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Abstract: The higher category theory can be employed to generalize the BF action to the so-called
3BF action, by passing from the notion of a gauge group to the notion of a gauge 3-group. The theory
of scalar electrodynamics coupled to Einstein–Cartan gravity can be formulated as a constrained 3BF
theory for a specific choice of the gauge 3-group. The complete Hamiltonian analysis of the 3BF action
for the choice of a Lie 3-group corresponding to scalar electrodynamics is performed. This analysis is
the first step towards a canonical quantization of a 3BF theory, an important stepping stone for the
quantization of the complete scalar electrodynamics coupled to Einstein–Cartan gravity formulated
as a 3BF action with suitable simplicity constraints. It is shown that the resulting dynamic constraints
eliminate all propagating degrees of freedom, i.e., the 3BF theory for this choice of a 3-group is
a topological field theory, as expected.

Keywords: Hamiltonian analysis; higher gauge theory; BF theory; topological theory; scalar
electrodynamics

1. Introduction

The vast majority of physics community agrees that the quantum theory of gravity is necessary,
even if they disagree on the quantization approach. The theory of loop quantum gravity is one of
the well-formulated possible candidates for the desired theory of quantum gravity [1–3]. There are
two approaches within the theory—the canonical and the covariant quantization method. The covariant
quantization method is focused on obtaining a generating functional, by considering a triangulated
spacetime manifold and defining the functional as a state sum over all configurations of a field living
on simplices of the triangulation [2].

One of the key tools in the covariant quantization approach is the so-called BF theory. Given a Lie
group G and its corresponding Lie algebra g, one considers a g-valued connection 1-form A, and its
corresponding field strength 2-form F ≡ dA + A ∧ A. Multiplying F with a g-valued Lagrange
multiplier 2-form B and integrating over a four-dimensional spacetime manifoldM, one obtains the
action of the BF theory,

SBF[A, B] =
∫
M
〈B ∧ F〉g ,

where 〈_ , _〉g is a G-invariant non-degenerate symmetric bilinear form. The BF theory derives its
name from the symbols B and F for the Lagrange multiplier and the field strength present in the action.
As it is defined, the BF theory is topological, containing no local propagating degrees of freedom.
Therefore, for the purpose of building physically relevant actions, attention usually focuses not on
the pure BF theory, but rather on the theory with constraints. The constrained BF models are based
on deformations of the BF theory [4], by adding constraints to the topological BF action that promote
some of the gauge degrees of freedom into physical ones. The well known example is the Plebanski
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model for general relativity [5]. Constrained BF models represent a starting point in the spinfoam
approach to the construction of quantum gravity models [2].

The main shortcoming of building a quantum gravity model using a BF theory is the fact that it is
very hard, if not impossible, to write the action for matter fields (specifically scalar and fermion fields)
in the form of a constrained BF theory. Thus, the spinfoam quantization method is limited to pure
gravity, and the problem of consistently coupling matter fields to gravity in this framework becomes
highly nontrivial. One of the proposed ways to circumvent this issue is to generalize the notion of a BF
theory using the mathematical apparatus of higher category theory.

The higher category theory [6] can be employed to generalize the BF action to the so-called
nBF action, by passing from the notion of a gauge group to the notion of a gauge n-group
(for a comprehensive review of n-groups see for example [7], and also Appendix C). Specifically,
the notion of a 3-group in the framework of higher category theory is introduced as a 3-category with
only one object where all the morphisms, 2-morphisms and 3-morphisms are invertible. Based on
this generalization, recently a constrained 3BF action has been introduced, which describes the full
Standard Model coupled to Einstein–Cartan gravity [8].

As a first step to the study of the Hamiltonian structure of such theories, in this work, we discuss
the simplest nontrivial toy example, namely the theory of scalar electrodynamics coupled to gravity.
The standard way to define scalar electrodynamics coupled to gravity is by the action:

S =
∫

d4x
√
−g

[
− 1

16πl2
p

R− 1
4

gµρgνσFµνFρσ + gµν∇µφ∗∇νφ−m2φ∗φ

]
. (1)

Here, gµν is the spacetime metric, g ≡ det(gµν) is its determinant, R is the corresponding
curvature scalar, and lp is the Planck length, its square being equal to the Newton’s gravitational
constant, l2

p = G, in the natural system of units h̄ = c = 1. The total covariant derivative ∇µ of the
complex scalar field φ is defined as ∇µφ = (∂µ + iqAµ)φ, and thus coupled to the electromagnetic
potential Aµ via the coupling constant q (the electric charge of the field φ). See Appendix A for more
detailed notation. In the next section, we will reformulate this model as a classically equivalent
constrained 3BF theory for a specific choice of the gauge 3-group. Moreover, for reasons of simplicity,
in the Hamiltonian analysis, we will focus only on the topological sector, disregarding the simplicity
constraints. The Hamiltonian structure of the theory is important for various reasons, primarily for the
canonical quantization program.

The layout of the paper is as follows. In Section 2, we introduce the 3-group structure
corresponding to the theory of scalar electrodynamics coupled to Einstein–Cartan gravity and the
corresponding constrained 3BF action. Section 3 contains the Hamiltonian analysis for the topological,
3BF sector of the action, with the resulting first-class and second-class constraints present in the theory,
and their mutual Poisson brackets. In Section 4, we analyze the Bianchi identities that the first-class
constraints satisfy, which enforce restrictions in the sense of Hamiltonian analysis, and reduce the
number of independent first-class constraints present in the theory. Section 5 focuses on the counting
of the dynamical degrees of freedom present in the theory, based on the results from Sections 3 and 4.
Encouraged by these results, in Section 6, we construct the generator of the gauge symmetries for
the topological theory and we find the form variations of all variables and their canonical momenta.
Finally, Section 7 is devoted to the discussion of the results and the possible future lines of research.
The Appendices contain various technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted by the Latin
letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the Minkowski metric ηab
with signature (−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . , and are
raised and lowered by the spacetime metric gµν = ηabea

µeb
ν, where ea

µ are the tetrad fields.
The inverse tetrad is denoted as eµ

a, so that the standard orthogonality conditions hold: ea
µeµ

b = δa
b

and ea
µeν

a = δν
µ. When needed, spacetime indices will be split into time and space indices,
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denoted with a 0 and lowcase Latin indices i, j, . . . , respectively. All other indices that appear in
the paper are dependent on the context, and their usage is explicitly defined in the text where they
appear. The antisymmetrization over two indices is introduced with the factor one half that is
A[a1|a2 ...an−1|an ] =

1
2
(

Aa1a2 ...an−1an − Aana2 ...an−1a1

)
, and the total antisymmetrization is introduced as

A[a1 ...an ] =
1
n! ∑σ∈Sn(−1)sign(σ)Aaσ(1) ...aσ(n) .

2. Scalar Electrodynamics as a Constrained 3BF Action

Let us begin by providing a short introduction into the construction and structure of a 3BF theory,
after which we will impose appropriate simplicity constraints, in order to obtain the equations of
motion for scalar electrodynamics coupled to gravity.

As was discussed in detail in [8], one formulates a topological 3BF action by specifying a particular
gauge Lie 3-group. It has been proved that any strict 3-group is equivalent to a 2-crossed module [9,10].

A gauge theory for the manifold M4 and 2-crossed module (L δ→ H ∂→ G ,� , {_ , _}) can be
constructed for the following choice of the three Lie groups as:

G = SO(3, 1)×U(1) , H = R4 , L = R2 .

The maps ∂ and δ are chosen to be trivial. The action of the algebra g on h and l is chosen as:

Mab � Pc = �ab,c
d Pd = δ[a|

dη|b]c Pd = η[b|c P|a] , T � Pa = 0 ,
Mab � PA = 0 , T � PA = �A

B PB
(2)

where Mab denote the six generators of so(3, 1), T is the sole generator of u(1), Pa are the four generators
of R4 and PA are the two generators of R2. In the previous expression, the action of the algebra u(1) on
the algebra R2 is defined via

�A
B = iq

[
1 0
0 −1

]
.

The action of the algebra g on itself is by definition given via the adjoint representation and, for
the choice g = so(3, 1)× u(1), one obtains

Mab � Mcd = �ab ,cd
e f Me f = fab ,cd

e f Me f = ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac ,

Mab � T = 0 , T � Mab = 0 , T � T = 0 ,
(3)

as the consequence of the direct product structure and the Abelian nature of the subgroup U(1).
The Peiffer lifting

{_ , _} : H × H → L

is also trivial, i.e., all the coefficients Xab
A are equal to zero:

{Pa , Pb} ≡ Xab
ATA = 0 . (4)

Given Lie algebras g, h, and l, one can introduce a 3-connection (α, β, γ) given by the
algebra-valued differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l).
The corresponding fake 3-curvature (F ,G ,H) is then defined as:

F = dα + α ∧ α− ∂β , G = dβ + α ∧� β− δγ , H = dγ + α ∧� γ + {β ∧ β} , (5)
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see [9,10] for details. For this specific choice of a 3-group, where α = ω+ A, given by the algebra-valued
differential forms ω ∈ A1(M4 , so(3, 1)), A ∈ A1(M4 , u(1)), β ∈ A2(M4 ,R4) and γ ∈ A3(M4 ,R2),
the corresponding 3-curvature (F ,G ,H) is defined as

F = Rab Mab + FT =
(
dωab + ωa

c ∧ωcb)Mab + dA T ,

G = GaPa =
(
dβa + ωa

b ∧ βb)Pa ,

H = HAPA =
(
dγA +�B

A A ∧ γB)PA .

(6)

Note that the connection ωab is not present in the last expression, as follows from the definition of
the action � and the Peiffer lifting {_ , _}, see Equations (2) and (4):

H = dγ + α ∧� γ + {β ∧ β}

= dγAPA + (ωab Mab + AT) ∧� (γAPA)

= dγAPA + ωab ∧ γA Mab � PA + A ∧ γAT � PA

= dγAPA + A ∧ γA �A
BPB

= (dγA +�B
A A ∧ γB)PA .

(7)

The coefficients of the differential 2-forms F and Rab, 3-form G, and 4-formH are:

Fµν = ∂µ Aν − ∂ν Aµ ,

Rab
µν = ∂µωab

ν − ∂νωab
µ + ωa

cµωcb
ν −ωa

cνωcb
µ ,

Ga
µνρ = ∂µβa

νρ + ∂νβa
ρµ + ∂ρβa

µν + ωa
bµ βb

νρ + ωa
bν βb

ρµ + ωa
bρ βb

µν ,

HA
µνρσ = ∂µγA

νρσ − ∂νγA
ρσµ + ∂ργA

σµν − ∂σγA
µνρ

+�B
A AµγB

νρσ −�B
A AνγB

ρσµ +�B
A AργB

σµν −�B
A AσγB

µνρ .

(8)

Now, one can define a gauge invariant 3BF action as:

S3BF =
∫
M4

(
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l

)
, (9)

where B ∈ A2(M4 , so(3, 1)), C ∈ A1(M4 ,R4) and D ∈ A0(M4 ,R2) are Lagrange multipliers.
The forms 〈_ , _〉g, 〈_ , _〉h and 〈_ , _〉l are G-invariant bilinear symmetric nondegenerate forms on g, h
and l, respectively, defined as

〈Mab , Mcd〉g = gab, cd , 〈T , T〉g = 1 , 〈Mab , T〉g = 0 , 〈Pa , Pb〉h = gab , 〈PA , PB〉l = gAB ,

where

gab, cd = ηa[c|ηb|d] , gab =

[
1 0
0 1

]
, gAB =

[
0 1
1 0

]
.

Identifying the Lagrange multiplier Ca as the tetrad field ea, and the Lagrange multiplier DA as the
doublet of scalar fields φA,

φ = φAPA = φP1 + φ∗P2 ,
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based on their transformation properties as discussed in [8,11], the Lagrangian of the action (9) obtains
the form:

S3BF =
∫
M4

d4x εµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1
4

BµνFρσ +
1
3!

ea
µ Gb

νρσ gab +
1
4!

φAHB
µνρσ gAB

)
. (10)

Varying the action with respect to all the variables, one obtains the equations of motion:

varied variable equation of motion

δBab Rab = 0

δωab ∇Bab − e[a| ∧ β|b] = 0

δea Ga = 0

δφA ∇γA = 0

varied variable equation of motion

δB F = 0

δA dB + φA �B
A γB = 0

δβa ∇ea = 0

δγA ∇φA = 0

(11)

Since one is interested in the doublet of scalar fields φA of mass m and charge q minimally
coupled to gravity and electromagnetic field, we impose additional simplicity constraint terms to
the topological action (9), in order to obtain the appropriate equations of motion equivalent to the
equations of motion for the action (1):

S =
∫
M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(

Bab − 1
16πl2

p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1
2

HabcAea ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)
+ λ ∧

(
B− 12

q
Mabea ∧ eb

)
+ ζab

(
Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)
− 1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(12)

For the notation used here and the equations of motion obtained by varying the action (12),
see Appendix A.

The dynamical degrees of freedom are the tetrad fields ea, the scalar doublet φA, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them, as shown in Appendix A. The equation of motion for the field φA reduces to the covariant
Klein-Gordon equation for the scalar field,(

∇µ∇µ −m2
)

φA = 0 . (13)

The differential equation of motion for the field A is:

∇µFµν = jν , jµ ≡ 1
2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (14)

Finally, the equation of motion for ea becomes:

Rµν − 1
2

gµνR = 8πl2
p Tµν ,

Tµν ≡ ∇µφA∇νφA − 1
2

gµν
(
∇ρφA∇ρφA + m2φA φA

)
− 1

4q
(

FρσFρσgµν + 4FµρFρ
ν
)

.
(15)
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3. The Hamiltonian Analysis

The Hamiltonian analysis of the constrained 3BF action (12) for scalar electrodynamics is
exceedingly complicated to study. A testament to this is the level of complexity of the constrained
2BF formulation of general relativity [12], which is merely one sector in the action (12). Therefore,
in this paper, we will limit ourselves to the topological sector of the theory, namely the unconstrained
3BF theory (9), which consists of the terms in the first row of Equation (12), and is written in full
detail in Equation (10). One should be aware that this restriction changes various properties of the
theory. Namely, the simplicity constraints (everything but the first row in Equation (12)) substantially
modify the dynamics of the theory—they increase the number of local propagating degrees of freedom
of the theory, a property that was known since the original Plebanski model [5]. On the other hand,
the unconstrained 3BF theory (9) is important even in its own right, and the Hamiltonian analysis may
give important insight into the structure of both the unconstrained and the constrained theory.

In what follows, the complete Hamiltonian analysis for the action (9) is presented, see [13] for
an overview and a comprehensive introduction of the Hamiltonian analysis. The Hamiltonian analysis
for a 2BF action is performed in [12,14–16].

Under the standard assumption that the spacetime manifold is globally hyperbolic,M4 = R×Σ3,
the Lagrangian of the action (9) has the form:

L3BF =
∫

Σ3

d3~x εµνρσ
(1

4
Bab

µν Rcd
ρσ gab, cd +

1
4

BµνFρσ +
1
3!

ea
µ Gb

νρσ gab +
1
4!

φAHB
µνρσ gAB

)
. (16)

The canonical momentum π(q) corresponding for the canonical coordinate q from the set of all
variables in the theory, q ∈ {Bab

µν, ωab
µ, Bµν, Aµ, ea

µ, βa
µν, φA, γA

µνρ}, is obtained as a derivative of
the Lagrangian with respect to the appropriate velocity,

π(q) ≡ δL
δ∂0q

,

giving:

π(B)ab
µν = 0 , π(ω)ab

µ = ε0µνρBabνρ ,

π(B)µν = 0 , π(A)µ =
1
2

ε0µνρBνρ ,

π(e)a
µ = 0 , π(β)a

µν = −ε0µνρeaρ ,

π(φ)A = 0 , π(γ)A
µνρ = ε0µνρφA .

(17)

Since these momenta cannot be inverted for the time derivatives of the variables, they all give rise
to primary constraints:

P(B)ab
µν ≡ π(B)ab

µν ≈ 0 , P(ω)ab
µ ≡ π(ω)ab

µ − ε0µνρBabνρ ≈ 0 ,

P(B)µν ≡ π(B)µν ≈ 0 , P(A)µ ≡ π(A)µ − 1
2 ε0µνρBνρ ≈ 0 ,

P(e)a
µ ≡ π(e)a

µ ≈ 0 , P(β)a
µν ≡ π(β)a

µν + ε0µνρeaρ ≈ 0 ,

P(φ)A ≡ π(φ)A ≈ 0 , P(γ)A
µνρ ≡ π(γ)A

µνρ − ε0µνρφA ≈ 0 .

(18)

Here, the symbol “≈” denotes the so-called “weak” equality, i.e., the equality that holds on
a subspace of the phase space determined by the constraints, while the equality that holds for any
point of the phase space is referred to as the “strong” equality and it is denoted by the symbol “=”.
The expressions “on-shell” and “off-shell” are used for weak and strong equalities, respectively,
and henceforth will be used in this paper.
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The fundamental Poisson brackets are defined as:

{ Bab
µν(x) , π(B)cd

ρσ(y) } = 4δa
[cδb

d]δ
ρ
[µδσ

ν] δ(3)(~x−~y) ,

{ωab
µ(x) , π(ω)cd

ν(y) } = 2δa
[cδb

d]δ
ν

µ δ(3)(~x−~y) ,

{ Bµν(x) , π(B)ρσ(y) } = 2δρ
[µδσ

ν] δ(3)(~x−~y) ,

{ Aµ(x) , π(A)ν(y) } = δν
µ δ(3)(~x−~y) ,

{ ea
µ(x) , π(e)b

ν(y) } = δa
bδν

µ δ(3)(~x−~y) ,

{ βa
µν(x) , π(β)b

ρσ(y) } = 2δa
b δρ

[µδσ
ν] δ(3)(~x−~y) ,

{ φA(x) , π(φ)B(y) } = δA
B δ(3)(~x−~y) ,

{ γA
µνρ(x) , π(γ)B

αβγ(y) } = 3!δA
B δα

[µδβ
νδγ

ρ] δ(3)(~x−~y) .

(19)

Using these relations, one can calculate the algebra between the primary constraints,

{ P(B)ab jk(x) , P(ω)cd
i(y) } = 4ε0ijk δa

[cδb
d] δ(3)(~x−~y) ,

{ P(B)jk(x) , P(A)i(y) } = ε0ijk δ(3)(~x−~y) ,

{ P(e)ak , P(β)b
ij(y) } = −ε0ijk δa

b(x) δ(3)(~x−~y) ,

{ P(φ)A(x) , P(γ)B
ijk(y) } = ε0ijk δA

B δ(3)(~x−~y) ,

(20)

while all other Poisson brackets vanish. The canonical on-shell Hamiltonian is defined by

Hc =
∫

Σ3

d3~x
[

1
4

π(B)ab
µν ∂0Bab

µν +
1
2

π(ω)ab
µ ∂0ωab

µ +
1
2

π(B)µν ∂0Bµν + π(A)µ ∂0 Aµ

+ π(e)a
µ ∂0ea

µ +
1
2

π(β)a
µν ∂0βa

µν + π(φ)A ∂0DA +
1
3!

π(γ)A
µνρ ∂0γA

µνρ

]
− L .

(21)

Rewriting the Hamiltonian (21) such that all the velocities are multiplied by the first class
constraints and therefore in an on-shell quantity they drop out, one obtains:

Hc =−
∫

Σ3

d3~x ε0ijk
[

1
2

Bab0i Rab
jk +

1
2

B0iFjk +
1
6

ea0 Ga
ijk + βa

0i∇jeak

+
1
2

ωab
0

(
∇iBab jk − e[a|i β|b]jk

)
+

1
2

A0

(
∂iBjk +

1
3

φA �B
A γB

ijk

)
+

1
2

γA
0ij∇kφA

]
.

(22)

This expression does not depend on any of the canonical momenta and it contains only the fields
and their spatial derivatives. By adding a Lagrange multiplier λ for each of the primary constraints we
can build the off-shell Hamiltonian, which is given by:

HT = Hc+
∫

Σ3

d3~x
[

1
4

λ(B)ab
µνP(B)ab

µν +
1
2

λ(ω)ab
µP(ω)ab

µ +
1
2

λ(B)µνP(B)µν + λ(A)µP(A)µ

+λ(e)a
µP(e)a

µ +
1
2

λ(β)a
µνP(β)a

µν + λ(φ)AP(φ)A +
1
3!

λ(γ)A
µνρP(γ)A

µνρ

]
.

(23)

Since the primary constraints must be preserved in time, one must impose the
following requirement:

Ṗ ≡ { P , HT } ≈ 0 , (24)
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for each primary constraint P. By using the consistency condition (24) for the primary constraints
P(B)ab

0i, P(ω)ab
0, P(B)0i, P(A)0, P(e)a

0, P(β)a
0i, and P(γ)A

0ij,

Ṗ(B)ab
0i ≈ 0 , Ṗ(ω)ab

0 ≈ 0 , Ṗ(B)0i ≈ 0 , Ṗ(A)0 ≈ 0 ,

Ṗ(e)a
0 ≈ 0 , Ṗ(β)a

0i ≈ 0 , Ṗ(γ)A
0ij ≈ 0 ,

(25)

one obtains the secondary constraints S ,

S(R)ab
i ≡ ε0ijkRab jk ≈ 0 , S(∇B)ab ≡ ε0ijk(∇iBab jk − e[a|i β|b] jk

)
≈ 0 ,

S(F)i ≡ 1
2 ε0ijkFjk ≈ 0 , S(∇B) ≡ 1

2 ε0ijk(∂iBjk +
1
3 φA �B

A γB
ijk
)
≈ 0 ,

S(G)a ≡ 1
6 ε0ijkGaijk ≈ 0 , S(∇e)a

i ≡ ε0ijk∇jeak ≈ 0 ,

S(∇φ)A
ij ≡ ε0ijk∇kφA ≈ 0 ,

(26)

while in the case of P(B)ab
jk, P(ω)ab

k, P(B)jk, P(A)k, P(e)a
k, P(β)a

jk, P(φ)A and P(γ)A
ijk the

consistency conditions

Ṗ(B)ab
jk ≈ 0 , Ṗ(ω)ab

k ≈ 0 , Ṗ(B)jk ≈ 0 , Ṗ(A)k ≈ 0 ,

Ṗ(e)a
k ≈ 0 , Ṗ(β)a

jk ≈ 0 , Ṗ(φ)A ≈ 0 , Ṗ(γ)A
ijk ≈ 0 ,

(27)

determine the following Lagrange multipliers:

λ(ω)ab
i ≈ ∇i ωab 0 , λ(B)ij ≈ 2∂[i| B0|j] + γA

0ij �B
A φB ,

λ(A)i ≈ ∂i A0 , λ(β)a
ij ≈ 2∇[i| βa

0|j] −ωab
0 βb ij ,

λ(φ)A ≈ A0 � A
B φB , λ(e)a

i ≈ ∇i ea
0 −ωa

b 0 eb
i ,

λ(B)ab
ij ≈ 2∇[i|Bab

0|j] + e[a| 0β|b]
ij − 2e[a| [i|β|b]0|j] + 2ω[a|

cB|b]c ij ,

λ(γ)A
ijk ≈ −A0 � A

B γB
ijk +∇iγA

0jk −∇jγA
0ik +∇kγA

0ij .

(28)

Note that the consistency conditions leave the Lagrange multipliers

λ(B)ab
0i , λ(ω)ab

0 , λ(B)0i , λ(A)0 , λ(e)a
0 , λ(β)a

0i , λ(γ)A
0ij (29)

undetermined. The consistency conditions of the secondary constraints do not produce new constraints,
since one can show that

Ṡ(R)abi = {S(R)abi , HT} = ω[a|
c0 S(R)c|b]i ,

Ṡ(∇B) = {S(∇B), HT} = −�B
A γB

0ij S(∇φ)A
ij ,

Ṡ(G)a = {S(G)a , HT} = βb0k S(R)abk −ωab
0 S(G)b ,

Ṡ(∇e)a
i = {S(∇e)a

i , HT} = eb
0 S(R)ab

i −ωa
b

0 S(∇e)b
i ,

Ṡ(∇φ)A
ij = {S(∇φ)A

ij , HT} = A0 � A
BS(∇φ)B

ij ,

Ṡ(F)i = {S(F)i , HT} = 0 ,

Ṡ(∇B)ab = {S(∇B)ab , HT} = S(R)[a|ck Bc
|b]0k + ω[a|

c
0S(∇B)|b]c

−β[a|0k S(∇e)|b]k + e[a|0 S(G)|b] .

(30)
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Then, the total Hamiltonian can be written as

HT =
∫

Σ3

d3~x
[

1
2

λ(B)ab
0i Φ(B)ab

i +
1
2

λ(ω)ab
0 Φ(ω)ab + λ(B)0i Φ(B)i + λ(A)0 Φ(A)

+ λ(e)a
0 Φ(e)a + λ(β)a

0i Φ(β)a
i +

1
2

λ(γ)A
0ijΦ(γ)A

ij

− 1
2

Bab0i Φ(R)abi − 1
2

ωab0 Φ(∇B)ab − B0i Φ(F)i − A0 Φ(∇B)

− ea0 Φ(G)a − βa0i Φ(∇e)ai − 1
2

γA0ij Φ(∇φ)Aij
]

,

(31)

where

Φ(B)ab
i = P(B)ab

0i , Φ(γ)A
ij = P(γ)A

0ij ,

Φ(ω)ab = P(ω)ab
0 , Φ(F)i = S(F)i − ∂jP(B)ij ,

Φ(B)i = P(B)0i , Φ(R)abi = S(R)abi −∇jP(B)ab ij ,

Φ(A) = P(A)0 , Φ(G)a = S(G)a +∇iP(e)a i − 1
4 βb ij P(B)ab ij ,

Φ(e)a = P(e)a
0 , Φ(∇e)a i = S(∇e)a i −∇jP(β)a ij + 1

2 eb j P(B)ab ij ,

Φ(β)a
i = P(β)a

0i , Φ(∇φ)A ij = S(∇φ)A ij +∇kP(γ)A ijk −�B
A φB P(B)ij ,

Φ(∇B) = S(∇B) + ∂iP(A)i +
1
3!

γA
ijk �A

B P(γ)B
ijk − φA �B

A P(φ)B ,

Φ(∇B)ab = S(∇B)ab +∇iP(ω)abi + B[a|
c ij P(B)c|b] ij − 2e[a|i P(e)|b] i − β[a|

ij P(β)|b] ij ,

(32)

are the first-class constraints, while

χ(B)ab
jk = P(B)ab

jk , χ(B)jk = P(B)jk , χ(e)a
i = P(e)a

i , χ(φ)A = P(φ)A ,

χ(ω)ab
i = P(ω)ab

i , χ(A)i = P(A)i , χ(β)a
ij = P(β)a

ij , χ(γ)A
ijk = P(γ)A

ijk ,
(33)

are the second-class constraints.
The PB algebra of the first-class constraints is given by:

{Φ(G)a(x) , Φ(∇e)b
i(y) } = −Φ(R)a

b
i(x) δ(3)(~x−~y) ,

{Φ(G)a(x) , Φ(∇B)bc(y) } = 2δa
[b| Φ(G)|c](x) δ(3)(~x−~y) ,

{Φ(∇e)a
i(x) , Φ(∇B)bc(y) } = 2δa

[b|Φ(∇e)|c]i(x) δ(3)(~x−~y) ,

{Φ(R)abi(x) , Φ(∇B)cd(y) } = −4δ[a| [c Φ(R)|b]d]i(x) δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , Φ(∇B)cd(y) } = −4δ[a| [c| Φ(∇B)|b] |d](x) δ(3)(~x−~y) ,

{Φ(∇B)(x) , Φ(∇φ)A
ij(y) } = −2 �B

A Φ(∇φ)B
ij(x)δ(3)(~x−~y) .

(34)
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The PB algebra between the first and the second-class constraints is given by:

{Φ(R)abi(x) , χ(ω)cd
j(y) } = 4 δ[a| [c| χ(B)|b] |d]ij(x)δ(3)(~x−~y) ,

{Φ(G)a(x) , χ(ω)cd
i(y) } = 2 δa

[c| χ(e)|d]i(x)δ(3)(~x−~y) ,

{Φ(G)a(x) , χ(β)c
jk(y) } = −1

2
χ(B)a

c
jk(x) δ(3)(~x−~y) ,

{Φ(∇e)ai(x) , χ(ω)cd
j(y) } = −2 δa

[c| χ(β)|d]
ij(x) δ(3)(~x−~y) ,

{Φ(∇e)ai(x) , χ(e)b
j(y) } =

1
2

χ(B)a
b

ij δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(ω)cd
i(y) } = 4 δ[a| [c| χ(ω)|d]

|b]i δ(3)(~x−~y) ,

{Φ(∇B)(x) , χ(A)i(y) } = 2 χ(A)i δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(β)c
jk(y) } = −2δ[a|c χ(β)|b]jk δ(3)(x− y) ,

{Φ(∇B)(x) , χ(γ)A
ijk(y) } = �A

B χ(γ)B
ijk(x) δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(B)cd
jk(y) } = 4 δ[a| [c χ(B)d]

|b]jk δ(3)(~x−~y) ,

{Φ(∇B)ab(x) , χ(e)a
i(y) } = −2δ[a|c χ(e)|b]i δ(3)(~x−~y) ,

{Φ(∇B)(x) , χ(φ)A(y) } = −�B
A χ(φ)B(x) δ(3)(~x−~y) ,

{Φ(∇φ)Aij(x) , χ(A)k(y) } = −�B
A χ(γ)Bijk(x) δ(3)(~x−~y) ,

{Φ(∇φ)Aij(x) , χ(φ)B(y) } = −�B
A χ(B)ij(x) δ(3)(~x−~y) .

(35)

The PB algebra between the second-class constraints has already been calculated, and is given
in Equations (20).

4. The Bianchi Identities

In order to calculate the number of degrees of freedom in the theory, one needs to make use of the
Bianchi identities (BI), as well as additional, generalized Bianchi identities (GBI) that are an analogue of
the ordinary BI for the additional fields present in the theory.

One uses BI associated with the 1-form fields ωab and ea, as well as the GBI for the 1-form A.
Namely, the corresponding 2-form curvatures

Rab = dωab + ωa
c ∧ωcb , Ta = dea + ωa

b ∧ eb , F = dA , (36)

satisfy the following identities:

ελµνρ∇µRab
νρ = 0 , (37)

ελµνρ
(
∇µTa

νρ − Rab
µν ebρ

)
= 0 , (38)

ελµνρ∇µFνρ = 0 . (39)

Choosing the free index to be time coordinate λ = 0, these indentities, as the time-independent
parts of the Bianchi identities, become the off-shell restrictions in the sense of the Hamiltonian analysis.
On the other hand, choosing the free index to be a spatial coordinate, one obtains time-dependent
pieces of the Bianchi identities, which do not enforce any restrictions, but can instead be derived as
a consequence of the Hamiltonian equations of motion.
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There are also GBI associated with the 2-form fields Bab, B and βa. The corresponding 3-form
curvatures are given by

Sab = dBab + 2ω[a|
c ∧ Bc |b] , P = dB , Ga = dβa + ωa

b ∧ βb . (40)

Differentiating these expressions, one obtains the following GBI:

ελµνρ

(
1
3
∇λ Sab

µνρ − R[a| c
λµ Bc

|b]
νρ

)
= 0 , (41)

ελµνρ∂λ Pµνρ = 0 , (42)

ελµνρ

(
2
3
∇λ Ga

µνρ − Rab
λµ βb νρ

)
= 0 . (43)

However, in four-dimensional spacetime, these identities will be single-component equations,
with no free spacetime indices, and therefore necessarily feature time derivatives of the fields.
Thus, they do not impose any off-shell restictions on the canonical variables.

Finally, there is also GBI associated with the 0-form φ. The corresponding 1-form curvature is:

QA = dφA +�B
A A ∧ φB , (44)

so that the GBI associated with this curvature is:

ελµνρ

(
∇νQA

ρ −
1
2
�B

A FνρφB
)
= 0. (45)

This GBI consists of 12 component equations, corresponding to six possible choices of the
free antisymmetrized spacetime indices λµ, and the 2 possible choices of the free group index A.
However, not all of these 12 identities are independent. This can be seen by taking the derivative of the
Equation (45) and obtaining eight identities of the form

�B
A ελµνρ ∂µ Fνρ φB = 0 , (46)

which are automatically satisfied because of the GBI (39). One concludes there are only four
independent identities (45). Now, fixing the value λ = 0, one obtains the time-independent components
of both Equations (45) and (46),

ε0ijk
(
∇jQA

k −
1
2
�B

A FjkφB
)
= 0 , (47)

and
�B

A ε0ijk ∂i Fjk φB = 0 . (48)

Of these, there are six components in Equation (47), but, because of the two components of
Equation (48), there are overall only four independent GBI relevant for the Hamiltonian analysis.

5. Number of Degrees of Freedom

Let us now show that the structure of the constraints implies that there are no local degrees of
freedom (DoF) in a 3BF theory. In the general case, if there are N initial fields in the theory and there
are F independent first-class constraints per space point and S independent second-class constraints
per space point, then the number of local DoF, i.e., the number of independent field components,
is given by

n = N − F− S
2

. (49)
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Equation (49) is a consequence of the fact that S second-class constraints are equivalent to
vanishing of S/2 canonical coordinates and S/2 of their momenta. The F first-class constraints are
equivalent to vanishing of F canonical coordinates, and since the first-class constraints generate
the gauge symmetries, we can impose F gauge-fixing conditions for the corresponding F canonical
momenta. Consequently, there are 2N − 2F− S independent canonical coordinates and momenta and
therefore 2n = 2N − 2F− S, giving rise to Equation (49).

In our case, N can be determined from the Table 1, giving rise to a total of N = 120 canonical
coordinates. Similarly, the number of independent components for the second class constraints is
determined by the Table 2, so that S = 70.

Table 1. The number of components for all fields present in the theory.

ωab
µ Aµ βa

µν γA
µνρ Bab

µν Bµν ea
µ φA

24 4 24 8 36 6 16 2

Table 2. The number of components for the second class constraints present in the theory.

χ(B)ab
jk χ(B)jk χ(e)a

i χ(φ)A χ(ω)ab
i χ(A)i χ(β)a

ij χ(γ)A
ijk

18 3 12 2 18 3 12 2

The first-class constraints are not all independent because of BI and GBI. To see that, take the
derivative of Φ(R)abi to obtain

∇iΦ(R)abi = ε0ijk∇iRab
jk +

1
2

Rc[a|
ijP(B)c

|b]ij . (50)

The first term on the right-hand side is zero off-shell because εijk∇iRab
jk = 0, which is a λ = 0

component of the BI (37). The second term on the right-hand side is also zero off-shell, since it is
a product of two constraints,

Rc[a|
ij P(B)c

|b]ij ≡ 1
2

ε0ijkS(R)c[a|k P(B)c
|b]ij = 0 . (51)

Therefore, we have the off-shell identity

∇iΦ(R)abi = 0 , (52)

which means that six components of Φ(R)abi are not independent of the others. In an analogous
fashion, taking the derivative of Φ(F)i, one obtains

∂iΦ(F)i = ε0ijk ∂iFjk +
1
2

Fij P(B)ij . (53)

The first term on the right-hand side is zero off-shell because εijk ∂iFjk = 0, which is a λ = 0
component of the GBI (37). The second term on the right-hand side is also zero off-shell, since it is a
product of two constraints,

Fij P(B)ij ≡ 1
2

ε0ijk S(F)k P(B)ij = 0 . (54)

Therefore, we have the off-shell identity

∂iΦ(F)i = 0 , (55)
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which means that one component of Φ(F)i is not independent of the others. Similarly, one can
demonstrate that

∇iΦ(∇e)a
i − 1

2
Φ(R)ab

i eb
i +

1
4

ε0ijkS(R)abk P(β)b
ij =

1
2

ε0ijk
(
∇iTajk − Rab ij eb

k

)
. (56)

The right-hand side of the Equation (56) is the λ = 0 component of the BI (38), so that Equation (56)
gives the relation:

∇iΦ(∇e)a
i − 1

2
Φ(R)ab

i eb
i = 0 , (57)

where we have omitted the term that is the product of two constraints. This relation means that four
components of the constraints Φ(∇e)a

i and Φ(R)ab
i can be expressed in terms of the rest. Finally,

one can also demonstrate that

∇iΦ(∇φ)A
ij − 1

2
ε0ikl �A S(F)l χ(γ)B

ijk +�B
A φB Φ(F)j

+
1
2

ε0ilm �B
A P(B)ij S(∇φ)B

lm = ε0ijk
(
∇iQAk +

1
2
�B

A Fik φB

)
,

(58)

which gives

∇iΦ(∇φ)A
ij +

1
2
�B

A φB Φ(F)j = 0 , (59)

for λ = 0 component of the GBI (45), where we have again used that the product of two contraints
is zero off-shell. This relation suggests that six components of two first-class constraints, Φ(∇φ)A

ij

and Φ(F)j, are not independent of the others. However, in the previous section, we have discussed
that only four of these six identities are mutually independent, which means that we have only
four independent identities (59). A rigorous proof of this statement entails the evaluation of the
corresponding Wronskian, and is left for future work.

Taking into account all of the above indentites (52), (55), (57), and (59), we can finally evaluate
the total number of independent first-class constraints. From the Table 3, one can see that the total
number of components of the first-class constraints is given by F∗ = 100. However, the number
of independent components of the first-class constraints is F = 85, obtained by subtracting the six
relations (52), one relation (55), four relations (57) and four relations (59).

Table 3. The number of components for the first class constraints present in the theory. The identities (52),
(55), (57), and (59) reduce the number of components which are independent. This reduction is explicitly
denoted in the table.

Φ(B)ab
i Φ(B)i Φ(e)a Φ(ω)ab Φ(A) Φ(β)a

i Φ(γ)A
ij Φ(R)ab

i Φ(F)i Φ(G)a Φ(∇e)a
i Φ(∇B)ab Φ(∇B) Φ(∇φ)A

ij

18 3 4 6 1 12 6 18− 6 3− 1 4 12− 4 6 1 6− 4

Therefore, substituting all the obtained results into Equation (49), one gets

n = 120− 85− 70
2

= 0, (60)

which means that there are no propagating DoF in a 3BF theory described by the action (10).

6. Generator of the Gauge Symmetry

Based on the results of the Hamiltonian analysis of the action (10), it can also be interesting to
calculate the generator of the complete gauge symmetry of the action. The gauge generator of the theory
is obtained by using the Castellani’s procedure (see Chapter V in [13] for details of the procedure),
and one gets the following result (see Appendix B for details of the calculation):
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G =
∫

Σ3

d3~x
(

1
2
(∇0εab

i)Φ(B)ab
i − 1

2
εab

iΦ(R)ab
i +

1
2
(∇0εab)Φ(ω)ab −

1
2

εabΦ(∇B)ab

+ (∂0εi)Φ(B)i − εiΦ(F)i + (∂0ε)Φ(A)− εΦ(∇B)

+ (∇0εa)Φ(e)a − εaΦ(G)a + (∇0εa
i)Φ(β)a

i − εa
iΦ(∇e)a

i

+
1
2
(∇0εA

ij)Φ(γ)A
ij − 1

2
εA

ijΦ(∇φ)A
ij

+ εab
(

β[a|0iP(β)|b]
i + e[a|0P(e)|b] + B[a|c0iP(B)c

|b]
i
)
− ε γA0ij �B

A P(γ)Bij

+ εaβb0iP(B)abi + εa
i eb0P(B)a

bi
)

.

(61)

Here, εab
i, εab, εi, ε, εa, εa

i and εA
ij are the independent parameters of the gauge transformations.

Furthermore, one can employ the gauge generator to calculate the form-variations for all canonical
coordinates and their corresponding momenta, by computing the Poisson bracket of the chosen variable
A(t,~x) and the generator (61):

δ0 A(t,~x) = {A(t,~x) , G} . (62)

The results are given as follows:

δ0ωab
0 = ∇0εab , δ0π(ω)ab

0 = −2ε[a|
c
iπ(B)c|b]

0i − 2ε[a|
cπ(ω)c|b]

0 ,

+2ε[a|π(e)|b]0 + 2ε[a|iπ(β)|b]
0i ,

δ0ωab
i = ∇iε

ab , δ0π(ω)ab
i = −2ε[a|

c
j π(B)c|b]

ij − 2ε[a|
c
i π(ω)|b]c

i

+2ε[a| π(e)|b]i + 2ε[a| jπ(β)|b]
ij

+2ε0ijk∇[j|εab |k] + ε0ijkε[a|β|b] jk ,

δ0Bab
0i = ∇0εab

i + ε[a|ie|b]0 δ0π(B)ab
0i = 2ε[a|c π(B)|b]ci ,

+2ε[a|cB|b]c0i + ε[a|β|b]0i ,

δ0Bab
ij = 2∇[i|ε

ab
|j] + 2ε[a|cB|b]cij δ0π(B)ab

ij = 2ε[a|c π(B)|b]cij ,

+2ε[a| [ie|b] j] + ε[a|β|b]ij ,

δ0 A0 = ∂0ε , δ0π(A)0 = − 1
2 εA

ij �
B

A π(γ)B
0ij ,

δ0 Ai = ∂iε , δ0π(A)i = ε0ijk∂jεk − 1
2 εA

jk �B
A π(γ)B

ijk ,

δ0B0i = ∂0εi , δ0π(B)0i = 0 ,

δ0Bij = 2 ∂[i|ε|j] + εA
ij �

B
A φB , δ0π(B)ij = −ε0ijk∂kε ,

δ0βa
0i = ∇0εa

i − εabβb0i , δ0π(β)a
0i = −εabπ(β)b0i + 1

2 εbπ(B)ab
0i ,

δ0βa
ij = 2∇[i|ε

a
|j] − εab βbij , δ0π(β)a

ij = −εab π(β)bij + 1
2 εb π(B)ab

ij

−ε0ijk∇kεa ,

δ0ea
0 = ∇0εa − εab eb0 , δ0π(e)a

0 = −εab π(e)b0 + 1
2 εb

i π(B)ab
0i ,

δ0ea
i = ∇iε

a − εab ebi , δ0π(e)a
i = −εab π(e)bi + ε0ijk

(
∇[j|εa |k] + εabβbjk

)
+ 1

2 εb
j π(B)ab

ij ,



Symmetry 2020, 12, 620 15 of 21

δ0γA
0ij = ∇0εA

ij − ε γB
0ij �

A
B , δ0π(γ)A

0ij = ε �B
A π(γ)B

0ij ,

δ0γA
ijk = − ε γB

ijk �B
A +∇iε

A
jk δ0π(γ)A

ijk = ε �A
B
(

π(γ)B
ijk + ε0ijk φB

)
,

−∇jε
A

ik +∇kεA
ij ,

δ0φA = ε φB � A
B , δ0π(φ)A = −ε �B

A π(φ)B +
1
3!

ε ε0ijk �B
A γBijk

−1
2
�A B εB

ij π(B)ij − 1
2

ε0ijk∇iε
A

jk ,

(63)

These transformations are an extension of the form-variations in the case of the Poincaré 2-group
obtained in [17].

7. Conclusions

Let us summarize the results of the paper. In Section 2, we have demonstated in detail how to use
the idea of a categorical ladder to introduce the 3-group structure corresponding to the theory of scalar
electrodynamics coupled to Einstein–Cartan gravity. We have introduced the topological 3BF action
corresponding to this choice of a 3-group, as well as the constrained 3BF action which gives rise to
the standard equations of motion for the scalar electrodynamics. In order to perform the canonical
quantization of this theory, the complete Hamiltonian analysis of the full theory with constraints has to
be performed, but the important step towards this goal is the Hamiltonian analysis of the topological
3BF action. This has been done in Section 3. Here, the first-class and second-class constraints of
the theory, as well as their Poisson brackets, have been obtained. In Section 4, we have discussed the
Bianchi identities and also the generalized Bianchi identities, since they enforce restrictions in the
sense of Hamiltonian analysis, and reduce the number of independent first-class constraints present
in the theory. With this background material in hand, in Section 5, the counting of the dynamical
degrees of freedom present in the theory has been performed and it was established that the considered
3BF action is a topological theory, i.e., the diffeomorphism invariant theory without any propagating
degrees of freedom. In Section 6, we have constructed the generator of the gauge symmetries for
the theory, and we found the form-variations for all the variables and their canonical momenta.

The results obtained in this paper represent the straightforward generalization of Hamiltonian
analysis done in [15] for the Poincaré 2-group, and a first example of the Hamiltonian analysis of
a 3BF action. The fact that the theory was found to be topological is nontrivial, since it relies on the
existence of the generalized Bianchi identities, which have been identified for the first time. In addition
to that, it was demonstrated that the algebra of constraint closes, which is an important consistency
check for the theory. There is another very interesting aspect of the constraint algebra. Namely,
one can recognize, looking at the structure of Equations (34) that the subalgebra generated by the
first-class constraint Φ(∇φ)A

ij is in fact an ideal of the constraint algebra because the Poisson bracket
between this constraint and all other constraints is again proportional to that constraint. It is curious
that precisely the constraint Φ(∇φ)A

ij is the only one related to the Lie group L from the 3-group,
according to its index structure, and also that the structure constant of the ideal is determined by
the action � of the group G on L. Let us also note that the action � appears as well in the structure
constants of the algebra between the first-class and second-class constraints.

The results of this work open several avenues for future research. From the point of view of
mathematics, the relationship between the algebraic structures mentioned above should be understood
in more detail. More generally, one should understand the correspondence between the gauge
group generated by the generator (61) and the 3-group structure used to define the theory. This is
not viable in the special case of the 3-group discussed in this work, but instead needs to be done
in the case of a generic 3-group, where homomorphisms δ and ∂ and the Peiffer lifting {_ , _} are
nontrivial. From the point of view of physics, the obtained results represent the fundamental building
blocks for the construction of the quantum theory of scalar electrodynamics coupled to gravity, as
well as a convenient model to discuss before proceeding to the Hamiltonian analysis and canonical
quantization of the full Standard Model coupled to gravity, formulated as a 3BF action with suitable
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constraints [8]. Both the Hamiltonian analysis of constrained 3BF models and the corresponding
canonical quantization programme need to be further developed in order to achieve these goals.
Our work is a first step in this direction.

Finally, let us note in the end that the above list of topics for future research is by no means
complete, and there are potentially many other interesting topics that can be studied in this context.
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Appendix A. The Equations of Motion for the Scalar Electrodynamics

The action of scalar electrodynamics coupled to Einstein–Cartan gravity is given in the form (12):

S =
∫
M4

Bab ∧ Rab + B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(

Bab − 1
16πl2

p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1
2

HabcAea ∧ eb ∧ ec
)
+ ΛabA ∧

(
HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb

)
+ λ ∧

(
B− 12

q
Mabea ∧ eb

)
+ ζab

(
Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb

)
− 1

2 · 4!
m2φA φAεabcdea ∧ eb ∧ ec ∧ ed .

(A1)

Varying the total action (12) with respect to the variables Bab, B, ωab, βa, λab, ΛabA, γA, λA, HabcA,
ζab, Mab, λ, A, φA and ea, one obtains the equations of motion:

Rab − λab = 0 , (A2)

F + λ = 0 , (A3)

∇Bab − e[a| ∧ β|b] = 0 , (A4)

∇ea = 0 , (A5)

Bab − 1
16πl2

p
εabcdec ∧ ed = 0 , (A6)
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HabcAεcde f ed ∧ ee ∧ e f −∇φA ∧ ea ∧ eb = 0 , (A7)

∇φA − λA = 0 , (A8)

γA −
1
2

HabcAea ∧ eb ∧ ec = 0 , (A9)

− 1
2

λA ∧ ea ∧ eb ∧ ec + εcde f ΛabA ∧ ed ∧ ee ∧ e f = 0 , (A10)

Mabεcde f ec ∧ ed ∧ ee ∧ e f − F ∧ ea ∧ eb = 0 , (A11)

− 12
q

λ ∧ ea ∧ eb + ζabεcde f ec ∧ ed ∧ ee ∧ e f = 0 , (A12)

B− 12
g

Mabea ∧ eb = 0 , (A13)

− dB + d(ζabea ∧ eb)− φA �B
AγB −ΛabA �B

A φB ∧ ea ∧ eb = 0 , (A14)

∇γA −∇(Λab
A ∧ ea ∧ eb)−

1
4!

m2 φAεabcdea ∧ eb ∧ ec ∧ ed = 0 , (A15)

∇βa +
1

8πl2
p

εabcdλbc ∧ ed +
3
2

HabcAλA ∧ eb ∧ ec + 3Hde f AεabcdΛe f A ∧ eb ∧ ec

− 2ΛabA ∧∇φA ∧ eb − 2
1
4!

m2φA φAεabcdeb ∧ ec ∧ ed

− 24
q

Mabλ ∧ eb + 4ζe f Me f εabcdeb ∧ ec ∧ ed − 2ζabF ∧ eb = 0 .

(A16)

The dynamical degrees of freedom are the tetrad fields ea, the scalar field φA, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them. Specifically, Equations (A2)–(A13) give

λabµν = Rabµν , ωab
µ = 4ab

µ , γA
µνρ = − 1

2e
εµνρσ∇σφA ,

ΛabA
µ =

1
12e

gµλελνρσ∇νφA ea
ρeb

σ , βa
µν = 0 , Babµν =

1
8πl2

p
εabcdec

µed
ν ,

HabcA =
1
6e

εµνρσ∇µφA ea
νeb

ρec
σ , λA

µ = ∇µφA ,

λµν = Fµν , Bµν = − 1
2eq

εµνρσFρσ ,

Mab = − 1
4e

εµνρσFµν ea
ρeb

σ , ζab =
1

4eq
εµνρσFµν ea

ρeb
σ .

(A17)

Note that from the Equations (A4)–(A6) it follows that βa = 0, as in the pure gravity case. The
equation of motion (A15) reduces to the covariant Klein–Gordon equation for the scalar field coupled
to the electromagnetic potential A, (

∇µ∇µ −m2
)

φA = 0 . (A18)

From Equation (A14), we obtain the differential equation of motion for the field A:

∇µFµν = jν , jµ ≡ 1
2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (A19)
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Finally, the equation of motion (A16) for ea becomes:

Rµν − 1
2

gµνR = 8πl2
p Tµν ,

Tµν ≡ ∇µφA∇νφA − 1
2

gµν
(
∇ρφA∇ρφA + m2φA φA

)
− 1

4q
(

FρσFρσgµν + 4FµρFρ
ν
)

.
(A20)

The system of Equations (A2)–(A16) is equivalent to the system of Equations (A17)–(A20).

Appendix B. The Calculation of the Gauge Generator

The gauge generator of the theory is obtained by the standard Castellani procedure (see [13] for
an introduction). One starts from the generic form for the generator,

G =
∫

Σ3

∂3~x
(1

2
(∂0εab

i)G1ab
i +

1
2

εab
iG0ab

i +
1
2
(∂0εab)G1ab +

1
2

εabG0ab

+ (∂0εi)G1
i + εiG0

i + (∂0ε)G1 + εG0

+ (∂0εa)G1a + εaG0a + (∂0εa
i)G1a

i + εa
iG0a

i

+
1
2
(∂0εA

ij)G1 A
ij +

1
2

εA
ijG0 A

ij
)

,

(A21)

where the generators G0 and G1 are obtained by the standard prescription [13]:

G1 = CPFC ,

G0 + {G1 , HT } = CPFC ,

{G0 , HT } = CPFC ,

(A22)

where CPFC is a primary first-class constraint. For example, one choses G1ab
i = Φ(B)ab

i. From
the conditions

G0ab
i + {Φ(B)ab

i , HT } = G0ab
i + Φ(R)ab

i = CPFC ,

{G0ab
i , HT } = CPFC

∗ = {CPFC −Φ(R)ab
i , HT } ,

(A23)

we solve for G0ab
i by determining CPFC from the second equation. Evaluating one PB, one can reexpress

the second equation in the form:

{CPFC , HT } = CPFC
∗ + 2ω[a|

d
0Φ(R)|b]d

i = { 2ω[a|
d

0P(B)|b]d
i , HT } . (A24)

From the second equality, we recognize that

CPFC = 2ω[a|
d

0P(B)|b]d
i , (A25)

which can then be substituted into the first condition above, giving

G0ab
i = 2ω[a|

d
0Φ(B)|b]d

i −Φ(R)ab
i . (A26)

One thus obtains

1
2
(∂0εab

i)(G1)ab
i +

1
2

εab
iG0ab

i =
1
2
∇0εab

iΦ(B)ab
i − 1

2
εab

iΦ(R)ab
i .

The other G0 and G1 terms are obtained in a similar way, and the generator (61) is derived.
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Appendix C. Introduction to 3-Groups

The notion of a 3-group is usually introduced in the framework of higher category theory [6].
In category theory, every group can be understood as a category which has only one element,
and morphisms which are all invertible. The group elements are then individual morphisms that
map the category element to itself, while the group operation is the categorical composition of the
morphisms. In such a case, the axioms of the category guarantee the validity of all axioms of a group.
This kind of construction can be generalized to 2-groups, 3-groups and, in general, n-groups. Namely,
a 2-group is by definition a 2-category which has only one element, and whose morphisms and
2-morhisms (i.e., morphisms between morphisms) are invertible. Similarly, a 3-group is by definition
a 3-category which has only one element, while its morphisms, 2-morphisms, and 3-morphisms
are invertible.

The above definition of a 3-group is very abstract, and while theoretically very important, in itself
not very useful for practical calculations and applications in physics. Fortunately, there is a theorem
of equivalence between 3-groups and the so-called 2-crossed modules, which are algebraic structures
with more familiar properties [9,10]. For the applications in physics, attention focuses on the so-called
strict Lie 3-groups, and their corresponding differential (Lie algebra) structure, which corresponds to
the differential Lie 2-crossed module. Let us therefore give a brief overview of the latter.

A differential Lie 2-crossed module (l
δ→ h

∂→ g, �, {_ , _}) is given by three Lie algebras g, h and l,
maps δ : l→ h and ∂: h→ g, together with a map called the Peiffer lifting,

{_ , _} : h× h→ l , (A27)

and an action � of the algebra g on all three algebras.
Let us introduce the bases in the three algebras, τα ∈ g, ta ∈ h and TA ∈ l, and structure constants

in those bases, as follows:

[τα , τβ] = fαβ
γτγ , [ta , tb] = fab

ctc , [TA TB] = fAB
CTC . (A28)

Now, the maps ∂ and δ can be written as

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta , (A29)

and the action of the algebra g on g, h and l as:

τα � τβ = �αβ
γ τγ , τα � ta = �αa

b tb , τα � TA = �αA
B TB . (A30)

Finally, the Peiffer lifting can be encoded into coefficients Xab
A as:

{ta, tb} = Xab
A TA . (A31)

A differential Lie 2-crossed module has the following properties (we write all equations in the
abstract and their corresponding component forms, side by side):

1. The action of the algebra g on itself is via the adjoint representation, i.e., ∀g, g1 ∈ g:

g � g1 = [g, g1] , �αβ
γ = fαβ

γ . (A32)

2. The action of the algebra g on algebras h and l is g-equivariant, i.e., ∀g ∈ g, h ∈ h, l ∈ l:

∂(g � h) = g � ∂(h) , ∂a
β fαβ

γ = �αa
b ∂b

γ , (A33)

δ(g � l) = g � δ(l) , δA
a �αa

b = �αA
B δB

b . (A34)
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3. The Peiffer lifting is a g-equivariant map, i.e., for every g ∈ g and h1, h2 ∈ h:

g � {h1, h2} = {g � h1, h2}+ {h1, g � h2} , Xab
B �αB

A = �αa
c Xcb

A +�αb
c Xac

A . (A35)

4. For every h1, h2 ∈ h, the following identity holds:

δ({h1, h2}) = [h1 , h2]− ∂(h1)� h2 , Xab
A δA

c = fab
c − ∂a

α �αb
c . (A36)

5. For all l1, l2 ∈ l, the following identity holds:

[l1, l2] = {δ(l1), δ(l2)} , fAB
C = δA

a δB
b Xab

C . (A37)

6. For all h1, h2, h3 ∈ h:

{[h1, h2], h3} = ∂(h1)� {h2, h3}+ {h1, [h2, h3]} − ∂(h2)� {h1, h3} − {h2, [h1, h3]} ,

fab
d Xdc

B = ∂a
α Xbc

A �αA
B + Xad

B fbc
d − ∂b

α �αA
B Xac

A − Xbd
B fac

d .
(A38)

7. For all h1, h2, h3 ∈ h:

{h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} ,

Xad
A fbc

d = Xab
B δB

d Xdc
A − Xac

B δB
dXdb

A .
(A39)

8. For all l ∈ l and ∀h ∈ h:

{δ(l), h}+ {h, δ(l)} = −∂(h)� l , 2 δA
a X{ab}

B = −∂b
α �αA

B . (A40)

Finally, when dealing with various algebra valued differential forms, one multiplies them as
differential forms using the ordinary wedge product ∧, and simultaneously as algebra elements using
one of maps defined above. For example, the product with an action ∧� of the g-valued n-form ρ on
the h-valued m-form η is defined as:

ρ ∧� η =
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn τα � ta dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn

=
1

n!m!
ρα

µ1 ...µm ηa
ν1 ...νn �αa

btb dxµ1 ∧ . . . dxµm ∧ dxν1 ∧ · · · ∧ dxνn .
(A41)
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1 Introduction

Within the Loop Quantum Gravity framework, one studies the nonperturbative quantiza-
tion of gravity, both canonically and covariantly, see [1–4] for an overview and a compre-
hensive introduction. The covariant approach focuses on defining the path integral for the
gravitational field by considering a triangulation of a spacetime manifold and specifying
the path integral as a discrete state sum of the gravitational field configurations living on
the simplices in the triangulation. This quantization technique is usually referred to as the
spinfoam quantization method, and it can be divided into three major steps:

1. first, one writes the classical action S[g] as a topological BF -like action plus simplicity
constraints,

2. then one uses the algebraic structure underlying the topological sector of the action
to define a topological state sum Z,
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3. and finally, one deforms the topological state sum by imposing simplicity constraints,
thus promoting it into a path integral for a physical theory.

Spinfoam models for gravity are usually constructed by constraining the topological gauge
theory known as BF theory, obtaining the Plebanski formulation of general relativity [5].
For example, in 3 dimensions, the prototype spinfoam model is known as the Ponzano-
Regge model [6]. In 4 dimensions there are multiple models, such as the Barrett-Crane
model [7, 8], the Ooguri model [9], and the most sophisticated EPRL/FK model [10, 11]
(see also [12–14]). All these models aim to define a viable theory of a quantum gravitational
field alone, without matter fields. The attempts to include matter fields have had limited
success [15], mainly because the mass terms cannot be expressed in the theory due to the
absence of the tetrad fields from the topological BF sector of the theory.

In order to overcome this problem, a new approach has been developed within the
framework of higher gauge theory (for a review of higher gauge theory, see [16, 17], and
for its applications in physics see [18–29]). Within higher gauge theory formalism, one
generalizes the BF action, based on some Lie group, to an 2BF action based on the
2-group structure. Within this approach [30], one rewrites the action for general relativity
as a constrained 2BF action, such that the tetrad fields are present in the topological
sector. This result opened up the possibility to couple all matter fields to gravity in
a straightforward way. Nevertheless, the matter fields could not be naturally expressed
using the underlying algebraic structure of a 2-group, rendering the spinfoam quantization
method only half-implementable, since the matter sector of the classical action could not
be expressed as a topological term plus a simplicity constraint, which means that the steps
2 and 3 above could not be performed for the matter sector of the action.

This final issue has recently been resolved in [31], where one more step in the categorical
ladder is performed in order to generalize the underlying algebraic structure from a 2-
group to a 3-group (see also [32] for the 4-group formulation). This generalization then
naturally gives rise to the so-called 3BF action, which proves to be suitable for a unified
description of both gravity and matter fields. The first step of the spinfoam quantization
program is carried out in [31] where the suitable gauge 3-groups have been specified, and the
corresponding constrained 3BF actions constructed so that the desired classical dynamics
of the gravitational and matter fields are obtained. A reader interested in the construction
of the constrained 2BF actions describing the Yang-Mills field and Einstein-Cartan gravity,
and 3BF actions describing the Klein-Gordon, Dirac, Weyl, and Majorana fields, each
coupled to gravity in the standard way, is referred to [30, 31].

In this paper, we focus our attention on the second step of the spinfoam quantization
program: we will construct a triangulation independent topological state sum Z, based on
the classical 3BF action for a general 3-group and a 4-dimensional spacetime manifoldM4.
This state sum coincides with Porter’s TQFT [33, 34] for d = 4 and n = 3. In order to
verify that the constructed state sum is topological, we analyze its behavior under Pachner
moves [35]. Pachner moves are local changes of a triangulation that preserve topology,
such that any two triangulations of the same manifold are connected by a finite number of
Pachner moves. In 4 dimensions, there are five different Pachner moves: the 3 − 3 move,

– 2 –
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4− 2 move, and 5− 1 move, and their inverses. After defining the state sum, we calculate
its behavior under these Pachner moves. We obtain that the state sum Z remains the
same, proving that it is a topological invariant of the underlying 4-dimensional manifold.
This construction thus completes the second step of the quantization procedure. Our result
paves the way for the third step of the covariant quantization procedure and a formulation
of a quantum theory of gravity and matter by imposing the simplicity constraints on the
state sum. We leave the third step for future work.

The layout of the paper is as follows. In section 2 we review the pure and the con-
strained nBF theories describing some of the physically relevant models — the constrained
2BF actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained
3BF actions describing the Klein-Gordon and Dirac fields coupled to Yang-Mills fields and
gravity in the standard way. In section 3, we review the relevant algebraic tools involved
in the description of higher gauge theory, 2-crossed modules, and 3-gauge theory. Start-
ing from the notion of Lie 3-groups, we generalize the integral picture of gauge theory
to a 3-gauge theory that involves curves, surfaces, and volumes labeled with elements of
non-Abelian groups. In section 4, we define the discrete state sum model of topological
higher gauge theory in dimension d = 4. The model is defined for any closed and oriented
combinatorial 4-dimensional manifold M4. The proof that the state sum is invariant un-
der the Pachner moves and thus independent of the chosen triangulation is presented in
appendix B.

Notations and conventions throughout the paper are as follows. The local Lorentz
indices are denoted by the Latin letters a, b, c, . . . , that take values 0, 1, 2, 3, and are raised
and lowered using the Minkowski metric ηab with signature (−,+,+,+). The spacetime
indices are denoted by the Greek letters µ, ν, . . . , and are raised and lowered by the space-
time metric gµν = ηabe

a
µe
b
ν , where eaµ denotes the tetrad fields. If G is a finite group,∫

G dg = 1/|G|
∑
g∈G denotes the normalized sum over all group elements, while δG denotes

the corresponding δ-distribution on G. The δ-distribution is defined for every element
g ∈ G such that δG(g) = |G| if g is the unit element of the group, i.e. , g = e, and δG(g) = 0
if it is not, i.e. , g 6= e. If G is a Lie group,

∫
G dg and δG denote the Haar measure and the

δ-distribution on G, respectively. The set of all k-simplices, 0 ≤ k ≤ d, is denoted by Λk.
The set of vertices Λ0 is finite and ordered, and every k-simplex is labeled by (k+1)-tuples
of vertices (i0 . . . ik), where i0, . . . , ik ∈ Λ0 such that i0 < · · · < ik.

2 Review of the classical theory

2.1 Topological nBF theories

For a given Lie group G whose Lie algebra g is equipped with the G-invariant symmetric
nondegenerate bilinear form 〈_ ,_〉g, and for a given 4-dimensional spacetime manifold
M4, one can introduce the BF action as

SBF =
∫
M4
〈B ∧ F 〉g , (2.1)

where 2-form F ≡ dα + α ∧ α is the curvature for the g-valued connection 1-form α ∈
A1(M4 , g) and 2-form B ∈ A2(M4 , g) is an g-valued Lagrange multiplier. Varying the

– 3 –



J
H
E
P
0
7
(
2
0
2
2
)
1
0
5

action (2.1) with respect to the Lagrange multiplier B and the connection α, one obtains
the equations of motion of the theory,

F = 0 , ∇B ≡ dB + α ∧B = 0 . (2.2)

From the first equation of motion, one sees that α is a flat connection, which then, together
with the second equation of motion, implies that B is constant. Therefore, the theory given
by the BF action has no local propagating degrees of freedom, i.e., the theory is topological.
For more details about the BF theory see [5, 36, 37].

Within the framework of Higher Gauge Theory, by passing from the notion of a gauge
group to the notion of a gauge 2-group, one defines the categorical generalization of the
BF action, called the 2BF action. A 2-group has a naturally associated notion of a 2-
connection (α , β), described by the usual g-valued 1-form α ∈ A1(M4 , g) and an h-valued
2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie group H. The 2-connection
gives rise to the so-called fake 2-curvature (F ,G), where F is a g-valued fake curvature
2-form F ∈ A2(M4 , g) and G is an h-valued curvature 3-form G ∈ A3(M4 , h), defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (2.3)

Representing the 2-group as a crossed-module (H ∂→ G ,B), and seeing the next section for
the definition and notation, one introduces a 2BF action using the fake 2-curvature (2.3) as

S2BF =
∫
M4
〈B ∧ F〉g + 〈C ∧ G〉h , (2.4)

where the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are Lagrange multipliers,
and 〈_ ,_〉g and 〈_ ,_〉h denote the G-invariant symmetric nondegenerate bilinear forms
for the algebras g and h, respectively. Similarly as in the case of the BF theory, varying
the 2BF action (2.4) with respect to the Lagrange multipliers B and C one obtains the
equations of motion,

F = 0 , G = 0 , (2.5)

i.e. , the conditions that the curvature 2-form F and the curvature 3-form G vanish, while
varying with respect to the connections α and β one obtains

∇B + C ∧T β = 0 , ∇C − ∂(B) = 0 . (2.6)

Similar to the case of the BF action, the 2BF action defines a topological theory, i.e., a
theory with no propagating degrees of freedom, see [38–41] for review and references.

Continuing the categorical ladder one step further, one can generalize the 2BF ac-
tion to the 3BF action, by passing from the notion of a 2-group to the notion of a 3-
group. Representing the 3-group with a 2-crossed module (L δ→ H

∂→ G ,B , {_ ,_}p),
and seeing next section for definition and notation, one can define a 3-connection as an
ordered triple (α, β, γ), where α, β, and γ are appropriate algebra-valued differential forms,
α ∈ A1(M4, g), β ∈ A2(M4, h), and γ ∈ A3(M4, l). The corresponding fake 3-curvature
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(F ,G,H) is defined as:

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ ,

H = dγ + α ∧B γ + {β ∧ β}p .
(2.7)

Then, similar to the construction of BF and 2BF actions, one defines the 3BF action as

S3BF =
∫
M4
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (2.8)

where g, h, and l denote the Lie algebras corresponding to the Lie groups G, H, and L and
the forms 〈_,_〉g, 〈_,_〉h, and 〈_,_〉l are G-invariant symmetric nondegenerate bilinear
forms on g, h, and l, respectively. The variables B ∈ A2(M4, g), C ∈ A1(M4, h), and
D ∈ A0(M4, l) are Lagrange multipliers, and their associated equations of motion are the
conditions that the 3-curvature (F ,G,H) vanishes,

F = 0 , G = 0 , H = 0 . (2.9)

Additionally, varying with respect to the 3-connection variables α, β, and γ one gets:

∇B + C ∧T β −D ∧S γ = 0 , (2.10)

∇C − ∂(B)−D ∧(χ1+χ2) β = 0 , (2.11)
∇D + δ(C) = 0 . (2.12)

For further details see [22, 42, 43] for the definition of the 3-group, and [31] for the definition
of the pure 3BF action.

All the above actions are topological, in the sense that they do not contain any local
propagating degrees of freedom [44, 45]. In this sense, they are not very interesting for the
description of realistic physics, which should feature nontrivial dynamics. Nevertheless, by
choosing the convenient underlying 2-crossed module structure and imposing the appropri-
ate simplicity constraints onto the degrees of freedom present in the 3BF action, one can
obtain the nontrivial classical dynamics of the gravitational and matter fields, as we will
see in the following subsection.

2.2 Models with relevant dynamics

Let us review how one can employ the n-group structure to introduce the topological nBF
actions corresponding to gravity and matter fields, as well as the form of the appropriate
simplicity constraints to be imposed on these fields to obtain the classical dynamics.

First we review the most important constrained 2BF actions. We begin by rewriting
general relativity as a constrained 2BF action based on the underlying Poincaré 2-group.
The Poincaré 2-group is equivalent to a crossed module (H ∂→ G,B), where the groups are
choosen as G = SO(3, 1) and H = R4, and the map ∂ is trivial. The action B is a natural
action of SO(3, 1) on R4, defined as

Mab B Pc = η[bcPa] , (2.13)
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where Mab and Pa are the generators of groups SO(3, 1) and R4, respectively. The ac-
tion B of SO(3, 1) on itself is given via conjugation, by definition of a crossed module.
Then, Poincaré 2-group gives rise to the 2-connection (α, β), given by the algebra-valued
differential forms

α = ωabMab , β = βaPa , (2.14)

where we have interpreted the connection 1-form αab as the ordinary spin connection ωab.
Also, the corresponding 2-curvature (F ,G) is given as

F = (dωab + ωac ∧ ωcb)Mab ≡ RabMab ,

G = (dβa + ωab ∧ βb)Pa ≡ ∇βaPa ≡ GaPa ,
(2.15)

where we can recognize the standard Riemann curvature 2-form Rab in F . Having these
variables in hand, one defines 2BF action (2.4) for the Poincaré 2-group as

S2BF =
∫
M4

Bab ∧Rab + ea ∧∇βa . (2.16)

Here, the crucial insight is that the Lagrange multiplier fields Ca can be identified with the
tetrads [30], since one can show that 1-forms Ca transform in the same way as the tetrad
1-forms ea under the Lorentz transformations and diffeomorphisms. One can now construct
the action for general relativity by simply adding the additional simplicity constraint term
to the action (2.16):

S =
∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (2.17)

Here λab is a Lagrange multiplier 2-form associated to the simplicity constraint term, and
lp is the Planck length. It is straightforward to show that the corresponding equations
of motion reduce to vacuum Einstein field equations. Thus the action (2.17) is classically
equivalent to general relativity. The construction of the action (2.17) is analogous to the
Plebanski model, where general relativity is constructed by adding a simplicity constraint
to the BF theory based on the Lorentz group. However, one clear advantage of this model
over the Plebanski model is that the tetrads are explicitly present in the topological sector
of the action. Upon the covariant quantization, tetrads are therefore fundamental, off-shell
quantities, in contrast to the Plebanski model where they appear only on-shell, as solutions
of the classical equations of motion. The off-shell presence of the tetrads facilitates the
straightforward coupling of the matter fields to gravity, and thus overcomes the problems
present in the spinfoam models [15].

The Poincaré 2-group can be easily extended to include the coupling of the SU(N)
Yang-Mills fields to gravity [31]. To achieve this, one constructs the crossed module (H ∂→
G,B), where the groups are chosen as G = SO(3, 1)× SU(N) and H = R4, while the map
∂ remains trivial, as before. The action B of the group G on H is such that the SO(3, 1)
subgroup acts on R4 via the vector representation (2.13), while the action of the SU(N)
subgroup is trivial,

τI B Pa = 0 , (2.18)
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where τI are the SU(N) generators. This crossed module yields the 2-connection (α, β),
where algebra-valued 1-form α and algebra valued 2-form β are defined as follows,

α = ωabMab +AIτI , β = βaPa , (2.19)

where we can identify the gauge connection 1-form AI . This connection gives rise to the
2-curvature (F ,G), where F as defined as

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK , (2.20)

while the curvature G for β remains the same as before. Given these variables, the Lagrange
multiplier B in the first term of the topological action (2.4) also splits into two pieces
corresponding to the direct product of the group G, giving

S2BF =
∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (2.21)

where 2-form BI ∈ A2(M4 , su(N)) is the second piece of the Lagrange multiplier. To
obtain the non-trivial classical dynamics for gravity and the Yang-Mills field, we add the
appropriate simplicity constraint terms to the action (2.21), and construct the constrained
2BF action:

S =
∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λI ∧

(
BI −

12
g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.

(2.22)

Here, the first row is the topological sector and the familiar simplicity constraint for gravity
from (2.17), while the second row contains the appropriate simplicity constraints for Yang
Mills field, featuring the Lagrange multipliers λI and ζabI . The action (2.22) provides two
dynamical equations — the equation for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (2.23)

where Γ λµν is the standard Levi-Civita connection, and an equation for ea which is the
Einstein field equation with the SU(N) gauge field source term,

Rµν − 1
2g

µνR = 8πl2p Tµν , Tµν ≡ − 1
4g
(
Fρσ

IF ρσIg
µν + 4FµρIFρνI

)
. (2.24)

In this way, we see that both gravity and gauge fields can be successfully represented within
a unified framework of higher gauge theory, based on a 2-group structure. A generalization
from SU(N) Yang-Mills case to the more complicated cases, such as SU(3)×SU(2)×U(1),
is straightforward.

Let us now review how one can use the 3-group structure and the corresponding con-
strained 3BF theory to describe general relativity coupled to Klein-Gordon and Dirac
fields. To describe a single real Klein-Gordon field coupled to gravity, one begins by spec-
ifying a 2-crossed module (L δ→ H

∂→ G ,B , {_ ,_}p), as follows. The groups are given as
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G = SO(3, 1), H = R4, and L = R. The group G acts on H via the vector representation,
and on L via the trivial representation. The maps ∂ and δ are chosen to be trivial, as well
as the Peiffer lifting. Given this choice of a 2-crossed module, the 3-connection (α , β , γ)
takes the form

α = ωabMab , β = βaPa , γ = γI , (2.25)

where I is the sole generator of the Lie group L. This 3-connection gives rise to the fake
3-curvature (F ,G,H),

F = RabMab , G = ∇βaPa , H = dγ . (2.26)

The importance of the 3BF theory for this choice of the 2-crossed module lies in the fact
that the Lagrange multiplier D can transform as a scalar with respect to Lorentz symmetry,
Mab B I = 0, and it transforms as a scalar with respect to diffeomorphisms since D is also
a 0-form. In other words, one can interpret the Lagrange multiplier D to be a real scalar
field, D ≡ φ, and write the topological 3BF action (2.8) as:

S3BF =
∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ . (2.27)

In order to obtain the Klein-Gordon field φ of mass m coupled to gravity in the standard
way, the appropriate simplicity constraints are imposed, and the constrained 3BF action
takes the form:

S =
∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2Habce
a ∧ eb ∧ ec

)
+ Λab ∧

(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1
2 · 4!m

2φ2εabcde
a ∧ eb ∧ ec ∧ ed .

(2.28)

The first row is the topological sector (2.27) and the simplicity constraint for gravity from
the action (2.17), the second row contains two new simplicity constraints featuring the
Lagrange multiplier 1-forms λ and Λab and the 0-form Habc, and the third row features the
mass term for the scalar field. The action (2.28) has two dynamical equations of motion
— the equation for the scalar field φ is the covariant Klein-Gordon equation,(

∇µ∇µ −m2
)
φ = 0 , (2.29)

while the equation for the tetrads ea is the Einstein field equation with the scalar field
source term,

Rµν − 1
2g

µνR = 8πl2p Tµν , Tµν ≡ ∂µφ∂νφ− 1
2g

µν
(
∂ρφ∂

ρφ+m2φ2
)
. (2.30)

We see that the obtained theory is classically equivalent to general relativity coupled to a
scalar field. Most importantly, one sees that the choice of the group L dictates the matter
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content of the theory, while the action B of G on L specifies the transformation properties
of the matter fields.

Finally, in order to describe the Dirac field coupled to Einstein-Cartan gravity, the
2-crossed module (L δ→ H

∂→ G ,B , {_ ,_}p) has to be chosen as follows. The groups are
G = SO(3, 1). H = R4, and L = R8(G), where G is the algebra of complex Grassmann
numbers. The maps ∂, δ, and the Peiffer lifting are trivial, as before. The action of the
group G on H is via vector representation, and on L via spinor representation, in the
following way. Denoting the eight generators of the Lie group R8(G) as Pα and Pα, where
the bispinor index α takes the values 1, . . . , 4, the action B of G on L is given explicitly as

Mab B Pα = 1
2(σab)βαPβ , Mab B Pα = −1

2(σab)αβP β , (2.31)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices. This choice of the 2-crossed

module gives rise to the 3-connection (α , β , γ), defined as

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (2.32)

where the 3-connection 3-forms γα and γ̄α should not be confused with the Dirac matrices
γa due to different types of indices. The 3-curvature (F ,G ,H) is given as:

F = RabMab , G = ∇βaPa ,

H =
(
dγα + 1

2ω
ab(σab)αβγβ

)
Pα +

(
dγ̄α −

1
2ω

abγ̄β(σab)βα
)
Pα ≡ (

→
∇γ)αPα + (γ̄

←
∇)αPα .

(2.33)

As in the case of the scalar field, the choice of the group L and action B of G on L dictates
the matter content of the theory and its transformation properties. The group L prescribes
that D contains eight independent real anticommuting matter fields as its components.
Then, since D is a 0-form and it transforms according to the spinorial representation of
SO(3, 1), these eight real Grassmann-valued fields can be identified with the four complex
Dirac bispinor fields, and one can write the corresponding topological 3BF action as:

S3BF =
∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψα + ψ̄α(

→
∇γ)α . (2.34)

In order to obtain the action that gives us the dynamics of Einstein-Cartan theory of
gravity coupled to a Dirac field, we add the following simplicity constraints:

S =
∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψα + ψ̄α(

→
∇γ)α − λab ∧

(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6εabcde
a ∧ eb ∧ ec(ψ̄γd)α

)
+ λ̄α ∧

(
γα + i

6εabcde
a ∧ eb ∧ ec(γdψ)α

)
− 1

12mψ̄ψ εabcde
a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ

aψ εabcde
b ∧ ec ∧ βd.

(2.35)

The topological sector is in the first row, as well as the gravitational simplicity constraint,
the second row contains the new simplicity constraints for the Dirac field, while the third
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row contains the mass term for the Dirac field and a term that ensures the correct coupling
between the torsion and the spin of the Dirac field. Varying the action (2.35), one obtains
the following dynamical equations of motion — the equations for ψ and ψ̄ which are the
standard covariant Dirac equation and its conjugate,

(iγaeµa
→
∇µ −m)ψ = 0 , ψ̄(i

←
∇µeµaγa +m) = 0 , (2.36)

and the differential equation of motion for ea which is the Einstein field equation with a
Dirac field source term,

Rµν − 1
2g

µνR = 8πl2p Tµν , Tµν ≡ i

2 ψ̄γ
a
↔
∇νeµaψ −

1
2g

µνψ̄
(
iγa
↔
∇ρeρa − 2m

)
ψ , (2.37)

where
↔
∇ =

→
∇−

←
∇. Moreover, one obtains the desired equation of motion for the torsion,

Ta ≡ ∇ea = 2πl2psa , sa = iεabcde
b ∧ ecψ̄γ5γ

dψ , (2.38)

where sa is the Dirac spin 2-form. The equations of motion (2.36), (2.37), and (2.38) are
precisely the equations of motion of the Einstein-Cartan-Dirac theory.

The natural presence of a scalar and Dirac field in the 3BF action is an essential
property of the specific choices of the 3-group structures in a 4-dimensional spacetime,
just like the existence of the tetrad field ea in the topological 2BF action is an essential
property of the 2BF action and the Poincaré 2-group. In this way, both the scalar field
and the Dirac field appear in the topological sector of the action, making the quantization
procedure feasible. Similarly, one can introduce Weyl and Majorana fields as well, see [31].

3 A review of 2-groups and 3-groups

As we have seen in the previous section, the gauge symmetry of 3-gauge theory is described
by an algebraic structure known as a 3-group. In this section, we present the relevant
definition of the 3-group, and we briefly explain how this structure is used to equip curves,
surfaces, and volumes with holonomies. The results obtained in this section are necessary
for the construction of the topological invariant, which will be studied in section IV.

3.1 3-Groups

In the category theory, a 2-group is defined as a 2-category consisting of only one object,
where all the morphisms and 2-morphisms are invertible. It has been shown that every
strict 2-group is equivalent to a crossed module (H ∂→ G ,B).

A pre-crossed module (H ∂→ G ,B) of groups G and H, is given by a group map
∂ : H → G, together with a left action B of G on both groups, by automorphisms, such
that the group G acts on itself via conjugation, i.e. , for each g1, g2 ∈ G,

g1 B g2 = g1g2g
−1
1 ,

and for each h1 , h2 ∈ H and g ∈ G the following identity holds:

g∂hg−1 = ∂(g B h) .
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In a pre-crossed module the Peiffer commutator is defined as:

〈h1 , h2〉p = h1h2h
−1
1 ∂(h1) B h−1

2 . (3.1)

A pre-crossed module is said to be a crossed module if all of its Peiffer commutators are
trivial, which is to say that the Peiffer identity is satisfied:

(∂h1) B h2 = h1h2h
−1
1 . (3.2)

Continuing the categorical generalization one step further, one can generalize the no-
tion of a 2-group to the notion of a 3-group. Similar to the definition of a group and a
2-group within the category theory formalism, a 3-group is defined as a 3-category with
only one object, where all morphisms, 2-morphisms, and 3-morphisms are invertible. More-
over, in analogy with how a crossed module encodes a strict 2-group, it has been proved
that a semistrict 3-group — Gray group is equivalent to a 2-crossed module [42, 46].

A 2-crossed module (L δ→ H
∂→ G, B, {_, _}p) is a chain complex of groups, given by

three groups G, H, and L, together with maps ∂ and δ,

L
δ→ H

∂→ G ,

such that ∂δ = 1G, an action B of the group G on all three groups, and a map {_ ,_}p
called the Peiffer lifting:

{_ ,_}p : H ×H → L .

The maps ∂ and δ, and the Peiffer lifting are G-equivariant, i.e. , for each g ∈ G and h ∈ H

g B ∂(h) = ∂(g B h) , g B δ(l) = δ(g B l) ,

and for each h1, h2 ∈ H and g ∈ G:

g B {h1 , h2}p = {g B h1, g B h2}p .

The action of the group G on the groupsH and L is a smooth left action by automorphisms,
i.e. , for each g, g1, g2 ∈ G, h1, h2 ∈ H, l1, l2 ∈ L and k ∈ H,L,

g1B(g2Bk) = (g1g2)Bk , gB(h1h2) = (gBh1)(gBh2) , gB(l1l2) = (gB l1)(gB l2) .

The action of the group G on itself is again via conjugation. Further, the following identities
are satisfied:

δ({h1, h2}p) = 〈h1 , h2〉p , ∀h1, h2 ∈ H ; (3.3a)
[l1, l2] = {δ(l1) , δ(l2)}p , ∀l1 , l2 ∈ L , where [l, k] = lkl−1k−1;

(3.3b)

{h1h2, h3}p = {h1, h2h3h
−1
2 }p∂(h1) B {h2, h3}p , ∀h1, h2, h3 ∈ H ;

(3.3c)

{h1, h2h3}p = {h1, h2}p{h1, h3}p{〈h1, h3〉−1
p , ∂(h1) B h2}p , ∀h1, h2, h3 ∈ H ;

(3.3d)

{δ(l), h}p{h, δ(l)}p = l(∂(h) B l−1) , ∀h ∈ H , ∀l ∈ L . (3.3e)
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In a 2-crossed module the structure (L δ→ H, B′) is a crossed module, with action of the
group H on the group L defined for each h ∈ H and l ∈ L as:

hB′ l = l {δ(l)−1, h}p ,

and it follows that the Peiffer identity is satisfied for each l1, l2 ∈ L:

δ(l1) B′ l2 = l1 l2 l
−1
1 .

However, the structure (H ∂→ G ,B) in the general case does not form a crossed module, but
a pre-crossed module, and for each h, h′ ∈ H the Peiffer commutator does not necessarily
vanish.

The following identities hold, for each h1, h2, h3 ∈ H [42]:

{h1h2, h3}p = (h1 B
′ {h2, h3}p){h1, ∂(h2) B h3}p , (3.4)

{h1, h2h3}p = {h1, h2}p(∂(h1) B h2) B′ {h1, h3}p , (3.5)

and are of prime importance for the proof of the Pachner moves invariance. By using the
condition (3.3e) of the definition of a 2-crossed module, it follows that for each h ∈ H and
l ∈ L the following identity holds:

{h, δ(l)−1}p = (hB′ l−1)(∂(h) B l) . (3.6)

Moreover, for each h1, h2 ∈ H,

{h1, h2}−1
p = h1 B

′ {h−1
1 , ∂(h1) B h2}p , (3.7)

{h1, h2}−1
p = ∂(h1) B {h−1

1 , h1h2h
−1
1 }p , (3.8)

{h1, h2}−1
p = (h1h2h

−1
1 ) B′ {h1, h

−1
2 }p , (3.9)

{h1, h2}−1
p = (∂(h1) B h2) B′ {h1, h

−1
2 }p . (3.10)

A reader interested in more details about 3-groups is referred to [43].

3.2 3-gauge theory

In this subsection, we will describe how the language of 3-gauge theory can be used in
order to define compositions of labeled paths, surfaces, and volumes. In a 3-gauge theory,
one labels geometric objects at three levels. Curves are labeled by elements of G. Their
composition and orientation reversal is defined as in conventional gauge theory. In addition,
surfaces are labeled with elements of H, and volumes are labeled with the elements of L.
The reader interested in the formulation of a 2-gauge theory is referred to [47].

Curves are labeled with the elements of G, and the elements are composed as in the
ordinary gauge theory, i.e. , for each g1, g2 ∈ G,

• •
g1

vv •
g2

vv = • •
g1g2
vv

,

the composition of the elements results in the element g1g2 ∈ G. The orientation of a curve
can be reversed if it is labeled by the inverse element g−1 instead.
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Surfaces are labeled with the elements h ∈ H. For each surface, we choose two reference
points on the boundary, and split the boundary into two curves, the source curve labeled
with g1 ∈ G, and the target curve labeled with g2 ∈ G, as demonstrated in the diagram

• •

g1

xx

g2

ff h�� .

The 2-arrow h ∈ H maps the curve g1 ∈ G to the curve ∂(h)g1 ∈ G,

• •
1•

xx

∂h

ff h�� •

g1

xx

g1

ff 1g�� = • •

g1

xx

∂(h)g1

ff h�� ,

so that the label h ∈ H of the surface is required to satisfy the following condition:

∂(h) = g2g
−1
1 . (3.11)

The orientation of the surface can be reversed and labeled with the inverse element instead,

• •

g1

xx

g2

ff
KS
h−1 ,

while the orientation reversal of the curves leads to the surface element labeled with h̃ =
g−1

1 B h−1:

•
g−1

1
''

g−1
2

77 •h̃�� .

One can now compose 2-morphisms vertically. Let us denote the source and the target of
the k-arrow (k = 1, 2) of the 2-morphism h as ∂−k (h) and ∂+

k (h), respectively. Then, the
vertical composition of 2-morphisms (g1, h1) and (g2, h2), when they are compatible, i.e. ,
when ∂+

2 (h1) = ∂−2 (h2),

• •

g

�� g2oo

g3

[[

h1��

h2��

= • •

g1

zz

g3

dd h2h1
��

,

results in a 2-morphism (g1, h2h1),

(g2, h2)#2(g1, h1) = (g1, h2h1) . (3.12)

An important operation is known as whiskering. One can whisker a 2-morphism h

with a morphism g1 by attaching the whisker g1 to the surface h from the left, i.e. , such
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that ∂−1 (g1) = ∂+
1 (h),

• •g1oo •

g2

xx

g′2

ff h
��

= • •

g1g2

vv

g1g′2

hh g1Bh
��

,

which results in the 2-morphism with the source curve g1g2 and target curve g1g
′
2, carrying

the label g1 Bh. Similarly, by attaching whisker g2 to a surface h from the right, i.e. , such
that ∂−1 (h) = ∂+

1 (g2),

• •

g1

xx

g′1

ff h
��

•g2oo = • •

g1g2

vv

g′1g2

hh h
��

,

one obtains the 2-morphism with the source curve g1g2 and target curve g′1g2, carrying the
label h.

The volumes are labeled with the elements l ∈ L. Let us denote the source and the
target of the k-arrow (k = 1, 2, 3) of the 3-morphism l as ∂−k (l) and ∂+

k (l), respectively.
For each volume, we split the boundary into two surfaces, the source surface labeled with
∂−3 (l) = h1 and the target surface labeled with ∂+

3 (l) = h2. On the common boundary of
the source and target surface, we choose two reference points, and split the boundary into
two curves, the source curve labeled with ∂−2 (l) = g1 and the target curve labeled with
∂+

2 (l) = g2, as demonstrated in the diagram below

• •

g1

��

g2

XX h1
��

l
V • •

g1

��

g2

XX h2
��

,

so that the volume label l ∈ L is required to satisfy the following condition:

δ(l) = h2h
−1
1 . (3.13)

The orientation of the volume can be reversed if one labels it with the inverse element l−1:

• •

g1

��

g2

XX h1
��

l−1

W • •

g1

��

g2

XX h2
��

,

while the orientation reversal of the curves and surfaces leads to the surface element labeled
with l̃ = g−1

1 B l,

•

g−1
2

??

g−1
1

��
•g−1

1 Bh1

KS
l̃
V •

g−1
2

??

g−1
1

��
•g−1

1 Bh2

KS

.
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One can compose two 3-morphisms via the upward composition (visualizing a third
axis, orthogonal to the plane of the paper, as the direction up). The upward composition
of 3-morphisms (g1, h1, l1) and (g1, h2, l2), when they are compatible, i.e. , when ∂+

3 (l1) =
∂−3 (l2),

• •

g1

��

g2

XX h1
��

l1
V • •

g1

��

g2

XX h2
��

l2
V • •

g1

��

g2

XX h3
��

= • •

g1

��

g2

XX h1
��

l2l1
V • •

g1

��

g2

XX h3
��

,

results in a 3-morphism (g1, h1, l2l1):

(g1, h2, l2)#3(g1, h1, l1) = (g1, h1, l2l1) . (3.14)

The upward composition of 3-morphisms is associative, and for every h ∈ H there is a
3-morphism that is an identity for the upward composition of 3-morphisms

• •

g1

��

g2

\\ h��

1h

V • •

g1

��

g2

\\ h�� .

The vertical composition of two 3-morphisms (g1, h1, l1) and (g2, h2, l2), when they are
compatible, i.e. , when ∂+

2 (l1) = ∂−2 (l2),

• •

g1

��
g2

oo
h1�� l1

V • •

g1

��
g2

oo
h′1��

• •

g3

__
g2oo
h2��

l2
V • •

g3

__
g2oo
h′2��

,

results in a 3-morphism (g1, h2h1, l2(h2 B′ l1)),

• •

g1

xx

g3

ff h2h1

��

l2(h2B′l1)
V • •

g1

xx

g3

ff δ
(
l2(h2B′l1)

)
h2h1

��
.

One can write, for (g1, h1, l1) and (g2, h2, l2),

(g2, h2, l2)#2(g1, h1, l1) = (g1, h2h1, l2(h2 B
′ l1)) . (3.15)

The vertical composition of 3-morphisms is an associative operation. Composition of 3-
morphisms is invariant under the change of order of upward composition and vertical
composition of 3-morphisms, i.e. ,(

(g2, h
′
2, l
′
2)#3(g2, h2, l2)

)
#2
(
(g1, h

′
1, l
′
1)#3(g1, h1, l1)

)
=
(
(g2, h

′
2, l
′
2)#2(g1, h

′
1, l
′
1)
)
#3
(
(g2, h2, l2)#2(g1, h1, l1)

)
,

(3.16)
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which is demonstrated in the diagram notation, where the diagram

• •

g1

��
g2

oo
h1�� l1

V • •

g1

��
g2

oo
h′1�� l′1

V • •

g1

��
g2

oo
h′′1��

• •

g3

XX
g2oo
h2��

l2
V • •

g3

XX
g2oo
h′2��

l′2
V • •

g3

XX
g2oo
h′′2��

uniquely determines the 3-morphism. The proof of the equation (3.16) is given in the
appendix A.

One can whisker the 3-morphisms with morphisms and 2-morphisms. Whiskering of a
3-morphism by a morphism from the left is the composition of a volume l ∈ L and curve
g1 ∈ G from the left, when they are compatible, i.e. , when ∂+

1 (l) = ∂−1 (g1),

• •g1oo •

g2

��

g′2

XX h1
��

l
V • •g1oo •

g2

��

g′2

XX h2
��

= • •

g1g2

��

g1g′2

__ g1Bh1

��

g1Bl
V • •

g1g2

��

g1g′2

__ g1Bh2

��
.

The composition results in a 3-morphism:

g1#1(g2, h1, l) = (g1g2, g1 B h1, g1 B l) . (3.17)

Similarly, one can whisker a 3-morphism by a morphism from the right, when they are
compatible, i.e. , ∂−1 (l) = ∂+

1 (g2),

• •

g1

��

g′1

XX h1
��

•g2oo
l
V • •

g1

��

g′1

XX h2
��

•g2oo = • •

g1g2

��

g′1g2

__ h1

��

l
V • •

g1g2

��

g′1g2

__ h2

��
,

which results in the 3-morphism:

(g1, h1, l)#1g2 = (g1g2, h1, l) . (3.18)

Whiskering of a 3-morphism with a 2-morphisms from below, when they are compatible,
i.e. , ∂+

2 (l) = ∂−2 (h2), is formed as a vertical composition of 3-morphisms (g1, h1, l) and
(g2, h2, 1h2),

• •

g1

��
g2

oo
h1�� l

V • •

g1

��
g2

oo
h′1��

• •

g3

__
g2oo
h2��

1h2
V • •

g3

__
g2oo
h2��

,
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which results in a 3-morphism

• •

g1

��

g3

__ h2h1

��

h2B′l
V • •

g1

{{

g3

cc δ(h2B′l)h2h1
��

.

One writes,
(g2, h2)#2(g1, h1, l) = (g1, h2h1, h2 B

′ l) . (3.19)

Whiskering a 3-morphism by 2-morphism from above, when they are compatible, i.e. ,
when ∂−2 (l) = ∂+

2 (h1), is formed as a vertical composition of 3-morphisms (g1, h1, 1h1) and
(g2, h2, l),

• •

g1

��
g2

oo
h1�� 1h1

V • •

g1

��
g2

oo
h1��

• •

g3

[[
g2oo

h2��

l
V • •

g3

[[
g2oo

h′2��

,

which results in a 3-morphism,

• •

g1

��

g3

[[ h2h1

��

l
V • •

g1

��

g3

[[ δ(l)h2h1
��

.

One obtains
(g2, h2, l)#2(g1, h1) = (g1, h2h1, l) . (3.20)

The interchanging 3-arrow is the horizontal composition of two 2-morphisms h1 and h2,
when they are compatible, i.e. , when ∂−1 (h1) = ∂+

1 (h2),

• •

g1

xx

g′1

ff h1�� •

g2

xx

g′2

ff h2�� ,

that results in a 3-morphism l, with source surface

∂−3 (l) =
(
(g1, h1)#1g

′
2
)
#2
(
g1#1(g2, h2)

)
,

and target surface
∂+

3 (l) =
(
g′1#1(g2, h2)

)
#2
(
(g1, h1)#1g2

)
,

• •

g1

xx

g′1

ff h1�� •

g2

xx

g′2

ff h2�� = • •

g1g2

ww

g′1g
′
2

gg h1g1Bh2
��

l
V • •

g1g2

ww

g′1g
′
2

gg g′1Bh2h1
��

.
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One obtains,
(g1, h1)#1(g2, h2) = (g1g2, h1g1 B h2, l) , (3.21)

where the 3-morphism l is Peiffer lifting {h1, g1 B h2}−1
p . Using the condition (3.13), one

obtains (
(∂(h1)g1) B h2

)
h1 = δ(l)h1

(
g1 B h2

)
, (3.22)

and from the definition of the Peiffer commutator, the identity (3.1), and the property (3.3a)
of the 2-crossed module, i.e. , δ({h1, h2}p) = 〈h1 , h2〉p, one obtains

δ(l)−1 = h1g1 B h2h
−1
1 (∂(h1)g1) B h2

−1 = 〈h1, g1 B h2〉p = δ({h1, g1 B h2}p) . (3.23)

Given any collection of curves, surfaces, and volumes, a configuration of 3-gauge theory
is an assignment of elements of G to the curves, elements of H to the surfaces, and elements
of L to volumes so that the following conditions hold:

1. For each surface labeled by h ∈ H, one has that ∂(h) = g2g
−1
1 where g1 and g2 are

the source and target curve, respectively;

2. For each volume labeled by l ∈ L, one has that δ(l) = h2h
−1
1 , where h1 and h2 are

the source and target surface, respectively;

3. For each 4-simplex labeled by (jk`mn) ∈ Λ4, the volume holonomy around it is
trivial.

The defined configurations can be viewed as the classical configurations of 3-gauge theory
or, in a path integral quantum theory, these are the configurations over which one integrates
in the path integral.

3.3 Gauge invariant quantities

In subsection 3.2, we have introduced a number of operations by which we can combine
labeled paths, surfaces, and volumes, in order to calculate the composition of elementary
paths, surfaces, and volumes, to arbitrarily large ones. In this subsection, we will make use
of these compositions in order to construct gauge invariant quantities that are associated
with closed paths, surfaces, and volumes. In Lemmas 3.1, 3.2, and 3.3, this procedure is
used for the boundary path of a triangle, the boundary surface of a tetrahedron, and the
boundary volume of the 4-simplex. The result of Lemma 3.1 is already derived for the case
of 2-groups and remains unchanged in the 3-gauge theory, see [38]. The higher flatness
condition for the boundary surface of a tetrahedron derived in [38], is generalized for the
case of 3-groups is Lemma 3.2. One of the main results of the paper is Lemma 3.3 where
we derived the higher flatness condition for the boundary volume of the 4-simplex.

Lemma 3.1. Let us consider a triangle, (jk`). The edges (jk) , j < k, are labeled by group
elements gjk ∈ G and the triangle (jk`) , j < k < `, by element hjk` ∈ H. Consider the
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diagram (3.24).

l• k•
gkl

xx
•j

gjk
ww

gjl

\\
hjkl	�

= l• l•
1•

vv

∂(hjkl)

hh hjkl�� k•
gkl

xx
•j

gjk
ww

gklgjk

ZZ
1gklgjk


�

= l• k•
gkl

xx
•j

gjk
ww

∂(hjkl) gklgjk

\\
hjkl	�

.

(3.24)
The curve γ1 = gk`gjk is the source and the curve γ2 = gj` is the target of the surface
morphism Σ : γ1 → γ2, labeled by the group element hjk`, i.e. ,

gj` = ∂(hjk`)gk`gjk . (3.25)

Lemma 3.2. Let us consider a tetrahedron, (jk`m). The edges (jk) , j < k, are labeled
by group elements gjk ∈ G and the triangles (jk`) , j < k < `, by elements hjk` ∈ H,
and the tetrahedron (jk`m) , j < k < ` < m by the group element ljk`m ∈ L. We have
oriented the triangles (jk`) so that they have the source is gk`gjk and the target is gj`, i.e.
gj` = ∂(hjk`)gk`gjk .

Let us first cut the tetrahedron surface along the edge (jm). This determines the
ordering of the vertical composition of the constituent surfaces. One just has to make
sure that all surfaces are composable, i.e. , they have the suitable reference points and the
correct orientation in order to compose them vertically.

Consider the diagram (3.26). We first move the curve from gk`gjk to the curve gj`.
At this stage, one cannot compose the result with the triangle (j`m), and one first has to
whisker it from the left by g`m. Now the two morphisms are vertically composable, and
this moves the curve to gjm. The following 2-morphism is obtained

m• •`g`moo •k
gk`

xx
•j

gjk
ww

gj`

\\
hjk`	�

gjm

\\

hj`m�

= (g`mgj`, hj`m)#2

(
g`m#1(gk`gjk, hjk`)

)
=
(
g`mgk`gjk, hj`m(g`m B hjk`)

)
.

(3.26)

Let us then consider the diagram (3.27). We first move the curve from g`mgk` to
the curve gkm. At this stage, one cannot compose the result with the triangle (jkm),
and one first has to whisker it from the right by gjk. Now the two morphisms are verti-
cally composable, and this moves the curve to gjm. The following 2-morphism is obtained

m• •`
g`m

yy
•k

gk`
xx

gkm

\\
hk`m	�

•j
gjkoo

gjm

\\
hjkm
��

= (gkmgjk, hjkm)#2
(
(g`mgk`, hk`m)#1gjk

)
= (g`mgk`gjk, hjkmhk`m) .

(3.27)

The two surfaces have the same source and target, Σ1 : g`mgk`gjk → gjm and Σ2 :
g`mgk`gjk → gjm. Now, transition from the surface shown on the diagram (3.26) to
the surface shown on the diagram (3.27) is given by the volume morphism V : Σ1 → Σ2
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determined by the group element ljk`m, i.e. ,

(g`mgk`gjk, hjkmhk`m) =
(
g`mgk`gjk, δ(ljk`m)hj`m(g`m B hjk`)

)
, (3.28)

that gives the relation,

hjkmhk`m = δ(ljk`m)hj`m(g`m B hjk`) . (3.29)

Lemma 3.3. Let us consider a 4-simplex, (jk`mn). The edges (jk) , j < k, are labeled
by group elements gjk ∈ G, the triangles (jk`) , j < k < `, by elements hjk` ∈ H, and the
tetrahedrons (jk`m) , j < k < ` < m, by the group element ljk`m ∈ L. We have oriented
the triangles (jk`) so that the source curve is gk`gjk and the target curve is gj`, i.e. , gj` =
∂(hjk`)gk`gjk , and the tetrahedrons (jk`m) so that the source surface is hj`m(g`m B hjk`)
and the target surface is hjkmhk`m, i.e. , hjkmhk`m = δ(ljk`m)hj`m(g`m B hjk`).

Let us first cut the 4-simplex volume along the surface hjmngmn B (hj`mg`m B hjk`).
This surface determines the ordering of the vertical composition of the constituent vol-
umes. We have to make sure that all volumes are composable, i.e. , they have the suitable
reference points and the correct orientation in order to compose them vertically. First,
let us consider the diagram (3.30). We first move the surface from hj`mg`m B hjk` to
surface hjkmhk`m with the 3-arrow ljk`m. To compose the resulting 3-morphism with the
surface hjmn one must first whisker it from the left with gmn. The obtained 3-morphism
(gmng`mgk`gjk, gmn B (hj`mg`m B hjk`), gmn B ljk`m) can be whiskered from below with the
2-morphism (gmngjm, hjmn), and the resulting 3-morphism is (gmng`mgk`gjk, hjmngmn B
(hj`mg`mBhjk`), hjmnB′ (gmnB ljk`m)), with the source surface hjmngmnB(hj`mg`mBhjk`)
and the target surface hjmngmn B (hjkmhk`m),

n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx
•j

gjk
ww

gj`

\\
hjk`	�

gjm

\\
hj`m�

gjn

ZZ

hjmn
��

hjmnB′(gmnBljk`m)
V n• •m

gmn

xx
•`

g`m
yy

•k
gk`

xx

gkm

\\
hk`m	�

•j
gjk

ww

gjm

\\

gjn

ZZ
hjkm
��hjmn

��

.

(3.30)
Let us move the surface to hjknhkmngm`Bhk`m, see diagram (3.31). To do that, we consider
the 3-morphism (gmngkmgjk, hjmngmnBhjkm, ljkmn) with the source surface hjmngmnBhjkm
and target surface hjknhkmn. This 3-morphism can be whiskered from above with the 2-
morphism (gmng`mgk`gjk, gmnBhk`m), and the obtained 3-morphism is (gmng`mgk`gjk, hjmn
gmnB(hjkmhk`m), ljkmn), with the source surface hjmngmnB(hjkmhk`m) and target surface
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hjknhkmngmn B hk`m,

n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx

gkm

\\
hk`m	�

•j
gjk

ww

gjm

\\

gjn

ZZ
hjkm
��hjmn

��

ljkmn

V n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx

gkm

\\

gkn

\\

hk`m	�

•j
gjk

ww

gjn

ZZ

hkmn
��

hjkn

 (

.

(3.31)
Next, we want to move the surface hjknhkmngmnBhk`m to surface hjknhk`nh`mn, as shown
on the diagram (3.32). We whisker the 3-morphism (gmng`mgk`, hkmngmn B hk`m, lk`mn),
with the source surface hkmngmn B hk`m and target surface hk`nh`mn, with the morphism
gjk from the right, obtaining the 3-morphism (gmng`mgk`gjk, hkmngmnBhk`m, lk`mn). Now,
we whisker this 3-morphism with the 2-morphism (gkngjk, hjkn) from below, and we obtain
the 3-morphism (gmng`mgk`gjk, hjknhkmngmn B hk`m, hjkn B′ lk`mn),

n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx

gkm

\\

gkn

\\

hk`m	�

•j
gjk

ww

gjn

ZZ

hkmn
��

hjkn

 (

hjknB′lk`mn

V n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx

gkn

\\
hk`n

�#

•j
gjk

ww

gjn

ZZ

h`mn��

hjkn

 (

.

(3.32)
The mapping of the surface hjknhk`nh`mn to the surface hj`ng`n B hjk`h`mn in shown on
the diagram (3.33). The 3-morphism with the appropriate source and target is constructed
by whiskering the 3-morphism (g`ngk`gjk, hjknhk`n, l−1

jk`n) with 2-morphism (gmng`mgk`gjk,
h`mn) from above. The obtained 3-morphism is (gmng`mgk`gjk, hjknhk`nh`mn, l−1

jk`n),

n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx

gkn

\\
hk`n

�#

•j
gjk

ww

gjn

ZZ

h`mn��

hjkn

 (

l−1
jk`n

V n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx
•j

gjk
ww

gj`

\\

gjn

ZZ

hjk`
�h`mn��
hj`n


�

.

(3.33)
Next we map the surface hj`ng`n B hjk`h`mn to the surface hj`nh`mn(gmng`m) B hjk`, see
the diagram (3.34). We use the inverse interchanging 2-arrow composition to map the
surface g`n B hjk`h`mn to the surface h`mn(gmng`m) B hjk`, resulting in the 3-morphism
(gmng`mgk`gjk, g`nBhjk`h`mn, {h`mn, (gmng`m)Bhjk`}p). Next, we whisker the obtained 3-
morphism with the 2-morphism (g`ngj`, hj`n) from below. The obtained 3-morphism with
the appropriate source and target surfaces is (gmng`mgk`gjk, hj`ng`n B hjk`h`mn, hj`n B′
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{h`mn, (gmng`m) B hjk`}p),

n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx
•j

gjk
ww

gj`

\\

gjn

ZZ

hjk`
�h`mn��
hj`n


�

hj`nB′{h`mn,(gmng`m)Bhjk`}p
V n• •m

gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx
•j

gjk
ww

gj`

\\

gjn

ZZ

hjk`
�h`mn��
hj`n


�

.

(3.34)
Finally, we construct the 3-morphism that maps the surface hj`nh`mn(gmng`m)Bhjk` to the
starting surface hjmngmnB(hj`mg`mBhjk`). To obtain the 3-morphism with the appropriate
source and target surfaces we first move the surface hj`nh`mn to the surface hjmngmn B
hj`m with the 3-arrow (gmng`mgj`, hj`nh`mn, l−1

j`mn). Next, we whisker the 3-morphism
(gmng`mgj`, hj`nh`mn, l−1

j`mn) with the 2-morphism (gmng`mgk`gjk, (gmng`m) B hjk`) from
above. The obtained 3-morphism (gmng`mgk`gjk, hj`nh`mn(gmng`m) B hjk`, l

−1
j`mn) moves

the surface to the starting surface, as shown on the diagram (3.35),

n• •m
gmn

xx
•`

g`m
yy

g`n

]] •k
gk`

xx
•j

gjk
ww

gj`

\\

gjn

ZZ

hjk`
�h`mn��
hj`n


�

l−1
j`mn

V n• •m
gmn

xx
•`

g`m
yy

•k
gk`

xx
•j

gjk
ww

gj`

\\
hjk`	�

gjm

\\
hj`m�

gjn

ZZ

hjmn
��

.

(3.35)
After the upward composition of the 3-morphisms given by the diagrams (3.30)–(3.35), the
obtained 3-morphism is:

(gmng`mgk`gjk, hj`nh`mn(gmng`m) B hjk`, l
−1
j`mn)#3

(gmng`mgk`gjk, g`n B hjk`h`mn, hj`n B
′ {h`mn, (gmng`m) B hjk`}p)#3

(gmng`mgk`gjk, hjknhk`nh`mn, l−1
jk`n)#3

(gmng`mgk`gjk, hjknhkmngm` B hk`m, hjkn B
′ ljkmn)#3

(gmng`mgk`gjk, hjmngmn B (hjkmhk`m), ljkmn)#3

(gmng`mgk`gjk, hjmngmn B (hj`mg`m B hjk`), hjmn B′ (gmn B ljk`m))
= (gmng`mgk`gjk, hjmngmn B (hj`mg`m B hjk`), l−1

j`mn hj`n B
′ {h`mn, (gmng`m) B hjk`}p

l−1
jk`n(hjkn B′ lk`mn)ljkmnhjmn B′ (gmn B ljk`m)) .

(3.36)

The obtained 3-morphism is the identity morphism with source and target surface V1 =
V2 = hjmngmn B (hj`mg`m B hjk`), i.e. ,

l−1
j`mn hj`n B

′ {h`mn, (gmng`m) B hjk`}p l−1
jk`n(hjkn B′ lk`mn)ljkmnhjmn B′ (gmn B ljk`m) = e .

(3.37)
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4 Quantization of the topological 3BF theory

In conventional BF theory, one chooses the action in such a way that the theory does not
depend on any background field, but only the spacetime manifold. The classical field equa-
tions of the theory require the gauge connection to be flat, i.e. , in terms of the holonomy
variables, that any null-homotopic closed curve corresponds to the identity of the gauge
group. In the framework of higher gauge theory, specifically 2-gauge theory, one general-
izes this idea by imposing the higher flatness condition requiring that the surface holonomy
around the boundary 2-sphere of any 3-ball be trivial instead. One can continue further
categorical generalization by choosing a 3-group structure to describe the gauge symmetry
of the theory, and formulate a 3BF theory whose equations of motion impose a higher flat-
ness condition for a 3-curvature (F ,G,H). In this section, a combinatorial description of
such model for any triangulation of any smooth manifold of dimension d = 4 is presented.
This model coincides with Porter’s abstract definition of a TQFT [33] for d = 4 and n = 3,
which is itself a generalization of Yetter’s work [48, 49].

Let us show how to construct a state sum model from the classical action (2.8) by
the usual heuristic spinfoam quantization procedure. We consider the path integral for the
action S3BF ,

Z =
∫
DαDβDγDBDC DD exp

(
i

∫
M4
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l

)
. (4.1)

The formal integration over the Lagrange multipliers B, C, and D leads to:

Z = N
∫
DαDβDγ δ(F)δ(G)δ(H) . (4.2)

Similarly to conventional gauge theory, the connection 1-form α ∈ A1(M4, g) is discretized
by colouring the edges ε = (jk) ∈ Λ1 of the triangulation with group elements gε ∈ G. The
connection 2-form β ∈ A2(M4 , h) is represented by group elements h∆ ∈ H coloring the
triangles ∆ = (jk`) ∈ Λ2. The connection 3-form γ ∈ A3(M4 , l) is represented by group
elements lτ ∈ L coloring the tetrahedrons τ = (jk`m) ∈ Λ3.

The path integral measures of (4.1) are discretized by replacing∫
Dα 7→

∏
(jk)∈Λ1

∫
G
dgjk , (4.3)

∫
Dβ 7→

∏
(jk`)∈Λ2

∫
H
dhjk`, (4.4)

∫
Dγ 7→

∏
(jk`m)∈Λ3

∫
L
dljk`m , (4.5)

where dgjk, dhjk`, and dljk`m denote integration with respect to the Haar measures of
G, H, and L, respectively. The vanishing fake curvature condition is discretized on each
triangle (jkl) ∈ Λ2 by discretizing δ(F). When passing from a smooth manifold to its
triangulation, the δ distribution is defined over the appropriate set of simplices as follows,

δ(F) =
∏

(jk`)∈Λ2

δG(gjk`) , (4.6)
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where for each (jkl) ∈ Λ2 the δ-function δG(gjkl) is given by:

δG(gjk`) = δG
(
∂(hjk`) gk` gjk g−1

j`

)
. (4.7)

Similarly, on the triangulated manifold the condition δ(G) on the fake curvature 3-form
reads

δ(G) =
∏

(jk`m)∈Λ3

δH(hjk`m) , (4.8)

where for every tetrahedron (jk`m) ∈ Λ3 one has:

δH(hjk`m) = δH
(
δ(ljk`m)hj`m (g`m B hjk`)h−1

k`m h
−1
jkm

)
. (4.9)

Finally, the condition δ(H) is discretized as

δ(H) =
∏

(jk`mn)∈Λ4

δL(ljk`mn) , (4.10)

where for each 4-simplex (jk`mn) ∈ Λ4 one has:

δL(ljk`mn) = δL
(
l−1
j`mnhj`nB

′{h`mn,(gmng`m)Bhjk`}p l−1
jk`n(hjknB′ lk`mn)ljkmnhjmnB′(gmnBljk`m)

)
.

(4.11)
The identities (4.7), (4.9), and (4.11) are the results of Lemmas 3.1, 3.2, and 3.3, respec-
tively.

After substituting the expressions for discretized measures (4.3)–(4.5) and
δ-functions (4.6), (4.8), and (4.10) into the equation (4.2) one obtains:

Z =N
∏

(jk)∈Λ1

∫
G

dgjk
∏

(jk`)∈Λ2

∫
H

dhjk`
∏

(jk`m)∈Λ3

∫
L

dljk`m

( ∏
(jk`)∈Λ2

δG
(
gjk`

))( ∏
(jk`m)∈Λ3

δH
(
hjk`m

))( ∏
(jk`mn)∈Λ4

δL
(
ljk`mn

))
.

(4.12)
By inserting (4.7), (4.9), and (4.11) into (4.12), we obtain an explicit expression for the
state sum over a given triangulation of the manifold M4. This expression can be made
independent of the triangulation if one appropriately chooses the constant factor N , ob-
tained after the integration over the Lagrange multipliers B, C, and D. This is done by
requiring that the state sum is invariant under the Pachner moves, which leads us to the
appropriate form of the constant factor N , as given by the definition 4.1.

Definition 4.1. LetM4 be a compact and oriented combinatorial d-manifold, d = 4, and
(L δ→ H

∂→ G ,B , {_ ,_}pf) be a 2-crossed module. The state sum of topological higher
gauge theory is defined by

Z = |G|−|Λ0|+|Λ1|−|Λ2||H||Λ0|−|Λ1|+|Λ2|−|Λ3| |L|−|Λ0|+|Λ1|−|Λ2|+|Λ3|−|Λ4|

×
(∏

(jk)∈Λ1

∫
G
dgjk

)(∏
(jk`)∈Λ2

∫
H
dhjk`

)(∏
(jk`m)∈Λ3

∫
L
dljk`m

)
×
(∏

(jk`)∈Λ2 δG
(
∂(hjk`) gk` gjk g−1

j`

))(∏
(jk`m)∈Λ3 δH

(
δ(ljk`m)hj`m (g`m B hjk`)h−1

k`m h
−1
jkm

))
×
(∏

(jk`mn)∈Λ4 δL
(
l−1
j`mn hj`n B

′ {h`mn, (gmng`m) B hjk`}p l−1
jk`n(hjkn B′ lk`mn)ljkmnhjmn B′ (gmn B ljk`m)

))
.

(4.13)

– 24 –



J
H
E
P
0
7
(
2
0
2
2
)
1
0
5

Here we integrate over gjk ∈ G for every edge (jk) ∈ Λ1, over hjk` ∈ H for ev-
ery triangle (jk`) ∈ Λ2 and over ljklm for every tetrahedron (jk`m) ∈ Λ3 . The δ-
distributions under the integral impose the following conditions. First, the condition
that ∂(hjk`) gk` gjk = gj` for each triangle (jk`) ∈ Λ2, i.e. , that each surface label hjk`
has got the appropriate source and target, see Lemma 3.1. Second, the condition that
hjkm hk`m = δ(ljk`m)hj`m (g`m B hjk`) for each tetrahedron (jk`m) ∈ Λ3, i.e. , that each
volume label ljk`m has got the appropriate source and target, see Lemma 3.2. Finally, the
condition that the volume holonomy around every 4-simplex (jk`mn) ∈ Λ4 is trivial, i.e. ,
that l−1

j`mn hj`n B′ {h`mn, (gmng`m) B hjk`}p l−1
jk`n(hjkn B′ lk`mn)ljkmnhjmn B′ (gmn B ljk`m)

is equal to the neutral element of the group L for each 4-simplex (jk`mn) ∈ Λ4, see
Lemma 3.3.

Theorem 4.2. LetM4 be a closed and oriented combinatorial 4-manifold and (L δ→ H
∂→

G ,B , {_ ,_}pf) be a 2-crossed module. The state sum (4.13) is invariant under Pachner
moves.

The statements of Pachner move invariance are formulated in the following subsections,
while corresponding proofs are given in the appendix B.

4.1 Pachner move 1↔ 5

(3)

(2)

(6)

(5)

(4)

1↔ 5

(3)

(2)

(6)

(5)

(4)•
(1)

Let us verify that the state sum (4.13) is invariant under 1 − 5 Pachner move. Since
the partition function is independent of the total order of vertices, let us fix the ordering
and verify the move in only one case. Let us denote the vertices of the 4-simplex on the
left hand side of the 1 − 5 Pachner move as (23456). Then, adding a vertex 1 on the
right hand side of the Pachner move one obtains five 4-simplices M4 = {(13456), (12456),
(12356), (12346), (12345)}. On the r.h.s. there are tetrahedrons M3 = {(1234), (1235),
(1236), (1245), (1246), (1256), (1345), (1346), (1356), (1456)}, triangles (jk`) ∈M2 = {(123),
(124), (125), (126), (134), (135), (136), (145), (146), (156)}, edges (jk) ∈ M1 = {(12), (13),
(14), (15), (16)} and vertices (j) ∈ M0 = {(1)}. All other simplices are present on both
sides of the move.
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|Λ0| |Λ1| |Λ2| |Λ3| |Λ4|
l.h.s. 5 10 10 5 1
r.h.s. 6 15 20 15 5

Table 1. Number of vertices |Λ0|, edges |Λ1|, triangles |Λ2|, tetrahedrons |Λ3|, and 4-simplices |Λ4|
on both sides of the 1↔ 5 move.

If the 1− 5 Pachner move does not change the state sum (4.13), then the state sum of
the right hand side,

Z1↔5
right = |G|−11|H|−4|L|−1

∫
G5

∏
(jk)∈M1

dgjk

∫
H10

∏
(jk`)∈M2

dhjk`

∫
L10

∏
(jklm)∈M3

dljklm

·
( ∏

(jk`)∈M2

δG(gjk`)
)( ∏

(jk`m)∈M3

δH(hjk`m)
)( ∏

(jk`mn)∈M4

δL(ljk`mn)
)
Zremainder ,

(4.14)

should be equal to the state sum of the left hand side,

Z1↔5
left = |G|−5|H|0|L|−1δL(l23456)Zremainder . (4.15)

Here, the prefactors |G|−|Λ0|+|Λ1|−|Λ2|, |H||Λ0|−|Λ1|+|Λ2|−|Λ3|, and |L|−|Λ0|+|Λ1|−|Λ2|+|Λ3|−|Λ4|

are |G|−11|H|−4|L|−1 on the r.h.s. and |G|−5|H|0|L|−1 on the l.h.s., as obtained by counting
the numbers of the k-simplices on both sides of the 1− 5 move, shown in the table 1. The
Zremainder denotes the part of the state sum that is the same on both sides of the move,
and thus irrelevant for the proof of invariance. The proof that Zleft = Zright is given in the
appendix B.

4.2 Pachner move 2↔ 4
(3)(2)

(1)

(4) (5)

(6)

2↔ 4

(3)(2)

(1)

(4) (5)

(6)

In order to verify the state sum (4.13) invariance under 2 − 4 Pachner move, we order
the vertices in such a way that on the l.h.s. of the move we have two 4-simplices M left

4 =
{(23456), (12345)}, while on the r.h.s. we have four 4-simplices M right

4 = {(12346), (12356),
(12456), (13456)}. On the l.h.s. we have one tetrahedron M left

3 = {(2345)}, whereas on the
r.h.s. there are six tetrahedrons M right

3 = {(1236), (1246), (1256), (1346), (1356), (1456)}.
All other tetrahedrons appear on both sides of the move. On the r.h.s. there are triangles
M right

2 = {(126), (136), (146), (156)}, and one edge M right
1 = {(16)}, while the rest of the

triangles and edges appear on both sides of the move.
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|Λ0| |Λ1| |Λ2| |Λ3| |Λ4|
l.h.s. 6 14 16 9 2
r.h.s. 6 15 20 14 4

Table 2. Number of vertices |Λ0|, edges |Λ1|, triangles |Λ2|, tetrahedrons |Λ3|, and 4-simplices |Λ4|
on both sides of the 2↔ 4 move.

On the l.h.s. there is the state sum,

Z2↔4
left = |G|−8|H|−1|L|−1

∫
L
dl2345δH(h2345)

( ∏
(jk`mn)∈M left

4

δL(ljk`mn)
)
Zremainder , (4.16)

whereas on the r.h.s. the state sum reads:

Z2↔4
right = |G|−11|H|−3|L|−1

∫
G
dg16

∫
H4
dh126dh136dh146dh156

∫
L
dl1236dl1246dl1256dl1346dl1356dl1456( ∏

(jk`)∈Mright
2

δG(gjk`)
)( ∏

(jk`m)∈Mright
3

δH(hjk`m)
)( ∏

(jk`mn)∈Mright
4

δL(ljk`mn)
)
Zremainder.

(4.17)
Here the prefactors |G|−8|H|−1|L|−1 on the l.h.s. and |G|−11|H|−3|L|−1 on the r.h.s. are
obtained by counting the numbers of k-simplices on both sides of the 2− 4 move, as shown
in the table 2. The term Zremainder denotes the part of the state sum that is identical on
both sides of the move, as before. The proof that Zleft = Zright is given in the appendix B.

4.3 Pachner move 3↔ 3

(2)(4)

(1)

(6) (3)

(5)

3↔ 3

(2)(4)

(1)

(6) (3)

(5)

In order to verify the state sum invariance under 3 − 3 Pachner move, we order the
vertices in such a way that on the l.h.s. of the 3 − 3 move, we have three 4-simplices
M left

4 = {(23456), (13456), (12456)}, whereas on the r.h.s. we have the 4-simplicesM right
4 =

{(12356), (12346), (12345)}. On the l.h.s. there are tetrahedrons M left
3 = {(1456), (2456),

(3456)}, and on the r.h.s. M right
3 = {(1234), (1235), (1236)}. One notices that the six

tetrahedrons form the common boundary of both sides of the move, whereas on each side
there are three tetrahedrons shared by two 4-simplices. On the l.h.s. one has the triangle
M left

2 = {(456)} and on the r.h.s. the triangle M right
3 = {(123)}. All other triangles appear

on both sides of the move.
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Therefore on the l.h.s. there is the state sum,

Z3↔3
left =

∫
H
dh456

∫
L3
dl1456dl2456dl3456δG(g456) δH(h3456)δH(h2456)δH(h1456)

δL(l23456)δL(l13456)δL(l12456)Zremainder ,
(4.18)

whereas on the r.h.s. the state sum reads

Z3↔3
right =

∫
H
dh123

∫
L3
dl1234dl1235dl1236δG(g123) δH(h1234)δH(h1235)δH(h1236)

δL(l12356)δL(l12346)δL(l12345)Zremainder .
(4.19)

The numbers of k-simplices agree on both sides of the 3 − 3 move for all k, and the
prefactors play no role in this case, therefore they are part of the Zremainder. The proof
that Zleft = Zright is given in the appendix B.

We obtain that the state sum given by the definition 4.1 is invariant under all three
Pachner moves, and thus independent of triangulation of the underlying 4-dimensional
manifold (see appendix B for the proof).

5 Conclusions

Let us summarize the results of the paper. In section 2 we reviewed the pure the constrained
2BF actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained
3BF actions describing the Klein-Gordon and Dirac fields coupled to Yang-Mills fields
and gravity in the standard way. In section 3, we reviewed the relevant algebraic tools
involved in the description of higher gauge theory, 2-crossed modules, and 3-gauge theory
and generalized the integral picture of an ordinary gauge theory to a 3-gauge theory that
involves curves, surfaces, and volumes labeled with elements of non-Abelian groups. We
have also proved three key results, stated in Lemmas 3.1, 3.2, and 3.3, which are crucial
for the construction of the invariant state sum. In section 4, we have presented the two
main results of the paper. First, we constructed a triangulation independent state sum Z

of a topological higher gauge theory for a general 3-group and a 4-dimensional spacetime
manifold M4. Second, we proved the theorem that the constructed state sum is indeed
independent of the choice of triangulation, i.e., that it is a genuine topological invariant.

The constructed state sum coincides with Porter’s TQFT [33, 34] for d = 4 and
n = 3. The proof that the state sum is invariant under the local changes of triangulation
called the Pachner moves and thus independent of the chosen triangulation is presented in
appendix B. It is obtained that the state sum is invariant under all five different Pachner
moves: the 3 − 3 move, 4 − 2 move, and 5 − 1 move, and their inverses. The state sum
constructed this way can be thought of as a combinatorial construction of a topological
quantum field theory (TQFT) in the sense of Atiyah’s axioms, a topic that is beyond the
scope of this paper and will be studied in a future work.

In order to finish the second step of the spinfoam quantization procedure, however, the
generalizations of the Peter-Weyl and Plancharel theorems to 2-groups and 3-groups are
required, which so far represent open problems. Namely, these theorems should provide
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a decomposition of a function on a 3-group into a sum over the corresponding irreducible
representations of a 3-group. In this way, the spectrum of labels for the simplices, i.e. , the
domain of values of the fields living on the simplices of the triangulation, would be specified.
Nonetheless, one can still try to guess the irreducible representations of 3-groups, as was
done for example in the case of 2-groups in the spincube model of quantum gravity [30],
or obtain the state sum using other techniques, see for example [50–52]).

However, if one wants to describe a real physical theory, i.e. , the theory which contains
local propagating degrees of freedom, one needs to construct the nontopological state sum,
with the non-trivial dynamics. To do so, once the topological state sum is constructed, the
final third step of the spinfoam quantization procedure is to impose the constraints that
deform the topological theory into a realistic theory of gravity coupled to matter fields (as
defined in [31]) at the quantum level. We leave the construction of the constrained state
sum model for future work.

In addition to the above topics, there are also many other possible applications of the
invariant state sum, both in physics and mathematics.
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A Proof of the invariance identity

Let us prove the identity (3.16). Using the definitions of the upward composition (3.14)
and the vertical composition (3.15) of the 3-morphisms, one obtains that the left-hand side
of the equation (3.16) is equal to:

(
(g2, h

′
2, l
′
2)#3(g2, h2, l2)

)
#2
(
(g1, h

′
1, l
′
1)#3(g1, h1, l1)

)
=
(
g2, h2, l

′
2l2
)
#2
(
g1, h1, l

′
1l1
)

=
(
g1, h2h1, l

′
2l2 h2 B

′ (l′1l1)
)
.

(A.1)

The right-hand side of the equation (3.16) is equal to:

(
(g2, h

′
2, l
′
2)#2(g1, h

′
1, l
′
1)
)
#3
(
(g2, h2, l2)#2(g1, h1, l1)

)
=
(
g1, h

′
2h
′
1, l
′
2h
′
2 B
′ l′1
)
#3
(
g1, h2h1, l2h2 B

′ l1
)

=
(
g1, h2h1, l

′
2 h
′
2 B
′ l′1 l2 h2 B

′ l1
)

(h′2 = δ(l2)h2)
=
(
g1, h2h1, l

′
2 (δ(l2)h2) B′ l′1 l2 h2 B

′ l1
)

eq. (A.3)
=
(
g1, h2h1, l

′
2 δ(l2) B′ (h2 B

′ l′1) l2 h2 B
′ l1
)

(Peiffer identity)
=
(
g1, h2h1, l

′
2 l2(h2 B

′ l′1)l−1
2 l2 h2 B

′ l1
)

(l−1
2 l2 = e)

=
(
g1, h2h1, l

′
2 l2h2 B

′ l′1 h2 B
′ l1
)

eq. (A.4)
=
(
g1, h2h1, l

′
2 l2h2 B

′ (l′1l1)
)
,

(A.2)
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where in the third and sixth line we use the identities

(h1h2) B′ l = h1 B
′ (h2 B

′ l), ∀h1, h2 ∈ H, ∀l ∈ L , (A.3)
hB′ (l1l2) = hB′ l1 hB′ l2, ∀h ∈ H, ∀l1, l2 ∈ L . (A.4)

This proves the equation (3.16).

B Proof of Pachner move invariance

In this section, a self contained proof in terms of Pachner moves that the partition func-
tion (4.13) is independent of the chosen triangulation is presented.

B.1 Pachner move 1↔ 5

On the left hand side of the move there is the integrand δL(l23456):

δL(l23456) = δL
(
l2346

−1(h236 B′ l3456)l2356h256 B′ (g56 B l2345)l2456
−1h246 B′ {h456, (g56g45) B h234}p

)
.

(B.1)
Let us examine the right hand side of the move, given by the equation (4.14). First, one
integrates out g12 using δG(g123), g13 using δG(g134), g14 using δG(g145), and g15 using
δG(g156), and obtains:

g12 = g−1
23 ∂(h123)−1 g13 ,

g13 = g−1
34 ∂(h134)−1 g14 ,

g14 = g−1
45 ∂(h145)−1 g15 ,

g15 = g−1
56 ∂(h156)−1 g16 .

(B.2)

One integrates out h123 using δH(h1234), h124 using δH(h1245), h125 using δH(h1256), h134
using δH(h1345), h135 using δH(h1356), and h145 using δH(h1456), and obtains:

h123 = g−1
34 B h−1

134 g
−1
34 B δ(l1234)−1 g−1

34 B h124 g
−1
34 B h234 ,

h124 = g−1
45 B h−1

145 g
−1
45 B δ(l1245)−1 g−1

45 B h125 g
−1
45 B h245 ,

h125 = g−1
56 B h−1

156 g
−1
56 B δ(l1256)−1 g−1

56 B h126 g
−1
56 B h256 ,

h134 = g−1
45 B h−1

145 g
−1
45 B δ(l1345)−1 g−1

45 B h135 g
−1
45 B h345 ,

h135 = g−1
56 B h−1

156 g
−1
56 B δ(l1356)−1 g−1

56 B h136 g
−1
56 B h356 ,

h145 = g−1
56 B h−1

156 g
−1
56 B δ(l1456)−1 g−1

56 B h146 g
−1
56 B h456 .

(B.3)

The δ-functions on the group G now read δG(e)6. Let us show this. First, for δG(g124) one
obtains

δG(g124) = δG
(
∂(h124) g24 g12 g

−1
14

)
= δG

(
∂(h124) g24 g

−1
23 ∂(h123)−1 g13 g

−1
14

)
= δG

(
∂(h124) g24 g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134) g34 g13 g

−1
14

)
= δG

(
∂(h124) g24 g

−1
23 g

−1
34 (g34 g

−1
23 g

−1
24 ) ∂(h124)−1 e

)
= δG(e) ,

(B.4)
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Next, for δ-function δG(g125) one obtains,

δG(g125) = δG
(
∂(h125) g25 g12 g

−1
15

)
,

= δG
(
∂(h125) g25 g

−1
23 ∂(h123)−1 g13 g

−1
15

)
= δG

(
∂(h125) g25 g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134) g34 g13 g

−1
15

)
= δG

(
∂(h125) g25 g

−1
23 g

−1
34 ∂(h234)−1g−1

45 (∂(h245)−1∂(h125)−1∂(h145)) g45g14 g
−1
15

)
= δG

(
∂(h125) g25 g

−1
23 g

−1
34 (g34 g

−1
23 g

−1
24 )g−1

45 (g45 g
−1
24 g

−1
25 )∂(h125)−1e

)
= δG(e) .

(B.5)

Similarly, δG(g126) becomes

δG(g126) = δG
(
∂(h126)g26g12g

−1
16
)

= δG
(
∂(h126)g26g

−1
23 ∂(h123)−1g13g

−1
16
)

= δG
(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134)g34g13g

−1
16
)

= δG
(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1g−1

45 (∂(h245)−1∂(h125)−1∂(h145))g45∂(h134)g34g13g
−1
16
)

= δG
(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1g−1

45 (∂(h245)−1g−1
56 ∂(h256)−1∂(h126)−1∂(h156)g56

∂(h145))g45g14g
−1
16
)

= δG
(
∂(h126)g26g

−1
23 g

−1
34 (g34g

−1
23 g

−1
24 )g−1

45 (g45g
−1
24 g

−1
25 )g−1

56 (g56g
−1
25 g

−1
26 )∂(h126)−1

(g16g
−1
15 g

−1
56 )g56g15g

−1
16
)

= δG(e),
(B.6)

and δG(g135) now reads,

δG(g135) = δG
(
∂(h135) g35 g13 g

−1
15

)
,

= δG
(
∂(h135) g35 g

−1
34 ∂(h134)−1 g14 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1∂(h145) g45 g14 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1 ∂(h145) g45 g

−1
45 ∂(h145)−1 g15 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 (g45 g

−1
34 g

−1
35 )∂(h135)−1

)
= δG(e) ,

(B.7)
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while δG(g136) reads:

δG(g136) = δG
(
∂(h136) g36 g13 g

−1
16
)

= δG
(
∂(h136) g36 g

−1
34 ∂(h134)−1 g14 g

−1
16
)

= δG
(
∂(h136) g36 g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1∂(h145) g45 g14 g

−1
16
)

= δG
(
∂(h136) g36 g

−1
34 g

−1
45 ∂(h345)−1g−1

56 (∂(h356)−1∂(h136)−1∂(h156)) g56∂(h145) g45 g14 g
−1
16
)

= δG
(
∂(h136) g36 g

−1
34 g

−1
45 (g45 g

−1
34 g

−1
35 )g−1

56 (g56 g
−1
35 g

−1
36 )∂(h136)−1e

)
= δG(e) .

(B.8)
Finally, the δ-function δG(g146) reads:

δG(g146) = δG
(
∂(h146) g46 g14 g

−1
16

)
= δG

(
∂(h146) g46 (g−1

45 ∂(h145)−1 g15) g−1
16

)
= δG

(
∂(h146) g46 g

−1
45 ∂(h145)−1 (g−1

56 ∂(h156)−1 g16) g−1
16

)
= δG

(
∂(h146) g46 g

−1
45 g

−1
56 ∂(h456)−1∂(h146)−1∂(h156)g56 (g−1

56 ∂(h156)−1 g16) g−1
16

)
= δG(e) .

(B.9)

Next, one integrates out l1235 using δL(l12345), l1236 using δL(l12346), l1246 using δL(l12456),
and l1346 using δL(l13456), and obtains

l1235 = (h125 B
′ l2345)l1245h145 B

′ (g45 B l1234)l−1
1345 h135 B

′ {h345, (g45g34) B h123}p , (B.10)
l1236 = (h126 B

′ l2346)l1246h146 B
′ (g46 B l1234)l−1

1346 h136 B
′ {h346, (g46g34) B h123}p , (B.11)

l1246 = (h126 B
′ l2456)l1256h156 B

′ (g56 B l1245)l1456
−1 h146 B

′ {h456, (g56g45) B h124}p ,
(B.12)

l1346 = (h136 B
′ l3456)l1356h156 B

′ (g56 B l1345)l1456
−1 h146 B

′ {h456, (g56g45) B h134}p .
(B.13)

Let us now show that the remaining δ-functions on the group H equal δH(e)4. First,
δH(h1235) becomes:

δH(h1235)=δH
(
δ(l1235)h135(g35Bh123)h−1

235h
−1
125
)

=δH
(
δ
(
(h125B

′l2345)l1245h145B
′(g45Bl1234)l−1

1345h135B
′{h345,(g45g34)Bh123}p

)
h135(g35Bh123)h−1

235h
−1
125

)
=δH

((
h125δ(l2345)h−1

125δ(l1245)h145(g45Bδ(l1234))h−1
145δ(l1345)−1h135δ({h345,(g45g34)Bh123}p)h−1

135
)

h135(g35Bh123)h−1
235h

−1
125

)
=δH

(
h235h345(g45Bh

−1
234)h−1

245h
−1
125h125h245(g45Bh

−1
124)h−1

145h145(g45B(h124h234(g34Bh
−1
123)h−1

134))

h−1
145(h145(g45Bh134)h−1

345h
−1
135)h135δ({h345,(g45g34)Bh123}p)h−1

135h135(g35Bh123)h−1
235

)
=δH(h345

(
(g45g34)Bh−1

123
)
h−1

345δ({h345,(g45g34)Bh123}p)(g35Bh123).
(B.14)

Here, one uses the following identity

δ{h1 , h2}p(∂(h1) B h2)h1h
−1
2 h−1

1 = e . (B.15)
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Substituting g35 = ∂(h345)g45g34, and applying the (B.15) identity for h1 = h345 and
h2 = (g45g34) B h123, one obtains

δH(h1235) = δH(e). (B.16)

Similarly, one obtains for δH(h1236):

δH(h1236)=δH
(
δ(l1236)h136(g36Bh123)h−1

236h
−1
126
)

=δH
(
δ
(
(h126B

′l2346)l1246h146B
′(g46Bl1236l

−1
1346h136B

′{h346,(g46g34)Bh123}p
)
h136(g36Bh123)h−1

236h
−1
126

)
=δH

((
h126δ(l2346)h−1

126δ(l1246)h146(g46Bδ(l1234))h−1
146δ(l1346)−1h136δ({h346,(g46g34)Bh123}p)h−1

136
)

h136(g36Bh123)h−1
236h

−1
126

)
=δH

(
h236h346(g46Bh

−1
234)h−1

246h
−1
126h126h246(g46Bh

−1
124)h−1

146h146(g46B(h124h234(g34Bh
−1
123)h−1

134))

h−1
146(h146(g46Bh134)h−1

346h
−1
136)h136δ({h346,(g46g34)Bh123}p)h−1

136h136(g36Bh123)h−1
236

)
=δH(h346

(
(g46g34)Bh−1

123
)
h−1

346δ({h346,(g46g34)Bh123}p)(g36Bh123).
(B.17)

Substituting g36 = ∂(h346)g46g34, and applying the (B.15) identity for h1 = h346 and
h2 = (g46g34) B h123, one obtains

δH(h1236) = δH(e) . (B.18)

Similarly, one obtains that δH(h1246) = δH(h1346) = δH(e). The remaining δ-function on
the group L δL(l12356) reads:

δL(l12356) = δL

(
l1236

−1(h126B
′ l2356)l1256h156B

′ (g56B l1235)l1356
−1h136B

′ {h356, (g56g35)Bh123}p
)
.

(B.19)
After substituting the equations (B.10), (B.11), (B.12), and (B.13), one obtains:

δL(l12356)=δL
(
h136 B

′ {h346, (g46g34) B h123}−1
p (h136 B

′ l3456)l1356h156 B
′ (g56 B l1345)l1456

−1

h146 B
′ {h456, (g56g45) B h134}ph146 B

′ (g46 B l1234)−1h146 B
′ {h456, (g56g45) B h124}−1

p l1456

h156 B
′ (g56 B l1245)−1l−1

1256(h126 B
′ l2456)−1(h126 B

′ l2346
−1)(h126 B

′ l2356)l1256

h156 B
′ (g56 B ((h125 B

′ l2345)l1245h145 B
′ (g45 B l1234)l−1

1345h135 B
′ {h345, (g45g34) B h123}p))

l1356
−1h136 B

′ {h356, (g56g35) B h123}p
)
.

(B.20)

Using the identity (3.4) the delta function δL(l12356) becomes:

δL(l12356) = δL
(
(h136B

′ l3456)l1356h156B
′(g56Bl1345)l1456

−1

h146B
′{h456,(g56g45)Bh134}ph146B

′(g46Bl1234)−1h146B
′{h456,(g56g45)Bh124}−1

p l1456

δ(h156B
′(g56Bl1245)−1)B′

((
δ(l1256)−1h126

)
B′
(
l−1
2456l

−1
2346l2356

)
h156B

′(g56B(h125B
′ l2345))

)
h156B

′(g56B(h145B
′(g45Bl1234)l−1

1345))l1356
−1(h136h346)B′{h−1

346h356g56Bh345,

(g56g45g34)Bh123}p
)
.

