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Преглед научне активности кандидаткиње 

 

Марија Шиндик се у досадашњем раду бавила нумеричким изучавањем диполних ултрахладних 

Бозе гасова, односно система атома са јаким перманентим магнетним диполним моментом, на 

ниским температурама на којима долази до Бозе-Ајштајн кондензације. Посебан акценат је 

стављен на суперсолидна стања, за која је недавно показано да је постоје у овим системима у 

одређеном опсегу параметара. Ово интригантно стање материје је карактерисано спонтаним и 

истовременим нарушењем фазне и транслационе симетрије, резултирајући у неинтуитивној 

коегзистенцији суперфлуидних и кристалних особина. 

Једна од фундаменталних карактеристика суперфлуидности је постојање квантизованих 

вортекса. Иако постоје скорашња нумеричка истаживања која показују њихово постојање и у 

суперсолидној фази, њихова експериментална детекција и даље представља изазов. Разлог је 

што се језгра вортекса у суперсолидној фази налазе на местима између квантних капљица, која 

су и без присуства вортекса карактерисана малом густином. Стога је детекција 

конвенционалним методама снимања густине таласне функције након експанзије, и 

повезивања „рупа“ у густини  са вортексима, у овом случају јако тешко. 

Један део истраживања кандидаткиње се бавио конструкцијом протокола нуклеације и 

детекције вортекса у диполним Бозе гасовима у хармонијској замци. Метод је базиран на 

мењању дужине расејања система контролом спољашњег магнетног поља, што доводи до 

фазног прелаза између суперфлуидне и суперсолидне фазе. Почевши од споро ротирајуће 

конфигурације у суперфлуидној фази која не поседује вортекс, прелазак у суперсолидну фазу 

доводи до нуклеације вортекса, због значајно смањене критичне угаоне фреквенције у овој 

фази. Након што је вортекс креиран, показано је да остаје стабилан при поновном преласку 

фазног прелаза у суперфлуидно стање, где је његова експериментална детекција могућа. Ови 

резултати могу имати значајан утицај на тренутне експерименте, пружајући метод провере 

суперфлуидног карактера диполних суперсолидних стања. 

Још једна значајна карактеристика суперсолидне фазе је постојање Голдстонових мода, као 

последица спонтаног нарушења фазне и транслационе симетрије. У другом делу истраживања 

кандидаткиње, систем који се посматра је у спољашњем потенцијалу прстенастог облика, где 

долази до појаве две Голдстонове моде. Оне се побуђују тако што се нагло уклони периодична 

пертурбација пропорционална са cos 𝜃, где је 𝜃 азимутални угао. Анализирањем резултујућих 

осцилација гаса, могуће је одредити вредности две брзине звука које су повезане са две 

Голдстонове моде. Ове вредности су анализиране коришћењем хидродинамичке теорије 

суперсолидног стања на апсолутној нули. Овај приступ омогућава одређивање модула 

компресибилности слојева, као и суперфлуидне фракције, која се подудара са Leggett-овом 

проценом некласичног момента инерције. Ово истраживање пружа оквир за експериментално 

одређивање релеватних параметара хидродинамичке теорије суперсолидног стања. 
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Sound, superfluidity and layer compressibility in a ring dipolar supersolid

Marija Šindik,1, ∗ Tomasz Zawíslak,1, ∗ Alessio Recati,1, † and Sandro Stringari1

1Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica,
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We propose a protocol to excite the Goldstone modes of a supersolid dipolar Bose-Einstein con-
densed gas confined in a ring geometry. By abruptly removing an applied periodic modulation
proportional to cos(φ), where φ is the azimuthal angle, we explore the resulting oscillations of the
gas, by solving the extended Gross-Pitaevskii equation. The value of the two longitudinal sound
velocities exhibited in the supersolid phase are analyzed using the hydrodynamic theory of super-
solids at zero temperature. This approach allows for the determination of the layer compressibility
modulus as well as of the superfluid fraction fS , in agreement with the Leggett estimate of the
non-classical moment of inertia.

A key consequence of the spontaneous breaking of
continuous symmetries is the occurrence of Goldstone
modes, which, in the presence of finite range interac-
tions, take the form of gapless excitations in the long
wavelength limit. The identification and the experimen-
tal observation of the Goldstone modes then represents
a question of central interest in various fields of science,
including elementary particle physics, magnetism, super-
fluidity and superconductivity. The recent realization of
supersolidity has raised the question of the identification
of the corresponding Goldstone modes which are the con-
sequence of the spontaneous and simultaneous breaking
of phase symmetry and translational invariance, ensur-
ing the non intuitive co-existence of superfluid and crys-
tal features. From the theoretical side the study of the
Goldstone modes in supersolids has an old history, start-
ing from the pioneering work of Andreev and Lifshitz [1]
(see also [2, 3]), and more recent papers based on numer-
ical simulations on atomic Bose gases interacting with
soft-core potentials [4–6], spin orbit coupled gases (see
the recent reviews [7, 8] and reference therein) and dipo-
lar gases [9] (see also the recent Perspective [10] and ref-
erences therein). First experimental evidence for the oc-
currence of Goldstone modes in a supersolid has been
recently reported in the case of a dipolar gas confined in
a harmonic trap, where the modes take the form of dis-
cretized oscillations and in particular with the emergence
of novel crystal-like oscillations as soon as one enters the
supersolid phase [11–13]. The use of harmonic trapping
potentials, inducing the non-homogeneity of the gas, to-
gether with a relatively small number of droplets which
form the non-superfluid component of the gas within the
supersolid/crystal phase, limits the possibility to fully
appreciate the rich dynamics of the dipolar gas as a bulk
supersolid. For cold gases with short range interaction
one can use box potentials to avoid or strongly reduce
the inhomogeneity. However, when the dipolar interac-
tion dominates the physics of the gas, such an approach
does not work due to strong edge effect [14].

In this Letter we propose to use a ring potential and
to measure the response to a periodic static perturbation
in order to extract the low momenta dispersion relation

of the system. The calculated sound velocities are then
analyzed employing the hydrodynamic theory of super-
solids. In particular, we determine the layer compress-
ibility modulus and the superfluid fraction, pointing out
their role in the propagation of sound in the supersolid
phase. Interestingly, ring traps offer one of the simplest
realizations of matter wave circuits, with important per-
spectives in the emerging field of atomtronics [15, 16].

The model and its quantum phases. In a dilute dipo-
lar Bose gas, the atoms interact by a delta-contact po-
tential Vc(r) = gδ(r), with the coupling constant g =
4πℏ2a/m > 0 fixed by the atomic mass m and the
s-wave scattering length a; and by the dipolar poten-

tial Vdd(r) = µ0µ
2

4π
1−3 cos2 θ

|r|3 with θ the angle between r

and the direction z of the externally applied magnetic
field, which aligns the atomic magnetic dipole moments
µ. The most important parameter to determine the
zero temperature phase diagram of the gas is the ra-
tio between the strengths of the contact and the dipo-
lar interactions, ϵdd = add/a with add = µ0µ

2/12πℏ2
the so-called dipolar length. For small enough ϵdd the
system forms a Bose-Einstein condensate (BEC), while
by increasing it beyond a certain threshold, in three-
dimensional uniform configurations, the system collapses
due to the attractive nature of the dipolar interaction.
Confining the gas along the z direction prevents this col-
lapse, and three distinct phases occur: (i) a homogeneous
BEC (superfluid phase), (ii) a supersolid phase in a very
small interval of ϵdd, and (iii) a droplet crystal phase,
i.e., independent droplets arranged in a crystal struc-
ture. In the present Letter we consider moreover that
the gas is confined in the x − y plane by a ring-shaped
potential Vext(r⊥, z) = m

[
ω2
⊥(r⊥ −R)2 + ω2

zz
2
]
/2 with

r⊥ =
√

x2 + y2, of radius R = 7.64µm and trap fre-
quencies ωz = ω⊥ = 2π · 100 Hz, leading to the three
phases reported in Fig. 2, calculated for N = 80000
164Dy atoms, corresponding to add = 132a0, where a0 is
the Bohr radius. We obtain a ring-shaped cloud of length
L ≈ 49µm [17] and width FWHMXY changing from
1.41µm in the superfluid to 0.7µm approaching the crys-
tal phase (see Fig.2). Due to magnetostriction, the cloud
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is elongated in the third direction with FWHMZ ≈ 4µm.
The system is numerically studied within the so-called
extended Gross-Pitaevskii equation [18] which in the last
few years has been systematically employed to describe
the equilibrium and dynamic properties of dipolar super-
solids, in reasonably good agreement with the experimen-
tal findings.

The protocol. We first determine the state of the
gas by applying a small static perturbation of the form
V0 cosφ, where φ is the azimuthal angle along the ring,
which produces stationary density modulations. We then
suddenly set V0 = 0, resulting in the excitation of the
longitudinal phonon modes propagating along the ring.
Similar protocols have been already applied to investi-
gate the Doppler effect due to the presence of quantized
vortices in a ring [19] and, more recently, to investigate
the effect of superfluidity on the propagation of sound in
a dilute Bose gas confined in a box in the presence of an
external periodic potential [20].

