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IIpeamer: MoJi6a 3a mokpeTame MOCTYNKA 32 300D y 3Bambe HAYYHH CAPAAHHK

Momum Haygno Behe MHctutyTa 3a dusuky Beorpan, Yuusepsurer y beorpany, na y ckiamy
ca IlpaBuIHMKOM O IOCTYIIKy M HAa4YMHy BpEIHOBamba M KBAHTHTATHBHOM HCKAa3UBakby HAy4dHO-
UCTPOXHMBAYKHMX pE3yJITaTa IIOKPEHE MOCTYIaK 3a MOj H300p y 3Bae HAY4YHH CapaaHHUK.

VY nmpusory nocraBibam:

Munubeme pyKkoBoHOLA IEHTPa ¢a MPEJIOroM YWIaHOBA KOMHCH]E 3a U300D Y 3Bambe.

Crpyuny 6uorpadujy.

IIpernen HayyHe aKTUBHOCTH KaHIUJIATKHHE

EneMenTe 3a KBAIMTAaTHBHY aHAJIM3Y pajia KaHIHIATKHELE PE3BPCTAHE [0 CTaBKaMa y CKJIaly ca

ITpunorom 1 IlpaBunnuka, y3 obaBe3He 10Ka3e 3a CBaKy CTaBKY O] HABEIECHHUX CTABKH.

5. Enemente 3a KBaHTHTATUBHY aHAIM3y paja KaHIUIATKHILE NPHKa3aHe y BHAY Tabelne M3
IIpunora 4 IlpaBunnuKa, pasBpcTane y cknay ca [Ipunosuma 2 u 3 TlpaBuiauka.

6. Cnucak o6jaB/beHUX paJoBa U APYTUX IyOJMKalHja pa3sBpCTAHHUX 10 BakehuM kaTeropujama
nponucanux [IpaBHIHHKOM.

7. llopaTke 0 IUTHPAHOCTH KaHIUIATKAE

YBepeme 0 010pambeH0j JOKTOPCKOj THUCEPTALH]H.

9. Komnuje o6jaB/beHHX paoBa U APYTHUX I1yOJIMKALHA]a.
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VY Beorpany, 28.9.2023.

Jacna Byjun
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YHUBEP3UTET Y BEOI'PA/Y

Ipeamer: Munubeme pyxosoanona ILlenTpa 3a Gu3NKY YBPCTOr cTamba H HOBE MaTepHjaie o
n300opy y 3Bame HAYYHH CAPAHHK KAHAHJIATKHme Ap Jacue Byjun ca mpeajorom 4ianosa
KOMHCHje

JacHa Byjun je ox 9.3.2015. roaune 3anocnena y Jlaboparopuju 3a 2/ Marepujae y OKBUpY
IlenTpa 3a (M3MKy 4YBPCTOr CTaka M HOBEe Martepujaie Ha Mucrutyty 32 ¢usuky beorpaz,
Vuusepsutera y Beorpaay, rae je npBoOMTHO OMila aHraXOBaHA HA HALMOHATHOM NpOjexTy “@u3nka
ypeheHux HaHOCTPYKTypa M HOBMX MaTepujana y HaHodoronumu” OM171005, koju je dpuHaHCHpaIo
MMUHHCTapCTBO 3a MPOCBETY, HAyKy M TEXHONOMKH pa3Boj Pemybnuke CpOuje. V uMCTpaKHBAuYKOM
pany GaBu ce WcnuTHBameM MoryhHoctH yrnorpeGe 2J/[-martepujana, no6ujenux excdonmnjaunjom us
TeuHe (ase, kao npeTBapaya Koji OGHOCEH30pa, 3a JECTEKIHjy/HaeHTHQHKALK]y OHONOUIKH MOJICKYIIH
KOju O mManu ynory OuopeuenTopa w/wim anamuTa. KanamnaTkuma je oaOpaHuiIa JIOKTOPCKY
aucepTanMjy — mox  HasuBoM  ,, Dusuukoxemujcka — Kapakmepuszawuja — xemepocmpykmypa
0B0OUMEH3UOHATHUX Mamepujana (2pagen, oagpam oucyiguo) u GuoNOWKUX MONeKyaa (yucmeun,
1,2 ounanmumonu-cu-znuyepo-3-gpocgpoxonun) ” 26.9.2023. rogune Ha PakynTeTy 3a GUIHUKY XEMH]Y,
Vuusepsutera y beorpamy. Ayropka/koaytopka je 7 Hayunux panoa ca SCl-imucre u 11 caonuirerma
ca Mel)yyHapogHUX KOHEpEeHLH]a.

C 003upoM Ja KaHIMJATKHEBA WCIyHaBa CBE ycloBe npeasuhene 3aKOHOM O Hay4HO-
MCTPAXMBAYKO] HENaTHOCTH W [IpDaBMIIHUKOM O CTUIaBky HCTPOKMBAYKMX M HAyYHHX 3Barba
MuHHCTapcTBa HayKe, TEXHOJOIIKOTr pa3Boja M uHoBauuja Pemybmumke Cpbuje, carmacan cam ca
TIOKPETAmkEM TOCTYIIKA 3a H300p y 3Bame 1p JacHe ByjuH y 3Bame Hay4yHH CapagHHUK.

3a wianoBe KoMHUcH]e 3a u300p ap JacHe ByjuH y 3Bame Hay4HH CapaHUK IPE/JIaXKEM:

1. Jp Weany Munomesuh, HaygHor capannuka, MHcTHTyTa 32 Qusuky beorpan, YauBepsurera y
beorpany

2. lp Pagmuny TlanajotroBuh, HayuHor capagnuka, HWHctutyta 3a ¢usuky beorpan,
VYuusep3urera y beorpany

3. Jlp Uropa [Tamruja, penossor npodecopa Ha Paxynrery 3a QU3HIKY XEMH]y, Y HUBEP3HUTETA Yy
beorpany

28.9.2023, beorpan PyxoBomunan LlenTpa 3a pU3HKy 9BpCTOr
CTama U HOBE MaTepHjaie

Z(‘;) L/é{/g/']

ap Henap Jlazapesuh



1. CTPYYHA BUOTI'PAD®UIA

Jacna (Mwuopapar) Byjun pohena je 7.8.1984. romumne y beorpamy. Akamemcke 2003/2004.
roguHe ynucana je Dakynrer 3a (U3MUKY XeMmH]y YHUBep3uTeTa y beorpamy, Ha KojeM je
2011. roguue muruiomupana ca TeMoM ,, Teopujcko u3ydaBame BUOpallMOHHX Tperas3a koxa [I-X crama
TPOATOMCKHUX JIMHEAPHHUX MOJieKyna“ koa np Muibenka [lepuha, penosHor npodecopa dakynrera 3a
¢u3nuky xemujy. Macrep crymuje 3aBpmmia jeé Ha uctom ¢akynrery 2013. roguHe ca TeMOM
,,EJIGKTPOXEMHU]jCKAa aKTUBHOCT IMOJIMKpHUCTaTHEe Pt 3a peakmujy peaykiuje KHUCCOHUKA-TCOPHUJCKH U
NpakTU4YHH actekT™ kox ap Uropa [lamruja, pagoBHOr mpodecopa Ha PakynTeTy 3a GU3NIKY XEMU]y.
On axanemcke 2014/2015. ronumHe CTYINEHTKHEA j€ JOKTOPCKUX cryauja daxkynarer 3a (U3MUKY
XeMHJy.

Ha Unctutyty 3a pusuky beorpan 3anocnena je 2015. ronune, kao UcTpakuBay NPUIIPABHUK Y
JlabopaTtopuju 3a 2JI-matepujane y okBupy LlenTpa 3a pusuky uBpcTOr CTamka U HOBE MaTepujaje, e
je MpBOOMTHO OMJIa araH)KOBaHa Ha HAIMOHAJIHOM MpojeKkTy “@u3uka ypeheHux HaHOCTPYKTypa U
HOBHX Marepujana y HaHopotonum” OW171005, koju je ¢puHaHCHpaio MUHHCTAPCTBO 3a TPOCBETY,
HayKy W TEXHOJOWIKH pa3Boj Pemybnmke CpOuje. Y ucTpaxuBaykoM paay OaBU C€ HCIUTHBAHEM
MoryhHoctu ymotpebe 2JI-matepujana, nobujeHux ekcdoymjannjoM U3 TedHe (asze, Kao mperBapada
KONl OmoceH3opa, 3a JeTeKIH]y/uaeHTU(]HUKAIM]y OHOJONIKM MOJIEKYIH KOju OW HMalld YJoTy
onopernentopa WM ananura. Hakon npuxsaheHor mpeayiora TeMe JOKTOPCKE JucepTaluje, OaIyKOM
Hayunor Beha Muctutyra 3a ¢usuxy boerpan, Jacha Byjun mzabpana je 2019. roawHe y 3Bame
HCTpakuBau capaaHuk. Y anpuiy 2023. roguHe n3abpaHa je y 3Bambe CTPYYHH CaBETHUK.

JIOKTOpCcKy ~ nmucepTanujy  MOJ  Ha3uBOM  ,,Duszuukoxemujcka  Kapakmepuszauuja
XemepocmpyKkmypa 0800UMEH3UOHATHUX mamepujana (cpaghen, songpam oucynguo) u ouonowkux
monekyna  (yucmeun, 1,2  Ounanmumonu-Sn-ziuyepo-3-gpocpoxonun)”  ondOpameHa  je
26.9.2023. roqune Ha Pakynrery 3a pu3nuky xemujy, YHUBep3uTeTa y beorpany.

AHraxoBaHa je Ha Tpu OwiarepanHa mnpojekra uzmelhy Cpbuje m Aycrtpuje. Jacha Byjun je
ayropka/koayropka /7 HayuyHux paaoBa ca SCl-nucre m 11 caommrema ca MehyHapomHuX
KOH(EpeHIIHja IMTaMIaHUX Y H3BOY.

2. IPETJVIEJ HAYYHE AKTUBHOCTHU

HctpaxxuBauku pajl y OKBUpPY MJOKTOPCKE JAMCEpTaldje MpPeACTaB/ba EKCIIEPUMEHTAIHO
[IpOy4aBamke NHTEPAKIMje TaHKUX (puiamoBa TedHo ekcponupanux 2D marepujana (rpadena u WS2) u
ouonomkux Mosekyna (uucrenHa u DPPC) ca kxojuma unmHe XeTepocTpyKTypHHM TaHku ¢uiam. C
003MpOM Ha TO Jia ce MpHUIpeMa XeTepOCTPYKTypa M3BOJMIA Yy aMOMjeHTAIHUM YCIOBMMa U Jia Cy
KopulIheH! BOJEHHW DPACTBOPH OHOJIOUIKMX MOJIEKYNla, HWCHUTHUBAKkE YTHIaja MOJIEKylda BOJE Ha
CTPYKTYpy rpadeHckux u WS, GpuiamMoBa nmpecTaBiba HEU30CTaBHU J€0 OBOT UCTPAKUBAA.



Y nmpBoMm Jeny pana npukazana je ekchonumjanmja 2D matepujana (rpaden, WS2), mocrymak
dopmupama u aeno3uimje GuiIMoBa Kao U BHUXOBA (PU3MUYKA U XEMHUjCKA KapakTepusanuja. Metona
TeuHe ekcdonmjanrje mpeacTaB/ba COHOXEMHUJCKY CHHTE3y TOYETHOT Marepujajia y pactBapady (y
oBoMm ciy4ajy kopumheH je NMP (enrn. N-methyl-2-Pyrrolidone), omoryhaBajyhu noGujame
THCTIep3Hje MOHOCIIOJHUX M BUIIIECIIOJHUX JbyCIUIa HaHOMaTepujana (rpadgena u WS»). lucnepsuje cy
KopuiheHe 3a mpurpeMy rpadgeHckux (uiMoBa Ha rpaHunu (asza Bazayx/Boma u WS2 ¢uiMoBa Ha
rpaHuny ¢asa TOJNyeH/BOJA, JIOK Cy CE 3a HHXOBY JCIO3WIM]Yy Ha ofa0paHe CylcTpare KOPUCTHIIC
Jlaurmup-broner (enrt. Langmuir-Blodgett, LB) u Jlanrmup-Illedep (enrn. Langmuir-Schaefer, LS)
TexHuke. Ha OCHOBY pe3ynrara JOOMjeHUX UCIMTHBAKEM ONTHYKHUX, MOP(OJIOMIKUX, CTPYKTYPHHUX H
XEMHjCKHUX cBojctaBa rpadenckux u WS, dunmosa, npumenom UV/VIS (enrn. Ultraviolet-Visible)
CIIEKTPOCKOMHje, CKeHupajyhe enekTpoHcke MuKpockomuje (enri. Scanning Electron Microscopy,
SEM), wmukpockonuje aromckux cwia (enri. Atomic Force Microscopy, AFM) u Pamancke
CIIEKTPOCKOIHje, 3aKJbyduyje ce Na Cy J0OMjeHH KOMIIAKTHH, XOMOTEHH, TaHKH M TpPaHCIApEHTHU
rpapeHckn u WS, (GUIMOBM peENaTUBHO BEJIMKUX JWMMEH3Wja (BenmnuumHa (uima oapehena je
BEJIMYMHOM NOBpIINHE MelydaszHe rpaHule).

Takohe, y oBOM jeny WCTpaKMBama WCIUTHBAH je edeKaT MPUCYCTBA MOJIEKyJa BOJIE Ha
xeMujcky ctpykrypy LPE-LB rpadenckux u LPE-LS WS; ¢unmosa. 3a Te motpebe kopuimrheHa je
doToenekTpoHCKa crekTpockomnuja X 3pauema (enri. X-ray Photoelectron Spectroscopy, XPS), mpu
yeMmy cy (MIMOBH M3JIaraHu NMPUTHCKY BojAeHe mape oA | mbar u 5 mbar, mTo oAroBapa peaaTUBHO]
BIIQXKHOCTH Ba3ayxa okoiuHe oa 4 u 22%, penom. Ha ocnoBy ananmuze XPS pesynrata, moryhe je
3aKJbyuHTH Ja nedextu rpadenckux u WS, pumMoBa mpeacTaBibajy akKTHBHA MECTa 3a aJICOPIIH]Y
MoJiekysa Boje (Omiao Ja je Boja MOpeKIoM u3 aTtMocdepe W/wim 1a je KoMrnoHeHTa melydasne
rpaHuIe) ¥ HeHux aucocoBannx komnonent (HY u OH™ jona). [Ipy MMHMMAIHOM IPUTUCKY BOJEHE
nape (1 mbar) uHTEpaKja MOJIeKyJa BOJAC U rpadeHa je eleKCTpOCTaTHIKE MPUPOJIe Y K0joj rpadeH
uMa yIory JOHOpa eJeKpoHa. 300r CBOje TOJIapHE MPHPOJIE, MOJICKYJIM BOJE MpUBIAue 7
JEIOKAIM30BaHe eleKTpoHe Tpadena mro je mpaheHo moBehameM EHEpruje Be3e EJIEKTPOHA KOJI
C aroMa u cMamemeM eHepruje Bese enekrpoHa koja O atoma. Takohe, XeMHjCKH MTOMEpPaju CYyrepuIny
Ja KMCEOHHYHEe (YHKIIMOHATIHE Ipyle Ha TpapeHCKOM (UMY aKTUBHO YYECTBY)Y y HHTEPAKIHjU ca
mouiekyauma HoO, koja ce octBapyje kpo3 dopmupame BOJAOHMYHHMX Be3a. [loBehamem mpuThcKa
BOJIcHEe mape (Ha 5 mbar), MOJIEKYJIH BOJIeé HEMajy MOTyhHOCT AMpEKTHE aJICOpIIHje HAa MOBPIIMHU
rpadenckor ¢unma npunpemibeHor Jlanrmup-broner meronom, Beh ce gusucopOyjy Ha moctojehu
cioj, ¢opmupajyhu Tako JoJaTHE ciOjeBe IyTeM BOJOHMYHUX Be3a. Y ciydajy ¢mima WS»
npurnpemsbeHor Jlanrmup-Illedep TexHukoMm, ycien u3iarama MPUTUCIMMA BOJACHE mape Ha 1 u 5
mbar, nopen oxcunamuje W°' u dusucopnuuje MojeKyla BoAe Kao JOMHUHAHTHOT HpOIeca, OKCHIH
Bosipama (WO3, WOs3-x) umajy ynory aedekara Tj. HocTajy NOTEHIMjaIHa MECTa 3a aACOPILHjYy BOJE
OUJI0 y JAMCOCOBAHOM WIJIM MOJIEKYJICKOM OOJIMKY, yciel uera Joja3d JI0 HacTajamba JOJAaTHHUX
WO3:nH20 BpcrTa.

Y npyrom u TpeheMm Jeny AOKTOpCKe Te3e NpHUKa3aHa je MpUIIpeMa XeTepOoCTPYKTypa
ouosonikk MoJyiekys1/2D Marepujanm MeTOJOM HakamaBama (enrs. drop casting) u ucnuTHBambe
BUXOBUX (PU3MUKOXEMHUJCKMX CBojcTaBa. ONTHYKa M CKeHupajyha enekTpoHCKa MHUKPOCKOMHja
IpUMEmEeHa je Kako Oum ce aHanusupane Mop(osomKe U CTPYKTYpHE KapaKTepUCTUKE



XeTepOCTpyKTypa: IucTenn/rpaderckn  ¢umm, mucrenn/WS2 ¢uim, DPPC/rpadencku dunm u
DPPC/WS; ¢uim. Ha ocHOBY 100ujeHHX pe3yaTaTta YTBpHEHO je Ja OUOJIOIMIKHA MOJICKYIH (OpMHUpPa]jy
TaHaK (UIM KOjU Yy TOTIHYHOCTH NPEKpUBa TOBPIIMHY TaHKUX ¢miMoBa 2D-marepujana.
Arnomepanuja rucrenda 1 DPPC yimnuna va o6oay kanu (enrii. coffee ring effect) u mo moBpuiuau
rpadenckux u WS> ¢puimMoBa je Takolhe npucyrtHa.

3a HCIIUTHBAKE UHTECPAKIIHjEe OMOJIONIKAX MOJICKYJa ca moBpmuHOM (rimoBa 2D marepujana
kopumhena je Pamancka cnekrtpockomuja. Koj xerepocTpykTypa ca IIMCTEMHOM, HHTEH3HMBHA
MHTEpaKIyja THoJHEe Tpyne ca rpadenckum u WSz puiamom QupekTHO yTude Ha KOH(pOpManuoHe
npoMere Owonomkor MoJiekyna. OpmHocHo, trans poramepu ce jaBibajy Kao JOMHHAHTHA
KoH(opMaIMja Ha TMOBPUIMHU TpadeHckux (uiMoBa, MoK je y ciaydajy WSz ¢uiamosa To gauche
koHpopMmanuja. Packuname SH---O BogOHHYHUX Be3a, YMMe je oMoryheHa mHTepakiuja rpadeHa ca
KapOokcunmHoM rpynoM u  Qopmupawe SH---C BOJOHMYHMX Be3a, HacTaje Kao MOCIEuIa
¢usnucopnuuje uucrenna. C npyre crpane, kogq WS2 ¢uiamoBa HHTepakiyja ca aMUHO TPYIOM I0CTaje
3HATHO U3paKEHUja.

[Ipunukom Qopmupama xerepoctpykrypa ca DPPC monekynuma nonasu 1o ¢aBopH30Bama
uHTepaknuja rpadenckux omnocHo WS dunmmoBa ca oapehenum nenom nunumpa. MHTepakmuja
rpadena ca xuapodpobuum aemom mosiekyiaa DPPC octeapyje ce myrem van der Waals-oux cuia, npu
yeMy JUOUAM Ha NOBpIIMHM ¢uiMa 3ay3umajy trans koHdopmanujy kao goMuHaHTHY. OBa
WHTEpaKIfja TOBOJH JIO0 MMPEHOCA HealeKTpHcama ca rpadeHCKOT (uiiMa Ha JTUIHTHE MOJIEKYJIE, C THM
mTo je monpuHoc Mosiekyiaa HoO oBoM edekTy HeomxomHo y3eTn y o03up. Kom xerepocTpykrype
DPPC/LPE-LS WS,, unrepakiuja WS2 ¢unma ce octBapyje ca xuapodunaum aeaom DPPC monekyna
ycnocTaBjbatbeM xemHjcke Bese W—O—W, koja ce octBapyje m3amel)y kuceonmka ¢ocdaTHe rpyme
JUTIATHOT MOJICKYyJIa ca aTOMOM BoJippama, OWIO /1a je OH JedUHHUCAH Kao MBUYHU ACPEKT WIH Ce
Hanasu y ckiony WOs-—. HaBenmene wHTepakiuje Wmajy 3a MOCICTUIY TPOMEHE Y XEMHJCKO] H
€JIEKTPOHCKO] CTPYKTypu (priiMoBa, omoryhaBajyhu TuMe mUXOBY yrnoTpeOy 3a JETeKIN]y 01adpaHor
dbochomunuaa. Takohe, xerepoctpykrype DPPC/rpadencku ¢uim u DPPC/WS: dmim mory
MOCIY)KHTH KAao aKTHBHE KOMIIOHEHTE 3a CEJICKTHUBHY JETEKIHjy APYruX OHOJOIIKHAX MOJIEKYJa,
3aBHCHO O] HMXOBOT a()MHUTETA BE3WBamka MpeMa XUAPOMWIHOM HIM XHApOo(POOHOM Aeiy JIMIuaa
KOJU OCTaje U3y3eT Yy peakiuju ca rpadgerckum, oqaocHo WS» dhummom.

Pesynratu oBor wucrtpakumBama Cy TNpUKazaHu y OkBupy nBa pama ca CIU mucre u
MIPE3CHTOBAHM Ha MIECT KOH(PEPEHIIH]jE, IPH YEMY je BHIIIC PAIoBa Y MPHUIIPEMH:

1. J. Vujin, W. Huang, J. Ciganovi¢, S. Ptasinska, R. Panajotovi¢, Direct Probing of Water

Adsorption on Liquid-Phase Exfoliated WS; Films Formed by the Langmuir—Schaefer

Technique, Langmuir 39, 8055-8064 (2023) DOI: 10.1021/acs.langmuir.3c00107

2. J.Pesi¢, J. Vujin, T. T. 1li¢, M. Spasenovi¢, R. Gaji¢, DFT study of optical properties of MoS;
and WS, compared to spectroscopic results on liquid phase exfoliated nanoflakes, Optical and
Quantum Electronics, 50:291 (2018) DOI: 0.1007/s11082-018-1553-6

3. J. Vujin, W. Huang, S. Ptasinska, R. Panajotovic, Effects of water on thin films consisting of
biomolecules and 2D-materials, Seventh International Conference on Radiation and
Applications in Various Fields of Research, RAD7, 10-14.06.2019, Herceg Novi, Montenegro,


https://doi.org/10.1021/acs.langmuir.3c00107

(2019)p. 24

4. J. Vujin, M. Gili¢, R. Panajotovi¢,, Application of 2D-materials in building biomolecular
heterostructures”, Seventh International Conference on Radiation and Applications in Various
Fields of Research, RAD7, 10-14.06.2019, Herceg Novi, Montenegro, (2019) p. 25

5. J. Pesi¢, J. Vujin, T.T Ili¢, M. Spasenovi¢, R. Gaji¢, Ab-initio study of optical properties of
MoS, and WS, compared to spectroscopic results of liquid phase exfoliated nanoflakes,
Photonica 2017, 28.8 - 1.9.2017., Belgrade, Serbia, (2017), p. 94

6. J. Vujin, R. Panajotovi¢, Modifications of lipid/2D-material heterostructures by SEM, 28th
Summer School and International Symposium on the Physics of lonized Gases (SPIG 2016),
29. Aug - 2. Sep 2016, Belgrade, Serbia,(2016), p. 182

7. J. Vujin, B. Jovanovi¢, R. Panajotovi¢, Physico-chemical characterization of lipid-2D
materials self- assembly for biosensors, The Fourth International Conference on Radiation and
Applications in Various Fields of Research (RAD 2016), 23. - 27. May 2016, Nis$, Serbia,
(2016), p. 58

8. J. Vujin, b. Jovanovi¢, R. Panajotovi¢, Electron-beam damage from SEM to lipid-(graphene,
MoSz, WS>) heterostructures, Fourth International Conference on Radiation and Applications in
Various Fields of Research, RAD4, 23. — 27. May, 2016, Nis, Serbia (2016), p. 305

[Mopen uctpakuBama Koja ce OIHOCE Ha M3paay IOKTOPCKE Te3e, KaHAWIATKHIa ce OaBh
HCTpaXUBakbUMa YCMEPEHUM Ka (popMHpamy U (PU3NIKOXEMH]CKO] KapaKTepU3alMjH ca aKIIEHTOM
Ha UCIHUTUBAIKE EICKTpHYHUX ocoOmHa van der Waals oprancko/HEOPraHCKHX XETEPOCTPYKTYpa.
Pesynratu oBOT HCTp)KUBamba MyOJIMKOBaHU CY Y paay B Ha KOHQEPCHIIU]H:

1. A. Matkovi¢, M. Kratzer, B. Kaufmann, J. Vujin, R. Gaji¢, C. Teichert, Probing charge
transfer between molecular semiconductors and graphene,Scientific Reports7:9544,(2017)
DOI: 10.1038/s41598-017-09419-3

2. A. Matkovi¢, M. Kratzer, J. Genser, B. Kaufmann, J. Vujin, R. Gaji¢, and C. Teichert, Thin
Film Growth of Organic Rod-Like Conjugated Molecules on 2D Materials, NanoFI1S2016 - 2nd
international conference on functional integrated nano systems, 27-29.06.2016. Graz, Osterreich
(2016), p. 154

ExcniepuMeHTaqHO HaydyHO MCTpakKuBama KaHIUJATKUE-e MocBeheHo je u yHamnpehuBamy
nocrojehnx ocobuHa rpadeHCKUX (PUIMOBa ca aKLEHTOM Ha MOO0O0JbIIaka eIEKTPUUYHUX 0COOMHA KaKo
6u ce ucnurana Mmoryha npumena LPE-LB rpadena kao kaToJHOT 0JHOCHO aHaJHOT MaTepHjaia. ¥ Ty
CBpPXY BpIICHA je MOBPLUIMHCKA MOJU(HKALM]jE Tj. XEMHJCKO JOMUPABE couMa MeTana (JIMTUJyMOM U
3natoMm). [lpunmukom ¢dopmupama rpadeHckux ¢(uiIMoBa H3BPILICH je yTUIA] HA HUXOBY DPagHY


https://www.nature.com/articles/s41598-017-09419-3#auth-1
https://www.nature.com/articles/s41598-017-09419-3#auth-2
https://www.nature.com/articles/s41598-017-09419-3#auth-3
https://www.nature.com/articles/s41598-017-09419-3#auth-4
https://www.nature.com/articles/s41598-017-09419-3#auth-5
https://www.nature.com/articles/s41598-017-09419-3#auth-6

¢ynkuujy. [Ipukazano je na ce kopumhemeM CONM JIUTHjyMa BpLIM N-gonupame rpadena, 10k ce p-
JOMUpPake BPLIM COJIMMa 371aTa. TakBUM jeTHOCTABHHUM HAYMHOM XEMHJCKOT JOMUpama BPIIM CE
yTuIaj Ha panHy GyHkujy rpadena u omoryhasa na rpadeHnckn GuIMOBY UMajy IBOjaKy YJIOTY M Kao
Karoga W kao anona. Omcer ykymHe mpomene pamHe ¢yHkiuje u3Hocu 0.7 eV. 3Hauaj oBakBOr
MOCTYIKA JOMUPamka Oriiea ce y mobosplIamy ehUKacHOCTH TPAHCIIOPTa HOCHOIA HACIEKTPHCamha H
CMambeHha KOHTAKTHE OTIIOPHOCTH, YMME CE MOTY YHANpeAuTH neppopmance ypehaja.

Pesynrartu uctpaxuBama Cy IMyOJUKOBaHH y JBa pajia U KOH(epeHIrjama:

1. T. Tomasevi¢, J. Pesi¢, I.LR. Milosevi¢, J. Vujin, A. Matkovi¢, M. Spasenovi¢, R. Gajic,
Transparent and conductive films from liquid phase exfoliated graphene, Optical and Quantum
Electronics 48:319 (2016) DOI: 10.1007/s11082-016-0591-1

3. LR. Milosevi¢, B. Vasi¢, A. Matkovi¢, J. Vujin, S. Askrabi¢, M. Kratzer, Thomas Griesser,
Christian Teichert, Rado§ Gaji¢, Single-step fabrication and work function engineering of
Langmuir-Blodgett assembled few-layer graphene films with Li and Au salts, Scientific
Reeports 10, 10:8476(2020) DOI: 10.1038/s41598-020-65379-1

4. T.T Ili¢, J. Pesi¢, 1. Milosevi¢, J. Vujin, A. Matkovi¢ M. Spasenovié, R. Gaji¢, Transparent
and conductive films from liquid phase exfoliated graphene, Photonica 2015, 24. - 28. August,
Belgrade, Serbia, (2015), p. 191

5. I. R. Milosevi¢, B. Vasi¢, A. Matkovi¢, J.Vujin, R. Gaji¢, Liquid-phase Exfoliation of
graphene and chemical doping of Langmuir-Blodgett assembled graphene films, The 20th
Symposium on Condesed Matter Physics-SFKM 2019, 7-11.10.2019., Belgrade, Serbia, (2019)
p. 55;

6. I. R. MiloSevi¢, B. Vasi¢, A. Matkovi¢, J. Vujin, S. Askrabi¢, C. Teichert and R. Gajic,
Chemical doping of Langmuir-Blodgett assembled few-layer graphene films with Au and Li
salts aimed for optoelectronic applications, Photonica 2019, 26-30.08.2019., Belgrade, Serbia,
(2019) p. 101;

Takohe, kanaunaTkuma ce 0aBU UCTpaKMBamkKUMa Koja oOyxBarajy nmpumeny tankux LPE-LB
rpadenckux (uaMoBa 3a npeuumihaBame Boje 0J TEIKUX MeTala, KoHkpeTHo Pb?*. Iloctymak
(G yHKIMOHATN3alMje TOBpIUINHE rpadeHCKUX (HIMOBa BPIICHO je HaHo4YecTHIlaMa Fe ca nuibeM na ce
MHIyKYjy JIOKQJIHM MarHeTHH JOMEHH. Pe3ynaraTu mcTpakuBama Cy NOTBPIWIN Ja y mopehemy ca
HEMOAN(UKOBAaHUM TI'padeHCKUM (QHIMOM, KOjH HEeMa AETEKTaOWIHOT MarHeTHOr oarosopa, MOM
¢da3He cnuke MOIU(PHKOBAHOT MOKa3yjy jaky pas3iuky (asHor momaka y nopehemy ca CyncTpaToMm
(~0,2°), mTo yka3yje Ha MPUCYCTBO JOKATHOT MarHeTHor MoMmeHTa. Pesynratu XPS mepema ykazyjy
na monudukoBanu LPE-LB rpadenckux ¢uamou mmajy MoryhHocT aerekiuje u ajacopOuuje joHa
Pb?* u3 BoieHUX pacTBOPa, LITO je NPUKAa3aHa0 Ha KOH(epeHIHju:



1. LR. Milosevi¢, J. Vujin, M.Z. Khan, T. Griesser, C. Teichert, T.T Ili¢, Fe-nanoparticle-
modified Langmuir-Blodgett Graphene Films forPb(ll) Water Purification, The 21th
Symposium on Condesed Matter Physics-SFKM 2023, 26-30.06.2023., Belgrade, Serbia,
(2023) p. 87

VY capangmu ca CToMaTONOMKUM (DaKyATETOM, KaHIUJATKUIA YYECTBYje Y HCTpaXKHBambHMa
BE3aHUM 32 HCIUTHUBAE YTUIAja MEXaHUYKHX 0COOMHA M MOP(OJIOTHje MOBPIINHE CYICTpaTa-TaHKU
¢bunmoBH 2/[-mMarepujaiia Ka0 HMIUIATHOMIIHE KOMIIIIO3UTHE CTPYKTYpe, Ha Mpoiiece npoudepanuje u
mudepeHnujanmje JemoHOBaHNX MaTHYHKX henuja u3 3y0a.

Pesynratu oBUX HCTpakuBama IMyOIMKOBaHU CY Y pafoBUMa!

1. J. Simonovic, B. Toljic, M. Lazarevic, M. M. Markovic, M. Peric, J. Vujin, R. Panajotovic and
J. Milasin, The Effect of Liquid-Phase Exfoliated Graphene Film on Neurodifferentiation of
Stem Cells from Apical Papilla, Nanomaterials 12:3116 (2022) DOI: 10.3390/nan012183116

2. J. Simonovic, B. Toljic, N. Nikolic, M. Peric, J. Vujin, RadmilaPanajotovic, Rados Gajic,
Elena Bekyarova, Amelia Cataldi, Vladimir Parpura, Jelena Milasin, Differentiation of stem
cells from apical papilla into neural lineage using graphene dispersion and single walled
carbon nanotubes, Journal of Biomedical Materials Research Part A, 106, 2653-2661 (2018)
DOI: 10.1002/jbm.a.36461

3. EJIEMEHTHU 3A KBAJIMTATUBHY OLLEHY HAYUHOI" IOITPUHOCA
3.1. KBajuTeT HayYHHMX pe3yJraTa
a. 3.1.1. 3nayaj Hay4yHHUX pe3yJTaTa

VY cBoMm pdocamammeMm pany, ap JacHa ByjuH je o0jaBuiia yKymHO celaM pajoBa: TpU paaa
kareropuje M21, Tpu pana kareropuje M22 u jenan paa kareropuje M23.

