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Abstract
Knowledge-sharing communities are fundamental elements of a knowledge-based
society. Understanding how different factors influence their sustainability is of crucial
importance. We explore the role of the social network structure and social trust in
their sustainability. We analyze the early evolution of social networks in four pairs of
active and closed Stack Exchange communities on topics of physics, astronomy,
economics, and literature and use a dynamical reputation model to quantify the
evolution of social trust in them. In addition, we study the evolution of two active
communities on mathematics topics and two closed communities about startups
and compare them with our main results. Active communities have higher local
cohesiveness and develop stable, better-connected, trustworthy cores. The early
emergence of a stable and trustworthy core may be crucial for sustainable
knowledge-sharing communities.

Keywords: Networks structure; Dynamic reputation; Knowledge exchange; Stack
Exchange; Sustainability of Q&A communities

1 Introduction
The development of a knowledge-based society is one of the critical processes in the mod-
ern world [1, 2]. In a knowledge-based society, knowledge is generated, shared, and made
available to all members. It is a vital resource. Sharing this resource between individuals
and organizations is a necessary process, and knowledge-sharing communities are one of
the fundamental elements of a knowledge society.

Often, these knowledge-sharing communities depend on the willingness of their mem-
bers to engage in an exchange of information and knowledge. Participation in the com-
munity is voluntary, with no noticeable material gains for members. Recent research has
shown that the process of knowledge and information exchange is strongly influenced
by trust [3, 4]. The exchange of knowledge depends on trust between a member and the
community. It is a collective phenomenon that depends on and is built through social
interactions between community members. This is why we believe it is crucial to under-
stand how trustworthy knowledge-sharing communities emerge and disappear, as well as
to unveil the fundamental mechanisms that underlie their evolution and determine their
sustainability.
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Unlike small offline knowledge-sharing groups, online communities consist of a large
number of members where repeatable mutual interactions between all members are not
possible. Thus, the trustworthiness of individuals in these communities has to be assessed
and signaled using other means. It was shown that the reputation of an individual within
the community is a strong signal of her trustworthiness that can override the main sources
of social bias [5]. The reputation helps users manage the complexity of the collaborative
environment by signaling out trustworthy members.

In the past two decades, we have witnessed the emergence of an online knowledge-
sharing community Stack Overflow, which has become one of the most popular sites in the
world and the primary knowledge resource for coding. The success of Stack Overflow led
to the emergence of similar communities on various topics and formed the Stack Exchange
(SE) network.1 The advancement of Information and communication technologies (ICTs)
have enabled faster and easier creation and sharing of knowledge, but also the access to
a large amount of data that allowed a detailed study of their emergence and evolution
[6], as well as user roles [7], and patterns of their activity [8–10]. However, relatively little
attention has been paid to the sustainability of SE communities. Most research focused
on the activity and factors that influence the users’ activity in these communities. Factors
such as the need for experts and the quality of their contributions have been thoroughly
investigated [11]. It was shown that the growth of communities and mechanisms that drive
it might depend on the topic around which the community was created [12].

In this paper, we investigate the role of network structure and social trust dynamical
user reputation in the sustainability of a knowledge-sharing community. Research on the
sustainability of social groups shows that social interaction and their structure influence
the dynamics and sustainability of social groups [13–16]. Due to large number of users and
the smaller probability of repeated interactions dyadic trust between members may not
play an essential role in the group dynamics of knowledge-sharing communities. However,
it is known that the reputation of users, one of the proxies of trust in online communities,
is the primary for them to become and maintain their productive member status [17–19].

With the proliferation of misinformed decisions, it is crucial to understand how to foster
communities that promote collaborative knowledge exchange and understand how coop-
erative norms of trustworthy behavior emerge. The way people interact, specifically the
structure of their interactions [20], and how inclusive and trustworthy the key members
of the community can influence the sustainability of the knowledge-sharing communities.
Although the topic and early adopters are essential in establishing a new SE community,
they are not sufficient for sustainability. The current SE network has several examples of
communities where the first instance of the community did not survive the SE evaluation
process and was shut down, while the second attempt resulted in a sustainable commu-
nity. Focusing on attempts to establish a community on the same or similar topic with a
different outcome allows us to investigate the relevance of social network structure and
social trust in the sustainability of knowledge-sharing communities. They are particularly
relevant if we wish to understand why some communities established themselves in their
second attempt. For those pairs of communities, the topic is the same, and all the initial

1More information about Stack Overflow is available at: https://stackoverflow.co/ and broad introduction to Stack Ex-
change (SE) network is available at: https://stackexchange.com/tour. Visit https://area51.stackexchange.com/faq for more
details about closed and beta SE communities and the review process.

https://stackoverflow.co/
https://stackexchange.com/tour
https://area51.stackexchange.com/faq
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Figure 1 Visual abstract: Top row illustrates how user interaction via questions, answers, and comments is
translated into an undirected network of interactions between users and finally aggregated over 30 day
windows. The bottom row shows activity and corresponding dynamic reputation for one user from the
closed Literature SE community. Networks on the right illustrate differences between closed and active SE
Literature communities. Nodes are colored according to the core/periphery affiliation, while their size
corresponds to dynamic reputation on the last day of interaction that the network contains

SE platform requirements were satisfied, but something else was crucial for community
decay in the first attempt and its in the second.

Our methods and key results are summarised in a visual abstract in Fig. 1. In our main
analysis, we analyze four pairs of SE communities and study the differences in the evo-
lution of social structure and trust between closed and active communities. We have se-
lected four topics from the STEM and humanities: astronomy, physics, economics, and
literature. We focus on topics where we could find a matched pair of closed and active
communities to control for the differences in topic popularity and, partially, community
size. For this reason alone, we do not include Stack Overflow as the most popular com-
munity in our analysis. We analyze each pair’s early stages of evolution and look at the
differences between active and closed communities. Specifically, we map the interactions
onto complex networks and examine how their properties evolve during the first 180 days
of communities’ existence. Using complex network theory [21] we quantify the structure
of these networks and compare their evolution in active and closed communities on the
same topic. We pay special attention to the core-periphery structure of these networks
since it is one of the most prominent features of social networks [22]. We examine how
core-periphery structure of active and closed communities evolve and analyze their differ-
ence. We show that active communities have a higher value of local normalized clustering
and a more stable core membership. On average, the core of the sustainable communities
has higher inner connectivity.

To study the evolution of social trust, we adapted the Dynamic Interaction Based Rep-
utation Model (DIBRM) [23]. The model allows us to quantify the trust of each individual
over time. We can quantify members’ mean and total trust within the core and periph-
ery and follow their evolution through time. The mean reputation of members is higher
in sustainable communities than in closed ones, indicating higher levels of social trust.
Furthermore, the mean reputation of core members of active communities is constantly
above the mean reputation of core members in closed communities, indicating that the
creation of trust in the early stages of a community’s life may be crucial for its survival.
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Our results show that social organization and social trust in the early phases of the life of
a knowledge-sharing community play an essential role in its sustainability. Our analysis
reveals differences in the evolution of these properties in communities on different topics.

The paper is organized as follows. In Sect. 2 we give a short overview of previous re-
search. Section 3 describes the data and outlines some specific properties of each com-
munity. In Sect. 4 we describe the measures and models used for describing the local or-
ganization and measuring reputation. Section 5 shows our results. Finally, we discuss our
results and selection of model parameters and time window, as well as its consequences
in Sect. 6.

2 Previous research
The availability of data from the SE network led to detailed research on the different as-
pects of dynamics of knowledge sharing communities [6, 8–10], the roles of users [7], and
their motivations to join and remain members of these communities [24–28]. The focus
of the research in the previous decade was on the evolution of activity in SE communities
and the different factors that influence this growth. Ahmed et al. [29] have investigated
differences between technical and non-technical communities and showed that within
the first four years, technical communities have a higher growth rate, more activity, and
are more modular. The comparison of UX community in SE and Reddit [30] showed that
the Reddit community grows faster, while SE becomes less diverse and active over time.
Special attention was paid to the activities of individual users. In Ref. [31] authors argue
that while the overall quality of the answers, measured in the answer score, decays over
time, the quality of the answers of the individual user remains constant. This observation
suggests that good answerers are born and not made within the community. Reputation is
used as a proxy for the recognition of experts [32] by other members. However, contrary
to common sense, the authors show that the presence of experts can reduce the activ-
ity of other members [32]. In [12] authors explore the role of self-and cross excitation
in the temporal development of user activity. Differences between growing and declin-
ing communities and communities on STEM and humanities topics were explored. Their
results show that the early stages of growing communities are characterized by the high
cross-excitation of a small fraction of popular users. In contrast, later stages exhibit strong
long-term self-excitation in general and cross-excitation by casual users. It was also shown
that cross-excitation with power users is more important in the humanities than in STEM
communities, where casual users have a more critical role.

A relatively small number of papers focus on the sustainability of SE communities. In
Ref. [11], authors examine SE sites through an economic lens. They analyze the relation-
ship between content production based on the number of participants and activities and
show that an increase in the number of questions (input) increases the number of answers
(output). In their works, Oliveira et al. [33] investigate activity practices and identify the
tension between community spirit as proclaimed in SE guidance and individualistic values
as in reputation measurement through focus groups and interviews.

Our assumption about the relevance of the structure of social networks in the sustain-
ability of knowledge-sharing communities is supported by research on other social groups.
Various factors influence the emergence [34, 35], the evolution, and the sustainability of
the groups [13, 20, 36, 37]. The number of committed members [37] and the minimal level
of interdependence between members [35] are important factors for the emergence of the
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community. The levels of activity have an important role in the emergence and stability of
social groups [34, 37], while social factors, such as the size of the group, number of social
contacts, or social capital, influence their emergence and collapse [13–16].

Another important branch of research of interest in the sustainability of online com-
munities is the topic of trust. While ICTs make it easier for individuals to establish and
maintain social contacts and exchange information and goods, they are also exposed to
new risks and vulnerabilities. Social trust relationships, based on positive or negative sub-
jective expectations of another person’s future behavior, play an important but largely un-
explored role in managing those risks. Recent works show that the vital element of trust
is the notion of vulnerability in social relations, and as negative expectations of a trustee’s
behavior most often imply damage or harm to the trustor, decisions about which users to
trust in an online community become paramount [38–40].

In communities such as SE, individuals have three sources of information to rely on when
deciding to trust someone in a specific context: (1) knowledge of previous interactions,
(2) expectations about future interactions, and (3) indirect information gained through
a broader social network. Suppose that the number of active users in such a community
increases over a more extended period. In that case, the individuals have little or no history
together, no direct interactions, and almost no memory of past interactions. In that case,
the social network created by the community becomes a crucial source of information.
Therefore, from a network perspective, trust can be the result of reputational concerns
and can flow through indirect connections linking actors to one another [40, 41].

In that case, users rely on reputation as a public measure of the reliability of other users
active within the same community. Reputation is often quantified based on the history
of behavior valued or promoted by a set of community norms and, as such, represents a
social resource within the community [42–44]. Since reputation is public information, it
is also an incentive. Agents with high reputations are motivated to act trustworthy in the
future in order to preserve their status in the community [41]. This idea is supported by
psychological findings suggesting that trust is primarily motivated by effects produced by
the act of trust itself, regardless of more rational or instrumental outcomes of trustworthy
behavior [39].

In terms of modeling collective trust and reputation in online communities, knowledge
about past behaviors can be implemented in a trust model in different ways. When esti-
mating trust between agents in a social network, graph-based models focus on the topo-
logical information, position, and centrality of agents in a social network to estimate both
dyadic and collective measures of social trust. On the other hand, interaction-based mod-
els, such as the dynamic reputation model implemented in this paper (DIBRM) [23] es-
timate trust or reputation based on the frequency and type of agent’s interactions over
time without taking into account the structure and topology of the interactions between
different agents in a network.

3 Data
In our main analysis, we focus on pairs of closed and active SE communities matched by
topic. Astronomy, Literature, and Economics are currently active communities. All three
communities thrived the second time they were proposed. The first attempt to create com-
munities on these topics resulted in website closure within a year. We add to the compar-
ison the early days of the Physics community and compare its evolution with the closed



Vranić et al. EPJ Data Science            (2023) 12:4 Page 6 of 24

Theoretical Physics community. The topics of these communities are not identical, but
it is safe to assume that there is a high overlap in user demographics and interests. For
these reasons, we treat this pair in the same manner as others. Furthermore, to further
solidify our results we have examined the early evolution of four additional communities:
Mathematics, Mathematica, Startup Business, Startups. These communities are used to
inspect the robustness of our main analysis by comparing main communities with others
of similar size, user growth, and activity trends.

The SE data are publicly available and released at regular time intervals. We are primarily
interested in the activity and interaction data, which means that we extract the following
information for posts (questions and answers) and comments: (1) for each post or com-
ment, we extract its unique ID, the time of its creation, and unique ID of its creator - user;
(2) for every question, we extract information about IDs of all answers to that question
and ID of the accepted answer; (3) for each post, we collect information about IDs of its
related comments. The data contains information about the official SE reputation of each
user but only as a single value measuring the final reputation of the user on a day when
the data archive was released. Due to this significant shortcoming, we do not include this
information in our analysis. In SE, users can give positive or negative votes to questions
and answers and mark questions as favorites. However, the data is again provided as a fi-
nal score recorded at the release. Since this does not allow us to analyze the evolution of
scores, we omit this data from our analysis.

All SE communities follow the same path from their creation until they are considered
mature enough or closed. In a Definition phase, a small number of SE users start by design-
ing a community by proposing hypothetical questions about a certain topic. A successful
Definition phase is followed by a Commitment phase. In this phase, interested users com-
mit to the community to make it more active. The Beta phase, which follows after the
Commitment phase, is the most important. It consists of two steps: a three-week private
beta phase, where only committed users may ask/answer/comment questions, and a pub-
lic beta phase when other members are allowed to join the community. The duration of
the public beta phase is not limited. Depending on this analysis, there are three possible
outcomes: (1) the community is considered successful and it graduates; (2) the commu-
nity is active but needs more work to graduate, which means that the public beta phase
continues; (3) the community dies and the site is closed. The community evaluation/re-
view process is guided by simple metrics: the average number of questions per day, aver-
age number of answers per question, percentage of answered questions, total number of
users and number of avid users, and average number of visits per day. However, it should
be noted that process is not straightforward and that decision criteria have substantially
changed in previous years and sometimes exceptions are made for specific communities.2

We study how the social network properties of these social communities and the social
trust created among their members evolve during the first 180 days. The first 90 days are
recognized as the minimal time a newly established community should spend in the beta
phase. We investigate a period that is twice as long since closed communities were active
between 180 and 210 days. Given that differences in the first few months of the life of the

2For example, in 2022 59 websites graduated according to new criteria established in 2019 (which excluded ques-
tions per day metric), but as explained in the announcement (https://meta.stackexchange.com/questions/374096/
congratulations-to-the-59-sites-that-just-left-beta) exception was made for the AI community which graduated although
it didn’t meet the criteria that minimum 70% questions have at least one upvoted answer.

https://meta.stackexchange.com/questions/374096/congratulations-to-the-59-sites-that-just-left-beta
https://meta.stackexchange.com/questions/374096/congratulations-to-the-59-sites-that-just-left-beta
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Table 1 Community overview for first 180 days according to SE evaluation criteria

Site Status Answered Questions per day Answer ratio

Physics Closed 83% 1.93 1.64
Active 93% 11.76 2.74

Literature Closed 79% 1.77 1.65
Active 74% 5.04 1.10

Astronomy Closed 95% 2.62 2.02
Active 96% 3.57 1.49

Economics Closed 68% 2.04 1.25
Active 84% 5.66 1.37

Stack Exchange criteria Excellent >90% >10 >2.5
Needs some work <80% < 5 <1

online community can help predict its survival and evolution [45], we focus on the early
evolution of SE sites.

Although the official review of SE communities in the beta phase is mostly based on sim-
ple activity indicators such as the number of questions or ratio of answers to questions,3

these simple metrics do not provide enough information to differentiate between closed
communities and those that have been proven to be sustainable in the long term. This may
explain why the official guidelines for SE community review have changed and have been
applied inconsistently.

Table 1 shows the values of some of these measures at 180 days point for considered com-
munities. Although the Physics community had better metrics than Theoretical Physics
and other considered communities, we see that these differences are not as apparent if we
compare the remaining three pairs of communities. For instance, some of the parameters
for the closed Astronomy community, for example, the percentage of answered questions
and answer ratio, were better than for the community that is still active.

Another simple indicator can be the time series of active questions for the 7 days shown
in Fig. 2. The question is considered active if it had at least one activity, posted answer, or
comment, during the previous 7 days. The four pairs of compared communities show that
active communities have a higher number of active questions after 180 days. Although
this difference is evident for the Physics and Economics community, Fig. 2 shows that its
value is smaller for Astronomy and Literature. Furthermore, in the case of Astronomy, the
closed community had a higher number of active questions in the first 75 days.

The values of the measures shown in Tables 1 and A1 in Additional file 1, and Fig. 2 sug-
gest that these simple measures are not good indicators of long-term sustainability. There-
fore, we need a deeper understanding of the structure and dynamics of the community
to understand the factors behind its sustainability. All communities must start with the
same number of interesting questions, the same number of committed users, and satisfy
the same thresholds to enter the public beta phase. These basic aggregated statistics are
not enough to differentiate between active and closed communities. Hence, other factors
determine the sustainability of communities. We investigate the role of social interaction
structure and the dynamics of collective trust in the sustainability of SE communities.