(B.21)
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Commuting the elements, one obtains

δL(l12356) = δL

(
(h156B

′(g56Bδ(l1245)−1)δ(l1256)−1h126)B′
(
l−1
2456l

−1
2346l2356h256B

′(g56Bl2345)
)

h156B
′(g56B(h145B

′(g45Bl1234)l−1
1345)

)
l1356

−1(h136h346)B′{h−1
346h356g56Bh345,(g56g45g34)Bh123}p

h136B
′ l3456l1356h156B

′(g56Bl1345)(δ(l1456)−1h146)B′
(
{h456,(g56g45)Bh134}p

)
(δ(l1456)−1h146)B′

(
(g46Bl1234)−1)(δ(l1456)−1h146)B′{h456,(g56g45)Bh124}−1

p

)
.

(B.22)

The tetrahedron (3456) is part of the integrand on both sides of the move, so using the
condition (4.9) for δH(h3456) one can write h−1

346h356g56 B h345 = h−1
346 B′ δ(l3456)−1h456.

Then, using the identity (3.4) one obtains that

{h−1
346h356g56Bh345,(g56g45g34)Bh123}p = {h−1

346B
′δ(l3456)−1h456,(g56g45g34)Bh123}p

=
(
h−1

346B
′δ(l3456)−1)B′{h456,(g56g45g34)Bh123}p

{h−1
346B

′δ(l3456)−1,(g46g34)Bh123}p

=h−1
346B

′ l−1
3456{h456,(g56g45g34)Bh123}p(

(g46g34)Bh123h
−1
346
)
B′ l3456 ,

(B.23)

where in the last row the definition of the action B′ is used. Substituting the equation (B.23)
in the equation (B.22) one obtains

δL(l12356)=δL
(
(h156B

′(g56Bδ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)B′
(
l−1
2346l2356h256B

′(g56Bl2345)l−1
2456

)
h156B

′(g56B(h145B
′(g45Bl1234)))(h156B

′(g56Bδ(l1345)−1)δ(l1356)−1h136δ(l3456)−1h346)B′(
{h456,(g56g45g34)Bh123}p((g46g34)Bh123)B′l3456

)
(δ(l1456)−1h146)B′

(
{h456,(g56g45)Bh134}p

)
(δ(l1456)−1h146)B′

(
(g46Bl1234)−1)(δ(l1456)−1h146)B′{h456,(g56g45)Bh124}−1

p

)
.

(B.24)
Commuting the element l3456 to the end of the expression, one obtains
δL(l12356)=δL

(
(h156B

′(g56Bδ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)B′
(
l−1
2346l2356h256B

′(g56Bl2345)l−1
2456

)
h156B

′(g56B(h145B
′(g45Bl1234)))(h156B

′(g56Bδ(l1345)−1)δ(l1356)−1h136δ(l3456)−1h346)B′(
{h456,(g56g45g34)Bh123}p

)
(δ(l1456)−1h146)B′

(
{h456,(g56g45)Bh134}p

)
(δ(l1456)−1h146)B′

(
(g46Bl1234)−1)(δ(l1456)−1h146)B′{h456,(g56g45)Bh124}−1

p

(h156g56Bh145h246g46Bh234h
−1
346)B′l3456

))
.

(B.25)
Acting to the whole expression with (h156B′ (g56Bδ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)−1B′,
one obtains,

δL(l12356)=δL
(
l−1
2346l2356h256B

′(g56Bl2345)l−1
2456

(
h246h456(g56g45)Bh−1

124
)
B′(

(g56g45)Bl1234
(
(g56g45)Bh134h

−1
456
)
B′{h456,(g56g45g34)Bh123}p

h−1
456B

′{h456,(g56g45)Bh134}ph−1
456Bg46Bl

−1
1234

(
h−1

456g46Bh124
)
B′{h456,(g56g45)Bh−1

124}p
)

(h246g46Bh234h
−1
346)B′l3456.

(B.26)
Using the identity (3.5) for {h456, (g56g45) B (h134g34 B h123)}p,

{h456, (g56g45)B(h134g34Bh123)}p = {h456, (g56g45)Bh134}p(g46Bh134)B′{h456, (g56g45g34)Bh123}p ,

(B.27)
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one obtains:

δL(l12356) = δL
(
l−1
2346l2356h256 B

′ (g56 B l2345)l−1
2456h246 B

′
((
h456(g56g45) B h−1

124
)
B′(

(g56g45) B l1234h
−1
456 B

′ {h456, (g56g45) B (h134g34 B h123)}p

h−1
456 B g46 B l−1

1234

)
{h456, (g56g45) B h−1

124}p
)
(h246g46 B h234h

−1
346) B′ l3456) .

(B.28)

Using the identity (3.5) for {h456, (g56g45) B (h−1
124δ(l1234)h134g34 B h123)}p one obtains the

terms featuring l1234 cancel, i.e. ,

δL(l12356)=δL
(
l−1
2346l2356h256B

′(g56Bl2345)l−1
2456

h246B
′{h456,(g56g45)B(h−1

124δ(l1234)h134g34Bh123)}p(h246g46Bh234h
−1
346)B′l3456

=δL
(
l2346

−1l2356h256B
′(g56Bl2345)l2456

−1h246B
′{h456,(g56g45)Bh234}p(δ(l2346)−1h236)B′l3456)

)
=δL(l23456),

(B.29)
the delta function δL(l12356) on the r.h.s. reduces to the delta function δL(l23456) of the
l.h.s. The integrations over l1234, l1245, l1256, l1345, l1356, and l1456 are trivial, and finally
one obtains,

r.h.s. = δG(e)6δH(e)4δL(l23456) = |G|6|H|4δL(l23456) . (B.30)

The prefactors |G|−11|H|−4|L|−1 on the r.h.s. and |G|−5|H|0|L|−1 on the l.h.s., compensate
for left-over factors.

B.2 Pachner move 2↔ 4

On the left hand side of the move one has the following integrals and the integrand,∫
L
dl2345δH(h2345)δL(l23456)δL(l12345). (B.31)

Integrating out l2345 using δL(l12345), one obtains

l2345 = h125
−1 B′

(
l1235h135 B

′ {h345, (g45g34) B h123}−1
p l1345h145 B

′ (g45 B l1234)−1l−1
1245

)
.

(B.32)
The δ-function δH(h2345) now reads,

δH(h2345) = δH
(
δ(l2345)h245 (g45 B h234)h−1

345 h
−1
235

)
= δH

(
h125

−1δ(l1235)h135δ({h345, (g45g34) B h123}−1
p )h−1

135δ(l1345)h145(g45 B δ(l1234))−1h−1
145

δ(l1245)−1h125h245 (g45 B h234)h−1
345 h

−1
235
)
.

(B.33)
Using the identity (4.9) for the tetrahedrons (1235), (1345), (1234), and (1245), the equa-
tion (B.33) reduces to:

δH(h2345) = δH
(
h125

−1h125 h235 (g35 B h−1
123)h−1

135h135δ({h345, (g45g34) B h123}−1
p )h−1

135h135 h345 (g45 B h−1
134)

h−1
145h145g45 B (h134(g34 B h123)h−1

234h
−1
124)h−1

145h145(g45 B h124)h−1
245h

−1
125h125h245 (g45 B h234)h−1

345 h
−1
235
)

= δH
(
(g35 B h−1

123) δ({h345, (g45g34) B h123}−1
p )h345 (g45g34) B h123) h−1

345
)
.

(B.34)
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Here, one uses the following identity

δ{h1 , h2}p(∂(h1) B h2)h1h
−1
2 h−1

1 = e , (B.35)

for h1 = h345 and h2 = (g45g34) B h123, and the identity g35 = ∂(h345)g45g34, and obtains

δH(h2345) = δH(e) . (B.36)

The remaining δ-function δL(l23456), reads

δL(l23456) = δL
(
l2346

−1(h236 B
′ l3456)l2356h256 B

′ (g56 B l2345)l2456
−1h246 B

′ {h456, (g56g45) B h234}p
)
.

(B.37)
Substituting the equation (B.33), one obtains

δL(l23456) = δL
(
l2346

−1(h236 B
′ l3456)l2356h256 B

′
(
g56 B

(
h125

−1 B′
(
l1235h135 B

′ {h345, (g45g34) B h123}−1
p

l1345h145 B
′ (g45 B l1234)−1l−1

1245
)))

l2456
−1h246 B

′ {h456, (g56g45) B h234}p
)
.

(B.38)
Commuting the elements one obtains

δL(l23456) = δL
(
l2456

−1l2346
−1l2356(h256g56 B h125

−1) B′ g56 B l1235
(
h256g56 B h125

−1g56 B h135
)
B′(

(g35 B h123h
−1
356) B′ l3456){g56 B h345, (g56g45g34) B h123}−1

p

(g56 B h345(g56g45) B (h123h
−1
234)h−1

456) B′ {h456, (g56g45) B h234}p
)

(h256g56 B h125
−1) B′ g56 B l1345(h256g56 B h125

−1g56 B h145) B′ ((g56g45) B l1234)−1

(h256g56 B h125
−1) B′ g56 B l−1

1245

)
.

(B.39)
Finally, the l.h.s. reads:

l.h.s. = δH(e)δL(l23456) = |H|δL(l23456) . (B.40)

Let us now examine the right hand side of the move, i.e. , the integral (4.17). First,
one integrates out g16 using δG(g126), and obtains

g16 = ∂(h126) g26 g12 . (B.41)

Next, one integrates out h126 using δH(h1236), h136 using δH(h1346), and h146 using δH(h1456),
and obtains

h126 = δ(l1236)h136 (g36 B h123)h−1
236 ,

h136 = δ(l1346)h146 (g46 B h134)h−1
346 ,

h146 = δ(l1456)h156 (g56 B h145)h−1
456 .

(B.42)

The remaining δ-functions on the group G reduces to δG(e)3. The δ-function δG(g136)

δG(g136) = δG
(
∂(h136) g36 g13 g

−1
16
)
, (B.43)
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after substituting the equation (B.41) reads:

δG(g136) = δG
(
∂(h136) g36 g13 g

−1
12 g

−1
26 ∂(h126)−1) . (B.44)

Using the equations (B.42) for h126, and h136, and h146, and the identity ∂(δl) = 0 for every
element l ∈ L, the δ-function δG(g136) reduces to δG(e) after implementing the identity (4.7)
for the triangles (156), (145), (456) (134), (346), (236), and (123). Similarly, one obtains
δG(g146) = δG(g156) = δG(e).

One integrates out l1236 using δL(l12346) and obtains

l1236 = (h126 B
′ l2346)l1246h146 B

′ (g46 B l1234)l−1
1346 h136 B

′ {h346, (g46g34)Bh123}p, (B.45)

l1246 using δL(l12456) and obtains

l1246 = (h126B
′ l2456)l1256h156B

′(g56Bl1245)l1456
−1 h146B

′{h456, (g56g45)Bh124}p, (B.46)

and l1346 using δL(l13456) and obtains

l1346 = (h136B
′ l3456)l1356h156B

′(g56Bl1345)l1456
−1 h146B

′{h456, (g56g45)Bh134}p. (B.47)

The remaining δ-functions on H reduce on δH(e)3, similarly as in the case of 1−5 Pachner
move, i.e. , one obtains δH(h1256) = δH(h1356) = δH(h1456) = δH(e). For the remaining
δ-function δL(l12356),

δL(l12356) = δL
(
l1236

−1(h126 B
′ l2356)l1256h156 B

′ (g56 B l1235)l1356
−1h136 B

′ {h356, (g56g35) B h123}p
)
,

(B.48)
one obtains, after substituting the equations (B.45), (B.46), and (B.47), the following

δL(l12356) = δL
(
h136 B

′ {h346, (g46g34) B h123}p−1l1346h146 B
′ (g46 B l1234)−1l−1

1246(h126 B
′ l2346)−1

(h126 B
′ l2356)l1256h156 B

′ (g56 B l1235)l1356
−1h136 B

′ {h356, (g56g35) B h123}p
)

= δL
(
(h126 B

′ l2456)−1(h126 B
′ l2346)−1(h126 B

′ l2356)(h256g56 B h125
−1) B′ l1235

δ(l1256) B′
(
δ(l1356)−1 B′

(
h136 B

′ {h356, (g56g35) B h123}p(h136h346) B′ {h−1
346, g36 B h123}p

(h136 B
′ l3456)

)
h156 B

′ (g56 B l1345)l1456
−1 h146 B

′ {h456, (g56g45) B h134}ph146 B
′ (g46 B l1234)−1

h146 B
′ {h456, (g56g45) B h124}−1

p l1456h156 B
′ (g56 B l1245)−1

))
.

(B.49)
Commuting the elements in order to match the l.h.s. of the move, i.e. , the δ-function given
by the equation (B.39), and using the identity (3.4), i.e. ,

{h−1
346h356, (g56g35) B h123}p = h−1

346 B
′ {h356, (g56g35) B h123}p{h−1

346, g36 B h123}p , (B.50)

one obtains

δL(l12356) = δL
(
(h126 B

′ l2456)−1(h126 B
′ l2346)−1(h126 B

′ l2356)(h126h256g56 B h125
−1) B′ l1235

δ(l1256) B′
(
δ(l1356)−1 B′

(
(h136h346) B′ {h−1

346h356, (g56g35) B h123}p(h136 B
′ l3456)

)
h156 B

′ (g56 B l1345)(δ(l1456)−1 h146) B′
(
{h456, (g56g45) B h134}p(g46 B l1234)−1

{h456, (g56g45) B h124}−1
p
)
h156 B

′ (g56 B l1245)−1
))
.

(B.51)
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Using the identity (3.4) again one rewrites the following term as

(h136h346) B′ {h−1
346h356, (g56g35) B h123}p(h136 B

′ l3456) =
(h136h346) B′ {h−1

346 B
′ δ(l3456)−1h456g56 B h−1

345, (g56g35) B h123}p(h136 B
′ l3456) =

(h136 B
′ δ(l3456)−1h136h346) B′

(
{h456g56 B h−1

345, (g56g35) B h123}p((g46g34) B h123h
−1
346) B′ l−1

3456
)
,

(B.52)
and substituting it in the equation (B.51) the δ-function becomes:

δL(l12356) = δL
(
(h126 B

′ l2456)−1(h126 B
′ l2346)−1(h126 B

′ l2356)(h126h256g56 B h125
−1) B′ l1235

δ(l1256) B′
(
(δ(l1356)−1h136 B

′ δ(l3456)−1h136h346)B′(
{h456g56 B h−1

345, (g56g35) B h123}p((g46g34) B h123h
−1
346) B′ l3456)

)
(h156g56 B h135g56 B (h345g45 B h−1

134)h−1
456) B′

(
{h456, (g56g45) B h134}p(g46 B l1234)−1

{h456, (g56g45) B h124}−1
p
))

(h126h256g56 B h125
−1) B′

(
h156 B

′ (g56 B l1345)(g56 B l1245)−1)) .
(B.53)

Commuting the elements l3456 and {h456g56 B h345, (g56g35) B h123}p, and using the iden-
tity (3.4) to rewrite this Peiffer lifting, one obtains

δL(l12356) = δL
(
(h126 B

′ l2456)−1(h126 B
′ l2346)−1(h126 B

′ l2356)(h126h256g56 B h125
−1) B′ l1235(

h126h256g56 B h125
−1h135(g56g35) B h123g56 B h−1

356) B′ g56 B l3456

(h126h256g56 B h−1
125g56 B h135g56 B h345) B′

(
{g56 B h−1

345, (g56g35) B h123}p

h−1
456 B

′ {h456, (g56g45g34) B h123}p((g56g45) B h−1
134h

−1
456) B′

(
{h456, (g56g45) B h134}p(g46 B l1234)−1

{h456, (g56g45) B h124}−1
p
))

(h126h256g56 B h125
−1) B′

(
h156 B

′ (g56 B l1345)(g56 B l1245)−1)) .
(B.54)

After the similar transformations as in the case of 1−5 move, commuting the element l1234
so that the order of the elements matches the order in the expression (B.39), and acting
to the whole expression with h−1

126 one obtains

δL(l12356) = δL
(
l2456

−1l2346
−1l2356(h256g56 B h125

−1) B′ g56 B l1235
(
h256g56 B h125

−1g56 B h135
)
B′(

(g35 B h123h
−1
356) B′ l3456){g56 B h345, (g56g45g34) B h123}−1

p (g56 B h345(g56g45) B (h123h
−1
234)h−1

456)B′

{h456, (g56g45) B h234}p
)
(h256g56 B h125

−1) B′ g56 B l1345

(h256g56 B h125
−1g56 B h145) B′ ((g56g45) B l1234)−1(h256g56 B h125

−1) B′ g56 B l−1
1245

)
.

(B.55)
which is precisely the equation (B.39). The remaining integration over the element h156 of
the group H and remaining integration over the three elements of the group L, l1246, l1256,
and l1356, are trivial, yielding the result on the r.h.s. to:

r.h.s. = δG(e)3 δH(e)3 δL(l12356) = |G|3 |H|3 δL(l12356) . (B.56)

The prefactors are |G|−8|H|−1|L|−1 on the l.h.s., and |G|−11|H|−3|L|−1 on the r.h.s. com-
pensate for the left-over factors.
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B.3 Pachner move 3↔ 3

Let us first investigate the r.h.s. of the move. First, one integrates out the l1235, exploiting
δL(l12345) and obtains

l1235 = (h125B
′ l2345)l1245h145B

′(g45Bl1234)l1345
−1 h135B

′{h345, (g45g34)Bh123}p, (B.57)

and one integrates out l1236, exploiting δL(l12356) and obtains

l1236 = (h126B
′ l2356)l1256h156B

′ (g56B l1235)l1356
−1h′136B{h356, (g56g35)Bh123}p. (B.58)

Next, one integrates out h123, exploiting δH(l1234) and obtains:

h123 = g−1
34 B h−1

134 g
−1
34 B δ(l1234)−1 g−1

34 B h124 g
−1
34 B h234. (B.59)

The δ-function δG(g123), when using the equation (B.59) reads

δG(g123) = δG
(
g−1

34 B ∂(h134)−1 g−1
34 B ∂(δ(l1234))−1 g−1

34 B ∂(h124) g−1
34 B ∂(h234) g23 g12 g

−1
13
)
,

(B.60)
which then using the condition ∂δ = 0, reduces to

δG(g123) = δG
(
∂(h134)−1 ∂(h124) ∂(h234) g−1

34 g23 g12 g
−1
13 g34

)
. (B.61)

Using the condition (4.7) for the triangles (134), (124), and (234), it finally reduces to

δG(g123) = δG
(
e
)
. (B.62)

For the δ-function δH(h1235), one obtains, after using the equation (B.57):

δH(h1235) = δH
(
(h125δ(l2345)h−1

125)δ(l1245)(h145(g45 B δ(l1234))h−1
145)δ(l1345)−1

h135 B
′ {h345, g35 B h123}p h135((g35g34

−1) B (h−1
134 δ(l1234)−1 h124 h234))h−1

235 h
−1
125

)
.

(B.63)
Using the δ-functions δL(h2345), δL(h1245), and δL(h1345), that appear on both sides of the
move, and are thus part of the integrand,

δ(l2345) = h235 h345 (g45 B h−1
234)h−1

245 ,

δ(l1245) = h125 h245 (g45 B h−1
124)h−1

145 ,

δ(l1345)−1 = h145 (g45 B h134)h−1
345 h

−1
135 ,

(B.64)

one obtains:

δH(h1235) = δH
(
h125h235 h345 (g45 B h−1

234)h−1
245h

−1
125h125 h245 (g45 B h−1

124)h−1
145h145(g45 B δ(l1234))h−1

145

h145 (g45 B h134)h−1
345 h

−1
135h135 B δ({h345, (g45g34) B h123}p)

h135 ((g35g34
−1) B (h−1

134δ(l1234)−1 h124 h234))h−1
235 h

−1
125

)
= δH

(
h345(g45g34) B h−1

123 h
−1
345δ({h345, (g45g34) B h123}p) (g35 B h123)

)
.

(B.65)
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Substituting g35 = ∂(h345)g45g34, and applying the identity

δ{h1 , h2}p(∂(h1) B h2)h1h
−1
2 h−1

1 = e , (B.66)

for h1 = h345 and h2 = (g45g34) B h123, one obtains

δH(h1235) = δH(e). (B.67)

Similarly, one obtains that δH(h1236) = δH(e). The remaining δ-function δH(l12346) reads

δL(l12346) = δL
(
l1236

−1(h126 B′ l2346)l1246h146 B′ (g46 B l1234)l1346
−1 h136 B′ {h346, (g46g34) B h123}p

)
.

(B.68)
After substituting the equation (B.58), and then the equation (B.57), one obtains:

δL(l12346) = δL
(
h136 B

′ {h356, (g56g35) B h123}−1
p l1356h156 B

′ (g56 B l1235)−1l−1
1256h126 B

′ l−1
2356

(h126 B
′ l2346)l1246h146 B

′ (g46 B l1234)l1346
−1h136 B

′ {h346, (g46g34) B h123}p
)

= δL
(
h136 B

′ {h356, (g56g35) B h123}−1
p l1356

h156 B
′ (g56 B ((h125 B

′ l2345)l1245h145 B
′ (g45 B l1234)l1345

−1 h135 B
′ {h345, (g45g34) B h123}p))−1

l−1
1256h126 B

′ l−1
2356(h126 B

′ l2346)l1246h146 B
′ (g46 B l1234)l1346

−1h136 B
′ {h346, (g46g34) B h123}p

)
.

(B.69)
After commuting the elements, i.e. , using the Peiffer identity for the crossed module (L δ→
H,B′), one obtains

δL(l12346) = δL
(
h136 B

′ {h356, (g56g35) B h123}−1
p

(δ(l1356)h156g56 B h135) B′ g56 B {h345, (g45g34) B h123}−1
p l1356h156 B

′ (g56 B l1345)
(h156g56 B h145) B′ ((g56g45) B l1234)−1h156 B

′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l−1
2345)l−1

1256

h126 B
′ l−1

2356(h126 B
′ l2346)l1246h146 B

′ (g46 B l1234)l1346
−1h136 B

′ {h346, (g46g34) B h123}p
)

= δL
(
(δ(l1346)−1h136) B′ {h346, (g46g34) B h123}p(δ(l1346)−1h136) B′ {h356, (g56g35) B h123}−1

p

((δ(l1346)−1δ(l1356)h156g56 B h135) B′ g56 B {h345, (g45g34) B h123}−1
p

(δ(l1346)−1δ(l1356)h156 B
′ (g56 B δ(l1345))h156g56 B h145) B′ ((g56g45) B l1234)−1l−1

1346

l1356h156 B
′ (g56 B l1345)h156 B

′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l−1
2345)

l−1
1256h126 B

′ l−1
2356(h126 B

′ l2346)l1246h146 B
′ (g46 B l1234)

)
.

(B.70)
Using the identity (3.7) one obtains that

{h346, (g46g34) B h123}p = h346 B
′ {h−1

346, g36 B h123}−1
p . (B.71)

Using a variant of the identity (3.4), i.e. , that

{h1h2h3, h4}−1
p = {h1, ∂(h2h3)Bh4}−1

p h1B
′{h2, ∂(h2)Bh4}−1

p (h1h2)B′{h3, h4}−1
p , (B.72)

one obtains that

{h−1
346 h356 (g56 B h345), (g56g45g34) B h123}−1

p = {h−1
346, (g46g34) B h123}−1

p h−1
346 B

′ {h356, (g56g35) B h123}−1
p

(h−1
346h356) B′ {g56 B h345, (g56g45g34) B h123}−1

p ,

(B.73)
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rendering the expression (B.70) to

δL(l12346) = δL
(
(h146g46 B h134) B′ {h−1

346 h356 (g56 B h345), (g56g45g34) B h123}−1
p

(δ(l1346)−1δ(l1356)h156 B
′ (g56 B δ(l1345))h156g56 B h145) B′ ((g56g45) B l1234)−1

l−1
1346l1356h156 B

′ (g56 B l1345)h156 B
′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l−1

2345)l−1
1256

h126 B
′ l−1

2356(h126 B
′ l2346)l1246h146 B

′ (g46 B l1234)
)
.

(B.74)
Substituting the equation (B.59), and using the identity (3.5), one obtains that the expres-
sion,

{h−1
346 h356 (g56 B h345), (g56g45g34) B h123}−1

p = {h−1
346 h356 (g56 B h345), (g56g45) B ((h−1

134 B
′ δ(l1234)−1)h−1

134h124h234}−1
p

= (g46 B (h−1
134 B

′ δ(l1234)−1)) B′ {h−1
346 h356 (g56 B h345), (g56g45)B

(h−1
134h124h234)}−1

p {h−1
346 h356 (g56 B h345), (g56g45) B (h−1

134 B
′ δ(l1234)−1)}−1

p ,

(B.75)
using the identity (3.9), i.e. , that

{h−1
346 h356 (g56 B h345), (g56g45) B (h−1

134 B
′ δ(l1234)−1)}−1

p = g46 B (h−1
134 B

′ l−1
1234)(h−1

346 h356

(g56 B h345)) B′ ((g56g45) B (h−1
134 B

′ l1234)) ,
(B.76)

reduces to

{h−1
346 h356 (g56 B h345), (g56g45g34) B h123}−1

p = g46 B (h−1
134 B

′ δ(l1234)−1)
{h−1

346 h356 (g56 B h345), (g56g45) B (h−1
134h124h234)}−1

p

(h−1
346 h356 (g56 B h345)) B′ ((g56g45) B (h−1

134 B
′ l1234)) .
(B.77)

Substituting this result in the expression (B.74) the terms featuring l1234 cancel, and finally
the delta function δL(l12346) reads:

δL(l12346) = δL
(
(h146g46 B h134) B′ {h−1

346 h356 (g56 B h345), (g56g45) B (h−1
134h124h234)}−1

p l−1
1346l1356

h156 B
′ (g56 B l1345)h156 B

′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l−1
2345)

l−1
1256h126 B

′ l−1
2356(h126 B

′ l2346)l1246
)
.

(B.78)
One obtains that the integration over l1234 is trivial, and the r.h.s. of the move finally reads

r.h.s. = δG(e)δH(e)2δL
(
h156 B

′ (g56 B l1245)−1 h156 B
′ (g56 B (h125 B

′ l2345))−1 l−1
1256

h126 B
′ l−1

2356(h126 B
′ l2346)l1246(h146g46 B h134)B′

{h−1
346 h356 (g56 B h345), (g56g45) B (h−1

134h124h234)}−1
p l−1

1346l1356h156 B
′ (g56 B l1345) .

(B.79)

The integral of the l.h.s. reads∫
H dh456

∫
L3 dl1456dl2456dl3456δG(g456) δH(h3456)δH(h2456)δH(h1456)δL(l23456)δL(l13456)δL(l12456) .

(B.80)
First, one integrates out the l1456, exploiting δL(l13456) and obtains

l1456 = h146B{h456, (g56g45)Bh134}l1346
−1(h136B

′ l3456)l1356h156B
′ (g56B l1345). (B.81)
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Next, one integrates out the l2456, exploiting δL(l23456) and obtains

l2456 = h246 B {h456, (g56g45) B h234}l2346
−1(h236 B

′ l3456)l2356h256 B
′ (g56 B l2345) . (B.82)

Next, one integrates out h456, exploiting δH(h3456) and obtains

h456 = h−1
346 δ(l3456)h356 (g56 B h345) . (B.83)

Using the equation (B.83), one obtains that

δG(g456) = δG
(
∂(h346)−1 ∂(h356) g56 B ∂(h345) g56 g45 g

−1
46
)
, (B.84)

which, using the identity (4.7) for triangles (346), (356), and (345), reduces to:

δG(g456) = δG
(
e
)
. (B.85)

Similarly as done for the right-hand side of the move, one shows that δH(h1456), when using
the equation (B.81), and δH(h2456), when using the equation (B.82), reduce to δH(e)2. The
remaining δL(l12456) now reads

δL(l12456) = δL
(
l1246

−1(h126 B′ l2456)l1256h156 B′ (g56 B l1245)l1456
−1 h146 B {h456, (g56g45) B h124}p

)
.

(B.86)
Substituting the equations (B.81) and (B.82), one obtains

δL(l12456) = δL
(
l1246

−1(h126 B
′ (h246 B {h456,(g56g45) B h234}pl2346

−1(h236 B
′ l3456)l2356

h256 B
′ (g56 B l2345)))l1256h156 B

′ (g56 B l1245)h156 B
′ (g56 B l1345)−1l−1

1356(h136 B
′ l3456)−1

l1346h146 B {h456,(g56g45) B h134}−1
p h146 B {h456,(g56g45) B h124}p

)
.

(B.87)
After commuting the elements, i.e. , using the Peiffer identity for the crossed module (L δ→
H,B′), one obtains

δL(l12456) = δL
(
(δ(l1246)−1h126h246) B {h456, (g56g45) B h234}p(δ(l1246)−1h126 B δ(l2346)−1h126h236) B′ l3456

l−1
1246h126 B

′ l2346
−1h126 B

′ l2356(h126h256) B′ (g56 B l2345) )
l1256h156 B

′ (g56 B l1245)h156 B
′ (g56 B l1345)−1l−1

1356l1346(δ(l1346)−1h136) B′ l3456
−1

h146 B {h456, (g56g45) B h134}−1
p h146 B {h456, (g56g45) B h124}p

)
.

(B.88)
Using the identity (3.10) for the inverse of the element {h456, (g56g45) B h134}−1

p , and then
the variant of the identity (3.5), i.e. , that is,

{h1, h2h3h4}p = {h1, h2}p(∂(h1) B h2) B′ {h1, h3}p(∂(h1) B (h2h3)) B′ {h1, h4}p , (B.89)

one obtains

{h456, (g56g45) B (h−1
134h124h234)}p = {h456, (g56g45) B h−1

134}p(g46 B h−1
134) B′ {h456, (g56g45) B h124}p

(g46 B (h−1
134h124)) B′ {h456, (g56g45) B h124}p ,

(B.90)

– 42 –



J
H
E
P
0
7
(
2
0
2
2
)
1
0
5

rendering the equation (B.88) to

δL(l12456) = δL
(
(δ(l1246)−1h126 B δ(l2346)−1h126h236) B′ l3456

l−1
1246h126 B

′ l2346
−1h126 B

′ l2356(h126h256) B′ (g56 B l2345) )
l1256h156 B

′ (g56 B l1245)h156 B
′ (g56 B l1345)−1l−1

1356l1346(δ(l1346)−1h136) B′ l3456
−1

(h146g46 B h134) B′ {h456, (g56g45) B (h−1
134h124h234)}p

)
.

(B.91)
Using the equation (B.83), and the identities (3.4) and (3.6), similarly as for the r.h.s. of the
move, one obtains that the terms featuring l3456 cancel, i.e. , the delta function δL(l12456)
reads

δL(l12456) = δL
(
l−1
1246h126 B

′ l2346
−1h126 B

′ l2356(h126h256) B′ (g56 B l2345))l1256h156 B
′ (g56 B l1245)

h156 B
′ (g56 B l1345)−1l−1

1356l1346(h146g46 B h134) B′ {h456, (g56g45) B (h−1
134h124h234)}p

)
.

(B.92)
It follows that the integral over l3456 is now trivial and l.h.s. of the move finally reduces to:

l.h.s. = δG(e)δH(e)2δL
(
h126 B

′ l2346l1246(h146g46 B h134) B′ {h456, (g56g45) B (h−1
134h124h234)}−1

p

l−1
1346 l1356 h156 B

′ (g56 B l1345)h156 B
′ (g56 B l1245)−1(h156g56 B h125) B′ (g56 B l2345)−1

l−1
1256 h126 B

′ l−1
2356

)
.

(B.93)
The expressions (B.79) and (B.86) are the same, which proves the invariance of the state
sum (4.1) under the Pachner move 3− 3. The numbers of k-simplices agree on both sides
of the 3− 3 move for all k, and the prefactors play no role in this case.
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T. Radenković1 and M. Vojinović
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1 Introduction

The quantization of the gravitational field is one of the most prominent open problems in

modern theoretical physics. Within the Loop Quantum Gravity framework, one can study

the nonperturbative quantization of gravity, both canonically and covariantly, see [1–3] for

an overview and a comprehensive introduction. The covariant approach focuses on the

definition of the path integral for the gravitational field,

Z =

∫
Dg eiS[g] , (1.1)

by considering a triangulation of a spacetime manifold, and defining the path integral as

a discrete state sum of the gravitational field configurations living on the simplices in the

triangulation. This quantization technique is known as the spinfoam quantization method,

and roughly goes along the following lines:

1. first, one writes the classical action S[g] as a topological BF action plus a simplicity

constraint,
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2. then one uses the algebraic structure (a Lie group) underlying the topological sector

of the action to define a triangulation-independent state sum Z,

3. and finally, one imposes the simplicity constraints on the state sum, promoting it

into a path integral for a physical theory.

This quantization prescription has been implemented for various choices of the action, the

Lie group, and the spacetime dimension. For example, in 3 dimensions, the prototype

spinfoam model is known as the Ponzano-Regge model [4]. In 4 dimensions there are

multiple models, such as the Barrett-Crane model [5, 6], the Ooguri model [7], and the

most sophisticated EPRL/FK model [8, 9]. All these models aim to define a viable theory

of quantum gravity, with variable success. However, virtually all of them are focused on

pure gravity, without matter fields. The attempts to include matter fields have had limited

success [10], mainly because the mass terms could not be expressed in the theory due to

the absence of the tetrad fields from the BF sector of the theory.

In order to resolve this issue, a new approach has been developed, using the categorical

generalization of the BF action, within the framework of higher gauge theory (see [11] for a

review). In particular, one uses the idea of a categorical ladder to promote the BF action,

which is based on some Lie group, into a 2BF action, which is based on the so-called 2-group

structure. If chosen in a suitable way, the 2-group structure should hopefully introduce

the tetrad fields into the action. This approach has been successfully implemented [12],

rewriting the action for general relativity as a constrained 2BF action, such that the tetrad

fields are present in the topological sector. This result opened up a possibility to couple

all matter fields to gravity in a straightforward way. Nevertheless, the matter fields could

not be naturally expressed using the underlying algebraic structure of a 2-group, rendering

the spinfoam quantization method only half-implementable, since the matter sector of the

classical action could not be expressed as a topological term plus a simplicity constraint,

which means that the steps 2 and 3 above could not be performed for the matter sector of

the action.

We address this problem in this paper. As we will show, it turns out that it is necessary

to perform one more step in the categorical ladder, generalizing the underlying algebraic

structure from a 2-group to a 3-group. This generalization then naturally gives rise to the

so-called 3BF action, which proves to be suitable for a unified description of both gravity

and matter fields. The steps of the categorical ladder can be conveniently summarized in

the following table:

categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed differential Lie

2BF theory tetrad fields
module crossed module

Lie 3-group
Lie 2-crossed differential Lie

3BF theory
scalar and

module 2-crossed module fermion fields
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Once the suitable gauge 3-group has been specified and the corresponding 3BF action

constructed, the most important thing that remains, in order to complete the step 1 of the

spinfoam quantization programme, is to impose appropriate simplicity constraints onto

the degrees of freedom present in the 3BF action, so that we obtain the desired classical

dynamics of the gravitational and matter fields. Then one can proceed with steps 2 and 3

of the spinfoam quantization, hopefully ending up with a viable model of quantum gravity

and matter.

In this paper, we restrict our attention to the first of the above steps: we will construct a

constrained 3BF action for the cases of Klein-Gordon, Dirac, Weyl and Majorana fields, as

well as Yang-Mills and Proca vector fields, all coupled to the Einstein-Cartan gravity in the

standard way. This construction will lead us to an unexpected novel result. As we shall see,

the scalar and fermion fields will be naturally associated to a new gauge group, generalizing

the notion of a gauge group in the Yang-Mills theory, which describes vector bosons. This

new group opens up a possibility to use it as an algebraic way of classifying matter fields,

describing the structures such as quark and lepton families, and so on. The insight into

the existence of this new gauge group is the consequence of the categorical ladder and

is one of the main results of the paper. However, given the complexity of the algebraic

properties of 3-groups, we will restrict ourselves only to the reconstruction of the already

known theories, such as the Standard Model (SM), in the new framework. In this sense, any

potential explanation of the spectrum of matter fields in the SM will be left for future work.

The layout of the paper is as follows. In subsection 2.1 we will give a short overview

of the constrained BF actions, including the well-known example of the Plebanski action

for general relativity, and a completely new example of the Yang-Mills theory rewritten

as a constrained BF model. In the subsection 2.2 we also introduce the formalism of the

constrained 2BF actions, reviewing the example of general relativity as a constrained 2BF

action, first introduced in [12]. In addition, we will demonstrate how to couple gravity in

a natural way within the formalism of 2-groups. Section 3 contains the main results of

the paper and is split into 4 subsections. The subsection 3.1 introduces the formalism of

3-groups, and the definition and properties of a 3BF action, including the three types of

gauge transformations. The subsection 3.2 focuses on the construction of a constrained

3BF action which describes a single real scalar field coupled to gravity. It provides the

most elementary example of the insight that matter fields correspond to a gauge group.

Encouraged by these results, in the subsection 3.3 we construct the constrained 3BF action

for the Dirac field coupled to gravity and specify its gauge group. Finally, the subsection 3.4

deals with the construction of the constrained 3BF action for the Weyl and Majorana fields

coupled to gravity, thereby covering all types of fields potentially relevant for the Standard

Model and beyond. After the construction of all building blocks, in section 4 we apply

the results of sections 2 and 3 to construct the constrained 3BF action corresponding to

the full Standard Model coupled to Einstein-Cartan gravity. Finally, section 5 is devoted

to the discussion of the results and the possible future lines of research. The appendices

contain some mathematical reminders and technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted

by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and are raised and lowered using the
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Minkowski metric ηab with signature (−,+,+,+). Spacetime indices are denoted by the

Greek letters µ, ν, . . . , and are raised and lowered by the spacetime metric gµν = ηabe
a
µe
b
ν ,

where eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other indices that

appear in the paper are dependent on the context, and their usage is explicitly defined in

the text where they appear. A lot of additional notation is defined in appendix A. We work

in the natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck length.

2 BF and 2BF models, ordinary gauge fields and gravity

Let us begin by giving a short review of BF and 2BF theories in general. For additional

information on these topics, see for example [11, 13–18].

2.1 BF theory

Given a Lie group G and its corresponding Lie algebra g, one can introduce the so-called

BF action as

SBF =

∫
M4

〈B ∧ F〉g . (2.1)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connection 1-form α ∈
A1(M4 , g) on some 4-dimensional spacetime manifold M4. In addition, B ∈ A2(M4 , g)

is a Lagrange multiplier 2-form, while 〈 , 〉g denotes the G-invariant bilinear symmetric

nondegenerate form.

From the structure of (2.1), one can see that the action is diffeomorphism invariant,

and it is usually understood to be gauge invariant with respect to G. In addition to these

properties, the BF action is topological, in the following sense. Varying the action (2.1)

with respect to Bβ and αβ , where the index β counts the generators of g (see appendix A

for notation and conventions), one obtains the equations of motion of the theory,

F = 0 , ∇B ≡ dB + α ∧B = 0 . (2.2)

From the first equation of motion, one immediately sees that α is a flat connection, which

then together with the second equation of motion implies that B is constant. Therefore,

there are no local propagating degrees of freedom in the theory, and one then says that the

theory is topological.

Usually, in physics one is interested in theories which are nontopological, i.e., which

have local propagating degrees of freedom. In order to transform the BF action into

such a theory, one adds an additional term to the action, commonly called the simplicity

constraint. A very nice example is the Yang-Mills theory for the SU(N) group, which can

be rewritten as a constrained BF theory in the following way:

S =

∫
BI∧F I+λI∧

(
BI−

12

g
MabIδ

a∧δb
)

+ζabI
(
MabIεcdefδ

c∧δd∧δe∧δf−gIJF J∧δa∧δb
)
.

(2.3)

Here F ≡ dA+A∧A is again the curvature 2-form for the connection A ∈ A1(M4 , su(N)),

and B ∈ A2(M4 , su(N)) is the Lagrange multiplier 2-form. The Killing form gIJ ≡
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〈τI , τJ〉su(N) ∝ fIKLfJLK is used to raise and lower the indices I, J, . . . which count the gen-

erators of SU(N), where f IJ
K are the structure constants for the su(N) algebra. In addition

to the topological B ∧ F term, we also have two simplicity constraint terms, featuring the

Lagrange multiplier 2-form λI and the Lagrange multiplier 0-form ζabI . The 0-form MabI

is also a Lagrange multiplier, while g is the coupling constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global coordinate frame

in which its components are equal to the Kronecker symbol δaµ (hence the notation δa).

The 1-form δa plays the role of a background field, and defines the global spacetime metric,

via the equation

ηµν = ηabδ
a
µδ
b
ν , (2.4)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the coordinate system

is global, the spacetime manifold M4 is understood to be flat. The indices a, b, . . . are

local Lorentz indices, taking values 0, . . . , 3. Note that the field δa has all the properties

of the tetrad 1-form ea in the flat Minkowski spacetime. Also note that the action (2.3) is

manifestly diffeomorphism invariant and gauge invariant with respect to SU(N), but not

background independent, due to the presence of δa.

The equations of motion are obtained by varying the action (2.3) with respect to the

variables ζabI , MabI , A
I , BI , and λI , respectively (note that we do not take the variation

of the action with respect to the background field δa):

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (2.5)

−12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (2.6)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJIKζabKδa ∧ δb ∧AJ = 0 , (2.7)

FI + λI = 0 , (2.8)

BI −
12

g
MabIδ

a ∧ δb = 0 , (2.9)

From the algebraic equations (2.5), (2.6), (2.8) and (2.9) one obtains the multipliers as

functions of the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I cd , λIab = F Iab , BIab =

1

2g
εabcdF I

cd .

(2.10)

Here we used the notation FIab = FIµνδa
µδb

ν , where we used the fact that δaµ is invertible,

and similarly for other variables. Using these equations and the differential equation (2.7)

one obtains the equation of motion for gauge field AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + fJK
IAJρF

Kρµ = 0 . (2.11)

This is precisely the classical equation of motion for the free Yang-Mills theory. Note that

in addition to the Yang-Mills theory, one can easily extend the action (2.3) in order to

describe the massive vector field and obtain the Proca equation of motion. This is done

by adding a mass term

− 1

4!
m2AIµA

I
νη
µνεabcdδ

a ∧ δb ∧ δc ∧ δd (2.12)
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to the action (2.3). Of course, this term explicitly breaks the SU(N) gauge symmetry of

the action.

Another example of the constrained BF theory is the Plebanski action for general

relativity [15], see also [13] for a recent review. Starting from a gauge group SO(3, 1), one

constructs a constrained BF action as

S =

∫
M4

Bab ∧Rab + φabcdB
ab ∧Bcd . (2.13)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the usual Lagrange

multiplier 2-form, while φabcd is the Lagrange multiplier 0-form corresponding to the sim-

plicity constraint term Bab ∧ Bcd. It can be shown that the variation of this action with

respect to Bab, ω
ab and φabcd gives rise to equations of motion which are equivalent to

vacuum general relativity. However, the tetrad fields appear in the model as a solution

to the simplicity constraint equation of motion Bab ∧ Bcd = 0. Thus, being intrinsically

on-shell objects, they are not present in the action and cannot be quantized. This renders

the Plebanski model unsuitable for coupling of matter fields to gravity [10, 12, 19]. Never-

theless, as a model for pure gravity, the Plebanski model has been successfully quantized

in the context of spinfoam models, see [1, 2, 8, 9] for details and references.

2.2 2BF theory

In order to circumvent the issue of coupling of matter fields, a recent promising approach

has been developed [12, 19–23] in the context of higher category theory [11]. In particular,

one employs the higher category theory construction to generalize the BF action to the

so-called 2BF action, by passing from the notion of a gauge group to the notion of a gauge

2-group. In order to introduce it, let us first give a short review of the 2-group formalism.

In the framework of category theory, the group as an algebraic structure can be under-

stood as a specific type of category, namely a category with only one object and invertible

morphisms [11]. The notion of a category can be generalized to the so-called higher cat-

egories, which have not only objects and morphisms, but also 2-morphisms (morphisms

between morphisms), and so on. This process of generalization is called the categorical

ladder. Similarly to the notion of a group, one can introduce a 2-group as a 2-category

consisting of only one object, where all the morphisms and 2-morphisms are invertible. It

has been shown that every strict 2-group is equivalent to a crossed module (H
∂→ G ,B),

see appendix A for definition. Here G and H are groups, δ is a homomorphism from H to

G, while B : G×H → H is an action of G on H.

An important example of this structure is a vector space V equipped with an isometry

group O. Namely, V can be regarded as an Abelian Lie group with addition as a group

operation, so that a representation of O on V is an action B of O on the group V , giving

rise to the crossed module (V
∂→ O ,B), where the homomorphism ∂ is chosen to be trivial,

i.e., it maps every element of V into a unit of O. We will make use of this example below

to introduce the Poincaré 2-group.

Similarly to the case of an ordinary Lie group G which has a naturally associated

notion of a connection α, giving rise to a BF theory, the 2-group structure has a naturally
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associated notion of a 2-connection (α , β), described by the usual g-valued 1-form α ∈
A1(M4 , g) and an h-valued 2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie

group H. The 2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (2.14)

Here α ∧B β means that α and β are multiplied as forms using ∧, and simultaneously

multiplied as algebra elements using B, see appendix A. The curvature pair (F ,G) is called

fake because of the presence of the ∂β term in the definition of F , see [11] for details.

Using these variables, one can introduce a new action as a generalization of the BF

action, such that it is gauge invariant with respect to both G and H groups. It is called

the 2BF action and is defined in the following way [16, 17]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h , (2.15)

where the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are Lagrange multipliers.

Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear symmetric nondegenerate forms for

the algebras g and h, respectively. As a consequence of the axiomatic structure of a crossed

module (see appendix A), the bilinear form 〈 , 〉h is H-invariant as well. See [16, 17] for

review and references.

Similarly to the BF action, the 2BF action is also topological, which can be seen from

equations of motion. Varying with respect to B and C one obtains

F = 0 , G = 0 , (2.16)

while varying with respect to α and β one obtains the equations for the multipliers,

dBα − gαβγBγ ∧ αβ −Bαa
bCb ∧ βa = 0 , (2.17)

dCa − ∂aαBα + Bαa
bCb ∧ αα = 0 . (2.18)

One can either show that these equations have only trivial solutions, or one can use the

Hamiltonian analysis to show that there are no local propagating degrees of freedom (see

for example [21, 22]), demostrating the topological nature of the theory.

An example of a 2-group relevant for physics is the Poincaré 2-group, which is con-

structed using the aforementioned example of a vector space equipped with an isometry

group. One constructs a crossed module by choosing

G = SO(3, 1) , H = R4 , (2.19)

while B is a natural action of SO(3, 1) on R4, and the map ∂ is trivial. The 2-connection

(α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (2.20)

where ωab is the spin connection, while Mab and Pa are the generators of groups SO(3, 1)

and R4, respectively. The corresponding 2-curvature in this case is given by

F = (dωab+ωac∧ωcb)Mab ≡ RabMab , G = (dβa+ωab∧βb)Pa ≡ ∇βaPa ≡ GaPa , (2.21)

– 7 –
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where we have evaluated ∧B using the equation Mab B Pc = η[bcPa]. Note that, since ∂ is

trivial, the fake curvature is the same as ordinary curvature. Using the bilinear forms

〈Mab,Mcd〉g = ηa[cηbd] , 〈Pa, Pb〉h = ηab , (2.22)

one can show that 1-forms Ca transform in the same way as the tetrad 1-forms ea under

the Lorentz transformations and diffeomorphisms, so the fields Ca can be identified with

the tetrads. Then one can rewrite the 2BF action (2.15) for the Poincaré 2-group as

S2BF =

∫
M4

Bab ∧Rab + ea ∧∇βa . (2.23)

In order to obtain general relativity, the topological action (2.23) can be modified by

adding a convenient simplicity constraint, like it is done in the BF case:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (2.24)

Here λab is a Lagrange multiplier 2-form associated to the simplicity constraint term, and

lp is the Planck length. Varying the action (2.24) with respect to Bab, ea, ωab, βa and λab,

one obtains the following equations of motion:

Rab − λab = 0 , (2.25)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (2.26)

∇Bab − e[a ∧ βb] = 0 , (2.27)

∇ea = 0 , (2.28)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 . (2.29)

The only dynamical fields are the tetrads ea, while all other fields can be algebraically

determined, as follows. From the equations (2.28) and (2.29) we obtain that ∇Bab = 0,

from which it follows, using the equation (2.27), that e[a ∧ βb] = 0. Assuming that the

tetrads are nondegenerate, e ≡ det(eaµ) 6= 0, it can be shown that this is equivalent to

the condition βa = 0 (for the proof see appendix in [12]). Therefore, from the equa-

tions (2.25), (2.27), (2.28) and (2.29) we obtain

λabµν = Rabµν , βaµν = 0 , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4ab

µ . (2.30)

Here the Ricci rotation coefficients are defined as

4ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (2.31)

where

cabc = eµbe
ν
c (∂µe

a
ν − ∂νeaµ) . (2.32)

– 8 –



J
H
E
P
1
0
(
2
0
1
9
)
2
2
2

Finally, the remaining equation (2.26) reduces to

εabcdR
bc ∧ ed = 0 , (2.33)

which is nothing but the vacuum Einstein field equation Rµν − 1
2gµνR = 0. Therefore, the

action (2.24) is classically equivalent to general relativity.

The main advantage of the action (2.24) over the Plebanski model and similar ap-

proaches lies in the fact that the tetrad fields are explicitly present in the topological

sector of the theory. This allows one to couple matter fields in a straightforward way, as

demonstrated in [12]. However, one can do even better, and couple gauge fields to gravity

within a unified framework of 2-group formalism.

Let us demonstrate this on the example of the SU(N) Yang-Mills theory. Begin by

modifying the Poincaré 2-group structure to include the SU(N) gauge group, as follows.

We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R4 , (2.34)

and we define the action B of the group G in the following way. As in the case of the

Poincaré 2-group, it acts on itself via conjugation. Next, it acts on H such that the

SO(3, 1) subgroup acts on R4 via the vector representation, while the action of SU(N)

subgroup is trivial. The map ∂ also remains trivial, as before. The 2-connection (α, β)

now obtains the form which reflects the structure of the group G,

α = ωabMab +AIτI , β = βaPa , (2.35)

where AI is the gauge connection 1-form, while τI are the SU(N) generators. The curvature

for α is thus

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (2.36)

The curvature for β remains the same as before, since the action B of SU(N) on R4 is

trivial, i.e., τI B Pa = 0. Finally, the product structure of the group G implies that its

Killing form 〈 , 〉g reduces to the Killing forms for the SO(3, 1) and SU(N), along with the

identity 〈Mab, τI〉g = 0.

Given a crossed module defined in this way, its corresponding topological 2BF ac-

tion (2.15) becomes

S2BF =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (2.37)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. In order to transform this

topological action into action with nontrivial dynamics, we again introduce the appropriate

simplicity constraints. The constraint giving rise to gravity is the same as in (2.24), while

the constraint for the gauge fields is given as in the action (2.3) with the substitution

δa → ea:

S =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
(2.38)

+ λI ∧
(
BI −

12

g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.
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It is crucial to note that the action (2.38) is a combination of the pure gravity action (2.24)

and the Yang-Mills action (2.3), such that the nondynamical background field δa from (2.3)

gets promoted to a dynamical field ea. The relationship between these fields has already

been hinted at in the equation (2.4), which describes the connection between δa and the

flat spacetime metric ηµν . Once promoted to ea, this field becomes dynamical, while the

equation (2.4) becomes the usual relation between the tetrad and the metric,

gµν = ηabe
a
µe
b
ν , (2.39)

further confirming that the Lagrange multiplier Ca should be identified with the tetrad.

Moreover, the total action (2.38) now becomes background independent, as expected in

general relativity. All this is a consequence of the fact that the tetrad field is explicitly

present in the topological sector of the action (2.24), establishing an improvement over the

Plebanski model.

By varying the action (2.38) with respect to the variables Bab, ωab, βa, λab, ζ
abI , MabI ,

BI , λ
I , AI , and ea, we obtain the following equations of motion, respectively:

Rab − λab = 0 , (2.40)

∇Bab − e[a ∧ βb] = 0 , (2.41)

∇ea = 0 , (2.42)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (2.43)

MabIεcdefe
c ∧ ed ∧ ee ∧ ef − FI ∧ ea ∧ eb = 0 , (2.44)

−12

g
λI ∧ ea ∧ eb + ζabIεcdefe

c ∧ ed ∧ ee ∧ ef = 0 , (2.45)

FI + λI = 0 , (2.46)

BI −
12

g
MabIe

a ∧ eb = 0 , (2.47)

−dBI +BK ∧ gJIKAJ + d(ζabI ea ∧ eb)− ζabK ea ∧ eb ∧ gJIKAJ = 0 , (2.48)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed − 24

g
MabIλ

I ∧ eb

+4ζef
I
Mef Iεabcde

b ∧ ec ∧ ed − 2ζab
IFI ∧ eb = 0 . (2.49)

In the above system of equations, we have two dynamical equations for ea and AI , while

all other variables are algebraically determined from these. In particular, from equa-

tions (2.40)–(2.47), we have:

λabµν =Rabµν , βaµν =0, ωabµ=4abµ , λabI =FabI , BµνI =− e

2g
εµνρσF

ρσ
I , (2.50)

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , MabI =− 1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

Then, substituting all these into (2.48) and (2.49) we obtain the differential equation of

motion for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (2.51)
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where Γ λµν is the standard Levi-Civita connection, and a differential equation of motion

for ea,

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ − 1

4g

(
Fρσ

IF ρσIg
µν + 4FµρIFρ

νI
)
. (2.52)

The system of equations (2.50)–(2.52) is equivalent to the system (2.40)–(2.49). Note that

we have again obtained that βa = 0, as in the pure gravity case.

In this way, we see that both gravity and gauge fields can be represented within a

unified framework of higher gauge theory based on a 2-group structure.

3 3BF models, scalar and fermion matter fields

While the structure of a 2-group can successfully accommodate both gravitational and

gauge fields, unfortunately it cannot include other matter fields, such as scalars or fermions.

In order to construct a unified description of all matter fields within the framework of higher

gauge theory, we are led to make a further generalization, passing from the notion of a 2-

group to the notion of a 3-group. As it turns out, the 3-group structure is a perfect fit

for the description of all fields that are present in the Standard Model, coupled to gravity.

Moreover, this structure gives rise to a new gauge group, which corresponds to the choice

of the scalar and fermion fields present in the theory. This is a novel and unexpected result,

which has the potential to open up a new avenue of research with the aim of explaining

the structure of the matter sector of the Standard Model and beyond.

In order to demonstrate this in more detail, we first need to introduce the notion of

a 3-group, which we will afterward use to construct constrained 3BF actions describing

scalar and fermion fields on an equal footing with gravity and gauge fields.

3.1 3-groups and topological 3BF action

Similarly to the concepts of a group and a 2-group, one can introduce the notion of a

3-group in the framework of higher category theory, as a 3-category with only one object

where all the morphisms, 2-morphisms and 3-morphisms are invertible. It has been proved

that a strict 3-group is equivalent to a 2-crossed module [24], in the same way as a 2-group

is equivalent to a crossed module.

A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,B , { , }), is a algebraic structure

specified by three Lie groups G, H and L, together with the homomorphisms δ and ∂, an

action B of the group G on all three groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. See appendix A for more details.

In complete analogy to the construction of BF and 2BF topological actions, one

can define a gauge invariant topological 3BF action for the manifold M4 and 2-crossed

module (L
δ→ H

∂→ G ,B , { , }). Given g, h and l as Lie algebras corresponding to the

groups G, H and L, one can introduce a 3-connection (α, β, γ) given by the algebra-valued
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differential forms α ∈ A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding

fake 3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ , H = dγ + α ∧B γ + {β ∧ β} . (3.1)

see [24, 25] for details. Then, a 3BF action is defined as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (3.2)

where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange multipliers. The

forms 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric nondegenerate forms on

g, h and l, respectively. Under certain conditions, the forms 〈 , 〉h and 〈 , 〉l are also

H-invariant and L-invariant, see appendix B for details.

One can see that varying the action with respect to the variables B, C and D, one

obtains the equations of motion

F = 0 , G = 0 , H = 0 , (3.3)

while varying with respect to α, β, γ one obtains

dBα − gαβγBγ ∧ αβ −Bαa
bCb ∧ βa + BαB

ADA ∧ γB = 0 , (3.4)

dCa − ∂aαBα + Bαa
bCb ∧ αα + 2X{ab}

ADA ∧ βb = 0 , (3.5)

dDA −BαA
BDB ∧ αα + δA

aCa = 0 . (3.6)

Regarding the gauge transformations, the 3BF action is invariant with respect to

three different types of transformations, generated by the groups G, H and L, respectively.

Under the G-gauge transformations, the 3-connection transforms as

α′ = g−1αg + g−1dg , β′ = g−1 B β , γ′ = g−1 B γ , (3.7)

where g : M4 → G is an element of the G-principal bundle over M4. Next, under the

H-gauge transformations, generated by η ∈ A1(M4 , h), the 3-connection transforms as

α′ = α+ ∂η , β′ = β + dη + α′ ∧B η − η ∧ η , γ′ = γ − {β′ ∧ η} − {η ∧ β} . (3.8)

Finally, under the L-gauge transformations, generated by θ ∈ A2(M4 , l), the 3-connection

transforms as

α′ = α , β′ = β − δθ , γ′ = γ − dθ − α ∧ θ . (3.9)

As a consequence of the definition (3.1) and the above transformation rules, the curvatures

transform under the G-gauge transformations as

F → g−1Fg , G → g−1 B G , H → g−1 BH , (3.10)

under the H-gauge transformations as

F → F , G → G + F ∧B η , H → H− {G′ ∧ η}+ {η ∧ G} , (3.11)
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and under the L-gauge transformations as

F → F , G → G , H → H−F ∧B θ . (3.12)

For more details, the reader is referred to [25].

In order to make the action (3.2) gauge invariant with respect to the transforma-

tions (3.7), (3.8) and (3.9), the Lagrange multipliers B, C and D must transform under

the G-gauge transformations as

B → g−1Bg , C → g−1 B C , D → g−1 BD , (3.13)

under the H-gauge transformations as

B → B+C ′∧T η−η∧D η∧DD , C → C+D∧X1 η+D∧X2 η , D → D , (3.14)

while under the L-gauge transformations they transform as

B → B −D ∧S θ , C → C , D → D . (3.15)

See appendix B for details, for the definition of the maps T , D, X1, X2, S, and for the

notation of the ∧T , ∧D, ∧X1 , ∧X2 , and ∧S products.

3.2 Constrained 3BF action for a real Klein-Gordon field

Once the topological 3BF action is specified, we can proceed with the construction of the

constrained 3BF action, describing a realistic case of a scalar field coupled to gravity. In

order to perform this construction, we have to define a specific 2-crossed module which

gives rise to the topological sector of the action, and then we have to impose convenient

simplicity constraints.

We begin by defining a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows. The

groups are given as

G = SO(3, 1) , H = R4 , L = R . (3.16)

The group G acts on itself via conjugation, on H via the vector representation, and on L

via the trivial representation. This specifies the definition of the action B. The map ∂ is

chosen to be trivial, as before. The map δ is also trivial, that is, every element of L is

mapped to the identity element of H. Finally, the Peiffer lifting is trivial as well, mapping

every ordered pair of elements in H to an identity element in L. This specifies one concrete

2-crossed module.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γI , (3.17)

where I is the sole generator of the Lie group R. From (3.1), the fake 3-curvature (F ,G ,H)

reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (3.18)
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where we used the fact that G acts trivially on L, that is, Mab B I = 0. The topological

3BF action (3.2) now becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (3.19)

where the bilinear form for L is 〈I, I〉l = 1.

It is important to note that the Lagrange multiplier D in (3.2) is a 0-form and trans-

forms trivially with respect to G, H and L gauge transformations for our choice of the

2-crossed module, as can be seen from (3.13), (3.14) and (3.15). Thus, D has all the hall-

mark properties of a real scalar field, allowing us to make identification between them, and

conveniently relabel D into φ in (3.19). This is a crucial property of the 3-group structure

in a 4-dimensional spacetime and is one of the main results of the paper. It follows the

line of reasoning used in recognizing the Lagrange multiplier Ca in the 2BF action for the

Poincaré 2-group as a tetrad field ea. It is also important to stress that the choice of the

third gauge group, L, dictates the number and the structure of the matter fields present in

the action. In this case, L = R implies that we have only one real scalar field, correspond-

ing to a single generator I of R. The trivial nature of the action B of SO(3, 1) on R also

implies that φ transforms as a scalar field. Finally, the scalar field appears as a degree of

freedom in the topological sector of the action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, in order to obtain nontrivial dynamics, we need

to impose convenient simplicity constraints on the variables in the action (3.19). Since we

are interested in obtaining the scalar field φ of mass m coupled to gravity in the standard

way, we choose the action in the form:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed . (3.20)

Note that the first row is the topological sector (3.19), the second row is the familiar

simplicity constraint for gravity from the action (2.24), the third row contains the new

simplicity constraints corresponding to the Lagrange multiplier 1-forms λ and Λab and

featuring the Lagrange multiplier 0-form Habc, while the fourth row is the mass term for

the scalar field.

Varying the total action (3.20) with respect to the variables Bab, ωab, βa, λab, Λab, γ,

λ, Habc, φ and ea one obtains the equations of motion:

Rab − λab = 0 , (3.21)

∇Bab − e[a ∧ βb] = 0 , (3.22)

∇ea = 0 , (3.23)
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Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.24)

Habcε
cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb = 0 , (3.25)

dφ− λ = 0 , (3.26)

γ − 1

2
Habce

a ∧ eb ∧ ec = 0 , (3.27)

−1

2
λ ∧ ea ∧ eb ∧ ec + εcdefΛab ∧ ed ∧ ee ∧ ef = 0 , (3.28)

dγ − d(Λab ∧ ea ∧ eb)−
1

4!
m2φεabcde

a ∧ eb ∧ ec ∧ ed = 0 , (3.29)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
3

2
Habcλ ∧ eb ∧ ec + 3HdefεabcdΛef ∧ eb ∧ ec

−2Λab ∧ dφ ∧ eb − 2
1

4!
m2φεabcde

b ∧ ec ∧ ed = 0 . (3.30)

The dynamical degrees of freedom are ea and φ, while the remaining variables are alge-

braically determined in terms of them. Specifically, the equations (3.21)–(3.28) give

λabµν = Rabµν , ωabµ = 4ab
µ , γµνρ = −e

2
εµνρσ∂

σφ ,

Λabµ =
1

12e
gµλε

λνρσ∂νφe
a
ρe
b
σ , βaµν = 0 , Babµν =

1

8πl2p
εabcde

c
µe
d
ν ,

Habc =
1

6e
εµνρσ∂µφe

a
νe
b
ρe
c
σ , λµ = ∂µφ .

(3.31)

Note that from the equations (3.22), (3.23) and (3.24) it follows that βa = 0, as in the

pure gravity case. The equation of motion (3.29) reduces to the covariant Klein-Gordon

equation for the scalar field, (
∇µ∇µ −m2

)
φ = 0 . (3.32)

Finally, the equation of motion (3.30) for ea becomes:

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ ∂µφ∂νφ− 1

2
gµν

(
∂ρφ∂

ρφ+m2φ2
)
. (3.33)

The system of equations (3.21)–(3.30) is equivalent to the system of equations (3.31)–(3.33).

Note that in addition to the correct covariant form of the Klein-Gordon equation, we have

also obtained the correct form of the stress-energy tensor for the scalar field.

3.3 Constrained 3BF action for the Dirac field

Now we pass to the more complicated case of the Dirac field. We first define a 2-crossed

module (L
δ→ H

∂→ G ,B , { , }) as follows. The groups are:

G = SO(3, 1) , H = R4 , L = R8(G) , (3.34)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ and the Peiffer

lifting are trivial. The action of the group G on itself is given via conjugation, on H

via vector representation, and on L via spinor representation, as follows. Denoting the
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8 generators of the Lie group R8(G) as Pα and Pα, where the index α takes the values

1, . . . , 4, the action of G on L is thus given explicitly as

Mab B Pα =
1

2
(σab)

β
αPβ , Mab B Pα = −1

2
(σab)

α
βP

β , (3.35)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the anticommutation

rule {γa , γb} = −2ηab.

As in the case of the scalar field, the choice of the group L dictates the matter content

of the theory, while the action B of G on L specifies its transformation properties. To see

this explicitly, let us construct the corresponding 3BF action. The 3-connection (α , β , γ)

now takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (3.36)

while the 3-curvature (F ,G ,H), defined in (3.1), is given as

F = RabMab ,G = ∇βaPa , (3.37)

H =

(
dγα +

1

2
ωab(σab)

α
βγ

β

)
Pα +

(
dγ̄α −

1

2
ωabγ̄β(σab)

β
α

)
Pα ≡ (

→
∇γ)αPα + (γ̄

←
∇)αP

α ,

where we have used (3.35). The bilinear form 〈 , 〉l is defined as

〈Pα, Pβ〉l = 0 , 〈Pα, P β〉l = 0 , 〈Pα, P β〉l = −δβα , 〈Pα, Pβ〉l = δαβ . (3.38)

Note that, for general A,B ∈ l, we can write

〈A,B〉l = AIBJgIJ , 〈B,A〉l = BJAIgJI . (3.39)

Since we require the bilinear form to be symmetric, the two expressions must be equal.

However, since the coefficients in l are Grassmann numbers, we have AIBJ = −BJAI , so

it follows that gIJ = −gJI . Hence the antisymmetry of (3.38).

Now we use the properties of the group L and the action B of G on L to recognize

the physical nature of the Lagrange multiplier D in (3.2). Indeed, the choice of the group

L dictates that D contains 8 independent complex Grassmannian matter fields as its com-

ponents. Moreover, due to the fact that D is a 0-form and that it transforms according

to the spinorial representation of SO(3, 1), we can identify its components with the Dirac

bispinor fields, and write

D = ψαPα + ψ̄αP
α , (3.40)

where it is assumed that ψ and ψ̄ are independent fields, as usual. This is again an

illustration of the fact that information about the structure of the matter sector in the

theory is specified by the choice of the group L in the 2-crossed module, and another main

result of the paper.

Given all of the above, now we can finally write the 3BF action (3.2) corresponding

to this choice of the 2-crossed module as

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (3.41)
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In order to promote this action into a full theory of gravity coupled to Dirac fermions, we

add the convenient constraint terms to the action, as follows:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α
)

+ λ̄α ∧
(
γα +

i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

− 1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd . (3.42)

Here the first row is the topological sector, the second row is the gravitational simplicity

constraint term from (2.24), while the third row contains the new simplicity constraints for

the Dirac field corresponding to the Lagrange multiplier 1-forms λα and λ̄α. The fourth row

contains the mass term for the Dirac field, and a term which ensures the correct coupling

between the torsion and the spin of the Dirac field, as specified by the Einstein-Cartan

theory. Namely, we want to ensure that the torsion has the form

Ta ≡ ∇ea = 2πl2psa , (3.43)

where

sa = iεabcde
b ∧ ecψ̄γ5γdψ (3.44)

is the spin 2-form. Of course, other couplings should also be straightforward to imple-

ment, but we choose this particular coupling because we are interested in reproducing the

standard Einstein-Cartan gravity coupled to the Dirac field.

Varying the action (3.42) with respect to Bab, λ
ab, γ̄α, γα, λα, λ̄α, ψ̄α, ψα, ea, βa and

ωab one obtains the equations of motion:

Rab − λab = 0 , (3.45)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (3.46)

(
→
∇ψ)α − λα = 0 , (3.47)

(ψ̄
←
∇)α − λ̄α = 0 , (3.48)

γ̄α −
i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α = 0 , (3.49)

γα +
i

6
εabcde

a ∧ eb ∧ ec(γdψ)α = 0 , (3.50)

dγα + ωαβ ∧ γβ +
i

6
λβ ∧ εabcdea ∧ eb ∧ ecγdαβ +

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψα

+i2πl2pεabcde
a ∧ eb ∧ βc(γ5γdψ)α = 0 , (3.51)

dγ̄α − γ̄β ∧ ωβα +
i

6
λ̄β ∧ εabcdea ∧ eb ∧ ecγdβα −

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψ̄α

−i2πl2pεabcdea ∧ eb ∧ βc(ψ̄γ5γd)α = 0 , (3.52)
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∇βa + 2εabcdλ
bc ∧ ed − i

2
εabcdλ

α ∧ eb ∧ ec(ψ̄γd)α +
i

2
εabcdλ̄α ∧ eb ∧ ec(γdψ)α

−1

3
εabcde

b ∧ ec ∧ edmψ̄ψ − 4πl2piεabcde
b ∧ βcψ̄γ5γdψ = 0 , (3.53)

∇ea − i2πl2pεabcdeb ∧ ecψ̄γ5γdψ = 0 , (3.54)

∇Bab − e[a ∧ βb] + γ̄
1

8
[γa, γb]ψ + ψ̄

1

8
[γa, γb]γ = 0 . (3.55)

The dynamical degrees of freedom are ea, ψα and ψ̄α, while the remaining variables are

determined in terms of the dynamical variables, and are given as:

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = (

→
∇µψ)α , λ̄αµ = (ψ̄

←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe
b
νe
c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcdeaµebνecρ(γdψ)α , (3.56)

λabµν = Rabµν , ωabµ = 4ab
µ +Kab

µ .

Here Kab
µ is the contorsion tensor, constructed in the standard way from the torsion tensor,

whereas from (3.54) we have

Ta ≡ ∇ea = 2πl2psa , (3.57)

which is precisely the desired equation (3.43). Further, from the equation (3.46) one obtains

∇Bab = − 1

8πl2p
εabcd (ec ∧∇ed) . (3.58)

Substituting this expression in the equation (3.55) it follows that

2εabcde
c ∧
(
− 1

16πl2p
∇ed +

1

8
sd
)
− e[a ∧ βb] = 0 . (3.59)

The expression in the parentheses is equal to zero, according to the equation (3.54). From

the remaining term e[a ∧ βb] = 0 it again follows that

β = 0 . (3.60)

Using this result, the equation of motion (3.51) for fermions becomes

i

6
εabcde

a ∧ eb ∧
(

2ec ∧ γd
→
∇+

im

2
ec ∧ ed − 3(∇ec)γd

)
ψ = 0 . (3.61)

Using equation (3.54), the last term in the parentheses vanishes, and the equation reduces

to the covariant Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (3.62)

where eµa is the inverse tetrad. Similarly, the equation (3.52) gives the conjugated Dirac

equation:

ψ̄(i
←
∇µeµaγa +m) = 0 . (3.63)
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Finally, the equation of motion (3.53) for tetrad field reduces to

Rµν − 1

2
gµνR = 8πl2p T

µν , Tµν ≡ i

2
ψ̄γν

↔
∇aeµaψ −

1

2
gµνψ̄

(
iγa
↔
∇ρeρa − 2m

)
ψ , (3.64)

Here, we used the notation
↔
∇ =

→
∇−

←
∇. The system of equations (3.45)–(3.55) is equivalent

to the system of equations (3.56), (3.60), (3.62)–(3.64). As we expected, the equations

of motion (3.57), (3.62), (3.63) and (3.64) are precisely the equations of motion of the

Einstein-Cartan theory coupled to a Dirac field.

3.4 Constrained 3BF action for the Weyl and Majorana fields

A general solution of the Dirac equation is not an irreducible representation of the Lorentz

group, and one can rewrite Dirac fermions as left-chiral and right-chiral fermion fields that

both retain their chirality under Lorentz transformations, implying their irreducibility.

Hence, it is useful to rewrite the action for left and right Weyl spinors as a constrained

3BF action. For simplicity, we will discuss only left-chiral spinor field, while the right-

chiral field can be treated analogously. Both Weyl and Majorana fermions can be treated

in the same way, the only difference being the presence of an additional mass term in the

Majorana action.

We being by defining a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows. The

groups are:

G = SO(3, 1) , H = R4 , L = R4(G) . (3.65)

The maps ∂, δ and the Peiffer lifting are trivial. The action B of the group G on G, H

and L is given in the same way as for the Dirac case, whereas the spinorial representation

reduces to

Mab B Pα =
1

2
(σab)

α
βP

β , Mab B Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (3.66)

where σab = −σ̄ab = 1
4(σaσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in which ~σ denotes

the set of three Pauli matrices. The four generators of the group L are denoted as Pα and

Pα̇, where the Weyl indices α, α̇ take values 1, 2.

The 3-connection (α , β , γ) now takes the form corresponding to this choice of Lie

groups,

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (3.67)

while the fake 3-curvature (F ,G ,H) defined in (3.1) is

F = RabMab , G = ∇βaPa , (3.68)

H =

(
dγα +

1

2
ωab(σab)βαγβ

)
Pα +

(
dγ̄α̇ +

1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇

)
P α̇ ≡ (

→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

Introducing the spinor fields ψα and ψ̄α̇ via the Lagrange multiplier D as

D = ψαP
α + ψ̄α̇Pα̇ , (3.69)

and using the bilinear form 〈 , 〉l for the group L,

〈Pα, P β〉l = εαβ , 〈Pα̇, Pβ̇〉l = εα̇β̇ , 〈Pα, Pβ̇〉l = 0 , 〈Pα̇, P β〉l = 0 , (3.70)
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where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita symbols, the

topological 3BF action (3.2) for spinors coupled to gravity becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (3.71)

In order to obtain the suitable equations of motion for the Weyl spinors, we again introduce

appropriate simplicity constraints, so that the action becomes:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γα +

i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇

)
− λ̄α̇ ∧

(
γ̄α̇ +

i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ
)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄dα̇βψβ) . (3.72)

The new simplicity constraints are in the third row, featuring the Lagrange multiplier

1-forms λα and λ̄α̇. Also, using the coupling between the Dirac field and torsion from

Einstein-Cartan theory as a model, the term in the fourth row is chosen to ensure that the

coupling between the Weyl spin tensor

sa ≡ iεabcdeb ∧ ec ψασdαβ̇ψ̄
β̇ , (3.73)

and torsion is given as:

Ta = 4πl2psa . (3.74)

The case of the Majorana field is introduced in exactly the same way, albeit with an

additional mass term in the action, of the form:

− 1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (3.75)

Varying the action (3.72) with respect to the variables Bab, λ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα,

ψ̄α̇, ea, βa and ωab one again obtains the complete set of equations of motion, displayed

in the appendix C. The only dynamical degrees of freedom are ψα, ψ̄α̇ and ea, while the

remaining variables are algebraically determined in terms of these as:

λabµν = Rabµν , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄α̇ , (3.76)

γαµνρ = iεabcde
a
µe
b
νe
c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe
b
νe
c
ρσ̄

dα̇βψβ , ωabµ = 4abµ +Kabµ .

In addition, one also maintains the result β = 0 as before. Finally, the equations of motion

for the dynamical fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄β̇ = 0 , (3.77)

and

Rµν − 1

2
gµνR = 8πl2p T

µν , (3.78)
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where

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄ − gµν

1

2

(
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄

)
. (3.79)

Here we have suppressed the spinor indices. In the case of the Majorana field, the equations

of motion (3.76) remain the same, while the equations of motion for ψα and ψ̄α̇ take the

form

iσaαβ̇e
µ
a∇µψ̄β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (3.80)

whereas the stress-energy tensor takes the form

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

− gµν 1

2

[
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −

1

2
m
(
ψψ + ψ̄ψ̄

)]
.

(3.81)

4 The Standard Model

The Standard Model 3-group can be defined as:

G = SO(3, 1)×SU(3)×SU(2)×U(1) , H = R4 , L = R4(C)×R64(G)×R64(G)×R64(G) ,

(4.1)

where C denotes the field of complex numbers. The motivation for this choice of the group

L is given in the table below.

1. lepton generation

red color

1. quark generation

green color

1. quark generation

blue color

1. quark generation(
νe

e−

)
L

(
ur

dr

)
L

(
ug

dg

)
L

(
ub

db

)
L

(νe)R (ur)R (ug)R (ub)R

(e−)R (dr)R (dg)R (db)R

We see that in order to introduce one generation of matter one needs to provide 16

spinors, or equivalently the group L has to be chosen as L = R64(G). As there are three

generations of matter, the part of the group L that corresponds to the fermion fields in

the theory is chosen to be L = R64(G)×R64(G)×R64(G). To define the Higgs sector one

needs two complex scalar fields

(
φ+

φ0

)
, or equivalently the scalar sector of the group L is

given as L = R4(C).

The maps ∂, δ and the Peiffer lifting are trivial. The action of the group G on itself

is given via conjugation. The action of the SO(3, 1) subgroup of G on H is via vector

representation and the action of SU(3)× SU(2)×U(1) subgroup on H is via trivial repre-

sentation. The action of the SO(3, 1) on L is via trivial representation for the generators

corresponding to the scalar fields, i.e. the R4(C) subgroup of L, and via spinor represen-

tation for the every quadruple of generators corresponding to the fermion fields, given as
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in the section 3. The information how spinors transform under the SU(3) × SU(2)× U(1)

group is encoded in the action of that subgroup of G on L, as specified in the table above.

For simplicity, in the following, only one family of the lepton sector and only electroweak

part of the gauge sector of the Standard model is considered.

The groups are chosen as:

G = SO(3, 1)× SU(2)×U(1) , H = R4 , Lleptons = R16(G)× R4(C) . (4.2)

The 3-connection then takes the form

α = ωabMab +W ITI +AY , β = βaPa ,

γ = γα
L̃PαL̃ + γα̇L̃Pα̇

L̃ + γα
R̃PαR̃ + γα̇R̃Pα̇

R̃ + γãPã .
(4.3)

Here the indices I, J, . . . take the values 1, 2, 3 and counts the Pauli matrices, generators

of the group SU(2), the indices L̃, L̃′, . . . take the values 1, 2 and count the components of

left doublet, R̃ denotes the right singlet (e−)R and right singlet (νe)R, and indices ã, b̃, . . .

take values 1, 2 and count the components of the scalar doublet. It is also useful to define

ĩ = (L̃, R̃) which takes values 1, . . . , 4.

The action of the group G on L is defined as:

Mab B Pαi =
1

2
(σab)

α
βP

β
i , Mab B Pα̇i =

1

2
(σ̄ab)

β̇
α̇Pβ̇i , Mab B Pã = 0 ,

TI B PαL̃ =
1

2
(σI)

L̃′

L̃P
α
L̃′ , TI B Pα̇L̃ =

1

2
(σI)

L̃′

L̃Pα̇L̃′ ,

TI B PαR̃ = 0 , TI B Pα̇R̃ = 0 , TI B Pã =
1

2
(σI)

b̃
ãPb̃ ,

Y B PαL̃ = −PαL̃ , Y B PαeR = −2PαeR , Y B PανR = −2PανR , Y B Pã = Pã ,

Y B Pα̇L̃ = −Pα̇L̃ , Y B Pα̇eR = −2Pα̇eR , Y B Pα̇νR = −2Pα̇νR . (4.4)

The 3-curvatures are given as:

F = RabMab + F ITI + FY , G = ∇βaPa ,

H = (
→
∇γL̃)αP

α
L̃ + (γ̄L̃

←
∇)α̇P α̇

L̃ + (
→
∇γR̃)αP

α
R̃ + (γ̄R̃

←
∇)α̇P α̇

R̃ + dγãPã .
(4.5)

The topological 3BF action is defined as:

S =

∫
BabR

ab +BIF
I +BF + ea∇βa + ψαĩ(

→
∇γ ĩ)α + ψ̄α̇

ĩ(γ̄ ĩ
←
∇)α̇ + φãdγã . (4.6)

At this point, it is useful to simplify the notation and denote all indices of the group G by

α̂, of the group H by â and L by Â. In order to promote this action to a full theory of

first lepton family coupled to electroweak gauge fields, Higgs field, and gravity, we again

– 22 –



J
H
E
P
1
0
(
2
0
1
9
)
2
2
2

introduce the appropriate simplicity constraint, as follows

S =

∫
Bα̂ ∧ F α̂ + eâ ∧ Gâ +DÂ ∧H

Â

+
(
Bα̂ − Cα̂β̂Mcdβ̂e

c ∧ ed
)
∧ λα̂ −

(
γÂ − e

a ∧ eb ∧ ecCÂ
B̂MabcB̂

)
∧ λÂ

+ ζabα̂ ∧
(
Mab

α̂εcdefec ∧ ed ∧ ee ∧ ef − F α̂ ∧ ec ∧ ed
)

+ ζabÂ ∧
(
Mabc

Âεcdefed ∧ ee ∧ ef − F Â ∧ ea ∧ eb
)

− εabcdea ∧ eb ∧ ec ∧ ed
(
YÂB̂ĈD

ÂDB̂DĈ +MÂB̂D
ÂDB̂ + LÂB̂ĈD̂D

ÂDB̂DĈDD̂
)

− 4πi l2p εabcde
a ∧ eb ∧ βcDÂT

dÂ
B̂D

B̂ , (4.7)

where:

Bα̂ =
[
Bab BI B

]
, F α̂ =

[
Rab FI F

]
T , DÂ =

[
ψαL̃ ψ̄α̇L̃ ψ

α
R ψ̄α̇R φã

]
,

HÂ =
[

(
→
∇γL̃)α (γ̄L̃

←
∇)α̇ (

→
∇γR̃)α (γ̄R̃

←
∇)α̇ dγã

]
T , γÂ =

[
γαL̃ γ̄α̇L̃ γ

α
R̃ γ̄α̇R̃ γã

]
,

λα̂ =
[
−λab λI λ

]
T , ζcdα̂ =

[
0 ζcdI ζ

cd
]
, ζabÂ =

[
ζab 0 0

]
,

λÂ =
[
λαL λ̄

α̇
L λαR λ̄α̇R λã

]
T , Mcdα̂ =

[
εabcd McdI Mcd

]
,

MabcÂ =
[
εabcdσ

d
αβ̇ψ̄

β̇
L εabcdσ̄

dα̇βψβL εabcdσ
d
αβ̇ψ̄

β̇
R εabcdσ̄

dα̇βψβR Mabcã

]
.

The matrices Cα̂β̂ , CÂB̂, MÂB̂, YÂB̂Ĉ , LÂB̂ĈD̂ and T dÂB̂ are constant matrices, and

carry the information about gauge coupling constants, mass of the Higgs field, Yukawa

couplings and mixing angles, Higgs self-coupling constant and torsion coupling, respectively.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short reminder

of the BF theory and described how one can use it to construct the action for general

relativity (the well known Plebanski model), and the action for the Yang-Mills theory

in flat spacetime, in a novel way. Passing on to higher gauge theory, we have reviewed

the formalism of 2-groups and the corresponding 2BF theory, using it again to construct

the action for general relativity (a model first described in [12]), and the unified action

of general relativity and Yang-Mills theory, both naturally described using the 2-group

formalism. With this background material in hand, in section 3 we have used the idea

of a categorical ladder yet again, generalizing the 2BF theory to 3BF theory, with the

underlying structure of a 3-group instead of a 2-group. This has led us to the main insight

that the scalar and fermion fields can be specified using a gauge group, namely the third

gauge group, denoted L, present in the 2-crossed module corresponding to a given 3-group.

This has allowed us to single out specific gauge groups corresponding to the Klein-Gordon,

Dirac, Weyl and Majorana fields, and to construct the relevant constrained 3BF actions

that describe all these fields coupled to gravity in the standard way.
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The obtained results represent the fundamental building blocks for the construction of

the complete Standard Model of elementary particles coupled to Einstein-Cartan gravity

as a 3BF action with suitable simplicity constraints, as demonstrated in section 4. In

this way, we can complete the first step of the spinfoam quantization programme for the

complete theory of gravity and all matter fields, as specified in the Introduction. This is

a clear improvement over the ordinary spinfoam models based on an ordinary constrained

BF theory.

In addition to this, the gauge group which determines the matter spectrum of the

theory is a completely novel structure, not present in the Standard Model. This new

gauge group stems from the 3-group structure of the theory, so it is not surprising that

it is invisible in the ordinary formulation of the Standard Model, since the latter does

not use any 3-group structure in an explicit way. In this paper, we have discussed the

choices of this group which give rise to all relevant matter fields, and these can simply be

directly multiplied to give the group corresponding to the full Standard Model, encoding

the quark and lepton families and all other structure of the matter spectrum. However,

the true potential of the matter gauge group lies in a possibility of nontrivial unification

of matter fields, by choosing it to be something other than the ordinary product of its

component groups. For example, instead of choosing R8(G) for the Dirac field, one can try a

noncommutative SU(3) group, which also contains 8 generators, but its noncommutativity

requires that the maps δ and { , } be nontrivial, in order to satisfy the axioms of a

2-crossed module. This, in turn, leads to a distinction between 3-curvature and fake 3-

curvature, which can have consequences for the dynamics of the theory. In this way, by

studying nontrivial choices of a 3-group, one can construct various different 3-group-unified

models of gravity and matter fields, within the context of higher gauge theory. This idea

resembles the ordinary grand unification programme within the framework of the standard

gauge theory, where one constructs various different models of vector fields by making

various choices for the Yang-Mills gauge group. The detailed discussion of these 3-group

unified models is left for future work.

As far as the spinfoam quantization programme is concerned, having completed the

step 1 (as outlined in the Introduction), there is a clear possibility to complete the steps 2

and 3 as well. First, the fact that the full action is written completely in terms of differential

forms of various degrees, allows us to adapt it to a triangulated spacetime manifold, in the

sense of Regge calculus. In particular, all fields and their field strengths present in the

3BF action can be naturally associated to the appropriate d-dimensional simplices of a

4-dimensional triangulation, by matching 0-forms to vertices, 1-forms to edges, etc. This

leads us to the following table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄α̃ Ga

4 4-simplex vertex 4-form H, Hα̃, H̄α̃
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Once the classical Regge-discretized topological 3BF action is constructed, one can

attempt to construct a state sum Z which defines the path integral for the theory. The

topological nature of the pure 3BF action, together with the underlying structure of the 3-

group, should ensure that such a state sum Z is a topological invariant, in the sense that it is

triangulation independent. Unfortunately, in order to perform this step precisely, one needs

a generalization of the Peter-Weyl and Plancharel theorems to 2-groups and 3-groups, a

mathematical result that is presently still missing. The purpose of the Peter-Weyl theorem

is to provide a decomposition of a function on a group into a sum over the corresponding

irreducible representations, which ultimately specifies the appropriate spectrum of labels

for the d-simplices in the triangulation, fixing the domain of values for the fields living on

those d-simplices. In the case of 2-groups and especially 3-groups, the representation theory

has not been developed well enough to allow for such a construction, with a consequence of

the missing Peter-Weyl theorem for 2-groups and 3-groups. However, until the theorem is

proved, we can still try to guess the appropriate structure of the irreducible representations

of the 2- and 3-groups, as was done for example in [12], leading to the so-called spincube

model of quantum gravity.

Finally, if we remember that for the purpose of physics we are not really interested in a

topological theory, but instead in one which contains local propagating degrees of freedom,

we are therefore not really engaged in constructing a topological invariant Z, but rather

a state sum which describes nontrivial dynamics. In particular, we need to impose the

simplicity constraints onto the state sum Z, which is the step 3 of the spinfoam quantization

programme. In light of that, one of the main motivations and also main results of our paper

was to rewrite the action for gravity and matter in a way that explicitly distinguishes the

topological sector from the simplicity constraints. Imposing the constraints is therefore

straightforward in the context of a 3-group gauge theory, and completing this step would

ultimately lead us to a state sum corresponding to a tentative theory of quantum gravity

with matter. This is also a topic for future work.

In the end, let us also mention that aside from the unification and quantization pro-

grammes, there is also a plethora of additional studies one can perform with the constrained

3BF action, such as the analysis of the Hamiltonian structure of the theory (suitable for

a potential canonical quantization programme), the idea of imposing the simplicity con-

straints using a spontaneous symmetry breaking mechanism, and finally a detailed study

of the mathematical structure and properties of the simplicity constraints. This list is of

course not conclusive, and there may be many more interesting related topics to study in

both physics and mathematics.

Acknowledgments

The authors would like to thank Aleksandar Miković, Jeffrey Morton, John Baez, Roger
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A Category theory, 2-groups and 3-groups

Definition 1 (Pre-crossed module and crossed module) A pre-crossed module

(H
∂→ G ,B) of groups G and H, is given by a group map ∂ : H → G, together with a

left action B of G on H, by automorphisms, such that for each h1 , h2 ∈ H and g ∈ G the

following identity hold:

g∂hg−1 = ∂(g B h) .

In a pre-crossed module the Peiffer commutator is defined as:

〈h1 , h2〉p = h1h2h
−1
1 ∂(h1) B h−12 .

A pre-crossed module is said to be a crossed module if all of its Peiffer commutators are

trivial, which is to say that

(∂h) B h′ = hh′h−1 ,

i.e. the Peiffer identity is satisfied.

Definition 2 (2-crossed module) A 2-crossed module (L
δ→ H

∂→ G, B, {−, −}) is

given by three groups G, H and L, together with maps ∂ and δ such that:

L
δ→ H

∂→ G ,

where ∂δ = 1, an action B of the group G on all three groups, and an G-equivariant map

called the Peiffer lifting:

{− ,−} : H ×H → L .

The following identities are satisfied:

1. The maps ∂ and δ are G-equivariant, i.e. for each g ∈ G and h ∈ H:

g B ∂(h) = ∂(g B h) , g B δ(l) = δ(g B l) ,

the action of the group G on the groups H and L is a smooth left action by automor-

phisms, i.e. for each g, g1, g2 ∈ G, h1, h2 ∈ H, l1, l2 ∈ L and e ∈ H,L:

g1B(g2Be) = (g1g2)Be , gB(h1h2) = (gBh1)(gBh2) , gB(l1l2) = (gBl1)(gBl2) ,

and the Peiffer lifting is G-equivariant, i.e. for each h1, h2 ∈ H and g ∈ G:

g B {h1 , h2} = {g B h1, g B h2} ;

2. the action of the group G on itself is via conjugation, i.e. for each g , g0 ∈ G:

g B g0 = g g0 g
−1 ;
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3. In a 2-crossed module the structure (L
δ→ H, B′) is a crossed module, with action of

the group H on the group L is defined for each h ∈ H and l ∈ L as:

hB′ l = l {δ(l)−1, h} ,

but (H
∂→ G ,B) may not be one, and the Peiffer identity does not necessary hold.

However, when ∂ is chosen to be trivial and group H Abelian, the Peiffer identity is

satisfied, i.e. for each h, h′ ∈ H:

δ(h) B h′ = hh′ h−1 ;

4. δ({h1, h2}) = 〈h1 , h2〉p, ∀h1, h2 ∈ H,

5. [l1, l2] = {δ(l1) , δ(l2)}, ∀l1 , l2 ∈ L. Here, the notation [l, k] = lkl−1k−1 is used;

6. {h1h2, h3} = {h1, h2h3h−12 }∂(h1) B {h2, h3}, ∀h1, h2, h3 ∈ H;

7. {h1, h2h3} = {h1, h2}{h1, h3}{〈h1, h3〉−1p , ∂(h1) B h2}, ∀h1, h2, h3 ∈ H;

8. {δ(l), h}{h, δ(l)} = l(∂(h) B l−1), ∀h ∈ H , ∀l ∈ L.

Definition 3 (Differential pre-crossed module, differential crossed module)

A differential pre-crossed module (h
∂→ g ,B) of algebras g and h is given by a Lie algebra

map ∂ : h→ g together with an action B of g on h such that for each h ∈ h and g ∈ g:

∂(g B h) = [g, ∂(h)] .

The action B of g on h is on left by derivations, i.e. for each h1, h2 ∈ h and each g ∈ g:

g B [h1, h2] = [g B h1, h2] + [h1, g B h2] .

In a differential pre-crossed module, the Peiffer commutators are defined for each h1, h2 ∈ h

as:

〈h1, h2〉p = [h1, h2]− ∂(h1) B h2 .

The map (h1, h2) ∈ h× h→ 〈h1, h2〉p ∈ h is bilinear g-equivariant map called the Peiffer

paring, i.e. all h1 , h2 ∈ h and g ∈ g satisfy the following identity:

g B 〈h1 , h2〉p = 〈g B h1 , h2〉+ 〈h1 , g B h2〉p .

A differential pre-crossed module is said to be a differential crossed module if all of its

Peiffer commutators vanish, which is to say that for each h1, h2 ∈ h:

∂(h1) B h2 = [h1, h2] .

Definition 4 (Differential 2-crossed module) A differential 2-crossed module is given

by a complex of Lie algebras:

l
δ→ h

∂→ g ,
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together with left action B of g on h, l, by derivations, and on itself via adjoint represen-

tation, and a g-equivariant bilinear map called the Peiffer lifting:

{− , −} : h× h→ l

Fixing the basis in algebra TA ∈ l, ta ∈ h and τα ∈ g:

[TA, TB] = fAB
C TC , [ta, tb] = fab

c tc , [τα, τβ ] = fαβ
γ τγ ,

one defines the maps ∂ and δ as:

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta ,

and action of g on the generators of l, h and g is, respectively:

τα B TA = BαA
B TB , τα B ta = Bαa

b tb , τα B τβ = Bαβ
γ τγ .

Note that when η is g-valued differential form and ω is l, h or g valued differential form

the previous action is defined as:

η B ω = ηα ∧ ωA BαA
B TB , η B ω = ηα ∧ ωa Bαa

b tb , η B ω = ηα ∧ ωβfαβγ τγ .

The coefficients Xab
A are introduced as:

{ta, tb} = Xab
ATA .

The following identities are satisfied:

1. In the differential crossed module (L
δ→ H ,B′) the action B′ of h on l is defined for

each h ∈ h and l ∈ l as:

hB′ l = −{δ(l), h} ,

or written in the basis where ta B′ TA = B′aABTB the previous identity becomes:

B′aA
B

= −δAbXba
B ;

2. The action of g on itself is via adjoint representation:

Bαβ
γ = fαβ

γ ;

3. The action of g on h and l is equivariant, i.e. the following identities are satisfied:

∂a
βfαβ

γ = Bαa
b∂b

γ , δA
a Bαa

b = BαA
BδB

b ;

4. The Peiffer lifting is g-equivariant, i.e. for each h1, h2 ∈ h and g ∈ g:

g B {h1, h2} = {g B h1, h2}+ {h1, g B h2} ,

or written in the basis:

Xab
BBαB

A = Bαa
cXcb

A + Bαb
cXac

A ;
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5. δ({h1, h2}) = 〈h1, h2〉 p , ∀h1, h2 ∈ h, i.e.

Xab
AδA

c = fab
c − ∂aαBαb

c ;

6. [l1, l2] = {δ(l1), δ(l2)} , ∀l1, l2 ∈ l, i.e.

fAB
C = δA

aδB
bXab

C ;

7. {[h1, h2], h3} = ∂(h1)B {h2, h3}+ {h1, [h2, h3]}−∂(h2)B {h1, h3}−{h2, [h1, h3]} ,
∀h1, h2, h3 ∈ h, i.e.

{[h1, h2], h3} = {∂(h1)Bh2, h3}−{∂(h2)Bh1, h3}−{h1, δ{h2, h3}}+{h2, δ{h1, q, h3}},

fab
dXdc

B = ∂a
αXbc

ABαA
B +Xad

Bfbc
d − ∂bαBαA

BXac
A −Xbd

Bfac
d ;

8. {h1, [h2, h3]} = {δ {h1, h2} , h3} − {δ {h1, h3} , h2} , ∀h1, h2, h3 ∈ h, i.e.

Xad
Afbc

d = Xab
BδB

dXdc
A −Xac

BδB
dXdb

A ;

9. {δ(l), h}+ {h, δ(l)} = −∂(h) B l , ∀l ∈ l , ∀h ∈ h, i.e.

δA
aXab

B + δA
aXba

B = −∂bαBαA
B .

Note that the property 6. implies that either trivial map δ or the trivial Peiffer lifting imply

that L is an Abelian group. Conversely, if L is Abelian, property 6. implies that either the

map δ or the Peiffer lifting is trivial, or both.

In the case of an Abelian group H and trivial map ∂, among the aforementioned

properties the only non-trivial remaining are:

1. δ{h1, h2} = 0 , ∀h1 , h2 ∈ h ;

2. [l1, l2] = {δ(l1), δ(l2)} , ∀l1 , l2 ∈ l ;

3. {δ(l), h} = −{h, δ(l)} , ∀h ∈ h , ∀l ∈ l .

A reader intrested in more details about 3-groups is referred to [25].

B The construction of gauge-invariant actions for 3BF theory

Symmetric bilinear invariant nondegenerate forms are defined as:

〈TA , TB〉l = gAB , 〈ta , tb〉h = gab , 〈τα , τβ〉g = gαβ .

They satisfy the following properties:

• 〈 , 〉g is G-invariant:

〈gταg−1 , gτβg−1〉g = 〈τα , τβ〉g , ∀g ∈ G ;
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• 〈 , 〉h is G-invariant:

〈g B ta , g B tb〉h = 〈ta , tb〉h , ∀g ∈ G ,

and, when (H
∂→ G ,B) is a crossed module, consequently H-invariant:

〈htah−1 , htbh−1〉h = 〈∂(h) B ta , ∂(h) B tb〉h = 〈ta , tb〉h , ∀h ∈ H ;

• 〈 , 〉l is G-invariant:

〈g B TA , g B TB〉l = 〈TA , TB〉l , ∀g ∈ G ,

and in the case when the Peiffer lifting or the map δ is trivial consequently H-

invariant:

〈hB′ TA , hB′ TB〉l = 〈TA − {δ(TA), h} , TB − {δ(TB), h}〉l = 〈TA , TB〉l , ∀h ∈ H .

From the H-invariance of 〈 , 〉l and properties of a crossed module (L
δ→ H ,B′)

follows L-invariance:

〈lTAl−1 , lTBl−1〉l = 〈δ(l) B′ TA , δ(l) B′ TB〉l = 〈TA , TB〉l , ∀l ∈ L .

From the invariance of the bilinear forms follows the existence of gauge-invariant topological

3BF action of the form:

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧ H〉l , (B.1)

where B ∈ A2(M4 , g), C ∈ A1(M4 , h) and D ∈ A0(M4 , l) are Lagrange multipliers, and

F ∈ A2(M4 , g), G ∈ A3(M4 , h) and H ∈ A4(M4 , l) are curvatures defined as in (3.1).

Written in the basis:

F =
1

2
Fαµνταdxµ ∧ dxν , G =

1

3!
Gaµνρtadxµ ∧ dxν ∧ dxρ ,

H =
1

4!
HAµνρσTAdxµ ∧ dxν ∧ dxρ ∧ dxσ ,

the coefficients are:

Fαµν = ∂µα
α
ν − ∂νααµ + fβγ

ααβµα
γ
ν − βaµν∂aα ,

Gaµνρ = ∂µβ
a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν

+ ααµβ
b
νρBαb

a + αανβ
b
ρµBαb

a + ααρβ
b
µνBαb

a − γAµνρδAa ,
HAµνρσ = ∂µγ

A
νρσ − ∂νγAρσµ + ∂ργ

A
σµν − ∂σγAµνρ

+ 2βaµνβ
b
ρσX{ab}

A − 2βaµρβ
b
νσX{ab}

A + 2βaµσβ
b
νρX{ab}

A

+ ααµγ
B
νρσBαB

A − αανγBρσµBαB
A + ααργ

B
σµνBαB

A − αασγBµνρBαB
A .

Note that the wedge product A ∧ B when A is a 0-form and B is a p-form is defined

as A ∧B = 1
p!ABµ1...µpdxµ1 ∧ · · · ∧ xµp .
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Given G-invariant symmetric non-degenerate bilinear forms in g and h, one can define

a bilinear antisymmetric map T : h× h→ g by the rule:

〈T (h1, h2) , g〉g = −〈h1, g B h2〉h, ∀h1, h2 ∈ h , ∀g ∈ g .

See [17] for more properties and the construction of 2BF invariant topological action using

this map. To define 3BF invariant topological action one has to first define a bilinear

antisymmetric map S : l× l→ g by the rule:

〈S(l1, l2), g〉g = −〈l1, g B l2〉l , ∀l1, ∀l2 ∈ l , ∀g ∈ g .

Note that 〈 , 〉g is non-degenerate and

〈l1, g B l2〉l = −〈g B l1, l2〉l = −〈l2, g B l1〉l , ∀g ∈ g, ∀l1, l2 ∈ l .

Morever, given g ∈ G and l1, l2 ∈ l one has:

S(g B l1, g B l2) = g S(l1, l2) g
−1 ,

since for each g ∈ g and l1, l2 ∈ l:

〈g, g−1S(g B l1 , g B l2)g〉g = 〈ggg−1, S(g B l1, g B l2)〉g
= −〈(g g g−1) B g B l1, g B l2〉l
= −〈g B l1 , l2〉l = 〈g ,S(l1, l2)〉g ,

where the following mixed relation has been used:

g B (g B l) = (g g g−1) B g B l . (B.2)

We thus have the following identity:

S(g B l1, l2) + S(l1, g B l2) = [g, S(l1, l2)] .

As far as the bilinear antisymmetric map S : l × l→ g, one can write it in the basis:

S(TA, TB) = SABατα ,

so that the defining relation for S becomes the relation:

SABαgαβ = −Bα[B
CgA]C .

Given two l-valued forms η and ω, one can define a g-valued form:

ω ∧S η = ωA ∧ ηBSABατα .

Now one can define the transformations of the Lagrange multipliers under L-gauge trans-

formations (3.15).
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Further, to define the transformations of the Lagrange multipliers under H-gauge

transformations one needs to define the bilinear map X1 : l× h→ h by the rule:

〈X1(l, h1), h2〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l ,

and bilinear map X2 : l× h→ h by the rule:

〈X2(l, h2), h1〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l .

As far as the bilinear maps X1 and X2 one can define the coefficients in the basis as:

X1(TA, ta) = X1Aa
b tb , X2(TA, ta) = X2Aa

b tb .

When written in the basis the defining relations for the maps X1 and X2 become:

X1Ab
cgac = −Xba

BgAB , X2Ab
cgac = −Xab

BgAB .

Given l-valued differential form ω and h-valued differential form η, one defines a h-valued

form as:

ω ∧X1 η = ωA ∧ ηaX1Aa
btb , ω ∧X2 η = ωA ∧ ηaX2Aa

btb .

Given any g ∈ G, l ∈ l and h ∈ h one has:

X1(g B l, g−1 B h) = g B X1(l, h) , X2(g B l, g B h) = g−1 B X2(l, h) ,

since for each h1, h2 ∈ h and l ∈ l:

〈h2, g−1 B X1(g B l, g B h1)〉h = 〈g B h2, X1(g B l, g B h1)〉h = 〈g B l, {g B h1, g B h2}〉l
〈g B l, g B {h1, h2}〉l = 〈l, {h1, h2}〉l = 〈h2, X1(l, h1)〉h ,

and similarly for X 2. Finaly, one needs to define a trilinear map D : h× h× l→ g by the

rule:

〈D(h1, h2, l), g〉g = −〈l, {g B h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g ,

One can define the coefficients of the trilinear map as:

D(ta, tb, TA) = DabAατα ,

and the defining relation for the map D expressed in terms of coefficients becomes:

DabAβgαβ = −Bαa
cXcb

BgAB .

Given two h-valued forms ω and η, and l-valued form ξ, the g-valued form is given by the

formula:

ω ∧D η ∧D ξ = ωa ∧ ηb ∧ ξADabAβτβ .

The following compatibility relation between the maps X1 and D hold:

〈D(h1, h2, l), g〉g = 〈X1(l, g B h1), h2〉h , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g , (B.3)
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which one can prove valid from the defining relations in terms of the coefficients. One can

demonstrate that for each h1, h2 ∈ h, l ∈ l and g ∈ G:

D(g B h1, g B h2, g B l) = gD(h1, h2, l) g
−1 ,

since for each h1, h2 ∈ h, l ∈ l, g ∈ g and g ∈ G:

〈g−1D(g B h1, g B h2, g B l)g, g〉g = 〈D(g B h1, g B h2, g B l), ggg−1〉g
= 〈X1(g B l, ggg−1 B g B h1), g B h2〉h
= 〈X1(g B l, g B g B h1), g B h2〉h
= 〈g B X1(l, g B h1), g B h2〉h
= 〈X1(l, g B h1), h2〉h
= 〈D(h1, h2, l) , g〉g ,

where the relation (B.2) and the compatibility relation (B.3) were used. We thus have for

each h1, h2 ∈ h, l ∈ l and g ∈ g the following identity:

D(g B h1, h2, l) +D(h1, g B h2, l) +D(h1, h2, g B l) = [g, D(h1, h2, l)] .

Now one can define the transformations of the Lagrange multipliers under H-gauge trans-

formations as in (3.14).

C The equations of motion for the Weyl and Majorana fields

The action for the Weyl spinor field coupled to gravity is given by (3.72). The variation of

this action with respect to the variables Bab, λ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇, ea, βa and ωab

one obtains the complete set of equations of motion, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

∇ψα + λα = 0 ,

∇ψ̄α̇ + λ̄α̇ = 0 ,

−γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇ = 0 ,

−γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ = 0 ,

∇γα −
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇λ̄
β̇ = 0 ,

∇γ̄α̇ − i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βλβ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcde

b ∧ ec ∧ (λ̄α̇σ̄
dα̇βψβ + λασdαβ̇ψ̄

β̇)

−8πil2pεabcde
bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,
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∇ea − 4πl2pεabcde
b ∧ ec ∧ (ψ̄α̇σ̄

dα̇βψβ) = 0 ,

∇Bab − e[a ∧ βb] −
1

2
γσabα

βψβ −
1

2
γ̄α̇σ̄

abα̇
β̇ψ̄

β̇ = 0 .

In the case of the Majorana field, one adds the mass term (3.75) to the action (3.72). Then,

the variation of the action with respect to Bab, ψ
ab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇I , ea, βa and ωab

gives the equations of motion for the Majorana case, as follows:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

−∇ψα + λα = 0 ,

−∇ψ̄α̇ + λα̇ = 0 ,

γα − i

6
εabcde

a ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α = 0 ,

γ̄α̇ −
i

6
εabcde

a ∧ eb ∧ ecψβ(σd)βα̇ = 0 ,

∇γα +
i

6
εabcdλ

β̇ ∧ ea ∧ eb ∧ ec(σd)αβ̇ −
1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα

−4iπl2pεabcde
a ∧ eb ∧ βcψ̄β̇(σ̄d)β̇α = 0 ,

∇γ̄α̇ +
i

6
εabcdλβ ∧ ea ∧ eb ∧ ec(σ̄d)α̇β −

1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα̇

−4iπl2pεabcde
a ∧ eb ∧ βcψβ(σd)βα̇ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcdλα ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α +

i

2
εabcdλ

α̇ ∧ eb ∧ ecψβ(σd)βα̇

−1

3
mεabcde

b ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇)− 8πil2pεabcde

bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇ea − 4iπl2pεabcde
b ∧ ec

(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇Bab − e[a ∧ βb] −
1

2
ψα(σab)α

βγβ −
1

2
ψ̄α̇(σ̄ab)α̇β̇ γ̄

β̇ = 0 .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Rovelli, Quantum gravity, Cambridge University Press, Cambridge, U.K. (2004).

[2] C. Rovelli and F. Vidotto, Covariant loop quantum gravity, Cambridge University Press,

Cambridge, U.K. (2014).

[3] T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press,

Cambridge, U.K. (2007).

[4] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in Spectroscopic and

group theoretical methods in physics, F. Block ed., North Holland, Amsterdam, The

Netherlands (1968).

– 34 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
0
(
2
0
1
9
)
2
2
2

[5] J.W. Barrett and L. Crane, Relativistic spin networks and quantum gravity, J. Math. Phys.

39 (1998) 3296 [gr-qc/9709028] [INSPIRE].

[6] J.W. Barrett and L. Crane, A Lorentzian signature model for quantum general relativity,

Class. Quant. Grav. 17 (2000) 3101 [gr-qc/9904025] [INSPIRE].

[7] H. Ooguri, Topological lattice models in four-dimensions, Mod. Phys. Lett. A 7 (1992) 2799

[hep-th/9205090] [INSPIRE].

[8] J. Engle, E. Livine, R. Pereira and C. Rovelli, LQG vertex with finite Immirzi parameter,

Nucl. Phys. B 799 (2008) 136 [arXiv:0711.0146] [INSPIRE].

[9] L. Freidel and K. Krasnov, A new spin foam model for 4d gravity, Class. Quant. Grav. 25

(2008) 125018 [arXiv:0708.1595] [INSPIRE].

[10] E. Bianchi, M. Han, C. Rovelli, W. Wieland, E. Magliaro and C. Perini, Spinfoam fermions,

Class. Quant. Grav. 30 (2013) 235023 [arXiv:1012.4719] [INSPIRE].

[11] J.C. Baez and J. Huerta, An invitation to higher gauge theory, Gen. Rel. Grav. 43 (2011)

2335 [arXiv:1003.4485] [INSPIRE].

[12] A. Miković and M. Vojinović, Poincaré 2-group and quantum gravity, Class. Quant. Grav. 29

(2012) 165003 [arXiv:1110.4694] [INSPIRE].
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Abstract: When discussing the gauge symmetries of any theory, the Henneaux–Teitelboim trans-
formations are often underappreciated or even completely ignored, due to their on-shell triviality.
Nevertheless, these gauge transformations play an important role in understanding the structure of
the full gauge symmetry group of any theory, especially regarding the subgroup of diffeomorphisms.
We give a review of the Henneaux–Teitelboim transformations and the resulting gauge group in the
general case and then discuss its role in the applications to the class of topological theories called nBF
models, relevant for the constructions of higher gauge theories and quantum gravity.

Keywords: gauge symmetry; trivial gauge transformations; nBF theory; Chern–Simons theory;
diffeomorphism symmetry

1. Introduction

In modern theoretical physics, gauge symmetries play a very prominent role. The
two most-fundamental theories we have, which describe almost all observed phenomena
in nature—namely Einstein’s theory of general relativity and the Standard Model of ele-
mentary particle physics—are gauge theories. From Maxwell’s electrodynamics to various
approaches to quantum gravity, gauge theories play a central role, and gauge symmetry
represents one of their most-important aspects. In light of this, there is one class of gauge
transformations that is often slightly neglected in the literature, due to their specific nature
and properties.

In order to introduce this particular gauge symmetry in the most-elementary way
possible, let us look at the following simple example. Every action S[φ1, φ2], which depends
on the fields φ1(x) and φ2(x), is invariant under the following gauge transformation:

δ0φ1(x) = ε(x)
δS

δφ2(x)
, δ0φ2(x) = −ε(x)

δS
δφ1(x)

, (1)

as one can see by calculating the variation of the action:

δS[φ1, φ2] =
δS
δφ1

δ0φ1 +
δS
δφ2

δ0φ2 = 0 . (2)

This gauge symmetry exists for every action that is a functional of at least two fields,
irrespective of any other gauge symmetry that the action may or may not have. In the
literature, this symmetry is often called trivial gauge symmetry, since the form variations of
the fields are identically zero on-shell. This is in contrast to all other gauge symmetries,
which perform some nontrivial change of the fields on-shell.

It should be noted that, being trivial on-shell, the above transformations cannot
play a role in obtaining any predictions about observables in a given theory, due to the
intrinsic on-shell nature of the physical observables. For example, in practical situations
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of scattering experiments and measurements of cross-sections, this trivial symmetry is
irrelevant. Nevertheless, when constructing a new theory, in general, the off-shell properties
of the theory are important. As a typical example, path integral quantization prescription
depends not only on the classical equations of motion, but on the whole action of the theory.
In this sense, while these trivial transformations are not relevant for making predictions,
they do have methodological relevance and value in theory construction, despite their
on-shell triviality.

For example, these transformations in fact represent a very important part of the
gauge symmetry for any theory and play a crucial role in various contexts, such as in
the Batalin–Vilkovisky formalism (see [1] for a review and also the original papers [2–6]),
or when discussing the diffeomorphism symmetry of the BF-like class of theories [7–11].
Furthermore, in general, a commutator of two ordinary gauge transformations will remain
an ordinary gauge transformation only up to the above trivial transformations, meaning
that the latter are important for the algebraic closure of all gauge transformations into
a group.

To the best of our knowledge, the most-complete treatment and discussion of the
above gauge transformations can be found in the book [12] by Marc Henneaux and Claudio
Teitelboim. Therefore, in this paper, we opted to call them Henneaux–Teitelboim (HT)
transformations. This naming can also be justified with the paper [7] by Gary Horowitz
(published two years before the book [12]), where the author attributes these transfor-
mations to Henneaux and Teitelboim in a footnote and thanks them “for explaining this
to me”.

Regarding terminology, we should also note that we use the terms “gauge symmetry”
and “gauge transformations” with a certain level of charity. Namely, one could argue that
there are two distinct types of local symmetries—those that are obtained by a localization
procedure from a corresponding global symmetry group (the procedure of “gauging” a
global symmetry) and those that are intrinsically local, not obtained by any such localization
procedure. It is not known whether HT symmetry belongs to the former or the latter class,
since a global symmetry whose localization would give rise to HT transformations has not
yet been shown to exist. Either way, in the literature, there is no established terminology
that distinguishes the two classes of symmetries, and most often, both are called “gauge
symmetries”. Therefore, in what follows, for a lack of better terminology, we will adhere to
this practice and describe HT transformations as a gauge symmetry.

In some of the modern approaches to the problem of quantum gravity based on the
spinfoam formalism of loop quantum gravity [13,14], as well as in other applications of
the so-called higher gauge theory (see [15] for a review and [16] for an application to
quantum gravity), the description of gauge symmetry is being extended from the notion
of a Lie group to different algebraic structures, called 2-groups, 3-groups, and in general,
n-groups [17–27]. In this context, it is important to revisit and study the specific class of HT
gauge symmetries, since they provide a nontrivial insight into the properties of these more
general algebraic structures, as well as the physics behind the symmetries they describe.

The purpose of this paper is to provide a review of HT transformations in general and
then discuss their properties and applications in two concrete models—the Chern–Simons
theory and the 3BF theory. The Chern–Simons case is simple enough to serve as an illustra-
tive toy example, while the 3BF theory represents a basis for the construction of a realistic
theory of quantum gravity with matter within the context of the spinfoam formalism (see
also [16,28–32]), discussing that its HT symmetry represents an important stepping stone
towards the goal of a more realistic theory. The main result of this work represents a
clarification of the structure of the gauge symmetry of a pure topological 3BF action, as
well as the corresponding symmetry for the constrained 2BF action, which is classically
equivalent to Einstein’s general relativity. We also discuss in detail the relationship between
diffeomorphism symmetry and the HT symmetry for the Chern–Simons and 3BF theories
and offer some conceptual suggestions regarding the notion of gauge symmetry as it is
being used in the literature.
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The layout of the paper is as follows. In Section 2, we give a review of the general
theory of HT transformations and their main properties. Section 3 is devoted to the example
of HT symmetry in Chern–Simons theory, which is convenient due to its simplicity. In
Section 4, we discuss the main case of HT symmetry in the 3BF and 2BF theories, which
are important for applications in quantum gravity models. Finally, Section 5 contains an
overview of the results, future research directions, and some concluding remarks.

The notation and conventions in the paper are as follows. When important, we assume
the (−,+,+,+) signature of the spacetime metric. The Greek indices from the middle of
the alphabet, λ, µ, ν, . . . , represent spacetime indices and take values 0, 1, . . . , D− 1, where
D is the dimension of the spacetime manifoldMD under consideration. The Greek indices
from the beginning of the alphabet, α, β, γ, . . . , represent group indices, as well as Latin
indices a, b, c, . . . and uppercase Latin indices A, B, C, . . . and I, J, K, . . . . All these indices
will be assigned to various Lie groups under consideration. Lowercase Latin indices from
the middle of the alphabet, i, j, k, . . . , are generic and will be used to count all fields in a
given theory or for some other purpose depending on the context. Throughout the paper,
we denote the space of algebra-valued differential p-forms as

Ap(M, a) ≡ Λp(M)⊗ a ,

where Λp(M) is the ordinary space of differential p-forms over the manifoldM, while a is
some Lie algebra.

2. Review of HT Symmetry

We begin by studying some basic general properties of HT transformations. After
the definition, we demonstrate that the group of HT transformations represents a normal
subgroup of the total gauge group of a given theory, and we discuss the triviality of HT
transformations and that they exhaust all possible trivial transformations. Finally, before
moving on to concrete theories, we study the subtleties of the dependence of HT symmetry
on the choice of the action.

2.1. Definition of HT Transformations

Given an action S[φi] as a functional of fields φi(x) (i ∈ {1, . . . , N} where we assume
N > 2), the infinitesimal HT transformation is defined as

φi(x)→ φ′i(x) = φi(x) + δ0φi(x) , (3)

where the form variations of the fields are defined as

δ0φi(x) = εij(x)
δS

δφj(x)
. (4)

The variation of the action under HT transformations then gives

δS =
δS
δφi δ0φi =

δS
δφi

δS
δφj εij . (5)

If the HT parameters are chosen to be antisymmetric,

εij(x) = −εji(x) , (6)

the variation of the action (5) is identically zero, and HT transformations (4) represent a
gauge symmetry of the theory.

The most-striking thing in the above definition is the fact that we did not specify the
action in any way. Aside from the assumption N > 2, which excludes only actions describ-
ing a single real scalar field, every action is invariant with respect to the HT transformations.
In other words, HT transformations are a gauge symmetry of essentially every theory.
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The second striking property of the definition is that the form variations of fields
become zero on-shell, according to (4). In this sense, the HT symmetry is sometimes called
trivial symmetry, in contrast to ordinary gauge symmetries that a theory may have, which
transform the fields in a nontrivial way on-shell. Triviality is also the reason why HT gauge
symmetry does not feature in any way in the Hamiltonian analysis of a theory, so only the
presence of ordinary gauge symmetries can be deduced from the Hamiltonian formalism.

2.2. HT Symmetry Group and Its Properties

There are two general properties that can be formulated for HT transformations. The
first is that HT transformations form a normal subgroup within the full group of gauge
symmetries, while the second is that HT transformations exhaust the set of all possible
trivial transformations. The consequence of these properties is that one can always write
the total symmetry group of any theory as

Gtotal = Gnontrivial n GHT , (7)

where Gnontrivial is the symmetry group of ordinary gauge transformations (if there are any),
GHT is the HT symmetry group, and the symbol n stands for a semidirect product. One
can also reformulate (7) as

Gnontrivial = Gtotal/GHT , (8)

so that the group of ordinary gauge symmetries is represented as a quotient group.
The easiest way to demonstrate (7) is to prove that the Lie algebra corresponding to

GHT represents an ideal within the Lie algebra corresponding to Gtotal. To that end, pick an
arbitrary form variation of fields that represents a symmetry of the action and write it in
the form

δ̂0φi(x) = Fi(x) , such that δ̂S =
δS
δφi Fi ≡ 0 . (9)

Then, using (4), we can take concatenated variations of this form variation and the HT form
variation as

δ0δ̂0φi =
δFi

δφj
δS
δφk εjk ,

and

δ̂0δoφi =
δ

δφk

(
εij δS

δφj

)
Fk =

δεij

δφk
δS
δφj Fk + εij δ

δφj

(
δS
δφk Fk

)
− εij δS

δφk
δFk

δφj .

The term in the second parentheses is zero by (9), so the commutator of two-form varia-
tions becomes

[δ0 , δ̂0]φ
i =

(
εjk δFi

δφj − εji δFk

δφj −
δεik

δφj Fj

)
δS
δφk , (10)

which is again an HT transformation, since the expression in the parentheses is antisym-
metric with respect to indices i, k. Therefore, the commutator is always an element of HT
algebra, which means that HT algebra itself is an ideal of the total symmetry algebra. At
the Lie group level, this translates into (7).

The second general property is the statement that there are no other trivial transfor-
mations beside the HT transformations. Assuming that some transformation described by
the form variation δ̄0φi is a gauge symmetry of the action that vanishes on-shell, i.e., that
it satisfies

δS
δφi δ̄0φi = 0 , and δ̄0φi ≈ 0 ,

then one can prove that this transformation is an HT transformation, i.e., there exists a
choice of antisymmetric HT parameters εij such that the form variation δ̄0φi is of type (4):

δ̄0φi = εij δS
δφj .

(11)
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Provided certain suitable regularity conditions for the action S, this statement can be
rigorously formulated as a theorem. However, we omitted the proof since it is technical
and off topic for the purposes of this paper. The interested reader can find the details of
both the theorem and the proof in [12], Appendix 10.A.2.

To sum up, the first property (10) tells us that one can always factorize the total gauge
symmetry group into the form (7), while the second property (11) guarantees that the
quotient group (8) contains only nontrivial gauge transformations. This factorization of the
total symmetry group is a key result that lays the groundwork for any subsequent analysis
of HT transformations in particular and gauge symmetry in general.

2.3. Dependence of HT Symmetry on the Action

The final property of HT transformations that needs to be discussed is their depen-
dence on the choice of the action. Suppose we are given some action Sold[φ

i], where
i ∈ {1, . . . , N}, which has the corresponding HT transformation described as in (4):

δold
0 φi = εij δSold

δφj . (12)

Now, suppose that we modify that action into another one, Snew[φi, χk], where k ∈ {N +
1, . . . , N + M}, by adding an extra term to the old action:

Snew[φ
i, χk] = Sold[φ

i] + Sextra[φ
i, χk] . (13)

Here, χj are additional fields that may be introduced into the new action. The HT transfor-
mation corresponding to the new action can be written in the block-matrix form, made of
blocks of sizes N and M, as follows: δnew

0 φi

δnew
0 χk

 =

 εij ζ il

θkj ψkl




δSnew

δφj

δSnew

δχl

 ,
i, j ∈ {1, . . . , N} ,
k, l ∈ {N + 1, . . . , N + M} .

(14)

Here, ε = −εT is an antisymmetric N× N block of parameters εij, ζ is a rectangular N×M
block of parameters ζ il , θ is a rectangular M × N block such that θ = −ζT , and finally,
ψ = −ψT is an antisymmetric M×M block of parameters ψkl . Overall, the total parameter
matrix is antisymmetric, as required by (6).

The question one can now study is what is the relation between the two HT gauge
symmetry groups Gold

HT and Gnew
HT that correspond to the two actions. In practice, this

question is most often relevant in cases when one introduces the piece Sextra as a gauge-
fixing term, whose purpose is to break the ordinary gauge symmetry down to its subgroup:

Gnew
nontrivial ⊂ Gold

nontrivial .

Naively, one might expect a similar relationship between the HT symmetry groups, Gnew
HT ⊂

Gold
HT . However, looking at (12) and (14), this is obviously wrong. Namely, if M > 1, the HT

symmetry of the new action is larger than the HT symmetry of the old action. Counting the
number of independent parameters of both, one easily sees that

dim(Gold
HT) =

N(N − 1)
2

, dim(Gnew
HT ) =

(N + M)(N + M− 1)
2

,

so that the only possible relationship would be the opposite, Gold
HT ⊂ Gnew

HT . However, in
fact, this can also be shown to be wrong. Namely, one can choose the extra parameters ζ, θ
and ψ to be zero in (14), reducing it to the form that is formally similar to (12):

δnew
0 φi = εij δSnew

δφj .
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However, taking into account the relationship (13) between the two actions, the HT trans-
formation takes the form

δnew
0 φi = εij δSold

δφj + εij δSextra

δφj ,

which is explicitly different from (12), due to the presence of the term Sextra in the action.
Therefore, the gauge group Gold

HT is not a subgroup of Gnew
HT either.

The overall conclusion is that introducing additional terms to the action changes the
total gauge symmetry in a nontrivial way. On the one hand, the ordinary gauge symmetry
group typically becomes smaller due to explicit symmetry breaking by the extra term. On
the other hand, the HT gauge symmetry group may become larger if the extra term contains
additional fields, but either way becomes different, as a consequence of the very presence
of the extra term. Given this, one can conclude that the total symmetry groups for the
two actions will always be mutually different:

Gnew
total = G

new
nontrivial n G

new
HT 6= Gold

total = G
old
nontrivial n G

old
HT .

Specifically, one cannot claim that the group Gold
total is being broken down into Gnew

total as its
subgroup; such a relationship may hold exclusively for the quotient groups of ordinary
gauge transformations.

In the next two sections, we will turn to explicit examples of all general properties
and features of the HT symmetry that have been discussed above. Moreover, we will also
discuss some additional particular properties, such as the fact that some nontrivial gauge
subgroups of Gtotal are not simultaneously subgroups of Gnontrivial, which is a consequence
of the semidirect product in (7). One such example will be the diffeomorphism symmetry
in the Chern–Simons and 3BF actions.

Let us conclude this section with one conceptual comment. Throughout the literature,
the typical practice is to always take the quotient between the total and HT symmetry
groups as in (8), in order to isolate the nontrivial gauge transformations, and call the
latter simply as the “gauge symmetry” of a theory. This approach is in fact advocated
for in [12]. However, we believe that this practice can be misleading and that one should
instead describe the group Gtotal as “the gauge symmetry” of a theory, explicitly including
the HT subgroup as a legitimate gauge symmetry group. Namely, despite the fact that
it is often called “trivial”, the consequences of its presence in Gtotal are far from trivial.
Granted, it may often be enough to discuss the gauge symmetry on-shell, and then, one
can indeed calculate all symmetry transformations only “up to equations of motion”, with
no mention of the HT subgroup. However, whenever one needs to discuss the gauge
transformations off-shell, the HT subgroup simply cannot be ignored anymore. Typical
situations include the Batalin–Vilkovisky formalism [1], various generalizations of gauge
symmetry in the context of higher gauge theories and quantum gravity [33], and even the
traditional contexts such as the Coleman–Mandula theorem [34]. The situations in which
HT transformations play a significant role may be rare, but nevertheless, they tend to be
important. Thus, in our opinion, it would be prudent to always be aware that, for any given
theory, its total gauge symmetry group is in fact bigger, and more feature-rich, than just the
group of ordinary gauge transformations that are typically discussed in the literature.

3. HT Symmetry in Chern–Simons Theory

As an illustrative example of the general properties of HT symmetry from the previous
section, let us discuss the HT transformations for the simple case of the Chern–Simons
theory. The Chern–Simons theory represents an excellent toy example since it is well known
in the literature and most readers should be familiar with it.
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Given any Lie group G, its corresponding Lie algebra g, and a three-dimensional
manifoldM3, the Chern–Simons theory can be defined as a topological field theory over a
trivial principal bundle G →M3, given by the action:

SCS =
∫
M3

〈A ∧ dA〉g +
1
3
〈A ∧ [A ∧ A]〉g . (15)

Here, A ∈ A1(M3, g) is a g-valued connection one-form over a manifoldM3, and 〈_ , _〉g
is a G-invariant symmetric nondegenerate bilinear form on g. One often rewrites the
Chern–Simons action within the framework of the enveloping algebra of g, introducing the
notion of a trace as

Tr(XY) ≡ 〈X , Y〉g ,

for every X, Y ∈ g. Then, the Chern–Simons action can be rewritten as

SCS =
∫
M3

Tr
(

A ∧ dA +
2
3

A ∧ A ∧ A
)

, (16)

where, for the second term, one employs the identity Tr(X[Y, Z]) = Tr(XYZ)− Tr(XZY)
for every X, Y, Z ∈ g.

The gauge symmetry of the Chern–Simons action consists of G-gauge transformations,
determined with the parameters εg

I(x). Using the basis of generators TI to expand the
connection A into components as

A = AI
µ(x)dxµ ⊗ TI ,

the form variation of the connection components AI
µ corresponding to gauge transforma-

tions can then be written as

δ0 AI
µ = ∂µεg

I − f JK
Iεg

J AK
µ , (17)

where f JK
I are the structure constants corresponding to the generators TI . Therefore, the

gauge symmetry of the Chern–Simons theory is usually quoted as the initially chosen Lie
group G:

GCS = G . (18)

However, as we have seen in the previous section, this is not the complete set of gauge
transformations, and the total gauge group should in fact be

Gtotal = GCS n GHT . (19)

Let us define the HT transformations for the Chern–Simons action (15). If we denote
the dimension of the Lie algebra g as dim(g) = p, the number of independent field
components AI

µ is N = 3p. The HT transformation is then defined with the HT parameters
εI J

µν(x) as

δ0 AI
µ = εI J

µν
δS

δAJ
ν

. (20)

The requirement that the variation of the action vanishes:

δS =
δS

δAI
µ

δS
δAJ

ν
εIJ

µν = 0 ,

enforces the antisymmetry restriction on the HT parameters:

εI J
µν = −εJ I

νµ .

Note that this equation can be satisfied in two different ways—the parameters can be either
antisymmetric with respect to group indices I J and symmetric with respect to spacetime
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indices µν, or vice versa. We, therefore, have two possible choices for their symmetry
properties. The first possibility is defined as

εI J
µν = εI J

νµ = −εJ I
µν = −εJ I

νµ , (21)

while the second possibility is defined as

εI J
µν = εJ I

µν = −εI J
νµ = −εJ I

νµ . (22)

Varying the action, one obtains an explicit form of the HT transformation:

δ0 AI
µ = εI J

µνενρσ
(

∂ρ AJ σ − ∂σ AJ ρ + fKL J AK
ρ AL

σ

)
. (23)

In order to demonstrate that HT transformations have highly nontrivial implications,
despite being trivial on-shell, it is instructive to discuss diffeomorphisms. Namely, looking
at the action (15), one expects that the theory has diffeomorphism symmetry, since it is
formulated in a manifestly covariant way using differential forms. However, one can check
that diffeomorphisms are not a subgroup of the ordinary gauge symmetry group GCS given
by (18), but nevertheless can be obtained as a subgroup of the total gauge group (19). In
other words, one can demonstrate that

Di f f (M3) 6⊂ GCS , but Di f f (M3) ⊂ Gtotal = GCS n GHT .

Let us examine this in detail. The diffeomorphism transformation

xµ → x′µ = xµ + ξµ(x) , (24)

determined by the parameter ξµ(x) represents a subgroup Di f f (M) of the full gauge
symmetry of some given action, if for every field φ(x) in the theory and every choice of
diffeomorphism parameters ξµ(x), there exists a choice of the gauge parameters εgauge(x)
and the HT parameters εHT(x), such that:

δ0
diff φ = δ0

gaugeφ + δ0
HTφ . (25)

In other words, if a theory has diffeomorphism symmetry, the diffeomorphism form
variations of all the fields in the theory should be expressible in terms of their ordinary
gauge and HT form variations.

In the case of Chern–Simons theory, this can be demonstrated explicitly. If one chooses
the gauge parameters εg

I and the HT parameters εI J
µν as

εg
I = −ξλ AI

λ , εI J
µν = −1

2
ξλελµνgI J , (26)

where gI J is the inverse of gI J ≡ 〈TI , TJ〉g, one can apply Equations (25) using (17) and (23)
to reproduce precisely the well-known diffeomorphism form variation of the connection
AI

µ:
δ0

diff AI
µ = −AI

λ∂µξλ − ξλ∂λ AI
µ . (27)

Therefore, as expected, despite the fact that Di f f (M3) 6⊂ GCS, one obtains that Di f f (M3) ⊂
Gtotal = GCS n GHT . Note that the choice of HT parameters in (26) is nontrivial, which
emphasizes the role of HT transformations and the fact that the full group of gauge sym-
metries is Gtotal rather than GCS. As we shall see in the next section, this property is not
specific only to the Chern–Simons theory.

4. HT Symmetry in 3BF Theory

After discussing the Chern–Simons theory as a toy example, we move to the more
important case of the 3BF theory. This theory is relevant for building models of quantum
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gravity; see [8,20,21,33,35]. Therefore, it is important to study its gauge symmetry and, in
particular, the role of HT transformations.

4.1. Review of the 3BF Theory

Analogous to the fact that Chern–Simons theory is a topological theory based on a
Lie group and a 3-dimensional manifold, the 3BF theory is also a topological theory based
on a notion of a three-group and a 4-dimensional manifold. The notion of a three-group
represents a categorical generalization of the notion of a group, in the context of higher
gauge theory (HGT); see [15] for a review and motivation. For the purpose of defining the
3BF theory, we are interested in particular in a strict Lie three-group, which is known to be
isomorphic to a so-called Lie two-crossed module; see [17–19] for details.

A Lie two-crossed module, denoted as (L δ→ H ∂→ G ,B , {_ , _}pf), is an algebraic
structure specified by three Lie groups G, H, and L, together with the homomorphisms
δ : L → H and ∂ : H → G, an action B of the group G on all three groups, and a
G-equivariant map, called the Peiffer lifting:

{_ , _}pf : H × H → L .

In order for this structure to form a two-crossed module, the structure constants of algebras
g, h, and l (the Lie algebras corresponding to the Lie groups G, H, and L, respectively), as
well as the maps ∂ and δ, the action B, and the Peiffer lifting, must satisfy certain axioms;
see [20] for details.

Given a two-crossed module and a four-dimensional compact and orientable spacetime
manifoldM4, one can introduce the notion of a trivial principal three-bundle, in analogy
with the notion of a trivial principal bundle constructed from an ordinary Lie group and a
manifold; see [15]. Then, one can introduce the notion of a three-connection, an ordered
triple (α, β, γ), where α, β, and γ are algebra-valued differential forms, α ∈ A1(M4, g),
β ∈ A2(M4, h), and γ ∈ A3(M4, l); see [17–19]. The corresponding fake hree-curvature
(F ,G,H) is defined as:

F = dα + α ∧ α− ∂β , G = dβ + α ∧B β− δγ ,

H = dγ + α ∧B γ + {β ∧ β}pf .
(28)

Then, for a four-dimensional manifoldM4, one can define the gauge-invariant topological

3BF action, based on the structure of a two-crossed module (L δ→ H ∂→ G ,B , {_ , _}pf), by
the action

S3BF =
∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (29)

where B ∈ A2(M4, g), C ∈ A1(M4, h), and D ∈ A0(M4, l) are Lagrange multipliers and
F ∈ A2(M4, g), G ∈ A3(M4, h), and H ∈ A4(M4, l) represent the fake three-curvature
given by Equation (28). The forms 〈_ , _〉g, 〈_ , _〉h, and 〈_ , _〉l are G-invariant symmetric
nondegenerate bilinear forms on g, h, and l, respectively. The action (29) is an example of
the so-called higher gauge theory.

By choosing the three bases of generators τα ∈ g, ta ∈ h, and TA ∈ l of the three respec-
tive Lie algebras, one can expand all fields in the theory into components as

B =
1
2

Bα
µν(x)dxµ ∧ dxν ⊗ τα , α = αα

µ(x)dxµ ⊗ τα ,

C = Ca
µ(x)dxµ ⊗ ta , β =

1
2

βa
µν(x)dxµ ∧ dxν ⊗ ta ,

D = DA(x)TA , γ =
1
3!

γA
µνρ(x)dxµ ∧ dxν ∧ dxρ ⊗ TA .
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One can also make use of the following notation for the components of all maps present in
the theory, in the same three bases:

[τα , τβ] = fαβ
γτγ , gαβ = 〈τα , τβ〉g , τα B τβ = Bαβ

γτγ , δTA = δA
ata ,

[ta , tb] = fab
ctc , gab = 〈ta , tb〉h , τα B ta = Bαa

btb , ∂ta = ∂a
ατα ,

[TA , TB] = fAB
CTC , gAB = 〈TA , TB〉l , τα B TA = BαA

BTB , {ta , tb}pf = Xab
ATA .

The complete gauge symmetry of the 3BF action was studied in [8] using the tech-
niques of Hamiltonian analysis. It consists of five types of gauge transformations, G-, H-,
L-, M-, and N-gauge transformations, determined with the independent parameters εg

α(x),
εh

a
µ(x), εl

A
µν(x), εm

α
µ(x), and εn

a(x), respectively. The form variations of the fields B, C,
D, α, β, and γ, obtained in [8] are given as follows:

δ0Bα
µν = fβγ

αεg
βBγ

µν + 2Ca[µ|εh
b
|ν] Bβb

agαβ − DA BβB
Aεl

B
µνgαβ − 2∇[µ|εm

α
|ν]

+βbµν Bβa
bεn

agαβ ,

δ0Ca
µ = Bαb

aεg
αCb

µ + 2DAX(ab)
Aεh

b
µ − ∂a

αεm
α

µ −∇µεn
a ,

δ0DA = BαB
Aεg

αDB + δA
aεn

a ,

δ0αα
µ = −∂µεg

α − fβγ
ααβ

µεg
γ − ∂a

αεh
a

µ ,

δ0βa
µν = Bαb

aεg
αβb

µν − 2∇[µ|εh
a
|ν] + δA

aεl
A

µν ,

δ0γA
µνρ = BαB

Aεg
αγB

µνρ + 3!βa
[µνεh

b
ρ]X(ab)

A +∇µεl
A

νρ −∇νεl
A

µρ +∇ρεl
A

µν .

(30)

The gauge transformations (30) form a group G3BF:

G3BF = G̃ n (H̃L n (Ñ × M̃)) , (31)

where G̃ denotes the group of G-gauge transformations, the H-gauge transformations
together with the L-gauge transformations form the group H̃L, while M̃ and Ñ are the
groups of M- and N-gauge transformations, respectively. All these groups are determined
from the structure of the initial chosen two-crossed module that defines the theory; see [8]
for details.

However, as we have seen in the general theory in Section 2 and in the example
of the Chern–Simons theory in Section 3, the symmetry group G3BF determined by the
Hamiltonian analysis does not include HT transformations, and therefore, the total gauge
group should in fact be

Gtotal = G3BF n GHT . (32)

4.2. Explicit HT Transformations

Let us explicitly define the HT transformations for the 3BF action (29). If we denote
the dimensions of the Lie algebras g, h, l as

dim(g) = p , dim(h) = q , dim(l) = r ,

the number of independent field components in the theory can be counted according to the
following table:

Bα
µν Ca

µ DA αα
µ βa

µν γA
µνρ

6p 4q r 4p 6q 4r

The total number of independent field components is, therefore,

N = 6p + 4q + r + 4p + 6q + 4r = 10p + 10q + 5r .
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Let φi denote all field components, where i = 1, 2, . . . , N. We can write the fields schemati-
cally as a column-matrix with six blocks:

φi =



Bα
µν

Ca
µ

DA

αα
µ

βa
µν

γA
µνρ

 .

The HT transformation is then defined via the parameters εij(x) as

δ0φi = εij δS
δφj .

The requirement that the variation of the action vanishes enforces the antisymmetry restric-
tion on the parameters, εij = −εji, for all i, j ∈ {1, . . . , N}. These transformations can be
represented more explicitly as a tensorial 6× 6 block-matrix equation, in the following form:



δ0Bα
µν

δ0Ca
µ

δ0DA

δ0αα
µ

δ0βa
µν

δ0γA
µνρ


=



εαβ
µνσλ εαb

µνσ εαB
µν εαβ

µνσ εαb
µνσλ εαB

µνσλξ

µaβ
µσλ εab

µσ εaB
µ εaβ

µσ εab
µσλ εaB

µσλξ

µAβ
σλ µAb

σ εAB εAβ
σ εAb

σλ εAB
σλξ

µαβ
µσλ µαb

µσ µαB
µ εαβ

µσ εαb
µσλ εαB

µσλξ

µaβ
µνσλ µab

µνσ µaB
µν µaβ

µνσ εab
µνσλ εaB

µνσλξ

µAβ
µνρσλ µAb

µνρσ µAB
µνρ µAβ

µνρσ µAb
µνρσλ εAB

µνρσλξ





1
2

δS
δBβ

σλ

δS
δCb

σ

δS
δDB

δS
δαβ

σ

1
2

δS
δβb

σλ

1
3!

δS
δγB

σλξ


. (33)

The coefficients multiplying the variations of the action in the column on the right-hand
side are there to compensate the overcounting of the independent field components. Due
to the antisymmetry of HT parameters, all µ blocks (below the diagonal) are determined in
terms of the ε blocks (above the diagonal), as follows. For the first column of the parameter
matrix in (33), we have:

µbα
σµν = −εαb

µνσ , µBα
µν = −εαB

µν , µβα
σµν = −εαβ

µνσ ,

µbα
σλµν = −εαb

µνσλ , µBα
σλξµν = −εαB

µνσλξ .
(34)

For the second column, we have:

µBa
µ = −εaB

µ , µβa
σµ = −εaβ

µσ ,

µba
σλµ = −εab

µσλ , µBa
σλξµ = −εaB

µσλξ .
(35)

The µ parameters in the third column are determined via:

µβA
σ = −εAβ

σ , µbA
σλ = −εAb

σλ , µBA
σλξ = −εAB

σλξ , (36)

while the remaining µ parameters in the fourth and fifth columns are determined as:

µbα
σλµ = −εαb

µσλ , µBα
σλξµ = −εαB

µσλξ , µBa
σλξµν = −εaB

µνσλξ . (37)
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Finally, in addition to all these, the parameters in the blocks on the diagonal also have to
satisfy certain antisymmetry relations, specifically:

εαβ
µνσλ = −εβα

σλµν , εab
µσ = −εba

σµ , εAB = −εBA ,

εαβ
µσ = −εβα

σµ , εab
µνσλ = −εba

σλµν , εAB
µνρσλξ = −εBA

σλξµνρ .
(38)

Like in the example of the Chern–Simons theory from the previous section, these antisym-
metry relations can be satisfied in various multiple ways. All those possibilities are allowed,
as long as the identities (38) are satisfied. The final ingredient in (33) is the expressions for
the variation of the action with respect to the fields, and these are given as follows:

δS
δBβ

νρ
=

1
2

ενρστFβστ ,

δS
δCb

ρ
=

1
3!

