1)×SU(2)×SU(3)
we can include the Standard Model into this categorification scheme.

editor’s  choice Copyright c© 2021 EPLA

Introduction. – The central mathematical idea for the
construction of the Standard Model (SM) was the concept
of a Lie group and the corresponding connection on the
principal bundle, i.e., the gauge symmetry. The SM group
uniquely fixes the SM forces (the strong, the weak and the
electro-magnetic force), while the matter content is not
restricted by the SM group. Namely, the SM matter fields,
i.e., the scalars and the fermions, can be a priori in any
representation of the SM group. The SM representation
is determined from the experiments and it is given by

ρSM =

(

1, 2, −
1

2

)

⊕

3
∑

i=1

(

3, 2,
1

6

)

i

⊕

(

3̄, 1,
1

3

)

i

⊕

(

3̄, 1, −
2

3

)

i

⊕

(

1, 2, −
1

2

)

i

⊕ (1, 1, 1)i ⊕ (1, 1, 0)i,

(1)

where (m, n, q) are the irreps of the SM group SU(3) ×
SU(2) × U(1), see [1] for a mathematical review, and i

denotes a generation.
The spacetime symmetry properties of the SM fields are

determined by the universal cover of the Lorentz group
SL(2, C), while gravity, as the fourth fundamental force in

(a)E-mail: amikovic@ulusofona.pt
(b)E-mail: vmarko@ipb.ac.rs

Nature, can be understood via the gauge symmetry prin-
ciple for the Poincaré group, i.e., as the Cartan connection

(ωab, ea) = (ωab
μdxμ, ea

μdxμ), (2)

where ωab and ea are the spin connection and the tetrad
1-forms, a, b = 1, 2, 3, 4 and xμ ∈ (x, y, z, t) are the
spacetime coordinates.

One then wonders if there is a mathematical structure
in a 4-dimensional spacetime which can incorporate the
matter fields with the gauge fields and explain why the
matter fields appear as the scalar and the spinor repre-
sentations of the universal cover of the Lorentz group, as
well as why the representation ρSM appears. Note that
the superstring theory is an example of such a structure,
but it requires a 10-dimensional spacetime [2].

As far as the internal symmetry group is concerned, the
first attempt to explain ρSM was via the grand unification
(GUT), for a review see [3]. Although the fermionic part
of one generation of ρSM neatly fits into the spinorial irrep
of SO(10), the GUT approach is problematic because of
the appearance of many new gauge fields, i.e., new forces,
so that the problem of symmetry breaking is the central
problem to solve. One can even incorporate the Lorentz
group (more precisely, its universal cover) into the GUT
group, so that the Cartan connection becomes a part of the
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GUT group connection, see [4]. However, this leads to an
even larger GUT group so that the problem of symmetry
breaking becomes even more difficult.

As far as the spacetime symmetry group is concerned,
although the Poincaré gauge symmetry accommodates
gravity and coupling of fermions, it does not restrict the
SL(2, C) representations for the matter fields, since the
Cartan connection contains only the spin connection and
the tetrads. In this letter we will propose a generaliza-
tion of the local Poincaré symmetry, which will be given
by the concept of a 4-group, defined as a 3-crossed mod-
ule [5], so that one can include spinor and scalar fields as
the components of the generalized connection associated
to the Poincaré 4-group. Since n-groups are special cate-
gories which generalize the notion of symmetry, see [6], we
also show that the SM group can be easily included into
the 4-group structure.

General Relativity and categorical groups. –

In [7] it was pointed out that General Relativity (GR)
can be reformulated as a constrained 2BF theory for the
Poincaré 2-group, which is defined as the crossed module

R
4 ∂

−→ SL(2, C), (3)

where the map ∂ is trivial (∂(�v) = 1SL(2,C) for all �v ∈
R4) while SL(2, C) acts on R4 as the vector representa-
tion. The Poincaré group then appears as the group of
2-morphisms of the 2-category which is equivalent to the
crossed module (3).

The Einstein-Cartan (EC) action can be obtained by
constraining the 2BF action,

S2 =

∫

M

(Bab ∧ Rab + ea ∧ Ga), (4)

where Bab is a 2-form, ea is a tetrad,

Rab = dωab + ωa
c ∧ ωcb, Ga = dβa + ωa

b ∧ βb, (5)

are the components of the 2-curvature associated to the
2-connection

A2 = (ωab, βa) = (ωab
μ dxμ, βa

μν dxμ ∧ dxν), (6)

and β is the connection 2-form. The 2-connection A2

represents a categorical generalization (categorification) of
the spin-connection.

The constraint that transforms S2 into the EC action is
given by

Bab = ǫabcdec ∧ ed, (7)

where ǫabcd is the totally antisymmetric tensor for the
Poincaré group [7]. The constraint (7) is also known as
the simplicity constraint.

The Poincaré 2-group structure does not restrict the
matter representations, and in [8] it was pointed out that
a Poincaré 3-group defined as a 2-crossed module based
on the following group complex,

C
4 ∂′

−→ R
4 ∂

−→ SL(2, C), (8)

where the maps ∂ and ∂′ are trivial while SL(2, C) acts
as the vector and the Dirac representation on R

4 and C
4,

naturally gives the Dirac equation for the corresponding
spinor field.

Namely, one can associate the 3-connection,

A3 = (ωab, βa, Γ α) =

(ωab
μ dxμ, βa

μν dxμ ∧ dxν , Γ α
μνρ dxμ ∧ dxν ∧ dxρ),

(9)

to the 2-crossed module (8), where Γ is a spinorial 3-form.
The corresponding 3BF action is then given by

S3 =

∫

M

(Bab ∧ Rab + ea ∧ Ga + Dα ∧ Hα), (10)

where Dα are 0-forms, while

Hα = dΓ α + ωα
β ∧ Γ β, ωα

β = (γa)α
δ(γb)

δ
β ωab

(11)
is the curvature 4-form for Γ , where γa are the gamma
matrices.

The action S3 can be converted into the EC action cou-
pled to a Dirac fermion ψα by using the constraints

Γ α = ǫabcd ea ∧ eb ∧ ec (γd)α
βψβ , Dα = ψα, (12)

together with the simplicity constraint (7).
In order to obtain the complete EC Dirac action, one

also has to add the spin torsion and the mass term to S3,

STm =

∫

M

ǫabcd ea ∧ eb ∧ βc ψ̄γdψ +

∫

M

|e| mψ̄ψ d4x,

(13)
where |e| = | det(ea

μ)|.
However, if we want to associate some other SL(2, C)

representation to the 3-form Γ , then the task of ob-
taining the corresponding matter-field equation of motion
becomes non-trivial, since it is not easy to find the con-
straints for the corresponding 3BF action. For example,
in the case of a real scalar field φ, one has a 2-crossed
module

R
∂′

−→ R
4 ∂

−→ SL(2, C), (14)

and the constraints are given by

D = φ, Γ = habc ea ∧ eb ∧ ec,

habcǫ
cdefed ∧ ee ∧ ef = ea ∧ eb ∧ dφ,

(15)

plus the simplicity constraint [8]. Since the Standard
Model features the Higgs boson, it is important to be able
to accommodate scalar fields in the formalism.

The last two constraints in (15) are not easy to guess, so
that one wonders: is it possible to resolve this difficulty by
some higher categorical group? This can be done if we use
a 4-group, which can be defined as a 3-crossed module [5].

Let us consider the following 3-crossed module (3CM):

R
∂′′

−−→ C
4 ∂′

−→ R
4 ∂

−→ SL(2, C), (16)
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where SL(2, C) acts on R4, C4 and R as the vector, the
Dirac spinor and the scalar representation, while all other
3CM maps and actions are trivial.

Note that a complex of Lie groups

U
∂′′

−−→ W
∂′

−→ V
∂
−→ G, (17)

where U, W and V are Abelian groups corresponding to
vector spaces of representations of G, is a 3-crossed mod-
ule if

1) ∂′′�u = �0W , ∂′ �w = �0V , ∂�v = 1G;

2) g ⊲ �v = Rg�v, g ⊲ �w = R′
g �w, g ⊲ �u = R′′

g�u (action of G

on V, W and U);

3) �v ⊲′ �w = �w, �v ⊲′ �u = �u, �w ⊲′′ �u = �u (action of V on W

and U and action of W on U);

4) {�v,�v′}1 = �0W , {�w, �w′}2 = �0U , {�v, �w′}3 = �0U ,
{�w,�v′}4 = �0U (the Peiffer maps V × V → W ,
W × W → U , V × W → U and W × V → U).

Given the Poincaré 4-group (16), we can construct the
corresponding 4-connection as a collection of p-forms, p =
1, 2, 3, 4,

A4 = (ωab, βa, Γ α, δ). (18)

One can also promote A4 into a Lie-algebra–valued
4-connection by defining

Â4 = (ωabJab, β
aPa, Γ αYα, δX), (19)

where J, P, Y and X are the generators of the Lie algebras
for SL(2, C), R4, C4 and R Lie groups.

Note that the 4-form δ can be written as

δ = f(x, y, z, t) dx ∧ dy ∧ dz ∧ dt. (20)

Since f is a scalar density, we will write f = |e|φ and
define the corresponding 1-form curvature as

J = dφ. (21)

Note that φ transforms as a 0-form, i.e., as a scalar field,
and is dual to the 4-form δ. Then the 4-curvature for the
4-connection (18) will be given by

F4 = (Rab, Ga, Hα, J), (22)

where the R, G and H curvatures are given by (5)
and (11).

The 4BF action is then given by

S4 =

∫

M

(Bab ∧Rab +ea ∧Ga +ψα ∧Hα +E ∧J), (23)

where E is a 3-form. The EC action coupled to a Dirac
and a scalar field is then obtained by imposing the con-
straints (7), (12) and

Eμνρ = |e| ǫμνρσgσλ∂λφ, (24)

where gσλ is the inverse metric of gμν = ηabe
a

μeb
ν and

ǫμνρσ is the Levi-Civita symbol. Note that now the scalar-
field constraints are more natural and simpler than in the
2-crossed module case.

The complete EC action is then obtained by adding the
fermion mass and the spin-torsion terms (13) to S4, as well
as the scalar-field potential energy,

SV =

∫

M

|e|V (φ) d4x. (25)

Here V (φ) is the potential for the scalar field. For the
purpose of spontaneous symmetry breaking and the Higgs
mechanism, one can introduce a doublet of complex scalar
fields, and choose the standard Mexican hat potential,

V (φ, φ†) = λ(φ†φ − v2)2, (26)

where λ is the quartic self-coupling of the scalar field, v is
the vacuum expectation value, and

φ =

(

φ+

φ0

)

∈ C
2 (27)

is the doublet of complex scalar fields. In order to accom-
modate a doublet of complex scalar fields, the first group
R in the 3CM chain complex (16) should be substituted
by C

2, giving

C
2 ∂′′

−−→ C
4 ∂′

−→ R
4 ∂

−→ SL(2, C). (28)

This choice of the 3CM will give rise to the complex dou-
blet of the connection 4-forms δ (see (20)), whose dual will
then be a doublet of 0-forms (27).

Standard Model and categorical groups. – The
Poincaré 4-group (16) can be easily modified in order to in-
clude the internal symmetries. Let us consider a 3-crossed
module (17) given by

C
r ∂′′

−−→ C
2s′+2s′′ ∂′

−→ R
4 ∂

−→ SL(2, C) × K, (29)

where K is a compact Lie group and Cs′

is a vector space
for a representation of K for the left-handed fermions and
Cs′′

is a vector space for a representation of K for the
right-handed fermions. The left/right-handed fermions
are described by the 2-component Weyl spinors corre-
sponding to the SL(2, C) irreps (1

2 , 0) and (0, 1
2 ) so that

C
2 ⊗ C

s′

⊕ C
2 ⊗ C

s′′ ∼= C
2s′+2s′′

. (30)

The 4-connection which corresponds to (29) is given by
a collection of p-forms, where p = 1, 2, 3, 4, and they can
take values in the corresponding Lie algebras, so that

Â4 = (ωabJab + AkTk, βaPa, Γ α
j Y j

α , δiX
i). (31)

Here T , Y and X denote the generators of the Lie alge-
bras for K, C2(s′+s′′) and Cr Lie groups. The 4-curvature
for (31) will be given by

F̂4 = (RabJab + F kTk, GaPa, Hα
j Y j

α , JiX
i), (32)
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where

F kTk = dA +
1

2
[A ∧ A], A = AkTk,

Hα
j = dΓ α

j + ωα
β ∧ Γ

β
j , Ji = dφi.

(33)

The 4BF action is then given by

S4Y M =

∫

M

(Bab ∧ Rab + Bk ∧ Fk + ea ∧ Ga

+ψα
j ∧ Hj

α + Ei ∧ Ji), (34)

where Bk are 2-forms, ψα
j are 0-forms and Ei are 3-forms.

The SM action coupled to GR is then obtained by using
K = SU(3)× SU(2)× U(1) and by constraining the 4BF

action (34) with the constraints (7) and with copies of the
constraints (24) and (12) for each i and j.

One also has to add to S4Y M the potential terms
quadratic in Bk

SYMP =

∫

M

gμνgρσBk
μρBkνσ d4x, (35)

in order to obtain the Yang-Mills action as well as the
potential, the torsion and the Yukawa coupling terms for
the matter fields φi and ψα

j .
The number of SM scalars φi is determined by the Higgs

doublet, see (1), hence r = 2, similarly as in (28). Using
this choice, and including into the action the scalar poten-
tial action (25) with the choice (26), the Higgs mechanism
applies in the standard way —the SU(2)×U(1) subgroup
of K is spontaneously broken down to U(1)em, three real-
valued components in (27) are absorbed by the three gauge
fields rendering them massive, while the fourth real com-
ponent in (27) is interpreted as the Higgs field.

Finally, from (1) it follows that the number of SM
fermions ψα

j is given by

2s′ + 2s′′ = 2 · 12 · 3 + 2 · 4 · 3 = 96, (36)

so that s′ = 36 and s′′ = 12. The total number of
fermionic components corresponds to 6 quarks plus 2 lep-
tons, considered as Dirac spinors, for three generations, so
that 8 · 4 · 3 = 96.

Conclusions. – We showed that a natural and sim-
ple categorification of GR based on n-crossed modules
requires that n = 3 and that the corresponding 2-form,
3-form and 4-form gauge fields have to be a vector, a Dirac
spinor and a scalar, respectively. Hence by using a cate-
gorical generalization of the Poincaré group, we naturally
incorporate fermionic and scalar matter into the corre-
sponding connection. The corresponding Poincaré 4-group
gauge field theory structure can be preserved by introduc-
ing the internal symmetries via the 3-crossed module (29),
which can be considered as a categorical generalization of
the SL(2, C) × K symmetry group of SM.

Note that in the 3-group approach to SM [8], one uses
the 2-crossed module of the type

U × W
∂′

−→ V
∂
−→ G, (37)

which can be considered as a decategorification of the
3-crossed module (17). This is analogous to what happens
in the case of pure gravity, where the Poincaré 2-group can
be substitued by the Poincaré group, i.e., the 2BF ac-
tion (4) can be viewed as the BF action for the Poincaré
group, see [9].

The 4-group (29) does not restrict the dimensions r, s′

and s′′ so it would be interesting to explore if there exists
another 4-group which is based on the group complex (29)
but with different maps and actions such that r, s′ and s′′

are related.
The ultimate goal would be to find a mathematical

structure based on the 4-dimensional spacetime which can
explain the dimensions r, s′ and s′′. Our results suggest
that categorical generalizations of groups can be useful for
this goal, although some additional algebraic tools may be
neccessary. See for example [10], where the McKay corre-
spondence was proposed, or see [11], where the exceptional
Jordan algebras were used. Whether the determination of
r, s′ and s′′ can be done classically or at the quantum level
remains to be seen.
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222.
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Abstract: The higher category theory can be employed to generalize the BF action to the so-called
3BF action, by passing from the notion of a gauge group to the notion of a gauge 3-group. The theory
of scalar electrodynamics coupled to Einstein–Cartan gravity can be formulated as a constrained 3BF
theory for a specific choice of the gauge 3-group. The complete Hamiltonian analysis of the 3BF action
for the choice of a Lie 3-group corresponding to scalar electrodynamics is performed. This analysis is
the first step towards a canonical quantization of a 3BF theory, an important stepping stone for the
quantization of the complete scalar electrodynamics coupled to Einstein–Cartan gravity formulated
as a 3BF action with suitable simplicity constraints. It is shown that the resulting dynamic constraints
eliminate all propagating degrees of freedom, i.e., the 3BF theory for this choice of a 3-group is
a topological field theory, as expected.

Keywords: Hamiltonian analysis; higher gauge theory; BF theory; topological theory; scalar
electrodynamics

1. Introduction

The vast majority of physics community agrees that the quantum theory of gravity is necessary,
even if they disagree on the quantization approach. The theory of loop quantum gravity is one of
the well-formulated possible candidates for the desired theory of quantum gravity [1–3]. There are
two approaches within the theory—the canonical and the covariant quantization method. The covariant
quantization method is focused on obtaining a generating functional, by considering a triangulated
spacetime manifold and defining the functional as a state sum over all configurations of a field living
on simplices of the triangulation [2].

One of the key tools in the covariant quantization approach is the so-called BF theory. Given a Lie
group G and its corresponding Lie algebra g, one considers a g-valued connection 1-form A, and its
corresponding field strength 2-form F ≡ dA + A ∧ A. Multiplying F with a g-valued Lagrange
multiplier 2-form B and integrating over a four-dimensional spacetime manifoldM, one obtains the
action of the BF theory,

SBF[A, B] =
∫
M
〈B ∧ F〉g ,

where 〈_ , _〉g is a G-invariant non-degenerate symmetric bilinear form. The BF theory derives its
name from the symbols B and F for the Lagrange multiplier and the field strength present in the action.
As it is defined, the BF theory is topological, containing no local propagating degrees of freedom.
Therefore, for the purpose of building physically relevant actions, attention usually focuses not on
the pure BF theory, but rather on the theory with constraints. The constrained BF models are based
on deformations of the BF theory [4], by adding constraints to the topological BF action that promote
some of the gauge degrees of freedom into physical ones. The well known example is the Plebanski
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model for general relativity [5]. Constrained BF models represent a starting point in the spinfoam
approach to the construction of quantum gravity models [2].

The main shortcoming of building a quantum gravity model using a BF theory is the fact that it is
very hard, if not impossible, to write the action for matter fields (specifically scalar and fermion fields)
in the form of a constrained BF theory. Thus, the spinfoam quantization method is limited to pure
gravity, and the problem of consistently coupling matter fields to gravity in this framework becomes
highly nontrivial. One of the proposed ways to circumvent this issue is to generalize the notion of a BF
theory using the mathematical apparatus of higher category theory.

The higher category theory [6] can be employed to generalize the BF action to the so-called
nBF action, by passing from the notion of a gauge group to the notion of a gauge n-group
(for a comprehensive review of n-groups see for example [7], and also Appendix C). Specifically,
the notion of a 3-group in the framework of higher category theory is introduced as a 3-category with
only one object where all the morphisms, 2-morphisms and 3-morphisms are invertible. Based on
this generalization, recently a constrained 3BF action has been introduced, which describes the full
Standard Model coupled to Einstein–Cartan gravity [8].

As a first step to the study of the Hamiltonian structure of such theories, in this work, we discuss
the simplest nontrivial toy example, namely the theory of scalar electrodynamics coupled to gravity.
The standard way to define scalar electrodynamics coupled to gravity is by the action:

S =
∫

d4x
√
−g

[
− 1

16πl2
p

R− 1
4

gµρgνσFµνFρσ + gµν∇µφ∗∇νφ−m2φ∗φ

]
. (1)

Here, gµν is the spacetime metric, g ≡ det(gµν) is its determinant, R is the corresponding
curvature scalar, and lp is the Planck length, its square being equal to the Newton’s gravitational
constant, l2

p = G, in the natural system of units h̄ = c = 1. The total covariant derivative ∇µ of the
complex scalar field φ is defined as ∇µφ = (∂µ + iqAµ)φ, and thus coupled to the electromagnetic
potential Aµ via the coupling constant q (the electric charge of the field φ). See Appendix A for more
detailed notation. In the next section, we will reformulate this model as a classically equivalent
constrained 3BF theory for a specific choice of the gauge 3-group. Moreover, for reasons of simplicity,
in the Hamiltonian analysis, we will focus only on the topological sector, disregarding the simplicity
constraints. The Hamiltonian structure of the theory is important for various reasons, primarily for the
canonical quantization program.

The layout of the paper is as follows. In Section 2, we introduce the 3-group structure
corresponding to the theory of scalar electrodynamics coupled to Einstein–Cartan gravity and the
corresponding constrained 3BF action. Section 3 contains the Hamiltonian analysis for the topological,
3BF sector of the action, with the resulting first-class and second-class constraints present in the theory,
and their mutual Poisson brackets. In Section 4, we analyze the Bianchi identities that the first-class
constraints satisfy, which enforce restrictions in the sense of Hamiltonian analysis, and reduce the
number of independent first-class constraints present in the theory. Section 5 focuses on the counting
of the dynamical degrees of freedom present in the theory, based on the results from Sections 3 and 4.
Encouraged by these results, in Section 6, we construct the generator of the gauge symmetries for
the topological theory and we find the form variations of all variables and their canonical momenta.
Finally, Section 7 is devoted to the discussion of the results and the possible future lines of research.
The Appendices contain various technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted by the Latin
letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the Minkowski metric ηab
with signature (−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . , and are
raised and lowered by the spacetime metric gµν = ηabea

µeb
ν, where ea

µ are the tetrad fields.
The inverse tetrad is denoted as eµ

a, so that the standard orthogonality conditions hold: ea
µeµ

b = δa
b

and ea
µeν

a = δν
µ. When needed, spacetime indices will be split into time and space indices,
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denoted with a 0 and lowcase Latin indices i, j, . . . , respectively. All other indices that appear in
the paper are dependent on the context, and their usage is explicitly defined in the text where they
appear. The antisymmetrization over two indices is introduced with the factor one half that is
A[a1|a2 ...an−1|an ] =

1
2
(

Aa1a2 ...an−1an − Aana2 ...an−1a1

)
, and the total antisymmetrization is introduced as

A[a1 ...an ] =
1
n! ∑σ∈Sn(−1)sign(σ)Aaσ(1) ...aσ(n) .

2. Scalar Electrodynamics as a Constrained 3BF Action

Let us begin by providing a short introduction into the construction and structure of a 3BF theory,
after which we will impose appropriate simplicity constraints, in order to obtain the equations of
motion for scalar electrodynamics coupled to gravity.

As was discussed in detail in [8], one formulates a topological 3BF action by specifying a particular
gauge Lie 3-group. It has been proved that any strict 3-group is equivalent to a 2-crossed module [9,10].

A gauge theory for the manifold M4 and 2-crossed module (L δ→ H ∂→ G ,� , {_ , _}) can be
constructed for the following choice of the three Lie groups as:

G = SO(3, 1)×U(1) , H = R4 , L = R2 .

The maps ∂ and δ are chosen to be trivial. The action of the algebra g on h and l is chosen as:

Mab � Pc = �ab,c
d Pd = δ[a|

dη|b]c Pd = η[b|c P|a] , T � Pa = 0 ,
Mab � PA = 0 , T � PA = �A

B PB
(2)

where Mab denote the six generators of so(3, 1), T is the sole generator of u(1), Pa are the four generators
of R4 and PA are the two generators of R2. In the previous expression, the action of the algebra u(1) on
the algebra R2 is defined via

�A
B = iq

[
1 0
0 −1

]
.

