Lattice dynamics and phase transition in CrI₃ single crystals

S. Djurdjić-Mijin,¹ A. Šolajić,¹ J. Pešić,¹ M. Šćepanović,¹ Y. Liu (刘育),² A. Baum,^{3,4} C. Petrovic,²

N. Lazarević,¹ and Z. V. Popović^{1,5}

¹Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade,

Pregrevica 118, 11080 Belgrade, Serbia

²Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

³Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany

⁴Fakultät für Physik E23, Technische Universität München, 85748 Garching, Germany

⁵Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

(Received 9 July 2018; published 18 September 2018)

The vibrational properties of CrI₃ single crystals were investigated using Raman spectroscopy and were analyzed with respect to the changes of the crystal structure. All but one mode are observed for both the low-temperature $R\bar{3}$ and the high-temperature C2/m phase. For all observed modes the energies and symmetries are in good agreement with DFT calculations. The symmetry of a single layer was identified as $p\bar{3}1/m$. In contrast to previous studies we observe the transition from the $R\bar{3}$ to the C2/m phase at 180 K and find no evidence for coexistence of both phases over a wide temperature range.

DOI: 10.1103/PhysRevB.98.104307

I. INTRODUCTION

Two-dimensional layered materials have gained attention due to their unique properties, the potential for a wide spectrum of applications, and the opportunity for the development of functional van der Waals heterostructures. CrI₃ is a member of the chromium-trihalide family which are ferromagnetic semiconductors [1]. Recently they have received significant attention as candidates for the study of magnetic monolayers. The experimental realization of CrI₃ ferromagnetic monolayers [1] motivated further efforts towards their understanding. CrI_3 features electric field controlled magnetism [2] as well as a strong magnetic anisotropy [3,4]. With the main absorption peaks lying in the visible part of the spectrum, it is a great candidate for low-dimensional semiconductor spintronics [5]. In its ground state, CrI₃ is a ferromagnetic semiconductor with a Curie temperature of 61 K [1,6] and a band gap of 1.2 eV [6]. It was demonstrated that the magnetic properties of CrI_3 mono- and bilayers can be controlled by electrostatic doping [2]. Upon cooling, CrI₃ undergoes a phase transition around 220 K from the high-temperature monoclinic (C2/m) to the low-temperature rhombohedral $(R\bar{3})$ phase [3,7]. Although the structural phase transition is reported to be first order, it was suggested that the phases may coexist over a wide temperature range [3]. Raman spectroscopy can be of use here due to its capability to simultaneously probe both phases in a phase-separated system [8–10].

A recent theoretical study predicted the energies of all Raman active modes in the low-temperature and high-temperature structure of CrI_3 suggesting a near degeneracy between the A_g and B_g modes in the monoclinic (C2/m) structure. Their energies match the energies of E_g modes in the rhombohedral $(R\bar{3})$ structure [7].

In this article we present an experimental and theoretical Raman scattering study of CrI_3 lattice dynamics. In both phases all but one of the respective modes predicted by

symmetry were observed. The energies for all modes are in good agreement with the theoretical predictions for the assumed crystal symmetry. Our data suggest that the firstorder transition occurs at $T_{\rm s} \approx 180$ K without evidence for phase coexistence over a wide temperature range.

II. EXPERIMENT AND NUMERICAL METHOD

The preparation of the single crystal CrI₃ sample used in this study is described elsewhere [11]. The Raman scattering experiment was performed using a Tri Vista 557 spectrometer in backscattering micro-Raman configuration with a 1800/1800/2400 groves/mm diffraction grating combination. The 532 nm line of a Coherent Verdi G solid state laser was used for excitation. The direction of the incident light coincides with the crystallographic c axis. The sample was oriented so that its principal axis of the $R\bar{3}$ phase coincides with the x axis of the laboratory system. A KONTI CryoVac continuous helium flow cryostat with a 0.5-mm-thick window was used for measurements at all temperatures under high vacuum (10^{-6} mbar). The sample was cleaved in air before being placed into the cryostat. The obtained Raman spectra were corrected by the Bose factor and analyzed quantitatively by fitting Voigt profiles to the data whereby the Gaussian width $\Gamma_{\text{Gauss}} = 1 \text{ cm}^{-1}$ reflects the resolution of the spectrometer.

The spin polarized density functional theory (DFT) calculations have been performed in the Quantum Espresso (QE) software package [12] using the Perdew-Burke-Ernzehof (PBE) exchange-correlation functional [13] and PAW pseudopotentials [14,15]. The energy cutoffs for the wave functions and the charge density were set to be 85 and 425 Ry, respectively, after convergence tests. For *k*-point sampling, the Monkhorst-Pack scheme was used with a $8 \times 8 \times 8$ grid centered around the Γ point. Optimization of the atomic positions in the unit cell was performed until the interatomic forces were smaller than 10^{-6} Ry/Å. To treat the van der Waals (vdW) interactions a Grimme-D2 correction [16] is used in order to include long-ranged forces between the layers, which are not properly captured within LDA or GGA functionals. This way, the parameters are obtained more accurately, especially the interlayer distances. Phonon frequencies were calculated at the Γ point using the linear response method implemented in QE. The phonon energies are compiled in Table III together with the experimental values. The eigenvectors of the Raman active modes for both the low- and high-temperature phase are depicted in Fig. 5 of the Appendix.

III. RESULTS AND DISCUSSION

CrI₃ adopts a rhombohedral $R\bar{3}$ (C_{3i}^2) crystal structure at low temperatures and a monoclinic C2/m (C_{2h}^3) crystal structure at room temperature [3], as shown in Fig. 1. The main difference between the high- and low-temperature crystallographic space groups arises from different stacking sequences with the CrI₃ layers being almost identical. In the rhombohedral structure the Cr atoms in one layer are placed above the center of a hole in the Cr honeycomb net of the two adjacent layers. When crossing the structural phase transition at $T_{\rm s}$ to the monoclinic structure the layers are displaced along the *a* direction so that every fourth layer is at the same place as the first one. The interatomic distances, mainly the interlayer distance, and the vdW gap, are slightly changed by the structural transition. The crystallographic parameters for both phases are presented in Table I. The numerically obtained values are in good agreement with reported x-ray diffraction data [11].

The vibrational properties of layered materials are typically dominated by the properties of the single layers composing the crystal. The symmetry of a single layer can be described by one of the 80 diperiodic space groups (DG) obtained by

FIG. 1. Schematic representation of (a) the low-temperature $R\bar{3}$ and (b) the high-temperature C2/m crystal structure of CrI₃. Black lines represent unit cells.

TABLE I. Calculated and experimental [11] parameters of the crystallographic unit cell for the low-temperature $R\bar{3}$ and high-temperature C2/m phase of CrI₃.

	Space	e group <i>R</i> 3	Space g	e group C2/m		
T (K)	Calc.	Expt. [11]	Calc.	Expt. [11]		
a (Å)	6.87	6.85	6.866	6.6866		
b (Å)	6.87	6.85	11.886	11.856		
c (Å)	19.81	19.85	6.984	6.966		
α (deg)	90	90	90	90		
β (deg)	90	90	108.51	108.68		
γ (deg)	120	120	90	90		

lifting translational invariance in the direction perpendicular to the layer [17]. In the case of CrI₃, the symmetry analysis revealed that the single layer structure is fully captured by the $p\bar{3}1/m$ (D_{3d}^1) diperiodic space group DG71, rather than by $R\bar{3}2/m$ as proposed in Ref. [7].

FIG. 2. (a) Compatibility relations for the CrI₃ layer and the crystal symmetries. Raman spectra of (b) the low-temperature $R\bar{3}$ and (c) the high-temperature C2/m crystal structure measured in parallel (open squares) and crossed (open circles) polarization configurations at 100 and 300 K, respectively. Red and blue solid lines represent fits of Voigt profiles to the experimental data.

	Space group <i>R</i> 3	Diper	riodic space group $p\bar{3}1/m$	Space group: C2/m		
Atoms	Irreducible representations	Irreducible representations Atoms Irreducible representations		Atoms	Irreducible representations	
Cr (6 <i>c</i>)	$\overline{A_g + A_u + E_g + E_u}$	Cr (2 <i>c</i>)	$A_{2g} + A_{2u} + E_g + E_u$	Cr (4 <i>g</i>)	$A_g + A_u + 2B_g + 2B_u$	
I (18 <i>f</i>)	$3A_g + 3A_u + 3E_g + 3E_u$	I $(6k)$	$2A_{1g} + A_{1u} + A_{2g} + 2A_{2u} + 3E_g + 3E_u$	I (4 <i>i</i>) I (8 <i>j</i>)	$2A_g + 2A_u + B_g + B_u$ $3A_g + 3A_u + 3B_g + 3B_u$	
$^{1}E_{g} = \begin{pmatrix} c \\ d \\ e \end{pmatrix}$	$A_{g} = \begin{pmatrix} a \\ & a \\ & b \end{pmatrix}$ $\begin{pmatrix} d & e \\ -c & f \\ f \end{pmatrix}^{2} E_{g} = \begin{pmatrix} d & -c & -f \\ -c & -d & e \\ -f & e \end{pmatrix}$	${}^{1}E_{g} = \begin{pmatrix} c \\ \end{pmatrix}$	$A_{1g} = \begin{pmatrix} a \\ & a \\ & b \end{pmatrix}$ $-c \ d \\ d \end{pmatrix} {}^{2}E_{g} = \begin{pmatrix} -c & -d \\ -c \\ -d & e \end{pmatrix}$		$A_g = \begin{pmatrix} a & d \\ c & b \\ d & b \end{pmatrix}$ $B_g = \begin{pmatrix} e & f \\ f & f \end{pmatrix}$	

TABLE II. Wyckoff positions of the two types of atoms and their contributions to the Γ -point phonons for the $R\overline{3}$ and C2/m as well as the $p\overline{3}1/m$ diperiodic space group. The second row shows the Raman tensors for the corresponding space groups.

According to the factor group analysis (FGA) for a single CrI₃ layer, six modes $(2A_{1g} + 4E_g)$ are expected to be observed in the Raman scattering experiment (see Table II). By stacking the layers the symmetry is reduced and, depending on the stacking sequence, FGA yields a total of eight Raman active modes $(4A_g + 4E_g)$ for the $R\bar{3}$ and 12 Raman active modes $(6A_g + 6B_g)$ for the C2/m crystal symmetry. The correlation between layer and crystal symmetries for both cases is shown in Fig. 2(a) [18,19].

Figure 2(b) shows the CrI₃ single crystal Raman spectra measured at 100 K in two scattering channels. According to the selection rules for the rhombohedral crystal structure (Table II) the A_g modes can be observed only in the parallel polarization configuration, whereas the E_g modes appear in both parallel and crossed polarization configurations. Based on the selection rules the peaks at about 78, 108, and 128 cm⁻¹ were identified as A_g symmetry modes, whereas the peaks at about 54, 102, 106, and 235 cm⁻¹ are assigned as E_g symmetry. The weak observation of the most pronounced A_g modes in crossed polarizations [Fig. 2(b)] is attributed to the leakage due to a slight sample misalignment and/or the presence of defects in the crystal. The energies of all observed modes are compiled in Table III together with the energies predicted by our calculations and by Ref. [7], and are found to be in good agreement for the E_g modes. The discrepancy is slightly larger for the low energy A_g modes. Our calculations in general agree with those from Ref. [7]. The A_g^4 mode of the rhombohedral phase, predicted by calculation to appears at about 195 cm⁻¹, was not observed in the experiment, most likely due to its low intensity.