Haj3navajauju pag KaHAUIATKUILE je:

J. Vujin, W. Huang, J. Ciganovi¢, S. Ptasinska, R. Panajotovi¢, Direct Probing of Water
Adsorption on Liquid-Phase Exfoliated WS, Films Formed by the Langmuir—Schaefer
Technique, Langmuir 39, 8055-8064 (2023) DOI: 10.1021/acs.langmuir.3c00107

HcrpaxxuBauky paj MmpeicTaB/ba €KCIIEPUMEHTAIHO MpOoydYaBame YTHIAja MOJIEKyla BOJE Ha
CTPYKTYpy TaHKuUX ¢unamoBa TeuHo ekchomupanor WS;. Gunmosu WS, popmupanu Ha melydaszHoj
TPaHMLY TOJIyeH/BOJa M JICTIOHOBAHW Ha oJadpaHe cyncrpare npumenom Jlanrmup —broyer merone
U3JIaraHyu Cy BOJIEHO] MapH MpH NpUTHCKY o 1 u 5 mbar. Pe3ynrtatu ykaszyjy aa ocum ¢usucopmimje
MoOJIeKy/I1a BOJIE, Ka0 JOMMHAHTHOT TIpoIleca, J0J1a3i U Jo mpoleca okcunamuje W y We* mpahenor
¢dopmupamwem nomatHux WOz-nH20 Bpcra. OcerspuBoct LPE-LS WS; ¢uiMoBa Ha mpucycTBO
MoOJIEKyJ1a BOJIE yKa3yje Ha HBUXOBY MOTEHIMjaHy MOTYNHOCT NMpUMEHEe Kao aKTUBHE KOMIIOHEHTE KO
CeH30pa 3a Mepeme BIaXHOCTU. Takohe, nobuja ce yBux o gompuHocy monekyna H20, kanma ce
UCIHTYje UHTEpaKI1ja BOJACHUX pacTBopa ouosomkux mojekyia u LPE-LS WS, ¢unmosa.


https://doi.org/10.3390/nano12183116
https://doi.org/10.1002/jbm.a.36461
https://doi.org/10.1021/acs.langmuir.3c00107

b. 3.1.2. IluTupaHocT HAYYHUX PaTOBAa KAaHIH/IATA

ITpema 6a3u Web of Science na nan 02.10.2023. ronune, pajioBU KaHAUJATKHILE CY HUTHPAHH
ykymHo 86 myra, 6e3 camonurata 80 myra. IIpema wmctoj 6a3u, XUPIIOB HHICKC KAHIUIAATKHEHC

je 5.
c. 3.1.3. IlTapamerpu KBAJIMTETA PaJoBa U Yaconuca

Kanmunatkuma np JacHa Byjun je o0jaBmia yKymHO ceiaaM paaoBa y MehyHapoaHHM
YacOTMCHUMA | TO:

e Tpu paxa M21:
1. Scientific Reports (M®2017=4.12, CH1I12017=1.27)
2. Journal of Biomedical Materials Research Part A, (M®2018=3.22, CHNI12018=0.96)
3. Scientific Reports (M®2020=4.38, CHI1I12020=1.37)

e Tpu paxa M22:
1. Optical and Quantum Electronics (M®2016=1.06, CHNI12016=0.62)
2. Nanomaterials (M®2022=5.23, CHI1I12022=1.06)
3. Langmuir (M®2022=3.90, CHNI12022=0.93)

e Jeman pag M23
1. Optical and Quantum Electronics, (M®2018=1.55, CHNI12018=0.66)

bubnuomerapcku mokasaTesbu Cy CYMUPAHH y HapeaHOj Tabemn

Nd M CHUIT
YKynHO 19.29 42 6.87
YcepenameHo 1o WIaHKy 2.76 6 0.98
YcepenmeHo 1o ayropy 3.36 5.9 0.99

3.1.4. EnemMeHTH NPUMEH/bUBOCTH HAYYHHX pe3yJiTaTa

ExcnepumenTtanHa uctpaxkuBawa Ap JacHe ByjuH, koja oOyxBatajy cunTe3y 2]l matepujana,
dbopmupame 1 GU3NYKO XEMUJCKY KapakTepusanujy punmona 2J] MaTepujan HacTaauX METOJAOM TEUHE
ekconjanrje WMajy 3a /b KCIUTHUBAKBEC HUXOBE IMPUMEHE Kao TOTCHIMjAaHUX aKTHBHHX
1aT(opMHU- CaCTaBHUX JieJIoBa OMOCEH30pCcKuX ypehaja.

3.2. Hopmupame 0poja KoayTOPCKHX PaJ0Ba, NATEHATA U TEXHHYKHUX peliemha
Kanaunatkuma je myonukoBana Tpu paga y M21 kareropuju (npBu uma 9 ayropa, apyru 11 u

tpehu 6), Tpu paga y M22 kareropuju (npBu uMa 5 ayropa, pyru 8 u tpehu 7 ayropa) u jejan paa y
M23 (5 ayropa).




3.3 Yuemhe y npojekTuma, NOTHPOjeKTUMA U NMPOjeKTHUM 3aJallUMa

Hp Jacua Byjun ydecTtBoBaia je Ha qBa Ounatepanna npojekra usmely Cpouje u Aycrpuje:
,2DPu3nka ypeheHUX HAHOCTPYKTypa M HOBHX Matepujasia y HaHodortonuim™ (2018-2021) wu
,MoJenupame 1 Meperwe (pasHuX mpela3a U ONTHIKKX ocoOrHa nepoBckura™ (2018-2021).

TpenyrHo je aHraxoBaHa Ha OwmarepasHoMm Tpojekty wusmehy CpOuje u  Aycrpwuje:
,2MoJynanyja MarHeTHHX OCOOMHA caMoopranm3yjyhux rpadeHCcKuX (UIMOBa 3a MpedHIInaBame
ornanHux Boaa“ (2022-2024)

3.4 YTunaj Hay4YHuX pe3yJrara

VYTHuia) HaydHUX pe3yiTara KaHAWJATKUEE ce oryiefja y Opojy LMTaTa KOjU Cy HaBEIEHHU Yy
Tauku 3.1.2 OBOT MpHWJIOTa, KA0 M y MPUJIOTY O IUTHUPAHOCTU. 3HAYA] pe3yiTara KaHIUJIATKUIkE |
Takohe onucan y Tauku 3.1.1.

3.5 KoHkperan [A0NpHMHOC KAHAWJATKHIE Yy peaJu3aluju pagoBa 'y HAYYHHM
LHEeHTPUMA y 3eM/bU U HHOCTPAHCTBY

Kanmunatkuma je cBe CBOje MCTpaXMBauKe aKTUBHOCTH peanm3oBana y Jlabopatopuju 3a 21
Marepujana y okBupy LlenTpa 3a pu3mky uBpcTOT CTamka U HOBE Marepujaie Ha MHCTUTUTY 3a QU3HKY
Bbeorpan. CBoj mompHHOC TOKOM HCTpakMBama Jana je y npunpemu 2]l marepujana, ycaBpllaBamby
TexHuke (popMupama u aeno3uiyje GuiMoBa TeuHo exkchonupanux 2]l Marepujanga Kao U y BHUXOBO]
(MBUYKO XEMHJCKO] KapaKTepu3alliju, aHaJu3W W WHTEPHpeTaluju TOOMjeHUX pe3ynrara, Kao Hu
MMcamy pasoBa.



4. EJIEMEHTHU 3A KBAHTUTATUBHY OLHEHY HAYYHOI' TOITPUHOCA

OctBapen 6poj M 6ooBa o kareroprjama myoaukaimja

Kareropwuja M-60108Ba 110 Bpoj mybnukanuja YkynHo M 60o10Ba
yOJTHKAI U (HOpMHUpaHO)

M21 8.0 3 24 (18.14)
M22 5 3 15 (14.12)
M23 3.0 1 3

M33 1.0 1 1

M34 0.5 9 4.5

Mo64 0.2 1 0.2

M70 6 1 6

[Topehewme ca MUHUMAIHUM KBaHTUTATUBHUM YCJIIOBHMa 3a U300p y 3Bam€ HAYYHU CapaIHUK

[ToTpebno OctBapeHo (HOpMHUPaHO)
YxyImHO 16 85(71.52)
M10+M20+M31+M32+M33+M41+M42 10 43(36.26)
M11+M12+M21+M22+M23 6 42(35.26)




5. CIMCAK ITIYBJIMKALIMJA
Panosu y Bpxynckum mel)ynapoanum yaconucuma (M21)

1. A. Matkovi¢, M. Kratzer, B. Kaufmann, J. Vujin, R. Gaji¢, C. Teichert, Probing charge
transfer between molecular semiconductors and graphene, Scientific Reports7:9544,(2017)
DOI: 10.1038/s41598-017-09419-3

2. J. Simonovic, B. Toljic, N. Nikolic, M. Peric, J. Vujin, RadmilaPanajotovic, Rados Gajic,
Elena Bekyarova, Amelia Cataldi, Vladimir Parpura, Jelena Milasin, Differentiation of stem
cells from apical papilla into neural lineage using graphene dispersion and single walled
carbon nanotubes, Journal of Biomedical Materials Research Part A, 106, 2653-2661 (2018)
DOI: 10.1002/jbm.a.36461

3. LR. Milosevi¢, B. Vasi¢, A. Matkovi¢, J. Vujin, S. Askrabi¢, M. Kratzer, Thomas Griesser,
Christian Teichert, Rados Gaji¢, Single-step fabrication and work function engineering of
Langmuir-Blodgett assembled few-layer graphene films with Li and Au salts, Scientific
Reeports 10, 10:8476(2020) DOI: 10.1038/s41598-020-65379-1

PanoBu y ucrakuyrum mel)ynapoguum yaconucuma (M22)

1. T. Tomasevi¢, J. Pesi¢, L.LR. Milosevi¢, J. Vujin, A. Matkovi¢, M. Spasenovi¢, R. Gajic,
Transparent and conductive films from liquid phase exfoliated graphene, Optical and Quantum
Electronics 48:319 (2016) DOI: 10.1007/s11082-016-0591-1

2. J. Simonovic, B. Toljic, M. Lazarevic, M. M. Markovic, M. Peric, J. Vujin, R. Panajotovic and
J. Milasin, The Effect of Liquid-Phase Exfoliated Graphene Film on Neurodifferentiation of
Stem Cells from Apical Papilla, Nanomaterials 12:3116 (2022) DOI: 10.3390/nan012183116

3. J. Vujin, W. Huang, J. Ciganovi¢, S. Ptasinska, R. Panajotovi¢, Direct Probing of Water
Adsorption on Liquid-Phase Exfoliated WS, Films Formed by the Langmuir—Schaefer
Technique, Langmuir 39, 8055—8064 (2023) DOI: 10.1021/acs.langmuir.3c00107

PanoBu y meh)ynapoanum yaconucuma (M23)

1. J. Pesi¢, J. Vujin, T. T. Ili¢, M. Spasenovi¢, R. Gaji¢, DFT study of optical properties of MoS;
and WS, compared to spectroscopic results on liquid phase exfoliated nanoflakes, Optical and
Quantum Electronics, 50:291 (2018) DOI: 0.1007/s11082-018-1553-6

Caonmreme ca ckynopa mel)ynapoanor 3aauaja mrammnasor y uejaoctu (M33)

1. J. Vujin, b. Jovanovié¢, R. Panajotovi¢, Electron-beam damage from SEM to lipid-(graphene,
MoSz, WS>) heterostructures, Fourth International Conference on Radiation and Applications in
Various Fields of Research, RAD4, 23. — 27. May, 2016, Nis, Serbia (2016), p. 305

Caonmreme ca ckynopa Mel)ynapoaHor 3Ha4yaja mrammnasor y ussoay (M34)

1. T. Tomasevic¢-11i¢, J. Pesi¢, 1. Milosevi¢, J. Vujin, A. Matkovi¢, M. Spasenovi¢, R. Gajic,
Transparent and conductive films from liquid phase exfoliated graphene, Photonica 2015, 24. -


https://www.nature.com/articles/s41598-017-09419-3#auth-1
https://www.nature.com/articles/s41598-017-09419-3#auth-2
https://www.nature.com/articles/s41598-017-09419-3#auth-3
https://www.nature.com/articles/s41598-017-09419-3#auth-4
https://www.nature.com/articles/s41598-017-09419-3#auth-5
https://www.nature.com/articles/s41598-017-09419-3#auth-6
https://doi.org/10.1002/jbm.a.36461
https://doi.org/10.3390/nano12183116
https://doi.org/10.1021/acs.langmuir.3c00107

28. August, Belgrade, Serbia, (2015), p. 191

. J. Vujin, R. Panajotovi¢, Modifications of lipid/2D-material heterostructures by SEM, 28th

Summer School and International Symposium on the Physics of lonized Gases (SPIG 2016),
29. Aug - 2. Sep 2016, Belgrade, Serbia,(2016), p. 182

J. Vujin, B. Jovanovié¢, R. Panajotovi¢, Physico-chemical characterization of lipid-2D
materials self- assembly for biosensors, The Fourth International Conference on Radiation and
Applications in Various Fields of Research (RAD 2016), 23. - 27. May 2016, Nis, Serbia,
(2016), p. 58

A. Matkovi¢, J. Genser, B. Kaufmann, J. Vujin, B. Vasi¢, R. Gaji¢, and C. Teichert, Epitaxy of
highly ordered conjugated organic semiconductor crystallite networks on graphene based
devices, ICSFS18 - 18th International Conference on Solid Films and Surfaces, 27.08.-
03.09.2016. Chemnitz, Germany, (2016), p154.

J. Pesi¢, J. Vujin, T.Tomasevi¢-1li¢, M. Spasenovi¢, R. Gaji¢, Ab-initio study of optical
properties of MoS, and WS, compared to spectroscopic results of liquid phase exfoliated
nanoflakes, Photonica 2017, 28.8 - 1.9.2017., Belgrade, Serbia, (2017), p. 94

J. Vujin, W. Huang, S. Ptasinska, R. Panajotovic, Effects of water on thin films consisting of
biomolecules and 2D-materials, Seventh International Conference on Radiation and
Applications in Various Fields of Research, RAD7, 10-14.06.2019, Herceg Novi, Montenegro,
(2019)p. 24

. J. Vujin, M. Gili¢, R. Panajotovi¢,,, Application of 2D-materials in building biomolecular

heterostr-uctures”, Seventh International Conference on Radiation and Applications in Various
Fields of Research, RAD7, 10-14.06.2019, Herceg Novi, Montenegro, (2019) p. 25

I. R. Milosevi¢, B. Vasi¢, A. Matkovi¢, J. Vujin, S. Askrabi¢, C. Teichert and R. Gaji¢,
Chemical doping of Langmuir-Blodgett assembled few-layer graphene films with Au and Li
salts aimed for optoelectronic applications, Photonica 2019, 26-30.08.2019., Belgrade, Serbia,
(2019) p. 101;

I.R. Milosevi¢, J. Vujin, M.Z. Khan, T. Griesser, C. Teichert, T. Tomasevi¢-Ili¢,
Fe-nanoparticle-modified Langmuir-Blodgett Graphene Films forPb(ll) Water Purification,
The 21th Symposium on Condesed Matter Physics-SFKM 2023, 26-30.06.2023., Belgrade,
Serbia, (2023) p. 87

Caonmreme ca CKyNnoBa HAIIHOHAJIHOT 3HaYaja mramnanor y ussoay (M64)

1.

I. R. Milosevi¢, B. Vasi¢, A. Matkovi¢, J.Vujin, R. Gaji¢, Liquid-phase Exfoliation of
graphene and chemical doping of Langmuir-Blodgett assembled graphene films, The 20th
Symposium on Condesed Matter Physics-SFKM 2019, 7-11.10.2019., Belgrade, Serbia, (2019)
p. 55;

Onopamena 1okTopcka qucepranuja (M70)

1. Jacna Byjun, ,,PuznykoxeMHujcKka KapaKTepu3alluja XeTepOCTPYKTypa JBOAMMEH3MOHATHUX

Matepujana (rpaden, Boiadpam mucyadua) U OHOIOMIKUX MoJieKyna (IUCTerH, 1,2 TumaiMuTou-SN-
riunepo-3-pocdoxonun)”’, @axkynrer 3a GU3UUKY XeMH]jy, Y HUBEp3UTeT y beorpany.
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Single-step fabrication and work
function engineering of Langmuir-
Blodgett assembled few-layer
graphene films with Li and Au salts

Ivana R. MiloSevi¢'™, Borislav Vasi¢!, Aleksandar Matkovi¢?™, Jasna Vujin?, Sonja Askrabic3,
Markus Kratzer?, Thomas Griesser*, Christian Teichert? & Rados$ Gaji¢!

To implement large-area solution-processed graphene films in low-cost transparent conductor
applications, it is necessary to have the control over the work function (WF) of the film. In this study
we demonstrate a straightforward single-step chemical approach for modulating the work function

of graphene films. In our approach, chemical doping of the film is introduced at the moment of its
formation. The films are self-assembled from liquid-phase exfoliated few-layer graphene sheet
dispersions by Langmuir-Blodgett technique at the water-air interfaces. To achieve a single-step
chemical doping, metal standard solutions are introduced instead of water. Li standard solutions (LiCl,
LiNO;, Li,CO;) were used as n-dopant, and gold standard solution, H(AuCl,), as p-dopant. Li based
salts decrease the work function, while Au based salts increase the work function of the entire film.
The maximal doping in both directions yields a significant range of around 0.7 eV for the work function
modulation. In all cases when Li-based salts are introduced, electrical properties of the film deteriorate.
Further, lithium nitrate (LiNO;) was selected as the best choice for n-type doping since it provides the
largest work function modulation (by 400 meV), and the least influence on the electrical properties of
the film.

Graphene, consisting of a single layer carbon arranged in a hexagonal lattice, has attracted extensive interest
because of the excellent mechanical and electrical properties associated with its two dimensional structure' .
Chemical vapor deposition (CVD) method has become the most common method for production of large-area
graphene films®. Still, simple and low-cost methods are needed for mass production especially when considering
the cases where high-quality films are not needed for the desired functionality, as in low-power lighting, sensors,
transparent heating, and de-icing applications®. In that context, liquid-phase exfoliation (LPE) is a perspective
way of obtaining large quantities of exfoliated graphite in solution. LPE of graphite results in a dispersion of
few-layer graphene sheets (GSs) in the solvent. However, in order to access the full potential of LPE-processed
graphene, thin-films needs to be controllably fabricated utilizing techniques capable to introduce self-ordering of
GSs’. One such example is Langmuir-Blodgett assembly (LBA). Based on surface-tension induced self-assembly
of nanoplatelets at the liquid-air interface or the interface of two liquids, LBA is a good method for production of
large-scale, highly transparent, thin solution-processed graphene films®-!1.

Excellent electrical conductivity, flexibility and transparency in the visible domain make graphene a natural
choice for ultrathin, flexible and transparent electrodes in electronic devices'®!*""?. Still, a significant work func-
tion difference between graphene and frequently employed active layers of photovoltaic and light-emitting diode
(LED) devices gives rise to a high contact resistance. Contact resistance can have a significant impact on overall
efficiency and performance of the devices®. This is of a particular technological relevance considering that any
realistic application of graphene based transparent electrode must compete against those based on indium tin

!Laboratory for Graphene, other 2D Materials and Ordered Nanostructures of Center for Solid State Physics and
New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia. 2Institute of
Physics, Montanuniversitat Leoben, Franz Josef Str. 18, 8700, Leoben, Austria. 3Nanostructured Matter Laboratory
of Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118,
11080, Belgrade, Serbia. “Institute of Chemistry of Polymeric Materials, Montanuniversitat Leoben, Otto-Gloeckel-
Strafe 2, 8700, Leoben, Austria. ®e-mail: novovic@ipb.ac.rs; aleksandar.matkovic@unileoben.ac.at
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oxide (ITO) or fluorine-doped tin oxide (FTO), which have already gone through decades of interfacial optimi-
zation in order to deliver todays’ performance®!-**. Therefore, the understanding of the efficient ways for mod-
ulation of the graphene work function is crucial for improving device performances***?*. In order to enhance
the charge injection, the work function of the graphene electrode should be optimized to better match WF of the
adjacent layer in order to form an ohmic contact?.

Recently, the chemical doping has been reported to be an effective method for doping of CVD graphene and
tuning its work function by charge transfer between the graphene sheet and metal salts, organic dopants, or metal
oxide layers!'®!421-28_Such surface charge transfer induced by chemical doping is expected to efficiently control
the Fermi level of graphene sheets without introducing substitutional impurities or basal plane reactions, thus,
preventing any damage to the carbon networks and not introducing scattering centres that would lower carrier
mobility*!. Kwon et al. reported n-type chemical doping of CVD graphene with alkali metal carbonates by soak-
ing in appropriate solutions®* and alkali metal chlorides by spin-coating of appropriate solutions on the trans-
ferred graphene substrates®. So far, doping of Langmuir-Blodgett graphene films prepared from LPE dispersions
has been done with nitric acid and ozone after the film was formed using the drop-casting method and UV/ozone
treatment”?’. Chemical doping is especially attractive for LPE-based graphene films since many exposed edges of
GSs are expected to enable very efficient functionalization through charge transfer doping. However, the chemical
doping with metal salt solutions has not been used to control the work function of LBA graphene films so far. In
this work LBA graphene films obtained from LPE dispersion were doped during the process of film formation.
Therefore, the formation and doping of the LBA graphene films in our work represent a single-step process. This
is a significant improvement compared to previous works where the chemical doping was applied only after the
graphene fabrication.

In the present work, we systematically investigated single-step work function modulation (increase and
decrease) of the LPE GS films achieved by chemical doping. In particular, using Li standard solutions (LiCl,
LiNO; and Li,COs;) as n-dopant, and gold standard solution H(AuCl,) as p-dopant was investigated. In contrast
to previous methods for chemical doping of CVD graphene which can be applied only after the graphene films
fabrication, here we described the method for the production and doping of LPE graphene films in a single-step.
Single-step work function modulation means doping of the film at the moment of its formation from the LPE
graphene dispersion by LBA technique at the air-metal standard solution interface. We have demonstrated tun-
ability of the WF in the range of almost 1 eV, making these metal-salt treated LPE-based graphene electrodes
suitable candidates for both electron and hole injection interfaces.

Results and discussion

Morphology of LPE GS films. Fabrication and doping of the GS films is schematically represented in
Fig. 1(a): air-metal standard solution interface, introduction of LPE dispersion and formation of the LPE GS film
at the interface, scooping of the doped film on the target substrate and finally, obtained doped LPE GS film which
is further investigated with different techniques.

Morphology of LPE GS films is depicted in Fig. 1 consisting of both optical (Fig. 1(b1-f1)) and Atomic Force
Microscopy (AFM) topographic images (Fig. 1(b2-f2)) for both undoped and metal doped LPE GS films. As
can be seen from AFM images, the doping process does not change morphology of LPE films, except that the
doped films contain more agglomerates (visible as bright particle-like domains). The following values for the
surface roughness were obtained by AFM measurements averaged on ten 50 x 50 um?areas: (a) 11.9 + 1.5nm for
undoped LPE GS film, (b) 11.5+ 3.5 nm for Li,CO; doped, (c) 13.3 + 2 nm for H(AuCl,) doped, (d) 13.7 + 1.6nm
for LiCl doped, and (e) 13.8 + 1.2nm for LiNO; doped LPE GS films. Therefore, the surface roughness sligtly
increases by around 2 nm after the doping, while for Li,CO; doped LPE GS film is practically the same as for
the undoped film. Still, optical images recorded on larger scale depict formation of agglomerates in doped films
which could degraded their optical (leading to an increased scattering and/or absorption of incoming lights on
these clusters) and electrical properties (due to enhanced scattering of charge carriers).

The observed formation of the agglomerates is most likely not an inherent property of the particular metal-salt
doping. Overcoming this would likely require further optimization of the LBA process. However, as a benchmark
the LBA process in this study was optimized for an undoped film and was left unchanged for all of the metal-salt
doped films.

Transmittance measurements. Using the different doping metal standard solution during LBA of
graphene films was found to result in different transparency. In the UV region, the transmittance of graphene is
dominated by an exciton-shifted van Hove peak in absorption®*. Transmittance at 550 nm was 82% for undoped
and 80%, 76%, 74%, 68% for H(AuCl,), LiCl, LiNOs;, Li,CO; doped LPE GS films, respectively (Fig. 2). It can be
seen that transmittance decreases for doped LPE GS films. Metal salts decrease the transmittance of the graphene
films regardless the type of the present metal (gold or lithium). The degree of the transmittance decrease was
related to not only the metal cations but also the anions. Different lithium salts decrease transmittance in differ-
ent amounts. Transmittance decrease of 14% was the highest for the LPE GS film doped with lithium carbonate
(Li,CO;). Similar results of the transmittance decrease for metal doped CVD graphene films were obtained in
studies of Kwon et al.?****, Transmittance decrease could be a consequence of the metal particles adsorption and
agglomeration on doped films after the solvent evaporation process. Changes in the thickness of LPE GS films
with doping could not be excluded because LBA process in this study was optimized for an undoped film and was
left unchanged for all of the metal-salt doped films.

Raman measurements. Raman spectra for undoped and H(AuCl,), LiCl, LiNO,, Li,CO; doped LPE GS
films are given in Fig. 3(a). The four basic graphene/graphite peaks D (~1348 cm™}), G (~1579cm™?), D' (1614
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Figure 1. (a) Schematic representation of the LPE GS film formation and its doping in the single-step process.
(b1-f1) Optical images are shown in the top row, whereas (b2-f2) AFM topographic images are shown in the
bottom row for the following cases: (b) undoped LPE GS film, and (c) Li,COs3, (d) H(AuCl,), (e) LiCl, (f) LiNO,
doped LPE GS films. z-scale in all AFM images is 100 nm.
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Figure 2. Transmittance spectra of undoped and H(AuCly), LiCl, LiNO;, Li,CO; doped LPE GS films.

cm ') and 2D (2700 cm™!) are observed for all the samples. No significant shifts of any characteristic Raman
peaks of graphene were detected after chemical doping (Fig. 3(a)).

The change of the full weight at half-maximum (FWHM) of the Raman modes after doping with metal stand-
ard solutions was negligible Fig. 3(b). The only notably change of the Raman spectra was the increase of the inten-
sity ratio of D to G peaks, I(D)/I(G) (Fig. 3(c)). The quantity of defects has been shown to be related to the ratio
between the D and G peaks, I(D)/I(G); the larger the ratio, the larger the defect density®'. We observe increase of
the defect density with H(AuCl,), LiCl, LiNO;, Li,CO; doping in relation to the undoped film and the amount of
the increase expressed in percent was 37%, 24%, 29% and 21%, respectively.

All self-assembled films suffer from a large defect density that often leads to a high sheet resistance of depos-
ited film. Therefore, the nature and density of defects in any thin film transparent conductor is important, espe-
cially when chemical treatment was used to enhance films” performance. The intensity ratio between the D and
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Figure 3. (a) Raman spectra of the undoped LPE GS film and films doped with Li and Au salts, (b) FWHM of
the four basic Raman peaks (c)The intensity ratio of D to G peak for different doping metal salts, I(D)/I(G), (d)
The intensity ratio of D to D’ peak, I(D)/I(D’), for different doping metal salts. We refer to peak intensity as the
height of the peaks as proposed by Eckmann et al.*?.
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Figure 4. FT-IR spectra of (a) undoped and H(AuCl,), LiCl, LiNO;, Li,CO; LPE GS doped films, (b) metal
standard solutions (0.1 mg/mL) used for doping processes.

D’ peak can be used to get information on the nature of defects in graphene®>*. I(D)/I(D’) was calculated, and
the obtained results were presented in Fig. 3(d). Topological defects (like pentagon-heptagon pairs), boundaries,
vacancies, substitutional impurities and sp® defects are possible defects in graphene’!. Studies reporting a ratio of
3.5 for boundaries, 7 for vacancies, 13 for sp® and values in-between those for vacancies and sp? for substitutional
impurities can be found in the literature®*>**. From Fig. 3(d) it can be observed that the D to D’ intensity peak
ratio is nearly constant in our samples regardless of the doping solution, and the value of the ratio indicates that
the edges are the dominant type of defects in our LPE GS films.

Fourier transform infrared absorbance (FT-IR) measurements. FT-IR spectra of undoped and LiCl,
LiNO;, Li,CO;, H(AuCl,) doped LPE GS films, as well as FT-IR spectra of corresponding metal standard solu-
tions are shown in Fig. 4.

For the undoped LPE GS film FT-IR spectra is simple. It can be seen only a small peak assignable to C=C
skeletal vibration®-* of the graphene basal planes at ~1560 cm ™. This peak can also be seen in FT-IR spectra for
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Figure 5. (a) AFM topography, (b) CPD map measured by KPFM, and (c) histogram of (b) shown for
H(AuCl,) doped LPE GS film as an example. (d) Change in WF for doped LPE GS films for different dopants,
in comparison to the undoped LPE GS film. Solid red line in (d) is only a guide for the eye. (e) Schematic
representation of the work functions prior to the interaction (equal vacuum levels) for Au-based salt/graphene
and Li-based salt/graphene. The green arrows indicate direction of electron flow showing that in the case of Li
(Au) based salts, electrons are transferred to (from) graphene.

all investigated doped films at the same wavenumber indicating that graphene basal planes were not interrupt
by doping. The strong peak at around ~3400 cm™! and another, smaller one, near ~1630 cm™! can be seen in all
doped LPE GS films (Fig. (4a)) and corresponding metal standard solutions (Fig. (4b)). They are attributed to the
water molecules and are assignable to the O-H stretching vibrations (~3400 cm™') and H-O-H bending mode
(~1630 cm!)*%_In the case of FT-IR spectra for LPE GS film doped with LiNO; the peak at ~1340cm ! and
~1390 cm ™! are assignable to the vibration mode of the NO; ™~ ions and asymmetric stretch of O-NO,, respec-
tively*®*°. Similar vibration modes can be observed in the case of FT-IR spectra for LPE GS film doped with
Li,CO; and can be assigned to the vibration mode of the CO;™ ions (1340 cm™!) and asymmetric stretch of
0-CO, (~1390 cm™!)*!, The same vibrational modes could be seen for LINO; and Li,CO, standard solutions (Fig.
(4b)).

From the observed FT-IR results (Fig. 4(a)) it is clear that additional peaks appear with LPE GS film chemical
doping. These additional peaks match with vibrational modes of the anions in solution (Fig. 4(b)). Considering
that no new peaks are visible in the given spectra (which would indicate the formation of chemical bonds) the
present peaks could be a consequence of the metal salts adsorption to the graphene lattice during the doping. In
order to understand Li and Au doping mechanisms XPS measurements were performed and they are presented
in separate section.

Work function modulation. Results for the work function dependent on the different metal standard
solution used in the LBA process are summarized in Fig. 5. The top row depicts an example with the topog-
raphy (Fig. 5(a)), corresponding contact potential difference (CPD) map measured by Kelvin probe force
Microscopy-KPEM (Fig. 5(b)), and the histogram of the CPD distribution measured on H(AuCl,) doped
graphene film (Fig. 5(c)). The histogram is characterized with a single peak, which is used for the averaging
and calculation of the absolute value of work function. The same procedure was done for all considered films.
More details about the measurements of CPD and WF calculations are given in Supplementary information in
Supplementary Figs. S3-S5. As a result, the values of the absolute work function are presented in Fig. 5(d) for
both, doped and undoped LPE GS films. As can be seen, n-doping of graphene films is achieved by Li-based salts,
whereas Au-based salt leads to p-doping.

The change of the WF due to the doping can be explained according to the schematic presentation in Fig. 5(e),
illustrating that Li (Au) as a lower (higher) work function material compared to GS films. Therefore, presence of
Li-based salts into the graphene film results in a reduction of the work function of the entire film. This behavior
can be interpreted as an increase in the Fermi level of GSs — compared to the value for the undoped films -
indicating predominantly a charge transfer from Li-based salts to graphene (n-doping), as expected when con-
sidering that Li has lower WF than graphene (graphite). In contrast to Li-based salts, the Au-based salt shows
an opposite trend for the relative change of the work function. This indicates charge transfer from graphene to
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Figure 6. (a) Schematic cross-section of the bottom-contacted back-gated FET devices, also indicating
electrical connections. (b) Optical microscopy image of one of the devices, without PDMS capping (for clarity).
LBA GS film covers the entire sample surface. (¢,d) Output curves of H(AuCl,) and LiNO; doped samples, and
(e,f) transfer curves of H(AuCl,) and LiNO; doped samples, respectively. Dashed lines represent least squares
linear fits (to selected regions) that were used to extract sheet resistance and linear mobility.

Au-based salt and a relative reduction of the Fermi level in GSs (p-doping). It is also worth mentioning that
poly-crystalline nature of LPE based GS films, large amount of sheet edges and presence of the residual solvent
(NMP) results in p-doped films’, as was also observed in the electrical measurements presented in the following
subsection. Therefore, WF values are lower for the LPE-based films by at least 200 meV, than for the pristine
exfoliated single-crystals*?. p-type doping is also reflected on the WF of the reference samples (undoped LPE GS),
and therefore on the whole accessible range for the WF modulation by this method. This was also highlighted in
Fig. 5(e), where the WFp, . i depicts the case of undoped graphene®.

