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AFFILIATIONS

1Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
2Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg,

26111 Oldenburg, Germany
3Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
4Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
5Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade,

Pregrevica 118, 11080 Belgrade, Serbia

Note: This paper is part of the Focus Issue on Nonlinear dynamics, synchronization and networks: Dedicated to Juergen Kurths’

70th birthday.
a)Electronic mail: mecontrl@gmx.de
b)Electronic mail: philipp.hoevel@uni-saarland.de
c)Author to whom correspondence should be addressed: franovic@ipb.ac.rs

ABSTRACT

The activity in the brain cortex remarkably shows a simultaneous presence of robust collective oscillations and neuronal avalanches, where
intermittent bursts of pseudo-synchronous spiking are interspersed with long periods of quiescence. The mechanisms allowing for such
coexistence are still a matter of an intensive debate. Here, we demonstrate that avalanche activity patterns can emerge in a rather simple
model of an array of diffusively coupled neural oscillators with multiple timescale local dynamics in the vicinity of a canard transition. The
avalanches coexist with the fully synchronous state where the units perform relaxation oscillations. We show that the mechanism behind the
avalanches is based on an inhibitory effect of interactions, which may quench the spiking of units due to an interplay with the maximal canard.
The avalanche activity bears certain heralds of criticality, including scale-invariant distributions of event sizes. Furthermore, the system shows
increased sensitivity to perturbations, manifested as critical slowing down and reduced resilience.
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Cascading dynamics is a prominent feature of many complex
systems, from information or disease spreading in social inter-
actions to propagation of neuronal activity. Since the discovery
of neuronal avalanches, it has been suggested that the brain cor-
tex operates at criticality, leveraging this feature to maximize its
dynamic range, information capacity, and dynamical repertoire.
Nevertheless, in neuronal systems, the patterns of transient syn-
chrony, such as avalanches, typically coexist and/or interact with
robust collective rhythms, and the problem of generic mecha-
nisms that give rise to avalanches and simultaneously allow for
their coexistence with collective oscillations still remains unre-
solved. Here, we demonstrate that the avalanche activity can
emerge and coexist with synchronous oscillations in a simple

model of diffusively coupled neural oscillators with multiple
timescale local dynamics in the vicinity of a canard transition.
The avalanches are characterized by scale-invariant distributions
of event sizes and an analysis of laminar, that is, inter-event,
times. The latter quantifies both cascading and non-successive
avalanches. At the critical transition between the states of lower
and higher spiking rates that facilitates the onset of avalanches,
the system exhibits increased sensitivity to perturbations, man-
ifested as critical slowing down and reduced resilience. The
disclosed scenario for coexistence of a well-defined oscillation
rhythm and patterns with scale-invariant features may open a new
avenue of research concerning multistability (and metastability)
in neuronal systems.
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I. INTRODUCTION

The notions of criticality and phase transitions have gained a
revived interest following the formulation of the concept of criti-
cal transitions and tipping,1–3 which essentially translate the ideas
of bifurcation theory to the realm of complex systems. Naturally,
the latter is not a straightforward process due to high-dimensional
dynamics of complex systems. Moreover, in many applications,
understanding the details of the states involved in a critical tran-
sition, as well as finding appropriate indicators of tipping, proves
to be a difficult problem. Many complex systems exhibit multista-
bility and metastability, an ample example being the brain activity.
On the one hand, the functionality of the brain relies on generat-
ing robust collective rhythms based on synchronization at different
levels of self-organization within the cortex.4,5 On the other hand,
various types of experiments, both under in vivo and in vitro con-
ditions, have revealed the presence of neuronal avalanches,6–9 that
is, cascades of quasi-synchronous bursts of activity, whose main fea-
ture is scale invariance where the spatial and temporal distributions
of events follow power-law behaviors. The discovery of neuronal
avalanches has led to the brain criticality hypothesis,10–14 suggest-
ing that the emergent cortical dynamics derive from being poised
at the boundary of instability or at the edge of chaos. However,
the precise character of the underlying continuous phase transition
remains elusive.15–18 Moreover, a question that naturally arises is
how can so different types of activity, in particular, those with a well-
defined characteristic timescale (regular synchronous activity) and
others where such timescales are absent (irregular transiently syn-
chronous activity), coexist. Furthermore, what are the mechanisms
that facilitate such coexistence?

Recalling the classical theory of phase transitions, power-law
behaviors should naturally be expected in scenarios where criti-
cal transitions can be associated with supercritical bifurcations; for
instance, it is typically stated that neuronal avalanches emerge in the
vicinity of a critical transition between silent (absorbing) and active
states from a critical branching process11,19 or at the synchronization
transition.16–18,20,21 Nevertheless, power laws and other heralds of
criticality, such as critical slowing down, have also been observed in
relation to first-order phase transitions,22,23 where criticality involves
multistable and metastable behaviors. This also applies to certain
models of neuronal avalanches, which have indicated their onset in
the vicinity of a discontinuous transition showing hysteresis between
the low-activity (down) and the high-activity (up) state.24 Neverthe-
less, the general mechanisms that can reconcile the emergence of
avalanche-like patterns with collective rhythms in neuronal systems
are still a subject of on-going research.17,19,25,26

Motivated by the latter problem, we show in this paper
that avalanche-like bursting patterns can emerge in a rather sim-
ple model of an array of non-locally coupled FitzHugh–Nagumo
(FHN) units with attractive diffusive interactions, whereby such
an intermittent, recurrent collective bursting activity coexists with
a completely synchronous state. An important ingredient of local
dynamics is that it conforms to relaxation oscillations close to a
canard transition27–29 between subthreshold and relaxation oscil-
lations. Blending a recently introduced concept of phase-sensitive
excitability of a periodic orbit30–32 and the interaction-induced trap-
ping of orbits,33–35 we explain the mechanism by which the interplay
of interactions and the vicinity of a canard transition results in

quenching of relaxation oscillations. This gives rise to patterns of
rare spiking, which under variation of coupling strength may self-
organize into avalanche-like activity with scale-invariant features.
We further show that avalanche patterns emerge in the vicin-
ity of a transition between two collective regimes with lower and
higher spiking rates, exhibiting classical indicators of criticality,
such as decreased resilience to perturbations and critical slowing
down.13,36–38

This paper is organized as follows: Sec. II provides the details of
the model and outlines the aspects of singular perturbation theory
relevant to the explanation given in Sec. III on how the interplay of
interactions and structures associated with local multiple timescale
dynamics may quench the spiking activity. In Sec. IV, we investi-
gate the statistical features of avalanche patterns and show that these
patterns emerge at the transition where the system displays classi-
cal criticality features in response to external stimulation. Section V
contains our concluding remarks and outlook.

II. ARRAY OF NON-LOCALLY COUPLED

FITZHUGH–NAGUMO UNITS

Our model is an array of N identical FHN units39 with a simple
non-local interaction scheme where each unit is coupled to P of its
neighbors to its left and to its right on a one-dimensional ring,

εu̇i = ui −
u3

i

3
− vi +

σ

2P

i+P
∑

j=i−P

(uj − ui),

v̇i = ui + α + σ

2P

i+P
∑

j=i−P

(vj − vi).

(1)

All the indices are periodic modulo N. Due to the smallness of the
parameter ε � 1, here set to ε = 0.05, the local dynamics feature a
slow–fast structure with the fast (activator) variables ui represent-
ing neuronal membrane potentials and the slow (recovery) variables
vi reproducing the coarse-grained behavior of ion-gating channels.
The non-local interactions are assumed to be linear (diffusive) and
act between the activator/recovery variables in the units’ fast/slow
subsystems;40–42 see the coupling scheme in Fig. 1. Apart from the
coupling radius p = P/N, the interactions are characterized by the
coupling strength σ and are considered to be attractive (σ > 0) and
homogeneous over the array.

Local dynamics is controlled by the bifurcation parameter
α > 0 such that the singular Hopf bifurcation at α = 1 mediates the
transition between the excitable regime

(

α ' 1
)

, featuring a stable

equilibrium (u∗, v∗) =
(

−α, −α + α3/3
)

, and the oscillatory regime
(α < 1).39 Within the framework of singular perturbation theory,29

which treats the limit ε → 0, an isolated FHN system has been
shown to exhibit a special type of trajectories, called canards, which
closely follow the repelling branch of the slow manifold for an appre-
ciable time27–29 instead of rapidly departing from it. For small but
finite ε, such trajectories form an exponentially thin layer, whereby
there exists a so-called maximal canard43 that follows the entire
repelling branch of the slow manifold. The presence of such tra-
jectories strongly impacts the behavior of the bifurcating limit cycle
when decreasing α further below the bifurcation threshold α = 1. In
particular, the incipient limit cycle undergoes a canard transition,44
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FIG. 1. An array of FHN neurons for N = 8 and P = 2. Fast variables u are
represented in blue, while slow variables v are shown in yellow.

where its amplitude sharply increases within a narrow interval of
α values exponentially small in ε. The canard transition mediates
between small-amplitude harmonic oscillations of period O

(√
ε
)

and large-amplitude relaxation oscillations of period O(1). In the
language of neuroscience, this corresponds to a transition from sub-
threshold oscillations to the regime of tonic spiking. A classical
result from asymptotic expansion theory is that the canard transition
occurs at α = αc = 1 − ε/8; cf. Ref. 45.

Throughout this paper, the local bifurcation parameter is set
to α = 0.99, the value below αc, such that it supports relaxation
oscillations. Nonetheless, the vicinity of the canard transition still
influences the way the system responds to perturbations, be it due
to interactions and/or noise. In particular, while the subthresh-
old oscillations below the canard transition manifest excitability in
the classical sense,46 it has recently been reported that the relax-
ation oscillations show a specific type of excitable behavior called
phase-sensitive excitability of a limit cycle.30 The latter comprises
a non-uniform response to perturbations along the orbit of relax-
ation oscillations such that the FHN system provides a nonlinear
threshold-like response to perturbations during the passage close to
the unstable equilibrium (u∗, v∗). Then, perturbations of sufficient
amplitude and acting in the appropriate direction are capable of
inducing one or more subthreshold oscillations around the unstable
equilibrium, whereby the maximal canard acts as the threshold man-
ifold. The emergence of such subthreshold oscillations in response
to interactions will later prove important for understanding the
mechanism giving rise to nontrivial collective dynamics behind the
activity avalanches.

Our primary interest concerns the impact of coupling strength
σ on the system’s dynamics, focusing on the case of weak inter-
actions σ ∈ [0, 0.1]. All the numerical experiments have been per-
formed for the system size N = 50 and coupling range P = 10 unless
stated otherwise. The numerical integration has been performed
using the Cash–Karp (4, 5) method with adaptive stepsize control

implemented via GNU Scientific Library (GSL).47 The time series in
the remainder of the paper illustrate the asymptotic system behav-
ior after discarding a sufficiently long transient of, e.g., 5 × 103 time
units. When illustrating the dependence on σ , the coupling strength
increment is 1σ = 10−3. For each value of σ , we consider a set of ten
different random initial conditions

(

Eu0, Ev0

)

∈ [−2, 2]N × [−2, 2]N.
We find that a range of coupling strengths supports the

onset of a regime where an irregular asynchronous rare spiking
activity is interspersed with brief intervals of cascading pseudo-
synchronous bursting activities, called avalanches. The described
regime is bistable with the regime of a synchronous regular spiking
activity, as we will demonstrate in Sec. III.

III. ARRAY DYNAMICS IN DEPENDENCE OF COUPLING

STRENGTH

Given that the units are identical and interact by attractive
diffusive couplings, the system (1) possesses an invariant syn-
chronization manifold u1(t) = u2(t) = · · · = uN(t), v1(t) = v2(t)
= · · · = vN(t). Since the isolated dynamics of neurons comprises
relaxation oscillations, this manifold contains a limit cycle attrac-
tor where all the units perform identical relaxation oscillations. In
the following, we will show that under a variation of the coupling
strength σ , the system (1) may exhibit non-trivial emergent dynam-
ics that unfolds off the invariant synchronization manifold. In other
words, we find a range of σ values where due to non-local inter-
actions, not all of the initial conditions converge to the invariant
manifold, and the completely synchronized relaxation oscillations
coexist with another type of collective dynamics.

To observe such emergent dynamics, we introduce a global
order parameter µ that characterizes the synchronization of units’
average spiking frequencies. Unlike the more classical synchroniza-
tion parameters, involving synchronization error or average local
variances from the mean variables, µ is not indented to quantify
both frequency and phase synchronization of units, but rather to
describe the quenching of units’ average spiking frequencies due to
non-local interactions. By construction, µ is introduced to indicate
the relative persistence of units’ trajectories in the neighborhood
of the limit cycle S corresponding to relaxation oscillations of an
uncoupled (isolated) unit. To define µ, we first denote by K the spike
count of an uncoupled unit within a sufficiently long time interval
1T. Then, for the system of coupled units (1), we consider Ji as the
spike count of a unit i within the time interval 1T. Using these two
quantities, the global order parameter µ is given by

µ = 1

NK

N
∑

i=1

Ji. (2)

Qualitatively, µ compares the ensemble-averaged spiking frequency
of coupled units to the spiking frequency of an uncoupled unit. Nat-
urally, these two frequencies are equal, resulting in µ = 1, when the
system’s state lies on the large-amplitude limit cycle on the invariant
synchronization manifold. Nevertheless, note that µ = 1 also corre-
sponds to such states where the units are not on the synchronization
manifold, but perform relaxation oscillations mutually shifted in
phase. One expects the emergent dynamics with quenched spiking
of individual units to be characterized by µ < 1.
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FIG. 2. Order parameter µ in dependence of coupling strength σ for three dif-
ferent sets of initial conditions (green up-triangles, red down-triangles, and blue
circles). Intervals of σ denoted by R1 and R3 are characterized by the preva-
lence of relaxation oscillations (µ ≈ 1). Intervals R2 and T1, respectively, support
coexistence of asynchronous states µ ≈ 0 and 0 < µ < 1 with a completely
synchronous state. The dashed lineµ = 1 corresponds to the case where all the
units perform completely synchronous relaxation oscillations.

Figure 2 shows the order parameter µ in terms of the coupling
strength σ for asymptotic dynamics obtained from three different
sets of initial conditions (green up-triangles, red down-triangles, and
blue circles) in the weak coupling regime (σ � 1). For sufficiently
small σ , all the initial conditions lead to frequency synchronized
relaxation oscillations of individual units; see the region R1. Never-
theless, when increasing σ , one observes an interval σ ∼ [0.02, 0.07]
that supports asynchronous states characterized by the global order
parameter µ < 1. Such states emerge only for certain sets of ini-
tial conditions, and the synchronous state coexists throughout the
entire σ interval. By the corresponding values of µ, one may dis-
tinguish between two types of asynchronous states: (i) the region R2

where the global order parameter attains very small values µ ≈ 0
and (ii) an interval T1 where µ values of asynchronous states are
enhanced but still lie notably below the µ = 1 level. For a stronger
coupling strength σ , one finds region R3 where the synchronous
state is regained for all sets of initial conditions. The same phys-
ical picture qualitatively holds for a range of coupling radii p.
Nevertheless, the width of the interval of intermediate σ values sup-
porting asynchronous states reduces with p, eventually vanishing for
interactions of sufficiently long-range.

To gain a deeper insight into the emergent dynamics typical
for different σ intervals, we consider the corresponding state-space
projections (ui, vi) for two representative units, indicated in blue
solid and red dashed lines in Fig. 3. For σ = 0.001, which lies in
the region R1, the neurons already perform relaxation oscillations
along the same orbit but are shifted in phase; cf. the orbits and
the time traces in Fig. 3(a). For this small coupling strength, the
phases remain free along the limit cycles at the state space of dif-
ferent FHN units.48 Within the region R2, represented by σ = 0.02
in Fig. 3(b), the units mostly perform small-amplitude oscillations
around the unstable equilibrium (u∗, v∗), and only a few or none

FIG. 3. Main frames: orbits (ui(t), vi(t)) of two units i = 20 (blue solid lines) and
i = 50 (red dashed lines); insets: time traces ui(t) of the same two units for dif-
ferent system states. (a) σ = 0.001: phase-shifted synchronization of relaxation
oscillations. (b) σ = 0.02: the feedback from local mean-fields causes trapping of
orbits around the unstable equilibrium (u∗, v∗). (c) σ = 0.041: the orbits eventu-
ally escape from the trapping region, generating rare spikes. (d) σ = 0.1: coupling
strength is sufficient to induce complete synchronization of relaxation oscillations.
The unstable equilibrium (u∗, v∗) of isolated dynamics lies at the intersection of
nullclines (black dashed and dotted curves).

of the units occasionally escape the trapping region generating rare
spikes. Trapping of the trajectories in the vicinity of the unstable
equilibrium derives from the impact of local mean-fields, whose
fluctuations are reflected in the amplitude variability of subthresh-
old oscillations around (u∗, v∗). The localized excitations (spikes)
become more prevalent for a larger σ = 0.041 that belongs to the
interval T1; see Fig. 3(c). By increasing σ within T1, one observes
patterns comprising local mixed-mode oscillations44 where units
fire more frequently and more correlated. The statistical proper-
ties of such solutions are a key aspect of this study and will be
elucidated in Sec. IV. Finally, for σ = 0.1 from the region R3, the
system dynamics are characterized by completely (both frequency
and phase) synchronized relaxation oscillations of individual units;
cf. Fig. 3(d).

Now, let us focus on the mechanism causing the trapping
of units’ orbits in the vicinity of the unstable fixed point (u∗, v∗).
First, we recall the notion of phase-sensitive excitability of a peri-
odic orbit invoked in Sec. II. At variance with,30 which introduced
this notion while analyzing the non-uniform response of relaxation
oscillations to noise, a similar type of effect emerges due to non-
local interactions. Specifically, the units whose isolated dynamics
comprise relaxation oscillations become trapped and perform sub-
threshold oscillations around the unstable equilibrium. Then, the
maximal canard establishes a state space threshold separating the
transient small-amplitude oscillation from the limit cycle of relax-
ation oscillations. For deterministic networked systems, the trapping
of trajectories has previously been observed in the vicinity of more
complex invariant sets. In particular, in Refs. 33–35, it has been
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demonstrated that the couplings can trap units’ trajectories in the
vicinity of unstable chaotic sets. Then, the trapping mechanism is
based on an interplay between interactions and the dynamics in the
chaotic set, which creates random perturbations that prevent the
trajectories from escaping the vicinity of the invariant set via its
unstable manifold. The chaotic sets involved in the trapping occur
in the state space of each unit. The latter is similar to the scenario
here, but instead of chaotic sets, we consider the trapping mediated
by unstable equilibria encircled by the maximal canards.

In the following, we propose a mechanism to explain the
dynamics in the intervals R2 and T1 that contains the main ingre-
dients of both phase-sensitive excitability of periodic orbits and
the above described trapping phenomenon. We begin by revisit-
ing the dynamics of an isolated FHN neuron where the maximal
canard provides a threshold between different types of orbits, dis-
tinguished by the motion around the unstable fixed point (u∗, v∗).
The differences between the associated transients become appar-
ent if one determines the corresponding escapes time te from the
region enclosed by the maximal canard. This quantity expresses the
dimensionless time required for trajectories starting from different
initial conditions to reach the limit cycle of relaxation oscillations
S. In Fig. 4(a), color coding indicates the escape times te for a large
set of initial conditions (u0, v0). Note the thin boundaries between
the regions with different values of te that reflect the spiraling of
the maximal canard around (u∗, v∗), and the white line just below
indicates a segment of the orbit of the limit cycle corresponding to
relaxation oscillations. The subtlety of such boundaries makes the
system highly sensitive to perturbations; for instance, a trajectory in
the maximal canard region with a certain prescribed escape time, if
perturbed, may change its current escape route and perform extra
loops around (u∗, v∗). The same applies to the orbit of relaxation
oscillations, which, under the effect of an appropriate perturbation,
may be injected into the maximal canard region when passing close
to it so as to perform loops around the unstable fixed point.

Let us now focus on the case of FHN neurons embedded in an
array. There, it is the non-local interactions that provide perturba-
tions to local dynamics, sensitively affecting the units’ orbits around
the maximal canard. Depending on the character of perturbations,
the trajectories of only a subset of neurons may undergo subthresh-
old oscillations due to trapping by the maximal canard, while the
remaining neurons continue to perform relaxation oscillations. Such
a scenario gives rise to an emergent asynchronous behavior. Since
the coupling function is diffusive, its amplitude increases in a desyn-
chronized network, contributing to larger perturbations to neuronal
dynamics. Consequently, the interaction between the perturbation-
sensitive dynamics around the maximal canard and the couplings,
i.e., local mean-fields, constitutes a positive feedback loop. One may
numerically assess the range of coupling strengths σ where such
an impact of interactions is the strongest. Appreciating that the
interactions introduce a parametric perturbation of local neuronal
dynamics, we introduce an effective bifurcation parameter αi for
each neuron as

αeff
i (t) = α + σ

2P

i+P
∑

j=i−P

(vj(t) − vi(t)), (3)

where α = 0.99 is the unperturbed value defined in Sec. II.

FIG. 4. (a) For an isolated FHN unit, i.e., Eq. (1) with σ = 0, the color scheme
indicates escape times te from the maximal canard region for different initial con-
ditions (u0, v0); white curve: segment of the limit-cycle S close to the maximal
canard. (b) Time-averaged effective bifurcation parameters α̂eff

i as a function of

σ . (c) Blue dots: local variancesVα,i of effective bifurcation parametersαeff
i (t); red

dashed–dotted curves in (b) and (c): population-averaged values for different σ .

Figure 4(b) depicts the time averages α̂eff
i of the effective param-

eter αeff
i (t) as a function of σ . One observes that for σ . 0.018, the

value of α̂eff
i ≈ 0.99 approximately equals that of an isolated unit.

Here, the amplitude of perturbations from the local mean-fields
is subthreshold and cannot induce small-amplitude oscillations
around (u∗, v∗). Consequently, all the units perform relaxation oscil-
lations; cf. region R1 in Fig. 2. However, for σ ≈ 0.018, the couplings
become capable of trapping the units within the canard region to
generate small-amplitude oscillations. In parallel, one observes that
the value of α̂eff

i begin to substantially depart from the unperturbed
value α = 0.99; cf. Fig. 4(b). Such increasing deviations are associ-
ated with the feedback from non-local interactions, whose impact on
system dynamics grows as the desynchronization sets in. Enhancing
σ further, the contribution from non-local interactions to α̂eff

i peaks
around σ ≈ 0.04. There, the parametric perturbation to units shows
high variability over the array; cf. the increase in the correspond-
ing variances Vα,i of effective bifurcation parameters in Fig. 4(c).
The given value of σ approximately corresponds to the transition
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between regions R2 and T1 from Fig. 2. As σ is further increased, the
attractive nature of the couplings begins to dominate the dynamics,
contributing to units’ synchronization. This is accompanied by the
decrease of the amplitudes of parametric perturbations affecting the
units up to the point where they become subthreshold such that
the units again perform relaxation oscillations; cf. region R3 in Fig. 2.

In Sec. IV, we will explore the statistical properties of the net-
work solutions. We pay special attention to the transition between
R2 and T1, where the non-local coupling and sensitive response to
perturbations of relaxation oscillations in the vicinity of the maximal
canard make the largest impact.

IV. AVALANCHE ACTIVITY

As elaborated in Sec. III, for a range of intermediate σ in
Fig. 2, one finds activity patterns where the units spend much time
trapped by the maximal canard in the vicinity of the unstable fixed
point (u∗, v∗), while being rarely released to perform spikes. In the
following, we resolve the spatiotemporal structure of such emer-
gent states showing that they conform to an avalanche-like activity,
where intermittent pseudo-synchronous spiking, localized to var-
ious degrees, is separated by long periods of quiescence over the
array. Note that the observed avalanches are not intended to model

classical neuronal avalanches,6–9 though a partial analogy may be
drawn, as discussed in Sec. IV A.

Let us first consider the spatiotemporal evolution of local mem-
brane potentials ui(t) described by Eq. (1); see Figs. 5(a) and 5(b).
Indeed, the latter indicates that the typical activity patterns are self-
organized into episodes of pseudo-synchronous spiking separated
by silent episodes. Nevertheless, in terms of temporal organization,
two types of avalanches may be distinguished, namely, cascading
events, cf. the example of an avalanche beginning around t ≈ 30 in
Fig. 5(b), where the (spatially localized) spiking activity propagates
forming temporal sequences; and temporally localized (isolated)
events, where the (spatially localized) spiking occurs within a nar-
row time window. Note that the duration of the time window used to
identify pseudo-synchronous spiking is specified in Sec. IV A. Qual-
itatively, the episodes of a spiking activity resemble self-localized
excitations in excitable media.49,50 The cascading events have a step-
pyramid-like space-time structure. This reflects the fact that at every
next level, only the units closer to the center of the previous level
perform a spike. The latter units remain active because they receive
most of the input from the spiking rather than the silent units. Natu-
rally, the units at the top level, e.g., unit i = 68 in Figs. 5(a) and 5(b),
fire more spikes during a cascading event than the units whose spik-
ing terminates at some of the lower levels. In contrast to cascading
avalanches, each unit participating in a temporally localized event

FIG. 5. Self-organization of avalanches. (a) Time traces ui(t) for three units i = 2, i = 45, and i = 68, indicated by green, blue, and red rectangles in panel (b), respectively.
(b) Spatiotemporal evolution of fast variables ui(t). (c) Spatiotemporal evolution of the quantity α∗

i (t) = αeff
i (t) − αc, which shows that the units spend most of the time in

the vicinity of the canard transition. System parameters: σ = 0.04, N = 100, p = 0.2.
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spikes only once. In terms of spatial organization, the units spik-
ing within a given narrow time window can appear as connected
clusters or may display a multi-cluster structure forming spatially
disconnected clusters.

The intrinsic structure and self-organization of avalanche pat-
terns can be described in more detail by looking into the spatiotem-
poral evolution of the quantity α∗

i (t) = αeff
i (t) − αc as shown in

Fig. 5(c). In particular, one observes that units spend most of the
time in the vicinity of the canard transition α∗

i ≈ 0, which underlies
the important role of the canard transition in the self-organization
of avalanches. Moreover, for the cascading events, one observes that
the units around the excited region are furthest above the bifurcation
threshold, i.e., have the largest values of α∗

i (t). This effectively facili-
tates the pattern confinement, making the avalanche events spatially
localized.

The local dynamics comprise irregular mixed-mode oscilla-
tions, involving fast subthreshold oscillations interspersed with ran-
dom rare spikes, cf. Fig. 5(a), which illustrates the time traces ui(t) of
three units highlighted in Fig. 5(b). The irregularity of single units’
interspike intervals is corroborated by Fig. 6(a) showing the tempo-
ral evolution of the return times 1tn(t) to the Poincaré cross section
uk(t) = 1, u̇k(t) > 0 for an arbitrary unit. Together with the corre-
sponding first return map of successive return times 1tn(1tn−1) in
Fig. 6(b), it evinces that the units may sometimes fire spikes in close
succession, but that there may also be long periods of quiescence.
The spatial profile of average spiking frequencies ωk = 2πMk/T,
where Mk is the spike count within a macroscopic time interval T,
is shown in Fig. 6(c). Expectedly, as the averaging time interval is
increased, the ωi profile becomes more uniform, indicating that it

FIG. 6. (a) Temporal evolution of the return times 1tn(t) to the Poincaré cross
section uk(t) = 1, u̇k(t) > 0 of a single unit. (b) First return map 1tn(1tn−1)

of successive return times to the Poincaré cross-section. (c) Spatial distribu-
tion of average spiking frequencies ωk over time periods T = 5 × 104 (empty
squares), T = 2 × 105 (empty diamonds), and T = 4 × 105 (solid circles).
System parameters: σ = 0.04, N = 100, p = 0.2.

should appear flat for very long T as the spiking excitations occur
randomly in space. Qualitatively, our scenario involving rare and
irregular recurrent spiking bears certain resemblance to the onset of
extreme events in systems of diffusively coupled nonidentical FHN
units with excitable local dynamics,51–54 as well as identical FHN
oscillators with delayed diffusive couplings.40,42 However, in contrast
to Ref. 51, we typically find spatially localized events, rather than the
bursting events spanning the entire network.

A. Statistical features of avalanches

In this section, our goal is to address in detail how the sta-
tistical features of activity patterns, such as the one in Fig. 5(a),
depend on the coupling strength σ . Let us first precisely define
the avalanche events and the associated properties we are inter-
ested in. Starting from a set of random initial conditions

(

Eu0, Ev0

)

∈ [−2, 2]N × [−2, 2]N, we consider the evolution of an array Eq. (1)
over the interval 1T = 5 × 104. An individual avalanche event com-
prises a joint spiking activity of a cluster of a certain number of
units k within the narrow time window 1t = 100δt, where δt is the
integration step. The avalanche size, denoted by Sk, then refers to
the number of units that have fired at least once during this small
interval and is not related to the total number of spikes emitted by
the units forming the cluster. In other words, S1 denotes an event
where only a single unit has fired within the given time window 1t,
whereas SN corresponds to an avalanche spanning the whole array.
To elucidate how the avalanche properties depend on σ without a
potential bias due to initial conditions; for each value of σ , we per-
form numerical experiments with ten different sets of random initial
conditions.

Focusing on the σ interval associated with regimes R2 and T1,
Fig. 7(a) illustrates the σ dependence of the maximal avalanche sizes
max(sk) normalized over the array size N; i.e., sk = Sk/N. Multiple
symbols for a given value of σ denote the results obtained for the
different sets of initial conditions, and the red curve indicates the
values averaged over the ensemble of initial conditions. For smaller
σ , even the maximal avalanche sizes do not exceed the normal-
ized coupling range 2p = 2P/N, indicated by the horizontal green
line. This implies that avalanches remain localized events focused
around the initial excitation or, put differently, that the correlation
length of spontaneous activity fluctuations remains short. However,
for larger coupling strengths σ ' 0.025, the average values over dif-
ferent initial conditions exceed the coupling range, suggesting that
the synchronous spiking activity typically propagates over the array,
indicating an increase in the system’s correlation length. Enhanc-
ing the coupling strength further into the T1 regime (σ > 0.04), we
observe that maximal avalanches indeed span the entire array.

To get an insight into the variability of avalanche cluster sizes,
in Fig. 7(b), we show how the maximal number of different cluster
sizes C(sk) depends on σ . Multiple symbols for any given σ again
correspond to results for different initial conditions. One observes
that the variability of cluster sizes, reflected in the number of dif-
ferent recorded cluster sizes, reaches a maximum around σ ≈ 0.04,
the values near the transition between the regimes R2 and T1 from
Fig. 2. Nonetheless, within the T1 regime, another form of variabil-
ity increases. Specifically, the diversity of cluster sizes recorded in
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FIG. 7. Statistical properties of avalanches. (a) Largest, relative avalanche sizes
max(sk) in terms of σ . For each σ , dots indicate the results for ten different initial
conditions. The average values (red curve) exceed the connectivity 2p = 2P/N
(green dashed line) for σ > 0.03. (b) Number of different cluster sizes C(sk) as a
function of σ . The average (red curve) shows a peak in the vicinity of the transition
between regions R2 and T1; cf. Figs. 2 and 4.

simulations starting from different initial conditions becomes much
more pronounced than in the R2 regime.

Both the onset of avalanches that span the entire array in
Fig. 7(a), and the highest variability of avalanche sizes observed in
Fig. 7(b) for σ ≈ 0.04, suggest that the change of regimes from R2 to
T1 under increasing σ bears signatures of criticality. One may draw
a partial analogy to observations on a resting state (spontaneous)
activity in neuronal systems. There, the neuronal avalanches,6–9

found in electrophysiological recordings, both under in vitro and
in vivo conditions, as well as by electroencephalography and func-
tional magnetic resonance imaging, are known to show criticality
features. Manifestations of criticality classically involve scale invari-
ance in the distributions of relevant quantities, e.g., the size and

duration of neuronal avalanches, which is reflected in the power-law
behaviors of the form F(x) ∝ x−γ , where γ is a critical exponent.55,56

Criticality features are generally associated with proximity to criti-
cal/phase transitions between ordered and disordered phases11,14,19,57

or in the case of neuronal avalanches, between an absorbing state
with a quickly decaying spiking activity and an active state with
runaway (exploding) activity propagation.58 Nevertheless, the con-
cept of phase transitions applies to systems in the thermodynamic
limit N → ∞; therefore, an observation of genuine power-laws
cannot be expected for finite-size systems. To resolve this, one
often invokes the point that the phase transitions in finite systems
extend over a critical region called the Griffiths phase.59–61 There,
the system is quasi-critical and maintains certain aspects of crit-
icality, including the truncated power-law behaviors (power laws
with exponential cutoffs) of relevant quantities.62 This also applies
to neuronal avalanches, where the classically reported exponents
for the avalanche size and duration are 3/2 (with some excep-
tions) and 2, respectively, while the cutoff typically matches the
system size6,63 but may also deviate from it.64,65 One should further
note that the power-law distributions of event sizes per se may not
necessarily imply that the system is poised close to criticality.66,67

Conversely, there are instances, such as certain models of neuronal
avalanches, where a critical system shows a scale-free distribution
of event sizes that does not conform to a power-law.68 Such results
may partly derive from a potentially fuzzy relationship between
the definition of observed events and the local dynamics behind
them.

Given the arguments above, we focus on the properties of
avalanches in the narrow range σ ∈ [0.037, 0.043] around the transi-
tion between the regimes R2 and T1 from Fig. 2. In particular, fixing
σ , we consider the probability distributionP(s) of relative avalanche
cluster sizes s = S/N and the probability distribution P(τ ) of time
intervals τ between the successive avalanches; see the left and right
column in Fig. 8, respectively. Both P(s) and P(τ ) are sampled for
three different array sizes (N = 50, N = 100, and N = 200) main-
taining the fixed coupling radius p = P/N = 0.2. For all three N
values, the distributions P(s) show an approximate scaling regime
for small and intermediate relative cluster sizes s ≤ p, cf. the verti-
cal dashed lines in Figs. 8(a), 8(c), and 8(e), followed by a cutoff due
to finite system size. For the largest array size N = 200 in Fig. 8(e),
we have included as a guideline the power-law scaling β = 3/2
(black dashed–dotted line) classically obtained for the distribution
of neuronal avalanches.

The distributions P(τ ) of intervals between the successive
avalanche events, also called the laminar times,69,70 indicate two
different regimes that guide the avalanche recurrence processes;
cf. Figs. 8(b), 8(d), and 8(f). In particular, very short laminar times
describe the intrinsic dynamics of cascading avalanches, i.e., cor-
respond to cascades’ intra-event intervals between the successive
bursts. For intermediate τ , one observes the peak that indicates
the presence of a characteristic timescale in the avalanche recur-
rence process rather than the scale invariant behavior. Such traces of
pseudo-regularity in avalanche recurrent times reflect an occasional
degradation of the trapping mechanism associated with the maxi-
mal canard, which allows the system to intermittently evolve in the
vicinity (not on) of the synchronization manifold, having the units
generate spikes mutually shifted in phase.
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FIG. 8. Distributions of relative avalanche sizes s = S/N and laminar times τ for
(a) and (b) N = 50, (c) and (d) N = 100, and (e) and (f) N = 200. Different sym-
bols indicate the results obtained for different sets of initial conditions. σ is chosen
in the vicinity of the transition between the regions R2 and T1. Coupling radius
p = P/N = 0.2 (vertical dashed black lines in the left column) is kept fixed in all
the simulations. Distributions P(s) in (a), (c), and (e) show power-law behavior
for small and intermediate avalanches followed by a cutoff. The comparison with
the power-law β = 3/2 (black dotted line) in panel (e) is provided as a guideline.
Distributions of laminar times P(τ ) in (b), (d), and (f) show a peak indicating the
presence of a characteristic timescale.

The results in this section suggest that our system in the vicin-
ity of the transition between the regimes R2 and T1 from Fig. 2
shows certain aspects of critical behavior, such as the increase of
correlation length compared to coupling radius (indirectly observed
by the growth of maximal cluster sizes) and the enhanced vari-
ability of cluster sizes. To further this point, in the next section,
we investigate the system’s response to perturbations, demonstrat-
ing evidence of critical slowing down and decreased resilience of the
system’s dynamics in the vicinity of this transition.

B. Indicators of criticality

Approaching the critical transition, complex systems tend
to show progressively less resilience to perturbations, taking
increasingly longer times to recover.2 Such slower recovery rates
are classically described as a herald of a critical slowing down
phenomenon.13,36–38 The latter also influences the relaxation pro-
cesses and, hence, the statistics of fluctuations underlying the
spontaneous activity of systems near criticality. Qualitatively, this
increases their short-term memory and variability and is reflected
in enhanced autocorrelation and variance of systems’ observables.

In terms of induced activity, systems at criticality are known to
maximize their dynamic range.10,71,72

In the following, our goal is to demonstrate that at the onset of
the T1 region, or rather for σ values close to the transition between
regions R2 and T1 from Fig. 2, an array of FHN units exhibits two
signature effects of criticality, namely, increased recovery times to
small perturbations and reduced resilience. To do so, we introduce
two types of stimulation protocols: one, called an LC-shift, where
a small fraction M of units is triggered to spike, i.e., their orbits are
kicked toward the orbit of a relaxation oscillation limit cycle; and the
other, called an FP-shift, where the same fraction of units is injected
into the vicinity of the unstable fixed point (u∗, v∗). The described
perturbations are applied at time t = Tp, after which the array spon-
taneously evolves until the moment t = T. To quantify the effect of
perturbations, we compare the orbit of the system after introduc-
ing the stimulus to that of the unperturbed system and numerically
determine the deviations ζ(t). As a measure of the impact of the
stimulus, we take the variance Var(ζ(t)) of the deviations calculated
over the interval T − Tp.

In Fig. 9(a) are shown the time series of variances Var(ζ(t)) for
three different values of σ following an FP-shift at Tp = 150. The
horizontal red dashed lines indicate the levels of the corresponding
initial FP-shifts. We first point out that the post-stimulus amplitude
variance (shown green) is much higher than the initial amplitude
of the FP-shift for σ = 0.04 (middle panel), whereas it is lower for
σ = 0.024 (top panel) and σ = 0.043 (bottom panel). This reflects
the array’s reduced resilience, i.e., the decreased recovery capability
for σ = 0.04, and also shows that the perturbations from external
stimuli are amplified for this value of σ . Moreover, one observes
that the post-stimulus interval of nonzero variance is much longer
for σ = 0.04 than for the other two σ values. This evinces that the
array’s recovery times TR from a perturbation (see the blue dashed
line with arrows) are much slower for σ = 0.04. Note that the val-
ues at the top and bottom panels are selected from regions R2 and
T1 from Fig. 2, while the longest recovery time and the largest vari-
ance amplitude are found approximately at the transition boundary
between these regions. In other words, in the vicinity of the latter
transition, the system shows two prominent features of criticality,
having the recovery time and signal variance following a perturba-
tion substantially different compared to the system’s behavior below
and above the transition.

To better characterize the described behavior, let us investi-
gate the array’s recovery times and variances over the continuous
interval of σ spanning between the regions R2 and T1. Our aim is to
show that the variability of the system’s response to perturbations is
indeed the largest in the vicinity of the transition between these two
regions. Hence, for each considered value of σ , we perform simula-
tions of the array dynamics for ten different initial conditions and
implement either the FP-shift or the LC-shift stimulation protocol.
Then, we numerically estimate the cumulative variance per unit time
φ2 for each set of initial conditions,

φ2 = 1

T − Tp

∫ T

Tp

Var(ζ ) dt. (4)

The dependence of the quantity φ2 on σ is illustrated in
Fig. 9(b). Note that for a given value of σ , each symbol describes the
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FIG. 9. Indicators of criticality at the transition between regions R2 and T1 from
Fig. 2. (a) Time traces of variance Var(ζ ) after an FP-shift introduced to a
fraction of M = 0.05 units at Tp = 150 for σ = 0.024 (top panel), σ = 0.04
(middle panel), and σ = 0.043 (bottom panel); red dashed line: level of an ini-
tial FP-shift. (b) Cumulative variance φ2 and (c) normalized recovery time ρ as
a function of σ . Each symbol stands for a different set of initial conditions, and
the color code refers to LC-shift (red) and FP-shift (blue) stimulation protocols.
The dashed–dotted and dotted curves in panel (b) indicate the values of φ2 aver-
aged over an ensemble of initial conditions for LC-shift (red) and FP-shift (blue),
respectively. System parameters: N = 50, p = 0.2.

system’s response for a different set of initial conditions, whereas the
responses to different types of stimulation protocols are indicated
by red (LC-shift) and blue (FP-shift). The two dotted lines indicate
the system’s responses averaged over the ensemble of different ini-
tial conditions for the two types of stimulus. One finds that such
averaged φ2 quantities show peaks around the coupling strength
σ ≈ 0.04, indicating that the system is most sensitive to perturba-
tions near the transition between the regions R2 and T1. Nonetheless,
for the same interval of σ , we examine the array’s recovery times

after implementing both types of stimulation protocols. In particu-
lar, we collect the recovery times TR [indicated in Fig. 9(a)] for ten
different sets of initial conditions. To make the observed values of TR

comparable, we normalize them by the total observation time after
the stimulus T − Tp, thus obtaining the normalized recovery time

ρ = TR/
(

T − Tp

)

. Figure 9(c) shows the observed values of ρ as a
function of σ . One readily notes that indeed, the larger values of ρ

occur near the transition between the regions R2 and T1.

V. DISCUSSION

We have introduced a simple model of an array of diffusively
coupled neural oscillators whose local dynamics are poised in the
vicinity of a canard transition. This facilitates coexistence between
completely synchronous oscillations and avalanche-like patterns of
pseudo-synchronous bursting activities. The onset of avalanches is
shown to be associated with an inhibitory effect of interactions. This
effect is manifested at a range of small coupling strengths, where
interactions quench local relaxation oscillations due to an interplay
with a maximal canard, a structure that stems from local multiple
timescale dynamics. The observed long-term trapping of orbits in
the vicinity of an unstable fixed point derives from a combination
of a recently introduced concept of phase-sensitive excitability of a
periodic orbit30 and the trapping mechanism from Refs. 33–35. Essen-
tially, each unit, as an oscillating system driven by a fluctuating local
mean-field, provides a non-uniform response to perturbations along
the orbit of a limit cycle, which leads to persistent strong deviations
from the unperturbed orbit. Compared to Refs. 33–35, the trapping
phenomenon is here extended to a confinement of orbits to a region
of maximal canard instead of the original confinement by a chaotic
saddle. In terms of concept, one should note that distinct from
the classical notion of excitability, the phase-sensitive excitability is
not immediately related to the system being close to a bifurcation
between stable stationary and oscillatory states, but is instead con-
nected to a canard transition between subthreshold and relaxation
oscillations. In a broader context, the important role of a canard
transition in pattern formation has already been shown in the cases
of alternating (leap-frog) dynamics in small motifs of units31 or the
different types of coherence–incoherence patterns (solitary states
and patched patterns) in non-locally coupled arrays with repulsive
and attractive interactions,32,50 involving either coupled excitable
units or self-oscillating units close to the bifurcation toward the
excitable state. Complementing this, here, we have shown the impact
of a canard transition on the self-organization and intrinsic structure
of avalanche patterns.

We have further demonstrated that avalanches can emerge at
the transition between two collective regimes featuring lower and
higher spiking activity rates. The avalanches have been shown to
satisfy power-law behaviors regarding avalanche cluster sizes and
laminar times. Moreover, the system generating avalanches has been
found to bear classical indicators of criticality under external per-
turbations, including reduced resilience and critical slowing down.
So far, neuronal avalanches have primarily been suggested to arise
in the vicinity of two very different types of continuous transitions,
namely, the transition between absorbing and active phases or at
the onset of synchronization. Also, implementing various adapta-
tion rules, such as synaptic plasticity or excitability adaptation, it has
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been indicated that models of neuronal networks may self-organize
to a critical state facilitating avalanches, which has linked the onset
of avalanches to self-organized criticality.23,73–75 On the other hand,
it has been found that avalanches may emerge from critical dynam-
ics in balanced excitatory–inhibitory networks, where they can be
combined with different types of collective oscillation rhythms.76,77

The latter can involve two types of scenarios: one with collective
rhythms and avalanches coexisting (either independently or with
rhythms modifying the features of avalanches) and the other hav-
ing the rhythms embedded in the avalanche activity.20,78 Finally, it
has been reported that scale-invariant avalanches may also emerge
without the neural network operating at criticality, but just due to a
balanced input or its interaction with noise.76,77,79,80

In light of the above studies, our findings apparently point
to a possibility of independent coexistence between a synchronous
oscillation rhythm and a transiently synchronous avalanche activity,
whereby the mechanism facilitating such coexistence requires two
ingredients: the non-local diffusive interactions and local dynam-
ics in the vicinity of a canard transition between subthreshold and
relaxation oscillations. In terms of the states involved, the charac-
ter of the critical transition supporting avalanches is most similar
to the one in Ref. 24, in the sense that it also mediates between the
states with lower- and higher spiking rates. Nevertheless, in contrast
to our study, the model in Ref. 24 has a more complex structure
combining stochastic local dynamics with a quenched disorder in
network topology, and criticality occurs in the vicinity of a spinodal
line of a discontinuous transition. For future research, it would be
important to gain insight into the switching dynamics between the
coexisting regimes in our model, both under the impact of noise and
when applying different types of external stimulation.
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ABSTRACT

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in
various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies
and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion
and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open
challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147231

Charles Darwin taught us that it is not the strongest of a species
that survive, but the ones who are most adaptable to change. Like-
wise, the process of learning can be considered to be “any change
in a system that produces a more or less permanent change in
its capacity for adapting to its environment.”1 These two state-
ments clearly underline the importance of adaptivity for life.
Simply speaking, one could say: “To live means to adapt.” At the
same time, adaptive mechanisms are also the essential features
of (“intelligent”) artificial systems, from state-of-the-art control
techniques for complex systems, to machine learning approaches
and robotic systems. Perhaps the most basic notion of adaptiv-
ity is the ability to adjust to condition or change over time. This
ability is an essential component of various natural and artifi-
cial processes considered in different research fields. It is also
the key property of the human mind to perceive and enjoy music
and visual arts and to create and invent and, thus, is the driv-
ing force behind all cultural achievements. Adaptive mechanisms
take place on a wide range of spatial and temporal scales, from
the adaptation of a single neuron, over the ability of a social sys-
tem to adjust to a changing environment, up to the adaptation
of the Earth system’s climate. Over the last few decades, sub-
stantial know-how to describe and control complex systems has
been developed in different scientific areas. With the increasing
potential of modern technology, on the one hand, and the enor-
mous challenges facing humanity as a large social system, on the
other hand, there is a renewed interest to take an interdisciplinary
approach to adaptivity. This article gives an overview of the role
of adaptive systems in different scientific fields and highlights
prospects for future research directions on adaptivity.

I. INTRODUCTION

A widespread feature of natural and artificial complex systems
is their adaptivity. There is lively interest in modeling and under-
standing the various forms of adaptive mechanisms appearing in
real-world systems and to develop new control strategies based on
adaptive mechanisms.

Such control strategies play an essential role, especially in
complex systems science, as they reflect to some extent the
understanding we have of a complex system. Because of their
interactions, relationships, dependencies, nonlinearities, and high-
dimensionalities, the behavior of complex systems is inherently
difficult to model. Machine learning tools are often used to solve
predictions about complex systems. However, applying machine

learning to complex systems is quite challenging because the train-
ing data set has to reflect the diverse dynamics. This usually results
in the data set being very large, making such methods well suited for
so-called big data.

Moreover, the focus today is not only on complex systems con-
sisting of many interacting components, but as an interdisciplinary
field, complex systems actually attract contributions from many dif-
ferent fields. Despite the strong drive for innovation and application
of adaptive complex systems in various scientific fields, as concep-
tualized in Fig. 1, cross-fertilization between different disciplines is
hardly promoted. A partial answer toward a mathematical theory
of adaptive systems has been developed since the 1960s for con-
trol and optimization problems,2–6 including stochastic systems,7 a
systematic exposition of the interrelations and interplay between
adaptation and learning,7 as well as the use of the speed gradient

FIG. 1. Adaptivity across different scientific disciplines (blue) and applications
(yellow) as well as its strong interlinking and interlocking, similar to a system of
gears.
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method8 in adaptive control of network topology.9 In this review, we
discuss recent interdisciplinary applications of adaptive dynamical
systems and focus on collecting ideas that would allow for includ-
ing modern research fields, such as complex network theory, power
grid modeling, or climate systems where a full mathematical theory
is still elusive.

This Perspective article aims to make a first step in opening a
dialogue between different scientific communities and the diverse
formalism of their languages. It summarizes different perspectives
on the concept of adaptivity and shows which open challenges are
waiting to be taken up. To this end, it brings together the view-
points on the topic of adaptivity of researchers from a wide range
of backgrounds, including physics, biology, mathematics, computer
and social science, and musicology. This Perspective article features
a collection of contributions from experts representing various sci-
entific disciplines. The individual contributions are guided by the
following questions:

1. What role do adaptive mechanisms play in their respective field?
How can one define adaptivity? What methods are related to
adaptivity? What applications are related to adaptivity?

2. Which challenges can be solved by using adaptive mechanisms?
Are there open research questions related to adaptivity? What are
the future perspectives?

The article consists of four main topical parts: Network Per-
spective and Models of Adaptivity (Sec. II), Perception and Neural
Adaptivity (Sec. III), Adaptivity and Artificial Learning (Sec. IV),
and Adaptivity in Socio-Economic Systems (Sec. V). Each part con-
tains perspectives from several specialists active in the respective
area of research.

In Sec. II, we discuss different ideas on the definition of adap-
tivity from the perspective of nonlinear dynamics, control theory,
and network science, and how adaptive systems can be used to
understand real-world systems of interacting units (networks). In
the beginning, a generic viewpoint on adaptivity with regard to
the interplay of structure and function in dynamical network the-
ory is introduced (Sec. II A). Building upon this idea, adaptation
is discussed as a slowly evolving feedback mechanism (Sec. II B).
Further highlighted are the interplay of adaptivity and noise as
well as the role of adaptive control mechanisms in inducing critical
transitions. Complementing the discussion on the notion of adap-
tivity, the question is raised: Is adaptivity in nonlinear dynamics,
neuroscience, artificial intelligence, and socio-economic dynamics
instances of the same abstract notion? To answer this question, the
framework of dependent type theory is introduced and suggested to
be utilized for comparing different notions of adaptivity (Sec. II C).
Section II D summarizes the first part from the complex networks
perspective where the interplay between dynamics and network
topology is in the center of interest. Here, various connections
between models featuring adaptivity are shown, and adaptive net-
work models are highlighted as a powerful modeling approach
toward real-world dynamical systems.

Section III focuses on the important role of adaptation in
physiology, especially in the form of perception mechanisms and
neuronal plasticity. Evolution tends to come up with similar solu-
tions to related problems. The physiological properties of biological
systems can be seen as complex networks of interactions, which are

known as regulatory networks. Under similar contexts, such reg-
ulatory networks of distinct systems share similarities—these are
so-called adaptation motifs, where specific adaption motifs have dis-
tinct functional significance (Sec. III A). Organisms, and, hence,
their brains, have developed strategies to adapt to modifications
in the environment across timescales, from adaptation to sudden
changes in sensory stimuli to long timescales of evolutionary pro-
cesses. Also, learning and memory formation can be viewed as
adaptive processes, where learning in neuronal circuits relies on
short- and specifically long-term synaptic plasticity (Sec. III B). Neu-
ronal systems often consist of millions of neurons whose individual
dynamics are often not accessible with mathematical methods. How-
ever, for the macroscopic collective dynamics emerging in such
systems, several methodologies have been developed. A powerful
method is the next generation neural mass approach, which allows
for a low-dimensional reduction of neuronal populations equipped
with frequency adaptation and short-term plasticity (Sec. III C).
Computational models have proven to be useful for understanding
the mechanisms underlying adaptation mechanisms in the brain.
In medicine, for example, deep brain stimulation is the gold stan-
dard for treating medically refractory Parkinson’s patients who
suffer from various motor and non-motor-symptoms and display
an abnormal neuronal synchrony. Considering synaptic plasticity
in computational modeling enables to design appropriate therapeu-
tic stimulation (Sec. III D). Music is a constant adaptation process,
where adaptations are active processes, including changing strate-
gies, emotional reactions, or the development of new abilities. A
physical culture theory is assuming music as an adaptive system
to be represented by spatiotemporal electric fields in the brain,
consisting of impulses, physical energy bursts, sent out, returning
with certain damping, thereby causing new impulses (Sec. III E). In
experiments, the magnitude of the neural response in the auditory
cortex is decreasing if the same stimulus is presented repetitively
with a constant stimulus onset interval. The gradual reduction of
the magnitude is termed adaptation and is suggested to be due to
modulations of synaptic coupling between neurons (Sec. III F).

Another wide field where adaptivity plays a key role is artifi-
cial intelligence and machine learning. We illuminate this field in
Sec. IV. Indeed, at its very heart, “learning” means “adapting” to
input data. The adapting system can, therefore, be, for example, a
real or “artificial brain,” such as a neural network, and the adapta-
tion rules may depend on the learning task, network architecture,
and learning algorithm. Section IV provides a variety of perspec-
tives on adaptivity in artificial learning, discussing current research,
new applications, and open challenges. The methods span from deep
neural networks (Sec. IV A), recurrent neural networks (Sec. IV B),
and reinforcement learning (Sec. IV D) to reservoir computing
(Sec. IV C). A common focus throughout Sec. IV is the two-way
relationship between natural sciences and machine learning. On
the one hand, tools from theoretical physics may provide insights
into the functionality of machine learning algorithms, pushing our
understanding beyond the “black box” paradigm. In particular, con-
cepts from statistical physics are explored to address fundamental
questions, such as reconciling the success of artificial learning with
the curse of dimensionality (see Sec. IV A). Second, simple mod-
els inspired from physics are used to generate training data to
probe specific features of machine learning algorithms, such as their
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ability to extract and utilize memory of a given input sequence
(see Sec. IV B). On the other hand, the usage of machine learning
tools to investigate (Secs. IV B and IV D) or to control (Secs. IV C
and IV E) complex physical systems is a field of rapidly growing
relevance. A sticking example is how reservoir-computing tech-
niques open up new strategies to control chaotic nonlinear dynamics
(Sec. IV C). In this context, another major challenge concerns the
exploration of the rules of (and the control of) the collective or co-
operative behavior of self-organizing multi-agent systems; from the
design of new algorithms (Sec. IV D) to the control of real-world
microscopic “biomimetic” intelligent particles and swarms of robots
(Sec. IV E).

Section V is devoted to the large field of a socio-economic
system. Here, adaptive mechanisms appear naturally and play an
important role for their modeling. Adaptive networks also play a
central role not only for realistic investigations of spreading dynam-
ics but can help to study and design interventions for disease con-
tainment, mitigation, and eradication. Elaborating on this, in the
last section of this fourth part, an overview on adaptivity in epi-
demiology is provided (Sec. V A). Another interesting topic is the
interaction of social and epidemic systems where also the coevo-
lutionary (adaptive) dynamics of the interaction structure and the
dynamical units is in the focus of recent research (Sec. V B). Apart
from the connection to epidemiology, social systems themselves are
adaptive. Here, adaptivity can be regarded as the process of changing
social systems through external influences. In this context, under-
standing these changes induced by increasing connectivity through
online platforms or increasing availability of information are driving
research questions (Sec. V C). The human factor is also considerably
important for the (adaptive) control of power grids, e.g., consid-
ering a temporally changing energy consumption (Sec. V D). The
challenges in order to be compatible with new circumstances are dis-
cussed from different viewpoints. In power grid systems, we find the
adaptation of both the topology and dynamics of the grid. On the
other side, there is an anthropogenic influence on the Earth system
(Sec. V E). Here, we can learn much from the past about adaptive
mechanisms in this complex system and the perturbations to which
it is subjected. With this, Sec. VI of this article provides challenging
open research questions that could be solved by using adaptivity one
or the other way.

II. NETWORK PERSPECTIVE AND MODELS OF

ADAPTIVITY

In this section, different ideas are discussed on how adaptivity
can be defined in the context of nonlinear dynamics, control theory,
and network science, and how adaptive systems could be used to
understand real-world systems of interacting units (networks). Per-
spectives are provided on how different dynamical models featuring
adaptive mechanisms are related and how these models can be used
to investigate the dynamics of natural or man-made systems.

A. Structural adaptivity in dynamical networks—By

Serhiy Yanchuk

Adaptivity is a general concept commonly understood as a pro-
cess or ability of a system to adjust itself to changing (external)

conditions. Thus, when speaking of adaptivity, one implicitly distin-
guishes the “conditions” (X) and the adaptation property (Y). In the
following, an attempt is made to define these two variables (compo-
nents) with a special reference to the theory of adaptive dynamical
networks.

• The structure Y is the adaptation matter, the part of the system
responsible for the adaptation properties. In adaptive dynamical
networks, this is usually understood as a network structure rep-
resented by connectivity and/or connection weights. By analogy
with dynamical networks and neuroscience in general, we refer
to this variable as a structure.

• The function X represents the conditions that trigger the adap-
tation. In adaptive dynamical networks, this is usually the
dynamic state of the network, i.e., the collective and individual
dynamics of the nodes. This factor may also include stochastic
or external perturbations. These variables usually change with
time, i.e., X(t) in the case of temporal adaptation. Following the
terminology of the dynamical networks, we generally refer to
this variable as function.

The non-adaptive systems correspond to a constant structure
Y = Y0, which is independent of the function X(t). By assuming
that X is governed by a system of differential equations, a general
representation of a non-adaptive system is

Ẋ(t) = f(X, Y), (1)

Ẏ = 0. (2)

We assume here the general case that the structure Y influences the
function X. Systems (1) and (2) are often used for modeling neural
networks with fixed connectivity Y. An example of a non-adaptive
dynamical network is the coupled system

ẋi = fi(xi, t)+
N
∑

j=1

κijgij(xi, xj),

where xi(t) determines the state of node i = 1, . . . , N and κij is the
connection weight (κij = 0 if there is no connection). The absence of
network adaptivity is indicated by the fixed structure κij. The func-
tion variable in this example is X = (x1, . . . , xN), while the structure
variable is Y =

{

κij

}

i,j=1,...,N
and it is constant. The class of non-

adaptive networks is extremely useful for modeling many processes
and phenomena in nature and technology;10–12 see also Secs. II D
and V A–V C.

When the structure depends on the function, we obtain an
adaptive system

Ẋ(t) = f(X, Y), (3)

Ẏ(t) = g(X, Y), (4)

with a mutual structure–function interaction.13
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An example of an adaptive dynamical network is

ẋi = fi(xi, t)+
N
∑

j=1

κijg(xi, xj), (5)

κ̇ij = h(xi, xj, κij), (6)

where the rule (6) is responsible for the adaptation and the temporal
changes of the structure Y. The rule (6) is the case when the connec-
tion weight between node i and node j depends only on the function
of these nodes xi(t) and xj(t). Of course, this is not the only possi-
ble adaptation rule. Particular realizations of the adaptation rule (6)
are neuronal systems with plasticity. Specifically, when the plastic-
ity is long-term, i.e., the structural changes act on a slower timescale
than the functional dynamics (neuronal spiking),14–18 this leads to
systems with multiple timescales. As a representative system, the
paradigmatic adaptive network of phase oscillators,

φ̇i = ωi −
N
∑

j=1

κij sin(φi − φj + α), (7)

κ̇ij = −ε
(

κij + sin(φi − φj + β)
)

, (8)

appears to be very useful to study various phenomena in adap-
tive networks, such as synchronization, frequency clustering, recur-
rent synchronization, adaptivity-induced resistance to noise, and
others.17,19–24 Equations (7) and (8) are a special case of the more
general equations (9) and (10) in Sec. II D; see also the exam-
ples discussed there. All of these phenomena are also revealed in
more realistic and complex models, such as Hodgkin–Huxley neu-
rons with spike-timing-dependent plasticity.17,25 Thus, paradigmatic
models of the type (7) and (8) have demonstrated their effectiveness
in studying and predicting novel phenomena characteristic for large
classes of adaptive networks.

The main challenges in studying the above classes of adaptive
dynamical networks are as follows:

• High dimensionality. If the number of nodes in the network
is N, the number of possible connections is N2. Thus, the
dimensionality of the model increases dramatically compared
to dynamical networks with a fixed structure.

• If the adaptation is slow, i.e., ε � 1 in Eq. (8), the system
becomes multi-scale with the slow manifold of dimension N2.
This additional multiscale structure provides opportunities for
analysis,26 but for large networks, it goes far beyond the standard
results employing geometric singular perturbation theory.

Despite recent advances in the study of dynamical adaptive net-
works, many challenging problems remain unsolved. These prob-
lems include mean-field theory, application to climate network
modeling, understanding the role of adaptivity in machine learn-
ing, developing dimensionality reduction techniques, particularly
methods for dealing with extremely high-dimensional slow mani-
folds. Besides large networks, small networks with adaptivity appear
to have a highly nontrivial bifurcation structure compared to their
non-adaptive counterparts. Studying and finding typical bifurca-
tion scenarios in such systems (also known as Eckhaus instability or
Busse-balloons in PDEs) is another open and challenging problem.

B. Adaptation, slow feedback, and noise—By Igor

Franović

Adaptation is often qualitatively described as a slow evolu-
tion of network connectivity patterns due to a feedback from the
nodal dynamics, drawing comparison to synaptic plasticity in neu-
ronal systems;27 see also Sec. II A. Nevertheless, one should bear
in mind that adaptation may also directly impact the features of
nodal dynamics, with examples ranging from frequency adapta-
tion in clapping audiences or flashing fireflies28 to scenarios where
the limited availability of metabolic resources modulates neuronal
excitability29,30 or contributes to maintaining neuronal systems near
criticality.31 A detailed discussion concerning the two latter effects
in relation to spike-frequency adaptation and short-term synap-
tic plasticity can be found in Sec. III C. While these two types of
adaptation, affecting the coupling or nodal dynamics, may appear
independently, it is also not uncommon that they act in concert
guiding the system’s self-organization.32,33 So far, most of the system-
atic insights on the role of adaptation have been gained regarding
its impact on synchronization, including how it gives rise to differ-
ent states of (partial) synchrony,16,21,34–37 or the way it modifies the
order of synchronization transition28 and the associated nucleation
process.38 Another active branch of research concerns adaptation
as a general control mechanism, establishing its role in inducing
critical transitions30,31 and triggering of alternating or cyclic activ-
ity patterns.39–41 Moreover, unfolding studies employing reservoir
computing for design of controllers for nonlinear, and, in particular,
chaotic systems, also hold great promise; see Sec. IV C.

1. Interaction of adaptation and noise

An important, but still insufficiently understood problem con-
cerns the interaction between adaptation and noise, an issue natu-
rally arising in applications to neuroscience. In spite of an apparently
desynchronizing effect of noise, it has been shown that adapta-
tion and noise may give rise to a self-organized network activity
that promotes growth of overall synaptic strength,17 thereby can-
celing the potentially desynchronizing stochastic effects. While this
may seem counterintuitive, one should recall that classical synaptic
plasticity rules, such as spike-timing-dependent plasticity,27 support
synaptic potentiation if coupled neurons are approximately (but
not identically) synchronized and maintain their relative order of
firing.42 However, such self-organized resilience of synchronization
to noise is so far evinced for coupled oscillators rather than coupled
excitable or mixed excitable-oscillatory populations. Addressing the
two latter cases would be highly relevant for applications in neu-
roscience where local dynamics typically involves excitability and
diversity.43–45

Apart from the mean effect on the overall coupling strength, an
additional subtlety from the interaction of adaptation and noise con-
cerning stochastic fluctuations so far addressed mostly at the micro-
scopic level. For motifs of coupled stochastic excitable units, such
an interaction may induce switching dynamics, i.e., slow stochastic
fluctuations between coexisting metastable states. The switching is
naturally reflected both at the level of nodal dynamics and the effec-
tive motif coupling configuration, given by the coupling strengths.46

In particular, for the example of a system of two identical excitable
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units, the noise can induce two different oscillatory modes with a dif-
ferent prevailing order of firing between the units. In the presence
of slow adaptation, such metastable states engage in an alternating
dynamics, accompanied by an alternation of coupling configura-
tions characterized by a strong coupling in one direction and a
strongly depressed one in the opposite direction. Translated to the
language of neuroscience, the latter effect corresponds to switching
between two functional neuronal motifs with directed couplings on
the same structural motif.47

Concerning stochastic fluctuations at the level of a single
excitable system, it has been shown that a slowly adapting feed-
back, acting as a low pass filter to affect the unit’s excitability,40

may in an interaction with noise induce a novel form of behavior
called stochastic bursting, an alternating activity involving episodes
of relative silence interspersed with irregular spiking. Such stochas-
tic bursting occurs in the parameter region that in the limit of an
infinite scale separation between the units’ dynamics and adaptation
supports bistability between noise-induced and noise-perturbed
spiking. Apart from inducing a novel type of behavior, adaptation
may also provide for a control mechanism of coherence resonance40

or may make the noise-induced suppression of spiking frequency
within inverse stochastic resonance more efficient.41,48

2. Impact of an adaptation rate

An often overlooked feature of adaptation when elaborating its
impact on emergent dynamics is the adaptation rate. Classically, an
adaptation rate is considered to be sufficiently slow such that the
overall dynamics may be treated within the framework of singular
perturbation theory,26 separating between the fast local dynamics
of units and the slow evolution of adaptation variables. However,
the impact of an adaptation rate has not been investigated system-
atically, mostly due to a lack of an appropriate analytical method.
In certain examples, it has numerically been shown that intermedi-
ate adaptation rates can substantially deviate the system’s behavior
from the predictions of singular perturbation theory,46 and finding
appropriate means to address this issue remains an open problem.

3. Mathematical approaches to adaptation

From a broader perspective, developing mathematical
approaches to study adaptive networks is challenging because it
requires reconciling different aspects of system behavior, such as
criticality, feedback, multiple timescale dynamics, diversity, and
noise. So far, an extension of a master stability function approach49

has proven effective in reducing the synchronization problem
by separating for dynamical and topological features, allowing
for a classification of system states with respect to synchroniza-
tion properties. For coupled phase or neural oscillators, such an
approach has revealed that adaptation may induce a desynchro-
nization transition21 and support different multi-frequency hierar-
chical cluster states and chimera-like states of partial synchroniza-
tion. Nevertheless, the general problem of the impact of adaptation
on system’s multistability remains open. In certain cases, such as
the Kuramoto phase oscillators with an asymmetric spike-timing-
dependent plasticity-like plasticity rule, adaptation has been shown
to induce multistability between the synchronized, desynchronized,

and multiple partially synchronous states.16 Also, for adaptively cou-
pled identical phase oscillators, multicluster states have been shown
to exhibit a high degree of multistability.34,35 Apart from under-
standing the impact on synchronization problems, an important
issue concerns the role of adaptation in inducing cyclic activity
patterns by controlling critical transitions of the adaptation-free sys-
tem. Treating such problems, such as the onset of collective activity
bursts in heterogeneous systems adaptively coupled to a pool of
resources,39 requires combining different reduction approaches50–52

and multiple timescale methods. Nevertheless, developing rigor-
ous mathematical approaches where mean-field methods apply to
layer dynamics while adaptation is treated by a reduced system
is a vibrant field of investigation. In parallel, a hybrid approach
for treating the interaction of adaptation and noise by combin-
ing the Fokker–Planck formalism with multiple timescale methods
has recently been derived.40 Further generalization of an adap-
tation concept to cases where an adaptation rate itself varies in
time may additionally require including methods from nonequi-
librium thermodynamics and information theory. This naturally
applies to sensory adaptation,53,54 where information transmission
is optimized under different constraints, including metabolic costs,
dynamic range, and intrinsic stochasticity.55 From the perspective
of nonequilibrium thermodynamics, sensory adaptation is a dissi-
pative process ruled by an energy–speed–accuracy tradeoff,53 where
one may exploit the relation between adaptation and irreversibility,54

quantified by the entropy production.

C. Adaptivity: A shared notion?—By Nuria Brede and

Nicola Botta

This article discusses notions of adaptivity from the perspec-
tive of different disciplines, ranging from non-linear dynamics to
psychology, neuroscience, and computer science. Yet, while most
authors would agree that adaptivity is a property, their answers to the
question “A property of what?” presented in the various contribu-
tions seem to differ. This is not accidental, but simply a consequence
of the exploratory nature of the paper, and it poses a challenge for
future work: Can we find a framework that is sufficiently generic
to formulate and compare the notions of adaptivity in different
research areas, understand their differences and similarities, iden-
tify shared concepts and computational methods, and facilitate the
communication between disciplines?

We argue in this section that dependent type theory would be
an ideal candidate for (formulating) such a framework. What do
we mean by this? The reader who is unfamiliar with dependent
type theory should for the moment think of it as a mathematical
logic fused with a programming language (we will explain more in
Sec. II C 2). Ionescu et al.56 argue that type theory fits most of the
requirements for frameworks for modeling and programming put
forward by Broy et al.57 In a research program originally initiated
by Ionescu, type theory has been applied to understand notions of
vulnerability, viability, reachability, avoidability (discrete dynamical
systems), optimality (control theory), climate sensitivity, commit-
ment, and responsibility (climate policy).58–61 The largest study of the
above is Ionescu et al.58 where various notions of vulnerability, stem-
ming from domains such as climate change, food security, or natural
hazard studies, are compared.
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1. Notions of adaptivity

A key idea commonly put forward is that adaptivity is a “feature
of natural and artificial complex systems.” Thus, from this perspec-
tive, adaptivity is a property of a system. However, in their 1992
seminal paper “Reinforcement learning is direct adaptive optimal
control,”62 Sutton et al. argue that what is adaptive is a method for
controlling a system, rather than the system itself. This suggests to
see adaptivity as a property of optimal control methods.

It is worth noticing that optimal control methods do not need
to be adaptive. At least since 1957,63 we know that many determin-
istic and stochastic sequential decision problems can be solved for
optimal policies via dynamic programming. Dynamic programming
can indeed be applied to also solve non-deterministic, fuzzy, and,
more generally, monadic sequential decision problems,64 as long as
the uncertainty monads and the measures of uncertainty (for exam-
ple, for stochastic uncertainty, the expected value measure) satisfy
certain compatibility conditions.65 However, when the transition
function (or the reward function) of a sequential decision problem
is not given, optimal policies have to be learned by interacting, step
by step, with an environment: for example, via Q-learning.66 This is
learning to act optimally rather than optimal planning.

Even if we share the intuition that adaptivity is a property of a
system, or of a method for controlling a system that interacts sequen-
tially with an environment, it remains to clarify whether the notions
of adaptivity in different domains arise as instances of the same
abstract notion or whether they are genuinely different, potentially
even incompatible. Such a clarification requires specifying and com-
paring different notions of adaptivity in a common framework. As
mentioned above, in prior work, we have employed type theory for
this purpose.

2. Logic and type theory

Most scientists are well trained in applying elementary math-
ematics and first-order logic to formulate properties in specific
domains; e.g., in mathematics, you might define what it means for
a function to be injective, or in dynamical systems theory, what it
means for a function to be the flow of a dynamical system. Therefore,
for a mathematically trained people, logic is a well-suited language
to make precise and develop a shared understanding of concepts.
Indeed, this purpose is at the heart of a modern mathematical logic,
at least going back to Leibniz’ vision of a universal language that
would not suffer from the ambiguities of natural language.

Dependent type theory67 takes the advantages of a mathemat-
ical logic one step further. It is a theory that may be seen both as
a higher-order logic and as a pure functional programming lan-
guage with a static type system. It was developed as a foundational
theory for constructive mathematics by the Swedish mathematician
and philosopher Per Martin-Löf.68 Dependent type theory has solid
implementations69–73 and impeccable mathematical credentials74–77

(see also Refs. 78 and 79 for popular science accounts, including
the voices of mathematicians who have turned to computer-aided
formalization).

Due to its double role as logic and programming language,
dependent type theory is well-suited as a framework for both formu-
lating and machine checking mathematical specifications. Because

types can represent propositions and well-typed programs corre-
spond to proofs,80 dependent type theory is also the key for writ-
ing programs that are correct “by construction,” bridging the gap
between the mathematical model and implementation. This is cru-
cial for safety-critical applications81–85 but also in research areas in
which testing model implementations is nearly impossible or too
expensive.86

3. Monadic dynamical systems

The vulnerability study of Ionescu et al.58 led to the introduc-
tion of monadic dynamical systems, combining ideas from generic
programming87,88 and category theory89 with dynamical systems the-
ory. Monadic dynamical systems are sufficiently general to capture
various different definitions of vulnerability as instances of a com-
mon abstract schema. The framework for vulnerability was later
extended by Botta et al.59,64,65 to a framework for specifying and
solving sequential decision problems within dependent type theory.
We think that this framework could also be applied and suitably
extended to study different notions of adaptivity.

D. Partial synchronization patterns in adaptive

networks—By Eckehard Schöll

This subsection explores the applications of network models as
outlined in Sec. II A in different domains. From a complex networks
perspective, the interplay between dynamics and network topol-
ogy is in the center of interest. Collective dynamics in networks
of nonlinear oscillators is often characterized by synchronization
phenomena,10,11 as already studied by Christiaan Huygens in 1656.
Among these, partial synchronization patterns have become a major
focus of research recently.90 Examples are provided by cluster or
group synchronization (where within each cluster, all elements are
completely synchronized, but between the clusters, there is a phase
lag, or even a difference in frequency), and many other forms. A
particularly intriguing example of partial synchronization patterns,
which has recently gained much attention, is chimera states, i.e.,
symmetry-breaking states of partially coherent and partially inco-
herent behavior; for recent reviews, see Refs. 91–93. Chimera states
in dynamical networks consist of spatially separated, coexisting
domains of synchronized (spatially coherent) and desynchronized
(spatially incoherent) dynamics. They are a manifestation of spon-
taneous symmetry-breaking in systems of identical oscillators and
occur in a variety of physical, chemical, biological, neuronal, ecolog-
ical, technological, or socio-economic systems. Other examples of
partial synchronization include solitary states,94–96 where one single
or a few elements behave differently compared with the behavior of
the background group, i.e., the neighboring elements or hierarchical
multifrequency clusters.20

In adaptive networks, the coupling weights are not fixed but
are continuously adapted by feedback of the dynamics, and both
the local dynamics and the coupling weights evolve in time as
co-evolutionary processes; compare with discussions in Secs. II A
or II B. Adaptive networks have been reported for chemical,97

epidemic98 (see also Secs. V A and V B), biological, and
social systems99 (see also Sec. V C). A paradigmatic exam-
ple of adaptively coupled phase oscillators has recently attracted
much attention20,21,34,35,100–107 and it appears to be useful for
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predicting and describing phenomena in more realistic and
detailed models.18,25,108,109 It describes N adaptively coupled phase
oscillators20,34 [as a general case of Eqs. (7) and (8) in Sec. II A],

φ̇i = ωi +
N
∑

j=1

aijκijf(φi − φj), (9)

κ̇ij = −ε
(

κij + g(φi − φj)
)

, (10)

where φi ∈ [0, 2π) represents the phase of the ith oscillator
(i = 1, . . . , N), ωi is its natural frequency, and κij is the coupling
weight of the connection from node j to i. Furthermore, f and g
are 2π-periodic functions where f is the coupling function, g is the
adaptation rule, and ε � 1 is the adaptation time constant. The
connectivity between the oscillators is described by the entries aij ∈
{0, 1} of the adjacency matrix A. In particular, for the Kuramoto
phase oscillator,110 the coupling function is f(φ) = − sinφ , and
synaptic neuronal plasticity may be described by g(φ) = − cos(φ
+ β) where the parameter β describes different adaptivity rules.

One purpose of this section is to provide a new perspective by
demonstrating that a wide range of models ranging from neuronal
networks with synaptic plasticity via power grids to physiological
networks modeling tumor disease and sepsis can be viewed as adap-
tive oscillator networks, and partial synchronization patterns can be
described on equal footing. This modeling approach allows one to
transfer methods and results from one system to the other.

A common class of network models describing power grids is
given by N coupled phase oscillators with inertia,111 also known as a
swing equation. It has been widely used in works on synchronization
of complex networks and as a paradigm for the dynamics of modern
power grids,112–122

Mφ̈i + γ φ̇i = Pi +
N
∑

j=1

aijh(φi − φj), (11)

where M is the inertia coefficient, γ is the damping constant, Pi

is the power of the ith oscillator (related to the natural frequency
ωi = Pi/γ ), h is the coupling function, and aij is the adjacency
matrix as defined in Eq. (9). Another view on the role of adaptivity
for power grid systems can also be found in Sec. V D.

It has been shown123 that the class of phase oscillator models
with inertia is a natural subclass of systems with adaptive coupling
weights where the weights denote the power flows between the
corresponding nodes. We first write Eq. (11) in the form

φ̇i = ωi + ψi, (12)

ψ̇i = − γ

M



ψi −
1

γ

N
∑

j=1

aijh(φi − φj)



 , (13)

where ψi is the deviation of the instantaneous phase velocity from
the natural frequency ωi. We observe that this is a system of N
phase oscillators (12) augmented by the adaptation (13) of the
frequency deviation ψi. Similar systems with a direct frequency
adaptation have been studied in Refs. 28 and 124–126. Note that the
coupling between the phase oscillators is realized in the frequency

adaptation, which is different from the classical Kuramoto system.110

In order to introduce coupling weights into system (12) and (13),

we express the frequency deviation ψi as the sum ψi = ∑N
j=1 aijχij

of the dynamical power flows χij from the nodes j that are cou-
pled with node i. The power flows are governed by the equation
χ̇ij = −ε

(

χij + g(φi − φj)
)

, where g(φi − φj) ≡ −h(φi − φj)/γ are
their stationary values127 and ε = γ /M. It is straightforward to check
that ψi, defined in such a way, satisfies the dynamical equation (13).

As a result, the swing equations (12) and (13) can be written as
the following system of adaptively coupled phase oscillators:

φ̇i = ωi +
N
∑

j=1

aijχij, (14)

χ̇ij = −ε
(

χij + g(φi − φj)
)

. (15)

The obtained system corresponds to (9) and (10) with coupling
weights χij and coupling function f(φi − φj) ≡ 1. The coupling
weights form a pseudocoupling matrix χ describing the power flow
between the nodes. Note that the base network topology aij of the
phase oscillator system with inertia equation (11) is unaffected by
the transformation.

In adaptive phase oscillator networks, there exists a diversity of
multifrequency cluster states,20,35,107 including chimera states20 and
solitary states.128 In a multifrequency cluster state, all oscillators
split into M groups (called clusters), each of which is character-
ized by a common cluster frequency�µ. In particular, the temporal
behavior of the ith oscillator of the µth cluster (µ = 1, . . . , M) is
given by φ

µ

i (t) = �µt + ρ
µ

i + s
µ

i (t) where ρ
µ

i ∈ [0, 2π) and s
µ

i (t)
are bounded functions describing different types of phase clusters
characterized by the phase relation within each cluster.34

As an example, in Figs. 2(a) and 2(c), we present a four-cluster
state of in-phase synchronous clusters on a globally coupled net-
work. Hierarchical multicluster states are built out of single cluster
states whose frequency scales approximately with the number Nµ of
elements in the cluster. The coupling matrix displayed in Fig. 2(e)
shows the characteristic block diagonal shape known for adaptive
networks. In particular, the oscillators within each cluster are more
strongly connected than the oscillators between different clusters.

A second example, which uses a splay state with φj = 2πkj/N
and wavenumber k ∈ N as the building block for multiclusters,
is shown in Figs. 2(b), 2(d), and 2(f). Splay states are character-

ized by the vanishing local order parameter Rj = |∑N
k=1 ajk exp(iφk)|

= 0. Figures 2(b), 2(d), and 2(f) present a hierarchical mixed-type
multicluster on a nonlocally coupled ring of phase oscillators. It con-
sists of one large splay cluster with wavenumber k = 2 and a small
in-phase cluster consisting of three solitary states.

In summary, the findings for partial synchronization of adap-
tively coupled phase oscillators can be transferred to networks of
phase oscillators with inertia. This holds not only for simple homo-
geneous systems, but also for heterogeneous real-world networks,
such as the German ultrahigh voltage power grid.123

In recent years, studies on both types of models, oscillators with
inertia and adaptively coupled oscillators, have revealed a plethora
of common dynamical scenarios, including solitary states,118,119,128,130

multifrequency clusters,34,35,117,131 chimera states,20,103,132 hysteretic
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FIG. 2. Hierarchical multicluster states in networks of coupled phase oscilla-
tors with inertia. Panels (a) and (b), (c) and (d), and (e) and (f) show the
temporally averaged phase velocities 〈φ̇j〉, phase snapshots φj(t), and the
pseudocoupling matrices χij(t), respectively, at t = 10 000. In (e), the oscil-
lator indices are sorted in an increasing order of their mean phase velocity.
The states were found by numerical integration of (11) with identical oscilla-
tors Pi = 0, h(φ) = −σγ sin(φ + α), and uniform random initial conditions
φi(0) ∈ (0, 2π), ψi(0) ∈ (−0.5, 0.5). The parameter α is a phase lag of the
interaction.129 Parameters: (a), (c), and (e) globally coupled networks, M = 1,
γ = 0.05, σ = 0.016, α = 0.46π and (b), (d), and (f) nonlocally coupled ring
networks with coupling radius P = 40,M = 1, γ = 0.3, σ = 0.033, α = 0.8π ;
N = 100. After Berner et al., Phys. Rev. E 103, 042315 (2021). Copyright 2021
American Physical Society.123

behavior, and non-smooth synchronization transitions.38,101,116,133,134

Power grids, as well as neuronal networks with synaptic plastic-
ity, and other adaptive networks describe real-world systems of
tremendous importance for our daily life, which exhibit partial syn-
chronization patterns that may be important for the understanding
of the onset of instability. Neural systems and power grid networks
are also discussed in Secs. III and V, respectively. A particularly
intriguing example and a future perspective is the functional model-
ing of physiological two-layer networks of the immune system and
the parenchyma coupled adaptively by cytokines.135,136 This can be
used for the modeling of tumor disease and sepsis with the immune
layer as a reference point, where the healthy state is characterized by
complete frequency synchronization and the pathological state is a
multifrequency cluster state.

III. PERCEPTION AND NEURAL ADAPTIVITY

In this section, the focus is on adaptive mechanisms in phys-
iological systems. Here, basic regulatory principles are highlighted,
fundamental concepts for a physical culture theory are developed,
mechanisms and modeling of perception are described, and concrete
medical applications on neural networks are presented.

A. Design principles for adaptation in physiological

systems—By Omer Karin

Here, we will explore motifs for adaptation in physiological reg-
ulatory networks. The physiological properties of biological systems
arise from the myriad of interactions of their underlying compo-
nents. As an example, the production rate of proteins from a gene
depends on the abundance of other proteins, known as transcrip-
tion factors, whose production depends on the abundance of other
transcription factors. Similarly, the secretion of a hormone to the
bloodstream depends on the concentrations of other blood factors,
which are themselves affected by the levels of other hormones. These
complex networks of interactions are known as regulatory networks.

To study regulatory networks, it is useful to notice that evolu-
tion tends to come up with similar solutions to related problems.
It is often the case that, under similar contexts, the regulatory net-
works of distinct systems share mathematical similarities—these are
so-called regulatory motifs or design principles.137–139 By identify-
ing such design principles, one can extract a deeper understanding
of the functional significance of the regulatory interactions. We
may, therefore, ask what are the design principles that support
adaptation—the ability of the system to adjust itself to function
properly, despite uncertainty in internal parameters or the external
environment.

Consider the problem of maintaining homeostasis of a blood
factor, such as glucose (denoted x). Blood glucose needs to be main-
tained within a narrow range (around 5 mM) with deviations being
detrimental or even life-threatening. Our bodies have a natural
mechanism to lower blood glucose—we have specialized cells called
β-cells, which can sense blood glucose and secrete the hormone
insulin, which causes remote cells (fat cells, skeletal muscle cells, and
liver cells) to reduce glucose levels. This mechanism can maintain
glucose around some steady state, which would depend sensitively
on many parameters, including the abundances β-cells, plasma vol-
ume, and the responses of cells to insulin. These can (and do) vary
greatly between individuals; yet, we know that most individuals can
maintain blood glucose within a narrow range.140

A related problem occurs in bacterial chemotaxis. The bac-
teria E. coli navigates with a strategy resembling a random walk,
where it moves and reorients with some set rate φ (typically once
every few seconds). This is known as the tumbling rate. Naviga-
tion is achieved by adjusting φ according to sensed ligand molecules
known as attractors and repellants. A step increase in an attrac-
tant molecule transiently decreases φ, leading to a net drift toward
areas with higher attractant concentration. However, at fixed attrac-
tant concentration u, over a wide sensed range, φ is constant and
independent of u.141,142 How is φ maintained constant, despite vari-
ations in the input activity of the circuit?

It has long been suggested that both problems are closely
related to the engineering problem of disturbance rejection.143–145
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FIG. 3. Motifs for adaptation in physiological systems. (a) In hormone circuits, a hormone-regulated variable governs the growth rate of the tissue responsible for its
secretion, enabling precise adaptation. This adaptation mechanism ensures that the dynamics of the regulated variable remain robust in the face of physiological variations.
(b) Organisms employ a combination of logarithmic sensing, precise adaptation, coupled to movement regulation, to achieve robust sampling of an input field. This motif is
observed in chemotaxis and potentially in the mammalian dopamine system.

This problem is exemplified by how a cruise-control system of a
car maintains a fixed speed on varying slopes, or how a thermostat
maintains a fixed temperature in uncertain operating conditions.
The solution requires integral feedback: the controller feedback
increases with the error (it integrates the error); therefore, at a steady
state, the error is zero.

How is integral feedback implemented in biological circuits? In
hormone circuits, there appears to be a simple answer [Fig. 3(a)]. Let
x be the regulated variable and y be its regulating hormone, with Z
being the mass of the tissue that secretes the hormone. In the blood
glucose system, x is the blood glucose, y is the blood insulin, and Z
is the β-cell mass. The following motif is observed across hormone
systems: there is a slow negative feedback where the main regulator
of the growth dynamics of Z is x; that is, x adjusts the death-, growth-
, and replication-rates of the cells of Z. Thus,

Ż = f(x)Z, (16)

where f(x) is the x-dependent growth rate. The system will settle at
the steady state where f(x) = 0 (denoted x0) regardless of variation
in the other physiological parameters, including plasma volume,
secretion rate, and the responses of remote cells.

The ubiquity of the motif suggests that it is uniquely advan-
tageous. Why is it so prevalent? Beyond integral feedback, another
intriguing phenomena occur. Consider, for example, the following
simple model for the glucose system:

u̇ = u − sxy,

ẏ = pZ − γ y,
(17)

where s is the sensitivity to the response of the hormone and p
is the product of the per-cell secretion and (inverse) plasma vol-
ume. u is the time-dependent input, incorporating, e.g., meal intake.
Equation (16) not only sets the steady state of x to x = x0, it makes

the entire dynamics in response to any input u invariant of s,p.146

These scale-invariant dynamics are evident in clinical data from
distinct hormonal systems.146–149 Thus, in hormone systems, neg-
ative feedback from the regulated variable to its controlling tissue
allows the system to adapt its dynamics to variability in key system
parameters, which are uncertain and may be highly variable.

Scale invariance also occurs in bacterial chemotaxis; in this
case, the dynamics of the tumbling rate φ(t) are modulated by the
attractant input u(t) in a manner, which depends only on rela-
tive, rather than absolute, changes in u(t), a phenomenon known as
fold-change detection.150 Fold-change detection is documented in the
navigation systems of other simple organisms, including in worms
and slime molds.151,152

What about more complex organisms? In vertebrates, includ-
ing mice and humans, movement is controlled by the transmission
of dopamine in the mid-brain. Dopamine is secreted in response to
surprise (or prediction error) about rewards, such as food or drink;
better outcomes than expected cause dopaminergic neurons to fire
above their baseline rate, while worse outcomes transiently inhibit
dopaminergic firing.153 The responses are also scale-invariant.154

Finally, when the animal moves, dopamine changes in a way that
is consistent with a response to the temporal derivative of a spatial
input field.155

Upon closer examination, the dopamine system shares key sim-
ilarities with the chemotaxis system, where in the case of dopamine,
the input field corresponds to expectations about rewards.156 This
input field decays spatially from actual locations where rewards
are provided, similar to the decay of a chemical attractant from
its source. Dopamine also invigorates movements in a manner
analogous to the effect of attractants on bacterial movement.

We, therefore, identified another regulatory motif: fold-change
detection of an input field, which modulates movement statistics
[Fig. 3(b)]. What is the function of this motif? From the perspective
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of sensing, scale invariance allows us to remove uncertainty and
retain sensitivity over a wide dynamic input range. An additional
distinct advantage is apparent when we consider the coupling
between sensing and movement. The fold-change detection circuit
calculates the temporal logarithmic derivative of the input u(t). In a
spatial setting, we can consider a spatial input field U(x); the move-
ment dynamics of the organism over long time- and length- scales
are captured by the stochastic dynamics,

dx = βv2φ∇ log U dt + v2
√

2φ dW, (18)

where v is the typical movement speed, and β depends on circuit
parameters. The steady-state distribution of the organism location
is P(x) = U(x)β , which only depends on circuit parameters (rather
than movement parameters); the motif, thus, provides a robust
mechanism for sampling a power of the input field. This is again
consistent with experimental observations on both chemotaxis and
the dopamine system.156 Thus, in these systems, a motif that appears
to support adaptation of sensing in the background of uncertain
input levels, in fact, provides a mechanism for robust sampling of
uncertain environments.

The examples considered here suggest that adaptation motifs
that allow for scale-invariant dynamics are prevalent, and that spe-
cific adaptation regulatory motifs, which recur in similar contexts,
have distinct functional significance. Identifying these motifs, and
comparing their behavior in different contexts, is due to improve our
understanding of how adaptation is achieved by complex regulatory
networks.

B. Adaptation and neuronal coding—By Christoph

Miehl

“To live is to adapt to the world around us.”157 The environment
of an organism can change on vastly different timescales, ranging
from, e.g., a change in lighting to climate change. Organisms, and
hence their brains, have developed strategies to adapt to these mod-
ifications in the environment across timescales, from adaptation to
sudden changes in sensory stimuli to long timescales of evolution-
ary processes. In the following, some key adaptive mechanisms in
the brain on short timescales are highlighted.

In principle, single neurons can adapt to changes in the envi-
ronment based on two strategies, either by modifying their intrinsic
or extrinsic properties. Intrinsic changes include, e.g., increase or
decrease in the excitability of a neuron.160 Extrinsic changes are
related to updates in the strength of the synaptic connections onto
the neuron. An extrinsic mechanism that has been linked to adap-
tation on short timescales (tens to hundreds of milliseconds) is
short-term synaptic plasticity. Input spikes that occur within short
timescales can cause a transient decrease (short-term depression)
or an increase (short-term facilitation) of the synaptic efficacy161

(see Sec. III C). The mechanism leading to a permanent increase
or decrease in synaptic strength is long-term synaptic plasticity.
In experiments, long-term changes in the synaptic strength can be
induced via a “pairing protocol,” a prominent example being spike-
timing-dependent plasticity.162 Repeatedly triggering a spike in the
postsynaptic neuron following a spike in the presynaptic neuron
within approx. 10 ms leads to long-term potentiation, while presy-
naptic spikes following postsynaptic spikes within ≈10–100 ms leads

to long-term depression.163,164 Both short- and long-term plastici-
ties have not only been identified at synapses between excitatory
neurons but also at inhibitory-to-excitatory synapses (for more
information, see Refs. 158 and 165).