When the symmetry is lowered in the high-temperature monoclinic C2/m phase [Fig. 2(c)] the E_g modes split into an A_g and a B_g mode each, whereas the rhombohedral A_g^2 and A_g^4 modes are predicted to switch to the monoclinic B_g symmetry. The correspondence of the phonon modes across the phase transition is indicated by the arrows in Table III. The selection rules for C2/m (see Table II) predict that A_g and B_g modes can be observed in both parallel and crossed polarization configurations. Additionally, the sample forms three types of domains which are rotated with respect to each other. We

correspon	ndence of the phore	non modes across	the phase transition.	-		-	_	
	Spa	ace group $R\bar{3}$				Spac	e group C2/m	
Symm.	Expt. (cm^{-1})	Calc. (cm^{-1})	Calc. (cm^{-1}) [7]		Symm.	Expt. (cm^{-1})	Calc. (cm^{-1})	Calc. [7] (cm ⁻¹)
$\overline{E_g^1}$	54.1	59.7	53	\rightarrow	B_g^1	52.0	57.0	52
Ť				\rightarrow	A_g^1	53.6	59.8	51
A_g^1	73.33	89.6	79	\longrightarrow	A_g^2	78.6	88.4	79
E_g^2	102.3	99.8	98	\rightarrow	A_g^3	101.8	101.9	99
Ŭ				\longrightarrow	B_g^2	102.4	101.8	99
E_g^3	106.2	112.2	102	\rightarrow	B_g^3	106.4 ^a	108.9	101
				\rightarrow	A_g^4	108.3	109.3	102
A_g^2	108.3	98.8	88	\longrightarrow	B_g^4	106.4 ^a	97.8	86
A_g^3	128.1	131.1	125	\longrightarrow	A_g^5	128.2	131.7	125
A_g^4	_	195.2	195	\longrightarrow	B_g^5	_	198.8	195
E_{g}^{4}	236.6	234.4	225	\rightarrow	A_g^6	234.6	220.1	224
				\rightarrow	$B_{g}^{\acute{6}}$	235.5	221.1	225

TABLE III. Phonon symmetries and phonon energies for the low-temperature $R\bar{3}$ and high-temperature C2/m phase of CrI₃. The experimental values were determined at 100 and 300 K, respectively. All calculations were performed at zero temperature. Arrows indicate the correspondence of the phonon modes across the phase transition.

^aObserved as two peak structure.

FIG. 3. Temperature dependence of the A_g^1 and A_g^3 phonon modes of the rhombohedral structure and the corresponding A_g^2 and A_g^5 modes of the monoclinic structure, respectively. (a) and (b) Raman spectra at temperatures as indicated. The spectra are shifted for clarity. Solid red lines represent Voigt profiles fitted to the data. (c) and (d) and (e) and (f) Temperature dependence of the phonon energies and linewidths, respectively. Both modes show an abrupt change in energy at the phase transition at 180 K.

therefore identify the phonons in the C2/m phase in relation to the calculations and find again good agreement of the energies. The B_g^3 and B_g^4 modes overlap and therefore cannot be resolved separately. As can be seen from the temperature dependence shown below [Fig. 4(b)] the peak at 106 cm⁻¹ broadens and gains spectral weight in the monoclinic phase in line with the expectance that two modes overlap. The missing rhombohedral A_g^4 mode corresponds to the monoclinic B_g^5 mode, which is likewise absent in the spectra.

The temperature dependence of the observed phonons is shown in Figs. 3 and 4. In the low-temperature rhombohedral phase all four E_g modes as well as A_g^1 and A_g^2 soften upon warming, whereas A_g^3 hardens up to $T \approx 180$ K before softening again. Crossing the first-order phase transition from $R\bar{3}$ to C2/m crystal symmetry is reflected in the spectra as a symmetry change and/or renormalization for the nondegenerate modes and lifting of the degeneracy of the E_g modes as shown in Table II. In our samples, this transition is observed at $T_s \approx 180$ K. The splitting of the E_g phonons into A_g and B_g modes at the phase transition is sharp (Fig. 4). The rhombohedral A_g^1 and A_g^3 phonons show a jump in energy and a small discontinuity in the linewidth at T_s (Fig. 3). Our spectra were taken during warming in multiple runs after

FIG. 4. Temperature dependence of the rhombohedral A_g^4 and E_g modes. (a)–(c) Raman spectra in parallel (open squares) and crossed (open circles) light polarizations at temperatures as indicated. The spectra are shifted for clarity. Blue and red solid lines are fits of Voigt profiles to the data. Two spectra were analyzed simultaneously in two scattering channels with the integrated intensity as the only independent parameter. (d)–(f) Phonon energies obtained from the Voigt profiles. Each E_g mode splits into an A_g and a B_g mode above 180 K.

cooling to 100 K each time. We found that the temperature dependence for the phonon modes obtained this way was smooth in each phase. McGuire *et al.* [3,20] reported T_s in the range of 220 K, a coexistence of both phases and a large thermal hysteresis. However, they also noted that the first and second warming cycle showed identical behavior and only found a shift of the transition temperature to higher values for cooling cycles. We therefore consider the difference between the reported transition around 220 K and our $T_s \approx 180$ K significant. To some extent this difference may be attributed

to local heating by the laser. More importantly, we find no signs of phase coexistence in the observed temperature range. The spectra for the low-temperature and high-temperature phases are distinctly different (Fig. 2) and the E_g modes exhibit a clearly resolved splitting which occurs abruptly at T_s . We performed measurements in small temperature steps (see Figs. 3 and 4). This limits the maximum temperature interval where the phase coexistence could occur in our samples to approximately 5 K, much less than the roughly 30 to 80 K reported earlier [3,20]. We cannot exclude the possibility that a small fraction of the low-temperature phase could still

coexist with the high-temperature phase over a wider temperature range, whereby weak peaks corresponding to the remains of the low-temperature $R\bar{3}$ phase might be hidden under the strong peaks of the C2/m phase.

IV. CONCLUSION

We studied the lattice dynamics in single crystalline CrI_3 using Raman spectroscopy supported by numerical calculations. For both the low-temperature $R\bar{3}$ and the hightemperature C2/m phase, all except one of the predicted

FIG. 5. Raman-active phonons in CrI_3 for (a) the monoclinic phase hosting A_g and B_g modes and for (b) the rhombohedral phase hosting A_g and E_g modes. Blue and violet spheres denote Cr and I atoms, respectively. Solid lines represent primitive unit cells. Arrow lengths are proportional to the square root of the interatomic forces. The given energies are calculated for zero temperature.

ACKNOWLEDGMENTS

The work was supported by the Serbian Ministry of Education, Science and Technological Development under Projects No. III45018 and No. OI171005. DFT calculations were performed using computational resources at Johannes Kepler University, Linz, Austria. Work at Brookhaven is supported by the U.S. DOE under Contract No. DE-SC0012704.

- E. Navarro-Moratalla, B. Huang, G. Clark *et al.*, Layerdependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature (London) 546, 270 (2017).
- [2] S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Controlling magnetism in 2D CrI₃ by electrostatic doping, Nat. Nanotechnol. **13**, 549 (2018).
- [3] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI₃, Chem. Mater. 27, 612 (2015).
- [4] J. L. Ladno and J. Fernández-Rossier, On the origin of magnetic anisotropy in two dimensional CrI₃, 2D Mater. 4, 035002 (2017).
- [5] W.-B. Zhang, Q. Qu, P. Zhu, and C.-H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable twodimensional single-layer chromium trihalides, J. Mater. Chem. C 3, 12457 (2015).
- [6] J. F. Dillon, Jr. and C. E. Olson, Magnetization, resonance, and optical properties of the ferromagnet CrI₃, J. Appl. Phys. 36, 1259 (1965).
- [7] D. T. Larson and E. Kaxiras, Raman Spectrum of CrI₃: An *ab initio* study, Phys. Rev. B 98, 085406 (2018).
- [8] N. Lazarević, M. Abeykoon, P. W. Stephens, H. Lei, E. S. Bozin, C. Petrovic, and Z. V. Popović, Vacancy-induced nanoscale phase separation in K_xFe_{2-y}Se₂ single crystals evidenced by Raman scattering and powder x-ray diffraction, Phys. Rev. B 86, 054503 (2012).
- [9] H. Ryu, M. Abeykoon, K. Wang, H. Lei, N. Lazarevic, J. B. Warren, E. S. Bozin, Z. V. Popovic, and C. Petrovic, Insulating and metallic spin glass in Ni-doped K_xFe_{2-y}Se₂ single crystals, Phys. Rev. B **91**, 184503 (2015).
- [10] H. Ryu, K. Wang, M. Opacic, N. Lazarevic, J. B. Warren, Z. V. Popovic, E. S. Bozin, and C. Petrovic, Sustained phase separation and spin glass in Co-doped K_xFe_{2-y}Se₂ single crystals, Phys. Rev. B **92**, 174522 (2015).

S.Dj.M. and N.L. conceived the experiment, performed the experiment, analyzed and discussed the data, and wrote the paper. A.Š. and J.P. calculated the phonon energies, analyzed and discussed the data, and wrote the paper. Y.L. and C.P. synthesized and characterized the samples. M.Š. performed the experiment and analyzed and discussed the data. A.B. and Z.V.P. analyzed and discussed the data and wrote the paper. All authors commented on the manuscript.

APPENDIX: EIGENVECTORS

In addition to the phonon energies we also calculated the phonon eigenvectors which are shown in Fig. 5(a)for the high-temperature monoclinic phase and in Fig. 5(b)for the low-temperature rhombohedral phase. The energies, as given, are calculated for zero temperature. The relative displacement of the atoms is denoted by the length of the arrows.

- [11] Y. Liu and C. Petrovic, Three-dimensional magnetic critical behavior in CrI₃, Phys. Rev. B 97, 014420 (2018).
- [12] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, Quantum espresso: A modular and opensource software project for quantum simulations of materials, J. Phys. Condens. Matter 21, 395502 (2009).
- [13] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- [14] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
- [15] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).
- [16] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787 (2006).
- [17] E. A. Wood, The 80 diperiodic groups in three dimensions, Bell Syst. Tech. J. 43, 541 (1964).
- [18] W. G. Fateley, N. T. McDevitt, and F. F. Bentley, Infrared and raman selection rules for lattice vibrations: The correlation method, Appl. Spectrosc. 25, 155 (1971).
- [19] N. Lazarević, Z. V. Popović, R. Hu, and C. Petrovic, Evidence of coupling between phonons and charge-density waves in ErTe₃, Phys. Rev. B 83, 024302 (2011).
- [20] M. A. McGuire, G. Clark, S. KC, W. M. Chance, G. E. Jellison, V. R. Cooper, X. Xu, and B. C. Sales, Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl₃ crystals, Phys. Rev. Mater. 1, 014001 (2017).

Lattice dynamics and phase transitions in Fe_{3-x}GeTe₂

A. Milosavljević,¹ A. Šolajić,¹ S. Djurdjić-Mijin,¹ J. Pešić,¹ B. Višić,¹ Yu Liu (刘育),² C. Petrovic,²

N. Lazarević,¹ and Z. V. Popović^{1,3}

¹Center for Solid State Physics and New Materials, Institute of Physics Belgrade,

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

²Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

³Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

(Received 23 April 2019; published 17 June 2019)

We present Raman spectroscopy measurements of the van der Waals bonded ferromagnet $Fe_{3-x}GeTe_2$, together with lattice dynamics. Four out of eight Raman active modes are observed and assigned, in agreement with numerical calculations. The energies and linewidths of the observed modes display an unconventional temperature dependence at about 150 and 220 K, followed by the nonmonotonic evolution of the Raman continuum. Whereas the former can be related to the magnetic phase transition, the origin of the latter anomaly remains an open question.

DOI: 10.1103/PhysRevB.99.214304

I. INTRODUCTION

A novel class of magnetism hosting van der Waals bonded materials has recently become of great interest, since the materials are suitable candidates for numbers of technical applications [1–5]. Whereas $CrXTe_3$ (X = Si, Ge, Sn) and CrX_3 (X = Cl, Br, I) classes maintain low phase transition temperatures [1,6–9] even in a monolayer regime [10], $Fe_{3-x}GeTe_2$ has a high bulk transition temperature, between 220 and 230 K [11,12], making it a promising applicant.

The Fe_{3-*x*}GeTe₂ crystal structure consists of Fe_{3-*x*}Ge sublayers stacked between two sheets of Te atoms, and a van der Waals gap between neighboring Te layers [13,14]. Although the structure contains two different types of Fe atoms, it is revealed that vacancies take place only in the Fe2 sites [13,15].