3https://stackoverflow.blog/2011/07/27/does-this-site-have-a-chance-of-succeeding/

https://stackoverflow.blog/2011/07/27/does-this-site-have-a-chance-of-succeeding/
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Figure 2 Variations in the number of active questions in SE communities. Number of active questions within
7 days sliding windows on the four pairs of Stack Exchange websites: Astronomy, Literature, Economics and
Physics. Solid lines – active sites; dashed lines – closed sites

4 Method
We are interested in the position of trustworthy members in SE communities and how ac-
tive and closed communities differ regarding this factor. First, we map the interaction data
onto networks and analyze their properties and how they evolve during the first 180 days.
Furthermore, we use the dynamical reputation model to estimate the trustworthiness of
each member of the community and the dynamics of collective trust by studying the evo-
lution of the mean value of reputation in the community. The entire analysis was done in
Python, and the entire code for reproducing the results and figures is publicly available in
an online repository.4

4.1 Network mapping
We treat all user interactions, answering questions, posting questions or comments, and
accepting answers equally. We construct a network of users where the link between two
nodes, users i and j, exists if i answers or comments on the question posted by j and vice
versa, or i comments on the answer posted by j and vice versa, i accepts the answer posted
by user j. We do not consider the direction or frequency of the interaction between users
i and j; thus, the obtained networks are unweighted and undirected.

We create a network snapshot G(t, t + τ ) at the time t for the time window length τ .
Two users (i, j) are connected in a network snapshot G(t, t + τ ) if they have had at least one

4https://github.com/ana-vranic/Stack-Exchange-communities

https://github.com/ana-vranic/Stack-Exchange-communities
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interaction during the time [t, t + τ ]. Our first network accounts for interaction within
the first 30 days G[0, 30), and we slide the interaction window by one day and finish with
G[149, 179) network. This way, we create 150 interaction networks for each community.
By sliding the time window by one day, we create two consecutive networks that overlap
significantly. In this way, we can capture subtle structural changes resulting from daily
added/removed interactions. We calculate the different structural properties of these net-
works and analyze how they change over 180 days.

4.2 Clustering
There are many local and global measures of network properties [21]. These measures are
not independent. However, it was shown that the degree distribution, degree-degree cor-
relations, and clustering coefficient are sufficient to fully describe most complex networks,
including social networks [46]. Furthermore, research on the dynamics of social group
growth shows that links between persons’ friends who are members of a social group in-
crease the probability that that person will join that social group [47]. Successful social
diffusion typically occurs in networks with a high value of the clustering coefficient [48].
These results suggest that higher local cohesion should be a characteristic of sustainable
communities.

The clustering coefficient of a node quantifies the average connectivity between its
neighbors and the cohesion of its neighborhood [21]. It is a probability that two neigh-
bours of a node i are also neighbours, and is calculated using the following formula:

ci =
ei

1
2 ki(ki – 1)

. (1)

Here ei is the number of links between the neighbours of the node i, while 1
2 ki(ki – 1) is the

maximum possible number of links determined by the degree of the node ki. The cluster-
ing coefficient of the network C is the value of the clustering averaged over all nodes. We
investigate how the clustering coefficient in an SE community changes over time by cal-
culating its value for all network snapshots. We normalize the clustering coefficients with
the value of expected clustering for the random Erdos-Renyi network with the same num-
ber of nodes N and links L: cer = p = 2L

(N(N–1)) [21, 49]. We compare normalized clustering
coefficient for active and closed communities on the same topic to better understand the
evolution of cohesion of these communities.

4.3 Core-periphery structure
Real networks, including social networks, have a distinct mesoscopic structure [22, 50].
The mesoscopic structure is manifested either through the community structure or the
core-periphery structure. Networks with a community structure consist of a certain num-
ber of groups of nodes that are densely connected, with sparse connections between
groups. Networks with core-periphery structures consist of two groups of nodes, with
higher edge density within one group, core, and between groups. However, low edge den-
sity in the second group, periphery [22]. Research on user interaction dynamics in SE
communities shows that there is a small group of highly active members who have fre-
quent interactions with casual or low active members [8, 12]. These results indicate that we
should expect a core-periphery structure in SE communities. The classification of nodes
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into one of these two groups provides information on their functional and dynamic roles
in the network.

To investigate the core-periphery structure of SE communities and how it evolves over
time, we analyze the core-periphery structure of every network snapshot. For this purpose,
we use the Stochastic Block Model (SBM) adapted for the inference of the core-periphery
of the network structure [22].

SBM is a model where each node belongs to one group in the given network G. For the
core-periphery structure, the number of blocks is two. Thus, the elements of the vector
θi are 1 if the node i belongs to the core or 2 for the periphery. The block connectivity
matrix {p}2x2 specifies the probability prs that nodes from group r are connected to nodes
in group s, where r, s ∈ {1, 2}.

The SBM model seeks the most probable model that can reproduce a given network
G. The probability of having model parameters θ , p given network G is proportional to
the likelihood of generating network G, P(G|θ , p), prior on SBM matrix P(p) and prior on
block assignments P(θ ):

P(θ , p|G) = P(G|p, θ )P(p)P(θ ), (2)

The likelihood of generating a network G is defined as:

P(G|θ , p) =
∏

i<j

pAij
risj (1 – prisj )

1–Aij , (3)

where the adjacency matrix element Aij is equal to 1 whenever nodes i and j are connected
and it is 0 otherwise.

Prior on p is the uniform distribution over all block matrices whose elements satisfy
the constraint for the core-periphery structure 0 < p22 < p12 < p11 < 1. Prior on θ consists
of three parts: the probability of having 2 blocks; given the number of blocks, probability
P(n|2) of having groups of sizes {n1, n2} and probability P(θ |n) of having particular assign-
ments of nodes to blocks.

To fit the model, we follow the procedure set by the authors of Ref. [22] and use the
Metropolis-within-Gibbs algorithm. For each 30 days snapshot network, we run 50 iter-
ations and choose the model parameters θ and p according to the minimum description
length (MDL). MDL does not change much among inferred core-periphery structures,
see Fig. A1 in Additional file 1, while looking into the Adjusted Rand Index (ARI), we can
notice that difference exists. Still, the ARI between pair-wise compared partitions is sig-
nificant (ARI > 0.9), indicating the stability of the inferred structures. The definition and
detailed descriptions of MDL and ARI are given in the Additional file 1.

4.4 Dynamic reputation model
Any dynamical trust or reputation model has to take into account distinct social and psy-
chological attributes of these phenomena in order to estimate the value of any given trust
metric [43]. First, the dynamics of trust are asymmetric, meaning that trust is easier to
lose than to gain. As part of asymmetric dynamics, to make trust easier to lose, the trust
metric has to be sensitive to new experiences, recent activity, or the absence of the user’s
activity while still maintaining the non-trivial influence of old behavior. The impact of
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new experiences must be independent of the total number of recorded or accumulated
past interactions, making high levels of trust easy to lose. Finally, the trust metric must
detect and penalize behavior that deviates from community norms.

We estimate the dynamic reputation of SE users using the Dynamic Interaction Based
Reputation Model (DIBRM) [23]. This model is based on the idea of dynamic reputation,
which means that the reputation of users within the community changes continuously
over time: it should rapidly decrease when there is no registered activity from the specific
user in the community, reputation decay, and it should grow when frequent, constant in-
teractions and contributions to the community are detected. The highest growth in users’
reputations is found through bursts of activity followed by a short period of inactivity.

Our model implementation does not distinguish between positive and negative interac-
tions in SE communities. Therefore, we treat any interaction in the community, posting
a question, answer, or comment, as a potentially valuable contribution. The evaluation
criteria for SE websites that go through beta testing described in Additional file 1 do not
distinguish between positive and negative interactions. The percentage of negative inter-
actions in the communities we investigated was below 5%, see Table A2 in Additional file
1. Filtering positive interactions would also require filtering out comments because the
community does not rate them. That would eliminate a large portion of direct interac-
tions between community users, which is essential for estimating their reputation. The
only negative aspect of behavior in our model is the absence of valuable contributions -
the user’s inactivity. This behavior can be seen as a deviation from community norms as
we look at new communities in the early stages of development, where constant contribu-
tions are crucial to community growth and survival.

In DIBRM, the reputation value for each user of the community is estimated by combin-
ing two different factors: (1) reputation growth - the cumulative factor that represents the
importance of users’ activities; (2) reputation decay - the forgetting factor that represents
the continuous decrease in reputation due to inactivity. In the case of SE communities,
the forgetting factor has a literal meaning, as we can assume that active users forget users’
past contributions as their attention is captured by more recent content.

In the bottom left part of Fig. 1 we see an example of reputation dynamics for a single
user. There are bursts of reputation growth after multiple interactions are recorded, like
in the case of two interactions in a single day recorded between days 25 and 50, followed
by a period of inactivity which leads to reputation decay. In this case, the decay is inter-
rupted by a single recorded activity before the 75th day, but then an even longer inactivity
period ensued, leading to a decay that reduced the reputation of the user nearly to 0 be-
fore the 100th day. Two contrasting examples of real user reputation are explained in the
Additional file 1 (Fig. A2).

Reputation dynamics revolves around the varying influence of past and recent behav-
ior. Thus, DIBRM has two components: cumulative factor - estimating the contribution of
the most recent activities to the overall reputation of the user; forgetting factor - estimating
the weight of past behavior. Estimating the value of recent behavior starts with the defi-
nition of the parameter storing the basic value of a single interaction Ibn . The cumulative
factor Icn then captures the additive effect of successive recent interactions. In Fig. 1 we
see this cumulative effect with two consecutive interactions (gray vertical lines) after day
150 which sudden jump in reputation previously reduced to zero. The reputational con-
tribution In of the most recent interaction n of any given user is estimated in the following
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way:

In = Ibn + Icn = Ibn

(
1 + α

(
1 –

1
Sn + 1

))
. (4)

Here, α is the weight of the cumulative part, and Sn is the number of sequential activi-
ties. If there is no interaction at tn, this part of interactions has a value of 0. An essential
property of this component of dynamic reputation is the notion of sequential activities.
Two subsequent interactions by a user are considered sequential if the time between these
two activities is less than or equal to the time parameter ta that represents the time win-
dow of interaction. This time window represents the maximum time spent by the user to
make a meaningful contribution, post a question or answer, or leave a comment,

�n =
tn – tn–1

ta
. (5)

If �n < 1, the number of sequential activities Sn will increase by one, which means that
the user continues to communicate frequently. However, large values �n significantly in-
crease the effect of the forgetting factor. This factor plays a vital role in updating the total
dynamic reputation of a user at each time step, after every recorded interaction:

Tn = Tn–1β
�n + In . (6)

Here, β is the forgetting factor. In our model implementation, the trust is updated each
day for every user regardless of their activity status. Therefore, the decay itself is a combi-
nation of β and �n: the more days pass without recorded interaction from a specific user,
the more their reputation decays. Lower values of β lead to faster trust decay, as shown in
Fig. A2 in the Additional file 1. In Fig. 1 we observe this long-tailed reputation loss when
the user has more than 25 inactive days between days 120 and 150, reducing the reputation
almost to 0.

For this work, we select the following values of these parameters: (1) we set the basic
reputation contribution Ibn = 1, which means that each activity contributes 1 to the dy-
namical reputation; (2) for the cumulative factor α we choose the value 2 and place higher
weight on recent successive interactions; (3) forgetting factor β we select the value 0.96;
4) the value of ta = 2. By setting α > 1 we enable faster growth of reputation due to a large
number of subsequent interactions; see Fig. A2 in Additional file 1. Furthermore, by set-
ting the value of β < 1.0, we increase the penalty for long inactivity periods; see Fig. A2 in
Additional file 1. We discuss the selection of model parameters and their consequences in
detail below. The selected values of parameters are used to measure the dynamical repu-
tation of users in all four pair SE communities. Given these parameter values, the minimal
reputation of the user immediately after having made an interaction in the SE community
is 1. This reputation will decay below 1 if the user does not perform another interaction
within the one-day window. Users with a reputation below the value 1 are considered in-
active and invisible in the community; that is, their past contributions at that time are
unlikely to impact other users.
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4.4.1 The choice of model parameters
In this work, we used snapshots of the network of 30 days. This period corresponds to the
average month, and it is common in the analyses of the structure and dynamics of social
networks [51–53]. Still, there is no well-specified procedure to choose the time window.
Previous studies have shown that if τ is small, subnetworks become sparse, while for too
large sliding windows, some important structural changes cannot be observed [52, 54].
Thus, we have analysed how the time window choice influences our results. Figure A11
in Additional file 1 shows how considered network properties and dynamical reputation
depend on the time window size for active and closed communities in case of Astronomy
communities. We observe that fluctuations of all measures are more pronounced for a
time window of 10 days than for 30 and 60 days. However, we find that while the struc-
tural properties of networks evolve at different rates over varied time windows, the trends
remain very similar. The qualitative difference observed between closed and active com-
munities is independent of the time window size, especially when comparing the 30 and
60 day windows. The 30-day time window ensures enough interaction, even for closed
communities, while the number of observation points remains relatively high. For these
reasons, we choose a sliding window of 30 days.

The initial purpose of DIBRM was to replicate the dynamics of the official SE reputation
metric [23, 55]. In previous studies [55] the official SE reputation is obtained with ta = 2,
α = 1.4, β = 1. This configuration of model parameters implies that there is no reputation
decay and points toward the fact that the official SE reputation is hard to lose. Our ap-
plication is oriented towards estimating a reputation metric which takes into account the
fundamental properties of social trust, i.e. reputation decreases with members’ inactivity,
so we opted for a different set of parameter values.

For the basic reputation contribution of a single interaction, we selected Ibn = 1, and, at
the same time, this is the threshold value of an active user. This value is intuitive as every
interaction has the initial contribution of +1 to the user’s reputation, although the previous
works have used values of +2 and +4. Following the previous work and after examining
the median/average time between subsequent interactions of the same user, we selected
ta = 1, which also means that the reputation in our model will be updated every day during
the time window of the analysis, regardless of whether the user is active or not.

The combination of parameters α and β can significantly influence the dynamic of the
single user reputation, as shown in Fig A2. We show that higher values for parameter
α = 2, highlight the burst of user activity and frequent interaction. On the other hand, the
parameter beta is the forgetting factor, which at the same time determines the weight of
past interactions and the reputational punishment due to user inactivity. Here, we need to
select the parameter β value, so we include forgetting due to inactivity but do not penalize
it too much. In Fig. A2, we show how different values of parameter β influence the time
needed for a user’s reputation to fall on value In = 1 due to the user’s inactivity and value
of dynamical reputation at the moment of the last activity. The higher the value of the
parameter β and the initial dynamical reputation of the users, the longer it takes for the
user’s reputation to fall to the baseline value. For parameters β = 0.9 and In = 5, the user’s
reputation drops to value In = 1 after less than 20 days, while this time is doubled for
β = 0.96. We see that for higher values of the parameter β , the time it takes for In to drop
to 1 becomes longer and that the initial value of the reputation becomes less important.
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We estimated the difference between the number of users who had at least one activity
in the 30-day window and the number of users with a reputation greater than 1 during the
same period for different parameter β values. We calculated the root mean square error
(RMSE) between the time series of the number of active users for τ = 30 and different
values of β parameters; see Fig. A12 in Additional file 1. The minimal difference between
these two variables is for β between 0.94 and 0.96 for both active and closed communities.
Since we want to compare communities, we select β = 0.96. Our analysis reveals that the
reputational decay parameter β set at 0.96 does not reduce the number of active users
(based on their dynamic reputation) below the actual number of users who have been
active (interacted with the community) in the time window of 30 days; see Fig. A13 in
Additional file 1. Furthermore, we examine and compare the trends of two types of time
series: (1) time series of active users, according to dynamical reputation; (2) time series
of permanent users, users who were active in a given sliding window and continued to be
active in the next one. Figure A14 in Additional file 1 shows that while the absolute number
of users differs in these time series, they follow similar trends for all communities.

5 Results
5.1 Clustering and core-periphery structure of knowledge-sharing networks
We first analyze the structural properties of SE communities and examine the difference
between active and closed ones. We calculate the normalized mean clustering coefficient
for 30-day window networks and examine how it changes over time. Figure 3 shows the
evolution of the normalized mean clustering coefficient for the eight communities. All
communities that are still active are clustered, with the value of normalized clustering co-
efficient above 5, with Physics, the only launched community, having the highest value of
normalized clustering coefficient during the first 180 days. During the larger part of the
observed period, an active community’s normalized clustering coefficient is higher than
the normalized clustering coefficient of its closed pair. For pairs where active communities
are still in the beta phase, some of closed communities have a higher value of the normal-
ized clustering coefficient in the first 50 days. After this period, active communities have
higher values of the normalized clustering coefficient. These results suggest that all com-
munities have relatively high local cohesiveness compared to random graphs, however,
the value of normalized clustering below the value 5 in the later phase of community life
may indicate its decline.

Furthermore, we examine the core-periphery structure of these communities and their
evolution. Specifically, we are interested in the evolution of connectivity in the core. Fig-
ure 4 shows the change in the number of links between nodes, averaged on the core nodes,
Lc
Nc

over time. 2Lc
Nc

is the average degree of the node in the core and, thus, Lc
Nc

is the half of
the average degree. Again, the Physics community has a much higher value of this quan-
tity than Theoretical Physics during the observed period, indicating higher connectivity
between core members. Higher connectivity between core members in the active com-
munity is also characteristic of Literature. However, this quantity has the same value for
active and closed communities at the end of the observation period. The differences be-
tween active and closed communities are not that prominent for Economics and Astron-
omy, see Fig. 4. Active and closed Economics communities have similar connectivity in
the core during the first 50 days. After this period, the connectivity in the core of the ac-
tive community is twice as large as in the closed community, and the difference grows at
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Figure 3 Normalized mean clustering coefficient of 30 days sub-networks for four pairs of Stack Exchange
websites: Astronomy, Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

Figure 4 Connectivity among users within the core and between core and periphery. Links per node in core -
top panel and links per node between core and periphery - bottom panel for the four pairs of Stack Exchange
websites: Astronomy, Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

the end of the observation period. The connectivity in the core of the closed Astronomy
community is higher than the connectivity in the core of the active community during the
first 50 days. However, as time progresses, this difference changes in favor of the active
community, while this difference disappears at the end of the observation period.

The difference between active and closed communities is observed compared to the av-
erage number of core-periphery edges per network node. The connectivity between core
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and periphery is higher for the active communities than for the closed ones, see Fig. 4,
which is very obvious if we compare Physics and Theoretical Physics communities. More-
over, the Physics community has the highest connectivity compared to all other commu-
nities. Active Literature and Economics communities have the same core-periphery con-
nectivity as their closed counterpart. The core of the active Astronomy community has
weaker connections with the periphery than the closed community during the first 50
days, see Fig. 4.