An easy analysis of the response of the system can
be obtained considering sufficiently large ring sizes for
which the ring can be mapped in a linear tube config-
uration with imposed periodic boundary conditions. In
particular we assume that the length L of the ring is
much larger than its width, so that one can safely iden-
tify cos(φ) with cos(qx), where q = 2π/L is the wave
vector of the longitudinal excitation and the variable x,
with 0 ≤ x ≤ L, is the longitudinal coordinate along the
tube. According to linear response theory, the quantity
δF = ⟨cosφ⟩(t)−⟨cosφ⟩, where the bar stays for the time
average, should show, in the supersolid phase, a beating
of two modes (see inset in Fig. 3)

δF (t) = V0

∑
i=1,2

χi(q) cos(ωi(q)t) (1)

with ωi(q) approaching, for sufficiently small q (and
hence large L), the linear phonon dispersion ωi(q) ≃ ciq,
with c1 and c2 hereafter called first and second sound
velocities, respectively. The quantities χi(q), i = 1, 2,
define the contributions of the two modes to the static
response and hence to the compressibility sum rule ac-
cording to

χ(q) = χ1(q) + χ2(q) =

∫ ∞

0

dω
S(q, ω)

ω
=

q→0
Nκ (2)

with κ the compressibility of the system (hereafter we
set ℏ = m = 1, with m the atomic mass), while S(q, ω)
is the dynamic structure factor. From the analysis of
the measurable signal δF (t) of Eq. (1) one can then de-
termine the sound velocities c1 and c2, and the relative
contribution

R ≡ χ(2)

χ
=

c21 − c2κ
c21 − c22

(3)

of the lowest (second sound) mode to the compressibility

sum rule, where we have defined cκ =
√
κ−1. Analo-

gously, the contribution of second sound to the f sum
rule m1 =

∫∞
0

dω S(q, ω)ω = Nq2/2 is given by

m
(2)
1

m1
=

c22
c2κ

c21 − c2κ
c21 − c22

. (4)

Hydrodynamic model for supersolidity. The speeds of
sound obtained employing the protocol previously de-
scribed can be used to extract important parameters
characterising the system. For this purpose it is conve-
nient to use the hydrodynamic theory of supersolids re-
cently elaborated by Hofmann and Zwerger [3], inspired
by the works of Andreev and Lifshitz [1] and Yoo and
Dorsey [2]. This formulation, applicable to Galilean in-
variant systems, is particularly suitable to investigate
the behavior of longitudinal phonons in the presence of
a layer structure. This is reasonably well realized in
highly elongated configurations of a dipolar supersolid,
where the droplets effectively play the role of the layers.
Neglecting the effects of the strain density coupling in-
cluded in the general formulation of supersolid hydrody-
namics [2], the approach, in this minimal hydrodynamic
formulation, provides the following expression for the two
sound velocities [3]

c21,2 =
c2κ
2

[
1 + βκ±

√
(1 + βκ)2 − 4fSβκ

]
(5)

which depends on three fundamental parameters: the ve-
locity cκ, fixed by the compressibility parameter κ, the
renormalized layer compressibility modulus β = B/ρn,
given by the layer compressibility modulus B [21] divided
by the normal density ρn = ρ̄ − ρs, and the superfluid
fraction fS = ρs/ρ̄, with ρ̄ the average 1D density. The
relevant parameters βκ and fS can be expressed in terms
of the first and second sound velocities according to the
relations βκ = (c21 + c22)/c

2
κ − 1 and fSβκ = c21c

2
2/c

4
κ,

which directly follow from Eq. (5).
Let us now discuss the consequences of the hydrody-

namic model in different phases of dipolar Bose gases:
(i) Superfluid phase (fS = 1 and β = 0). Only the

upper solution (first sound) of Eq. (5) is relevant and
c1 = cκ.
(ii) Supersolid phase (0 < fs < 1 and β ̸= 0). In this

most interesting case the deviations of the sound speeds
from cκ are determined by the dimensionless combina-
tion βκ and by the superfluid fraction fS . In particular,
near the transition to the crystal phase, where the super-
fluid fraction is expected to vanish, the sound velocities
approach the values

c1 →

√
1 + βκ− fSβκ

1 + βκ
cκ, c2 →

√
fS

βκ

1 + βκ
cκ (6)

while the ratio R given by Eq. (3) approaches the value
βκ/(1 + βκ). It is worth noticing the close analogy be-
tween Eq. (6) and the dependence of the second sound
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velocity on the superfluid density predicted by Landau’s
two-fluid hydrodynamic theory at finite temperature [22]
(see also [23]).

It is also interesting to note that when the combination
βκ becomes very large the second sound velocity takes
the form c2 =

√
fScκ in the whole supersolid phase, it

exhausts the compressibility sum rule, while its relative
contribution to the f -sum rule (see Eq. (4)) exactly co-
incides with the superfluid fraction fS . These results are
consistent with the behavior of a superfluid in the pres-
ence of an optical lattice, where translational invariance
is not broken spontaneously and the upper mode ω = c1q
is replaced by a gapped excitation. This case has been re-
cently explored theoretically and experimentally in [20].

(iii) Crystal phase (fs = 0 and β ̸= 0). Only the
upper solution survives in this case and the sound ve-
locity takes the simple expression c1 = cκ

√
1 + βκ. No-

tice however that, differently from what happens in the
superfluid phase, the first sound mode, while exhausting
the f -sum rule, does not exhaust the compressibility sum
rule, revealing the occurrence of a diffusive mode at zero
frequency. Such a mode represents the natural contin-
uation of the second sound mode beyond the transition
to the crystal phase [24] and corresponds to the diffusive
permeation mode of a smectic-A liquid crystal [3, 24].
The evolution of the second mode from a propagating to
a diffusive one, is analogous to the fate of second sound in
a uniform fluid above the superfluid critical temperature
(see, e.g., [25, 26]).

Results. The compressibility κ of the gas can be ex-
tracted from the knowledge of the density changes caused
by the static perturbation V0 cos(φ) according to linear
response theory (see Eq. (2)). Another option, which
would not require the actual knowledge of V0, is to mea-
sure the relative contribution R (see Eq. (3)) of the sec-
ond sound mode to the compressibility sum rule through
the weights of the beating signal of Eq. (1).

Our protocol actually measures the static response
function χ(q)/N (see Eqs. (1-2)) which coincides with
the compressibility κ only in the long-wavelength limit
q → 0. Due to the finite size of the ring, the lowest acces-
sible value is q = 2π/L, and it is consequently important
to control the difference between χ(q = 2π/L)/N and
the compressibility parameter κ = (ρ̄ ∂µ/∂ρ̄)−1, where
µ is the chemical potential. In our case the difference
turns out to be about 15% in the superfluid phase and
up to 30% close to the crystal phase. For consistency,
we have used the values of κ given by the “measured”
values χ(q = 2π/L). On the other hand, we verified that
the superfluid fraction fS , obtained by applying the hy-
drodynamic model to the results of the extended Gross-
Pitaevskii simulation employing our protocol, is much
less sensitive to finite size effects.

To illustrate the potential of the proposed protocol,
in Fig. 1 we report the dispersion for larger values of
q, within the superfluid phase, obtained by applying a

0 0.5 1 1.5 2
0

0.5

1

1.5

2

FIG. 1. Dispersion relation obtained using the proposed
protocol, for three values of ϵdd approaching the superfluid-
supersolid phase transition. The roton minimum softens near
k =

√
2/lz, where lz =

√
ℏ/mωz is the harmonic oscillator

length along the confined direction [27].

perturbation proportional to cos(nφ) with n = 1, 2, ...,
giving access to the phonon-maxon-roton dispersion, for
which experimental evidence was reported in a super-
fluid dipolar gas using Bragg spectroscopy [28]. The
figure clearly shows that the roton minimum becomes
more pronounced as one approaches the transition to the
supersolid phase, which in our configuration occurs for
ϵdd = 1.387.
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FIG. 2. Density plots of N = 80000 164Dy atoms in the su-
perfluid, supersolid and crystal phase (left, middle, and right
panel respectively), integrated over the z-axis, along which

the magnetic field B⃗ is aligned. Red contours mark 1% of the
relative density |Ψ(r)|2/max |Ψ(r)|2.