Neutron diffraction, thermodynamic and transport measurements, and Mössbauer spectroscopy were used to analyze the magnetic and functional properties of Fe_{3-x}GeTe₂, with an Fe atom deficiency of $x \approx 0.1$ and $T_{\rm C} = 225$ K. It is revealed that at a temperature of 1.5 K, magnetic moments of $1.95(5)\mu_{\rm B}$ and $1.56(4)\mu_{\rm B}$ are directed along the easy magnetic *c* axes [16]. In chemical vapor transport (CVT) grown Fe₃GeTe₂ single crystals, besides the ferromagnetic (FM)-paramagnetic (PM) transition at a temperature of 214 K, FM layers order antiferromagnetically at 152 K [17]. Close to a ferromagnetic transition temperature of 230 K, a possible Kondo lattice behavior, i.e., coupling of traveling electrons and periodically localized spins, is indicated at $T_{\rm K} = 190 \pm$ 20 K, which is in good agreement with theoretical predictions of 222 K [18].

Lattice parameters, as well as the magnetic transition temperature, vary with Fe ion concentration. Lattice parameters a and c follow the opposite trend, whereas the Curie temperature $T_{\rm C}$ decreases with an increase of Fe ion concentration [15]. For flux-grown crystals, the critical behavior was investigated by bulk dc magnetization around the ferromagnetic phase transition temperature of 152 K [13]. The anomalous Hall effect was also studied, where a significant amount of defects produces bad metallic behavior [19].

Theoretical calculations predict a dynamical stability of Fe₃GeTe₂ single-layer, uniaxial magnetocrystalline anisotropy that originates from spin-orbit coupling [20]. Recently, anomalous Hall effect measurements on singlecrystalline metallic Fe₃GeTe₂ nanoflakes with different thicknesses are reported, with a $T_{\rm C}$ near 200 K and strong perpendicular magnetic anisotropy [21].

We report $Fe_{3-x}GeTe_2$ single-crystal lattice dynamic calculations, together with Raman spectroscopy measurements. Four out of eight Raman active modes were observed and assigned. Phonon energies are in a good agreement with theoretical predictions. Analyzed phonon energies and linewidths reveal fingerprint of a ferromagnetic phase transition at a temperature around 150 K. Moreover, discontinuities in the phonon properties are found at temperatures around 220 K. Consistently, in the same temperature range, the Raman continuum displays nonmonotonic behavior.

II. EXPERIMENT AND NUMERICAL METHOD

Fe_{3-x}GeTe₂ single crystals were grown by the self-flux method as previously described [13]. Samples for scanning electron microscopy (SEM) were cleaved and deposited on graphite tape. Energy dispersive spectroscopy (EDS) maps were collected using a FEI Helios NanoLab 650 instrument equipped with an Oxford Instruments EDS system, equipped with an X-max SSD detector operating at 20 kV. The surface of the as-cleaved Fe_{3-x}GeTe₂ crystal appears to be uniform for several tens of microns in both directions, as shown in Fig. 4 of Appendix A. Additionally, the elemental composition maps of Fe, Ge, and Te show a distinctive homogeneity of all the three elements (Fig. 5 of Appendix A).

For Raman scattering experiments, a Tri Vista 557 spectrometer was used in the backscattering micro-Raman configuration. As an excitation source, a solid state laser with a 532 nm line was used. In our scattering configuration, the plane of incidence is the *ab* plane, where $|a| = |b| (\measuredangle(a, b) = 120^\circ)$, with the incident (scattered) light propagation direction

TABLE I. Top panel: The type of atoms, Wyckoff positions, each site's contribution to the phonons in the Γ point, and corresponding Raman tensors for the $P6_3/mmc$ space group of $Fe_{3-x}GeTe_2$. Bottom panel: Phonon symmetry, calculated optical Raman active phonon frequencies (in cm⁻¹) for the magnetic (M) phase, and experimental values for Raman active phonons at 80 K.

	Space group $P6_3/mmc$ (No. 194)	
Fe1 (4e) Fe2 (2c) Ge (2d) Te (2c)		$A_{1g} + E_{1g} + E_{2g} + A_{2u} + E_{1u}$ $E_{2g} + A_{2u} + E_{1u}$ $E_{2g} + A_{2u} + E_{1u}$ $A_{1g} + E_{1g} + E_{2g} + A_{2u} + E_{1u}$
	Raman tensors	
$\overline{A_{1g} = \begin{pmatrix} a & 0 & 0\\ 0 & a & 0\\ 0 & 0 & b \end{pmatrix}}$	$E_{1g} = \begin{pmatrix} 0 & 0 & -c \\ 0 & 0 & c \\ -c & c & 0 \end{pmatrix}$	$E_{2g} = egin{pmatrix} d & -d & 0 \ -d & -d & 0 \ 0 & 0 & 0 \end{pmatrix}$
	Raman active modes	
Symmetry	Calculations (M)	Experiment (M)
$\overline{E_{2g}^1}$	50.2	
E_{1g}^{1}	70.3	
E_{2g}^2	122.2	89.2
A_{1g}^1	137.2	121.1
E_{1g}^2	209.5	
E_{2g}^{3}	228.6	214.8
A_{1g}^2	233.4	239.6
E_{2g}^{4}	334.3	

along the *c* axes. Samples were cleaved in the air, right before being placed in the vacuum. All the measurements were performed in the high vacuum (10^{-6} mbar) using a KONTI CryoVac continuous helium flow cryostat with a 0.5 mm thick window. To achieve laser beam focusing, a microscope objective with ×50 magnification was used. A Bose factor correction of all spectra was performed. More details can be found in Appendix C.

Density functional theory (DFT) calculations were performed with the QUANTUM ESPRESSO (QE) software package [22]. We used the projector augmented-wave (PAW) pseudopotentials [23,24] with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [25]. The electron wave function and charge density cutoffs of 64 and 782 Ry were chosen, respectively. The k points were sampled using the Monkhorst-Pack scheme, with an $8 \times 8 \times 4$ Γ -centered grid. Both magnetic and nonmagnetic calculations were performed, using the experimentally obtained lattice parameters and the calculated values obtained by relaxing the theoretically proposed structure. In order to obtain the lattice parameters accurately, a treatment of the van der Waals interactions is introduced. The van der Waals interaction was included in all calculations using the Grimme-D2 correction [26]. Phonon frequencies in the Γ point are calculated within the linear response method implemented in QE.

III. RESULTS AND DISCUSSION

Fe_{3-x}GeTe₂ crystallizes in a hexagonal crystal structure, described with the $P6_3/mmc$ (D_{6h}^4) space group. The atom type, site symmetry, each site's contribution to the phonons

in the Γ point, and corresponding Raman tensors for the $P6_3/mmc$ space group are presented in Table I.

Calculated displacement patterns of Raman active modes, which can be observed in our scattering configuration, are presented in Fig. 1(a). Since the Raman tensor of the E_{1g} mode contains only the z component (Table I), by selection rules, it cannot be detected when measuring from the *ab* plane in the backscattering configuration. Whereas A_{1g} modes include vibrations of Fe and Te ions along the c axis, E_{2g} modes include in-plane vibrations of all four atoms. The Raman spectra of $Fe_{3-x}GeTe_2$ in the magnetic phase (M), at 80 K, and nonmagnetic phase (NM), at 280 K, in a parallel scattering configuration ($\mathbf{e}_i \parallel \mathbf{e}_s$), are presented in Fig. 1 (b). As it can be seen, four peaks at 89.2, 121.1, 214.8, and 239.6 cm⁻¹ can be clearly observed at 80 K. According to numerical calculations (see Table I), peaks at 89.2 and 239.6 cm⁻¹ correspond to two out of four E_{2g} modes, whereas peaks at 121.1 and 239.6 cm⁻¹ can be assigned as two A_{1g} symmetry modes. One should note that numerical calculations performed by using experimentally obtained lattice parameters in the magnetic phase yield a better agreement with experimental values. This is not surprising since the calculations are performed for the stoichiometric compound as opposed to the nonstoichiometry of the sample. Furthermore, it is known that lattice parameters strongly depend on the Fe atom deficiency [15]. All calculated Raman and infrared phonon frequencies, for the magnetic and nonmagnetic phase of $Fe_{3-x}GeTe_2$, using relaxed and experimental lattice parameters, together with experimentally observed Raman active modes, are summarized in Table II of Appendix **D**.

After assigning all observed modes we focused on their temperature evolution. Having in mind finite instrumental

FIG. 1. (a) Displacement patterns of A_{1g} and E_{2g} symmetry modes. (b) Raman spectra of $Fe_{3-x}GeTe_2$ single crystal measured at different temperatures in a parallel polarization configuration.

broadening, the Voigt line shape was used for the data analysis [27,28]. The modeling procedure is described in detail in Appendix B and presented in Fig. 6. Figure 2 shows the temperature evolution of the energy and linewidth of the A_{1g}^1 , E_{2g}^3 , and A_{1g}^2 modes between 80 and 300 K. Upon heating the sample, both the energy and linewidth of A_{1g}^1 and A_{1g}^2 symmetry modes exhibit a small but sudden discontinuity at about 150 K [Figs. 2(a) and 2(e)]. An apparent discontinuity in energy of all analyzed Raman modes is again present at temperatures around 220 K. In the same temperature range the linewidths of these Raman modes show a clear deviation from the standard anharmonic behavior [27–31].

Apart from the anomalies in the phonon spectra, a closer inspection of the temperature-dependent Raman spectra measured in the parallel polarization configuration reveals a pronounced evolution of the Raman continuum [Fig. 3(a)]. For the analysis we have used a simple model including a damped Lorentzian and linear term, $\chi''_{cont} \propto a\Gamma\omega/(\omega^2 + \Gamma^2) + b\omega$ [32], where *a*, *b*, and Γ are temperature-dependent parameters. Figure 3(b) summarizes the results of the analysis with the linear term omitted (most likely originating from a luminescence). At approximately the same temperatures, where phonon properties exhibit discontinuities, the continuum temperature dependence manifests nonmonotonic behavior. The maximum positions of the curve were obtained by integrating

FIG. 2. Energy and linewidth temperature dependence of A_{1g}^1 [(a) and (b)], E_{2g}^3 [(c) and (d)], and A_{1g}^2 [(e) and (f)] phonon modes in Fe_{3-x}GeTe₂.

those shown in Fig. 3(b). The inset of Fig. 3(b) shows the temperature evolution of their displacements. This analysis confirms the presence of discontinuities in the electronic continuum at temperatures around 150 and 220 K, which leaves a trace in the phonon behavior around these temperatures (Fig. 2). While we do not have evidence for the Kondo effect in the Fe_{3-x}GeTe₂ crystals we measured, a modification of the electronic background at FM ordering due to localization or the Kondo effect cannot be excluded.

The temperature evolutions of the phonon self-energies and the continuum observed in the Raman spectra of $Fe_{3-x}GeTe_2$ suggest the presence of phase transition(s). Magnetization measurements of the samples were performed as described in Ref. [13], revealing a FM-PM transition at 150 K. Thus, the discontinuity in the observed phonon properties around this temperature can be traced back to the weak to moderate spinphonon coupling. The question remains open regarding the anomaly observed at about 220 K. As previously reported, the Curie temperature of the $Fe_{3-x}GeTe_2$ single crystals grown by the CVT method is between 220 and 230 K [11,12,14], varying with the vacancy concentration, i.e., a decrease in the vacancy content will result an increment of T_C [15]. On the other hand, the $Fe_{3-x}GeTe_2$ crystals grown by the self-flux method usually have a lower Curie temperature, since the

FIG. 3. (a) Raman spectra of $Fe_{3-x}GeTe_2$ at four temperatures measured in a parallel polarization configuration. Solid lines represent the theoretical fit to the experimental data. (b) Temperature evolution of the electronic continuum after omitting the linear term. Inset: Displacement of the maximum of fitted curves.

vacancy content is higher [13,15]. Crystals used in the Raman scattering experiment presented here were grown by the self-flux method with a Fe vacancy content of $x \approx 0.36$ [13]. This is in good agreement with our EDS results of $x = 0.4 \pm 0.1$, giving rise to the FM-PM transition at 150 K. Nevertheless,

FIG. 4. SEM image of a $Fe_{3-x}GeTe_2$ single crystal.

FIG. 5. EDS mapping on a $Fe_{3-x}GeTe_2$ single crystal. (a) Secondary electron image of the crystal with the mapping performed within the rectangle. (b)–(d) Associated EDS maps for Fe, Ge, and Te, respectively.

an inhomogeneous distribution of vacancies may result the formation of vacancy depleted "islands" which in turn would result in an anomaly at 220 K similar to the one observed in our Raman data. However, the EDS data (see Fig. 5) do not support this possibility. At this point we can only speculate that while the long-range order temperature is shifted to a lower temperature by the introduction of vacancies, short-range correlations may develop at 220 K.