ερστλGbστλ ,

δS
δDB =

1
4!

εστλξHBστλξ ,

δS
δαβ

ρ
=

1
2

ερτλξ

(
∇τ Bβλξ −Bβa

bCbτ βa
λξ +

1
3
BβB

ADAγB
τλξ

)
,

δS
δβb

νρ
= ενρστ

(
∇σCbτ −

1
2

∂b
αBαστ + X(ab)

ADAβb
στ

)
,

δS
δγB

µνρ
= εµνρσ(∇σDB + δB

aCaσ) .

(39)

4.3. Diffeomorphisms

As in the case of the Chern–Simons theory, it is instructive to discuss diffeomorphism
symmetry. The 3BF action (29) obviously is diffeomorphism invariant, since it is formulated
in a manifestly covariant way, using differential forms. However, one can check that
the diffeomorphisms are not a subgroup of the gauge symmetry group G3BF given by
Equation (31), but nevertheless can be obtained as a subgroup of the total gauge group (32):

Di f f (M4) 6⊂ G3BF , but Di f f (M4) ⊂ Gtotal = G3BF n GHT . (40)

Let us demonstrate this. Like in the Chern–Simons case, we want to demonstrate that the
form variation of all fields corresponding to diffeomorphisms can be obtained as a suitable
combination of the form variations for the ordinary gauge transformations (30) and the
HT transformations (33). In other words, for an arbitrary choice of the diffeomorphism
parameters ξµ(x) from (24), Equation (25) should hold in the case of the 3BF theory as well:

δ0
diff φ = δ0

gaugeφ + δ0
HTφ . (41)

Indeed, this can be shown by a suitable choice of parameters. Regarding the parame-
ters of the gauge transformations (30), the appropriate choice is given as:

εg
α = ξλαα

λ , εh
a

µ = −ξλβa
µλ , εl

A
µν = −ξλγA

µνλ ,

εm
α

µ = −ξλBα
µλ , εn

a = ξλCa
λ .

(42)
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Regarding the parameters of the HT transformations (33), we chose the following special
case, with the majority of the parameters equated to zero:

δ0Bα
µν

δ0Ca
µ

δ0DA

δ0αα
µ

δ0βa
µν

δ0γA
µνρ


=



0 0 0 εαβ
µνσ 0 0

0 0 0 0 εab
µσλ 0

0 0 0 0 0 εAB
σλξ

µαβ
µσλ 0 0 0 0 0

0 µab
µνσ 0 0 0 0

0 0 µAB
µνρ 0 0 0





1
2

δS
δBβ

σλ

δS
δCb

σ

δS
δDB

δS
δαβ

σ

1
2

δS
δβb

σλ

1
3!

δS
δγB

σλξ


. (43)

Of course, due to antisymmetry, the nonzero µ blocks take negative values of the corre-
sponding ε blocks, in accordance with (34), (35), and (36). The three independent nonzero ε
blocks are chosen as

εαβ
µνσ = ξρgαβεµνσρ , εab

µσλ = ξρgabερµσλ , εAB
σλξ = ξρgABεσλξρ . (44)

Finally, substituting (42) and (44) into (30) and (43), respectively, and then substituting all
those results into (41), after a certain amount of work, one obtains precisely the standard
form variations corresponding to diffeomorphisms:

δ0
diffBα

µν = −Bα
λν∂µξλ − Bα

µλ∂νξλ − ξλ∂λBα
µν ,

δ0
diffCa

µ = −Ca
λ∂µξλ − ξλ∂λCa

µ ,

δ0
diffDA = −ξλ∂λDA ,

δ0
diffαα

µ = −αα
λ∂µξλ − ξλ∂λαα

µ ,

δ0
diffβa

µν = −βa
λν∂µξλ − βa

µλ∂νξλ − ξλ∂λβa
µν ,

δ0
diffγA

µνρ = −γA
λνρ∂µξλ − γA

µλρ∂νξλ − γA
µνλ∂ρξλ − ξλ∂λγA

µνρ .

(45)

This establishes both relations (40), as we set out to demonstrate. We note again that the
HT transformations play a crucial role in obtaining the result, since we had to choose the
parameters (44) in a nontrivial manner.

4.4. Symmetry Breaking in 2BF Theory

Let us now turn to the topic of symmetry breaking and the way it influences HT
transformations. To that end, we studied the topological 2BF action, which is a special case
of the 3BF action (29) without the last term:

S2BF =
∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h . (46)

In order to be even more concrete, let us fix a two-crossed module structure with the
following choice of groups:

G = SO(3, 1) , H = R4 , L = {e} .

In other words, we interpret group G as the Lorentz group, group H as the spacetime
translations group, while group L is trivial, for simplicity. This choice corresponds to
the so-called Poincaré two-group; see [16] for details. Since the generators of the Lorentz
group can be conveniently counted using the antisymmetric combinations of indices from
the group of translations, instead of the G-group indices α, we shall systematically write
[ab] ∈ {01, 02, 03, 12, 13, 23}, where a, b ∈ {0, 1, 2, 3} are H-group indices, and the brackets
denote antisymmetrization. With a further change in notation from the connection 1-form
α to the spin-connection 1-form ω, the curvature 2-form F (α) to R(ω), and interpreting
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the Lagrange multiplier 1-form C as the tetrad 1-form e, the 2BF action can be rewritten in
new notation as

S2BF =
∫
M4

B[ab] ∧ R[ab] + ea ∧ Ga . (47)

The ordinary gauge symmetry group for this action has a form similar to (31):

G2BF = G̃ n (H̃ n (Ñ × M̃)) , (48)

while the total group of gauge symmetries is extended by the HT transformations, so that

Gtotal = G2BF n GHT . (49)

The explicit HT transformations are written as a tensorial 4× 4 block-matrix equation, in
the form

δ0B[ab]
µν

δ0ea
µ

δ0ω[ab]
µ

δ0βa
µν


=



ε[ab][cd]
µνσλ ε[ab]c

µνσ ε[ab][cd]
µνσ ε[ab]c

µνσλ

µa[cd]
µσλ εac

µσ εa[cd]
µσ εac

µσλ

µ[ab][cd]
µσλ µ[ab]c

µσ ε[ab][cd]
µσ ε[ab]c

µσλ

µa[cd]
µνσλ µac

µνσ µa[cd]
µνσ εac

µνσλ





1
4

δS
δB[cd]

σλ

δS
δec

σ

1
2

δS
δω[cd]

σ

1
2

δS
δβc

σλ


, (50)

where the usual antisymmetry rules apply. Here, we have

δS
δB[cd]

σλ

= εµνσλR[cd]µν ,

δS
δω[cd]

σ
= εσµνρ

(
∇µB[cd]νρ − e[c|µβ|d]νρ

)
,

δS
δec

σ
=

1
2

εσµνρ∇µβcνρ ,

δS
δβc

σλ
= εµνσλ∇µecν .

(51)

The 2BF action (46) is topological, in the sense that it has no local propagating degrees
of freedom. In this sense, it does not represent a theory of any realistic physics. In order
to construct a more realistic theory, one proceeds by introducing the so-called simplicity
constraint term into the action, which changes the equations of motion of the theory so that
it does have nontrivial degrees of freedom. An example is the action

SGR =
∫
M4

B[ab] ∧ R[ab] + ea ∧∇βa − λ[ab] ∧
(

B[ab] − 1
16πl2

p
εabcdec ∧ ed

)
, (52)

where the new constraint term features another Lagrange multiplier two-form λ[ab]. By
virtue of the simplicity constraint, the theory becomes equivalent to general relativity, in
the sense that the corresponding equations of motion reduce to vacuum Einstein field
equations (see [16] for the analysis and proof). In this sense, constraint terms of various
types are important when building more realistic theories; see [20] for more examples.

However, adding the simplicity constraint term also changes the gauge symmetry
of the theory. In particular, it breaks the gauge group G2BF from (48) down to one of its
subgroups, so that the symmetry group of the action SGR is

GGR ⊂ G2BF . (53)

This is expected and unsurprising. What is less obvious, however, is that the group of HT
transformations G̃HT of the action SGR is not a subgroup of the HT group GHT of the original
action S2BF:

G̃HT 6⊂ GHT , (54)



Universe 2023, 9, 281 15 of 19

which implies that
GGR

total 6⊂ G
2BF
total , (55)

despite (53).
Let us demonstrate this. Since the action (52) features an additional field λ[ab]

µν(x),
the HT transformations (50) have to be modified to take this into account and obtain the
following 5× 5 block-matrix form:

δ0B[ab]
µν

δ0ea
µ

δ0ω[ab]
µ

δ0βa
µν

δ0λ[ab]
µν


=



ε[ab][cd]
µνσλ ε[ab]c

µνσ ε[ab][cd]
µνσ ε[ab]c

µνσλ ζ [ab][cd]
µνσξ

µa[cd]
µσλ εac

µσ εa[cd]
µσ εac

µσλ ζa[cd]
µσξ

µ[ab][cd]
µσλ µ[ab]c

µσ ε[ab][cd]
µσ ε[ab]c

µσλ ζ [ab][cd]
µσξ

µa[cd]
µνσλ µac

µνσ µa[cd]
µνσ εac

µνσλ ζa[cd]
µνσξ

θ[ab][cd]
µνσλ θ[ab]c

µνσ θ[ab][cd]
µνσ θ[ab]c

µνσλ ψ[ab][cd]
µνσξ





1
4

δSGR
δB[cd]

σλ
δSGR
δec

σ

1
2

δSGR
δω[cd]

σ

1
2

δSGR
δβc

σλ

1
4

δSGR
δλ[cd]

σξ


, (56)

where
δSGR

δB[cd]
σλ

= εµνσλ
(

R[cd]µν − λ[cd]µν

)
,

δSGR

δω[cd]
σ

= εσµνρ
(
∇µB[cd]νρ − e[c|µβ|d]νρ

)
,

δSGR
δec

σ
=

1
2

εσµνρ
(
∇µβcνρ +

1
8πl2

p
εabcdλ[ab]

µνed
ρ

)
,

δSGR
δβc

σλ
= εµνσλ∇µecν ,

δSGR

δλ[cd]
σξ

= −εσξµν
(

B[cd]µν −
1

8πl2
p

εabcdea
µeb

ν

)
.

(57)

We can now investigate the differences in the form of HT transformations for the
topological and constrained theory. First, comparing (56) to (50), we see that the HT
transformations in the constrained theory feature more gauge parameters than are present
in the topological theory. Namely, compared to S2BF, the action SGR features an extra
Lagrange multiplier two-form λ[ab], which extends the matrix of HT parameters from
4× 4 blocks to 5× 5 blocks, and, therefore, introduces the new parameters ζ and ψ (and θ,
which are the negative of ζ due to antisymmetry). This means that the group G̃HT for the
constrained theory is larger than the group GHT for the topological theory. On the one hand,
this immediately proves (54) and, consequently, (55). On the other hand, one can ask the
opposite question—given that G̃HT is larger than GHT , is the latter maybe a subgroup of
the former?

The answer to this question is negative:

GHT 6⊂ G̃HT , (58)

which together with (54) implies our final conclusion:

GHT 6= G̃HT . (59)

In order to demonstrate (58), we can try to set all extra parameters ζ, ψ, and θ to zero
in (56), reducing it to the same form as (50). This would naively suggest that GHT indeed
is a subgroup of G̃HT . However, upon closer inspection, we can observe that this is not
true, since the functional derivatives (57) are different from (51). Namely, even taking into
account that the choice ζ = ψ = θ = 0 eliminates the fifth equation from (57), the first
four equations are still different from their counterparts (51) because of the presence of the
Lagrange multiplier λ[ab] in the action. The Lagrange multiplier is a field in the theory, and
generically, it is not zero, since it is determined by the equation of motion:

λ[ab]
µν = R[ab]

µν .
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Therefore, the HT transformations (56) in fact cannot be reduced to the HT transformations
(50) by setting the extra parameters equal to zero, which proves (58) and (59).

The overall consequences from the above analysis are as follows. The topological
action S2BF has a large ordinary gauge group G2BF and a small HT symmetry group GHT .
When one changes the action to SGR by adding a simplicity constraint term, two things
happen—the ordinary gauge group breaks down to its subgroup GGR, so that it becomes
smaller, while the HT symmetry group grows larger to a completely different group G̃HT . In
effect, the total gauge groups for the two actions are intrinsically different:

G2BF
total = G2BF n GHT 6= GGR

total = GGR n G̃HT ,

in the sense that neither is a subgroup of the other. This conclusion is often overlooked
in the literature, which mostly puts emphasis on the symmetry breaking of the ordinary
gauge group down to its subgroup.

Let us state here, without proof, that the action (52) represents an example of a non-
topological action, for which one can also demonstrate a property analogous to (40), that
diffeomorphisms are not a subgroup of its ordinary gauge group, but are a subgroup
of the total gauge group. Simply put, given that the simplicity constraint term in (52)
breaks the ordinary gauge symmetry group G2BF into its subgroup GGR (see (53)), one can
expect that diffeomorphisms are not a subgroup of GGR, since they are not a subgroup of
the larger group G2BF of the topological action (46). Nevertheless, since the action (52) is
written in a manifestly covariant form, diffeomorphisms are certainly a symmetry of the
action and, thus, must be a subgroup of the total gauge group GGR

total = GGR n G̃HT , in line
with the statement analogous to (40). We leave the details of the proof as an exercise for
the reader. The point of this analysis was to demonstrate that the interplay (40) between
diffeomorphisms and the HT symmetry is a generic property of a large class of actions,
including the physically relevant ones, and not limited to examples of topological theories
such as the Chern–Simons or nBF models.

As the last comment, let us remark that, in fact, almost all conclusions discussed for the
cases of the Chern–Simons, 3BF, and 2BF theories are not really specific to these concrete
cases. One can easily generalize our analysis to any other theory, and the conclusions
should remain unchanged, except maybe in some corner cases.

5. Conclusions

Let us review the results. In Section 2, we gave a short overview of HT gauge symme-
try and discussed its most-important general properties. First, the HT group is a normal
subgroup of the total group of gauge symmetries of any given action. Second, HT transfor-
mations exhaust all “trivial” (i.e., vanishing on-shell) symmetries, in the sense that there
are no trivial symmetries that are not of the HT type. Finally, adding additional terms into
the action substantially changes the HT group, often enlarging it. This may be considered
a counterintuitive result, since usually adding additional terms in the action serves the
purpose of fixing the gauge and, thus, is meant to reduce the gauge symmetry, rather than
to enlarge it.

After these general results, in Section 3, we discussed the HT symmetry of the Chern–
Simons action, which is a convenient toy example that neatly displays the general features
from Section 2. Special attention was given to the issue of diffeomorphisms, and it was
shown that, while they are not a subgroup of the ordinary gauge group of the Chern–Simons
action, they nevertheless do represent a proper subgroup of the total gauge symmetry, and
the HT subgroup plays a nontrivial role in demonstrating this.

Section 4 was devoted to the study of HT symmetry in the 2BF and 3BF theories, which
are relevant for the constructions of realistic quantum gravity models within the generalized
spinfoam approach and higher gauge theory. After a brief review and introduction to the
notion of three-groups and the 3BF theory, appropriate HT transformations were explicitly
constructed, complementing the ordinary group of gauge symmetries of the 3BF action
based on a given three-group. This gave us the total gauge symmetry group for this class
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of theories. We again discussed the issue of diffeomorphisms and demonstrated again that
they are a subgroup of the total gauge group, without being a subgroup of the ordinary
gauge group, just like in the case of the Chern–Simons theory. Finally, we introduced a
completely concrete example of the 2BF theory based on the Poincaré two-group, which
becomes classically equivalent to Einstein’s general relativity when one introduces the
additional term into the action, called the simplicity constraint. As argued in general in
Section 2, the presence of this constraint breaks the ordinary gauge group down into its
subgroup, while simultaneously enlarging the HT group, since it introduces an additional
Lagrange multiplier field into the action. This represents an explicit example of the general
statement from Section 2 that the total gauge symmetry group changes nontrivially, as
opposed to simply breaking down to its subgroup.

It should be noted that the analysis and results discussed here do not cover everything
that can be said about HT symmetry. Among the topics not covered, one can mention the
question of an explicit form of finite HT transformations, as opposed to infinitesimal ones.
Can one write down finite HT transformations in closed form, either for some conveniently
chosen action or maybe even in general? A related topic is the explicit evaluation of the
commutator of two HT transformations, or equivalently, the structure constants of the HT
Lie algebra, or in yet other words, the multiplication rule in the group GHT . Is the group
Abelian or not and for which choices of the action? Finally, one would also like to know the
topological properties of the group GHT , i.e., its global structure. All these are potentially
interesting topics for future research.

As a particularly interesting topic for future research, we should mention the nontrivial
change of the HT symmetry group when additional terms are being added to the action. In
Section 4.4, we briefly demonstrated that HT symmetry does change in a nontrivial way, on
the example action (52). Nevertheless, the precise properties and the physical interpretation
of this change are yet to be studied in full and for a general choice of the action. This topic
is the subject of ongoing research.

Finally, we would like to reiterate the differences in two possible approaches to the
notion of “the gauge symmetry” of a theory. The overwhelmingly common approach
throughout the literature is to factor out the HT group and work only with the ordinary,
nontrivial gauge group as the relevant symmetry. Admittedly, this approach does feature a
certain level of appeal due to its simplicity and economy, since it does not have to deal with
HT symmetry at all. Nevertheless, there are important situations where this is not enough,
and one really needs to take into account the total gauge symmetry group, which includes
HT transformations. As a rule, these situations always involve the gauge symmetry off-
shell, either for the purpose of quantization or otherwise. A typical example is the Batalin–
Vilkovisky formalism, where one needs to explicitly keep track of HT transformations
throughout the whole analysis. Another situation, which was discussed here in more detail,
is the question of diffeomorphism symmetry, where HT transformations are required in
order to prove that diffeomorphisms are a symmetry of the theory even off-shell. This is
especially relevant for building quantum gravity models. Finally, the third scenario would
be the discussion of the Coleman–Mandula theorem. One of the main assumptions of the
theorem is that the Poincaré group is a subgroup of the full symmetry group of the theory.
Given this assumption, and a number of other assumptions, the theorem implies that the
full symmetry group must be a direct product of the Poincaré subgroup and the internal
symmetry subgroup. In certain cases of theories (such as the 3BF action), the full symmetry
group is not explicitly expressed as such a direct product, and moreover, it is not obvious
that the Poincaré group is a subgroup of the full symmetry group to begin with. Therefore,
in order to verify whether the above assumption of the theorem is satisfied, one needs
to inspect if the Poincaré group is or is not a subgroup of the full symmetry group. At
this point, one may run into a scenario similar to diffeomorphisms: the Poincaré group
may fail to be a subgroup of the ordinary gauge group, but still be a subgroup of the total
gauge group, once the HT symmetry is taken into account. In this sense, HT symmetry
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may become relevant for the proper analysis and application of the Coleman–Mandula
theorem in certain contexts. This topic is the subject of ongoing research [34].

All of the above arguments suggest that it may be prudent to abandon the common
approach of factoring out the HT group and instead adopt the description of the symmetry
with the total gauge group, which includes HT transformations on equal footing as the
ordinary gauge transformations. In the long run, this may be a conceptually cleaner
approach. However, either way, we believe that HT symmetry is relevant for the overall
symmetry structure of a theory and that better understanding of its properties can add
value to and benefit research.
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35. Radenković, T.; Vojinović, M. Hamiltonian Analysis for the Scalar Electrodynamics as 3BF Theory. Symmetry 2020, 12, 620.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/JHEP01(2021)173
http://dx.doi.org/10.1016/j.geomphys.2022.104537
http://dx.doi.org/10.1140/epjc/s10052-022-11020-6
http://dx.doi.org/10.1016/j.physletb.2021.136762
http://dx.doi.org/10.1093/ptep/ptab150
http://dx.doi.org/10.1088/0264-9381/30/3/035001
http://dx.doi.org/10.1063/1.4906369
http://dx.doi.org/10.1209/0295-5075/110/40008
http://dx.doi.org/10.1088/1361-6382/aba589
http://dx.doi.org/10.1007/JHEP07(2022)105
http://dx.doi.org/10.3390/sym12040620


Classical and Quantum Gravity

Class. Quantum Grav. 39 (2022) 135009 (51pp) https://doi.org/10.1088/1361-6382/ac6b78

Gauge symmetry of the 3BF theory
for a generic semistrict Lie three-group
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Abstract
The higher category theory can be employed to generalize the BF action to
the so-called 3BF action, by passing from the notion of a gauge group to the
notion of a gauge three-group. In this work we determine the full gauge sym-
metry of the 3BF action. To that end, the complete Hamiltonian analysis of
the 3BF action for an arbitrary semistrict Lie three-group is performed, by
using the Dirac procedure. The Hamiltonian analysis is the first step towards
a canonical quantization of a 3BF theory. This is an important stepping-stone
for the quantization of the complete standard model of elementary particles
coupled to Einstein–Cartan gravity, formulated as a 3BF action with suitable
simplicity constraints. We show that the resulting gauge symmetry group con-
sists of the familiar G-, H-, and L-gauge transformations, as well as additional
M- and N-gauge transformations, which have not been discussed in the existing
literature.

Keywords: quantum gravity, higher gauge theory, higher category theory, three-
group, BF action, 3BF action, gauge symmetry
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1. Introduction

Among the most important open problems in contemporary theoretical physics is the problem
of quantization of the gravitational field. Within the framework of loop quantum gravity (LQG),
one of the most prominent candidates for the quantum theory of gravity, the study of nonper-
turbative quantization has evolved in two directions: the canonical and the covariant approach.
See [1–4] for an overview and a comprehensive introduction to the theory.

The covariant quantization approach focuses on defining the gravitational path integral of
the theory:

Zgr =

∫
Dg eiSgr[g]. (1)

In order to give the rigorous definition of the path integral, the classical action of the the-
ory Sgr is written as a sum of the topological BF action, i.e. the action with no propagating
degrees of freedom, and the part featuring the simplicity constraints, i.e. sum of products of
Langrange multipliers and the corresponding simplicity constraints imposed on the variables of
the topological part of the action. Next, one defines the path-integral of the topological theory
given by the BF action, using the topological quantum field theory (TQFT) formalism. Once a
path-integral is defined for the topological sector, it is deformed into a non-topological theory,
by imposing the simplicity constraints. This quantization technique is known as the spinfoam
quantization method.
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The spinfoam quantization procedure has been successfully employed in various theories,
including the three-dimensional topological Ponzano–Regge model of quantum gravity [5], the
four-dimensional topological Ooguri model [6], the Barrett–Crane model of gravity in four
dimensions [7–9], and others. The most successful among these is the renowned EPRL/FK
model [10, 11], which had been specifically formulated to correspond to the quantum theory
of gravity obtained by the canonical loop quantization, where a state of the gravitational field
is described by the so-called spin network.

However, note that all mentioned models, formulated as constrained BF actions, are theories
of pure gravity, without matter fields. Recently, as an endeavor to formulate a theory that unifies
all the known interactions, one interesting new avenue of research has been opened, based on a
categorical generalization of the BF action in the context of higher gauge theory (HGT) formal-
ism [12]. One novel candidate discussed in the literature [13], uses the three-group structure to
formulate the 3BF action as a categorical generalization of the BF theory. Then, modifying the
pure 3BF action by adding the appropriate simplicity constraints, one obtains the constrained
3BF action, describing the theory of all the fields present in the standard model coupled in a
standard way to Einstein–Cartan gravity.

Once the appropriate classical theory has been constructed, one needs to quantize it by con-
structing a topological state sum Z using the algebraic structure underlying the topological
sector of the constrained 3BF action, i.e. the underlying two-crossed module. This construc-
tion has been recently carried out in [14], where a triangulation independent state sum Z of
a topological HGT for an arbitrary two-crossed module and a four-dimensional closed and
orientable spacetime manifold M4 is defined. Once the topological state sum is formulated,
one could proceed to modify the amplitudes of the state sum in order to impose the simplicity
constraints and obtain the state sum describing the full theory. In this way one would finally
arrive at the rigorous definition of a path integral given by the equation (1).

In addition to the covariant approach, one can also study the constrained 3BF action, using
the canonical quantization. This approach focuses on defining the quantum theory via a triple
(H,A, W), i.e. the Hilbert space of states H, the algebra of observablesA, and the dynamics W
given by the transition amplitudes. Specifically, in canonical LQG, the algebra of fields that are
promoted to the quantum operators is chosen to be the algebra based on the holonomies of the
gravitational connection. However, in the case of the 3BF theory, the notion of connection is
generalized to the notion of three-connection, which makes its canonical quantization approach
an interesting avenue of research. The first step toward the canonical quantization of the theory
is the Hamiltonian analysis, resulting in the algebra of first-class and second-class constraints.
The first-class constraints become conditions on the physical states determining the Hilbert
space, while the Hamiltonian constraint determines the dynamics.

The results presented in this paper are the natural continuation of the results presented in
[13]. The main result is the calculation of the full symmetry group of the pure 3BF action. To
that end, the complete Hamiltonian analysis of the 3BF action for a semistrict Lie three-group
is performed by using the Dirac procedure (see [15] for an overview and a comprehensive
introduction to the Hamiltonian analysis). It is a generalization of the Hamiltonian analysis
of a 2BF action performed in [16–19], and of the Hamiltonian analysis for the special case
of a two-crossed module corresponding to the theory of scalar electrodynamics, carried out
in [20]. The analysis of the Hamiltonian structure of the theory gives us the algebra of first-
class and second-class constraints present in the theory. As usual, the first-class constraints
generate gauge transformations, which do not change the physical state of the system. Using
the Castellani’s procedure, one can find the generator of the gauge transformations in the the-
ory on a spatial hypersurface. Then, the results obtained by this method are generalized to the
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whole spacetime. The complete gauge symmetry, consisting of five types of finite gauge trans-
formations, along with the proofs that they are indeed the gauge symmetries of 3BF action,
is presented. With these results in hand, the structure of the full gauge symmetry group is
analyzed, and its corresponding Lie algebra is determined.

The obtained results give rise to a connection between the gauge symmetry group of the
3BF action, and its underlining three-group structure, establishing a duality between the two.
This analysis is an important step towards the study of the gauge symmetry group of the theory
of gravity with matter, formulated as the constrained 3BF action [13], as well as its canonical
quantization. Furthermore, it is important for the overall understanding of the physical meaning
of the three-group structure and its interpretation as the underlining symmetry of the pure 3BF
action, which represents a basis for the constrained 3BF action describing the physical theory.

The layout of the paper is as follows. In section 2, we give a brief overview of BF and
2BF theories, and introduce the 3BF action. Section 3 contains the Hamiltonian analysis for
the 3BF theory. In subsection 3.1, the canonical structure of the theory is obtained, while in
subsection 3.2 the resulting first-class and second-class constraints present in the theory, as
well as the algebra of constraints, are presented. In the subsection 3.3 we analyze the Bianchi
identities (BI) that the first-class constraints satisfy, which enforce restrictions in the sense of
Hamiltonian analysis, and reduce the number of independent first-class constraints present in
the theory. We then proceed with the counting of the physical degrees of freedom. Finally,
this section concludes with the subsection 3.4 where we construct the generator of the gauge
symmetries for the topological theory, based on the calculations done in section 3.2.

Section 4 contains the main results of our paper and is devoted to the analysis of the sym-
metries of the 3BF action. Having results of the subsection 3.4 in hand, we find the form
variations of all variables and their canonical momenta, and use that result to determine all
gauge transformations of the theory. This is done in four steps. The subsection 4.1 deals with
the gauge group G, and the corresponding G-gauge transformations. In subsection 4.2 we dis-
cuss the gauge group H̃L which consists of the H-gauge and L-gauge transformations (familiar
from [21]), while the subsection 4.3 examines the novel M-gauge and N-gauge transformations
which also arise in the theory. The results of the subsections 4.1–4.3 are summarized in sub-
section 4.4, where the complete structure of the symmetry group is presented, including its Lie
algebra. Our concluding remarks are given in section 5, containing a summary and a discussion
of the obtained results, as well as possible future lines of investigation. The appendices contain
various technical details concerning three-groups, additional relations of the constraint alge-
bra, the computation of the generator of gauge symmetries, form-variations of all fields and
momenta, and some other technical details.

Our notation and conventions are as follows. Spacetime indices, denoted by the mid-
alphabet Greek letters μ, ν, . . . , are raised and lowered by the spacetime metric gμν . The spatial
part of these is denoted with lowercase mid-alphabet Latin indices i, j, . . . , and the time com-
ponent is denoted with 0. The indices that are counting the generators of groups G, H, and L
are denoted with initial Greek letters α, β, . . . , lowercase initial Latin letters a, b, c, . . . , and
uppercase Latin indices A, B, C, . . . , respectively. The antisymmetrization over two indices is
denoted as A[a1|a2...an−1|an] =

1
2

(
Aa1a2...an−1an − Aana2...an−1a1

)
, while the total antisymmetriza-

tion is denoted as A[a1...an] =
1
n!

∑
σ∈Sn

(−1)sgn(σ)Aaσ(1)...aσ(n) . Likewise, the symmetrization over
two indices is denoted as A(a1|a2...an−1|an) =

1
2

(
Aa1a2...an−1an + Aana2...an−1a1

)
, while the total sym-

metrization is denoted as A(a1...an) =
1
n!

∑
σ∈Sn

Aaσ(1)...aσ(n) . We work in the natural system of
units, defined by c = h̄ = 1 and G = l2p, where lp is the Planck length. All additional notation
and conventions used throughout the paper are explicitly defined in the text where they appear.
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2. The 3BF theory

Given a Lie group G and its corresponding Lie algebra g, one can introduce the so-called BF
action as

SBF =

∫
M4

〈B ∧ F〉g, (2)

where F ≡ dα+ α ∧ α is the curvature two-form for the algebra-valued connection one-form
α ∈ A1(M4, g) on a trivial principal G-bundle over a four-dimensional compact and orientable
spacetime manifold M4, and B ∈ A2(M4, g) is a Lagrange multiplier two-form. The 〈_, _〉g
denotes the G-invariant bilinear symmetric nondegenerate form on g. For more details see
[22–24].

Varying the action (2) with respect to the Lagrange multiplier B and the connection α, one
obtains the equations of motion,

F = 0, ∇B ≡ dB + α ∧ B = 0. (3)

These equations of motion imply that α is a flat connection, while the Lagrange multiplier B is
a constant field. Therefore, the theory given by the BF action has no local propagating degrees
of freedom, i.e. the theory is topological.

Within the framework of HGT, one can define the categorical generalization of the BF action
to the so-called 2BF action, by passing from the notion of a gauge group to the notion of a
gauge two-group, see [25–27]. In the category theory, a two-group is defined as a two-category
consisting of only one object, where all the morphisms and two-morphisms are invertible. It

has been shown that every strict two-group is equivalent to a crossed module (H
∂−→ G, �),

where G and H are groups, δ is a homomorphism from H to G, while � : G × H → H is an

action of G on H. Given a crossed-module (H
∂−→ G, �), one can introduce a generalization of

the BF action, the so-called 2BF action [25, 26]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h, (4)

where the two-form B ∈ A2(M4, g) and the one-form C ∈ A1(M4, h) are Lagrange multi-
pliers, and h is a Lie algebra of the Lie group H. The variables F ∈ A2(M4, g) and G ∈
A3(M4, h) define the fake two-curvature (F ,G) for the two-connection (α, β) on a trivial prin-
cipal two-bundle over a four-dimensional compact and oriented spacetime manifold M4. See
[28] for a rigorous definition. Here the two-connection (α, β) is given by g-valued one-form
α ∈ A1(M4, g) and an h-valued two-form β ∈ A2(M4, h):

F = dα+ α ∧ α− ∂β, G = dβ + α ∧� β. (5)

The two-curvature (F ,G) is called fake, because of the additional term ∂β, see [12]. Also,
〈_, _〉g and 〈_, _〉h denote the G-invariant bilinear symmetric nondegenerate forms for the alge-
bras g and h, respectively. See [25, 26] for review and references. Varying the 2BF action (4)
with respect to variables B and C one obtains the equations of motion

F = 0, G = 0, (6)

while varying with respect to α and β one obtains

dBα − fαβ
γBγ ∧ αβ − �αa

bCb ∧ βa = 0, (7)

5
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dCa − ∂a
αBα + �αa

bCb ∧ αα = 0. (8)

Here, the coefficients fαβ
γ are the structure constants of the algebra g, �αa

b are the coefficients
of the action � of the algebra g on h, while ∂a

α are the coefficients of the map ∂, given in the
bases of algebras g and h (see the equations (10)–(12) below). Similarly to the case of the BF
action, the 2BF action defines a topological theory, i.e. a theory with no propagating degrees
of freedom, see [16, 19].

Continuing the categorical generalization one step further, one can generalize the notion of
a two-group to the notion of a three-group. Similarly to the definition of a group and a two-
group within the category theory formalism, a three-group is defined as a three-category with
only one object, where all morphisms, two-morphisms, and three-morphisms are invertible.
Moreover, analogously as a strict two-group is equivalent to a crossed-module, it has been
proved that a semistrict three-group is equivalent to a two-crossed module [29].

A Lie two-crossed module, denoted as (L
δ−→ H

∂−→ G, �, {_, _}pf) (see appendix A for the
precise definition), is an algebraic structure specified by three Lie groups G, H, and L, together
with the homomorphisms δ : L → H and ∂ : H → G, an action � of the group G on all three
groups, and a G-equivariant map, called the Peiffer lifting:

{_, _}pf : H × H → L.

In order for this structure to be a three-group, the structure constants of algebras g, h, and l,
together with the maps ∂ and δ, the action �, and the Peiffer lifting, must satisfy certain axioms,
see [13]. Here g, h, and l denote the Lie algebras corresponding to the Lie groups G, H, and L.

Analogously to the definition of a two-connection given in [28], one can define a three-
connection as follows. Given a two-crossed module and a four-dimensional compact and ori-
entable spacetime manifold M4, one can introduce a trivial principal three-bundle using the
two-crossed module as a fiber over the base manifoldM4. See [21, 29] for the precise definition
of a corresponding three-holonomy. This gives rise to a three-connection, which can be repre-
sented as an ordered triple (α, β, γ), where α, β, and γ are algebra-valued differential forms,
α ∈ A1(M4, g), β ∈ A2(M4, h), and γ ∈ A3(M4, l). The corresponding fake three-curvature
(F ,G,H) is defined as:

F = dα+ α ∧ α− ∂β, G = dβ + α ∧� β − δγ, H = dγ + α ∧� γ + {β ∧ β}pf.

(9)

Similarly as in the case of the 2BF theory, the three-curvature (F ,G,H) is called fake, because
of the additional terms ∂β, δγ, and {β ∧ β}pf. Fixing the bases in algebras g, h, and l as τα ∈ g,
ta ∈ h, and TA ∈ l, one defines the structure constants

[τα, τβ] = fαβ
γ τγ , [ta, tb] = fab

c tc, [TA, TB] = fAB
C TC, (10)

maps ∂ : H → G and δ : L → H as

∂(ta) = ∂a
α τα, δ(TA) = δA

a ta, (11)

and an action of g on the generators of g, h, and l as

τα � τβ = fαβ
γ τγ , τα � ta = �αa

b tb, τα � TA = �αA
B TB, (12)

respectively. To define the Peiffer lifting in a basis, one specifies the coefficients Xab
A:

{ta, tb}pf = Xab
ATA. (13)
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Writing the curvature in the bases of the corresponding algebras and differential forms

F =
1
2
Fα

μνταdxμ ∧ dxν , G =
1
3!
Ga

μνρtadxμ ∧ dxν ∧ dxρ,

H =
1
4!
HA

μνρσTAdxμ ∧ dxν ∧ dxρ ∧ dxσ,

one obtains the corresponding components:

Fα
μν = ∂μα

α
ν − ∂να

α
μ + fβγ

ααβ
μα

γ
ν − βa

μν∂a
α,

Ga
μνρ = ∂μβ

a
νρ + ∂νβ

a
ρμ + ∂ρβ

a
μν

+ αα
μβ

b
νρ�αb

a + αα
νβ

b
ρμ�αb

a + αα
ρβ

b
μν�αb

a − γA
μνρδA

a,

HA
μνρσ = ∂μγ

A
νρσ − ∂νγ

A
ρσμ + ∂ργ

A
σμν − ∂σγ

A
μνρ

+ 2βa
μνβ

b
ρσX(ab)

A − 2βa
μρβ

b
νσX(ab)

A + 2βa
μσβ

b
νρX(ab)

A

+ αα
μγ

B
νρσ�αB

A − αα
νγ

B
ρσμ�αB

A + αα
ργ

B
σμν�αB

A

− αα
σγ

B
μνρ�αB

A.

(14)

Then, similarly to the construction of BF and 2BF actions, one can define the gauge
invariant topological 3BF action, with the underlying structure of a three-group. For
the four-dimensional compact and orientable manifold M4 and the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), that gives rise to three-curvature (9), one defines the 3BF action
as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l, (15)

where B ∈ A2(M4, g), C ∈ A1(M4, h), and D ∈ A0(M4, l) are Lagrange multipliers. The
forms 〈_, _〉g, 〈_, _〉h, and 〈_, _〉l are G-invariant bilinear symmetric nondegenerate forms on g,
h, and l, respectively. Note that in the case of a semisimple Lie algebra, a natural choice for this
bilinear form is the Killing form. However, one can also choose it differently, and moreover
for a solvable Lie algebra one can introduce a non-trivial bilinear form, despite the fact that
the Killing form is degenerate in this case. Fixing the basis in algebras g, h, and l, as defined
in (10), the forms 〈_, _〉g, 〈_, _〉h, and 〈_, _〉l map pairs of basis vectors of algebras g, h, and l,
to the metrics on their vector spaces, gαβ , gab, and gAB:

〈τα, τβ〉g = gαβ , 〈ta, tb〉h = gab, 〈TA, TB〉l = gAB. (16)

As the symmetric maps are nondegenerate, the inverse metrics gαβ , gab, and gAB are well
defined, and are used to raise and lower indices of the corresponding algebras.

Varying the action (15) with respect to Lagrange multipliers Bα, Ca, and DA one obtains the
equations of motion

Fα = 0, Ga = 0, HA = 0, (17)
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while varying with respect to the three-connection variables αα, βa, and γA one gets:

dBα − fαβ
γBγ ∧ αβ − �αa

bCb ∧ βa + �αB
ADA ∧ γB = 0, (18)

dCa − ∂a
αBα + �αa

bCb ∧ αα + 2X(ab)
ADA ∧ βb = 0, (19)

dDA − �αA
BDB ∧ αα + δA

aCa = 0. (20)

For further details see [21, 29, 30] for the definition of the three-group, and [13] for the
definition of the pure 3BF action.

Choosing the convenient underlying two-crossed module structure and imposing the appro-
priate simplicity constraints onto the degrees of freedom present in the 3BF action, one can
obtain the non-trivial classical dynamics of the gravitational and matter fields. A reader inter-
ested in the construction of the constrained 2BF actions describing the Yang–Mills field and
Einstein–Cartan gravity, and 3BF actions describing the Klein–Gordon, Dirac, Weyl and Majo-
rana fields coupled to gravity in the standard way, is referred to [13, 27]. One can also introduce
higher dimensional, nBF actions, see for example [31]. Various properties of these models have
been studied in [32–34]. Naturally, if one is interested in theories defined on a four-dimensional
spacetime manifold, there is an upper limit on the order of the differential forms one can use
to construct a n-connection, and in four dimensions that is n = 3.

3. Hamiltonian analysis of the 3BF theory

In this section, the canonical structure of the theory is presented, with the resulting first-class
and second-class constraints present in the theory. The algebra of Poisson brackets between all,
the first-class and the second-class constraints, is obtained. We will use this result to calculate
the total number of degrees of freedom in the theory, and in order to do that, we will have to
analyse the BI that the first-class constraints satisfy, which enforce restrictions in the sense of
Hamiltonian analysis. They reduce the number of independent first-class constraints present
in the theory, thus increasing the number of degrees of freedom. We will obtain that the pure
3BF theory is topological, i.e. there are no local propagating degrees of freedom. Finally, we
will finish this section with the construction of the generator of gauge symmetries of the 3BF
action, which is used to calculate the form-variations of all the variables and their canonical
momenta. This result will be crucial for finding the gauge symmetries of 3BF action, which
will be a topic of section 4.

3.1. Canonical structure and Hamiltonian

Assuming that the spacetime manifold M4 is globally hyperbolic, the Lagrangian on a spatial
foliation Σ3 of spacetime M4 corresponding to the 3BF action (15) is given as:

L3BF =

∫
Σ3

d3�x εμνρσ
(

1
4

Bα
μν Fβ

ρσ gαβ +
1
3!

Ca
μ Gb

νρσ gab +
1
4!

DAHB
μνρσgAB

)
.

(21)

8
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For the Lagrangian (21), the canonical momenta corresponding to all variables Bα
μν , αα

μ, Ca
μ,

βa
μν , DA, and γA

μνρ are:

π(B)α
μν =

δL
δ∂0Bα

μν
= 0,

π(α)αμ =
δL

δ∂0αα
μ
=

1
2
ε0μνρBανρ,

π(C)a
μ =

δL
δ∂0Ca

μ
= 0,

π(β)a
μν =

δL
δ∂0βa

μν

= −ε0μνρCaρ,

π(D)A =
δL

δ∂0DA
= 0,

π(γ)A
μνρ =

δL
δ∂0γA

μνρ

= ε0μνρDA.

(22)

These momenta give rise to the six primary constraints of the theory, since none of them can
be inverted for the time derivatives of the variables,

P(B)α
μν ≡ π(B)α

μν ≈ 0,

P(α)αμ ≡ π(α)αμ −
1
2
ε0μνρBανρ ≈ 0,

P(C)a
μ ≡ π(C)a

μ ≈ 0,

P(β)a
μν ≡ π(β)a

μν + ε0μνρCaρ ≈ 0,

P(D)A ≡ π(D)A ≈ 0,

P(γ)A
μνρ ≡ π(γ)A

μνρ − ε0μνρDA ≈ 0.

(23)

Employing the following fundamental Poisson brackets,

{Bα
μν(�x ) , π(B)β

ρσ(�y) } = 2δαβδ
ρ
[μ|δ

σ
|ν] δ

(3)(�x −�y),

{αα
μ(�x ) , π(α)βν(�y) } = δαβ δ

ν
μ δ

(3)(�x −�y),

{Ca
μ(�x ) , π(C)b

ν(�y) } = δa
bδ

ν
μ δ

(3)(�x −�y),

{βa
μν(�x ) , π(β)b

ρσ(�y) } = 2δa
b δ

ρ
[μ|δ

σ
|ν] δ

(3)(�x −�y),

{DA(�x ) , π(D)B(�y) } = δA
B δ(3)(�x −�y),

{ γA
μνρ(�x ) , π(γ)B

στξ(�y) } = 3!δA
B δσ[μδ

τ
ν δ

ξ
ρ] δ

(3)(�x −�y),

(24)
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one obtains the algebra of primary constraints:

{P(B)α jk(�x) , P(α)β i(�y) } = ε0i jk gαβ(�x) δ(3)(�x −�y),

{P(C)a
k(�x) , P(β)b

i j(�y) } = −ε0i jk gab(�x) δ(3)(�x −�y),

{P(D)A(�x) , P(γ)B
i jk(�y) } = ε0i jk gAB(�x) δ(3)(�x −�y).

(25)

Note that all other Poisson brackets vanish. The canonical, on-shell Hamiltonian is given by
the following expression:

Hc =

∫
Σ3

d3�x

[
1
2
π(B)αμν ∂0Bα

μν + π(α)αμ ∂0α
α
μ + π(C)a

μ ∂0Ca
μ

+
1
2
π(β)a

μν ∂0β
a
μν + π(D)A ∂0DA +

1
3!
π(γ)A

μνρ ∂0γ
A
μνρ

]
− L.

(26)

Employing the definition of the curvature components (14), the Hamiltonian (26) can be written
as the sum of terms that are equal to the product of the primary constraints and time derivatives
of the variables, and the remainder. As the primary constraints are zero on-shell, the terms
multiplying the time derivatives vanish, and the canonical Hamiltonian becomes:

Hc = −
∫
Σ3

d3�x ε0i jk

[
1
2

Bα0i Fα
jk +

1
6

Ca0 Ga
i jk+ βa

0i

(
∇ jCak −

1
2
∂a

αBα jk + βb
jk DA X(ab)

A

)

+
1
2
αα

0

(
∇iBα jk − Cai �αb

a βb
jk +

1
3

DA �αB
A γB

i jk

)
+

1
2
γA

0i j

(
∇kDA + Cak δA

a
)]

.

(27)

Adding to the canonical Hamiltonian the product of the Lagrange multipliersλ and the primary
constraints, for every primary constraint, one gets the total, off-shell Hamiltonian:

HT = Hc+

∫
Σ3

d3�x

[
1
2
λ(B)αμνP(B)αμν + λ(α)αμP(α)αμ+ λ(C)a

μP(C)a
μ +

1
2
λ(β)a

μνP(β)a
μν

+ λ(D)AP(D)A +
1
3!
λ(γ)A

μνρP(γ)A
μνρ

]
.

(28)

3.2. Consistency conditions and algebra of constraints

In order for primary constraints to be preserved during the evolution of the system, they must
satisfy the consistency conditions,

Ṗ ≡ {P , HT } ≈ 0, (29)

10
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for every primary constraint P. Imposing this condition on primary constraints P(B)α0i, P(α)α0,
P(C)a

0, P(β)a
0i, and P(γ)A

0i j, one obtains the secondary constraints S,

S(F )αi ≡ 1
2
ε0i jkFα jk ≈ 0,

S(∇B)α ≡ 1
2
ε0i jk

(
∇[iBα jk] − Ca[i �αb

a βb
jk] +

1
3

DA �αB
A γB

i jk

)
≈ 0,

S(G)a ≡ 1
6
ε0i jkGai jk ≈ 0,

S(∇C)a
i ≡ ε0i jk

(
∇[ j|Ca|k] −

1
2
∂a

αBα jk + βb
jk DA X(ab)

A

)
≈ 0,

S(∇D)A
i j ≡ ε0i jk

(
∇kDA + Cak δA

a
)
≈ 0,

(30)

while in the case of the constraints P(α)αk, P(B)α jk, P(β)a
jk, P(C)a

k, P(γ)A
i jk, and P(D)A the

corresponding consistency conditions determine the following Lagrange multipliers:

λ(B)αi j ≈ ∇iBα0 j −∇ jBα0i + Ca0β
b

i j�αb
a + Cbi�

b
α aβ

a
0 j

− Cb j�
b

α aβ
a

0i + gβγ
ααβ

0Bγ
i j + DBγ

A
0i j�

B
α A,

λ(α)αi ≈ ∇iα
α

0 + ∂a
αβa

0i,

λ(C)a
i ≈ ∇iC

a
0 + Cb

i�
a

α bα
α

0 − 2βb0iDAX(ba)A + Bα0i∂
aα,

λ(β)a
i j ≈ ∇iβ

a
0 j −∇ jβ

a
0i − βb

i j�αb
aαα

0 + γA
0i jδA

a,

λ(D)A ≈ αα
0DB�αA

B − Ca0δA
a,

λ(γ)A
i jk ≈ −2βa

0iβ
b

jkX(ab)
A + 2βa

0 jβ
b

ikX(ab)
A − 2βa

0kβ
b

i jX(ab)
A

− αα
0 �αB

AγB
i jk +∇iγ

A
0 jk −∇ jγ

A
0ik +∇kγ

A
0i j.

(31)

Note that the rest of the Lagrange multipliers

λ(B)α0i, λ(α)α0, λ(C)a
0, λ(β)a

0i, λ(γ)A
0i j, (32)

remain undetermined.
Further, as the secondary constraints must also be preserved during the evolution of the

system, the consistency conditions of secondary constraints must be enforced. However, no
tertiary constraints arise from these conditions (see equation (B.1) in appendix B), leading the
iterative procedure to an end. Finally, the total Hamiltonian can be written in the following
form:
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HT =

∫
Σ3

d3�x

[
λ(B)α0i Φ(B)αi + λ(α)α Φ(α)α + λ(C)a

0 Φ(C)a + λ(β)a
0i Φ(β)a

i

+
1
2
λ(γ)A

0i jΦ(γ)A
i j − Bα0i Φ(F )ai − αα0 Φ(∇B)α − Ca0 Φ(G)a

− βa0i Φ(∇C)ai − 1
2
γA0i j Φ(∇D)Ai j

]
,

(33)

where

Φ(B)αi = P(B)α0i,

Φ(α)α = P(α)α0,

Φ(C)a = P(C)a
0,

Φ(β)a
i = P(β)a

0i,

Φ(γ)A
i j = P(γ)A

0i j,

Φ(F )αi = S(F )αi −∇ jP(B)αi j − P(C)a
i∂aα,

Φ(G)a = S(G)a +∇iP(C)a
i − 1

2
βbi j �

b
α aP(B)αi j + P(D)AδAa,

Φ(∇C)a
i = S(∇C)a

i −∇ jP(β)a
i j + Cbj �

b
α aP(B)αi j

− ∂a
αP(α)α

i + 2DAX(ab)
AP(C)bi + βb

jkX(ab)
AP(γ)A

i jk,

Φ(∇B)α = S(∇B)α +∇iP(α)αi − 1
2

fαγ
βBβ i jP(B)γi j − Cbi �αa

bP(C)ai

− 1
2
βbi j �αa

bP(β)ai j − P(D)ADB �αA
B +

1
3!

P(γ)A
i jkγB

i jk �αB
A,

Φ(∇D)A
i j = S(∇D)A

i j +∇kP(γ)A
i jk − P(β)a

i jδA
a − P(B)αi j � B

α ADB,

(34)

are the first-class constraints. The second-class constraints in the theory are:

χ(B)α
jk = P(B)α

jk, χ(C)a
i = P(C)a

i, χ(D)A = P(D)A,

χ(α)αi = P(α)αi, χ(β)a
i j = P(β)a

i j, χ(γ)A
i jk = P(γ)A

i jk.

(35)

12
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The PB algebra of the first-class constraints is given by

{Φ(F )αi(�x) , Φ(∇B)β(�y) } = fβγ
α Φ(F )γi(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , Φ(∇B)β(�y) } = fαβ
γ Φ(∇B)γ(�x) δ(3)(�x −�y),

{Φ(G)a(�x) , Φ(∇C)b
i(�y) } = −�αb

a Φ(F )αi(�x) δ(3)(�x −�y),

{Φ(∇C)a
i(�x) , Φ(∇C)b

j(�y) } = −2X(ab)
A Φ(∇D)A

i j(�x) δ(3)(�x −�y),

{Φ(G)a(�x) , Φ(∇B)α(�y) } = �αb
a Φ(G)b(�x) δ(3)(�x −�y),

{Φ(∇C)ai(�x) , Φ(∇B)α(�y) } = �αb
a Φ(∇C)bi(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , Φ(∇D)A
i j(�y) } = �αA

BΦ(∇D)B
i j(�x)δ(3)(�x −�y).

(36)

The algebra between the first and the second class constraints is given in the appendix B,
equation (B.2).

With the algebra of the constraints in hand, one can proceed to calculate the generator of
gauge symmetries of the action. The generator will be used to calculate the form-variations of
all the variables and their canonical momenta, which will help us find the finite gauge sym-
metries of the action. Additionally, we can determine the number of independent parameters
of gauge transformations, since usually all the first class constraints generate unphysical trans-
formations of dynamical variables, i.e. that to each parameter of the gauge symmetry there
corresponds one first-class constraint. However, before we embark on the construction of the
symmetry generator, we will devote some attention to the number of local propagating degrees
of freedom in the theory, in order to determine if the 3BF action is topological or not.

3.3. Number of degrees of freedom

In this subsection, we will show that the structure of the constraints implies that there are no
local degrees of freedom in a 3BF theory. To that end, let us first specify all the BI present in
the theory.

The two-form curvatures corresponding to one-forms α and C, given by

Fα = dαα + fβγ
α αβ ∧ αγ , Ta = dCa + �αb

a αα ∧ Cb, (37)

satisfy the BI:

ελμνρ ∇μFα
νρ = 0, (38)

ελμνρ
(
∇μTa

νρ − �αb
aFα

μνCb
ρ

)
= 0. (39)

Similarly, the three-form curvatures corresponding to two-forms B and β, given by

Sα = dBα + fβγ
α αβ ∧ Bγ , Ga = dβa + �αb

a αα ∧ ββ , (40)

13
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Table 1. The fields present in the 3BF theory.

αα
μ βa

μν γA
μνρ Bα

μν Ca
μ DA

4p 6q 4r 6p 4q r

Table 2. Second-class constraints in the 3BF theory.

χ(B)α jk χ(C)a
i χ(D)A χ(α)αi χ(β)a

i j χ(γ)A
i jk

3p 3q r 3p 3q r

satisfy the BI:

ελμνρ
(

2
3
∇λ Sα

μνρ − fβγ
αFβ

λμ Bγ
νρ

)
= 0, (41)

ελμνρ
(

2
3
∇λ Ga

μνρ − �αb
a Fα

λμ β
b
νρ

)
= 0. (42)

Finally, defining the one-form curvature for D,

QA = dDA + �αB
Aαα ∧ DB, (43)

one can write the corresponding BI for QA:

ελμνρ
(
∇νQA

ρ −
1
2
�αB

AFα
νρD

B

)
= 0. (44)

These BI play an important role in determining the number of degrees of freedom present
in the theory.

As the general theory states, if there are N fields in the theory, F independent first-class
constraints per space point, and S independent second-class constraints per space point, the
number of independent field components, i.e. the number of the physical degrees of freedom
present in the theory, is given by:

n = N − F − S
2
. (45)

Let pdenote the dimensionality of the group G, q the dimensionality of the group H, and r the
dimensionality of the group L. Determining the number of fields present in the 3BF theory, by
counting the field components listed in table 1, one obtains N = 10(p+ q) + 5r. Similarly, one
determines the number of independent components of the second-class constraints by counting
the components listed in table 2 and obtains S = 6(p+ q) + 2r. However, when counting the
number of the first-class constraints F one notes they are not all mutually independent. Namely,
one can prove the following identities, as a consequence of the BI.

Taking the derivative of Φ(F )α
i one obtains

∇iΦ(F )αi + ∂a
αΦ(G)a =

1
2
ε0i jk∇iF

α
jk −

1
2

fβγ
αFβ

i jP(B)i j. (46)

This relation gives

∇iΦ(F )αi + ∂a
αΦ(G)a = 0, (47)

14
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since the first term on the right-hand side of (46) is zero off-shell because εi jk ∇iFa
jk = 0 are the

λ = 0 components of BI (38), and the second term on the right-hand side is also zero off-shell,
since it is a product of two constraints:

1
2

fβγ
αFβ

i jP(B)i j =
1
2

fβγ
αε0i jkS(F )βkP(B)i j = 0. (48)

The relation (47) means that p components of the first-class constraints Φ(F )αi and Φ(G)a are
not independent of the others. Furthermore, taking the derivative of Φ(∇C)a

i one obtains

∇iΦ(∇C)a
i + Cbi�αa

bΦ(F )αi + ∂a
αΦ(∇B)α − βb

i jX(ab)
AΦ(∇D)A

i j − 2DAX(ab)
A Φ(G)b

=
1
2
ε0i jk

(
∇iTa jk − �αb

aFα
jkCb

i

)
− 1

2
ε0i jk �αa

b P(B)α i j S(∇C)bk

+ ε0i jkX(ab)
A P(C)b

i S(∇D)A jk +
1
3
ε0i jkX(ab)

A P(γ)A
i jk S(G)b +

1
2
ε0i jk�αa

b P(β)b
i j S(F )αk.

(49)

Noting that the right-hand side of (49) is zero off-shell as the λ = 0 components of the BI (39),
and the remaining terms on the right-hand side are zero off-shell as products of two constraints,
one obtains the following relation:

∇iΦ(∇C)a
i + Cbi�αa

bΦ(F )αi + ∂a
αΦ(∇B)α − βb

i jX(ab)
AΦ(∇D)A

i j − 2DAX(ab)
AΦ(β)b = 0.

(50)

This relation means that q components of the constraintsΦ(∇C)a
i,Φ(F )αi,Φ(∇B)α,Φ(∇D)A

i j,
and Φ(β)b, are not independent of the others, further lowering the number of the independent
first-class constraints. Finally, the following relation is satisfied

∇ jΦ(∇D)A
i j − �αB

ADBΦ(F )αi − δA
aΦ(∇C)a

i

= ε0i jk

(
∇ jQA

k +
1
2
�αA

BFα jkDB

)
+

1
2
ε0 jkl �αB

A P(γ)B
i jk S(F )αl

− 1
2
ε0 jkl �αB

A P(B)αi j S(∇D)B
kl.

(51)

Since the first term on the right-hand side is precisely the λ = 0 component of the BI (44),
while the second and third terms are equal to zero as products of two constraints, this gives:

∇ jΦ(∇D)A
i j − �αB

ADBΦ(F )αi − δA
aΦ(∇C)a

i = 0. (52)

This relation suggests that 3r components of the primary constraints Φ(∇D)A
i j, Φ(F )αi, and

Φ(C)a
i are not independent of the others. However, this is slightly misleading, since the

covariant derivative of the BI (44) is automatically satisfied as a consequence of the BI (38),

ελμνρDB �αB
A∇μFα

νρ = 0, (53)
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Table 3. First-class constraints in the 3BF theory.

Φ(B)αi Φ(C)a Φ(α)α Φ(β)a
i Φ(γ)A

i j Φ(F)αi Φ(G)a Φ(∇C)ai Φ(∇B)α Φ(∇D)A
i j

3p q p 3q 3r 3p− p q 3q − q p 3r − 2r

which means that there are in fact only 2r components of the constraint (52). A formal
proof of this statement would involve evaluating the Wronskian of all first-class constraints,
and is out of the scope of this paper.

The number of independent components of first-class constraints is determined by counting
the components listed in table 3, and then subtracting the number of independent relations (47),
(50) and (52).

Bearing the previous analysis in mind, one obtains the number of independent first-class
constraints:

F = 8(p+ q) + 6r − p− q − 2r = 7(p+ q) + 4r.

Finally, using the definition (45), the number of degrees of freedom in the 3BF theory is:

n = 10(p+ q) + 5r − 7(p+ q) − 4r − 6(p+ q) + 2r
2

= 0. (54)

Therefore, there are no local propagating degrees of freedom in a 3BF theory.

3.4. Symmetry generator

The unphysical transformations of dynamical variables are often referred to as gauge trans-
formations. The gauge transformations are local, meaning that the parameters of the transfor-
mations are arbitrary functions of space and time. We shall now construct the generator of all
gauge symmetries of the theory governed by the total Hamiltonian (33), using the Castellani’s
algorithm (see chapter 5 in [15] for a comprehensive overview of the procedure). The details
of the construction are given in appendix C, and the following result is obtained

G =

∫
Σ3

d3�x

(
(∇0εg

α) (G̃1)α + εg
α (G̃0)α + (∇0ε

a
h i) (H̃1)a

i
+ ε a

h i (H̃0)a
i
+

1
2

(∇0ε
A
l i j) (L̃1)A

i j

+
1
2
ε A
l i j (L̃0)A

i j
+ (∇0ε

α
m i) (M̃1)α

i
+ ε α

m i (M̃0)α
i
+ (∇0εn

a) (Ñ1)a + εn
a(Ñ0)a

)
,

(55)
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where

(G̃1)α = −Φ(α)α,

(G̃0)α = −
(

fαγ
βBβ0iΦ(B)γ i + Ca0 �αb

aΦ(C)b0 + βa0i �αb
aΦ(β)b0i

− 1
2
γA

0i j �αA
BΦ(γ)B

i j − Φ(∇B)α

)
,

(H̃1)a
i
= −Φ(β)a

i,

(H̃0)a
i
= Cb0 �αa

bΦ(B)αi − 2βb
0 jX(ab)

AΦ(γ)A
i j +Φ(∇C)a

i,

(L̃1)a
i j
= Φ(γ)A

i j,

(L̃0)a
i j
= −Φ(∇D)A

i j,

(M̃1)α
i
= −Φ(B)αi,

(M̃0)α
i
= Φ(F )α

i,

(Ñ1)a = −Φ(C)a,

(Ñ0)a = βb0i �αa
bΦ(B)αi +Φ(G)a,

(56)

and εg
α, ε a

h i, ε
A
l i j, ε

α
m i, and εn

a are the independent parameters of the gauge transformations.
The obtained gauge generator (55) is then employed to calculate the form variations of

variables and their corresponding canonical momenta, denoted as A(t,�x), using the following
equation,

δ0A(t,�x) = {A(t,�x), G}. (57)

The form variations of all fields and canonical momenta are given in appendix E,
equation (E.2), while the algebra of the generators (56) is obtained in the appendix B,
equations (B.4)–(B.10). However, one must bear in mind that the gauge generator (55) is the
generator of the symmetry transformations on a slice of spacetime, i.e. on a hypersurface Σ3.
Having in hand all these results, specifically the form variations of all variables and their canon-
ical momenta (E.2), we can determine the full gauge symmetry of the theory, which will be
done in the next section.

4. Symmetries of the 3BF action

In order to systematically describe all gauge transformations of the 3BF action, we will discuss
in turn each set of gauge parameters εg

α, ε a
h i, ε

A
l i j, ε

α
m i, and εn

a, appearing in (55). The
subsection 4.1 deals with the gauge group G, and the G-gauge transformations, which are

17



Class. Quantum Grav. 39 (2022) 135009 T Radenkovíc and M Vojinovíc

already familiar from the ordinary BF theory. In subsection 4.2 we discuss the gauge group
H̃L which consists of the H-gauge and L-gauge transformations, familiar from the previous
literature [21], while the subsection 4.3 examines the M-gauge and N-gauge transformations
which are also present in the theory. Finally, the results of the subsections 4.1–4.3 will be
summarized in the subsection 4.4, where we will present the complete structure of the gauge
symmetry group.

4.1. Gauge group G

First, consider the infinitesimal transformation with the parameter εg
α, given by the form

variations

δ0α
α
μ = − ∂μεg

α − fβγ
ααβ

μεg
γ , δ0Bα

μν = fβγ
αεg

βBγ
μν ,

δ0β
a
μν = �αb

aεg
αβb

μν , δ0Ca
μ = �αb

aεg
αCb

μ,

δ0γ
A
μνρ = �αB

Aεg
αγB

μνρ, δ0DA = �αB
Aεg

αDB,

(58)

which is analogous to writing the transformation as:

α→ α′ = α−∇εg, B → B′ = B − [B, εg],

β → β′ = β + εg � β, C → C′ = C + εg � C,

γ → γ ′ = γ + εg � γ, D → D′ = D + εg � D.

(59)

Based on these infinitesimal transformations, one can extrapolate the finite symmetry transfor-
mations, defined in the theorem 1.

Theorem 1 (G-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a gauge symmetry,

α→ α′ = Adgα+ gdg−1, B → B′ = gBg−1,

β → β′ = g � β, C → C′ = g � C,

γ → γ ′ = g � γ, D → D′ = g � D,

(60)

where g = exp(εg · Ĝ) = exp(εgαĜα) ∈ G, and εg : M4 → g is the parameter of the
transformation.

Proof. Note that if one considers an element of the group, g ∈ G, the transformations of the
theorem 1 give rise to the following three-curvature transformation

F →F′ = gFg−1, G → G′ = g � G, H→H′ = g �H, (61)
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and the invariance of the 3BF action under this transformation follows from the G-invariance
of the symmetric bilinear forms on g, h, and l. _

Let us consider two subsequent infinitesimal G-gauge transformations, determined by the
small parameters εαg1

and εβg2. To calculate the commutator between the generators of the G-
gauge transformations, we will make use of the Baker–Campbell–Hausdorff (BCH) formula
in the case when the parameters of the transformations are small

eε
α

g 1Ĝαeε
β

g 2Ĝβ = eε
α

g 1Ĝα+ε
β

g 2Ĝβ+
1
2 ε

α
g 1 ε

β
g 2 [Ĝα,Ĝβ ]+O(ε 3

g ), (62)

from which it follows:

eε
α

g 1Ĝαeε
β

g 2Ĝβ − eε
β

g 2Ĝβeε
α

g 1Ĝα = ε α
g 1 ε

β
g 2 [Ĝα, Ĝβ] + O(ε 3

g ). (63)

Using the equation (63), we obtain that the generators of the G-gauge transformations defined
in the theorem 1 satisfy the following commutation relations:

[Ĝα, Ĝβ] = fαβ
γĜγ , (64)

where fαβ
γ are the structure constants of the algebra g. By noting that there exists an iso-

morphism between generators Ĝα
∼= τα, one establishes that the group of the G-gauge trans-

formations from the theorem 1 is the same as the group G of the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf). This is an important result, which will not be true for the remaining
symmetry transformations, as we shall see below.

4.2. The gauge group H̃L

Let us now consider the form variations of the variables corresponding to the parameter ε a
h i.

For example, one can see from the equation (E.2) that the form-variation of the variables αα
0

and αα
i are:

δ0α
α

o = 0, δ0α
α

i = −∂a
αε a

h i. (65)

Taking into account that the action of the generator (55) gives the symmetry transformations on
one hypersurfaceΣ3 with the time component of the parameter equal to zero, ε a

h 0 = 0, one can
extrapolate that for parameter of the spacetime gauge transformations ε a

h μ, the form-variation
of the variable αα

μ is given as:

δ0α
α
μ = −∂a

αε a
h μ, (66)

and similarly for the rest of the variables. Thus, the infinitesimal symmetry transformations in
the whole spacetime corresponding to the parameter ε a

h μ are given by the form variations:

δ0α
α
μ = −∂a

αε a
h μ, δ0Bα

μν = 2Ca[μ|ε
b

h |ν] �βb
agαβ ,

δ0β
a
μν = −2∇[μ|ε

a
h |ν], δ0Ca

μ = 2DAX(ab)
Aε b

h μ,

δ0γ
A
μνρ = 3!βa

[μνε
b

h ρ]X(ab)
A, δ0D = 0.

(67)
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For these infinitesimal transformations one obtains the finite symmetry transformations given
in theorem 2.

Theorem 2 (H-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a symmetry:

α→ α′ = α− ∂εh, β → β′ = β −∇′εh − εh ∧ εh,

γ → γ ′ = γ + {β′, εh}pf + {εh, β}pf, B → B′ = B − C′∧T εh − εh∧Dεh∧DD,

C → C′ = C − D∧X1εh − D∧X2εh, D → D′ = D.

(68)

where εh ∈ A1(M4, h) is an arbitrary h-valued one-form, and ∇′ denotes the covariant
derivative with respect to the connection α′. The maps T , D, X1, and X2 are defined in
appendix D.

Proof. Note that the three-curvature transforms as

F →F′ = F ,

G → G′ = G − F∧� εh,

H→H′ = H + {G′, εh}pf − {εh,G}pf.

(69)

Taking into account the transformations of the three-curvature (69) and the transformations of
the Lagrange multipliers, the action S3BF transforms as:

S′
3BF = S3BF +

∫
M4

(
−〈C′∧T εh,F〉g − 〈εh∧Dεh∧DD,F〉g

− 〈C′,F∧� εh〉h − 〈D∧X1εh,G〉h − 〈D∧X2εh,G〉h
+ 〈D, {G, εh}pf〉l − 〈D, {F∧� εh, εh}pf〉l − 〈D, {εh,G}pf〉l

)
.

(70)

Using the definitions of the maps T ,D, X1, and X2, given in appendix D, one sees that the
terms in the parentheses cancel, specifically the first term with the third, second with seventh,
fourth with eighth, and fifth with the sixth term. _

The H-gauge transformations do not form a group. Namely, one can check that the two con-
secutive H-gauge transformations do not give a transformation of the same kind, i.e. the closure
axiom of the group is not satisfied. This is analogous to the well-known structure of Lorentz
group, where boost transformations are not closed, and thus do not form a group. Indeed, one
must consider both rotations and boosts to obtain the set of transformations that forms the
Lorentz group. In the case of the H-gauge transformations, we will show that together with
the H-gauge transformations one needs to consider the transformations corresponding to the
parameter ε A

l i j. From the equation (E.2) one reads the form-variations on a space hypersur-
face Σ3 corresponding to this parameter. Similarly as it is done in the case of the H-gauge
transformations, one extrapolates that the form-variations for all the variables corresponding
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to the parameter ε A
l μν are given as:

δ0α
α
μ = 0,

δ0Bα
μν = −DA �βB

Aε B
l μνgαβ ,

δ0β
a
μν = δA

aεA
l μν ,

δ0Ca
μ = 0, δ0γ

A
μνρ = ∇με

A
l νρ −∇νε

A
l μρ +∇ρε

A
l μν ,

δ0DA = 0.

(71)

These infinitesimal transformations correspond to the finite symmetry transformations defined
in theorem 3.

Theorem 3 (L-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a symmetry

α→ α′ = α, B → B′ = B + D∧Sεl,
β → β′ = β + δεl, C → C′ = C,
γ → γ ′ = γ +∇εl, D → D′ = D,

(72)

where εl ∈ A2(M4, l) is an arbitrary l-valued two-form, and the map S is defined in
appendix D.

Proof. Note that the three-curvature transforms as

F →F′ = F ,
G → G′ = G,
H→H′ = H+ F∧� εl.

(73)

Taking into account the transformations (73) and the transformations of the Lagrange multi-
pliers, the action transforms as:

S′
3BF = S3BF +

∫
M4

(
〈D∧Sεl,F〉g + 〈D,F∧� εl〉l

)
. (74)

According to the definition of the map S, the terms in the parentheses cancel. _
Let us denote the generators of the H-gauge transformations given by the theorem 2 and

the L-gauge transformations given by the theorem 3 as Ĥa
μ

and L̂A
μν

, respectively. As we have
commented above, one can now check that the transformations defined in the theorem 2, i.e.
the H-gauge transformations, do not form a group. If one performs two consecutive H-gauge
transformations, defined with parameters εh1 and εh2, one obtains

eεh1·Ĥeεh2·Ĥ − eεh2·Ĥeεh1·Ĥ = 2 ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf) · L̂, (75)

where εh · Ĥ = ε a
h μĤ μ

a and εl · L̂ = 1
2 ε

A
l μν L̂A

μν
. Using the equation analogous to BCH

formula (63), one obtains that the commutator of the generators of two H-gauge
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transformations is the generator of an L-gauge transformation (see appendix F for the details
of the calculation):[

Ĥa
μ
, Ĥb

ν
]
= 2X(ab)

AL̂A
μν
. (76)

Next, note that the transformations defined in theorem 3 are the linear transformations,
and the two subsequent L-gauge transformations give one L-gauge transformation with the
parameter εl1 + εl2. Formally, one can write the previous statement as

eεl1·L̂eεl2 ·L̂ = e(εl1+εl2)·L̂, (77)

which leads to the conclusion that the generators of the L-gauge transformations are mutually
commuting: [

L̂A
μν

, L̂B
ρσ
]
= 0. (78)

Thus, the L-gauge transformations form an abelian group, which will be denoted as L̃. Accord-
ing to the index structure of the parameters and generators, we can conclude that the group L̃
is isomorphic to R

6r, where r is the dimension of the group L:

L̃ ∼= R
6r. (79)

Our analogy with the case of the Lorentz group can once again prove useful, since the closure
of the L-gauge transformations resembles the fact that the composition of two rotations is a
rotation. The abelian group L̃ should not be confused with the non-abelian group L of the

two-crossed module (L
δ−→ H

∂−→ G, �, {_, _}pf).
Let us now examine the relationship between H-gauge transformations and L-gauge

transformations. The following result,

eεh·Ĥeεl·L̂ = eεl·L̂eεh ·Ĥ , (80)

leads to the conclusion that the commutator of generators of the H-gauge transformations and
generators of the L-gauge transformations vanishes:[

Ĥa
μ
, L̂A

νρ
]
= 0. (81)

From the closure of the algebra (76), (78) and (81), one can conclude that the H-gauge trans-
formations together with the L-gauge transformations form a group, which will be denoted as
H̃L. Lastly, the action of the group G on the H-gauge and L-gauge transformations is examined
by calculating the expressions:

[εg · Ĝ, εh · Ĥ] = (εg � εh) · Ĥ, [εg · Ĝ, εl · L̂] = (εg � εl) · L̂, (82)

which lead to the following commutators:[
Ĝα, Ĥa

μ
]
= �αa

b Ĥ μ
b ,

[
Ĝα, L̂A

μν
]
= �αA

B L̂ μν
B .

(83)

Theorems 1–3 represent the G-, H-, and L-gauge transformations, which are already familiar
from the previous literature (see for example [21, 30]).
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4.3. The gauge groups M and N

Next, consider the infinitesimal transformation with the parameter ε α
m i, given by the form

variations in appendix E. In a similar manner as done in the previous subsection, one establishes
that the form variations obtained as a result of the Hamiltonian analysis are transformations on
one hypersurfaceΣ3, from which one can guess the symmetry in the whole spacetime. Keeping
in mind that the variations on the hypersurface have the time component of the parameter set to
ε α
m 0 = 0, one extrapolates the form-variations of the whole spacetime for the parameter ε α

m μ

to be:

δ0α
α
μ = 0,

δ0Bα
μν = −2∇[μ|ε

α
m |ν],

δ0β
a
μν = 0,

δ0Ca
μ = −∂a

αε
α

m μ,

δ0γ
A
μνρ = 0,

δ0DA = 0.

(84)

Based on this result, one obtains the finite symmetry transformations in the whole spacetime,
as defined in theorem 4, which we will refer to as the M-gauge transformations.

Theorem 4 (M-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a symmetry

α→ α′ = α,

B → B′ = B −∇εm,

β → β′ = β,

Ca → C′a = Ca − ∂a
αεm

α,

γ → γ ′ = γ,

D → D′ = D,

(85)

where εm ∈ A1(M4, g) is an arbitrary g-valued one-form.

Proof. Consider the transformation of the 3BF action under the transformations of the
variables defined in the theorem 4. One obtains:

S′
3BF = S3BF +

∫
M4

d4x εμνρσ
(
−1

2
(∇με

α
m ν)Fαρσ −

1
3!
∂a

αε
α

m μGaνρσ

)
. (86)

Using the definition of three-curvature, given by the expressions (14), one obtains:

S′
3BF = S3BF +

∫
M4

d4x εμνρσ
(
−1

2
(∇με

α
m ν)

(
Fαρσ − ∂a

αβaρσ

)

− 1
3!
∂a

αε
α

m μ

(
3∇νβaρσ − δA

aγAνρσ

))
.

(87)
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Taking into account that the second and the third term cancel, while the last term is
zero because of the identity (A.1), the expression reduces to:

S′
3BF = S3BF − 1

2

∫
M4

d4x εμνρσε α
m μ∇νFαρσ. (88)

Finally, the term εμνρσ∇νFαρσ = 0 is the BI (38). One concludes that the action S3BF is invariant
under the transformation defined in theorem 4. �

Note that the transformations defined in theorem 4 are linear transformations, and the two
subsequent M-gauge transformations give one M-gauge transformation with the parameter
εm1 + εm2. Denoting the generators of the M-gauge transformations as M̂α

μ
, one can now write

the previous statement formally as:

eεm1·M̂eεm2 ·M̂ = e(εm1+εm2)·M̂ , (89)

where εm · M̂ = ε α
m μM̂α

μ
, leading to the conclusion that:

[
M̂α

μ
, M̂β

ν
]
= 0. (90)

Thus, the M-gauge transformations form an abelian group, which will be denoted as M̃. Accord-
ing to the index structure of its parameters and generators, we see that this group is isomorphic
to R

4p, where p is the dimension of the group G:

M̃ ∼= R
4p. (91)

Next, one can examine the relationship of M-gauge transformations with the G, H, and L-
gauge transformations defined in the previous subsections. Specifically, considering the G-
gauge symmetry generators, one finds

[εg · Ĝ, εm · M̂] = (εg � εm) · M̂, (92)

obtaining the result:

[
Ĝα, M̂β

μ
]
= fαβ

γM̂γ
μ
. (93)

Considering the H- and L-gauge transformations, one obtains

eεh·Ĥeεm ·M̂ = eεm ·M̂eεh·Ĥ , (94)

eεl·L̂eεm ·M̂ = eεm ·M̂eεl·L̂, (95)

leading to the conclusion that the generators of the M-gauge transformations commute
with both the generators of H-gauge transformations and the generators of the L-gauge
transformations:[

Ĥa, M̂α
μ
]
= 0,

[
L̂A

μν
, M̂α

ρ
]
= 0. (96)
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Finally, examining the infinitesimal transformation corresponding to the parameter εn
a,

given by the form-variations as calculated in (E.2),

δ0α
α
μ = 0,

δ0Bα
μν = βbμν �α′a

bεn
agαα′

,

δ0β
a
μν = 0,

δ0Ca
μ = −∇μεn

a,

δ0γ
A
μνρ = 0,

δ0DA = δA
aεn

a.

(97)

one obtains the theorem 5, the symmetry transformations which will be referred to as N-gauge
transformations. Note that the N-gauge transformations are simultaneously the transformations
in the whole spacetime, since the parameter does not carry spacetime indices.

Theorem 5 (N-gauge transformations). In the 3BF theory for the two-crossed module

(L
δ−→ H

∂−→ G, �, {_, _}pf), the following transformation is a symmetry

α→ α′ = α,

B → B′ = B − β∧T εn,

β → β′ = β,

C → C′ = C −∇εn,

γ → γ ′ = γ,

DA → D′A = DA + δA
aεn

a,

(98)

where εn : M4 → h is an arbitrary h-valued zero-form.

Proof. Under the transformations defined in theorem 5, the action is transformed as follows:

S′
3BF = S3BF +

∫
M4

dx4εμνρσ
(

1
4
βbμν �αa

bεn
aFα

ρσ −
1
3!

(∇μεn
a)Gaνρσ

+
1
4!
δA

aεn
aHA μνρσ

)
. (99)

Using the expressions for the three-curvature defined in (9), one obtains

S′
3BF = S3BF +

∫
M4

dx4εμνρσ
(

1
4
βbμν �αa

bεn
a
(
Fα

ρσ − ∂c
αβc

ρσ

)

− 1
3!

(∇μεn
a)
(
3∇νβaρσ − δA

aγA νρσ

)
+

1
4!
δA

aε
a
(
4∇μγA νρσ + 6X(bc)Aβ

b
μνβ

c
ρσ

))
.

(100)
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Here, after one partial integration the last term in the first row of the equation (100)
cancels with the first term in the second row, while taking into account the identity

1
2
εμνρσ(∇ν∇μεn

a)βaρσ = −1
4
εμνρσβbρσ �αa

bεn
aFα

μν , (101)

the first term and the third term also cancel, leading to the following expression:

S′
3BF = S3BF +

∫
M4

dx4εμνρσ
(

1
4
εna �α(b|

a∂|c)
αβb

μνβ
c
ρσ

+
1
4
εnaδA

aX(bc)
Aβb

μνβ
c
ρσ

)
. (102)

Here, the remaining two terms vanish because of the symmetrized form of the identity (A.6):

�α(b|
a∂|c)

α + δA
aX(bc)

A = f (bc)
a = 0,

as a consequence of the antisymmetry of the structure constants. One concludes that the S3BF

action is invariant under the transformations defined in theorem 5. �
The N-gauge transformations defined in theorem 5 define the group which will be denoted

as Ñ. Note that these transformations are also linear, and the composition of two N-gauge trans-
formations gives one N-gauge transformation with the parameter εn1 + εn2. The generators of
the group Ñ will be denoted with N̂a, and one can write these results as:

eεn1 ·N̂eεn2 ·N̂ = e(εn1+εn2)·N̂ , (103)

where εn · N̂ = εa
nN̂a, leading to the conclusion that:

[N̂a, N̂b] = 0. (104)

It follows that the group Ñ is abelian, and the index structure of parameters and generators
indicates that it is isomorphic to R

q, where q is the dimension of the group H. Therefore,

Ñ ∼= R
q. (105)

Next, one can examine the relationship of the N-gauge transformations with the G, H, L,
and M-gauge transformations. First, considering the G-gauge transformations one obtains:

[εg · Ĝ, εn · N̂] = (εg � εn) · N̂, (106)

from which it follows:

[Ĝα, N̂a] = �αa
b N̂b. (107)

Let us now examine the relationship between N-gauge transformations and H-gauge
transformations, calculating the following expression:

eεh·Ĥeεn·N̂ − eεn·N̂eεh ·Ĥ = −(εn∧T εh) · M̂, (108)

where the proof is given in appendix F. One obtains that the commutator between the gen-
erators of H-gauge transformation and N-gauge transformation is the generator of M-gauge
transformation:[

Ĥa
μ
, N̂b

]
= �αa

bM̂αμ. (109)
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Analogously, one can check that the following is satisfied

eεl·L̂eεn·N̂ = eεn·N̂eεl·L̂, eεm·M̂eεn·N̂ = eεn·N̂eεm·M̂ , (110)

leading to the conclusion that the generators of L-gauge, M-gauge, and N-gauge transforma-
tions mutually commute, i.e.[

M̂α
μ
, N̂a

]
= 0,

[
L̂A

μν
, N̂a

]
= 0. (111)

This concludes the calculation of the algebra of generators.

4.4. Structure of the symmetry group

Summarizing the results of the previous subsections, one can write the algebra of the generators
of the full gauge symmetry group as follows.

• The algebra g of the group G of the two-crossed module (L
δ−→ H

∂−→ G, �, {_, _}pf):

[Ĝα, Ĝβ] = fαβ
γĜγ. (112)

• The algebra of the group H̃L consisting of the generators of H- and L-gauge transforma-
tions:

[Ĥa
μ
, Ĥb

ν
] = 2X(ab)

AL̂A
μν

,

[L̂A
μν

, L̂B
ρσ

] = 0,

[Ĥa
μ
, L̂A

νρ
] = 0.

(113)

• The algebra of the generators of M-gauge transformations:

[M̂α
μ
, M̂β

ν
] = 0. (114)

• The algebra of the generators of N-gauge transformations:

[N̂a, N̂b] = 0. (115)

• The commutators between the generators of the groups M̃ and Ñ:

[M̂α
μ
, N̂a] = 0. (116)

• The action of the generators of the group H̃L on the generators of M- and N-gauge
transformations:

[Ĥa
μ
, N̂b] = �αa

bM̂αμ,

[Ĥa
μ
, M̂α

ν
] = 0,

[L̂A
νρ

, M̂α
μ
] = 0,

[L̂A
μν

, N̂a] = 0.

(117)
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Figure 1. Relevant subgroups of the symmetry group G3BF . The invariant subgroups are
boxed.

• The action of the generators of the group G on the generators of H-, L-, M-, and N-gauge
transformations:

[
Ĝα, Ĥa

μ
]
= �αa

b Ĥb
μ
,

[
Ĝα, L̂A

μν
]
= �αA

BL̂B
μν

,

[
Ĝα, M̂β

μ
]
= fαβ

γM̂γ
μ
,

[
Ĝα, N̂a

]
= �αa

b N̂b.

(118)

Based on the equations (112)–(118), one can investigate the symmetry group structure. On
the Hesse-like diagram shown in figure 1, we have included only the relevant subgroups of the
whole symmetry group G3BF, where the invariant subgroups are boxed.

Let us remember that the subgroup is an invariant subgroup, or equivalently a normal sub-
group, if it is invariant under conjugation by members of the group of which it is a subgroup.
Formally, one says the group H is an invariant subgroup of the group G if H is a subgroup
of G, i.e. H � G, and for all h ∈ H and g ∈ G, the conjugation of the element of H with the
element of G is an element of H, i.e. ∃h′ ∈ H such that ghg−1 = h′. On the level of algebra, the
corresponding object is an ideal. Formally written, an algebra A is a subalgebra of an algebra
L with respect to the multiplication in L, i.e. [A, A] ⊂ A. Then, a subalgebra A of L is an ideal
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in L if its elements, multiplied with any element of the algebra, give again an element of the
subalgebra, i.e. [A, L] ⊂ A.

With the above definitions in mind, note first that the groups L̃, M̃, and Ñ, are subgroups
of the full symmetry group G3BF. The groups L̃ and M̃ are invariant subgroups, since the only
nontrivial commutators between the generators L̂A

μν
, and M̂α

μ
, are with the generators of the

group G̃, and are equal to some linear combinations of the generators of L̃, and M̃, respectively.
The group Ñ is not an invariant subgroup, since the commutator between the generators N̂a and
Ĥa

μ
are linear combinations of the generators M̂α

μ
. However, the generators of the groups Ñ

and M̃ are mutually commuting, and the group Ñ is an invariant subgroup of the product of the
groups M̃ and Ñ, which makes this product a direct product. The obtained group Ñ × M̃ is an
invariant subgroup of the whole symmetry group.

On the other hand, we saw that the H-gauge transformations together with the L-gauge trans-
formations form the group H̃L. This group is not an invariant subgroup of the whole symmetry
group G3BF, because of the commutator of the generators Ĥa

μ
and N̂b. Similarly as before, one

can join these two subgroups, of which one is invariant and one is not, using a semidirect prod-
uct, to obtain a subgroup H̃L � (Ñ × M̃), that will as a result be an invariant subgroup of the
complete symmetry group G3BF. Here, the product is semidirect because the group H̃L is not an
invariant subgroup of the group H̃L � (Ñ × M̃), due to the commutator between the generators
Ĥa

μ
and N̂b.

Finally, following the same line of reasoning, one adds the G-gauge transformations and
obtains the complete gauge symmetry group G3BF as:

G3BF = G̃ � (H̃L � (Ñ × M̃)). (119)

This concludes the analysis of the group of gauge symmetries for the 3BF action.

5. Conclusions

5.1. Summary of the results

Let us summarize the results of the paper. In section 2, we have introduced a generalization of
the BF theory in the framework of higher category theory, the 3BF theory. Section 3 contains
the Hamiltonian analysis for the 3BF theory. In subsection 3.1, the basic canonical structure
and the total Hamiltonian are obtained, while in subsection 3.2 the complete Hamiltonian anal-
ysis of the 3BF theory is performed, resulting in the first-class and second-class constraints of
the theory, as well as their Poisson brackets. In the subsection 3.3 we have discussed the BI
and also the generalized BI, since they enforce restrictions and reduce the number of inde-
pendent first-class constraints present in the theory, and having those identities in mind, the
counting of the dynamical degrees of freedom has been performed. As expected, it was estab-
lished that the considered 3BF action is a topological theory. Finally, this section concludes
with the subsection 3.4 where we have constructed the generator of the gauge symmetries for
the topological theory, based on the calculations done in section 3.2, and we have found the
form-variations for all the variables and their canonical momenta, listed in the appendix E,
equation (E.2).

In section 4, the main results of our paper are presented. With the material of the sub-
section 3.2 in hand, after obtaining the form variations of all variables and their canoni-
cal momenta, we proceeded to find all the gauge symmetries of the theory. The subsec-
tion 4.1 examined the gauge group G, and the G-gauge transformations. In subsection 4.2 we
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discussed the gauge group H̃L which gives the H-gauge and L-gauge transformations, while in
the subsection 4.3 we analyzed the M-gauge and N-gauge transformations which represent a
novel result. The results of the subsections 4.1–4.3 are summarized in subsection 4.4, where
the complete structure of the symmetry group had been presented. The known G-, H-, and L-
gauge transformations have been rigorously defined in theorems 1–3, while the two novel M-
and N-gauge transformations, have been defined in theorems 4 and 5. The Lie algebra of the
full gauge symmetry group G3BF has also been obtained.

5.2. Discussion

One of the most important consequences of our results is the relationship between a two-
crossed module and a symmetry group of the corresponding 3BF action, which we denoted
as a duality. In particular, from the Lie algebra of the symmetry group G3BF one sees that
the structure constants depend on the choices of groups G, H, and L of the two-crossed mod-
ule, on the action �, and on the symmetric part of the Peiffer lifting. However, G3BF does not
depend on the antisymmetric part of the Peiffer lifting, nor on the homomorphisms ∂ and δ.
This means that in principle one can have several different two-crossed modules dual to the
same symmetry group. Therefore, the term ‘duality’ is used in a loose sense, since there is
no one-to-one correspondence between a two-crossed module and a symmetry group of the
corresponding 3BF action. In addition, this result allows one to implement a strategy for the
construction of a two-crossed module, by first specifying the choice of the group G3BF, and
then supplying the additional information about the homomorphisms and the antisymmetric
part of the Peiffer lifting, in a way that satisfies all axioms in the definition of a two-crossed
module.

Another important topic for discussion is the following. From the fact that the 3BF action
is formulated in a manifestly covariant way, using differential forms, it should be obvious that
the diffeomorphisms are a symmetry of the theory. However, by looking at the structure of the
gauge group G3BF, one does not immediately see whether Diff(M4,R) is its subgroup. In fact,
this issue is subtle, and it deserves some discussion.

It is easy to see that every action, which depends on at least two fields φ1(x) and φ2(x), is
invariant under the following transformation, determined by the Henneaux–Teitelboim (HT)
parameter εHT (see [35] for details and naming),

δ0
HTφ1 = εHT(x)

δS
δφ2

, δ0
HTφ2 = −εHT(x)

δS
δφ1

, (120)

which can be easily verified by calculating the variation of the action:

δHTS[φ1,φ2] =
δS
δφ1

δ0
HTφ1 +

δS
δφ2

δ0
HTφ2 = 0. (121)

Since this invariance is present even in theories with no gauge symmetry, it is not associated
with constraints, and thus not present in the generator of gauge symmetries (55), see [35] for
details.

Now, let us consider the diffeomorphism transformation

xμ → x′μ = xμ + ξμ(x), (122)

where the parameter ξμ(x) is an arbitrary function, which we will consider to be infinitesimal.
Also, let us denote all parameters of the gauge group collectively as εi(x). If diffeomorphisms
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are a symmetry of the action, then for every field φ(x) in the theory, and every parameter of
the diffeomorphisms ξμ(x), there should exist a choice of the parameters εi(x) and εHT(x), such
that:

(δ0
gauge + δ0

HT + δ0
diff)φ = 0. (123)

In other words, if the diffeomorphisms are a symmetry of the theory, their form variations
should be expressible as gauge form variations combined with HT form variations:

δ0
diff φ = −δ0

gaugeφ− δ0
HTφ. (124)

In our case, the 3BF action depends on the fields αα
μ, βa

μν , γA
μνρ, Bα

μν , Ca
μ, and DA. The

HT parameters εHTαβ
μνρ, εHTab

μνρ, and εHTAB
μνρ are defined via the following form variations,

analogous to (120):

δ0
HTαα

μ =
1
2
εHTαβ

μνρ
δS

δBβ
νρ

,

δ0
HTBα

μν = −εHTαβ
ρμν

δS
δαβ

ρ
,

δ0
HTβa

μν = εHTab
μνρ

δS
δCb

ρ
,

δ0
HTCa

μ = −1
2
εHTab

νρμ
δS

δβb
νρ

,

δ0
HTγA

μνρ = εHTAB
μνρ

δS
δDB

,

δ0
HTDA = − 1

3!
εHTAB

μνρ
δS

δγB
μνρ

,

(125)

while the gauge parameters εgα, εha
μ, εlA μν , εmα

μ, and εa
n are defined in theorems 1–5. Given

these, there indeed exists a choice of these parameters, such that (123) is satisfied for all fields.
Specifically, if one chooses the gauge parameters as

εg
α = −ξλαα

λ,

ε a
h μ = ξλβa

μλ,

εA
l μν = ξλγA

μνλ,

ε α
m μ = ξλBα

μλ,

εn
a = −ξλCa

λ,

(126)

and the HT parameters as

εHTαβ
μνρ = ξλgαβεμνρλ,

εHTab
μνρ = ξλgabελμνρ,

εHTAB
μνρ = ξλgABεμνρλ, (127)
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one can obtain, using (124), precisely the standard form variations corresponding to
diffeomorphisms:

δ0
diffαα

μ = −∂μξ
λαα

λ − ξλ∂λα
α
μ,

δ0
diffβa

μν = −∂μξ
λβa

λν − ∂νξ
λβa

μλ − ξλ∂λβ
a
μν ,

δ0
diffγA

μνρ = −∂μξ
λγA

λνρ − ∂νξ
λγA

μλρ − ∂ρξ
λγA

μνλ − ξλ∂λγ
A
μνρ,

δ0
diffBα

μν = −∂μξ
λBα

λν − ∂νξ
λBα

μλ − ξλ∂λBα
μν ,

δ0
diffCa

μ = −∂μξ
λCa

λ − ξλ∂λCa
μ,

δ0
diffDA = −ξλ∂λDA.

(128)

This establishes that diffeomorphisms are indeed contained in the full gauge symmetry group
G3BF, up to the HT transformations, which are always a symmetry of the theory.

5.3. Future lines of investigation

Based on the results obtained in this work, one can imagine various additional topics for further
research.

First, since we have obtained that the pure 3BF theory is a topological theory, it does not
describe a realistic physical theory which ought to contain local propagating degrees of free-
dom. To build a realistic physical theory, one introduces the degrees of freedom by imposing
the simplicity constraints on the topological action. In our previous work [13], we have formu-
lated the classical actions that manifestly distinguish the topological sector from the simplicity
constraints, for all the fields present in the standard model coupled to Einstein–Cartan gravity.
Specifically, we have defined the constrained 2BF actions describing the Yang–Mills field and
Einstein–Cartan gravity, and also the constrained 3BF actions describing the Klein–Gordon,
Dirac, Weyl and Majorana fields coupled to gravity in the standard way. The natural con-
tinuation of this line of research would be the Hamiltonian analysis of all such constrained
3BF models of gravity coupled to various matter fields, and the study of their canonical
quantization.

On the other hand, as an alternative to the canonical quantization, one may choose the spin-
foam quantization approach, and define the path integral of the theory as the state sum for
the Regge-discretized 3BF action. The topological nature of the 3BF action, together with the
structure of the gauge three-group, should ensure that such a sum is a topological invariant, i.e.
that it is triangulation independent. This construction was recently carried out in [14], where the
3BF state sum for a general two-crossed module and a closed and orientable four-dimensional
manifold M4 is defined. Unfortunately, in order to rigorously define this state sum, one needs
the higher category generalizations of the Peter–Weyl and Plancherel theorems, from ordinary
groups to the cases of two-groups and three-groups. These theorems ought to determine the
domains of various labels living on simplices of the triangulation, as a consequence of the rep-
resentation theory of three-groups. Until these mathematical results are obtained, one can try to
guess the appropriate structure of the irreducible representations of a three-group and construct
the topological invariant Z for the 3BF topological action, in analogy with what was done in
the case of 2BF theory, see [25, 27]. Once the topological state sum is obtained, one can pro-
ceed to impose the simplicity constraints, and thus construct the state sum corresponding to the
tentative quantum theory of gravity with matter. The classical action for gravity and matter is
formulated in [13] in a way that explicitly distinguishes between the topological sector and the

32



Class. Quantum Grav. 39 (2022) 135009 T Radenkovíc and M Vojinovíc

simplicity constraints sector of the action, making the procedure of imposing the constraints
straightforward.

Next, it would be useful to investigate in more depth the mathematical structure and prop-
erties of the simplicity constraints, in particular their role as the gauge fixing conditions for the
symmetry group G3BF. The simplicity constraints should explicitly break the symmetry group
G3BF to the subgroup corresponding to the constrained 3BF theory, which may then be further
spontaneously broken by the Higgs mechanism.

One of the results obtained in this work is a duality between the gauge symmetry
group of the 3BF action, G3BF, and the underlining three-group, i.e. the two-crossed mod-

ule (L
δ−→ H

∂−→ G, �, {_, _}pf). This duality should be better understood. On one hand, the
group G3BF can provide further insight into the construction of the TQFT state sum, i.e. a topo-
logical invariant corresponding to the underlining three-group structure. On the other hand,
this duality is interesting from the perspective of pure mathematics, since it can provide deeper
insight in the structure of three-groups. In addition, one could expect that the 3BF theory would
have a three-group of higher gauge symmetries, but it is not obvious if the five types of gauge
transformations can form a three-group structure or not. This is an important topic for future
research.

Finally, in [31] it was pointed out that it may be useful to make one more step in the cate-
gorical generalization, and consider a 4BF theory as a description of a quantum gravity model
with matter fields. One could then calculate the gauge group of the 4BF action, and compare
the results with the results obtained for the 3BF theory.

The list is not conclusive, and there may be many other interesting topics to study.
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Appendix A. Two-crossed module

Definition (Differential two-crossed module). A differential two-crossed module is given by
an exact sequence of Lie algebras:

l
δ−→ h

∂−→ g,

together with left action � of g on g, h, and l, by derivations, and on itself via adjoint
representation, and a g-equivariant bilinear map called the Peiffer lifting:

{_, _}pf : h× h→ l.
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Fixing the basis in the algebras as TA ∈ l, ta ∈ h and τα ∈ g:

[TA, TB] = fAB
C TC, [ta, tb] = fab

c tc, [τα, τβ] = fαβ
γ τγ ,

one defines the maps ∂ and δ as:

∂(ta) = ∂a
α τα, δ(TA) = δA

a ta,

and the action of g on the generators of l, h, and g is, respectively:

τα � TA = �αA
B TB, τα � ta = �αa

b tb, τα � τβ = �αβ
γ τγ.

The coefficients Xab
A are introduced as:

{ta, tb}pf = Xab
ATA.

The maps ∂ and δ satisfy the following identity:

∂a
α δA

a = 0. (A.1)

Note that when η is a g-valued differential form and ω is l-, h-, or g-valued differential form,
the previous action is defined as:

η∧�ω = ηα ∧ ωA�αA
B TB,

η∧�ω = ηα ∧ ωa�αa
b tb,

η∧�ω = ηα ∧ ωβ fαβ
γ τγ ,

where the forms are multiplied via the wedge product ∧, while the generators of G act on the
generators of the three groups via the action �.

The following identities are satisfied:

(i) In the differential crossed module (L
δ−→ H, �′) the action �′ of h on l is defined for each

h ∈ h and l ∈ l as:

h�′l = −{δ(l), h}pf,

or written in the basis where ta�′TA = �′aA
BTB the previous identity becomes:

�′aA
B
= −δA

bXba
B; (A.2)

(ii) The action of g on itself is via adjoint representation:

�αβ
γ = fαβ

γ ; (A.3)

(iii) The action of g on h and l is equivariant, i.e. the following identities are satisfied:

∂a
β fαβ

γ = �αa
b∂b

γ , δA
a �αa

b = �αA
BδB

b; (A.4)

(iv) The Peiffer lifting is g-equivariant, i.e. for each h1, h2 ∈ h and g ∈ g:

g � {h1, h2}pf = {g � h1, h2}pf + {h1, g � h2}pf,

34



Class. Quantum Grav. 39 (2022) 135009 T Radenkovíc and M Vojinovíc

or written in the basis:

Xab
B�αB

A = �αa
cXcb

A + �αb
cXac

A; (A.5)

(v) δ({h1, h2}pf) = 〈h1, h2〉p, ∀ h1, h2 ∈ h.
The map (h1, h2) ∈ h× h→ 〈h1, h2〉p ∈ h is bilinear g-equivariant map called the Peiffer

paring, i.e. all h1, h2 ∈ h and g ∈ g satisfy the following identity:

g � 〈h1, h2〉p = 〈g � h1, h2〉p + 〈h1, g � h2〉p.

Fixing the basis the identity becomes:

Xab
AδA

c = fab
c − ∂a

α�αb
c; (A.6)

(vi) [l1, l2] = {δ(l1), δ(l2)}pf, ∀ l1, l2 ∈ l, i.e.

fAB
C = δA

aδB
bXab

C; (A.7)

(vii){[h1, h2], h3}pf = ∂(h1) � {h2, h3}pf + {h1, [h2, h3]}pf − ∂(h2) � {h1, h3}pf −
{h2, [h1, h3]}pf, ∀ h1, h2, h3 ∈ h, i.e.

{[h1, h2], h3}pf = {∂(h1) � h2, h3}pf − {∂(h2) � h1, h3}pf

− {h1, δ{h2, h3}pf}pf + {h2, δ{h1, h3}pf}pf, (A.8)

fab
dXdc

B = ∂a
αXbc

A�αA
B + Xad

B fbc
d − ∂b

α�αA
BXac

A − Xbd
B fac

d; (A.9)

(viii) {h1, [h2, h3]}pf =
{
δ{h1, h2}pf, h3

}
pf
−
{
δ{h1, h3}pf, h2

}
pf

, ∀ h1, h2, h3 ∈ h, i.e.

Xad
A fbc

d = Xab
BδB

dXdc
A − Xac

BδB
dXdb

A; (A.10)

(ix) {δ(l), h}pf + {h, δ(l)}pf = −∂(h) � l, ∀ l ∈ l, ∀ h ∈ h, i.e.

δA
aXab

B + δA
aXba

B = −∂b
α�αA

B. (A.11)

A reader interested in more details about three-groups is referred to [21, 30].
The structure constants satisfy the Jacobi identities

fαγ
δ fβε

γ = 2 fα[β|
γ fγ|ε]

δ ,

fad
c fbe

d = 2 f a[b|
d fd|e]

c,

fAD
C fBE

D = 2 f A[B|
D fD|E]

C.

(A.12)

Also, the following relations are useful:

fβγ
α�αb

a = 2�[β|c
a�|γ]b

c, fβγ
α�αB

A = 2�[β|C
A�|γ]B

C. (A.13)
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Appendix B. Additional relations of the constraint algebra

In this appendix the useful technical results used in the subsection 3.2 are given. First, since
the secondary constraints, given by the equation (30), must be preserved during the evolution
of the system, the consistency conditions of secondary constraints must be enforced. However,
no tertiary constraints arise from these conditions, since one obtains the following PB:

{S(F )αi, HT} = fβγ
αS(F )βiαγ

0,

{S(∇B)α, HT} = fβγαBγ
0kS(F )βk + fβα

γαβ
0S(∇B)γ + Ca0�αb

aS(G)b

− �αa
bβa

0kS(∇C)b
k +

1
2
�α

B
Aγ

A
0 jkS(∇D)B

jk,

{S(G)a, HT} = �αb
aβb

0kS(F )αk − αα
0�αb

aS(G)b,

{S(∇C)a
i, HT} = Cb0�α

b
aS(F )αi + �αa

bαα
0S(∇C)b

i + 2X(ab)
Aβb

0 jS(∇D)A
i j,

{S(∇D)A
i j, HT} = αα

0�αA
BS(∇D)B

i j.

(B.1)

The PB between the first-class constraints, given by the equation (34), and the second-class
constraints, given by the equation (35), are given by:

{Φ(F )αi(�x) , χ(α)β j(�y) } = − fβγ
α χ(B)γi j(�x) δ(3)(�x −�y),

{Φ(G)a(�x) , χ(α)α
i(�y) } = �αb

a χ(C)bi(�x) δ(3)(�x −�y),

{Φ(G)a(�x) , χ(β)b
i j(�y ) } = −�αb

a χ(B)αi j(�x) δ(3)(x − y),

{Φ(∇C)ai(�x) , χ(α)α
j(�y) } = −�αb

a χ(β)bi j(�x) δ(3)(�x −�y),

{Φ(∇C)ai(�x) , χ(β)b
jk(�y) } = 2X(ac)Agbc χ(γ)A

i jk(�x) δ(3)(�x −�y),

{Φ(∇C)ai(�x) , χ(C)b
j(�y) } = �αb

a χ(B)αi j(�x) δ(3)(�x −�y),

{Φ(∇C)ai(�x) , χ(D)A(�y) } = 2X(ab)
A χ(C)b

i(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , χ(α)β
i(�y) } = fβγ

α χ(α)γi(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , χ(β)a
i j(�y) } = gαβ�βa

b χ(β)b
i j(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , χ(γ)A
i jk(�y) } = gαβ�βA

B χ(γ)B
i jk(�x) δ(3)(�x −�y),

{Φ(∇B)α(�x) , χ(B)β
i j(�y) } = fβγα χ(B)γi j(�x) δ(3)(�x −�y).

{Φ(∇B)α(�x) , χ(C)a
i(�y) } = −�αb

a χ(C)b
i(�x) δ(3)(�x −�y).

{Φ(∇B)α(�x) , χ(D)A(�y) } = gαβ�βA
B χ(D)B(�x) δ(3)(�x −�y),

{Φ(∇D)Ai j(�x) , χ(α)α
k(�y) } = �αB

Aχ(γ)Bi jk(�x) δ(3)(�x −�y),

{Φ(∇D)Ai j(�x) , χ(D)B(�y) } = −�αB
Aχ(B)αi j(�x) δ(3)(�x −�y).

(B.2)

Finally, it is useful to calculate PB between the first-class constraints, given by the
equation (34), and the total Hamiltonian, given by the equation (33):
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{Φ(F )αi, HT} = fβγ
αΦ(F )βiαγ

0,

{Φ(∇B)α, HT} = fβγαBγ
0kΦ(F )βk + fβα

γαβ
0Φ(∇B)γ + Ca0�αb

aΦ(G)b

− �αa
bβa

0kΦ(∇C)b
k +

1
2
�α

B
Aγ

A
0 jkΦ(∇D)B

jk,

{Φ(G)a, HT} = �αb
aβb

0kΦ(F )αk − αα
0�αb

aΦ(G)b,

{Φ(∇C)a
i, HT} = Cb0�α

b
aΦ(F )αi + �αa

bαα
0Φ(∇C)b

i + 2X(ab)
Aβb

0 jΦ(∇D)A
i j,

{Φ(∇D)A
i j, HT} = αα

0�αA
BΦ(∇D)B

i j.

(B.3)

The calculated PB brackets given by the equation (B.3) will be useful for calculation of the gen-
erator of gauge symmetries (55). With these results one can proceed to the construction of the
gauge symmetry generator on one hypersurface Σ3 given in the equation (55), and ultimately
obtain the finite gauge symmetry of the whole spacetime.

The PB algebra of gauge symmetry generators (M̃0)α
i
, (M̃1)α

i
, (G̃0)α, (G̃1)α, (H̃0)a

i
, (H̃1)a

i
,

(Ñ0)a, (Ñ1)a, (L̃0)A
i j

, and (L̃1)A
i j

, as defined in (56), is:

{(G̃0)α(�x), (G̃0)β(�y)} = fαβ
γ(G̃0)γ δ(3)(�x −�y), (B.4)

{(H̃0)a
i
(�x ), (H̃0)b

j
(�y)} = 2X(ab)

A(L̃0)A
i j
δ(3)(�x −�y), (B.5)

{(H̃0)a
i
(�x ), (H̃1)b

j
(�y )} = 2X(ab)

A(L̃1)A
i j
δ(3)(�x −�y ), (B.6)

{(H̃0)a
i
(�x ), (Ñ0)b(�y )} = �αa

b(M̃0)αi δ(3)(�x −�y ), (B.7)

{(H̃1)a
i
(�x), (Ñ0)b(�y )} = �αa

b(M̃1)αi δ(3)(�x −�y ), (B.8)

{(H̃0)a(�x), (Ñ1)bi(�y )} = �αa
b(M̃1)αi δ(3)(�x −�y), (B.9)

{(G̃0)α(�x), (M̃0)β
i
(�y )} = fαβ

γ(M̃0)γ
i
δ(3)(�x −�y), (B.10)

{(G̃0)α(�x), (M̃1)β
i
(�y )} = fαβ

γ(M̃1)γ
i
δ(3)(�x −�y), (B.11)

{ (G̃0)α(�x) , (H̃1)a
i
(�y) } = �αa

b (H̃1)b
i
(�x) δ(3)(�x −�y), (B.12)

{ (G̃0)α(�x) , (H̃0)a
i
(�y) } = �αa

b (H̃0)b
i
(�x) δ(3)(�x −�y), (B.13)

{ (G̃0)α(�x) , (Ñ1)a(�y) } = �αa
b (Ñ1)b(�x) δ(3)(�x −�y), (B.14)

{ (G̃0)α(�x) , (Ñ0)a(�y) } = �αa
b (Ñ0)b(�x) δ(3)(�x −�y), (B.15)

{ (G̃0)α(�x) , (L̃0)A
i j

(�y) } = �αA
B(L̃0)B

i j
(�x) δ(3)(�x −�y). (B.16)

The gauge symmetry group has the following structure. First, the groups M̃1 × M̃0, Ñ1 × Ñ0

and L̃1 × L̃0 with the corresponding algebras a1, a2 and a3, respectively, where:
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Figure B1. The symmetry group GΣ3 of the Poisson bracket algebra in the phase space.
The invariant subgroups are boxed.

a1 = span{(M̃1)α
i} ⊕ span{(M̃0)α

i},

a2 = span{(Ñ1)a} ⊕ span{(Ñ0)a},

a3 = span{(L̃1)A
i j} ⊕ span{(L̃0)A

i j},

(B.17)

are the subgroups of the full symmetry group G̃Σ3 . Besides, the subgroups L̃1 × L̃0 and M̃1 ×
M̃0 are the invariant subgroups. The group Ñ1 × Ñ0 is not an invariant subgroup of the whole
symmetry group, since the Poisson brackets {(H̃0)a

i
(�x), (Ñ0)b(�y)} and {(H̃1)a

i
(�x), (Ñ0)b(�y)}

are equal to some linear combinations of the generators of M̃1 × M̃0. Nevertheless, one can
form a direct product (Ñ1 × Ñ0) × (M̃1 × M̃0), since the generators of these groups are mutu-
ally commuting, giving a group which is an invariant subgroup of the complete symmetry
group.

Next, consider a subgroup H̃LΣ3
determined by the algebra spanned by the generators

(L̃1)A
i j

, (L̃0)A
i j

, (H̃1)a
i
, and (H̃0)a

i
. This group is not invariant subgroup of the whole symme-

try group, because of the PB {(H̃0)a
i
(�x), (Ñ0)b(�y)} and {(H̃1)a

i
(�x), (Ñ0)b(�y)}, due to the same

argument as before. Now, one can join these two subgroups, of which one is invariant and one
is not, using a semidirect product into an invariant subgroup HL � ((N1 × N0) × (M1 × M0)),
determined by the algebra a4:

a4 = span{(M̃0)α
i
, (M̃1)α

i
, (H̃0)a

i
, (H̃1)a

i
, (Ñ0)a, (Ñ1)a, (L̃0)A

i j
, (L̃1)A

i j}.
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Finally, following the same line of reasoning, one adds the group G̃1 × G̃0 and obtains
the full gauge symmetry group G̃Σ3 to be equal to:

G̃Σ3 = (G̃1 × G̃0) �
(
H̃L � ((Ñ1 × Ñ0) × (M̃1 × M̃0))

)
.

The complete symmetry group structure is shown in the figure B1 appendix B. Here, the
invariant subgroups of the whole symmetry group are boxed.

Appendix C. Construction of the symmetry generator

When one substitutes the generators (56) into the equation (55), one obtains the gauge generator
of the 3BF theory in the following form

G = −
∫
Σ3

d3�x

(
(∇0ε

α
m i)Φ(B)αi − ε α

m iΦ(F )α
i + (∇0εg

α)Φ(α)α

+ εg
α
(

fαγ
βBβ0iΦ(B)γi + Ca0�αb

aΦ(C)b0 + βa0i�αb
aΦ(β)b0i

− 1
2
γA

0i j�αA
BΦ(γ)B

i j − Φ(∇B)α

)
+ (∇0εn

a)Φ(C)a

− εn
a
(
βb0i�αa

bΦ(B)αi +Φ(G)a + (∇0ε
a

h i)Φ(β)a
i
)

− ε a
h i

(
Cb0�αa

bΦ(B)αi − 2βb
0 jX(ab)

AΦ(γ)A
i j +Φ(∇C)a

i
)

− 1
2

(∇0ε
A
l i j)Φ(γ)A

i j +
1
2
εA
l i jΦ(∇D)A

i j

)
,

(C.1)

where εgα, ε a
hi , εA

li j, ε
α

mi , and εn
a are the independent parameters of the gauge transformations.

The generator of gauge transformations (C.1) in 3BF theory given by the action (15), is
obtained by the Castellani’s procedure, requiring the following requirements to be met

G1 = CPFC, (C.2)

G0 + {G1, HT} = CPFC, (C.3)

{G0, HT} = CPFC, (C.4)

where CPFC denotes some first-class constraints, and assuming that the generator has the
following structure:

G =

∫
Σ3

d3�x

(
ε̇ α
m i(G1)mα

i + ε α
m i(G0)mα

i + ε̇ α
g (G1)gα + εg

α(G0)gα

+ ε̇ a
h i(G1)ha

i + ε a
h i(G0)ha

i + ε̇ a
n (G1)na + εn

a(G0)na

+
1
2
ε̇ A
l i j(G1)lAi j +

1
2
εA
l i j(G0)lAi j

)
.

(C.5)
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The first step of Castellani’s procedure, imposing the set of conditions

(G1)mα
i = CPFC,

(G1)gα = CPFC,

(G1)ha
i = CPFC,

(G1)na = CPFC,

(G1)lAi j = CPFC,

(C.6)

is satisfied with a natural choice:

(G1)mα
i = −Φ(B)αi,

(G1)gα = −Φ(α)α,

(G1)ha
i = −Φ(C)αi,

(G1)na = −Φ(β)a,

(G1)lAi j = Φ(γ)A
i j.

(C.7)

It remains to determine the five generators G0.
The Castellani’s second condition for the generator (G0)mα

i gives:

(G0)mα
i − {Φ(B)α

i, HT} = (CPFC)α
i,

(G0)mα
i − Φ(F )αi = (CPFC)αi,

(C.8)

that is (G0)mα
i = (CPFC)αi +Φ(F )α

i. Subsequently, from the Castellani’s third condition it
follows

{(G0)mα
i, HT} = (CPFC1)αi,

{(CPFC)α
i +Φ(F )α

i, HT} = (CPFC1)α
i,

{(CPFC)αi, HT} − fβγαα
β

0Φ(F )γi = (CPFC1)αi,

(C.9)

which gives

(CPFC)α
i = fβγαα

β
0Φ(B)γi.

It follows that the generator is:

(G0)mα
i = fβγαα

β
0Φ(B)γi +Φ(F )α

i. (C.10)

The Castellani’s second condition for the generator (G0)gα gives:

(G0)gα − {Φ(α)α, HT} = (CPFC)α,

(G0)gα − Φ(∇B)α = (CPFC)α,
(C.11)
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that is (G0)gα = (CPFC)α +Φ(∇B)α. Subsequently, from the Castellani’s third condition
it follows

{(G0)gα, HT} = (CPFC1)α,

{(CPFC)α +Φ(∇B)α, HT} = (CPFC1)α,

{(CPFC)α, HT}+ Bβ0i fαγ
βΦ(F )γi − αβ

0 fαβ
γΦ(∇B)γ + Ca0�αb

aΦ(G)b

+ βa0i�αb
aΦ(∇C)bi − 1

2
γA

0i j�αA
BΦ(∇D)B

i j = (CPFC1)α,

(C.12)

which gives

(CPFC)α = −Bβ0i fαγ
βΦ(B)γi + αβ

0 fαβ
γΦ(α)γ − Ca0 �αb

aΦ(C)b

− βa0i �αb
aΦ(β)bi +

1
2
γA

0i j �αA
BΦ(γ)B

i j.

It follows that the generator is:

(G0)gα = −Bβ0i fαγ
βΦ(B)γi + αβ

0 fαβ
γΦ(α)γ − Ca0�αb

aΦ(C)b

− βa0i�αb
aΦ(β)bi +

1
2
γA

0i j�αA
BΦ(γ)B

i j +Φ(∇B)α.
(C.13)

The Castellani’s second condition for the generator (G0)na gives

(G0)na − {Φ(C)a, HT} = (CPFC)a,

(G0)na − Φ(G)a = (CPFC)a,
(C.14)

that is (G0)na = (CPFC)a +Φ(G)a. Subsequently, from the Castellani’s third condition it
follows

{(G0)na, HT} = (CPFC1)a,

{(CPFC)a +Φ(G)a, HT} = (CPFC1)a,

{(CPFC)a, HT}+ αα
0�αa

bΦ(G)b − βb0i�αa
bΦ(F )αi = (CPFC1)a,

(C.15)

which gives

(CPFC)a = −αα
0�αa

bΦ(C)b + βb0i�αa
bΦ(B)αi.

It follows that the generator is:

(G0)na = −αα
0�αa

bΦ(C)b + βb0i�αa
bΦ(B)αi +Φ(G)a.

The Castellani’s second condition for the generator (G0)ha
i gives:

(G0)ha
i − {Φ(β)a

i, HT} = (CPFC)a
i,

(G0)ha
i − Φ(∇C)a

i = (CPFC)a
i,

(C.16)
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that is (G0)ha
i = (CPFC)a

i +Φ(∇C)a
i. Subsequently, from the Castellani’s third condition it

follows

{(G0)ha
i, HT} = (CPFC1)a

i,

{(CPFC)a
i +Φ(∇C)a

i, HT} = (CPFC1)a
i,

{(CPFC)a
i, HT}+ αα

0�αa
bΦ(∇C)b

i − Cb0�αa
bΦ(F )αi + 2βb

0 jX(ab)
AΦ(∇D)A

i j = (CPFC1)a
i,

which gives

(CPFC)a
i = −αα

0�αa
bΦ(β)b

i + Cb0�αa
bΦ(B)αi − 2βb

0 jX(ab)
AΦ(γ)A

i j.

It follows that the generator is:

(G0)ha
i = −αα

0 �αa
bΦ(β)b

i + Cb0 �αa
bΦ(B)αi − 2βb

0 jX(ab)
AΦ(γ)A

i j +Φ(∇C)a
i.

The Castellani’s second condition for the generator (G0)lAi j gives:

(G0)lAi j + {Φ(γ)A
i j, HT} = (CPFC)A

i j,

(G0)lA
i j +Φ(∇D)A

i j = (CPFC)A
i j,

(C.17)

that is (G0)lAi j = (CPFC)A
i j − Φ(∇D)A

i j. Subsequently, from the Castellani’s third condition it
follows:

{(G0)lAi j, HT} = (CPFC1)A
i j,

{(CPFC)A
i j − Φ(∇D)A

i j, HT} = (CPFC1)A
i j,

{(CPFC)A
i j, HT} − αα

0�αA
BΦ(∇D)B

i j = (CPFC1)A
i j,

(C.18)

which gives

(CPFC)A
i j = αα

0�αA
BΦ(γ)B

i j.

It follows that the generator is:

(G0)lA
i j = αα

0�αA
BΦ(γ)B

i j − Φ(∇D)A
i j. (C.19)

At this point, it is useful to summarize the results, and introduce the new notation:

ε̇ α
m i(G1)mα

i + ε α
m i(G0)mα

i = −∇0εm
α

iΦ(B)αi + ε α
m iΦ(F )αi

= ∇0εm
α

i(M̃1)α
i
+ ε α

m i(M̃0)α
i
.

(C.20)

Note that the time derivative of the parameter combines with some of the other terms into a
covariant derivative in the time directions.
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For the second part of the total generator one obtains:

αε̇g(G1)gα + εg
α(G0)gα

= −αε̇gΦ(α)α − εg
α

(
Bβ0i fαγ

βΦ(B)γi − αβ
0 fαβ

γΦ(α)γ+ Ca0�αb
aΦ(C)b

+ βa0i�αb
aΦ(β)b

i − 1
2
γA

0i j�αA
BΦ(γ)B

i j − Φ(∇B)α

)

= −∇0εg
αΦ(α)α − εg

α

(
Bβ0i fαγ

βΦ(B)γi+ Ca0�αb
aΦ(C)b

+ βa0i�αb
aΦ(β)b

i − 1
2
γA

0i j�αA
BΦ(γ)B

i j − Φ(∇B)α

)

= ∇0εg
α(G̃1)α + εg

α(G̃0)α.

(C.21)

Furthermore, it follows:

ε̇ a
hi (G1)ha

i + ε a
h i(G0)ha

i = −∇0εh
a

iΦ(β)α
i + ε a

h i

(
Cb0�αa

bΦ(B)αi

− 2βb
0 jX(ab)

AΦ(γ)A
i j +Φ(∇C)a

i
)

= ∇0εh
a

i(H̃1)a
i
+ ε a

h i(H̃0)a
i
,

(C.22)

ε̇n
a(G1)na + εn

a(G0)na = −∇0εn
aΦ(C)a + εn

a(βb0i �αa
bΦ(B)αi +Φ(G)a)

= ∇0εn
a(Ñ1)a + εn

a(Ñ0)a.

(C.23)

Finally, one gets:

1
2
ε̇ A
li j(G1)lA

i j +
1
2
εA
l i j(G0)lA

i j =
1
2
ε̇ A
li jΦ(γ)A

i j +
1
2
εA
l i jα

α
0�αA

BΦ(γ)B
i j

− 1
2
εA
l i jΦ(∇D)A

i j

=
1
2
∇0ε

A
l i jΦ(γ)A

i j − 1
2
εA
l i jΦ(∇D)A

i j

=
1
2
∇0ε

A
l i j(L̃1)A

i j
+

1
2
εA
l i j(L̃0)A

i j
.

(C.24)

Appendix D. Definitions of maps T , S, D, X1, and X2

Given G-invariant symmetric non-degeneratebilinear forms in g and h, one can define a bilinear
antisymmetric map T : h× h→ g by the rule:

〈T (h1, h2), g〉g = −〈h1, g � h2〉h, ∀ h1, h2 ∈ h, ∀ g ∈ g.
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Written in basis:

T (ta, tb) = Tab
ατα,

where the components of the map T are:

Tab
α = −gac�βb

cgαβ.

See [26] for more properties and the construction of 2BF invariant topological action using this
map.

The transformations of the Lagrange multipliers and the 3BF invariant topological action is
defined via maps

S : l× l→ g, X1 : l× h→ h, X2 : l× h→ h, D : h× h× l→ g,

as it is defined in [13]. The map S : l× l→ g is defined by the rule:

〈S(l1, l2), g〉g = −〈l1, g � l2〉l, ∀ l1, ∀ l2 ∈ l, ∀ g ∈ g.

Written in the basis:

S(TA, TB) = SAB
ατα,

the defining relation for S becomes:

SAB
α = −�β[BC gA]Cgαβ.

Given two l-valued forms η and ω, one can define a g-valued form:

ω∧Sη = ωA ∧ ηBSAB
ατα.

Using this map, the transformations of the Lagrange multipliers under L-gauge are defined in
[13].

Further, to define the transformations of the Lagrange multipliers under H-gauge transfor-
mations the bilinear map X1 : l× h→ h is defined:

〈X1(l, h1), h2〉h = −〈l, {h1, h2}〉l, ∀ h1, h2 ∈ h, ∀ l ∈ l,

and bilinear map X2 : l× h→ h by the rule:

〈X2(l, h2), h1〉h = −〈l, {h1, h2}〉l, ∀ h1, h2 ∈ h, ∀ l ∈ l.
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As far as the bilinear maps X1 and X2 one can define the coefficients in the basis as:

X1(TA, ta) = X1 Aa
b tb, X2(TA, ta) = X2 Aa

b tb.

When written in the basis the defining relations for the maps X1 and X2 become:

X1Ab
c = −Xba

BgABgac, X2Ab
c = −Xab

BgABgac.

Given l-valued differential form ω and h-valued differential form η, one defines a h-valued
form as:

ω∧X1η = ωA ∧ ηaX1Aa
btb, ω∧X2η = ωA ∧ ηaX2Aa

btb.

Finally, a trilinear map D : h× h× l→ g is needed:

〈D(h1, h2, l), g〉g = −〈l, {g � h1, h2}〉l, ∀ h1, h2 ∈ h, ∀ l ∈ l, ∀ g ∈ g,

One can define the coefficients of the trilinear map as:

D(ta, tb, TA) = DabA
ατα,

and the defining relation for the map D expressed in terms of coefficients becomes:

DabA
β = −�αa

cXcb
BgABgαβ.

Given two h-valued forms ω and η, and l-valued form ξ, the g-valued form is given by the
formula:

ω∧Dη∧Dξ = ωa ∧ ηb ∧ ξADabA
βτβ.

With these maps in hand, the transformations of the Lagrange multipliers under H-gauge
transformations are defined, see [13].

Appendix E. Form-variations of all fields and momenta

The obtained gauge generator (55) is employed to calculate the form variations of variables
and their corresponding canonical momenta, denoted as A(t,�x), using the following equation,

δ0A(t,�x) = {A(t,�x), G}. (E.1)
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The computed form variations are given as follows:

δ0Bα
0i = −∇0ε

α
mi + f α

βγ εg
βBγ

0i δ0π(B)0i
α = fαβ

γεg
βπ(B) 0i

γ ,

+ εn
a�αa

bβb0i + ε a
hi �αa

bCb0,

δ0Bα
i j = −2∇[i|ε

α
m| j] + fβγαεgβBγ

i j − εA
li j �αA

BDB δ0π(B)αi j = fαβγεgβπ(B) i j
γ ,

+ εn
a �αa

bβbi j + 2ε a
h [ j| �αa

bCb|i],

δ0α
α

0 = −∇0εg
α, δ0π(α)0

α = fαβ
γεβm iπ(B)γ

0i + fαβ
γεg

βπ(α)γ
0

+ �αb
aεn

bπ(C)0
a + �αb

aεb
h iπ(β)i

a

− 1
2
�αB

AεB
l i jπ(γ) 0i j

A ,

δ0α
α

i = −∇iεg
α − ∂a

αε a
hi , δ0π(α)i

α = fαβ
γεβm jπ(B) i j

γ + fαβ
γεg

βπ(α) i
γ

+ �αb
αεn

bπ(C)i
a + �αb

αε b
h jπ(β)i j

a

− 1
2
�αB

Aε B
l jkπ(γ)i jk

A − ε0i jk∇ jεmαk ,

− 1
2
ε0i jkεn

a �αb
aβb

jk,

δ0Ca
0 = −∇0εn

a + εg
α �αb

aCb
0, δ0π(C)0

a = −εg
α �αa

bπ(C)0
b + εhbi �αa

bπ(B)α0i,

δ0Ca
i = −∇iεn

a + εg
α �αb

aCb
i δ0π(C)i

a = −εg
α �αa

bπ(C)i
b + εhb j �αa

bπ(B)αi j,

− ε α
mi ∂

a
α + 2εb

h i DA X(bc)
Agac,

δ0β
a

0i = −∇0ε
a

hi + εg
α �αb

aβb0i, δ0π(β) 0i
a = −εg

α �αa
bπ(β) 0i

b + εnb�αa
bπ(B)α0i

− 2ε b
h jX(ab)

Aπ(γ)0i j
A ,

δ0β
a

i j = −2∇[i|ε
a

h| j] + εg
α �αb

aβb
i j + εA

li jδA
a, δ0π(β)a

i j = −εg
α�αa

bπ(β)b
i j + εnb �αa

bπ(B)αi j

− 2ε b
hkX(ab)

Aπ(γ) i jk
A

+ ε0i jk∇kεna + ε0i jkε a
hk∂aα,

δ0γ
A

0i j = εg
αγB

0i j �αB
A +∇0ε

A
li j δ0π(γ)A

0i j = −εg
α �αA

B π(γ)B
0i j,

− 4ε a
h [i|β

b
0| j] X(ab)

A,

δ0γ
A

i jk = εg
αγB

i jk �αB
A +∇iε

A
l jk δ0π(γ)A

i jk = −εg
α �αA

B π(γ)B
i jk + εoi jkδaAεn

a,

−∇ jε
A

lik +∇kε
A
li j + 3!ε a

h[i β
b

jk] X(ab)
A,

δ0DA = εn
aδa

A + εg
αDB �αB

A, δ0π(D)A = −2ε a
hi X(ab)Aπ(C)bi

− 1
2
εlB

i j �αA
Bπ(B)α0i j

− εg
α �αA

Bπ(D)B

(E.2)
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Appendix F. Symmetry algebra calculations

To obtain the structure of the symmetry group of the 3BF action, as presented in the subsec-
tion 4.4, one has to calculate the commutators between the generators of all the symmetries,
i.e. the G-, H-, L-, M-, and N-gauge symmetries. This process is described in the subsec-
tions 4.1–4.3, while details of the calculation which are not straightforward will be given in
the following.

F.1. Commutator [H, H]

Let us derive the commutator of the generators of the H-gauge transformations, i.e. the
equation (76). After transforming the variables under H-gauge transformations for the param-
eter εh1 one obtains the following

α′ = α− ∂εh1, (F.1)

β′ = β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1, (F.2)

γ ′ = γ + {β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1, εh1}pf + {εh1, β}pf, (F.3)

B′ = B − (C − D∧X1εh1 − D∧X2εh1)∧T εh1 − εh1∧Dεh1∧DD, (F.4)

C′ = C − D∧X1εh1 − D∧X2εh1, (F.5)

D′ = D, (F.6)

and transforming the variables once more for the parameter εh2 one obtains:

α′′ = α− ∂εh1 − ∂εh2,

β′′ = β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1 −
α−∂εh1−∂εh2

∇ εh2 − εh2 ∧ εh2,

γ ′′ = γ + {β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1, εh1}pf + {εh1, β}pf

+ {β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1 −
α−∂εh1−∂εh2

∇ εh2 − εh2 ∧ εh2, εh2}pf

+ {εh2, β −
α−∂εh1

∇ εh1 − εh1 ∧ εh1}pf,

B′′ = B − (C − D∧X1εh1 − D∧X2εh1)∧T εh1 − εh1∧Dεh1∧DD

− (C − D∧X1εh1 − D∧X2εh1 − D∧X1εh2 − D∧X2εh2)∧T εh2

− εh2∧Dεh2∧DD,

C′′ = C − D∧X1εh1 − D∧X2εh1 − D∧X1εh2 − D∧X2εh2,

D′′ = D.

(F.7)
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It is easy to see that for variables αα
μ, Ca

μ and DA the following is obtained:

eεh1·Heεh2·Hαα
μ = eεh2·Heεh1 ·Hαα

μ,
eεh1 ·Heεh2·HCa

μ = eεh2·Heεh1 ·HCa
μ,

eεh1·Heεh2·HDA = eεh2·Heεh1 ·HDA.
(F.8)

For the remaining variables, βa
μν , γA

μνρ and Bα
μν , after subtracting (appendix F.1) and the

corresponding equation where εh1 ↔ εh2, one obtains:

(
eεh1·Heεh2 ·H − eεh2·Heεh1·H

) 1
2
βa

μν = ∂b
αε b

h2 [μ|ε
c

h1 |ν]�αc
a − ∂b

αε b
h1 [μ|ε

c
h2 |ν] �αc

a

= 2δA
a X(bc)

Aε b
h1 [μ|ε

c
h2 |ν]

= δA
a({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)A

μν ,

(
eεh1·Heεh2·H − eεh2·Heεh1·H

) 1
3!
γA

μνρ = 2(∂[με
a

h1ν
)ε b

h2ρ]X(ab)
A + 2ε a

h1[ν(∂με
b

h2ρ])X(ab)
A

+ 2αα
[με

a
h1ν

ε b
h2ρ]X(ab)

B �αB
A

= ∇[μ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)
A
νρ],(

eεh1 ·Heεh2·H − eεh2 ·Heεh1 ·H
) 1

2
Bα

μν = DAε a
h2[μ|ε

b
h1|ν](X1Aa

c + X2Aa
c)Tcb

α

− DAε b
h1[μ|ε

a
h2|ν](X1Ab

c + X2Ab
c)Tca

α

= −2DAε
a

h1[μ|ε
b

h2|ν] (X(ac)
A�αb

c + X(bc)
A �αa

c)

= −2DAε
a

h1[μ|ε
b

h2|ν]X(ab)
B �αB

A

=
(
D∧S({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)αμν·

(F.9)

Comparing (F.8) and (F.9) with (72), one concludes that the commutator of two H-gauge
transformations is the L-gauge transformation with the parameter εA

l μν = 4εh1
a

[μ|εh2
b
|ν]X(ac)

A:

eεh1·Heεh2·H − eεh2·Heεh1·H = 2 ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf) · L̂. (F.10)

F.2. Commutator [H, N]

Let us calculate the commutator between the generators of H-gauge transformation and N-
gauge transformation, i.e. derive the equation (109). This is done by calculating the expressions

(
eεh·Heεn·N − eεn·Neεh ·H)A, (F.11)

for all variables A present in the theory. It is easy to see that for variables αα
μ, βa

μν , γA
μνρ, and

DA the following is obtained:
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eεh·Heεn·Nαα
μ = eεn·Neεh ·Hαα

μ,

eεh·Heεn·Nβa
μν = eεn·Neεh ·Hβa

μν ,

eεh·Heεn·NγA
μνρ = eεn·Neεh ·HγA

μνρ,

eεh·Heεn·NDA = eεn·Neεh ·HDA.

(F.12)

For the remaining variables, Bα
μν and Ca

μ, after the H-gauge transformation one obtains the
following:

B′ = B − (C − D∧χ1εh − D∧χ2εh)∧τ εh − εh∧Dεh∧DD, (F.13)

C′ = C − D∧χ1εh − D∧χ2εh. (F.14)

Next, transforming those variables with N-gauge transformation one obtains:

B′′ = B′ − β′∧T εn

= B − (C − D∧χ1εh − D∧χ2εh)∧τ εh − εh∧Dεh∧DD

− (β −
{αα−∂a

αεa
h
}

∇εh − εh ∧ εh)∧T εn,

C′′ = C′ −
{αα−∂a

αεa
h
}

∇ εn

= C − D∧χ1εh − D∧χ2εh −
{αα−∂a

αεa
h
}

∇ εn.

(F.15)

Let us now exchange the order of transformations, and first transform the variables with N-
gauge transformation,

B· = B − β∧T εn, (F.16)

C· = C −∇εn, (F.17)

and then with H-gauge transformation:

B·· = B· − (C· − D·∧χ1εh − D·∧χ2εh)∧τ εh − εh∧Dεh∧DD·

= B − β∧T εn −
(
C −∇εn − (D + δεn)∧χ1εh

− (D + δεn)∧χ2εh
)
∧τ εh − εh∧Dεh∧D(D + δεn),

C·· = C· − D·∧χ1εh − D·∧χ2εh

= C −∇εn − (D + δεn)∧χ1εh − (D + δεn)∧χ2εh.

(F.18)

After subtracting (F.15) and (F.18) one obtains:

49



Class. Quantum Grav. 39 (2022) 135009 T Radenkovíc and M Vojinovíc

(
eεh·Heεn·N − eεn·Neεh ·H)Bα = ∇εa

n ∧ εh
bTab

α + δA
aε

a
nεh

b ∧ εh
dX1Ab

cTcd
α

+ δA
aε

a
nεh

b ∧ εh
dX2Ab

cTcd
α − εh

a ∧ εh
bδA

cεn
cDAab

α,

−∇εa
h ∧ εb

nTab
α + ∂a

βεa
h �βc

bεc
hε

d
nTbd

α − εa
h ∧ εb

h fab
cεd

nTcd
α,(

eεh·Heεn·N − eεn·Neεh ·H)Cc = −(δA
aε

a
n) ∧ εb

hX1Ab
c − (δA

aε
a
n) ∧ εb

hX2Ab
c − ∂a

βεa
h �βb

cεb
n,

(F.19)

where after using the definitions of the maps T , D, χ1, and χ2 one obtains the result(
eεh·Heεn·N − eεn·Neεh ·H)Bα = ∇εa

n ∧ εh
bTab

α −∇εa
h ∧ εb

nTab
α

= ∇(εn∧T εh)α,(
eεh·Heεn·N − eεn·Neεh ·H)Cc = ∂c

α(εn∧T εh)α,

(F.20)

Comparing (F.12) and (F.20) with (85), one obtains that:(
eεh·Heεn·N − eεn·Neεh ·H) = −(εn∧T εh) · M. (F.21)
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[17] Miković A, Oliveira M A and Vojinović M 2019 Hamiltonian analysis of the BFCG formulation of

general relativity Class. Quantum Grav. 36 015005
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Abstract

We provide several examples of higher gauge theories, constructed as gener-
alizations of a BF model to 2BF and 3BF models with constraints. Using the
framework of higher category theory, we introduce appropriate 2-groups and 3-
groups, and construct the actions for the corresponding constrained 2BF and
3BF theories. In this way, we can construct actions which describe the correct
dynamics of Yang-Mills, Klein-Gordon, Dirac, Weyl, and Majorana fields coupled
to Einstein-Cartan gravity. Each action is naturally split into a topological sector
and a sector with simplicity constraints. The properties of the higher gauge group
structure opens up a possibility of a nontrivial unification of all fields.

1. Introduction

The quantization of the gravitational field is one of the fundamental open
problems in modern physics. There are various approaches to this prob-
lem, some of which have developed into vast research frameworks. One of
such frameworks is the Loop Quantum Gravity approach, which aims to
establish a nonperturbative quantization of gravity, both canonically and
covariantly [1, 2, 3]. The covariant approach is slightly more general, and
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focuses on providing a possible rigorous definition of the path integral for
the gravitational field,

Z =

∫
Dg eiS[g] . (1)

This is done by considering a triangulation of a spacetime manifold, and
defining the path integral as a discrete state sum of the gravitational field
configurations living on the simplices in the triangulation. This quanti-
zation technique is known as the spinfoam quantization method, and is
performed via the following three steps:

(1) one writes the classical action S[g] as a constrained BF action;

(2) one uses the Lie group structure, underlying the topological sector of
the action, to define a triangulation-independent state sum Z;

(3) one imposes the simplicity constraints on the state sum, promoting it
into a triangulation-dependent state sum, which serves as a definition
for the path integral (1).

So far, this quantization prescription has been implemented for various
choices of the gravitational action, of the Lie group, and of the spacetime
dimension. For example, in 3 dimensions, historically the first spinfoam
model is known as the Ponzano-Regge model [4]. In 4 dimensions there are
multiple models, depending on the choice of the Lie group and the way one
imposes the simplicity constraints [5, 6, 7, 8, 9]. While these models do
give a definition for the gravitational path integral, none of them are able
to consistently include matter fields. Including the matter fields has so far
had limited success [10], mainly due to the absence of the tetrad fields from
the topological sector of the theory.

In order to resolve this issue, a new approach has been developed, using
the framework of higher gauge theory (see [11] for a review). In particu-
lar, one uses the idea of a categorical ladder to generalize the BF action
(based on a Lie group) into a 2BF action (based on the so-called 2-group
structure). A suitable choice of the Poincaré 2-group introduces the needed
tetrad fields into the topological sector of the action [12]. While this result
opened up a possibility to couple matter fields to gravity, the matter fields
could not be naturally expressed using the underlying algebraic structure
of a 2-group, rendering the spinfoam quantization method inapplicable.
Namely, the matter sector could indeed be added to the classical action,
but could not be expressed itself as a constrained 2BF theory, which means
that the steps 1–3 above could not be performed for the matter sector of
the action, but only for gravity.

This final issue has recently been resolved in [13], by passing from the
2-group structure to the 3-group structure, generalizing the action one step
further in the categorical ladder. This generalization naturally gives rise
to the so-called 3BF action, which turns out to be suitable for a unified
description of both gravity and matter fields. The steps of the categorical
ladder and their corresponding structures are summarized as follows:
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categorical
structure

algebraic
structure

linear
structure

topological
action

degrees of
freedom

Lie group Lie group Lie algebra BF theory gauge fields

Lie 2-group
Lie crossed

module
differential Lie
crossed module

2BF theory tetrad fields

Lie 3-group
Lie 2-crossed

module
differential Lie

2-crossed module
3BF theory

scalar and
fermion fields

The purpose of this paper is to give a systematic overview of the con-
structions of classical BF , 2BF and 3BF actions, both pure and con-
strained, in order to demonstrate the categorical ladder procedure and the
construction of higher gauge theories. In other words, we focus on the step
1 of the spinfoam quantization programme.

The layout of the paper is as follows. Section 2 deals with models based
on a BF theory. First we discuss the pure, topological BF theory, and
then pass on to the the physically more interesting Yang-Mills theory in
Minkowski spacetime and the Plebanski formulation of general relativity.
In Section 3 we study the first step in the categorical ladder, namely models
based on the 2BF theory. After introducing the pure 2BF theory, we study
the relevant formulation of general relativity [12], and then the coupled
Einstein-Yang-Mills theory. Then, in Section 4 we perform the second step
in the categorical ladder, passing on to models based on the 3BF theory.
After the introduction of the pure 3BF model, we construct constrained
3BF actions for the cases of Klein-Gordon, Dirac, Weyl and Majorana
fields, all coupled to the Einstein-Cartan gravity in the standard way. As
we shall see, the scalar and fermion fields will be naturally associated to a
new gauge group, generalizing the purpose of a gauge group in the Yang-
Mills theory, which opens up a possibility of an algebraic classification of
matter fields. Finally, Section 5 contains a discussion and conclusions.