The action of the algebra g on itself is by definition given via the adjoint representation and, for
the choice g = so(3, 1)× u(1), one obtains

Mab � Mcd = �ab ,cd
e f Me f = fab ,cd

e f Me f = ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac ,

Mab � T = 0 , T � Mab = 0 , T � T = 0 ,
(3)

as the consequence of the direct product structure and the Abelian nature of the subgroup U(1).
The Peiffer lifting

{_ , _} : H × H → L

is also trivial, i.e., all the coefficients Xab
A are equal to zero:

{Pa , Pb} ≡ Xab
ATA = 0 . (4)

Given Lie algebras g, h, and l, one can introduce a 3-connection (α, β, γ) given by the
algebra-valued differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l).
The corresponding fake 3-curvature (F ,G ,H) is then defined as:

F = dα + α ∧ α− ∂β , G = dβ + α ∧� β− δγ , H = dγ + α ∧� γ + {β ∧ β} , (5)
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see [9,10] for details. For this specific choice of a 3-group, where α = ω+ A, given by the algebra-valued
differential forms ω ∈ A1(M4 , so(3, 1)), A ∈ A1(M4 , u(1)), β ∈ A2(M4 ,R4) and γ ∈ A3(M4 ,R2),
the corresponding 3-curvature (F ,G ,H) is defined as

F = Rab Mab + FT =
(
dωab + ωa

c ∧ωcb)Mab + dA T ,

G = GaPa =
(
dβa + ωa

b ∧ βb)Pa ,

H = HAPA =
(
dγA +�B

A A ∧ γB)PA .

(6)

Note that the connection ωab is not present in the last expression, as follows from the definition of
the action � and the Peiffer lifting {_ , _}, see Equations (2) and (4):

H = dγ + α ∧� γ + {β ∧ β}

= dγAPA + (ωab Mab + AT) ∧� (γAPA)

= dγAPA + ωab ∧ γA Mab � PA + A ∧ γAT � PA

= dγAPA + A ∧ γA �A
BPB

= (dγA +�B
A A ∧ γB)PA .

(7)

The coefficients of the differential 2-forms F and Rab, 3-form G, and 4-formH are:

Fµν = ∂µ Aν − ∂ν Aµ ,

Rab
µν = ∂µωab

ν − ∂νωab
µ + ωa

cµωcb
ν −ωa

cνωcb
µ ,

Ga
µνρ = ∂µβa

νρ + ∂νβa
ρµ + ∂ρβa

µν + ωa
bµ βb

νρ + ωa
bν βb

ρµ + ωa
bρ βb

µν ,

HA
µνρσ = ∂µγA

νρσ − ∂νγA
ρσµ + ∂ργA

σµν − ∂σγA
µνρ

+�B
A AµγB

νρσ −�B
A AνγB

ρσµ +�B
A AργB

σµν −�B
A AσγB

µνρ .

(8)

Now, one can define a gauge invariant 3BF action as:

S3BF =
∫
M4

(
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l

)
, (9)

where B ∈ A2(M4 , so(3, 1)), C ∈ A1(M4 ,R4) and D ∈ A0(M4 ,R2) are Lagrange multipliers.
The forms 〈_ , _〉g, 〈_ , _〉h and 〈_ , _〉l are G-invariant bilinear symmetric nondegenerate forms on g, h
and l, respectively, defined as

〈Mab , Mcd〉g = gab, cd , 〈T , T〉g = 1 , 〈Mab , T〉g = 0 , 〈Pa , Pb〉h = gab , 〈PA , PB〉l = gAB ,

where

gab, cd = ηa[c|ηb|d] , gab =

[
1 0
0 1

]
, gAB =

[
0 1
1 0

]
.

Identifying the Lagrange multiplier Ca as the tetrad field ea, and the Lagrange multiplier DA as the
doublet of scalar fields φA,

φ = φAPA = φP1 + φ∗P2 ,
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based on their transformation properties as discussed in [8,11], the Lagrangian of the action (9) obtains
the form:

S3BF =
∫
M4

d4x εµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1
4

BµνFρσ +
1
3!

ea
µ Gb

νρσ gab +
1
4!

φAHB
µνρσ gAB

)
. (10)

Varying the action with respect to all the variables, one obtains the equations of motion:

varied variable equation of motion

δBab Rab = 0

δωab ∇Bab − e[a| ∧ β|b] = 0

δea Ga = 0

δφA ∇γA = 0

varied variable equation of motion

δB F = 0

δA dB + φA �B
A γB = 0

δβa ∇ea = 0

δγA ∇φA = 0

(11)

Since one is interested in the doublet of scalar fields φA of mass m and charge q minimally
coupled to gravity and electromagnetic field, we impose additional simplicity constraint terms to
the topological action (9), in order to obtain the appropriate equations of motion equivalent to the
equations of motion for the action (1):

S =
∫
M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(

Bab − 1
16πl2

p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1
2

HabcAea ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)
+ λ ∧

(
B− 12

q
Mabea ∧ eb

)
+ ζab

(
Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)
− 1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(12)

For the notation used here and the equations of motion obtained by varying the action (12),
see Appendix A.

The dynamical degrees of freedom are the tetrad fields ea, the scalar doublet φA, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them, as shown in Appendix A. The equation of motion for the field φA reduces to the covariant
Klein-Gordon equation for the scalar field,(

∇µ∇µ −m2
)

φA = 0 . (13)

The differential equation of motion for the field A is:

∇µFµν = jν , jµ ≡ 1
2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (14)

Finally, the equation of motion for ea becomes:

Rµν − 1
2

gµνR = 8πl2
p Tµν ,

Tµν ≡ ∇µφA∇νφA − 1
2

gµν
(
∇ρφA∇ρφA + m2φA φA

)
− 1

4q
(

FρσFρσgµν + 4FµρFρ
ν
)

.
(15)
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3. The Hamiltonian Analysis

The Hamiltonian analysis of the constrained 3BF action (12) for scalar electrodynamics is
exceedingly complicated to study. A testament to this is the level of complexity of the constrained
2BF formulation of general relativity [12], which is merely one sector in the action (12). Therefore,
in this paper, we will limit ourselves to the topological sector of the theory, namely the unconstrained
3BF theory (9), which consists of the terms in the first row of Equation (12), and is written in full
detail in Equation (10). One should be aware that this restriction changes various properties of the
theory. Namely, the simplicity constraints (everything but the first row in Equation (12)) substantially
modify the dynamics of the theory—they increase the number of local propagating degrees of freedom
of the theory, a property that was known since the original Plebanski model [5]. On the other hand,
the unconstrained 3BF theory (9) is important even in its own right, and the Hamiltonian analysis may
give important insight into the structure of both the unconstrained and the constrained theory.

In what follows, the complete Hamiltonian analysis for the action (9) is presented, see [13] for
an overview and a comprehensive introduction of the Hamiltonian analysis. The Hamiltonian analysis
for a 2BF action is performed in [12,14–16].

Under the standard assumption that the spacetime manifold is globally hyperbolic,M4 = R×Σ3,
the Lagrangian of the action (9) has the form:

L3BF =
∫

Σ3

d3~x εµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1
4

BµνFρσ +
1
3!

ea
µ Gb

νρσ gab +
1
4!

φAHB
µνρσ gAB

)
. (16)

The canonical momentum π(q) corresponding for the canonical coordinate q from the set of all
variables in the theory, q ∈ {Bab

µν, ωab
µ, Bµν, Aµ, ea

µ, βa
µν, φA, γA

µνρ}, is obtained as a derivative of
the Lagrangian with respect to the appropriate velocity,

π(q) ≡ δL
δ∂0q

,

giving:

π(B)ab
µν = 0 , π(ω)ab

µ = ε0µνρBabνρ ,

π(B)µν = 0 , π(A)µ =
1
2

ε0µνρBνρ ,

π(e)a
µ = 0 , π(β)a

µν = −ε0µνρeaρ ,

π(φ)A = 0 , π(γ)A
µνρ = ε0µνρφA .

(17)

Since these momenta cannot be inverted for the time derivatives of the variables, they all give rise
to primary constraints:

P(B)ab
µν ≡ π(B)ab

µν ≈ 0 , P(ω)ab
µ ≡ π(ω)ab

µ − ε0µνρBabνρ ≈ 0 ,

P(B)µν ≡ π(B)µν ≈ 0 , P(A)µ ≡ π(A)µ − 1
2 ε0µνρBνρ ≈ 0 ,

P(e)a
µ ≡ π(e)a

µ ≈ 0 , P(β)a
µν ≡ π(β)a

µν + ε0µνρeaρ ≈ 0 ,

P(φ)A ≡ π(φ)A ≈ 0 , P(γ)A
µνρ ≡ π(γ)A

µνρ − ε0µνρφA ≈ 0 .

(18)

Here, the symbol “≈” denotes the so-called “weak” equality, i.e., the equality that holds on
a subspace of the phase space determined by the constraints, while the equality that holds for any
point of the phase space is referred to as the “strong” equality and it is denoted by the symbol “=”.
The expressions “on-shell” and “off-shell” are used for weak and strong equalities, respectively,
and henceforth will be used in this paper.
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The fundamental Poisson brackets are defined as:

{ Bab
µν(x) , π(B)cd

ρσ(y) } = 4δa
[cδb

d]δ
ρ
[µδσ

ν] δ(3)(~x−~y) ,

{ωab
µ(x) , π(ω)cd

ν(y) } = 2δa
[cδb

d]δ
ν

µ δ(3)(~x−~y) ,

{ Bµν(x) , π(B)ρσ(y) } = 2δρ
[µδσ

ν] δ(3)(~x−~y) ,

{ Aµ(x) , π(A)ν(y) } = δν
µ δ(3)(~x−~y) ,

{ ea
µ(x) , π(e)b

ν(y) } = δa
bδν

µ δ(3)(~x−~y) ,

{ βa
µν(x) , π(β)b

ρσ(y) } = 2δa
b δρ

[µδσ
ν] δ(3)(~x−~y) ,

{ φA(x) , π(φ)B(y) } = δA
B δ(3)(~x−~y) ,

{ γA
µνρ(x) , π(γ)B

αβγ(y) } = 3!δA
B δα

[µδβ
νδγ

ρ] δ(3)(~x−~y) .

(19)

Using these relations, one can calculate the algebra between the primary constraints,

{ P(B)ab jk(x) , P(ω)cd
i(y) } = 4ε0ijk δa

[cδb
d] δ(3)(~x−~y) ,

{ P(B)jk(x) , P(A)i(y) } = ε0ijk δ(3)(~x−~y) ,

{ P(e)ak , P(β)b
ij(y) } = −ε0ijk δa

b(x) δ(3)(~x−~y) ,

{ P(φ)A(x) , P(γ)B
ijk(y) } = ε0ijk δA

B δ(3)(~x−~y) ,

(20)

while all other Poisson brackets vanish. The canonical on-shell Hamiltonian is defined by

Hc =
∫

Σ3

d3~x
[

1
4

π(B)ab
µν ∂0Bab

µν +
1
2

π(ω)ab
µ ∂0ωab

µ +
1
2

π(B)µν ∂0Bµν + π(A)µ ∂0 Aµ

+ π(e)a
µ ∂0ea

µ +
1
2

π(β)a
µν ∂0βa

µν + π(φ)A ∂0DA +
1
3!

π(γ)A
µνρ ∂0γA

µνρ

]
− L .

(21)

Rewriting the Hamiltonian (21) such that all the velocities are multiplied by the first class
constraints and therefore in an on-shell quantity they drop out, one obtains:

Hc =−
∫

Σ3

d3~x ε0ijk
[

1
2

Bab0i Rab
jk +

1
2

B0iFjk +
1
6

ea0 Ga
ijk + βa

0i∇jeak

+
1
2

ωab
0

(
∇iBab jk − e[a|i β|b]jk

)
+

1
2

A0

(
∂iBjk +

1
3

φA �B
A γB

ijk

)
+

1
2

γA
0ij∇kφA

]
.

(22)

This expression does not depend on any of the canonical momenta and it contains only the fields
and their spatial derivatives. By adding a Lagrange multiplier λ for each of the primary constraints we
can build the off-shell Hamiltonian, which is given by:

HT = Hc+
∫

Σ3

d3~x
[

1
4

λ(B)ab
µνP(B)ab

µν +
1
2

λ(ω)ab
µP(ω)ab

µ +
1
2

λ(B)µνP(B)µν + λ(A)µP(A)µ

+λ(e)a
µP(e)a

µ +
1
2

λ(β)a
µνP(β)a

µν + λ(φ)AP(φ)A +
1
3!

λ(γ)A
µνρP(γ)A

µνρ

]
.

(23)

Since the primary constraints must be preserved in time, one must impose the
following requirement:

Ṗ ≡ { P , HT } ≈ 0 , (24)
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for each primary constraint P. By using the consistency condition (24) for the primary constraints
P(B)ab

0i, P(ω)ab
0, P(B)0i, P(A)0, P(e)a

0, P(β)a
0i, and P(γ)A

0ij,

Ṗ(B)ab
0i ≈ 0 , Ṗ(ω)ab

0 ≈ 0 , Ṗ(B)0i ≈ 0 , Ṗ(A)0 ≈ 0 ,

Ṗ(e)a
0 ≈ 0 , Ṗ(β)a

0i ≈ 0 , Ṗ(γ)A
0ij ≈ 0 ,

(25)

one obtains the secondary constraints S ,

S(R)ab
i ≡ ε0ijkRab jk ≈ 0 , S(∇B)ab ≡ ε0ijk(∇iBab jk − e[a|i β|b] jk

)
≈ 0 ,

S(F)i ≡ 1
2 ε0ijkFjk ≈ 0 , S(∇B) ≡ 1

2 ε0ijk(∂iBjk +
1
3 φA �B

A γB
ijk
)
≈ 0 ,

S(G)a ≡ 1
6 ε0ijkGaijk ≈ 0 , S(∇e)a

i ≡ ε0ijk∇jeak ≈ 0 ,

S(∇φ)A
ij ≡ ε0ijk∇kφA ≈ 0 ,

(26)

while in the case of P(B)ab
jk, P(ω)ab

k, P(B)jk, P(A)k, P(e)a
k, P(β)a

jk, P(φ)A and P(γ)A
ijk the

consistency conditions

Ṗ(B)ab
jk ≈ 0 , Ṗ(ω)ab

k ≈ 0 , Ṗ(B)jk ≈ 0 , Ṗ(A)k ≈ 0 ,

Ṗ(e)a
k ≈ 0 , Ṗ(β)a

jk ≈ 0 , Ṗ(φ)A ≈ 0 , Ṗ(γ)A
ijk ≈ 0 ,

(27)

determine the following Lagrange multipliers:

λ(ω)ab
i ≈ ∇i ωab 0 , λ(B)ij ≈ 2∂[i| B0|j] + γA

0ij �B
A φB ,

λ(A)i ≈ ∂i A0 , λ(β)a
ij ≈ 2∇[i| βa

0|j] −ωab
0 βb ij ,

λ(φ)A ≈ A0 � A
B φB , λ(e)a

i ≈ ∇i ea
0 −ωa

b 0 eb
i ,

λ(B)ab
ij ≈ 2∇[i|Bab

0|j] + e[a| 0β|b]
ij − 2e[a| [i|β|b]0|j] + 2ω[a|

cB|b]c ij ,

λ(γ)A
ijk ≈ −A0 � A

B γB
ijk +∇iγA

0jk −∇jγA
0ik +∇kγA

0ij .

(28)

Note that the consistency conditions leave the Lagrange multipliers

λ(B)ab
0i , λ(ω)ab

0 , λ(B)0i , λ(A)0 , λ(e)a
0 , λ(β)a

0i , λ(γ)A
0ij (29)

undetermined. The consistency conditions of the secondary constraints do not produce new constraints,
since one can show that

Ṡ(R)abi = {S(R)abi , HT} = ω[a|
c0 S(R)c|b]i ,

Ṡ(∇B) = {S(∇B), HT} = −�B
A γB

0ij S(∇φ)A
ij ,

Ṡ(G)a = {S(G)a , HT} = βb0k S(R)abk −ωab
0 S(G)b ,

Ṡ(∇e)a
i = {S(∇e)a

i , HT} = eb
0 S(R)ab

i −ωa
b

0 S(∇e)b
i ,

Ṡ(∇φ)A
ij = {S(∇φ)A

ij , HT} = A0 � A
BS(∇φ)B

ij ,

Ṡ(F)i = {S(F)i , HT} = 0 ,

Ṡ(∇B)ab = {S(∇B)ab , HT} = S(R)[a|ck Bc
|b]0k + ω[a|

c
0S(∇B)|b]c

−β[a|0k S(∇e)|b]k + e[a|0 S(G)|b] .

(30)
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Then, the total Hamiltonian can be written as

HT =
∫

Σ3

d3~x
[

1
2

λ(B)ab
0i Φ(B)ab

i +
1
2

λ(ω)ab
0 Φ(ω)ab + λ(B)0i Φ(B)i + λ(A)0 Φ(A)

+ λ(e)a
0 Φ(e)a + λ(β)a

0i Φ(β)a
i +

1
2

λ(γ)A
0ijΦ(γ)A

ij

− 1
2

Bab0i Φ(R)abi − 1
2

ωab0 Φ(∇B)ab − B0i Φ(F)i − A0 Φ(∇B)

− ea0 Φ(G)a − βa0i Φ(∇e)ai − 1
2

γA0ij Φ(∇φ)Aij
]

,

(31)

where

Φ(B)ab
i = P(B)ab

0i , Φ(γ)A
ij = P(γ)A

0ij ,

Φ(ω)ab = P(ω)ab
0 , Φ(F)i = S(F)i − ∂jP(B)ij ,

Φ(B)i = P(B)0i , Φ(R)abi = S(R)abi −∇jP(B)ab ij ,

Φ(A) = P(A)0 , Φ(G)a = S(G)a +∇iP(e)a i − 1
4 βb ij P(B)ab ij ,

Φ(e)a = P(e)a
0 , Φ(∇e)a i = S(∇e)a i −∇jP(β)a ij + 1

2 eb j P(B)ab ij ,

Φ(β)a
i = P(β)a

0i , Φ(∇φ)A ij = S(∇φ)A ij +∇kP(γ)A ijk −�B
A φB P(B)ij ,

Φ(∇B) = S(∇B) + ∂iP(A)i +
1
3!

γA
ijk �A

B P(γ)B
ijk − φA �B

A P(φ)B ,

Φ(∇B)ab = S(∇B)ab +∇iP(ω)abi + B[a|
c ij P(B)c|b] ij − 2e[a|i P(e)|b] i − β[a|

ij P(β)|b] ij ,

(32)

are the first-class constraints, while

χ(B)ab
jk = P(B)ab

jk , χ(B)jk = P(B)jk , χ(e)a
i = P(e)a

i , χ(φ)A = P(φ)A ,

χ(ω)ab
i = P(ω)ab

i , χ(A)i = P(A)i , χ(β)a
ij = P(β)a

ij , χ(γ)A
ijk = P(γ)A

ijk ,
(33)

are the second-class constraints.
The PB algebra of the first-class constraints is given by:

{Φ(G)a(x) , Φ(∇e)b
i(y) } = −Φ(R)a

b
i(x) δ(3)(~x−~y) ,

{Φ(G)a(x) , Φ(∇B)bc(y) } = 2δa
[b| Φ(G)|c](x) δ(3)(~x−~y) ,

{Φ(∇e)a
i(x) , Φ(∇B)bc(y) } = 2δa

[b|Φ(∇e)|c]i(x) δ(3)(~x−~y) ,

{Φ(R)abi(x) , Φ(∇B)cd(y) } = −4δ[a| [c Φ(R)|b]d]i(x) δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , Φ(∇B)cd(y) } = −4δ[a| [c| Φ(∇B)|b] |d](x) δ(3)(~x−~y) ,

{Φ(∇B)(x) , Φ(∇φ)A
ij(y) } = −2 �B

A Φ(∇φ)B
ij(x)δ(3)(~x−~y) .

(34)
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The PB algebra between the first and the second-class constraints is given by:

{Φ(R)abi(x) , χ(ω)cd
j(y) } = 4 δ[a| [c| χ(B)|b] |d]ij(x)δ(3)(~x−~y) ,

{Φ(G)a(x) , χ(ω)cd
i(y) } = 2 δa

[c| χ(e)|d]i(x)δ(3)(~x−~y) ,

{Φ(G)a(x) , χ(β)c
jk(y) } = −1

2
χ(B)a

c
jk(x) δ(3)(~x−~y) ,

{Φ(∇e)ai(x) , χ(ω)cd
j(y) } = −2 δa

[c| χ(β)|d]
ij(x) δ(3)(~x−~y) ,

{Φ(∇e)ai(x) , χ(e)b
j(y) } =

1
2

χ(B)a
b

ij δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(ω)cd
i(y) } = 4 δ[a| [c| χ(ω)|d]

|b]i δ(3)(~x−~y) ,

{Φ(∇B)(x) , χ(A)i(y) } = 2 χ(A)i δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(β)c
jk(y) } = −2δ[a|c χ(β)|b]jk δ(3)(x− y) ,

{Φ(∇B)(x) , χ(γ)A
ijk(y) } = �A

B χ(γ)B
ijk(x) δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(B)cd
jk(y) } = 4 δ[a| [c χ(B)d]

|b]jk δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(e)a
i(y) } = −2δ[a|c χ(e)|b]i δ(3)(~x−~y) ,

{Φ(∇B)(x) , χ(φ)A(y) } = −�B
A χ(φ)B(x) δ(3)(~x−~y) ,

{Φ(∇φ)Aij(x) , χ(A)k(y) } = −�B
A χ(γ)Bijk(x) δ(3)(~x−~y) ,

{Φ(∇φ)Aij(x) , χ(φ)B(y) } = −�B
A χ(B)ij(x) δ(3)(~x−~y) .

(35)

The PB algebra between the second-class constraints has already been calculated, and is given
in Equations (20).

4. The Bianchi Identities

In order to calculate the number of degrees of freedom in the theory, one needs to make use of the
Bianchi identities (BI), as well as additional, generalized Bianchi identities (GBI) that are an analogue of
the ordinary BI for the additional fields present in the theory.

One uses BI associated with the 1-form fields ωab and ea, as well as the GBI for the 1-form A.
Namely, the corresponding 2-form curvatures

Rab = dωab + ωa
c ∧ωcb , Ta = dea + ωa

b ∧ eb , F = dA , (36)

satisfy the following identities:

ελµνρ∇µRab
νρ = 0 , (37)

ελµνρ
(
∇µTa

νρ − Rab
µν ebρ

)
= 0 , (38)

ελµνρ∇µFνρ = 0 . (39)

Choosing the free index to be time coordinate λ = 0, these indentities, as the time-independent
parts of the Bianchi identities, become the off-shell restrictions in the sense of the Hamiltonian analysis.
On the other hand, choosing the free index to be a spatial coordinate, one obtains time-dependent
pieces of the Bianchi identities, which do not enforce any restrictions, but can instead be derived as
a consequence of the Hamiltonian equations of motion.
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There are also GBI associated with the 2-form fields Bab, B and βa. The corresponding 3-form
curvatures are given by

Sab = dBab + 2ω[a|
c ∧ Bc |b] , P = dB , Ga = dβa + ωa

b ∧ βb . (40)

Differentiating these expressions, one obtains the following GBI:

ελµνρ

(
1
3
∇λ Sab

µνρ − R[a| c
λµ Bc

|b]
νρ

)
= 0 , (41)

ελµνρ∂λ Pµνρ = 0 , (42)

ελµνρ

(
2
3
∇λ Ga

µνρ − Rab
λµ βb νρ

)
= 0 . (43)

However, in four-dimensional spacetime, these identities will be single-component equations,
with no free spacetime indices, and therefore necessarily feature time derivatives of the fields.
Thus, they do not impose any off-shell restictions on the canonical variables.

Finally, there is also GBI associated with the 0-form φ. The corresponding 1-form curvature is:

QA = dφA +�B
A A ∧ φB , (44)

so that the GBI associated with this curvature is:

ελµνρ

(
∇νQA

ρ −
1
2
�B

A FνρφB
)
= 0. (45)

This GBI consists of 12 component equations, corresponding to six possible choices of the
free antisymmetrized spacetime indices λµ, and the 2 possible choices of the free group index A.
However, not all of these 12 identities are independent. This can be seen by taking the derivative of the
Equation (45) and obtaining eight identities of the form

�B
A ελµνρ ∂µ Fνρ φB = 0 , (46)

which are automatically satisfied because of the GBI (39). One concludes there are only four
independent identities (45). Now, fixing the value λ = 0, one obtains the time-independent components
of both Equations (45) and (46),

ε0ijk
(
∇jQA

k −
1
2
�B

A FjkφB
)
= 0 , (47)

and
�B

A ε0ijk ∂i Fjk φB = 0 . (48)

Of these, there are six components in Equation (47), but, because of the two components of
Equation (48), there are overall only four independent GBI relevant for the Hamiltonian analysis.

