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Buorpadcku nogaum KaHAUAATKUIbE

Mapuja WnHanK poheHa je 03.01.1997. rogmHe y Beorpaay, rae je 3aBpLlUMA@ OCHOBHY LUKOAY U
MaTemaTnyky rMmHasujy, Kao Hocunauy Bykose aunnome. TOKoOMm cpearbe LIKOJIE MMana je 3anaKeH
ycrnex Ha TaKMUYernUMa 13 pU3NKe Ha APHKABHOM U MHTEPHALLMOHANHOM HUBOY.

LLikoncke 2015/16. roguHe ynucana je Pumsnuku pakyntet YHusepsuteTa y beoragy, cmep Teopujcka u
ekcrnepumeHTanHa pusmka. OCHOBHe aKagemcKe cTyamje 3asplumna je 2019. roguHe ca NpocevyHoOMm
oueHom 10, M npornaleHa je CTyaAeHToM reHepaumje Ha Pusmykom dakynTeTy.

Macrtep akagemcke ctyguje je 3aspwwuna 2020. rogMHe Ha MUCTOM CMepy, Takohe ca NpoceyHom
oueHom 10. Mactep pag nog HasmBom , Quantum Droplets in Dipolar Ring-shaped Bose-Einstein
Condensates” (,KBaHTHe Kam/buue y AWNOAHUM MpCTeHacTUMm bBo3e-AjHWITajH KOHAeH3aTuma“),
oabpaHuna je 30.09.2020. roanHe, nod pykoBoacTBom Ap AHTYHa banarka.

LLikoncke 2020/21. roamHe je ynucana OOKTOpcKe ctyanje Ha Pusmnukom pakyntety y beorpaay, y»a
Hay4yHa odnact ¢M3MKa KOHAEH30BaHe MaTepuje M CTaTUCTUYKa ¢uM3MKa. HaKoH 3aBplueHe npse
roavHe, wKkoscke 2021/22. ynucana je OOKTOpcKe ctyamje Ha YHusepsutety y TpeHTty v UTtannju, vy
MuTaeBCKM LeHTpY 3a bose-AjHWTajH KoHAEH3auujy, nog meHTopcTBoMm Alessio Recati-ja. [naBHa Tema
M3y4YaBakba je CynepconaHoO CTakbe Yy yATpaxnagHum aunonHmum bose racosnma.

TOKOM OCHOBHMX W MacTep cTyauja duna je aHrarkoBaHa Ha cemuHapy ¢usmke y McTparknaykoj
cTaHuum MNeTtHnua, og, 2016. oo 2018. rogmHe Kao capagHuK, a 2019. n 2020. rogmHe Kao pykosoamnal,
cemunHapa. Og 2015. go 2020. roanHe je duna aHraxoBaHa y MaTemaTMYKOj ’MMHa3UjU Kao aCUCTEHT
Y A0AaTHOj HacTasu, U WKoacke 2020/21. Kao HacTaBHUK GpU3MKe.

ToKOom OCHOBHMX cTyauja duna je Ha CTYAEeHTCKMM npakcama Ha MHCTUTyTy 3a ¢dm3mnKy y Beorpagy uy
NHctutyTy DESY y Xamdypry. Kao pesyntat oBux npakcu, odjaBuna je ABa paga y 4daconucuma
KaTeropuja M21 n M22. TokOM AOKTOPCKUX CTyaMja 0djaBuna je jefaH HayyHW pag, y 4vaconucy
KaTeropuje M21, v jeaaH Koju je y dasu peueHsnje. Mmana je HeKoMKo gonpuHoca ca mehyHapoaHux
cKynoBa (KaTeropuje M34).



Mpernep HayuyHe aKTUBHOCTU KaHAUOATKUIbE

Mapuja LUnHAMK ce y pocagawrsem pagy 6aBnna HymepuUYKnMm nsydyaBarbem AUMNONHUX YATPaXNagHNX
bo3e racoBa, 04HOCHO CUCTEMA aTOMa Ca jaKUM NepMaHEHTUM MArHETHUM AUNONHUM MOMEHTOM, Ha
HUCKMM TemnepaTypama Ha Kojuma gonasun ao bose-AjwTtajH KoHAeH3aumje. MocedaH aKueHaT je
CTaB/beH Ha Cynepco/iMgHa CTakba, 3a Koja je HeaBHO NOKA3aHOo Aa je MNoCcToje Y OBUM CUCTEMMMA Y
oapeheHom oncery napameTtapa. OBO MHTPUIAHTHO CTakbe MaTepuje je KapaKTePUCaHO COHTaHUM U
WUCTOBPEMEHMM Hapylerem ¢asHe M TpaHCAaUuMOHe cuMmeTpuje, pesyntupajyhn y HEeMHTYUTUBHO]
KoeraucteHumju cyneppaynaHmx n KpuctaaHux ocodumHa.

JeaHa op, ¢yHAAMEHTANHWUX KapaKTepucTuKa cynepdpayMaHoCTU je NocTojakbe KBAaHTU30BAHMX
BOPTEKCca. MaKo MocToje cKopallkba HYMepWUKa MCTaXKMBakba Koja MoKasyjy HUXOBO NOCTOjakbe U Y
cynepconnaHoj ¢pasu, tbMxoBa eKkcrnepMmeHTanHa AeTeKuuja U gasbe npeactas/ba M3a3oB. Pasnor je
LUTO ce je3rpa BOpTEKCa y CynepcoangHoj ¢pasm Hanase Ha mecTmma usmehy KBaHTHUX Kansbuua, Koja
cy »n 0e3 npucyctBa BOPTEKCa KapakTepucaHa manom ryctuHom. Crora je aetekuuja
KOHBEHUMOHAHMM MeToAamMa CHMMakba TyCTUHE TanacHe OQyHKUMje HaKOH eKcnaHsuje, w
noBe3sunBaka ,pyna“y ryCTMHM ca BOPTEKCMMA, Y OBOM C/y4ajy jaKo TeLLKo.

JepaH feo ucTpaxkMBarba KaHAMAATKUHE ce OaBMO KOHCTPYKUMjOM NPOTOKO/A HyK/Aeauuje wu
AeTeKumje BopTeKca y AMnoaHMM bo3e racoBMma y XapmMoHMjcKoj 3amuu. Metog, je 6asupaH Ha
Merbakby AYXUHE pacejatba CUCTEMA KOHTPOJIOM CMOJ/ballikber MarHeTHoOr nosba, WTOo A0BOAM A0
¢dasHor npenasa nsamehy cynepdnymaHe u cynepconngHe dase. MoueBwn og cnopo potupajyhe
KoHburypaumje y cynepdaymnaHoj dasm Koja He noceayje BOpTEKC, Npenasak y cynepconngHy ¢asy
OOBOAM [0 HyKneauuje BopTeKca, 360r 3HaYajHO CMarbeHE KPUTUYHE yraoHe ¢peKkBeHUMje Y 0BOj
¢$a3n. HakoH WITO je BOPTEKC KpeupaH, NOKa3aHo je Aa ocTaje cTaduiaH npu NoHOBHOM Mpeniacky
¢daszHor npenasa y cynepdnaynaHo crame, rae je Hherosa ekcneprmeHTanHa getekumja moryha. Osu
pesynTaTM MOry MMaTW 3HayajaH yTULAj Ha TPEHYTHE eKCnepumeHTe, NpyKajyhu meton nposepe
cynepdaynaHoOr Kapaktepa AMNOAHUX CyNnepCconaHUX CTakba.

Jow jepHa 3HavajHa KapakTepucTUKa cynepconuaHe ¢ase je nocrojarbe ONACTOHOBMX MOAA, Kao
nocneamua CNOHTAHOr Hapylwera gasHe M TpaHCAaUMoHe cumeTpuje. Y Apyrom Aeny UcTpaxunsarba
KaHOMAATKUHE, CUCTEM KOjU Ce MOCMATPa je y cnosballkbem NoTeHuuMjany npcreHactor odnuvKa, rae
[onasu fo nojase age lonactoHose moge. OHe ce nodyhyjy Tako WTO ce Harno YKAOHW NepuoguyHa
neptypdaumja nponopumMoHanHa ca cos 8, rae je 6 asumyTanHu yrao. AHanusmnparem pesyntyjyhmx
ocumnaumja raca, moryhe je oapeguTn BpegHocTn ase Op3MHe 3BYKa Koje Cy NoBesaHe ca ABe
longctoHoBe moge. OBe BpPeaHOCTM Cy aHanusMpaHe KopuwhereM XuapoaMHaMUuKe Teopuje
CynepconnaHor crakba Ha anconytHoj Hynu. OBaj npuctyn omoryhasa oppehuBakbe mopyna
KoMnpecnduaHoOCTM cnojeBa, Kao U cynepdaymaHe ppakumje, Koja ce noaynsapa ca Leggett-osom
NPOLEHOM HEKNACMYHOT MOMEHTA MHepuuje. OBO UCTPaXKMBaHbE NpPYXKa OKBUP 32 EKCNEPUMEHTANHO
onpehusarbe peneBaTHUX NapameTapa XMAPOAMHAMUYKE Teopuje CynepcoanaHor cTamba.
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arXiv:2308.05981v1 [cond-mat.quant-gas] 11 Aug 2023

Sound, superfluidity and layer compressibility in a ring dipolar supersolid

Marija Sindik,'* Tomasz Zawislak,'* Alessio Recati,!"T and Sandro Stringari®

! Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica,
Universita di Trento, Via Sommarive 14, 38123 Povo, Trento, Italy

We propose a protocol to excite the Goldstone modes of a supersolid dipolar Bose-Einstein con-
densed gas confined in a ring geometry. By abruptly removing an applied periodic modulation
proportional to cos(¢), where ¢ is the azimuthal angle, we explore the resulting oscillations of the
gas, by solving the extended Gross-Pitaevskii equation. The value of the two longitudinal sound
velocities exhibited in the supersolid phase are analyzed using the hydrodynamic theory of super-
solids at zero temperature. This approach allows for the determination of the layer compressibility
modulus as well as of the superfluid fraction fs, in agreement with the Leggett estimate of the

non-classical moment of inertia.