A prominent experimental paradigm to test adaptation on
short timescales is the “oddball paradigm.”166 In this paradigm, one
(usually visual or auditory) stimulus is presented many times, the
standard (or familiar, predictable) stimulus. The second stimulus is
only presented rarely, the deviant (or novel, unpredictable) stimu-
lus. On the whole-brain level, electroencephalogram measurements
reveal that presenting the deviant stimulus leads to a strong negative
deflection in the EEG signal compared to the signal following from a
standard stimulus presentation, termed “mismatch negativity.”167,168

Similarly, measurements of either single neurons or neuronal pop-
ulations in sensory cortices reveal elevated neuronal responses for
deviant compared to the standard stimuli169–171 [Fig. 4(a)]. Com-
putational models have proven to be useful for understanding the
mechanisms underlying short-term adaptation in the brain (see
also Secs. III C and III F). Multiple studies suggest that short-term
plasticity is a critical mechanism underlying adaptation to famil-
iar stimuli,172–174 and short-term plasticity at inhibitory synapses
is important for controlling temporal context-dependent neuronal
responses.175,176 In a complementary approach, it has been suggested
that long-term plasticity at inhibitory-to-excitatory synapses under-
lies the difference in responses to familiar and novel stimuli.177 In
this work, increase of inhibitory-to-excitatory synapses via long-
term plasticity leads to a decrease in excitatory responses to familiar
stimuli, while novel stimuli still lead to elevated responses.

Many functional implications have been suggested for the
role of reduced neuronal activity for familiar stimuli compared to
elevated activity for novel stimuli, ranging from efficient coding
and redundancy reduction, fast detection of unexpected events, to
Bayesian inference.157,166 Another highly considered implication is
predictive coding. In this framework, it is thought that the goal of
the brain is to minimize the difference between its internal predic-
tion about the world and the sensory input.178 High responses to
novel stimuli can be thought of as the prediction error. However,
how exactly these computations are implemented in the brain and
how they are related to short- and long-term plasticity mechanisms
are largely unresolved.

Neuronal circuits also need to be robust against perturbations.
In experimental studies, disrupting the sensory inputs in the devel-
oping brain by performing deprivation experiments (e.g., closing the
eye of an animal) leads to homeostatic adjustments of the respective
neuronal circuits.179 A related question is how tightly neuron intrin-
sic properties, such as conductance densities, need to be regulated
to maintain a proper circuit function.180 For example, computa-
tional models and machine learning tools reveal that similar circuit
dynamics can be found even for vastly different ion channel conduc-
tance densities and that this degeneracy allows one to dynamically
compensate perturbations on very fast timescales.181–183 Neuromod-
ulators (such as serotonin, dopamine, etc.) are the chemicals that
control the neuron’s intrinsic properties.184 Further computational
studies have started investigating the combined effects of intrin-
sic and extrinsic neuron properties on neuronal activity and robust
formation of switches between activity states, as found, e.g., in the
sleep-wake cycle.185
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B

A

FIG. 4. (a) Oddball paradigm. Presenting a stimulus repeatedly (stimulus A) leads to a decrease of the neuronal response, while the deviant stimulus (stimulus B) leads to
a high neuronal response. Panel adapted from Wu et al., Trends Neurosci. 45, 884–898 (2022). Copyright 2022 Elsevier, Inc.158 (b) Synaptic plasticity leading to strongly
recurrently connected structures (assemblies). Panel adapted from Miehl et al., J. Physiol. (published online) (2023). Copyright 2023 John Wiley & Sons, Inc.159

Furthermore, learning and memory formation can be viewed
as adaptive processes. Interestingly, it is suggested that learning
in neuronal circuits relies on the same mechanisms as described
above, short- and specifically long-term synaptic plasticity. While
short-term plasticity might underlie working memory,186 long-term
plasticity has been hypothesized as the basis for long-term memory
storage.14 One prominent idea is that groups of strongly intercon-
nected neurons, so-called assemblies, are the basic unit of repre-
sentation in the brain, and long-term plasticity has proven key for
learning these connectivity structures in computational models159,187

[Fig. 4(b)]. Neuronal circuits face the problem of “stability-flexibility
tradeoff,” meaning that on the one hand, synaptic connectiv-
ity should remain stable to allow for long-term memory storage
and be robust against perturbations, while on the other hand,
circuits should remain flexible allowing re-learning or learning
of new representations.188 Computational studies modeling neu-
ronal networks have suggested different solutions, such as rever-
berate neuronal activity,189 inhibitory-to-excitatory plasticity,190 or
a combination of multiple synaptic plasticity and homeostatic
mechanisms.191

Despite recent promising developments, experimental and
computational studies have only scratched the surface of under-
standing the role of intrinsic, short-, and long-term plasticity mecha-
nisms in sensory adaptation. This endeavor is specifically important
because deficits of information processing in neuropsychiatric dis-
eases have been linked to disruptions in excitatory and inhibitory
local circuits,192,193 and mismatch negativity has been suggested as
a biomarker for psychotic disorders.194 Therefore, uncovering the

role of different cellular dynamics can have positive therapeutical
impacts (see Sec. III D).

C. A next generation neural mass approach to

spike-frequency adaptation and short-term

plasticity—By Simona Olmi

Neural mass models are mean-field models developed to mimic
the dynamics of homogenous populations of neurons. These models
range from purely heuristic ones (as the well-known Wilson–Cowan
model195), to more refined versions obtained by considering the
eigenfunction expansion of the Fokker–Planck equation for the dis-
tribution of the membrane potentials.196,197 However, quite recently,
a next generation neural mass model has been derived in an exact
manner for heterogeneous populations of spiking neurons.198–200

This exact derivation is possible for networks of quadratic integrate
and fire (QIF) neurons, representing the normal form of Hodgkin’s
class I excitable membranes,201 thanks to the analytical techniques
developed for coupled phase oscillators.50 Specifically, next gener-
ation neural mass models describe the dynamics of networks of
spiking neurons in terms of macroscopic variables, such as the pop-
ulation firing rate and the mean membrane potential, and they
have already found various applications in many neuroscientific
contexts.202–211 Resuming the terminology introduced in Sec. III B,
here, we investigate the dynamics emergent in next generation neu-
ral mass models when populations of neurons adapt to changes
in the environment by modifying their intrinsic or extrinsic prop-
erties. In particular, we present an overview of the emergence of
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collective dynamics (e.g., synchronous, bursting neural dynamics) in
next generation neural mass models that arise from spike-frequency
adaptation or post-synaptic plasticity.

Spike-frequency adaptation is a widespread neurobiological
phenomenon, exhibited by almost any type of neuron that generates
action potentials. It occurs in vertebrates as well as in invertebrates,
in peripheral as well as in central neurons, and may play an impor-
tant role in neural information processing. As it will be clarified
in the following, all biophysical mechanisms that can cause spike-
frequency adaptation include a form of slow negative feedback to
the excitability of the cell; therefore, spike-frequency adaptation
represents an intrinsic mechanism to adaptation. More in detail,
experimental work suggests that it is a result of different balanc-
ing currents triggered at a single cell after it generates a spike.212,213

Three main types of ionic adaptation currents that influence spike
generation are known: voltage-gated potassium currents, which are
caused by voltage-dependent, high-threshold potassium channels;214

the interplay of calcium currents and intracellular calcium dynam-
ics with calcium-gated potassium channels,215 and the slow recovery
from inactivation of the fast sodium channel.216 As a result of these
cellular mechanisms, many neurons show a reduction in the firing
frequency of their spike response following an initial increase when
stimulated with a square pulse or step.

Short-term plasticity161,217–220 refers to a phenomenon in which
synaptic efficacy changes over time in a way that reflects the
history of presynaptic activity, thus resulting to be an extrinsic
mechanism of adaptation (see Sec. III B). Two types of short-
term plasticity, with opposite effects on synaptic efficacy, have
been observed in experiments: short-term depression and short-
term facilitation. On one hand, synaptic depression is caused by
the depletion of neurotransmitters consumed during the synaptic
signaling process at the axon terminal of a pre-synaptic neuron,
and it has been linked to various mechanisms, such as receptor
desensitization,221,222 receptor density reduction,223,224 or resource
depletion at glial cells involved in synaptic transmission.32,225 On the
other hand, synaptic facilitation is caused by the influx of calcium
into the axon terminal after spike generation, which increases the
release probability of neurotransmitters. Short-term plasticity has
been found in various cortical regions and exhibits great diversity
in properties.226–228

In the context of spike-frequency adaptation, first efforts in
the direction of applying a neural mass model were made in a
network of coupled linear integrate and fire neurons, employ-
ing the Fokker–Planck formalism and an adiabatic approximation
given long spike-frequency adaptation timescales.229 Analyzing this
mean-field description, Gigante et al. were able to identify differ-
ent types of collective bursting. Recently, it has been shown that
an excitatory next generation neural mass equipped with differ-
ent short-term mechanisms of global adaptation can give rise to
bursting behaviors.209 Moreover, in Ref. 230, the authors have stud-
ied the effect of this adaptation mechanism on the macroscopic
dynamics of excitatory and inhibitory next generation neural mass
models by including in the original neural mass model proposed
in Ref. 200 an additional collective afterhyperpolarization current,
which temporarily hyperpolarizes the cell upon spike emission. In a
single population spike-frequency, adaptation favors the emergence
of population bursts in excitatory networks, while it hinders tonic

population spiking for inhibitory ones. When considering two neu-
ral masses, symmetrically coupled in the absence of adaptation, it
is possible to observe the emergence of macroscopic solutions with
broken symmetry: namely, chimera-like solutions in the inhibitory
case and anti-phase population spikes in the excitatory one. Here,
the addition of spike-frequency adaptation leads to new collec-
tive dynamical regimes exhibiting cross-frequency coupling among
the fast synaptic time scale and the slow adaptation one, rang-
ing from anti-phase slow–fast nested oscillations to symmetric and
asymmetric bursting phenomena.

In the context of short-term plasticity, a fundamental imple-
mentation has been first done by Mongillo et al. in Ref. 186 to
explain the mechanisms underlying working memory. Working
memory is the ability to temporarily store and manipulate stimuli
representations that are no longer available to the senses. In partic-
ular, in the model suggested by Mongillo and co-authors, synaptic
facilitation allows the system to maintain an item stored for a cer-
tain period in working memory, without the need for an enhanced
spiking activity. Furthermore, synaptic depression is responsible for
the emergence of population bursts, which correspond to a sub-
population of neurons firing almost synchronously within a short
time window.231,232 In this context, the bursting activity allows for
item retrieval. The working memory mechanism is investigated in
Ref. 186 by means of a recurrent network of spiking neurons, while
a simplified heuristic firing rate model is employed to gain some
insight into the population dynamics. A next generation neural mass
model encompassing short-term synaptic facilitation and depres-
sion has been recently developed to revise the synaptic theory of
working memory with a specific focus on the emergence of neural
oscillations and their relevance for working memory operations.207

In particular, Taher and co-authors in Ref. 207 consider multiple
coupled excitatory populations, each coding for one item, and a
single inhibitory population connected to all the excitatory neu-
rons. This architecture is justified by recent experimental results
indicating that GABAergic (i.e., inhibitory) interneurons in mouse
frontal cortex are not arranged in sub-populations and that they
densely innervate all pyramidal (i.e., excitatory) cells.233 The role of
inhibition is to avoid abnormal synchronization and to allow for a
competition of different items once stored in the excitatory popula-
tion activity. Furthermore, in order to mimic synaptic-based work-
ing memory, only the excitatory–excitatory synapses are assumed
to be plastic displaying short-term depression and facilitation (at
the contrary with what is shown in Sec. III B where examples of
short-term plasticity in inhibitory-to-excitatory synapses are also
considered). As a result, memory operations are joined to sustained
or transient oscillations emerging in different frequency bands,
in accordance with experimental results for primate and humans
performing working memory tasks.234–237 Due to the possibility of
reproducing working memory operations associated with popula-
tion bursts delivered at different frequencies, the neural mass model
with short-term plasticity presented in Ref. 207 can represent a first
building block for the development of a unified control mechanism
for working memory, relying on the frequencies of deliverance of
the self-emerging trains of population bursts. However, a develop-
ment toward realistic neural architectures would require to design a
multi-layer network topology to reproduce the interactions among
superficial and deep cortical layers.238
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Spike-frequency adaptation and post-synaptic plasticity can be
modeled, respectively, as an additive and a multiplicative term in
the evolution equation of the mean membrane potential in the exact
neural mass model. The novelty of this neural mass model, besides
not being heuristic, but derived in an exact manner from the micro-
scopic underlying dynamics, is that it reproduces the evolution of
the population firing rate as well as of the mean membrane poten-
tial. This allows us to get insight not only on the synchronized
spiking activity, but also on the sub-threshold dynamics and to
extract information correlated to local field potentials and electroen-
cephalographic signals, which are usually measured to characterize
the activity of the brain at a mesoscopic/macroscopic scale. Even
though these adaptation mechanisms can express tremendously dif-
ferent timescales, ranging from a few hundred milliseconds (e.g.,
spike-frequency adaptation212) to days (e.g., postsynaptic receptor
density reduction224), the mean-field descriptions remain applica-
ble. However, note that a macroscopic model of synaptic plasticity
cannot express vesicle depletion at the presynaptic site,211 as intro-
duced for single cell models in Ref. 239. Finally, thanks to the
fact that adding spike-frequency adaptation leads to new collective
dynamical regimes exhibiting cross-frequency coupling among the
fast synaptic time scale and the slow adaptation one, the adaptive
mechanisms in the framework of exact neural mass models could
be useful to develop new models of self-organizing biological neu-
ral circuits that produce rhythmic outputs even in the absence of
rhythmic input. An example could be the central pattern generators,
which are responsible for the generation of rhythmic movements,
since these models are often based on two interacting oscillatory
populations with adaptation, as reported for the spinal cord240 and
the respiratory system.241

D. Therapeutic reshaping of plastic networks—By

Peter A. Tass

Regular deep brain stimulation is the gold standard for treat-
ing medically refractory Parkinson’s patients.242–246 In patients with
advanced Parkinson’s disease, it was shown that regular deep brain
stimulation plus medication was superior to medication alone.247

Notwithstanding its therapeutic efficacy,248,249 side effects are an
issue.250–253 In fact, regular deep brain stimulation may cause char-
acteristic side effects denoted as deep brain stimulation-induced
movement disorders.254,255 Treatment efficacy is another limitation.
Regular deep brain stimulation administered to the standard tar-
gets, subthalamic nucleus, or globus pallidus internus is not effective
for the therapy of gait and other so-called axial symptoms, e.g., bal-
ance and posture impairment, and hardly improves or even worsens
speech as well as affective and cognitive symptoms.256–259

Abnormal neuronal synchrony is a hallmark of Parkinson’s
disease.260 Based on computational modeling, it was suggested to
specifically counteract abnormal neuronal synchrony by desynchro-
nizing stimulation with phase-dependent stimulus delivery261 or by
administering compound stimuli, which cause desynchronization
irrespective of the initial dynamic condition.262,263 By design, coor-
dinated reset stimulation employs comparably weak, phase resetting
stimuli and does not require sophisticated calibration procedures.263

Accordingly, it was selected for pre-clinical studies (animal experi-
ments) and clinical studies. Initially, coordinated reset stimuli were

suggested to be delivered in a demand-controlled manner in a
closed-loop setting, e.g., by delivering coordinated reset stimuli
whenever a neuronal population gets resynchronized or by adapt-
ing the amplitude of the coordinated reset stimuli to the amount
of synchrony.263 At that time, no implantable pulse generators for
coordinated reset stimulation were available for clinical tests.246,264

Engineering-based concepts led to the development of closed-loop
brain stimulation devices that recorded muscular or neuronal activ-
ity to suppress unwanted neuronal activity whenever detected.265,266

Routine clinical applications of closed-loop deep brain stimulation
still require a number of issues to be resolved.267

In contrast, based on principles of adaptive dynamical systems,
a qualitatively different stimulation approach was computationally
developed.268 Adaptivity is a fundamental feature of the nervous
system and, in fact, the entire body to cope with complex physio-
logical processes subjected to environmental changes; see Secs. III A–
III C, III E, and III F. By the same token, adaptive as well as maladap-
tive, i.e., less favorable responses to pathological changes, are key to
disease mechanisms. For instance, in Parkinson’s disease, a lack of
dopamine initiates a cascade of functional and structural changes.269

To specifically counteract disease-related adaptive changes, synaptic
plasticity159,191 (see also Secs. III B and III C), specifically spike-
timing-dependent plasticity,14,27,162,163 was incorporated in neuronal
network models used to design therapeutic stimulation, giving rise
to a radically new stimulation and treatment concept.268

It was observed that coordinated reset stimulation can shift
a network from an unfavorable, synchronized attractor to a more
favorable, desynchronized attractor (Fig. 5).268 From then on, coor-
dinated reset stimulation and further variants were computation-
ally developed and optimized to robustly cause an “unlearning”
of pathological synchrony and synaptic connectivity, in this way
causing long-lasting therapeutic effects.268,270–277 A series of compu-
tational studies revealed novel stimulus response characteristics of
neural networks with spike-timing-dependent plasticity:

• Rebound of synchrony after cessation of stimulation: Directly
after cessation of coordinated reset stimulation, synchrony may
reemerge and then spontaneously fade while further approach-
ing the desynchronized attractor.270

• Cumulative effects: Effects of coordinated reset stimulation may
accumulate over time,278 and stimulation pauses may even
improve the outcome.108

• Acute vs long-term effects: Acute stimulation effects (observed
during stimulation) and long-term effects (emerging when the
system relaxes into a stable state after cessation of stimulation)
may differ substantially.272,274 One can even decouple neurons,
i.e., reduce their synaptic weights, without desynchronization
during stimulation.274 In fact, acute effects do not necessarily
serve as predictive markers for a long-term outcome.272,274

• Transition to non-invasive stimulation: Long-term effects are
favorable because they enable to reduce stimulation time and,
hence, potentially reduce side effects. However, a profound
advantage of this type of stimulation is that it does not
require implants to permanently deliver stimulation. Rather,
as predicted theoretically,279,280 non-invasive stimulation can be
delivered occasionally or regularly for a few hours. Non-invasive
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FIG. 5. Schematic illustrating how desynchronizing stimulation induces long-last-
ing therapeutic effects by leveraging plasticity. Spike-timing-dependent plasticity
is a fundamental plasticity mechanism of the nervous system, which adapts
the synaptic strengths based on the relative timings of post- and presynap-
tic spikes.14,27,163 Neural networks with spike-timing-dependent plasticity typi-
cally display bi- or multi-stability of stable states with stronger synchrony and
synaptic connectivity and stable desynchronized states with weaker synaptic
connectivity,16,268,270,272,274,278 as illustrated by a simple double-well potential
here. These states serve as models for pathological and physiological con-
ditions. Coordinated reset stimulation may shift the network into the basin of
attraction of a stable desynchronized state, in this way causing a long-lasting
desynchronization.268

therapies are typically less risky and more appropriate for larger
patient populations.

• Functional restoration: Not only stimulation-induced unlearn-
ing of abnormal synaptic connectivity and neuronal
synchronization,268 but also reshaping network connectivity
by differentially up- or downregulating different synaptic
connections276 may contribute to restoration of function.

• Different plasticity mechanisms: In Parkinson’s disease patho-
physiology, both spike-timing-dependent plasticity and struc-
tural plasticity281,282 are important269 and may induce different
stimulation responses.283,284

These computationally derived predictions and results enabled to
design appropriate protocols for pre-clinical and clinical studies.

Invasive coordinated reset studies: Coordinated reset deep brain
stimulation was successfully tested in Parkinsonian monkeys.280,285–287

For instance, a few hours of coordinated reset deep brain stimula-
tion led to therapeutic effects lasting for one month.280 In addition,
cumulative and long-lasting desynchronizing and therapeutic effects
were observed in Parkinson’s patients treated with coordinated reset
deep brain stimulation.264

Non-invasive coordinated reset studies: Vibrotactile coordi-
nated reset fingertip stimulation was developed to provide patients
with a non-surgical and non-pharmacological treatment option.288

To this end, instead of administering electrical bursts through depth
electrodes, weak, non-painful vibratory bursts were non-invasively
delivered in a coordinated reset mode to patients’ fingertips.288

A first in human study289 as well as pilot studies290 showed that
vibrotactile coordinated reset stimulation is safe and tolerable and

revealed a statistically and clinically significant reduction of Parkin-
son’s disease symptoms off medication together with a significant
reduction of high beta (21–30 Hz) power in the sensorimotor cortex.
Remarkably, also, axial symptoms, difficult to treat with regular deep
brain stimulation, responded well to vibrotactile coordinated reset
in these studies.289,290 For illustration, see patient videos in Ref. 290.
Of note, Parkinson’s disease patients improved during a month-
long vibrotactile coordinated reset treatment when evaluated after
medication withdrawal, indicating a substantial improvement of
the patients’ conditions.290 These findings indicate that a vibro-
tactile coordinated reset treatment might even have an impact on
metabolic and degenerative processes,290,291 e.g., by slowing or even
counteracting degeneration-related processes, e.g., vicious circles
giving rise to oxidant stress and mitochondrial impairment, caus-
ing a bioenergetic crisis and the death of dopamine neurons in the
substantia nigra.292–294

In summary, instead of simply suppressing unwanted neu-
ronal activity, based on principles of adaptive dynamical systems,
appropriately designed stimulation techniques intend to induce sus-
tained therapeutic effects by moving affected neural systems to more
favorable attractors (Fig. 5).

E. Music and adaptivity—A physical culture theory—By

Rolf Bader

Understanding music is an interdisciplinary task.295 Musical
instruments are built such that we can listen to them, actively play
them, use them in social contexts, or use them in terms of individ-
ual demands and tasks. Therefore, scientific disciplines, such as the
physics of musical instruments, music psychology and neuromusi-
cology, music sociology, or political science, must interact to arrive
at a holistic understanding of music. Furthermore, the role of music
in culture, technology, economy, ethnicity, or its interactions with
natural resources, such as wood or alternative material for musical
instrument building, needs to be considered.

Therefore, music is a constant adaptation process. Listeners
adapt to new musical pieces. Musicians adapt to audiences, new
musical instruments available, or new ideas of compositional tech-
niques. Instrument builders adapt to contemporary sound and per-
formance demands, new materials, or new technologies. Society
adapts to new musical pieces, genres, or ways of music presenta-
tions, such as mass media or streaming platforms. Such adaptations
are processes, including changing strategies, emotional reactions, or
the development of new abilities. The participants of such adapta-
tions might welcome and deal with or might try to reject and oppose
new developments.

In contemporary research, each scientific discipline uses its
own methods for understanding and predicting music.295 Music psy-
chology often uses statistics or Bayesian methods. Musical acoustics
involves mainly analytical equations and discretization methods,
such as finite-element or finite-difference methods. Music ethnol-
ogy is still dominated by heuristic and historical methodology, while
computational or analytical ethnomusicology also includes math-
ematical modeling, e.g., of tonal systems. In all fields, machine
learning methods have become more and more important like con-
nectionist models are nearly always used for composition (see, e.g.,
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Briot et al.296 for an overview) or self-organizing Kohonen maps297

are often used for the analytical purpose.298–300

The methodologies used, therefore, strongly depend on the
subfields, but some also intertwine, e.g., in the field of psycho-
acoustics, relating physics to perception, using algorithms calculat-
ing loudness, brightness, pitch, spatial audio, or the like. Still, to
arrive at a common, robust, suitable algorithm able to model music
in a global, holistic way in the future, also including extra-musical
players, such as ecology, economy, or politics, a common ground is
needed, not debatable among the very diverse disciplines involved.
For example, a physical culture theory suggests music as an adap-
tive system to consist of impulses, physical energy bursts sent out,
returning with a specific damping, thereby causing new impulses.301

In its most general form, the impulse pattern formulation can be
written as a system parameter g representing an impulse sent out
by one subsystem. This impulse is reflected at n other subsystems
with damping parameters α and βk for each reflection point k, such
as302,303

g+ = g − ln

(

1

α

(

g −
n
∑

k=1

βke
g−gk−

))

. (19)

The system parameter g is updated at each iteration step to
g+, taking the most recent g and the previous gk− into considera-
tion. The logarithm reflects the exponential damping found in most
systems. Adaptation is present for g+ = g; e.g., with musical instru-
ments, g can be taken as a periodicity of a musical tone. During the
initial transient phase, g+ ! = g, and the system struggles, leading
to a complex initial transient sound. After the initial phase, a sta-
ble periodicity is reached, and a musical pitch is heard. For example,
with a guitar, two subsystems are present, the string and the gui-
tar body, both with their own eigenfrequencies. Still, when playing a
note, the string’s vibration takes over the guitar body’s vibration; i.e.,
the body adapts to the string’s pitch. Therefore, the impulse pattern
formulation is able to model the guitar tone very precisely, which is
especially reflected in the length and complexity of the initial sound
phase.302

Such an impulse pattern formulation algorithm is scale-free
and, therefore, able to model and predict very small networks as
well as overall or general behavior fast and precise in musical
acoustics303,304 or music perception and action.305 Such a self-
organizing system is found as a basis for all musical instrument fami-
lies. Moreover, it is the basis of brain dynamics306 and all interactions
in society or politics.

For such a system to work for aesthetic and artistic matters,
consciousness and conscious content, such as experiencing sound,
vision, emotion, or any kind of cognition, need to be incorporated.
The physical culture theory assumes conscious content to be spa-
tiotemporal electric fields in the brain, complex enough to arrive at
experiences of all kinds. Such a spatiotemporal field again is noth-
ing but a complex impulse pattern. Brain dynamics is, therefore,
no longer taken as an interplay of bottom-up and top-down pro-
cesses but as a complex, self-organizing system. Localization of brain
regions processing certain tasks, such as audition, vision, or think-
ing, is still evident in this picture, as auditory input enters the brain
through the ear, cochlear, and auditory pathway to end in the audi-
tory cortex (as, e.g., in the auditory oddball paradigm; see Fig. 4 and

Secs. III B and III F). Still, already within this brain network, cir-
cular neural processing is often present, nearly directly connecting
the cortex to the cochlear in the inner ear and back up to the cortex.
Therefore, adaptation of the brain to an external input is an active
process involving the whole brain, although the input of sensory
information can clearly be located.

In such global musical networks, stable, bi-stable, bifurcat-
ing, complex, or chaotic scenarios occur.302 In terms of musical
instrument sounds, a stable musical pitch is only established after
a complex initial transient sound phase. Each new tone of a melody
needs to undergo such changes. This also holds for brain activity.307

In ensemble playing, the interaction of musicians reacting to co-
musicians’ performances is also undergoing such complex changes.
Therefore, the whole system is a constant interplay of surprise and
adaptation to changing scenarios. Although such adaptation might
work, leading to a steady state, it also might fail to arrive at more
extended times of chaos, noise, or bifurcating sounds. Adaptation
and disruption are, therefore, two essential and ever-repeating sides
of music on all levels, with sound, musical pieces, musical genre
formation, or music history.

F. Adaptation in auditory cortex explained by

modulations of synaptic coupling—By Aida Hajizadeh

Most sounds, such as speech and music, evolve and unfold in
time, and yet, the brain perceives them as one whole continuous
entity (see also Sec. III E). For this, the brain needs to exhibit a
memory mechanism whereby incoming stimuli are represented and
integrated with the trace of the stimuli extending to the immedi-
ate past. This ability is termed temporal integration. While source
localization and spectral analysis are suggested to be the task of sub-
cortical areas, temporal integration of sounds is proposed to occur
in the auditory cortex.308 In an attempt to understand how auditory
cortex performs temporal binding, it was shown by intracranial and
extracranial measurements that neural responses in auditory cortex
are context sensitive.309,310 That is, the neural response to a stimu-
lus is modified when the same stimulus is presented in the context
of different stimuli where this sensitivity is a function of both tem-
poral occurrence and spectral content of the preceding stimuli.311–313

The simplest form of context sensitivity in the auditory cortex occurs
when the same stimulus is presented repetitively with a constant
stimulus onset interval. The result is a gradual reduction of the
magnitude of the neural responses and is termed adaptation. Adap-
tation is stimulus specific and a function of the interval between the
stimulus onset interval.314

The stimulus-specificity of adaptation was shown in odd-
ball paradigms, where the repetitive presentation of a frequent
standard stimulus is interrupted by an infrequent deviant stimu-
lus (see also Fig. 4 in Sec. III B). The magnitude of the neural
responses to the standards is smaller than the magnitude of the
responses to the deviants.309,312 This is known as stimulus-specific
adaptation and the mismatch responses in invasive and noninva-
sive measurements, respectively.311,312 Despite decades of research
on adaptation and its relevance for stimulus-specific adaptation and
mismatch responses, understanding how adaptation takes place in
auditory cortex remains challenging. Already single neurons, due to
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their intrinsic properties, show adaptation, which is termed spike-
frequency adaptation (see also Sec. III C).314 Adaptation is observed
in the auditory nerve fibers of the cochlea as well as in the infe-
rior colliculus and thalamus, which act as relay stations between
the cochlea and the auditory cortex. There are reasons why adap-
tation in auditory cortex is neither only the result of single neurons
adapting to the stimulus statistics nor just inherited from the sub-
cortical regions.157,314 The time scales at which single neurons in
different stations along the auditory pathway exhibit adaptation are
different from those occurring in the auditory cortex.314,315 Unlike
in the nonlemniscal pathway, adaptation does not occur in those
subdivisions of the inferior colliculus and thalamus in the lemnis-
cal pathway, which target the primary auditory cortex (i.e., the core
area).312,314 Along the auditory pathway, adaptation manifests itself
in more complex ways with its time scales in the auditory cortex
adapting to the time scales of the stimulation.312,314

Neurons in the brain form networks and do not appear in
isolation. The contact points between neurons are synapses whose
dynamics are highly plastic. One prevailing view on the underly-
ing mechanisms of adaptation in auditory cortex is that it is due
to modulations of synaptic coupling between neurons. However,
what accounts for modulations of synaptic coupling is an ongo-
ing debate.316,317 Short-term synaptic depression has been hypoth-
esized to be one plausible physiological mechanism176,318–320 (see also
Secs. III B and III C). This type of synaptic plasticity, which occurs
due to the repetitive stimulation of the pre-synaptic neurons, is
mainly based on vesicle depletion and desensitization of release sites
and calcium channels on the synapses of the pre-synaptic neurons.161

Short-term synaptic depression occurs at time scales that are similar
to the time scales of context sensitive responses, and it has a high
functional relevance for temporal filtering,321 gain control,219 and,
although counterintuitively, efficient information transfer between
neurons.322

In our research, we implemented dynamics of short-term
synaptic depression in a computational model whose network
structure is based on the anatomy of the mammalian auditory
cortex.323–325 The auditory cortex of mammals is characterized by the
hierarchical core-belt–parabelt structure, where each of these three
areas is subdivided into tonotopically organized fields.326,327 The
model comprises mean-field excitatory and mean-field inhibitory
cell populations, which are characterized by nonlinear firing rates.
The interconnection between cell populations is modulated by
short-term synaptic depression according to the spectrotemporal
pattern of the stimulation. The linearized form of the state equa-
tions together with the slow–fast approximation of the equation
for short-term synaptic depression allows for the analysis of the
model dynamics in terms of damped harmonic oscillators, i.e., nor-
mal modes.324,325 We could show that the properties of the normal
modes (i.e., frequency, phase, initial amplitude, spatial wave pattern,
and decay rate) are functions of the macro- (gross anatomy) and
micro-structure (synaptic weight values) of the auditory cortex net-
work as well as of the spectrotemporal pattern of the stimulation. In
this approach, the auditory cortex is viewed as a spatially extended
structure, and the activity elicited by an external stimulus propagates
in time and space. The dynamics of short-term synaptic depression,
which locally traces the stimulus history at the synapses, determine
the oscillations that are spread over the entire auditory cortex. In

this view, local and global population activities that are revealed by
intracranial and extracranial recordings, respectively, emerge from
the constructive and destructive interference patterns of superim-
posed normal modes. This contrasts with the traditional view where,
for example, an electromagnetic activity in the brain measured by
means of magnetoencephalography reflects the summed activity of
discrete local generators distributed over the auditory cortex. In
the normal-mode view, adaptation in the auditory cortex can be
described as modulations of the properties of these normal modes
due to the modulations of synaptic coupling, where the reduction of
a response magnitude is just a by-product.325

IV. ADAPTIVITY AND ARTIFICIAL LEARNING

In this section, different authors reflect on the meaning of
adaptivity in the context of artificial learning. Among other topics,
fundamental open problems in machine learning are discussed, as
well as some perspectives on how machine learning can be used to
solve physics problems and to create new control strategies for non-
linear (chaotic) systems are given. Toward the end of this section,
the role of artificial learning to understand and control complex
many-body systems and cooperative behavior is discussed.

A. Adaptivity is the key to success of neural

networks—By Sebastian Goldt

Deep neural networks have powered a series of breakthroughs
in machine learning over the last ten years. Since their early success
in computer vision,328–332 they have set new standards in natu-
ral language processing333–336 and the playing of complex games,
such as Go337,338 or Poker.339–341 Deep learning also increasingly
impacts the natural sciences;342 for example, deep neural networks
recently helped predict the 3D-structure of a nearly every human
protein343 in a breakthrough for structural biology. Further applica-
tions of machine learning to solve physics problems are also given in
Sec. IV B.

While neural networks used in machine learning are inspired
by biological neural circuits, such as the ones described in Secs. III B
and III C, the neurons in machine learning are much simpler than
biological neurons. Yet, it turns out that a different form of adaptiv-
ity is behind the success of deep learning. We illustrate this point
using the classic machine learning task of recognizing whether a
given image shows a cat or a dog. Given an image x, represented
by an array of pixel values, the classical approach was to com-
pute a vector x̃ of features344–346 that represents the image, which
is then fed into a classifier. Features could be the location of edges
in an image or the correlations between patches of the same image.
These features were designed a priori and required extensive domain
knowledge.

The key idea of deep learning is instead to learn the rele-
vant features directly from data. Therefore, rather than computing
a feature vector using a predefined set of transformations, we try
to learn a function fθ (x) that maps the raw images x directly to a
“label” y = ±1, indicating whether the image shows a cat or a dog.
A neural network is a particular functional form for fθ (x), usually
consisting of a series of alternating linear transformations and point-
wise non-linear functions.347 The adjustable parameters θ , called
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weights, determine what the transformations compute exactly. They
are found by maximizing the prediction accuracy of the network on
a given set of images , which is called “training” the network.348 In
practice, simple first-order optimization methods, such as stochastic
gradient descent, work best.349,350 Training a neural network is, thus,
a general-purpose procedure to obtain features that are well-adapted
to the input data and the task at hand.

From a theoretical point of view, the success of this approach
is surprising for several reasons. For example, fitting a function in a
high-dimensional space, such as the space of natural images, suffers
from the curse of dimensionality: the number of samples required
to estimate such a function accurately scales exponentially in the
input dimension.351 Many current research activities, for example,
in statistical physics,342,352–354 are currently working to reconcile the
success of neural networks with the curse of dimensionality.

One key to this puzzle is that images are not as high-
dimensional as they seem. Most of the points in the high-
dimensional input space do not represent images (at least not to a
human observer) and instead look like random noise. The points
that do represent real images tend to concentrate on a lower-

dimensional manifold in input space, sketched as a two-dimensional
curved surface in Fig. 6. While the manifold is not easily defined, it
is tangible: its dimension has been estimated numerically355–359 and
found to be 10–100 times smaller than the image dimension.

It is difficult to analyze the impact of the low intrinsic dimen-
sion of images on neural networks theoretically, because we lack
the mathematical tools to reason about real-world data. A series
of works, therefore, introduced models of data with low intrinsic
dimension, such as object manifolds,362 the hidden manifold,360,363

or the spiked covariate model.364,365 Each of these models offers a
controlled environment in which the adaptivity of neural networks
can be studied, using tools from statistics or statistical physics. One
result of these studies is that neural networks can indeed adapt
to lower-dimensional manifolds in their data better than classical
methods of machine learning, such as kernel methods.364,366–371

These results set the blueprint for a research program that
aims to understand the interplay of neural networks and the data
on which they operate. What are the (potentially) low-dimensional
structures in other data modalities, such as the human language or
amino acid sequences, that neural networks can exploit?

FIG. 6. The manifold structure of realistic images. Each black dot indicates a point in a high-dimensional space, which could be an input for neural networks. In the eye of
a human observer, most inputs in this space resemble random noise, such as the “images” shown on the left. Neural networks exploit the fact that realistic images tend to
concentrate on a lower-dimensional manifold in input space, sketched here as a two-dimensional curved surface. Figure adapted from Goldt et al., Phys. Rev. X 10, 041044
(2020). Copyright 2020 American Physical Society.360 Images are taken from the ImageNet361 data set [Deng et al., “ImageNet: A large-scale hierarchical image database,”
in 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2009), pp. 248–255. Copyright 2009 IEEE.].
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B. Machine learning applications in physics—By

Alireza Seif

Machine learning tools have found extensive use in the study
of physical problems.342 While it is not possible to provide an
exhaustive list of these applications in this Perspective, we high-
light a few examples related to statistical physics, namely, learning
and sampling from equilibrium distributions,372 classifying phases
of matter,373,374 estimating free energy differences,375 identifying the
direction of time’s arrow,376 and estimating entropy production.377

For a comprehensive review of machine learning in physical sci-
ences, readers may refer to Ref. 342. However, the relationship
between physics and machine learning is not one-sided. Tools from
theoretical physics have illuminated how machine learning tools
function352 (see also Sec. IV A). In the following, we examine these
two directions through the lens of adaptivity.

First, we examine how machine learning can be applied to solve
physics problems, with a focus on the role of adaptivity. In particu-
lar, we consider supervised learning tasks where input–output pairs
are provided, and the objective is to train a neural network to accu-
rately predict the target output value given an input. As discussed
in Sec. IV A, adaptivity plays a crucial role in training the networks.
In the optimization process, the network’s weights are adjusted to
minimize the difference between the predicted and target output val-
ues so that the network can make accurate predictions. However,
as we discuss in this section, the network’s prediction can be fur-
ther enhanced by adapting to the history of previous inputs. This
additional degree of adaptivity is particularly useful when working
with sequential data. Recurrent neural networks allow for this type
of adaptive inference by using an internal state that depends on the
input at the previous step. Given a sequence of input tokens xt ∈ R

nv

and the hidden state ht ∈ R
nh at time step t, this dependency can be

captured as378

ht = f(xt, ht−1; θ), (20)

where f represents a neural network parameterized by θ . In the most
basic form, the output of the network yt can be calculated by apply-
ing another parameterized function to ht. While in principle, these
networks can capture long-term dependencies in a sequence, it has
been shown that training them can be challenging due to vanishing
or exploding gradients.379 More complicated constructions of recur-
rent neural networks, such as long short-term memory networks,
solve this problem using a self-loop that allows the gradient to flow
for longer.380 Modern machine translation tools build on these net-
works to map sequences in one language to sequences in another
(seq2seq).334

Among many applications of these models in physics, we
briefly discuss inferring force fields from the trajectory of particles381

and chaotic time-series forecasting.382 Reference 381 considers the
problem of inferring the force field in overdamped Brownian
motion. Specifically, the input xt represents the position of the Brow-
nian particle, and the output is the parameter(s) that describe the
functional form of the potential. For example, in the case of a har-
monic potential U(x) = 1

2
kx2, the output of the network at the final

step represents the inferred value of k. The recurrent neural network
is shown to outperform conventional methods with limited data
and can remarkably infer non-conservative time-dependent force

fields, which conventional methods cannot handle. Reference 382
focuses on forecasting the dynamics of chaotic systems following
the Kuramoto–Sivashinsky equation.383–385 The input is a discretized
scalar field in space at step t, and the desired output is the value of
the field at step t + 1. The authors use the framework of reservoir
computing386 (a recurrent neural network with an untrainable input-
to-internal-state mapping) to forecast the dynamics far beyond the
Lyapunov time. In addition, see Sec. IV C for a discussion on using
reservoir computing to control chaotic dynamical systems. In both
of these examples, the network’s internal state is adjusted based
on the input history [see Eq. (20)], allowing it to capture temporal
dependencies in the input data sequence.

The two examples discussed earlier demonstrate applications
of recurrent neural networks in solving physics problems. However,
it is also important to examine the reverse direction, where physics
problems can be used to better understand recurrent neural net-
works. Reference 387 provides a case study of this approach, where
a simple model for seq2seq tasks is used to investigate the impact of
the data distribution in learning using a physical problem. Specifi-
cally, it considers the stochastic switching-Ornstein–Uhlenbeck pro-
cess, which is a latent variable model that describes the trajectories of
a Brownian particle in a harmonic potential with a time-dependent
center that stochastically alternates between two values. The non-
Markovianity of the input sequence is controlled by varying the
distributions of waiting times between these alternations. The goal
is to infer the current location of the center from the particle’s past
trajectory. The authors use several machine learning models for this
task and demonstrate that increasing the memory of the learning
model always improves the accuracy of the predictions, whereas
increasing the non-Markovianity of the input sequences can either
improve or degrade performance. They also identify an intrigu-
ing relationship between the performance of a learning model and
distinct phases in the stationary state of the stochastic switching-
Ornstein–Uhlenbeck process. In this case, as the memory of the
learning model is increased, the network becomes more adaptable
to longer-term dependencies in the input sequence, which in turn
leads to improved performance.

The two-sided relationship between physics and machine
learning is still in its early stages of development, leaving plenty
of opportunities for further exploration. On the one hand, arti-
ficial intelligence can aid in discovering and explaining scientific
phenomena, with emerging techniques, such as natural language
processing models, potentially facilitating communication between
users and algorithms.388 On the other hand, statistical physics has
already been used to provide theoretical insights into the behavior
of deep learning,352 and the theory of adaptive systems could prove
particularly valuable in understanding the role of data structures and
the dynamics of learning in recurrent neural networks.

C. Controlling dynamical systems—By Daniel Gauthier

In this section, we consider controlling complex dynamical sys-
tems using a closed-loop feedback based on a machine learning
approach known as reservoir computing. Here, the concept of adap-
tivity appears in at least two guises: the dynamical system being
controlled, often call the plant, and the controller. For a plant to
be controlled to desired behavior, we need to have access to some
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FIG. 7. A complex dynamical system controlled using a closed-loop feedback.
The controller is designed using an adaptive machine learning approach.

signals generated by transducers attached to the plant that can be
used to infer its dynamical state and have access to one or more
parameters that adjust the state of the plant as illustrated in Fig. 7.

The controller needs to process plant signals and perform infer-
ence to estimate the state, compare this to the requested plant
behavior, and generate control perturbations that are applied to
the adjustable system parameters. For complex dynamical systems,
especially those that display chaos, the control perturbations are a
nonlinear function of the plant’s state and requested behavior and,
therefore, fall in the category of a nonlinear controller. Tradition-
ally, nonlinear controllers require an accurate model of the plant,
which often entails substantial effort from expert control engineers
and mathematical model builders.

One highly successful alternative that was developed decades
ago for controlling chaotic systems is to take advantage of unsta-
ble sets that are the backbone of the chaotic system in phase space,
such as unstable periodic orbits.389,390 A chaotic system naturally vis-
its these unstable sets, and control perturbations are designed using
a linear algorithm that is valid in a local neighborhood of these
sets. Controlling other behaviors, however, requires a fully nonlinear
controller.

One approach for realizing a fully nonlinear controller is to
use machine learning to learn a model of the plant,391 referred to
as nonlinear system identification in the control engineering litera-
ture. Artificial deep neural networks in a feed-forward geometry are
known to be universal approximators of functions (see Sec. IV A)
and, hence, should be able to learn how to map measurements and
requested state to control perturbations. Here, a multi-layer net-
work of artificial neurons with nonlinear input–output functions
is trained by adjusting the network link weights using supervised
learning. While there has been good success using this approach,
the amount of data needed to train the network can be substantial,
making it difficult for the controller to adapt to changes in the plant.

Reservoir computing is a fast and low-data machine learning
approach especially well suited for learning models of dynamical

systems392 because it is also a dynamical system and it holds great
promise for controlling dynamical systems. As seen in the lower
dashed box of Fig. 7, the reservoir computer consists of an input
layer (red squares), a pool of neurons (green dots, the “reservoir”),
and an output layer (black squares). The neuron dynamics are
described by a differential equation that is driven by a nonlinear
function of the signals from the input layer and the output of other
neurons in the reservoir and has a simple exponential time con-
stant. Thus, it has short-term memory that can be matched to the
plant dynamics. The link weights on the input layer and the internal
“reservoir” of neurons are not trained; they are assigned randomly
at the outset, and only the weights of the output layer are trained.
This dramatically reduces the size of the training data as well as the
training computation time. Furthermore, the neural network can
perform multiple tasks by combining a single reservoir with differ-
ent trained output layers. One approach for controlling dynamical
systems with a reservoir computer is to train it to learn the inverse
of a dynamical system in the presence of control;393 that is, we train it
to learn the perturbations required to guide the system to the desired
state sometime in the future. This approach works well for systems,
such as a robotic arm, that display constrained low-dimensional
behavior, but a parallel deep architecture appears to be required for
controlling complex systems that display chaos.394 The training data
required for reservoir-computing inverse control appear to be on the
order of 10 000 data points and modest computation time, suggest-
ing that it can be used for real-time adaption of the controller as the
underlying plant changes its dynamics because of non-stationarity
or a damage event.

An open question is whether the data requirements can be
reduced further so that a small microprocessor typically found on
internet-of-things devices can be used to retrain the controller. Our
recent work395 that reformulates the reservoir computer as delay
lines of the measured plant signals followed by a nonlinear output
layer may be promising for this application because it reduces the
amount of training data by a factor of ten or more. However, it is
not yet clear whether this new approach gives up some adaptivity.
We are working on extensions of this work to balance the desire for
fast training with wide adaptivity.

D. Modeling complex adaptive human–environment

systems with multi-agent reinforcement learning

dynamics—By Wolfram Barfuss

Rapid and large-scale collective action is required to enter sus-
tainable development pathways in coupled human–environment
systems safely away from dangerous tipping elements396 (also, see
Sec. V E). The question, however, of how collective or coopera-
tive behavior—in which agents seek ways to improve their welfare
jointly—emerges is unresolved.397 Evolutionary game theory has
produced a sound equation-based analytical understanding of the
mechanisms for the evolution of cooperation.398 Yet, this was pri-
marily done with highly simplified models, lacking environmental
context and cognitive processes.399 These elements are the center
of artificial intelligence and cognitive neuroscience research,400,401

which only recently emphasized the need for developing cooper-
ative intelligence.402,403 Moreover, analyzing systems composed of
multiple intelligent agents typically requires expensive computer
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simulations, which are not straightforward to understand.404–407

Thus, little is known about how cooperative behavior emerges
from and influences a collective of individually intelligent agents in
complex environments.

There is a unique opportunity for adaptivity in non-linear
dynamical systems to help solve this challenge. Based on the link
between evolutionary game theory and reinforcement learning,408,409

we can model a collective of reinforcement learning agents as
a dynamical system. Doing so provides improved, qualitative
insights into the emerging collective learning dynamics,410 enabling
equation-based analytical tractability of agent-based simulations.

Here, reinforcement learning is the central adaptive mech-
anism (cf. “Reinforcement learning is direct adaptive optimal
control”;62 also, see Sec. II C). Reinforcement learning is a trial-
and-error method of mapping observations to actions in order
to maximize a numerical reward signal. The challenge is that
those actions can change the environment’s state, and rewards
may be delayed. Reinforcement learning is not only an artifi-
cial learning algorithm,401 it also has wide empirical support from
neuroscience,153,411 psychology,412 and economics.413–416 It is, there-
fore, ideally suited to model coupled human-nature systems.

In their seminal work, Börgers and Sarin showed how one
of the most basic reinforcement learning update schemes, cross-
learning,413 can converge to the deterministic replicator dynamics
of evolutionary games theory.417 The relationship between the two
fields is as follows: one population with a frequency over pheno-
types in the evolutionary setting corresponds to one agent with a
frequency over actions in the learning setting.408 Since then, this
analogy has been extended to other reinforcement learning variants,
such as stateless Q-learning,418,419 regret-minimization,420 and ficti-
tious play.421 Of particular relevance to modeling coupled human-
nature systems is the dynamic formulation of the general and widely
used class of temporal-difference learning,422 which is able to learn
in changing state-full environments.

Typically, the learning dynamics are derived by performing
a mathematical separation of timescales of the interacting process
with the other agents and the environment and the process of adapt-
ing the agents’ policy to gain more reward over time.423 Under the
complete separation of timescales, the dynamics become determin-
istic. One can understand such learning dynamics as an idealized
model of the multi-agent learning process, in which agents learn as
if they have a perfect model of the current environment, including
the other agents’ current behavior.424

This learning-dynamic approach offers a formal yet practical,
lightweight, and deterministically reproducible way to uncover the
principles of collective cooperation emerging from intelligent agents
in changing environments. We briefly highlight three examples;
for instance, it was found that, in contrast to non-changing static
environments, no social reciprocity is required for cooperation to
emerge in changing environments.425 The individual attitude of how
much the agents care for the future alone can adjust the setting
from a tragedy of the commons to a comedy, where agents predom-
inantly learn to cooperate. However, for this mechanism to work,
the severity of an environmental collapse must be sufficiently severe.
Another work showed how the agents’ irreducible uncertainty about
the actual environmental state can induce a tipping point toward
mutually high-rewarding cooperation. However, this is only valid

when all agents are equally uncertain about the environment.426 The
last example highlights how the same temporal-difference learning
dynamics can be used to model agents that not only learn to react to
their physical but also to their social environment, which is likewise
a pathway to mutually high-rewarding cooperation.427

Such learning-dynamic studies focus on understanding the
underlying principles of collective cooperation from intelligent
agents in complex environments. Therefore, these models are
reduced as much as possible to capture only the most essential
features. However, evidence from deep multi-agent reinforcement
learning studies shows that sustainable and cooperative behavior
can likewise emerge from intelligent agents in high-dimensional
environments.428–430

The advantage of the learning-dynamics approach is that it
opens up all the tools of dynamical systems theory to the study of
collective learning; for instance, the learning dynamics have been
found to exhibit multiple dynamic regimes, such as the convergence
to fixed points, limit cycles, and chaos,419,422 critical transitions with
a slowing down of the learning processes at the tipping point,426

and the separation of the learning dynamics into fast and slow
eigendirections.426

Future work in many directions is required to build this
approach of adaptivity in non-linear dynamical systems into a
new way of modeling human–environment interactions and socio-
economic systems (see Sec. V). First, the presented learning dynam-
ics need to become applicable to the system with many agents, using
various types of mean-field approaches.431–433 Second, the learning
dynamics need to consider the effect of intrinsic noise, which can
substantially alter their collective behavior427,434 (see also Sec. II B).
Third, the learning dynamics needs to be advanced to be able to
model more refined notions of cognition, such as representation
learning, learning and using intrinsic world models, and intrin-
sic motivations (see also Sec. III). A social-ecological resilience
paradigm of multi-agent environment interactions, in turn, can
benefit such endeavors.435,436

E. Biomimetic intelligence for active matter—By

Giovanni Volpe

Over billions of years of evolution, motile micro-organisms
have developed complex strategies to survive and thrive in their
environment by integrating three components (Fig. 8): sensors, actu-
ators, and information processing. Their biochemical networks and
sensory systems are optimized to excel at specific tasks, such as to
climb chemical gradients,438 to cope with ocean turbulence,439 and
to efficiently forage for food.440,441 They have also acquired com-
plex strategies to interact with their environment and with other
micro-organisms, leading to the emergence of macroscopic collec-
tive patterns442 (also, see Sec. IV D). These patterns are driven by
energy conversion from the smallest to the largest scales and per-
mit micro-organisms to break free some of their physical limits;
for example, dense systems of bacteria develop “active turbulence”
at length scales where only laminar flows are expected from the
underlying physical laws.443,444

There are both scientific and technological reasons that
are driving the quest toward biomimetic artificial active matter.
Scientifically, biomimetic systems capable of harnessing energy and
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FIG. 8. Active matter with embodied intelligence. Bacteria, sperm cells, and ants are biological examples of active particles with embodied intelligence. They feature intelligent
behaviors that permit them to survive and thrive in their ecosystem thanks to the integration of sensors, actuators, and information processing. Their behaviors also adapt
to complex environments (e.g., foraging for food), and their dynamic interactions lead to collective emerging behaviors (e.g., swarming and hunting). The challenge is now to
draw inspiration from nature to create microscopic artificial active particles with embodied intelligence that mimic these adaptive and dynamic emerging behaviors. Adapted
from Cichos et al., Nat. Mach. Intell. 2, 94–103 (2020). Copyright 2020 Springer Nature.437

information flows are ideal model systems to investigate and test
physics far from equilibrium, which is one of the greatest challenges
for physics in the twenty-first century. Technologically, biomimetic
active particles hold tremendous potential as autonomous agents
for healthcare, sustainability, and security applications: for example,
enabling the targeted localization, pick-up and delivery of micro-
scopic objects in bioremediation, catalysis, chemical sensing, and
drug delivery.445

In the last two decades, the active-matter research field has tried
to replicate the evolutionary success of micro-organisms in artificial
systems.445 Researchers have replicated the actuators by developing
artificial active particles that extract energy from their environ-
ment to perform mechanical work.446,447 Albeit to a lesser extent,
they have also been able to replicate the sensors by making these
active particles adjust their motion properties (e.g., their speed) to
chemical, thermal, or illumination stimuli.448,449 However, these arti-
ficial particles are still largely incapable of autonomous information
processing, which is dramatically limiting the potential of artificial
microscopic active matter to provide scientific insight and techno-
logical applications.437 Thus, the active-matter research field is now
confronted with several open challenges to create truly autonomous
active particles.

1. Make active particles capable of autonomous

information processing

Currently available active particles lack the complexity neces-
sary for autonomous information processing. In fact, active particles
are still rather simple in shape and behavior.445 They are often
Janus microspheres or microrods with different materials on their
two sides, which can self-propel and sterically interact with each
other. This physical simplicity is a consequence of the relative sim-
plicity of the employed design and fabrication processes, which in
turn limits the range of behaviors achievable by the active parti-
cles. Despite this simplicity, the study of active particles has already
led to major breakthroughs, such as to understand how plank-
ton copes with turbulence439,450,451 and to program self-assembling
robotic swarms.452,453

Motile micro-organisms exhibit more powerful and flexible
strategies to survive and thrive in their environment. Even the
simplest motile bacteria have evolved intelligent behaviors by fol-
lowing powerful adaptive strategies encoded in their shape, bio-
physical properties, and signal-processing networks: not only can
they extract energy from their environment to move and interact
with other bacteria, but they can also extract information by sens-
ing their environment and adjust their behavior accordingly.438 The
challenge is now to make active particles capable of autonomous
information processing, such as living motile micro-organisms. This
can be addressed by pushing the boundaries of design and micro-
fabrication techniques to build microscopic active particles with
embodied intelligence (microbots).454 These microbots will be able to
sense their environment, to differentiate stimuli, and to adapt their
behavior toward determinate goals.

2. Optimize the behavioral strategies adopted by

individual active particles

The behavioral strategies that can be adopted by active par-
ticles are still very limited. There have been several studies on
the behaviors of active particles in response to the properties of
their environment;445,455–457 for example, the presence of periodic
arrays of static obstacles alters the preferential swimming direction
of self-propelling active particles, a fact that permits one to sort
microswimmers on the basis of their swimming style.456 However,
these behaviors are still rather simple and rely on in-built properties
of the active particles that cannot be changed at will or adapted to
different environmental conditions. This is a consequence of their
limited capability of gaining information about their environment
and reacting accordingly.

More complex behaviors have been achieved using micro-
organisms instead of active particles; for example, the presence
of obstacles in the environment has permitted to alter the path-
way toward the formation of multicellular colonies of bacteria.458

Also, genetically modified bacteria whose speed is controllable by
light have been arranged into complex and re-configurable density
patterns using a digital light projector.459,460 The optimal behav-
iors in complex environments are often not obvious; for example,
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let us consider the foraging problem,440,441 where an active parti-
cle performs a blind search to catch some sparse targets. When the
environment does not present spatial features, the number of caught
targets is maximum for a Lévy-search strategy440,441 (even though this
is still an active research field461). Surprisingly, in a porous medium,
the optimal strategy mixes Lévy runs and Brownian diffusion.462

The challenge is now to discover, understand, and engineer
intelligent behavioral strategies that can be autonomously adopted
by active particles with embodied intelligence. This can be addressed
by designing and engineering the behavior of microbots to enable
them to autonomously perform directed tasks in complex environ-
ments, such as efficient navigation, target localization, environment
monitoring, and conditional execution of actions.

3. Optimize the interactions between active particles

Currently, active particles cannot communicate with each
other beyond interacting through some simple physical interac-
tions. Natural systems, such as swarms of midges, schools of
fish, and flocks of birds, have evolved powerful sensing capa-
bilities to gain information about their environments and to
communicate.463,464 The underlying behavioral rules are often hard
to identify.437,442,465,466 Active-matter studies provide the testing
grounds for new non-equilibrium descriptions, which are by neces-
sity often computational.467 They are either based on hypothe-
sized mechanistic models for local interactions,442 upon coarse-
grained hydrodynamic approximations,468 or on basic fluctuation
theorems.469 The question is often how local energy input and physi-
cal interactions determine the macroscopic spatiotemporal patterns.
Answers may be sought, e.g., by computational techniques.470–473

Differently from computational studies, most active-matter
experiments rely on very simple steric and short-range physical
interactions. Even these simple interactions can lead to interest-
ing complex behaviors and self-organization whose onset is often
observed in artificial systems where increased energy input above a
threshold density drives a phase transition to an aggregated state.
An example of such behaviors is the formation of “living crystals,”
which are metastable clusters of active particles.474,475

Much more interesting behaviors are observed when the inter-
actions between the active particles can be tuned at will. This can be
achieved by externally imposing interaction rules on the active par-
ticles; for example, external feedback control loops have been used
to create information-based individual dynamical behavior476, or
interactions477 between active particles, which explicitly depends on
the information about the position of other particles. Such complex
forms of interaction can also be achieved using macroscopic robots.
In fact, the field of robotics can serve as a major source of inspira-
tion for the development of active matter at the microscale;453,478,479

for example, some robots (5 cm in diameter) have been programmed
to respond to sensorial inputs with a delay and have shown that, by
controlling the delay, we can control the aggregation vs dispersion
of the robots.480–482

The challenge is now to identify and engineer optimal interac-
tion rules that can be embodied in active particles interacting with
other particles and with their environment. This can be addressed
by programming microbots with embodied interaction strategies
beyond the simple steric and short-range interactions employed

by current active particles. This will permit researchers to realize
microscopic swarms of artificial active particles capable of collective
intelligent behaviors and to engineer microscopic ecosystems where
multiple species of microbots and particles interact.

V. ADAPTIVITY IN SOCIO-ECONOMIC SYSTEMS

In this section, we provide a perspective on adaptivity from
socio-economic systems, including topics, such as the conception
of modern power grids, adaptive social interactions, and the role of
adaptive mechanisms in epidemiological and climatic models.

A. Adaptive networks and their importance for

epidemiology—By Philipp Hövel

Network epidemiology is a prime example of adaptive net-
works at work. Many infectious diseases spread via direct con-
tacts. These contacts can be captured by social, transportation, and
other logistic networks. They provide a mathematical framework
to formalize the interaction of individuals (humans or animals)
and, hence, potential paths of disease transmission. Locally, e.g.,
within a population or between group individuals, the dynamics
of pathogens are often described by compartment models, such
as the widely used susceptible–infected–recovered model originally
introduced by Kermack and McKendrick.483 Adaptivity must be
considered if the state of the networked system, say, the number
of infected, triggers an adjustment of the network structure with
the aim to mitigate an outbreak and to contain the disease. This
closes the mutually influencing feedback loop of the dynamics on
and of networks as depicted in Fig. 9: (i) The network structure gov-
erns the spreading of the disease (dynamics). (ii) In turn, the current
state of the system leads to changes in the structure of interactions
(networks).

The dynamics-induced changes to the network are often akin
to control schemes that involve minimizing a goal function to reach
a target state.9 Similarly, non-pharmaceutical containment proto-
cols, which demand a reduction of social contacts or restriction
of movement, can be based on, for instance, the number of new
infections. Prominent cases, where such applications of adaptive
networks have been successfully implemented, include the H1N1
pandemics in 2009,484,485 the Ebola epidemic in 2014,486 and—of
course—the on-going SARS-CoV-2 pandemic.487–490 In these exam-
ples, one prominent path of transmission was the global airline
transportation network, which has been accounted for in many
studies.491–493

Extensive numerical simulations are able to explore possible
interventions and quantify their impact. Key findings might be

FIG. 9. Schematics of the interplay between dynamics and networks.
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that international travel bans yield a limited delay of spreading as
demonstrated for Ebola in 2014486 or the feasibility of zero-COVID
or low-incidence strategies.494,495 They are also able to provide insight
into less than optimal adherence to containment measures.490 In
any case, these studies are valuable tools for policy makers to reach
evidence-based and data-driven decisions and to inform the public
about their potential impact.

The concept of adaptive networks for the study of epidemic
spreading of infections diseases has a long history and dates back
beyond the most recent examples of public health emergency of
international concern. Rewiring of susceptibles to avoid contact with
infected has been studied, for instance, by Gross et al.98,99 They
employed a low-dimensional compartment model, which allowed
an exhaustive bifurcation analysis, and identified dynamical pat-
terns, such as first-order transitions and hysteresis. In short, as long
as a node remained healthy, its network neighborhood evolved grad-
ually. However, the moment an infection occurs, the degree of a
node drops rapidly, and the node finds itself isolated until recov-
ery. Note that due to the small-worldness of many social networks,496

there could be situations, where rewiring would potentially deterio-
rate the situation because it might create new shortcuts through the
network that could—unintentionally—bring nodes closer to other,
distant regions of infection.

Besides travel restrictions, surveillance and monitoring of inci-
dence numbers are key ingredients for a rapid identification of an
outbreak. For that purpose, the introduction of sentinel nodes on
temporal networks has proven to be insightful and demonstrated
in the case of animal diseases.90,497 These nodes should be mon-
itored because of their position in the network that allows early
detection and reliable identification of the origin of the outbreak
for many different initial conditions. Therefore, they provide helpful
and detailed clues where the network could be best adjusted. Simi-
larly, screening a fraction of incoming patients has been shown to be
effective as potential control measure nosocomial infectious diseases
and the spread via hospital-referral networks.498,499 The impact of a
rapid response has been exemplified during the early stages of the
COVID-19 pandemic, where—in mainland China—containment
policies effectively depleted the susceptible population and resulted
in a subexponential growth of infection cases.488 Upon success-
ful containment, restriction can be relaxed again, and the network
returns to its original state.

Adaptive networks are a special case of time-varying or tem-
poral networks, where every edge has a time stamp and is active for
a certain amount of time.500,501 In epidemiology, in particular, the
sequence of contacts is crucially important. Only time-respecting
paths contribute to the transmission of a pathogen and the spread-
ing of a disease. Any interaction with contacts/neighbors in the
social network before their infection carries no risk of transmission.
Luckily, concepts, such as network controllability,502 can be easily
extended for temporal and multiplex networks.503,504 From a math-
ematical point of view, the temporal nature of networks—including
changes of their structure due to adaptation—can be implemented
by time-dependent adjacency matrices, which give rise to modeling
frameworks for the spreading of epidemics, such as the individual-
based and pair-based models.505–508

To sum up, adaptive networks play a central role not only for
realistic investigations of spreading dynamics but can help to study

and design interventions for disease containment, mitigation, and
eradication. With a further increase of data availability (often in
real time), models of network epidemiology become more and more
realistic and informative in their predictive power. Future chal-
lenges include the integration of purely epidemiological models and
a mathematical framework for the dynamics of social behavior and
opinion formation. This would lead the way for a holistic description
of disease spreading on adaptive networks.

B. Coevolutionary network dynamics in social and

epidemic systems—By Jan Mölter

In the context of dynamical systems on networks, one man-
ifestation of adaptivity is in so-called adaptive or coevolutionary
networks.99,509

A network is a collection of entities together with a relation
between these entities that are generally represented as nodes and
links, respectively. In a dynamical setting, every node is a dynami-
cal system that not only depends on its internal dynamics but also
on the dynamics of its neighborhood in the network, i.e., the set of
nodes it is linked to. Constituting for an adaptive network is the
idea that the topology of the network and, therefore, the interac-
tions between the individual nodes of the network are not static but
rather also dynamic, coupled to the dynamics of the nodes. As such,
we have a closed feedback loop in which the topology of the net-
work influences the dynamics of the nodes and the state of the nodes
influences the dynamics of the topology.99 Combining the so-called
dynamics on the network with the dynamics of the network in that
way is what makes the system fully adaptive (see Fig. 9 in Sec. V A).

To make this more concrete, let us consider the paradigmatic
example of the adaptive voter model,511,512 which is an extension
of classical models of opinion or consensus formation.513,514 In this
model, one considers a population in which every individual sub-
scribes to one of two contradictory opinions and in which the social
relationships are encoded in some social network. As for the dynam-
ics, one assumes that at each time step, individuals either adapt their
opinion to the opinion of individuals in their neighborhood or that
they break off their relationship with individuals of opposing opin-
ions and rather connect with others of the same opinion. While
the former corresponds to the dynamics on the network, the lat-
ter corresponds to the dynamics of the network. Depending on the
relative strength of these two processes, in expectation, the popula-
tion eventually reaches either a dynamic equilibrium characterized
by non-vanishing prevalence of pairs of connected individuals with
opposing opinions or a static equilibrium where the underlying
social network fragments so that in every component, only one
opinion prevails.511,515,516

Another paradigmatic example besides the adaptive voter
model is that of an adaptive susceptible–infected–susceptible (SIS)
epidemic.98 One considers again a population on an underlying
social network that encodes the relationship between individu-
als. Every individual is then exposed to an SIS epidemic, mean-
ing that individuals start off as susceptible, become infected at
some rate when individuals in their neighborhood are infected, and
upon recovery at another rate are susceptible again.517 In addition
to these epidemic transitions, one allows, similar to the adaptive
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voter model, that susceptible individuals can break off the relation-
ship with infected individuals and instead connect to a susceptible
individual.98 Now, for the SIS epidemic and in expectation, it is
well-known that at a critical infection rate, the system exhibits a
supercritical transcritical bifurcation and beyond which the system
eventually reaches an endemic dynamic equilibrium as opposed to
the epidemic dying out. In contrast, due to the adaptivity, this bifur-
cation can turn from supercritical to subcritical, the consequence
being that a region of bistability emerges and the transition to an
endemic equilibrium is not continuous anymore.98,518

While these examples both illustrate the idea behind adaptive
or coevolutionary networks in the sense that dynamics on the net-
work and of the network depend on each other, they also highlight
the fact that adaptivity can induce fundamental changes in the phe-
nomenology. This suggests that, when developing models of the
natural world, it can be paramount to take adaptive dynamics into
account.

Recognizing the importance of adaptive networks, many
research studies have been done focused on different aspects of the
phenomenology that comes with adaptivity or extending existing
models by introducing adaptivity. Hence, in the following, we are
going to highlight some works from the last decade—without any
claim to comprehensiveness.

In relation to the adaptive voter model that we have introduced
before, it has been reported that if one considers directed as opposed
to undirected networks in an adaptive voter model, fragmentation
might occur far below the critical value due to the formation of
self-stabilizing structure.519,520 Moreover, there has also been work
extending the model to allow for a continuum of opinions (see
also Sec. V C), which in many cases is a more realistic assumption,
demonstrating the emergence of communities with diverse opinions
rather than leading to fragmentation.521,522

Further investigations in the adaptive SIS epidemic and adap-
tive epidemics, in general, have led to studies about the bifurcation
behavior523 and the epidemic threshold itself524 as well as the dynam-
ics near this threshold with an emphasis on early-warnings signs.525

In the context of a pandemic (see also Sec. V A), adaptive epidemics
have also been studied to assess the relationship between contain-
ment strategies of quarantining and social distancing.526 Besides
rewiring as a mechanism for adaptivity,98,527 others have considered
network growth due to birth and death processes,528 the latter in
response to the epidemic upon being infected, and activation and
deactivation of links following an adaptive strategy.529

Apart from the adaptive voter model and adaptive epidemics,
another frequently studied model system is that of coupled phase
oscillators110,530 with adaptive coupling strengths (see also Secs. II A
and II D). The main feature one is interested in these systems is
the emergence of fully or partly synchronous states. Importantly, it
has been shown that certain adaptivity rules promote the explosive
transitions into synchrony.531 Moreover, others have reported that
adaptivity can be used to control cluster synchronization9 or that
slow adaptation leads to the emergence of frequency clusters.34,35

In recent years, there has been an increasing interest in gen-
eralizing the notion of networks to higher-order networks, i.e.,
simplicial complexes or more generally hypergraphs. Instead of
only dyadic relations, these structures can also capture higher-
order interactions. Consequently, evolutionary games532 as well

as consensus formation in the form of an adaptive voter
model have been investigated on simplicial complexes as well as
hypergraphs.533,534 Due to their much more complex topology, these
structures promise a much richer phenomenology while at the same
time being considerably more complicated to handle so that it will
be interesting to see what the coming years will bring.

C. How social dynamics and networks adapt to

growing connectivity—By Philipp Lorenz-Spreen

Online communication can be understood as an adaptive, non-
linear system, all the more so because it increasingly involves many-
to-many interactions and is, thus, a highly coupled system. In my
research on self-organized online discourse, I interpret adaptivity
as the process of changing social systems through external influ-
ences, such as technological developments. Information technology
has made various aspects of our lives more dynamic, both in spa-
tial and temporal dimensions. Connections with others can be made
across spatial and sociodemographic constraints, and messages can
be recorded and spread across the globe in seconds.

However, these increased dynamics and the resulting adapta-
tions do not happen without values: As old boundaries are over-
come, new ones emerge, if only because of finite amounts of avail-
able attention resulting from very simple limits on human process-
ing capabilities, but also because of the implementation and com-
mercial incentive structure of the technology. Here, I will present
two mechanisms we have recently proposed for how social systems
adapt to these changes and how online platforms shape this process
along commercial interests since there is no apparent, neutral sta-
tus quo in which social systems would evolve. To this end, I want
to focus on two key questions that an individual decision maker
faces online and their downstream consequences for macroscopic
dynamics and the shape of public discourse.

First, connectivity is increasing through online platforms, and
new connections can and are easily made. Since the famous six
degrees of separation535 on the U.S. social network, networks seem
much better connected; Facebook reports 3.5 degrees of separation
on its friendship graph.536 Nevertheless, there are consistent reports
of segregated, homophilic network structures on nearly all online
platforms, as well as related trends of increasing polarization (see
Ref. 537 for a recent overview). The mechanism that might resolve
this apparent paradox may lie behind the question of whether we
change our opinions according to our friends or whether we change
our friends according to our opinions. In classical models of opinion
dynamics, the network structure is fixed and the core assumption is
a constructive process of an opinion change in a social interaction.538

In the long run, this process would predict convergence to a global
consensus opinion with increasing connectivity; only under the
assumption of disconnected networks or limited trust are discon-
nected opinions conceivable, let alone an outward or distancing
movement of these clusters possible. We have recently proposed
an alternative mechanism that describes the dynamics of an agent’s
opinion oi(t),539

ȯi = −oi + K

N
∑

j=1

Aij(t) tanh(αoj), (21)
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which describes a process of mutual reinforcement of opinions
within groups of shared stance [i.e., if sgn(oi) = sgn(oj)]. The addi-
tive term tanh(αoj) moves both opinions in the same direction if
they have the same sign and moves them toward the neutral state 0
if they have a different sign. Who is interacting with whom is gov-
erned by the time-dependent adjacency matrix Aij(t), which only
has a non-zero entry if an interaction happens between i and j
at time t. Its structure dynamically adapts to changing opinions,
hence co-evolving and following a probability distribution ruled by
homophily,540

pij = |oi(t)− oj(t)|−β
∑

j |oi(t)− oj(t)|−β
, (22)

which is a term that might be partly driven by algorithmic recom-
mendations suggesting like-minded others as interaction partners
on social media. This combination helps to explain the potential
emergence of growing polarization dynamics even under increas-
ing connectivity [i.e., if the average path length of Aij(t) decreases, at
least for controversial topics (i.e., high α)]. For more details, please
see Ref. 539, and an extension into multi-dimensional opinion
spaces, see Ref. 541.

Second, the increasing availability of information poses a chal-
lenge to the allocation of attention. So how does public discussion
adapt to the increasing speed of available information? To describe
this process, we quantified and modeled the dynamics of public
interest for individual topics in various domains.542 The main result
can be described as an acceleration of the dynamics of public interest
in a topic and a narrowing of the amount of time spent on each topic,
while the overall amount of attention spent on a topic remained
stable over the years. For a mechanistic understanding of these
dynamics, we modeled them as an adaptation of a Lotka–Volterra
process for species competing for a common resource, with finite
memory,

ȧi = rpai



1 − rc

∫ t

−∞
e−α(t−t′)ai(t

′)dt′ − c

N
∑

j=1,j6=i

aj



 , (23)

where ai(t) describes the dynamics of the collective attention or pub-
lic interest to a topic i. It depends on a growth term rpai with an
exponential growth rate rp if it is undisturbed. However, two terms
are slowing and eventually reversing the growth process. That is,

rc

∫ t

−∞e−α(t−t′)ai(t
′)dt′, which grows proportionally with the atten-

tion to the topic itself by exhausting the available resources at rate rc,

and c
N
∑

j=1,j6=i

aj, which describes the constantly ongoing competition

with all other topics j for that common resource. This we believe
captures the essence of the idea of competitive attention economy
originally formulated by Ref. 543 and describes well the empirical
observations. It also captures the economic incentive structures to
produce information faster in this competitive situation to have an
advantage for gaining public interest.

In summary, I believe that these mechanisms may capture two
adaptive mechanisms of social systems in response to increasing
interconnectedness and information availability that are driven by
fundamental limits of human cognition, namely, the ability to main-
tain a certain number of social contacts as well as to process a finite

amount of information in parallel, as well as economic incentives to
capture those. Future research in this area should aim to put those
assumptions of mechanism of social dynamics on an empirical,
probably experimental, footing to understand the causal drivers of
how social systems adapt to changes in our world, e.g., technological
and political changes.

D. Energy transition and moving toward the

CO2-neutral power grid—By Mehrnaz Anvari

The important role played by electricity in the daily life and
activities causes a serious dependency of modern society on the
reliable functionality of the power grid. Moreover, because of the
interconnection of the power grid to other societal networks and
systems, such as transportation,544 telecommunication,545 and health
systems,546 it is of great importance that the power grid adjusts
itself to changing conditions or, indeed, mitigates any internal and
external perturbations and fluctuations, as generally discussed in
Sec. II A for dynamic networks. Any failure in the power grid can
quickly spread not only within the grid itself, but can set off a chain
of failures, as a domino effect, in other social networks and sys-
tems. During energy transition and moving toward a CO2-neutral
power grid, fossil fuels sources should be replaced by renewable
energy sources, such as wind, sunlight, water, and geothermal heat.
The need for rapid CO2 reduction is comprehensively discussed in
Sec. V E. Among renewable energy sources, wind and solar power
are sources inherently time-varying. This means that a constant
generator power in Eq. (11) in Sec. II D will be replaced by irreg-
ular, hardly predictable wind and solar power that may constitute
serious threats for power grid stability. Furthermore, the pattern
of electricity consumption is changing due to the exploitation of
green energy sources in other sectors, such as transportation547 and
heating.548 Therefore, for being able to plan and operate future-
compliant electricity grids with a continuously increasing share of
renewable energy sources, it is vital to recognize the new origins of
fluctuations in both supply and demand side, along with their sta-
tistical and stochastic characteristics to be able to adapt the power
grid or to mitigate these fluctuations and, thus, maintain the energy
balance in the grid.

The identification of these characteristics, along with the
empirical data, enables us to develop valid data-driven models to
describe the underlying system dynamics. Last, the combination of
data-driven models and the complex network science empowers us
to indicate the impact of new sources of both supply and demand on
the current power grid and, therefore, to determine how the power
grid structure and control systems should be adapted in the future
to keep the energy balance and, consequently, the stability in the
system.

In the following, we will review briefly some recent works
related to the data analysis and data-driven models as well as their
combination with the complex network science leading to a deep
understanding of power grid dynamics.

1. Data analysis

Wind and solar power are highly dependent on weather condi-
tions and, therefore, can ramp up or down in just a few seconds. In a
power grid with a high integration of variable energy sources, these
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extreme short-time fluctuations not only influence the energy avail-
ability, but also the stability of the power grid. The analysis of the
data of wind and solar power recorded in different regions around
the world demonstrates multiple universal types of variability and
nonlinearity in the short-time scales.549–552 Importantly, consider-
ing the aggregated variable energy sources of even country-wide
installation of wind and solar fields shows that the data are still non-
Gaussian and includes intermittent fluctuations.549 Indeed, this is the
direct consequence of the long-range correlations of the wind veloc-
ity and the cloud size distribution that are approximately 600 and
1200 km, respectively.553,554 The footprint of these short-time inter-
mittent fluctuations has been recently monitored in the power grid
frequency variations.555

The analysis of the highly resolved electricity consumption
data of households that consume 29% of all electricity in Euro-
pean Union556 shows that these data are highly intermittent. The
intermittent fluctuations of electricity consumption cannot be cap-
tured from the data with a resolution of 1 h or even 15 min.557–559

The variability of energy sources, along with the uncertainty of the
electricity consumption, can make it more difficult to balance sup-
ply and demand. Therefore, as the share of feed-in is increasing, a
deeper understanding of the variable energy source dynamics as well
as the advanced approach of balancing demand and supply by load
shifting is required.560,561

2. Data-driven models

Identifying the stochastic behavior of the short-time variable
energy sources and electricity consumption fluctuations allows us
to construct a dynamic equation that governs these stochastic pro-
cesses. The dynamic equation should include two main terms as
follows:

Ẋ(t) = F(X, t)+ G(X, t), (24)

where F(X, t) is the deterministic term showing the trend of a
stochastic process X(t) (which is here a variable source of energy or
electricity consumption) vs time, and G(X, t) is the stochastic term
modeling the extreme fluctuations and, indeed, non-Gaussianity
in the considered process. Equation (24) is known as a stochas-
tic differential equation, which is a non-parametric model. With
the term “non-parametric,” we mean that all of the functions and
parameters in the model can be found directly from the empiri-
cal time series. Recently, the jump-diffusion process562,563 and the
superstatistics method564 have been introduced to model short-term
variable energy sources and electricity consumption fluctuations,
respectively. Moreover, in Ref. 564, a data-driven load profile that
is consistent with high-resolution electricity consumption data is
obtained. This data-driven load profile outperforms the standard
load profile used by the energy supplier,565 and it does not require
microscopic parameters for consumer behavior, consumer appli-
ances, house infrastructures, or other features that other models
depend on.566

The data-driven models allow us not only to generate time
series with identical statistics to empirical ones, but also by adjusting
the parameters in the stochastic models, to consider the response of
the power grid and control systems to different circumstances.

3. Complex network science

From a structural view point, the power grid is a complex net-
work consisting of many units and agents that interact in a nonlinear
way. Due to economic factors, power grids often run near their oper-
ational limits. The nature of renewable energies will add more and
more fluctuations to this complex system, causing concerns about
the reliability and stability of the power supply.567–569 Therefore, the
probability of having grid instabilities will increase, which may result
in more frequent occurrences of extreme events, such as cascading
failures resulting in large blackouts. Any strategy under discussion,
such as upgrading the existing power grid, the formation of virtual
power plants combining different power sources, introducing new
storage capacities, intelligent “smart grid” concepts, etc., will fur-
ther increase the complexity of the existing systems and have to be
based on the detailed knowledge of the dynamics of variable energy
sources and consumer variable sources of energy. The data-driven
models and the generation of data sets imitating the characteristics
of the real data sets empower us to consider accurately the inter-
play of the network structure and features with supply and demand
fluctuations and, therefore, resulting in deep insight into how the
future structure and control systems should be designed to mitigate
the intermittent fluctuations and allows us to increase the share of
variable sources of energy in the power grid without any restriction.

E. Adaptability of the Earth system: Past success and

present challenges—By Jürgen Kurths

The Earth system is a highly complex system with various
interactions, including positive and negative feedbacks. Its repre-
sentation is sometimes even called a horrendogram. However, it is
also an open system that corresponds with its closer and farther sur-
rounding. All these properties are crucial for the ability to adapt in
response to external as well as intrinsic changes and perturbations.

There are outstanding examples of adaptive behavior in the
history of the Earth system: About 66 000 000 years ago, a rather
large asteroid struck Earth and formed the Chicxulub impactor
crater with a diameter of about 180 km in the peninsular Yucatan
in Mexico.570 This external shock induced titanic changes on the
surface and in the atmosphere as megatsunamis, giant wildfires
and a rapid strong decrease of the temperature. More impor-
tantly, it is now well accepted that it was the main cause of the
Cretaceous–Paleogene extinction event, a mass extinction of 75%
of plant and animal species on Earth, including all non-avian
dinosaurs. However, it is important to emphasize that the Earth sys-
tem was not destroyed due to this giant event, but it adapted and
reached another stable regime after some time whose global cli-
mate was rather similar to the former one.571 Another example of
a shock-like but intrinsic event was the Toba supervolcanic erup-
tion about 74 000 years back in Sumatra.572 It changed the climate
situation drastically and, in particular, induced a strong tempera-
ture decrease 3−5◦C. However, the Earth system again adapted and
reached via rather large fluctuations a stable climate regime whose
global temperature was, however, clearly below the former one.573

There are also recurrent-like strong influences on the Earth sys-
tem over broad scales in time. On the one end, we have as long-term
factors the Milankovic cycles, which are due to complex variations
in eccentricity, axial tilt, and precession of the Earth’ motion in the
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solar system leading to main components of 41 000 years, 95 000
years, and others. These orbital forcing components have a strong
influence on long-range climate dynamics, as the occurrence of
glacials and interglacials. On the other end, recurrent patterns, such
as El Niño Southern Oscillations (ENSO) in the range of 3–7 years,
have a powerful impact on the onset and intensity of monsoons and
the formation of extreme climate events. However, the Earth system
has been able to adapt to all these recurrent events and acts in sta-
ble regimes, which can even become different, e.g., switching from
glacial to interglacial.

However, one component of the Earth system has substantially
increased its impact in the more recent past, the humans. The huge
amount of greenhouse gas emissions, such as CO2 and methane,
is the most striking expression of this tremendous anthropogenic
activity. There is clear evidence and broad acceptance that this has
already caused distinct global warming and various other strong
changes in the Earth system.575 Due to several reasons, the kind of
adaptation of the Earth system in response to these emissions is hard
to evaluate. One crucial uncertainty is the future development of
these emissions despite the immense efforts for their serious reduc-
tion, e.g., via the UN Climate Change Conferences of the Parties
(COP).

Therefore, typical scenarios of future Earth system’s adap-
tion in dependence on different emission amounts are estimated
based on combined models and measured data. However, there
are challenging problems in modeling of the corresponding pro-
cesses and data acquisition. A very promising approach to treat
these tasks is based on the study of tipping elements because the
Earth system comprises a number of such large-scale subsystems,

which are vulnerable and can undergo large and possibly irreversible
changes in response to anthropogenic perturbations beyond a criti-
cal threshold.574,576 The whole system of tipping elements, including
their interactions, can be well described as a complex network in
order to understand the spreading of tipping; i.e., will the tipping of
one element exert only local effects or will it induce a cascading-like
dynamics?577 This is a typical multistable system where phenom-
ena, such as partial synchronization, are typical (see also Sec. II D).
Additionally, intrinsic and external noise may strongly influence the
dynamics of the Earth system (see also Sec. II B). We know the
main elements of this network because they have been identified
and described, such as dieback of the Amazon forest or melting
of poles (see Fig. 10). However, the kind of interactions as well
as the intrinsic dynamics at each tipping area are only very partly
known.

To treat the first problem, connections between the Amazon
forest area and other tipping points have been recently uncovered
quantitatively by analyzing near-surface air temperature fields.578

This way, teleconnections between the Amazon forest area and the
Tibetan plateau as well as the West Antarctic ice sheet have been
identified. In other studies based on conceptual models for selected
tipping elements with complex structure–function interrelations as
treated in Sec. II A of this Perspective, it has been shown that
the polar ice sheets could be typically the initiators of tipping cas-
cades, while the Atlantic Meridional overturning circulation acts as
a mediator.577 However, these studies are in the beginning, and there
are several crucial problems to solve until getting a reliable pre-
dictability of tipping dynamics and, hence, on evaluating in detail
the adaptability of the Earth system, in particular, to anthropogenic

FIG. 10. The location of climate tipping elements in the cryosphere (blue), biosphere (green), and ocean/atmosphere (orange), and global warming levels at which their
tipping points will likely be triggered. Pins are colored according to our central global warming threshold estimate being below 2◦C, i.e., within the Paris Agreement range
(light orange, circles); between 2 and 4◦C, i.e., accessible with current policies (orange, diamonds); and 4◦C and above (red, triangles). Figure from Armstrong McKay et al.,
Science 377, eabn7950 (2022). Copyright 2022 American Association for the Advancement of Science.574
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influences. A promising way to retrieve these interactions will be the
application of modern machine learning methods (see Sec. IV).

However, it is evident that the greenhouse gas emissions have to
be strongly reduced. In Sec. V D of this Perspective paper, problems
and approaches for reaching this ambitious goal are discussed.

To summarize, the Earth system is an adaptive one as is obvious
from the past. We have now clear evidence that the huge anthro-
pogenic influences create a new kind of perturbation, which has the
power to induce a novel pathway of adaptation. This will end for
sure in some stable regime, but it is very questionable whether we
can live there.

VI. CONCLUDING REMARKS

The notion of adaptivity is used in a variety of contexts, from
nonlinear dynamics over socioeconomic systems to cognitive sci-
ence and musicology. This article presents various viewpoints on
adaptive systems and the notion of adaptivity itself from different
research disciplines aiming to open the dialogue between communi-
ties.

The article shows that the terminology and definition of “adap-
tivity” may vary among the communities. While “adaptability” refers
generally to the ability of a system to amend its properties accord-
ing to dynamic (external or intrinsic) changes, the specific details of
adaptive mechanisms depend on the context and the community,
for example, how and which part of a system can amend (adapta-
tion rules) or what strategies enable the perception (or sensing) of
such changes. In addition, the mathematical framework for describ-
ing adaptive mechanisms and adaptive systems also varies across
communities.

On the other hand, various commonalities become appar-
ent throughout this article. For example, a common starting point
in many contexts is descriptions based on networks, where the
notion of adaptivity is well established. Adaptive networks are
applied in numerous fields, such as power grids, neural systems,
and machine learning. Another commonality across disciplines is
the link between adaptivity and feedback mechanisms, which are
ubiquitous in both natural systems and engineering.

We believe that the similarities and differences provide oppor-
tunities for further cross-fertilization between the research com-
munities centered around the concept of adaptivity as a common
mechanism; for example, adaptive networks can serve as a powerful
modeling paradigm for realistic dynamical systems, possibly appli-
cable to even more systems, e.g., in the context of cognitive sciences,
musicology, or active matter. Furthermore, a great opportunity lies
in utilizing the mechanisms that have emerged in nature as inspira-
tion and guiding principles to engineer artificial (intelligent, coop-
erative) systems and to develop control strategies. In this spirit, for
example, the cooperative behavior of animals may guide the way
to engineer robots capable to perform collective motion reminis-
cent of swarms of insects or schools of fish or the development
of new machine learning algorithms may potentially profit from a
deeper understanding of the brain provided by the field of neuro-
science. Indeed, it has long been recognized that “The adaptiveness
of the human organism, the facility with which it acquires new rep-
resentations and strategies and becomes adept in dealing with highly

specialized environments, makes it an elusive and fascinating target
of our scientific inquiries and the very prototype of the artificial.”1

This article follows the workshop on “Adaptivity in nonlinear
dynamical systems,” which brought together specialists from various
disciplines to share their views on the abstract concept of adaptivity.
During the presentations and the coffee breaks, there was a lively
exchange of ideas that highlighted the great interest in this topic.
We hope that this Perspective article will be a first step in promoting
knowledge transfer between disciplines.

In order to conclude this Perspective article, we collect the cur-
rent open research questions for each section to stimulate future
research on adaptivity in the different fields represented in this
collection of perspectives and beyond.

• How does a mathematical theory of adaptive systems, which
includes cutting-edge applications, such as, e.g., adaptive net-
works, look like?

• How can knowledge about adaptive mechanisms be used to
better understand and influence processes in neuronal, physi-
ological, and socio-economic systems?

• Can the knowledge about neural plasticity of the human brain
be used to inspire the development of new artificial learning
algorithms?

• What are the capabilities of modeling real-world dynamical
systems by using adaptivity?
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A B S T R A C T   

Megastable and extreme multistable systems comprise two major new branches of multistable systems. So far, 
they have been studied separately in various chaotic systems. Nevertheless, to the best of our knowledge, no 
chaotic system has so far been reported that possesses both types of multistability. This paper introduces the first 
three-dimensional non-autonomous chaotic system that displays megastability and extreme multistability, jointly 
called mega-extreme multistability. Our model shows extreme multistability for a variation of an initial condition 
associated with one system variable and megastability concerning another variable. The different types of 
coexisting attractors are characterized by the corresponding phase portraits and first return maps, as well as by 
constructing the appropriate bifurcation diagrams, calculating the Lyapunov spectra, the Kaplan-Yorke dimen-
sion and the connecting curves, and by determining the corresponding basins of attraction. The system is 
explicitly shown to be dissipative, with the dissipation being state-dependent. We demonstrate the feasibility and 
applicability of our model by designing and simulating an appropriate analog circuit.   

1. Introduction 

The foundation stone of chaos theory was laid by Edward Lorenz in 
1963, having introduced a simplified model of atmospheric convection 
whose evolution, surprisingly at that point, turned out to sensitively 
depend on initial conditions [1]. Since then, concepts from chaos theory 
have permeated almost every branch of science and engineering, trig-
gering profound changes of paradigm in physics, chemistry, climate and 
environmental sciences, optics, electronics, pharmacology, medicine, 
economy, and sociology, to name but a few [2]. Chaos theory describes 
complex nonlinear systems such as the earth's atmosphere, animal 
populations, lasers, fluid flows, pathological heartbeat and brain activity 
patterns, and geological processes [3–5], whose long-term dynamics are 
intrinsically unpredictable despite their deterministic nature [6,7]. The 
global stability of dynamics on a chaotic attractor counteracts the local 
instability in the sense that statistical (average) properties can be pre-
dictable even if the detailed dynamics are not [7]. 

Another type of nonlinear systems whose dynamics critically 

depends on initial conditions are multistable systems [8–10], which 
possess multiple coexisting attractors for a given set of parameters. Ex-
amples of multistable behavior have been found in various fields, from 
biology, ecology, climatology, and neuroscience to laser and semi-
conductor physics, chemical reactions, and social systems [11–13]. 
Multistability emerges generically in several classes of systems, 
including weakly dissipative systems, coupled systems and systems with 
time-delayed feedback and/or interactions [8–10]. The problems of 
constructing multistable systems with desired properties and controlling 
the switching dynamics between the coexisting states have catalyzed 
intense research in theory and applications [9]. Specific methods have 
been developed to discover and generate coexisting attractors in 
dynamical systems, like amplitude control [14], offset boosting [15,16], 
and offset parameter cancellation [17]. While multistability has classi-
cally been associated with the coexistence of a finite number of attrac-
tors, within the last decade, it has come to light that there is indeed an 
entirely new realm of dissipative systems that feature infinitely many 
coexisting attractors [18–21]. Moreover, two distinct classes of such 

* Corresponding author. 
E-mail address: franovic@ipb.ac.rs (I. Franović).  
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systems have been discovered: on the one hand, systems with extreme 
multistability [22–28] possess uncountable infinitely many attractors, 
such that a continuous variation of initial conditions may induce bi-
furcations [29–31]; at the other hand, megastable systems [32–34] 
exhibit countable many nested coexisting attractors, and the corre-
sponding initial conditions cannot act as additional bifurcation param-
eters [35–37]. 

In the present paper, we introduce the first system exhibiting mega 
and extreme multistability features. The model comprises a non- 
autonomous three-dimensional system that can present chaotic, torus, 
and periodic attractors. We show how the mega and extreme multi-
stability features manifest themselves with respect to the variation of 
initial conditions corresponding to two different state variables. To the 
best of our knowledge, such a system has previously not been reported in 
the literature. 

