
Computer Physics Communications 182 (2011) 289–298

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Application of coordinate transformation and finite differences method in
numerical modeling of quantum dash band structure

B.M. Stupovski, J.V. Crnjanski, D.M. Gvozdić ∗
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In this paper we propose an efficient and simple method for the band structure calculation of
semiconductor quantum dashes. The method combines a coordinate transformation (mapping) based on
an analytical function and the finite differences method (FDM) for solving the single-band Schrödinger
equation. We explore suitable coordinate transformations and propose those, which might simultaneously
provide a satisfactory fit of the quantum dash heterointerface and creation of an appropriate computa-
tional domain which encloses the quantum dash structure. After mapping of the quantum dash and the
rest of computational domain, the Schrödinger equation is solved by the FDM in the mapped space.
For the proposed coordinate transformations, we investigate and analyze applicability, robustness and
convergence of the method by varying the FDM grid density and size of the computational domain. We
find that the method provides sufficient accuracy, stability and flexibility with respect to the size and
shape of the quantum dash and above all, extreme simplicity, which is promising and essential for an
extension of the method to the multiband Schrödinger equation case.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Presently, there is a strong interest in self-assembled semicon-
ductor quantum nanostructures due to their new and advanced
electronic and optical properties. From the technological point
of view, their significant advantage is self-assembling process of
growth, which doesn’t require any additional lithographic steps.
The most interesting applications of these structures are usually re-
lated to semiconductor lasers and optical amplifiers [1–5], where
self-assembled quantum nanostructures are used as an active re-
gion, providing for low threshold current [6], low chirp and small
linewidth enhancement factor [7].

One of the most recent and intriguing representatives of
the self-assembled quantum nanostructures are quantum dashes
(QDHs), which are wire-like semiconductor nanostructures. The
self-assembling growth process leads to an ensemble of QDHs with
significant size fluctuation with respect to their widths, heights
and lengths [8–10]. The size fluctuation considerably affects the
QDHs band structure and consequently electronic and optical char-
acteristics [2,8,11,12]. In order to theoretically analyze an ensemble
of QDHs it is important to develop an efficient, accurate and sim-
ple method for the band structure calculation, which can handle
arbitrary profile of a single QDH.
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Although there is a group of methods (e.g. empirical pseudo-
potential method, tight-binding method [13,14], etc.) which can
be used for calculation of the QDH band structure by including
the potentials of individual atoms, these methods are computa-
tionally very demanding. The more efficient method, which has
been widely used during several decades, is the envelope function
approximation (EFA). An essential assumption in the derivation of
the EFA is that potential is slowly varying on the scale of the lat-
tice constant. The advantage and numerical efficiency of the EFA
come from the fact that one can avoid the explicit inclusion of the
cell periodic potential and that only the slowly varying perturba-
tion enters the Hamiltonian. In this case, the Schrödinger equation
involves the slowly varying part of the wavefunction.

The most commonly used numerical method for implemen-
tation of the EFA in calculation of the band structure for one-
and zero-dimensional irregular nanostructures is the finite element
method (FEM) [15–17]. This method provides high flexibility and
it can be implemented even when heterointerfaces are such that
it is difficult to describe them by analytical functions. Since basis
functions in the FEM are relatively simple, the discretization ma-
trix can be easily set and efficiently evaluated. Although, in this
case, the discretization matrix is sparse, its size is usually very
large, depending on the computational domain size and the mesh
density. However, the major drawback of the FEM is that in addi-
tion it requires specialized routines for automatic or manual mesh
generation. The mesh itself, if not carefully generated, can affect
the accuracy of the calculation and lead to unnecessarily large dis-
cretization matrices and eigenvalue problems.
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On the other hand, the expansion methods [18–20] are more
suitable for Hamiltonians which complexity overcomes the simple
elliptic interface problems. Good examples of complex Hamiltoni-
ans are those implemented in the multiband Schrödinger equa-
tion [18,20] or those which include bulk-inversion-asymmetry
terms [21]. The size of the Hamiltonian matrix for the expansion
methods depends on the quality and number of basis functions
involved in the expansion. However, the density of Hamiltonian
matrices is usually large and does not depend significantly on the
Hamiltonian complexity, making the method suitable for complex
Hamiltonians. Although, these Hamiltonian matrices might be of
moderate size, due to their large density, they require long compu-
tational time for the diagonalization, which is usually proportional
to the third power of the matrix size. In addition to that, evalu-
ation of the Hamiltonian matrix may take a lot of computational
power if it is performed by numerical integration.

The method which is generally very popular due to its simplic-
ity, even in the case of complex Hamiltonians, and which provides
a high order convergence rate and sparse discretization matrices,
is the finite differences method (FDM) [22]. However, the FDM
in principle requires that the heterointerfaces are flat or polygo-
nal, since otherwise they may not be aligned with the grid, but
rather crossing between the grid points, causing low approxima-
tion accuracy [23]. This limits the class of problems which can be
considered by the FDM. From that point of view, the band struc-
ture analysis of nanostructures such as quantum dots and dashes
might look beyond capabilities of the FDM, since their shape is
rarely described by flat heterointerfaces, but rather with various
lens-like curves.

It is well known that in some cases coordinate transforma-
tions may simplify geometry of the structure and computational
domain, leading to the flat interfaces of the structure and compu-
tational domain, and enabling implementation of the FDM within a
new coordinate space [24–26]. In the case of nanostructures where
confinement is two dimensional (2D), the most efficient coordi-
nate transformations are based on conformal mapping [19], since
the kinetic part of the Hamiltonian in the mapped space has the
form of the Laplacian multiplied by the determinant of the Ja-
cobian matrix, while the mixed derivatives do not appear in the
Hamiltonian. On the other hand, in some cases, the computational
domain may consist of several subdomains [25], requiring more
than one function to achieve flat boundaries in the mapped space.
In these cases, the subdomains must be cautiously connected in or-
der to avoid the loss of accuracy, requiring additional programming
efforts. Moreover, the flat computational domain obtained after
mapping, might be of inadequate size with respect to the wave-
function distribution or grid density. In other words, the equidis-
tant grid in the mapped space may correspond to a dense grid in
the region of the original space where the wavefunction changes
relatively slowly, while a coarse grid may cover the region char-
acterized by rapid change of the wavefunction, affecting in such a
manner the accuracy of calculation. Similarly, it may happen that
a large computational domain in the mapped space corresponds
to a small domain in the original space, insufficient to accommo-
date the wavefunctions. However, a large computational domain in
the mapped space may lead to the huge discretization matrices,
which are demanding for the diagonalization or which, in spite of
their size, may not provide a sufficient accuracy of the calculated
eigenenergies.

In this paper, we propose a numerical method based on the
combination of coordinate transformation and the FDM, which
provides an efficient and simple approach for the band structure
and wavefunction calculations of quantum dash nanostructures,
with various cross-section shapes, widths and heights. We focus
our research on the quality of the coordinate transformation with
respect to simultaneous heterointerface fitting and definition of

Fig. 1. (Color online.) Schematic of InAs lens-like quantum dash embedded in GaAs
infinite host matrix.

the computational domain. In other words, we search for map-
pings which can provide suitable computational domains, sufficient
to accommodate wavefunctions, and simultaneously enabling suc-
cessful fitting of the well-barrier heterointerface. A special atten-
tion is given to QDHs with the lens-like cross-section profile rep-
resenting the most frequently adopted approximation for the QDH
shape [4,12,27]. However, we additionally extend our approach to
the case in which the QDH cross-section profile can be approxi-
mated with a trapezoidal shape [10,28,29].

In Section 2 we define geometry of the quantum dash pro-
file and based on it, we present the theory behind the numerical
method. In Section 3 we consider the most important features
which have to be satisfied by the coordinate transformation and
propose several possible fitting solutions for different profiles of
QDH cross-sections. In Section 4, we investigate the influence of
the discretization step and domain size on the convergence of the
method and investigate two coordinate transformations for two
different QDH profiles. Finally, in Section 5 we present our con-
clusions.

2. Description of the method

In order to give a detailed description of the theory be-
hind our numerical method, we shortly discuss and analyze ge-
ometrical and compositional structure of a single QDH based
on InAs well material, which is embedded in GaAs host matrix
(cf. Fig. 1). The effective mass for InAs (m∗

InAs = 0.0221m0) and
GaAs (m∗

GaAs = 0.0623m0), as well as the conduction band offset
(�Ec = 858.7 meV), are taken from [30], where m0 is the free
electron mass. Since QDH is an elongated InAs island [9], the well
material has almost a quantum-wire nature. Therefore, the band
structure of the QDH is mainly dependent on the two-dimensional
(2D) carrier confinement in the transversal direction (xy plane
in Fig. 1). This confinement, on the other hand, is defined by
the profile of QDH cross-section. The most common geometrical
approximation of the QDH’s cross-section is the lens-like profile
[4,12,27], which is shown in Fig. 1. The profile may slightly dif-
fer from the lens-like shape depending on the material system
and growth conditions. Other common shapes used for the pro-
file approximation are triangular [2,31,32], trapezoidal [10,28,29]
and rectangular [8,33,34]. In the case of rectangular and triangular
shapes, the FDM can be directly applied, without using the coordi-
nate transformation [23]. The coordinate transformations proposed
in our paper are capable to fit lens- and trapezoidal-like shapes.
It should be noted that there are more sophisticated coordinate
transformations, which can additionally include wetting layer into
computation, but they will be considered elsewhere.
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The method proposed in this paper consists of four major steps:

1. Selection of a coordinate transformation, which can provide
satisfactory fit of the well-barrier heterointerface and size of
the computational domain.

2. Mapping of the Hamiltonian into new coordinate space by
using the Jacobian matrix for the selected coordinate trans-
formation.

3. The Hamiltonian discretization according to the finite differ-
ences scheme and setting of the discretization matrix.

4. Evaluation of the eigenvalues representing the bound states in
the QDH. This is done by using specialized routines for eigen-
value computation (LAPACK).

Before we deal with a deeper investigation of suitable coor-
dinate transformations and their features (step 1), we give de-
scription of the Hamiltonian mapping and the FDM discretization
(steps 2 and 3). We start from the EFA Schrödinger equation for
electrons in the conduction band:
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where ψ = ψ(x, y) is the slowly varying part of the total wave-
function, U = U (x, y) is the 2D potential profile determined by the
QDH’s cross-section and the conduction band offset, m∗ =m∗(x, y)
is the electronic effective mass, while E is the confinement en-
ergy, referenced to the conduction band edge of the QDH barrier
material. Due to the elongated geometry of the QDH, the quanti-
zation in the longitudinal direction (z-direction) leads to a quasi-
continuous subband structure, the energy of which is well approx-
imated with parabolic dependence on corresponding wavevector
(kz). In our analysis we are interested in eigenenergies correspond-
ing to the subband bottom, for which kz = 0.