According to Fig. 5(d), the maximal doping in both directions is similar, around 0.3-0.4 eV, finally providing
a significant range of around 0.7 eV for the work function modulation of LPE GS films. The achieved range was
obtained for 0.1 mg/mL concentration of dopants. For smaller concentrations (one order of magnitude lower,
0.01 mg/mL), the observed changes in CPD were in the order of 10mV. On the other hand, for higher concentra-
tions (for one order of magnitude higher, 1 mg/mL) gave rise to the problems related to the formation of contin-
uous, large-area LPE GS films, and were therefore excluded from this study. The reported shift of the Fermi level
is very similar to the other (comparable) systems in the literature. WF values change of 0.3 eV in our experiment
(chemical doping by Au ions) are the same order of magnitude as in Kwon et al. manuscripts for gold-chloride
(WF change of 0.6 eV?!, 0.6 eV*, 0.4eV%). Compared with Kwon e al. alkali carbonate?® and chloride? graphene
chemical doping data (0.4 eV and 0.3-0.4 eV, respectively) WF values change for Li in our manuscript (0.2eV and
0.4eV) are in the same order of magnitude. Compared with literature data the same effect can be achieved but
advantages of our approach is fast and simple solution-based method for one-step fabrication and WF control of
large-area graphene films.

Sheet resistance. The schematic cross-section of the devices used for the electrical characterization is
shown in Fig. 6(a), also indicating electrical connections. An optical microscopy image for one of the devices
without PDMS encapsulation (for clarity) is shown in Fig. 6(b) illustrating source (S) and drain (D) contact geom-
etries. One characteristic set of transport and output curves for H(AuCl,) and LiNO; doped film is presented in
Fig. 6(c-f). Here linear fits were used to extract sheet resistances and apparent linear hole mobilities. Transfer
curves for all four salt-treatments and for the reference LPE GS film are presented in the Supplementary informa-
tion (Supplementary Fig. S1).

In the cases of a reference (undoped) and H(AuCl), doped LPE GS samples, output curves barely deviate from
a perfect linear behavior in a rather large bias range, indicating that the contact resistance is negligible in com-
parison to the channel. This is in contrast to all samples doped with Li-based salts, where a significant deviation
from the linear output curves were observed at higher bias, indicating non-negligible contact resistance. This can
be attributed to large WF differences with Au bottom contacts in the case of Li-based salt doping of the films.
Furthermore, while H(AuCl,) doping enhances electrical performance of the films, a significant increase of the
resistivity and reduction of the mobility was observed in the case of all Li-based salt dopings.

The slope of the transfer curves indicates that holes are the majority carriers for all samples, including both
the undoped (reference) and all metal salt doped films. Linear fits to the transfer curves were used to estimate
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Figure 7. The dependence of the electrical properties of LBA graphene films on the type of metal standard
solution based doping; (a) sheet resistance, and (b) apparent linear hole mobility, and (c) direct current
conductivity to optical conductivity ratio (6pc/0p). Dashed lines in (a—c) serve only as a guide for the eye.

apparent hole mobility of the devices. While the type of majority carriers was not affected by the doping, a signif-
icant (over one order of magnitude) suppression of the field-effect was observed for Li salt dopings of the films.

Figure 7 summarizes electrical properties obtained for all of the measured devices as a function of the different
metal based doping.

The results indicate that anions also play a significant role. In the case of Li-based salts, a large variation of the
electrical properties was obtained by the different choice of the anion species. Nonetheless, the experiments point
out that metal cations dictate the direction of the WF shift (see Fig. 5), as is apparent in the case of H(AuCl,) and
LiCl where only cation species is varied. Our results of metal based doping of LPE graphene films demonstrate
a tradeoff between enhancement of the electrical performance and modulation of the WE. Similar results were
obtained for CVD doping with Li and Au salts*>?. Of a particular technological relevance is large reduction of the
WE of graphene. While many methods for chemical modulation of graphene result in p-type doping*~¢, stable
and simple n-type doping is much harder to achieve?’~*. For an efficient electron injection, a significant reduction
of graphene’s WF is required. As pointed out by WF measurements and electrical characterization, LiNO; is the
best choice from the tested Li-based salts with respect to both the largest WF reduction (by 400 meV) and least
deterioration of the electrical properties of the films with ~2-3 times increase in sheet resistance compared to the
reference (undoped LPE GS).

In contrast, doping of LPE GS films by HNO; vapor results in an increase of the apparent mobility®. However,
using a LiNOj; solution reduces the mobility by one order of magnitude. Therefore, Li* cations — and not anions -
are likely responsible for the deterioration of the electrical properties upon n-doping. An increase of sheet resist-
ance was observed in doping of CVD graphene with alkali metal carbonates and chlorides**?. There, a significant
increase in the sheet resistance was related to the combination of carbon atoms and dopant metals because elec-
tron donation occurred®*. Also, Chen et al. observed that the mobility of the charge carriers decreases with the
increase of the potassium doping concentration which they attributed to additional scattering caused by ionized
potassium atoms**°. It is most likely that Li* cations are acting as scattering centers for the carriers, or provide
traps at the boundaries between neighbouring GSs and effectively increase contact resistance between the over-
lapping GSs.

Finally, considering that the main potential application of these LPE GS films lies in transparent electrodes,
direct current conductivity to optical conductivity ratio (opc/00p) is presented in Fig. 7(c) for all metal standard
solution doping cases and for the reference (undoped). opc/0op is a parameter frequently reported in order to
characterize the relative performance of the films in terms of transparency and sheet resistance!***°!. The higher
the ratio the better the quality of transparent electrodes®. Compared to the changes in the electrical properties
(Fig. 7(a)) the changes in the optical properties (Fig. 2) are minor. Therefore, the dependence of the op,c/0p 0n
the type of the metal-ion doping clearly follows the trend set by 1/R.

X-ray Photoemission Spectroscopy (XPS) measurements. In order to understand Au and Li ion
doping mechanisms XPS measurements were performed. C 1s, Au4fand Li 1 s core-level XPS spectra are shown
in Fig. 8. N 1s, Cl 2p and O 15 spectra are presented as Supplementary Fig. S2. The C 1s peak of undoped and
LiCl, LiNO;, Li,CO;, H(AuCl,) doped LPE GS films is shown on Fig. 8(a). The C 1s peak is deconvoluted using
Gaussian profile into 4 components for undoped and doped films: C=C/C-C in aromatic rings (284.5eV); C-C
sp’ (285.4eV); C-0 (286.6€eV) and C=0 (289€V)*>2. In the case of Li,CO; we can see a small additional peak at
289.2-291.0 eV which can be assigned to carbonate. Detected oxygen peak (C=0) is likely due to the residual
of NMP and oxygen functionalized edges (C-O) on graphene®*. The C=C/C-C peak was shifted to a lower
binding energy by about 0.16, 0.48, 0.10 and 0.83 eV for H(AuCl,), LiCl, LiNO; and Li,CO; doping process,
respectively. The C=C/C-C peak shifts in present work are a consequence of doping by different metal standard
solutions. Kwon et al. have shown that degree of doping was related to the electronegativity of the anion in the
Au complex where anions with a high electronegativity and high bond strength are adequate for use as a p-type
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Figure 8. (a) XPS C 1s spectra of undoped and H(AuCl,), LiCl, LiNO;, Li,CO; doped LPE GS films. C=C/C-C
in aromatic rings (284.5eV); C-C sp® (285.4eV); C-O (286.6eV) and C=0 (289 eV) were considered. For
Li,CO; a small additional peak at 289.2-291.0 eV can be assigned to carbonate. (b) Peak intensity ratio for the
sum of C=C/C-C and C-C peaks intensities, and the intensity of C-O, Ic_c/c.c-c.c)/I(c.0y (black line) and the
ratio of Li 1 s intensity from Li salts to Li-O intensity, I;;/I;; o (red line). (¢) XPS Li 1 s spectra for different Li
compounds and for Li-O. (d) The Au 4 f peak in the XPS data of H(AuCl,).

dopant in graphene?®.. Thus, different shifts of C=C/C-C peak for different metal-salt doping materials could be
also a consequence of anions influence on graphene films.

Figure 8(c) show the Li 1s core-level XPS spectra. Literature values for Li 1 s core-level for different Li com-
pounds are: LiCl (56.2eV), Li,CO; (55.5€eV) and LiNOj; (55.8€V)*® and they correspond well to the values
obtained in this work. Li 1 s peak at 55.0 eV is assigned to Li-O bond™. Vijayakumar and Jianzhi have shown that
lithium ion tends to bind with the oxygen rather than the carbon on graphene surface, and interacts by forming
Li-O ionic bond*®. Also Kwon et al. have proposed that C-O-X complexes can be formed during doping treat-
ment and can act as an additional dipole to further reduce the value of WF*-*>%, The intensity ratio between sum
of the intensities of C=C/C-C and C-C peaks, and the intensity of C-O (Iic_c/c.c+c.c)/I(c.0)) is shown in Fig. 8(b).
Also, the ratio of Li 1 s intensity from Li salts to Li-O intensity (I;;/I;; o) can be seen in Fig. 8(b). In both cases,
intensity ratios decrease for Li,COs, LiNOj3, LiCl, respectively and this implies increased formation of C-O and
Li-O bonds. Increased number of Li-O bonds follow the increasing trend of C-O bonds, which is in correlation
with the WF change (Fig. (5d)). The above mentioned results strongly suggest that the mechanism of n-type
doped LPE GS films with lithium-salts could be explained with formation of Li complexes (C-O-Li).

Figure 8(d) show the Au 4 f peak of gold-chloride doped LPE GS film. The peak is composed of metal (Au®)
and metal ion (Au®"). The peaks at 84.2 eV and 87.9 eV are assigned to neutral Au (Au’ 4f,,, and Au® 4f; ,, respec-
tively), and the peaks at 86.5eV and 90.2 eV are assigned to Au ion (Au** 4f;, and Au* 4f;,, respectively). Au
ions (Au®") have positive reduction potential and have tendency to spontaneously accept charges from other
materials (graphene) and reduce to Au® 22256, Therefore, the mechanism of p-doped LPE GS film can be
explained as spontaneous electron transfer from graphene film to Au®*", resulting in depletion of electrons in the
graphene networks, thus increasing the WF of doped graphene.

Conclusion

We demonstrate a straightforward single-step method for forming and doping of LPE GS films by metal standard
solutions through charge transfer processes. Chemical doping of graphene allows to modulate its WF in a very
large range, and therefore potentially enables to use the same electrode material for both, the injection and for the
extraction of the electrons. n-doping of graphene films is achieved by Li-based salts, whereas Au-based salt leads
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to p-doping. Furthermore, solution-processed graphene films are in particular suited for the chemical modula-
tions, since a large number of the sheet edges opens up many adsorption sites and enhances the doping effects
when compared to many other types of graphene.

The morphology of the LPE GS films does not change with the doping process, except that doped films contain
agglomerates. FT-IR measurements point out that graphene basal planes stay chemically unchanged with metal
doping and the charge transfer process is enabled with adsorption of the metal salts. Li-based salts decrease the
WE while Au-based salts increase the WF of the entire film. The maximal doping in both directions gives a signif-
icant range of around 0.7 eV for the work function modulation. Changing the dopant (Au or Li based salts) signif-
icantly affects the electrical properties of the films. In the case of the Li-based salts doping of the film, a significant
suppression of the field-effect mobility and the increase of the sheet resistance was observed. This indicates that
adsorbed Li-anions act as scattering centers for the charges. XPS data indicated that different mechanisms exist in
the case of Au and Li doping. For Au ions spontaneous charge transfer occurred from graphene, thus increasing
WE. In the case of Li doping, potential adsorption sites are a large number of the sheet edges where C-O bonds
are preferential sites for lithium ions and for forming of C-O-Li complexes. In all cases graphene films are p-type,
which is in accordance with KPFM measurements. Also, tradeoft between Li complex which reduce the value of
WF and anion which increase the value of WF could be a reason of such a doping.

Metal salts charge transfer doping — which happens with this single-step method - provides a facile and effec-
tive method to tune the WF of LPE graphene therefore extending the potential use of these materials in low-cost
transparent electrode applications.

Methods

Preparation of GS dispersion and doping solutions. A dispersion of GS in N-methyl-2-pyrrolidone
(NMP, Sigma Aldrich, product no. 328634) has been used. GS dispersion was prepared from graphite powder
(Sigma Aldrich, product no. 332461) of initial concentration 18 mg/mL. The solution was sonicated in a low-
power ultrasonic bath for 14 h. The resulting dispersion was centrifuged for 60 min at 3000 rpm immediately after
the sonication.

Stock standard solutions used in our work for n-doping are 1 mg/mL LiCl, LiNO; and Li,CO; and for
p-doping is 1 mg/mL gold standard solution (Merck, H(AuCl,), product no. 170216). Lithium standard solutions
were prepared from originated Li salts (LiCl, LiNO; and Li,CO;, Merck, product no. 105679, 105653 and 105680,
respectively). By appropriate dilution of the stock solution with deionized water we obtained 0.1 mg/mL metal
water solution which is then used in doping process.

Deposition on a substrate and doping of LPE GS films.  GS dispersion in NMP was used to fabricate
transparent and conductive films by LBA technique at a water-air interface, like in our previous work??*¢!. A
small amount of GS dispersion was added to the water-air interface and after the film was formed it was slowly
scooped onto the target substrate. Applying the same process of fabricating the GS films and using the appropriate
metal standard solution instead of water, chemical doping was achieved. As substrates SiO,/Si wafer were used
for electrical and WF measurements, while quartz and CaF, substrates were chosen for optical and FT-IR spec-
troscopy, respectively.

Characterization of undoped and doped LPE GS films.  The Morphology of LPE GS films was studied
by optical and atomic force microscopy (AFM). Topographic AFM measurements were done by NTEGRA Prima
AFM system and NSGO1 probes with a typical tip radius of around 10 nm. The surface roughness of LPE GS films
was calculated as a root-mean square of the height distribution and averaged on ten 50 x 50 pm? areas.

Kelvin probe force microscopy (KPEM) - established almost three decades ago®? and in the meantime fre-
quently applied to graphene*>*-%5 — was employed in order to characterize changes in the electrical surface poten-
tial and corresponding Fermi level shifts due to doping. For this purpose, we measured the contact potential
difference (CPD) between AFM tip and the sample surface® by using Pt covered NSGO01/Pt probes with a typical
tip curvature radius of 35 nm. In the first pass of KPFM, the sample topography was measured in tapping AFM
mode. In the second pass, the probe was lifted by 20 nm, and moved along the trajectory measured in the first
pass. Simultaneously, the sum of AC and DC voltage was applied between the sample and the probe. The AC volt-
age excites AFM probe oscillations during its movement, while the CPD between AFM tip and the sample surface
in every point is then equal to the value of variable DC voltage which cancels the AFM probe oscillations. For all
samples, the CPD was measured on five 5 x 5 pm? areas, and then averaged. In order to obtain the absolute value
of the work function, the following procedure was applied*?. The CPD is equal to the work function difference
between AFM tip (WF,) and sample (WF,), CPD = WF-WF,. The calibration of the WF, was done by a standard
procedure consisting of KPFM measurements on a freshly cleaved HOPG with a well known work function of 4.6
eV*2 Finally, the sample work function was calculated as WF,=WF, - CPD, where CPD is measured by KPFM
for all, undoped and doped LPE GS films.

The effect of chemical doping on optical properties of LBA GS films was investigated with measurements of
optical transmittance, using UV-VIS spectrophotometer (Beckman Coulter DU 720 UV-VIS Spectrophotometer).

Electrical measurements were performed under ambient conditions in a standard field-effect device configu-
ration with Si substrate acting as a back gate electrode, using Keithley 2636 A SYSTEM SourceMeter. Devices were
based on bottom-contact gold pads defined by a shadow mask with L/W =30 um/1000 um, and SiO, as a gate die-
lectric with thickness of 285 nm. Graphene films were deposited using the same LBA method as described above.
The top surface of the devices was encapsulated by polydimethylsiloxane (PDMS) films (GelPak X4) to ensure sta-
ble performance and minimize any adsorption/desorption during electrical measurements that could occur from
the surroundings (e.g. water vapor). Electrical characterization was performed on several devices of each doping
with metal standard solution, and for undoped films as a reference. For each device ten subsequent forward and

SCIENTIFIC REPORTS |

(2020) 10:8476 | https://doi.org/10.1038/s41598-020-65379-1


https://doi.org/10.1038/s41598-020-65379-1

www.nature.com/scientificreports/

backward transfer and output curves were measured, using low sweeping rate (~0.005-1 Hz per point in a voltage
sweep) to minimize parasitic capacitance. Sheet resistance and apparent linear field-effect mobility were extracted
using fits to output and transfer curves, respectively. For the output measurements source-drain bias was varied in
arange between —10 V and 410V, with the gate electrode grounded. For transfer measurements, the gate voltage
was varied between 0V and 50 V, with source-drain bias at 1 V in all cases except for Li,CO; where due to a very
weak field-effect (very low mobility) 10 V bias was used.

The room-temperature micro-Raman spectra of undoped and metal salt doped LPE GS films were collected
using Tri Vista 557 triple spectrometer coupled to the liquid nitrogen-cooled CCD detector. Nd:YAG laser line
of 532 nm was used for the excitation and 50 magnification objective was used for focusing the beam onto the
sample. Low laser power (less than 1 mW) was applied to prevent the thermal degradation of the sample. Each
LPE GS film sample was measured at eight different positions.

Fourier transform infrared absorbance spectra (FI-IR spectra) of undoped and metal salt doped LPE GS films
were measured over a range of 400-4000 cm ™! with Nicolet Nexus 470 FT-IR spectrometer. Standard solutions
which were used for the preparation of doped films were measured too and they were prepared by drop casting
method on the CaF, substrate.

XPS spectra were recorded using a Thermo Scientific instrument (K-Alpha spectrometer, Thermo Fisher
Scientific, Waltham, USA) equipped with a monochromatic Al Ko X-ray source (1486.6eV). High-resolution
scans were performed with a pass energy of 50eV and a step size of 0.1 eV. All analyses were performed at room
temperature.

Data availability
The datasets obtained and analysed during the current study that are not included in this article are available from
the corresponding authors on reasonable request.
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Abstract

We calculate the dielectric function within the framework of the random-phase approxima-
tion (RPA) based on DFT ground-state calculations, starting from eigenvectors and eigen-
values. The final goal of our theoretical work is a comparison to corresponding experimen-
tal data. We compare our computational results with optical measurements on MoS, and
WS, nanoflakes. MoS, and WS, were exfoliated by ultrasonic treatment in high-boiling
point organic solvent and characterized using UV-VIS spectrophotometry. We find that
DFT-RPA yields a good, computationally inexpensive first approximation of the imaginary
part of the dielectric function, although excitonic effects require more complex code and
extra computing power.

Keywords DFT optical properties - MoS, and WS, - 2D materials

1 Introduction

Even though graphene is being the most promising two-dimensional material, absence of the
gap has imposed limitations of its applications in nanoelectronics and nanophotonics. Transi-
tion metal dichalcogenide crystals (TMDCs) emerged as important alternative as a layered 2D
materials family with the finite gap and received considerable attention owing to their extraor-
dinary potential for applications in electronics and optics (Pospischil et al. 2014; Baugher
et al. 2014; Britnell et al. 2013; Koppens et al. 2014; Ross et al. 2014; Shi 2013; Zhang 2016;
Huang 2016; He 2016; Szczesniak 2017). MoS, and WS, are part of the family of transition
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metal dichalcogenide crystals. They display distinctive properties at a thickness of one and
few layers (Butler et al. 2013; Wang et al. 2012; Xu et al. 2014) and very peculiar physics,
ranging from trions (Mak et al. 2013) to superconductivity (Szczesniak et al. 2018). They
have also attracted much interest for applications in optoelectronics as detectors, photovoltaic
devices and light emitters (Pospischil et al. 2014; Baugher et al. 2014; Britnell et al. 2013;
Koppens et al. 2014; Ross et al. 2014). MoS, and WS, are layered crystals in hexagonal struc-
ture, consisting of metal atoms sandwiched between two chalchogenide atoms, with covalent
interaction within layer and van der Waals interaction between layers. For many applications
knowledge of the optical properties is of fundamental importance. Spectroscopic techniques
are among the most important methods for research in the field of nanoscience and nano-
technologies. Parallel with the development of experimental methods, computational science
becomes a very valuable tool in pursuit for new low-dimensional materials and their charac-
terization. Employing high-end modeling codes, it is possible to simulate from first principles
more than a few spectroscopic techniques. The most basic description of light-matter interac-
tions in TMDC thin layers is given by the materials complex dielectric function. Importance
of the dielectric function is not only in understanding theoretical concepts underlying inter-
esting properties of TMDCs but it is crucial for the characterization of these materials i.e.
the imaginary part of dielectric function is directly related to the absorption. The observed
double-peak structure in the optical absorption spectra of monolayer TMDCs is connected
to excitonic excitations. These excitons are due to the vertical transition at the K point of the
Brillouin zone from a spin-orbit-split valence band to doubly degenerate conduction band
(Zhu et al. 2011). For experimental approach, spectroscopic ellipsometry allows determina-
tion of material’s optical properties in nondestructive manner (Tompkins and McGahan 1999;
Liu et al. 2014). The liquid-phase exfoliation is a simple and effective method to exfoliate
bulk layered materials into mono- and/or few-layer 2D nanosheets. In this work, high quality
TMDC, MoS, and WS, were prepared in NMP with the similar procedure as our previous
works (Matkovi¢ et al. 2016; TomaSevi¢-1li¢ et al. 2016). UV-VIS spectroscopic measure-
ments effectively characterize dispersions by their absorbtion spectra. Using approaches based
on density functional theory (DFT), implemented in the Quantum Espresso software package
(Giannozzi et al. 2009), we study optical properties of low-dimensional materials, MoS, and
WS,. We calculate the dielectric function within the framework of the random-phase approxi-
mation (RPA) (Brener 1975) based on DFT ground-state calculations, starting from eigen-
vectors and eigenvalues. Although the tight-binding approximation prove their efficiency and
accuracy in describing low-dimensional bands and energy gaps in TDMC materials (Liu et al.
2013; Shanavas et al. 2015; Szczesniak et al. 2016), even for study of the optical properties
(Ghader et al. 2015) we relay on DFT based methods due to their applicability on large spectra
of systems joint with simplicity of use. The final goal of this study is a comparison to cor-
responding experimental data provided by spectroscopic measurements of liquid exfoliated
nanoflakes of MoS, and WS,. We use our results for analysis of optical properties of liquid
phase exfoliated MoS, and WS, nanoflakes, as a proven method for analysis of basic optical
properties of 2D materials (PeSi¢ et al. 2016).

2 Computational details
For presented analysis, Quantum Espresso (QE) code (Giannozzi et al. 2009),

based on DFT, was used. The approach is established on an iterative solution of the
Kohn—Sham equations of the DFT in a plane-wave basis set. The ionic positions in the
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cell are fully relaxed, in all calculations, to their minimum energy configuration using
the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm. We modeled monolayer
MoS, and WS, with hexagonal unit cell with 3 atoms per unit cell (Fig. 1). For pre-
sented analysis, GGA exchange-correlation functional, Perdew—Burke—Ernzerhof (PBE)
(Krack 2005) was used. This parameter-free GGA functional, PBE, is known for its gen-
eral applicability and gives rather accurate results for a wide range of systems. Com-
pared to hybrid, PBE potential is significantly faster, hence more convenient for qualita-
tive description we aim in this discussion. Although LDA is computationally even more
affordable, GGA (i.e. PBE) has proven to be closer to experimental results for spectra
of properties in low-dimensional materials (Rasmussen 2015; Molina-Sanchez et al.
2015). Additional accuracy that would be obtained with addition of spin orbit correc-
tion, however it would lead to significant increase in computational costs (Rasmussen
2015) making this approach obsolete, since we use it for its efficiency. Namely, many-
body calculations applying the GW approximation and Bethe—Salpeter equation give
good agreement for optical properties, but their computational costs is great comparing
to DFT + RPA. Our computationally inexpensive approach gives qualitatively satisfying
description. The hexagonal cell parameter ¢ was set to be very large (10-12 A) in order
to simulate vacuum and two-dimensional system and avoid an interaction due to perio-
dicity. The plane wave kinetic energy cutoff of 70 Ry was used and the uniform k-point
grid was composed of 4096 points in the first Brillouin zone. In TMDCs van der Waals
interaction (Lu et al. 2017) have an important effect on the electronic structure, and
in case of multilayer, structures were relaxed to their minimum position, with van der
Waals interaction included to obtain proper interlayer distance (using Grimme scheme
Grimme 2006). In case of monolayer, there was no need for inclusion of it. Dielectric
function e(w) was calculated, in the range 1-20 eV, within the framework of the RPA
(Brener 1975) based on DFT ground-state calculations, starting from eigenvectors and
eigenvalues, implemented in Quantum Espresso (QE) code as epsilon.x post-processing
utility. Matrix elements were accounted only for interband transitions. RPA does not
include the nonlocal part of the pseudo-potential and it is not able to include in the
calculation the non-local field and excitonic effects. We are interested in the study of
the optical properties of this two materials using DFT as a computational inexpensive
method for the qualitative description. In QE implementation of the RPA, frequency
dependence is computed from an explicit summation of dipole matrix elements and
transition energies. Similar theoretical methods were already used to describe the bulk
TMDCs (Molina-Sanchez et al. 2015, 2013).

Fig. 1 Structure of monolayer of WS, and MoS,
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3 Synthesis of MoS, and WS, dispersions

Liquid Phase Exfoliation (LPE) is the physico-chemical process where thin sheets of van
der Waals materials, ie. MoS, and WS, are exfoliated from their corresponding bulk mate-
rials by ultrasonic treatment in liquids such are organic solvents (Fig. 2). In liquid disper-
sion flakes mainly range from monolayer to few-layer flakes. For the fabrication of both
MoS, and WS, dispersion, we followed the protocol described in earlier papers (Matkovié
et al. 2016; Tomasevic¢-Ili¢ et al. 2016; Panajotovic et al. 2016; Vujin et al. 2016). An initial
concentration of powders are: MoS, powder (Sigma Aldrich, Product No. 69860) 24 mg/
ml and WS, powder (Sigma Aldrich Product No.243639) was 12 mg/ml. The mixture was
sonicated in a low power sonic bath (Bransonic CPXH Ultrasonic 8 Cleaning Bath) for
14 h in N-Methyl-2-pyrrolidone (NMP) (Sigma Aldrich-328634) for both materials. In
order to prevent reaggregation and reduce the amount of unexfoliated material, the solu-
tions were centrifuged for MoS, 1000 rpm for 30 min and WS, 15 min at 3000 rpm and
second centrifuge 6000 rpm for 15 min after we decanted excess of liquid.

4 Characterization of MoS, and WS, dispersions

Large quantities of TMDC flakes were observed as few-layer layered nanosheets, confirm-
ing the high quality of the prepared LPE samples. The aggregated nanosheets are absent in
these SEM images (Fig. 3), which is in favor of quality of exfoliation procedure.

The UV-visible absorption spectra of the nanosheet dispersions in NMP was meas-
ured using the UV-VIS Spectrophotometer (Perkin-Elmer Lambda 4B). The quality of the
obtained TMDC nanosheets was characterized by SEM (Tescan MIRA3 field-emission gun
SEM). Two typical characteristic absorption peaks of MoS, and WS, are clearly observed
at the region of 600 nm (Fig. 4, which correspond to the A1 and B1 direct excitonic transi-
tions of the TMDC originated from the energy split of valence-band and spin-orbit cou-
pling (Zhu et al. 2011; Coleman et al. 2011). Noteworthily, the splitting between A and B
excitonic peaks of WS, is larger than that of MoS, because of the much heavier mass of the
W atom (Shi 2013). These two peaks indicate that the TMDC are dispersed in NMP as the
2H-phase. The Lambert-Beer law was applied to UV-VIS absorption spectra to calculate
TMDCs concentration by estimating the absorbance at distinctive peak (MoS, at 672 nm
and WS, at 629 nm ) by using a cell length of 1 cm and the extinction coefficient of MoS,
(@ =34.00mL mg™' m™!), WS, (« = 27.56mL mg~! m~"), in NMP solutions, which cor-
responds to previously reported values (Coleman et al. 2011). The concentration of exfoli-
ated MoS, is 343 pg ml~" and WS, is 237 g ml~'.

Layered material Sonication in high-boiling Liquid dispersion of

in bulk point organic solvent 2D material %

sonication centrifugation

Fig.2 Procedure of liquid phase exfoliation
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Fig.4 UV-VIS spectra were taken using Perkin—Elmer Lambda 4B UV-VIS spectrophotometer with
quartz cuvettes

5 Results and Discussion

First we calculate the dielectric function for the MoS, and WS, monolayer (Fig. 5a). On
example of MoS, monolayer we shall discuss dielectric function. The imaginary part of the
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dielectric function for the E vector perpendicular to the c axis is presented in the red color
and E parallel to the c axis is presented in the green on Fig. 5. Four distinct structures on
Fig. 5, at 1(2.7), 2(3.7), 3(4.2) and 4(5.3 eV) can be connected to the interband transitions,
marked on the inset of the electronic band structure, with 1, 2, 3 and 4 as well. All the
interband transition depicted here are mainly due to the transition from the p valence bands
of sulfur to the d conduction bands of the molybdenium (Kumar et al. 2012). The peak 1 is
determined by the interband transitions from the valence bands I, II below the Fermi energy
to the conduction bands I, II and III above the Fermi energy along I'M and KT direction.
The peak 2 is due the interband transitions from the valence bands II below the Fermi
energy to the conduction bands II and III above the Fermi energy along I"'M direction and
near the M. The peak 3 exists due to the interband transitions from the valence bands III
below the Fermi energy to the conduction bands II and III above the Fermi energy along
KT direction. Peak 4 is determined by the interband transitions from the valence bands IV
below the Fermi energy to the conduction band I above the Fermi energy in the vicinity of
the M high symmetry point. Our calculations are in agreement with the other similar DFT
studies (Kumar et al. 2012) and experimental research as well (Li et al. 2014). All TMDCs
have similar band structure and corresponding analysis can be applied on WS, monolayer.
In Fig. 5 imaginary part of dielectric function of WS, is presented. Same as for MoS,,
there are present four distinct peaks originating in same transitions as in MoS,.

Next we compare the imaginary part of the dielectric function in MoS, and WS, with
experimental results. Figure 6 qualitatively compares experimental results of MoS, and
WS, LPE with DFT+RPA calculations and results obtained using the Kramers—Kronig
analysis (Li et al. 2014). The green line represent experimental results, UV-VIS spectra
of LPE flakes. Violet lines are DFT + RPA model of MoS, and WS,. The red line is

Fig.5 The calculated imaginary Imaginary part of dielectric function for MoS, in RPA
part of the dielectric function for 16 i
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Fig.6 The qualitative comparison of imaginary part of experimental results and theoretical calculations for
MoS, and WS,. Asterisks corresponds to result for the reference Li et al. (2014)

Fig.7 The calculated imaginary Monolayer E[c ——
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imaginary part of the dielectric function obtained using Kramers—Kronig analysis from
the reference Li et al. (2014). Due to the nature of approximation, excitonic effects are
not clearly visible in DFT+RPA calculation and characteristic A and B peaks are not
present. However both for MoS, and WS, peaks at around 400 nm (which originate in
electronic transitions) are well described.

After analysis of monolayer we proceeded with calculations of few layer structures to
observe changes in the imaginary part of dielectric function with increase of number of
layers. We compared monolayer with bilayer and 4-layer WS,, Fig. 7 and conclude its
thickness-dependent nature. It can be noticed that thicker structures have higher €, in the
low energy area. This regular change shows a good agreement with the variation ten-
dency of the density of WS, films, as demonstrated in the XRD analysis in ref (Li et al.
2017). Being aware of this effect, a referent model for various thicknesses of TMDCs
sheets (ie. number of layers) could be made using DFT-based approach. It is planned
to be used as a guide in comparison with UV-VIS spectrophotometry measurement for
rapid assessment of thickness of nanoflakes in dispersion.
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6 Conclusion

In this paper we studied optical properties i.e. the dielectric function of the monolayer
MoS, and WS, as a monolayer TMDCs, using DFT based techniques. Many effects pre-
sent due to the exitonic effects demand detail and advanced approach based addition
of GW approximation and Bethe—Salpeter equation (but computationally significantly
more expensive, time-demanding and resource-consuming), in this kind of the calcula-
tions they have been complectly neglected. Thickness-dependent nature of MoS, and
WS, dielctric function was revealed. However, we can conclude that DFT+RPA tech-
niques can be used for quick analysis of the optical properties of these and similar 2D
materials, and they provide the reliable and computationally non-expensive solution for
the suitable qualitative description.
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SCAP differentiation into neural lineage using graphene dispersion and carbon nanotubes

ABSTRACT

Stem cell-based therapies are considered a promising treatment modality for many medical
conditions. Several types of stem cells with variable differentiation potentials have been isolated
from dental tissues, among them stem cells from apical papilla (SCAP). In parallel, new classes
of biocompatible nanomaterials have also been developed, including graphene and carbon
nanotube-based materials. The aim of the study was to assess whether graphene dispersion (GD)
and water-soluble single walled carbon nanotubes (ws-SWCNT), may enhance SCAPs capacity
to_undergo neural differentiation. SCAPs cultivated in neuroinductive medium supplemented
with GD and ws-SWCNT, separately and in combination, were subjected to neural marker
analysis by real-time PCR (NF-M, ngn-2, B Ill-tubulin, MAP2) and immunocytochemistry
(NeuN and P III-tubulin). GD, ws-SWCNT, and their combination, had neuro-stimulatory effects
on SCAPs, as judged by the production of neural markers. Compared to cells grown in
nanomaterial free medium, cells with GD showed higher production of B3T, cells with ws-
SWCNT had higher production of ngn-2 and NF-M, while the combination of nanomaterials
gave similar levels of both B3T and NF-M as the neuroinductive medium alone, but with the
finest neuron-like morphology. In conclusion, GD and ws-SWCNT seem to enhance neural

differentiation of stem cells from apical papilla.