A key consequence of the spontaneous breaking of
continuous symmetries is the occurrence of Goldstone
modes, which, in the presence of finite range interac-
tions, take the form of gapless excitations in the long
wavelength limit. The identification and the experimen-
tal observation of the Goldstone modes then represents
a question of central interest in various fields of science,
including elementary particle physics, magnetism, super-
fluidity and superconductivity. The recent realization of
supersolidity has raised the question of the identification
of the corresponding Goldstone modes which are the con-
sequence of the spontaneous and simultaneous breaking
of phase symmetry and translational invariance, ensur-
ing the non intuitive co-existence of superfluid and crys-
tal features. From the theoretical side the study of the
Goldstone modes in supersolids has an old history, start-
ing from the pioneering work of Andreev and Lifshitz [1]
(see also [2, 3]), and more recent papers based on numer-
ical simulations on atomic Bose gases interacting with
soft-core potentials [1—6], spin orbit coupled gases (see
the recent reviews [7, 8] and reference therein) and dipo-
lar gases [9] (see also the recent Perspective [10] and ref-
erences therein). First experimental evidence for the oc-
currence of Goldstone modes in a supersolid has been
recently reported in the case of a dipolar gas confined in
a harmonic trap, where the modes take the form of dis-
cretized oscillations and in particular with the emergence
of novel crystal-like oscillations as soon as one enters the
supersolid phase [11-13]. The use of harmonic trapping
potentials, inducing the non-homogeneity of the gas, to-
gether with a relatively small number of droplets which
form the non-superfluid component of the gas within the
supersolid/crystal phase, limits the possibility to fully
appreciate the rich dynamics of the dipolar gas as a bulk
supersolid. For cold gases with short range interaction
one can use box potentials to avoid or strongly reduce
the inhomogeneity. However, when the dipolar interac-
tion dominates the physics of the gas, such an approach
does not work due to strong edge effect [14].

In this Letter we propose to use a ring potential and
to measure the response to a periodic static perturbation
in order to extract the low momenta dispersion relation

of the system. The calculated sound velocities are then
analyzed employing the hydrodynamic theory of super-
solids. In particular, we determine the layer compress-
ibility modulus and the superfluid fraction, pointing out
their role in the propagation of sound in the supersolid
phase. Interestingly, ring traps offer one of the simplest
realizations of matter wave circuits, with important per-
spectives in the emerging field of atomtronics [15, 16].

The model and its quantum phases. In a dilute dipo-
lar Bose gas, the atoms interact by a delta-contact po-
tential V.(r) = ¢d(r), with the coupling constant g =
4mh%?a/m > 0 fixed by the atomic mass m and the
s-wave scattering length a; and by the dipolar poten-

tial Vgq(r) = “Z;r‘z %{’3529 with 6 the angle between r
and the direction z of the externally applied magnetic
field, which aligns the atomic magnetic dipole moments
.  The most important parameter to determine the
zero temperature phase diagram of the gas is the ra-
tio between the strengths of the contact and the dipo-
lar interactions, €4q4 = agq/a with agqg = pop?/12wh?
the so-called dipolar length. For small enough €44 the
system forms a Bose-Einstein condensate (BEC), while
by increasing it beyond a certain threshold, in three-
dimensional uniform configurations, the system collapses
due to the attractive nature of the dipolar interaction.
Confining the gas along the z direction prevents this col-
lapse, and three distinct phases occur: (i) a homogeneous
BEC (superfluid phase), (ii) a supersolid phase in a very
small interval of €44, and (iii) a droplet crystal phase,
i.e., independent droplets arranged in a crystal struc-
ture. In the present Letter we consider moreover that
the gas is confined in the x — y plane by a ring-shaped
potential Vex¢(r1,2) = m [w? (ri. — R)? + w?2?] /2 with
r; = y/x2 +y2, of radius R = 7.64um and trap fre-
quencies w, = w; = 2m - 100 Hz, leading to the three
phases reported in Fig. 2, calculated for N = 80000
164Dy atoms, corresponding to agqq = 132ag, where ag is
the Bohr radius. We obtain a ring-shaped cloud of length
L ~ 49pm [17] and width FWHMxy changing from
1.41 pm in the superfluid to 0.7 um approaching the crys-
tal phase (see Fig.2). Due to magnetostriction, the cloud




is elongated in the third direction with FWHMz = 4 um.
The system is numerically studied within the so-called
extended Gross-Pitaevskii equation [18] which in the last
few years has been systematically employed to describe
the equilibrium and dynamic properties of dipolar super-
solids, in reasonably good agreement with the experimen-
tal findings.

The protocol. We first determine the state of the
gas by applying a small static perturbation of the form
Vo cos , where ¢ is the azimuthal angle along the ring,
which produces stationary density modulations. We then
suddenly set V = 0, resulting in the excitation of the
longitudinal phonon modes propagating along the ring.
Similar protocols have been already applied to investi-
gate the Doppler effect due to the presence of quantized
vortices in a ring [19] and, more recently, to investigate
the effect of superfluidity on the propagation of sound in
a dilute Bose gas confined in a box in the presence of an
external periodic potential [20].

An easy analysis of the response of the system can
be obtained considering sufficiently large ring sizes for
which the ring can be mapped in a linear tube config-
uration with imposed periodic boundary conditions. In
particular we assume that the length L of the ring is
much larger than its width, so that one can safely iden-
tify cos(¢) with cos(qx), where ¢ = 27/L is the wave
vector of the longitudinal excitation and the variable z,
with 0 < x < L, is the longitudinal coordinate along the
tube. According to linear response theory, the quantity
OF = (cos¢)(t)—(cos ), where the bar stays for the time
average, should show, in the supersolid phase, a beating
of two modes (see inset in Fig. 3)

SF(t) = Vo Y xi(q) cos(wi(q)?) (1)

i=1,2

with w;(gq) approaching, for sufficiently small ¢ (and
hence large L), the linear phonon dispersion w;(q) ~ ¢;q,
with ¢; and ¢ hereafter called first and second sound
velocities, respectively. The quantities x;(q), i = 1,2,
define the contributions of the two modes to the static
response and hence to the compressibility sum rule ac-
cording to

= Sgw)

x(q) = xa(q) + x2(q) —/O do—"— = Nt (2)
with x the compressibility of the system (hereafter we
set h = m = 1, with m the atomic mass), while S(q,w)
is the dynamic structure factor. From the analysis of
the measurable signal §F(t) of Eq. (1) one can then de-
termine the sound velocities ¢; and ¢y, and the relative
contribution

- T2 — 2
X 1 2

of the lowest (second sound) mode to the compressibility
sum rule, where we have defined ¢, = vVx~!. Analo-

gously, the contribution of second sound to the f sum
rule m; = fooo dw S(q,w)w = N¢?/2 is given by

(2) 2 2 2
my T G G (4)
mi 222

1 Ce €1 — €

Hydrodynamic model for supersolidity. The speeds of
sound obtained employing the protocol previously de-
scribed can be used to extract important parameters
characterising the system. For this purpose it is conve-
nient to use the hydrodynamic theory of supersolids re-
cently elaborated by Hofmann and Zwerger [3], inspired
by the works of Andreev and Lifshitz [1] and Yoo and
Dorsey [2]. This formulation, applicable to Galilean in-
variant systems, is particularly suitable to investigate
the behavior of longitudinal phonons in the presence of
a layer structure. This is reasonably well realized in
highly elongated configurations of a dipolar supersolid,
where the droplets effectively play the role of the layers.
Neglecting the effects of the strain density coupling in-
cluded in the general formulation of supersolid hydrody-
namics [2], the approach, in this minimal hydrodynamic
formulation, provides the following expression for the two
sound velocities [3]

2

2, = % [1 +Br+ /(1 + Br)2 —4fspr|  (5)

which depends on three fundamental parameters: the ve-
locity ¢, fixed by the compressibility parameter x, the
renormalized layer compressibility modulus 8 = B/py,
given by the layer compressibility modulus B [21] divided
by the normal density p, = p — ps, and the superfluid
fraction fg = ps/p, with p the average 1D density. The
relevant parameters Sk and fg can be expressed in terms
of the first and second sound velocities according to the
relations Brk = (c? + c3)/c2 — 1 and fsBk = c3c3/ck,
which directly follow from Eq. (5).

Let us now discuss the consequences of the hydrody-
namic model in different phases of dipolar Bose gases:

(i) Superfluid phase (fs = 1 and 8 = 0). Only the
upper solution (first sound) of Eq. (5) is relevant and
C1 = Ck-

(i) Supersolid phase (0 < fs < 1 and 8 # 0). In this
most interesting case the deviations of the sound speeds
from ¢, are determined by the dimensionless combina-
tion Bk and by the superfluid fraction fs. In particular,
near the transition to the crystal phase, where the super-
fluid fraction is expected to vanish, the sound velocities
approach the values

c1 — \/1+ﬂ/g 1fj_6;ﬁcﬁ’ Cy —> ”fslfﬂﬂf{,cn (6)

while the ratio R given by Eq. (3) approaches the value
Br/(1 + Bk). It is worth noticing the close analogy be-
tween Eq. (6) and the dependence of the second sound




velocity on the superfluid density predicted by Landau’s
two-fluid hydrodynamic theory at finite temperature [22]
(see also [23]).