By imposing the continuity of the probability density and the
probability current, it is shown that ψ(x, y) and its gradient per-
pendicular to the interface divided by the effective mass, must
be continuous at the material heterointerfaces. Since we imple-
ment the finite differences scheme, the boundary conditions are
naturally built in into the discretization and need not be enforced
explicitly.

Once the coordinate transformation x = x(u, v), y = y(u, v) is
chosen, where ξ = ξ(x, y) represents the old coordinate space, the
Schrödinger equation can be mapped into new w = w(u, v) space:
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In Eq. (2) ψ[x(u, v), y(u, v)] = ψ(u, v), U [x(u, v), y(u, v)] =
U (u, v), while ux, vx,uy , and v y are the elements of the Jacobian
matrix J xy representing partial derivatives of the inverse functions
u = u(x, y) and v = v(x, y) with respect to x and y. Since we
want to set the Schrödinger equation in the w-space we need el-
ements of J xy matrix to be expressed as functions of u and v , i.e.
ux = ux(u, v), vx = vx(u, v), uy = uy(u, v), v y = v y(u, v). Thus, we
start from the transformation x = x(u, v), y = y(u, v) and its cor-
responding Jacobian matrix Juv , which is explicit function on u
and v given by:

Juv =
�
xu xv
yu yv

�
, (3)

where subscripts denote the partial derivatives with respect to u
and v . As the Jacobian matrix J xy for the inverse mapping u =
u(x, y), v = v(x, y) is given by J xy = J−1

uv , we finally derive J xy as:
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which is now an explicit function on u and v .
The elements of matrix J xy depend on the selected coordinate

transformation. The general form of the transformation used for
fitting the heterointerface and definition of the computational do-
main is given by:

x = Cu, (5a)

y = C f (u, v), (5b)

where C is a scaling factor, expressed in nanometers. This type of
coordinate transformation leads to simpler forms of the Jacobian
matrices Juv and J xy :
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where fu and f v are derivatives of f (u, v) with respect to u and v ,
respectively, μ = μ(u, v) = C · vx = − fu/ f v and ρ = ρ(u, v) =
C · v y = 1/ f v . It is important to note that function f (u, v) is such
that the determinant of the Jacobian matrix is different than 0,
i.e. | Juv | = | J xy |−1 = C2 · f v �= 0. In this case, the transformation is
“one to one” in the neighborhood of a point and it has the inverse
transformation in all domain points. In the case of transformation
given by (5), Eq. (2) is simplified and becomes:
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If we use standard central differences, we can discretize Eq. (7) as
follows:
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Table 1
A set of functions g(u),h(v), and γ (v) which satisfy conditions required for coor-
dinate transformation, where n,m and p are positive integers.

Suggested functions for g(u): (G + B · u2m)−1; exp(−B · u2m); sech(B · um);
sech(G + B · u2m)

Suggested functions for h(v): v2n+1; sinh(A · v2n+1)

Suggested functions for γ (v): (F + K · v2p)−1; sech(K · vp); sech(F + K · v2p)

where i and j denote indices of the discretization points, while
hu and hv are discretization steps, along u and v coordinate, re-
spectively. It can be seen from Eq. (8) that the implemented dis-
cretization method preserves continuity of the probability density
and the probability current, since the effective masses remain un-
der the derivative. By imposing the Dirichlet boundary conditions
at the boundary of the computational domain, where the wave-
function is equal to zero, we evaluate the discretization matrix by
using relation (8). It is important to note that for an accurate calcu-
lation of eigenenergies the effective mass at mid-points (i + 1/2 or
j + 1/2) has to be calculated as an average of the effective masses
in adjacent points, rather than the average of their reciprocal val-
ues, as one may expect by inspection of relation (8).

3. Coordinate transformation

There are several coordinate transformations which can fit the
heterointerfaces of the QDH shown in Fig. 1. Thus we can con-
sider f (u, v) as a family of functions. This family is not uniquely
defined, but rather has to fulfill certain conditions. Although trans-
formations defined by the function family may lead to similar
cross-section profiles, they may differ significantly depending on
the fitting parameters defining function f (u, v). It means that in
spite of the fact that functions are not the same, for properly
adopted fitting parameters, they provide same or similar cross-
section profiles. Having in mind the profile of the QDH, it is ob-
vious that in order to fit the well-barrier heterointerface, f (u, v)

has to be Gaussian-like with respect to u, i.e. an even function,
decaying with |u| and with the maximum at u = 0. On the other
hand, for the outer dash region, i.e. the barrier, f (u, v) has to pro-
vide similar profile as for the well-barrier heterointerface, which
for larger |v|, has to be wider with respect to u, and enabling,
in such a way, enclosure of the QDH structure and determination
of the computational domain. This reasoning leads to possible so-
lutions for the function f (u, v), which can be represented as a
product of two functions, where one depends on u and the other
on v , i.e. f (u, v) = h(v) · g(u). In f (u, v), g(u) is a Gaussian-like
function, while h(v) is any odd function, which modulo is mono-
tonically increasing with |v|. In such a manner, h(v) modulates
the magnitude of g(u), and enables enlargement of the domain
which surrounds the well material of the QDH, either for posi-
tive and negative values of v . The description of functions h(v)

and g(u) offers several possible solutions and some of them are
given in Table 1, where A, B , G , n and m are fitting parame-
ters.

Fig. 2 shows various profiles, which can fit the QDH heteroin-
terface, obtained as combination of the first three functions g(u)

and function h(v) = sinh(A · v). However, the most of the proposed
solutions lead to domains which size, for large u, very slowly or al-
most negligibly increases with |v|, causing rapid shrinking of the
computational domain, for which y(u, v) ≈ 0. As a matter of fact,
this shrinking is suitable for the fitting of the upper QDH heteroin-
terface, but not for the computational domain. The requirement
for a relatively opened computational domain in the x-direction
comes from the fact that wavefunctions may significantly “spill
out” in the vicinity of the QDH corners, where the upper and

Fig. 2. (Color online.) The Gaussian-like cross-section profiles obtained for some
combinations of the functions h(v) and g(u) given in Table 1, and for v = 2.5,
A = 1.2, B = G = 1, C = 1 nm and m = 1.

lower heterointerface join. Thus, it is necessary to preserve suitable
Gaussian-like features of the function g(u) and to add a new one,
which reduces decay of the function g(u), preventing collapse of
the computational domain for large u. This can be achieved by in-
troducing an additional, even function γ (v), which monotonically
decays with respect to |v| and modulates the argument of function
g(u), reducing it for larger |v|. Finally, we end up with the func-
tion f (u, v) = h(v) · g[γ (v) ·uq], where q stands for 2m or m, while
m is a positive integer. Since the function γ (v) has the same fea-
tures as the function g(u) proposed in Table 1, g(u) can be used
as a model for the function γ (v). According to Table 1, γ (v) is de-
rived from g(u), after parameters G , B and m in the function g(u)

are replaced with F , K and p, respectively.
Starting from the previous consideration, we construct a sim-

ple coordinate transformation, which provides fit for the lens-like
cross-section profile of the QDH and a reasonably small computa-
tional domain, which can accommodate the wavefunctions of the
bound states:

x = Cu, (9a)

y = C sinh(Av)

cosh[Bu/ cosh(K v)] . (9b)

In Fig. 3 we show how each of the parameters in coordinate trans-
formation (9) influence the shape of the function f (u, v), for a
fixed value of v = 3.5. It can be seen that A affects the maxi-
mum of the curve, which exponentially increases with A, while
B and K control the width of the Gaussian-like shape. An increase
in B leads to decrease in the curve width, while the increase in
K leads to its increase. Moreover, the curve shape and its width
are more dependent on K than on B . Since f (u, v) depends on
the products A · v and K · v , the previous consideration indicates
that for a fixed A and K , an increase in v is equivalent to the
increase in A and K for a fixed v . Thus, the increase in v si-
multaneously increases the maximum of the curve and its width,
allowing expansion of the computational domain for large |u|. It
means that the chosen function enables successful fitting of the
upper QDH heterointerface, while for a larger |v| leads to a wider
curve which might represent the boundary of the computational
domain.

However, the excellent fitting features of the chosen func-
tion (9) do not necessarily correlate with the function invertibility.
As it is mentioned in the previous chapter, these features de-
pend on the Jacobian determinant, which has to be different from
zero at all points of the computational domain. Thus, we need
to analyze the elements of the Jacobian matrix Juv , especially
yv = yv(u, v), which in this case, represents the Jacobian deter-
minant (cf. Eq. (6a)) divided by C :
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Fig. 3. (Color online.) Influence of the fitting parameters on the coordinate transformation given by relation (9).

Fig. 4. (Color online.) The cross-section profile of QDH and the computational domain in the (a) ξ - and (b) w-space.

yv = ∂ y

∂v

= C
A cosh(Av) + BKu sinh(Av) sinh(K v)

tanh[Bu/ cosh(K v)]
cosh2(K v)

cosh[Bu/ cosh(K v)] .

(10)

The functions which determine the elements in the Jacobian matri-
ces Juv and J xy are given in Appendix A. Relation (10) determines
| Juv |/C , which is different from zero for any argument u and v ,
providing the existence of the inverse coordinate transformation
and J xy matrix. Although | Juv | has no zeros within the computa-
tional domain, the determinant decreases with |u| and approaches
the zero for large |u| and small |v| and may affect the accuracy of
computation. However, this situation does not occur in the practice
for common sizes of the computational domain. From the previous
discussion, we conclude that the chosen transformation satisfies
the most important requirements for successful implementation of
the FDM including a significant domain enlargement for small vari-
ation in v .

As it is already mentioned, the profile of the QDH cross-section
in some cases can be approximated with a trapezoidal shape,
which can be fitted by the proper combination of the functions
enlisted in Table 1. One possible solution is to use the following
coordinate transformation:

x = Cu, (11a)

y = C sinh(Av)

cosh[Bu2/(F + K v2)] . (11b)

Although this mapping leads to the trapezoidal cross-section pro-
file, in the case of very wide structures (large |u|), the Jacobian

determinant is too small (≈ 0) and the mapping becomes inef-
ficient. Thus, for such structures we adopt a modified mapping,
for which the argument in denominator saturates for large |u|. In
order to fit experimentally found trapezoidal cross-section profile
given in [10], we use following coordinate transformation:

x = Cu, (12a)

y = C sinh(Av)

cosh[G tanh(Buq)/ cosh(K vp)] , (12b)

where p and q are positive integers. The corresponding elements
of the Jacobian matrices Juv and J xy for the coordinate transfor-
mation given by relation (12) are given in Appendix B. The con-
clusions concerning the coordinate transformation features derived
for the lens-like approximation are also valid in this case.