The paper is organized as follows. Section 2 introduces our model of 
a non-autonomous chaotic system and studies its dynamical regimes by 
providing the relevant phase portraits and first return maps. Also, the 
dissipative character of system dynamics is explicitly demonstrated, and 
the connecting curves are calculated to illustrate the underlying 
attractors' structure better. Section 3 addresses the extreme multi-
stability feature of the system dynamics, involving the appropriate 
bifurcation diagrams, calculation of the Lyapunov exponents spectra 
and Kaplan-Yorke dimension, and an analysis of the basins of attraction. 
The applicability of the proposed model is demonstrated by analog 
circuit simulations in Section 4. Section 5 provides a summary of our 
main results. 

2. The non-autonomous chaotic system 

The model we introduce is a three-dimensional non-autonomous 
system given by 
⎧
⎨

⎩

ẋ = y
ẏ = z + ycos(x)
ż = − by + Aωcos(ωt)

, (1)  

where Aωcos(ωt) is the forcing term with an amplitude A and frequency 
ω, while b is another control parameter. 

Having fixed the forcing and intrinsic system parameters to A = 0.8,
b = 0.1,ω = 0.7, we observe three different types of attractors of System 
(1) under variation of initial conditions, see Fig. 1. In the top row are 
shown the phase portrait projections in the Y − Z plane, whereas in the 
bottom row are provided the corresponding first return maps obtained 
by collecting the successive maxima of the Y signal. The initial condi-
tions are given by 

(
x0, y0, z0

)
= (0,0, z0) whereby z0 is respectively set to 

zero, − 0.3, and 2.2 in the left, middle, and right columns of Fig. 1. It 
turns out that System (1) can exhibit three different types of dynamics by 
varying the initial condition z0. In particular, the solutions in Fig. 1(a)– 
(c) display chaotic, periodic (period 3), and torus attractors, respec-
tively. The number of points in Fig. 1(e) corresponds to the period of the 
attractor in Fig. 1(b). The general pattern of the return maps in Fig. 1(d) 
and (f) are similar, although the one for the torus attractor in Fig. 1(f) 
shows a more ordered structure. The areas of phase space occupied by 
the chaotic and torus attractors are approximately the same, but the 
sequences of points in the return maps are entirely different. 

Fig. 1 demonstrates that the continuous variation of the initial con-
dition z0 can indeed give rise to bifurcations, which is a signature of the 
extreme multistability of System (1). 

To show the megastability of this system, two different values of z0 
are chosen, and the megastability feature under varying y0 is demon-
strated separately for each of the two given z0 values. The phase por-
traits of System (1) with A = 0.8, b = 0.1,ω = 0.7 and initial conditions 
x0 = 0, y0 ∈ {0,5, 7}, z0 ∈ {0, − 0.9} are shown in Fig. 2. In Fig. 2(a) and 
(b), z0 is set to zero and − 0.9, respectively. In both panels, the blue, 
orange, and yellow attractors correspond to y0 = 0, y0 = 5, and y0 = 7, 
respectively. All coexisting attractors are chaotic in Fig. 2(a), whereas in 
Fig. 2(b), two are periodic, and the outermost one is chaotic. It should be 
noted that only three of the coexisting attractors are plotted in this 
figure, and changing y0 leads to an infinite but countable number of 
coexisting attractors, which conforms to the megastability property. On 
the other hand, variation of z0 gives rise to an infinite and uncountable 

Fig. 1. Phase portrait projections in the Y − Z plane and return maps of System (1) for fixed A = 0.8, b = 0.1,ω = 0.7 and initial conditions 
(
x0, y0, z0

)
= (0, 0, z0). By 

changing z0, three different types of behaviors are observed. (a) and (d): chaotic dynamics with z0 = 0, (b) and (e): periodic dynamics with z0 = − 0.3, and (c) and 
(f): torus-like dynamic with z0 = 2.2. The corresponding first return maps are constructed by collecting the maximum values of the Y signal. 
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number of coexisting attractors, a hallmark of extreme multistability. In 
summary, System (1) shows extreme multistability concerning the 
variation of z0, but for any arbitrary value of z0, it is megastable under 
the variation of y0. Therefore, System (1) can be called a mega-extreme 
multistable system. 

2.1. Dissipative character of system dynamics 

The energy dissipation of a dynamical system is calculated by the 
trace of the system's Jacobian matrix, which is equal to the divergence of 
the system. The Jacobian matrix and divergence of System (1) are 
calculated as 

Fig. 2. Phase portrait projections in the X − Y plane of System (1) with fixed A = 0.8, b = 0.1,ω = 0.7 and initial conditions 
(
x0, y0, z0

)
=

(
0, y0, z0

)
where 

y0 ∈ {0,5, 7}. (a) Coexisting chaotic attractors with z0 = 0 and (b) coexisting periodic and chaotic attractors for z0 = − 0.9. Blue, orange, and yellow attractors 
correspond to y0 = 0, y0 = 5, and y0 = 7, respectively. For each given value of z0, System (1) exhibits an infinite but countable number of coexisting attractors under 
the variation of y0, which confirms its megastability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 3. The average divergence for System (1) with A = 0.8, b = 0.1,ω = 0.7 and initial conditions 
(
x0, y0, z0

)
= (0, 0, z0) :(a) z0 = 0 (chaotic behavior), (b) z0 = −

0.3 (periodic behavior), and (c) z0 = 2.2 (quasiperiodic dynamics). Note that all three average divergences converge to a negative value, indicating that all three 
types of dynamics are indeed system attractors. 
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J =

⎡

⎣
0 1 0

− ysin(x) cos(x) 1
0 − b 0

⎤

⎦→∇V = Tr(J) = cos(x) (2) 

Eq. (2) implies that the energy dissipation depends on the value of 
the x state variable. For such a scenario, one should calculate the 
average value of the divergence ∇V, whereby the negative, zero, and 
positive values conform to dissipative, conservative, and explosive dy-
namics, respectively. The divergence is calculated for each system 
attractor separately and does not determine the overall system's 
behavior. 

The average value of divergence for System (1) with A = 0.8, b =

0.1,ω = 0.7 and initial conditions 
(
x0, y0, z0

)
= (0, 0, z0) is plotted in 

Fig. 3. The value of z0 is set to zero, − 0.3, and 2.2 in panels (a)–(c). The 
runtimes in each simulation are adapted to ensure the convergence of 
the average dissipation. Note that Fig. 3 corroborates that for each of the 
three previously discussed examples of system dynamics, one finds a 
negative average divergence, implying the existence of genuine 
attractors. 

2.2. Connecting curves 

While the equilibrium points of a dynamical system can help deter-
mine the position of attractors locally, the connecting curves can provide 
information on a more global landscape [38]. In particular, the con-
necting curves highlight the direction in which the attractor swirls [39]. 
While the fixed points are classically called zero-dimensional invariant 
sets, the connecting curves are nevertheless one-dimensional invariant 
sets [40]. Consider the flow S→= (x(t) , y(t) ,z(t) )T that includes all three 

state variables. The velocity field V→(t) is then given by d S→
dt = V→(t) =

(
f1, f2, f3

)
where f1, f2, f3 are the right-hand side expressions in a set of 

ordinary differential equations. The acceleration field A→(t) is calculated 
as 

d V→

dt
= A→(t) =

∂ V→

∂ S→
d S→

dt
→ A→(t) = J V→(t) = λ V→(t)→J V→(t) − λ V→(t) = 0 (3) 

Applying the chain rule in Eq. (3), the acceleration field is shown to 
be proportional to the velocity field. Finally, the connecting curves 
satisfy the condition J V→(t) − λ V→(t) = 0 [41]. 

System (3) leads to an equation for each state variable. Nevertheless, 
the number of unknowns is four (three state variables and λ). To solve 
these equations, a state variable must be selected as the principal state 
variable: in our case, variable y is selected. Afterward, all other state 
variables (here x and z) and λ should be written in terms of the principal 
state variable. The principal state variable should be chosen to simplify 
the calculations. Next, considering the attractor's position in space, a 
desired interval is selected for the state variable y, and for each point in 
that interval, the value of λ and other state variables are calculated. In 
the case of System (1), λ is independent of y and is always zero. 
Consequently, x and z only depend on y, so there can be four different 

solutions for different combinations of x and z, see Table 1. The corre-
sponding connecting curves of System (1) with its chaotic attractor are 
depicted in Fig. 4. The system parameters are A = 0.8, b = 0.1,ω = 0.7 
and the initial conditions are 

(
x0, y0, z0

)
= (0, 0,0). The connecting 

curves (black lines) provide global information about the attractor po-
sition and curvature. 

3. Extreme multistability 

To study the extreme multistability of System (1), we consider its 
initial conditions-dependent dynamics via the bifurcation diagram, 
Lyapunov exponents, Kaplan-Yorke dimension and attraction basins. 
The bifurcation diagram and the corresponding Kaplan-Yorke dimen-
sion of System (1) are shown in Fig. 5 using the initial condition z0 as a 
control parameter that varies within the interval [− 3,3]. The system 
parameters are set to A = 0.8,b = 0.1,ω = 0.7, whereas the remaining 
initial conditions are fixed to 

(
x0, y0

)
= (0, 0). The bifurcation diagram 

in Fig. 5(a) is constructed by plotting the local maxima of the Z state 
variable. One observes that System (1) continuously switches between 
the periodic and chaotic behaviors within the selected z0 interval. The 
Kaplan-Yorke dimension DKY shown in Fig. 5(b) is defined as [42,43] 

DKY = j+

∑j

i=1
λi

⃒
⃒λj+1

⃒
⃒
,
∑j

i=1
λi ≥ 0,

∑j+1

i=1
λi < 0, (4)  

where λi are Lyapunov exponents. Note that in order to calculate DKY , all 
Lyapunov exponents should be sorted in descending order, whereby j in 
Eq. (4) denotes the index of the Lyapunov exponent up to which the sum 
of Lyapunov exponents is non-negative. The latter implies that the DKY 
of chaotic, torus, and periodic attractors are larger than two, equal to 

Table 1 
x and z state variables in terms of y for solving Eq. (3). The value of λ is not related to y and is always zero. y state variable is treated as the principal 
state variable to simplify the mathematical operations. Four different pairs of x and z can be considered in calculating the connecting curves.  

λ x z 

0 
2tan− 1

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(5y − 4)(10y + 7)(50y2 + 5y + 28)

√
− 50y2

5y + 28

)

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(5y − 4)(10y + 7)(50y2 + 5y + 28)

√

50y 

0 
− 2tan− 1

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(5y − 4)(10y + 7)(50y2 + 5y + 28)

√
+ 50y2

5y + 28

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(5y − 4)(10y + 7)(50y2 + 5y + 28)

√

50y 

0 
2tan− 1

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(5y + 4)(10y − 7)(50y2 − 5y + 28)

√
− 50y2

5y − 28

)

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(5y + 4)(10y − 7)(50y2 − 5y + 28)

√

50y 

0 
− 2tan− 1

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(5y + 4)(10y − 7)(50y2 − 5y + 28)

√
+ 50y2

5y − 28

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(5y + 4)(10y − 7)(50y2 − 5y + 28)

√

50y   

Fig. 4. Chaotic attractor and connecting curves of System (1) with A = 0.8, b =

0.1,ω = 0.7 and initial conditions 
(
x0, y0, z0

)
= (0,0, 0). The black lines are the 

connecting curves showing the direction around which the attractor swirls. 
Four black lines correspond to four pairs of x and z in Table. 1. 
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two, and equal to one, respectively. The variation of DKY in Fig. 5(b) is 
indeed consistent with the bifurcation diagram from Fig. 5(a). 

The Lyapunov exponents of System (1) with the same parameters as 
in Fig. 5(a) and z0 as the control parameter are provided in Fig. 6. Fig. 6 
(a) shows the variation of the first two largest Lyapunov exponents with 
z0, while Fig. 6(b) indicates the changes of the smallest one. The smallest 
Lyapunov exponent is always zero, but the exponents can have different 
values according to the system's dynamics. For chaotic attractors of a 
three-dimensional system, the Lyapunov spectrum contains one posi-
tive, one negative, and one zero exponent, whereby the value of the 
positive exponent is less than the absolute value of the negative one. On 
the other hand, the Lyapunov spectrum of a periodic attractor contains 
one zero and two negative exponents. Finally, one observes one negative 
and two zero exponents for torus attractors. The changes between the 
system attractors with z0 reflected in the Lyapunov spectra from Fig. 6 
are consistent with the results from Fig. 5. 

Another important tool to investigate the multistable systems is to 
identify the corresponding attraction basins. Fig. 7 shows the attraction 
basins for the dynamics of System (1) with A = 0.8, b = 0.1,ω = 0.7,
obtained by fixing one initial condition to zero and varying the other 
two. The attraction basins are plotted in (a) x0 − y0 plane with x0 ∈ [2, 5]

and y0 ∈ [ − 4,2], (b) x0 − z0 plane with x0 ∈ [ − 3,3], z0 ∈ [ − 1,1], and 
(c) y0 − z0 plane with y0 ∈ [ − 4,4] and z0 ∈ [ − 1,1]. The intervals of 
initial conditions are chosen to avoid the torus attractors. Yellow and 
blue-green colors represent chaotic and periodic solutions, respectively. 
For periodic solutions, the representing color encodes the period. In 
Fig. 7(b) and (c), where the initial condition z0 is varied, one may 
observe the same transitions between the different periodic and chaotic 
attractors, as illustrated in the bifurcation diagram in Fig. 5(a). 

4. Analog circuit design 

To corroborate the previous numerical simulations, we have 
designed an analog circuit of System (1) given by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ =
1

R1C1
Y

Ẏ =
1

R2C2
Z +

1
R3C2

Ycos(X)

Ż = −
1

R4C3
Y +

1
R5C3

cos(0.7t)

(5) 

Fig. 5. Bifurcation diagram and DKY of System (1) with A = 0.8, b = 0.1,ω = 0.7 for fixed initial conditions 
(
x0, y0

)
= (0, 0) while varying z0 in the [ − 3, 3] interval. 

(a) Bifurcation diagram showing the local maxima of Z state variable and (b) the corresponding DKY . System (1) exhibits chaotic or periodic attractors in the selected 
interval. DKY matches the bifurcation diagram because its value is more than two in chaotic regions and one within periodic windows. 
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Fig. 6. Lyapunov exponents of System (1) with A =

0.8, b = 0.1,ω = 0.7 and for fixed initial conditions 
(
x0, y0

)
= (0,0) under variation of z0 within the [ −

3, 3] interval. (a) Two largest Lyapunov exponents 
and (b) the smallest Lyapunov exponent. While the 
smallest Lyapunov exponent is always zero, the other 
two exponents in (a) can have different values. If the 
latter are one positive and one zero (the positive 
exponent is less than the absolute value of the nega-
tive one), the attractor is chaotic. The attractor is 
periodic with one zero and one negative exponent in 
(a). The Lyapunov exponents corroborate the type of 
solutions from the bifurcation diagram in Fig. 5.   

Fig. 7. Attraction basins of System (1) with A =

0.8, b = 0.1, ω = 0.7. (a) On x0 − y0 plane with 
x0 ∈ [2, 5], y0 ∈ [ − 4, 2], and z0 = 0, (b) on x0 − z0 

plane with x0 ∈ [ − 3, 3], z0 ∈ [ − 1, 1], and y0 = 0 
and, and (c) on y0 − z0 plane with y0 ∈ [ − 4, 4], 
z0 ∈ [ − 1,1], and x0 = 0. A 300 × 300 grid of initial 
conditions is used to obtain each basin of attraction. 
Yellow and blue-green colors represent the chaotic 
and periodic solutions, respectively. As the period 
of the periodic attractor increases, its representative 
color changes from blue to green. The transitions 
between the different types of attractors from Fig. 5 
(a) are recovered in (b) and (c), where one of the 
variable initial conditions is z0.
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The schematic of the designed circuit in the OrCAD simulation 
environment is provided in Fig. 8. Three integrators are used to imple-
ment the three state variables. Also, two inverters, a multiplier, a cosine 
function block, and a sinusoidal voltage generator are employed. The 
integrator and inverter circuits are designed based on operational am-
plifiers (OpAmps). The value of capacitors is C1 = C2 = C3 = 100μF, 
and the resistors' values are set as R1 = R2 = R3 = R5 = 10kΩ,R4 =

100kΩ,R6 = R7 = R8 = R9 = 1kΩ. Moreover, the supply voltages of the 
OpAmps are VP = 30V,VN = − 30V. 

The cosine signal in the last line of System (5) is implemented by 
applying a π

2 rad phase shift to the generated sine function. The fre-
quency in the cosine signal is measured in rad

s , but the frequency mea-
surement unit in OrCAD is Hz, so the frequency in Fig. 8 is set to 0.11 Hz 
according to 

ω = 2πf →f =
ω
2π =

0.7
2π ≈ 0.11Hz (6) 

The results of the simulation of the designed circuit from Fig. 8 are 
demonstrated in Fig. 9. To allow for a comparison with the previous 
numerical results, the attractors are projected on Y − Z plane with initial 

conditions 
(
x0, y0, z0

)
= (0,0, z0) and (a) z0 = 0, (b) z0 = − 0.3, and (c) 

z0 = 2.2. The circuit's behavior matches the numerical results, recov-
ering all chaotic, periodic, and torus attractors from Fig. 1. 

5. Conclusion 

In the present paper, we have provided the first example of a mega- 
extreme multistable chaotic system. The introduced three-dimensional 
non-autonomous system shows extreme and megastability under the 
variation of initial conditions corresponding to two different state var-
iables. The megastability of our system has been corroborated by phase 
portrait projections demonstrating an infinite but countable number of 
coexisting attractors. The latter can conform to the same or different 
types of dynamics. To verify that the model exhibits genuine attractors, 
we have investigated the dissipative character of the system's dynamics 
by explicitly calculating the divergence, which turned out to be state- 
dependent. Nevertheless, the numerically determined average di-
vergences for all the relevant regimes showed convergence to negative 
values, indicating that the system dynamics is indeed dissipative. Also, 
the connecting curves have been determined to better characterize the 

Fig. 8. The analog circuit following System (5) is implemented in OrCAD. The particular circuit elements are C1 = C2 = C3 = 100μF and R1 = R2 = R3 = R5 =

10kΩ,R4 = 100kΩ,R6 = R7 = R8 = R9 = 1kΩ. The supply voltages of the OpAmps are set to VP = 30V,VN = − 30V. Three integrator and two inverter circuits are 
implemented based on OpAmps. Also, one multiplier, one cosine function block, and one cosine (sine with a π

2 rad phase shift) voltage generator are required. 

Fig. 9. The simulation results of the circuit from Fig. 8 in Y − Z plane. Projection of (a) chaotic attractor with z0 = 0, (b) periodic attractor with z0 = − 0.3, and (c) 
torus attractor with z0 = 2.2. The dynamics of an analog circuit agrees with the numerical results from Fig. 1. 
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system attractors. 
Concerning the extreme multistability feature of the novel system, 

we have constructed the bifurcation diagram under the variation of the 
appropriate initial condition and have numerically determined the 
corresponding Lyapunov spectra and the Kaplan-Yorke dimension. The 
transitions between periodic and chaotic attractors observed in the 
bifurcation diagram have been corroborated by constructing the 
attraction basins in three planes of initial conditions. Finally, we have 
confirmed the validity of the numerical results by designing and simu-
lating an analog circuit in the OrCAD environment. The circuit was 
designed using simply available components like OpAmps, resistors, 
capacitors, multipliers, and signal generators. We have shown that the 
circuit dynamics agrees well with the numerical results for the original 
system, demonstrating that the mega-extreme multistability feature is 
reproducible and flexible in applications. This is especially important 
given that there may be instances where the realization of solely extreme 
multistable or megastable systems may be difficult. We believe that 
discovering a new class of mega-extreme multistable systems will cata-
lyze new research directions concerning the origin, design, and control 
of multistable nonlinear systems. 
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ABSTRACT

We disclose a new class of patterns, called patched patterns, in arrays of non-locally coupled excitable units with attractive and repulsive
interactions. The self-organization process involves the formation of two types of patches, majority and minority ones, characterized by
uniform average spiking frequencies. Patched patterns may be temporally periodic, quasiperiodic, or chaotic, whereby chaotic patterns may
further develop interfaces comprised of units with average frequencies in between those of majority and minority patches. Using chaos and
bifurcation theory, we demonstrate that chaos typically emerges via a torus breakup and identify the secondary bifurcation that gives rise to
chaotic interfaces. It is shown that the maximal Lyapunov exponent of chaotic patched patterns does not decay, but rather converges to a
finite value with system size. Patched patterns with a smaller wavenumber may exhibit diffusive motion of chaotic interfaces, similar to that
of the incoherent part of chimeras.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0111507

While coherence–incoherence patterns have been exhaustively
explored both for spatially discrete systems of coupled oscilla-
tors and in the continuum limit, much less is known about the
generic mechanisms of onset and the finite-size effects associ-
ated with such patterns in coupled excitable systems. Recently
discovered supercritical scenario for the onset of bumps in cou-
pled excitable active rotators with nonlocal attraction and global
repulsion, as well as the two types of solitary states unveiled in
arrays of excitable FitzHugh–Nagumo units with nonlocal attrac-
tive and repulsive interactions, already suggests that the coher-
ence–incoherence patterns in coupled excitable systems may defy
the common intuition based on coupled oscillators. Here, we
introduce a new class of patterns, called patched patterns, in non-
locally coupled arrays of excitable units with attractive and repul-
sive interactions. These patterns involve splitting of an array into
spatially continuous domains, called patches, comprised of units
locked by their average spiking frequencies. Patched patterns may
be temporally periodic, quasiperiodic, or chaotic, and depending
on the prevalence of attraction vs repulsion, chaotic patterns

can develop interfaces with frequencies intermediate between the
majority and minority patches. Distinct from chimeras, chaos
in patched patterns is not spatially localized, but is of different
character for the units in the patches and at the interfaces: the
latter show more variability and resemble chaotic itinerancy. We
demonstrate the typical bifurcation scenario giving rise to chaos
for smaller and intermediate coupling ranges. We also show that
adjusting the coupling range to reduce the pattern wavenumber
may result in a transition to chaos accompanied by a diffusive
motion of interfaces.

I. INTRODUCTION

Combining different approaches and methods from pattern
formation, finite dimensional chaos, and bifurcation theory, as
well as statistical physics, has in recent years allowed for some
deep insights into the coherence–incoherence patterns in systems
of coupled oscillators. The two most important aspects concern
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understanding their mechanisms of onset and the dependence of
their behavior on system size. For example, it has become clear that
chimeras1–8 constitute inhomogeneous equilibria of certain macro-
scopic averaged quantities in the continuum limit,9–11 while in spa-
tially discrete systems, they are characterized by a self-localized,
spatially extensive weak hyperchaos where the positive part of the
Lyapunov spectrum decays to zero with system size.12 The interplay
of local nonlinearity and interactions, at least for the two classi-
cal scenarios admitting chimeras,1,3 results in nontrivial finite-size
effects, such as the pattern collapse to a uniform coherent state13 and
the Brownian-like diffusion of the incoherent domain.14

Nevertheless, an intriguing question is what happens to coher-
ence–incoherence patterns if a system is not comprised of oscil-
lators, but rather of excitable units.15–19 When isolated, excitable
systems remain in a stable stationary state, but may be triggered
to oscillate by a sufficiently strong perturbation via interactions
and/or noise. Excitability is one of the cornerstones for the physics
of life; underpinning the local dynamics of neuronal, cardiac, and
endocrine systems;15,20–23 and is also important for understanding
many other natural and synthetic systems, from chemical reactions24

and climate dynamics25 to lasers26 and machine learning.27 Self-
organization in coupled excitable systems cannot be described in
terms of a simple mutual adjustment of local oscillations, and
even the very onset of a collective mode requires the presence of
inhibitory/repulsive couplings,28,29 defying the common intuition
developed for coupled oscillators. With the full analogy to coupled
oscillators missing, the basic questions on coherence–incoherence
patterns in coupled excitable systems, such as the potential work-
ing definition, classification, generic mechanisms of onset, and the
contribution from finite-size effects still remain open.

Currently, it seems likely that the extension of the concept of
weak chimeras,30 classically associated with small systems of cou-
pled oscillators, provides an effective framework for characteriza-
tion of coherence–incoherence patterns in finite systems of coupled
excitable units. By this concept, coherence–incoherence patterns
can be described in terms of frequency locking/unlocking, typically
involving a majority of units that are coherent, i.e., frequency locked,
and a minority of units unlocked from the bulk (and possibly mutu-
ally unlocked). In these terms, bump states,10,31–33 a common type of
pattern associated in neuroscience with spatial working memory34

and the head direction system35 can be described as a set of units
with an elevated firing rate self-localized on a continuous spatial
domain and appearing on top of an inactive background. Using
the model of excitable active rotators with a short-range attrac-
tion and long-range repulsion, it has recently been shown that the
bumps may emerge from Turing patterns via a supercritical sce-
nario that involves unlocking of a single unit from the bulk and a
subsequent sequence of bifurcations to a fully developed extensive
chaos.36 Such an onset mechanism turned out to be completely inde-
pendent on system size. In contrast to classical chimeras, no pattern
collapse was observed in small systems, and while typically being
static, bumps could also exhibit a lateral diffusive motion depend-
ing on the parameters. Also quite recently, applying the model of
an array of FitzHugh–Nagumo units with nonlocal attractive and
repulsive interactions, it has been shown that coupled excitable sys-
tems may display two types of solitary states37 with a different finite-
size behavior, namely, either size-independent periodic solutions

closely associated with unbalanced cluster states in globally coupled
networks or weakly chaotic solutions where a few isolated oscilla-
tors split off from the background alternating (modulated traveling)
wave. Finally, for the same model, it has been shown that the noise
may play a facilitatory role allowing for the onset of the so-called
coherence-resonance chimeras,38,39 whereby instead of the diffusion
drift of classical chimeras, the interplay of local noise and the intrin-
sic noise due to finite size gives rise to switching of positions between
the coherent and the incoherent domains.

In the present paper, we introduce a new class of patterns in
non-locally coupled excitable systems, called patched patterns. The
basic pattern structure is such that the units self-organize into spa-
tially continuous domains, called patches, comprised of units that
are mutually frequency locked. Our model is the same as in Refs. 40
and 37 and comprises an array of N non-locally coupled identical
FitzHugh–Nagumo units described by

εu̇k = uk − u3
k

3
− vk + κ

2R

k+R
∑

l=k−R

[guu(ul − uk) + guv(vl − vk)],

v̇k = uk + a + κ

2R

k+R
∑

l=k−R

[gvu(ul − uk) + gvv(vl − vk)].

(1)

The local slow-fast dynamics is paradigmatic of type II excitability15

and involves activator variables uk and recovery variables vk with a
timescale separation ε = 0.05. For an isolated unit, variation of the
bifurcation parameter a > 0 gives rise to a singular Hopf bifurca-
tion at a = 1, mediating between excitable (a & 1) and oscillatory
regimes (a < 1). Above the canard transition at a ≈ 1 − ε/8,41 har-
monic subthreshold (low-amplitude) oscillations give way to large-
amplitude relaxation oscillations. Here, we fix a = 1.01 such that the
isolated units are in the excitable regime. Each unit is coupled to
R nearest neighbors to its left and to its right, with all the indices
being periodic modulo N. Coupling strength κ is assumed to be
homogeneous and is fixed to κ = 0.4. Interactions between units
involve direct terms including only activator or only recovery vari-
ables, as well as the mixing terms, which is compactly described by
the rotational coupling matrix40

G =
(

guu guv

gvu gvv

)

=
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

.

Note that the parameter ϕ impacts the prevalence of attractive vs
repulsive interactions by affecting the sign of the interaction terms.37

The paper is organized as follows. In Sec. II, we first make a
basic description of patched patterns and then focus on static chaotic
patched patterns with interfaces to characterize the local switching
dynamics of interface units, showing that it consists of laminar and
turbulent epochs consistent with chaotic itinerancy.42–44 In Sec. III,
we use chaos and bifurcation theory to demonstrate the typical sce-
nario for the onset of chaos with increasing coupling parameter ϕ,
where the torus bifurcation mediates the transition from periodic
to quasiperiodic patterns, and chaos emerges via torus breakup. It
is also shown that the maximal Lyapunov exponent converges to a
finite value rather than decaying with the system size, demonstrat-
ing the persistence of chaos. In Sec. IV, we demonstrate how varying
the coupling range to reduce the pattern wavenumber may give
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rise to the diffusion of interfaces. Section V provides a summary,
discussion, and outlook concerning our findings.

II. PATCHED PATTERNS

As already announced, patched patterns involve the forma-
tion of coherent spatial domains of frequency locked units. One
may distinguish between two types of domains, here called majority
and minority patches. The majority patches maintain a 1:2 reso-
nant frequency locking to the minority patches. Patched patterns
can be temporally periodic, quasiperiodic, or chaotic. The basic spa-
tial profile of average spiking frequencies ωk = 2πMk/T, where Mk

is the spike count within a macroscopic time interval T, is piecewise
constant, as in Fig. 1(a), which illustrates a periodic solution with
an additional reflection symmetry. In terms of local dynamics, the
patches are heterogeneous such that the units closer to the patch
center show a more similar dynamics than those at the patches’
boundaries. In contrast to periodic solutions, the chaotic solutions
may further develop interfaces comprised of incoherent units with
switching dynamics, whose frequencies are intermediate between
majority and minority patches, see Fig. 1(b). Depending on the sys-
tem parameters, in particular, the coupling range that controls the
pattern wavenumber, i.e., the number of minority patches, these
interfaces may be static, as in Fig. 1(b), or may display Brownian-
like diffusive motion we analyze later on in the paper. Within the

entire range supporting the patched patterns, the coupling parame-
ter ϕ favors repulsive over attractive interactions since three out of
four interaction terms (guu, gvu, gvv) between any two coupled units
have a negative sign.

A. Switching dynamics at the interfaces

Let us analyze in more detail the self-organization of local
dynamics for an example of a static chaotic pattern with interfaces,
whose spatial profile of average spiking frequencies is illustrated
in Fig. 1(b). Such wavenumber-4 pattern emerges from the cor-
responding periodic solution with a piecewise constant profile of
average frequencies, illustrated in Figs. 1(a) and 1(c), via a sequence
of bifurcations described in Sec. III. The typical time series of a fast
variable of a majority unit k = 62 [see the red arrow in Fig. 1(b)]
indicates mixed mode oscillations with each pair of successive spikes
separated by a subthreshold oscillation, whereas the time trace
of a typical minority unit k = 58, denoted by the blue arrow in
Fig. 1(b), primarily shows successive spiking, cf. Figs. 1(e) and 1(f).
On the other hand, a short time trace of an interface unit k = 60 in
Fig. 1(g) indicates mixed-mode oscillations with a switching dynam-
ics between the episodes where it approaches either the adjacent
majority or the minority patch.

To further elucidate the switching dynamics at the interfaces,
we construct the diagrams comparing the time evolution of the
first return times 1tn(t) to the Poincaré cross section uk(t) = 1.5, u̇k

FIG. 1. Patched patterns without and with chaotic interfaces. (a) and (c) Spatial profile of average spiking frequencies and spatiotemporal evolution of fast variables uk(t) for
a periodic patched pattern at ϕ = 2; (b) and (d) show the same, but for a chaotic patched pattern with interfaces (ϕ = 2.2). (e)–(g) Typical time traces uk(t) of units from a
majority patch [k = 62, red arrow in (b)], minority patch (k = 58, blue arrow), and from the interface (k = 60, black arrow). Red and blue shading in (g) indicates transient
episodes where the interface unit attaches to one of the patches. Remaining parameters: N = 100, a = 1.01, ε = 0.05, κ = 0.4, R = 20. The time horizon used to obtain
average spiking frequencies is T = 106 t.u.
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FIG. 2. Local fluctuations within patches and at interfaces. (a)–(c) Temporal evolution of the first return times to the Poincaré cross section uk(t) = 1.5, u̇k(t) > 0 for the
representative minority, majority, and interface units from Fig. 1(b), respectively. (d)–(f) Corresponding phase portraits in the uk − vk plane. System parameters are the same
as in Fig. 1(b).

(t) > 0 for the representative majority, minority and interface units
from Fig. 1, see Figs. 2(a)–2(c). For a minority unit, one typi-
cally observes small variations around two basic levels, which are
just induced by fluctuations of the local mean-field, also see the
phase portrait in Fig. 2(d). The similar holds for the representative
majority unit, cf. Figs. 2(b) and 2(e), though here one also finds
larger fluctuations in the first return times derived from rare sub-
threshold excitations. The most peculiar behavior is manifested by
the representative interface unit in Figs. 2(c) and 2(f), where the
dependence 1tn(t) involves a slow alternation between two types
of epochs: the laminar ones, when the unit is approximately fre-
quency locked to the adjacent majority or minority patch, and
turbulent ones, when the unit displays a high variability due to
fast fluctuations between the orbits resembling those of units in
majority and minority patches. Such slow alternating dynamics
is considered a fingerprint of chaotic itinerancy,42–44 ubiquitous
in high-dimensional state spaces. As opposed to the units within
minority and majority patches whose typical dynamics is illustrated
in Figs. 2(d) and 2(e), respectively, the units at the interfaces are sub-
jected to highly variable local mean-fields which act as sources of
intrinsic noise. Due to such variability, under increasing parameter
ϕ, the chaotic attractor undergoes transformation into a chaotic sad-
dle by acquiring unstable directions associated with the subspaces
of interface units. This is why the time evolution of the Poincaré
cross section of the interface unit in Fig. 2(c) contains the “levels”

associated with the laminar epochs, as well as additional structure
related to the turbulent epochs. Similarly, the phase portrait of the
interface unit in Fig. 2(e) combines the typical dynamics of the
patches but shows additional complexity reflecting the switching
process.

The mechanism giving rise to switching between the epochs, as
well as the fast fluctuations between the episodes within turbulent
epochs, appears to be qualitatively the same. It is associated with the
interface unit performing small-amplitude oscillations around the
ghost of an unstable fixed point derived from the stable equilibrium
of an isolated unit, as illustrated in Fig. 3 for the fast fluctuations
within a turbulent epoch. Successive subthreshold oscillations are
also the reason of why the turbulent epochs contain 1tn levels absent
in the case of units within the patches, see Fig. 2(c). Relaxation oscil-
lations both within laminar and turbulent epochs are susceptible to
perturbations in a way similar to the phenomenon of phase-sensitive
excitability of a limit cycle,45,46 in the sense that a strong enough per-
turbation due to fluctuations in the local mean-field may induce a
large deviation from the relaxation oscillation orbit, giving rise to
one or more successive subthreshold oscillations.

Pattern formation is based on two self-organization mecha-
nisms classically observed in coupled excitable systems, namely,
self-localized excitations47 and propagation of excitation.38,48 The
activity within an array consists of sequentially repeating excitation
episodes, where the majority (minority) patches fire once (twice).
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FIG. 3. Superimposed orbits of a representative minority unit (k = 58, blue),
majority unit (k = 62, red), and an interface unit (k = 60, green) for the pattern
in Fig. 1(b). Black dashed lines: isolated unit’s fast and slow nullclines, whose
intersection determines the position of the corresponding stable equilibrium. Fast
switching between episodes within the turbulent epoch of an interface unit is due
to subthreshold oscillations around the ghost of the isolated unit’s equilibrium.

Within the patches, spiking is typically organized in such a way
that the units closer to the center fire before those at the patches’
boundaries. The excitation episodes are initiated at the minority
patches, see Figs. 4(a) and 4(d) that show the space-time evolution of
u̇k, k ∈ [1, N] for the periodic and the chaotic patched pattern with
interfaces from Figs. 1(a) and 1(b), respectively. For the periodic pat-
tern, the excitation of the minority patches, see, e.g., black regions
for t ≈ 1 occurs simultaneously as the solution carries a reflection
space-time symmetry. Contrasting that, the reflection symmetry is
broken for the chaotic pattern, cf. Fig. 4(d). The localized exci-
tation elicited within a minority patch becomes a source of two
counterpropagating excitation waves emanating to its left and right.
Each majority patch is embedded between two minority patches
and, hence, receives from them two counterpropagating excitation
waves that collide and annihilate. In their wake, another excitation
is born and induced by the described paradigm a second spike of
units within the minority patches. The latter cannot induce further
excitation at the majority patches because the units there feature
longer spikes and subsequently also have longer refractory periods,
see Figs. 4(b) and 4(e).

The temporal organization of activity within and between the
patches may further be examined by constructing the corresponding
cross-correlation matrix

Ckl = 〈ûk(t)ûl(t)〉T
√

〈ûk(t)
2〉T〈ûl(t)

2〉T

,

where 〈·〉T denotes the time averaging, while ûk(t) = uk(t) −
〈uk(t)〉T are the deviations of uk(t) from their means, see Figs. 4(c)
and 4(f). One immediately realizes that Ckl for the periodic pat-
tern has a clear-cut structure with a strong correlation within and
between a given type of patches (majority or minority), while the
correlation of activities between patches of different type is rather
weak. The intrinsic structure of Ckl for the chaotic pattern is more

FIG. 4. Intrinsic structure of typical periodic (left column) and chaotic pattern
with interfaces (right column). (a) Spatiotemporal evolution u̇k(t); white dotted
rectangle: segment of an array whose dynamics is extracted in (b); (b) bot-
tom-up: time traces uk(t), k = 1, 2, . . . , 20 (black lines) shown shifted by a con-
stant increment; blue triangles: spike times of units; (c) cross-correlation matrix
Ckl ; (d)–(f) same as (a)–(c) but for chaotic pattern with interfaces. Respective
parameters are identical to those in Figs. 1(a) and 1(b).

smeared, reflecting the existence of interface units, and in con-
trast to the periodic solution, there are also pairs of units with an
anti-correlated behavior.

III. EMERGENCE OF CHAOS

Having explained the structure of local dynamics underpinning
chaotic patched patterns with interfaces, we investigate the bifurca-
tion scenario that gives rise to chaos as the coupling parameter ϕ

is increased. Note that the features of the transition to chaos with
ϕ depend on the wavenumber of the primary periodic solution,
which is ultimately controlled by the coupling range R. We first
elaborate on a generic scenario where periodic patterns follow the
route to chaos via quasiperiodicity, focusing on the example of a
wavenumber-4 pattern. For this generic scenario, which holds for
smaller and intermediate coupling ranges R, the onset of chaos per se
is not immediately associated with the formation of turbulent inter-
faces, and the latter emerge separately via a secondary bifurcation on
a chaotic attractor.

The bifurcation diagram in Fig. 5(a) is constructed considering
an array of N = 100 units, performing a forward sweep in ϕ to col-
lect the first return times 1tn of local dynamics to the Poincaré cross
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FIG. 5. Emergence of chaos and formation of turbulent interfaces. (a) Bifurcation diagram of local dynamics: first return times1tn to the cross section uk(t) = 1.5, u̇k(t) > 0
in dependence of ϕ for the unit k = 45; black dash-dotted line: ϕ value where the solution loses reflection symmetry. (b) Variation of the maximal Lyapunov exponent λmax

with ϕ. (c)–(f) Spatial profiles of average local spiking frequencies ωk for the set of ϕ values indicated by the red dashed lines in (a). Remaining parameters are the same as
in Fig. 1.

section uk(t) = 1.5, u̇k(t) > 0. In the provided example, the selected
unit remains within one of the majority frequency patches over the
whole considered ϕ interval. The red dashed lines indicate the ϕ

values associated with the spatial profiles of average spiking frequen-
cies ωk in Figs. 5(c)–5(f). The latter are calculated by averaging over
an interval T = 106 t.u. having discarded a transient of additional
5 × 105 t.u. The bifurcation diagram is supplemented by the depen-
dence of the maximal Lyapunov exponent λmax(ϕ),49,50 see Fig. 5(b),
sampled for the solutions observed at a fixed increment 1ϕ = 0.01.

The initial state at ϕ = 2.0 is the periodic patched pattern with
a reflection symmetry, already illustrated in Figs. 1(a) and 1(c). Fol-
lowing a period doubling at ϕ ≈ 2.073, the period two pattern is
transformed into a stable quasiperiodic solution via a torus bifur-
cation at ϕ ≈ 2.103. Further increasing ϕ, there is a locking on the
torus at ϕ ≈ 2.112, which is followed by a subsequent transition to
chaos via a torus breakup around ϕ ≈ 2.128. The primary pattern,
corresponding to a relative periodic orbit with the period four in
the Poincaré section, as well as the incipient chaotic pattern, is illus-
trated by the respective first return maps 1tn+1(1tn) in Fig. 6. For
ϕ ≈ 2.125 just below the transition, cf. the black dash-dotted line in
Fig. 5(a), the solution loses the reflection symmetry, which we have
verified by calculating the L2-norm of the difference between the
solution and its counterpart obtained under reflection transforma-
tion. The onset of chaos under increasing ϕ is corroborated by the
fact that the maximal Lyapunov exponent in Fig. 5(b) first exhibits a
non-negligible positive value λmax = 1.4 × 10−4 at ϕ = 2.13. Note

that in contrast to the onset of a localized extensive chaos, typi-
cal for chimeras or bumps, where a certain subset of units unlocks
from the coherent background, the transition to chaos here is a
collective instability in the sense that all the units within an array
immediately exhibit chaotic behavior while the spiking frequencies
remain locked within the respective patches. Above the transition,
the emerging chaotic patterns do not immediately involve inter-
face units and still feature the piecewise-constant profile of local
average spiking frequencies, see Fig. 5(d). The creation of chaotic
patterns featuring interface units with frequencies in-between those
of majority and minority patches is rather associated with the reap-
pearance of chaos around ϕ ≈ 2.169 following a period-four win-
dow. In terms of ωk profiles, this transition may be understood
as a “slope bifurcation” of patched patterns’ spatial frequency pro-
file where the sharp transition between the majority and minority
patches is replaced by a smoother one, see Fig. 5(e). Further increas-
ing ϕ, the chaotic patterns gain complexity due to a growing num-
ber of turbulent interface units, showing the alternating dynamics
described in Sec. II A, cf. Fig. 5(f). Meanwhile, the correspond-
ing maximal Lyapunov exponent remains approximately constant,
cf. Fig. 5(b).

Next, we address the two issues concerning how the system
dynamics varies with system size. In particular, we first consider
whether and how the observed sequence of bifurcations to chaos
depends on N and then examine how the complexity of the solu-
tions changes with N. In reply to the former, one notes that for
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FIG. 6. Focus on the breakup of torus bifurcation: first return maps 1tn+1(1tn)
indicate the disappearance of an invariant curve with increasing ϕ. Inset: an
enlarged view of one of the segments of the relative period-four orbits in the
Poincaré section. Remaining parameters are the same as in Fig. 1.

the given coupling strength κ and range R, the described bifur-
cation route to chaos qualitatively does not change with N when
the initial periodic pattern is constructed by replicating the initial
solution for N = 100. Nevertheless, our simulations indicate that
the ϕ values where the particular bifurcations take place shift with
increasing N, and the threshold for the emergence of chaos appar-
ently reduces with system size. As for the solution complexity, one
typically observes that the number of turbulent interface units grows
with N when all the remaining parameters are kept fixed. Finally,
chaos is found to persist with increasing N, as corroborated by the
dependence of the maximal Lyapunov exponent λmax on system size
in Fig. 7. There, the coupling parameter is fixed to ϕ = 2.13, the
value just above the transition to chaos for the system size N = 100,
see Figs. 5(a) and 6. As expected, λmax for N = 100 is quite small,
but the values calculated for the corresponding solutions at larger N
indicate a convergence to a finite value λmax ≈ 0.06 with increasing
system size. This is distinct from the classical result for chimeras,12

where the maximal Lyapunov exponent decays as N−1/2.

IV. PATTERN DEPINNING AND DIFFUSION OF

INTERFACES

So far, we have considered only static patched patterns that
undergo the transition to chaos that is not accompanied by an
immediate onset of turbulent interfaces. While this is typical for
smaller and intermediate coupling ranges, one finds a rather differ-
ent scenario if the coupling range R is further increased. Increas-
ing the coupling range affects the primary pattern by reducing its

FIG. 7. Dependence of maximal Lyapunov exponent with system size λmax(N).
Note the convergence to a finite value λmax ≈ 0.06 for large N. Parameters:
ϕ = 2.13, and the remaining ones are the same as in Fig. 1.

wavenumber, similar to Ref. 40 and 51. For such patterns, the tran-
sition to chaos coincides with the formation of turbulent interfaces,
which moreover engage in lateral diffusive motion, similar to the
random walk of the incoherent part of chimeras. As an example of
this scenario, we have considered the onset of chaos for a periodic
patched pattern with the wavenumber two, a solution analogous to
that in Fig. 1(a), but obtained for R = 40 with all the other param-
eters preserved. About ϕ ≈ 2.213, one observes the transition to
chaos, as corroborated by the dependence of the maximal Lyapunov
exponent with ϕ, see Fig. 8(a). Below the transition, there is just a
static periodic pattern, illustrated in Fig. 8(b) by the spatiotemporal
evolution uk(t), plotting its local time averages within windows of
100 t.u. over a long time horizon of 106 t.u. In contrast to the sce-
nario described in Sec. III, the interfaces emerge immediately at the
transition, and instead of being pinned to the neighboring patches,
rather display a Brownian-like motion, see Fig. 8(c). Due to this, just
like in the case of chimeras,30 the spatial profiles of average spik-
ing frequencies for such diffusive patched patterns should be flat
when considered over sufficiently long time intervals. The diffu-
sive motion becomes more pronounced as ϕ is further increased,
cf. Fig. 8(d).

To demonstrate that the motion of interfaces indeed conforms
to a Brownian one, we explicitly show that the mean square dis-
placement of the pattern position for example in Fig. 8(d) grows
linearly with time. The position of the pattern at the given moment
is determined following the procedure described in Ref. 14, which
essentially entails comparing the vector uk(t), k ∈ [1, N] to a suit-
ably chosen periodic reference function f(x, ξ) so that the position
of the pattern is given by the ξ value that minimizes the distance
between uk(t) and the reference profile. The results of the proce-
dure are shown in Fig. 9(a), where white dots, indicating the pattern
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FIG. 8. Emergence of chaos and diffusion of interfaces for a wavenumber-2 pattern. (a) Dependence of maximal Lyapunov exponent with ϕ indicates the onset of chaos for
ϕ ≈ 2.213. (b)–(d) Spatiotemporal evolution of uk(t) for a periodic pattern at ϕ = 2.21 and chaotic patterns at ϕ = 2.22 and ϕ = 2.23, respectively. System parameters:
R = 40, κ = 0.4, a = 1.01, ε = 0.05,N = 100.

position ξ(t) after every τ = 400 t.u., are plotted on top of the uk(t)

heatmap. Note that the local time averages ξ(t) are used to eliminate
fast oscillations. In Fig. 9(b) are extracted the long-term (main-
frame) and short-term (inset) motion of a single incoherent region,
corresponding to a minority patch of the primary pattern bounded
on both sides by the turbulent interface units. Similar to chimeras,
the motion of interfaces providing the boundary of a minority region
remains correlated such that the domain does not grow or shrink

with time. For a fixed sufficiently large time step τ , the histogram
of the corresponding shifts in position 1ξ can readily be fitted to a
Gaussian distribution

p(1ξ) = 1√
2πσ(τ)

e
− 1ξ2

2σ(τ) , (2)

see Fig. 9(c) for the case τ = 400. Extracting in this way the variances
σ(τ) for several values of τ , we demonstrate that they indeed follow

FIG. 9. (a) White dots: position of the pattern at every time step τ = 400 t.u.; (b) shifts in position of a single incoherent region bounded by interfaces ξ(t) over a long time
horizon of 106 t.u. (mainframe) and over a short timescale (inset); (c) fit of a histogram of displacements 1ξ to a Gaussian distribution for τ = 400; (d) variance of Gaussian
distributions σ as a function of time step τ . System parameters: ϕ = 2.23,R = 40, κ = 0.4, a = 1.01, ε = 0.05,N = 100.
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a linear dependence of the form σ(τ) = 2Dτ , see Fig. 9(d), which
can be used to determine the diffusion coefficient D ≈ 1.4 × 10−4 of
the corresponding Fokker–Planck equation.

V. SUMMARY AND DISCUSSION

We have presented patched patterns as a new class of self-
organized patterns in coupled excitable systems with nonlocal
attractive and repulsive interactions. Pattern formation involves a
symmetry breaking, where an assembly of identical units with sym-
metrical interactions spontaneously splits into patches of frequency
locked units, with the majority and minority patches displaying a
1:2 frequency resonance. We have demonstrated that in terms of
temporal organization, patched patterns can be classified as peri-
odic, quasiperiodic, or chaotic, whereby the former two are always
static, while the latter may also show lateral diffusive motion. Apart
from patches, chaotic patterns may also include interface units
and feature chaotic itinerancy, characterized by a slow alternating
activity between laminar epochs, where the unit is approximately
locked to either of the neighboring patches, and turbulent epochs,
with a fast switching between the orbits similar to local dynam-
ics within the patches. We have explained the basic mechanism
of self-organization of patched patterns as an interplay between
self-localized excitations and propagation of excitations, the two
phenomena classically observed in coupled excitable systems. Using
standard chaos and bifurcation theory in finite-dimensional sys-
tems, we have disclosed the typical transition route from periodic
solutions to chaos via quasiperiodicity as the coupling parameter ϕ

is increased. There, chaos emerges from the torus breakup, and the
onset of turbulent interfaces is associated with a secondary bifurca-
tion. Nevertheless, the transition to chaos is further found to depend
on the wavenumber of the primary pattern, which can be controlled
by the coupling range. For sufficiently large coupling ranges admit-
ting wavenumber-2 patterns, we have identified the second scenario
of transition to chaos, where its emergence coincides with the forma-
tion of diffusive interfaces, explicitly shown to exhibit Brownian-like
motion.

Patched patterns we have discovered bear a certain resem-
blance to coherence–incoherence patterns observed so far in cou-
pled oscillators or coupled excitable systems, but also display con-
siderable differences. In particular, patched patterns are different
from bumps10,32,33,36 because the extensive chaos is spatially localized
and the bulk units are stationary (inactive). Also, our patched pat-
terns with interfaces are distinct from classical solitary states because
the interface units are not isolated and randomly distributed, but
rather form a spatially continuous profile. Distinct from the classi-
cal chimeras12 in coupled phase oscillators, the maximal Lyapunov
exponent for the patched patterns converges to a finite value instead
of decaying with the system size, and at variance with the multi-
headed chimeras,40,52 the frequency profile within all the patches is
piecewise constant. Still, we note a certain similarity to some of the
less conspicuous types of coherence–incoherence patterns observed
in coupled oscillators. First, we recall the so-called chimera Ising
walls in non-locally coupled Ginzburg–Landau oscillators with a
parametric forcing.53 There, the incoherent units also form inter-
faces connecting frequency-locked domains, but in contrast to our
patched patterns, the domains at two sides of an interface are 1:1

frequency locked. Second, our class of solutions may be compared
to oscillons,54 which also involve a temporally modulated localized
spiking activity, as in our minority patches, but such an activity is
embedded on an inactive rather than a spiking background. The
emergence of spatially incoherent interfaces has also been observed
for the so-called mosaic or skeleton patterns in coupled maps,40,51,57

but the onset of spatial incoherence is not associated with tempo-
ral chaos in local dynamics. We note that the onset of an alternating
activity similar to our interface units has been found for the so-called
itinerant chimeras.55 While this is also not a finite-size effect, it
involves all the units within an array, rather than remaining spa-
tially localized. Finally, a recent paper on theta-neuron oscillators
mentions non-stationary patterns with the frequency profile similar
to ours,56 but instead of spiking, the majority units there are in the
state of oscillation death.

The relation between the patched patterns and other types
of coherence–incoherence patterns along the path from complete
coherence to incoherence in coupled excitable systems requires fur-
ther study. So far, there is only a partial result suggesting that the
patched patterns coexist with solitary states in non-locally coupled
arrays of FitzHugh–Nagumo units37 and that the noise promotes
patched patterns at the expense of solitary states. Such robustness
of patched type of solutions relative to solitary states derives from
their comparably larger basins of attraction. In terms of system’s
multistability, one also notes that the patched patterns per se may
have different symmetry properties and that patterns with different
wavenumbers and fractions of minority vs majority units may stably
coexist. The patched patterns may further coexist with other types
of solutions, such as rotating waves and modulated waves.

The presented results, together with Refs. 36 and 37, indi-
cate that the study of self-organized coherence–incoherence patterns
in coupled excitable systems opens up interesting new directions
of research, revealing types of solutions that bear only a partial
resemblance to those in coupled oscillators. An interesting prob-
lem would be to investigate these new types of solutions for models
amenable to a rigorous analysis of the system behavior in the con-
tinuum limit. Also, in order to extend the comparison with coher-
ence–incoherence patterns in coupled phase oscillators, it would be
important to explicitly demonstrate the potentially extensive char-
acter of chaos for patched patterns with interfaces by calculating
the corresponding Lyapunov spectrum. Another important prob-
lem for future research would be to understand in detail the scenario
giving rise to primary periodic patched patterns with increasing cou-
pling parameter ϕ. What makes this problem difficult to address
is that their onset is not immediately related to the destabiliza-
tion of the homogeneous stationary state, where all the units lie in
the stable equilibrium of local dynamics. Under increasing ϕ, this
state is destabilized around ϕ = π/2 because there the prevalence
of attractive vs repulsive interactions changes such that the repul-
sive interactions begin to dominate.37 Nevertheless, this factor alone
does not give rise to patched patterns, and their onset is appar-
ently related with the more complex patterns emerging from the
secondary canard transitions. Therefore, disclosing the scenario by
which solutions gain complexity under increasing coupling param-
eter ϕ, beginning from the initial homogeneous stationary state over
intermediate spatially inhomogeneous states up to primary periodic
patched patterns, would be an important step toward a more general
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understanding of how the interplay between the repulsive interac-
tions and canard transitions impacts pattern formation in coupled
excitable systems.
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Rate chaos is a collective state of a neural network characterized by slow irregular fluctuations of firing rates of
individual neurons.We study a sparsely connected network of spiking neuronswhich demonstrates three differ-
ent scenarios for the emergence of rate chaos, based either on increasing the synaptic strength, increasing the
synaptic integration time, or clustering of the excitatory synaptic connections. Although all the scenarios lead
to collective dynamicswith similar statistical features, it turns out that the implications for the computational ca-
pability of the network in performing a simple delay task are strongly dependent on the particular scenario.
Namely, only the scenario involving slow dynamics of synapses results in an appreciable extension of the
network's dynamic memory. In other cases, the dynamic memory remains short despite the emergence of long
timescales in the neuronal spike trains.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Patterns of spontaneous activity of cortical neurons are typically
highly irregular [1–3], showing Poisson-like statistics of inter-spike in-
tervals on short timescales [4,5] and firing rate fluctuations over longer
timescales [5–11]. The classical theory accounting for the origin of neuro-
nal irregular behavior invokes the paradigm of an approximate balance
between strong excitation and inhibition which for the most time cancel
each other out, leaving the network activity to be driven by fluctuations
which intermittently interrupt the balanced conditions [12–20]. Asyn-
chronous balanced states with irregular weakly correlated local activity
have been observed in networks of realistic spiking neurons [21–24].
These states may be referred to as homogeneous, since the firing rates of
all the neurons are approximately equal and stationary.

Nevertheless, introducing the balanced excitation-inhibition para-
digm by itself does not resolve the second part of the variability prob-
lem, since it still does not explain how the networks of fast spiking
es and Mathematics, University
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neurons may generate rate fluctuations over slow timescales. These
fluctuations are a hallmark of the state typically called rate chaos or
heterogeneous state [25,26] to describe both the temporal rate variability
and the nonuniform distribution of rates over the neurons. The rate
chaos was first observed in models of networks of rate neurons [27],
having explicitly demonstrated the transition from regular to chaotic
dynamics [28]. In contrast to that, the networks of spiking neurons in
the thermodynamic limit are expected to be always chaotic [12]. Never-
theless, the question concerning the transition from the homogeneous
to heterogeneous chaotic regime in spiking networks is still debated,
and a potential physical explanation may be that above the transition,
both the fluctuations in neuronal inputs and outputs become strongly
colored [29]. Recently, much efforts have been made to understand
the precise dynamical mechanisms underlying the rate chaos and its
possible functional role for neural computations. Several scenarios lead-
ing to the onset of rate chaos in realistic networks of spiking neurons
have been revealed. In particular, high variability and slow rate dynam-
ics has been demonstrated in networks with clustered excitatory con-
nections [15,30]. Highly heterogeneous chaotic states were shown to
emerge in a sparse random network for strong synaptic couplings [25,
29]. Finally, a transition to rate chaos has been observed when the syn-
aptic integration time becomes large compared to the characteristic
times of neuronal dynamics [16,17].

Rate chaos is believed to play an important part in facilitating the
complex computations unfolding in the brain [31–36], since it has
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Homogeneous state of the network. (a) Spike trains of five randomly selected neu-
rons; (b) Average activity of the network 〈r〉 = 1/N∑j=1

N rj; (c) Averaged autocorrelation
function of neurons; (d) Distribution of the local firing rates. (e) Distribution of
coefficients of variation of neuronal inter-spike intervals. (f) Distribution of cross-
correlation coefficients between neuronal inter-spike intervals. Network parameters:
N = 400, p = 0.1, τr = 2 ms, τd = 20 ms, g = 0.3.
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been shown to support fluctuations over longer timescales, giving rise
to slow neural activity associated with behavior, learning and memory.
Chaotic spiking networks have already been successfully trained to per-
form computational tasks such as generating signals, classifying inputs
or predicting nonlinear dynamics [37,60,61].With this inmind, it is rea-
sonable to assume that using heterogeneous rather than homogeneous
chaotic states can improve the computational capabilities of the net-
work. Indeed, many applications involve accumulating data over the
timescales of seconds, which requires a comparatively long dynamic
memory. In the present study we address the problem of whether the
slow rate fluctuations observed in the heterogeneous chaotic state
may provide the basis for such a dynamic memory.

As our basic model, in Section 2 we introduce a network of theta
neurons with random sparse connectivity which is initially is set to a
homogeneous state with stationary local firing rates and the Poisson-
like uncorrelated spike trains of individual neurons. In Section 3, we
demonstrate that by varying certain macroscopic control parameters,
one may induce the transition to a heterogeneous chaotic regime (rate
chaos) featuring slowly fluctuating firing rates. In particular, we
consider three generic scenarios for such a transition, involving
i) strengthening of the synapses, ii) slowing the dynamics of synapses
and iii) clustering of excitatory connections. Remarkably, the spike
trains and their statistics appear quite similar for all three scenarios. In
Section 4, we investigate whether our system in the state of rate chaos
may be applied as a dynamicmemory network [38,39], intended to per-
form a simple delay task by preserving the input historywithin its inter-
nal state. The network is considered in a reservoir setting [40,41],
whereby its dynamical state serves as a representation of the input
stimuli and the desired response is extracted via a linear readout of
output nodes. The maximal delay for which the task is fulfilled with
satisfactory precision is used to estimate the dynamic memory lifetime.
Surprisingly, the network performance shows a striking dependence on
the method by which the transition to heterogeneous state is induced.
Wewill show that the network's dynamicmemory extends appreciably
only for the scenario based on slow synapses, but remains virtually
unchanged compared to that in a homogeneous state if the rate chaos
is induced by strong synapses or clustered connections.

2. Model

Our main model is a network of N theta neurons [42,43] whose
dynamics is given by

dθj
dt

¼ 1− cos θj
� �þ 1þ cos θj

� �
Ij, ð1Þ

where θj ∈ S1, j = 1, 2,…, N are the local phase variables related to the
respective membrane voltages by Vj = tan (θj/2). The input currents Ij
comprise of two terms Ij = Ib + sj, whereby Ib denotes the constant
bias current and sj is the synaptic current. The SNIPER bifurcation at
Ij = 0 mediates between the excitable (Ij < 0) and oscillatory regime
(Ij > 0). A neuron j is said to have fired a spike when its phase crosses
the value θj = π. The spikes are filtered by double exponential
synapses of the form

drj
dt

¼ −
rj
τd

þ hj, ð2Þ

dhj
dt

¼ −
hj
τr

þ 1
τrτd

∑
tpj

δ t−tpj
� �

, ð3Þ

which can account for the separate timescales of the rapid neurotrans-
mitter binding followed by their slow unbinding [44]. The parameters
τr and τd denote the synaptic rise and decay times, respectively, rj is
the synaptic output current, and tj

p denote the firing times of neuron j.
The total synaptic current received by neuron j is given by
2

sj ¼ g∑
N

k¼1
Ajkrk, ð4Þ

where g is the coupling strength and Ajk are the elements of the
adjacency matrix determining the structure of the synaptic
connections. Note that the described model (1)–(4) with some
modifications will provide for the reservoir within the computational
framework elaborated in Section 4.

First we consider a sparse random network with the connectivity
probability p=0.1. For simplicity, we do not divide the neurons into ex-
citatory and inhibitory pools and draw the coupling strength of each
nonzero connection from the Gaussian distribution with a zero mean
and a variance (Np)−1. Together with a slightly negative bias current
Ib = − 0.001, this ensures the balance between excitation and
inhibition [12,45], such that the overall network activity is fluctuation-
driven rather than mean-driven [46].

To study the collective dynamics of the network, we have excited 10
arbitrary neurons and have simulated the network activity for t= 20 s.
The synaptic rise and decay time constants are fixed to τr = 2 ms and
τd = 20 ms, and the coupling strength g is used as the control
parameter. One finds that if the coupling strength exceeds a certain
critical value gc, the chaotic self-sustained activity emerges from the
quiescent state. Indeed, for weak couplings g < gc, an elevated
network activity observed upon stimulation is only transient and dies
out in several seconds. The precise value of critical coupling strength
gc depends on the bias current and equals gc ≈ 0.27 for the chosen
parameter set. For the coupling strengths slightly above the threshold,
the network activity is sparse, irregular and weakly correlated, as
illustrated in Fig. 1 for g = 0.3. The spike trains of individual neurons
are sub-Poissonian with the assembly-averaged firing rate 3.74 ±
1.24 Hz, and the respective distributions of inter-spike intervals charac-
terized by themean coefficient of variation 0.81± 0.13, see Fig. 1d) and
e). Weak correlation between the outputs of different neurons is
evinced by the average cross-correlation coefficient 0.002 ± 0.047, see
Fig. 1f). The assembly-averaged autocorrelation function of individual
neurons quickly decays at time lags ~50 ms that are of the order of the
characteristic synaptic time, cf. Fig. 1c), indicating an absence of any
longer timescales in local neuronal dynamics.
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Fig. 3. Statistical features of network dynamics in dependence of coupling strength g.
(a) Average firing rate of neurons (solid line) plus/minus its standard deviation (dashed
lines). (b) Average coefficient of variation (solid line) plus/minus its standard deviation
(dashed lines). (c) Average correlation time of the spike trains.
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3. Three scenarios for transition to rate chaos

Further increase of the coupling strength results in the significant
changes of the network state which is illustrated in Fig. 2 for g = 1.
The stronger coupling not only increases the mean firing rate to 18.14
± 6.96 Hz, but also induces a transition to the so-called rate chaos or
heterogeneous state [25,29], where the firing rates of neurons exhibit
slow fluctuations. At the level of spiking dynamics, the signature effect
is that the neurons tend to generate bursts of spikes alternating with
long periods of quiescence. Strong variability of spike trains is corrobo-
rated in Fig. 2e), which indicates large coefficients of variation of the
inter-spike intervals, whose mean value 1.63 ± 0.30 is substantially
supra-Poissonian. The emergence of bursting dynamics is also reflected
in the shape of the assembly-averaged autocorrelation function, which
now decays at longer lags ~400 ms, corresponding to a typical duration
of a burst, see Fig. 2c). Also note that in the heterogeneous regime, the
dynamics of individual neurons becomes more correlated compared to
the homogeneous state, cf. Fig. 2f), as corroborated by the value 0.002
± 0.16 for the mean correlation coefficient of individual spike trains.

In Fig. 3 are provided the dependencies of certain characteristics of
the network dynamics on the coupling strength g. Although for g = gc
the onset of chaotic spiking from quiescence is sudden, the transition
from the homogeneous to heterogeneous irregular activity is a rather
smooth one. In particular, the average firing rates illustrated in Fig. 3a)
show a steady growth, and the coefficient of variation of neuronal
inter-spike intervals increases almost linearly with coupling strength,
see Fig. 3b). Similarly, the average correlation time displays small values
~τd for weak coupling and increases to hundreds of milliseconds in case
of strong coupling, cf. Fig. 3c). Note that the activity always remains
non-uniform over the neurons with the standard deviation of local fir-
ing rates being of the same order as their mean values.

Apart from increasing the coupling strength, another scenario previ-
ously reported to induce transition to rate chaos is based on increasing
the characteristic synaptic time [16,17]. To test for such a scenario in
our model, we keep the coupling strength fixed at g = 0.5 and vary
the synapse decay time τd. The results in Fig. 4 reveal that slowing
down the synapses indeed induces the transition to heterogeneous
irregular activity. Although the average firing rate does not change
appreciably and equals ≈8 Hz for any τd > 20 ms, see Fig. 4a), the
mean coefficient of variation for the inter-spike intervals in Fig. 4b) vis-
ibly grows with synaptic time. The correlation time also shows a signif-
icant increase, reaching values larger than 600 ms for τd > 60 ms, see
Fig. 4c). The features of heterogeneous irregular activity observed for
Fig. 2. Heterogeneous state of the network with strong synapses. Presentation style and
the network parameters are the same as in Fig. 1, except for the coupling strength g = 1.

3

slow synapses are similar to those in case of strong couplings except
that the overall network activity r = < rj> shows slower fluctuations,
see Fig. S1 of the Supplementary material.

So far we have considered only networks with a random connection
topology. However, real cortical microcircuits are highly non-random
[47–49], and the statistically nonuniform network structure may itself
induce heterogeneous activity. For example, clustering of synaptic con-
nections was shown to give rise to slow fluctuations of firing rates and
high variability of spike trains [15,30,50,51]. In our model, it turns out
that clustering of all connections does not result in a significant change
of the network activity. However, clustering of excitatory (positive) con-
nections alone yields a notable effect. To introduce clustering, we divide
the network intoM=5 equal groups and rewire the excitatory connec-
tions in such a way that the connectivity inside each group pin becomes
larger than the connectivity between the groups pout. The clustering
coefficient R = pin/pout is introduced to measure the degree of
clustering, whereby the value R = 1 corresponds to a homogeneous
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Fig. 4. Statistical features of network dynamics in terms of the synaptic decay time τd.
Presentation style is the same as in Fig. 3.
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random network. Note that the described rewiring scheme preserves
the total network connectivity p = pin/M + pout(1− 1/M).

Fig. 5 shows the characteristics of the network dynamics depending
on the clustering degree R. Note that due to the small size of clusters, the
network dynamics significantly depends on the particular realization of
the connectivity matrix, and the results we present were obtained by
averaging over 20 different network configurations. Though the average
firing rates in Fig. 5a) do not showmuch variationwith R, one still notes
the onset of heterogeneous activity and the highest variability at an in-
termediate clustering degree R ~ 4. While the mean coefficient of varia-
tion exceeds 1 only slightly, its standard deviation is about the same, see
Fig. 5b), which indicates that there is a significant number of neurons
with CV≈2 and larger. Themean correlation time also peaks at interme-
diate clustering degrees and reaches several hundreds of milliseconds,
see Fig. 5c). The manifestation of heterogeneous irregular activity for
networks with intermediate clustering is similar to the two previous
scenarios. Namely, the neurons tend to generate bursts of spikes rather
than isolated spikes, while the spike trains of different neurons remain
weakly correlated. Note however that the local spiking rates, as
coarse-grained quantities, tend to become correlated within the clus-
ters, which induces pronounced slow fluctuations of the cluster activi-
ties, see Fig. S2 of the Supplementary material.

For larger clustering degrees, the local imbalance between the exci-
tation and inhibition becomes too strong and one of the clusters typi-
cally settles into a regime of mean-driven activity with fast and
regular spiking, cf. Fig. S3 of the Supplementary material. At the same
time, this cluster tends to inhibit and synchronize other clusters, sup-
pressing the irregular activity. Note that the time-averaged activity of
neurons becomes quite diverse in this regime because of the high firing
rate of the active cluster and low firing rates of the other ones.

4. Computational capabilities of the network

After the detailed study of the network dynamics, we investigate the
relation between its intrinsic activity and computational capabilities, in
particular its ability to serve as a dynamicmemory network [38,39]. This
recently introduced concept involves creating of networks optimized
for question-answering problems, whereby the network processes the
input, forms an episodic memory and generates the relevant output.
Here, we train the network to perform a simple computational delay
task defined as follows: the network receives a single input in the
form of a spike train and has to indicate whether it has received or not
4

a spike within the period of a given duration. In particular, the network
should respond by “1” if it has received at least one spikewithin the last
τmilliseconds and by “0” otherwise. The maximum value of the delay τ
at which the network shows a sufficient accuracy provides a reasonable
estimate for its dynamic memory lifetime.

As an input signal, we use a Poisson spike train with the rate λ = 1
Hz. To feed the input into the network, the signal (4) received by each
neuron is modified to

sj ¼ g∑
N

k¼1
Ajkrk þ ginpujrinp, ð5Þ

where ginp is the input gain, the weights uj are drawn independently
from a uniform random distribution [−1;1], and rinp is the input
synaptic current given by the same set of equations as Eqs. (2) and
(3). The output of the network is calculated as

rout ¼ ∑
N

j¼1
wjrj, ð6Þ

having tuned the output weightswj to train the network to perform the
required task. The network response counts as “1” if its output exceeds
1/2 and as “0” otherwise.

The described approach conforms to the classical computational
framework of reservoir computing [40,52], a machine learning method
derived from liquid-state and echo-statemachines [53,54] to solve tasks
using the response of a dynamical system, called a reservoir, to a certain
input, having the output generated by linearly combining the states of
the readout nodes. Reservoir computing has the advantage of an effi-
cient training process, since only the readout weights affecting the out-
put are trained, while the input weights and the weights within the
reservoir remain unchanged [41]. In training the output weights wj, we
have used the method of least squares or the recursive least square
algorithm [55]. Both methods turned out to provide similar results, and
we preferred the least squares method for being the faster of the two.
After a certain training period ttrain, the network's performance was
estimated during the test period ttest = 100 s, see Fig. 6. To characterize
the network performance, we have measured the error

ε ¼ ε0ν0 þ ε1ν1, ð7Þ
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where ν0 and ν1 are the rates of the false output being equal to zero or
one, respectively, and ε0 and ε1 are the error weights set such that a
constant output of either zero or one leads to a total error ε = 1. The
network performance P is then estimated as the inverse of the error
P = 1/ε.

One observes that the resulting performance improves with the in-
crease of the training time and reaches maximum after several tens of
seconds, see Fig. S4 of the Supplementarymaterial. In our numerical ex-
periments, we have used the training time of ttrain = 100 s which
warrants an optimal network performance. One also notes an
important role of the input gain ginp for the network performance. In
particular, if ginp is too small, the input signal fails to suppress the
chaotic activity, resulting in a poor network performance. Thus, the
input gain has to be sufficiently strong, but at the other hand, its
excessive increase does not further a significant improvement in the
network performance, see Fig. S5 of the Supplementary material. With
this in mind, we have fixed ginp = 10 in all the numerical experiments
considered below.

To address the problem of enhancing the dynamic memory lifetime
of the network,we have trained it to perform the delay task for different
values of the delay τ and have analyzed the performance P. The results
presented in Fig. 7 show the performance in terms of delay for several
different network configurations. In particular, we have started from
the network with weak and fast synapses and no clustering of connec-
tions (g = 0.5, τd = 20, R = 1), which admits a homogeneous state.
The optimal performance P ≈ 15 is reached for the delay τ ≈ 200 ms.
For small delays τ < 100 ms, the network performance is poor since it
does not have enough time to respond to the stimulus. For large
delays, the performance quickly drops and reaches a half of the
maximal value at τ ≈ 500 ms. This indicates that the dynamic
memory of the network lasts about 0.2 s.

Next, we increased the strength of the synapses to g = 2 and
checked whether it would improve the network performance. For
such a strong coupling, the spike trains demonstrate amuch longer cor-
relation time of about 250ms, see Fig. 3b), whichwould intuitively sug-
gest a much longer dynamic memory. Surprisingly, however, the
strengthening of the synapses changed the network performance only
by a small margin, and the observed dynamic memory was still about
0.25 s. We have also studied the influence of clustering with R = 4,
the value corresponding to the maximal correlation time of about 230
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ms, see Fig. 4b). This has led to a slightly improved network perfor-
mance, which becomes optimal for τ = 300 ms and drops twice at τ
= 600 ms. Thus, the dynamic memory lifetime in a clustered network
increases only slightly compared to the network in the homogeneous
state and reaches 0.3 s.

Finally, we have considered the scenario involving slow synapses by
having increased the synaptic decay time to τd = 60 ms. This approach
has impactedmost profoundly on the dynamicmemory of the network.
We have found that the network performance has indeed substantially
improved, with the flatmaximum P≈ 30 reached at thewide interval τ
= 500 − 1000 ms. For larger delays, the network performance quickly
deteriorates, such that the network's dynamic memory can be
estimated as 1 s. We have also checked whether the extension of
dynamic memory may be caused by the change of stimulus itself,
since for longer synaptic times it comprises longer pulses. To do so,
we have decreased the decay time of the input synapses only to τd =
20 ms and kept the internal synapses with τd = 60 ms, observing that
the network performance has marginally decreased but has still
substantially outperformed the network with fast synapses. Indeed,
the dynamic memory lifetime in this case is still about 1 s.

5. Discussion and conclusions

We have considered three different scenarios for the onset of rate
chaos in a sparse network of spiking neurons and have examined their
implications for the computational capability of the network to perform
a simple dynamicmemory task. The signature of rate chaos are the slow
rate fluctuations of individual neurons, which introduce characteristic
timescales longer than the one associatedwith the spike timing dynam-
ics. Three generic scenarios of transition to rate chaos were considered.
The first scenario involves strengthening of the synaptic coupling, the
second one relies on slowing the dynamics of synapses, whereas the
third one is observed when a certain degree of clustering is applied to
synaptic connections. Though all three scenarios have been reported
previously, they were still considered separately for different network
models, and the present study provides for the first time a universal
model where all the scenarios can be observed and compared by chang-
ing different system parameters, such as the coupling strength, the syn-
aptic decay time and the clustering degree.

At the microscopic level of individual neuronal spike trains, all the
three scenarios have been shown to yield very similar features. Never-
theless, the computational capabilities of the underlying regimes turned
out to be quite different, at least in performing simple delay-related
tasks. We have demonstrated that the dynamicmemory of the network
in the heterogeneous state depends significantly on themechanismgiv-
ing rise to this state. Namely, for scenarios involving strong synapses or
clustering of connections, the duration of dynamicmemory remains ap-
proximately the same as in the homogeneous state. Contrasting that,
the scenario involving the slow synapses leads to a substantial increase
in the duration of dynamic memory, found to reach values above 1 s.

Identifying mechanisms that allow cortical networks to perform
computational tasks on the timescales of seconds while the local neuro-
nal activity unfolds on the timescales of milliseconds has been a long-
standing problem in neuroscience [10,29,56–58]. It has already been
shown that merely increasing the network size has very little impact
on the memory lifetime since it scales only as the logarithm of the net-
work size [59]. Thus, the underlying problemhas to be resolved in terms
of finding an appropriate mechanism that endows the network dynam-
ics with long timescales. Our study nevertheless indicates an additional
subtlety in the sense that the mere presence of longer timescales in the
spike trains may not warrant longer memory lifetimes.

We emphasize that our findings should by no means be interpreted
as questioning the general usefulness of heterogeneous chaotic states as
a substrate for computation in networks of spiking neurons. Such states
have already been shown beneficial for complex computational tasks
including decision-making, categorization or associative memory [25,
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32,33,35,36]. Our results rather imply that spiking networks in a state of
rate chaos are not optimal candidates for dynamicmemory networks, so
that finding amore suitable paradigm is required to carry out computa-
tions involving an extended temporal memory.

CRediT authorship contribution statement

V.V.K., A.V.K., I.F., M.P., and M.S. designed and performed the re-
search as well as wrote the paper.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgment

The research was supported by the Russian Science Foundation
(Grant No. 19-72-10114). The authors thankOlegMaslennikov for fruit-
ful discussions during the various stages of the study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.chaos.2022.112011.

References

[1] Abeles M. Corticonics: neural circuits of the cerebral cortex. Cambridge University
Press; 1991.

[2] Bair W, Koch C, NewsomeW, Britten K. Power spectrum analysis of bursting cells in
area MT in the behaving monkey. J Neurosci. 1994;14(5 Pt 1):2870–92. https://doi.
org/10.1523/jneurosci.14-05-02870.1994.

[3] Softky WR, Koch C. The highly irregular firing of cortical cells is inconsistent with
temporal integration of random EPSPs. J Neurosci. 1993;13(1):334–50. https://doi.
org/10.1523/jneurosci.13-01-00334.1993.

[4] Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV. Neural variability in
premotor cortex provides a signature of motor preparation. J Neurosci. 2006;26:
3697–712. https://doi.org/10.1523/JNEUROSCI.3762-05.2006.

[5] Churchland MM, Byron MY, Cunningham JP, et al. Stimulus onset quenches neural
variability: a widespread cortical phenomenon. Nat Neurosci. 2010;13:369–78.
https://doi.org/10.1038/nn.2501.

[6] Kohn A, Smith MA. Stimulus dependence of neuronal correlation in primary visual
cortex of the macaque. J Neurosci. 2005;25(14):3661–73. https://doi.org/10.1523/
JNEUROSCI.5106-04.2005.

[7] Churchland AK, Kiani R, Chaudhuri R, Wang X-J, Pouget A, ShadlenMN. Variance as a
signature of neural computations during decision making. Neuron. 2011;69(4):
818–31. https://doi.org/10.1016/j.neuron.2010.12.037.

[8] Smith M, Kohn A. Spatial and temporal scales of neuronal correlation in primary vi-
sual cortex. J Neurosci. 2008;28:12591–603. https://doi.org/10.1523/JNEUROSCI.
2929-08.2008.

[9] Churchland M, Abbott L. Two layers of neural variability. Nat Neurosci. 2012;15:
1472–4. https://doi.org/10.1038/nn.3247.

[10] Murray J, Bernacchia A, Freedman D, et al. A hierarchy of intrinsic timescales across
primate cortex. Nat Neurosci. 2014;17:1661–3. https://doi.org/10.1038/nn.3862.

[11] Klinshov V, Franović I. Slow rate fluctuations in a network of noisy neurons with
coupling delay. EPL. 2016;116(4):48002. https://doi.org/10.1209/0295-5075/116/
48002.

[12] van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excit-
atory and inhibitory activity. Science. 1996;274(5293):1724–6. https://doi.org/10.
1126/science.274.5293.1724.

[13] Hansel D, Mato G. Asynchronous states and the emergence of synchrony in large
networks of interacting excitatory and inhibitory neurons. Neural Comput. 2003;
15(1):1–56. https://doi.org/10.1162/089976603321043685.

[14] Renart A, De La Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD. The asyn-
chronous state in cortical circuits. Science. 2010;327(5965):587–90. https://doi.org/
10.1126/science.1179850.

[15] Litwin-Kumar A, Doiron B. Slow dynamics and high variability in balanced cortical
networks with clustered connections. Nat Neurosci. 2012;15(11):1498–505.
https://doi.org/10.1038/nn.3220.

[16] Kadmon J, Sompolinsky H. Transition to chaos in random neuronal networks. Phys
Rev X. 2015;5:041030. https://doi.org/10.1103/PhysRevX.5.041030.

[17] Harish O, Hansel D. Asynchronous rate chaos in spiking neuronal circuits. PLoS
Comput Biol. 2015;11(7):1–38. https://doi.org/10.1371/journal.pcbi.1004266.
6

[18] Ullner E, Politi A, Torcini A. Ubiquity of collective irregular dynamics in balanced net-
works of spiking neurons. Chaos. 2018;28(8):81106. https://doi.org/10.1063/1.
5049902.

[19] Hayakawa T, Fukai T. Spontaneous and stimulus-induced coherent states of critically
balanced neuronal networks. Phys Rev Res. 2020;2(1):013253. https://doi.org/10.
1103/PhysRevResearch.2.013253.

[20] Di Volo M, Segneri M, Goldobin D, Politi A, Torcini A. Coherent oscillations in bal-
anced neural networks driven by endogenous fluctuations. Chaos. 2022;
32:023120. https://doi.org/10.1063/5.0075751.

[21] Amit DJ, Brunel N. Dynamics of a recurrent network of spiking neurons before and
following learning. Netw Comput Neural Syst. 1997;8(4):373–404. https://doi.org/
10.1088/0954-898X_8_4_003.

[22] Amit DJ, Brunel N. Model of global spontaneous activity and local structured activity
during delay periods in the cerebral cortex. Cereb Cortex. 1997;7(3):237–52.
https://doi.org/10.1093/cercor/7.3.237.

[23] Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. J Comput Neurosci. 2000;8(3):183–208. https://doi.org/10.1023/
A:1008925309027.

[24] Teramae J-N, Tsubo Y, Fukai T. Optimal spike-based communication in excitable net-
works with strong-sparse and weak-dense links. Sci Rep. 2012;2:485. https://doi.
org/10.1038/srep00485.

[25] Ostojic S. Two types of asynchronous activity in networks of excitatory and inhibi-
tory spiking neurons. Nat Neurosci. 2014;17(4):594–600. https://doi.org/10.1038/
nn.3658.

[26] Mastrogiuseppe F, Ostojic S. Intrinsically-generated fluctuating activity in
excitatory-inhibitory network. PLoS Comput Biol. 2017;13:e1005498. https://doi.
org/10.1371/journal.pcbi.1005498.

[27] Sompolinsky H, Crisanti A, Sommers H-J. Chaos in random neural networks. Phys
Rev Lett. 1988;61(3):259. https://doi.org/10.1103/PhysRevLett.61.259.

[28] Crisanti A, Sompolinsky H. Path integral approach to random neural networks. Phys
Rev E. 2018;98:062120. https://doi.org/10.1103/PhysRevE.98.062120.

[29] Wieland S, Bernardi D, Schwalger T, Lindner B. Slow fluctuations in recurrent net-
works of spiking neurons. Phys Rev E. 2015;92:040901. https://doi.org/10.1103/
PhysRevE.92.040901.

[30] Doiron B, Litwin-Kumar A. Balanced neural architecture and the idling brain. Front
Comput Neurosci. 2014;82:011903. https://doi.org/10.3389/fncom.2014.00056.

[31] Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving en-
ergy in wireless communication. Science. 2004;304(5667):78–80. https://doi.org/
10.1126/science.1091277.

[32] Sussillo D, Abbott LF. Generating coherent patterns of activity from chaotic neural
networks. Neuron. 2009;63(4):544–57. https://doi.org/10.1016/j.neuron.2009.07.
018.

[33] Toyoizumi T, Abbott LF. Beyond the edge of chaos: amplification and temporal inte-
gration by recurrent networks in the chaotic regime. Phys Rev E. 2011;84(5):51908.
https://doi.org/10.1103/PhysRevE.84.051908.

[34] Laje R, Buonomano DV. Robust timing and motor patterns by taming chaos in recur-
rent neural networks. Nat Neurosci. 2013;16(7):925–33. https://doi.org/10.1038/nn.
3405.

[35] Buonomano D,MaassW. State-dependent computations: spatiotemporal processing
in cortical networks. Nat Rev Neurosci. 2009;10:113–25. https://doi.org/10.1038/
nrn2558.

[36] Rubin R, Abbott LF, Sompolinsky H. Balanced excitation and inhibition are required
for high-capacity, noise-robust neuronal selectivity. PNAS. 2017;114:E9366–75.
https://doi.org/10.1073/pnas.1705841114.

[37] Nicola W, Clopath C. Supervised learning in spiking neural networks with FORCE
training. Nat Commun. 2017;8(1):1–15. https://doi.org/10.1038/s41467-017-
01827-3.

[38] Kumar A, Irsoy O, Ondruska P. Askme anything: dynamicmemory networks for nat-
ural language processing. In: Balcan MF, Weinberger KQ, editors. Proceedings of the
33rd international conference on machine learning, New York, USA; 2016.
p. 1378–87.

[39] Xiong C, Merity S, Socher R. Dynamic memory networks for visual and textual ques-
tion answering. In: Balcan MF, Weinberger KQ, editors. Proceedings of the 33rd in-
ternational conference on machine learning, New York, USA; 2016. p. 2397–406.

[40] Nakajima K, Fischer I. Reservoir computing: theory, physical implementations, and
applications. New York, USA: Springer; 2001.

[41] Tanaka G, Yamane T, Héroux JB, et al. Recent advances in physical reservoir comput-
ing: a review. Neural Netw. 2019;115:100–23. https://doi.org/10.1016/j.neunet.
2019.03.005.

[42] Luke TB, Barreto E, So P. Complete classification of the macroscopic behavior of a
heterogeneous network of theta neurons. Neural Comput. 2013;25(12):3207–34.
https://doi.org/10.1162/NECO_a_00525.

[43] Laing CR. Derivation of a neural field model from a network of theta neurons. Phys
Rev E. 2014;90. https://doi.org/10.1103/PhysRevE.90.010901. 010901(R).

[44] Roth A, van RossumMC.Modeling synapses. In: Schutter E De, editor. Computational
modeling methods for neuroscientists. Cambridge, Massachusetts: MIT Press; 2010.
p. 139–60.

[45] van Vreeswijk C, Sompolinsky H. Chaotic balanced state in a model of cortical circuits.
Neural Comput. 1998;10(6):1321–71. https://doi.org/10.1162/089976698300017214.

[46] Renart A, Moreno-Bote R, Wang X-J, Parga N. Mean-driven and fluctuation-driven
persistent activity in recurrent networks. Neural Comput. 2007;19(1):1–46.
https://doi.org/10.1162/neco.2007.19.1.1.

[47] Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB. Highly nonrandom features of
synaptic connectivity in local cortical circuits. PLoS Biol. 2005;3(3):e68. https://doi.
org/10.1371/journal.pbio.0030068.

https://doi.org/10.1016/j.chaos.2022.112011
https://doi.org/10.1016/j.chaos.2022.112011
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170935561640
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170935561640
https://doi.org/10.1523/jneurosci.14-05-02870.1994
https://doi.org/10.1523/jneurosci.14-05-02870.1994
https://doi.org/10.1523/jneurosci.13-01-00334.1993
https://doi.org/10.1523/jneurosci.13-01-00334.1993
https://doi.org/10.1523/JNEUROSCI.3762-05.2006
https://doi.org/10.1038/nn.2501
https://doi.org/10.1523/JNEUROSCI.5106-04.2005
https://doi.org/10.1523/JNEUROSCI.5106-04.2005
https://doi.org/10.1016/j.neuron.2010.12.037
https://doi.org/10.1523/JNEUROSCI.2929-08.2008
https://doi.org/10.1523/JNEUROSCI.2929-08.2008
https://doi.org/10.1038/nn.3247
https://doi.org/10.1038/nn.3862
https://doi.org/10.1209/0295-5075/116/48002
https://doi.org/10.1209/0295-5075/116/48002
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1162/089976603321043685
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
https://doi.org/10.1038/nn.3220
https://doi.org/10.1103/PhysRevX.5.041030
https://doi.org/10.1371/journal.pcbi.1004266
https://doi.org/10.1063/1.5049902
https://doi.org/10.1063/1.5049902
https://doi.org/10.1103/PhysRevResearch.2.013253
https://doi.org/10.1103/PhysRevResearch.2.013253
https://doi.org/10.1063/5.0075751
https://doi.org/10.1088/0954-898X_8_4_003
https://doi.org/10.1088/0954-898X_8_4_003
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1038/srep00485
https://doi.org/10.1038/srep00485
https://doi.org/10.1038/nn.3658
https://doi.org/10.1038/nn.3658
https://doi.org/10.1371/journal.pcbi.1005498
https://doi.org/10.1371/journal.pcbi.1005498
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevE.98.062120
https://doi.org/10.1103/PhysRevE.92.040901
https://doi.org/10.1103/PhysRevE.92.040901
https://doi.org/10.3389/fncom.2014.00056
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1038/nn.3405
https://doi.org/10.1038/nn.3405
https://doi.org/10.1038/nrn2558
https://doi.org/10.1038/nrn2558
https://doi.org/10.1073/pnas.1705841114
https://doi.org/10.1038/s41467-017-01827-3
https://doi.org/10.1038/s41467-017-01827-3
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170940026903
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170940026903
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170940026903
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170940026903
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170940433163
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170940433163
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170940433163
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170942551700
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170942551700
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1162/NECO_a_00525
https://doi.org/10.1103/PhysRevE.90.010901
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170942188319
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170942188319
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170942188319
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1162/neco.2007.19.1.1
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1371/journal.pbio.0030068


V.V. Klinshov, A.V. Kovalchuk, I. Franović et al. Chaos, Solitons and Fractals 158 (2022) 112011
[48] Perin R, Berger TK, Markram H. A synaptic organizing principle for cortical neuronal
groups. PNAS. 2011;108(13):5419–24. https://doi.org/10.1073/pnas.1016051108.

[49] Klinshov VV, Teramae J-N, Nekorkin VI, Fukai T. Dense neuron clustering explains
connectivity statistics in cortical microcircuits. PLoS ONE. 2014;9(4):e94292.
https://doi.org/10.1371/journal.pone.0094292.

[50] Franović I, Klinshov V. Clustering promotes switching dynamics in networks of noisy
neurons. Chaos. 2018;28(2):023111. https://doi.org/10.1063/1.5017822.

[51] Franović I, Klinshov V. Stimulus-evoked activity in clustered networks of stochastic
rate-based neurons. Eur Phys J - Spec Top. 2018;227(2):1063–76. https://doi.org/
10.1140/epjst/e2018-800080-6.

[52] Maslennikov OV, Pugavko MM, Shchapin DS, Nekorkin VI. Nonlinear dynamics and
machine learning of recurrent spiking neural networks. Phys Usp. 2022. https://
doi.org/10.3367/UFNe.2021.08.039042.

[53] Jaeger H. The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research
Center for Information Technology GMD Technical Report; 2001. p. 13.

[54] Maass W, Natschl T, Markram H. Real-time computing without stable states: a new
framework for neural computation based on perturbations. Neural Comput. 2002;
2560:2531–60. https://doi.org/10.1523/JNEUROSCI.5446-11.2012.

[55] Haykin S. Adaptive filter theory. Upper Saddle River, NJ: Prentice Hal; 2002.
7

[56] Ho ECY, Strüber M, Bartos M, Zhang L, Skinner FK. Inhibitory networks of fast-
spiking interneurons generate slow population activities due to excitatory fluctua-
tions and network multistability. J Neurosci. 2012;32(29):9931–46. https://doi.
org/10.1523/JNEUROSCI.5446-11.2012.

[57] Lim S, Goldman M. Balanced cortical microcircuitry for maintaining information in
working memory. Nat Neurosci. 2013;16:1306–14. https://doi.org/10.1038/nn.
3492.

[58] Okun M, Steinmetz NA, Lak A, Dervinis M, Harris KD. Distinct structure of cortical
population activity on fast and infraslow timescales. Cereb Cortex. 2019;29(5):
2196–210. https://doi.org/10.1093/cercor/bhz023.

[59] Wallace E, Maei HR, Latham PE. Randomly connected networks have short temporal
memory. Neural Comput. 2013;25(6):1408–39. https://doi.org/10.1162/NECO_a_
00449.

[60] Gilra A, Gerstner W. Predicting non-linear dynamics by stable local learning in a re-
current spiking neural network. Elife. 2017;6:e28295. https://doi.org/10.7554/eLife.
28295.001.