Our motivation to examine the core-periphery structure comes from reference [12]. The
authors have selected 10% of the most active users and examined their mutual connec-
tivity and connectivity with the remaining users. The split of 10% to 90% users according
to their activity may appear arbitrary. The core-periphery provides a more consistent net-
work division based on its structure. However, the connectivity patterns between popular-
popular and popular-casual users, shown in Fig. A3 in Additional file 1, are similar to one
observed for core-periphery in Fig. 4.

On average, the cores of active communities have a higher number of nodes than closed
communities. However, the size of the core relative to the size of the network is similar for
active and closed communities (Fig. A4 in Additional file 1). The size of the core fluctu-
ates over time for active and closed communities. The core membership also changes over
time. This core membership is changing more for the closed communities. We quantify
this by calculating the Jaccard index between the cores of the subnetworks at the moment
ti and tj. Figure A5 in Additional file 1 shows the value of the Jaccard index between any
pair of the 150 subnetworks. The highest value of the Jaccard index is around the diago-
nal and has a value close to 1. The compared subnetworks are for consecutive days and
have a similar structure. The value of the Jaccard index decreases with the number of days
between two subnetworks |ti – tj| faster in closed communities; see Fig. A6 in Additional
file 1. This difference is the most prominent for the Literature communities, while this
difference is practically non-existent for Astronomy. The relatively high value of overlap
between cores of distant subnetworks for active communities further confirms that the
core is more stable in these communities that in their closed counterparts.

5.2 Dynamic reputation of users within the network of interactions
To explore the differences between active and closed communities, we focus on dynami-
cal reputation, our proxy for collective trust in these communities. The number of active
users (top panel) and the mean user reputation (bottom panel) for different SE communi-
ties are shown in Fig. 5. Except in the case of Astronomy, closed communities generated
less engaged users from the start and the number of active users saturated at lower values.
In the case of Astronomy, the closed community started with a faster-increasing number
of active users. However, within the first two months, their number dropped, while the
second time around, the community started slower but kept engaging more users. Only
in the still active Physics community is the number of active users an increasing function
over the whole 180 day period we have observed. Panels in the bottom show mean rep-
utation among active users, and we see that most of the time, it was higher in the still
active communities than in the closed ones. The Physics community kept these mean val-
ues more stable at higher levels, whereas in other communities, we note that the initial
high mean reputation decays faster. Astronomy is an exciting exception again, where we
see a second sudden increase in mean user reputation, which signals an increase in user
activity.
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Figure 5 Active users within SE communities and their mean dynamic reputation. The number of active
users (users with a reputation higher than 1) - top panel, and mean Dynamic Reputation within active users –
bottom panel for the four pairs of Stack Exchange websites: Astronomy, Literature, Economics, and Physics.
Solid lines – active sites; dashed lines - closed sites

Figure 6 Mean Dynamical reputation within the core for four pairs of Stack Exchange websites: Astronomy,
Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

In addition, we investigate whether and how the core-periphery structure is related to
collective trust in the network. Figure 6 shows the mean dynamical reputation in the core
of active and closed communities and its evolution during the observation period. There
are apparent differences between active and closed communities regarding dynamical rep-
utation. The mean dynamical reputation of core users is always higher in active commu-
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nities than in closed. The most significant difference is observed between the Physics and
Theoretical Physics communities. The difference between active communities, which are
still in the beta phase, and their closed counterparts is not as prominent. However, the ac-
tive communities have a higher mean dynamical reputation, especially in the later phase
of the observation period. The only difference in the pattern is observed for Astronomy
communities at the early stage of their life. The closed community has a higher value of
dynamic reputation than the active community. This observation is in line with similar
patterns in the evolution of mean clustering, core-periphery structure, and mean reputa-
tion.

By definition, the core consists of very active individuals. Thus we expect a higher to-
tal dynamical reputation of users in the core than the total reputation of users belong-
ing to subnetworks periphery. Figure A7 in Additional file 1 shows the ratio between the
total reputation of the core and periphery for closed and active communities and their
evolution. The ratio between the total reputation of core and periphery in Physics is al-
ways higher than in the Theoretical Physics community. A similar pattern can be observed
for Literature communities, although the difference is not as prominent as in the case of
Physics. The ratio of total dynamical reputation between core and periphery was higher
in the closed Economics community during the early days of its existence. However, this
ratio becomes higher for active communities in the later stage of their lives. Communities
around the astronomy topic deviate from this pattern, which shows the specificity of these
two communities.

To complete the description of the evolution of dynamic reputation, we examine the evo-
lution of the Gini index of dynamical reputation among the active members of SE sites,
shown in Fig. A8 in Additional file 1. Both closed and active communities have high values
of the Gini index, indicating that the dynamic reputation is distributed unequally among
users. Notably, all communities have the highest Gini index at the start, signaling that the
inequality in users’ activity at the start, and thus their dynamic reputation is the highest.
After this initial peak, the Gini index decreases, but it persists at higher levels in com-
munities that are still active than in the closed ones, except in the case of the Astronomy
community. In this case, the active community had a higher Gini index until just before
the observation period, when the Gini coefficient increased in the closed community.

Figure A9 in Additional file 1 shows the evolution of the assortativity coefficient for
users’ dynamical reputation. The observed networks are disassortative during the most
significant part of 180 days period. Users with high dynamical reputations tend to con-
nect with users with a low value of dynamical reputation in all eight communities. We
also compare the degree and betweenness centrality of the users and their dynamical rep-
utation by calculating the correlation coefficient between these measures for each slid-
ing window, see Fig. A10 and detailed explanation in Additional file 1. The correlation
between these centrality measures and dynamical reputation is very high. In active com-
munities on physics, economics, and literature topics, the correlation between centrality
measures and users’ reputation is exceptionally high, above 0.85, and does not fluctuate
much during the observation period. There is a clear difference between active and closed
communities for these three pairs. The Astronomy pair deviates from this pattern for the
first 100 days. After this period, the pattern is similar to one observed for the other three
pairs of communities. The results reveal that degree and betweenness centrality are cor-
related more with a reputation in active than in closed communities.



Vranić et al. EPJ Data Science            (2023) 12:4 Page 19 of 24

6 Discussion and conclusions
In this work, we have explored whether the structure and dynamics of social interac-
tions determine the sustainability of knowledge-sharing communities. We have adopted a
model of dynamical reputation to measure the collective trust of members and analyzed its
dynamics. For this purpose, we use the data from the SE platform of knowledge-sharing
communities where members ask and answer questions on focused topics. We selected
four pairs of active and closed communities on the same or similar topic. Specifically, two
topics are from the STEM field, physics, and astronomy, and two are from social sciences
and humanities, economics and literature.

We have examined the evolution of the normalized average clustering coefficient in
closed and active SE communities. Our results show that active communities have sig-
nificantly higher values of clustering coefficient compared to ER graphs of the same size
in the later phase of community life than closed communities. In the early phase of com-
munities’ lives, the clear difference between active and closed communities is observed
only for the physics topic; see Fig. 3. The high value of the normalized clustering coef-
ficient observed for the active Physics community suggests that communities with high
local cohesiveness are sustainable and mature faster than others.

The core in active communities is more strongly connected with the periphery than in
closed communities, indicating that active members engage more often with occasionally
active members; see Fig. 4. These results suggest that active communities are more inclu-
sive than closed ones. Furthermore, our analysis shows that average connectivity between
core members is not as crucial to community sustainability as expected. Although active
Physics and Economics communities exhibit much higher connectivity in the core than
their closed counterparts, this is not true for communities focused on astronomy and lit-
erature. However, our results show that a member’s lifetime in the core is longer for active
communities, indicating a more stable core in active communities.

Analysis of the evolution of the core-periphery and its connectivity patterns suggests
a higher trust between active and sporadically active members. To further explore this,
we have adapted the dynamical reputation model [23], which allowed us to follow the
evolution of trust of each member.

The total dynamical reputation of core members during their first 180 days was higher
for active communities than for their closed counterparts. While relative core size is less
than 40%, Fig. A4 in Additional file 1, the ratio between the total reputation of nodes in the
core and ones in the periphery is consistently above 0.5, indicating that the average repu-
tation of members in the core is higher than the reputation of the node in the periphery.
The ratio between the total reputation of core and periphery nodes has a higher value in
the active community of Physics, Literature, and Economics. For most of the 180 days, this
ratio has a value higher than one. The Astronomy communities are outliers, but the core
members have a higher total reputation than members on the periphery, even for these
two communities. Our results imply that the most trusted members in the community
are the core members, who also generate more trust in active communities. They have a
higher reputation generated through interactions with both core and nodes in the periph-
ery, see Fig. 6. Furthermore, the overall levels of trust are higher in active communities,
which is reflected in the fact that the mean user reputation is higher in these communities;
see Fig. 5.
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The choice of the topics and selection of SE communities of a various number of users,
question, answer and comments, see Table A1 in the Additional file 1, guarantees, up to
a certain extent, the generality of our results. However, there are certain limitations to
the generalizability of our findings. While SE communities provide very detailed data that
enable the study of the structure and dynamics of knowledge-sharing communities, we
must not ignore the fact that they have some properties that make them specific.

SE communities are about specific topics; they mostly bring together people who are
passionate about or are experts in a specific field. These communities attract people from
the general population. Since we were interested in excluding the factor of the topic in our
research, we studied and compared active and closed communities on the same topic. In
the SE network, these pairs of communities are pretty rare, which has substantially limited
our sample size, leaving the possibility for the occurrence of outliers that do not follow our
general conclusions.

To further solidify our results, we have examined the early evolution of four additional
communities: Mathematics, Mathematica, Startup Business, and Startups. Mathematics
and Mathematica communities graduated early in the process, while both communities
on startup topics were closed after spending some time in the public beta phase. Figures
A15 and A16 in the Additional file 1 show that both communities on the subject of math-
ematics exhibit a similar evolutionary path as the Physics community. They have a high
mean reputation, stable and relatively large cores with high average trustworthiness of core
members, see Fig. A15 in Additional file 1. While the numbers of active users in these two
communities and the Physics community differ, we see that this does not influence the av-
erage reputation of users or the size of the core. This is even more evident if we compare
the Physics community with the closed Startup Business community. We see from Fig. A16
in Additional file 1 that the number of active users grows much faster for this community
than for Physics. However, the average reputation in the community is comparable with
the ones that were eventually closed, Theoretical Physics and Startups. Furthermore, the
core size is comparable with the core of Physics, but the average trustworthiness of core
members is similar to one for closed communities. These results demonstrate that even
the communities with high early activity and a number of active users will not become
sustainable if they do not develop a core of trustworthy members. Startups community
has a behavior very similar to Theoretical Physics community. The comparison between
two startup communities, shows that despite their difference in the activity levels these
communities have similar evolution path during the first 180 days.

We have also decided to map interactions to networks so that the resulting network is
unweighted and undirected. We use unweighted edges for a finer distinction between the
structure and community dynamics. The number of repeated user interactions is captured
with dynamic reputation, while the edges carry only structural information without the
number of repeated interactions. Furthermore, as we map interactions to networks using
sliding windows, the repeated presence of an edge throughout different windows gives
us partial information about the durability and the frequency of the dyadic relationship.
Similarly, we opted against directed weights as we are not interested in diffusion or flow of
information and undirected edges represent a more parsimonious view of the community
structure. However, these choices did have consequences in the choice of core-periphery
detection method, and it is possible that with different network mapping, other methods
would prove more suitable.
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Finally, there are many ways to measure collective trust and reputation in online social
communities. We have selected the dynamical reputation model because it was devel-
oped to measure reputation in SE communities. Furthermore, the model allowed us to
study the evolution of trust in communities. However, the model requires fine-tuning of
its parameters and does not distinguish positive from negative interactions. We have se-
lected our parameters to replicate the activity of the SE communities in the time window
of τ = 30 days. Our analysis shows that while the choice of the sliding window, τ , may
seem arbitrary, the different values do not influence the general conclusions; see Fig. A11
in Additional file 1. The interactions in SE communities are mostly not emotional, and
thus, the model is suitable for measuring collective trust in these communities. However,
the interaction in other knowledge-sharing communities can be much more emotional,
and therefore the dynamical reputation model needs to be adapted to measure reputation
in these communities.

Our results show that the trustworthiness of core members thus represents one of the
essential parameters for determining community sustainability. Sustainable communities
have a core of trustworthy members. The core of sustainable communities is more densely
connected, and its connectivity with the periphery is more significant than in closed com-
munities. The observed feature is especially prominent in the Physics community, which
is the only active community considered to be mature. As we stated, active communities
on topics of astronomy, economics and literature were in the beta phase. However, since
December 2021,5 these communities graduated. The core of sustainable communities ex-
hibits higher degrees of stability during their first 180 days. Sustainable communities have
higher local cohesiveness, which is reflected in the relatively high value of the normalized
clustering coefficient. Our results show that these conclusions hold for both STEM and
humanities topics. However, we do not observe apparent differences between active and
closed Astronomy communities for some quantities. In the case of Astronomy and some-
times Economics, we find that closed communities had higher normalized clustering co-
efficients and higher core-core and core-periphery connectivity during the early phase of
community life. These observations suggest that the properties of the network during the
early phase of the community’s existence may lead to wrong conclusions about its sustain-
ability. Our results also imply that information about community sustainability is hidden
in the evolution of different network and trust properties.
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Vranić et al. EPJ Data Science            (2023) 12:4 Page 24 of 24

50. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174.
https://doi.org/10.1016/j.physrep.2009.11.002

51. Saramäki J, Moro E (2015) From seconds to months: an overview of multi-scale dynamics of mobile telephone calls.
Eur Phys J B 88(6):1–10. https://doi.org/10.1140/epjb/e2015-60106-6

52. Krings G, Karsai M, Bernhardsson S, Blondel VD, Saramäki J (2012) Effects of time window size and placement on the
structure of an aggregated communication network. EPJ Data Sci 1(1):1. https://doi.org/10.1140/epjds4

53. Barrat A, Gelardi V, Le Bail D, Claidiere N (2021) From temporal network data to the dynamics of social relationships.
Proc R Soc Lond B, Biol Sci 288:20211164. https://doi.org/10.1098/rspb.2021.1164

54. Arnold NA, Steer B, Hafnaoui I, Parada GHA, Mondragon RJ, Cuadrado F, Clegg RG (2021) Moving with the times:
investigating the alt-right network gab with temporal interaction graphs. Proc ACM Hum-Comput Interact 5(CSCW2)
447. https://doi.org/10.1145/3479591

55. Yashkina E, Pinigin A, Lee J, Mazzara M, Adekotujo AS, Zubair A, Longo L (2019) Expressing trust with temporal
frequency of user interaction in online communities. In: Advanced information networking and applications.
Springer, Cham. https://doi.org/10.1007/978-3-030-15032-7_95

https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1140/epjb/e2015-60106-6
https://doi.org/10.1140/epjds4
https://doi.org/10.1098/rspb.2021.1164
https://doi.org/10.1145/3479591
https://doi.org/10.1007/978-3-030-15032-7_95


J.S
tat.

M
ech.

(2022)
123402

PAPER: Interdisciplinary statistical mechanics

Universal growth of social groups:
empirical analysis and modeling
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Abstract. Social groups are fundamental elements of any social system. Their
emergence and evolution are closely related to the structure and dynamics of a
social system. Research on social groups was primarily focused on the growth
and the structure of the interaction networks of social system members and how
members’ group affiliation influences the evolution of these networks. The distri-
bution of groups’ size and how members join groups has not been investigated
in detail. Here we combine statistical physics and complex network theory tools
to analyze the distribution of group sizes in three data sets, Meetup groups
based in London and New York and Reddit. We show that all three distributions
exhibit log-normal behavior that indicates universal growth patterns in these
systems. We propose a theoretical model that combines social and random diffu-
sion of members between groups to simulate the roles of social interactions and
members’ interest in the growth of social groups. The simulation results show
that our model reproduces growth patterns observed in empirical data. Moreover,
our analysis shows that social interactions are more critical for the diffusion of
members in online groups, such as Reddit, than in offline groups, such as Meetup.
This work shows that social groups follow universal growth mechanisms that need
to be considered in modeling the evolution of social systems.
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1. Introduction

The need to develop methods and tools for their analysis and modeling comes with
massive data sets. Methods and paradigms from statistical physics have proven to be
very useful in studying the structure and dynamics of social systems [1]. The main
argument for using statistical physics to study social systems is that they consist of
many interacting elements. Due to this, they exhibit different patterns in their structure
and dynamics, commonly known as collective behavior . While various properties can
characterize a social system’s building units, only a few enforce collective behavior in
the systems. The phenomenon is known as universality in physics and is commonly
observed in social systems such as in voting behavior [2], or scientific citations [3]. It
indicates the existence of the universal mechanisms that govern the dynamics of the
system [1].

Social groups, informal or formal, are mesoscopic building elements of every socio-
economic system that direct its emergence, evolution, and disappearance [4]. The exam-
ples span from countries, economies, and science to society. Settlements, villages, towns,
and cities are formal and highly structured social groups of countries. Their organization
and growth determine the functioning and sustainability of every society [5]. Companies
are the building blocks of an economic system, and their dynamics are essential indica-
tors of the level of its development [6]. Scientific conferences, as scientific groups, enable
fast dissemination of the latest results, exchange, and evaluation of ideas as well as a
knowledge extension, and thus are an integral part of science [7]. The membership of
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individuals in various social groups, online and offline, can be essential when it comes
to the quality of their life [8–10]. Therefore, it is not surprising that the social group
emergence and evolution are at the center of the attention of many researchers [11–14].