4. Computational results and discussion

In order to characterize and explore our method, we analyze
the influence of the grid density and the computational domain
size on the calculated eigenenergies. The first step in this analysis
is to find a computational domain, for which the wavefunctions,
corresponding to the eigenenergies of the QDH, can completely ac-
commodate in the domain. The dimensions of the QDH given in
Fig. 4 (W ≈ 14 nm, H = 3.5 nm) are typical for InAs/GaAs material
system. For this QDH structure, we find two bound states in the
conduction band. As shown in Fig. 4(b), the upper heterointerface
is mapped into v1 = 1.5, while the lower corresponds to v2 = 0.
The selected domain size in the mapped space is Du = ±17 and
Dv = ±3.5, while the fitting parameters are C = 1.3 nm, A = 1.2,
B = 1, K = 0.7.
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Fig. 5. (Color online.) The ground and the 1st excited state energy versus the total
number of discretization points.

For the selected domain, we proportionally and gradually
change the grid density in both directions and calculate eigen-
values for the QDH in Fig. 4. The discretization steps are equal in
both directions, i.e. � = hu = hv . Since the domain is fixed and
the discretization steps are same in both directions, mutual ratio
of the number of points in both directions is kept fixed. Thus, in
further consideration, we do not consider the number of points in
each direction (Nu,Nv ), but rather the total number of grid points
(Nuv = Nu × Nv ), corresponding to the size of the discretization
matrix. We use this quantity as a figure of merit for the computa-
tional time and memory resources required by the method.

Fig. 5 shows dependence of the calculated eigenenergies for
both bound states versus the total number of grid points Nuv . It
can be seen that for small number of the grid points, the eigenen-
ergies rapidly decay and then gradually saturate with further in-
crease in the grid density. The threshold of saturation is not clearly
noticeable, although it can be seen that the difference between
the eigenvalues for the largest (≈ 4 · 106) and any other grid den-
sity, becomes smaller than 1 meV, when the total number of grid
points is larger than 6 ·105, for the ground state, and 3 ·105, for the

Fig. 6. (Color online.) Energy of the ground (a) and the 1st excited state (b) versus computational domain size in the w-space.
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Fig. 7. (Color online.) Contour plot of the wavefunctions for the ground and 1st excited state in the ξ - and w-space for the QDH structure given in Fig. 4.

1st excited state. It means that the 1st excited state is less sensi-
tive on the grid density than the ground state. Moreover, the total
variation in the energy of the 1st excited state (from −86.3 meV
to −87.8 meV) with the number of discretization points is almost
four times smaller than for the ground state (from −415 meV to
−421.2 meV). In order to achieve a trade-off between the accu-
racy and the computational time, we set a criterion for the optimal
number of grid points. If the deviation of calculated eigenener-
gies from the eigenenergy obtained for the largest number of dis-
cretization points is smaller than 1 meV, for all eigenstates, we
consider the number of discretization points sufficient and accept-
able for further computation. According to Fig. 5 we find that
the minimum number of total discretization points for the given
computational domain and accurate calculation is 6 · 105. In other
words, this number of points is the optimal one, for the adopted
domain size and accuracy of 1 meV.

By using the dependence shown in Fig. 5, we are able to cal-
culate the convergence rate of our method, which is ≈ 1 for the
ground state and ≈ 1.3 for the first excited state [25]. This is an
expected result, having in mind that the standard version of the fi-
nite differences has been implemented. However, the convergence
rate can be improved by implementation of more sophisticated
discretization methods, which we do not study here.

In order to make a fair comparison with the FEM, we perform
the FEM calculation on the computational domain in
ξ -space, which fully corresponds to domain used by our method
in w-space. At the same time, we keep the number of elements
in the FEM computation approximately equal to the number of
points Nuv . However, a direct correspondence between number of
points in our methods and elements in the FEM is not fully jus-
tified since the mesh in the FEM is not homogeneous as in the
FDM. We find a fairly good agreement with our calculation, for
which the eigenenergies differ less than one tenth of 1 meV from
the eigenenergies calculated by the FEM. Regarding the computa-

tional time, we find our method more favorable than the FEM. As
an illustration, we present the test of two methods performed on
a desktop computer using 64-bit Windows 7 platform with Intel
Core2Quad@2.66 GHz processor and 8 GB DDR2 memory (available
physical memory 6.47 GB). After setting the number of discretiza-
tion points (or FEM elements) to Nuv = 0.55, 1.27, 1.87 millions,
our method completes calculation in 2.3, 13, and 34.1 min, while
the FEM runs for 15.5, 82.3, and 179.6 min, respectively. This in-
dicates that our method is at least 5 times faster than the FEM.
Although our method is still superior for larger number of points,
the comparison is not further reliable since both methods start to
use virtual memory.

In Fig. 6 we show the energies of the ground and the first
excited state versus the domain size in the u and v direction,
for a fixed discretization step � = 0.013. As one may expect, if
the domain size is too small either in the u or v direction, the
wavefunction cannot accommodate properly in the computational
domain. In this case, a narrow domain acts as an additional infi-
nite potential, raising the eigenenergies of both bound states. The
domain for which the energy of the excited state reaches the sat-
uration is not easy to recognize, although one can roughly adopt
the region 2Du � 20 and 2Dv � 5.8, for which variation in the
eigenenergy is smaller than 0.5 meV. The situation is much more
favorable for the ground state, which is less sensitive on variations
in the domain size. In this case, the order of magnitude of the
ground state energy variation is 10−2 meV for all considered di-
mensions of the computational domain, which is almost negligible
in comparison with the first excited state. It can be seen that the
saturation region is much more pronounced than for the excited
state and comprises region 2Du � 18 and 2Dv � 5.7, in which the
energy variation is smaller than 10−3 meV. It should be noted that
the sufficient domain size in w-space does not depend on actual
QDH size but rather on its shape i.e. its width and height ratio.
This feature is enabled by scaling factor C , which is used to set all
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dashes of the same shape, regardless to their size, into the same
domain in w-space.

In Fig. 7 we show the distribution of the wavefunction in the
ξ = ξ(x, y) and w = w(u, v) space. It can be seen that in the w-
space the wavefunctions for both states (Fig. 7(a)) are compressed
along the v-direction in the middle of the computational domain.
This is a consequence of implemented mapping, which in the w-
space expands the region in the vicinity of the QDH corners and
simultaneously compresses the space in the middle of the QDH.
After implementation of the inverse mapping from the w- to the
ξ -space, both wavefunctions nicely fit in the chosen computational
domain.

In the case of trapezoidal QDH given in Ref. [10], we use the co-
ordinate transformation (12) and find following fitting parameters:
p = 2, q = 6, A = 1, C = 1.5 nm, G = 20, B = 10−5, and K = 1. The
corresponding fit of the QDH cross-section profile and the compu-

Fig. 8. (Color online.) The trapezoidal QDH profile and corresponding computational
domain.

tational domain in the ξ -space are shown in Fig. 8. The form of
the computational domain in the mapped space is the same as in
Fig. 4(b). It should be noted that the mapping given by relations
(11), although simpler, can reproduce narrower and higher trape-
zoidal shapes.

By implementing the same procedure as before, we calculate
the corresponding discrete energies and wavefunctions shown in
Fig. 9, which nicely accommodate into the selected computational
domain. However, the problem in this case is the elongated shape
of the QDH profile, which in comparison with the height of the
QDH is one order of the magnitude larger and thus very difficult
to fit with a simple combination of functions. Relation (12) pro-
vides not only a very broad and flat upper heterointerface of the
QDH, but also the proper angle of the lateral sides of the trapeze.
This angle is very important since it significantly affects the wave-
function distribution and indicates that approximation of the QDH
by simple rectangular shape is not an adequate replacement for
the trapezoidal profile. Moreover, the proposed coordinate transfor-
mation and the method simplify the implementation of the FDM,
compared to the case when the problem is solved in the original
ξ -space.

5. Conclusion

The paper presents an efficient and simple method for the band
structure and wavefunction calculation of quantum dashes. The
method is based on the coordinate transformation of the QDH
structure, the computational domain and the Hamiltonian, fol-
lowed by implementation of the FDM in the new computational
space. The method versatility comes from a broad set of function
families which can fit the upper QDH heterointerface and gener-
ate the computational domain of the proper form and size. Some
of these functions are proposed in the paper and their features are
studied. We find that the coordinate transformation (9) provides
simple and flexible fitting of the most common, lens-like QDH pro-
file, while the transformation (12) is very suitable for trapezoidal
QDH cross-section shape. Our numerical investigation showed that
there is a sufficient computational domain size, for which the vari-
ation of the eigenenergies with domain size can be reduced below
a certain limit, in our case 10−2 meV. For the considered lens-
like profile, the sufficient domain size is 2Du � 20 and 2Dv � 5.8.
The limits of the sufficient domain, and consequently the total

Fig. 9. (Color online.) Contour plot of the wavefunctions for the ground (a) and the first three excited states (b–d) in the ξ -space for the trapezoidal QDH structure in Fig. 8.
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number of discretization points, do not depend on QDH size, but
rather on their shape and dimensions ratio. Thus, the domain is
the universal domain for QDHs with same shape and different
sizes. For given QDH lens-like profile and the optimal total number
of points (approximately 6 · 105) or even larger, the method pro-
vides stable eigenvalue solutions. The proposed method exhibits
solid stability and flexibility with respect to the size and shape
of the QDH and the computational domain. Due to its simplicity,
it is very promising for implementation in the case of multiband
Schrödinger-equation.
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Appendix A. The elements in the Jacobian matrices Juv and Jxy
for QDHs with the lens-like cross-section profile

For the coordinate transformation given by Eq. (9), the elements
of the Jacobian matrix Juv are:

yu = ∂ y

∂u
= −C

B sinh(Av) sinh
� Bu
cosh(K v)

�

cosh(K v) cosh2� Bu
cosh(K v)

� , (A.1)

yv = ∂ y

∂v

= C
A cosh(Av) + BKu sinh(Av)

sinh(K v)

cosh2(K v)
tanh

� Bu
cosh(K v)

�

cosh
� Bu
cosh(K v)

� ,

(A.2)

while, the elements of Jacobian matrix J xy are:

vx = ∂v

∂x

= 1

C

B sinh(Av)
cosh(K v)

tanh
� Bu
cosh(K v)

�

A cosh(Av) + BKu sinh(Av)
sinh(K v)

cosh2(K v)
tanh

� Bu
cosh(K v)

� ,

(A.3)

v y = ∂v

∂ y

= 1

C

cosh
� Bu
cosh(K v)

�

A cosh(Av) + BKu sinh(Av) · sinh(K v)

cosh2(K v)
tanh

� Bu
cosh(K v)

� .