[61] Andreev AV, Ivanchenko MV, Pisarchik AN, Hramov AE. Stimulus classification using
chimera-like states in a spiking neural network. Chaos Solit Fractals. 2020;
139:110061. https://doi.org/10.1016/j.chaos.2020.110061.

https://doi.org/10.1073/pnas.1016051108
https://doi.org/10.1371/journal.pone.0094292
https://doi.org/10.1063/1.5017822
https://doi.org/10.1140/epjst/e2018-800080-6
https://doi.org/10.1140/epjst/e2018-800080-6
https://doi.org/10.3367/UFNe.2021.08.039042
https://doi.org/10.3367/UFNe.2021.08.039042
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170944403100
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170944403100
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170944403100
https://doi.org/10.1523/JNEUROSCI.5446-11.2012
http://refhub.elsevier.com/S0960-0779(22)00221-1/rf202203170944179808
https://doi.org/10.1523/JNEUROSCI.5446-11.2012
https://doi.org/10.1523/JNEUROSCI.5446-11.2012
https://doi.org/10.1038/nn.3492
https://doi.org/10.1038/nn.3492
https://doi.org/10.1093/cercor/bhz023
https://doi.org/10.1162/NECO_a_00449
https://doi.org/10.1162/NECO_a_00449
https://doi.org/10.7554/eLife.28295.001
https://doi.org/10.7554/eLife.28295.001
https://doi.org/10.1016/j.chaos.2020.110061


Chaos ARTICLE scitation.org/journal/cha

Unbalanced clustering and solitary states in
coupled excitable systems

Cite as: Chaos 32, 011104 (2022); doi: 10.1063/5.0077022

Submitted: 29 October 2021 · Accepted: 28 December 2021 ·
Published Online: 11 January 2022 View Online Export Citation CrossMark
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ABSTRACT

We discover the mechanisms of emergence and the link between two types of symmetry-broken states, the unbalanced periodic two-cluster
states and solitary states, in coupled excitable systems with attractive and repulsive interactions. The prevalent solitary states in non-locally
coupled arrays, whose self-organization is based on successive (order preserving) spiking of units, derive their dynamical features from the
corresponding unbalanced cluster states in globally coupled networks. Apart from the states with successive spiking, we also find cluster
and solitary states where the interplay of excitability and local multiscale dynamics gives rise to so-called leap-frog activity patterns with an
alternating order of spiking between the units. We show that the noise affects the system dynamics by suppressing the multistability of cluster
states and by inducing pattern homogenization, transforming solitary states into patterns of patched synchrony.
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With the remarkable discovery of chimera states, the research
of self-organization in coupled oscillators witnessed a change
of focus from the synchronization transition and the onset
of the collective mode toward the emergence and the rela-
tionship between the states with symmetry breaking of syn-
chrony (cluster states, chimeras, solitary states), where assemblies
of indistinguishable oscillators with symmetric couplings split
into groups with different dynamics. Currently, these problems
remain widely open for a class of coupled excitable systems, which
have a linearly stable rest state but may be triggered to oscil-
late by strong enough perturbations due to interactions and/or
noise. We address the mechanisms of emergence and the link
between two types of symmetry-broken states in coupled excitable
FitzHugh–Nagumo systems, namely, the unbalanced periodic
two-cluster states in globally coupled networks, characterized by
an uneven partition between the clusters comprising identically

synchronized units, and solitary states in non-locally coupled
arrays, where small groups of units display an average frequency
distinct from the typical units forming the synchronized clus-
ter. The prevalent solitary states, where the self-organization is
based on successive (order preserving) spiking of units, are found
to appear in the same parameter range as the corresponding
unbalanced cluster states, inheriting the ratio of average frequen-
cies of solitary and typical units and the form of corresponding
units’ orbits. Apart from the states displaying successive spik-
ing, we also find the states involving leap-frog (leader-switching)
dynamics, where the units from different clusters, or even within
the same cluster, exchange their relative order of spiking. We
further demonstrate that the noise reduces the multistability of
cluster and solitary states by the effect of noise-induced prefer-
ence of attractors, promoting the attractors with a larger basin of
attraction at the expense of those with a smaller one.
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I. INTRODUCTION

The discovery of chimera states1,2 spurred a profound change
of paradigm in understanding of self-organization in assemblies of
coupled oscillators. Instead of the synchronization transition and
the onset of the collective mode,3 attention has shifted to states
emerging via symmetry breaking of synchrony,4 where assemblies
of indistinguishable oscillators with symmetric couplings split into
groups with different dynamics. Classical examples of symmetry
breaking of synchrony include cluster states,5–8 chimeras,9–12 and
solitary states.13–22 In contrast to low-dimensional dynamics of clus-
ter states, where the units within each group are identically synchro-
nized, chimeras are self-organized patterns that are comprised of
coexisting domains of coherence and incoherence.11 A similar coex-
istence of locked and unlocked units underlies solitary states, where
a single or a small subset of solitary units display an average fre-
quency different from the synchronized cluster. However, distinct to
the structure of chimeras, the solitary units spread randomly instead
of forming spatially localized domains. Another difference is that
solitary states involve spatial chaos,23 reflecting sensitive dependence
of the dynamics on spatial coordinates, which gives rise to extensive
multistability. Regardless of these differences, both chimeras and
solitary states satisfy the definition of weak chimeras.24

For coupled oscillators, much progress has been made in
resolving the two fundamental problems, namely, the mechanisms
of onset and potential links between symmetry-broken states along
the path from complete coherence to incoherence. In particular,
emergence of cluster states from complete synchrony has been
explained by unfolding of a so-called cluster singularity, reveal-
ing cascade transitions from a synchronous state to a balanced
two-cluster partition, characterized by an equal number of oscilla-
tors within each cluster, via different unbalanced cluster states.5,25

Also, clustering has been identified as a prerequisite for the onset
of chimeras.26 Self-organization of strong chimeras, where coher-
ent domains comprise identically (in-phase) synchronized oscilla-
tors, was shown to involve stabilization of the coherent cluster by
the incoherent one,27 while solitary states were found to mediate
transition from complete coherence to chimeras.16

However, in a myriad of examples, from neural and car-
diac tissue to chemical reactions, system components are not
intrinsic oscillators, but are rather excitable units,28,29 nonlinear
threshold elements that in the absence of input lie at rest, but
may be triggered to oscillate by sufficiently strong perturbations.
There is no reason to expect a priori that results for coupled
oscillators translate to excitable systems, where even the onset
of collective oscillations requires repulsive rather than attractive
interactions.30–32 Apart for theoretical relevance, resolving funda-
mental questions on emergence and relation between periodic clus-
ter states, chimeras, and solitary states in coupled excitable systems
may be important for applications, e.g., for treating in neuro-
science the problems of cluster synchronization during information
transmission and processing,33,34 localized activity associated with
working memory,35–38 or inducing desynchronization to control
pathological states.39–41

In this paper, we reveal mechanisms of onset and links between
different types of unbalanced periodic two-cluster states and soli-
tary states in systems with excitable local dynamics on multiple

timescales, typical for but not confined to neuroscience,29,42–45 and
varying attractive/repulsive46 type of interactions. We show that
the prevalent solitary states in non-locally coupled arrays, having a
self-organization based on successive spiking of units, derive their
dynamical features, such as the frequency locking between typical
and solitary units and the form of corresponding orbits, from the
unbalanced two-cluster states in globally coupled networks, char-
acterized by a permutation symmetry SNA

⊗ SNB
with NA 6= NB

being the cluster sizes. However, we also discover cluster and soli-
tary states where such a correspondence cannot be established. The
self-organization of these peculiar cluster and solitary states is based
on so-called leap-frog dynamics,47–51 characterized by an alternat-
ing order of spiking (leader-switching) between the units. Leap-frog
dynamics was initially observed as a near-synchrony state in models
of phase oscillators or type I relaxation neural oscillators supplied by
strong nonlinear couplings with finite time constants.48,50,51 Never-
theless, it has recently been shown that leap-frogging can also occur
in repulsively coupled type II excitable systems, considering an
example of binary motifs of FitzHugh–Nagumo units poised close to
(above or below) the bifurcation threshold.47 There, leap-frog solu-
tions of different complexity emerge from a slow–fast dynamics in
vicinity of a canard transition and beyond a small coupling limit rep-
resent a particular type of mixed-mode oscillations at a folded node
singularity.52,53 Given a strong sensitivity of excitable systems to
noise,28 we also investigate the resilience of the observed unbalanced
cluster states and solitary states to noise. While noise has already
been known to facilitate spontaneous clustering54 and emergence
of chimeras55,56 in coupled FitzHugh–Nagumo systems, here, we
demonstrate the effect of noise-induced preference of attractors,57–59

where the noise suppresses the system’s multistability by promoting
only certain types of cluster states or by favoring patched patterns at
the expense of solitary states.

Our system is an array of N identical FitzHugh–Nagumo units29

whose dynamics obeys

εu̇k = uk − u3
k

3
− vk + κ

2R

k+R
∑

l=k−R

[guu(ul − uk) + guv(vl − vk)]

+ √
εσξk(t),

(1)

v̇k = uk + a + κ

2R

k+R
∑

l=k−R

[gvu(ul − uk) + gvv(vl − vk)],

where local slow–fast dynamics is governed by activator variables
uk and recovery variables vk with timescale separation ε = 0.05.
All indices are periodic modulo N. Local bifurcation parame-
ter a, fixed to a = 1.001, mediates the transition from excitable
(|a| > 1) to oscillatory regime (|a| < 1). Due to a singular char-
acter of Hopf bifurcation at a = 1, onset of oscillations is fol-
lowed by a canard transition (a ≈ 1 − ε/8) from small-amplitude
(subthreshold) to large-amplitude relaxation oscillations.60 Non-
local interactions have coupling strength κ = 0.4, with each
unit coupled to R neighbors on both sides, yielding a cou-
pling radius r = R/N. Impact of direct and cross-coupling terms
in uk and vk is compactly described via a rotational coupling
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matrix61 G =
(

guu guv

gvu gvv

)

=
(

cos φ sin φ

− sin φ cos φ

)

. Parameter φ mod-

ifies prevalence of attractive and repulsive interactions. Spiking
can also emerge due to noise, which here affects the fast variables
similar to synaptic noise in neuronal systems,62 having each unit
influenced by independent Gaussian white noise ξk(t) of inten-
sity σ : 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t

′)〉 = δijδ(t − t′). Note that the systems
of ordinary (stochastic) differential equations were integrated by
the standard adaptive ODE45 solver (SDETools toolbox available at
https://github.com/horchler/SDETools).

We first focus on how the stability of unbalanced two-cluster
states in globally connected networks (r = 1/2) changes with φ and
then analyze the onset of solitary states in non-locally coupled arrays
(r < 1/2) of excitable elements.

II. TWO-CLUSTER STATES IN GLOBALLY COUPLED

NETWORKS

To gain insight into the structure of unbalanced periodic two-
cluster states, their stability domains, and underlying bifurcations,
we implement a twofold approach, combining the semi-analytical
method of evaporation exponents and the numerical path-following
method based on introducing probe oscillators. Since our inter-
est is in solutions where both clusters emit spikes, the splitting
scenario by which clusters emerge from a collective rest state is
beyond our current scope. We remark that for stable local dynamics
(|a| > 1), interaction-induced destabilization of a stationary state

at φ∗ = arccos
(

1−a2

2κ

)

is a highly degenerate point where 2(N − 1)

Jacobian eigenvalues with real parts 1 − a2 − 2κcos(φ) simultane-
ously become critical, giving rise to a large number of different
cluster partitions featuring subthreshold oscillations, which in an
exponentially small φ region start to display spikes via secondary
canard transitions. Stability of a stationary state is regained at
φ̄ = φ∗ + π . Onsets of cluster instability and periodic cluster states
for type I excitable units were addressed in Refs. 30 and 63.

Unlike Lyapunov exponents, evaporation exponents64–66 can
describe perturbations that destroy cluster partitions. They char-
acterize stability of clusters to emanation of elements, induced by
perturbations transversal to invariant subspace of certain parti-
tion. Negative evaporation exponents indicate assembly’s attractors,
while their positive values imply instability. We consider a two-
cluster state with partition parameter p ∈ (0, 1) such that NA = pN
units are in cluster A and NB = (1 − p)N units in B. Its dynamics is
independent of N and is governed by the reduced system

εu̇i = ui −
1

3
u3

i − vi + κwi(guu(uj − ui) + guv(vj − vi)),

v̇i = ui + a + κwi(gvu(uj − ui) + gvv(vj − vi)),

(2)

with i, j ∈ {A, B}, i 6= j, and (wA, wB) = (1 − p, p) being additional
coupling weights derived from particular partition. For p 6= 1/2,
system (2) is equivalent to a pair of nonidentical excitable units. Dif-
ferent p values specify invariant subspaces in complete phase space
that intersect only in the full synchrony plane. To introduce evap-
oration exponents, we consider symmetric small perturbations to
two units, 1 and 2, in each cluster: ui,1/2 = ui ± δui, vi,1/2 = vi ± δvi.
Due to permutation symmetry, they can be applied to an arbitrary

pair of elements, leaving the cluster mean-fields unchanged. Lin-
earized equations for deviations [δui(t), δvi(t)] transversal to cluster
dynamics read

ε ˙δui = (1 − u2
i − κguu)δui − (1 + κguv)δvi,

˙δvi = (1 − κgvu)δui − κgvvδvi.
(3)

Evaporation exponents λev,i = lim
T→∞

1
2

ln
δu2

i (T)+δv2
i (T)

δu2
i (0)+δv2

i (0)
are

obtained by integrating the system (2) and (3).
Bifurcations of particular cluster states are determined by

numerical continuation using probe oscillators, indicating whether
a unit added to the cluster asymptotically remains in it or leaves it.
Probes are introduced at the cluster coordinates without affecting
the mean-fields such that their dynamics [ũi(t), ṽi(t)] obeys

ε ˙̃ui = ũi − ũ3
i − ṽi + κ[wi(guu(ui − ũi) + guv(vi − ṽi))

+ wj(guu(uj − ũi) + guv(vj − ṽi))],
(4)

˙̃vi = ũi + a + κ[wi(gvu(ui − ũi) + gvv(vi − ṽi))

+ wj(gvu(uj − ũi) + gvu(vj − ṽi))].

Numerical continuation of solutions of (2) together with (4)
was performed by the software package AUTO.67

Figure 1(a) shows the stability diagram for system (2) and (3)
in the (φ, p) plane, combining the results obtained by methods of
evaporation exponents and probe oscillators. Regions supporting
stable solutions are indicated in orange, with black and green lines at
their boundaries denoting period-doubling bifurcations and curves
of branching points, respectively. The latter are typically pitchfork
bifurcations of the reduced system but correspond to unfolding of
highly degenerate bifurcation points5 of system (1), where p becomes
a solution parameter. System (2) supports six characteristic regimes
with 1:1 (regions IV, V, and VI), 1:2 (I, II), or 2:3 (III) frequency
locking, all conforming to mixed-mode oscillations52,53 with inter-
spersed large- and small-amplitude oscillations; cf. Figs. 1(b)–1(e).
Note that the partition parameter p for certain types of solutions
can become small but still does not approach zero, indicating that
only those periodic two-cluster states with a sufficiently balanced
partition can exist. This is similar to the scenario recently described
for coupled type I excitable systems.30 Nevertheless, these results for
coupled excitable systems are different from those for globally cou-
pled networks of Kuramoto oscillators with inertia,19 where a stable
existence of solitary states with a single or just few oscillators iso-
lated from the synchronized cluster has been reported. Also note
that some authors tend to refer to states characterized by a finite
fraction of units (up to p = 1/2) split from the synchronized bulk
cluster as solitary states.19,68 Nevertheless, here, we prefer to call the
states with an uneven partition to two groups of identically syn-
chronized units unbalanced cluster states, as opposed to the solitary
states described later on for non-locally arrays, where the units are
split into majority and minority groups of frequency locked but not
identically synchronized units.

Apart from solutions I–III and V with a successive spik-
ing between clusters, where the spiking order of clusters is pre-
served, one also observes mixed-mode solutions IV characterized
by leap-frog dynamics47–50 of clusters. There, switching of leadership
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FIG. 1. Unbalanced periodic two-cluster states. (a) Stability diagram in the (φ, p)
plane. Stable and unstable solutions are indicated in orange and gray, respectively.
Black solid lines: period-doubling bifurcations. Green lines: curves of branching
points. Black dashed lines: destabilization of rest state (φ = φ∗ ≈ 1.573) and its
reappearance (φ = φ̄ ≈ 4.715). (b)–(e) Time traces ui(t), i ∈ {A, B} and phase
portraits corresponding to (φ, p) values (blue squares) from (a).

between the clusters occurs via subthreshold oscillations such that
the current leader performs an extra small oscillation allowing it to
be overtaken by the lagging cluster; see the arrows in Fig. 1(d). Leap-
frog solutions at p = 1/2 may acquire additional antiphase sym-
metry uA(t) = uB(t + P/2), vA(t) = vB(t + P/2), where P denotes
the oscillation period. Note that different types of leap-frog
patterns and their underlying mechanisms in binary motifs of
repulsively coupled FitzHugh–Nagumo units were shown to be a
consequence of phase-sensitive excitability of periodic orbits,47 a
recently introduced concept69 referring to a non-uniform sensitiv-
ity to perturbations of both relaxation and subthreshold oscillations
in the FitzHugh–Nagumo system.

Evaporation exponents can also be used to approximate impact
of small noise to stability of two-cluster partitions. For (1) with
r = 1/2, σ > 0, we find that the noise may cause transition to
another type of two-cluster state or may reorganize the state’s
structure by inducing migration of units between clusters with-
out qualitatively affecting their mean-fields. Reorganization process
eventually settles to a partition where the net transport between the

FIG. 2. Persistence of unbalanced two-cluster states under noise. (a) Quantity
d(φ, p) distinguishes between four cases: cluster states reorganize to the par-
tition with smaller (blue, λev,A > λev,B) or larger p values (red, λev,B > λev,A);
two-cluster states are unstable (gray, d = 4); only synchronous stationary state
is stable (white, d = 1). (b)–(e) Examples of evolution of partition parameter
p(t) under noise. Left to right: φ = 2, 4.4, 2.3, 5.0 and σ = 5, 0.6, 0.6, 5 × 10−3,
respectively.

clusters reaches a dynamical balance so that the partition parame-
ter p(t) becomes stationary. Splitting of a unit from a cluster and
migration to another cluster may involve nonlinear effects of pertur-
bations that cannot be captured by methods involving linearization
around a certain solution, such as evaporation exponents. Still, at the
linear level, “potential barrier” that has to be overcome when a unit
leaves the cluster is proportional to λev,i. This is used to characterize
resilience of two-cluster states to noise in Fig. 2(a). We distinguish
between the cases where noise is more likely to shift a two-cluster
partition toward smaller (0 > λev,A > λev,B; blue regions) or a larger
p value (0 > λev,B > λev,A; red regions), depending on the dominant
stable exponent. There are also domains where unbalanced two-
cluster states are unstable (λev,A/B > 0, shown gray) or where only
synchronous stationary state is stable (white). For convenience, each
case is assigned with a discrete variable d ∈ {1, 2, 3, 4}. Evolution
of cluster partition p(t) under noise is illustrated in Figs. 2(b)–2(e)
for solutions from regions I to VI. While states from I and V dis-
play persistence under noise, representative state from II migrates
to region III. Interestingly, asymmetric leap-frog solution from IV
evolves toward balanced partition p = 1/2.

III. SOLITARY STATES IN NON-LOCALLY COUPLED

ARRAYS

The intrinsic dynamics of the prevalent solitary states in non-
locally coupled arrays, called SS1 and SS2, is based on succes-
sive spiking of units. In the following, we show that they derive
their dynamical features from the corresponding unbalanced cluster
states from Fig. 1(a). In particular, state SS1 in Fig. 3 is a dynam-
ical counterpart of a two-cluster state from region I, whereas SS2
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FIG. 3. Solitary state SS1 (N = 100,φ = 1.85, r = 0.2). (a) Spatial profile of
ωk ; (b) red and blue: two snapshots of local variables (uk , vk), black: nullclines of
isolated unit; (c) spatiotemporal evolution of uk(t); (d) phase portraits [uk(t), vk(t)]
for solitary (k = 84) and typical unit (k = 60); (e) cross-correlationmatrixCkl ; and
(f) time traces uk(t) for two units from (d).

(not shown) derives from the cluster state from region V. These
solitary states occur within the same φ intervals as the correspond-
ing cluster states and preserve the respective frequency locking of
clusters, but due to nonlocal interactions and associated fluctua-
tions of the local mean-fields, clusters of solitary and typical units are
fuzzy13,16 rather than exact; see Fig. 3(b). In other words, introducing
a nonlocal coupling r < 1/2 results in breaking of the permutation
symmetry of the unbalanced cluster states observed for r = 1/2 such
that the solitary and typical clusters consist of frequency locked but
not identically synchronized units. The spatial profile of the aver-
age local frequencies ωk = 2πMk/1, where Mk is the spike count
within interval 1, shows a 2:1 frequency ratio between solitary and
typical units. The analogy with the two-cluster state from region I
in Fig. 1(a) in terms of local phase portraits and time traces uk(t)
is illustrated in Figs. 3(d) and 3(f). Intrinsic dynamics of SS1 is

characterized by a cross-correlation matrix Ckl = 〈ûk(t)ûl(t)〉T√
〈ûk(t)2〉T〈ûl(t)

2〉T
,

where 〈·〉T denotes time averaging, while ûk(t) = uk(t) − 〈uk(t)〉T

are deviations of uk(t) from their means; cf. Fig. 3(e).
Nevertheless, we also find solitary states without two-cluster

state counterparts. A typical example is a state SS3 illustrated in
Fig. 4, which, unlike SS1 and SS2, is maintained by leap-frog dynam-
ics of pairs of solitary-typical, only solitary or only typical units;
cf. Figs. 4(b), 4(d), and 4(f). States of SS3 type emerge due to non-
local interactions, which induce self-localized excitations71 at inter-
faces separating domains with distinct dynamics. Frequency profile

FIG. 4. Solitary state SS3 (N = 100,φ = 1.788, r = 0.2). (a) Spatial profile of
ωk . (b) Time traces uk(t) for solitary units k = 75 and k = 76. (c) Spatiotem-
poral evolution of uk(t). (d) Time traces uk(t) for solitary unit k = 76 and typical
unit k = 20. (e) Cross-correlation matrix Ckl . (f) Time traces uk(t) show leap-frog
dynamics within majority cluster (units k = 20 and k = 40).

ωk shows two clusters with a frequency ratio distinct from SS1;
cf. Fig. 3(a). The difference in ωk derives from events where soli-
tary units emit two successive spikes rather than a spike followed by
subthreshold oscillation; see the arrow in Fig. 4(d). SS3 involves a
more complex correlation structure compared to SS1, cf. Figs. 4(e)
and 3(e), and the corresponding maximal Lyapunov exponent70 is
1.78 × 10−5.

Contrasting with locally coupled excitable systems where
the noise may strongly influence pattern formation by inducing,
enhancing or controlling wave propagation, spiral dynamics, and
pacemaking,28 the deterministic dynamics of non-locally coupled
arrays here features extensive multistability, and the main impact
of noise is qualitatively different. We find that the noise reduces
system’s multistability, suppressing solitary states. This reflects the
effect called noise-induced preference of attractors,57 which may
be understood as follows: in highly multistable systems, stability
boundaries of attractors become smeared by noise, and only those
with sufficiently large basins of attraction remain visible. This may
be seen as a highly biased switching72,73 to a coexisting state with-
out returning to the initial one. For small noise, unbalanced splitting
into frequency clusters is preserved, but the preferred spatial distri-
bution of minority units is localized rather than random. This gives
rise to patched patterns with 1:2 subharmonic frequency locking. A
typical example is shown in Fig. 5, where an initial SS1 state trans-
forms under small noise into a state of patched synchrony.61 Note
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FIG. 5. Transformation of an SS1 state under noise. (a) Typical SS1 dynam-
ics without noise. (b) Patched pattern developed from SS1 at σ = 0.0011.
Parameters are N = 200,φ = 2.0, r = 0.2.

that introducing intermediate noise favors rotating waves instead of
patched synchrony, while an even larger noise leads to turbulence.

IV. CONCLUSION AND OUTLOOK

We have discovered the mechanisms of onset and links
between unbalanced periodic two-cluster states and solitary states,
as a form of weak chimeras, in coupled excitable systems. The fact
that the prevalent solitary states SS1 and SS2 in non-locally coupled
arrays, characterized by self-organization based on successive spik-
ing of units, derive their dynamical features from unbalanced cluster
states in globally coupled networks is to a certain extent qualitatively
similar to the finding for globally coupled Stuart–Landau oscilla-
tors, where clustering has been identified as a symmetry-breaking
step required for emergence of chimeras.26 Distinct from the phys-
ical picture reported for the systems of Kuramoto oscillators with
inertia,19 we have not observed states with a single or just a few
units split from the synchronized cluster that can be continued for
an arbitrary range of couplings from global via nonlocal to local.
A peculiar finding associated with the interplay of local excitabil-
ity and nonlocal interactions concerns the solitary states SS3 that
have no cluster states counterparts and whose structure involves
leap-frog activity patterns. Leap-frog dynamics derives from mul-
tiscale character of the system, and, in particular, the phase-sensitive
excitability of relaxation oscillations, underlying their strong sen-
sitivity to perturbations in the vicinity of a canard transition.47,69

Current results, together with Refs. 47 and 74, indicate the impor-
tance of this concept to pattern formation in multiscale systems,
both in regard to coupled type II excitable units and oscillators. A
question that remains open is whether a similar type of unbalanced
cluster states and solitary states based on leap-frog dynamics can be
observed in coupled type I excitable systems. Since leap-frogging in
type I neural oscillators has so far only been found in the presence of
strong nonlinear couplings,50,51 we suspect that they are also required
for the onset of leap-frog states in type I excitable systems.

Regarding the impact of noise, we have found that it affects
the cluster and solitary states by suppressing the multistability of
system dynamics. This is a manifestation of noise-induced pref-
erence of attractors, an effect previously corroborated in coupled
oscillators,58 Hénon maps,75 and multistable fiber lasers.59 An addi-
tional subtlety is that the small noise influences pattern formation by
promoting homogeneous patched patterns at the expense of solitary
states. Since solitary states in coupled oscillators may mediate the

transition from complete synchrony to chimeras,16 it would be inter-
esting to investigate whether a similar scenario applies to coupled
excitable systems.
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Self-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of
Kuramoto oscillators. For coupled excitable units, similar patterns where coherent units are at rest are called
bump states. Here, we study bumps in an array of active rotators coupled by nonlocal attraction and global
repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing
patterns: a single incoherent unit appears in a homoclinic bifurcation, undergoing subsequent transitions to
quasiperiodic and chaotic behavior, which eventually transforms into extensive chaos with many incoherent
units. We present different types of transitions and explain the formation of coherence-incoherence patterns
according to the classical paradigm of short-range activation and long-range inhibition.
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Since their discovery in 2002 by Kuramoto and Battogtokh
[1] chimera states have attracted remarkable attention. They
represent a type of self-organization phenomenon where iden-
tical units in a system with symmetric couplings develop a
stable pattern with regions of qualitatively different behavior.
In their original work, Kuramoto and Battogtokh found such
patterns with self-organized domains of synchronized (coher-
ent) and nonsynchronized (incoherent) oscillators in systems
of phase oscillators in a one-dimensional array with nonlocal
coupling. After the term chimera state was coined by Abrams
and Strogatz [2], it has been used for similar phenomena
in a large variety of theoretical models [3,4] and has also
been demonstrated in various experiments [5–8]. In spite of
the abundance of examples of chimera states [9–16], some-
times even only loosely related to the original phenomenon
from phase oscillator systems, an understanding of a principal
mechanism leading to their formation is still missing [17].
In [2], it has been pointed out as an intriguing property of
chimera states that they “cannot be ascribed to a supercritical
instability” since they always stably coexist with the uniform
locked state. Since then, no supercritical scenario leading to
the emergence of chimera states has been presented. Some
recent progress has been made only for the case of Stuart-
Landau oscillators with global nonlinear coupling, where
clustering has been identified as a prerequisite for chimera
states in such systems [18].

In this Letter, we show that the solution to this outstanding
problem can be found by applying the classical paradigm
[19,20] of short-range activation and long-range inhibition

*franovic@ipb.ac.rs
†omelchenko@uni-potsdam.de
‡wolfrum@wias-berlin.de

to the synchrony in an array of coupled excitable or oscil-
latory units. We demonstrate that the coherence-incoherence
patterns can emerge in a supercritical scenario via a Turing
instability of completely coherent states and a secondary ho-
moclinic bifurcation, creating a single incoherent oscillator,
a state which can be seen as a weak chimera in the sense of
[21]. Subsequent transitions via periodic, quasiperiodic, and
chaotic states with an increasing number of incoherent oscil-
lators finally lead to a fully developed coherence-incoherence
pattern with localized extensive chaos in the incoherent re-
gion. Remarkably, this scenario is essentially independent on
the system size. We achieve this by introducing two modi-
fications to the original phase oscillator system. In addition
to the nonlocal attractive coupling, we introduce a global re-
pulsive coupling, and the uniformly rotating phase oscillators
are replaced by so-called active rotators, which can be in an
oscillatory or excitable regime. Coupled units of this type
can be seen as a simplified version of neuronal oscillators
similar to theta neurons [22,23], and under excitatory and/or
inhibitory coupling they are known to display various types of
localized or propagating spiking patterns. In particular, they
can display localized states of activity, so-called bump states
[24–28], which have also been extensively studied in contin-
uum models for neuronal mean-field activity [29–37]. With
these additions, our system shows a variety of self-organized
patterns; see Fig. 1. Already completely coherent states, where
all active rotators have identical average frequencies ωk , can
be locked (ωk = 0) or unlocked (ωk �= 0), and in both cases
they can be spatially uniform or spatially modulated; see
Figs. 1(a) and 1(b), respectively. Incoherent regions, where
average frequencies ωk are gradually varying, can occur in-
terspersed with locked coherent regions, as in bump states;
see Figs. 1(c) and 1(d), or with unlocked coherent regions, as
observed in chimera states. The point that bumps and chimeras
are related by a collective unlocking of the coherent region has
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FIG. 1. Dynamical regimes of (1) with N = 100, P = 35, α =
0.6, and different choices of K1, K2, a. All the solutions were ob-
tained from coherent spatially modulated initial conditions, and are
plotted centered at k = 50 using translational invariance. Snapshots
of phases θk (colored symbols) and average frequencies ωk (black) in
(a)–(d). (a) Completely coherent locked states for a = 1.2: homoge-
neous (green) at K1 = 1.4, K2 = 1.8, spatially modulated (red, blue)
at K1 = 1.4, K2 = 1.983, and K1 = 2, K2 = 2.495. (b) Time-periodic
(unlocked) completely coherent states for a = 0.5, K2 = 1.8: homo-
geneous (blue) at K1 = 3.4, spatially modulated (red) at K1 = 3.3;
different symbols of the same color indicate snapshots at different
time moments. Bump states: (c) Single-headed for K1 = 1.4, K2 =
2, a = 1.2, (d) two-headed for K1 = 2, K2 = 2.52, a = 1.2. Corre-
sponding space-time plots of phase velocities θ̇k (t ) in (e) and (f).

previously been described in a system of active rotators even
without global repulsion, having a classical chimera subjected
to a global periodic forcing [38].

Along with a mechanism of emergence, a related puz-
zling aspect is that in their original form, chimeras cannot
be observed in small systems. In [39], it has been shown that
even for large system size, they are in fact chaotic transients
collapsing to the completely coherent state after a lifetime
that is exponentially increasing with the system size. There
is of course no reason to believe that both these properties are
necessarily true for any chimeralike phenomenon in systems
other than Kuramoto’s original phase oscillators. Indeed, Ku-
ramoto’s simple phase oscillator system allows for variations
only in the phase lag parameter and the shape of the non-
local coupling. The introduction of a more general coupling
function has led to a discovery of weak chimera states [21]
which can also occur in rather small systems. However, they
share only some of the properties of the classical chimeras,
and it remained unclear to which extent the mechanisms of
their emergence could serve as a general explanation of the
original chimera phenomenon. In the case of bump states, our
results demonstrate that they can stably exist in small systems
without eventually collapsing to a completely coherent state.

FIG. 2. Instabilities of the homogeneous locked state: fold (4)
with κ = 0 (black), existence region (gray); Turing instability (4) for
the mode with wave number κ = 1 (red), stability region (orange);
dashed parts of the curves lie on the unstable sheet. (a) Locking
cone in the (a, K1) plane for fixed K2 = 1.4; (b) locking region in
the (K1, K2) plane for fixed a = 1.2. Other parameters: α = 0.6, N =
100, P = 35. Vertical lines in (b) indicate choices of K1 in Fig. 3.

We start with an array of N oscillators where the dynamics
of phases θ j ∈ S1, j = 1, . . . , N is given by

dθ j

dt
= 1 − a cos θ j − K1

2P + 1

j+P∑
k= j−P

sin(θ j − θk + α)

+ K2

N

N∑
k=1

sin(θ j − θk ), j = 1, . . . , N, (1)

where K1 > 0 denotes the strength of the nonlocal attractive
coupling and K2 > 0 is the global repulsive coupling. For
a = 0, K2 = 0, and an appropriate choice of the phase lag
parameter 0 < α < π/2 and the coupling range 1 < P < N ,
this system is known to give rise to chimera states; see,
e.g., [40–42]. Below |a| = 1 the dynamics of individual units
changes from oscillatory to excitable.

The system (1) admits completely coherent homogeneous
locked states,

θ j (t ) ≡ θ± = ± arccos

[
1 − K1 sin α

a

]
, 1 � j � N, (2)

which come in pairs within a locking cone,

(K1 sin α − 1)2 < a2, (3)

with its tip located at a = 0, K1 = 1/ sin α; cf. Fig. 2(a). Note
that the locking cone does not depend on the global coupling
K2, since there is no phase lag in the corresponding coupling
function. However, K2 strongly affects the stability of the
homogeneous locked states. Their Jacobian is a symmetric cir-
culant matrix with real spectrum and discrete Fourier modes
as eigenfunctions. The bifurcation condition for the mode
with wave number κ is given by

a2 = [K1(1 − Rκ ) cos α + (δκ0 − 1)K2]2 + (1 − K1 sin α)2,

(4)

where

Rκ = 1

2P + 1

P∑
m=−P

cos(2πκm/N )

is the corresponding discrete Fourier component of the non-
local coupling term. Note that inserting κ = 0 into (4) we
recover the fold bifurcations outlining the locking cone
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FIG. 3. Colored regions indicate increasing width of incoherent
regions of bump states for varying K2 and K1 ∈ {0.7, 1, 1.4, 2.5}.
Spatial parameter x = k/N (k-oscillator index). Other parameters:
a = 1.2, α = 0.6. Turing instability of the homogeneous locked state
(horizontal red line), where stable branches of modulated coherent
locked states emerge (hatched region), ending at a saddle node (black
dashed line). If the saddle node is a SNIC [cases (c) and (d)], there is
a supercritical transition to bump states. In case (b) a saddle node of
the modulated coherent state induces a subcritical transition to a fully
developed bump. In case (a), the Turing instability is subcritical (red
dashed line) and the solution jumps from the homogeneous coherent
state to a bump.

(3), while κ = 1, . . . N leads to a discrete Turing instability
[43,44] with wave number κ . In Fig. 2 we show the regions of
existence and stability of the coherent uniform locked states.
For K2 = 0, the homogeneous locked state θ− is stable within
the whole locking region. Increasing K2, the system undergoes
a discrete Turing instability with the leading mode κ = 1. If
this bifurcation is supercritical, we obtain a stable spatially
modulated completely coherent state (Turing pattern); see also
[45,46]. We analyze now in detail four different destabiliza-
tion scenarios of the homogeneous locked state induced by
increasing the repulsive coupling K2 along the vertical lines
in Fig. 2(b), which all finally lead to the onset of a bump
state.

Sub- and supercritical transitions to bump states. In Fig. 3
are illustrated different scenarios for the emergence of bump
states showing how the incoherent region grows with in-
creasing global repulsion K2 for different choices of K1. For
larger values of K1, see panels (b)–(d), the Turing bifurcation
is supercritical and a branch of stable spatially modulated
coherent states appears (hatched region). In (c) and (d), the
stable branch of modulated coherent states extends to a SNIC
(saddle-node on invariant circle) bifurcation. This instability
represents the supercritical transition from a classical Turing
pattern to a coherence-incoherence pattern. Remarkably, it
is characterized by unlocking of single localized oscillators,
independent on the system size N . Further increasing K2 leads
to the subsequent unlocking of neighboring oscillators and the
coherence-incoherence pattern gradually attains temporal and

spatial complexity. In Fig. 3(d) is shown a scenario where
the modulated coherent state develops two maxima, such that
two incoherent regions emerge simultaneously. Increasing K2

further, the two incoherent regions merge into a single one.
During this process, the branch folds over and a region of
coexistence of two different bump solutions appears. Fixing
K1 = 1.4, we observe a single monotonically growing inco-
herent region, as shown in Fig. 3(c). This transition will be
investigated in more detail below. For K1 = 1.0, shown in
panel (b), the saddle node of the stable branch of modulated
coherent states is a classical saddle-node bifurcation, which
does not involve an invariant circle and is not localized to a
single unlocking oscillator. Such a collective instability can
induce a subcritical transition to a coexisting fully developed
bump state, with incoherent region of finite size. This transi-
tion shows a hysteretic behavior when the coupling parameter
K2 is reduced again, whereby the bump state disappears in
a chaotic saddle before the size of the incoherent region
completely vanishes. For small values of K1 the Turing insta-
bility becomes subcritical, and there is a direct transition from
the homogeneous coherent state to a fully developed bump,
shown in panel (a), displaying the same hysteretic behavior as
described above.

Microscopic structure of the supercritical transition to
bump states. Directly after the SNIC bifurcation, when the
number of incoherent oscillators in the bump states is small,
one can observe an intricate scenario of increasing spatial and
temporal complexity, which finally leads to high dimensional
extensive chaos. For large N , this transition is confined to
a small parameter interval and one observes the almost im-
mediate emergence of a small region of extensive chaos. In
Fig. 4 we chose N = 20 such that we can study in detail
an example of such a transition. The resulting dynamics can
be characterized by the spatiotemporal pattern of the single
excitation events of the individual oscillators, which mani-
fest themselves as localized peaks in the phase velocity. A
selection of such patterns is given in Figs. 4(c)–4(h), while in
Figs. 4(a) and 4(b) we show a full parameter scan with respect
to K2 where we sampled the return times �tn between two
consecutive peaks performed by any of the oscillators [42].
Starting from the simple periodic pattern with one incoher-
ent oscillator that emerges from the SNIC of the modulated
coherent state, we see multiple transitions between regular
and chaotic states of increasing complexity. The transitions to
chaos are mostly of intermittency type, but also torus breakup,
illustrated in Fig. 5, and period-doubling cascades can be
observed. The shadings of different colors in panels (a) and
(b) indicate the increasing number of incoherent oscillators.
Note that for K2 ≈ 2.0255 the chaotic lateral motion of the
incoherent region, which was described in [39] for classical
chimera states, sets in. Obviously, the specific shape of the
transition scenario depends crucially on even small varia-
tions of the system parameters, in particular the number of
oscillators N . However, a similar global scenario has been
reported in [42], where the classical chimera system of [1]
has been extended by a control term, such that also chimera
states with a small number of incoherent oscillators became
visible.

Outlook and discussion. Our system of excitable or oscil-
latory units with attractive and repulsive coupling, as given
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FIG. 4. (a),(b) Bifurcation diagrams in K2: time intervals �tn between successive velocity peaks. Space-time plots of phase velocities:
periodic patterns in (c), (d), (f), and (g); chaotic patterns without (e) and with drift instability (h) for K2 values indicated by dash-dotted lines
in (a) and (b). Other parameters are K1 = 1.4, a = 1.2, α = 0.6, N = 20, P = 7.

in (1), shows an extremely rich variety of dynamics. Here we
have focused on the emergence of coherence-incoherence pat-
terns and demonstrated how the classical paradigm of pattern
formation by Turing [19] and Gierer and Meinhardt [20] in
terms of local activation and long-range inhibition leads to the
formation of coherence-incoherence patterns in a supercritical

FIG. 5. Emergence of chaos under increasing K2. Torus bifurca-
tion from periodic to quasiperiodic pattern at K2 ≈ 1.9394, onset of
chaos via torus breakup at K2 ≈ 1.939 55. Inset: space-time plots of
phase velocities for quasiperiodic pattern at K2 = 1.9395. Remaining
parameters: K1 = 1.3, a = 1.2, α = 0.6, N = 20, P = 7.

transition scenario. In the spatially extended discrete medium
of active rotators the attractive and repulsive coupling with
different spatial ranges does not activate or inhibit the local ac-
tivity, as in neural field models, but acts on the local synchrony
and in this way induces a pattern of qualitatively different
behavior, rather than inducing quantitatively different levels of
local activity as in the classical examples of pattern formation
in neural field models. In this way, also the classical chimera
states, which are related to the bump states discussed here
by a simple collective unlocking of the coherent region as
described in [38], are no longer an isolated phenomenon in the
family of patterns, as stated in [2], but can be seen as a specific
type of a Turing pattern, where a spatial modulation results
in a self-localized unlocking that emerges gradually from a
smooth coherent profile. We have further explained how this
transition depends on the coupling strengths K1,2. Moreover,
we have shown that the coherence-incoherence patterns can
be found for a large range of other parameters: in particular,
the fine tuning of the phase lag α slightly below π/2 that
was necessary to obtain chimera states in the classical setting
[4,40] is no longer needed. Also, another puzzling aspect of
chimera states in their original form could be resolved in our
modified system. In [39], it was shown that chimeras cannot
be observed in small systems, and that even for large system
size, they behave as chaotic transients which collapse to the
completely coherent state. With our extension of Kuramoto’s
simple phase oscillator system, coherence-incoherence pat-
terns no longer need to coexist with the stable homogeneous
state but, as we demonstrated, can be found as stable attractors
even for small system size. In this way, sophisticated control
schemes, which have been constructed for their observation
[47,48], become no longer necessary. Instead, our model is
universal in the sense that the transition between the classical
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subcritical scenario and the new supercritical scenario for the
onset of coherence-incoherence patterns is achieved by the
coupling parameters.
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ABSTRACT

We study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this
system may display noise-induced spiking, noise-perturbed oscillations, or stochastic bursting. We show how the system exhibits transitions
between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance or effectively control the features
of the stochastic bursting. The setup can be considered a paradigmatic model for a neuron with a slow recovery variable or, more generally,
as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the
classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding
stationary Fokker–Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the
parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the
noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5145176

Recent years have witnessed a rapid expansion of stochastic mod-
els for a wide variety of important physical and biological phe-
nomena, from sub-cellular processes and tissue dynamics, over
large-scale population dynamics and genetic switching to optical
devices, Josephson junctions, fluid mechanics, and climatology.
These studies have demonstrated that the effects of noise manifest
themselves on a broad range of scales but, nevertheless, display
certain universal features. In particular, the effects of noise may
generically be cast into two groups. On the one hand, the noise
may enhance or suppress the features of deterministic dynam-
ics, while on the other hand, it may give rise to novel forms of
behavior, associated with the crossing of thresholds and separa-
trices or with stabilization of deterministically unstable states.
The constructive role of noise has been evinced in diverse applica-
tions, from neural networks and chemical reactions to lasers and
electronic circuits. Classical examples of stochastic facilitation in

neuronal systems concern resonant phenomena, such as coher-
ence resonance, where an intermediate level of noise may trigger
coherent oscillations in excitable systems, as well as spontaneous
switching between the coexisting metastable states. In the present
study, we show how the interaction of noise and multiscale
dynamics, induced by slowly adapting feedback, may affect an
excitable system. It gives rise to a new mode of behavior based on
switching dynamics, namely, the stochastic bursting and allows
for an efficient control of the properties of coherence resonance.

I. INTRODUCTION

Multiscale dynamics is ubiquitous in real-world systems. In
neuron models, for instance, the evolution of recovery or gat-
ing variables is usually much slower than the changes of the
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membrane potential.1,2 At the level of neural networks, certain
mechanisms of synaptic adaptation, such as the spike timing-
dependent plasticity,3–5 are slower than the spiking dynamics of
individual neurons. When modeling the dynamics of semiconductor
lasers,6–8 one similarly encounters at least two different timescales,
one related to the carriers’ and the other to the photons’ lifetime,
whereby their ratio can span several orders of magnitude. Investi-
gating the dynamics of such multiscale systems has led to the devel-
opment of a number of useful asymptotic and geometric methods,
see Refs. 9–13, to name just a few.

Another ingredient inevitable in modeling real-world systems
is noise, which may describe the intrinsic randomness of the system
and the fluctuations in the embedding environment or may derive
from coarse-graining over the degrees of freedom associated with
small spatial or temporal scales.14,15 For instance, neuronal dynam-
ics is typically influenced by intrinsic sources of noise, such as the
random opening of ion channels, and by external sources, like the
synaptic noise.16 In chemical reactions, noise comprises finite-size
effects, while the stochasticity in laser dynamics reflects primarily
quantum fluctuations. In general, the impact of noise can manifest
itself by modification of the deterministic features of the system or
by the emergence of qualitatively novel types of behavior, induced
by the crossing of thresholds or separatrices.17

In the present paper, we study the effects of slowly adapting
feedback and noise on an excitable system. Excitability is a gen-
eral nonlinear phenomenon based on a threshold-like response of
a system to perturbation.1,15,18,19 An excitable system features a stable
“rest” state intermitted by excitation events (firing), elicited by per-
turbations. In the absence of a perturbation, such a system remains
in the rest state and a small perturbation induces a small-amplitude
linear response. If the perturbation is sufficiently strong, an excitable
system reacts by a large-amplitude nonlinear response, such as a
spike of a neuron. When an excitable system receives additional
feedback or a stochastic input or is coupled to other such systems,
new effects may appear due to the self- or noise-induced excita-
tions, as well as excitations from the neighboring systems. Such
mechanisms can give rise to different forms of oscillations, patterns,
propagating waves, and other phenomena.15,20–28

Our focus is on a stochastic excitable system subjected to a slow
control via a low-pass filtered feedback

v̇(t) = f(v(t), µ(t)) +
√

Dξ(t), (1)

µ̇(t) = ε(−µ(t) + ηg(v(t))), (2)

where ε & 0 is a small parameter that determines the timescale sep-
aration between the fast variable v(t) and the slow feedback variable
µ(t). The fast dynamics ˙v(t) = f(v(t), 0) is excitable and is influ-
enced by the Gaussian white noise ξ(t) of variance D. Moreover,
the slow feedback variable µ controls its excitability properties. The
parameter η is the control gain such that for η = 0, one recovers a
classical noise-driven excitable system.15 An important example of a
system conforming to (1) and (2) for η 6= 0 is the Izhikevich neu-
ron model,29 where the stochastic input to the fast variable would
describe the action of synaptic noise.

Here, we analyze a simple paradigmatic example from the
class of systems (1) and (2), where the excitable local dynamics is

represented by an active rotator

ϕ̇(t) = I − sin ϕ(t) with ϕ ∈ [0, 2π).

The latter undergoes a saddle-node infinite period (SNIPER, some-
times also called SNIC – saddle node on invariant circle) bifurcation
at |I| = 1, turning from excitable (|I| . 1) to oscillatory regime |I|
> 1, see Ref. 30. The adaptation is represented by a positive periodic
function g(ϕ) = 1 − sin ϕ such that the complete model reads

ϕ̇(t) = I0 + µ(t) − sin ϕ(t) +
√

Dξ(t), (3)

µ̇(t) = ε (−µ(t) + η (1 − sin ϕ(t))) . (4)

In the presence of feedback, the noiseless dynamics of the active
rotator depends now on I = I0 + µ(t) involving the control variable
µ(t), which can induce switching between the excitable equilibrium
and the oscillatory regime. This adaptation rule provides a posi-
tive feedback for the spikes and oscillations, since µ(t) increases
when ϕ(t) is oscillating and drives the system toward the oscilla-
tory regime, while in the vicinity of the equilibrium (sin ϕ ≈ 1) the
control signal effectively vanishes.

We examine how the behavior of (3) and (4) is influenced by
the noise level D and the control gain η, determining the phase dia-
gram of dynamical regimes in terms of these two parameters. The
first part of our results in Sec. II concerns the noise-free system
D = 0, where we employ a combination of two multiscale methods,
namely, adiabatic elimination in the regime where the fast subsys-
tem has stable equilibrium and the averaging approach when the fast
subsystem is oscillatory. As a result, we obtain a reduced slow system
that is capable of describing both the slowly changing fast oscilla-
tions and the slowly drifting equilibrium, as well as the transitions
between these regimes. The bifurcation analysis of this slow system
reveals the emergence of bistability between the fast oscillations and
the equilibrium for sufficiently large η.

The second part of our results, presented in Sec. III, addresses
the multiscale analysis of the dynamics in the presence of noise
(D 6= 0). Instead of deterministic averaging, we apply the method
of stochastic averaging,25,31–34 where the distribution density for the
fast variable obtained from a stationary Fokker–Plank equation is
used to determine the dynamics of the slow flow. In this way, we
obtain a deterministic slow dynamics for which one can perform a
complete numerical bifurcation analysis with respect to D and η. In
Sec. IV, we investigate the effects of stochastic fluctuations on the
slow dynamics, which vanish in the limit of infinite timescale sep-
aration ε → 0 employed in Sec. III. The effect of a slowly adapting
feedback on the coherence resonance is shown by extracting from
numerical simulations the coefficient of variation of the spike time
distribution in the excitable regime. In particular, we compare the
results for small positive ε with the case of infinite time scale sepa-
ration, where we use the stationary but noise dependent µ obtained
in Sec. III. The noise-induced switching dynamics in the bistabil-
ity region is demonstrated by numerical simulations showing an
Eyring–Kramers type of behavior.

In terms of the different dynamical regimes, our study of
stochastic dynamics reveals three characteristic (D, η) regions fea-
turing noise-induced spiking, noise-perturbed spiking, and stochas-
tic busting (see Fig. 1). We show that by varying the control gain
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FIG. 1. Different dynamical regimes in the stochastic excitable system subjected
to a slow control via a low-pass filtered feedback (3) and (4) with ε = 0.005,
D = 0.008 and different choices of the control gain η: noise-induced spiking (a),
stochastic bursting (b), and noise-perturbed spiking (c).

within the region of noise-induced spiking, one can enhance or sup-
press the coherence resonance, while within the bistability region,
one can efficiently control the properties of stochastic bursting.
Sections II–IV provide a detailed analysis of the described phenom-
ena.

II. SLOW–FAST ANALYSIS OF THE DETERMINISTIC

DYNAMICS

In this section, we analyze the systems (3) and (4) in the absence
of noise (D = 0)

ϕ̇(t) = I0 − sin ϕ(t) + µ(t), (5)

µ̇(t) = ε (−µ(t) + η (1 − sin ϕ(t))) , (6)

considering the limit ε → 0 within the framework of singular per-
turbation theory. The fast subsystem

ϕ̇(t) = I0 + µ − sin ϕ(t), (7)

often called a “layer equation” describes the dynamics on the fast
timescale and is obtained from (5) and (6) by setting ε = 0, whereby
µ acts as a parameter.

A. Dynamics for µ<1− I0: Adiabatic elimination

In the case µ < 1 − I0, the fast subsystem (7) possesses two
equilibria

ϕ+(µ) = arcsin(I0 + µ), ϕ−(µ) = π − ϕ+(µ), (8)

where ϕ+ is stable and ϕ− is unstable. Considering them as functions
of the parameter µ, the equilibria give rise to two branches, which

FIG. 2. Critical manifold and fast dynamics of systems (5) and (6). For
µ < 1 − I0, the fast dynamics converges to the stable branch of the critical
manifold, while for µ > 1 − I0, it is oscillatory with periodic rotation of the
phase ϕ.

merge in a fold at µ = 1 − I0 (see Fig. 2). Equivalently, the set of
equilibria of the fast subsystem

{(ϕ, µ) : sin ϕ = I0 + µ} (9)

comprises the critical manifold of (5) and (6), with the stable part
ϕ+(µ) and the unstable part ϕ−(µ).

Hence, for µ < 1 − I0, the trajectories are rapidly attracted
toward the stable branch of the critical manifold, along which for
positive ε they slowly drift. In order to describe this slow dynamics,
we rescale time T = εt and obtain

εϕ′(T) = I0 + µ(T) − sin ϕ(T), (10)

µ′(T) = −µ(T) + η(1 − sin ϕ(T)), (11)

where the prime denotes the derivative with respect to the slow time
T. Setting ε = 0, we can directly eliminate the term sin ϕ(T) = I0 +
µ(T) and obtain the equation for the slow dynamics on the critical
manifold

µ′(T) = −µ(T) + η(1 − I0 − µ(T)). (12)

B. Dynamics for µ>1− I0: Averaging fast oscillations

For µ > 1 − I0, there is no stable equilibrium of the fast sub-
system (7) (see Fig. 2). Instead, one finds periodic oscillations

ϕµ(t) = 2 arctan
1 + �(µ) tan t

2
�(µ)

I0 + µ
, (13)

with the µ-dependent frequency

�(µ) =
√

(I0 + µ)2 − 1.

In this case, the fast oscillations ϕµ(t) should be averaged in order
to obtain the dynamics of the slow variable µ(T), see Refs 35
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and 36. A rigorous formal derivation is provided in Appendix A,
finally arriving at

µ′(T) = −µ(T) + η(1 − I0 − µ(T) + �(µ(T))). (14)

Here, we give a simplified explanation of the averaging procedure.
First, we substitute the fast-oscillating solution ϕ = ϕµ(t) of the fast
subsystem into the equation for the slow variable (11),

µ′(T) = −µ(T) + η(1 − sin ϕµ(t)).

Since the term sin(·) is fast oscillating, the last equation can be
averaged over the fast timescale t, which leads to

µ′(T) = −µ(T) + η
(

1 −
〈

sin ϕµ(t)
〉

t

)

. (15)

The average
〈

sin ϕµ(t)
〉

t
can be found by integrating (7) over the

period, which gives

〈ϕ̇(t)〉t = �(µ) = I0 + µ − 〈sin ϕµ(t)〉t. (16)

Hence, by substituting

〈sin ϕµ(t)〉t = I0 + µ(T) − �(µ(T))

into (15), we obtain the slow averaged dynamics (14).

C. Combined dynamics of the slow variable

Summarizing the results so far, Eq. (12) describes the dynamics
of the slow variable for µ < 1 − I0, while Eq. (14) holds for µ >

1 − I0. These two equations can be conveniently combined into a
single equation of the form (14) by extending the definition of the
frequency �(µ) as follows:

�(µ) =
{

0, µ < 1 − I0,
√

(I0 + µ)2 − 1, µ > 1 − I0.
(17)

Hence, the slow dynamics is described by the scalar ordinary dif-
ferential equation on the real line (14), and, as a result, the only
possible attractors are fixed points, which are given by the zeros of
the right-hand side as

�(µ) = η + 1

η
µ + I0 − 1. (18)

Geometrically, they are points of intersection of the frequency pro-
file �(µ) with the line η+1

η
µ + I0 − 1 [see Fig. 3(a)]. In particular,

one can check that there is always one fixed point

µ1 = η(1 − I0)

1 + η
< 1 − I0, (19)

for which �(µ1) = 0 such that it corresponds to a pair of equilibria
on the critical manifold (9). Since µ1 is stable for the slow dynamics,
the point (ϕ+(µ1), µ1) is also a stable equilibrium for original sys-
tems (5) and (6) with small ε. The other two fixed points of the slow

FIG. 3. (a) Graphical solution of the fixed point Eq. (18): �(µ) according to (17)
(black) and the right-hand side of (18) for different choices of η. One finds from
one to three fixed points depending on η. (b) Scheme of the slow–fast dynamics of
systems (5) and (6) with parameters I0 = 0.95 and η = 0.38 and the numerical
sample trajectories for ε = 0.005 (red). Forµ < 1 − I0, trajectories are attracted
to the stable branch of the slow manifold (blue curve) and subsequently slowly
drift toward the stable fixed point (ϕ+(µ1),µ1) (black dot). For µ > 1 − I0, the
sample trajectories show fast oscillations in ϕ with a slow average drift inµ in the
direction indicated by the arrows.

equation

µ2,3 =
η

(

1 + η − I0 ∓
√

(η + I0)
2 − 1 − 2η

)

1 + 2η
, (20)

with �(µ2,3) > 0 appear in a saddle-node bifurcation at

ηsn = 1 − I0 +
√

2(1 − I0) (21)

and correspond to a pair of periodic orbits of fast subsystem (7).
In Fig. 3(b) we show schematically the results of our slow–fast

analysis for I0 = 0.95 and η = 0.38. For the chosen parameter values
there are two stable regimes: the fixed point (ϕ+(µ1), µ1) and a fast
oscillation with 〈µ(t)〉t ≈ µ3.

Finally, Fig. (4) presents the bifurcation diagram of the fixed
points of the slow dynamics with respect to the control gain η.
One observes that there is always one branch of stable fixed points
corresponding to the steady state and two stable fixed points corre-
sponding to fast oscillations for η > ηsn. For our choice of I0 = 0.95,
we obtain ηsn ≈ 0.3662.

III. SLOW–FAST ANALYSIS OF THE DYNAMICS WITH

NOISE

In this section, we consider the dynamics of systems (3) and (4)
in the presence of noise (D > 0). In analogy to the noise-free case,
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FIG. 4. Fixed points of the slow dynamics (14) for varying control gain η. The
valuesµ2,3 on the upper branch (black curve) correspond to periodic orbits of the
fast subsystem (7), while µ1 (blue curve) is the branch of fixed points; solid and
dashed lines indicate stable and unstable solutions, respectively. The direction
of the motion in µ(T) is indicated by the arrows. The dotted lines indicate the
onset of bistability for η = ηsn and the transition at µc = 1 − I0 from equilibria
to periodic orbits.

one can use the limit ε → 0 and employ the stochastic average

〈sin ϕ(t)〉t = lim
t−→∞

1

t

∫ t

0

sin ϕ(t)dt′,

for solutions of the stochastic fast equation

ϕ̇(t) = I0 + µ − sin ϕ(t) +
√

Dξ(t) (22)

to approximate the slow dynamics in (11) by

µ′(T) = −µ(T) + η(1 − 〈sin ϕ(t)〉t). (23)

To this end, we consider the stationary probability density distribu-
tion ρ(ϕ; µ, D) for the fast noisy dynamics (3), which for fixed con-
trol µ and noise intensity D is given as a solution to the stationary
Fokker–Planck equation

D

2
∂ϕϕρ − ∂ϕ [(I0 + µ − sin ϕ)ρ] = 0, (24)

together with the periodic boundary conditions ρ(0) = ρ(2π) and
the normalization

∫ 2π

0

ρ(ϕ; µ, D)dϕ = 1. (25)

From this, we can calculate the average

〈sin ϕ(t)〉t =
∫ 2π

0

ρ(ϕ; µ, D) sin ϕdϕ (26)

and obtain the mean frequency

�D(µ) = I0 + µ − 〈sin ϕ(t)〉t, (27)

which depends via (26) both on D and µ. Taking into account (23)
and (27), the equation for the slow dynamics of µ(T) reads

µ′(T) = −µ(T) + η(1 − I0 − µ + �D(µ(T))), (28)

FIG. 5. Average frequency of the fast dynamics (3) given by (26) and (27) using
numerical solutions of the stationary Fokker–Planck Eq. (24), where µ acts as a
time independent parameter and fixed I0 = 0.95.

i.e., it is of the same form as in the deterministic case (14). The cor-
responding fixed point equation for the stationary values of µ with
respect to the slow dynamics is given by (18).

The stationary Fokker–Planck Eq. (24) can be solved directly
by integral expressions [see Appendix B]. In particular, for D = 0,
we readily recover the results for periodic averaging from Sec. II.
However, for small non-vanishing D, the integrals become difficult
to evaluate numerically, and we preferred to solve (24) as a first-
order ODE boundary value problem with software AUTO,37 which
provides numerical solutions to boundary value problems by col-
location methods together with continuation tools for numerical
bifurcation analysis.

In Fig. 5 are shown the numerically obtained effective fre-
quencies �D(µ) for different noise levels D. Solving the stationary
Fokker–Planck Eq. (24) together with the fixed point equation for
µ(T) (18), we obtain for fixed values of D and varying control gain
η branches of stationary solutions (µ∗, ρ(ϕ; µ∗, D)) [see Fig. 6(a)].
For small noise intensities, these branches are folded, which indi-
cates the coexistence of up to three stationary solutions, similarly
as in the noise-free case. Alternatively, we can also fix η and obtain
branches for varying D [see Fig. 6(c)]. For small η they are mono-
tonically increasing, while for larger η they are folded. For ηsn < η

there are two separate branches, emanating from the three solutions
of (18) at D = 0.6

Numerical continuation of the folds in the (η, D) parameter
plane provides the curves outlining the boundaries of the bistabil-
ity region. Figure 6(b) shows that the two branches of folds meet at
a cusp point (ηcu, Dcu). One of the branches approaches for D → 0
the value η = ηsn, which we have calculated in (21), while the other
one diverges to infinite values of η. From our numerics for different
values of I0, we observe that closer to the critical value I0 = 1, the
cusp point shifts to a smaller noise intensity D such that the region
of bistability decreases.

Note that for D > 0, all the average frequencies satisfy �D > 0
such that a clear distinction between the stationary and the oscilla-
tory regime of the fast dynamics is no longer possible. However, one
can compare the critical value of the deterministic fast dynamics

µc = 1 − I0, (29)
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FIG. 6. Panels (a) and (c): Branches of fixed points µ∗ of the slow dynamics
(28) calculated at I0 = 0.95 from (18) together with the stationary Fokker–Planck
Eq. (24). (a) Branches µ∗(η) for noise values D = 0.005, 0.006, . . . , 0.019 and
(b) two-dimensional bifurcation diagrams in terms of η and D for three different
values of I0 show the curves of fold bifurcations, which meet at the cusp point.
Dashed curves indicate the case whereµ∗ = µc = 1 − I0. (c) Branchesµ∗(D)

for control gain values η ∈ {0.2, 0.3, 0.35, 0.4}.

with the corresponding stationary value µ∗ of the slow variable from
(28) to distinguish between the regime of µ∗ < µc, where the oscil-
lations are induced by the noisy fluctuations of µ(t) and have the
form of rare spikes [see Fig. 1(a)], and the regime µ∗ > µc where
the oscillatory behavior is already induced by the stationary value of
µ∗ [see Fig. 1(c)].

Our numerical bifurcation analysis shows that the curves where
the stationary values of µ satisfy the condition µ = µc, shown as
dashed line in Fig. 6(b), pass exactly through the corresponding cusp
points and inside the bistability region refer to the unstable solu-
tions given by the middle part of the S-shaped curves in Fig. 6(a).
From this, we conclude that changing the parameters across this line
outside the bistability region results in a gradual transition between
the regime of fluctuation-induced oscillations and the oscillations
induced by the stationary value of µ∗, while at the boundary of the

bistability region, a hysteretic transition between the two regimes
is obtained. Moreover, for finite timescale separation ε > 0, there
can also be transitions between the two stable regimes within the
bistability region, which are induced as well by the stochastic fluc-
tuations. In Sec. IV, we study in detail how the region of bistability
found for the singular limit ε → 0 also affects the dynamics of the
original system in the case of finite timescale separation.

IV. EFFECTS OF FLUCTUATIONS AND FINITE

TIMESCALE SEPARATION

The two basic deterministic regimes of the fast dynamics, which
are the excitable equilibrium, and the oscillations induce in a natural
way the two corresponding states of the system with noise and small
ε > 0, namely,

• noise-induced spiking, characterized by a Poisson-like distribu-
tion of inter-spike intervals (ISIs) [see Fig. 7(a)] and

• noisy oscillations, involving a Gaussian-like distribution of the
ISIs, centered around the deterministic oscillation period [see
Fig. 7(b)].

These states are found for sufficiently small or large values of
η, respectively, where only a corresponding single branch of the
deterministic system is available and the fluctuations of µ around
its average value have no substantial impact on the dynamics, cf. the
blue and orange distributions in Fig. 7. For sufficiently large noise
levels above the cusp (D > Dcu) and intermediate values of η, one
observes a gradual transition between these two regimes. However,
for smaller noise D < Dcu, allowing for the existence of the region

FIG. 7. Histograms of inter-spike intervals of the phase variable for control gain
η = 0.2 (top panel) and η = 0.5 (bottom panel) obtained from numerical sim-
ulations of full systems (3) and (4) with ε = 0.005 (orange) and in the limit of
infinite timescale separation (blue), using (22) with the stationary µ(T) ≡ µD

determined from the stationary Fokker–Planck Eq. (24). Solid red and dashed
blue curves represent fits to an exponential decay (a) and a Gaussian (b) for the
histograms concerning the full system and the limit of infinite scale separation,
respectively.
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of bistability [cf. Fig. 6(b)], new regimes of stochastic dynamics can
emerge, namely,

• enhanced coherence resonance, where a noise-induced dynamical
shift of the excitability parameter I0 + µD is self-adjusted close to
criticality and

• noise-induced switching between the two coexisting regimes in
the bistability region [see Fig. 1(b)].

A. Enhanced coherence resonance

The phenomenon of coherence resonance,20,38,39 where the reg-
ularity of noise-induced oscillations becomes maximal at an inter-
mediate noise level, is well-known for noisy excitable systems such as
the fast Eq. (22) without adaptation, i.e., for η = 0 and therefore also
µ = 0. For values of the control gain 0 < η < ηcu below the region
of bistability, the control leads to a substantially enhanced coherence
resonance. This effect can be quantified by studying the noise depen-
dence of the coefficient of variation of the inter-spike intervals. For
a given noisy trajectory of (22), the spiking times tk are defined as
the first passage times ϕ(tk) = 2πk, k ∈ N with corresponding inter-
spike intervals τk = tk − tk−1. The coefficient of variation of their
distribution is defined as

R(D) =

√

〈τ 2
k 〉 − 〈τk〉2

〈τk〉
. (30)

For (22) with a fixed µ, the latter can be determined from direct
numerical simulations. However, inserting for µ the corresponding
stochastic averages µ∗(D; η) obtained in the section shows a strong
nonlinear dependence both on η and D [see also Figs. 6(a) and 6(c)].
In particular, the strong nonlinear dependence on D for η slightly
below the cusp value ηcu has a substantial impact on the resonant
behavior reflected in the form of R(D). In Fig. 8, we show the R(D)

dependence for different values of the control gain η, comparing
the numerical results for the fast subsystem (22) with inserted sta-
tionary values µ∗(D; η) to numerical simulations of (3) and (4) for
ε = 0.005. For 0 < η < ηcu, one finds that the coherence resonance
can be substantially enhanced, cf., for example, the R(D) dependen-
cies for η = 0 and η = 0.3. On the other hand, introducing negative
values of the control gain η, the resonant effect can be readily sup-
pressed. This implies that the adaptive feedback we employ provides
an efficient control of coherence resonance. Such an effect has already
been demonstrated in Refs. 40, 41, and 42 by using a delayed feed-
back control of Pyragas type. However, this control method requires
the feedback delay time as an additional control parameter to be well
adapted to the maximum resonance frequency.

B. Bursting behavior due to noise-induced switching

For parameter values (η, D) within the bistable region and
finite timescale separation ε > 0, the coexisting states of excitable
equilibrium and fast oscillations turn into metastable states of full
systems (3) and (4). Based on our slow–fast analysis, the correspond-
ing dynamics can be understood as follows. The noisy fluctuations
of ϕ(t) around its average distribution, given by the stationary
Fokker–Planck Eq. (24), induces fluctuations of 〈sin ϕ(t)〉t, and
hence also of µ, around their stationary average values calculated

FIG. 8. Enhancement or suppression of coherence resonance by a slowly adapt-
ing feedback control. The connected lines with empty symbols refer to R(D)

dependencies for full systems (3) and (4) at different values of the control gain:
η = −0.2 (green hexagonals), η = 0 (black squares), η = 0.2 (red circles),
and η = 0.3 (blue diamonds), having fixed I0 = 0.95, ε = 0.005. The uncon-
nected filled symbols indicate the corresponding R(D) dependencies obtained
from numerical simulations of the fast subsystem 22 with stationary µ∗(D).

above. For small ε, the corresponding distribution of µ is centered in
narrow peaks at the stable stationary values. However, with increas-
ing ε, the nonlinear filtering induces a strong skewness of each
peak in the distribution, and their overlapping indicates the possi-
bility of noise-induced transitions between the two metastable states.
Figure 9 shows the distribution for ε = 0.005 and different values of
the η within the bistability region. These transitions can be under-
stood in analogy to the Eyring–Kramers process in a double well
potential. In the generic case of different energy levels for the two
potential wells, transitions in one of the directions occur at a higher
rate and the system stays preferably in the state associated with the
global minimum of the potential. Such behavior of biased switch-
ing is very pronounced closed to the boundaries of the bistability
region, where a switching to the state close to the fold has a much
lower probability than switching back.

In Fig. 10 are shown the numerical time averages 〈µ(T)〉 for
varying control gain η. One can see that for most values of η,
the long-time behavior is dominated by one of the two metastable
states, which indicates a biased switching process. Nevertheless, at
an intermediate value of η, we find a balanced switching, where
transitions in both directions occur at an almost equal rate. A cor-
responding time trace is shown in Figs. 11 and 1(b). For ε → 0,
the switching rate decreases to zero exponentially and the switching
bias in the unbalanced regime increases. This leads to the char-
acteristic steplike behavior of the averages observed in Fig. 10 for
smaller ε.

The noise-induced switching shown in Figs. 11 and 1(b) resem-
bles the regime of bursting in neuronal systems. Here, it emerges
by an interplay of slow adaptation and noise. In the present setup,
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FIG. 9. Stationary distributions P(µ), sam-
pled from numerical simulations of (3) and (4)
with ε = 0.005. Parameters η = 0.37 in (a),
η = 0.373 in (b) and η = 0.38 in (c) and fixed
noise level D = 0.009 lie inside the bistability
region from Fig. 6(b). Blue vertical lines indi-
cate the fixed points of µ from the stationary
Fokker–Planck Eq. (24) together with the fixed
point Eq. (18) of the slow dynamics. Red ver-
tical lines indicate the mean values of all µ in
P(µ) below and of all µ above the unstable
fixed point in the middle (dashed blue lines).

the bursts are triggered just by the stochastic fluctuations. However,
in regime η > ηcu, the system is also quite susceptible to external

inputs, which could initiate the bursts even without any intrinsic

noise.

FIG. 10. Long-time averages 〈µ〉T from numerical simulations of (3) and (4) with
fixed noise intensity D = 0.008 and varying control gain η at different values
of ε ∈ {0.002, 0.005, 0.01, 0.02}. The black curve represents the corresponding
result for the infinite timescale separation [cf. Fig. 6(a)].

V. DISCUSSION AND OUTLOOK

Our model provides a novel perspective on how the dynamics
of an excitable system is influenced by the interaction of a slowly
adapting feedback and noise. The feedback is taken from a low-pass

FIG. 11. Time series ϕ(t) (top panel) and µ(t) (bottom panel) illustrating
the regime of balanced switching. The system parameters are η = 0.38,
D = 0.008, I0 = 0.95, ε = 0.01.
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FIG. 12. Upper panel: parameter regions for different
dynamical regimes: noise-induced spiking (blue), noise-per-
turbed oscillations (red), and noise-induced bursting (vio-
let). Enhanced coherence resonance can be found in the
hatched region. Symbols indicate the parameter values asso-
ciated with the histograms P(µ) shown below. Lower panels:
sampled distributions of µ(T) from numerical solutions with
ε = 0.005, D = 0.008, and η ∈ 0.3, 0.38, 0.5.

filter of a function that gives a positive feedback to the oscillations
by pushing the excitability parameter toward the oscillatory regime.
Since excitability, feedback, and noise are typical ingredients of neu-
ral systems, we believe that the application of our results to a specific
neural model would be a next natural step, aiming to gain a deeper
understanding of the onset of different dynamical regimes, as well as
the means of controlling their properties and the emerging resonant
effects. In Fig. 12 are summarized our main results. In particular,
the multiple timescale analysis for the limit of infinite timescale
separation has allowed us to perform a numerical bifurcation anal-
ysis providing the parameter regions for the different dynamical
regimes illustrated in Fig. 1. Numerical simulations for finite values
of ε (lower panels in Fig. 12) show that the slowly varying con-
trol variable µ(T) is distributed around the stationary values from
the limiting problem ε = 0 [see also Fig. 9]. Moreover, we have
demonstrated that the filtered feedback in our model provides an
efficient control of the effect of coherence resonance, which can be
substantially enhanced or suppressed by a corresponding choice of
the feedback gain. In the regime where the limiting problem ε = 0
indicates bistability between the equilibrium and a fast oscillation,
the stochastic fluctuations at finite values of ε give rise to switch-
ing between the associated metastable states. However, our analysis
shows that for sufficiently high noise intensity, this bistability van-
ishes and the two different deterministic states can no longer be
distinguished.

From the point of view of the theory of multiscale systems,
the deterministic part of the presented model provides one of the
simplest examples combining the regimes of stable equilibrium and
oscillations within the fast subsystem. A rigorous mathematical
treatment of the dynamical transitions between the two regimes and
the corresponding reductions by the standard adiabatic elimination
and the averaging technique is still missing. Also, our approach to
analysis of stochastic dynamics in multiscale systems by introducing
a stationary Fokker–Planck equation for the fast dynamics leads to
important questions concerning the limiting properties of the trajec-
tories and the specific implications of the fluctuations. Nevertheless,
we have considered only the case when the noise acts in the fast
variable. An open problem is to study how the obtained results are
influenced by the noise in the slow variable, where interesting new
effects can be expected.43
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APPENDIX A: MULTISCALE AVERAGING IN THE

REGIME OF FAST OSCILLATIONS

In this appendix, we provide a rigorous formal derivation of the
slow averaged Eq. (14) for the case of periodic dynamics in the fast
layers.

We apply the following general multiscale ansatz:

ϕ = ϕ̄(t, εt) + εϕ̂(t, εt),

µ = µ̄(t, εt) + εµ̂(t, εt).

Substituting this ansatz into (3) and (4), one obtains up to the terms
of the order ε,

∂1ϕ̄ + ε∂2ϕ̄ + ε∂1ϕ̂ = I0 − sin
(

ϕ̄ + εϕ̂
)

+ µ̄ + εµ̂,

∂1µ̄ + ε∂2µ̄ + ε∂1µ̂ = ε
(

−µ̄ − εµ̂ + η
(

1 − sin
(

ϕ̄ + εϕ̂
)))

,

where subscripts 1 and 2 refer to partial derivatives with respect to t
and εt, respectively. Collecting the terms of order O(1), one finds

∂1ϕ̄ = I0 − sin ϕ̄ + µ̄, (A1)

∂1µ̄ = 0. (A2)

Equation (A2) implies that µ̄ = µ̄(εt) depends only on the slow
time and acts as a parameter in (A1). For µ̄ > 1 − I0, Eq. (A1)
has the oscillating solution ϕ̄ = ϕµ̄(t) given by (13). Note that the
parameters of this solution can depend on the slow time.

As a next step, we consider the terms of order ε,

∂2ϕ̄ + ∂1ϕ̂ = −ϕ̂ cos ϕ̄ + µ̂,

∂2µ̄ + ∂1µ̂ = −µ̄ + η (1 − sin ϕ̄) .
(A3)

We rewrite Eq. (A3) as

∂2µ̄ + µ̄ = −∂1µ̂ + η (1 − sin ϕ̄) , (A4)

where the left-hand side depends only on the slow time. Hence, the
solvability condition for (A4) is the requirement that its right-hand
side is independent on the fast time t, i.e.,

− ∂1µ̂ + η (1 − sin ϕ̄) = u(T), (A5)

with some function u(T), where T = εt is the slow time. By integrat-
ing (A5) with respect to the fast time, we obtain

µ̂(t) = µ̂(0) + η

(

t −
∫ t

0

sin ϕ̄ dt

)

− tu(T). (A6)

The integral in (A6) can be computed using (A1),

∫ t

0

sin ϕ̄dt = tI0 + tµ̄ − ϕ̄(t) + ϕ̄(0),

such that

µ̂(t) = µ̂(0) + t

[

η

(

1 − I0 − µ̄ + ϕ̄(t) − ϕ̄(0)

t

)

− u(T)

]

.

Taking into account that

ϕ̄(t) − ϕ̄(0)

t
= �(µ̄) + O

(

1

t

)

,

we obtain the expression for µ̂,

µ̂(t) = µ̂(0) + t [η (1 − I0 − µ̄ + �(µ̄)) − u(T)] + O(1),

where the linearly growing term must vanish for µ̂(t) to be bounded.
Setting such a secular term to zero (even without computing explic-
itly µ̂), we have

u(T) = η (1 − I0 − µ̄ + �(µ̄))

and, hence, taking into account (A4) and (A5), the equation for the
leading order approximation of the slow variable reads

∂2µ̄ + µ̄ = η (1 − I0 − µ̄ + �(µ̄)) .

Since µ̄ is the function of the slow time only, we have ∂2µ̄ = µ̄′,
which results in the required averaged Eq. (14).

APPENDIX B: EXPLICIT SOLUTION OF THE

STATIONARY FOKKER–PLANCK EQUATION

Here, we present the analytic solution of the stationary
Fokker–Planck Eqs. (24) and (25). By integrating Eq. (24) once, one
obtains

D

2
∂ϕρ − (I0 + µ − sin ϕ) ρ = C, (B1)

with a constant C to be determined. Solving (B1), and taking into
account the normalization (25) and the boundary condition ρ(0) =
ρ(2π), we arrive at

ρ(ϕ; µ, D) = 1

g3

3(ϕ),

where

3(ϕ) =
∫ 2π

0

9(ϕ)

9(ϕ + ξ)
dξ ,

g3 =
∫ 2π

0

3(ϕ)dξ ,

9(ϕ) = exp

{

2

D
[(I0 + µ)ϕ + cos ϕ − 1]

}

.
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a b s t r a c t 

In present paper authors examined the effect of colored noise on the onset of seismic fault motion. For 

this purpose, they analyze the dynamics of spring-block model, with 10 all-to all coupled blocks. This 

spring-block model is considered as a collection of fault patches (with the increased rock friction), which 

are separated by the material bridges (more petrified parts of the fault). In the first phase of research, au- 

thors confirm the presence of autocorrelation in the background of seismic noise, using the measurement 

of real fault movement, and the recorded ground shaking before and after an earthquake. In the second 

stage of the research, authors firstly develop a mean-field model, which accurately enough describes the 

dynamics of a starting block model, with the introduced delayed interaction among the blocks, while col- 

ored noise is assumed to be generated by Ornstein-Uhlenbeck process. The results of the analysis indicate 

the existence of three different dynamical regimes, which correspond to three regimes of fault motion: 

steady stationary state, aseismic creep and seismic fault motion. The effect of colored noise lies in the 

possibility of generating the seismic fault motion even for small values of correlation time. Moreover, it is 

shown that the tight connection between the blocks, i.e. fault patches prevent the occurrence of seismic 

fault motion. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Significance of seismic noise study in seismological research

ies in the possibility of reliable subsurface tomography using the

ecords on ambient seismic noise [1] . In particular, numerous field

tudies confirmed that ratio of horizontal to vertical component of

mbient noise gives solid data on the subsurface geology in areas

ith low seismicity or even in aseismic areas [2] . However, none

f the previous studies dealt with the effect of noise on the fault

ovement. Reason for this lies in inaccessibility of the fault zone

o direct measurements, both of ambient noise and the fault move-

ent. These measurements are only possible in deep boreholes,

ear the active fault zones, like in the case of fault movement di-

ectly measured at the Driny cave, Male ́Karpaty mts in Slovakia [3] ,

r in the 3 km deep borehole that cuts through the San Andreas

ault system within the SAFOD research project [4] . Also, the ef-

ect of noise on generation of seismic fault movement is impossi-
∗ Corresponding author. 

E-mail address: srdjan.kostic@jcerni.rs (S. Kosti ́c). 

m  

s  
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960-0779/© 2020 Elsevier Ltd. All rights reserved. 
le to prove by the in situ measurements. For these reasons, fault

otion is usually examined by modeling in laboratory conditions,

hereby simulations are commonly conducted in two ways: either

y observing the behavior of an array of blocks (starting from the

urridge-Knopoff model), or by analysis of the motion between the

wo plates, whose contact is simulated by an assemblage of real

r artificial grains. In these conditions, it is possible to simulate

ovement along the fault, including all the accompanying effects.

evertheless, as far as authors are aware, effect of noise on fault

otion has not been examined in laboratory conditions so far. 

However, mathematical expressions which are used to describe

he dynamics of such systems allow one to examine different ef-

ects, at least from a theoretical viewpoint. Regarding the effect

f noise, in our previous work [5] we examined the dynamics of

n array of 100 blocks under the effect of random seismic noise.

n that case, assumption of random nature of seismic noise came

rom the two sources. Firstly, we examined the real observed GPS

easurements of fault movement at the ground surface at several

tations within the San Andreas fault zone, for which we estab-

ished to have the properties of stochastic time series. Secondly,

https://doi.org/10.1016/j.chaos.2020.109726
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109726&domain=pdf
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we wanted to examine the effect of permanent background seis-

mic noise, so it was natural to assume its random nature. How-

ever, what if the noise along the fault zone or in its immediate

vicinity is correlated? Justification for this lies in existence of many

potential sources of colored (correlated) noise: reservoir charg-

ing/discharging, penetration of sound waves emitted by neigh-

boring fault motion, close earthquakes or explosion, ocean waves

and tides, etc. Another source of colored noise could come from

the pre-processing of the acquired measurements. In particular,

recorded time series could be represented as a combination of a

deterministic signal, i.e. convenient combination of sine and co-

sine wave, with the remaining stochastic residuals, which always

have certain level of autocorrelation. All these factors could gener-

ate correlated oscillations of small amplitude with respect to the

scale of fault motion. 

In our previous work on the effect of random noise on the fault

motion, we showed that when fault is in inter-seismic stage, near

the boundary to the co-seismic regime, even random noise with

very small amplitude could generate the transition to co-seismic

fault motion. Regarding the possible multiple sources of colored

seismic noise, in present paper we want to examine whether cor-

related noise could be also responsible for earthquake nucleation.

For this purpose, we invoke the method of mean-field approxima-

tion, which enables us the reduction of large stochastic system to

the simple deterministic system which could be further analyzed

by applying standard local bifurcation analysis. 

Presented research is performed with two main goals. Firstly,

we want to show that in situ recorded fault motion is stochas-

tic per se, and that the stochastic part of displacement time se-

ries could be treated as colored noise. Secondly, we wish to esti-

mate the impact of colored noise on the generation of instability,

i.e. on the occurrence of seismic fault motion. For the former, we

invoke the joint deterministic-stochastic approach based on tra-

ditional Box-Jenkins method, while for the latter we perform the

local bifurcation analysis of the mean-field approximated starting

system of 10 blocks in a spring-block array along a single direc-

tion. 

2. Colored noise in situ 

In order to justify the introduction of the colored seismic noise

in fault motion model, one needs to confirm the existence of col-

ored noise in rela conidtions within the Earth’s crust. In present

case, we analyze the following datasets based on the real measure-

ments: 

(1) Strike-slip fault movement directly measured at the

two points in Driny cave, Male´Karpaty mts in Slovakia

[3] ( Fig. 1 a), 

(2) Ambiental noise measurements before and after the earth-

quake on 8th September 2015 at the BKS station (Byerly

Seismogrpahic Vault, Berkley) ( Fig. 1 b). 

In case (1) we show that once the estimation model of the fault

movement is established, estimation error is autocorrelated, indi-

cating the possibility of the existence of the colored noise. In case

(2) we show that ambiental noise before and after the quake is

autocorrelated. 

Analysis of the measurement results shown in Fig. 1 a indicates

that the real observed time series could be well described by the

following models in a general form of Fourier series sums of sine

and cosine functions: 

y = a 0 + a 1 · cos (ω · t) + b 1 · sin (ω · t) + a 2 · cos (2 · ω · t) 

+ b 2 · sin (2 · ω · t) + ... (1)
here a i and b i denote Fourier coefficients, and ω is the average

scillation freuqency. Coefficients and frequencies of the resulting

odels for estimation of displacements at the locations Driny 1

nd Driny 3 are given in Table 1 . 

Using these equations, one could describe the observed hori-

ontal strike-slip motion accurately enough ( Fig. 2 ). 

For the present case, properties of the estimation error are of

pecial importance, since the presence of autocorrelation in resid-

als could indicate the existence of the colored noise in the back-

round of the seismic movement. Indeed, the results of Durbin–

atson statistics indicate the presence of autoccorelation in the

ecorded noise ( < D L ), according to reccommendations of Savin and

hite [7] ( Table 2 ). 

As for the recorded noise before and after the earthquake

n 8th September 2015 at the BKS station (Byerly Seismogrpahic

ault, Berkley), one can simply calculate the autocorrelation func-

ion, which, in present case, for both time series (before and after

he earthquake) indicates the presence of autocorrelation ( Fig. 3 ).

t is clear that there is a significant autocorrelation for the first 8

nd 7 lags, for time series before and after the earthquake, respec-

ively, while t-statistics is higher than 2 for the first two lags in

oth cases. 

Concerning the results of the aforementioned analysis, one

ould reasonably assume that noise in the background of fault

ovement could be considered as a colored noise. 

. Bifurcation analysis 

A new model for seismic fault motion is suggested in a form

f a single array spring-block model, described by a determinis-

ic mathematical model with the included effect of colored noise.

nalysis of such model is conducted using the standard local bifur-

ation analysis, which is applied for the analysis ofthe determinis-

ic mean-field system instead of the starting stochastic model. It is

hown that both models display qualitative similar dynamics. 

Earthquake fault motion is examined by analysis of dimension-

ess all-to-all coupled spring-slider model with 10 units, whose dy-

amics is described by the following set of stochastic delay differ-

ntial equations (SDDEs): 

˙ x i (t) = y i (t) 

˙ y (t) = −x i (t) + �( y i + v ) − �(ν) 

+ 

K 

N 

(
x j ( t − τ ) − x i (t) 

)
+ Z i (t) 

Zi (t) = −Z i 
ε 

d t + 

√ 

2 D 

ε 
d W i (2)

here x i and y i represent displacement and velocity of the i

h block, respectively, K is constant of spring connecting the

locks, � stands for the friction force, τ is time delay and ν is

ondimensional pulling background velocity. Z i (t) is an Ornstein-

hlenbeck process, and terms 
√ 

(2 D/ε) dW i represent stochas-

ic increments of independent Wiener process, i.e. dW i satisfy:

(dWi) = 0, E(dW i dW j ) = δij dt , where E() denotes the expectation over

any realizations of the stochastic process. The noise correlation

ime ε and the intensity of noise D are parameters that can be var-

ed independently. Colored noise generated by Ornstein-Uhlenbeck

rocess with this parametrization is referred to as power-limited

olored noise, since the total power of the noise (the integral over

he spectral density of the process) is conserved upon varying the

oise correlation time. 

Friction force � is assumed to be only rate-dependent: �(V ) =
( μ0 + a ln (V ) ) where V is the general notion for the friction ar-

uments in (2). 
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Fig. 1. (a) Horizontal strike-slip displacements along the faults at Driny Cave [3] , (b) Permanent noise measurements before and after the earthquake at the Byerly Seismo- 

grpahic Vault, Berkley [6] . 

Table 1 

Fourier coefficients for deterministic models of fault movement of general form (1) based on the real observations atlocations Driny 1 and Driny 3. 

Driny 1 ( ω = 0.108) Driny 3 ( ω = 0.0205) 

a 0 0.139 a 0 0.012 a 9 −0.002 a 17 0.002 a 25 −0.004 

a 1 0.116 a 1 0.002 b 9 −0.005 b 17 −0.002 b 25 0.0005 

b 1 −0.063 b 1 0.038 a 10 0.002 a 18 −0.005 a 26 0.0003 

a 2 0.031 a 2 0.007 b 10 0.006 b 18 −0.013 b 26 −0.0003 

b 2 0.033 b 2 0.0280 a 11 0.002 a 19 0.007 a 27 0.0002 

a 3 −0.007 a 3 −0.001 b 1 −0.009 b 19 −0.013 b 27 −0.006 

b 3 0.048 b 3 −0.0005 a 12 0.005 a 20 −0.001 a 28 −0.009 

a 4 −0.005 a 4 0.003 b 12 0.011 b 20 −0.001 b 28 0.008 

b 4 0.016 b 4 0.016 a 13 0.003 a 21 0.009 a 29 0.003 

a 5 −0.015 a 5 −0.007 b 13 0.009 b 21 −0.0007 b 29 −0.0005 

b 5 −0.009 b 5 0.017 a 14 0.005 a 22 0.002 a 30 0.002 

a 6 0.001 a 6 −0.006 b 14 0.009 b 22 0.013 b 30 −0.0006 

b 6 −0.004 b 6 0.004 a 15 −0.011 a 23 −0.004 a 31 0.0089 

a 7 0.008 a 7 −0.009 b 15 0.017 b 23 0.006 b 31 0.002 

b 7 −0.006 b 7 0.019 a 16 −0.014 a 24 −0.004 a 32 0.002 

a 8 −0.011 a 8 −0.006 b 16 −0.011 b 24 0.005 b 32 0.004 

b 8 0.008 b 8 −0.011 

Table 2 

Results of Durbin–Watson test for testing the presence of autocorre- 

lation in residuals of the models in general form (1) and with the 

coeeficients given in Table 1 . 

Recording location Durbin–Watson statistic D L D U 

Driny 1 0.485 1.696 1.727 

Driny 3 0.527 1.807 1.820 

 

a  

z  

[

 

m  
In present paper, authors consider this spring-block model as

 collection of fault patches mutually separated by the petrified

ones (material bridges). This is the modified original model from

8] 

Starting from the model (2), one could obtain the following

ean-field model, which has qualitatively the same dynamics as
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Fig. 2. Comparison of estimated motion and real observed fault movement. Black line stands for the recorded time series, while gray line indicates the result of estimation 

determinstic model. 

Fig. 3. Autocorrelation function for the time series before (a) and after (b) the earthquake on 8th September 2015 at the BKS station (Byerly Seismogrpahic Vault, Berkley), 

with the clear indication of the presence ofg autocorrelation. 
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the starting model (2): 

˙ m x = m y 

˙ m y = −m x − a ln ( m y + ν) + a ln (ν) + 

1 
2 

a 

( m y + ν) 
2 s y 

+ 

3 
4 

a 

( m y + ν) 
4 s y 

2 + K ( m x ( t − τ ) − m x ) + m z 

˙ m z = − 1 
ε m z 

1 
2 

˙ s x = U xy 

1 
2 

˙ s y = s y 

[ 
− a 

m y + ν − a 

( m y + ν) 
3 s y 

] 
− ( K + 1 ) U xy + U yz 

˙ 
 xy = U xy 

[ 
− a 

m y + ν − a 

( m y + ν) 
3 s y 

] 
− ( K + 1 ) s x + s y + U xz 

˙ 
 xz = U yz − 1 

ε U xz 

˙ 
 yz = −U xz − a 

m y + ν U yz − a 

( m y + ν) 
3 s y U yz − K U xz + D − 1 

ε U yz 

(3)

Detailed derivation of model (3) is given in Appendix. 

Results of the numerical analysis of mean-field model (3) indi-

cate the existence of three different dynamical regimes ( Fig. 4 –6 ): 

- Equilibrium state, which manifests as steady stationary move-

ment (corresponding to the steady regime of fault motion); 

- Small-amplitude regular periodic oscillations (corresponding to

the creep regime of fault motion); 

- High-amplitude irregular oscillations (corresponding to the

seismogenic fault motion). 

From Fig. 4 one could identify the effect of correlation time

ε on the dynamics of mean-filed model (2) . In particular, with

the increase of correlation time, second bifurcation curve vanishes,

i.e. there are no high-amplitude oscillations. From the seismolog-
cal point of view, this could indicate that degree of autocorre-

ation of background seismic noise could directly determine the

ype of transition from equilibrium state, i.e. creep regime of fault

ynamics to low-amplitude oscillations (which could still not in-

uce the seismogenic motion) or to high-amplitude irregular oscil-

ations, whose amplitude progressively increases, which could be

onsidered as the onset of the fault motion which produces the

eismic waves responsible for surface soil shaking. 

Regarding the effect of coupling strength K, it is clear from

ig. 5 that the increase of coupling strength further increases the

mpact of both time delay τ and friction a , and excludes the possi-

ility of the occurrence of seismogenic fault motion. In particular,

or higher values of K transition from equilibrium state to small

mplitude oscillations, i.e. creep regime is possible even for higher

alues of friction a . From the seismological viewpoint, this means

hat the stronger interrelations between different patches of fault

lso induce the stronger role of friction. In the same time, it ap-

ears that for higher values of coupling strength, there is no possi-

ility that seismogenic motion occur, since the second bifurcation

urve (denoting the transition from creep regime to irregular seis-

ogenic motion) vanishes. 