IV. CONCLUSION

We have studied the lattice dynamics of flux-grown $Fe_{3-x}GeTe_2$ single crystals by means of Raman spectroscopy and DFT. Four out of eight Raman active modes, two A_{1g} and two E_{2g} , have been observed and assigned. DFT calculations are in good agreement with experimental results. The temperature dependence of the A_{1g}^1 , E_{2g}^3 , and A_{1g}^2 mode properties reveals a clear fingerprint of spin-phonon coupling, at a temperature of around 150 K. Furthermore, the anomalous behavior in the energies and linewidths of the observed phonon modes is present in the Raman spectra at temperatures around 220 K with the discontinuity also present in the electronic continuum. Its origin still remains an open question, and requires further analysis.

ACKNOWLEDGMENTS

The work was supported by the Serbian Ministry of Education, Science and Technological Development under Projects No. III45018 and No. OI171005. DFT calculations were performed using computational resources at Johannes Kepler University, Linz, Austria. Materials synthesis was supported

FIG. 6. Modeled Raman spectra of $Fe_{3-x}GeTe_2$ single crystal, after subtracting continuum contributions, obtained at various temperatures. For experimental data modeling, the Voigt line shape was used.

by the US Department of Energy, Office of Basic Energy Sciences as part of the Computation Material Science Program (Y.L. and C.P.). Electron microscopy was performed at Jozef Stefan Institute, Ljubljana, Slovenia under Slovenian Research Agency Contract No. P1-0099 (B.V.). This work has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 645658 (DAFNEOX Project).

APPENDIX A: ELECTRON MICROSCOPY

In order to examine the uniformity of $Fe_{3-x}GeTe_2$, Scanning electron microscopy (SEM) was performed on ascleaved crystals. It can be seen from Fig. 4 that the crystals maintain uniformity for several tens of microns. Furthermore, the elemental composition was obtained using EDS mapping, as shown in Fig. 5. The atomic percentage, averaged over ten measurements, is 47%, 17%, and 36% ($\pm 2\%$) for Fe, Ge, and Te, respectively, with the vacancy content $x = 0.4 \pm 0.1$. The maps associated with the selected elements appear homogeneous, as they are all present uniformly with no apparent islands or vacancies.

APPENDIX B: DATA MODELING

In order to obtain the temperature dependence of the energies and linewidths of the observed $Fe_{3-x}GeTe_2$ phonon modes, the Raman continuum, shown in colored lines in

TABLE II. Top panel: Comparison of calculated energies of Raman active phonons using relaxed (R) and experimental [nonrelaxed (NR)] lattice parameters for the magnetic (M) and nonmagnetic phase (NM), given in cm⁻¹. Obtained experimental values in the magnetic phase at a temperature of 80 K are given in the last column. Bottom panel: Comparison of calculated energies of infrared optical phonons of Fe_{3-x}GeTe₂.

Raman active modes								
		Calc	ulations					
Sym.	NM-R	M-R	NM-NR	M-NR	Experiment (M)			
E_{2g}^{1}	28.4	49.6	33.9	50.2				
E_{1g}^{1}	79.2	70.2	71.7	70.3				
E_{2g}^{2}	115.5	121.0	100.0	122.2	89.2			
A_{1g}^{1}	151.7	139.2	131.7	137.2	121.1			
E_{1g}^{2}	225.5	206.0	194.3	209.5				
E_{2g}^{3}	238.0	232.6	204.9	228.6	214.8			
A_{1g}^2	272.0	262.6	235.7	233.4	239.6			
E_{2g}^{4}	362.0	337.6	315.4	334.7				
		Infr	ared active n	nodes				
A_{2u}^{1}	70.7	96.6	73.5	92.7				
E_{1u}^{1}	112.5	121.2	89.4	121.6				
A_{2u}^{2}	206.0	162.5	183.1	153.7				
E_{1u}^{2}	226.4	233.6	192.1	231.3				
A_{2u}^{3}	271.8	248.6	240.8	241.0				
E_{1u}^{3}	361.1	336.6	314.7	334.7				

Fig. 3(a), was subtracted for simplicity from the raw Raman susceptibility data (black line). The spectra obtained after the subtraction procedure are presented in Fig. 6 (black line) for various temperatures. Because of the finite resolution of the spectrometer and the fact that line shapes of all the observed phonons are symmetric, the Voigt line shape ($\Gamma_G = 0.8 \text{ cm}^{-1}$) was used for data modeling. Blue, yellow, and green lines in Fig. 6 represent fitting curves for A_{1g}^1 , E_{2g}^2 , and A_{1g}^2 phonon modes, respectively, whereas the overall spectral shape is shown in the red line.

APPENDIX C: EXPERIMENTAL DETAILS

Before being placed in a vacuum and being cleaved, the sample was glued to a copper plate with GE varnish in order to achieve good thermal conductivity and prevent strain effects. Silver paste, as a material with high thermal conductivity, was used to attach the copper plate with the sample to the cryostat. The laser beam spot, focused through an Olympus long-range objective of \times 50 magnification, was approximately 6 μ m in size, with a power less than 1 mW at the sample surface. A TriVista 557 triple spectrometer was used in the subtractive mode, with a diffraction grating combination of 1800/1800/2400 grooves/mm and the entrance and second intermediate slit set to 80 μ m, in order to enhance stray light rejection and attain good resolution.

APPENDIX D: CALCULATIONS

In Table II the results of DFT calculations are presented for magnetic (M) and nonmagnetic (NM) relaxed and experimental lattice parameters. For comparison, the

- N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transitionmetal trichalcogenide monolayers, Phys. Rev. B 91, 235425 (2015).
- [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field rffect in atomically thin carbon films, Science 306, 666 (2004).
- [3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699 (2012).
- [4] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in twodimensional van der Waals crystals, Nature (London) 546, 265 (2017).
- [5] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature (London) 546, 270 (2017).
- [6] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI₃, Chem. Mater. 27, 612 (2015).
- [7] H. L. Zhuang, Y. Xie, P. R. C. Kent, and P. Ganesh, Computational discovery of ferromagnetic semiconducting single-layer CrSnTe₃, Phys. Rev. B 92, 035407 (2015).
- [8] G. T. Lin, H. L. Zhuang, X. Luo, B. J. Liu, F. C. Chen, J. Yan, Y. Sun, J. Zhou, W. J. Lu, P. Tong, Z. G. Sheng, Z. Qu, W. H. Song, X. B. Zhu, and Y. P. Sun, Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe₃, Phys. Rev. B 95, 245212 (2017).
- [9] L. D. Casto, A. J. Clune, M. O. Yokosuk, J. L. Musfeldt, T. J. Williams, H. L. Zhuang, M.-W. Lin, K. Xiao, R. G. Hennig, B. C. Sales, J.-Q. Yan, and D. Mandrus, Strong spin-lattice coupling in CrSiTe₃, APL Mater. **3**, 041515 (2015).
- [10] M.-W. Lin, H. L. Zhuang, J. Yan, T. Z. Ward, A. A. Puretzky, C. M. Rouleau, Z. Gai, L. Liang, V. Meunier, B. G. Sumpter, P. Ganesh, P. R. C. Kent, D. B. Geohegan, D. G. Mandrus, and K. Xiao, Ultrathin nanosheets of CrSiTe₃: A semiconducting two-dimensional ferromagnetic material, J. Mater. Chem. C 4, 315 (2016).
- [11] J.-X. Zhu, M. Janoschek, D. S. Chaves, J. C. Cezar, T. Durakiewicz, F. Ronning, Y. Sassa, M. Mansson, B. L. Scott, N. Wakeham, E. D. Bauer, and J. D. Thompson, Electronic correlation and magnetism in the ferromagnetic metal Fe₃GeTe₂, Phys. Rev. B **93**, 144404 (2016).
- [12] B. Chen, J. H. Yang, H. D. Wang, M. Imai, H. Ohta, C. Michioka, K. Yoshimura, and M. H. Fang, Magnetic properties of layered itinerant electron ferromagnet Fe₃GeTe₂, J. Phys. Soc. Jpn. 82, 124711 (2013).

experimental results are shown in the last column. Since the lattice parameters strongly depend on the Fe atom deficiency, the best agreement with experimental results gives the magnetic nonrelaxed solution.

- [13] Y. Liu, V. N. Ivanovski, and C. Petrovic, Critical behavior of the van der Waals bonded ferromagnet Fe_{3-x}GeTe₂, Phys. Rev. B 96, 144429 (2017).
- [14] H.-J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle, and R. K. Kremer, Fe₃GeTe₂ and Ni₃GeTe₂ - Two new layered transitionmetal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties, Eur. J. Inorg. Chem. 2006, 1561 (2006).
- [15] A. F. May, S. Calder, C. Cantoni, H. Cao, and M. A. McGuire, Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe_{3-x}GeTe₂, Phys. Rev. B **93**, 014411 (2016).
- [16] V. Yu. Verchenko, A. A. Tsirlin, A. V. Sobolev, I. A. Presniakov, and A. V. Shevelkov, Ferromagnetic order, strong magnetocrystalline anisotropy, and magnetocaloric effect in the layered telluride $Fe_{3-\delta}GeTe_2$, Inorg. Chem. **54**, 8598 (2015).
- [17] J. Yi, H. Zhuang, Q. Zou, Z. Wu, G. Cao, S. Tang, S. A. Calder, P. R. C. Kent, D. Mandrus, and Z. Gai, Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe₃GeTe₂, 2D Mater. 4, 011005 (2016).
- [18] Y. Zhang, H. Lu, X. Zhu, S. Tan, W. Feng, Q. Liu, W. Zhang, Q. Chen, Y. Liu, X. Luo, D. Xie, L. Luo, Z. Zhang, and X. Lai, Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe₃GeTe₂, Sci. Adv. 4, eaao6791 (2018).
- [19] Y. Liu, E. Stavitski, K. Attenkofer, and C. Petrovic, Anomalous Hall effect in the van der Waals bonded ferromagnet Fe_{3-x}GeTe₂, Phys. Rev. B **97**, 165415 (2018).
- [20] H. L. Zhuang, P. R. C. Kent, and R. G. Hennig, Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe₃GeTe₂, Phys. Rev. B 93, 134407 (2016).
- [21] C. Tan, J. Lee, S.-G. Jung, T. Park, S. Albarakati, J. Partridge, M. R. Field, D. G. McCulloch, L. Wang, and C. Lee, Hard magnetic properties in nanoflake van der Waals Fe₃GeTe₂, Nat. Commun. 9, 1554 (2018).
- [22] P. Giannozzi *et al.*, QUANTUM ESPRESSO: A modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009).
- [23] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
- [24] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).
- [25] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- [26] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787 (2006).
- [27] A. Milosavljević, A. Šolajić, J. Pešić, Y. Liu, C. Petrovic, N. Lazarević, and Z. V. Popović, Evidence of spin-phonon coupling in CrSiTe₃, Phys. Rev. B **98**, 104306 (2018).
- [28] A. Baum, A. Milosavljević, N. Lazarević, M. M. Radonjić, B. Nikolić, M. Mitschek, Z. I. Maranloo, M. Šćepanović, M. Grujić-Brojčin, N. Stojilović, M. Opel, A. Wang,

C. Petrovic, Z. V. Popović, and R. Hackl, Phonon anomalies in FeS, Phys. Rev. B **97**, 054306 (2018).

- [29] M. Opačić, N. Lazarević, M. M. Radonjić, M. Šćepanović, H. Ryu, A. Wang, D. Tanasković, C. Petrovic, and Z. V. Popović, Raman spectroscopy of $K_x K_{2-y} Se_2$ single crystals near the ferromagnet–paramagnet transition, J. Phys.: Condens. Matter **28**, 485401 (2016).
- [30] Z. V. Popović, N. Lazarević, S. Bogdanović, M. M. Radonjić, D. Tanasković, R. Hu, H. Lei, and C. Petrovic, Signatures of

the spin-phonon coupling in $Fe_{1+y}Te_{1-x}Se_x$ alloys, Solid State Commun. **193**, 51 (2014).