It is also interesting to note that when the combination
Bk becomes very large the second sound velocity takes
the form ¢y = v/fsc, in the whole supersolid phase, it
exhausts the compressibility sum rule, while its relative
contribution to the f-sum rule (see Eq. (4)) exactly co-
incides with the superfluid fraction fg. These results are
consistent with the behavior of a superfluid in the pres-
ence of an optical lattice, where translational invariance
is not broken spontaneously and the upper mode w = c¢1¢
is replaced by a gapped excitation. This case has been re-
cently explored theoretically and experimentally in [20].

(iii) Crystal phase (fs = 0 and 8 # 0). Only the
upper solution survives in this case and the sound ve-
locity takes the simple expression ¢; = c¢.v/1 + Bk. No-
tice however that, differently from what happens in the
superfluid phase, the first sound mode, while exhausting
the f-sum rule, does not exhaust the compressibility sum
rule, revealing the occurrence of a diffusive mode at zero
frequency. Such a mode represents the natural contin-
uation of the second sound mode beyond the transition
to the crystal phase [24] and corresponds to the diffusive
permeation mode of a smectic-A liquid crystal [3, 24].
The evolution of the second mode from a propagating to
a diffusive one, is analogous to the fate of second sound in
a uniform fluid above the superfluid critical temperature
(see, e.g., [25, 20]).

Results. The compressibility x of the gas can be ex-
tracted from the knowledge of the density changes caused
by the static perturbation Vjcos(y) according to linear
response theory (see Eq. (2)). Another option, which
would not require the actual knowledge of Vj, is to mea-
sure the relative contribution R (see Eq. (3)) of the sec-
ond sound mode to the compressibility sum rule through
the weights of the beating signal of Eq. (1).

Our protocol actually measures the static response
function x(¢q)/N (see Egs. (1-2)) which coincides with
the compressibility « only in the long-wavelength limit
q — 0. Due to the finite size of the ring, the lowest acces-
sible value is ¢ = 27/ L, and it is consequently important
to control the difference between x(¢ = 27/L)/N and
the compressibility parameter x = (p9du/dp)~t, where
w is the chemical potential. In our case the difference
turns out to be about 15% in the superfluid phase and
up to 30% close to the crystal phase. For consistency,
we have used the values of x given by the “measured”
values x(¢ = 27/L). On the other hand, we verified that
the superfluid fraction fg, obtained by applying the hy-
drodynamic model to the results of the extended Gross-
Pitaevskii simulation employing our protocol, is much
less sensitive to finite size effects.

To illustrate the potential of the proposed protocol,
in Fig. 1 we report the dispersion for larger values of
¢, within the superfluid phase, obtained by applying a
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FIG. 1. Dispersion relation obtained using the proposed

protocol, for three values of €44 approaching the superfluid-
supersolid phase transition. The roton minimum softens near
k =+/2/l,, where I, = \/h/mw, is the harmonic oscillator
length along the confined direction [27].

perturbation proportional to cos(ng) with n = 1,2, ...,
giving access to the phonon-maxon-roton dispersion, for
which experimental evidence was reported in a super-
fluid dipolar gas using Bragg spectroscopy [28]. The
figure clearly shows that the roton minimum becomes
more pronounced as one approaches the transition to the
supersolid phase, which in our configuration occurs for
€dd = 1.387.
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FIG. 2. Density plots of N = 80000 '®*Dy atoms in the su-
perfluid, supersolid and crystal phase (left, middle, and right
panel respectively), integrated over the z-axis, along which
the magnetic field Bis aligned. Red contours mark 1% of the
relative density |¥(r)|?/ max |¥(r)|>.

In Fig. 2 we show the density profiles in the ring geom-
etry calculated in the superfluid, supersolid and crystal
phases [29]. In our simulations, based on the extended
Gross-Pitaevskii equation, we have considered configu-
rations with the same number of droplets (equal to 14)
in both the supersolid and crystal phases. Actually, ex-
act energy minimization would predict a decrease of the
number of droplets when one approaches the transition
to the crystal phase, leading to the small discontinuities
in the resulting values of the observed quantities, which
do not however affect the main conclusions of our work.
The pinning of the number (and position) of droplets can
be achieved by introducing a small additional periodic
potential during the initial stage of the supersolid state



preparation. During the time evolution, once the peri-
odic potential is removed, we observe that the number of
droplets remains constant.

1T

I ae-*®
L 2
08l 2% e e ee, ]
L L B .y ]
& atmf H ! ,-'“~ L - by
?0.6—301'15”’; A !A"- :‘A‘zfz o ]
= = RIYRY: _11:'3" &/ Ce ]
= rELVY VY] o Bq(6) |
Sy 0.4F 2 oihe ez Eq.(6) 4
F= o, eVfs ]
02; &3‘0-1 ~. ]
L 0 100 200 300 ° 1
F t[ms]| ... 1
07‘\HHm‘H\HH\HH\"H\HH\‘.‘W
1.2 1.25 1.3 1.35 1.4 1.45 1.5
€dd

FIG. 3. Sound velocities ¢1 and c2 determined with the pro-
tocol (green hexagons and red circles respectively) across the
superfluid-supersolid phase transition. The blue squares cor-
respond to ¢, (q = 277“) Both sound speeds are well captured
by Eq. (6) (green and red solid lines) even far from the crys-
tal phase. For completeness we also report the values v/ fscy
(gray solid line) found for an incompressible lattice (see text).
The inset presents the time evolution of 6 F' for two values of
€aqa marked with solid lines of corresponding colors. The data
points are fitted with one (two) cosines in the superfluid (su-
persolid) phase with excellent quality.

Figs. 3 and 4 report the main results of our work, based
on the combined application of the protocol and of the
hydrodynamic model of supersolids. In Fig. 3 we show
the calculated first and second sound velocities as a func-
tion of €44, together with the value of ¢, which coincides
with the sound velocity in the superfluid phase. The
figure clearly reveals the decrease of the second sound
velocity as one approaches the transition to the crystal
phase. We include also the lowest order expressions for
the two sound speeds when f; — 0, Eq. (6) (red and
green continuous lines), which are seen to be in good
agreement with the calculated values also when the su-
perfluid density is not that small. For comparison we also
show the prediction ca = /fsc, (grey continuous line)
which would hold in the presence of an optical lattice
(B — o0) and which badly reproduces the actual values
of ¢y in the supersolid phase. In Fig.4a we report the re-
sults for the relevant parameter Sk of the hydrodynamic
model and the ratio R. An interesting outcome of our
analysis is that while the speeds of sound, the compress-
ibility and the dimensionless parameter Sk show a jump
at the superfluid-supersolid transition, the contribution
of second sound to the compressibility sum rule, R, goes
smoothly to zero. The same continuous vanishing is ob-
served for the layer compressibility modulus B, as shown
in Fig.4b.

Moment of inertia and superfluid fraction. In the
same Fig.4c the results for the superfluid fraction, pre-
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FIG. 4. Panel a) displays dimensionless parameters «3 cal-
culated using the hydrodynamic model (green squares), and
the ratio R = x®/x (light blue diamonds) extracted from
the time evolution of Eq. (1). In panel b) we show the emer-
gence of finite layer compressibility modulus B. In panel c)
we compare the extracted value of superfluid fraction fs (pur-
ple diamonds) using the hydrodynamic relations Eq. (5), with
the value determined via the non classical fraction of moment
of inertia Eq. (7) (orange line).

dicted by the analysis of the sound velocities in the super-
solid phase, are compared with the non classical fraction
of the moment of inertia. In our narrow ring configura-
tion the latter is expected to essentially coincide with the
superfluid fraction, i.e.,

S}
Orig

fs~1- (7)
The moments of inertia in Eq. (7) are calculated in the
ring geometry using the extended Gross-Pitaevskii equa-
tion. The moment of inertia © is fixed by the value
(J.) of the angular momentum induced by a rotational
constraint of the form —€.J,, according to the relation-
ship © = limg_,¢(J,)/9, while ©,;, = N(z? + y?) is the
classical rigid value [30]. We also verified that fg from
Eq. (7) practically coincides with the rigorous Leggett’s
upper bound 27 [ﬁfo% dgo/p(tp)]fl > fs, where p(p) is
the transverse integrated density along the ring [31]. The
good agreement shown in Fig.4c reveals the consistency
of the extended Gross-Pitaevskii theory with the hydro-
dynamic model of the smectic superfluid phase developed
in [3].

In conclusion, we have suggested a protocol to deter-
mine the Goldstone modes of a supersolid dipolar gas



confined in a ring and a way to identify the relevant pa-
rameters of the hydrodynamic theory of supersolids. Our
work in particular paves the way for an experimental de-
termination of the layer compressibility modulus and of
the superfluid fraction, based on the measurement of the
sound velocities.
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Note added. During the final writing of the present
work a manuscript by Blakie et al. [32] has reported the
calculation of the speeds of sound of a supersolid dipolar
gas confined in a infinite tube potential. Their results,
based on the solution of the Bogoliubov equations, turn
out to be in general agreement with our findings and
could be used to obtain the parameters of the hydrody-
namic model of supersolids in the thermodynamic limit.
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Creation and robustness of quantized vortices in a dipolar supersolid
when crossing the superfluid-to-supersolid transition
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We study quantized vortices in dipolar supersolids at the transition between the superfluid and the supersolid
phase. We present an approach to the nucleation of vortices and their observation, based on the quenching of the
s-wave scattering length across the phase transition. Starting from a slowly rotating, vortex-free configuration in
the superfluid phase, we predict vortex nucleation as the system enters the supersolid phase, due to the strong
reduction of the critical angular velocity in the supersolid. Once a vortex is created, we show that it is robustly
preserved when the condensate is brought back to the superfluid phase, where it may be readily observed. These
results may have a significant impact on ongoing experiments, given that the observation of quantized vortices
would constitute a key probe of the superfluid character of dipolar supersolids.
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Quantized vortices constitute a key hallmark of superflu-
idity [1]. They are topological defects of the order parameter,
and therefore robust with respect to perturbations in the U(1)
broken symmetry phase. Ultracold gases are an ideal plat-
form for the study of vortices. In these gases, vortices are
typically created either by stirring the cloud with a laser, or
by rotating a slightly deformed trap. Vortices are detected,
after a condensate expansion, by the observation of the density
holes corresponding to the vortex cores. Vortices have been
observed both in Bose-Einstein condensates (BECs) [2—4] and
in superfluid spin-1/2 Fermi gases [5]. The angular momen-
tum and its quantization in the presence of a vortex can be
inferred by exploiting the lift in the degeneracy of quadrupole-
mode frequencies due to broken time-reversal symmetry [6],
as observed in condensates [7,8].