However, this statement is valid only for the lower values of

ime delay. Indeed, one could see from Fig. 6 that high-amplitude

rregular oscillations occur for higher values of time delay, i.e.

> 5. From the practical viewpoint, this means that the higher

elay in interaction between the neighboring patches of fault – the

ore likely is to expect the onset of seismogenic fault motion. In

ther words, it seems that without the delay in nteraction, or with
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Fig. 4. Andronov-Hopf bifurcation diagram, displaying interaction of friction a and time delay τ , for different values of correlation time ε. While friction and delay are being 

varied, other parameters are being held constant for the mean-field model (3) in equilibrium state: μ0 = 0.1, K = 1, D = 0.001, ν = 1.2. (a) ε = 0.005, (b) ε = 0.5, (c) ε = 5.0. 

EQ denotes the equilibrium state (steady stationary displacement), LC-SA stands for the periodic oscillations of small amplitude, while LC-HA denotes the high-amplitude 

irregular oscillations. 

Fig. 5. Effect of coupling strength K on the dynamics of the mean-field model (3) . 

While friction and delay are being varied, other parameters are being held constant 

for the mean-field model (2) in equilibrium state: μ0 = 0.1, D = 0.001, ν = 1.2, 

ε = 0.5, K = 5. EQ denotes the equilibrium state (steady stationary displacement), 

while LC-SA stands for the periodic oscillations of small amplitude. 
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he small values of delay, the whole faults acts as a unique block,

.e. the fault patches are locked, preventing the irregular seismo-

enic motion to occur. 
. Discussion and conclusion 

In present paper, authors examine the impact of the back-

round colored seismic noise on the dynamics o fan active fault.

irstly, authors prove, by analyzing the measurement of the real

ault displacement, that background seismic noise could be treated

s the colored noise. This is done for the real two examples:

1) strike-slip fault movement directly measured at the two points

n Driny cave, Male ́Karpaty mts in Slovakia [3] ; (2) ambiental noise

easurements before and after the earthquake on 8th September

015 at the BKS station (Byerly Seismogrpahic Vault, Berkley). In

he second phase of the research, authors investigated the fault

ynamics by analyzing the mean-field model of all-to-all coupled

locks, with delayed interaction and with the assumed additive

olored noise. The results obtained indicate the existence of three

ifferent dynamical regimes, all of which could have its correspon-

ence with the real observed regimes of fault motion: (1) steady

tationary state; (2) creep regime and (3) active seismogenic mo-

ion. Furthermore, the results indicate interesting effect of correla-

ion time ε and coupling strength K on the onset of seismic fault

otion. Higher values of ccorrelation time exclude the possibil-

ty of seismic fault motion, indciating the affect of strong impact

f background seismic noise. Similarly, higher values of coupling

trength also make seismic fault motion impossible to occur. In this

ase, when coupling strength is high, fault patches are interlocked

nd there is no possibility that irregular motion occur. 
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Fig. 6. Andronov-Hopf bifurcation diagram, displaying interaction of coupling strength K and time delay τ . While coupling strength and delay are being varied, other 

parameters are being held constant for the mean-field model (3) in equilibrium state: μ0 = 0.1, D = 0.001, ν = 1.2, a = 0.8, ε = 0,5. EQ denotes the equilibrium state (steady 

stationary displacement), LC-SA stands for the periodic oscillations of small amplitude, while LC-HA denotes the high-amplitude irregular oscillations. 

n this paper, and white seismic noise, analyzed in our previous paper 

ic noise, seismic fault motions could be expected to occur only in a bi- 

ided that initial conditions along the fault are far from the equilibrium 

olored noise brings more rich dynamical behavior, where colored noise 

eismic fault motion, with the increase of time delay. 

red noise in case when the interaction of neighboring blocks weakens 

 the real observed scenario. 

ncial interests or personal relationships that could have appeared to 

on, Science and Technological Development of the Republic of Serbia 

the vicinity of the mean values ( x i , y i , z i ) = ( m x , m y , m z ) = 

s: 

 y ] + 

1 

2! 

[
�′′ ( m y + ν) 

]
[ y i (t) − m y ] 

2 

(t) − m y ] 
4 + K [ m x ( t − τ ) − x i (t) ] + Z i (t) (1A) 

for starting system (1) , we shall first suppose that: (a) dynamics is such 

e average over local random variables is given by the expectation with 

ally (all-to-all) coupled units shall be performed in the thermodynamic 

 N 
i =1 x i (t ) , 〈 y (t ) 〉 = lim 

N→∞ 

1 
N 

∑ N 
i =1 y i (t ) , 〈 z(t ) 〉 = lim 

N→∞ 

1 
N 

∑ N 
i =1 z i (t) , for each 

z i (t) . 

 independent in different elements. 

le semi-invariants which have an important property that all of them, 

econd order cummulants: 

 (t ) 〉 , m z (t ) = 〈 z(t) 〉 , 
 z (t ) = 〈 n 2 z (t) 〉 , 
 = 〈 n y n z 〉 
If one compares the effect of colored seismic noise, analyzed i

[5] , the difference lies in the following. For white background seism

stable dynamical regime in the vicinity of a bifurcation curve prov

state (the case of active fault). On the other hand, introduction of c

with rather small correlation time ( Fig. 4 a) indicates the onset of s

Further research on this topic could evaluate the effect of colo

with the mutual distance of the blocks, which is certainly closer to
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Appendix 

By deriving the Taylor expansion of �(y i (t) + ν) in 

( lim 

N→∞ 

1 
N 

N ∑ 

i =1 

x i (t) , lim 

N→∞ 

1 
N 

N ∑ 

i =1 

y i (t) , lim 

N→∞ 

1 
N 

N ∑ 

i =1 

z i (t) ) , system (1) become

˙ x i (t) = y i (t) 

˙ y (t) = −x i (t) + �( m y + v ) − �(ν) + 

1 

1! 

[
�′ ( m y + ν) 

]
[ y i (t) − m

+ 

1 

3! 

[
�′′′ ( m y + ν) 

]
[ y i (t) − m y ] 

3 + 

1 

4! 

[
�( 4 ) ( m y + ν) 

]
[ y i 

d Z i (t) = −Z i (t) 

ε 
d t + 

√ 

2 D 

ε 2 
d W i 

In order to derive mean-field approximate dynamical equations 

that the distribution of x i and y i are Gaussian and (b) for large N th

respect to the corresponding distribution, as in [9] . 

The cumulant analysis of a system (2) of above mentioned glob

limit of an infinitely large ensemble, N → ∞ . 

We introduce deviations from the mean-field: 〈 x (t) 〉 = lim 

N→∞ 

1 
N 

∑
element n x (t) = 〈 x (t) 〉 − x i (t ) , n y (t ) = 〈 y (t) 〉 − y i (t ) , n z (t ) = 〈 z(t) 〉 −

We assume that these fluctuations are Gaussian and statistically

There is a set of moments known as cumulants [10,11] or Thie

for the third order, vanish in the Gaussian case. 

Next, we introduce the following notation for the first and the s

- The means: m x (t) = 〈 x (t) 〉 , m x (t − τ ) = 〈 x (t − τ ) 〉 , m y (t) = 〈 y
- The mean square deviations: s x (t) = 〈 n 2 x (t ) 〉 , s y (t ) = 〈 n 2 y (t ) 〉 , s
- The cross-cummulants: U xy (t) = 〈 n x n 〉 y , U xz (t) = 〈 n x n z 〉 , U yz (t)

http://dx.doi.org/10.13039/100009950
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d

Y

d

f ins: 

m (2A) 

m
) 

4 
s y 

2 + K ( m x ( t − τ ) − m x ) + m z (3A) 

m (4A) 

s ˙ m 

2 
x + 

〈
˙ x 2 i 

〉
= −2 m x ˙ m x + 〈 2 x i ̇ x i 〉 

(5A) 

s 2 m y ˙ m y + 〈 2 y i ̇ y i 〉 = 

�( 4 ) ( m y + ν) 
]

· 3 s 2 y 

) + 

[
�′ ( m y + ν) 

]
·

�′ ′′ ( m y + ν) 
]

·

− y i x i ] + y i z i 〉 
 U yz 

U yz 

(6A) 

2 
ε t + 

D 
ε , where s z0 is an integration constant. It is obvious when t → ∞ , 

s / ε. 

U
 

y i 

〉 
= −

·
m x m y + 

〈 ·
x i y i 

〉 

 y + 〈 y 2 i 〉 

 x i z i 

〉 

m 

2 
y + s y + m 

2 
y − s x 
By applying Ito’s formula (or Ito’s chain rule): 

 X = F d t + Gd W 

 (t) = U(x, t) 

Y = 

∂U 
∂t 

d t + 

∂U 
∂x 

d X + 

1 
2 

∂ 2 U 
∂ x 2 

G 

2 d t 

rom Eq. (1A) , following the procedure described in [9,12] one obta

˙ 
 x = m y 

˙ 
 y = −m x − a ln ( m y + ν) + a ln (ν) + 

1 

2 

a 

( m y + ν) 
2 

s y + 

3 

4 

a 

( m y + ν

˙ 
 z = −1 

ε 
m z 

˙ 
 x = 〈 n 

2 
x 〉 = 

〈 . 

( 〈 x 〉 − x i ) 
2 

〉
= 

〈
. 

m 

2 
x − 2 m x x i + x 2 

i 

〉
= − ˙ m 

2 
x + 

〈
˙ x 2 i 

〉
= −

= −2 m x m y + 〈 2 x i y i 〉 = 2 U xy ⇒ 

1 

2 

˙ s x = U xy 

˙ 
 y = 〈 ̇ n 

2 
y 〉 = 

〈 . 

( 〈 y 〉 − y i ) 
2 

〉
= 

〈
. 

m 

2 
y − 2 m y y i + y 2 

i 

〉
= − ˙ m 

2 
y + 〈 ̇ y 2 i 〉 = −

= − 2 m y 

[ 
−m x + �( m y + ν) − �( ν) + 

1 

2 

[
�′′ ( m y + ν) 

]
s y + 

1 

24 

[
+ K [ m x ( t − τ ) − m x ] + m z ] + 2 〈−x i y i + y i �( m y + ν) − y i �( ν

·
[
y 2 i − m y y i 

]
+ 

1 

2 

[
�′′ ( m y + ν) 

]
·
[
y i 
(
y 2 i − 2 y i m y + m 

2 
y 

)]
+ 

1 

6 

[
·
[
y i 
(
y 3 i − 3 y 2 i m y + 3 y i m 

2 
y − m 

3 
y 

)]
+ 

1 

24 

[
�( 4 ) ( m y + ν) 

]
·

·
[
y i 
(
y 4 i − 4 y 3 i m y + 6 y 2 i m 

2 
y − 4 y i m 

3 
y + m 

4 
y 

)]
+ K [ y i − m x ( t − τ ) 

= −2 U xy + 2 

[
�′ ( m y + ν) 

]
s y + 

1 

3 

[
�′′ ′ ( m y + ν) 

]
3 s 2 y − 2 K U xy + 2

⇒ 

1 

2 

˙ s y = s y 

[ 
�′ ( m y + ν) + 

1 

2 

�′′′ ( m y + ν) s y 

] 
− ( K + 1 ) U xy + 

˙ s z = − ˙ m 

2 
z + 〈 ̇ z 2 i 〉 + 

2 D 

ε 2 
= −2 m z ˙ m z + 〈 2 z i ̇ z i 〉 + 

2 D 

ε 2 

= −2 m z ·
(
−1 

ε 
m z 

)
+ 

〈 

2 z i 

( 

− z i 
ε 

+ 

√ 

2 D 

ε 2 
dW i 

) 〉 

+ 

2 D 

ε 2 

= −2 

ε 
s z + 

2 D 

ε 2 

⇒ 

1 

2 

˙ s z = −1 

ε 
s z + 

D 

ε 2 

Last equation can be solved in order to obtain s z = ( s z 0 − D 
ε ) e 

−

 z → D/ ε, and because of that we fix the value for s z to be exactly D

˙ 
 xy = 

〈 ·
n x n y 

〉 
= 〈 ( m x − x i ) · ( m y − y i ) 〉 = 

〈 ·
m x m y − m x y i − x i m y + x i

= −m x ˙ m y − m y ˙ m x + 〈 ̇ x i y i 〉 + 〈 x i ̇ y i 〉 
= −m x ·

[ 
−m x + �( m y + ν) − �( ν) + 

1 

2 

�′′ ( m y + ν) · s y + 

+ 

1 

24 

�( 4 ) ( m y + ν) · 3 s 2 y + K · [ m x ( t − τ ) − m x ] + m z 

] 
− m y m

+ 

〈 

−x 2 i + x i �( y i + ν) − x i �( ν) + 

K 

N 

N ∑ 

j=1 

(
x j ( t − τ ) x i − x 2 i 

)
+

= m 

2 
x − m x �( m y + ν) + m x �( ν) − m x 

1 

2 

�′′ ( m y + ν) s y −

−m x 
1 

�( 4 ) ( m y + ν) · 3 s 2 y − K m x m x ( t − τ ) + Km 

2 
x − m x m z −
24 
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′′ ( m y + ν) ·
(
x i y 

2 
i − 2 x i y i m y + x i m 

2 
y 

)
 

4 ) ( m y + ν) 
(
x i y 

4 
i − 4 x i y 

3 
i m y + 6 x i y 

2 
i m 

2 
y − 4 x i y i m 

3 
y + x i m 

4 
y 

)
− m x �( ν) 

( K + 1 ) s x + s y + U xz (7A) 

U

 

= 

 

−

(8A) 

U
 

〉 
= 

( 4 ) ( m y + ν) 3 s 2 y 

 y + ν) − z i �( ν) 

 z i m 

2 
y 

)

z i m 

4 
y 

)
+ K z i m x ( t − τ ) −

+ ν) U yz + 

1 

6 

�′′′ ( m y + ν) · 3 s y U yz 

(9A) 

tions for earthquake nucleation model with colored noise: 

) 
4 

s y 
2 + K ( m x ( t − τ ) − m x ) + m z 

U

U

U

(10A) 
−m 

2 
x + 

〈 
m x · �( m y + ν) + +�′ ( m y + ν) · ( x i y i − x i m y ) + 

1 

2 

�

+ 

1 

6 

�′′′ ( m y + ν) 
(
x i y 

3 
i − 3 x i y 

2 
i m y + 3 x i y i m 

2 
y − x i m 

3 
y 

)
+ 

1 

24 

�(

+ K m x m x ( t − τ ) − K s x − Km 

2 
x + U xz + m x m z 

〉 

= s y − s x + �′ ( m y + ν) U xy + 

1 

6 

�′′′ ( m y + ν) 3 s y U xy 

−K s x + U xz ⇒ 

˙ U xy = U xy 

[ 
�′ ( my + ν) + 

1 

2 

�′′′ ( my + ν) s y 

] 
−

˙ 
 xz = 

〈 ·
n x n z 

〉 
= 

〈 ·
( m x − x i ) ( m z − z i ) 

〉
= 

〈 ·
m x m z − m x z i − m z x i + x i z i 

〉

= 

〈 ·
m x m z 

〉 
+ 

〈 ·
x i z i 

〉 
= − ˙ m x m z − m x ˙ m z + 〈 ̇ x i z i 〉 + 〈 x i ̇ z i 〉 = −m y m z

−m x 

(
−1 

ε 
m z 

)
+ 〈 y i z i 〉 + 

〈 

x i 

(
− z i 

ε 

)
+ x i 

√ 

2 D 

ε 2 
d W i 

〉 

⇒ 

˙ U xz = U yz − 1 

ε 
U xz 

˙ 
 yz = 

〈 ·
n y n z 

〉 
= 

〈 ·
( m y − y i ) ( m z − z i ) 

〉
= 

〈 ·
m y m z − m y z i − m z y i + y i z i

= 

〈 ·
m y m z 

〉 
+ 

〈 ·
y i z i 

〉 
= − ˙ m y m z − m y ˙ m z + 〈 ̇ y i z i 〉 + 〈 y i ̇ z i 〉 = 

−m z 

[ 
−m x + �( m y + ν) − �( ν) + 

1 

2 

�′′ ( m y + ν) · s y + 

1 

24 

�

+ K m x ( t − τ ) − K m x + m z ] − m y 

(
−1 

ε 
m z 

)
+ 

〈 
− x i z i + z i �( m

+�′ ( m y + ν) ( y i z i − m y z i ) + 

1 

2 

�′′ ( m y + ν) 
(
z i y 

2 
i − 2 z i y i m y +

+ 

1 

6 

�′′′ ( m y + ν) 
(
z i y 

3 
i − 3 z i y 

2 
i m y + 3 z i y i m 

2 
y − z i m 

3 
y 

)
+ 

+ 

1 

24 

�( 4 ) ( m y + ν) ·
(
z i y 

4 
i − 4 z i y 

3 
i m y + 6 z i y 

2 
i m 

2 
y − 4 z i y i m 

3 
y + 

− K z i x i + z 2 i 

〉 
+ 

〈 

y i 

(
−1 

ε 
z i 

)
+ y i 

√ 

2 D 

ε 2 
d W i 

〉 

= −U xz + �′ ( m y 

− K U xz + s z − 1 

ε 
U yz 

Eqs. (2A) –( 9A ) together compose the mean-field system of equa

˙ m x = m y 

˙ m y = −m x − a ln ( m y + ν) + a ln (ν) + 

1 

2 

a 

( m y + ν) 
2 

s y + 

3 

4 

a 

( m y + ν

˙ m z = −1 

ε 
m z 

1 

2 

˙ s x = U xy 

1 

2 

˙ s y = s y 

[
− a 

m y + ν
− a 

( m y + ν) 
3 

s y 

]
− ( K + 1 ) U xy + U yz 

˙ 
 xy = U xy 

[
− a 

m y + ν
− a 

( m y + ν) 
3 

s y 

]
− ( K + 1 ) s x + s y + U xz 

˙ 
 xz = U yz − 1 

ε 
U xz 

˙ 
 yz = −U xz − a 

m y + ν
U yz − a 

( m y + ν) 
3 

s y U yz − K U xz + D − 1 

ε 
U yz 

which is the Eq. (3) in the main text. 
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ABSTRACT

Inverse stochastic resonance comprises a nonlinear response of an oscillatory system to noise where the frequency of noise-perturbed oscilla-
tions becomes minimal at an intermediate noise level. We demonstrate two generic scenarios for inverse stochastic resonance by considering
a paradigmatic model of two adaptively coupled stochastic active rotators whose local dynamics is close to a bifurcation threshold. In the
first scenario, shown for the two rotators in the excitable regime, inverse stochastic resonance emerges due to a biased switching between the
oscillatory and the quasi-stationary metastable states derived from the attractors of the noiseless system. In the second scenario, illustrated
for the rotators in the oscillatory regime, inverse stochastic resonance arises due to a trapping effect associated with a noise-enhanced stabil-
ity of an unstable fixed point. The details of the mechanisms behind the resonant effect are explained in terms of slow–fast analysis of the
corresponding noiseless systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139628

The effects of noise may generically be classified into two groups:
on the one hand, the noise may enhance or suppress certain fea-
tures of deterministic dynamics by acting on the system states
in an inhomogeneous fashion, while on the other hand, it may
give rise to novel forms of behavior, associated with crossing
of thresholds and separatrices or to a stability of determinis-
tically unstable states. The constructive role of noise has been
evinced in a wide range of real-world applications, from neural
networks and chemical reactions to lasers and electronic circuits.
The classical examples of stochastic facilitation concern the res-
onant phenomena, including stochastic resonance, where noise
of appropriate intensity may induce oscillations in bistable sys-
tems that are preferentially locked to a weak periodic forcing,
and coherence resonance, where an intermediate level of noise
may trigger coherent oscillations in excitable systems. Recently, a
novel form of nonlinear response to noise, called inverse stochas-
tic resonance (ISR), has been discovered while studying individual
neural oscillators and models of neuronal populations. It has
come to light that noise may reduce the intrinsic spiking fre-
quency of neuronal oscillators, transforming the tonic firing into
a bursting-like activity or even quenching the oscillations. Within
the present study, we demonstrate two paradigmatic mechanisms
of inverse stochastic resonance, one based on biased switching

between the metastable states, and the other associated with a
noise-enhanced stability of an unstable fixed point. We show that
the effect is robust, in a sense that it may emerge in coupled
excitable and coupled oscillatory systems, and both in cases of
Type I and Type II oscillators.

I. INTRODUCTION

Noise in excitable or multistable systems may fundamentally
change their deterministic dynamics, giving rise to qualitatively
novel forms of behavior, associated with crossing of thresholds
and separatrices, or stabilization of certain unstable structures.1,2

The emergent dynamics may involve noise-induced oscillations
and stochastic bursting,3–5 switching between metastable states,6,7

or noise-enhanced stability of metastable and unstable states,8–12 to
name but a few. In neuronal systems, the phenomena reflecting the
constructive role of noise are collected under the notion of stochas-
tic facilitation,13–15 which mainly comprises the resonant effects. The
most prominent examples concern coherence resonance,16–20 where
the regularity of noise-induced oscillations becomes maximal at a
preferred noise level, and stochastic resonance,13,21 where the sen-
sitivity of a system to a subthreshold periodic stimulation becomes
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maximal at an intermediate noise level. Recent studies on the impact
of noise in neuronal oscillators have revealed that the noise may
also give rise to an inhibitory effect, which consists in reducing
the intrinsic spiking frequency such that it becomes minimal at
an intermediate noise intensity.14,22–30 This effect has been called
inverse stochastic resonance (ISR), but in contrast to stochastic res-
onance, it concerns autonomous rather than periodically driven
systems. Apart from reports in models of neurons and neuronal
populations, ISR has recently been evinced for cerebellar Purkinje
cells in vitro,28 having shown how the lifetimes of the so-called UP
states with elevated spiking activity and the DOWN states of relative
quiescence7,31–33 depend on the noise intensity.

The studies of the mechanism behind ISR have so far mostly
been focused on Type II neural oscillators with bistable dynam-
ics poised close to a subcritical Hopf bifurcation,14,23–25 considering
Hodgkin–Huxley and Morris–Lecar models. Under the influence of
noise, such systems exhibit switching between the two metastable
states, derived from the periodic and the stationary attractor of the
deterministic dynamics. At an intermediate noise level, one observes
that the switching rates become strongly asymmetric, with the sys-
tem spending substantially more time in a quasi-stationary state.
This is reflected in a characteristic non-monotone dependence of
the spiking frequency on noise, which is a hallmark of ISR.

Nevertheless, a number of important issues on the mechanism
giving rise to ISR have remained unresolved. In particular, is the
effect dependent on the type of neuronal excitability? Also, can there
be more than a single mechanism of ISR? And finally, how does the
effect depend on the form of couplings and whether it can be robust
for adaptively changing couplings, typical for neuronal systems?

To address these issues, we invoke a simple, yet paradig-
matic model that combines the three typical ingredients of neuronal
dynamics, including excitability, noise, and coupling plasticity. In
particular, we consider a system of two identical, adaptively coupled
active rotators6,29,34 influenced by independent Gaussian white noise
sources

ϕ̇i = I0 − sin ϕi + κi sin (ϕj − ϕi) +
√

Dξi(t),

κ̇i = ε(−κi + sin(ϕj − ϕi + β)).
(1)

The indices i, j ∈ {1, 2}, i 6= j denote the particular units, described
by the respective phases {ϕ1, ϕ2} ∈ S1, which constitute the fast
variables and the slowly varying coupling weights {κ1, κ2} ∈ R.
The scale separation between the characteristic timescales is set by
the small parameter ε � 1 that defines the adaptivity rate. The
local dynamics is controlled by the excitability parameter I0 such
that the saddle-node of infinite period (SNIPER) bifurcation at
I0 = 1 mediates the transition between the excitable (I0 . 1) and
the oscillatory regimes (I0 > 1). The excitable units may still exhibit
oscillations, induced either by the action of the coupling (emergent
oscillations) and/or evoked by the stochastic terms (noise-induced
oscillations). The noiseless coupled system (1) is invariant with
respect to exchange of the units’ indices such that all the station-
ary or the periodic solutions always appear in pairs connected by the
Z2 symmetry. Given the similarity between the active rotators and
the theta neurons, which also conform to Type I excitability, sys-
tem (1) may be considered qualitatively analogous to a motif of two
adaptively coupled neurons,37 influenced by an external bias current

I0 and the synaptic noise. Adaptivity is modeled in terms of phase-
dependent plasticity36,38–40 of coupling weights, having the modality
of the plasticity rule adjusted by parameter β . This form of plastic-
ity has already been shown to be capable of qualitatively reproducing
the features of some well-known neuronal plasticity rules.39,40 In par-
ticular, for β = 3π/2, one recovers Hebbian-like learning,41 where
the synaptic potentiation promotes phase synchronization, while for
β = π , adaptation acts similarly to spike-timing-dependent plastic-
ity (STDP),42–46 whose typical form35,45 favors a causal relationship
between the pre- and post-synaptic neuron firing times.39,40

II. INVERSE STOCHASTIC RESONANCE DUE TO A

BIASED SWITCHING

The first generic scenario for ISR we demonstrate is based
on biased switching between the metastable states associated with
coexisting stationary and periodic attractors of the correspond-
ing deterministic system. As an example, we consider the noise-
induced reduction of frequency of emergent oscillations on a motif
of two adaptively coupled stochastic active rotators with excitable
local dynamics (I0 = 0.95). To elucidate the mechanism behind
the effect, we first summarize the details of the noise-free dynam-
ics and then address the switching behavior. A complete bifur-
cation analysis of the noiseless version of (1) with excitable local
dynamics has been carried out in Refs. 6 and 29, having shown
(i) how the number and stability of the fixed points depends on
the plasticity rule, characterized by β , as well as (ii) how the inter-
play between β and the adaptivity rate, controlled by the small
parameter ε, gives rise to limit cycle attractors. Our focus is on
the interval β ∈ (3.298, 4.495), which approximately interpolates
between the limiting cases of Hebbian-like and STDP-like plastic-
ity rules. There, the system exhibits two stable equilibria born from
the symmetry-breaking pitchfork bifurcation and has four addi-
tional unstable fixed points. For the particular case β = 4.2 analyzed
below, the two stable equilibria, given by EQ1:= (ϕ∗

1 , ϕ∗
2 , κ∗

1 , κ∗
2 )

= (1.2757, 0.2127, −0.0078, −0.8456) and EQ2:= (ϕ∗
1 , ϕ∗

2 , κ∗
1 , κ∗

2 )

= (0.2127, 1.2757, −0.8456, −0.0078), have been shown to manifest
excitable behavior.6

The onset of emergent oscillations, as well as the coexis-
tence between the stable stationary and periodic solutions in the
noiseless version of (1), is illustrated in Fig. 1. The maximal sta-
bility region of the two Z2 symmetry-related periodic solutions is
indicated in Fig. 1(a), which shows the variation of κ1 variable,
σκ1 = max(κ1(t)) − min(κ1(t)), in the (β , ε) parameter plane. The
scan was performed by the method of numerical continuation start-
ing from a stable periodic solution such that the initial conditions for
an incremented parameter value are given by the final state obtained
for the previous iteration step. One finds that for a given β , there
exists an interval ε ∈ (εmin, εmax) of intermediate scale-separation
ratios supporting the oscillations, cf. the highlighted region in
Fig. 1(b). In particular, the two Z2-symmetry related branches of sta-
ble periodic solutions emanate from the fold of cycles bifurcations,
denoted by FC in Fig. 1(b) such that the associated threshold scale-
separation εmin(β) decreases with β . The two branches of oscilla-
tory solutions merge around ε ≈ 0.06, where the system undergoes
an inverse pitchfork bifurcation (PFC) of limit cycles. The incipi-
ent stable limit cycle acquires the anti-phase space–time symmetry
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ϕ1(t) = ϕ2(t + Tosc/2), κ1(t) = κ2(t + Tosc/2), with Tosc denoting
the oscillation period.6 An example illustrating the basins of stability
of stationary and oscillatory solutions for ε = 0.1, obtained by fixing
the initial values of phases and varying the initial coupling weights
within the range κi,ini ∈ (−1, 1), is shown in Fig. 1(c). In the pres-
ence of noise, the coexisting attractors of the deterministic system
turn to metastable states, which are connected by the noise-induced
switching.

Inverse stochastic resonance manifests itself as the noise-
mediated suppression of oscillations, whereby the frequency of
noise-perturbed oscillations becomes minimal at an intermediate
noise level. For the motif of two adaptively coupled excitable active
rotators, such characteristic non-monotone dependence on noise is
generically found for intermediate adaptivity rates supporting mul-
tistability between the stationary and the oscillatory solutions. A
family of curves illustrating the dependence of the oscillation fre-
quency on noise variance 〈 f 〉(D) for a set of different ε values
is shown in Fig. 2(a). The angular brackets 〈·〉 refer to averaging
over an ensemble of a 100 different stochastic realizations, having
fixed a set of initial conditions within the basin of attraction of
the limit cycle attractor. Nonetheless, qualitatively analogous results
are recovered if for each realization of the stochastic process, one
selects a set of random initial conditions lying within the stability
basin of a periodic solution. In Ref. 29, we have shown that the
noise-induced switching gives rise to a bursting-like behavior, where
the spiking is interspersed by the quiescent episodes which corre-
spond to the system residing in the vicinity of the quasi-stationary
metastable states. Such episodes become prevalent at the noise lev-
els around the minimum of 〈 f 〉(D). For weaker noise D . 10−3, the
frequency of emergent oscillations remains close to the determinis-
tic one, whereas for a much stronger noise, it increases above that of
unperturbed oscillations. One observes that the suppression effect
of noise depends on the adaptivity rate such that it is enhanced for
faster adaptivity, see Ref. 29 for a more detailed analysis. In order to
illustrate how the ISR effect is reflected at the level of the dynamics

of coupling weights, in Figs. 2(b)–2(d) are shown the stationary
distributions P(κ1) for the noise levels below, at, and above the reso-
nant level. To provide a reference to the deterministic case, we have
denoted by the dashed-dotted lines the weight levels associated with
the two equilibria EQ1 and EQ2, while the blue shading indicates
the variation σκ of the stable limit cycle. Note that the stable periodic
solution is unique because for the considered ε value, the determin-
istic system lies above the pitchfork of cycles bifurcation, cf. PFC
in Fig. 1(b). The stationary distribution P(κ1) at the resonant noise
expectedly shows a pronounced peak at one of the quasi-stationary
states, while the distributions below or above the resonant noise level
indicate a high occupancy of the oscillatory metastable state.

In order to elucidate the mechanism behind ISR, we have cal-
culated how the fraction of the total time spent at the oscillatory
metastable states, Tosc/Ttot, changes with noise. In terms of numeri-
cal experiments, the quasi-stationary and the oscillatory metastable
states can readily be distinguished by considering the correspond-
ing κi(t) series, using the fact that the typical distance |κ1(t) − κ2(t)|
is much larger for the quasi-stationary than the oscillatory solu-
tions. This has allowed us to employ a simple threshold method
to identify the particular system’s states and trace the associated
transitions. Figure 3(a) indicates a non-monotone dependence of
Tosc/Ttot(D), implying that the switching process around the reso-
nant noise level becomes strongly biased toward the quasi-stationary
state, even more so for a faster adaptivity. The biased switching is
facilitated by the geometry of the phase space, featuring an asymmet-
rical structure with respect to the separatrix between the coexisting
attractors such that the limit cycle lies much closer to the separatrix
than the stationary states.

The nonlinear response to noise may be understood in terms
of the competition between the transition processes from and to the
limit cycle attractor. These processes are characterized by the tran-
sition rates from the stability basin of the limit cycle attractor to
that of the stationary states γLC→FP and vice versa, γFP→LC, which are
numerically estimated as the reciprocal values of the corresponding

FIG. 1. Emergent oscillations in (1) for I0 = 0.95,D = 0. (a) Variation σκ1
of the coupling weight κ1 in the (β , ε) plane. (b) Dependencies σκi

(ε), i ∈ {1, 2} for the repre-
sentative stationary (blue) and oscillatory solution (red and green refer to the two units) at fixed β = 4.2. Shading indicates the ε interval that supports multistability between
the two symmetry-related stable equilibria and the limit cycle attractor(s). FC and PFC denote the ε values where the fold of cycles and pitchfork of cycles occur. (c) Basins of
stability of the stationary (FP, blue) and oscillatory solutions (LC, yellow) in the (κ1, κ2) plane, obtained by fixing the initial phases to (ϕ1,ϕ2) = (1.32, 0.58). The remaining
parameters are β = 4.2, ε = 0.1.

Chaos 30, 033123 (2020); doi: 10.1063/1.5139628 30, 033123-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. (a) Dependencies of the mean oscillation frequency on noise for scale separation ε = 0.06 (diamonds), ε = 0.08 (circles) and ε = 0.1 (squares), obtained for
fixed I0 = 0.95,β = 4.2. Averaging has been performed over an ensemble of 100 different stochastic realizations. (b)–(d) show the stationary distributions P(κ1) below
(D = 0.001), at (D = 0.0025), and above (D = 0.009) the resonant noise intensity for ε = 0.1. The dashed-dotted lines denote the κ1 levels associated with the two stable
equilibria, κ∗

1 (EQ1) and κ∗
1 (EQ2), while the blue shaded interval indicates the variation σκ1

of the unique stable periodic solution.

mean first-passage times.47 In Figs. 3(b) and 3(c) is illustrated the
qualitative distinction between the noise-dependencies of the tran-
sition rates: while γLC→FP displays a maximum at the resonant
noise level, γFP→LC just increases monotonously with noise. For
small noise D . 10−3, one observes virtually no switches to the
quasi-stationary state, as evinced by the fact that the correspond-
ing oscillation frequency is identical to the deterministic one. For
increasing noise, the competition between the two processes is
resolved in such a way that at an intermediate/large noise, the impact
of γLC→FP/γFP→LC becomes prevalent. The large values of γFP→LC

found for quite strong noise D & 0.04 reflect the point that the sys-
tem there spends most of the time in the oscillatory metastable state,
making only quite short excursions to the quasi-stationary state.

Though ISR is most pronounced for intermediate ε, it turns
out that an additional subtlety in the mechanism of biased switching
may be explained by employing the singular perturbation theory to

the noiseless version of (1). In particular, by combining the critical
manifold theory48 and the averaging approach,49 one may demon-
strate the facilitatory role of plasticity in enhancing the resonant
effect, showing that the adaptation drives the fast flow toward the
parameter region where the stationary state is a focus rather than
a node.29 The response to noise in multiple timescale systems has
already been indicated to qualitatively depend on the character
of the stationary states, yielding fundamentally different scaling
regimes with respect to noise variance and the scale-separation
ratio.50–52 Intuitively, one expects that the resonant effects should be
associated with the quasi-stationary states derived from the focuses
rather than the nodes50 because the local dynamics then involves an
eigenfrequency.

The fast–slow analysis of (1) for I0 = 0.95 has been carried
out in detail in Refs. 6 and 29 such that here we only summa-
rize the main results concerning the associated layer and reduced

FIG. 3. (a) Fraction of the time spent at the oscillatory metastable state Tosc/Ttot as a function of noise for ε = 0.06 (circles) and ε = 0.08 (squares). (b) and (c) Numerically
estimated transition rates from the oscillatory to the quasi-stationary metastable states, γLC→FP(D) and vice versa, γFP→LC(D). The remaining parameters are I0 = 0.95,
β = 4.2.
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FIG. 4. (a) Fast–slow analysis of (1) for I0 = 0.95,D = 0. The fast flow exhibits a periodic attractor (grey shaded region) and a stable equilibrium (white region), with two
branches of SNIPER bifurcations (red lines) outlining the boundary between them. The arrows indicate the vector fields corresponding to the stable sheets of the slow flow.
The inset shows κi(t) series corresponding to a switching episode from the oscillatory to the stationary state and back, obtained for ε = 0.06,β = 4.2. The corresponding
(κ1(t), κ2(t)) orbit is indicated by the blue line. Within the two orange regions, the two stable equilibria are focuses rather than the nodes. (b) Conditional probability pF(D)

of having the crossing of SNIPER bifurcation followed by a visit to the orange-shaded region from (a), obtained for ε = 0.06 (squares) and ε = 0.1 (circles).

problems.48 Within the layer problem, the fast flow dynamics

ϕ̇1 = I0 − sin ϕ1 + κ1 sin (ϕ2 − ϕ1),

ϕ̇2 = I0 − sin ϕ2 + κ2 sin (ϕ1 − ϕ2)
(2)

is considered by treating the slow variables κ1, κ2 ∈ [−1, 1] as addi-
tional system parameters. Depending on κ1 and κ2, the fast flow
dynamics is found to be almost always monostable, exhibiting either
a stable equilibrium or a limit cycle attractor, apart from a small
region of bistability between the two.6,29 The maximal stability region
of the oscillatory regime, encompassing both the domain where the
oscillatory solution is monostable and where it coexists with a sta-
ble equilibrium, is indicated by the gray shading in Fig. 4(a). The
latter has been determined by the method of numerical continua-
tion, starting from a periodic solution. The thick red lines outlining
the region’s boundaries correspond to the two branches of SNIPER
bifurcations.6 Note that for each periodic solution above the main
diagonal κ1 = κ2, there exists a Z2 symmetry-related counterpart
below the diagonal.

By averaging over the different attractors of the fast flow
dynamics, we have obtained multiple stable sheets of the slow flow.49

The explicit procedure consists in determining the time average
〈ϕ2 − ϕ1〉t = h(κ1, κ2) by iterating (2) for each fixed set (κ1, κ2)

6,49

and then substituting these averages into the equations of the slow
flow

κ
′
1 = [−κ1 + sin(h(κ1, κ2) + β)],

κ
′
2 = [−κ2 + sin(−h(κ1, κ2) + β)],

(3)

where the prime refers to a derivative over the rescaled time variable
T := t/ε. The arrows in Fig. 4(a) show the vector fields on the two
stable sheets of the slow flow (3) associated with the stationary and
the periodic attractors of the fast flow.

The performed fast–slow analysis has allowed us to gain a
deeper insight into the facilitatory role of adaptivity within the

ISR. In particular, in the inset of Fig. 4(a) are extracted the time
series (κ1(t), κ2(t)), which (from left to right) illustrate the switch-
ing episode from an oscillatory to the quasi-stationary metastable
state. The triggering/termination of this switching event is asso-
ciated with an inverse/direct SNIPER bifurcation of the fast flow.
Note that for (κ1, κ2) values immediately after the inverse SNIPER
bifurcation, the stable equilibrium of the fast flow is a node. Never-
theless, for the noise levels corresponding to the most pronounced
ISR effect, the coupling dynamics guides the system into the trian-
gular orange-shaded regions in Fig. 4(a), where the equilibrium is
a stable focus rather than a node. We have verified that this fea-
ture is a hallmark of ISR by numerically calculating the conditional
probability pF that the events of crossing the SNIPER bifurcation
are followed by the system’s orbit visiting the (κ1, κ2) regions with
a focus equilibrium. The pF(D) dependencies for two characteris-
tic ε values in Fig. 4(b) indeed show a maximum for the resonant
noise levels, corresponding to the minima of the frequency depen-
dencies in Fig. 2(a). The local dynamics around the focus gives rise
to a trapping effect such that the phase variables remain for a longer
time in the associated quasi-stationary states than in case where the
metastable states derive from the nodes of the fast flow. Small noise
below the resonant values is insufficient to drive the system to the
regions featuring focal equilibria, whereas for too strong noise, the
stochastic fluctuations completely take over, washing out the quasi-
stationary regime. The trapping effect is enhanced for the faster
adaptivity rate, as evinced by the fact that the curve pF(D) for ε = 0.1
lies above the one for ε = 0.06.

III. INVERSE STOCHASTIC RESONANCE DUE TO A

TRAPPING EFFECT

As the second paradigmatic scenario for ISR, we consider the
case where the oscillation frequency is reduced due to a noise-
induced trapping in the vicinity of an unstable fixed point of the
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FIG. 5. Family of dependencies 〈 f 〉(D) for scale separations ε ∈ {0.005, 0.02,
0.05, 0.09, 0.2} at fixed I0 = 1.05,β = π . Stochastic averaging has involved an
ensemble of 100 different process realizations.

noiseless system. Such a trapping effect may be interpreted as an
example of the phenomenon of noise-enhanced stability of an unsta-
ble fixed point.8–12 This mechanism is distinct from the one based
on biased switching because there the quasi-stationary states derive
from the stable equilibria of the noise-free system such that the noise
gives rise to crossing over the separatrix between the oscillatory
and the quiescent regime. Nevertheless, in the scenario below, noise
induces “tunneling” through the bifurcation threshold, temporarily
stabilizing an unstable fixed point of the deterministic system.

In particular, we study an example of a system (1) comprised of
two adaptively coupled active rotators in the oscillatory, rather than
the excitable regime, setting the parameter I0 = 1.05 close to a bifur-
cation threshold. The plasticity parameter is fixed to β = π such
that the modality of the phase-dependent adaptivity resembles the
STDP rule in neuronal systems. One finds that this system exhibits a
characteristic non-monotone response to noise, with the oscillation
frequency of the phases 〈 f 〉 displaying a minimum at an intermedi-
ate noise level (see Fig. 5). In contrast to the mechanism described
in Sec. II, the onset of ISR here does not qualitatively depend on the
adaptivity rate. One only finds a quantitative dependence of the sys-
tem’s nonlinear response to noise on ε, in a sense that the resonant
noise level shifts to larger values with increasing ε. Our exhaus-
tive numerical simulations indicate that the ISR effect persists for
slow adaptivity rates, cf. the example of the 〈 f(D)〉 for ε = 0.005 in
Fig. 5, and the results of the fast–slow analysis below will further
show that all the ingredients required for the ISR effect remain in
the singular perturbation limit ε → 0. The persistence of the ISR
effect has also been numerically confirmed for faster adaptivity rates
ε ∼ 0.1. In this case, we have observed that the minima of the 〈 f(D)〉
curves become deeper with ε, suggesting that the ISR becomes more
pronounced for higher adaptivity rates.

To elucidate the mechanism behind ISR, we again perform
the fast–slow analysis of the corresponding noise-free system. Prior
to this, we briefly summarize the results of the numerical bifur-
cation analysis for the noiseless system in the case of finite scale

separation. First note that selecting a particular plasticity rule β = π

confines the dynamics of the couplings to a symmetry invariant sub-
space κ1(t) = −κ2(t) ≡ κ(t). Due to this, the noiseless version of the
original system (1) can be reduced to a three-dimensional form

ϕ̇1 = I0 − sin ϕ1 + κ sin (ϕ2 − ϕ1),

ϕ̇2 = I0 − sin ϕ2 + κ sin (ϕ2 − ϕ1),

κ̇ = ε(−κ − sin(ϕ2 − ϕ1)).

(4)

By numerically solving the eigenvalue problem, we have verified
that (4) possesses no stable fixed points, but rather a pair of sad-
dle nodes and a pair of saddle focuses. Also, we have determined
that the maximal real part of the eigenvalues of the focuses displays
a power-law dependence on the scale separation, tending to zero
in the singular limit ε → 0. Concerning the oscillatory states, our
numerical experiments show that (4) exhibits multistability between
three periodic solutions, whereby two of them are characterized by
the non-zero couplings and a constant phase-shift between the fast
variables, whereas the third solution corresponds to a case of effec-
tively uncoupled units [κ(t) = 0] and the fast variables synchronized
in-phase.

A deeper understanding of the ingredients relevant for the
trapping mechanism can be gained within the framework of the
fast–slow analysis, considering the layer problem

ϕ̇1 = I0 − sin ϕ1 + κ sin (ϕ2 − ϕ1),

ϕ̇2 = I0 − sin ϕ2 + κ sin (ϕ2 − ϕ1).
(5)

Treating κ ∈ [−1, 1] as an additional system parameter, we first look
for the stationary and periodic attractors of the fast flow. It is con-
venient to apply the coordinate transformation (ϕ1, ϕ2) 7→ (8, δϕ)

= (
ϕ1+ϕ2

2
, ϕ1−ϕ2

2
), rewriting (5) as

δϕ̇ = − sin δϕ cos 8,

8̇ = I0 − cos δϕ(sin 8 + 2κ sin δϕ).
(6)

From the second equation, one readily finds that the fast flow cannot
possess any fixed points on the synchronization manifold δϕ = 0
because I0 > 1 such that the stationary solutions derive only from
the condition cos 8 = 0. A numerical analysis shows that, depend-
ing on κ , the fast flow for I0 & 1 can exhibit two or no fixed
points. For the particular value I0 = 1.05, one finds that two fixed
points, namely, a saddle and a center, exist within the interval κ ∈
[−0.1674, 0.1674]. The appearance of a center point is associated
with the time-reversal symmetry of the fast flow (5). Indeed, one
may show that the fast flow is invariant to a symmetry-preserving
map R of the form

R =











ϕ1 → π − ϕ2,

ϕ2 → π − ϕ1,

t → −t.

(7)

Note that in case of the finite scale separation, the counterpart of
the center point of the fast flow is a weakly unstable focus of the
complete system (4).

The structure of the fast flow is organized around the saddle-
center bifurcation, which occurs at κ = κSC = −0.1674. There, the
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FIG. 6. Typical dynamics of the fast flow (5) for I0 = 1.05
below (κ = −0.8) and above the saddle-center bifurcation
(κ = −0.08) are illustrated in (a) and (b), respectively. In (a),
the system possesses two unstable fixed points, a saddle (SP)
and a center (CP), and exhibits three types of closed orbits:
a limit cycle attractor (orange), homoclinic connections to SP
(blue and green), and subthreshold oscillations around the cen-
ter (purple). In (b), the system exhibits bistability between two
oscillatory states, shown in orange and blue.

two fixed points get annihilated as a homoclinic orbit associated
with the saddle collapses onto the center. To gain a complete pic-
ture of the dynamics of the fast flow, we have shown in Figs. 6(a)
and 6(b) the illustrative examples of the phase portraits and the
associated vector fields for κ < κSC and κ > κSC, respectively. For
κ ∈ [−1, κSC), the fast flow possesses a limit cycle attractor, essen-
tially derived from the local dynamics of the units, cf. the orbit
indicated in red in Fig. 6(a). Apart from an attracting periodic
orbit, one observes two additional types of closed orbits, namely, the
homoclinic connections to the saddle point (SP), shown by blue and

green, as well as the periodic orbits around the center point (CP), an
example of which is indicated in orange. For κ > κSC, the fast flow
exhibits bistability between two oscillatory solutions, such that there
is a coexistence of a limit cycle inherited from the local dynamics
of units and the limit cycle associated with the former homoclinic
orbits, cf. Fig. 6(b).

In the presence of noise, the described attractors of the fast
flow turn to metastable states. Nevertheless, in contrast to the case
of two adaptively coupled excitable units, the slow stochastic fluc-
tuations here do not only involve switching between the metastable

FIG. 7. (a) and (b) show the time traces of κi(t) and ϕi(t), respectively, with an episode where the system remains in the vicinity of an unstable fixed point highlighted in
green. The parameters are I0 = 1.05, ε = 0.035,β = π ,D = 10−4. (c) The orbits conforming to the two metastable states characterized by large-amplitude oscillations of
phases are shown in red and blue, whereas the subthreshold oscillations are indicated in green. Superimposed is the vector field of the fast flow, corresponding to the limit
ε → 0.
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FIG. 8. Numerically estimated fraction of time spent in the vicinity of the unsta-
ble fixed point Tup/Ttot as a function of noise for ε = 0.035 (squares) and
ε = 0.06 (circles). Note that the positions of the maxima coincide with the cor-
responding resonant noise levels from Fig. 5. Remaining system parameters are
I0 = 1.05,β = π .

states but also comprise the subthreshold oscillations derived from
the periodic orbits around the center point. These subthreshold
oscillations provide for the trapping effect, which effectively leads
to a reduced oscillation frequency. An example of the time series
κi(t) and ϕi(t), i ∈ {1, 2} obtained for an intermediate ε = 0.035
in Figs. 7(a) and 7(b) indeed shows three characteristic episodes,
including visits to two distinct oscillatory metastable states and an
extended stay in the vicinity of the center, cf. the stochastic orbits

(ϕ1(t), ϕ2(t)) and the vector field of the fast flow in Fig. 7(c). In the

case of finite scale separation, the trapping effect is manifested as the
noise-enhanced stability of an unstable fixed point. The prevalence
of subthreshold oscillations changes with noise in a non-monotone
fashion, see the inset in Fig. 7(c), becoming maximal around the res-
onant noise level where the frequency dependence on noise exhibits
a minimum, cf. Figs. 5 and 8. The fraction of time spent in the
metastable state corresponding to subthreshold oscillations has been
estimated by the numerical procedure analogous to the one already
described in Sec. II.

IV. TWO MECHANISMS OF ISR IN CLASSICAL

NEURONAL MODELS

So far, we have demonstrated the two paradigmatic scenar-
ios for ISR considering the examples of coupled Type I units,
whose local dynamics is close to a SNIPER bifurcation, be it in the
excitable or the oscillatory regime. Nevertheless, the onset of ISR
and the specific mechanisms of the phenomenon do not depend
on the excitability class of local dynamics. In particular, we have
recently demonstrated that a single Type II Fitzhugh–Nagumo
relaxation oscillator exhibits qualitatively the same form of
non-monotone dependence on noise,30 with the mechanism involv-
ing noise-induced subthreshold oscillations that follow the maximal
canard of an unstable focus. In that case, it has been established
that the trapping effect and the related subthreshold oscillations are
triggered due to a phase-sensitive excitability of a limit cycle. More-
over, we have verified that the same model of neuronal dynamics,
set to different parameter regimes, may exhibit two different scenar-
ios of ISR. In particular, by an appropriate selection of the system

FIG. 9. (a) Bifurcation diagram showing the dependence of
the amplitudes of the membrane potential V on the external
bias current I for the version of Morris–Lecar model exhibiting a
supercritical Hopf bifurcation. (b) illustrates the 〈 f 〉(D) depen-
dence for the Morris–Lecar neural oscillator in close vicinity
of the supercritical Hopf bifurcation. (c) V(I) bifurcation dia-
gram for the setup where the Morris–Lecar model displays a
subcritical Hopf bifurcation. (d) Characteristic non-monotone
dependence 〈 f 〉(D) for the Morris–Lecar model from (c), with
the bifurcation parameter I = 95 set in the bistable regime. The
two sets of parameters putting the Morris–Lecar model in the
vicinity of a supercritical or a subcritical Hopf bifurcation are
specified in the main text.
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parameters, the Morris–Lecar neuron model

C
dv

dt
= −gfastm(v)(v − ENa) − gslowW(v − EK)

− gleak(v − Eleak) + I,

dv

dt
= φ

W∞(v) − W

τ(v)
,

m(v) = 0.5

[

1 + tanh

(

v − βm

γm

)]

, (8)

W∞(v) =
[

1 + tanh

(

v − βw

γw

)]

,

τ(v) = 1/ cosh

(

v − βw

2γw

)

,

where v and W, respectively, denote the membrane potential and
the slow recovery variable, can be placed in the vicinity of a
supercritical or a subcritical Hopf bifurcation,53 with the exter-
nal bias current I being the bifurcation parameter. In the first
case, obtained for ENa = 50 mV, EK = −100 mV, Eleak = −70 mV,
gfast = 20 mS/cm2, gslow = 20 mS/cm2, gleak = 2 mS/cm2, φ = 0.15,
C = 2 µF/cm2, βm = −1.2 mV, βw = −13 mV, γm = 18 mV,
γw = 10 mV, the model is monostable under the variation of
I, and the ISR is observed slightly above the Hopf bifurcation
(I = 43 µA/cm2) due to a noise-enhanced stability of an unstable
fixed point, cf. Figs. 9(a) and 9(b). In the second case, conforming to
the parameter set ENa = 120 mV, EK = −84 mV, Eleak = −60 mV,
gfast = 4.4 mS/cm2, gslow = 8 mS/cm2, gleak = 2 mS/cm2, φ = 0.04,
C = 20 µF/cm2, βm = −1.2 mV, βw = 2 mV, γm = 18 mV,
γw = 30 mV, the model displays bistability between a limit cycle and
a stable equilibrium in a range of I just below the Hopf thresh-
old. There, ISR emerges due to a mechanism based on biased
switching, see the bifurcation diagram V(I) in Fig. 9(c) and the
dependence of the oscillation frequency on noise for I = 95 µA/cm2

in Fig. 9(d).

V. DISCUSSION AND OUTLOOK

Considering a model which involves the classical ingredients of
neuronal dynamics, such as excitable behavior and coupling plastic-
ity, we have demonstrated two paradigmatic scenarios for inverse
stochastic resonance. By one scenario, the phenomenon arises in
systems with multistable deterministic dynamics, where at least one
of the attractors is a stable equilibrium. Due to the structure of
the phase space, and, in particular, the position of the separatri-
ces, the switching dynamics between the associated metastable states
becomes biased at an intermediate noise level such that the longevity
of the quasi-stationary states substantially increases or they may
even turn into absorbing states. In the other scenario, an oscilla-
tory system possesses a weakly unstable fixed point, whose stability
is enhanced due to the action of noise. The latter results in a trap-
ping effect such that the system exhibits subthreshold oscillations,
whose prevalence is noise-dependent and is found to be maximal
at the resonant noise level. Both scenarios involve classical facilita-
tory effects of noise, such as crossing the separatrices or stochastic
mixing across the bifurcation threshold, which should warrant the

ubiquity of ISR. In terms of the robustness of the effect, we have
demonstrated that the onset of ISR is independent on the excitabil-
ity class of local dynamics, and moreover, that the same model of
neuronal dynamics, depending on the particular parameters, may
display two different scenarios for ISR.

Given that ISR has so far been observed at the level of mod-
els of individual neurons,23,24,26,30 motifs of units with neuron-like
dynamics22,29 and neural networks,27 it stands to reason that the phe-
nomenon should be universal to neuronal dynamics, affecting both
the emergent oscillations and systems of coupled oscillators. The
explained mechanisms appear to be generic and should be expected
in other systems comprised of units with local dynamics poised close
to a bifurcation threshold. Inverse stochastic resonance should play
important functional roles in neuronal systems, including the reduc-
tion of spiking frequency in the absence of neuromodulators, the
triggering of stochastic bursting, i.e., of on–off tonic spiking activity,
the suppression of pathologically long short-term memories,14,24,26,28

and most notably, may contribute to generation of UP–DOWN
states, characteristic for spontaneous and induced activity in cortical
networks.31,32
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We consider the macroscopic regimes and the scenarios for the onset and the suppression of collective
oscillations in a heterogeneous population of active rotators composed of excitable or oscillatory elements. We
analyze the system in the continuum limit within the framework of Ott-Antonsen reduction method, determining
the states with a constant mean field and their stability boundaries in terms of the characteristics of the rotators’
frequency distribution. The system is established to display three macroscopic regimes, namely the homogeneous
stationary state, where all the units lie at the resting state, the global oscillatory state, characterized by the
partially synchronized local oscillations, and the heterogeneous stationary state, which includes a mixture
of resting and asynchronously oscillating units. The transitions between the characteristic domains are found
to involve a complex bifurcation structure, organized around three codimension-two bifurcation points: a
Bogdanov-Takens point, a cusp point, and a fold-homoclinic point. Apart from the monostable domains, our
study also reveals two domains admitting bistable behavior, manifested as coexistence between the two stationary
solutions or between a stationary and a periodic solution. It is shown that the collective mode may emerge via
two generic scenarios, guided by a saddle-node of infinite period or the Hopf bifurcation, such that the transition
from the homogeneous to the heterogeneous stationary state under increasing diversity may follow the classical
paradigm, but may also be hysteretic. We demonstrate that the basic bifurcation structure holds qualitatively in
the presence of small noise or small coupling delay, with the boundaries of the characteristic domains shifted
compared to the noiseless and the delay-free case.

DOI: 10.1103/PhysRevE.100.062211

I. INTRODUCTION

The onset of a collective mode mediated via a transition to
synchrony is a fundamental paradigm of macroscopic behav-
ior in a broad variety of fields, ranging from neuroscience and
other biologically inspired models to chemistry, technology,
and social science [1,2]. A classical approach within the the-
ory of nonlinear dynamics is to regard populations exhibiting
a collective mode as macroscopic oscillators [3–5], which can
then interact with other populations or be subjected to external
stimuli. In this context, we investigate an important problem
of the emergence and the suppression of collective oscillations
in populations comprised of units with nonuniform intrinsic
parameters, which are drawn from a certain probability dis-
tribution. Such nonuniformity is a manifestation of variability
[6–9], a ubiquitous feature that often makes it more realistic to
consider heterogeneous rather than homogeneous assemblies.
Depending on the particular application, variability may alter-
natively be referred to as diversity, heterogeneity, impurities,
or quenched noise. In many cases, the diversity can be large

*vladimir.klinshov@ipfran.ru
†franovic@ipb.ac.rs

enough to give rise to qualitative differences in individual
dynamics of units, such that some of the active elements
within a population may be self-oscillating while the others
are excitable.

The classical Kuramoto paradigm [10] addresses the sce-
nario where the diversity is manifested at the quantitative level
alone, since all the units are considered to be self-oscillating.
There, the continuous transition to synchrony occurs once
the coupling between the oscillators becomes strong enough
to overcome the effects of diversity [2,11]. Nevertheless, the
diversity alone has been shown to be capable, under appro-
priate conditions, to enhance the response of an assembly
to external forcing or to promote synchronization [7,8,12].
Moreover, in the case of heterogeneous assemblies made up of
excitable and oscillatory units rather than the oscillators alone,
it has been demonstrated that the transition to synchrony with
increasing diversity may be classical or reentrant, depending
on the particular form of the units frequency distribution
[13]. For such a setup, it has also been indicated that the
collective firing emerges via a generic mechanism where the
entrainment of units is degraded by increasing diversity [8].

In the present paper, we investigate the regimes of macro-
scopic behavior, as well as the scenarios for the onset and
the suppression of collective oscillations in a heterogeneous
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population made up of oscillatory and excitable units, consid-
ering a model of active rotators with global sine coupling. Our
analysis relies on the Ott-Antonsen reduction method [14,15],
based on the ansatz that the long-term macroscopic dynamics
of such systems settles on a particular invariant attractive man-
ifold. We first provide an exact description of macroscopic
stationary states featuring a constant mean field and then
determine the bifurcations that outline the stability boundaries
of the characteristic domains. While the stationary states and
the associated self-consistency equation are obtained for an
arbitrary distribution of natural frequencies, the subsequent
bifurcation analysis is carried out for a uniform frequency
distribution on a bounded interval, which has the advantage of
allowing for analytical tractability. We establish the complete
bifurcation structure and demonstrate two generic scenarios
for the emergence and the suppression of the collective mode.
While the scenario featuring the successive onset and sup-
pression of oscillations under increasing diversity has earlier
been reported to be universal for heterogeneous populations
with various distributions of the units’ frequencies [12,13],
the other scenario, which involves a hysteretic behavior due
to existence of bistability regions, is reported here for the first
time, as far as we know.

Apart from diversity, the two additional ingredients in-
fluencing the dynamics in neuronal and other biophysical
systems are coupling delays and noise [16–18]. In particular,
realistic models often have to include explicit coupling delays
in order to describe the effects of finite velocity of signal prop-
agation or the latency in information processing [17,19–23].
On the other hand, creating coarse-grained models inevitably
requires one to incorporate different sources of noise [24–31].
Both coupling delay and noise may play an important role
in the collective dynamics of a population. For example, in
systems consisting just of excitable units, it is well known
that the noise may play a constructive role, contributing to
the onset of collective firing via synchronization of local
noise-induced oscillations [32–35]. Concerning the effect of
coupling delays, the standard Kuramoto model with uniform
delays has been shown to exhibit the discontinuous rather
than the continuous transition between the incoherent and
coherent states, further having the synchronization frequency
suppressed by the delay [11,36].

Our study evinces the robustness of the general physical
picture, inherited from the noiseless and the delay-free case,
in the presence of small coupling delay and small noise.
While the impact of small delay may be analyzed within
the local stability approach we developed, the Ott-Antonsen
method in principle does not allow one to treat stochastic
assemblies. Only quite recently, an approach involving the
so-called circular cumulants [37,38] has been developed to
incorporate a first-order correction to the Ott-Antonsen theory,
which accommodates for the effects of noise. We perform
numerical analysis of the system dynamics in presence of
small noise and complement it with qualitative arguments.

The paper is organized as follows. In Sec. II, we present the
details of the model and provide the continuum limit formula-
tion for the delay- and the noise-free setup, obtaining the Ott-
Antonsen equation for the local order parameter. Section III
comprises the analytical results on the local structure of the
macroscopic stationary states and the related self-consistency

equation, derived for an arbitrary frequency distribution. In
Sec. IV, the stability and bifurcation analysis of the stationary
states is carried out for a particular distribution of frequencies,
comparing the stability boundaries of the characteristic do-
mains to those obtained in numerical experiments. In Sec. V,
it is shown that the basic bifurcation scenario persists in
presence of small noise or small coupling delay. Section VI
contains our concluding remarks.

II. MODEL DYNAMICS AND THE CONTINUUM
LIMIT FORMULATION

We consider a heterogeneous assembly of N globally cou-
pled active rotators described by:

θ̇i(t ) = ωi − a sin θi(t ) − K

N

∑
j

sin[θi(t )

− θ j (t − τ ) + α] + σηi(t ), i = 1, . . . N, (1)

where the phase variables are θi ∈ S1 and the local dynamics is
governed by the nonisochronicity parameter a and the natural
frequency ωi. Regarding the term “natural frequency,” note
that it will be used for convenience to describe the intrinsic
parameter involving the quenched randomness, even though
some units may exhibit excitable, rather than oscillatory,
behavior. The frequencies are distributed according to the
probability density function g(ω) that satisfies

∫ ∞
−∞ g(ω)dω =

1 and is characterized by the mean value � and the width 	,
which we here explicitly refer to as the diversity parameter.
The individual unit rotates uniformly with the frequency
ωi for a = 0 only, whereas for a > 0 its rotation becomes
nonuniform, having the rotation direction dependent on the
sign of ωi. The relation between ωi and the parameter a
underlies the excitability feature of autonomous dynamics.
In particular, ωi constitutes the bifurcation parameter, such
that for fixed a, an isolated unit lies in the excitable regime
if |ωi| < a. In this case, the unit possesses a stable node,
whereas the characteristic nonlinear threshold-like response is
mediated by an unstable steady state. At |ωi| = a, an isolated
unit undergoes a saddle-node of infinite period (SNIPER)
bifurcation toward the oscillatory regime. The interactions are
assumed to be uniform across the population, and are charac-
terized by the coupling strength K , the coupling phase-lag α,
and the coupling delay τ . The effect of random fluctuations
is represented by the white Gaussian random forces ηi of
intensity σ 2, which act independently on each unit [〈ηi(t )〉 =
0, 〈ηi(t )η j (t )〉 = δi jδ(t − t )].

As already indicated, in this and the following section we
apply the Ott-Antonsen framework [14,15] to investigate the
collective dynamics of an heterogeneous assembly of active
rotators in the delay- and the noise-free case τ = σ = 0.
To this end, let us introduce the Kuramoto complex order
parameter, which represents the center of mass of all rotators:

R(t ) = ρ(t )eiψ (t ) = 1

N

∑
j

eiθ j (t ), (2)

such that (1) can be rewritten as

θ̇i = ωi − a

2i
(eiθi − e−iθi ) + K

2i
[Re−i(θi+α) − Rei(θi+α)], (3)
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where the bar denotes the complex conjugate. In the ther-
modynamic limit N → ∞, the macroscopic state of the sys-
tem can be described by the probability density function
f (θ, ω, t ), which, for the considered moment t , gives the rel-
ative number of oscillators whose phases and frequencies are
θi(t ) ≈ θ , ωk ≈ ω. The normalization condition required for
the probability density function is

∫ 2π

0 f (θ, ω, t )dθ = g(ω).
Given the conservation of oscillators, f (θ, ω, t ) has to fulfill
the continuity equation

∂ f

∂t
+ ∂

∂θ
( f v) = 0, (4)

where the velocity is just

v(θ, ω, t ) = ω − a

2i
(eiθ − e−iθ ) + K

2i
[Re−i(θ+α) − Rei(θ+α)].

(5)
In the last expression, we have used the form of the Kuramoto
mean field in the thermodynamic limit N → ∞,

R(t ) =
∫ ∞

−∞
dω

∫ 2π

0
f (θ, ω, t )eiθdθ, (6)

According to the Ott-Antonsen ansatz [14,15], the long-term
dynamics of the continuity equation (8) settles on a particular
manifold of the form

f (θ, ω, t ) = g(ω)

2π

{
1 +

∞∑
n=1

[zn(ω, t )einθ + zn(ω, t )e−inθ ]

}
,

(7)

where the complex amplitude z(ω, t ) is such that |z(ω, t )| �
1. Introducing the assumption (7) into (4), one finds that
z(ω, t ) satisfies the Ott-Antonsen equation

ż(ω, t ) = iωz + (1 − z2)
a

2
+ K

2
Re−iα − K

2
Reiαz2. (8)

Quantity z(ω, t ) should be interpreted as the frequency-
dependent local order parameter, in the sense that it quantifies
the degree of synchrony of oscillators whose intrinsic frequen-
cies ωi lie within a small interval around the given frequency
ω. In the continuum limit, the global and the local order
parameter are connected by the self-consistency condition

R = Gz =
∫ ∞

−∞
g(ω)z(ω)dω, (9)

which follows from the definition (6) and the ansatz (7). Note
that (8) presents a generalization of the corresponding result
in Ref. [13] for a �= 1, α �= 0.

III. STATIONARY SOLUTIONS OF THE
OTT-ANTONSEN EQUATION

Within this section, our aim is to characterize the micro-
scopic structure of the stationary solutions, finding the means
to classify them by applying the self-consistency condition
(9). To do so, one first looks for the solutions of the Ott-
Antonsen equation (8) for which the Kuramoto mean field
R(t ) = ρ(t )eiψ (t ) is constant. In particular, we substitute the
solution of the form z(ω, t ) = r(ω, t )eiϕ(ω,t ) into (8), which

ultimately results in

ṙ = B

2
(1 − r2) cos φ,

rφ̇ = ωr − B

2
(1 + r2) sin φ, (10)

having introduced the notation

B =
√

a2 + K2ρ2 + 2aKρ cos(ψ − α),

β = arctan
Kρ sin(ψ − α)

a + Kρ cos(ψ − α)
,

φ = ϕ − β. (11)

From the system (10), one infers that the quantity B, which
depends only on the coupling strength and the mean field,
plays the role of the macroscopic excitability parameter. This
follows from the fact that the microscopic structure of the
stationary state is self-organized in a way that the assembly
splits into two groups, according to the relation between the
respective natural frequencies ωi and B. In particular, one
group is comprised of rotators in the excitable regime, whose
intrinsic frequencies satisfy |ω| < B, whereas the other group
consists of rotating units, whose intrinsic frequencies satisfy
|ω| > B. Another indication on the role of B can be obtained
if the definitions of B and β from (11) are applied to transform
the original equation for the dynamics of rotators (1) into θ̇i =
ωi − B sin (θi − β ), which just conforms to a set of forced
active rotators. From the level of single unit’s dynamics, B is
then classically referred to as the resistivity parameter in the
sense that it reflects the rotator’s ability to modify its natural
frequency.

Taking a closer look into the dynamics of the two sub-
assemblies following from (10), one finds that for |ω| < B
there exist two steady states, given by

r∗(ω) = 1, φ∗(ω) = arcsin
ω

B
, (12)

and

r∗(ω) = 1, φ∗(ω) = π − arcsin
ω

B
, (13)

whereby our latter stability analysis will show that only the
solution (12) is stable. For the units within the rotating group
|ω| > B, the only steady state reads

r∗(ω) = |ω|
B

−
√

ω2

B2
− 1

φ∗(ω) = π

2
sgnω. (14)

In order to fully quantify the stationary solutions of the Ott-
Antonsen equation (8), one has to obtain an explicit expres-
sion for the macroscopic excitability parameter B. In order to
do so, we invoke the self-consistency equation (9). Applying
the latter to the stationary state z∗(ω) = r∗(ω)eiφ∗(ω)+iβ given
by (12) and (14), one obtains

ρei(ψ−β ) = i�

B
+

∫
|ω|<B

dωg(ω)

√
1 − ω2

B2

− i

B

∫
|ω|>B

dωg(ω)ω

√
1 − B2

ω2
, (15)
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where � = ∫ ∞
−∞ ωg(ω)dω refers to the mean value of the fre-

quency distribution. Separating for the real and the imaginary
part of (15) and after some algebra, one ultimately arrives at
the self-consistency equation for B of the form:

f (B) = B2 − a2 − 2K[ f1(B) sin α + f2(B) cos α]

+ K2 f 2
1 (B) + f 2

2 (B)

B2
= 0, (16)

where

f1(B) = � −
∫

|ω|>B
dωg(ω)ω

√
1 − B2

ω2
,

f2(B) =
∫

|ω|<B
dωg(ω)

√
B2 − ω2. (17)

Note that the analogous expression has been obtained in
Ref. [13] but only for the particular case a = 1, α = 0. The
results so far apply for an arbitrary distribution of natural
frequencies g(ω). In order to carry out an explicit analysis
on the stability of stationary states, including determining
the associated stability boundaries and characterization of
the transitions between the different collective regimes, we
confine the remainder of the study to a particular case of g(ω),
namely a uniform distribution of frequencies on a bounded
interval.

IV. STABILITY OF THE STATIONARY SOLUTIONS OF
THE OTT-ANTONSEN EQUATION

Within this section, we specify the general results from
Sec. III to an example of a uniform distribution of natural
frequencies g(ω) defined on an interval ω ∈ [ω1, ω2]:

g(ω) =
⎧⎨
⎩

0, ω < ω1

γ , ω1 < ω < ω2

0, ω > ω2

, (18)

where γ = 1/(ω2 − ω1) derives from the normalization con-
dition. The given distribution is characterized by an average
� = ω1+ω2

2 and the width 	 = ω2 − ω1. The advantage of
making such a choice of frequency distribution is that it allows
for a full analytical treatment of the self-consistency equation
(16) for the macroscopic excitability parameter. In particular,
the integrals (17) then read

f1(B) =
⎧⎨
⎩

� − γ [F1(ω2) − F1(ω1)], B < ω1

� − γ F1(ω2), ω1 < B < ω2

�, B > ω2

, (19)

where

F1(ω) = |ω|
2

√
ω2 − B2 + B2

2
ln

B

|ω| + √
ω2 − B2

, (20)

and

f2(B) =
⎧⎨
⎩

0, B < ω1

γ
[

π
4 B2 − F2(ω1)

]
, ω1 < B < ω2

γ [F2(ω2) − F2(ω1)], B > ω2

, (21)

with

F2(ω) = |ω|
2

√
B2 − ω2 + B2

2
arcsin

ω

B
. (22)

Considering the uniform frequency distribution (18), we
have carried out the stability and bifurcation analysis of the
Ott-Antonsen equation (8). The main control parameters are
the characteristics of g(ω), namely its mean � and the width
	, while the remaining system parameters a, K , and α are
kept fixed. Note that the stability analysis of (8) requires one
to rewrite it as a real system in order to eliminate the complex
conjugation [39–41]. The analysis per se involves lineariza-
tion of the Ott-Antonsen equation for variations around the
stationary solution (12)–(14) and consists in determining how
the Lyapunov spectra of the stationary states depend on �

and 	. While the technical details of the calculation are
elaborated in the Appendix, the analysis we provide below
will include characterization of the stationary solutions of
the Ott-Antonsen equation (8) and the associated stability
domains, as well as the description of the mechanisms behind
the onset and the suppression of collective oscillations. The
analytical results are corroborated by numerical experiments
carried out on a heterogeneous assembly of N = 104 active
rotators.

The microscopic structure of the stationary regimes and
the fashion in which their number and stability depend on
the characteristics of g(ω) may conveniently be explained in
terms of the solutions of the self-consistency equation (16)
for the parameter B. A typical form of the function f (B)
for the considered domain of (�,	) values is illustrated in
Fig. 1. The three roots of f (B), denoted by B1 > B2 > B3,
correspond to the stationary solutions of the Ott-Antonsen
equation (8). In particular, the macroscopic regime associated
to B1 presents a global rest state, because the macroscopic
excitability parameter is so large that the frequencies of all
the units lie below it. Given its microscopic structure, where
the local dynamics is solely excitable, this state can also be
termed a homogeneous stationary state. The corresponding
time series θi(t ) and the evolution of the modulus of the
Kuramoto order parameter ρ(t ) = |R(t )| are illustrated in

1 2 3 4 5 6

-0.8

-0.4

0

0.4

0.8

FIG. 1. Typical form of the function f (B) and the three solutions
B1 > B2 > B3 of the self-consistency equation (16). The system
parameters are as follows: a = 1, K = 5, α = 0, � = 0.87, and
	 = 6.
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FIG. 2. Bifurcation diagram in the (�, 	) plane, constructed by the method of stability analysis described in the Appendix. The remaining
system parameters are fixed to a = 1, K = 5, α = 0. The two branches of saddle-node bifurcations (blue solid lines) emanate from the cusp
point CP, where the pitchfork bifurcation occurs. From the Bogdanov-Takens point (BT) emanate the Hopf bifurcation curve (H), indicated by
the red solid line, and a branch of saddle-homoclinic bifurcations (SH), shown by the green dashed line. The upper branch of folds meets SH
at the fold-homoclinic point (FH). The bullets indicate the parameter values associated to the time series in Fig. 4.

Fig. 4(a). We shall demonstrate below that the global rest
state may disappear in a fold bifurcation. In contrast to the
macroscopic regime given by B1, the stationary state corre-
sponding to B3 is typically a heterogeneous one, involving a
subassembly of excitable units (|ωi| < B3) and a subassembly
of oscillating units (|ωi| > B3), see the example of the time
series in Fig. 4(c). In Ref. [13], the heterogeneous stationary
state is referred to as the asynchronous state, because spiking
activity may be observed at the level of single units, but the
macroscopic dynamics per se does not exhibit a collective
mode. The heterogeneous state, as shown in greater detail
below, may undergo either a fold or Hopf bifurcation scenario.
The stationary state associated to B2 conforms to a saddle
within the relevant (�,	) domain, undergoing fold bifurca-
tions either with B1 or B3 or providing for the separatrices in
case of the two observed bistable regimes.

The bifurcation diagram in Fig. 2 shows how the number
and stability of the stationary solutions of the Ott-Antonsen
equation (8) changes under variation of the parameters of
the frequency distribution � and 	. The diagram features
five characteristic domains I–V and is organized around three
codimension-2 bifurcation points, namely (i) the cusp point
(CP), which corresponds to a symmetry-breaking pitchfork bi-
furcation; (ii) the Bogdanov-Takens point (BT), which unfolds
into Hopf (H) and saddle-homoclinic (SH) bifurcation curves;
and (iii), the fold-homoclinic point (FH), where a branch of

saddle-node bifurcations meets a curve of homoclinic tangen-
cies of a limit cycle. The upper and the lower branch of folds,
which emanate from the cusp, correspond to the coalescence
of the state B2 with B1 and B3, respectively. The former or
latter branch has been obtained by solving for the parameters
where the local minimum or maximum of the function f (B)
crosses the zero level. The Hopf bifurcation curve has been
determined by the local stability analysis of the stationary
state B3. While such local analysis cannot provide for the
saddle-homoclinic branch, its existence follows from the gen-
eral structure of the Bodganov-Takens bifurcation [42,43].

In the following, we provide a detailed description of the
regimes underlying domains I–V, illustrating the associated
phase portraits, cf. Fig. 2, and explaining the bifurcations that
outline their stability boundaries. At the cusp point CP, the
two branches of saddle-node bifurcations coalesce, cf. the two
blue solid lines in Fig. 2. In terms of the stationary states
B1–B3 from Fig. 1, to the right of CP there exists only a
stable fixed point B2. Following the pitchfork bifurcation, B2

becomes a saddle, whereas two stable nodes, B1 and B3, are
created. The parameter region admitting only a single stable
stationary state, be it B1, B2, or B3, is denoted by V in Fig. 2.
Decreasing the diversity, the stability of B1 is influenced only
by a fold bifurcation, whereas the character and stability of
B3 are influenced by the fold and Hopf bifurcations, derived
from the Bogdanov-Takens point. We have evinced that while
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FIG. 3. Oscillation frequency of the periodic solution ωosc in
terms of diversity 	, calculated along the Hopf bifurcation curve.
One observes that the frequency tends to zero while approaching the
Bogdanov-Takens point. The parameters a, K , and α are the same as
in Fig. 2.

approaching BT, the frequency of oscillations ωosc expectedly
tends to zero, see Fig. 3. Along the lower branch of folds
B2 and B3 get annihilated, so that from the right of this
curve and to the cusp point, the only stable stationary state
of the system is the node B1. The Hopf bifurcation curve
that emanates from the BT point affects the stability of the
stationary state B3, such that it becomes unstable for smaller
diversities. This implies that within the region IV, bounded by
the Hopf curve to the right and the two fold curves on the
left, one observes bistability between two stationary states,
namely the stable node B1 and the stable focus B3, which

are separated by the stable manifold of the saddle B2, cf. the
corresponding phase portrait in Fig. 2. Reducing diversity,
B3 undergoes a supercritical Hopf bifurcation (H), whereby
immediately to the left of the Hopf curve (region III), one
finds bistability between a small limit cycle and the stable node
B1, again separated by the stable manifold of the saddle B2.
The time series illustrating the microscopic and macroscopic
dynamics of the oscillatory states born from the Hopf bifurca-
tion for two different parameter sets, (�1,	1) = (0.87, 6.76)
and (�2,	2) = (0.93, 6.78), are provided in Fig. 4(b) and
Fig. 4(e).

Consistent with the Bogdanov-Takens scenario, the limit
cycle born from the Hopf bifurcation is destabilized via a
homoclinic tangency to the saddle B2, which is reflected by
a branch of saddle-homoclinic bifurcations (SH) emanating
from BT, see the green dashed line in Fig. 2. Using the
local stability approach described in the Appendix, we are
not able to trace the stability of a limit cycle per se but have
been able to qualitatively verify the disappearance of the limit
cycle by numerical means. The SH curve terminates at the
fold-homoclinic point (FH), where it meets the upper branch
of fold bifurcations. At FH, the stable manifold of the saddle
B2 touches the invariant circle. Decreasing diversity further
away from the saddle-homoclinic bifurcation, cf. region I,
the system exhibits a stable node B1 and has two additional
unstable fixed points, namely the saddle B2 and the unstable
focus B3.

At the upper branch of folds, under increasing diversity, the
stable node B1 and the saddle B2 collide and disappear. For 	

values less than that of the FH point, the fold takes place on the
invariant circle, giving rise to a SNIPER bifurcation. Crossing
the SNIPER bifurcation either by increasing � or 	, the
collective dynamics of the system exhibits a transition toward
the macroscopic oscillatory state. The latter is characterized
by synchronous local oscillations of a large period, cf. the
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FIG. 4. Local and collective dynamics within the characteristic parameter domains indicated in Fig. 2. In the top row are provided the
examples of the time series ρ(t ) = |R(t )|, while in the bottom row are shown the corresponding local time series θi(t ) normalized over 2π . The
particular parameter values of the frequency distribution (indicated by bullets in Fig. 2) are (�, 	) = (0.87, 6.64) in (a), (�,	) = (0.87, 6.76)
in (b), (�,	) = (0.87, 7) in (c), (�,	) = (0.93, 6.6) in (d), and (�,	) = (0.93, 6.78) in (e). The remaining system parameters are the same
as in Fig. 2.
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FIG. 5. Characteristic transition sequences between the different macroscopic regimes under increasing diversity for a fixed value of �.
The states are described by the time-averaged modulus of the Kuramoto order parameter 〈ρ(t )〉t (left column) and the associated variance
μ (right column). The mean frequencies are � = 0.9 in (a), � = 0.892 in (b), and � = 0.884 in (c). The classical scenario of transitions is
recovered in (a), whereas the two hysteretic scenarios involving passage over one or two bistability regions, indicated by shading in (b) and
(c), are reported for the first time as far as we know.

time series in Fig. 4(e). For this reason, it is also called the
synchronous state in Ref. [13]. For diversities to the right of
the FH point, the saddle-node annihilation of B1 and B2 no
longer occurs on an invariant circle. Thus, the only attractor
within region VI corresponds to a small limit cycle emerging
from Hopf destabilization of B3. For increasing diversity, B3

gains stability by undergoing the inverse Hopf bifurcation, as
already indicated above.

A. Classical and hysteretic transitions
between macroscopic regimes

Having characterized all the regimes of macroscopic ac-
tivity and the associated stability domains, we focus on the
scenarios leading to the onset and the suppression of the
collective mode in heterogeneous populations, an issue of out-
standing importance in the theory of coupled dynamical sys-
tems. By the classical paradigm [13], the systematic increase
of diversity under fixed mean frequency induces a sequence of
transitions between the three regimes of collective dynamics,
namely the global rest state, the synchronous state (corre-
sponding to macroscopic oscillations), and the asynchronous

state (a heterogeneous state displaying mixed excitable and
oscillatory local dynamics). Our study demonstrates that,
apart from this, there exist two novel generic scenarios of
transitions involving a hysteretic behavior. To gain a deeper
insight into this problem, we have plotted how the time-
averaged modulus of the Kuramoto mean-field ρ(t ) = |R(t )|
and the associated variance μ =

√
〈ρ2〉t − 〈ρ〉2

t change under
variation of the diversity 	 for the three characteristic mean
frequencies � ∈ {0.9, 0.892, 0.884}, cf. Fig. 5. In order to
reveal the potential bistable behavior, we have carried out
sweeps in the directions of the increasing and the decreasing
	 applying the method of numerical continuation, where the
initial conditions for the system with incremented 	 coincide
with the final state at the previous 	 value.

The classical sequence of transitions is indeed recovered
for � = 0.9, see Fig. 5(a). There the onset of the collective
mode is guided by a SNIPER bifurcation, mediating a tran-
sition from the homogeneous stationary state B1 to a periodic
solution. The suppression of the collective mode is induced by
an inverse Hopf bifurcation that stabilizes the heterogeneous
stationary state B3, which is analogous to the Kuramoto-type
scenario where the system desynchronizes under increasing
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FIG. 6. The (	,�) parameter plane divided into regions with
different macroscopic dynamics: the monostable stationary state
(dark blue, regions I and V), monostable limit cycle (light blue,
region II), bistability with two coexisting stationary states (green,
region IV), and bistability between a stationary state and a limit
cycle (yellow, region III). The parameter values are the same as
in Fig. 2. Superimposed are the corresponding bifurcation curves
obtained analytically within the Ott-Antonsen framework.

disorder. For � = 0.892, we have established a hysteretic
transition scenario, emerging due to a passage through a
bistability region III from Fig. 2, which admits coexistence
between the homogeneous stationary state B1 and the periodic
solution created from B3, cf. Fig. 5(b). In this case, the onset
of a collective mode is induced by a Hopf bifurcation, while
its suppression is controlled by the homoclinic tangency of
the limit cycle. For � = 0.884, the sequence of transitions
remains hysteretic but becomes more complex, see Fig. 5(c).
In particular, by increasing the diversity, one traverses over
two bistability regions, denoted by III and IV in Fig. 2. While
the first one is qualitatively the same as for � = 0.892, the
second one supports two coexisting stationary states, associ-
ated to B1 and B3. Nevertheless, the onset and the suppression
of the collective mode per se follow the same scenario as the
one described in Fig. 5(b). Note that the described transition
sequences are observed if the mean frequency � is sufficiently
large.

In order to evince the generic character of the described
scenarios and confirm the theoretical predictions regarding the
parameter domains supporting the collective oscillations, we
have carried out an extensive numerical study of the system’s
dynamics in terms of the parameters 	 and �, see Fig. 7. In
particular, using numerical continuation, we have performed
bidirectional sweeps over the (�,	) plane, keeping one
of the parameters fixed while the other one was varied, in
analogy to the method already described in relation to Fig. 6.
This allowed us to partition the (�,	) plane into different
regions according to the number and the type of the supported
attractors. Comparison of the boundaries of these regions with
the bifurcation curves from Fig. 2, which are shown overlaid,
corroborates an excellent agreement between the theory and
the numerical results.
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FIG. 7. (a) Characteristic domains of macroscopic behavior in
the (�,	) plane for coupling delay τ = 0.3. Color coding, as well
as the remaining system parameters, are the same as in Fig. 6.
Superimposed are the bifurcation curves obtained by the local sta-
bility approach described in the Appendix. (b) Critical diversity
	H corresponding to the Hopf destabilization of the state B3 in
dependence of τ for fixed � = 0.88.

We have also examined whether the qualitative picture
described so far persists under variation of the coupling
strength K . It turns out that the general bifurcation structure
holds qualitatively, which indicates the robustness of the
scenarios underlying the transitions between the different col-
lective regimes. Still, one notes that under increasing coupling
strength, the cusp point and the Hopf bifurcation curve shift
to a larger diversity (not shown).

V. IMPACT OF SMALL COUPLING
DELAY AND SMALL NOISE

In this section, the goal is to demonstrate that the physical
picture described so far for the noiseless and the delay-free
case qualitatively also holds in presence of small noise or
small coupling delay. The small-noise scenario concerns a
range of noise levels where the applied perturbation typi-
cally cannot give rise to noise-induced oscillations but may
rather evoke only rare spikes, so that the prevalent fraction
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of units within the excitable subassembly remains at the
quasistationary state. The small-delay scenario refers to delay
values which are significantly less than the typical period of
local oscillations, such that no delay-induced oscillations or
multistability can emerge [44–46]. Essentially, our intention
is not to perform an exhaustive exploration of the effects of
noise or coupling delay but rather to confine the analysis to the
cases where these two ingredients cannot evoke qualitatively
new forms of collective behavior compared to the noiseless
and delay-free case. We have carried out extensive numerical
simulations to establish how the boundaries of the five char-
acteristic domains in the (�,	) plane are modified due to the
action of small noise or small coupling delay.

A. Effects of small coupling delay

The effects of small coupling delay are illustrated in
Fig. 7(a), which shows the characteristic domains of macro-
scopic behavior in the (�,	) plane for the delay τ = 0.3.
One observes an excellent agreement between the bifurcation
curves, obtained analytically by the local stability approach
described in the Appendix, and the associated stability bound-
aries of the domains. In particular, introducing the coupling
delay does not affect the very coordinates of the stationary
states of the Ott-Antonsen equation (8), meaning that the
branches of fold bifurcations remain unchanged relative to
the delay-free case. Nevertheless, the key effect of the delay
is that the Hopf bifurcation of the state B3, which underlies
one of the scenarios for the onset of the collective mode,
shifts to a smaller diversity compared to the delay-free case.
This implies that the delay promotes multistable behavior,
in the sense that the bistability domain IV, characterized by
the coexistence between the stable stationary states B1 and
B3, becomes broader due to the impact of delay, cf. the
green highlighted region in Fig. 7(a). From another point of
view, the latter also suggests that the coupling delay promotes
the onset of the collective mode via Hopf destabilization of
the stationary state B3 but suppresses the scenario where
B1 and B2 undergo the SNIPER bifurcation. In Fig. 7(b)
it is explicitly shown how the critical diversity 	H associ-
ated to Hopf bifurcation decreases with τ when � is kept
fixed.

B. Effects of small noise

In contrast to the impact of coupling delay, the small noise
is found to influence the effective positions of both the fold
and the Hopf bifurcation curves, cf. Fig. 8(a), where the five
characteristic domains for the noise level σ = 0.3 are shown
together with the analytical curves for the noiseless case.
The primary effect of small noise is to promote the onset
of the collective mode mediated via the SNIPER bifurcation,
in the sense that for a fixed mean frequency �, macroscopic
oscillations can be observed for the diversity 	 smaller than
those in the noiseless case. As a consequence, one observes
that the critical diversity 	SN at which the fold between the
states B1 and B2 takes place reduces under increasing σ , as
indeed shown in Fig. 8(b) for the fixed � = 0.88. Nonethe-
less, noise also shifts the location of the Hopf bifurcation
relevant for the stability of the state B3, see Fig. 8(a). This
may be interpreted as a disordering effect of noise, in the sense
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FIG. 8. (a) Characteristic domains of macroscopic dynamics in
the (�,	) plane for the noise level σ = 0.3. The color coding
and the remaining system parameters are the same as in Fig. 6.
Superimposed are the bifurcation curves obtained analytically for the
noise-free case σ = 0. (b) Decrease of the critical diversity 	SN with
σ , corresponding to the saddle-node annihilation of the states B1 and
B2 for fixed � = 0.88.

that the transition from the regime of macroscopic oscillations
(domain II) to the asynchronous regime (domain V) occurs at
the diversity smaller than that for the noise-free case. Also
note that the bistability regions III and IV shrink as compared
to the noiseless case.

In principle, one observes that the structure of the charac-
teristic domains is qualitatively preserved with introduction
of small noise, but the associated stability boundaries shift
to the left with respect to the noiseless case. This can be
understood by the following qualitative reasoning. The impact
of small noise on the local dynamics of the nodes can roughly
be interpreted as a perturbation of the intrinsic frequency ωi.
To corroborate this, in Fig. 9 we illustrate how the effective
oscillation frequencies of single units ωeff,i, calculated numer-
ically as the inverse of the respective mean oscillation periods,
change in the presence of noise σ = 0.3. One finds that a
certain fraction of units whose intrinsic frequencies ωi lie
closest to the excitability threshold ω = 1 acquire a nonzero
effective frequency, i.e., manifest noise-induced oscillations,
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FIG. 9. Effective oscillation frequencies of uncoupled units ωeff

for the noiseless case (black dots) and under noise intensity σ 2 =
0.09 (red dots) as a function of the intrinsic parameters ωi. The
dashed line indicates the excitability threshold ω = 1. The frequency
distribution g(ω) is characterized by � = 2, 	 = 4.

while the excitable units further away from the threshold
remain quasistationary. Nonetheless, the impact of noise on
the self-oscillating units is reflected as a small increase of
their effective frequency. Thus, in qualitative terms, the effect
of small noise amounts to enhancing the effective frequency
of the units near the threshold ω = 1. Since this effect is
symmetrical for positive and negative ω, the average assembly
frequency � remains unchanged, whereas the variance of the
associated distribution increases proportionally to the noise
intensity. Therefore the introduction of small noise should
lead to similar effects as the increase of diversity 	.

VI. SUMMARY AND CONCLUSION

Considering a heterogeneous assembly of active rota-
tors displaying excitable or oscillatory local dynamics, we
have classified the associated macroscopic regimes and have
demonstrated the generic scenarios for the onset and the
suppression of collective oscillations. The analytical part of
the study has been carried out within the framework of Ott-
Antonsen theory applied for the delay- and noise-free system
in the continuum limit, which enabled us to determine the
three macroscopic stationary states in case of an arbitrary
distribution of natural frequencies. The main qualitative in-
sight into the microscopic structure of stationary states is
that the population may in principle split into the excitable
and the rotating subassembly, with the division depending
on the relationship between the respective natural frequency
of a rotator and the macroscopic excitability parameter. In
this context, we have identified a homogeneous equilibrium
where the units typically lie at rest, as well as a heterogeneous
(mixed) collective stationary state, composed of units either
in the excitable regime or the oscillatory regime. The local
approach to stability and bifurcation analysis of the station-
ary states we have derived allowed us to address both the
delay-free case and the case where the system’s behavior is

influenced by coupling delay. The analysis has been specified
to the particular case of a uniform frequency distribution on
a bounded interval. While the stationary states have been
determined earlier for a similar, but a less general model [13],
the stability analysis, as presented here, has been carried out
for the first time.