The availability of large-scale and long-term data on various online social groups has
enabled the detailed empirical study of their dynamics. The focus was mainly on the
individual groups and how structural features of social interaction influence whether
individuals will join the group [15] and remain its active members [7, 16]. The study on
LiveJournal [15] groups has shown that decision of an individual to join a social group
is greatly influenced by the number of her friends in the group and the structure of their
interactions. The conference attendance of scientists is mainly influenced by their con-
nections with other scientists and their sense of belonging [7]. The sense of belonging of
an individual in social groups is achieved through two main mechanisms [16]: expanding
the social circle at the beginning of joining the group and strengthening the existing
connections in the later phase. Analysis of the evolution of large-scale social networks
has shown that edge locality plays a critical role in the growth of social networks [17].
The dynamics of social groups depend on their size [18]. Small groups are more cohesive
with continued long-term, while large groups change their active members constantly
[18]. These findings help us understand the growth of a single group, the evolution of its
social network, and the influence of the network structure on group growth. However,
how the growth mechanisms influence the distribution of members of one social system
among groups is yet to be understood.

Furthermore, it is not clear whether the growth mechanisms of social groups are uni-
versal or system-specific. The size distribution of social groups has not been extensively
studied. Rare empirical evidence of the size distribution of social groups indicates that
it follows power-law behavior [19]. However, the distribution of company sizes follows
log-normal behavior and remains stable over decades [20, 21]. Analysis of the cities’ sizes
shows that all cities’ distribution also follows a log-normal distribution [22]. In contrast,
the distribution of the largest cities resembles Zipf’s distribution [23].

A related question that should be addressed is whether we can create a unique
yet relatively simple microscopic model that reproduces the distribution of members
between groups and explains the differences observed between social systems. French
economist Gibrat proposed a simple growth model to produce companies’ and cities’
observed log-normal size distribution. However, the analysis of the growth rate of the
companies [20] has shown that growth mechanisms are different from those assumed
by Gibrat. In addition, the analysis of the growth of the online social networks showed
that the population size and spatial factors do not determine population growth, and
it deviates from Gibrat’s law [24]. Other mechanisms, for instance, growth through
diffusion, have been used to model and predict rapid group growth [25]. However, the
growth mechanisms of various social groups and the source of the scaling observed in
socio-economic systems remain hidden.

Here we analyze the size distribution of formal social groups in three data sets:
Meetup groups based in London and New York and subreddits on Reddit. We are
interested in the scaling behavior of size distributions and the distribution of growth
rates. Empirical analysis of the dependence of growth rates, shown in this work, indicates
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that growth cannot be explained through Gibrat’s model. Here we contribute with a
simple microscopic model that incorporates some of the findings of previous research
[15, 19]. We show that the model can reproduce size and growth rate distributions for
both studied systems. Moreover, the model is flexible and can produce a broad set of
log-normal size distributions depending on the value of model parameters.

The paper is organized as follows: in section 2 we describe the data, while in section 3
we present our empirical results. In section 4 we introduce model parameter and princi-
ples. In section 5 we demonstrate that model can reproduce the growth of social groups
in both systems and show the results for different values of model parameters. Finally,
in section 6, we present concluding remarks and discuss our results.

2. Data

We analyze the growth of social groups from two widely used online platforms: Reddit
and Meetup. Reddit3 enables sharing of diverse web content, and members of this plat-
form interact exclusively online through posts and comments. The Meetup4 allows people
to use online tools to organize offline meetings. The building elements of the Meetup
system are topic-focused groups, such as food lovers or data science professionals. Due
to their specific activity patterns—events where members meet face-to-face—Meetup
groups are geographically localized, and interactions between members are primarily
offline.

We compiled the Reddit data from https://pushshift.io/. This site collects data daily
and, for each month, publishes merged comments and submissions in the form of JSON
files. Specifically, we focus on subreddits—social groups of Reddit members interested
in a specific topic. We selected subreddits created between 2006 and 2011 that were
active in 2017 and followed their growth from their beginning until 2011. The consid-
ered dataset contains 17073 subreddits with 2195 677 active members, with the oldest
originating from 2006 and the youngest being from 2011. For each post under a subred-
dit, we extracted the information about the member-id of the post owner, subreddit-id,
and timestamp. As we are interested in the subreddits growth in the number of mem-
bers, for each subreddit and member-id, we selected the timestamp when a member
made a post for the first time. Finally, in the dataset, we include only subreddits active
for at least two months.

The Meetup data were downloaded in 2018 using public API. The Meetup platform
was launched in 2003, and when we accessed the data, there were more than 240 000
active groups. For each group, we extracted information about the date it had been
founded, its location, and the total number of members. We focused on the groups
founded in a period between 2003 and 2017 in big cities, London and New York, where
the Meetup platform achieved considerable popularity. We considered groups active for
at least two months. There were 4673 groups with 831 685 members in London and 4752
groups with 1059 632 members in New York. In addition, we extracted the ids of group

3 https://reddit.com/.

4 www.meetup.com.
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members, the information about organized events, and which members attended these
events. Based on this, we obtained the date when a member joined a group, the first
time she participated in a group event.

For all systems, we extracted the timestamp when the member joined the group.
Each data set has a form (uid, gid, ti), representing the connection between users and
groups. When the system has two separate partitions, the natural extension is a bipar-
tite network where links are drawn between nodes of different sets, indicating the user’s
memberships. The degree of group nodes is exactly the group size. Having the temporal
component in data, we can follow the evolution of the network. Based on this infor-
mation, we can calculate the number of new members per month Ni(t), the group size
Si(t) at each time step, and the growth rate for each group. The time step for all three
data sets is one month. The size of the group i at time step t is the number of members
that joined that group ending with the month, i.e. Si(t) =

∑k=t
k=ti0

Ni(t), where ti0 is the
time step in which the group i was created. Once the member joins the group, it has an
active status by default, which remains permanent. For these reasons, the size of con-
sidered groups is a non-decreasing function. The growth rate Ri(t) at step i is obtained
as logarithm of successive sizes Ri(t) = log(Si(t)/Si(t− 1)).

While the forms of communication between members and activities that members
engage in differ for considered systems, some common properties exist between them.
Members can form new groups and join the existing ones. Furthermore, each member
can belong to an unlimited number of groups. For these reasons, we can use the same
methods to study and compare the formation of groups on Reddit and Meetup.

3. Empirical analysis of social group growth

Figure 1 summarizes the properties of the groups in Meetup and Reddit systems. The
number of groups grows exponentially over time. Nevertheless, we notice that Reddit
has a substantially larger number of groups than Meetup. The Reddit groups are prone
to engage more members in a shorter period. The size of the Meetup groups ranges from
several members up to several tens of thousands of members, while sizes of subreddits
are between a few tens of members up to several million. The distributions of normalized
group sizes follow the log-normal distribution (see table S1 and figure S1 in SI)

P (S) =
1

S
S0
σ
√
2π

exp

⎛
⎜⎝−

(
ln
(

S
S0

)
− μ

)2

2σ2

⎞
⎟⎠, (1)

where S is the group size, S0 is the average group size in the system, and μ and σ
are parameters of the distribution. We used power-law package [26] to fit equation (1)
to empirical data and found that distribution of groups sizes for Meetup groups in
London and New York follow similar distributions with the values of parameters
μ = −0.93, σ = 1.38 and μ = −0.99 and σ = 1.49 for London and New York respectively.
The distribution of sizes of subreddits also has the log-normal shape with parameters
μ = −5.41 and σ = 3.07.
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Figure 1. The number of groups over time, normalized sizes distribution, normal-
ized log-rates distribution and dependence of log-rates and group sizes for Meetup
groups created in London and New York and subreddits. The number of groups
grows exponentially over time, while the group size distributions, and log-rates dis-
tributions follow log-normal. Logrates depend on the size of the group, implying
that the growth cannot be explained by Gibrat law.
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Figure 2. The figure shows the groups’ sizes distributions and log-rates distri-
butions. Figures in the top panels show the distribution of normalized sizes of
groups created in the same year. Distributions for the same system and different
years follow same log-normal distribution indicating existence of universal growth
patterns.

Multiplicative processes can generate the log-normal distributions [27]. If there is a
quantity with size Si(t) at time step t, it will grow so after time period δ the size of
the quantity is S(t+Δt) = S(t)r, where r represents a random number. The Gibrat law
states that growth rates r are uncorrelated and do not depend on the current size. To
describe the growth of social groups, we calculate the logarithmic growth rates Ri(t).
According to Gibrat law the distribution of logarithmic growth rates is normal, or,
as it is shown in many studies, it is better explained with Laplacian (‘tent-shaped’)
distribution [28, 29]. In figure 1 we show the distributions of log-rates for all three data
sets. Log-rates are very well approximated with a log-normal distribution. Furthermore,
the bottom panels of figure 1 show that log-rates are not independent of group size.
Figure 1 shows that these findings imply that the growth of Meetup and Reddit groups
violates the basic assumptions of Gibrat’s law [30, 31] and that it cannot be explained
as a simple multiplicative process.

We are considering a relatively significant period for online groups. The fast expan-
sion of information communications technologies (ICT) changed how members access
online systems. With the use of smartphones, online systems became more available,
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which led to the exponential growth of ICTs systems and potential change in the mech-
anisms that influence the social groups’ growth. For these reasons, we aggregate groups
according to the year they were founded for each of the three data sets and look at
the distributions of their sizes at the end of 2017 for Meetup groups and 2011 for
Reddit. For each year and each of the three data sets, we calculate the average size of
the groups created in a year y〈S y〉. We normalize the size of the groups originating in
year y with the corresponding average size sy

i = S y
i /〈S y〉 and calculate the distribution

of the normalized sizes for each year. The distribution of normalized sizes for all years
and data sets is shown in figure 2. All distributions exhibit log-normal behavior. Fur-
thermore, the distributions for the same data set and different years follow a universal
curve with the same value of parameters μ and σ. The universal behavior is observed
for the distribution of normalized log-rates as well, see figure 2 (bottom panels). These
results indicate that the growth of the social groups did not change due to the increased
growth of members in systems. Furthermore, it implies that the growth is independent
of the size of the whole data set.

4. Model

The growth of social groups cannot be explained by the simple rules of Gibrat’s law.
Previous research on group growth and longevity has shown that social connections with
members of a group influence individual’s choice to join that group [19, 25]. Individuals’
interests and the need to discover new content or activity also influence the diffusion
of individuals between groups. Furthermore, social systems constantly grow since new
members join every minute. The properties of the growth signal that describes the arrival
of new members influence both dynamics of the system [32, 33] and the structure of social
interactions [34]. The number of social groups in the social systems is not constant. They
are constantly created and destroyed.

In [19], the authors propose the co-evolution model of the growth of social net-
works. In this model, the authors assume that the social system evolves through the
co-evolution of two networks: a network of social contacts between members and a net-
work of members’ affiliations with groups. This model addresses the problem of the
growth of social networks that includes both linking between members and social group
formation. In this model, a member of a social system selects to join a group either
through random selection or according to her social contacts. In the case of random
selection, there is a selection preference for larger groups. If a member chooses to select
a group according to her social contacts, the group is selected randomly from the list of
groups with which her friends are already affiliated.

In [19], the authors demonstrate that mechanisms postulated in the model could
reproduce the power-law distribution of group sizes observed for some social networks.
However, as illustrated in section 3, the distribution of group sizes in real systems is
not necessarily power-law. Our rigorous empirical analysis shows that the distribution
of social group sizes exhibits log-normal behavior. To fill the gap in understanding how
social groups in the social system grow, we propose a model of group growth that
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Figure 3. The top panel shows bipartite (member-group) and social (member-
member) network. Filled nodes are active members, while thick lines are new links
in this time step. In the social network dashed lines show that members are friends
but still do not share same groups. The lower panel shows model schema. Example:
member u6 is a new member. First it will make random link with node u4, and then
with probability pg makes new group g5. With probability pa member u3 is active,
while others stay inactive for this time step. Member u3 will with probability 1− pg
choose to join one of old groups and with probability paff linking is chosen to be
social. As its friend u2 is member of group g1, member u3 will also join group g1.
Joining group g1, member u3 will make more social connections, in this case it is
member u1.

combines random and social diffusion between groups but follows different rules than
the co-evolution model [19].

Figure 3 shows a schematic representation of our model. Similar to the co-evolution
model [19], we represent a social system with two evolving networks, see figure 3. One
network is a bipartite network that describes the affiliation of individuals to social groups
B(VU ,VG,EUG). This network consists of two partitions, members VU and groups VG, and
a set of links EUG, where a link e(u, g) between a member u and a group g represents the
member’s affiliation with that group. Bipartite network grows through three activities:
the arrival of new members, the creation of new groups, and members joining groups.
In bipartite networks, links only exist between nodes belonging to different partitions.
However, as we explained above, social connections affect whether a member will join a
certain group or not. In the simplest case, we could assume that all members belonging
to a group are connected. However, previous research on this subject [15, 16, 19] has
shown that the existing social connections of members in a social group are only a subset
of all possible connections. For these reasons, we introduce another network G(VU ,EUU)
that describes social connections between members. The social network grows by adding
new members to the set VU and creating new links between them. The member partition
in bipartite network B(VU ,VG,EUG) and set of nodes in members’ network G(VU ,EUU)
are identical.

For convenience, we represent the bipartite and social network of members with
adjacency matrices B and A. The element of the matrix Bug equals one if member u
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is affiliated with group g, and zero otherwise. In matrix A, the element Au1u2 equals
one if members u1 and u2 are connected and zero otherwise. The neighborhood Nu of
member u is a set of groups with which the member is affiliated. On the other hand,
the neighborhood Ng of a group g is a set of members affiliated with that group. The
size Sg of set Ng equals to the size of the group g.

In our model, the time is discrete, and networks evolve through several simple rules.
In each time step, we add NU(t) new members and increase the size of the set VU. For
each newly added member, we create the link to a randomly chosen old member in the
social network G. This condition allows each member to perform social diffusion [25],
i.e. to select a group according to her social contacts. Not all members from setting VU

are active in each time step. Only a subset of existing members is active in each time
step. The activity of old members is a stochastic process determined by parameter pa;
every old member is activated with probability pa. Old members are activated in this
way, and new members make a set of active members AU at time t .

The group partition VG grows through creating new groups. Each active member
u ∈ AU can decide with probability pg to create a new group or to join an already
existing one with probability 1− pg.

If the active member u decides that she will join an existing group, she first needs to
choose a group. A member u with probability paff decides to select a group based on her
social connections. For each active member, we look at how many social contacts she
has in each group. The number of social contacts sug that member u has in the group g
equals the overlap of members affiliated with a group g and social contacts of member
u, and is calculated according to

sug =
∑
u1∈Ng

Auu1. (2)

Member u selects an old group g to join according to probability Pug that is proportional
to sug. Member-only considers groups with which it has no affiliation. However, if an
active member decides to neglect her social contacts in the choice of the social group,
she will select a random group from the set VG with which she is not yet affiliated.

After selecting the group g, a member joins that group, and we create a link in the
bipartite network between a member u and a group g. At the same time, the member
selects X members of a group g which do not belong to her social circle and creates
social connections with them. As a consequence of this action, we make X new links
in-network G between member u and X members from a group g.

The evolution of bipartite and social networks, and consequently growth of social
groups, is determined by parameters pa, pg and paff. Parameter pa determines the activity
level of members and takes values between 0 and 1. Higher values of pa result in a
higher number of active members and thus faster growth of the number of links in
both networks and the size and number of groups. Parameter pg in combination with
parameter pa determines the growth of the set VG. pg = 1 means that members only
create new groups, and the existing network consists of star-like subgraphs with members
being central nodes and groups as leaves. On the other hand, pg = 0 means that there
is no creation of new groups, and the bipartite network only grows through adding new
members and creating new links between members and groups.
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Parameter paff determines the importance of social diffusion. paff = 0 means that
social connections are irrelevant, and the group choice is random. On the other hand,
paff = 1 means that only social contacts become important for group selection.

Several differences exist between the model presented in this work and the co-
evolution model [19]. In our model, paff is constant and the same for all members.
In the co-evolution model, this probability depends on members’ degrees. The members
are activated in our model with probability pa. In contrast, in the co-evolution model,
members are constantly active from the moment they are added to a set VU until they
become inactive after time ta. Time ta differs for every member and is drawn from an
exponential distribution. In the co-evolution model, the number of social contacts mem-
bers have within the group is irrelevant to its selection. On the other hand, in our model,
members tend to choose groups more often in which there is a greater number of social
contacts. While in our model, in the case of a random selection of a group, a member
selects with equal probability a group that she is not affiliated with, in the co-evolution
model, the choice of group is preferential.

5. Results

The distribution of group sizes produced by our and co-evolution models significantly
differ. The distribution of group sizes in the co-evolution model is a power-law. Our
model enables us to create groups with log-normal size distribution and expand classes
of social systems that can be modeled.

5.1. Model properties

First, we explore the properties of size distribution depending on parameters pg and paff,
for the fixed value of activity parameter pa and constant number of members added in
each step N(t) = 30. When the group is created, its size S(t0) = 1, so the group creator
cannot make new social connections until new members arrive. While a group has less
than X members, new users will make social connections with all available members in
the group. After the group size reaches the threshold of X members, a new user creates X
connections. Our detailed analysis of the results for different parameter values X shows
that these results are independent of their value. We set the value of parameter X to
25 for all simulations presented in this work. Our detailed analysis of the results for
different parameter values X shows that these results are independent of their value.

Figure 4 shows some of the selected results and their comparison with power-law
and log-normal fits. We see that values of both pg and paff parameters, influence the
type and properties of size distribution. For low values of parameter pg, left column in
figure 4, the obtained distribution is log-normal. The width of the distribution depends
on paff. Higher values of paff lead to a broader distribution.

As we increase pg, right column in figure 4, the size distribution begins to deviate from
log-normal distribution. The higher the value of parameter pg, the total number of groups
grows faster. For pg = 0.5, half of the active members in each time step create a group,
and the number of groups increases fast. How members are distributed in these groups
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Figure 4. The distribution of sizes for different values of pg and paff and constant
pa and growth of the system. The combination of the values of parameters of pg
and paff determine the shape and the width of the distribution of group sizes.

depends on the parameter paff value. When paff = 0, social connections are irrelevant
to the group’s choice, and members select groups randomly. The obtained distribution
slightly deviates from log-normal, especially for large group sizes. In this case, large
group sizes become more probable than in the case of the log-normal distribution. The
non-zero value of parameter paff means that the choice of a group becomes dependent on
social connections. When a member chooses a group according to her social connections,
larger groups have a higher probability of being affiliated with the social connections
of active members, and thus this choice resembles preferential attachment. For these
reasons, the obtained size distribution has more broad tail than log-normal distribution
and begins to resemble power-law distribution.