5. Number of Degrees of Freedom

Let us now show that the structure of the constraints implies that there are no local degrees of
freedom (DoF) in a 3BF theory. In the general case, if there are N initial fields in the theory and there
are F independent first-class constraints per space point and S independent second-class constraints
per space point, then the number of local DoF, i.e., the number of independent field components,
is given by

n = N − F− S
2

. (49)
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Equation (49) is a consequence of the fact that S second-class constraints are equivalent to
vanishing of S/2 canonical coordinates and S/2 of their momenta. The F first-class constraints are
equivalent to vanishing of F canonical coordinates, and since the first-class constraints generate
the gauge symmetries, we can impose F gauge-fixing conditions for the corresponding F canonical
momenta. Consequently, there are 2N − 2F− S independent canonical coordinates and momenta and
therefore 2n = 2N − 2F− S, giving rise to Equation (49).

In our case, N can be determined from the Table 1, giving rise to a total of N = 120 canonical
coordinates. Similarly, the number of independent components for the second class constraints is
determined by the Table 2, so that S = 70.

Table 1. The number of components for all fields present in the theory.

ωab
µ Aµ βa

µν γA
µνρ Bab

µν Bµν ea
µ φA

24 4 24 8 36 6 16 2

Table 2. The number of components for the second class constraints present in the theory.

χ(B)ab
jk χ(B)jk χ(e)a

i χ(φ)A χ(ω)ab
i χ(A)i χ(β)a

ij χ(γ)A
ijk

18 3 12 2 18 3 12 2

The first-class constraints are not all independent because of BI and GBI. To see that, take the
derivative of Φ(R)abi to obtain

∇iΦ(R)abi = ε0ijk∇iRab
jk +

1
2

Rc[a|
ijP(B)c

|b]ij . (50)

The first term on the right-hand side is zero off-shell because εijk∇iRab
jk = 0, which is a λ = 0

component of the BI (37). The second term on the right-hand side is also zero off-shell, since it is
a product of two constraints,

Rc[a|
ij P(B)c

|b]ij ≡ 1
2

ε0ijkS(R)c[a|k P(B)c
|b]ij = 0 . (51)

Therefore, we have the off-shell identity

∇iΦ(R)abi = 0 , (52)

which means that six components of Φ(R)abi are not independent of the others. In an analogous
fashion, taking the derivative of Φ(F)i, one obtains

∂iΦ(F)i = ε0ijk ∂iFjk +
1
2

Fij P(B)ij . (53)

The first term on the right-hand side is zero off-shell because εijk ∂iFjk = 0, which is a λ = 0
component of the GBI (37). The second term on the right-hand side is also zero off-shell, since it is a
product of two constraints,

Fij P(B)ij ≡ 1
2

ε0ijk S(F)k P(B)ij = 0 . (54)

Therefore, we have the off-shell identity

∂iΦ(F)i = 0 , (55)
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which means that one component of Φ(F)i is not independent of the others. Similarly, one can
demonstrate that

∇iΦ(∇e)a
i − 1

2
Φ(R)ab

i eb
i +

1
4

ε0ijkS(R)abk P(β)b
ij =

1
2

ε0ijk
(
∇iTajk − Rab ij eb

k

)
. (56)

The right-hand side of the Equation (56) is the λ = 0 component of the BI (38), so that Equation (56)
gives the relation:

∇iΦ(∇e)a
i − 1

2
Φ(R)ab

i eb
i = 0 , (57)

where we have omitted the term that is the product of two constraints. This relation means that four
components of the constraints Φ(∇e)a

i and Φ(R)ab
i can be expressed in terms of the rest. Finally,

one can also demonstrate that

∇iΦ(∇φ)A
ij − 1

2
ε0ikl �A S(F)l χ(γ)B

ijk +�B
A φB Φ(F)j

+
1
2

ε0ilm �B
A P(B)ij S(∇φ)B

lm = ε0ijk
(
∇iQAk +

1
2
�B

A Fik φB

)
,

(58)

which gives

∇iΦ(∇φ)A
ij +

1
2
�B

A φB Φ(F)j = 0 , (59)

for λ = 0 component of the GBI (45), where we have again used that the product of two contraints
is zero off-shell. This relation suggests that six components of two first-class constraints, Φ(∇φ)A

ij

and Φ(F)j, are not independent of the others. However, in the previous section, we have discussed
that only four of these six identities are mutually independent, which means that we have only
four independent identities (59). A rigorous proof of this statement entails the evaluation of the
corresponding Wronskian, and is left for future work.

Taking into account all of the above indentites (52), (55), (57), and (59), we can finally evaluate
the total number of independent first-class constraints. From the Table 3, one can see that the total
number of components of the first-class constraints is given by F∗ = 100. However, the number
of independent components of the first-class constraints is F = 85, obtained by subtracting the six
relations (52), one relation (55), four relations (57) and four relations (59).

Table 3. The number of components for the first class constraints present in the theory. The identities (52),
(55), (57), and (59) reduce the number of components which are independent. This reduction is explicitly
denoted in the table.

Φ(B)ab
i Φ(B)i Φ(e)a Φ(ω)ab Φ(A) Φ(β)a

i Φ(γ)A
ij Φ(R)ab

i Φ(F)i Φ(G)a Φ(∇e)a
i Φ(∇B)ab Φ(∇B) Φ(∇φ)A

ij

18 3 4 6 1 12 6 18− 6 3− 1 4 12− 4 6 1 6− 4

Therefore, substituting all the obtained results into Equation (49), one gets

n = 120− 85− 70
2

= 0, (60)

which means that there are no propagating DoF in a 3BF theory described by the action (10).

6. Generator of the Gauge Symmetry

Based on the results of the Hamiltonian analysis of the action (10), it can also be interesting to
calculate the generator of the complete gauge symmetry of the action. The gauge generator of the theory
is obtained by using the Castellani’s procedure (see Chapter V in [13] for details of the procedure),
and one gets the following result (see Appendix B for details of the calculation):
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G =
∫

Σ3

d3~x
(

1
2
(∇0εab

i)Φ(B)ab
i − 1

2
εab

iΦ(R)ab
i +

1
2
(∇0εab)Φ(ω)ab −

1
2

εabΦ(∇B)ab

+ (∂0εi)Φ(B)i − εiΦ(F)i + (∂0ε)Φ(A)− εΦ(∇B)

+ (∇0εa)Φ(e)a − εaΦ(G)a + (∇0εa
i)Φ(β)a

i − εa
iΦ(∇e)a

i

+
1
2
(∇0εA

ij)Φ(γ)A
ij − 1

2
εA

ijΦ(∇φ)A
ij

+ εab
(

β[a|0iP(β)|b]
i + e[a|0P(e)|b] + B[a|c0iP(B)c

|b]
i
)
− ε γA0ij �B

A P(γ)Bij

+ εaβb0iP(B)abi + εa
i eb0P(B)a

bi
)

.

(61)

Here, εab
i, εab, εi, ε, εa, εa

i and εA
ij are the independent parameters of the gauge transformations.

Furthermore, one can employ the gauge generator to calculate the form-variations for all canonical
coordinates and their corresponding momenta, by computing the Poisson bracket of the chosen variable
A(t,~x) and the generator (61):

δ0 A(t,~x) = {A(t,~x) , G} . (62)

The results are given as follows:

δ0ωab
0 = ∇0εab , δ0π(ω)ab

0 = −2ε[a|
c
iπ(B)c|b]

0i − 2ε[a|
cπ(ω)c|b]

0 ,

+2ε[a|π(e)|b]0 + 2ε[a|iπ(β)|b]
0i ,

δ0ωab
i = ∇iε

ab , δ0π(ω)ab
i = −2ε[a|

c
j π(B)c|b]

ij − 2ε[a|
c
i π(ω)|b]c

i

+2ε[a| π(e)|b]i + 2ε[a| jπ(β)|b]
ij

+2ε0ijk∇[j|εab |k] + ε0ijkε[a|β|b] jk ,

δ0Bab
0i = ∇0εab

i + ε[a|ie|b]0 δ0π(B)ab
0i = 2ε[a|c π(B)|b]ci ,

+2ε[a|cB|b]c0i + ε[a|β|b]0i ,

δ0Bab
ij = 2∇[i|ε

ab
|j] + 2ε[a|cB|b]cij δ0π(B)ab

ij = 2ε[a|c π(B)|b]cij ,

+2ε[a| [ie|b] j] + ε[a|β|b]ij ,

δ0 A0 = ∂0ε , δ0π(A)0 = − 1
2 εA

ij �
B

A π(γ)B
0ij ,

δ0 Ai = ∂iε , δ0π(A)i = ε0ijk∂jεk − 1
2 εA

jk �B
A π(γ)B

ijk ,

δ0B0i = ∂0εi , δ0π(B)0i = 0 ,

δ0Bij = 2 ∂[i|ε|j] + εA
ij �

B
A φB , δ0π(B)ij = −ε0ijk∂kε ,

δ0βa
0i = ∇0εa

i − εabβb0i , δ0π(β)a
0i = −εabπ(β)b0i + 1

2 εbπ(B)ab
0i ,

δ0βa
ij = 2∇[i|ε

a
|j] − εab βbij , δ0π(β)a

ij = −εab π(β)bij + 1
2 εb π(B)ab

ij

−ε0ijk∇kεa ,

δ0ea
0 = ∇0εa − εab eb0 , δ0π(e)a

0 = −εab π(e)b0 + 1
2 εb

i π(B)ab
0i ,

δ0ea
i = ∇iε

a − εab ebi , δ0π(e)a
i = −εab π(e)bi + ε0ijk

(
∇[j|εa |k] + εabβbjk

)
+ 1

2 εb
j π(B)ab

ij ,
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δ0γA
0ij = ∇0εA

ij − ε γB
0ij �

A
B , δ0π(γ)A

0ij = ε �B
A π(γ)B

0ij ,

δ0γA
ijk = − ε γB

ijk �B
A +∇iε

A
jk δ0π(γ)A

ijk = ε �A
B
(

π(γ)B
ijk + ε0ijk φB

)
,

−∇jε
A

ik +∇kεA
ij ,

δ0φA = ε φB � A
B , δ0π(φ)A = −ε �B

A π(φ)B +
1
3!

ε ε0ijk �B
A γBijk

−1
2
�A B εB

ij π(B)ij − 1
2

ε0ijk∇iε
A

jk ,

(63)

These transformations are an extension of the form-variations in the case of the Poincaré 2-group
obtained in [17].

7. Conclusions

Let us summarize the results of the paper. In Section 2, we have demonstated in detail how to use
the idea of a categorical ladder to introduce the 3-group structure corresponding to the theory of scalar
electrodynamics coupled to Einstein–Cartan gravity. We have introduced the topological 3BF action
corresponding to this choice of a 3-group, as well as the constrained 3BF action which gives rise to
the standard equations of motion for the scalar electrodynamics. In order to perform the canonical
quantization of this theory, the complete Hamiltonian analysis of the full theory with constraints has to
be performed, but the important step towards this goal is the Hamiltonian analysis of the topological
3BF action. This has been done in Section 3. Here, the first-class and second-class constraints of
the theory, as well as their Poisson brackets, have been obtained. In Section 4, we have discussed the
Bianchi identities and also the generalized Bianchi identities, since they enforce restrictions in the
sense of Hamiltonian analysis, and reduce the number of independent first-class constraints present
in the theory. With this background material in hand, in Section 5, the counting of the dynamical
degrees of freedom present in the theory has been performed and it was established that the considered
3BF action is a topological theory, i.e., the diffeomorphism invariant theory without any propagating
degrees of freedom. In Section 6, we have constructed the generator of the gauge symmetries for
the theory, and we found the form-variations for all the variables and their canonical momenta.

The results obtained in this paper represent the straightforward generalization of Hamiltonian
analysis done in [15] for the Poincaré 2-group, and a first example of the Hamiltonian analysis of
a 3BF action. The fact that the theory was found to be topological is nontrivial, since it relies on the
existence of the generalized Bianchi identities, which have been identified for the first time. In addition
to that, it was demonstrated that the algebra of constraint closes, which is an important consistency
check for the theory. There is another very interesting aspect of the constraint algebra. Namely,
one can recognize, looking at the structure of Equations (34) that the subalgebra generated by the
first-class constraint Φ(∇φ)A

ij is in fact an ideal of the constraint algebra because the Poisson bracket
between this constraint and all other constraints is again proportional to that constraint. It is curious
that precisely the constraint Φ(∇φ)A

ij is the only one related to the Lie group L from the 3-group,
according to its index structure, and also that the structure constant of the ideal is determined by
the action � of the group G on L. Let us also note that the action � appears as well in the structure
constants of the algebra between the first-class and second-class constraints.

The results of this work open several avenues for future research. From the point of view of
mathematics, the relationship between the algebraic structures mentioned above should be understood
in more detail. More generally, one should understand the correspondence between the gauge
group generated by the generator (61) and the 3-group structure used to define the theory. This is
not viable in the special case of the 3-group discussed in this work, but instead needs to be done
in the case of a generic 3-group, where homomorphisms δ and ∂ and the Peiffer lifting {_ , _} are
nontrivial. From the point of view of physics, the obtained results represent the fundamental building
blocks for the construction of the quantum theory of scalar electrodynamics coupled to gravity, as
well as a convenient model to discuss before proceeding to the Hamiltonian analysis and canonical
quantization of the full Standard Model coupled to gravity, formulated as a 3BF action with suitable
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constraints [8]. Both the Hamiltonian analysis of constrained 3BF models and the corresponding
canonical quantization programme need to be further developed in order to achieve these goals.
Our work is a first step in this direction.

Finally, let us note in the end that the above list of topics for future research is by no means
complete, and there are potentially many other interesting topics that can be studied in this context.
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Appendix A. The Equations of Motion for the Scalar Electrodynamics

The action of scalar electrodynamics coupled to Einstein–Cartan gravity is given in the form (12):

S =
∫
M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(

Bab − 1
16πl2

p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1
2

HabcAea ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)
+ λ ∧

(
B− 12

q
Mabea ∧ eb

)
+ ζab

(
Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)
− 1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(A1)

Varying the total action (12) with respect to the variables Bab, B, ωab, βa, λab, ΛabA, γA, λA, HabcA,
ζab, Mab, λ, A, φA and ea, one obtains the equations of motion:

Rab − λab = 0 , (A2)

F + λ = 0 , (A3)

∇Bab − e[a| ∧ β|b] = 0 , (A4)

∇ea = 0 , (A5)

Bab − 1
16πl2

p
εabcdec ∧ ed = 0 , (A6)
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HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb = 0 , (A7)

∇φA − λA = 0 , (A8)

γA −
1
2

HabcAea ∧ eb ∧ ec = 0 , (A9)

− 1
2

λA ∧ ea ∧ eb ∧ ec + εcde f ΛabA ∧ ed ∧ ee ∧ e f = 0 , (A10)

Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb = 0 , (A11)

− 12
q

λ ∧ ea ∧ eb + ζabεcde f ec ∧ ed ∧ ee ∧ e f = 0 , (A12)

B− 12
g

Mabea ∧ eb = 0 , (A13)

− dB + d(ζabea ∧ eb)− φA �B
AγB −ΛabA �B

A φB ∧ ea ∧ eb = 0 , (A14)

∇γA −∇(Λab
A ∧ ea ∧ eb)−

1
4!

m2 φAεabcdea ∧ eb ∧ ec ∧ ed = 0 , (A15)

∇βa +
1

8πl2
p

εabcdλbc ∧ ed +
3
2

HabcAλA ∧ eb ∧ ec + 3Hde f AεabcdΛe f A ∧ eb ∧ ec

− 2ΛabA ∧∇φA ∧ eb − 2
1
4!

m2φA φAεabcdeb ∧ ec ∧ ed

− 24
q

Mabλ ∧ eb + 4ζe f Me f εabcdeb ∧ ec ∧ ed − 2ζabF ∧ eb = 0 .

(A16)

The dynamical degrees of freedom are the tetrad fields ea, the scalar field φA, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them. Specifically, Equations (A2)–(A13) give

λabµν = Rabµν , ωab
µ = 4ab

µ , γA
µνρ = − 1

2e
εµνρσ∇σφA ,

ΛabA
µ =

1
12e

gµλελνρσ∇νφA ea
ρeb

σ , βa
µν = 0 , Babµν =

1
8πl2

p
εabcdec

µed
ν ,

HabcA =
1
6e

εµνρσ∇µφA ea
νeb

ρec
σ , λA

µ = ∇µφA ,

λµν = Fµν , Bµν = − 1
2eq

εµνρσFρσ ,

Mab = − 1
4e

εµνρσFµν ea
ρeb

σ , ζab =
1

4eq
εµνρσFµν ea

ρeb
σ .

(A17)

Note that from the Equations (A4)–(A6) it follows that βa = 0, as in the pure gravity case. The
equation of motion (A15) reduces to the covariant Klein–Gordon equation for the scalar field coupled
to the electromagnetic potential A, (

∇µ∇µ −m2
)

φA = 0 . (A18)

From Equation (A14), we obtain the differential equation of motion for the field A:

∇µFµν = jν , jµ ≡ 1
2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (A19)
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Finally, the equation of motion (A16) for ea becomes:

Rµν − 1
2

gµνR = 8πl2
p Tµν ,

Tµν ≡ ∇µφA∇νφA − 1
2

gµν
(
∇ρφA∇ρφA + m2φA φA

)
− 1

4q
(

FρσFρσgµν + 4FµρFρ
ν
)

.
(A20)

The system of Equations (A2)–(A16) is equivalent to the system of Equations (A17)–(A20).

Appendix B. The Calculation of the Gauge Generator

The gauge generator of the theory is obtained by the standard Castellani procedure (see [13] for
an introduction). One starts from the generic form for the generator,

G =
∫

Σ3

∂3~x
(1

2
(∂0εab

i)G1ab
i +

1
2

εab
iG0ab

i +
1
2
(∂0εab)G1ab +

1
2

εabG0ab

+ (∂0εi)G1
i + εiG0

i + (∂0ε)G1 + εG0

+ (∂0εa)G1a + εaG0a + (∂0εa
i)G1a

i + εa
iG0a

i

+
1
2
(∂0εA

ij)G1 A
ij +

1
2

εA
ijG0 A

ij
)

,

(A21)

where the generators G0 and G1 are obtained by the standard prescription [13]:

G1 = CPFC ,

G0 + {G1 , HT } = CPFC ,

{G0 , HT } = CPFC ,

(A22)

where CPFC is a primary first-class constraint. For example, one choses G1ab
i = Φ(B)ab

i. From
the conditions

G0ab
i + {Φ(B)ab

i , HT } = G0ab
i + Φ(R)ab

i = CPFC ,

{G0ab
i , HT } = CPFC

∗ = {CPFC −Φ(R)ab
i , HT } ,

(A23)

we solve for G0ab
i by determining CPFC from the second equation. Evaluating one PB, one can reexpress

the second equation in the form:

{CPFC , HT } = CPFC
∗ + 2ω[a|

d
0Φ(R)|b]d

i = { 2ω[a|
d

0P(B)|b]d
i , HT } . (A24)

From the second equality, we recognize that

CPFC = 2ω[a|
d

0P(B)|b]d
i , (A25)

which can then be substituted into the first condition above, giving

G0ab
i = 2ω[a|

d
0Φ(B)|b]d

i −Φ(R)ab
i . (A26)

One thus obtains

1
2
(∂0εab

i)(G1)ab
i +

1
2

εab
iG0ab

i =
1
2
∇0εab

iΦ(B)ab
i − 1

2
εab

iΦ(R)ab
i .

The other G0 and G1 terms are obtained in a similar way, and the generator (61) is derived.
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Appendix C. Introduction to 3-Groups

The notion of a 3-group is usually introduced in the framework of higher category theory [6].
In category theory, every group can be understood as a category which has only one element,
and morphisms which are all invertible. The group elements are then individual morphisms that
map the category element to itself, while the group operation is the categorical composition of the
morphisms. In such a case, the axioms of the category guarantee the validity of all axioms of a group.
This kind of construction can be generalized to 2-groups, 3-groups and, in general, n-groups. Namely,
a 2-group is by definition a 2-category which has only one element, and whose morphisms and
2-morhisms (i.e., morphisms between morphisms) are invertible. Similarly, a 3-group is by definition
a 3-category which has only one element, while its morphisms, 2-morphisms, and 3-morphisms
are invertible.

The above definition of a 3-group is very abstract, and while theoretically very important, in itself
not very useful for practical calculations and applications in physics. Fortunately, there is a theorem
of equivalence between 3-groups and the so-called 2-crossed modules, which are algebraic structures
with more familiar properties [9,10]. For the applications in physics, attention focuses on the so-called
strict Lie 3-groups, and their corresponding differential (Lie algebra) structure, which corresponds to
the differential Lie 2-crossed module. Let us therefore give a brief overview of the latter.

A differential Lie 2-crossed module (l
δ→ h

∂→ g, �, {_ , _}) is given by three Lie algebras g, h and l,
maps δ : l→ h and ∂: h→ g, together with a map called the Peiffer lifting,

{_ , _} : h× h→ l , (A27)

and an action � of the algebra g on all three algebras.
Let us introduce the bases in the three algebras, τα ∈ g, ta ∈ h and TA ∈ l, and structure constants

in those bases, as follows:

[τα , τβ] = fαβ
γτγ , [ta , tb] = fab

ctc , [TA TB] = fAB
CTC . (A28)

Now, the maps ∂ and δ can be written as

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta , (A29)

and the action of the algebra g on g, h and l as:

τα � τβ = �αβ
γ τγ , τα � ta = �αa

b tb , τα � TA = �αA
B TB . (A30)

Finally, the Peiffer lifting can be encoded into coefficients Xab
A as:

{ta, tb} = Xab
A TA . (A31)

A differential Lie 2-crossed module has the following properties (we write all equations in the
abstract and their corresponding component forms, side by side):

1. The action of the algebra g on itself is via the adjoint representation, i.e., ∀g, g1 ∈ g:

g � g1 = [g, g1] , �αβ
γ = fαβ

γ . (A32)

2. The action of the algebra g on algebras h and l is g-equivariant, i.e., ∀g ∈ g, h ∈ h, l ∈ l:

∂(g � h) = g � ∂(h) , ∂a
β fαβ

γ = �αa
b ∂b

γ , (A33)

δ(g � l) = g � δ(l) , δA
a �αa

b = �αA
B δB

b . (A34)
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3. The Peiffer lifting is a g-equivariant map, i.e., for every g ∈ g and h1, h2 ∈ h:

g � {h1, h2} = {g � h1, h2}+ {h1, g � h2} , Xab
B �αB

A = �αa
c Xcb

A +�αb
c Xac

A . (A35)

4. For every h1, h2 ∈ h, the following identity holds:

δ({h1, h2}) = [h1 , h2]− ∂(h1)� h2 , Xab
A δA

c = fab
c − ∂a

α �αb
c . (A36)

5. For all l1, l2 ∈ l, the following identity holds:

[l1, l2] = {δ(l1), δ(l2)} , fAB
C = δA

a δB
b Xab

C . (A37)

6. For all h1, h2, h3 ∈ h:

{[h1, h2], h3} = ∂(h1)� {h2, h3}+ {h1, [h2, h3]} − ∂(h2)� {h1, h3} − {h2, [h1, h3]} ,

fab
d Xdc

B = ∂a
α Xbc

A �αA
B + Xad

B fbc
d − ∂b

α �αA
B Xac

A − Xbd
B fac

d .
(A38)

7. For all h1, h2, h3 ∈ h:

{h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} ,

Xad
A fbc

d = Xab
B δB

d Xdc
A − Xac

B δB
dXdb

A .
(A39)

8. For all l ∈ l and ∀h ∈ h:

{δ(l), h}+ {h, δ(l)} = −∂(h)� l , 2 δA
a X{ab}

B = −∂b
α �αA

B . (A40)

Finally, when dealing with various algebra valued differential forms, one multiplies them as
differential forms using the ordinary wedge product ∧, and simultaneously as algebra elements using
one of maps defined above. For example, the product with an action ∧� of the g-valued n-form ρ on
the h-valued m-form η is defined as:

ρ ∧� η =
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn τα � ta dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn

=
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn �αa

btb dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn .
(A41)
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13. Blagojević, M. Gravitation and Gauge Symmetries; Institute of Physics Publishing: Bristol, UK, 2002.
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Abstract

We give a brief overview how to couple general relativity to the Standard Model
of elementary particles, within the higher gauge theory framework, suitable for
the spinfoam quantization procedure. We begin by providing a short review of all
relevant mathematical concepts, most notably the idea of a categorical ladder, 3-
groups and generalized parallel transport. Then, we give an explicit construction of
the algebraic structure which describes the full Standard Model coupled to Einstein-
Cartan gravity, along with the classical action, written in the form suitable for
the spinfoam quantization procedure. We emphasize the usefulness of the 3-group
concept as a superior tool to describe gauge symmetry, compared to an ordinary
Lie group, as well as the possibility to employ this new structure to classify matter
�elds and study their spectrum, including the origin of fermion families.