The notation and conventions are as follows. The local Lorentz in-
dices are denoted by the Latin letters a, b, c, . . . , take values 0, 1, 2, 3, and
are raised and lowered using the Minkowski metric ηab with signature
(−,+,+,+). Spacetime indices are denoted by the Greek letters µ, ν, . . . ,
and are raised and lowered by the spacetime metric gµν = ηabe

a
µe
b
ν , where

eaµ are the tetrad fields. The inverse tetrad is denoted as eµa. All other
indices that appear in the paper are dependent on the context, and their
usage is explicitly defined in the text where they appear. We work in the
natural system of units where c = ~ = 1, and G = l2p, where lp is the Planck
length.

2. BF theory

We begin with a short review of BF theories. See [14, 15, 16] for additional
information.
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2.1. Pure BF theory

Given a Lie group G, and denoting its corresponding Lie algebra as g,
one introduces the pure BF action as follows (we limit ourselves to the
physically relevant case of 4-dimensional spacetime manifolds M4):

SBF =

∫
M4

〈B ∧ F〉g . (2)

Here, F ≡ dα+α∧α is the curvature 2-form for the algebra-valued connec-
tion 1-form α ∈ A1(M4 , g), and B ∈ A2(M4 , g) is a Lagrange multiplier
2-form, while 〈 , 〉g denotes a G-invariant bilinear symmetric nondegener-
ate form.

One can see from (2) that the action is diffeomorphism invariant, and
it is also gauge invariant with respect to G, provided that B transforms as
a scalar with respect to G.

Varying the action (2) with respect to Bβ and αβ, where the index β
is the group G index (which counts the generators of g), one obtains the
following equations of motion,

Fβ = 0 , ∇Bβ ≡ dBβ + fγδ
βαγ ∧Bδ = 0 , (3)

where fγδ
β are the structure constants of the Lie group G. From the first

equation of motion, one immediately sees that α is a flat connection, mean-
ing that α = 0 up to gauge transformations. Given this, the second equa-
tion of motion implies that B is constant. Therefore, there are no local
propagating degrees of freedom, and the theory is called topological.

2.2. Yang-Mills theory

In physics one is usually interested in theories which are not topological, i.e.,
which have local propagating degrees of freedom. As a rule of thumb, one
recognizes that the theory does have local propagating degrees of freedom if
one of the equations of motion is a second-order partial differential equation,
usually featuring a D’Alambertian operator � in some form. In order to
transform the pure BF action into such a theory, one adds an additional
term to the action, commonly called the simplicity constraint. The resulting
action is called a constrained BF theory. A nice example is the Yang-
Mills theory for the SU(N) group in Minkowski spacetime, which can be
rewritten as a constrained BF theory in the following way:

S =

∫
BI ∧ F I + λI ∧

(
BI −

12

g
MabIδ

a ∧ δb
)

+ ζabI
(
MabIεcdefδ

c ∧ δd ∧ δe ∧ δf − gIJF J ∧ δa ∧ δb
)
.

(4)

Here F ≡ dA + A ∧ A is again the curvature 2-form for the connection
A ∈ A1(M4 , su(N)), and B ∈ A2(M4 , su(N)) is the Lagrange multiplier
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2-form. The Killing form gIJ ≡ 〈τI , τJ〉su(N) ∝ fIK
LfJL

K is used to raise

and lower the indices I, J, . . . which count the generators of SU(N), while
f IJ

K are the structure constants for the su(N) algebra. In addition to
the topological B ∧ F term, there are also two simplicity constraint terms
present, featuring two Lagrange multipliers, a 2-form λI and a 0-form ζabI .
The 0-form MabI is also a Lagrange multiplier, while g is the coupling
constant for the Yang-Mills theory.

Finally, δa is a nondynamical 1-form, such that there exists a global co-
ordinate frame in which its components are equal to the Kronecker symbol
δaµ (hence the notation δa). The 1-form δa plays the role of a background
field, and defines the global spacetime metric, via the equation

ηµν = ηabδ
a
µδ
b
ν , (5)

where ηab ≡ diag(−1,+1,+1,+1) is the Minkowski metric. Since the co-
ordinate system is global, the spacetime manifold M4 is understood to be
flat. The indices a, b, . . . are local Lorentz indices, taking values 0, . . . , 3.
Note that the field δa has all the properties of the tetrad 1-form ea in the
flat Minkowski spacetime. Also note that the action (4) is manifestly dif-
feomorphism invariant and gauge invariant with respect to SU(N), but not
background independent, due to the presence of δa.

Varying the action (4) with respect to the variables ζabI , MabI , A
I , BI ,

and λI , respectively (but not with respect to the background field δa), we
obtain the equations of motion:

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (6)

−12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (7)

−dBI + fJI
KBK ∧AJ + d(ζabIδa ∧ δb)− fJIKζabKδa ∧ δb ∧AJ = 0 , (8)

FI + λI = 0 , (9)

BI −
12

g
MabIδ

a ∧ δb = 0 , (10)

From the equations (6), (7), (9) and (10) one obtains the multipliers as
algebraic functions of the field strength F Iµν for the dynamical field AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I cd ,

λIab = F Iab , BIab =
1

2g
εabcdF I

cd .
(11)
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Here we used the notation FIab = FIµνδa
µδb

ν , and similarly for other vari-
ables, where we exploited the fact that δaµ is invertible. Using these equa-
tions and the differential equation (8) one obtains the equation of motion
for gauge field AIµ,

∇ρF Iρµ ≡ ∂ρF Iρµ + fJK
IAJρF

Kρµ = 0 . (12)

This is precisely the classical equation of motion for the free Yang-Mills
theory. Note that this is a second-order partial differential equation for the
field AIµ, and moreover contains the � operator in the first term.

In addition to the Yang-Mills theory, one can easily extend the action (4)
in order to describe the massive vector field and obtain the Proca equation
of motion. This is done by adding a mass term

− 1

4!
m2AIµA

I
νη
µνεabcdδ

a ∧ δb ∧ δc ∧ δd (13)

to the action (4). Of course, this term explicitly breaks the SU(N) gauge
symmetry of the action.

2.3. Plebanski general relativity

The second example of the constrained BF theory is the Plebanski action
for general relativity [16, 14]. Using the Lorentz group SO(3, 1) as a gauge
group, one constructs a constrained BF action as

S =

∫
M4

Bab ∧Rab + φabcdB
ab ∧Bcd . (14)

Here Rab is the curvature 2-form for the spin connection ωab, Bab is the
usual Lagrange multiplier 2-form, while φabcd is the additional Lagrange
multiplier 0-form multiplying the term Bab ∧Bcd to form a simplicity con-
straint. It can be shown that the variation of this action with respect to
Bab, ω

ab and φabcd gives rise to the equations of motion of vacuum general
relativity. However, in this model the tetrad fields appear only as a solution
of the simplicity constraint equation of motion Bab ∧ Bcd = 0. Therefore,
being intrinsically on-shell objects, the tetrad fields are not present in the
action itself and cannot be quantized. This renders the Plebanski model
unsuitable for coupling of matter fields to gravity [10, 12, 20]. Neverthe-
less, regarded as a model for pure gravity, the Plebanski model has been
successfully quantized in the context of spinfoam models [8, 9, 1, 2].

3. 2BF theory

In this section we perform the first step of the categorical ladder, general-
izing the algebraic notion of a group to the notion of a 2-group. This leads
to the generalization of the BF theory to the 2BF theory, also sometimes
called BFCG theory [11, 17, 18, 19].
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3.1. Pure 2BF theory

In order to circumvent the issue of tetrad fields not being present in the
Plebanski action, in the context of higher category theory [11] a recent
promising approach has been developed [12, 21, 22, 23, 20, 24]. As an
essential ingredient, let us first give a short review of the 2-group formalism.

Within the framework of category theory, the group as an algebraic
structure can be understood as a category with only one object and in-
vertible morphisms [11]. Additionally, the notion of a category can be
generalized to the so-called higher categories, which have not only objects
and morphisms, but also 2-morphisms (morphisms between morphisms),
and so on. This process of generalization is called the categorical ladder.
Using this process, one can introduce the notion of a 2-group as a 2-category
consisting of only one object, where all the morphisms and all 2-morphisms
are invertible. It has been shown that every strict 2-group is equivalent to

a crossed module (H
∂→ G ,B), see [13] for detailed definitions. Here G and

H are groups, ∂ is a homomorphism from H to G, while B : G ×H → H
is an action of G on H.

Similarly to the case of an ordinary Lie group G which has a naturally
associated notion of a connection α, giving rise to a BF theory, the 2-
group structure has a naturally associated notion of a 2-connection (α , β),
described by the usual g-valued 1-form α ∈ A1(M4 , g) and an h-valued
2-form β ∈ A2(M4 , h), where h is a Lie algebra of the Lie group H. The
2-connection gives rise to the so-called fake 2-curvature (F ,G), given as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β . (15)

Here α∧Bβ means that α and β are multiplied as forms using ∧, and simul-
taneously multiplied as algebra elements using B, see [13]. The curvature
pair (F ,G) is called “fake” because of the presence of the additional term
∂β in the definition of F [11].

Using the structure of a 2-group, or equivalently the crossed module,
one can generalize the BF action to the so-called 2BF action, defined as
follows [17, 18]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h . (16)

Here the 2-form B ∈ A2(M4 , g) and the 1-form C ∈ A1(M4 , h) are La-
grange multipliers. Also, 〈 , 〉g and 〈 , 〉h denote the G-invariant bilinear
symmetric nondegenerate forms for the algebras g and h, respectively. As
a consequence of the axiomatic structure of a crossed module (see [13]),
the bilinear form 〈 , 〉h is H-invariant as well. See [17, 18] for review and
references.

Similarly to the BF action, the 2BF action is also topological, which
can be seen from equations of motion. Varying with respect to Bα and Ca

one obtains
Fα = 0 , Ga = 0 , (17)
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where indices a count the generators of the group H. Varying with respect
to αα and βa one obtains the equations for the multipliers,

dBα + fαβ
γBγ ∧ αβ −BαabCb ∧ βa = 0 , (18)

dCa − ∂aαBα +Bαa
bCb ∧ αα = 0 . (19)

We can again see that the equations of motion are only first-order and
have only very simple solutions (note that this is not a sufficient argument
for the absence of local propagating degrees of freedom — a counterexam-
ple is the Dirac equation, being a first-order partial differential equation
which does have propagating degrees of freedom). One can additionally
use the Hamiltonian analysis to rigorously demonstrate that there are no
local propagating degrees of freedom [22, 23]. Thus the 2BF theory is also
topological.

3.2. General relativity

An important example of a crossed module structure is a vector space V
equipped with an isometry group O. Namely, V can be regarded as an
Abelian Lie group with addition as a group operation, so that a represen-
tation of O on V is an action B of O on the group V , giving rise to the

crossed module (V
∂→ O ,B), where the homomorphism ∂ is chosen to be

trivial (it maps every element of V into a unit of O).
We can employ this construction to introduce the Poincaré 2-group.

One constructs a crossed module by choosing

G = SO(3, 1) , H = R4 . (20)

The map ∂ is trivial, while B is a natural action of SO(3, 1) on R4, defined
by the equation

Mab B Pc = η[bcPa] , (21)

where Mab and Pa are the generators of groups SO(3, 1) and R4, respec-
tively. The action B of SO(3, 1) on itself is given via conjugation. At
the level of the algebra, conjugation reduces to the action via the adjoint
representation, so that

Mab BMcd = [Mab , Mcd ] ≡ ηadMbc − ηacMbd + ηbcMad − ηbdMac . (22)

The 2-connection (α, β) is given by the algebra-valued differential forms

α = ωabMab , β = βaPa , (23)

where ωab is called the spin connection. The corresponding 2-curvature in
this case is given by

F = (dωab + ωac ∧ ωcb)Mab ≡ RabMab ,

G = (dβa + ωab ∧ βb)Pa ≡ ∇βaPa ≡ GaPa ,
(24)
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Note that, since ∂ is trivial, the fake curvature is the same as ordinary
curvature. Introducing the bilinear forms

〈Mab ,Mcd〉g = ηa[cηbd] , 〈Pa , Pb〉h = ηab , (25)

one can show that 1-forms Ca transform in the same way as the tetrad
1-forms ea under the Lorentz transformations and diffeomorphisms, so the
fields Ca can be identified with the tetrads. Then one can rewrite the pure
2BF action (16) for the Poincaré 2-group as

S2BF =

∫
M4

Bab ∧Rab + ea ∧∇βa . (26)

Note that the above step of recognizing that Ca ≡ ea was crucial, since we
now see that the tetrad fields are explicitly present in the 2BF action for
the Poincaré 2-group.

In order to promote (26) to an action for general relativity, we add a
convenient simplicity constraint term:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (27)

Here λab is a Lagrange multiplier 2-form associated to the simplicity con-
straint term, and lp is the Planck length. Note that the term “simplicity
constraint” derives its name from the fact that the constraint imposes the
property of simplicity on Bab — a 2-form is said to be simple if it can be
written as an exterior product of two 1-forms.

Varying the action (27) with respect to Bab, ea, ωab, βa and λab, we
obtain the following equations of motion:

Rab − λab = 0 , (28)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (29)

∇Bab − e[a ∧ βb] = 0 , (30)

∇ea = 0 , (31)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 . (32)

Given this system of equations, all fields can be algebraically determined in
terms of the tetrads eaµ, as follows. From the equations (31) and (32) we

obtain that ∇Bab = 0, from which it follows, using the equation (30), that
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e[a∧βb] = 0. Assuming that the tetrads are nondegenerate, e ≡ det(eaµ) 6=
0, it can be shown that this is equivalent to βa = 0 [12]. Therefore, from
the equations (28), (30), (31) and (32) we obtain

λabµν = Rabµν , βaµν = 0 , Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4ab

µ .

(33)
Here the Ricci rotation coefficients are defined as

4ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (34)

where
cabc = eµbe

ν
c (∂µe

a
ν − ∂νeaµ) . (35)

The last equation establishes that the spin connection 1-form ωab is ex-
pressed as a function of the tetrads, which then implies the same for the
curvature 2-form Rab. Finally, the remaining equation (29) then reduces to

εabcdR
bc ∧ ed = 0 , (36)

which is nothing but the vacuum Einstein field equation,

Rµν −
1

2
gµνR = 0 .

Therefore, the action (27) is classically equivalent to general relativity.

3.3. Einstein-Yang-Mills theory

As we have already mentioned above, the main advantage of the action (27)
over the Plebanski model lies in the fact that the tetrad fields are explicitly
present in the topological sector of the action. This allows one to couple
matter fields in a straightforward way [12]. However, one can do even more
[13], and couple the SU(N) Yang-Mills fields to gravity within a unified
framework of 2-group formalism.

Namely, we can modify the Poincaré 2-group structure to include the
SU(N) gauge group, as follows. We choose the two Lie groups as

G = SO(3, 1)× SU(N) , H = R4 , (37)

and we define the action B of the group G in the following fashion. As in
the case of the Poincaré 2-group, it acts on itself via conjugation. Next,
it acts on H such that the SO(3, 1) subgroup acts on R4 via the vector
representation (21), while the action of the SU(N) subgroup is trivial,

τI B Pa = 0 , (38)
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where τI are the SU(N) generators. The map ∂ also remains trivial, as
before. The form of the 2-connection (α, β) now reflects the structure of
the group G,

α = ωabMab +AIτI , β = βaPa , (39)

where AI is the gauge connection 1-form. Next, the curvature for α then
becomes

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧AK . (40)

The curvature for β remains the same as before, because of (38). Finally,
the product structure of the group G implies that its Killing form 〈 , 〉g
reduces to the Killing forms for the SO(3, 1) and SU(N), along with the
identity 〈Mab , τI〉g = 0.

Given a crossed module defined in this way, its corresponding pure 2BF
action (16) becomes

S2BF =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (41)

where BI ∈ A2(M4 , su(N)) is the new Lagrange multiplier. The action
(41) is topological, and again we add appropriate simplicity constraint
terms, in order to transform it into action with nontrivial dynamics. The
constraint giving rise to gravity is the same as in (27), while the con-
straint for the gauge fields is given as in the action (4) with the substitution
δa → ea. Putting everything together, we obtain:

S =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λI ∧

(
BI −

12

g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.

(42)
It is crucial to note that the Yang-Mills simplicity constraints in (42) are
obtained from the Yang-Mills action (4) by substituting the nondynamical
background field δa from (4) with a dynamical field ea. The relationship
between these fields has already been hinted at in the equation (5), which
describes the connection between δa and the flat spacetime metric ηµν .
Once promoted to ea, this field becomes dynamical due to the presence
of gravitational terms, while the equation (5) becomes the usual relation
between the tetrad and the metric,

gµν = ηabe
a
µe
b
ν , (43)



262 T. Radenković and M. Vojinović

further confirming the identification Ca = ea. Moreover, the total action
(42) now becomes background independent, as expected in general relativ-
ity. All this is a consequence of the fact that the tetrad field is explicitly
present in the topological sector of the action (27), and represents a clear
improvement over the Plebanski model.

Taking the variations of the action (42) with respect to the variables
Bab, ωab, βa, λab, ζ

abI , MabI , BI , λ
I , AI , and ea, we obtain equations of

motion. Similarly as before, all variables can be algebraically expressed as
functions of AI and ea and their derivatives:

λabµν = Rabµν , βaµν = 0 , ωabµ = 4abµ , λabI = FabI ,

BµνI = − e

2g
εµνρσF

ρσ
I , Babµν =

1

8πl2p
εabcde

c
µe
d
ν ,

MabI = − 1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

(44)
In addition, we obtain two differential equations — An equation for AI ,

∇ρF Iρµ ≡ ∂ρF Iρµ + Γ ρλρF
Iλµ + fJK

IAJρF
Kρµ = 0 , (45)

where Γ λµν is the standard Levi-Civita connection, and an equation for ea,

Rµν − 1

2
gµνR = 8πl2p T

µν , (46)

where

Tµν ≡ − 1

4g

(
Fρσ

IF ρσIg
µν + 4FµρIFρ

νI
)
. (47)

In this way, we see that both gravity and gauge fields can be successfully
represented within a unified framework of higher gauge theory, based on a
2-group structure. A generalization from SU(N) Yang-Mills case to more
complicated cases such as SU(3)×SU(2)×U(1) is completely straightfor-
ward.

4. 3BF theory

While the structure of a 2-group can successfully describe both gravitational
and gauge fields, unfortunately it cannot accommodate other matter fields,
such as scalars or fermions. In order to remedy this drawback, we make
one further step in the categorical ladder, passing from the notion of a 2-
group to the notion of a 3-group. As it turns out, the 3-group structure is
excellent for the description of all fields that are present in the Standard
Model, coupled to gravity. Moreover, a 3-group contains one more gauge
group, which is novel and corresponds to the choice of the scalar and fermion
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fields present in the theory. This is an unexpected and beautiful result, not
present in ordinary gauge theory.

As before, we will begin by introducing the notion of a 3-group, and
constructing the corresponding 3BF action. Afterwards, we will modify
this action by adding appropriate simplicity constraints, giving rise to the-
ories with expected nontrivial dynamics. Along the way, we shall see that
scalar and fermion fields are being treated pretty much on an equal footing
with gravity and gauge fields.

4.1. Pure 3BF theory

Similarly to the concepts of a group and a 2-group, one can introduce the
notion of a 3-group in the framework of higher category theory, as a 3-
category with only one object where all the morphisms, 2-morphisms and
3-morphisms are invertible. Also, in the same way as a 2-group is equivalent
to a crossed module, it was proved that a strict 3-group is equivalent to a
2-crossed module [25].

A Lie 2-crossed module, denoted as (L
δ→ H

∂→ G ,B , { , }), is an
algebraic structure specified by three Lie groups G, H and L, together
with the homomorphisms δ and ∂, an action B of the group G on all three
groups, and a G-equivariant map

{ , } : H ×H → L .

called the Peiffer lifting. The maps ∂, δ, B and the Peiffer lifting satisfy
certain axioms, so that the resulting structure is equivalent to a 3-group
[13].

Like in the cases of BF and 2BF actions, we can introduce a gauge
invariant topological 3BF action over the manifoldM4 for a given 2-crossed

module (L
δ→ H

∂→ G ,B , { , }). Denoting g, h and l as Lie algebras
corresponding to the groups G, H and L, respectively, one can introduce
a 3-connection (α, β, γ) given by the algebra-valued differential forms α ∈
A1(M4 , g), β ∈ A2(M4 , h) and γ ∈ A3(M4 , l). The corresponding fake
3-curvature (F ,G ,H) is then defined as

F = dα+ α ∧ α− ∂β , G = dβ + α ∧B β − δγ ,
H = dγ + α ∧B γ + {β ∧ β} ,

(48)

see [25, 26] for details. Note that γ is a 3-form, while its corresponding
field strength H is a 4-form, necessitating that the spacetime manifold be
at least 4-dimensional. Then, a 3BF action is defined as

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (49)
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where B ∈ A2(M4, g), C ∈ A1(M4, h) and D ∈ A0(M4, l) are Lagrange
multipliers. Note that in precisely 4 spacetime dimensions the Lagrange
multiplier D corresponding to H is a 0-form, i.e. a scalar function. The
functionals 〈 , 〉g, 〈 , 〉h and 〈 , 〉l are G-invariant bilinear symmetric non-
degenerate forms on g, h and l, respectively. Under certain conditions, the
forms 〈 , 〉h and 〈 , 〉l are also H-invariant and L-invariant.

One can see that varying the action with respect to the variables Bα,
Ca and DA (where indices A count the generators of the group L), one
obtains the equations of motion

Fα = 0 , Ga = 0 , HA = 0 , (50)

while varying with respect to αα, βa, γA one obtains

dBα + fαβ
γBγ ∧ αβ −BαabCb ∧ βa +BαB

ADA ∧ γB = 0 , (51)

dCa − ∂aαBα +Bαa
bCb ∧ αα + 2X{ab}

ADA ∧ βb = 0 , (52)

dDA −BαABDB ∧ αα + δA
aCa = 0 . (53)

4.2. Klein-Gordon theory

Now we proceed to demonstrate that one can use the 3-group structure and
the corresponding 3BF theory to describe the Klein-Gordon field coupled to
general relativity. We begin by specifying a 2-crossed module, which is used
to construct the topological 3BF theory, and then we impose appropriate
simplicity constraints to obtain the desired equations of motion.

We specify a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), as follows.
The groups are given as

G = SO(3, 1) , H = R4 , L = R . (54)

The group G acts on itself via conjugation, on H via the vector represen-
tation, and on L via the trivial representation. This specifies the definition
of the action B. The map ∂ is chosen to be trivial, as before. The map δ is
also trivial, that is, every element of L is mapped to the identity element of
H. Finally, the Peiffer lifting is trivial as well, mapping every ordered pair
of elements in H to an identity element in L. This specifies one concrete
2-crossed module which, as we shall see below, corresponds to gravity and
one real scalar field.

Given this choice of a 2-crossed module, the 3-connection (α , β , γ) takes
the form

α = ωabMab , β = βaPa , γ = γI , (55)

where I is the sole generator of the Lie group R. Since the homomorphisms
∂ and δ are trivial, as well as the Peiffer lifting, the fake 3-curvature (48)
reduces to the ordinary 3-curvature,

F = RabMab , G = ∇βaPa , H = dγ , (56)
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where we used the fact that G acts trivially on L, that is, Mab B I = 0.
This means that the 3-form γ transforms as a scalar with respect to Lorentz
symmetry. Consequently, its Lagrange multiplier D also transforms as a
scalar, since it also belongs to the algebra l. Since D is also a 0-form, it
transforms as a scalar with respect to diffeomorphisms as well. In other
words, D completely behaves as a real scalar field, so we relabel it into
more traditional notation, D ≡ φ, and write the pure 3BF action (49) as:

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (57)

where the bilinear form for L is 〈I , I〉l = 1.
The existence of a scalar field in the 3BF action is a crucial property of

a 3-group in a 4-dimensional spacetime, just like identifying the Lagrange
multiplier Ca with a tetrad field ea was a crucial property of the 2BF
action and the Poincaré 2-group. We can also see that the choice of the
third gauge group, L, dictates the number and the structure of the matter
fields present in the action. In this case, L = R implies that we have only
one real scalar field, corresponding to a single generator I of R. The trivial
nature of the action B of SO(3, 1) on R implies that φ transforms as a
scalar field. Finally, the scalar field appears in the topological sector of the
action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, we need to add appropriate
simplicity constraints to the action (57). In order to obtain the Klein-
Gordon field φ of mass m coupled to gravity in the standard way, the
action takes the form:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed .

(58)

The first row is the topological sector (57), the second row is the familiar
simplicity constraint for gravity from the action (27), the third and fourth
rows contain the new simplicity constraints featuring the Lagrange multi-
plier 1-forms λ and Λab and the 0-form Habc, while the fifth row is the mass
term for the scalar field.

The variation of (58) with respect to the variables Bab, ωab, βa, λab,
Λab, γ, λ, Habc, φ and ea gives us the equations of motion. As before, all
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variables can be algebraically expressed in terms of the tetrads ea and the
scalar field φ:

λabµν = Rabµν , ωabµ = 4ab
µ , γµνρ = −e

2
εµνρσ∂

σφ ,

βaµν = 0 , Λabµ =
1

12e
gµλε

λνρσ∂νφe
a
ρe
b
σ , λµ = ∂µφ ,

Habc =
1

6e
εµνρσ∂µφe

a
νe
b
ρe
c
σ , Babµν =

1

8πl2p
εabcde

c
µe
d
ν .

(59)

The equations of motion for ea and φ, however, are differential equations.
The equation for the scalar field becomes the covariant Klein-Gordon equa-
tion, (

∇µ∇µ −m2
)
φ = 0 , (60)

while the equation for the tetrads is

Rµν − 1

2
gµνR = 8πl2p T

µν , (61)

where

Tµν ≡ ∂µφ∂νφ− 1

2
gµν

(
∂ρφ∂

ρφ+m2φ2
)

(62)

is the stress-energy tensor for a single real scalar field.

4.3. Einstein-Cartan-Dirac theory

In order to describe the Dirac field coupled to Einstein-Cartan gravity, we
follow the same procedure as for the case of the scalar field, but now we

choose the 2-crossed module (L
δ→ H

∂→ G ,B , { , }) in a different way, as
follows. The groups are:

G = SO(3, 1) , H = R4 , L = R8(G) , (63)

where G is the algebra of complex Grassmann numbers. The maps ∂, δ
and the Peiffer lifting are trivial, as before. The action of the group G on
itself is given via conjugation, on H via vector representation, and on L
via spinor representation, in the following way. Denoting the 8 generators
of the Lie group R8(G) as Pα and Pα, where the index α takes the values
1, . . . , 4, the action B of G on L is thus given explicitly as

Mab B Pα =
1

2
(σab)

β
αPβ , Mab B P

α = −1

2
(σab)

α
βP

β , (64)

where σab = 1
4 [γa, γb], and γa are the usual Dirac matrices, satisfying the

anticommutation rule {γa , γb} = −2ηab.



Construction and examples of higher gauge theories 267

As in the case of the scalar field, the choice of the group L dictates the
matter content of the theory, while the action B of G on L specifies its
transformation properties.

Let us now proceed to construct the 3BF action. The 3-connection
(α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (65)

while the 3-curvature (F ,G ,H) is given as

F = RabMab , G = ∇βaPa ,

H =
(

dγα +
1

2
ωab(σab)

α
βγ

β
)
Pα+

(
dγ̄α −

1

2
ωabγ̄β(σab)

β
α

)
Pα

≡ (
→
∇γ)αPα + (γ̄

←
∇)αP

α ,

(66)

where we have used (64). The bilinear form 〈 , 〉l is defined via its action
on the generators:

〈Pα , Pβ〉l = 0 , 〈Pα , P β〉l = 0 ,

〈Pα , P β〉l = −δβα , 〈Pα , Pβ〉l = δαβ .
(67)

Note that the bilinear form defined in this way is antisymmetric, rather
than symmetric, when it acts on the generators. The reason for this is the
following. For general A,B ∈ l, we want the bilinear form to be symmetric.
Expanding A and B into components, we can write

〈A ,B〉l = AIBJgIJ , 〈B ,A〉l = BJAIgJI . (68)

Since we require the bilinear form to be symmetric, the two expressions
must be equal. However, since the coefficients in l are Grassmann num-
bers, we have AIBJ = −BJAI , so it follows that gIJ = −gJI . Hence the
antisymmetry of (67) — it compensates for the anticommutativity prop-
erty of the Grassman coefficients, making the bilinear form symmetric for
general algebra elements A,B ∈ l.

Now we employ the action B of G on L to determine the transformation
properties of the Lagrange multiplier D in (49). Indeed, the choice of the
group L dictates that D contains 8 independent complex Grassmannian
matter fields as its components. Moreover, due to the fact that D is a
0-form and that it transforms according to the spinorial representation of
SO(3, 1), we can identify its components with the Dirac bispinor fields, and
write

D = ψαPα + ψ̄αP
α . (69)

This is again an illustration of the fact that information about the structure
of the matter sector in the theory is specified by the choice of the group L
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in the 2-crossed module, and its transformation properties with respect to
the Lorentz group are fixed by the action B.

Given all of the above, we write the corresponding pure 3BF action as:

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (70)

In order to obtain the action that gives us the dynamics of Einstein-Cartan
theory of gravity coupled to a Dirac field, we add the following simplicity
constraints:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α
)

+ λ̄α ∧
(
γα +

i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

− 1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd.
(71)

Similarly to the previous case of the scalar field, we recognize the topological
sector in the first row, the gravitational simplicity constraint in the second
row, while the third and fourth rows contain the new simplicity constraints
for the Dirac field, featuring the Lagrange multiplier 1-forms λα and λ̄α.
The fifth row contains the mass term for the Dirac field, and a term which
ensures the correct coupling between the torsion and the spin of the Dirac
field. In particular, we want to obtain

Ta ≡ ∇ea = 2πl2psa , (72)

as one of the equations of motion, where

sa = iεabcde
b ∧ ecψ̄γ5γdψ (73)

is the Dirac spin 2-form. Of course, other alternative coupling choices are
possible, but we choose this one since this is the traditional coupling most
often discussed in textbooks.

The variation of the action (71) with respect to Bab, λ
ab, γ̄α, γα, λα,

λ̄α, ψ̄α, ψα, ea, βa and ωab, again gives us equations of motion, which can
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be algebraically solved for all fields as functions of ea, ψ and ψ̄:

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = (

→
∇µψ)α , λ̄αµ = (ψ̄

←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe
b
νe
c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcdeaµebνecρ(γdψ)α ,

βaµν = 0 , λabµν = Rabµν , ωabµ = 4ab
µ +Kab

µ .

(74)
Here Kab

µ is the contorsion tensor, constructed in the standard way from
the torsion tensor. In addition, we also obtain

Ta ≡ ∇ea = 2πl2psa , (75)

which is precisely the desired equation (72) for the torsion. Finally, the
differential equations of motion for ψ and ψ̄ are the standard covariant
Dirac equation,

(iγaeµa
→
∇µ −m)ψ = 0 , (76)

and its conjugate,

ψ̄(i
←
∇µeµaγa +m) = 0 , (77)

where eµa is the inverse tetrad. The differential equation of motion for ea

is

Rµν − 1

2
gµνR = 8πl2p T

µν , (78)

where

Tµν ≡ i

2
ψ̄γa

↔
∇νeµaψ −

1

2
gµνψ̄

(
iγa
↔
∇ρeρa − 2m

)
ψ , (79)

Here, we used the notation
↔
∇ =

→
∇ −

←
∇. As expected, the equations of

motion (75), (76), (77) and (78) are precisely the equations of motion of
the Einstein-Cartan-Dirac theory.

4.4. Weyl and Majorana fields coupled to Einstein-Cartan grav-
ity

As is well known, the Dirac fermions are not an irreducible representation
of the Lorentz group, and one can rewrite them as left-chiral and right-
chiral irreducible Weyl fermion fields. Hence, it is useful to construct the
2-crossed module and a constrained 3BF action for left and right Weyl
spinors. For simplicity, we will discuss only the left-chiral spinor field (the
right-chiral can be studied analogously). Additionally, we can also describe
Majorana fermions using the same formalism, the only difference being the
presence of an additional mass term in the Majorana action.
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We soecify a 2-crossed module (L
δ→ H

∂→ G ,B , { , }), in a way similar
to the Dirac case, as follows. The groups are:

G = SO(3, 1) , H = R4 , L = R4(G) . (80)

The maps ∂, δ and the Peiffer lifting are trivial. The action B of the group
G on G, H and L is given in the same way as for the Dirac case, whereas
the spinorial representation reduces to

Mab B P
α =

1

2
(σab)

α
βP

β , Mab B Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (81)

where σab = −σ̄ab = 1
4(σaσ̄b − σbσ̄a), for σa = (1, ~σ) and σ̄a = (1,−~σ), in

which ~σ denotes the set of three Pauli matrices. The four generators of the
group L are denoted as Pα and Pα̇, where the Weyl indices α, α̇ take values
1, 2.

The 3-connection (α , β , γ) takes the form

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (82)

while the 3-curvature (F ,G ,H) is

F = RabMab , G = ∇βaPa ,

H =
(
dγα +

1

2
ωab(σab)βαγβ

)
Pα +

(
dγ̄α̇ +

1

2
ωab(σ̄

ab)α̇β̇ γ̄
β̇
)
P α̇

≡ (
→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

(83)

The Lagrange multiplier D now contains as coefficients the spinor fields ψα
and ψ̄α̇,

D = ψαP
α + ψ̄α̇Pα̇ , (84)

and the bilinear form 〈 , 〉l for the group L is

〈Pα , P β〉l = εαβ , 〈Pα̇ , Pβ̇〉l = εα̇β̇ ,

〈Pα , Pβ̇〉l = 0 , 〈Pα̇ , P β〉l = 0 ,
(85)

where εαβ and εα̇β̇ are the usual two-dimensional antisymmetric Levi-Civita

symbols.
The pure 3BF action (49) now becomes

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (86)
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In order to obtain the suitable equations of motion for the Weyl spinors,
we again introduce appropriate simplicity constraints, to obtain:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧ (Bab − 1

16πl2p
εabcdec ∧ ed)

− λα ∧ (γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇)

− λ̄α̇ ∧ (γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄dα̇βψβ) .

(87)

The new simplicity constraints, in the third and fourth rows, feature the
Lagrange multiplier 1-forms λα and λ̄α̇. Also, in analogy to the coupling
between the spin and the torsion in Einstein-Cartan-Dirac theory, the term
in the fifth row is chosen to ensure that the coupling between the Weyl spin
tensor

sa ≡ iεabcdeb ∧ ec ψασdαβ̇ψ̄
β̇ (88)

and torsion is given as:
Ta = 4πl2psa . (89)

The action for the Majorana field is precisely the same, but for an additional
mass term in the action:

− 1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (90)

The variation of the action (87) with respect to the variables Bab, λ
ab,

γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇, ea, βa and ωab gives us the equations of motion,
which can be algebraically solved for all variables as functions of ψα, ψ̄α̇

and ea:

βaµν = 0 , λabµν = Rabµν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄α̇ ,

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4abµ +Kabµ ,

γαµνρ = iεabcde
a
µe
b
νe
c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe
b
νe
c
ρσ̄

dα̇βψβ .

(91)

In addition, one also obtains (89). Finally, the differential equations of
motion for the spinor and tetrad fields are

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄β̇ = 0 , (92)
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and

Rµν − 1

2
gµνR = 8πl2p T

µν , (93)

where

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

−1

2
gµν
(
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄

)
.

(94)

Here we have suppressed the spinor indices, for simplicity. In the case of
the Majorana field, the equations of motion (91) remain the same. The
equations of motion for ψα and ψ̄α̇ obtain the additional mass term,

iσaαβ̇e
µ
a∇µψ̄β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (95)

while the stress-energy tensor becomes

Tµν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄

−gµν 1

2

[
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −

1

2
m
(
ψψ + ψ̄ψ̄

)]
.

(96)

5. Conclusions

Let us summarize the results of the paper. In Section 2 we have introduced
the BF theory and discussed models based on constrained BF action, in
particular the Yang-Mills theory in Minkowski spacetime and the Plebanski
formulation of general relativity. Section 3 was devoted to the first step in
the categorical ladder and the 2BF theory. After introducing the notions
of a 2-group, a crossed module, and the corresponding 2BF theory, we
have studied the 2BF formulation of general relativity and the Einstein-
Yang-Mills theory. Then, in Section 4 we have performed one more step in
the categorical ladder, and introduced the notions of a 3-group, 2-crossed
module, and the 3BF theory. This structure was employed to construct
the constrained 3BF actions for the cases of Klein-Gordon, Dirac, Weyl
and Majorana fields, each coupled to the Einstein-Cartan gravity in the
standard way. In those descriptions, it turned out that the scalar and
fermion fields are associated to a new gauge group, similar to the gauge fields
being associated to a gauge group in the Yang-Mills theory. This opens up a
possibility of a classification of matter fields based on an algebraic structure
of a 3-group.

All the obtained results serve to complete the first step of the spinfoam
quantization programme, as outlined in the Introduction. This paves the
way to the study of steps 2 and 3 of the programme. Namely, the full action
for gravity, gauge fields and matter is written completely in the langulage of
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differential forms, which can be easily adapted to a triangulated spacetime
manifold, in the sense of Regge calculus. This can be seen in the following
table:

d triangulation dual triangulation form fields field strengths

0 vertex 4-polytope 0-form φ, ψα̃, ψ̄α̃

1 edge 3-polyhedron 1-form ωab, AI , ea

2 triangle face 2-form βa, Bab Rab, F I , T a

3 tetrahedron edge 3-form γ, γα̃, γ̄α̃ Ga

4 4-simplex vertex 4-form H, Hα̃, H̄α̃

This data can be utilized to construct a Regge-discretized topological
3BF action, and from that a state sum Z, giving rise to a rigorous definition
of the path integral

Z =

∫
Dg
∫
Dφ eiS[g,φ] , (97)

which is a generalization of (1) in the sense that it adds matter fields
(including the gauge boson sector) to gravity at the quantum level. Being
a topological theory, and given the underlying structure of the 3-group, a
pure 3BF action ought to ensure the topological invariance of the state sum
Z, i.e., Z should be triangulation independent. This step, however, requires
the generalizations of the Peter-Weyl and Plancharel theorems to 2-groups
and 3-groups, which are unfortunately still missing (though there are some
attempts to circumvent them at least in the 2-group case [27, 28]). Namely,
the purpose of the Peter-Weyl and Plancharel theorems is to provide a
decomposition of a function on a group into a sum over the corresponding
irreducible representations, which then specifies the spectrum of labels for
the simplices in the triangulation, and fixes the domain of values for the
fields living on those simplices. In the absence of the two theorems, one
can still try to guess the irreducible representations of the 2- and 3-groups,
as was done for example in the spincube model of quantum gravity [12],
or to try to construct the state sum using other techniques, as was done
in [27, 28]).

Of course, when building a realistic theory, we are not interested in a
topological theory, but instead in one which contains local propagating de-
grees of freedom. Thus the state sum Z need not be a topological invariant.
This is obtained via the step 3 of the spinfoam quantization programme, by
imposing the simplicity constraints on Z. The classical actions discussed in
this paper manifestly distinguish the topological sector from the simplicity
constraints, which have been explicitly determined. Imposing them should
thus be a straightforward procedure for a given Z. Completing this pro-
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gramme would ultimately lead us to a tentative state sum describing both
gravity and matter at a quantum level, which is a topic for future research.

In addition to the construction of a full quantum theory of gravity,
there are also many additional possible studies of the classical constrained
3BF action. For example, a Hamiltonian analysis of the theory could be
interesting for the canonical quantization programme, and some work has
begun in this area [29]. Also, it is worth looking into the idea of imposing
the simplicity constraints using a spontaneous symmetry breaking mecha-
nism. Finally, one can also study in more depth the mathematical structure
and properties of the simplicity constraints. The list is not conclusive, and
there may be many other interesting topics to study.
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[18] J. F. Martins and A. Miković, Lie crossed modules and gauge-invariant actions for
2-BF theories, Adv. Theor. Math. Phys. 15, 1059 (2011), arXiv:1006.0903.

[19] L. Crane and M. D. Sheppeard, 2-categorical Poincare Representations and State
Sum Applications, arXiv:math/0306440.
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Abstract

We give a brief overview how to couple general relativity to the Standard Model
of elementary particles, within the higher gauge theory framework, suitable for
the spinfoam quantization procedure. We begin by providing a short review of all
relevant mathematical concepts, most notably the idea of a categorical ladder, 3-
groups and generalized parallel transport. Then, we give an explicit construction of
the algebraic structure which describes the full Standard Model coupled to Einstein-
Cartan gravity, along with the classical action, written in the form suitable for
the spinfoam quantization procedure. We emphasize the usefulness of the 3-group
concept as a superior tool to describe gauge symmetry, compared to an ordinary
Lie group, as well as the possibility to employ this new structure to classify matter
�elds and study their spectrum, including the origin of fermion families.

1 Introduction

The quantization of the gravitational �eld is one of the most fundamental open problems of
modern theoretical physics. Since the inceptions of general relativity (GR) and quantum
�eld theory (QFT), many attempts have been made over the years to unify the two into
a self-consistent description of gravitational and matter �elds as basic building blocks of
nature. Some of the attempts have developed into vast research areas, such as String
Theory, Loop Quantum Gravity, Causal Set Theory, and so on. One of the prominent
approaches is Loop Quantum Gravity (LQG) [1, 2], which has branched into the canonical
and covariant frameworks, the latter known as the spinfoam approach [3].
The spinfoam approach to the quantization of the gravitational �eld revolves around

the idea of providing a precise mathematical de�nition to the Feynman path integral for
the gravitational �eld,

Z =

Z
Dg eiSGR[g] ;

where g denotes the gravitational degrees of freedom, and SGR[g] is the GR action ex-
pressed in terms of variables g. The strategy of de�ning the path integral can be roughly
expressed in three main steps, called the spinfoam quantization procedure:

1. Choose convenient variables g and rewrite the classical action in the form

SGR[g] = Stopological[g] + Ssimp[g] ; (1)
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where the �rst term represents a topological theory (with no propagating degrees of
freedom), while the second term corresponds to the so-called simplicity constraint
terms, whose purpose is to transform the full action into a realistic non-topological
action with propagating degrees of freedom.

2. Employ the methods of topological quantum �eld theory (TQFT) to de�ne the path
integral for the topological part of the action. This is typically implemented by
passing from a smooth spacetime manifold to a simplicial complex (triangulation),
and writing the path integral in the form of a discrete state sum,

Z =
X
g

Y
v

Av(g)
Y
�

A�(g)
Y
�

A�(g)
Y
�

A� (g)
Y
�

A�(g) :

Here g represents the gravitational �eld variables living on the vertices v, edges �,
triangles �, terahedra � , and 4-simplices � of the simplicial complex, describing its
geometry, while the corresponding amplitudesAv(g), . . . , A�(g) are chosen to render
the whole state sum Z independent of the particular choice of the triangulation of
the spacetime manifold.

3. Enforce the simplicity constraints of the theory by a suitable deformation of the
amplitudes A and the set of independent variables g, thereby obtaining a modi�ed
state sum Z which corresponds to one possible rigorous de�nition of the realistic
gravitational path integral.

Since its inception, the spinfoam quantization procedure has been formulated and
implemented for various choices of the classical action, leading to a plethora of spinfoam
models of quantum gravity, starting from the Ponzano-Regge model for 3D gravity [4],
and leading up to the currently most sophisticated EPRL/FK model for the realistic 4D
case [5, 6]. However, one property common to all spinfoam models is the fact that they
all describe pure gravity, without matter �elds. This is due to the common choice of the
classical action � it is the well known BF theory [7], which is usually de�ned for the
Lorentz group SO(3; 1), with some form of the simplicity constraint terms. The prototype
description of GR in this form is the Plebanski action [8]. The reason why matter �elds
are absent from all such models lies in the fact that the BF action does not feature tetrad
�elds at the fundamental level. Instead, the tetrads appear as a consequence of classical
equations of motion, and are thus inherently classical, on-shell quantities. This renders
the approach based on the BF theory incapable of adding matter �elds at the quantum
level, since matter is coupled to gravity using precisely the tetrad �elds.
The issue of the absence of the tetrad �elds at the fundamental level has been suc-

cessfully resolved in [9], where a categorical generalization has been made, and the 2BF
action (introduced in [10, 11]) has been employed to build an action for GR, featuring
tetrads explicitly in the topological sector of the action. The categorical generalization is
based on a concept of a categorical ladder, an abstraction scheme introducing a chain of
new objects: from categories to 2-categories to 3-categories and so forth. This powerful
mathematical language gave rise to the idea that the notion of gauge symmetry in physics
may be described by objects other than Lie groups. The new approach is called higher
gauge theory (HGT), see [12] for an introduction. In the context of the spinfoam quanti-
zation procedure, HGT has been successfully applied to build a quantum gravity model,
based on the Poincaré 2-group [13] as a gauge symmetry structure, and the corresponding
2BF action, leading to the so-called spincube model of quantum gravity [9]. Having the
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tetrads as fundamental �elds in the 2BF action, the new model could be extended to
include matter �elds in a straightforward way. Nevertheless, the matter �eld action does
not have the form analogous to (1), which renders the steps 2 and 3 of the spinfoam
quantization procedure moot, since they can be applied only to the gravitational sector
of the theory.
Thus, a natural need appeared to generalize the theory once more, in order to include

the matter �elds into the topological sector of the theory, in a similar way that was done
to include the tetrad �elds. The basic idea was to pass from the notion of a 2-group to a
notion of a 3-group as a mathematical descriptor of gauge symmetry [12, 14, 15], giving
rise to a topological 3BF action. With suitable simplicity constraint terms added, a
3BF action perfectly �ts together all �elds necessary for a uni�ed description of quantum
gravity coupled to matter �elds � it features tetrads, spin connection, gauge �elds, scalar
�elds and fermions. The explicit construction was done in [16], where the full Standard
Model (SM) coupled to GR in the Einstein-Cartan formulation was rewritten in the
form (1), suitable for the implementation of the spinfoam quantization procedure and
building a full quantum theory. This demostrates the power and expressiveness of the
HGT approach, and it provides us with novel mathematical tools to study the algebraic
properties of the matter sector of the SM, in analogy to the gauge �eld sector which is
being described in terms of ordinary Lie groups. In this paper we will review the essential
properties of the new approach.
The layout of the paper is the following. In section 2 we give a brief introduction to

the category theory, categorical ladder, and the notion of n-groups. Our attention focuses
on 3-groups, in particular their representation in terms of 2-crossed modules. Section 3
reviews the construction and general properties of the 3BF action, and its relationship
with the 3-group structure. Then, in section 4 we apply this developed formalism to
construct the Standard Model 3-group, and explicitly build the action for the Standard
Model coupled to Einstein-Cartan gravity in the form of the 3BF action with suitable
simplicity constraints. Section 5 contains our concluding remarks.

2 Category theory and 3-groups

Let us begin by giving a short introduction to the category theory, and in particular the
notion of category theory ladder, a concept used in higher gauge theory to generalize the
notion of gauge symmetry. A nice introduction to this topic can be found in [12] and
further technical details in [14, 15].
A category C = (Obj;Mor) is a structure which has objects and morphisms between

them,
X; Y; Z; � � � 2 Obj ; f; g; h; � � � 2Mor ;

where
f : X ! Y; g : Z ! X; h : X ! Y; : : :

such that certain rules are respected, like the associativity of composition of morphisms,
and similar. Similarly, a 2-category C2 = (Obj;Mor1;Mor2) is a structure which has ob-
jects, morphisms between them, and morphisms between morphisms, called 2-morphisms,

X; Y; Z; � � � 2 Obj ; f; g; h; � � � 2Mor1 ; �; �; � � � 2Mor2 ;

where
f : X ! Y; g : Z ! X; h : X ! Y; : : : � : f ! h ; : : :
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such that similar rules about compositions are respected. Then, a 3-category C3 =
(Obj;Mor1;Mor2;Mor3) additionally has morphisms between 2-morphisms, called 3-
morphisms,

�;�; � � � 2Mor3 ; � : �! � ; : : :

again with a certain set of axioms about compositions of various n-morphisms. One can
further generalize these structures to introduce 4-categories, n-categories, 1-categories,
etc. The process of raising the �dimensionality� of a categorical structure is called a
categorical ladder.
It is useful to understand other algebraic structures as special cases of categories. As

a particularly important example, the algebraic structure of a group is a special case
of a category � it is a category with only one object, while all morphisms (i.e., group
elements) are invertible. It is straightforward to verify that axioms of a group follow from
this de�nition and the axioms of a category. Any group can be represented in this way,
for example �nite groups, Lie groups, and so on.
The notion of a categorical ladder then provides us with a natural way to introduce

novel, more general algebraic structures, by extending the above de�nition to 2-categories,
3-categories, etc. In particular,

� a 2-group is a 2-category with only one object, while all 1-morphisms and 2-
morphisms are invertible;

� a 3-group is a 3-category with only one object, while all 1-morphisms, 2-morphisms
and 3-morphisms are invertible.

It is important to emphasize that an n-group is not a particular type of group. Instead,
it is a di¤erent algebraic structure, which shares some of the features of groups, but is
governed by a qualitatively di¤erent set of axioms.
The framework of higher gauge theory is centered around the idea that gauge sym-

metries in physics can be better described using these alternative algebraic structures
than using the ordinary Lie groups. To that end, our attention will mostly focus on the
so-called Lie 3-groups and their corresponding Lie 3-algebras. While the abstract de�ni-
tion in terms of n-category theory is particularly appealing from the conceptual point of
view, for applications in physics there exists a more practical way to talk about 3-group.
Namely, every strict Lie 3-group is known to be equivalent to a so-called 2-crossed module,
de�ned as an exact sequence of three Lie groups G, H and L,

L
�! H

@! G ; (2)

and equipped with two �boundary homomorphisms� � and @, an action . of G onto G,
H and L,

. : G�G! G ; . : G�H ! H ; . : G� L! L ;

and a bracket operation called Pei¤er lifting over H to L,

f_ ;_g : H �H ! L :

Certain set of axioms is assumed to hold true among all these maps. In particular, for all
g 2 G, h 2 H and l 2 L, we have:

� the axiom stating that (2) is an exact sequence,

@� = 1G ; (3)
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� the axiom specifying that the action of G onto itself is conjugation,

g . g0 = g g0 g
�1 ; (4)

� the axioms stating that the action of G on H and L is equivariant with respect to
homomorphisms @ and � and the Pei¤er lifting,

g . @h = @(g . h) ;
g . �l = �(g . l) ;
g . fh1; h2g = fg . h1; g . h2g ;

(5)

� and �nally the axioms determining the properties of the Pei¤er lifting,

� fh1; h2g = h1h2h
�1
1 (@h1) . h

�1
2 ;

f�l1; �l2g = l1l2l
�1
1 l

�1
2 ;

fh1h2; h3g = fh1; h2h3h�12 g @h1 . fh2; h3g ;
f�l; hg fh; �lg = l(@h . l�1) :

(6)

Since it is constructed from three Lie groups, a Lie 3-group has a corresponding Lie
3-algebra, also called a di¤erential 2-crossed module,

l
�! h

@! g ;

where l, h, g are Lie algebras of L, H, G, the maps �, @, . and f_ ;_g are inherited from
the 3-group via natural linearization, and �nally, the set of corresponding axioms applies.
In addition to all this, Lie algebras have their own usual Lie structure � the generators,

TA 2 l ; ta 2 h ; �� 2 g

the corresponding structure constants,

[TA; TB] = fAB
CTC ; [ta; tb] = fab

ctc ; [��; ��] = f��
�  ;

and G-invariant nondegenerate symmetric bilinear forms (for example Killing forms),

hTA; TBil = gAB ; hta; tbih = gab ; h��; ��ig = g�� :

The main purpose of the 3-group structure is to generalize the notion of parallel trans-
port from curves to surfaces to volumes. Namely, given a 4-dimensional manifoldM, one
de�nes a 3-connection (�; �; ) as a triple of 3-algebra-valued di¤erential forms,

� = ���(x) �� dx
� 2 �1(M; g) ;

� =
1

2
�a��(x) ta dx

� ^ dx� 2 �2(M; h) ;

 =
1

3!
A���(x)TA dx

� ^ dx� ^ dx� 2 �3(M; l) :
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Then one can introduce the line, surface and volume holonomies,

g = Pexp
Z
P1
� ; h = Sexp

Z
S2
� ; l = Vexp

Z
V3
 ;

and corresponding curvature forms,

F = d�+ � ^ �� @� ;
G = d� + � ^. � � � ;
H = d + � ^.  � f� ^ �g :

The 3-group structure ensures that all these quantities are well de�ned, in particular the
surface- and volume-ordered exponentials and the respective holonomies.

3 Higher gauge theories

The basic idea behind the higher gauge theory approach is to employ the structure of
n-groups as a mathematical representation of gauge symmetries in physics, generalizing
the ordinary notion of gauge symmetry described via a Lie group. Namely, in ordinary
gauge theory, the prototype action functional was the so-called BF action [7], based on
a chosen gauge group G. In the HGT approach, one generalizes the BF action in accord
with the chosen n-group structure, leading to the nBF action. For the case of 3-groups,
one de�nes a 3BF action as:

S3BF =

Z
M
hB ^ Fig + hC ^ Gih + hD ^Hil :

Here B, C, and D are Lagrange multipliers, in particular a g-valued 2-form, an h-valued
1-form, and an l-valued 0-form, respectively.
As in the case of a BF theory, one can demonstrate that 3BF theory is a topological

gauge theory, having no local propagating degrees of freedom. Nevertheless, it can be
transformed into a physically relevant action by adding the so-called simplicity constraint
terms to the action, changing the dynamical structure of the theory. The prototype of
this procedure is represented by transforming the topological BF theory based on the
Lorentz group SO(3; 1) into a Plebanski action [8], which describes general relativity.
One can even do more, and provide a physical interpretation of the Lagrange multi-

pliers C and D in the 3BF action, as follows:

� the h-valued 1-form C can be interpreted as the tetrad �eld, if H = R4 is the
spacetime translation group,

C ! e = ea�(x) ta dx
� ;

� the l-valued 0-formD can be interpreted as the set of real-valued matter �elds, given
some Lie group L,

D ! � = �A(x)TA :

An interested reader can see [16] for further details.
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4 The Standard Model

One natural question that can be asked is what choice of a 3-group can be relevant for
physics. There are various answers to this question, but perhaps the most illustrative
example is a choice of the 3-group which reproduces the Standard Model of elementary
particles, coupled to general relativity in the Einstein-Cartan version. This is called the
Standard Model 3-group, and in the remainder of this section we will demonstrate how it
can be constructed, step by step.
The �rst step is to specify the groups G and H as the usual Lorentz, internal, and

translational symmetries:

G = SO(3; 1)� SU(3)� SU(2)� U(1) ; H = R4 :

Note that the Poincaré group has been broken into the separate Lorentz and transla-
tional parts, and these have been associated with two di¤erent groups within the 3-group
structure.
The next step is to de�ne the homomorphisms � and @, as well as the Pei¤er lifting,

to be trivial,
�l = 1H = 0 ; @~v = 1G ;

and
f~u;~vg = 1L ;

for all l 2 L and ~u;~v 2 H. Additionally, we de�ne the action of the group G on H
via vector representation for the SO(3; 1) sector and via trivial representation for the
SU(3)� SU(2)� U(1) sector. Finally, the choice of the group L and the action of G on
L will be discussed below. But already now one can verify that all axioms (3)�(6) are
satis�ed, thus making sure that these choices represent one genuine 3-group.
The next step is to choose the group L. One general property of L that can be

determined immediately comes from the second axiom in (6). Namely, due to the trivial
choices for the Pei¤er lifting and the homomorphism �, the axiom implies that L must be
Abelian. Aside from this, the choice of the group L is guided by physical requirements,
as follows.
Begin by rewriting the 3BF action in the form

S3BF =

Z
M
B� ^ F�g�� + e

a ^ Gbgab + �AHBgAB :

Since the groupG is a direct product of the Lorentz and internal groups, the corresponding
indices � ofG split according to this structure, as � = (ab ; i), leading to the corresponding
splitting of the connection � and its curvature F ,

� = !abJab + A
i� i ; F = RabJab + F i� i :

Here !ab is the ordinary spin connection 1-form, Jab are Lorentz generators, while Ai are
internal gauge potential 1-forms and � i the generators of SU(3)�SU(2)�U(1). Also, Rab
and F i are the Riemann curvature and gauge �eld strength 2-forms, respectively. Also,
given that the action of SO(3; 1) onto H = R4 is via vector representation, and given that
the bilinear symmetric nondegenerate form for H must be G-invariant, the only available
choice is

gab = �ab � diag(�1;+1;+1;+1) :
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Finally, given that the matter �elds are elements in the Lie algebra l of the group L,
namely � = �ATA, we observe that there should be precisely one real-valued �eld �

A(x)
for each generator TA 2 l. This information allows us to determine the dimension of the
algebra l, by counting the total number of real-valued components of all matter �elds in
the Standard Model. The matter �elds have two sectors � fermions and the Higgs.
The number of the real-valued components of all fermion �elds can be counted accord-

ing to the following scheme:� �e
e�

�
L

�
ur
dr

�
L

�
ug
dg

�
L

�
ub
db

�
L

(�e)R (ur)R (ug)R (ub)R

(e�)R (dr)R (dg)R (db)R

9>>>>>>>>=>>>>>>>>;
= 16

Weyl spinors
family

�

�3 families � 4 real-valued �elds
Weyl spinor

= 192 real-valued �elds �A :

Similarly, the Higgs sector gives us:�
�+

�0

��
= 2 complex scalar �elds = 4 real-valued �elds �A :

This suggests the structure for L in the form:

L = Lfermion � LHiggs ; dimLfermion = 192 ; dimLHiggs = 4 :

The structure of L can be further understood by looking at the action of the gauge
group G on various components of �elds �A. This is �xed by the choice of the action of
G on L, chosen as follows. Given that G is constructed from Lorentz and internal gauge
symmetry groups, the action . : G � L ! L speci�es the transformation properties of
each real-valued �eld �A with respect to those symmetries. For example, if we look at a
Weyl spinor ub that sits in the doublet �

ub
db

�
L

;

the action g . ub (where g 2 SO(3; 1)� SU(3)� SU(2)� U(1)) encodes that ub consists
of 4 real-valued �elds which transform as:

� a left-handed spinor with respect to SO(3; 1),

� as a �blue�component of the fundamental representation of SU(3),

� and as �isospin +1
2
�of the left doublet with respect to SU(2)� U(1).

The action . : G�L! L similarly de�nes the transformation properties for all other
fermions in the theory, as well as for the Higgs �eld.
From such a de�nition of the action ., one can observe that G acts on L in precisely

the same way across the three fermion families. This implies that Lfermion can be written
as

Lfermion = L1st family � L2nd family � L3rd family ; dimLk-th family = 64 :
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Ultimately, given that the components of Weys spinors mutually anticommute, given
that the group L is Abelian, and given that it has the structure and dimension as given
above, we can �x the choice of the group L which corresponds to the Standard Model as

L = R4(C)� R64(G)� R64(G)� R64(G) ;

where G is the algebra of Grassmann numbers. This completes the construction of the
Standard Model 3-group.
The �nal step in specifying the theory is to spell out its classical action. As was

previously discussed, the action has the form of a 3BF action, with the addition of
appropriate simplicity constraints which will transform it into a non-topological theory,
i.e., a theory with local propagating degrees of freedom. The choice of the Standard Model
3-group completely �xes the structure of the 3BF action, and the only thing left to do
is to add the appropriate simplicity constraints. The details of the construction of these
terms is given in detail in [16], and will not be repeated here. We will only quote the
result,

SSM+EC = S3BF + Ssimp ;

where

S3BF =

Z
B�̂ ^ F �̂ + eâ ^ G â + �Â ^HÂ ;

and

Ssimp =
�
B�̂ � C�̂�̂Mcd�̂e

c ^ ed
�
^ ��̂ �

�
Â � ea ^ eb ^ ecCÂB̂MabcB̂

�
^ �Â

�4�i l2p "abcdea ^ eb ^ �c�ÂT dÂB̂�B̂

+�ab�̂ ^
�
Mab

�̂"cdefec ^ ed ^ ee ^ ef � F �̂ ^ ec ^ ed
�

+�abÂ ^
�
Mabc

Â"cdefed ^ ee ^ ef � F Â ^ ea ^ eb
�

�"abcdea ^ eb ^ ec ^ ed
�
� +MÂB̂�

Â�B̂ + YÂB̂Ĉ�
Â�B̂�Ĉ + LÂB̂ĈD̂�

Â�B̂�Ĉ�D̂
�
:

See [16] for details and notation.
By varying the action with respect to all variables, and with a little technical e¤ort, one

can demonstrate that the corresponding equations of motion are precisely the classical
equations of the Standard Model, coupled to general relativity in the Einstein-Cartan
formulation.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short introduction
into the category theory, introduced the notions of categorical ladder and n-categories,
and in the resulting framework, provided a de�nition for the notion of an n-group. Our
attention focused on the case of 3-groups, which are relevant for applications in physics,
and the equivalent notion of a 2-crossed module, which is more convenient for practical
applications. Section 3 was devoted to introducing the higher gauge theory formalism
and the 3BF action corresponding to a choice of a 3-group, as a generalization of the well
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known BF action in terms of the categorical ladder. Also, we have interpreted the addi-
tional Lagrange multipliers appearing in the 3BF action as the tetrad and matter �elds,
providing the setup for the application in physics. This application was then demon-
strated in detail in section 4, where the Standard Model 3-group has been de�ned, and
utilized to construct a physically relevant constrained 3BF action, which is classically
equivalent to the Standard Model of elementary particles coupled to general relativity
in the Einstein-Cartan formulation. This is the main result, which successfully estab-
lishes the �rst step of the spinfoam quantization procedure, and opens up a possibility of
straightforward implementation of the second and third steps, hopefully leading to a full
model of quantum gravity with matter.
It should be noted that the most important feature of the higher gauge theory frame-

work is its ability to treat gravity, gauge �elds, fermions and scalar �elds on completely
equal footing, describing all of them via the underlying algebraic structure of a 3-group.
The 3-group also provides us with a natural geometric description of a generalized notion
of parallel transport, namely along a surface and along a volume, in addition to the stan-
dard notion of parallel transport along a curve. This relationship opens up a possibility
for a fully geometric interpretation of all �elds present in physics.
Moreover, just as the gauge group dictates the number and properties of gauge �elds in

Yang-Mills theories, the sector of the 3-group described by the Lie group L determines the
number and properties of the fermion and scalar �elds. This fact enables us to classify the
spectrum of matter �elds in terms of group theory, generalizing the constructions present
in the Standard Model, where only gauge �elds are classi�ed in such terms. The choice
of the group L thus opens up novel avenues for research on the uni�cation of all �elds,
and speci�cally the origin of particle families, Higgs and fermion sectors, and so on.
Finally, the higher gauge theory framework may have applications in other areas of

physics and mathematics as well, and various possible research directions are yet to be
explored.
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Rezime

U ovoj tezi je predstavljena kategorijska generalizacija BF teorije na 2BF i 3BF teorije,
prelaskom sa pojma gejdž grupe simetrija na pojmove gejdž 2-grupe i gejdž 3-grupe, u okviru
formalizma više gejdž teorije. Razmatrana su 2BF dejstva sa vezama koja opisuju teoriju gra-
vitacije i Jang-Milsovog polja i 3BF dejstva sa vezama koja opisuju teoriju Klajn-Gordonovog,
Dirakovog, Vajlovog i Majorana polja kuplovanog sa Ajnštajn-Kartanovom gravitacijom. Ova
klasična dejstva napisana su u obliku koji je prilagođen kvantizacionoj proceduri spinske pene,
tj. prirodno su podeljena na dva sektora: topološki sektor i sektor sa vezama. U okviru ovih
3BF teorija, struktura 3-grupe dovodi do pojave nove gejdž grupe koja određuje spektar polja
materije prisutne u teoriji, na sličan način kao što obična gejdž grupa određuje spektar gejdž bo-
zona u Jang-Milsovoj teoriji. Ovakva formulacija polja materije i gravitacije nam omogućava da
prepišemo ceo Standardni Model kuplovan sa gravitacijom kao 3BF dejstvo sa vezama i dovodi
nas korak bliže konstruisanju unifikovanog opisa i neperturbativne kvantizacije polja gravitacije
i materije. U nastavku je određena kompletna gejdž grupa simetrije topološkog 3BF dejstva
sprovođenjem kompletne Hamiltonove analize 3BF dejstva za proizvoljnu semistriktnu Lijevu
3-grupu, koristeći Dirakovu proceduru. Određivanje ukupne grupe simetrija je važan korak u
kanonskoj kvantizaciji teorije kompletnog Standardnog Modela elementarnih čestica kuplovanog
sa Ajnštajn-Kartanovom gravitacijom, formulisanog kao 3BF dejstvo sa vezama. Rezultujuća
gejdž grupa simetrije se sastoji od pet vrsta transformacija: G-, H-, L-, M - i N -gejdž transfo-
rmacija. Pokazuje se da je razmatrana teorija invarijantna na difeomorfizme, jer je 3BF dejstvo
sa vezama manifestno kovarijantno, a grupa lokalnih translacija dobijena je kao podgrupa di-
rektnog proizvoda ukupne gejdž simetrije i Eno-Tajtelboim transformacija. Kao važan korak u
kovarijantnoj kvantizacionoj proceduri spinske pene, razmatrana je topološka suma po stanjima
Z, konstruisana za klasično 3BF dejstvo za generalnu 3-grupu i 4-dimenzionalnu prostorvre-
mensku mnogostrukost M4. Konstruisana suma po stanjima specijalan je slučaj Porterove
topološke kvantne teorije polja za d = 4 i n = 3 i topološka je invarijanta 4-dimenzionalne
mnogostrukosti, što je utvrđeno ispitivanjem njene invarijantnosti pri Pahnerovim potezima.
Ova suma po stanjima je generalizacija sume po stanjima koju su formulisali Žireli, Pfajfer i
Popesku za slučaj 2BF dejstva sa odgovarajućom strukturom 2-grupe.

Ključne reči: BF teorija, teorija kategorija, više gradijentne teorije, 3BF teorija.
Naučna oblast: Fizika
Uža naučna oblast: Teorijska fizika visokih energija
UDK broj: 539.120.226 (043.3)
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Abstract

In this thesis we study the categorical generalizations of a BF theory to 2BF and 3BF
theories, by passing from the notion of a gauge group to the notions of a gauge 2-group and a
gauge 3-group in the framework of higher gauge theory. In particular, we construct the con-
strained 2BF actions describing the dynamics of the gravitational and the Yang-Mills fields,
and the the constrained 3BF actions describing the dynamics of Klein-Gordon, Dirac, Weyl
and Majorana fields coupled to Einstein-Cartan gravity. The action is naturally split into a
topological sector and a sector with simplicity constraints, adapted to the spinfoam quantiza-
tion program. In addition, the structure of the 3-group gives rise to a novel gauge group which
specifies the spectrum of matter fields present in the theory, just like the ordinary gauge group
specifies the spectrum of gauge bosons in Yang-Mills theory. This allows us to rewrite the whole
Standard Model coupled to gravity as a constrained 3BF action, facilitating the nonperturba-
tive quantization of both gravity and matter fields. We determine the full gauge symmetry of
the 3BF action by carrying out the complete Hamiltonian analysis of the 3BF action for an
arbitrary semistrict Lie 3-group, using the Dirac procedure. This analysis is an important step
in the canonical quantization of the complete Standard Model of elementary particles coupled
to Einstein-Cartan gravity, formulated as a 3BF action with suitable simplicity constraints.
We show that the resulting gauge symmetry group consists of the already familiar G-, H-, and
L-gauge transformations, as well as additional M - and N -gauge transformations, which have
not been discussed in the existing literature. As expected, since the 3BF action is formulated
in a manifestly covariant way, we establish that diffeomorphisms are a symmetry of the theory,
and are obtained as a subgroup of the direct product of the full gauge symmetry group and
the Henneaux-Teitelboim transformations. As an important step in the covariant spinfoam
quantization of the theory, we construct a triangulation independent topological state sum Z,
based on the classical 3BF action for a general 3-group and a 4-dimensional spacetime manifold
M4. The obtained state sum coincides with Porter’s TQFT for d = 4 and n = 3. In order to
verify that the constructed state sum is a topological invariant of the underlying 4-dimensional
manifold, we analyze its behavior under Pachner moves, and we obtain that the state sum Z
remains the same. The constructed state sum is a generalization of the work done by Girelli,
Pfeiffer, and Popescu for the case of state sum based on the topological 2BF action with the
underlying 2-group structure.

Key words: BF theory, category theory, higher gauge theory, 3BF theory.
Scientific field: Physics
Research area: Theoretical high energy physics
UDC number: 539.120.226 (043.3)
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Deo I

Klasična teorija

1





Glava 1

Uvod

U okviru teorije Kvantne Gravitacije na Petljama, moguće je proučavati neperturbativnu kva-
ntizaciju gravitacije, kovarijantnim ili kanonskim pristupom (za detaljan uvod u pristupe kva-
ntovanja gravitacije u okviru ove teorije pogledati [1]–[4]). Kovarijantni pristup ima za primarni
cilj definisanje konfiguracionog integrala gravitacionog polja,

Z =

∫
Dg eiS[g] , (1.1)

razmatranjem triangulacije T (MD) prostorvremenske mnogostrukostiMD i definisanjem inte-
grala kao diskretizovane sume po stanjima konfiguracija gravitacionog polja na simpleksima koji
čine triangulaciju. Suma po stanjima triangulacije T (MD) mnogostrukostiMD u D dimenzija
je definisana kao

Z =
∑
{φ}

∏
v∈T

Av(φ)
∏
ε∈T

Aε(φ) · · ·
∏
σD∈T

AσD(φ), (1.2)

gde su proizvodi po svim verteksima v, ivicama ε, trouglovima ∆, tetraedrima τ , sve do D-
simpleksa σD koje triangulacija sadrži. Svaka ova ćelija obojena je bojama φ koje opisuju fu-
ndamentalne varijable modela, a svakoj ćeliji dodeljena je amplituda A koja opisuje dinamiku
varijabli φ. Na ovaj način možemo definisati konfiguracioni integral (1.1). Primetimo da ampli-
tude Av(φ), Aε(φ) , . . . ,AσD(φ) delom ulaze u definiciju mere konfiguracionog integrala, delom
u definiciju dejstva S[φ].

Ova tehnika kvantizacije je poznata kao kvantizacioni metod spinske pene. U okviru forma-
lizma spinskih pena1, a zatim i njegove generalizacije u formalizmu teorije kategorija – spin-kub
modela2, podrazumeva se kovarijantni pristup kvantovanju gravitacije u kom se konfiguracioni
integral definiše na isti način na koji je to urađeno u Fajnmanovoj definiciji integrala po puta-
njama, a motivisan je kanonskom kvantizacijom na petljama. Ovaj pristup se može podeliti na
tri glavna koraka.

1. Prvo, definiše se klasično dejstvo S[g] koje čine dva sektora: sektor topološke BF teorije
i sektor koji sadrži veze.

2. Zatim, koristeći algebarsku strukturu, tj. Lijevu grupu G koja odgovara topološkom
sektoru teorije, definiše se suma po stanjima ZBF nezavisna od triangulacije T (M4).

3. Najzad, nametanjem veza na topološku sumu po stanjima ZBF dobija se suma po stanjima
koja odgovara pravoj fizičkoj teoriji.

1eng. spin foam model.
2eng. spin cube model.
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Glava 1. Uvod 4

Ovaj metod kvantovanja gravitacije uspešno je primenjen za različite izbore dejstva S[g], Lijeve
grupe G, kao i dimenzije prostorvremenske mnogostrukosti D.

Topološka BF teorija definiše se zadavanjem gejdž invarijantnog BF dejstva koje je defini-
sano za Lijevu grupu G, odnosno njenu odgovarajuću Lijevu algebru g:

SBF =

∫
M4

〈B ∧ F〉g . (1.3)

Ovde je F ≡ dα+α∧α 2-forma element algebre g, krivina za 1-formu koneksiju α ∈ A1(M4 , g),
definisanu na glavnom G-raslojenju neke 4-dimenzionalne prostorvremenske mnogostrukosti
M4. Lagranžev množitelj B ∈ A2(M4 , g) je 2-forma, dok 〈_ ,_〉g označava G-invarijantnu
bilinearnu simetričnu nedegenerisanu formu.

Kratak pregled klasične BF teorije biće prikazan u poglavlju 4. Sprovešćemo kompletnu
Hamiltonovu analizu topološkog BF dejstva, a zatim ćemo prebrojati stepene slobode u teoriji.
Kao što i očekujemo, dobićemo da BF dejstvo opisuje teoriju bez lokalnih propagirajućih ste-
peni slobode. Kastelanijevom procedurom biće izračunat generator gejdž simetrije u BF teoriji,
a zatim ćemo izračunati varijacije formi za sve varijable u teoriji i njihove konjugovane impulse.
Na osnovu ovih rezultata, dobićemo dva tipa gejdž transformacija simetrije u BF teoriji —
G-gejdž i M -gejdž transformacije, koje su već poznate u literaturi, kao i komutacione relacije
ukupne grupe gejdž simetrije BF dejstva, grupe GBF . Demonstriraćemo da je BF teorija invari-
jantna na difeomorfizme. Zatim, razmatraćemo dva za fiziku relevantna BF modela, dobijena
dodavanjem odgovarajućih članova, veza, u BF dejstvo — Jang-Milsovu teoriju za SU(N)
grupu u prostoru Minkovskog i Plebanski model za Opštu relativnost.

U okviru formalizma BF teorije, trodimenzionalna kvantna gravitacija prvi put je definisana
u Ponzano-Redže modelu za triangulaciju trodimenzionalne mnogostrukosti za grupu SU(2)
[5]. Svakoj ivici triangulacije dodeljena je jedna ireducibilna reprezentacija grupe SU(2), pa
su amplitude sumirane po svim mogućim konfiguracijama ovih spinova. U 4-dimenzionalnom
slučaju definisani su raznovrsni modeli, od kojih su jedni od najpoznatijih Baret-Krejn model
[6], [7] i Oguri model [8]. Najzad, najsofisticiraniji - tzv. EPRL/FK model je model 4D kvantne
gravitacije koji su nezavisno razvili Dž. Engl, R. Pereira, E. Livajn i K. Roveli [9] i L. Fridel i K.
Krasnov [10], u okviru formalizma spinskih pena. Konkretan izbor polja u EPRL/FK modelu
motivisan je rezultatom iz kanonske kvantizacije na petljama [1], gde je stanje gravitacionog
polja opisano tzv. spinskim mrežama, koje su obojene polucelim brojevima i, j ∈ N/2. Ovi
modeli predstavljaju nezavisne pokušaje da se definiše kvantna teorija gravitacije sa različitim
stepenima uspeha, pri čemu su svi fokusirani na definisanje teorije čiste gravitacije bez materije.
Pokušaji da se u teoriju uključi materija imali su ograničenog uspeha [11], uglavnom zbog
činjenice da maseni članovi ne mogu biti izraženi u okviru ove teorije. Razlog leži u tome što
polja tetrada nisu prisutna u topološkom sektoru BF teorije.

Kovarijantno kvantovanje gravitacije u okviru BF teorija, odnosno konstrukcija topološke
BF sume po stanjima u slučajevima trodimenzionalne i četvorodimenzionalne mnogostrukosti
uobičajenom kvantizacionom procedurom spinske pene, biće razmatrani u poglavlju 7. U trodi-
menzionalnom slučaju, polazeći od topološke BF teorije konstruisaćemo sumu po stanjima
koja opisuje Ponzano-Redže model, što je posledica činjenice da na klasičnom nivou teorija
trodimenzionalne gravitacije nema lokalne propagirajuće stepene slobode. Zatim, u četvorodi-
menzionalnom slučaju konstruisaćemo BF topološku sumu po stanjima koja odgovara Ouguri
modelu. Međutim, u realnom slučaju četvorodimenzionalne prostorvremenske mnogostrukosti,
situacija je komplikovanija. Naime, u 4D teorija gravitacije nije topološka teorija, pa dobi-
jena suma po stanjima ne odgovara fizičkoj teoriji, a kvantna teorija gravitacije može se dobiti
tek modifikacijom amplituda topološke sume po stanjima. Ipak, poslednjim, trećim korakom
kvantizacione procedure spinske pene se nećemo baviti u okviru ove disertacije.

U cilju prevazilaženja problema sa kuplovanjem materije u BF modelima kvantne gravi-
tacije, u okviru formalizma teorije kategorija razvija se nov pristup koji koristi kategorijsku
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generalizaciju BF dejstva, u kontekstu viših gejdž teorija [12]. Kratak uvod u formalizam
teorije viših kategorija dat je u poglavlju 2. U teoriji kategorija, grupa se definiše kao ka-
tegorija sa samo jednim objektom gde su svi morfizmi invertibilni. Pojam kategorije može se
generalizovati na takozvane više kategorije, koje osim objekata i morfizama, kao elemente imaju
i 2-morfizme (morfizme između morfizama) itd. Tada je moguće definisati tzv. 2-grupu kao 2-
kategoriju sa samo jednim objektom gde su svi morfizmi i 2-morfizmi invertibilni. Konkretno,
koristi se ideja kategorijskih lestvica, videti Tabelu 1.1. Kategorijskom generalizacijom BF
dejstva, koje je definisano za neku Lijevu grupu, dolazimo do 2BF dejstva, koje je definisano
za određenu 2-grupu. Pokazano je da je svaka striktna 2-grupa ekvivalentna nekom ukrštenom
modulu (H

∂→ G ,�), gde su G i H Lijeve grupe, ∂ : H → G homomorfizam iz H u G, dok je
� : G×H → H dejstvo grupe G na grupu H.

kategorijska
struktura

algebarska
struktura

linearna
struktura

topološko
dejstvo

stepeni
slobode

Lijeva grupa Lijeva grupa Lijeva algebra BF teorija gejdž polja

Lijeva 2-grupa
Lijev ukršteni

modul
diferencijalni Lijev
ukršteni modul 2BF teorija tetrade

Lijeva 3-grupa
Lijev 2-ukršteni

modul
diferencijalni Lijev
2-ukršteni modul 3BF teorija skalarna i

fermionska polja

Tabela 1.1: Kategorijske lestvice.

Kao što je to slučaj kod Lijeve grupe G za koju se prirodno definiše koneksija α na glavnom
G-raslojenju neke 4-dimenzionalne prostorvremenske mnogostrukostiM4, a zatim i BF dejstvo,
struktura 2-grupe prirodno daje uređeni par 2-koneksiju (α , β). Ovde je α ∈ A1(M4 , g)
uobičajna 1-forma element algebre g, β ∈ A2(M4 , h) nova koneksija 2-forma element algebre
h, gde je h je Lijeva algebra za Lijevu grupu H. Za 2-koneksiju definiše se tzv. lažna 2-krivina,
urđeni par (F ,G), na sledeći način [12]:

F = dα + α ∧ α− ∂β , G = dβ + α ∧� β . (1.4)

Ovde α∧� β označava da su varijable α i β pomnožene kao forme ∧-proizvodom i istovremeno
kao elementi algebre dejstvom � algebre g na algebru h. Uređeni par krivina (F ,G) se naziva
lažnom zbog prisustva člana ∂β u definiciji F , videti poglavlje 5 za detalje.

Koristeći ove varijable, može se definisati 2BF dejstvo, koje je gejdž invarijantno pri 2-gejdž
transformacijama [13], [14],

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h , (1.5)

gde su 2-forma B ∈ A2(M4 , g) i 1-forma C ∈ A1(M4 , h) Lagranževi množitelji. Takođe,
〈_ ,_〉g i 〈_ ,_〉h redom označavaju G-invarijantnu bilinearnu simetičnu nedegenerisanu formu
za algebre g i h.

Kada se izabere na pogodan način, struktura 2-grupe uvodi tetradna polja u topološko
2BF dejstvo, kao što je to uspešno urađeno u [15]. U ovom radu, dejstvo za Opštu relativnost
napisano je kao 2BF dejstvo za vezama za određeni izbor 2-grupe, tako da su polja tetrade
prisutna u topološkom sektoru teorije. Ovaj rezultat otvorio je mogućnost kuplovanja materije
sa gravitacijom na pravolinijski način.

U poglavlju 5 ćemo analizirati klasičnu 2BF teoriju. Slično kao i za BF dejstvo, Hami-
ltonovom analizom i prebrojavanjem stepeni slobode ćemo pokazati da je 2BF dejstvo takođe
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topološko, tj. da opisuje teoriju bez lokalnih propagirajućih stepeni slobode. Dobićemo kako
glase konačne transformacije simetrije za 2BF dejstvo: G-gejdž, H-gejdž, M -gejdž i N -gejdž
transformacija i komutacione relacije ukupne gejdž grupe simetrija G2BF . Pokazaćemo difeo-
morfizam invarijantnost 2BF teorije. Zatim, pogodnim izborom 2-grupe prikazaćemo Opštu
relativnost kao 2BF teoriju sa vezama kao što je to učinjeno u [15]. Na kraju, poslednji odeljak
poglavlja 5 biće posvećen diskusiji Ajnštajn-Jang-Milsove teorije, odnosno teoriji gravitacije i
gejdž polja formulisanoj kao 2BF teorija sa vezama [16].

U poglavlju 8 ćemo sprovesti drugi korak kovarijantne kvantizacione procedure spinske pene
za 2BF teoriju [13]. Demonstriraćemo kako se konstruiše suma po stanjima Z koja je nezavisna
od triangulacije, na osnovu klasičnog 2BF dejstva za opštu striktnu 2-grupu i bilo koju triangu-
laciju bilo koje glatke d-dimenzionalne prostorvremenske mnogostrukosti, za slučaje d ∈ {3, 4}.
Za d = 3, kontruisana suma po stanjima je upravo Jeterov model, dok se za d = 4 poklapa sa
Porterovom TKTP za d = 4 i n = 2. Analiziraćemo ponašanje konstruisane sume po stanji-
ma pri Pahnerovim potezima, lokalnim promenama triangulacije koje čuvaju topologiju, tako
da su bilo koje dve triangulacije iste mnogostrukosti povezane konačnim brojem Pahnerovih
poteza. U trodimenzionalnom slučaju postoje četiri Pahnerova poteza — potezi 1↔ 4 i 2↔ 3
i njihovi inverzi, dok u 4 dimenzije postoji pet različitih Pahnerovih poteza — potezi 3 ↔ 3,
4↔ 2 i 5↔ 1 i njihovi inverzi. Postavku analize ponašanja konstruisane sume po stanjima pri
ovim Pahnerovim potezima predstavićemo u odeljku 8.3, dok su detalji računa dati u Dodatku
E.1. Dobićemo da 2BF suma po stanjima ostaje nepromenjena pri ovim transformacijama
triangulacije, što dokazuje da je to jedna topološka invarijanta mnogostrukosti.

Ipak, dok struktura 2-grupe može prirodno da opiše gravitaciono i vektorsko polje, polja ma-
terije ne mogu biti prirodno izražena u okviru algebarske strukture 2-grupe, tj. sektor materije
u dejstvu ne može biti napisan kao topološki član plus veza. To čini ovako napisano dejstvo
tek polovično pripremljenim za kvantizacionu proceduru spinske pene, pa drugi i treći korak
kvantizacione procedure ne mogu biti sprovedeni za celokupnu teoriju gravitacije i materije.
Upravo to je problem na koji ćemo se fokusirati u okviru ove doktorske disertacije.

U cilju konstruisanja unifikovanog opisa gravitacije i materije, predložen je još jedan korak
generalizacije primenom kategorijskih lestvica, tj. generalizacija algebarske strukture sa 2-grupe
na 3-grupu [16]. Nivoi kategorijskih lestvica su prikazani u Tabeli 1.1. Kako se ispostavlja,
struktura 3-grupe uspešno daje opis svih polja prisutnih u Standardnom Modelu, u interakciji
sa gravitacijom. Pored toga, ova struktura uvodi novu gejdž grupu, koja odgovara skalarnim
i fermionskim poljima prisutnim u teoriji [16]. Ovo je nov i neočekivan rezultat, koji ima
potencijal da otvori novi pravac istraživanja i ponudi objašnjenje za strukturu sektora materije
prisutne u Standardnom Modelu, kao i izvan.

Struktura 3-grupe definiše se u okviru teorije kategorija kao 3-kategorija sa samo jednim
objektom gde su svi morfizmi, 2-morfizmi i 3-morfizmi invertibilni. Slično kao što je striktna
2-grupa ekvivalentna ukrštenom modulu, pokazano je da je svaka semistriktna 3-grupa ekviva-
lentna nekom 2-ukrštenom modulu [17]. Lijev 2-ukršteni modul (L

δ→ H
∂→ G ,� , {_ ,_}pf)

je algebarska struktura zadata trima Lijevim grupama G, H i L, zajedno sa homomorfizmima
δ : L → H i ∂ : H → G, dejstvom � grupe G na sve tri grupe, kao i G-ekvivarijantnim
preslikavanjem

{_ ,_}pf : H ×H → L ,

koje se naziva Pajferovo podizanje.
Analogno konstrukciji BF i 2BF topološkog dejstva, može se definisati topološko 3BF

dejstvo za mnogostrukost M4 i 2-ukršteni modul (L
δ→ H

∂→ G ,� , {_ ,_}pf). Za Lijeve
algebre g, h i l asocirane sa Lijevim grupama G, H i L, prirodno se uvodi uređena trojka 3-
koneksija (α, β, γ), gde su diferencijalne forme elementi algebri α ∈ A1(M4 , g), β ∈ A2(M4 , h)
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i γ ∈ A3(M4 , l). Odgovarajuća lažna 3-krivina (F ,G ,H) je:

F = dα + α ∧ α− ∂β , G = dβ + α ∧� β − δγ , H = dγ + α ∧� γ + β ∧{,} β . (1.6)

Videti [17], [18] za detalje. Sada, moguće je definisati 3BF dejstvo:

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (1.7)

gde su B ∈ A2(M4, g), C ∈ A1(M4, h) i D ∈ A0(M4, l) Lagranževi množitelji. Forme 〈_,_〉g,
〈_,_〉h i 〈_,_〉l su G-invarijantne bilinearne simetrične nedegenerisane forme na g, h i l, redom.

Za teoriju gravitacije i materije formulisanu kao 3BF dejstvo sa vezama za određenu 3-
grupu potrebno je sprovesti kovarijantnu kvantizacionu proceduru i kanonsku kvantizacionu
proceduru, pri čemu ćemo se mi za sada fokusirati na prve korake.

Kanonska kvantizaciona procedura. Prvi korak ka kanonskoj kvatizaciji teorije je
Hamiltonova analiza, koja rezultira algebrom veza prve klase i veza druge klase prisutnih u
teoriji. Veze prve klase postaju uslovi na fizička stanja koja određuju Hilbertov prostor, dok
Hamiltonova veza određuje dinamiku. Sa tim ciljem, u prvom koraku kanonske kvantizacije
3BF teorije, fokusirali smo se na pronalaženje kompletne gejdž grupe simetrije topološkog 3BF
dejstva [19]. Kompletna Hamiltonova analiza 3BF dejstva za opštu semistriktnu Lijevu 3-grupu
korišćenjem Dirakove procedure biće prikazana u poglavlju 6. Ovaj postupak je generalizacija
Hamiltonove analize 2BF dejstva izvedene u [20]–[23] i Hamiltonove analize za poseban slučaj
2-ukrštenog modula koja odgovara teoriji skalarne elektrodinamike, sprovedene u [24]. Analiza
Hamiltonove strukture teorije daje nam algebru veza prve klase i veza druge klase prisutnih
u teoriji. Kao i obično, veze prve klase generišu gejdž transformacije, koje ne menjaju fizi-
čko stanje sistema. Nakon izračunavanja veza prve klase, korišćenjem Kastelanijeve procedure
izračunaćemo generator gejdž transformacija na prostornoj hiperpovrši, a zatim će rezultati do-
bijeni ovom metodom biti generalizovani na čitavo prostorvreme. Dobićemo kompletnu gejdž
simetriju topološke 3BF teorije, koja se sastoji od pet vrsta konačnih gejdž transformacija —
G-gejdž, H-gejdž i L-gejdž transformacije koje su već poznate iz prethodne literature, kao i
dodatne M -gejdž i N -gejdž transformacije koje su jedan od naših glavnih rezultata. Uzimajući
u obzir ovaj rezultat, analiziraćemo strukturu kompletne gejdž grupe simetrija G3BF . Dobijeni
rezultati dovode do veze između grupe gejdž simetrije 3BF dejstva i strukture 3-grupe na kojoj
je zasnovano 3BF dejstvo. Pokazaćemo da difeomorfizam invarijantnost 3BF teorije. Ova
analiza je važan korak ka proučavanju gejdž grupe simetrije teorije gravitacije sa materijom,
formulisane kao 3BF dejstvo sa vezama [16], kao i njene kanonske kvantizacije.

Prvi korak kvantizacione procedure spinske pene. Nakon što odredimo odgovarajuće
3-grupe i konstruišemo odgovarajuća 3BF dejstva, potrebno je nametnuti odgovarajuće veze na
stepene slobode prisutne u topološkom sektoru 3BF dejstva, tako da dobijemo željenu klasičnu
dinamiku polja materije i gravitacije. Nametanjem odgovarajućih veza na dejstvo (1.7) moguće
je dobiti dejstva za polja materije u interakciji sa gravitacijom. Pored prethodno definisanih
2BF dejstva sa vezama za Jang-Milsovo i Proka vektorsko polje, u poglavlju 6 ćemo konstruisati
odgovarajuća 3BF dejstva sa vezama za slučajeve Klajn-Gordonovog, Dirakovog, Vejlovog i
Majorana polja u interakciji sa Ajnštajn-Kartanovom gravitacijom. Ova konstrukcija će nas
dovesti do neočekivanog novog rezultata. Kao što ćemo videti, skalarno i fermionsko polje će
biti prirodno pridruženo novoj gejdž grupi, na taj način generalizujući pojam gejdž grupe Jang
Milsove teorije. Nova gejdž grupa otvara mogućnost klasifikacije polja materije i opisa struktura
poput familije kvarkova i leptona itd. No, s obzirom na složenost algebarskih svojstava 3-grupa
u okviru novog formalizma teorije kategorija, u ovom koraku našeg istraživanja fokusirali smo
se samo na rekonstrukciju već poznatih teorija, poput Standardnog Modela. U tom smislu,
svako potencijalno objašnjenje spektra polja materije u SM ostavljeno je za budući rad.
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Drugi korak kvantizacione procedure spinske pene. Sproveden prvi korak kvanti-
zacione procedure spinske pene, nagoveštaj je mogućnosti realizovanja drugog i trećeg koraka
takođe, imajući u vidu da je dejstvo napisano preko diferencijalnih formi, što nam dozvoljava
da ga prilagodimo na prostorvremensku deo-po-deo ravnu mnogostrukost korišćenjem Redže
računa [25]. Konkretno, sva polja i jačine polja prisutna u 3BF dejstvu mogu se prirodno do-
deliti nekom d-dimenzionalnom simpleksu 4-dimenzionalne triangulacije, dodeljivanjem 0-forme
verteksu, odnosno 0-dimenzionalnom objektu, 1-forme ivicama, itd. Ovo nas dovodi do Tabele
1.2.

d triangulacija dualna triangulacija forma polja jačine polja

0 verteks • 4-kompleks 0-forma φ, ψα̃, ψ̄α̃

1 ivica 3-poliedar 1-forma ωab, AI , ea

2 trogao poligon 2-forma βa, Bab Rab, F I , T a

3 tetraedar ivica 3-forma γ, γα̃, γ̄α̃ Ga

4 4-simpleks verteks • 4-forma H, Hα̃, H̄α̃

Tabela 1.2: Korespodencija između polja i jačina polja i elemenata triangulacije T (M4).

Jednom kada je klasično Redže-diskretizovano 3BF dejstvo konstruisano, sledeći korak
kvantizacione procedure je definisanje sume po stanjima Z koja definiše konfiguracioni inte-
gral teorije. Topološka priroda 3BF dejstva, zajedno sa strukturom gejdž 3-grupe, obezbeđuje
da takva suma bude topološka invarijanta, odnosno da je nezavisna od triangulacije. Za klasično
3BF dejstvo u slučaju generalne semistriktne 3-grupe i 4-dimenzionalne prostorvremenske mno-
gostrukosti M4, u poglavlju 9 ćemo formulisati topološku sumu po stanjima Z nezavisnu od
trijagulacije. Ova suma po stanjima podudara se sa Porterovom apstraktnom definicijom
topološke kvantne teorije polja (TKTP) [26] za slučaj d = 4 i n = 3, gde je d predstavlja
dimenziju mnogostrukosti M, a n nivo kategorijskih lestvica. Ova definicija je generalizacija
Jeterove definicije sume po stanjima. Kako bismo proverili da li je konstruisana suma po sta-
njima zaista topološke prirode, analiziraćemo njeno ponašanje pri Pahnerovim potezima [27].
Analizom Pahnerovih poteza dobijeno je da suma po stanjima Z ostaje ista, tj. da je zaista
topološka invarijanta 4-dimenzionalne mnogostrukosti. Postavka dokaza invarijantnosti biće
predstavljena u poglavlju 9, dok je detaljna analiza Pahnerovih poteza prikazana u Dodatku E.

Nažalost, da bismo ovaj korak procedure precizno sproveli do kraja, neophodna je genera-
lizacija Piter-Vejlove i Planšarelove teoreme za slučajeve 2-grupa i 3-grupa. Cilj Piter-Vejlove
teoreme je da obezbedi dekompoziciju funkcija na grupi na sumu po odgovarajućim ireduci-
bilnim reprezentacijama, što nam omogućava preciziranje spektra oznaka d-simpleksa u tria-
ngulaciji, utvrđujući domen vrednosti polja koja žive na tom d-simpleksu. U slučaju 2-grupa i
3-grupa, teorija reprezentacija nije dovoljno razvijena da bi mogla da obezbedi takvu konstru-
kciju, pa su teoreme analogne Piter-Vajlovoj, odnosno Planšarelovoj, matematički rezultati koji
i dalje nedostaju. Sa druge strane, dok se ove formulacije čekaju, moguće je pokušati pogoditi
odgovarajuću strukturu ireducibilnih reprezentacija 2-grupa, odnosno 3 grupa, kao što je to
urađeno u [15] gde je konstruisan spin-kub model kvantne gravitacije.
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Treći korak kvantizacione procedure spinske pene. Najzad, kako za potrebe fizičke
teorije nismo zainteresovani za topološku teoriju, već za teoriju sa lokalnim propagirajućim
stepenima slobode, naš cilj nije konstruisanje topološke invarijante – sume po stanjima Z, već
sume po stanjima koja daje netrivijalnu dinamiku. Da bismo to dobili, neophodno je da name-
tnemo veze na topološku sumu po stanjima Z, odnosno sprovedemo treći korak kvantizacione
procedure spinske pene. Imajući to u vidu, glavna motivacija prvog dela našeg istraživanja
u radu [16], bio je da prepišemo dejstvo za gravitaciju i materiju na način koji eksplicitno
odvaja topološki deo od veza, što čini nametanje veza pravolinijskim postupkom. Rezultat
ovog poslednjeg trećeg koraka kvantizacione procedure bio bi suma po stanjima koja opisuje
teoriju kvantne gravitacije sa materijom.

Oznake i konvencije

Lokalni Lorencovi indeksi su označeni latiničnim slovima a, b, c, . . . , koji uzimaju vrednosti
0, 1, 2, 3, a njihovo podizanje i spuštanje vrši se metrikom Minkovskog ηab sa signaturom
(−,+,+,+). Prostorvremenski indeksi su označeni grčkim slovima µ, ν, . . . , a za njihovo
podizanje i spuštanje koristi se metrika prostorvremena gµν = ηabe

a
µe
b
ν , gde eaµ označava

tetradna polja. Njihov prostorni deo je označen malim latiničnim indeksima polovine alfabeta
i, j, . . . , a vremenska komponenta je označena sa 0. Indeksi koji prebrojavaju generatore grupa
G, H i L su redom označeni početnim slovima grčkog alfabeta α, β, . . . , malim početnim la-
tiničnim slovima a, b, c, . . . i velikim latiničnim slovima A,B,C, . . . . Antisimetrizacija tenzora
po dva indeksa je označena kao

A[a1|a2...an−1|an] =
1

2

(
Aa1a2...an−1an − Aana2...an−1a1

)
,

dok je ukupna antisimetrizacija po svim indeksima označena kao

A[a1...an] =
1

n!

∑
σ∈Sn

(−1)sgn(σ)Aaσ(1)...aσ(n)
.

Slično, simetrizacija tenzora po dva indeksa se označava kao

A(a1|a2...an−1|an) =
1

2

(
Aa1a2...an−1an + Aana2...an−1a1

)
,

dok je ukupna simetrizacija po svim indeksima označena kao

A(a1...an) =
1

n!

∑
σ∈Sn

Aaσ(1)...aσ(n)
.

Radimo u prirodnom sistemu jedinica, gde je c = ~ = 1 i G = l2p, a lp je Plankova dužina.
Ako je G konačna grupa,

∫
G
dg = 1/|G|

∑
g∈G označava normalizovanu sumu po svim ele-

mentima grupe, dok δG označava odgovarajuću δ-distribuciju na G. Ova distribucija definisana
je za svaki element g ∈ G tako da δG(g) = |G| ako je g jedinični element grupe g = e, a ako nije
tj. ako g 6= e onda je definisana kao δG(g) = 0. Ako je G Lijeva grupa,

∫
G
dg i δG označavaju

redom Harovu meru i δ-distribuciju na G. Set svih k-simpleksa, pri čemu je indeks k takav da
0 < k < d, označen je sa Λk. Skup svih verteksa Λ0 je konačan i uređen, a svaki k-simpleks
je označen sa (k + 1)-torkama verteksa (i0 . . . ik), gde je i0, . . . , ik ∈ Λ0 tako da i0 < · · · < ik.
Broj k-simpleksa je označen sa |Λk|.

Za svaku triangulaciju T (Md) d-dimenzionalne mnogostrukostiMd možemo definisati du-
alnu triangulaciju T (Md)

∗. Dualna triangulacija, ili dualna rešetka je definisana na sledeći
način [1]. Postavljamo verteks dualne rešetke u centar svakog d-simpleksa triangulacije. Povezi-
vanjem verteksa koji odgovaraju susednim d-simpleksima dobijamo ivice dualne triangulacije.
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Svaka ova ivica dualne triangulacije odgovara jednom d−1-simpleksu triangulacije koji je zaje-
dnički za dva susedna d-simpleksa. Mnogougao, 2-kompleks koji dobijamo povezivanjem odgo-
varajućih ivica ε ∈ T (Md)

∗ odgovara d− 2-simpleksu iz T (Md). Na ovaj način dodeljujemo i
ostale elemente dualne triangulacije koji su dualni odgovarajućim elementima triangulacije, sve
do d-kompleksa koji je dualan verteksu v ∈ T (Md). Set svih k-kompleksa dualne triangulacije,
pri čemu je indeks k takav da 0 < k < d, označen je sa Λ∗k. Ukupan broj k-kompleksa u dualnoj
rešetki je označen sa |Λ∗k|.

Sve dodatne oznake i konvencije koje se koriste su eksplicitno definisane u tekstu gde se
pojavljuju.



Glava 2

Više gejdž teorije

Obična gejdž teorija opisuje kako se 0-dimenzionalne čestice transformišu pri paralelnom pre-
nosu duž 1-dimenzionalne putanje koja pripada bazi raslojenog prostora1, pri čemu svakoj
putanji mnogostrukosti prirodno odgovara neki element grupe. Na sličan način, u okviru 2-
gejdž teorije definiše se paralelni transport 1-dimenzionalnih objekata definisanjem 2-koneksije
na 2-raslojenom prostoru2. 2-Raslojeni prostor je generalizacija raslojenog prostora u 2-gejdž
teoriji – vlakna nisu mnogostrukost već kategorija sa odgovarajućom glatkom strukturom.

Kategorija se sastoji od elemenata koje nazivamo objekti i morfizama - preslikavanja između
tih objekata. Grupu onda možemo posmatrati kao kategoriju sa samo jednim objektom gde su
svi morfizmi invertibilni. Više gejdž teorije umesto grupe simetrije koja određuje gejdž teoriju,
oređene su višom kategorijskom generalizacijom pojma grupe – 2-grupom.

2.1 Gejdž teorija

Gejdž teorija je teorija polja u kojoj Lagranžijan teorije koji određuje dinamiku sistema ostaje
invarijantan pri lokalnim transformacijama3, koje nazivamo gejdž transformacijama. Gejdž
teorije se odlikuju prisustvom redundantnih stepeni slobode u fizičkom sistemu, tj. postojanjem
nefizičkih varijabli u dejstvu, pored varijabli koje opisuju fiziku sistema. Gejdž teorije poseduju
gejdž simetriju4 koja predstavlja nefizičke transformacije dinamičkih promenljivih. Dinamički
sistemi ovog tipa se nazivaju i singularnim, a njihova analiza zahteva primenu Hamiltonove
analize sistema sa vezama o kojoj ćemo više govoriti u narednom poglavlju. U Hamiltonovom
formalizmu ove teorije karakteriše prisustvo veza u dejstvu.

Gejdž transformacije formiraju Lijevu grupu koja se naziva grupa simetrije ili gejdž grupa
teorije. Svakom generatoru ove grupe odgovara polje koje se naziva kalibraciono polje, tj. gejdž
polje.

Matematički gledano, gejdž teorije su opisane jezikom diferencijalne geometrije, tj. defini-
sane su na raslojenom prostoru. Opšta teorija relativnosti takođe je definisana na raslojenom

1Raslojeni prostor (eng. fibre bundle) E(B,F, π) je mnogostrukost E, na kojoj je definisano glatko pres-
likavanje π (projekcija) na mnogostrukost B (baza), takvo da je za svaku tačku baze b, sloj nad njom
π−1(b) ≡ {e ∈ E |π(e) = b} difeomorfan sa mnogostrukošću F (tipični sloj ) i postoji okolina Ub za koju je
π−1(Ub) difeomorfan sa direktnim proizvodom Ub × F .

22-Raslojeni prostor (eng. fibre 2-bundle)
3Razlikujemo globalnu i lokalnu simetriju fizičkog sistema. Kada je Lagranžijan invarijantan pri trans-

formacijama koje izgledaju identično u svakoj tački prostorvremena u kojoj se dešavaju fizički procesi, tj.
kada parametar transformacije ne zavisi od tačke prostorvremena, kažemo da ima globalnu simetriju. Lokalna
simetrija je simetrija teorije kod koje Lagranžijan ostaje invarijantan pri transformacijama čiji parametar zavisi
od prostorvremenske koordinate.

4Gejdž simetrija (eng. gauge symmetry) se naziva još i baždarna, kalibraciona ili gradijentna simetrija.

11
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prostoru, konkretno tangetnom raslojenju5, dok je u slučaju gejdž teorija reč o glavnom raslo-
jenju6.

U gejdž teoriji definišemo 1-formu koneksije7 α ∈ A1(M4 , g), element algebre g, koju u fizici
nazivamo i gejdž potencijal. Koneksija se zadaje definisanjem diferencijalnog operatora odstu-
panja tenzorskih polja u nekoj tački mnogostrukosti od tenzorskih polja dobijenih paralelnim
prenosom8 u susedne tačke, tj. kovarijantnim izvodom9 ∇.

Gejdž krivina je matematički koncept u gejdž teorijama koji opisuje kako se gejdž potenci-
jal menja pri kretanju duž zatvorene petlje mnogostrukosti. Za koneksiju α, 2-forma krivine
definisana je izrazom:

F = dα + α ∧ α . (2.1)

Gejdž krivina je fundamentalna veličina u gejdž teorijama i igra ključnu ulogu u određivanju
dinamike i interakcija čestica sa gejdž poljima.

Gejdž teorije su izuzetno uspešne u opisivanju i predviđanju ponašanja elementarnih če-
stica i njihovih interakcija. Standardni Model, koji je definisan SU(3) × SU(2) × U(1) gejdž
simetrijom, testiran je i potvrđen brojnim eksperimentima, uključujući i onim izvedenim na
visokoenergetskim akceleratorima čestica kao što je Veliki hadronski sudarač (LHC). Međutim,
i dalje postoje otvorena pitanja i izazovi, kao što je objedinjeni opis svih fundamentalnih sila,
koji je predmet stalnih istraživanja u teorijskoj fizici.

2.2 2-Gejdž teorija

Uopštenje kategorije – 2-kategorija sastoji se od objekata, morfizama i morfizama između mor-
fizama – 2-morfizama [12].

Viša kategorijska generalizacija gejdž teorije – 2-gejdž teorija je teorija u kojoj su funda-
mentalne simetrije teorije date 2-gejdž grupom. U okviru 2-gejdž teorije osim što su putanjama
dodeljeni elementi grupe g ∈ G kao u običnoj gejdž teoriji, površinama su dodeljeni elementi
h ∈ H. Pritom, oznake ovih elementarnih elemenata mnogostrukosti ne mogu biti proizvoljne,
tj. moraju biti zadovoljeni sledeći uslovi.

1. Za svaku površinu označenu sa h ∈ H, oznake izvorne krive g1 i ciljne krive g2 zadovolja-
vaju relaciju ∂(h) = g2g

−1
1 .

2. Za svaku zapreminu, površinska holonomija oko nje je trivijalna.

U ovom odeljku razmatraćemo načine na koje možemo vršiti kompoziciju označenih putanja
i površina, kako bismo izračunali kompoziciju elementarnih do proizvoljno velikih elemenata
mnogostrukosti.

5Svakoj tački m mnogostrukosti M dimenzije D možemo pridružiti po jedan D-dimenzionalni tangentni
prostor Tm(M) koji čine tangentni vektori dobijeni za različite krive kroz tačku m. Pridruživanjem svakoj
tački m mnogostrukosti M vektorskog prostora Tm(M) dobijeno je tangentno raslojenje T (M), tj. vektorsko
raslojenje sa bazom M, slojem RD i projekcijom π : Tm(M) → m. Svi tangentni prostori su medusobno
izomorfni, ali da bismo uspostavili korespodenciju između vektora tangentnih prostora koji odgovaraju različitim
tačkama neophodno je uvesti pojam koneksije.

6Kada je tipični sloj F = G neka Lijeva grupa raslojenje se naziva glavno raslojenje (eng. principal bundle)
P grupe G.

7Koneksija (eng. connection) svakoj putanji γ koja povezuje tačke x i y mnogostrukosti M dodeljuje
preslikavanje ρ(γ) : Tx(M)→ Ty(M).

8Paralelni prenos (eng. parallel transport).
9Kovarijantni izvod (eng. covariant derivative).



13 2.2. 2-Gejdž teorija

2.2.1 2-Grupa

U okviru teorije kategorija, 2-grupa se definiše kao 2-kategorija sa samo jednim objektom kod
koje su svi morfizmi i 2-morfizmi invertibilni. Pokazano je da je svaka striktna 2-grupa ekviva-
lentna ukrštenom modulu (H

∂→ G ,�).

Definicija 2.2.1 (Pre-ukršteni modul i ukršteni modul) Pre-ukršteni modul (H
∂→ G ,�) čine:

• grupa G koju čine morfizmi sa kompozicijom kao grupnom operacijom

• •
g1
vv •

g2
vv

= • •
g1g2
vv

;

• grupa H koju čine svi 2-morfizmi čiji je izvor identitet

• •

1•

{{

∂h

cc h
�� ,

gde je horizontalna kompozicija grupna operacija

• •
1•

yy

∂h

ee h�� •
1•

yy

∂h′

ee h′�� = • •

1•

{{

∂(hh′)

cc hh′
��

;

• grupni homomorfizam ∂ : H → G koji preslikava svaki 2-morfizam iz h ∈ H u metu
∂h ∈ G

• •

1•

{{

∂h

cc h
�� ,

pri čemu imamo grupni homomorfizam

∂(hh′) = ∂(h)∂(h′) ; (2.2)

• dejstvo � grupe G na obe grupe, pri čemu

– grupa G deluje na samu sebe horizontalnom konjugacijom:

• •
g0

yy •
g

yy •

g−1
0

yy
= • •

g0gg
−1
0

yy
,

odnosno formalno zapisano za sve g0, g ∈ G:

g0 � g = g0gg
−1
0 , (2.3)

– element grupe g ∈ G na element grupe h ∈ H deluje horizontalnom konjugacijom
njegovim jediničnim 2-morfizmom 1g, što rezultuje 2-morfizmom g � h ∈ H,

• •
g

yy

g

ee 1g�� •
1•

yy

∂h

ee h�� •
g−1

yy

g−1

ee 1−1
g�� = • •

1

yy

∂(g�h)

ee g�h�� ,

tj. formalno zapisano za sve g ∈ G i h ∈ H imamo

g∂hg−1 = ∂(g � h) , (2.4)
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– dejstvo � je G-ekvivarijantno, tj. za svako h, h′ ∈ H i g, g′ ∈ G važi

(gg′) � h = g � (g′ � h) , g � (hh′) = (g � h)(g � h′) . (2.5)

U pre-ukrštenom modulu definišemo Pajferov komutator 〈h1 , h2〉pf , za sve h1 , h2 ∈ H i
g ∈ G, kao:

〈h1 , h2〉pf = h1h2h
−1
1 ∂(h1) � h−1

2 . (2.6)

Pre-ukršteni modul kod kojeg su svi Pajferovi komutatori trivijalni naziva se ukršten modul.
Formalno, to znači da važi Pajferov identitet, tj. za sve h, h′ ∈ H:

(∂h) � h′ = hh′h−1 . (2.7)

Za svaki element g ∈ G operacija � daje jedan automorfizam H. Kompozicija dva auto-
morfizma daje jedan automorfizam, pa automorfizmi grupe H formiraju grupu Aut(H), a �

nam preslikava svaki element g ∈ G u jedan element ove grupe tj. � : G→ Aut(H).
Između pojma 2-grupe i pojma ukrštenog modula postoji ekvivalencija, pa je svakom 2-

morfizmu α ∈ G koji je element 2-grupe G, definisan parom (h, g),

• •
1•

yy

∂h

ee h�� •
g

yy

g

ee 1g��

pridružen jedan element 2-grupe, 2-morfizam:

g → (∂h) g . (2.8)

2.2.2 Lijeva 2-algebra

Slično definicijama pre-ukrštenog modula i ukrštenog modula, na jeziku Lijevih 2-algebri ana-
logno se definiše diferencijalni pre-ukršten modul i diferencijalni ukršten modul.

Definicija 2.2.2 (Diferencijalni pre-ukršteni modul i diferencijalni ukršteni modul) Diferenci-
jalni pre-ukršten modul (h

∂→ g ,�), zadat je algebrama g i h, preslikavanjem ∂ : h → g i
dejstvom � algebre g na algebre g i h.

Kod diferencijalog pre-ukrštenog modula definišemo Pajferov komutator dva elementa
h1, h2 ∈ h algebre h kao:

〈h1, h2〉pf = [h1, h2]− ∂(h1) � h2 . (2.9)

Diferencijalni pre-ukršten modul je diferencijalni ukršten modul kada su svi njegovi Pajfe-
rovi komutatori jednaki nuli, odnosno kada za sve h1, h2 ∈ h važi Pajferov identitet:

∂(h1) � h2 = [h1, h2] . (2.10)

Dejstvo � elemenata algebre g na elemente algebri h i g definisano je delovanjem generatora
algebre g na generatore odgovarajućih algebri, kao:

τα � τβ = �αβ
γ τγ , τα � ta = �αa

b tb , (2.11)

Komponente diferencijalnog ukrštenog modula poseduju sledeće osobine.

1. Dejstvo � elemenata algebre g na elemente iste algebre je po definiciji u svojstvenoj
reprezentaciji, tj. formalno zapisano, za svako g

0
, g ∈ g:

g
0
� g =

[
g

0
, g
]
. (2.12)

odnosno u bazisu:
�αβ

γ = fαβ
γ . (2.13)
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2. Preslikavanje ∂ : H → G je g-ekvivarijantno preslikavanje, odnosno za sve h ∈ h i g ∈ g
važi:

∂(g � h) = [g, ∂(h)] , (2.14)

odnosno izraženo u bazisu:
∂a

βfαβ
γ = �αa

b∂b
γ . (2.15)

3. Dejstvo � algebre g na algebru h je g-ekvivarijantno preslikavanje, tako da, za svako
h1, h2 ∈ h važi sledeće pravilo

g � [h1, h2] = [g � h1, h2] + [h1, g � h2] , (2.16)

odnosno izraženo u bazisu:

fab
c �αc

d = 2 �α[a|
cfc|b]

d . (2.17)

4. Pajferov komutator (h1, h2) ∈ h × h → 〈h1, h2〉pf ∈ h je bilinearno g-ekvivarijantno
preslikavanje, tj. svi h1 , h2 ∈ h i g ∈ g zadovoljavaju sledeći identitet,

g � 〈h1 , h2〉pf = 〈g � h1 , h2〉pf + 〈h1 , g � h2〉pf , (2.18)

odnosno u bazisu:

�αc
d(fab

c − ∂aβ �βb
c) = �αa

c(fcb
d − ∂cβ �βb

d) + �αb
c(fac

d − ∂aβ �βc
d) . (2.19)

5. Pajferov identitet definisan u (2.10) na jeziku algebri postaje:

fab
c = ∂a

α�αb
c . (2.20)

2.2.3 Kompozicija morfizama

U 2-gejdž teoriji geometrijski objekti su obojeni na dva nivoa, krive su označene elementima
g ∈ G, a površine elementima grupe h ∈ H. Na jeziku 2-gejdž teorije kompozicija i promena
orijentacije krivih definisana je kao u standardnoj gejdž teoriji.

Da bismo diskutovali kompoziciju morfizama, pogodno je da uvedemo sledeću notaciju.
Označimo izvor i metu morfizma g kao ∂−1 (g) i ∂+

1 (g), respektivno.

• Horizontalna kompozicija morfizama g1 i g2, kada su oni kompozibilni, odnosno kada je
∂−1 (g1) = ∂+

1 (g2), je morfizam g1#1g2:

z• •y
g1

ww
•x

g2

ww
= z• •x

g1g2

ww
,

odnosno formalno zapisano
g1#1g2 = g1g2 . (2.21)

• Kompozicija morfizama je asocijativna operacija, odnosno za morfizme g1, g2 i g3, kada
je ∂−1 (g1) = ∂+

1 (g2) i ∂−1 (g2) = ∂+
1 (g3), važi:

z• •y
g1g2

ww
•x

g3

ww
= z• •y′

g1

ww •x
g2g3

ww
.
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2.2.4 Kompozicija 2-morfizama

U ovom odeljku ćemo opisati kako se na jeziku 2-gejdž teorije definiše kompozicija elementa-
rnih površina. Površine su označene elementima grupe h ∈ H, a možemo definisati njihovu
vertikalnu i horizontalnu kompoziciju. U okviru 2-gejdž teorije definišemo i nadovezivanje 2-
morfizma sa 1-morfizmom sa leve i nadovezivanje 2-morfizma sa 1-morfizmom sa desne strane.

Za svaku površinu možemo izabrati dve referentne tačke na granici i podeliti granicu na
dve krive, na izvornu krivu označenu sa g1 ∈ G i ciljnu krivu označenu sa g2 ∈ G, kao što je
prikazano na dijagramu:

• •
g1

yy

g2

ee h�� .

Pri tome 2-morfizam h ∈ H preslikava krivu g1 ∈ G u krivu ∂(h)g1 ∈ G,

• •
1•

yy

∂h

ee h�� •
g1

yy

g1

ee 1g�� = • •
g1

yy

∂(h)g1

ee h�� ,

tako da h ∈ H je zadovoljena relacija:

∂(h) = g2g
−1
1 . (2.22)

Orijentacija površine može biti obrnuta, pri čemu površinu označavamo inverznim eleme-
ntom,

• •
g1

yy

g2

ee
KS
h−1 ,

dok promena orijentacije krivih vodi do površinskog elementa označenog sa h̃ = g−1
1 � h−1:

•
g−1
1

''

g−1
2

77 •h̃�� .

Kako bi diskutovali kompozibilnost dva 2-morfizma uvedimo sledeću notaciju. Označimo
izvor i metu k-strelice (k = 1, 2) 2-morfizma h kao ∂−k (h) i ∂+

k (h), respektivno. Sada možemo
definisati načine na koje se mogu vršiti kompozicije elementarnih površina i koji su uslovi koji
moraju biti zadovoljeni da bi određene kompozicije bile definisane.

Vertikalna kompozicija 2-morfizama

• Vertikalna kompozicija 2-morfizma (g1, h1) i 2-morfizma (g2, h2), kada su oni kompozibilni,
odnosno kada je ∂+

2 (h1) = ∂−2 (h2), daje 2-morfizam (g1, h2h1),

y• •x

g1

�� g2oo

g3

\\

h1
��

h2
��

= y• •x

g1

zz

g3

ee h2h1
��

,

odnosno za par (g1, h1) i (g2, h2) važi jednakost:

(g2, h2)#2(g1, h1) = (g1, h2h1) . (2.23)
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• Vertikalna kompozicija je asocijativna, tj. za 2-morfizme (g1, h1), (g2, h2) i (g3, h3), kada
je ∂+

1 (h1) = ∂−1 (h2) i ∂+
1 (h2) = ∂−1 (h3),

y• •x

g1

�� g3oo

g4

\\

h2h1
��

h3
��

= y• •x

g1

�� g2oo

g4

\\

h1
��

h3h2
��

,

važi:
(g3, h3)#2(g1, h2h1) = (g2, h3h2)#2(g1, h1) . (2.24)

• Za svaki morfizam g postoji 2-morfizam (g, 1g) koji je identitet za vertikalnu kompoziciju
2-morfizama:

y• •x
g

ff

g

xx
1g�� .

Horizontalna kompozicija 2-morfizama

• Horizontalna kompozicija 2-morfizama (g1, h1) i (g2, h2), kada su oni kompozibilni, odno-
sno kada je ∂−1 (h1) = ∂+

1 (h2), daje 2-morfizam (g1g2, h1g1 � h2):

z• y•
g1

xx

g′1

ff h1�� •x
g2

xx

g′2

ff h2�� = z• •x

g1g2

zz

g′1g
′
2

dd h1g1�h2

��
.

Horizontalna kompozicija 2-morfizama je grupna operacija u G×H grupi:

(g1, h1)#1(g2, h2) =

• •
1•

��

∂(h1)

^^ h1�� •
g1

��

g1

^^ 1g1�� •
1•

��

∂(h2)

^^ h2�� •
g2

��

g2

^^ 1g2�� =

• •
1•

��

∂(h1)

^^ h1�� •
g1

��

g1

^^ 1g1�� •
1•

��

∂(h2)

^^ h2�� •
g1
−1

��

g1
−1

^^
1g1−1
�� •

g1

��

g1

^^ 1g1�� •
g2

��

g2

^^ 1g2�� =

• •
1•

��

∂(h1)

^^ h1�� •
1•

ww

∂(g1�h2)

gg g1�h2�� •
g1g2

yy

g1g2

ee 1g1g2�� =

• •

1•

xx

∂(h1g1�h2)

ff h1g1�h2

��
•

g1g2

yy

g1g2

ee 1g1g2�� = (g1g2, h1g1 � h2) .
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• Horizontalna kompozicija 2-morfizama je asocijativna, odnosno za 2-morfizme (g1, h1),
(g2, h2) i (g3, h3) za koje je ∂−1 (h1) = ∂+

1 (h2) i ∂−1 (h2) = ∂+
1 (h3), važi

• •
g1g2

ww

g′1g
′
2

gg h1g1�h2�� •
g3

��

g′3

^^ h3�� = • •
g1

��

g′1

^^ h1�� •
g2g3

ww

g′2g
′
3

gg h2g2�h3�� ,

odnosno formalno zapisano

(g1g2, h1g1 � h2)#1(g3, h3) = (g1, h1)#1(g2g3, h2g2 � h3) . (2.25)

Dokaz. Proverimo ovu jednakost. Leva strana jednačine daje:

(g1g2, h1g1 � h2)#1(g3, h3) = (g1g2g3, h1 g1 � h2 (g1g2) � h3) . (2.26)

Desna strana jednačine daje takođe

(g1, h1)#1(g2g3, h2g2 � h3) = (g1g2g3, h1g1 � (h2g2 � h3))

= (g1g2g3, h1 g1 � h2 g1 � (g2 � h3)

= (g1g2g3, h1 g1 � h2 (g1g2) � h3) ,

(2.27)

primenom identiteta (2.5) .

• Postoji 2-morfizam koji služi kao identitet za horizontalnu kompoziciju 2-morfizama:

x• •x
1x

gg

1x

xx
11x�� .

• Kompozicija morfizama je invarijantna na redosled vršenja horizontalnih i vertikalnih
kompozicija, tj. važi relacija(

(g′1,h
′
1)#2(g1,h1)

)
#1

(
(g′2,h

′
2)#2(g2,h2)

)
=
(

(g′1,h
′
1)#1(g′2,h

′
2)
)

#2

(
(g1,h1)#1(g2,h2)

)
,

(2.28)
što je lepo ilustrovano u dijagramskoj notaciji, gde dijagram oblika

x• y•

g1

�� g′1oo

g′′1

``
h1��

h′1��

•z

g2

�� g′2oo

g′′2

aa

h2��

h′2��

jednoznačno određuje 2-morfizam. Pravilo (2.28) se zove "izmenski zakon"10.

Dokaz. Dokažimo jednakost (2.28). Leva strana jednačine jednaka je:(
(g′1, h

′
1)#2(g1, h1)

)
#1

(
(g′2, h

′
2)#2(g2, h2)

)
=
(
g1, h

′
1h1

)
#1

(
g2, h

′
2h2

)
=
(
g1g2, h

′
1h1 g1 � (h′2h2)

)
.

(2.29)

10izmenski zakon (eng. interchange law).
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Desna strana jednačine (2.28) postaje:(
(g′1, h

′
1)#1(g′2, h

′
2)
)
#2

(
(g1, h1)#1(g2, h2)

)
=
(
g′1g
′
2, h
′
1g
′
1 � h′2

)
#2

(
g1g2, h1g1 � h2

)
=
(
g1g2, h

′
1g
′
1 � h′2 h1 g1 � h2

)
=
(
g1g2, h

′
1(∂(h1)g1) � h′2 h1 g1 � h2

)
=
(
g1g2, h

′
1 ∂(h1) � (g1 � h′2)h1 g1 � h2

)
=
(
g1g2, h

′
1 h1(g1 � h′2)h−1

1 h1 g1 � h2

)
=
(
g1g2, h

′
1 h1 g1 � h′2 g1 � h2

)
=
(
g1g2, h

′
1 h1 g1 � (h′2h2)

)
.

(2.30)
U prethodnom postupku primenili smo identitete (2.5) i (2.7). Dokazali smo identitet
(2.28).

Kompozicija 2-morfizma i 1-morfizma

Izračunajmo holonomiju koja odgovara nekoj površini ako imamo 1-formu α ∈ g i 2-formu
β ∈ h. Površinu

• •foo

•
h

OO

•
k
oo

g

OO

h{�

interpretiramo kao 2-morfizam h : fg → hk. Veću površinu možemo dobiti nadovezivanjem11:

• •oo •oo •oo

•

OO

•oo

OO

•oo

OO

•oo

OO

{� {� {�

•

OO

•oo

OO

•oo

OO

•oo

OO

{� {� {�

.

Koristeći nadovezivanje možemo da nađemo holonomiju hol(Σ) koja odgovara nekoj površini
Σ, svodeći problem na traženje holonomije malih kvadrata na koje je ta površina izdeljena,
formiranjem njihove kompozicije na prethodno definisan način, a zatim uzimanjem limesa kada
ti kvadrati postaju infinitezimalno mali.

• Nadovezivanje je način na koji se vrši kompozicija jednog 2-morfizma h i jednog 1-
morfizma g1 koji se nalazi sa leve strane, odnosno kada je ∂−1 (g1) = ∂+

1 (h):

z• y•g1oo •x
g2

xx

g′2

ff h
��

.

Ovako formiran 2-morfizam naziva se nadovezivanje 2-morfizma h i 1-morfizma g1 sa leve
strane12 g1#1(g2, h), osnosno 2-morfizam h proširen sa leve strane sa 1-morfizmom g1. Ova
kompozicija formirana je kao horizontalna kompozicija dva 2-morfizma (g1, 1g1)#1(g2, h),

z• y•
g1

xx

g1

ff 1g1�� •x
g2

xx

g′2

ff h
��

= z• •x
g1g2

vv

g1g′2

hh g1�h
��

,

11eng. whiskering.
12eng. left-whiskered.
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odnosno formalno zapisano:

g1#1(g2, h) = (g1, 1g1)#1(g2, h) = (g1g2, g1 � h) . (2.31)

• Na sličan način možemo formirati i nadovezivanje 2-morfizma h i 1-morfizma g2 sa desne
strane, kada je ∂−1 (h) = ∂+

1 (g2), čiju kompoziciju obeležavamo sa (g1, h)#1g2:

z• •y
g1

xx

g′1

ff h
��

x•g2oo .

Ovako formiran 2-morfizam naziva se nadovezivanje 2-morfizma h i 1-morfizma g2 sa
desne strane13, odnosno 2-morfizam h proširen sa desne strane sa 1-morfizmom g2. Ova
kompozicija formirana je kao horizontalna kompozicija dva 2-morfizma (g1, h)#1(g2, 1g2),

z• y•
g1

xx

g′1

ff h
��

•x
g2

xx

g2

ff 1g2�� = z• •x
g1g2

vv

g′1g2

hh h
��

,

odnosno formalno zapisano:

(g1, h)#1g2 = (g1, h)#1(g2, 1g2) = (g1g2, hg1 � 1g2) = (g1g2, h) . (2.32)

Uz pomoć ovog trika, možemo da kombinujemo dva 2-morfizma na način demonstriran u nare-
dnom primeru.

Primer 2.2.1 Nađimo holonomiju koja odgovara površini dva kvadrata:

n• m•gmnoo l•glmoo

k•

gkn

OO

j•gjk
oo

gjm

OO

i•gij
oo

gil

OO

hjmn{� hilm{�

.

Ovo se radi iz dva koraka. Prvo se formira kompozicija 2-morfizma hilm sa 1-morfizmom
gmn koji deluje sa leve strane, pri čemu se dobija 2-morfizam:

gmn#1(glmgil, hilm) : gmnglmgil → gmngjmgij , (2.33)

n• m•gmnoo l•glmoo

j•

gjm

OO

i•gij
oo

gil

OO

hilm{�

.

Zatim se formira (gmngjm, hjmn)#1gij kompozicija 2-morfizma hjmn i 1-morfizma gij koji deluje
sa desne strane:

(gmngjm, hjmn)#1gij : gmngjmgij → gkngjkgij , (2.34)

n• m•gmnoo

k•

gkn

OO

j•gjk
oo

gjm

OO

i•gij
oo

hjmn{�

.

13eng. right-whiskered.
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Najzad vertikalnom kompozicijom ova dva 2-morfizma dobijamo 2-morfizam:(
(gmngjm, hjmn)#1gij

)
#2

(
gmn#1(glmgil, hilm)

)
: gmnglmgil → gkngjkgij , (2.35)

n• m•gmnoo l•glmoo

k•

gkn

OO

j•gjk
oo

gjm

OO

i•gij
oo

gil

OO

hjmn{� hilm{�

.

Na sličan način kao u prethodnom primeru formiraćemo površinsku holonomiju koja odgovara
tetraedru – relevantan rezultat u slučaju triangulacije prostorvremena.

2.2.5 2-koneksija i 2-krivina

Kao što Lijeva grupa G generiše koneksiju α, koju koristimo da formulišemo BF teoriju, 2-grupa
generiše 2-koneksiju, uređeni par (α , β), zadat 1-formom elementom algebre g, α ∈ A1(M4 , g),
i 2-formom elementom algebre h, β ∈ A2(M4 , h), gde je h Lijeva algebra koja odgovara Ljevoj
grupi H. Za 2-koneksiju se definiše tzv. lažna 2-krivina, uređeni par (F ,G), na sledeći način

F = dα + α ∧ α− ∂β , G = dβ + α ∧� β . (2.36)

Ovde α ∧� β predstavlja istovremeno ukršteni proizvod diferencijalnih formi α i β i njihov
proizvod kao elemenata algebri dejstvom �, videti [16]. Uređeni par 2-krivine (F ,G) ima epitet
"lažni" zbog prisustva dodatnog člana ∂β u definiciji F [12].

Krivine možemo raspisati u bazisima odgovarajućih algebri i diferencijalnih formi:

F =
1

2
Fαµνταdxµ ∧ dxν , G =

1

3!
Gaµνρtadxµ ∧ dxν ∧ dxρ ,

gde su koeficijenti:

Fαµν = ∂µα
α
ν − ∂νααµ + fβγ

ααβµα
γ
ν − βaµν∂aα ,

Gaµνρ = ∂µβ
a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν + ααµβ

b
νρ�αb

a + αανβ
b
ρµ�αb

a + ααρβ
b
µν�αb

a .
(2.37)

Lažna krivina

Prema Baezu [28], pridev "lažna" potiče iz rada Brina i Mesinga i koristi se za razlikovanje dve
vrste krivine, 2-krivine i lažne 2-krivine. Obična 2-krivina, uređen par (F,G) za 2-koneksiju
(α, β), α ∈ A1(g,M4) i β ∈ A2(h,M4), definiše se na standardan način:

F = dα + α ∧ α,
G = dβ + α ∧� β .

(2.38)

Lažna 3-krivina, uređen par (F ,G) ima dodatni član:

F = F − ∂β,
G = G .

(2.39)

Pojam lažne 2-krivine se uvodi iz sledećeg razloga. Posmatrajmo površinu Σ:

•

•
Σ{�

oo
OO

γ2

γ1

.
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Ovaj kvadrat predstavlja 2-morfizam Σ : γ1 → γ2 , gde su γ1 i γ2 1-morfizmi prikazani na slici.
Želimo da izračunamo:

hol(Σ) : hol(γ1)→ hol(γ2) . (2.40)

Holonomija hol(Σ) zavisi od 2-forme koneksije β. Njen izvor i meta zavise samo od 1-forme α.
Zahtev da ovaj 2-morfizam ima dobro definisan izvor i metu dovodi do relacije koja povezuje
koneksije α i β. Ovde ćemo demonstrirati kako se ona izvodi.

Izraženo preko 1-koneksije α, važi:

hol(γ1) = Pexp

(∫
γ1

α

)
, hol(γ2) = Pexp

(∫
γ2

α

)
. (2.41)

Takođe, 2-morfizam h : g1 → g2 je određen elementom h ∈ H, pri čemu je g2 = ∂(h)g1. To
znači da je 2-morfizam hol(Σ) : hol(γ1)→ hol(γ2) određen elementom h ∈ H, pri čemu

Pexp

(∫
γ2

α

)
= ∂(h) Pexp

(∫
γ1

α

)
, (2.42)

odnosno ∂(h) = Pexp
(∫

∂Σ
α
)
. U prethodnom izrazu integracija se vrši po granici površine

∂Σ = γ2γ
−1
1 . Imajući u vidu da je kvadrat mali, a koristeći Stoksovu teoremu dobijamo:

∂(h) = Pexp

(∫
∂Σ

α

)
≈ exp

(∫
Σ

F

)
. (2.43)

Sa druge strane 2-morfizam h izražen preko 2-forme β je:

h ≈ exp

(∫
Σ

β

)
. (2.44)

Zamenjujući prethodni izraz za h u jednačini (2.43) dobijamo vezu između 1-koneksije α i
2-koneksije β

∂(exp

(∫
Σ

β

)
) ≈ exp

(∫
Σ

F

)
, (2.45)

odnosno identitet:
∂(β) = F = dα + α ∧ α . (2.46)

Sada, možemo uvesti pojam lažne krivine F = F − ∂(h) .

Transformacije 2-koneksije i 2-krivine

U teoriji kategorija, 2-gejdž transformacije generisane su elementima grupa G i H. Pri G-gejdž
transformacijama, 2-koneksija se transformiše po zakonu transformacije

α′ = gαg−1 + gdg−1 , β′ = g � β , (2.47)

gde je parametar transformacija g :M4 → G element G-glavnog raslojenjaM4. Zatim, pri H-
gejdž transformacijama, generisanim parametrom η ∈ A1(M4 , h), 2-koneksija se transformiše:

α′ = α + ∂η , β′ = β + dη + α′ ∧� η − η ∧ η . (2.48)

Teorema 1 Kompozicija G-gejdž i H-gejdž transformacija dovodi do transformacije 2-koneksije

α′′ = gαg−1 + gdg−1 + ∂(η) ,

β′′ = g � β + dη + α′′ ∧� η − η ∧ η ,
(2.49)

gde su g :M4 → G i η ∈ A1(M4, h) redom parametri G- i H-gejdž transformacija.
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Na osnovu definicije 2-krivine (1.4), a primenom gore navedenih transformacionih pravila,
dobijamo zakon transformacije 2-krivine.

Teorema 2 Pri G-gejdž transformacijama 2-krivina (F ,G) se transformiše na sledeći način

F → gFg−1 , G → g � G , (2.50)

dok se pri H-gejdž transformacijama transformiše po zakonu transformacije:

F → F , G → G + F ∧� η , (2.51)

gde su g :M4 → G i η ∈ A1(M4, h) redom parametri G- i H-gejdž transformacija.

Za više detalja o transformaciji 2-krivine pri 2-gejdž transformacijama pogledati [29] i Dodatak
A.

2.3 3-gejdž teorija
U okviru teorije kategorija definiše se viša kategorijska generalizacija pojma 2-kateogije, 3-
kategorija, koja se sastoji od objekata, morfizama, zatim morfizama između morfizama koje
nazivamo 2-morfizmima, i morfizama između 2-morfizama – 3-morfizama. Pogledati [16] za
više detelja.

U okviru 3-gejdž teorije elementarne strukture mnogostrukosti su označene na tri nivoa –
krive su obojene elementima grupe g ∈ G, površine elementima h ∈ H, a zapremine elementima
l ∈ L. Pritom, da bi konfiguracija 3-gejdž teorije bila dobro definisana, oznake ovih elementa-
rnih struktura mnogostrukosti ne mogu biti proizvoljne, tj. moraju biti zadovoljeni sledeći
uslovi.

1. Za svaku površinu označenu sa h ∈ H, oznake izvorne krive g1 i ciljne krive g2 zadovolja-
vaju relaciju ∂(h) = g2g

−1
1 .

2. Za svaku zapreminu, oznaka l ∈ L zadovoljava identitet δ(l) = h2h
−1
1 , gde su h1 i h2

izvorna i ciljna površina, respektivno.

3. Za svaku 4-dimenzionalnu hiperpovršinu mnogostrukosti zapreminska holonomija oko nje
je trivijalna.

U ovom odeljku razmatraćemo brojne operacije pomoću kojih možemo kombinovati označene
putanje, površine i zapremine, kako bismo izračunali kompoziciju elementarnih do proizvoljno
velikih struktura mnogostrukosti. Definisane konfiguracije se mogu posmatrati kao klasične
konfiguracije 3-gejdž teorije, dok će kasnije u kvantnoj teoriji ovo predstavljati konfiguracije po
kojima sabiramo u sumi po stanjima.

2.3.1 3-Grupa

Analogno definiciji grupe i 2-grupe u formalizmu teorije kategorija, može se definisati pojam
3-grupe kao 3-kategorije sa samo jednim objektom, gde su svi morfizmi, 2-morfizmi i 3-morfizmi
invertibilni. Takođe, slično kao što je striktna 2-grupa ekvivalentna ukrštenom modulu, može
se pokazati da je semistriktna 3-grupa – Grejeva grupa, ekvivalentna strukturi 2-ukrštenog
modula [17], [30].

Definicija 2.3.1 (2-ukršten modul) 2-ukršten modul (L
δ→ H

∂→ G, �, {−, −}) čine:
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• grupa G koju čine morfizmi sa kompozicijom kao grupnom operacijom

• •
g1
vv •

g2
vv

= • •
g1g2
vv

;

• grupa H koju čine svi 2-morfizmi čiji je izvor identitet

• •

1•

{{

∂h

cc h
�� ,

gde je horizontalna kompozicija grupna operacija

• •
1•

yy

∂h1

ee h1�� •
1•

yy

∂h2

ee h2�� = • •

1•

{{

∂(h1h2)

cc h1h2
��

;

• grupa L koju čine 3-morfizmi čiji je izvor identitet

• •

1•

��

1•

[[ 11•��

l

V • •

1•

��

∂δl= 1•

[[ δl
��

;

• grupni homomorfizam ∂ : H → G koji preslikava svaki 2-morfizam h ∈ H u metu ∂h ∈ G

• •

1•

{{

∂h

cc h
�� ,

pri čemu imamo grupni homomorfizam, odnosno za svaki h1, h2 ∈ H važi

∂(h1h2) = ∂(h1)∂(h2) ;

• grupni homomorfizam δ : L→ H koji mapira svaki 3-morfizam l ∈ L u metu δl ∈ H:

• •

1•

��

1•

[[ 11•��

l

V • •

1•

��

∂δl= 1•

[[ δl
��

,

pri čemu je za ∀l ∈ L element ∂(δl) = e neutralni element grupe G;

• dejstvo � grupe G na sve tri grupe, pri čemu je

– dejstvo grupe G na samu sebe zadato horizontalnom konjugacijom

• •
g0

yy •
g

yy •

g−1
0

yy
= • •

g0gg
−1
0

yy
,

odnosno formalno zapisano za sve g0, g ∈ G

g0 � g = g0gg
−1
0 ,
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– element grupe G deluje na element grupe H dejstvom � kao horizontalnom konju-
gacijom, tačnije njegovim jediničnim 2-morfizmom 1g, što rezultuje 2-morfizmom
g � h ∈ H,

• •
g

yy

g

ee 1g�� •
1•

yy

∂h

ee h�� •
g−1

yy

g−1

ee 1−1
g�� = • •

1

yy

∂(g�h)

ee g�h�� ,

tj. formalno zapisano za sve g ∈ G i h ∈ H imamo

g∂hg−1 = ∂(g � h),

– element grupe G deluje na element grupu L dejstvom �, što rezultuje 3-morfizmom
g � l ∈ L,

• •g1oo •

g2

��

g′2

WW h1

��

l

V • •g1oo •

g2

��

g′2

WW h2

��
= • •

g1g2

��

g1g′2

^^ g1�h1

��

g1�l

V • •

g1g2

��

g1g′2

^^ g1�h2

��
;

• G-ekvivarijantno preslikavanje koje se naziva Pajferovo podizanje

{− ,−}pf : H ×H → L .

Komponente 2-ukrštenog modula poseduju sledeće osobine.

1. Homomorfizmi ∂ i δ su G-ekvivarijantni, tj. za svako g ∈ G i h ∈ H:

g � ∂(h) = ∂(g � h) , g � δ(l) = δ(g � l) , (2.52)

dejstvo grupe G na grupe H, odnosno L, je glatko dejstvo sa leva, i daje jedan auto-
morfizam grupe H, odnosno automorfizam grupe L, tj. � : G → Aut(H), odnosno
� : G→ Aut(L). Za svako g, g1, g2 ∈ G, h1, h2 ∈ H, l1, l2 ∈ L i e ∈ H,L važi:

g1�(g2�e) = (g1g2)�e , g�(h1h2) = (g�h1)(g�h2) , g�(l1l2) = (g�l1)(g�l2) .
(2.53)

Pajferovo podizanje je G-ekvivarijantno bilinearno preslikavanje, odnosno za sve h1, h2 ∈
H i g ∈ G:

g � {h1 , h2}pf = {g � h1, g � h2}pf . (2.54)

2. Za sve h1, h2 ∈ H Pajferov komutator 〈h1 , h2〉pf definisan u (2.6) je identički jednak:

δ({h1, h2}pf) = 〈h1 , h2〉pf . (2.55)

3. Za sve l1 , l2 ∈ L zadovoljen je identitet:

[l1, l2] = {δ(l1) , δ(l2)}pf , (2.56)

gde je korišćena notacija [l, k] = lkl−1k−1.