- [31] Z. V. Popović, M. Šćepanović, N. Lazarević, M. Opačić, M. M. Radonjić, D. Tanasković, H. Lei, and C. Petrovic, Lattice dynamics of $BaFe_2X_3$ (X = S, Se) compounds, Phys. Rev. B **91**, 064303 (2015).
- [32] T. P. Devereaux and R. Hackl, Inelastic light scattering from correlated electrons, Rev. Mod. Phys. 79, 175 (2007).

pubs.acs.org/IC

Short-Range Order in VI₃

Sanja Djurdjić Mijin, A. M. Milinda Abeykoon, Andrijana Šolajić, Ana Milosavljević, Jelena Pešić, Yu Liu, Cedomir Petrovic, Zoran V. Popović, and Nenad Lazarević*

of VI₃, a two-dimensional van der Waals material of interest for studiet of VI₃, a two-dimensional wagnetism. As opposed to the average crystal structure that features $R\overline{3}$ symmetry of the unit cell, our Raman scattering and X-ray atomic pair distribution function analysis supported by density functional theory calculations point to the coexistence of short-range ordered $P\overline{3}1c$ and long-range ordered $R\overline{3}$ phases. The highest-intensity peak, A_{1g}^3 , exhibits a moderate asymmetry that might be traced back to the spin-phonon interactions, as in the case of CrI₃.

Article

■ INTRODUCTION

A well-known family of transition metal trihalides (TMTs) MX_3 (X = Cr, B, or I) have received a great deal of attention due to potential existence of two-dimensional (2D) ferromagnetism,¹⁻⁶ which has been confirmed in CrI_3 .^{7,8} The similar crystal structure and magnetic properties of CrI_3 and VI_3 fostered a belief that the same might be found in the latter. In fact, magnetization measurements revealed the 2D ferromagnetic nature of VI_3 with a Currie temperature (T_c) of around 50 K.^{9,10} Contrary to a layer-dependent ferromagnetism in CrI_3 ,¹¹ the first-principles calculations predict that ferromagnetism in VI_3 persists down to a single layer,⁹ making it a suitable candidate for engineering 2D spintronic devices. Resistivity measurements showed VI_3 is an insulator with an optical band gap of ~0.6 eV.^{9,12}

Whereas laboratory X-ray diffraction studies reported three possible high-temperature VI₃ unit cell symmetries,^{9,12–14} high-resolution synchrotron X-ray diffraction confirmed a rhombohedral $R\overline{3}$ space group.¹⁰ A very recently published Raman spectroscopy study indicated that the VI₃ crystal structure can be described within the C_{2h} point group.¹⁵ All results agree on the existence of a phase transition at a temperature of 79 K. However, the subtle¹² structural changes below 79 K are still under debate.

The long-range magnetic order in ultrathin 2D van der Waals (vdW) crystals stems from strong uniaxial anisotropy, in contrast to materials with isotropic exchange interactions where order parameters are forbidden.^{16–18} 2D vdW magnetic materials are of interest both as examples of exotic magnetic order¹⁹ and for potential applications in spintronic technology.^{2,4,20,21}

Atomically thin flakes of $CrCl_3$ have a magnetic transition temperature that is different from that of bulk crystals possibly

due to the different crystal structure of the monolayer and ultrathin crystals when compared to bulk.^{22,23} Similar observations were made on CrI_3 monolayers.^{22,24,25} It has been proposed²³ that the second anomaly in heat capacity in bulk $CrCl_3$ arises due to regions close to the surface that host a different crystal structure when compared to bulk;^{26,27} however, due to the substantial mass fraction detected in heat capacity measurements, this could also reflect differences between the short-range order and long-range crystallographic order of Bragg planes. The short-range order is determined by the space group that is energetically favorable for a monolayer or a few layers, whereas the long-range crystallographic order is established over large packing lengths.

In this paper, we present an experimental Raman scattering study of the bulk VI₃ high-temperature structure, supported by density functional theory (DFT) calculations and the X-ray atomic pair distribution function (PDF) analysis. The comparison between the Raman experiment and DFT calculations for each of the previously reported space groups suggested that the high-temperature lattice vibrations of bulk VI₃ are consistent with a $P\overline{3}1c$ trigonal structure. Nine ($2A_{1g} + 7E_g$) of 12 observed peaks were assigned on the basis of factor group analysis (FGA) and DFT calculations. The PDF analysis indicated the coexistence of two crystallographic phases at two different interatomic distances, short-range ordered $P\overline{3}1c$ and

Received: July 12, 2020

Inorganic Chemistry

long-range ordered $R\overline{3}$, as two segregated phases and/or as randomly distributed short-range ordered $P\overline{31}c$ domains in the long-range ordered $R\overline{3}$ lattice. Raman data displayed a moderate asymmetry of the A_{1g}^3 phonon line. This behavior was attributed to the spin-phonon interaction, similar to the case for CrI₃. The additional peaks in our spectra obey A_g selection rules and can be described in terms of overtones, as well as the A_{2g} silent modes "activated" by the symmetry breaking.

EXPERIMENTAL AND COMPUTATIONAL DETAILS

The preparation of single-crystal VI₃ samples used in this study is presented elsewhere.¹⁰ For the Raman scattering experiment, a Tri Vista 557 spectrometer was used in the backscattering micro-Raman configuration with a 1800/1800/2400 grooves/mm diffraction grating combination. A Coherent Ar⁺/Kr⁺ ion laser with a 514 nm line was used as an excitation source. Laser beam focusing was achieved through the microscope objective with 50× magnification. The direction of the incident (scattered) light coincides with the crystallographic *c* axis. The sample, cleaved in open air, was held inside a KONTI CryoVac continuous helium flow cryostat with a 0.5 mm thick window. Raman scattering measurements were performed under high vacuum (10⁻⁶ mbar). All of the obtained Raman spectra were corrected by the Bose factor. The spectrometer resolution is comparable to the Gaussian width of 1 cm⁻¹.

PDF and wide-angle X-ray scattering measurements were carried out in capillary transmission geometry using a PerkinElmer amorphous silicon area detector placed 206 and 983 mm downstream from the sample, respectively, at beamline 28-ID-1 (PDF) of National Synchrotron Light Source II at Brookhaven National Laboratory. The setup utilized a 74.3 keV ($\lambda = 0.1668$ Å) X-ray beam.

Two-dimensional diffraction data were integrated using the Fit2D software package.²⁸ Data reduction was performed to obtain experimental PDFs ($Q_{max} = 26A^{-1}$) using the xPDFsuite software package.²⁹ The Rietveld and PDF analyses were carried out using GSAS-II³⁰ and PDFgui³¹ software packages, respectively.

Density functional theory calculations were performed using the Quantum Espresso software package,³² employing the PBE exchangecorrelation functional³³ and PAW pseudopotentials.^{34,35} All calculations are spin-polarized. The cutoff for wave functions and the charge density were set to 48 and 650 Ry, respectively. The k-points were sampled using the Monkhorst–Pack scheme, on a $6 \times 6 \times 6 \Gamma$ centered grid for $R\overline{3}$ and C2/m structures and a $12 \times 12 \times 8$ grid for the $P\overline{3}1c$ structure. Optimization of the lattice parameters and atomic positions in the unit cell was performed until the interatomic forces were $<10^{-6}$ Ry/Å. To obtain more accurate lattice parameters, treatment of the van der Waals interactions is included using the Grimme-D2 correction. The correlation effects are treated with the Hubbard U correction (LDA+U), using a rotationally invariant formulation implemented in QE,³⁶ where U = 3.68 eV. Band structure plots are calculated at 800 k-points on the chosen path over highsymmetry points. Phonon frequencies were calculated with the linear response method, as implemented in the -honon part of Quantum Espresso.

RESULTS AND DISCUSSION

The first reported results for VI₃, dating from the 1950s,^{37–39} indicated that VI₃ adopts a honeycomb layer-type BiI₃ structure described with space group $R\overline{3}$, which is a structure common in TMTs, also found in the low-temperature phase of CrI₃.^{6,40}

There have been several proposed unit cell symmetries for VI₃ in the literature: $R\overline{3}$, ^{12,13} C2/m, ¹⁴ and $P\overline{3}1c$.⁹ Schematic representations of the $P\overline{3}1c$, $R\overline{3}$, and C2/m crystal structures are depicted in Figure 1. The corresponding crystallographic unit cell parameters, previously reported, are listed in Table 1.

Figure 1. Schematic representation of the high-temperature (a) $P\overline{3}1c$, (b) $R\overline{3}$, and (c) C2/m structures of VI₃. Black solid lines represent unit cells.

Each of the suggested symmetries implies a different distribution of Raman active modes.

According to FGA, eight $(4A_g + 4E_g)$, 11 $(3A_{1g} + 8E_g)$, and 12 $(6A_g + 6B_g)$ Raman active modes are expected to be observed in the light scattering experiment for $R\overline{3}$, $P\overline{3}1c$, and C2/m crystal structures, respectively. Wyckoff positions, irreducible representations, and corresponding tensors of Raman active modes for each space group are listed in Table 2.

The first step in determining the crystal symmetry from the light scattering experiment is to compare the expected and observed Raman active modes, shown in Figure 2. The red solid line represents the spectrum measured in the parallel polarization configuration, whereas the blue line corresponds to the cross polarization configuration. Five of 12 observed peaks emerge only in parallel, whereas five peaks and a broad peak-like structure can be observed for both polarization configurations. The emergence of the 123.4 cm⁻¹ peak in the cross polarization can be understood as a "leakage" of the A_{1g}^3 mode due to a possible finite *c* axis projection and/or the presence of defects.

Now the peaks that appear only for the parallel polarization configuration can be assigned as either A_{1g} or A_g symmetry modes, assuming the light polarization direction along the main crystal axis of the C2/m structure for the later. On the basis of the FGA for possible symmetry group candidates, the remaining Raman active modes can be either of E_g or B_g symmetry. The selection rules (Table 2) do not allow observation of the B_g symmetry modes for the parallel polarization configuration. Consequently, the peaks that can be observed in both scattering channels were recognized as E_g modes. The absence of B_g modes in the Raman spectra rules out the possibility of the AlCl₃ type of structure (space group C2/m). Two possible remaining crystal symmetries ($R\overline{3}$ and

	P31c			R3		C2/m	
	calcd	exp. ⁹	calcd	exp. ¹²	calcd	exp. ¹⁴	
a (Å)	6.87	6.89(10)	6.69	6.89(3)	7.01	6.84(3)	
b (Å)	6.87	6.89(10)	6.69	6.89(3)	12.14	11.83(6)	
c (Å)	13.224	13.289(1)	19.81	19.81(9)	7.01	6.95(4)	
α (deg)	90	90	90	90	90	90	
β (deg)	90	90	90	90	109.05	108.68	
γ (deg)	120	120	120	120	90	90	
cell volume $(Å^3)$	559.62	547.74(10)	767.71	814 09(8)	563.33	533,66(36)	

Table 1. Previously Reported Experimental and Calculated Unit Cell Parameters for $P\overline{31}c$, $R\overline{3}$, and C2/m Structures of VI_3

Table 2. Wyckoff Positions of Atoms and Their Contributions to the Γ -Point Phonons for the $R\overline{3}$, C2/m, and $P\overline{3}1c$ Structures and the Raman Tensors for the Corresponding Space Groups

	space group $P\overline{3}1c$		space group $R\overline{3}$		space group C2/m
atom	irreducible representation	atom	irreducible representation	atom	irreducible representation
V(2a)	$A_{2g} + A_{2u} + E_g + E_u$	V (3 <i>a</i>)		V (4g)	$A_g + A_u + 2B_g + 2B_u$
V (2c)	$A_{2g} + A_{2u} + E_g + E_u$	V (6c)	$A_g + A_u + E_g + E_u$	I (4 <i>i</i>)	$2A_g + A_u + B_g + 2B_u$
I (12 <i>i</i>)	$3A_{1g} + 3A_{1u} + 3A_{2g} + 3A_{2u} + 6E_g + 6E_u$	I (18f)	$3A_g + 3A_u + 3E_g + 3E_u$	I (8j)	$3A_g + 3A_u + 3B_g + 3B_u$
$A_{1g} =$	$\begin{pmatrix} a & a \\ & b \end{pmatrix}$	$A_g = \begin{pmatrix} a \\ a \end{pmatrix}$	$\begin{pmatrix} a & b \end{pmatrix}$		$A_g = \begin{pmatrix} a & d \\ c & \\ d & b \end{pmatrix}$
${}^{1}E_{g} =$	$ \begin{pmatrix} c & & \\ & -c & d \\ & d \end{pmatrix}^2 E_g = \begin{pmatrix} & -c & -d \\ -c & & \\ d & & \end{pmatrix} $	${}^{1}E_{g} = \left($	$ \begin{pmatrix} c & d & e \\ d & -c & f \\ e & f & \end{pmatrix}^{2} E_{g} = \begin{pmatrix} d & -c & -c \\ -c & -d & e \\ -f & e & \end{pmatrix}^{2} E_{g} = \begin{pmatrix} d & -c & -c \\ -c & -d & e \\ -f & e & \end{pmatrix}^{2} E_{g} = \begin{pmatrix} d & -c & -c \\ -c & -d & e \\ -c & -c & e & e \\ -c & -c & -c & -c \\ -c & -c & -c & e \\ -c & -c & -c & -c \\ -c & -c & -c & -c$	f	$B_g = \begin{pmatrix} e & \\ e & f \\ & f \end{pmatrix}$

Figure 2. Raman spectra of the high-temperature VI₃ single-crystal structure measured in parallel (red solid line) and cross (blue solid line) polarization configurations at 100 K. Peaks observed in both spectra were identified as E_g modes, whereas peaks observed only in the red spectrum were assigned as A_{1g} modes. Additional peaks that obey pure A_{1g} symmetry are marked as P1-P3.