(A.4)

Appendix B. The elements in the Jacobian matrices Juv and Jxy
for QDHs with the trapezoidal cross-section profile

For the coordinate transformation given by Eq. (12), the ele-
ments of the Jacobian matrix Juv are:

yu = ∂ y

∂u
=

−C BGquq−1 sinh(Av) tanh
�
G tanh(Buq)

cosh(K vp)

�

cosh2(Buq) cosh(K vp) cosh
�
G tanh(Buq)

cosh(K vp)

� ,

(B.1)

yv = ∂ y

∂v
= C

�
A cosh(Av) + KGpvp−1 sinh(Av)

× tanh(Buq)
tanh(K vp)

cosh(K vp)
tanh

�
G
tanh(Buq)

cosh(K vp)

��

×
�
cosh

�
G
tanh(Buq)

cosh(K vp)

��−1

, (B.2)

while the elements of the Jacobian matrix J xy are:

vx = ∂v

∂x
=

BGquq−1 sinh(Av) tanh
�
G tanh(Buq)

cosh(K vp)

�

C cosh2(Buq) cosh(K vp)

×
�
A cosh(Av) + GKpvp−1 sinh(Av)

× tanh(Buq)
tanh(K vp)

cosh(K vp)
tanh

�
G
tanh(Buq)

cosh(K vp)

��−1

, (B.3)

v y = ∂v

∂ y
=

�
1

C
cosh

�
G
tanh(Buq)

cosh(K vp)

��

×
�
A cosh(Av) + GKpvp−1 sinh(Av)

× tanh(Buq)
tanh(K vp)

cosh(K vp)
tanh

�
G
tanh(Buq)

cosh(K vp)

��−1

. (B.4)
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In the paper, we investigate the miniband structure of one-dimensional quantum dash array and

its dependence on geometrical parameters by using a newly developed and efficient numerical

method. We show that miniband energy significantly depends on the dash height and width,

while the miniband width depends on the array period and the dash width. The excited

minibands may exhibit the effect of zero miniband gap and the multiple anticrossings, which

are followed by the swapping of the character of adjacent minibands top and bottom. The

wetting layer allows formation of a miniband cluster in the vicinity of the well top, which

essentially represents the barrier continuum embedded into the well of array. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4770437]

I. INTRODUCTION

Recent studies have shown that photonic devices incor-

porating semiconductor nanostructures in which the elec-

tronic motion is confined in more than one spatial direction,

may overcome some of the limitations of quantum well

based devices, especially short excited-state carrier lifetime,1

caused by numerous in-plane scattering paths.2 Self-

assembled nanostructures, as three-dimensionally (3D) con-

fined quantum dots (QDs) or their elongated version with 2D

confinement, called quantum dashes (QDH), may provide

the additional confinement required for reduction of scatter-

ing events or improvement of optical transitions strength and

polarization. Therefore, investigation of their electronic

structure is a basis for further understanding and optimiza-

tion with respect to carrier scattering processes and its life-

time, optical transitions strength and polarization type.

The electronic band structure in these nanostructures is

usually studied thoroughly for an isolated system comprising

the well and the barrier region and corresponding strain and

potential distribution.3–8 However, due to self-assembled

growth, these nanostructures form an ensemble in which dots

or dashes are usually distributed in the close proximity of

each other, leading to a quantum mechanical coupling.9 Due

to the coupling, the electronic band structure as well as the

optical properties of these nanostructures may significantly

differ from those for an isolated dot or dash.

In this paper, we present an efficient numerical method,

based on coordinate transformation and the finite differences

method, which provides calculation of electronic band struc-

ture of quantum dash array. In the case of sufficiently high

compressive strain, which is common for QDHs, it is possi-

ble to consider heavy and light holes decoupled and apply

this method even in the calculation of the QDH valence band

structure.5,9 Due to a stochastic distribution, QDH array may

consist of dashes with different cross-section, which means

that their width, height, shape and even separation of adja-

cent dashes might be different.8–11 However, our model is

based on the assumption that the QDH ensemble consists of

equally long dashes with the same cross-section profile

distributed in a periodic array. Although the model can not

provide precise insight into electronic band structure of array

consisting of QDHs with randomized cross-section dimen-

sions, it can help to understand and reveal the influence of

different geometrical parameters of the QDH array on the

electronic band structure. Therefore, we investigate how the

QDH width and height as well as the period of array, affect

electronic states in the QDH conduction band.

We focus our investigation on two different material

systems. As first, we study InAs/InAlGaAs QDHs, where

InAlGaAs is latticed matched to InP. Although this material

system is useful for telecom applications due to interband

emission at 1.5 lm, it was recently implemented as the active

region of a quantum cascade laser.2 However, the well in

this material system is shallow and doesn’t provide sufficient

depth for different minibands and effects which may occur

in deeper wells. Thus, we extend our research on InAs/GaAs

QDHs, which due to a larger depth exhibit more interesting

effects in the electronic band structure.

In Sec. II, we give details of our method, which com-

bines specially designed coordinate mappings and finite dif-

ferences for calculation of electronic band structure. In Sec.

III, we present application of the method to InAs/InAlGaAs

QDH array. In this section, we show and discuss how elec-

tronic minibands depend on the QDH height, full width at

half of the height, and the array period, and compare results

obtained for different material systems. In the last section we

present conclusions of this paper.

II. DESCRIPTION OF THE METHOD

In our analysis of minibands, we take into account the

wetting layer (WL), formed as a consequence of self-

assembled growth of InAs islands. The strength of quantum

mechanical coupling between dashes in the QDH material

depends on the WL thickness (tW) and the density of QDHs,

as well as on the actual profile of the QDH’s cross-section.

The WL thickness tW is defined as the well material thick-

ness in the middle of two neighbouring QDHs [Fig. 1(a)].

Parameters of the QDH cross section are the maximum
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height of the QDH array denoted by H, and the full width at

half maximum W of a single QDH with respect to the wet-

ting layer thickness [Fig. 1(a)]. Material parameters and the

conduction band offset (Table I) are taken from Refs. 12 and

13, assuming compressively strained dashes.9 Since QDHs

exhibit the quantum-wire like nature,4 we approximate them

with infinitely long wires and focus only on their profile of

carrier confinement in the transversal x-y plane [Fig. 1(a)].

Thus, the quantization in the longitudinal z-direction leads to

a quasi-continuous subband structure, the energy of which is

well approximated with parabolic dependence on corre-

sponding wave vector kz.

The conduction band structure of the periodic array of

QDHs is modelled by using the single-band Schr€odinger

equation in the envelope function approximation:

� �h2

2

@

@x

1

m�
@w
@x

� �
þ @

@y

1

m�
@w
@y

� �� �
þ �h2k2

z

2m�
þ U

� �
w ¼ Ew;

(1)

where w ¼ wðx; yÞ is slowly varying part of the total wave-

function, U¼U(x, y) is the 2D potential profile determined

by the heterointerface of the well and the matrix material

and the conduction band offset DEc; m� ¼ m�ðx; yÞ is the

electronic effective mass, while E is the confinement energy

referenced to the conduction band edge of the QDH barrier

material. In our analysis, we are interested only in the eige-

nenergies corresponding to the subband bottom, for which

kz ¼ 0.

Although realistic QDH ensemble comprises nonuni-

formly distributed InAs islands, in our calculation we analyze

the array of identical QDHs equally spaced in the x-direction.

Therefore solution of Eq. (1) satisfies Bloch theorem for the

wave function wðx; yÞ in periodic potential:

wðxþ L; yÞ ¼ expðiKLÞwðx; yÞ; (2)

where L is the period of QDH array in the x-direction, while

K is Bloch wave number (miniband wavevector). The

extreme values of the phase shift factor expðiKLÞ, þ1 and

�1, corresponding to KL¼ 0 and KL ¼ p, respectively,

determine boundaries of the minibands and corresponding

wavefunctions. Since the periodicity exists only in the

x-direction, while in the y-direction there is no coupling

between dashes, formation of the minibands is limited to the

range of energies below the band edge of the QDH barrier

material. The full periodicity can be achieved by stacking

additional arrays of quantum dashes on the top of each other.

In this case, the minibands can be formed in and above the

well. In the paper, we focus on the single array of QDHs.

Depending on the material system, nominal thickness of

the InAs layer and growth parameters, e.g. the growth temper-

ature, group-III/V ratio and growth rate, self-assembled QDHs

may have different dimensions and shapes of the cross-section

profiles.8–11 Thus, the functions used for coordinate transfor-

mation and the QDH cross-section profile fitting may differ

significantly. Before we proceed with a detailed description of

these functions, we generally present the method used for cal-

culation of the electronic band structure.

The method is based on the combination of coordinate

transformation and the finite differences method (FDM).12

Essentially, the coordinate transformation maps the well,

i.e., the profile of the dash array cross-section, and surround-

ing barrier space, which has to be sufficiently large to natu-

rally accommodate the wavefunctions [Fig. 1(a)], into the

computational domain with straight boundaries and heteroin-

terfaces [Fig. 1(b)]. Since we apply the periodic boundary

condition (2), the computational domain in the x-direction is

limited to the elementary cell of the array, which is deter-

mined by the array period L. This converts the computational

domain from infinite stripe into a rectangle, and enables the

solving of the single-band Schr€odinger equation in the new

coordinates by straightforward implementation of the finite

differences method.

The form of invertible coordinate transformation is

given by:

x ¼ u;

y ¼ f ðu; vÞ:
(3)

FIG. 1. The cross-section profile of QDH array and the computational do-

main in (a) the real xy-space, and in (b) the mapped uv-space. Dashed lines

represent boundaries of the computational domain and the elementary cell of

the QDH array.

TABLE I. Material parameters used for band calculation.

InAs GaAs In0:53Ga0:23Al0:24As

m�ðm0Þ 0.0221 0.0623 0.0547

DEc(meV) 858.7 396.9
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In order to describe the periodic array of QDHs and provide

proper implementation of the boundary conditions, function

f(u, v) must be periodic with respect to u with period L. More-

over, suitable functions f(u, v) should provide good fitting of

the heterointerfaces in transversal plane, as well as rectangular

profile of the well region within the elementary cell in the uv-

space. Advantage of the approach based on coordinate map-

ping compared to direct implementation of FDM without the

mapping is that potential problems with curvilinear boundary

conditions or their careful implementation can be avoided.14,15

Moreover, the profile of analyzed QDH can be varied simply

by changing parameters of function f(u, v).

By using coordinate transformations (3), Eq. (1) in the

xy-space for kz ¼ 0 is mapped to equation:
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þ Uw ¼ Ew; (4)

in the uv-space, where wðu; vÞ ¼ w½xðu; vÞ; yðu; vÞ�; Uðu; vÞ
¼ U½xðu; vÞ; yðu; vÞ�; m�ðu; vÞ ¼ m�½xðu; vÞ; yðu; vÞ�. Accord-

ing to the inverse function theorem, lðu; vÞ and qðu; vÞ are

given by l¼ lðu; vÞ ¼ vx ¼�fu=fv; q¼ qðu; vÞ ¼ vy ¼ 1=fv,
where fu and fv denote partial derivatives of f(u, v) with

respect to u and v. Jacobian matrices Juv and Jxy of transfor-

mation (3) and inverse transformation, respectively, are

Juv ¼
�

xu xv

yu yv

�
¼
�

1 0

fu fv

�
; (5a)

Jxy ¼
�

ux uy

vx vy

�
¼
�

1 0

�fu=fv 1=fv

�
¼
�

1 0

l q

�
; (5b)

so that invertibility condition of transformation (3) is simply

jJuvj ¼ jJxyj�1 ¼ fv 6¼ 0. The form of transformation (3), as

well as the periodicity of f(u, v), provide that the periodic

boundary condition (2) in the xy-space maps correctly into

the uv-space and incorporates in the FDM scheme in

straightforward manner. In case that f(u, v) was an aperiodic

function, the mapped space beyond the boundaries of the cell

would be improperly mapped, which might lead to degrada-

tion of the boundary conditions.