Keywords: stem cells, apical papilla, neural induction, graphene dispersion, carbon nanotubes

John Wiley & Sons, Inc.

This article is protected by copyright. All rights reserved.

Page 2 of 27



Page 3 of 27

Journal of Biomedical Materials Research: Part A

SCAP differentiation into neural lineage using graphene dispersion and carbon nanotubes

INTRODUCTION

Stem cells (SCs), thanks to their ability to undergo differentiation into various cell types and
great capacity for self-renewal, have a prominent role in regeneration of damaged tissues and/or
organs. They could also bring under control some illnesses such as Alzheimer’s disease,

amyotrophic lateral sclerosis, Parkinson’s disease and diabetes (1, 2).

Stem cells can be derived from embryonic tissues (embryonic stem cells, ESCs), various
postnatal tissues (adult stem cells, ASCs), as well as by cell reprogramming (inducible
pluripotent stem cells, iPSCs). ASCs of mesodermal origin are referred to as mesenchymal SCs
(MSCs) and under permissive environment they show a remarkable capacity to differentiate into
various cell lineages (3, 4). Owing to this differentiation potency, to immunosuppressive activity

and high self-renewal capacity, MSCs are considered to be extremely valuable for clinical use.

Many dental tissues represent niches of MSCs and are becoming increasingly attractive in basic
research and applicative regeneration studies due to their easy accessibility and absence of
additional health risks for the donor. Apical papilla is a soft tissue at the apex of a not fully
formed tooth, ccontaining more than 95% of MSCs (stem cells from apical papilla or SCAP).
Originating from neural crest, they express some early neural markers even without neural
induction. They can be transformed into different cell types of neural lineage, therefore making
them suitable for potential therapeutic applications in neurodegenerative diseases. Further

exploration of their biological behavior is fundamental (5-9).

A growing number of nanomaterial-based scaffolds are being tested for their use in tissue
engineering. Single wall carbon nanotubes (SWCNTSs) are proposed as a promising material for

neuro-regeneration, owing to their unique properties and biocompatibility (10-12), SWCNTSs can
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be added in neuronal cell cultures as strata or as colloidal aqueous solutions (CITs)(13, 14); the
latter ws-SWCNTs are shown to enhance neurite outgrowth in neural cultures, or when applied

on spinal cord injuries (9).

Graphene ' based nanomaterials (GBN), are also becoming increasingly popular in
bioengineering, due to their biophysical properties along with their biocompatibility (15-18).
Graphene improves cell adhesion during the differentiation process and promotes differentiation
towards neurons more than towards glial cells. All reported data suggest that GBNs, and among
them more specifically graphene oxide, may represent a superior nanostructured scaffold for
neural differentiation and neuro-regeneration (19-23). While graphene oxide application in
various stem cell differentiation settings has been widely studied, another potentially interesting
GBN, the exfoliated liquid graphite in the form of colloidal dispersion of two-dimensional flakes
(GD), has been rather ignored, though its biocompatibility and nontoxicity, along with cell

proliferation support, have been demonstrated (24-28).

The aim of the present study was to explore SCAP potential to undergo neural differentiation in
the presence of two types of nanomaterials (ws-SWCNT and GD), separately and in
combination, i.e. to evaluate the neuro-stimulatory effects of the two nanomaterials, by means of

cell morphology, immunocytochemistry and real-time gene expression analyses.

MATERIALS AND METHODS

The study protocol complied with the Fortaleza (Brazil) Revision of the Helsinki Declaration and
was_approved by the Ethical Committee of the School of Dental Medicine, University of

Belgrade. Immature, impacted third lower molars were extracted from teenage patients at the

John Wiley & Sons, Inc.

This article is protected by copyright. All rights reserved.

Page 4 of 27



Page 5 of 27

Journal of Biomedical Materials Research: Part A

SCAP differentiation into neural lineage using graphene dispersion and carbon nanotubes

Clinic for Oral Surgery (Figure 1), School of Dental Medicine, University of Belgrade, Serbia

after signing the informed consents by patient’s parents.
Preparation of graphene dispersion

For the fabrication of graphene dispersion (GD) the method of liquid phase exfoliation (LPE) has
been used as a promising route for high-quality and large-scale production of 2D materials. We
followed the protocol described in earlier papers (29, 30). An initial concentration of graphite
powder (Sigma Aldrich-332461) in N-Methyl-2-pyrrolidone (NMP) (Sigma Aldrich-328634)
was 18 mg/ml. The mixture was sonicated in a low power sonic bath (Bransonic CPXH
Ultrasonic 8 Cleaning Bath) for 14 hours. In order to prevent re-aggregation and reduce the
amount of unexfoliated graphite, the solution was centrifuged for 60 min at 3000 rpm. The next
step was decantation that was carried out by pipetting off the top half of the dispersion. In the
end, the concentration of the grey liquid consisting of graphene sheets dispersed in solution, was
320 pg/ml. The Lambert—Beer law was applied to UV/VIS absorption spectra to calculate
graphene concentration by estimating the absorbance at 660 nm. The cell’s length was 1 cm and
the extinction coefficient of graphene (o = 24.60 mL mg' m™), in NMP solutions was taken
from literature (31). Absorption spectra were measured using the UV/VIS Spectrophotometer

(Perkin-Elmer Lambda 4B).

Preparation of water-soluble SWCNT functionalized with poly-m-aminobenzene sulphonic
acid

The functionalization of SWCNTs, to render their water solubility, was done as described
previously (10) (also See Supplemental Information for further details). In brief, commercially
available purified SWCNT-COOH material (P3-SWCNT, Carbon Solutions, Inc., Riverside, CA)

was reacted with oxalyl chloride in order to make an acyl chloride intermediate (SWCNT-
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COCI). P3-SWNT material (1 g) was dispersed in 1 L of dry DMF by ultrasonication for 2 h and
high-shear mixing for 1 h to give a homogeneous suspension. Oxalyl chloride (20 mL) was
added drop-wise to the SWCNT-COOH solution at 0°C under argon. The reaction mixture was
stirred at 0°C for 2 h, at room temperature for 2 h, and heated overnight at 70°C to remove the
excess oxalyl chloride (boiling point 63°C). The functionalization of the resulting SWCNT-
COCI intermediate was done by the addition of poly-m-aminobenzene sulphonic acid (PABS, 5
g) to form the corresponding graft copolymer (SWCNT-PABS), by allowing the components to
interreact at 120°C for 5 days. Afterwards, the mixture was filtered through a membrane (pore
size 0.22 um), repeatedly rinsed with 95% ethanol and then with distilled water to remove any
excess of PABS. The resulting final product (SWCNT-PABS) was collected on a membrane,
dried under vacuum overnight, and then reconstituted in distilled water in 2.0 mg/mL stock
solutions. SWCNT-PABS has a composition of 35 weight percent (wt%) SWCNTs and 65 wt%

PABS.
Isolation and cultivation of stem cells from apical papilla (SCAP)

Atraumatically extracted teeth were transferred to the laboratory in Dulbecco’s Modified Eagle
Medium (DMEM) containing 20% of Mesenchymal Stem Cells qualified Fetal Bovine Serum
(MSC-FBS) and 1% of antibiotic-antimycotic solution (Thermo Fisher Scientific, USA). The
samples were processed within 30 minutes after the extraction. Stem cells from apical papilla
were isolated according to growth explant method previously described by Kerkis et Caplan,
under sterile conditions(32). Briefly, teeth were extensively rinsed with Dulbecco’s Phosphate
Buffered Saline (DPBS, Thermo Fisher Scientific, USA) and apical papilla was gently scrapped
from.the root apex using sterile surgical blade. Soft tissue was minced into small pieces, and

transferred into T-25 flasks containing cell culture growth medium (DMEM supplemented with
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10% MSC-FBS and 1% antibiotic-antimycotic solution). Cells were then cultured under standard
conditions (37 °C, 95% air-5% CO, atmosphere, 95% humidity) and the culture medium was
changed every 2-3 days. Subconfluent, cells were detached from the plastic surface of tissue
flask with recombinant cell-dissociation enzyme (TrypLE™ Express Enzyme, Thermo Fisher
Scientific, USA) according to manufacturer’s protocol, and seeded into new flasks. All
subsequent experiments were performed with cells from the fourth (P4) and the fifth (P5)

passage.

Cell differentiation capacity

In order-to confirm multipotency of SCAP, cells from the fourth passage (P4) were subjected to
osteogenic, adipogenic and chondrogenic differentiation. Osteogenic potential of SCAP was
determined after 28 days of cell culturing in osteogenic medium (StemPro™ Osteogenesis
Differentiation Kit, Thermo Fisher Scientific, USA) according to manufacturers’
recommendations. Cells were seeded in six-well plates at density of 5 x 10° cells/cm® and
culturing medium was changed every 2-3 days. Adipogenic stimulation also lasted 28 days in
appropriate media (StemPro™ Adipogenesis Differentiation Kit, Thermo Fisher Scientific, USA)
and seeding density of 1 x 10 cells/cm” on the six well plates. For the chondrogenesis, cells were
seeded in a form of micromass at total number of 1.5 x 10° and grown on six-well plates in
commercially available media (StemPro™ Chondrogenesis Differentiation Kit, Thermo Fisher
Scientific, USA) for 21 days. Cells cultured in standard growth medium were used as a negative
control. Differentiation into the three lineages was assessed by histological staining. Prior to
staining procedures, cells were fixed with 4% paraformaldehyde (PFA) for 30 minutes at room
temperature and after that washed twice with DPBS. Alizarin Red S staining was used for

determination of calcification nodule formations of the extracellular matrix in cultures grown in
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osteogenic medium. Two percent Alizarin Red S (Centrohem, Serbia) solution, at pH 4.2, was
added to the wells. After 30 minutes of incubation, dye was removed and cells were rinsed twice
with distilled water. Oil Red O staining was used for visualizing intracellular lipid vacuoles upon
adipogenic differentiation. Cells were incubated for 15 minutes in 0.5% Oil Red O solution
(Sigma Aldrich, Germany) and the excess of dye was removed by gentle rinsing with DPBS.
Chondrogenesis was confirmed by 0.1% solution Safranin O (Centrohem, Serbia) positive
staining. Alizarin Red S, Oil Red O and Safranin O stained areas were observed under inverted

microscope (Primovert, Zeiss, Germany), and photographed.

Flow cytometry and immunophenotyping

Flow cytometry analyses were performed in order to assess the expression of specific
mesenchymal markers in SCAP from the 5th passage (P5). The markers used for these analyses
were: fluorescein-isothiocyanate (FITC) labeled mouse monoclonal antibodies against CD90,
CD105, CD34 and phycoerythrin (PE) labeled mouse monoclonal antibodies against CD73 and
CD45 (all antibodies were purchased from Exbio, Czech Republic). Cells were harvested with
TrypLE™ Express solution, washed with DPBS supplemented with 10% FBS, and finally
counted on automated cell counter (Countess™, Invitrogen, USA). One million of cells were
resuspended in 1 ml of 10% FBS solution in DPBS, and incubated with adequate antibodies for
45 minutes in the refrigerator. After incubation, cells were fixed with 4% paraformaldehyde for
20 minutes and finally rinsed twice with DPBS. Cells were analyzed on tabletop flow cytometer
(Partec, Munster, Germany) and results were processed by software (Sysmex Partec, Goerlitz,

Germany).
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Neurodifferentiation

For 24 hours cells were grown in standard culture medium. After that, over the next 4 hours
SCAP were incubated in neural preinduction medium, DMEM with 100 mM beta-
mercaptoethanol. Differentiation of SCAP was continued in neural induction medium containing
recombinant human basic fibroblast growth factor (bFGF, Thermo Fisher Scientific, USA),
neural growth factor (NGF, Thermo Fisher Scientific, USA), and B27 supplement (Thermo
Fisher Scientific, USA) in DMEM, according to previously reported protocol(33). To evaluate
potential stimulatory effects of carbon nanomaterials on neural differentiation of SCAP, four
protocols were applied: neural induction medium without nanomaterials (protocol A); neural
induction medium and 10 pl (of 2 mg/mL) of SWCNT-PABS (protocol B); neural induction
medium and 10 pl (of 18 mg/ml) of GD prepared solution (protocol C); neural induction medium
supplemented with 10 ul SWCNT-PABS and 10 pl GD (protocol D), changed with freshly made

medium every 2-3 days.
Light microscopy

Cell morphology was monitored under inverted microscope (Primovert, Zeiss, Germany) and
photographed. Between days 5 and 7 of neurogenic culture, the cells showed a transition from
fibroblast-like to neuron-like cell bodies with long processes, suggesting that the stem cells
differentiated into neurons/neuron-like cells. At that point they were subjected to qPCR and

immunocytochemistry analysis.

RNA isolation and gene expression analyses by real time PCR (qPCR)

Forthe gene expression analyses 1.25 x 10° cells were seeded in T-25 tissue culture flask. After

neurogenic stimulation, total RNA was extracted using guanidinium thiocyanate-phenol-
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chloroform extraction procedure with commercially available reagent (TRIzol™ Reagent,
Thermo Fisher Scientific, USA) according to recommendations. RNA purity and concentration
were assessed using microvolume spectrophotometer (BioSpec Nano, Shimadzu, Japan). One
microgram of total RNA was reversely transcribed to cDNA using RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, USA) and oligo (dT);s primers. cDNA was
subsequently used for Real-Time Polymerase Chain Reaction (qPCR) analyses on a Line Gene-K
Fluorescence Real-time PCR Detection System (BIOER Technology, Shanghai, China). PCR
reaction mix (25ul) contained 12.5 pl of real-time PCR master mix (Maxima SYBR Green/ROX
qPCR Master Mix, Thermo Fisher Scientific, USA), 1 ul of forward and reverse primer (final
concentration 200 nM), 2 ul of cDNA and PCR-grade water. Each run had initial denaturation at
95°C for 10 minutes, followed by 40 cycles of denaturation (95°C, 15 s), annealing (55°C, 30 s)
and elongation (72°C, 30 s). Data acquisition was performed in each elongation step. Specificity
of PCR products was checked by melting curve analyses and the relative gene expression level

2%4C method (34). All reactions were carried out in

was assessed using the comparative
duplicate. The relative expression levels of mRNA for neural markers for each sample were
calculated as the ratio between the expression of the gene of interest and the expression of the

selected endogenous control, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). List of

primers used in qPCR are given in Table 1.
Immunocytochemistry

For the immunocytochemical analyses cells were seeded onto 25 mm diameter round glass
coverslips at density of 5 x 10° cells/cm” and subjected to neurodifferentiation protocol as
deseribed above. On the 7" day of neural induction, cells were rinsed three times in DPBS, fixed
with 4% PFA solution for 20 minutes, rinsed three times with DPBS and incubated at room

10
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temperature for 45 minutes in blocking and permeabilization buffer (10% Bovine Serum
Albumin and 0.1% Triton X-100 in DPBS). For immunofluorescent detection of neuronal and
glial cell marker expression, cells were incubated with following primary antibodies: rabbit anti-
B [I-tubulin (B3T, 1:400, Cell Signaling, USA), rabbit anti-neuronal nuclei (NeuN, 1:250,
Millipore, Germany) and mouse anti-glial fibrillary acidic protein (GFAP, 1:400, Millipore,
Germany). Primary antibodies were incubated at 4°C overnight and subsequently washed three
times with DPBS. Cell samples were incubated with secondary antibodies - donkey anti-mouse
Alexa Fluor 488 (1:200, Invitrogen, USA), donkey anti-rabbit Alexa Flour 555 (1:200,
Invitrogen, USA) and donkey anti-rabbit Alexa Flour 657 (1:200, Invitrogen, USA) for 2 hours
in dark at room temperature. Cells were washed three times in DPBS and stained with 4-, 6-
diamidino- 2-phenylindole (1:4000, DAPI, Molecular Probes, USA) for 10 minutes in dark at
room temperature. After washing in DPBS cell samples were mounted with Mowiol medium
(Sigma Aldrich) on microscope slides. Immunofluorescence microscopy images were obtained
by confocal laser-scanning microscope (LSM 510, Carl Zeiss GmbH, Jena, Germany) equipped
with Ar 488 and HeNe 543 and 633 laser lines. Micrographs were analyzed using Fiji-Image J

software (NIH, USA).

RESULTS

Osteogenic, chondrogenic and adipogenic differentiation of stem cells from apical papilla

demonstrated their multipotency

Osteogenic, adipogenic and chondrogenic differentiation of SCAP were verified by appropriate

histological stains. Positive staining of calcification nodule formations with Alizarin Red S was
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indicative of osteogenic differentiation, accumulation of Oil Red O in intracellular lipid vacuoles
of adipogenic differentiation, whereas Safranin O binding to proteoglycans was a proof of

chondrogenic differentiation of SCAP (Figure 2). Cells of the control group remained unstained.
Immunophenotyping revealed expression of mesenchymal stem cell markers

Flow-cytometry analyses were performed on PS5 (fifth passage) stem cell from apical papilla.
Flow-cytometry revealed the expression of mesenchymal stem cell markers CD73, CD90 and
CD105 (99%, 91.3% and 96%, respectively), and the absence of hematopoietic markers CD34

(0.34%) and CD45 (0.01%) (Figure 3).
Neuron like morphology was demonstrated by light microscopy

Cell morphology was observed every day, and photographed on the seventh day. Protocol A cells
presented short cell projections and poor neural like morphology, similarly to cells grown under
protocol B conditions. Cells in protocol C cultures had long slender projections with triangular
cell bodies. Under protocol D conditions, cells also achieved a good neuron like morphology

(Figure 4).

Neural markers MAP2, ngn-2, p III-tubulin, NF-M and NeuN were expressed in SCAP

after neuroinduction

Pilot experiments performed in different time points (data not shown) suggested that the 7" day
of neuroinduction was optimal for expression analysis. The relative expression of five neural
markers (microtubule-associated protein 2 (MAP2), neurofilament medium (NF-M), neurogenin-
2 (ngn-2), B lI-tubulin and glial fibrillary acidic protein (GFAP)). is given in Figure 5. The
predominant markers in all cell cultures were B Ill-tubulin and NF-M, but their ratios were
different. In the presence of SWCNT-PABS the expression of NF-M was higher than the

12
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expression of B III-tubulin while in the presence of GD it was the opposite. In cultures without
nanomaterials as well as in cultures with both nanomaterials a balanced expression of NF-M and
B I-tubulin was found. Cells grown in neural induction medium only, showed higher expression

of MAP2 and GFAP compared to other protocols.

The markers were expressed at their proper (expected) cellular localization. As registered under
light microscopy, a fine neuron-like morphology was observed in cells cultivated under protocol
D, i.e. in the presence of both nanomaterials (Fig. 6A), and a robust immunoreactivity for
markers B Ill-tubulin and NeuN was recorded (Fig. 6B and 6C, respectively). A similar
morphology was obtained under protocol C although the expression of  III-tubulin was higher
in cells cultivated with GD only, than with the two nanomaterials, a finding in agreement with
real-time analysis (Fig.7). The expression of astroglial cell marker GFAP was observed only in

cells grown in neural induction medium without nanomaterials (data not shown).

DISCUSSION

Since they originate from neural crest, dental tissue SCs have been extensively studied as a
possible approach for replacing lost cells in CNS diseases or injuries (9). MSCs derived from
apical papilla are becoming an increasingly attractive stem cell source because they belong to a
developing, easily accessible tissue, which would be otherwise discarded as biological waste,

with cells possessing high proliferation rate, plasticity and differentiation capacity (6).

Graphene, a crystalline allotrope of carbon with two-dimensional properties, may be synthesized
and functionalized in various ways, and loaded with different molecules of interest. Graphene
based nanomaterials have proved to be promising tools in different fields of nanomedicine,

owing to their unique structure, chemical stability, exceptional mechanical properties, good
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biocompatibility and bactericidal potential (35). These single-atomic layered sheet materials
have also the ability to adsorb growth factors and exhibit unprecedented electrical properties,
which is of particular importance when used as cell scaffolds (19, 36). Their use as support for
stem cell differentiation has lately been an area of intensive studies. It has been reported that
both CNTs and graphene can stimulate neural stem cells differentiation, neuronal and
oligodendrocyte growth, and the formation of active synaptic contacts in cell culture. But despite
some similarities, they have different impact on cells (23). According to available literature, stem
cells subjected to neural differentiation on substrates filmed with graphene exhibited better
neural morphology and higher expression of neural markers, while SWCNT seemed to promote

both glial and neuronal differentiation (37-39).

It must be emphasized that experiments on graphene dispersion (GD) utilization in stem cell
differentiation are completely inexistent. One study only has previously shown GD
biocompatibility and another has demonstrated good PC12 attachment and proliferation (27, 28).
Moreover, there are no studies exploring the combined use of CNT and GD as materials that
hold potential to synergistically stimulate stem cell neuro-differentiation and more specifically

SCAP neuro-differentiation.

In the present study, it was demonstrated that GD may exert stimulatory effects on dental stem
cell neuro-differentiation. Namely, cells cultivated with GD, compared to other protocols,
exhibited the highest level of B III-tubulin, a microtubule protein expressed during neurogenesis
and involved in axon guidance. The level of MAP2, a mature neuron marker, was also higher in
cells grown with GD than in cells grown according to the other two protocols with

nanomaterials. The level of ngn-2, a transcription factor inhibitor of glial cell development, was
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low, and yet gliogenesis seemed suppressed as judged by the lack of expression of GFAP, a glial

cell marker, a phenomenon that might be attributed to GD.

SCAPs grown with SWCNT-PABS showed better neural differentiation when compared to cells
grown without the addition of nanomaterial, a result which is in accordance with previously
reported data (39). Levels of ngn-2, B Ill-tubulin and NF-M, a neuronal cytoskeleton element
found at high concentration in axons, were higher in cells grown with SWCNT-PABS than in the

basic neuroinductive medium.

The combination of the two nanomaterials resulted in a seemingly well-adjusted ratio of NF-M
and B III-tubulin levels, accompanied with a robust expression of NeuN. This treatment ensured

the most compelling cell morphology with clear neuron shaped body and long processes.

The predisposition of SCAPs to differentiate toward neural lineages, as well as the
neuroinductive properties of GD and SWCNT, should warrant further studies of dental stem cells
inconjunction with these nanomaterials, with the aim of finding a superior solution for

autologous neuroregenerative therapy.
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FIGURE LEGENDS

Figure 1. (A) Patients’ panoramic X ray with non-erupted developing third molar; (B) extracted

third molar with apical papilla.

Figure 2. Multipotency confirmation by Alizarin Red S staining for osteodifferentiation, Safranin

O staining for chondrodifferentiation and Oil Red O staining for adipodifferentiation.

Figure 3. The presence of mesenchymal markers CD73, CD90 and CD105, and the absence of

hematopoietic markers CD34 and CD45 were assessed by flow-cytometry, on P5 cells.

Figure 4. Cell morphology after seven days: (A) protocol without nanomaterials; (B) protocol
with SWCNT-PABS; (C) protocol with GD; (D) protocol with the combination of nanomaterials.

Magnification 200x.

Figure 5. Real-time PCR analysis of neural marker expression after 7 days in cultures with neural
induction medium (protocol A), neural induction medium and SWCNT-PABS (protocol B),
neural induction medium and GD (protocol C), neural induction medium and SWCNT-PABS +

GD (protocol D).

Figure 6. (A) The combination of SWCNT-PABS and GD resulted in a good neuron-like
morphology (B IlI-tubulin in red, nuclei in blue-DAPI); (B) strong immunostaining of § III-

tubulin (red) and (C) NeuN (turquoise).

Figure 7. (A) B IlI-tubulin expression was higher in cells cultivated with GD than with GD and

SWCNT-PABS (B). The difference was statistically significant (C).

19
John Wiley & Sons, Inc.

This article is protected by copyright. All rights reserved.



Journal of Biomedical Materials Research: Part A Page 20 of 27

Table 1. Sequences of primers used for quantitative PCR

. Accession
Gene Sequence of primers (5°—3’)
number

F: TGGGAAATGGCTCGTCATTT
NEF-M NG_008388.1
R: CTTCATGGAAACGGCCAA

F: CCTGGAAACCATCTCACTTCA
ngn-2 NM 024019.2
R: TACCCAAAGCCAAGAAATGC

F: GCCTCAAGGACGAGATGG
GFAP NM. 002055.3
R: TCGCCCTCTAGCAGCTTC

F: GCCAAGTTCTGGAAGTCA
B III-tubulin NM_006086.2
R: GCCTCGTTGTAGTAGACGC

F: AACCCTTTGAGAACACGACA
MAP2 NM_002374.3
R: TCTTTCCGTTCATCTGCCA

F: TCATGACCACAGTCCATGCCATCA
GAPDH BC083511
R: CCCTGTTGCTGTAGCCAAATTCGT

Abbreviations: NF-M - neurofilament medium; ngn-2 — neurogenin-2; GFAP - glial fibrillary
acidic protein; MAP2 - microtubule-associated protein 2; GAPDH - glyceraldehyde 3-phosphate

dehydrogenase.
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Figure 1. (A) Patients’ panoramic X ray with non-erupted developing third molar; (B) extracted third molar
with apical papilla.
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Figure 2. Multipotency confirmation by Alizarin Red S staining for osteodifferentiation, Safranin O staining for
chondrodifferentiation and Oil Red O staining for adipodifferentiation.

67x182mm (300 x 300 DPI)

John Wiley & Sons, Inc.

This article is protected by copyright. All rights reserved.



Page 23 of 27

Journal of Biomedical Materials Research: Part A

CD 73 CD 105 CD 90
200 SR Gate RT
- 99% A0 96% e0 91.3%
Q‘SOO é 180
8!000- §320
500 160 -
00—41 FL|20 100 100 b 0.1 1 10 00 1200
FL1 -
‘ CD 34 CD 45
e e T2
L 0.34% == 0.01%
g'soo
S“m |

500

=)

0.1
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markers CD34 and CD45 were assessed by flow-cytometry, on P5 cells.
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Figure 4. Cell morphology after seven days: (A) protocol without nanomaterials; (B) protocol with SWCNT-
PABS; (C) protocol with GD; (D) protocol with the combination of hanomaterials. Magnification 200x.
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Figure 5. Real-time PCR analysis of neural marker expression after 7 days in cultures with neural induction
medium (protocol A), neural induction medium and SWCNT-PABS (protocol B), neural induction medium and
GD (protocol C), neural induction medium and SWCNT-PABS + GD (protocol D).
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Figure 6. (A) The combination of SWCNT-PABS and GD resulted in a good neuron-like morphology (B III-
tubulin in red, nuclei in blue-DAPI); (B) strong immunostaining of B III-tubulin (red) and (C) NeuN
(turquoise).
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Figure 7. (A) B III-tubulin expression was higher in cells cultivated with GD than with GD and SWCNT-PABS
(B). The difference was statistically significant (C).
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ABSTRACT: Tungsten disulfide, a transition metal dichalcoge-
nide, has numerous applications as active components in gas- and
chemical-sensing devices, photovoltaic sources, photocatalyst
substrates, etc. In such devices, the presence of water in the
sensing environment is a factor whose role has not been well-
understood. To address this problem, the in situ probing of H,O
molecule adsorption on WS, films supported on solid substrates
has been performed in a near-ambient pressure X-ray photo-
electron spectroscopy (NAP-XPS) setup. Instead, on the individual
nanoflakes or spray-coated samples, the measurements were
performed on highly transparent, homogeneous, thin films of
WS, nanosheets self-assembled at the interface of two immiscible
liquids, water and toluene, transferred onto a solid substrate by the

Horizontal pull-out

—To&uene:;;:/ WS, /‘\ X-ray Photoelectron
| - spectroscopy setup
F— = S0 Si =
. Hzo — —
NAP cell
UHV
» ¢ H,0molecules B

3% w4 O1s

AJ\ :‘ .
J BY AN

Langmuir—Schaefer technique. This experiment shows that edge defects in nanoflakes, tungsten dangling bond ensuing the
exfoliation in the liquid phase, represent active sites for the WO;, WO;_,, and WO;-nH,O formation under ambient conditions.
These oxides interact with water molecules when the WS, films are exposed to water vapor in the NAP-XPS reaction cell. However,
water molecules do not influence the W—S chemical bond, thus indicating the physisorption of H,O molecules at the WS, film

surface.

B INTRODUCTION

Ambient humidity is an important factor in material research,
especially in devices involving very thin layers of two-
dimensional (2D) materials."”” When working under ambient
conditions, the information about the influence of adsorbed
water molecules on the surface of 2D materials represents
essential information before understanding the interaction
between any other adsorbed molecules and the 2D-material. If
devices based on 2D-materials are designed to detect different
types of analytes, their high sensitivity to humidity could cause
significant issues and discrepancies during the measurements,
concerning the consistency and stability of the electrical signal
or their chemical response to the presence of the analyte.
Hence, an insight into the variations in surface sensitivity of
2D-material thin films to ambient humidity is necessary.
During the interaction with water molecules, the electronic
properties of 2D-materials, such as resistance or charge carrier
concentration, are easily modulated, implying that these
materials can also be used as promising components of
humidity sensors.”™>

Tungsten disulfide (WS,), the prominent member of the 2D
transition metal dichalcogenide (TMD) material family, has
attracted considerable attention regarding its potential
application in the field of sensors as a result of its high
surface-to-volume ratio, chemically active edges, and good
electrical properties.” The ultrahigh surface sensitivity to the

© 2023 American Chemical Society

v ACS Publications 8055

surrounding environment allows for the modification of the
WS, surface, forming active biointerfaces convenient for
biomedical applications.””” 2D WS, represents a very suitable
platform for a sensor not only for biomolecules (proteins,
DNA, and liposomes) and biological cells but also for various
gas molecules, such as CO, H,S, NH;, NO,, and H,.'" " ws,
has also shown exceptional water-sensing properties with a
prompt response and recovery time and good repeatability and
stability that opened the possibility to use it as a humidity
sensor for environmental monitoring or in healthcare
applications as real-time dynamic monitoring of human
breath.'*"?

In recent reports, it has been shown that the properties of
WS, humidity-sensing devices depend on the defects present
on the WS, nanosheets.'*™"® Greater sensitivity to humidity
can be a consequence of the existence of the low-coordination
kinks, step edges, and dangling bonds at the edges of the WS,
nanosheets. All of these types of defects have a significant role
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in the humidity-sensing behavior because they represent
potential active sites available for the adsorption/desorption
of H,0 molecules. In the experiment of Jha et al,'” it was
reported that treatment of suspended WS, nanosheets with
ultraviolet (UV) light improved linearity of the sensor at the
expense of its response to humidity. They suggested that this
effect might be due to the decreased amount of oxygen species
after the UV light treatment, which, according to the Grotthuss
mechanism,"’ serves as a chemisorption site for water
molecules. They also suggested that the existence of oxy-
genized sites on the WS, nanosheets is a consequence of the
exfoliation protocol, which included acetone ketyl free radicals
acting as a reducing agent. However, the direct evidence of the
oxygen species in such samples and the mechanism of H,0
adsorption on WS, nanosheets are still missing.

The presence of humidity in ambient conditions is
particularly important for the stability of the operation of gas
sensors, which presents a significant limitation to their practical
use.”’ In field-effect transistor (FET) gas sensors based on
multilayer mechanically exfoliated WS, nanoflakes, Huo et al.'®
found that the drain current and photosensitivity of the device
are higher in vacuum than in ambient air. Their density
functional theory (DFT) calculations showed that O, and H,0
molecules from air can be physically adsorbed on the surface of
WS, nanoflakes and withdraw electrons from it, thus reducing
its conductivity. As a consequence, the response of the FET
sensor to reducing gases (NH;) may be good but not so to O,,
for example. Therefore, to design efficient, stable, and reliable
gas sensors based on the WS, nanoflakes, it is necessary to
understand the mechanism of water adsorption on its surface.