Supersolids constitute a particularly intriguing phase in
which superfluidity coexists with a modulated density [9].
In the last few years, supersolidity has attracted major at-
tention in ultracold gases. Experiments on BECs in optical
cavities have revealed supersolidlike properties [10]. Conden-
sates with an imposed one-dimensional spin-orbit coupling
have been shown to present a supersolid stripe phase [11,12].
Recent experiments on BECs of magnetic atoms have revealed
the creation of supersolids of ultradilute droplets maintained
by the interplay between attractive mean-field interactions and
the effective repulsion induced by quantum fluctuations [13].
Dipolar supersolids have attracted quickly growing interest,
and successful experiments in droplet arrays have studied
the phase coherence [14-17], the appearance of Goldstone

*Corresponding author: alessio.recati @ino.it
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modes in the excitation spectrum [18-20], and the peculiar
dynamics related to scissors modes [21-24]. Very recently,
two-dimensional supersolid configurations have been also re-
alized [25,26].

Recent theoretical works have investigated quantum vor-
tices in dipolar supersolids [27,28]. Quantum vortices in a
supersolid were first discussed in Ref. [29] in the context of a
hypothetical supersolid phase of helium. There it was shown,
in the context of a mean-field Gross-Pitaevskii formalism
employing a repulsive soft-core interaction, that vortices may
be nucleated in the supersolid by an obstacle. It was suggested
as well that vortices could be robust when crossing back and
forth the superfluid-to-supersolid transition. A peculiar fea-
ture pointed out in Ref. [27] in the case of supersolid dipolar
gases is that vortices are, both energetically and dynamically,
more favored in the supersolid phase than in the superfluid
one. The low-density regions surrounding the droplets of the
supersolid phase help in reducing the energetic barrier for
a vortex to enter the system, and in pinning the vortices in
the interstitials between droplets [27]. Even a very slow rota-
tion of the trapping potential can then trigger the dynamical
instability that drives vortex nucleation [27]. However, the
direct detection of vortices formed in the interstitials is largely
inhibited because, even in the absence of vortices, this region
is characterized by a very low density.

In this Letter, we first explore in detail the robustness of
vortices in dipolar BECs when crossing the superfluid-to-
supersolid transition, showing that the conservation of angular
momentum results in a peculiar dynamic behavior, since the
value of the angular momentum per particle associated to
a vortex is markedly different in the superfluid and in the
supersolid phase. Using the difference in the vortex properties
in both phases, we propose a dynamic protocol based on the

©2022 American Physical Society
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quench of a slowly rotating dipolar condensate from the su-
perfluid into the supersolid phase. A vortex is nucleated in the
supersolid due to the strongly reduced critical angular veloc-
ity, and a subsequent quench back allows for straightforward
vortex imaging in the superfluid phase. Our protocol could
provide not only the experimental proof of vortex nucleation
in a dipolar supersolid, but also allows for directly probing
the modified vortex properties in that phase [27], as, e.g., the
reduction of the critical angular velocity for vortex nucleation.
It has the advantage of avoiding the nucleation of vortices
starting from the equilibrium configuration in the supersolid
phase, whose implementation is notoriously more difficult due
to three-body collisions.

Model. We consider a BEC of atoms with mass m and
magnetic dipole moment p aligned along the z axis, trapped in
a harmonic potential of the form Ve (r) = mo? [(1 — &)x* +
(1 + &)y* 4+ 2%2%]/2.

At zero temperature the physics of the system is
well described by the extended Gross-Pitaevskii equa-
tion (eGPE) [30,31],

AW(r, t V2
ih¥ :|:— +Vext(r)+g|‘~[/(l‘,t)|2

ot 2m

+ / dr'Vya(r — )W, 0)* + y |¥(r, rﬂ
x U(r, 1), (D

where g = 4mwh*a/m > 0 is the coupling constant fixed by

the s-wave scattering length a, and V,(r) = ’fi‘—?’:z% is
the dipole-dipole interaction, with 6 the angle between r and
the z axis. The last term in Eq. (1) is given by the repulsive
Lee-Huang-Yang (LHY) correction induced by quantum fluc-

tuations, with
_ 32ga’/?
N

where €44 = puou?/3g characterizes the relative strength of
the dipolar interaction with respect to the contact one. The
eGPE has been systematically employed in the last few years
to investigate quantum droplets and supersolidity in dipolar
BECs [13].

For small-enough €,4,, the system behaves as a standard
condensate (superfluid phase). By decreasing the scattering
length, and hence increasing the value of €44, the role of the
attractive part of the dipolar force becomes more important,
and the LHY term starts playing a crucial role in determining
the equilibrium solution. The LHY term ensures the stabil-
ity of the system against collapse and eventually favors the
formation of a periodic structure, which can be regarded as a
series of dense droplets connected by a dilute superfluid gas
(supersolid phase) [14-16]. A further increase of €4, leads
to a state where the droplets are independent and mutually
incoherent, and the system does not show any extended super-
fluidity (independent droplet phase).!

1
Re|:/ du[1+6dd(3u2—1)]5/2:|, (2)
0

'Notice, however, that each droplet is still superfluid.

The supersolid phase can host quantized vortices [27]. As
already anticipated in the Introduction, vortex nucleation is
significantly favored by the reduced density in the interdroplet
regions, but vortices nestle in those interstitials, making their
experimental observation much more problematic than in the
superfluid phase. Below, we first discuss the robustness of
vortices when quenching the system across the superfluid-
to-supersolid transition. We then exploit such a robustness to
design a protocol that first allows for an alternative mechanism
for the nucleation of vortices in the supersolid phase and,
second, for probing their existence by imaging them in the
superfluid phase, where they are more easily detectable, also
owing to the large increase of their core size as compared
to condensates with only contact interactions. This second
step resembles the procedure used in the pioneering work of
Ref. [5], where the vortices created in a strongly interacting
Fermi gas were imaged by quenching from the BCS to the
BEC regime, where their visibility was better ensured after
gas expansion. In the case of dipolar gases the procedure is
more challenging because the two regimes, supersolid and
superfluid, are separated by a first-order phase transition and
not connected by a continuous crossover.

Crossing the superfluid-to-supersolid transition. We con-
sider a BEC of 4 x 10* Dy atoms, confined in an axially
symmetrical trap (¢ = 0) with w; =27 x 60 Hz and A = 2.
Under these conditions, the superfluid-to-supersolid transition
occurs at the value acy = 94.6aq (ag is the Bohr radius) cor-
responding to €4, = 1.395.

Ground states of the system are calculated using
imaginary-time evolution in the rotating frame, obtained by
adding the constraint —QL, to the eGPE (1), where  is
the angular velocity, and L, the z component of the angular
momentum operator.” Above some critical angular velocity
., vortical solutions become energetically favorable. It is im-
portant to notice that €2, is significantly smaller than the one
required for the dynamical vortex nucleation [27], associated
with a quadrupolar instability, as we discuss later.

We first consider a vortex in the superfluid phase, ob-
tained for a = 105a¢ > agy, and Q = 0.22w; > Q. [see
Fig. 1(a)()]. In the superfluid phase the vortex is characterized
by an angular momentum /7 per particle. Starting from this
ground-state configuration,® we ramp down in 100 ms the
s-wave scattering length to a value a = 94ay < a.i, which
would correspond at equilibrium to the supersolid phase.
Indeed, once the transition is crossed, a strong density mod-
ulation emerges on a very short timescale, leading to the
formation of droplets. After a certain waiting time the sys-
tem acquires a configuration close to the ground-state shape
with a vortex in the supersolid phase [Fig. 1(a)(iii)]. It is,
however, interesting to notice that in most cases we find a
transient regime [see Fig. 1(a)(ii)] where the number of peaks
is larger (four droplets) than in the final, ground-state-like
configuration (three droplets). Despite the occurrence of small

2The critical value acy increases slightly by increasing 2. Such a
change is, however, less than 0.5% for the angular velocities used in
this text.

3All the time-dependent simulations presented in this Letter are
performed in the laboratory reference frame.
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FIG. 1. Density and phase profiles in the z = 0 plane. (a) Vortex
through the superfluid-to-supersolid crossing atr = 0, 0.5, and 2.1 s.
The vortex is initially created in the superfluid regime (2/w, =
0.22, a = 105ay), and a is then linearly ramped in 100 ms down to
944y, within the supersolid phase. (b) Vortex through the supersolid-
to-superfluid crossing for the same times. At ¢ = 0, the vortex is in
the supersolid phase (2/w; = 0.16, a = 94ay). Then a is ramped
in 100 ms up to 105ay, within the superfluid regime. In all cases,
w; =27 x 60Hz, A =2,and ¢ = 0.

oscillations caused by the crossing of the first-order transition,
the vortex survives at the trap center, with its characteristic
phase pattern. Since angular momentum is conserved during
the ramping of the scattering length, and since in the super-
solid the angular momentum per particle carried by the vortex
is smaller than % due to the reduced global superfluidity [27],
the remaining angular momentum is carried by the droplets,
whose centers of mass rotate in the laboratory frame with an
angular velocity larger than €.