The function f(u, v), as well as lðu; vÞ and qðu; vÞ, are

given by analytical expressions. In addition, the well region

corresponding to the elementary cell is a rectangle in the

uv-space [Fig. 1(b)]. The computational domain in the uv-

space is also a rectangle which is chosen to be large enough

to comprise the well region of the elementary cell and corre-

sponding wavefunctions [Fig. 1(b)]. Thus Eq. (4) can be

directly discretized by using standard central differences.12

Since the periodicity exists only in the u-direction, we

apply Dirichlet boundary condition in the v-direction, i.e.,

wðu; vÞ ¼ 0 at the edge of the computational domain in

the v-direction (jvj ¼ Dv). The boundary condition in the

u-direction is wðL=2; vÞ ¼ expðiKLÞwð�L=2; vÞ. The imple-

mentation of the finite differences scheme provides that the

boundary conditions on heterointerfaces are naturally built in

into the discretization and need not be enforced explicitly.

If the upper heterointerface of the QDH can be fitted by

y ¼ f ðu; vgÞ ¼ gðuÞ, where vg is corresponding v coordinate,

all introduced parameters can be related to function g(u) as

follows: tW ¼ gð6L=2Þ, H¼ g(0) and finally ðH � tWÞ=2

¼ gð6W=2Þ � tW , as shown in Fig. 1. Due to the symmetry

of the profile of QDHs in the array, f(u, v) and g(u) are even

functions with respect to u.

We first introduce transformation which provides fitting

of the Gaussian-like QDH profile, given by following analyt-

ical expression (Gauss-mapping):

x¼ u;

y¼ f ðu;vÞ

¼ sinhðAvÞ DþFexp �Csin2 p
L

u
� �

expð�Bv2Þ
h in o

:

(6)

As we already mentioned, the function gðuÞ ¼ f ðu; vgÞ, fits

the upper heterointerface of QDH in the xy-space for v ¼ vg,

while the lower heterointerface of QDH, represented by the

straight line y¼ 0, corresponds to v¼ 0. However, vg is also a

fitting parameter, which depends on the actual dimensions of

the QDH elementary cell and positive constants A, B, C, D
and F. Although all these parameters generally provide the fit-

ting of the QDH cross-section profile and the adequate shape

and dimensions of the computational domain, each of them

differently affects the fitting of various geometrical parame-

ters of the QDH elementary cell. For example, parameters A
and B provide control of the computational domain dimen-

sions in the xy-space. Once A and B are adopted, it is possible

to investigate other parameters as C, D and F, which are rele-

vant for precise fitting of the upper heterointerface within the

elementary cell of QDH array. For example, D and F are used

to fit the thickness of the wetting layer, since for common C
and B-values the expression for the wetting layer thickness

tW¼gð6L=2Þ¼sinhðAvgÞfDþFexp½�Cexpð�Bv2
gÞ�g, besides

a scaling cofactor sinhðAvgÞ, is dominantly determined by D
and F. In addition, D and F considerably affect the fit of

the QDH height, since gð0Þ¼sinhðAvgÞðDþFÞ. Finally, C is

used to fit the QDH width and its Gaussian-like profile. By

using relation (6) it is possible to calculate C, D and F for

a wide range of geometrical parameters tW , H, W.

We find that coordinate transformation (6) cannot be

used for fitting QDH arrays with densely packed QDHs. In

this case, W/L ratio is relatively large, causing that C, D and

F may not be positive. Moreover, the coordinate transforma-

tion becomes noninvertible. In order to analyze QDH arrays

with large values of W/L, we use another coordinate transfor-

mation (Atanh-mapping) given by:

x ¼ u;

y ¼ f ðu; vÞ ¼ sinhðAvÞ
Dþ arctanh½Csin2ðpu=LÞ�=coshðBvÞ

:
(7)

Here, positive parameters vg and B are used to control

dimension of the computational domain in the xy-space.

Once vg and B are fixed, Eq. (7) can provide positive param-

eters A, C and D in terms of tW , H, W.

Fig. 2(a) shows the profiles of QDHs, fitted by Atanh-

mapping [Eq. (7)], for which the dash width W and the
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period L are comparable. It can be seen that such QDH

dimensions (i.e., W¼ 7 nm and L¼ 8 nm) correspond to

almost vertical edges of the QDH elementary cells, which is

common profile in the case of densely packed QDH arrays.

The profile obtained from Atanh-mapping for relatively

small ratios (e.g., W¼ 7 nm, L¼ 20 nm), can be equally well

fitted by Gaussian profile defined by Eq. (6). For much

smaller W/L ratios, the profile of QDH heterointerface can be

better fitted by Gauss-mapping than by Atanh-mapping,

since Eq. (6) provides very small values W/L. Figs. 2(b) and

2(c) show profiles of QDH array for various heights and all

other parameters fixed, obtained for Atanh-mapping and

Gauss-mapping, respectively. It can be seen that Eq. (6),

which is used for larger L and smaller W/L ratio, provides

broad range of Gaussian or lens-like QDH profiles with dif-

ferent heights [Fig. 2(c)], while Eq. (7), specialized for

smaller L and larger W/L ratio, enables fitting of triangular-

like profiles [Fig. 2(b)]. Figs. 2(d) and 2(e) depict the profile

families derived from Eqs. (7) and (6), respectively, for

which we vary the width W and keep all other parameters

fixed. It can be seen that variation of W in the case of Gauss-

mapping, besides lens-like profile, provides bell-like profile,

for which the width can be very small. On the other hand,

Atanh-mapping may produce much larger variety of profiles,

which range from concave to convex shapes [Fig. 2(d)].

III. RESULTS AND DISCUSSION

The method described in Sec. II is generalization of the

method we implemented on a single QDH.12 Here, we

extend the method to the one-dimensional array of QDHs, by

using periodic functions for fitting the array heterointerface.

The efficiency and convergence of the method are already

investigated and presented in the case of the single QDH.12

Since the only significant change in the case of QDH array

are fitting functions, which must satisfy the same conditions

as those used for isolated QDHs, especially the invertibility

condition described in the previous section, further investiga-

tion and characterization of the method are not needed.

Essentially, the method proposed in Ref. 12 is revised to

account for the periodic boundary conditions and instead of

its implementation on an isolated QDH, it can be applied on

the elementary cell of the QDH array. It means that method

performances are not affected, as long as the invertibility

condition is well satisfied.

In this section, we study the influence of geometrical pa-

rameters of the QDH array on its band structure. The analy-

sis is based on the variation of the array period L, QDH

width W and height H. In this study, the wetting layer thick-

ness is set to tW ¼ 0:5 nm. However, the influence of the

wetting layer thickness is also included in the discussion. In

the analysis we vary one parameter at time, while other two

are fixed and set to some average value. All calculations are

performed for at least two different periods L, where one cor-

responds to large, while the others are for small W/L ratio.

First, we study InAs/InAlGaAs QDH array, latticed matched

to InP, and then QDH array based on InAs/GaAs which

provides much deeper well.

Fig. 3 shows the miniband profile versus the array period

L for two fitting functions, given by Eq. (7) [Figs. 3(a), 3(c),

3(f)] and Eq. (6) [Figs. 3(b), 3(d), 3(e), 3(g), 3(h)] for InAs/

InAlGaAs QDH array. The QDH width is set to W¼ 7 nm,

therefore for the range of period L from 8 to 20 nm it is more

suitable to use Atanh-mapping since the ratio W/L is rela-

tively large. For larger L, W/L ratio is smaller and much bet-

ter fitting can be achieved by using Gauss-mapping. It can be

seen that for densely packed QDHs there is a single and wide

miniband [Fig. 3(a), L < 12 nm], which becomes narrower

for increased period of the array and converges to the ground

discrete state for L > 25 nm [Fig. 3(b)]. The coupling of

QDHs also leads to formation of higher minibands, which

become bound minibands for sufficiently large L
(L > 12 nm). In other words, the excited minibands are part

of the continuum for positive energies, i.e., small array peri-

ods. However, for large L, due to decreased quantum-

mechanical coupling, these excited minibands become bound

and narrower with respect to energy and tend to converge to

the discrete excited states as the period increases. Finally, in

the case of weak coupling between QDHs, i.e. for large L
corresponding to almost isolated dashes, the band structure

of the QDH array comprises one discrete state and wide

band, consisting on a few almost joined minibands, close to

the top of the well.

The variation of the QDH height H shows that for

densely packed array, for which the ratio W/L is relatively

large [Fig. 3(c)], height variation slightly affects the ground

miniband width, especially for larger H-values. This result is

not surprising, since the QDH coupling and consequently the

miniband width depends on horizontal distance between the

adjacent dashes (i.e., L or W) rather than on their vertical

size. On the other hand, the variation of the QDH height H,

FIG. 2. Profile of the QDH cross-section (a) for H¼ 3 nm, W¼ 7 nm and

various array periods L¼ 8, 12, 16, and 20 nm. Same for different heights

H¼ 1 – 5 nm for QDH array with W¼ 7 nm and (b) L¼ 14 nm or

(c) L¼ 23 nm. Same for different widths (d) W¼ 4, 6, 8, 10 and 12 nm for

QDH array with H¼ 3 nm and L¼ 14 nm, and (e) W¼ 2, 4, 6, 8 and 10 nm

for QDH array with H¼ 3 nm and L¼ 23 nm. Profiles in (a), (b), and (d) are

obtained by fitting with Atanh-mapping, while (c) and (e) correspond to

Gauss-mapping.

123716-4 Stupovski, Crnjanski, and Gvozdic J. Appl. Phys. 112, 123716 (2012)

D
ow

nloaded from
 http://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/1.4770437/15096585/123716_1_online.pdf



representing the QDH dimension in the direction of stronger

confinement, leads to pronounced variation of the miniband

energy. Similarly as for an electron in the infinitely deep

quantum well, energy of which is inversely proportional to

the square of the well width, the QDH miniband energy

varies more rapidly with thickness variation for thinner than

for thicker wells. Thus variation of the QDH height causes

sudden change of the miniband energy. The dependence of

the ground miniband width on H is, to some extent, different

for relatively large L-values [Figs. 3(d) and 3(e)], since the

miniband is already very narrow and its width slightly

decreases with increase of H only for small H (1–2 nm). The

reason is that increased H provides more space for the wave-

functions, which expand in the y- rather than in the x-direc-

tion, and in such way effectively reduces coupling among

the dashes.