1 Introduction

The quantization of the gravitational �eld is one of the most fundamental open problems of
modern theoretical physics. Since the inceptions of general relativity (GR) and quantum
�eld theory (QFT), many attempts have been made over the years to unify the two into
a self-consistent description of gravitational and matter �elds as basic building blocks of
nature. Some of the attempts have developed into vast research areas, such as String
Theory, Loop Quantum Gravity, Causal Set Theory, and so on. One of the prominent
approaches is Loop Quantum Gravity (LQG) [1, 2], which has branched into the canonical
and covariant frameworks, the latter known as the spinfoam approach [3].
The spinfoam approach to the quantization of the gravitational �eld revolves around

the idea of providing a precise mathematical de�nition to the Feynman path integral for
the gravitational �eld,

Z =

Z
Dg eiSGR[g] ;

where g denotes the gravitational degrees of freedom, and SGR[g] is the GR action ex-
pressed in terms of variables g. The strategy of de�ning the path integral can be roughly
expressed in three main steps, called the spinfoam quantization procedure:

1. Choose convenient variables g and rewrite the classical action in the form

SGR[g] = Stopological[g] + Ssimp[g] ; (1)
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where the �rst term represents a topological theory (with no propagating degrees of
freedom), while the second term corresponds to the so-called simplicity constraint
terms, whose purpose is to transform the full action into a realistic non-topological
action with propagating degrees of freedom.

2. Employ the methods of topological quantum �eld theory (TQFT) to de�ne the path
integral for the topological part of the action. This is typically implemented by
passing from a smooth spacetime manifold to a simplicial complex (triangulation),
and writing the path integral in the form of a discrete state sum,

Z =
X
g

Y
v

Av(g)
Y
�

A�(g)
Y
�

A�(g)
Y
�

A� (g)
Y
�

A�(g) :

Here g represents the gravitational �eld variables living on the vertices v, edges �,
triangles �, terahedra � , and 4-simplices � of the simplicial complex, describing its
geometry, while the corresponding amplitudesAv(g), . . . , A�(g) are chosen to render
the whole state sum Z independent of the particular choice of the triangulation of
the spacetime manifold.

3. Enforce the simplicity constraints of the theory by a suitable deformation of the
amplitudes A and the set of independent variables g, thereby obtaining a modi�ed
state sum Z which corresponds to one possible rigorous de�nition of the realistic
gravitational path integral.

Since its inception, the spinfoam quantization procedure has been formulated and
implemented for various choices of the classical action, leading to a plethora of spinfoam
models of quantum gravity, starting from the Ponzano-Regge model for 3D gravity [4],
and leading up to the currently most sophisticated EPRL/FK model for the realistic 4D
case [5, 6]. However, one property common to all spinfoam models is the fact that they
all describe pure gravity, without matter �elds. This is due to the common choice of the
classical action � it is the well known BF theory [7], which is usually de�ned for the
Lorentz group SO(3; 1), with some form of the simplicity constraint terms. The prototype
description of GR in this form is the Plebanski action [8]. The reason why matter �elds
are absent from all such models lies in the fact that the BF action does not feature tetrad
�elds at the fundamental level. Instead, the tetrads appear as a consequence of classical
equations of motion, and are thus inherently classical, on-shell quantities. This renders
the approach based on the BF theory incapable of adding matter �elds at the quantum
level, since matter is coupled to gravity using precisely the tetrad �elds.
The issue of the absence of the tetrad �elds at the fundamental level has been suc-

cessfully resolved in [9], where a categorical generalization has been made, and the 2BF
action (introduced in [10, 11]) has been employed to build an action for GR, featuring
tetrads explicitly in the topological sector of the action. The categorical generalization is
based on a concept of a categorical ladder, an abstraction scheme introducing a chain of
new objects: from categories to 2-categories to 3-categories and so forth. This powerful
mathematical language gave rise to the idea that the notion of gauge symmetry in physics
may be described by objects other than Lie groups. The new approach is called higher
gauge theory (HGT), see [12] for an introduction. In the context of the spinfoam quanti-
zation procedure, HGT has been successfully applied to build a quantum gravity model,
based on the Poincaré 2-group [13] as a gauge symmetry structure, and the corresponding
2BF action, leading to the so-called spincube model of quantum gravity [9]. Having the

75



tetrads as fundamental �elds in the 2BF action, the new model could be extended to
include matter �elds in a straightforward way. Nevertheless, the matter �eld action does
not have the form analogous to (1), which renders the steps 2 and 3 of the spinfoam
quantization procedure moot, since they can be applied only to the gravitational sector
of the theory.
Thus, a natural need appeared to generalize the theory once more, in order to include

the matter �elds into the topological sector of the theory, in a similar way that was done
to include the tetrad �elds. The basic idea was to pass from the notion of a 2-group to a
notion of a 3-group as a mathematical descriptor of gauge symmetry [12, 14, 15], giving
rise to a topological 3BF action. With suitable simplicity constraint terms added, a
3BF action perfectly �ts together all �elds necessary for a uni�ed description of quantum
gravity coupled to matter �elds � it features tetrads, spin connection, gauge �elds, scalar
�elds and fermions. The explicit construction was done in [16], where the full Standard
Model (SM) coupled to GR in the Einstein-Cartan formulation was rewritten in the
form (1), suitable for the implementation of the spinfoam quantization procedure and
building a full quantum theory. This demostrates the power and expressiveness of the
HGT approach, and it provides us with novel mathematical tools to study the algebraic
properties of the matter sector of the SM, in analogy to the gauge �eld sector which is
being described in terms of ordinary Lie groups. In this paper we will review the essential
properties of the new approach.
The layout of the paper is the following. In section 2 we give a brief introduction to

the category theory, categorical ladder, and the notion of n-groups. Our attention focuses
on 3-groups, in particular their representation in terms of 2-crossed modules. Section 3
reviews the construction and general properties of the 3BF action, and its relationship
with the 3-group structure. Then, in section 4 we apply this developed formalism to
construct the Standard Model 3-group, and explicitly build the action for the Standard
Model coupled to Einstein-Cartan gravity in the form of the 3BF action with suitable
simplicity constraints. Section 5 contains our concluding remarks.

2 Category theory and 3-groups

Let us begin by giving a short introduction to the category theory, and in particular the
notion of category theory ladder, a concept used in higher gauge theory to generalize the
notion of gauge symmetry. A nice introduction to this topic can be found in [12] and
further technical details in [14, 15].
A category C = (Obj;Mor) is a structure which has objects and morphisms between

them,
X; Y; Z; � � � 2 Obj ; f; g; h; � � � 2Mor ;

where
f : X ! Y; g : Z ! X; h : X ! Y; : : :

such that certain rules are respected, like the associativity of composition of morphisms,
and similar. Similarly, a 2-category C2 = (Obj;Mor1;Mor2) is a structure which has ob-
jects, morphisms between them, and morphisms between morphisms, called 2-morphisms,

X; Y; Z; � � � 2 Obj ; f; g; h; � � � 2Mor1 ; �; �; � � � 2Mor2 ;

where
f : X ! Y; g : Z ! X; h : X ! Y; : : : � : f ! h ; : : :
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such that similar rules about compositions are respected. Then, a 3-category C3 =
(Obj;Mor1;Mor2;Mor3) additionally has morphisms between 2-morphisms, called 3-
morphisms,

�;�; � � � 2Mor3 ; � : �! � ; : : :

again with a certain set of axioms about compositions of various n-morphisms. One can
further generalize these structures to introduce 4-categories, n-categories, 1-categories,
etc. The process of raising the �dimensionality� of a categorical structure is called a
categorical ladder.
It is useful to understand other algebraic structures as special cases of categories. As

a particularly important example, the algebraic structure of a group is a special case
of a category � it is a category with only one object, while all morphisms (i.e., group
elements) are invertible. It is straightforward to verify that axioms of a group follow from
this de�nition and the axioms of a category. Any group can be represented in this way,
for example �nite groups, Lie groups, and so on.
The notion of a categorical ladder then provides us with a natural way to introduce

novel, more general algebraic structures, by extending the above de�nition to 2-categories,
3-categories, etc. In particular,

� a 2-group is a 2-category with only one object, while all 1-morphisms and 2-
morphisms are invertible;

� a 3-group is a 3-category with only one object, while all 1-morphisms, 2-morphisms
and 3-morphisms are invertible.

It is important to emphasize that an n-group is not a particular type of group. Instead,
it is a di¤erent algebraic structure, which shares some of the features of groups, but is
governed by a qualitatively di¤erent set of axioms.
The framework of higher gauge theory is centered around the idea that gauge sym-

metries in physics can be better described using these alternative algebraic structures
than using the ordinary Lie groups. To that end, our attention will mostly focus on the
so-called Lie 3-groups and their corresponding Lie 3-algebras. While the abstract de�ni-
tion in terms of n-category theory is particularly appealing from the conceptual point of
view, for applications in physics there exists a more practical way to talk about 3-group.
Namely, every strict Lie 3-group is known to be equivalent to a so-called 2-crossed module,
de�ned as an exact sequence of three Lie groups G, H and L,

L
�! H

@! G ; (2)

and equipped with two �boundary homomorphisms� � and @, an action . of G onto G,
H and L,

. : G�G! G ; . : G�H ! H ; . : G� L! L ;

and a bracket operation called Pei¤er lifting over H to L,

f_ ;_g : H �H ! L :

Certain set of axioms is assumed to hold true among all these maps. In particular, for all
g 2 G, h 2 H and l 2 L, we have:

� the axiom stating that (2) is an exact sequence,

@� = 1G ; (3)

77



� the axiom specifying that the action of G onto itself is conjugation,

g . g0 = g g0 g
�1 ; (4)

� the axioms stating that the action of G on H and L is equivariant with respect to
homomorphisms @ and � and the Pei¤er lifting,

g . @h = @(g . h) ;
g . �l = �(g . l) ;
g . fh1; h2g = fg . h1; g . h2g ;

(5)

� and �nally the axioms determining the properties of the Pei¤er lifting,

� fh1; h2g = h1h2h
�1
1 (@h1) . h

�1
2 ;

f�l1; �l2g = l1l2l
�1
1 l

�1
2 ;

fh1h2; h3g = fh1; h2h3h�12 g @h1 . fh2; h3g ;
f�l; hg fh; �lg = l(@h . l�1) :

(6)

Since it is constructed from three Lie groups, a Lie 3-group has a corresponding Lie
3-algebra, also called a di¤erential 2-crossed module,

l
�! h

@! g ;

where l, h, g are Lie algebras of L, H, G, the maps �, @, . and f_ ;_g are inherited from
the 3-group via natural linearization, and �nally, the set of corresponding axioms applies.
In addition to all this, Lie algebras have their own usual Lie structure � the generators,

TA 2 l ; ta 2 h ; �� 2 g

the corresponding structure constants,

[TA; TB] = fAB
CTC ; [ta; tb] = fab

ctc ; [��; ��] = f��
�  ;

and G-invariant nondegenerate symmetric bilinear forms (for example Killing forms),

hTA; TBil = gAB ; hta; tbih = gab ; h��; ��ig = g�� :

The main purpose of the 3-group structure is to generalize the notion of parallel trans-
port from curves to surfaces to volumes. Namely, given a 4-dimensional manifoldM, one
de�nes a 3-connection (�; �; ) as a triple of 3-algebra-valued di¤erential forms,

� = ���(x) �� dx
� 2 �1(M; g) ;

� =
1

2
�a��(x) ta dx

� ^ dx� 2 �2(M; h) ;

 =
1

3!
A���(x)TA dx

� ^ dx� ^ dx� 2 �3(M; l) :
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Then one can introduce the line, surface and volume holonomies,

g = Pexp
Z
P1
� ; h = Sexp

Z
S2
� ; l = Vexp

Z
V3
 ;

and corresponding curvature forms,

F = d�+ � ^ �� @� ;
G = d� + � ^. � � � ;
H = d + � ^.  � f� ^ �g :

The 3-group structure ensures that all these quantities are well de�ned, in particular the
surface- and volume-ordered exponentials and the respective holonomies.

3 Higher gauge theories

The basic idea behind the higher gauge theory approach is to employ the structure of
n-groups as a mathematical representation of gauge symmetries in physics, generalizing
the ordinary notion of gauge symmetry described via a Lie group. Namely, in ordinary
gauge theory, the prototype action functional was the so-called BF action [7], based on
a chosen gauge group G. In the HGT approach, one generalizes the BF action in accord
with the chosen n-group structure, leading to the nBF action. For the case of 3-groups,
one de�nes a 3BF action as:

S3BF =

Z
M
hB ^ Fig + hC ^ Gih + hD ^Hil :

Here B, C, and D are Lagrange multipliers, in particular a g-valued 2-form, an h-valued
1-form, and an l-valued 0-form, respectively.
As in the case of a BF theory, one can demonstrate that 3BF theory is a topological

gauge theory, having no local propagating degrees of freedom. Nevertheless, it can be
transformed into a physically relevant action by adding the so-called simplicity constraint
terms to the action, changing the dynamical structure of the theory. The prototype of
this procedure is represented by transforming the topological BF theory based on the
Lorentz group SO(3; 1) into a Plebanski action [8], which describes general relativity.
One can even do more, and provide a physical interpretation of the Lagrange multi-

pliers C and D in the 3BF action, as follows:

� the h-valued 1-form C can be interpreted as the tetrad �eld, if H = R4 is the
spacetime translation group,

C ! e = ea�(x) ta dx
� ;

� the l-valued 0-formD can be interpreted as the set of real-valued matter �elds, given
some Lie group L,

D ! � = �A(x)TA :

An interested reader can see [16] for further details.
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4 The Standard Model

One natural question that can be asked is what choice of a 3-group can be relevant for
physics. There are various answers to this question, but perhaps the most illustrative
example is a choice of the 3-group which reproduces the Standard Model of elementary
particles, coupled to general relativity in the Einstein-Cartan version. This is called the
Standard Model 3-group, and in the remainder of this section we will demonstrate how it
can be constructed, step by step.
The �rst step is to specify the groups G and H as the usual Lorentz, internal, and

translational symmetries:

G = SO(3; 1)� SU(3)� SU(2)� U(1) ; H = R4 :

Note that the Poincaré group has been broken into the separate Lorentz and transla-
tional parts, and these have been associated with two di¤erent groups within the 3-group
structure.
The next step is to de�ne the homomorphisms � and @, as well as the Pei¤er lifting,

to be trivial,
�l = 1H = 0 ; @~v = 1G ;

and
f~u;~vg = 1L ;

for all l 2 L and ~u;~v 2 H. Additionally, we de�ne the action of the group G on H
via vector representation for the SO(3; 1) sector and via trivial representation for the
SU(3)� SU(2)� U(1) sector. Finally, the choice of the group L and the action of G on
L will be discussed below. But already now one can verify that all axioms (3)�(6) are
satis�ed, thus making sure that these choices represent one genuine 3-group.
The next step is to choose the group L. One general property of L that can be

determined immediately comes from the second axiom in (6). Namely, due to the trivial
choices for the Pei¤er lifting and the homomorphism �, the axiom implies that L must be
Abelian. Aside from this, the choice of the group L is guided by physical requirements,
as follows.
Begin by rewriting the 3BF action in the form

S3BF =

Z
M
B� ^ F�g�� + e

a ^ Gbgab + �AHBgAB :

Since the groupG is a direct product of the Lorentz and internal groups, the corresponding
indices � ofG split according to this structure, as � = (ab ; i), leading to the corresponding
splitting of the connection � and its curvature F ,

� = !abJab + A
i� i ; F = RabJab + F i� i :

Here !ab is the ordinary spin connection 1-form, Jab are Lorentz generators, while Ai are
internal gauge potential 1-forms and � i the generators of SU(3)�SU(2)�U(1). Also, Rab
and F i are the Riemann curvature and gauge �eld strength 2-forms, respectively. Also,
given that the action of SO(3; 1) onto H = R4 is via vector representation, and given that
the bilinear symmetric nondegenerate form for H must be G-invariant, the only available
choice is

gab = �ab � diag(�1;+1;+1;+1) :
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Finally, given that the matter �elds are elements in the Lie algebra l of the group L,
namely � = �ATA, we observe that there should be precisely one real-valued �eld �

A(x)
for each generator TA 2 l. This information allows us to determine the dimension of the
algebra l, by counting the total number of real-valued components of all matter �elds in
the Standard Model. The matter �elds have two sectors � fermions and the Higgs.
The number of the real-valued components of all fermion �elds can be counted accord-

ing to the following scheme:� �e
e�

�
L

�
ur
dr

�
L

�
ug
dg

�
L

�
ub
db

�
L

(�e)R (ur)R (ug)R (ub)R

(e�)R (dr)R (dg)R (db)R

9>>>>>>>>=>>>>>>>>;
= 16

Weyl spinors
family

�

�3 families � 4 real-valued �elds
Weyl spinor

= 192 real-valued �elds �A :

Similarly, the Higgs sector gives us:�
�+

�0

��
= 2 complex scalar �elds = 4 real-valued �elds �A :

This suggests the structure for L in the form:

L = Lfermion � LHiggs ; dimLfermion = 192 ; dimLHiggs = 4 :

The structure of L can be further understood by looking at the action of the gauge
group G on various components of �elds �A. This is �xed by the choice of the action of
G on L, chosen as follows. Given that G is constructed from Lorentz and internal gauge
symmetry groups, the action . : G � L ! L speci�es the transformation properties of
each real-valued �eld �A with respect to those symmetries. For example, if we look at a
Weyl spinor ub that sits in the doublet �

ub
db

�
L

;

the action g . ub (where g 2 SO(3; 1)� SU(3)� SU(2)� U(1)) encodes that ub consists
of 4 real-valued �elds which transform as:

� a left-handed spinor with respect to SO(3; 1),

� as a �blue�component of the fundamental representation of SU(3),

� and as �isospin +1
2
�of the left doublet with respect to SU(2)� U(1).

The action . : G�L! L similarly de�nes the transformation properties for all other
fermions in the theory, as well as for the Higgs �eld.
From such a de�nition of the action ., one can observe that G acts on L in precisely

the same way across the three fermion families. This implies that Lfermion can be written
as

Lfermion = L1st family � L2nd family � L3rd family ; dimLk-th family = 64 :
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Ultimately, given that the components of Weys spinors mutually anticommute, given
that the group L is Abelian, and given that it has the structure and dimension as given
above, we can �x the choice of the group L which corresponds to the Standard Model as

L = R4(C)� R64(G)� R64(G)� R64(G) ;

where G is the algebra of Grassmann numbers. This completes the construction of the
Standard Model 3-group.
The �nal step in specifying the theory is to spell out its classical action. As was

previously discussed, the action has the form of a 3BF action, with the addition of
appropriate simplicity constraints which will transform it into a non-topological theory,
i.e., a theory with local propagating degrees of freedom. The choice of the Standard Model
3-group completely �xes the structure of the 3BF action, and the only thing left to do
is to add the appropriate simplicity constraints. The details of the construction of these
terms is given in detail in [16], and will not be repeated here. We will only quote the
result,

SSM+EC = S3BF + Ssimp ;

where

S3BF =

Z
B�̂ ^ F �̂ + eâ ^ G â + �Â ^HÂ ;

and

Ssimp =
�
B�̂ � C�̂�̂Mcd�̂e

c ^ ed
�
^ ��̂ �

�
Â � ea ^ eb ^ ecCÂB̂MabcB̂

�
^ �Â

�4�i l2p "abcdea ^ eb ^ �c�ÂT dÂB̂�B̂

+�ab�̂ ^
�
Mab

�̂"cdefec ^ ed ^ ee ^ ef � F �̂ ^ ec ^ ed
�

+�abÂ ^
�
Mabc

Â"cdefed ^ ee ^ ef � F Â ^ ea ^ eb
�

�"abcdea ^ eb ^ ec ^ ed
�
� +MÂB̂�

Â�B̂ + YÂB̂Ĉ�
Â�B̂�Ĉ + LÂB̂ĈD̂�

Â�B̂�Ĉ�D̂
�
:

See [16] for details and notation.
By varying the action with respect to all variables, and with a little technical e¤ort, one

can demonstrate that the corresponding equations of motion are precisely the classical
equations of the Standard Model, coupled to general relativity in the Einstein-Cartan
formulation.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short introduction
into the category theory, introduced the notions of categorical ladder and n-categories,
and in the resulting framework, provided a de�nition for the notion of an n-group. Our
attention focused on the case of 3-groups, which are relevant for applications in physics,
and the equivalent notion of a 2-crossed module, which is more convenient for practical
applications. Section 3 was devoted to introducing the higher gauge theory formalism
and the 3BF action corresponding to a choice of a 3-group, as a generalization of the well
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known BF action in terms of the categorical ladder. Also, we have interpreted the addi-
tional Lagrange multipliers appearing in the 3BF action as the tetrad and matter �elds,
providing the setup for the application in physics. This application was then demon-
strated in detail in section 4, where the Standard Model 3-group has been de�ned, and
utilized to construct a physically relevant constrained 3BF action, which is classically
equivalent to the Standard Model of elementary particles coupled to general relativity
in the Einstein-Cartan formulation. This is the main result, which successfully estab-
lishes the �rst step of the spinfoam quantization procedure, and opens up a possibility of
straightforward implementation of the second and third steps, hopefully leading to a full
model of quantum gravity with matter.
It should be noted that the most important feature of the higher gauge theory frame-

work is its ability to treat gravity, gauge �elds, fermions and scalar �elds on completely
equal footing, describing all of them via the underlying algebraic structure of a 3-group.
The 3-group also provides us with a natural geometric description of a generalized notion
of parallel transport, namely along a surface and along a volume, in addition to the stan-
dard notion of parallel transport along a curve. This relationship opens up a possibility
for a fully geometric interpretation of all �elds present in physics.
Moreover, just as the gauge group dictates the number and properties of gauge �elds in

Yang-Mills theories, the sector of the 3-group described by the Lie group L determines the
number and properties of the fermion and scalar �elds. This fact enables us to classify the
spectrum of matter �elds in terms of group theory, generalizing the constructions present
in the Standard Model, where only gauge �elds are classi�ed in such terms. The choice
of the group L thus opens up novel avenues for research on the uni�cation of all �elds,
and speci�cally the origin of particle families, Higgs and fermion sectors, and so on.
Finally, the higher gauge theory framework may have applications in other areas of

physics and mathematics as well, and various possible research directions are yet to be
explored.
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whose cells are called simplices, and are connected to each 

other along their boundaries to form the simplicial complex 

of a given dimension. The purpose of the whole structure is 

to approximate the smooth spacetime manifold with a 

discrete structure which is more convenient for numerical 

methods. 

 The most elementary simplex is a simplex of level zero, 

often called 0-simplex or vertex ± it is just a dimensionless 

point with no structure. Next is the 1-simplex, also called an 

edge ± it is a one-dimensional line with two vertices at its 

boundaries. At level two we have the 2-simplex or triangle, 

whose boundary are three edges and their vertices. The 3-

simplex, also known as the tetrahedron, has the boundary 

made of four triangles and their edges and vertices. The 

procedure of constructing simplices can be done for 

arbitrary dimension, giving rise to the notion of a k-simplex, 

whose level (i.e. natural dimension of space in which it is 

defined) is equal to any positive integer k. The most 

commonly used example is the 4-simplex, also called 

pentachoron ± a 4-dimensional figure whose boundary 

consists of 5 tetrahedra, 10 triangles, 10 edges and 5 

vertices. In most applications in physics, the spacetime 

manifold is considered to be 4-dimensional, and it is cut into 

a lattice-like structure made of 4-simplices, which are glued 

together along their boundary tetrahedra. The resulting 

structure is a simplicial complex of dimension 4. Fig. 1 

depicts an intuitive example of a 2-dimensional simplicial 

complex of a torus. 