In Fig. 2 we show the density profiles in the ring geom-
etry calculated in the superfluid, supersolid and crystal
phases [29]. In our simulations, based on the extended
Gross-Pitaevskii equation, we have considered configu-
rations with the same number of droplets (equal to 14)
in both the supersolid and crystal phases. Actually, ex-
act energy minimization would predict a decrease of the
number of droplets when one approaches the transition
to the crystal phase, leading to the small discontinuities
in the resulting values of the observed quantities, which
do not however affect the main conclusions of our work.
The pinning of the number (and position) of droplets can
be achieved by introducing a small additional periodic
potential during the initial stage of the supersolid state
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preparation. During the time evolution, once the peri-
odic potential is removed, we observe that the number of
droplets remains constant.
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FIG. 3. Sound velocities c1 and c2 determined with the pro-
tocol (green hexagons and red circles respectively) across the
superfluid-supersolid phase transition. The blue squares cor-
respond to cκ

(
q = 2π

L

)
. Both sound speeds are well captured

by Eq. (6) (green and red solid lines) even far from the crys-
tal phase. For completeness we also report the values

√
fScκ

(gray solid line) found for an incompressible lattice (see text).
The inset presents the time evolution of δF for two values of
ϵdd marked with solid lines of corresponding colors. The data
points are fitted with one (two) cosines in the superfluid (su-
persolid) phase with excellent quality.

Figs. 3 and 4 report the main results of our work, based
on the combined application of the protocol and of the
hydrodynamic model of supersolids. In Fig. 3 we show
the calculated first and second sound velocities as a func-
tion of ϵdd, together with the value of cκ, which coincides
with the sound velocity in the superfluid phase. The
figure clearly reveals the decrease of the second sound
velocity as one approaches the transition to the crystal
phase. We include also the lowest order expressions for
the two sound speeds when fs → 0, Eq. (6) (red and
green continuous lines), which are seen to be in good
agreement with the calculated values also when the su-
perfluid density is not that small. For comparison we also
show the prediction c2 =

√
fScκ (grey continuous line)

which would hold in the presence of an optical lattice
(B → ∞) and which badly reproduces the actual values
of c2 in the supersolid phase. In Fig.4a we report the re-
sults for the relevant parameter βκ of the hydrodynamic
model and the ratio R. An interesting outcome of our
analysis is that while the speeds of sound, the compress-
ibility and the dimensionless parameter βκ show a jump
at the superfluid-supersolid transition, the contribution
of second sound to the compressibility sum rule, R, goes
smoothly to zero. The same continuous vanishing is ob-
served for the layer compressibility modulus B, as shown
in Fig.4b.

Moment of inertia and superfluid fraction. In the
same Fig.4c the results for the superfluid fraction, pre-
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FIG. 4. Panel a) displays dimensionless parameters κβ cal-
culated using the hydrodynamic model (green squares), and

the ratio R = χ(2)/χ (light blue diamonds) extracted from
the time evolution of Eq. (1). In panel b) we show the emer-
gence of finite layer compressibility modulus B. In panel c)
we compare the extracted value of superfluid fraction fS (pur-
ple diamonds) using the hydrodynamic relations Eq. (5), with
the value determined via the non classical fraction of moment
of inertia Eq. (7) (orange line).

dicted by the analysis of the sound velocities in the super-
solid phase, are compared with the non classical fraction
of the moment of inertia. In our narrow ring configura-
tion the latter is expected to essentially coincide with the
superfluid fraction, i.e.,

fS ≃ 1− Θ

Θrig
(7)

The moments of inertia in Eq. (7) are calculated in the
ring geometry using the extended Gross-Pitaevskii equa-
tion. The moment of inertia Θ is fixed by the value
⟨Jz⟩ of the angular momentum induced by a rotational
constraint of the form −ΩJz, according to the relation-
ship Θ = limΩ→0⟨Jz⟩/Ω, while Θrig = N⟨x2 + y2⟩ is the
classical rigid value [30]. We also verified that fS from
Eq. (7) practically coincides with the rigorous Leggett’s

upper bound 2π
[
ρ̄
∫ 2π

0
dφ/ρ(φ)

]−1 ≥ fS , where ρ(φ) is
the transverse integrated density along the ring [31]. The
good agreement shown in Fig.4c reveals the consistency
of the extended Gross-Pitaevskii theory with the hydro-
dynamic model of the smectic superfluid phase developed
in [3].
In conclusion, we have suggested a protocol to deter-

mine the Goldstone modes of a supersolid dipolar gas
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confined in a ring and a way to identify the relevant pa-
rameters of the hydrodynamic theory of supersolids. Our
work in particular paves the way for an experimental de-
termination of the layer compressibility modulus and of
the superfluid fraction, based on the measurement of the
sound velocities.
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Note added. During the final writing of the present
work a manuscript by Blakie et al. [32] has reported the
calculation of the speeds of sound of a supersolid dipolar
gas confined in a infinite tube potential. Their results,
based on the solution of the Bogoliubov equations, turn
out to be in general agreement with our findings and
could be used to obtain the parameters of the hydrody-
namic model of supersolids in the thermodynamic limit.
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We study quantized vortices in dipolar supersolids at the transition between the superfluid and the supersolid
phase. We present an approach to the nucleation of vortices and their observation, based on the quenching of the
s-wave scattering length across the phase transition. Starting from a slowly rotating, vortex-free configuration in
the superfluid phase, we predict vortex nucleation as the system enters the supersolid phase, due to the strong
reduction of the critical angular velocity in the supersolid. Once a vortex is created, we show that it is robustly
preserved when the condensate is brought back to the superfluid phase, where it may be readily observed. These
results may have a significant impact on ongoing experiments, given that the observation of quantized vortices
would constitute a key probe of the superfluid character of dipolar supersolids.
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Quantized vortices constitute a key hallmark of superflu-
idity [1]. They are topological defects of the order parameter,
and therefore robust with respect to perturbations in the U(1)
broken symmetry phase. Ultracold gases are an ideal plat-
form for the study of vortices. In these gases, vortices are
typically created either by stirring the cloud with a laser, or
by rotating a slightly deformed trap. Vortices are detected,
after a condensate expansion, by the observation of the density
holes corresponding to the vortex cores. Vortices have been
observed both in Bose-Einstein condensates (BECs) [2–4] and
in superfluid spin-1/2 Fermi gases [5]. The angular momen-
tum and its quantization in the presence of a vortex can be
inferred by exploiting the lift in the degeneracy of quadrupole-
mode frequencies due to broken time-reversal symmetry [6],
as observed in condensates [7,8].

Supersolids constitute a particularly intriguing phase in
which superfluidity coexists with a modulated density [9].
In the last few years, supersolidity has attracted major at-
tention in ultracold gases. Experiments on BECs in optical
cavities have revealed supersolidlike properties [10]. Conden-
sates with an imposed one-dimensional spin-orbit coupling
have been shown to present a supersolid stripe phase [11,12].
Recent experiments on BECs of magnetic atoms have revealed
the creation of supersolids of ultradilute droplets maintained
by the interplay between attractive mean-field interactions and
the effective repulsion induced by quantum fluctuations [13].
Dipolar supersolids have attracted quickly growing interest,
and successful experiments in droplet arrays have studied
the phase coherence [14–17], the appearance of Goldstone

*Corresponding author: alessio.recati@ino.it
†Corresponding author: santos@itp.uni-hannover.de

modes in the excitation spectrum [18–20], and the peculiar
dynamics related to scissors modes [21–24]. Very recently,
two-dimensional supersolid configurations have been also re-
alized [25,26].

Recent theoretical works have investigated quantum vor-
tices in dipolar supersolids [27,28]. Quantum vortices in a
supersolid were first discussed in Ref. [29] in the context of a
hypothetical supersolid phase of helium. There it was shown,
in the context of a mean-field Gross-Pitaevskii formalism
employing a repulsive soft-core interaction, that vortices may
be nucleated in the supersolid by an obstacle. It was suggested
as well that vortices could be robust when crossing back and
forth the superfluid-to-supersolid transition. A peculiar fea-
ture pointed out in Ref. [27] in the case of supersolid dipolar
gases is that vortices are, both energetically and dynamically,
more favored in the supersolid phase than in the superfluid
one. The low-density regions surrounding the droplets of the
supersolid phase help in reducing the energetic barrier for
a vortex to enter the system, and in pinning the vortices in
the interstitials between droplets [27]. Even a very slow rota-
tion of the trapping potential can then trigger the dynamical
instability that drives vortex nucleation [27]. However, the
direct detection of vortices formed in the interstitials is largely
inhibited because, even in the absence of vortices, this region
is characterized by a very low density.

In this Letter, we first explore in detail the robustness of
vortices in dipolar BECs when crossing the superfluid-to-
supersolid transition, showing that the conservation of angular
momentum results in a peculiar dynamic behavior, since the
value of the angular momentum per particle associated to
a vortex is markedly different in the superfluid and in the
supersolid phase. Using the difference in the vortex properties
in both phases, we propose a dynamic protocol based on the
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quench of a slowly rotating dipolar condensate from the su-
perfluid into the supersolid phase. A vortex is nucleated in the
supersolid due to the strongly reduced critical angular veloc-
ity, and a subsequent quench back allows for straightforward
vortex imaging in the superfluid phase. Our protocol could
provide not only the experimental proof of vortex nucleation
in a dipolar supersolid, but also allows for directly probing
the modified vortex properties in that phase [27], as, e.g., the
reduction of the critical angular velocity for vortex nucleation.
It has the advantage of avoiding the nucleation of vortices
starting from the equilibrium configuration in the supersolid
phase, whose implementation is notoriously more difficult due
to three-body collisions.