Crossing the supersolid-to-superfluid transition. We carry
out the same analysis in the opposite direction, following the
fate of a quantized vortex initially present in the supersolid
phase, an especially relevant case for the protocol discussed
below. As discussed in Ref. [27], the angular velocity €2, for
which the vortex becomes energetically favorable, is much
smaller than the one in the superfluid phase. In Fig. 1(b)(i),
we consider a configuration with a = 94a( and Q2 = 0.16w,
slightly higher than the critical value €2.. The created vortex is
characterized by an angular momentum per particle of 0.87%.
After ramping in 100 ms the scattering length up to a = 1054y
to reach the superfluid phase, we find that the vortex remains

clearly visible [Figs. 1(b)(ii) and 1(b)(iii)]. Note, however,
that the density profile preserves some density modulations,
which are the residue of the original droplets characterizing
the supersolid phase. Moreover, since the overall angular mo-
mentum must be preserved, the larger angular momentum
associated with the vortex in the superfluid phase (%) is com-
pensated by the rotational motion of the density modulations,
and by the occurrence of antivortices located near the border
of the atomic cloud, as well as, in some cases, by a slight
displacement of the vortex core from the center of the trap.

Protocol for vortex nucleation and detection. We are now
ready to discuss our protocol which combines the favor-
able nucleation mechanism of quantized vortices exhibited by
the supersolid phase with their topological robustness when
the supersolid-to-superfluid phase transition is crossed. Our
starting point is a slowly rotating trapped dipolar gas in the su-
perfluid phase (@ = 105ay), obtained by a sudden introduction
of rotation to the superfluid ground state in a slightly deformed
trap in the xy plane, and letting it equilibrate for 200 ms
[see Fig. 2(a)]. In the laboratory frame this corresponds to
choosing a harmonic potential of the form

m., : 2
Vext(t) = Eaﬂ{(l — &)[x cos(€2t) + y sin(2¢)]

+ (1 4 &)[—xsin(Qx) + ycos(Q1)]* + 2%2%}. (3)

We choose a slightly deformed trap (¢ = 6.6%) and an
angular velocity (2 = 0.3w, ) such that the system is unable
to nucleate vortices in the superfluid phase, as the quadrupole
dynamical instability occurs at 0.45w,.* The parameters are
instead large enough for vortex nucleation once the system
enters the supersolid phase. Therefore we reduce the value of
the scattering length with a linear ramp in 100 ms down toa =
94ay. After entering the supersolid phase, first droplets are
formed [Fig. 2(b)] and, after a while, a vortex is nucleated in
the center [Fig. 2(c)]. Notice that the timescale for this process
is slow in the present simulation. We expect, however, that in a
real experimental situation the timescale will be much faster,
as a consequence of thermal noise, which is not accounted
for in our calculations. When the vortex is formed [Fig. 2(c)]
we restore the isotropy of the trap (¢ = 0) in order to ensure
the robustness of the topological configuration associated with
the vortex and the conservation of angular momentum. We
ramp the scattering length back to its initial value (following
a similar ramp) and after a while [Fig. 2(d)] the system enters
again the superfluid phase. We then recover a very similar
configuration as that of Fig. 1(b)(iii).

The same protocol may be employed for the nucleation of
more than one vortex when increasing the angular velocity
Q of the rotating trap. In Fig. 3, we show our results for
different angular velocities in our protocol. The upper panel
shows the atomic cloud in the supersolid phase right before
inverting the ramping of the scattering length. The lower panel
depicts the final density distribution after ramping back the
scattering length. The case with 2 = 0 is important, since it
clearly shows that despite the strong density modulation in the
supersolid regime, once moving back into the superfluid no

4This value remains almost constant in the whole superfluid region.
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(€) =218 (d) t=24s
00 41 82 00_ 14 2

FIG. 2. Density and phase profiles in the z = 0 plane, showing vortex nucleation employing the protocol discussed in the text. (a) Initial
vortex-free superfluid with a scattering length a = 1054y, confined in a slightly deformed harmonic trap (w; = 27 x 60 Hz, A = 2, & = 6.6%),
rotating with an angular velocity 2 = 0.3w, . (b) The scattering length is linearly ramped in 100 ms down to a; = 94ay, resulting in a transition
to the supersolid phase. (c) After some time a vortex is nucleated at the center of the trap. (d) The isotropy of the trap is restored (¢ = 0) and
the scattering length is linearly ramped in 100 ms up to the initial value, resulting in a superfluid with a readily detectable vortex core.

core appears, the final density remains smooth and character-
ized by a maximum in the center, very similar to the initial
equilibrium configuration. By increasing 2 we eventually
observe one vortex nucleated in the center using Q2 = 0.3w,
[same as Figs. 2(c) and 2(d)], two vortices using 2 = 0.35w, ,
and three vortices using €2 = 0.4w, . Note that in all cases
the vortices are nucleated in the supersolid phase, since the

angular velocity is not large enough to create vortices in the
superfluid.

Conclusions. We have studied vortices in a dipolar con-
densate when crossing the superfluid-to-supersolid transition.
We have proposed in particular a protocol that should
permit under realistic conditions to nucleate and detect quan-
tized vortices in a dipolar supersolid, a major hallmark of

(a) Q/w; =0 (b) Q/wy =03 (c) Q/w; =0.35
0.0 3.6 7.2 0.0 4.1 8.2 0.0 4.6 9.2
| —— | — J | ——
54 L
— S|
g o O <
320 (o)
> 0 © QY0 I
3
-5/
0.0 1.2 2.4
| ——
5
(=]
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O
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= |
-5 . S
50 5 5 0 5 50 5
2 ] 2 o) 2 ]

FIG. 3. Density profiles in the z = 0 plane. Results for the dynamical protocol for different angular velocities: Q2/w; = 0 (a), 0.3 (b), 0.35
(c), and 0.4 (d). The parameters and procedure are the same as in Fig. 2. The upper row corresponds to the configurations in the supersolid
phase at r = 2.1 s, before inverting the ramp of the scattering length. The lower row corresponds to the final configuration in the superfluid
phase (att = 2.4 s) after ramping back the scattering length. Note that imaging in the superfluid phase should easily reveal the presence of no
vortex, one, two, and three vortices, respectively. The final angular momentum per particle (once the isotropy of the xy trapping is restored) is

(@)L =0, ()L = 1034 (c) L = 1.85A, and (d) L = 2.42F.
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superfluidity. The method is based on a controlled ramp of
the scattering length across the superfluid-to-supersolid tran-
sition, employing the very nature of the supersolid to induce
vortex nucleation. Although vortex detection is difficult in the
supersolid since vortices gather in regions of very low density,
aramp back into the superfluid permits an easy imaging of the
vortex core, even more so than in contact-interacting conden-
sates due to the significantly larger vortex size in a dipolar
BEC. Very recently, quantized vortices have been actually
observed in the superfluid phase of a dipolar gas [32,33].
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A simple and robust tool for spatio-temporal overlap of THz and XUV pulses
in in-vacuum pump-probe experiments is presented. The technique exploits
ultrafast changes of the optical properties in semiconductors (i.e. silicon) driven
by ultrashort XUV pulses that are probed by THz pulses. This work
demonstrates that this tool can be used for a large range of XUV fluences
that are significantly lower than when probing by visible and near-infrared
pulses. This tool is mainly targeted at emerging X-ray free-electron laser
facilities, but can be utilized also at table-top high-harmonics sources.

1. Introduction

Intense THz pulses combined with synchronized X-ray pulses
enable investigation of the dynamics of the light-matter
interaction, non-linear response of materials and control of
the properties of matter selectively on femtosecond time
scales. Therefore, achieving the temporal overlap between
pump and probe pulses in the femtosecond range is essential.
Certain pump—probe schemes, e.g. THz streaking (Friihling
et al., 2009; Schmid et al., 2019), are comparatively tolerant
against the spatial overlap between XUV and THz pulses and
the actual focal position of the THz beam. The observable, i.e.
the kinetic energy of the photoelectrons, is furthermore of
considerable magnitude and can be utilized for further opti-
mization of the pump-probe signal. This is almost never the
case in pump-probe experiments on solid-state samples,
utilizing one of the XUV probing techniques [e.g. X-ray
magnetic circular dichroism (XMCD) (Pfau et al, 2012;
Willems et al., 2015) and resonant inelastic X-ray scattering
(Dell’Angela et al., 2016)]. There, the spatio-temporal overlap
between THz and XUV and in particular diffraction-limited
focusing of the THz beam have to be achieved with the aid of
versatile in-vacuum diagnostics.

The so-called plasma-switch, the transient change of optical
constants in the visible (VIS) and near-infrared (NIR) spectral
ranges by X-ray and XUV pulses, has been used for the
temporal characterization of these pulses (Harmand et al.,
2012; Gahl et al., 2008; Krupin et al., 2012; Riedel et al., 2013;
Danailov et al, 2014). Transient changes of optical properties
in the THz range, driven by femtosecond laser pulses, have
been used for pickup of individual pulses from MHz trains at
infrared free-electron lasers (FELs) (Schmidt ef al., 2015) as
well as for THz spectral shaping at table-top THz sources
(Cartella et al., 2014; Mayer et al., 2014).
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Calculation of the critical electron density for the THz range (red line).
Transmission of the 5 mm-thick ZnSe vacuum window and the bandpass
filter (at 8 pm wavelength) used in the experiment are presented as the
shadowed areas.