4. Pajferovo podizanje zadovoljava sledeće identitete, za sve h1, h2, h3 ∈ H:

{h1h2, h3}pf = {h1, h2h3h
−1
2 }pf∂(h1) � {h2, h3}pf , (2.57)

odnosno
{h1, h2h3}pf = {h1, h2}pf{h1, h3}pf{〈h1, h3〉−1

pf , ∂(h1) � h2}pf . (2.58)

5. Za sve h ∈ H i l ∈ L važi identitet:

{δ(l), h}pf{h, δ(l)}pf = l(∂(h) � l−1) . (2.59)
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Podstruktura ukršteni modul

Teorema 3 Podstruktura 2-ukrštenog modula (L
δ→ H, �′) formira ukršteni modul, gde je �′

dejstvo grupe H na grupu L, takvo da za svako h ∈ H i l ∈ L:

h�′ l = l {δ(l)−1, h}pf . (2.60)

Dokaz ove teoreme izdelićemo na četiri dela. Pogledati [30] za više detalja.

Lema 1 Za svako h1, h2 ∈ H i l ∈ L važi:

(h1h2) �′ l = h1 �
′ (h2 � l) .

Dokaz. Za svako h1, h2 ∈ H i l ∈ L važi:

(h1h2) �′ l = l{δ(l)−1, h1h2}pf

= l{δ(l)−1, h1}pf{δ(l)−1, h2}pf{〈δ(l)−1, h2〉−1
pf , ∂(δ(l))−1 � h1}pf

= l{δ(l)−1, h1}pf{δ(l)−1, h2}pf{〈δ(l)−1, h2〉−1
pf , h1}pf ,

gde smo u prvom redu koristili definiciju dejstva �′ datu teoremom (3), u drugom redu identitet
(2.58) i u trećem redu identitet ∂(δ) = 1. Sa druge strane,

h1 �
′ (h2 �

′ l) = h1 �
′ (l{δ(l)−1, h2}pf)

= (h1 �
′ l)(h1 �

′ {δ(l)−1, h2}pf)

= l{δ(l)−1, h1}pf{δ(l)−1, h2}pf{δ({δ(l)−1, h2}pf)
−1, h1}pf

= l{δ(l)−1, h1}pf{δ(l)−1, h2}pf{〈δ(l)−1, h2}pf〉−1
pf , h1}pf ,

gde smo u poslednjem koraku iskoristili identitet (2.56).

Lema 2 Za svako h ∈ h i l1, l2 ∈ l važi:

h�′ (l1l2) = (h�′ l1)(h�′ l2) .

Dokaz. Za svako h ∈ h i l1, l2 ∈ l važi:

h�′(l1l2)=(l1l2){δ(l1l2)−1,h}pf

=(l1l2){δ(l2)−1δ(l1)−1,h}pf

=l1l2{δ(l2)−1,δ(l1)−1hδ(l1)}pf∂(δ(l2)−1)�{δ(l1)−1,h}pf

=l1l2{δ(l2)−1,δ(l1)−1hδ(l1)}pf{δ(l1)−1,h}pf

=l1l2{δ(l2)−1,[δ(l1)−1,h]h}pf{δ(l1)−1,h}pf

=l1l2{δ(l2)−1,δ({δ(l1)−1,h}pf)h}pf{δ(l1)−1,h}pf

=l1l2{δ(l2)−1,δ({δ(l1)−1,h}pf)}pf{δ(l2)−1,h}pf{〈δ(l2)−1,h〉−1
pf ,∂(δ(l2)−1)�δ({δ(l1)−1,h}pf)}pf{δ(l1)−1,h}pf

=l1l2[l−1
2 ,{δ(l1)−1,h}pf ]{δ(l2)−1,h}pf{δ({δ(l2)−1,h}pf)

−1,δ({δ(l1)−1,h}pf)}pf{δ(l1)−1,h}pf

=l1l2l
−1
2 {δ(l1)−1,h}pf l2{δ(l1)−1,h}pf

−1{δ(l2)−1,h}pf [{δ(l2)−1,h}−1
pf ,{δ(l1)−1,h}pf ]{δ(l1)−1,h}pf

=l1{δ(l1)−1,h}pf l2{δ(l1)−1,h}pf
−1{δ(l2)−1,h}pf{δ(l2)−1,h}−1

pf {δ(l1)−1,h}pf{δ(l2)−1,h}pf{δ(l1)−1,h}pf
−1{δ(l1)−1,h}pf

=l1{δ(l1)−1,h}pf l2{δ(l2)−1,h}pf

=(h�′l1)(h�′l2),

gde smo u trećem redu iskoristili identitet (2.57), u četvrtom i osmom redu identitet ∂(δ) = 1,
u šestom i devetom redu jednačinu (2.56) i u sedmom redu identitet (2.58).

Lema 3 Zadovoljen je Pajferov identitet za sve l1, l2 ∈ L:

δ(l1) �′ l2 = l1 l2 l
−1
1 .
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Dokaz. Za sve l1, l2 ∈ L:

δ(l1) �′ l2 = l2{δ(l2)−1, δ(l1)}pf = l2l
−1
2 l1l2l

−1
1 = l1 l2 l

−1
1 ,

ovde smo kod prve jednakosti koristili definiciju dejstva �′ datu teoremom (3), kod druge
identitet (2.56).

Lema 4 Za sve h ∈ H i l ∈ L važi:

δ(h�′ l) = h�′ δ(l) .

Dokaz. Za sve h ∈ H i l ∈ L važi:

δ(h�′ l) = δ
(
l{δ(l)−1, h}pf

)
= δ(l)δ({δ(l)−1, h}pf)

= δ(l)〈δ(l)−1, h〉pf

= δ(l)δ(l)−1hδ(l) ∂(δ(l))−1 �′ h−1

= hδ(l)h−1

= h�′ δ(l) ,

gde smo u prvom redu koristili definiciju (3) dejstva �′, u trećem redu identitet (2.55), u
četvrtom redu definiciju Pajferovog komutatora (2.6), u petom identitet ∂(δ) = 1 i u poslednjem
činjenicu da grupa H deluje na samu sebe konjugacijom.

Sa druge strane, podstruktura (H
∂→ G ,�) je u opštem slučaju pre-ukršteni modul, tj. nije

zadovoljen Pajferov identitet. Međutim, u slučaju kada je preslikavanje ∂ trivijalno, a grupa
H Abelova, svi Pajferovi komutatori su trivijalni i Pajferov identitet je zadovoljen, tj. za sve
h1, h2 ∈ H:

∂(h1) � h2 = h1 h2 h
−1
1 . (2.61)

Važni identiteti

Elementi grupe H zadovoljavaju sledeće identitete h1, h2, h3 ∈ H [17]:

{h1h2, h3}pf = (h1 �
′ {h2, h3}pf){h1, ∂(h2) � h3}pf , (2.62)

{h1, h2h3}pf = {h1, h2}pf(∂(h1) � h2) �′ {h1, h3}pf . (2.63)

Koristeći peti uslov 2-ukrštenog modula dobijamo da za svako h ∈ H i l ∈ L važi

{h, δ(l)−1}pf = (h�′ l−1)(∂(h) � l) , (2.64)

tj. za sve elemente h1, h2 ∈ H važe sledeći identiteti:

{h1, h2}−1
pf = e�′ {h−1

1 , ∂(h1) � h2}pf , (2.65)

{h1, h2}−1
pf = ∂(h1) � {h−1

1 , h1h2h
−1
1 }pf , (2.66)

{h1, h2}−1
pf = (h1h2h

−1
1 ) �′ {h1, h

−1
2 }pf , (2.67)

{h1, h2}−1
pf = (∂(h1) � h2) �′ {h1, h

−1
2 }pf . (2.68)
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2.3.2 Lijeva 3-algebra

Slično definiciji 2-ukrštenog modula, na jeziku Lijevih 3-algebri analogno se definiše diferenci-
jalni 2-ukršten modul.

Definicija 2.3.2 (Diferencijalni 2-ukršten modul) Diferencijalni 2-ukršten modul zadat je Lije-
vim algebrama g, h i l, kao i preslikavanjima ∂ : h→ g i δ : l→ h

l
δ→ h

∂→ g , (2.69)

zajedno sa dejstvom � algebre g na sve tri algebre i g-ekvivarijantnim bilinearnim preslikava-
njem, koje se naziva Pajferovo podizanje:

{− , −}pf : h× h→ l . (2.70)

Izborom bazisa TA ∈ l, ta ∈ h i τα ∈ g,

[TA, TB] = fAB
C TC , [ta, tb] = fab

c tc , [τα, τβ] = fαβ
γ τγ , (2.71)

preslikavanja ∂ i δ možemo da definišemo u bazisima algebri:

∂(ta) = ∂a
α τα , δ(TA) = δA

a ta . (2.72)

Pritom, važi identitet:
δA

a∂a
α = 0 . (2.73)

Dejstvo � elemenata algebre g na elemente algebri l, h i g definisano je delovanjem generatora
algebre g na generatore odgovarajućih algebri, kao:

τα � TA = �αA
B TB , τα � ta = �αa

b tb , τα � τβ = �αβ
γ τγ . (2.74)

Koeficijenti Xab
A koji određuju Pajferovo podizanje definisani su relacijom:

{ta, tb}pf = Xab
ATA . (2.75)

Komponente diferencijalnog 2-ukrštenog modula poseduju sledeće osobine.

1. Dejstvo algebre g na samu sebe je preko pridružene reprezentacije, tj. formalno zapisano,
za svako g

0
, g ∈ g

g
0
� g =

[
g

0
, g
]
, (2.76)

odnosno u bazisu:
�αβ

γ = fαβ
γ . (2.77)

2. Preslikavanja ∂ : H → G i δ : L → H su g-ekvivarijantna preslikavanja, odnosno za sve
l ∈ l, h ∈ h i g ∈ g važi:

∂(g � h) = [g, ∂(h)] , δ(g � l) = g � δ(l) , (2.78)

odnosno izraženo u bazisu:

∂a
βfαβ

γ = �αa
b∂b

γ , ∂B
a �αA

B = �αb
aδA

b . (2.79)
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3. Dejstvo � algebre g na algebre h i l je g-ekvivarijantno preslikavanje, tako da, za svako
h1, h2 ∈ h, l1, l2 i svako g ∈ g, važe sledeća pravila

g � [h1, h2] = [g � h1, h2] + [h1, g � h2] , (2.80)

g � [l1, l2] = [g � l1, l2] + [l1, g � l2] , (2.81)

odnosno izraženo u bazisu:

fab
c �αc

d = 2 �α[a|
cfc|b]

d , (2.82)

fAB
C �αC

D = 2 �α[A|
CfC|B]

D . (2.83)

4. Pajferovo podizanje je g-ekvivarijantno preslikavanje, tj. za sve h1, h2 ∈ h i g ∈ g

g � {h1, h2}pf = {g � h1, h2}pf + {h1, g � h2}pf , (2.84)

tj. izraženo preko odgovarajućih koeficijenata definisanih u bazisu:

Xab
B�αB

A = �αa
cXcb

A + �αb
cXac

A . (2.85)

5. Za sve h1, h2 ∈ h Pajferov komutator definisan u (2.9) na jeziku algebri postaje

δ({h1, h2} pf) = −〈h1, h2〉pf , (2.86)

tj. izraženo u bazisu:
Xab

AδA
c = fab

c − ∂aα�αb
c . (2.87)

6. Za sve l1, l2 ∈ l zadovoljen je identitet

[l1, l2] = {δ(l1), δ(l2)} pf , (2.88)

tj. važi relacija:
fAB

C = δA
aδB

bXab
C . (2.89)

7. Pajferovo podizanje za sve h1, h2, h3 ∈ h zadovoljava sledeće identitete:

{[h1,h2],h3}pf=∂(h1)�{h2,h3}pf+{h1,[h2,h3]}pf−∂(h2)�{h1,h3}pf−{h2,[h1,h3]}pf ,
(2.90)

{[h1,h2],h3}pf={∂(h1)�h2,h3}pf−{∂(h2)�h1,h3}pf−{h1,δ{h2,h3}pf}pf+{h2,δ{h1,q,h3}pf}pf .
(2.91)

Izražen u bazisu ovaj identitet postaje:

fab
dXdc

B = ∂a
αXbc

A�αA
B +Xad

Bfbc
d − ∂bα�αA

BXac
A −Xbd

Bfac
d . (2.92)

Pored toga, za sve h1, h2, h3 ∈ h važi identitet

{h1, [h2, h3]} pf = {δ {h1, h2} pf , h3}pf − {δ {h1, h3} pf , h2}pf , (2.93)

tj. u bazisu:
Xad

Afbc
d = Xab

BδB
dXdc

A −Xac
BδB

dXdb
A . (2.94)

8. Svako h ∈ h i l ∈ l zadovoljavaju identitet

{δ(l), h}+ {h, δ(l)} = −∂(h) � l , (2.95)

tj. relacija:
δA

aXab
B + δA

aXba
B = −∂bα�αA

B . (2.96)
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Podstruktura diferencijalni ukršteni modul

Teorema 4 Podstruktura diferencijalnog 2-ukrštenog modula, formira diferencijalni modul (L
δ→

H ,�′), gde je dejstvo �′ algebre h na algebru l takvo da za sve h ∈ h i l ∈ l

h�′ l = −{δ(l), h}pf , (2.97)

tj. u bazisu:
ta �

′ TA = �′aA
BTB , �′aA

B
= −δAbXba

B . (2.98)

Dokaz ove teoreme podelićemo na četiri dela.

Lema 5 Za svako h1, h2 ∈ h i l ∈ l važi:

[h1, h2] �′ l = h1 �
′ (h2 �

′ l)− h2 �
′ (h1 �

′ l) .

Dokaz. Za svako h1, h2 ∈ h i l ∈ l važi:

[h1, h2] �′ l = −{δ(l), [h1, h2]}pf

= −{δ({δ(l), h1}pf), h2}pf + {δ({δ(l), h2}pf), h1}pf

= −h2 �
′ (h1 �

′ l) + h1 �
′ (h2 �

′ l) ,

gde smo koristili definiciju (2.97) u prvom i trećem redu i identitet (2.93) u drugom redu.

Lema 6 Za svako l1, l2 ∈ l i h ∈ h važi:

h�′ [l1, l2] = [h�′ l1, l2] + [l1, h�′ l2] .

Dokaz. Za svako l1, l2 ∈ l i h ∈ h važi:

h�′ [l1, l2] = −{δ([l1, l2]), h}pf

= −{[δ(l1), δ(l2)], h}pf

= −∂(δ(l1)) � {δ(l2), h} pf − {δ(l1), [δ(l2), h]} pf

+ ∂(δ(l2)) � {δ(l1), h} pf + {δ(l2), [δ(l1), h]} pf

= −{δ(l1), [δ(l2), h]} pf + {δ(l2), [δ(l1), h]}pf

= −{δ ({δ(l1), δ(l2)}pf) , h}pf + {δ ({δ(l1), h}pf) , δ(l2)}pf

+ {δ ({δ(l2), δ(l1)}pf) , h}pf − {δ ({δ(l2), h}pf) , δ(l1)}pf

= −{δ([l1, l2], h}pf + [{δ(l1), h}pf , l2] + {δ([l2, l1], h}pf − [{δ(l2), h}pf , l1]

= +h�′ [l1, l2]− [h�′ l1, l2]− h�′ [l2, l1] + [h�′ l2, l1] ,

odakle sledi tvrđenje (6). Ovde smo primenili identitet (2.90) u trećem redu, zatim ∂(δ) = 0
u četvrtom redu, identitet (2.93) u petom redu, identitet (2.88) u šestom redu i definiciju �′

(2.97) u sedmom redu.

Lema 7 Za sve l1, l2 ∈ l važi Pajferov identitet:

δ(l1) �′ l2 = [l1, l2] .

Dokaz. Za sve l1, l2 ∈ l:

δ(l1) �′ l2 = −{δ(l2), δ(l1)}pf = −[l2, l1] ,

odakle sledi tvrđenje (7), pri čemu smo iskoristili definiciju (2.97) u prvoj jednakosti i identitet
(2.88) u drugoj jednakosti.
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Lema 8 Za sve h ∈ h i l ∈ l važi:

δ(h�′ l) = [h, δ(l)] .

Dokaz. Za sve h ∈ h i l ∈ l važi:

δ(h�′ l) = −δ({δ(l), h}pf) = −〈δ(l), h〉pf = −[δ(l), h] + ∂(δ(l)) � h ,

odakle sledi tvrđenje (8) kad primenimo ∂δ = 0. Ovde smo iskoristili definiciju (2.97) kod prve
jednakosti, identitet (2.86) kod druge jednakosti i definiciju Pajferovog komutatora (2.9) kod
treće jednakosti.

Na osnovu osobine 5. možemo da primetimo da trivijalno preslikavanje δ, ili trivijalno Pa-
jferovo podizanje, povlače da Lmora da bude Abelova grupa. Odnosno, ako je L Abelova grupa,
makar jedno od ova dva preslikavanja, δ ili Pajferovo podizanje, mora da bude trivijalno. Ovo
nam nagoveštava da komponente koje formiraju strukturu 3-grupe nisu međusobno nezavisne,
tj. da je pri formiranju 3-grupe potrebno pažljivo birati grupe G, H i L i preslikavanja ∂, δ i
{_, _}pf , tako da zajedno zaista formiraju strukturu 3-grupe.

Detaljnija analiza strukture 3-grupe izložena je u [18].

2.3.3 Kompozicija 3-morfizama

U ovom odeljku ćemo opisati kako se na jeziku 3-gejdž teorije definišu kompozicije elementarnih
putanja, površina i zapremina. U 3-gejdž teoriji geometrijski objekti su obojeni na tri nivoa.
Krive su označene elementima grupe g ∈ G, a njihova kompozicija i promena orijentacije de-
finisana je kao u standardnoj gejdž teoriji. Površine su označene elementima grupe h ∈ H, a
njihova vertikalna kompozicija definisana je na isti način kao u 2-gejdž teoriji diskutovanoj u
prethodnom odeljku. Nadovezivanje 2-morfizma sa 1-morfizmom sa leve i desne strane takođe
je definisano na isti način kao u 2-gejdž teoriji, dok to nije slučaj sa horizontalnom kompozi-
cijom koja sada u 3-gejdž teoriji rezultuje izmenskim 3-morfizmom. Zapremine su označene
elementima grupe l ∈ L.

Za svaku zapreminu, podelimo granicu na dve površine, pri čemu je izvorna površina ozna-
čena sa ∂−3 (l) = h1 i ciljna površina označena sa ∂+

3 (l) = h2. Na zajedničkoj granici površine
izvora i mete biramo dve referentne tačke i delimo granicu na dve krive, pri čemu je izvorna
kriva označena sa ∂−2 (l) = g1 i ciljna kriva označena sa ∂+

2 (l) = g2, kao što je prikazano na
dijagramu ispod,

• •

g1

��

g2

WW h1

��

l

V • •

g1

��

g2

WW h2

��
,

tako da element l ∈ L zadovoljava relaciju:

δ(l) = h2h
−1
1 . (2.99)

Orijentacija zapremine se može obrnuti, pri čemu je zapremina promenjene orijentacija
označena inverznim elementom l−1,

• •

g1

��

g2

WW h1

��

l−1

W • •

g1

��

g2

WW h2

��
,
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dok promena orijentacije krivih i površina dovodi do površinskog elementa označenog sa l̃ =
g−1

1 � l:

•

g−1
2

@@

g−1
1

��
•g−1

1 �h1

KS
l̃

V •

g−1
2

@@

g−1
1

��
•g−1

1 �h2

KS

.

Da bismo definisali kada su elementarne zapremine kompozibilne označimo izvor i metu
k-strelice (k = 1, 2, 3) 3-morfizma l kao ∂−k (l) i ∂+

k (l), respektivno.

Kompozicija 3-morfizama prema gore

• Kompozicija dva 3-morfizama prema gore daje 3-morfizam, kada su oni kompozibilni,
odnosno kada ∂+

3 (l1) = ∂−3 (l2),

y• •x

g1

��

g2

ZZ
h1

��

l1
V y• •x

g1

��

g2

ZZ
h2

��

l2
V y• •x

g1

��

g2

ZZ
h3

��
= y• •x

g1

��

g2

ZZ
h1

��

l1l2
V y• •x

g1

��

g2

ZZ
h3

��
,

odnosno za dva 3-morfizma (g1, h1, l1) i (g1, h2, l2) važi:

(g1, h2, l2)#3(g1, h1, l1) = (g1, h1, l2l1) . (2.100)

• Kompozicija 3-morfizama prema gore je asocijativna operacija, odnosno za l1, l2, l3 ∈ L
koji zadovoljavaju ∂−3 (l3) = ∂+

3 (l2) i ∂−3 (l3) = ∂+
3 (l2),

• •

g1

��

g2

[[ h1��

l2l1
V • •

g1

��

g2

[[ h3��

l3
V • •

g1

��

g2

[[ h4�� = • •

g1

��

g2

[[ h1��

l1
V • •

g1

��

g2

[[ h2��

l3l2
V • •

g1

��

g2

[[ h4�� ,

formalno zapisano:

(g1, h3, l3)#3(g1, h1, l2l1) = (g1, h2, l3l2)#3(g1, h1, l1) . (2.101)

• Za svaki element h ∈ H postoji 3-morfizam koji je identitet za kompoziciju 3-morfizama
prema gore:

• •

g1

��

g2

[[ h��

1h
V • •

g1

��

g2

[[ h�� .

Vertikalna kompozicija 3-morfizama

• Vertikalna kompozicija dva 3-morfizama, kada su oni kompozibilni, odnosno kada je
∂+

2 (l1) = ∂−2 (l2),

y• •x

g1

��
g2

oo
h1�� l1

V y• •x

g1

��
g2

oo
h′1��

y• •x

g3

ZZ
g2oo

h2��

l2
V y• •x

g3

ZZ
g2oo
h′2��

,
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daje 3-morfizam:

y• •x

g1

zz

g3

dd h2h1

��

l2h2�
′l1

V y• •x

g1

zz

g3

dd δ(l2h2�
′l1)h2h1

��
.

Formalno zapisano, vertikalna kompozicija (g1, h1, l1) i (g2, h2, l2) daje 3-morfizam:

(g2, h2, l2)#2(g1, h1, l1) = (g1, h2h1, l2h2 �
′ l1) . (2.102)

• Vertikalna kompozicija je asocijativna operacija, odnosno za l1, l2, l3 ∈ L za koje je
∂+

2 (l1) = ∂−2 (l2) i ∂+
2 (l2) = ∂−2 (l1),

y• •x

g1

�� g2vv

h1��
l1
V y• •x

g1

�� g2vv

h′1��

y• •x
g3

hh

g2

vv
h2��

l2
V y• •x

g3

hh

g2

vv
h′2��

y• •xg3hh

g1

XX

h3��

l3
V y• •xg3hh

g1

XX

h′3��

,

važi:

(g3, h3, l3)#2(g1, h2h1, l2h2 �
′ l1) = (g2, h3h2, l3h3 �

′ l2)#2(g1, h1, l1) . (2.103)

Dokaz. Ovu jednakost dokazujemo sličnim postupkom kao u (2.25). Leva strana jednačine
(2.103) daje:

(g3, h3, l3)#2(g1, h2h1, l2h2 �
′ l1) = (g1, h3h2h1, l3h3 �

′ (l2h2 �
′ l1)) . (2.104)

Desna strana jednačine (2.103) daje takođe

(g2, h3h2, l3h3 �
′ l2)#2(g1, h1, l1) = (g1, h3h2h1, l3 h3 �

′ l2 (h3h2) �′ l1)

= (g1, h3h2h1, l3 h3 �
′ l2 h3 �

′ (h2 �
′ l1))

= (g1, h3h2h1, l3 h3 �
′ (l2 h2 �

′ l1)) ,

(2.105)

primenom Leme 2. Ovim smo dokazali jednakost (2.103).

• Kompozicija 3-morfizama je invarijantna na redosled vršenja vertikalne kompozicije 3-
morfizama i kompozicije 3-morfizama prema gore, odnosno važi:(

(g2,h
′
2,l
′
2)#3(g2,h2,l2)

)
#2

(
(g1,h

′
1,l
′
1)#3(g1,h1,l1)

)
=
(
(g2,h

′
2,l
′
2)#2(g1,h

′
1,l
′
1)
)
#3

(
(g2,h2,l2)#2(g1,h1,l1)

)
,

(2.106)
što se lepo vidi u dijagramskoj notaciji, gde dijagram oblika

y• •x

g1

��
g2

oo
h1�� l1

V y• •x

g1

��
g2

oo
h′1�� l′1

V y• •x

g1

��
g2

oo
h′′1��

y• •x

g3

ZZ
g2oo
h2��

l2
V y• •x

g3

ZZ
g2oo
h′2��

l′2
V y• •x

g3

ZZ
g2oo
h′′2��
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jednoznačno određuje 3-morfizam.
Dokaz. Dokažimo jednakost (2.106). Leva strana jednačine je jednaka:(

(g2, h
′
2, l
′
2)#3(g2, h2, l2)

)
#2

(
(g1, h

′
1, l
′
1)#3(g1, h1, l1)

)
=

(
g2, h2, l

′
2l2
)
#2

(
g1, h1, l

′
1l1
)

=
(
g1, h2h1, l

′
2l2 h2 �

′ (l′1l1)
)
.

(2.107)
Desna strana jednačine (2.106) je jednaka:(

(g2,h
′
2,l
′
2)#2(g1,h

′
1,l
′
1)
)
#3

(
(g2,h2,l2)#2(g1,h1,l1)

)
=
(
g1,h

′
2h
′
1,l
′
2h
′
2�
′l′1
)
#3

(
g1,h2h1,l2h2�

′l1
)

=
(
g1,h2h1,l

′
2h
′
2�
′l′1l2h2�

′l1
)

(l′2=δ(l2)h2)

=
(
g1,h2h1,l

′
2(δ(l2)h2)�′l′1l2h2�

′l1
)

(Lema 1)
=
(
g1,h2h1,l

′
2δ(l2)�′(h2�

′l′1)l2h2�
′l1
)

(Pajferov id.)
=
(
g1,h2h1,l

′
2l2(h2�

′l′1)l−1
2 l2h2�

′l1
)

(l−1
2 l2=e)

=
(
g1,h2h1,l

′
2l2h2�

′l′1h2�
′l1
)

(Lema 2)

=
(
g1,h2h1,l

′
2l2h2�

′(l′1l1)
)
.

(2.108)
Ovim smo dokazali jednakost (2.106).

Kompozicija 3-morfizma i 1-morfizma

• Nadovezivanje je način na koji se vrši kompozicija 3-morfizma l i 1-morfizma g1 koji se
nalazi sa leve strane, tj. kada je ∂+

1 (l) = ∂−1 (g1):

z• y•g1oo •x

g2

��

g′2

ZZ h1

��

l

V z• y•g1oo •x

g2

��

g′2

ZZ h2

��
.

Ovako formiran 3-morfizam naziva se nadovezivanje 3-morfizma l i 1-morfizma g1 sa leve
strane g1#1l, osnosno 3-morfizam l proširen sa leve strane sa 1-morfizmom g1. Ova
kompozicija formirana je kao (g1, 1g1)#1(g2, h1, l)

z• y•

g1

��

g1

YY •x

g2

��

g′2

ZZ
1g1
��

h1

��

l

V z• y•

g1

��

g1

YY •x

g2

��

g′2

ZZ h2

��

1g1
��

=

z• •x

g1g2

��

g1g′2

`` g1�h1

��

g1�l

V z• •x

g1g2

��

g1g′2

`` g1�h2

��
,

odnosno formalno zapisano:

(g1, 1g1)#1(g2, h1, l) = (g1g2, g1 � h, g1 � l) . (2.109)

• Na sličan način možemo formirati i nadovezivanje 3-morfizma l i 1-morfizma g2 sa desne
strane, kada je ∂−1 (l) = ∂+

1 (g2), osnosno 3-morfizam l proširen sa desne strane sa 1-
morfizmom g2,

z• •y

g1

��

g′1

YY h1

��
•xg2oo

l

V z• •y

g1

��

g′1

YY h2

��
•xg2oo ,
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koju formiramo kao (g1, h1, l)#1(g2, 1g2),

z• y•

g1

��

g′1

YY •x

g2

��

g2

ZZh1

��

1g2
��

l

V z• y•

g1

��

g′1

YY •x

g2

��

g2

ZZh2

��

1g2
��

=

z• •x

g1g2

��

g′1g2

`` h1

��

l

V z• •x

g1g2

��

g′1g2

`` h2

��
,

tj. formalno zapisano:

(g1, h1, l)#1(g2, 1g2) = (g1g2, h1, l) . (2.110)

Kompozicija 3-morfizma i 2-morfizma

• Nadovezivanje 3-morfizma l i 2-morfizma h2 sa gornje strane, odnosno 3-morfizam l
proširen sa gornje strane sa 2-morfizmom h1, kada su oni kompozibilni, odnosno kada
∂+

2 (l) = ∂−2 (h2), posmatramo kao vertikalnu kompoziciju (g1, h1, l) i (g2, h2, 1h2)

y• •x

g1

��
g2

oo
h1�� l

V y• •x

g1

��
g2

oo
h′1��

y• •x

g3

ZZ
g2oo

h2��

1h2

V y• •x

g3

ZZ
g2oo

h2��
,

koja rezultuje 3-morfizmom:

y• •x

g1

zz

g3

dd h2h1

��

h2�
′l

V y• •x

g1

zz

g3

dd δ(h2�
′l)h2h1

��
.

Formalno zapisano:

(g1, h1, l)#2(g2, h2, 1h2) = (g1, h2h1, h2 �
′ l) . (2.111)

• Nadovezivanje 3-morfizma l i 2-morfizma h1 sa donje strane, odnosno 3-morfizam l proši-
ren sa donje strane sa 2-morfizmom h1, kada su oni kompozibilni, odnosno kada ∂−2 (l) =
∂+

2 (h1), posmatramo kao vertikalnu kompoziciju (g1, h1, 1h1) i (g2, h2, l)

y• •x

g1

��
g2

oo
h1�� 1h1

V y• •x

g1

��
g2

oo
h1��

y• •x

g3

ZZ
g2oo

h2��

l

V y• •x

g3

ZZ
g2oo
h′2��

,
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koja rezultuje sa 3-morfizmom:

y• •x

g1

zz

g3

dd h2h1

��

l

V y• •x

g1

zz

g3

dd δ(l)h2h1

��
.

Formalno zapisano:
(g1, h1, 1h1)#2(g2, h2, l) = (g1, h2h1, l) . (2.112)

2.3.4 Horizontalna kompozicija 2-morfizama - izmenski 3-morfizam

• Horizontalna kompozicija 2-morfizma h1 i h2 kada važi ∂−1 (h1) = ∂+
1 (h2) daje izmenski

3-morfizam14.

z• y•
g1

xx

g′1

ff h1�� •x
g2

xx

g′2

ff h2�� .

Kompozicija rezultuje 3-morfizmom, čiji je izvor 2-morfizam

∂−3 (l) =
(
(g1, h1)#1g

′
2

)
#2

(
g1#1(g2, h2)

)
,

a meta 2-morfizam
∂+

3 (l) =
(
g′1#1(g2, h2)

)
#2

(
(g1, h1)#1g2

)
,

z• y•
g1

xx

g′1

ff h1�� •x
g2

xx

g′2

ff h2�� = z• •x

g1g2

ww

g′1g
′
2

gg h1g1�h2

��

l

V z• •x

g1g2

ww

g′1g
′
2

gg g′1�h2h1

��
.

Formalno zapisano:

(g1, h1)#1(g2, h2) = (g1g2, h1g1 � h2, l) . (2.113)

U jednačini (2.113) 3-morfizam l jednak je Pajferovom podizanju {h1, g1�h2}−1
pf . Koristeći

identitet (2.99), dobijamo:

(∂(h1)g1) � h2h1 = δ(l)h1

(
g1 � h2

)
. (2.114)

Koristeći definiciju Pajferovog komutatora, tj. identitet (2.55) i prvu osobinu 2-ukrštenog
modula, tj. δ({h1, h2}p) = 〈h1 , h2〉pf , dobijamo da je 3-morfizam l:

δ(l)−1 = h1g1 � h2h
−1
1 (∂(h1)g1) � h2

−1 = 〈h1, g1 � h2〉pf = δ({h1, g1 � h2}p) . (2.115)

• Horizontalna kompozicija vertikalne kompozicije 2-morfizma h1 i h′1 i 2-morfizma h2 sa
desne strane, kada su kompozibilni, tj. kada je ∂−1 (h1) = ∂−1 (h′1) = ∂+

1 (h2) i ∂+
2 (h1) =

∂−2 (h′1),

z• y•

g1

�� g′1oo

g′′1

``
h1��

h′1��

•x
g2

xx

g′2

ff h2�� ,

14eng. the interchanging 3-arrow.
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dobija se kao izmenski 3-morfizam (g1, h
′
1h1)#1(g2, h2),

z• y•

g1

��

g′′1

`` h′1h1

��

•x
g2

xx

g′2

ff h2�� = (g1, h
′
1h1)#1(g2, h2) = (g1g2, h

′
1h1g1 � h2, l) .

U prethodnoj formuli l = {h′1h1, g1 � h2}−1
pf , gde je površina h′1h1g1 � h2 izvor, a površina

g′′1 � h2h
′
1h1 meta 3-morfizma.

• Horizontalna kompozicija vertikalne kompozicije 2-morfizma h2 i h′2 i 2-morfizma h1 sa leve
strane, kada su kompozibilni, tj. kada je ∂+

1 (h2) = ∂+
1 (h′2) = ∂−1 (h1) i ∂+

2 (h2) = ∂−2 (h′2),

z• y•
g1

xx

g′1

ff h1�� x•

g2

�� g′2oo

g′′2

aa

h2��

h′2��

,

dobija se kao izmenski 3-morfizam (g1, h1)#1(g2, h
′
2h2),

z• y•
g1

xx

g′1

ff h1
��

•x

g2

��

g′′2

aa
h′2h2

��
= (g1, h1)#1(g2, h

′
2h2) = (g1g2, h1g1 � (h′2h2), l) .

U prethodnoj formuli l = {h1, g1 � (h′2h2)}−1
pf , gde je površina h1g1 � (h′2h2) izvor, a

površina g′1 � (h′2h2)h1 meta 3-morfizma.

2.3.5 3-koneksija i 3-krivina

Neka su g, h i l Lijeve algebre koje odgovaraju grupama G, H i L. Možemo definisati 3-
koneksiju, uređenu trojku (α, β, γ), gde su diferencijalne forme elementi algebre α ∈ A1(M4 , g),
β ∈ A2(M4 , h) i γ ∈ A3(M4 , l). Odgovarajuća lažna15 3-krivina (F ,G ,H) se definiše kao:

F = dα + α ∧ α− ∂β , G = dβ + α ∧� β − δγ ,

H = dγ + α ∧� γ + β ∧{,} β .
(2.118)

Primetimo da je koneksija γ diferencijalna 3-forma, odnosno da je njena odgovarajuća jačina
polja H diferencijalna 4-forma, što povlači da prostorvremenska mnogostrukost M za koju

15Pravimo razliku između 3-krivine i lažne 3-krivine. Obična 3-krivina, uređena trojka (F,G,H) za koneksiju
α ∈ A1(g,M4), β ∈ A2(h,M4) i γ ∈ A3(l,M4) definiše se na standardan način:

F = dα+ α ∧ α,
G = dβ + α ∧� β,
H = dγ + α ∧� γ .

(2.116)

Lažna 3-krivina, uređena trojka (F ,G,H) ima dodatne članove i definisana je kao:

F = F − ∂β,
G = G− δγ,
H = H + β ∧{,} β .

(2.117)
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definišemo 3BF dejstvo mora biti najmanje 4-dimenzionalna. Ako uporedimo definiciju 3-
krivine u 3-gejdž teoriji sa definicijom 2-krivine u 2-gejdž teoriji, primećujemo da je krivina G
definisana sa dodatnim članom16.

Krivine možemo raspisati u bazisima odgovarajućih algebri i diferencijalnih formi:

F=
1

2
Fαµνταdxµ∧dxν , G=

1

3!
Gaµνρtadxµ∧dxν∧dxρ, H=

1

4!
HA

µνρσTAdxµ∧dxν∧dxρ∧dxσ,

16Posmatrajmo zapreminu V :

•

•

Σ1
{�

ooOO

γ2

γ1

V
V

•

•

Σ2
{�

ooOO

γ2

γ1

.

Ovaj kocka predstavlja 3-morfizam

V : Σ1 → Σ2 , (2.119)

gde su Σ1 i Σ2 2-morfizmi prikazani na slici. Želimo da izračunamo:

hol(V ) : hol(Σ1)→ hol(Σ2) . (2.120)

Holonomija hol(V ) zavisi od 3-koneksije γ. Njen izvor i meta zavise samo od 2-forme β. Dobra definisanost
izvora i mete 3-morfizma V osigurava se vezom između 2-koneksije β i 3-koneksije γ. Sa jedne strane, imamo
da je:

hol(Σ1) = Pexp

(∫
Σ1

β

)
, hol(Σ2) = Pexp

(∫
Σ2

β

)
. (2.121)

Takođe, znamo da je 3-morfizam l : h1 → h2 određen elementom l ∈ L takvim da h2 = δ(l)h1. To znači da je
3-morfizam hol(V ) : hol(Σ1)→ hol(Σ2) određen elementom l ∈ L, pri čemu

Pexp

(∫
Σ2

β

)
= δ(l) Pexp

(∫
Σ1

β

)
, (2.122)

odnosno

δ(l) = Pexp

(∫
∂V

β

)
, (2.123)

gde je granična površina zapremine ∂V = Σ2Σ−1
1 . Imajući u vidu da je kvadrat mali i koristeći Stoksovu

teoremu dobijamo:

Pexp

(∫
∂V

β

)
≈ exp

(∫
V

G

)
. (2.124)

Sa druge strane, 3-morfizam l izražen preko 3-forme γ je:

l ≈ exp

(∫
V

γ

)
. (2.125)

Da bi ovi izrazi bili jednaki potrebno je da važi jednakost

δ(exp

(∫
V

γ

)
) ≈ exp

(∫
V

G

)
, (2.126)

odnosno:

δ(γ) = G = dβ + α ∧ β . (2.127)
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gde su koeficijenti:

Fαµν = ∂µα
α
ν − ∂νααµ + fβγ

ααβµα
γ
ν − βaµν∂aα ,

Gaµνρ = ∂µβ
a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν + ααµβ

b
νρ�αb

a + αανβ
b
ρµ�αb

a + ααρβ
b
µν�αb

a − γAµνρδAa ,
HA

µνρσ = ∂µγ
A
νρσ − ∂νγAρσµ + ∂ργ

A
σµν − ∂σγAµνρ

+ 2βaµνβ
b
ρσX{ab}

A − 2βaµρβ
b
νσX{ab}

A + 2βaµσβ
b
νρX{ab}

A

+ ααµγ
B
νρσ�αB

A − αανγBρσµ�αB
A + ααργ

B
σµν�αB

A − αασγBµνρ�αB
A .

pogledati [17], [18] za više detalja.

Transformacije 3-koneksije i 3-krivine

U teoriji kategorija, 3-grupa daje tri tipa gejdž transformacija generisanih grupama G, H i L.
Pri G-gejdž transformacijama, 3-koneksija se transformiše na sledeći način,

α′ = gαg−1 + gdg−1 , β′ = g � β , γ′ = g � γ , (2.128)

gde je g : M4 → G element G-glavnog raslojenja mnogostrukosti M4. Zatim, pri H-gejdž
transformacijama, generisanih elementom η ∈ A1(M4 , h), 3-koneksija se transformiše po za-
konu transformacije:

α′ = α + ∂η , β′ = β + dη + α′ ∧� η − η ∧ η , γ′ = γ − β′ ∧{,} η − η ∧{,} β . (2.129)

Na kraju, pri L-gejdž transformacijama, generisanih sa θ ∈ A2(M4 , l), 3-koneksija se transfo-
rmiše po zakonu transformacije:

α′ = α , β′ = β − δθ , γ′ = γ − dθ − α ∧� θ . (2.130)

Teorema 5 Kompozicija G-gejdž, H-gejdž i L-gejdž transformacija dovodi do transformacije
3-koneksije:

α̃ = gαg−1 + gdg−1 + ∂(η) ,

β̃ = g � β + dη + α̃ ∧� η − η ∧ η − δ(θ) ,
γ̃ = g � γ − dθ − α̃ ∧ θ − β̃ ∧{,} η − η ∧{,} (g � β) + η ∧�′ θ ,

(2.131)

gde su g : M4 → G, η ∈ A1(M4, h) i θ ∈ A2(M4, l) redom parametri G-, H- i L-gejdž
transformacija.

Na osnovu transformacija 3-koneksije, dobijamo zakon transformacije 3-krivine definisane
izrazom (2.118) pri 3-gejdž transformacijama.

Teorema 6 Pri G-gejdž transformacijama 3-krivina (F ,G,H) se transformiše na sledeći način

F → gFg−1 , G → g � G , H → g �H , (2.132)

pri H-gejdž transformacijama na sledeći način

F → F , G → G + F ∧� η , H → H− G ′ ∧{,} η + η ∧{,} G , (2.133)

a pri L-gejdž transformacijama kao:

F → F , G → G , H → H−F ∧� θ , (2.134)

gde su g : M4 → G, η ∈ A1(M4, h) i θ ∈ A2(M4, l) redom parametri G-, H- i L-gejdž
transformacija.

Za više detalja i dokaze ovih teorema pogledati [18], odnosno dodatak A.
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Glava 3

Hamiltonova analiza

Hamiltonova analiza teorije je neophodan prvi korak kanonske kvantizacione procedure koju je
formulisao Pol Dirak za Hamiltonove sisteme sa vezama [31]. Ova procedura nam dozvoljava
da formulišemo kvantnu teoriju za sisteme koju poseduju gejdž simetriju. Ovaj pristup može
se podeliti na dva glavna koraka.

1. Prvo, neophodno je izvršiti Hamiltonovu analizu sistema, čiji je rezultat algebra veza prve
klase i veza druge klase prisutnih u teoriji. Veze prve klase generišu nefizičke transforma-
cije dinamičkih varijabli, gejdž transformacije, koje ne menjaju fizičko stanje sistema.
Veze prve klase F i veze druge klase S, zajedno definišu potprostor Γ∗ faznog prostora Γ
dimenzije

2n = 2N − (2F + S) , (3.1)

u kome se odigrava dinamika nezavisnih stepeni slobode.

U ovom poglavlju predstavljene su osnovne ideje Dirakovog metoda. Zatim, prikazan je
kratak pregled sistemskog pristupa konstrukciji generatora gejdž transformacija na osnovu
poznate Hamiltonove strukture – Kastelanijeve procedure.

2. Prelaz sa klasične na kvantnu teoriju sa gejdž stepenima slobode u koordinatnoj repreze-
ntaciji postiže se na sledeći način:

• Dinamičke varijable koordinata i njihovih kanonskih impulsa postaju operatori:

q(x)→ q̂(x) ,

π(x)→ π̂(x) ;

• Zatim, pomoću Poasonove zagrade uvede se Dirakova zagrada {_,_}D, čime se iz
teorije eliminišu veze druge klase, ukoliko ih ima u teoriji;

• Zatim, Dirakova zagrada operatora q i π, tzv. Hajzenbergove algebre, postaje komu-
tator:

{q(x), π(x)} → −i[q̂(x), π̂(x)] ;

• Veze prve klase postaju uslovi na fizička stanja:

Φ̂ |ψ〉 = 0 .

Ovi uslovi su analogni Gupta-Blojlerovim uslovima iz kvantne elektrodinamike.

41
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3.1 Lagranžev i Hamiltonov formalizam
U ovom odeljku prikazan je kratak osvrt na Lagranžev i Hamiltonov formalizam. Neka je n
broj stepeni slobode nekog fizičkog sistema, koji predstavlja minimalan broj veličina potrebnih
da se potpuno opiše položaj svih čestica, odnosno konfiguracija sistema. Lagranževa funkcija,
ili Lagranžijan je funkcija oblika:

L(q1, . . . , qN , q̇1, . . . , ˙qN , t) , (3.2)

gde su veličine qi i q̇i, i = 1, . . . , N , generalisane koordinate i njihovi vremenski izvodi. Hami-
ltonovo dejstvo je po definiciji jednako:

S =

∫ t2

t1

dt L(q1, . . . , qN , q̇1, . . . , ˙qN , t) . (3.3)

Ako na posmatrani fizički sistem deluju samo potencijalne sile i ako se u Lagranzijanu pojavljuju
samo prvi izvodi generalisanih koordinata po vremenu, Ojler-Lagranževe jednačine kretanja
imaju oblik

δS

δqi
=

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , N , (3.4)

gde je δS
δqi

funkcionalni izvod dejstva po generalisanoj koordinati qi. Jednačine kretanja su
posledica Hamiltonovog principa najmanjeg dejstva. Ojler-Lagranževe jednačine možemo napi-
sati u obliku

∂2L

∂q̇i∂q̇j
q̈j =

∂L

∂qi
− ∂2L

∂q̇i∂qj
q̇j , i = 1, . . . , N , (3.5)

gde je matrica ∂2L
∂q̇i∂q̇j

Hesijan Lagranžijana L. Ako je Hesijan invertibilan, tj.

detH ij = det

(
∂2L

∂q̇i∂q̇j

)
6= 0 , (3.6)

jednačine (3.5), ako su zadovoljeni uslovi egzistencije i jedinstvenosti rešenja sistema diferenci-
jalnih jednačina, a za date inicijalne uslove, možemo rešiti po ubrzanjima q̈i. Ovakve teorije
nazivamo nesingularnim. Kažemo da je teorija singularna ako uslov (3.6) nije zadovoljen, tj.
ako je

detH ij = 0 . (3.7)

Kanonski impulsi su definisani na sledeći način:

pi = π(qi) =
δL

δq̇i
, i = 1, . . . , N . (3.8)

U ovom trenutku možemo da preformulišemo definiciju nesingularne teorije – vidimo da Hesijan
možemo izraziti kao ∂pi

∂q̇j
, pa uslov (3.6) možemo razumeti kao zahtev da se brzine q̇i mogu izraziti

kao funkcija generalisanih koordinata i njihovih kanonskih impulsa.
U slučaju nesingularne teorije, definišemo Hamiltonijan,

H =
∑
i

pi q̇i − L . (3.9)

Jednačine kretanja u Hamiltonovom formalizmu su:

ṗi =
∂H

∂qi
, q̇i = −∂H

∂qi
, i = 1, . . . , N . (3.10)
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Poasonova zagrada funkcija f = f(q1, . . . , qN , q̇1, . . . , ˙qN , t) i g = g(q1, . . . , qN , q̇1, . . . , ˙qN , t) je
definisana na sledeći način:

{f, g} =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂pi
∂f

∂qi

)
. (3.11)

Koristeći Poasonovu zagradu, definišemo vremensku evoluciju proizvoljne funkcije f na faznom
prostoru

df

dt
= {f,H}+

∂f

∂t
, (3.12)

pa Hamiltonove jednačine kretanja možemo napisati u obliku:

ṗi = {pi, H} , q̇i = {qi, H} , i = 1, . . . , N . (3.13)

Definicije date u ovom odeljku pravolinijski se generalizuju na slučaj teorije sa beskonačno
mnogo stepeni slobode. U slučaju teorije koja opisuje polje φα u prostorvremenu čije su koo-
rdinate xµ, gustina Lagranžijana L je funkcija oblika:

L =

∫
Σ3

d3xL(φα, ∂µφ
α) , (3.14)

pa dejstvo definišemo na sledeći način:

S =

∫
d4xL(φα, ∂µφ

α) . (3.15)

Kanonski impulsi su u ovom slučaju funkcije koordinata

pα(x) = π(φα) =
δL

δφ̇α(x)
, (3.16)

a Hamiltonijan:

H =

∫
Σ3

d3x

[∑
α

pα(x) φ̇α(x)

]
− L . (3.17)

U ovom odeljku napravili smo kratak pregled Lagranževog i Hamiltonovog formalizma, pri
čemu smo našu pažnju ograničili isključivo na nesingularne teorije, tj. one koji ispunjavaju
uslov (3.6). U narednom odeljku razmatraćemo singularne teorije.

3.2 Sistemi sa vezama
Singularne teorije se odlikuju prisustvom redundantnih stepeni slobode u fizičkom sistemu, tj.
postojanjem dodatnih, nefizičkih varijabli u dejstvu, tako da je ukupan broj varijabli u teoriji
veći od broja varijabli koje opisuju fiziku sistema. Za analizu ovih fizičkih sistema neophodna
je Hamiltonova analiza sistema sa vezama, tj. Dirakova procedura.

3.2.1 Dirakova teorija

Primarne veze

Ako nije moguće invertovati relacije (3.8) i izraziti brzine kao funkcije generalisanih koordinata
i njihovih konjugovanih impulsa, tj. ako je zadovoljen uslov (3.7), teorija je singularna. Sve
relevantne fizičke teorije, kao što su Standardni Model elementarnih čestica i Opšta teorija
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relativnosti, spadaju u ovu klasu. Singularne teorije odlikuje postojanje seta relacija između
varijabli i impulsa, koje nazivamo primarnim vezama

Pm(q, p) ≈ 0 , m = 1, . . . , P , (3.18)

gde P predstavlja ukupan broj primarnih veza u teoriji, a znak ≈ obeležava slabu jednakost1.
Iz jednačine (3.8) dobijamo oblik primarnih veza:

P (qi) ≡ π(qi)−
δL

δq̇i
. (3.19)

Primarne veze određuju potprostor Γ1 ukupnog faznog prostora Γ u kome se odigrava dinamika
sistema. Primarne veze Pm ne moraju biti sve međusobno nezavisne. Ako je broj nezavisnih
primarnih veza P ′ ≤ P , onda je dimenzija faznog potprostora 2N − P ′. Tada je Hesijan ∂2L

∂q̇i∂q̇j

matrica ranga N − P ′.

Kanonski i totalni Hamiltonijan

Definišemo kanonski Hamiltonijan

Hc =
N∑
i=1

pi q̇i − L , (3.20)

koji je dobro definisan na površini određenoj primarnim vezama. U slučaju singularne teorije
definišemo totalni hamiltonijan koji je definisan na celom faznom prostoru Γ

HT = Hc+
∑
m

λmPm , (3.21)

gde su λm(q) proizvoljni Lagranževi množitelji. Jednačine kretanja za kanonske varijable i
njihove impulse dobijene totalnim Hamiltonijanom

ṗi = −∂HT

∂qi
, q̇i =

∂HT

∂pi
, i = 1, . . . , N , (3.22)

primenom jednačine (3.21) postaju:

ṗi = −∂Hc

∂qi
− λm∂Pm

∂qi
, q̇i =

∂Hc

∂pi
+ λm

∂Pm
∂pi

, i = 1, . . . , N . (3.23)

Ako je A(q, p) neka proizvoljna dinamička varijabla u teoriji, njena jednačina kretanja je

Ȧ =
∂A

∂qi
q̇i +

∂A

∂pi
ṗi , (3.24)

pa primenom jednačina (3.22) dobijamo:

Ȧ =
∂A

∂qi

∂HT

∂pi
− ∂A

∂qi

∂HT

∂qi
= {A,HT} . (3.25)

1Neka je F (q, p) funkcija koja je definisana i diferencibilna u okolini O ⊆ Γ koja sadrži podprostor Γ1. Ako
je funkcija F (q, p) na Γ1 jednaka nuli, kažemo da je F slabo jednaka nuli:

F (q, p) ≈ 0 ⇔ F (q, p)|Γ1 = 0 .

Ako su funkcija F i svi njeni prvi izvodi jednaki nula na Γ1, kažemo da je jako jednaka nuli:

F (q, p) = 0 ⇔ F (q, p)|Γ1
=
∂F (q, p)

∂q
|Γ1

=
∂F (q, p)

∂p
|Γ1

= 0 .
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Uslovi konzistentnosti i sekundarne veze

Uslovi konzistentnosti primarnih veza zahtevaju da primarne veze budu sačuvane tokom di-
namičke evolucije sistema:

Ṗ (qi) ≡ {P (qi) , HT } ≈ 0 . (3.26)

Uslovi konzistentnosti rezultuju u jednom od tri ishoda.

1. Poasonova zagrada (3.26) jednaka je nekoj linearnoj kombinaciji primarnih veza, pa kao
takva je slabo jednaka nuli – uslov konzistentnosti je automatski zadovoljen.

2. Uslovi konzistentnosti rezultuju u dobijanju sekundardnih veza u teoriji:

S(qi) = {P (qi) , HT } ≈ 0 . (3.27)

Sekundardne veze koje su se pojavile u teoriji takođe moraju da zadovolje uslove konzi-
stentnosti :

Ṡ(qi) ≡ {S(qi) , HT } ≈ 0 . (3.28)

Uslovi konzistentnosti sekundarnih veza mogu dovesti do pojave novih veza u teoriji –
tercijarnih veza. Tada moramo zahtevati da tercijarne veze ostaju nepromenjene, tj.
da zadovoljavaju uslove konzistentnosti, što takođe rezultuje nekim od ovde navedenih
ishodom. Ovaj proces se nastavlja sve dok uslovi konzistentnosti ne prestanu da uvode
nove veze.

3. Konačno, uslovi konzistentnosti mogu odrediti neke Lagranževe množitelje λm.

Zajedno P primarnih veza P (q, p) i K novih veza S(q, p) (sekundarnih, tercijarnih...), dobijenih
uslovima konzistentnosti, čine skup svih veza u teoriji:

φm(q, p) ≈ 0 , m = 1, . . . , P, P + 1, . . . , P +K . (3.29)

Može se pokazati da je neka funkcija na faznom prostoru F (q, p) slabo jednaka nuli, ako i samo
ako je jednaka linearnoj kombinaciji veza:

F ≈ 0 ⇔ F =
∑
m

λmφm .

Primenom definicije totalnog Hamiltonijana, uslovi konzistentnosti za sve veze u teoriji
postaju:

{φm , Hc }+
∑
m′

λm
′{φm , φm′ } ≈ 0 . (3.30)

Neka je L broj uslova konzistentnosti koji nisu automatski zadovoljeni, tj. koji nameću ogra-
ničenja na Lagranževe množitelje. Tada sistem od L diferencijalnih jednačina (3.30) možemo
rešiti po λm

λm = Um +
∑
a

va(t)V m
a , (3.31)

gde su va(t) arbitrarne funkcije vremena, V m
a homogeni∑

m′

∑
a

va(t)V m′

a {φm , φm′ } ≈ 0 , (3.32)

i Um partikularni deo rešenja sistema diferencijalnih jednačina. Dakle, zakljuučujemo da u
totalnom Hamiltonijanu postoje proizvoljne funkcije vremena. Na kraju, primetimo da, kako
su funkcije va(t) proizvoljne funkcije vremena, važi relacija:∑

m′

V m′

a {φm , φm′ } ≈ 0 . (3.33)
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Veze prve i veze druge klase

Dinamička varijabla R(q, p) je prve klase ako njene Poasonove zagrade sa svim vezama u teoriji
slabo nestaju:

{R(q, p), φm(q, p)} ≈ 0 .

Kao i svaka funkcija koja je slabo jednaka nuli, ova Poasonova zagrada je jednaka linearnoj
kombinaciji veza. Možemo primetiti, na osnovu ove definicije, da je totalni Hamiltonijan HT

veličina prve klase. Ako promenljiva R(q, p) nije prve klase, ona je druge klase. Dok je razlika
između primarnih i sekundarnih veza od malog značaja za Hamiltonovu analizu, razlika između
veza prve i veza druge klase je suštinska za dinamičku interpretaciju veza u okviru Hamiltonove
teorije. Veze prve klase su definisane jednačinom,

{Φ(q, p), φm(q, p)} ≈ 0 , (3.34)

dok veze druge klase zadovoljavaju uslov

{χ(q, p), φm(q, p)} 6≈ 0 , (3.35)

gde su φm(q, p) sve veze, primarne i sekunardne (tercijarne ako postoje itd), u teoriji.
Na kraju prethodnog dela zaključili smo da u totalnom Hamiltonijanu figurišu proizvoljne

funkcije vremena va(t). Prisustvo ovih proizvoljnih funkcija u Hamiltonijanu, pa time i u
jednačinama kretanja i njihovim rešenjima, znači da varijable (q(t), p(t)) ne mogu biti jedno-
značno određene pri poznatim početnim uslovima (q(t = 0), p(t = 0)). Ako varijable (q(t), p(t))
ne mogu biti jednoznačno određene u svakom trenutku, znači da nemaju direktnu fizičku inte-
rpretaciju, tj. to nisu fizičke varijable u teoriji. Neka je f neka varijabla u teoriji, njena
dinamička evolucija je:

f(δt) = f(t = 0) + δt ḟ

= f(t = 0) + δt {f,HT}

= f(t = 0) + δt {f,Hc}+ δt
∑
m

Um{f, φm}+ δt
∑
m

∑
a

va(t)V m
a {f, φm}

= f(t = 0) + δt {f,H ′}+ δt
∑
a

va(t) {f, φa} ,

(3.36)

gde su H ′ = Hc+
∑

m U
mφm i φa =

∑
m V m

a φm. Na osnovu činjenice da je totalni Hamiltonijan
veličina prve klase i na osnovu relacije (3.33) zaključujemo da su i veličine H ′ i φa prve klase,
tj. da njihove Poasonove zagrade sa svim vezama u teoriji slabo nestaju. U poslednjem članu
u izrazu (3.36) figurišu proizvoljne funkcije vremena, pa stoga funkcija

f1(δt) = f(t = 0) + δt {f,H ′} ,

i funkcija
f2(δt) = f(t = 0) + δt {f,H ′}+ δt

∑
a

va(t) {f, φa} ,

odgovaraju istom fizičkom stanju. Transformacija

δf(δt) = δt
∑
a

va(t) {f, φa} =
∑
a

εa(t) {f, φa} , (3.37)

je nefizička. Dakle, zaljučujemo da primarne veze prve klase φa generišu nefizičke transformacije
dinamičkih varijabli koje ne menjaju fizičko stanje sistema – gejdž transformacije.
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Kako je uzastopna primena, kao i razlika, dve nefizičke transformacije takođe nefizička tra-
nsformacija,

δ1(δ2f)− δ2(δ1f) =
∑

a,b ε
b
1(t)εa2(t)

(
{{f, φa}, φb} − {{f, φb}, φa}

)
=
∑

a,b ε
b
1(t)εa2(t) {f, {φa, φb}} ,

zaključujemo da je Poasonova zagrada dve primarne veze prve klase {φa, φb} takođe generator
nefizičkih transformacija. Ova Poasonova zagrada svakako mora biti jednaka nekoj linearnoj
kombinaciji veza, pa možemo očekivati da u njoj figurišu i sekunarne veze. Ove sekundarne
veze su prve klase, jer Poasonova zagrada veza prve klase daje vezu prve klase. To znači da
očekujemo da su neke sekundarne veze prve klase generatori nefizičkih transformacija u teoriji,
a u narednom delu ćemo demonstrirati da ovo važi za sve veze prve klase.

Fizičke informacije o sistemu u nekom proizvoljnom trenutku t mogu se dobiti iz funkcija
koje su definisane na potprostoru Γ′ ukupnog faznog prostora Γ, definisanim vezama u teoriji
- tj. iz fizičkih observabli u teoriji.

Veze druge klase i fizičke observable u teoriji

Neka su Φf veze prve klase u teoriji, f = 1, . . . , F , i χs veze druge klase, gde je s = 1, . . . , S.
Kako su veze χs druge klase, matrica ∆rs = {χr, χs} je nesingularna i dakle invertibilna. Kako
svaka antisimetrična matrica od neparane dimenzije ima determinantu jednaku nuli, a matrica
∆rs je antisimetrična i invertibilna, zaključujemo da broj vaza druge klase mora biti paran.

Možemo definisati novu Poasonovu zagradu – tzv. Dirakovu zagradu

{f, g}D = {f, g} − {f, χr}∆−1
rs {χs, g} , (3.38)

koja je, kao i Poasonova zagrada, antisimetrično bilinearno preslikavanje. Na osnovu definicije
vidimo da je Dirakova zagrada bilo koje veze druge klase sa proizvoljnom promenljivom jednaka
nuli:

{χp, g}D = {χp, g}−{χp, χr}∆−1
rs {χs, g} = {χp, g}−∆pr ∆−1

rs {χs, g} = {χp, g}−δps{χs, g} = 0 .
(3.39)

Dakle, nakon konstrukcije Dirakovih zagrada veze druge klase postaju jako jednake nuli, a
jednačina kretanja za proizvoljnu varijablu g u teoriji je:

ġ ≈ {g,HT}D . (3.40)

Razlika između veza prve klase i veza druge klase definisana je uz pomoć Poasonove zagrade,
jednačinama (3.34) i (3.35). Jednom kada uvedemo Dirakovu zagradu, prestaje potreba za
korišćenjem Poasonovih zagrada – veze druge klase postaju jake jednakosti i celokupna teorija
se može formulisati u terminima Dirakovih zagrada. Kao što smo videli, prisustvo veza druge
klase znači da postoje dinamički stepeni slobode u teoriji koji nisu od značaja. Eliminisanje
ovih varijabli se postiže definisanjem Dirakove zagrade koja se odnosi samo na fizički relevantne
stepene slobode. Ipak, u praksi u teorijama koje poseduju veliki broj veza druge klase to može
biti izuzetno teško.

Broj stepeni slobode

U opštem slučaju, za N inicijalnih polja u teoriji, F nezavisnih veza prve klase i S nezavisnih
veza druge klase, broj lokanih propagirajućih stepeni slobode dat je relacijom:

n = N − F − S

2
. (3.41)
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Jednačina (3.41) je posledica činjenice da je postojanje veza druge klase S ekvivalentno
iščezavanju S/2 kanonskih koordinata i S/2 njihovih impulsa. Postojanje F veza prve klase
u teoriji je ekvivalentno nestajanju F kanonskih koordinata, a kako veze prve klase generišu
gejdž simetrije, možemo nametnuti F uslova za fiksiranje gejdža za odgovarajućih F kanonskih
momenata. Prema tome, postoji 2N − 2F − S nezavisnih kanonskih koordinata i momenata i
stoga je 2n = 2N − 2F − S, što dovodi do jednačine (3.41).

3.2.2 Generator gejdž transformacija

U ovom delu prikazaćemo algoritam za konstruisanje generatora gejdž simetrija u teoriji – tzv.
Kastelanijevu proceduru.

Razmotrimo sistem koji je određen ukupnim Hamiltonijanom HT i kompletnim skupom
veza u teoriji φm, gde je m = 1, . . . ,M,M + 1, . . . ,M + K. Neka je (q(t), p(t)) neka trajekto-
rija u faznom prostoru određena parametrom t, pri čemu početna tačka (q(t = 0), p(t = 0))
leži na hiperpovrši određenoj vezama. Jednačine kretanja dobijene totalnim Hamiltonijanom
(3.22) nemaju isti oblik kao jednačine kretanja dobijene primenom (3.10), ali je njihova razlika
nefizička. Primenom jednačine HT = H ′ +

∑
a v

a(t)φa dobija se

ṗi = −∂H
′

∂qi
− va(t)∂φa

∂qi
, q̇i =

∂H ′

∂pi
+ va(t)

∂φa
∂pi

, i = 1, . . . , N , (3.42)

dok su jednačine kretanja za va(t):
φa(q, p) = 0 . (3.43)

Posmatrajmo sada novu trajektoriju koja počinje u istoj tački (q(t = 0), p(t = 0)) na hiperpovrši
određenoj vezama, pri čemu (q(t)+δ0q(t), p(t)+δ0p(t)) takođe zadovoljavaju jednačine kretanja
za funkciju va(t) + δ0v

a(t):

δ0ṗi = −
N∑
j=1

(
δ0qj

∂

∂qj
+ δ0pj

∂

∂pj

)
∂HT

∂qi
− δ0v

a(t)
∂φa
∂qi

,

δ0q̇i =
N∑
j=1

(
δ0qj

∂

∂qj
+ δ0pj

∂

∂pj

)
∂HT

∂pi
+ δ0v

a(t)
∂φa
∂pi

,

N∑
j=1

(
δ0qj

∂

∂qj
+ δ0pj

∂

∂pj

)
φa(q, p) = 0 .

(3.44)

Razlika ove dve trajektorije u nekom fiksnom trenutku t predstavlja nefizičku transformaciju.
Sa druge strane, varijacije formi pri gejdž transformacijama određene su generatorom:

δ0qi = ε(t){ qi , G } = ε(t)
∂G

∂pi
,

δ0pi = ε(t){ pi , G } = −ε(t)∂G
∂qi

,
(3.45)

gde smo primenili definiciju Poasonove zagrade. Dalje, dobijamo:

δ0q̇i =ε̇(t)
∂G

∂pi
+ ε(t){ ∂G

∂pi
, HT } ,

δ0ṗi =− ε̇(t)∂G
∂qi
− ε(t){ ∂G

∂qi
, HT } .

(3.46)
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Upoređivanjem jednačina (3.44) i (3.46) dobijamo:

N∑
j=1

(
δ0qj

∂

∂qj
+ δ0pj

∂

∂pj

)
∂HT

∂pi
+ δ0v

a(t)
∂φa
∂pi

=ε̇(t)
∂G

∂pi
+ ε(t){ ∂G

∂pi
, HT } ,

N∑
j=1

(
δ0qj

∂

∂qj
+ δ0pj

∂

∂pj

)
∂HT

∂qi
+ δ0v

a(t)
∂φa
∂qi

=ε̇(t)
∂G

∂qi
+ ε(t){ ∂G

∂qi
, HT } ,

(3.47)

tj.

ε(t){ ∂HT
∂pi

, G }+ δ0v
a(t) ∂φa

∂pi
= ε̇(t)

∂G

∂pi
+ ε(t){ ∂G

∂pi
, HT } ,

ε(t){ ∂HT
∂qi

, G }+ δ0v
a(t) ∂φa

∂qi
= ε̇(t)

∂G

∂qi
+ ε(t){ ∂G

∂qi
, HT } ,

ε(t){φa(q, p) , G } = 0 .

(3.48)

Ove jednačine dalje možemo prepisati na sledeći način,

∂

∂pi

(
ε̇(t)G+ ε(t){HT , G } − va(t)φa

)
= 0 ,

∂

∂qi

(
ε̇(t)G+ ε(t){HT , G } − va(t)φa

)
= 0 ,

ε(t){φa(q, p) , G } = 0 ,

(3.49)

pa zaključujemo da za bilo koju dinamičku varijablu F (q, p) važi:

{F (q, p) , ε̇(t)G+ ε(t){HT , G } − va(t)φa } = 0 . (3.50)

Sledi da je izraz ε̇(t)G + ε(t){HT , G } − va(t)φa trivijalna funkcija, jednaka nuli ili nekom
stepenu veza, pa dobijamo da su zadovoljene relacije:

G = αaφa , {G , HT } = 0 . (3.51)

U opštem slučaju, generatori gejdž transformacija su oblika

G =
k∑

n=0

ε(n)Gn , (3.52)

gde ε(n) označava n-ti vremenski izvod parametra ε po vremenu ε(n) =
∂nε

∂tn
. Generatori Gn, gde

je n = 1, . . . , k, su određeni rekurzivno Kastelanijevom procedurom i moraju da zadovoljavaju
sledeće relacije:

Gk = CPFC ,

...

G1 + {G2, HT} = CPFC ,

G0 + {G1, HT} = CPFC ,

{G0, HT} = CPFC ,

(3.53)
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gde CPFC predstavlja neku primarnu vezu prve klase. Ukupan broj generatora k je jednak
broju generacija sekundarnih veza – ako u teoriji postoje samo primarne i sekundarne veze
sledi da je k = 1. Tada, generator ima oblik:

G = ε(t)G0 + ε̇(t)G1 . (3.54)

U tom slučaju, rekurzivni algoritam Kastelanijeve procedure opisan relacijama (3.53) dobija
jednostavniji oblik:

G1 = CPFC ,

G0 + {G1, HT} = CPFC ,

{G0, HT} = CPFC ,

(3.55)

gde CPFC predstavlja neku primarnu vezu prve klase.
Varijacija forme pri transformacijama simetrije proizvoljne varijable A definisane na faznom

prostoru se računa primenom formule:

δ0A = {A,G} . (3.56)



Glava 4

BF teorija

U ovom poglavlju predstavljena je BF teorija, definisana za neku opštu Lijevu grupu i n-
dimenzionalnu mnogostrukost. Kao topološka teorija, BF teorija je teorija bez lokalnih propa-
girajućih stepeni slobode, pa se opis fizički relevantnih sistema dobija dodavanjem određenih
veza na topološko BF dejstvo, tj. definisanjem BF dejstva sa vezama. Najpoznatiji primer
ove konstrukcije je Plebanski dejstvo [32]. Slično, simetriju BF dejstva moguće je narušiti
dodavanjem člana koji narušava simetriju, kao što je to slučaj u Mekdauel-Mansuri teoriji [33].

Kovarijantna kvantizaciona procedura, sprovedena za različite izbore klasičnog BF de-
jstva, daje topološke kvantne teorije polja u smislu da zadovoljavaju Atijine aksiome. Pro-
cedura je rezultovala u mnogobrojnim modelima spinske pene kvantne gravitacije, počevši od
Ponzano-Redže modela trodimenzionalne gravitacije [5], pa sve do trenutno najsofisticiranijeg
EPRL/FK modela definisanog u četiri prostorvremenske dimenzije [9], [10]. Međutim, svim
modelima spinske pene može se zameriti da opisuju teorije čiste gravitacije, bez prisustva polja
materije, što je posledica činjenice da BF dejstvo ne sadrži tetradna polja u eksplicitnom obliku.
Umesto toga, tetrade se pojavljuju kao posledica klasičnih jednačina kretanja, pa stoga pre-
dstavljaju "on-shell" varijable. Iz tog razloga u okviru BF teorija nemoguće je dodati materiju
na kvantnom nivou. Pogledati [32], [34], [35] za više informacija o BF teoriji.

Poglavlje pred nama je organizovano na sledeći način. U odeljku 4.1 dat je kratak pregled
topološke BF teorije. Pododeljak 4.1.1 sadrži Hamiltonovu analizu BF teorije i rezultujuću
kanonsku strukturu, uključujući veze prve klase i veze druge klase prisutne u teoriji, kao i alge-
bru veza. U istom pododeljku predstavljen je Bjankijev identitet koji zadovoljavaju veze prve
klase, koji smanjuje broj nezavisnih veza prve klase prisutnih u teoriji. Na osnovu ovih rezulta-
ta izvršeno je brojanje fizičkih stepeni slobode u BF teoriji. U pododeljku 4.1.1 predstavljen
je oblik generatora gejdž transformacija teorije, kao i varijacije svih varijabli i njihovih kano-
nskih impulsa u teoriji, dok je Kastelanijeva procedura kojom je dobijen ovaj generator data u
Dodatku D.1. Ovaj rezultat koristimo u pododeljku 4.1.2 gde su dobijene sve gejdž simetrije
BF teorije, grupe G-gejdž i M -gejdž transformacija. Sumiranjem ovih rezultata predstavljena
je kompletna struktura grupe simetrije, uključujući njenu Lijevu algebru, kao i konkretan izbor
parametara kojim se dobijaju difeomorfizam transformacije u BF teoriji. Konačno, ova glava
se završava odeljkom 4.2, gde diskutujemo Jang-Milsovu teoriju u ravnom prostorvremenu pre-
dstavljenu kao topološku BF teoriju sa vezama i odeljkom 4.3, gde je predstavljeno poznato
Plebanski dejstvo za Opštu relativnost.

51
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4.1 Topološka BF teorija
Za Lijevu grupu G, njenu odgovarajuću Lijevu algebru g i neku 4-dimenzionalnu prostorvre-
mensku mnogostrukostM4, možemo definisati topološko BF dejstvo na sledeći način:

SBF =

∫
M4

〈B ∧ F 〉g . (4.1)

Ovde je 2-forma F krivina za 1-formu koneksije α ∈ A1(M4 , g) elementa algebre g kao što
je definisana jednačinom (2.1), B ∈ A2(M4 , g) je Lagranžev množitelj 2-forma, dok oznaka
〈_ ,_〉g označava G-invarijantnu simetričnu nedegenerisanu bilinearnu formu. Dejstvo (4.1)
napisano je u manifestno difeomorfizam invarijantnom obliku i invarijantno je na gejdž transfo-
rmacije generisane grupom G. Variranjem dejstva (4.1) po varijablama Bβ i αβ dobijaju se
jednačine kretanja:

F β = 0 , ∇Bβ ≡ dBβ + fγδ
βαγ ∧Bδ = 0 . (4.2)

Ovde je indeks β grupni indeksG grupe koji prebrojava generatore g, a fγδβ označava strukturne
konstante Lijeve grupe G.

Na osnovu prve jednačine kretanja u (4.2) zaključujemo da je koneksija α ravna, odnosno
α = 0 (do na gejdž transformacije). Koristeći ovaj rezultat u drugoj jednačini kretanja dobijamo
da je Lagranžev množitelj B konstantan. Stoga, dejstvo (4.1) opisuje teoriju bez lokalnih
propagirajućih stepeni slobode, odnosno topološku teoriju1.

Formalno se broj stepeni slobode dobija Hamiltonovom analizom dejstva, što je urađeno u
odeljku 4.1.1.

4.1.1 Hamiltonova analiza topološke BF teorije

Topološka BF teorija zadata je dejstvom (4.1), odakle raspisivanjem po prostornovremenskim
indeksima diferencijalnih formi µ, ν... i grupnim indeksima α, β... grupe G dobijamo:

SBF =

∫
M4

d4x
1

4
εµνρσBα

µνF
β
ρσgαβ . (4.7)

1Topološka kvantna teorija polja je kvantna teorija polja koja se bavi izračunavanjem topoloških invarijanti.
U topološkoj teoriji konfiguracioni integral je

ZI =

∫
Dφ exp

[
iSTOP [φ]

]
, (4.3)

gde je dejstvo jednako nekoj konstanti χ(MD) koja zavisi samo od topologije:

STOP [φ] =

∫
MD

dDx LTOP (φ, ∂φ) = χ(MD). (4.4)

Dakle, u konfiguracionom integralu konstanta exp [iχ] tada izlazi ispred integrala i dobijamo:

ZI = exp
[
iχ(MD)

] ∫
Dφ = const · exp

[
iχ(MD)

]
. (4.5)

Ovaj konfiguracioni integral nazivamo prvom kvantizacijom. Drugu kvantizaciju, tj. konfiguracioni integral
ZII diskretizovane teorije dobijamo sabiranjem po svim triangulacijama mnogostrukosti. Diskretizovana teorija
je topološka ako partitivna funkcija ZI ne zavisi od triangulacije mnogostrukosti. U tom slučaju su I i II
kvantizacija identične

ZII =
∑

T (MD)

ZI = ZI
∑

T (MD)

1 = const · ZI , (4.6)

gde ZI izlazi ispred sume jer ne zavisi od triangulacije. Kako nam triangulacija definiše broj stepeni slobode u
teoriji, a fizičke opservable ne zavise od triangulacije, zaključujemo da fizičkih stepeni slobode nema.
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Pretpostavljajući da je prostorvreme globalno hiperbolično možemo da izvršimo folijaciju pro-
storvremena na prostorne hiperpovrši Σ3 i napišemo Lagranžijan za BF teoriju:

L3BF =

∫
Σ3

d3~x
1

4
εµνρσBα

µνF
β
ρσgαβ . (4.8)

Kanonski impulsi, definisani jednačinom (3.16), koji odgovaraju varijablama Bα
µν i αα, dobijeni

variranjem Lagranžijana po vremenskim izvodima varijabli su:

π(B)α
µν =

δL

δ∂0Bα
µν

= 0 ,

π(α)α
µ =

δL

δ∂0ααµ
=

1

2
ε0µνρBανρ .

(4.9)

Kako ove jednačine ne možemo rešiti po vremenskim izvodima varijabli one daju primarne veze
(3.19):

P (B)α
µν ≡ π(B)α

µν ≈ 0 ,

P (α)α
µ ≡ π(α)α

µ − 1

2
ε0µνρBανρ ≈ 0 .

(4.10)

Koristeći fundamentalnu Poasonovu zagradu definisanu na sledeći način:

{Bα
µν(~x) , π(B)β

ρσ(~y) } = 2δαβ δ
ρ
[µδ

σ
ν] δ

(3)(~x− ~y) ,

{ααµ(~x) , π(α)β
ν(~y) } = δαβ δ

ν
µ δ

(3)(~x− ~y) ,
(4.11)

izračunavamo Poasonovu zagradu između primarnih veza:

{P (B)α
jk(~x) , P (α)β

i(~y) } = ε0ijk gαβ δ
(3)(~x− ~y) . (4.12)

Kanonski Hamiltonijan, definisan jednačinom (3.20), glasi:

Hc =

∫
Σ3

d3~x

[
1

2
π(B)α

µν ∂0B
α
µν + π(α)α

µ ∂0α
α
µ

]
− L . (4.13)

Koristeći definiciju krivine Fα
µν , možemo da prepišemo Hamiltonijan (4.13) tako da vremenski

izvodi varijabli množe primarne veze, pa su u "on-shell" objektu ti članovi identički jednaki
nuli:

Hc = −
∫

Σ3

d3~x ε0ijk
[

1

2
Bα0i F

α
jk +

1

2
αα0∇iBα jk

]
. (4.14)

Ovako napisan kanonski Hamiltonijan ne zavisi od kanonskih impulsa i sadrži samo polja i
njihove vremenske izvode. Uvodeći Lagranževe množitelje λ koji odgovaraju dvema primarnim
vezama možemo da definišemo "off-shell" totalni Hamiltonijan, definisan jednačinom (3.21):

HT = Hc+

∫
Σ3

d3~x

[
1

2
λ(B)αµνP (B)α

µν + λ(α)αµP (α)α
µ

]
. (4.15)

Kako primarne veze moraju biti konstantne, uslovi konzistentnosti (3.26) za sve primarne veze
moraju biti zadovoljeni. Za primarne veze P (B)α

0i i P (α)α
0 ovi uslovi dovode do sekundarnih

veza (3.27) u teoriji S:
S(F )α

i ≡ 1

2
ε0ijkFαjk ≈ 0 ,

S(∇B)α ≡
1

2
ε0ijk∇[iBα j]k ≈ 0 ,

(4.16)
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dok u slučaju primarnih veza P (α)α
k i P (B)α

jk uslov konzistentnosti određuje Lagranževe
množitelje:

λ(B)αij ≈ ∇iBα0j −∇jBα0i + gαγ
βαβ0B

γ
ij ,

λ(α)αi ≈ ∇iα
α

0 .

(4.17)

Primetimo da Lagranževi množitelji

λ(B)α0i , λ(α)α0 , (4.18)

ostaju neodređeni. Uslovi konzistentnosti sekundarnih veza (3.28) ne dovode do pojave novih
veza,

{S(F )αi , HT} = fβγ
αS(F )βiαγ0 ≈ 0 ,

{S(∇B)α , HT} = −fβγαBγ
0kS(F )βk + fβα

γαβ0S(∇B)γ ≈ 0 .

(4.19)

Zamenjujući izraze za Lagranževe množitelje, totalni Hamiltonijan se svodi na

HT =

∫
Σ3

d3~x

[
λ(B)α0i Φ(B)αi + λ(α)α Φ(α)α −Bα0i Φ(F )αi − αα0 Φ(∇B)α

]
, (4.20)

gde su veze prve klase (3.34)

Φ(B)αi = P (B)α0i ,

Φ(α)α = P (α)α0 ,

Φ(F )αi = S(F )αi −∇jP (B)αij ,

Φ(∇B)α = S(∇B)α +∇iP (α)αi − 1

2
fγβ

αBβ
ijP (B)γij ,

(4.21)

dok su veze druge klase (3.35):

χ(B)α
jk = P (B)α

jk χ(α)α
i = P (α)α

i . (4.22)

Poasonova zagrada veza prve klase glasi:

{Φ(F )αi(~x) , Φ(∇B)β(~y) } = fβγ
α Φ(F )γi(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , Φ(∇B)β(~y) } = fαβ
γ Φ(∇B)γ(~x) δ(3)(~x− ~y) ,

(4.23)

dok je Poasonova zagrada veza prve sa vezama druge klase daje relacije:

{Φ(F )αi(~x) , χ(α)β
j(~y) } = −fβγα χ(B)γij(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , χ(α)β
i(~y) } = fβγ

α χ(α)γi(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , χ(B)β
ij(~y) } = −fβγα χ(B)γij(~x) δ(3)(~x− ~y) .

(4.24)
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Komutatori veza prve klase sa Hamiltonijanom su,

{Φ(B)α
i , HT} = Φ(F )α

i ,

{Φ(α)α , HT} = Φ(∇B)α ,

{Φ(F )αi , HT} = −αβ0 fβγ
α Φ(F )γi ,

{Φ(∇B)α , HT} = Bβ0i fαγ
β Φ(F )γi − αβ0 fαβ

γ Φ(∇B)γ ,

(4.25)

rezultat koji ćemo kasnije iskoristiti da konstruišemo generator gejdž simetrija BF teorije i
odredimo ukupnu grupu simetrija.

Broj stepeni slobode topološke BF teorije

Da bi smo izračunali broj nezavisnih komponenti primarnih veza neophodna je primena Bjanki-
jevih identiteta.
Teorema 7 (BI za BF teoriju) Bjankijev identitet (BI) za 1-formu koneksije α, odnosno odgo-
varajuću 2-formu krivine

Fα = dαα + fβγ
α αβ ∧ αγ , (4.26)

glasi
ελµνρ∇µF

α
νρ = 0 . (4.27)

ααµ Bα
µν

4p 6p

Tabela 4.1: Ukupan broj inicijalnih polja u BF teoriji.

Prebrojavanjem inicijalnih polja u teoriji prikazanih u tabeli 4.1 zaključujemo da jeN = 10p,
gde je p dimenzionalnost grupe G. Slično, broj veza druge klase možemo da pročitamo iz tabele
(4.2) S = 6p. Posmatrajući veze prve klase zaključujemo da one nisu sve međusobno nezavisne

χ(B)α
jk χ(α)α

i

3p 3p

Tabela 4.2: Ukupan broj veza druge klase u BF teoriji.

i zadovoljavaju sledeći identitet,

∇iΦ(F )α
i = εijk∇iFαjk , (4.28)

što postaje
∇iΦ(F )α

i = 0 , (4.29)
kada iskoristimo da je desna strana jednačine (4.28) εijk∇iF

a
jk = 0 komponenta λ = 0 BI (4.27).

Imajući ovu vezu između veza prve klase u vidu, broj nezavisnih komponenti veza prve klase
možemo da pročitamo iz tabele 4.3. Vidimo da je broj nezavisnih veza prve klase:

F = 8p− p = 7p .

U prethodnom izrazu smo od ukupnog broja veza prve klase navedenih u tabeli (4.3) oduzeli p
relacija (4.29). Dakle, broj stepeni slobode u BF teoriji, definisan jednačinom (3.41) je

n = 10p− 7p− 6p

2
= 0 , (4.30)

odnosno BF teorija nema lokalne propagirajuće stepene slobode.
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Φ(B)α
i Φ(α)α Φ(F )αi Φ(∇B)α

3p p 3p− p p

Tabela 4.3: Ukupan broj veza prve klase u BF teoriji.

Generator gejdž transformacija za BF teoriju

Generator gejdž transformacija za BF teoriju glasi:

G =

∫
∇0ε

α
iΦ(B)α

i − εαiΦ(F )α
i +∇0ε

αΦ(α)α + εα
(
fαγ

βBβ0iΦ(B)γi − Φ(∇B)α
)
. (4.31)

Postupak izvođenja generatora Kastelanijevom procedurom prikazan je u dodatku D.1. Vari-
jacije formi varijabli i njihovih konjugovanih impulsa računamo primenom jednačine (3.56), što
daje:

δ0B
α

0i = ∇0ε
α
i − fβγαεβBγ

0i , δ0π(B)α
0i = −fαβγεβπ(B)γ

0i ,

δ0B
α
ij = 2∇[iε

α
j] − fβγαεβBγ

ij , δ0π(B)α
ij = −fαβγεβπ(B)γ

ij ,

δ0α
α

0 = ∇0ε
α , δ0π(α)α

0 = −fαβγεβiπ(B)γ
0i − fαβγεγπ(α)γ ,

δ0α
α
i = ∇iε

α , δ0π(α)α
i = −fαβγεβjπ(B)γ

ij − fαβγεβπ(α)γ
i + ε0ijk∇jεαk .

(4.32)

4.1.2 Simetrije BF dejstva

Grupa simetrije G

Posmatrajući varijacije formi varijabli (4.32) primetimo da članovi odgovaraju transformaciji
definisanoj u Teoremi 8,

δ0α
α
µ = ∂µεg

α + fβγ
ααβµεg

γ , δ0B
α
µν = −fβγαεgβBγ

µν , (4.33)

gde je slobodan parametar εgα = εα.

Teorema 8 (G-gejdž transformacije) U BF teoriji nad proizvoljnom Lijevom grupom G, sledeća
transformacija je simetrija:

α → α′ = Adgα + gdg−1 , B → B′ = gBg−1 ,
β → β′ = g � β , C → C ,

(4.34)

gde je g = exp(εg · Ĝ) = exp(εgαĜ
α) ∈ G, a εg :M4 → g je parametar transformacija.

Dokaz. Pri G-gejdž transformacijama definisanim u Teoremi 8 za parametar g ∈ G, krivina F
se transformiše na sledeći način:

F → F ′ = gFg−1 . (4.35)

Teoremu dokazujemo direktnom proverom:

SBF → S ′BF =
1

4

∫
M4

d4x εµνρσ
(
Bα

µν − fγδαεγgBδ
µν

) (
F β

ρσ − fετ βεεgF τ
ρσ

)
gαβ

= SBF −
1

4

∫
M4

d4x εµνρσ
(
fγδ

αεγgB
δ
µνF

β
ρσ + fετ

βεεgB
α
µνF

τ
ρσ

)
gαβ ,

(4.36)
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gde je drugi član jednak nuli. Takođe, posmatrajući konačnu transformaciju, možemo da pišemo

〈B,F 〉g → 〈g
−1Bg, g−1Fg〉g = 〈B,F 〉g , (4.37)

budući da je Kilingova forma 〈_,_〉g G-invarijantna.
Posmatrajmo dve infinitezimalne G-gejdž transformacije, određene infinitezimalnim para-

metrima εgα1 i εgβ2. Za izračunavanje komutatora između generatora G-gejdž transformacija
koristićemo Baker-Kampbel-Hausdorf (BCH)2 formulu u slučaju kada su parametri transforma-
cija mali

eεg
α

1Ĝαeεg
β

2Ĝβ = eεg
α

1Ĝα+εgβ2Ĝβ+ 1
2
εgα1 εgβ2 [Ĝα,Ĝβ ]+O(εg3) , (4.38)

iz čega sledi:

eεg
α

1Ĝαeεg
β

2Ĝβ − eεg
β

2Ĝβeεg
α

1Ĝα = εg
α

1 εg
β

2 [Ĝα, Ĝβ] +O(εg
3) . (4.39)

Koristeći jednačinu (4.39), dobijamo da generatori G-gejdž transformacija definisanih u Teoremi
8 zadovoljavaju sledeće komutacione relacije:

[Ĝα, Ĝβ] = fαβ
γĜγ , (4.40)

gdje su fαβγ strukturne konstante algebre g. Primećujući da postoji izomorfizam između gene-
ratora Ĝα

∼= τα, zaključujemo da je G-gejdž grupa transformacija iz Teoreme 8 isto što i grupa
G koja odgovara formiranom BF dejstvu.

Grupa simetrija M̃

Posmatrajući transformacije varijabli (4.32) uočavamo da preostali članovi oblika δ0B
α

0i = ∇0εi
i δ0B

α
ij = 2∇[i|ε|j] odgovaraju transformaciji definisanoj u Teoremi 9:

δ0α
α
µ = 0 , δ0B

α
µν = 2∇[µ|ε

α
m|ν] , (4.41)

gde je slobodan parametar εαmµ = εαµ.

Teorema 9 (M -gejdž transformacije) U BF teoriji nad proizvoljnom Lijevom grupom G, sle-
deća transformacija je simetrija:

α→ α′ = α , B → B′ = B +∇εm , (4.42)

gde je εαmµ proizvoljna 1-forma element algebre g, a ∇ kovarijantan spoljašnji izvod definisan
na standardni način, tj.

∇εm = dεm + [α ∧ εm] . (4.43)

Dokaz. Teoremu dokazujemo direktnom proverom:

SBF → S ′BF =
1

4

∫
M4

d4x εµνρσ
(
Bα

µν + 2∂[µ|ε
α
m|ν] + 2fγδ

ααγ [µ|ε
δ
m|ν]

)
F β

ρσgαβ

= SBF −
1

2

∫
M4

d4x εµρσν
(
∂µF

τ
ρσ + fγβ

ταγµF
β
ρσ

)
εδmν gτδ + član na granici ,

(4.44)
gde je drugi član jednak nuli jer je εµρσν

(
∂µF

τ
ρσ + fγβ

ταγµF
β
ρσ

)
= 0 na osnovu BI (7).

Primetimo da su transformacije definisane u Teoremi 9 linearne transformacije, a dve uzastopne

2eng. Baker-Campbell-Hausdorff formula.
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M -gejdž transformacije daju jednu M -gejdž transformaciju sa parametrom εm1 + εm2. Ako
označimo generatore M -gejdž transformacija kao M̂α

µ,

eεm1·M̂eεm2·M̂ = e(εm1+εm2)·M̂ , (4.45)

gde je εm · M̂ = εαmµM̂α
µ, iz čega sledi da je komutator generatora trivijalan,

[M̂α
µ, M̂β

ν ] = 0 . (4.46)

Dakle, M -gejdž transformacije formiraju Abelovu grupu, koju ćemo u daljem tekstu označa-
vati M̃ . Prema indeksnoj strukturi njenih parametara i generatora, vidimo da je ova grupa
izomorfna grupi R4p, gde je p dimenzija grupe G:

M̃ ∼= R4p . (4.47)

Zatim, može se ispitati odnos M -gejdž transformacija i G-gejdž transformacija definisanih u
prethodnom odeljku3,

[εg · Ĝ, εm · M̂ ] = (εg � εm) · M̂ , (4.48)
na osnovu čega dobijamo komutator:

[Ĝα , M̂β
µ] = fαβ

γM̂γ
µ . (4.49)

Ovim smo završili izračunavanje algebra generatora gejdž transformacija u BF teoriji.

Ukupna gejdž grupa simetrije BF dejstva

Sumirajući rezultate prethodnih pododeljaka, može se zapisati algebra generatora ukupne gejdž
grupe simetrije.

• Algebra g grupe G data je komutacionim relacijama,

[Ĝα, Ĝβ] = fαβ
γĜγ . (4.50)

• Algebra generatora M -gejdž transformacija:

[M̂α
µ, M̂β

ν ] = 0 . (4.51)

• Dejstvo generatora grupe G na generatore M -gejdž transformacija:

[Ĝα , M̂β
µ] = fαβ

γM̂γ
µ . (4.52)

Na osnovu komutacionih relacija (4.51) zaključujemo da je grupa M̃ invarijantna podgrupa4

ukupne grupe simetrija GBF . Na osnovu komutacionih relacija (4.52) dobijamo da semidirektan
proizvod podgrupa G i M̃ daje ukupnu grupu simetrija BF dejstva:

GBF = Gn M̃ . (4.53)
3Dejstvo parametra εg na parametar εm, εg � εm, je definisano kao εg � εm ≡ �αβ

γ εg
αεm

β
µdxµ, pri čemu je

�αβ
γ = fαβ

γ . Sledi da je
(εg � εm) · M̂ = fαβ

γ εg
αεm

β
µM̃γ

µ .

4Podgrupa je invarijantna podgrupa neke grupe, ili ekvivalentno normalna podgrupa, ako je invarijantna pri
konjugaciji elemenata podgrupe elementima grupe. Formalno, kažemo da je grupa H invarijantna podgrupa
grupe G, ako je H podgrupa od G, tj. H ≤ G, i za sve elemente h ∈ H i g ∈ G, konjugacija elementa H
elementom G je element H, tj. ∃h′ ∈ H takav da ghg−1 = h′. Na nivou algebre, odgovarajući objekt je ideal.
Odnosno, algebra A je podalgebra algebre L u odnosu na operaciju množenje u L, tj. [A,A] ⊂ A. Zatim,
podalgebra A algebre L je ideal u L ako njeni elementi, pomnoženi sa bilo kojim elementom algebre, daju
ponovo element podalgebre, tj. [A,L] ⊂ A.
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Difeomorfizmi

Druga važna tema za diskusiju je invarijantnost teorije na difeomorfizme. Iz činjenice da je BF
dejstvo formulisano na manifestno kovarijantni način preko diferencijalnih formi, očigledno je
da su difeomorfizmi simetrija teorije. Međutim, gledajući strukturu gejdž grupe GBF , ne vidi
se odmah da li je Diff(M4,R) njena podgrupa.

Razmotrimo difeomorfizam transformacije

xµ → x′µ = xµ + ξµ(x) , (4.54)

gde je parametar ξµ(x) proizvoljna funkcija koordinata. Takođe, označimo parametre transfo-
rmacija gejdž simetrija εi(x). Ako su difeomorfizmi simetrija dejstva, onda za svako polje
φ(x) u teoriji i svaki parametar difeomorfizam transformacija ξµ(x), postoji izbor gejdž εi(x) i
Eno-Taitelboim5 parametara εHT(x), tako da:

(δ0
gauge + δ0

HT + δ0
diff)φ = 0 . (4.57)

Drugim rečima, ako su difeomorfizmi simetrija teorije, njihove varijacije forme se mogu
izraziti kao zbir varijacija formi varijabli pri gejdž transformacijama i varijacija formi pri HT
transformacijama:

δ0
diff φ = −δ0

gaugeφ− δ0
HTφ . (4.58)

Konkretno, BF dejstvo zavisi od varijabli ααµ i Bα
µν . Parametri HT transformacija εHTαβ

µνρ

su definisani relacijama (4.55)

δ0
HTααµ =

1

2
εHTαβ

µνρ
δS

δBβ
νρ

, δ0
HTBα

µν = −εHTαβ
ρµν

δS

δαβρ
, (4.59)

dok su gejdž parametri εgα i εmαµ definisani u Teoremama 8 i 9. Možemo pokazati da zaista
postoji izbor ovih parametara, tako da je jednačina (4.57) zadovoljena za sva polja. Konkretno,
ako odaberemo gejdž parametre kao

εg
α = −ξλααλ , εm

α
µ = ξλBα

µλ , (4.60)

a HT parametre kao
εHTαβ

µνρ = ξλgαβεµνρλ , (4.61)

primenom jednačine (4.58) dobijamo upravo standardne varijacije formi koje odgovaraju difeo-
morfizmima:

δ0
diffααµ = −∂µξλααλ − ξλ∂λααµ ,

δ0
diffBα

µν = −∂µξλBα
λν − ∂νξλBα

µλ − ξλ∂λBα
µν .

(4.62)

Ovim se utvrđuje da su difeomorfizmi zaista simetrija teorije, čak i ako nisu sadržani u ukupnoj
gejdž grupi simetrija GBF , već u direktnom proizvodu ukupne grupe simetrija i HT grupe
simetrija.

5Lako je videti da je svako dejstvo, koje zavisi od najmanje dva polja φ1(x) i φ2(x), invarijantno na Eno-
Taitelboim (HT) transformaciju [36], određenu parametrom εHT

δ0
HTφ1 = εHT(x)

δS

δφ2
, δ0

HTφ2 = −εHT(x)
δS

δφ1
, (4.55)

što se može lako proveriti izračunavanjem varijacije dejstva:

δHTS[φ1, φ2] =
δS

δφ1
δ0

HTφ1 +
δS

δφ2
δ0

HTφ2 = 0 . (4.56)

Ova simetrija prisutna je čak i u teorijama koje nemaju gejdž simetriju, ali se ne vidi se u generatoru gejdž
simetrija (4.31) dobijenim Kastelanijevom procedurom. Razlog za to sastoji se u tome da je HT-varijacija polja
φ1 i φ2 uvek jednaka nuli on-shell, tj. varijacije su uvek linearne kombinacije veza, pa prema tome slabo jednake
nuli.
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4.2 Jang-Milsova teorija
U fizici smo najčešće zainteresovani za teorije koje nisu toploške, odnosno teorije koje poseduju
lokalne propagirajuće stepene slobode. Kako bi topološko BF dejstvo transformisali u dejstvo
sa propagirajućim stepenima slobode dodaje se dodatni član u dejstvo, tzv. veza jednostavnosti.
Rezultujuće dejstvo daje BF teoriju sa vezama.

Jedan primer takvog dejstva je Jang-Milsova teorija za SU(N) grupu u prostoru Minko-
vskog, koju možemo da napišemo kao BF dejstvo sa vezama na sledeći način:

S =

∫
BI ∧ F I + λI ∧

(
BI −

12

g
MabIδ

a ∧ δb
)

+ ζabI
(
MabIεcdefδ

c ∧ δd ∧ δe ∧ δf − gIJF J ∧ δa ∧ δb
)
.

(4.63)

Ovde je F ≡ dA + A ∧ A 2-forma krivine za 1-formu koneksije A ∈ A1(M4 , su(N)), a B ∈
A2(M4 , su(N)) 2-forma Lagranžev množitelj. Kilingova forma gIJ ≡ 〈τI , τJ〉su(N) ∝ fIK

LfJL
K

definiše podizanje i spuštanje indeksa I, J, . . . koji prebrojavaju generatore SU(N) grupe, dok
f IJ

K označava strukturne konstante su(N) algebre. Dejstvo (4.63) dobijeno je nametanjem
veza topološkom dejstvu (4.1), dodavanjem dva dodatna člana u obliku proizvoda Lagranževih
množitelja, 2-forme λI i 0-forme ζabI , i odgovarajućih veza. Funkcija, odnosno 0-forma, MabI je
takođe Lagranžev množitelj, dok g označava kapling konstantu za Jang-Milsovo polje. Najzad,
δa je nedinamičko polje 1-forma, takvo da postoji globalni koordinatni sistem u kome su njegove
komponente jednake Kronekerovoj delti δaµ. Dakle, ova 1-forma predstavlja pozadinsko polje,
i definiše globalnu prostorvremensku metriku jednačinom

ηµν = ηabδ
a
µδ

b
ν , (4.64)

gde je ηab ≡ diag(−1,+1,+1,+1) metrika Minkovskog. Stoga, prostorvremenska mnogostruko-
stM4 je ravna. Indeksi a, b, . . . su lokalni Lorencovi indeksi, koji uzimaju vrednosti 0, . . . , 3.
Polje δa ima sve osobine 1-forme tetrade ea u ravnom prostorvremenu Minkovskog. Primetimo
da je dejstvo (4.63) manifestno difeomorfizam invarijantno i invarijantno pri gejdž transformci-
jama grupe simetrija SU(N), ali nije nezavisno od pozadine zbog prisustva pozadinskog polja
δa. Variranjem dejstva (4.63) po varijablama ζabI , MabI , AI , BI , i λI , dobijamo jednačine
kretanja:

MabIεcdefδ
c ∧ δd ∧ δe ∧ δf − FI ∧ δa ∧ δb = 0 , (4.65)

−12

g
λI ∧ δa ∧ δb + ζabIεcdefδ

c ∧ δd ∧ δe ∧ δf = 0 , (4.66)

−dBI + fJI
KBK ∧ AJ + d(ζabIδa ∧ δb)− fJIKζabKδa ∧ δb ∧ AJ = 0 , (4.67)

FI + λI = 0 , (4.68)

BI −
12

g
MabIδ

a ∧ δb = 0 . (4.69)

Primetimo da nismo varirali po pozadinskom polju δa. Iz jednačina (4.65), (4.66), (4.68) i
(4.69) možemo da izrazimo Lagranževe množitelje kao algebarske funkcije jačine polja F I

µν za
dinamičko polje AI :

MabI =
1

48
εabcdF I

cd , ζabI =
1

4g
εabcdF I

cd ,

λIab = F Iab , BIab =
1

2g
εabcdF I

cd .
(4.70)
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Ovde je korišćena notacija FIab = FIµνδa
µδb

ν , analogno za sve varijable. Takođe, podrazumeva
se da je δaµ invertibilna matrica. Na osnovu jednačina (4.70) i diferencijalne jednačine kretanja
(4.67) dobija se jednačina kretanja za gejdž polje AIµ:

∇ρF
Iρµ ≡ ∂ρF

Iρµ + fJK
IAJρF

Kρµ = 0 . (4.71)

Ovo je upravo klasična jednačina kretanja za slobodno Jang-Milsovo polje. Dejstvo (4.63) se
može transformisati u dejstvo koje opisuje maseno vektosko polje, sa dinamikom zadatom Proka
jednačinom kretanja, dodavanjem masenog člana:

− 1

4!
m2AIµA

I
νη

µνεabcdδ
a ∧ δb ∧ δc ∧ δd . (4.72)

Prisustvo ovog člana u dejstvu naravno eksplicitno narušava SU(N) gejdž simetriju dejstva.

4.3 Plebanski dejstvo za Opštu relativnost
Najpoznatiji primer BF teorije sa vezama je Plebanski dejstvo za Opštu relativnost [32], [34].
Plebanski je 1977. godine pokazao kako umesto metrike možemo koristiti polje B kao funda-
mentalnu varijablu kojom opisujemo gravitaciono polje.

Izborom Lorencove grupe G = SO(3, 1) kao gejdž grupe, BF dejstvo definišemo kao

S =

∫
M4

Bab ∧Rab . (4.73)

Ovde je Rab 2-forma krivine za spinsku koneksiju ωab, Bab je 2-forma Lagranžev množitelj, dok
je Kilingova forma definisana kao

gab,cd =
1

2
(ηacηbd − ηadηbc) ,

gde je ηab metrika Minkovskog. Antisimetrični par indeksa prebrojava generatore Jab Lorencove
grupe SO(3, 1). Dodavanjem odgovarajućih veza dobijamo BF dejstvo sa vezama - Plebanski
dejstvo:

S =

∫
M4

Bab ∧Rab +
1

2
φabcdB

ab ∧Bcd + µφabcd
(
a1g

ab,cd + a2ε
abcd
)
. (4.74)

gde je φabcd Lagranžev množitelj 0-forma koji množi vezu Bab ∧ Bcd, µ je Lagranžev množitelj
4-forma, a1, a2 ∈ R su realni parametri, a gab,cd je inverzna Kilingova forma. Može se pokazati
da se variranjem ovog dejstva po varijablama Bab, ωab, φabcd i µ dobijaju jednačine kretanja:

Rab − φabcdBcd = 0 , (4.75)

∇Bab = 0 , (4.76)

1

2
Bab ∧Bcd + µ

(
a1g

ab,cd + a2ε
abcd
)

= 0 , (4.77)

φabcd
(
a1g

ab,cd + a2ε
abcd
)

= 0 . (4.78)

Rešavanjem jednačine (4.77) može se pokazati da rešenje za Lagranžev množitelj ima oblik

Bab =
α

2
εabcde

c ∧ ed + βea ∧ eb , (4.79)
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gde koeficijenti α i β zadovoljavaju jednačinu:

a2αβ =
a1

4
(α2 − β2) .

Sada, za uobičajeni izbor u savremenoj literaturi a1 = 0 i a2 = 1 imamo dva moguća rešenja:

Bab =
α

2
εabcde

c ∧ ed , β = 0 , (4.80)

Bab = βea ∧ eb , α = 0 . (4.81)

Oba rešenja podrazumevaju dakle da je diferencijalna forma Bab prosta6, pa se i veza

1

2
Bab ∧Bcd + µ

(
a1g

ab,cd + a2ε
abcd
)
,

koja dovodi do ovog rešenja zove veza jednostavnosti.
Rešavanjem sistema jednačina (4.75)-(4.78) dobija se da je jednačina (4.75) ekvivalentna

Ajnštajnovoj vakuumskoj jednačini Opšte relativnosti:

Rµν −
1

2
gµνR = 0 . (4.82)

Primetimo da u ovom modelu polja tetrade nisu eksplicitno prisutna u modelu, već se pojavljuju
samo kao rešenja jednačine kretanja. Na osnovu toga sledi da su tetrade on-shell objekti,
odnosno da se ne mogu kvantovati. Ovo čini model Plebanskog nepovoljnim za kuplovanje
polja materije sa gravitacijom [11], [15], [37]. Ipak, uspešno je sproverena kvantizacija Plebanski
modela kao modela Opšte relativnosti, u kontekstu modela spinske pene [1], [2], [9], [10].

6Diferencijalna 2-forma je prosta (eng. simple, decomposable differential form) ako može da se napiše kao
spoljašnji proizvod dve 1-forme.
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Kako bi se rešio problem kvantizacije polja materije prisutne u Standardnom Modelu kuplo-
vanih sa gravitacijom koji postoji u modelu Plebanskog, razvija se novi pravac istraživanja –
generalizovani BF modeli u kontekstu teorije kategorija [12], videti [15], [22], [23], [37], [38].
Prvi korak ove kategorijske generalizacije – tzv. kategorijskih lestvica, je kategorijska genera-
lizacija pojma grupe na pojam 2-grupe. Ovaj pristup se zasniva na ideji da gejdž simetrije u
fizici osim Lijevim grupama možemo opisati i drugim objektima. Generalizacijom BF teorije
koja je definisana za neku Lijevu grupu, na teoriju koja je definisana za neku opštu semistriktnu
2-grupu, dolazimo do 2BF teorije, takođe poznatu i pod nazivom BFCG teorija [12], [13], [17],
[39].

U kontekstu kvantizacione procedure spinske pene, teorija viših kategorija je uspešno pri-
menjena u formulaciji kvantnog gravitacionog modela, zasnovanog na Poenkareovoj 2-grupi [39]
i odgovarajućem 2BF dejstvu, tzv. spinkub modela kvantne gravitacije. Kako su u spinkub
modelu tetrade prisutne u topološkom sektoru teorije kao fundamentalna polja u 2BF dejstvu,
ovaj model bi u principu mogao biti proširen tako da teorija uključuje sva polja materije prisutna
u Standardnom Modelu. Ipak, da bi to bilo ostvareno na kvantnom nivou, neophodno je da
i dejstva koja opisuju polja materije budu napisana u obliku prilagođenom za kvantizacionu
proceduru spinske pene, za šta je kako se ispostavlja neophodan još jedan korak kategorijske
generalizacije – formulacija 3BF teorije koja će biti opisana u narednom poglavlju.

Najpre, u ovom poglavlju, u odeljku 5.1 ćemo definisati i analizirati simetrije 2BF topo-
loškog dejstva. Pritom, pratićemo sličnu liniju izlaganja kao u poglavlju 4. U odeljku 5.1 dat
je kratak pregled topološke 2BF teorije. Pododeljak 5.1.1 sadrži Hamiltonovu analizu 2BF
teorije i rezultujuću kanonsku strukturu, analizu Bjankijevih identiteta koje zadovoljavaju veze
prve klase, a koji smanjuju broj nezavisnih veza prve klase prisutnih u teoriji, kao i brojanje
fizičkih stepeni slobode u 2BF teoriji. Kao što je i očekivano, ovom analizom je dobijeno da
je 2BF teorija topološka, tj. teorija bez lokalnih propagirajućih stepeni slobode. Na kraju
pododeljka 5.1.1, dat je konačan oblik generatora gejdž transformacija teorije, kao i varijacije
formi svih varijabli i njihovih kanonskih impulsa u teoriji, dok je Kastelanijeva procedura kojom
je dobijen ovaj generator predstavljena u Dodatku D.2.2.

Dobijene varijacije formi varijabli koristimo u pododeljku 5.1.2 kako bismo dobili oblik
konačnih transformacija svih gejdž simetrija 2BF teorije. Poglavlje 5.1.2 je podeljeno na četiri
dela. Najpre, diskutujemo gejdž grupu G i odgovarajuće G-gejdž transformacije. U drugom
delu, predstavljena je grupa M̃ , tj. M -gejdž transformacije, treći deo sadrži analizu grupe H̃
koja se sastoji od H-gejdž transformacija koje su već poznate iz prethodne literature, a četvrti
deo sadrži analizu grupe Ñ i N -gejdž transformacija koje takođe nastaju u teoriji. U ovom
poglavlju dati su i komutatori generatora ovih transformacija, dok su računski detalji dati u
Dodatku D.2.3. Sumiranjem ovih rezultata predstavljena je kompletna struktura gejdž grupe
simetrije 2BF dejstva, uključujući njenu Lijevu algebru, kao i konkretan izbor parametara
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kojim se dobijaju difeomorfizam transformacije u 2BF teoriji.
Konačno, modifikacijom 2BF topološkog dejstva dodavanjem odgovarajućih veza u odeljcima

5.2 i 5.3 formirana su 2BF dejstva sa vezama koja opisuju teorije sa netrivijalnom dinamikom
– Opštu relativnost i Ajnštajn-Jang-Milsovu teoriju. Pokazano je kako se gravitaciono i Jang-
Milsovo polje u zakrivljenom prostoru mogu zapisati u formi 2BF dejstva sa vezama. Ovo nas
dovodi jedan korak bliže zapisivanju ukupnog dejstva koje opisuje svu materiju prisutnu u Sta-
ndardnom Modelu i gravitacije u obliku prilagođenom za kovarijantnu kvantizacionu proceduru
spinske pene.

5.1 Topološka 2BF teorija
Koristeći definicije 2-grupe, odnosno ukrštenog modula, 2-koneksije i 2-krivine, definiše se ge-
neralizacija BF dejstva – tzv. 2BF dejstvo [13], [17]:

S2BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h . (5.1)

Ovde su 2-forma F ∈ A2(M4 , g) i 3-forma G ∈ A3(M4 , h) komponente 2-krivine definisane
jednačinom (2.36), 2-forma B ∈ A2(M4 , g) i 1-forma C ∈ A1(M4 , h) Lagranževi množitelji,
dok 〈_ ,_〉g i 〈_ ,_〉h označavaju G-invarijantne bilinarne simetrične nedegenerisane forme
algebri g i h. Kao posledica strukture ukrštenog modula (videti [16]), bilinearna forma 〈_ ,_〉h
je takođe H-invarijantna. Videti [13], [17] za detaljni pregled teorije i relevantne reference.

Slično kao BF dejstvo, 2BF dejstvo je takođe topološko, kao što se može videti iz jednačina
kretanja. Variranjem dejstva (5.1) po varijablama Bα i Ca dobijamo jednačine kretanja

Fα = 0 , Ga = 0 , (5.2)

gde indeks α prebrojava generatore grupe G, a a prebrojava generatore grupe H. Variranjem
po 2-koneksiji, varijablama αα i βa, dobijamo jednačine kretanja za Lagranževe množitelje:

dBα − fαβγBγ ∧ αβ −�αa
bCb ∧ βa = 0 , (5.3)

dCa − ∂aαBα + �αa
bCb ∧ αα = 0 . (5.4)

Primetimo da su jednačine kretanja diferencijalne jednačine prvog reda i da opisuju teoriju
bez propagirajućih stepeni slobode. Da je zaista u pitanju teorija sa propagirajućim stepenima
slobode rigorozno se pokazuje primenom Hamiltonove analize, kao što je to urađeno u radovima
[22], [23]. Na osnovu rezultata Hamiltonove analize sledi da je 2BF teorija topološka teorija.

5.1.1 Hamiltonova analiza topološke 2BF teorije

Topološko 2BF dejstvo (5.1) daje Lagranžijan:

L2BF =

∫
Σ3

d3~x εµνρσ
(1

4
Bα

µν Fβρσ gαβ +
1

3!
Ca

µ Gbνρσ gab
)
. (5.5)

Kanonski impulsi za varijable Bα
µν , ααµ, Ca

µ i βaµν nalaze se variranjem dejstva po vremenskim
izvodima varijabli:

π(B)α
µν =

δL

δ∂0Ba
µν

= 0 ,

π(α)α
µ =

δL

δ∂0ααµ
=

1

2
ε0µνρBανρ ,

π(C)a
µ =

δL

δ∂0Ca
µ

= 0 ,

π(β)a
µν =

δL

δ∂0βaµν
= −ε0µνρCaρ .

(5.6)
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Dakle, primarne veze u teoriji su izračunavaju se primenom jednačine (3.19):

P (B)α
µν ≡ π(B)α

µν ≈ 0 ,

P (α)α
µ ≡ π(α)α

µ − 1

2
ε0µνρBανρ ≈ 0 ,

P (C)a
µ ≡ π(C)a

µ ≈ 0 ,

P (β)a
µν ≡ π(β)a

µν + ε0µνρCaρ ≈ 0 .

(5.7)

Fundamentalna Poasonova zagrada varijabli i njihovih kanonskih impulsa definiše se na sledeći
način:

{Bα
µν(~x) , π(B)β

ρσ(~y) } = 2δαβ δ
ρ
[µδ

σ
ν] δ

(3)(~x− ~y) ,

{ααµ(~x) , π(α)β
ν(~y) } = δαβ δ

ν
µ δ

(3)(~x− ~y) ,

{Ca
µ(~x) , π(C)b

ν(~y) } = δab δ
ν
µ δ

(3)(~x− ~y) ,

{ βaµν(~x) , π(β)b
ρσ(~y) } = 2δab δ

ρ
[µδ

σ
ν] δ

(3)(~x− ~y) .

(5.8)

Na osnovu ove definicije, izračunavamo algebru primarnih veza

{P (B)α
jk(~x) , P (α)β

i(~y) } = ε0ijk gαβ(~x) δ(3)(~x− ~y) ,

{P (C)a
k(~x) , P (β)b

ij(~y) } = −ε0ijk gab(~x) δ(3)(~x− ~y) ,
(5.9)

dok su ostale Poasonove zagrade jednake nuli. Kanonski on-shell Hamiltonijan je definisan
jednačinom (3.20)

Hc =

∫
Σ3

d3~x

[
1

2
π(B)α

µν ∂0B
α
µν+π(α)α

µ ∂0α
α
µ+π(C)a

µ ∂0C
a
µ+

1

2
π(β)a

µν ∂0β
a
µν

]
−L , (5.10)

odnosno:

Hc ≈−
∫

Σ3

d3~x ε0ijk
[

1

2
Bα0iFαjk +

1

6
Ca0 Gaijk

+ βa0i

(
∇jCak −

1

2
∂a

αBα jk

)
+

1

2
αα0

(
∇iBα jk − Cai �αb

a βbjk

)]
.

(5.11)

U prethodnom izrazu primenili smo da su primarne veze slabo jednake nuli. Dodavanjem
proizvoda Lagranževih množitelja λ i primarnih veza, definišemo totalni off-shell Hamiltonijan
definisan jednačinom (3.21):

HT = Hc+

∫
Σ3

d3~x

[
1

2
λ(B)αµνP (B)α

µν + λ(α)αµP (α)α
µ + λ(C)aµP (C)a

µ +
1

2
λ(β)aµνP (β)a

µν

]
.

(5.12)
Uslovi konzistentnosti (3.26) za primarne veze moraju biti zadovoljeni, pa za primarne veze
P (B)α

0i, P (α)α
0, P (C)a

0 i P (β)a
0i ovaj uslov dovodi do pojave sekundarnih veza S,

S(F)α
i ≡ 1

2
ε0ijkFαjk ≈ 0 ,

S(∇B)α ≡ 1

2
ε0ijk

(
∇[iBα j]k − Ca[i �αb

a βbj]k
)
≈ 0 ,

S(G)a ≡ 1

6
ε0ijkGaijk ≈ 0 ,

S(∇C)a
i ≡ ε0ijk

(
∇[jCak] −

1

2
∂a

αBα jk

)
≈ 0 ,

(5.13)
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dok u slučaju primarnih veza P (α)α
k, P (B)α

jk, P (β)a
jk i P (C)a

k uslovi konzistentnosti određuju
Lagranževe množitelje:

λ(B)αij ≈ ∇iBα0j−∇jBα0i+Ca0β
b
ij�αb

a+Cbi�α
b
aβ

a
0j

−Cbj�α
b
aβ

a
0i+gβγ

ααβ0B
γ
ij,

λ(α)αi ≈ ∇iα
α

0+∂a
αβa0i,

λ(C)ai ≈ ∇iC
a

0+Cb
i�α

a
bα

α
0+Bα0i∂

aα,

λ(β)aij ≈ ∇iβ
a

0j−∇jβ
a

0i−βbij�αb
aαα0.

(5.14)

Preostali Lagranževi množitelji

λ(B)α0i , λ(α)α0 , λ(C)a0 , λ(β)a0i , (5.15)

ostaju neodređeni. Uslovi konzistentnosti sekundarnih veza ne dovode do pojave tercijarnih
veza, odnosno dobijamo:

{S(F)αi , HT} = fβγ
αS(F)βiαγ0 ,

{S(∇B)α , HT} = fβγαB
γ

0kS(F)βk + fβα
γαβ0S(∇B)γ + Ca0 �αb

aS(G)b

−�αa
bβa0kS(∇C)b

k ,

{S(G)a , HT} = �αb
aβb0kS(F)αk − αα0 �αb

aS(G)b ,

{S(∇C)a
i , HT} = Cb0 �α

b
aS(F)αi + �αa

bαα0S(∇C)b
i ,

(5.16)

Totalni Hamiltonijan možemo da napišemo u sledećem obliku:

HT =

∫
Σ3

d3~x

[
λ(B)α0i Φ(B)α

i + λ(α)α Φ(α)α + λ(C)a0 Φ(C)a + λ(β)a0i Φ(β)a
i

−Bα0i Φ(F)ai − αα0 Φ(∇B)α − Ca0 Φ(G)a − βa0i Φ(∇C)ai
]
,

(5.17)

gde su

Φ(B)α
i = P (B)α

0i ,

Φ(α)α = P (α)α
0 ,

Φ(C)a = P (C)a
0 ,

Φ(β)a
i = P (β)a

0i ,

Φ(F)αi = S(F)αi −∇jP (B)αij − P (C)a
i∂aα ,

Φ(G)a = S(G)a +∇iP (C)a
i − 1

2
βbij �α

b
aP (B)αij ,

Φ(∇C)a
i = S(∇C)a

i −∇jP (β)a
ij + Cbj � α

b
aP (B)αij − ∂aαP (α)α

i ,

Φ(∇B)α = S(∇B)α +∇iP (α)α
i − 1

2
Bβijfαγ

βP (B)γij

−Cbi �αa
bP (C)ai − 1

2
βbij �αa

bP (β)aij ,

(5.18)
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veze prve klase, dok su veze druge klase u teoriji:

χ(B)α
jk = P (B)α

jk , χ(C)a
i = P (C)a

i , χ(α)α
i = P (α)α

i , χ(β)a
ij = P (β)a

ij . (5.19)

Možemo da izračunamo Poasonovu algebru veza prve klase:

{Φ(G)a(~x) , Φ(∇C)b
i(~y) } = −� αb

a Φ(F)αi(~x) δ(3)(~x− ~y) ,

{Φ(G)a(~x) , Φ(∇B)α(~y) } = �αb
a Φ(G)b(~x) δ(3)(~x− ~y) ,

{Φ(∇C)a
i(~x) , Φ(∇B)α(~y) } = �αa

b Φ(∇C)b
i(~x) δ(3)(~x− ~y) ,

{Φ(F)αi(~x) , Φ(∇B)β(~y) } = fβγ
α Φ(F)γi(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , Φ(∇B)β(~y) } = fαβ
γ Φ(∇B)γ(~x) δ(3)(~x− ~y) ,

(5.20)

kao i Poasonovu algebru veza prve klase i veza druge klase:

{Φ(F)αi(~x) , χ(α)β
j(~y) } = −fβγα χ(B)γij(~x) δ(3)(~x− ~y) ,

{Φ(G)a(~x) , χ(α)α
i(~y) } = −� αb

a χ(C)bi(~x) δ(3)(~x− ~y) ,

{Φ(G)a(~x) , χ(β)b
ij(~y) } = �αb

a χ(B)αij(~x) δ(3)(~x− ~y) ,

{Φ(∇C)ai(~x) , χ(α)α
j(~y) } = −� αb

a χ(β)bij(~x) δ(3)(~x− ~y) ,

{Φ(∇C)ai(~x) , χ(C)b
j(~y) } = �a

αb χ(B)αij(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , χ(α)β
i(~y) } = fβγ

α χ(α)γi(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , χ(β)a
ij(~y) } = �αa

b χ(β)b
ij(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , χ(B)β
ij(~y) } = −fβγα χ(B)γij(~x) δ(3)(~x− ~y) .

{Φ(∇B)α(~x) , χ(C)a
i(~y) } = −� αb

a χ(C)b
i(~x) δ(3)(~x− ~y) .

(5.21)

Možemo da izračunamo i komutator veza prve klase sa Hamiltonijanom:

{Φ(B)α
i , HT} = Φ(F )α

i ,

{Φ(α)α , HT} = Φ(∇B)α ,

{Φ(F )αi , HT} = −αβ0 fβγ
α Φ(F )γi ,

{Φ(∇B)α , HT} = −Bβ0i fαγ
β Φ(F )γi − αβ0 fαβ

γ Φ(∇B)γ ,

{Φ(C)a, HT} = Φ(G)a ,

{Φ(β)a
i, HT} = Φ(∇C)a

i ,

{Φ(G)a, HT} = αα0 �αa
bΦ(G)b − βb0i �αa

bΦ(F )αi ,

{Φ(∇C)a
i, HT} = αα0 �αa

bΦ(∇C)b
i − Cb0 �αa

bΦ(F )αi .

(5.22)
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Broj stepeni slobode topološke 2BF teorije

Za određivanje broja stepeni slobode topološke 2BF teorije koristićemo sledeće Bjankijeve
identitete (BI).

Lema 9 (BI za 1-forme α i C.) Odgovarajuće 2-forme krivina ovih polja

Fα = dαα + fβγ
α αβ ∧ αγ , T a = dCa + �αb

a αα ∧ Cb , (5.23)

zadovoljavaju Bjankijeve identitete:

ελµνρ∇µF
α
νρ = 0 , (5.24)

ελµνρ
(
∇µT

a
νρ − �αb

aFα
µνC

b
ρ

)
= 0 . (5.25)

Lema 10 (BI za 2-forme B i β.) Odgovarajuće 3-krivine su date izrazima

Sα = dBα + fβγ
α αβ ∧Bγ , Ga = dβa + �αb

a αα ∧ ββ , (5.26)

i zadovoljavaju Bjankijeve identitete:

ελµνρ
(

2

3
∇λ S

α
µνρ − fβγαF β

λµB
γ
νρ

)
= 0 , (5.27)

ελµνρ
(

2

3
∇λG

a
µνρ −�αb

a Fα
λµ β

b
νρ

)
= 0 . (5.28)

U slučaju 2BF teorije, inicijalan broj polja u teoriji N može se odrediti iz tabele (5.1). Ovde
je p dimenzionalnost Lijeve grupe G i q je dimenzionalnost Lijeve grupe H.

ααµ βaµν Bα
µν Ca

µ

4p 6q 6p 4q

Tabela 5.1: Broj inicijalnih polja u 2BF teoriji.

Prebrojavanjem polja u tabeli (5.1) nalazimo da je N = 10(p+ q). Broj nezavisnih kompo-
nenata veza druge klase određen je prebrojavanjem veza prikazanih u tabeli (5.2). Dobija se
da je S = 6(p+ q).

χ(B)α
jk χ(C)a

i χ(α)α
i χ(β)a

ij

3p 3q 3p 3q

Tabela 5.2: Veze druge klase u 2BF teoriji.

Veze prve klase nisu sve međusobno nezavisne i zadovoljavaju relacije

∇iΦ(F)α
i +

1

2
∂aαΦ(G)a − 1

2
∂aα∇iχ(C)a

i − 1

2
fβγα∂a

ββaijχ(B)γ ij = εijk∇iFαjk , (5.29)

odnosno kada iskoristimo da je εijk∇iF
a
jk = 0 kao λ = 0 komponentu BI (5.24) ovaj izraz se

svodi na:

∇iΦ(F)α
i +

1

2
∂aαΦ(G)a − 1

2
∂aα∇iχ(C)a

i − 1

2
fβγα∂a

ββaijχ(B)γ ij = 0 . (5.30)
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Slično, veze prve klase zadovoljavaju relacije

∇iΦ(∇C)a
i − 1

2
Cbi � αa

bΦ(F)αi + ∂aαS(∇B)α +

+
1

2
F β

ij �βc
bχ(β)cij + T bjk �αa

bχ(B)α jk − ∂aα∇iχ(α)α i (5.31)

= εijk
(
∇iTajk −�αb

aFα
jkC

b
i

)
,

odnosno, kako je desna strana jednačine λ = 0 komponenta (5.25), dobijamo da (5.31) daje
vezu:

∇iΦ(∇C)a
i − 1

2
Cbi � αa

bΦ(F)αi + ∂aαS(∇B)α +

+
1

2
F β

ij �βc
bχ(β)cij + T bjk �αa

bχ(B)α jk − ∂aα∇iχ(α)α i = 0 . (5.32)

Broj veza prve klase može biti određen prebrojavanjem veza u tabeli (5.3). Dobija se da je broj
veza prve klase dat izrazom

F = 8(p+ q)− (p+ q) = 7(p+ q) ,

gde smo oduzeli p relacija (5.30) i q relacija (5.32). Dakle, na osnovu definicije broja stepeni
slobode (3.41), sledi:

n = 10(p+ q)− 7(p+ q)− 6(p+ q)

2
= 0 . (5.33)

Zaključujemo da 2BF teorija nema lokalne propagrajuće stepene slobode, odnosno da je topo-
loška teorija.

Φ(B)α
i Φ(C)a Φ(α)α Φ(β)a

i Φ(F)αi Φ(G)a Φ(∇C)ai Φ(∇B)α

3p q p 3q 3p− p q 3q − q p

Tabela 5.3: Veze prve klase u 2BF teoriji.

Generator gejdž transformacija za 2BF teoriju

Generator gejdž transformacija u 2BF teoriji dat je izrazom:

G =

∫
Σ3

d3~x

(
(∇0ε

α
i)Φ(B)α

i − εαiΦ(F)α
i + (∇0ε

α)Φ(α)α

+ εα
(
fαγ

βBβ0iΦ(B)γi + Ca0 �αb
aΦ(C)b0 + βa0i �αb

aΦ(β)b0i − Φ(∇B)α
)

+ (∇0ε
a)Φ(C)a − εa

(
βb0i �αa

bΦ(B)αi + Φ(G)a
)

+ (∇0ε
a
i)Φ(β)a

i − εai
(
Cb0 �αa

bΦ(B)αi + Φ(∇C)a
i
))

.

(5.34)

Ovde su εabi, εab, εi, εa i εai nezavisni parametri gejdž transformacija. Postupak izvođenja
generatora (5.34) prikazan je u Dodatku D.2.
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Varijaciju forme varijabla i njihovih konjugovanih impulsa računamo primenom (3.56):

δ0B
α

0i = ∇0ε
α
i − fβγαεβBγ

0i δ0π(B)α
0i = fαβ

γεβπ(B)γ
0i ,

−εa �αa
bβb0i − εai �αa

bCb 0 ,

δ0B
α
ij = 2∇[iε

α
j] − fβγαεβBγ

ij δ0π(B)α
ij = fαβ

γεβπ(B)γ
ij − εakε0ijk∂aα ,

−εa �αa
bβbij − 2εa[j| �αa

bCb |i] ,

δ0α
α

0 = ∇0ε
α , δ0π(α)α

0 = −fαβγεβiπ(B)γ
0i − fαβγεγπ(α)γ

0

−εb �αb
aπ(C)a − εbi �αb

aπ(β)a
i ,

δ0α
α
i = ∇iε

α + ∂a
αεai , δ0π(α)α

i = −fαβγεβjπ(B)γ
ij − fαβγεβπ(α)γ

i ,

δ0C
a

0 = ∇0ε
a − εα �αb

aCb
0 , δ0π(C)a

0 = εα �αa
bπ(C)b

0 + εbi �αa
bπ(B)α0i ,

δ0C
a
i = ∇iε

a − εα �αb
aCb

i , δ0π(C)a
i = εα �αa

bπ(C)b
i + εbj �αa

bπ(B)αij ,

δ0β
a

0i = ∇0ε
a
i − εα �αb

aβb0i , δ0π(β)a
0i = εα �αa

bπ(β)b
0i + εb �αa

bπ(B)α0i ,

δ0β
a
ij = 2∇[iε

a
j] − εα �αb

aβbij , δ0π(β)a
ij = εα �αa

bπ(β)b
ij + εb �αa

bπ(B)αij

−εαkε0ijk∂aα .

(5.35)

5.1.2 Simetrije 2BF dejstva

Grupa simetrija G

Dejstvo (5.1) poseduje dodatne simetrije u odnosu na transformacije simetrija definisane za BF
dejstvo u Teoremama 8 i 9.

Transformacije generisane gejdž parametrom εg
α, na osnovu varijacija formi varijabli (5.35),

date su izrazima

δ0α
α
µ = − ∂µεgα − fβγααβµεgγ , δ0B

α
µν = fβγ

αεg
βBγ

µν ,

δ0β
a
µν = �αb

aεg
αβbµν , δ0C

a
µ = �αb

aεg
αCb

µ ,
(5.36)

što analogno možemo zapisati

α → α′ = α−∇εg , B → B′ = B − [B, εg] ,
β → β′ = β + εg � β , C → C ′ = C + εg � C ,

(5.37)

Na osnovu ovih infinitezimalnih transformacija, možemo ekstrapolirati konačne transformacije,
definisane Teoremom 10.

Teorema 10 (G-gejdž transformacije) U 2BF teoriji konstruisanoj za proizvoljni ukršteni mo-
dul (H

∂→ G,�), sledeća transformacija je transformacija simetrije

α → α′ = Adgα + gdg−1 , B → B′ = gBg−1 ,
β → β′ = g � β , C → C ′ = g � C ,

(5.38)

gde je g = exp(εg · Ĝ) = exp(εgαĜ
α) ∈ G, a εg :M4 → g parametar transformacija.
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Dokaz. Pri ovim transformacijama, 2-krivina se transformiše na sledeći način:

F → F ′ = gFg−1 , G → G ′ = g � G . (5.39)

Invarijantnost 2BF dejstva pri ovoj transformaciji sledi na osnovu G-invarijantnosti bilinearnih
formi 〈_,_〉g i 〈_,_〉h:

S2BF =

∫
M4

(
〈B,F〉g + 〈C,G〉h

)
→ S ′2BF =

∫
M4

(
〈g−1Bg, g−1Fg〉g + 〈g−1 � C, g−1 �G〉h

)
, (5.40)

odakle dobijamo da je 2BF dejstvo invarijantno. Invarijantnost se može takođe pokazati na
sličan način kao u Teoremi 8.

Prethodna teorema je generalizacija Teoreme 8 za slučaj 2BF teorije.

Grupa simetrija M̃

Zatim, posmatrajući transformacije varijabli uočavamo da članovi oblika δ0B
α

0i = ∇0εi i
δ0B

α
ij = 2∇[iεj] odgovaraju transformaciji definisanoj u Teoremi 11, kao u slučaju BF teorije.

Teorema 11 (M -gejdž transformacije) U 2BF teoriji nad proizvoljnim ukrštenim modulom
(H

∂→ G,�), sledeća transformacija je simetrija:

α → α′ = α , B → B′ = B −∇εm ,
β → β′ = β , Ca → C ′a = Ca − ∂aαεmα ,

(5.41)

gde je εm proizvoljna 1-forma element algebre g, a ∇ kovarijantan spoljasnji izvod definisan na
standardni način, tj.

∇εm = dεm + [α ∧ εm] . (5.42)

Dokaz. Varijacija 2BF dejstva pri M -gejdž transformacijama je

S ′2BF = S2BF +

∫
M4

d4x εµνρσ
(
−1

2
(∇µεm

α
ν)Fαρσ −

1

3!
∂aαεm

α
µGaνρσ

)
. (5.43)

Primenom definicije 2-krivine (2.37), dobijamo:

S ′3BF = S3BF +

∫
M4

d4x εµνρσ
(
− 1

2
(∇µεm

α
ν) (Fαρσ − ∂aαβaρσ)− 1

3!
∂aαεm

α
µ 3∇νβaρσ

)
. (5.44)

Drugi član u zagradi i treći član se krate, pa se izraz svodi na:

S ′3BF = S3BF −
1

2

∫
M4

d4x εµνρσεm
α
µ∇νFαρσ . (5.45)

Član εµνρσ∇νFαρσ = 0 je BI (5.24). Zaključujemo da je 2BF dejstvo S2BF invarijantno na
M -gejdž transformacije definisane Teoremom 11.

Ova teorema je generalizacija Teoreme 9 u slučaju 2BF teorije. Komutatori između ge-
neratora G-gejdž transformacija, između generatora M -gejdž transformacija, kao i komutatori
između generatora G- i M -gejdž transformacija izračunati su istim postupkom kao i u slučaju
BF -teorije i dobijeni su isti rezultati, odnosno jednačine (4.40), (4.46) i (4.49). Slično kao
u slučaju simetrija BF dejstva, postoji izomorfizam između generatora Ĝα

∼= τα, tj. možemo
zaključiti da je grupaG-gejdž transformacija iz Teoreme 10 upravo grupaG iz ukrštenog modula
(H

∂→ G,�). Ovo je važan rezultat, koji neće važiti za preostale transformacije simetrije 2BF
dejstva, kao što ćemo videti u nastavku.
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Grupa simetrija H̃

Uočimo u jednačinama varijacija formi (5.35) varijacije varijabli na prostornoj hiperpovrši Σ3

koje odgovaraju parametru εai. Na osnovu njih možemo da ekstrapoliramo varijacije formi
varijabli koje odgovaraju parametru εaµ i definišemo H-gejdž transformacije Teoremom 12,

δ0α
α
µ = ∂a

αεh
a
µ , δ0B

α
µν = −2Ca[µ|εh

b
|ν] �βb

agαβ ,

δ0β
a
µν = 2∇[µ|εh

a
|ν] , δ0C

a
µ = 0 ,

(5.46)

pri čemu identifikujemo εhai = εai i εha0 = 0.

Teorema 12 (H-gejdž transformacije) U 2BF teoriji nad proizvoljnim ukrštenim modulom
(H

∂→ G,�), sledeća transformacija je simetrija

α → α′ = α− ∂εh , B → B′ = B − C ′ ∧T εh ,
β → β′ = β −∇′εh − εh ∧ εh , C → C ′ = C ,

(5.47)

gde je εh proizvoljna 1-forma element algebre h, a oznaka ∇′ je kovarijantni izvod sa koneksijom
α′. Preslikavanje τ definisano je u Dodatku A jednačinom (A.13) i predstavlja rešenje jednačine:

〈C ∧T εh,F〉g + 〈C,F ∧� εh〉h = 0 .

Dokaz. Invarijantnost se može pokazati direktnom proverom. Transformacija 3-krivine je

F → F ′ = F ,
G → G ′ = G − F ∧� εh .

(5.48)

Pri transformacijama 3-krivine (5.48) i transformacijama Lagranževih množitelja, dejstvo S3BF

se transformiše

S ′2BF = S2BF +

∫
M4

(
− 〈C ′ ∧T εh,F〉g − 〈C

′,F ∧� εh〉h
)
. (5.49)

Definicija preslikavanja T data jednačinom (A.13) osigurava da se članovi u zagradi poništavaju,
odnosno da dejstvo ostaje invarijantno.

Označimo generatore H-gejdž transformacija datih Teoremom 12 sa Ĥa
µ. Istim postupkom

kojim su izvedeni komutatori G- i M -gejdž transformacija sada nalazimo komutatore H-gejdž
transformacija. Ako se izvedu dve uzastopne infinitezimalne H-gejdž transformacije, definisane
parametrima εh1 i εh2, dobijamo

eεh1·Ĥeεh2·Ĥ − eεh2·Ĥeεh1·Ĥ = 0 , (5.50)

gde je εh · Ĥ = εh
a
µĤa

µ. Na osnovu prethodne jednačine komutator H-gejdž transformacija je

[Ĥa
µ, Ĥb

ν ] = 0 . (5.51)

Ovaj komutator izračunat je u Dodatku D.2.3. Dakle, H-gejdž transformacije formiraju Abe-
lovu grupu, koju ćemo u daljem tekstu označavati H̃. Prema indeksnoj strukturi njenih para-
metara i generatora, vidimo da je ova grupa izomorfna grupi R4q, gde je q dimenzija grupe H:

H̃ ∼= R4q . (5.52)

Zatim, komutatori generatora grupa G i M̃ i generatora H-gejdž transformacija su

[Ĝα, Ĥa
µ] = �αa

b Ĥb
µ , [Ĥa, M̂α

µ] = 0 . (5.53)
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Grupa simetrija Ñ

Teorema 13 (N -gejdž transformacije) U 2BF teoriji nad proizvoljnim ukrštenim modulom
(H

∂→ G,�), sledeća transformacija je simetrija:

α → α′ = α , B → B′ = B − β ∧T εn ,
β → β′ = β , C → C ′ = C −∇εn ,

(5.54)

gde je εn proizvoljna 0-forma element algebre h.

Dokaz. Dokaz je pravolinijski. Pri transformacijama definisanim u Teoremi 13 2BF dejstvo se
transformiše na sledeći način:

S2BF → S ′2BF =

∫
M4

dx4εµνρσ
(

1

4

(
Bαµν − βbµν �αa

bεn
a
)
Fαρσ +

1

3!
(Ca

µ +∇µεn
a)Gaνρσ

)
= S2BF +

∫
M4

dx4εµνρσ
(
−1

4
βbµν �αa

bεn
aFαρσ −

1

2
∇ν∇µεn

aβaρσ

)
= S2BF +

∫
M4

dx4εµνρσ
(
−1

4
βbµν �αa

bεn
aFαρσ +

1

4
�αb

aFα
µνεn

bβaρσ

)
.

(5.55)
Ovde smo iskoristili činjenicu da je član

εµνρσ �αa
bεn

aβbµν∂c
αβcρσ = εµνρσfca

bεn
aβbµνβ

c
ρσ = 0 ,

identički jednak nuli zbog Pajferovog identiteta (2.20) i antisimetričnosti strukturne konstante.

Grupu N -gejdž transformacija definisanih u Teoremi 13 obeležavamo sa Ñ . Ove transforma-
cije su linearne, a kompozicija dve N -gejdž transformacije daje jednu N -gejdž transformaciju
sa parametrom εn1 + εn2. Obeležavajući generatore grupe Ñ sa N̂a, dobijamo

eεn1·N̂eεn2·N̂ = e(εn1+εn2)·N̂ , (5.56)

gde je εn · N̂ = εn
aN̂a, odnosno generatori gejdž tansformacija komutiraju:

[N̂a, N̂b] = 0 . (5.57)

Odatle sledi, da je grupa Ñ Abelova, a indeksna struktura parametara i generatora pokazuje
da je ona izomorfna grupi realnih brojeva Rq, gde je q dimenzija grupe H. Dakle,

Ñ ∼= Rq . (5.58)

Zatim se može ispitati komutator N -gejdž transformacija sa komutatorima G, H i M -gejdž
transformacija. Razmatranjem G-gejdž transformacija, dobijamo1

[εg · Ĝ, εn · N̂ ] = (εg � εn) · N̂ , (5.59)

dakle komutator G- i N -gejdž transformacija je:

[Ĝα, N̂a] = �αa
b N̂b . (5.60)

1Dejstvo paraetra εg na parametar εn, εg � εn, je definisano kao εg � εn ≡ �αa
b εg

αεn
a. Sledi da je

(εg � εn) · N̂ = �αa
b εg

αεn
aÑb .
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Ispitivanjem odnosa između N -gejdž transformacija i H-gejdž transformacija dobijamo relaciju,

eεh·Ĥeεn·N̂ − eεn·N̂eεh·Ĥ = −(εn ∧T εh) · M̂ , (5.61)

gde je dokaz dat u Dodatku D.2.3. Dobija se da je komutator između generatora H-gejdž tra-
nsformacija i N -gejdž transformacija linearna kombinacija generatora M -gejdž transformacije:

[Ĥa
µ, N̂ b] = �αa

bM̂αµ . (5.62)

Analogno tome, može se proveriti da važi

eεm·M̂eεn·N̂ = eεn·N̂eεm·M̂ , (5.63)

što dovodi do zaključka da generatori M -gejdž transformacija i N -gejdž transformacija komu-
tiraju, tj.

[M̂α
µ, N̂a] = 0 . (5.64)

Ovim smo završili izračunavanje algebre generatora gejdž transformacija u 2BF teoriji.

Ukupna gejdž grupa simetrije 2BF dejstva

Sumirajući rezultate prethodnih pododeljaka, može se zapisati algebra generatora ukupne grupe
gejdž simetrije na sledeći način.