Given a simplicial complex, one typically wants to 

introduce functions that are evaluated on it. These are 

commonly called colors and are assigned via their values to 

each k-simplex within in the complex. In other words, some 

colors live on vertices, some on edges, some on triangles, 

and so on. The colors are a natural discretization of the 

notion of a field over a manifold. For example, just like 

electric and magnetic fields have a value at each point of a 

smooth spacetime, analogously the colors have values at 

each k-simplex in the simplicial complex. 

Depending on the type of the problem at hand, algorithms 

that are used to evaluate required quantities on a simplicial 

complex can vary in complexity, from conceptually simple 

Monte Carlo integration techniques, to vastly complicated 

traversal and ray-tracing algorithms, to various methods for 

solving functional partial differential equations. Due to the 

variability of the complexity of all these algorithms, dictated 

by the nature of the problem at hand, it is helpful to develop 

the underlying software simulator to exploit the 

parallelization avenues that are intrinsic to the simplicial 

complexes and k-simplices themselves, so that the simulator 

can exploit parallel hardware environments even for 

algorithms that are themselves hard to parallelize. This helps 

the code developer with overall optimization and application 

to HPC hardware architectures. In what follows, we shall 

demonstrate a set of possible approaches to these intrinsic 

parallelization techniques. 

II. N-DIMENSIONAL SIMPLICIAL COMPLEXES 

This section describes data structures used in the 

simulator of simplicial complexes from the point of view of 

their suitability for parallelizing the simulator execution. 

Data demanding structures are of main interest for 

optimizing the communication between processing units. 

Along with those, data that describes the structure and needs 

to be updated on multiple processing units will be described 

in detail. Further, the amount of data that needs to be 

exchanged and the frequency of expected changes will be 

compared to the pyramid, where top elements demand less 

memory, but require more often communication. 

The parallelization is simulated using the MPI 

framework. The simulator is implemented in C++, and, as a 

result, the parallelization framework is built on top of the 

simulator. As improving the simulator of simplicial 

complexes is an ongoing process, the possibility for 

accelerating the computation is simulated based on the 

requirements. 

Simplicial complexes are formed out of k-simplices at 

various levels. Simplicial complexes at level zero represent 

vertices. The structure of each vertex is stored in KSimplex 

class. Simplicial complexes at level one represent edges. 

Each edge consists of two vertices. As it is the case with 

vertices, information about edges are also kept in a 

KSimplex class. However, while vertices can be independent 

of other vertices, representing separate simplicial 

complexes, each edge must have at least two vertices 

defined as neighbors. Neighbor of an k-simplex is defined 

also as a k-simplex that the first k-simplex relies on. 

Neighboring relation is symmetrical. Therefore, if two 

vertices are neighbors of an edge, edge is also the neighbor 

of both vertices. Further, edges can form a triangle. By 

analogy, neighbors of triangle are three edges, but also the 

triangle is neighbor of these edges. The neighboring relation 

spans more than one level up or down. The triangle has also 

three vertices as neighbors and the opposite. 

Simplicial complex representing a triangle consists of a k-

simplex representing a triangle along with all neighbors of 

the triangle. Simplicial complex class is used for storing 

information about simplicial complexes. As it has elements 

field that is a pointer to pointer of k-simplices, it is also used 

for keeping neighbors of each k-simplex. 

III. PARALLELIZING SIMPLICIAL COMPLEXES SIMULATION 

Parallelizing operations over simplicial complexes is 

implemented by splitting the structure over multiple MPI 

processes. First, we can consider a single simplicial complex 

system, as the most general approach. If no screen 

coordinates for k-simplices are assigned, we can artificially 

assign this type of color, so that we can present k-simplices 

in 2D space. Further, we can imagine multiple planes, where 

each plane is responsible for keeping k-simplices of one 

dimension. This way, we can consider n-dimensional 

simplicial complex as a pyramid that we observe from the 

bird's eye view. Now we could have a bottom-up approach, 

where k-simplices of dimension zero are divided onto MPI 

processes based on their screen coordinates. Going up, each 

MPI process would store higher dimensional k-simplices 

that have those that are one level below as their neighbors. 

When a k-simplex has neighbors on one level below that 

belong to multiple MPI processes, this k-simplex gets 

copied to all MPI processes involved. Finally, all MPI 

processes would keep the highest-level k-simplex. In the 

case of multiple simplicial complexes, they could be split 

over MPI processes based on the same bottom-up approach. 
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The notion of determining the MPI process where a k-

simplex is located is hidden by using wrapper functions, so 

that the calculation operations are performed as if all k-

simplices would have been on the same MPI process, i.e. as 

if the simulation was executed serially. Each wrapper 

function can keep either a pointer to the structure, if it exists 

on the same MPI process, and the ID used for finding the 

structure on the owner MPI process. 

Algorithm 1 describes the most important aspects of 

simplicial complex classes. First, a basic SimpComp class is 

given, followed by the wrapper class VirtualSimpComp used 

for parallelization. 

 

Algorithm 1: Declaration of simplicial complex classes. 

class SimpComp{ 

public: 

    SimpComp(int dim); 
    SimpComp(string s, int dim); 

    ~SimpComp(); 

    // Creating new KSimplex 
    // at level k: 
    VirtualKSimplex* create_ksimplex( 
        int k); 

    void update_owner(int owner); 
 
    string name; 
    int D; 

    vector< vector< 
        VirtualKSimplex *> > elements; 
}; 

class VirtualSimpComp{ 

public: 

    SimpComp *find_simpcomp; 

 
    int id; 

    int ownerRank; 
    SimpComp *simpComp; 

}; 

 

Algorithm 2 describes the most important aspects of k-

simplices classes. A basic KSimplex class is followed by the 

wrapper class VirtualKSimplex used for parallelization. 

 

Algorithm 2: Declaration of k-simplex classes. 

class KSimplex{ 

public: 

    KSimplex(); 
    KSimplex(int k, int D); 

    ~KSimplex(); 

    bool find_neighbor( 
            VirtualKSimplex *k1); 

    void add_neighbor( 

            VirtualKSimplex *k1);     

 
    int k; // level 
    int D; // dimension 

    VirtualSimpComp *neighbors; 

    vector<Color *> colors; 

}; 

class VirtualKSimplex{ 
public: 

    KSimplex *find_ksimplex(); 

 
    int id; 

    int ownerRank; 

    KSimplex *ksimplex; 

}; 

 

In both algorithms, wrapper functions store a pointer to 

the base class object, if such exists on a local MPI process. 

Otherwise, the value is nullptr, and the data is searched for 

on the so called ownerRank based on unique identifier called 

id. Owner of this k-simplex can issue multiple requests 

while it holds a lock. 

IV. INFRASTRUCTURE FOR COMMUNICATION BETWEEN MPI 

PROCESSES 

The communication between MPI processes is organized 

as follows. Each MPI process is preparing the data to be sent 

to other MPI processes. Order of operations prepared for 

other MPI processes is not important. All requests to other 

MPI processes for processing are packed in to_rank vector 

of vectors of unsigned char. 

Each type of primitive data is serialized into the array of 

unsigned characters as it will be explained in the following 

section. Each prepared byte is pushed to the back of the 

vector of unsigned characters. Once all the data is prepared, 

the data is sent to other MPI processes in the background 

using MPI_Isend directive. If a reference to the vector of 

array of unsigned characters is called vec, the pointer to the 

array is obtained by calling member function data() of 

vector class from standard template library. After issuing all 

MPI_Isend directives, waiting for each of sending to finish 

is achieved using MPI_Wait. 

Similarly receiving the data from other MPI processes is 

implemented in the background using MPI_Irecv, followed 

by MPI_Wait, once the data is needed for the processing. 

The data is received into array of unsigned characters, that is 

further packed into vector of vectors of unsigned characters 

called from_rank for simple processing. 

V. MPI SUPPORTING FUNCTIONS 

As already mentioned, variables are serialized into the 

array of unsigned characters using the following syntax: 

 

*( (__typeof__ (variable) *) (array + nArray) ) = variable; 

nArray += sizeof(variable); 

 

Here, array is array of unsinged characters where the data 

stored in the variable is serialized, and nArray is the number 

serialized bytes in the array. 

Similarly, a variable is read and prepared into the to_rank 

using the following syntax: 

 

__typeof__ (variable) temp_var = variable; \ 

int nBytes = sizeof(temp_var); \ 

for(int iByte = 0; iByte < nBytes; iByte++) \ 

    to_rank[rankNumber].push_back( 

            ((unsigned char *) &temp_var) [iByte] );  

 

This can be further optimized, but the optimization is out 

of the scope of this research. 
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The communication between MPI processes is continued 

for as long as any MPI process requires further 

communication with other MPI processes. This is achieved 

using the following source code, where the MPI process that 

requires further communication sets variable to_send to one: 

 

int to_receive = 0; // A rank required communication 

MPI_Allreduce(&to_send, &to_receive, 1, MPI_INT, 

        MPI_SUM, MPI_COMM_WORLD); 

 

After  MPI_Allreduce is executed, all MPI processes will 

have the information whether they have to communicate 

further in to_receive variable. 

 

VI. PARALLELIZATION POSSIBILITIES  USING DATAFLOW 

PARADIGM 

This simulator issues the same set of computer 

architecture instructions repeatedly. As in majority simulator 

of physical phenomena, the number of instructions is 

dependent on the precision of the model and is limited by 

the computing resources and the total simulation time 

requirement. These conditions are exactly what is required 

for a program to be suitable for acceleration using the 

dataflow paradigm [11]. Programming dataflow 

architectures requires programming skills that are higher 

than those needed for programming conventional von 

Neumann architectures. One of the possibilities is to write a 

program in a VHDL. More suitable solution to most of the 

programmers would be to exploit the framework that 

enables writing source code in a Java-like language, which 

gets automatically translated into the FPGA image [12,13]. 

Even in this case, the effort needed for programming such 

architectures is higher [14]. Besides programming dataflow 

architecture for the simplicial complex simulator, 

appropriate scheduling scheme is also needed for efficient 

running of multiple jobs simultaneously [15]. 

As the number of operations that can be applied to 

simpliciaO� FRPSOH[HV� FDQ� OHDG� WR� VHYHUDO� GD\V¶� VLPXODWLRQ�

time or even more, having in mind the aging and the 

probability of failure of supercomputing nodes [16], we 

have decided to write restarts after given number of 

simulations defined by the user, so that the calculation can 

continue from the last stored state. 

VII. CONCLUSION 

In this work we have presented the basics of the 

paralellization techniques that can be applied to the structure 

of a simplicial complex, which underlies a host of research 

problems in theoretical physics (see also our accompanying 

paper [17]). These problems tend to be computationally 

extremely expensive, and the common underlying software 

that enables parallelization at the level of the basic data 

structure can possibly go a long way towards optimization 

of code for numerical study using heavily parallel hardware 

platforms such as HPC clusters. In particular, the simplicial 

complex naturally allows for various aspects of 

parallelization, and we have described the basic classes, 

corresponding MPI communication infrastructure, 

supporting functions and the dataflow paradigm employed 

for the construction. 

 One should note that our work represents just a first step 

towards a full working software implementation, and much 

more effort is needed to properly implement, optimize and 

test the resulting code in real world environments. All that is 

the topic for future work. In particular, the data regarding 

the experimental evaluation, which would compare the 

proposed parallelization method to ordinary sequential 

methods still needs to be gathered and analyzed. 

Nevertheless, this first step is fundamental, and it is 

conceptually important since it represents a paradigm in 

which parallelization is implemented dominantly at the level 

of the simplicial complex as the underlying data structure, 

rather than at the level of the particular algorithm that aims 

to solve some particular problem using these data structures. 

Finally, we note that our code, once properly developed, 

may possibly find applications not just in theoretical 

physics, but also in other disciplines of science, technology 

and engineering. 
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which simplices are glued to which. This gives rise to a notion 

of a neighborhood of a k-simplex, which is a set of all 

simplices which contain a given simplex as its sub-simplex 

(called super-neighbors) and simplices which are contained in 

a given simplex (called sub-neighbors). Each k-simplex (for   

0 ��N���') in the complex has its set of neighbors, where by 

definition a simplex is not a neighbor of itself (this is 

convenient to avoid infinite loops when traversing a 

complex). The neighborhood structure of the entire complex 

determines the topology of the corresponding manifold. 

While manifolds of various topologies are important in 

their own right in mathematics, the applications in physics and 

engineering typically introduce functions over manifolds, 

such as distances, areas and volumes, temperature, electric 

and magnetic fields, etc. In the language of simplicial 

complexes, these functions are commonly called colors, and 

are assigned to simplices of various level k within the 

complex. Given a k-simplex, one can assign to it multiple 

colors, representing the value of a given function when 

evaluated on the k-simplex. A prototype example of colors is 

the geometry of a simplicial complex: each k-simplex is 

DVVLJQHG� LWV� ³VL]H´� DFFRUGLQJ� WR� LWV� JHRPHWU\� --- each 1-

simplex (an edge) is assigned a real number representing its 

length, each 2-simplex (a triangle) is assigned a real number 

representing its area, tetrahedra are assigned volumes, and so 

on. Other examples are abound --- vertices can be assigned a 

temperature, edges can be assigned vectors of electric field, 

and so on. Depending on the problem at hand, one may or 

may not impose relationships between various colors, such as 

that the area of a triangle is consistent with the length of its 

edges, or similar. These relationships are collectively called 

constraints. 

In most everyday applications, one is interested in 

manifolds of dimension 1 and 2 (curves and surfaces). 

However, within the context of theoretical physics, one often 

needs to deal with manifolds of higher dimension ± most 

commonly 3, 4, 5, 10, 11 and 26, while more sporadically 

anything in between and above. One of the typical scenarios is 

quantum gravity [4,5], a vast research area of fundamental 

theoretical physics, where the notion of spacetime is described 

as a piecewise-linear manifold of dimension D=4 or higher 

[6,7]. In order to apply numerical techniques to study the 

manifolds in such research disciplines, it is necessary to 

formulate and implement structures and algorithms which 

describe colored simplicial complexes of arbitrarily large 

dimension, in a uniform and optimal way. In what follows, we 

describe one such implementation, which is purposefully 

designed to mimic the mathematical structure of a simplicial 

complex as close as possible, while simultaneously providing 

efficient numerical techniques for the manipulation and study 

of such structures. 

I. N-DIMENSIONAL SIMPLICIAL COMPLEXES 

This section describes the structure of simplicial 

complexes, and explains an example C++ implementation of 

classes for storing simplicial complexes. 

Simplicial complexes consist of k-simplices at different 

levels. Given a simplicial complexes of dimension D, these 

elements include k-simplices for each level from zero to D. 

Elements at level zero are vertices, elements at level one are 

edges, elements on level two are triangles, etc. Finally, there 

are elements of highest level D. The representative source 

code of class for simplicial complexes is given in Algorithm 3 

from the Appendix. The source code is pruned from 

comments and unnecessary functionalities for the presentation 

of the simulator. 

K-simplex stores the level it has, the dimension of the 

simplicial complex it belongs to, neighboring elements and 

colors assigned to it. 

Neighboring elements of a k-simplex are defined as k-

simplices that this k-simplex is touching. Since these can be 

on various levels, the structure of neighbors is the same as for 

the simplicial complex. Therefore, the two main classes are 

mutually connected. 

 

 

 

 

 

 

 

 

 

Printing SimpComp tetrahedron, D = 3 

Simplices k = 0: 

1, 2, 3, 4 

Simplices k = 1: 

(1-2), (1-3), (1-4), (2-4), (2-3), (3-4) 

Simplices k = 2: 

(1-2-3), (1-3-4), (1-2-4), (2-3-4) 

Simplices k = 3: 

(1-2-3-4) 

 
Fig. 2. Tetrahedron and a corresponding output of the simplicial complexes 

simulator. 

 

One possible implementation of the neighboring elements 

is to store only neighbors from one level above, and one level 

beneath (first sub-neighbors and first super-neighbors). The 

lower- and higher-level neighbors can be deduced following 

the structure of the first neighbors. However, we have opted 

for storing neighbors from all levels, giving us the opportunity 

to divide the structure onto multiple computing nodes and run 

the code in parallel. At current state, the simulator is running 

on a single CPU. 

The instructions a CPU is executing are repeated over and 

over again, which makes this simulator suitable for 

acceleration using the dataflow paradigm [8,9]. The effort 

required for programming such architectures is higher than for 

conventional von Neumann architectures [10], but the 

simulator is suitable for transforming the C++ source code 

automatically [11]. Executing multiple simplicial complex 

operations in parallel requires appropriate scheduling 
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techniques [12]. 

Each k-simplex (including all vertices, edges, triangles, 

etc.) can be colored with different types of color. Example 

colors include: 

- k-simplex name, 

- unique identifier of k-simplex, 

- boundary color of k-simplex, 

- screen coordinates. 

These colors are included in our simplicial complex 

simulator, but the structure of the simulator allows adding 

additional user defined colors. 

The representative source code of the class for k-simplices 

is given in Algorithm 4 from the Appendix. Just like it is the 

case with simplicial complexes, this source code is pruned for 

better clarity. 

For simulation purposes, we have developed functions for 

seeding simplicial complexes at various levels, as it will be 

explained in the following section. In addition, coloring and 

printing simplicial complexes is also implemented. Pretty 

printing (or compact printing) prints k-simplices at all levels, 

where k-simplices of level higher than zero are printed as 

tuples consisting of unique identifiers (IDs) of their vertices. 

Fig. 2 shows an example tetrahedron (i.e. simplicial complex 

of dimension D = 3 consisting of a single 3-simplex and its 

sub-simplices) whose vertices are colored with unique 

identifiers that auto-increment after each assignment of the 

unique color to a vertex. Details of the implementation of 

compact printing is also explained in this manuscript. 

Screen coordinates can be attached to vertices of the 

tetrahedron. Therefore, it can be drawn on the screen. 

However, there is no need to assign coordinates. They are just 

a convenient way to show an object on a screen. Similarly, 

there is no need to assign unique ID to any vertex. In the 

previous example, if a vertex with unique ID four would not 

have a unique ID assigned to it, the tetrahedron could still be 

SULQWHG� RXW�� EXW� ZLWK� ZRUG� ³6LPSOH[´� EHLQJ� SULQWHG� RXW in 

place of number four. 

II. SEEDING SIMPLICIAL COMPLEXES 

This section describes seeding simplicial complexes using 

C++ implementation of function seed_single_edge(). The 

example source code for seeding a single edge is used for 

demonstrating purposes. 

The process of seeding simplicial complexes will be 

explained using the source code shown in Algorithm 1. The 

source code is pruned from comments and unnecessary 

statements. Seeding a simplicial complex consists of the 

following steps, and statements in Algorithm 1 follow the 

same principle in the same order: 

- creating an empty simplicial complex of given dimension, 

- creating k-simplices for storing vertices and simplices of 

higher levels, 

- connecting vertices at each level with vertices on higher 

and lower levels. 

Adding a neighbor to a k-simplex is a symmetric operation. 

This means that both k-simplices (the calling one and the one 

given as an argument) are neighbors to each other. All 

functions of the simulator are written in a robust manner, 

checking the validity of input parameters. 

Note that multiple colors can be assigned to each k-

simplex, which is left out of consideration in this algorithm 

for better clarity. 

III. COLORING AND PRETTY PRINTING K-SIMPLICES 

This section describes coloring and pretty printing 

simplicial complexes. These functions might work in pair, but 

are not necessarily connected. 

A. Coloring K-simplices 

 

Coloring k-simplices will be explained using Algorithm 2 

by coloring vertices of an edge with boundary colors. First, 

vertices have to be created as k-simplices of level zero. Then, 

colors have to be created for all vertices. Finally, colors need 

to be pushed back to the vector of colors that each k-simplex 

has. 

 

Algorithm 1: Seeding a single edge. 

SimpComp* seed_single_edge(string name){ 

    SimpComp *edge = new SimpComp( 
            name, 1); 

    KSimplex *v1 = 

            edge->create_ksimplex(0); 

    KSimplex *v2 = 
            edge->create_ksimplex(0); 
    KSimplex *e1 = 

            edge->create_ksimplex(1); 

    v1->add_neighbor(e1); 

    v2->add_neighbor(e1); 
    return edge; 
} 

 

Algorithm 2: Coloring vertices with boundary color. 

KSimplex *v1 = 

        edge->create_ksimplex(0); 

KSimplex *v2 = 

        edge->create_ksimplex(0); 
Color *c1 = new BoundaryColor(true); 
Color *c2 = new BoundaryColor(true); 

v1->colors.push_back(c1); 

v2->colors.push_back(c2); 

 

Following colors are currently available: 

- unique ID colors 

- boundary colors 

- screen coordinate colors. 

Additionally, user is allowed to construct a custom color 

and use it within the simulator. The source code of the 

simulator is organized as a library, and user is allowed to 

extend it by using the library. 

Unique ID colors are predominantly used for pretty printing 

simplicial complexes. They are implemented by a class 

inherited from the basic color class. Two main fields include 
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static integer number, and an integer number. The first 

represents the current maximum of a unique color ID that is in 

use, and the second one is the color of a given k-simplex. 

Unlike unique ID colors, boundary colors have special 

meaning. Each k-simplex may contain boundary color, but it 

does not have to. A simplicial complex can have boundaries 

on k-simplices of one level lower than the dimension of the 

simplicial complex. For example, a triangle can have edges as 

boundaries. 

Screen coordinate colors are used for drawing simplicial 

complexes on a screen. The basic graphical user interface is 

under development. 

 

B. Pretty Printing K-simplices 

Printing k-simplices includes printing of all of the fields 

that KSimplex class contains. This includes printing all of the 

neighborhood elements the k-simplex has. This is usually 

overwhelming for a user. Therefore, pretty printing is 

designed to print unique ID colors of each k-simplex in most 

readable way authors could think of. 

Function KSimplex::print_compact() is responsible for 

pretty printing. It assigns to the pointer to the unique ID a 

value returned by a function get_uniqueID() that returns either 

nullptr if a k-VLPSOH[�GRHVQ¶W�KDYH�D�XQLTXH�,'��RU�D�SRLQWHU�WR�

the color. 

If there is no unique ID color assigned to a k-simplex, the 

RXWSXW� FRQVLVWV� VROHO\� RI� ZRUG� ³6LPSOH[´�� 2WKHUZLVH��

print_compact() function is called for a color that the pointer 

points to. Further, the following procedure is repeated, if level 

k is greater than zero and there are neighboring elements for 

all neighbors. A set of integer values is constructed, and then 

function print_vertices_in_parentheses(s) is called for 

neighbors, adding unique IDs to the set. This way, printing 

sorted values is achieved, along with avoiding duplicate 

values. Sample output of a simplicial complex pretty printing 

is shown in Fig. 1. 

IV. CONCLUSION 

We have demonstrated how one can implement in code the 

structure of a simplicial complex of arbitrary dimension, in a 

way that is faithful to its combinatorial definition, and 

perform the most basic operations on it, like instantiating, 

coloring and printing. 

The implementation of the basic classes of the code 

described in this work represents a fundamental basic building 

block for a more versatile software collection that aims to 

construct, manipulate and study the properties of simplicial 

complexes of arbitrary dimension. Future extensions of the 

software library will include the functions which implement 

attaching additional simplices to a boundary of a complex, 

performing Pachner moves [13] which transform a given 

complex into a different one without changing its topology, 

and functions for manipulating the colors and evaluating 

various mathematical constructions that include them. Note 

that the experimental data regarding the parallelization is yet 

to be collected (see the accompanying paper [14]). 

The resulting software collection will feature the generality 

and versatility that aim for applications both in pure 

mathematics (algebraic topology research) and theoretical 

physics (quantum gravity, field theory), but also with potential 

applications in other disciplines of engineering and industry, 

wherever the analysis and the study of geometry of manifolds 

and curved surfaces may be relevant. 