As shown in Fig. 1, for lower probing frequencies the effect
of the plasma switch is more efficient because lower electron
density is required to change the material reflectivity. In this
work we present a technique to establish the temporal overlap
between XUV and THz pulses, based on the transient change
of optical properties of a silicon target in the THz spectral
range, induced by the intense femtosecond XUV pulse.

The presented method can be applied in facilities employing
THz radiation for time-resolved XUV-THz pump-probe
experiments where it is necessary to temporally overlap XUV
and THz pulses on a sub-picosecond level.

2. XUV driven THz plasma switch: theoretical
background

The process of electronic excitation of materials by an intense
XUV pulse happens on an ultrafast time scale, within a few
femtoseconds (Gahl et al., 2008; Riedel et al., 2013), and is
governed by the photoionization of the electrons in the
material: photoabsorption of the bound electrons within the
valence band, secondary processes as elastic and inelastic
scattering of free electrons, Auger decay, and electron pair
creation. Other processes may contribute to the photo-
ionization depending on the energy of the incoming photon
and the material (Medvedev & Rethfeld, 2010). Previous
theoretical studies have shown that the density of the created
free electrons follows the photon flux of the XUV pulse
linearly (Riedel et al., 2013) in a wide intensity range, below
fluences required for the sample melting, ablation and plasma
formation.

Optical properties of the photo-excited material strongly
depend on the density of free electrons and can be modelled
[e.g. via the continuity equation (Mezentsev et al., 2007)] and
expressed in terms of relative permittivity. According to the
Drude model, free electrons in a material can be treated as
free-electron plasma with a corresponding plasma frequency

w, (Ashcroft & Mermin, 1976). We assume that the damping
can be neglected in our case (refer to Appendix A for a short
discussion on this topic) and the relative permittivity ¢ in this
case can be presented as a function of the incoming frequency
 and the plasma frequency w,,

-
e(w) = el
This indicates that light with a higher frequency than the
plasma frequency, @ > w,, can penetrate the plasma whereas
light with lower frequency, @ < w,, will be reflected. Taking
into account the oscillatory motion of the electron, the critical
electron density, n., required to make the sample reflective to
light with a certain frequency can be presented as

_&m 5

n, = ws,
e o2 P

where gy is the vacuum permittivity, e is the charge and m, is
the mass of an electron.

In our experiment, the critical electron density for the
probing pulse at a wavelength of 8 um (37.5 THz) is
Negum = 1.8 X 10" em™, and at wavelengths over 100 pm
(<3 THz) it is less than nc1poum = 1.1 X 10" em™3.

3. Description of the setup

The experiment was performed with the pump XUV wave-
length at 13.5 nm (91.8 V) and two different probing condi-
tions: (i) a THz pulse with a central wavelength of 8 um, and
(ii) a broadband THz pulse with a wavelength >100 pm. The
expected pulse duration for THz was ~300 fs and ~3 ps,
respectively, and the XUV pulse duration was 160 fs, esti-
mated by electron bunch length measurements by a transverse
deflecting RF-structure (Diisterer et al., 2014).

The THz beam is collimated using five toroidal mirrors in
order to keep the beam size within the range of the beam
transport and optics. This additional folding of the THz beam
results in a ~6.5 m longer optical path with respect to the
XUV beam. In order to overlap the XUV and THz pulses in
time, an additional delay for the XUV is introduced: pulses
travel 3.25 m longer distance and then are refocused by a
mirror with 3.5 m focal length back to the experiment (Pan et
al.,2019). The scheme of the experiment is presented in Fig. 2.

The THz and XUV pulses are collinearly focused and
spatially overlapped in the experimental chamber on a
400 pm-thick Si sample at a 45° incident angle. The trans-
mitted and reflected portions of the THz beam are picked up
and collimated using parabolic mirrors. Then they are focused
through ZnSe vacuum windows (5 mm thick) on two 2 mm X
2 mm pyro detectors (InfraTec LME-301) located outside of
the experimental chamber in air ~5 mm from the window.
The detectors were custom-designed by collaboration of the
DESY FLA group and InfraTec to reduce internal THz
interferences (Wesch, 2012). The detectors are without optical
windows, which makes them suitable for measurements along
a broad spectral range and sensitive to XUV radiation. ZnSe

12 Zapolnova et al.
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Scheme of the XU V-driven plasma switch experiment for the THz beam. The THz and XUV beams are collinearly focused and spatially overlapped on a
400 pm-thick Si sample at a 45° incidence angle. Transmitted and reflected THz beams are picked up by off-axis parabolic mirrors and further focused on
the corresponding pyro detectors through 5 mm-thick ZnSe vacuum windows.

Table 1
Transmission of XUV at 13.5 nm.

XUV pulse energy via GMD 112 £17 W

Beamline transmission 78%
Refocusing mirror 62%
SizN, 500 nm filter transmission 1.3%

Total transmission 700 nJ £ 10 nJ

vacuum windows have good transmission in the VIS to IR
range as well as in the long-THz wavelength range (see Fig. 1).

Pulse energies of the XUV, measured with the gas-monitor
detector (GMD), were 110 puJ =+ 20 pJ (r.m.s.) (Tiedtke et al.,
2009) and 0.5 pJ 4 0.1 pJ (r.m.s.) for the THz beam measured
with a calibrated pulse energy meter (Zapolnova et al., 2018,
Pan et al., 2019).

The estimated XUV pulse energy through the beamline
(Tiedtke et al., 2009) after the refocusing mirror and through
attenuation filters was 700 nJ & 10 nJ (refer to Table 1 for
details), yielding a final intensity on the sample of 6.76 x
10° W cm ™2 and 2.65 x 10° W cm™2, for the two measured
XUV beam sizes (see Section 4 for details). By measuring
both transmitted and reflected intensities of the THz beam
and assuming that absorption in the excited Si layer is negli-
gible, we are able to correct the pulse-to-pulse energy fluc-
tuations of the THz beam (3.6% RMS at 100 um, 14% RMS
at 8 um).

4. THz and XUV 2D beam profile

The THz and XUV beams were characterized by 2D profile
measurements in the focal position. A pyro detector with a
100 um pinhole was mounted on an xy positioner, facing the
incoming THz and XUV beams at normal incidence, and was

moved through the focus of the beam with defined steps along
the z axis. The pyro detector also showed a good response for
XUYV radiation, and therefore it was used for both the THz
and XUV beam profile characterizations.

The results of 2D scans are presented in Fig. 3. The THz
beam in focus has an ellipsoidal profile, elongated in the
vertical direction, because of imperfect alignment of the off-
axis parabolic mirror for the THz beam. The full width at half-
maximum (FWHM) diameter of the THz beam with the THz
undulator set at a 100 pm nominal wavelength was 400 =+
20 pm x 1470 % 30 pm, and at 8 pm it was 180 £ 15 um x
320 £ 15 pm. In an attempt to match the XUV and THz beam
sizes we inserted a pinhole (3 mm diameter) in the XUV
beam, 30 m upstream of the experiment, to optimize the ratio
between beam sizes. The FWHM diameters of the XUV beam
with and without a pinhole were 230 £ 30 pm and 140 =+
20 pum, respectively. The ratio between the areas of the THz
and XUV beams was 1:9 for the THz beam at 100 pm and
2:3 at 8 um.

5. Transient reflectivity and transmission

Results of time-dependent reflectivity measurements
[presented as (R — Ro)/Rg, where R, is the equilibrium
reflectivity] are presented in Fig. 4. Once the probing THz
pulse arrives following the XUV pulse, a portion of the THz
pulse, which spatially overlaps with the XUV pulse, is reflected
more because of the plasma created by the XUV pulse. The
observed duration of the transition (slope) Art,  is the
convolution of the pulse durations of the THz Arry, and
XUV pulses Atxyy, the jitter Atji., between them, and the
timescale of the free carrier excitation process A Teycitation, and
can be described as

J. Synchrotron Rad. (2020). 27, 11-16
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Figure 3

Measured 2D profiles of the THz and XUV beams. (a) THz beam profile
at 100 pm with an FWHM of 400 £ 20 pm x 1470 %+ 30 pm. (b) XUV
beam at 13.5 nm wavelength through a 3 mm pinhole placed ~30 m
upstream of the experiment with an FWHM of 230 £ 30 pm. (¢) THz
beam profile at 8 pm wavelength with an FWHM of 180 & 15 pm x 320 &+
15 pm. (d) XUV beam at 13.5 nm wavelength with a 10 mm pinhole at the
same position as in (b) with an FWHM of 140 + 20 pm.

_ 2 2 2 2 1/2
ATATHZ - (ATTHZ + A‘[XUV + A.L'jitter + ATexcitation)

For a THz wavelength of ~100 um, the observed slope width
is ATipoum = 2.2 ps and for 8 pm wavelength it is Atg,, = 1.2 ps
(calculated as the time between the points corresponding to
the 10% and 90% levels of total amplitude of the signal).
The XUV and THz pulses are naturally synchronized in this
experiment, with jitter smaller than 5 fs (RMS) (Friihling ez al.,
2009), and its contribution is negligible. We assume that the
excitation of the free carriers is much faster than other time-
scales in the experiment so we neglect it as well.

6. Dependence on the XUV fluence

Fig. 5 shows a comparison of the transient THz reflectivity
change for different fluences of the pump XUV pulse. We used
different combinations of the attenuation filters: SizN, 350 nm
(red line), Si,N4 350 nm + Nb 405 nm (orange line) and Si;N,
500 nm (green line). The effect of the plasma switch in
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Figure 4
Transient optical reflectivity curves for the THz undulator set at 100 pm
and 8 um wavelengths for a 13.5 nm XUV pump wavelength.

the THz spectral range is very efficient and can be clearly

observed even at XUV fluences as low as 45 pJ cm™ 2.