The top panel of figure S3 in SI shows how the shape of distribution is changing
with the value of parameter paff and fixed values of pa = 0.1 and pg = 0.1. Preferential
selection groups according to their size instead of one where a member selects a group
with equal probability leads to a drastic change in the shape of the distribution, bottom
panel figure S3 in SI. As is to be expected, the distribution of group sizes with preferential
attachment follows power-law behavior.

5.2. Modeling real systems

The social systems do not grow at a constant rate. In [34], the authors have shown that
features of growth signal influence the structure of social networks. For these reasons,
we use the real growth signal from Meetup groups located in London and New York
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Figure 5. The time series of the number of new members (top panels). The time
series of the ratio between several old active members and total members in the
system (middle panels); its median value approximates the parameter pa, the prob-
ability that the user is active. The bottom panels show the time series of the
ratio between new groups and active members; its median value approximates the
probability that active users create a new group, parameter pg.

and Reddit to simulate the growth of the social groups in these systems. Figure 5 (top)
shows the time series of the number of new members that join each of the considered
systems each month. All three data sets have relatively low growth at the beginning,
and then the growth accelerates as the system becomes more popular.

We also use empirical data to estimate pa, pg and paff. The data can approximate
the probability that old members are active pa and that new groups are created pg.
Activity parameter pa is the ratio between the number of old members active in month
t and the total number of members in the system at time t. Figure 5 (middle) shows the
variation of parameter pa during the considered time interval for each system. The value
of this parameter fluctuates between 0 and 0.2 for London and New York based Meetup
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Table 1. Jensen Shannon divergence between group sizes distributions from model
and data. In the model we vary affiliation parameter paff and find its optimal value
(bold text).

paff JS cityLondon JS cityNY JS reddit2012

0.1 0.0161 0.0097 0.002 41
0.2 0.0101 0.0053 0.002 05
0.3 0.0055 0.0026 0.001 59
0.4 0.0027 0.0013 0.001 04
0.5 0.0016 0.0015 0.000 74
0.6 0.0031 0.0035 0.000 48
0.7 0.0085 0.0081 0.000 39
0.8 0.0214 0.0167 0.00034
0.9 0.0499 0.0331 0.000 47

groups, while its value is between 0 and 0.15 for Reddit. To simplify our simulations, we
assume that pa is constant in time and estimate its value as its median value during the
170 months for Meetup and 80 months for Reddit systems. For Meetup groups based
in London and New York pa = 0.05, while Reddit members are more active on average
and pa = 0.11 for this system.

Figure 5 bottom row shows the evolution of parameter pg for the considered sys-
tems. The pg in month t is estimated as the ratio between the groups created in
month tNgnew(t) and the total number of groups in that month Ngnew(t) + Ngold(t), i.e.

pg(t) =
Ngnew(t)

Nnew(t)+Nold(t)
. We see from figure 5 that pg(t) has relatively high values at the

beginning of the system’s existence. This is not surprising. Initially, these systems have
a relatively small number of groups and often cannot meet the needs of the content of all
their members. As the time passes, the number of groups and content scope within the
system grows, and members no longer have a high need to create new groups. Figure 5
shows that pg fluctuates less after the first few months, and thus we again assume that pg
is constant in time and set its value to the median value during 170 months for Meetup
and 80 months for Reddit. For all three systems pg has the value of 0.003.

The affiliation parameter paff cannot estimate directly from the empirical data. For
these reasons, we simulate the growth of social groups for each data set with the time
series of new members obtained from the real data and estimated values of parameters
pa and pg, while we vary the value of paff. We compare the distribution of group sizes
obtained from simulations for different values of paff with ones obtained from empirical
analysis using Jensen Shannon (JS) divergence. The JS divergence [35] between two
distributions P and Q is defined as

JS(P ,Q) = H

(
P +Q

2

)
− 1

2
(H(P ) +H(Q)) (3)

where H(p) is Shannon entropy H(p) =
∑

x p(x) log(p(x). The JS divergence is sym-
metric and if P is identical to Q, JS = 0. The smaller the value of JS divergence, the
better is the match between empirical and simulated group size distributions. Table 1
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Figure 6. The comparison between empirical and simulation distribution for group
sizes (top panels) and log-rates (bottom panels).

shows the value of JS divergence for all three data sets. We see that for London based
Meetup groups the affiliation parameter is paff = 0.5, for New York groups paff = 0.4,
while the affiliation parameter for Reddit paff = 0.8. Our results show that social diffu-
sion is important in all three data sets. However, Meetup members are more likely to
join groups at random, while for the Reddit members their social connections are more
important when it comes to choice of the subreddit.

Figure 6 compares the empirical and simulation distribution of group sizes for con-
sidered systems. We see that empirical distributions for Meetup groups based in London
and New York are well reproduced by the model and chosen values of parameters. In
the case of Reddit, the distribution is broad, and the model reproduces the tail of the
distribution well. Figure S2 and table S2 in SI confirm that the distribution of group
sizes follow a log-normal distribution.

The bottom row of figure 6 shows the distribution of logarithmic values of growth
rates of groups obtained from empirical and simulated data. We see that the tails of
empirical distributions for all three data sets are well emulated by the ones obtained
from the model. The deviations we observe are the most likely consequence of using
median values of parameters pa, pg, and paff .
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6. Discussion and conclusions

The results of empirical analysis show that there are universal growth rules that govern
the growth of social systems. We analysed the growth of social groups for three data
sets, Meetup groups located in London and New York and Reddit. We showed that
the distribution of group sizes has log-normal behaviour. The empirical distributions of
normalised sizes of groups created in different years in a single system fall on top of each
other, following the same log-normal distributions. Due to a limited data availability,
we only study three data sets which may affect the generality of our results. However,
the substantial differences between Reddit and Meetup social systems when it comes
to their popularity, size and purpose, demonstrate that observed growth patterns are
universal.

Even though the log-normal distribution of group sizes can originate from the pro-
portional growth model, Gibrat law, we show that it does not apply to the growth of
online social groups. The monthly growth rates are log-normally distributed and depen-
dent on the size of a group. Gibrat law was proposed to describe the growth of various
socio-economical systems, including the cities and firms. Recent studies showed that the
growth of cities and firms [21, 36, 37] goes beyond Gibrat law. Still, our findings confirm
the existence of universal growth patterns, indicating the presence of the general law in
the social system’s growth.

While the growth of the social groups does not follow the Gibrat law, one could
ask whether there are other simple models of social group growth. The basic growth
model underlying any log-normal distribution is a multiplicative process. The size of
the system in time t is equal to its size in time t− 1 multiplied by some factor. In our
case, where the groups only grow and do not shrink, the factor has to be larger than one.
When we model the growth of real social groups, we need to take into account several
factors: (1) social systems grow through the addition of new members; (2) the number
of social groups is not constant, it grows with time; (3) one person can be a member of
multiple groups at the same time. The simplest model that considers all three factors but
disregards social factors, and thus a network structure, would be the one where members
randomly choose the groups they will join. The described situation is an extreme case
of our model with paff = 0, see figure 4, top left panel. By setting the values of paff = 0
and taking the value of N(t) and pg as an estimate from real data, we can reproduce a
log-normal distribution with parameters that do not match empirical data, see table 1.
While the distributions of group size in different systems follow log-normal behavior,
the parameters of these distributions differ from system to system. This indicates the
existence of additional factors in the multiplicative process that govern multiplicative
growth. The network effect is crucial in explaining many instances of collective social
dynamics, including the person’s choice to join a certain group [14]. Here we show that
members’ diffusion between groups governed by social influence allows us to use the
same model to explain the growth of groups in different social systems by tuning its
importance.
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The model proposed in [19] is able to produce only power-law distributions of group
sizes. However, our empirical analysis shows that these distributions can also have a log-
normal behavior. Thus, we propose a new model that emulate log-normal distributions.
The analysed groups grow through two mechanisms [19]: members join a group that is
chosen according to their interests or by social relations with the group’s members. The
number of members in the system is growing as well as the number of groups. While the
processes that govern the growth of social groups are the same, their importance varies
among the systems. The distributions for Meetup groups located in the London and
New York have similar log-normal distribution parameter values, while for Reddit, the
distribution is broader. Numerical simulations further confirm these findings. Different
modalities of interactions between their members can explain the observed differences.

Meetup members need to invest more time and resources to interact with their
peers. The events are localised in time and space, and thus the influence of peers in
selecting another social group may be limited. On the other hand, Reddit members
do not have these limitations. The interactions are online, asynchronous, and thus not
limited in time. The influence of peers in choosing new subreddits and topics thus
becomes more important. The values of paff parameters for Meetup and Reddit imply
that social connections in diffusion between groups are more critical in Reddit than in
Meetup.

The purpose of the research presented in this paper was to provide a model of
social group growth that can reproduce the log-normal distribution of group sizes in
different systems. The model is based on bipartite network dynamics allowing us to
study other network properties and compare them to empirical data. The empirical
data are limited and only contain explicit information about the connections between
groups and their members. The distribution of group sizes is the exact degree distri-
bution of the group partition. We show that these properties are reproduced with our
model, see figure 6. When it comes to the degree distribution of members, that is, the
number of groups a member is affiliated with, our model does not reproduce this dis-
tribution. The number of groups a member is affiliated to is equal to number of her
activities. The activity of a member is controlled with probability pa. In our model, the
probability pa is equal for all members, and thus the emerging degree distribution is
exponential [38]. We do not study the properties of the members’ partitions in detail,
as our focus is on the growth of groups’ partitions and mechanisms that influence the
members’ choice to join the groups. On the other hand, studying how groups are dis-
tributed among members could give us insight into what motivates members to be active.
Previous work proposed that each member has a lifetime [17], but different linking rules
could be considered; for example, pa could be preferential toward high-degree members,
and the age or even social connections of members could be relevant.

The results presented in this paper contribute to our knowledge of the growth of
socio-economical systems. The previous study analysed the social systems in which size
distributions follow the power-law, which is the consequence of a preferential choice
of groups during the random diffusion of members. Our findings show that preferential
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selection of groups during social diffusion and uniform selection during random diffusion
result in log-normal distribution of groups sizes. Furthermore, we show that broadness
of the distribution depends on the involvement of social diffusion in the growth process.
Our model increases the number of systems that can be modelled and help us better
understand the growth and segmentation of social systems and predict their evolution.
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Abstract. Network science provides an indispensable theoretical framework for
studying the structure and function of real complex systems. Different network
models are often used for finding the rules that govern their evolution, whereby
the correct choice of model details is crucial for obtaining relevant insights. Here,
we study how the structure of networks generated with the aging nodes model
depends on the properties of the growth signal. We use different fluctuating
signals and compare structural dissimilarities of the networks with those obtained
with a constant growth signal. We show that networks with power-law degree
distributions, which are obtained with time-varying growth signals, are correlated
and clustered, while networks obtained with a constant growth signal are not.
Indeed, the properties of the growth signal significantly determine the topology
of the obtained networks and thus ought to be considered prominently in models
of complex systems.

Keywords: random graphs, networks, network dynamics, stochastic processes

S Supplementary material for this article is available online

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Growth signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

∗Author to whom any correspondence should be addressed.

© 2021 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/20/013405+15$33.00

mailto:anav@ipb.ac.rs
mailto:mitrovic@ipb.ac.rs
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/abd30b&domain=pdf&date_stamp=2021-1-22
https://doi.org/10.1088/1742-5468/abd30b
https://doi.org/10.1088/1742-5468/abd30b


J.S
tat.

M
ech.

(2021)
013405

Growth signals determine the topology of evolving networks

3. Model of aging nodes with time-varying growth . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4. Structural differences between networks generated with different
growth signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5. Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

References 14

1. Introduction

Emergent collective behavior is an indispensable property of complex systems [1]. It
occurs as a consequence of interactions between a large number of units that compose
a complex system, and it cannot be easily predicted from the knowledge about the
behavior of these units. The previous research offers definite proof that the interaction
network structure is inextricably associated with the dynamics and function of the
complex system [2–9]. The structure of complex networks is essential for understanding
the evolution and function of various complex systems [10–13].

The structure and dynamics of real complex systems are studied using complex
network theory [1, 10, 11]. It was shown that real networks have similar topological prop-
erties regardless of their origins [14]. They have broad degree distribution, degree–degree
correlations, and power-law scaling of clustering coefficient [11, 14]. Understanding
how these properties emerge in complex networks leads to the factors that drive their
evolution and shape their structure [2].

The complex network models substantially contribute to our understanding of the
connection between the network topology and system dynamics and uncover underlying
mechanisms that lead to the emergence of distinctive properties in real complex networks
[15–17]. For instance, the famous Barabási–Albert model [15] finds the emergence of
broad degree distribution to be a consequence of preferential attachment and network
growth. Degree–degree anti-correlations of the internet can be explained, at least to a
certain extent, by this constraint [18, 19]. Detailed analysis of the emergence of clustered
networks shows that clustering is either the result of finite memory of the nodes [20] or
occurs due to triadic closure [21].

Network growth, in combination with linking rules, shapes the network topology
[22]. While various rules have been proposed to explain the topology of real networks
[10], most models assume a constant rate of network growth, i.e., the addition of a
fixed number of nodes at each time step [15, 20, 21]. However, empirical analysis of
numerous technological and social systems shows that their growth is time-dependent
[23–26]. The time-dependent growth of the number of nodes and links in the networks
has been considered as a parameter in uncovering network growth mechanisms [27]. The
accelerated growth of nodes in complex networks is the cause of the high heterogeneity
in the distribution of web pages among websites [23] and the emergence of highly cited
authors in citation networks [26]. The accelerated growth of the number of new links
added in each time step changes the shape and scaling exponent of degree distribution
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in the Barabási–Albert model [28] and model with preferential attachment with aging
nodes [29].

The growth of real systems is not always accelerated. The number of new nodes
joining the system varies in time, has trends, and exhibits circadian cycles typical for
human behavior [24, 25, 30]. These signals are multifractal and have long-range corre-
lations [31]. Some preliminary evidence shows that the time-varying growth influences
the structure and dynamics of the social system and, consequently, the structure of
interaction networks in social systems [25, 30, 32–34]. Still, which properties of the real
growth signal have the most considerable influence, how different properties influence
the topology of the generated networks, and to what extent is an open question.

In this work, we explore the influence of real and computer-generated time-varying
growth signals on complex networks’ structural properties. We adapt the aging nodes
model [35] to enable time-varying growth. We compare the networks’ structure using the
growing signals from empirical data and randomized signals with ones grown with the
constant signal using D-measure [36]. We demonstrate that the growth signal determines
the structure of generated networks. The networks grown with time-varying signals
have significantly different topology compared to networks generated through constant
growth. The most significant difference between topological properties is observed for the
values of model parameters for which we obtain networks with broad degree distribution,
a common characteristic of real networks [10]. Our results show that real signals, with
trends, cycles, and long-range correlations, alter networks’ structure more than signals
with short-range correlations.

This paper is divided as follows. In section 2, we provide a detailed description of
growth signals. In section 3, we briefly describe the original model with aging nodes and
structural properties of networks obtained for different values of model parameters [35].
We also describe the changes in the model that we introduce to enable time-varying
growth. We describe our results in section 4 and show that the values of D-measure
indicate large structural differences between networks grown with fluctuating and ones
grown with constant signals. This difference is particularly evident for networks with
power-law degree distribution and real growth signals. The networks generated with real
signals are correlated and have hierarchical clustering, properties of real networks that
do not emerge if we use constant growth. We discuss our results and give a conclusion
in section 5.

2. Growth signals

The growth signal is the number of new nodes added in each time step. Real complex
networks evolve at a different pace, and the dynamics of link creation define the time unit
of network evolution. For instance, the co-authorship network grows through establishing
a link between two scientists when they publish a paper [37]. In contrast, the links in an
online social network are created at a steady pace, often interrupted by sudden bursts
[38]. A paper’s publication is thus a unit of time for the evolution of co-authorship
networks, while the most appropriate time unit for social networks is 1 min or 1 h.
While systems may evolve at a different pace, their evolution is often driven by the
related mechanisms reflected by the similarity of their structure [10].

https://doi.org/10.1088/1742-5468/abd30b 3

https://doi.org/10.1088/1742-5468/abd30b


J.S
tat.

M
ech.

(2021)
013405

Growth signals determine the topology of evolving networks

Figure 1. Growth signals for TECH (a) and MySpace (b) social groups, their ran-
domized counterparts, and random signal drawn from Poissonian distribution with
mean 1. The cumulative sums of signals’ deviations from average mean value are
shown in insets.

In this work, we use two different growth signals from real systems figure 1: (a) the
data set from TECH community from Meetup social website [39] and (b) two months
dataset of MySpace social network [40]. TECH is an event-based community where
members organize offline events through the Meetup site [39]. The time unit for TECH
is event since links are created only during offline group meetings. The growth signal
is the number of people that attend the group’s meetings for the first time. MySpace
signal shows the number of new members occurring for the first time in the dataset [40]
with a time resolution of 1 min. The number of newly added nodes for the TECH signal
is N = 3217, and the length of the signal is T s = 3162 steps. We have shortened the
MySpace signal to T s = 20 221 time steps to obtain the network with N = 10 000 nodes.
The signals in the inset of figures 1(a) and (b) show the cumulative sum of deviations
of signals from their average mean value, which is 1.017 for TECH and random TECH
signal, 0.47 for MySpace and random MySpace, and 1 for Poissonian signal.

Real growth signals have long-range correlations, trends and cycles [25, 30, 40]. We
also generate networks using randomized signals and one computer-generated white-
noise signal to explore the influence of signals’ features on evolving networks’ structure.
We randomize real signals using a reshuffling procedure. The reshuffling procedure con-
sists of E steps. We randomly select two signal values at two distinct time steps and
exchange their position in each step. The number of reshuffling steps is proportional
to the length of the signal T s, and in our case, it equals 100T s. Using this procedure,
we keep the signal length and mean value, the number of added nodes, and the proba-
bility density function of fluctuations intact, but destroy cycles, trends, and long-range
correlations. Besides, we generate a white-noise signal from a Poissonian probability dis-
tribution with a mean equal to 1. The length of the signal is T = 3246, and the number
of added nodes in the final network is the same as for the TECH signal.