APPENDIX 

Algorithm 3: Declaration of SimpComp class. 

class SimpComp{ 

public: 
    SimpComp(int dim); 

    SimpComp(string s, int dim); 
    ~SimpComp(); 

    int count_number_of_simplexes( 

            int level); 
    void print(string space = ""); 

    bool all_uniqueID(int level); 
    void collect_vertices(set<int> &s); 

    void print_set(set<int> &s); 

    void print_vertices_in_parentheses( 
            set<int> &s); 

    void print_compact(); 
    // Creating new KSimplex at level k: 

    KSimplex* create_ksimplex(int k); 

    void print_sizes(); 
 
    string name; 

    int D; 

    // An element at each level 

    // is a list or vector 
    // of KSimplex pointers  

    // to KSimplex on that level: 

    vector< vector<KSimplex *> > 
            elements; 

}; 

 

Algorithm 4: Declaration of KSimplex class. 

class KSimplex{ 
public: 

    KSimplex(); 

    KSimplex(int k, int D); 

    ~KSimplex(); 

    bool find_neighbor(KSimplex *k1); 
    void add_neighbor(KSimplex *k1);     

    void print(string space = ""); 
    UniqueIDColor* get_uniqueID(); 

    void print_compact(); 

 
    int k; // level 

    int D; // dimension 

    SimpComp *neighbors; 

    vector<Color *> colors; 
}; 
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Abstract

We provide several examples of higher gauge theories, constructed as gener-
alizations of a BF model to 2BF and 3BF models with constraints. Using the
framework of higher category theory, we introduce appropriate 2-groups and 3-
groups, and construct the actions for the corresponding constrained 2BF and
3BF theories. In this way, we can construct actions which describe the correct
dynamics of Yang-Mills, Klein-Gordon, Dirac, Weyl, and Majorana fields coupled
to Einstein-Cartan gravity. Each action is naturally split into a topological sector
and a sector with simplicity constraints. The properties of the higher gauge group
structure opens up a possibility of a nontrivial unification of all fields.

1. Introduction

The quantization of the gravitational field is one of the fundamental open
problems in modern physics. There are various approaches to this prob-
lem, some of which have developed into vast research frameworks. One of
such frameworks is the Loop Quantum Gravity approach, which aims to
establish a nonperturbative quantization of gravity, both canonically and
covariantly [1, 2, 3]. The covariant approach is slightly more general, and
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focuses on providing a possible rigorous definition of the path integral for
the gravitational field,

Z =

∫
Dg eiS[g] . (1)

This is done by considering a triangulation of a spacetime manifold, and
defining the path integral as a discrete state sum of the gravitational field
configurations living on the simplices in the triangulation. This quanti-
zation technique is known as the spinfoam quantization method, and is
performed via the following three steps:

(1) one writes the classical action S[g] as a constrained BF action;

(2) one uses the Lie group structure, underlying the topological sector of
the action, to define a triangulation-independent state sum Z;

(3) one imposes the simplicity constraints on the state sum, promoting it
into a triangulation-dependent state sum, which serves as a definition
for the path integral (1).

So far, this quantization prescription has been implemented for various
choices of the gravitational action, of the Lie group, and of the spacetime
dimension. For example, in 3 dimensions, historically the first spinfoam
model is known as the Ponzano-Regge model [4]. In 4 dimensions there are
multiple models, depending on the choice of the Lie group and the way one
imposes the simplicity constraints [5, 6, 7, 8, 9]. While these models do
give a definition for the gravitational path integral, none of them are able
to consistently include matter fields. Including the matter fields has so far
had limited success [10], mainly due to the absence of the tetrad fields from
the topological sector of the theory.

In order to resolve this issue, a new approach has been developed, using
the framework of higher gauge theory (see [11] for a review). In particu-
lar, one uses the idea of a categorical ladder to generalize the BF action
(based on a Lie group) into a 2BF action (based on the so-called 2-group
structure). A suitable choice of the Poincaré 2-group introduces the needed
tetrad fields into the topological sector of the action [12]. While this result
opened up a possibility to couple matter fields to gravity, the matter fields
could not be naturally expressed using the underlying algebraic structure
of a 2-group, rendering the spinfoam quantization method inapplicable.
Namely, the matter sector could indeed be added to the classical action,
but could not be expressed itself as a constrained 2BF theory, which means
that the steps 1–3 above could not be performed for the matter sector of
the action, but only for gravity.

This final issue has recently been resolved in [13], by passing from the
2-group structure to the 3-group structure, generalizing the action one step
further in the categorical ladder. This generalization naturally gives rise
to the so-called 3BF action, which turns out to be suitable for a unified
description of both gravity and matter fields. The steps of the categorical
ladder and their corresponding structures are summarized as follows:
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categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed

module
differential Lie
crossed module

2BF theory tetrad fields

Lie 3-group
Lie 2-crossed

module
differential Lie

2-crossed module
3BF theory

scalar and
fermion fields

The purpose of this paper is to give a systematic overview of the con-
structions of classical BF , 2BF and 3BF actions, both pure and con-
strained, in order to demonstrate the categorical ladder procedure and the
construction of higher gauge theories. In other words, we focus on the step
1 of the spinfoam quantization programme.

The layout of the paper is as follows. Section 2 deals with models based
on a BF theory. First we discuss the pure, topological BF theory, and
then pass on to the the physically more interesting Yang-Mills theory in
Minkowski spacetime and the Plebanski formulation of general relativity.
In Section 3 we study the first step in the categorical ladder, namely models
based on the 2BF theory. After introducing the pure 2BF theory, we study
the relevant formulation of general relativity [12], and then the coupled
Einstein-Yang-Mills theory. Then, in Section 4 we perform the second step
in the categorical ladder, passing on to models based on the 3BF theory.
After the introduction of the pure 3BF model, we construct constrained
3BF actions for the cases of Klein-Gordon, Dirac, Weyl and Majorana
fields, all coupled to the Einstein-Cartan gravity in the standard way. As
we shall see, the scalar and fermion fields will be naturally associated to a
new gauge group, generalizing the purpose of a gauge group in the Yang-
Mills theory, which opens up a possibility of an algebraic classification of
matter fields. Finally, Section 5 contains a discussion and conclusions.

The notation and conventions are as follows. The local Lorentz in-
dices are denoted by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and
are raised and lowered using the Minkowski metric ηab with signature
(−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . ,
and are raised and lowered by the spacetime metric gµν = ηabe

a
µe
b
ν , where

eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other
indices that appear in the paper are dependent on the context, and their
usage is explicitly defined in the text where they appear. We work in the
natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck
length.

2. BF theory

We begin with a short review of BF theories. See [14, 15, 16] for additional
information.
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2.1. Pure BF theory

Given a Lie group G, and denoting its corresponding Lie algebra as g,
one introduces the pure BF action as follows (we limit ourselves to the
physically relevant case of 4-dimensional spacetime manifolds M4):

SBF =

∫
M4

〈B ∧ F〉g . (2)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connec-
tion 1-form α ∈ A1(M4 , g), and B ∈ A2(M4 , g) is a Lagrange multiplier
2-form, while 〈 , 〉g denotes a G-invariant bilinear symmetric nondegener-
ate form.

One can see from (2) that the action is diffeomorphism invariant, and
it is also gauge invariant with respect to G, provided that B transforms as
a scalar with respect to G.

Varying the action (2) with respect to Bβ and αβ, where the index β
is the group G index (which counts the generators of g), one obtains the
following equations of motion,

Fβ = 0 , ∇Bβ ≡ dBβ + fγδ
βαγ ∧Bδ = 0 , (3)

where fγδ
β are the structure constants of the Lie group G. From the first

equation of motion, one immediately sees that α is a flat connection, mean-
ing that α = 0 up to gauge transformations. Given this, the second equa-
tion of motion implies that B is constant. Therefore, there are no local
propagating degrees of freedom, and the theory is called topological.

2.2. Yang-Mills theory

In physics one is usually interested in theories which are not topological, i.e.,
which have local propagating degrees of freedom. As a rule of thumb, one
recognizes that the theory does have local propagating degrees of freedom if
one of the equations of motion is a second-order partial differential equation,
usually featuring a D’Alambertian operator � in some form. In order to
transform the pure BF action into such a theory, one adds an additional
term to the action, commonly called the simplicity constraint. The resulting
action is called a constrained BF theory. A nice example is the Yang-
Mills theory for the SU(N) group in Minkowski spacetime, which can be
rewritten as a constrained BF theory in the following way:

S =

∫
BI ∧ F I + λI ∧

(
BI −

12

g
MabIδ

a ∧ δb
)

+ ζabI
(
MabIεcdefδ

c ∧ δd ∧ δe ∧ δf − gIJF J ∧ δa ∧ δb
)
.

(4)

Here F ≡ dA + A ∧ A is again the curvature 2-form for the connection
A ∈ A1(M4 , su(N)), and B ∈ A2(M4 , su(N)) is the Lagrange multiplier
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2-form. The Killing form gIJ ≡ 〈τI , τJ〉su(N) ∝ fIK
LfJL

K is used to raise

and lower the indices I, J, . . . which count the generators of SU(N), while
f IJ

K are the structure constants for the su(N) algebra. In addition to
the topological B ∧ F term, there are also two simplicity constraint terms
present, featuring two Lagrange multipliers, a 2-form λI and a 0-form ζabI .
The 0-form MabI is also a Lagrange multiplier, while g is the coupling
constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global co-
ordinate frame in which its components are equal to the Kronecker symbol
δaµ (hence the notation δa). The 1-form δa plays the role of a background
field, and defines the global spacetime metric, via the equation

ηµν = ηabδ
a
µδ
b
ν , (5)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the co-
ordinate system is global, the spacetime manifold M4 is understood to be
flat. The indices a, b, . . . are local Lorentz indices, taking values 0, . . . , 3.
Note that the field δa has all the properties of the tetrad 1-form ea in the
flat Minkowski spacetime. Also note that the action (4) is manifestly dif-
feomorphism invariant and gauge invariant with respect to SU(N), but not
background independent, due to the presence of δa.

Varying the action (4) with respect to the variables ζabI , MabI , A
I , BI ,

and λI , respectively (but not with respect to the background field δa), we
obtain the equations of motion:

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (6)

−12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (7)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJIKζabKδa ∧ δb ∧AJ = 0 , (8)

FI + λI = 0 , (9)

BI −
12

g
MabIδ

a ∧ δb = 0 , (10)

From the equations (6), (7), (9) and (10) one obtains the multipliers as
algebraic functions of the field strength F Iµν for the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I cd ,

λIab = F Iab , BIab =
1

2g
εabcdF I

cd .
(11)
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Here we used the notation FIab = FIµνδa
µδb

ν , and similarly for other vari-
ables, where we exploited the fact that δaµ is invertible. Using these equa-
tions and the differential equation (8) one obtains the equation of motion
for gauge field AIµ,

∇ρF Iρµ ≡ ∂ρF Iρµ + fJK
IAJρF

Kρµ = 0 . (12)

This is precisely the classical equation of motion for the free Yang-Mills
theory. Note that this is a second-order partial differential equation for the
field AIµ, and moreover contains the � operator in the first term.

In addition to the Yang-Mills theory, one can easily extend the action (4)
in order to describe the massive vector field and obtain the Proca equation
of motion. This is done by adding a mass term

− 1

4!
m2AIµA

I
νη
µνεabcdδ

a ∧ δb ∧ δc ∧ δd (13)

to the action (4). Of course, this term explicitly breaks the SU(N) gauge
symmetry of the action.

2.3. Plebanski general relativity

The second example of the constrained BF theory is the Plebanski action
for general relativity [16, 14]. Using the Lorentz group SO(3, 1) as a gauge
group, one constructs a constrained BF action as

S =

∫
M4

Bab ∧Rab + φabcdB
ab ∧Bcd . (14)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the
usual Lagrange multiplier 2-form, while φabcd is the additional Lagrange
multiplier 0-form multiplying the term Bab ∧Bcd to form a simplicity con-
straint. It can be shown that the variation of this action with respect to
Bab, ω

ab and φabcd gives rise to the equations of motion of vacuum general
relativity. However, in this model the tetrad fields appear only as a solution
of the simplicity constraint equation of motion Bab ∧ Bcd = 0. Therefore,
being intrinsically on-shell objects, the tetrad fields are not present in the
action itself and cannot be quantized. This renders the Plebanski model
unsuitable for coupling of matter fields to gravity [10, 12, 20]. Neverthe-
less, regarded as a model for pure gravity, the Plebanski model has been
successfully quantized in the context of spinfoam models [8, 9, 1, 2].

3. 2BF theory

In this section we perform the first step of the categorical ladder, general-
izing the algebraic notion of a group to the notion of a 2-group. This leads
to the generalization of the BF theory to the 2BF theory, also sometimes
called BFCG theory [11, 17, 18, 19].
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3.1. Pure 2BF theory

In order to circumvent the issue of tetrad fields not being present in the
Plebanski action, in the context of higher category theory [11] a recent
promising approach has been developed [12, 21, 22, 23, 20, 24]. As an
essential ingredient, let us first give a short review of the 2-group formalism.

Within the framework of category theory, the group as an algebraic
structure can be understood as a category with only one object and in-
vertible morphisms [11]. Additionally, the notion of a category can be
generalized to the so-called higher categories, which have not only objects
and morphisms, but also 2-morphisms (morphisms between morphisms),
and so on. This process of generalization is called the categorical ladder.
Using this process, one can introduce the notion of a 2-group as a 2-category
consisting of only one object, where all the morphisms and all 2-morphisms
are invertible. It has been shown that every strict 2-group is equivalent to

a crossed module (H
∂→ G ,B), see [13] for detailed definitions. Here G and

H are groups, ∂ is a homomorphism from H to G, while B : G ×H → H
is an action of G on H.

Similarly to the case of an ordinary Lie group G which has a naturally
associated notion of a connection α, giving rise to a BF theory, the 2-
group structure has a naturally associated notion of a 2-connection (α , β),
described by the usual g-valued 1-form α ∈ A1(M4 , g) and an h-valued
2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie group H. The
2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (15)

Here α∧Bβ means that α and β are multiplied as forms using ∧, and simul-
taneously multiplied as algebra elements using B, see [13]. The curvature
pair (F ,G) is called “fake” because of the presence of the additional term
∂β in the definition of F [11].

Using the structure of a 2-group, or equivalently the crossed module,
one can generalize the BF action to the so-called 2BF action, defined as
follows [17, 18]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h . (16)

Here the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are La-
grange multipliers. Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear
symmetric nondegenerate forms for the algebras g and h, respectively. As
a consequence of the axiomatic structure of a crossed module (see [13]),
the bilinear form 〈 , 〉h is H-invariant as well. See [17, 18] for review and
references.

Similarly to the BF action, the 2BF action is also topological, which
can be seen from equations of motion. Varying with respect to Bα and Ca

one obtains
Fα = 0 , Ga = 0 , (17)
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where indices a count the generators of the group H. Varying with respect
to αα and βa one obtains the equations for the multipliers,

dBα + fαβ
γBγ ∧ αβ −BαabCb ∧ βa = 0 , (18)

dCa − ∂aαBα +Bαa
bCb ∧ αα = 0 . (19)

We can again see that the equations of motion are only first-order and
have only very simple solutions (note that this is not a sufficient argument
for the absence of local propagating degrees of freedom — a counterexam-
ple is the Dirac equation, being a first-order partial differential equation
which does have propagating degrees of freedom). One can additionally
use the Hamiltonian analysis to rigorously demonstrate that there are no
local propagating degrees of freedom [22, 23]. Thus the 2BF theory is also
topological.

3.2. General relativity

An important example of a crossed module structure is a vector space V
equipped with an isometry group O. Namely, V can be regarded as an
Abelian Lie group with addition as a group operation, so that a represen-
tation of O on V is an action B of O on the group V , giving rise to the

crossed module (V
∂→ O ,B), where the homomorphism ∂ is chosen to be

trivial (it maps every element of V into a unit of O).
We can employ this construction to introduce the Poincaré 2-group.

One constructs a crossed module by choosing

G = SO(3, 1) , H = R4 . (20)

The map ∂ is trivial, while B is a natural action of SO(3, 1) on R4, defined
by the equation

Mab B Pc = η[bcPa] , (21)

where Mab and Pa are the generators of groups SO(3, 1) and R4, respec-
tively. The action B of SO(3, 1) on itself is given via conjugation. At
the level of the algebra, conjugation reduces to the action via the adjoint
representation, so that

Mab BMcd = [Mab , Mcd ] ≡ ηadMbc − ηacMbd + ηbcMad − ηbdMac . (22)

The 2-connection (α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (23)

where ωab is called the spin connection. The corresponding 2-curvature in
this case is given by

F = (dωab + ωac ∧ ωcb)Mab ≡ RabMab ,

G = (dβa + ωab ∧ βb)Pa ≡ ∇βaPa ≡ GaPa ,
(24)
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Note that, since ∂ is trivial, the fake curvature is the same as ordinary
curvature. Introducing the bilinear forms

〈Mab ,Mcd〉g = ηa[cηbd] , 〈Pa , Pb〉h = ηab , (25)

one can show that 1-forms Ca transform in the same way as the tetrad
1-forms ea under the Lorentz transformations and diffeomorphisms, so the
fields Ca can be identified with the tetrads. Then one can rewrite the pure
2BF action (16) for the Poincaré 2-group as

S2BF =

∫
M4

Bab ∧Rab + ea ∧∇βa . (26)

Note that the above step of recognizing that Ca ≡ ea was crucial, since we
now see that the tetrad fields are explicitly present in the 2BF action for
the Poincaré 2-group.

In order to promote (26) to an action for general relativity, we add a
convenient simplicity constraint term:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (27)

Here λab is a Lagrange multiplier 2-form associated to the simplicity con-
straint term, and lp is the Planck length. Note that the term “simplicity
constraint” derives its name from the fact that the constraint imposes the
property of simplicity on Bab — a 2-form is said to be simple if it can be
written as an exterior product of two 1-forms.

Varying the action (27) with respect to Bab, ea, ωab, βa and λab, we
obtain the following equations of motion:

Rab − λab = 0 , (28)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (29)

∇Bab − e[a ∧ βb] = 0 , (30)

∇ea = 0 , (31)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 . (32)

Given this system of equations, all fields can be algebraically determined in
terms of the tetrads eaµ, as follows. From the equations (31) and (32) we

obtain that ∇Bab = 0, from which it follows, using the equation (30), that
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e[a∧βb] = 0. Assuming that the tetrads are nondegenerate, e ≡ det(eaµ) 6=
0, it can be shown that this is equivalent to βa = 0 [12]. Therefore, from
the equations (28), (30), (31) and (32) we obtain

λabµν = Rabµν , βaµν = 0 , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4ab

µ .

(33)
Here the Ricci rotation coefficients are defined as

4ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (34)

where
cabc = eµbe

ν
c (∂µe

a
ν − ∂νeaµ) . (35)

The last equation establishes that the spin connection 1-form ωab is ex-
pressed as a function of the tetrads, which then implies the same for the
curvature 2-form Rab. Finally, the remaining equation (29) then reduces to

εabcdR
bc ∧ ed = 0 , (36)

which is nothing but the vacuum Einstein field equation,

Rµν −
1

2
gµνR = 0 .

Therefore, the action (27) is classically equivalent to general relativity.

3.3. Einstein-Yang-Mills theory

As we have already mentioned above, the main advantage of the action (27)
over the Plebanski model lies in the fact that the tetrad fields are explicitly
present in the topological sector of the action. This allows one to couple
matter fields in a straightforward way [12]. However, one can do even more
[13], and couple the SU(N) Yang-Mills fields to gravity within a unified
framework of 2-group formalism.

Namely, we can modify the Poincaré 2-group structure to include the
SU(N) gauge group, as follows. We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R4 , (37)

and we define the action B of the group G in the following fashion. As in
the case of the Poincaré 2-group, it acts on itself via conjugation. Next,
it acts on H such that the SO(3, 1) subgroup acts on R4 via the vector
representation (21), while the action of the SU(N) subgroup is trivial,

τI B Pa = 0 , (38)
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where τI are the SU(N) generators. The map ∂ also remains trivial, as
before. The form of the 2-connection (α, β) now reflects the structure of
the group G,

α = ωabMab +AIτI , β = βaPa , (39)

where AI is the gauge connection 1-form. Next, the curvature for α then
becomes

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (40)

The curvature for β remains the same as before, because of (38). Finally,
the product structure of the group G implies that its Killing form 〈 , 〉g
reduces to the Killing forms for the SO(3, 1) and SU(N), along with the
identity 〈Mab , τI〉g = 0.

Given a crossed module defined in this way, its corresponding pure 2BF
action (16) becomes

S2BF =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (41)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. The action
(41) is topological, and again we add appropriate simplicity constraint
terms, in order to transform it into action with nontrivial dynamics. The
constraint giving rise to gravity is the same as in (27), while the con-
straint for the gauge fields is given as in the action (4) with the substitution
δa → ea. Putting everything together, we obtain:

S =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λI ∧

(
BI −

12

g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.

(42)
It is crucial to note that the Yang-Mills simplicity constraints in (42) are
obtained from the Yang-Mills action (4) by substituting the nondynamical
background field δa from (4) with a dynamical field ea. The relationship
between these fields has already been hinted at in the equation (5), which
describes the connection between δa and the flat spacetime metric ηµν .
Once promoted to ea, this field becomes dynamical due to the presence
of gravitational terms, while the equation (5) becomes the usual relation
between the tetrad and the metric,

gµν = ηabe
a
µe
b
ν , (43)
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further confirming the identification Ca = ea. Moreover, the total action
(42) now becomes background independent, as expected in general relativ-
ity. All this is a consequence of the fact that the tetrad field is explicitly
present in the topological sector of the action (27), and represents a clear
improvement over the Plebanski model.

Taking the variations of the action (42) with respect to the variables
Bab, ωab, βa, λab, ζ

abI , MabI , BI , λ
I , AI , and ea, we obtain equations of

motion. Similarly as before, all variables can be algebraically expressed as
functions of AI and ea and their derivatives:

λabµν = Rabµν , βaµν = 0 , ωabµ = 4abµ , λabI = FabI ,

BµνI = − e

2g
εµνρσF

ρσ
I , Babµν =

1

8πl2p
εabcde

c
µe
d
ν ,

MabI = − 1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

(44)
In addition, we obtain two differential equations — An equation for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (45)

where Γ λµν is the standard Levi-Civita connection, and an equation for ea,

Rµν − 1

2
gµνR = 8πl2p T

µν , (46)

where

Tµν ≡ − 1

4g

(
Fρσ

IF ρσIg
µν + 4FµρIFρ

νI
)
. (47)

In this way, we see that both gravity and gauge fields can be successfully
represented within a unified framework of higher gauge theory, based on a
2-group structure. A generalization from SU(N) Yang-Mills case to more
complicated cases such as SU(3)×SU(2)×U(1) is completely straightfor-
ward.

4. 3BF theory

While the structure of a 2-group can successfully describe both gravitational
and gauge fields, unfortunately it cannot accommodate other matter fields,
such as scalars or fermions. In order to remedy this drawback, we make
one further step in the categorical ladder, passing from the notion of a 2-
group to the notion of a 3-group. As it turns out, the 3-group structure is
excellent for the description of all fields that are present in the Standard
Model, coupled to gravity. Moreover, a 3-group contains one more gauge
group, which is novel and corresponds to the choice of the scalar and fermion
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fields present in the theory. This is an unexpected and beautiful result, not
present in ordinary gauge theory.

As before, we will begin by introducing the notion of a 3-group, and
constructing the corresponding 3BF action. Afterwards, we will modify
this action by adding appropriate simplicity constraints, giving rise to the-
ories with expected nontrivial dynamics. Along the way, we shall see that
scalar and fermion fields are being treated pretty much on an equal footing
with gravity and gauge fields.

4.1. Pure 3BF theory

Similarly to the concepts of a group and a 2-group, one can introduce the
notion of a 3-group in the framework of higher category theory, as a 3-
category with only one object where all the morphisms, 2-morphisms and
3-morphisms are invertible. Also, in the same way as a 2-group is equivalent
to a crossed module, it was proved that a strict 3-group is equivalent to a
2-crossed module [25].

A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,B , { , }), is an
algebraic structure specified by three Lie groups G, H and L, together
with the homomorphisms δ and ∂, an action B of the group G on all three
groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. The maps ∂, δ, B and the Peiffer lifting satisfy
certain axioms, so that the resulting structure is equivalent to a 3-group
[13].