The increase of the dash width W, similarly as the

increase of H, leads to the decrease of miniband energy.

However, the width increase, for large W/L ratio, leads to the

increase of the ground miniband width [Fig. 3(f)]. As a mat-

ter of fact, the width increase effectively decreases the period

L, since the lateral sides of dashes come closer to each other

[c.f. Fig. 2(a)]. As a result, the ground miniband becomes

wider with increase of the QDH width. For smaller W/L ratio

or large L, the QDH width weakly affects width of the mini-

bands [Figs. 3(g) and 3(h)], although they decrease with W.

For sufficiently large L, the miniband dependence on

width and height exhibits zero miniband gap effect (ZMBG),

which can be observed for excited minibands, close to the

top of the well [insets in Figs. 3(e) and 3(h)]. This effect is

followed by miniband anticrossing. In other words, for the

critical dimensions of QDH, the character of the top of the

lower miniband is exchanged with the bottom of the higher

miniband. The effect can be seen only for larger L, since the

excited minibands, which are close to the well top, split due

to the decrease of coupling, providing more minibands with

smaller width. The effect can be also found in the case of

variation of L, although it is not shown in figures.

The effect of zero miniband gap had been previously

found in one-dimensional effective-mass superlattices.16 It

was shown that the effect can be noticed only for the mini-

bands in the barrier (above the top of the well), in the case of

variation of transversal, i.e., in-plane wave-vector kt. The an-

alytical treatment, which can be applied for the one-

dimensional superlattices case, shows that the effect occurs

for a certain conditions satisfied by the well and barrier

width, and their corresponding effective masses. However,

in the case of QDH array, the problem seems to be too com-

plicated for analytical treatment. As it is shown in Fig. 3, the

occurrence of the ZMBG effect depends on all three parame-

ters (L, W, H). By using our numerical technique, we find

that plots similar to Fig. 3 corresponding to kz > 0 exhibit

the shift of the ZMBG toward larger dimensions, i.e., larger

L, W and H. The reason for this is the difference between the

effective masses in the barrier and the well. Since the effec-

tive mass in the barrier is larger than the mass in the well,

the increase of kz effectively decreases the well depth, lead-

ing to weaker variation of subbands energy with dash dimen-

sion, than for kz ¼ 0. As a result, for kz > 0, the ZMBG

occurs for larger QDH dimensions, than for kz ¼ 0.

The presence of the wetting layer allows the barrier

minibands to sink into the well and to exhibit the effect of

zero miniband gap for energies for which the effect is not

usually expected. Our calculation shows that the increase of

the WL thickness increases the dash coupling and leads to

the increase of the minibands width, their number and depth

in the well. On the other hand, the decrease of the wetting

layer to zero shows that the miniband structure almost com-

pletely disappears for large L, leaving only discrete energies.

Consequently, the ZMBG effect is also vanishing in this

case.

The ZMBG effect is followed by the anticrossing phe-

nomenon, which is closely investigated in the case of height

variation [zoom in Fig. 3(e)]. Fig. 4 shows the wavefunctions

at the bottom of the 3rd and at the top of the 2nd miniband,

for two height values, H¼ 3.2 nm and H¼ 3.6 nm, close to

the critical height H¼ 3.4 nm, for which the zero miniband

gap occurs. The boundary conditions at the extremes of the

particular miniband (at its top and the bottom) have different

sign of the phase shift factor expðiKLÞ, which can be þ1 or

FIG. 3. The miniband structure for the periodic InAs/InGaAlAs QDH array

with tW ¼ 0:5 nm with respect to (a)-(b) period L, (c)–(e) QDH height H,

and (f)–(h) QDH width W. The miniband structure in (a), (c), and (f) corre-

spond to QDH arrays obtained by fitting with Atanh-mapping, while those in

(b), (d), (e), (g), and (h) correspond to the QDH arrays obtained by fitting

with Gauss-mapping. Insets show zero-band-gap region between 2nd and

3rd miniband.
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�1, depending on the miniband order. In addition, the sign

of the phase factor, for the particular miniband extreme,

according to the one-dimensional Kronig-Penney model,

should alternate for adjacent minibands. According to this,

the top of the 2nd and the bottom of the 3rd miniband should

both correspond to the same, in this case, positive phase fac-

tor (þ1). In principle, the wavefunction of the higher mini-

band should have different parity or more precisely, larger

number of nodes in one or the other confinement direction,

than the lower miniband. Figs. 4(a) and 4(b) representing the

wavefunctions of the states denoted by a’ and b’ in the inset

of Fig. 3(e), show that the wavefunctions corresponding to

height smaller than the critical (H¼ 3.2 nm) do not follow

this rule. However, for heights larger than the critical

[H¼ 3.6 nm, points b and a in the inset of Fig. 3(e)] the rule

applies again [Figs. 4(c) and 4(d)]. This means that for the

states at the top and the bottom of the adjacent minibands,

for which the ZMBG occurs, swap the character, i.e., wave-

functions parity, while keeping the same phase factor.

In order to further investigate minibands in the QDH

array, we calculate the band structure for deeper wells, which

occur in InAs/GaAs QDH array. Fig. 5 shows the miniband

profile versus dash period L, for larger W/L ratio [Fig. 5(a)]

with fitting function given by Eq. (7), and for smaller W/L,

corresponding to the fitting function (6) [Fig. 5(b)]. It can be

seen that the number of minibands is increased, as one may

expect, compared to the previous material system. In addi-

tion, the minibands more rapidly converge to discrete states

with the increase in L. Similar results are obtained for varia-

tion of H [Fig. 5(c)–5(e)] and W [Fig. 5(f)–5(h)]. It should be

noted that the effect of zero miniband gap is quite common

in deeper wells. As shown in Figs. 5(e) and 5(h), it can occur

more than once for particular miniband and cause alternation

of the wavefunction parity for the considered range of geo-

metrical parameters.

The material system of InAs/GaAs represents better

environment for explanation of the ZMBG effect, than the

previous one. In order to qualitatively explain the effect we

closely inspect Fig. 5(h) and the anticrossing of the 2nd and

3rd miniband shown as schematics in Fig. 6. We start with

small QDH widths (W < 3 nm), for which the wavefunctions

of the 2nd and 3rd miniband are mainly situated in the wet-

ting layer. This can be seen in the left column of Fig. 6 show-

ing profiles of the wavefunctions for W¼ 2.5 nm. The widths

of the minibands are very narrow. This is due to the fact that

array period L is large enough that modulo of the wavefunc-

tions corresponding to the extremes of the miniband are very

similar, although the wavefunctions themselves have differ-

ent parity due to the opposite phase factors. The increase of

the QDH width provides more space for the wavefunction to

accommodate into the QDH region. As long as the wave-

function is mainly situated into the wetting layer, the

increase of the QDH width does not affect the miniband

energy. Once the QDH width is large enough to accommo-

date a considerable part of the wavefunction, the increase of

the QDH width will decrease the energy of the miniband or

its extreme. However, due to different parity, the extremes of

a miniband or the closest extremes of two adjacent mini-

bands, have different critical widths for which their energy

begins to decrease. For example, the top of the 2nd miniband

has the same phase factor as the bottom of the 3rd miniband.

FIG. 4. Profile of the wavefunctions for QDH with L¼ 35 nm, W¼ 7 nm and

H¼ 3.2 nm (a) at the bottom of the 3rd and (b) at the top of the 2nd mini-

band. (c) and (d): Same for H¼ 3.6 nm, respectively.

FIG. 5. The miniband structure for the periodic InAs/GaAs QDH array with

tW ¼ 0:5 nm with respect to (a)–(b) period L, (c)–(e) QDH height H, and

(f)–(h) QDH width W. The miniband structure in (a), (c), and (f) correspond

to the QDH arrays obtained by fitting with Atanh-mapping, while those in

(b), (d), (e), (g), and (h) correspond to the QDH arrays obtained by fitting

with Gauss-mapping.
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In spite of that, the parity of these two wavefunctions is dif-

ferent, similarly as the parity of the top and the bottom of

any of these two minibands. Due to larger number of nodes

in the wavefunction (solid dot marker and corresponding

wavefunction for W¼ 2.5 nm) the top of the 2nd miniband

begins to decrease for larger widths than the bottom of the

3rd miniband, which wavefunction has smaller number of

nodes (open square marker and corresponding wavefunction

for W¼ 2.5 nm). Thus, for widths for which the bottom of

the 3rd miniband decreases, the top of the 2nd miniband is

almost constant. As a result, these two extremes approach

each other, leading to the anticrossing of the minibands and

the swap of the wavefunctions parity (solid dot and open

square markers and corresponding wavefunctions profiles for

W¼ 7.5 nm).

In general, the band structure at the top of the well con-

sists of densely packed minibands, which represent a kind of

so-called bound continuum. It can be expected that careful

design of such complex continuum may provide efficient cap-

ture and relaxation of carriers into the QDH well, which might

be essential for applications comprising optical transitions.

IV. CONCLUSIONS

The paper presents an efficient method for the calcula-

tion of the miniband structure of one-dimensional periodic

QDH array, and based on the method, provides an analysis

of its miniband character versus geometrical parameters. The

method is a combination of the coordinate transformation of

the QDH array and its vicinity into rectangular computa-

tional domain and the single-band Schr€odinger equation

solving in this domain by the finite differences method. The

efficiency of the method is the result of array periodicity and

carefully designed periodic fitting functions used for the

coordinate transformation. The study of the minibands of the

QDH array shows that miniband width is strongly related to

the array period L and the wetting layer thickness tW ,

although the width of QDHs may have significant impact for

large ratio of the QDH width and array period. The miniband

energy, on the other hand, considerably depends on the width

W and the height H of QDHs in the array. For large periods

L and some critical dimensions L, H or W, adjacent mini-

bands in QDH array may exhibit the phenomenon of zero

miniband gap, which is followed by the swap of the mini-

band character in its vicinity. Due to the wetting layer,

higher minibands are clustered in the vicinity of the well top,

providing a kind of the “bound continuum,” which might be

relevant for control of capture and relaxation of excited

carriers.
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curvature on simply connected 5-manifolds
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Abstract. Using the recent work of Bettiol, we show that a first-order
conformal deformation of Wilking’s metric of almost-positive sectional
curvature on S2 × S3 yields a family of metrics with strictly positive av-
erage of sectional curvatures of any pair of 2-planes that are separated by
a minimal distance in the 2-Grassmanian. A result of Smale allows us to
conclude that every closed simply connected 5-manifold with torsion-free
homology and trivial second Stiefel–Whitney class admits a Riemannian
metric with a strictly positive average of sectional curvatures of any pair
of orthogonal 2-planes.
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1. Introduction and main results. Let (M, g) be a compact Riemannian n-
manifold and let secg be the sectional curvature of the metric. We often abuse
notation and denote the Riemannian metric by (M, g) as well. For each 2-plane

σ ∈ Gr2(TpM) = {X ∧ Y ∈ Λ2TpM : ||X ∧ Y ||2 = 1}, (1.1)

let σ⊥ ⊂ TpM be its orthogonal complement. That is, there is a g-orthogonal
direct sum decomposition σ ⊕ σ⊥ = TpM at a point p ∈ M .