We have demonstrated that the complex bifurcation
structure underlying the stability boundaries of the different
macroscopic regimes is organized by three codimension-two
bifurcation points, including the Bogdanov-Takens point, the
cusp point, and the fold-homoclinic point. Our analysis has
revealed the existence of five characteristic domains, three of
which support the monostable collective behavior, while two
admit bistability, involving either the coexistence between two
stable stationary states or the coexistence between a stationary
and a periodic solution. We have found that, depending on
the mean frequency, the onset and the suppression of the
collective mode may emerge via two qualitatively different
scenarios under variation of diversity. In particular, for a
smaller mean frequency, the onset of collective oscillations
under decreasing diversity occurs due to a Hopf destabiliza-
tion of a stationary state, whereas the oscillations are termi-
nated via a saddle-homoclinic bifurcation. Nevertheless, for
a sufficiently large mean frequency, increasing the diversity
gives rise to collective oscillations in a SNIPER bifurcation,
while the suppression of oscillations is due to an inverse Hopf
bifurcation.

The classical paradigm concerning the sequence of transi-
tions between the collective regimes in heterogeneous systems
under increasing diversity involves three characteristic states,
namely the global rest state; the synchronous state, character-
ized by macroscopic oscillations; and the asynchronous state,
based on mixed excitable and oscillatory local dynamics [13].
In addition to this paradigm, our analysis has revealed two
novel scenarios, which are hysteretic and involve a passage
through one or two bistable domains. By the first scenarios,
the transition from the global rest state to the asynchronous
state occurs via two bistable regimes, the first involving a
coexistence between a periodic solution and the rest state
and the second one featuring coexistence between the rest
state and the asynchronous state. The second hysteretic sce-
nario is similar, but the intermediate stage involves only the
coexistence between the homogeneous and the oscillatory
state.

Combining theoretical methods and numerical experi-
ments, we have shown that the basic bifurcation structure
from the delay- and noiseless case persists in the presence
of small noise or small coupling delay. Nevertheless, these
two ingredients are found to modify the stability boundaries of
the five characteristic domains. In particular, due to coupling
delay, the position of the Hopf bifurcation curve is shifted
toward the smaller diversity, which effectively promotes the
Hopf-mediated onset of macroscopic oscillations and also
enhances the parameter domain supporting bistability. Noise
is seen to affect both the fold and the Hopf bifurcations,
whereby the effective position of the fold or Hopf curve is
shifted to smaller mean frequency or smaller diversity. At the
level of macroscopic behavior, this is reflected as the promo-
tion or suppression of the onset of macroscopic oscillations
via SNIPER or Hopf bifurcation scenario, contributing in
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addition to a reduction of the two bistability domains. While
the described bifurcation structure appears to be generic for
the considered type of frequency distribution, remaining qual-
itatively similar under the influence of small noise or small
coupling delay, it would be interesting to examine whether
and how it is modified for a substantially different form of a
frequency distribution, such as a bimodal one.
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APPENDIX: CALCULATION OF THE STABILITY OF THE
STATIONARY SOLUTION OF

THE OTT-ANTONSEN EQUATION

Here we elaborate on the method applied to calculate
the stability of the stationary solutions of the Ott-Antonsen
equation (8). In particular, we first introduce the expressions
z(ω, t ) = x(ω, t ) + iy(ω, t ) and R(ω, t ) = X (ω, t ) + iY (ω, t )
for the local and the global order parameters, respectively,
transforming (8) to

ẋ = F (x, y, X,Y ) = a

2
(y2 − x2 + 1) − ωy

− Kxy(Y cos α − X sin α) − K

2
(X cos α + Y sin α)

× (x2 − y2) + K

2
(X cos α + Y sin α)

ẏ = G(x, y, X,Y ) = −axy + ωx − Kxy(Y sin α + X cos α)

+ K

2
(Y cos α − X sin α)(x2 − y2)

+ K

2
(Y cos α − X sin α). (A1)

The linearization of Ott-Antonsen equation (8) for vari-
ations ξ = (δx, δy)T , � = (δX, δY )T of the stationary solu-
tion (x0, y0) can then succinctly be written in the matrix
form as

dξ (ω, t )

dt
= A(ω)ξ (ω, t ) + B(ω)�(t ), (A2)

where the matrices of derivatives are

A(ω) =
(

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)
, B(ω) =

(
∂F
∂X

∂F
∂Y

∂G
∂X

∂G
∂Y

)
. (A3)

Assuming that the variation ξ (ω, t ) satisfies the ansatz
ξ (ω, t ) = ξ (ω)eλt , and similarly �(t ) = �eλt , (A2) becomes

[A(ω) − λI]ξ (ω) + B(ω)� = 0, (A4)
where I denotes the identity matrix. As shown in Ref. [40],
the continuous Lyapunov spectrum consists of the eigenval-
ues of the matrix B(ω) for all ω ∈ [ω1, ω2]. In our case,
the continuous spectrum turns out to be always stable or
marginally stable, such that the stability of the stationary
solutions is determined by the discrete spectrum. In order
to obtain the discrete spectrum, we multiply (A4) from the
left by g(ω)[A(ω) − λI]−1 and integrate over ω obtaining
C(λ)� = 0, where

C(λ) = I +
∫ ∞

−∞
dωg(ω)[A(ω) − λI]−1B(ω). (A5)

The discrete Lyapunov spectrum can then be calculated by
numerically solving the system det C(λ) = 0.

In the case of nonzero coupling delay, the same type of
analysis remains valid, while one has to replace X and Y in
the r-hand side of (A1) by their delayed counterparts X (t −
τ ) and Y (t − τ ). This leads to the same matrix C(λ) as in
(A5), with the only difference being the substitution of B(ω)
by B(ω)e−λτ .
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We study a system of two identical FitzHugh-Nagumo units with a mutual linear coupling in the fast variables.
While an attractive coupling always leads to synchronous behavior, a repulsive coupling can give rise to
dynamical regimes with alternating spiking order, called leap-frogging. We analyze various types of periodic
and chaotic leap-frogging regimes, using numerical path-following methods to investigate their emergence and
stability, as well as to obtain the complex bifurcation scenario which organizes their appearance in parameter
space. In particular, we show that the stability region of the simplest periodic leap-frog pattern has the shape of a
locking cone pointing to the canard transition of the uncoupled system. We also discuss the role of the timescale
separation in the coupled FitzHugh-Nagumo system and the relation of the leap-frog solutions to the theory of
mixed-mode oscillations in multiple timescale systems.

DOI: 10.1103/PhysRevE.99.042207

I. INTRODUCTION

The FitzHugh-Nagumo system is a classical model of neu-
ronal dynamics. As the simplest, yet paradigmatic example
of a coupled neuronal system, we investigate here a pair of
two identical FitzHugh-Nagumo units with a weak mutual
coupling. Such a network motif of two coupled neurons has
been considered as a basic building block of central pattern
generators [1] and the complex neural networks of the cortex
[2–5]. The dynamics of such systems has typically been in-
vestigated in the framework of the synchronization paradigm
[6–8], focusing on the stability of states with phase-locked
firing and their potential role in rhythmogenesis [9]. Never-
theless, a remarkable property of these simple circuits is that
they are also able to generate complex activity patterns where
the interspike intervals show complex dynamics. A typical
example of such patterns is the so-called leap-frog dynamics
[10], sometimes also called leader-switching dynamics [11],
where the units exchange their order of firing within each
oscillation cycle. Such a regime has so far been associated
exclusively to class I neural oscillators coupled via strong
synapses with complex nonlinear dynamics [12–16]. In the
present paper, we investigate the emergence of leap-frogging
dynamics in a system of two classical FitzHugh-Nagumo units
interacting only via a small linear coupling. The emerging
complex dynamical patterns can be explained as a result
of the timescale separation between the activator and the
recovery variable. For a single unit, the timescale separation
is crucial for the mechanism inducing the rapid change in
the amplitude from small subthreshold oscillations to large
relaxation oscillations. Introducing a repulsive coupling in the

*sebastian.eydam@wias-berlin.de

fast variables, the leap-frog patterns emerge in locking cones
generated by a complex bifurcation scenario immediately
at this transition. The alternation in the spiking order of
the units arises from trajectories containing both the small-
amplitude subthreshold oscillations and the large-amplitude
relaxation oscillations. Such a behavior involving interspersed
small- and large-amplitude oscillations, called mixed-mode
oscillations [17–20], is a typical phenomenon in slow-fast
systems with at least two slow variables and has been studied
extensively by geometric singular perturbation methods for
the limit of infinite timescale separation. In particular, a three-
dimensional version of the FitzHugh-Nagumo system has
been used as a classical example for mixed-mode oscillations,
see, e.g., Ref. [20] and references therein. Singular perturba-
tion techniques have been also applied to coupled nonidentical
mixed-mode oscillators [21] and for the synchronization of
weakly coupled slow-fast oscillations [22].

Coupled systems of two identical oscillators have specific
symmetry properties, which at vanishing coupling induce
an additional degeneracy. First numerical studies of coupled
slow-fast oscillators can already be found in Refs. [23,24],
where a detailed exposition of the four-dimensional slow-fast
structure is given. Due to the symmetry-induced degeneracy,
for such systems the existing theoretical results for mixed-
mode oscillations do not apply directly. We will present here
a first numerical exploration of a system of two identical
FitzHugh-Nagumo units with symmetric mutual coupling.
Our approach will be a detailed bifurcation analysis using
path-following methods at finite values of the timescale sepa-
ration. We perform this both for the degenerate case of small
coupling, where we find an essentially new dynamical sce-
nario, and for larger coupling, where the leap-frog dynamics
is organized in a way that conforms to the general results on
mixed-mode oscillations.

2470-0045/2019/99(4)/042207(9) 042207-1 ©2019 American Physical Society
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The dynamics of the considered system of two identical
FitzHugh-Nagumo units is given by

dv1,2

dt
= v1,2 − v3

1,2/3 − w1,2 + c(v2,1 − v1,2),

dw1,2

dt
= ε(v1,2 + b), (1)

where the symmetric linear coupling acts in the fast variables
v1,2. The small parameter ε facilitates the timescale sepa-
ration between the fast variables vi and the slow variables
wi. In the context of neuroscience, the former represent the
neuronal membrane potentials, whereas the latter correspond
to the coarse-grained activities of the membrane ion-gating
channels. For a single unit, the parameter b mediates the tran-
sition from the quiescent regime for b > 1 to the oscillatory
regime for −1 < b < 1. Due to the timescale separation, this
is accompanied by a canard transition from small-amplitude
subthreshold oscillations to the large-amplitude relaxation
oscillations. We invoke some basic results derived from sin-
gular perturbation theory about the slow-fast structure of the
uncoupled FitzHugh-Nagumo unit in Sec. II.

Since the parameters b and ε are taken to be identical for
both units, system Eq. (1) possesses a Z2-symmetry, being
equivariant with respect to exchanging the indices by

σ : (v1,w1, v2,w2) �→ (v2,w2, v1,w1).

This leads to the appearance of solutions with different sym-
metry types, reflecting the different states of in-phase and
anti-phase synchronization, which will be discussed in Sec. II
which concerns the basic types of solutions bifurcating from
the stationary regime. Close to the canard transition of the
uncoupled system, there appear various types of periodic and
chaotic leap-frog patterns in the system with repulsive cou-
pling. Using the software package AUTO [25] for numerical
bifurcation analysis by continuation methods, in Sec. III we
investigate in detail the complex bifurcation scenarios respon-
sible for the onset of the different types of leap-frogging
dynamics. We conclude the paper with an outlook in Sec. IV,
discussing the relation of our results to earlier findings on
leap-frog dynamics in models of neuronal systems.

II. BASIC DYNAMICAL REGIMES

We begin our investigation of system Eq. (1) by collecting
simple stationary and periodic solutions together with their
stability and symmetry properties. In the symmetric regime

v1 = v2 and w1 = w2, (2)

the coupling term vanishes and the dynamics Eq. (1) is
governed by a single FitzHugh-Nagumo system, where the
units display simultaneously the well-known transition from
the quiescent regime with a unique stable equilibrium for
b > 1 to the oscillatory regime for b < 1, mediated by a
supercritical Hopf bifurcation at b = 1. Due to the timescale
separation 0 < ε � 1, the bifurcating branch of periodic solu-
tions displays a characteristic transition from small-amplitude
harmonic oscillations of period O(1/

√
ε) to large-amplitude

relaxation oscillations of period O(1/ε), called a canard
transition. This scenario has been extensively studied within
the framework of singular perturbation theory, viz. in the
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FIG. 1. (a) Variation of the period T along the branch of
synchronous periodic solutions for varying b and fixed ε = 0.05.
(b) Phase portraits of selected periodic solutions: a subthreshold
oscillation for bc < b < bH (blue solid), the canard trajectory bc = b
(green dotted), a relaxation oscillations with bc > b (red dotted-
dashed), corresponding to the square, the triangle, and the disk,
in (a) respectively, and the cubic nullcline (dashed black). The
corresponding values of b are indicated by the colored dots in (a).
(c) Location of the canard transition bc for varying ε. Numerical
path-following of the periodic solution with maximal period (green
line) is compared to asymptotic formula Eq. (3), shown dashed.

limit ε → 0; see, e.g., Ref. [18] for a recent overview. In
Fig. 1 we illustrate the canard transition in the symmetric
regime, showing numerical results obtained by path-following
methods [25]. In Fig. 1(a) we have fixed ε = 0.05, display-
ing the varying period along the branch of periodic orbits
emerging from the Hopf-bifurcation at b = bH = 1. Note the
nearly vertical transition from small to large periods at the
canard transition b = bc. The phase portraits of the three orbits
shown in Fig. 1(b), selected before, after, and immediately
at the transition, indicate that the change in the period is
accompanied by a transition from small to large amplitudes
via canard trajectories that follow the unstable part of the slow
manifold, which is close to the critical manifold w = v −
v3/3. From the neuroscience perspective, this corresponds to a
transition route from the quiescent state to the spiking regime
via subthreshold oscillations. A detailed asymptotic analysis
reveals that the leading order approximation for the location
bc of the canard transition is given by

bc ≈ (1 − ε/8), (3)

see Ref. [26]. In Fig. 1(c) we show that for small ε > 0 this
expression (dashed line) provides indeed a good approxima-
tion for the actual location of the canard transition (solid green
line), which we obtained numerically by path-following in ε

the trajectory of maximal period, sometimes called maximal
canard [green curve in Fig. 1(b)]. Recall that both the regimes
of stable equilibrium and of subthreshold oscillations are
excitable [27,28] in a sense that a strong enough perturbation
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FIG. 2. Stability region (checkered pattern) of the symmetric
equilibrium Eq. (5) in the (b, c) plane, bounded by in-phase Hopf in-
stability (vertical blue line) and antiphase Hopf instability (diagonal
red line). The antiphase Hopf bifurcation changes from supercritical
to subcritical in a generalized Hopf point (GH), where a fold curve
of the antiphase synchronous limit cycles emerges (green line). DH
denotes the resonant double Hopf point for the decoupled system at
(b, c) = (1, 0).

may elicit a large excursion in phase space, i.e., a spiking
response in the form of a single relaxation oscillation.

The full system Eq. (1), which can be rewritten in coordi-
nates longitudinal and transversal to the symmetry subspace
Eq. (2),

vL,T = v1 ± v2, wL,T = w1 ± w2, (4)

has a slow-fast structure with two fast and two slow variables.
For small coupling c, the corresponding critical manifolds
and fast fibers are given trivially as a direct sum of the
corresponding objects for each of the units. It can be easily
seen that the only stationary state of Eq. (1) is the symmetric
equilibrium

(v1,w1, v2,w2) = (−b,−b + b3/3,−b,−b + b3/3), (5)

obtained from the single FitzHugh-Nagumo unit. While the
symmetry-preserving Hopf bifurcation at b = 1 in the coupled
system is analogous to the Hopf bifurcation of the single
FitzHugh-Nagumo unit and does not depend on the coupling
parameter c, in the coupled system the symmetric equilibrium
may also undergo symmetry-breaking bifurcations. In particu-
lar, it may become unstable via a Hopf bifurcation to antiphase
synchronized periodic solutions of the form

v1(t ) = v2

(
t + T

2

)
, w1(t ) = w2

(
t + T

2

)
, (6)

where T > 0 is the period. Using the longitudinal and
transversal coordinates Eq. (4) one obtains the condition

c = 1 − b2

2
(7)

for this antiphase Hopf instability of the synchronous equi-
librium Eq. (5). In Fig. 2, the associated bifurcation curve
is shown in the (b, c) plane together with the in-phase Hopf
instability at b = 1. For attractive coupling c > 0, the stabil-
ity region (checkered pattern) of the symmetric equilibrium
Eq. (5) is bounded by the in-phase Hopf instability, shown by

FIG. 3. Stability regions of basic periodic solutions in the (b, c)
plane for ε = 0.1: in-phase synchronous oscillations (blue diagonal
stripes); antiphase synchronous subthreshold oscillations (red dot-
ted); coexistence of in-phase and antiphase subthreshold oscillations
(purple filled); asynchronous oscillations—successive spiking (yel-
low squared). Bifurcation curves delineating the stability bound-
aries: in-phase Hopf instability (vertical blue line); antiphase Hopf
instability (diagonal red line); fold of antiphase synchronous limit
cycles (left boundary of the lower dotted region, green); subcritical
period doubling of in-phase subthreshold oscillations (left boundary
of the lower striped region, purple); subcritical symmetry breaking
pitchfork of in-phase subthreshold oscillations (right boundary of
the lower striped region, light blue); supercritical period doubling of
asynchronous oscillations (boundary of the squared region, orange).
Canard transition at b = bc (black dashed); see Fig. 1.

the blue line, while for repulsive coupling c < 0, the stability
boundary is given by the antiphase Hopf Eq. (7). For larger
negative values of c, this bifurcation is subcritical, such that no
stable branch of antiphase synchronized oscillations emerges.
The criticality changes in a generalized Hopf (Bautin) point,
labeled as GH in Fig. 2. From this point emanates a curve of
folds of limit cycles, shown by the green line in Fig. 2. The
two Hopf bifurcation curves intersect in the resonant double
Hopf point (DH) located at (b, c) = (1, 0). Note that this
point belongs to the line c = 0 where the system decouples,
thus behaving neutral with respect to all symmetry-breaking
perturbations.

Figure 3 shows the stability regions and the associated
stability boundaries of the periodic solutions. For attractive
coupling c > 0, all synchronous oscillations are stable (blue
diagonal striped region), undergoing at b = bc the canard
transition from small- to large-amplitude oscillations as in
the case of a single unit; cf. Fig. 1. For repulsive coupling
c < 0, the situation is more complicated. There is a small
region (red dotted in Fig. 3) above the generalized Hopf
point and the emanating fold of limit cycles (green curve)
where one finds stable antiphase synchronized oscillations.
Note that after a secondary bifurcation, the fold of limit
cycles (green curve) is no longer a stability boundary of the
antiphase synchronized oscillations (dashed part of the curve).
Surprisingly, there are also stable in-phase synchronized so-
lutions for repulsive coupling c < 0. They are confined to a
narrow region immediately below the canard transition, which
is bounded by a curve of period doubling (left, purple line) and
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FIG. 4. Time traces and phase portraits of stable coexisting in-
phase synchronous (a) and antiphase synchronous (b) subthreshold
oscillations. Parameters (ε, b, c) = (0.1, 0.9885, −0.0005) belong
to the coexistence region (purple in Fig. 3). Variables v1,2(t ) are
shown in red (solid) and blue (dotted), whereas the coupling term
�v = c(v2 − v1) is indicated in green color (dash-dotted).

a curve of symmetry-breaking pitchfork bifurcations (right,
light blue line). In particular, for small negative coupling, one
encounters a region of bistability, where both the in-phase and
antiphase synchronized oscillations are stable (purple-shaded
region in Fig. 3). Figure 4 illustrates coexisting stable in-phase
and antiphase synchronous solutions computed for the pa-
rameters (ε, b, c) = (0.1, 0.9885,−0.0005) from this region.
Note that the coexistence region is confined to subthreshold
oscillations prior to the canard transition at b = bc.

Apart from the in-phase and antiphase synchronous
regimes, there may also appear periodic solutions without
any symmetry. For repulsive coupling c < 0 and beyond the
canard transition, i.e., b < bc, there is a large parameter region
admitting a stable regime of successive spiking, with both
units performing relaxation oscillations shifted in phase. The
stability region of this successive spiking, shown in yellow
(square pattern) in Fig. 3, is bounded by a curve of supercriti-
cal period doubling (right, orange line). Figures 5(a) and 5(b)
provide the time traces and phase portraits for the regime of
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FIG. 5. Time traces and phase portraits of stable asymmetric
successive spiking: (a) before period doubling (b = 0.98625) and
(b) after several period doubling bifurcations (b = 0.98692). The
remaining parameters are (c, ε) = (−0.01, 0.1). Colors and line
styles are as described in the caption of Fig. 4.

successive spiking before period doubling and after several
period doubling bifurcations, respectively. Note that in Fig. 3
several bifurcation curves point toward the canard transition,
thus creating a complex scenario where the different dynami-
cal regimes with different symmetry properties bifurcate and
interchange their stability. This indicates that a detailed study
of the limit ε → 0, c → 0 could reveal the dependence of
all these bifurcations on ε and in this way explain the whole
scenario by an unfolding of the corresponding singularity.

Moreover, there is a region, indicated in white in Fig. 3,
where none of the periodic solutions described above is stable.
We demonstrate below that in this region the system exhibits
several periodic or chaotic regimes characterized by the fact
that the trajectory of each unit comprises large relaxation
oscillation loops as well as smaller loops of a size comparable
to that of subthreshold oscillations. This phenomenon of
such so called mixed-mode oscillations has been extensively
studied using geometric singular perturbation methods for the
limit ε → 0. They are known to arise generically in slow-fast
systems with two slow variables and a folded node singu-
larity. Let us very briefly recall the corresponding slow-fast
geometry of system Eq. (1), see also Ref. [24]. Following
the classical approach (see, e.g., Ref. [18]), we find the fold
condition for the two-dimensional critical manifold as(

1 − v2
1

)(
1 − v2

2

) = c
(
2 − v2

1 − v2
2

)
.

For c = 0, this provides two lines of folds, intersecting at
the point v1 = v2 = −1. At b = 1, the symmetric equilibrium
Eq. (5) passes through this intersection of folds (DH point
in Fig. 2). At the same time, the slow flow across the folds
vanishes along the whole pair of intersecting lines of folds
and hence violates also the usual genericity assumption on
a folded singularity. An unfolding at small c �= 0 of this
degenerate situation involves the interplay of two small quan-
tities. As a first step, we will explore these mixed-mode type
dynamics without invoking the singular limit where these
two quantities tend to zero. Instead, we use simulations and
numerical path-following techniques to describe the bifurca-
tion scenario for finite values of ε. Comparing the results of
the numerical bifurcation analysis for different values of ε

will also provide some information about possible scalings
between the two small quantities.

III. COMPLEX DYNAMICAL REGIMES
AT THE CANARD TRANSITION

To numerically examine the different types of solutions of
system Eq. (1), we have performed a parameter sweep with
respect to b at fixed c = −0.01 and ε = 0.1; see Fig. 6. The
scan is performed by a numerical continuation according to
the following procedure: after each increment in the sweeping
parameter b, we use the final state of the preceding simulation
as an initial condition, then discard a transient, and sample the
return times Tn between consecutive crossings of the Poincaré
section w1 = −2/3. The robustness of the numerical results
has been verified for different simulation step sizes of the
fourth-order Runge-Kutta scheme, which has been used in all
of our simulations. Sweeping has been carried out in forward
(increasing b, red points) and backward direction (decreasing
b, black points), allowing us to detect potential coexisting
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FIG. 6. Sampled return times Tn between consecutive cross-
ings of the hyperplane w1 = −2/3 for varying b and (c, ε) =
(−0.01, 0.1). Red and black points correspond to different sweeping
directions in b.

stable regimes. Note that the return times Tn ≈ 50 correspond
to a single round trip of the unit j = 1 along the relaxation
oscillation orbit, while the return times Tn < 30 correspond
to a round trip following a subthreshold oscillation orbit. In
Fig. 6, one can identify the regime of successive spiking
in regions I and II, the in-phase subthreshold oscillations in
regions II–IV, and the antiphase subthreshold oscillations in
region VII. In addition, we find the periodic regime displayed
in Fig. 7(a), which is the only attractor in region V and
coexists with the in-phase subthreshold oscillations in region
IV. Note that due to the space-time symmetry Eq. (6), the
phase portraits of the trajectories of both units in the (v,w)

plane coincide. This periodic regime can be characterized as
follows. Within one period, each unit performs two round
trips along the relaxation oscillation orbit and one round trip
along a subthreshold oscillation orbit. The spikes of the two
units again occur with a phase shift as in the successive
spiking regime. However, as a result of the inlaid subthreshold
oscillations, the spiking order gets reversed for every pair of
successive relaxation oscillations. This regime of alternating
spiking order with a single subthreshold oscillation performed
between each pair of successive spikes is referred to as simple
leap-frogging. We shall discuss the underlying bifurcation
scenario and its dependence on the slow-fast structure of the
system in the following section.

In region VI, one observes chaotic behavior, interrupted by
some small parameter intervals of more complicated periodic
behavior. Chaotic mixed-mode oscillations have already been
numerically observed in Ref. [29] for a periodically forced
slow-fast oscillator. Examples of chaotic orbits are shown in
Figs. 7(e) and 7(f). More complicated periodic orbits from
some of the periodic windows in region VI are provided in
Figs. 7(b)–7(d). The periodic orbits in Figs. 7(b) and 7(d)
carry the space-time symmetry Eq. (6), which leads to a
similar exchange in the spiking order as the leap-frog orbit
in Fig. 7(a). The periodic solution in Fig. 7(c) is asymmetric,
displaying successive spikes with fixed spiking order similar
to Fig. 4(a), but interspersed with several almost antiphase
subthreshold oscillations.

A. Simple leap-frogging

The dynamical regime of leap-frogging illustrated in
Fig. 7(a) is a periodic regime where successive spikes occur
with an alternating spiking order. The alternation is induced
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FIG. 7. Time traces and phase portraits of selected trajectories from regions V and VI in Fig. 6: Simple leap frogging in (a); periodic orbits
with space-time symmetry in (b) and (d); asymmetric periodic orbit with several subthreshold oscillations in between successive spikes in (c);
chaotic regimes in (e) and (f). Other parameters and colors and line styles are as described in the caption of Fig. 4.
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FIG. 8. (a) Branch of simple leap-frog solutions for varying b
and fixed c = −0.01, ε = 0.1. The stability region (solid curve) is
bounded by two folds of limit cycles (yellow square and red cross).
At all other folds (e.g., green circle) both branches are unstable
(dashed curves). (b) Phase portraits of limit cycles at the folds from
panel (a), square (dotted), cross (solid), and circle (dashed).

by a subthreshold oscillation of the leading unit, whereby the
lagging unit, passing without such a small loop, can overtake
the current leader and spike the next time first. During the next
spiking event, the units follow an analogous scenario but with
interchanged roles, which results in the space-time symmetry
Eq. (6). Figure 8(a) provides the branch of leap-frogging
solutions for varying b and fixed (c, ε) = (−0.01, 0.1). The
branch has the shape of a closed curve and is stable only
within a small region bounded by two folds of limit cycles. A
continuation of these folds in the two parameters (b, c), shown
as black curves, provides the purple stability region shown in
Fig. 9(a). The latter has the shape of a linear cone and points
to the canard transition of the uncoupled periodic regime at
(b, c) = (bc, 0). However, for the chosen value of ε = 0.1,
the exact bifurcation structure in the vicinity of this point
could not be reliably resolved numerically. Therefore, to gain
a better understanding of the bifurcation structure at the tip
of the stability cone, we increased the value of ε. Figure 9(b)
shows the associated stability region in the (b, ε) plane. For
the fixed values of ε = 0.15 and ε = 0.2, we calculated again
the stability cones in the (b, c) plane, see the green and blue
regions in Fig. 9(a). For these larger values of ε, it becomes
apparent that the cones are clearly detached from the line
c = 0, and that the sharp tip of the cone is actually formed
by a single smooth curve of fold bifurcations. However, there
is a codimension-two point close to the tip where a curve of
symmetry-breaking pitchfork bifurcations crosses through the
fold and becomes the stability boundary of the leap-frogging
regime. The pitchfork curves are plotted in red in Fig. 9. For
larger ε = 0.15 [see the green stability cone in Fig. 9(a)],
we observe another cusp point where the branch of stable
leap-frogging folds over, such that its stability region is again
delineated by a fold (black curves in Fig. 9).

For ε = 0.2 we were able to completely resolve the bifur-
cation scenario in the vicinity of the tip; see Fig. 10. At small
coupling c = −0.00195 the branch of leap-frogging solutions
emerges as a small bubble [panel (I)]. For stronger coupling,
this closed branch folds over and a further pair of folds

FIG. 9. (a) Stability regions of the simple leap-frog solutions
in the (b, c) plane for fixed ε ∈ {0.2, 0.15, 0.1} are shown in blue,
green, and purple, respectively. The vertical dashed lines of corre-
sponding color indicate the location bc(ε) of the canard transition
of the synchronous oscillations. (b) Stability regions of the simple
leap-frog solutions in the (b, ε) plane for fixed c = −0.012. In
both panels, the stability regions are bounded by curves of fold
bifurcations (solid black lines) and curves of pitchfork bifurcations
(shown by red color). Triangles and squares indicate pitchfork-fold
interaction and cusp points.

emanates from a cusp point. Moreover, through symmetry-
breaking pitchfork bifurcations, there appears a branch of
asymmetric leap-frogging solutions, which is also folded in
an increasingly complex fashion, sometimes even featuring
a small region of stability [see panel (II)]. Another type of
codimension-two bifurcation points are 1:1 resonances, which
give rise to branches of torus bifurcations. Figure 9 shows
that for smaller ε, this complicated bifurcation scenario is
contracted to a small vicinity of the canard transition of the
uncoupled periodic regime at (b, c) = (bc, 0). The presum-
ably exponential scaling of this contraction would clarify why
already for ε = 0.1 the bifurcations at the tip of the cone could
not be reliably resolved by our numerics.

B. Multiple leap-frogging

We have observed that the stable simple leap-frog solutions
emerge already at very weak negative coupling and are ac-
companied with a regime of complicated or chaotic mixed-
mode oscillations. However, for stronger negative coupling,
one finds a different scenario. In Fig. 11 we show different
dynamical regimes for varying parameter b, now with c =
−0.1, while ε is fixed again to 0.1. Similar to Fig. 6, we
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FIG. 10. (a) Bifurcations of the simple leap-frogging solutions in the (b, c) plane for ε = 0.2. (b) Enlarged view of the region where the
complexity of the bubble increases. Bifurcation curves: folds of limit cycles (black), pitchfork bifurcations (red), torus bifurcations (green),
also indicated by the labels LP, BP, and TR in panel (b), respectively. Solid curves indicate bifurcations delimiting the stability region; Dashed
bifurcation curves involve only unstable states. Codimension-two bifurcations: cusps of limit cycles (squares), pitchfork-fold (triangles), torus
(green circles). (I)–(III) Solid curves indicate stable branches of leap-frogging solutions with folds points (stars) and pitchfork bifurcations
(circles), dashed curves indicate unstable branches. Asymmetric branches emerging from pitchfork bifurcations (red circles) are shown in red.
The chosen values of c are indicated in panels (a) and (b).

have for each b value sampled the return times between
consecutive Poincaré events where one of the units crosses
v j = −b in increasing direction. For this stronger repulsive
coupling we find a sequence of periodic patterns with a

20
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60

0.995 1.015 1.035 1.055 1.075 1.095

T
n

b

FIG. 11. Sampled return times between consecutive Poincaré
events of v1 = −b (red) or v2 = −b (black) for varying b and fixed
(c, ε) = (−0.1, 0.1).

gradually increasing number of subthreshold oscillations be-
tween two subsequent relaxation oscillations. Beginning from
the regime of successive spiking at the left edge of the dia-
gram, the system switches to the simple leap-frogging regime,
characterized by two sightly different return times Tn ≈ 50
corresponding to round trips along the relaxation oscillation
orbit and a single return time Tn < 30 corresponding to the
subthreshold oscillation following only after every second
spike. Due to the symmetry Eq. (6) and the alternating spiking
order, the units leave an identical trace in the respective return
times. The time traces typical for the subsequent dynamical
regime at larger b are shown in Fig. 12(a). Here, the sub-
threshold oscillations follow after each spike, which results
in an asymmetric solution with fixed leader and laggard unit,
distinguished by slightly different return times for the small
loop and the relaxation oscillation. Note that the subthreshold
oscillations, performed almost in antiphase, allow for the units
to interchange the leadership twice. This is why we call this
regime double leap-frogging. Increasing b further, we find
another regime, again with the space-time symmetry Eq. (6)
and an alternating spiking order, now caused by a triple in-
terchange of leadership while performing the small loops; see
Fig. 12(b). The following periodic regimes for larger b exhibit
a further increasing number of subthreshold oscillations and

042207-7
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FIG. 12. Time traces and phase portraits of double leap-frogging
at b = 1.05 (a) and triple leap-frogging at b = 1.065 (b). Other
parameters are (c, ε) = (−0.1, 0.1). Colors and line styles are as
described in the caption of Fig. 4.

are successively either of the asymmetric type with fixed
spiking order or of the type with the space-time symmetry and
an alternating order of spiking, characterized by an even and
odd number of leadership exchanges, respectively.

We have examined the stability regions of the double leap-
frogging regime for varying c and different values of ε; see
Fig. 13. In contrast to the case of simple leap-frogging, these
regions do not extend to a close vicinity of the degeneracy
at c = 0. Under varying ε, their position with respect to the
parameter b does not adapt to the canard transition bc(ε) of
the symmetric oscillations (vertical dashed lines), as in case of
the simple leap-frogging. The stability boundaries are outlined

FIG. 13. Stability regions of the double leap-frog solutions in
the (b, c) plane for fixed ε ∈ {0.2, 0.15, 0.1} are presented in blue
(bottom), green (middle), and purple (top), respectively. The left
boundary of each region is given by a curve of period doubling
bifurcations (orange), whereas the right one is provided by a fold
curve (black). The vertical dashed lines of corresponding color
indicate the location bc(ε) of the canard transition of the synchronous
oscillations.

by curves of period doubling (orange) and curves of fold
bifurcations (black) and do not involve any codimension-two
bifurcations. This scenario for larger negative coupling, which
is characterized by subsequent periodic patterns with different
numbers of large relaxation oscillations and small loops,
conforms, except for the different symmetry types, to the
results of the asymptotic theory of mixed-mode oscillations
at a folded node singularity.

IV. DISCUSSION AND OUTLOOK

In the present study, we have demonstrated that a variety
of complex leap-frog patterns may emerge in a simple sys-
tem comprised of two FitzHugh-Nagumo units with linear
repulsive coupling in the fast variables. This complex dynam-
ical scenario appears for parameter values in a vicinity of
the canard transition of the uncoupled system and involves
periodic solutions of different symmetry types. For larger
repulsive coupling we obtain periodic regimes combining
different numbers of small subthreshold and large relaxation
oscillations, which resemble the general results for mixed-
mode oscillations in slow-fast systems. For almost vanishing
coupling, where the system gains an additional degeneracy,
the situation is different. The stability region of the regime
of simple leap frogging has the shape similar to a locking
cone that approaches extremely close to the canard transition
at vanishing coupling. Close to the tip of the cone, we have
found a complex bifurcation scenario, which for decreasing
ε is contracted to a close vicinity of the degenerate canard at
c = 0. This contraction happens at a very fast and presumably
exponential rate, such that already for moderately small values
of ε a reliable numerical treatment became unfeasible and it
would be a challenging task to perform an analytical study of
this scenario in the singular limit ε → 0.

Qualitatively, the onset of the leap-frog patterns may be
explained as a result of a strong sensitivity to perturbations
of the relaxation oscillation of a single FitzHugh-Nagumo
unit just above the canard transition. There, already very
small perturbations applied during the passage near the fold
singularity of the slow manifold can deviate the trajectory
away from the relaxation oscillation, giving rise to one or
several loops conforming to subthreshold oscillations. Such
a behavior of phase-sensitive excitability and the resulting
response to excitations by noise of a single FitzHugh-Nagumo
unit has been studied in Ref. [30]. Similar phenomena where
the excitations arise from interactions in more complex net-
works have been studied in Ref. [31].

So far, the conditions relevant for the emergence of leap-
frog patterns have mostly been considered within the context
of neuroscience, especially in terms of relation to synchro-
nized states. It has been known that such patterns cannot
be obtained within the framework of weak-coupling theory
for a pair of phase oscillators, because alternating order of
firing cannot be described by reduction to an autonomous
flow on the corresponding torus [32–34]. Thus, it was first
believed that to observe the leap-frog solutions, one has to
complement the phase oscillator dynamics by a complex
synaptic coupling involving a finite synaptic time constant
[12]. The suggested alternative has been to augment the
simple phase dynamics by an additional negative phase branch
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corresponding to strong hyperpolarization after the spiking
event, as in case of the quadratic integrate-and-fire neuron
model [12]. With regard to relaxation oscillators, the leap-
frog patterns have first been observed as near-synchronous
states where the complete phase synchronization is perturbed
by strong inhibitory or excitatory coupling [13,14]. Later
research focused on class I neural oscillators represented by
Wang-Buszáki [15] or Morris-Lecar model [12,35]. In both
instances, it has been found that the appropriate inhibitory
noninstantaneous synaptic dynamics is crucial for the onset of
leap-frog dynamics. In particular, in the case of Morris-Lecar
oscillators, such patterns are facilitated by the fact that the
strong coupling causes the neurons to become transiently
trapped in the subthreshold (excitable) state during a certain
interval of the oscillation cycle, which allows for the exchange
of the spiking order between the units [12]. In contrast to
the above studies, we do not suggest a specific physiological
mechanism, but discuss the general case of a system of weakly

coupled excitable units and show how the mechanism behind
the exchange of leadership involves subthreshold oscillations,
typically observed in class II neural oscillators [17,18,20]. In
this sense our small negative linear coupling term can be seen
as the essence of how qualitatively a local linearization of a
more complicated functional dependence has to act to induce
the leap-frog patterns.
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PACS 05.40.Ca – Noise
PACS 87.19.ln – Oscillations and resonance

Abstract – Inverse stochastic resonance is a phenomenon where an oscillating system influenced
by noise exhibits a minimal oscillation frequency at an intermediate noise level. We demonstrate
a novel generic scenario for such an effect in a multi-timescale system, considering an example
of emergent oscillations in two adaptively coupled active rotators with excitable local dynamics.
The impact of plasticity turns out to be twofold. First, at the level of multiscale dynamics,
one finds a range of intermediate adaptivity rates that give rise to multistability between the
limit cycle attractors and the stable equilibria, a condition necessary for the onset of the effect.
Second, applying the fast-slow analysis, we show that the plasticity also plays a facilitatory role
on a more subtle level, guiding the fast flow dynamics to parameter domains where the stable
equilibria become focuses rather than nodes, which effectively enhances the influence of noise.
The described scenario persists for different plasticity rules, underlying its robustness in the light
of potential applications to neuroscience and other types of cell dynamics.

Copyright c© EPLA, 2018

Introduction. – Noise in coupled excitable or bistable
systems may induce two types of generic effects [1]. On
the one hand, it can modify the deterministic behavior
by acting non-uniformly on different states of the sys-
tem, thus amplifying or suppressing some of its features.
On the other hand, noise may give rise to completely
novel forms of behavior, typically based on crossing the
thresholds or separatrices, or involving enhanced stabil-
ity of deterministically unstable structures. In neuronal
systems, the constructive role of noise at different stages
of information processing, referred to as “stochastic facili-
tation” [2,3], mainly comprises resonant phenomena. A
classical example is the stochastic resonance [4], which
allows for the detection of weak subthreshold periodic
signals. A more recent development concerns the ef-
fect of inverse stochastic resonance (ISR) [3,5–12], where
noise selectively reduces the spiking frequency of neuronal
oscillators, converting the tonic firing into intermittent
bursting-like activity or a short-lived transient followed

(a)E-mail: franovic@ipb.ac.rs

by a long period of quiescence. The name of the effect
should be taken cum grano salis, because in contrast to
stochastic resonance, it involves no additional external sig-
nal: one rather observes a non-monotonous dependence of
the spiking rate on noise variance, whereby the oscilla-
tion frequency becomes minimal at a preferred noise level.
Such an inhibitory effect of noise has recently been shown
for cerebellar Purkinje cells [11], having explicitly demon-
strated how the lifetimes of the spiking (“up”) and the
silent (“down”) states [13–15] are affected by the noise
variance. ISR has been indicated to play important func-
tional roles in neuronal systems, including the reduction
of spiking frequency in the absence of neuromodulators,
suppression of pathologically long short-term memories,
triggering of on-off tonic spiking activity and even opti-
mization of information transfer along the signal propaga-
tion pathways [3,7,9,11].

So far, theoretical studies on ISR have mostly con-
cerned the scenario where a single neuron exhibits bistable
deterministic dynamics, featuring coexistence between a
limit cycle and a stable equilibrium. Such bistability is
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typical for Type-II neurons below the subcritical Hopf bi-
furcation, e.g., classical Hodgkin-Huxley and Morris-Lecar
models [3,6–8]. There, applying noise induces switching
between the metastable states, but at an intermediate
noise level, one surprisingly finds a strong asymmetry of
the associated switching rates, which makes the periods
spent in the vicinity of equilibrium much longer than the
periods of spiking activity.

An important open problem concerns conditions giving
rise to ISR in coupled excitable systems, where noise influ-
ences the emergent oscillations. Here we address in detail
this issue, as it may be crucial to understanding the preva-
lence of the effect in neural networks, whose activity de-
pends on the interplay of excitability, coupling properties
and noise. Synaptic dynamics typically involves the plas-
ticity feature, which makes self-organization in neuronal
systems a multi-timescale process: the short-term spiking
activity unfolds on a quasi-static coupling configuration,
while the slow adjustment of coupling weights depends on
the time-averaged evolution of units.

Motivated by the findings in neuroscience, we focus on
the onset of ISR in a simplified, yet paradigmatic system
of two adaptively coupled stochastic active rotators with
excitable local dynamics. Active rotators are canonical for
Type-I excitability and may be seen as equivalent to the
theta-neuron model. Adaptivity is introduced in a way
that allows continuous interpolation between a spectrum
of plasticity rules, including Hebbian learning and spike-
time-dependent plasticity (STDP) [16–18].

We demonstrate a generic scenario for the plasticity-
induced ISR, where the system’s multiscale structure, de-
fined by the adaptivity rate, plays a crucial role. On a
basic level, plasticity gives rise to multistable behavior in-
volving coexisting stationary and oscillatory regimes. An
additional subtlety, which we show by the fast-slow anal-
ysis, is that the plasticity promotes the resonant effect by
guiding the fast flow toward the parameter region where
the stable fixed points are focuses rather than nodes.

The paper is organized as follows. In the next sec-
tion the details of the model and the numerical bifurca-
tion analysis of the deterministic dynamics are presented.
The third section contains the results on the ISR effect
and the supporting conditions. In the fourth section the
fast-slow analysis is applied to explain the mechanism by
which plasticity enhances the system’s non-linear response
to noise. Apart from providing a brief summary, in the
last section we also discuss the prevalence of the observed
effect.

Model and bifurcation analysis of deterministic
dynamics. – Our model involves two stochastic active
rotators interacting by adaptive couplings [19–22],

ϕ̇1 = I0 − sin ϕ1 + κ1 sin (ϕ2 − ϕ1) +
√

Dξ1(t),

ϕ̇2 = I0 − sin ϕ2 + κ2 sin (ϕ1 − ϕ2) +
√

Dξ2(t),
κ̇1 = ε(−κ1 + sin(ϕ2 − ϕ1 + β)),
κ̇2 = ε(−κ2 + sin(ϕ1 − ϕ2 + β)),

(1)

where the phases {ϕ1, ϕ2} ∈ S1, while the coupling
weights {κ1, κ2} are real variables.

The excitability parameters I0, which one may interpret
as external bias currents in the context of neuroscience,
are assumed to be identical for both units. For such a
setup, the deterministic version of (1) possesses a Z2 sym-
metry, being invariant to the exchange of units’ indices.
The uncoupled units undergo a SNIPER bifurcation at
I0 = 1, with the values I0 < 1 (I0 > 1) corresponding to
the excitable (oscillatory) regime. We consider the case of
excitable local dynamics, keeping I0 = 0.95 fixed through-
out the paper, such that the oscillations may emerge only
due to the coupling terms and/or noise. The scale sepa-
ration between the fast dynamics of the phases and the
slow dynamics of adaptation is adjusted by the parameter
ε � 1. The fast variables are influenced by independent
white noise of variance D such that ξi(t)ξj(t′) = δijδ(t−t′)
for i, j ∈ {1, 2}. Conceptually, adding stochastic input to
the fast variables embodies the action of synaptic noise in
neuronal systems [23].

The modality of the plasticity rule is specified by the
parameter β, whose role may be understood by invok-
ing the qualitative analogy between the adaptation dy-
namics in classical neuronal systems and the systems of
coupled phase oscillators. This issue has first been ad-
dressed in [24–26], and a deeper analysis of the correspon-
dence between the phase-dependent plasticity rules and
the STDP has been carried out in [19]. In particular, it
has been shown that the plasticity dynamics for β = 3π/2,
where the stationary weights between the oscillators with
smaller/larger phase differences increase/decrease, quali-
tatively resembles the Hebbian learning rule [25,26]. Nev-
ertheless, when β = π, the coupling weights encode a
causal relationship between the spiking of oscillators by
changing in the opposite directions, in analogy to an
STDP-like plasticity rule. Our interest lies with the β
interval interpolating between these two limiting cases.

Using bifurcation analysis of the deterministic dynam-
ics of (1), we first show how the modality of the plasticity
rule influences the number of stationary states, and then
explain how the onset of oscillations depends on adap-
tivity rate. The bifurcation diagram in fig. 1 indicates
that the number and the stability of fixed points of (1)
change with β in such a way that the system may pos-
sess two, four or six fixed points. Due to invariance to
Z2 symmetry, one always finds pairs of solutions shar-
ing the same stability features. We consider the plastic-
ity rules described by β ∈ (3.298, 4.495), cf. the shaded
region in fig. 1, where the system has two stable fixed
points lying off the synchronization manifold ϕ1 = ϕ2, as
well as four unstable fixed points. The bifurcations oc-
curring at the boundaries of the relevant β interval are
as follows. At β = 3.298, the system undergoes a su-
percritical symmetry-breaking pitchfork bifurcation giving
rise to a pair of stable fixed points off the synchroniza-
tion manifold. For β = 4.495, this pair of stable fixed
points collides with a pair of unstable fixed points off
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Fig. 1: (Color online) Bifurcation diagram for the fixed points
of (1) with D = 0 under variation of β. Solid lines refer to
stable fixed points, while dashed and dotted lines correspond
to saddles of unstable dimension 1 and 2, respectively. Shad-
ing indicates the considered range of plasticity rules. The two
fixed points independent on β belong to the synchronization
manifold. The remaining parameters are I0 = 0.95, ε = 0.05.

the synchronization manifold, getting annihilated in two
symmetry- related inverse fold bifurcations. Note that the
weight levels typical for the two stable stationary states
support effective unidirectional interaction, in a sense that
one unit exerts a much stronger impact on the dynamics
of the other unit than vice versa. When illustrating the
effect of ISR, we shall mainly refer to the case β = 4.2.
For this β, the two stable focuses of (1) at D = 0 are
given by (ϕ1, ϕ2, κ1, κ2) = (1.177, 0.175, 0.032,−0.92) and
(ϕ1, ϕ2, κ1, κ2) = (0.175, 1.177,−0.92, 0.032). Within the
considered β interval, the two stable fixed points of the
coupled system exhibit excitable behavior, responding to
external perturbation by generating either the successive
spikes or synchronized spikes [21].

The onset of oscillations for the deterministic version
of (1) relies on the interplay between the plasticity rule,
controlled by β, and the adaptation rate, characterized
by ε. In fig. 2(a) are shown the results of parameter sweep
indicating the variation of κ1 variable, σκ1 = max(κ1(t))−
min(κ1(t)), within the (β, ε) parameter plane. The sweep
indicates the maximal stability region of the two emerging
periodic solutions, related by the exchange symmetry
of units indices. The data are obtained by numerical
continuation starting from a stable periodic solution, such
that the final state reached for the given parameter set is
used as initial conditions of the system dynamics for incre-
mented parameter values. One observes that for fixed β,
there exists an interval of timescale separation ratios ε ∈
(εmin, εmax) admitting oscillations, see fig. 2(b). Within
the given ε range, the system exhibits multistability
where periodic solutions coexist with the two symmetry-
related stable stationary states. The lower threshold for
oscillations, εmin, reduces with β, whereas the upper
boundary value, εmax, is found to grow as β is enhanced.
Note that the waveform of oscillations also changes as
ε is increased under fixed β. In particular, for smaller
ε, the waveforms corresponding to the two units are
rather different. Nevertheless, around ε ≈ 0.06 the system
undergoes a pitchfork bifurcation of limit cycles, such that
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Fig. 2: (Color online) Onset of oscillations in (1) for D = 0.
(a) Variation σκ1 of the coupling weight κ1 in the (β, ε)-plane.
(b) Mean coupling weights 〈κ1〉(ε) and 〈κ2〉(ε) for oscillatory
(thick lines) and stationary states (thin lines) at β = 4.2.
(c) Variation σκ1(ε) and σκ2(ε), presented as in (b). Shad-
ing in (b) and (c) indicates the ε interval admitting the stable
periodic solutions.
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Fig. 3: (Color online) (a) Mean spiking rate 〈f〉 in terms of
D for ε ∈ {0.06, 0.08, 0.1}. The curves exhibit a character-
istic minimum at an intermediate noise level. (b)–(d) Time
traces ϕ1(t) and ϕ2(t) for noise levels below, at and above
the resonant value. The remaining parameters are I0 = 0.95,
β = 4.2, ε = 0.06.

the oscillatory solution gains the anti-phase space-time
symmetry ϕ1(t) = ϕ2(t+T/2), κ1(t) = κ2(t+T/2), where
T denotes the oscillation period [21].

Numerical results on ISR. – Inverse stochastic
resonance manifests itself as noise-mediated suppression
of oscillations, whereby the frequency of noise-perturbed
oscillations becomes minimal at a preferred noise level.
For system (1), we find such an effect to occur generically
for intermediate adaptivity rates, supporting multistabil-
ity between the stationary and the oscillatory solutions,
as described in the previous section. A family of curves
describing the dependence of the oscillation frequency on
noise variance 〈f〉(D) for different ε values is shown in
fig. 3. All the curves corresponding to ε ≥ εmin(β) show
a characteristic non-monotonous behavior, displaying a
minimum at the optimal noise intensity. For weaker noise,
the oscillation frequency remains close to the determinis-
tic one, whereas for much stronger noise, the frequency
increases above that of unperturbed oscillations. The dis-
played results are obtained by averaging over an ensemble
of 1000 different stochastic realizations, having excluded
the transient behavior, and having fixed a single set of ini-
tial conditions within the basin of attraction of the limit
cycle attractor. Nevertheless, we have verified that the
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Fig. 4: (Color online) (a)–(c) Stationary distribution P (ϕ1) for the noise levels below, at and above the resonant value. System
parameters are I0 = 0.95, β = 4.2 and ε = 0.06. From the three observable peaks, the middle one, prevalent in (a) and (c), refers
to the metastable state associated to the oscillatory mode of (1) for D = 0. The two lateral peaks, dominant in (b), correspond
to quasi-stationary states derived from the stable equilibria of the deterministic version of (1). (d) Bimodality coefficient for
the stationary distribution of κ1, bP (κ1), as a function of D. The three curves refer to ε = 0.06 (diamonds), ε = 0.08 (circles)
and ε = 0.1 (squares).
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Fig. 5: (Color online) (a) and (b): transition rates from the stability basin of the limit cycle to the fixed point, γLC→FP (D)
and vice versa, γFP→LC(D), numerically obtained for ε = 0.06 (squares) and ε = 0.1 (circles). The remaining parameters are
I0 = 0.95, β = 4.2. (c) Determinant of the Jacobian calculated along the limit cycle orbit as a function of the phase variable.
The quantity provides an indication of the sensitivity of certain sections of the orbit to external perturbation. Blue and red
colors correspond to ε = 0.06 and ε = 0.1, respectively.

qualitatively analogous results are obtained if for each
realization of stochastic process one selects a set of ran-
dom initial conditions lying within the stability basin of
the periodic solution. The suppression effect of noise de-
pends on the adaptivity rate, and is found to be more pro-
nounced for faster adaptivity. Indeed, for smaller ε, ϕ(t)
series corresponding to the noise levels around the min-
imum of 〈f〉(D) exhibit bursting-like behavior, whereas
for larger ε, noise is capable of effectively quenching the
oscillations, such that the minimal observed frequency ap-
proaches zero.

The core of the described effect concerns switching
dynamics between the metastable states associated to
coexisting attractors of the deterministic version of sys-
tem (1). To illustrate this, in fig. 4 we have considered
the stationary distributions of one of the phase vari-
ables, P (ϕ), for the noise levels below, at and above the
minimum of the 〈f〉(D), having fixed the remaining pa-
rameters to (β, ε) = (4.2, 0.06). The distribution P (ϕ)
is characterized by two lateral peaks, reflecting the two
symmetry-related quasi-stationary states, and the area
around the central peak, corresponding to the oscillatory
mode. For small noise D = 0.0015, see fig. 4(a), and
very large noise D = 0.006, cf. fig. 4(c), the central
peak of P (ϕ) is expectedly prevalent compared to the two
lateral peaks. Nevertheless, the switching dynamics for

D = 0.0025, the noise level about the minimum of 〈f〉(D),
is fundamentally different, and the corresponding distribu-
tion P (ϕ) in fig. 4(b) shows that the system spends much
more time in the quasi-stationary states than performing
the oscillations. The onset of ISR in the dynamics of fast
variables is accompanied by the increased bimodality of
the stationary distribution of the couplings, see fig. 4(d).

In order to observe the non-monotonous response of
the system’s frequency to noise, the geometry of the
phase space has to be asymmetrical with respect to the
separatrix between the coexisting attractors in such a
way that the limit cycle attractor lies much closer to
the separatrix than the stationary states. Such structure
of phase space gives rise to asymmetry in switching
dynamics, whereby at the preferred noise level around the
minimum of 〈f〉(D), the transition rate from the stability
basin of the limit cycle attractor to that of stationary
states γLC→FP becomes much larger than the transition
rate in the inverse direction, γFP→LC . Figures 5(a)
and (b) corroborate that the dependences γLC→FP (D)
and γFP→LC(D) are qualitatively distinct: the former
displays a maximum at the resonant noise level, whereas
the latter just increases monotonously with noise. The
fact that ISR is more pronounced for higher adaptivity
rates is reflected in that the curve γLC→FP (D) for ε = 0.1
lies substantially above that for ε = 0.06, see fig. 5(a).

40004-p4



Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling

0    0.001 0.002 0.003 0.005 0.009 0.016 0.028 0.05 0.089
D

4.1

4.15

4.2

4.25

4.3

4.35

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

< f > 

Fig. 6: (Color online) Mean spiking rate 〈f〉 as a function of β
and D for fixed ε = 0.05. The results evince the robustness of
the ISR effect with respect to different plasticity rules.

To understand why the interplay of adaptivity rate and
noise yields a stronger resonant effect for larger ε, we have
investigated the susceptibility of the limit cycle attractor
to external perturbation. In particular, fig. 5(c) shows how
the determinant of the Jacobian calculated along the limit
cycle orbit change for ε = 0.06 (blue line) and ε = 0.1 (red
line), respectively. For smaller ε, one may identify two
particular points where the determinant of the Jacobian
is the largest, i.e., where the impact of external pertur-
bation is felt the strongest. This implies that noise is
most likely to drive the systems trajectory away from the
limit cycle attractor around these two sections of the orbit,
which should lie closest to the boundary to the stability
basins of the stationary states. Such a physical picture
is maintained for larger ε, but one should stress that the
sensitivity of limit cycle attractor to external perturbation
substantially increases along the entire orbit, cf. fig. 5(c).
In other words, faster adaptivity enhances the impact of
noise, contributing to a more pronounced ISR effect. This
point is addressed from another perspective in the next
section.

We also examine the robustness of ISR to different
modalities of the plasticity rule specified by β. Figure 6
shows how the average oscillation frequency changes with
β and D for fixed ε = 0.05. The non-linear response to
noise, conforming to a resonant effect with a minimum of
oscillation frequency at an intermediate noise level, per-
sists in a wide range of β, essentially interpolating between
the Hebbian-like and the STDP-like adaptive dynamics.

Fast-slow analysis: role of plasticity in the reso-
nant effect. – Though ISR is observed for intermediate ε,
here we show that the fast-slow analysis may still be
applied to demonstrate a peculiar feature of the mecha-
nism behind the resonant effect. In particular, we find
that the plasticity enhances the resonant effect by driv-
ing the fast flow dynamics toward the parameter domain
where the stationary state is a focus rather than a node. It
is well known that the response to noise in multi-timescale
systems qualitatively depends on the character of station-
ary states. Indeed, by using the sample-paths approach
and other advanced techniques, it has already been shown

that such systems may exhibit fundamentally different
scaling regimes with respect to noise variance and the
scale-separation ratio [27,28]. Moreover, the resonant ef-
fects may typically be expected in the case in which quasi-
stationary states are focuses [27], essentially because the
local dynamics around the stationary state then involves
an eigenfrequency.

Within the standard fast-slow analysis, one may ei-
ther consider the layer problem, defined on the fast
timescale, or the reduced problem, concerning the slow
timescale [29]. For the layer problem, the fast flow dynam-
ics ϕ1(t;κ1, κ2), ϕ2(t;κ1, κ2) is obtained by treating the
slow variables κ1 and κ2 as system parameters, whereas in
the case of the reduced problem, determining the dynamics
of the slow flow (κ1(t), κ2(t)) involves time-averaging over
the stable regimes of the fast flow of the layer problem.
The fast flow can in principle exhibit several attractors,
which means that multiple stable sheets of the slow flow
may emerge from the averaged dynamics on the different
attractors of the fast flow. Our key point concerns the dy-
namics of the slow flow, which requires us to first classify
the attractors of the fast flow.

The fast flow dynamics is given by

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1),
ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2),

(2)

where κ1, κ2 ∈ [−1, 1] are considered as additional system
parameters. One may formally obtain (2) by setting ε = 0
in (1) with D = 0. We find that the fast flow is monos-
table for most of the (κ1, κ2) values, exhibiting either a
stable equilibrium or a limit cycle attractor, see fig. 7(a).
In general, the fast flow admits either two or four fixed
points, and a more detailed physical picture, including
the associated bifurcations, is presented in [21]. The sta-
bility region of the oscillatory regime, outlined by the red
color, has been calculated by numerical continuation start-
ing from a stable periodic solution. Bistability between a
stable fixed point and a limit cycle is observed only in a
small area near the main diagonal κ1 = κ2. Within the
region featuring oscillatory regime, each periodic solution
obtained for (κ1, κ2) above the main diagonal has a Z2

symmetry-related counterpart below the diagonal. Typi-
cally, the periodic solutions emanate from SNIPER bifur-
cations, which make up two branches where either κ1 or
κ2 are almost constant and close to zero.

Using the results from the analysis of the layer problem,
our goal is to determine the vector fields corresponding
to the stable sheets of the slow flow. We have numeri-
cally obtained the dynamics of the slow flow by a standard
two-step approach [19,30]. First, for fixed values (κ1, κ2),
we have determined the time-averaged dynamics of the
fast flow (2), 〈ϕ2 − ϕ1〉t = h(κ1, κ2), whereby the averag-
ing 〈·〉t is carried out over a sufficiently long time interval,
having excluded the transient behavior. As already in-
dicated, such an average depends on the attractor of the
fast flow for the given (κ1, κ2). If the fast flow possesses
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Fig. 7: (Color online) (a) Attractors of the fast flow (2) in terms of κ1 and κ2, now treated as free parameters. The fast flow
is typically monostable, admitting either a stable fixed point (FP) or a stable limit cycle (LC), apart from a small region of
bistability (FP+LC) around the main diagonal. (b) Vector field of the slow flow (3) determined by considering only the stable
regimes of the fast flow for β = 4.2, I0 = 0.95. Within the yellow-highlighted regions, the stable fixed point of the fast flow is
a focus rather than the node. The displayed orbit (κ1(t), κ2(t)) corresponds to a switching episode from the oscillatory state
to the quasi-stationary state and back (evolution direction indicated by arrows). Panels (c) and (d) show the time traces of
phases and couplings during the switching episode. (e) Conditional probability pF (D) for ε = 0.06 (blue squares) and ε = 0.1
(red circles).

a stable fixed point, then 〈ϕ2 − ϕ1〉t = ϕ∗
2 − ϕ∗

1, which
corresponds to the slow critical manifold of the system.
For (κ1, κ2) where the attractor of the fast flow is a peri-
odic solution, 〈ϕ2−ϕ1〉t amounts to the time average over
the period. Averaging over a periodic attractor of the fast
flow is a standard approximation [30], quite natural when
describing the influence of oscillations in the fast flow to
the dynamics of the slow flow.

As the second step, the obtained time averages are sub-
stituted into the coupling dynamics

κ̇1 = ε[−κ1 + sin(h(κ1, κ2) + β)],
κ̇2 = ε[−κ2 + sin(−h(κ1, κ2) + β)].

(3)

The system (3) allows one to determine the vector fields
on the stable sheets of the slow flow, which correspond to
the attractors of the fast flow. In fig. 7(b), the vector fields
associated to each of the attractors (fixed point or limit
cycle) are presented within its respective (κ1, κ2) stability
region. In the small region of the (κ1, κ2)-plane support-
ing coexisting stable solutions of the fast flow, the corre-
sponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(κ1, κ2)
depends on the initial conditions.

Within the above framework, one is able to explain a
subtle influence of adaptivity on the mechanism behind
the ISR. To this end, in fig. 7(b) we have projected a
typical example of the (κ1(t), κ2(t)) trajectory of the full
system (1) corresponding to a switching episode between
the metastable states associated to a limit cycle attractor
and a stable equilibrium of the deterministic system, see
the time traces in figs. 7(c), (d). One observes that for
the oscillating regime, the coupling dynamics always re-
mains close to the SNIPER bifurcation of the fast flow, cf.
fig. 7(a), which makes the oscillations quite susceptible to
noise. Recall that the fast flow is typically monostable.
Thus, switching events in the full system are naturally
associated to the fast flow undergoing the SNIPER bifur-
cation: either a direct one, leading from the oscillatory to
the stationary regime, or the inverse one, unfolding in the

opposite direction. For (κ1, κ2) values immediately after
the SNIPER bifurcation toward the quiescent state, the
stable equilibrium of the fast flow is a node. Nevertheless,
for the noise levels where the effect of ISR is most pro-
nounced, we find that the coupling dynamics guides the
system into the region where the equilibrium is a stable
focus rather than a node, see the yellow highlighted re-
gion in fig. 7(b). We have verified that this feature is a
hallmark of the resonant effect by numerically calculating
the conditional probability pF that the events of crossing
the SNIPER bifurcation are followed by the system’s orbit
visiting the (κ1, κ2) region where the stable equilibrium is
a focus. The pF (D) dependences for two characteristic ε
values at fixed β = 4.2 are plotted in fig. 7(e). One learns
that pF (D) has a maximum for the resonant noise levels,
where the corresponding curve f(D) displays a minimum.
In other words, the fact that the coupling dynamics drives
the fast flow to the focus-associated regions of the (κ1, κ2)-
plane results in trapping the phase variables for a longer
time in the quasi-stationary (quiescent) state. Small noise
below the resonant values is insufficient to drive the system
to this region, whereas for too large a noise, the stochastic
fluctuations completely take over, washing out the quasi-
stationary regime. Note that for the faster adaptivity rate,
the facilitatory role of coupling becomes more pronounced,
as evinced by the fact that the curve pF (D) for ε = 0.1
lies above the one for ε = 0.06.

Discussion. – In the present paper, we have demon-
strated a novel generic scenario for the onset of ISR, which
involves an interplay between the local excitability fea-
ture and the adaptive dynamics of the couplings. For
the example of two active rotators with coupling plastic-
ity, we have shown that the spiking frequency correspond-
ing to emergent oscillations varies non-monotonously with
noise, displaying a minimum at a preferred noise level.
Though the model per se is simplified, the underlying
paradigm is relevant for combining the two core features
of typical neuronal systems. The effect derives from the
multi-timescale structure of the system, whereby the scale
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separation between the local and the weight dynamics is
tuned via adaptivity rate. Within a range of intermedi-
ate adaptivity rates, the deterministic dynamics of the full
system exhibits multistability between the limit cycle at-
tractors and the stable equilibria, each appearing in pairs
due to the systems invariance to Z2 symmetry. Applying
the standard fast-slow analysis, we have shown that the
resonant effect with noise is in fact plasticity-enhanced:
plasticity promotes the impact of noise by guiding the fast
flow toward the parameter domain where the stable equi-
libria become focuses instead of nodes. This mechanism
increases the trapping efficiency by which the noise is able
to deviate the systems trajectory from the metastable os-
cillatory states to the non-spiking regime. For faster adap-
tivity, the resonant effect is found to be more pronounced
in a sense that the frequency dependence on noise shows
deeper minima. Our scenario has proven to persist in a
wide range of plasticity rules, interpolating between the
cases analogous to Hebbian learning and STDP.

In earlier studies, observation of ISR has mostly been
confined to Type-II neurons with intrinsic bistable dynam-
ics, as in case of Hodgkin-Huxley or Morris-Lecar neurons
near the subcritical Hopf bifurcation [3,6–9]. Even in case
of networks, the macroscopic ISR effect has been linked
to dynamical features of single units, only being modu-
lated by the details of synaptic dynamics and the network
topology [10]. In contrast to that, our results show that
ISR may not rely on bistability of local dynamics, but
may rather emerge due to the facilitatory role of coupling,
here reflected in the interplay of multiscale dynamics and
plasticity. Another distinction from most of the previous
studies is that our scenario concerns Type-I units. For
this class of systems, it is known that the dependence of
the oscillating frequency of a single unit with noise is just
monotonous [3,12], so that the resonant effect can only
be observed in case of coupled units. So far, the latter
case has been analyzed only once [5], but the underlying
scenario is different from ours insofar as it involves static,
rather than the adaptive couplings, and the effect per se
is confined to a narrow region of the parameter space.

Quite recently, the onset of ISR has been reported for a
single Fitzhugh-Nagumo oscillator [12], which is the first
observation of the effect for Type-II neuron model in the
vicinity of the supercritical Hopf bifurcation. Similar to
the scenario we elaborated, ISR there also derives from
the multiscale structure of the system. However, the ac-
tual mechanism behind the effect is associated to phase-
sensitive (non-uniform) excitability of a limit cycle orbit
conforming to relaxation oscillations [12]. These findings
and the results here suggest that ISR may indeed provide
a generic means of controlling and optimizing the firing
rate in multi-timescale systems, which can be applied to
neuronal activity, calcium signaling and other types of cell
dynamics.

∗ ∗ ∗
IF and IB would like to thank M. Wolfrum and

S. Yanchuk for useful discussions. The work of VK on

the third section was supported by the Russian Science
Foundation, grant No. 16-42-01043. The work of VN on
the fourth section was supported by the Russian Science
Foundation, grant No. 14-12-01358.

REFERENCES

[1] Lindner B., Garcia-Ojalvo J., Neiman A. and
Schimansky-Geier L., Phys. Rep., 392 (2004) 321.

[2] McDonnell M. D. and Ward L. M., Nat. Rev. Neu-
rosci., 12 (2011) 415.

[3] Schmerl B. A. and McDonnell M. D., Phys. Rev. E,
88 (2013) 052722.

[4] Gammaitoni L., Hänggi P., Jung P. and Marchesoni

F., Rev. Mod. Phys., 70 (1998) 223.
[5] Gutkin B. S., Jost J. and Tuckwell H. C., EPL, 81

(2008) 20005.
[6] Tuckwell H. C., Jost J. and Gutkin B. S., Phys. Rev.

E, 80 (2009) 031907.
[7] Uzuntarla M., Cressman J. R., Ozer M. and Bar-

reto E., Phys. Rev. E, 88 (2013) 042712.
[8] Uzuntarla M., Phys. Lett. A, 377 (2013) 2585.
[9] Uzuntarla M., Torres J. J., So P., Ozer M. and

Barreto E., Phys. Rev. E, 95 (2017) 012404.
[10] Uzuntarla M., Barreto E. and Torres J. J., PLoS

Comput. Biol., 13 (2017) e1005646.
[11] Buchin A., Rieubland S., Häusser M., Gutkin B. S.
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[21] Bačić I., Yanchuk S., Wolfrum M. and Franović I.,
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Abstract. Understanding the effect of network connectivity patterns
on the relation between the spontaneous and the stimulus-evoked net-
work activity has become one of the outstanding issues in neuroscience.
We address this problem by considering a clustered network of stochas-
tic rate-based neurons influenced by external and intrinsic noise. The
bifurcation analysis of an effective model of network dynamics, com-
prised of coupled mean-field models representing each of the clusters,
is used to gain insight into the structure of metastable states char-
acterizing the spontaneous and the induced dynamics. We show that
the induced dynamics strongly depends on whether the excitation is
aimed at a certain cluster or the same fraction of randomly selected
units, whereby the targeted stimulation reduces macroscopic variabil-
ity by biasing the network toward a particular collective state. The
immediate effect of clustering on the induced dynamics is established
by comparing the excitation rates of a clustered and a homogeneous
random network.

1 Introduction

Characterizing the structure of spontaneous emergent activity in neuronal pop-
ulations, and the fashion in which it is modulated by the sensory stimuli, is
fundamental to understanding the principles of information processing in the cortex.
The generic patterns of spontaneous cortical dynamics, called slow rate fluctuations or
UP–DOWN states, involve switching between the episodes of elevated neuronal and
synaptic activity, and the stages of relative quiescence [1–3]. Alternation between UP
and DOWN states is orchestrated by coherent action of individual neurons, with the
observed rates typically lying in the range from 0.1 to 2 Hz [3]. Slow rate fluctuations
give rise to macroscopic variability in the cortex [4,5], underlying in vivo activity
during quiet wakefulness, sleep or under anesthesia [1,6,7], and even featuring in var-
ious in vitro preparations [8,9]. Our paper focuses on the open issues concerning the
ingredients that affect the relationship between the stimulus-evoked and the ongoing

a e-mail: franovic@ipb.ac.rs
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dynamics of neural assemblies, as well as the way the induced activity depends on
the stimulus.

The research on induced patterns in sensory cortical areas has surprisingly shown
that regardless of the type of stimuli, these patterns exhibit remarkable similarity
to those of the idling activity [10–13]. In fact, the onset of UP–DOWN states has
been recorded while performing perceptual tasks, but has also been found crucial
to pyramidal neurons of neocortex, where it facilitates certain forms of learning and
memory consolidation [1,14–17]. Such data evince that typical evoked activity pat-
terns are drawn from a limited ”vocabulary” already present within the spontaneous
dynamics [10], whereby the sampling ability is pinned by the form of sensory stim-
uli. The striking similarity between the ongoing and the induced cortical activity is
now considered as a generic feature of cortical dynamics, verified at increasing levels
of structural complexity [18]. Certain experimental studies have linked the similar-
ity to nontrivial properties of cortical connectivity, suggesting that it confines the
pool of potential activity patterns [18]. By this paradigm, the structure of patterns
reflects the modular (clustered) architecture of cortical networks, whereby certain pat-
terns are activated by stimulating particular local subcircuits, known as the leader
sites [19]. Conceptually, investigating the impact of clustered topology on different
aspects of collective dynamics is biologically plausible [5,20], as recent research indi-
cates strong prevalence of clustered over the homogeneous connectivity in cortical
networks [21–24]. Clustering has already been shown to enable task-specialization,
maintaining of high levels of neuronal activity, or adaptation to certain types of
stimuli [25,26].

Here, we examine how the interplay of modular network architecture and noise
influences the relation between the spontaneous and induced macroscopic activity,
as well as how the macroscopic variability is affected by the different types of net-
work stimulation. We analyze a model of a clustered network of noisy rate-based
neurons [27–29], employing a second-order effective model of collective dynam-
ics to gain insight into the structure of network’s metastable states. While the
spontaneous activity consists of noise-induced fluctuations between the metastable
states, we show that the specific type of stimulation, targeted at a certain clus-
ter, biases the network toward a particular state, thereby reducing the macroscopic
variability.

The origin of macroscopic variability, as an emergent network phenomenon, has
so far been treated within two different frameworks, one associating slow rate fluc-
tuations to deterministic networks, where balanced massive excitation and inhibition
render the collective dynamics highly sensitive to fluctuations, and the other, which
ties the slow rate fluctuations to multistability in attractor model networks, such that
switching between coexisting states emerges due to noise, whose action amounts to a
finite-size effect. In our recent paper [27], we have applied the latter approach, com-
paring the switching dynamics in clustered networks relative to random (statistically
uniform) networks with the same average connectivity, having shown that clustering
promotes multistability, thereby enhancing the switching phenomenon and its robust-
ness. Here, the use of effective model of collective dynamics derived in [27] is extended
to capture the response of random and clustered networks to external stimuli. In case
of clustered networks, we compare the effects of two different stimulation protocols,
including (i) the targeted stimulation, where an increased bias current is introduced
only to units in a certain cluster, and (ii) the distributed stimulation, where the same
fraction of randomly selected neurons is excited. It is found that due to modular
architecture, the two stimulation scenarios may give rise to fundamentally different
responses of the network.

The paper is organized as follows. In Section 2, we introduce the model of net-
work dynamics and present the effective model of its macroscopic behavior. Section 3
contains the bifurcation analysis of the effective model of a clustered network in



Advances in Nonlinear Dynamics of Complex Networks 1065

the thermodynamic limit, applying it to anticipate the induced dynamics of the
network. In Section 4, we compare the numerical results to the predictions of the
mean-field model. Section 5 provides a brief summary and discussion on the obtained
results.

2 Network dynamics: full and the effective model

We consider an m-cluster network comprised of N neurons, assuming random connec-
tivity both within and between the clusters. The intra-cluster connectivity, specified
by connectedness probability pin, is more dense than the cross-connectivity pout,
whereby the degree of topological heterogeneity is characterized by the clustering
parameter g = pin/pout. Larger g implies stronger clustering, such that the limit-
ing case g = 1 describes the non-clustered (homogeneous random) network, while the
case g →∞ corresponds to a network of uncoupled clusters. The clustering algorithm
involves rewiring of a sparse random network, and thus preserves the average con-
nectedness probability, set to a biologically plausible level p = 0.2. The parameters
pin and pout can be linked to p via pin = gm

m−1+gp and pout = m
m−1+gp, which allows

one to explicitly compare the relevant parameter domains between the homogeneous
and the clustered network.

The local dynamics follows a stochastic rate model [27–31]

drXi

dt
= −λXrXi +H(vXi) +

√
2DξXi(t), (1)

where rXi is the firing rate of neuron i from cluster X, λX defines the rates relaxation
time, and H is the nonlinear gain function, whose argument is the total input to a
neuron vXi. The latter is given by vXi = uXi + IX +

√
2BηXi(t), where uXi is the

synaptic input uXi = κ
∑

Y

∑
j aY XjirY j and IX denotes the external bias current.

The coupling scheme is specified by the adjacency matrix aY Xji ∈ {0, 1}, such that
aY Xji stands for the link projecting from neuron j in cluster Y to neuron i in cluster
X. Coupling weights are assumed to be homogeneous and scale with the network
size as κ = KY X/N . The random perturbations in the microscopic dynamics derive
from two distinct sources of noise. In particular, the external noise, characterized by
B, and the intrinsic noise, described by D, are introduced to account for the action
of synaptic and ion-channel noise, respectively. All the associated fluctuations are
independent and are given by Gaussian white noise.

Note that the form (1) is quite general, in a sense that by choosing different H,
one may interpolate between different classes of models, including Wilson–Cowan or
Hopfield model. From a broader perspective, a plausible gain function should meet
three simple requirements: it should drop to zero for sufficiently small input, exhibit
saturation for large enough input, and just be monotonous for intermediate input
values. Here, the form of H

H(U) =


0, U ≤ 0,

3U2 − 2U3, 0 < U < 1,

1, U ≥ 1.

(2)

is selected to make the analysis of macroscopic dynamics analytically tractable
[27–29]. Note that the qualitative physical picture associated to the collective multi-
stable behavior in assemblies of neurons with rate-based dynamics does not depend
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on the particular choice of the gain function. This point has been extensively elab-
orated in [30], and we have also numerically verified that the results presented here
persist for the Heaviside-like gain function.

2.1 Effective model of clustered network dynamics

The effective model of network dynamics is comprised of coupled mean-field models
representing the activities of particular clusters. Typically, the effective models of
network behavior concern either the case of random sparse connectivity or the case
of full connectivity. In this context, our model can be seen as interpolating between the
two standard scenarios, featuring dense intra-cluster connectivity and sparse inter-
cluster connections. The applied mean-field approach involves a Gaussian closure
hypothesis [32–35], such that the collective dynamics of each cluster X is described
by the mean-rate RX and the associated variance SX

RX =
1

NX

∑
i

rXi ≡
〈
rXi

〉
SX =

〈
r2Xi

〉
−R2

X , (3)

where 〈·〉 denotes averaging over the neurons within the given cluster. For each of
the clusters, we use the bottom-up approach to obtain the second-order stochastic
equations of macroscopic behavior. With the detailed derivation of the effective model
already provided in [27], here we only briefly outline the two main steps necessary
to carry out the appropriate averaging over the microscopic dynamics, namely the
Ansatz on local variables and the Taylor expansion of H function.

The Ansatz on local variables consists in writing rXi as rXi = RX +
√
SXρXi [36],

where {ρXi} is a set of variables satisfying 〈ρXi〉 = 0, 〈ρ2Xi〉 = 1, as readily follows
from definition (3). The introduced Ansatz is applied to rewrite the total input to a
neuron as vxi = UX + δvXi, where

UX = IX + κ
∑
Y

pY XNYRY (4)

presents the assembly-averaged input to cluster X, pY X denotes the connectedness
probability from cluster Y to cluster X, and NY is the size of cluster Y . The deviation
δvXi from the average input UX consists of two terms:

δvXi = κ
∑
Y

RY νY Xi + κ
∑
Y

√
SY σY Xi. (5)

The first term accounts for the topological effect associated to the deviation νY Xi =∑
j

aY Xji − pY XNY from the average number of connections pY XNY , whereas the

second term captures the effect of local rate fluctuations, contained within the fac-
tor σY Xi =

∑
j

aY XjiρY j . Equations (4) and (5) allow one to average the terms

containing the gain function by developing H(vXi) about UX up to second order.
This leads to H(vXi) = H0X + H1XδvXi + H2Xδv

2
Xi, having introduced notation

H0X ≡ H(UX), H1X = dH
dvXi

(UX), H2X = 1
2

d2H
dv2

Xi
(UX).
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Following a number of intermediate steps elaborated in [27], one arrives at the
effective model of network dynamics stated in terms of interacting finite-size mean-
field models describing the cluster dynamics. The effective model is given by

dRX

dt
= −λXRX +H0X + 2BXH2X +H2X

∑
Y

K2
Y XpY XNY

(
R2

Y + SY

)/
N2

+
√
ΨXβ(t) +

√
ΩXη,

dSX

dt
= −2λXSX + 2BXH

2
1X + 2DX , (6)

and involves three types of finite-size effects, including the small deterministic correc-
tion term, the effective “macroscopic” noise of intensity ΨX , as well as the quenched
randomness, accounting for the fact that each particular network realization features
distinct deviations from the average connectivity degree. The macroscopic noise is
multiplicative

ΨX =
1

N

(
2DX + 2BXH

2
1X

)
+

1

N
H2

1X

∑
Y

K2
Y XpY X

NY

NX
SY , (7)

and incorporates three terms: the first two describe how the local external and
intrinsic noise are translated to macroscopic level, whereas the third one reflects
the impact of local fluctuations in the input arriving to each neuron in the clus-
ter. At variance with the time-varying stochastic term featuring β(t), the effect of
quenched randomness in (6) is characterized by a constant random term of magni-
tude ΩX = 1

NH
2
1X

∑
Y

K2
Y XpY X

NY

NX
R2

Y , with η being just a constant random number

N (0, 1).
In the SX dynamics, for simplicity we omit all the finite-size effects, including

the deterministic correction and the stochastic terms. One may do so because the
variance SX only affects the O(1/N) terms in the dynamics of RX .

3 Bifurcation analysis of the effective model in the
thermodynamic limit

In this section, we carry out the bifurcation analysis of the system (6) in the limit
N →∞ to characterize the response of a clustered network to external stimuli. Our
focus is on the scenario of targeted stimulation, where an increased bias current
is applied to a certain cluster, while the rest of the network remains unperturbed.
The stimulation is provided in the form of a rectangular pulse, whose duration ∆ is
sufficiently long such that the network is allowed to reach the new metastable state.
Our analysis will address the issues of why the evoked states of the network are similar
to those occurring within the spontaneous activity, and how the stimulus biases the
network dynamics to a particular collective state. Note that the system (6) holds for
networks of an arbitrary number of clusters of arbitrary sizes, but for simplicity we
consider the case of m equal clusters of size Nc = N/m.

In our previous study, the model (6) has been analyzed in case where the entire
network receives homogeneous external current I. Here, we deal with inhomoge-
neous stimulation, conforming to a paradigm with l clusters delivered the current
IA, whereas the remaining ones are influenced by IB . One is interested into solutions
where the mean activity of the unperturbed clusters equals RB , whereas the state of
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Fig. 1. (a) Bifurcation diagram R(I) for the non-clustered network subjected to homoge-
neous stimulation. The network parameters are α = 0.8, B = 0.004, D = 0.02 and g = 1.
(b) Bifurcation diagram for the clustered network m = 5 influenced by the homogeneous
stimulation: bias current I against logarithm of the clustering coefficient g. The numbers
indicate how many coexisting attractors exist within the given region.

the excited clusters RA may be different. Neglecting the finite-size effects O(1/N), it
follows that the network dynamics is given by

dRA

dt
= −RA − 2UA

(
RA, RB

)3
+ 3UA

(
RA, RB

)2
+ 6B

(
1− 2UA

(
RA, RB

))
dRB

dt
= −RB − 2UB

(
RA, RB

)3
+ 3UB

(
RA, RB

)2
+ 6B

(
1− 2UB

(
RA, RB

))
, (8)

where the average input to the two subsets of clusters reads

UA

(
RA, RB

)
= IA +

α

m− 1 + g

[(
g + l − 1

)
RA +

(
m− l

)
RB

]
UB

(
RA, RB

)
= IB +

α

m− 1 + g

[
lRA +

(
g +m− l − 1

)
RB

]
, (9)

having α = Kp denote the network coupling parameter.
Prior to analyzing the induced dynamics of the network, let us briefly consider

the spontaneous activity, which is in this framework represented by a setup with
homogeneous bias currents IA = IB = I. In case of a non-clustered network (g = 1),
one observes bistability in a certain interval I ∈ [I1, I2] [29], provided the coupling
parameter α is sufficiently large. The corresponding bifurcation diagram R(α) in
Figure 1a contains two stable branches associated to the UP and DOWN states of the
network. Introducing sufficiently strong clustering promotes multistability, giving rise
to network states which do not exist in the non-clustered case. The increased number
of network levels derives from the states with broken symmetry, where subsets of
clusters may lie in their respective high or low states [27]. For such inhomogeneous
collective states, the system symmetry is reduced from the permutation group Σm

(permutation of all cluster indices), to a subgroup of the type Σl ⊗ Σm−l, where
l ∈ {1, 2, ,m − 1}. Given that each cluster may either lie in the low or the high
state, the maximal multistability of a network comprised of m clusters is m+ 1. To
provide an example, in Figure 1b is shown a bifurcation diagram in the (g, I) plane
for a modular network m = 5. There, one observes that maximal multistability is
facilitated by the clustering parameter g ' 100.

Note that the external noise B acts in (8) as a bifurcation parameter, influencing
the number and position of stationary states in the thermodynamic limit. Figure 2a
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Fig. 2. (a) Bifurcation diagram in the (B, I) for the non-clustered network subjected to
homogeneous stimulation. The remaining parameters are α = 0.8, D = 0.02 and g = 1.
(b) Shift of the maximal multistability region in the (g, I) plane for a clustered net-
work m = 5. The red solid lines outline the maximal multistability domain for noise level
B = 0.004, whereas the blue dotted lines and the green dashed lines correspond to B = 0.01
and B = 0.015, respectively.

shows the bifurcation diagram referring to spontaneous activity of the non-clustered
network in the (B, I) plane, obtained under fixed connectivity α = 0.8. The bistability
region again lies between two branches of fold bifurcations (red curves) that meet at
the cusp point, where a pitchfork bifurcation occurs. One finds that for fixed I, there
always exists a B value above which a non-clustered network can no longer support
bistable behavior. For the spontaneous dynamics of a clustered network, it can be
shown that the region of maximal multistability in the (g, I) plane, bounded by
two curves of fold bifurcations intersecting at the pitchfork bifurcation, reduces and
shifts toward stronger clustering under increasing B, cf. Figure 2b. In other words,
for higher external noise, one requires larger clustering in order to observe maximal
multistability in the network.

To investigate the scenario of a targeted stimulation, we analyze the network’s
response by looking into solutions of (8) for l = 1, such that the stimulated cluster
occupies the state different from the remaining clusters. The clustering coefficient g
and the stimulation current IA are considered as control parameters, while the remain-
ing parameters α = 0.8, B = 0.004, and IB = 0.1 are such that the spontaneous
dynamics of the associated homogeneous random network with I = IB pertains to
bistability region in Figure 1a. The (g, IA) bifurcation diagram explaining the action
of targeted stimulation is plotted in Figure 3a. For IA ≈ IB and strong enough clus-
tering, the network possesses four stable steady states, which can readily be traced
in the limit of ultimate clustering g →∞. Indeed, suppose that a network is decom-
posed into a set of non-interacting clusters, and that IA and IB lie within the interval
[I1, I2] from Figure 1a. Then, each of the clusters is bistable, which gives exactly four
stable steady states in the full system (8). The area of maximal multistability, where
both the stimulated cluster and the resting network may either occupy the low or
the high state, extends to moderate clustering g ∼ 100. In Figure 3b, the four stable
steady states of the effective model are denoted by OLL, OLH , OHL and OHH . Note
that the first and second index refer to states of the stimulated cluster and the rest of
the network, respectively, whereby L/H indicates the low/high level, and U denotes
the unstable state.

As the stimulation IA increases, the system undergoes a saddle-node bifurcation
in which the states OLH and OUH are annihilated, see the curve C1 in Figure 3a.
Then the system passes to the area with 3 stable steady states, with the correspond-
ing phase portrait shown in Figure 3c. Further growth of IA causes the states OLL

and OUL to collide, cf. the curve C2 in Figure 3a, such that the system becomes
bistable, as corroborated by the phase portrait in Figure 3d. For small g, very
strong simulation IA leads to a collision and disappearance of the steady states OHL
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Fig. 3. (a) Bifurcation diagram IA(g) of system (8), with the number of coexisting solutions
indicated for particular regions. The remaining parameters are fixed to α = 0.8, B = 0.004,
D = 0.02, m = 5 and IB = 0.1. (b–d) Phase portraits associated to system (8) under
increasing IA.

and OHU , see the curve C3 in Figure 3a, whereby the system becomes monostable.
Note that the decrease of IA (targeted inhibition) gives rise to a similar scenario.
When IA is systematically reduced, the system first becomes tristable with coexist-
ing states OLL, OLH and OHH , then bistable and eventually passes to monostability
domains.

4 Numerical results: targeted vs. distributed stimulation

In this section, our aim is to first explicitly demonstrate that the effective model (8)
can successfully predict the response of a clustered network in case of targeted stimu-
lation. Nevertheless, we shall also show an interesting effect evincing that the response
of modular networks to external stimulation is strongly dependent on the character of
stimulation, i.e. the fashion in which it is distributed to neurons within the network.

In Figure 4, the response of a clustered network m = 5 to a targeted stimula-
tion is compared against the induced dynamics of the effective model analyzed in
Section 3. Note that the numerical experiments concerning the full system (1) have
been carried out on a relatively small network comprised of N = 300 neurons, which
corresponds to only 60 neurons per cluster, having fixed the noise levels to D = 0.02
and B = 0.004. Given the relatively small cluster size, one would expect strong fluc-
tuations in the network dynamics. Nevertheless, it will be shown that even under
such conditions, the mean-field analysis performed in case of thermodynamic limit
still remains qualitatively valid, in a sense of being able to qualitatively capture the
induced behavior of the network.
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Fig. 4. (a) Response of a clustered network (m = 5) to a stimulus of intensity IA and
duration ∆ introduced to cluster 5 at the moment T0. Notation Ri, i ∈ [1, 5] refers to mean-
rates of particular clusters, whereas RN stands for the collective network activity. Panels
(b) and (c) show excitation and relaxation processes of the network in the (RA, RB) plane,
respectively. The system’s orbit is superimposed on the vector field of the effective model (8),
obtained for (IA, IB) = (0.12, 0.1) in (b) and IA = IB = 0.1 in (c). The remaining parameters
are g = 250, B = 0.004, D = 0.02.

The scenario of targeted stimulation unfolds in such a way that before introducing
the stimulation, all the clusters occupy the low state and are influenced by the same
current IA = IB = 0.1. Then, at the moment T0 = 500, a rectangular pulse of elevated
bias current IA = 0.12 is introduced solely to cluster 5. The pulse is maintained
for a sufficiently long time ∆ = 500, such that the network is allowed to reach the
new metastable state. Note that during the stimulation, IA lies very close to the
bifurcation curve C2 from Figure 3a. Therefore the state OLL is weakly stable, and
the finite-size fluctuations may easily drive the system away from it, as indicated by
the time traces in Figure 4a. In Figure 4b, we have plotted the excitation orbit of
the network in the (RA, RB) plane in order to demonstrate that the system switches
between the metastable states anticipated by the effective model (8). In particular, the
vector field provided in the background presents the flow of system (8) for (IA, IB) =
(0.12, 0.1). One observes that the network rapidly leaves the vicinity of the state OLL

and switches to OHL, conforming to the path where a single cluster, described by
RA, is perturbed by the stimulation, whereas the remaining clusters, associated to
RB , remain unaffected.

We have also examined the relaxation process of the network after the termination
of the stimulus at t = T0 + ∆. In Figure 4c, the relaxation orbit is plotted against
the vector field of the system (8) for IA = IB = 0.1. As predicted by the effective
model, the state OHL lies far from bifurcations, which makes it relatively stable, in
a sense that the network may spend quite a long time in its vicinity. However, the
fluctuations induced by the finite-size effect eventually drive the network back to the
homogeneous DOWN state OLL.

The dependence of the networks response on the stimulation magnitude IA is
illustrated in Figure 5. The response is characterized by the ”excitation rate” γ,
defined as the average fraction of excited neurons at the moment T0 + ∆ just after
the stimulus has ceased, having performed averaging over an ensemble of 80 stochastic
realizations. Since the targeted stimulation may only give rise to excitation of a single
cluster, γ in this case is merely the probability of cluster excitation. The response
function γ(IA) exhibits threshold-like behavior, with the rising stage triggered at
IA ≈ 0.11 and completed at IA ≈ 0.12, cf. the blue solid line with empty circles. Note
that the latter value is in perfect agreement with the prediction of the bifurcation
diagram in Figure 3a. For large IA, the excitation rate saturates at γ = 1/m = 0.2,
which implies that only a single cluster is excited regardless of how large IA becomes.
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Fig. 5. Excitation rate, i.e. fraction of excited clusters γ in terms of IA for the different
stimulation scenarios. The circles and squares refer to targeted and distributed stimulation
of a clustered network (m = 5, g = 250), respectively, whereas the diamonds indicate the
response of a homogeneous random network (g = 1). The empty symbols connected by solid
lines denote γ values at the moment T0 +∆ when the stimulation is terminated. The solid
symbols connected by the dotted lines show γ at the moment T1 after the stimulation has
ceased, cf. Figure 4a. The remaining network parameters are B = 0.004, D = 0.02 and
IB = 0.1.