Like in the cases of BF and 2BF actions, we can introduce a gauge
invariant topological 3BF action over the manifoldM4 for a given 2-crossed

module (L
δ→ H

∂→ G ,B , { , }). Denoting g, h and l as Lie algebras
corresponding to the groups G, H and L, respectively, one can introduce
a 3-connection (α, β, γ) given by the algebra-valued differential forms α ∈
A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding fake
3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ ,
H = dγ + α ∧B γ + {β ∧ β} ,

(48)

see [25, 26] for details. Note that γ is a 3-form, while its corresponding
field strength H is a 4-form, necessitating that the spacetime manifold be
at least 4-dimensional. Then, a 3BF action is defined as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (49)
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where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange
multipliers. Note that in precisely 4 spacetime dimensions the Lagrange
multiplier D corresponding to H is a 0-form, i.e. a scalar function. The
functionals 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric non-
degenerate forms on g, h and l, respectively. Under certain conditions, the
forms 〈 , 〉h and 〈 , 〉l are also H-invariant and L-invariant.

One can see that varying the action with respect to the variables Bα,
Ca and DA (where indices A count the generators of the group L), one
obtains the equations of motion

Fα = 0 , Ga = 0 , HA = 0 , (50)

while varying with respect to αα, βa, γA one obtains

dBα + fαβ
γBγ ∧ αβ −BαabCb ∧ βa +BαB

ADA ∧ γB = 0 , (51)

dCa − ∂aαBα +Bαa
bCb ∧ αα + 2X{ab}

ADA ∧ βb = 0 , (52)

dDA −BαABDB ∧ αα + δA
aCa = 0 . (53)

4.2. Klein-Gordon theory

Now we proceed to demonstrate that one can use the 3-group structure and
the corresponding 3BF theory to describe the Klein-Gordon field coupled to
general relativity. We begin by specifying a 2-crossed module, which is used
to construct the topological 3BF theory, and then we impose appropriate
simplicity constraints to obtain the desired equations of motion.

We specify a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows.
The groups are given as

G = SO(3, 1) , H = R4 , L = R . (54)

The group G acts on itself via conjugation, on H via the vector represen-
tation, and on L via the trivial representation. This specifies the definition
of the action B. The map ∂ is chosen to be trivial, as before. The map δ is
also trivial, that is, every element of L is mapped to the identity element of
H. Finally, the Peiffer lifting is trivial as well, mapping every ordered pair
of elements in H to an identity element in L. This specifies one concrete
2-crossed module which, as we shall see below, corresponds to gravity and
one real scalar field.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes
the form

α = ωabMab , β = βaPa , γ = γI , (55)

where I is the sole generator of the Lie group R. Since the homomorphisms
∂ and δ are trivial, as well as the Peiffer lifting, the fake 3-curvature (48)
reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (56)
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where we used the fact that G acts trivially on L, that is, Mab B I = 0.
This means that the 3-form γ transforms as a scalar with respect to Lorentz
symmetry. Consequently, its Lagrange multiplier D also transforms as a
scalar, since it also belongs to the algebra l. Since D is also a 0-form, it
transforms as a scalar with respect to diffeomorphisms as well. In other
words, D completely behaves as a real scalar field, so we relabel it into
more traditional notation, D ≡ φ, and write the pure 3BF action (49) as:

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (57)

where the bilinear form for L is 〈I , I〉l = 1.
The existence of a scalar field in the 3BF action is a crucial property of

a 3-group in a 4-dimensional spacetime, just like identifying the Lagrange
multiplier Ca with a tetrad field ea was a crucial property of the 2BF
action and the Poincaré 2-group. We can also see that the choice of the
third gauge group, L, dictates the number and the structure of the matter
fields present in the action. In this case, L = R implies that we have only
one real scalar field, corresponding to a single generator I of R. The trivial
nature of the action B of SO(3, 1) on R implies that φ transforms as a
scalar field. Finally, the scalar field appears in the topological sector of the
action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, we need to add appropriate
simplicity constraints to the action (57). In order to obtain the Klein-
Gordon field φ of mass m coupled to gravity in the standard way, the
action takes the form:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed .

(58)

The first row is the topological sector (57), the second row is the familiar
simplicity constraint for gravity from the action (27), the third and fourth
rows contain the new simplicity constraints featuring the Lagrange multi-
plier 1-forms λ and Λab and the 0-form Habc, while the fifth row is the mass
term for the scalar field.

The variation of (58) with respect to the variables Bab, ωab, βa, λab,
Λab, γ, λ, Habc, φ and ea gives us the equations of motion. As before, all
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variables can be algebraically expressed in terms of the tetrads ea and the
scalar field φ:

λabµν = Rabµν , ωabµ = 4ab
µ , γµνρ = −e

2
εµνρσ∂

σφ ,

βaµν = 0 , Λabµ =
1

12e
gµλε

λνρσ∂νφe
a
ρe
b
σ , λµ = ∂µφ ,

Habc =
1

6e
εµνρσ∂µφe

a
νe
b
ρe
c
σ , Babµν =

1

8πl2p
εabcde

c
µe
d
ν .

(59)

The equations of motion for ea and φ, however, are differential equations.
The equation for the scalar field becomes the covariant Klein-Gordon equa-
tion, (

∇µ∇µ −m2
)
φ = 0 , (60)

while the equation for the tetrads is

Rµν − 1

2
gµνR = 8πl2p T

µν , (61)

where

Tµν ≡ ∂µφ∂νφ− 1

2
gµν

(
∂ρφ∂

ρφ+m2φ2
)

(62)

is the stress-energy tensor for a single real scalar field.

4.3. Einstein-Cartan-Dirac theory

In order to describe the Dirac field coupled to Einstein-Cartan gravity, we
follow the same procedure as for the case of the scalar field, but now we

choose the 2-crossed module (L
δ→ H

∂→ G ,B , { , }) in a different way, as
follows. The groups are:

G = SO(3, 1) , H = R4 , L = R8(G) , (63)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ
and the Peiffer lifting are trivial, as before. The action of the group G on
itself is given via conjugation, on H via vector representation, and on L
via spinor representation, in the following way. Denoting the 8 generators
of the Lie group R8(G) as Pα and Pα, where the index α takes the values
1, . . . , 4, the action B of G on L is thus given explicitly as

Mab B Pα =
1

2
(σab)

β
αPβ , Mab B P

α = −1

2
(σab)

α
βP

β , (64)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the

anticommutation rule {γa , γb} = −2ηab.
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As in the case of the scalar field, the choice of the group L dictates the
matter content of the theory, while the action B of G on L specifies its
transformation properties.

Let us now proceed to construct the 3BF action. The 3-connection
(α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (65)

while the 3-curvature (F ,G ,H) is given as

F = RabMab , G = ∇βaPa ,

H =
(

dγα +
1

2
ωab(σab)

α
βγ

β
)
Pα+

(
dγ̄α −

1

2
ωabγ̄β(σab)

β
α

)
Pα

≡ (
→
∇γ)αPα + (γ̄

←
∇)αP

α ,

(66)

where we have used (64). The bilinear form 〈 , 〉l is defined via its action
on the generators:

〈Pα , Pβ〉l = 0 , 〈Pα , P β〉l = 0 ,

〈Pα , P β〉l = −δβα , 〈Pα , Pβ〉l = δαβ .
(67)

Note that the bilinear form defined in this way is antisymmetric, rather
than symmetric, when it acts on the generators. The reason for this is the
following. For general A,B ∈ l, we want the bilinear form to be symmetric.
Expanding A and B into components, we can write

〈A ,B〉l = AIBJgIJ , 〈B ,A〉l = BJAIgJI . (68)

Since we require the bilinear form to be symmetric, the two expressions
must be equal. However, since the coefficients in l are Grassmann num-
bers, we have AIBJ = −BJAI , so it follows that gIJ = −gJI . Hence the
antisymmetry of (67) — it compensates for the anticommutativity prop-
erty of the Grassman coefficients, making the bilinear form symmetric for
general algebra elements A,B ∈ l.

Now we employ the action B of G on L to determine the transformation
properties of the Lagrange multiplier D in (49). Indeed, the choice of the
group L dictates that D contains 8 independent complex Grassmannian
matter fields as its components. Moreover, due to the fact that D is a
0-form and that it transforms according to the spinorial representation of
SO(3, 1), we can identify its components with the Dirac bispinor fields, and
write

D = ψαPα + ψ̄αP
α . (69)

This is again an illustration of the fact that information about the structure
of the matter sector in the theory is specified by the choice of the group L
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in the 2-crossed module, and its transformation properties with respect to
the Lorentz group are fixed by the action B.

Given all of the above, we write the corresponding pure 3BF action as:

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (70)

In order to obtain the action that gives us the dynamics of Einstein-Cartan
theory of gravity coupled to a Dirac field, we add the following simplicity
constraints:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α
)

+ λ̄α ∧
(
γα +

i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

− 1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd.
(71)

Similarly to the previous case of the scalar field, we recognize the topological
sector in the first row, the gravitational simplicity constraint in the second
row, while the third and fourth rows contain the new simplicity constraints
for the Dirac field, featuring the Lagrange multiplier 1-forms λα and λ̄α.
The fifth row contains the mass term for the Dirac field, and a term which
ensures the correct coupling between the torsion and the spin of the Dirac
field. In particular, we want to obtain

Ta ≡ ∇ea = 2πl2psa , (72)

as one of the equations of motion, where

sa = iεabcde
b ∧ ecψ̄γ5γdψ (73)

is the Dirac spin 2-form. Of course, other alternative coupling choices are
possible, but we choose this one since this is the traditional coupling most
often discussed in textbooks.

The variation of the action (71) with respect to Bab, λ
ab, γ̄α, γα, λα,

λ̄α, ψ̄α, ψα, ea, βa and ωab, again gives us equations of motion, which can
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be algebraically solved for all fields as functions of ea, ψ and ψ̄:

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = (

→
∇µψ)α , λ̄αµ = (ψ̄

←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe
b
νe
c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcdeaµebνecρ(γdψ)α ,

βaµν = 0 , λabµν = Rabµν , ωabµ = 4ab
µ +Kab

µ .

(74)
Here Kab

µ is the contorsion tensor, constructed in the standard way from
the torsion tensor. In addition, we also obtain

Ta ≡ ∇ea = 2πl2psa , (75)

which is precisely the desired equation (72) for the torsion. Finally, the
differential equations of motion for ψ and ψ̄ are the standard covariant
Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (76)

and its conjugate,

ψ̄(i
←
∇µeµaγa +m) = 0 , (77)

where eµa is the inverse tetrad. The differential equation of motion for ea

is

Rµν − 1

2
gµνR = 8πl2p T

µν , (78)

where

Tµν ≡ i

2
ψ̄γa

↔
∇νeµaψ −

1

2
gµνψ̄

(
iγa
↔
∇ρeρa − 2m

)
ψ , (79)

Here, we used the notation
↔
∇ =

→
∇ −

←
∇. As expected, the equations of

motion (75), (76), (77) and (78) are precisely the equations of motion of
the Einstein-Cartan-Dirac theory.

4.4. Weyl and Majorana fields coupled to Einstein-Cartan grav-
ity

As is well known, the Dirac fermions are not an irreducible representation
of the Lorentz group, and one can rewrite them as left-chiral and right-
chiral irreducible Weyl fermion fields. Hence, it is useful to construct the
2-crossed module and a constrained 3BF action for left and right Weyl
spinors. For simplicity, we will discuss only the left-chiral spinor field (the
right-chiral can be studied analogously). Additionally, we can also describe
Majorana fermions using the same formalism, the only difference being the
presence of an additional mass term in the Majorana action.
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We soecify a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), in a way similar
to the Dirac case, as follows. The groups are:

G = SO(3, 1) , H = R4 , L = R4(G) . (80)

The maps ∂, δ and the Peiffer lifting are trivial. The action B of the group
G on G, H and L is given in the same way as for the Dirac case, whereas
the spinorial representation reduces to

Mab B P
α =

1

2
(σab)

α
βP

β , Mab B Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (81)

where σab = −σ̄ab = 1
4(σaσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in

which ~σ denotes the set of three Pauli matrices. The four generators of the
group L are denoted as Pα and Pα̇, where the Weyl indices α, α̇ take values
1, 2.

The 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (82)

while the 3-curvature (F ,G ,H) is

F = RabMab , G = ∇βaPa ,

H =
(
dγα +

1

2
ωab(σab)βαγβ

)
Pα +

(
dγ̄α̇ +

1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇
)
P α̇

≡ (
→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

(83)

The Lagrange multiplier D now contains as coefficients the spinor fields ψα
and ψ̄α̇,

D = ψαP
α + ψ̄α̇Pα̇ , (84)

and the bilinear form 〈 , 〉l for the group L is

〈Pα , P β〉l = εαβ , 〈Pα̇ , Pβ̇〉l = εα̇β̇ ,

〈Pα , Pβ̇〉l = 0 , 〈Pα̇ , P β〉l = 0 ,
(85)

where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita

symbols.
The pure 3BF action (49) now becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (86)
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In order to obtain the suitable equations of motion for the Weyl spinors,
we again introduce appropriate simplicity constraints, to obtain:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧ (Bab − 1

16πl2p
εabcdec ∧ ed)

− λα ∧ (γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇)

− λ̄α̇ ∧ (γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄dα̇βψβ) .

(87)

The new simplicity constraints, in the third and fourth rows, feature the
Lagrange multiplier 1-forms λα and λ̄α̇. Also, in analogy to the coupling
between the spin and the torsion in Einstein-Cartan-Dirac theory, the term
in the fifth row is chosen to ensure that the coupling between the Weyl spin
tensor

sa ≡ iεabcdeb ∧ ec ψασdαβ̇ψ̄
β̇ (88)

and torsion is given as:
Ta = 4πl2psa . (89)

The action for the Majorana field is precisely the same, but for an additional
mass term in the action:

− 1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (90)

The variation of the action (87) with respect to the variables Bab, λ
ab,

γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇, ea, βa and ωab gives us the equations of motion,
which can be algebraically solved for all variables as functions of ψα, ψ̄α̇

and ea:

βaµν = 0 , λabµν = Rabµν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄α̇ ,

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4abµ +Kabµ ,

γαµνρ = iεabcde
a
µe
b
νe
c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe
b
νe
c
ρσ̄

dα̇βψβ .

(91)

In addition, one also obtains (89). Finally, the differential equations of
motion for the spinor and tetrad fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄β̇ = 0 , (92)
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and

Rµν − 1

2
gµνR = 8πl2p T

µν , (93)

where

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

−1

2
gµν
(
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄

)
.

(94)

Here we have suppressed the spinor indices, for simplicity. In the case of
the Majorana field, the equations of motion (91) remain the same. The
equations of motion for ψα and ψ̄α̇ obtain the additional mass term,

iσaαβ̇e
µ
a∇µψ̄β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (95)

while the stress-energy tensor becomes

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

−gµν 1

2

[
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −

1

2
m
(
ψψ + ψ̄ψ̄

)]
.

(96)

5. Conclusions

Let us summarize the results of the paper. In Section 2 we have introduced
the BF theory and discussed models based on constrained BF action, in
particular the Yang-Mills theory in Minkowski spacetime and the Plebanski
formulation of general relativity. Section 3 was devoted to the first step in
the categorical ladder and the 2BF theory. After introducing the notions
of a 2-group, a crossed module, and the corresponding 2BF theory, we
have studied the 2BF formulation of general relativity and the Einstein-
Yang-Mills theory. Then, in Section 4 we have performed one more step in
the categorical ladder, and introduced the notions of a 3-group, 2-crossed
module, and the 3BF theory. This structure was employed to construct
the constrained 3BF actions for the cases of Klein-Gordon, Dirac, Weyl
and Majorana fields, each coupled to the Einstein-Cartan gravity in the
standard way. In those descriptions, it turned out that the scalar and
fermion fields are associated to a new gauge group, similar to the gauge fields
being associated to a gauge group in the Yang-Mills theory. This opens up a
possibility of a classification of matter fields based on an algebraic structure
of a 3-group.

All the obtained results serve to complete the first step of the spinfoam
quantization programme, as outlined in the Introduction. This paves the
way to the study of steps 2 and 3 of the programme. Namely, the full action
for gravity, gauge fields and matter is written completely in the langulage of
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differential forms, which can be easily adapted to a triangulated spacetime
manifold, in the sense of Regge calculus. This can be seen in the following
table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄α̃ Ga

4 4-simplex vertex 4-form H, Hα̃, H̄α̃

This data can be utilized to construct a Regge-discretized topological
3BF action, and from that a state sum Z, giving rise to a rigorous definition
of the path integral

Z =

∫
Dg
∫
Dφ eiS[g,φ] , (97)

which is a generalization of (1) in the sense that it adds matter fields
(including the gauge boson sector) to gravity at the quantum level. Being
a topological theory, and given the underlying structure of the 3-group, a
pure 3BF action ought to ensure the topological invariance of the state sum
Z, i.e., Z should be triangulation independent. This step, however, requires
the generalizations of the Peter-Weyl and Plancharel theorems to 2-groups
and 3-groups, which are unfortunately still missing (though there are some
attempts to circumvent them at least in the 2-group case [27, 28]). Namely,
the purpose of the Peter-Weyl and Plancharel theorems is to provide a
decomposition of a function on a group into a sum over the corresponding
irreducible representations, which then specifies the spectrum of labels for
the simplices in the triangulation, and fixes the domain of values for the
fields living on those simplices. In the absence of the two theorems, one
can still try to guess the irreducible representations of the 2- and 3-groups,
as was done for example in the spincube model of quantum gravity [12],
or to try to construct the state sum using other techniques, as was done
in [27, 28]).

Of course, when building a realistic theory, we are not interested in a
topological theory, but instead in one which contains local propagating de-
grees of freedom. Thus the state sum Z need not be a topological invariant.
This is obtained via the step 3 of the spinfoam quantization programme, by
imposing the simplicity constraints on Z. The classical actions discussed in
this paper manifestly distinguish the topological sector from the simplicity
constraints, which have been explicitly determined. Imposing them should
thus be a straightforward procedure for a given Z. Completing this pro-
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gramme would ultimately lead us to a tentative state sum describing both
gravity and matter at a quantum level, which is a topic for future research.

In addition to the construction of a full quantum theory of gravity,
there are also many additional possible studies of the classical constrained
3BF action. For example, a Hamiltonian analysis of the theory could be
interesting for the canonical quantization programme, and some work has
begun in this area [29]. Also, it is worth looking into the idea of imposing
the simplicity constraints using a spontaneous symmetry breaking mecha-
nism. Finally, one can also study in more depth the mathematical structure
and properties of the simplicity constraints. The list is not conclusive, and
there may be many other interesting topics to study.
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Abstract

We describe a theory of quantum gravity which is based on the assumption
that the spacetime structure at small distances is given by a piecewise linear (PL)
4-manifold corresponding to a triangulation of a smooth 4-manifold. The funda-
mental degrees of freedom are the edge lengths of the triangulation. One can work
with finitely many edge lengths, so that the corresponding Regge path integral can
be made finite by using an appropriate path-integral measure. The semi-classical
limit is computed by using the effective action formalism, and the existence of
a semi-classical effective action restricts the choice of the path-integral measure.
The classical limit is given by the Regge action, so that one has a quantum gravity
theory for a piecewise-flat general relativity. By using the effective action formal-
ism we show that the observed value of the cosmological constant can be recovered
from the effective cosmological constant. When the number of 4-simplices in the
spacetime triangulation is large, then the PL effective action is well approximated
by a quantum field theory effective action with a physical cutoff determined by
the smallest edge length.

1. Introduction

The standard approach to the problem of constructing a quantum gravity
(QG) theory [1, 2] can be described as the following problem. Let M be a
smooth 4-manifold, of topology Σ × I, where Σ is a 3-manifold and I an
interval from R. Let g be a Minkowski-signature metric on M and Φ a set
of matter fields on M . Then the goal is to find a triple (ĝ, Φ̂, Û), where

ĝ and Φ̂ represent Hermitian operators parametrized by the points of M ,
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acting in some Hilbert space H, while Û is a unitary evolution operator
parametrized by I, such that the the classical limit (~→ 0) of the quantum
time-evolution is equivalent to the Einstein equations.

The best known example of this approach is Loop Quantum Gravity
(LQG), see [3] for a recent review and references. In the LQG case, the
Hilbert space H is only known to be a subset of a non-separable Hilbert
space and Û can be constructed only for a triangulation T (M) of M , so
that it is not clear what is the classical limit. Note that in the standard QG
approach, the structure of M is not changed after the quantization, and it is
well known that this is the main source of the difficulties for a quantization
of gravity [1, 2]. This leads us to an alternative approach where M is

replaced by a quantum spacetime M̂ . The obvious choice would be a non-
commutative manifold based on M , like in the case of noncommutative
geometry (NCG) [4], where the coordinates of M become elements of a
noncommutative algebra. Another choice is made in the superstring theory
[5], where the coordinates of M become coordinates of the loop manifold
LM and new Grassmann (anticommuting) coordinates are added, so that

M̂ is a loop super manifold.

In this paper we would like to present the case when M̂ = T (M), see

[12, 13]. This is clearly a much simpler choice for M̂ than the one made in
NCG or in the superstring theory, but the price paid is that the spacetime
triangulation becomes a physical structure. However, the PL manifold
T (M) looks like the smooth manifold M when the number of 4-simplices is
large. Also, by using T (M) one reduces the infinite number of the degrees
of freedom (DOF) for g and Φ to a finite number, which then simplifies the
quantization.

Note that Regge was the first to use T (M) in order to define the path
integral for general relativity (GR) [6], see [7] for a modern review. How-
ever, in Regge’s approach the triangulation was an auxiliary structure and
had to be removed via the smooth limit T (M) → M . However, obtaining
the smooth limit in the Regge approach is a difficult problem. The same
applies to the case of spin-foam models of LQG, which can be only defined
when the spacetime is a PL manifold. In causal dynamical triangulations
(CDT) approach [8], T (M) is also used to define the path integral, but it is
also considered an auxiliary structure. Obtaining the smooth limit in CDT
is proposed by performing a sum over the triangulations.

2. PL gravity path integral

Let T (M) be a regular1 triangulation of a smooth 4-manifold M . We will
assign positive numbers Lε to the edges ε of T (M). If we think of an Lε as
a distance between two vertices of T (M) induced by some metric, then we

1Any two k-simplices of T (M) cannot have more than one common (k − 1)-simplex,
where k = 1, 2, 3, 4.
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can define a constant metric in each 4-simplex σ

g
(σ)
kl =

L2
0k + L2

0l − L2
kl

2L0kL0l
, 1 ≤ k, l ≤ 4 , (1)

where the indices 0, 1, 2, 3, 4 denote the vertices of a 4-simplex σ. Hence we
replace a smooth metric g on M by a PL version (1). We want that the PL
metric has the Minkowski signature, and this can be ensured by requiring
that Lε satisfy the triangle inequalities for the triangles which belong to
one of the tetrahedrons of σ, for example the tetrahedron (1, 2, 3, 4), while
the Lε of the triangles (0, i, j) must not satisfy the triangle inequalities.

Having all Lε > 0 means that all triangles in T (M) are spacelike. For
M = Σ× I manifolds, this gives an accordion-like triangulation (triangula-
tion of a cylinder). A more natural triangulation is to take a finite number
of spacelike slices Tk(Σ) which are linked by timelike edges such that each
4-simplex has a spacelike tetrahedron in Tk and a vertex in Tk−1 or in Tk+1.
This class of triangulations is used in CDT models [8]. We will then require
that the Lε of Tk satisfy the triangle inequalities, while a timelike edge will
be assigned an imaginary length iLε. Hence the labels of the edges of time-
like triangles will not satisfy the triangle inequalities and the metric (1)
will have the correct signature.

The curvature scalar R will be concentrated on the triangles and R will
be given by the deficit angle divided by the area of the dual face. Hence in
each σ we have a flat metric (1) so that we can say the corresponding PL
metric is a piecewise-flat metric.

Note that an Lε label represents a proper length, so that Lε is invariant
under the local Lorentz transformations in each 4-simplex. We will also
have (Lε)

2 > 0 for a spacelike edge, while (Lε)
2 < 0 for a timelike edge.