Definition 1. The biorthogonal curvature of a 2-plane σ ∈ Gr2(TpM) is

sec⊥
g (σ) := min

σ�∈Gr2(TpM)

σ�⊂σ⊥

1
2
(secg(σ) + secg(σ�)) (1.2)

(cf. [3, Section 5.4]). We say that (M, g) has positive biorthogonal curvature
sec⊥

g > 0 if (1.2) is positive for every σ ∈ Gr2(TpM) at every point p ∈ M .
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A stronger curvature condition is the following. Choose a distance on the
Grassmanian bundle Gr2(TM) that induces the standard topology.

Definition 2. The distance curvature of a 2-plane σ ⊂ TpM is

secθ
g(σ) := min

σ�∈Gr2(TpM)
dis(σ,σ�)≥θ

1
2
(secg(σ) + secg(σ�)) (1.3)

for each θ > 0 (cf. [3, Section 5.2]). We say that (M, gθ) has positive distance
curvature secgθ > 0 if for every θ > 0, there is a Riemannian metric (M, gθ)
for which (1.3) is positive for every σ ∈ Gr2(TpM) at every point p ∈ M .

Bettiol [4] classified up to homeomorphism closed simply connected 4-
manifolds that admit a Riemannian metric of positive biorthogonal curvature
by constructing metrics of positive distance curvature on S2 ×S2 [2, Theorem,
Proposition 5.1], [3, Theorem 6.1], and showing that positive biorthogonal cur-
vature is a property that is closed under connected sums [3, Proposition 7.11],
[4, Proposition 3.1].

In this paper, we extend Bettiol’s results to dimension five. More precisely,
we build upon Bettiol’s work and show that an application of a first-order
conformal deformation to Wilking’s metric (S2 × S3, gW ) of almost-positive
sectional curvature [11] yields the main result of this note.

Theorem A. For every θ > 0, there is a Riemannian metric (S2 ×S3, gθ) such
that
(a) secθ

gθ > 0;
(b) there is a limit metric g0 such that gθ → g0 in the Ck-topology as θ → 0

for k ≥ 0;
(c) gθ is arbitrarily close to Wilking’s metric gW of almost-positive curvature

in the Ck-topology for k ≥ 0;
(d) Ricgθ > 0;
(e) there is a 2-plane σ ∈ Gr2(TpS

2 × S3) with secgθ (σ) < 0;
In particular, there is a Riemannian metric of positive biorthogonal curva-

ture on S2 × S3.

The next corollary is a consequence of coupling Theorem A with a classi-
fication result of Smale [8].

Corollary B. Every closed simply connected 5-manifold with torsion-free ho-
mology and zero second Stiefel–Whitney class admits a Riemannian metric of
positive biorthogonal curvature.

The hypothesis imposed on the homology and the second Stiefel–Whitney
class of the manifolds of Corollary B are technical in nature; cf. Remark 2.
Indeed, an examination of the canonical metric on the Wu manifold yields the
following proposition.

Proposition C. The symmetric space metric (SU(3)/SO(3), g) has positive
biorthogonal curvature.

The Wu manifold has second homology group of order two and nontrivial
second Stiefel–Whitney class.



Existence of Riemannian metrics

2. Constructions of Riemannian metrics of positive biorthogonal curvature.

2.1. Wilking’s metric of almost-positive curvature on S2 × S3. We follow the
exposition in [11, Section 5] to describe Wilking’s construction of a metric
of almost-positive curvature on the product of projective spaces RP 2 × RP 3

and its pullback to S2 × S3 under the covering map; see [12, Section 5] for a
discussion relating these two constructions.

The unit tangent sphere bundle of the 3-sphere

T1(S3) = S2 × S3, (2.1)

embeds into R4 × R4 = H × H as a pair of orthogonal unit quaternions

S3 × S2 = {(p, v) ∈ H × H : |p| = |v| = 1, �p, v	 = 0} ⊂ H × H, (2.2)

where �x, y	 = Re(x̄y), |x|2 = �x, x	, and x̄ denotes the quarternion conjuga-
tion of x. The group G = Sp(1) × Sp(1) 
 S3 × S3 acts on S2 × S3 by

(q1, q2) � (p, v) = (q1pq̄2, q1vq̄2) (2.3)

for q1, q2 ∈ Sp(1) and (p, v) ∈ S2 × S3. This action is effectively free and
transitive. The isotropy group of the point (1, i) ∈ S2 × S3 is

H = {(eiφ, eiφ) ∈ Sp(1) × Sp(1)} ⊂ G. (2.4)

Thus, S2 × S3 
 G/H is a homogeneous space.
In order to put a metric on S2 × S3, Wilking first defines a left invariant

metric g on G = Sp(1) × Sp(1) as follows. Let

g0((X, Y ), (X �, Y �)) = �X, Y 	 + �X �, Y �	, (2.5)

for (X, Y ), (X �, Y �) ∈ sp(1) ⊕ sp(1) = Im(H) ⊕ Im(H), denote a bi-invariant
metric. In terms of g0, the metric g is

g((X, Y ), (X �, Y �)) = g0(Φ(X, Y ), (X �, Y �)), (2.6)

where Φ is a g0-symmetric, positive definite endomorphism of sp(1) ⊕ sp(1)
given by

Φ = Id −1
2
P, (2.7)

and P is the g0-orthogonal projection onto the diagonal subalgebra

Δsp(1) ⊂ sp(1) ⊕ sp(1); (2.8)

see [11, p. 125].
Wilking’s doubling trick guarantees the existence of a diffeomorphism

G/H 
 ΔG\G × G/{1G} × H, (2.9)

where ΔG\ denotes the quotient by the left diagonal action of G on G×G and
H acts on the second factor from the right. Consider the product (G×G, g+g)
(cf. (2.6)) and the induced metric on S2 × S3 
 ΔG\G × G/{1G} × H that
we denote by gW . That is, Wilking’s metric (S2 × S3, gW ) is the metric that
makes the quotient submersion

(G × G, g ⊕ g) → (ΔG\G × G/{1G} × H, gW ) (2.10)
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into a Riemannian submersion. Wilking has shown that (S2 × S3, gW ) has
almost-positive curvature, with flat 2-planes located on two hypersurfaces.
These hypersurfaces are both diffeomorphic to S2 × S2, and they intersect
along an RP 3 [11, Corollary 3, Proposition 6]. However, except for points that
lie on four disjoint copies of S2 inside these two hypersurfaces, there is a unique
flat 2-plane. At each point in these four 2-spheres, there is a one parameter
family of flat 2-planes and neither the distance curvature nor the biorthogonal
curvature of the metric gW are strictly positive at any of these points.

3. Proofs.

3.1. Proof of Theorem A. We follow Bettiol’s construction of metrics of posi-
tive distance curvature on S2 × S2 [2, Theorem], [3, Theorem 6.1], and apply
a first-order conformal deformation to Wilking’s metric (S2 × S3, gW ) that
was described in Section 2.1. This yields metrics of positive distance curvature
as in Definition 2, which converge to a metric g0 as θ tends to zero in the
Ck-topology.

Definition 3. Let (M, g) be a compact Riemannian manifold, then, for any
function φ : M → R, and for any small enough s > 0, the following is also a
Riemannian metric on M

gs = (1 + sφ)g, (3.1)

called the first-order conformal deformation of g.

The variation of sectional curvature of a metric under the first order con-
formal deformation is given by the following lemma [9]; cf. [3, Chapter 3,
Corollary 3.4].

Lemma 1. Let (M, g) be a Riemannian manifold with sectional curvature
secg ≥ 0, and let X, Y ∈ TpM be g-orthonormal vectors such that secg(X ∧
Y ) = 0. Consider a first-order conformal deformation gs = (1+sφ)g of g. The
first variation of secgs

(X ∧ Y ) is

d
ds

secgs
(X ∧ Y )|s=0 = −1

2
Hess φ(X, X) − 1

2
Hess φ(Y, Y ). (3.2)

We will also need the following elementary fact [3, Chapter 3, Lemma 3.5].

Lemma 2. Let f : [0, S] × K → R be a smooth function, where S > 0 and K
is a compact subset of a manifold. Assume that f(0, x) ≥ 0 for all x ∈ K, and
∂f
∂s > 0 if f(0, x) = 0. Then there exists s∗ > 0 such that f(s, x) > 0 for all
x ∈ K and 0 < s < s∗.

Wilking’s metric (S2×S3, gW ) has positive sectional curvature away from a
hypersurface Z; see the discussion at the end of Section 2.1. The biorthogonal
and distance curvatures are positive inside Z except for points that lie in four
disjoint copies of S2. Every point in these four 2-spheres carries an S1 worth
of flat 2-planes. Denote these four 2-spheres by

{S2
i : i = 1, 2, 3, 4}. (3.3)
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We only deform Wilking’s metric near these four submanifolds. Let

χi : S2 × S3 → R (3.4)

denote a bump function of S2
i , i.e., a nonnegative function that is identically

zero outside a tubular neighborhood of S2
i , and identically one in a smaller

tubular neighborhood of S2
i . Finally, we define four functions

{ψi : S2 × S3 → R : i = 1, 2, 3, 4} (3.5)

as
ψi(p) = distgW

(p, S2
i )2 (3.6)

for p ∈ S2 ×S3, where distgW
is the metric distance function on (S2 ×S3, gW ).

Let φ : S2 × S3 → R be a function defined as

φ = −χ1ψ1 − χ2ψ2 − χ3ψ3 − χ4ψ4, (3.7)

and consider the first-order conformal deformation of gW given by

gs = (1 + sφ)gW . (3.8)

Note that at a point p ∈ S2
i , we have

Hess φ(X, X) = −Hess ψi(X, X) = −2gW (X⊥, X⊥)2 = −2�X⊥�2
gW

, (3.9)

where X⊥ denotes the component of X perpendicular to S2
i . For each θ > 0,

consider the compact subset of (S2 ×S3)×Gr2(T (S2 ×S3))×Gr2(T (S2 ×S3))
given by

Kθ := {(p, σ, σ�) : σ, σ� ∈ Gr2(Tp(S2 × S3)), dist(σ, σ�) ≥ θ}, (3.10)

and define
f : [0, S] × Kθ → R,

f(s, (p, σ, σ�)) :=
1
2
(secgs

(σ) + secgs
(σ�)).