We characterize the long-range correlations of the growth signals calculating Hurst
exponent [41, 42]. Hurst exponent describes the scaling behavior of time series
M(xt) = xHM(t). It takes values between 0.5 and 1 for long-range correlated signals
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and H = 0.5 for short-range correlated signals. The most commonly used method for
estimating Hurst exponent of real, often non-stationary, temporal signals is detrended
fluctuation analysis (DFA) [41]. The DFA removes trends and cycles of real signals and
estimates Hurst exponent based on residual fluctuations. The DFA quantifies the scal-
ing behavior of the second-moment fluctuations. However, signals can have deviations
in fractal structure with large and small fluctuations that are characterized by different
values of Hurst exponents [31].

We use multifractal detrended fluctuation analysis (MFDFA) [31, 43] to estimate
multifractal Hurst exponent H(q). For a given time series {xi} with length N , we first
define global profile in the form of cumulative sum equation (1), where 〈x〉 represents
an average of the time series:

Y (j) =

j∑
i=0

(xi − 〈x〉), j = 1, . . . ,N. (1)

Subtracting the mean of the time series is supposed to eliminate global trends.
Insets of figure 1 show global profiles of TECH, MySpace, their randomized signals
and Poissonian distribution. The profile of the signal Y is divided into N s = int(N/s)
non overlapping segments of length s . If N is not divisible with s the last segment will be
shorter. This is handled by doing the same division from the opposite side of time series
which gives us 2N s segments. From each segment ν, local trend pmν,s—polynomial of order

m—should be eliminated, and the variance F 2(ν, s) of detrended signal is calculated as
in equation (2):

F 2(ν, s) =
1

s

s∑
j=1

[
Y (j)− pmν,s(j)

]2
. (2)

Then the qth order fluctuating function is:

Fq(s) =

{
1

2Ns

2Ns∑
ν

[
F 2(ν, s)

] q
2

} 1
q

, q �= 0

F0(s) = exp

{
1

4Ns

2Ns∑
ν

ln
[
F 2(ν, s)

]}
, q = 0.

(3)

The fluctuating function scales as power-law Fq(s) ∼ sH(q) and the analysis of log–log
plots Fq(s) gives us an estimate of multifractal Hurst exponent H(q). Multifractal signal
has different scaling properties over scales while monofractal is independent of the scale,
i.e., H(q) is constant.

Figures 1(a) and 2 show that the TECH signal has long trends and a broad prob-
ability density function of fluctuations. The trends are erased from the randomized
TECH signal, but the broad distribution of the signal and average value remain intact.
MFDFA analysis shows that real signals have long-range correlations with Hurst expo-
nent approximately 0.6 for q = 2, figure 2. The TECH signal is multifractal, resulting
from both broad probability distribution for the values of time series and different long-
range correlations of the intervals with small and large fluctuations. Reshuffling of the
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Figure 2. Dependence of Hurst exponent on parameter q for all five signals shown
in figure 1 obtained with MFDFA.

time series does not destroy the broad distribution of values, which is the cause for the
persistent multifractality of the TECH randomized signal is figure 2.

MySpace signal has a long trend with additional cycles that are a consequence of
human circadian rhythm, figure 1(b). Circadian rhythm is an internal process that regu-
lates the sleep-wake cycle and activity, and its period for humans is 24 h [44]. Circadian
rhythm leads to periodic changes in online activity during the day and the emergence
of a well-defined daily rhythm of activity that we see in figure 1(b). MySpace signal is
multifractal for q < 0, and has constant value of H(q) for q > 0, figure 2. In MFDFA,
with negative values of q, we emphasize segments with smaller fluctuations, while for
positive q, the emphasis is more on segments with larger fluctuations [43]. Segments
with smaller fluctuations have more persistent long-range correlations in both real sig-
nals, see figure 2. Randomized MySpace signal and Poissonian signal are monofractal
and have short-range with H = 0.5 correlations typical for white noise.

Detailed MDFA analysis of real, shuffled, and computer-generated sig-
nals are shown in figure S1 and table S1 of the supplementary material
(https://stacks.iop.org/JSTAT/2021/013405/mmedia). In figure S1 we show in details
how the Fq(s) depends on s for different values of parameter q. The curve Fq(s) exhibits
different slopes for different values of q for multifractal signals, i.e., TECH, random
TECH, and MySpace. Fq(s) curves for monofractal signals are parallel. We provide the
estimated values of H(q) with estimated errors for q in a range from −4 to 4 for all five
signals in table S1 of the supplementary material.

3. Model of aging nodes with time-varying growth

To study the influence of temporal fluctuations of growth signal on network topology,
we need a model with linking rules where linking probability between network nodes
depends on time. We use a network model with aging nodes [35]. In this model, the
probability of linking the newly added node and the old one is proportional to their age
difference and an old node’s degree. In the original version of the model, one node is
added to the network and linked to one old node in each time step. The old node is
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chosen according to probability

Πi(t) ∼ ki(t)
βτα

i (4)

where ki(t) is a degree of a node i at time t, and τ i is age difference between node i
and newly added node. As was shown in [35], the values of model parameters β and α
determine the topological properties of the resulting networks grown with the constant
signal. According to this work, the networks generated using constant growth signals
are uncorrelated trees for all values of model parameters. The phase diagram in α–β
plain, obtained for β > 0 and α < 0, shows that the degree distribution P (k) ∼ k−γ with
γ = 3 is obtained only along the line β(α∗), see [35] and figure S2 in the supplementary
material. For α > α∗ networks have gel-like small world behavior, while for α < α∗ but
close to line β(α∗) networks have stretched exponential shape of degree distribution [35].

Here we slightly change the original aging model [35] to enable the addition of more
than one node and more than one link per newly added node in each time step. In each
time step, we add M � 1 new nodes to the network and link them to L � 1 old nodes
according to probability Πi given in equation (4). Again, the networks with broad degree
distribution are only generated for the combination of the model parameters along the
critical line β(α∗). This line’s position in the α–β plane changes with link density, while
the addition of more than one node in each time step does not influence its position.
Our analysis shows that the critical line’s position is independent of the growth signal’s
properties, see figure S2 in the supplementary material showing phase diagram. For
instance, for L = 1 networks and α = −1.25 and β = 1.5 we obtain networks with power-
law degree, while for L = 2 and β = 1.5 we need to increase the value of parameter α
to −1.0 in order to obtain networks with broad degree distribution. Networks obtained
for the values of model parameters β(α∗), L � 2, and constant growth have power-
law degree distribution, are uncorrelated and have a finite non-zero value of clustering
coefficient which does not depend on node degree, figure 4(b). If we fix the value of
parameter β and lower down the value of parameter α to −1.5, the resulting networks
are uncorrelated with a small value of clustering coefficient, see figure 4(a). For α < α∗ we
obtain networks with stretched exponential degree distribution, without degree–degree
correlations and small value of clustering exponent that does not depend on node degree
(see figure S2 in the supplementary material). For α � α∗ the resulting networks are
regular graphs. If we keep the value of α to 1.0 but increase the value β to 2.0 we enter
the region of small world gels, see figure 4(c). The networks created for the values of
α > α∗ are correlated networks with power-law dependence of the clustering coefficient
on the degree (see figure S2 in the supplementary material). However, these networks
do not have a power-law degree distribution.

The master equation approach is useful for studying the model with aging nodes
when M(t) = 1 [45]. However, this approach is not sufficient for time-varying growth
signals. In this work, we use numerical simulations to explore the case when M(t) is a
correlated time-varying function and study how these properties influence the structure
of generated networks for different values of parameter −∞ < α � 0 and β � 1 and
constant L.
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4. Structural differences between networks generated with different growth
signals

We generate networks for different values of L, and different growth signal profiles
M(t). To examine how these properties influence the network structure, we compare
the network structure obtained with different growth signals with networks of the same
size grown with constant signal M = 1. The M = 1 is the closest constant value to
average values of the signals, which are 1.017 for TECH, 0.47 for MySpace, and 1 for
Poissonian signals. We explore the parameter space of the model by generating networks
for pairs of values (α, β) in the range −3 � α � −0.5 and 1 � β � 3 with steps 0.5. For
each pair of (α, β) we generated networks of different link density by varying parameter
L ∈ 1, 2, 3, and for each combination of (α, β,L), we generate a sample of 100 networks
and compare the structure of the networks grown with M = 1 with the ones grown with
M(t) shown in figure 1.

We quantify topological differences between two networks using D-measure defined
in [36]

D(G,G′) = ω

∣∣∣∣∣∣
√

J(P1, . . . ,PN)

log(d+ 1)
−

√
J(P ′

1, . . . ,P
′
N)

log(d′ + 1)

∣∣∣∣∣∣+ (1− ω)

√
J(μG,μG′)

log 2
. (5)

D-measure captures the topological differences between two networks, G and G′, on a
local and global level. The first term in equation (5) evaluates dissimilarity between two
networks on a local level. For each node in the network G one can define the distance dis-
tribution P i = {pi(j)}, where pi(j) is a fraction of nodes in network G that are connected
to node i at distance j. The set of N node-distance distributions {P 1, . . . ,PN} contains a
detailed information about network’s topology. The heterogeneity of a graph G in terms
of connectivity distances is measured through node network dispersion (NND). In [36]
authors estimate NND as Jensen–Shannon divergence between N distance distributions
J(P 1, . . . ,PN) normalized by log(d+ 1), where d is diameter of network G, and show
that NND captures relevant features of heterogeneous networks. The difference between
NNDs for graph G and G′ captures the dissimilarity between the graph’s connectivity
distance profile.

However, certain graphs, such as k -regular graphs, have NND = 0 and can not be
compared using NND. For these reasons, authors also introduce average node distance
distribution of a graph μ(G) = {μ(1), . . . , μ(d)}, where μ(k) is the fraction of all pair
of nodes in the network G that are at a distance k. The Jensen–Shannon divergence
between μ(G) and μ(G′) measures the difference between nodes’ average connectivity in
a graph G and G′. This term captures the differences between nodes on a global scale.

The original definition of D-measure also includes the third term, which quantifies
dissimilarity in node α-centrality. The term can be omitted without precision loss [36].
The parameter ω in equation (5) determines the weight of each term. The extensive
analysis shows that the choice ω = 0.5 is the most appropriate for quantifying structural
differences between two networks [36].

The D-measure takes the value between 0 and 1. The lower the value of D-measure
is the more similar two networks are, with D = 0 for isomorphic graphs. The D-measure
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Figure 3. The comparison of networks grown with growth signals shown in figure 1
versus ones grown with constant signal M = 1, for value of parameter α ∈ [−3,−1]
and β ∈ [1, 3]. M(t) is the number of new nodes, and L is the number of links
added to the network in each time step. The compared networks are of the same
size.

outperforms previously used network dissimilarity measures such as Hamming distance
and graph editing distance and clearly distinguishes between networks generated with
the same model but with different values of model parameters [36].

For each pair of networks, one grown with constant and one with the fluctuating
signal, we calculate the D-measure. The structural difference between networks grown
with constant and fluctuating growth signal for fixed L and values of parameters α and β
is obtained by averaging the D-measure calculated between all possible pairs of networks,
see figure 3. We observe the non-zero value of D-measure for all time-varying signals.
The D-measure has the largest value in the region around the line β(α∗). The values
of D-measure in this region are similar to ones observed when comparing Erdös–Rényi
graphs grown with linking probability below and above critical value [36]. For values
β < β(α∗), the structural differences between networks grown with constant signal and
M(t) still exist, but they become smaller as we are moving away from the critical line.
Networks obtained with constant signal and fluctuating signals have statistically similar
structural properties in the region of small-world network gels, i.e., α > α∗.

https://doi.org/10.1088/1742-5468/abd30b 9

https://doi.org/10.1088/1742-5468/abd30b


J.S
tat.

M
ech.

(2021)
013405

Growth signals determine the topology of evolving networks

We focus on the region around the critical line and observe the significant structural
discrepancies between networks created for constant versus time-dependent growth sig-
nals for all signals regardless of their features. However, the value of D-measure depends
on the signal’s properties, figure 3. Networks grown with multifractal signals, TECH,
random TECH, and MySpace signals, are the most different from those created by a
constant signal. The D-measure has the maximum value for the original TECH signal,
with Dmax = 0.552, the signal with the most pronounced multifractal properties among
all signals shown in figure 2. Networks generated with randomized MySpace signal and
Poisson signal are the least, but still notably dissimilar from those created with M = 1.

Randomized MySpace signal and Poissonian signal are monofractal signals with
Hurst exponent H = 0.5. To investigate the influence of monofractal correlated sig-
nals on the network structure, we generate six signals with a different value of
H ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, see figure S3 in the supplementary material. We use
each of these signals to generate networks following the same procedure as for signals
shown in figure 1. The results shown in figure S4 of the supplementary material confirm
that short-range correlated signals create networks with different structures from ones
grown with the constant signal. The increase of the Hurst exponent leads to increases
in the D-measure. However, D-measure’s maximal value is smaller than one observed
for multifractal signals shown in figure 3.

The value of D-measure rises with a decline of α∗. This observation can be explained
by examining linking rules and how model parameters determine linking dynamics
between nodes. The ability of a node to acquire a link declines with its age and grows
with its degree. A node’s potential to become a hub, node with a degree significantly
larger than average network degree, depends on the number of nodes added to the net-
work in the T time steps after its birth. The length of the interval T decreases with
parameter α. For constant signal, the number of nodes added during this time inter-
val is constant and equal to MT . For fluctuating growth signals, the number of added
nodes during the time T varies with time. In signals that have a broad distribution of
fluctuations, like TECH signals, the peaks of the number of newly added nodes lead to
the emergence of one or several hubs and super hubs. The emergence of super hubs,
nodes connected to more than 30% of the nodes in the network, significantly alters the
network’s topology. For instance, super hubs’ existence lowers the value of average path
length and network diameter [10]. The emergence of hubs occurs for values of parame-
ter α relative close to −1.0 for signals with long-range correlations. As we decrease the
parameter α, the fluctuations present in the time-varying signals become more impor-
tant, and we observe the emergence of hubs even for the white-noise signals. The trends
present in real growth signals further promote the emergence of hubs. The impact of
fluctuations and their temporal features on the structure of complex networks increases
with link density.

The large number of structural properties observed in real networks are often conse-
quences of particular degree distributions, degree correlations, and clustering coefficient
[47]. Figure 4 shows the degree distribution P (k), dependence of average neighboring
degree on node degree 〈k〉nn(k), and dependence of clustering coefficient on node degree
c(k) for networks with average number of links per node L = 2. The significant struc-
tural differences between networks grown with real time-varying and constant signals
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Figure 4. Degree distribution, the dependence of average first neighbor degree on
node degree, dependence of node clustering on node degree for networks grown
with different time-varying and constant signals. Model parameters have the values
α = −1.5, β = 1.5 (a), α = −1.0, β = 1.5 (b), α = −1.0, β = 2.0 (c), and L = 2 for
all networks.
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are observed for the values of model parameters α = −1.0 and β = 1.5, figures 3 and
4(b). The degree distribution of networks generated for real signals shows the occur-
rence of super hubs in these networks. In contrast, degree distributions of networks
generated with white-noise like signals do not differ from one created with constant
signal, figure 4(b). Networks obtained for the real signals are disassortative and have a
hierarchical structure, i.e., their clustering coefficient decreases with the degree. On the
other hand, networks generated with constant and randomized signals are uncorrelated,
and their clustering weakly depends on the degree.

We observe a much smaller, but still noticeable, difference between the topologi-
cal properties of networks evolved with constant and time-varying signal for α < α∗,
figure 4(a). The difference is particularly observable for degree distribution and depen-
dence of average neighboring degree on node degree of networks grown with real TECH
signal. The fluctuations of time-varying growth signals do not influence the topological
properties of small-world gel networks, figure 4(c). For α > α∗, the super hubs emerge
even with the constant growth. Since this is the mechanism through which the fluctu-
ations alter the structure of evolving networks for α � α∗, the features of the growth
signals cease to be relevant.

5. Discussion and conclusions

We demonstrate that the resulting networks’ structure depends on the time-varying
signal features that drive their growth. The previous research [25, 30] indicated the pos-
sible influence of temporal fluctuations on network properties. Our results show that
growth signals’ temporal properties generate networks with power-law degree distribu-
tion, non-trivial degree–degree correlations, and clustering coefficient even though the
local linking rules, combined with constant growth, produce uncorrelated networks for
the same values of model parameters [35].

We observe the most substantial dissimilarity in network structure along the critical
line, the values of model parameters for which we generate broad degree distribution
networks. Figure 3 shows that dissimilarity between networks grown with time-varying
signals and ones grown with constant signals always exists along this line regardless of
the features of the growth signal. However, the magnitude of this dissimilarity strongly
depends on these features. We observe the largest structural difference between networks
grown with multifractal TECH signal and networks that evolve by adding one node in
each time step. The identified value of D-measure is similar to one calculated in the
comparison between sub-critical and super-critical Erdös–Rényi graphs [36] indicating
the considerable structural difference between these networks. Our findings are further
confirmed in figure 4(b). The networks generated with signals with trends and long-
range temporal correlations differ the most from those grown with the constant signal.
Our results show that even white-noise type signals can generate networks significantly
different from ones created with constant signal for low values of α∗.

Randomized and computer-generated signals do not have trends or cycles. Never-
theless, networks grown with these signals have a significantly different structure from
ones grown with constant M . Our results demonstrate that growth signals’ temporal
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fluctuations are the leading cause for the structural differences between networks evolved
with the constant and time-varying signal. We observe the smallest, but significant,
difference between networks generated with constant M and monofractal signal with
short-range correlations. As we increase the Hurst exponent, the value of the D-measure
increases. The most considerable differences are observed for multifractal signals TECH,
random TECH, and MySpace.