• Algebra g grupe G 2-ukrštenog modula (H
∂→ G ,� , ) zadovoljava komutacione relacije:

[Ĝα, Ĝβ] = fαβ
γĜγ . (5.65)

• Algebra grupe H̃ koja se sastoji iz generatora H-gejdž transformacija,

[Ĥa
µ, Ĥb

ν ] = 0 , (5.66)

• Algebra generatora M -gejdž transformacija:

[M̂α
µ, M̂β

ν ] = 0 . (5.67)

• Algebra generatora N -gejdž transformacija:

[N̂a, N̂b] = 0 . (5.68)

• Komutatori između generatora grupa M̃ i Ñ glase:

[M̂α
µ, N̂a] = 0 . (5.69)

• Dejstvo generatora grupe H̃ na generatore M - i N -gejdž transformacija:

[Ĥa
µ, N̂ b] = �αa

bM̂αµ ,

[Ĥa
µ, M̂α

ν ] = 0 ,
(5.70)
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• Dejstvo generatora grupe G na generatore transformacija H-, M - i N -gejdž transforma-
cija:

[Ĝα, Ĥa
µ] = �αa

b Ĥb
µ ,

[Ĝα , M̂β
µ] = fαβ

γM̂γ
µ ,

[Ĝα, N̂a] = �αa
b N̂b .

(5.71)

Na osnovu jednačina (5.65)-(5.71), može se analizirati struktura ukupne grupe simetrije.
Na dijagramu Heseovog tipa prikazanom na slici 5.1, uključili smo samo relevantne podgrupe
ukupne grupe simetrije G2BF , gde su invarijantne podgrupe uokvirene.

Gn (H̃ n (Ñ × M̃))

H̃ n (Ñ × M̃)

Ñ × M̃

M̃ Ñ H̃

G

{1}

Slika 5.1: Relevantne podgrupe grupe simetrija G2BF . Invarijantne podgrupe su uokvirene.

Grupa M -gejdž transformacija M̃ , grupa H-gejdž transformacija H̃ i grupa N -gejdž tra-
nsformacija Ñ su podgrupe ukupne grupe simetrije G2BF . Grupa M̃ je invarijantna podgrupa,
pošto su jedini netrivijalni komutatori između generatora M̂α

µ i generatora grupe G, jednaki
nekim linearnim kombinacijama generatora M̃ . Grupa Ñ nije invarijantna podgrupa, pošto
su komutator između generatora N̂a i Ĥa

µ linearne kombinacije generatora M̂α
µ. Međutim,

generatori grupa Ñ i M̃ komutiraju, a grupa Ñ je invarijantna podgrupa direktnog proizvoda
grupa M̃ i Ñ . Dobijena grupa Ñ × M̃ je invarijantna podgrupa ukupne grupe simetrije.

Sa druge strane, grupa H-gejdž transformacija, zbog oblika komutatora generatora Ĥa
µ i

N̂b, nije invarijantna podgrupa ukupne grupe simetrija. Možemo pomnožiti ove dve podgrupe,
od kojih je jedna invarijantna, a druga nije, koristeći semidirektan proizvod, pri čemu se dobija
grupa H̃ n (Ñ × M̃). Dobijena grupa je invarijantna podgrupa ukupne grupe simetrije G2BF .

Konačno, prateći istu liniju rezonovanja, dobijenu grupu i grupu G-gejdž transformacija
možemo pomnožiti semidirektnim prozvodom, pri čemu dobijamo kompletnu grupu gejdž si-
metrija G2BF kao:

G2BF = Gn (H̃ n (Ñ × M̃)) . (5.72)

Ovim je završena analiza grupe gejdž simetrija za 2BF teoriju.
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Difeomorfizmi

Slično kao kod BF teorija, ako su difeomorfizmi simetrija teorije, njihove varijacije forme se
mogu izraziti kao zbir varijacija formi varijabli pri gejdž transformacijama i varijacija formi pri
HT transformacijama:

δ0
diff φ = −δ0

gaugeφ− δ0
HTφ . (5.73)

Konkretno, 2BF dejstvo zavisi od parametara ααµ, βaµν , Bα
µν i Ca

µ . Parametri HT transfo-
rmacija εHTαβ

µνρ i εHTab
µνρ su definisani relacijama (4.55)

δ0
HTααµ =

1

2
εHTαβ

µνρ
δS

δBβ
νρ

, δ0
HTBα

µν = −εHTαβ
ρµν

δS

δαβρ
,

δ0
HTβaµν = εHTab

µνρ
δS

δCb
ρ

, δ0
HTCa

µ = −1

2
εHTab

νρµ
δS

δβbνρ
,

(5.74)

dok su gejdž parametri εgα, εhaµ, εmαµ i εna definisani u Teoremama 10–13. Možemo pokazati
da zaista postoji izbor ovih parametara, tako da je jednačina (4.57) zadovoljena za sva polja.
Konkretno, ako odaberemo gejdž parametre kao

εg
α = −ξλααλ , εh

a
µ = ξλβaµλ , εm

α
µ = ξλBα

µλ , εn
a = −ξλCa

λ , (5.75)

a HT parametre kao

εHTαβ
µνρ = ξλgαβεµνρλ , εHTab

µνρ = ξλgabελµνρ , (5.76)

primenom jednačine (5.73) dobijamo upravo standardne varijacije formi koje odgovaraju difeo-
morfizmima:

δ0
diffααµ = −∂µξλααλ − ξλ∂λααµ ,

δ0
diffβaµν = −∂µξλβaλν − ∂νξλβaµλ − ξλ∂λβaµν ,

δ0
diffBα

µν = −∂µξλBα
λν − ∂νξλBα

µλ − ξλ∂λBα
µν ,

δ0
diffCa

µ = −∂µξλCa
λ − ξλ∂λCa

µ .

(5.77)

Ovim se utvrđuje da su difeomorfizmi zaista simetrija teorije, čak i ako nisu sadržani u ukupnoj
gejdž grupi simetrija G2BF , već u direktnom proizvodu ukupne grupe simetrija i HT grupe
simetrija.

5.2 Opšta relativnost
Bitan primer strukture ukrštenog modula je vektorski prostor V sa grupom izometrija prostora
O. Vektorski prostor V možemo da posmatramo kao Abelovu Lijevu grupu sa sabiranjem
vektora kao grupnom operacijom, pa reprezentacija grupe O na prostoru V postaje dejstvo �

grupe O na grupu V . Za definisanje ukrštenog modula (V
∂→ O ,�), neophodno je definisati

još homomorfizam ∂ : V → O, tako da bude trivijalan, odnosno da svaki element V preslikava
u jedinični element grupe O). Poenkareova 2-grupa, odnosno njoj ekvivalentan ukršteni modul,
je konstruisana na ovaj način. Izbor Lijevih grupa je

G = SO(3, 1) , H = R4 , (5.78)

preslikavanje ∂ je trivijalno, a dejstvo � je prirodno dejstvo grupe SO(3, 1) na R4, definisano
jednačinom

Mab � Pc = η[bcPa] , (5.79)

gde su sa Mab i Pa označeni generatori grupa SO(3, 1) i R4. Dejstvo � grupe SO(3, 1) na
samu sebe dato je konjugacijom, na osnovu definicije strukture ukrštenog modula. Na nivou
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algebre, dejstvo konjugacijom predstavlja pridruženu reprezentaciju, tako da je dejstvo zadato
standardnim komutacionim relacijama za generatore SO(3, 1):

Mab �Mcd = [Mab,Mcd] ≡ ηadMbc − ηacMbd + ηbcMad − ηbdMac . (5.80)

Zatim, 2-koneksija (α, β) je zadata parom diferencijalnih formi elementima algebri, 1-formom
α ∈ A1(M4, so(3, 1)) i 2-formom β ∈ A2(M4,R

4)

α = ωabMab , β = βaPa , (5.81)

gde je ωab spinska koneksija. Odgovarajuća 2-krivina, uređeni par (F ,G) dat je izrazima:

F = (dωab + ωac ∧ ωcb)Mab ≡ RabMab ,

G = (dβa + ωab ∧ βb)Pa ≡ ∇βaPa ≡ GaPa ,
(5.82)

Primetimo da je, kako je homomorfizam ∂ trivijalan, "lažna" krivina jednaka običnoj krivini.
Definisanjem bilinearnih formi

〈Mab,Mcd〉g = ηa[cηbd] , 〈Pa, Pb〉h = ηab , (5.83)

može se pokazati da se 1-forma Ca tranformiše na isti način kao 1-forma tetrade ea pri Lorenco-
vim transformacijama i difeomorfizmima, tj. da polja Ca možemo identifikovati sa tetradom.
Imajući sve ovo u vidu, 2BF dejstvo (5.1) za Poenkareovu 2-grupu definiše se kao:

S2BF =

∫
M4

Bab ∧Rab + ea ∧∇βa . (5.84)

Primetimo da je prepoznavanje tetrada tj. njihova identifikacija kao polja Ca ≡ ea, bio kru-
cijalan korak, omogućavajući da polja tetrade budu eksplicitno prisutna u 2BF dejstvu za
Poenkareovu grupu. Kako bi u dejstvo (5.84) uveli stepene slobode koji odgovaraju teoriji
opšte relativnosti, nephodno je napisati dodatni član:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
. (5.85)

Ovde je λab 2-forma Lagranževog množitelja, a lp označava Plankovu dužinu. Variranjem dejstva
(5.85) redom po varijablama Bab, ea, ωab, βa i λab, dobijaju se jednačine kretanja:

Rab − λab = 0 , (5.86)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed = 0 , (5.87)

∇Bab − e[a ∧ βb] = 0 , (5.88)

∇ea = 0 , (5.89)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 . (5.90)

Iz jednačina (5.89) i (5.90) sledi da je ∇Bab = 0, što dalje povlači, primenom jednačine (5.88),
jednakost e[a ∧ βb] = 0. Pretpostavljajući da su tetrade invertibilne, e ≡ det(eaµ) 6= 0, može se
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pokazati da je ovaj zahtev ekvivalentan jednačini βa = 0 [15]. Dalje, iz jednačina (5.86), (5.88),
(5.89) i (5.90) dobijamo:

λabµν = Rab
µν , βaµν = 0 , Babµν =

1

8πl2p
εabcde

c
µe
d
ν , ωabµ = 4ab

µ . (5.91)

Ovde su Ričijevi koeficijenti rotacije dati izrazom

4ab
µ ≡

1

2
(cabc − ccab + cbca)ecµ , (5.92)

gde je
cabc = eµbe

ν
c (∂µe

a
ν − ∂νeaµ) . (5.93)

Poslednja jednačina predstavlja spin koneksiju ωab izraženu kao funkciju tetrada, što dalje
povlači da i 2-formu Rab možemo napisati u tom obliku. Preostala jednačina (5.87) predstavlja
jednačine kretanja za tetrade:

εabcdR
bc ∧ ed = 0 . (5.94)

Lako se uočava da ovaj izraz predstavlja ništa drugo no Ajnštanove jednačine kretanja zapisane
na jeziku diferencijalnih formi:

Rµν −
1

2
gµνR = 0 .

Zaključujemo da je dejstvo (5.85) klasično ekvivalentno opštoj teoriji relativnosti.

5.3 Ajnštajn-Jang-Milsova teorija

Kao što smo već naveli, osnovna prednost teorije (5.85) nad Plebanski modelom leži upravo u
činjenici da su polja tetrade eksplicitno prisutna u topološkom sektoru teorije. Ova činjenica
nam omogućava da kuplujemo polja materije sa gravitacijom, kao što je urađeno u radu [15].
Ipak, moguće je kuplovati i Jang-Milsovo polje materije u okviru formalizma 2-grupe [16].
Naime, Poenkareovu 2-grupu možemo proširiti tako da obuhvati SU(N) gejdž polja. Da bi se
to uradilo biramo sledeće Lijeve grupe kao elemente ukrštenog modula

G = SO(3, 1)× SU(N) , H = R4 , (5.95)

dok se dejstvo � grupe G bira na sledeći način. Kao što je to bio slučaj kod Poenkareove
2-grupe, grupa G deluje na samu sebe konjugacijom. Dejstvo grupe G na grupu H je takvo da
pogrupa SO(3, 1) deluje na R4 vektorskom reprezentacijom (5.79), kao što je to bio slučaj kod
Ponkareove 2-grupe, dok je dejstvo podgrupe SU(N) na grupu H trivijalno

τI � Pa = 0 , (5.96)

gde su τI generatori SU(N) grupe. Preslikavanje ∂ : H → G ostaje trivijalno. Oblik 2-koneksije
(α, β) oslikava strukturu grupeG, pa na osnovu direktnog proizvoda imamo razlaganje koneksije
α na dva sabirka, od kojih svaki odgovara jednoj podgrupi:

α = ωabMab + AIτI , β = βaPa , (5.97)

gde AI označava 1-formu gejdž koneksije. Element F uređenog para 2-krivine F ,G postaje

F = RabMab + F IτI , F I ≡ dAI + fJK
IAJ ∧ AK , (5.98)



79 5.3. Ajnštajn-Jang-Milsova teorija

dok element G ostaje isti kao u slučaju Poenkareove 2-grupe, što sledi iz dejstva (5.96). Najzad,
struktura direktnog proizvoda prisutna u grupi G znači da se Kilingova forma 〈_,_〉g razdvaja
na dve podgrupe, odnosno na Kilingove forme za SO(3, 1) i SU(N), odnosno da važi

〈Mab,Mcd〉 = ηa[c|ηb|d] , 〈τI , τJ〉 = δIJ , 〈Mab, τI〉g = 0 . (5.99)

Na osnovu definicije ukrštenog modula sledi da je Kilingova forma definisana na ovaj način
invarijantna na G-gejdž transformacije i na H-gejdž transformacije. Topološko 2BF dejstvo
(5.1) definisano za ovakav izbor ukrštenog modula je dato izrazom

S2BF =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa , (5.100)

gde je BI ∈ A2(M4 , su(N)) novi Lagranžev množitelj. Dejstvo (5.100) je topološko dejstvo
i neophodno je dodati odgovarajuće veze kako bismo ga transformisali u dejstvo koje opisuje
teoriju sa odgovarajućom netrivijalnom dinamikom. Veza koja dovodi do jednačina kretanja
za opštu relativnost data je izrazom (5.85), dok veza koja dovodi do odgovarajuće dimanike za
gejdž polja data kao u dejstvu (4.63), pri čemu je učinjena smena δa → ea. Dakle, dejstvo za
Jang-Milsovo polje kulovano sa Ajnštajn-Kartanovom gravitacijom dato je izrazom:

S =

∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λI ∧

(
BI −

12

g
MabIe

a ∧ eb
)

+ ζabI
(
MabIεcdefe

c ∧ ed ∧ ee ∧ ef − gIJF J ∧ ea ∧ eb
)
.

(5.101)

Vidimo da je veza koja dovodi do pojave Jang-Milsovog polja u zakrivljenom prostorvremenu
u dejstvu (5.101) dobijena iz dejstva za Jang-Milsovo polje u prostoru Minkovskog (4.63) za-
menom nedinamičkog pozadinskog polja δa prisutnog u dejstvu (4.63) sa dinamičkim poljem
tetrade ea. Veza između ova dva polja već je nagoveštena jednačinom (4.64), koja opisuje
vezu između δa i metrike ravnog prostora Minkovskog ηµν . Posle zamene ovog polja poljem ea,
ovo polje postaje dinamičko zbog gravitacionog sektora dejstva, dok jednačina (4.64) postaje
uobičajena relacija koja povezuje polja tetrade i prostorvremensku metriku,

gµν = ηabe
a
µe
b
ν . (5.102)

Ovom smenom dejstvo (5.101) postaje nezavisno od pozadine, kao što je očekivano u opštoj
relativnosti. Napomenimo još jednom da je ova konstrukcija moguća na osnovu prisustva
tetrada u topološkom sektoru dejstva (5.85).

Varirajem dejstva (5.101) redom po varijablama Bab, ωab, βa, λab, ζabI , MabI , BI , λI , AI i
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ea, dobijaju se jednačine kretanja:

Rab − λab = 0 , (5.103)

∇Bab − e[a ∧ βb] = 0 , (5.104)

∇ea = 0 , (5.105)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (5.106)

MabIεcdefe
c ∧ ed ∧ ee ∧ ef − FI ∧ ea ∧ eb = 0 , (5.107)

−12

g
λI ∧ ea ∧ eb + ζabIεcdefe

c ∧ ed ∧ ee ∧ ef = 0 , (5.108)

FI + λI = 0 , (5.109)

BI −
12

g
MabIe

a ∧ eb = 0 , (5.110)

−dBI +BK ∧ fJIKAJ + d(ζabI ea ∧ eb)− ζabK ea ∧ eb ∧ fJIKAJ = 0 , (5.111)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed − 24

g
MabIλ

I ∧ eb + 4ζef
I
Mef Iεabcde

b ∧ ec ∧ ed − 2ζab
IFI ∧ eb = 0 .

(5.112)

Ovaj sistem jednačina opisuje dva dinamička polja ea i AI , dok sve ostale varijable možemo
izraziti preko njih i njihovih izvoda, kao što sledi iz jednačina (5.103)–(5.110):

λabµν = Rabµν , βaµν = 0 , ωabµ = 4abµ , λabI = FabI , BµνI = − e

2g
εµνρσF

ρσ
I ,

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , MabI =− 1

4eg
εµνρσFµν

Ieaρe
b
σ , ζabI =

1

4eg
εµνρσFµν

Ieaρe
b
σ .

(5.113)
Korišćenjem ovih izraza za varijable u jednačinama kretanja (5.111) i (5.112) dobijamo jedna-
činu kretanja za AI :

∇ρF
Iρµ ≡ ∂ρF

Iρµ + Γ ρ
λρF

Iλµ + fJK
IAJρF

Kρµ = 0 , (5.114)

gde je Γ λ
µν standardna oznaka za Levi-Čivita koneksiju, i jednačinu kretanja za ea

Rµν − 1

2
gµνR = 8πl2p T

µν , (5.115)

gde je

T µν ≡ − 1

4g

(
Fρσ

IF ρσ
Ig
µν + 4F µρ

IFρ
νI
)
. (5.116)

Sistem jednačina (5.113)–(5.116) ekvivalentan je sistemu jednačina (5.103)–(5.112). Primetimo
da smo ponovo dobili identitet βa = 0, kao što je to bio slučaj kod čiste gravitacije.

Generalizacija izbora gejdž grupe za Jang-Milsovu teoriju sa SU(N) na kompleksiji slučaj,
recimo SU(3)× SU(2)× U(1), je pravolinijska.
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3BF teorija

Premda je struktura 2-grupe uspešno primenjena za opisivanje gravitacionog i gejdž polja,
nedovoljna je da opiše ostala polja materije, kao što su skalarno i fermionsko polje. Da bi
opisali ova polja neophodno je izvršiti još jedan korak kategorijskih lestvica, kategorijskom
generalizacijom algebarske strukture 2-grupe na strukturu 3-grupe. Ispostaviće se da struktura
3-grupe uspešno opisuje sva polja prisutna u Standardnom Modelu kuplovana sa gravitacijom.
Pored toga, struktura 3-grupe poseduje i treći tip gejdž transformacija, koji je novitet u odnosu
na strukturu 2-grupe i odgovara izboru skalarnih i fermionskih polja prisutnih u teoriji. Ovaj
neočekivan i intrigantan rezultat detaljno je analiziran u [16].

Struktura ovog poglavlja prati strukturu prethodnih poglavlja 4 i 5 u kojima su razmatrane
BF i 2BF teorija. Najpre, u odeljku 6.1 ćemo definisati i analizirati simetrije 3BF topološkog
dejstva. Pododeljak 6.1.1 sadrži Hamiltonovu analizu za 3BF teoriju, koja rezultuje komple-
tnom kanonskom strukturom teorije, kao i vezama prve klase i vezama druge klase prisutnim u
teoriji i njihovom algebrom. Zatim, na osnovu ovih rezultata, u nastavku pododeljka 6.1.1 ana-
liziramo Bjankijeve identitete koje zadovoljavaju veze prve klase, koji smanjuju broj nezavisnih
veza prve klase prisutnih u teoriji. Konačno, sumiranjem ovih rezultata dobijen je broj lokalnih
propagirajućih stepeni slobode prisutnih u 3BF teoriji, tj. da je 3BF teorija topološka teorija.
Konačno, ovaj pododeljak se završava konstrukcijom generatora gejdž simetrija za topološku
teoriju, na osnovu Kastelanijeve procedure za konstrukciju generatora čiji su računski detalji
prikazani u Dodatku D.3.2, i izračunavanjem varijacija formi za varijable prisutne u teoriji i
njihove konjugovane impulse.

Pododeljak 6.1.2 sadrži glavne rezultate našeg rada i posvećen je analizi gejdž simetrija
3BF dejstva. Na osnovu rezultata prethodnog pododeljka, varijacija svih varijabli i njihovih
kanonskih impulsa, a imajući u vidu da ove varijacije predstavljaju infinitezimalne transfo-
rmacije gejdž simetrije na nekoj prostornoj hiperpovrši Σ3 koje odgovaraju nultoj vremenskoj
komponenti parametra transformacija, možemo ekstrapolirati infinitezimalnu transformaciju
varijabli na čitavom prostorvremenu. Zatim, za ove infinitezimalne transformacije pogođen je
oblik konačnih transformacija i na taj način je dobijeno pet vrsta gejdž transformacija u teoriji
– već poznate G-gejdž, H-gejdž i L-gejdž transformacije, kao iM -gejdž i N -gejdž transformacije
koje predstavljaju nov rezultat. Analiza transformacija simetrija, tj. izračunavanje komutatora
generatora ovih transformacija, nam ukazuje na jednu bitnu razliku u odnosu na 2BF teoriju,
a to je da u 3BF -teoriji H-gejdž transformacije ne čine grupu. Videćemo da u strukturi 3BF
teorije bitnu ulogu igra gejdž grupa H̃L koju čine H-gejdž i L-gejdž transformacije. Računski
detalji izračunavanja komutatora prikazani su u Dodatku D.3.3. Rezultati ovog pododeljka su
na kraju sumirani u kompletnoj strukturi gejdž grupe simetrije.

Zatim, modifikacijom topološkog 3BF dejstva dodavanjem odgovarajućih veza, formirana su
3BF dejstva sa vezama koja opisuju teorije sa netrivijalnom dinamikom. Videćemo u odeljcima
6.2 i 6.3 kako se Klajn-Gordonovo i Dirakovo polje u zakrivljenom prostoru mogu zapisati u
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formi 3BF dejsva sa vezama. Radi kompletnosti, u 6.4 analizirana su i Vajlova i Majorana
polja u interakciji sa Ajnštajn-Kartanovom gravitacijom. U odeljku 6.5 videćemo kako se svi
ovi rezultati mogu primeniti za konstrukciju 3BF dejstva sa vezama koje opisuje svu materiju
prisutnu u Standardnom Modelu kuplovanu sa gravitacionim poljem. Na kraju ovog poglavlja,
predstavljen je jednostavan model koji opisuje skalarnu elektrodinamiku kao 3BF teoriju sa
vezama, dok je u Dodatku C urađena kompletna Hamiltonova analiza ove teorije.

Zaključujemo da su gravitacija, gejdž polja i polja materije uspešno obuhvaćena formali-
zmom 3-grupe. Klasična teorija time je uspešno zapisana u obliku prilagođenom za kovarijantnu
kvantizacionu proceduru.

6.1 Topološka 3BF teorija

Slično kao kod BF i 2BF dejstva, definišemo gejdž invarijantno topološko 3BF dejstvo za
mnogostrukostM4 i 2-ukršteni modul (L

δ→ H
∂→ G ,� , {_ ,_}):

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l . (6.1)

U prethodnoj jednačini 2-forma F ∈ A2(M4 , g), 3-forma G ∈ A3(M4 , h) i 4-forma H ∈
A4(M4 , l) označavaju komponente 3-krivine definisane jednačinom (2.118). Pored Lagranževih
množitelja 2-forme B ∈ A2(M4 , g) i 1-forme C ∈ A1(M4 , h) prisutnih i u 2BF teoriji, u 3BF
teoriji imamo i Lagranžev množitelj D ∈ A0(M4 , l) koji ima interesantnu fizičku interpretaciju
koju ćemo diskutovati kasnije. Zagrade 〈_ ,_〉g, 〈_ ,_〉h i 〈_ ,_〉l označavaju G-invarijantne
bilinarne simetrične nedegenerisane forme algebri g, h i l.

Variranjem 3BF topološkog dejstva (6.1) po varijablama Bα, Ca i DA (gde indeksi A pre-
brojavaju generatore grupe L), dobijaju se jednačine kretanja:

Fα = 0 , Ga = 0 , HA = 0 , (6.2)

dok se variranjem dejstva po varijablama αα, βa i γA dobijaju:

dBα − fαβγBγ ∧ αβ −�αa
bCb ∧ βa + �αB

ADA ∧ γB = 0 , (6.3)
dCa − ∂aαBα + �αa

bCb ∧ αα + 2X{ab}
ADA ∧ βb = 0 , (6.4)

dDA −�αA
BDB ∧ αα + δA

aCa = 0 . (6.5)

6.1.1 Hamiltonova analiza topološke 3BF teorije

U ovom odeljku prikazaćemo kompletnu Hamiltonovu analizu topološke 3BF teorije [19]. Pre-
tpostavljajući da je prostorvremenska mnogostrukost M4 globalno hiperbolička možemo da
definišemo Lagranžijan na prostornoj folijaciji Σ3 za 3BF dejstvo:

L3BF =

∫
Σ3

d3~x εµνρσ
(1

4
Bα

µν Fβρσ gαβ +
1

3!
Ca

µ Gbνρσ gab +
1

4!
DAHB

µνρσgAB
)
. (6.6)
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Za Lagranžijan (6.6) konjugovani impulsi koji odgovaraju varijablama Bα
µν , ααµ, Ca

µ, βaµν ,
DA i γAµνρ, dobijeni varijacijom Lagranžijana po vremenskim izvodima varijabli, su:

π(B)α
µν = δL

δ∂0Baµν
= 0 ,

π(α)α
µ = δL

δ∂0ααµ
= 1

2
ε0µνρBανρ ,

π(C)a
µ = δL

δ∂0Caµ
= 0 ,

π(β)a
µν = δL

δ∂0βaµν
= −ε0µνρCaρ ,

π(D)A = δL
δ∂0DA

= 0 ,

π(γ)A
µνρ = δL

δ∂0γAµνρ
= ε0µνρDA .

(6.7)

Kako relacije (6.7) ne mogu biti invertovane po vremenskim izvodima varijabli, zaključujemo
da imamo sledeće primarne veze u teoriji:

P (B)α
µν ≡ π(B)α

µν ≈ 0 ,

P (α)α
µ ≡ π(α)α

µ − 1
2
ε0µνρBανρ ≈ 0 ,

P (C)a
µ ≡ π(C)a

µ ≈ 0 ,

P (β)a
µν ≡ π(β)a

µν + ε0µνρCaρ ≈ 0 ,

P (D)A ≡ π(D)A ≈ 0 ,

P (γ)A
µνρ ≡ π(γ)A

µνρ − ε0µνρDA ≈ 0 .

(6.8)

Koristimo fundamentalnu Poasonovu zagradu definisanu na sledeći način,

{Bα
µν(~x) , π(B)β

ρσ(~y) } = 2δαβ δ
ρ
[µδ

σ
ν] δ

(3)(~x− ~y) ,

{ααµ(~x) , π(α)β
ν(~y) } = δαβ δ

ν
µ δ

(3)(~x− ~y) ,

{Ca
µ(~x) , π(C)b

ν(~y) } = δab δ
ν
µ δ

(3)(~x− ~y) ,

{ βaµν(~x) , π(β)b
ρσ(~y) } = 2δab δ

ρ
[µδ

σ
ν] δ

(3)(~x− ~y) ,

{DA(~x) , π(D)B(~y) } = δAB δ
(3)(~x− ~y) ,

{ γAµνρ(~x) , π(γ)B
στξ(~y) } = 3!δAB δ

σ
[µδ

τ
νδ

ξ
ρ] δ

(3)(~x− ~y) ,

(6.9)

da izračunamo algebru primarnih veza:

{P (B)α
jk(~x) , P (α)β

i(~y) } = ε0ijk gαβ(~x) δ(3)(~x− ~y) ,

{P (C)a
k(~x) , P (β)b

ij(~y) } = −ε0ijk gab(~x) δ(3)(~x− ~y) ,

{P (D)A(~x) , P (γ)B
ijk(~y) } = ε0ijk gAB(~x) δ(3)(~x− ~y) .

(6.10)
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Sve ostale Poasonove zagrade su jednake nuli. Kanonski "on-shell" Hamiltonijan je:

Hc =

∫
Σ

d3~x

[
1

2
π(B)α

µν ∂0B
α
µν + π(α)α

µ ∂0α
α
µ + π(C)a

µ ∂0C
a
µ

+
1

2
π(β)a

µν ∂0β
a
µν + π(D)A ∂0D

A +
1

3!
π(γ)A

µνρ ∂0γ
A
µνρ

]
− L .

(6.11)

Raspisivajem 3-krivine, odnosno zamenom relacija (2.3.5), Hamiltonijan (6.11) prepisujemo u
formi članova koji su jednaki proizvodu primarnih veza i vremenskih izvoda varijabli i ostatka.
Primarne veze su nula "on-shell" tako da kanonski Hamiltonijan postaje:

Hc ≈−
∫

Σ

d3~x ε0ijk
[

1

2
Bα0iFαjk +

1

6
Ca0 Gaijk + βa0i

(
∇jCak −

1

2
∂a

αBα jk + βbjkDAX{ab}
A

)
+

1

2
αα0

(
∇iBα jk − Cai �αb

a βbjk +
1

3
DA �αB

A γBijk

)
+

1

2
γA0ij

(
∇kDA + Cak δA

a

)]
.

(6.12)
Dodavanjem proizvoda Lagranževih množitelja λ i primarnih veza za svaku vezu možemo da
dobijemo "off-shell" totalni Hamiltonijan:

HT = Hc+

∫
d3~x

[
1

2
λ(B)αµνP (B)α

µν + λ(α)αµP (α)α
µ + λ(C)aµP (C)a

µ

+
1

2
λ(β)aµνP (β)a

µν + λ(D)AP (D)A +
1

3!
λ(γ)AµνρP (γ)A

µνρ

]
.

(6.13)

Kako bi primarne veze bile očuvane u toku evolucije sistema one moraju da zadovoljavaju uslove
konzistentnosti

Ṗ ≡ {P , HT } ≈ 0 , (6.14)

za svaku primarnu vezu P . Korišćenjem (6.14) za primarne veze P (B)α
0i, P (α)α

0, P (C)a
0,

P (β)a
0i i P (γ)A

0ij dobijamo sekundarne veze S:

S(F)α
i ≡ 1

2
ε0ijkFαjk ≈ 0 ,

S(∇B)α ≡ 1

2
ε0ijk

(
∇[iBα j]k − Ca[i �αb

a βbj]k +
1

3
DA �αB

A γBijk
)
≈ 0 ,

S(G)a ≡ 1

6
ε0ijkGaijk ≈ 0 ,

S(∇C)a
i ≡ ε0ijk

(
∇[jCak] −

1

2
∂a

αBα jk + βbjkDAX{ab}
A
)
≈ 0 ,

S(∇D)A
ij ≡ ε0ijk

(
∇kDA + Cak δA

a
)
≈ 0 .

(6.15)
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dok u slučaju primarnih veza P (α)α
k, P (B)α

jk, P (β)a
jk, P (C)a

k, P (γ)A
ijk i P (D)A uslovi

konzistentnosti određuju Lagranževe množitelje:

λ(B)αij ≈ ∇iBα0j−∇jBα0i+Ca0β
b
ij�αb

a+Cbi�α
b
aβ

a
0j

−Cbj�α
b
aβ

a
0i+fβγ

ααβ0B
γ
ij+DBγ

A
0ij�α

B
A,

λ(α)αi ≈ ∇iα
α

0+∂a
αβa0i,

λ(C)ai ≈ ∇iC
a

0+Cb
i�α

a
bα

α
0−2βb0iDAX

{ba}A+Bα0i∂
aα,

λ(β)aij ≈ ∇iβ
a

0j−∇jβ
a

0i−βbij�αb
aαα0+γA0ijδA

a,

λ(D)A ≈ αα0DB�αA
B−Ca0δA

a,

λ(γ)Aijk ≈ −2βa0iβ
b
jkX{ab}

A+2βa0jβ
b
ikX{ab}

A−2βa0kβ
b
ijX{ab}

A

−αα0�αB
AγBijk+∇iγ

A
0jk−∇jγ

A
0ik+∇kγ

A
0ij.

(6.16)

Preostali Lagranževi množitelji

λ(B)α0i , λ(α)α0 , λ(C)a0 , λ(β)a0i , λ(γ)A0ij (6.17)

ostaju neodređeni iz uslova konzistentnosti primarnih veza. Sekundarne veze takođe moraju
biti očuvane, pa se zahtevaju i uslovi konzistentnosti sekundarnih veza, koji u ovom slučaju ne
dovode do pojave novih veza u teoriji:

{S(F)αi , HT} = fβγ
αS(F)βiαγ0 ,

{S(∇B)α , HT} = fβγαB
γ

0kS(F)βk + fβα
γαβ0S(∇B)γ + Ca0 �αb

aS(G)b

−�αa
bβa0kS(∇C)b

k + 1
2
�α

B
Aγ

A
0jkS(∇D)B

jk ,

{S(G)a , HT} = �αb
aβb0kS(F)αk − αα0 �αb

aS(G)b ,

{S(∇C)a
i , HT} = Cb0 �α

b
aS(F)αi + �αa

bαα0S(∇C)b
i + 2X{ab}

Aβb0jS(∇D)A
ij ,

{S(∇D)A
ij , HT} = αα0 �αA

BS(∇D)B
ij .

(6.18)
Najzad, totalni Hamiltonijan može da se zapiše u sledećem obliku:

HT =

∫
Σ3

d3~x

[
λ(B)α0i Φ(B)α

i + λ(α)α Φ(α)α + λ(C)a0 Φ(C)a + λ(β)a0i Φ(β)a
i +

1

2
λ(γ)A0ijΦ(γ)A

ij

−Bα0i Φ(F)ai − αα0 Φ(∇B)α − Ca0 Φ(G)a − βa0i Φ(∇C)ai − 1

2
γA0ij Φ(∇D)Aij

]
,

(6.19)
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gde su

Φ(B)α
i = P (B)α

0i ,

Φ(α)α = P (α)α
0 ,

Φ(C)a = P (C)a
0 ,

Φ(β)a
i = P (β)a

0i ,

Φ(γ)A
ij = P (γ)A

0ij ,

Φ(F)αi = S(F)αi −∇jP (B)αij − P (C)a
i∂aα ,

Φ(G)a = S(G)a +∇iP (C)a
i − 1

2
βbij �α

b
aP (B)αij + P (D)AδAa ,

Φ(∇C)a
i = S(∇C)a

i −∇jP (β)a
ij + Cbj � α

b
aP (B)αij

−∂aαP (α)α
i + 2DAX{ab}

AP (C)bi + βbjkX{ab}
AP (γ)A

ijk ,

Φ(∇B)α = S(∇B)α +∇iP (α)α
i − 1

2
fαγ

βBβijP (B)γij

−Cbi �αa
bP (C)ai − 1

2
βbij �αa

bP (β)aij

−P (D)ADB �αA
B +

1

3!
P (γ)A

ijkγBijk �αB
A ,

Φ(∇D)A
ij = S(∇D)A

ij +∇kP (γ)A
ijk − P (β)a

ijδA
a − P (B)αij �α

B
ADB ,

(6.20)

veze prve klase, a

χ(B)α
jk = P (B)α

jk , χ(C)a
i = P (C)a

i , χ(D)A = P (D)A ,

χ(α)α
i = P (α)α

i , χ(β)a
ij = P (β)a

ij , χ(γ)A
ijk = P (γ)A

ijk ,

(6.21)

veze druge klase.
Poasonova algebra veza prve klase je:

{Φ(G)a(~x) , Φ(∇C)b
i(~y) } = −� αb

a Φ(F)αi(~x) δ(3)(~x− ~y) ,

{Φ(∇C)a
i(~x) , Φ(∇C)b

j(~y) } = −2X{ab}
A Φ(∇D)A

ij(~x) δ(3)(~x− ~y) ,

{Φ(G)a(~x) , Φ(∇B)α(~y) } = �αb
a Φ(G)b(~x) δ(3)(~x− ~y) ,

{Φ(∇C)a
i(~x) , Φ(∇B)α(~y) } = �αa

b Φ(∇C)b
i(~x) δ(3)(~x− ~y) ,

{Φ(F)αi(~x) , Φ(∇B)β(~y) } = fβγ
α Φ(F)γi(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , Φ(∇B)β(~y) } = fαβ
γ Φ(∇B)γ(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , Φ(∇D)A
ij(~y) } = �αA

BΦ(∇D)B
ij(~x)δ(3)(~x− ~y) .

(6.22)



87 6.1. Topološka 3BF teorija

Poasonova zagrada veza prve klase sa vezama druge klase je:

{Φ(F)αi(~x) , χ(α)β
j(~y) } = −fβγα χ(B)γij(~x) δ(3)(~x− ~y) ,

{Φ(G)a(~x) , χ(α)α
i(~y) } = −� αb

a χ(C)bi(~x) δ(3)(~x− ~y) ,

{Φ(G)a(~x) , χ(β)b
ij(~y) } = �αb

a χ(B)αij(~x) δ(3)(x− y) ,

{Φ(∇B)ai(~x) , χ(α)α
j(~y) } = −� αb

a χ(β)bij(~x) δ(3)(~x− ~y) ,

{Φ(∇B)ai(~x) , χ(β)b
jk(~y) } = −2X{ac}Agbc χ(γ)A

ijk(~x) δ(3)(~x− ~y) ,

{Φ(∇C)ai(~x) , χ(C)b
j(~y) } = �a

αb χ(B)αij(~x) δ(3)(~x− ~y) ,

{Φ(∇B)ai(~x) , χ(D)A(~y) } = X{ab}A χ(C)b
i(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , χ(α)β
i(~y) } = fβγ

α χ(α)γi(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , χ(β)a
ij(~y) } = �αa

b χ(β)b
ij(~x) δ(3)(x− y) ,

{Φ(∇B)α(~x) , χ(γ)A
ijk(~y) } = −� αA

B χ(γ)B
ijk(~x) δ(3)(~x− ~y) ,

{Φ(∇B)α(~x) , χ(B)β
ij(~y) } = −fβγα χ(B)γij(~x) δ(3)(~x− ~y) .

{Φ(∇B)α(~x) , χ(C)a
i(~y) } = −� αb

a χ(C)b
i(~x) δ(3)(~x− ~y) .

{Φ(∇B)α(~x) , χ(D)A(~y) } = −� αB
A χ(D)B(~x) δ(3)(~x− ~y) ,

{Φ(∇D)Aij(~x) , χ(α)α
k } = −�αB

Aχ(γ)Bijk(~x) δ(3)(~x− ~y) ,

{Φ(∇D)Aij(~x) , χ(D)B } =
1

2
�αB

Aχ(B)αij(~x) δ(3)(~x− ~y) .

(6.23)

Najzad, korisno je izračunati Poasonovu zagradu između veza prve klase i Hamiltonijana:

{Φ(F)αi , HT} = fβγ
αΦ(F)βiαγ0 ,

{Φ(∇B)α , HT} = fβγαB
γ

0kΦ(F)βk + fβα
γαβ0Φ(∇B)γ + Ca0 �αb

aΦ(G)b

−�αa
bβa0kΦ(∇C)b

k +
1

2
�α

B
Aγ

A
0jkΦ(∇D)B

jk ,

{Φ(G)a , HT} = �αb
aβb0kΦ(F)αk − αα0 �αb

aΦ(G)b ,

{Φ(∇C)a
i , HT} = Cb0 �α

b
aΦ(F)αi + �αa

bαα0Φ(∇C)b
i + 2X{ab}

Aβb0jΦ(∇D)A
ij ,

{Φ(∇D)A
ij , HT} = αα0 �αA

BΦ(∇D)B
ij .

(6.24)

Broj stepeni slobode topološke 3BF teorije

Bjankijevi identiteti (BI) za 1-forme α i C i 2-forme β i B dati su izrazima kao u slučaju 2BF
teorije (5.24), (5.25), (5.26) i (5.27). Osim njih, u 3BF teoriji postoji Bjankijev identitet koji
odgovara 0-formi D.

Lema 11 (BI za 0-formu D) Definisanjem varijable

QA = dDA + �αB
Aαα ∧DB , (6.25)
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dobijamo da važi sledeći identitet:

ελµνρ
(
∇νQ

A
ρ −�αB

AFα
νρD

B
)

= 0 . (6.26)

Bjankijevi identiteti igraju važnu ulogu u određivanju broja stepeni slobode u dejstvu.
Obeležimo sa p dimenzionalnost grupe G, sa q dimenzionalnost grupe H i sa r dimenziona-

lnost grupe L. Sada možemo dobiti broj inicijalnih polja u 3BF teoriji prebrojavanjem polja
navedenih u tabeli 6.1.

ααµ βaµν γAµνρ Bα
µν Ca

µ DA

4p 6q 4r 6p 4q r

Tabela 6.1: Inicijalna polja u 3BF teoriji.

Dobijamo da je N = 10(p + q) + 5r. Slično se može odrediti broj nazavisnih komponenata
veza druge klase prebrojavanjem komponenti veza prikazanih u tabeli (6.2).

χ(B)α
jk χ(C)a

i χ(D)A χ(α)α
i χ(β)a

ij χ(γ)A
ijk

3p 3q r 3p 3q r

Tabela 6.2: Veze druge klase u 3BF teoriji.

Dobijamo da je S = 6(p+ q) + 2r.
Veze prve klase nisu sve međusobno nezavisne. Osim identiteta (5.30) i (5.32) koji su

zadovoljeni i u slučaju 2BF teorije, u 3BF teoriji pojavljuje se novi identitet. Naime, veze
prve klase zadovoljavaju:

∇iΦ(∇D)A
ij +

1

2
δA

aS(∇C)a
j −∇i∇kχ(γ)A

ijk +
1

2
χ(β)a

ijδA
a − 1

2
�α

B
ADBΦ(F)α

j

+
1

2
�α

B
ADB∂a

αχ(C)aj =
1

2
ε0ijk(∇iQAk + �αA

BFα
ikDB) ,

(6.27)

odnosno, kako je desna strana upravo λ = 0 komponenta Bjankijevog identiteta (6.26), dobija
se:

∇iΦ(∇D)A
ij +

1

2
δA

aS(∇C)a
j −∇i∇kχ(γ)A

ijk +
1

2
χ(β)a

ijδA
a

− 1

2
�α

B
ADBΦ(F)α

j +
1

2
�α

B
ADB∂a

αχ(C)aj = 0 .
(6.28)

Broj nezavisnih komponenti veza prve klase može se odrediti prebrojavanjem veza prikazanih
u tabeli 6.3, a zatim oduzimanjem broja nezavisnih Bjankijevih identiteta od tog broja.

Φ(B)α
i Φ(C)a Φ(α)α Φ(β)a

i Φ(γ)A
ij Φ(F)αi Φ(G)a Φ(∇C)ai Φ(∇B)α Φ(∇D)A

ij

3p q p 3q 3r 3p− p q 3q − q p 3r − 2r

Tabela 6.3: Broj veza prve klase u 3BF teoriji.

Broj nezavisnih komponenata veza prve klase je:

F = 8(p+ q) + 6r − p− q − 2r = 7(p+ q) + 4r ,

gde smo od broja komponenta veza prve klase navedenih u tabeli 6.3 oduzeli p relacija (5.30), q
relacija (5.32) i 2r nezavisnih1 relacija (6.28). Najzad, koristeći formulu za izračunavanje broja

1Jednačina (6.28) se sastoji od 3r identiteta, ali od njih su samo 2r međusobno nezavisni. Izračunavanjem
divergencije izraza (6.28), dobijamo da je ona automatski jednaka nuli na osnovu Bjankijevog identiteta (5.24).
Oduzimanjem od ukupnog broja relacija (6.28) ovih r relacija divergencije koje ne predstavljaju nove identitete
koje veze u teoriji zadovoljavaju, dobijamo 2r nezavisnih identiteta (6.28).
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stepeni slobode u teoriji (3.41), dobija se da je broj stepeni slobode u 3BF teoriji

n = 10(p+ q) + 5r − 7(p+ q)− 4r − 6(p+ q) + 2r

2
= 0 , (6.29)

odnosno da 3BF teorija nema propagirajućih stepeni slobode.

Generator gejdž transformacija za 3BF teoriju

Generator gejdž transformacija u 2BF teoriji dat je izrazom:

G =

∫
Σ3

d3~x

(
(∇0ε

α
i)Φ(B)α

i − εαiΦ(F)α
i + (∇0ε

α)Φ(α)α + εα
(
fαγ

βBβ0iΦ(B)γi

+ Ca0 �αb
aΦ(C)b0 + βa0i �αb

aΦ(β)b0i − 1

2
γA0ij �αA

BΦ(γ)B
ij − Φ(∇B)α

)
+ (∇0ε

a)Φ(C)a − εa
(
βb0i �αa

bΦ(B)αi + Φ(G)a
)

+ (∇0ε
a
i)Φ(β)a

i − εai
(
Cb0 �αa

bΦ(B)αi − 2βb0jX{ab}
AΦ(γ)A

ij + Φ(∇C)a
i
)

+
1

2
(∇0ε

A
ij)Φ(γ)A

ij − 1

2
εAijΦ(∇D)A

ij

)
.

(6.30)
Ovde su εαi, εα, εa, εai and εAij nezavisni parametri gejdž transformacija. Postupak izvođenja
generatora (6.30) prikazan je u dodatku D.3.

Varijaciju forme varijabli i njihovih konjugovanih impulsa računamo primenom (3.56):

δ0B
α

0i = ∇0ε
α
i − fβγαεβBγ

0i δ0π(B)α
0i = −fαβγεβπ(B)γ

0i ,

−εa �αa
bβb0i − εai �αa

bCb0 ,

δ0B
α
ij = 2∇[iε

α
j] − fβγαεβBγ

ij − εAij �αA
BDB δ0π(B)α

ij = −fαβγεβπ(B)γ
ij ,

−εa �αa
bβbij − 2εa[j| �αa

bCb|i] ,

δ0α
α

0 = ∇0ε
α , δ0π(α)α

0 = −fαβγεβiπ(B)γ
0i − fαβγεβπ(α)γ

0

−�αb
aεbπ(C)a

0 −�αb
aεbiπ(β)a

i

−1

2
�αB

AεBijπ(γ)A
0ij ,

δ0α
α
i = ∇iε

α + ∂a
αεai , δ0π(α)α

i = −fαβγεβjπ(B)γ
ij − fαβγεβπ(α)γ

i

−�αb
αεbπ(C)a

i −�αb
αεbjπ(β)a

ij

−1

2
�αB

AεBjkπ(γ)A
ijk + ε0ijk∇jεαk ,

+
1

2
ε0ijkεa �αb

aβbjk ,

δ0C
a

0 = ∇0ε
a − εα �αb

aCb
0 , δ0π(C)a

0 = εα �αa
bπ(C)b

0 − εbi �αa
bπ(B)α0i ,

δ0C
a
i = ∇iε

a − εα �αb
aCb

i δ0π(C)a
i = εα �αa

bπ(C)b
i − εbj �αa

bπ(B)αij ,

+εαi∂
a
α − 2εbiDAX{bc}

Agac ,

(6.31)
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δ0β
a

0i = ∇0ε
a
i − εα �αb

aβb0i , δ0π(β)a
0i = εα �αa

bπ(β)b
0i − εb �αa

bπ(B)α0i

+2εbjX{ab}
Aπ(γ)A

0ij ,

δ0β
a
ij = 2∇[iε

a
j] − εα �αb

aβbij + εAijδA
a , δ0π(β)a

ij = εα �αa
bπ(β)b

ij − εb �αa
bπ(B)αij

+2εbkX{ab}
Aπ(γ)A

ijk

−ε0ijk∇kεa − ε0ijkεαk∂αa ,

δ0γ
A

0ij = −εαγB0ij �αB
A +∇0ε

A
ij δ0π(γ)A

0ij = εα �αA
B π(γ)B

0ij ,

+4εa[i|β
b
0|j]X{ab}

A ,

δ0γ
A
ijk = −εαγBijk �αB

A +∇iε
A
jk δ0π(γ)A

ijk = εα �αA
B π(γ)B

ijk − εoijkδaAεa ,

−∇jε
A
ki +∇kε

A
ij − 3!εa[i β

b
jk] X{ab}

A ,

δ0D
A = −εaδaA − εαDB �αB

A , δ0π(D)A = 2εaiX{ab}Aπ(C)bi

−1

2
εB

ij �αA
Bπ(B)α0ij

+εα �αA
Bπ(D)B .

6.1.2 Simetrije 3BF dejstva

Dejstvo (6.1) poseduje dodatne simetrije u odnosu na transformacije simetrija definisane za
2BF dejstvo u Teoremama 10, 11 i 12. Naime, važe sledeće teoreme [19].

Grupa G

Najpre, posmatrajmo infinitezimalne transformacije određene parametrom εg
α, date varijaci-

jama formi

δ0α
α
µ = − ∂µεgα − fβγααβµεgγ , δ0B

α
µν = fβγ

αεg
βBγ

µν ,

δ0β
a
µν = �αb

aεg
αβbµν , δ0C

a
µ = �αb

aεg
αCb

µ ,

δ0γ
A
µνρ = �αB

Aεg
αγBµνρ , δ0D

A = �αB
Aεg

αDB ,

(6.32)

koje analogno možemo da zapišemo na sledeći način:

α → α′ = α +∇εg , B → B′ = B + [B, εg] ,
β → β′ = β − εg � β , C → C ′ = C − εg � C ,
γ → γ′ = γ − εg � γ , D → D′ = D − εg �D ,

(6.33)

Na osnovu ovih infinitezimalnih transformacija možemo ekstrapolirati konačnu transformaciju
definisanu u Teoremi 14.

Teorema 14 (G-gejdž transformacije) U 3BF teoriji nad proizvoljnim 2-ukrštenim modulom
(L

δ→ H
∂→ G,�, {_ ,_}pf), sledeća transformacija je simetrija,

α → α′ = Adgα + gdg−1 , B → B′ = gBg−1 ,
β → β′ = g � β , C → C ′ = g � C ,
γ → γ′ = g � γ , D → D′ = g �D ,

(6.34)

gde je g = exp(εg · Ĝ) = exp(εgαĜ
α) ∈ G i εg :M4 → g parametar transformacije.
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Dokaz. Transformacija 3-koneksije definisana u Teoremi 14 dovodi do sledeće transformacije
3-krivine:

F → F ′ = gFg−1 , G → G ′ = g � G , H → H′ = g �H , (6.35)

Primenom ove transformacije, 3BF dejstvo postaje:

S3BF =

∫
M4

(
〈B,F〉g + 〈C,G〉h + 〈D,H〉h

)
→ S ′BF =

∫
M4

(
〈gBg−1, gFg−1〉g + 〈g � C, g � G〉h + 〈g �D, g �H〉l

)
.

(6.36)

Iz G-invarijantnosti bilinearnih formi 〈_,_〉g, 〈_,_〉h i 〈_,_〉l sledi da je 3BF dejstvo invari-
jantno. Invarijantnost se može takođe pokazati na sličan način kao u Teoremi 8.

Razmatranjem dve uzastopne infinitezimalne G-gejdž transformacije, određene malim para-
metrima εgα1 i εgβ2, izračunavamo komutator dva generatora G-gejdž transformacija na sličan
način kao što je to urađeno u slučajuBF teorije. Dobijamo da generatoriG-gejdž transformacija
definisanih u Teoremi 14 zadovoljavaju komutacione relacije

[Ĝα, Ĝβ] = fαβ
γĜγ , (6.37)

gde su fαβγ strukturne konstante algebre g. Primetimo da, isto kao što je to bio slučaj kod BF
i 2BF transformacija, postoji izomorfizam između generatora Ĝα

∼= τα, tj. možemo zaključiti
da je grupa G-gejdž transformacija iz Teoreme 14 upravo grupa G iz 2-ukrštenog modula
(L

δ→ H
∂→ G,�, {_ ,_}pf). Ovo je važan rezultat, koji neće važiti za preostale transformacije

simetrije, kao što ćemo videti u nastavku.

Gejdž grupa H̃L

Razmotrimo sada varijacije formi koje odgovaraju parametru transformacija εhai. Na primer,
iz jednačina (6.31) se može videti da je varijacija formi promenljivih αα0 i ααi:

δ0α
α
o = 0 , δ0α

α
i = −∂aαεhai . (6.38)

Uzimajući u obzir da dejstvo generatora (6.30) daje transformacije simetrije na jednoj pro-
stornoj hiperpovrši Σ3 sa vremenskom komponentom parametra transformacije jednakom nuli
εh
a

0 = 0, može se ekstrapolirati transformacija za parametre prostorvremenskih gejdž transfo-
rmacija εhaµ. Dobijamo da je varijacija forme promenljive ααµ

δ0α
α
µ = −∂aαεhaµ , (6.39)

a slično se može zaključiti i za preostale varijable. Tako je infinitezimalna transformacija u
celom prostorvremenu koji odgovara parametru εhaµ data varijacijama formi:

δ0α
α
µ = −∂aαεhaµ , δ0B

α
µν = 2Ca[µ|εh

b
|ν] �βb

agαβ ,

δ0β
a
µν = −2∇[µ|εh

a
|ν] , δ0C

a
µ = 2DAX(ab)

Aεh
b
µ ,

δ0γ
A
µνρ = 3!βa[µνεh

b
ρ]X(ab)

A , δ0D = 0 .

(6.40)

Za ove infinitezimalne transformacije dobijaju se konačne transformacije simetrije date u Teo-
remi 15.
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Teorema 15 (H-gejdž transformacije) U 3BF teoriji nad proizvoljnim 2-ukrštenim modulom
(L

δ→ H
∂→ G,�, {_ ,_}pf), sledeća transformacija je simetrija:

α → α′ = α− ∂εh , B → B′ = B − C ′ ∧T εh − εh ∧D εh ∧D D ,
β → β′ = β −∇′εh − εh ∧ εh , C → C ′ = C −D ∧X1 εh −D ∧X2 εh ,
γ → γ′ = γ + {β′, εh}pf + {εh, β}pf , D → D′ = D ,

(6.41)
gde je parametar εh ∈ A1(M4, h) proizvoljna 1-forma element algebre h, a oznaka ∇′ je ko-
varijantni izvod sa koneksijom α′. Preslikavanja T , D, X1 i X2 su definisana u Dodatku A,
jednačinama (A.13), (A.51), (A.47) i (A.48).

Dokaz. Primetimo da se 3-krivina pri transformacijama simetrije definisanim u Teoremi 15
transformiše na sledeći način:

F → F ′ = F ,
G → G ′ = G − F ∧� εh ,
H → H′ = H + {G ′, εh}pf − {εh ,G}pf .

(6.42)

Koristeći izraze za transformacije 3-krivine (6.42) i za transformacije Lagranževih množitelja,
dobija se da je transformisano dejstvo S ′3BF :

S ′3BF =S3BF +

∫
M4

(
− 〈C ′ ∧T εh,F〉g − 〈εh ∧

D εh ∧D D,F〉g − 〈C
′,F ∧� εh〉h − 〈D ∧

X1 εh,G〉h

− 〈D ∧X2 εh,G〉h + 〈D, {G, εh}pf〉l − 〈D, {F ∧
� εh, εh}pf〉l − 〈D, {εh ,G}pf〉l

)
.

(6.43)
Koristeći definicije preslikavanja T , D, X1 i X2, date u Dodatku A, vidimo da se preostali članovi
međusobno pokrate, tj. da dejstvo ostaje invarijantno pri ovim transformacijama S ′3BF = S3BF .
Konkretno, prvi član se skraćuje sa trećim, drugi sa sedmim, četvrti sa osmim i peti član se
skraćuje sa šestim članom.

Možemo pokazati da H-gejdž transformacije ne čine grupu. Naime, može se proveriti da dve
uzastopne H-gejdž transformacije ne daju transformaciju iste vrste, tačnije, aksiom zatvaranja
grupe nije zadovoljen. Analogan slučaj imamo kod dobro poznate strukture Lorencove grupe,
gde bust transformacije nisu zatvorene tj. ne formiraju grupu. Zaista, moraju se uzeti u obzir
i rotacije i bustovi da bi se dobio skup transformacija koje formiraju Lorencovu grupu. U
slučaju H-gejdž transformacija, pokazaćemo da pored njih treba uzeti u obzir i transformacije
koje odgovaraju parametru εl

A
ij. Iz jednačina (6.31) vidimo varijacije formi na prostornoj

hiperpovrši Σ3 koje odgovaraju ovom parametru. Slično kao što smo to uradili u slučaju H-
gejdž trasformacija, možemo ekstrapolirati prostorvremenske varijacije formi koje odgovaraju
parametru εlAµν :

δ0α
α
µ = 0 , δ0B

α
µν = −DA �βB

Aεl
B
µνg

αβ ,

δ0β
a
µν = δA

aεl
A
µν , δ0C

a
µ = 0 ,

δ0γ
A
µνρ = ∇µεl

A
νρ −∇νεl

A
µρ +∇ρεl

A
µν , δ0D

A = 0 .

(6.44)

Ove infinitezimalne transformacije odgovaraju konačnim transformacijama simetrije definisanim
u Teoremi 16.
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Teorema 16 (L-gejdž transformacije) U 3BF teoriji nad proizvoljnim 2-ukrštenim modulom
(L

δ→ H
∂→ G,�, {_ ,_}pf), sledeća transformacija je simetrija:

α → α′ = α , B → B′ = B +D ∧S εl ,
β → β′ = β + δεl , C → C ′ = C ,
γ → γ′ = γ +∇εl , D → D′ = D ,

(6.45)

gde je parametar transformacije εl ∈ A2(M4, l) proizvoljna 2-forma element algebre l, a presli-
kavanje S je definisano u Dodatku A jednačinom (A.43).

Dokaz. Pri transformacijama definisanim u Teoremi 16 3-krivina se transformiše na sledeći
način:

F → F ′ = F ,
G → G ′ = G ,
H → H′ = H + F ∧� εl .

(6.46)

Uzimajući u obzir transformacije 3-krivine (6.46) i transformacije Lagranževih množitelja, 3BF
dejstvo se transformiše:

S ′3BF = S3BF +

∫
M4

(
〈D ∧S εl,F〉g + 〈D,F ∧� εl〉l

)
. (6.47)

Primenjujući definiciju preslikavanja S datu u Dodatku A, članovi u zagradi se pokrate.
Označimo generatore H-gejdž transformacija definisanih u Teoremi 15 kao Ĥa

µ i generatore
L-gejdž transformacija definisanih u Teoremi 16 kao L̂Aµν . Sada možemo proveriti da li H-gejdž
transformacije definisane u Teoremi 15 formiraju grupu. Ako izvršimo dve uzastopne H-gejdž
transformacije, definisane parametrima εh1 i εh2, dobijamo

eεh1·Ĥeεh2·Ĥ − eεh2·Ĥeεh1·Ĥ = 2 ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf) · L̂ , (6.48)

gde εh ·Ĥ = εh
a
µĤa

µ i εl ·L̂ = 1
2
εl
A
µνL̂A

µν . Koristeći jednačinu analognu BCH formuli (4.38), do-
bijamo da je komutator generatora dveH-gejdž transformacije generator L-gejdž transformacije
(detalji računa dati su u Dodatku D):

[Ĥa
µ, Ĥb

ν ] = 2X(ab)
AL̂A

µν . (6.49)

Transformacije definisane u Teoremi 16 su linearne transformacije, a dve uzastopne L-gejdž
transformacije daju L-gejdž transformaciju sa parametrom εl1 + εl2, tj. formalno zapisano:

eεl1·L̂eεl2·L̂ = e(εl1+εl2)·L̂ , (6.50)

Na osnovu ovoga zaključujemo da L-gejdž transformacije komutiraju:

[L̂A
µν , L̂B

ρσ] = 0 . (6.51)

Stoga, L-gejdž transformacije čine Abelovu grupu L̃. Prema strukturi indeksa parametara i
generatora, možemo zaključiti da je grupa L̃ izomorfna grupi R6r, gde je r red grupe L:

L̃ ∼= R6r . (6.52)

Obratimo pažnju da Abelovu grupu L̃ ne treba pomešati sa ne-Abelovom grupom L koja je
deo strukture 2-ukrštenog modula (L

δ→ H
∂→ G,�, {_ ,_}pf).

Razmotrimo sada odnos izmeđuH-gejdž transformacija i L-gejdž transformacija. Na osnovu
jednakosti,

eεh·Ĥeεl·L̂ = eεl·L̂eεh·Ĥ , (6.53)
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možemo zaključiti da je komutator između generatora H-gejdž transformacija i generatora L-
gejdž transformacija jednak nuli:

[Ĥa
µ, L̂A

νρ] = 0 . (6.54)

Na osnovu relacija (6.49), (6.51) i (6.54) vidimo da H-gejdž transformacije zajedno sa L-gejdž
transformacijama formiraju grupu, obeležimo je kao H̃L. Na kraju, dejstvo grupe G na H-gejdž
i L-gejdž transformacije dobijamo izračunavanjem sledećih izraza,

[εg · Ĝ, εh · Ĥ] = (εg � εh) · Ĥ , [εg · Ĝ, εl · L̂] = (εg � εl) · L̂ , (6.55)

na osnovu kojih dobijamo komutacione relacije

[Ĝα, Ĥa
µ] = �αa

b Ĥb
µ ,

[Ĝα, L̂A
µν ] = �αA

B L̂B
µν .

(6.56)

Teoreme 14, 15 i 16 predstavljaju G-, H- i L-gejdž transformacije, za više informacija videti
[18], [40]).

Grupe M̃ i Ñ

Zatim, razmotrimo infinitezimalnu transformaciju sa parametrom εm
α
i, datu varijacijama formi

(6.31). Slično kao što je to učinjeno u prethodnom delu, na osnovu varijacija formi varijabli
dobijenih kao rezultat Hamiltonove analize tj. transformacija na jednoj prostornoj hiperpovrši
Σ3, možemo pogoditi transformacije u celom prostorvremenu. Imajući u vidu da varijacije na
hiperpovrši imaju vremensku komponentu parametra jednaku nuli εmα0 = 0, ekstrapoliramo
varijacije formi na celom prostorvremenu koje odgovaraju parametru εmαµ:

δ0α
α
µ = 0 , δ0B

α
µν = −2∇[µ|εm

α
|ν] ,

δ0β
a
µν = 0 , δ0C

a
µ = −∂aαεmαµ ,

δ0γ
A
µνρ = 0 , δ0D

A = 0 .

(6.57)

Na osnovu ovog rezultata, dobija se konačna transformacija simetrije u celom prostorvremenu,
kao što definisano Teoremom 17, koje nazivamo M -gejdž transformacijama.

Teorema 17 (M -gejdž transformacije) U 3BF teoriji nad proizvoljnim 2-ukrštenim modulom
(L

δ→ H
∂→ G,�, {_ ,_}pf), sledeća transformacija je simetrija

α → α′ = α , B → B′ = B −∇εm ,
β → β′ = β , Ca → C ′a = Ca − ∂aαεmα ,
γ → γ′ = γ , D → D′ = D ,

(6.58)

gde je parametar transformacija εm ∈ A1(M4, g) proizvoljna 1-forma element algebre g.

Dokaz. Razmotrimo transformaciju 3BF dejstva pri transformacijama definisanim u Teoremi
17. Dobijamo:

S ′3BF = S3BF +

∫
M4

d4x εµνρσ
(
−1

2
(∇µεm

α
ν)Fαρσ −

1

3!
∂aαεm

α
µGaνρσ

)
. (6.59)
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Primenom definicije 3-krivine (2.3.5):

S ′3BF = S3BF +

∫
M4

d4x εµνρσ
(
− 1

2
(∇µεm

α
ν) (Fαρσ − ∂aαβaρσ)− 1

3!
∂aαεm

α
µ

(
3∇νβaρσ − δAaγAνρσ

) )
.

(6.60)
U prethodnom izrazu drugi i treći član se pokrate, dok je poslednji član nula zbog identiteta
(2.73), pa sledi:

S ′3BF = S3BF −
1

2

∫
M4

d4x εµνρσεm
α
µ∇νFαρσ . (6.61)

Na kraju, član εµνρσ∇νFαρσ = 0 je upravo BI (5.24). Zaključujemo da je S3BF invarijantno pri
transformacijama definisanim Teoremom 17.

Možemo pokazati da su transformacije definisane u Teoremi 17 linearne transformacije, tj.
da dve uzastopne M -gejdž transformacije daju jednu M -gejdž transformaciju sa parametrom
εm1 + εm2. Ako generatore M -gejdž transformacija obeležimo sa M̂α

µ, možemo pisati

eεm1·M̂eεm2·M̂ = e(εm1+εm2)·M̂ , (6.62)

gde je εm · M̂ = εm
α
µM̂α

µ. Dobijamo komutacionu relaciju:

[M̂α
µ, M̂β

ν ] = 0 . (6.63)

Stoga, M -gejdž transformacije formiraju Abelovu grupu M̃ . Prema strukturi indeksa njenih
parametara i generatora, vidimo da je ova grupa izomorfna sa grupom R4p, gde je p dimenzija
grupe G:

M̃ ∼= R4p . (6.64)

Zatim se može ispitati odnos M -gejdž transformacija sa G, H i L-gejdž transformacijama
definisanim u prethodnim delovima. Konkretno, za generatore G-gejdž transformacija važi
relacija,

[εg · Ĝ, εm · M̂ ] = (εg � εm) · M̂ , (6.65)

na osnovu čega dobijamo komutator:

[Ĝα , M̂β
µ] = fαβ

γM̂γ
µ . (6.66)

Za generatore H- i L-gejdž transformacija, dobijamo relacije

eεh·Ĥeεm·M̂ = eεm·M̂eεh·Ĥ ,

eεl·L̂eεm·M̂ = eεm·M̂eεl·L̂ ,
(6.67)

na osnovu čega zaključujemo da generatori M -gejdž transformacija komutiraju kako sa gene-
ratorima H-gejdž transformacija, tako i sa generatorima L-gejdž transformacija:

[Ĥa, M̂α
µ] = 0 , [L̂A

µν , M̂α
ρ] = 0 . (6.68)

Poslednji tip transformacija dobijamo razmatranjem varijacija formi varijabli dobijenih u
(6.31) koje odgovaraju parametru transformacija εna,

δ0α
α
µ = 0 , δ0B

α
µν = βbµν �α′a

bεn
agαα

′
,

δ0β
a
µν = 0 , δ0C

a
µ = −∇µεn

a ,
δ0γ

A
µνρ = 0 , δ0D

A = δAaεn
a .

(6.69)

Ove, N -gejdž transformacije, definisane su Teoremom 18. Primetimo da su N -gejdž transfo-
rmacije transformacije u celom prostorvremenu, pošto parametar ne nosi prostorvremenske
indekse.
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Teorema 18 (N -gejdž transformacije) U 3BF teoriji nad proizvoljnim 2-ukrštenim modulom
(L

δ→ H
∂→ G,�, {_ ,_}pf), sledeća transformacija je simetrija

α → α′ = α , B → B′ = B − β ∧T εn ,
β → β′ = β , C → C ′ = C −∇εn ,
γ → γ′ = γ , DA → D′A = DA + δAaεn

a ,
(6.70)

gde je parametar εn :M4 → h proizvoljna 0-forma element algebre h.

Dokaz. Pri transformacijama definisanim Teoremom 18, 3BF dejstvo se transformiše na sledeći
način:

S ′3BF = S3BF +

∫
M4

dx4εµνρσ
(

1

4
βbµν �αa

bεn
aFαρσ −

1

3!
(∇µεn

a)Gaνρσ +
1

4!
δAaεn

aHAµνρσ

)
.

(6.71)
Primenom definicije 3-krivine (2.118), dobijamo:

S ′3BF = S3BF +

∫
M4

dx4εµνρσ
(1

4
βbµν �αa

bεn
a (Fα

ρσ − ∂cαβcρσ)− 1

3!
(∇µεn

a)
(
3∇νβaρσ − δAaγAνρσ

)
+

1

4!
δAaε

a
(
4∇µγAνρσ + 6X(bc)Aβ

b
µνβ

c
ρσ

) )
.

(6.72)
Nakon parcijalne integracije poslednji član u prvom redu jednačine (6.72) i prvim član u drugom
redu se skraćuju. Takođe, koristeći identitet

1

2
εµνρσ(∇ν∇µεn

a)βaρσ = −1

4
εµνρσβbρσ �αa

bεn
aFα

µν , (6.73)

pokratiće će i prvi i treći član u prvom redu. Konačno, dobijamo izraz:

S ′3BF = S3BF +

∫
M4

dx4εµνρσ
(1

4
εna �α(b|

a∂|c)
αβbµνβ

c
ρσ +

1

4
εnaδA

aX(bc)
Aβbµνβ

c
ρσ

)
. (6.74)

Zbir preostala dva člana jednak je nuli zbog simetrizovanog oblika identiteta (2.87),

�α(b|
a∂|c)

α + δA
aX(bc)

A = f(bc)
a = 0 ,

zbog antisimetričnosti strukturnih konstanti. Zaključujemo da dejstvo S3BF ostaje invarijantno
pri transformacijama definisanim u Teoremi 18.

Transformacije definisane Teoremom 18 – N -gejdž transformacije, formiraju grupu koju
obeležavamo sa Ñ . Imamo na kraju da su ove transformacije takođe linearne, a dve N -gejdž
transformacije daju N -gejdž transformaciju sa parametrom εn1 + εn2. Ako generatore grupe Ñ
obeležimo sa N̂a, možemo da pišemo

eεn1·N̂eεn2·N̂ = e(εn1+εn2)·N̂ , (6.75)

gde je εn · N̂ = εn
aN̂a. Iz ovoga sledi da je komutator dva generatora N -gejdž transformacija,

[N̂a, N̂b] = 0 , (6.76)

tj. da je Ñ Abelova grupa. Pritom, indeksna struktura parametara i generatora ukazuje na to
da je Ñ izomorfna sa grupom Rq, gde je q dimenzija grupe H:

Ñ ∼= Rq . (6.77)
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Zatim se može ispitati odnos N -gejdž transformacija i G, H i L-gejdž transformacijama defini-
sanim u prethodnim delovima. Konkretno, za generatore G-gejdž transformacija važi relacija

[εg · Ĝ, εn · N̂ ] = (εg � εn) · N̂ , (6.78)

tj. komutator G-gejdž i N -gejdž transformacija je:

[Ĝα, N̂a] = �αa
b N̂b . (6.79)

Ispitajmo sada odnos između N -gejdž i H-gejdž transformacija, izračunavajući sledeći izraz:

eεh·Ĥeεn·N̂ − eεn·N̂eεh·Ĥ = −(εn ∧T εh) · M̂ . (6.80)

Dokaz je dat u Dodatku D. Dobijamo da je komutator H- i N -gejdž transformacija linearna
kombinacija M -gejdž generatora:

[Ĥa
µ, N̂ b] = �αa

bM̂αµ . (6.81)

Analognim postupkom, dobijamo relacije

eεl·L̂eεn·N̂ = eεn·N̂eεl·L̂ , eεm·M̂eεn·N̂ = eεn·N̂eεm·M̂ , (6.82)

iz kojih sledi da generatori L- i M -gejdž transformacija komutiraju sa generatorima N -gejdž
transformacija:

[M̂α
µ, N̂a] = 0 , [L̂A

µν , N̂a] = 0 . (6.83)

Ukupna gejdž grupa simetrije 3BF dejstva

Sumirajući rezultate prethodnih delova, može se napisati ukupna algebra generatora grupe
gejdž simetrija na sledeći način.

• Algebra g koja odgovara grupi G iz 2-ukrštenog modula (L
δ→ H

∂→ G ,� , {_ ,_}pf)
data je komutacionim relacijama:

[Ĝα, Ĝβ] = fαβ
γĜγ . (6.84)

• Algebra koja odgovara grupi H̃L sastoji se od generatora H- i L-gejdž transformacija koji
zadovoljavaju komutacione relacije:

[Ĥa
µ, Ĥb

ν ] = 2X(ab)
AL̂A

µν , [L̂A
µν , L̂B

ρσ] = 0 , [Ĥa
µ, L̂A

νρ] = 0 . (6.85)

• Algebra generatora M -gejdž transformacija određena je komutacionim relacijama:

[M̂α
µ, M̂β

ν ] = 0 . (6.86)

• Algebra generatora N -gejdž transformacija određena je komutacionim relacijama:

[N̂a, N̂b] = 0 . (6.87)
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• Komutatori između generatora grupa M̃ i Ñ :

[M̂α
µ, N̂a] = 0 . (6.88)

• Dejstvo generatora grupe H̃L na generatore M - i N -gejdž transformacija:

[Ĥa
µ, N̂ b] = �αa

bM̂αµ ,

[Ĥa
µ, M̂α

ν ] = 0 ,

[L̂A
νρ, M̂α

µ] = 0 ,

[L̂A
µν , N̂a] = 0 .

(6.89)

• Dejstvo generatora grupe G na generatore H-, L-, M - i N -gejdž transformacija:

[Ĝα, Ĥa
µ] = �αa

b Ĥb
µ ,

[Ĝα, L̂A
µν ] = �αA

BL̂B
µν ,

[Ĝα , M̂β
µ] = fαβ

γM̂γ
µ ,

[Ĝα, N̂a] = �αa
b N̂b .

(6.90)

Na osnovu jednačina (6.84)-(6.90) dobijamo strukturu ukupne gejdž grupe simetrija. Na
dijagramu Heseovog tipa prikazanom na slici 6.1, prikazane su sve relevantne podgrupe ukupne
grupe simetrija G3BF , pri čemu su invarijantne podgrupe uokvirene.

G̃n (H̃L n (Ñ × M̃))

H̃L n (Ñ × M̃)

H̃L Ñ × M̃

L̃ M̃ Ñ

G̃

{1}

Slika 6.1: Relevantne podgrupe ukupne grupe simetrija G3BF . Invarijantne podgrupe su
uokvirene.

Na osnovu komutacionih relacija vidimo da su grupe L̃, M̃ i Ñ podgrupe ukupne grupe
simetrija G3BF . Da su grupe L̃ i M̃ invarijantne podgrupe zaključujemo na osnovu toga što
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su jedini netrivijani komutatori generatora L̂Aµν , odnosno M̂α
µ, i generatora grupe G jednaki

nekoj linearnoj kombinaciji generatora grupe L̃, odnosno M̃ . Da grupa Ñ nije invarijantna
podgrupa, zaključujemo na osnovu komutatora generatora N̂a i generatora Ĥa

µ koji su jednaki
linearnim kombinacijama generatora M̂α

µ. Ipak, generatori Ñ i M̃ međusobno komutiraju, pa
je grupa Ñ invarijantna podgrupa direktnog proizvoda grupa M̃ i Ñ , tj. grupe Ñ × M̃ . Grupa
Ñ × M̃ je invarijantna podgrupa ukupne grupe simetrija.

Sa druge strane, u prethodnom delu smo videli da generatoriH-gejdž transformacija zajedno
sa generatorima L-gejdž transformacija formiraju grupu H̃L. Da ova grupa nije invarijantna
podgrupa ukupne grupe simetrija G3BF vidimo iz oblika komutatora Ĥa

µ i N̂b. Sada, ove dve
podgrupe, Ñ×M̃ i H̃L formiraju semidirektan proizvod H̃Ln(Ñ×M̃). Proizvod je semidirektan
jer grupa H̃L nije invarijantna podgrupa grupe H̃Ln (Ñ × M̃), zbog oblika komutatora između
generatora Ĥa

µ i N̂b, dok je grupa Ñ×M̃ invarijantna podgrupa iste grupe. Grupa H̃Ln(Ñ×M̃)
je invarijantna podgrupa ukupne grupe simetrija G3BF .

Na kraju, uzimajući u obzir generatore G-gejdž transformacija, tj. komutacione relacije
(6.90), a po istom principu zaključivanja, dobija se ukupna gejdž grupa simetrija G3BF :

G3BF = Gn (H̃L n (Ñ × M̃)) . (6.91)

Difeomorfizmi

Druga važna tema za diskusiju je invarijantnost 3BF teorije na difeomorfizme. Slično kao u
slučaju 2BF teorije, ako su difeomorfizmi simetrija teorije, njihove varijacije forme se mogu
izraziti kao zbir varijacija formi varijabli pri gejdž transformacijama i varijacija formi pri HT
transformacijama:

δ0
diff φ = −δ0

gaugeφ− δ0
HTφ . (6.92)

Konkretno, 3BF dejstvo zavisi od parametara ααµ, βaµν , γAµνρ, Bα
µν , Ca

µ i DA . Parametri
HT transformacija εHTαβ

µνρ , ε
HTab

µνρ , i εHTAB
µνρ su definisani relacijama (4.55)

δ0
HTααµ =

1

2
εHTαβ

µνρ
δS

δBβ
νρ

, δ0
HTBα

µν = −εHTαβ
ρµν

δS

δαβρ
,

δ0
HTβaµν = εHTab

µνρ
δS

δCb
ρ

, δ0
HTCa

µ = −1

2
εHTab

νρµ
δS

δβbνρ
,

δ0
HTγAµνρ = εHTAB

µνρ
δS

δDB
, δ0

HTDA = − 1

3!
εHTAB

µνρ
δS

δγBµνρ
,

(6.93)

dok su gejdž parametri εgα, εhaµ, εlAµν , εmαµ i εna definisani u Teoremama 14–18. Možemo
pokazati da zaista postoji izbor ovih parametara, tako da je jednačina (4.57) zadovoljena za
sva polja. Konkretno, ako odaberemo gejdž parametre kao

εg
α = −ξλααλ , εh

a
µ = ξλβaµλ , εl

A
µν = ξλγAµνλ , εm

α
µ = ξλBα

µλ , εn
a = −ξλCa

λ ,
(6.94)

a HT parametre kao

εHTαβ
µνρ = ξλgαβεµνρλ , εHTab

µνρ = ξλgabελµνρ , εHTAB
µνρ = ξλgABεµνρλ , (6.95)

primenom jednačine (6.92) dobijamo upravo standardne varijacije formi koje odgovaraju difeo-
morfizmima:

δ0
diffααµ = −∂µξλααλ − ξλ∂λααµ ,

δ0
diffβaµν = −∂µξλβaλν − ∂νξλβaµλ − ξλ∂λβaµν ,

δ0
diffγAµνρ = −∂µξλγAλνρ − ∂νξλγAµλρ − ∂ρξλγAµνλ − ξλ∂λγAµνρ ,

δ0
diffBα

µν = −∂µξλBα
λν − ∂νξλBα

µλ − ξλ∂λBα
µν ,

δ0
diffCa

µ = −∂µξλCa
λ − ξλ∂λCa

µ ,
δ0

diffDA = −ξλ∂λDA .

(6.96)
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Ovim se utvrđuje da su difeomorfizmi zaista simetrija teorije, čak i ako nisu sadržani u ukupnoj
gejdž grupi simetrija G3BF , već u direktnom proizvodu ukupne grupe simetrija i HT grupe
simetrija.

6.2 Klajn-Gordonova teorija

U ovom odeljku ćemo demonstrirati kako možemo da iskoristimo strukturu 3-grupe, odnosno
odgovarajuću 3BF teoriju da opišemo Klajn-Gordonovo polje koje interaguje sa gravitacionim
poljem [16]. Najpre, neophodno je precizirati 2-ukršteni modul za koji se definiše 3BF teorija,
a zatim se teorija sa odgovarajućom dinamikom konstruiše dodavanjem odgovarajućih veza
topološkom 3BF dejstvu. Definišimo 2-ukršteni modul (L

δ→ H
∂→ G ,� , {_ ,_}pf), na sledeći

način. Lijeve grupe G, H i L su:

G = SO(3, 1) , H = R4 , L = R . (6.97)

Grupa G deluje na samu sebe konjugacijom, na grupu H po vektorskoj reprezentaciji, dok
je dejstvo grupe G na grupu L trivijalno. Ovim je definisano dejstvo �. Preslikavanje ∂ je
trivijalno, kao što je to slučaj kod čiste gravitacije. Preslikavanje δ je takođe izabrano da bude
trivijalno, odnosno svaki element grupe L se preslikava u jedinični element grupe H. Najzad,
Pajferovo podizanje je takođe trivijalno, odnosno svaki uređeni par elemenata grupe H se
preslikava u jedinični element grupe L. Ovo definiše jedan određeni izbor 2-ukrštenog modula,
koji odgovara jednom skalarnom polju u interakciji sa gravitacionim poljem, kao što ćemo to
demonstrirati u ovom odeljku.

Za ovaj izbor 2-ukrštenog modula, 3-koneksija (α , β , γ) je

α = ωabMab , β = βaPa , γ = γI , (6.98)

gde I označava generator Lijeve grupe R. Kako su preslikavanja ∂, δ i Pajferovo podizanje
trivijalni, lažna 3-krivina (2.118) se svodi na običnu 3-krivinu,

F = RabMab , G = ∇βaPa , H = dγ . (6.99)

Ovde je iskorišćena činjenica da je dejstvo grupe G na grupu L trivijalno, tj. Mab � I = 0.
Ovo znači da se 3-forma γ transformiše kao skalar pri Lorencovim transformacijama. Dakle,
odgovarajući Lagranžev množitelj D se transformiše na isti način, što vidimo na osnovu njegove
indeksne strukture. Kako je D 0-forma, on se transformiše kao skalar i pri delovanju simetrije
difeomorfizama. Na osnovu ovoga sledi da se Lagranžev množitelj D transformiše kao realno
skalarno polje pri svim transformacijama, odnosno možemo ga označiti kao D ≡ φ, i napisati
topološko 3BF dejstvo (6.1) kao:

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ , (6.100)

gde je bilinearna forma na L definisana kao 〈I, I〉l = 1.
Da bi opisali skalarno polje mase m sa odgovarajućom dinamikom opisanom Klajn-Gordo-

novom jednačinom u interakciji sa gravitacionim poljem neophodno je dodati odgovarajuće veze
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topološkom dejstvu (6.100):

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + φ dγ

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λ ∧

(
γ − 1

2
Habce

a ∧ eb ∧ ec
)

+ Λab ∧
(
Habcε

cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb
)

− 1

2 · 4!
m2φ2εabcde

a ∧ eb ∧ ec ∧ ed .

(6.101)

U prethodnom izrazu prvi red predstavlja topološki sektor (6.100), drugi red je poznata simpli-
city veza za gravitaciju uvedena u dejstvu (5.85), treći i četvrti red nove simplicity veze u kojima
se pojavljuju 1-forme Lagranževi množitelji λ i Λab i 0-forma Lagranžev množitelj Habc, dok
poslednji red obezbeđuje odgovarajuću masu m skalarnog polja φ. Variranjem dejstva (6.101)
redom po varijablama Bab, ωab, βa, λab, Λab, γ, λ, Habc, φ i ea dobijamo jednačine kretanja:

Rab − λab = 0 , (6.102)

∇Bab − e[a ∧ βb] = 0 , (6.103)

∇ea = 0 , (6.104)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (6.105)

Habcε
cdefed ∧ ee ∧ ef − dφ ∧ ea ∧ eb = 0 , (6.106)

dφ− λ = 0 , (6.107)

γ − 1

2
Habce

a ∧ eb ∧ ec = 0 , (6.108)

−1

2
λ ∧ ea ∧ eb ∧ ec + εcdefΛab ∧ ed ∧ ee ∧ ef = 0 , (6.109)

dγ − d(Λab ∧ ea ∧ eb)−
1

4!
m2φεabcde

a ∧ eb ∧ ec ∧ ed = 0 , (6.110)

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
3

2
Habcλ ∧ eb ∧ ec + 3HdefεabcdΛef ∧ eb ∧ ec

− 2Λab ∧ dφ ∧ eb − 2
1

4!
m2φεabcde

b ∧ ec ∧ ed = 0 .

(6.111)

Ovaj sistem jednačina opisuje dva dinamička polja, tetrade ea i skalarno polje φ, dok se sve
ostale varijable mogu izraziti kao funkcije njih i njihovih izvoda:

λabµν = Rabµν , ωabµ = 4ab
µ , γµνρ = −e

2
εµνρσ∂

σφ ,

βaµν = 0 , Λab
µ =

1

12e
gµλε

λνρσ∂νφe
a
ρe
b
σ , λµ = ∂µφ ,

Habc =
1

6e
εµνρσ∂µφe

a
νe
b
ρe
c
σ , Babµν =

1

8πl2p
εabcde

c
µe
d
ν .

(6.112)
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Za razliku od jednačina kretanja za Lagranževe množitelje, jednačine kretanja za ea i φ su dife-
rencijalne jednačine kretanja, pri čemu jednačina kretanja za φ (6.110) daje Klajn-Gordonovu
jednačinu kretanja, (

∇µ∇µ −m2
)
φ = 0 , (6.113)

dok je jednačina kretanja za polja tetrada (6.111)

Rµν − 1

2
gµνR = 8πl2p T

µν , (6.114)

gde je tenzor energije-impulsa realnog skalarnog polja

T µν ≡ ∂µφ∂νφ− 1

2
gµν
(
∂ρφ∂

ρφ+m2φ2
)
. (6.115)

6.3 Ajnštajn-Kartan-Dirak teorija
Kako bismo opisali Dirakovo polje koje interaguje sa Ajnštajn-Kartanovom gravitacijom defi-
nišemo 2-ukršteni modul (L

δ→ H
∂→ G ,� , {_ ,_}pf) na sledeći način [16]. Lijeve grupe G, H

i L su
G = SO(3, 1) , H = R4 , L = R8(G) , (6.116)

gde je G oznaka za skup Grasmanovih brojeva. Preslikavanja ∂, δ i Pajferovo podizanje ostaju
trivijalni, kao što je to bio slučaj kod skalarnog polja. Grupa G deluje na samu sebe ko-
njugacijom, na grupu H po vektorskoj reprezentaciji, dok na grupu L deluje po spinorskoj
reprezentaciji. Formalno zapisano, ako su Pα i Pα 8 generatora Lijeve grupe R8(G), pri čemu
indeks α uzima vrednosti 1, . . . , 4, dejstvo � grupe G na grupu L definisano je na sledeći način:

Mab � Pα =
1

2
(σab)

β
αPβ , Mab � Pα = −1

2
(σab)

α
βP

β , (6.117)

gde je korišćena standardna notacija za σab = 1
4
[γa, γb], gde su γa Dirakove matrice, koje zado-

voljavaju antikomutacione relacije

{γa, γb} ≡ γaγb + γbγa = −2ηab .

Kao što je to bio slučaj kod skalarnog polja, vidimo da izbor grupe L određuje polja materije
prisutna u teoriji, dok dejstvo � grupe G na grupu L osigurava odgovarajuće transformacione
osobine polja.

Sada kada smo upotpunili definiciju 2-ukrštenog modula, možemo definisati odgovarajuće
3BF dejstvo. Uređena trojka 3-koneksije (α , β , γ) za ovaj izbor 3-grupe je:

α = ωabMab , β = βaPa , γ = γαPα + γ̄αP
α , (6.118)

dok je 3-krivina (F ,G ,H):

F = RabMab , G = ∇βaPa ,

H =
(

dγα +
1

2
ωab(σab)

α
βγ

β
)
Pα+

(
dγ̄α −

1

2
ωabγ̄β(σab)

β
α

)
Pα

≡ (
→
∇γ)αPα + (γ̄

←
∇)αP

α .

(6.119)

U prethodnim izrazima korišćena je definicija dejstva � (6.117). Bilinearna forma 〈_,_〉l je
definisana delovanjem na generatore grupe L, na sledeći naćin

〈Pα, Pβ〉l = 0 , 〈Pα, P β〉l = 0 ,

〈Pα, P β〉l = −δβα , 〈Pα, Pβ〉l = δαβ .
(6.120)
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Primetimo da je bilinearna forma definisana na ovaj način antisimetrična kada deluje na gene-
ratore, za razliku od bilinearne simetrične koju smo imali u primerima do sada. Motivacija za
ovako definisanom bilinearnom formom sastoji se u sledećem. Za elemente A,B ∈ l bilinearna
forma je simetrična bilinearna nedegenerisana forma. Razvijajući elemente A i B po bazisu
algebre vidimo da je:

〈A,B〉l = AIBJgIJ , 〈B,A〉l = BJAIgJI . (6.121)

Kako bilinearna forma mora biti simetrična, dva izraza u prethodnoj jednačini moraju biti
jednaka. Kako su koeficijenti u l Grasmanovi brojevi, imamo da je AIBJ = −BJAI , iz čega sledi
da je gIJ = −gJI . Sada je jasna antisimetričnost (6.120) — ona kompenzuje antikomutirajuću
prirodu Grasmanovih brojeva, osiguravajući da bilinearna forma bude simetrična za bilo koja
dva elementa A,B ∈ l.

Dejstvo � grupe G na grupu L se definiše tako da obezbedi spinorsku prirodu Lagranževog
množitelja D u dejstvu (6.1). Grupa L određuje strukturu polja D tako da su njegove ko-
mponente 8 nezavisnih Grasmanovih polja materije. Dalje, na osnovu činjenice da je polje
D diferencijalna 0-forma i da se transformiše po spinorskoj reprezentaciji pod dejstvom grupe
SO(3, 1), možemo ga identifikovati sa Dirakovim bispinorom:

D = ψαPα + ψ̄αP
α . (6.122)

Kao u slučaju skalarnog polja, ovo je demonstracija kako struktura sektora materije prisutne
u teoriji može biti zadata određenim izborom grupe L i dejstvom � grupe G na nju, kompo-
nentama 2-ukrštenog modula. Transformacione osobine polja pri delovanju Lorencove grupe
definišemo odgovarajućim izborom dejstva �.

Za ovaj izbor 2-ukrštenog modula, a nakon izvršene identifikacije polja, možemo definisati
odgovarajuće 3BF dejstvo:

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α . (6.123)

Kako bismo definisali spinorska polja sa odgovarajućom dinamikom kuplovana sa Ajnštajn-
Kartanovom gravitacijom, neophodno je dejstvu (6.123) dodati odgovarajuće simplicity veze:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψ

α + ψ̄α(
→
∇γ)α

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
− λα ∧

(
γ̄α −

i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α
)

+ λ̄α ∧
(
γα +

i

6
εabcde

a ∧ eb ∧ ec(γdψ)α
)

− 1

12
mψ̄ψ εabcde

a ∧ eb ∧ ec ∧ ed + 2πil2p ψ̄γ5γ
aψ εabcde

b ∧ ec ∧ βd.

(6.124)

Analogno prethodnom slučaju skalarnog polja, prvi red je topološki sektor dejstva (6.123), drugi
red je gravitaciona veza, dok su treći i četvrti red nove simplicity veze za Dirakovo polje, u
kojima se pojavljuju 1-forme Lagranževih množitelja λα i λ̄α. Peti red sadrži maseni član za
Dirakovo polje i član koji osigurava odgovarajuću interakciju između torzije i spina Dirakovog
polja. Na osnovu Ajnštajn-Kartanove teorije imamo da je

Ta ≡ ∇ea = 2πl2psa , (6.125)
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jedna jednačina kretanja, gde je

sa = iεabcde
b ∧ ecψ̄γ5γ

dψ (6.126)

2-forma Dirakovog spina. Naravno, alternativni izbori su mogući, ali ćemo se u ovom izlaganju
ograničiti na ovaj.

Variranjem dejstva (6.124) redom po varijablama Bab, λab, γ̄α, γα, λα, λ̄α, ψ̄α, ψα, ea, βa i
ωab, dobijamo jednačine kretanja:

Rab − λab = 0 , (6.127)

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 , (6.128)

(
→
∇ψ)α − λα = 0 , (6.129)

(ψ̄
←
∇)α − λ̄α = 0 , (6.130)

γ̄α −
i

6
εabcde

a ∧ eb ∧ ec(ψ̄γd)α = 0 , (6.131)

γα +
i

6
εabcde

a ∧ eb ∧ ec(γdψ)α = 0 , (6.132)

dγα + ωαβ ∧ γβ +
i

6
λβ ∧ εabcdea ∧ eb ∧ ecγdαβ +

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψα

+ i2πl2pεabcde
a ∧ eb ∧ βc(γ5γ

dψ)α = 0 ,

(6.133)

dγ̄α − γ̄β ∧ ωβα +
i

6
λ̄β ∧ εabcdea ∧ eb ∧ ecγdβα −

1

12
mεabcde

a ∧ eb ∧ ec ∧ edψ̄α

− i2πl2pεabcdea ∧ eb ∧ βc(ψ̄γ5γ
d)α = 0 ,

(6.134)

∇βa + 2εabcdλ
bc ∧ ed − i

2
εabcdλ

α ∧ eb ∧ ec(ψ̄γd)α +
i

2
εabcdλ̄α ∧ eb ∧ ec(γdψ)α

− 1

3
εabcde

b ∧ ec ∧ edmψ̄ψ − 4πl2piεabcde
b ∧ βcψ̄γ5γ

dψ = 0 ,

(6.135)

∇ea − i2πl2pεabcdeb ∧ ecψ̄γ5γ
dψ = 0 , (6.136)

∇Bab − e[a ∧ βb] + γ̄
1

8
[γa, γb]ψ + ψ̄

1

8
[γa, γb]γ = 0 . (6.137)

Jedina dinamička polja u teoriji su ea, ψ i ψ̄, dok se preostala mogu algebarski izraziti u funkciji
dinamičkih polja i njihovih izvoda:

Babµν =
1

8πl2p
εabcde

c
µe
d
ν , λαµ = (

→
∇µψ)α , λ̄αµ = (ψ̄

←
∇µ)α ,

γ̄αµνρ = iεabcde
a
µe
b
νe
c
ρ(ψ̄γ

d)α , γαµνρ = −iεabcdeaµebνecρ(γdψ)α ,

βaµν = 0 , λabµν = Rabµν , ωabµ = 4ab
µ +Kab

µ .

(6.138)

Ovde je Kab
µ tenzor kontorzije, definisan na standardan način kao funkcija tenzora torzije.

Pored toga, vidimo dejstvo daje odgovarajuću torziju, kako dobijamo da je jedna jednačina
kretanja upravo (6.125):

Ta ≡ ∇ea = 2πl2psa . (6.139)
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Najzad, jednačine kretanja za varijable ψ i ψ̄ su standardne kovarijantne Dirakove jednačine
kretanja

(iγaeµa
→
∇µ −m)ψ = 0 , (6.140)

i konjugovana,

ψ̄(i
←
∇µe

µ
aγ

a +m) = 0 , (6.141)

gde je eµa inverzna tetrada. Jednačina kretanja za polje tetrade ea je

Rµν − 1

2
gµνR = 8πl2p T

µν , (6.142)

gde je tenzor energije-impulsa:

T µν ≡ i

2
ψ̄γa

↔
∇νeµaψ −

1

2
gµνψ̄

(
iγa
↔
∇ρe

ρ
a − 2m

)
ψ , (6.143)

Ovde je korišćena notacija
↔
∇ =

→
∇ −

←
∇. Kao što je očekivano, jednačine (6.139), (6.140),

(6.141) i (6.142) su upravo jednačine kretanja koje opisuje Dirakovo polje koje interaguje sa
Ajnštajn-Kartanovom gravitacijom.

6.4 Vajlova i Majorana polja u interakciji sa Ajnštajn-Kartanovom
gravitacijom

Kao što znamo, rešenje Dirakove jednačine nije ireducibilna reprezentacija Lorencove grupe. Di-
rakove fermione moguće je prepisati tako da razdvojimo polja leve kiralnosti i polja desne kira-
lnosti, koji su ireducibilne reprezentacije, odnosno koji pri Lorencovim transformacijama ne me-
njaju svoju kiralnost. Da bismo u okviru našeg pristupa razmatrali ove spinorske reprezentacije
neophodno naprepisati teoriju levog i desnog Vajlovog polja kao 3BF dejstvo sa vezama. Radi
jednostavnosti, ovde ćemo razmatrati samo levo kiralno polje, pri čemu se teorija desnog ki-
ralnog polja definiše analogno. Vajlovi i Majorana fermioni mogu se tretirati na ovaj način, pri
čemu je u slučaju Majorana fermiona dejstvu neophodno dodati dodatni maseni član.

Odgovarajući 2-ukršteni modul (L
δ→ H

∂→ G ,� , {_ ,_}pf) se definiše na sledeći način
[16]. Lijeve grupe G, H i L su:

G = SO(3, 1) , H = R4 , L = R4(G) . (6.144)

Preslikavaja ∂, δ i Pajferovo podizanje su trivijalna. Dejstvo � grupe G na grupe G, H i L je
definisano na isti način kao u slučaju Dirakovih fermiona, pri čemu je spinorska reprezentacija
za levo kiralno polje:

Mab � Pα =
1

2
(σab)

α
βP

β , Mab � Pα̇ =
1

2
(σ̄ab)

β̇
α̇Pβ̇ , (6.145)

gde su σab = −σ̄ab = 1
4
(σaσ̄b−σbσ̄a), za σa = (1, ~σ) i σ̄a = (1,−~σ), pri čemu oznaka ~σ označava

tri Paulijeve matrice. Četiri generatora grupe L su označena sa Pα i Pα̇, gde Vajlovi indeksi
α, α̇ uzimaju vrednosti 1, 2.

Odgovarajuća 3-koneksija (α , β , γ) za ovakav izbor 2-ukrštenog modula ima sledeći oblik

α = ωabMab , β = βaPa , γ = γαP
α + γ̄α̇Pα̇ , (6.146)
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dok je odgovarajuća lažna 3-krivina (F ,G ,H) definisana jednačinom (2.118):

F = RabMab , G = ∇βaPa ,

H =
(
dγα +

1

2
ωab(σ

ab)βαγβ
)
Pα +

(
dγ̄α̇ +

1

2
ωab(σ̄

ab)α̇β̇γ̄
β̇
)
P α̇ ≡ (

→
∇γ)αP

α + (γ̄
←
∇)α̇P α̇ .

(6.147)
Analogno slučaju Dirakovih spinora, Lagranžev množiteljD identifikuje se sa spinorskim poljima
ψα i ψ̄α̇

D = ψαP
α + ψ̄α̇Pα̇ , (6.148)

dok se bilinearna forma 〈_,_〉l na grupi L definiše delovanjem na generatore

〈Pα, P β〉l = εαβ , 〈Pα̇, Pβ̇〉l = εα̇β̇ , 〈Pα, Pβ̇〉l = 0 , 〈Pα̇, P β〉l = 0 . (6.149)

U prethodnim jednačinama εαβ i εα̇β̇ su standardne oznake za dvodimenzionalan Levi-Čivita
simbol. Sada je moguće definisati topološko 3BF dejstvo (6.1) za spinorska polja i gravitaciju

S3BF =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇ . (6.150)

Kako bismo dobili teoriju sa odgovarajućom dinamikom Vajlovih spinora, neophodno je dejstvu
(6.150) dodati odgovarajuće simplicity veze, tako da je 3BF dejstvo sa vezama:

S =

∫
M4

Bab ∧Rab + ea ∧∇βa + ψα ∧ (
→
∇γ)α + ψ̄α̇ ∧ (γ̄

←
∇)α̇

− λab ∧ (Bab − 1

16πl2p
εabcdec ∧ ed)

− λα ∧ (γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇)− λ̄α̇ ∧ (γ̄α̇ +

i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ)

− 4πl2pεabcde
a ∧ eb ∧ βc(ψ̄α̇σ̄dα̇βψβ) .

(6.151)

Treći red sadrži nove veze i 1-forme Lagranževih množitelja λα i λ̄α̇. Četvrti red osigurava
odgovarajuću interakciju između torzije i spina Vajlovog polja. Ovde smo koristeći interakciju
torzije i spina u slučaju Dirakovih čestica, definisali odgovarajuću interakciju spina Vajlovog
polja

sa ≡ iεabcde
b ∧ ec ψασdαβ̇ψ̄

β̇ , (6.152)

i torzije na sledeći način:
Ta = 4πl2psa . (6.153)

Majorana polja su definisana analogno, pri čemu se dejstvu dodaje još i maseni član :

− 1

12
mεabcde

a ∧ eb ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇) . (6.154)

Variranjem dejstva (6.151) redom po varijablama Bab, λab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇, ea, βa
i ωab dobijamo jednačine kretanja, koje su prikazane u dodatku B. Jedini dinamički stepeni
slobode su polja ψα, ψ̄α̇ i ea, dok je preostale varijable moguće algebarski izraziti kao funkcije
ovih polja i njihovih izvoda:

λabµν = Rab
µν , Babµν =

1

8πl2p
εabcde

c
µe
d
ν , λαµ = ∇µψα , λ̄α̇µ = ∇µψ̄

α̇ ,

γαµνρ = iεabcde
a
µe
b
νe
c
ρσ

d
αβ̇ψ̄

β̇ , γ̄α̇µνρ = iεabcde
a
µe
b
νe
c
ρσ̄

dα̇βψβ , ωabµ = 4abµ +Kabµ .

(6.155)
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Primetimo da je rezultat β = 0 nepromenjen. Najzad, jednačine kretanja dinamičkih polja u
teoriji su

σ̄aα̇βeµa∇µψβ = 0 , σaαβ̇e
µ
a∇µψ̄

β̇ = 0 ,

Rµν − 1

2
gµνR = 8πl2p T

µν ,

T µν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄ − gµν 1

2

(
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄

)
.

(6.156)

U Majorana slučaju jednačine kretanja (6.155) ostaju ista, dok su jednačine kretanja za
polja ψα i ψ̄α̇,

iσaαβ̇e
µ
a∇µψ̄

β̇ −mψα = 0 , iσ̄aα̇βeµa∇µψβ −mψ̄α̇ = 0 , (6.157)

a tenzor energije-impulsa ima oblik:

T µν ≡ i

2
ψ̄σ̄beνb∇µψ +

i

2
ψσbeνb∇µψ̄ − gµν 1

2

[
iψ̄σ̄aeλa∇λψ + iψσaeλa∇λψ̄ −

1

2
m
(
ψψ + ψ̄ψ̄

)]
.

(6.158)

6.5 Standardni Model

Odgovarajuća 3-grupa koja opisuje sva polja prisutna u StandardnomModelu sa odgovarajućom
dinamikom dobija se izborom Lijevih grupa G, H i L na sledeći način [16]:

G = SO(3, 1)× SU(3)× SU(2)× U(1) , H = R4 , L = R4(C)× R64(G)× R64(G)× R64(G) ,
(6.159)

gde je C oznaka za skup kompleksnih brojeva. Motivacija iza ovog izbora grupa postaje jasna
analizirajući tabelu 6.4.

I generacija leptona

crvena boja

I generacija kvarkova

zelena boja

I generacija kvarkova

plava boja

I generacija kvarkova(
νe
e−

)
L

(
ur
dr

)
L

(
ug
dg

)
L

(
ub
db

)
L

(νe)R (ur)R (ug)R (ub)R

(e−)R (dr)R (dg)R (db)R

Tabela 6.4: Polja materije prisutna u Standardnom Modelu čestica (I generacija).

Prebrojavanjem polja u tabeli 6.4 zaključujemo da je neophodno definisati 16 spinora kako
bismo definisati prvu generaciju spinorskih polja materije prisutnih u Standardnom Modelu
čestica, odnosno da grupu L treba izabrati na sledeći način L = R64(G). Kako postoje ukupno
tri generacije materije, ukupna podgrupa grupe L koja opisuje fermionska polja u teoriji je
L = R64(G) × R64(G) × R64(G). Da bismo definisali Higsov sektor neophodno je definisati dva

kompleksna skalarna polja
(
φ+

φ0

)
, odnosno pogrupa grupe L koja odgovara skalarnom sektoru

Standardnog Modela je L = R4(C).
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Dalje, kako bi definisali 2-ukršteni modul kome odgovara 3BF dejstvo sa odgovarajućom
dinamikom, neophodno je definisati preslikavanja ∂, δ i Pajferovo podizanje da budu trivijalna.
Takođe, dejstvo grupeG na samu sebe je, po definiciji 2-ukrštenog modula, konjugacija. Dejstvo
podgrupe SO(3, 1) grupe G na grupu H je po vektorskoj reprezentaciji, dok je dejstvo podgrupe
SU(3)×SU(2)×U(1) grupe G na grupu H trivijalno. Dejstvo podgrupe SO(3, 1) na podgrupu
grupe L koja odgovara skalarnom sektoru materije, tj. R4(C) podgrupu grupe L, je trivijalno,
dok je zadato spinorskom reprezentacijom za svaku četvorku generatora koja opisuje jedno
skalarno polje, kao što je to prikazano u odeljku 6.3. Transformacione osobine spinorskih polja
pod dejstvom podgrupe SU(3)× SU(2)× U(1) grupe G zadate su dejstvom ove podgrupe na
grupu L.

6.5.1 Leptoni i elektroslaba interakcija

Demonstriraćemo proceduru definisanja 2-ukrštenog modula na jednostavnom primeru jedne
leptonske familije i elektroslabe interakcije. Ostatak Standardnog Modela definiše se analogno.

Lijeve grupe G, H i L definišemo na sledeći način:

G = SO(3, 1)× SU(2)× U(1) , H = R4 , L leptoni i Higsov bozon = R16(G)× R4(C) . (6.160)

Zatim, odgovarajuća 3-koneksija je:

α = ωabMab +W ITI +AY , β = βaPa , γ = γα
L̃Pα

L̃ + γα̇L̃Pα̇
L̃ + γα

R̃Pα
R̃ + γα̇R̃Pα̇

R̃ + γãPã .
(6.161)

Ovde indeksi I, J, . . . uzimaju vrednosti 1, 2, 3 i prebrojavaju Paulijeve matrice, generatore
grupe SU(2), dok indeksi L̃, L̃′, . . . uzimaju vrednosti 1, 2 i prebrojavaju komponente levog
dubleta, R̃ označava desni singlet (e−)R i desni singlet (νe)R, dok indeksi ã, b̃, . . . uzimaju
vrednosti 1, 2 i prebrojavaju komponente skalarnog dubleta. Takođe, definišimo indeks ĩ =
(L̃, R̃) koji uzima vrednosti 1, . . . , 4.

Dejstvo grupe G na grupu L definiše se na sledeći način:

Mab � Pα
i =

1

2
(σab)

α
βP

β
i , Mab � Pα̇i =

1

2
(σ̄ab)

β̇
α̇Pβ̇i , Mab � Pã = 0 ,

TI � Pα
L̃ =

1

2
(σI)

L̃′

L̃P
α
L̃′ , TI � Pα̇L̃ =

1

2
(σI)

L̃′

L̃Pα̇L̃′ ,

TI � Pα
R̃ = 0 , TI � Pα̇R̃ = 0 , TI � Pã =

1

2
(σI)

b̃
ãPb̃ ,

Y � Pα
L̃ = −Pα

L̃ , Y�Pα
R̃ = −2Pα

R̃ , Y � Pã = Pã ,

Y � Pα̇L̃ = −Pα̇L̃ , Y � Pα̇R̃ = −2Pα̇R̃ .

(6.162)

Odgovarajuće 3-krivine za ovaj izbor 2-ukrštenog modula su:

F = RabMab + F ITI + FY , G = ∇βaPa ,

H = (
→
∇γL̃)αP

α
L̃ + (γ̄L̃

←
∇)α̇P α̇

L̃ + (
→
∇γR̃)αP

α
R̃ + (γ̄R̃

←
∇)α̇P α̇

R̃ + dγãPã .
(6.163)

Topološko 3BF dejstvo je:

S =

∫
BabR

ab +BIF
I +BF + ea∇βa + ψαĩ(

→
∇γ ĩ)α + ψ̄α̇

ĩ(γ̄ ĩ
←
∇)α̇ + φãdγã . (6.164)

Sada možemo pojednostaviti notaciju uvođenjem indeksa α̂ koji prebrojavaju generatore grupe
G, indeksa â grupe H i indeksa Â grupe L. Kako bismo u teoriju uveli odgovarajuće stepene
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slobode koji opisuju teoriju prve leptonske familije u interakciji sa elektroslabim gejdž poljima,
Higsovim poljem i gravitacijom, neophodno je topološkom dejstvu (6.164) dodati odgovarajuće
simplicity veze, na sledeći način

S =

∫
Bα̂ ∧ F α̂ + eâ ∧ G â +DÂ ∧H

Â

+
(
Bα̂ − Cα̂β̂Mcdβ̂e

c ∧ ed
)
∧ λα̂ −

(
γÂ − e

a ∧ eb ∧ ecCÂ
B̂MabcB̂

)
∧ λÂ

+ ζabα̂ ∧
(
Mab

α̂εcdefec ∧ ed ∧ ee ∧ ef − F α̂ ∧ ec ∧ ed
)

+ ζabÂ ∧
(
Mabc

Âεcdefed ∧ ee ∧ ef − F Â ∧ ea ∧ eb
)

− εabcdea ∧ eb ∧ ec ∧ ed
(
YÂB̂ĈD

ÂDB̂DĈ +MÂB̂D
ÂDB̂ + LÂB̂ĈD̂D

ÂDB̂DĈDD̂
)

− 4πi l2p εabcde
a ∧ eb ∧ βcDÂT

dÂ
B̂D

B̂ ,

(6.165)
gde su:

Bα̂ =
[
Bab BI B

]
, F α̂ =

[
Rab FI F

]
T , DÂ =

[
ψαL̃ ψ̄α̇L̃ ψαR ψ̄α̇R φã

]
,

HÂ =
[
(
→
∇γL̃)α (γ̄L̃

←
∇)α̇ (

→
∇γR̃)α (γ̄R̃

←
∇)α̇ dγã

]
T , γÂ =

[
γαL̃ γ̄α̇L̃ γαR̃ γ̄α̇R̃ γã

]
,

λα̂ =
[
−λab λI λ

]
T , Mcdα̂ =

[
εabcd McdI Mcd

]
,

λÂ =
[
λαL λ̄α̇L λαR λ̄α̇R λã

]
T , ζcdα̂ =

[
0 ζcdI ζcd

]
, ζabÂ =

[
ζab 0 0

]
,

MabcÂ =
[
εabcdσ

d
αβ̇ψ̄

β̇
L εabcdσ̄

dα̇βψβL εabcdσ
d
αβ̇ψ̄

β̇
R εabcdσ̄

dα̇βψβR Mabcã

]
.

Matrice C α̂
β̂, C

Â
B̂, MÂB̂, YÂB̂Ĉ , LÂB̂ĈD̂ i T dÂB̂ su konstantne matrice koje nose informa-

ciju o odgovarajućim konstantama interakcije, masi Higsovog polja, Jukava kaplingu, uglovima
mešanja, Higsovoj konstanti samointerakcije i torziji.

6.6 Skalarna elektrodinamika kao 3BF teorija sa vezama
Kao prvi korak ka proučavanju Hamiltonove strukture 3BF teorija, razmatran je najjednosta-
vniji netrivijalni primer – teorija skalarne elektrodinamike kuplovane sa gravitacijom [24].

Standardni način da se definiše skalarna elektrodinamika kuplovana sa gravitacijom je de-
jstvom:

S =

∫
d4k
√
−g
[
− 1

16πl2p
R− 1

4
gµρgνσFµνFρσ + gµν∇µφ

∗∇νφ−m2φ∗φ

]
. (6.166)

Ovde je gµν metrika prostorvremena, g ≡ det(gµν) je njena determinanta, R je Ričijev skalar, a
lp je Plankova dužina. Kovarijantni izvod∇µ kompleksnog skalarnog polja φ je definisan izrazom
∇µφ = (∂µ + ikAµ)φ, gde je Aµ elektromagnetni potencijal, a k označava konstantu interakcije,
tj. električni naboj polja φ. U ovom odeljku ćemo preformulisati ovaj model kao 3BF teoriju sa
vezama za određenu 3-grupu. Razmatrana je Hamiltonova struktura teorije, koja je neophodan
korak njene kanonske kvantizacije. Radi jednostavnosti, Hamiltonova analiza je za sada urađena
samo za topološki sektor teorije, zanemarujući sektor sa vezama, videti Dodatak C.
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Kako bi se dobila teorija skalarne elektrodinamike u interakciji sa Ajnštajn-Kartanovom
gravitacijom ukršteni modul se bira na sledeći način. Lijeve grupe G, H i L su:

G = SO(3, 1)× U(1) , H = R4 , L = R2 .

Preslikavanja ∂ i δ su trivijalna. Dejstvo algebre g na algebre h i l definisano delovanjem na
generatore:

Mab � Pc = �ab,c
d Pd = δ[a|

dη|b]c Pd = η[b|c P|a] , T � Pa = 0 ,
Mab � PA = 0 , T � PA = �A

B PB
(6.167)

gde su Mab šest generatora so(3, 1), T je generator u(1), Pa su četiri generatora R4 i PA su dva
generatora R2. U prethodnom izrazu dejstvo �A

B algebre u(1) na algebru R2 je definisano kao

�A
B = iq

[
1 0
0 −1

]
.

Dejstvo algebre g na samu sebe zadato je pridruženom reprezentacijom i za izbor g =
so(3, 1)× u(1) glasi

Mab �Mcd = �ab ,cd
ef Mef = fab ,cd

ef Mef = ηadMbc + ηbcMad − ηacMbd − ηbdMac ,

Mab � T = 0 , T �Mab = 0 , T � T = 0 ,
(6.168)

kao posledica strukture direktnog proizvoda i toga što je grupa U(1) Abelova podgrupa. Pa-
jferovo podizanje,

{_ ,_}pf : H ×H → L ,

je takođe trivijalno, tj. svi koeficijenti Xab
A su jednaki nuli:

{Pa , Pb}pf ≡ Xab
ATA = 0 . (6.169)

Odgovarajuća 3-krivina za ovaj izbor 2-ukrštenog modula dobija najpre definisanjem kone-
ksije (α, β, γ), a zatim primenom formule (2.118). Na osnovu strukture direktnog proizvoda,
koneksija α ∈ A1(M4, g) se može zapisati kao α = ω + A, gde su ω ∈ A1(M4 , so(3, 1)) i
A ∈ A1(M4 , u(1)) diferencijalne 1-forme elementi odgovarajućih algebri. Definišemo i koneksi-
je β ∈ A2(M4 ,R4) i γ ∈ A3(M4 ,R2). Sada možemo naći odgovarajuću 3-krivinu (F ,G ,H)
primenom formule (2.118):

F = RabMab + FT =
(
dωab + ωac ∧ ωcb

)
Mab + dA T ,

G = GaPa =
(
dβa + ωab ∧ βb

)
Pa ,

H = HAPA =
(
dγA + �B

AA ∧ γB
)
PA .

(6.170)

Primetimo da koneksija ωab nije prisutna u poslednjem izrazu, što sledi na osnovu definicija
dejstva � i Pajferovog podizanja {_ ,_}pf , videti (6.167) i (6.169):

H = dγ + α ∧� γ + {β ∧ β}

= dγAPA + (ωabMab + AT ) ∧� (γAPA)

= dγAPA + ωab ∧ γAMab � PA + A ∧ γAT � PA

= dγAPA + A ∧ γA �A
BPB

= (dγA + �B
AA ∧ γB)PA .

(6.171)
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Koeficijenti diferencijalnih 2-formi F i Rab, 3-forme G, i 4-forme H su:

Fµν = ∂µAν − ∂νAµ ,

Rab
µν = ∂µω

ab
ν − ∂νωabµ + ωacµω

cb
ν − ωacνωcbµ ,

Gaµνρ = ∂µβ
a
νρ + ∂νβ

a
ρµ + ∂ρβ

a
µν + ωabµ β

b
νρ + ωabν β

b
ρµ + ωabρ β

b
µν ,

HA
µνρσ = ∂µγ

A
νρσ − ∂νγAρσµ + ∂ργ

A
σµν − ∂σγAµνρ

+ �B
AAµγ

B
νρσ −�B

AAνγ
B
ρσµ + �B

AAργ
B
σµν −�B

AAσγ
B
µνρ .

(6.172)

Sada možemo definisati 3BF dejstvo:

S3BF =

∫
M4

(
〈B,F〉g + 〈C,G〉h + 〈D,H〉l

)
, (6.173)

gde su B ∈ A2(M4 , so(3, 1)), C ∈ A1(M4 ,R4) i D ∈ A0(M4 ,R2) Lagranževi množitelji.
Forme 〈_,_〉g, 〈_,_〉h i 〈_,_〉l su G-invarijantne bilinearne simetrične nedegenerisane forme
na g, h i l, redom, definisane delovanjem na generatore

〈Mab,Mcd〉g = gab, cd , 〈T, T 〉g = 1 , 〈Mab, T 〉g = 0 , 〈Pa, Pb〉h = ηab , 〈PA, PB〉l = gAB ,

gde su

gab, cd = ηa[c|ηb|d] , ηab =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , gAB =

[
0 1
1 0

]
.

Identifikovanjem Lagranževog množitelja Ca kao tetrade ea, i Lagranževog množitelja DA kao
dubleta skalarnih polja φA,

φ = φAPA = φP1 + φ∗P2 ,

na osnovu njihovih transformacionih osobina, kao što je diskutovano u odeljku (6.2), dejstvo
(6.173) možemo zapisati u sledećem obliku:

S3BF =

∫
M4

d4x εµνρσ
(1

4
Bab

µν R
cd
ρσ gab, cd +

1

4
BµνFρσ +

1

3!
eaµ Gbνρσ ηab +

1

4!
φAHB

µνρσ gAB
)
.

(6.174)
Variranjem dejstva (6.174) dobijamo jednačine kretanja:

δBab : 2Rab = 0 ,

δωab : ∇Bab − e[a| ∧ β|b] = 0 ,

δB : F = 0 ,

δA : dB + φA �B
A γB = 0 ,

δea : Ga = 0 ,

δβa : ∇ea = 0 ,

δφA : ∇γA = 0 ,

δγA : ∇φA = 0 .

(6.175)
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Kako želimo da dobijemo teoriju koja opisuje dublet skalarnih polja φA mase m i naelektri-
sanja q minimalno kuplovanih sa gravitacijom i elektromagnetnim poljem, dejstvu (6.174) je
neophodno dadati odgovarajuće veze kako bismo dobili jednačine kretanja ekvivalentne jedna-
činama kretanja dobijenih variranjem dejstva (6.166):

S =

∫
M4

Bab ∧Rab +B ∧ F + ea ∧∇βa + φA∇γA

− λab ∧
(
Bab − 1

16πl2p
εabcdec ∧ ed

)
+ λA ∧

(
γA −

1

2
HabcAe

a ∧ eb ∧ ec
)

+ ΛabA ∧
(
HabcAε

cdefed ∧ ee ∧ ef −∇φAA ∧ ea ∧ eb
)

+ λ ∧
(
B − 12

q
Mabe

a ∧ eb
)

+ ζab
(
Mabεcdefe

c ∧ ed ∧ ee ∧ ef − F ∧ ea ∧ eb
)

− 1

2 · 4!
m2φA φ

Aεabcde
a ∧ eb ∧ ec ∧ ed .

(6.176)
Variranjem dejstva (6.176) redom po varijablama Bab, B, ωab, βa, λab, ΛabA, γA, λA, HabcA,

ζab, Mab, λ, A, φA i ea dobijaju se jednačine kretanja:

Rab − λab = 0 , (6.177)

F + λ = 0 , (6.178)

∇Bab − e[a| ∧ β|b] = 0 , (6.179)

∇ea = 0 , (6.180)

Bab − 1

16πl2p
εabcdec ∧ ed = 0 , (6.181)

HabcAε
cdefed ∧ ee ∧ ef −∇φA ∧ ea ∧ eb = 0 , (6.182)

∇φA − λA = 0 , (6.183)

γA −
1

2
HabcAe

a ∧ eb ∧ ec = 0 , (6.184)

−1

2
λA ∧ ea ∧ eb ∧ ec + εcdefΛabA ∧ ed ∧ ee ∧ ef = 0 , (6.185)

Mabεcdefe
c ∧ ed ∧ ee ∧ ef − F ∧ ea ∧ eb = 0 , (6.186)

−12

q
λ ∧ ea ∧ eb + ζabεcdefe

c ∧ ed ∧ ee ∧ ef = 0 , (6.187)

B − 12

g
Mabe

a ∧ eb = 0 , (6.188)

−dB + d(ζabea ∧ eb)− φA �B
AγB − ΛabA �B

A φB ∧ ea ∧ eb = 0 , (6.189)

∇γA −∇(Λab
A ∧ ea ∧ eb)−

1

4!
m2 φAεabcde

a ∧ eb ∧ ec ∧ ed = 0 , (6.190)

(6.191)
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∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
3

2
HabcAλ

A ∧ eb ∧ ec + 3HdefAεabcdΛefA ∧ eb ∧ ec

− 2ΛabA ∧∇φA ∧ eb − 2
1

4!
m2φA φ

Aεabcde
b ∧ ec ∧ ed

− 24

q
Mabλ ∧ eb + 4ζefMefεabcde

b ∧ ec ∧ ed − 2ζabF ∧ eb = 0 .

(6.192)

Dinamički stepeni slobode su tetrade ea, skalarno polje φA i elektromagnetni potencijal A,
dok preostale varijable mogu biti određene kao funkcije dinamičkih varijabli i njihovih izvoda.
Jednačine (6.177)–(6.188) daju izraze za nedinamičke varijable:

λabµν = Rabµν , ωabµ = 4ab
µ , γAµνρ = − 1

2e
εµνρσ∇σφA ,

ΛabA
µ =

1

12e
gµλε

λνρσ∇νφ
A eaρe

b
σ , βaµν = 0 , Babµν =

1

8πl2p
εabcde

c
µe
d
ν ,

HabcA =
1

6e
εµνρσ∇µφ

A eaνe
b
ρe
c
σ , λAµ = ∇µφ

A ,

λµν = Fµν , Bµν = − 1

2eq
εµνρσF

ρσ ,

Mab = − 1

4e
εµνρσFµν e

a
ρe
b
σ , ζab =

1

4eq
εµνρσFµν e

a
ρe
b
σ .

(6.193)

Primetimo da na osnovu jednačina (6.179), (6.180) i (6.181) sledi da je koneksija βa = 0,
kao što je to bio slučaj kod čiste gravitacije. Jednačina kretanja (6.190) daje kovarijantnu
Klajn-Gordonovu jednačinu za skalarno polje kuplovano sa elektromagnetnim potencijalom A,(

∇µ∇µ −m2
)
φA = 0 . (6.194)

Jednačina (6.189) daje diferencijalnu jednačinu kretanja za elektromagnetni potencijal A:

∇µF
µν = jν , jµ ≡ 1

2

(
∇νφA �B

AφB − φA �B
A∇νφB

)
= iq

(
∇φ∗ φ− φ∗∇φ

)
. (6.195)

Najzad, jednačina kretanja (6.191) za ea nakon sređivanja daje:

Rµν − 1

2
gµνR = 8πl2p T

µν ,

T µν ≡ ∇µφA∇νφA − 1

2
gµν
(
∇ρφA∇ρφA +m2φA φ

A
)
− 1

4q
(FρσF

ρσgµν + 4F µρFρ
ν) .

(6.196)

Sistem jednačina (6.177)–(6.191) je ekvivalentan sistemu jednačina (6.193)–(6.196).
Kompletna Hamiltonova analiza topološkog sektora skalarne elektrodinamike data je u Do-

datku C.
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Deo II

Kvantna teorija
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Glava 7

Modeli spinske pene: BF teorija

Ajnštajnova opšta teorija relativnosti dovela je do našeg shvatanja prirode prostora i vre-
mena kao manifestacije gravitacionog polja. Kao što i ostala fizička polja ispoljavaju njihova
kvantna svojstva na određenoj skali, prirodno je očekivati da i gravitaciono polje, pa time i
prostorvreme, poseduju određena kvantna svojstva. Stoga, neophodno je modifikovati naše
razumevanje prirode prostora i vremena, kako bismo uzeli u obzir ove kvantne osobine. Pro-
blem leži u tome da sadašnje teorije, opšta teorija relativnosti i kvantna teorija polja, ne mogu
da opišu kvantno ponašanje gravitacionog polja. Neophodna je kvantna teorija gravitacije koja
ima prediktivnu moć da opiše fenomene gde i gravitacija i kvantna teorija igraju ulogu, kao što
je to slučaj kod crnih rupa, ranog univerzuma, fizike na malim rastojanjima itd.

Godine 1936. Bronštajn je ponovio Bor-Rozenfeldovu analizu za elektromagnetno polje
u slučaju gravitacionog polja i pokazao da kvantna teorija zabranjuje određivanje polja u
proizvoljno maloj oblasti prostorvremena. Ako merimo polje u tački x, koju želimo da odredimo
sa preciznošću L, zbog postojanja Hajzenbergove relacije neodređenosti koja povezuje poziciju
i impuls čestice, sledi da neodređenost impulsa mora biti ∆p > ~/L. U ultrarelativističkom
limitu imamo da je energija E ∼ cp, pa vidimo da oštra lokalizacija zahteva veliku energiju. Na
osnovu opšte teorije relativnosti znamo da energija zakrivljuje prostor, a krivina raste kako je
energija koncentrisanija u prostoru, sve do tačke formiranja crne rupe kada je masa M ∼ E/c2

koncentrisana u radijusu R ∼ GM/c2. Zahtevanjem bolje lokalizacije, dolazimo do tačke gde je
LPlank = R ispod koje je nemoguće ići, jer bi tada lokalizacija bila sakrivena horizontom crne
rupe1. Na osnovu prethodnih relacija dobija se:

LPlank =

√
~G
c3
∼ 10−33cm .

Na skalama većim od one određene Plankovom dužinom LPlank, prostorvreme možemo po-
smatrati kao glatku mnogostrukost, dok ispod nje kvantne fluktuacije prostorvremena postaju
nezanemarljive i više nema smisla pričati o dužini.

Prethodna analiza sugeriše da kvantna teorija polja, formalizam u kome su kvantna polja
definisana na nekoj prostorvremenskoj mnogostrukosti, nije dobra slika sveta u teoriji kvantne
gravitacije. Neophodan je kvantni opis geometrije, gde je geometrija opisana kvantnim stanjima,
a prostorvreme je semiklasična aproksimacija takve kvantne konfiguracije. Jedan mogući opis
kvantnih stanja geometrije, tj. gravitacionog polja, nam obezbeđuje formalizam teorije kvantne
gravitacije na petljama2.

1Pri tom se podrazumeva da Opšta teorija relativnosti važi u neizmenjenom obliku i na skalama manjim od
Plankove, tj. da postoji rešenje Ajnštajnovih jednačina koje opisuje tako malu crnu rupu.

2eng. Loop Quantum Gravity.
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Kvatna gravitacija na petljama

Kvantna gravitacija na petljama je pristup kvantovanju gravitacije star preko trideset i pet go-
dina, započet Aštekarovim radom 1986. godine. Kao teorija čiste gravitacije ne nastoji da reši
problem unifikacije, tj. da objedini interakcije i smanji broj stepeni slobode Standardnog Mode-
la. Kvantizacija teorije u okviru kanonske kvantizacione procedure podrazumeva izbor algebre
polja koja postaju kvantni operatori, što je u ovom slučaju algebra zasnovana na holonomijama
gravitacione koneksije. Holonomija postaje operator koji formira stanje petlje. Teorija je neza-
visna od pozadine, i stanje petlje je relevantno samo u odnosu na druge petlje i infinitezimalni
pomeraj petlje ne proizvodi novo stanje, već stanje ekvivalentno do na gradijentnu transfo-
rmaciju. Prostor stanja teorije je separabilan Hilbertov prostor sa bazisom stanja petlji, gde
konačne linearne kombinacije stanja petlji zovemo spinskim mrežama.

Kvantne osobine se manifestuju diskretnim spektrom svojstvenih vrednosti operatora koji
odgovaraju veličinama koje opisuju lokalne osobine gravitacionog polja, kao što je na primer
operator pridružen svakom linku graničnog grafa dualne triangulacije

~El = 8πγ~G~Ll , (7.1)

koji su normale na granične trouglove triangulacije kojima odgovara operator površine:

Âl = 8πγ~G|~L|2 . (7.2)

Ovaj operator ima diskretni spektar,

A = 8πγ~G
√
j(j + 1) , j = 0,

1

2
, 1,

3

2
, . . .

gde je γ Barbero-Imirci parametar bezdimenziona konstanta u teoriji, čija je vrednost određena
tako da broj mikrostanja u KGP odgovara semiklasično izračunatoj entropiji crne rupe [41],
[42]. Takođe, još jedna opservabla u ovoj teoriji je orijentisana zapremina tetraedra,

V 2 =
2

9
( ~E1 · ~E2)× ~E3 =

2

9
εijkE

i
1E

j
2E

k
3 , (7.3)

odnosno operator zapremine V̂

V̂ =

√
2

3
(8πγ~G)

3
2

√
(~L1 · ~L2)× ~L3 (7.4)

koji takođe ima diskretan spektar:

V̂ |iv〉 = V |iv〉 . (7.5)

To znači da prostor možemo posmatrati kao sastavljen od ćelija prostora, tj. tetraedara koji
imaju zapreminu određenu ovim spektrom.

Četiri operatora površine Âa i operator zapremine V̂ formiraju maksimalno komutirajući
set operatora koji opisuje kvantno stanje jednog tetraedra, pa se istovremeno mogu dijagona-
lizovati, a kvantna stanja geometrije tetraedra su jedinstveno određena njihovim svojstvenim
vrednostima |ja, V 〉. Kako je za jedinstven klasičan opis tetraedra inače potrebno šest brojeva,
recimo šest dužina njegovih ivica, vidimo da, kao što je i očekivano u kvantnoj teoriji, kvantno
stanje tetraedra poseduje izvesnu kvantnu neodređenost na Planovoj skali.

Ova kvalitativna slika kvantne strukture prostorvremena je očuvana u kovarijantnoj kvanti-
zaciji, tj. kvantizacionoj proceduri spinske pene. U okviru kovarijantne kvantizacione procedure
spinske pene podrazumeva se funkcionalni pristup kvantovanju gravitacije u kom se konfigura-
cioni integral definiše na isti način na koji je to urađeno u Fajnmanovoj definiciji integrala po
putanjama.
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Po definiciji Majkla Atije, (n+ 1)-dimenzionalna topološka kvantna teorija polja (TKTP) je
funktorijalno pridruživanje konačnodimenzionalnog Hilbertovog prostora HΣ svakoj zatvorenoj
orijentisanoj n-mnogostrukosti Σ i vektora ZM ∈ HΣ svakoj orijentisanoj (n + 1)-mnogostru-
kosti M koja ima Σ kao svoju granicu. Ako posmatramo kvantno stanje prostora formirano
od |Λ3| tetraedara u KGP teoriji, možemo ga predstaviti kao graf u dualnoj triangulaciji, gde
verteksi odgovaraju tetraedrima, a linkovi između njih trouglovima koje razdvajaju dva susedna
tetraedra. Analogno Atijinoj opštoj definiciji, model spinske pene svakom orijentisanom grafu3

Γ pridružuje Hilbertov prostor HΓ, a svakoj peni4 C, koja ima graf Γ kao svoju granicu5, vektor
ZC ∈ HΓ. Pritom su zadovoljene sledeće aksiome [43]:

1. (multiplikativnost) HΓ1∪Γ2 = HΓ1 ⊗HΓ2 ,

2. (dualnost) HΓ̄ = H∗Γ , ZΓ̄ = Z†Γ,

3. (funkcionalnost)6 ZC1∪ΓC2 = 〈ZC̄2|ZC1〉HΓ
= 〈ZC̄1|ZC2〉HΓ̄

,

4. H∅ = C,

5. Z1Γ
= idHΓ

.

Dinamika kvantne gravitacije na petljama odgovara ovoj definiciji, pri čemu je Hilbertov
prostor pridružen grafu Γ rešetkasti SU(2) Jang-Millsov prostor L2(SU(2))|LΓ|/SU(2)|NΓ|, gde
je svaki verteks v u dualnoj triangulaciji prostorvremena obojen sa iv koji odgovara svojstvenoj
vrednosti operatora zapremine V za tu ćeliju, a svaki link ε u dualnoj triangulaciji prostorvre-
mena je obojen sa jε koji odgovara svojstvenoj vrednosti površine A koja spaja te dve ćelije
prostora. Ovakvo kvantno stanje prostorvremena nazivamo spinskom mrežom. Dalje, ako po-
smatramo evoluciju spinske mreže u vremenu, dobijamo da iv koji je bojio verteks spinske mreže
sada boji ivicu spinske pene, dok jε sada boji stranu. Amplitude pene ZC su definisane kao
sumiranje amplituda spinske pene ZC(σ) po bojama stranica triangulacije σ = {jf}, odnosno
po irreducibilnim reprezentacijama jf grupe SU(2),

ZC = ΣσZC(σ) ,

kao što je to pokazano u narednim odeljcima.

3Graf je uređeni par Γ = (NΓ, LΓ), gde je NΓ konačan skup čvorova i LΓ skup uređenih parova čvorova,
tj. linkova grafa Γ. Čvorovi n i n′ linka l = (n, n′) se nazivaju izvor i meta linka l i označavaju ∂−(l) i ∂+(l),
redom. Inverzni link je definisan kao l−1 ≡ (n′, n), a Γ̄ je inverzni graf grafa Γ dobijen inverzijom svih linkova
grafa Γ.

4Pena je uređena trojka C = (VC , EC , FC), gde je VC konačni skup verteksa, EC set uređenih parova verteksa,
tj. ivica e = (v, v′), i FC konačni skup strana. Strana je konačan niz ivica f = (e1, . . . , enf

), gde je ∂+(en) =
∂−(en+1) i važi ∂+(enf

) = ∂−(e1). Primetimo da bilo koji podskup F skupa strana FC prirodno definiše
podkompleks pene C, sačinjen od verteksa, ivica i strana koje se pojavljuju u F . Pena dobijena od C inverzijom
svih njenih ivica i strana označava se sa C̄.

5Ivice EC koje se pojavljuju tačno jednom i pripadaju samo jednoj strani pene zovemo njenim linkovima, dok
su ostale ivice unutrašnje ivice. Analogno, vertekse VC koji se pojavljuju samo jednom u unutrašnjim ivicama
nazivamo nodovima, dok preostale nazivamo unutrašnji verteksi. Skupovi nodova i linkova pene C u opštem
slučaju ne formiraju graf, ali kada to čine i kada se orijentacija svakog linka poklapa sa onom indukovanom
jedinstvenom stranom koja prolazi kroz nju, takvu penu nazivamo prava pena. U tom slučaju definišemo
granicu pene ∂C kao podkompleks pene C kom pripadaju sve strane C koje sadrže najmanje jedan link. Graf
koji odgovara ∂C je granični graf C.

6Definiše se kompozicija dve prave pene C1 i C2 duž orijentisanog grafa Γ, koju obeležavamo C1 ∪Γ C2, ako je
Γ povezana komponenta graničnih grafova C1 i C̄2. Kompozicija se dobija uklanjanjem Γ i spajanjem, za svaki
nod, jedinstvenih ivica e1 ∈ C1 i e2 ∈ C2 koje sadrže taj nod u jednu ivicu, a za svaki link l jedinstvenih strana
f1 ∈ C1 i f2 ∈ C2 u jedinstvenu stranu.
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U kvantnoj elektrodinamici, perturbativnoj teoriji, bolja aproksimacija se postiže sumi-
ranjem Fajnmanovih dijagrama višeg reda, dok se u kvantnoj hromodinamici, teoriji definisa-
noj na prostorvremenskoj rešetci, bolja aproksimacija dobija usitnjavanjem rešetke. Može se
pokazati da su u kvantnoj gravitaciji na petnjama ova dva pristupa ista stvar, što je intuitivno
jasno kada uzmemo u obzir da su tačke rešetke upravo kvanti prostora.

U narednim odeljcima fokusiraćemo se na konstrukcije topoloških BF suma po stanjima u
slučaju trodimenzionalne i četvorodimenzionalne mnogostrukosti uobičajenom kvantizacionom
procedurom spinske pene. U trodimenzionalnom slučaju, dobijena suma po stanjima predsta-
vljena u odeljku 7.2.1 daje kvantnu teoriju trodimenzionalne gravitacije – Ponzano-Redže model,
što je posledica činjenice da na klasičnom nivou odgovarajuća teorija nema lokalne propagirajuće
stepene slobode. Kao što znamo, to nije rezultat u realnom četvorodimenzionalnom slučaju, pa
kvantnu teoriju gravitacije moramo dobiti modifikacijom amplituda topološke sume po stanjima
Ouguri modela predstavljene u odeljku 7.2.2. Ipak, ova konstrukcija je van okvira naše diskusije,
pogledati [2] za pedagoški pristup kovarijantnoj kvantizacionoj proceduri formiranja sume po
stanjima koja opisuje teoriju gravitacije u četiri dimenzije.

7.1 Gejdž invarijantni objekti
Klasične jednačine kretanja BF teorije nameću uslov da je gejdž koneksija ravna, tj. na jeziku
holonomija, da svaka nul-homotopna kriva odgovara identitetu gejdž grupe. U Lemi 12 razma-
trana je granična kriva trougla i uslov ravnosti gejdž koneksije formulisan je za ovaj element
triangulacije mnogostrukosti.

Lema 12 Posmatrajmo trougao (jk`). Ivice trougla (jk) , j < k su obeležene grupnim elemen-
tima gjk ∈ G. Razmotrimo dijagram (7.6).

l• k•
gkl
yy

•j
gjk
xx

gjl

[[ . (7.6)

Kriva γ1 = gk`gjk je jednaka krivoj γ2 = gj` , tj. važi identitet:

gj` = gk`gjk . (7.7)

7.2 Kvantizacija topološkog BF dejstva
U ovom odeljku predstavljen je postupak kvantovanja BF dejstva uobičajenom heurističkom
kvantizacionom procedurom spinske pene. Najpre, konfiguracioni integral topološke sume po
stanjima dat je izrazom:

Z =

∫
DαDB exp

(
i

∫
M4

〈B ∧ F〉g
)
. (7.8)

Formalnom integracijom po Lagraževom množitelju B dobijamo izraz:

Z = N
∫
Dα δ(F) . (7.9)

Zatim, 1-forma koneksije α ∈ A1(M4, g) se diskretizuje bojenjem ivica triangulacije ε = (jk) ∈
Λ1 grupnim elementima gε ∈ G. Meru konfiguracionog integrala (7.8) diskretizujemo smenom:∫

Dα 7→
∏

(jk)∈Λ1

∫
G

dgjk , (7.10)
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gde dgjk označava integraciju sa Harovom merom na grupi G.
Uslov nestajanja krivine diskretizuje na svakom trouglu (jkl) ∈ Λ2 δ-funkcija δ(F). Pri-

likom prelaza sa glatke mnogostrukosti na njenu triangulaciju, δ-funkcija definiše se na skupu
trouglova triangulacije,

δ(F) =
∏

(jk`)∈Λ2

δG(gjk`) , (7.11)

gde je za svaki trougao (jkl) ∈ Λ2 odgovarajuća δ-funkcija δG(gjkl) data izrazom:

δG(gjk`) = δG
(
gk` gjk g

−1
j`

)
. (7.12)

Identitet (7.12) je posledica jednačine (7.7) iz Leme 12.
Zamenom prethodno definisane diskretizovane mere (7.10) i δ-funkcije (7.11) u jednačinu

(7.9) dobija se suma po stanjima7:

Z = N
∏

(jk)∈Λ1

∫
G

dgjk

( ∏
(jk`)∈Λ2

δG
(
gjk`
))

. (7.18)

Zatim, zamenom izraza (7.12) u izraz (7.18), dobijamo eksplicitni izraz za sumu po stanjima
date triangulacije prostorvremenske mnogostrukostiM. Odgovarajućim izborom konstante i-
spred integrala N , dobijene nakon integracije po Lagranževom množitelju B, ova suma postaje
nezavisna od integracije, tj. invarijantna na Pahnerove poteze. Upravo zahtevanjem ove invari-
jantnosti, za sve Pahnerove poteze, dobijamo odgovarajući izbor konstatne N , dat definicijom
7.2.1.