(3.11)

Notice that f(0, (p, σ, σ�)) ≥ 0 since secgs
≥ 0. Furthermore, f(0, (p, σ,σ�)) = 0

only for
p ∈ S2

1 ∪ S2
2 ∪ S2

3 ∪ S2
4 (3.12)

since these are the only points of S2 × S3 that have vanishing biorthogonal
and distance curvatures. Let (p,σ, σ�) be such that f(0, (p, σ, σ�)) = 0 and let
σ = X ∧ Y and σ� = Z ∧ W , where X,Y are gW -orthonormal, and Z, W are
gW -orthonormal. Then, by Lemma 1 and equation (3.9), at these points of Kθ,
we have
∂f

∂s
|s=0 =

d
ds

(secgs
(X ∧ Y ) + secgs

(Z ∧ W ))|s=0

= −1
2
Hess φ(X, X)− 1

2
Hess φ(Y, Y )− 1

2
Hess φ(Z, Z)− 1

2
Hess φ(W, W )

= �X⊥�2
gW

+ �Y⊥�2
gW

+ �Z⊥�2
gW

+ �W⊥�2
gW

> 0.

(3.13)
The previous expression is strictly greater than zero. Indeed, since X ∧ Y and
Z ∧ W are different 2-planes, span{X, Y, Z,W} is at least three-dimensional
while the submanifolds (3.3) are two-dimensional. Hence, at least one of the
perpendicular components X⊥, Y⊥, Z⊥, W⊥ is nonzero and (3.13) is greater
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than zero. Since the assumptions of Lemma 2 for the function (3.11) are sat-
isfied, we conclude that there is an s∗ such that f(s, (p, σ, σ�)) > 0 for all
(p, σ, σ�) ∈ Kθ and 0 < s < s∗. This is precisely the condition secθ

gs
> 0 of

item (a) of Theorem A. The claims of item (b) and item (c) follow from our
construction; cf. [2]. The claim of item (d) follows from [2, Proposition 4.1]. As
Bettiol observed in his construction of metrics of positive distance curvature
on S2 × S2 [2, Section 4.4], for every θ > 0, there are 2-planes in (S2 × S3, gθ)
with negative sectional curvature. This completes the proof of Theorem A. �
Remark 1. The metrics (S2 × S3, gθ) of positive distance curvature can be
made invariant under the action of certain Deck transformations including the
product Z/2 ⊕ Z/2-action. Indeed, it is possible to perform a local conformal
deformation on the orbit space (RP 2 × RP 3, gW ) equipped with Wilking’s
metric of almost positive curvature, and a similar statement to Theorem A
holds for (RP 2 × RP 3, gθ); cf. [2, Section 4.6].

3.2. Proof of Corollary B. We will use a case of the classification up to dif-
feomorphism of simply connected 5-manifolds with vanishing second Stiefel–
Whitney class due to Smale [8, Theorem A].

Theorem 1. A closed simply connected 5-manifold M with torsion-free homol-
ogy H2(M ; Z) = Zk and zero second Stiefel–Whitney class w2(M) = 0 is deter-
mined up to diffeomorphism by its second Betti number b2(M). In particular,
M is diffeomorphic to a connected sum

{S5#k(S2 × S3) : k = b2(M)}. (3.14)

Theorem A and Bettiol’s result regarding the positivity of biorthogonal cur-
vature under connected sums [3, Proposition 7.11] imply that every 5-manifold
in the set (3.14) admits a Riemannian metric of positive biorthogonal curva-
ture. �
Remark 2. It is natural to ask if the hypothesis w2(M) = 0 of Corollary B
can be removed. Barden has shown that a closed simply connected 5-manifold
with torsion-free second homology group is diffeomorphic to a connected sum
of copies of S2 × S3 and the total space S3 �×S2 of the nontrivial 3-sphere
bundle over the 2-sphere [1]. It is currently unknown if there is a metric of
almost-positive sectional curvature on S3 �×S2. Unlike S2 × S3, the nontrivial
bundle does not arise as a biquotient that satisfies the symmetry hypothesis
needed to apply Wilking’s doubling trick; see DeVito’s classification of free
circle actions on S3 × S3 in [5].

3.3. Proof of Proposition C. The symmetric space metric on SU(3)/SO(3) is
the metric that makes the canonical surjection

π : SU(3) → SU(3)/SO(3),

u 
→ uSO(3),
(3.15)

into a Riemannian submersion, where SU(3) is equipped with a bi-invariant
metric. The left action of SU(3) on SU(3)/SO(3) induced from the left multi-
plication on SU(3) by (3.15) is transitive and isometric for the symmetric space
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metric. This means that we can study curvature at one point of SU(3)/SO(3)
and isometrically translate the results to any other point. The Cartan decom-
position that corresponds to SU(3)/SO(3)

TeSU(3) 
 su(3) = so(3) ⊕ so(3)⊥ (3.16)

is orthogonal with respect to the bi-invariant metric and it is precisely the
decomposition of TeSU(3) into vertical and horizontal subspaces of the Rie-
mannian submersion (3.15). Hence, we have

TSO(3)(SU(3)/SO(3)) 
 so(3)⊥. (3.17)

To conclude that SU(3)/SO(3) has positive biorthogonal curvature, we need
to show that no two flat 2-planes are orthogonal to each other. A result of
Tapp [10, Theorem 1.1] implies that a 2-plane on SU(3)/SO(3) is flat if and
only if its horizontal lift is flat. Thus, it is enough to consider horizontal flat
2-planes at the identity of SU(3).

A horizontal 2-plane X ∧ Y ⊂ so(3)⊥ at the identity of SU(3) is flat if
and only if [X, Y ] = 0. Since the maximal number of linearly independent
commuting matrices in su(3) is two, every horizontal flat 2-plane corresponds
to a maximal abelian subalgebra of so(3)⊥

spanR{X, Y } = a0 ⊂ so(3)⊥ . (3.18)

By a fundamental fact about the Cartan decomposition, see [7, Proposition
7.29] for the precise statement, any two maximal abelian subalgebras of so(3)⊥

are conjugate by an element of SO(3). This means that by fixing one maxi-
mal abelian subalgebra, or one horizontal flat 2-plane, we can parametrize all
horizontal flat 2-planes by SO(3). In what follows, we will obtain an explicit
parametrization of horizontal flat 2-planes at the identity of SU(3), and so a
parametrization of flat 2-planes at a point of SU(3)/SO(3) by choosing a basis
for su(3), fixing a horizontal flat 2-plane and parametrizing SO(3) by Euler
angles. We use this explicit parametrization to show that no two flat 2-planes
can be orthogonal. For the basis of su(3), we choose {−iλi}i=1,...,8, where the
λi’s are traceless, self-adjoint 3 by 3 matrices known as the Gell-Mann matrices
[6]. The scalar product on su(3) that corresponds to the bi-invariant metric is

�X, Y 	 = −1
2
Tr(XY ) (3.19)

for X, Y ∈ su(3) and the basis {−iλi}i=1,...,8 is orthonormal with respect to
(3.19). The Cartan decomposition (3.16) in this basis is

so(3) = spanR{−iλ2, −iλ5, −iλ7} (3.20)

and
so(3)⊥ = spanR{−iλ1, −iλ3, −iλ4, −iλ6, −iλ8}. (3.21)

Matrices λ3 and λ8 are diagonal, so we use −λ3∧λ8 for the reference horizontal
flat 2-plane. Every horizontal flat 2-plane, X ∧ Y , with X, Y ∈ so(3)⊥ such
that [X, Y ] = 0, can now be written as

X ∧ Y = −Adr(λ3 ∧ λ8) (3.22)
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for some r ∈ SO(3). Suppose that X ∧ Y and X � ∧ Y � are two such 2-planes
with X ∧ Y given by (3.22) and X � ∧ Y � by

X � ∧ Y � = −Adr�(λ3 ∧ λ8) (3.23)

for some r� ∈ SO(3). For the 2-planes (3.22) and (3.23) to be orthogonal, it is
necessary and sufficient that the equations

�Adrλ3, Adr�λ3	 = 0, (3.24)
�Adrλ3, Adr�λ8	 = 0, (3.25)
�Adrλ8, Adr�λ3	 = 0, (3.26)

and
�Adrλ8, Adr�λ8	 = 0 (3.27)

hold. Using the Ad-invariance of the bi-invariant metric, equations (3.24),
(3.25), (3.26), and (3.27) can be rewritten as

�λ3, Adr−1r�λ3	 = 0, (3.28)
�λ3, Adr−1r�λ8	 = 0, (3.29)
�λ8, Adr−1r�λ3	 = 0, (3.30)

and
�λ8, Adr−1r�λ8	 = 0. (3.31)

We now use the Euler angle parametrization of SO(3) to write r−1r� ∈ SO(3)
as

r−1r� = exp(−iλ2x)exp(−iλ5y)exp(−iλ2z), (3.32)

where x, y, z ∈ R. Plugging (3.32) into equations (3.28), (3.29), (3.30), and
(3.31) and calculating the traces explicitly, we find

0 = �λ3, Adr−1r�λ3	

=
1
4
cos(2x) (3 + cos(2y)) cos(2z) − sin(2x)cos(y)sin(2z), (3.33)

0 = �λ3, Adr−1r�λ8	 = −
√

3
2

cos(2x)sin2(y), (3.34)

0 = �λ8, Adr−1r�λ3	 = −
√

3
2

cos(2z)sin2(y), (3.35)

and

0 = �λ8, Adr−1r�λ8	 =
1
4
(1 + 3cos(2y)) . (3.36)

Equations (3.34), (3.35), and (3.36) imply cos2(y) = 1/3 and cos(2x) =
cos(2z) = 0. Plugging this into equation (3.33), we obtain

�λ3, Adr−1r�λ3	 �= 0, (3.37)

and conclude that there is no solution to the system given by equations
(3.33), (3.34), (3.35), and (3.36). This shows that no two 2-flat planes are
orthogonal. �
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[8] Smale, S.: On the structure of 5-manifolds. Ann. Math. 75(2), 38–46 (1962)

[9] Strake, M.: Curvature increasing metric variations. Math. Ann. 276, 633–641

(1987)

[10] Tapp, K.: Flats in Riemannian submersions from Lie groups. Asian J. Math. 13,

459–464 (2009)

[11] Wilking, B.: Manifolds with positive sectional curvature almost everywhere. In-

vent. Math. 148, 117–141 (2002)

[12] Ziller, W.: Examples of Riemannian manifolds with non-negative sectional curva-

ture. In: Grove, K., Cheeger, J. (eds.) Metric and Comparison Geometry. Surveys

in Differential Geometry, 11th edn, pp. 63–102. International Press, Somerville

(2007)

Boris Stupovski and Rafael Torres
Scuola Internazionale Superiori di Studi Avanzati (SISSA)
Via Bonomea 265
34136 Trieste
Italy
e-mail: rtorres@sissa.it
e-mail: bstupovs@sissa.it

Received: 13 December 2019