Considering different methods of 2D-material produc-
tion,"* "¢ liquid-phase exfoliation (LPE) stood out as a simple,
inexpensive, and highly effective technique for obtaining a high
yield of mono- and few-layer nanoflakes with the inherent
(edges) types of defects.”'~** To use the full potential of LPE-
processed WS, nanosheets for sensing applications, thin films
need to be fabricated with a high degree of order and
continuity and a uniform surface. Conventional few-step
deposition methods of WS, dispersion (and other 2D-
materials), such as drop-casting'’ and spray and spin
coa.ting,24_26 suffer from non-uniformity, agglomeration of
nanoflakes arising during solvent evaporation, lack of
reproducibility, and lack of control over the thickness of the
films, which all affect the quality of the sensor response.
Langmuir—Blodgett (LB) and Langmuir—Schaefer (LS) inter-
face assemblies were recognized as promising methods for
overcoming existing drawbacks,””>” especially in the case of
self-assembled thin films of LPE graphene at the interface
between two phases, liquid/gas or liquid/liquid.””**~** In
particular, liquid/liquid interfaces provide a suitable oppor-
tunity for the formation of uniform films with better
confinement of TMD nanosheets. Few reports exist of TMD
assembly at the liquid/liquid interface,”>**** among them only
one concerning the WS, nanosheet-based film.*>* Clark et al.*®
have demonstrated that continuous and closed-packed thin
films can be obtained through the spontaneous creation of
liquid/liquid assembly of TMDs (WS, MoS,, and ReS,),
mixing the TMD nanosheet dispersion and octadecene by
manual shaking. To avoid additional processing steps of film
assembling and uncontrollable use of TMD dispersion, Nelson
et al.” have proposed another approach, which is followed by
direct injection of the MoS, dispersion to the preformed
liquid/liquid interface. However, no such attempt for
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producing the WS, film from nanoflakes has been made thus
far, on octadecene or any other solvent on top of water.

In this work, we characterized the liquid-phase exfoliated
WS, films obtained at the interface of two immiscible liquids,
water and toluene, for the first time. The thin WS, films
supported on the solid substrate by the LS technique were
then exposed to pure water vapor in near ambient conditions
for the direct, in situ measurement of water molecule
adsorption on their surface formed of closely packed WS,
nanoflakes. Various characterization techniques were employed
to investigate the properties of the LPE-LS WS, films: optical
spectroscopy methods [ultraviolet—visible (UV—vis) and
Raman spectroscopy], near-ambient pressure X-ray photo-
electron spectroscopy (NAP-XPS), as well as microscopy
techniques [scanning electron microscopy (SEM) and atomic
force microscopy (AFM)]. We demonstrated that films formed
using the LS technique from LPE WS, dispersion have
overlapping and edge-to-edge contact of WS, nanoflakes,
providing a uniform large-area thin film. Notably, these films
exhibit defects at the edges of overlapping nanoflakes that
provide a dense grid of active sites for molecular adsorption.
This simple and inexpensive protocol produces much more
compact and highly uniform, thin WS, films that can be
deposited onto various substrates compared to those
previously reported.'”'”'®**

We demonstrated that the heating in air or vacuum does not
change the structure of such films, which allows them to be
used in sensing devices at a high temperature without
degradation. The NAP-XPS experimental data show that the
water molecules adsorb predominantly on tungsten oxide sites,
which originate from the exfoliation and film synthesis in
ambient conditions, on and between the nanoflakes forming

the film.

B EXPERIMENTAL SECTION

Exfoliation and Characterization of WS, Dispersions. For
liquid-phase exfoliation of WS, and preparation of disgersion, we
followed the protocol described in an earlier paper.”® We used
tungsten(IV) sulfide powder (243639, Sigma-Aldrich) and N-methyl-
2-pyrrolidone (NMP, biotechnology grade, >99.7%, 494496, Sigma-
Aldrich) as a solvent. To optimize the exfoliation conditions for the
highest yield of WS, nanoflakes in solution, the initial WS, powder
concentration and sonication time were tuned. Four different initial
concentrations of WS, dispersion were prepared: 6, 12, 18, and 24 mg
mL™". All dispersions were sonicated in a low-power ultrasonic bath
(Bransonic CPXH ultrasonic cleaning bath) for 14 h at room
temperature (T = 23 °C) and humidity of 25—30%. To prevent
aggregation and reduce the presence of non-exfoliated materials, the
WS, dispersion was cascade-centrifuged: after the first 15 min cycle at
3000 rpm, the solution was decanted and the supernatant was
centrifuged at 6000 rpm for another 15 min. The optical
characterization of WS, dispersion was performed using UV—vis
spectroscopy (see section 1 of the Supporting Information). On the
basis of the results, the dispersion with 12 mg mL™" of initial WS,
concentration was chosen for further study.

Fabrication and Deposition of LPE LS WS, Films. The liquid-
phase exfoliated WS, films were prepared at the water/toluene
interface by the LS method. In a 15 mL beaker filled with 9 mL of
deionized water (18 MQ cm™!), the substrate was immersed
horizontally. The liquid interface was formed by adding 1 mL of
toluene (>99.7%, Sigma-Aldrich). The 0.3 mL of WS, dispersion was
continuously cast down the inside wall of the beaker using the pipet.
Passing through toluene, WS, nanoflakes gradually self-organized into
a close-packed thin film at the water/toluene interface. After the WS,
film was created, most toluene was gently removed with a syringe.
The WS, films were then transferred onto substrates (SiO,/Si, Au-
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Figure 1. Schematic representation of the steps during the LPE-LS WS, film assembly by the LS method: (a) formation of the water/toluene
interface, where the target substrate was previously horizontally immersed in the water, (b) introduction of LPE WS, dispersion down the inner
wall of the beaker, where WS, nanoflakes pass through the toluene and are self-organized at the interface between liquids, (c) removing toluene,
(d) thin WS, film transferring on a solid substrate by pulling through the interface.
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Figure 2. (a) Absorption and (b) transmission spectra for the thin LPE LS WS, film in the range from 350 to 800 nm. The inset in panel b
illustrates the transparency and clarity of a single layer of the WS, film on the quartz substrate (1 X 2 cm) deposited by the LS method.

coated Si wafer, and quartz) using the homemade LS device. Further,
they were left to dry for 30 min in ambient conditions. To ensure the
removal of the residual solvent, the WS, films were annealed in a tube
furnace in air for 20 min at a temperature of 120 °C.
Characterization of LPE LS WS, Films. The optical properties
of LPE-LS WS, films on quartz were investigated using a UV—vis
spectrophotometer (Beckman Coulter DU 720 UV—vis spectropho-
tometer). No more than 1% variation from the mean value existed
over the entire film area, indicating LPE-LS WS, film uniformity on
the scale of several square centimeters. Information about the
morphology of WS, films was obtained using optical microscopy with
a magnification of 400 times, and SEM (Tescan MIRA3 field-emission
gun). All SEM images were taken at 20 kV. The topography of thin
LPE-LS WS, films was characterized using a NTEGRA Prima atomic
force microscope in non-contact mode. The thickness of the obtained
LPE-LS WS, film was measured by non-contact optical profilometer
ZYGO New View 7100. The gold-coated silicon wafer was chosen as
a substrate as a result of its better light interference compared to the
Si0,/Si wafer. The thickness of the WS, film was estimated on the
basis of five height profiles of film—substrate edges. The LPE-LS WS,
film—substrate edge was made by a diamond pen. Raman spectra were
measured with the Micro-Raman Tri Vista 557 triple spectrometer at
room temperature (T = 23 °C) and humidity of 25%. To avoid the
damage caused by heating, the power of the Nd:YAG laser (4 = 532
nm) was kept below 2 mW. The approximate size of the laser spot on
the sample was 2 um. An objective lens microscope with 50X
magnifications was used. The measurements were performed on six
different positions on the surface of each WS, film sample using an
acquisition time of 300 s. The spectrum range was 200—3800 cm™.
The measurements could not be performed below 200 cm™,
considering the configuration of the experimental setup. XPS
measurements have been performed at the custom-built NAP-XPS
setup in the Notre Dame Radiation Laboratory (NDRL). The setup
contained a reaction cell with a volume of ~15 c¢m?® which could
sustain water vapor pressure up to 20 mbar.’” Photoelectrons from
the samples were collected and detected by the SPECS PHOIBOS
150 hemispherical analyzer, which was deferentially pumped. The
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base pressure of the system was of the order of 10~°—107"" mbar. The
samples made of thin LPE-LS WS, films deposited on SiO,/Si wafers
were loaded first into the UHV chamber of the NAP-XPS setup and
then introduced into the reaction cell. The pass energy of the analyzer
was 20 eV for all high-resolution spectra. The energy of the
spectrometer was calibrated to the gold standard sample. Considering
the morphology of the thin films, we expected the presence of
adventitious carbon (from air) in the form of CO or CO, species
trapped on the surface and between the flakes in the film. To remove
these and all other possible residual impurities (toluene and NMP),
the LPE-LS WS, film was annealed at a temperature of 300 °C. After
confirmation of the integrity and composition of the samples, pure
water vapor was introduced into the reaction cell, within the pressure
range corresponding to an approximately relative humidity (RH)
between 4 and 22%.**

B RESULTS AND DISCUSSION

The process of formation and controlled deposition of the WS,
film is schematically illustrated in Figure 1. The continuous
insertion of a small amount of WS, dispersion at the interface
between two immiscible liquids, water and toluene, induces the
self-assembly of WS, nanoflakes. The interfacial tension of the
water/air system is approximately equal to the surface tension
of water (~73 mN/m at room temperature),”” while the
presence of toluene reduces it to 37.1 mN/m.*” Driven by an
overall reduction of the interfacial surface energy, WS,
nanosheets form a large area of a densely packed thin film.
The successful formation of the WS, film at the liquid/liquid
interface can be a consequence of the long-range dipolar
repulsion of the particles as well as their attractive
interaction.”""** The difference in dielectric constants of phases
that create the interface, polar (water) and nonpolar (air and
oil) substances, can create an asymmetric distribution of
particles charging and the formation of the dipole moment.*'
The repulsive dipole—dipole interactions are responsible for
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Figure 3. Images of the WS, film deposited on the SiO,/Si substrate obtained by (a) optical microscopy, (b) SEM, and (c) histograms of the lateral
size obtained from five 3 X 3 ym? SEM images (~1500 flakes). The distributions of the flake diameter have been fitted with a log-normal curve.
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Figure 4. (a) AFM topographic image of the LPE-LS WS, film on the SiO,/Si substrate (image includes a false color bar) of 5 X 5§ um?, (b) phase
image of the LPE-LS WS, thin film from the same area (image includes a false color bar) showing more contrast around the edges of the
nanoflakes, and (c) height profile of the LPE-LS WS, film/Au-coated Si substrate performed by the optical profilometer (measurement started from

the gold-coated Si substrate).

the ordering of the partlcles adsorbed at liquid interfaces.'
Still, Nikolaides et al.** have shown that the dipolar electric
field of particles causes electrical stress, inducing distortion of
the liquid—liquid interface shape that results in the appearance
of interparticle capillary attraction having a significant role in
the stability of the particles at the liquid/liquid interface.*”
However, because the WS, nanoflakes can be described as
rather flat-shaped than spherical, their stability and arrange-
ment at the interface of two liquids may be more adequately
explained by the free energy of their attachment/detachment
over various contact angles at the interface of liquids.*”*
Using an analysis developed by Binks and Horozov,"” it has
been shown that the attachment of the graphene and MoS,
nanosheets at the liquid—liquid interface will be extremely
energetically favorable if the energy of the detachment is
maximized and the interfacial energy is minimized.”>*° During
the self-assembly, the highest stability of liquid-phase exfoliated
WS, nanoflakes at the water/toluene interface is likely achieved
by their parallel orientation to the interface. This spontaneous
arrangement through the edge to edge contact of nanosheets
and their overlapping enables the reduction of the interfacial
area of liquids and the formation of tightly packed WS,
films.>>** For further analysis and characterization, the LPE
WS, films were deposited on solid substrates using the LS
technique.

UV-Vis Characterization of LPE LS WS, Films. The
optical characterization of LPE LS WS, films is represented in
Figure 2. The absorption spectrum (Figure 2a) is characterized
by three exciton peaks (A, ~629 nm; B, ~526 nm; and C,
~455 nm), confirming the 2H-semiconducting crystal
structure of liquid-phase exfoliated WS, nanoflakes.”* The
average transparency for a single deposition of WS, film was 80
+ 1% at the wavelength of 629 nm (Figure 2b).

Morphology Characterization of LPE LS WS, Films.
The morphology of LPE-LS WS, films is shown in Figure 3.
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The optical contrast between the SiO,/Si substrate [d(SiO,) =~
300 nm] and the film indicates complete coverage of the
substrate and homogeneity of the film on the centimeter length
scale (Figure 3a). In Figure 3b, the image taken by SEM
provides more detailed information about the film structure. It
can be noticed that the WS, nanoflakes collected by LS
assembly form a well-packed array throughout their edge-to-
edge contact. The overlapping of nanoflakes is also observed.
The SEM image indicates that the water/toluene assembly
technique can be used to obtain wrinkle-free WS, films with
excellent nanosheet packing and uniformity, which cannot be
achieved in a single-step spin-coating or drop-casting
method.'"”** This is in line with previous reports on the
advantages of the LB and LS techniques of liquid-phase
exfoliated 2D-materials compared to conventional deposition
methods, such as drop casting, spray or spin coating, and
vacuum filtration.”>*”****7% For example, the self-organiza-
tion of graphene nanoflakes”” at the interface enables their
better mutual contact, in contrast to drop-casting, spin-coating,
and vacuum-filtered techniques, where the presence of a large
amount of NMP and its low volatility lead to the aggregation
of graphene as a result of a longer drying time of the film. This
impedes the control of the film thickness, which then affects
both the transparency and the electrical properties of the film.
The films produced through liquid/liquid assembly and
transferred onto the substrate by LB/LS methods exhibit not
only more uniform thickness but also a compact spatial
arrangement, with the nanosheets aligned over a much larger
area than can be achieved by spin or spray coating.” Similar
conclusions apply to the MoS, thin films, where Neilson et
al.”® directly compare the characteristics of the LS MoS, film
transferred from the liquid/liquid interface onto a solid
substrate, with the MoS, film obtained by spray and spin
deposition methods. On the basis of the measurement of the
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flake diameter, the average lateral size of the WS, nanoflakes
was estimated to be in the range of 60 + 20 nm (Figure 3c).

In addition to the optical and electron microscopy, we
performed the AFM topography scans of LPE-LS WS, films
transferred on SiO,/Si (panels a and b of Figure 4). The
topography of thin LPE WS, films (Figure 4a) shows the
existence of WS, nanosheets with different thicknesses and
excellent surface coverage by layered overlapping WS,
nanoflakes. The phase image (Figure 4b), which presents the
phase shift in the cantilever oscillations, reflecting the
combined material properties, such as stiffness, adhesion,
viscosity, and dissipation, indicates good LPE-LS WS, film
homogeneity and shows a better contrast around the nanoflake
edges.

Optical profilometry measurements of the LPE-LS WS, film
are shown in Figure 4c. On the basis of the height profiles of
the film/substrate edge (Figure 4c), the thickness of the WS,
films is estimated as 9.4 + 0.7 nm.

Raman Spectroscopy of LPE LS WS, Films. For further
characterization of the LPE-LS WS, thin film, Raman
spectroscopy has been applied to verify the exfoliation of
bulk WS, into few-layer WS, nanosheets. Figure 5 represents
the Raman spectra of WS, thin films and their bulk as a
reference.
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Figure S. Raman spectra of WS, bulk materials and WS, thin films
deposited on the SiO,/Si wafer, with (inset) fluorescence in the
Raman spectrum of the WS, thin film.

Because the laser wavelength (4 = 532 nm) corresponds to
the exciton energy of WS, (the peak B at the absorption
spectrum, Figure 2), the resulting spectra represent resonant
Raman spectra.” Besides two characteristic Raman active first-
order optical modes A;,(I") and E',,(T"), the resonant Raman
spectrum involves the longitudinal acoustic phonons at the M
point of the Brillouin zone [LA(M)], overtones [2LA(M) and
4LA(M), second and fourth harmonics], and combination
modes (A,, — LA, 2LA — 2E',, and A, + LA)."*° Under the
resonance condition, the B', (') mode overlaps with the
2LA(M) mode.*® LA(M) is positioned below 200 cm™!
(precisely at 176 cm™ in the experiment of Berkdemir et
al.**) and cannot be seen in spectra considering the range of
our experimental setup, but the other vibrational bands are
present in both spectra of thin-film WS, and the WS, bulk
(Figure S). It indicates that, during the exfoliation process,
there was no interaction between the WS, nanosheets and the
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solvent molecules (NMP), which would lead to changes in the
chemical composition of the material. In comparison to the
Raman spectrum of the WS, bulk material, there are no
significant changes in the Raman shift of the vibration modes:
A, —LA (234 cm™), 2LA — 2E',, (299 cm™), A, + LA (582
cm™), and 4LA (698 cm™'). In the Raman spectra of the LPE
LS WS, film, A, (T) (418 ecm™) and E', (") [+2LA(M)]
(354 cm™") are red- and blue-shifted (for 2 cm™) compared to
the WS, bulk, which is expected when the number of WS,
layers is clecreasing:»;.47 Changes in the electronic structure,
formation of the direct energy gap, which is the characteristic
of exfoliated WS,, was confirmed by the presence of
fluorescence in the Raman spectrum of the LPE-LS WS, thin
film (inset spectrum in Figure 5)." The Raman spectra
recorded in the range from 800 to 2200 cm™' showed no
vibrational modes (presented in section 3 of the Supporting
Information).

The characterization of the LPE-LS WS, films produced at
the toluene/water interface and transferred on solid substrates
showed a high level of reproducibility in their physical and
chemical properties. The transmittance, Raman spectra, and
compactness of the films did not differ significantly between
different samples (see sections 2—4 of the Supporting
Information).

Effects of Water Molecules on the Surface of LPE-LS
WS, Films. To obtain insight into the chemical composition
and binding characteristics of the LPE-LS WS, films when they
are exposed to water vapor, XPS analysis was performed. All
represented core level photoemission spectra (W 4f, S 2p, O
Is, and C 1s) have been analyzed with a Gauss (30%)—Lorentz
(70%) function defined in Casa XPS as GL (30) after a
Shirley-type background subtraction. The C 1s peak at 284.8
eV was used for calibration of the binding energy scale. Panels
a—c of Figure 6 depict the deconvoluted XPS spectra of the
pristine LPE-LS WS, film. The W 4f core level spectrum
(Figure 6a) is deconvoluted into six components: three W 4f
doublet (W 4f,,, and W 4f;/,). The doublet peaks arising as a
result of spin—orbit splitting correspond to W** at 32.5 and
34.6 eV, W*" at 35.5 and 37.8 eV, and W" at 36.7 and 38.7 eV
binding energy. The XPS spectrum of sulfur is fitted into
doublet S 2p;/, and S 2p, /, at 161.9 and 163.1 eV (Figure 6b).
The two peaks of the S>” and W*' oxidation states are
attributed, according to the literature, to the pure 2H-WS,
phase.*”** Recent studies have reported that WS, films show
poor stability and the tendency for spontaneous oxidation in
the air environment at room or higher temperatures.’' >’
These results imply that, dependent upon the operating
temperature range, WS, can be partially or totally converted
into different forms: tungsten oxide (WO;), non-stoichio-
metric tungsten oxide (WO,_,), hydroxide and/or hydrate
tungsten oxide (WO,-nH,0).' %33 Considering the con-
ditions of LPE-LS WS, film preparation (self-assembly of
nanoflakes at the toluene/water interface and the annealing of
films in air at 120 °C) and the value of the binding energies of
W3* and W, the presence of these oxidation products in the
LPE-LS WS, films can be expected. To complete the analysis,
XPS of the O 1s core level was also performed in this study
(Figure 6¢). The broad O 1s spectrum observed in the range of
529—537 eV is deconvoluted into four components. The
position of the peaks in the deconvoluted spectrum is tentative
as a result of the large width of the O 1s peak and the
overlapping of possible oxygen species with close values of
binding energy. The assignment of these four peaks is based on
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Figure 6. XPS W 4f, S 2p, and O 1s spectra of the LPE LS WS, film deposited on the SiO,/Si substrate: (a—c) pristine, (d—f) after heating at T =
300 °C in vacuum, (g—i) exposure to 1 mbar water vapor, and (j—1) exposure to S mbar water vapor. The first column presents the W 4f spectrum
with the three doublets attributed to WS, (red), WO;_, and WO;-nH,O (dark green), and WO, (dark blue). The second column shows a doublet
of sulfur, S 2p;, (pink) and S 2p, ;, (brown). The third column represents the O 1s spectrum deconvoluted into components assigned to molecular
H,O from the water/toluene interface and gaseous water in the reaction cell (dark blue), SiO, (olive green), —OH groups (purple), and oxygen in
W-0, (orange), with oxygen ions as nucleophilic oxygen (black line). The envelope curve for all spectra is marked as a dark gray line.

the literature and protocol for the creation and transfer of WS,
films on solid substrates. The peak located at the lowest
binding energy (530.3 eV) corresponds to oxygen ions (O*7),
confirming the formation of W—0 bonds.” The existence of
the hydroxyl group (—OH), assigned to the peak at S31.5 eV,
indicates the hydration of tungsten/tungsten oxide.® The
formation of the oxidation products consisting of oxide/
hydroxide compounds of W and hydrate of WO, can be due to
the presence of WS, film defects, as recently reported”’ that
the liquid-phase exfoliation coupled with the LB technique
produces self-assembled films with a high density of nanoflake
edge defects. The edge defects of LPE-LS WS, nanoflakes/
films, like tungsten dangling bonds, behave as active sites for
the interaction with O,, humidity from the atmosphere, and
water present as a component of liquid/liquid interfaces.

The origin of the major peak in the O 1s spectrum,
positioned at 532.8 eV, can be ascribed to the SiO, substrate
and adsorption of O, molecules from the atmosphere.”®*" In
the previously reported studies®”®' and database,”® the peak
presented at the highest binding energy in the O 1s spectrum is
usually related to the chemisorbed/physisorbed H,O mole-
cules on the film surface. Thus, the highest binding energy
peak (at 534.9 eV) in the observed spectrum refers to the
adsorption of water molecules. These water molecules can be
adsorbed on the WS, film surface or intercalated through its
structure and trapped between the nanoflakes during the film
formation.

As described earlier (Experimental Section), a small amount
of NMP from the WS, dispersion is present during the self-
assembly of WS, nanoflakes. This compound together with
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toluene may be detected in LPE-LS WS, films in the form of
carbon. To assess the presence of carbon contamination from
these solvents and other sources, including the interaction cell
(adventitious carbon), we also recorded the high-resolution
spectrum of C 1s (Figure S2 of the Supporting Information).
Considering that, after the heating of LPE-LS WS, films at 120
°C in air, there was still residual water and solvents in the film
(Figure 6¢), the samples were additionally annealed in vacaum
at 300 °C.

The XPS spectra of W 4f, S 2p, and O 1Is for the post-
annealed LPE-LS WS, film are shown in panels d—f of Figure
6. The position of the characteristic peaks (W 4f and S 2p) for
pure 2H-WS, remained unchanged after heating of LPE-LS
WS, films in high vacuum, suggesting that annealing does not
affect the W—S chemical bonds (panels d and e of Figure 6).
The S atoms are still bound exclusively to W without revealing
additional chemical states or introducing new defects.
However, it is worth noting that the binding energy of other
peaks attributable to W with higher oxidation states in the W
spectrum (Figure 6d) is downshifted for 0.5 eV. The significant
chemical shift that refers to increasing of the binding energy for
0.6 eV is also remarked for the oxide ions O*~ (Figure 6f). The
obtained results imply that changes in the W 4f and O 1s core
level spectrum are probably caused by losing an oxygen atom
in WO; during heat treatment of LPE LS WS, films in
vacuum.”” The creation of oxygen vacancies, as point defects,
is usually accompanied by the reduction of W** to W** and the
generation of WO;_, compounds.”” Released lattice oxygen
atoms can leave the film and be evacuated from the chamber,
but also their migration to filling the previously formed surface
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oxygen vacancy defects, oxidation of WO;_,, cannot be
excluded. Furthermore, in the O 1s spectrum of post-annealed
LPE-LS WS, films (Figure 6f), the OH peak entirely
disappears, as evidence of film dehydration. The other two
peaks ascribed to SiO, (at 532.8 eV) and H,O (at 534.9 eV)
molecules did not undergo any changes in terms of the
chemical shift. The presence of the peak at 534.9 eV suggests
that a complete desorption of water molecules from the LPE-
LS WS, films did not occur. Considering the porous structure
of the WS, films, it is likely that a certain amount of H,O
remains trapped within the film, with some of it also being
chemisorbed and forming bridges between the nanoflakes.

After the sample WS, film was cooled to the room
temperature, it was exposed to 1 and S mbar pressure of
water vapor, which corresponds approximately to RH between
4 and 22% (panels g—I of Figure 6). The high-resolution XPS
spectra show that the peak position of W 4f and S 2p doublets
for pure 2H-WS, stay unchanged in both cases (panels g, h, j,
and k of Figures 6). The existence of water molecules clearly
does not influence the chemical bond of W—S, suggesting that
the H,O molecules are physisorbed onto the surface of the
LPE-LS WS, films. After the increase of water vapor pressure
in the chamber, multilayers of H,O are formed through
hydrogen bonds (Figure 61). The chemical shift of the peak
positioned at 534.9 eV as well as the peak corresponding to
SiO, (at 532.7 eV) was not observed (panels i and I of Figure
6), which indicates that introduced water did not have access
to the silicon wafer substrate; ie., the homogeneous, full
coverage of the WS, film on the surface has not been
disrupted. The suppressed intensity and broadening of all
peaks, except the peak at 534.9 eV (panels g—1 of Figure 6), is
due to the smaller number of photoelectrons reaching the
detector in the presence of the water multilayer on the surface
and free gaseous water molecules in the reaction cell.

The charge transfer in tungsten oxides, at 1 mbar, is
evidenced by the shift (0.3 eV) of W** and W** peak positions
toward the higher binding energy (Figure 6g) compared to
those at the post-heating LPE-LS WS, films (Figure 6d). Also,
the position of the peak corresponding to O>~ (Figure 61) has
undergone an alteration and downshift for 0.3 eV. The
obtained results indicate the oxidation of W** to W', Once
the water vapor molecules come into contact with the surface
of LPE-LS WS, films, the oxygen atoms will fill the previously
formed point defects, oxygen vacancies in non-stoichiometric
WO;_,, forming WO;, which is the opposite of the reduction
of these compounds that occurs at post-annealed LPE-LS
Ws,.%> During the chemical bonding of oxygen with its
adjacent tungsten atom, the transfer of electrons from W to the
O atom has occurred and the electronic density near the
tungsten atom decreases. In that case, the Coulomb interaction
between the nucleus and the remaining electrons in the W
atom becomes stronger. Thus, the binding energy of W peaks
will be shifted to higher values, and for the O*" peak, the
binding energy will be shifted to lower values. In the O 1s
spectrum shown in Figure 6i, the new peak has appeared at
527.5 €V and can be tentatively ascribed to the creation of
hydrate tungsten oxide (WO,;nH,0)*® or nucleophilic
(atomic) oxygen.64

The introduction of water vapor at 5 mbar leads to W** and
WS peak shift from 0.3 eV to lower binding energies (Figure
6j) and the large chemical shift by more than 2 eV of the O 1s
peak, previously at 527.5 eV, to higher binding energies
(Figure 61). Such a shift has been previously observed in the
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adsorption of oxygen on Ag(110) and Ag(111) surfaces,®*
where atomic oxygen trapped in defects or different adsorption
sites can have different ionic states and, therefore, different
charges. In the case of the porous WS, film, the edge-rich
structure offers a wide range of adsorption sites for oxygen,
which can then be more weakly (ionic-like states) or more
strongly (covalent bonds) bound to tungsten in the film. In the
case of more covalently bound but not yet electrophilic, O 1s
will still be lower than that which corresponds to WO, but
significantly higher than that in the nucleophilic form. An
additional possibility for the appearance and binding energy
shift of this O 1s peak could be that the chemical changes of
the LPE-LS WS, film are caused by the formation of additional
hydrides of tungsten oxides through the interaction of water
molecules with defects (WO,, and WO;_,).®> Considering the
structure of our WS, films, it is plausible that both mechanisms
are taking place during the exposure of LPE-LS WS, films to
H,O in a vacuum.

B CONCLUSION

In this work, we presented the study of the water adsorption
effect on WS, thin films obtained using the new toluene/water
interfacial self-assembly technique from the liquid-phase
exfoliated 2D material. In the first part, we characterized
LPE-LS WS, films using various spectroscopic and microscopic
techniques (UV—vis, Raman spectroscopy, SEM, and AFM).
The toluene/water interfacial self-assembly technique and LS
film deposition method provide a strong confinement of the
WS, flakes. Using a small volume of the WS, dispersion allows
the facile and rapid formation of theoretically unlimited large-
area, highly transparent, and thin films of few-layer WS,
nanosheets.

Chemical properties of the LPE-LS WS, films and their
interaction with water molecules under near-ambient water
vapor pressures reveal that defects in the WS, flakes play a
major role in the chemical interaction of the water and LPE-LS
WS, film surface. The presence of WO;, WO,_,, and hydrated
tungsten oxide, in the freshly prepared LPE-LS WS, films, can
be explained by the existence of the edge defects from tungsten
dangling bonds that arose during the liquid-phase exfoliation of
the WS, material. The temperature treatment of the LPE-LS
WS, films in vacuum, performed before their exposure to water
vapor, to remove the residual solvent, had a partial effect on
their dehydration. This implies that the trapping of the H,O
molecules in the film structure and their chemisorptions
represents the first stage of the water—WS, film interaction and
an unavoidable event during the exposition of the film to the
liquid water at the moment of its formation at the interface.
Besides the expected significant physisorption of H,O at the
surface of LPE LS WS, films, during their exposure to H,O gas
at 1 and 5 mbar, oxygen-activated sites, such as WO; and
WO;_,, are the central places for the interaction with the water
molecules from the gas phase. Except for the oxidation of W%,
adsorption of intact and dissociated H,O molecules is
responsible for the formation of hydrated tungsten oxides.

The investigation of the interaction of water molecules with
the surface of the thin 2D semiconductor WS, film is an
imperative for fine tuning the sensing properties, regardless of
the sensing target, because the presence of water in ambient
conditions is unavoidable. Therefore, the characterization of
molecular interactions between water molecules and the WS,
film and the identification of specific chemical and physical
bonds under near-ambient conditions are essential for further
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use in sensing applications. These new data may be especially
useful for improving the accuracy and responsiveness of
various gas sensor devices operating in various environmental
conditions, such as low or high humidity and high temper-
atures, or improving the sensitivity of biochemical sensors that
usually deal with analytes in aqueous solution.
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The unique density of states and exceptionally low electrical noise allow graphene-based field effect
devices to be utilized as extremely sensitive potentiometers for probing charge transfer with adsorbed
species. On the other hand, molecular level alignment at the interface with electrodes can strongly
influence the performance of organic-based devices. For this reason, interfacial band engineering
is crucial for potential applications of graphene/organic semiconductor heterostructures. Here, we
demonstrate charge transfer between graphene and two molecular semiconductors, parahexaphenyl
and buckminsterfullerene Cq,. Through in-situ measurements, we directly probe the charge transfer
as the interfacial dipoles are formed. It is found that the adsorbed molecules do not affect electron
scattering rates in graphene, indicating that charge transfer is the main mechanism governing the level
alignment. From the amount of transferred charge and the molecular coverage of the grown films, the
amount of charge transferred per adsorbed molecule is estimated, indicating very weak interaction.

Graphene has a significant potential to be used as a new transparent conductive electrode material in flexible
and wearable electronics, optoelectronics, and energy applications’ 2 In addition to high transparency, high
mechanical strength, flexibility, thermal as well as chemical stability, and ease of functionalization, there are also
crucial advantages of graphene as an electrode material in organic electronics. These are mainly based on the
favorable band alignment with many organic semiconductors and on their impeccable growth morphologies on
graphene, which relies on the van der Waals (vdW) nature of the interface®. As a consequence, these heterostruc-
tures exhibit low injection barriers, high charge extraction and injection efficiencies with electronic decoupling
and preservation of the intrinsic functionality of the molecular crystals at the interface*'?. Hence, graphene is
employed as a carrier injection layer between organic semiconductors and metallic contacts* and as vdW elec-
trode>”’. Efficient charge separation in graphene/organic semiconductors photo-transistors'> as well as organic
light emitting diodes?*-?* have been demonstrated. Moreover, heterointerfaces between organic semiconductors
and other two-dimensional (2D) materials - like hexagonal boron nitride and MoS, - have been realized, enhanc-
ing existing and enabling new functionalities in organic electronics based devices’ !> 182425,

Interfacial band engineering-through charge transfer and band alignment-is crucial for potential applications
of graphene-organic semiconductor heterostructures. Doping of graphene by charge transfer with organic molec-
ular layers has been investigated using Kelvin probe force microscopy and electrical measurements of graphene
field effect devices® 1°. Using a gated graphene field-effect device enables precise control of graphene’s Fermi
level position?, which affects charge transport through the interface!* ?*. This allows even tuning the molecular
orbitals at the interface?. Furthermore, in-situ sheet resistance measurements combined with ultraviolet photo-
electron spectroscopy have been used to investigate charge transfer between graphene and Cs,CO; in an organic
matrix*?, where the formation of a large interface dipole and n-type doping of graphene were observed. In general,
materials with a work function (&) substantially lower than that of graphene are needed to achieve n-type doping,
as was also demonstrated by deposition of potassium and ZnO?* 28, Recently, interfaces between graphene and
metal oxides have been investigated as effective hole-injection layers in organic light emitting diodes?®?!, exhibit-
ing p-type doping of graphene through charge transfer and formation of an interfacial dipole.
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Figure 1. Experimental setup: (a) layout of the HWE setup. The scheme of the sample (marked by an orange
circle) is enlarged in (b) showing upside-down the graphene FET with the in-situ DC electrical characterization
scheme. (c) Graphene’s dispersion relation. Ep, and Ep, indicate the position of the Fermi level (with respect

to the Dirac point) before and after epitaxy, while AE indicates the shift of graphene’s Fermi level. (d) AFM
topography image of one of the devices used in the study after the deposition of a sub-monolayer of 6P (z scale
50nm). Dashed lines in (d) highlight the rims of the graphene flake. L and W mark channel length and width.
(e) Area exhibiting a step-edge between graphene and SiO,, indicated in (d) by a square and rotated by 90°

with respect to (d) (z scale 25nm). (f) A height cross section along the dashed line in (e) is shown (top), with a
corresponding layout of the structure (bottom).