Model. We consider a BEC of atoms with mass m and
magnetic dipole moment μ aligned along the z axis, trapped in
a harmonic potential of the form Vext(r) = mω2

⊥[(1 − ε)x2 +
(1 + ε)y2 + λ2z2]/2.

At zero temperature the physics of the system is
well described by the extended Gross-Pitaevskii equa-
tion (eGPE) [30,31],

ih̄
∂�(r, t )

∂t
=

[
− h̄2∇2

2m
+ Vext(r) + g|�(r, t )|2

+
∫

dr′Vdd (r − r′)|�(r′, t )|2 + γ |�(r, t )|3
]

× �(r, t ), (1)

where g = 4π h̄2a/m > 0 is the coupling constant fixed by
the s-wave scattering length a, and Vdd (r) = μ0μ

2

4π
1−3 cos2 θ

|r|3 is
the dipole-dipole interaction, with θ the angle between r and
the z axis. The last term in Eq. (1) is given by the repulsive
Lee-Huang-Yang (LHY) correction induced by quantum fluc-
tuations, with

γ = 32ga3/2

3
√

π
Re

[∫ 1

0
du[1 + εdd (3u2 − 1)]5/2

]
, (2)

where εdd = μ0μ
2/3g characterizes the relative strength of

the dipolar interaction with respect to the contact one. The
eGPE has been systematically employed in the last few years
to investigate quantum droplets and supersolidity in dipolar
BECs [13].

For small-enough εdd , the system behaves as a standard
condensate (superfluid phase). By decreasing the scattering
length, and hence increasing the value of εdd , the role of the
attractive part of the dipolar force becomes more important,
and the LHY term starts playing a crucial role in determining
the equilibrium solution. The LHY term ensures the stabil-
ity of the system against collapse and eventually favors the
formation of a periodic structure, which can be regarded as a
series of dense droplets connected by a dilute superfluid gas
(supersolid phase) [14–16]. A further increase of εdd leads
to a state where the droplets are independent and mutually
incoherent, and the system does not show any extended super-
fluidity (independent droplet phase).1

1Notice, however, that each droplet is still superfluid.

The supersolid phase can host quantized vortices [27]. As
already anticipated in the Introduction, vortex nucleation is
significantly favored by the reduced density in the interdroplet
regions, but vortices nestle in those interstitials, making their
experimental observation much more problematic than in the
superfluid phase. Below, we first discuss the robustness of
vortices when quenching the system across the superfluid-
to-supersolid transition. We then exploit such a robustness to
design a protocol that first allows for an alternative mechanism
for the nucleation of vortices in the supersolid phase and,
second, for probing their existence by imaging them in the
superfluid phase, where they are more easily detectable, also
owing to the large increase of their core size as compared
to condensates with only contact interactions. This second
step resembles the procedure used in the pioneering work of
Ref. [5], where the vortices created in a strongly interacting
Fermi gas were imaged by quenching from the BCS to the
BEC regime, where their visibility was better ensured after
gas expansion. In the case of dipolar gases the procedure is
more challenging because the two regimes, supersolid and
superfluid, are separated by a first-order phase transition and
not connected by a continuous crossover.

Crossing the superfluid-to-supersolid transition. We con-
sider a BEC of 4 × 104 164Dy atoms, confined in an axially
symmetrical trap (ε = 0) with ω⊥ = 2π × 60 Hz and λ = 2.
Under these conditions, the superfluid-to-supersolid transition
occurs at the value acrit = 94.6a0 (a0 is the Bohr radius) cor-
responding to εdd = 1.395.

Ground states of the system are calculated using
imaginary-time evolution in the rotating frame, obtained by
adding the constraint −�Lz to the eGPE (1), where � is
the angular velocity, and Lz the z component of the angular
momentum operator.2 Above some critical angular velocity
�c, vortical solutions become energetically favorable. It is im-
portant to notice that �c is significantly smaller than the one
required for the dynamical vortex nucleation [27], associated
with a quadrupolar instability, as we discuss later.

We first consider a vortex in the superfluid phase, ob-
tained for a = 105a0 > acrit , and � = 0.22ω⊥ > �c [see
Fig. 1(a)(i)]. In the superfluid phase the vortex is characterized
by an angular momentum h̄ per particle. Starting from this
ground-state configuration,3 we ramp down in 100 ms the
s-wave scattering length to a value a = 94a0 < acrit , which
would correspond at equilibrium to the supersolid phase.
Indeed, once the transition is crossed, a strong density mod-
ulation emerges on a very short timescale, leading to the
formation of droplets. After a certain waiting time the sys-
tem acquires a configuration close to the ground-state shape
with a vortex in the supersolid phase [Fig. 1(a)(iii)]. It is,
however, interesting to notice that in most cases we find a
transient regime [see Fig. 1(a)(ii)] where the number of peaks
is larger (four droplets) than in the final, ground-state-like
configuration (three droplets). Despite the occurrence of small

2The critical value acrit increases slightly by increasing �. Such a
change is, however, less than 0.5% for the angular velocities used in
this text.

3All the time-dependent simulations presented in this Letter are
performed in the laboratory reference frame.
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FIG. 1. Density and phase profiles in the z = 0 plane. (a) Vortex
through the superfluid-to-supersolid crossing at t = 0, 0.5, and 2.1 s.
The vortex is initially created in the superfluid regime (�/ω⊥ =
0.22, a = 105a0), and a is then linearly ramped in 100 ms down to
94a0, within the supersolid phase. (b) Vortex through the supersolid-
to-superfluid crossing for the same times. At t = 0, the vortex is in
the supersolid phase (�/ω⊥ = 0.16, a = 94a0). Then a is ramped
in 100 ms up to 105a0, within the superfluid regime. In all cases,
ω⊥ = 2π × 60 Hz, λ = 2, and ε = 0.

oscillations caused by the crossing of the first-order transition,
the vortex survives at the trap center, with its characteristic
phase pattern. Since angular momentum is conserved during
the ramping of the scattering length, and since in the super-
solid the angular momentum per particle carried by the vortex
is smaller than h̄ due to the reduced global superfluidity [27],
the remaining angular momentum is carried by the droplets,
whose centers of mass rotate in the laboratory frame with an
angular velocity larger than �.

Crossing the supersolid-to-superfluid transition. We carry
out the same analysis in the opposite direction, following the
fate of a quantized vortex initially present in the supersolid
phase, an especially relevant case for the protocol discussed
below. As discussed in Ref. [27], the angular velocity �c, for
which the vortex becomes energetically favorable, is much
smaller than the one in the superfluid phase. In Fig. 1(b)(i),
we consider a configuration with a = 94a0 and � = 0.16ω⊥,
slightly higher than the critical value �c. The created vortex is
characterized by an angular momentum per particle of 0.87h̄.
After ramping in 100 ms the scattering length up to a = 105a0

to reach the superfluid phase, we find that the vortex remains

clearly visible [Figs. 1(b)(ii) and 1(b)(iii)]. Note, however,
that the density profile preserves some density modulations,
which are the residue of the original droplets characterizing
the supersolid phase. Moreover, since the overall angular mo-
mentum must be preserved, the larger angular momentum
associated with the vortex in the superfluid phase (h̄) is com-
pensated by the rotational motion of the density modulations,
and by the occurrence of antivortices located near the border
of the atomic cloud, as well as, in some cases, by a slight
displacement of the vortex core from the center of the trap.

Protocol for vortex nucleation and detection. We are now
ready to discuss our protocol which combines the favor-
able nucleation mechanism of quantized vortices exhibited by
the supersolid phase with their topological robustness when
the supersolid-to-superfluid phase transition is crossed. Our
starting point is a slowly rotating trapped dipolar gas in the su-
perfluid phase (a = 105a0), obtained by a sudden introduction
of rotation to the superfluid ground state in a slightly deformed
trap in the xy plane, and letting it equilibrate for 200 ms
[see Fig. 2(a)]. In the laboratory frame this corresponds to
choosing a harmonic potential of the form

Vext(t ) = m

2
ω2

⊥{(1 − ε)[x cos(�t ) + y sin(�t )]2

+ (1 + ε)[−x sin(�t ) + y cos(�t )]2 + λ2z2}. (3)

We choose a slightly deformed trap (ε = 6.6%) and an
angular velocity (� = 0.3ω⊥) such that the system is unable
to nucleate vortices in the superfluid phase, as the quadrupole
dynamical instability occurs at 0.45ω⊥.4 The parameters are
instead large enough for vortex nucleation once the system
enters the supersolid phase. Therefore we reduce the value of
the scattering length with a linear ramp in 100 ms down to a =
94a0. After entering the supersolid phase, first droplets are
formed [Fig. 2(b)] and, after a while, a vortex is nucleated in
the center [Fig. 2(c)]. Notice that the timescale for this process
is slow in the present simulation. We expect, however, that in a
real experimental situation the timescale will be much faster,
as a consequence of thermal noise, which is not accounted
for in our calculations. When the vortex is formed [Fig. 2(c)]
we restore the isotropy of the trap (ε = 0) in order to ensure
the robustness of the topological configuration associated with
the vortex and the conservation of angular momentum. We
ramp the scattering length back to its initial value (following
a similar ramp) and after a while [Fig. 2(d)] the system enters
again the superfluid phase. We then recover a very similar
configuration as that of Fig. 1(b)(iii).