In general, the persistence of the elevated state does not depend on the applied
stimulation magnitude IA, but is rather determined by the relaxation speed of the
state the network occupies at the moment T0 +∆ when the stimulation is terminated.
In order to analyze the features of the relaxation process, we have measured the
excitation rate γ at a later moment T1 = 1250, sufficiently long after the excitation
pulse has ceased, cf. the blue dotted line connecting the filled circles in Figure 5.
Since in the case of targeted stimulation one always encounters the same excited
state with only a single cluster perturbed, it is natural to expect proportionality
between the excitation rate immediately after the stimulation (moment T0 +∆) and
at a later moment T1. Our results corroborate that the elevated state may indeed
persist considerably longer than the triggering pulse.

As already announced, we also report on an interesting finding that the induced
dynamics of modular networks strongly depends on the applied stimulation proto-
col. In particular, suppose that instead of a targeted stimulation, one introduces an
elevated bias current to the same fraction of neurons as in a single cluster, but just
randomly distributed over the network. We refer to such a scenario as “distributed
stimulation”. In this instance, for sufficiently large stimulation IA, the network may
reach states where substantially more than a single cluster is elicited, in spite of
relatively large clustering coefficient g.

The network excitation rate as a function of IA for the case of distributed stimula-
tion is indicated by the solid red line with empty squares in Figure 5. One immediately
realizes that the impact of the distributed stimulation is quite distinct from that of
the targeted one in two aspects: (i) the IA threshold where it starts to excite a single
cluster is significantly larger than for the targeted stimulation and (ii) for sufficiently
strong stimulation IA, all the clusters may cross to high state.

To gain a deeper insight into how the network’s response is shaped by clus-
tering, we consider an additional scenario, where a certain fraction of neurons is
stimulated in a homogeneous random network g = 1. To allow the comparison, we
have perturbed the same fraction of units as in the clustered network, but here one
cannot distinguish between the targeted and the distributed stimulation protocols



Advances in Nonlinear Dynamics of Complex Networks 1073

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

I
A

0

0.2

0.4

0.6

0.8

1

Fig. 6. Dependence of excitation rate γ on the applied current IA for levels of external
noise B where the network cannot exhibit maximal multistability. The green diamonds
concern the response of a homogeneous random network g = 1 in case where the effective
model exhibits only the DOWN state (B = 0.028, D = 0.02, IB = 0.1). The blue circles
and the red squares refer cases of a targeted and distributed stimulation of a clustered
network m = 5, respectively. In the thermodynamic limit, the parameters of the clustered
network facilitate bistable dynamics between the homogeneous UP and DOWN states (B =
0.018, D = 0.02, g = 60, IB = 0.1). The solid/empty symbols are used the same way as in
Figure 5.

because any subset of units is equivalent. The ensuing excitation rate, plotted in
Figure 5 by the solid green line, indicates a response substantially distinct from
that of a clustered network in case of targeted stimulation, but reminiscent of the
induced dynamics typical for the distributed stimulation. This is so because the
homogeneous network possesses only two metastable states, namely the homogeneous
DOWN and UP states, which implies that one cannot excite only a certain fraction
of units, but can rather excite the entire network. As the DOWN state vanishes
at the bifurcation curve C3 in Figure 3a, the guaranteed excitation of the network
is observed only if IA lies sufficiently close to this curve. The associated threshold
current corresponds to the saturation of the excitation rate observed at IA ≈ 0.19
in Figure 5.

As already indicated, the external noise influences the multistable dynamics of
both the homogeneous and the clustered networks. In Figure 6, it is examined how
the excitation rate changes if the level of external noise B is increased such that
the network can no longer exhibit maximal multistability in the thermodynamic
limit. For the non-clustered network, we have considered the case where the deter-
ministic dynamics is monostable, admitting only the DOWN state. As expected,
stimulating a fraction of neurons with arbitrary strong external current cannot switch
the network to the UP state, cf. the green diamonds in Figure 6. For the clus-
tered network m = 5, the external noise B and the clustering coefficient g have
been set such that the deterministic dynamics exhibits only bistability between
the homogeneous UP and DOWN states. For both the scenarios of the targeted
and distributed stimulation protocols, the excitation rate exhibits a threshold-like
behavior, ultimately reaching the network-wide UP state for a sufficiently strong
stimulation. As predicted by the effective model, the targeted stimulation can no
longer bring the network to a heterogeneous state where only a single cluster is
excited.
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5 Summary and discussion

In the present paper, we have analyzed the induced dynamics of a clustered network
subjected to two types of stimulation protocols, the targeted stimulation and the
distributed stimulation. In the former case, it has explicitly been demonstrated that
the effective model, describing the macroscopic dynamics in terms of coupled mean-
field models associated to each of the clusters, may accurately capture the networks
response, predicting the metastable state reached by the network.

An interesting finding is that the response of a clustered network strongly depends
on the applied stimulation protocol. In particular, in case of a targeted stimulation,
under sufficiently strong clustering, one typically observes that only the targeted
cluster is activated, whereas the remaining clusters are unaffected by the perturbation.
Nevertheless, for the distributed stimulation, applying a sufficiently strong excitation
may result in much richer dynamics, where different forms of elevated states, including
a network-wide high state, may be reached.

Concerning the immediate impact of the modular network architecture, we have
established that the response of a clustered network is drastically different from that
of a statistically homogeneous one even if the same number of randomly selected units
is stimulated. In particular, given the same stimulation magnitude, the excitation rate
of the homogeneous random network turns out to be substantially lower than that of a
clustered network. This distinction derives from the fact that a non-clustered network
cannot exhibit heterogeneous states. As expected, the differences in behavior of the
non-clustered and clustered networks vanish for sufficiently strong stimuli, where the
network-wide excitation becomes the prevalent scenario regardless of the network
structure. In case of a non-clustered network, the reduced model has been shown
to provide a good estimate of the threshold current that guarantees reaching the
elevated state.

The external noise has been found to play a nontrivial role with respect to the exci-
tation process, because it affects the features of the network’s multistable behavior in
the thermodynamic limit. This is a consequence of the fact that the macroscopic
noise derived from the local external noise is multiplicative [37]. The associated
changes in the multistability have been shown to substantially influence the exci-
tation rates in clustered networks for both the stimulation protocols, as well as in the
scenario where the stimulus acts on a certain fraction of neurons in a non-clustered
network.

For the particular stimulation protocol, the properties of the relaxation process
are found not to be determined by the intensity of excitation, but rather by the
state of the network at the moment the stimulation is terminated. One should note
that instances of prolonged relaxation have been observed, especially in the case of
distributed stimulation under higher intensities of the applied current, which facilitate
excitation to the homogeneous UP state. The lifetimes of the metastable states are
also influenced by the level of the external noise, and the underlying effects provide
an interesting topic for future studies. In particular, the impact of multistability on
the relaxation process may consist in inducing nonlinear dependencies of relaxation
times on the noise level, which can manifest as noise-enhanced stability of metastable
states [38,39].

Within the present study, we have explained by the effective model, and cor-
roborated numerically, why the induced dynamics of a clustered network resembles
the spontaneous one, further demonstrating how the stimulation biases the net-
work toward a particular collective state. Recent experimental research indicates
that the external stimulation reduces both the macroscopic and the microscopic
neuronal variability [10,40,41], the latter being associated to randomness in local
dynamics, viz. the spiking series of individual units. While our results may indeed
account for the stimulation-induced decrease of macroscopic variability, one cannot
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infer anything regarding the microscopic variability, since we apply a rate-based
neuron model. In this context, it would be of interest to consider in detail the
induced dynamics of a clustered network of spiking neurons via an effective model,
especially given that the numerical results in [5,13,20] already link the stimu-
lated activity with reduction of both the macroscopic and microscopic neuronal
variability.

This work is supported by the Ministry of Education, Science and Technological
Development of Republic of Serbia under project No. 171017, by the Russian Foundation
for Basic Research under project No. 17-02-00904, and by the Russian Science Foundation
under project No. 16-42-01043.
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21. S. Song, P. Sjöström, M. Reigl, S. Nelson, D. Chklovskii, PLoS Biol. 3, e68 (2005)
22. S. Lefort, C. Tomm, J.-C.F. Sarria, C.C.H. Petersen, J.C. Floyd Sarria, C.C.H. Petersen,

Neuron 61, 301 (2009)
23. R. Perin, M. Telefont, H. Markram, Front. Neuroanat. 7, 1 (2013)
24. V.V. Klinshov, J.N. Teramae, V.I. Nekorkin, T. Fukai, PLoS One 9, e94292 (2014)
25. S.B. Hofer, H. Ko, B. Pichler, J. Vogelstein, H. Ros et al., Nat. Neurosci. 14, 1045

(2011)
26. H. Ko, S.B. Hofer, B. Pichler, K.A. Buchanan, P.J. Sjöström, T.D. Mrsic-Flogel, Nature
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Abstract. We demonstrate that the interplay of noise and plasticity
gives rise to slow stochastic fluctuations in a system of two adaptively
coupled active rotators with excitable local dynamics. Depending on the
adaptation rate, two qualitatively different types of switching behav-
ior are observed. For slower adaptation, one finds alternation between
two modes of noise-induced oscillations, whereby the modes are distin-
guished by the different order of spiking between the units. In case of
faster adaptation, the system switches between the metastable states
derived from coexisting attractors of the corresponding determinis-
tic system, whereby the phases exhibit a bursting-like behavior. The
qualitative features of the switching dynamics are analyzed within the
framework of fast-slow analysis.

1 Introduction

In many complex systems, ranging from biology, physics and chemistry to social sci-
ences and engineering, the interaction patterns are not static, but are rather affected
by the states of constituent units [1–4]. This gives rise to complex feedback mecha-
nisms, where the coupling weights adapt to dynamical processes at the units, which in
turn influences the evolution of units itself. Modeling of such systems is based on the
paradigm of adaptive networks, where self-organization unfolds both at the level of
coupling weights and the collective states of the units, typically involving a separation
of characteristic timescales. The faster and the slower timescales are naturally asso-
ciated to the dynamics of units and couplings, respectively, such that the short-term
evolution of the units occurs on a quasi-static network, whereas the slow changes in
coupling weights depend on the time-averaged dynamics of the units. An important
example of adaptive connectivity is provided by neuronal systems, where the strength
of synaptic couplings is adjusted to the underlying spiking activity via spike-time-
dependent plasticity (STDP), a temporally asymmetric form of Hebbian learning [5],
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promoting causal relationship between the spikes of pre- and postsynaptic neurons
[6–8].

Motivated by the research on neuronal systems, in the present paper we study
a simplified model which incorporates the basic ingredients of neurodynamics, such
as excitability, plasticity and noise. The considered system consists of two adap-
tively coupled active rotators, whose intrinsic dynamics is set to excitable regime
and subjected to noise. The plasticity rule is introduced in such a way that one may
continuously interpolate between the coupling dynamics characteristic to Hebbian
learning and STDP. We demonstrate that the interplay of plasticity and noise may
facilitate two qualitatively different forms of slow stochastic fluctuations, depend-
ing on the adaptation rate. While for slower adaptation the self-organized dynamics
consists of switching between the two modes of noise-induced oscillations, in case of
faster adaptation, the switching dynamics comprises metastable states associated to
attractors of the deterministic system.

In the context of neuroscience, one may compare the considered system to a binary
neuron motif. It is well known that the same structural motif, defined at the level
of anatomy, can support multiple functional motifs [9–12], characterized by different
weight configurations and potentially distinct directions of information flow. In these
terms, our study will show that the co-effect of plasticity and noise may (i) contribute
to the emergence of different functional motifs on top of the given structural one and
(ii) trigger slow alternation between the functional motifs.

So far, the co-effects of noise and the STDP plasticity rule have been analyzed in
systems of two coupled neural oscillators, as well as in networks of oscillators. In case
of two units, multistability between different weight configurations has been found,
surprisingly indicating that noise may stabilize configurations of strong bidirectional
coupling absent in the deterministic system [13]. At variance with this, our study
concerns excitable local dynamics and explicitly addresses the slow stochastic fluctu-
ations between metastable states. For networks of adaptively coupled neural or phase
oscillators, the previous research has mainly focused on the impact of plasticity on the
synchronization behavior. In the absence of noise, several generic forms of macroscopic
dynamics have been identified, including desynchronized or partially synchronized
states with weak couplings, as well as cluster states [14–18]. In presence of noise,
an interesting effect of self-organized noise resistance to desynchronization has been
reported in the case of a network of neural oscillators [19]. In networks of excitable
units, the STDP rule has been shown to give rise to oscillating coupling configurations
that facilitate switching between strongly and weakly synchronized states [20–22].

The paper is organized as follows. The details of the model are introduced in
Section 2. An overview of the underlying deterministic dynamics, characterizing the
impact of plasticity on the stationary states and the onset of emergent oscillations,
is provided in Section 3. Section 4 is dedicated to a fast–slow analysis of the deter-
ministic dynamics, whereas in Section 5 are explained the features of the two generic
types of switching behavior. In Section 6 we provide a summary of our main results.

2 Model
We consider a system of two stochastic active rotators interacting by adaptive cou-
plings, where the dynamics of the phases {ϕ1(t), ϕ2(t)} and the coupling weights
{κ1(t), κ2(t)} is given by

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1) +
√
Dξ1

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2) +
√
Dξ2

κ̇1 = ε(−κ1 + sin(ϕ2 − ϕ1 + β))

κ̇2 = ε(−κ2 + sin(ϕ1 − ϕ2 + β)), (1)
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where ϕ1, ϕ2 ∈ S1, while κ1 and κ2 are real variables. The rotators are assumed to be
identical, having their local dynamics governed by the excitability parameter I0, which
gives rise to a SNIPER bifurcation at I0 = 1. We focus on the excitable regime, such
that I0 = 0.95 is kept fixed throughout the paper. In this case, the uncoupled system
always converges to a steady state, whereas the collective dynamics emerges due to
interaction and noise. The parameter ε� 1 defines the scale separation between the
fast dynamics of the phases and the slow dynamics of adaptation. White noise of
variance D acts only within the subspace of fast variables, whereby the terms ξ1(t)
and ξ2(t) are independent (ξi(t)ξj(t

′) = δijδ(t− t′) for i, j ∈ {1, 2}). In the context of
neuroscience, I0 can be interpreted as external bias current, whereas the impact of
stochastic terms is analogous to that of synaptic noise. Note that the deterministic
version of (1) is symmetric with respect to the exchange of indices 1↔ 2.

The plasticity rule is controlled by the parameter β, which allows one to interpo-
late between the different adaptation modalities. The analogy between the adaptivity
dynamics in classical neuronal systems and the systems of coupled phase oscillators
has been addressed in [14,23,24], whereas a deeper analysis of the correspondence
between the phase-dependent plasticity rules and the STDP has been provided in
[13]. From these studies, it follows that the scenario found for β = 3π/2, where the
stationary weights increase for smaller phase differences and decrease for larger ones
(“like-and-like” form of behavior), qualitatively resembles the Hebbian learning rule
[23,24]. Nevertheless, in the case β = π, the two coupling weights always change in
opposite directions, which may be interpreted as promoting an STDP-like plasticity
rule. In the present paper, we are interested in the β interval between these two limit
cases, since it admits two coexisting excitable fixed points.

3 Deterministic dynamics of the full system

In this section, we analyze the details of the deterministic dynamics of the full
system (1), considering first the stationary states and the associated excitability
feature, and then focusing on the scenario that gives rise to emergent oscillations.

3.1 Stationary states and excitable dynamics

Fixed points (ϕ∗1, ϕ
∗
2, κ
∗
1, κ
∗
2) of the complete system (1) for D = 0 are given by the

solutions of the following set of equations:

sinϕ∗1 − sin(ϕ∗2 − ϕ∗1 + β) sin(ϕ∗2 − ϕ∗1) = I0,

sinϕ∗2 − sin(ϕ∗1 − ϕ∗2 + β) sin(ϕ∗1 − ϕ∗2) = I0, (2)

with

κ∗1 = sin(ϕ∗2 − ϕ∗1 + β),

κ∗2 = sin(ϕ∗1 − ϕ∗2 + β). (3)

Equation (2) can be solved numerically for any fixed parameter set, or numerical
path-following can be applied in order to study the dependence of the fixed points
on the parameters.

The bifurcation diagram in Figure 1 shows how the number and stability of fixed
points of the full system change with β. In particular, depending on β, there may
be two, four or six fixed points. Due to symmetry, the solutions always appear in
pairs of points sharing the same stability features. Since our study concerns plastic-
ity rules which support excitable fixed points, we have confined the analysis to the
interval β ∈ (3.298, 4.495), where the system has two stable fixed points, which lie off
the synchronization manifold ϕ1 = ϕ2. Apart from that, there are also four unstable
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Fig. 1. (a) Bifurcation diagram for the fixed points of system (1) with D = 0 in the
(β, ϕ1, ϕ2) space. (b) Projection of the bifurcation diagram to (β, ϕ1) plane. The two fixed
points independent on β belong to the synchronization manifold: the red (blue) one is
always longitudinally stable (unstable). The solid lines denote stable fixed points, whereas
the dashed and dotted lines denote saddles of unstable dimension 1 and 2, respectively.

fixed points. The bifurcations associated to the boundaries of the given β interval
are as follows: at β = 3.298 the system undergoes a supercritical symmetry-breaking
pitchfork bifurcation where a symmetry related pair of two stable fixed points off the
synchronization manifold is created, whereas at β = 4.495, this pair meets another
pair of unstable fixed points off the synchronization manifold such that both are
annihilated in symmetry related inverse saddle-node bifurcations. For instance, at
β = 4.1, one finds the symmetry related pair of stable foci given by (ϕ1, ϕ2, κ1, κ2) =
(1.177, 0.175, 0.032,−0.92) and (ϕ1, ϕ2, κ1, κ2) = (0.175, 1.177,−0.92, 0.032). Note
that these weight levels support effective master-slave configurations, where one unit
exerts a much stronger influence on the other unit than vice versa.

The two stable asymmetric fixed points in the interval β ∈ (3.298, 4.495) are
excitable, and may exhibit several different types of response to external pertur-
bations, see the classification in Figure 2. Introducing the perturbations by setting
different initial conditions, we plot in Figure 2 the phase dynamics in the fast sub-
space while keeping the weights (κ1, κ2) fixed. Note that in the case where both units
respond with a single spike, the order of firing is such that the unit with larger initial
phase ϕi(0), i ∈ {1, 2} fires first.

3.2 Onset of oscillations

The onset of emergent oscillations in system (1) with D = 0 depends on the interplay
between the plasticity rule, specified by β, and the speed of adaptation, characterized
by ε. A parameter scan indicating the variation of κ1, Aκ1 = max(κ1(t))−min(κ1(t))
in terms of (β, ε) is shown in Figure 3a. The results are obtained by numerical con-
tinuation beginning from a stable periodic solution, such that the final state reached
for a certain set of (β, ε) values provides the initial conditions for the simulation of
the system at incremented parameter values. By this method, we have determined
the maximal stability region of the periodic solution.

One finds that for a fixed β, there actually exists an interval of timescales sep-
aration ε ∈ (εmin, εmax) admitting oscillations, cf. Figure 3b. The periodic solutions
in this interval coexist with the two symmetry-related stable stationary states. One
observes that the threshold εmin reduces with β, whereas the upper boundary value
εmax grows with increasing β. The detailed bifurcation mechanisms behind the onset
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Fig. 2. Modalities of the response to external perturbation for system (1) with D = 0. The
system parameters are I0 = 0.95, ε = 0.01 and β = 4.212, whereas the initial conditions for
the coupling weights are set to κ1(0) = −0.0077, κ2(0) = −0.846. Depending on the initial
phases (ϕ1(0), ϕ2(0)), one may observe the following regimes: (0) no spikes; (1) the unit
with larger ϕ(0) emits one spike and the other does not; (2) both units emit a single spike,
with the unit with larger ϕ(0) firing first; (3) the unit with larger ϕ(0) emits two spikes and
the other unit emits one; (4) both units spike synchronously.

of oscillations and multistability are beyond the scope of this paper, and essentially
involve an interplay between the fast and slow variables.

Enhancing ε under fixed β gives rise to a supercritical symmetry-breaking
pitchfork bifurcation of limit cycles, indicated by PFL in Figure 3b. Below the
bifurcation, the phases ϕ1(t) and ϕ2(t) maintain a small phase-shift, while the
oscillation profiles κi(t), i ∈ {1, 2} are rather different, see Figures 3d and 3e, respec-
tively. Above the bifurcation, the system gains the anti-phase space-time symmetry
ϕ1(t) = ϕ2(t+ T/2), κ1(t) = κ2(t+ T/2) where T denotes the oscillation period, cf.
the associated waveforms in Figures 3g and 3f.

4 Slow-fast analysis of the deterministic dynamics

The deterministic dynamics in case of slow adaptation, corresponding to a strong
timescale separation between the fast and slow variables, may be analyzed within the
framework of standard fast-slow analysis. In general, one may either consider the
layer problem, defined on the fast timescale, or the reduced problem, which concerns
the slow timescale. Within the layer problem, the aim is to determine the fast flow
dynamics ϕ1(t;κ1, κ2), ϕ2(t;κ1, κ2) by treating the slow variables κ1 and κ2 as param-
eters, whereas the reduced problem consists in determining the dynamics of the slow
flow (κ1(t), κ2(t)) (reduced flow) assuming that the fast flow of the layer problem is
either at a stable equilibrium or at the averaged value of a stable regime.

In this section, we first investigate the fast layer problems. Depending on the
values of the slow variables (κ1, κ2), the fast flow can exhibit several attractors, such
that multiple sheets of the slow flow emerge from the averaged dynamics on the
different attractors of the fast flow.
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Fig. 3. Onset of oscillations in the full system (1) for D = 0. In panel (a) is shown how
the variation Aκ1 of coupling weight κ1 changes in the (β, ε) plane. Panel (b) shows how
the mean coupling weights 〈κ1〉 and 〈κ2〉 of oscillatory states (thick lines) change with ε
under fixed β = 4.212. The thin solid lines indicate the stationary state. In panel (c) are
plotted the analogous dependencies for variation of the oscillation. The dotted lines in (b)
and (c) indicate the ε values corresponding to the time traces in Figure 7, whereas the dashed
lines indicate the boundaries of the ε region supporting the stable periodic solutions. The
symmetry-breaking pitchfork bifurcation of limit cycles is denoted by PFL. In panels (d)–(g)
are shown the waveforms of periodic solutions without and with the anti-phase space-time
symmetry, obtained for ε = 0.03 and ε = 0.09, respectively (see the arrows). The excitability
parameter is fixed to I0 = 0.95.

4.1 Dynamics of the fast flow

Within the layer problem, one studies the dynamics of the fast variables

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1)

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2), (4)

where κ1, κ2 ∈ [−1, 1] are considered as additional system parameters. Formally,
system (4) is obtained by setting ε = 0 in (1) for D = 0.

The numerically obtained bifurcation diagram in Figure 4a shows that the fast
flow is monostable for most of the (κ1, κ2) values, possessing either an equilibrium or
a limit cycle attractor. The stability boundary of the periodic solution (red curves)
has been obtained by the method of numerical continuation where, beginning from a
stable periodic solution, the initial conditions for incremented parameter values are
given by the final state reached for the previous set of (β, ε) values. The coexistence
between a stable fixed point, lying on the synchronization manifold, and a limit cycle
is found within a small region near the diagonal, see Figure 4a. Let us first classify
the fixed points of the fast flow and then examine the scenarios that give rise to
oscillations.

It can be shown that the fast flow admits either two or four fixed points, with
the associated regions indicated in Figure 4b. In particular, two fixed points FP1 and
FP2 on the synchronization manifold are independent on κ1 and κ2. They are given
by (ϕ∗1, ϕ

∗
2) = (arcsin I0, arcsin I0) and (ϕ∗1, ϕ

∗
2) = (π − arcsin I0, π − arcsin I0). One

may also find two additional fixed points off the synchronization manifold, referred
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Fig. 4. (a) Attractors of the fast flow (4) in terms of κ1 and κ2, now considered as param-
eters. The fast flow is typically monostable, supporting either a stable fixed point (FP)
or a stable limit cycle (LC), apart from a small region around the main diagonal, where it
exhibits bistable behavior. The green dashed curves indicate approximations of two branches
of SNIPER bifurcations, obtained by the method described in the text. The red lines cor-
respond to the numerically determined stability boundaries of the oscillatory solution. (b)
Classification of the fixed points of the fast flow (4). The fixed points are labeled the same
way as in the main text, with their stability indicated as follows: full circles denote stable
fixed points, semi-full circles represent saddle points and white circles correspond to doubly
unstable fixed points. Within the four light-shaded triangular-shaped regions, the doubly
unstable fixed point is a focus, rather than a node. The notation I–VIII refers to parameter
values corresponding to the phase portraits in Figure 5.

to as FP3 and FP4 in Figure 4b. The bifurcations affecting the number and stability
of the fixed points, beginning from the lower left region of the (κ1, κ2) plane, can
be summarized as follows. Along the main diagonal κ1 = κ2, we find two points of
supercritical pitchfork bifurcations (PF), where from the symmetric fixed points the
saddles FP3 and FP4 appear and disappear. Off the main diagonal, the pitchforks
are unfolded into curves of saddle-node (SN) and transcritical bifurcations (TC), see
Figure 4b.

The (κ1, κ2) region featuring stable oscillations almost completely matches the
lower left domain admitting two unstable fixed points. Within this region, each peri-
odic solution obtained for (κ1, κ2) above the main diagonal κ1 = κ2 has a counterpart
in the domain below the main diagonal, related to it by the exchange symmetry of
units indices. Typically, the periodic solutions emerge via SNIPER bifurcations, com-
prising two branches where either κ1 or κ2 remain almost constant and close to zero.
In both cases, the two fixed points that collide and disappear are FP3 and FP4. Nev-
ertheless, such scenarios cannot be maintained in the small (κ1, κ2) region admitting
coexistence between a fixed point and a limit cycle, because the SNIPER bifurcation
is accompanied by a change in the number of fixed points. Our findings suggest that
near the main diagonal, the limit cycle emerges via a heteroclinic bifurcation, where
an orbit connects two saddles lying off the synchronization manifold (not shown).
Note that the orbit of the limit cycle follows the unstable manifold of the saddle
point FP2 on the synchronization manifold. To the left or the right of the main diag-
onal, instead of a heteroclinic bifurcation, one finds homoclinic bifurcations, whereby
a saddle point, either FP3 or FP4, touches the limit cycle orbit. The schematic phase
portraits indicating the stable and unstable manifolds of the fixed points and the limit
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Fig. 5. Schematic phase portraits corresponding to the characteristic regimes of the fast
flow. The panels I–VIII refer to representative parameter values indicated in Figure 4b.
Also, the stability of fixed points is presented the same way as in Figure 4b. The invariant
synchronization manifold is denoted by the red color, whereas the orbit of a stable/unstable
limit cycle is indicated by the solid/dashed blue lines.

cycle for the characteristic regimes of the fast flow, denoted by I–VIII in Figure 4b,
are illustrated in Figure 5.

The two branches of SNIPER bifurcations may readily be approximated for small
values of κ1 and κ2 by a simple scheme, which amounts to reducing the fast flow to
a normal form of saddle-node bifurcation. Suppose first that κ1 � 1 and I0 − 1� 1.
More specifically, let ξ � 1 be a small parameter such that I0 − 1 = ξ (close to the
threshold) and κ1 = γξ, i.e. γ is a rescaling parameter of κ1, allowing for a zoom in
the neighborhood of zero. Then, the steady states are given by the system

1 + ξ − sinϕ1 + ξγ sin(ϕ2 − ϕ1) = 0,

1 + ξ − sinϕ2 + κ2 sin(ϕ1 − ϕ2) = 0. (5)

The first equation in the zeroth order approximation leads to ϕ1 = π/2. Hence, using
the perturbation approach, we have

ϕ∗1 =
π

2
+
√
ξΨ1 + · · · ; ϕ∗2 = Ψ2 + · · · , (6)

where the
√
ξ scaling follows from the Taylor expansion of the function sinϕ1 at π/2.

Inserting (6) into (5), one obtains the system of equations for Ψ1 and Ψ2

1 +
1

2
Ψ2
1 − γ cosΨ2 = 0,

1− sinΨ2 + κ2 cosΨ2 = 0. (7)

From system (7), it is not difficult to see that the saddle-node bifurcation takes place if
the condition 1− γ cosΨ2 = 0 is satisfied. This leads to the parametric representation
κ1 = ξγ = I0−1

cosΨ2
, κ2 = sinΨ2−1

cosΨ2
, of the saddle-node curve for small κ1 values, where

Ψ2 plays the role of the parameter along the curve. An analogous approach may be
used to capture the second branch of saddle-node bifurcations, cf. the green dashed
lines in Figure 4a.
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4.2 Dynamics of the slow flow

We have numerically obtained the dynamics of the slow flow by applying a two-step
approach. First, for fixed values (κ1, κ2), we determine the time-averaged dynamics
of the fast flow (4), 〈ϕ2 −ϕ1〉t = f(κ1, κ2). Here, the averaging 〈·〉t is performed over
a sufficiently large time interval, having eliminated a transient. Hence, this average
depends on the attractor of the fast flow for the given (κ1, κ2). In particular, if the
fast flow possesses a stable fixed point, then 〈ϕ2 − ϕ1〉t = ϕ∗2 − ϕ∗1, where (ϕ∗1, ϕ

∗
2) is

a solution of

I0 − sinϕ∗1 + κ1 sin (ϕ∗2 − ϕ∗1) = 0

I0 − sinϕ∗2 + κ2 sin (ϕ∗1 − ϕ∗2) = 0. (8)

This procedure just results in determining the slow critical manifold of the system.
In case when the attractor of the fast flow is periodic, 〈ϕ2 − ϕ1〉t presents the time
average over the period. Averaging approximation in case of a periodic attractor of
the fast flow constitutes a standard approach [13,25], rather natural for describing
the influence of oscillations in the fast flow on the dynamics of the slow flow. At the
second stage, the obtained time-averages are substituted into the dynamics of the
weights

κ̇1 = ε[−κ1 + sin(f(κ1, κ2) + β)]

κ̇2 = ε[−κ2 + sin(−f(κ1, κ2) + β)]. (9)

The system (9) is used to determine the vector field of the slow flow by taking into
account only the attractors of the fast flow, such that the vector field associated to
each attractor is plotted within its respective stability region, cf. Figure 6.

In regions of the (κ1, κ2) plane where there are coexisting stable solutions of
the fast flow, the corresponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(κ1, κ2) depends on the initial
conditions. In our case, this occurs only in a small region of coexistence between an
equilibrium and a stable limit cycle.

One should single out two important features of the slow flow: (i) it exhibits two
symmetry-related fixed points in the green and blue regions in Figure 6, and (ii) the
slow vector field is pointed in opposite directions close to the boundary between the
fast oscillatory regime (orange region) and the steady states of the fast flow (blue,
green and white regions). The latter in particular implies that interesting effects
occur close to the border of the oscillatory and the steady state regime of the fast
flow. Moreover, adding noise gives rise to fluctuations around this boundary, which
leads to switching between the quasi-stationary and the fast spiking dynamics. Such
effects are studied in more detail within the next section.

5 Switching dynamics

Our main observation in this section is that the interplay of plasticity and noise
induces slow stochastic fluctuations (switching dynamics), mediating two qualita-
tively different scenarios depending on the speed of adaptation. The latter include
(i) switching between two modes of noise-induced oscillations for slower adaptation
(small ε ' 0.01) and (ii) switching between multiple coexisting attractors of the
deterministic dynamics for faster adaptation (intermediate ε ' 0.05).

In case (i), the impact of noise is twofold: on a short timescale, it gives rise to spik-
ing dynamics, whereas on a long time scale, it induces random transitions between
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Fig. 6. Vector field of the slow flow obtained by taking into account only stable attractors
of the fast flow for β = 4.212, I0 = 0.95. The color coding is as follows: orange color denotes
the region associated to the stable limit cycle of the fast flow, white stands for the stable
fixed point of the fast flow FP1, whereas blue and green color correspond to the two stable
fixed points FP3 and FP4. Within the light-shaded regions, FP3 and FP4 are foci rather
than nodes, cf. Figure 4b.

the two oscillatory modes. In case (ii), the switching dynamics comprises metastable
states derived from two fixed points, as well as two limit cycles associated to emergent
oscillations of the corresponding deterministic system. The key difference between the
effects (i) and (ii) is that for slower adaptation, the system switches between the oscil-
latory modes that do not exist as deterministic attractors. Moreover, the two generic
types of switching are characterized by distinct phase dynamics: for slower adapta-
tion, one finds alternation of patterns with different order of spiking between the
units, whereas for faster adaptation, the phases effectively exhibit bursting behav-
ior, involving a succession between episodes of spiking and relative quiescence. An
overview on how the typical dynamics of couplings changes with ε at fixed β is pro-
vided in Figure 7. Note that the difference between the average coupling weights of
the stable periodic solutions of the deterministic system are much smaller than a typ-
ical distance between the coupling levels for the stationary states. The prevalence of
metastable states is affected by ε so that intermediate adaptation favors oscillatory
modes, whereas the fast adaptation apparently promotes the two quasi-stationary
states. In the next two subsections, we provide further insight into the mechanisms
behind the switching dynamics using the results of the fast-slow analysis.

5.1 Switching dynamics under slow adaptation

As already indicated, ε is here taken sufficiently small, such that it cannot facilitate
emergent oscillations in the full system (1). For ε ' 0.01 and under appropriate noise
levels, one observes noise-induced oscillations [26]. The latter arise via a scenario
involving a multiple-timescale stochastic bifurcation, whereby noise acts only within
the fast subsystem of (1). The onset of oscillations under increasing D occurs in two
stages. In the first stage, the phase dynamics gradually exhibits more induced spikes,
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Fig. 8. Switching dynamics between the two modes of noise-induced oscillations. Time traces
of the weights are shown in panel (a), whereas panel (b) and (c) display the corresponding
time traces of the phases during the intervals between the dashed lines in panel (a). In panel
(d), the (κ1(t), κ2(t)) projections of the orbits associated to each of the two modes (blue
color), as well as the switching episode, shown in white, are superimposed to the vector field
of the slow flow from Figure 6. The shaded area corresponds to the stable limit cycle. The
system parameters are I0 = 0.95, β = 4.212, ε = 0.01, D = 0.009.

such that the stationary distributions of phases eventually acquire a longer tail reflect-
ing the occurrence of spikes (not shown). Nevertheless, the stationary distributions
P (κi) change appreciably only at the second stage, which takes place for sufficiently
large D. Such a change accompanies the emergence of coupling oscillations. Note that
the system (1) actually exhibits two modes of noise-induced oscillations, character-
ized by the different order of firing between the two units, cf. the time traces of phase
dynamics and the associated evolution of couplings in Figure 8a.

It is interesting to examine whether the vector field of the slow flow from
Section 4.2 can be used to explain the slow stochastic fluctuations of the coupling
weights. To this end, we have superimposed the (κ1(t), κ2(t)) orbits of the two noise-
induced modes, as well as a switching episode, to a vector field of the slow flow from
Figure 6. Note that the orbits typically lie close to the boundary outlining the tran-
sition between the two attractors of the fast flow, featuring non-negligible coupling
weights. Moreover, the two modes are confined to small areas of the (κ1, κ2) plane
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Fig. 9. Time traces of the phases (a) and weights (b) associated to noise-induced switching
between the coexisting attractors of the deterministic system. The results are obtained for
I0 = 0.95, β = 4.212, ε = 0.05, D = 0.004. In panel (c) is provided the deterministic dynamics
of weights obtained for the same parameter values. In panel (d), the (κ1(t), κ2(t)) orbit
corresponding to the interval between the dashed lines in (b) is super-imposed on the vector
field of the slow flow cf. Figure 6.

symmetrical with respect to the main diagonal κ1 = κ2, whereas the switching episode
virtually takes place on the diagonal. Apparently, the noise-induced modes occupy
regions where the oscillations in the fast flow emerge via homoclinic bifurcations,
rather than the SNIPER scenario. Nonetheless, the switching episode seems to involve
the domain featuring coexistence of the two stable sheets of the slow vector field.
Within these sheets, which correspond to two attractors of the fast flow (a stable
node and a stable limit cycle), the vector fields are oriented in opposite directions,
thereby contributing to switching.

5.2 Switching dynamics for faster adaptation

In case of faster adaptation associated to intermediate ε, the switching dynamics
involves four metastable states, derived from the attractors of the deterministic
system. The deterministic multistable behavior includes two symmetry-related sta-
tionary states, as well as two symmetry-related limit cycles. Note that while the two
stable steady states exist for arbitrary small ε and are therefore visible in the slow
flow in Figure 6, the oscillatory solutions disappear for small ε and hence cannot
be observed in the slow flow. The two oscillatory regimes are characterized by the
same phase shift, but the reverse order of firing between the two units. Influenced by
noise, the phases effectively engage in bursting behavior, manifesting slow stochas-
tic fluctuations between episodes of intensive spiking activity and periods of relative
quiescence, see Figure 9a. For a fixed noise level, the prevalence of metastable states,
defined by transition probabilities between them, changes with adaptation speed. One
observes that for ε ' 0.05, the oscillatory dynamics is preferred, whereas for ε ' 0.1,
the quasi-stationary states are more ubiquitous.

A comparison of the (κ1, κ2) orbits displaying switching dynamics and the vec-
tor field of the slow flow from Figure 6 again shows that the former is confined
to the criticality region at the boundary between the stationary and oscillatory
regimes in the fast flow, cf. Figure 9. One should remark on how the transitions
between the different metastable states take place. In particular, from Figure 9b, it is
clear that there can be no direct transitions between the two quasi-stationary states,
but they rather have to be mediated by the system passing through the oscillatory
states. Also, the transition from oscillatory to quasi-stationary states typically occurs
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once the couplings approach a master-slave-like configuration, where the coupling in
one direction is much stronger than the other one. This scenario coincides with the
SNIPER bifurcation of the fast flow described in Section 4.1. The scenario of tran-
sition between the two metastable oscillatory states resembles closely the one from
Section 5.2.

6 Summary

In the present study, we have analyzed a system of two adaptively coupled active
rotators with excitable intrinsic dynamics, demonstrating that the interplay of plas-
ticity and noise may give rise to slow stochastic fluctuations. Two qualitatively
different types of self-organized behavior have been identified, depending on the adap-
tation speed. For slower adaptation, the switching dynamics consists of an alternation
between two modes of noise-induced oscillations, associated to a preferred order of
spiking between the two units. In this case, noise plays a twofold role: on one hand, it
perturbs the excitable local dynamics giving rise to oscillations on a short timescale,
whereas on the other hand, it elicits the alternation between the two oscillatory states
on a long timescale. The underlying phase dynamics shows slow switching between
two patterns distinguished by the different order in which the units are spiking. In
case of faster adaptation, the coupling becomes capable of eliciting emergent oscilla-
tions in the deterministic system [27]. The latter then exhibits complex multistable
behavior, involving two stationary and two oscillatory regimes. Under the influence
of noise, the system undergoes switching between these four different metastable
states, whose prevalence at fixed noise level depends on the speed of adaptation. The
deterministic attractors associated to metastable states are related by the Z2 symme-
try. Thus, a mismatch in excitability parameters would lead to symmetry-breaking,
whereby a small mismatch would induce a bias in switching dynamics, whereas a
larger mismatch, corresponding to a scenario with one excitable and one oscillatory
unit, would completely alter the observed dynamics.

Though the underlying phenomena are not found in the singular limit of infinite
scale separation, the fast-slow analysis we have applied still allows one to explain
the qualitative features of both considered types of switching behavior. Studying the
layer problem, and in particular the vector field of the slow flow, has enabled us to
gain insight into the metastable states and the transitions between them. It has been
demonstrated that the coupling dynamics is always in a state of “criticality”, being
confined to the boundary between the stationary and oscillatory regimes of the fast
flow.

Given that excitability, plasticity and noise are inherent ingredients of neuronal
systems, the obtained results can be interpreted in the context of neuroscience. It is
well known that the backbone of neural networks is made up of binary and ternary
neuron motifs, whereby the structural motifs typically support multiple functional
motifs, essentially characterized by the weight configuration and the underlying direc-
tion of the information flow. With this in mind, the scenario of switching under slow
adaptation may be important, because it implies that a binary motif can display slow
alternation between two effectively unidirectional weight configurations, promoting
opposite direction of information flow. For faster adaptation, one finds multistabil-
ity between unidirectional coupling and bidirectional coupling of moderate strength.
Nonetheless, the underlying phase dynamics, if extended to networks, may be con-
sidered as a paradigm for UP-DOWN states, typical for cortical dynamics [28,29].
Thus, it would be of interest to examine the impact of plasticity in networks of
noisy excitable units, where one may expect different types of emergent behavior,
such as cluster, non-synchronized and partially synchronized states, depending on
the frustration of local dynamics and the impact of noise.
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The classical notion of excitability refers to an equilibrium state that shows under the influence of
perturbations a nonlinear threshold-like behavior. Here, we extend this concept by demonstrating
how periodic orbits can exhibit a specific form of excitable behavior where the nonlinear threshold-
like response appears only after perturbations applied within a certain part of the periodic orbit,
i.e., the excitability happens to be phase-sensitive. As a paradigmatic example of this concept, we
employ the classical FitzHugh-Nagumo system. The relaxation oscillations, appearing in the oscil-
latory regime of this system, turn out to exhibit a phase-sensitive nonlinear threshold-like response
to perturbations, which can be explained by the nonlinear behavior in the vicinity of the canard tra-
jectory. Triggering the phase-sensitive excitability of the relaxation oscillations by noise, we find a
characteristic non-monotone dependence of the mean spiking rate of the relaxation oscillation on the
noise level. We explain this non-monotone dependence as a result of an interplay of two competing
effects of the increasing noise: the growing efficiency of the excitation and the degradation of the
nonlinear response. Published by AIP Publishing. https://doi.org/10.1063/1.5045179

The classical concept of excitability refers to a specific non-
linear response of a system to perturbations of its rest
state. While for small perturbations the system reacts only
with a linear relaxation directly back to the rest state, for
larger perturbations above a certain threshold it reacts
with a large non-linear response, called excitation. Such
a behavior can be observed, for example, when a neuron
in the quiescent state receives a presynaptic impulse and
reacts with the emission of a spike. Until the non-linear
response has terminated, the system is not susceptible
to further excitations. Only after the system has again
reached the rest state, can it be excited again. We study
here the case where the rest state is not a stationary state
but a stable periodic orbit. Then, the response of the sys-
tem to perturbations may be nonuniform along the orbit.
Of particular interest is the case where the non-linear
response to perturbations above threshold appears only in
a certain part of the periodic orbit. We call this situation
phase-sensitive excitability and demonstrate that the oscil-
latory regime of the FitzHugh-Nagumo system can serve
as an example for this type of behavior. It is well known
that for other parameter values, the FitzHugh-Nagumo
system has an excitable equilibrium. In this case, a pertur-
bation above threshold induces a response in the form of
a single spike. We present a completely different scenario.
Perturbations are now applied to the regime of periodic
spiking. If these perturbations act close to the passage near
the unstable equilibrium, they may evoke a response in
the form of a subthreshold oscillation and in this way pre-
vent the system for a certain time from spiking. There
are many cases where the triggering of an excitable sys-
tem by noise can result in a characteristic non-monotone

a)Electronic mail: franovic@ipb.ac.rs
b)Electronic mail: omelchen@wias-berlin.de
c)Electronic mail: wolfrum@wias-berlin.de

dependence of the system behavior on the noise intensity.
This also holds for our example of the oscillatory regime
of the FitzHugh-Nagumo system, where we can demon-
strate that the spiking frequency becomes minimal at an
intermediate noise level.

I. INTRODUCTION

In their groundbreaking work from 1946, Wiener and
Rosenblueth,1 having observed propagating contractions in
the cardiac muscle, developed the fundamental concept of
an excitable system: exciting a state of rest by perturbations
above a certain threshold, the system reacts with a non-
linear response. Subsequently, the system needs a certain time,
called the refractory period, until it can be excited again.
This concept provided an extremely successful framework for
understanding a large variety of real-life systems.2 Beginning
from biological systems, where it describes not only cardiac
tissue3 but also certain functionalities of organisms,4,5 and
behavioral aspects of individuals, or of whole populations,6,7

it has been translated to gene regulatory networks,8 chemical
reactions,9 laser systems,10 and semiconductors,11 and last but
not least, it has become one of the key principles of theoretical
neuroscience.12–16

We extend the concept of excitability by considering as
the rest state of the system a stable periodic orbit rather than an
equilibrium. In this case, the nonlinear threshold-like response
may additionally depend on the phase of the oscillation at
which the impulse acts such that an excitation may occur only
if a super-threshold perturbation is applied within a certain
part of the periodic orbit. We shall use the regime of relaxation
oscillations in the FitzHugh-Nagumo system as an example

1054-1500/2018/28(7)/071105/6/$30.00 28, 071105-1 Published by AIP Publishing.
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FIG. 1. Phase plane for (1) with
b = 0.99, ε = 0.05, I(t) = 0: relaxation
oscillation orbit (green), maximal canard
(red), and nullclines (dash-dotted). Inset:
region close to the unstable equilibrium.
In the region of phase-sensitive excitabil-
ity (green stripe), the maximal canard
passes close to the relaxation oscillation
orbit such that small perturbations may
deviate a solution to make an extra round
trip around the unstable equilibrium.

of this general concept of phase-sensitive excitability. In the
context of neuroscience, this spiking regime can already be
considered as the “excited state” of a neuron. Nevertheless,
here we shall consider this periodic regime as the “rest state”
in the sense of Refs. 1 and 2 and shall study its nonlinear
threshold-like response to perturbations, which in this case
manifests as a reduced spiking activity. Note that in Ref. 17
a similar model was considered but with the rest state given
by the subthreshold oscillations and with the excited state
associated to the large-amplitude oscillations. Using multi-
scale techniques and the canard trajectories, we shall ana-
lyze in detail the specific mechanism realizing the non-linear
excitations in our system.

In Ref. 18, it has been pointed out that excitable sys-
tems can respond to noise in a specific way, showing a
characteristic non-monotone dependence on the noise level.
Such effects have been studied extensively and the FitzHugh-
Nagumo system in the regime of an excitable equilibrium
represents one of the classical examples.18–20 There, it is
the mean spiking regularity of noise-induced oscillations that
shows a characteristic maximum, called coherence resonance,
at an intermediate noise level. Our study of the FitzHugh-
Nagumo system in the oscillatory regime will demonstrate
that also the relaxation oscillation shows a non-monotone
response to noise: here, however, it is the mean spiking rate
that shows a characteristic minimum at an intermediate noise
level. This effect is most pronounced for intermediate values
of the time-scale separation (ε ≈ 0.05), while in the singu-
lar limit ε → 0, the effect disappears. This is the reason
why the effect has not been observed in the detailed study
of Muratov and Vanden-Eijnden,21 where the behavior of
the FitzHugh-Nagumo system under the influence of noise
has been investigated by singular perturbation techniques.
We believe that our parameter regime can be adequate in
the context of neuroscience and that the effect of phase-
sensitive excitability may be of importance both for determin-
istic inputs in coupled network systems and for the case of
stochastic input signals.

II. THE FITZHUGH-NAGUMO OSCILLATOR

Our basic example for the mechanism of phase-sensitive
excitability is the FitzHugh-Nagumo system

εẋ = x − x3/3 − y,

ẏ = x + b + I(t). (1)

In the context of neuroscience, x and y correspond to the neu-
ronal membrane potential and the ion-gating channels, respec-
tively. The time-dependent input signal I(t) can be used to
resemble intrinsic noise in the opening of the ion-channels.22

The smallness of the parameter ε reflects the time-scale sepa-
ration between the dynamics of x and y. The system has been
extensively studied as a slow-fast system, using the singular
limit ε → 0, cf. Ref. 23 for an overview on the determinis-
tic case and Refs. 2, 19, 20, and 24–26 for different scenarios
with noise. Classical results for the case without input sig-
nal I(t) show that system (1) undergoes a supercritical Hopf
bifurcation at b = 1 such that for decreasing b a branch of
small-amplitude oscillations of period O(

√
ε) appears. Then,

for b = bc ≈ 1 − ε/8, there is a rapid transition to large-
amplitude relaxation oscillations of period O(1).27 From the
neuroscience point of view, this corresponds to the transition
from the quiescent state to the spiking regime via subthreshold
oscillations. In order to explain the mechanism of phase-
sensitive excitability, we consider the slow-fast structures in
the phase space for the relaxation oscillations at b < bc in
the system (1). Figure 1 shows the relaxation oscillation orbit
together with the nullclines of the vector field. During the
passage close to the unstable equilibrium, located at the inter-
section of the nullclines, the relaxation oscillation orbit is
excitable in the following sense: there is an exponentially thin
layer of trajectories, called maximal canard, such that any per-
turbation large enough to elevate the state from the periodic
orbit to a point above these trajectories will cause the sys-
tem to make at least one loop around the unstable equilibrium
before proceeding again along the relaxation oscillation orbit.
Smaller perturbations or perturbations in directions below
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the relaxation oscillation orbit will not give rise to such a
response.

The maximal canard trajectories are characterized by the
fact that they follow the whole unstable branch of the slow
manifold, which in first approximation is given by the part
of the nullcline y = x − x3/3 lying in between the two folds,
cf. Ref. 28. Already exponentially small deviations from the
maximal canard cause the solutions to rapidly depart from it,
traveling in either direction towards one of the stable branches
of the slow manifold (dotted curves in Fig. 1). A maximal
canard trajectory can readily be determined numerically by
selecting an initial condition closely below the upper fold
(x, y) = (1, 2/3), and from there integrating backward in time.
Following one of the canard trajectories in this way, one finds
a region where it passes extremely close to the relaxation
oscillation orbit. Along this part of the relaxation oscillation
orbit, the maximal canard acts as a threshold for perturba-
tions such that super-threshold perturbations cause a nonlinear
response with an extra excitation loop around the unstable
equilibrium.

III. RESPONSE TO NOISE

Having understood the response of the system to single
impact perturbations of different size, we examine now the
response to Gaussian white noise

I(t) = Dξ(t),

of varying amplitude D. Figure 2 shows typical realizations of
trajectories for three different levels of noise. The plots show
that for low noise level (a), the noise-induced excitation loops
occur rarely and are well confined by the spiral structure of the
maximal canard. For increasing noise level (b), they become
more frequent, but at the same time they get increasingly
blurred by the noise. For the largest noise level (c), the preva-
lence of the small excitation loops decreases again since the
efficiency of the confinement by the deterministic maximal
canard is reduced.

To study this process in more detail, we introduce a
Poincaré section at

x = x0 = −0.99, y < x0 − x3
0/3, (2)

i.e., we record passages through a vertical line extending
below the unstable fixed point. In Fig. 3(a), we show the
sampled return times �T between successive crossing events,
obtained for the same noise levels as used in Fig. 2. The his-
tograms show that for all three noise levels one can clearly
distinguish between return times �T ≈ TR corresponding to
relaxation oscillation cycles and those corresponding to exci-
tation loops �T ≈ TE. For the time trace shown in Fig. 3(b),
we have shaded the corresponding time intervals accord-
ingly. Panel (c) shows the corresponding variances σR,E for
each of the two separate peaks of the return time distribu-
tion, and panel (d) shows their relative size for varying noise
level D. One can observe that there is a prevalence of exci-
tation loops for intermediate values of the noise level D ≈
10−2. Above this value, the variances for each of the peaks
start to increase, indicating an increasing degradation of the
nonlinear response by noise. The excitation loops delay the

FIG. 2. Response of the relaxation oscillation to different levels of noise: (a)
D = 0.003, (b) D = 0.01, and (c) D = 0.03. Left panels: noisy trajectories in
the phase plane together with the deterministic relaxation oscillation orbit and
maximal canard. Top panels: corresponding time traces x(t) from the panels
above. Bottom panels: longer time traces indicating the prevalence of noise
induced small excitation loops for the middle noise level D = 0.01.

occurrence of the next spike and thus affect the mean spik-
ing rate of the system 〈R〉, measured as the average number
of large-amplitude oscillations per time. Figure 4 shows that
the spiking rate exhibits a non-monotone dependence with
increasing noise level D, where the minimum of 〈R〉 coincides
with the maximal fraction of small excitation loops shown in
Fig. 3(d).

Note that this effect is most pronounced for intermedi-
ate values ε ≈ 0.05 of the time-scale separation. This is due
to the fact that the duration of the excitation loop, given to
the leading order by the linearization at the unstable equilib-
rium, which is a weakly undamped center, scales like O(

√
ε).

Hence, the delaying effect on the spikes and the consequent
decrease of the spiking rate become small in the singular limit.

IV. EXCITATION EFFICIENCY AND DEGRADATION

The non-monotone dependence of the spiking rate 〈R〉(σ )

can be explained as the result of two competing effects of
the increasing noise: the increasing efficiency of the excita-
tion and the degradation of the nonlinear response. To study
this competition in more detail, we consider the return times
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FIG. 3. (a) Sampled return times �T
between subsequent crossings of the
Poincaré section (2) for different noise
levels. The two peaks in the distribu-
tions correspond to relaxation oscillations
�T ≈ TR (red) and noise-induced exci-
tation loops �T ≈ TE (blue). (b) Time
trace for D = 0.01 with respective time
intervals �T colored accordingly. [(c)
and (d)] Variances σR,E and relative size
nE/nR from the two separate peaks of the
return time distributions for varying noise
level.

�T̃ , associated to the Poincaré section (2) with x0 = −0.2.
In this case, the excitation loops do not lead to additional
crossing events and the corresponding return time �T̃ mea-
sures the round trip time of each relaxation oscillation together
with the included excitation loops. For small noise, the cor-
responding histograms in Fig. 5(a) show distributions with
well separated peaks centered around �T̃ ≈ TR + kTE, where
k ∈ {0, 1, 2, 3, . . . } counts the number of excitation loops
between two successive Poincaré events. We observe that for
D < 10−2 there is not only an increasing number of such
excitation loops, cf. Fig. 3(d) but also an increasing num-
ber of multiple successive excitation loops. This can be seen
from the corresponding probabilities of successive loops for
varying noise intensity D given in Fig. 5(b). It underlines
the increasing efficiency of the excitation process, driven by

FIG. 4. Non-monotone response to noise of a phase-sensitive excitable peri-
odic orbit: mean spiking rate 〈R〉 of the relaxation oscillations of (1) shows a
characteristic minimum at an intermediate noise level D ≈ 10−2.

noise in the subcritical range D < 10−2. Above this value, the
degradation effect takes over, which consists in the loss of cor-
relation between the number of included excitation loops and
the total duration of the corresponding relaxation oscillation
cycle.

In order to quantify the degradation effect, we have cal-
culated the noise-dependence of the correlation coefficient
δ between the number k of small loops the unit performs
between the two successive passages of the Poincaré cross-
section, and the first return time �T̃ being in the corre-
sponding interval [TR + (k − 1

2 )TE, TR + (k + 1
2 )TE]. Evalu-

ating numerically this correlation coefficient, we see the onset
of a strong decay above the critical noise level of D <≈
10−2, indicating the degradation of the nonlinear response, see
Fig. 5(c). Similar effects have been described in Refs. 29 and
30 as noise-induced linearization.

V. DISCUSSION AND OUTLOOK

It is important to remark that a periodic orbit emerging in
a transition from an excitable equilibrium, as it happens in the
FitzHugh-Nagumo system, does not necessarily inherit phase-
sensitive excitability from the excitability of the preceding
equilibrium. This can be seen, e.g., for the active rotator

θ̇ = 1 + b − sin θ + Dξ(t), θ ∈ R/2πZ, (3)

where a saddle-node infinite period (SNIPER) bifurcation
at b = 0 mediates a transition from excitable to oscillatory
behavior. However, the periodic solution at b = 0.02 shows
no phase-sensitive excitability, and the dependence of the
spiking rate on the noise level is monotone, cf. Fig. 6(a). On
the other hand, for the FitzHugh-Nagumo system with a noise
term

√
D/εξ(t) added to the fast variable x so to resemble the
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FIG. 5. (a) Histograms of first return
times �T̃ to a Poincaré section (2) with
x0 = −0.2. (b) Relative frequency of two
successive excitation loops. (c) Correla-
tion coefficient between the number of
excitation loops in a relaxation oscillation
cycle and its duration �T̃ .

action of synaptic noise,22 the excitable behavior and the non-
monotone dependence can be observed in a similar way, cf.
Figs. 4 and 6(b).

The presented concept of phase-sensitive excitability
establishes a natural extension of the classical concept of
excitability of equilibria to periodic orbits, offering a gen-
eral framework for describing certain nonlinear effects in
driven or interacting oscillatory systems. It resembles the
main properties of the classical case:

(i) nonlinear threshold-like response to perturbation impulses
and

(ii) non-monotone response to noisy inputs of increasing
amplitude.

The nature of the non-monotone dependence on the noise
level for phase-sensitive excitability in the regime of relax-
ation oscillations of the FitzHugh-Nagumo system is qual-
itatively distinct from the two classical cases concerning
the FitzHugh-Nagumo model where the rest state is given
by an excitable equilibrium or conforms to the regime of
subthreshold oscillations before the canard explosion (b >

bc ≈ 1 − ε/8). In both the classical examples, the excited
state conforms to a relaxation oscillation (spike), and the
applied noise affects the regularity of noise-induced oscil-
lations such that it becomes maximal for the optimal noise
intensity.17–20 The qualitative similarity between these two
cases is to be expected because the subthreshold oscilla-
tions become indistinguishable from an equilibrium in the

FIG. 6. (a) Monotone mean spiking rate 〈R〉 of
the active rotator (3). (b) Non-monotone mean
spiking rate of the relaxation oscillations of (1)
with I(t) = 0 and adding instead noise of varying
levels to the fast variable.
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singular limit ε → 0. As opposed to that, our scenario of
phase-sensitive excitability involves the regime of relaxation
oscillations as the rest state, the subthreshold oscillations con-
form to the excited state, and the applied noise affects the
mean spiking frequency such that it becomes minimal at an
intermediate noise level.

In the context of neuroscience, the resonant effect con-
sisting in a reduction of the spiking frequency of neural
oscillators within a certain range of intermediate noise levels
has been referred to as inverse stochastic resonance. Such an
inhibitory action of noise has been observed experimentally31

and has also been discussed in several model studies, con-
cerning the impact of external or intrinsic noise on single32–34

or coupled neurons.35,36 The effect has been suggested as a
potential paradigm for computational tasks that either require
reducing the neuronal spiking frequency without chemical
neuro-modulation or involve generating episodes of bursting
activity in neurons that are not endogenously bursting. The
generic mechanism behind the effect has typically been linked
to bistability of the underlying deterministic dynamics, which
exhibits coexistence between an equilibrium and a stable limit
cycle. For such a scenario, the noise induces a switching
between the corresponding metastable states, with the spik-
ing frequency decreasing at a certain range of intermediate
noise levels where the transition rate from the quasi-stationary
to oscillatory state becomes much smaller than the one in
the opposite direction. The noise-driven effect reported here
is based on a qualitatively distinct mechanism, because the
deterministic dynamics is monostable, and the excitations off
the limit cycle emerge due to phase-sensitive excitability of
the associated orbit, derived from the multi-scale structure of
the system.

Revisiting earlier work on coupled oscillator systems, one
can find instances where effects that could be explained as
a result of phase-sensitive excitability have been reported.
Indeed, some of the results in Ref. 37 about space-time pat-
terns in a coupled network of FitzHugh-Nagumo oscillators
seem to be based on the phase-sensitive excitability of the
relaxation oscillations. Also, the alternating behavior reported
in Ref. 38 could possibly be an effect of phase-sensitive
excitability. These examples may underline the importance of
the abstract concept as such, offering a general framework and
a unifying view for a variety of closely related phenomena.
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We study the collective dynamics in a population of excitable units (neurons) adaptively
interacting with a pool of resources. The resource pool is influenced by the average activity
of the population, whereas the feedback from the resources to the population is comprised
of components acting homogeneously or inhomogeneously on individual units of the
population. Moreover, the resource pool dynamics is assumed to be slow and has an
oscillatory degree of freedom. We show that the feedback loop between the population
and the resources can give rise to collective activity bursting in the population. To explain
the mechanisms behind this emergent phenomenon, we combine the Ott-Antonsen
reduction for the collective dynamics of the population and singular perturbation theory
to obtain a reduced system describing the interaction between the population mean field
and the resources.

Keywords: local and collective excitability, heterogeneous neural populations, metabolic resources, collective
bursting, adaptive coupling, switching dynamics, multiscale dynamics, multistability

1 INTRODUCTION

Complex dynamical networks are indispensable for modeling many processes in nature, technology,
and social sciences (Strogatz, 2001; Boccaletti et al., 2006; Arenas et al., 2008; Yanchuk et al., 2021). In
realistic situations, collective dynamics in such networks is affected by the constraints on available
resources from the environment (Roberts et al., 2014; Kroma-Wiley et al., 2021), resulting in complex
dynamical phenomena, especially if the systems are self-organized to operate close to criticality
(Levina et al., 2007). Often, additional resource dynamics gives rise to adaptive mechanisms such as
frequency adaptation (Fuhrmann et al., 2002; Taylor et al., 2010; Ha and Cheong, 2017; Kroma-
Wiley et al., 2021), delay adaptation (Fields, 2015; Park and Lefebvre, 2020), or various forms of
homeostatic plasticity in neuronal systems (Zierenberg et al., 2018).

Compared with other somatic cells, neurons have a very high energy consumption (Attwell and
Laughlin, 2001) and are highly sensitive to energy limitations affecting their cellular metabolic
processes. Hence, the availability of metabolic resources, their dynamics and their interplay with the
neuronal activity are important factors for the overall performance of neural networks and their
homeostasis (Vergara et al., 2019). Dynamical networks with resource constraints have been in the
focus of recent studies (Taylor et al., 2010; Roberts et al., 2014; Virkar et al., 2016; Nicosia et al., 2017;
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Song et al., 2020; Kroma-Wiley et al., 2021). In particular, in
(Song et al., 2020) it has been investigated how phase
synchronization between the mutually uncoupled system
elements depends on the interaction with the environment. A
mini-review (Roberts et al., 2014) has highlighted the importance
of reciprocal coupling between neuronal activity and metabolic
resources in self-organizing and maintaining neuronal operation
near criticality, and has also presented a general slow-fast
formulation for the case where resources change slowly
relative to neural activity. In (Virkar et al., 2016), a discrete
two-layer model has been proposed to describe a mechanism by
which metabolic resources are distributed to neurons via glial
cells. An example of frequency adaptation in Kuramoto model
was provided in (Taylor et al., 2010), reproducing certain
phenomena that are not qualitatively accounted for the
classical Kuramoto model, such as long waiting times before
reaching synchronization. In (Nicosia et al., 2017), neuronal
dynamics and nutrient transport were assumed to be
bidirectionally coupled, such that the allocation of the
transport process at one layer depends on the degree of
synchronization in the other and vice versa. In (Kroma-Wiley
et al., 2021), a system of coupled Kuramoto oscillators that
consume or produce resources depending on their oscillation
frequency was considered.

Inspired by the mechanisms for the interaction of a neuronal
network with a population of glial cells, the studies (Fields, 2015;
Lücken et al., 2017; Park and Lefebvre, 2020) introduced models
of networks with adaptive time-delays.

Of particular interest are adaptive networks in which
connectivity changes are related to intrinsic nodal dynamics
(Gross and Blasius, 2008; Berner, 2021). For example, these
types of networks can model synaptic neuronal plasticity
(Meisel and Gross, 2009; Markram et al., 2011), chemical (Jain
and Krishna, 2001; Kuehn, 2019), epidemic (Gross et al., 2006),
biological, and social systems (Horstmeyer and Kuehn, 2020). A
paradigmatic example of adaptively coupled phase oscillators
gained considerable interest recently (Gutiérrez et al., 2011;
Kasatkin et al., 2017; Berner et al., 2019a; Berner et al., 2019b;
Berner et al., 2020; Feketa et al., 2020; Berner et al., 2021). This
type of phase oscillator models seems to be useful for predicting
and describing phenomena in more realistic and detailed models
(Popovych et al., 2015; Lücken et al., 2016; Röhr et al., 2019) as
well as for the understanding of collective phenomena such as
multicluster states (Berner et al., 2019a; Berner et al., 2019b) or
recurrent synchronization (Thiele et al., 2022).

In the present paper, we consider coupled excitable units
(Lindner et al., 2004; Izhikevich, 2007), characterized by a
linearly stable rest state susceptible to finite-amplitude
perturbations. Excitable systems act as nonlinear threshold-like
elements, such that applying a sufficiently small perturbation
gives rise to a small-amplitude linear response, while a
perturbation exceeding a certain threshold may trigger a large-
amplitude nonlinear response. A classical example for the
excitability feature are neurons (Ermentrout and Kopell, 1986;
Izhikevich, 2007) which respond to a supra-threshold stimulation
by emitting a spike. Apart from neuronal systems, excitability is
important for other living cells (Scialla et al., 2021), lasers

(Yanchuk et al., 2019; Terrien et al., 2021), chemical reactions
(Chigwada et al., 2006), machine learning (Ceni et al., 2019), and
many other fields. A variety of phenomena, including resonances,
oscillations, patterns and waves, are caused by the interplay of
excitability and noise (Pikovsky and Kurths, 1997; Neiman et al.,
1999; Pototsky and Janson, 2008; Franović et al., 2015; Bačić et al.,
2018a; Bačić et al., 2018b; Franović et al., 2018; Zheng and
Pikovsky, 2018; Bačić and Franović, 2020; Franović et al.,
2020) or time-delay (Brandstetter et al., 2010; Klinshov et al.,
2016).

As a prototype of excitable local dynamics, we consider active
rotators, paradigmatic for type I excitability (Shinomoto and
Kuramoto, 1986; Park and Kim, 1996; Lindner et al., 2004;
Osipov et al., 2007; Dolmatova et al., 2017; Franović et al.,
2020; Klinshov et al., 2021). Active rotators have been used to
study interacting excitable systems with noise (Lindner et al.,
2004), synchronization in the presence of noise (Shinomoto and
Kuramoto, 1986; Park and Kim, 1996; Dolmatova et al., 2017;
Klinshov et al., 2021), the interplay of noise and an adaptive
feedback (Franović et al., 2020), effects of an adaptive network
structure (Thamizharasan et al., 2021), co-effects of noise,
coupling, and adaptive feedback (Bačić et al., 2018b; Song
et al., 2020) or delayed feedback (Yanchuk et al., 2019) and
the impact of higher-order Fourier modes (Ronge and Zaks,
2021), to name but a few.

An important ingredient of our model is the multiscale
structure of the dynamics, whereby the processes at the pool
of resources are assumed to occur much slower than the dynamics
of excitable units at the nodes. Utilizing this feature, we apply the
methods of singular perturbation theory (Desroches et al., 2012;
Kuehn, 2015) to first study the fast dynamics (layer dynamics) for
fixed resource levels with the Ott-Antonsen approach, and then
reduce the problem to the slow dynamics of resources.

Our main result consists in demonstrating how the adaptive
interaction between a population of excitable units with a pool of
resources gives rise to collective activity bursting. Such emergent
dynamics is characterized by alternating episodes of stationary
and oscillating behavior of the macroscopic order parameter. We
describe the mechanisms behind the activity bursting and
indicate parameter regions where this phenomenon can be
reliably observed. So far, collective bursting phenomena have
been considered to emerge due to time-varying neuronal inputs
(Stoop et al., 2002), the interplay of external input and
homeostatic plasticity (Zierenberg et al., 2018), or synaptic
short-term plasticity (Gast et al., 2020). In these studies,
possible implications for healthy and diseased brain states
have been drawn. Moreover, the important role of bursting
phenomena for the understanding of brain-organ interactions
have been highlighted in the perspectives article (Ivanov, 2021).
Our study complements recent research on emergent bursting
dynamics in brain and organ systems by providing a simple and
analytically tractable model generating collective activity
bursting.

Our paper is organized as follows. In Section 2 we lay out the
model of a heterogeneous population of excitable units adaptively
coupled to a pool of resources, while in Section 3 we introduce
the main phenomenon of collective activity bursting. Section 4
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and Section 5 concern the analysis of the system’s multiscale
dynamics within the framework of singular perturbation theory,
first elaborating on the layer problem and then using the reduced
problem to explain the mechanism of collective bursting and the
origin of multistability in the full system. Section 6 proposes two
different approaches to induce switches between the coexisting
collective regimes, whereas Section 7 provides our concluding
remarks and outlook.

2 MODEL

We consider a system of N coupled active rotators (Strogatz,
1994) with a Kuramoto-type coupling given by,

_ϕk � Ik r( ) − sin ϕk +
σ

N
∑N
j�1

sin ϕj − ϕk( ), (1)

where ϕk ∈ [0, 2π), k = 1, . . . ,N are the local phase variables, and σ
is the coupling strength. While providing a simplified description
of local dynamics, active rotators manifest the excitability feature
crucial to neuronal activity (Strogatz, 1994; Izhikevich, 2007), and
are similar to the model of theta neurons (Luke et al., 2013; Laing,
2014) paradigmatic for type I neural excitability. Note that more
detailed models of neuronal dynamics, such as those of Morris-
Lecar (Morris and Lecar, 1981) and Wang-Buzsáki (Wang and
Buzsáki, 1996), also belong to this excitability class. External
inputs Ik(r(t)) = r1 (t) + r2 (t) ]k received by each unit comprise of
a homogeneous component r1 (t), acting identically at all the units,
and a heterogeneous component, where the variability is due to
parameters ]k drawn from a normalized Gaussian distribution
]k ∈ N (0, 1). Recall that in models of coupled active rotators,
terms Ik are classically interpreted as local bifurcation parameters
describing individual oscillation frequencies. Nevertheless, here Ik
(t) at each moment follow a Gaussian distribution
g(I) � N (r1, r22), such that the local velocities of the units are
modulated by coupling to r1 and r2. The latter modulation can be
seen as describing an interaction with the resources from the
environment (Song et al., 2020; Kroma-Wiley et al., 2021)
summarized within the two-component resource variable r =
(r1, r2). In the context of neuroscience such modulation of local
velocities is reminiscent of frequency adaptation of neuronal
spiking (Fuhrmann et al., 2002; Ha and Cheong, 2017) due to
a limited amount of metabolic resources affecting e.g.
neurotransmitters.

Adaptation of spiking activity is a slow process compared to
spike emission (Ha and Cheong, 2017), which should be
reflected in the dynamics of metabolic resources r (t). In
fact, a model involving such a separation of time scales has
recently been proposed to describe the interplay of energy
consumption and activity in neuronal populations (Roberts
et al., 2014). Here we introduce a simple model of dynamical
resources based on the Hopf normal form. We consider r as a
complex variable, i. e, r = r1 + ir2, which satisfies the dynamical
equation

_r � ϵf r − s, λ( ), (2)

_λ � −ϵ′ λ − λ0 − γA t( )( ), (3)
with activity

A t( ) ≔ 1
N

∑N
j�1

_ϕj, (4)

The metabolism describing function given by f (r, λ) = r (λ + iω −
|r|2), the frequency ω and the resource base level given by s = s1 +
is2. Small parameters ϵ≪ 1 and ϵ′≪ 1 are introduced to account
for the scale separation between the fast spiking dynamics of
units and the slowly adapting dynamics of the resources. Note
that we consider the case ϵ′ = ϵ throughout the paper.

System Eq. 2, 3 that describes the interaction between the two
resources undergoes a supercritical Hopf bifurcation at λ = 0. This
allows for the interpretation of the resource dynamics as being
inactive if λ < 0, when it possesses a stable focus at s, or as active
if λ > 0, when it displays a stable limit cycle. In other words, in the
inactive states, the resource dynamics lies stationary at the resource
base level s = s1 + is2, while for active states, the resource dynamics is
attracted to a periodic orbit that encircles the resource base level. We
further assume that the dynamics ofmetabolic resources adapts to the
activityA (t) of the population, see Eq. 4. In particular, the adaptation
dynamics Eq. 3 can be regarded as a feedback mechanism whereby
due to a feedback loop, an activated neuronal populationmay activate
the pool of resources which in turn may further activate or even
deactivate the neuronal population. The adaptation strength is
described by parameter γ which controls the impact of the
population’s dynamics on the dynamics of resources. Throughout
the paper, we keep γ = 0.5. In case of no spiking activity, i.e., ifA (t) =
0 or γ = 0, the resource dynamics is inactive and the corresponding
resource activity variable λ settles to the rest level λ0. In the remainder,
the level λ0 =−0.05 is assumed to correspond to a stable steady state at
s. Due to the dynamical interplay between the metabolic resources
and the neuronal population, the activity variable λ (t) may change in
time. Accordingly, the state of the resources may change between
active (periodic attractor) and inactive (stationary state). To describe
the coherence of the population dynamics, we use the complex order
parameter Z defined by

Z ϕ t( )( ) � 1
N

∑N
j�1

eiϕj t( ) � R ϕ t( )( )eiΘ ϕ t( )( ), (5)

where R is the Kuramoto order parameter, and Θ is the mean
phase (Bick et al., 2020).

Summarizing, we have proposed a multiscale model of a
heterogeneous population of active rotators, featuring local
excitability and spike frequency adaptation as two important
ingredients of typical neuronal activity, coupled to a pool of
resources that slowly adjusts its dynamics to the activity of the
population. Figure 1 provides an illustration of our model.

3 COLLECTIVE ACTIVITY BURSTING

In this section, we briefly introduce the phenomenon of collective
activity bursting induced by an adaptive coupling to resources. A
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more detailed analysis of the phenomenon will be performed in
the subsequent sections.

In Figure 2, we show a simulation result of a system consisting
of N = 5,000 active rotators adaptively coupled to a pool of
resources as described by Eqs 1–3. The emergent collective
dynamics within the population is represented by the
macroscopic variables A (t) and R (t). The dynamics within
the resource pool is characterized by the activity variable λ (t).
We observe that the population of active rotators displays a
recurrent temporal formation of bursts in the macroscopic
activity A (t) followed by periods of inactivity. Such episodes
of macroscopic activity and inactivity correspond to episodes of a
rapidly and slowly varying order parameter R (t), respectively.
Switching between the different regimes is equally well visible in
the evolution of the resource variable λ (t) showing the pattern of
recurrent activation (λ > 0) and deactivation (λ < 0).

We note that this recurrent switching between macroscopic
activity and inactivity is due to the adaptive feedback provided by
the dynamical resources and can not be observed in a system of
active rotators alone. In fact, active rotators are a paradigmatic
model for excitable systems, supporting regimes of either activity

_ϕi > 0 or inactivity _ϕi � 0 depending on parameters such as the
input currents Ii, see e.g. (Franović et al., 2020) for more details.
The slow adaptation of the input currents caused by the resource
dynamics, however, provides a mechanism to switch between the
two regimes. In the following sections, we systematically describe
the emergence of collective activity bursting by making use of the
separation of timescales between the dynamics of the population
and the resources. The slow-fast analysis within singular
perturbation theory, see e.g. (De Maesschalck and
Wechselberger, 2015; Kuehn, 2015), allows for a splitting of
multiscale dynamics into a so-called layer dynamics of the fast
variables and an averaged dynamics for the slow variables.

The layer dynamics of system Eqs 1–3 consists of a population
of actively coupled rotators with input currents drawn for a
Gaussian distribution N (r1, r22). The subsequent analysis of
the layer equation in Section 4 provides us with a clear
mapping for the regimes of population activity and inactivity.
Building on this, we analyse the full system Eqs 1–3 and show that
the collective activity bursting emerge close to criticality, i.e., the
boundary between activity and inactivity of the layer dynamics.
We also describe regimes of multistability between activity

FIGURE 1 | Schematic for the two-layer model consisting of a heterogeneous population of excitable units (green) and interacting pool of resources described by
an adaptive Stuart-Landau oscillator (purple). The heterogeneity ]i of the excitable units are randomly drawn from a distribution n (]).

FIGURE 2 | Collective activity bursting in system Eqs 1–3. Three panels show the time traces of the population activity A (t) (green), the order parameter R (t) (red)
and the resource activity variable λ (t) (blue) from left to right, respectively. The trajectory is obtained from a random initial condition for a system of N = 5,000 active
rotators and parameters: σ = 5, ϵ = 0.05, s1 = 0.97, s2 = 1.2, ω = 0.2, λ0 = −0.05, γ = 0.5.
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bursting and inactivity, and provide insights into perturbations
that give rise to transitions between different states.

4 LAYER DYNAMICS: HETEROGENEOUS
POPULATION OF ACTIVE ROTATORS

The fast subsystem, describing the evolution of the original slow-
fast problem Eqs 1–3 on the fast timescale, comprises of a
heterogeneous assembly of N globally coupled active rotators

_ϕk � r1 + r2]k − sinϕk +
σ

N
∑N
j�1

sin ϕj − ϕk( ). (6)

In the absence of adaptation of the resource variables r1 and r2,
the local dynamics _ϕk � Ik − sin ϕk depends on external input Ik =
r1 + r2]k which may be seen as an effective bifurcation parameter
mediating the transition between an excitable (Ik ≲ 1) and
oscillatory regime (Ik > 1) via a SNIPER (saddle-node infinite
period) bifurcation at |Ik| = 1. In the singular limit ϵ → 0, system
(Eq. 6) defines the layer problem, where r1 and r2 are treated as
additional system parameters.

According to classical singular perturbation theory (De
Maesschalck and Wechselberger, 2015; Kuehn, 2015), the layer
problem describes solutions of the multiscale system Eqs 1–3 on a
timescale much shorter than 1/ϵ, where the variables r1 and r2 do
not change significantly. In particular, it can describe fast (rapidly
changing) segments of the solutions.

4.1 Ott-Antonsen Approach for the Layer
Dynamics
We analyze the layer problem by determining the stability of
stationary solutions of the layer dynamics and their bifurcations
within the framework of Ott-Antonsen theory (Ott and
Antonsen, 2008; Ott and Antonsen, 2009). We start by
rewriting the layer dynamics in terms of complex order
parameter (Eq. 5), which leads to

_ϕk � Ik − sinϕk + σIm Z t( )e−iϕk( ). (7)
In the thermodynamic limitN→∞, the state of the population

can be described by the probability density h (ϕ, I, t), which
satisfies the normalization condition ∫2π

0
h(ϕ, I, t)dϕ � g(I), see

e.g. (Omel’chenko and Wolfrum, 2012; Omel’chenko and
Wolfrum, 2013). The continuity equation for h (ϕ, I, t) then reads

zh

zt
+ z

zϕ
hv( ) � 0, (8)

where the velocity is given by v = I − sin ϕ + σIm (Z(t)e−iϕ).
According to Ott-Antonsen ansatz (Ott and Antonsen, 2008; Ott
and Antonsen, 2009), the long-term dynamics of Eq. 8 settles
onto an invariant manifold of the form

h ϕ, I, t( ) � g I( )
2π

1 +∑∞
n�1

�zn I, t( )einϕ + zn I, t( )e−inϕ[ ]⎧⎨⎩ ⎫⎬⎭, (9)

where z (I, t) is the local order parameter, connected with the
global complex order parameter (Eq. 5) via

Z t( ) � ∫∞
−∞

g I( )z I, t( )dI. (10)

Inserting Eq. 9 into Eq. 8, one obtains the Ott-Antonsen
equation for the layer dynamics

_z � 1
2

1 − z2( ) + iIz + σ

2
Z − σ

2
�Zz2, (11)

where bar denotes the complex conjugate.

4.2 Stationary Solutions of the Layer
Dynamics
To find stationary solutions of Eqs 10, 11, we first write the local
order parameter in polar form z (I, t) = ρ(I, t)eiϑ(I,t). Separating for
the real and imaginary parts, Eq. 11 becomes

_ρ � 1
2

1 − ρ2( )B cosΦ,

ρ _Φ � Iρ − 1
2

1 + ρ2( )B sinΦ,
(12)

where the new variables B, β and Φ are given by

B t( )eiβ t( ) � 1 + σR t( )eiΘ t( ),
Φ � ϑ − β.

(13)

From Eq. 13, it follows that B and β are related with the
macroscopic order parameter Eq. 5 via

B � �����������������
1 + σ2R2 + 2σR cosΘ

√
,

tan β � σR sinΘ
1 + σR cosΘ.

(14)

Note that the local dynamics can be rewritten in terms of B as
_ϕk � Ik − B sin(ϕk − β), suggesting that B may be understood as
an effective excitability parameter that describes how local
excitability is changed by the impact of interactions. As a
consequence, the structure of stationary solutions of the Ott-
Antonsen system Eq. 12 depends on the relation between |Ik| and
B, such that a population splits into two groups comprised of
excitable (|I| < B) or oscillating units (|I| > B). In particular, the
stationary solutions (ρp, Φp) are given by

ρp,Φp( ) � 1, arcsin
I

B
( ),

ρp,Φp( ) � 1, π − arcsin
I

B
( ), (15)

for the excitable (inactive) group, and

ρp,Φp( ) � |I| − ������
I2 − B2

√
B

,
π

2
sign I( )( ) (16)

for the oscillating (active) group. An explicit expression for B can
be obtained by invoking the self-consistency relation between the
global and local order parameter (Eq. 10). Inserting the results for
the stationary local and global order parameter [using Eq. 10,
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Eq. 15, Eq. 16, and the first equation from Eq. 13] and
separating for the real and imaginary parts, one ultimately
arrives at a self-consistency equation for B (Lafuerza et al.,
2010; Klinshov and Franović, 2019)

p B( ) � B2 − 2σp2 B( ) + σ2

B2
p2
1 B( ) + p2

2 B( )( ) − 1 � 0, (17)

where p1(B) and p2(B) are given by

p1 B( ) � r1 − ∫
|I|>B

Ig I − r1( )
��������
1 − B

I
( )2

√
dI,

p2 B( ) � ∫
|I|<B

g I − r1( )
������
B2 − I2

√
dI.

(18)

Having determined B, the stationary local and global order
parameters can be obtained using the relations

FIGURE 3 | Changes in form and the number of roots of the function p (B) given by Eq. 17 under variation of r1 and r2 for fixed σ = 5. The function p (B) has three
roots for (r1, r2) = (0.9, 2) (blue line; roots indicated by letters) and a single root for (r1, r2) = (1.1, 2) (red) and (r1, r2) = (0.9, 2.25) (green).

FIGURE 4 | Local structure and spectra of stationary solutions B1 (a), B2 (b) and B3 (c) of Ott-Antonsen equation Eq. 11 for σ = 5 and (r1, r2) = (0.9, 2). (A) shows the
dependencies of the local order parameter on the input z (I) (black solid lines) and the corresponding Kuramoto order parameter R (blue dash-dotted lines) for the three
stationary solutions. Red dashed lines indicate the interval (r1 − 3r2, r1 + 3r2) relevant for the distribution of external inputs. (B) shows the continuous (black dots) and the
discrete spectra (red crosses) for the stationary solutions: B1 and B2 are stable and unstable nodes, respectively, while B3 is an unstable focus.
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R �
������
p2
1 + p2

2

√
/B and Θ = arctan (p1/(p2 − σR2)), which follow

from Eqs 10–14.
For a fixed coupling strength σ, the function p(B) may have

from one to three roots, depending on the mean value r1 and the
standard deviation r2 of the distribution of intrinsic parameters Ik.
The examples in Figure 3 illustrate how the number of solutions
of Eq. 17 changes between one and three for fixed σ = 5, r1 = 0.97
under increasing r2. We refer to the stationary solutions by the
corresponding B values, which we arrange in decreasing order B1
> B2 > B3. Recalling the arguments above, one sees that the larger
B value implies a prevalence of excitable over oscillating units
within the local structure of the stationary state. This is evinced by
the left column of Figure 4 which shows the dependence of the
local order parameter z(I). Typically, the state B1 comprises of a
clear majority of excitable units, corresponding to a coherent
domain z = 1, and may thus be referred to as a homogeneous
stationary state. The two remaining stationary states B2 and B3 are
heterogeneous in the sense that they involve a mixture of excitable
and asynchronously oscillating units.

4.3 Stability and Bifurcation Analysis of
Stationary Solutions
Given that Ott-Antonsen equation Eq. 11 contains both the
global order parameter and its complex conjugate, stability
and bifurcation analysis of the stationary solutions
(Omel’chenko and Wolfrum, 2013; Klinshov and Franović,
2019) can be carried out by writing the local and global order
parameters as z (I, t) = x (I, t) + iy (I, t), Z(t) = X(t) + iY(t) and
separating for the real and imaginary parts. This results in the
system

_x � F x, y,X, Y( ) � 1
2

1 − x2 + y2( ) − Iy + σ

2
X − σ

2
X x2 − y2( ) − σxyY,

_y � G x, y,X, Y( ) � −xy + Ix + σ

2
Y − σxyX + σ

2
Y x2 − y2( ),

(19)
which can be linearized for variations ξ = (δx, δy)T, Ξ = (δX, δY)T

around the stationary solution (x0, y0, X0, Y0), ultimately
arriving at

dξ
dt

� P̂ I( )ξ I, t( ) + Q̂ I( )Ξ t( ), (20)

where P̂ and Q̂ are the corresponding Jacobian matrices

P̂ �
zF

zx

zF

zy

zG

zx

zG

zy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Q̂ �
zF

zX

zF

zY

zG

zX

zG

zY

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Eq. 20 is augmented by the variational equation for Eq. 10:

Ξ t( ) � ∫∞
−∞

g I( )ξ I, t( ) dI. (21)

Assuming that the variations ξ (I, t) and Ξ (t) satisfy ξ (I, t) = ξ0
(I)eμt, Ξ (t) = Ξ0e

μt, systems Eq. 20 and Eq. 21 transform into

P̂ I( ) − μÎ( )ξ0 I( ) + Q I( )Ξ0 � 0, Ξ0 � ∫∞
−∞

g I( )ξ0 dI, (22)

where Î denotes the identity operator. From the general spectrum
theory of linear operators (Omel’chenko and Wolfrum, 2013;
Mirollo and Strogatz, 2007), it follows that the Lyapunov
spectrum of Eq. 22 consists of a continuous and a discrete
part. Here, the continuous spectrum turns out to be always
stable or marginally stable, such that the stability of stationary
solutions depends on the discrete spectrum. The latter can be
determined by rewriting Eq. 22 in the form Ĉ(μ)Ξ0 � 0, where

Ĉ μ( ) � Î + ∫∞
−∞

g I( ) P̂ I( ) − μÎ( )−1Q I( ) dI. (23)

The discrete spectrum is then obtained by solving the
characteristic equation detĈ(μ) � 0 (Klinshov and Franović,
2019). An example of the discrete and continuous spectra
calculated for the stationary states B1, B2 and B3 at (r1, r2) =
(0.9, 2) is provided in the right column of Figure 4.

4.4 Comparison Between Analysis and
Numerics
The previous analysis allows for an analytic description of the
existence and stability of stationary solutions in the limit of large

FIGURE 5 | Bifurcation diagram for the system of active rotators Eq. 1 in
dependence on resource levels r1 and r2. For the simulation, we have chosen
one set of random initial conditions for the phases and one set of parameters
]k randomly drawn from a normalized Gaussian distribution N (0, 1).
Simulations comprise of 200 time units with activity averaged over the last
100 time units. Fold bifurcations involving stationary solutionsB1 andB2 (lower
branch) and B2 and B3 (upper branch) obtained from Eq. 17 are shown by
black dashed lines that give rise to a cusp point marked with C. Existence of
particular solutions and their stability, derived from the discrete spectrum of
Eq. 23, are indicated by their corresponding letters and a circle, respectively,
whereby the circle indicates a stable solution. Along the black dotted line,
stationary solution B3 changes its stability in a Hopf-like bifurcation. Other
parameters: N = 5,000, σ = 5.
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populations (N → ∞). In particular, the bifurcation diagram for
the Ott-Antonsen equation of the layer dynamics Eq. 11 in the
(r1, r2) plane is organized around a co-dimension two cusp point,
indicated by C in Figure 5 where the two branches of folds meet
(black dashed lines). Both branches of folds are calculated by
numerical continuation of the solutions of Eq. 17 using the
software package BifurcationKit.jl (Veltz, 2020). The lower
branch of folds which folds over for larger r2 corresponds to
annihilation and reemergence of a pair of equilibria, B1 and B2,
whereby the former (latter) is always stable (unstable). For
smaller r2, crossing this branch either by enhancing r1 or r2
gives rise to long-period collective oscillations as a stable
equilibrium B1 vanishes by colliding with an unstable
equilibrium B2. The divergence of the oscillation period when
approaching the curve indicates that it corresponds to a SNIPER
bifurcation of the full system. For larger r2, as the branch folds
over, one observes the reappearance of a stable stationary state B1,
emerging in an inverse fold bifurcation together with an unstable
equilibrium B2. The upper branch of folds involves stationary
states B2 and B3, such that they collide and disappear above the
curve, where B1 remains the only stable stationary state, cf.
Figure 5.

Note that apart from the fold bifurcation, the stability of B3 is
also affected by a Hopf-like bifurcation (black dotted line). Above
the given curve, stability of B3 is determined by a pair of complex
conjugate eigenvalues which have the smallest negative real parts.
However, crossing the curve, these eigenvalues merge with the
imaginary axis and remain neutrally stable immediately below the
curve, implying that the central manifold theorem associated to
Hopf bifurcation cannot immediately be applied. Still, in close
vicinity below the curve, starting from an initial condition
corresponding to B3 results in oscillations similar to a genuine
scenario of Hopf bifurcation.

Using numerical continuation, we have verified that the
described structure of bifurcation diagram for the layer
dynamics remains qualitatively the same under variation of
coupling strength σ. One only notes that for increasing σ, the
branches of folds shift toward larger r2, which corresponds to a
higher diversity of external inputs.

Figure 5 further shows a comparison of the existence and
stability conditions for the collective stationary states derived
from Ott-Antonsen approach for the limit N → ∞ with
simulations for a finite population of N = 5,000 active rotators
with fixed resources r1 and r2. One observes that simulation
results agree well with the fold bifurcation lines separating
parameter regimes of low and high collective activity. The
differences can be attributed to the finite size of assemblies
considered in the simulations.

With Figure 6 we complement the analysis of the layer
equation. In particular, we show how the dynamical regimes
change in a wide range of parameters r1 and r2, and indicate the
boundary (black dashed line) that separate parameter regions
supporting stable stationary states from those admitting
oscillatory states. We illustrate three different trajectories
corresponding to qualitatively different collective regimes
found by numerical analysis. For parameter pairs a and b, we
observe the emergence of stationary states in accordance with the

bifurcation analysis shown in Figure 5. In both cases, activity A
(t) and the coherence measure R (t) settle to a constant value. We
observe that with increasing r2 (b to a) the activity level rises while
the coherence level declines. For the parameter set c, there is no
stable stationary state and we observe stable oscillations. The
activity shows a regular, tonic-like spiking shape corresponding
to an increase in the average activity. Meanwhile, variation of the
order parameter causes its average value to decrease. In order to
quantify the temporal variations of the order parameter, we also
plot the difference max R (t)−min R (t) for the considered average
time interval. We observe that even though the activity level
might be high, e.g. for r1 > 1 close to r2 = 0, the coherence within
the population is not necessarily strongly varying. However, there
are also regimes, e.g. for r1 > 1 and r2 > 2, where the order
parameter varies strongly and covers almost the entire interval
from 0 to 1. In this section, we have illustrated the stability regions
of macroscopic stationary states in a heterogeneous population of
active rotators. Numerically, we have also determined the values
of resource parameters r1 and r2 where no stable stationary
solutions exist. Using these insights, we are now able to
qualitatively describe the phenomena in systems with a slow
adaptation of the resources and the resource-dependent
dynamics. The next section is devoted to explaining the
emerging states of collective activity bursting.

5 (SLOW) RESOURCE DYNAMICS AND THE
EMERGENCE OF MULTISTABILITY

The analysis of the layer dynamics in Section 4 provides insight
on how the system evolves for constant resources r1 and r2. Due to
the different timescales of the population (fast dynamics) and the
pool of resources (slow dynamics), we can average (Sanders et al.,
2007; Franović et al., 2020) the system Eqs 2, 3 as

_r � f r − s, λ( ), (24)
_λ � −λ + λ0 + ρ〈A〉, (25)

where 〈A〉 � 1
T∫T

0
A(s)ds. Here we also assume ϵ′ = ϵ and rescale

time tnew = ϵtold. Note that the average activity shown in Figure 6
depends on the resource variables r, since the definition Eq. 4
impliesA = r1 − Im (Z). Hence, the system Eqs 24, 25 describes an
effective three-dimensional coupled dynamics for the slow
subsystem. A further analytical analysis of this system is
beyond the scope of our study. However, we directly use the
insight that the slow dynamics follows the average activity of the
fast system to understand the emergence of collective activity
bursting.