7. Quantitative estimate of the effect

The amplitude of the reflectivity change for a broadband THz
beam >100 pm is around 6.4% and for 8 pm is around 6.0%.
Using the details of the actual THz and XUV beam sizes

0.08
—— 45 pJicm?
| ——— 480 pd/cm?
0.08 —— 950 pd/cm?
°
x
E" 0.04 -
©
0.02
0.00 4
T T T T T T T 1
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Delay, [ps]
Figure 5

Transient THz reflectivity curves as a function of the THz/XUV pulse
delay for three different fluences of the XUV pulse on the sample.
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from the 2D profile measurements, we can estimate the actual
switched fraction of the THz pulse. Comparing total areas of
the beams and assuming that the electron density follows the
intensity envelope of the XUV beam linearly, we can assume
that, if the XUV beam size matches the size of the THz beams
for a 100 um wavelength (400 um FWHM beam size) and for a
8 um wavelength (180 um FWHM beam size), the overall
effect on the reflectivity change would be 9 times higher
(~57.6%) and 1.5 times higher (~10%) than observed.

8. Summary

We have developed a tool for temporal and spatial overlap of
XUV and THz pulses in pump—probe experiments, based on
an XUV plasma switch for the THz range on an Si sample.
During several pump—probe experiments at FLASH, it was
demonstrated that the arrival time of XUV and THz pulses
can be established down to at least the pulse duration of the
THz pulse.

The experiment has been performed at different XUV
fluences from 0.045mJ cm™> up to 0.95mJ cm > for 8 pm
wavelength and for the broadband >100 pm wavelength of the
probe pulse. The observed change of the transient normalized
reflectivity (R — Ry)/R, of THz beam due to the plasma switch
is approximately 6% from the initial level.

Since this effect uses low XUV fluences, far below the
damage threshold, and uses room-temperature broadband
THz detectors, it is robust and simple. This technique can
be further applied at facilities employing XUV-THz pump-
probe experiments, and enables a straightforward and efficient
method for temporal overlap of XUV and THz pulses on the
picosecond time scale.

APPENDIX A
Comparison of the excited-layer thickness with the
penetration depth of THz radiation

The frequency-dependent dielectric constant, according to the
simple Drude model, where damping is independent of the
free electron energy, can be expressed as (Van Exter &
Grischkowsky, 1990)

2
P
&(w) = &(00) oo+ D)
where w, is the plasma frequency, I" = 1/t is the damping
frequency and 7. is the average free-electron collision time.
From the literature, we estimate the average free-electron
collision time to be between 1fs and 100 fs (Ashcroft &
Mermin, 1976; Temnov et al., 2006; Van Exter & Grisch-
kowsky; 1990; Riedel et al., 2013). Finally, this gives us the
estimated minimum penetration depth for probing THz
frequencies (2-40 THz) in XUV-excited plasma in silicon to
be >2 pm.
For an XUV wavelength of 13.5 nm impinging at a 45° angle
of incidence, the thickness of the excited area in silicon is
400 nm, as determined by the penetration depth (Henke et al.,

1993). The XUV pulses from FLASH, used in this work (as
presented in Fig. 5), result in free-electron densities in the
range from 1.2 x 10" cm™ up to 2.8 x 10" cm™.

This leads to the conclusion that only a small fraction of the
probing THz radiation (<20%) is absorbed in the investigated
sample excited by the XUV pulse.
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We numerically discovered around 100 distinct nonrelativistic collisionless periodic three-body orbits in
the Coulomb potential in vacuo, with vanishing angular momentum, for equal-mass ions with equal absolute
values of charges. These orbits are classified according to their symmetry and topology, and a linear relation is
established between the periods, at equal energy, and the topologies of orbits. Coulombic three-body orbits can
be formed in ion traps, such as the Paul, or the Penning one, where one can test the period vs topology prediction.

DOI: 10.1103/PhysRevE.98.060101

The Newtonian three-body problem is one of the outstand-
ing classical open questions in science. After more than 300
years of observation, only two topologically distinct types of
periodic three-body systems, or orbits, have been observed in
the skies [1]: (1) the so-called hierarchical systems, such as the
Sun-Earth-Moon one, to which type belong more than 99%
of all observed three-body systems; (2) Lagrangian three-
body systems, such as Jupiter’s Trojan satellites, to which the
remaining <1% belong.

There has been some significant theoretical progress on the
subject over the past few years: several hundred new, topolog-
ically distinct families of periodic solutions have been found
by way of numerical simulations [2—-16], and unexpected reg-
ularities have been observed among them [9,13,15,16] relating
the periods, topologies, and linear stability of orbits.

Of course, one would like to observe at least some of
the new orbits and test their properties in an experiment, but
such a test would be impeded by a number of obstacles: (1)
only stable orbits have a chance of actually existing for a
sufficiently long time to be observed; (2) stability depends on
the ratio(s) of masses, and on the value of angular momentum,
neither of which can be controlled in astronomical settings;
(3) even if an orbit is stable in a wide range of mass ratios and
angular momenta, there is no guarantee that such a system
will have been formed sufficiently frequently and sufficiently
close to Earth, that it may be observed by our present-day
instruments.

All of the above prompted us to look for alternative three-
body systems that share (at least) some of the same properties
with Newtonian three-body systems. The Coulombic potential
shares one basic similarity with the Newtonian gravity—
its characteristic 1/r (homogeneous) spatial dependence—as
well as several important differences: (1) the (much) larger
coupling constant; (2) both attractive and repulsive nature; (3)
naturally identical (quantized) electric charge(s); (4) ions with
opposite charges may have masses equal to one part in a few
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thousand; (5) ions have a finite probability of elastic scattering
in head-on collisions; and (6) Coulombic bound states can be
formed in table-top ion-trap experiments [17]. For these rea-
sons we turn to the study of periodic three-body orbits bound
by Coulombic potential. The application of only the Coulomb
interaction amounts to a nonrelativistic approximation, which
is good only in the low-velocity limit [18].

In this Rapid Communication we present the results of a
search that led to around 100 distinct collisionless orbits, only
four of which are stable, and around 80 isosceles quasicollid-
ing (free-fall, or “brake”) ones. We use the collisionless orbits
to display a new regularity, akin to Kepler’s third law, in the
form of a linear dependence

T|EP? ~ N, (1)

between the scale-invariant period T|E|*2, where T is the
period, and E is the energy of an orbit, on one hand, and the
orbit’s topological complexity N, expressed as the number of
collinear configurations (“syzygies”) encountered during one
cycle (see the text below), on the other. This prediction ought
to be tested in ion-trap experiments.

We used the same search method as in the Newtonian
gravity three-body problem [5]. There are 12 independent
variables that define the initial state of this system; for each
body there are the x and y coordinates of the body, and
the v, and v, components of their velocity. Adopting the
center-of-mass reference frame reduces this number (12) to
eight. Fixing the value of angular momentum (L = 0) re-
duces this further to six. Using the scaling rules [19] for
the solutions and the fact that periodic solution must pass
through at least one syzygy (collinear configuration) during
one period, yields a four-dimensional search space for all
zero-angular-momentum periodic solutions. We search for
solutions in the two-dimensional subspace of orbits that pass
through the Euler configuration, defined as the symmetric
collinear configuration wherein the positively charged particle
with velocity (—2v,, —2v,) passes through the origin (0, 0),
i.e., exactly between the two negatively charged particles,
which, in turn, pass through the points (—1, 0) and (1, 0), both
with velocity equal to (vy, vy).

©2018 American Physical Society
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FIG. 1. Negative logarithm of return proximity function as a
function of the initial velocity components v, and v, on the x and
y axes, respectively. Bright areas correspond to high values of the
negative logarithm. Inset: zoom-in of the “boxed-in” region.

In order to search for periodic solutions numerically, we
have discretized the search window in this two-dimensional
subspace and calculated the return proximity function (RPF)
dr, (vx, v, ) that measures how close to the initial condition the
trajectory returns (see [20]) up to some predefined upper limit
on the integration time 7p, at each grid point. The negative
logarithm of the computed RPF is shown in Fig. 1. Local
minima of RPF are used as candidates for periodic solutions.
After applying the gradient descent algorithm starting at each
candidate point, we have declared as periodic the solutions
with RPF of O(10~%) and smaller.

We have followed the example set by three-body orbits
in Newtonian gravity [5,13], and classified the newly found
Coulombic orbits according to their topologies, studied their
stability, and organized them into sequences some of which,
although fewer in number, appear very similar to the New-
tonian ones. Each orbit has a well-defined topology which
can be algebraized in at least two different ways (see [20]
and Refs. [21,22]). Here we use Montgomery’s method [21]
wherein each solution is associated with [the conjugacy class
(see [5]), of] an element of the two-generator (a, b, A = a™%,
B = b™!) free group F»(a, b).

There are important distinctions among the 100-odd or-
bits: (1) the orbits can be separated into two classes, using
their symmetry: class A consists of orbits that are sym-
metrical under two perpendicular reflections, and class B
of orbits with a point reflection symmetry; (2) each of
the classes can be further separated into sequences, defined
by their free-group elements, as follows. For both class A

and class B, sequence (I): w,(f}( = [(AB)*(ab)*]* with in-

tegers n,k =1,2,3,...; and for class A only, sequence
(ID: wi™") = [(AB)"(ab)*[*A[(BA)* (ba)"*B, with m, n, k =

1,2,3,...;and sequence (II): w™ = [(ab)?ABA(ba)?BABJ",
withn =1,2,3,....