Owing to the unique density of states of graphene®® and the exceptionally low electrical noise®, field effect
devices can be utilized as extremely sensitive potentiometers for probing charge transfer between graphene and
adsorbed species. This was used even to detect individual adsorption/desorption events of gas molecules as NO,
on micrometer-scale devices®®. Moreover, in-situ electrical characterization was employed to reveal the relation
between SiO, and the effective p-type doping of graphene under ambient conditions®, showing the necessity of
both, water and oxygen in this process.

Nonetheless, the high sensitivity of graphene devices goes along with a lack of selectivity. The effects of mar-
ginal remnants, arising from the device preparation (degassing, annealing, purging, exposure to ambient condi-
tions) often mask the charge transfer effect that is actually under investigation. For this reason, in-situ electrical
characterization is needed which strictly avoids further sample treatment and exposure to ambient atmosphere,
especially in the cases when charge transfer is expected to be small. Yet, a study of charge transfer between molec-
ular crystals and graphene by in-situ electrical measurements with simultaneous capability of tuning graphene’s
Fermi level position and type of majority carriers is greatly lacking.

In this study, we examine charge transfer between graphene and two molecular crystals: para-hexaphenyl
(6P)** %, a wide HOMO-LUMO gap, intrinsic organic semiconductor with well matching ® to graphene®* %
and buckminsterfullerene Cg, an n-type semiconductor with ® over 1eV larger than that of graphene®®?’. The
organic thin films (0.5-10.0 monolayers (ML)) have been prepared using a hot wall epitaxy (HWE) setup®
equipped with electrical contacts to the sample in order to enable in-situ electrical characterization. As substrates,
field effect transistors (FETs) with an exfoliated graphene channel have been used.

We study in-situ the effect that deposited molecular crystals have on the transfer curves of graphene FETs, and
thus probe the formation of the interfacial dipole. The setup allows us to control graphene’s Fermi level position
prior (and during) the growth experiments. The estimated charge transfer per adsorbed molecule deduced from
the graphene’s Fermi level shift and the molecular coverage indicate a very weak interaction. Furthermore, the
same setup has been used for desorption experiments with 6P, showing that the charge transfer process is com-
pletely reversible upon 6P desorption.

Results and Discussion

Introducing the setup. The custom-built HWE chamber used in this study has three electrical contacts
attached to the sample holder, which allow to probe and tune electrical properties of the samples prior and during
the growth. A layout of the growth chamber is illustrated in Fig. 1a. A schematic representation of a graphene
FET is shown in Fig. 1b, also indicating the connections for the in-situ electrical measurement setup. Graphene
films exhibit trace amounts of photoresist contaminations from FET fabrication®. These residues were observed
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Figure 2. 6P growth experiments: (a) Transfer curves (five subsequent forward and backward V; sweeps)

of a graphene field-effect device directly before and after deposition of ~0.8 ML of 6P. (b) I, as a function of
time during the deposition, starting from p-type graphene. (c) Band diagrams of graphene (left) and 6P (right),
prior to interaction. (d-f) Analogue results for another device, on which the growth was started from n-type
graphene and ~4 ML of 6P were grown. Inset of (e) shows an initial V; ramp (and corresponding Ip) used to
bias the device prior to growth.

to have similar impact on the morphology of the grown films as in the case of wet-transferred chemical vapor
deposited graphene®.

From the transfer curves of graphene FETs (Isp(V)) it is possible to recalculate the position of graphene’s
Fermi level, both prior and after the growth (Eg, and Ep,)) as illustrated in Fig. 1c (see supplementary information
for more details). The charge neutrality point (CNP) of graphene was found not to be exactly at Voo =0V prior
to the growth experiments. This has been attributed to the unintentional doping that results mainly from the
trapped interfacial layer between graphene and SiO,, exposure to ambient water vapor, and lithography residues,
thus giving a different CNP value for each sample®"*. For this reason, performing in-situ measurements of the
charge transfer during the growth is essential to eliminate all other contributions (degassing, annealing, and
exposure to ambient) which would affect the transfer curves of graphene in a similar way (see supplementary
information for the details on the pre-treatment of graphene FETs). Figure 1d shows an atomic force microscopy
(AFM) overview topography image of one of the devices covered with ~0.8 ML of 6P. A magnified region of the
channel rim is shown in Fig. 1e. The height cross-section of Fig. 1e and the scheme of the structure are presented
in Fig. 1f.

6P growth experiments. Figure 2a shows transfer curves of a graphene FET measured at 2 X 10~° mbar
(300K) in the growth chamber, directly prior and after the growth of ~0.8 ML of 6P. The device was slightly
p-doped with a CNP atV op=(0.8 = 0.2) V, giving Ez= —(56 + 8) meV. The Fermi level was kept below the neu-
trality point (Egy = —(81 = 5) meV), within the linear part of the transfer curve by setting V4;=—1V during the
growth experiments. The in-situ measurements of Iy, during the growth (Fig. 2b) reveal that upon exposure of the
device surface to 6P I, immediately starts to increase. Considering that graphene was initially p-type, an increase
in the current indicates further p-doping by the adsorbed molecules. Schematic representations of the band dia-
grams of graphene and 6P are shown in Fig. 2¢, indicating the estimated positions of the graphene’s Fermi level
prior and after the growth. The different scale (a factor of 20) for the energy axis between graphene and 6P is used
to make graphene’s Fermi level shift visible.

Solid lines in Fig. 2a represent linear fits used to estimate the field-effect mobilities*!. Devices used in this
study had field-effect electron and hole mobilities in the range of 3000-6000 cm? V! s~1, which is in a good
agreement with the data reported for exfoliated graphene on SiO,*. Interestingly, the main difference between
the transfer curves prior and after the deposition of 6P is a parallel shift. Only minor changes in the minimal value
of Ip and in the field-effect mobilities (slopes of the curves) were detected in all growth experiments. This fact
unambiguously proves that the deposited thin layers of the molecular crystals did not affect scattering rates in
graphene. Thus, the doping mechanism is mainly based on charge transfer between graphene and the adsorbed
molecules.
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Figure 3. 6P desorption experiment: (a) Set of transfer curves of a device initially covered with ~4 ML of 6P
(Fig. 2(d-f)), in high vacuum before and after desorption of 6P, and in air after desorption of 6P. (b) Current
through the device during annealing (solid line) and the corresponding T}, (dashed line). (c) Enlarged initial
500 of (b) showing the desorption temperature for the 6P thin film on graphene. (d) AFM topography of
the device prior to desorption experiment, z scale 60 nm. (e,f) Enlarged AFM images of a graphene/SiO, edge
(marked by a square in (d)) before and after annealing (z scale 30 nm).

Figure 2d-f shows analogue results to those presented in Fig. 2a—c, obtained from another device on which the
growth was started from n-type graphene and ~4 ML of 6P were grown. As shown in Fig. 2d (orange curves), the
device was unintentionally p-doped prior to the growth experiments, with CNP at V;=(1.0 £ 0.1) V. In order to
ensure that graphene’s Fermi level is above the CNP at the beginning of the growth experiment, a constant voltage
Vse=2.5V was applied during the growth, thus giving the initial position of the Fermi level of Ezy= (74 £ 3)
meV. The inset in Fig. 2e highlights the first 40 seconds of the diagram, during which V4 was ramped from 0V to
2.5V prior to 6P deposition. As the gate voltage increases, the Ig, curve changes from p-type graphene-through
CNP-to n-type graphene. Then, the device was exposed to 6P vapor and the current immediately decreased. Since
the experiment started from initially n-type graphene, a decrease in current (at constant V) indicates again
p-type doping by the adsorbed molecules. Interestingly, the minimal value in current which was reached during
the growth experiment matches exactly the minimal value reached by sweeping V. This indicates that adsorbed
molecules lower the Fermi level of graphene from n-type-through the neutrality point and into p-type-where
further p-type doping is seen as an increase in the current. This was confirmed by measuring transfer curves after
the growth (Fig. 2d). The fact that the electrostatic gating and 6P deposition yield the exact same minimal value
of Igp further supports that charge transfer doping at the 6P/graphene interface is the main mechanism through
which the adsorbed molecules affect the electrical properties of the device.

6P desorption experiment. The reversibility of the charge transfer process was demonstrated by deso-
rption experiments, for the case of 6P. The experiments were carried out in the same HWE chamber, where
previously grown 6P films were annealed (at 415-425K) in high vacuum for an extended period of time, hence
releasing the molecules from the surface of the graphene FETs. The same in-situ electrical characterization has
been carried out as for the growth experiments, with the slight difference that the transfer curves after annealing
were only measured once the sample has reached again 300K.

In Fig. 3, we present the data obtained from the desorption experiment of the device shown in Fig. 2d-f.
Between the growth and desorption experiments, the morphology of the 6P film was characterized by AFM
under ambient conditions, thus inevitably exposing the graphene/6P interface to water vapor, enhancing p-type
doping of graphene®.. For comparison, we provide in Fig. 3a transfer curves of the device before and after deso-
rption of ~4 ML of 6P, as well as in ambient air after the desorption. Annealing in high vacuum was carried out
by heating the sample up to 417K for 80 minutes, followed by a slow cool-down to room temperature. During
annealing of the device, I, was measured and correlated to sample temperature T), as shown in Fig. 3b. Since the
graphene was initially p-doped, a reduction of I, indicates n-type doping demonstrating the reversibility of the
charge transfer mechanism. The minimal value of the current reached by annealing was slightly higher than for
the case of electrostatic gating (Figs 2d and 3a), since in this case the sample was at T,=417K, which certainly
affects both, the scattering rates in graphene and the serial resistance. After cool-down, transfer curves were
again measured, showing n-type behavior (Fig. 3a). The field-effect mobilities of graphene were not significantly
affected by the annealing and desorption of the molecules.

Figure 3c shows the magnified heat-up step of the annealing process (the first 500s of Fig. 3b). Initially, as the
device heats up, almost no change in the current is detected. This is the case until T}, reaches (365 £ 5) K, then,
a rapid reduction in the current sets in, which is attributed to 6P desorption. This might be useful to determine
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Figure 4. C4, growth experiments: (a) Transfer curves (five subsequent forward and backward V; sweeps) of
a graphene field-effect device immediately before and after deposition of ~4 ML of C4, and (b) I, as a function
of time during the deposition starting from p-type graphene. The inset of (b) shows the AFM topography of the
sample after the growth. (c) Band diagrams of graphene (left) and Cg, (right) prior to interaction. The energy
scales between graphene and Cg, have a factor of 20 difference. (d-f) Analogue results for another device, on
which the growth was started from n-type graphene, and ~10 ML of C4, were grown. An arrow in (d) indicates
the direction of the shifting of the subsequently measured transfer curves.

the desorption temperature of organic semiconductors from graphene. However, both molecular rearrangement
prior to desorption and the heating rate could affect the desorption temperature*>.

AFM was used to monitor the amount of material removed from the surface by annealing. An overview of
the device prior to thermal desorption is presented in Fig. 3d. Figure 3e-f compares AFM images of an area at
the channel edge (indicated by the white square in Fig. 3d) before and after annealing. The same z scale for both
images is used to highlight that the majority (over 95%) of the material was successfully removed by annealing
for only 80 minutes. Extended annealing times or higher annealing temperatures would entirely remove the 6P,
however, this could also affect the serial resistance of the thin gold electrodes and was therefore avoided.

Ceo growth experiments. Using the same method as for 6P, charge transfer at the interface between
graphene and Cg, was also investigated. Figure 4 provides results from the in-situ electrical measurements during
the growth of Cg. Data for two devices are presented in the same manner as for 6P (Fig. 2). Figure 4a shows trans-
fer curves of an intrinsically p-doped device prior to growth, Voyp= (7.0 £ 1.5) V. Due to strong initial intrinsic
p-doping of the sample, the CNP could not be reached within the accessible range of Vg (without risking elec-
trostatic breakdown of the SiO,). The position of the CNP was estimated considering the value observed in air
prior to degassing and annealing of the device. Hence, there is a larger uncertainty of the exact initial position of
the Fermi level (Ep = —(160 4+ 20) meV). However, this does not affect the shift of the transfer curves and the
amount of transferred charge introduced by the adsorbed molecules, which can still be estimated from Fig. 4a.
During the growth, Is;, was recorded as a function of time (Fig. 4b). Starting from p-type graphene, an increase in
current upon exposure to Cg, indicates further p-doping. The inset in Fig. 4b is an AFM topography image of the
device with ~4 ML of Cy. In Fig. 4c, a scheme of the graphene and C4, band structures is presented with different
energy scales for graphene and Cy, visualizing the graphene’s Fermi level shift.

In analogy to Fig. 4a—c, data of another device (initially slightly n-doped) is shown in Fig. 4d—f with ~10 ML of
Cyo grown. Steady p-type doping of graphene with Cg, exposure was also observed in this case leading to a lower-
ing of graphene’s Fermi level from the n-type- through the neutrality point- into the p-type regime. This can be
well observed by following the in-situ measurements of I, in Fig. 4e.

Interestingly, in the case of Cg, L5, did not saturate at a certain value immediately after the growth, as it was the
case for 6P. Yet, after Cq, deposition I, kept changing, indicating n-type doping of graphene (see Fig. 4b,e). The
value for I saturated just several minutes after the growth has been stopped. An unstable level of doping was also
observed in the transfer curves after the growth (shown in Fig. 4d). There, successive transfer curves are shifted to
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Figure 5. Band diagrams and charge transfer: (a,b) band diagrams prior to establishing the equilibrium (equal
vacuum levels) for graphene/6P and grapene/Cy, respectively. (c) Charge transfer per molecule as a function of
the position of CNP prior to the growth, for all the devices used in this study. Circles represent the data for 6P/
graphene and diamonds for Cgy/graphene interfaces.

lower voltages as indicated by the arrow. Again, the lateral shift of the transfer curves indicates that the underlying
process is mainly based on the charge transfer. The direction of the shift (marked by a red arrow in Fig. 4d) reveals
that electrons were transferred back to graphene, introducing n-type doping. The observed doping instability in
graphene after Cy exposure is most likely caused by interaction with the remaining oxygen in the HWE growth
chamber. Diffusion of oxygen into Cg, films was previously shown to affect the interfacial dipole formed between
Cgo and highly oriented pyrolytic graphite® and to deteriorate electrical conductivity of Cq, based devices®.

Band diagrams and charge transfer. Transfer of electrons from graphene-and consequent p-type dop-
ing of graphene by both 6P and Cy-is self-evident when the difference between the ® of graphene (~v4.4eV)*
and the ionization energy of the molecular crystals is considered. In both cases, the Fermi level in graphene is
expected to be at least 1 eV above the highest occupied molecular orbitals. Figure 5a,b shows band diagrams for
graphene/6P and graphene/Cy, prior to interaction (considering equal vacuum levels). The data for the ioniza-
tion energies, ¢, and band gaps of 6P and Cg, were taken from ultraviolet photoelectron spectroscopy (UPS) of
bulk molecular crystals and thin films deposited on highly oriented pyrolytic graphite®*-3745. As the interface is
formed, electrons are transferred from graphene into the growing molecular crystals. Considering the low den-
sity of states of both, 6P and Cy, and the small amount of material in the grown films (less than 10 nm), Fermi
level alignment in the ordinary sense (bulk interfaces) is most likely not possible and would require significantly
thicker films®’.

Since the shift of the CNP is known, it is possible to estimate the number of transferred electrons from
graphene. The detailed morphology of the grown films revealed by AFM (see supplementary information)
together with the most probable crystal phases of both 6P and Cy, (Baker structure and face centered cubic,
respectively), allow an estimation of the number of deposited molecules. From these two values, the average
charge transfer per adsorbed molecule can be calculated. A compilation of the estimated charge transfer per
adsorbed molecule as function of the CNP position (initial Fermi level position) is provided in Fig. 5¢c. Error bars
in the x axis indicate the uncertainty of the initial CNP position, while error bars in the y axis mainly originate
from the uncertainty of the total volume of the molecular crystals grown on the device surfaces (measured by
AFM). The obtained charge transfer per adsorbed 6P molecule was found to be ~4.7 x 10~* electrons/6P, and for
the case of Cg, somewhat higher values of ~1.1 x 1073 electrons/Cg, were deduced. No significant change of the
charge transfer was observed within the available range of the applied gate voltage (initial position of graphene’s
Fermi level), and the observed differences between individual devices are likely related to sample-to-sample
variations.

Similar results were obtained for the charge transfer at the graphene/pentacene interface measured by UPS®
and for the graphene/Cy, interface measured by scanning tunneling spectroscopy and transport characteris-
tics'" ¢, revealing weak interaction and small charge transfer from graphene. Vertical heterostructures using a
graphene/Cy interface have shown slight downshifts of graphene’s Fermi level upon Cg, deposition'®. In addition,
charge transfers between epitaxial graphene and gold, antimony, and bismuth have somewhat larger values*, in
the order of 2-10 x 1072 electrons taken from graphene per adsorbed metal atom. Very recently, molecules (as
acetone and toluene) trapped at the interface between graphene an SiO,, and the influence of arrangement of Cg,
on graphene and the role of the supporting substrate on the charge transfer have been investigated*>*, in both
cases exhibiting charge transfer in the order of ~107 electrons per molecule.

The fact that over thousand molecules are needed to extract only one electron from graphene raises the ques-
tion of the nature of the charge transfer mechanism. The charge transfer could either be fractional or integer>®>'.
Fractional charge transfer has been reported for molecules adsorbed on clean metal surfaces, usually through
weak chemisorption or covalent bonding®®-*? resulting in an excess charge homogeneously distributed among the
molecules, yielding an effective fractional charge per each molecule. As an alternative scenario, the integer charge
transfer was reported for weakly interacting interfaces like passivated metal surfaces®” . In this case, electrons
tunnel from the metal and are localized only on some molecules, while the others remain electrically neutral. In
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this study, fractional charge transfer is less likely due to the vdW nature of the interface. Moreover, measurements
of the source-drain current during the growth did not show significant changes between the first and several
subsequent layers, for the case when multi-layers are grown. This observation further indicates that the charge
transfer mechanism is more likely an integer than a fractional one.

Conclusions

In summary, a weak electronic interaction through charge transfer between graphene and molecular semicon-
ductors (6P and Cy,) was observed. As the interface forms, less than 1072 electrons per molecule are taken from
graphene, consequently lowering graphene’s Fermi level and introducing p-type doping of graphene. This result
was found not to be dependent on the initial type of the majority carriers in graphene (initially p- or n-type),
confirming that band alignment is more important than the type of doping when considering interfacial band
engineering with graphene. Moreover, the fact that the adsorbed molecules have mainly affected the ambipolar
transfer curves of graphene field-effect devices through lateral shifts unambiguously proves that the scattering
rates in graphene were not affected by the adsorbed molecules. This confirms that the interaction occurs princi-
pally through charge transfer and formation of an interfacial dipole, with further indications that integer charge
transfer occurs in these systems.

Methods

Fabrication of graphene field effect devices. Graphene flakes were prepared by micromechanical exfo-
liation of kish graphite. Flakes were deposited on highly doped Si substrates (less than 0.01 Q2 cm), serving as
a back-gate electrode (G), with (80 £ 2) nm thin layer of dry thermal SiO,, which acts as a gate dielectric and
enhances optical contrast of the flakes. Single-layer graphene flakes were selected by optical microscopy and were
checked for any contaminations, wrinkles, and cracks by AFM, prior to the deposition of the electrodes. Source
(S) and drain (D) top contacts were made by positive mask UV photolithography, with a (20-30) nm thick gold
layer. Channel length was ~10 pm, and width (W) was (5-30) yum (depending on the shape of the flakes).

In order to have stable transfer characteristics of the devices and to ensure reproducibility of the data, all
samples were left to degas in high vacuum (=1 x 10~° mbar) for 12 hours, followed by annealing in high vacuum
prior to the growth of molecular crystals. More details on the pre-treatment of the graphene FETs is given in the
supporting information, where 6P crystallites are also grown at elevated T}, (365K) in order to accent the impact
of the surface contaminations on the growth of the molecules.

Electrical measurements and field-effect mobility estimates. Electrical measurements were carried
out within an HWE chamber, using a Keithley 2636 A SYSTEM SourceMeter. Voltages between S and D (V) and
S and G (V) were applied, and the currents between S and D (Ip) and S and G (Is;) were measured. To avoid
electrostatic breakdown of the SiO,, Ig; was monitored and set not to exceed 1 nA. All transfer curves I, (Vg)
were measured at room temperature in either high vacuum or ambient atmosphere. Five subsequent transfer
curves were measured each time to ensure reproducibility, with AV;=0.01V and time steps of 200 ms. For
in-situ measurements of Ly, the time step was set to 500 ms. The sample temperature (T,) was kept constant at
(300 £ 2) K in order to exclude other potential contributions to the charge transfer process. The position of the
Fermi level in graphene was calculated considering a parallel plate capacitor between graphene and SiO, and
taking the Fermi velocity of electrons in graphene as 10° m/s (see supplementary information for more details).
Field effect mobilities were extracted considering the diffusive regime of charge transport (L =10 pm). Algp/A
Vg was obtained from the linear parts of the transfer curves. Serial resistances (R) of the devices (mainly arising
from thin Au pads) were measured for each device batch by Kelvin probe force microscopy measurements of the
voltage drop between S and D. Ry was found to be between 20% and 30% of the total device resistivity. It is worth
to mention that only the absolute values for the field-effect mobilities are affected by R.

Hot wall epitaxy setup. Thin films of molecular semiconductors were grown using a home-built HWE
setup with electrical connections to the sample holder that allow in-situ electrical measurements. The growth was
carried out in high vacuum (base pressure of 1 x 107¢ mbar) with fix source (Ts) and wall (T,) temperatures, for
6P Ts=508K, T}, = 518K, and for Cg, Ts= 623K, T\, =638 K.

AFM measurements and molecular semiconductors film morphologies. The morphology of the
samples was investigated employing an Asylum Research MFP-3D AFM system operating under ambient con-
ditions. Olympus AC160TS probes were used with typical force constants of 20-80 N/m and tip curvature radii
of 5-7nm. AFM topography images of the samples were processed using the open source software Gwyddion
(version 2.38). The thickness of the molecular crystals was estimated considering the total volume on the device
active area and presented as an equivalent in complete monolayers (ML) of the bulk structure (in the case of 6P
considering up-right standing molecules that form island-like crystallites) of the molecular crystals, since an ideal
layer-by-layer growth was not observed. In the considered ranges of the growth temperatures, only the mono-
clinic 5-phase of 6P crystallites is expected (the Baker structure) and the fcc structure of Cg. The morphology
of Cy films indicated layered growth (step edge height of ~0.8 nm), while 6P films were found to consist of both,
islands of up-right standing molecules (~2.6 nm) and needles with flat-laying molecules (taller than 10 nm).

Data availability statement. The datasets generated during and/or analysed during the current study that
are not included in this published article (and its supplementary information files) are available from the corre-
sponding author on reasonable request.
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Abstract: Background: Dental stem cells, which originate from the neural crest, due to their easy
accessibility might be good candidates in neuro-regenerative procedures, along with graphene-based
nanomaterials shown to promote neurogenesis in vitro. We aimed to explore the potential of liquid-
phase exfoliated graphene (LPEG) film to stimulate the neuro-differentiation of stem cells from apical
papilla (SCAP). Methods: The experimental procedure was structured as follows: (1) fabrication
of graphene film; (2) isolation, cultivation and SCAP stemness characterization by flowcytometry,
multilineage differentiation (osteo, chondro and adipo) and quantitative PCR (qPCR); (3) SCAP
neuro-induction by cultivation on polyethylene terephthalate (PET) coated with graphene film;
(4) evaluation of neural differentiation by means of several microscopy techniques (light, confocal,
atomic force and scanning electron microscopy), followed by neural marker gene expression analysis
using qPCR. Results: SCAP demonstrated exceptional stemness, as judged by mesenchymal markers’
expression (CD73, CD90 and CD105), and by multilineage differentiation capacity (osteo, chondro and
adipo-differentiation). Neuro-induction of SCAP grown on PET coated with graphene film resulted
in neuron-like cellular phenotype observed under different microscopes. This was corroborated
by the high gene expression of all examined key neuronal markers (Ngn2, NF-M, Nestin, MAP2,
MASH]1). Conclusions: The ability of SCAPs to differentiate toward neural lineages was markedly
enhanced by graphene film.

Keywords: graphene; dental stem cells; stem cells from apical papilla; neurogenic differentiation

1. Introduction

Regenerative medicine aims at replacing damaged human cells, tissues or organs
and restoring their normal architecture and functions [1]. Stem cells (SCs) emerged as a
promising tool in regenerative therapies due to their ability to differentiate into numerous
cell lineages, high self-renewal capacity and immunosuppressive activity. A variety of new
materials and new devices, enhancing cell migration, proliferation, and differentiation,
have been developed as well [2,3].

Since SC research has dramatically evolved over the past years, it is possible now to
isolate SCs from almost any tissue [4-7]. Yet, in many instances, the most appropriate and
matching source of stem cells for a given regenerative therapy remains to be identified.

Dental SCs share a similar origin as neuronal stem cells, as they originate from the
neural crest, and due to their accessibility and absence of ethical issues, they might be
a good candidate for neuro-regeneration. Apical papilla is a soft tissue at the apex of a
not fully formed tooth, containing more than 95% of mesenchymal SCs (stem cells from
apical papilla, SCAP) [8,9]. SCAP express some early neural markers even without neural
induction and can be transformed into different cell types belonging to neural lineage [10],
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making them suitable for potential therapeutic applications in different clinical settings
necessitating neuro-repair. SCAP differentiation potential has been extensively tested, but
mainly in experiments of osteogenesis and odontogenesis. Only a few studies have dealt
with the use of SCAP in neurodifferentiation. For instance, it was shown that fibrin gels [11]
and hypoxia [12] stimulate SCAP neurogenesis.

Graphene, an allotrope of carbon, owing to its physico-chemical and biological prop-
erties, is also becoming increasingly popular in bioengineering [13-17]. Graphene and
graphene-based nanomaterials (GBN), especially graphene oxide, improve cell adhesion
during proliferation and differentiation and, due to their electrical conductivity, have the
ability to promote the process of differentiation towards neural cells [18-26]. Furthermore,
a colloidal dispersion of graphene demonstrated excellent biocompatibility, nontoxicity
and remarkable support for cell proliferation [27-31].

As already stated, in numerous studies focusing on tissue engineering, graphene-based
materials have been used in conjunction with different dental stem cells, such as dental
pulp stem cells, periodontal ligament stem cells and dental follicle stem cells (reviewed by
Guazzo et al. [32]). However, differentiation experiments involving graphene derivatives
and stem cells from apical papilla are extremely scarce.

Given the lack of studies on SCAP biological behavior when in contact with graphene
film, we sought to explore, by means of different microscopy techniquesand real-time
gene expression analyses, the potential of liquid-phase exfoliated graphene (LPEG) film to
induce and stimulate the neuro-differentiation of SCAP.

2. Materials and Methods

The experimental procedure was structured into four phases: phase 1—fabrication of
graphene film; phase 2—isolation, cultivation and characterization of stem cells derived from
apical papilla; phase 3—seeding stem cells on graphene film and PET; phase 4—evaluation
of neural differentiation (Figure 1).

2.1. Fabrication of Graphene Film
2.1.1. Preparation of Graphene Dispersion

The graphene dispersion utilized in this study was prepared by the liquid-phase
exfoliation method (LPE) [33]. Following the procedure described in our previous work [34],
the mixture was made by adding the graphite powder (Sigma Aldrich-332461) in N-Methyl-
2-pyrrolidone (NMP, Sigma Aldrich-328634). The initial concentration was 18 mg/mL. The
solution was exposed to ultrasound (Sonic bath, Bransonic CPXH, Emerson, St. Louis,
MO, USA) for 14 h and immediately after the sonication, the graphene dispersion was
centrifuged for 60 min at 3000 rpm. The resulting graphene dispersion collected as the top
80% of the supernatant was characterized by UV-VIS spectroscopy (Beckman Coulter DU
720 UV / VIS Spectrophotometer, Brea, CA, USA) [33]. The concentration of LPE graphene
dispersion was calculated by Lambert-Beer law [33] and it was 355 ug mL~! (Figure 2).

2.1.2. Liquid-Phase Exfoliated Graphene Film Fabrication

Langmuir-Blodgett technique was applied to transfer graphene thin films from the
liquid—gas interface to the solid support substrate [33]. Adding a small amount of liquid-
phase exfoliation (LPE) graphene dispersion into the water—air interface, the graphene
nanosheets were self-organized into a close-packed film [33]. The thin and transparent film
was intently scooped onto the polyethylene terephthalate (PET) substrate. After deposition,
the LPE graphene film was left to dry for 20 min in ambient conditions. For the optical
characterization of the liquid-phase exfoliated graphene (LPEG) films, UV-VIS spectroscopy
(Beckman Coulter DU 720 UV /VIS Spectrophotometer, Brea, CA, USA) was used. The
transparence of 80% was estimated for the obtained LPEG film. The transparence of the
obtained LPEG film at 550 nm was estimated at 80%, which is consistent with the previously
reported study [35].
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2.2. Graphene Film Characterization
2.2.1. Raman Spectroscopy of Graphene Film

Raman spectroscopy, as a noninvasive technique, has been used to provide essential
information in the characterization of graphene-based materials [18,19]. Raman spectra
were collected with the Micro-Raman Tri Vista 557 triple spectrometer using Nd:YAG laser
(A =532 nm) and kept the power below 20 mW to avoid chemical damage of the film
induced by the laser heating. The measurements were performed at room temperature and
the acquisition time for spectra was 240 s.

2.2.2. Scanning Electron Microscopy (SEM) of Graphene Film

The morphology of the LBA graphene films was characterized with scanning electron
microscopy (SEM). SEM mages were obtained by Tescan MIRA3 field emission gun SEM
working at 20 kV acceleration (Tescan), and SiO2/5i wafer was used as a substrate.

2.2.3. Atomic Force Microscopy (AFM) of Graphene Film

Graphene film was characterized on an atomic force microscope (AFM), NTEGRA
Spectra (NT-MDT). An NT MDT gold-plated tip with a nominal radius of about 30 nm was
used. Scans were performed in ambient conditions, RH: 40-50%, t: 23-26 °C in semi-contact
mode, with a scan frequency of 0.5 Hz and with 512 x 512 dots in the scan (10 x 10 pm
surface). AFM image analysis has been performed using Gwyddionopen sourcesoftware
package ver. 2.60 (Prague, Czech Republic). Thickness has been estimated at the edge of
the film using profile function and statistical function in the software.

2.3. Cell Cultures

The study was approved by the Ethical Committee of the School of Dental Medicine,
University of Belgrade (No 36/19). Immature, impacted third lower molar was extracted
from a teenage patient at the Clinic for Oral Surgery (Figure 3), School of Dental Medicine,
University of Belgrade, after signing the informed consents by patient’s parents. Stem
cells from apical papilla were isolated as previously described [34]. Briefly, extracted tooth
was rinsed with Dulbecco’s Phosphate-Buffered Saline (DPBS, Thermo Fisher Scientific,
Waltham, MA, USA), and apical papilla was separated from the root apex and transferred
into T-25 flasks after mincing. The tissues were grown in cell complete medium (DMEM
supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic solution). Cells
were cultured under standard conditions (37 °C, 95% air-5% CO, atmosphere, 95% humid-
ity) and growth medium was changed every third day. All following experiments were
carried out with the cells from the fourth and fifth passage.

Figure 3. (a) Orthopantomogram of right mandibular impacted third molar (encircled); (b) Extracted
tooth; (c) Detail from (b) white dotted line depicts border between apical papilla (lower parts) and
tooth root (upper part); (d) Kidney-shaped apical papilla tissues separated from the tooth.

2.4. SCAP Characterization
2.4.1. Flow Cytometry

Flow cytometry analyses were performed in order to assess the expression of specific
mesenchymal markers of SCAP. The markers used for these analyses were: fluorescein-
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isothiocyanate-labeled mouse monoclonal antibodies against CD90, CD105, and CD34;
phycoerythrin-labeled mouse monoclonal antibodies against CD73 and CD45 (all antibodies
were purchased from Exbio, Vestec, Czech Republic). Cells were harvested with TrypLE™
Express solution, washed with DPBS supplemented with 10% FBS, and finally counted
on automated cell counter Countess™ (Invitrogen, Waltham, MA, USA). One million
of the cells were resuspended in 1 mLof 10% FBS solution in DPBS and incubated with
adequate antibodies for 45 min in the refrigerator. After incubation, cells were fixed
with 4% paraformaldehyde (PFA) for 20 min and finally rinsed 2 times with DPBS. Cells
were analyzed on a tabletop flow cytometer (Partec, Munster, Germany) and results were
processed by software (FloMax 2.82, Partec, Munster, Germany).