The Einstein-Hilbert action for the PL metric (1) becomes the Regge
action

SRc =
1

GN

F∑
∆=1

A∆(L)θ∆(L) + ΛcV4(L) , (2)

whereGN is the Newton constant, A∆(L) is the area of a triangle ∆ ∈ T (M)
and θ∆ is the deficit angle. Λc is the cosmological constant and V4 is the
4-volume of T (M). See [8] how to define (2) when the timelike triangles are
present. Note that the Regge action describes a theory with a finite number
of DOF when Σ is compact, while in the case when Σ is non-compact, we
can restrict Lε to be non-zero only in a ball B ⊂ Σ.

One can also couple the matter fields to a Regge PL metric and the cor-
responding smooth actions will become the PL actions for a finite number
of matter DOF. For example, a scalar field will be defined by the values of
the field at the vertices of T (M), which is equivalent to a PL function on
the 4-polytopes of the dual triangulation.
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In the case of a scalar field matter, the Regge path integral will be given
by the following (E + V )-dimensional integral

Z =

∫
DE

µ(L) dEL

∫
RV

V∏
ν=1

dφν e
i[SRc(L)+Sm(L,φ)]/~ , (3)

where E is the number of the edges in T (M) and V is the number of the
vertices in T (M) [13]. Sm is the PL form of the scalar-field action and
the integration region DE is a subset of RE

+ where the triangle inequalities
hold. The measure µ has to be chosen such that it makes Z finite. The
matter PI measure is taken to be trivial and we will assume that the matter
path integral is finite. This is true, because the matter path integral will
be given by a finite product of the integrals of the type

I(α, β) =

∫ ∞
−∞

dx e−αx
2−βx4 , (4)

where α, β ∈ C. Since I is convergent for α, β > 0, the analytic continua-
tion I(iα, iβ) will be finite.

Note that in the standard Regge formulation the spacetime metric is of
the Euclidean signature. This was done in analogy to the QFT case where
the Euclidean signature improves the convergence of the path integral (3).
However, in the QG case this does not help, because the scalar curvature
also changes the sign in the Euclidean case and can be unbounded. Actually,
the Lorentzian integral has better convergence properties, which can be
seen on a toy example R(x) = αx2 where x ∈ R+ and α is a constant

different from zero. Then ZE =
∫∞

0 dx e−R(x) is convergent only for α > 0

while ZL =
∫∞

0 dx eiR(x) is convergent for any sign of α. The presence of
imaginary edge lengths and imaginary angles in the Lorentzian case is not
a problem, since all the geometric quantities can be defined [8].

Finding the smooth limit T (M)→M for Z is a difficult problem. How-
ever, there is a promising approach, based on the Wilson renormalization
group [7]. In this approach one considers Z as function of the dimensionless
couplings γ e λ

γ = l20/(GN~) = l20/l
2
P , λ = l40Λc/~ = l40/(L

2
c l

2
P ) ,

where L2
c = GN/Λc and l0 is an arbitrary length. One then looks for

a critical point P0 = (γ0, λ0) where the second derivatives of Z diverge
so that there is a second-order phase transition. At the critical point the
correlation length diverges, so that a transition to the smooth phase occurs.
However, the problem with this approach is that at P0 the perturbation
theory does not apply, so that the calculation has to be done by using
numerical methods. Also the semiclassical limit l2P → 0 corresponds to a
strong coupling region γ →∞ and λ→∞ so that it is difficult to determine
it analytically.
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However, the easiest way to determine the semiclassical limit in a QG
theory defined by a path integral is to use the effective action, see [9, 10,
11, 12, 13]. Namely, the effective action can be calculated analytically in
the ~ → 0 limit. Also the PI measure µ(L) has to be such that allows a
semiclassical expansion for the effective action for large Lε. This gives us
an additional constraint on the choice of µ(L).

3. Effective action for PL quantum gravity

We will assume that T (M) is the fundamental spacetime structure, i.e. the
spacetime is a piecewise linear 4-manifold T (M) with a flat metric in each
cell (4-simplex σ). If N is the number of cells of T (M), then for N � 1,
T (M) will look like the smooth manifold M on a scale much larger than
the maximal edge length.

By an appropriate choice of the measure µ the integral Z(T (M)) can
be made finite. Since T (M) is the physical spacetime, there is no need
to define the smooth limit T (M) → M . Instead, we need a large-N ap-
proximation for the observables. This is analogous to the fluid dynamics
situation where on the scales much larger than the inter-molecular distance
we can approximate the molecular velocities as a smooth field and use the
Navier-Stokes equations.

We will determine the semiclassical limit of PL quantum gravity by
using the effective action. It can be computed by using the effective action
equation in the limit Lε � lP =

√
GN~.

Let us recall first the effective action definition from quantum field
theory (QFT). Let φ be a real scalar field on M and let

S(φ) =
1

2

∫
M
d4x
√
|g|
[
gµν ∂µφ∂νφ−

1

2
ω2φ2 − λφ4

]
,

be a flat-spacetime action. The effective action Γ (φ) can be determined
from the following integro-differential equation

eiΓ (φ)/~ =

∫
Dh exp

[
i

~
S(φ+ h)− i

~

∫
M
d4x

δΓ

δφ(x)
h(x)

]
, (5)

see [14, 15].
Note that a generic solution Γ (φ) is a function with values in C. The

Wick rotation is used to obtain a real-valued function Γ (φ). This is done
by solving first the EA equation in the Euclidean spacetime

e−ΓE(φ)/~ =

∫
Dh exp

[
−1

~
SE(φ+ h) +

1

~

∫
M
d4x

δΓE
δφ(x)

h(x)

]
. (6)

Then x0 = −it is inserted into a solution ΓE(φ), where (x0, xk) are the
spacetime coordinates, so that

Γ (φ) = iΓE(φ)|x0=−it .
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However, the Wick rotation cannot be used in quantum gravity, since
in many problems of interest, introducing a flat background metric does
not make sense. One way to resolve this difficulty is to use the fact that
the Wick rotation in QFT is equivalent to

Γ (φ)→ ReΓ (φ) + ImΓ (φ) , (7)

see [9, 10]. This prescription is convenient for quantum gravity because it
does not involve a background metric, nor a system of coordinates.

In the case of PL quantum gravity without matter, the effective action
(EA) equation is given by

eiΓ (L)/l2P =

∫
DE(L)

dExµ(L+ x)eiSRc(L+x)/l2P−i
∑E
ε=1 Γ

′
ε(L)xε/l2P , (8)

where l2P = GN~ and DE(L) is a subset of RE obtained by translating DE

by a vector −L [12]. Note that DE(L) ⊆ [−L1,∞)× · · · × [−LE ,∞).
We will look for a semiclassical solution

Γ (L) = SRc(L) + l2PΓ1(L) + l4PΓ2(L) + · · · ,

where Lε � lP and
|Γn(L)| � l2P |Γn+1(L)| .

When Lε →∞, then DE(L)→ RE and

eiΓ (L)/l2P ≈
∫
RE

dExµ(L+ x)eiSRc(L+x)/l2P−i
∑E
ε=1 Γ

′
ε(L)xε/l2P . (9)

Actually, one can use the equation (9) to determine Γ (L) for large L
when µ falls off sufficiently quickly [12]. The reason is that

DE(L) ≈ [−L1,∞)× · · · × [−LE ,∞) ,

for Lε → ∞, so that the relevant behaviour is captured by the following
one-dimensional integral∫ ∞

−L
dx e−zx

2/l2P−wx =
√
π lP exp

[
− 1

2
log z + l2P

w2

4z

+lP
e−zL̄

2/l2P

2
√
πzL̄

(
1 +O(l2P /zL̄

2)
) ]
,

where L̄ = L + l2P
w
2z and Re z = −(logµ)′′. The non-analytic terms in ~

will be absent if

lim
L→∞

e−zL̄
2/l2P = 0⇔ (logµ)′′ < 0 for L→∞ .
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Hence the perturbative solution exists for the exponentially damped mea-
sures and it will be given by the equation (9).

For DE(L) = RE and µ(L) a constant, the perturbative solution is
given by the EA diagrams

Γ1 =
i

2
Tr logS′′Rc , Γ2 = 〈S2

3G
3〉+ 〈S4G

2〉 ,

and

Γ3 = 〈S4
3G

6〉+ 〈S2
3S4G

5〉+ 〈S3S5G
4〉+ 〈S2

4G
4〉+ 〈S6G

3〉 , ...

where G = i(S′′Rc)
−1 is the propagator and Sn = iS

(n)
Rc /n! for n > 2, are the

vertex weights, see [15, 12]. The contractions 〈X · · ·Y 〉 are the sums over
the repeated DOF indices

〈X · · ·Y 〉 =
∑
k,...,l

Xk...l · · ·Yk...l .

When µ(L) is not a constant, then the perturbative solution is given by

Γ (L) = S̄Rc(L) + l2P Γ̄1(L) + l4P Γ̄2(L) + · · · ,

where
S̄Rc = SRc − il2P logµ ,

while Γ̄n is given by the sum of n-loop EA diagrams with Ḡ propagators
and S̄n vertex weights [12].

Therefore

Γ1 = −i logµ+
i

2
Tr logS′′Rc ,

Γ2 = 〈S2
3G

3〉+ 〈S4G
2〉+Res[l−4

P Tr log Ḡ] ,

Γ3 = 〈S4
3G

6〉+ · · ·+ 〈S6G
3〉+Res[l−6

P Tr log Ḡ]

+Res[l−6
P 〈S̄

2
3Ḡ

3〉] +Res[l−6
P 〈S̄4Ḡ

2〉] ,
see [12].

Since the PI measure µ has to vanish exponentially for large edge
lengths, a natural choice is

µ(L) = exp
(
−V4(L)/(L0)4

)
, (10)

where L0 is a length parameter [12]. Since log µ(L) = O
(
(L/L0)4

)
2 then

for Lε > Lc and
L0 >

√
lP Lc , (11)

2The notation f(x1, ..., xn) = O(xα) means that f(λx1, ..., λxn) = O(λα) for λ→∞.
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where L−2
c = Λc, we get the following large-L asymptotics [13, 16]

Γ1(L) = O(L4/L4
0) + logO(L2/L2

c) + log θ(L) +O(L2
c/L

2) (12)

and
Γn+1(L) = O

(
(L2

c/L
4)n
)

+ L−2n
0c O

(
(L2

c/L
2)
)
, (13)

where L0c = L2
0/Lc.

4. Effective cosmological constant

The asymptotics (12) and (13) imply that the series

Γ (L) =
∑
n≥0

(lP )2nΓn(L)

is semiclassical (SC) for Lε � lP and L0 �
√
lP Lc.

Let Γ → Γ/GN so that Seff = (ReΓ+ImΓ )/GN . The effective action
is then given by

Seff =
SRc
GN

+
l2P

GNL4
0

V4 +
l2P

2GN
Tr logS′′Rc +O(l4P ) ,

for Lε � lP . Hence the O(~), or the one-loop, cosmological constant (CC)
for pure gravity is given by

Λ = Λc +
l2P
L4

0

= Λc + Λqg . (14)

One can show that the one-loop cosmological constant is exact because
there are no O(L4) terms beyond the one-loop order [13, 16]. This is a
consequence of the large-L asymptotics

log S̄′′Rc(L) = logO(L2/L̄2
c) + log θ(L) +O(L̄2

c/L
2)

Γ̄n+1(L) = O
(
(L̄2

c/L
4)n
)
,

where L̄2
c = L2

c

[
1 + il2P (L2

c/L
4
0)
]−1/2

.
Hence the one-loop formula (14) is exact in the case of pure gravity. If

Λc = 0, the observed value of Λ is obtained for L0 ≈ 10−5m so that l2PΛ ≈
10−122 [12]. Note that L0 ≈ 10−5m is consistent with the requirement that
L0 � lP , which replaces the SC condition L0 �

√
LclP when Λc = 0.

The formula (14) is intriguing but unrealistic, since there is matter in
the universe. In order to obtain a realistic expression for the effective CC,
we need to study the EA equation with matter. This study also requires
the understanding of the emergence of the smooth spacetime from a PL
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manifold T (M). If T (M) has a large number of the edges (E � 1) then
the following approximations are valid

SR(L) ≈ 1

2

∫
M
d4x
√
|g|R(g) , (15)

and

ΛcV4(L) ≈ Λc

∫
M
d4x
√
|g| = Λc VM , (16)

where |g| = | det g|. These are the standard formulas of the Regge cal-
culus and they nicely illustrate how the PL manifold T (M) with many
4-simplices can be approximated by a smooth manifold M with a smooth
(differentiable) metric g.

Similarly, the effective action Γ (L) will be approximated by a QFT
effective action Γ ∗(g), where g is a smooth metric on M . Let LK be a
minimal length in a triangulation, so that Lε ≥ LK and let LK � lP .
When E � 1 the following approximation is valid

Tr logS′′R(L) ≈
∫
M
d4x
√
|g|
[
aR2 + bRµνR

µν
]

log(K/K0) , (17)

where Rµν is the Ricci tensor, and a, b,K0 are some constants.
The formula (17) follows from the fact that a PL function on a lattice

with a cell size LK can be written as a Fourier integral over a compact
region |q| ≤ π/LK where q is the wave vector3. Hence the PL trace-log
term can be approximated by using the QFT formulation of GR with a
momentum cutoff K = 2π~/LK .

The effect of the matter on the CC can be studied by introducing a
scalar field on M

Sm(g, φ) =
1

2

∫
M
d4x
√
|g| [gµν ∂µφ∂νφ− U(φ)] , (18)

where U = 1
2ω

2φ2 + λφ4.
On a PL manifold T (M) the action (18) becomes

Sm =
1

2

∑
σ

Vσ(L)
∑
k,l

gklσ (L)φ′k φ
′
l −

1

2

∑
p

V ∗p (L)U(φp) ,

where φ′k = (φk − φ0)/L0k and k, l, 0 are vertices in a 4-simplex σ, p labels
the vertices of T (M) and V ∗ is the volume of the dual cell. Then the total
classical action of gravity plus matter on T (M) is given by

S(L, φ) =
1

GN
SRc(L) + Sm(L, φ) .

3This region is known as the first Brillouin zone.
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The corresponding EA equation is given by

e
i

l2
P

Γ (L,φ)
=

∫
DE(L)

dEl

∫
RV

dV χ

exp

[
i

l2P

(
S̄(L+ l, φ+ χ)−

∑
ε

∂Γ

∂Lε
lε −

∑
p

∂Γ

∂φp
χp

)]
, (19)

where S̄ = SRc − il2P logµ+GNSm, see [13].
We will look for a perturbative solution

Γ (L, φ) = S(L, φ) + l2PΓ1(L, φ) + l4PΓ2(L, φ) + · · · ,

and require it to be semiclassical for Lε � lP and |
√
GN φ| � 1. This can

be checked on the E = 1 toy model

S(L, φ) = (L2 + L4/L2
c)θ(L) + L2θ(L)φ2(1 + ω2L2 + λφ2L2) ,

where θ(L) is a homogeneous function of degree zero.
It is not difficult to see that

Γ (L, φ) = Γg(L) + Γm(L, φ) ,

and
Γm(L, φ) = V4(L)Ueff (φ)

for constant φ where Ueff (0) = 0. Furthermore,

Γg(L) = Γpg(L) + Γmg(L) ,

where Γpg is the pure gravity contribution and Γmg is the matter induced
contribution.

In the smooth-manifold approximation one has

Γmg(L) ≈ ΛmVM + Ωm(R,K) ,

where K = 2π~/LK is the momentum cutoff. One can show that

Ωm = Ω1l
2
P +O(l4P )

and

Ω1(R,K) = a1K
2

∫
M
d4x
√
|g|R

+ log(K/ω)

∫
M
d4x
√
|g|
[
a2R

2 + a3R
µνRµν

+ a4R
µνρσRµνρσ + a5∇2R

]
+ O(1/K2) ,

(20)
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where Rµνρσ is the Riemann curvature tensor, see [13].
The effective CC will be then given as

Λ = Λc + Λqg + Λm ,

where Λqg is given by (14). Note that the matter contribution to CC can
be approximated by a sum

Λm ≈
∑
γ

v(γ,K) (21)

where v(γ,K) is a one-particle irreducible vacuum Feynman diagram for
the field-theory action Sm in flat spacetime with the cutoff K. One can
show that∑

γ

v(γ,K) ≈ l2P K
4
[
c1 ln(K2/ω2) +

∑
n≥2

cn(λ̄)n−1(ln(K2/ω2))n−2

+
∑
n≥4

dn(λ̄)n−1(K2/ω2)n−3
]
, (22)

for K � ω, where λ̄ = l2Pλ, see [16]. Therefore one has a highly divergent
sum of matter vacuum-energy contributions to the cosmological constant
when K → ∞. This is the famous cosmological constant problem which
appears in any QFT formulation of quantum gravity.

However, in the PL formulation of quantum gravity (PLQG), the QFT
which produces the infinite sum in (22) is just an approximation. The
fundamental theory has finitely many DOF so that the exact solution of the
EA equation will give a finite and cutoff-independent value for Λ. Therefore

Λm = V (ω2, λ, l2P ) , (23)

and

Λ = ± 1

L2
c

+
l2P

2L4
0

+ V (ω2, λ, l2P ) . (24)

The equation (24) can be used to fix the free parameters L0 and Lc. By
equating Λ with the experimentally observed value, we obtain

λ = x+ y + λm (25)

where λ = l2PΛ ≈ 10−122, x = ± l2P /L2
c , y = l4P /2L

4
0 and λm = l2PV . The

equation (25) has infinitely many solutions, but we also have to impose the
condition for the existence of the semi-classical limit (11). This gives the
restriction

0 < y < 2|x| . (26)

The value of λm is not known, but for any value of λm the equation
(25) has infinitely many solutions which obey the restriction (26). Note
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that the solution x = −λm and y = λ, which was proposed in [13], will be
acceptable if |λm| > λ/2. This solution is special because it gives a value
for L0 which is independent of the value of λm, L0 ≈ 10−5m. This is the
same value which was obtained in the case of pure PL gravity without the
cosmological constant [12].

5. The CC problem in quantum gravity

The formula (24) for the exact effective cosmological constant is an essential
ingredient for the resolution of the CC problem from QFT in the context
of a QG theory. The result (24) can be better understood if we recall the
definition of the CC problem given by Polchinski [17]. According to this
definition, the CC problem in a QG theory has two parts:

1) show that the observed CC value is in the CC spectrum,

2) explain why the CC takes the observed value.

The meaning of the first part (P1) of the CC problem is obvious if the
cosmological constant is represented by an operator. In the case when one
has a quantum corrected expression of the classical CC value, one has to
show that there are values of the free parameters which give the observed
CC value. The PLQG theory clearly solves P1, while the second part (P2) of
the CC problem cannot be addressed by the current formalism. The reason
is that one has to generalise the standard formalism of quantum mechanics
in order to provide a mechanism for a selection of a wavefunction of the
universe with a particular value of the cosmological constant.

Note that demonstrating P1 is a highly non-trivial task in any QG
theory. The problem P1 has been addressed so far only in PLQG theory
and in string theory. In the string theory case there are only plausibility
arguments that P1 is true [18, 19]. The CC spectrum in string theory is
discrete with O(10500) values [18]. Although positive CC values are not
natural in string theory, a mechanism for their appearance was provided in
[19]. Hence it is plausible to assume that the CC spectrum is sufficiently
dense around zero such that the observed value is sufficiently close to some
CC spectrum value.

The second part of the CC problem has been only addressed in string
theory. This is the multiverse proposal, see [21], and the assumption is
that there are many universes, each having a fixed CC value from the
CC spectrum. We live in the universe with the CC value Λcl

2
P ≈ 10−122,

because this is the value that allows formation of galaxies, planets and life,
see [20] for the anthropic determination of the CC value.

Note that there are many proposals for P2 which are not derived from
a QG theory, but instead it is assumed that a certain effective action exists
such that its equations of motion give the required CC value, see for example
[22].
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6. Conclusions

The PLQG theory is a theory of quantum gravity which has finitely many
degrees of freedom and no infinities. The underlying spacetime structure
is a PL manifold T (M) and the smooth spacetime M is recovered as an
approximation valid when the number of 4-simplices is large and at a length
scale much larger than the typical edge length. The smooth spacetime
approximation is analogous to the smooth vector field approximation for
the molecular velocities in a fluid.

The PLQG theory is defined by the Regge path integral with a non-
trivial measure. The measure is chosen such that it gives a finite path
integral, and also it has to admit a semi-classical solution of the effective
action equation. These criteria select the exponentially vanishing measures
for large edge lengths, and a simple and natural choice for the measure
is (10). This measure simplifies the analysis of the effective cosmological
constant and one can obtain the formula (24) for the exact effective CC,
i.e. to all orders in ~. The two free parameters in (24) can be consistently
chosen such that the observed CC value is obtained. This is an important
requirement for any QG theory and PLQG is the only existing QG theory
where this property has been demonstrated explicitly.

Another nice property of the PLQG theory is that the effective action Γ
can be approximated by a QFT effective action Γ ∗ when the number of 4-
simplices in T (M) is large. Γ ∗ can be calculated by using the perturbative
QFT for GR with matter and with a momentum cutoffK, when Lε ≥ LK �
lP . Hence the minimal edge length LK in the triangulation determines the
momentum cutoff K and

Γ (L1, · · · , LE , φ1, · · · , φV ) ≈ Γ ∗(g(x), φ(x),K) , (27)

for E � 1 and V � 1.
The QFT approximation (27) will be still valid for LK ≤ lP , but in this

case Γ ∗ cannot be calculated by the perturbative QFT methods. Instead,
one has to use a non-perturbative method to solve the EA equation. The
existence of the QFT approximation (27) implies that one can obtain the
running of the elementary particle masses and the coupling constants with
K, see for example the equation (20).

Note that the effective action only makes sense for the spacetimes which
are given by the direct product of a 3-manifold with an interval. In order to
study the quantum cosmology questions, one needs to consider 4-manifolds
of general topology, which is different from Σ×I topology. WhenM 6= Σ×I,
the concept of the effective action cannot be used. However, the Hartle-
Hawking (HH) wavefunction [23] can be defined for any T (M) by using the
PLQG path integral (3). By choosing a triangulation for a manifold

M ∪ (Σ× I) , ∂M = Σ ,

one can describe a Big-Bang quantum cosmology with an initial HH state,
which evolves by the evolution operator defined by the PLQG path integral
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for the T (Σ× I) part of the spacetime. It is then plausible to assume that
the effective dynamics which corresponds to the time evolution of the HH
state will be given by the PLQG effective action, defined by the equation
(19).
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savremene matematičke fizike)
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1. Dragović, Branko, 1945- [уредник] [аутор додатног текста]
а) Математичка физика -- Зборници

COBISS.SR-ID 13561865



10th MATHEMATICAL PHYSICS MEETING:

School and Conference on

Modern Mathematical Physics

Belgrade, September 9 - 14, 2019

Organizers

• Institute of Physics, Belgrade, Serbia

• Faculty of Mathematics, Belgrade, Serbia

• Mathematical Institute, Belgrade, Serbia

• Faculty of Science, Kragujevac, Serbia

• Serbian Academy of Sciences and Arts, Serbia

Co-organizers

• Institute of Nuclear Sciences “Vinča”, Belgrade, Serbia
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matičke fizike. - Tiraž 150. - Str. V: Preface / editors. - Napomene i bibliografske reference uz
tekst. - Bibliografija uz svaki rad.

ISBN 978-86-82441-48-9
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Marko Vojinović (Institute of Physics, Belgrade)

Sponsors

• Ministry of Education, Science and Technological

Development, Republic of Serbia

• The Abdus Salam International Centre

for Theoretical Physics

iv



P R E F A C E

This volume contains some reviews and original research contributions,
which are related to the 9th Mathematical Physics Meeting: School
and Conference on Modern Mathematical Physics, organized by
the Institute of Physics, Belgrade (Serbia), September 18–23, 2017. The
programme of this meeting was mainly oriented towards some recent de-
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Hyperspherical three-body variables applied to
lattice QCD data 253

N. Manojlovic, N. Cirilo António and I. Salom

Quasi-classical limit of the open Jordanian XXX spin chain 259
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Representation of T-duality of type II pure spinor superstring in
double space 281

B. Sazdović
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