The same protocol may be employed for the nucleation of
more than one vortex when increasing the angular velocity
� of the rotating trap. In Fig. 3, we show our results for
different angular velocities in our protocol. The upper panel
shows the atomic cloud in the supersolid phase right before
inverting the ramping of the scattering length. The lower panel
depicts the final density distribution after ramping back the
scattering length. The case with � = 0 is important, since it
clearly shows that despite the strong density modulation in the
supersolid regime, once moving back into the superfluid no

4This value remains almost constant in the whole superfluid region.
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FIG. 2. Density and phase profiles in the z = 0 plane, showing vortex nucleation employing the protocol discussed in the text. (a) Initial
vortex-free superfluid with a scattering length a = 105a0, confined in a slightly deformed harmonic trap (ω⊥ = 2π × 60 Hz, λ = 2, ε = 6.6%),
rotating with an angular velocity � = 0.3ω⊥. (b) The scattering length is linearly ramped in 100 ms down to as = 94a0, resulting in a transition
to the supersolid phase. (c) After some time a vortex is nucleated at the center of the trap. (d) The isotropy of the trap is restored (ε = 0) and
the scattering length is linearly ramped in 100 ms up to the initial value, resulting in a superfluid with a readily detectable vortex core.

core appears, the final density remains smooth and character-
ized by a maximum in the center, very similar to the initial
equilibrium configuration. By increasing � we eventually
observe one vortex nucleated in the center using � = 0.3ω⊥
[same as Figs. 2(c) and 2(d)], two vortices using � = 0.35ω⊥,
and three vortices using � = 0.4ω⊥. Note that in all cases
the vortices are nucleated in the supersolid phase, since the

angular velocity is not large enough to create vortices in the
superfluid.

Conclusions. We have studied vortices in a dipolar con-
densate when crossing the superfluid-to-supersolid transition.
We have proposed in particular a protocol that should
permit under realistic conditions to nucleate and detect quan-
tized vortices in a dipolar supersolid, a major hallmark of

FIG. 3. Density profiles in the z = 0 plane. Results for the dynamical protocol for different angular velocities: �/ω⊥ = 0 (a), 0.3 (b), 0.35
(c), and 0.4 (d). The parameters and procedure are the same as in Fig. 2. The upper row corresponds to the configurations in the supersolid
phase at t = 2.1 s, before inverting the ramp of the scattering length. The lower row corresponds to the final configuration in the superfluid
phase (at t = 2.4 s) after ramping back the scattering length. Note that imaging in the superfluid phase should easily reveal the presence of no
vortex, one, two, and three vortices, respectively. The final angular momentum per particle (once the isotropy of the xy trapping is restored) is
(a) L = 0, (b) L = 1.03h̄, (c) L = 1.85h̄, and (d) L = 2.42h̄.
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superfluidity. The method is based on a controlled ramp of
the scattering length across the superfluid-to-supersolid tran-
sition, employing the very nature of the supersolid to induce
vortex nucleation. Although vortex detection is difficult in the
supersolid since vortices gather in regions of very low density,
a ramp back into the superfluid permits an easy imaging of the
vortex core, even more so than in contact-interacting conden-
sates due to the significantly larger vortex size in a dipolar
BEC. Very recently, quantized vortices have been actually
observed in the superfluid phase of a dipolar gas [32,33].
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A simple and robust tool for spatio-temporal overlap of THz and XUV pulses

in in-vacuum pump–probe experiments is presented. The technique exploits

ultrafast changes of the optical properties in semiconductors (i.e. silicon) driven

by ultrashort XUV pulses that are probed by THz pulses. This work

demonstrates that this tool can be used for a large range of XUV fluences

that are significantly lower than when probing by visible and near-infrared

pulses. This tool is mainly targeted at emerging X-ray free-electron laser

facilities, but can be utilized also at table-top high-harmonics sources.

1. Introduction

Intense THz pulses combined with synchronized X-ray pulses

enable investigation of the dynamics of the light–matter

interaction, non-linear response of materials and control of

the properties of matter selectively on femtosecond time

scales. Therefore, achieving the temporal overlap between

pump and probe pulses in the femtosecond range is essential.

Certain pump–probe schemes, e.g. THz streaking (Frühling

et al., 2009; Schmid et al., 2019), are comparatively tolerant

against the spatial overlap between XUV and THz pulses and

the actual focal position of the THz beam. The observable, i.e.

the kinetic energy of the photoelectrons, is furthermore of

considerable magnitude and can be utilized for further opti-

mization of the pump–probe signal. This is almost never the

case in pump–probe experiments on solid-state samples,

utilizing one of the XUV probing techniques [e.g. X-ray

magnetic circular dichroism (XMCD) (Pfau et al., 2012;

Willems et al., 2015) and resonant inelastic X-ray scattering

(Dell’Angela et al., 2016)]. There, the spatio-temporal overlap

between THz and XUV and in particular diffraction-limited

focusing of the THz beam have to be achieved with the aid of

versatile in-vacuum diagnostics.

The so-called plasma-switch, the transient change of optical

constants in the visible (VIS) and near-infrared (NIR) spectral

ranges by X-ray and XUV pulses, has been used for the

temporal characterization of these pulses (Harmand et al.,

2012; Gahl et al., 2008; Krupin et al., 2012; Riedel et al., 2013;

Danailov et al., 2014). Transient changes of optical properties

in the THz range, driven by femtosecond laser pulses, have

been used for pickup of individual pulses from MHz trains at

infrared free-electron lasers (FELs) (Schmidt et al., 2015) as

well as for THz spectral shaping at table-top THz sources

(Cartella et al., 2014; Mayer et al., 2014).
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As shown in Fig. 1, for lower probing frequencies the effect

of the plasma switch is more efficient because lower electron

density is required to change the material reflectivity. In this

work we present a technique to establish the temporal overlap

between XUV and THz pulses, based on the transient change

of optical properties of a silicon target in the THz spectral

range, induced by the intense femtosecond XUV pulse.

The presented method can be applied in facilities employing

THz radiation for time-resolved XUV–THz pump–probe

experiments where it is necessary to temporally overlap XUV

and THz pulses on a sub-picosecond level.

2. XUV driven THz plasma switch: theoretical
background

The process of electronic excitation of materials by an intense

XUV pulse happens on an ultrafast time scale, within a few

femtoseconds (Gahl et al., 2008; Riedel et al., 2013), and is

governed by the photoionization of the electrons in the

material: photoabsorption of the bound electrons within the

valence band, secondary processes as elastic and inelastic

scattering of free electrons, Auger decay, and electron pair

creation. Other processes may contribute to the photo-

ionization depending on the energy of the incoming photon

and the material (Medvedev & Rethfeld, 2010). Previous

theoretical studies have shown that the density of the created

free electrons follows the photon flux of the XUV pulse

linearly (Riedel et al., 2013) in a wide intensity range, below

fluences required for the sample melting, ablation and plasma

formation.

Optical properties of the photo-excited material strongly

depend on the density of free electrons and can be modelled

[e.g. via the continuity equation (Mezentsev et al., 2007)] and

expressed in terms of relative permittivity. According to the

Drude model, free electrons in a material can be treated as

free-electron plasma with a corresponding plasma frequency

!p (Ashcroft & Mermin, 1976). We assume that the damping

can be neglected in our case (refer to Appendix A for a short

discussion on this topic) and the relative permittivity " in this

case can be presented as a function of the incoming frequency

! and the plasma frequency !p,

"ð!Þ ¼ 1�
!2

p

!2
:

This indicates that light with a higher frequency than the

plasma frequency, ! > !p, can penetrate the plasma whereas

light with lower frequency, ! < !p, will be reflected. Taking

into account the oscillatory motion of the electron, the critical

electron density, ne, required to make the sample reflective to

light with a certain frequency can be presented as

ne ¼
"0 me

e2
!2

p;

where "0 is the vacuum permittivity, e is the charge and me is

the mass of an electron.

In our experiment, the critical electron density for the

probing pulse at a wavelength of 8 mm (37.5 THz) is

ne 8mm = 1.8 � 1019 cm�3, and at wavelengths over 100 mm

(<3 THz) it is less than ne 100mm = 1.1 � 1017 cm�3.

3. Description of the setup

The experiment was performed with the pump XUV wave-

length at 13.5 nm (91.8 eV) and two different probing condi-

tions: (i) a THz pulse with a central wavelength of 8 mm, and

(ii) a broadband THz pulse with a wavelength >100 mm. The

expected pulse duration for THz was �300 fs and �3 ps,

respectively, and the XUV pulse duration was 160 fs, esti-

mated by electron bunch length measurements by a transverse

deflecting RF-structure (Düsterer et al., 2014).