 $P\overline{3}1c$) are difficult to single out on the basis of the Raman data symmetry analysis alone. To overcome this obstacle, the DFT method was applied for each of the suggested structures.

It was reported in the literature that $\overrightarrow{P31c}$ VI₃ can have two possible electronic states^{9,14,41-43} that both can be obtained using DFT+U calculations by varying the smearing and mixing parameters. This approach resulted in a Mott-insulator state having a lower energy making it the electronic ground state of VI₃. However, the total energy difference of these two states is small and will not be mentioned further because it is outside of the scope of our analysis. For the sake of completeness, both sets of phonon energies obtained through DFT calculations for these electronic states of the $\overrightarrow{P31c}$ structure are listed in Table 3 together with the results for the $\overrightarrow{R3}$ and C2/m space groups as well as the experimental results measured at 100 K.

Now one can see that, even though the Raman mode symmetries for the case of the $R\overline{3}$ crystal structure can describe our Raman spectra, there is a stronger mismatch in calculated and experimentally determined phonon energies when compared to the results obtained for the P31c structure. The deviation is largest for the calculated A_g^1 mode. The closest mode in energy, which obeys the same symmetry rules as the calculated A_{g}^{1} , is a peak at ~64.1 cm⁻¹, yielding a deviation of ~30%. Also, the calculated energy of the A_g^4 mode could not be identified within our spectrum, with the closest experimental A_{g} peaks being within 20%. Such deviation in theory and experiment, >20%, indicates that the room-temperature phonon vibrations in VI₃ do not originate predominantly from the BiI₃ structure type either, leaving $P\overline{3}1c$ as the only candidate. This indication is further reinforced by the inability to connect the experimentally observed $E_{\rm g}$ modes at ${\sim}77$ and ~86 cm⁻¹ with the $R\overline{3}$ -calculated modes.

Our experimental data (Table 3) are mostly supported by the phonon energies obtained for possible electronic states of pubs.acs.org/IC

Table 3. Comparison between Calculated Values of Raman Active Phonon Energies for Insulating and Half-Metallic States of the $P\overline{3}1c$ Structure and Experimentally Obtained Values (left)^{*a*} and Phonon Symmetries and Calculated Phonon Energies for the $R\overline{3}$ and C2/m Structures of VI₃^{*b*}

space group P31c			space	group $R\overline{3}$	space gi	roup C2/m	
symmetry	calcd (cm ⁻¹)	calcd (cm ⁻¹)	exp. (cm^{-1})	symmetry	calcd (cm ⁻¹)	symmetry	calcd (cm^{-1})
E_g^1	17.2	15.2	-	E_g^1	45.2	A_g^1	58.1
A_{2g}^{1} (silent)	35.0	56.8		E_g^2	69.9	B_g^1	60.0
E_g^2	62.2	61.6	59.8	A_g^1	99.3	A_g^2	82.7
A_{2g}^2 (silent)	69.4	72.3		E_g^3	99.8	B_g^2	82.9
E_g^3	74.1	75.9	77.2	A_g^2	105.1	A_g^3	85.7
A_{1g}^1	83.3	84.2	-	A_g^3	135.5	$B_g^{\overline{3}}$	88.9
E_g^4	84.9	86.6	86.7	A_g^4	167.9	A_g^4	99.3
E_g^5	91.5	98.4	95.2	E_g^4	176.8	B_g^4	99.3
A_{2g}^{3} (silent)	92.2	96.3		-		A_g^5	122.3
E_g^6	97.4	108.3	100.4			B_g^5	149.9
A_{1g}^2	113.2	119.3	116.8			B_g^6	161.0
A_{1g}^{3}	117.1	123.9	123.4			A_g^6	164.0
A_{2g}^4 (silent)	121.3	147.8				-	
E_g^7	132.2	151.9	С				
$E_{g}^{\overline{8}}$	149.4	166.9	С				
A_{2g}^{5} (silent)	185.9	212.1					

^{*a*}The experimental values were determined at 100 K. The experimental uncertainty is 0.3 cm⁻¹. ^{*b*}All calculations were performed at 0 K. ^{*c*}See the text for an explanation.

the $P\overline{3}1c$ trigonal structure with deviations of around 10% and 15%. Nine of 11 Raman modes were singled out and identified, with E_{σ}^{1} being not observable in our experimental setup due to its low energy. The A_{1g}^1 mode might be missing due to its low intensity and/or the finite spectrometer resolution. The most striking was the observation of the broad feature at ~ 180 cm⁻¹, persisting up to 300 K in both scattering channels. Whereas its line shape resembles those of the two-magnon type of excitation, we believe that scenario is unlikely for a ferromagnetic material. The energy region where the feature was observed may also suggest the possibility of a two-phonon type of excitation. However, their scattering cross sections are usually small and dominated by overtones, thus mostly observed for the parallel scattering configuration.45 For example, such an excitation was observed at ~250 cm⁻¹ (Figure 2). Finally, the observed feature also falls into the energy region where, as suggested by the numerical calculations, observation of the E_g^7 and E_g^8 modes is expected. We believe that it is actually a complex structure comprising E_g^7 and E_{σ}^{8} Raman modes, significantly broadened by the spinphonon interaction, that is particularly strong on these phonon branches. The proximity of the two very broad, presumably asymmetric peaks hampers their precise assignment.

Closer inspection of other Raman peaks revealed that some of them also exhibit an asymmetric line shape. To further demonstrate this virtue, we have quantitatively analyzed the highest-intensity peak, A_{1g}^3 , using the symmetric Voigt line shape and convolution of a Fano profile and a Gausian.^{44–46} The asymmetric line shape (with a Fano parameter of |q| =12.3) gives a slightly better agreement with the experimental data, as depicted in Figure 3. Considering that the observed asymmetry in similar materials was shown to reflect the spin– phonon interaction,^{46,47} we propose it as a possible scenario in VI₃, as well.

Our findings, based on the inelastic light scattering experiments, at first glance differ from those presented in ref 10. To resolve this discrepancy, we used synchrotron X-ray Rietveld and PDF analysis. Typically, the short-range order

Figure 3. Quantitative analysis of the A_{1g}^3 mode. The blue solid line represents the line shape obtained as a convolution of the Fano line shape and the Gaussian, whereas the green one represents a Voigt profile fitted to experimental data (\Box). For details, see refs 44 and 45.

(SRO) contributes to diffuse scattering under the long-range order (LRO) Bragg peaks when they coexist. Because the diffuse scattering is subtracted as part of the background in the Rietveld refinement, this method is more sensitive to the average structure of materials. In contrast, PDF analysis is performed on the sine Fourier transform of the properly corrected diffraction patten, including both Bragg and diffuse components. PDF is a real space function that provides a histogram of interatomic distances, which contain information regarding all length scales.^{48–51} The 1–10 and 11–30 Å PDF length scales are more sensitive to SRO and LRO, respectively. For the VI₃ system, the best Rietveld fit was obtained using the $R\overline{3}$ space group (Figure 4a), in agreement with that previously

Figure 4. Best structural model fits to diffraction data. (a) Rietveld fit using the $R\overline{3}$ space group with black vertical bars indicating calculated peak positions. (b) PDF fit using the $R\overline{3}$ space group. (c) Two-phase PDF fit using $R\overline{3}$ and $P\overline{3}1c$ space groups to fit LRO and SRO, respectively. Black dots (XRD) and blue dots (PDF) represent experimental data, and red solid lines represent the model-based fits. The fit residues are shown at the bottom of each plot.

observed.¹⁰ Not surprisingly, LRO obtained from the Rietveld refinement showed a good agreement on the PDF length scale of 10–30 Å. However, the $R\overline{3}$ space group gave a poor fit on the length scale of 1.5–15 Å with refined $\delta 1$ to account for correlated motion (Figure 4b). In contrast, $P\overline{3}1c$ gave a better fit to SRO, but a poor fit to LRO. The best PDF fits were obtained by refining a weighted two-phase structural model containing ~25 wt % SRO $P\overline{3}1c$ and ~75 wt % LRO $R\overline{3}$ phases. The refined correlation length of the SRO is ~15–20 Å (Figure 4c). These results suggest two possible seanarios: (1) coexistence of two segregated phases, LRO $R\overline{3}$ and SRO $P\overline{3}1c$, and (2) randomly distributed short-range ordered $P\overline{3}1c$ domains in the long-range ordered $R\overline{3}$ lattice. A detailed structural analysis is required to pinpoint scenario 1 and/or 2, which is beyond the scope of this work.

In addition to the peaks already assigned to Γ -point Raman active phonons of the $P\overline{31}c$ crystal structure (Table 2), three

additional peaks at 64.2 cm⁻¹ (P1), 110.1 cm⁻¹ (P2), and 220.6 $\text{cm}^{-1}(P3)$ are observed (see Figure 2). According to the results of DFT, energies of these modes correspond well to those calculated for silent A_{2g}^2 , A_{2g}^3 and A_{2g}^5 modes. Their observability in Raman data may come from the release of the symmetry selection rules by breaking of the (translation) symmetry as suggested by the PDF in both scenarios.⁵²⁻⁵⁵ However, as previously discussed, these peaks obey A_{1g} selection rules, indicating the possibility for them to be overtones in nature. In this less likely scenario, the phononphonon coupling is enhanced by the spin-phonon interaction and/or by the structural imperfections, thus enhancing the Raman scattering rate for the two-phonon processes.⁴⁵ Hence, the observed Raman modes reflect the symmetry of phonon vibrations related to the SRO.^{56,57} It is interesting to note that, besides a possible short-range crystallography that is different from the average, VI₃ might also feature short-range magnetic order above 79 K.14

CONCLUSION

In summary, room-temperature phonon vibrations of VI₃ stem from the $P\overline{3}1c$ symmetry of the unit cell. The PDF analysis suggested the coexistence of two phases, short-range ordered $P\overline{3}1c$ and long-range ordered $R\overline{3}$, as two segregated phases and/or as randomly distributed short-range ordered $P\overline{3}1c$ domains in the long-range ordered $R\overline{3}$ lattice. Nine of 12 observed peaks in the Raman spectra were assigned in agreement with $P\overline{3}1c$ symmetry calculations. Three additional peaks, which obey A_{1g} symmetry rules, could be explained as either overtones or as activated A_{2g} silent modes caused by a symmetry breaking. The asymmetry of one of the A_{1g} phonon modes, together with the anomalous behavior of E'_{g} and E^{8}_{g} , indicates strong spin—phonon coupling, which has already been reported in similar 2D materials.^{46,58}

AUTHOR INFORMATION

Corresponding Author

Nenad Lazarević – Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia; © orcid.org/0000-0001-6310-9511; Email: nenadl@ipb.ac.rs

Authors

- Sanja Djurdjić Mijin Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
- A. M. Milinda Abeykoon National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
- Andrijana Šolajić Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
- Ana Milosavljević Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
- Jelena Pešić Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
- Yu Liu Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States; orcid.org/0000-0001-8886-2876
- Cedomir Petrovic Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States; Ocid.org/0000-0001-6063-1881

Zoran V. Popović – Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia; Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.0c02060

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge funding provided by the Institute of Physics Belgrade, through a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project F-134 of the Serbian Academy of Sciences and Arts, and the Science Fund of the Republic of Serbia, PROMIS, 6062656, StrainedFeSC. DFT calculations were performed using computational resources at Johannes Kepler University (Linz, Austria). Materials synthesis was supported by the U.S. DOE-BES, Division of Materials Science and Engineering, under Contract DE-SC0012704 (BNL). This research used beamline 28-ID-1 of National Synchrotron Light Source II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract DE-S.