2.4.2. Multilineage Differentiation Capacity

To evaluate the stemness characteristics of SCAP, their potential of differentiation into
multiple lineages (osteo-, chondro- and adipo-) was tested. Cells were seeded onto 6-well
plates either on PET alone or on PET coated with LPEG film, at density of 5 x 10%/cm?, and
grown in the respective differentiation medium, which was changed every 2 days. After
the required differentiation period of time elapsed, cells from one well were used for RNA
isolation for gene expression analysis.

Osteo-Differentiation

After 28 days of culturing in osteo-differentiation medium (StemPro™ Osteogenesis
Differentiation Kit, Thermo Fisher Scientific, Waltham, MA, USA) according to manufactur-
ers’ recommendations, cells were subjected to histological staining method using Alizarin
Red S, as previously described [34]. Briefly, after rinsing with DPBS and fixating with 4%
PFA for 30 min, cells were stained with 2% Alizarin Red S (Centrohem, Belgrade, Serbia)
solution, at pH 4.2. After 30 min of incubation, dye was removed, and cells were rinsed
twice with distilled water. Stained cultures were observed using inverted light microscopy
(Primovert, Zeiss, Oberkochen, Germany) and photographed.

Chondro-Differentiation

For the chondro-induction, cells were seeded in a form of micromass at total number
of 1.5 x 10° and grown on 6-well plates in commercially available chondrogenesis media
(StemPro™ Chondrogenesis Differentiation Kit, Thermo Fisher Scientific, Waltham, MA,
USA) for 21 days. Chondrogenesis was confirmed by 0.1% solution Safranin O (Centro-
hem, Belgrade, Serbia) positive staining. Stained cells were observed using inverted light
microscopy and photographed.

Adipo-Differentiation

Adipogenic stimulation lasted 28 days in commercially available adipogenesis media
(StemPro™ Adipogenesis Differentiation Kit, Thermo Fisher Scientific, Waltham, MA, USA)
at seeding density of 1 x 10* cells/cm? onto 6-well plates. In order to confirm adipo-
differentiation, Oil Red O (Centrohem, Belgrade, Serbia) staining was used to visualize
intracellular lipid accumulation as lipid vacuoles. Stained cells were observed using
inverted light microscopy and photographed.

2.5. LPEG Neuro-Induction

To induce neurogenic differentiation, cells (1.5 x 10°) were seeded onto T-25 tissue
culture flasks in standard culture medium. After 24 h, neural pre-induction medium and
DMEM with 100 mM beta-mercaptoethanol were added, and cells were incubated for 4 h.
Then, cell differentiation was continued in a neural induction medium containing recombi-
nant human basic fibroblast growth factor, neural growth factor, and B27 supplement (all
from Thermo Fisher Scientific, Waltham, MA, USA) in DMEM either on PET alone or on
PET coated with LPEG film. After 7 days of cultivation, cell morphology was observed
under inverted microscope. Control cells were incubated in standard culture medium.
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2.6. Cell Morphology Analysis Following LPEG Neuro-Induction
2.6.1. Light Microscopy

Cell morphology was observed under inverted microscope (Primovert, Zeiss, Oberkochen,
Germany) and photographed. Between days 3 and 7 of neurogenic culture, the cells
showed a transition from fibroblast-like to neuron-like cell bodies with long processes,
suggesting that the stem cells differentiated into neurons/neuron-like cells. At that point
they were subjected to RNA isolation, gene expression and immunocytochemistry analysis.
In addition, the growth and morphology of the cells during 5 days of LPEG neuro-induction
was recorded with CytoSMART Lux 2 camera (CytoSmart Technologies BV, Eindhoven,
The Netherlands).

2.6.2. Confocal Microscopy

For the immunocytochemical analyses, cells were seeded onto 25 mm diameter round
glass coverslips at density of 5 x 10%/cm? and subjected to neuro-differentiation protocol
as described. On the 7th day of neural induction, cells were rinsed 3 times in DPBS,
fixed with 4% PFA solution for 20 min, rinsed three times with DPBS and incubated at
room temperature for 45 min in blocking and permeabilization buffer (10% Bovine serum
albumin and 0.1% Triton X-100 in DPBS). For immunofluorescent detection of neuronal cell
marker expression, cells were incubated with the following primary antibodies: rabbit anti-
(3 II-tubulin (B3T, 1:400, Cell Signaling, Danvers, MA, USA), rabbit anti-MAP2 (MAP 1:400,
Millipore, Germany) and rabbit anti-neuronal nuclei (NeuN, 1:250, Millipore, Taufkirchen,
Germany). Primary antibodies were incubated at 4 °C overnight and subsequently washed
3 times with DPBS. Cell samples were incubated with secondary antibodies—donkey
anti-mouse Alexa Fluor 488 (1:200, Invitrogen, Waltham, MA, USA), donkey anti-rabbit
Alexa Flour 555 (1:200, Invitrogen, Waltham, MA, USA) and donkey anti-rabbit Alexa Flour
657 (1:200, Invitrogen, Waltham, MA, USA) for 2 h in dark at room temperature. Cells
were washed 3 times in DPBS and stained with 4-, 6- diamidino- 2-phenylindole (1:4000,
DAPI, Molecular Probes, Eugene, OR, USA) for 10 min in dark at room temperature. After
washing in DPBS cell samples were mounted with Mowiol(Sigma Aldrich, St. Louis, MO,
USA) on microscope slides. Immunofluorescence microscopy images were obtained by
confocal laser-scanning microscope (LSM 510, Carl Zeiss GmbH, Jena, Germany) equipped
with Ar 488 and HeNe 543 and 633 laser lines. Micrographs were analyzed using Fiji-Image
] softwarever 1.46 (NIH, Bethesda, MD, USA).

2.6.3. AFM of Neuron-like Cells

For the purposes of atomic force microscopy, cells had to be seeded on SiO; slides
coated with a 2 x 2 cm graphene monolayer at a concentration of 200 cells in 10 uL of
complete growth medium. The slides were placed in the wells of the 6-well plate. One hour
after seeding, 740 uL of complete medium was added to the cells. After 24 h from seeding,
neuro-differentiation was performed by the protocol described above.

Seven days after neuro-induction, the medium was aspirated from the well, and the
plates were washed twice with DPBS, then the cells were fixed with 4% PFA solution for
20 min. Any excess fixation solution was removed by rinsing twice more with DPBS.

The morphology of the obtained cells after LPEG neuro-differentiation was character-
ized by microscopy on an atomic force microscope, using the same device and experimental
conditions as for the graphene film characterization.

2.6.4. SEM of Neuron-like Cells

After neuro-induction, cell morphology was observed by SEM using a high-resolution
electron microscope, MIRA3 FEG-SEM (Tescan, Brno—Kohoutovice, Czech Republic), at a
voltage acceleration of 20 kV. Cell fixation using the increscent concentrations of ethanol
was done as previously described [36]. In preparation, the sample surface was coated with
an ultrathin layer of gold using an SC7620 mini atomizer (Quorum Technologies, Laughton,
East Sussex, UK) to prevent the accumulation of static field electricity.
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2.7. RNA Isolation and Gene Expression

The expression of different markers was assessed by real-time PCR (qPCR) analysis.
RINA was isolated using TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA, USA),
according to manufacturers’ recommendation. Subsequent reverse transcription from 1 ug
of total RNA was performed using RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Waltham, MA, USA)in order to obtain cDNA for qPCR analysis. The
list of specific primers is given in Table 1. The results obtained from each qPCR run were
threshold cycle (Ct) values. The relative expression level was assessed using the AACt
method [37]. The relative mRNA expression levels for each sample were calculated as the
ratio between the expression of the gene of interest and the expression of the housekeeping
gene (GAPDH).

Table 1. Primers with corresponding sequences used in the study.

Primer Name Sequences (5’ —3')
Rum Forward ACAAACAACCACAGAACCACAAGT
unx Reverse GTCTCGGTGGCTGGTAGTGA
Colo Forward TTCAGCTATGGAGATGACAATC
° Reverse AGAGTCCTAGAGTGACTGAG
PPARG Forward GCTGTGCAGGAGATCACAGA
Reverse GGCTCCATAAAGTCACCAA
Nen? Forward CCTGGAAACCATCTCACTTCA
gn Reverse TACCCAAAGCCAAGAAATGC
NEM Forward TGGGAAATGGCTCGTCATTT
Reverse CTTCATGGAAACGGCCAA
Nestin Forward AACAGCGACGGAGGTCTCTA
s Reverse TTCTCTTGTCCCGCAGACTT
MAP?2 Forward AACCCTTTGAGAACACGACA
Reverse TCTTTCCGTTCATCTGCCA
MASHI Forward CCAGTTGTACTTCAGCACC
Reverse TGCCACTTTGAGTTTGGAC
GAPDH Forward TCATGACCACAGTCCATGCCATCA
Reverse CCCTGTTGCTGTAGCCAAATTCGT

2.8. Statistical Analysis

GraphPad Prism ver. 9 was used for the analyses (GraphPad Software, Inc., San
Diego, CA, USA). After examination of the distribution normality by Kolmogorov-Smirnov
normality test, independent sample T tests were performed. The values are presented as
mean =£ SD. Statistical significance was set at p < 0.05. The experiments were performed in
triplicate, repeated at least two times.

3. Results
3.1. Graphene Film Characterization
3.1.1. Raman Spectroscopy of Graphene Film

Raman spectroscopy has been applied to verify the exfoliation of the pristine graphite
powder, as bulk material, into few-layer graphene nanosheets. Figure 4 represents the
Raman spectra of LPEG thin films and pristine graphite powder as a reference.

D (~1352) and G (~1582) peaks are noted in the same position at both Raman spectra.
The changes of shape and Raman shift of 2D peak at Raman spectra of graphene film are
evident. A well-defined and sharp shape of the 2D peak, as well as a considerable shift to
lower wavenumbers (by 12 cm~!) compared to graphite, are characteristics of a few-layer
graphene nanoflakes [24]. D’ peak (~1618 cm ™), visible as the shoulder of G peak in the
graphene film, together with D peak, confirms the presence of defects and some amount of
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disorder in the graphene lattice. The combinations of the main peaks can be also observed:
D + D’ (~2939 cm™!) and D + D” (~2452 cm™!), where the D” peak is known as a weak
defect induced one phonon process.

rya

rr
G — pristine graphite powder
— LPE graphene film

—_—
i
s
S
z D
7
=
B
N
=
— o 2D

i

D+D" | D+D'
I
T
PSR W k - D+DM
1 1 77 T 1 I
1250 1500 1750 2500 2750 3000

Raman shift (cm™)
Figure 4. Raman spectrum of LPE graphene film (red line) and pristine graphite powder (black line).

3.1.2. SEM Characterization of Graphene Film

Information about the morphology and film structure was obtained by SEM (Figure 5).
The overlapping of the graphene nanosheets and the formation of a closed packed film can
be noticed in Figure 5a. Based on the measurement of lateral size, the average diameter of
graphene nanosheets was estimated to be in the range of 125 4= 10 nm (Figure 5b).

counts (%)

0 100 200 300 400 500
diameter of graphene nanosheets (nm)

(b)

Figure 5. (a) SEM image of graphene film; (b) Histograms of lateral size of graphene nanosheets
obtained from six 3 x 3 um? SEM images (~1800 flakes); The red dashed line represents a log-
normal fit.

3.1.3. AFM Characterization of Graphene Film

AFM scans of graphene film along with their characteristics are given in Figure 6. Both
2D (a) and 3D (b) images are shown for a scan area of 20 x 20 um (512 x 512 lines), as well
as for a scan area of 5 x 5 um—2D image (c), 3D image (d) and phase image (e). Height
distribution for the area of 20 x 20 um and average height profile across the film are given
in Figure 6f,g, respectively.
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Figure 6. Graphene film near the edge. (a) 2D and (b) 3D image of the scan area 20 x 20 pm;
(c) 2D, (d) 3D and (e) phase image of the scan area 5 X 5 um; Thickness of graphene film. (f) Height
distribution near the edge of the film measured for the area 20 x 20 um and (g) average height profile
across the edge of the film.

3.2. SCAP Characterization
3.2.1. Flow Cytometry Analysis

Flowcytometry analyses were performed on P5 (fifth passage) stem cell from apical
papilla. Flowcytometry revealed the expression of mesenchymal stem cell markers CD73,
CD90 and CD105 (99%, 91.3% and 96%, respectively), and the absence of hematopoietic
markers CD34 (0.34%) and CD45 (0.01%).

3.2.2. Multilineage Differentiation Capacity

Alizarin Red S staining of mineralized nodules around cells confirmed osteogenic
differentiation (Figure 7a); the presence of Safranin O clusters of proteoglycans characteristic
for cartilage cells confirmed chondro-differentiation (Figure 7b); the presence of Oil Red O
staining was indicative of intracellular lipid accumulation (Figure 7c). In the control group
(non-induced cells) there were no stained cells (Figure 7d).

3.2.3. Gene Expression Analysis of Multilineage Differentiation

Real-time PCR analysis of gene expression confirmed successful SCAP differentia-
tion, both when cells were grown on graphene film and when they were grown on PET
only (control), thus confirming SCAP stemness. Differentiated cells grown on graphene
film showed several times higher expression of Runx2—marker of bone tissue (9.59-fold
increase), Col2—marker of cartilage tissue (62.90-fold increase) and PPARG—marker of
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adipose tissue (17.48-fold increase) compared to the control group (Figure 8), pointing to
the positive effect of graphene in terms of its multilineage induction capacity.

Figure 7. Histological evaluation of SCAP multilineage differentiation capacity. All micrographs
were taken at 40 x magnification. (a) Alizarin Red S staining of calcium deposits showing osteogenic
potential of SCAP; (b) Safranin O staining of proteoglycan aggregates evidencing successful SCAP
chondrogenic potential; (c) Oil Red O positive staining of intracellular lipid droplets as a sign of
SCAP adipogenicdifferention; (d) Representative image of unstained controls.
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Figure 8. Gene expression evaluation of SCAP osteogenic (Runx2), chondrogenic (Col2) and adi-
pogenic (PPARG) differentiation potential.

3.3. LPEG Neuro-Induction of SCAP
3.3.1. Light Microscopy

After 3-5 days of neuro-induction, cells grown on LPEG film reshaped into polygonal
structures with long, slender cytoplasmatic processes that were mainly in contact with
adjacent cells. Representative light microscopy images of those neuron-like cells are given
in Figure 9a—c. While SCAPs on LPEG film gradually changed their morphology into
multipolar cells, similar to neurons, cells grown on PET showed minor changes in cell shape
(Figure 9d). The growth and morphology of cells during LPEG film neuro-induction were
recorded with a CytoSMART Lux 2 camera (CytoSmart Technologies BV, Eindhoven, the
Netherlands). A graphical representation of the time-dependent extension of cytoplasmic
processes (in um) is shown in Figure 9e, along with 6 htime frames that were extracted
from the video (Figure 9f). The real-time recording of cell morphology changes can be also
viewed (Video S1).
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Figure 9. (a—c) Representative light micrographs of SCAP grown on graphene film; (d) Representative
light micrograph of SCAP grown on PET; (e) Time-dependent changes in major axis length of SCAP
grown on graphene film; (f) Time-lapse light micrographs of SCAP grown on graphene film (dotted
white line represents cell extension pathway; white scale bar represents 100 um).
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3.3.2. Confocal Microscopy

Confocal microscopy showed the increased expression of three major neural cell
markers (NeuN, MAP2 and 3-3 tubulin) in SCAPs grown on graphene, compared to cells
grown on PET alone (control) (Figure 10).

@@ Grephene
Control

Graphene

Graphene Contol

Control Graphene Control

Figure 10. Mean fluorescence intensities and laser confocal micrographs of SCAP immunolabeled for
neuronal markers NeuN, MAP2 and 33-tubulin (nuclei are labeled with DAPI).

3.3.3. AFM of Neuron-like Cells

Atomic force microscopy (AFM) revealed subtle surface topography and morpho-
logical differences between stem cells grown on graphene film compared to those placed
over PET. SCAP grown on graphene were polygonal in shape (Figure 11a,b) with multiple
long-distance, slender cytoplasmatic projections emerging from cell body (Figure 11c,d)
compared to the less complex cell morphology of SCAP grown on PET (Figure 11e,f). Note
that AFM height panel also revealed numerous globular protrusions on the surface of the
cell bodies, which were more present on SCAP grown on graphene.

3.3.4. SEM of Neuron-like Cells

Scanning electron microscopy (SEM) of SCAP grown on graphene film depicted a
triangular cell body with long, slender projections (Figure 12a). The endings of these
projections were in close proximity or direct contact with cytoplasmatic projections of
surrounding cells forming a connected cell population (Figure 12b).

3.3.5. Gene Expression Analysis after LPEG Neuro-Induction

Gene expression analysis of key neural differentiation markers of SCAP grown on
LPEG film and control material is presented in Figure 13. All examined markers showed
higher expression in cells grown on graphene film compared to those on non-coated
PET (control).
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Figure 11. (a,b) Atomic force micrographs of SCAP grown on graphene film; (c,d) Long, slender
projections of SCAP cell membrane covering graphene film; (e,f) AFMs of control SCAP grown on
PET (control).
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Figure 12. SEM of SCAP grown on graphene film. (a) Triangular cell body with arising long-distance
membrane projections; (b) Slender cell projections synapsing with adjacent cell.
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Figure 13. Gene expression analyses of neuronal markers of SCAP grown on graphene film and
PET (control).
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4. Discussion

Many dental tissues are precious niches of mesenchymal stem cells that are becoming
increasingly appealing in regenerative medicine due to their easy accessibility and lack of
health risks for the donor. They are especially attractive for the field of neuro-regeneration
given that they originate from the neural crest and possess the capacity of differentiation
into diverse neural cell types. Apical papilla, the soft tissue at the apex of a not fully formed
tooth, contains a very high percentage of MSCs characterized by great plasticity, prolif-
eration rate and differentiation ability. Previous studies, based on immunophenotyping,
gene expression analyses, and patch clamping, have reported that SCAP grown under
neural inductive conditions could give rise to a variety of neural cell phenotypes, from
neuroprogenitors to mature neurons [10,34].

The number of novel materials used as cell carriers/scaffolds, tested for tissue engi-
neering application, is constantly increasing, especially in the field of neuro-repair and
regeneration. Great emphasis has been put on carbon nanostructured scaffolds that may
display suitable characteristics for neural differentiation [13,34,38,39]. Graphene nanomate-
rials are carbon crystal allotropes with a two-dimensional structure and, according to data
from the literature, have proven to be an excellent nanomaterial for neurodifferentiation
due to their unique organization, chemical stability, exceptional mechanical properties, bac-
tericidal potential, and biocompatibility [40,41]. This monoatomic layer of carbon shows the
ability to absorb growth factors and exhibits electrical conductivity, which is of particular
interest for the field of neuroscience. For instance, Lee et al. have convincingly demon-
strated, on a neuroblastoma cell line, that graphene substrate enhanced neurite outgrowth,
both in terms of length and number [42]. Rodrigues-Losada et al. also showed that different
graphene materials (graphene oxide and reduced derivatives) promoted the differentiation,
proliferation and maturation of dopaminergic neurons [43]. Importantly, graphene-based
materials also exert stimulating effect on cell differentiation towards neurons rather than
glial cells [44]. In neural regeneration, the induction of stem cell differentiation in favor
of neurons against glial cells is highly desirable, making graphene-based nanomaterials a
promising agent in neuroregenerative therapies. In addition to graphene oxide, the most
studied graphene nanomaterial, there are other forms of graphene that are non-toxic and
biocompatible, such as fully reduced or partially reduced graphene oxide, in the form of
powder or film, but their positive effects in terms of neurodifferentiation have not yet been
sufficiently investigated. This is the case with liquid-phase exfoliated graphene (LPEG)
film that was the subject of this research. In the present study, Raman spectroscopy has
been applied to verify the exfoliation of the pristine graphite powder, as bulk material,
into graphene nanosheets. Indeed, the obtained closed packed film was made of few-layer
graphene nanoflakes, as seen on SEM. The changes of shape and Raman shift of the 2D
peak at Raman spectra of graphene film are evident. A well-defined and sharp shape of
the 2D peak as well as a considerable shift to lower wave number compared to graphite
are characteristics of few-layer graphene nanoflakes [45]. Edge defects, as the dominant
type of defect in graphene film, are the result of the cavitation process at the liquid phase
exfoliated technique [46]. Generally, the Raman spectra as well as the average diameter of
the nanosheets and their height were in agreement with some previous reports [47].

In the present study, the mandatory characterization of SCAP cultures has shown a
highly predominant presence of cells displaying mesenchymal stem cell markers (between
91 and 99% of cells in the culture expressed a given mesenchymal marker). Concomitantly,
a negligible percentage of cells expressed hematopoietic stem cell markers (only 0.01% and
0.34% of cells expressed CD45 and CD34, respectively), as determined by flowcytometry,
pointing to the fact that cell cultures contained principally MSCs. Similarly, stemness
characterization by means of multiple lineages induction showed a successful osteo-,
chondro- and adipo-differentiation of SCAPs. The specific osteo-, chondro- and adipo
cellular phenotypes, assessed by appropriate staining procedures, were also confirmed by
high mRNA levels of selected markers (Runx2, Col2 and PPARG, for osteo-, chondro- and
adipo-differentiation, respectively). These findings are in general agreement with some



Nanomaterials 2022, 12, 3116

150f18

previous reports [48-50]. Interestingly, the three examined processes of differentiation
also appeared to be enhanced in the presence of graphene (especially chondrogenesis) but
more markers specific for osteo-, chondro- and adipo- lineages should be evaluated in
order to confirm that positive effect of graphene film. This is in line with some previous
studies. Namely, it was found that graphene derivatives exhibit great stimulatory effects
on adipogenesis and osteogenesis [19,51-53], pointing to the possibility of their use in
composite tissue cultures when more than one cell type is needed. This is of utmost
importance in regenerative medicine and dentistry when huge defects require complex
reconstructions. The classical example is the surgical removal of a portion of maxilla or
mandible in cases of oral cancer, resulting in massive bone, muscle and nerve defects, which
necessitate multiple tissues’ replacement.

Regarding neurogenesis, the present study showed for the first time that LPEG films
can have strong stimulatory effects on SCAPs’ induction towards neural lineage. Namely,
cells cultured in neurodifferentiation medium on graphene film demonstrated increased
levels of all neural markers (studied either by confocal microscopy or by quantitative PCR),
compared to cells grown in neurodifferentiation medium only. The levels of ngn-2, an
inhibitor of glial cell transcription factor, were very high, indicative of LPEG capacity to
suppress gliogenesis, thus favoring neurogenesis [54]. Gene expression of Nestin, a marker
of neuroepithelial and radial cells, was, as well, increased in cells grown on graphene film
compared to those seeded over the non-coated substrate. This protein has a crucial role
in assembling and disassembling intermediate filaments and thus maintains the structure
and regulates the growth of developing neural cells [55]. Similarly, a higher expression of
Mash-1, a marker of intermediate progenitors, was also noted. Mash-1, as one of the early
markers that determine cellular fate, is involved in the differentiation of neuroblasts, as
well as in cell protection mechanisms that prevent cell damage and apoptosis. BIII-tubulin,
a neuronal microtubule protein that is particularly expressed during neurogenesis and is
thought to be responsible for axon growth, was upregulated in the presence of graphene.
The level of MAP2, a cytoskeletal element essential for the binding and stabilization of
neuronal microtubules with major impact on neuronal development, was also higher in
cells grown on graphene film [56]. Another neural marker of mature neurons that has
never been found in glial cells—NeuN—was more expressed in SCAP stimulated by LPEG
compared to the control condition. This marker was detected, both in the cell nucleus and
perinuclear cytoplasm. Unlike the nuclear form, which binds to DNA and most probably
has an important role in the regulation of neurogenesis, the role of the cytoplasmatic variant
is still unclear. It is assumed that, together with Synapsin I, cytoplasmaticNeuN regulates
the mobility of synaptic vesicles and release of neurotransmitters, thus playing a potential
role in synaptogenesis and establishing neural circuits [57]. The last examined, final stage
marker of neural development, along with MAP2 and NeulN, was Neurofilament Medium
(NF-M) and, again, its expression was higher in cells grown on graphene. In agreement with
our findings, which showed positive effects of graphene film on neurogenesis, a previous
study that examined several types of graphene material established that the morphology of
the film and the species of graphene influenced the behavior of neurons, but generally film
species exhibited higher biocompatibility than powder materials [43]. Our results support
the central concept of graphene substrates’ beneficial effects on the neural induction of
several types of mesenchymal stem cells [58].

Future studies testing the neuroinductive capacity of graphene should use films with
different physico-chemical characteristics along with other stem cells of dental origin, such
as pulp or follicle cells, combined with different culture media. In addition, markers’
quantification at the protein level should rely on ELISA or Westernblot analyses as more
precise than immunofluorescence quantification, thus overcoming some limitations of
this study.
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5. Conclusions

The predisposition of SCAPs to differentiate toward neural lineages, as well as the
neuroinductive properties of graphene film, should warrant further studies of dental stem
cells in conjunction with this nanomaterial, with the aim of finding an optimal solution for
autologous neuroregenerative therapy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12183116/s1, Video S1: Time-dependent changes in morphol-
ogy of SCAP grown on LPEG film.
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Abstract We describe transparent and conductive films of liquid-phase exfoliated graphene
deposited with the Langmuir—Blodgett (LB) method. Graphene sheets (GS) were exfoliated
from graphite by ultrasonic treatment in N-Methyl-2-pyrrolidone (NMP) and N,
N-dimethylacetamide (DMA) solvents. For comparison, graphene sheets were also exfoli-
ated in a water solution of surfactants. We confirm a higher exfoliation rate for surfactant-
based processing compared to NMP and DMA. Furthermore, we demonstrate that our films
exfoliated in NMP and DMA, deposited with LB and annealed have a higher optical trans-
mittance and lower sheet resistance compared to films obtained with vacuum filtration, which
is a necessary step for GS exfoliated in water solutions. The structural, optical and electrical
properties of graphene layers were characterized with scanning electron microscopy, atomic
force microscopy, UV/VIS spectrophotometry and sheet resistance measurements. Our facile
and reproducible method results in high-quality transparent conductive films with potential
applications in flexible and printed electronics and coating technology.

Keywords Graphene - LPE - Langmuir—Blodgett assembly

1 Introduction

Transparent conductors are an essential part of many optical devices. Many of the thin
metallic or metal oxide films used as transparent conductors (Granqvist 2007) exhibit
nonuniform absorption across the visible spectrum (Phillips et al. 1994), or they are
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chemically unstable, or both (Scott et al. 1996; Schlatmann et al. 1996). The experimental
discovery of graphene (Novoselov et al. 2004) brought a new alternative to this field.
Graphene is a material with high optical transparency, large carrier mobility, good
chemical stability, and mechanical strength, making it an excellent choice for transparent
electrodes in various optoelectronic devices (Blake et al. 2008).

Although graphene is a natural choice for transparent conductive films (Bonaccorso
et al. 2010), the feasibility of its mass production is essential for applications. In order to
produce large quantities of graphene Blake et al. (Blake et al. 2008) and Hernandez et al.
(2008) developed a method of graphene production using solvent assisted exfoliation (or
liquid phase exfoliation, LPE) of bulk graphite, which is simpler and less costly than
chemical vapor deposition and returns a higher yield than mechanical exfoliation
(Novoselov et al. 2004, 2005). LPE allows the possibility to scale up the synthesis of
graphene making it economically available in a large amount, presenting a promising route
for large-scale production (Paton et al. 2014).

Numerous research efforts followed up to increase the concentration and quality of the
graphene flakes produced. One of the most promising synthesis routes for LPE graphene is
non-covalent exfoliation using solvents that have surface energy values comparable to that
of graphite (Hernandez et al. 2008). Typically ultrasound assists the separation of graphene
flakes from graphite powder in solvent. Exfoliation conditions such as the initial con-
centration of graphite powder, sonication time (Khan et al. 2010), solvent type (O’Neill
et al. 2011; Bourlinos et al. 2009; Hernandez et al. 2010; Lotya et al. 2009; Guardia et al.
2011), and possible filtration (Khan et al. 2011) were tuned in order to optimize the yield
and quality of graphene dispersions. These graphene dispersions can be used to form films
by various methods, for example spray coating (Blake et al. 2008), vacuum filtration
(Hernandez et al. 2008; Lotya et al. 2009) or Langmuir-Blodgett assembly (LBA) (Cote
2009; Kim et al. 2013; Li et al. 2008).

In this study, graphene sheets (GS) were exfoliated from graphite by ultrasonic treat-
ment in organic solvents with high boiling points, N-Methyl-2-pyrrolidone (NMP), N,
N-dimethylacetamide (DMA), and for comparison, in a water solution of surfactant,
sodium dodecylbenzenesulfonate (SDBS) and Pluronic P-123 (P-123). The graphene dis-
persions from NMP and DMA were used to form films by controlled deposition of few-
layer graphene using the Langmuir-Blodgett (LB) method on a water—air interface. We
confirm a higher exfoliation rate for surfactant-based processing, but demonstrate that our
films exfoliated in organic solvents with high boiling points and deposited with LB have a
higher optical transmittance and lower sheet resistance compared to films obtained with
vacuum filtration, which is a necessary step for GS exfoliated in water solutions. The
structural, optical and electrical properties of graphene layers were characterized with
scanning electron microscopy, atomic force microscopy, UV/VIS spectrophotometry and
sheet resistance measurements.

2 Experimental procedure

All chemicals used were purchased from Sigma Aldrich: graphite powder (product number
332461), N-Methyl-2-pyrrolidone (product number 328634), N, N-dimethylacetamide
(product number 38840), sodium dodecylbenzenesulfonate (product number 289957) and
Pluronic P-123 (product number 435467). The particular graphite powder product was
chosen for its large initial flake size, which should result in the largest possible graphene
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flakes after exfoliation. Stock solutions of SDBS and P-123 of different concentrations
were prepared in deionized water (resistivity 18 MQ) by stirring overnight. A range of
graphene dispersions were prepared. A typical sample was prepared by dispersing graphite
in the desired solvent using from 30 min to 14 h of sonication in a low power sonic bath.
The resulting dispersion was centrifuged for 60 min at 3000 rpm in order to reduce the
amount of unexfoliated graphite.

The graphene sheets exfoliated from graphite by ultrasonic treatment in NMP were used
to form films at a water—air interface. Beakers filled with deionized water, 10 mL volume,
were used for film formation. A 1.5-2 vol% of GS + NMP was added to the interface with
a continuous flow rate of 5-10 mL/s (Fig. la). This set of parameters provides enough
surface pressure for the film to be close-packed. After the film is formed, it is slowly
scooped onto the targeted substrate (Fig. 1b), as shown in our previous work (Matkovié
et al. 2016). PET and SiO,/Si were used as substrates. As it has been shown that annealing
decreases sheet resistance due to solvent evaporation (Hernandez et al. 2008; Lotya et al.
2009), some of these deposited films were annealed. Annealing was carried out in a tube
furnace at 250 °C in an argon atmosphere for 2 h.

For optical characterization, UV-VIS spectra were taken using a SUPER SCAN Varian
spectrophotometer with quartz cuvettes. The resistance of each sample was measured in a
two-point probe configuration, and the sheet resistance was obtained by including the
sample geometry factors. AFM measurements were taken with an atomic force micro-
scope, NTEGRA Spectra, in tapping mode. SiO,/Si was chosen as a substrate for AFM due
to its low surface roughness. The lateral profile of graphene flakes was analyzed with a
Tescan MIRA3 field-emission gun SEM.

3 Results and discussion

We optimized for high graphene concentration and large flake size, tuning exfoliation
conditions such as initial graphite concentration, sonication time and solvent type. The
Lambert—Beer law was applied to UV-VIS absorption spectra to find graphene concen-
tration. The concentration was estimated from the absorbance at 660 nm by using the
extinction coefficient of graphene (o = 13.90 mL mg~' m™") previously determined in
surfactant/water solutions (Hernandez et al. 2008; Lotya et al. 2009; Guardia et al. 2011)
and (o0 = 24.60 mL mg_l m~!) in NMP and DMA solutions (Hernandez et al. 2008).
Figure 2a depicts a higher final concentration for surfactant-based processing for all initial
concentrations of graphite powder, from 0.5 to 18 mg mL™'. The most commonly used
deposition technique for LPE GS is vacuum filtration. This is a necessary step for GS
exfoliated in water solutions. For GS films formed by evaporation of a high boiling point

Fig. 1 Schematic LBA GS film

i fa LBA GS fil e ®) b
representations of a m ~ on substrate
formation, b scooping of the film @ NMP +GS ¥

onto a targeted substrate ; ,
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solvent, one of the biggest problems is that graphene flakes aggregate during evaporation
(O’Neill et al. 2011) hindering fine control over the film thickness (Hernandez et al. 2008).
This can be avoided by depositing with LB, which allows reliable and reproducible
thickness control and prevents further agglomeration of graphene flakes during drying
(Kim et al. 2013). We chose the dispersion in NMP with the highest graphene concen-
tration (Fig. 2b) for experiments on LB films.

A single LB deposition resulted in films with an average thickness 3.3 nm, as measured
with AFM, indicating an average GS thickness of 10 layers (Fig. 3).