The THz beam is collimated using five toroidal mirrors in

order to keep the beam size within the range of the beam

transport and optics. This additional folding of the THz beam

results in a �6.5 m longer optical path with respect to the

XUV beam. In order to overlap the XUV and THz pulses in

time, an additional delay for the XUV is introduced: pulses

travel 3.25 m longer distance and then are refocused by a

mirror with 3.5 m focal length back to the experiment (Pan et

al., 2019). The scheme of the experiment is presented in Fig. 2.

The THz and XUV pulses are collinearly focused and

spatially overlapped in the experimental chamber on a

400 mm-thick Si sample at a 45� incident angle. The trans-

mitted and reflected portions of the THz beam are picked up

and collimated using parabolic mirrors. Then they are focused

through ZnSe vacuum windows (5 mm thick) on two 2 mm �

2 mm pyro detectors (InfraTec LME-301) located outside of

the experimental chamber in air �5 mm from the window.

The detectors were custom-designed by collaboration of the

DESY FLA group and InfraTec to reduce internal THz

interferences (Wesch, 2012). The detectors are without optical

windows, which makes them suitable for measurements along

a broad spectral range and sensitive to XUV radiation. ZnSe

research papers

12 Zapolnova et al. � Spatio-temporal overlap tool for XUV–THz pump–probe experiments J. Synchrotron Rad. (2020). 27, 11–16

Figure 1
Calculation of the critical electron density for the THz range (red line).
Transmission of the 5 mm-thick ZnSe vacuum window and the bandpass
filter (at 8 mm wavelength) used in the experiment are presented as the
shadowed areas.



vacuum windows have good transmission in the VIS to IR

range as well as in the long-THz wavelength range (see Fig. 1).

Pulse energies of the XUV, measured with the gas-monitor

detector (GMD), were 110 mJ � 20 mJ (r.m.s.) (Tiedtke et al.,

2009) and 0.5 mJ � 0.1 mJ (r.m.s.) for the THz beam measured

with a calibrated pulse energy meter (Zapolnova et al., 2018;

Pan et al., 2019).

The estimated XUV pulse energy through the beamline

(Tiedtke et al., 2009) after the refocusing mirror and through

attenuation filters was 700 nJ � 10 nJ (refer to Table 1 for

details), yielding a final intensity on the sample of 6.76 �

109 W cm�2 and 2.65 � 109 W cm�2, for the two measured

XUV beam sizes (see Section 4 for details). By measuring

both transmitted and reflected intensities of the THz beam

and assuming that absorption in the excited Si layer is negli-

gible, we are able to correct the pulse-to-pulse energy fluc-

tuations of the THz beam (3.6% RMS at 100 mm, 14% RMS

at 8 mm).

4. THz and XUV 2D beam profile

The THz and XUV beams were characterized by 2D profile

measurements in the focal position. A pyro detector with a

100 mm pinhole was mounted on an xy positioner, facing the

incoming THz and XUV beams at normal incidence, and was

moved through the focus of the beam with defined steps along

the z axis. The pyro detector also showed a good response for

XUV radiation, and therefore it was used for both the THz

and XUV beam profile characterizations.

The results of 2D scans are presented in Fig. 3. The THz

beam in focus has an ellipsoidal profile, elongated in the

vertical direction, because of imperfect alignment of the off-

axis parabolic mirror for the THz beam. The full width at half-

maximum (FWHM) diameter of the THz beam with the THz

undulator set at a 100 mm nominal wavelength was 400 �

20 mm � 1470 � 30 mm, and at 8 mm it was 180 � 15 mm �

320 � 15 mm. In an attempt to match the XUV and THz beam

sizes we inserted a pinhole (3 mm diameter) in the XUV

beam, 30 m upstream of the experiment, to optimize the ratio

between beam sizes. The FWHM diameters of the XUV beam

with and without a pinhole were 230 � 30 mm and 140 �

20 mm, respectively. The ratio between the areas of the THz

and XUV beams was 1:9 for the THz beam at 100 mm and

2:3 at 8 mm.

5. Transient reflectivity and transmission

Results of time-dependent reflectivity measurements

[presented as (R � R0)/R0, where R0 is the equilibrium

reflectivity] are presented in Fig. 4. Once the probing THz

pulse arrives following the XUV pulse, a portion of the THz

pulse, which spatially overlaps with the XUV pulse, is reflected

more because of the plasma created by the XUV pulse. The

observed duration of the transition (slope) ���THz
is the

convolution of the pulse durations of the THz ��THz and

XUV pulses ��XUV, the jitter ��jitter between them, and the

timescale of the free carrier excitation process ��excitation, and

can be described as
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Figure 2
Scheme of the XUV-driven plasma switch experiment for the THz beam. The THz and XUV beams are collinearly focused and spatially overlapped on a
400 mm-thick Si sample at a 45� incidence angle. Transmitted and reflected THz beams are picked up by off-axis parabolic mirrors and further focused on
the corresponding pyro detectors through 5 mm-thick ZnSe vacuum windows.

Table 1
Transmission of XUV at 13.5 nm.

XUV pulse energy via GMD 112 mJ � 17 mJ
Beamline transmission 78%
Refocusing mirror 62%
Si3N4 500 nm filter transmission 1.3%
Total transmission 700 nJ � 10 nJ



���THz
¼ ��2

THz þ��2
XUV þ��2

jitter þ��2
excitation

� �1=2
:

For a THz wavelength of �100 mm, the observed slope width

is ��100mm = 2.2 ps and for 8 mm wavelength it is ��8mm = 1.2 ps

(calculated as the time between the points corresponding to

the 10% and 90% levels of total amplitude of the signal).

The XUV and THz pulses are naturally synchronized in this

experiment, with jitter smaller than 5 fs (RMS) (Frühling et al.,

2009), and its contribution is negligible. We assume that the

excitation of the free carriers is much faster than other time-

scales in the experiment so we neglect it as well.

6. Dependence on the XUV fluence

Fig. 5 shows a comparison of the transient THz reflectivity

change for different fluences of the pump XUV pulse. We used

different combinations of the attenuation filters: Si3N4 350 nm

(red line), Si2N4 350 nm + Nb 405 nm (orange line) and Si3N4

500 nm (green line). The effect of the plasma switch in

the THz spectral range is very efficient and can be clearly

observed even at XUV fluences as low as 45 mJ cm�2.

7. Quantitative estimate of the effect

The amplitude of the reflectivity change for a broadband THz

beam >100 mm is around 6.4% and for 8 mm is around 6.0%.

Using the details of the actual THz and XUV beam sizes
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Figure 4
Transient optical reflectivity curves for the THz undulator set at 100 mm
and 8 mm wavelengths for a 13.5 nm XUV pump wavelength.

Figure 5
Transient THz reflectivity curves as a function of the THz/XUV pulse
delay for three different fluences of the XUV pulse on the sample.

Figure 3
Measured 2D profiles of the THz and XUV beams. (a) THz beam profile
at 100 mm with an FWHM of 400 � 20 mm � 1470 � 30 mm. (b) XUV
beam at 13.5 nm wavelength through a 3 mm pinhole placed �30 m
upstream of the experiment with an FWHM of 230 � 30 mm. (c) THz
beam profile at 8 mm wavelength with an FWHM of 180� 15 mm� 320�
15 mm. (d) XUV beam at 13.5 nm wavelength with a 10 mm pinhole at the
same position as in (b) with an FWHM of 140 � 20 mm.



from the 2D profile measurements, we can estimate the actual

switched fraction of the THz pulse. Comparing total areas of

the beams and assuming that the electron density follows the

intensity envelope of the XUV beam linearly, we can assume

that, if the XUV beam size matches the size of the THz beams

for a 100 mm wavelength (400 mm FWHM beam size) and for a

8 mm wavelength (180 mm FWHM beam size), the overall

effect on the reflectivity change would be 9 times higher

(�57.6%) and 1.5 times higher (�10%) than observed.

8. Summary

We have developed a tool for temporal and spatial overlap of

XUV and THz pulses in pump–probe experiments, based on

an XUV plasma switch for the THz range on an Si sample.

During several pump–probe experiments at FLASH, it was

demonstrated that the arrival time of XUV and THz pulses

can be established down to at least the pulse duration of the

THz pulse.

The experiment has been performed at different XUV

fluences from 0.045 mJ cm�2 up to 0.95 mJ cm�2 for 8 mm

wavelength and for the broadband >100 mm wavelength of the

probe pulse. The observed change of the transient normalized

reflectivity (R� R0)/R0 of THz beam due to the plasma switch

is approximately 6% from the initial level.

Since this effect uses low XUV fluences, far below the

damage threshold, and uses room-temperature broadband

THz detectors, it is robust and simple. This technique can

be further applied at facilities employing XUV–THz pump–

probe experiments, and enables a straightforward and efficient

method for temporal overlap of XUV and THz pulses on the

picosecond time scale.