REFERENCES

(1) Seyler, K. L.; Zhong, D.; Klein, D. R.; et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. *Nat. Phys.* **2018**, *14*, 277–281.

(2) Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. *Science* **2018**, *360*, 1218–1222.

(3) Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; et al. Electrical control of 2D magnetism in bilayer CrI₃. *Nat. Nanotechnol.* **2018**, *13*, 544–548.

(4) Jiang, S.; Li, L.; Wang, Z.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI_3 by electrostatic doping. *Nat. Nanotechnol.* **2018**, *13*, 549–553.

(5) McGuire, M. A.; Clark, G.; KC, S.; Chance, W. M.; Jellison, G. E.; Cooper, V. R.; Xu, X.; Sales, B. C. Magnetic behavior and spinlattice coupling in cleavable van der Waals layered CrCl₃ crystals. *Phys. Rev. Materials* **2017**, *1*, 014001.

(6) Djurdjic-Mijin, S. D.; Šolajić, A.; Pešić, J.; Šćepanović, M.; Liu, Y.; Baum, A.; et al. Lattice dynamics and phase transition in CrI_3 single crystals. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2018**, *98*, 104307.

(7) Thiel, L.; Wang, Z.; Tschudin, M.; Rohner, D.; Gutierrez-Lezama, I. G.; Ubrig, N.; et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. *Science* **2019**, *364*, 973– 976.

(8) Lin, G. T.; Luo, X.; Chen, F. C.; Yan, J.; Gao, J. J.; Sun, Y.; et al. Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI₃. *Appl. Phys. Lett.* **2018**, *112*, 072405.

(9) Son, S.; Coak, M. J.; Lee, N.; Kim, J.; Kim, T. Y.; Hamidov, H.; et al. Bulk properties of the van der Waals hard ferromagnet VI₃. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2019**, *99*, 041402.

(10) Liu, Y.; Abeykoon, M.; Petrovic, C. Critical behavior and magnetocaloric effect in VI₃. *Phys. Rev. Research* **2020**, *2*, 013013.

(11) Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. *Nature* **2017**, *546*, 270–273.

(12) Kong, T.; Stolze, K.; Timmons, E. I.; Tao, J.; Ni, D.; Guo, S.; et al. VI_3 – a New Layered Ferromagnetic Semiconductor. *Adv. Mater.* **2019**, *31*, 1808074.

(13) Doležal, P.; Kratochvílová, M.; Holý, V.; Čermak, P.; Sechovský, V.; Dušek, M.; et al. Crystal structures and phase transitions of the van der Waals ferromagnet VI₃. *Phys. Rev. Materials* **2019**, *3*, 121401.

(14) Tian, S.; Zhang, J.-F.; Li, C.; Ying, T.; Li, S.; Zhang, X.; et al. Ferromagnetic van der Waals Crystal VI₃. *J. Am. Chem. Soc.* **2019**, *141*, 5326–5333.

(15) Wang, Y.-M.; Tian, S.-J.; Li, C.-H.; Jin, F.; Ji, J.-T.; Lei, H.-C.; Zhang, Q.-M. Raman scattering study of two-dimensional magnetic van der Waals compound VI₃. *Chin. Phys. B* **2020**, *29*, 056301.

(16) Lee, I.; Utermohlen, F. G.; Weber, D.; Hwang, K.; Zhang, C.; van Tol, J.; Goldberger, J. E.; Trivedi, N.; Hammel, P. C. Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev Ferromagnet CrI₃. *Phys. Rev. Lett.* **2020**, *124*, 017201.

(17) Xu, C.; Feng, J.; Xiang, H.; Bellaiche, L. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI_3 and $CrGeTe_3$ monolayers. *npj Comput. Mater.* **2018**, *4*, 57.

(18) Mermin, N. D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. *Phys. Rev. Lett.* **1966**, *17*, 1133–1136.

(19) Pershoguba, S. S.; Banerjee, S.; Lashley, J. C.; Park, J.; Ågren, H.; Aeppli, G.; Balatsky, A. V. Dirac Magnons in Honeycomb Ferromagnets. *Phys. Rev. X* **2018**, *8*, 011010.

(20) Liu, J.; Shi, M.; Mo, P.; Lu, J. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer. *AIP Adv.* **2018**, *8*, 055316.

(21) Jiang, S.; Li, L.; Wang, Z.; Shan, J.; Mak, K. Spin tunnel fieldeffect transistors based on two-dimensional van der Waals heterostructures. *Nature Electronics* **2019**, *2*, 159.

(22) Klein, D. R.; MacNeill, D.; Song, Q.; Larson, D. T.; Fang, S.; Xu, M.; Ribeiro, R. A.; Canfield, P. C.; Kaxiras, E.; Comin, R.; Jarillo-Herrero, P. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. *Nat. Phys.* **2019**, *15*, 1255–1260.

(23) Wang, Ž.; Gibertini, M.; Dumcenco, D.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. Determining the phase diagram of atomically thin layered antiferromagnet CrCl₃. *Nat. Nanotechnol.* **2019**, *14*, 1116.

(24) Ubrig, N.; Wang, Z.; Teyssier, J.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. F.; Gibertini, M. Low-temperature monoclinic layer stacking in atomically thin CrI_3 crystals. 2D Mater. **2020**, 7, 015007.

(25) Sun, Z.; et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI₃. *Nature* **2019**, *572*, 497–501.

(26) McGuire, M. A.; Clark, G.; KC, S.; Chance, W. M.; Jellison, G. E.; Cooper, V. R.; Xu, X.; Sales, B. C. Magnetic behavior and spinlattice coupling in cleavable van der Waals layered CrCl₃ crystals. *Phys. Rev. Materials* **2017**, *1*, 014001.

(27) Kuhlow, B. Magnetic Ordering in $CrCl_3$ at the Phase Transition. *physica status solidi* (a) **1982**, 72, 161–168.

(28) Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N.; Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. *High Pressure Res.* **1996**, *14*, 235–248.

(29) Yang, X.; Juhas, P.; Farrow, C. L.; Billinge, S. J. L. *xPDFsuite: an end-to-end software solution for high throughput pair distribution function transformation, visualization and analysis*; 2014.

(30) Toby, B. H.; Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549.

(31) Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Božin, E. S.; Bloch, J.; Proffen, T.; Billinge, S. J. L. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. *J. Phys.: Condens. Matter* 2007, *19*, 335219.

(32) Giannozzi, P.; et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. *J. Phys.: Condens. Matter* **2009**, *21*, 395502.

(33) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868. (34) Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B:* Condens. Matter Mater. Phys. **1994**, 50, 17953–17979.

(35) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1999**, *59*, 1758–1775.

(36) Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2005**, *71*, 035105.

(37) Juza, D.; Giegling, D.; Schäfer, H. Über die Vanadinjodide VJ_2 und VJ_3 . Z. Anorg. Allg. Chem. **1969**, 366, 121–129.

(38) Berry, K. O.; Smardzewski, R. R.; McCarley, R. E. Vaporization reactions of vanadium iodides and evidence for gaseous vanadium-(IV) iodide. *Inorg. Chem.* **1969**, *8*, 1994–1997.

(39) Klemm, W.; Krose, E. Die Kristallstrukturen von ScCl₃, TiCl₃ und VCl₃. Z. Anorg. Chem. **1947**, 253, 218–225.

(40) Liu, Y.; Petrovic, C. Three-dimensional magnetic critical behavior in CrI₃. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2018**, *97*, 014420.

(41) He, J.; Ma, S.; Lyu, P.; Nachtigall, P. Unusual Dirac halfmetallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. J. Mater. Chem. C 2016, 4, 2518–2526.

(42) Wang, Y.-P.; Long, M.-Q. Electronic and magnetic properties of van der Waals ferromagnetic semiconductor VI₃. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2020**, *101*, 024411.

(43) Li, Y.; Liu, Y.; Wang, C.; Wang, J.; Xu, Y.; Duan, W. Electrically tunable valleytronics in quantum anomalous Hall insulating transition metal trihalides. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2018**, *98*, 201407.

(44) Lazarević, N.; Popović, Z. V.; Hu, R.; Petrovic, C. Evidence for electron-phonon interaction in $\operatorname{Fe}_{1-x}M_x\operatorname{Sb}_2$ (M = Co and Cr $0 \le x \le 0.5$) single crystals. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2010**, *81*, 144302.

(45) Baum, A.; Milosavljević, A.; Lazarević, N.; Radonjić, M. M.; Nikolić, B.; Mitschek, M.; Maranloo, Z. I.; Šćepanović, M.; Grujić-Brojčin, M.; Stojilović, N.; Opel, M.; Wang, A.; Petrovic, C.; Popović, Z. V.; Hackl, R. Phonon anomalies in FeS. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2018**, *97*, 054306.

(46) Milosavljević, A.; Šolajic, A.; Pešić, J.; Liu, Y.; Petrovic, C.; Lazarević, N.; Popović, Z. V. Evidence of spin-phonon coupling in CrSiTe₃. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2018**, 98, 104306.

(47) McCarty, K. F.; Radousky, H. B.; Hinks, D. G.; Zheng, Y.; Mitchell, A. W.; Folkerts, T. J.; Shelton, R. N. Electron-phonon coupling in superconducting $Ba_{0.6}K_{0.4}BiO_3$: A Raman scattering study. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1989**, 40, 2662–2665.

(48) Proffen, T.; Page, K. L.; McLain, S. E.; Clausen, B.; Darling, T. W.; TenCate, J. A.; Lee, S.-Y.; Ustundag, E. Atomic pair distribution function analysis of materials containing crystalline and amorphous phases. *Z. Kristallogr.* **2005**, *220*, 1002–1008.

(49) Bordet, P. Application of the pair distribution function analysis for the study of cultural heritage materials. *C. R. Phys.* **2018**, *19*, 561–574.

(50) Bozin, E. S.; Yin, W. G.; Koch, R. J.; Abeykoon, M.; Hor, Y. S.; Zheng, H.; Lei, H. C.; Petrovic, C.; Mitchell, J. F.; Billinge, S. J. L. Local orbital degeneracy lifting as a precursor to an orbital-selective Peierls transition. *Nat. Commun.* **2019**, *10*, 3638.

(51) Egami, T.; Billinge, S. J. L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials; 2003; p 16.

(52) Jin, F.; Lazarević, N.; Liu, C.; Ji, J.; Wang, Y.; He, S.; Lei, H.; Petrovic, C.; Yu, R.; Popović, Z. V.; Zhang, Q. Phonon anomalies and magnetic excitations in BaFe₂Se₂O. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2019**, *99*, 144419.

(53) Moskovits, M.; Dilella, D. Surface-enhanced Raman spectroscopy of benzene and benzene-d6 adsorbed on silver. *J. Chem. Phys.* **1980**, 73, 6068–6075.

(54) Dubroka, A.; Humlíček, J.; Abrashev, M. V.; Popović, Z. V.; Sapiña, F.; Cantarero, A. Raman and infrared studies of $La_{1-y}Sr_yMn_{1-x}M_xO_3$ (M = Cr,Co,Cu,Zn,Sc or Ga): Oxygen disorder and local vibrational modes. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2006**, 73, 224401. (55) Souza Filho, A. G.; Faria, J. L. B.; Guedes, I.; Sasaki, J. M.; Freire, P. T. C.; Freire, V. N.; Mendes Filho, J.; Xavier, M. M.; Cabral, F. A. O.; de Araújo, J. H.; da Costa, J. A. P. Evidence of magnetic polaronic states in $La_{0.70}Sr_{0.30}Mn_{1-x}Fe_xO_3manganites$. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2003**, *67*, 052405.