The value of D-measure declines as we move away from the critical line, figure 3. The
primary mechanism through which the fluctuations influence the structure of evolved
networks is the emergence of hubs and super hubs. For values of α � α∗, the nodes
attache to their immediate predecessors creating regular networks without hubs. For
α � α∗ graphs have stretched exponential degree distribution with low potential for the
emergence of hubs. Still, multifractal signal TECH enables the emergence of hub even
for the values of parameters for which we observe networks with stretched-exponential
degree distribution in the case of constant growth figure 4(a). By definition, small-world
gels generated for α > α∗ have super-hubs [35] regardless of the growth signal. Therefore
the effects that fluctuations produce in the growth of networks do not come to the fore
for values of model parameters in this region of α–β plane.

In this work, we focus on the role of the node growth signal in evolving networks’
structure. However, real networks do not evolve only due to the addition of new nodes,
but also through addition of new links [27–29, 38]. Furthermore, the deactivation of
nodes [48] and the links [48] influence the evolving networks’ structure. Each of these
processes alone can result in a different network despite having the same linking rules.
The next step would be to examine how different combinations of these processes influ-
ence the evolving networks’ structure. For instance, in [28], authors have examined the
influence of the time-dependent number of added links L(t) on the Barabási–Albert
networks’ structure. They show that as long as the average value of time-dependent
signal 〈L(t)〉 is independent of time, the generated networks have a similar structure
as Barabási–Albert networks, and that the degree distribution depends strongly on the
behavior of 〈L(t)〉. It would be interesting to examine how correlated L(t) signals influ-
ence networks’ structure with aging nodes, where the age of a node plays a vital role
in linking between new and old nodes. Moreover, we expect that the combination of
time-varying growth of the number of nodes and the number of links will significantly
influence these networks’ structure.

Evolving network models are an essential tool for understanding the evolution of
social, biological, and technological networks and mechanisms that drive it [10]. The
most common assumption is that these networks evolve by adding a fixed number of
nodes in each time step [10]. So far, the focus on developing growing network models was
on linking rules and how different rules lead to networks of various structural properties
[10]. Growth signals of real systems are not constant [25, 30]. They are multifractal,
characterised with long-range correlations [25], trends and cycles [40]. Research on tem-
poral networks has shown that temporal properties of edge activation in networks and
their properties can affect the dynamics of the complex system [12]. Our results imply
that modeling of social and technological networks should also include non-constant
growth. Its combination with local linking rules can significantly alter the structure of
generated networks.
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[16] Tadić B 2001 Dynamics of directed graphs: the world-wide web Physica A 293 273
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High-temperature bad-metal transport has been recently studied both theoretically and in experiments as one
of the key signatures of strong electronic correlations. Here we use the dynamical mean field theory and its
cluster extensions, as well as the finite-temperature Lanczos method to explore the influence of lattice frustration
on the thermodynamic and transport properties of the Hubbard model at high temperatures. We consider the
triangular and the square lattices at half-filling and at 15% hole doping. We find that for T � 1.5t the self-energy
becomes practically local, while the finite-size effects become small at lattice size 4×4 for both lattice types and
doping levels. The vertex corrections to optical conductivity, which are significant on the square lattice even at
high temperatures, contribute less on the triangular lattice. We find approximately linear temperature dependence
of dc resistivity in doped Mott insulator for both types of lattices.

DOI: 10.1103/PhysRevB.102.115142

I. INTRODUCTION

Strong correlation effects in the proximity of the Mott
metal-insulator transition are among the most studied prob-
lems in modern condensed matter physics. At low temper-
atures, material-specific details play a role, and competing
mechanisms can lead to various types of magnetic and
charge density wave order, or superconductivity [1–5]. At
higher temperatures, physical properties become more univer-
sal, often featuring peculiarly high and linear-in-temperature
resistivity (the bad-metal regime) [6–12] and gradual metal-
insulator crossover obeying typical quantum critical scaling
laws [13–17].

There are a number of theoretical studies of transport
in the high-T regime based on numerical solutions of the
Hubbard model [10,12,13,18,19], high-T expansion [20], and
field theory [21–23]. Finding numerically precise results is
particularly timely having in mind a very recent laboratory
realization of the Hubbard model using ultracold atoms on
the optical lattice [24]. This system enables fine tuning of
physical parameters in a system without disorder and other
complications of bulk crystals, which enables a direct com-
parison between theory and experiment. In our previous
work (Ref. [25]) we have performed a detailed analysis of
single- and two-particle correlation functions and finite-size
effects on the square lattice using several complementary
state-of-the-art numerical methods, and established that a
finite-temperature Lanczos method (FTLM) solution on the
4×4 lattice is nearly exact at high temperatures. The FTLM,
which calculates the correlation functions directly on the real-
frequency axis, is recognized [25] as the most reliable method
for calculating the transport properties of the Hubbard model
at high temperatures. The dependence of charge transport and

thermodynamics on the lattice geometry has not been exam-
ined in Ref. [25] and it is the subject of this work.

Numerical methods that we use are (cluster) dynamical
mean field theory (DMFT) and FTLM. The DMFT treats an
embedded cluster in a self-consistently determined environ-
ment [26]. Such a method captures long-distance quantum
fluctuations, but only local (in single-site DMFT), or short-
range correlations (in cluster DMFT) [27]. The results are
expected to converge faster with the size of the cluster than
in the FTLM, which treats a finite cluster with periodic
boundary conditions [28]. FTLM suffers from the finite-size
effects in propagators as well as in correlations. The con-
ductivity calculation in DMFT is, however, restricted just to
the bubble diagram, while neglecting the vertex corrections.
Approximate calculation of vertex corrections is presented
in few recent works [29–34]. This shortcoming of DMFT is
overcome in FTLM where one calculates directly the current-
current correlation function which includes all contributions
to the conductivity. Also, the FTLM calculates conductivity
directly on the real-frequency axis, thus eliminating the need
for analytical continuation from the Matsubara axis which
can, otherwise, lead to unreliable results (see Supplemental
Material of Ref. [25]). Both DMFT and FTLM methods are
expected to work better at high temperatures [35] when single-
and two-particle correlations become more local, and finite-
size effects less pronounced. Earlier work has shown that the
single-particle nonlocal correlations become small for T � t
for both the triangular and the square lattices [25,36,37].

In this paper we calculate the kinetic and potential energy,
specific heat, charge susceptibility, optical and dc conductivity
in the Hubbard model on a triangular lattice and make a com-
parison with the square-lattice results. We consider strongly
correlated regime at half-filling and at 15% hole doping. In
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agreement with the expectations, we find that at high temper-
atures, T � 1.5t , the nonlocal correlations become negligible
and the results for thermodynamic quantities obtained with
different methods coincide, regardless of the lattice type and
doping. At intermediate temperatures, 0.5t � T � 1.5t , the
difference between DMFT and FTLM remains rather small.
Interestingly, we do not find that the thermodynamic quanti-
ties are more affected by nonlocal correlations on the square
lattice in this temperature range, although the self-energy be-
comes more local on the triangular lattice due to the magnetic
frustration. On the other hand, the vertex corrections to opti-
cal conductivity remain important even at high temperatures
for both lattice types, but we find that they are substantially
smaller in the case of a triangular lattice. For the doped
triangular and square lattice the temperature dependence of
resistivity is approximately linear for temperatures where the
finite-size effects become negligible and where the FTLM
solution is close to exact.

The paper is organized as follows. In Sec. II we briefly
describe different methods for solving the Hubbard model.
Thermodynamic and charge transport results are shown in
Sec. III, and conclusions in Sec. IV. The Appendix contains
a detailed comparison of the DMFT optical conductivity ob-
tained with different impurity solvers, a brief discussion of
the finite-size effects at low temperatures, and an illustration
of the density of states in different transport regimes.

II. MODEL AND METHODS

We consider the Hubbard model given by the Hamiltonian

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓ − μ
∑

iσ

niσ , (1)

where t is the hopping between the nearest neighbors on either
triangular or square lattice. c†

iσ and ciσ are the creation and
annihilation operators, U is the onsite repulsion, niσ is the
occupation number operator, and μ is the chemical potential.
We set U = 10t , t = 1, lattice constant a = 1, e = h̄ = kB =
1 and consider the paramagnetic solution for p = 1 − n =
1 − ∑

σ nσ = 0.15 hole doping and at half-filling.
We use the FTLM and DMFT with its cluster extensions

to solve the Hamiltonian. FTLM is a method based on the
exact diagonalization of small clusters (4×4 in this work). It
employs the Lanczos procedure to obtain approximate eigen-
states and uses sampling over random starting vectors to
calculate the finite-temperature properties from the standard
expectation values [28]. To reduce the finite-size effects, we
further employ averaging over twisted boundary conditions.

The (cluster) DMFT equations reduce to solving a (cluster)
impurity problem in a self-consistently determined effective
medium. We consider the single-site DMFT, as well as two
implementations of cluster DMFT: cellular DMFT (CDMFT)
[38,39] and dynamical cluster approximation (DCA) [27]. In
DMFT the density of states is the only lattice-specific quantity
that enters into the equations. In CDMFT we construct the
supercells in the real space and the self-energy obtains short-
ranged nonlocal components within the supercell. In DCA we
divide the Brillouin zone into several patches and the num-
ber of independent components of the self-energy equals the
number of inequivalent patches. The DCA results on 4×4 and

FIG. 1. DCA patches in the Brillouin zone. The irreducible Bril-
louin zone is marked by the black triangle. The dispersion relation is
shown in gray shading. Note the position of the � point in the center
of the first Brillouin zone which is not marked in this figure.

2×2 clusters are obtained by patching the Brillouin zone in a
way that obeys the symmetry of the lattice, as shown in Fig. 1.
As the impurity solver we use the continuous-time interaction
expansion (CTINT) quantum Monte Carlo (QMC) algorithm
[40,41]. In the single-site DMFT we also use the numerical
renormalization group (NRG) impurity solver [42–45].

The (cluster) DMFT with QMC impurity solver (DMFT-
QMC) gives the correlation functions on the imaginary
(Matsubara) frequency axis, from which static quantities can
be easily evaluated. The kinetic energy per lattice site is equal
to

Ekin = 1

N

∑
k

εknkσ = 2

N

∑
k

εkGk(τ = 0−), (2)

where for the triangular lattice εk = −2t[cos kx +
2 cos( 1

2 kx ) cos(
√

3
2 ky)] and for the square lattice εk =

−2t (cos kx + cos ky) (gray shading in Fig. 1). The
noninteracting band for the triangular lattice goes from
−6t to 3t with the van Hove singularity at ε = t . The
potential energy is equal to

Epot = Ud = 1

N
T

∑
k,iωn

eiωn0+
Gk(iωn)�k(iωn), (3)

where d = 〈ni↑ni↓〉 is the average double occupation. In DCA
the cluster double occupation is the same as on the lattice,
and we used the direct calculation of d in the cluster solver
to cross check the consistency and precision of the numerical
data. In CDMFT we calculated Epot from periodized quantities
G and �, where the periodization is performed on the self-
energy and then the lattice Green’s function is calculated from
it. The total energy is Etot = Ekin + Epot. The specific heat
C = dEtot/dT |n is obtained by interpolating Etot (T ) and then
taking a derivative with respect to temperature. C is shown
only in the DMFT solution where we had enough points
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at low temperatures. The charge susceptibility χc = ∂n/∂μ

is obtained from a finite difference using two independent
calculations with μ that differs by a small shift δμ = 0.1t .
In the FTLM, C and χc are calculated without taking the
explicit numerical derivative since the derivation can be done
analytically from a definition of the expectation values,

C = Cμ − T ζ 2

χc

= 1

N

1

T 2

[
〈H2〉 − 〈H〉2 − (〈HNe〉 − 〈H〉〈Ne〉)2〈

N2
e

〉 − 〈Ne〉2

]
, (4)

which is directly calculated in FTLM. Here, Cμ =
1
N

1
T 2 [〈(H − μNe)2〉−〈H−μNe〉2], ζ = 1

N2
1

T 2 [〈(H−μNe)Ne〉−
〈H − μNe〉〈Ne〉], χc = 1

N
1
T (〈N2

e 〉 − 〈Ne〉2), and Ne = ∑
iσ niσ

is the operator for the total number of electrons on the lattice.
We calculate the conductivity using DMFT and FTLM.

Within the DMFT the optical conductivity is calculated from
the bubble diagram as

σ (ω) = σ0

∫∫
dε dν X (ε)A(ε, ν)A(ε, ν + ω)

× f (ν) − f (ν + ω)

ω
, (5)

where X (ε) = 1
N

∑
k ( ∂εk

∂kx
)
2
δ(ε − εk ) is the transport function,

A(ε, ν) = − 1
π

Im[ν + μ − ε − �(ν)]−1, and f is the Fermi
function. For the square lattice σ0 = 2π and for triangular
σ0 = 4π/

√
3. For the calculation of conductivity in DMFT-

QMC we need the real-frequency self-energy �(ω), which
we obtain by Padé analytical continuation of the DMFT-QMC
�(iωn). In the DMFT with NRG impurity solver (DMFT-
NRG) we obtain the correlation functions directly on the
real-frequency axis, but this method involves certain numer-
ical approximations (see Appendix A).

In order to put into perspective the interaction strength
U = 10t and the temperature range that we consider, in Fig. 2
we sketch the paramagnetic (cluster) DMFT phase diagram
for the triangular and square lattices at half-filling adapted
from Refs. [46,47] (see also Refs. [36,37,48–54]). In the
DMFT solution (blue lines) the critical interaction for the Mott
metal-insulator transition (MIT) is Uc ∼ 2.5D, where the half-
bandwidth D is 4.5t and 4t for the triangular and the square
lattice, respectively. The phase diagram features the region
of coexistence of metallic and insulating solution below the
critical end point at Tc ≈ 0.1t . In this work we consider the
temperatures above Tc. We set U = 10t , which is near Uc for
the MIT in DMFT, but well within the Mott insulating part of
the cluster DMFT and FTLM phase diagram.

III. RESULTS

We will first present the results for the thermodynamic
properties in order to precisely identify the temperature range
where the nonlocal correlations and finite-size effects are
small or even negligible. In addition, from the thermodynamic
quantities, e.g., from the specific heat, we can clearly identify
the coherence temperature above which we observe the bad-
metal transport regime. We then proceed with the key result

FIG. 2. Sketch of the paramagnetic phase diagram at half-filling,
adapted from Refs. [46,47]. There is a region of the coexistence of
metallic and insulating solution below the critical end point at Tc. The
critical interaction is smaller in the cluster DMFT solution. Above Tc

there is a gradual crossover from a metal to the Mott insulator. In this
work we consider T > Tc and U = 10t .

of this work by showing the contribution of vertex corrections
to the resistivity and optical conductivity.

Before going into this detailed analysis, and in order to ob-
tain a quick insight into the strength of nonlocal correlations,
we compare in Fig. 3 the self-energy components in the cluster
DMFT solution at two representative temperatures. We show
the imaginary part of the DCA 4×4 self-energy at different
patches of the Brillouin zone according to the color scheme of
Fig. 1. The statistical error bar of the Im � results presented
in Fig. 3 we estimate by looking at the difference in Im �

between the last two iterations of the cluster DMFT loop.
We monitor all K points and the lowest three Matsubara fre-
quencies. At lower temperature (bottom row), this difference
is smaller than 0.05 (0.01) for the square (triangular) lattice,
respectively. At higher temperature (upper row), these values
are both 10 times lower and the error bar is much smaller
than the size of the symbol. At T = 0.4t the differences in the
self-energy components are more pronounced on the square
than on the triangular lattice, which goes along the general
expectations that the larger connectivity (z = 6) and the frus-
trated magnetic fluctuations lead to the more local self-energy.
At T ∼ 1.5t all the components of the self-energy almost
coincide for both lattices. We note that for the triangular
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FIG. 3. Imaginary part of the self-energy at the Matsubara fre-
quencies at different patches of the Brillouin zone for several
temperatures for p = 0.15 hole doping. The position of the patches
is indicated by the same colors as in Fig. 1. The solid lines are guide
to the eye.

lattice the components of the self-energy marked by red and
cyan colors are similar, but they do not coincide completely.
There are four independent patches in this case. For the square
lattice the red and cyan components of the self-energy are very
similar, while we have six independent patches.

A. Thermodynamics

1. p = 0.15

We first show the results for hole doping p = 0.15. The
results for the triangular lattice are shown in the left column of
Fig. 4, and the results for the square lattice in the right column.
Different rows correspond to the kinetic energy per lattice
site Ekin, potential energy Epot, total energy Etot, specific heat
C = dEtot/dT |n, and charge susceptibility χc. The DMFT
results are shown with blue solid lines and FTLM with red
dashed lines. The red circles correspond to DCA 4×4, light
green to DCA 2×2, green to CDMFT 2×2, and magenta to
the CDMFT 2×1 result.

The FTLM results are shown down to T = 0.2t . The
FTLM finite-size effects in thermodynamic quantities are
small for T � 0.2t (see Appendix B). The DMFT results are
shown for T � 0.05t and cluster DMFT for T � 0.2t . Over-
all, the (cluster) DMFT and FTLM results for 15% doping
look rather similar. The kinetic and potential energy do not
differ much on the scale of the plots, and the specific heat
looks similar.

The Fermi-liquid region, with C ∝ T , is restricted to very
low temperatures. For the triangular lattice we find a distinct
maximum in C(T ) at T ≈ 0.4t in FTLM, and at T ≈ 0.3t
in DMFT. This maximum is a signature of the coherence-
incoherence crossover, when the quasiparticle peak in the
density of states gradually diminishes and the bad-metal
regime starts. The increase in the specific heat for T � 2t is

FIG. 4. Kinetic, potential, total energy, specific heat, and charge
susceptibility as a function of temperature for the triangular and the
square lattice at 15% doping.

caused by the charge excitations to the Hubbard band. The
specific heat of the square lattice looks qualitatively the same.
[A very small dip in the DMFT specific heat near T = 0.4t
for the square lattice may be an artifact of the numerics,
where C is calculated by taking a derivative with respect to
temperature of the interpolated Etot (T ).] We note that the
specific heat, shown here for the fixed particle density, is
slightly different than the one for the fixed chemical potential
Cμ = dEtot/dT |μ, as in Refs. [28,51,55].