7Sličan postupak možemo sprovesti i u dualnoj triangulaciji. Najpre, diskretizujmo dejstvo:

SBF [B,α] � SdiscBF [B,α] ≡
∑
f∈Λ∗

2

tr
[
Bfgf

]
, (7.13)

gde smo integral tenzora krivine zamenili sumom holonomija gf po svim poligonima f dualnim sklopkama
triangulacije, u trodimenzionalnom slučaju ivicama (jk) ∈ Λ1, na kojima je krivina različita od nule, dok smo
množilac B zamenili njegovom vrednošću Bf na svakom poligonu f . Holonomija gf na poligonu f se može
napisati kao proizvod holonomija gl redom po svim ivicama l ∈ Λ∗2 datog poligona f ∈ Λ∗2 [38]:

gf =
∏
l∈f

gl. (7.14)

Zatim, integracijom po svim množiteljima i holonomijama

Z � Zdisc =

∫ ( ∏
f∈Λ∗

2

DBf
)∫ ( ∏

l∈Λ∗
1

Dgl
)

exp

(
i
∑
f∈Λ∗

2

tr
[
Bf
∏
l∈f

gl
])

=

∫ ( ∏
l∈Λ∗

1

Dgl
) ∏
f∈Λ∗

2

(∫
DBfexp

(
i tr

[
Bf
∏
l∈f

gl
]))

,

(7.15)

gde prepoznajemo da je ∫
DBfexp

(
i tr
[
Bf
∏
l∈f

gl
])

= N ′δ(
∏
l∈f

gl) = N ′δ(gf ) , (7.16)

dobija se suma po stanjima:

Zdisc = N
( ∏
l∈Λ∗

1

∫
Dgl
)( ∏

f∈Λ∗
2

δ(gf )

)
. (7.17)

Dobijena suma po stanjima ekvivalentna je jednačini (7.18) ali je izražena preko elemenata dualne triangulacije.
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Definicija 7.2.1 Neka je Md kompaktna i orijentisana kombinatorna d-mnogostrukost, d ∈
{3, 4}. Suma po stanjima topološke gejdž teorije je definisana kao:

Z = |G|−|Λ0|+|Λ1|−|Λ2|
( ∏

(jk)∈Λ1

∫
G

dgjk

)( ∏
(jk`)∈Λ2

δG
(
gk` gjk g

−1
j`

))
(7.19)

U prethodnoj definiciji integracija se vrši po elementima gjk ∈ G za svaku ivicu (jk) ∈ Λ1.
Podintegralna δ-funkcija nameće sledeći uslov.

• Za svaki trougao (jk`) ∈ Λ2, uslov gk` gjk = gj` (videti Lemu 12).

Teorema 19 Neka jeMd zatvorena i orijentisana kombinatorna d-mnogostrukost za d ∈ {3, 4}.
Suma po stanjima (7.19) je invarijantna na Pahnerove poteze.

Za sada Teoremu 19 ostavićemo bez dokaza. U poglavljima 8 i 9 razmatrane su generalizacije
ove teoreme u okviru teorije kategorija i njihovi dokazi, pa se dokaz prethodne teoreme može
jednostavno dobiti pojednostavljivanjem ovih opštijih slučajeva.

7.2.1 d = 3: Ponzano-Redže model

Trodimenzionalna kvantna gravitacija može biti definisana na više načina, a prvi uspešan
pristup je Ponzano-Redže model kvantne gravitacije na diskretizovanoj trodimenzionalnoj mno-
gostrukosti formiranjem BF sume po stanjima za izbor gejdž grupe G = SU(2).

Topološka suma po stanjima dobijena u prethodnom odeljku se posle izbora konkretne gejdž
grupe G dalje transformiše korišćenjem Piter-Vejlove ili Planšarelove teoreme8. Prirodan izbor
grupe G je grupa izometrija datog prostora, što je u trodimenzionalnom slučaju grupa SO(3),
odnosno SU(2). Stoga za grupu SU(2) možemo pisati:

δ(gf ) =
∑
jf

(
dimjf

)
tr

[
D(jf )(gf )

]
, jf ∈ {0,

1

2
, 1,

3

2
, . . .} . (7.20)

Zamenom prethodnog izraza za δ(gf ) u izraz za sumu po stanjima u dualnoj triangulaciji (7.17)
dobijamo:

Zdisc = N
∫ ( ∏

l∈Λ∗1

Dgl
) ∏
f∈Λ∗2

( ∑
jf∈N0/2

(
2jf + 1

)
tr

[∏
l∈f

D(jf )(gl)

])

= N
∑
{jf}

( ∏
f∈Λ∗2

(2jf + 1)

)∫ ( ∏
l∈Λ∗1

Dgl
)(

. . . D(jf )a

α(gl) . . . D
(jf∗ )a

∗

α∗(gl∗) . . .

)
,

(7.21)

8Piter-Vejlova, odnosno Planšarelova teorema, obezbeđuju dekompoziciju funkcija na grupi u sumu po odgo-
varajućim ireducibilnim reprezentacijama grupe. Teorema nosi ime Piter-Vejl za slučaj kada je grupa G ko-
mpaktna, dok je Planšarel dokazao analognu teoremu u slučaju nekompaktne grupe G.

Teorema 20 (Piter-Vejl, Planšarel teorema) Za δ-funkciju čiji je argument element grupe gf ∈ G važi,

δ(gf ) =
∑
Λf

dim(Λf )χ(gf ,Λf ) ,

gde su Λf unitarne ireducibilne reprezentacije Lijeve grupe G, χ(gf ,Λf ) je trag elementa gf u reprezentaciji Λf
i dim(Λf ) je dimenzija reprezentacije.
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gde su u poslednjem redu svi indeksi kontrakovani. Preuređivanjem elemenata proizvoda u
zagradi u prethodnom izrazu tako da grupišemo reprezentacije elementa gl dobijamo:

Zdisc = N
∑
{jf}

( ∏
f∈Λ∗2

(2jf + 1)

)
tr

[ ∏
l∈Λ∗1

(∫
DglD(j1)a

α(gl)D
(j2)b

β(gl)D
(j3)c

γ(gl)

)]
. (7.22)

Očigledno je da postoje tri takve reprezentacije, odnosno tri stranice f kojima odgovaraju
brojevi jf , koje dele ivicu l, kao što je prikazano na Slici 7.1. Razlog za to je jer ivici l dualne
rešetke odgovara trougao, koji ima tri ivice, kojima odgovaraju stranice f . Za grupu SU(2)

a

b

c

α

β
γ

f2, j2

f1, j1

f3, j3

v1

v2

l, gl

Slika 7.1: Jedna ivica l dualne rešetke i stranice f1, f2 i f3 kojima je zajednička.

i broj reprezentacija n = 3 nekog elementa grupe, postoji samo jedan intertvajner9 i on je
{3j}-simbol za koji važi∫

DglD(j1)a

α(gl)D
(j2)b

β(gl)D
(j3)c

γ(gl) = iabciαβγ =

(
j1 j2 j3

a b c

)
SU(2)

(
j1 j2 j3

α β γ

)
SU(2)

. (7.24)

Korišćenjem (7.24) jednačina (7.22) postaje:

Zdisc = N
∑
{jf}

( ∏
f∈Λ∗2

(2jf + 1)

)
tr

[ ∏
l∈Λ∗1

(
j1 j2 j3

a b c

)(
j1 j2 j3

α β γ

)]
. (7.25)

Daljim grupisanjem intertvajnera po zajedničkom verteksu, na način prikazan na Slici 7.2,
dobijamo:

Zdisc = N
∑
{jf}

( ∏
f∈Λ∗2

(2jf + 1)

) ∏
v∈Λ∗0

((
j1 j4 j5

a d e

)(
j2 j4 j6

b d f

)(
j3 j5 j6

c e f

)(
j1 j2 j3
a b c

))
.

(7.26)

9Za svaki element grupe g ∈ G i njene reprezentacije Λi postoji jedan ili više objekata koje zovemo intertva-
jneri [1] koji zadovoljavaju jednakost:

D(Λ1)a

α(g)D(Λ2)b

β(g)D(Λ3)c

γ(g) · · ·D(Λn)n

ν (g)i
(Λ1Λ2···Λn)
abc···n = i

(Λ1Λ2···Λn)
αβγ···ν . (7.23)

Intertvajneri zavise od n, grupe G i njene reprezentacije, ali ne i od elementa grupe g ∈ G.
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Slika 7.2: Četiri ivica i šest stranica koje se sastaju u jednom verteksu dualne triangulacije 3D
mnogostrukosti.

Jednom verteksu odgovara šest10 stranica i četiri ivica u dualnoj triangulaciji. Četiri {3j}-
simbola grupisana u zagradi čine {6j}-simbol, funkciju šest brojeva f(j1, · · · , j6)11, pa možemo
pisati:

Zdisc = N
∑
j1

· · ·
∑
j|Λ∗2|

( |Λ∗2|∏
f=1

(2jf + 1)

)( |Λ∗0|∏
v=1

{6j}vSU(2)

)
. (7.27)

Zapisano preko elemenata triangulacije suma po stanjima Ponzano-Redže modela je:

Zdisc = N
∑
j1

· · ·
∑
j|Λ1|

( |Λ1|∏
ε=1

(2jε + 1)

)( |Λ3|∏
τ=1

{6j}τSU(2)

)
. (7.28)

Konstruisana BF suma po stanjima daje kvantnu teoriju gravitacije u slučaju trodimenzio-
nalne prostorvremenske mnogostrukosti. Stoga, klasična teorija mora biti dobijena u klasičnom
limitu ove kvantne teorije. U kvantnoj mehanici, klasičan limit se dobija u limitu velikih
kvantnih brojeva, gde kvantna diskretnost postaje zanemarljiva. Ponzano i Redže su ukazali,
a Roberts je formalno dokazao, da u limitu velikih kvantnih brojeva j važi

{6j} ∼
j→∞

1√
12πV

cos(S +
π

4
) , (7.29)

gde je V zapremina tetraedra, a S klasično Redže dejstvo tetraedra. Raspisivanjem kosinusa i
korišćenjem adicionih formula za kosinus dobijamo:

{6j} ∼
j→∞

1

2
√
−12iπV

exp(iS) +
1

2
√

12iπV
exp(−iS) . (7.30)

U limitu velikih kvantnih brojeva, zbir po spinovima u jednačini (7.28) možemo aproksimirati
integralom po dužinama u Redže geometriji. Na osnovu jednačine (7.30) vidimo da integrand
ima oblik eksponenta dejstva, pa se ispostavlja da se Ajnštajn–Hilbertovo dejstvo krije u {6j}
simbolu. Stoga, u klasičnom limitu dobijamo12 integral po putanjama za Ajnštajn–Hilbertovo
dejstvo:

Z ∼
∫
Dg e

i
~
∫ √
−gR . (7.31)

10Verteks dualne triangulacije odgovara tetraedru obične triangulacije 3D mnogostrukosti, četiri ivice koje
se sastaju u verteksu dualne triangulacije odgovaraju trouglovima T (M3), šest stranica dualne triangulacije
odgovara šest ivica T (M3), itd.

11U jednom verteksu sastaju se četiri ivice, gde za svake dve postoji stranica koja ih obe sadrži. Intertvajneri
oblika ipqr nose informaciju o tri stranice p, q i r kojima je zajednička ivica kojoj odgovara taj intertvajner,
odnosno tri broja jf koje stranice nose.

12Primetimo da u izrazu (7.30) postoje dva člana sa suprotnim predznacima dejstva u eksponentima, pa je
dobijeni izraz malo komplikovaniji od jednačine (7.31).
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Četvorodimenzionalni slučaj se ispostavlja neznatno komplikovanijim, što je i očekivano
jer u četiri dimenzije gravitacija nije topološka teorija bez lokalnih propagirajućih stepeni slo-
bode. Konstrukcija BF sume po stanjima za slučaj četvorodimenzionalne mnogostrukosti je
predstavljena u narednom odeljku.

7.2.2 d = 4: Ouguri model

U slučaju četvorodimenzionalnog prostorvremena BF topološko dejstvo je zadato na isti način
kao i u trodimenzionalnom slučaju,

SBF [B,ω] =

∫
M4

Bab ∧Rab, (7.32)

pr čemu su sada krivina Rab = dωab+ωac∧ωcb i Lagranžev množitelj Bab 2-forme. Ponavljajući
postupak iz odeljka 7.2.1 za BF dejstvo definisano za trodimenzionalnu prostorvremensku
mnogostrukost, dolazimo do jednačine (7.17). Primenom Teoreme 20 za grupu G = SO(4)
dobijamo da suma po stanjima ima oblik (7.21), pri čemu indeks jf sada označava ireducibilne
reprezentacije grupe SO(4).

Zatim, proizvod u zagradi sume po stanjima (7.17) se preuređuje tako da grupišemo repre-
zentacije elementa grupe gl, pri čemu imamo u vidu da sada postoje četiri takve reprezentacije,
tj. četiri broja jf . Na Slici 7.3 je demonstrirano da u 4D postoje četiri stranice f koje dele
ivicu l, iz razloga što ivici l dualne rešetke odgovara tetraedar, koji ima četiri trougla, kojima
odgovaraju četiri stranice f .

d

ab

c

β

δ
γ

α

l, gl

f2, j2

f1, j1

f3, j3

f4, j4

v1

v2

Slika 7.3: Jedna ivica l dualne rešetke i stranice f1, f2, f3 i f4 kojima je zajednička.

Korišćenjem definicije intertvajnera za grupu SO(4), može se dokazati sledeća teorema:∫
DglD(j1)a

α(gl)D
(j2)b

β(gl)D
(j3)c

γ(gl)D
(j4)d

δ(gl) =
∑
Il

iabcdIl
iIlαβγδ. (7.33)

Primećujemo da za razliku od grupe SU(2), koja ima samo jedan intertvajner {3j} za dati skup
reprezentacija, u slučaju grupe SO(4) postoji više intertvajnera koji zadovoljavaju definicionu
jednačinu (7.23). Ti intertvajneri se u jednačini (7.33) prebrojavaju nekim dodanim indeksom
Il.
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Suma po stanjima koju dobijamo iz (7.21) odgovarajućim preuređivanjem i primenom je-
dnačine (7.33) je:

Zdisc =
∑
{jf}

( ∏
f∈Λ∗2

dimjf

)
tr

[ ∏
l∈Λ∗1

(∫
DglD(j1)a

α(gl)D
(j2)b

β(gl)D
(j3)c

γ(gl)D
(j4)d

δ(gl)

)]

=
∑
{jf}

( ∏
f∈Λ∗2

dimjf

)
tr

[ ∏
l∈Λ∗1

∑
Il

iabcdIl
iIlαβγδ

]

=
∑
{jf}

∑
{Il}

( ∏
f∈Λ∗2

dimjf

)
tr

[ ∏
l∈Λ∗1

ialblcldlIl
iIlαlβlγlδl

]

=
∑
{jf}

∑
{Il}

( ∏
f∈Λ∗2

dimjf

) ∏
v∈Λ∗0

(
iefgbIl

iehicI2
ifhjaI3

igjidI4
iabcdI5

)
.

(7.34)

U poslednjem koraku smo grupisali intertvajnere po zajedničkom verteksu kao što je prikazano
na Slici 7.4. Jednom verteksu odgovara deset13 stranica i pet ivica u dualnoj triangulaciji. Pet
intertvajnera grupisanih u zagradi predstavljaju {15j}SO(4)-simbol, funkciju petnaest brojeva
f(I1, · · · , I5, j1, · · · , j10)14. Konačno, dobijamo da suma po stanjima topološke BF teorije za

1 2

3

4

5

a

h

f

b

g
c

i

d

e

j

Slika 7.4: Pet ivica i deset stranica koje se sastaju u jednom verteksu dualne triangulacije 4D
mnogostrukosti.

četvorodimenzionalnu prostorvremensku mnogostrukost ima oblik:

Zdisc =
∑
j1

· · ·
∑
j|Λ∗2|

∑
I1

· · ·
∑
I|Λ∗1|

( |Λ∗2|∏
f=1

dimjf

)( |Λ∗0|∏
v=1

{15j}vSO(4)

)
, (7.35)

odnosno zapisano preko elemenata triangulacije:

Zdisc =
∑
j1

· · ·
∑
j|Λ2|

∑
I1

· · ·
∑
I|Λ3|

( |Λ2|∏
∆=1

dimj∆

)( |Λ4|∏
σ=1

{15j}σSO(4)

)
. (7.36)

Dobijena suma po stanjima predstavlja Ouguri model [4].
13Verteks dualne triangulacije odgovara 4-simpleksu obične triangulacije 4D mnogostrukosti, pet ivica koje

se sastaju u verteksu dualne triangulacije odgovaraju tetraedrima T (M4), deset stranica dualne triangulacije
odgovaraju deset trouglova T (M4), itd.

14Intertvajneri oblika ipqrsIl
nose informaciju o ivici l i o četiri stranice kojima je ona zajednička p, q, r i s, tj.

o broju Il koji nosi ivica i brojevima jf koje nose stranice.
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Za razliku od trodimenzionalnog slučaja gde je opšta teorija relativnosti teorija bez lokalnih
propagirajućih stepeni slobode, u četiri dimenzije BF teorija nije ekvivalentna opštoj teoriji
relativnosti. Da bi smo dobili teoriju koja opisuje OTR, neophodna je modifikacija BF dejstva
dodavanjem odgovarajućih veza, tj. formulacija Plebanski dejstva (4.74) na nivou klasične
teorije, ili deformacija topološke sume po stanjima (7.36) u netopološku sumu po stanjima na
nivou kvantne teorije. Deformacija sume po stanjima se postiže izborom drugačijih amplituda u
modelu, procedurom opisanom u [9][10]. Ovaj postupak rezultuje EPRL/FK modelom spinske
pene, koji predstavlja jednu moguću kvantizaciju Opšte teorije relativnosti.

Kvantovanje BF teorije sa vezama i konstrukcija kvantne teorije gravitacije prevazilazi
okvire naše diskusije, pa zainteresovanog čitaoca upućujemo na literaturu [9][10].
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Glava 8

Formiranje topološke sume po stanjima: 2BF
teorija

U ovom poglavlju fokusiraćemo se na drugi korak kovarijantne kvantizacione procedure spinske
pene za 2BF teoriju. Demonstriraćemo kako se konstruiše suma po stanjima Z koja je neza-
visna od triangulacije, na osnovu klasičnog 2BF dejstva za opštu striktnu 2-grupu i bilo koju
triangulaciju bilo koje glatke d-dimenzionalne prostorvremenske mnogostrukosti, za slučajeve
d ∈ {3, 4}. Za d = 3, kontruisana suma po stanjima je upravo Jeterov model, dok se za d = 4
poklapa sa Porterovom TKTP za d = 4 i n = 2.

Da bismo proverili da je konstruisana suma po stanjima topološka, analiziramo njeno pona-
šanje pri Pahnerovim potezima, lokalnim promenama triangulacije koje čuvaju topologiju, tako
da su bilo koje dve triangulacije iste mnogostrukosti povezane konačnim brojem Pahnerovih
poteza. U trodimenzionalnom slučaju postoji četiri Pahnerova poteza — potezi 1↔ 4 i 2↔ 3
i njihovi inverzi, dok u 4 dimenzije postoji pet različitih Pahnerovih poteza — potezi 3 ↔ 3,
4 ↔ 2 i 5 ↔ 1 i njihovi inverzi. Postavka analize ponašanja konstruisane sume po stanjima
pri ovim Pahnerovim potezima predstavljena je u odeljku 8.3, dok su detalji proračuna dati
u Dodatku E.1. Dobijeno je da suma po stanjima nepromenjena pri ovim transformacijama
mnogostrukosti, što dokazuje da je topološka invarijanta mnogostrukosti. Kako je nezavisna od
triangulacije, suma po stanjima je nepromenjena pri proizvoljnom usitnjavanju triangulacije i
stoga definiše teoriju kontinuuma na glatkoj mnogostrukosti.

Pogledati rad Žirelija, Pfajfera i Popeskua za više informacija [13].

8.1 Gejdž invarijantni objekti

Dejstvo klasične BF teorije izabrano je tako da bude nezavisno od bilo kakve pozadinske
metrike, tj. da zavisi samo od prostorvremenske mnogostrukosti. Klasične jednačine kretanja
nameću uslov da je gejdž koneksija ravna, tj. na jeziku holonomija, da svaka nul-homotopna
kriva odgovara identitetu gejdž grupe. U okviru viših gejdž teorija, konkretno 2-gejdž teorije
i odgovarajuće 2BF teorije, ovaj uslov se generalizuje zahtevom da površinska holonomija
granične 2-sfere svake 3-lopte bude trivijalna.

U odeljku 2.2 uveli smo niz operacija pomoću kojih na jeziku 2-gejdž teorije definišu kompo-
zicije proizvoljnih puteva i površina, sve do proizvoljno velikih. U ovom odeljku ćemo koristiti
ove kompozicije kako bismo konstruisali gejdž invarijantne veličine koje odgovaraju zatvorenim
putevima i površinama. U Lemama 13 i 14, ovaj se postupak koristi za graničnu putanju trougla
i graničnu površinu tetraedra, kao što je izvedeno u radu [13].

Lema 13 Posmatrajmo trougao (jk`). Ivice trougla (jk) , j < k su obeležene grupnim elementi-
ma gjk ∈ G, a trougao (jk`) , j < k < ` je obeležen elementom hjk` ∈ H. Razmotrimo dijagram

129



Glava 8. Formiranje topološke sume po stanjima: 2BF teorija 130

(8.1).

l• k•
gkl
yy

•j
gjk
xx

gjl

[[
hjkl��

= l• l•
1•

vv

∂(hjkl)

hh hjkl�� k•
gkl
yy

•j
gjk
xx

gklgjk

YY
1gklgjk

��

= l• k•
gkl
yy

•j
gjk
xx

∂(hjkl) gklgjk

[[

hjkl��

.

(8.1)
Kriva γ1 = gk`gjk je izvor 2-morfizma, a kriva γ2 = gj` je meta površinskog 2-morfizma Σ :
γ1 → γ2 obeleženog sa hjk`,

gj` = ∂(hjk`)gk`gjk . (8.2)

Lema 14 Posmatrajmo tetraedar (jk`m). Ivice (jk) , j < k su obeležene grupnim elementima
gjk ∈ G, trouglovi (jk`) , j < k < ` grupnim elementima hjk` ∈ H. Orijentisali smo trouglove
(jk`) tako da je kriva gk`gjk izvor 2-morfizma, a kriva gj` meta, tj. zadovoljen je uslov gj` =
∂(hjk`)gk`gjk .

Najpre, presečemo površinu tetraedra po granici (jm). To određuje redosled vertikalne ko-
mpozicije sastavnih površina. Moramo biti sigurni da su sve površine kompozibilne, tj. da imaju
odgovarajuće referentne točke i ispravnu orijentaciju za vertikalnu kompoziciju.

Analizirajmo prvo kompoziciju prikazanu na dijagramu (8.3). Prvo pomeramo krivu od
gk`gjk do krive gj`. U ovom stadijumu dobijeni rezultat nije vertikalno kompozibilan sa trou-
glom (j`m), prvo mu moramo dodati g`m sa leve strane. Sada su ova dva morfizma vertikalno
kompozibilna, a dobijeni 2-morfizam prevlači krivu do gjm. Dobijeni 2-morhizam je:

m• •`g`moo •k
gk`
xx

•j
gjk
xx

gj`

[[

hjk`��

gjm

[[

hj`m}�

= (g`mgj`, hj`m)#2

(
g`m#1(gk`gjk, hjk`)

)
=
(
g`mgk`gjk, hj`m(g`m � hjk`)

)
.

(8.3)
Razmotrimo dijagram (8.4). Prvo prevlačimo krivu g`mgk` do krive gkm. Da bi vertikalna

kompozicija dobijenog rezultata sa trouglom (jkm) bila moguća, najpre mu dodamo krivu gjk
sa desne strane. Sada su dva morfizma vertikalno kompozibilna i dobijeni 2-morfizam prevlači
krivu na gjm. Dobijen je sledeći 2-morfizam:

m• •`
g`m
yy

•k
gk`
xx

gkm

[[

hk`m��

•j
gjkoo

gjm

[[
hjkm
��

= (gkmgjk, hjkm)#2

(
(g`mgk`, hk`m)#1gjk

)
= (g`mgk`gjk, hjkmhk`m) .

(8.4)
Dve površine Σ1 : g`mgk`gjk → gjm i Σ2 : g`mgk`gjk → gjm opisuju isti 2-morfizam, odnosno

(g`mgk`gjk, hjkmhk`m) =
(
g`mgk`gjk, hj`m(g`m � hjk`)

)
, (8.5)

na osnovu čega dobijamo relaciju:

hjkmhk`m = hj`m(g`m � hjk`) . (8.6)

8.2 Kvantizacija topološkog 2BF dejstva
U ovom odeljku predstavićemo kombinatorni opis konstrukcije sume po stanjima za 2BF teoriju
formiranu za triangulaciju mnogostrukosti dimenzije d = {3, 4}.
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Kvantovanje 2BF klasičnog dejstva, datog jednačinom (8) radi se na isti način kao i u
slučaju BF teorija, uobičajenom heurističkom kvantizacionom procedurom spinske pene. Na-
jpre, konfiguracioni integral topološke sume po stanjima dat je izrazom:

Z =

∫
DαDβDBDC exp

(
i

∫
Md

〈B ∧ F〉g + 〈C ∧ G〉h
)
. (8.7)

Formalnom integracijom po Lagraževim množiteljima B i C dobijamo izraz:

Z = N
∫
DαDβ δ(F)δ(G) . (8.8)

Slično kao i u običnoj gejdž teoriji 1-forma koneksije α ∈ A1(Md, g) se diskretizuje bojenjem
ivica triangulacije ε = (jk) ∈ Λ1 grupnim elementima gε ∈ G, dok se 2-forma koneksije β ∈
A2(Md , h) diskretizuje bojenjem trouglova ∆ = (jk`) ∈ Λ2 elementima grupe h∆ ∈ H. Mere
konfiguracionog integrala (8.7) diskretizujemo smenom:∫

Dα 7→
∏

(jk)∈Λ1

∫
G

dgjk , (8.9)∫
Dβ 7→

∏
(jk`)∈Λ2

∫
H

dhjk` , (8.10)

gde dgjk i dhjk` označavaju integraciju sa Harovom merom na grupama G i H. Uslov nestajanja
lažne krivine zadaje se na svakom trouglu (jkl) ∈ Λ2 dikretizacijom δ(F). Prilikom prelaza
sa glatke mnogostrukosti na njenu triangulaciju, δ distribucija definiše se na skupu elemenata
triangulacije,

δ(F) =
∏

(jk`)∈Λ2

δG(gjk`) , (8.11)

gde je za svaki trougao (jkl) ∈ Λ2 odgovarajuća δ-funkcija δG(gjkl) data izrazom (videti jedna-
činu (8.2) u Lemi 13):

δG(gjk`) = δG
(
∂(hjk`) gk` gjk g

−1
j`

)
. (8.12)

Uslov da je površinska holonomija granične 2-sfere svake 3-lopte trivijalna δ(G), diskretizovan
na elemente triagulacije mnogostrukosti postaje

δ(G) =
∏

(jk`m)∈Λ3

δH(hjk`m) , (8.13)

gde za svaki tetraedar (jk`m) ∈ Λ3 važi:

δH(hjk`m) = δH
(
hj`m (g`m � hjk`)h

−1
k`m h

−1
jkm

)
. (8.14)

Izraz (8.14) je posledica jednačine (8.6) izvedene u Lemi 14.
Zamenom prethodno definisanih diskretizovanih mera (8.9) i (8.10), δ-funkcija (8.11) i (8.13)

u jednačinu (8.8) dobija se suma po stanjima:

Z = N
∏

(jk)∈Λ1

∫
G

dgjk
∏

(jk`)∈Λ2

∫
H

dhjk`

( ∏
(jk`m)∈Λ3

δG
(
gjk`
))( ∏

(jk`m)∈Λ3

δH
(
hjk`m

))
. (8.15)

Zatim, zamenom izraza (8.12) i (8.14) u izraz (8.15), dobijamo eksplicitni izraz za sumu po sta-
njima date triangulacije mnogostrukosti Md. Odgovarajućim izborom konstante ispred inte-
grala N , dobijene nakon integracije po Lagranževim množiteljima B i C, ova suma postaje
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nezavisna od triangulacije, tj. invarijantna na Pahnerove poteze1. Upravo zahtevanjem ove
invarijantnosti, za sve Pahnerova poteza, dobijamo odgovarajući izbor konstatne N , dat defini-
cijom 8.2.1.

Definicija 8.2.1 Neka je Md kompaktna i orijentisana kombinatorna d-mnogostrukost za d =

{3, 4} i neka je (H
∂→ G ,� ) ukršten modul. Suma po stanjima topološke više gejdž teorije je

definisana kao:

Z = |G|−|Λ0|+|Λ1|−|Λ2||H||Λ0|−|Λ1|+|Λ2|−|Λ3|
(∏

(jk)∈Λ1

∫
G

dgjk

)(∏
(jk`)∈Λ2

∫
H

dhjk`

)
×
(∏

(jk`)∈Λ2
δG
(
∂(hjk`) gk` gjk g

−1
j`

))(∏
(jk`m)∈Λ3

δH
(
hj`m (g`m � hjk`)h

−1
k`m h

−1
jkm

))
(8.16)

U prethodnoj definiciji integracija se vrši po elementima gjk ∈ G za svaku ivicu (jk) ∈ Λ1

i elementima hjk` ∈ H za svaki trougao (jk`) ∈ Λ2. Podintegralne δ-funkcije nameću sledeće
uslove.

1. Za svaki trougao (jk`) ∈ Λ2, obojen elementom grupe hjk`, uslov ∂(hjk`) gk` gjk = gj`
zahteva da svaki trougao hjk` ima odgovarajući izvor i metu (videti Lemu 13);

2. Za svaki tetraedar (jk`m) ∈ Λ3 uslov da je površinska holonomija tetraedra trivijantna
svodi se na uslov da je hj`m (g`m � hjk`)h

−1
k`mh

−1
jkm jednako neutralnom elementu grupe H

(videti Lemu 14).

Teorema 22 Neka jeMd zatvorena i orijentisana kombinatorna d-mnogostrukost za d = {3, 4}
i (H

∂→ G ,� ) uskršteni modul. Suma po stanjima (8.16) je invarijantna na Pahnerove poteze.

8.3 Pahnerovi potezi

8.3.1 d = 3

U trodimenzionalnom slučaju, da bi se proverila invarijantnost sume po stanjima (8.16) dovoljno
je pokazati da se ona ne menja pri četiri Pahnerova poteza, 1↔ 4 i 2↔ 3 i njihovim inverzima.
Postavka dokaza invarijantnosti sume po stanjima (8.16) na Pahnerove poteze data je u ovom
odeljku, dok su detalji računa prikazani u Dodatku E.1 [13].

Pahnerov potez 1 ↔ 4

Obeležimo vertekse sa leve strane 1 ↔ 4 Pahnerovog poteza sa (1234). Dodavanjem verteksa
(5) sa desne strane Pahnerovog poteza dobijamo četiri tetraedra:

M3 = {(2345), (1235), (1345), (1245)} . (8.17)

1Po Pahnerovoj teoremi, da bismo dokazali da je suma po stanjima topološka invarijantna, tj, da je invari-
jantna na promenu triangulacije, dovoljno je pokazati invarijantnost na Pahnerove poteze, koje je definisao Udo
Pahner 1991. godine [44]. U trodimenzionalnom prostoru jedini Pahnerovi potezi su 2 � 3, 2 � 3, 1 � 4 i 1 � 4.

Teorema 21 (Pahnerova teorema) Za datu deo-po-deo glatku mnogostrukost MD svaka triangulacija te mno-
gostrukosti T1(MD) povezana je sa nekom triangulacijom homeomorfne (topološki izomorfne) mnogostrukosti
T2(MD) konačnim brojem Pahnerovih poteza.
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(1)

(3)

(2)

(4)

1 � 4
1 � 4

(1)

(3)

(2)

(4)

(5)

Sa desne strane su prisutni dodatni trouglovi,

M2 = {(125), (135), (145), (235), (245), (345)} , (8.18)

odnosno dodatne ivice:
M1 = {(15), (25), (35), (45)} . (8.19)

Sa leve strane imamo sumu po stanjima,

Z1↔4
levo = |G|−2|H|1δH(h1234)Zostatak, (8.20)

dok sa desne strane imamo sumu po stanjima:

Z1↔4
desno = |G|−5|H|1

∫
G4

dg15dg25dg35dg45

∫
H6

dh125dh135dh145dh235dh245dh345( ∏
(jk`)∈M2

δG(gjk`)

)( ∏
(jk`m)∈M3

δH(hjk`m)

)
Zostatak.

(8.21)

gde su M2 i M3 dati u izrazima (8.17) i (8.18). Broj k-simpleksa sa obe strane 1 ↔ 4 poteza
(pri čemu ne brojimo ostatak triangulacije) dat je u Tabeli 8.1.

|Λ0| |Λ1| |Λ2| |Λ3|
l.s. 4 6 4 1
d.s. 5 10 10 4

Tabela 8.1: Broj verteksa |Λ0|, ivica |Λ1|, trouglova |Λ2| i tetraedra |Λ3| sa leve i desne strane
1↔ 4 Pahnerovog poteza.

Dokaz invarijantnosti svodi se na dokaz da su izrazi (8.20) i (8.21) jednaki, pri čemu činilac
Zostatak označava deo sume koji ostaje nepromenjen po definiciji poteza.

Pahnerov potez 2 ↔ 3

(5)

(4)

(2)

(3)

(1)

2 � 3
2 � 3

(5)

(4)

(2)

(3)

(1)
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Obeležimo tetraedre na levoj strani poteza M levo
3 = {(1234), (2345)}, koji dele trougao M levo

2 =
{(234)}, dok sa desne strane imamo tetraedre Mdesno

3 = {(1235), (1245), (1345)}, koji dele ivicu
Mdesno

1 = {(15)}, a svaka dva od njih dele jedan od trouglova Mdesno
2 = {(125), (135), (145)}.

Sa leve strane 2↔ 3 poteza imamo sumu po stanjima

Z2↔3
levo = |G|−3|H|1

∫
H

dh234δG(g234) δH(h1234)δH(h2345)Zostatak, (8.22)

dok sa desne strane imamo sumu po stanjima:

Z2↔3
desno = |G|−4|H|1

∫
G

dg15

∫
H3

dh125dh135dh145

δG(g125)δG(g135)δG(g145) δH(h1235)δH(h1245)δH(h1345)Zostatak .

(8.23)

Broj k-simpleksa sa obe strane 2↔ 3 poteza prikazana je u Tabeli 8.2.

|Λ0| |Λ1| |Λ2| |Λ3|
l.s. 5 9 7 2
d.s. 5 10 9 3

Tabela 8.2: Broj verteksa |Λ0|, ivica |Λ1|, trouglova |Λ2| i tetraedra |Λ3| sa leve i desne strane
2↔ 3 Pahnerovog poteza.

Dokaz invarijantnosti svodi se na dokaz da su izrazi (8.22) i (8.23) jednaki, pri čemu činilac
Zostatak označava deo sume koji ostaje nepromenjen po definiciji poteza.

8.3.2 d = 4

U četvorodimenzionalnom slučaju, da bi se proverila invarijantnost sume po stanjima (8.16)
dovoljno je pokazati da se ona ne menja pri pet Pahnerovih poteza, 1 ↔ 5, 2 ↔ 4 i 3 ↔ 3
Pahnerovim potezima i njihovim inverzima. Postavka dokaza invarijantnosti sume po stanjima
(8.16) na Pahnerove poteze data je u ovom odeljku, dok su detalji računa prikazani u Dodatku
E.1 [13].

Pahnerov potez 1 ↔ 5

(3)

(2)

(6)

(5)

(4)

1↔ 5

(3)

(2)

(6)

(5)

(4)•
(1)

Obeležimo vertekse 4-simpleksa na levoj strani 1 ↔ 5 Pahnerovog poteza sa (23456). Do-
davanjem verteksa (1) sa desne strane Pahnerovog poteza dobijamo pet 4-simpleksa

M4 = {(13456), (12456), (12356), (12346), (12345)} .
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Sa desne strane su prisutni dodatni tetraedri

M3 = {(1234), (1235), (1236), (1245), (1246), (1256), (1345), (1346), (1356), (1456)} ,

dodatni trouglovi

(jk`) ∈M2 = {(123), (124), (125), (126), (134), (135), (136), (145), (146), (156)} ,

dodatne ivice (jk) ∈M1 = {(12), (13), (14), (15), (16)} i dodatni verteks (j) ∈M0 = {(1)}. Svi
ostali simpleksi su prisutni sa obe strane poteza.

Invarijantnost sume po stanjima (8.16) na Pahnerov potez 1 ↔ 5 znači da je integral sa
desne strane,

Z1↔5
desno = |G|−11|H|−4

∫
G5

∏
(jk)∈M1

dgjk

∫
H10

∏
(jk`)∈M2

dhjk`

·

( ∏
(jk`)∈M2

δG(gjk`)

)( ∏
(jk`m)∈M3

δH(hjk`m)

)
Zostatak ,

(8.24)

jednak sumi po stanjima prisutnoj na levoj strani,

Z1↔5
levo = |G|−5|H|0Zostatak . (8.25)

Faktore ispred integrala sume po stanjima, prisutne sa leve i desne strane poteza, izračunavamo
na osnovu jednačine (8.16), odnosno koristimo |G|−|Λ0|+|Λ1|−|Λ2| i |H||Λ0|−|Λ1|+|Λ2|−|Λ3|, gde su |Λ0|,
|Λ1|, |Λ2|, |Λ3| redom brojevi verteksa, ivica, trouglova i tetraedra u triangulaciji. Na osnovu
podataka prikazanih u Tabeli 8.3 sa desne strane se dobija faktor |G|−11|H|−4, dok je faktor sa
leve strane jednak |G|−5|H|0.

|Λ0| |Λ1| |Λ2| |Λ3| |Λ4|
l.s. 5 10 10 5 1
d.s. 6 15 20 15 5

Tabela 8.3: Broj verteksa |Λ0|, ivica |Λ1|, trouglova |Λ2|, tetraedra |Λ3| i 4-simpleksa |Λ4| sa
leve i desne strane 1↔ 5 Pahnerovog poteza.

Dokaz invarijantnosti svodi se na dokaz da su izrazi (8.24) i (8.25) jednaki, pri čemu činilac
Zostatak označava deo sume koji ostaje nepromenjen po definiciji poteza.

Pahnerov potez 2 ↔ 4

(3)(2)

(1)

(4) (5)

(6)

2↔ 4

(3)(2)

(1)

(4) (5)

(6)

Kako bi proverili invarijantnost sume po stanjima (8.16) pri 2 ↔ 4 Pahnerovom potezu,
poređajmo vertekse tako da na levoj strani poteza imamo dva 4-simpleksa

M levo
4 = {(23456), (12345)}
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a na desnoj strani četiri 4-simpleksa

Mdesno
4 = {(12346), (12356), (12456), (13456)} .

Onda, na levoj strani imamo jedan tetraedar

M levo
3 = {(2345)} ,

dok na desnoj strani imamo šest tetraedra

Mdesno
3 = {(1236), (1246), (1256), (1346), (1356), (1456)} .

Svi ostali tetraedri su prisutni na obe strane poteza. Takođe, na desnoj strani su prisutni
trougloviMdesno

2 = {(126), (136), (146), (156)} i jedna ivicaMdesno
1 = {(16)}, dok su svi preostali

trouglovi i ivice prisutni sa obe strane poteza. Takođe, svi verteksi su prisutni sa obe strane
poteza.

Na levoj strani poteza imamo integral,

Z2↔4
levo = |G|−8|H|−1δH(h2345)Zostatak , (8.26)

dok je sa desne strane integral

Z2↔4
desno = |G|−11|H|−3

∫
G

dg16

∫
H4

dh126dh136dh146dh156( ∏
(jk`)∈Mdesno

2

δG(gjk`)

)( ∏
(jk`m)∈Mdesno

3

δH(hjk`m)

)
Zostatak .

(8.27)

Prebrojavanjem k-simpleksa sa obe strane 2↔ 4 poteza (vidi Tabelu 8.4) dobijamo koefici-
jente ispred integrala – |G|−8|H|−1 sa leve strane poteza i |G|−11|H|−3 sa desne strane poteza.

|Λ0| |Λ1| |Λ2| |Λ3| |Λ4|
l.s. 6 14 16 9 2
d.s. 6 15 20 14 4

Tabela 8.4: Broj verteksa |Λ0|, ivica |Λ1|, trouglova |Λ2|, tetraedra |Λ3| i 4-simpleksa |Λ4| sa
obe strane 2↔ 4 poteza.

Dokaz invarijantnosti svodi se na dokaz da su izrazi (8.26) i (8.27) jednaki, pri čemu činilac
Zostatak označava deo sume koji ostaje nepromenjen po definiciji poteza.

Pahnerov potez 3 ↔ 3

(2)(4)

(1)

(6) (3)

(5)

3↔ 3

(2)(4)

(1)

(6) (3)

(5)
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Obeležimo vertekse tako da sa leve strane 3↔ 3 Pahnerovog poteza, imamo tri 4-simpleksa

M levo
4 = {(23456), (13456), (12456)} ,

a sa desne strane imamo 4-simplekse

Mdesno
4 = {(12356), (12346), (12345)} .

Sa leve strane su prisutni tetraedri M levo
3 = {(1456), (2456), (3456)}, dok su sa desne strane

prisutni Mdesno
3 = {(1234), (1235), (1236)}. Dve strane poteza dele šest tetraedara, dok se sa

svake strane nalazi tri tetraedra koje dele dva 4-simpleksa. Dalje, sa leve strane imamo trougao
M levo

2 = {(456)}, a sa desne strane poteza trougao Mdesno
2 = {(123)}. Svi ostali trouglovi, ivice

i verteksi se pojavljuju sa obe strane poteza.
Dakle, na levoj strani poteza imamo integral,

Z3↔3
levo =

∫
H

dh456δG(g456)δH(h3456)δH(h2456)δH(h1456)Zostatak , (8.28)

dok sa desne strane imamo integral:

Z3↔3
desno =

∫
H

dh123δG(g123)δH(h1234)δH(h1235)δH(h1236)Zostatak . (8.29)

Dokaz invarijantnosti svodi se na dokaz da su izrazi (8.28) i (8.29) jednaki, pri čemu činilac
Zostatak označava deo sume koji ostaje nepromenjen po definiciji poteza.
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Glava 9

Formiranje topološke sume po stanjima: 3BF
teorija

U ovom poglavlju fokusiraćemo se na drugi korak kovarijantne kvantizacione procedure spinske
pene za 3BF teoriju. Analogno postupku iz prethodnog poglavlja u slučaju sume po stanjima
za 2BF teoriju, demonstriraćemo kako se konstruiše suma po stanjima Z koja je nezavisna
od triangulacije, na osnovu klasičnog 3BF dejstva za opštu semistriktnu 3-grupu i bilo koju
triangulaciju bilo koje glatke 4-dimenzionalne prostorvremenske mnogostrukosti, kso što je to
urađeno u [27]. Moguće je formulisati 3BF teoriju samo u slučaju kada je dimenzija prostorvre-
menske mnogostrukosti d > 4, pa stoga ne razmatramo trodimenzinalni slučaj. Konstruisana
suma po stanjima je generalizacija rada Žirelija, Pfajfera i Popeskua za 2BF sumu po stanji-
ma predstavljenu u prethodnom poglavlju, tj. generalizacija Jeterovog modela, a poklapa sa
Porterovom TKTP za d = 4 i n = 3.

Slično kao i u slučaju 2BF sume po stanjima, da bismo proverili da je konstruisana suma po
stanjima topološka, analiziramo njeno ponašanje pri Pahnerovim potezima. Analiziramo samo
četvorodimenzionalni slučaj, tj. invarijantnost pri Pahnerovim potezima 3↔ 3, 4↔ 2 i 5↔ 1
i njihovim inverzima. Postavka analize ponašanja konstruisane sume po stanjima pri ovim
Pahnerovim potezima predstavljena je u odeljku 9.3, dok su detalji proračuna dati u Dodatku
E.2. Dobijeno je da suma po stanjima invarijantna na Pahnerove poteze, što dokazuje da je
topološka invarijanta mnogostrukosti [27]. Zaključujemo da je suma po stanjima nepromenje-
na pri proizvoljnom usitnjavanju triangulacije i stoga definiše teoriju kontinuuma na glatkoj
mnogostrukosti.

Međutim, da bi završili drugi korak kovarijantne kvantizacione procedure spinske pene,
neophodne su generalizacije Peter-Vejl i Planšarel teorema za slučajeve 2-grupe i 3-grupe,
matematički rezultati koji za sada predstavljaju otvorene probleme. Naime, ove teoreme
treba da obezbede dekompoziciju funkcija na 3-grupi u sumu po odgovarajućim ireducibilnim
reprezentacijama 3-grupe. Na ovaj način se određuje spektar oznaka simpleksa triangulacije, tj.
domen vrednosti polja koja žive na simpleksima triangulacije, kao što je to urađeno u slučaju
BF sume po stanjima. Trenutni pokušaji privođenja drugog koraka kvantizacije uopštenih BF
teorija u okviru viših gejdž teorija, se svode na pogađanje ireducibilnih reprezentacija 2-grupa,
kao što je urađeno na primer u slučaju spinkub modela kvantne gravitacije [15], ili drugim
tehnikama, videti na primer [45]–[47].

Svakako, ovaj rezultat otvara put ka trećem i finalnom koraku kovarijantne kvantizacione
procedure i formulaciji kvantne teorije gravitacije i materije iz Standardnog Modela nametanjem
odgovarajućih ograničenja na varijable modela modifikacijom amplituda sume po stanjima.

139
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9.1 Gejdž invarijantni objekti
Uz prethodne uslove koji važe i u slučaju 2BF teorije, u 3BF teoriji jednačine kretanja nameću
viši uslov ravnosti na 3-krivinu (F ,G,H), pa se dodatno zahteva da zapreminska holonomija
oko granične 3-sfere bilo koje 4-kugle bude trivijalna.

U odeljku 2.3 uveli smo niz operacija pomoću kojih na jeziku 3-gejdž teorije definišu kompo-
zicije puteva, površina i zapremina. Ta pravila se mogu koristiti za izračunavanje kompozicija
elementarnih puteva, površina i zapremina, sve do proizvoljno velikih. U ovom odeljku ćemo
koristiti ove kompozicije kako bismo konstruisali gejdž invarijantne veličine koje odgovaraju
zatvorenim putevima, površinama i zapreminama. U Lemama 13, 15 i 16, ovaj se postupak ko-
risti za graničnu putanju trougla, graničnu površinu tetraedra i graničnu zapreminu 4-simpleksa.
Rezultat Leme 13 je izveden za slučaj 2-grupa i ostaje nepromenjen u 3-gejdž teoriji, vidi [13].
Zahtev ravnosti granične površine tetraedra izveden u Lemi 14, uopštavamo za slučaj 3-grupa
u Lemi 15. Jedan od glavnih rezultata je Lema 16 u kojoj smo izveli uslov ravnosti granične
zapremine 4-simpleksa.

Lema 15 Posmatrajmo tetraedar (jk`m). Ivice (jk) , j < k su obeležene grupnim elementima
gjk ∈ G, trouglovi (jk`) , j < k < ` grupnim elementima hjk` ∈ H, a tetraedri mnogostrukosti
(jk`m) , j < k < ` < m grupnim elementima ljk`m ∈ L. Orijentisali smo trouglove (jk`) tako
da je kriva gk`gjk izvor 2-morfizma, a kriva gj` meta, tj. zadovoljen je uslov gj` = ∂(hjk`)gk`gjk .

Prvo presečemo površinu tetraedra po granici (jm). To određuje redosled vertikalne kompo-
zicije sastavnih površina. Moramo biti sigurni da su sve površine kompozibilne, tj. da imaju
odgovarajuće referentne tačke i ispravnu orijentaciju za vertikalnu kompoziciju.

Analizirajmo prvo kompoziciju prikazanu na dijagramu (9.1). Prvo pomeramo krivu od
gk`gjk do krive gj`. U ovom stadijumu dobijeni rezultat nije vertikalno kompozibilan sa trou-
glom (j`m), prvo mu moramo dodati g`m sa leve strane. Sada su ova dva morfizma vertikalno
kompozibilna, a dobijeni 2-morfizam prevlači krivu do gjm. Dobijeni 2-morphizam je:

m• •`g`moo •k
gk`
xx

•j
gjk
xx

gj`

[[

hjk`��

gjm

[[

hj`m}�

= (g`mgj`, hj`m)#2

(
g`m#1(gk`gjk, hjk`)

)
=
(
g`mgk`gjk, hj`m(g`m � hjk`)

)
.

(9.1)
Razmotrimo dijagram (9.2). Prvo prevlačimo krivu s g`mgk` do krive gkm. Da bi vertikalna

kompozicija dobijenog rezultata sa trouglom (jkm) bila moguća, najpre mu dodamo krivu gjk
sa desne strane. Sada su dva morfizma vertikalno kompozibilna i dobijeni 2-morfizam prevlači
krivu na gjm. Dobijen je sledeći 2-morfizam:

m• •`
g`m
yy

•k
gk`
xx

gkm

[[

hk`m��

•j
gjkoo

gjm

[[
hjkm
��

= (gkmgjk, hjkm)#2

(
(g`mgk`, hk`m)#1gjk

)
= (g`mgk`gjk, hjkmhk`m) .

(9.2)
Dve površine Σ1 : g`mgk`gjk → gjm i Σ2 : g`mgk`gjk → gjm imaju isti izvor i metu. Pre-

vlačenje povšine prikazane na dijagramu (9.1) do površine prikazane na dijagramu (9.1) dato
je zapreminskim morfizmom V : Σ1 → Σ2 obeleženim sa grupnim elementom ljk`m, tj.

(g`mgk`gjk, hjkmhk`m) =
(
g`mgk`gjk, δ(ljk`m)hj`m(g`m � hjk`)

)
, (9.3)

na osnovu čega dobijamo relaciju:

hjkmhk`m = δ(ljk`m)hj`m(g`m � hjk`) . (9.4)



141 9.1. Gejdž invarijantni objekti

Lema 16 Razmotrimo 4-simpleks, (jk`mn). Ivice (jk) , j < k, su obeležene elementima grupe
gjk ∈ G, trouglovi (jk`) , j < k < ` su obeleženi elementima grupe hjk` ∈ H, a tetraedri
(jk`m) , j < k < ` < m elemetima grupe ljk`m ∈ L. Trouglovi (jk`) su orijentisani tako da je
izvor 2-morfizma kriva gk`gjk, a njegova meta kriva gj`, tj. gj` = ∂(hjk`)gk`gjk , dok su tetraedri
(jk`m) orijentisani tako da je izvor 3-morfizma površina hj`m(g`m � hjk`) a meta površina
hjkmhk`m, tj. hjkmhk`m = δ(ljk`m)hj`m(g`m � hjk`).

Najpre isecimo zapreminu 4-simpleksa duž površine hjmngmn�(hj`mg`m�hjk`). To određuje
redosled kompozicije 3-morfizama prema gore. Pritom se moramo pobrinuti da su sve zapremine
kompozibilne, tj. da imaju odgovarajuće referentne površine i ispravnu orijentaciju kako bi
njihove kompozicije bile definisane.

Prvo, razmotrimo dijagram (9.5). Površinu hj`mg`m�hjk` prevlačimo do površine hjkmhk`m
uz pomoć 3-morfizma ljk`m. Da bi kompozicija dobijenog 3-morfizma i 2-morfizma hjmn bila
definisana moramo najpre 3-morfizmu dodati krivu gmn sa leve strane. Dobijeni 3-morfizam
(gmng`mgk`gjk, gmn � (hj`mg`m � hjk`), gmn � ljk`m) možemo vertikalno složiti sa 2-morfizmom
(gmngjm, hjmn) sa donje strane, tako da je rezultujući 3-morfizam (gmng`mgk`gjk, hjmngmn �

(hj`mg`m�hjk`), hjmn�
′ (gmn� ljk`m)), čiji je izvor površina hjmngmn� (hj`mg`m�hjk`),a meta

površina hjmngmn � (hjkmhk`m),

n• •m
gmn
yy

•`
g`m
yy

•k
gk`
xx

•j
gjk
xx

gj`

[[

hjk`��

gjm

[[

hj`m��

gjn

ZZ

hjmn
��

hjmn�
′(gmn�ljk`m)

V n• •m
gmn
yy

•`
g`m
yy

•k
gk`
xx

gkm

[[

hk`m��

•j
gjk
xx

gjm

[[

gjn

ZZ
hjkm
��hjmn

��

.

(9.5)
Sada ćemo prevući površinu do površine hjknhkmngm`�hk`m, kao što je prikazano na dijagramu
(9.6). Najpre, razmotrimo 3-morfizam (gmngkmgjk, hjmngmn�hjkm, ljkmn) čiji je izvor površina
hjmngmn � hjkm, a meta površina hjknhkmn. Ovaj 3-morfizam možemo proširiti odozgo sa 2-
morfizmom (gmng`mgk`gjk, gmn � hk`m), što rezultuje 3-morfizmom (gmng`mgk`gjk, hjmngmn �

(hjkmhk`m), ljkmn), čiji je izvor površina hjmngmn� (hjkmhk`m), a meta površina hjknhkmngmn�
hk`m,

n• •m
gmn
yy

•`
g`m
yy

•k
gk`
xx

gkm

[[

hk`m��

•j
gjk
xx

gjm

[[

gjn

ZZ
hjkm
��hjmn

��

ljkmn

V n• •m
gmn
yy

•`
g`m
yy

•k
gk`
xx

gkm

[[

gkn

[[

hk`m��

•j
gjk
xx

gjn

ZZ

hkmn��

hjkn
"*

.

(9.6)

Sledeći korak je pomeranje površine od hjknhkmngmn � hk`m do površine hjknhk`nh`mn, dija-
gram (9.7). Prvo, proširimo the 3-morfizam (gmng`mgk`, hkmngmn � hk`m, lk`mn), čiji je izvod
površina hkmngmn�hk`m i meta površina hk`nh`mn, sa krivom gjk sa desne strane, što rezultuje
3-morfizmom (gmng`mgk`gjk, hkmngmn�hk`m, lk`mn). Zatim, dobijeni 3-morfizam proširimo sa 2-
morfizmom (gkngjk, hjkn) odozdo, posle čega se dobija 3-morfizam (gmng`mgk`gjk, hjknhkmngmn�
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hk`m, hjkn �
′ lk`mn),

n• •m
gmn
yy

•`
g`m
yy

•k
gk`
xx

gkm

[[

gkn

[[

hk`m��

•j
gjk
xx

gjn

ZZ

hkmn��

hjkn
"*

hjkn�
′lk`mn

V n• •m
gmn
yy

•`
g`m
yy

g`n

\\ •k
gk`
xx

gkn

[[
hk`n
�$

•j
gjk
xx

gjn

ZZ

h`mn	�

hjkn
"*

.

(9.7)

Pomeranje površine hjknhk`nh`mn do površine hj`ng`n � hjk`h`mn prikazano je na dijagramu
(9.8), a 3-morfizam sa odgovarajućim izvorom i metom dobijen je proširenjem 3-morfizma
(g`ngk`gjk , hjknhk`n, l

−1
jk`n) sa 2-morfizmom (gmng`mgk`gjk, h`mn) sa gornje strane. Tako dobi-

jeni 3-morfizam je (gmng`mgk`gjk, hjknhk`nh`mn, l
−1
jk`n),

n• •m
gmn
yy

•`
g`m
yy

g`n

\\ •k
gk`
xx

gkn

[[
hk`n
�$

•j
gjk
xx

gjn

ZZ

h`mn	�

hjkn
"*

l−1
jk`n

V n• •m
gmn
yy

•`
g`m
yy

g`n

\\ •k
gk`
xx

•j
gjk
xx

gj`

[[

gjn

ZZ

hjk`��h`mn	�
hj`n


�

.

(9.8)

Zatim, želimo da mapiramo površinu hj`ng`n � hjk`h`mn u površinu hj`nh`mn(gmng`m) � hjk`,
videti dijagram (9.9). To je postignutno inverznom razmenjujućom 2-morfizam kompozicijom,
koja preslikava g`n � hjk`h`mn u površinu h`mn(gmng`m) � hjk`, tj. 3-morfizmom (gmng`mgk`gjk,
g`n � hjk`h`mn, {h`mn, (gmng`m) � hjk`}pf). Zatim, dobijeni 3-morfizam proširujemo sa 2-mo-
rfizmom (g`ngj`, hj`n) odozdo. Dobijeni 3-morfizam sa odgovarajućim izvorom i metom je
(gmng`mgk`gjk, hj`ng`n � hjk`h`mn, hj`n �

′ {h`mn, (gmng`m) � hjk`}pf),

n• •m
gmn
yy

•`
g`m
yy

g`n

\\ •k
gk`
xx

•j
gjk
xx

gj`

[[

gjn

ZZ

hjk`��h`mn	�
hj`n


�

hj`n�
′{h`mn,(gmng`m)�hjk`}p

V n• •m
gmn
yy

•`
g`m
yy

g`n

\\ •k
gk`
xx

•j
gjk
xx

gj`

[[

gjn

ZZ

hjk`��h`mn	�
hj`n


�

.

(9.9)
Najzad, postupak završavamo konstrukcijom 3-morfizma koji preslikava površinu hj`nh`mn
(gmng`m)�hjk` u početnu površinu hjmngmn�(hj`mg`m�hjk`). Prvo pomeramo površinu hj`nh`mn
u površinu hjmngmn � hj`m sa 3-morfizmom (gmng`mgj`, hj`nh`mn, l

−1
j`mn). Zatim, proširimo 3-

morfizam (gmng`mgj`, hj`nh`mn, l
−1
j`mn) sa 2-morfizmom (gmng`mgk`gjk, (gmng`m) � hjk`) odozgo.

Tako dobijeni 3-morfizam (gmng`mgk`gjk, hj`nh`mn(gmng`m) � hjk`, l
−1
j`mn) prevlači površinu u

površinu od koje smo krenuli, kao što je prikazano na dijagramu (9.10),

n• •m
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(9.10)
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Sada formiramo kompoziciju 3-morfizama predstavljenih dijagramima (9.5)-(9.10) prema gore,
vodeći računa o redosledu. Dobijeni 3-morfizam je:

(gmng`mgk`gjk, hj`nh`mn(gmng`m) � hjk`, l
−1
j`mn)#3

(gmng`mgk`gjk, g`n � hjk`h`mn, hj`n �
′ {h`mn, (gmng`m) � hjk`}p)#3

(gmng`mgk`gjk, hjknhk`nh`mn, l
−1
jk`n)#3

(gmng`mgk`gjk, hjknhkmngm` � hk`m, hjkn �
′ ljkmn)#3

(gmng`mgk`gjk, hjmngmn � (hjkmhk`m), ljkmn)#3

(gmng`mgk`gjk, hjmngmn � (hj`mg`m � hjk`), hjmn �
′ (gmn � ljk`m))

= (gmng`mgk`gjk, hjmngmn � (hj`mg`m � hjk`), l
−1
j`mn hj`n �

′ {h`mn, (gmng`m) � hjk`}pf

l−1
jk`n(hjkn �

′ lk`mn)ljkmnhjmn �
′ (gmn � ljk`m)) .

(9.11)

Dobijeni 3-morfizam je jedinični 3-morfizam, odnosno njegov izvor i meta su površina V1 =
V2 = hjmngmn � (hj`mg`m � hjk`), tj. važi identiet

l−1
j`mn hj`n�

′ {h`mn, (gmng`m)� hjk`}pf l
−1
jk`n(hjkn�

′ lk`mn)ljkmnhjmn�
′ (gmn� ljk`m) = e . (9.12)

9.2 Kvantizacija topološkog 3BF dejstva
U ovom odeljku predstavićemo kombinatorni opis konstrukcije 3BF sume po stanjima za bilo
koju triangulaciju mnogostrukosti dimenzije d = 4. Model je definisan za bilo koju zatvorenu
i orijentisanu kombinatornu mnogostrukostM4 dimenzije d = 4. Ovaj model se podudara sa
Porterovim TKTP [26] za d = 4 i n = 3.

Najpre ćemo demonstrirati kako se formira suma po stanjima koja odgovara klasičnom 3BF
dejstvu (6.1) uobičajenim postupkom diskretizacije. Stoga razmatramo sumu po stanjima:

Z =

∫
DαDβDγDBDC DD exp

(∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l
)
. (9.13)

Formalna integracija po Lagranževim množiteljima B, C i D daje rezultat:

Z =

∫
DαDβDγ δ(F)δ(G)δ(H) . (9.14)

Slično kao i u običnoj gejdž teoriji, 1-forma koneksije α ∈ A1(M4, g) je diskretizovana bojenjem
ivica ε = (jk) ∈ Λ1 triangulacije grupnim elementima gε ∈ G. Analogno, 2-forma koneksije
β ∈ A2(M4 , h) je reprezentovana bojenjem trouglova triangulacije ∆ = (jk`) ∈ Λ2 elementima
h∆ ∈ H, a 3-forma koneksije γ ∈ A3(M4 , l) je reprezentovana bojenjem tetraedara τ =
(jk`m) ∈ Λ3 elementima grupe lτ ∈ L.

Meru sume po stanjima (9.13) diskretizujemo smenama∫
Dα 7→

∏
(jk)∈Λ1

∫
G

dgjk , (9.15)∫
Dβ 7→

∏
(jk`)∈Λ2

∫
H

dhjk`, (9.16)∫
Dγ 7→

∏
(jk`m)∈Λ3

∫
L

dljk`m , (9.17)

gde dgjk, dhjk` i dljk`m redom označavaju integracije na grupama G, H i L.
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Uslov da lažna krivina mora nestati, dat jednačinom (8.2) u Lemi 13, diskretizovan je na
svakom trouglu (jkl) ∈ Λ2 zamenom δ(F ) sa

δG(gjk`) = δG
(
∂(hjk`) gk` gjk g

−1
j`

)
, (9.18)

uslov o trivijalnosti 3-forme krivine δ(G) za svaki tetraedar (jk`m) ∈ Λ3 na diskretizovanoj
mnogostrukosti, dat jednačinom (9.4) u Lemi 15, pretvara se u uslov

δH(hjk`m) = δH
(
δ(ljk`m)hj`m (g`m � hjk`)h

−1
k`m h

−1
jkm

)
, (9.19)

dok uslov o trivialnosti 4-forme krivine δ(H) za svaki 4-simpleks (jk`mn) ∈ Λ4 postaje identitet
(9.12) u Lemi 16:

δL(ljk`mn)=δL
(
l−1
jk`n(hjkn�

′lk`mn)ljkmn(hjmn�
′(gmn�ljk`m))h−1

j`mnhj`n�
′{h`mn,(gmng`m)�hjk`}p

)
.

(9.20)
Na osnovu prethodnog, integral po putanjama se može napisati kao suma po stanjima u
sledećem obliku:

Z =
∏

(jk)∈Λ1

∫
G

dgjk
∏

(jk`)∈Λ2

∫
H

dhjk`
∏

(jk`m)∈Λ3

∫
L

dljk`m( ∏
(jk`)∈Λ2

δG
(
gjk`
))( ∏

(jk`m)∈Λ3

δH
(
hjk`m

))( ∏
(jk`mn)∈Λ4

δL
(
ljk`mn

))
.

(9.21)

Zamenom jednačina (9.18), (9.19) i (9.20) u sumu po stanjima (9.21), dobijamo izraz pro-
porcionalan sumi (9.22). Da bi suma data izrazom (9.21) bila nezavisna od triangulacije mno-
gostrukosti moramo je pomnožiti sa odgovarajućim faktorom koji zavisi od broja verteksa, ivica,
trouglova, tetraedara i 4-simpleksa trangulacije, što rezultuje u sumi po stanjima u jednačini
(9.22).

Definicija 9.2.1 Neka je Md kompaktna orijentisana kombinatorna d-mnogostrukost, d = 4,
i neka je (L

δ→ H
∂→ G ,� , {_ ,_}pf) jedan 2-ukršteni modul. Suma po stanjima topološke

3-gejdž teorije je definisana sledećim izrazom:

Z = |G|−|Λ0|+|Λ1|−|Λ2||H||Λ0|−|Λ1|+|Λ2|−|Λ3| |L|−|Λ0|+|Λ1|−|Λ2|+|Λ3|−|Λ4|
( ∏

(jk)∈Λ1

∫
G

dgjk

)( ∏
(jk`)∈Λ2

∫
H

dhjk`

)
( ∏

(jk`m)∈Λ3

∫
L

dljk`m

)( ∏
(jk`)∈Λ2

δG
(
∂(hjk`) gk` gjk g

−1
j`

))( ∏
(jk`m)∈Λ3

δH
(
δ(ljk`m)hj`m (g`m � hjk`)h

−1
k`m h

−1
jkm

))
( ∏

(jk`mn)∈Λ4

δL
(
l−1
j`mn hj`n �

′ {h`mn, (gmng`m) � hjk`}p l
−1
jk`n(hjkn �

′ lk`mn)ljkmnhjmn �
′ (gmn � ljk`m)

))
.

(9.22)

U prethodnom izrazu integralimo po elementima gjk ∈ G za svaku ivicu (jk) ∈ Λ1, po ele-
mentima hjk` ∈ H za svaki trougao (jk`) ∈ Λ2 i po elementima ljklm za svaki tetraedar mno-
gostrukosti (jk`m) ∈ Λ3, dok δ-distribucije u podintegralnom izrazu nameću sledeće uslove na
ove vrednosti. Uslovi koje elementi trangulacije moraju da zadovoljavaju izvedeni su u Lemama
13, 15 i 16.

1. Uslov da svaki trougao (jk`) ∈ Λ2 koji nosi oznaku hjk` ima odgovarajući izvor i metu je
∂(hjk`) gk` gjk = gj`, kao što je prikazano u Lemi 13.

2. Zatim, uslov hjkm hk`m = δ(ljk`m)hj`m (g`m � hjk`) važi za svaki tetraedar (jk`m) ∈ Λ3,
tj. svaki tetraedar koji nosi oznaku ljk`m ima dobro definisan izvor i metu, vidi Lemu 15.



145 9.3. Pahnerovi potezi

3. Najzad, zapreminska holonomija oko svakog 4-simpleksa (jk`mn) ∈ Λ4 je trivijalna, tj.
l−1
j`mn hj`n�

′{h`mn, (gmng`m)�hjk`}p l
−1
jk`n(hjkn�

′lk`mn)ljkmnhjmn�
′(gmn�ljk`m) je neutralni

element grupe L za svaki 4-simpleks (jk`mn) ∈ Λ4, kao što je dokazano u Lemi 16.

Teorema 23 Neka jeM4 zatvorena i orijentisana kombinatorna d-mnogostrukost, d = 4 i (L
δ→

H
∂→ G ,� , {_ ,_}pf) jedan 2-ukršteni modul. Suma po stanjima (9.22) je invarijantna na

Pahnerove poteze.

U Dodatku E skiciraćemo dokaz invarijantnosti sume po stanjima na Pahnerove poteze [44].
U sumi po stanjima (9.22), označavanje ivica elementima gjk ∈ G, trouglova s elementima
hjk` ∈ H i tetraedra s elementima ljk`m ∈ L naziva se bojenje mnogostrukosti.

9.3 Pahnerovi potezi

9.3.1 d = 4

U četvorodimenzionalnom slučaju, da bi se proverila invarijantnost sume po stanjima (9.22)
pri lokalnim promenama triangulacije četvorodimenzione mnogostrukosti dovoljno je pokazati
da se ona ne menja pri pet Pahnerovih poteza, 1 ↔ 5, 2 ↔ 4 i 3 ↔ 3 Pahnerovim potezima
i njihovim inverzima. Postavka dokaza invarijantnosti sume po stanjima (9.22) na Pahnerove
poteze data je u ovom odeljku, dok su detalji računa prikazani u Dodatku E.2.

Pahnerov potez 1 ↔ 5

(3)

(2)

(6)

(5)

(4)

1↔ 5

(3)

(2)

(6)

(5)

(4)•
(1)

Budući da suma po stanjima (9.22) ne zavisi od načina na koji su verteksi triangulacije
obeleženi, kao ni od njihovog redoleda, invarijantnost je dovoljno utvrditi samo u jednom
slučaju. Obeležimo vertekse 4-simpleksa na levoj strani 1↔ 5 Pahnerovog pokreta sa (23456).
Dodavanjem verteksa (1) sa desne strane Pahnerovog poteza dobijamo pet novih 4-simpleksa:

M4 := {(13456), (12456), (12356), (12346), (12345)} .

Sa desne strane su prisutni dodatni tetraedri

M3 := {(1234), (1235), (1236), (1245), (1246), (1256), (1345), (1346), (1356), (1456)} ,

dodatni trouglovi

(jk`) ∈M2 := {(123), (124), (125), (126), (134), (135), (136), (145), (146), (156)} ,
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dodatne ivice (jk) ∈ M1 := {(12), (13), (14), (15), (16)} i dodatni verteksi (j) ∈ M0 := {(1)}.
Svi ostali simpleksi su prisutni sa obe strane poteza.

Invarijantnost sume po stanjima (9.22) na Pahnerov potez 1 ↔ 5 znači da je integral sa
desne strane,

Z1↔5
desno = |G|−11|H|−4|L|−1

∫
G5

∏
(jk)∈M1

dgjk

∫
H10

∏
(jk`)∈M2

dhjk`

∫
L10

∏
(jklm)∈M3

dljklm

·

( ∏
(jk`)∈M2

δG(gjk`)

)( ∏
(jk`m)∈M3

δH(hjk`m)

)( ∏
(jk`mn)∈M4

δL(ljk`mn)

)
Zostatak ,

(9.23)

jednak δ-funkciji prisutnoj na levoj strani,

Z1↔5
levo = |G|−5|H|0|L|−1δL(l23456)Zostatak . (9.24)

Faktore ispred integrala sume po stanjima, prisutne sa leve i desne strane pokreta, izraču-
navamo na osnovu jednačine (9.22), odnosno koristimo |G|−|Λ0|+|Λ1|−|Λ2|, |H||Λ0|−|Λ1|+|Λ2|−|Λ3|

i |L|−|Λ0|+|Λ1|−|Λ2|+|Λ3|−|Λ4|, gde su |Λ0|, |Λ1|, |Λ2|, |Λ3| i |Λ4| redom brojevi verteksa, ivica,
trouglova, tetraedra i 4-simpleksa u triangulaciji. Na osnovu podataka prikazanih u tabeli
9.1 sa desne strane se dobija faktor |G|−11|H|−4|L|−1, dok je faktor sa leve strane jednak
|G|−5|H|0|L|−1.

|Λ0| |Λ1| |Λ2| |Λ3| |Λ4|
l.s. 5 10 10 5 1
d.s. 6 15 20 15 5

Tabela 9.1: Broj verteksa |Λ0|, ivica |Λ1|, trouglova |Λ2|, tetraedra |Λ3| i 4-simpleksa |Λ4| sa
leve i desne strane 1↔ 5 Pahnerovog poteza.

Dokaz invarijantnosti sume po stanjima (9.22) pri 1 ↔ 5 Pahnerovom potezu svodi se na
dokaz da su izrazi (9.23) i (9.24) jednaki, pri čemu činilac Zostatak označava deo sume koji ostaje
nepromenjen po definiciji poteza. Dokaz da je Z1↔5

desno = Z1↔5
levo dat je u Dodatku E.

Pahnerov potez 2 ↔ 4

(3)(2)

(1)

(4) (5)

(6)

2↔ 4

(3)(2)

(1)

(4) (5)

(6)

Kako bi proverili invarijantnost sume po stanjima (9.22) pri 2 ↔ 4 Pahnerovom potezu,
poređajmo vertekse tako da na levoj strani poteza imamo dva 4-simpleksa

M levo
4 = {(23456), (12345)}

a na desnoj strani četiri 4-simpleksa

Mdesno
4 = {(12346), (12356), (12456), (13456)} .
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Onda, na levoj strani imamo jedan tetraedar

M levo
3 = {(2345)} ,

dok na desnoj strani imamo šest tetraedra

Mdesno
3 = {(1236), (1246), (1256), (1346), (1356), (1456)} .

Svi ostali tetraedri su prisutni na obe strane poteza. Takođe, na desnoj strani su prisutni
trougloviMdesno

2 = {(126), (136), (146), (156)} i jedna ivicaMdesno
1 = {(16)}, dok su svi preostali

trouglovi i ivice prisutni sa obe strane poteza. Takođe, svi verteksi su prisutni sa obe strane
poteza.

Dakle, koristeći izraz za definiciju sume po stanjima (9.22), na levoj strani poteza imamo
integral,

Z2↔4
levo = |G|−8|H|−1|L|−1

∫
L

dl2345δH(h2345)

( ∏
(jk`mn)∈M levo

4

δL(ljk`mn)

)
Zostatak , (9.25)

dok je sa desne strane integral:

Z2↔4
desno = |G|−11|H|−3|L|−1

∫
G

dg16

∫
H4

dh126dh136dh146dh156

∫
L

dl1236dl1246dl1256dl1346dl1356dl1456( ∏
(jk`)∈Mdesno

2

δG(gjk`)

)( ∏
(jk`m)∈Mdesno

3

δH(hjk`m)

)( ∏
(jk`mn)∈Mdesno

4

δL(ljk`mn)

)
Zostatak .

(9.26)
Prebrojavanjem k-simpleksa sa obe strane 2↔ 4 poteza (vidi Tabelu 9.2) dobijamo koefici-

jente ispred integrala, |G|−8|H|−1|L|−1 sa leve strane poteza i |G|−11|H|−3|L|−1 sa desne strane
poteza.

|Λ0| |Λ1| |Λ2| |Λ3| |Λ4|
l.s. 6 14 16 9 2
d.s. 6 15 20 14 4

Tabela 9.2: Broj verteksa |Λ0|, ivica |Λ1|, trouglova |Λ2|, tetraedra |Λ3| i 4-simpleksa |Λ4| sa
obe strane 2↔ 4 poteza.

Dokaz invarijantnosti sume po stanjima (9.22) pri 2 ↔ 4 Pahnerovom potezu svodi se na
dokaz da su izrazi (9.25) i (9.26) jednaki, pri čemu činilac Zostatak označava deo sume koji ostaje
nepromenjen po definiciji poteza. Dokaz da je Z2↔4

desno = Z2↔4
levo dat je u Dodatku E.

Pahnerov potez 3 ↔ 3

Obeležimo vertekse tako da sa leve strane 3↔ 3 Pahnerovog poteza, imamo tri 4-simpleksa

M levo
4 = {(23456), (13456), (12456)} ,

a sa desne strane imamo 4-simplekse

Mdesno
4 = {(12356), (12346), (12345)} .

Sa leve strane su prisutni tetraedri M levo
3 = {(1456), (2456), (3456)}, dok su sa desne strane

prisutni Mdesno
3 = {(1234), (1235), (1236)}. Dve strane poteza dele šest tetraedara, dok se sa
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(2)(4)

(1)

(6) (3)

(5)

3↔ 3

(2)(4)

(1)

(6) (3)

(5)

svake strane nalazi tri tetraedra koje dele dva 4-simpleksa. Dalje, sa leve strane imamo trougao
M levo

2 = {(456)}, a sa desne strane poteza trougao Mdesno
2 = {(123)}. Svi ostali trouglovi, ivice

i verteksi se pojavljuju sa obe strane poteza.
Dakle, na levoj strani poteza imamo integral,

Z3↔3
levo =

∫
H

dh456

∫
L3

dl1456dl2456dl3456δG(g456)

δH(h3456)δH(h2456)δH(h1456)δL(l23456)δL(l13456)δL(l12456)Zostatak ,

(9.27)

dok sa desne strane imamo integral:

Z3↔3
desno =

∫
H

dh123

∫
L3

dl1234dl1235dl1236δG(g123)

δH(h1234)δH(h1235)δH(h1236)δL(l12356)δL(l12346)δL(l12345)Zostatak .

(9.28)

Dokaz invarijantnosti sume po stanjima (9.22) pri 3 ↔ 3 Pahnerovom potezu svodi se na
dokaz da su izrazi (9.27) i (9.28) jednaki, pri čemu činilac Zostatak označava deo sume koji ostaje
nepromenjen po definiciji poteza.

Dobijamo da suma po stanjima definisana u (9.22) ostaje nepromenjena pri svih pet Pa-
hnerovih poteza, te stoga zaključujemo da je suma po stanjima nezavisna od triangulacije
4-dimenzionalne mnogostrukostiM4 (pogledati Dodatak E za dokaz).
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Zaključak

Rezime

U ovoj disertaciji smo se upoznali sa osnovama modela kvantne gravitacije i materije u okviru
2BF , odnosno 3BF teorije. Najpre, u poglavlju 2 je prikazan kratak pregled više kategorijske
generalizacije gejdž teorija - viših gejdž teorija, naime, 2-gejdž teorija kod kojih je simetrija
teorije data nekom 2-grupom, odnosno ukrštenim modulom (H

∂→ G ,�) i 3-gejdž teorija
kod kojih je simetrija teorije data nekom 3-grupom, odnosno 2-ukrštenim modulom (L

δ→
H

∂→ G, �, {_, _}pf). Takođe, uvedeni su neophodni matematički objekti za formiranje 3BF
teorije — 3-koneksija (α, β, γ), gde su diferencijalne forme elementi algebri α ∈ A1(M4 , g),
β ∈ A2(M4 , h) i γ ∈ A3(M4 , l) i lažna 3-krivina (F ,G ,H), gde su F ∈ A2(M4 , g), G ∈
A3(M4 , h) i H ∈ A4(M4 , l). Zatim, u poglavlju 3 je prikazan kratak pregled Hamiltonove
analize sistema sa vezama sa definicijama kanonskog i totalnog Hamiltonijana, primarnih i
sekundarnih veza, veza prve i druge klase, kao i načinom izračunavanja broja stepeni slobode
u teoriji i Kastelanijevom procedurom za izračunavanje generatora gejdž simetrija.

Nakon toga, u poglavlju 4 je razmatrana BF teorija i urađena je kompletna Hamiltonova
analiza za topološko BF dejstvo. Dobijeno je da, očekivano, BF dejstvo opisuje teoriju bez
lokalnih propagirajućih stepeni slobode. Kastelanijevom procedurom je izračunat generator
gejdž simetrija u BF teoriji i izračunate su varijacije formi za sve varijable u teoriji i njihove
konjugovane impulse. Na osnovu ovih rezultata, dobijena su dva tipa gejdž transformacija
simetrija u BF teoriji — G-gejdž i M -gejdž transformacije, koje su već poznate u literaturi,
kao i komutacione relacije ukupne grupe gejdž simetrija BF dejstva GBF = Gn M̃ . Ovde je
G podgrupa ukupne grupe simetrija koju formiraju G-gejdž transformacije, a M̃ invarijantna
podgrupa ukupne grupe simetrija koju formiraju M -gejdž transformacije. Varijacije formi koje
odgovaraju difeomorfizmima prikazane su kao zbir varijacija formi varijabli pri gejdž transfo-
rmacijama i varijacija formi pri HT transformacijama za konkretan izbor parametara, pa je
time demonstrirano da je BF teorija invarijantna na difeomorfizme. Zatim, razmatrana su
dva za fiziku relevantna modela koji poseduju lokalne propagirajuće stepene slobode, dobijena
dodavanjem odgovarajućih članova, veza, u BF dejstvo. Prvi razmatrani primer takvog dejstva
je Jang-Milsova teorija za SU(N) grupu u prostoru Minkovskog, a drugi je Plebanski model za
Opštu relativnost.

Prateći istu liniju izlaganja, u poglavlju 5 je razmatrana viša kategorijska generalizacija
BF teorije — 2BF teorija, u literaturi poznata i kao BFCG teorija. Sprovedena je komple-
tna Hamiltonova analiza za topološko 2BF dejstvo. Kao i u slučaju BF teorije, dobijeno je
da je 2BF topološka teorija bez lokalnih propagirajućih stepeni slobode. Nakon izračunatog
generatora i varijacija formi varijabli i njihovih konjugovanih impulsa, dobijene su konačne
transformacije simetrija za 2BF dejstvo: G-gejdž, H-gejdž, M -gejdž i N -gejdž transformacije.
Ukupna gejdž grupa simetrija dobijena je kao G2BF = Gn (H̃ n (Ñ × M̃)), gde su grupe G

149



Glava 10. Zaključak 150

i M̃ definisane kao i u slučaju BF teorije, Ñ je grupa N -gejdž transformacija, a grupa H̃ je
grupa H-gejdž transformacija. Slično kao i slučaju BF teorije, dobijeni su konkretni izbori
gejdž parametara i HT parametara koji daju difeomorfizam transformacije. Pokazano je kako
Opštu relativnost možemo prikazati kao 2BF teoriju sa vezama za konkretan izbor 2-grupe
simetrija. Na kraju, poslednji odeljak poglavlja 5 posvećen je diskusiji Ajnštajn-Jang-Milsove
teorije, odnosno teoriji gravitacije i gejdž polja formulisanoj kao 2BF teorija sa vezama. Pre-
dnost ove formulacije Opšte relativosti u odnosu na formulaciju preko BF teorije leži u tome što
struktura 2-grupe uvodi tetradna polja u topološko dejstvo, što otvara mogućnost kuplovanja
materije sa gravitacijom na pravolinijski način. Ipak, polja materije ne mogu biti prirodno
izražena u okviru algebarske strukture 2-grupe, tj. sektor materije u dejstvu ne može biti
napisan kao zbir topološkog člana i veze. Kako bi to bilo postignuto, neophodan je još jedan
korak više kategorijske generalizacije BF teorije — tzv. 3BF teorija.

Konačno, poslednje poglavlje u prvom delu disertacije, poglavlje 6, posvećeno je klasičnoj
3BF teoriji. Nakon Hamiltonove analize teorije i postupka analognog onom u slučaju BF i
2BF teorije, dobijeno je da je 3BF teorija invarijantna na pet vrsta gejdž transformacija —
G-gejdž, H-gejdž, L-gejdž,M -gejdž i N -gejdž transformacije. Analiza transformacija simetrija,
tj. izračunavanje komutatora generatora ovih transformacija, ukazala je na jednu bitnu razliku
u odnosu na 2BF teoriju, a to je da u 3BF -teoriji H-gejdž transformacije ne čine grupu.
Dobijena je ukupna gejdž grupa simetrije G3BF = Gn (H̃L n (Ñ × M̃)), gde je H̃L grupa koju
formiraju H-gejdž i L-gejdž transformacije, dok su ostale grupe definisane kao u slučaju 2BF
teorije. Zatim su diskutovane 3BF teorije sa vezama koje opisuju modele sa netrivijalnom
dinamikom, dobijene modifikacijom topološkog 3BF dejstva dodavanjem odgovarajućih veza.
Razmatrane su teorije koje opisuju Klajn-Gordonovo i Dirakovo polje u zakrivljenom prostoru,
formulisane kao 3BF dejstvo sa vezama. Radi kompletnosti, analizirano je i Vajlovo i Majorana
polje u interakciji sa Ajnštajn-Kartanovom gravitacijom. Ovi rezultati su zatim primenjeni za
konstrukciju 3BF dejstva sa vezama koje opisuje svu materiju prisutnu u Standardnom Modelu
kuplovanu sa gravitacionim poljem. Na kraju ovog poglavlja, predstavljen je jednostavan model
koji opisuje skalarnu elektrodinamiku kao 3BF teoriju sa vezama.

Drugi deo disertacije posvećen je kvantnoj teoriji. U poglavlju 7 razmatrana je konstrukci-
ja topološke BF sume po stanjima u slučaju trodimenzionalne i četvorodimenzionalne mno-
gostrukosti uobičajenom kvantizacionom procedurom spinske pene. U trodimenzionalnom
slučaju, dobijena suma po stanjima daje kvantnu teoriju 3D gravitacije — Ponzano-Redže
model, što je posledica činjenice da na klasičnom nivou odgovarajuća teorija nema lokalne propa-
girajuće stepene slobode. Zatim je predstavljena konstrukcija BF topološke sume po stanjima u
realnom slučaju četvorodimenzionalne prostorvremenske mnogostrukosti — tzv. Ouguri model.
Međutim, kako u 4D teorija gravitacije nije topološka teorija, dobijena suma po stanjima ne
predstavlja fizičku teoriju, a kvantna teorija gravitacije može se dobiti modifikacijom amplituda
topološke sume po stanjima. Poslednji, treći korak kvantizacione procedure spinske pene, tj.
nametanje veza na varijable prisutne u topološkom sektoru dejstva modifikacijom amplituda
topološke sume po stanjima, izlazi iz okvira ove disertacije.

U poglavlju 8 sproveden je drugi korak kovarijantne kvantizacione procedure spinske pene
za 2BF teoriju. Demonstrirano je kako se konstruiše suma po stanjima Z koja je nezavisna od
triangulacije, na osnovu klasičnog 2BF dejstva za opštu striktnu 2-grupu i bilo koju triangu-
laciju bilo koje glatke d-dimenzionalne prostorvremenske mnogostrukosti, za slučaje d ∈ {3, 4}.
Za d = 3, kontruisana suma po stanjima je upravo Jeterov model, dok se za d = 4 poklapa sa
Porterovom TKTP za d = 4 i n = 2. Analizirano je ponašanje konstruisane sume po stanjima
pri Pahnerovim potezima, lokalnim promenama triangulacije koje čuvaju topologiju, tako da su
bilo koje dve triangulacije iste mnogostrukosti povezane konačnim brojem Pahnerovih poteza.
U trodimenzionalnom slučaju postoje četiri Pahnerova poteza — potezi 1↔ 4 i 2↔ 3 i njihovi
inverzi, dok u 4 dimenzije postoji pet različitih Pahnerovih poteza — potezi 3 ↔ 3, 4 ↔ 2 i
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5 ↔ 1 i njihovi inverzi. Postavka analize ponašanja konstruisane sume po stanjima pri ovim
Pahnerovim potezima predstavljena je u odeljku 8.3, dok su detalji računa dati u Dodatku E.1.
Dobijeno je da suma po stanjima ostaje nepromenjena pri ovim transformacijama triangulacije,
što dokazuje da je topološka invarijanta mnogostrukosti. Kako je nezavisna od triangulacije,
suma po stanjima je invarijantna na proizvoljno usitnjavanje triangulacije i stoga definiše teoriju
kontinuuma na glatkoj mnogostrukosti.

Konačno, u poslednjem poglavlju, poglavlju 9, fokusirali smo se na drugi korak kovari-
jantne kvantizacione procedure spinske pene za 3BF teoriju. Analogno postupku iz prethodnog
poglavlja u slučaju sume po stanjima za 2BF teoriju, demonstrirano je kako se konstruiše
suma po stanjima Z koja je nezavisna od triangulacije, na osnovu klasičnog 3BF dejstva za
opštu semistriktnu 3-grupu i bilo koju triangulaciju bilo koje 4-dimenzionalne prostorvremenske
mnogostrukosti. Kako je moguće formulisati 3BF teoriju samo u slučaju kada je dimenzi-
ja prostorvremenske mnogostrukosti d > 4, razmatran je samo slučaj d = 4. Konstruisana
suma po stanjima je generalizacija rada Žirelija, Pfajfera i Popeskua za 2BF sumu po stanji-
ma predstavljenu u prethodnom poglavlju, tj. generalizacija Jeterovog modela, a poklapa sa
Porterovom TKTP za d = 4 i n = 3. Slično kao i u slučaju 2BF sume po stanjima, kako
bismo proverili da je konstruisana suma po stanjima topološka, analizirano je njeno ponašanje
pri Pahnerovim potezima u slučaju četvorodimenzionalne mnogostrukosti, tj. invarijantnost
pri potezima 3↔ 3, 4↔ 2 i 5↔ 1 i njihovim inverzima. Analiza ponašanja konstruisane sume
po stanjima pri Pahnerovim potezima predstavljena je u odeljku 9.3, sa detaljima u Dodatku
E.2. Ponovo je dobijeno da je suma po stanjima invarijantna na Pahnerove poteze, tj. da je
topološka invarijanta mnogostrukosti.

U dodacima su prikazani računski detalji koji prate osnovni tekst.

Diskusija i budući pravci istraživanja

Kategorijska generalizacija BF dejstva na 3BF dejstvo pružila je značajan uvid u sadržaj
sektora materije. Pokazano je kako su polja materije u teoriji određena izborom gejdž grupe
L, elementom 2-ukrštenog modula (L

δ→ H
∂→ G, �, {_, _}pf). Grupa L je potpuno nova

struktura koja nije prisutna u Standardnom Modelu i u potpunosti proizilazi iz više kategori-
jske strukture teorije. Tako su formulisane gejdž grupe koje odgovaraju Klajn-Gordonovom,
Dirakovom, Vajlovom i Majorana polju i konstruisana odgovarajuća 3BF dejstva koja opisuju
dinamiku ovih polja kuplovanih sa gravitacijom na standardan način. Zatim, jednostavnim
izborom grupe L kao direktnog proizvoda grupa koje odgovaraju pojedinačnim relevantnim
poljima u Standardnom Modelu, tj. kao L = R4(C) × R64(G) × R64(G) × R64(G), dobijena je
grupa koja opisuje materiju kompletnog Standardnog Modela i formulisana je teorija gravitacije
i polja materije kao 3BF teorija sa vezama. Ovakav izbor 3-grupe je trivijalan, u smislu da je
grupa L izabrana kao direktni proizvod, a Pajferovo podizanje i preslikavanja ∂ i δ kao trivi-
jalna. Različitim izborom 3-grupe mogu se konstruisani različiti modeli gravitacije i materije,
slično kao što je to rađeno u okviru teorija velikog ujedinjenja1, gde su konstruisani razni modeli
vektorskog polja različitim izborima Jang-Milsove gejdž grupe. Postavlja se pitanje da li po-
stoji neki bolji izbor 3-grupe koji bi odgovarao teoriji gravitacije sa materijom, a koji bi pružio
odgovor na neke od otvorenih pitanja Standardnog Modela. Mogućnost netrivijalnog ujedinje-
nja polja u teoriji je interesantan budući pravac istraživanja u kome leži najveći potencijal ovog
pristupa.

U prvom delu teksta urađena je Hamiltonova analiza topološkog BF , 2BF i 3BF dejstva.
Međutim, kao topološka dejstva, ona ne opisuju realistične fizičke teorije koje sadrže lokalne
propagirajuće stepene slobode. Uvođenje fizičkih stepeni slobode postiže se nametanjem veza
na topološko dejstvo. Formulisana 2BF , odnosno 3BF dejstva sa vezama za netopološke teorije,

1eng. Grand Unified Theory (GUT).
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konkretno 2BF dejstva sa vezama koja opisuju Jang-Milsovo polje i Ajnštajn-Kartanovu grav-
itaciju, kao i 3BF dejstva sa vezama koja opisuju Klajn-Gordonovo, Dirakovo, Vejlovo i Majo-
rana polje kuplovana sa gravitacijom na standardni način napisana su u obliku sume topološkog
člana i člana sa vezama. Prirodan sledeći korak ovog pravca istraživanja bila bi Hamiltonova
analiza svih takvih 2BF , odnosno 3BF modela gravitacije kuplovanih sa različitim vektorskim
poljima i poljima materije i proučavanje njihovih simetrija.

Dobijena je grupa simetrija G3BF koja opisuje gejdž simetrije topološkog 3BF dejstva.
Međutim, fizičke teorije opisane su modifikovanim 3BF dejstvima, dobijenim dodavanjem veza,
čije grupe simetrija predstavljaju neku podgrupu ukupne grupe simetrija topološkog dejstva.
Ovako eksplicitno narušena grupa simetrija, dalje se može spontano narušiti Higsovim meha-
nizmom, što predstavlja jedan od zanimljivih budućih pravaca istraživanja.

Jedan važan rezultat je veza između 2-ukrštenog modula i grupe simetrija 3BF dejstva,
tzv. dualnost. Iz izračunatih komutacionih relacija Lijeve algebre grupe simetrije G3BF vidi
se da strukturne konstante zavise od izbora grupa G, H i L 2-ukrštenog modula (L

δ→ H
∂→

G, �, {_, _}pf), dejstva � i simetričnog dela Pajferovog podizanja {_, _}pf . Međutim, grupa
G3BF ne zavisi od antisimetričnog dela Pajferovog podizanja, niti od homomorfizama ∂ i δ.
Na osnovu ovog rezultata sledi da može postojati nekoliko različitih 2-ukrštenih modula du-
alnih istoj grupi simetrija G3BF , odnosno ne postoji korespondencija jedan-na-jedan između
2-ukrštenog modula i grupe simetrija odgovarajućeg 3BF dejstva. Ovaj rezultat može imati
praktičnu primenu u konstrukciji 3BF modela, gde bismo dakle prvo definisali izbor grupe G3BF

koji odgovara željenoj simetriji modela, a koji automatski fiksira izbor grupa G, H i L, dejstva
� i simetričnog dela Pajferovog podizanja, a zatim definisali preostale elemente 2-ukrštenog
modula tako da su zadovoljene sve aksiome definicije 2-ukrštenog modula.

U drugom delu teze konstruisana je topološka suma po stanjima Z za opštu semistriktnu 3-
grupu i 4D prostorvremensku mnogostrukostM4 i dokazano je da je ona topološka invarijanta
te mnogostrukosti. Konstruisana suma po stanjima predstavlja kombinatornu konstrukciju
topološke kvantne teorije polja (TKTP) u smislu Atijinih aksioma, što se može eksplicitno
proveriti. Dokaz da suma po stanjima zadovoljava Atijine aksiome prevazilazi okvire ove teze i
ostavljen je za dalji rad.

Ipak, da bi uspešno završili drugi korak kovarijantne kvantizacione procedure spinske pene,
neophodne su generalizacije Peter-Vejlove i Planšarelove teorema za slučajeve 2-grupe i 3-
grupe, matematički rezultati koji za sada predstavljaju otvorene probleme. Naime, ove teoreme
treba da obezbede dekompoziciju funkcija na 3-grupi u sumu po odgovarajućim ireducibilnim
reprezentacijama 3-grupe. Na ovaj način se određuje spektar oznaka simpleksa triangulacije, tj.
domen vrednosti polja koja žive na simpleksima triangulacije, kao što je to urađeno u slučaju
BF sume po stanjima. Trenutni pokušaji privođenja kraju drugog koraka kvantizacije uopštenih
BF teorija u okviru viših gejdž teorija se svode na pogađanje ireducibilnih reprezentacija 2-
grupa, kao što je urađeno na primer u slučaju spinkub modela kvantne gravitacije.

Ovaj rezultat otvara put ka trećem i finalnom koraku kovarijantne kvantizacione procedure
spinske pene. Kako je cilj da opišemo realnu fizičku teoriju, tj. teoriju koja sadrži lokalne
propagirajuće stepene slobode, potrebno je konstruisati netopološku sumu po stanjima koja
opisuje teoriju sa netrivijalnom dinamikom. Poslednji, treći korak kvantizacione procedure
spinske pene podrazumeva nametanje veza koje deformišu topološku teoriju u fizičku teoriju.
Nastavak ovog istraživanja ima za cilj formulaciju sume po stanjima koja opisuje kvantnu teoriju
gravitacije kuplovanu sa materijom. Izgradnju ovog modela ostavljamo za budući rad.

Ova lista nije kompletna, pa pored navedenih tema postoje i mnogobrojni drugi pravci
istraživanja u okviru viših kategorijskih generalizacija BF teorija, kako u fizici tako i u matem-
atici.



Dodatak A

Konstrukcija dejstva invarijantnog na gejdž
transformacije

A.1 Konstrukcija 2BF dejstva

Simetrične bilinearne invarijantne forme za algebre h i g obeležavamo kao:

〈ta , tb〉h = gab , 〈τα , τβ〉g = gαβ . (A.1)

Bilinearne forme imaju osobine:

• 〈_ ,_〉g je G-invarijantna:

〈gταg−1 , gτβg
−1〉g = 〈τα , τβ〉g , ∀g ∈ G ; (A.2)

• 〈_ ,_〉h je G-invarijantna

〈g � ta , g � tb〉h = 〈ta , tb〉h , ∀g ∈ G , (A.3)

a takođe i H-invarijantna:

〈htah−1 , htbh
−1〉h = 〈∂(h) � ta , ∂(h) � tb〉h = 〈ta , tb〉h , ∀h ∈ H . (A.4)

A.1.1 2-Gejdž transformacije 2-krivine

Grupe G i H ukrštenog modula (H
∂→ G,�) generišu dva tipa 2-gejdž transformacija 2-

koneksije, definisanih izrazima (2.47) i (2.48).

Teorema 24 Kompozicija G-gejdž i H-gejdž transformacija dovodi do transformacije 2-koneksi-
je:

α′′ = g−1αg + g−1dg + ∂(η) ,

β′′ = g−1 � β + dη + α′′ ∧� η − η ∧ η ,
(A.5)

gde su g :M4 → G i η ∈ A1(M4, h) redom parametri G- i H-gejdž transformacija.

Dokaz. Pri G-gejdž transformacijama 2-koneksija (α, β) se transformiše po pravilu (2.47):

α′ = g−1αg + g−1dg ,

β′ = g−1 � β .
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Daljom transformacijom 2-koneksije H-gejdž transformacijama po pravilu (2.48) dobija se:

α′′ = α′ + ∂(η) = g−1αg + g−1dg + ∂(η) ,

β′′ = β′ + dη + α′′ ∧� η − η ∧ η = g−1 � β + dη +
(
g−1αg + g−1dg + ∂(η)

)
∧� η − η ∧ η .

Time smo dokazali Teoremu 24.
Na osnovu definicije (2.36) i transformacionih pravila za 2-koneksiju (2.47) i (2.48), dobijaju

se transformacije 2-krivine (F ,G) pri 2-gejdž transformacijama.

Teorema 25 Pri G-gejdž transformacijama 2-krivina (F ,H) se transformiše na sledeći način

F → g−1Fg , G → g−1 � G , (A.6)

gde je g :M4 → G parametar G–gejdž transformacija.

Dokaz. Primenom definicije 2-krivine, dobijamo da se pri G-gejdž transformacijama krivina F
transformiše kao

F ′ = dα′ + α′ ∧ α′ − ∂β′

= d(g−1αg + g−1dg) + (g−1αg + g−1dg) ∧ (g−1αg + g−1dg)− ∂(g−1 � β)

= dg−1 ∧ αg + g−1dαg − g−1α ∧ dg + dg−1 ∧ dg

+g−1αg ∧ g−1αg + g−1αg ∧ g−1dg + g−1dg ∧ g−1αg + g−1dg ∧ g−1dg − g−1 � ∂(β)

= dg−1 ∧ αg + g−1dαg + dg−1 ∧ dg

+g−1α ∧ αg − dg−1 ∧ αg − dg−1 ∧ dg − g−1 � ∂(β)

= g−1dαg + g−1α ∧ αg − g−1 � ∂(β)

= g−1Fg ,
(A.7)

gde smo koristili g−1dg = −dg−1g. Pri G-gejdž transformacijama krivina G se transformiše na
sledeći način

G ′ = dβ′ + α′ ∧� β′

= d(g−1 � β) + (g−1αg + g−1dg) ∧� (g−1 � β)

= dg−1 ∧� β + g−1 � dβ + (g−1αg) ∧� (g−1 � β)− dg−1 ∧� β
= g−1 � dβ + g−1 � (α ∧� β)

= g−1 � G .

(A.8)

Time smo dokazali tvrđenje Teoreme 25.

Teorema 26 Pri H-gejdž transformacijama 2-krivina se transformiše po zakonu transformacije

F → F , G → G + F ∧� η , (A.9)

gde je η ∈ A1(M4, h) parametar H-gejdž transformacija.
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Dokaz. Primenom definicije 3-krivine, dobijamo da je krivina F invarijantna na H-gejdž tra-
nsformacije

F ′′ = dα′′ + α′′ ∧ α′′ − ∂β′′

= d(α + ∂η) + (α + ∂η) ∧ (α + ∂η)− ∂(β + dη + (α + ∂η) ∧� η − η ∧ η)

= dα + α ∧ α + α′′ ∧ ∂η + ∂η ∧ α′′ − ∂β − ∂(α′′ ∧� η)

= dα + α ∧ α− ∂β

= F ,

(A.10)

gde smo primenili identitete:

d(∂η) = ∂(dη) ,

∂(η ∧ η) = ∂η ∧ ∂η ,
α′′ ∧ ∂η + ∂η ∧ α′′ = ∂(α′′ ∧� η) .

Pri H-gejdž transformacijama krivina G se transformiše na sledeći način:

G ′′ = dβ′′ + α′′ ∧� β′′

= d(β + dη + α′′ ∧� η − η ∧ η) + (α + ∂η) ∧� (β + dη + α′′ ∧� η − η ∧ η)

= dβ + dα′′ ∧� η − α′′ ∧� dη − dη ∧ η + η ∧ dη

+α ∧� (β + dη + α′′ ∧� η − η ∧ η) + ∂η ∧� (β + dη + α′′ ∧� η − η ∧ η)

= dβ + dα ∧� η + d(∂η) ∧� η − ∂η ∧� dη − dη ∧ η + η ∧ dη

+α ∧� β + (α ∧ α) ∧� η + α ∧� (∂η ∧� η)− α ∧� (η ∧ η)

−∂β ∧� η + ∂η ∧� dη + ∂η ∧� (α ∧� η) + ∂η ∧� (∂η ∧� η)− ∂η ∧� (η ∧ η)

= dβ + dα ∧� η + α ∧� β + (α ∧ α) ∧� η − ∂β ∧� η

= G + F ∧ η .

(A.11)

Ovde smo koristili sledeće identitete:

dη ∧ η − η ∧ dη = d(∂η) ∧� η ,
α ∧� (α ∧� η) = (α ∧ α) ∧� η ,

∂η ∧� β = −∂β ∧� η ,
α ∧� (η ∧ η) = α ∧� (∂η ∧� η) + ∂η ∧� (α ∧� η) ,

∂η ∧� (∂η ∧� η)− ∂η ∧� (η ∧ η) = 0 .

Time smo dokazali tvrđenje Teoreme 26.

Teorema 27 Pri 2-gejdž transformacijama 2-krivina (F ,G) se transformiše na sledeći način:

F → g−1 � F ,
G → g−1 � G + (g−1 � F) ∧� η ,

(A.12)

gde su g :M4 → G i η ∈ A1(M4, h) redom parametri G- i H-gejdž transformacija.

Dokaz. Uzatopnom transformacijom 2-krivine najpre G-gejdž transformacijom definisanom u
Teoremi 25, a zatim H-gejdž transformacijom definisanom u Teoremi 26 dobijamo rezultat
Teoreme 27.
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A.1.2 2-Gejdž transformacije Lagranževih množitelja

Korišćenjem G-invarijntne simetrične nedegenerisane bilinearne forme u g i h, može se definisati
bilinearno antisimetrično preslikavanje T : h× h→ g na sledeći način [17]:

〈T (h1, h2) , g〉g = −〈h1, g � h2〉h, ∀h1, h2 ∈ h , ∀g ∈ g . (A.13)

U prethodnom izrazu podvučeni simboli obeležavaaju elemente algebri, a nepodvučeni elemente
grupa, što je notacija koju podrazumevamo i u daljem tekstu.

Za svako g ∈ G i svake h1, h2 ∈ h važi

〈h1, g � h2〉h = −〈g � h1, h2〉h = −〈h2, g � h1〉h .

Može se pokazati da za sve g ∈ G i h1, h2 ∈ h, važi:

T (g � h1, g � h2) = gT (h1, h2)g−1 . (A.14)

Pokažimo to. Za neko g
0
∈ g, primenom osobina G-invarijantnosti 〈_,_〉g i 〈_,_〉h dobijamo:

〈g−1T (g � h1, g � h2)g, g
0
〉g = 〈T (g � h1, g � h2), gg

0
g−1〉g

= −〈g � h1, (gg0
g−1) � g � h2〉h

= −〈h1, g0
� h2〉h

= 〈g
0
, T (h1, h2)〉g

= 〈T (h1, h2), g
0
〉g .

Zadovoljen je sledeći identitet:

T (g
0
� h1, h2) + T (h1, g0

� h2) = [g
0
, T (h1, h2)] .

Nakon fiksiranja bazisa, možemo definisati koeficijent bilinearnog antisimetričnog preslikavanja
T : h× h→ g na sledeći način

T (ta, tb) = T abατα , (A.15)

pa definiciju preslikavanja T možemo izraziti koristeći ovaj koeficijent:

Tabαgαβ = −�α[b
cga]c . (A.16)

Bilinearno antisimetrično preslikavanje T dve diferencijalne forme elemenata algebre h, η i ω,
definiše diferencijalnu formu element algebre g:

ω ∧T η = ωa ∧ ηbT abατα .

Preslikavanje T igra ključnu ulogu u konstrukciji 2BF dejstva invarijantnog na 2-gejdž transfo-
rmacije, tj. definiciji zakona transformacije Langranževih množitelja pri 2-gejdž tranformaci-
jama.

Kako bi dejstvo (5.1) bilo gejdž invarijantno pri transformacijama krivina (2.47) i (2.48),
Lagranževi množitelji B ∈ A2(M, g) i C ∈ A1(M, h) moraju se pri G-gejdž transformacijama
transformisati na sledeći način

B → B′ = g−1Bg , C → C ′ = g−1 � C , (A.17)

a pri H-gejdž transformacijama

B → B′′ = B + C ′′ ∧T η , C → C ′′ = C , (A.18)

gde je preslikavanje T definisano jednačinom (A.13).
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A.2 Konstrukcija 3BF dejstva

Simetrične bilinearne invarijantne forme za algebre l, h i g obeležavamo kao:

〈TA , TB〉l = gAB , 〈ta , tb〉h = gab , 〈τα , τβ〉g = gαβ . (A.19)

Bilinearne forme imaju osobine:

• 〈_ ,_〉g je G-invarijantna:

〈gταg−1 , gτβg
−1〉g = 〈τα , τβ〉g , ∀g ∈ G ; (A.20)

• 〈_ ,_〉h je G-invarijantna:

〈g � ta , g � tb〉h = 〈ta , tb〉h , ∀g ∈ G , (A.21)

a kada je (H
∂→ G ,�) ukršteni modul, takođe i H-invarijantna:

〈htah−1 , htbh
−1〉h = 〈∂(h) � ta , ∂(h) � tb〉h = 〈ta , tb〉h , ∀h ∈ H ; (A.22)

• 〈_ ,_〉l je G-invarijantna:

〈g � TA , g � TB〉l = 〈TA , TB〉l , ∀g ∈ G , (A.23)

a u specijalnom slučaju kada je Pajferovo podizanje ili preslikavanje δ trivijalno takođe i
H-invarijantna:

〈h�′ TA , h�′ TB〉l = 〈TA − {δ(TA), h} , TB − {δ(TB), h}〉l = 〈TA , TB〉l , ∀h ∈ H .
(A.24)

IzH-invarijantnosti 〈_ ,_〉l i osobina ukrštenog modula (L
δ→ H ,�′) sledi L-invarijantnost

bilinearne forme:

〈lTAl−1 , lTBl
−1〉l = 〈δ(l) �′ TA , δ(l) �′ TB〉l = 〈TA , TB〉l , ∀l ∈ L . (A.25)

A.2.1 3-Gejdž transformacije 3-krivine

Struktura 3-grupe, tj. 2-ukrštenog modula (L
δ→ H

∂→ G,�, {_,_}pf), generiše tri tipa gejdž
transformacija, G-, H- i L-gejdž transformacije 3-koneksije definisane izrazima (2.128), (2.129)
i (2.130).

Teorema 28 Kompozicija G-gejdž, H-gejdž i L-gejdž transformacija dovodi do transformacije
3-koneksije:

α̃ = g−1αg + g−1dg + ∂(η) ,

β̃ = g−1 � β + dη + α̃ ∧� η − η ∧ η − δ(θ) ,
γ̃ = g−1 � γ − dθ − α̃ ∧ θ − β̃ ∧{,} η − η ∧{,} (g−1 � β) + η ∧�′ θ ,

(A.26)

gde su g : M4 → G, η ∈ A1(M4, h) i θ ∈ A2(M4, l) redom parametri G-, H- i L-gejdž
transformacija.
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Dokaz. Pri G-gejdž transformacijama 3-koneksija se transformiše po pravilu (2.128):

α′ = g−1αg + g−1dg ,

β′ = g−1 � β ,

γ′ = g−1 � γ .

Pri H-gejdž transformacijama transformiše se po pravilu (2.129):

α′′ = α′ + ∂(η) = g−1αg + g−1dg + ∂(η) ,

β′′ = β′ + dη + α′′ ∧� η − η ∧ η = g−1 � β + dη +
(
g−1αg + g−1dg + ∂(η)

)
∧� η − η ∧ η ,

γ′′ = γ′ − β′′ ∧{,} η − η ∧{,} β′

= g−1 � γ −
(
g−1 � β + dη +

(
g−1αg + g−1dg + ∂(η)

)
∧� η − η ∧ η

)
∧{,} η − η ∧{,} (g−1 � β) .

Pri L-gejdž transformacijama koneksija se transformiše po pravilu (2.130):

α̃ = α′′ = g−1αg + g−1dg + ∂(η) ,

β̃ = β′′ − δ(θ) = g−1 � β + dη +
(
g−1αg + g−1dg + ∂(η)

)
∧� η − η ∧ η − δ(θ)

= g−1 � β + dη + α̃ ∧� η − η ∧ η − δ(θ) ,
γ̃ = γ′′ − dθ − α̃ ∧� θ

= g−1 � γ −
(
g−1 � β + dη +

(
g−1αg + g−1dg + ∂(η)

)
∧� η − η ∧ η

)
∧{,} η

− η ∧{,} (g−1 � β)− dθ −
(
g−1αg + g−1dg + ∂(η)

)
∧� θ

= g−1 � γ − β̃ ∧{,} η − η ∧{,} (g−1 � β)− dθ − α̃ ∧� θ − η ∧�′ θ ,

gde smo koristili identitet δ(θ) ∧{,} η = −η ∧�′ θ.
Na osnovu definicije (2.118) i transformacionih pravila za 3-koneksiju, dobija se transfor-

macija 3-krivine (F ,G,H) pri 3-gejdž transformacijama.

Teorema 29 Pri G-gejdž transformacijama 3-krivina (F ,G,H) se transformiše na sledeći način

F → F ′ = g−1Fg , G → G ′ = g−1 � G , H → H′ = g−1 �H , (A.27)

gde je g :M4 → G parametar G-gejdž transformacija.

Dokaz.
Primenom definicije 3-krivine i transformacionog pravila 3-koneksije pri G-gejdž transfo-

rmacijama, dobijamo da se pri G-gejdž transformacijama krivina F transformiše na isti način
kao u slučaju 2BF teorije.

Pri G-gejdž transformacijama krivina G se transformiše na sledeći način

G ′ = dβ′ + α′ ∧� β′ − δ(γ′)

= d(g−1 � β) + (g−1αg + g−1dg) ∧� (g−1 � β)− δ(g−1 � γ)

= g−1 �G− g−1 � δ(γ)

= g−1 � G ,

(A.28)
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gde smo treći red dobili na sličan način kao u slučaju 2BF teorije i primenom osobine preslika-
vanja δ. Pri G-gejdž transformacijama krivina H se transformiše na sledeći način

H′ = dγ′ + α′ ∧� γ′ + β′ ∧{,} β′

= d(g−1 � γ) + (g−1αg + g−1dg) ∧� (g−1 � γ) + g−1 � β ∧{,} g−1 � β

= dg−1 ∧� γ + g−1 � dγ + (g−1αg) ∧� (g−1 � γ)− dg−1 ∧� γ + g−1 � β ∧{,} g−1 � β

= g−1 � γ + g−1 � (α ∧ γ) + g−1 � (β ∧{,} β)

= g �H ,
(A.29)

gde smo u poslednjem redu iskoristili osobinu G-ekvivarijantnosti Pajferovog podizanja. Time
smo dokazali tvrđenje Teoreme 29.

Teorema 30 Pri H-gejdž transformacijama 3-krivina (F ,G,H) se transformiše na sledeći način

F → F ′′ = F , G → G ′′ = G +F ∧� η , H → H′′ = H− G ′′ ∧{,} η + η ∧{,} G , (A.30)

gde je η ∈ A1(M4, h) parametar H–gejdž transformacija.

Dokaz. Primenom definicije 3-krivine i transformacionog pravila 3-koneksije pri H-gejdž tra-
nsformacijama, dobijamo da se krivina F transformiše na isti način kao u slučaju 2BF teorije.
Pri H-gejdž transformacijama krivina G se transformiše

G ′′ = dβ′′ + α′′ ∧� β′′ − δ(γ′′)
= dβ + dα ∧� η + d(∂η) ∧� η − ∂η ∧� dη − dη ∧ η + η ∧ dη

+α ∧� β + (α ∧ α) ∧� η + α ∧� (∂η ∧� η)− α ∧� (η ∧ η)

+∂η ∧� β + ∂η ∧� dη + ∂η ∧� (α ∧� η) + ∂η ∧� (∂η ∧� η)− ∂η ∧� (η ∧ η)

−δ(γ − (β + dη + (α + ∂η) ∧� η − η ∧ η) ∧{,} η − η ∧{,} β)

= dβ + dα ∧� η + d(∂η) ∧� η − ∂η ∧� dη − dη ∧ η + η ∧ dη

+α ∧� β + (α ∧ α) ∧� η + α ∧� (∂η ∧� η)− α ∧� (η ∧ η)

+∂η ∧� β + ∂η ∧� dη + ∂η ∧� (α ∧� η) + ∂η ∧� (∂η ∧� η)− ∂η ∧� (η ∧ η)

−δ(γ) + β ∧[,] η − ∂β ∧� η + dη ∧[,] η − ∂(dη) ∧� η + (α ∧� η) ∧[,] η − ∂(α ∧� η) ∧� η

+(∂η ∧� η) ∧[,] η − ∂(∂η ∧� η) ∧� η − (η ∧ η) ∧[,] η + ∂(η ∧ η) ∧� η

+η ∧[,] β − ∂η ∧� β ,

(A.31)
gde prepoznajući da podvučeni članovi daju G + F ∧� η i skraćivanjem određenih članova
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dobijamo:

G ′′ = G + F ∧� η

+α ∧� (∂η ∧� η)− α ∧� (η ∧ η)

+∂η ∧� (α ∧� η) + ∂η ∧� (∂η ∧� η)− ∂η ∧� (η ∧ η)

+(α ∧� η) ∧[,] η − ∂(α ∧� η) ∧� η

+(∂η ∧� η) ∧[,] η − ∂(∂η ∧� η) ∧� η − (η ∧ η) ∧[,] η + ∂(η ∧ η) ∧� η .

(A.32)

Primenili smo da je d∂η = ∂dη, dη ∧[,] η = dη ∧ η − η ∧ dη i β ∧[,] η = −η ∧[,] β po definiciji.
Zatim, koristeći identitete

(α ∧� η) ∧[,] η = α ∧� (η ∧ η) ,

(∂η ∧� η) ∧[,] η = ∂η ∧� (η ∧ η) ,

(η ∧ η) ∧[,] η = 0 ,

dobijamo:

G ′′ = G + F ∧� η + α ∧� (∂η ∧� η) + ∂η ∧� (α ∧� η) + ∂η ∧� (∂η ∧� η)

−∂(α ∧� η) ∧� η − ∂(∂η ∧� η) ∧� η + ∂(η ∧ η) ∧� η .
(A.33)

Na kraju, koristeći da je

∂(α ∧� η) ∧� η = α ∧� (∂η ∧� η) + ∂η ∧� (α ∧� η) ,

∂(∂η ∧� η) ∧� η = ∂(η ∧ η) ∧� η + ∂η ∧� (∂η ∧� η) ,

konačno sledi:
G ′′ = G + F ∧� η . (A.34)

Najzad, primenom transformacionih pravila za 3-koneksiju dobijamo da je transformacija kri-
vine H pri H-gejdž transformacijama

H′′ = dγ′′ + α′′ ∧� γ′′ + β′′ ∧{,} β′′

= dγ + α′′ ∧� γ − d(β′′ ∧{,} η)− d(η ∧{,} β)

−α′′ ∧� (β′′ ∧{,} η)− α′′ ∧� (η ∧{,} β) + β′′ ∧{,} β′′

= dγ + α′′ ∧� γ − dβ′′ ∧{,} η − β′′ ∧{,} dη − dη ∧{,} β + η ∧{,} dβ

−(α′′ ∧� β′′) ∧{,} η − β′′ ∧{,} (α′′ ∧� η)− (α′′ ∧� η) ∧{,} β + η ∧{,} (α′′ ∧� β)

+β′′ ∧{,} β′′

= dγ + α′′ ∧� γ − (dβ′′ + α′′ ∧� β′′) ∧{,} η − β′′ ∧{,} (dη + α′′ ∧� η)

−(dη + α′′ ∧� η) ∧{,} β + η ∧{,} (dβ + α′′ ∧� β)

+β′′ ∧{,} β′′ ,
(A.35)
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gde je:
β′′ ∧{,} β′′ =β ∧{,} β + (dη + α′′ ∧� η) ∧{,} β − (η ∧ η) ∧{,} β

+ β′′ ∧{,} (dη + α′′ ∧� η)− β′′ ∧{,} (η ∧ η) .

Dobijamo da je:

H′′ = H + ∂η ∧� γ −G′′ ∧{,} η + η ∧{,} G+ η ∧{,} (∂η ∧� β)

−β′′ ∧{,} (dη + α′′ ∧� η)− (dη + α′′ ∧� η) ∧{,} β + (dη + α′′ ∧� η) ∧{,} β

−(η ∧ η) ∧{,} β + β′′ ∧{,} (dη + α′′ ∧� η)− β′′ ∧{,} (η ∧ η) .

(A.36)

Određeni članovi se skraćuju, a nakon primene identiteta

β′′ ∧{,} (η ∧ η) = (β′′ ∧〈,〉 η) ∧{,} η ,

∂η ∧� γ =− η ∧{,} δγ + δγ ∧{,} η
=− η ∧{,} δγ + δγ′′ ∧{,} η + (β′′ ∧〈,〉 η) ∧{,} η + (η ∧〈,〉 β) ∧{,} η ,

sledi:
H′′ = H− G ′′ ∧{,} η + η ∧{,} G

+η ∧{,} (∂η ∧� β)− (η ∧ η) ∧{,} β + (η ∧〈,〉 β) ∧{,} η

= H− G ′′ ∧{,} η + η ∧{,} G .

(A.37)

U poslednjem redu primenili smo identitet:

η ∧{,} (∂η ∧� β)− (η ∧ η) ∧{,} β + (η ∧〈,〉 β) ∧{,} η = 0 .

Time smo dokazali tvrđenje Teoreme 30.

Teorema 31 Pri L-gejdž transformacijama 3-krivina (F ,G,H) se transformiše na sledeći način

F → F̃ = F , G = G̃ → G , H → H̃ = H−F ∧� θ , (A.38)

gde je θ ∈ A2(M4, l) parametar L-gejdž transformacija.

Dokaz. Primenom definicije 3-krivine, dobijamo da je krivina F invarijantna na L-gejdž tra-
nsf-o
–rmacije

F̃ = dα̃ + α̃ ∧ α̃− ∂β̃

= dα + α ∧ α− ∂(β − δ(θ))

= F ,

(A.39)

gde smo primenili identitet ∂δ = 0. Pri L-gejdž transformacijama krivina G se transformiše na
sledeći način

G̃ = dβ̃ + α̃ ∧� β̃ − δ(γ̃)

= d(β − δ(θ)) + α ∧� (β − δ(θ))− δ(γ − dθ − α ∧� θ)

= G − d(δ(θ))− α ∧� δ(θ) + δ(dθ) + δ(α ∧� θ)

= G ,

(A.40)
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gde smo koristili da je d(δθ) = δ(dθ). Najzad, transformacija krivine H pri L-gejdž transfo-
rmacijama je:

H̃ = dγ̃ + α̃ ∧� γ̃ + β̃ ∧{,} β̃

= d(γ − dθ − α ∧� θ) + α ∧� (γ − dθ − α ∧� θ) + (β − δ(θ)) ∧{,} (β − δ(θ))

= H− dα ∧� θ + α ∧� dθ − α ∧� dθ − α ∧� (α ∧� θ)

−β ∧{,} δ(θ)− δ(θ) ∧{,} β + δ(θ) ∧{,} δ(θ)

= H− dα ∧� θ − (α ∧ α) ∧� θ + ∂(β) ∧� θ

= H−F ∧� θ ,

(A.41)

gde smo primenili identitete:

δ(θ) ∧{,} δ(θ) = 0 ,

−β ∧{,} δ(θ)− δ(θ) ∧{,} β = ∂(β) ∧� θ .

Tvrđenje Teoreme 31 je dokazano.

Teorema 32 Pri 3-gejdž transformacijama 3-krivina (F ,G,H) se transformiše na sledeći način:

F → g−1 � F ,
G → g−1 � G + (g−1 � F) ∧� η ,
H → g−1 �H− (g−1 � G + (g−1 � F) ∧� η) ∧{,} η − η{,}(g−1 � G)− (g−1 � F) ∧� θ ,

(A.42)

gde su g : M4 → G, η ∈ A1(M4, h) i θ ∈ A2(M4, l) redom parametri G-, H- i L-gejdž
transformacija.

Dokaz. Uzatopnom transformacijom 2-krivine najpre G-gejdž transformacijom definisanom u
Teoremi 29, zatim H-gejdž transformacijom definisanom u Teoremi 30 i L-gejdž transformaci-
jom definisanom u Teoremi 31 dobijamo rezultat Teoreme 32.

A.2.2 3-Gejdž transformacije Lagranževih množitelja

Bilinearno antisimetrično preslikavanje T : h × h → g se definiše na isti način kao u slučaju
2BF dejstva (A.13).

Da bi se definisalo 3BF gejdž invarijantno topološko dejstvo potrebno je definisati bilinearno
antisimetrično preslikavanje S : l× l→ g na sledeći način:

〈S(l1, l2), g〉g = −〈l1, g � l2〉l , ∀l1,∀l2 ∈ l , ∀g ∈ g . (A.43)

Primetimo na osnovu simetričnosti i nedegenerisanosti bilinearne forme 〈_ ,_〉g važi:

〈l1, g � l2〉l = −〈g � l1, l2〉l = −〈l2, g � l1〉l , ∀g ∈ g, ∀l1, l2 ∈ l .

Takođe, za svako g ∈ G i l1, l2 ∈ l važi identitet:

S(g � l1, g � l2) = g S(l1, l2) g−1 , (A.44)



163 A.2. Konstrukcija 3BF dejstva

što se lako može pokazati:

〈g, g−1S(g � l1 , g � l2)g〉g = 〈ggg−1, S(g � l1, g � l2)〉g
= −〈(g g g−1) � g � l1, g � l2〉l
= −〈g � l1 , l2〉l = 〈g ,S(l1, l2)〉g ,

Ovde je korišćen identitet:
g � (g � l) = (g g g−1) � g � l .

Zadovoljen je sledeći identitet:

S(g � l1, l2) + S(l1, g � l2) = [g, S(l1, l2)] .

Kada fiksiramo bazis, možemo definisati koeficijent bilinearnog antisimetričnog preslikavanja
S : l× l→ g,

S(TA, TB) = SABατα , (A.45)

pa definiciju preslikavanja S možemo izraziti koristeći ovaj koeficijent na sledeći način:

SABαgαβ = −�α[B
CgA]C . (A.46)

Bilinearno antisimetrično preslikavanje S dve diferencijalne forme elemenata algebre l, η i ω,
definiše diferencijalnu formu element algebre g:

ω ∧S η = ωA ∧ ηBSABατα .

Sada možemo definisati zakone transformacije Lagranževih množitelja pri L-gejdž transforma-
cijama (A.58).

Transformacije Lagranževih množitelja pri H-gejdž transformacijama definišemo koristeći
bilinearno preslikavanje X1 : l× h→ h definisano sledećim identitetom

〈X1(l, h1), h2〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l , (A.47)

i bilinearno preslikavanje X2 : l× h→ h definisano pravilom:

〈X2(l, h2), h1〉h = −〈l, {h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l . (A.48)

Fiksiranjem bazisa možemo definisati koeficijente bilinearnih preslikavanja X1 i X2:

X1(TA, ta) = X1Aa
b tb , X2(TA, ta) = X2Aa

b tb . (A.49)

Definicije preslikavanja X1 i X2 zapisane u bazisu postaju:

X1Ab
cgac = −Xba

BgAB , X2Ab
cgac = −Xab

BgAB . (A.50)

Za dve diferencijalne forme, element algebre l formu ω i element algebre h formu η, definiše se
diferencijalna forma element algebre h na sledeći način:

ω ∧X1 η = ωA ∧ ηaX1Aa
btb , ω ∧X2 η = ωA ∧ ηaX2Aa

btb .

Za sve g ∈ G, l ∈ l i h ∈ h, važi:

X1(g � l, g−1 � h) = g � X1(l, h) , X2(g � l, g � h) = g−1 � X2(l, h) ,
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što sledi na osnovu pravila da za svako h1, h2 ∈ h i l ∈ l važi:

〈h2, g
−1 � X1(g � l, g � h1)〉h = 〈g � h2, X1(g � l, g � h1)〉h

= 〈g � l, {g � h1, g � h2}〉l
= 〈g � l, g � {h1, h2}〉l
= 〈l, {h1, h2}〉l
= 〈h2, X1(l, h1)〉h ,

i slično za X 2.
Najzad, potrebno je definisati trilinearno preslikavanje D : h× h× l→ g sledećim pravilom:

〈D(h1, h2, l), g〉g = −〈l, {g � h1, h2}〉l , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g , (A.51)

Koeficijenti trilinearnog preslikavanja se definišu kao:

D(ta, tb, TA) = DabAατα , (A.52)

pa iz definicije preslikavanja D sledi da ga možemo zapisati i preko koeficijenata:

DabAβgαβ = −�αa
cXcb

BgAB . (A.53)

Za dve diferencijalne forme, elemente algebre h, ω i η, i diferencijalnu formu ξ element algebre
l, definiše se diferencijalna forma element algebre g:

ω ∧D η ∧D ξ = ωa ∧ ηb ∧ ξADabAβτβ .

Važe relacije kompatibilsnosti između preslikavanja X1 i D:

〈D(h1, h2, l), g〉g = 〈X1(l, g � h1), h2〉h , ∀h1, h2 ∈ h , ∀l ∈ l, ∀g ∈ g . (A.54)

Takođe, može se pokazati da za svako h1, h2 ∈ h, l ∈ l i g ∈ G važi:

D(g � h1, g � h2, g � l) = gD(h1, h2, l) g
−1 , (A.55)

što je posledica toga da za svako h1, h2 ∈ h, l ∈ l, g ∈ g i g ∈ G možemo pisati:

〈g−1D(g � h1, g � h2, g � l)g, g〉g = 〈D(g � h1, g � h2, g � l), ggg−1〉g
= 〈X1(g � l, ggg−1 � g � h1), g � h2〉h
= 〈X1(g � l, g � g � h1), g � h2〉h
= 〈g � X1(l, g � h1), g � h2〉h
= 〈X1(l, g � h1), h2〉h
= 〈D(h1, h2, l) , g〉g ,

gde su korišćene relacije (A.2.2) i relacije kompatibilnosti (A.54). Sledi da za sve h1, h2 ∈ h,
l ∈ l i g ∈ g važi sledeći identitet:

D(g � h1, h2, l) +D(h1, g � h2, l) +D(h1, h2, g � l) = [g, D(h1, h2, l)] .

Ovim su definisana sva preslikavanja neophodna da se definišu zakoni transformacije Langranže-
vih množitelja pri H-gejdž tranformacijama.
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Kako bi dejstvo (6.1) bilo gejdž invarijantno pri transformacijama krivina (2.128), (2.129) i
(2.130), Lagranževi množitelji B, C i D moraju se pri G-gejdž transformacijama transformisati
na sledeći način

B → g−1Bg , C → g−1 � C , D → g−1 �D , (A.56)

pri H-gejdž transformacijama

B → B + C ′ ∧T η − η ∧D η ∧D D , C → C +D ∧X1 η +D ∧X2 η , D → D , (A.57)

i najzad pri L-gejdž transformacijama na sledeći način:

B → B −D ∧S θ , C → C , D → D . (A.58)

Preslikavanja T , D, X1, X2 i S definisana su jednačinama (A.13), (A.43), (A.47), (A.48) i
(A.51).



Dodatak A. Konstrukcija dejstva invarijantnog na gejdž transformacije 166



Dodatak B

Jednačine kretanja za 3BF dejstvo sa vezama
za Vajlovo i Majorana polje kuplovano sa
Ajnštajn-Kartanovom gravitacijom

Dejstvo za Vajlovo spinorsko polje kuplovano sa Ajnštajn-Kartanovom gravitacijom dato je
izrazom (6.151). Variranjem ovog dejstva redom po varijablama Bab, λab, γα, γ̄α̇, λα, λ̄α̇, ψα,
ψ̄α̇, ea, βa i ωab dobijaju se jednačine kretanja:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

∇ψα + λα = 0 ,

∇ψ̄α̇ + λ̄α̇ = 0 ,

−γα +
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇ψ̄
β̇ = 0 ,

−γ̄α̇ +
i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βψβ = 0 ,

∇γα −
i

6
εabcde

a ∧ eb ∧ ecσdαβ̇λ̄L
β̇ = 0 ,

∇γ̄α̇ − i

6
εabcde

a ∧ eb ∧ ecσ̄dα̇βλLβ = 0 ,

∇βa+
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcde

b ∧ ec ∧ (λ̄α̇σ̄
dα̇βψβ + λασdαβ̇ψ̄

β̇)− 8πil2pεabcde
bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇ea − 4πl2pεabcde
b ∧ ec ∧ (ψ̄α̇σ̄

dα̇βψβ) = 0 ,

∇Bab − e[a ∧ βb] −
1

2
γσabα

βψβ −
1

2
γ̄α̇σ̄

abα̇
β̇ψ̄

β̇ = 0 .

U slučaju 3BF dejstva sa vezama koje odgovara teoriji Majorana spinorskog polja kuplovanog sa
Ajnštajn-Kartanovom gravitacijom, dodajemo maseni član (6.154) dejstvu (6.151). Variranjem
ovako dobijenog dejstva redom po varijablama to Bab, ψab, γα, γ̄α̇, λα, λ̄α̇, ψα, ψ̄α̇I , ea, βa i ωab
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dobijamo jednačine kretanja:

Rab − λab = 0 ,

Bab −
1

16πl2p
εabcde

c ∧ ed = 0 ,

−∇ψα + λα = 0 ,

−∇ψ̄α̇ + λα̇ = 0 ,

γα − i

6
εabcde

a ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α = 0 ,

γ̄α̇ −
i

6
εabcde

a ∧ eb ∧ ecψβ(σd)βα̇ = 0 ,

∇γα +
i

6
εabcdλ

β̇ ∧ ea ∧ eb ∧ ec(σd)αβ̇ −
1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα

− 4iπl2pεabcde
a ∧ eb ∧ βcψ̄β̇(σ̄d)β̇α = 0 ,

∇γ̄α̇ +
i

6
εabcdλβ ∧ ea ∧ eb ∧ ec(σ̄d)α̇β −

1

6
mεabcde

a ∧ eb ∧ ec ∧ edψα̇

− 4iπl2pεabcde
a ∧ eb ∧ βcψβ(σd)βα̇ = 0 ,

∇βa +
1

8πl2p
εabcdλ

bc ∧ ed +
i

2
εabcdλα ∧ eb ∧ ecψ̄β̇(σ̄d)β̇α +

i

2
εabcdλ

α̇ ∧ eb ∧ ecψβ(σd)βα̇

− 1

3
mεabcde

b ∧ ec ∧ ed(ψαψα + ψ̄α̇ψ̄
α̇)− 8πil2pεabcde

bβc
(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇ea − 4iπl2pεabcde
b ∧ ec

(
ψα(σd)αβ̇ψ̄

β̇
)

= 0 ,

∇Bab − e[a ∧ βb] −
1

2
ψα(σab)α

βγβ −
1

2
ψ̄α̇(σ̄ab)α̇β̇γ̄

β̇ = 0 .



Dodatak C

Hamiltonova analiza skalarne elektrodinamike

U ovom poglavlju urađena je kompletna Hamiltonova analiza za dejstvo (6.174).

Pretpostavljajući da je prostorvremenska mnogostrukost globalno hiperbolička,M4 = R×
Σ3, Lagranžijan za dejstvo (6.174) ima oblik:

L3BF =

∫
Σ3

d3~x εµνρσ
(1

4
Bab

µν R
cd
ρσ gab, cd +

1

4
BµνFρσ +

1

3!
eaµ Gbνρσ gab +

1

4!
φAHB

µνρσ gAB
)
.

(C.1)
Kanonski impulsi varijabli Bab

µν , ωabµ, Bµν , Aµ, eaµ, βaµν , φA and γAµνρ su:

π(B)ab
µν =

δL

δ∂0Bab
µν

= 0 , π(ω)ab
µ =

δL

δ∂0ωabµ
= ε0µνρBabνρ ,

π(B)µν =
δL

δ∂0Bµν

= 0 , π(A)µ =
δL

δ∂0Aµ
=

1

2
ε0µνρBνρ ,

π(e)a
µ =

δL

δ∂0eaµ
= 0 , π(β)a

µν =
δL

δ∂0βaµν
= −ε0µνρeaρ ,

π(φ)A =
δL

δ∂0φA
= 0 , π(γ)A

µνρ =
δL

δ∂0γAµνρ
= ε0µνρφA .

(C.2)

Primarne veze u teoriji su:

P (B)ab
µν ≡ π(B)ab

µν ≈ 0 , P (ω)ab
µ ≡ π(ω)ab

µ − ε0µνρBabνρ ≈ 0 ,

P (B)µν ≡ π(B)µν ≈ 0 , P (A)µ = π(A)µ − 1

2
ε0µνρBνρ ≈ 0 ,

P (e)a
µ ≡ π(e)a

µ ≈ 0 , P (β)a
µν ≡ π(β)a

µν + ε0µνρeaρ ≈ 0 ,

P (φ)A ≡ π(φ)A ≈ 0 , P (γ)A
µνρ ≡ π(γ)A

µνρ − ε0µνρφA ≈ 0 .

(C.3)
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Fundamentalne Poasonove zagrade definišemo na sledeći način:

{Bab
µν(x) , π(B)cd

ρσ(y) } = 4δa[cδ
b
d]δ

ρ
[µδ

σ
ν] δ

(3)(~x− ~y) ,

{ωabµ(x) , π(ω)cd
ν(y) } = 2δa[cδ

b
d]δ

ν
µ δ

(3)(~x− ~y) ,

{Bµν(x) , π(B)ρσ(y) } = 2δρ[µδ
σ
ν] δ

(3)(~x− ~y) ,

{Aµ(x) , π(A)ν(y) } = δνµ δ
(3)(~x− ~y) ,

{ eaµ(x) , π(e)b
ν(y) } = δabδ

ν
µ δ

(3)(~x− ~y) ,

{ βaµν(x) , π(β)b
ρσ(y) } = 2δab δ

ρ
[µδ

σ
ν] δ

(3)(~x− ~y) ,

{φA(x) , π(φ)B(y) } = δAB δ
(3)(~x− ~y) ,

{ γAµνρ(x) , π(γ)B
αβγ(y) } = 3!δAB δ

α
[µδ

β
νδ
γ
ρ] δ

(3)(~x− ~y) .

(C.4)

Koristeći fundamentalne Poasonove zagrade, nalazimo algebru primarnih veza,

{P (B)abjk(x) , P (ω)cd
i(y) } = 4ε0ijk δa[cδ

b
d] δ

(3)(~x− ~y) ,

{P (B)jk(x) , P (A)i(y) } = ε0ijk δ(3)(~x− ~y) ,

{P (e)ak , P (β)b
ij(y) } = −ε0ijk δab(x) δ(3)(~x− ~y) ,

{P (φ)A(x) , P (γ)B
ijk(y) } = ε0ijk δAB δ

(3)(~x− ~y) ,

(C.5)

dok su sve ostale Poasonove zagrade identički jednake nuli. Kanonski on-shell Hamiltonijan
ima oblik:

Hc =

∫
Σ3

d3~x

[
1

4
π(B)ab

µν ∂0B
ab
µν +

1

2
π(ω)ab

µ ∂0ω
ab
µ +

1

2
π(B)µν ∂0Bµν + π(A)µ ∂0Aµ

+ π(e)a
µ ∂0e

a
µ +

1

2
π(β)a

µν ∂0β
a
µν + π(φ)A ∂0D

A +
1

3!
π(γ)A

µνρ ∂0γ
A
µνρ

]
− L .

(C.6)

Prepisivanjem (C.6) tako da su brzine pomnožene sa vezama prve klase, koje su on-shell jednake
nuli, dobijamo:

Hc ≈−
∫

Σ3

d3~x ε0ijk
[

1

2
Bab0iR

ab
jk +

1

2
B0iFjk +

1

6
ea0 Gaijk + βa0i∇jeak

+
1

2
ωab0

(
∇iBab jk − e[a|i β|b]jk

)
+

1

2
A0

(
∂iBjk +

1

3
φA �B

A γBijk

)
+

1

2
γA0ij∇kφA

]
.

(C.7)
Dodavanjem Lagranževog množitelja λ za svaku primarnu vezu dobijamo totalni off-shell Hami-
ltonijan:

HT = Hc+
∫

Σ3
d3~x

[
1
4
λ(B)abµνP (B)ab

µν + 1
2
λ(ω)abµP (ω)ab

µ + 1
2
λ(B)µνP (B)µν + λ(A)µP (A)µ

+λ(e)aµP (e)a
µ + 1

2
λ(β)aµνP (β)a

µν + λ(φ)AP (φ)A + 1
3!
λ(γ)AµνρP (γ)A

µνρ

]
.

(C.8)
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Uslov konzistentnosti primarnih veza (3.26) za primarne veze P (B)ab
0i, P (ω)ab

0, P (B)0i, P (A)0,
P (e)a

0, P (β)a
0i i P (γ)A

0ij,

Ṗ (B)ab
0i ≈ 0 , Ṗ (ω)ab

0 ≈ 0 , Ṗ (B)0i ≈ 0 , Ṗ (A)0 ≈ 0 ,

Ṗ (e)a
0 ≈ 0 , Ṗ (β)a

0i ≈ 0 , Ṗ (γ)A
0ij ≈ 0 ,

(C.9)

dovodi do pojave sekundarnih veza S u teoriji,

S(R)ab
i ≡ ε0ijkRabjk ≈ 0 ,

S(∇B)ab ≡ ε0ijk
(
∇iBab jk − e[a|i β|b]jk

)
≈ 0 ,

S(F )i ≡ 1

2
ε0ijkF jk ≈ 0 ,

S(∇B) ≡ 1

2
ε0ijk

(
∂iBjk +

1

3
φA �B

A γBijk
)
≈ 0 ,

S(G)a ≡ 1

6
ε0ijkGaijk ≈ 0 ,

S(∇e)ai ≡ ε0ijk∇jeak ≈ 0 ,

S(∇φ)A
ij ≡ ε0ijk∇kφA ≈ 0 ,

(C.10)

dok u slučaju primarnih veza P (B)ab
jk, P (ω)ab

k, P (B)jk, P (A)k, P (e)a
k, P (β)a

jk, P (φ)A i
P (γ)A

ijk uslovi konzistentnosti,

Ṗ (B)ab
jk ≈ 0 , Ṗ (ω)ab

k ≈ 0 , Ṗ (B)jk ≈ 0 , Ṗ (A)k ≈ 0 ,

Ṗ (e)a
k ≈ 0 , Ṗ (β)a

jk ≈ 0 , Ṗ (φ)A ≈ 0 , Ṗ (γ)A
ijk ≈ 0 ,

(C.11)

određuju Lagranževe množitelje:

λ(ω)ab
i ≈ ∇i ωab 0 ,

λ(B)ab
ij ≈ 2∇[i|Bab

0|j] + e[a| 0β|b]
ij − 2e[a|

[i|β|b]
0|j] + 2ω[a|

cB|b]
c ij ,

λ(A)i ≈ ∂iA0 ,

λ(B)ij ≈ 2∂[i|B0|j] + γA
0ij �B

A φB ,

λ(β)a
ij ≈ 2∇[i| βa

0|j] − ωab0 βb ij ,

λ(e)a
i ≈ ∇i ea

0 − ωab 0 eb
i ,

λ(γ)A
ijk ≈ −A0 � A

B γB
ijk +∇iγA

0jk −∇jγA
0ik +∇kγA

0ij .

λ(φ)A ≈ A0 � A
B φ

B .

(C.12)

Primetimo da Lagranževi množitelji

λ(B)ab0i , λ(ω)ab0 , λ(B)0i , λ(A)0 , λ(e)a0 , λ(β)a0i , λ(γ)A0ij (C.13)
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ostaju neodređeni. Uslovi konzistentnosti sekundarnih veza ne dovode do pojave novih veza u
teoriji tj. može se pokazati da važi:

Ṡ(R)abi = {S(R)abi , HT} = ω[a|
c0 S(R)c|b]i ,

Ṡ(∇B)ab = {S(∇B)ab , HT} = S(R)[a|c
k Bc

|b]0k + ω[a|
c
0S(∇B)|b]c

−β[a|0k S(∇e)|b]k + e[a|0 S(G)|b] ,

Ṡ(F )i = {S(F )i , HT} = 0 ,

Ṡ(∇B) = {S(∇B), HT} = −�B
A γB0ij S(∇φ)A

ij ,

Ṡ(G)a = {S(G)a , HT} = βb0k S(R)abk − ωab0 S(G)b ,

Ṡ(∇e)ai = {S(∇e)ai , HT} = eb0 S(R)ab
i − ωab0 S(∇e)bi ,

Ṡ(∇φ)A
ij = {S(∇φ)A

ij , HT} = A0 � A
BS(∇φ)B

ij .