APPENDIX A
Comparison of the excited-layer thickness with the
penetration depth of THz radiation

The frequency-dependent dielectric constant, according to the

simple Drude model, where damping is independent of the

free electron energy, can be expressed as (Van Exter &

Grischkowsky, 1990)

"ð!Þ ¼ "ð1Þ �
!2

p

!ð!þ i�Þ
;

where !p is the plasma frequency, � = 1/�c is the damping

frequency and �c is the average free-electron collision time.

From the literature, we estimate the average free-electron

collision time to be between 1 fs and 100 fs (Ashcroft &

Mermin, 1976; Temnov et al., 2006; Van Exter & Grisch-

kowsky; 1990; Riedel et al., 2013). Finally, this gives us the

estimated minimum penetration depth for probing THz

frequencies (2–40 THz) in XUV-excited plasma in silicon to

be �2 mm.

For an XUV wavelength of 13.5 nm impinging at a 45� angle

of incidence, the thickness of the excited area in silicon is

400 nm, as determined by the penetration depth (Henke et al.,

1993). The XUV pulses from FLASH, used in this work (as

presented in Fig. 5), result in free-electron densities in the

range from 1.2 � 1017 cm�3 up to 2.8 � 1018 cm�3.

This leads to the conclusion that only a small fraction of the

probing THz radiation (<20%) is absorbed in the investigated

sample excited by the XUV pulse.
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W. B., Martins, M., Nuñez, T., Plönjes, E., Redlin, H., Saldin, E. L.,
Schneidmiller, E. A., Schneider, J. R., Schreiber, S., Stojanovic, N.,
Tavella, F., Toleikis, S., Treusch, R., Weigelt, H., Wellhöfer, M.,
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We numerically discovered around 100 distinct nonrelativistic collisionless periodic three-body orbits in
the Coulomb potential in vacuo, with vanishing angular momentum, for equal-mass ions with equal absolute
values of charges. These orbits are classified according to their symmetry and topology, and a linear relation is
established between the periods, at equal energy, and the topologies of orbits. Coulombic three-body orbits can
be formed in ion traps, such as the Paul, or the Penning one, where one can test the period vs topology prediction.
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The Newtonian three-body problem is one of the outstand-
ing classical open questions in science. After more than 300
years of observation, only two topologically distinct types of
periodic three-body systems, or orbits, have been observed in
the skies [1]: (1) the so-called hierarchical systems, such as the
Sun-Earth-Moon one, to which type belong more than 99%
of all observed three-body systems; (2) Lagrangian three-
body systems, such as Jupiter’s Trojan satellites, to which the
remaining �1% belong.

There has been some significant theoretical progress on the
subject over the past few years: several hundred new, topolog-
ically distinct families of periodic solutions have been found
by way of numerical simulations [2–16], and unexpected reg-
ularities have been observed among them [9,13,15,16] relating
the periods, topologies, and linear stability of orbits.

Of course, one would like to observe at least some of
the new orbits and test their properties in an experiment, but
such a test would be impeded by a number of obstacles: (1)
only stable orbits have a chance of actually existing for a
sufficiently long time to be observed; (2) stability depends on
the ratio(s) of masses, and on the value of angular momentum,
neither of which can be controlled in astronomical settings;
(3) even if an orbit is stable in a wide range of mass ratios and
angular momenta, there is no guarantee that such a system
will have been formed sufficiently frequently and sufficiently
close to Earth, that it may be observed by our present-day
instruments.

All of the above prompted us to look for alternative three-
body systems that share (at least) some of the same properties
with Newtonian three-body systems. The Coulombic potential
shares one basic similarity with the Newtonian gravity—
its characteristic 1/r (homogeneous) spatial dependence—as
well as several important differences: (1) the (much) larger
coupling constant; (2) both attractive and repulsive nature; (3)
naturally identical (quantized) electric charge(s); (4) ions with
opposite charges may have masses equal to one part in a few
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thousand; (5) ions have a finite probability of elastic scattering
in head-on collisions; and (6) Coulombic bound states can be
formed in table-top ion-trap experiments [17]. For these rea-
sons we turn to the study of periodic three-body orbits bound
by Coulombic potential. The application of only the Coulomb
interaction amounts to a nonrelativistic approximation, which
is good only in the low-velocity limit [18].

In this Rapid Communication we present the results of a
search that led to around 100 distinct collisionless orbits, only
four of which are stable, and around 80 isosceles quasicollid-
ing (free-fall, or “brake”) ones. We use the collisionless orbits
to display a new regularity, akin to Kepler’s third law, in the
form of a linear dependence

T |E|3/2 ∼ N, (1)

between the scale-invariant period T |E|3/2, where T is the
period, and E is the energy of an orbit, on one hand, and the
orbit’s topological complexity N , expressed as the number of
collinear configurations (“syzygies”) encountered during one
cycle (see the text below), on the other. This prediction ought
to be tested in ion-trap experiments.

We used the same search method as in the Newtonian
gravity three-body problem [5]. There are 12 independent
variables that define the initial state of this system; for each
body there are the x and y coordinates of the body, and
the vx and vy components of their velocity. Adopting the
center-of-mass reference frame reduces this number (12) to
eight. Fixing the value of angular momentum (L = 0) re-
duces this further to six. Using the scaling rules [19] for
the solutions and the fact that periodic solution must pass
through at least one syzygy (collinear configuration) during
one period, yields a four-dimensional search space for all
zero-angular-momentum periodic solutions. We search for
solutions in the two-dimensional subspace of orbits that pass
through the Euler configuration, defined as the symmetric
collinear configuration wherein the positively charged particle
with velocity (−2vx,−2vy ) passes through the origin (0, 0),
i.e., exactly between the two negatively charged particles,
which, in turn, pass through the points (−1, 0) and (1, 0), both
with velocity equal to (vx, vy ).
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FIG. 1. Negative logarithm of return proximity function as a
function of the initial velocity components vx and vy on the x and
y axes, respectively. Bright areas correspond to high values of the
negative logarithm. Inset: zoom-in of the “boxed-in” region.

In order to search for periodic solutions numerically, we
have discretized the search window in this two-dimensional
subspace and calculated the return proximity function (RPF)
dT0 (vx, vy ) that measures how close to the initial condition the
trajectory returns (see [20]) up to some predefined upper limit
on the integration time T0, at each grid point. The negative
logarithm of the computed RPF is shown in Fig. 1. Local
minima of RPF are used as candidates for periodic solutions.
After applying the gradient descent algorithm starting at each
candidate point, we have declared as periodic the solutions
with RPF of O(10−8) and smaller.

We have followed the example set by three-body orbits
in Newtonian gravity [5,13], and classified the newly found
Coulombic orbits according to their topologies, studied their
stability, and organized them into sequences some of which,
although fewer in number, appear very similar to the New-
tonian ones. Each orbit has a well-defined topology which
can be algebraized in at least two different ways (see [20]
and Refs. [21,22]). Here we use Montgomery’s method [21]
wherein each solution is associated with [the conjugacy class
(see [5]), of] an element of the two-generator (a, b, A = a−1,
B = b−1) free group F2(a, b).

There are important distinctions among the 100-odd or-
bits: (1) the orbits can be separated into two classes, using
their symmetry: class A consists of orbits that are sym-
metrical under two perpendicular reflections, and class B
of orbits with a point reflection symmetry; (2) each of
the classes can be further separated into sequences, defined
by their free-group elements, as follows. For both class A
and class B, sequence (I): w

(I)
n,k = [(AB)n(ab)n]k with in-

tegers n, k = 1, 2, 3, . . .; and for class A only, sequence
(II): w

(A.II)
m,n,k = [(AB)m(ab)n]kA[(BA)m(ba)n]kB, with m, n, k =

1, 2, 3, . . .; and sequence (III): w(III)
n = [(ab)2ABA(ba)2BAB]n,

with n = 1, 2, 3, . . ..

Note that the 100-odd collisionless Coulombic orbits are
substantially fewer than roughly 200 collisionless Newtonian
orbits with similar search parameters, and that there are only
four linearly stable solutions in contrast to more than 20 in the
Newtonian case.

All of this is a consequence of just one sign change in
the potential: one pair of charged particles must experience
repulsion, contrary to Newtonian gravity, where all pairs are
attractive. Therefore, no choreographic solution, i.e., permuta-
tionally symmetric solution with all three particles following
the same trajectory, such as the famous “figure-8” orbit, may
exist in the Coulombic case. Moreover, at least one orbit, sim-
ilar to Orlov’s [4] colliding “S orbit” (in Newtonian gravity)
still exists in the Coulombic case, but it is not stable anymore,
and consequently does not produce an infinite sequence of
periodic orbits (see [13]).

The initial conditions of all 100-odd orbits and their corre-
sponding topological and kinematical properties can be found
in [20]; in Fig. 2 and Table I we have shown six representative
solutions.