For the square lattice all thermodynamic quantities
obtained with different methods practically coincide for
T � t . This means that both the nonlocal correlations and
the finite-size effects have negligible effect on thermodynamic
quantities. For T � t the DMFT and FTLM results start to
differ. Interestingly, for the triangular lattice there is a small
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difference in the DMFT and FTLM kinetic energy up to higher
temperatures T ∼ 1.5t . The FTLM and DCA 4×4 results
coincide for T � t , implying the absence of finite-size effects
in the kinetic energy for both lattice types. We also note
that the agreement of the CDMFT and DMFT solutions for
the total energy on the square lattice at low temperatures is
coincidental, as a result of a cancellation of differences in Ekin

and Epot.
The intersite correlations in the square lattice lead to an in-

crease in the charge susceptibility at low temperatures (bottom
panel in Fig. 4). Here, the FTLM and DCA 4×4 results are in
rather good agreement. For the triangular lattice we found a
sudden increase of χc at low temperatures in the DCA results
(see Appendix B) but not in FTLM. These DCA points are not
shown in Fig. 4 since we believe that they are an artifact of the
particular choice of patching of the Brillouin zone. In order to
keep the lattice symmetry, we had only four (in DCA 4×4)
and two (in DCA 2×2) independent patches in the Brillouin
zone for triangular lattice (Fig. 1). The average over twisted
boundary conditions in FTLM reduces the finite-size error
(see Appendix B), and hence we believe that the FTLM result
for χc is correct down to T = 0.2t . We note that an increase of
χc cannot be inferred from the ladder dual-fermion extension
of DMFT [37] either. Still, further work would be needed to
precisely resolve the low-T behavior of charge susceptibility
for the triangular lattice.

2. p = 0

We now focus on thermodynamic quantities at half-filling
(Fig. 5). In this case, the results can strongly depend on
the method, especially since we have set the interaction to
U = 10t , which is near the critical value for the Mott MIT
in DMFT, while well within the insulating phase in the clus-
ter DMFT and FTLM. The results with different methods
almost coincide for T � 2t and are very similar down to
T ∼ t . The difference between the cluster DMFT and FTLM
at half-filling is small, which means that the finite-size effects
are small down to the lowest shown temperature T = 0.2t .
Therefore, the substantial difference between the FTLM and
single-site DMFT solutions at half-filling is mostly due to the
absence of nonlocal correlations in DMFT.

The specific heat at half-filling is strongly affected by non-
local correlations and lattice frustration. For triangular lattice
the low-temperature maximum in C(T ) has different origin
in the DMFT and FTLM solutions. The maximum in the
FTLM is due to the low-energy spin excitations in frustrated
triangular lattice, while in DMFT it is associated with the
narrow quasiparticle peak since the DMFT solution becomes
metallic as T → 0. Our DMFT result agrees very well with
the early work from Ref. [36] for T � t . At lower tempera-
tures there is some numerical discrepancy which we ascribe
to the error due to the imaginary-time discretization in the
Hirsch-Fye method used in that reference. For the square lat-
tice the DMFT and FTLM solutions are both insulating. The
maximum in the FTLM C(T ) is due to the spin excitations at
energies ∼4t2/U = 0.4t , and it is absent in the paramagnetic
DMFT solution which does not include dynamic nonlocal
correlations. The increase in C(T ) at higher temperatures is
due to the charge excitations to the upper Hubbard band.

ki
n

FIG. 5. Kinetic, potential, total energy, specific heat, and charge
compressibility as a function of temperature for the triangular and
the square lattice at half-filling.

B. Charge transport

The analysis of thermodynamic quantities has shown that
the FTLM results for static quantities are close to exact down
to T ∼ 0.5t or even 0.2t . For charge transport we show the
results for higher temperatures T � t since the finite-size ef-
fects are more pronounced in the current-current correlation
function at lower temperatures.

An indication of the finite-size effects in optical conductiv-
ity can be obtained from the optical sum rule

∫ ∞

0
dω σ (ω) = π

4Vu.c.
(−Ekin ), (6)

where Vu.c is equal to 1 and
√

3
2 for the square and triangular

lattice, respectively. The deviation from the sum rule in FTLM
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FIG. 6. Resistivity as a function of temperature.

can be ascribed to the finite charge stiffness and δ function at
zero frequency in optical conductivity [28]. The FTLM result
for dc resistivity, shown by the red lines in Fig. 6, corresponds
the temperature range where the weight of the δ-function peak
at zero frequency (charge stiffness) [28] is smaller than 0.5%
of the total spectral weight. The other finite-size effects are
small and the FTLM resistivity is expected to be close to the
exact solution of the Hubbard model. The remaining uncer-
tainty, due to the frequency broadening, is estimated to be
below 10% (see Supplemental Material in Ref. [25]). Small-
ness of the finite-size effects for the square lattice at T � t was
also confirmed from the current-current correlation function
calculated on the 4×4 and 8×8 lattices using CTINT QMC
(see Ref. [25]). For doped triangular lattice we show the con-
ductivity data for T � 1.5t since below this temperature the
weight of the charge stiffness δ function is larger than 0.5% of
the total weight, which indicates larger finite-size effects.

The DMFT resistivity is shown in Fig. 6 by the blue lines.
It is obtained using the NRG impurity solver. Numerical error
of the DMFT-NRG method is small, as we confirmed by a
comparison with the DMFT-QMC calculation followed by the
Padé analytical continuation (see Appendix A). We note that
we do not show the conductivity data in the DCA since in this
approximation we cannot reliably calculate the conductivity
beyond the bubble term. At high temperatures the bubble-term
contribution in cluster DMFT does not differ from the one in
single-site DMFT since the self-energy becomes local [25].

Since the FTLM resistivity in Fig. 6 is shown only for
temperatures when both the nonlocal correlations and the
finite-size effects are small, the difference between the DMFT
and FTLM resistivity is due to the vertex corrections. Their
contribution corresponds to the connected part of the current-
current correlation function whereas the DMFT conductivity

FIG. 7. Optical conductivity at T = 1.4.

is given by the bubble diagram. A detailed analysis of vertex
corrections for the square lattice is given in our previous work
(Ref. [25]). Here, our main focus is on the comparison of
the importance of vertex corrections for different lattices: the
numerical results show that the vertex corrections to conduc-
tivity are less important in the case of the triangular lattice.

In the doped case, the FTLM solution gives the resistiv-
ity which is approximately linear in the entire temperature
range shown in Fig. 6. This bad-metal linear-T temperature
dependence is one of the key signatures of strong electronic
correlations. The resistivity is here above the Mott-Ioffe-Regel
limit which corresponds to the scattering length one lattice
spacing within the Boltzmann theory. The Mott-Ioffe-Regel
limit can be estimated as [6] ρMIR ∼ √

2π ≈ 2.5.
At half-filling and low temperatures the result qualitatively

depends on the applied method. For the half-filled triangular
lattice at U = 10t the DMFT solution gives a metal, whereas
the nonlocal correlations lead to the Mott insulating state.
Still, similar as for thermodynamic quantities, the numerically
cheap DMFT gives an insulatinglike behavior and a rather
good approximation down to T ∼ 0.5t .

The optical conductivity, shown in Fig. 7 for T = 1.4t ,
provides further insight into the dependence of the vertex
correction on the lattice geometry. The DMFT-QMC conduc-
tivity is calculated using Eq. (5) with �(ω) obtained by the
Padé analytical continuation of �(iωn) (see Appendix A for
a comparison with DMFT-NRG). In the DMFT solution, the
Hubbard peak is determined by the single-particle processes
and it is centered precisely at ω = U . The vertex corrections
in FTLM shift the position of the Hubbard peak to lower
frequencies. The total spectral weight is the same in FTLM
and DMFT solution since it obeys the sum rule of Eq. (6),
while the kinetic energies coincide. The Ward identity for
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vertex corrections [25,31]

�conn(iν = 0) = −2T
1

N

∑
k

vk

∑
iωn

G2
k(iωn)∂kx �k(iωn) (7)

also implies that the vertex corrections do not affect the sum
rule if the self-energy is local. Here, �(iν) is the current-
current correlation function and �(iν = 0) = 1

π

∫
dω σ (ω).

The results clearly show the much stronger effect of ver-
tex corrections on the square lattice on all energy scales. In
addition to a very different ω → 0 (dc) limit, we observe
the more significant reduction of the Drude-like peak width
and a larger shift of the Hubbard peak on the square lattice,
with a more pronounced suppression of the optical weight at
intermediate frequencies. We note that a broad low-frequency
peak in conductivity is due to incoherent short-lived excita-
tions characteristic of the bad-metal regime. The structure of
the density of states in different transport regimes is discussed
in Appendix C.

IV. CONCLUSION

In summary, we have performed a detailed comparison
of the thermodynamic and charge transport properties of the
Hubbard model on a triangular and square lattice. We iden-
tified the temperatures when the finite-size effects become
negligible and the FTLM results on the 4×4 cluster are close
to exact. In the doped case, for both lattice types, the resistivity
is approximately linear in temperature for T � 1.5t . In partic-
ular, we found that the contribution of vertex corrections to the
optical and dc conductivity is smaller in the case of a triangu-
lar lattice, where it leads to ∼20% decrease in dc resistivity
as compared to the bubble term. The vertex corrections also
leave a fingerprint on the position of the Hubbard peak in the
optical conductivity, which is shifted from ω = U to slightly
lower frequencies.

On general grounds, higher connectivity and/or magnetic
frustration should lead to more local self-energy and smaller
vertex corrections in the case of triangular lattice, as it is
observed. However, the precise role of these physical mech-
anisms and possible other factors remains to be established.
Another important open question is to find an efficient ap-
proximate scheme to evaluate the vertex corrections, which
would be sufficiently numerically cheap to enable calculations
of transport at lower temperatures and in real materials. These
issues are to be addressed in the future, but we are now better
positioned as we have established reliable results that can
serve as a reference point.

With this work we also made a benchmark of several
state-of-the-art numerical methods for solving the Hubbard
model and calculating the conductivity at high temperatures.
This may be a useful reference for calculations of conduc-
tivity using a recent approach that calculates perturbatively
the correlation functions directly on the real-frequency axis
[56–59], thus eliminating a need for analytical continuation,
while going beyond the calculation on the 4×4 cluster.
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APPENDIX A: COMPARISON OF THE DMFT-NRG
AND DMFT-QMC CONDUCTIVITY

Here, we compare the DMFT results for the dc resistivity
and optical conductivity obtained with two different impurity
solvers. The optical conductivity σ (ω) is calculated according
to Eq. (5). The dc resistivity is equal to ρ = σ−1(ω → 0).

Within DMFT-NRG solver the self-energy is obtained di-
rectly on the real-frequency axis. There are three sources of
errors in this approach: discretization errors, truncation er-
rors, and (over)broadening errors. The method is based on
the discretization of the continuum of states in the bath; the
ensuing discretization errors can be reduced by performing the
calculation for several different discretization meshes with in-
terleaved points and averaging these results. It has been shown
[45] that in the absence of interactions, the discretization error
can be fully eliminated in a systematic manner. For an inter-
acting problem, the cancellation of artifacts is only approxi-
mate, but typically very good, so that this is a minor source of
errors. The truncation errors arise because in the iterative di-
agonalization one discards high-energy states after each set of
diagonalizations. For static quantities this error is negligible,
but it affects the dynamical (frequency-resolved) quantities
because they are calculated from contributions linking kept
and discarded states [61–63]. Finally, the raw spectral func-
tion in the form of δ peaks needs to be broadened in order to
obtain the smooth spectrum. If the results are overbroadened,
this can result in a severe overestimation of resistivity, and this
is typically the main source of error in the NRG for this quan-
tity. Fortunately, the resistivity is calculated as an integrated
quantity, thus, the broadening kernel width can be systemat-
ically reduced [20,64]. The lower limit is set by the possible
convergence issues in the DMFT self-consistency cycle due
to jagged aspect of all quantities, where the actual limit value
is problem dependent. In the NRG results reported in this
work, it was possible to use very narrow broadening kernel.
By studying the dependence of the ρ(T ) curves on the kernel
width, we estimate that the presented results have at most a
few percent error even at the highest temperatures considered.

The DMFT-QMC gives the self-energy �(iωn) at the
Matsubara frequencies and the analytical continuation is nec-
essary to obtain �(ω). The statistical error in QMC makes
the analytical continuation particularly challenging. However,
at high temperatures the CTINT QMC algorithm is very ef-
ficient. Running a single DMFT iteration for 10 minutes on
128 cores and using 20 or more iterations, we obtained the
self-energies with the statistical error |δ�(iω0)| ≈ 5×10−4

and |δG(iω0)| ≈ 2×10−5 at the first Matsubara frequency at
T = t . Such a small statistical error makes the Padé analytical
continuation possible for temperatures T � 2t .
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FIG. 8. DMFT-QMC (blue dots) and DMFT-NRG (red lines)
resistivity as a function of temperature. The analytical continuation
of the self-energy is performed with the Padé method. At high tem-
peratures the DMFT-NRG result agrees rather well with the RAIPT
(green dashed lines).

We have checked that Padé continuation gives similar re-
sults for �(ω) when performed on �(iωn) taken from last
few DMFT iterations. We than used �(iωn) averaged over the
last five iterations to further reduce the noise in �(iωn), be-
fore performing the Padé analytical continuation subsequently
used in the calculation of the conductivity. We also obtained
G(ω) directly by the Padé analytical continuation of G(iωn),
and checked that the result is consistent with the one cal-
culated as G(ω) = ∫

dε ρ0(ε)[ω + μ − ε − �(ω)]−1. These
cross checks have confirmed that Padé analytical continuation
is rather reliable.

Figure 8 shows the temperature dependence of resistivity
calculated with the DMFT-NRG (red lines) and DMFT-QMC
(blue dots). For the square lattice we find excellent agreement
between the two methods. For the triangular lattice we find
some discrepancy for T ∼ 1.5t , which is likely due to the
approximations in DMFT-NRG. We also find that the real-axis
iterative perturbation theory [65–67] (RAIPT) agrees rather
well with the DMFT-NRG solution for T � 2t .

It is also interesting to note how the lattice geometry can
influence the range of the Fermi liquid ρ ∝ T 2 behavior in the
DMFT solution. In the DMFT equations the lattice structure
enters only through the noninteracting density of states. We

FIG. 9. DMFT-QMC and DMFT-NRG optical conductivity at
T = 1.4.

observe ρ ∝ T 2 behavior up to much lower temperatures on
the square lattice. In this case, ρ ∝ T 2 region is hardly visible
on the scale of the plot, while ρ ∝ T 2 up to T ∼ 0.3t on the
triangular lattice. This observation is in agreement with the
extension of the C ∝ T region in C(T ), which is restricted to
lower temperatures in the case of a square lattice (Fig. 4).

A comparison of the DMFT-NRG (red lines) and DMFT-
QMC (blue lines) optical conductivity at T = 1.4t is shown in
Fig. 9. The overall agreement is very good. We, however, find
a small discrepancy at ω ∼ 10t . The DMFT-QMC result has
the Hubbard peak in σ (ω) centered exactly at ω = U , whereas
it is shifted to slightly lower frequency in the DMFT-NRG
solution. This shift is an artifact of numerical approximations
in DMFT-NRG. A position of the Hubbard peak at U = 10t
is another manifestation of the precision of analytical contin-
uation of the QMC data.

APPENDIX B: FINITE-SIZE EFFECTS
IN CHARGE SUSCEPTIBILITY

In Fig. 10 we show the charge susceptibility obtained
with different methods. The single-site DMFT result agrees
very well with the 4×4 FTLM after averaging over the
twisted boundary conditions. We show χc averaged over
Ntbc = 1, 4, 16, 64, and 128 clusters with different bound-
ary conditions. χc obtained with a single setup of boundary
conditions deviates at low temperatures from the averaged
values. The DCA results for T � 0.5t are also inconsistent.
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FIG. 10. Charge susceptibility as a function of temperature for
the triangular lattice at p = 0.15 hole doping.

We believe that this is an artifact of the particular choice of
the Brillouin zone patches. In DCA 4×4 and 2×2 we have
just four and two independent patches in the Brillouin zone
for triangular lattice, respectively.

APPENDIX C: DMFT DENSITY OF STATES

Here, we illustrate the density of states in different trans-
port regimes in the DMFT solution. The results in Fig. 11 are
obtained with the QMC solver followed by the Padé analyt-
ical continuation. We have checked that the density of states
agrees with the DMFT-NRG result.

In the Fermi-liquid regime at low temperatures there is a
peak in the density of states around the Fermi level. In the
doped case the coherence-decoherence crossover is at temper-
ature T ∼ 0.3, as we established from the specific-heat data
(see Fig. 4) and from the condition that the resistivity reaches
the Mott-Ioffe-Regel limit (see Sec. III B). In agreement with
earlier work [10,12], we see that at T ∼ 0.3 there is a peak in
the density of states even though long-lived quasiparticles are
absent. At even higher temperatures (here shown T = 1.4),
deeply in the bad-metal regime, the peak at the density of
states at the Fermi level is completely washed out.

FIG. 11. Density of states in the Fermi liquid at low temperatures
and in the bad-metal regime at high temperatures.

At half-filling the result is very sensitive to the exact posi-
tion of parameters on the U -T phase diagram (see Fig. 2). For
the triangular lattice at U = 10 the solution is metallic even
at low temperature which leads to the formation of narrow
quasiparticle peak at the Fermi level. This peak is quickly
suppressed by thermal fluctuations which is accompanied by
a sudden increase in the resistivity. For the square lattice at
U = 10 the system is insulating above for T � 0.03, while
the Mott gap gradually gets filled as the temperature increases.
We note that the low-temperature peak in optical conductivity
in Fig. 7 is not connected to the existence of quasiparticles.
It is just a consequence of a finite spectral density at the
Fermi level (the absence of an energy gap), as expected in
the bad-metal regime.
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