Figure 4 shows optical transmittance versus sheet resistance for varying number of LB
depositions on PET, compared to graphene film obtained with vacuum filtration of GS
exfoliated from the same graphite precursor using the same experimental procedure
(Hernandez et al. 2008; Lotya et al. 2009) before and after annealing. The highest trans-
parency for a single LB film deposition prior to annealing was found to be about 83 %,
which is between 20 and 40 % higher than the transmittance that can be accomplished with
vacuum-filtration. The sheet resistance of one LB film deposition is between 70 and
250 kQ/sq, 2-5 times lower than sheet resistance achieved with vacuum filtration without
annealing. Increasing the graphene film thickness with additional LB depositions led to
consistent increases in conductivity, but a decrease in transparency. Our graphene films for
three LB depositions prior to annealing have comparable sheet resistance but higher optical
transmittance compared to vacuum-filtered films after annealing.

The electrical conductivity is affected by the size and connectivity of the flakes as well
as the thickness of the films. Our average GS diameter was is 120 nm, as measured with
SEM (Fig. 5). SEM also revealed the presence of pinholes between flakes for a single LB
deposition, which probably results in parasitic sheet resistance (Fig. 5a). In order to
remove the residual solvent between the overlapping flakes, which may affect transport, we
employed thermal annealing. Annealing does not repair the holes and other irreversible
defects (Fig. 5b), but it can remove residual solvents, improving the coupling between
graphene flakes and hence decreasing sheet resistance. For a single LB deposition,
annealing reduced sheet resistance by about six times, without considerably decreasing
transparency (Fig. 4). The sheet resistance of a singly deposited film after annealing was
found to be between 10 and 20 k€)/sq, a significant improvement over other published data.
After annealing we performed a second LB deposition and achieved sheet resistance of

—_
&
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= NMP x 0.5 mg/ml )
= 30044 P-123 ~ 400l | 27 mg/ml %
£ = SDBS E s 12 mg/ml g
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S 100 = -
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Fig. 2 Concentration of dispersed graphene: a in different solutions for different initial graphite
concentration and sonication time of 5 h, b in NMP for different sonication time and different initial
graphite concentration
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Fig. 3 a AFM image of a LB graphene film on a SiO,/Si substrate, b an LB GS film/substrate height
histogram fitted with a log-normal curve
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Fig. 4 Optical transmittance versus sheet resistance for varying number of LB deposition of graphene
sheets on PET exfoliated in NMP before (red) and after annealing (black), compared to graphene films
obtained with vacuum filtration in the same solvent (blue) (Hernandez et al. 2008) and graphene films
obtained with vacuum filtration in surfactant/water solutions (green) (Lotya et al. 2009) before and after
annealing. (Color figure online)

Fig. 5 SEM images of: a singly deposited LB film on a glass substrate, b the same film after annealing,
¢ two LB depositions with an annealing step in between
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3 kQ/sq and a transparency of more than 70 %. Decreased resistance is the result of
reduced density of pinholes (Fig. 5c) as well as increased film thickness.

4 Conclusion

In summary, we have shown that Langmuir—Blodgett assembly of multi-layer graphene
sheets produced from liquid phase exfoliation of graphite powder in solvents can be used to
fabricate transparent and conductive films. The sheet resistance of deposited LBA GS
layers was found to be between 15 and 250 k€)/sq, with transmittance between 60 and
85 %, depending on the number of deposited LBA graphene layers. The conductivity of
these LBA films can be further increased by about six times with annealing, without
considerably decreasing transparency. Optoelectronic properties of these films are much
better compared to graphene films obtained with vacuum filtration of GS exfoliated with
the same experimental procedure, which is the most commonly used deposition technique
for LPE GS. Ours is a facile, reproducible and low-cost technique for transparent con-
ductive films with potential applications in coating technology.
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Liquid phase exfoliation of graphite presents a promising route for large-scale graphene
production [1]. We describe basic advantages and disadvantages of the controlled
deposition of few-layer graphene using the Langmuir-Blodgett (LB) method, which is
compatible with usage in transparent conductors [2,3]. The graphene sheets (GS) were
exfoliated from graphite by ultrasonic treatment in N-Methyl-2-pyrrolidone (NMP) and
dimethylacetamide (DMA) solvents. For comparison, graphene sheets were aso
exfoliated in a water solution of surfactants. We confirm a higher exfoliation rate for
surfactant-based processing compared to NMP and DMA. Furthermore, we demonstrate
that our films exfoliated in NMP and DMA and deposited with LB have a higher optica
transmittance compared to films obtained with vacuum filtration, which is a necessary
step for GS exfoliated in water solutions [4]. The structural, optica and eectrical
properties of graphene layers were characterized with scanning electron micrascopy,
atomic force microscopy, €llipsometry, UV/VIS spectrophotometry and sheet resistance
measurements. Our facile and reproducible method results in high-quality transparent
conductive films with potential applications in flexible and printed electronics and
coating technology.
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Ab-initio study of optical properties of MoS2 and WSzcompared to spectroscopic
results of liquid phase exfoliated nanoflakes
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MoS; and WS; are part of the family of transition metal dichalcogenide crystals (TMDC). TMDCs have
emerged as a new class of semiconductors that display distinctive properties at a thickness of one and few
layers [1-3]. They have also attracted much interest for applications in optoelectronics as detectors,
photovoltaic devices and light emitters [4-8].

Spectroscopic techniques are among the most important methods for research in the field of nanoscience and
nanotechnologies. Parallel with the development of experimental methods, computational science becomes a
very valuable tool in pursuit for new low-dimensional materials and their characterization. Employing high-
end modeling codes, it is possible to simulate from first principles more than a few spectroscopic techniques.
Using approaches based on density functional theory (DFT), including density functional perturbation theory,
time-dependent DFT and many-body perturbation theory, implemented in the Quantum Espresso software
package [9], we study optical properties of low-dimensional materials, MoS; and WS..

We calculate the dielectric function within the framework of the random-phase approximation (RPA) [10]
based on DFT ground-state calculations, starting from eigenvectors and eigenvalues all calculated with
Quantum Espresso. The final goal of our theoretical work is a comparison to corresponding experimental data.
We compare our computational results with optical measurements on MoS, and WSznanoflakes. MoS; and
WS, were exfoliated by ultrasonic treatment in low-boiling point organic solvent [11-15] and characterized
using UV/VIS spectrophotometry. We use our results for analysis of optical properties of liquid phase
exfoliated MoS, and WS, nanoflakes, as a proven method for analysis of basic optical properties of 2D
materials [11].

This work is supported by the Serbian MPNTR through Project Ol 171005 and by Qatar National Research
Foundation through Projects NPRP 7-665-1-12
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Liquid-phase Exfoliation of Graphene and
Chemical Doping of Langmuir-Blodgett
Assembled Graphene Films

lvana R. Milosevié?, Borislav Vasié¢?, Aleksandar Matkovié®, Jasna Vujin?
and Rados Gaji¢?

alaboratory for Graphene, Other 2D Materials and Ordered Nanostructures of Center for Solid State
Physics and New Materials, Institute of Physics, University of Belgrade, Serbia
BInstitute of Physics, Montanuniversitdt Leoben, Austria

Abstract. In current optoelectronic devices transparent conductive (TC) electrodes are widely
used [1]. Graphene films as new TC material can be used to overcome shortcomings of the exited
TC electrodes especially using graphene films as an active electrode. They offer advantages such
as higher transparency over a broad range of light wavelengths, higher flexibility, excellent
electrical conductivity and chemical stability. Using graphene films as an active electrode, band-
structure alignment at the interface can be achieved with an appropriate work function (WF).
Therefore, appropriate WF can enhance the charge injection and improve device performances.
Chemical doping is an effective method for tuning of the WF by charge transfer between the
graphene sheet films and dopants [2, 3]. Liquid-phase exfoliation (LPE) via sonication was the
method for the preparation of graphene sheet (GS) dispersion. The films were self-assembled from
LPE few-layer GS dispersion by Langmuir-Blodgett (LBA) technique at the water-air interface.
Chemical doping of the films was performed in two ways. In the first approach, chemical doping
with nitric acid is introduced after the film was formed. Fivefold improvement of sheet
conductivity was achieved, with no change in transparency [4]. In the second approach, chemical
doping of the film was happening at the moment of its formation. To achieve doping, metal
standard solutions were introduced instead of water. Au based salts increase the WF of the films
(p-doping), while Li based salts decrease it (n-doping). A span of 0.7 eV in both directions was
obtained. Formation of the graphene films and both procedures of their chemical doping are very
simple, low-cost and extend their potential use in low-cost optoelectronic applications as well as
using them as an active electrode.
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Chemical doping of Langmuir-Blodgett assembled few-layer
graphene films with Au and Li salts aimed for optoelectronic
applications

1. R. Milogevié!, B. Vasi¢!, A. Matkovic?, J. Vujin!, S. Askrabicé3, C. Teichert? and R. Gajic!
UL aboratory for Graphene, other 2D materials and Ordered Nanostructures of Center for Solid State Physics and New
Materials, Institute of Physics, University of Belgrade, Belgrade, Serbia
2Institute of Physics, Montanuniversitit 1 eoben, 1.eoben, Austria
3Nanostructured Matter Laboratory of Center for Solid State Physics and New Materials,
Institute of Physics, University of Belgrade, Belgrade, Serbia
e-mail: novovic@ipb.ac.rs

For mass production of graphene, simple and low-cost methods are needed especially in the cases
where high-quality films are not crucial for the desired purposes. Thus, liquid-phase exfoliation (LPE)
is a perspective way of obtaining stable dispersion of few-layer graphene sheets (GS) in the solvent
[1]. A promising pathway to achieve high degree of ordering of graphene sheets prepared via LPE-
process is to utilize Langmuir-Blodgett assembly (LBA) technique. Thin-films are self-assembled from
LPE dispersion by LBA technique at the water-air interface. LBA method is a suitable method for
production of large-scale, transparent, thin solution-processed graphene films |2, 3]. Chemical doping
of graphene films allows to tune its work function (WF) and therefore gives LPE GS films the ability
to serve two different roles in electronic and optoelectronic applications, both as an anode and as a
cathode.

Here, we demonstrate the method for the forming and doping of LPE graphene sheet films (LPE
GS) in one-step by metal standard solutions. Doping of the graphene film occurs at the moment of its
formation from the LPE graphene dispersion by LBA method at the air-metal standard solution
interface. n-doping is achieved by Li standard solutions (LiCl, LiNOs3, Li2CO3), while Au standard
solution (H(AuCly)) leads to p-doping. WF of the film was decreased with Li based salts, while Au
based salts increase the WF of the film. The maximal doping in both directions allow a significant
range of around 0.7 eV for the WF modulaton. The results were obtained for 0.1 mol/dm3
concentration of dopants. Roughness of the LPE GS films does not change by the doping, except
that doped films contain occasional agglomerates. FT-IR measurements point out that the charge
transfer process is enabled by physical adsorption of the metal salts and that the graphene basal planes
stay chemically unchanged by metal doping. No significant shifts of any characteristic Raman peaks of
graphene were detected after chemical doping. Calculated values of the intensity ratio between D and
D’ peak indicate that the edges are the dominant type of defects in the undoped and metal salt doped
LPE GS films. Electrical properties of the films were significantly influenced by changing the dopant
(Au or Li). A significant suppression of the field-effect mobility and the increase of the sheet
resistivity were observed in the case of the Li standard solution doping of the film. This indicates that
adsorbed Li anions act as scattering centers for the charges. Lithium nitrate provides the largest work
function modulation (by 400 meV) and the least influence on the sheet resistance of the film.
Therefore, it was selected as the best choice for n-type doping.

Since, the proposed one-step method for chemical doping of graphene films allows to tune WF in a
large range, it extends the potential use of these materials in low-cost optoelectronic applications, as in
low-power lighting, sensors, transparent heating, and de-icing applications.
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Fe-nanoparticle-modified Langmuir-Blodgett
Graphene Films for Pb(l1) Water Purification

Ivana R. Milosevié?, Jasna Vujin?, Muhammad Zubair Khan®, Thomas
Griesser®, Christian Teichert® and Tijana Tomagevié¢-I1i¢?

aInstitute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
PChair of Physics, Montanuniversitit Leoben, Leoben, Austria
CChair of Chemistry of Polymeric Materials, Montanuniversitit Leoben, 8700 Leoben, Austria

Abstract. The surface of nonmagnetic Langmuir-Blodgett self-assembled (LBSA) graphene films
is modified through structure engineering by chemical functionalization with Fe nanoparticles in
order to induce local magnetic domains and investigate the application of such films for heavy
metal water purification. We prepared and modified our films by single-step Langmuir-Blodgett
procedure [1]. The influence of Fe-based magnetic nanoparticles on the structure and magnetic
properties of LBSA films was examined by Raman spectroscopy, X-ray photoelectron
spectroscopy (XPS), and Magnetic Force Microscopy (MFM). Raman and XPS confirmed the
surface modification of the graphene films. Compared to an unmodified graphene film, which has
no detectable magnetic response, MFM phase images show a strong phase shift difference
compared to the substrate (~0.2°), indicating the presence of a local magnetic moment. In addition,
we examined the use of magnetized LBSA graphene films for the adsorption of Pb(ll) ions by
immersing the films into Pb(ll) solution. Results from XPS measurements depict the ability of
modified films to detect and adsorb Ph(1l) ions from water-based solutions. The development of a
new generation of magnetic self-assembled 2D material films for heavy metal sensing and water
purification that can overcome the deficiencies such as low purification efficiency, short-term
stability, and high cost is of great interest for various applications in green technology.
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FIGURE 1. A) Fabrication of Fe-modified LBSA graphene films, B) AFM topography, MFM phase
image, and representative MFM phase shift profile of Fe-modified LBSA films, C) XPS Fe2p spectra of
modified films before and after interaction with Pb(l1) ions, and Pb4f spectra of unmodified and modified
films after interaction with Pb(ll) ions.
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EPITAXY OF HIGHLY ORDERED CONJUGATED ORGANIC SEMICONDUCTOR
CRYSTALLITE NETWORKS ON GRAPHENE BASED DEVICES

A. Matkovié®, M. Kratzer?, J. Genser?, B. Kaufmann?, J. Vujin®, B. Vasi¢®, R.
Gaiji¢®, and C. Teichert®

%Institute of Physics, Montanuniversitat Leoben, Franz Josef Strafe 18, 8700
Leoben, Austria
®Center for Solid State Physics and New Materials, Institute of Physics, University of
Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

We focus on the hot wall epitaxial growth of sub-monolayer films of a rod-like
conjugated organic semiconductor (OSC), para-hexaphenyl (C36H26, 6P) [1-3], on
the surface of graphene based devices. For this purpose, mechanically exfoliated
flakes supported by SiO,/Si substrates are used and contacted in a back-gated two-
point probe field effect device configuration.

Charge transfer and doping of graphene channel by OSCs are investigated in
situ. Atomic force microscopy (AFM) is used to characterize OSC crystallite
morphology (Fig.1a), and Kelvin probe force microcopy (KPFM) is used to
investigate changes in the work
functions of graphene and 6P
crystallites with applied external
electric fields (Fig.1b). Furthermore, we
show how residues from the
lithography and annealing steps affect
morphology of the grown OSC thin
films.

Van der Waals nature of the
interface between OSCs and graphene
allows for the growth of crystallites that
are several tens of micrometers large,
thus minimizing the number of OSC  fig 1 (a) and (b) respectively show AFM and

grain boundaries within the device KPFM images of the same 6P/graphene channel
channel, and allowing investigations of area, with grounded back-gate electrode (scale

the intrinsic properties of the OSCs. bars 5 pym).

Keywords: hybrid organic/inorganic van der Waals interfaces, charge transfer OSC/graphene, KPFM
of OSC crystallites.
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Effects of water on thin films
consisting of biomolecules and 2D-materials

Jasna Vujin!, Weixin Huang?, Sylwia Ptasinska3, Radmila Panajotovic!

1 Institute of Physics, Belgrade, Serbia
2 Stanford University, Stanford, United States
3 University of Notre Dame, South Bend, United States

One of the hottest research topics in the field of 2D-materials is the one concerning their
heterostructures with biomolecules. They can serve as scaffolds for growing cells, or bio-chemical
sensors, for example. The most popular 2D-material, graphene, and transition metal
dichalogenides(WS:) in combination with various biomolecules (lipids, biopolymers, amino acid,
protein...) attracted considerable attention as active components of organic electronic devices. A
relatively simple and cheap method of producing thin graphene films is from the liquid phase. The
ever present question of how water/humidity from air or biomolecule aqueous solution affects the
properties of these heterostructures is very difficult to answer because of the complicated interplay
between these components.

In our experiment, we first exposed bare graphene and WS. thin films to water in the controlled
environment. Then we did the same experiment with the lipid layer (DPPC dipalmitoyl-sn-glycero-
phosphotidilcholine), by collecting the XPS (X-ray Photo-Electron) spectra. In order to examine
electrical properties of such heterostructures in ambient condition, we measured the current-voltage
response after the deposition of aqueous solution of amino acids, protein and cell culture. In
addition, we collected the information about the topography of our heterostructures and Raman.
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ELECTRON-BEAM DAMAGE FROM SEM
TO LIPID-(GRAPHENE, MoS2, WS2) HETEROSTRUCTURES

Radmila Panajotovic, Jasna Vujin, Djordje Jovanovic

Institute of Physics Belgrade, Belgrade, Serbia

Interfaces of lipids with its surroundings are important in defining the physical properties of
lipid films supported as mono- bi- or multilayers on solid surfaces [1]. These assemblies are
usually engineered by means of chemical or mechanical processing, which allow them to be
tailored to a specific application, either as a coating of a nano-particle for drug delivery or a
multilayer heterostructure for biochemical sensing. Among most convenient materials used as
solid support for lipid heterostructures are the 2D-materials, such as graphene and transition-
metal dichalcogenides that may be used as a mechanical scaffold or a base for an electrical
biochemical sensor nano-device. As these devices may often be required to function in an
environment where radiation from space, nuclear reactors, or scientific instruments may interfere
with their operation, it is important to asses the potential damage that radiation causes to all the
materials comprising these devices.

The imaging technique that is routinely used in scientific research, Scanning Electron
Microscopy (SEM) employs an intense high-energy electron beam that is participating in elastic
and inelastic collisions within the thin lipid films and the solid substrate that supports them.
Recent studies of electron damage to WS2 nanosheets [2] show that the electron beam can cause
considerable morphological and structural changes in these materials. Also, a previous study [3]
on the damage of low-energy electrons on DPPC monolayer films supported on silicon
demonstrated that even sub-keV electrons can degrade the lipids.

In order to study an overall effect of keV-energy focused electron beams from SEM on our
heterostructures consisting of DPPC, DPHyPC, sphingomyelin and cholesterol supported on
graphene, MoS2 and WS2 thin films, we performed the AFM, KPFM, FT-IR and Raman
spectroscopy measurements.
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Application of 2D-materials in
building biomolecular heterostructures

Jasna Vujin?!, Martina Gilié¢z, Radmila Panajotovié!

1 Laboratory for Graphene, Other 2D-Materials and Ordered Nanostructures, Institute of Physics, Belgrade,
Serbia
2 Laboratory for Electronic Materials, Institute of Physics, Belgrade, Serbia

A quest for non-toxic, easily produced and inexpensive materials with satisfactory chemical
(inertness, resistance to degradation) and physical (mechanical robustness, flexibility) properties,
that can be used in combination with biological molecules and cells, was greatly accomplished by the
discovery of atomically thin 2D-materials. Their exceptional mechanical and tunable electrical
properties offer an excellent base for building various types of bio-chemical sensors, growth of
self-assembled bio-membranes, and scaffolds for biological tissue engineering. As the most popular
of these materials, graphene has become widely used, in various forms — as nanotubes, nanoflakes,
nanopaticles, etc. Others, like MoS. and WS., have gained their popularity as active elements of
biochemical sensors, mostly due to their tunable (semi) conductivity after physi- or chemisorption on
their surface. In both conductive (graphene) and semi-conductive (MoS. and WS-) thin films of
2D-materials it is necessary to assess their surface morphology, and the chemical and physical
changes in combination with water, and biological molecules, such as aminoacids, proteins, lipids,
etc. In order to do this, we used several experimental methods — AFM, KPFM Raman and FT-IR
spectroscopy. We used graphene and WS2 thin films for deposition of two different amino
acids — cystein, arginine — and sphyngomyelin — playing an important role in neuro-signalling and in
the structure of neuron’s axon sheath.
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PHYSICO-CHEMICAL CHARACTERIZATION OF LIPID-2D-MATERIALS
SELF-ASSEMBLY FOR BIOSENSORS

Jasna Vujin, Djordje Jovanovic, Radmila Panajotovic

Institute of Physics Belgrade, Belgrade, Serbia

Solid supported phospholipid-bilayer technology [1] is one of the major avenues for
development of sensors and nanodevices, especially in the fields of proteomics. Since the drug
targeting is usually aimed to the cell membrane associated proteins, building a well-tailored and
sensitive biosensor is of utmost value [2]. On the other hand, modern research in material science
explores the possibilities of materials suitable for building small, sensitive, and robust sensors.
2D-materials, such as graphene, MoS2, and WS2, in combination with lipid mono- and
multilayers present an excellent base for building organic field-effect transistors (oFET), whose
properties are able to meet these requirements [1,3,4]. In order to accomplish a satisfactory
design of such devices, it is necessary to produce thin (ideally homogenous, defect-free) films of
graphene and other 2D-materials and establish their physico-chemical properties, alone and in
combination with various biomolecular assemblies, such as lipids, cholesterol and biopolymers.
In our study we have obtained composite thin films of these materials (from a few nm to several
tens of nm) and explored the elecrostatic properties, structural topography, and chemical bonds
of DPPC, DPHyPC, sphingomyelin and cholesterol supported on graphene, MoS2 and WS2 thin
films. The AFM, KPFM, FT-IR and Raman spectroscopy have been employed for that purpose.
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MODIFICATIONS OF LIPID/2D-MATERIAL
HETEROSTRUCTURES BY SEM

Radmila Panajotovi¢ and Jasna Vujin

Institute of Phzsics, University of Belgrade, Pregrevica 118, 11080 Belgrade,
Serbia

Abstract. The use of 2D-materials as solid support for lipids in the organic Field-
Effect Transistors has been in expansion in recent years, particularly for their
increased sensitivity to detecting small molecular concentrations. Molecular
binding and charge transfer in these devices is governed by the chemical and
electrical properties of the interface, as well as by its homogeneity and roughness.
In our experiment we used the Scanning Electron Microscope (SEM) to modify
the surface of thin lipid/graphene and lipid/WS,; films. We showed that in these
heterostructerd film surface potential modifications can be achieved without
significant morphological changes in the interface.

1. BACKGROUND

Lipid films in the form of mono-, bi- or multipliers supported on solid
surfaces [1] are one of the center-points in the fields of biotechnology, organic
material science and Bioelectronics. These assemblies are usually engineered
through chemical or mechanical processing, which allow them to be tailored to a
specific application, such as biochemical sensing. Recently, the use of 2D-
materials as solid support for lipid heterostructures, particularly graphene and
transition metal dichalcogenides, has been suggested, especially as a component
of organic FET (Field-Effect Transistor) devices [1, 2]. In terms of sensing
properties, it is crucial to these devices to possess the largest possible binding
surface; hence the need for a porous substrate that will provide for this feature. To
this end, thin films of graphene and other 2D-material substrates produced from
liquid exfoliation seem to be good candidates because of their structure consisting
of multilayered flakes with edges exposing dangling bonds. At the same time,
such films allow the formation of uniform and homogenous lipid films as a stable
and versatile platform for molecular binding in FET sensing devices.

Electrical properties of these heterostructures are crucial for their
operation. As the pure lipid layer is likely to have high resistivity (of the order of
MQ) and is supported either on a conductive (graphene) or semiconductive (WS;)
substrate, our idea was to use the source of electrons that is routinely used in
imaging, the Scanning Electron Microscope (SEM), to modify electric properties
of the surface of such heterostructures. Since the SEM employs an intense high-
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Jlatym: 26.09.2023.
bpoj:1276
SANMMUCHMAUK

ca jaBHe on0paHe NOKTOPCKE MMCEpTalije KaHIujgara macT ¢us.-xem. Jacme Byjum,
onmpxkane 26.09.2023. rogume, y OnOnmmoteny YHHUBEP3UTET Yy beorpany — ®axynrera 3a
dusnuxy xemujy, Crynentcku Tpr 12-16 y beorpany.

Komucujy 3a onbpary HMeHoBaHy Ha ceanumu Hacrapro-naydnor Behia QakynTera 3a
dm3muxy xemmjy oxpxkanoj 07.09.2023. rommme omtykoM HacTaBHO-HayqHOT Beha
@axynrera 6poj 1194 ox 07.09.2023. roaute, YHHUIH CY:

1) np Hemama I'apuiios, Baupenau mpopecop, DakynreT 3a GU3HIKy XEMUJjy,
2) np Ana Jlo6poTa, norent, GakynTeT 3a PU3HIKY XEMH]Y,
3) np MBana Munomesuh, Hay9HH capagHuK, HCTHTYT 32 QU3HKY.

IIpe oTBapama jaBHOT cactanka, Komucuja je 3a mpejicenauka usadpana

Jp Fik L dBpaTh =Ll o

IMpencemuuk Kommucuje je y 15:30 yacoBa OTBOPHMO CacTaHAaK 3a jaBHY OJ0paHy
JOKTOpPCKE JHcepTanuje Kanauaarta MacT ¢m3.-xem. Jacue ByjuH, cTygeHTa JOKTOPCKHX
cTyddja, moA Ha3suBOM , DU3MYKOXEMHjCKa KApPaKTepU3alHja XeTepoCTPYKTypa
JABOAMMEH3NOHATHHX MaTepHjaia (rpaden, BoadpaM-gucyadua) ©u  OHOTOMKHX
MoJteKy.ia (IHCTerH, 1,2 TnnaIMuTonI-sn-raunepo-3-gocdoxonnn)®.

[Tomro je mpencenuuk Komucuje mpoumtao Ouorpadcke mopaTke O KaHIUIATy H
TOATKE O FErOBOM JOCAIAlIIHeM Pajly, II03Ba0 je KaHauaaTa ia U3Hece pe3ysIrare J0 KOjux
j€ JI0Iao y CBOjOj MTOKTOPCKO] AUCEPTAIH]H.

ITo 3aBpIIEHOM H3NAramy KaHunaTa, wiaHoBU Kommcuje Cy MOCTABHIM IUTAEA
KaHJMaTy ¥ JaIi KPUTHYKKA OCBPT HA JTOKTOPCKY IHCEPTALH]y.

Hakon mro je xammumar macT ¢us.-xem. JacHa ByjuH, CTyJeHT HOKTOPCKHX
CTYIHWja, ONTOBOPHO HA IOCTAB/bEHA MHUTAaha y BE3H ca JOKTOPCKOM JIMCEPTALM]OM,
Komucuja ce moBykia paau Behama.

ITocne Behama, mpenceanuk Komwmcuje je jaBHO CAONINTHO JETHOITACHY OJUIYKY
Komucuje, nmaje kammuaar macT ¢us.-xem. Jacua ByjuH, cTyaeHT JOKTOPCKHX CTyauja,
0 1 6 p a H M 0 JOKTOPCKY JHMCepTanyjy, IOX Ha3uBOM ,DHIHYKOXEMUjCKA
KAPAKTEPH3ALKja XeTePOCTPYKTYpa [ABOJUMEH3HOHAJIHMX MaTepujasa (rpades,
poadpam-qucyndua) W OHOJOMKUX MoJeKyaa (mucremn, 1,2 JUIAIMHTOWII-SH-
riuepo-3-gpocdoxoaun)* ¥ THME CTeKao IpaBo Ja Oyle IPOMOBHCAH y HAayYHU CTEHEH
»AOKTOP HAayKa - pu3HYKOXeMujcKe HayKe”.

Cacranak 3a jaBHY 0J10paHy j€ 3aBpIIEH y 16.50 JacoBa.

Komucuja: IIpencennux Komucuje:
Siﬂl A Lov  New A @nfb ’ﬁ %/

@%wwﬁ j %éﬁ%




Yuusep3uter y beorpany
daxynTeT 3a GU3HIKY XEMH]JY
Bpoj urnmexca: 2014/0308
bpoj: 12023119

Hatym: 29.09.2023.

Ha ocnoBy uiana 29. 3aKOHa O ONIUTEM YIIPABHOM MMOCTYIIKY (,Cn. rmacuuk PC”, 6p.18/2016 u
95/2018), nomyHu m03Boe 3a pag 6poj 612-00-00730/2021-06 on 13.05.2021. roguHe Kojy je M3Aajo
MEHHCTAPCTBO TIPOCBETE, HAayKe ¥ TEXHOJOIIKOT pasBoja Pemybnuke Cpbmje u cmyxbOeme
eBUCHIMje, YHuBep3uteT y beorpamy - @akynreT 3a Qu3MuKy XeMHjy, H3zaje

YBEPEILE

Jacna Byjun

ume jegnoi poguiiena Iopgana, JMBI' 0708984715342, poliena 07.08.1984. iogune, Beoipag,
omwitiuna 36esgapa, Peity6nuxa Cpbuja, yiucana wixoncke 201 4/15. iogune, gana 26.09.2023. iogune
3a8puUNa je goKiliopcKe akagemcke ciiyguje Ha citiygujckom tpoipamy Qusuuka xemuja, y wipajarey
og iwpu Togune, obuma 180 (ciiio ocamgeceinr) ECIIb 6ogosa, ca ipocesrom oyernom 9,00 (geseini u
00/100).

Ha 0CHOBY HaBeIEHOT H37aje jOj CE OBO YBEPCHE O CTEIEHOM BHCOKOM o0pa3oBamy U HAyYHOM
Ha3MBY JOKTOP HaykKa - QU3HYKOXEMHjCKe HayKe.

ﬂ%/%/%

F erO(IJ IIp Mmpocnas Kysmanosuh



Penyomnuka CpOuja
YHusep3surer y beorpany
QdaxynTer 32 GU3NUKY XEMU]Y
Bbpoj unnexca: 2014/0308
JHatym: 29.09.2023.

Ha ocHoBy umana 29. 3akoHa 0 ommTeM yrpaBHOM MOCTYTKY (,,Cit. rmacHuk PC”, 6p.18/2016 1 95/2018) u ciryxOene
eBUICHITH]E

YBEPEIHE O ITOJIO’KEHUM UCITUTUMA

Jacna Byjun, nme jemHor poamtespa ['opmana, IMBIT 0708984715342, pohena 07.08.1984. romune, Beorpan,
ommTHHA 3Be3napa, Pemybmmka CpOuja, ynmcana mkosicke 2014/15. rogmae, mana 26.09.2023. rogmae 3aBpImmia je
JIOKTOPCKE aKaZeMCKe CTyIHje Ha CTYAMjCKOM mporpamy Pu3muka XeMmuja, y Tpajamy o TpHu roxuHe, obmma 180 (cto
ocamzecer) ECIIb 6onoBa, 1okTop Hayka - (hu3nukoxeMujcke Hayke. TOKOM CTyIuja MOJIOXKHIIA je ucnuTe u3 cienehux

IpeaMeTa:
P.op. MIudpa Ha3zus npengmera Onena ECIIb | ®onjg yacoBa** Jatym
1. |21JIC1002 Hoge ¢usnukoxemujcke MeTose 7 (cemam) 10 |1:(90+0+45) 03.06.2016.*
2. |2171C1001 HMCZT;“;?;::;;T;T"“ y fusmKoxemujcKim 9 (1eBer) 10 [1:(90+0+45) 24.09.2015.*
3. [1ac3uIo ilﬁlgic;::gﬂ:;e METOJIe Y MEAUIIMHH ¥ MEUIIHCKIM 9 (neper) 10 [1:(75+0+30) 26.12.2017.*
4. [211C3108 [pumemeHa poroxemuja 10 (nmecer) 10 |IL:(75+0+30) 29.09.2017.*
5. |21AC3U130 I'paden 9 (meser) 10 |II:(75+0+30) 16.01.2023.*
6. |21AC3129 Du3ryka XeMrja HaHOMaTepujana 9 (neBer) 10 |II:(75+0+30) 16.01.2023.*
7. |211C4001 CrienujarHu Kype 10 (mecer) 12 |[IV:(0+0+180) 29.01.2019.*
* - eKBUBAJICHTUPAH/TIPU3HAT HCIIHT.
** - Doup yacoBa je y hopmary (npenaBama+BexOe+0cTaio).
Opnpahene obasese:

P.op. | Ha3us o0aBe3e ECIIb
1. W3pana noxropcke auceprauuje 1 10
2. Wzpana nokropcke aucepranuje 2 10
3. Wspana nokropcke aucepranyje 3 10
4. W3pana nokropcke aucepranuje 4 18
5. W3zpana nokropcke aucepranyje 5 25
6. W3pana nokropcke aucepranuje 6 20
7. Hayuno-ucrpaxusauku paj 1 3
8. Hayuno-uctpaxxuBauku pan 2 3

Ykynso octBapero 180 ECIIb.

Omrra yenex: 9,00 (zeBer 1 00/100) , mo roguuama cryauja (8,83, 10,00, /).

JIoKTOpCKa ucepTaiyja moj HacioBoM: "MU3MIKOXEMH]jCKa KapaKkTepu3alnja XeTepOoCTPYKTypa ABOTHMEH3HOHATHAX
MaTepHjana (rpadeH, BoadpaM-Iucyadun) U OHOIOMIKUX MOJIeKya (IHUCTEeHH, 1,2 TUMaIMHUTOMI-SN-TIIHIEPO-3-
dbochoxonun)" ondpamena je gana 26.09.2023. roaune.

+Opnantheno muie pakynrera
)
, /&)
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