Next we show that Eq. (1), the (striking) property of orbits
that was first observed in Newtonian three-body systems [9],
also features in the Coulombic three-body systems. This rela-
tion between topological and kinematical properties of New-
tonian three-body systems was first reported in [9] and later
studied in more detail in Refs. [11,13,15,16]. Equation (1)
is a (simple) linear dependence of the scale-invariant period
T |E|3/2 on the topological complexity N . The topological
complexity N can be measured in at least two different ways:
(1) we used the length Nw of the free-group element (word)
describing the orbit’s topology, which, due to symmetry in
our case, is equal to the number of asymmetric syzygies, i.e.,
collinear configurations wherein the two equal-charge parti-
cles are next to each other, over one period; (2) the number
Ne of all syzygies (collinear configurations) was considered
in Refs. [9,13] as the measure of topological complexity N of
Newtonian orbits.

In Fig. 3 one can see that Eq. (1) holds for three-body
orbits in the Coulomb potential: (1) with N = Nw, a linear fit
yields a slope equal to 1.8252, with asymptotic standard error
of 0.08% and an average relative deviation of points from fit
values that equals 0.63%; (2) with N = Ne the number of all
syzygies (collinear configurations), in the Coulomb case, the
situation is slightly different (see inset in Fig. 3): the slope of
this fit is 1.0208, the asymptotic standard error is 0.36%, but
with a significantly larger (2.6%) average relative deviation of
points from fit values.

As mentioned earlier, only four solutions are linearly sta-
ble. We solved the equations for an infinitesimal deviation
from the exact periodic solution along each periodic orbit to
find the eigenvalues of the monodromy matrix (see [20]). Due
to the symmetry of the equations of motion, these eigenvalues
appear as two (i = 1, 2) quadruples (λi , λ∗

i , 1/λi , 1/λ∗
i ). For

only four orbits listed in Table II both eigenvalues λi have
moduli equal to unity |λi | = 1, within their respective margins
of error, which means that the corresponding three-body orbit
is linearly stable.

Thus we have shown that some of the phenomena first
observed in Newtonian three-body orbits, such as the linear
dependence of the scale-invariant period on the topology
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FIG. 2. Trajectories of orbits A.4, with topology (AB)2(ab)2; A.12.a and A.12.b, both with topology [(AB)2(ab)2]3, in class A (upper row);
and orbits B.4, with topology (AB)2(ab)2, and B.12.a and B.12.b, both with topology [(AB)2(ab)2]3, in class B (lower row), respectively. Note
the independent symmetries of the class A (upper row) trajectories with respect to the reflections about the horizontal and the vertical axis,
whereas the class B (lower row) trajectories have only this symmetry under combined reflections. Black lines correspond to the positively
charged particle while red and blue lines correspond to the negatively charged ones.

of the orbit, and the emergence of sequences [23] exist in
Coulombic three-body orbits, and are not features of New-
tonian gravity alone. The homogeneity [19] of the Coulom-
bic, Newtonian, and the strong Jacobi-Poincaré potentials is
common to all three known cases of manifestation of this
regularity [9,13,25]. This supports indirectly the explanation
offered in Refs. [13,25].

Our next concern ought to be the observation of some of
these orbits in an experiment. The trajectories of a number
(ranging between 1 and 32) of positively charged particles
moving in a Paul trap have been photographically recorded as
early as 1959 [17,26]. The challenge to actually confine and

photograph a few oppositely charged macroscopic particles
in an ion trap has remained unanswered to the present day,
to our knowledge. It is well known that Paul and/or Penning
traps can lead to binding of pairs of identical ions, including
periodic orbits as well as their chaotic motions [27,28], when
the circumstances (such as the frequency and amplitudes of
the applied electric and/or magnetic fields) are right. Such
periodic orbits are impossible in free space, however, as there
the identical ions experience only Coulomb repulsion [29].
So, before one observes any periodic three-body orbits in an
ion trap, and declares them genuine Coulomb orbits, one must
know which periodic three-body orbits exist in free space—

TABLE I. Initial conditions of six orbits, depicted in Fig. 2, that belong to the sequence described by the free-group elements [(AB)2(ab)2]k,
with k = 1, 2, 3, . . ., and four linearly stable orbits, Table II. The columns correspond to solution label, name of the sequence that the solution
belongs to, initial velocities [ẋ1(0) and ẏ1(0)], period, negative energy, scaled period, free-group element, number of letters in free-group
element (equal to the number of asymmetric syzygies), and the total number of syzygies over a period. For initial conditions of all other found
solutions, see [20].

Label Seq. ẋ1(0) ẏ1(0) T −E T |E|3/2 Free-group element Nw Ne

A.4 I 0.191764 0.330958 13.4332 1.06108 14.6826 (AB)2(ab)2 8 14
A.12.a I 0.147917 0.323693 37.1599 1.12003 44.0473 [(AB)2(ab)2]3 24 42
A.12.b I 0.246251 0.335527 45.3784 0.980345 44.0472 [(AB)2(ab)2]3 24 42
B.4 I 0.111427 0.305087 11.3981 1.18352 14.6755 (AB)2(ab)2 8 14
B.12.a I 0.327539 0.337033 57.4554 0.83738 44.0266 [(AB)2(ab)2]3 24 42
B.12.b I 0.345214 0.344247 63.0644 0.786962 44.0266 [(AB)2(ab)2]3 24 42
A.15.b II 0.108065 0.323579 44.7536 1.15086 55.2534 (ab)2ABA(ba)2bABA

×(ba)2BAB(ab)2aBAB 30 52
A.18 III 0.105224 0.336995 55.6513 1.12609 66.5019 (ab)2ABA(ba)2(BA)2bab

×(AB)2aba(BA)2(ba)2BAB 36 62
A.20.b I 0.126494 0.315968 59.3293 1.15249 73.4049 [(ab)2(AB)2]5 40 70
A.24.a II 0.249577 0.291337 80.2223 1.0585 87.364 [(ab)2(AB)2A]2(ba)2b

×(AB)2[(ab)2a(BA)2B]2 48 86
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FIG. 3. Dependence of the scale-invariant period T |E|3/2 on the
number of asymmetric syzygies Nw (collinear configurations with
two particles of the same charge on one side) during an orbit. Inset:
dependence of the scale-invariant period T |E|3/2 on the number of
all syzygies Ne.

information that we have provided here. With the present
work we have prepared the terrain for future numerical, and
we hope also experimental studies of three-ion motions in
traps [17].

Naturally, the orbits that are (linearly) stable in free space
are also expected to exist in a trap; that is not to say that the
unstable orbits cannot be stabilized by appropriate trapping
fields, or that new kinds of periodic orbits cannot be formed in
a trap. Moreover, ions have a nonzero elastic head-on collision
cross section, unlike the stars and/or planets, so one may
even observe some “colliding” orbits [31] in ion traps. This
gives one an opportunity to observe hitherto experimentally
unobserved orbits and to study some of their unprecedented
properties.

At any rate, trap-induced corrections will have to be calcu-
lated for each three-ion orbit in any trap where experiments
are conducted, before an interpretation is given. With this
Rapid Communication we hope to start a discussion of trap-
induced corrections for periodic three-ion orbits: in order to
calculate such corrections, one needs the (initial conditions of)
free-space periodic orbits, of which we have provided around
100, which ought to suffice for a starting point.

There are no records, to our knowledge, of searches for
periodic Coulombic three-body systems with equal masses

TABLE II. Stability coefficients λj , νj , with j = 1, 2, of linearly
stable (double elliptic) orbits, where λj = exp(2πiνj ).

Name Re(λi ) Im(λi ) |λi |2 νi Nw

A.15.b 0.510145 0.860102 1.000023 0.164797 30
A.15.b − 0.11507 0.993357 0.999999 0.268355 30
A.18 − 0.002025 0.999961 0.999926 0.250322 36
A.18 − 0.820340 0.571882 1.000007 0.403107 36
A.20.b 0.009875 0.998966 0.998031 0.248427 40
A.20.b 0.94189 0.339728 1.002572 0.055094 40
A.24.a − 0.988601 0.174067 1.007631 0.472261 48
A.24.a 0.993975 0.116863 1.001643 0.018627 48

and equal charges, which are the closest to the equal-mass
Newtonian system that was studied in Refs. [4–12,14–16]. As
we wished to compare the closest analog of the Coulombic
and Newtonian three-body systems, we had to repeat a search
for periodic collisionless orbits at the present mass and charge
ratios.

To be sure, we are not the first ones who have studied
Coulombic periodic three-body motion: the subject has a long
history (see, e.g., Refs. [32,33]), with a revival in the 1980s,
since when a number of studies have been published: [34–44].
A numerical discovery of more than 8000 collinear collid-
ing periodic orbits with He atom mass ratios was reported
in Ref. [39], and of somewhat fewer collisionless ones in
Ref. [40]. The initial conditions were not published, so one
could not simply retrieve these previously discovered orbits
and use them here.

With this Rapid Communication we also hope to induce
practitioners to consider experimental searches, particularly in
view of the fact that, at least in the case of past periodic-orbit
discoveries, the theory did not precede experiment [17].
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