(C.14)

Totalni Hamiltonijan se može napisati u sledećem obliku:

HT =

∫
Σ3

d3~x

[
1

2
λ(B)ab

0i Φ(B)abi +
1

2
λ(ω)ab

0 Φ(ω)ab + λ(B)0i Φ(B)i + λ(A)0 Φ(A)

+ λ(e)a
0 Φ(e)a + λ(β)a

0i Φ(β)ai +
1

2
λ(γ)A

0ijΦ(γ)Aij

− 1

2
Bab0i Φ(R)abi − 1

2
ωab0 Φ(∇B)ab −B0i Φ(F )i − A0 Φ(∇B)

− ea0 Φ(G)a − βa0i Φ(∇e)ai − 1

2
γA0ij Φ(∇φ)Aij

]
,

(C.15)
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gde su

Φ(B)abi = P (B)ab0i ,

Φ(ω)ab = P (ω)ab0 ,

Φ(B)i = P (B)0i ,

Φ(A) = P (A)0 ,

Φ(e)a = P (e)a0 ,

Φ(β)ai = P (β)a0i ,

Φ(γ)Aij = P (γ)A0ij ,

Φ(R)abi = S(R)abi −∇jP (B)ab ij ,

Φ(∇B)ab = S(∇B)ab +∇iP (ω)abi +B[a|
c ij P (B)c|b] ij − 2e[a|

i P (e)|b] i − β[a|
ij P (β)|b] ij ,

Φ(F )i = S(F )i − ∂jP (B)ij ,

Φ(∇B) = S(∇B) + ∂iP (A)i +
1

3!
γAijk �A

B P (γ)B
ijk − φA �B

A P (φ)B

Φ(G)a = S(G)a +∇iP (e)a i − 1

4
βb ij P (B)ab ij ,

Φ(∇e)a i = S(∇e)a i −∇jP (β)a ij +
1

2
eb j P (B)ab ij

Φ(∇φ)A ij = S(∇φ)A ij +∇kP (γ)A ijk −�B
A φB P (B)ij ,

(C.16)
veze prve klase, dok su veze druge klase:

χ(B)ab
jk = P (B)ab

jk , χ(B)jk = P (B)jk , χ(e)a
i = P (e)a

i , χ(φ)A = P (φ)A ,

χ(ω)ab
i = P (ω)ab

i , χ(A)i = P (A)i , χ(β)a
ij = P (β)a

ij , χ(γ)A
ijk = P (γ)A

ijk .

(C.17)
Poasonova algebra veza prve klase je:

{Φ(G)a(x) , Φ(∇e)bi(y) } = −Φ(R)ab
i(x) δ(3)(~x− ~y) ,

{Φ(G)a(x) , Φ(∇B)bc(y) } = 2δa[b|Φ(G)|c](x) δ(3)(~x− ~y) ,

{Φ(∇e)ai(x) , Φ(∇B)bc(y) } = 2δa[b|Φ(∇e)|c]i(x) δ(3)(~x− ~y) ,

{Φ(R)abi(x) , Φ(∇B)cd(y) } = −4δ[a|
[c Φ(R)|b]d]

i(x) δ(3)(~x− ~y) ,

{Φ(∇B)ab(x) , Φ(∇B)cd(y) } = −4δ[a|
[c|Φ(∇B)|b]|d](x) δ(3)(~x− ~y) ,

{Φ(∇B)(x) , Φ(∇φ)A
ij(y) } = −2 �B

A Φ(∇φ)B
ij(x)δ(3)(~x− ~y) .

(C.18)
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Poasonova algebra veza prve klase i veza druge klase je:

{Φ(R)abi(x) , χ(ω)cd
j(y) } = 4 δ[a|

[c| χ(B)|b]|d]
ij(x)δ(3)(~x− ~y) ,

{Φ(G)a(x) , χ(ω)cd
i(y) } = 2 δa[c| χ(e)|d]

i(x)δ(3)(~x− ~y) ,

{Φ(G)a(x) , χ(β)c
jk(y) } = −1

2
χ(B)ac

jk(x) δ(3)(~x− ~y) ,

{Φ(∇e)ai(x) , χ(ω)cd
j(y) } = −2 δa[c| χ(β)|d]

ij(x) δ(3)(~x− ~y) ,

{Φ(∇e)ai(x) , χ(e)b
j(y) } =

1

2
χ(B)ab

ij δ(3)(~x− ~y) ,

{Φ(∇B)ab(x) , χ(ω)cd
i(y) } = 4 δ[a|

[c| χ(ω)|d]
|b]i δ(3)(~x− ~y) ,

{Φ(∇B)(x) , χ(A)i(y) } = 2χ(A)i δ(3)(~x− ~y) ,

{Φ(∇B)ab(x) , χ(β)c
jk(y) } = −2δ[a|

c χ(β)|b]jk δ(3)(x− y) ,

{Φ(∇B)(x) , χ(γ)A
ijk(y) } = �A

B χ(γ)B
ijk(x) δ(3)(~x− ~y) ,

{Φ(∇B)ab(x) , χ(B)cd
jk(y) } = 4 δ[a|

[c χ(B)d]
|b]jk δ(3)(~x− ~y) .

{Φ(∇B)ab(x) , χ(e)a
i(y) } = −2δ[a|

c χ(e)|b]i δ(3)(~x− ~y) .

{Φ(∇B)(x) , χ(φ)A(y) } = −�B
A χ(φ)B(x) δ(3)(~x− ~y) ,

{Φ(∇φ)Aij(x) , χ(A)k } = −�B
A χ(γ)Bijk(x) δ(3)(~x− ~y) ,

{Φ(∇φ)Aij(x) , χ(φ)B } = −�B
A χ(B)ij(x) δ(3)(~x− ~y) .

(C.19)

Poasonova zagrada veza druge klase je izračunata u (C.5).

C.1 Bijankijevi identiteti
Kako bi se izračunao broj stepeni slobode u teoriji, potrebno je koristiti Bijankijeve identi-
tete (BI), kao i dodatne, generalizovane Bijankijeve identitete (GBI) koji predstavljaju analog
običnim BI za dodatna polja prisutna u teoriji.

Konkretno, u teoriji postoje BI za 1-forme polja ωab i ea, kao i GBI za 1-formu A. Odgo-
varajuća 2-forma krivine za koneksiju ω,

Rab = dωab + ωac ∧ ωcb , T a = dea + ωab ∧ eb , F = dA , (C.20)

zadovoljava identitetete:

ελµνρ∇µR
ab
νρ = 0 , (C.21)

ελµνρ
(
∇µT

a
νρ − Rab

µν ebρ
)

= 0 , (C.22)

ελµνρ∇µF νρ = 0 . (C.23)

Birajući slobodan indeks da bude vremenska koordinata λ = 0, ovi identiteti, kao vremenski
nezavisni delovi Bijankijevih identiteta, postaju "off-shell" ograničenja u smislu Hamiltonove
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analize. Sa druge strane, odabirom slobodnog indeksa da bude prostorna koordinata, dobijaju
se vremenski zavisni delovi Bjankijevih identiteta, koji ne nameću nikakva ograničenja, već
mogu biti izvedeni kao posledica Hamiltonovih jednačina kretanja.

Pored toga, u teoriji postoje GBI asocirani 2-formama polja Bab, B i βa. Odgovarajuće
3-forme krivina su:

Sab = dBab + 2ω[a|
c ∧Bc |b] , P = dB , Ga = dβa + ωab ∧ βb . (C.24)

Diferenciranjem ovih izraza dobijaju se sledeći GBI:

ελµνρ
(

1

3
∇λ S

ab
µνρ −R[a| c

λµBc
|b]
νρ

)
= 0 , (C.25)

ελµνρ∂λ P µνρ = 0 , (C.26)

ελµνρ
(

2

3
∇λG

a
µνρ − Rab

λµ βb νρ

)
= 0 . (C.27)

Međutim, u četvorodimenzionalnom prostorvremenu, svaki od ovih identiteta je jedna jedna-
čina, bez slobodnih prostorvremenskih indeksa, pa stoga obavezno sadrže vremenske izvode
polja. Sledi da ovi identiteti ne nameću nikakva off-shell ograničenja na kanonske promenljive.

Konačno, postoji GBI za 0-formu φ. Odgovarajuća 1-forma krivine je,

QA = dφA + �B
AA ∧ φB , (C.28)

tako da je GBI:

ελµνρ
(
∇νQ

A
ρ −

1

2
�B

A F νρφ
B

)
= 0. (C.29)

Ovaj GBI čini 12 jednačina, koje se dobijaju za šest izbora antisimetrizovanog para prostorvre-
menskih indeksa λµ i dva izbora slobodnog grupnog indeksa A. Međutim, ovih 12 identiteta
nisu nezavisni, što vidimo diferenciranjem jednačine (C.29), pri čemu se dobija osam jednačina

�B
A ελµνρ∇µ F νρ φ

B = 0 , (C.30)

koje su automatski zadovoljene primenom GBI (C.23). Sledi da su u teoriji samo četiri nezavisna
identiteta (C.29). Fiksiranjem indeksa λ = 0, dobijamo vremenski nezavisne komponente
jednačina (C.29) i (C.30),

ε0ijk
(
∇jQ

A
k −

1

2
�B

A F jkφ
B

)
= 0 , (C.31)

�B
A ε0ijk ∂i F jk φ

B = 0 . (C.32)

Analizom slobodnih indeksa ovih jednačina vidimo da od šest jednačina (C.31), zbog dve je-
dnačine (C.32), preostaju četiri nezavisna GBI relevantna za Hamiltonovu analizu.
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C.2 Broj stepeni slobode
U ovom odeljku ćemo pokazati da iz strukture veza u teoriji sledi da ne postoje lokalni stepeni
slobode (DOF) u topološkom sektoru 3BF teorije skalarne elektrodinamike. U opštem slučaju,
broj lokalnih stepeni slobode neke teorije dat je jednačinom (3.41).

U našem slučaju, inicijalan broj polja u teoriji N određujemo prebrojavanjem komponenti
polja prikazanih u Tabeli C.1, na osnovu čega dobijamo da je N = 120. Zatim, broj nezavisnih

ωabµ Aµ βaµν γAµνρ Bab
µν Bµν eaµ φA

24 4 24 8 36 6 16 2

Tabela C.1: Broj inicijalnih polja u 3BF teoriji skalarne elektrodinamike.

komponenti veza druge klase S = 70 prikazan je u Tabeli C.2.

χ(B)ab
jk χ(B)jk χ(e)a

i χ(φ)A χ(ω)ab
i χ(A)i χ(β)a

ij χ(γ)A
ijk

18 3 12 2 18 3 12 2

Tabela C.2: Veze druge klase u 3BF teoriji skalarne elektrodinamike.

Veze prve klase nisu nezavisne zbog prisustva BI i GBI u teoriji. Diferenciranjem veze
Φ(R)abi dobijamo:

∇iΦ(R)abi = ε0ijk∇iR
ab
jk +

1

2
Rc[a|

ijP (B)c
|b]ij . (C.33)

Prvi član na desnoj strani izraza je jednak nuli off-shell, εijk∇iR
ab
jk = 0, kao λ = 0 komponenta

Bijankijevog identiteta(C.21). Drugi član je takođe nula off-shell, kao proizvod dve veze,

Rc[a|
ij P (B)c

|b]ij ≡ 1

2
ε0ijkS(R)c[a|k P (B)c

|b]ij = 0 . (C.34)

Iz prethodnog sledi da imamo off-shell identitet

∇iΦ(R)abi = 0 , (C.35)

tj. postoji dvanaest nezavisnih komponenti Φ(R)abi. Slično, diferenciranjem veze Φ(F )i, dobi-
jamo

∇iΦ(F )i = ε0ijk∇iF jk +
1

2
Fij P (B)ij . (C.36)

Prvi član na desnoj strani izraza je jednak nuli εijk∇iF jk = 0, kao λ = 0 komponenta GBI
(C.21). Za drugi član opet dobijamo da je jednak nuli kao proizvod dve veze,

F ij P (B)ij ≡ 1

2
ε0ijk S(F )k P (B)ij = 0 . (C.37)

Sledi da je zadovoljen off-shell identitet

∇iΦ(F )i = 0 , (C.38)

tj. postoji samo dve nezavisne komponente veze Φ(F )i. Slično, možemo pokazati da je:

∇iΦ(∇e)ai −
1

2
Φ(R)ab

i ebi +
1

4
ε0ijkS(R)abk P (β)bij =

1

2
ε0ijk

(
∇iTajk −Rab ij e

b
k

)
. (C.39)
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Desna strana izraza (C.39) je λ = 0 komponenta BI (C.22), tako da jednačina (C.39) postaje:

∇iΦ(∇e)ai −
1

2
Φ(R)ab

i ebi = 0 . (C.40)

U prethodnoj relaciji smo iskoristili da je treći član na levoj strani izraza (C.39) jednak nuli
kao proizvod dve veze. Iz jednačine (C.40) sledi da četiri komponente veza Φ(∇e)ai i Φ(R)ab

i

možemo izraziti kao linearnu kombinaciju preostalih. Konačno, može se pokazati da važi relacija

∇iΦ(∇φ)A
ij − 1

2
ε0ikl �A S(F )l χ(γ)B

ijk + �B
A φB Φ(F )j

+
1

2
ε0ilm �B

A P (B)ij S(∇φ)B
lm = ε0ijk

(
∇iQAk +

1

2
�B

A F ik φB

)
,

(C.41)

iz koje sledi:
∇iΦ(∇φ)A

ij + �B
A φB Φ(F )j = 0 . (C.42)

Desna strana izraza (C.41) je λ = 0 komponenta GBI (C.29), a članovi koji su proizvod dve
veze su nula off-shell. Na osnovu identiteta (C.42) sledi da se šest komponenti veza prve
klase Φ(∇φ)A

ij i Φ(F )j mogu prikazati kao neka linearna kombinacija ostalih. Međutim, u
prethodnom odeljku smo analizom Bijankijevih identiteta zaključili da su samo četiri od ovih
šesti identiteta linearno nezavisni, pa sledi da preostaju četiri identiteta (C.42).

Uzimajući u obzir dobijene identitete (C.35), (C.38), (C.40) i (C.42), konačno možemo da
izračunamo ukupan broj nezavisnih veza prve klase. Iz Tabele C.3 vidimo da ukupan broj
komponenti veza prve klase F ∗ = 100. Identiteti (C.35), (C.38), (C.40) i (C.42) smanjuju broj
nezavisnih komponenti ovih veza, što je eksplicitno naznačeno u tabeli. Dakle, umanjujući ovaj
broj za šest identiteta (C.35), identitet (C.38), četiri identiteta (C.40) i četiri identiteta (C.42),
dobijamo da je broj nezavisnih komponenti veza prve klase F = 85.

Φ(B)ab
i Φ(B)i Φ(e)a Φ(ω)ab Φ(A) Φ(β)a

i Φ(γ)A
ij Φ(R)ab

i Φ(F )i Φ(G)a Φ(∇e)ai Φ(∇B)ab Φ(∇B) Φ(∇φ)A
ij

18 3 4 6 1 12 6 18− 6 3− 1 4 12− 4 6 1 6− 4

Tabela C.3: Veze prve klase u 3BF teoriji skalarne elektrodinamike.

Stoga, zamenom svih dobijenih rezultata u jednačini (3.41), dobijamo

n = 120− 85− 70

2
= 0, (C.43)

tj. da 3BF teorija data dejstvom (6.174) ne poseduje lokalne propagirajuće stepene slobode.
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C.3 Generator gejdž simetrije

Na osnovu rezultata Hamiltonove analize dejstva (6.174), možemo da izračunamo generator
gejdž simetrije i varijacije formi varijabli u 3BF topološkoj teoriji skalarne elektrodinamike.
Rezultati prikazani u ovom odeljku su generalizacija računa u [48] za generator i varijacije formi
varijabli u 2BF topološkom dejstvu za Poenkareovu 2-grupu, a specijalan slučaj rezultata za
3BF teoriju za generalnu semistriktnu 2-grupu datih u Glavi 6.

Kastelanijevom procedurom dobijamo generator:

G =

∫
Σ3

d3~x

(
1

2
(∇0ε

ab
i)Φ(B)ab

i − 1

2
εabiΦ(R)ab

i +
1

2
(∇0ε

ab)Φ(ω)ab −
1

2
εabΦ(∇B)ab

+ (∂0εi)Φ(B)i − εiΦ(F )i + (∂0ε)Φ(A)− εΦ(∇B)

+ (∇0ε
a)Φ(e)a − εaΦ(G)a + (∇0ε

a
i)Φ(β)a

i − εaiΦ(∇e)ai

+
1

2
(∇0ε

A
ij)Φ(γ)A

ij − 1

2
εAijΦ(∇φ)A

ij

+ εab
(
β[a|0iP (β)|b]

i + e[a|0P (e)|b] +B[a|c0iP (B)c|b]
i
)
− ε γA0ij �B

A P (γ)Bij

+ εaβb0iP (B)abi + εai eb0P (B)a
bi

)
,

(C.44)
gde su εabi, εab, εi, ε, εa, εai i εAij nezavisni parametri gejdž transformacija.

Dalje, možemo izračunati varijacije formi varijabli i konjugovanih impulsa varijabli u teoriji:

δ0ω
ab

0 = ∇0ε
ab , δ0π(ω)ab

0 = −2ε[a|
c
iπ(B)c|b]

0i − 2ε[a|
cπ(ω)c|b]

0 ,

+2ε[a|π(e)|b]
0 + 2ε[a|iπ(β)|b]

0i ,

δ0ω
ab
i = ∇iε

ab , δ0π(ω)ab
i = −2ε[a|

c
j π(B)c|b]

ij − 2ε[a|
c
i π(ω)|b]c

i

+2ε[a| π(e)|b]i + 2ε[a|jπ(β)|b]
ij

+2ε0ijk∇[j|εab|k] + ε0ijkε[a|β|b]jk ,

δ0B
ab

0i = ∇0ε
ab
i + ε[a|ie

|b]
0 δ0π(B)ab

0i = 2ε[a|c π(B)|b]
ci ,

+2ε[a|cB|b]c0i + ε[a|β|b]0i ,

δ0B
ab
ij = 2∇[i|ε

ab
|j] + 2ε[a|cB|b]cij δ0π(B)ab

ij = 2ε[a|c π(B)|b]
cij ,

+2ε[a|[ie
|b]
j] + ε[a|β|b]ij ,

δ0A0 = ∂0ε , δ0π(A)0 = −1

2
εAij �B

A π(γ)B
0ij ,

δ0Ai = ∂iε , δ0π(A)i = ε0ijk∂jεk −
1

2
εAjk �B

A π(γ)B
ijk ,

δ0B0i = ∂0εi , δ0π(B)0i = 0 ,

(C.45)
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δ0Bij = 2 ∂[i|ε|j] + εAij �B
A φB , δ0π(B)ij = −ε0ijk∂kε ,

δ0β
a

0i = ∇0ε
a
i − εabβb0i , δ0π(β)a

0i = −εabπ(β)b0i +
1

2
εbπ(B)ab

0i ,

δ0β
a
ij = 2∇[i|ε

a
|j] − εab βbij , δ0π(β)a

ij = −εab π(β)bij +
1

2
εb π(B)ab

ij

−ε0ijk∇kε
a ,

δ0e
a

0 = ∇0ε
a − εab eb0 , δ0π(e)a

0 = −εab π(e)b0 +
1

2
εbi π(B)ab

0i ,

δ0e
a
i = ∇iε

a − εab ebi , δ0π(e)a
i = −εab π(e)bi + ε0ijk

(
∇[j|εa|k] + εabβ

bjk
)

+
1

2
εbj π(B)ab

ij ,

δ0γ
A

0ij = ∇0ε
A
ij − ε γB0ij �A

B , δ0π(γ)A
0ij = ε �B

A π(γ)B
0ij ,

δ0γ
A
ijk = − ε γBijk �B

A +∇iε
A
jk δ0π(γ)A

ijk = ε �A
B
(
π(γ)B

ijk + ε0ijk φB
)
,

−∇jε
A
ik +∇kε

A
ij ,

δ0φ
A = ε φB � A

B , δ0π(φ)A = −ε �B
A π(φ)B +

1

3!
ε ε0ijk �B

A γBijk

−1

2
�A B ε

B
ij π(B)ij − 1

2
ε0ijk∇iε

A
jk ,

(C.46)
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Dodatak D

Ukupna grupa gejdž simetrija

D.1 Gejdž transformacije u BF topološkoj teoriji
Generator gejdž transformacija u BF teoriji je

G =

∫
Σ3

d3~x

(
(∇0εg

α) (G̃1)α + εg
α (G̃0)α + (∇0εm

α
i) (M̃1)α

i + εm
α
i (M̃0)α

i

)
, (D.1)

gde je:

(G̃1)α = −Φ(α)α ,

(G̃0)α = −
(
fαγ

βBβ0iΦ(B)γi + Ca0 �αb
aΦ(C)b0 + βa0i �αb

aΦ(β)b0i − Φ(∇B)α
)
,

(M̃1)α
i = −Φ(B)α

i ,

(M̃0)α
i = Φ(F)α

i ,

(D.2)

gde su εgα i εmαi nezavisni parametri gejdž transformacija.

D.1.1 Gejdž grupa simetrije prostora BF dejstva

Algebra koju čine generatori grupe simetrija (M0)α
i, (M1)α

i, (G0)α i (G1)α definisani u Dodatku
D.1 je:

{(G̃0)α(~x) , (G̃0)β(~y)} = fαβ
γ(G̃0)γ δ

(3)(~x− ~y) ,

{(G̃0)α(~x) , (M̃0)β
i(~y)} = fαβ

γ(M̃0)γ
i δ(3)(~x− ~y) ,

{(G̃0)α(~x) , (M̃1)β
i(~y)} = fαβ

γ(M̃1)γ
i δ(3)(~x− ~y) ,

(D.3)

Na osnovu ovih komutacionih relacija zaključujemo da je gejdž grupa simetrije ima sledeću
strukturu. Najpre, generatori (M̃1)α

i i (M̃1)α
i formiraju algebru a1,

a1 = span{(M̃1)α
i} ⊕ span{(M̃0)α

i} ,

koja generiše podgrupu M̃1×M̃0 ukupne grupe simetrije G̃Σ3 . Osim toga, podgrupa M̃1 × M̃0 je
invarijantna podgrupa grupe G̃Σ3 . Može se primetiti da G̃1 × G̃0 takođe čini podgrupu ukupne
grupe simetrije. Sada se ove dve podgrupe, od kojih je jedna invarijantna podruga, a druga ne,
mogu pomnožiti semidirektnim proizvodom, pri čemu dobijamo da je ukupna grupa simetrije
G̃Σ3 :

G̃Σ3 = (G̃1 × G̃0) n (M̃1 × M̃0) .
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(G̃1 × G̃0) n (M̃1 × M̃0)

M̃1 × M̃0G̃1 × G̃0

{1}

Slika D.1: Grupa simetrije GΣ3 u faznom prostoru. Invarijantne grupe su uokvirene.

D.1.2 Konstrukcija generatora simetrija BF teorije

Kada zamenimo generatore (D.2) u jednačinu (D.1), dobijamo generator gejdž simetrija u BF
teoriji sledećeg oblika

G = −
∫

Σ3

d3~x

(
(∇0εm

α
i)Φ(B)α

i − εmαiΦ(F)α
i + (∇0εg

α)Φ(α)α + εg
α
(
fαγ

βBβ0iΦ(B)γi − Φ(∇B)α
))

,

(D.4)
gde su εgα i εmαi nezavisni parametri gejdž transformacija.

Generator gejdž transformacija u BF topološkoj teoriji (4.31) dobijamo Kastelanijevom
procedurom (3.53) pri čemu su za svaki par generatora G0 i G1 zadovoljene relacije (3.55).

Pretpostavimo najpre da generator ima oblik:

G =

∫
ε̇αi(G1)α

i + εαi(G0)α
i + ε̇α(G1)α + εα(G0)α . (D.5)

Izborom (G1)α
i = CPFC i (G1)α = CPFC , gde je CPFC oznaka za neku primarnu vezu prve

klase, prirodan izbor je:

(G1)α
i = Φ(B)α

i , (G1)α = Φ(α)α . (D.6)

Ostaje da se utvrde dva generatora G0. Kastelanijev drugi uslov za generator (G0)mα
i daje

(G0)mα
i − {Φ(B)α

i , HT} = (CPFC)α
i ,

(G0)mα
i − Φ(F)α

i = (CPFC)α
i ,

(D.7)

gde je (G0)mα
i = (CPFC)α

i + Φ(F)α
i. Zatim, iz Kastelanijevog trećeg uslova sledi

{(G0)mα
i , HT} = (CPFC1)α

i ,

{(CPFC)α
i + Φ(F)α

i , HT} = (CPFC1)α
i ,

{(CPFC)α
i , HT} − fβγααβ0Φ(F)γi = (CPFC1)α

i ,

(D.8)

što daje jednačinu
(CPFC)α

i = fβγαα
β

0Φ(B)γi .
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Iz toga sledi da je generator:

(G0)mα
i = fβγαα

β
0Φ(B)γi + Φ(F)α

i . (D.9)

Kastelanijev drugi uslov za generator (G0)gα daje

(G0)gα − {Φ(α)α , HT} = (CPFC)α ,

(G0)gα − Φ(∇B)α = (CPFC)α ,
(D.10)

tj. dobija se da je (G0)gα = (CPFC)α + Φ(∇B)α. Nakon toga, iz trećeg Kastelanijevog uslova
sledi

{(G0)gα , HT} = (CPFC1)α ,

{(CPFC)α + Φ(∇B)α , HT} = (CPFC1)α ,

{(CPFC)α , HT}+Bβ0ifαγ
βΦ(F)γi − αβ0fαβ

γΦ(∇B)γ = (CPFC1)α ,

(D.11)

tj.
(CPFC)α = −Bβ0ifαγ

βΦ(B)γi + αβ0fαβ
γΦ(α)γ .

Sledi da je generator:

(G0)gα = −Bβ0ifαγ
βΦ(B)γi + αβ0fαβ

γΦ(α)γ + Φ(∇B)α . (D.12)

U ovom trenutku, korisno je rezimirati rezultate i uvesti novu notaciju:

ε̇m
α
i(G1)mα

i + εm
α
i(G0)mα

i = −∇0εm
α
iΦ(B)α

i + εm
α
iΦ(F)α

i

= ∇0εm
α
i(M̃1)α

i + εm
α
i(M̃0)α

i .
(D.13)

Primetimo da se vremenski izvod parametra kombinuje sa nekim drugim članovima u kovari-
jantni izvod u vremenskom pravcu.

Za drugi deo ukupnog generatora dobijamo:

ε̇g
α(G1)gα + εg

α(G0)gα = −ε̇gαΦ(α)α − εgα
(
Bβ0ifαγ

βΦ(B)γi − αβ0fαβ
γΦ(α)γ − Φ(∇B)α

)
= −∇0εg

αΦ(α)α − εgα
(
Bβ0ifαγ

βΦ(B)γi − Φ(∇B)α
)

= ∇0εg
α(G̃1)α + εg

α(G̃0)α .

(D.14)
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D.2 Gejdž transformacije u 2BF topološkoj teoriji
Generator gejdž transformacija u 2BF teoriji je

G =

∫
Σ3

d3~x

(
(∇0εg

α) (G̃1)α + εg
α (G̃0)α + (∇0εh

a
i) (H̃1)a

i + εh
a
i (H̃0)a

i

+ (∇0εm
α
i) (M̃1)α

i + εm
α
i (M̃0)α

i + (∇0εn
a) (Ñ1)a + εn

a(Ñ0)a

)
,

(D.15)

gde je:

(G̃1)α = −Φ(α)α ,

(G̃0)α = −
(
fαγ

βBβ0iΦ(B)γi + Ca0 �αb
aΦ(C)b0 + βa0i �αb

aΦ(β)b0i − Φ(∇B)α
)
,

(H̃1)a
i = −Φ(β)a

i ,

(H̃0)a
i = Cb0 �αa

bΦ(B)αi + Φ(∇C)a
i ,

(M̃1)α
i = −Φ(B)α

i ,

(M̃0)α
i = Φ(F)α

i ,

(Ñ1)a = −Φ(C)a ,

(Ñ0)a = βb0i �αa
bΦ(B)αi + Φ(G)a ,

(D.16)

gde su εgα, εhai, εmαi i εna nezavisni parametri gejdž transformacija.

D.2.1 Gejdž grupa simetrije 2BF dejstva

Algebra koju čine generatori grupe simetrija (M0)α
i, (M1)α

i, (G0)α, (G1)α, (H0)a
i, (H1)a

i, (N0)a
i (N1)a definisani u prethodnom delu D.2 je:

{(G̃0)α(~x) , (G̃0)β(~y)} = fαβ
γ(G̃0)γ δ

(3)(~x− ~y) , (D.17)

{(H̃0)a
i(~x) , (Ñ0)b(~y)} = �αa

b(M̃0)αi δ(3)(~x− ~y) ,

{(H̃1)a
i(~x) , (Ñ0)b(~y)} = �αa

b(M̃1)αi δ(3)(~x− ~y) ,

{(H̃0)a(~x) , (Ñ1)bi(~y)} = �αa
b(M̃1)αi δ(3)(~x− ~y) ,

(D.18)

{(G̃0)α(~x) , (M̃0)β
i(~y)} = fαβ

γ(M̃0)γ
i δ(3)(~x− ~y) ,

{(G̃0)α(~x) , (M̃1)β
i(~y)} = fαβ

γ(M̃1)γ
i δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (H̃1)a
i(~y) } = �αa

b (H̃1)b
i(~x) δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (H̃0)a
i(~y) } = �αa

b (H̃0)b
i(~x) δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (Ñ1)a(~y) } = �αa
b (Ñ1)b(~x) δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (Ñ0)a(~y) } = �αa
b (Ñ0)b(~x) δ(3)(~x− ~y) ,

(D.19)
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(G̃1 × G̃0) n
(

(H̃1 × H̃0) n ((Ñ1 × Ñ0)× (M̃1 × M̃0))
)

(H̃1 × H̃0) n ((Ñ1 × Ñ0)× (M̃1 × M̃0))

(Ñ1 × Ñ0)× (M̃1 × M̃0)

Ñ1 × Ñ0 M̃1 × M̃0 H̃1 × H̃0

G̃1 × G̃0

{1}

Slika D.2: Grupa simetrije GΣ3 u faznom prostoru. Invarijantne grupe su okvirene.

Grupa gejdž simetrije ima sledeću strukturu. Prvo, grupe M̃1 × M̃0, Ñ1 × Ñ0 i H̃1 × H̃0 sa
odgovarajućim algebrama a1, a2 i a3, gde je

a1 = span{(M̃1)α
i} ⊕ span{(M̃0)α

i} , a2 = span{(Ñ1)a} ⊕ span{(Ñ0)a} ,
a3 = span{(H̃1)a

i} ⊕ span{(H̃0)a
i} (D.20)

su podgrupe ukupne grupe simetrije G̃Σ3 . Pritom, podgrupa M̃1 × M̃0 je invarijantna podgrupa
ukupne grupe simetrije. Grupe Ñ1 × Ñ0 i H̃1 × H̃0 nisu invarijantne podgrupe ukupne grupe
simetrije, što vidimo na osnovu Poasonovih zagrada {(H̃0)a

i(~x) , (Ñ0)b(~y)} i {(H̃1)a
i(~x) , (Ñ0)b(~y)}

koje su jednake nekim linearnim kombinacijama generatora grupa M̃1, tj. M̃0. Može se formirati
direktan proizvod (Ñ1× Ñ0)× (M̃1× M̃0), kako generatori ovih grupa međusobno komutiraju,
a dobijena grupa je invarijantna podgrupa ukupne grupe simetrija.

Dobijenu grupu možemo pomnožiti sa grupom H̃1 × H̃0, pri čemu je (Ñ1 × Ñ0) × (M̃1 ×
M̃0) invarijantna, a H̃1 × H̃0 ne, koristeći semidirektan proizvod, čime se dobija invarijantna
podgrupa (H̃1 × H̃0) n ((N1 ×N0)× (M1 ×M0)), kojoj odgovara algebra a4:

a4 = span{(M̃0)α
i, (M̃1)α

i, (H̃0)a
i, (H̃1)a

i, (Ñ0)a, (Ñ1)a} .

Na kraju, dobijenu grupu možemo pomnožiti sa grupom G̃1 × G̃0 koristeći semidirektan
proizvod, pri čemu dobijamo ukupnu grupu simetrija G̃Σ3 koja je jednaka:

G̃Σ3 = (G̃1 × G̃0) n
(

(H̃1 × H̃0) n
(

(Ñ1 × Ñ0)× (M̃1 × M̃0)
))

.

Kompletna struktura ukupne grupe simetrija prikazana je na Slici D.2. Ovde su invarijantne
podgrupe ukupne grupe simetrija uokvirene.
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D.2.2 Konstrukcija generatora simetrija 2BF teorije

Kada zamenimo generatore (D.16) u jednačinu (D.15), dobijamo generator gejdž simetrija u
2BF teoriji sledećeg oblika

G = −
∫

Σ3

d3~x

(
(∇0εm

α
i)Φ(B)α

i − εmαiΦ(F)α
i + (∇0εg

α)Φ(α)α

+ εg
α
(
fαγ

βBβ0iΦ(B)γi + Ca0 �αb
aΦ(C)b0 + βa0i �αb

aΦ(β)b0i − Φ(∇B)α
)

+ (∇0εn
a)Φ(C)a − εna

(
βb0i �αa

bΦ(B)αi + Φ(G)a
)

+ (∇0εh
a
i)Φ(β)a

i − εhai
(
Cb0 �αa

bΦ(B)αi + Φ(∇C)a
i
))

,

(D.21)

gde su εgα, εhai, εmαi i εna nezavisni parametri gejdž transformacija.
Generator gejdž transformacija simetrije (D.15) u 2BF teoriji (5.1), dobija se Kastelani-

jevom procedurom. Pretpostavimo, najpre, da generator ima strukturu:

G =

∫
Σ3

d3 ~x
(
ε̇m

α
i(G1)mα

i + εm
α
i(G0)mα

i + ε̇g
α(G1)gα + εg

α(G0)gα

+ε̇h
a
i(G1)ha

i + εh
a
i(G0)ha

i + ε̇n
a(G1)na + εn

a(G0)na

)
.

(D.22)

Prvi korak Kastelanijeve procedure predstavlja nametanje uslova

(G1)mα
i = CPFC , (G1)gα = CPFC , (G1)ha

i = CPFC , (G1)na = CPFC , (D.23)

prirodnim izborom:

(G1)mα
i = −Φ(B)α

i , (G1)gα = −Φ(α)α , (G1)ha
i = −Φ(C)α

i , (G1)na = −Φ(β)a .
(D.24)

Ostaje da se utvrdi kako glase četiri generatora G0.
Kastelanijev drugi uslov za generator (G0)mα

i daje

(G0)mα
i − {Φ(B)α

i , HT} = (CPFC)α
i ,

(G0)mα
i − Φ(F)α

i = (CPFC)α
i ,

(D.25)

gde je (G0)mα
i = (CPFC)α

i + Φ(F)α
i. Zatim, iz Kastelanijevog trećeg uslova sledi

{(G0)mα
i , HT} = (CPFC1)α

i ,

{(CPFC)α
i + Φ(F)α

i , HT} = (CPFC1)α
i ,

{(CPFC)α
i , HT} − fβγααβ0Φ(F)γi = (CPFC1)α

i ,

(D.26)

što daje jednačinu
(CPFC)α

i = fβγαα
β

0Φ(B)γi .

Iz toga sledi da je generator:

(G0)mα
i = fβγαα

β
0Φ(B)γi + Φ(F)α

i . (D.27)

Kastelanijev drugi uslov za generator (G0)gα daje

(G0)gα − {Φ(α)α , HT} = (CPFC)α ,

(G0)gα − Φ(∇B)α = (CPFC)α ,
(D.28)
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tj. dobija se da je (G0)gα = (CPFC)α + Φ(∇B)α. Nakon toga, iz trećeg Kastelanijevog uslova
sledi

{(G0)gα , HT} = (CPFC1)α ,

{(CPFC)α + Φ(∇B)α , HT} = (CPFC1)α ,

{(CPFC)α , HT}+Bβ0ifαγ
βΦ(F)γi − αβ0fαβ

γΦ(∇B)γ + Ca0 �αb
aΦ(G)b + βa0i �αb

aΦ(∇C)bi = (CPFC1)α ,

(D.29)
tj.

(CPFC)α = −Bβ0ifαγ
βΦ(B)γi + αβ0fαβ

γΦ(α)γ − Ca0 �αb
aΦ(C)b − βa0i �αb

aΦ(β)bi .

Sledi da je generator:

(G0)gα = −Bβ0ifαγ
βΦ(B)γi + αβ0fαβ

γΦ(α)γ − Ca0 �αb
aΦ(C)b − βa0i �αb

aΦ(β)bi + Φ(∇B)α .
(D.30)

Kastelanijev drugi uslov za generator (G0)na daje

(G0)na − {Φ(C)a , HT} = (CPFC)a ,

(G0)na − Φ(G)a = (CPFC)a ,
(D.31)

gde je (G0)na = (CPFC)a + Φ(G)a.
Zatim, iz trećeg Kastelanijevog uslova dobijamo

{(G0)na , HT} = (CPFC1)a ,

{(CPFC)a + Φ(G)a , HT} = (CPFC1)a ,

{(CPFC)a, HT}+ αα0 �αa
bΦ(G)b − βb0i �αa

bΦ(F)αi = (CPFC1)a ,

(D.32)

što daje:
(CPFC)a = −αα0 �αa

bΦ(C)b + βb0i �αa
bΦ(B)αi .

Iz toga sledi da je generator:

(G0)na = −αα0 �αa
bΦ(C)b + βb0i �αa

bΦ(B)αi + Φ(G)a .

Kastelanijev drugi uslov za generator (G0)ha
i daje

(G0)ha
i − {Φ(β)a

i , HT} = (CPFC)a
i ,

(G0)ha
i − Φ(∇C)a

i = (CPFC)a
i ,

(D.33)

tj. dobija se (G0)ha
i = (CPFC)a

i + Φ(∇C)a
i. Nakon toga, iz trećeg Kastelanijevog uslova sledi

{(G0)ha
i , HT} = (CPFC1)a

i ,

{(CPFC)a
i + Φ(∇C)a

i , HT} = (CPFC1)a
i ,

{(CPFC)a
i, HT}+ αα0 �αa

bΦ(∇C)b
i − Cb0 �αa

bΦ(F)αi = (CPFC1)a
i ,
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što daje rezultat:

(CPFC)a
i = −αα0 �αa

bΦ(β)b
i + Cb0 �αa

bΦ(B)αi .

Iz toga sledi da je generator:

(G0)ha
i = −αα0 �αa

bΦ(β)b
i + Cb0 �αa

bΦ(B)αi + Φ(∇C)a
i .

U ovom trenutku, korisno je rezimirati rezultate i uvesti novu notaciju:

ε̇m
α
i(G1)mα

i + εm
α
i(G0)mα

i = −∇0εm
α
iΦ(B)α

i + εm
α
iΦ(F)α

i

= ∇0εm
α
i(M̃1)α

i + εm
α
i(M̃0)α

i .
(D.34)

Primetimo da se vremenski izvod parametra kombinuje sa nekim drugim članovima u kovari-
jantni izvod u vremenskom pravcu.

Za drugi deo ukupnog generatora dobijamo:

ε̇g
α(G1)gα + εg

α(G0)gα = −ε̇gαΦ(α)α − εgα
(
Bβ0ifαγ

βΦ(B)γi − αβ0fαβ
γΦ(α)γ

+Ca0 �αb
aΦ(C)b + βa0i �αb

aΦ(β)b
i − Φ(∇B)α

)
= −∇0εg

αΦ(α)α − εgα
(
Bβ0ifαγ

βΦ(B)γi

+Ca0 �αb
aΦ(C)b + βa0i �αb

aΦ(β)b
i − Φ(∇B)α

)
= ∇0εg

α(G̃1)α + εg
α(G̃0)α .

(D.35)

Osim toga, sledi:

ε̇h
a
i(G1)ha

i + εh
a
i(G0)ha

i = −∇0εh
a
iΦ(β)α

i + εh
a
i

(
Cb0 �αa

bΦ(B)αi + Φ(∇C)a
i
)

= ∇0εh
a
i(H̃1)a

i + εh
a
i(H̃0)a

i ,

(D.36)

ε̇n
a(G1)na + εn

a(G0)na = −∇0εn
aΦ(C)a + εn

a(βb0i �αa
bΦ(B)αi + Φ(G)a)

= ∇0εn
a(Ñ1)a + εn

a(Ñ0)a .
(D.37)

D.2.3 Izračunavanje algebre simetrija 2BF dejstva

Da bi se dobila struktura grupe simetrija 2BF dejstva, kao što je predstavljeno u podsekciji
5.1.2, moramo najpre izračunati komutatore između generatora G-, H-,M - i N -gejdž simetrija.
Ovaj proces je opisan u odeljku 5.1.2, dok su detalji izračunavanja dati u ovom odeljku.
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Komutator [H,H]

Sada ćemo izračunati komutator generatora H-gejdž transformacija, tj. jednačinu (5.51).
Nakon transformacije promenljivih pri H-gejdž transformacijama za parametar εh1 dobija se

α′ = α− ∂εh1 , (D.38)

β′ = β−
α−∂εh1

∇ εh1 − εh1 ∧ εh1 , (D.39)

B′ = B − C ∧T εh1 , (D.40)

C ′ = C , (D.41)

Zatim, daljom transformacijom varijabli H-gejdž transformacijama sa parametrom εh2 dobija
se:

α′′ = α− ∂εh1 − ∂εh2 ,

β′′ = β−
α−∂εh1

∇ εh1 − εh1 ∧ εh1−
α−∂εh1−∂εh2

∇ εh2 − εh2 ∧ εh2 ,

B′′ = B − C ∧T εh1 − C ∧T εh2

C ′′ = C ,

(D.42)

Vidimo da za promenljive ααµ, Bα
µν i Ca

µ dobijamo da transformacije komutiraju:

eεh1·Heεh2·Hααµ = eεh2·Heεh1·Hααµ ,

eεh1·Heεh2·HBα
µν = eεh2·Heεh1·HBα

µν ,

eεh1·Heεh2·HCa
µ = eεh2·Heεh1·HCa

µ ,

(D.43)

Za preostale promenljivu βaµν razlika jednačine (D.42) i analogne jednačine gde εh1 ↔ εh2 je:(
eεh1·Heεh2·H − eεh2·Heεh1·H

)1

2
βaµν = ∂b

αεh2
b
[µ|εh1

c
|ν] � αc

a − ∂bαεh1
b
[µ|εh2

c
|ν] � αc

a

= 0 .
(D.44)

Uzimajući u obzir rezultate (D.43) i (D.44) zaključujemo daH-gejdž transformacije komutiraju:

eεh1·Heεh2·H − eεh2·Heεh1·H = 0 . (D.45)

Komutator [H,N ]

Izračunajmo komutator između generatora H-gejdž i N -gejdž transformacija, tj. izvedimo
jednačinu (5.62). Ovo se radi izračunavanjem izraza(

eεh·Heεn·N − eεn·Neεh·H
)
A , (D.46)

za sve varijable A prisutne u teoriji. Primećujemo da je za varijable ααµ, βaµν i Ca
µ dobijeno

da transformacije komutiraju:

eεh·Heεn·Nααµ = eεn·Neεh·Hααµ ,

eεh·Heεn·Nβaµν = eεn·Neεh·Hβaµν ,

eεh·Heεn·NCa
µ = eεn·Neεh·HCa

µ .

(D.47)
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Preostala varijabla Bα
µν se pri H-gejdž transformacijama transformiše na sledeći način:

B′ = B − C ∧τ εh ,

C ′ = C .
(D.48)

Daljom transformacijom varijable N -gejdž transformacijom:

B′′ = B′ − β′ ∧T εn

= B − C ∧τ εh − (β−
{αα−∂aαεha}
∇εh −εh ∧ εh) ∧T εn ,

C ′′ = C ′−
{αα−∂aαεha}
∇ εn

= C−
{αα−∂aαεha}
∇ εn .

(D.49)

Zatim, izmenimo redosled transformacija. Najpre, transformacija varijabli pri N -gejdž trans-
formacijama je

B· = B − β ∧T εn ,

C · = C −∇εn ,
(D.50)

dok dalja H-gejdž transformacija daje:

B·· = B· − C · ∧τ εh

= B − β ∧T εn − (C −∇εn) ∧τ εh ,

C ·· = C ·

= C −∇εn .

(D.51)

Razlika jednačina (D.49) i (D.51) je:

(
eεh·Heεn·N − eεn·Neεh·H

)
Bα = ∇εna ∧ εhbTabα −∇εha ∧ εnbTabα + ∂a

β �βc
bεh

a ∧ εhc ∧ εndTbdα − εha ∧ εhbfabcεndTcdα ,(
eεh·Heεn·N − eεn·Neεh·H

)
Cc = −∂aβεha �βb

cεn
b ,

(D.52)
Primenom definicija preslikavanja T prethodne jednačine se svode na(

eεh·Heεn·N − eεn·Neεh·H
)
Bα = ∇εna ∧ εhbTabα −∇εha ∧ εnbTabα = ∇(εn ∧T εh)α ,(

eεh·Heεn·N − eεn·Neεh·H
)
Cc = ∂cα(εn ∧T εh)α ,

(D.53)
Upoređivanjem jednačina (D.47) i (D.53) sa jednačinom (6.58) dobijamo konačan rezultat za
komutator (

eεh·Heεn·N − eεn·Neεh·H
)

= −(εn ∧T εh) ·M . (D.54)
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D.3 Gejdž transformacije u 3BF topološkoj teoriji
Generator gejdž transformacija u 3BF teoriji je:

G =

∫
Σ3

d3~x

(
(∇0εg

α) (G̃1)α + εg
α (G̃0)α + (∇0εh

a
i) (H̃1)a

i + εh
a
i (H̃0)a

i

+
1

2
(∇0εl

A
ij) (L̃1)A

ij +
1

2
εl
A
ij (L̃0)A

ij

+ (∇0εm
α
i) (M̃1)α

i + εm
α
i (M̃0)α

i + (∇0εn
a) (Ñ1)a + εn

a(Ñ0)a

)
,

(D.55)

gde je

(G̃1)α = −Φ(α)α ,

(G̃0)α = −
(
fαγ

βBβ0iΦ(B)γi + Ca0 �αb
aΦ(C)b0 + βa0i �αb

aΦ(β)b0i

−1

2
γA0ij �αA

BΦ(γ)B
ij − Φ(∇B)α

)
,

(H̃1)a
i = −Φ(β)a

i ,

(H̃0)a
i = Cb0 �αa

bΦ(B)αi − 2βb0jX(ab)
AΦ(γ)A

ij + Φ(∇C)a
i ,

(L̃1)a
ij = Φ(γ)A

ij ,

(L̃0)a
ij = −Φ(∇D)A

ij ,

(M̃1)α
i = −Φ(B)α

i ,

(M̃0)α
i = Φ(F)α

i ,

(Ñ1)a = −Φ(C)a ,

(Ñ0)a = βb0i �αa
bΦ(B)αi + Φ(G)a ,

(D.56)

gde su εgα, εhai, εlAij, εmαi, i εna nezavisni parametri gejdž transformacija.

D.3.1 Gejdž grupa simetrije 3BF dejstva

Algebra koju čine generatori grupe simetrija (M̃0)α
i, (M̃1)α

i, (G̃0)α, (G̃1)α, (H̃0)a
i, (H̃1)a

i,
(Ñ0)a, (Ñ1)a, (L̃0)A

ij i (L̃1)A
ij definisani u Dodatku D.3 je:

{(G̃0)α(~x) , (G̃0)β(~y)} = fαβ
γ(G̃0)γ δ

(3)(~x− ~y) , (D.57)

{(H̃0)a
i(~x) , (H̃0)b

j(~y)} = 2X(ab)
A(L̃0)A

ij δ(3)(~x− ~y) ,

{(H̃0)a
i(~x) , (H̃1)b

j(~y)} = 2X(ab)
A(L̃1)A

ij δ(3)(~x− ~y) ,
(D.58)

{(H̃0)a
i(~x) , (Ñ0)b(~y)} = �αa

b(M̃0)αi δ(3)(~x− ~y) ,

{(H̃1)a
i(~x) , (Ñ0)b(~y)} = �αa

b(M̃1)αi δ(3)(~x− ~y) ,

{(H̃0)a(~x) , (Ñ1)bi(~y)} = �αa
b(M̃1)αi δ(3)(~x− ~y) ,

(D.59)
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(G̃1 × G̃0) n
(
H̃L n ((Ñ1 × Ñ0)× (M̃1 × M̃0))

)

H̃L n ((Ñ1 × Ñ0)× (M̃1 × M̃0))

H̃LΣ3
(Ñ1 × Ñ0)× (M̃1 × M̃0)

L̃1 × L̃0 M̃1 × M̃0 Ñ1 × Ñ0

G̃1 × G̃0

{1}

Slika D.3: Grupa simetrije GΣ3 u faznom prostoru. Invarijantne grupe su okvirene.

{(G̃0)α(~x) , (M̃0)β
i(~y)} = fαβ

γ(M̃0)γ
i δ(3)(~x− ~y) ,

{(G̃0)α(~x) , (M̃1)β
i(~y)} = fαβ

γ(M̃1)γ
i δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (H̃1)a
i(~y) } = �αa

b (H̃1)b
i(~x) δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (H̃0)a
i(~y) } = �αa

b (H̃0)b
i(~x) δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (Ñ1)a(~y) } = �αa
b (Ñ1)b(~x) δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (Ñ0)a(~y) } = �αa
b (Ñ0)b(~x) δ(3)(~x− ~y) ,

{ (G̃0)α(~x) , (L̃0)A
ij(~y) } = �αA

B(L̃0)B
ij(~x) δ(3)(~x− ~y) .

(D.60)

Grupa gejdž simetrije ima sledeću strukturu. Prvo, grupe M̃1 × M̃0, Ñ1 × Ñ0 i L̃1 × L̃0 sa
odgovarajućim algebrama a1, a2 i a3, gde je

a1 = span{(M̃1)α
i} ⊕ span{(M̃0)α

i} , a2 = span{(Ñ1)a} ⊕ span{(Ñ0)a} ,
a3 = span{(L̃1)A

ij} ⊕ span{(L̃0)A
ij} , (D.61)

su podgrupe ukupne grupe simetrije G̃Σ3 . Pored toga, podgrupe L̃1 × L̃0 i M̃1 × M̃0 su
invarijantne podgrupe ukupne grupe simetrije. Grupa Ñ1 × Ñ0 nije invarijantna podgrupa
ukupne grupe simetrije, što vidimo na osnovu Poasonovih zagrada {(H̃0)a

i(~x) , (Ñ0)b(~y)} i
{(H̃1)a

i(~x) , (Ñ0)b(~y)} koje su jednake nekim linearnim kombinacijama generatora M̃1 × M̃0.
Može se formirati direktan proizvod (Ñ1× Ñ0)× (M̃1× M̃0), kako generatori ovih grupa među-
sobno komutiraju, a dobijena grupa je invarijantna podgrupa ukupne grupe simetrija.

Zatim, razmotrimo podgrupu H̃LΣ3
određenu algebrom definisanu generatorima (L̃1)A

ij,
(L̃0)A

ij, (H̃1)a
i i (H̃0)a

i. Ova grupa nije invarijantna pogrupa ukupne grupe simetrija, zbog
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Poasonovih zagrada {(H̃0)a
i(~x) , (Ñ0)b(~y)} i {(H̃1)a

i(~x) , (Ñ0)b(~y)}, iz istog razloga kao i pre.
Sada se mogu pomnožiti ove dve podgrupe, od kojih je jedna invarijantna, a druga ne, koristeći
semidirektan proizvod, čime se dobija invarijantna podgrupa HL n ((N1 ×N0)× (M1 ×M0)),
kojoj odgovara algebra a4:

a4 = span{(M̃0)α
i, (M̃1)α

i, (H̃0)a
i, (H̃1)a

i, (Ñ0)a, (Ñ1)a, (L̃0)A
ij, (L̃1)A

ij} .

Na kraju, prateći istu liniju rezonovanja, razmatranjem grupe G̃1 × G̃0 dobijamo ukupnu
grupu simetrija G̃Σ3 koja je jednaka:

G̃Σ3 = (G̃1 × G̃0) n
(
H̃L n ((Ñ1 × Ñ0)× (M̃1 × M̃0))

)
.

Kompletna struktura ukupne grupe simetrija prikazana je na Slici D.3. Ovde su invarijantne
podgrupe ukupne grupe simetrija uokvirene.

D.3.2 Konstrukcija generatora simetrija 3BF teorije

Kada zamenimo generatore (D.56) u jednačinu (6.30), dobijamo generator gejdž simetrija u
3BF teoriji sledećeg oblika

G = −
∫

Σ3

d3~x

(
(∇0εm

α
i)Φ(B)α

i − εmαiΦ(F)α
i + (∇0εg

α)Φ(α)α + εg
α
(
fαγ

βBβ0iΦ(B)γi

+ Ca0 �αb
aΦ(C)b0 + βa0i �αb

aΦ(β)b0i − 1

2
γA0ij �αA

BΦ(γ)B
ij − Φ(∇B)α

)
+ (∇0εn

a)Φ(C)a − εna
(
βb0i �αa

bΦ(B)αi + Φ(G)a
)

+ (∇0εh
a
i)Φ(β)a

i − εhai
(
Cb0 �αa

bΦ(B)αi − 2βb0jX(ab)
AΦ(γ)A

ij + Φ(∇C)a
i
)

− 1

2
(∇0εl

A
ij)Φ(γ)A

ij +
1

2
εl
A
ijΦ(∇D)A

ij

)
,

(D.62)

gde su εgα, εhai, εlAij, εmαi i εna nezavisni parametri gejdž transformacija.
Generator gejdž transformacija simetrije (D.55) u 3BF teoriji (6.1), dobija se Kastelani-

jevom procedurom, pri čemu su za svaki par generatora G0 i G1 zadovoljene relacije

G1 = CPFC , (D.63)
G0 + {G1, HT} = CPFC , (D.64)

{G0, HT} = CPFC , (D.65)

gde CPFC predstavlja neku vezu prve klase. Pretpostavimo, najpre, da generator ima strukturu:

G =

∫
Σ3

d3 ~x
(
ε̇m

α
i(G1)mα

i + εm
α
i(G0)mα

i + ε̇g
α(G1)gα + εg

α(G0)gα

+ε̇h
a
i(G1)ha

i + εh
a
i(G0)ha

i + ε̇n
a(G1)na + εn

a(G0)na

+
1

2
ε̇l
A
ij(G1)lA

ij +
1

2
εl
A
ij(G0)lA

ij
)
.

(D.66)

Prvi korak Kastelanijeve procedure predstavlja nametanje uslova

(G1)mα
i = CPFC , (G1)gα = CPFC , (G1)ha

i = CPFC ,
(G1)na = CPFC , (G1)lA

ij = CPFC ,
(D.67)

prirodnim izborom:

(G1)mα
i = −Φ(B)α

i , (G1)gα = −Φ(α)α , (G1)ha
i = −Φ(C)α

i ,
(G1)na = −Φ(β)a , (G1)lA

ij = Φ(γ)A
ij .

(D.68)
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Ostaje da se utvrdi pet generatora G0.
Kastelanijev drugi uslov za generator (G0)mα

i daje

(G0)mα
i − {Φ(B)α

i , HT} = (CPFC)α
i ,

(G0)mα
i − Φ(F)α

i = (CPFC)α
i ,

(D.69)

gde je (G0)mα
i = (CPFC)α

i + Φ(F)α
i. Zatim, iz Kastelanijevog trećeg uslova sledi

{(G0)mα
i , HT} = (CPFC1)α

i ,

{(CPFC)α
i + Φ(F)α

i , HT} = (CPFC1)α
i ,

{(CPFC)α
i , HT} − fβγααβ0Φ(F)γi = (CPFC1)α

i ,

(D.70)

što daje jednačinu
(CPFC)α

i = fβγαα
β

0Φ(B)γi .

Iz toga sledi da je generator:

(G0)mα
i = fβγαα

β
0Φ(B)γi + Φ(F)α

i . (D.71)

Kastelanijev drugi uslov za generator (G0)gα daje

(G0)gα − {Φ(α)α , HT} = (CPFC)α ,

(G0)gα − Φ(∇B)α = (CPFC)α ,
(D.72)

tj. dobija se da je (G0)gα = (CPFC)α + Φ(∇B)α. Nakon toga, iz trećeg Kastelanijevog uslova
sledi

{(G0)gα , HT} = (CPFC1)α ,

{(CPFC)α + Φ(∇B)α , HT} = (CPFC1)α ,

{(CPFC)α , HT}+Bβ0ifαγ
βΦ(F)γi − αβ0fαβ

γΦ(∇B)γ

+Ca0 �αb
aΦ(G)b + βa0i �αb

aΦ(∇C)bi − 1

2
γA0ij �αA

BΦ(∇D)B
ij = (CPFC1)α ,

(D.73)

tj.

(CPFC)α = −Bβ0ifαγ
βΦ(B)γi + αβ0fαβ

γΦ(α)γ − Ca0 �αb
aΦ(C)b − βa0i �αb

aΦ(β)bi + 1
2
γA0ij �αA

BΦ(γ)B
ij .

Sledi da je generator:

(G0)gα = −Bβ0ifαγ
βΦ(B)γi + αβ0fαβ

γΦ(α)γ − Ca0 �αb
aΦ(C)b

−βa0i �αb
aΦ(β)bi +

1

2
γA0ij �αA

BΦ(γ)B
ij + Φ(∇B)α .

(D.74)

Kastelanijev drugi uslov za generator (G0)na daje

(G0)na − {Φ(C)a , HT} = (CPFC)a ,

(G0)na − Φ(G)a = (CPFC)a ,
(D.75)
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gde je (G0)na = (CPFC)a + Φ(G)a.
Zatim, iz trećeg Kastelanijevog uslova dobijamo

{(G0)na , HT} = (CPFC1)a ,

{(CPFC)a + Φ(G)a , HT} = (CPFC1)a ,

{(CPFC)a, HT}+ αα0 �αa
bΦ(G)b − βb0i �αa

bΦ(F)αi = (CPFC1)a ,

(D.76)

što daje
(CPFC)a = −αα0 �αa

bΦ(C)b + βb0i �αa
bΦ(B)αi .

Iz toga sledi da je generator:

(G0)na = −αα0 �αa
bΦ(C)b + βb0i �αa

bΦ(B)αi + Φ(G)a .

Kastelanijev drugi uslov za generator (G0)ha
i daje

(G0)ha
i − {Φ(β)a

i , HT} = (CPFC)a
i ,

(G0)ha
i − Φ(∇C)a

i = (CPFC)a
i ,

(D.77)

tj. dobija se (G0)ha
i = (CPFC)a

i + Φ(∇C)a
i. Nakon toga, iz trećeg Kastelanijevog uslova sledi

{(G0)ha
i , HT} = (CPFC1)a

i ,

{(CPFC)a
i + Φ(∇C)a

i , HT} = (CPFC1)a
i ,

{(CPFC)a
i, HT}+ αα0 �αa

bΦ(∇C)b
i − Cb0 �αa

bΦ(F)αi + 2βb0jX(ab)
AΦ(∇D)A

ij = (CPFC1)a
i ,

što daje rezultat:

(CPFC)a
i = −αα0 �αa

bΦ(β)b
i + Cb0 �αa

bΦ(B)αi − 2βb0jX(ab)
AΦ(γ)A

ij .

Iz toga sledi da je generator:

(G0)ha
i = −αα0 �αa

bΦ(β)b
i + Cb0 �αa

bΦ(B)αi − 2βb0jX(ab)
AΦ(γ)A

ij + Φ(∇C)a
i .

Kastelanijev drugi uslov za generator (G0)lA
ij daje:

(G0)lA
ij + {Φ(γ)A

ij , HT} = (CPFC)A
ij ,

(G0)lA
ij + Φ(∇D)A

ij = (CPFC)A
ij ,

(D.78)

tj. dobijamo (G0)lA
ij = (CPFC)A

ij − Φ(∇D)A
ij. Zatim, iz trećeg Kastelanijevog uslova sledi

{(G0)lA
ij , HT} = (CPFC1)A

ij ,

{(CPFC)A
ij − Φ(∇D)A

ij, HT} = (CPFC1)A
ij ,

{(CPFC)A
ij , HT} − αα0 �αA

BΦ(∇D)B
ij = (CPFC1)A

ij ,

(D.79)
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što daje rezultat
(CPFC)A

ij = αα0 �αA
BΦ(γ)B

ij .

Dobija se da je generator:

(G0)lA
ij = αα0 �αA

BΦ(γ)B
ij − Φ(∇D)A

ij . (D.80)

U ovom trenutku, korisno je rezimirati rezultate i uvesti novu notaciju:

ε̇m
α
i(G1)mα

i + εm
α
i(G0)mα

i = −∇0εm
α
iΦ(B)α

i + εm
α
iΦ(F)α

i

= ∇0εm
α
i(M̃1)α

i + εm
α
i(M̃0)α

i .
(D.81)

Primetimo da se vremenski izvod parametra kombinuje sa nekim drugim članovima u kovari-
jantni izvod u vremenskom pravcu.

Za drugi deo ukupnog generatora dobijamo:

ε̇g
α(G1)gα + εg

α(G0)gα = −ε̇gαΦ(α)α − εgα
(
Bβ0ifαγ

βΦ(B)γi − αβ0fαβ
γΦ(α)γ

+Ca0 �αb
aΦ(C)b + βa0i �αb

aΦ(β)b
i − 1

2
γA0ij �αA

BΦ(γ)B
ij − Φ(∇B)α

)
= −∇0εg

αΦ(α)α − εgα
(
Bβ0ifαγ

βΦ(B)γi

+Ca0 �αb
aΦ(C)b + βa0i �αb

aΦ(β)b
i − 1

2
γA0ij �αA

BΦ(γ)B
ij − Φ(∇B)α

)
= ∇0εg

α(G̃1)α + εg
α(G̃0)α .

(D.82)
Osim toga, sledi:

ε̇h
a
i(G1)ha

i + εh
a
i(G0)ha

i = −∇0εh
a
iΦ(β)α

i + εh
a
i

(
Cb0 �αa

bΦ(B)αi − 2βb0jX(ab)
AΦ(γ)A

ij + Φ(∇C)a
i
)

= ∇0εh
a
i(H̃1)a

i + εh
a
i(H̃0)a

i ,

(D.83)

ε̇n
a(G1)na + εn

a(G0)na = −∇0εn
aΦ(C)a + εn

a(βb0i �αa
bΦ(B)αi + Φ(G)a)

= ∇0εn
a(Ñ1)a + εn

a(Ñ0)a .
(D.84)

Na kraju, dobija se

1

2
ε̇l
A
ij(G1)lA

ij +
1

2
εl
A
ij(G0)lA

ij =
1

2
ε̇l
A
ijΦ(γ)A

ij +
1

2
εl
A
ijα

α
0 �αA

BΦ(γ)B
ij

−1

2
εl
A
ijΦ(∇D)A

ij

=
1

2
∇0εl

A
ijΦ(γ)A

ij − 1

2
εl
A
ijΦ(∇D)A

ij

=
1

2
∇0εl

A
ij(L̃1)A

ij +
1

2
εl
A
ij(L̃0)A

ij .

(D.85)

D.3.3 Izračunavanje algebre simetrija 3BF dejstva

Da bi se dobila struktura grupe simetrija 3BF dejstva, kao što je predstavljeno u podsekciji
6.1.2, moramo najpre izračunati komutatore između generatora G-, H-, L-, M - i N -gejdž
simetrija. Ovaj proces je opisan u odeljku 6.1.2, dok su detalji izračunavanja dati u ovom
odeljku.
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Komutator [H,H]

Sada ćemo izračunati komutator generatora H-gejdž transformacija, tj. jednačinu (6.49).
Nakon transformacije promenljivih pri H-gejdž transformacijama za parametar εh1 dobija se

α′ = α− ∂εh1 , (D.86)

β′ = β−
α−∂εh1

∇ εh1 − εh1 ∧ εh1 , (D.87)

γ′ = γ + {β−
α−∂εh1

∇ εh1 − εh1 ∧ εh1, εh1}pf + {εh1, β}pf , (D.88)

B′ = B − (C −D ∧X1 εh1 −D ∧X2 εh1) ∧T εh1 − εh1 ∧D εh1 ∧D D , (D.89)

C ′ = C −D ∧X1 εh1 −D ∧X2 εh1 , (D.90)

D′ = D . (D.91)

Zatim, daljom transformacijom varijabli H-gejdž transformacijama sa parametrom εh2 dobija
se:

α′′ = α− ∂εh1 − ∂εh2 ,

β′′ = β−
α−∂εh1

∇ εh1 − εh1 ∧ εh1−
α−∂εh1−∂εh2

∇ εh2 − εh2 ∧ εh2 ,

γ′′ = γ + {β−
α−∂εh1

∇ εh1 − εh1 ∧ εh1, εh1}pf + {εh1, β}pf

+{β−
α−∂εh1

∇ εh1 − εh1 ∧ εh1−
α−∂εh1−∂εh2

∇ εh2 − εh2 ∧ εh2, εh2}pf

+{εh2, β−
α−∂εh1

∇ εh1 − εh1 ∧ εh1}pf ,

B′′ = B − (C −D ∧X1 εh1 −D ∧X2 εh1) ∧T εh1 − εh1 ∧D εh1 ∧D D

−(C −D ∧X1 εh1 −D ∧X2 εh1 −D ∧X1 εh2 −D ∧X2 εh2) ∧T εh2 − εh2 ∧D εh2 ∧D D ,

C ′′ = C −D ∧X1 εh1 −D ∧X2 εh1 −D ∧X1 εh2 −D ∧X2 εh2 ,

D′′ = D .

(D.92)
Vidimo da za promenljive ααµ, Ca

µ i DA dobijamo da transformacije komutiraju:

eεh1·Heεh2·Hααµ = eεh2·Heεh1·Hααµ ,

eεh1·Heεh2·HCa
µ = eεh2·Heεh1·HCa

µ ,

eεh1·Heεh2·HDA = eεh2·Heεh1·HDA .

(D.93)
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Za preostale promenljive, βaµν , γAµνρ i Bα
µν , razlika jednačine (D.3.3) i analogne jednačine gde

εh1 ↔ εh2 je:

(
eεh1·Heεh2·H − eεh2·Heεh1·H

)1

2
βaµν = ∂b

αεh2
b
[µ|εh1

c
|ν] � αc

a − ∂bαεh1
b
[µ|εh2

c
|ν] � αc

a

= 2δA
aX(bc)

Aεh1
b
[µ|εh2

c
|ν]

= δA
a({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)

A
µν ,(

eεh1·Heεh2·H − eεh2·Heεh1·H
) 1

3!
γAµνρ = 2(∂[µεh1

a
ν)εh2

b
ρ]X(ab)

A + 2εh1
a

[ν(∂µεh2
b
ρ])X(ab)

A

+2αα[µεh1

a
νεh2

b
ρ]X(ab)

B �αB
A

= ∇[µ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)
A
νρ] ,(

eεh1·Heεh2·H − eεh2·Heεh1·H
)1

2
Bα

µν = DAεh2
a

[µ|εh1
b
|ν](X1Aa

c +X2Aa
c)T cbα

−DAεh1
b
[µ|εh2

a
|ν](X1Ab

c +X2Ab
c)T caα

= −2DAεh1
a

[µ|εh2
b
|ν](X(ac)

A �αb
c +X(bc)

A �αa
c)

= −2DAεh1
a

[µ|εh2
b
|ν]X(ab)

B �αB
A

= (D ∧S ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf)
α
µν .

(D.94)

Upoređivanjem jednačina (D.93) i (D.94) sa jednačinama (6.45), zaključujemo da je komutator
dve H-gejdž transformacije L-gejdž transformacija sa parametrom εl

A
µν = 4εh1

a
[µ|εh2

b
|ν]X(ac)

A:

eεh1·Heεh2·H − eεh2·Heεh1·H = 2 ({εh1 ∧ εh2}pf − {εh2 ∧ εh1}pf) · L̂ . (D.95)

Komutator [H,N ]

Izračunajmo komutator između generatora H-gejdž i N -gejdž transformacija, tj. izvedimo
jednačinu (6.81). Ovo se radi izračunavanjem izraza(

eεh·Heεn·N − eεn·Neεh·H
)
A , (D.96)

za sve varijable A prisutne u teoriji. Primećujemo da je za varijable ααµ, βaµν , γAµνρ i DA

dobijeno da transformacije komutiraju:

eεh·Heεn·Nααµ = eεn·Neεh·Hααµ ,

eεh·Heεn·Nβaµν = eεn·Neεh·Hβaµν ,

eεh·Heεn·NγAµνρ = eεn·Neεh·HγAµνρ ,

eεh·Heεn·NDA = eεn·Neεh·HDA .

(D.97)

Preostale varijable Bα
µν i Ca

µ se pri H-gejdž transformacijama transformišu na sledeći način:

B′ = B − (C −D ∧χ1 εh −D ∧χ2 εh) ∧τ εh − εh ∧D εh ∧D D ,

C ′ = C −D ∧χ1 εh −D ∧χ2 εh .
(D.98)
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Daljom transformacijom ovih varijabla N -gejdž transformacijama:

B′′ = B′ − β′ ∧T εn

= B − (C −D ∧χ1 εh −D ∧χ2 εh) ∧τ εh − εh ∧D εh ∧D D − (β−
{αα−∂aαεha}
∇εh −εh ∧ εh) ∧T εn ,

C ′′ = C ′−
{αα−∂aαεha}
∇ εn

= C −D ∧χ1 εh −D ∧χ2 εh−
{αα−∂aαεha}
∇ εn .

(D.99)

Zatim, izmenimo redosled transformacija. Najpre, transformacija varijabli pri N -gejdž transfo-
rmacijama je

B· = B − β ∧T εn ,

C · = C −∇εn ,
(D.100)

dok dalja H-gejdž transformacija daje:

B·· = B· − (C · −D· ∧χ1 εh −D· ∧χ2 εh) ∧τ εh − εh ∧D εh ∧D D·

= B − β ∧T εn − (C −∇εn − (D + δεn) ∧χ1 εh − (D + δεn) ∧χ2 εh) ∧τ εh − εh ∧D εh ∧D (D + δεn) ,

C ·· = C · −D· ∧χ1 εh −D· ∧χ2 εh

= C −∇εn − (D + δεn) ∧χ1 εh − (D + δεn) ∧χ2 εh .

(D.101)
Razlika jednačina (D.99) i (D.101) je:

(
eεh·Heεn·N − eεn·Neεh·H

)
Bα = ∇εna ∧ εhbTabα + δAaεn

aεh
b ∧ εhdX1Ab

cTcdα

+δAaεn
aεh

b ∧ εhdX2Ab
cTcdα − εha ∧ εhbδAcεncDAab

α ,

∇εha ∧ εnbTabα + ∂a
βεh

a �βc
bεh

cεn
dTbdα − εha ∧ εhbfabcεndTcdα ,(

eεh·Heεn·N − eεn·Neεh·H
)
Cc = −(δAaε

a
n) ∧ εhbX1Ab

c − (δAaε
a
n) ∧ εhbX2Ab

c − ∂aβεha �βb
cεn

b ,

(D.102)
Primenom definicija preslikavanja T , D, χ1 i χ2 prethodne jednačine se svode na(

eεh·Heεn·N − eεn·Neεh·H
)
Bα = ∇εna ∧ εhbTabα −∇εha ∧ εnbTabα = ∇(εn ∧T εh)α ,(

eεh·Heεn·N − eεn·Neεh·H
)
Cc = ∂cα(εn ∧T εh)α ,

(D.103)
Upoređivanjem jednačina (D.97) i (D.103) sa jednačinom (6.58) dobijamo konačan rezultat za
komutator (

eεh·Heεn·N − eεn·Neεh·H
)

= −(εn ∧T εh) ·M . (D.104)
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Dodatak E

Invarijantnost sume po stanjima na Pahnerove
poteze

E.1 Invarijantnost 2BF sume po stanjima na Pahnerove poteze

E.1.1 n = 3

Pahnerov potez 1 ↔ 4

Leva strana Pahnerovog poteza 1↔ 4 data je izrazom (8.20) i ne može se pojednostaviti:

l.s. = δH
(
h134 g34 � h123 h

−1
234 h

−1
124

)
. (E.1)

Analizirajmo čemu je jednaka desna strana poteza 1↔ 4 data izrazom (8.21). Integralimo g15

koristeći δG(g125), g25 koristeći δG(g235) i g35 koristeći δG(g345):

g15 = ∂(h125) g25 g12 ,

g25 = ∂(h235) g35 g23 ,

g35 = ∂(h345) g45 g34 .

(E.2)

Zatim, integralimo h135 koristeći δH(h1345), h125 koristeći δH(h1245) i h235 koristeći δH(h2345):

h135 = h145 (g45 � h134)h−1
345 ,

h125 = h145 (g45 � h124)h−1
245 ,

h235 = h245 (g45 � h234)h−1
345 .

(E.3)

Preostale δ-funkcije na grupi G svode se na δG(e)3. Pokažimo to. Korišćenjem jednačina (E.3)
i identiteta (8.2) za trougao (234):

δG(g245) = δG
(
∂(h245) g45 g24 g

−1
25

)
= δG

(
∂(h245) g45 g24 g

−1
23 g

−1
35 ∂(h235)−1

)
= δG

(
∂(h245) g45 g24 g

−1
23 g

−1
35 ∂(h345) g45 � ∂(h234)−1 ∂(h245)−1

)
= δG

(
g45 g24 g

−1
23 g

−1
34 g

−1
45 ∂(h345)−1 ∂(h345) g45 g34 g23 g

−1
24 g

−1
45

)
= δG(e) .

(E.4)

201



Dodatak E. Invarijantnost sume po stanjima na Pahnerove poteze 202

Zatim, za preostale dve δ-funkcije na grupi G dobijamo da su ekvivalentne prvoj, pa sledi

δG(g135) = δG
(
∂(h135) g35 g13 g

−1
15

)
= δG

(
∂(h145) g45 � ∂(h134) ∂(h345)−1 ∂(h345) g45 g34 g13 g

−1
12 g

−1
25 ∂(h125)−1

)
= δG

(
∂(h145) g45 ∂(h134)g−1

45 g45 g34 g13 g
−1
12 g

−1
25 ∂(h245) g45 � ∂(h124)−1 ∂(h145)−1

)
= δG

(
g45 g14 g

−1
13 g

−1
34 g34 g13 g

−1
12 g

−1
25 ∂(h245) g45 g24 g12 g

−1
14 g

−1
45

)
= δG

(
g−1

25 ∂(h245) g45 g24

)
= δG

(
g245

)
= δG(e) ,

(E.5)

δG(g145) = δG
(
∂(h145) g45 g14 g

−1
15

)
= δG

(
∂(h145) g45 g14 g

−1
12 g

−1
25 ∂(h125)−1

)
= δG

(
∂(h145) g45 g14 g

−1
12 g

−1
25 ∂(h245) g45 � ∂(h124)−1 ∂(h145)−1

)
= δG

(
g45 g14 g

−1
12 g

−1
25 ∂(h245) g45∂(h124)−1 g−1

45

)
= δG

(
g14 g

−1
12 g

−1
25 ∂(h245) g45 g24 g12 g

−1
14

)
= δG

(
g−1

25 ∂(h245) g45 g24

)
= δG

(
g245

)
= δG(e) .

(E.6)

Koristili smo jednačine (E.2) i (E.3), kao i identitet (8.2) za trouglove (134) i (124). Zatim,
analiziranjem δH(h1235) dobijamo:

δH(h1235) = δH
(
h135 (g35 � h123)h−1

235 h
−1
125

)
= δH

(
h145 (g45 � h134)h−1

345 (g35 � h123)h−1
235 h245 g45 � h−1

124h
−1
145

)
= δH

(
g45 � h134 h

−1
345 (g35 � h123) (h245 (g45 � h234)h−1

345)−1 h245 g45 � h−1
124

)
= δH

(
g45 � h134 h

−1
345 (g35 � h123)h345 g45 � h−1

234 g45 � h−1
124

)
= δH

(
g45 � h134 (∂(h345)−1g35) � h123 g45 � h−1

234 g45 � h−1
124

)
= δH

(
g45 � h134 (g45g34) � h123 g45 � h−1

234 g45 � h−1
124

)
= δH

(
h134 g34 � h123 h

−1
234 h

−1
124

)
.

(E.7)

Zaključujemo dakle da je desna strana poteza:

d.s. = δG(e)3 δH
(
h134 g34 � h123 h

−1
234 h

−1
124

)
. (E.8)
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Konstante ispred integrala su |G|−2|H| sa leve strane poteza, odnosno |G|−5|H| sa desne
strane poteza, što kompenzuje razliku u faktorima |G| u izrazima (E.1) i (E.8). Zaključujemo
da je suma po stanjima (8.16) invarijantna na 1↔ 4 Pahnerov potez.

Pahnerov potez 2 ↔ 3

Sa leve strane 2↔ 3 Pahnerovog poteza imamo integral:∫
dh234 δG(h234) δH(h1234) δH(h2345) . (E.9)

Najpre, integralimo h234 koristeći δH(h2345). Dobijamo da je

h234 = g−1
45 � h−1

245 g
−1
45 � h235 g

−1
45 � h345 , (E.10)

pa, zamenjujući ovaj rezultat u izraz za preostalu δ-funkciju na grupi G i korišćenjem identiteta
(8.2) za trouglove (245), (235) i (345), sledi:

δG(g234) = δG
(
∂(h234) g34 g23 g

−1
24

)
= δG

(
g−1

45 � (∂(h245)−1 ∂(h235) ∂(h345)) g34 g23 g
−1
24

)
= δG

(
g−1

45 g45 g24 g25 g
−1
25 g

−1
23 g

−1
35 g−1

35 g
−1
34 g

−1
45 g45 g34 g23 g

−1
24

)
= δG(e) .

(E.11)

Preostala δ-funkcija na grupi H je:

δH(h1234) = δH
(
h134 (g34 � h123)h−1

234 h
−1
124

)
= δH

(
h134 (g34 � h123) g−1

45 � (h−1
345 h

−1
235 h245)h−1

124

)
.

(E.12)

Zaključujemo da je leva strana poteza jednaka:

l.s. = |G| δH
(
h134 (g34 � h123) g−1

45 � (h−1
345 h

−1
235 h245)h−1

124

)
. (E.13)

Sa desne strane Pahnerovog poteza imamo integral:

∫
dg15 dh125 dh135 dh145 δG(g125)δG(g135)δG(g145)δH(h1235)δH(h1245)δH(h1345) . (E.14)

Najpre, integralimo g15 koristeći δG(g135),

g15 = ∂(h135) g35 g13 , (E.15)

a zatim h125 koristeći δH(h1235) i h135 koristeći δH(h1345):

h125 = h135 (g35 � h123)h−1
235 ,

h135 = h145 (g45 � h134)h−1
345 .

(E.16)
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Koristeći ove rezultate u izrazima za preostale dve δ-funkcije na grupi G dobijamo da se svode
na δG(e)2:

δG(g125) = δG
(
∂(h125) g25 g12 g

−1
15

)
= δG

(
∂(h135) g35 � ∂(h123) ∂(h235)−1 g25 g12 g

−1
13 g

−1
35 ∂(h135)−1

)
= δG

(
g35 � ∂(h123) ∂(h235)−1 g25 g12 g

−1
13 g

−1
35

)
= δG

(
g35 g13 g

−1
12 g

−1
23 g

−1
35 g35 g23 g

−1
25 g25 g12 g

−1
13 g

−1
35

)
= δG(e) ,

(E.17)

δG(g145) = δG
(
∂(h145) g45 g14 g

−1
15

)
= δG

(
∂(h145) g45 g14 g

−1
13 g

−1
35 ∂(h135)−1

)
= δG

(
∂(h145) g45 g14 g

−1
13 g

−1
35 ∂(h345) g45 � ∂(h134)−1 ∂(h145)−1

)
= δG

(
g45 g14 g

−1
13 g

−1
35 g35 g

−1
34 g

−1
45 g45 g34 g13 g

−1
14 g

−1
45

)
= δG(e) .

(E.18)

Preostala δ-funkcija na grupi H je:

δH(h1245) = δH
(
h145 (g45 � h124)h−1

245 h
−1
125

)
= δH

(
h145 (g45 � h124)h−1

245 h235 g35 � h−1
123 h

−1
135

)
= δH

(
h145 g45 � h124 h

−1
245 h235 g35 � h−1

123 h345 g45 � h−1
134 h

−1
145

)
= δH

(
g45 � h124 h

−1
245 h235 g35 � h−1

123 h345 g45 � h−1
134

)
= δH

(
g45 � h124 h

−1
245 h235 h345 (∂(h345)−1g35) � h−1

123 g45 � h−1
134

)
= δH

(
g45 � h124 h

−1
245 h235 h345 (g45g34) � h−1

123 g45 � h−1
134

)
= δH

(
h124 g

−1
45 � (h−1

245 h235 h345) g34 � h−1
123 h

−1
134

)
= δH

(
h134 (g34 � h123) g−1

45 � (h−1
345 h

−1
235 h245)h−1

124

)
.

(E.19)

Vidimo da su izrazi (E.12) i (E.19) jednaki. Preostala integracija po elementu h145 je trivijalna,
pa je desna strana poteza:

d.s. = δG(e)2 δH
(
h134 (g34 � h123) g−1

45 � (h−1
345 h

−1
235 h245)h−1

124

)
= |G|2 δH

(
h134 (g34 � h123) g−1

45 � (h−1
345 h

−1
235 h245)h−1

124

)
.

(E.20)

Razlika u faktorima |G| u izrazima (E.13) i (E.20) kompenzovana je konstantama ispred inte-
grala – faktorom |G|−4|H|1 sa desne strane i faktorom |G|−3|H|1 sa leve strane poteza. Za-
ključujemo da je suma (8.16) invarijantna na 2↔ 3 Pahnerov potez.
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E.1.2 n = 4

Pahnerov potez 1 ↔ 5

Leva strana Pahnerovog poteza 1 ↔ 5 data je izrazom (8.25) i ne može se pojednostaviti.
Ispitajmo čemu je jednaka desna strana poteza, data jednačinom (8.24). Najpre integralimo
po varijabli g12 iskoristivši pritom δ-funkciju δG(g123), zatim varijabli g13 koristeći δG(g134), g14

koristeći δG(g145) i varijabli g15 koristeći δG(g156):

g12 = g−1
23 ∂(h123)−1 g13 ,

g13 = g−1
34 ∂(h134)−1 g14 ,

g14 = g−1
45 ∂(h145)−1 g15 ,

g15 = g−1
56 ∂(h156)−1 g16 .

(E.21)

Zatim, integralimo varijablu h123 koristeći δH(h1234), h124 koristeći δH(h1245), h125 koristeći
δH(h1256), h134 koristeći δH(h1345), h135 koristeći δH(h1356) i h145 koristeći δH(h1456):

h123 = g−1
34 � h−1

134 g
−1
34 � h124 g

−1
34 � h234 ,

h124 = g−1
45 � h−1

145 g
−1
45 � h125 g

−1
45 � h245 ,

h125 = g−1
56 � h−1

156 g
−1
56 � h126 g

−1
56 � h256 ,

h134 = g−1
45 � h−1

145 g
−1
45 � h135 g

−1
45 � h345 ,

h135 = g−1
56 � h−1

156 g
−1
56 � h136 g

−1
56 � h356 ,

h145 = g−1
56 � h−1

156 g
−1
56 � h146 g

−1
56 � h456 .

(E.22)

Nakon ovih integracija šest δ-funkcija na grupi G prisutnih sa desne strane poteza svode se na
δG(e)6. Dobijamo:

δG(g124) = δG(g125) = δG(g126) = δG(g135) = δG(g136) = δG(g146) = δG(e) .

Detalji računa su isti kao i u slučaju 1↔ 5 Pahnerovog poteza za 3BF sumu po stanjima i dati
su u narednom odeljku. Pokažimo da se sada preostale δ-funkcije na grupi H svedu na δH(e)4.
Najpre, pravolinijskim računom dobijamo za δH(h1235):

δH(h1235) = δH
(
h135 (g35 � h123)h−1

235 h
−1
125

)
= δH

(
h135 (g35g

−1
34 ) � (h−1

134 h124 h234)h−1
235 h

−1
125

)
= δH

(
h135 (g35g

−1
34 ) �

(
(g−1

45 � (h−1
345 h

−1
135 h145 h

−1
145 h125 h245)h234

)
h−1

235 h
−1
125

)
= δH

(
h135 h345h

−1
345 h

−1
135 h125 h245h

−1
345(g35g

−1
34 ) � h234 h

−1
235 h

−1
125

)
= δH

(
h245h

−1
345(g35g

−1
34 ) � h234 h

−1
235

)
= δH

(
h245h

−1
345 h345 (∂(h345)−1g35g

−1
34 ) � h234 h

−1
345 h

−1
235

)
= δH

(
h245 g45 � h234 h

−1
345 h

−1
235

)
= δH(e) .

(E.23)
U prethodnom smo koristili identitet g45 = ∂(h345)−1g35g

−1
34 za trougao (345), kao i izraz

h245 g45 � h234 h
−1
345 h

−1
235 = e za tetraedar (2345). Analognim postupkom za vrednost δ-funkcije
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δH(h1236) dobijamo:

δH(h1236) = δH
(
h136 (g36 � h123)h−1

236 h
−1
126

)
= δH

(
h136 h346 (g46g34) � h123 h

−1
346 h

−1
236 h

−1
126

)
= δH

(
h136 h346 g46 � (h−1

134 h124 h234)h−1
346 h

−1
236 h

−1
126

)
= δH

(
h136 h346 g46 � (h−1

134 h124 h234) g46 � h−1
234 h

−1
246 h

−1
126

)
= δH

(
h136 h346 (g46g

−1
45 ) � (h−1

345 h
−1
135 h125 h245)h−1

246 h
−1
126

)
= δH

(
h136 h346 (g46g

−1
45 ) � (h−1

345 g
−1
56 � (h−1

356 h
−1
136 h126 h256)h245)h−1

246 h
−1
126

)
= δH

(
h136 h346 (g46g

−1
45 ) � h−1

345 h456 h
−1
356 h

−1
136 h126 h256 g56 � h245 h

−1
456 h

−1
246 h

−1
126

)
= δH

(
h136 h346 h456 g56 � h−1

345 h
−1
356 h

−1
136 h126 h

−1
126

)
= δH

(
h136 h

−1
136 h126 h

−1
126

)
= δH(e) .

(E.24)
Koristili smo identitet (8.6) za tetraedre (2456) i (3456), kao i identitet (8.2) za trougao (456).

Sličnim postupkom dobijamo da su δ-funkcije δH(h1246) = δH(h1346) = δH(e). Dobijamo da
je desna strana poteza jednaka:

d.s. = δG(e)6δH(e)4 = |G|6|H|4 . (E.25)

Faktori u izrazu (E.25) kompenzovani su konstantama ispred integrala – faktorom |G|−11|H|−4

sa desne strane i faktorom |G|−5|H|0 sa leve strane poteza. Zaključujemo da je suma (8.16)
invarijantna na 1↔ 5 Pahnerov potez.

Pahnerov potez 2 ↔ 4

Leva strana poteza jednaka je δ-funkciji

δH(h2345) = h235 h345 (g45 � h−1
234)h−1

245 . (E.26)

Da bismo videli čemu je jednaka leva strana poteza, koristićemo Lemu 17.

Lema 17 Neka je za dati 4-simplex (jk`mn) zadovoljen identitet (8.6) za četiri tetraedra (k`mn),
(j`mn), (jkmn) i (jk`n) i identitet (8.2) za sve trouglove na njihovoj granici, sledi da je ide-
ntitet (8.6) takođe zadovoljen za peti tetraedar (jk`m).

Na osnovu ovog opšteg rezultata, možemo pokazati da se leva strana poteza svodi na

δH(h2345) = δH(e) = |H| . (E.27)

Ispitajmo sada čemu je jednaka desna strana poteza, tj. integral (8.27):∫
dg16

∫
dh126dh136dh146dh156δG(g126)δG(g136)δG(g146)δG(g156)δH(h1236)δH(h1246)δH(h1256)δH(h1346)δH(h1356)δH(h1456).

(E.28)
Prvo integralimo g16 koristeći δG(g126),

g16 = ∂(h126) g26 g12 . (E.29)
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Zatim, integralimo h126 koristeći δH(h1236), h136 koristeći δH(h1346) i h146 koristeći δH(h1456), na
osnovu čega dobijamo

h126 = h136 (g36 � h123)h−1
236 ,

h136 = h146 (g46 � h134)h−1
346 ,

h146 = h156 (g56 � h145)h−1
456 .

(E.30)

Preostale tri δ-funkcije na grupi G svode se na δG(e)3, tj. pokazuje se da je δG(g136) = δG(g146) =
δG(g156) = δG(e). Dokaz je isti kao u slučaju 3BF , za detalje pogledati sledeći odeljak.

Preostale tri δ-funkcija na grupi H svode se na δH(e)3, sličnim postupkom kao i u slučaju
1 ↔ 5 Pahnerovog poteza, tj. dobijamo δH(h1356) = δH(h1246) = δH(h1256) = δH(e). Najpre,
pokažimo da je δH(h1356) = δH(e):

δH(h1356) = δH
(
h156 (g56 � h135)h−1

356 h
−1
136

)
= δH

(
h156 (g56 � h135)h−1

356 h346 g46 � h−1
134 h

−1
146

)
= δH

(
g56 � h135 h

−1
356 h346 g46 � h−1

134 h456 g56 � h−1
145

)
= δH

(
g56 � (g45 � h134h345)h−1

356 h346 g46 � h−1
134 h456

)
= δH

(
g46 � h134 h456 g56 � h345 h

−1
356 h346 g46 � h−1

134

)
= δH

(
h456 g56 � h345 h

−1
356 h346

)
= δH(e) .

(E.31)

Zatim, δ-funkcija δH(h1246) je:

δH(h1246) = δH
(
h146 (g46 � h124)h−1

246 h
−1
126

)
= δH

(
h146 (g46 � h124)h−1

246 h236 g36 � h−1
123 h346 g46 � h−1

134 h
−1
146

)
= δH

(
g46 � h124 h

−1
246 h236 g36 � h−1

123 h346 g46 � h−1
134

)
= δH

(
g46 � h124 (∂(h246)−1 ∂(h236) g36) � h−1

123 h
−1
246 h236 h346 g46 � h−1

134

)
= δH

(
g46 � h124 (g46g24g

−1
23 ) � h−1

123 g46 � h234 g46 � h−1
134

)
= δH

(
g46 � h124 g46 � h234 (g46g34) � h−1

123 g46 � h−1
134

)
= δH(e) .

(E.32)
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Preostala δ-funkcija δH(h1256) je jednaka:

δH(h1256) = δH
(
h156 (g56 � h125)h−1

256 h
−1
126

)
= δH

(
h156 (g56 � h125)h−1

256 (h236 g36 � h−1
123 h

−1
136)
)

= δH
(
h156 (g56 � h125)h−1

256 h236 g36 � h−1
123 h346 g46 � h−1

134 h
−1
146

)
= δH

(
h156 (g56 � h125)h−1

256 h236 g36 � h−1
123 h346 g46 � h−1

134 h456g56 � h−1
145h

−1
156

)
= δH

(
g56 � h125 h

−1
256 h236 g36 � h−1

123 h346 g46 � h−1
134 h456g56 � h−1

145

)
= δH

(
h−1

256 h236 g36 � h−1
123 h346 g46 � h−1

134 h456g56 � (g45 � h124h
−1
245)
)

= δH
(
h236 g36 � h−1

123 h346 g46 � h−1
134 g46 � h124 h

−1
246

)
= δH

(
h236 h346 (g46g

−1
34 ) � h−1

123 g46 � h−1
134 g46 � h124 h

−1
246

)
= δH

(
g46 � h234 (g46g

−1
34 ) � h−1

123 g46 � h−1
134 g46 � h124

)
= δH(e) .

(E.33)
Preostala integracija – po elementu h156 grupe H je trivijalna, odnosno desna strana se konačno
svodi na:

d.s. = δG(e)3 δH(e)3 = |G|3 |H|3 . (E.34)

Konstante ispred integrala su |G|−8|H|−1 sa leve strane poteza, odnosno |G|−11|H|−3 sa desne
strane poteza, što kompenzuje razliku i izrazima (E.27) i (E.34), na osnovu čega zaključujemo
da je suma po stanjima (8.16) invarijantna na 2↔ 4 Pahnerov potez.

Pahnerov potez 3 ↔ 3

Analizirajmo najpre desnu stranu poteza, tj. integral:

∫
H

dh123δG(g123) δH(h1234)δH(h1235)δH(h1236) . (E.35)

Integralimo h123 koristeći δH(h1234) i dobijamo:

h123 = g−1
34 � h−1

134 g
−1
34 � h124 g

−1
34 � h234. (E.36)

Može se pokazati da je preostala δ-funkcija na grupi G, δ-funkcija δG(g123) = δG(e), videti dokaz
invarijantnosti 3BF sume po stanjima na 3↔ 3 Paherov potez.

Za δ-funkciju δH(h1235), primenom identiteta (8.2) za trougao (345) i identiteta (8.6) za
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tetraedre (1345), (1245) i (2345) dobijamo:

δH(h1235) = δH
(
h135 (g35 � h123)h−1

235 h
−1
125

)
= δH

(
h135 (g35g

−1
34 ) � (h−1

134 h124 h234)h−1
235 h

−1
125

)
= δH

(
h135 h345g45 � (h−1

134 h124 h234)h−1
345 h

−1
235 h

−1
125

)
= δH

(
h145 g45 � (h124 h234)h−1

345 h
−1
235 h

−1
125

)
= δH

(
h245 g45 � h234 h

−1
345 h

−1
235

)
= δH(e) .

(E.37)

Za δ-funkciju δH(h1236), primenom identiteta (8.2) za trougao (346) i identiteta (8.6) za tetrae-
dre (1346), (1246) i (2346) dobijamo:

δH(h1236) = δH
(
h136 (g36 � h123)h−1

236 h
−1
126

)
= δH

(
h136 (g36g

−1
34 ) � (h−1

134 h124 h234)h−1
236 h

−1
126

)
= δH

(
h136 h346g46 � (h−1

134 h124 h234)h−1
346 h

−1
236 h

−1
126

)
= δH

(
h146 g46 � (h124 h234)h−1

346 h
−1
236 h

−1
126

)
= δH

(
h246 g46 � h234 h

−1
346 h

−1
236

)
= δH(e) .

(E.38)

Zaključujemo da se izraz sa desne strane Pahnerovog poteza svodi na

d.s. = δG(e)δH(e)2 = |G| |H|2 . (E.39)

Analizirajmo sada levu stranu poteza, tj. integral:∫
H

dh456δG(g456) δH(h3456)δH(h2456)δH(h1456) . (E.40)

Integralimo h456 koristeći δ-funkciju δH(h3456). Zamenjujući svuda dobijeni izraz za h456 do-
bijamo da se δ-funkcija δG(g456), primenom identiteta (8.2) za trouglove (346), (356) i (345),
svodi na:

δG(g456) = δG
(
e
)
. (E.41)

Sličnim postupkom kao i sa desne strane poteza, dobijamo da su δ-funkcije δH(h1456) i δH(h2456)
jednake δH(e)2. Konačno dobijamo da je leva strana poteza jednaka:

l.s. = δG(e)δH(e)2 = |G| |H|2 . (E.42)

Broj k-simpleksa sa obe strane 3↔ 3 poteza je isti za sve k, tj. koeficijenti ispred integrala su
jednaki u ovom slučaju i prema tome nisu od značaja.

E.2 Invarijantnost 3BF sume po stanjima na Pahnerove poteze
U ovom dodatku prikazan je dokaz da je suma po stanjima (9.22) nezavisna od triangulacije
mnogostrukosti, tj. invarijantna na Pahnerove poteze.
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E.2.1 n = 4

Pahnerov potez 1 ↔ 5

Koristeći identitet (2.90) δ-funkcija na levoj strani poteza δL(l23456) je:

δL(l23456) = δL
(
l2346

−1(h236 �
′ l3456)l2356h256 �

′ (g56 � l2345)l2456
−1h246 �

′ {h456,(g56g45) � h234}pf

)
.

(E.43)
Ispitajmo čemu je jednaka desna strana poteza, data jednačinom (9.23) posle integracije. Najpre
integralimo po varijabli g12 iskoristivši pritom δ-funkciju δG(g123), zatim varijabli g13 koristeći
δG(g134), g14 koristeći δG(g145) i varijabli g15 koristeći δG(g156):

g12 = g−1
23 ∂(h123)−1 g13 ,

g13 = g−1
34 ∂(h134)−1 g14 ,

g14 = g−1
45 ∂(h145)−1 g15 ,

g15 = g−1
56 ∂(h156)−1 g16 .

(E.44)

Zatim, integralimo varijablu h123 koristeći δH(h1234), h124 koristeći δH(h1245), h125 koristeći
δH(h1256), h134 koristeći δH(h1345), h135 koristeći δH(h1356) i h145 koristeći δH(h1456):

h123 = g−1
34 � h−1

134 g
−1
34 � δ(l1234)−1 g−1

34 � h124 g
−1
34 � h234 ,

h124 = g−1
45 � h−1

145 g
−1
45 � δ(l1245)−1 g−1

45 � h125 g
−1
45 � h245 ,

h125 = g−1
56 � h−1

156 g
−1
56 � δ(l1256)−1 g−1

56 � h126 g
−1
56 � h256 ,

h134 = g−1
45 � h−1

145 g
−1
45 � δ(l1345)−1 g−1

45 � h135 g
−1
45 � h345 ,

h135 = g−1
56 � h−1

156 g
−1
56 � δ(l1356)−1 g−1

56 � h136 g
−1
56 � h356 ,

h145 = g−1
56 � h−1

156 g
−1
56 � δ(l1456)−1 g−1

56 � h146 g
−1
56 � h456 .

(E.45)

Nakon ovih integracija šest δ-funkcija na grupi G prisutnih sa desne strane poteza svode se na
δG(e)6. Skicirajmo dokaz. Najpre,

δG(g124) = δG
(
∂(h124)g24g12g

−1
14

)
= δG

(
∂(h124)g24g

−1
23 ∂(h123)−1g13g

−1
14

)
= δG

(
∂(h124)g24g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134)g34g13g

−1
14

)
= δG

(
∂(h124)g24g

−1
23 g

−1
34 (g34g

−1
23 g

−1
24 )∂(h124)−1e

)
= δG(e).

(E.46)

Zatim, dobijamo

δG(g125) = δG
(
∂(h125)g25g12g

−1
15

)
= δG

(
∂(h125)g25g

−1
23 ∂(h123)−1g13g

−1
15

)
= δG

(
∂(h125)g25g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134)g34g13g

−1
15

)
= δG

(
∂(h125)g25g

−1
23 g

−1
34 ∂(h234)−1g−1

45 (∂(h245)−1∂(h125)−1∂(h145))g45g14g
−1
15

)
= δG

(
∂(h125)g25g

−1
23 g

−1
34 (g34g

−1
23 g

−1
24 )g−1

45 (g45g
−1
24 g

−1
25 )∂(h125)−1e

)
= δG(e).

(E.47)
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Slično,

δG(g126) = δG
(
∂(h126)g26g12g

−1
16

)
= δG

(
∂(h126)g26g

−1
23 ∂(h123)−1g13g

−1
16

)
= δG

(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1∂(h124)−1∂(h134)g34g13g

−1
16

)
= δG

(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1g−1

45 ∂(h245)−1∂(h125)−1∂(h145)g45∂(h134)g34g13g
−1
16

)
= δG

(
∂(h126)g26g

−1
23 g

−1
34 ∂(h234)−1g−1

45 ∂(h245)−1g−1
56 ∂(h256)−1∂(h126)−1∂(h156)g56

∂(h145)g45g14g
−1
16

)
= δG

(
∂(h126)g26g

−1
23 g

−1
34 (g34g

−1
23 g

−1
24 )g−1

45 (g45g
−1
24 g

−1
25 )g−1

56 (g56g
−1
25 g

−1
26 )∂(h126)−1

(g16g
−1
15 g

−1
56 )g56g15g

−1
16

)
= δG(e).

(E.48)
Za δG(g135) dobijamo takođe

δG(g135) = δG
(
∂(h135) g35 g13 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 ∂(h134)−1 g14 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1∂(h145) g45 g14 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1 ∂(h145) g45 g

−1
45 ∂(h145)−1 g15 g

−1
15

)
= δG

(
∂(h135) g35 g

−1
34 g

−1
45 (g45 g

−1
34 g

−1
35 )∂(h135)−1

)
= δG(e) ,

(E.49)
kao i za δG(g136):

δG(g136) = δG
(
∂(h136)g36g13g

−1
16

)
= δG

(
∂(h136)g36g

−1
34 ∂(h134)−1g14g

−1
16

)
= δG

(
∂(h136)g36g

−1
34 g

−1
45 ∂(h345)−1∂(h135)−1∂(h145)g45g14g

−1
16

)
= δG

(
∂(h136)g36g

−1
34 g

−1
45 ∂(h345)−1g−1

56 ∂(h356)−1∂(h136)−1∂(h156)g56∂(h145)g45g14g
−1
16

)
= δG

(
∂(h136)g36g

−1
34 g

−1
45 (g45g

−1
34 g

−1
35 )g−1

56 (g56g
−1
35 g

−1
36 )∂(h136)−1e

)
= δH(e).

(E.50)
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Najzad, preostala δ-funkcija δG(g146) na grupi G postaje

δG(g146) = δG
(
∂(h146) g46 g14 g

−1
16

)
= δG

(
∂(h146) g46 (g−1

45 ∂(h145)−1 g15) g−1
16

)
= δG

(
∂(h146) g46 g

−1
45 ∂(h145)−1 (g−1

56 ∂(h156)−1 g16) g−1
16

)
= δG

(
∂(h146) g46 g

−1
45 g

−1
56 ∂(h456)−1∂(h146)−1∂(h156)g56 (g−1

56 ∂(h156)−1 g16) g−1
16

)
= δG(e) .

(E.51)
Zatim, integralimo l1235 koristeći δL(l12345), l1236 koristeći δL(l12346), l1246 koristeći δL(l12456) i
l1346 koristeći δL(l13456),

l1235 = (h125 �
′ l2345)l1245h145 �

′ (g45 � l1234)l−1
1345 h135 �

′ {h345, (g45g34) � h123}pf , (E.52)

l1236 = (h126 �
′ l2346)l1246h146 �

′ (g46 � l1234)l−1
1346 h136 �

′ {h346, (g46g34) � h123}pf , (E.53)

l1246 = (h126 �
′ l2456)l1256h156 �

′ (g56 � l1245)l1456
−1 h146 �

′ {h456, (g56g45) � h124}pf , (E.54)

l1346 = (h136 �
′ l3456)l1356h156 �

′ (g56 � l1345)l1456
−1 h146 �

′ {h456, (g56g45) � h134}pf . (E.55)

Pokažimo da se sada preostale δ-funkcije na grupi H svedu na δH(e)4. Najpre, pravolinijskim
računom dobijamo za δH(h1235):

δH(h1235) = δH
(
δ(l1235)h135(g35�h123)h−1

235h
−1
125

)
= δH

(
δ
(
(h125�

′l2345)l1245h145�
′(g45�l1234)l−1

1345h135�
′{h345,(g45g34)�h123}pf

)
h135

(g35�h123)h−1
235h

−1
125

)
= δH

((
h125δ(l2345)h−1

125δ(l1245)h145(g45�δ(l1234))h−1
145δ(l1345)−1h135δ({h345,(g45g34)�h123}pf)h

−1
135

)
h135(g35�h123)h−1

235h
−1
125

)
= δH

(
h235h345(g45�h

−1
234)h−1

245h
−1
125h125h245(g45�h

−1
124)h−1

145h145(g45�(h124h234(g34�h
−1
123)h−1

134))

h−1
145(h145(g45�h134)h−1

345h
−1
135)h135δ({h345,(g45g34)�h123}pf)h

−1
135h135(g35�h123)h−1

235

)
= δH(h345

(
(g45g34)�h−1

123

)
h−1

345δ({h345,(g45g34)�h123}pf)(g35�h123).

(E.56)
Iskoristivši identitet

δ{h1 , h2}pf(∂(h1) � h2)h1h
−1
2 h−1

1 = e , (E.57)

i jednačinu g35 = ∂(h345)g45g34, pri čemu za elemente h1 i h2 biramo h1 = h345 i h2 = (g45g34)�
h123, dobijamo

δH(h1235) = δH(e). (E.58)
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Analognim postupkom za vrednost δ-funkcije δH(h1236) dobijamo:

δH(h1236) = δH
(
δ(l1236)h136(g36�h123)h−1

236h
−1
126

)
= δH

(
δ
(
(h126�

′l2346)l1246h146�
′(g46�l1236l

−1
1346h136�

′{h346,(g46g34)�h123}pf

)
h136(g36�h123)h−1

236h
−1
126

)
= δH

((
h126δ(l2346)h−1

126δ(l1246)h146(g46�δ(l1234))h−1
146δ(l1346)−1h136δ({h346,(g46g34)�h123}pf)h

−1
136

)
h136(g36�h123)h−1

236h
−1
126

)
= δH

(
h236h346(g46�h

−1
234)h−1

246h
−1
126h126h246(g46�h

−1
124)h−1

146h146(g46�(h124h234(g34�h
−1
123)h−1

134))

h−1
146(h146(g46�h134)h−1

346h
−1
136)h136δ({h346,(g46g34)�h123}pf)h

−1
136h136(g36�h123)h−1

236

)
= δH(h346

(
(g46g34)�h−1

123

)
h−1

346δ({h346,(g46g34)�h123}pf)(g36�h123).

(E.59)
Koristeći jednačinu g36 = ∂(h346)g46g34, i identitet (2.6) gde su h1 = h346 i h2 = (g46g34)� h123,
dobijamo:

δH(h1236) = δH(e) . (E.60)

Sličnim postupkom dobijamo da su δ-funkcije δH(h1246) = δH(h1346) = δH(e). Preostala δ-
funkcija na grupi L je δL(l12356),

δL(l12356)= δL
(
l1236

−1(h126�
′l2356)l1256h156�

′(g56�l1235)l1356
−1h136�

′{h356,(g56g35)�h123}pf

)
.

(E.61)
Koristeći jednačine (E.52), (E.53), (E.54) i (E.55), dobijamo:

δL(l12356) = δL

(
h136�

′{h346,(g46g34)�h123}−1
pf (h136�

′l3456)l1356h156�
′(g56�l1345)l1456

−1

h146�
′{h456,(g56g45)�h134}pfh146�

′(g46�l1234)−1h146�
′{h456,(g56g45)�h124}−1

pf l1456

h156�
′(g56�l1245)−1l−1

1256(h126�
′l2456)−1(h126�

′l2346
−1)(h126�

′l2356)l1256

h156�
′(g56�((h125�

′l2345)l1245h145�
′(g45�l1234)l−1

1345h135�
′{h345,(g45g34)�h123}pf))

l1356
−1h136�

′{h356,(g56g35)�h123}pf

)
.

(E.62)
Koristeći identitet (2.62) δ-funkcija δL(l12356) se svede na:

δL(l12356) = δL

(
(h136�

′l3456)l1356h156�
′(g56�l1345)l1456

−1

h146�
′{h456,(g56g45)�h134}pfh146�

′(g46�l1234)−1h146�
′{h456,(g56g45)�h124}−1

pf l1456

δ(h156�
′(g56�l1245)−1)�′

((
δ(l1256)−1h126

)
�′
(
l−1
2456l

−1
2346l2356

)
h156�

′(g56�(h125�
′l2345))

)
h156�

′(g56�(h145�
′(g45�l1234)l−1

1345))l1356
−1(h136h346)�′{h−1

346h356g56�h345,(g56g45g34)�h123}pf

)
.

(E.63)
Posle komutacije elemenata, δ-funkcija se svodi na

δL(l12356) = δL

(
(h156�

′(g56�δ(l1245)−1)δ(l1256)−1h126)�′
(
l−1
2456l

−1
2346l2356h256�

′(g56�l2345)
)

h156�
′(g56�(h145�

′(g45�l1234)l−1
1345)

)
l1356

−1(h136h346)�′{h−1
346h356g56�h345,(g56g45g34)�h123}pf

h136�
′l3456h156�

′(g56�l1345)(δ(l1456)−1h146)�′
(
{h456,(g56g45)�h134}pf

)
(δ(l1456)−1h146)�′

(
(g46�l1234)−1

)
(δ(l1456)−1h146)�′{h456,(g56g45)�h124}−1

pf

)
.

(E.64)
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Tetraedar (3456) je deo podintegralne funkcije sa obe strane poteza, pa možemo koristiti ide-
ntitet (9.19) za δH(h3456), odnosno jednakost h−1

346h356g56 � h345 = h−1
346 �

′ δ(l3456)−1h456. Zatim,
primenom identiteta (2.62) dobijamo

{h−1
346h356g56 � h345, (g56g45g34) � h123}pf = {h−1

346 �
′ δ(l3456)−1h456, (g56g45g34) � h123}pf

=
(
h−1

346 �
′ δ(l3456)−1

)
�′ {h456, (g56g45g34) � h123}pf

{h−1
346 �

′ δ(l3456)−1, (g46g34) � h123}pf

= h−1
346 �

′ l−1
3456{h456, (g56g45g34) � h123}pf(

(g46g34) � h123h
−1
346

)
�′ l3456 ,

(E.65)
gde smo u zadnjem redu iskoristili definiciju dejstva �′ grupe H na grupu L. Zamenom jedna-
kosti (E.65) u jednačinu (E.64) dobijamo:

δL(l12356) = δL

(
(h156�

′(g56�δ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)�′
(
l−1
2346l2356h256�

′(g56�l2345)l−1
2456

)
h156�

′(g56�(h145�
′(g45�l1234)))(h156�

′(g56�δ(l1345)−1)δ(l1356)−1h136δ(l3456)−1h346)�′(
{h456,(g56g45g34)�h123}pf((g46g34)�h123)�′l3456

)
(δ(l1456)−1h146)�′

(
{h456,(g56g45)�h134}pf

)
(δ(l1456)−1h146)�′

(
(g46�l1234)−1

)
(δ(l1456)−1h146)�′{h456,(g56g45)�h124}−1

pf

)
.

(E.66)
Komutiranjem elementa l3456 na kraj izraza, dobijamo

δL(l12356) = δL
(
(h156�

′(g56�δ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)�′
(
l−1
2346l2356h256�

′(g56�l2345)l−1
2456

)
h156�

′(g56�(h145�
′(g45�l1234)))(h156�

′(g56�δ(l1345)−1)δ(l1356)−1h136δ(l3456)−1h346)�′(
{h456,(g56g45g34)�h123}pf

)
(δ(l1456)−1h146)�′

(
{h456,(g56g45)�h134}pf

)
(δ(l1456)−1h146)�′

(
(g46�l1234)−1

)
(δ(l1456)−1h146)�′{h456,(g56g45)�h124}−1

pf

(h156g56�h145h246g46�h234h
−1
346)�′l3456

))
.

(E.67)
Delovanjem na ceo argument δ-funkcije sa (h156�

′ (g56�δ(l1245)−1)δ(l1256)−1h126δ(l2456)−1)−1�′,
dobijamo

δL(l12356) = δL
(
l−1
2346l2356h256�

′(g56�l2345)l−1
2456

(
h246h456(g56g45)�h−1

124

)
�′(

(g56g45)�l1234

(
(g56g45)�h134h

−1
456

)
�′{h456,(g56g45g34)�h123}pf

h−1
456�

′{h456,(g56g45)�h134}pfh
−1
456�g46�l

−1
1234

(
h−1

456g46�h124

)
�′{h456,(g56g45)�h−1

124}pf

)
(h246g46�h234h

−1
346)�′l3456.

(E.68)
Nakon što iskoristimo identitet (2.63) za {h456, (g56g45) � (h134g34 � h123)}pf , tj. jednakost

{h456,(g56g45)�(h134g34�h123)}pf= {h456,(g56g45)�h134}pf(g46�h134)�′{h456,(g56g45g34)�h123}pf ,

(E.69)
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izraz se svodi na:

δL(l12356) = δL
(
l−1
2346l2356h256�

′(g56�l2345)l−1
2456

h246�
′
((
h456(g56g45)�h−1

124

)
�′
(

(g56g45)�l1234h
−1
456�

′{h456,(g56g45)�(h134g34�h123)}pf

h−1
456�g46�l

−1
1234

)
{h456,(g56g45)�h−1

124}pf

)
(h246g46�h234h

−1
346)�′l3456.

(E.70)
Zatim, primenom identiteta (2.63) na član {h456, (g56g45)�(h−1

124δ(l1234)h134g34�h123)}pf vidimo
da se članovi sa l1234 ponište, tj. dobijamo izraz,

δL(l12356) = δL
(
l−1
2346l2356h256�

′(g56�l2345)l−1
2456

h246�
′{h456,(g56g45)�(h−1

124δ(l1234)h134g34�h123)}pf(h246g46�h234h
−1
346)�′l3456

= δL
(
l2346

−1l2356h256�
′(g56�l2345)l2456

−1h246�
′{h456,(g56g45)�h234}pf(δ(l2346)−1h236)�′l3456)

)
= δL(l23456).

(E.71)
Zaključujemo da se preostala δ-funkcija δL(l12356) sa desne strane poteza svodi na delta funkciju
δL(l23456) sa leve strane poteza. Integracije po elementima l1234, l1245, l1256, l1345, l1356 i l1456 su
trivijalne i konačan izraz sa integral sa desne strane je:

d.s. = δG(e)6δH(e)4δL(l23456) = |G|6|H|4δL(l23456) . (E.72)

Razlika u faktorima u izrazima (E.43) i (E.72) kompenzovana je konstantama ispred integrala –
faktorom |G|−11|H|−4|L|−1 sa desne strane i faktorom |G|−5|H|0|L|−1 sa leve strane. Zaključu-
jemo da je suma (9.22) invarijantna na 1↔ 5 Pahnerov potez.

Pahnerov potez 2 ↔ 4

Najpre analizirajmo levu stranu poteza, izraz∫
L

dl2345δH(h2345)δL(l23456)δL(l12345) . (E.73)

Prvo integralimo l2345 koristeći δ-funkciju δL(l12345),

l2345 = h125
−1 �′

(
l1235h135 �

′ {h345, (g45g34) � h123}−1
pf l1345h145 �

′ (g45 � l1234)−1l−1
1245

)
. (E.74)

Preostala δ-funkcija na grupi H δH(h2345) sada postaje,

δH(h2345) = δH
(
δ(l2345)h245(g45�h234)h−1

345h
−1
235

)
= δH

(
h125

−1δ(l1235)h135δ({h345,(g45g34)�h123}−1
pf )h−1

135δ(l1345)h145(g45�δ(l1234))−1h−1
145

δ(l1245)−1h125h245(g45�h234)h−1
345h

−1
235

)
.

(E.75)
Primenom identiteta (9.19) za tetraedre (1235), (1345), (1234) i (1245) izraz (E.75) se svodi
na:

δH(h2345) = δH

(
h125

−1h125h235(g35�h
−1
123)h−1

135h135δ({h345,(g45g34)�h123}−1
pf )h−1

135h135h345(g45�h
−1
134)

h−1
145h145g45�(h134(g34�h123)h−1

234h
−1
124)h−1

145h145(g45�h124)h−1
245h

−1
125h125h245(g45�h234)h−1

345h
−1
235

)
= δH

(
(g35�h

−1
123)δ({h345,(g45g34)�h123}−1

pf )h345(g45g34)�h123)h−1
345

)
.

(E.76)
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Zatim, primenom identiteta (2.6) za h1 = h345 i h2 = (g45g34) � h123 i identiteta g35 =
∂(h345)g45g34 dobijamo:

δH(h2345) = δH(e) . (E.77)

Preostala δ-funkcija na grupi L δL(l23456) je

δL(l23456) = δL
(
l2346

−1(h236�
′l3456)l2356h256�

′(g56�l2345)l2456
−1h246�

′{h456,(g56g45)�h234}pf

)
.

(E.78)
Primenom jednačine (E.75) dobijamo:

δL(l23456) = δL

(
l2346

−1(h236�
′l3456)l2356h256�

′
(
g56�

(
h125

−1�′
(
l1235h135�

′{h345,(g45g34)�h123}−1
pf

l1345h145�
′(g45�l1234)−1l−1

1245

)))
l2456

−1h246�
′{h456,(g56g45)�h234}pf

)
.

(E.79)
Komutiranjem elemenata dobijamo izraz:

δL(l23456) = δL

(
l2456

−1l2346
−1l2356(h256g56�h125

−1)�′g56�l1235

(
h256g56�h125

−1g56�h135

)
�′(

(g35�h123h
−1
356)�′l3456){g56�h345,(g56g45g34)�h123}−1

pf (g56�h345(g56g45)�(h123h
−1
234)h−1

456)�′

{h456,(g56g45)�h234}pf

)
(h256g56�h125

−1)�′g56�l1345

(h256g56�h125
−1g56�h145)�′((g56g45)�l1234)−1(h256g56�h125

−1)�′g56�l
−1
1245

)
.

(E.80)
Naposletku, leva strana poteza je:

l.s. = δH(e)δL(l23456) = |H|δL(l23456) . (E.81)

Ispitajmo sada čemu je jednaka desna strana poteza, tj. integral (9.26). Prvo integralimo
g16 koristeći δG(g126),

g16 = ∂(h126) g26 g12 . (E.82)

Zatim, integralimo h126 koristeći δH(h1236), h136 koristeći δH(h1346) i h146 koristeći δH(h1456), na
osnovu čega dobijamo

h126 = δ(l1236)h136 (g36 � h123)h−1
236 ,

h136 = δ(l1346)h146 (g46 � h134)h−1
346 ,

h146 = δ(l1456)h156 (g56 � h145)h−1
456 .

(E.83)

Preostale tri δ-funkcije na grupi G svode se na δG(e)3. Lako možemo pokazati da δ-funkcija
δG(g136),

δG(g136) = δG
(
∂(h136) g36 g13 g

−1
16

)
, (E.84)

posle zamene jednačine (E.82) postaje:

δG(g136) = δG
(
∂(h136) g36 g13 g

−1
12 g

−1
26 ∂(h126)−1

)
. (E.85)

Koristeći identitet (E.83) za elemente h126, h136 i h146 i činjenicu da je ∂(δl) = 0 za svaki element
l ∈ L, a nakon primene identiteta (9.18) za trouglove (156), (145), (456) (134), (346), (236) i
(123), δ-funkcija δG(g136) postaje δG(e). Slično se pokazuje da važi δG(g146) = δG(g156) = δG(e).
Zatim, integralimo l1236 koristeći δL(l12346) i dobijamo

l1236 = (h126 �
′ l2346)l1246h146 �

′ (g46 � l1234)l−1
1346 h136 �

′ {h346, (g46g34) � h123}pf , (E.86)
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l1246 koristeći δL(l12456),

l1246 = (h126 �
′ l2456)l1256h156 �

′ (g56 � l1245)l1456
−1 h146 �

′ {h456, (g56g45) � h124}pf , (E.87)

i l1346 koristeći δL(l13456),

l1346 = (h136 �
′ l3456)l1356h156 �

′ (g56 � l1345)l1456
−1 h146 �

′ {h456, (g56g45) � h134}pf . (E.88)

Preostale δ-funkcije na grupi H svode se na δH(e)3, sličnim postupkom kao i u slučaju 1 ↔ 5
Pahnerovog poteza, tj. dobijamo δH(h1256) = δH(h1356) = δH(h1456) = δH(e). Preostala δ-
funkcija na grupi L, funkcija δL(l12356) glasi:

δL(l12356)= δL

(
l1236

−1(h126�
′l2356)l1256h156�

′(g56�l1235)l1356
−1h136�

′{h356,(g56g35)�h123}pf

)
.

(E.89)
Nakon zamene jednačina (E.86), (E.87) i (E.88), dobijamo

δL(l12356) = δL

(
h136�

′{h346,(g46g34)�h123}pf
−1l1346h146�

′(g46�l1234)−1l−1
1246(h126�

′l2346)−1

(h126�
′l2356)l1256h156�

′(g56�l1235)l1356
−1h136�

′{h356,(g56g35)�h123}pf

)
= δL

(
(h126�

′l2456)−1(h126�
′l2346)−1(h126�

′l2356)(h256g56�h125
−1)�′l1235

δ(l1256)�′
(
δ(l1356)−1�′

(
h136�

′{h356,(g56g35)�h123}pf(h136h346)�′{h−1
346,g36�h123}pf

(h136�
′l3456)

)
h156�

′(g56�l1345)l1456
−1h146�

′{h456,(g56g45)�h134}pfh146�
′(g46�l1234)−1

h146�
′{h456,(g56g45)�h124}−1

pf l1456h156�
′(g56�l1245)−1

))
.

(E.90)
Komutiranjem elemenata kako bi se redosled elemenata slagao sa redosledom na levoj strani
poteza, tj. sa δ-funkcijom (E.80), i primenom identiteta (2.62), tj.

{h−1
346h356, (g56g35) � h123}pf = h−1

346 �
′ {h356, (g56g35) � h123}pf{h−1

346, g36 � h123}pf , (E.91)

dobijamo:

δL(l12356) = δL

(
(h126�

′l2456)−1(h126�
′l2346)−1(h126�

′l2356)(h126h256g56�h125
−1)�′l1235

δ(l1256)�′
(
δ(l1356)−1�′

(
(h136h346)�′{h−1

346h356,(g56g35)�h123}pf(h136�
′l3456)

)
h156�

′(g56�l1345)(δ(l1456)−1h146)�′
(
{h456,(g56g45)�h134}pf(g46�l1234)−1

{h456,(g56g45)�h124}−1
pf

)
h156�

′(g56�l1245)−1
))
.

(E.92)
Ponovnom primenom identita (2.62),

(h136h346) �′ {h−1
346h356, (g56g35) � h123}pf(h136 �

′ l3456) =

(h136h346) �′ {h−1
346 �

′ δ(l3456)−1h456g56 � h−1
345, (g56g35) � h123}pf(h136 �

′ l3456) =

(h136 �
′ δ(l3456)−1h136h346) �′

(
{h456g56 � h−1

345, (g56g35) � h123}pf((g46g34) � h123h
−1
346) �′ l−1

3456

)
,

(E.93)
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i zamenom ovog izraza u (E.92) dobijamo:

δL(l12356) = δL

(
(h126�

′l2456)−1(h126�
′l2346)−1(h126�

′l2356)(h126h256g56�h125
−1)�′l1235

δ(l1256)�′
(

(δ(l1356)−1h136�
′δ(l3456)−1h136h346)�′(

{h456g56�h
−1
345,(g56g35)�h123}pf((g46g34)�h123h

−1
346)�′l3456)

)
(h156g56�h135g56�(h345g45�h

−1
134)h−1

456)�′
(
{h456,(g56g45)�h134}pf(g46�l1234)−1

{h456,(g56g45)�h124}−1
pf

))
(h126h256g56�h125

−1)�′
(
h156�

′(g56�l1345)(g56�l1245)−1
))
.

(E.94)
Komutiranjem elementa l3456 i {h456g56 �h345, (g56g35)�h123}pf , a zatim korišćenjem identiteta
(2.62), dobijamo:

δL(l12356) = δL

(
(h126�

′l2456)−1(h126�
′l2346)−1(h126�

′l2356)(h126h256g56�h125
−1)�′l1235(

h126h256g56�h125
−1h135(g56g35)�h123g56�h

−1
356)�′g56�l3456

(h126h256g56�h
−1
125g56�h135g56�h345)�′

(
{g56�h

−1
345,(g56g35)�h123}pf

h−1
456�

′{h456,(g56g45g34)�h123}pf((g56g45)�h−1
134h

−1
456)�′

(
{h456,(g56g45)�h134}pf(g46�l1234)−1

{h456,(g56g45)�h124}−1
pf

))
(h126h256g56�h125

−1)�′
(
h156�

′(g56�l1345)(g56�l1245)−1
))
.

(E.95)
Nakon sličnih transformacija kao i u slučaju 1↔ 5 Pahnerovog poteza, komutiranjem elemenata
l1234 kako bi poredak elemenata bio isti kao u (E.80), a zatim delovanjem na ceo izraz sa h−1

126,
dobijamo:

δL(l12356) = δL

(
l2456

−1l2346
−1l2356(h256g56�h125

−1)�′g56�l1235

(
h256g56�h125

−1g56�h135

)
�′(

(g35�h123h
−1
356)�′l3456){g56�h345,(g56g45g34)�h123}−1

pf (g56�h345(g56g45)�(h123h
−1
234)h−1

456)�′

{h456,(g56g45)�h234}pf

)
(h256g56�h125

−1)�′g56�l1345

(h256g56�h125
−1g56�h145)�′((g56g45)�l1234)−1(h256g56�h125

−1)�′g56�l
−1
1245

)
.

(E.96)
Ovaj izraz identičan je izrazu u jednačini (E.80). Preostale integracije – po elementu h156 grupe
H i tri elementa grupe L, l1246, l1256 i l1356, su trivijalne, odnosno desna strana se konačno svodi
na:

d.s. = δG(e)3 δH(e)3 δL(l12356) = |G|3 |H|3 δL(l12356) . (E.97)

Konstante ispred integrala su |G|−8|H|−1|L|−1 sa leve strane poteza, odnosno |G|−11|H|−3|L|−1

sa desne strane poteza, što kompenzuje razliku i izrazima (E.81) i (E.97), na osnovu čega
zaključujemo da je suma po stanjima (9.22) invarijantna na 2↔ 4 Pahnerov potez.

Pahnerov potez 3 ↔ 3

Razmotrimo najpre desnu stranu poteza. Prvo integralimo l1235 koristeći δL(l12345)

l1235 = (h125 �
′ l2345)l1245h145 �

′ (g45 � l1234)l1345
−1 h135 �

′ {h345, (g45g34) � h123}pf (E.98)

i l1236 koristeći δL(l12356),

l1236 = (h126 �
′ l2356)l1256h156 �

′ (g56 � l1235)l1356
−1h′136 � {h356, (g56g35) � h123}pf . (E.99)
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Zatim, integralimo h123 koristeći δH(l1234) i dobijamo:

h123 = g−1
34 � h−1

134 g
−1
34 � δ(l1234)−1 g−1

34 � h124 g
−1
34 � h234. (E.100)

Preostala δ-funkcija na grupi G, δ-funkcija δG(g123), nakon primene jednačine (E.100) postaje,

δG(g123) = δG
(
g−1

34 � ∂(h134)−1 g−1
34 � ∂(δ(l1234))−1 g−1

34 � ∂(h124) g−1
34 � ∂(h234) g23 g12 g

−1
13

)
,

(E.101)
odnosno nakon primene identiteta ∂δ = 0:

δG(g123) = δG
(
∂(h134)−1 ∂(h124) ∂(h234) g−1

34 g23 g12 g
−1
13 g34

)
. (E.102)

Zatim, primenom identiteta (9.18) na trouglove (134), (124) i (234), dobijamo:

δG(g123) = δG
(
e
)
. (E.103)

Za δ-funkciju δH(h1235), nakon primene jednačine (E.98) dobijamo:

δH(h1235) = δH

(
(h125δ(l2345)h−1

125)δ(l1245)(h145(g45�δ(l1234))h−1
145)δ(l1345)−1h135�

′{h345,g35�h123}pfh135

((g35g34
−1)�(h−1

134δ(l1234)−1h124h234))h−1
235h

−1
125

)
.

(E.104)
Zatim, koristeći uslove (9.20) za δ-funkcije δL(h2345), δL(h1245) iδL(h1345), prisutne sa obe strane
poteza,

δ(l2345) = h235 h345 (g45 � h−1
234)h−1

245 ,

δ(l1245) = h125 h245 (g45 � h−1
124)h−1

145 ,

δ(l1345)−1 = h145 (g45 � h134)h−1
345 h

−1
135 ,

(E.105)

dobijamo:

δH(h1235) = δH

(
h125h235h345(g45�h

−1
234)h−1

245h
−1
125h125h245(g45�h

−1
124)h−1

145h145(g45�δ(l1234))h−1
145

h145(g45�h134)h−1
345h

−1
135h135�δ({h345,(g45g34)�h123}pf)

h135((g35g34
−1)�(h−1

134δ(l1234)−1h124h234))h−1
235h

−1
125

)
= δH

(
h345(g45g34)�h−1

123h
−1
345δ({h345,(g45g34)�h123}pf)(g35�h123)

)
.

(E.106)
Primenom identiteta (2.6) za h1 = h345 i h2 = (g45g34) � h123 i jednakosti g35 = ∂(h345)g45g34,
dobijamo:

δH(h1235) = δH(e). (E.107)

Sličnim postupkom dobija se δH(h1236) = δH(e). Preostala δ-funkcija δH(l12346) je:

δL(l12346)= δL
(
l1236

−1(h126�
′l2346)l1246h146�

′(g46�l1234)l1346
−1h136�

′{h346,(g46g34)�h123}pf

)
.

(E.108)
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Zamenom izraza (E.99), a zatim izraza (E.98), dobijamo:

δL(l12346) = δL
(
h136�

′{h356,(g56g35)�h123}−1
pf l1356h156�

′(g56�l1235)−1l−1
1256h126�

′l−1
2356

(h126�
′l2346)l1246h146�

′(g46�l1234)l1346
−1h136�

′{h346,(g46g34)�h123}pf

)
= δL

(
h136�

′{h356,(g56g35)�h123}−1
pf l1356

h156�
′(g56�((h125�

′l2345)l1245h145�
′(g45�l1234)l1345

−1h135�
′{h345,(g45g34)�h123}pf))

−1

l−1
1256h126�

′l−1
2356(h126�

′l2346)l1246h146�
′(g46�l1234)l1346

−1h136�
′{h346,(g46g34)�h123}pf

)
.

(E.109)
Komutiranjem elemenata, tj. korišćenjem Pajferovog identiteta za ukršteni modul (L

δ→ H,�′),
dobijamo

δL(l12346) = δL
(
h136�

′{h356,(g56g35)�h123}−1
pf

(δ(l1356)h156g56�h135)�′g56�{h345,(g45g34)�h123}−1
pf l1356h156�

′(g56�l1345)

(h156g56�h145)�′((g56g45)�l1234)−1h156�
′(g56�l1245)−1(h156g56�h125)�′(g56�l

−1
2345)l−1

1256

h126�
′l−1

2356(h126�
′l2346)l1246h146�

′(g46�l1234)l1346
−1h136�

′{h346,(g46g34)�h123}pf

)
= δL

(
(δ(l1346)−1h136)�′{h346,(g46g34)�h123}pf(δ(l1346)−1h136)�′{h356,(g56g35)�h123}−1

pf

((δ(l1346)−1δ(l1356)h156g56�h135)�′g56�{h345,(g45g34)�h123}−1
pf

(δ(l1346)−1δ(l1356)h156�
′(g56�δ(l1345))h156g56�h145)�′((g56g45)�l1234)−1l−1

1346l1356h156�
′(g56�l1345)

h156�
′(g56�l1245)−1(h156g56�h125)�′(g56�l

−1
2345)l−1

1256h126�
′l−1

2356(h126�
′l2346)l1246h146�

′(g46�l1234)
)
.

(E.110)
Primenom identiteta (2.65), tj. da je

{h346, (g46g34) � h123}pf = h346 �
′ {h−1

346, g36 � h123}−1
pf , (E.111)

a zatim varijante identiteta (2.62), tj. da je

{h1h2h3, h4}−1
pf = {h1, ∂(h2h3) � h4}−1

pf h1 �
′ {h2, ∂(h2) � h4}−1

pf (h1h2) �′ {h3, h4}−1
pf , (E.112)

dobijamo:

{h−1
346h356(g56�h345),(g56g45g34)�h123}−1

pf = {h−1
346,(g46g34)�h123}−1

pf h
−1
346�

′{h356,(g56g35)�h123}−1
pf

(h−1
346h356)�′{g56�h345,(g56g45g34)�h123}−1

pf .

(E.113)
Primenom ove jednakosti u izrazu (E.110) dobijamo:

δL(l12346) = δL
(
(h146g46�h134)�′{h−1

346h356(g56�h345),(g56g45g34)�h123}−1
pf

(δ(l1346)−1δ(l1356)h156�
′(g56�δ(l1345))h156g56�h145)�′((g56g45)�l1234)−1l−1

1346l1356h156�
′(g56�l1345)

h156�
′(g56�l1245)−1(h156g56�h125)�′(g56�l

−1
2345)l−1

1256h126�
′l−1

2356(h126�
′l2346)l1246h146�

′(g46�l1234)
)
.

(E.114)
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Primenom (E.100) i identiteta (2.63), dobijamo da važi jednakost,

{h−1
346h356(g56�h345),(g56g45g34)�h123}−1

pf = {h−1
346h356(g56�h345),(g56g45)�((h−1

134�
′δ(l1234)−1)h−1

134h124h234}−1
pf

= (g46�(h−1
134�

′δ(l1234)−1))�′

{h−1
346h356(g56�h345),(g56g45)�(h−1

134h124h234)}−1
pf

{h−1
346h356(g56�h345),(g56g45)�(h−1

134�
′δ(l1234)−1)}−1

pf .

(E.115)
Odnosno, kada raspišemo član

{h−1
346h356(g56�h345),(g56g45)�(h−1

134�
′δ(l1234)−1)}−1

pf = (g46�(h−1
134�

′l−1
1234))

(h−1
346h356(g56�h345))�′((g56g45)�(h−1

134�
′l1234)).

(E.116)
izraz (E.115) je jednak:

{h−1
346h356(g56�h345),(g56g45g34)�h123}−1

pf = g46�(h−1
134�

′δ(l1234)−1)

{h−1
346h356(g56�h345),(g56g45)�(h−1

134h124h234)}−1
pf

(h−1
346h356(g56�h345))�′((g56g45)�(h−1

134�
′l1234)).

(E.117)
Zamenom ovog rezultata u jednačinu (E.114) dobijamo da se članovi sa l1234 pokrate, pa sledi
da je δL(l12346):

δL(l12346) = δL
(
(h146g46�h134)�′{h−1

346h356(g56�h345),(g56g45)�(h−1
134h124h234)}−1

pf l
−1
1346l1356

h156�
′(g56�l1345)h156�

′(g56�l1245)−1(h156g56�h125)�′(g56�l
−1
2345)l−1

1256h126�
′l−1

2356(h126�
′l2346)l1246

)
.

(E.118)
Iz ovog izraza primećujemo da je integracija po l1234 trivijana, pa za izraz sa desne strane
Pahnerovog poteza konačno dobijamo:

d.s. = δG(e)δH(e)2δL
(
h156�

′(g56�l1245)−1h156�
′(g56�(h125�

′l2345))−1l−1
1256h126�

′l−1
2356(h126�

′l2346)

l1246(h146g46�h134)�′{h−1
346h356(g56�h345),(g56g45)�(h−1

134h124h234)}−1
pf l
−1
1346l1356h156�

′(g56�l1345).

(E.119)

Analizirajmo sada levu stranu poteza, tj. integral:∫
H

dh456

∫
L3

dl1456dl2456dl3456δG(g456) δH(h3456)δH(h2456)δH(h1456)δL(l23456)δL(l13456)δL(l12456) .

(E.120)
Najpre, integralimo l1456 koristeći δ-funkciju δL(l13456) i dobijamo:

l1456 = h146 � {h456, (g56g45) � h134}l1346
−1(h136 �

′ l3456)l1356h156 �
′ (g56 � l1345) . (E.121)

Zatim, integralimo l2456, koristeći δL(l23456),

l2456 = h246 � {h456, (g56g45) � h234}l2346
−1(h236 �

′ l3456)l2356h256 �
′ (g56 � l2345) , (E.122)

i h456 koristeći δH(h3456):

h456 = h−1
346 δ(l3456)h356 (g56 � h345) . (E.123)
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Koristeći jednačinu (E.123), dobijamo da se δ-funkcija δG(g456),

δG(g456) = δG
(
∂(h346)−1 ∂(h356) g56 � ∂(h345) g56 g45 g

−1
46

)
, (E.124)

primenom identiteta (9.18) za trouglove (346), (356) i (345), svodi na:

δG(g456) = δG
(
e
)
. (E.125)

Sličnim postupkom kao i sa desne strane poteza, dobijamo da su δ-funkcije δH(h1456) i δH(h2456),
primenom jednačina (E.121) i (E.122), jednake δH(e)2. Preostala δL(l12456) je jednaka

δL(l12456) = δL
(
l1246

−1(h126 �
′ l2456)l1256h156 �

′ (g56 � l1245)l1456
−1 h146 �{h456, (g56g45)�h124}pf

)
.

(E.126)
Zamenom jednačina (E.121) i (E.122) u izraz za δ-funkciju δL(l12456) dobijamo,

δL(l12456) = δL
(
l1246

−1(h126�
′(h246�{h456,(g56g45)�h234}pf l2346

−1(h236�
′l3456)l2356h256�

′(g56�l2345)))

l1256h156�
′(g56�l1245)h156�

′(g56�l1345)−1l−1
1356(h136�

′l3456)−1l1346h146�{h456,(g56g45)�h134}−1
pf

h146�{h456,(g56g45)�h124}pf

)
,

(E.127)
odnosno posle komutacije elemenata:

δL(l12456) = δL
(
(δ(l1246)−1h126h246)�{h456,(g56g45)�h234}pf(δ(l1246)−1h126�δ(l2346)−1h126h236)�′l3456

l−1
1246h126�

′l2346
−1h126�

′l2356(h126h256)�′(g56�l2345))

l1256h156�
′(g56�l1245)h156�

′(g56�l1345)−1l−1
1356l1346(δ(l1346)−1h136)�′l3456

−1

h146�{h456,(g56g45)�h134}−1
pf h146�{h456,(g56g45)�h124}pf

)
.

(E.128)
Primenom identiteta (2.68) za inverz Pajferovog podizanja {h456, (g56g45) � h134}−1

pf , a zatim
identiteta (2.63) za tri elementa, tj.

{h1, h2h3h4}pf = {h1, h2}pf(∂(h1) � h2) �′ {h1, h3}pf(∂(h1) � (h2h3)) �′ {h1, h4}pf , (E.129)

dobijamo:

{h456,(g56g45)�(h−1
134h124h234)}pf = {h456,(g56g45)�h−1

134}pf(g46�h
−1
134)�′{h456,(g56g45)�h124}pf

(g46�(h−1
134h124))�′{h456,(g56g45)�h124}pf .

(E.130)
Ovaj identitet zatim možemo primeniti u jednačini (E.128), iz čega sledi jednakost:

δL(l12456) = δL
(
(δ(l1246)−1h126 � δ(l2346)−1h126h236) �′ l3456

l−1
1246h126 �

′ l2346
−1h126 �

′ l2356(h126h256) �′ (g56 � l2345) )

l1256h156 �
′ (g56 � l1245)h156 �

′ (g56 � l1345)−1l−1
1356l1346(δ(l1346)−1h136) �′ l3456

−1

(h146g46 � h134) �′ {h456, (g56g45) � (h−1
134h124h234)}pf

)
.

(E.131)
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Primenom jednačine (E.123) i identiteta (2.62), sličnim postupkom kao i kod desne strane
poteza dobijamo da članovi sa l3456 pokrate, tj. δ-funkcija δL(l12456) glasi:

δL(l12456) = δL
(
l−1
1246h126�

′l2346
−1h126�

′l2356(h126h256)�′(g56�l2345))l1256h156�
′(g56�l1245)

h156�
′(g56�l1345)−1l−1

1356l1346(h146g46�h134)�′{h456,(g56g45)�(h−1
134h124h234)}pf

)
.

(E.132)
Zaključujemo da je integral po l3456 trivijalan, pa konačno dobijamo da je leva strana poteza
jednaka:

l.s. = δG(e)δH(e)2δL
(
h126�

′l2346l1246(h146g46�h134)�′{h456,(g56g45)�(h−1
134h124h234)}−1

pf l
−1
1346

l1356h156�
′(g56�l1345)h156�

′(g56�l1245)−1(h156g56�h125)�′(g56�l2345)−1l−1
1256h126�

′l−1
2356

)
.

(E.133)
Izrazi (E.119) i (E.126) su identični, na osnovu čega zaključujemo da je suma po stanjima
(9.2.1) invarijantna na 3↔ 3 Pahnerov potez. Broj k-simpleksa sa obe strane 3↔ 3 poteza je
isti za sve k, tj. koeficijenti ispred integrala su jednaki u ovom slučaju i prema tome nisu od
značaja.
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