Note that the 100-odd collisionless Coulombic orbits are
substantially fewer than roughly 200 collisionless Newtonian
orbits with similar search parameters, and that there are only
four linearly stable solutions in contrast to more than 20 in the
Newtonian case.

All of this is a consequence of just one sign change in
the potential: one pair of charged particles must experience
repulsion, contrary to Newtonian gravity, where all pairs are
attractive. Therefore, no choreographic solution, i.e., permuta-
tionally symmetric solution with all three particles following
the same trajectory, such as the famous “figure-8” orbit, may
exist in the Coulombic case. Moreover, at least one orbit, sim-
ilar to Orlov’s [4] colliding “S orbit” (in Newtonian gravity)
still exists in the Coulombic case, but it is not stable anymore,
and consequently does not produce an infinite sequence of
periodic orbits (see [13]).

The initial conditions of all 100-odd orbits and their corre-
sponding topological and kinematical properties can be found
in [20]; in Fig. 2 and Table I we have shown six representative
solutions.

Next we show that Eq. (1), the (striking) property of orbits
that was first observed in Newtonian three-body systems [9],
also features in the Coulombic three-body systems. This rela-
tion between topological and kinematical properties of New-
tonian three-body systems was first reported in [9] and later
studied in more detail in Refs. [11,13,15,16]. Equation (1)
is a (simple) linear dependence of the scale-invariant period
T|E|*?* on the topological complexity N. The topological
complexity N can be measured in at least two different ways:
(1) we used the length N, of the free-group element (word)
describing the orbit’s topology, which, due to symmetry in
our case, is equal to the number of asymmetric syzygies, i.e.,
collinear configurations wherein the two equal-charge parti-
cles are next to each other, over one period; (2) the number
N, of all syzygies (collinear configurations) was considered
in Refs. [9,13] as the measure of topological complexity N of
Newtonian orbits.

In Fig. 3 one can see that Eq. (1) holds for three-body
orbits in the Coulomb potential: (1) with N = N,,, a linear fit
yields a slope equal to 1.8252, with asymptotic standard error
of 0.08% and an average relative deviation of points from fit
values that equals 0.63%; (2) with N = N, the number of all
syzygies (collinear configurations), in the Coulomb case, the
situation is slightly different (see inset in Fig. 3): the slope of
this fit is 1.0208, the asymptotic standard error is 0.36%, but
with a significantly larger (2.6%) average relative deviation of
points from fit values.

As mentioned earlier, only four solutions are linearly sta-
ble. We solved the equations for an infinitesimal deviation
from the exact periodic solution along each periodic orbit to
find the eigenvalues of the monodromy matrix (see [20]). Due
to the symmetry of the equations of motion, these eigenvalues
appear as two (i = 1, 2) quadruples (A;, A}, 1/A;, 1/A}). For
only four orbits listed in Table II both eigenvalues A; have
moduli equal to unity |A;| = 1, within their respective margins
of error, which means that the corresponding three-body orbit
is linearly stable.

Thus we have shown that some of the phenomena first
observed in Newtonian three-body orbits, such as the linear
dependence of the scale-invariant period on the topology
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FIG. 2. Trajectories of orbits A.4, with topology (AB)?(ab)?; A.12.a and A.12.b, both with topology [(AB)?(ab)?]3, in class A (upper row);
and orbits B.4, with topology (AB)?(ab)?, and B.12.a and B.12.b, both with topology [(AB)?(ab)?]3, in class B (lower row), respectively. Note
the independent symmetries of the class A (upper row) trajectories with respect to the reflections about the horizontal and the vertical axis,
whereas the class B (lower row) trajectories have only this symmetry under combined reflections. Black lines correspond to the positively
charged particle while red and blue lines correspond to the negatively charged ones.

of the orbit, and the emergence of sequences [23] exist in
Coulombic three-body orbits, and are not features of New-
tonian gravity alone. The homogeneity [19] of the Coulom-
bic, Newtonian, and the strong Jacobi-Poincaré potentials is
common to all three known cases of manifestation of this
regularity [9,13,25]. This supports indirectly the explanation
offered in Refs. [13,25].

Our next concern ought to be the observation of some of
these orbits in an experiment. The trajectories of a number
(ranging between 1 and 32) of positively charged particles
moving in a Paul trap have been photographically recorded as
early as 1959 [17,26]. The challenge to actually confine and

photograph a few oppositely charged macroscopic particles
in an ion trap has remained unanswered to the present day,
to our knowledge. It is well known that Paul and/or Penning
traps can lead to binding of pairs of identical ions, including
periodic orbits as well as their chaotic motions [27,28], when
the circumstances (such as the frequency and amplitudes of
the applied electric and/or magnetic fields) are right. Such
periodic orbits are impossible in free space, however, as there
the identical ions experience only Coulomb repulsion [29].
So, before one observes any periodic three-body orbits in an
ion trap, and declares them genuine Coulomb orbits, one must
know which periodic three-body orbits exist in free space—

TABLE 1. Initial conditions of six orbits, depicted in Fig. 2, that belong to the sequence described by the free-group elements [(AB)?(ab)?]¥,
with k = 1, 2, 3, ..., and four linearly stable orbits, Table II. The columns correspond to solution label, name of the sequence that the solution
belongs to, initial velocities [x;(0) and y(0)], period, negative energy, scaled period, free-group element, number of letters in free-group
element (equal to the number of asymmetric syzygies), and the total number of syzygies over a period. For initial conditions of all other found

solutions, see [20].

Label Seq. %1(0) ¥1(0) T —E T|E|*? Free-group element N, N,
A4 1 0.191764 0.330958 13.4332 1.06108 14.6826 (AB)?(ab)? 8 14
A.12.a I 0.147917 0.323693 37.1599 1.12003 44.0473 [(AB)?(ab)?]® 24 42
A.12b I 0.246251 0.335527 45.3784 0.980345 44.0472 [(AB)?(ab)?]® 24 42
B4 1 0.111427 0.305087 11.3981 1.18352 14.6755 (AB)?(ab)? 8 14
B.12.a I 0.327539 0.337033 57.4554 0.83738 44.0266 [(AB)?(ab)?]® 24 42
B.12.b I 0.345214 0.344247 63.0644 0.786962 44.0266 [(AB)?(ab)?]® 24 42
A.15.b II 0.108065 0.323579 44.7536 1.15086 55.2534 (ab)?ABA(ba)?bABA
x (ba)?’BAB(ab)?aBAB 30 52
A.18 I 0.105224 0.336995 55.6513 1.12609 66.5019 (ab)?ABA(ba)?(BA)?bab
x (AB)%aba(BA)?(ba)?BAB 36 62
A.20.b I 0.126494 0.315968 59.3293 1.15249 73.4049 [(ab)?(AB)?1° 40 70
A24.a I 0.249577 0.291337 80.2223 1.0585 87.364 [(ab)?(AB)2A]%(ba)?*b
x (AB)?[(ab)?a(BA)?B]? 48 86
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all syzygies N,.

information that we have provided here. With the present
work we have prepared the terrain for future numerical, and
we hope also experimental studies of three-ion motions in
traps [17].

Naturally, the orbits that are (linearly) stable in free space
are also expected to exist in a trap; that is not to say that the
unstable orbits cannot be stabilized by appropriate trapping
fields, or that new kinds of periodic orbits cannot be formed in
a trap. Moreover, ions have a nonzero elastic head-on collision
cross section, unlike the stars and/or planets, so one may
even observe some “colliding” orbits [31] in ion traps. This
gives one an opportunity to observe hitherto experimentally
unobserved orbits and to study some of their unprecedented
properties.

At any rate, trap-induced corrections will have to be calcu-
lated for each three-ion orbit in any trap where experiments
are conducted, before an interpretation is given. With this
Rapid Communication we hope to start a discussion of trap-
induced corrections for periodic three-ion orbits: in order to
calculate such corrections, one needs the (initial conditions of)
free-space periodic orbits, of which we have provided around
100, which ought to suffice for a starting point.

There are no records, to our knowledge, of searches for
periodic Coulombic three-body systems with equal masses

TABLE II. Stability coefficients A, v;, with j = 1, 2, of linearly
stable (double elliptic) orbits, where A; = exp(2miv;).

Name Re();) Im(};) |A: % V; N,
A.15b 0.510145 0.860102  1.000023  0.164797 30
A.15b —0.11507 0.993357  0.999999  0.268355 30
A.18 —0.002025 0.999961 0.999926  0.250322 36
A.18 —0.820340 0.571882  1.000007  0.403107 36
A.20.b 0.009875  0.998966  0.998031 0.248427 40
A.20.b 0.94189 0.339728 1.002572  0.055094 40
A24.a —0.988601 0.174067 1.007631 0.472261 48
A24.a 0.993975 0.116863 1.001643  0.018627 48

and equal charges, which are the closest to the equal-mass
Newtonian system that was studied in Refs. [4—12,14-16]. As
we wished to compare the closest analog of the Coulombic
and Newtonian three-body systems, we had to repeat a search
for periodic collisionless orbits at the present mass and charge
ratios.

To be sure, we are not the first ones who have studied
Coulombic periodic three-body motion: the subject has a long
history (see, e.g., Refs. [32,33]), with a revival in the 1980s,
since when a number of studies have been published: [34—44].
A numerical discovery of more than 8000 collinear collid-
ing periodic orbits with He atom mass ratios was reported
in Ref. [39], and of somewhat fewer collisionless ones in
Ref. [40]. The initial conditions were not published, so one
could not simply retrieve these previously discovered orbits
and use them here.

With this Rapid Communication we also hope to induce
practitioners to consider experimental searches, particularly in
view of the fact that, at least in the case of past periodic-orbit
discoveries, the theory did not precede experiment [17].
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