Figure 7 shows the trajectories of the resource variables r1(t)
and r2 (t) for the collective bursting presented in Figure 6 along
with the averaged values of population activity and the order
parameter. We clearly see that the asymptotic orbit passes
through both the regimes of an active and inactive population
which explains the episodes of high and low activity in Figure 2A.
Also the segments of increasing and decreasing average activity
visible in Figure 2A can be explained by Figure 7. Here, the
average activity shows the same pattern along the trajectory (r1
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FIGURE 6 | Bifurcation diagram for the system of active rotators Eq. 1 in terms of resource levels (r1, r2). All simulations are carried out the same way as in Figure 5.
Three diagrams at the (A) show the time-averaged values of activity A (t) (white-green), order parameter R(t) (yellow-red) and variations of the order parameter max R(t) −
min R(t) (white-black). The black dashed line separates regions where the mean phase Θ of the complex order parameter Z features stationary or oscillating dynamics,
respectively. The (B) show time traces of activity and order parameter for three parameter pairs (r1, r2): a—(0.9,2), b—(0.9,1), c—(1.1,2).

FIGURE 7 | Bifurcation diagrams as in Figure 6 complemented with the trajectories of the resource variables r1 (t) and r2 (t) for the collective activity bursting shown
in Figure 6.
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(t), r2 (t)). The same also holds for the average values of the order
parameter and even its variations if we compare Figure 2B with
Figure 7. Therefore, the splitting of the fast from the slow
subsystem provides a very good qualitative explanation for the
observed phenomenon. To understand the emergence of the full
periodic orbit shown in Figure 7, we first note that without any
population activity, i.e., 〈A〉 = 0 and λ0 = − 0.05, the resource
dynamics possess a stable focus close to the critical line (black

dashed line in Figure 7) describing the transition from stationary
to oscillatory dynamics of the mean phase Θ. During the
stationary phase, r1 and r2 tend to s1 = 0.97 and s2 = 1.2,
respectively. As in Figure 7, the trajectory (r1 (t), r2 (t)) may
start in the active region, i.e., oscillatory mean phase dynamics.
Due to the positive average value of activity, the variable λ (t)
characterizing the resource activity increases according to (Eq.
25) and becomes positive, see Figure 2C. Hence, the resources

FIGURE 8 | Bifurcation diagramwith respect to the resource base level s1 for a system of active rotators with adaptive resource interaction Eqs 1–3. The (A) shows
the results from two adiabatic continuations with step sizeΔs1 = 0.002 from s1 = 0.8 to s1 = 1.4 (sweep up) and vice versa (sweep down). Sweeps up and down start from
a stable stationary and a stable oscillatory state, respectively. For both sweeps are shown the average activity 〈A(t)〉 (green), average order parameter 〈R(t)〉 (red) and
maximal resource activity λ (blue). The results were obtained by simulating (1)–(3) for 7,000 time units and taking the average over the last 5,000 time units. The
branches corresponding to the two sweeps are marked by arrows. The black dashed lines indicate the value (s1 ≈ 0.963) of the critical line shown in Figure 6. Three
trajectories represented by the activity (green, first column), order parameter (red, middle column) and the resource activity (blue, last column) are shown in the (B) for (a,b)
s1 = 0.97 and (c) s1 = 1.35. The panels in (a) and (b) represent the states found along the sweeps down and up, respectively. The simulations were performed using the
same values of ]k as in Figure 5. Parameters: N = 5,000, σ = 5, ϵ = 0.05, s2 = 1.2, ω = 0.2, γ = 0.5.
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become activated and (r1(t), r2(t)) follows the limit cycle solution
of the resource dynamics revolving around (s1, s2). Note that the
resources obey the Hopf normal formwith a Hopf bifurcation at λ
= 0, see Eq. 2. After passing the critical line, the average activity
immediately drops to 〈A〉 ≈ 0 which causes λ to tend to λ0, see
Figure 2C. After λ falls below zero, the dynamics of the resources
(r1(t), r2(t)) is described by a spiral towards (s1, s2). This spiral,
however, enters the active region by passing the critical line which
ultimately leads to the recurrent phenomenon observed in
Figure 2. As we have seen, the emergence of collective activity
bursting relies on the subtle interplay between activation and
deactivation of resources and the population. Furthermore, the
need for the spiraling dynamics towards a stable focus explains well
the necessity for the resource basis levels (s1, s2) to be close to the
critical line separating the population active and inactive regimes.

With regards to the above description of the collective activity
bursting, one might ask for the coexistence of a stable steady state
in the system Eqs 1–3 as long as (s1, s2) lie in the inactive regime.
This state might have a small basin of attraction such that the
spiral towards the steady state cannot reach the active regime.

In order to get insights into the different stable states that exist
in Eqs 1–3, we use the numerical method of adiabatic
continuation. To do so, we fix the base level s2 = 1.2 and
gradually vary s1 from 0.8 to 1.4 (sweep up) and from 1.4 to

0.8 (sweep down). For each value of s1, we run the simulation
starting from the final state of the previous simulation. In
Figure 8, we show the results of both sweeps. We observe the
existence of stable steady and stable oscillating states for various
values of s1. As expected, close to the boundary between active and
inactive states of layer dynamics, we also find an interval of
coexistence between collective activity bursting and stable steady
states, see panels for (a) and (b) in Figure 8, respectively. For larger
s2, only the oscillatory state can be observed, which does not enter
the inactive regime above a certain s1, see panel (c) in Figure 8.
Note that the character of the solution can be deduced from the
maximal value of λ(t) on the averaging time interval. In particular,
there is a stationary state only if max λ(t) < 0. In all other cases,
there are time intervals where the trajectory of r diverges from the
base level s and follows the periodic solution of Eq. 24.

From the arguments laid out in this section, we have seen that
the mutual activation and deactivation between the neural
population and the pool of resources close to criticality of
layer dynamics induces a rich dynamical behavior. It is
believed, particularly, that the human brain operates close to
criticality (Chialvo, 2010; Haimovici et al., 2013; Yu et al., 2013;
Cocchi et al., 2017; Wilting and Priesemann, 2019). Therefore, it
is of major importance to understand the dynamics of neural
populations in this regimes including the interaction with its

FIGURE 9 | Two perturbation scenarios to induce a switch between an inactive steady state and collective activity bursting. Time traces of macroscopic activity A (t)
and order parameter R (t) are shown green and red, respectively. In the panels (A) and (B) (C,D), we start from an initial steady state (bursting state). The first perturbation
scenario is illustrated for the cases where the resource activity variable λ is set to λ = 20 [panel (A)] and λ = −5 [panel (C)] at t = 2000. The second perturbation scenario is
demonstrated for the cases where the resource activity is kept fixed at λ = 1 [panel (B)] and λ = −0.5 [panel (D)] for a duration of 500 t. u. beginning at t = 2000 t. u.
Simulations were run for s1 = 0.97 and the remaining parameters fixed as in Figure 8.
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environment. In the next section, we propose a simple
mechanism which can induce a switch between coexisting
macroscopic regimes.

6 POPULATION SWITCHING DYNAMICS
INDUCED BY RESOURCE ACTIVATION
AND INACTIVATION
In the vicinity of the transition between the population inactivity and
activity, we have observed collective activity bursting induced by an
adaptive dynamical pool of resources. Moreover, this phenomenon
emerges in a stable coexistence with a steady state. In this section, we
consider two simple perturbation approaches that can induce a
switch between these two functionally different states.

Figure 9 shows the results for two different perturbation
approaches to system Eqs. 1–3. The first approach aims to
induce a switch in population dynamics by an instantaneous
resetting of the resource activity λ. In the second approach, we
induce such a transition by maintaining the resource activity at a
certain level for a certain period of time. The first approach works
well for large resetting values of λ, see Figures 9A,C. Small values,
however, would not be sufficient to induce the macroscopic
regime switch. Furthermore, in case of an initial bursting state,
eliciting the switch to a steady state depends on the moment at
which the perturbation is applied. However, in our numerical
simulations (not shown), we have always been able to induce a
switching for sufficiently large resetting values of λ.

Due to the functionally very different nature of the two stable
states, there might be reasons to favor one over the other in light of
potential applications in medicine. Therefore, it is of great interest to
understand simple mechanisms that would induce a switch to the
desired state. While the first perturbation approach provides such a
mechanism, it still requires strong perturbations which might be
undesirable for certainmedical reasons, e.g. side effects. Therefore, we
have proposed another perturbation approach that leads to a switch
while keeping the reset level lower. For this approach, we have also
been able to induce switches between a steady state and a bursting
state in one or the other direction, see Figures 9B,D, with the
advantage of having the resetting level of the resource activity
much lower than for the first method.

In this section, we have proposed two simple perturbation
approaches to induce a switch between the two functionally
different macroscopic states of the full system which emerge near
the transition in layer dynamics between the population activity and
inactivity and due to an adaptive dynamical pool of resources. We
note that the approaches we proposed are not the only way to induce
macroscopic regime shifts. One might also think of perturbing the
resource variables (r1, r2) or even the whole population. Thus,
perturbation of the resource activity variable is perhaps the
simplest but not the only approach possible.

7 CONCLUSION

We have investigated collective dynamics in a system of
interacting excitable units coupled to a pool of resources with

nontrivial dynamics. The feedback of the resources to the
population of coupled excitable units has been realized by an
adaptation of the individual units’ inputs, whereas in turn, the
excitable population is capable of activating or deactivating the
pool of resources depending on the population’s own activity. As
a prototype of excitable local dynamics, we have considered active
rotators. Following the ideas outlined by Roberts et al. (Roberts
et al., 2014), we have assumed the processes at the pool of
resources to occur much slower than the local dynamics of
excitable units. As a consequence, we have ended up with a
system featuring multiscale dynamics, allowing us to use the
methods from singular perturbation theory (Desroches et al.,
2012; Kuehn, 2015).

As our most important finding, we have reported on the
phenomenon of collective activity bursting. The phenomenon
is characterized by a recurrent switching between episodes of
quiescence and episodes of activity bursts in the population of
active rotators. To gain a better understanding of the emergence
of collective activity bursting, we have made use of the explicit
slow-fast timescale separation. In particular, we have divided the
system dynamics into the fast layer dynamics of the population
and the slow average dynamics of the resources.

Using the Ott-Antonsen approach, we have analyzed the
stability and bifurcations of the stationary solutions of layer
dynamics in the thermodynamic limit. For the population of
active rotators with a heterogeneity given by a Gaussian
distribution, we have derived a bifurcation diagram for the
steady state solutions. The bifurcations of layer dynamics
depending on the mean and the width of the Gaussian
distribution have been corroborated by numerical simulations
of a large ensemble of rotators. Doing so, we have determined the
parameter regions admitting high or low (or even no) population
activity and have obtained the critical lines separating these
regions.

Taking the analysis of the layer problem into account, we have
further analyzed how the slow averaged dynamics of the resources
gives rise to a slow variation of the mean and width of the
Gaussian distribution. We have observed the onset of collective
activity bursting close to criticality where the population of active
rotators undergoes a transition from an inactive to an active state.
The emergence of collective bursting is due to a subtle interplay of
co-activation and co-deactivation of the dynamical population of
rotators and the pool of resources.

We have further found a region of bistability between
collective activity bursting and an inactive steady state close
to criticality of the layer dynamics. A similar observation has
been also discussed in the context of collective bursting
induced by synaptic short-term plasticity (Gast et al., 2020).
Moreover, we have proposed two different perturbation
methods that can trigger switches between coexisting
macroscopic regimes. In particular, we have demonstrated
that the regime shifts can be induced either by using
instantaneous large perturbations or persistent
perturbations of the resource activity.

In terms of theory, an important extension of our work could
concern a further analytical study of the reduced slow-fast system
governing the collective dynamics of the ensemble of excitable
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units and its interaction with the resources. For convenience, we
summarize the reduced system here

_z I, t( ) � 1
2

1 − z2 I, t( )( ) + iIz I, t( ) + σ

2
Z t( ) − σ

2
�Z t( )z2 I, t( ),

_r t( ) � ϵf r t( ) − s, λ t( )( ),
_λ t( ) � −ϵ λ t( ) − λ0 − ρ r1 − Im Z t( )( )( )[ ],

with

Z t( ) � ∫g I( )z I, t( ) dI.

In a broader context, we have proposed a simple paradigmatic
model to study the emergence of complex collective phenomena
induced by a dynamically co-evolving pool of resources. The
research on the impact of resource constraints on the dynamical
regimes of populations of neurons or neuron-like units from the
dynamical network perspective (Nicosia et al., 2017; Kroma-
Wiley et al., 2021) has begun only recently. In our study, we
have shown that even a simple model that includes nontrivial
dynamical resources gives rise to the emergence of collective
activity bursting close to criticality in a population of neuron-like
excitable units. Our study underlines the potentially important
role of resource constraints in the operating of the human brain
that is often hypothesized to operate close to criticality. We have
further shown that the collective activity bursting may stably
coexist with a steady state. Either one of these regimes could be
desirable or undesirable, which makes understanding of the
control mechanisms to switch between the regimes highly
important (Tang and Bassett, 2018). In this context, we have
discussed two simple approaches that can successfully induce
such regime shifts. Both approaches impose perturbations to the
single activity variable of the resource pool and can thus be

generalized to systems with even more complex dynamical
resource pools.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for submission.

FUNDING

The work of RB and SY was supported by the German Research
Foundation DFG, Project Nos 411803875 and 440145547.

ACKNOWLEDGMENTS

IF acknowledges funding from the Institute of Physics Belgrade
through the grant by the Ministry of Education, Science and
Technological Development of the Republic of Serbia. We
acknowledge support by the German Research Foundation
(DFG) and the Open Access Publication Fund of Humboldt-
Universität zu Berlin.

REFERENCES

Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. (2008).
Synchronization in Complex Networks. Phys. Rep. 469, 93–153. doi:10.1016/
j.physrep.2008.09.002

Attwell, D., and Laughlin, S. B. (2001). An Energy Budget for Signaling in the Grey
Matter of the Brain. J. Cereb. Blood Flow Metab. 21, 1133–1145. doi:10.1097/
00004647-200110000-00001

Bačić, I., and Franović, I. (2020). Two Paradigmatic Scenarios for Inverse
Stochastic Resonance. Chaos 30, 033123. doi:10.1063/1.5139628

Bačić, I., Klinshov, V. V., Nekorkin, V. I., Perc, M., and Franović, I. (2018a). Inverse
Stochastic Resonance in a System of Excitable Active Rotators with Adaptive
Coupling. EPL 124, 40004. doi:10.1209/0295-5075/124/40004

Bačić, I., Yanchuk, S., Wolfrum, M., and Franović, I. (2018b). Noise-induced
Switching in Two Adaptively Coupled Excitable Systems. Eur. Phys. J. Spec. Top.
227, 1077–1090. doi:10.1140/epjst/e2018-800084-6

Berner, R., Sawicki, J., and Schöll, E. (2020). Birth and Stabilization of Phase
Clusters by Multiplexing of Adaptive Networks. Phys. Rev. Lett. 124, 088301.
doi:10.1103/PhysRevLett.124.088301

Berner, R., Vock, S., Schöll, E., and Yanchuk, S. (2021). Desynchronization
Transitions in Adaptive Networks. Phys. Rev. Lett. 126, 028301. doi:10.1103/
PhysRevLett.126.028301

Berner, R., Schöll, E., and Yanchuk, S. (2019a). Multiclusters in Networks of
Adaptively Coupled Phase Oscillators. SIAM J. Appl. Dyn. Syst. 18, 2227–2266.
doi:10.1137/18m1210150

Berner, R., Fialkowski, J., Kasatkin, D., Nekorkin, V., Yanchuk, S., and Schöll, E.
(2019b). Hierarchical Frequency Clusters in Adaptive Networks of Phase
Oscillators. Chaos 29, 103134. doi:10.1063/1.5097835

Berner, R. (2021). Patterns of Synchrony in Complex Networks of Adaptively
Coupled Oscillators (Cham: Springer). Springer Theses.

Bick, C., Goodfellow, M., Laing, C. R., and Martens, E. A. (2020). Understanding
the Dynamics of Biological and Neural Oscillator Networks through Exact
Mean-Field Reductions: a Review. J. Math. Neurosci. 10, 9. doi:10.1186/s13408-
020-00086-9

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. (2006). Complex
Networks: Structure and Dynamics. Phys. Rep. 424, 175–308. doi:10.1016/j.
physrep.2005.10.009

Brandstetter, S., Dahlem, M. A., and Schöll, E. (2010). Interplay of Time-Delayed
Feedback Control and Temporally Correlated Noise in Excitable Systems. Phil.
Trans. R. Soc. A. 368, 391–421. doi:10.1098/rsta.2009.0233

Ceni, A., Ashwin, P., and Livi, L. (2019). Interpreting Recurrent Neural Networks
Behaviour via Excitable Network Attractors. Cogn. Comput. 12, 330–356.
doi:10.1007/s12559-019-09634-2

Chialvo, D. R. (2010). Emergent Complex Neural Dynamics. Nat. Phys 6, 744–750.
doi:10.1038/nphys1803

Chigwada, T. R., Parmananda, P., and Showalter, K. (2006). Resonance Pacemakers
in Excitable media. Phys. Rev. Lett. 96, 244101. doi:10.1103/physrevlett.96.
244101

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. (2017). Criticality in the
Brain: A Synthesis of Neurobiology, Models and Cognition. Prog. Neurobiol.
158, 132–152. doi:10.1016/j.pneurobio.2017.07.002

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 84182913

Franović et al. Resource Adaptation Induced Collective Bursting

https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1063/1.5139628
https://doi.org/10.1209/0295-5075/124/40004
https://doi.org/10.1140/epjst/e2018-800084-6
https://doi.org/10.1103/PhysRevLett.124.088301
https://doi.org/10.1103/PhysRevLett.126.028301
https://doi.org/10.1103/PhysRevLett.126.028301
https://doi.org/10.1137/18m1210150
https://doi.org/10.1063/1.5097835
https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1098/rsta.2009.0233
https://doi.org/10.1007/s12559-019-09634-2
https://doi.org/10.1038/nphys1803
https://doi.org/10.1103/physrevlett.96.244101
https://doi.org/10.1103/physrevlett.96.244101
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


De Maesschalck, P., and Wechselberger, M. (2015). Neural Excitability and
Singular Bifurcations. J. Math. Neurosci. 5, 16. doi:10.1186/s13408-015-
0029-2

Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H. M., and
Wechselberger, M. (2012). Mixed-mode Oscillations withMultiple Time Scales.
SIAM Rev. 54, 211–288. doi:10.1137/100791233

Dolmatova, A. V., Goldobin, D. S., and Pikovsky, A. (2017). Synchronization of
Coupled Active Rotators by Common Noise. Phys. Rev. E 96, 062204. doi:10.
1103/PhysRevE.96.062204

Ermentrout, G. B., and Kopell, N. (1986). Parabolic Bursting in an Excitable System
Coupled with a Slow Oscillation. SIAM J. Appl. Math. 46, 233–253. doi:10.1137/
0146017

Feketa, P., Schaum, A., and Meurer, T. (2020). Synchronization and Multi-Cluster
Capabilities of Oscillatory Networks with Adaptive Coupling. IEEE Trans.
Autom. Control. 66, 3084.

Fields, R. D. (2015). A New Mechanism of Nervous System Plasticity: Activity-
dependent Myelination. Nat. Rev. Neurosci. 16, 756–767. doi:10.1038/nrn4023

Franović, I., Omel’chenko, O. E., and Wolfrum, M. (2018). Phase-sensitive
Excitability of a Limit Cycle. Chaos 28, 071105. doi:10.1063/1.5045179

Franović, I., Yanchuk, S., Eydam, S., Bačić, I., and Wolfrum, M. (2020). Dynamics
of a Stochastic Excitable System with Slowly Adapting Feedback. Chaos 30,
083109. doi:10.1063/1.5145176

Franović, I., Perc, M., Todorović, K., Kostić, S., and Burić, N. (2015). Activation
Process in Excitable Systems with Multiple Noise Sources: Large Number of
Units. Phys. Rev. E 92, 062912. doi:10.1103/physreve.92.062912

Fuhrmann, G., Markram, H., and Tsodyks, M. (2002). Spike Frequency Adaptation
and Neocortical Rhythms. J. Neurophysiol. 88, 761–770. doi:10.1152/jn.2002.88.
2.761

Gast, R., Schmidt, H., and Knösche, T. R. (2020). A Mean-Field Description of
Bursting Dynamics in Spiking Neural Networks with Short-Term Adaptation.
Neural Comput. 32, 1615–1634. doi:10.1162/neco_a_01300

Gross, T., and Blasius, B. (2008). Adaptive Coevolutionary Networks: a Review.
J. R. Soc. Interf. 5, 259–271. doi:10.1098/rsif.2007.1229

Gross, T., D’Lima, C. J. D., and Blasius, B. (2006). Epidemic Dynamics on an Adaptive
Network. Phys. Rev. Lett. 96, 208701. doi:10.1103/physrevlett.96.208701

Gutiérrez, R., Amann, A., Assenza, S., Gómez-Gardeñes, J., Latora, V., and
Boccaletti, S. (2011). Emerging Meso- and Macroscales from
Synchronization of Adaptive Networks. Phys. Rev. Lett. 107, 234103. doi:10.
1103/physrevlett.107.234103

Ha, G. E., and Cheong, E. (2017). Spike Frequency Adaptation in Neurons of the
central Nervous System. Exp. Neurobiol. 26, 179–185. doi:10.5607/en.2017.26.
4.179

Haimovici, A., Tagliazucchi, E., Balenzuela, P., and Chialvo, D. R. (2013). Brain
Organization into Resting State Networks Emerges at Criticality on a Model of
the Human Connectome. Phys. Rev. Lett. 110, 178101. doi:10.1103/physrevlett.
110.178101

Horstmeyer, L., and Kuehn, C. (2020). Adaptive Voter Model on Simplicial
Complexes. Phys. Rev. E 101, 022305. doi:10.1103/PhysRevE.101.022305

Ivanov, P. C. (2021). The New Field of Network Physiology: Building The Human
Physiolome. Front. Net. Physiol. 1, 1. doi:10.3389/fnetp.2021.711778

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience. Cambridge, MA:
MIT Press.

Jain, S., and Krishna, S. (2001). A Model for the Emergence of Cooperation,
Interdependence, and Structure in Evolving Networks. Proc. Natl. Acad. Sci. 98,
543–547. doi:10.1073/pnas.98.2.543

Kasatkin, D. V., Yanchuk, S., Schöll, E., and Nekorkin, V. I. (2017). Self-organized
Emergence of Multilayer Structure and Chimera States in Dynamical Networks
with Adaptive Couplings. Phys. Rev. E 96, 062211. doi:10.1103/PhysRevE.96.
062211

Klinshov, V., and Franović, I. (2019). Two Scenarios for the Onset and Suppression
of Collective Oscillations in Heterogeneous Populations of Active Rotators.
Phys. Rev. E 100, 062211. doi:10.1103/PhysRevE.100.062211

Klinshov, V. V., Shchapin, D. S., Lücken, L., Yanchuk, S., and Nekorkin, V. I.
(2016). Experimental Study of Jittering Chimeras in a Ring of Excitable Units.
AIP Conf. Proc. 1738, 210007. doi:10.1063/1.4951990

Klinshov, V. V., Zlobin, D. A., Maryshev, B. S., and Goldobin, D. S. (2021). Effect of
Noise on the Collective Dynamics of a Heterogeneous Population of Active
Rotators. Chaos 31, 043101. doi:10.1063/5.0030266

Kroma-Wiley, K. A., Mucha, P. J., and Bassett, D. S. (2021). Synchronization of
Coupled Kuramoto Oscillators under Resource Constraints. Phys. Rev. E 104,
014211. doi:10.1103/PhysRevE.104.014211

Kuehn, C. (2015). Multiple Time Scale Dynamics. Cham: Springer.
Kuehn, C. (2019). Multiscale Dynamics of an Adaptive Catalytic Network. Math.

Model. Nat. Phenom. 14, 402. doi:10.1051/mmnp/2019015
Lafuerza, L. F., Colet, P., and Toral, R. (2010). Nonuniversal Results Induced by

Diversity Distribution in Coupled Excitable Systems. Phys. Rev. Lett. 105,
084101. doi:10.1103/PhysRevLett.105.084101

Laing, C. R. (2014). Derivation Of a Neural Field Model from a Network of Theta
Neurons. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 90, 010901. doi:10.1103/
PhysRevE.90.010901

Levina, A., Herrmann, J. M., and Geisel, T. (2007). Dynamical Synapses Causing
Self-Organized Criticality in Neural Networks. Nat. Phys 3, 857–860. doi:10.
1038/nphys758

Lindner, B., García-Ojalvo, J., Neiman, A. B., and Schimansky-Geier, L. (2004).
Effects of Noise in Excitable Systems. Phys. Rep. 392, 321–424. doi:10.1016/j.
physrep.2003.10.015

Lücken, L., Popovych, O. V., Tass, P. A., and Yanchuk, S. (2016). Noise-enhanced
Coupling between Two Oscillators with Long-Term Plasticity. Phys. Rev. E 93,
032210. doi:10.1103/PhysRevE.93.032210

Lücken, L., Rosin, D. P., Worlitzer, V. M., and Yanchuk, S. (2017). Pattern
Reverberation in Networks of Excitable Systems with Connection Delays.
Chaos 27, 013114. doi:10.1063/1.4971971

Luke, T. B., Barreto, E., and So, P. (2013). Complete Classification of the
Macroscopic Behavior of a Heterogeneous Network of Theta Neurons.
Neural Comput. 25, 3207–3234. doi:10.1162/neco_a_00525

Markram, H., Gerstner, W., and Sjöström, P. J. (2011). A History of Spike-timing-
dependent Plasticity. Front. Synaptic Neurosci. 3, 4. doi:10.3389/fnsyn.2011.
00004

Meisel, C., and Gross, T. (2009). Adaptive Self-Organization in a Realistic Neural
Network Model. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 80, 061917. doi:10.
1103/PhysRevE.80.061917

Mirollo, R., and Strogatz, S. H. (2007). The Spectrum of the Partially Locked State
for the Kuramoto Model. J. Nonlinear Sci. 17, 309–347. doi:10.1007/s00332-
006-0806-x

Morris, C., and Lecar, H. (1981). Voltage Oscillations in the Barnacle Giant Muscle
Fiber. Biophysical J. 35, 193–213. doi:10.1016/s0006-3495(81)84782-0

Neiman, A., Schimansky-Geier, L., Cornell-Bell, A., and Moss, F. (1999). Noise-
enhanced Phase Synchronization in Excitable media. Phys. Rev. Lett. 83,
4896–4899. doi:10.1103/physrevlett.83.4896

Nicosia, V., Skardal, P. S., Arenas, A., and Latora, V. (2017). Collective Phenomena
Emerging from the Interactions between Dynamical Processes in Multiplex
Networks. Phys. Rev. Lett. 118, 138302. doi:10.1103/physrevlett.118.138302

Omel’chenko, O. E., and Wolfrum, M. (2013). Bifurcations in the Sakaguchi-
Kuramoto Model. Physica D 263, 74. doi:10.1016/j.physd.2013.08.004

Omel’chenko, O. E., and Wolfrum, M. (2012). Nonuniversal Transitions to
Synchrony in the Sakaguchi-Kuramoto Model. Phys. Rev. Lett. 109, 164101.

Osipov, G. V., Kurths, J., and Zhou, C. (2007). Synchronization in Oscillatory
Networks. Berlin, Heidelberg: Springer.

Ott, E., and Antonsen, T. M. (2009). Long Time Evolution of Phase Oscillator
Systems. Chaos 19, 023117. doi:10.1063/1.3136851

Ott, E., and Antonsen, T. M. (2008). Low Dimensional Behavior of Large Systems
of Globally Coupled Oscillators. Chaos 18, 037113. doi:10.1063/1.2930766

Park, S. H., and Kim, S. (1996). Noise-induced Phase Transitions in Globally
Coupled Active Rotators. Phys. Rev. E 53, 3425–3430. doi:10.1103/physreve.53.
3425

Park, S. H., and Lefebvre, J. (2020). Synchronization and Resilience in the
Kuramoto white Matter Network Model with Adaptive State-dependent
Delays. J. Math. Neurosci. 10, 16. doi:10.1186/s13408-020-00091-y

Pikovsky, A. S., and Kurths, J. (1997). Coherence Resonance in a Noise-Driven
Excitable System. Phys. Rev. Lett. 78, 775–778. doi:10.1103/physrevlett.78.775

Popovych, O. V., Xenakis, M. N., and Tass, P. A. (2015). The Spacing Principle for
Unlearning Abnormal Neuronal Synchrony. PLoS ONE 10, e0117205. doi:10.
1371/journal.pone.0117205

Pototsky, A., and Janson, N. (2008). Excitable Systems with Noise and Delay, with
Applications to Control: Renewal Theory Approach. Phys. Rev. E Stat. Nonlin
Soft Matter Phys. 77, 031113. doi:10.1103/PhysRevE.77.031113

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 84182914

Franović et al. Resource Adaptation Induced Collective Bursting

https://doi.org/10.1186/s13408-015-0029-2
https://doi.org/10.1186/s13408-015-0029-2
https://doi.org/10.1137/100791233
https://doi.org/10.1103/PhysRevE.96.062204
https://doi.org/10.1103/PhysRevE.96.062204
https://doi.org/10.1137/0146017
https://doi.org/10.1137/0146017
https://doi.org/10.1038/nrn4023
https://doi.org/10.1063/1.5045179
https://doi.org/10.1063/1.5145176
https://doi.org/10.1103/physreve.92.062912
https://doi.org/10.1152/jn.2002.88.2.761
https://doi.org/10.1152/jn.2002.88.2.761
https://doi.org/10.1162/neco_a_01300
https://doi.org/10.1098/rsif.2007.1229
https://doi.org/10.1103/physrevlett.96.208701
https://doi.org/10.1103/physrevlett.107.234103
https://doi.org/10.1103/physrevlett.107.234103
https://doi.org/10.5607/en.2017.26.4.179
https://doi.org/10.5607/en.2017.26.4.179
https://doi.org/10.1103/physrevlett.110.178101
https://doi.org/10.1103/physrevlett.110.178101
https://doi.org/10.1103/PhysRevE.101.022305
https://doi.org/10.3389/fnetp.2021.711778
https://doi.org/10.1073/pnas.98.2.543
https://doi.org/10.1103/PhysRevE.96.062211
https://doi.org/10.1103/PhysRevE.96.062211
https://doi.org/10.1103/PhysRevE.100.062211
https://doi.org/10.1063/1.4951990
https://doi.org/10.1063/5.0030266
https://doi.org/10.1103/PhysRevE.104.014211
https://doi.org/10.1051/mmnp/2019015
https://doi.org/10.1103/PhysRevLett.105.084101
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1038/nphys758
https://doi.org/10.1038/nphys758
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1103/PhysRevE.93.032210
https://doi.org/10.1063/1.4971971
https://doi.org/10.1162/neco_a_00525
https://doi.org/10.3389/fnsyn.2011.00004
https://doi.org/10.3389/fnsyn.2011.00004
https://doi.org/10.1103/PhysRevE.80.061917
https://doi.org/10.1103/PhysRevE.80.061917
https://doi.org/10.1007/s00332-006-0806-x
https://doi.org/10.1007/s00332-006-0806-x
https://doi.org/10.1016/s0006-3495(81)84782-0
https://doi.org/10.1103/physrevlett.83.4896
https://doi.org/10.1103/physrevlett.118.138302
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1063/1.3136851
https://doi.org/10.1063/1.2930766
https://doi.org/10.1103/physreve.53.3425
https://doi.org/10.1103/physreve.53.3425
https://doi.org/10.1186/s13408-020-00091-y
https://doi.org/10.1103/physrevlett.78.775
https://doi.org/10.1371/journal.pone.0117205
https://doi.org/10.1371/journal.pone.0117205
https://doi.org/10.1103/PhysRevE.77.031113
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


Roberts, J. A., Iyer, K. K., Vanhatalo, S., and Breakspear, M. (2014). Critical Role for
Resource Constraints in Neural Models. Front. Syst. Neurosci. 8, 154. doi:10.
3389/fnsys.2014.00154

Röhr, V., Berner, R., Lameu, E. L., Popovych, O. V., and Yanchuk, S. (2019).
Frequency Cluster Formation and Slow Oscillations in Neural Populations with
Plasticity. PLoS ONE 14, e0225094. doi:10.1371/journal.pone.0225094

Ronge, R., and Zaks, M. A. (2021). Emergence and Stability of Periodic Two-
Cluster States for Ensembles of Excitable Units. Phys. Rev. E 103, 012206.
doi:10.1103/PhysRevE.103.012206

Sanders, J. A., Verhulst, F., and Murdock, J. (2007). Averaging Methods in
Nonlinear Dynamical Systems. New York, NY: Springer.

Scialla, S., Loppini, A., Patriarca, M., and Heinsalu, E. (2021). Hubs, Diversity, and
Synchronization in FitzHugh-Nagumo Oscillator Networks: Resonance Effects
and Biophysical Implications. Phys. Rev. E 103, 052211. doi:10.1103/PhysRevE.
103.052211

Shinomoto, S., and Kuramoto, Y. (1986). Phase Transitions in Active Rotator
Systems. Prog. Theor. Phys. 75, 1105–1110. doi:10.1143/ptp.75.1105

Song, T., Kim, H., Son, S. W., and Jo, J. (2020). Synchronization of Active Rotators
Interacting with Environment. Phys. Rev. E 101, 022613. doi:10.1103/PhysRevE.
101.022613

Stoop, R., Blank, D., Kern, A., v.d. Vyver, J.-J., Christen, M., Lecchini, S., et al.
(2002). Collective Bursting in Layer IV. Cogn. Brain Res. 13, 293–304. doi:10.
1016/s0926-6410(01)00123-9

Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. 1st ed. Cambridge, MA:
Perseus Books.

Strogatz, S. H. (2001). Exploring Complex Networks. Nature 410, 268–276. doi:10.
1038/35065725

Tang, E., and Bassett, D. S. (2018). Colloquium: Control Of Dynamics in Brain
Networks. Rev. Mod. Phys. 90, 031003. doi:10.1103/revmodphys.90.031003

Taylor, D., Ott, E., and Restrepo, J. G. (2010). Spontaneous Synchronization of
Coupled Oscillator Systems with Frequency Adaptation. Phys. Rev. E Stat.
Nonlin Soft Matter Phys. 81, 046214. doi:10.1103/PhysRevE.81.046214

Terrien, S., Pammi, V. A., Krauskopf, B., Broderick, N. G. R., and Barbay, S. (2021).
Pulse-timing Symmetry Breaking in an Excitable Optical System with Delay.
Phys. Rev. E 103, 012210. doi:10.1103/PhysRevE.103.012210

Thamizharasan, S., Chandrasekar, V. K., Senthilvelan, M., Berner, R., Schöll, E.,
and Senthilkumar, D. V. (2021). Exotic States Induced by Co-evolving
Connection Weights and Phases, arXiv:2111.09861

Thiele, M., Berner, R., Tass, P. A., Schöll, E., and Yanchuk, S. (2022). Asymmetric
Adaptivity Induces Recurrent Synchronization in Complex Networks,
arXiv2112.08697. submitted

Veltz, R. (2020). BifurcationKit.jl. URL https://hal.archives-ouvertes.fr/hal-02902346.
Vergara, R. C., Jaramillo-Riveri, S., Luarte, A., Moënne-Loccoz, C., Fuentes, R.,

Couve, A., et al. (2019). The Energy Homeostasis Principle: Neuronal Energy

Regulation Drives Local Network Dynamics Generating Behavior. Front.
Comput. Neurosci. 13, 49. doi:10.3389/fncom.2019.00049

Virkar, Y. S., Shew, W. L., Restrepo, J. G., and Ott, E. (2016). Feedback Control
Stabilization of Critical Dynamics via Resource Transport on Multilayer
Networks: How Glia Enable Learning Dynamics in the Brain. Phys. Rev. E
94, 042310. doi:10.1103/PhysRevE.94.042310

Wang, X.-J., and Buzsáki, G. (1996). GammaOscillation by Synaptic Inhibition in a
Hippocampal Interneuronal Network Model. J. Neurosci. 16, 6402–6413.
doi:10.1523/jneurosci.16-20-06402.1996

Wilting, J., and Priesemann, V. (2019). 25 Years of Criticality in Neuroscience -
Established Results, Open Controversies, Novel Concepts. Curr. Opin.
Neurobiol. 58, 105–111. doi:10.1016/j.conb.2019.08.002

Yanchuk, S., Ruschel, S., Sieber, J., and Wolfrum, M. (2019). Temporal Dissipative
Solitons in Time-Delay Feedback Systems. Phys. Rev. Lett. 123, 053901. doi:10.
1103/PhysRevLett.123.053901

Yanchuk, S., Roque, A. C., Macau, E. E. N., and Kurths, J. (2021). Dynamical
Phenomena in Complex Networks: Fundamentals and Applications. Eur. Phys.
J. Spec. Top. 230, 2711–2716. doi:10.1140/epjs/s11734-021-00282-y

Yu, S., Yang, H., Shriki, O., and Plenz, D. (2013). Universal Organization of Resting
Brain Activity at the Thermodynamic Critical point. Front. Syst. Neurosci. 7, 42.
doi:10.3389/fnsys.2013.00042

Zheng, C., and Pikovsky, A. (2018). Delay-induced Stochastic Bursting in Excitable
Noisy Systems. Phys. Rev. E 98, 042148. doi:10.1103/physreve.98.042148

Zierenberg, J., Wilting, J., and Priesemann, V. (2018). Homeostatic Plasticity and
External Input Shape Neural Network Dynamics. Phys. Rev. X 8, 031018. doi:10.
1103/physrevx.8.031018

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Franović, Eydam, Yanchuk and Berner. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Network Physiology | www.frontiersin.org March 2022 | Volume 2 | Article 84182915

Franović et al. Resource Adaptation Induced Collective Bursting

https://doi.org/10.3389/fnsys.2014.00154
https://doi.org/10.3389/fnsys.2014.00154
https://doi.org/10.1371/journal.pone.0225094
https://doi.org/10.1103/PhysRevE.103.012206
https://doi.org/10.1103/PhysRevE.103.052211
https://doi.org/10.1103/PhysRevE.103.052211
https://doi.org/10.1143/ptp.75.1105
https://doi.org/10.1103/PhysRevE.101.022613
https://doi.org/10.1103/PhysRevE.101.022613
https://doi.org/10.1016/s0926-6410(01)00123-9
https://doi.org/10.1016/s0926-6410(01)00123-9
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1103/revmodphys.90.031003
https://doi.org/10.1103/PhysRevE.81.046214
https://doi.org/10.1103/PhysRevE.103.012210
https://hal.archives-ouvertes.fr/hal-02902346
https://doi.org/10.3389/fncom.2019.00049
https://doi.org/10.1103/PhysRevE.94.042310
https://doi.org/10.1523/jneurosci.16-20-06402.1996
https://doi.org/10.1016/j.conb.2019.08.002
https://doi.org/10.1103/PhysRevLett.123.053901
https://doi.org/10.1103/PhysRevLett.123.053901
https://doi.org/10.1140/epjs/s11734-021-00282-y
https://doi.org/10.3389/fnsys.2013.00042
https://doi.org/10.1103/physreve.98.042148
https://doi.org/10.1103/physrevx.8.031018
https://doi.org/10.1103/physrevx.8.031018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/network-physiology
www.frontiersin.org
https://www.frontiersin.org/journals/network-physiology#articles


In: Horizons in World Physics. Volume 309 
Editor: Albert Reimer  
ISBN: 979-8-88697-641-0 
© 2023 Nova Science Publishers, Inc. 

Chapter 4 

Generic Mechanisms of  
Inverse Stochastic Resonance 

Igor Franović 
Institute of Physics Belgrade, University of Belgrade, Serbia 

Abstract 

Two decades since the discovery of stochastic resonance, it has first been 
shown that the oscillating systems may also display a characteristic non-
monotone response to noise, reflected in that their average oscillation 
frequency becomes minimal at an intermediate noise level. This came as 
a surprise because it was a common intuition that the frequency of noise-
perturbed oscillations should just increase monotonously with noise. The 
new phenomenon, called inverse stochastic resonance for manifesting a 
suppression instead of an enhancing type of a response to noise, bears 
some resemblance to a classical stochastic resonance, such as the 
existence of a threshold-like behavior in deterministic dynamics. 
Nevertheless, the deterministic dynamics itself has a limit cycle attractor, 
and the system is not exposed to a subthreshold periodic forcing. 

Inverse stochastic resonance readily shows that the response of an 
oscillating system to noise actually depends on the structure of the rest 
of the system's phase space and can in certain instances become non-
trivial. In this chapter, I demonstrate two generic scenarios for the onset 
of inverse stochastic resonance: one where the deterministic system is 
multistable and the noise induces a biased switching between stationary 
and oscillatory metastable states, and the other, where the noise enhances 
the stability of an unstable equilibrium of the unperturbed system. In both 
instances, there is an intermediate noise level where the mean lifetime of 
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a quasi-stationary state becomes maximal, such that the perturbed oscil-

lating system displays a bursting-like activity with long episodes of qui-

escence interspersed with rare clusters of spikes, or the oscillations may

even become completely quenched by noise. I show that the effect of

inverse stochastic resonance occurs both in systems of intrinsic oscilla-

tors and systems where oscillations emerge due to coupling. Moreover,

it may not only appear at the level of individual units but at the level of

assemblies of units alike. Though most of the studies of inverse stochas-

tic resonance have been associated with neuronal systems, both in terms

of theoretical framework and applications, the robustness of the indicated

mechanisms warrant the prominence of the effect in diverse fields, in-

cluding the recently shown applications to nematic liquid crystals and

dynamics of ecosystems. Despite that the impact of inverse stochastic

resonance in neuronal systems may at first appear inhibitory, it may actu-

ally be cast to a corpus of stochastic facilitation phenomena, having the

noise play a constructive functional role with respect to reducing neuronal

spiking frequency in the absence of neuromodulators, turning spiking into

stochastic bursting, or to generating UP-DOWN states characteristic for

spontaneous and evoked activity in cortical networks.

PACS: 05.40.Ca, 87.19.ln.

Keywords: resonant phenomena, noise-perturbed oscillations, multistability

and noise, stochastic multiscale dynamics, noise-induced switching, noise-

enhanced stability

1. Introduction

While the influence of noise has initially been seen as a nuisance, being likely

detrimental for the unperturbed dynamics of the system, it has long since been

understood that the noise may also modify or qualitatively change the determin-

istic dynamics in a function-wise favorable way. The tipping point that led to

this change of paradigm was the discovery of stochastic resonance [1, 2, 3, 4, 5],

the phenomenon where the optimal level of noise effectively enhances the sys-

tems sensitivity, or rather its ability to detect a weak (subthreshold) periodic

forcing acting upon the system. It is now established that the impact of noise on

deterministic dynamics of the system may be twofold [6, 7]: on the one hand,

it may just be quantitative, in the sense of enhancing or suppressing some al-
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ready existing features of deterministic dynamics; at the other hand, it may also

be qualitative, such that the noise introduces novel forms of behavior absent in

the deterministic dynamics of the system. The latter case is typically associ-

ated with noise-induced crossing of thresholds or separatrices, or noise-induced

stabilization of certain deterministically unstable structures. Some of the most

important examples of such effects include resonant phenomena, such as co-

herence and stochastic resonance [8], then noise-induced switching between

coexisting metastable states [7, 9, 10], noise-induced preference of attractors

[11, 12], the emergence of stochastic oscillations (spiking or bursting) [13], or

stochastic stabilization of unstable equilibria [14, 15]. In neuronal media, all

these phenomena witnessing the constructive role of noise are abundant and

have become known by the umbrella term of stochastic facilitation [16, 17].

This chapter is intended to highlight how some of the above mentioned

forms of noise-induced behavior contribute to the onset of a recently dis-

covered resonant phenomenon, called inverse stochastic resonance [15, 18,

19, 20, 21, 22]. The latter can be described as a stochastic suppression

of oscillations present in the unperturbed system, whereby the average fre-

quency of noise-perturbed oscillations becomes minimal at an intermedi-

ate level of noise. Just like other resonant phenomena, inverse stochastic

resonance also involves a non-monotone dependence on noise, but in con-

trast to the stochastic resonance, the signal-to-noise ratio has a characteris-

tic minimum rather than the maximum. Historically, it was precisely this

counter-analogy that inspired coining of the term inverse stochastic reso-

nance. Nevertheless, one should immediately caution against overexploit-

ing either analogies or counter-analogies to the effect of stochastic reso-

nance. Primarily, one should be aware of the major difference between

the two effects: stochastic resonance occurs in periodically forced sys-

tems with typically stationary unperturbed dynamics, while inverse stochas-

tic resonance concerns autonomous systems where the unperturbed dynam-

ics has a limit cycle attractor. Note that the latter may be intrinsic to

an isolated systems dynamics or the oscillations may emerge in coupled

systems as a result of interactions. The second point where one should

caution against potential overstretching the analogy between the phenom-

ena of stochastic resonance and inverse stochastic resonance concerns their

onset mechanisms. Namely, initially it has been claimed that in order

to observe inverse stochastic resonance, the underlying deterministic dy-

namics necessarily has to feature bistability between a stable limit cy-
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cle and a stable equilibrium. This likely appeared as conveniently sim-

ilar with the classical setting for stochastic resonance, which has been

known for some time. There, the isolated deterministic dynamics of the

system is bistable, with two coexisting stable equilibria (though more ex-

otic scenarios with coexisting periodic or chaotic attractors are also pos-

sible), much like a particle in a double-well potential; the system is fur-

ther subjected to a subthreshold periodic forcing, which may elicit only

small excitations around either of the equilibria, without being able to in-

duce hopping over the potential barrier between them. Then, the stochas-

tic resonance arises by adapting the noise intensity such that the corre-

sponding Kramers switching rate of the particle between the potential wells

becomes commensurate with the frequency of external periodic forcing

[5].

This chapter aims to portray a similar paradigmatic physical picture for the

effect of inverse stochastic resonance. Nevertheless, in this case, instead of just

one, it turns out that there are two such paradigmatic pictures [15]. By the first

scenario, which I call trapping scenario, along with a stable limit cycle, the de-

terministic system features an additional unstable equilibrium, whose stability

is enhanced by the influence of noise, such that at certain intermediate noise

levels, stochastic trajectories show strong deviations away from the oscillatory

metastable state, i.e., the system effectively becomes trapped for increased peri-

ods of time by the quasi-stationary metastable state. By the second scenario, that

I call biased switching scenario, the unperturbed dynamics shows a coexistence

between a stable limit cycle and a stable equilibrium, such that the noise induces

switching between the corresponding states, whereby the switching process be-

comes strongly biased toward a quasi-stationary state at an intermediate noise

level. In the following, I will elucidate these two generic scenarios by provid-

ing several illustrative examples. Apart from underlying the generic features in-

tended to corroborate on the expected ubiquity of the effect of inverse stochastic

resonance, I will also address certain problems more specific to the application

in neuroscience, where the effect has been first observed. In particular, I will

consider the problem of the robustness of the effect under the conditions associ-

ated with neuronal dynamics, like its persistence in coupled excitable systems,

the potential influence of the type of units excitability, as well as the dependence

on the multiscale dynamics of the units and their interactions.

The Chapter is organized as follows. In Section 2. I provide two illustrative

examples for the trapping scenario, while in Section 3. I do the same for the
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biased switching scenario. In Section 3.2., apart from the summary of the main

findings, I also provide an outlook concerning the prevalence of the effect of

inverse stochastic resonance.

2. Trapping Scenario

In this Section, I will explain in detail the trapping scenario for inverse stochas-

tic resonance by providing two paradigmatic examples, mostly inspired by the

applications in neuroscience. The first example concerns the stochastic sup-

pression of relaxation oscillations in the case of a single FitzHugh-Nagumo

unit, and the other involves a pair of active rotators with excitable local dynam-

ics, where the noise depresses emergent oscillations induced by interactions.

Apart from illustrating the particular scenario, these examples are also intended

to explicitly demonstrate that inverse stochastic resonance may emerge both

in self-oscillatory systems (endogenous oscillators) and systems with emergent

oscillations.

2.1. Trapping Scenario for a Single FitzHugh-Nagumo Unit

FitzHugh-Nagumo model [23] is a multiple timescale model originally classi-

cally derived to describe neuronal dynamics both in the excitable and the os-

cillatory regimes, but its application has permeated to various fields beyond

theoretical neuroscience, such as cell biology, e.g. when modeling the activity

of cardiac cells [24] or pancreatic β-cells [25], and chemistry, e.g. in relation

to autocatalytic chemical reactions [26]. The dynamics of a FitzHugh-Nagumo

system influenced by noise is given by

εu̇ = u − u3/3 − v +
√

εσuζ(t)

v̇ = u + b + σvξ(t), (1)

where u and v denote the activator (fast) and the recovery (slow) variable, re-

spectively, and the slow-fast structure is due to a small parameter ε � 1, here

fixed to ε = 0.05, which provides for the timescale separation. From the neuro-

science point of view, fast variable is interpreted as analogous to neuronal mem-

brane potential, whereas the slow variable stands for the cumulative action of

membrane ion-gating channels. The deterministic system (1) with σu = σv = 0

has been extensively studied within the framework of singular perturbation the-

ory considering the singular limit ε → 0 [28]. The classical result states that a
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stable equilibrium (u∗, v∗) = (−b,−b + b3/3) undergoes a supercritical Hopf

bifurcation at b = 1, such that a branch of small-amplitude harmonic oscil-

lations of period O(
√

ε) emanates for decreasing b. At b = bc ≈ 1 − ε/8,

one observes a so-called canard transition, which corresponds to a rapid tran-

sition to large-amplitude relaxation oscillations of period O(1) [27]. In terms

of neuronal dynamics, the described sequence of transitions under increasing b

corresponds to the regime shift from quiescence to spiking via subthreshold os-

cillations. The system is assumed to be influenced by two independent Gaussian

white noise sources, whereby the noise acting on the fast variable is classically

interpreted as an external synaptic noise derived from interaction with the em-

bedding environment, whereas the noise acting on the slow variable is seen as

intrinsic ion-channel noise coming from the random opening of the ion-gating

channels [16].

In the following, I consider the impact of noise on the FitzHugh-Nagumo

system in the regime of relaxation oscillations, having set the bifurcation pa-

rameter b = 0.99 beyond the canard transition. For convenience, I will

first confine the analysis to the case where only the intrinsic noise is present

(σu = 0, σv > 0), but later it will also be shown that qualitatively the same

effect occurs under the action of noise in the fast variable. It turns out that the

stochastic dynamics of the system is strongly influenced by the presence of an

unstable fixed point (u∗, v∗), and that there exists a threshold manifold associ-

ated with it, such that the impact of noise, i.e., the way it perturbs the relaxation

oscillations, depends on the type of fluctuations it induces in vicinity of the

threshold. This may be understood in analogy to the concept of excitability,

though it classically concerns the nonlinear threshold-like response of a sys-

tem possessing a stable equilibrium, such as system (1) for b & 1. There, a

small perturbation elicits a linear, small-amplitude response such that the per-

turbed system remains in close vicinity of equilibrium and rapidly regains the

rest state. Nevertheless, a strong enough perturbation is capable of inducing

a large loop in phase space, such that the system returns to equilibrium after

having performed a large-amplitude relaxation oscillation. Similar to this, the

response to noise of FitzHugh-Nagumo system in the regime of relaxation os-

cillations can be described as phase-sensitive excitability of a periodic orbit

[32]. Namely, depending on the strength of perturbation, noise may induce

only marginal fluctuations around the relaxation oscillation orbit, or may cause

a considerable deviation from the orbit, manifested as one or more successive

small-amplitude (subthreshold) oscillations around the unstable equilibrium at
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(u∗, v∗). The term phase-sensitive underlies that the response of the system to

perturbation is not uniform over the orbit of relaxation oscillations: the sys-

tem is in fact most susceptible to perturbation during the passage of the orbit in

vicinity of the unstable fixed point.

Figure 1. Phase plane for the noise-free system (1) with b = 0.99, ε = 0.05: In-

set: region close to the unstable equilibrium. Shaded stripe indicates the region

of phase-sensitive excitability, where the maximal canard acts as a threshold for

the nonlinear response to perturbation in the form of a small-amplitude excita-

tion loop.

The particular structure of the threshold manifold is given by a thin layer of

close-by trajectories forming the so-called maximal canard, see Fig. 1, which

may be explained in more detail within the framework of singular perturbation

theory [28]. The latter classically involves considering the layer problem and

the reduced problem, defined on the fast and the slow timescale, respectively,

which are complementary in the sense that the reduced/layer problem describes

slow/fast segments of solutions of a multiple timescale system. By setting ε = 0

for the deterministic dynamics of (1), one precisely obtains the reduced problem

for the FitzHugh-Nagumo system. Then, the slow (critical) manifold v = u −
u3/3 is comprised of three branches of fixed points of the fast subsystem, with

the two outer ones being stable, and the one in the middle being unstable. Most

importantly, the slow manifold has two folded node singularities at the points

where stable and unstable branches meet, which is closely associated with the
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existence of canard trajectories. In the singular limit, the maximal canard is the

trajectory that follows the whole unstable (middle) branch of the slow manifold

[28, 29, 30]. Beyond the singular limit, i.e., for a small but finite ε, maximal

canard foliates into a thin layer of exponentially close trajectories that follow

the unstable branch for a long time relative to the slow timescale. In practice,

maximal canard trajectories can be obtained from initial conditions set close

to the upper fold (u, v) = (1, 2/3) of the critical manifold and then running a

backward integration in time. Such folded-node canard trajectories provide the

threshold manifold for the phase-sensitive excitability of the orbit of relaxation

oscillations in the following sense: perturbations deviating the systems orbit

above the maximal canard induce a nonlinear type of response where the system

generates one or several successive small loops around the unstable equilibrium;

subthreshold perturbations or perturbations acting away from the threshold do

not invoke such a response. The paradigm above explains the systems response

to an arbitrary perturbation, depending on its direction and magnitude, and also

provides the basis for explaining the impact of noise as a continuous random

perturbation.

In particular, in Fig. 2 are illustrated typical stochastic trajectories of the

system (1) under the influence of intrinsic noise for three different noise lev-

els. For small noise, the excitations conforming to small-amplitude oscillations

around the unstable equilibrium are relatively rare and are closely confined by

the spiraling structure of the maximal canard. For intermediate noise, the noise-

induced excitations become more frequent, but their spiraling structure also get

partially smeared by fluctuations. Further increasing noise, the small-amplitude

excitations are again suppressed as the threshold structure gets washed out by

stochasticity, which reflects the effect of noise-induced linearization [31]. To

resolve the recurrence of small excitation loops with noise, one may introduce

a Poincaré section at u = u0 = −0.99, v < u0 − u3
0/3 to record passages

through a vertical line extending below the unstable fixed point. In Fig. 3(a)

are shown the return times ∆T between successive crossings of the section for

the three noise levels from Fig. 2. In all three cases, one readily distinguishes

between return times ∆T ≈ TR corresponding to relaxation oscillations and the

return times corresponding to excitation loops ∆T ≈ TE . The corresponding

episodes are indicated by the appropriate shading in the time trace in Fig. 3(b).

The corresponding variances σR,E for each of the two separate peaks of the

return time distribution are shown in Fig. 3(c), whereas in Fig. 3(d) are pro-

vided their relative sizes with varying noise level σv . The largest prevalence
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Figure 2. Stochastic trajectories for different levels of noise: (a) σv = 0.003, (b)

σv = 0.01, and (c) σv = 0.03. Top panels: orbits (u(t), v(t)) in the phase plane

together with the unperturbed relaxation oscillation orbit and maximal canard.

Bottom panels: time traces u(t) indicating the prevalence of small excitation

loops for intermediate noise level σv = 0.01.

of small-amplitude excitation loops is clearly observed for intermediate noise

levels σv ≈ 10−2. Above this value, the variances corresponding to each of the

peaks start growing as the nonlinear threshold-like response becomes smoothed

by noise.

The prevalence of small-amplitude excitation loops with noise affects the

average spiking rate 〈f〉, calculated as the number of large-amplitude relaxation

oscillations per time averaged over a sufficiently long time interval. The par-

ticular impact of small-amplitude excitation loops consists in delaying the next

spiking event, which effectively reduces the systems average spiking rate. As

the prevalence of excitation loops changes non-monotonously with noise, so

the average spiking rate exhibits a non-monotone noise dependence, see Fig. 4,

displaying the minimum for an intermediate noise level where the fraction of

small-amplitude excitation loops in Fig. 3(d) is maximal.

As any resonant effect, the non-monotone noise-dependence of the spiking

rate 〈f〉(σ) can be explained as the result of two competing effects. In this

case, the two competing effects are the increasing efficiency of excitation and



90 Igor Franović

Figure 3. (a) Return times ∆T between successive crossings of the Poincaré

section u = u0 = −0.99, v < u0 − u3
0/3 for different noise levels. The two

peaks correspond to relaxation oscillations ∆T ≈ TR (right peaks) and noise-

induced excitation loops ∆T ≈ TE (left peaks); (b) Time trace for σv = 0.01

with respective time intervals ∆T shaded dark (left peaks in (a)) and light gray

(right peaks in (a)); (c), (d) Noise-dependencies of variances σR,E and relative

sizes nE/nR for the two separate peaks of the return time distributions.

the degradation of the nonlinear threshold-like response [32]. A better insight

into this competition can be gained by inspecting the return times ∆T̃ asso-

ciated with the Poincaré section u = u0 = −0.2, v < u0 − u3
0/3. In this

case, small-amplitude excitation loops are not recorded as individual Poincaré

crossing events but rather contribute cumulatively to the return time ∆T̃ for

the round trip of each relaxation oscillation. For small noise, the correspond-

ing histograms in Fig. 5(a) show multiple well separated peaks centered around

∆T̃ ≈ TR + kTE , where k ∈ {0, 1, 2, 3, . . .} denotes the number of recur-

ring excitation loops between two successive Poincaré crossing events. This
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(d)(c)Figure 4. Noise-dependence of average spiking frequency 〈f〉 of relaxation

oscillations shows a characteristic minimum at an intermediate noise level σv ≈
10−2.

reveals that for σv < 10−2, it is not only that the excitation loops become more

abundant, as implied by Fig. 3(d), but they also tend to cluster as multiple suc-

cessive events, cf. the noise-dependence of the corresponding probabilities of

successive loops in Fig. 5(b). Such increasing recurrence tendency of excita-

tion loops for σv < 10−2 underlies the growing efficiency of the excitation

process, or rather the growing ability of noise to trap the system within the spi-

raling structure of the maximal canard. Above the optimum noise range, the

threshold behavior is gradually smoothed out giving way to noise degradation

effect, which qualitatively implies spoiling of the additive contribution of the

small-amplitude excitation loops to the total duration of the cycle of relaxation

oscillation. Quantitatively, this may be expressed by the noise-dependence of

the correlation coefficient δ between the number k of small excitation loops

the unit performs between two successive passages through the Poincaré cross-

section u = u0 = −0.2, v < u0 − u3
0/3, and having the first return time ∆T̃

within the corresponding interval [TR + (k − 1

2
)TE, TR + (k + 1

2
)TE]. The nu-

merically evaluated noise-dependence of this correlation coefficient in Fig. 5(c)

shows a strong decay above the critical level σv <≈ 10−2, coinciding with the

onset of the noise-induced degradation of the systems nonlinear threshold-like

response.

Note that while the analysis so far has been confined to the impact of intrin-

sic noise, which may be seen as a parametric perturbation that does not affect

the systems slow-fast structure, or rather the critical manifold, it is important
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Figure 5. (a) Histograms of first return times ∆T̃ to the Poincaré section

u = u0 = −0.2, v < u0 − u3
0/3. (b) Relative frequency of two successive ex-

citation loops. (c) Correlation coefficient δ between number of small-amplitude

excitation loops in a relaxation oscillation cycle and the cycles duration ∆T̃ .

to stress that qualitatively the same type of stochastic suppression of oscillation

frequency is obtained under the influence of external noise, i.e., when the noise

is added to the fast subsystem, see Fig. 6. However, the way in which the ef-

fect of inverse stochastic resonance is expressed for the stochastically perturbed

relaxation oscillations of the FitzHugh-Nagumo system qualitatively depends

on the separation of timescales, and is in fact most pronounced for intermedi-

ate values ε ≈ 0.05. The effect itself vanishes for infinite scale separation, as

evinced by its absence in [33], where the stochastic FitzHugh-Nagumo system

has been analytically investigated by singular perturbation techniques address-

ing the limiting case ε → 0. The reason for such a behavior with diminishing ε
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can be explained as follows. The duration of the small-amplitude excitation loop

scales like O(
√

ε), i.e., it is described to the leading order by the linearization at

the unstable equilibrium, which is a weakly undamped focus. Consequently, the

delaying effect on the spiking events and the associated decrease of the average

spiking rate become small in the singular limit.

(a) (a)
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Figure 6. Non-monotone noise-dependence of the mean spiking rate of relax-

ation oscillations for noise acting in the fast subsystem (external or synaptic

noise).

2.2. Trapping Scenario for a Motif of Two Coupled Oscillators

Having shown how the noise-induced trapping effect leads to a suppression

of intrinsic relaxation oscillations of the FitzHugh-Nagumo system, I turn to

a more complex example concerning a motif of two coupled oscillators with

multiple timescale dynamics. This example is also partially intended to show

that the effect of inverse stochastic resonance may not always qualitatively de-

pend on the scale separation in multiscale systems, i.e., that there are indeed

cases where it also persists in the singular limit.

The paradigmatic model I consider is to a certain extent inspired by neuro-

science, comprising two identical stochastic active rotators with slowly varying
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adaptive couplings [9, 34, 35]. The model reads

ϕ̇i = I0 − sinϕi + κi sin (ϕj − ϕi) +
√

σξi(t)

κ̇i = ε(−κi + sin(ϕj − ϕi + β)), (2)

where i, j ∈ {1, 2}, i 6= j denote individual units. The local dynamics is de-

scribed by the phase variables {ϕ1, ϕ2} ∈ S1, evolving on the fast timescale,

while the phase interactions involve standard first Fourier components and are

characterized by the slowly varying coupling weights {κ1, κ2} ∈ R. The dy-

namics of an isolated (non-interacting noise-free) unit is controlled by the ex-

citability parameter I0, whose role may be compared to that of an external bias

current in neuronal systems. An isolated unit undergoes the transition between

the excitable (I0 . 1) and oscillatory regime (I0 > 1) via the saddle-node of

infinite period (SNIPER) bifurcation at I0 = 1. Here, I consider the case where

the units are self-oscillatory (I0 = 1.05). Phase variables are influenced by in-

dependent Gaussian white noise sources, whose action may be compared to that

of synaptic noise in neuronal systems. Scale separation derives from the small-

ness of the parameter ε � 1, which here controls the rate of adaptation process.

Adaptation of coupling strengths is a part of a feedback loop often encoun-

tered in neuronal systems, where the activity of neurons impacts the coupling

strengths between them, reflecting different forms of synaptic plasticity, while

such changes in synaptic strength in turn modify the neuronal activity. Adap-

tive dynamics given by the second equation in (2) conforms to the so-called

phase-dependent plasticity [36, 37, 38], whose modality can be adjusted by the

parameter β. In particular, depending on β, phase-dependent plasticity can qual-

itatively reproduce the features of several well-known synaptic plasticity rules

[37, 38]. For example, choosing β = 3π/2 is known to promote phase syn-

chronization between the units, similar to the Hebbian learning rule [39], while

setting β = π favors a causal relationship between the pre- and post-synaptic

units firing times [37, 38], resembling the effect of spike-timing-dependent plas-

ticity (STDP) [40, 41, 42, 43]. In what follows, I will focus on the latter sce-

nario. The model of active rotators itself is quite similar to theta neurons, which

are paradigmatic for type I neuronal excitability. In line with that analogy, the

whole system (2) can be seen as a simplified model of a motif of adaptively cou-

pled neuronal oscillators subjected to synaptic noise. In terms of the underlying

dynamics, it is important to note that the noise-free system (2) is equivariant to

exchange of units’ indices, which brings up an additional degeneracy such that

all the stationary or periodic solutions appear as Z2 symmetry-connected twins.



Generic Mechanisms of Inverse Stochastic Resonance 95

� � � � � � � � � � � � � � � �
�

� � � �

� � � � �

� � � 2
� � � 09

� � � 05
� � � 02
� � � 005

Figure 7. Average oscillation frequencies in terms of noise 〈f〉(σ) for a set of

scale separations ε ∈ {0.005, 0.02, 0.05, 0.09, 0.2} and fixed I0 = 1.05, β = π.

For I0 = 1.05 and β = π, the system (2) exhibits a characteristic non-

monotone response to noise conforming to inverse stochastic resonance, where

the average oscillation frequency of phases 〈f〉 displays a minimum at an inter-

mediate noise level, see Fig. 7. In contrast to the scenario from Sec. 2.1., the

onset of inverse stochastic resonance here does not qualitatively depend on the

scale separation ε, i.e., the adaptation rate. There is only a quantitative depen-

dence on ε, in the sense that the resonant noise level shifts to larger values with

increasing ε. The numerical simulations corroborate that the resonant effect per-

sists for very slow adaptation, as demonstrated in Fig. 7 for ε = 0.005. The be-

low analysis within the framework of singular perturbation theory [28, 44] will

further show that all the necessary ingredients giving rise to inverse stochastic

resonance persist in the singular limit of infinite scale separation ε → 0. At the

other hand, the robustness of inverse stochastic resonance has also been numer-

ically confirmed for faster adaptation, e.g. in case ε ∼ 0.1, cf. Fig. 7. One
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further observes that the minima of 〈f〉(σ) dependencies become deeper with

ε, indicating that the noise-suppression effect becomes more pronounced for

higher adaptation rates.

To gain insight into the mechanism underpinning inverse stochastic reso-

nance, I will turn to the slow-fast analysis [28] of the noise-free system (2).

Before that, it is important to briefly summarize the results of numerical bifur-

cation analysis for the noise-free system (2) for the case of finite scale separa-

tion. First note that selecting the STDP-like plasticity rule β = π confines the

coupling dynamics to the symmetry invariant subspace κ1(t) = −κ2(t) ≡ κ(t).

Due to this, the noise-free system (2) can be reduced to

ϕ̇1 = I0 − sinϕ1 + κ sin (ϕ2 − ϕ1)

ϕ̇2 = I0 − sinϕ2 + κ sin (ϕ2 − ϕ1)

κ̇ = ε(−κ − sin(ϕ2 − ϕ1)). (3)

By numerically solving the eigenvalue problem, one can verify that system (3)

possesses no stable fixed points, but rather a pair of saddle nodes and a pair

of saddle focuses. Also, the maximal real part of the eigenvalues of the fo-

cuses display a power-law dependence on ε, tending to zero in the singular limit

ε → 0. Concerning the oscillatory states, the numerical experiments indicate

that (3) displays multistability between three periodic solutions: two of them in-

volve non-zero coupling strengths and a constant phase-shift between the phase

variables, whereas the third solution corresponds to effectively uncoupled units

(κ(t) = 0) and the phase variables synchronized in-phase.

Next I will demonstrate how the classical slow-fast analysis [28] can be

employed to better understand the trapping mechanism facilitating the onset of

inverse stochastic resonance. To this end, I consider the layer problem

ϕ̇1 = I0 − sinϕ1 + κ sin (ϕ2 − ϕ1)

ϕ̇2 = I0 − sinϕ2 + κ sin (ϕ2 − ϕ1). (4)

Treating the slow variable κ ∈ [−1, 1] as an additional system parameter, one

first looks for the stable stationary and periodic solutions of the fast flow. It

is convenient to apply the coordinate transformation (ϕ1, ϕ2) 7→ (Φ, δϕ) =
(ϕ1+ϕ2

2
, ϕ1−ϕ2

2
), so that (4) can be rewritten as

δϕ̇ = − sin δϕ cosΦ

Φ̇ = I0 − cos δϕ(sinΦ + 2κ sinδϕ). (5)
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The second equation indicates that the fast flow cannot possess any fixed points

on the synchronization manifold δϕ = 0 because I0 > 1, implying that the

stationary solutions can emerge only from the condition cosΦ = 0. Depending

on κ, the fast flow for I0 & 1 can actually exhibit two or no fixed points. For the

value of excitability parameter fixed in our case (I0 = 1.05), one can readily find

numerically that two fixed points, namely a saddle and a center, exist within the

interval κ ∈ [−0.1674, 0.1674]. It may be shown that the existence of a center

point is associated with the time-reversal symmetry of the fast flow (4). Indeed,

the fast flow is invariant to a symmetry-preserving map R of the form

R =











ϕ1 → π − ϕ2,

ϕ2 → π − ϕ1,

t → −t

(6)

In the case of finite scale separation, the counterpart of the center point of the

fast flow is a weakly unstable focus of the complete system (3).

Figure 8. Dynamics of fast flow (4) for I0 = 1.05 (a) below (κ = −0.8) and (b)

above the saddle-center bifurcation (κ = −0.08). In (a), the system possesses

two unstable fixed points: saddle (SP) and a center (CP), and has three types of

closed orbits: a limit cycle attractor (light gray), homoclinic connections to SP

(black and dark gray), and subthreshold oscillations around the center (medium

gray). In (b), the system exhibits bistability between two oscillatory states (light

gray and black).
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The structure of the fast flow is organized around the saddle-center bifurca-

tion, which happens for κ = κSC = −0.1674 [15]. Within this scenario, two

fixed points get annihilated as a homoclinic orbit connecting stable and unstable

manifolds of the saddle collapses onto the center. In Fig. 8(a) and Fig. 8(b) are

shown the illustrative examples of the phase portraits and the associated vector

fields for κ < κSC and κ > κSC , respectively. For κ ∈ [−1, κSC), the fast flow

has a limit cycle attractor, essentially reflecting the local dynamics of the units,

see the orbit indicated in red in Fig. 8(a). Apart from the periodic attractor, there

are two additional types of closed orbits, namely the homoclinic connections to

the saddle point (SP), shown by blue and green, and the periodic orbits around

the center point (CP), an example of which is indicated in orange. For κ > κSC ,

the fast flow displays bistability between two oscillatory solutions: a limit cycle

inherited from the local dynamics of units and the limit cycle associated with

the former homoclinic orbits, cf. Fig. 8(b).

Figure 9. Time traces (a) κi(t) and (b) ϕi(t), with the episode of circling in

vicinity of unstable fixed point shown shaded. (c) black and dark gray: orbits

associated with two metastable states featuring large-amplitude oscillations of

phases, light gray: subthreshold oscillations. Superimposed is the vector field

of the fast flow. Parameters are: I0 = 1.05, ε = 0.035, β = π, σ = 10−4.

Under the influence of noise, the attractors of the fast flow become

metastable states. Apart from the noise-induced switching between the

metastable states, the emerging slow stochastic fluctuations also involve
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Figure 10. Relative fraction of time spent in vicinity of unstable fixed point

Tup/Ttot as a function of noise for ε = 0.035 (squares) and ε = 0.06 (circles).

Remaining parameters are I0 = 1.05, β = π.

subthreshold oscillations derived from the periodic orbits around the center

point. It is precisely these subthreshold oscillations that provide for the trapping

effect responsible for the stochastic suppression of the oscillation frequency.

An example of the time traces κi(t) and ϕi(t), i ∈ {1, 2} for an intermediate

ε = 0.035 in Fig. 9(a)-(b) clearly illustrates three characteristic episodes,

including those where the system explores two distinct oscillatory metastable

states and an extended episode localized around the center, see the stochastic

orbits (ϕ1(t), ϕ2(t)) and the fast flow vector field in Fig. 9(c). For a finite scale

separation, the described trapping effect is manifested as the noise-enhanced

stability of an unstable fixed point [14]. The prevalence of subthreshold oscil-

lations varies non-monotonously with noise, see Fig. 10, becoming maximal

around the resonant noise level where the frequency dependence on noise

shows a minimum value, cf. Fig. 10 and Fig. 7.
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3. Biased Switching Scenario

In this Section, I provide two paradigmatic examples for the scenario where

inverse stochastic resonance emerges due to noise-induced switching between

oscillatory and quasi-stationary metastable states, such that the latter become

most prevalent for intermediate noise levels facilitating the strongest suppres-

sion of oscillations. I first briefly consider a simple example of a single stochas-

tic Morris-Lecar neuron, and then consider the case of two adaptively coupled

stochastic active rotators with excitable rather than self-oscillatory local dynam-

ics, such that the noise suppresses emergent oscillations.

3.1. Biased Switching for a Single Morris-Lecar Neuron

Morris-Lecar model is one of the classical multiscale models of neuronal dy-

namics, capable of reproducing a wide spectrum of neuronal behaviors [23, 45].

It is given by

C
dv

dt
= −gfastm(v)(v − ENa) − gslowW (v − EK)−

− gleak(v − Eleak) + I

dv

dt
= φ

W∞(v) − W

τ(v)

m(v) = 0.5[1 + tanh (
v − βm

γm
)]

W∞(v) = [1 + tanh (
v − βw

γw
)]

τ(v) = 1/ cosh (
v − βw

2γw
), (7)

where the fast variable v and the slow variable W respectively accommodate

for the dynamics of neuronal membrane potential and the normalized K+ ion

conductance. Depending on the bifurcation parameter I , which can be inter-

preted as an external bias current, the model can be poised in vicinity of a

subcritical or a supercritical Hopf bifurcation [46], i.e., it may display Type

I or Type II neuronal excitability. The current focus is on the former case,

which may be realized by selecting the following parameter set: ENa =
120 mV, EK = −84 mV, Eleak = −60 mV, gfast = 4.4 mS/cm2, gslow =
8 mS/cm2, gleak = 2 mS/cm2, φ = 0.04, C = 20 µF/cm2, βm =

−1.2 mV, βw = 2 mV, γm = 18 mV, γw = 30 mV . Then, for a range of



Generic Mechanisms of Inverse Stochastic Resonance 101

I values just below the threshold of a subcritical Hopf bifurcation, the Morris-

Lecar neuron displays bistability between a stable equilibrium and a stable limit

cycle, see the bifurcation diagram V (I) in Fig. 11(a).

The noise immediately transforms the attractors of deterministic dynamics

into metastable states, namely a quasi-stationary and an oscillatory one, causing

the system to switch between the two different regimes. For an intermediate

noise level, the switching process becomes extremely biased, such that the sys-

tem spends much more time fluctuating around the quasi-stationary state then

performing the noise-perturbed oscillations. This effect reduces the oscillation

frequency, and is ultimately even capable of completely quenching the oscilla-

tions at the resonant noise level, so that the system escapes from the attraction

basin of the oscillatory metastable state and is absorbed by the quasi-stationary

state, see the noise dependence of oscillation frequency for I = 95 µA/cm2 in

Fig. 11(b).
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Figure 11. (a) Bifurcation diagram V (I) for the Morris-Lecar model in vicinity

of a subcritical Hopf bifurcation; (b) Noise-dependence of average spiking fre-

quency 〈f〉(σ) for the Morris-Lecar model from (a), with bifurcation parameter

I = 95 µA/cm2 set to bistable regime.

3.2. Biased Switching for Emergent Oscillations in Two Adaptively

Coupled Active Rotators

In this Subsection, I consider the stochastic suppression of emergent oscil-

lations in a motif of two adaptively coupled active rotators in the excitable

regime. Motif dynamics is described by (2), but in contrast to the parameter

selection in Sec. 2.2., the local bifurcation parameter here is set to I0 = 0.95,
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Figure 12. Emergence of oscillations in noise-free system (2) with I0 = 0.95.

Dependencies σκi
(ε), i ∈ {1, 2} for illustrative stationary (black) and oscilla-

tory solution (gray and white refer to different units) for β = 4.2. Shading

indicates ε interval that admits multistability between the two symmetry-related

stable equilibria and limit cycle attractor(s). FC and PC denote ε values where

fold of cycles and pitchfork of cycles take place.

and the plasticity parameter β lies within the range β ∈ (3.298, 4.495), which

approximately interpolates between the Hebbian-like and STDP-like plasticity

rules. For such parameters, system (2) possesses two stable equilibria born

from the symmetry-breaking pitchfork bifurcation, and has four additional un-

stable fixed points. Recall that due to exchange symmetry, all the solutions

appear in pairs as symmetry-related twins. For the particular plasticity pa-

rameter β = 4.2 employed in the analysis below, the two stable equilibria,

given by EQ1:= (ϕ∗

1, ϕ
∗

2, κ
∗

1, κ
∗

2) = (1.2757, 0.2127,−0.0078,−0.8456) and

EQ2:= (ϕ∗

1, ϕ
∗

2, κ
∗

1, κ
∗

2) = (0.2127, 1.2757,−0.8456,−0.0078), have been

shown to manifest excitable behavior [9].

In the following, I first consider the numerical bifurcation diagram for the

noise-free system (2) with finite scale separation and the rest of parameters se-

lected as indicated above, see Fig. 12. This is intended to disclose the mech-

anism by which emergent oscillations are born and to highlight the parameter

region supporting bistability between the stable stationary and stable periodic

solutions. Note that the scale separation parameter ε, i.e., the adaptation rate,

plays an important part in shaping the systems dynamics. The maximal stability

region of the two symmetry-related periodic solutions in the (β, ε) parameter
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Figure 13. (a) Noise-dependence of average spiking frequency 〈f〉 for scale

separations ε ∈ {0.06, 0.08, 0.1}. (b)-(d) Time traces ϕ1(t) and ϕ2(t) for noise

levels below, at and above the resonant value. Parameters are: I0 = 0.95, β =

4.2, ε = 0.06.

plane can be found in [15, 35]. Here I just mention that for the given plasticity

parameter β, there exists an interval ε ∈ (εmin, εmax) of intermediate scale sep-

aration ratios supporting the oscillations, cf. the highlighted region in Fig. 12.

Two Z2-symmetry related branches of stable periodic solutions emanate from

the fold of cycles bifurcations, denoted by FC in Fig. 12, whereby the asso-

ciated threshold scale separation εmin(β) decreases with β. Two branches of

oscillatory solutions merge around ε ≈ 0.06, which is the locus of an inverse

pitchfork bifurcation of limit cycles (PC). As in my previous example, the im-

pact of noise is such that the coexisting attractors of the deterministic system

turn to metastable states connected by the noise-induced switching.

For the motif of two adaptively coupled excitable active rotators, the non-

monotone dependence of average oscillation frequency with noise characteristic

for inverse stochastic resonance is generically found for intermediate ε support-

ing the multistability between the stationary and the oscillatory solutions. A

family of noise-dependencies of average oscillation frequency 〈f〉(σ) for dif-

ferent scale separation ε is shown in Fig. 13(a). The angular brackets 〈·〉 refer to

averaging over an ensemble of a 100 different stochastic realizations, with the

initial conditions fixed within the basin of attraction of the limit cycle. Qualita-

tively the same results are also obtained if for each realization of the stochastic

process, one selects a set of random initial conditions from the stability basin of
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the periodic solution.

The noise-induced switching between quasi-stationary and oscillatory

metastable states gives rise to a bursting-like behavior [35], where the spikes,

appearing in clusters, are interspersed by the quiescent episodes, see Fig. 13(b).

The latter dominate the phases time series at the noise levels where the cor-

responding dependence 〈f〉(σ) exhibits a minimum. For the weaker noise

σ . 10−3, the frequency of emergent oscillations remains close to the un-

perturbed one, while beyond the resonant noise levels, it increases above the

frequency of unperturbed oscillations. The efficiency of the stochastic suppres-

sion of oscillations depends on the scale separation ε, i.e., the adaptation rate,

in the sense that it increases for a faster adaptation process (larger ε) [35]. To il-

lustrate how the inverse stochastic resonance is reflected at the slower timescale

of the dynamics of the coupling weights, in Fig. 14(a)-(c) are shown the typi-

cal stationary distributions P (κ1) for the noise levels below, at and above the

resonance. As a reference to the unperturbed dynamics, the dash-dotted lines in-

dicate the weight levels associated with the two equilibria EQ1 and EQ2, while

the blue shading denotes the variation σκ of the stable limit cycle. Note that here

the stable periodic solution is unique because the scale separation ε value lies

above the pitchfork of cycles bifurcation, cf. PC in Fig. 12(b). The stationary

distribution P (κ1) around the resonant noise level shows a pronounced peak at

one of the quasi-stationary states, while instead the distributions below or above

the resonant noise feature high occupancies of the oscillatory metastable state.

This is corroborated by looking into how the fraction of the total time spent at

the oscillatory metastable states, Tosc/Ttot, changes with noise, see Fig. 15(a).

The non-monotone dependence Tosc/Ttot(D) indeed shows that the switching

process around the resonant noise level becomes strongly biased toward the

quasi-stationary state, and that the effect becomes stronger for a faster adapta-

tion. Such biased switching is facilitated by the geometry of the systems phase

space, where the boundary between the basins of attraction of two stationary

states and the limit cycle is shifted much closer toward the limit cycle.

The switching process, manifested as slow stochastic fluctuations between

the available metastable states, can be quantified by looking separately into

competing transition processes from and to the oscillatory state [15]. In par-

ticular, the transition rates from the stability basin of the limit cycle attractor

to those of the stationary states and vice versa, rLC→FP and rFP→LC , can

be numerically estimated as the reciprocal values of the corresponding mean

first-passage (escape) times [47], see Fig. 15(b)-(c). The noise-dependencies of

the two transition rates are indeed qualitatively different: while rLC→FP dis-
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Figure 14. Stationary distributions P (κ1) (a) below (σ = 0.001), (b) at

(σ = 0.0025) and (c) above (σ = 0.009) the resonant noise level for ε = 0.1;

dash-dotted lines: κ1 levels associated with two stable equilibria, κ∗

1
(EQ1) and

κ∗

1(EQ2); light shaded interval: variation σκ1
of the unique stable periodic so-

lution.

plays a maximum at the resonant noise level and a subsequent decay with noise,

rFP→LC just increases monotonously. For very small noise σ . 10−3, there

are virtually no switches to the quasi-stationary states. However, for intermedi-

ate noise levels, the transition rate rLC→FP dominates, whereas under further

increase of noise rFP→LC takes over.

An additional subtlety for the current example of inverse stochastic reso-

nance is that the adaptation plays a facilitatory role by enhancing the resonant

effect. By combining two multiscale methods, namely the critical manifold the-

ory and the averaging approach, one may show that the adaptation drives the fast

flow toward the part of the (κ1, κ2) parameter plane where the stationary state

changes character, turning from a stable node to a stable focus [35]. In general,

path-following techniques have already been applied to show that the response

to noise in multiple timescale systems qualitatively depends on the character

of stationary states, recovering fundamentally different scaling regimes with re-

spect to noise and the scale-separation ratio [48, 49, 50]. Intuitively, one may

expect more resonant effects to be associated with focuses rather than nodes

[48], because in the former case, the post-perturbation process of relaxation to

equilibrium features an eigenfrequency.
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Figure 15. (a) Fraction of time spent at the oscillatory metastable state Tosc/Ttot

in terms of noise for ε = 0.06 (circles) and ε = 0.08 (squares). Transition rate

from (b) oscillatory to quasi-stationary metastable states, rLC→FP (σ) and (c)

vice versa, rFP→LC(σ). Remaining parameters: I0 = 0.95, β = 4.2.

To explain the role of adaptation in enhancing the resonant effect, I will

invoke the results concerning the slow-fast analysis of (2) for I0 = 0.95 [9, 35].

In particular, the layer problem

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1)

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2), (8)

is considered by treating the slow variables κ1, κ2 ∈ [−1, 1] as the additional

system parameters. Depending on κ1 and κ2, one finds that the fast flow dy-

namics is typically monostable, exhibiting either a stable stationary or periodic

solution, apart from a small bistability region [9, 35]. The numerically obtained

maximal stability domain of the oscillatory solution, including both the domain

where it is the only attractor and the domain where it coexists with a stable

equilibrium, is denoted by gray shading in Fig. 16(a). The thick lines outlining

the stability domain of the periodic solution are given by the two branches of

SNIPER bifurcations [9]. Within the domain, each periodic solution above the

main diagonal κ1 = κ2 has a Z2 symmetry-related twin below the diagonal.

Now, the above results of the multiple timescale dynamics can be used to

gain insight into how the slow adaptation process is capable of modifying the

suppression effect of noise on emergent oscillations. Let us consider the time

traces (κ1(t), κ2(t)) in the inset of Fig. 16(a) which (from left to right) show the
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Figure 16. (a) Slow-fast analysis of (2) for I0 = 0.95, σ = 0. Fast flow pos-

sesses a periodic attractor (medium gray shaded region) and a stable equilibrium

(white region), with two branches of SNIPER bifurcations (dark gray) outlin-

ing the boundary between them. Arrows indicate vector fields corresponding

to stable sheets of the slow flow. Inset: κi(t) series show a switching episode

from oscillatory to stationary state and back (ε = 0.06, β = 4.2); Correspond-

ing (κ1(t), κ2(t)) orbit is indicated in black; light gray regions: domains where

two stable equilibria are focuses rather than nodes. (b) Conditional probabil-

ity pF (σ) to have the crossing of SNIPER bifurcation followed by a passage

through the light gray region from (a), obtained for ε = 0.06 (squares) and

ε = 0.1 (circles).

switching episode from an oscillatory to the quasi-stationary metastable state.

The onset and termination of the switching event are associated with an inverse

and direct SNIPER bifurcation of the fast flow, respectively. Within the nar-

row (κ1, κ2) regions immediately beyond the SNIPER bifurcation, the fast flow

possesses a stable node. However, in the close vicinity, there are triangular-

shaped domains, highlighted in orange in Fig. 16(a), where the equilibria of fast

flow are focuses rather than the nodes. It turns out that precisely for the res-

onant noise levels, the coupling dynamics (κ1(t), κ2(t)) fluctuates within the

triangular region, so that the corresponding equilibrium of the fast flow is a fo-

cus. In order to explicitly show that this feature is a signature of the resonant

effect, one may numerically calculate the conditional probability pF that the

events of crossing the SNIPER bifurcation are followed by the system visiting
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the triangular-shaped (κ1, κ2) regions with a focus equilibrium of the fast flow

[15, 35]. The pF (σ) dependencies for two different ε values in Fig. 16(b) in-

deed show a maximum for the resonant noise levels associated with the minima

of the frequency dependencies in Fig. 13(a). In other words, it is the resonant

noise levels that are capable of confining the coupling dynamics within the re-

gions where the fast flow has stable focuses instead of nodes. Smaller noise

is incapable of driving the system toward regions supporting focal equilibria,

whereas too large a noise just washes out the quasi-stationary regime. The en-

hancement of inverse stochastic resonance is more efficient for larger ε, i.e., for

faster adaptation, as evinced by the vertical order of curves pF (σ) for ε = 0.1
and ε = 0.06.

Conclusion and Outlook

This chapter has been aimed at highlighting inverse stochastic resonance, a re-

cent development in understanding of the impact of noise on oscillating dynam-

ics. The effect is to a certain extent unexpected, in the sense of showing that the

noise may selectively suppress the oscillations instead of just contributing to

the monotonous increase of oscillation frequency compared to the unperturbed

system. My particular goal has been to portray paradigmatic physical picture

for the dynamics of systems manifesting inverse stochastic resonance, similar

to the well-known picture of a stochastic over-damped particle in a double-well

potential subjected to a weak periodic forcing in the case of stochastic resonance

[5]. Instead of showing a single paradigm, it turned out that inverse stochastic

resonance may occur by two generic scenarios [15], based on the two classical

effects of noise, namely either on the noise-enhanced stabilization of determin-

istically unstable equilibria or the noise-induced crossing of boundaries between

the basins of attraction of coexisting stable limit cycles and stable equilibria. By

the first scenario, an oscillatory system possesses a weakly unstable fixed point,

whose stability is enhanced due to the action of noise. The latter results in a

trapping effect, such that the system exhibits subthreshold oscillations, whose

prevalence is noise-dependent and is maximal for the resonant noise level. By

the second scenario, inverse stochastic resonance emerges in systems with mul-

tistable deterministic dynamics, where at least one of the attractors is a stable

equilibrium. Due to the asymmetric structure of the phase space, and in partic-

ular the relative proximity (far distance) of the limit cycle (stable equilibrium)

to the basin boundary [51], the noise-induced switching between the associ-
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ated metastable states becomes biased at an intermediate noise level, where the

lifetime of quasi-stationary states becomes substantially longer than that of os-

cillatory state, or the quasi-stationary states may even become absorbing.

In terms of the robustness of inverse stochastic resonance, I have shown

that it may occur as a stochastic suppression of intrinsic and emergent oscilla-

tions alike. Also, in contrast to the impression created by the pioneering work

[18, 20, 21, 22], the effect is not dependent on the type of bifurcation giving rise

to oscillations in the sense that it may occur both for subcritical and supercritical

bifurcation scenarios. However, one should note that at variance with other res-

onant phenomena, including stochastic resonance, inverse stochastic resonance

is partly sensitive to the choice of initial conditions. Such sensitivity refers to

the scenario based on biased switching, where the effect may not be captured if

the initial conditions are set only within the basin of attraction of the stationary

state.

An important aspect of inverse stochastic resonance not directly covered

by this chapter concerns the underlying adjustment of timescales between the

stochastic and deterministic dynamics. Namely, in order to observe stochastic

resonance, it is well known that one needs to adapt the noise so that the

emerging Kramers switching rate [47] matches the oscillation frequency of

the external forcing. In the case of inverse stochastic resonance, it is actually

the matching between the characteristic timescale of noise-induced boundary

crossing and the period of limit cycle that facilitates the resonant effect. For an

explicit treatment of this problem in the framework of large deviations theory,

I refer the reader to [19].

So far, inverse stochastic resonance has most often been reported in models

of neuronal dynamics, both at the level of individual units [19, 20, 21, 22, 32],

motifs of units with neuron-like dynamics [18, 35] and neural networks [52].

It can be cast as a stochastic facilitation effect because it is believed to play

important functional roles in neuronal systems, such as facilitating the reduc-

tion of spiking frequency in the absence of neuromodulators, then triggering of

stochastic bursting, i.e., on-off tonic spiking activity, the suppression of patho-

logically long short-term memories [17, 21, 22, 53], and most notably, may

contribute to generation of UP-DOWN states, characteristic for spontaneous

and induced activity in cortical networks [54, 55]. The first experimental verifi-

cation of the inverse stochastic resonance actually came in relation to the latter

scenario when considering the in-vitro preparation of cerebellar Purkinje cells

[53]. Purkinje neurons are fundamental to cerebellar computations, mostly re-



110 Igor Franović

sponsible for motor control and motor learning [56], since they provide the sole

output of cerebellar cortex [57, 58]. It has been found that depending on the

level of noise, Purkinje cells can operate in two different regimes: the linear

filter regime, where the noise level is close to optimal for inverse stochastic

resonance such that it may terminate the UP state, and the all-or-none toggle

regime, where the noise is not optimal for inverse stochastic resonance, such that

switches between the UP and DOWN states emerge due to the external signals.

Given the robustness of the scenarios underpinning inverse stochastic reso-

nance, it is to be expected that the effect should be ubiquitous to many different

fields beyond neuroscience. In fact, inverse stochastic resonance has recently

been demonstrated in two substantially different contexts. In one case, the effect

has been observed in an experimental study on nematic liquid crystals in rela-

tion to ac-driven electroconvection under the influence of colored noise [59]. In

the other case, inverse stochastic resonance has been reported in the dynamics

of ecosystems, in particular for changing savanna landscapes [60], where the

intermediate environmental variability may cause a reduction of oscillation fre-

quency in the vegetation landscape, ultimately leading to the establishment of a

stable forest landscape.

An interesting new direction of research concerns the potential relation be-

tween stochastic resonance and inverse stochastic resonance. In particular, it

has recently been reported that the two effects may coexist in a single system,

namely a motif of two quadratic integrate and fire neurons [61], and that more-

over, the two effects promote each other in the sense that tuning the noise level

to the preferred value for the inverse stochastic resonance is also optimal for the

transmission of information between the neurons when the motif is subjected to

an external periodic stimulation.
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