(56) Lekgoathi, M.; Kock, L. Effect of short and long range order on crystal structure interpretation: Raman and powder X-ray diffraction of LiPF₆. *Spectrochim. Acta, Part A* **2016**, *153*, 651–654.

(57) Wolverton, C.; Zunger, A.; Lu, Z.-W. Long-versus short-range order in Ni_3V and Pd_3V alloys. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1994**, *49*, 16058.

(58) Webster, L.; Liang, L.; Yan, J.-A. Distinct spin-lattice and spinphonon interactions in monolayer magnetic CrI₃. *Phys. Chem. Chem. Phys.* **2018**, *20*, 23546–23555.

Probing charge density wave phases and the Mott transition in 1T-TaS₂ by inelastic light scattering

S. Djurdjić Mijin,¹ A. Baum,² J. Bekaert,³ A. Šolajić,¹ J. Pešić,¹ Y. Liu,^{4,*} Ge He,² M. V. Milošević,³ C. Petrovic,⁴ Z. V. Popović,^{1,5} R. Hackl,² and N. Lazarević,⁹

¹Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, RS-11080

Belgrade, Serbia

²Walther Meissner Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Germany

³Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

⁴Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

⁵Serbian Academy of Sciences and Arts, Knez Mihailova 35, RS-11000 Belgrade, Serbia

(Received 10 March 2021; revised 14 June 2021; accepted 16 June 2021; published 22 June 2021)

We present a polarization-resolved, high-resolution Raman scattering study of the three consecutive charge density wave (CDW) regimes in 1T-TaS₂ single crystals, supported by *ab initio* calculations. Our analysis of the spectra within the low-temperature commensurate (C-CDW) regime shows $P\bar{3}$ symmetry of the system, thus excluding the previously proposed triclinic stacking of the "star-of-David" structure, and promoting trigonal or hexagonal stacking instead. The spectra of the high-temperature incommensurate (IC-CDW) phase directly project the phonon density of states due to the breaking of the translational invariance, supplemented by sizable electron-phonon coupling. Between 200 and 352 K, our Raman spectra show contributions from both the IC-CDW and the C-CDW phases, indicating their coexistence in the so-called nearly commensurate (NC-CDW) phase. The temperature dependence of the symmetry-resolved Raman conductivity indicates the stepwise reduction of the density of states in the CDW phases, followed by a Mott transition within the C-CDW phase. We determine the size of the Mott gap to be $\Omega_{gap} \approx 170-190$ meV, and track its temperature dependence.

DOI: 10.1103/PhysRevB.103.245133

I. INTRODUCTION

Quasi-two-dimensional transition metal dichalcogenides (TMDs), such as the various structures of $TaSe_2$ and TaS_2 , have been in the focus of various scientific investigations over the last 30 years, mostly due to the plethora of charge density wave (CDW) phases [1,2]. Among all TMD compounds 1T- TaS_2 stands out because of its unique and rich electronic phase diagram [3–6]. It experiences phase transitions at relatively high temperatures, making it easily accessible for investigation and, mainly for the hysteresis effects, attractive for potential applications such as data storage [7], information processing [8], or voltage-controlled oscillators [9].

The cascade of phase transitions as a function of temperature includes the transition from the normal metallic to the incommensurate CDW (IC-CDW) phase, the nearly commensurate CDW (NC-CDW) phase, and the commensurate CDW (C-CDW) phase occurring at around $T_{IC} = 554$ K, $T_{NC} =$ 355 K, and in the temperature range from $T_{C\downarrow} = 180$ K to $T_{C\uparrow} = 230$ K, respectively. Recent studies indicate the possibility of yet another phase transition in 1T-TaS₂ at $T_H = 80$ K, named the hidden CDW state [10–12]. This discovery led to a new boost in attention for 1T-TaS₂.

Upon lowering the temperature to $T_{\rm IC} = 554$ K, the normal metallic state structure, described by the space group $P\bar{3}m1$ (D_{3d}^d) [13], transforms into the IC-CDW state. As will be

demonstrated here, the IC-CDW domains shrink upon further temperature reduction until they gradually disappear, giving place to the C-CDW ordered state. This region in the phase diagram between 554 and roughly 200 K is characterized by the coexistence of the IC-CDW and C-CDW phases and is often referred to as NC-CDW. At the transition temperature T_C , IC-CDW domains completely vanish [14] and a new lattice symmetry is established. There is a general consensus about the formation of "star-of-David" clusters with in-plane $\sqrt{13}a \times \sqrt{13}a$ lattice reconstruction, whereby 12 Ta atoms are grouped around the 13th Ta atom [15,16]. In the absence of any external strain fields, this can be achieved in two equivalent ways (by either clockwise or counterclockwise rotations) thus yielding domains [17]. Despite extensive investigations, both experimental and theoretical, it remains an open question whether the stacking of star-of-David clusters is triclinic, trigonal, hexagonal, or a combination thereof [15,16,18–20]. The C-CDW phase is believed to be an insulator [3,21-23]with a gap of around 100 meV [13]. Very recent theoretical studies based on density-functional theory (DFT) find an additional ordering pattern along the crystallographic c axis. The related gap has a width of approximately 0.5 eV along k_z and becomes gapped at the Fermi energy $E_{\rm F}$ in the C-CDW phase [24,25].

Nearly all of the previously reported results for optical phonons in 1T-TaS₂ are based on Raman spectroscopy on the C-CDW phase and on temperature-dependent measurements in a narrow range around the NC-CDW to C-CDW phase transition [13,15,18–20]. In this paper we present temperature-dependent polarization-resolved Raman

^{*}Present address: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

measurements in the temperature range from 4 to 370 K covering all three CDW regimes of 1T-TaS₂. Our analysis of the C-CDW phase confirms the symmetry to be $P\bar{3}$, while the NC-CDW phase is confirmed as a mixed regime of commensurate and incommensurate domains. The Raman spectra of the IC-CDW phase mainly project the phonon density of states due to the breaking of translation invariance and sizable electron-phonon coupling. The growth of the CDW gap upon cooling, followed by the opening of the Mott gap, is traced via the initial slope of the symmetry-resolved spectra. The size of 170–190 meV and the temperature dependence of the Mott gap are directly determined from high-energy Raman data.

II. EXPERIMENTAL AND NUMERICAL METHODS

The preparation of the studied 1T-TaS₂ single crystals is described elsewhere [26–29]. Calibrated customized Raman scattering equipment was used to obtain the spectra. Temperature-dependent measurements were performed with the sample attached to the cold finger of a He-flow cryostat. The sample was cooled down to the lowest temperature and then heated. In either case the rates were less than ± 1 K/min. All measurements were performed in a high vacuum of approximately 5×10^{-5} Pa.

The 575-nm laser line of a diode-pumped Coherent GEN-ESIS MX-SLM solid state laser was used as an excitation source. Additional measurements with the 458- and 514-nm laser lines were performed with a Coherent Innova 304C argon ion laser. The absorbed power was set at 4 mW. All spectra shown are corrected for the sensitivity of the instrument and the Bose factor, yielding the imaginary part of the Raman susceptibility $R\chi''$, where R is an experimental constant. An angle of incidence of $\Theta_i = 66.0 \pm 0.4^{\circ}$ and atomically flat cleaved surfaces enable us to measure at energies as low as 5 cm^{-1} without a detectable contribution from the laser line since the directly reflected light does not reach the spectrometer. The corresponding laser spot has an area of roughly $50 \times 100 \ \mu m^2$ which prevents us from observing the possible emergence of the domains [17,30]. The inelastically scattered light is collected along the surface normal (crystallographic c axis) with an objective lens having a numerical aperture of 0.25. In the experiments presented here, the linear polarizations of the incident and scattered light are denoted as \mathbf{e}_i and \mathbf{e}_s , respectively. For \mathbf{e}_i horizontal to the plane of incidence there is no projection on the crystallographic c axis. For the low numerical aperture of the collection optics \mathbf{e}_{s} is always perpendicular to the c axis. Low-energy data up to 550 cm⁻¹ were acquired in steps of $\Delta \Omega = 1 \text{ cm}^{-1}$ with a resolution of $\sigma \approx 3 \text{ cm}^{-1}$. The symmetric phonon lines were modeled using Voigt profiles where the width of the Gaussian part is given by σ . For spectra up to higher energies the step width and resolution were set at $\Delta \Omega = 50 \text{ cm}^{-1}$ and $\sigma \approx 20 \text{ cm}^{-1}$, respectively. The Raman tensors for the D_{3d} point group are given in Table I. Accordingly, parallel linear polarizations project both A_{1g} and E_g symmetries, while crossed linear polarizations only project E_g . The pure A_{1g} response then can be extracted by subtraction.

We have performed DFT calculations as implemented in the ABINIT package [31]. We have used the Perdew-Burke-Ernzerhof (PBE) functional, an energy cutoff of 50 Ha for the

TABLE I. Raman tensors for trigonal systems (point group D_{3d}).

	(a	0	0)		(c	0	0)	(0	- <i>c</i>	-d
$A_{1g} =$	0	а	0	${}^{1}E_{g} =$	0	-c	d	${}^{2}E_{g} = -c$	0	0
	0)	0	b)	-	0	d	0/	-d	0	0/

plane-wave basis, and we have included spin-orbit coupling by means of fully relativistic Goedecker pseudopotentials [32,33], where Ta- $5d^36s^2$ and S- $3s^23p^4$ states are treated as valence electrons. The crystal structure was relaxed so that forces on each atom were below 10 μ eV/Å and the total stress on the unit cell below 1 bar, yielding lattice parameters a = 3.44 Å and c = 6.83 Å. Subsequently, the phonons and the electron-phonon coupling (EPC) were obtained from density-functional perturbation theory (DFPT) calculations, also within ABINIT [34]. Here, we have used an $18 \times 18 \times 12$ **k**-point grid for the electron wave vectors. For the electronic occupation we employed Fermi-Dirac smearing with broadening factor $\sigma_{\text{FD}} = 0.01$ Ha, which is sufficiently high to avoid unstable phonon modes related to the CDW phases.

III. RESULTS AND DISCUSSION

A. Lattice dynamics of the charge-density wave regimes

Temperature-dependent symmetry-resolved Raman spectra of 1T-TaS₂ are presented in Fig. 1. It is obvious that their evolution with temperature is divided into three distinct ranges (IC-CDW, NC-CDW, and C-CDW) as indicated. The lattice dynamics for each of these ranges will be treated separately in the first part of the section. In the second part we address the electron dynamics.

1. C-CDW phase

At the lowest temperatures 1T-TaS₂ exists in the commensurate C-CDW phase. Here, the atoms form so-called star-of-David clusters. Different studies report either triclinic stacking of these clusters leading to $P\bar{1}$ unit cell symmetry [16], or trigonal or hexagonal stacking and $P\bar{3}$ unit cell symmetry [15,18–20]. A factor group analysis predicts 57 A_e Raman-active modes with an identical polarization dependence for $P\bar{1}$ unit cell symmetry, and alternatively 19 $A_{e}+19 E_{e}$ Raman-active modes for $P\bar{3}$ unit cell symmetry [13] Our polarized Raman scattering measurements at T = 4 K, measured in two scattering channels, together with the corresponding cumulative fits are shown in Fig. 2. As it can be seen, we have observed modes of two different symmetries in the related scattering channels. This result indicates trigonal or hexagonal stacking of the star-of-David clusters. The symmetric phonon lines can be described by Voigt profiles, the best fit of which is shown as blue (for parallel light polarizations) and red (crossed polarizations) lines. After fitting Voigt profiles to the Raman spectra, 38 phonon modes were singled out. Following the selection rules for A_g and E_g symmetry modes, 19 were assigned as A_g and 19 as E_g symmetry, meaning all expected modes could be identified. The contribution from each mode to the cumulative fit is presented in Fig. 2 as green

FIG. 1. Symmetry-resolved Raman spectra of 1T-TaS₂ at temperatures as indicated. Both C-CDW (blue lines) and IC-CDW (red lines) domains yield significant contributions to the Raman spectra of the NC-CDW phase (green lines).

TABLE II. A_{1g} and E_g Raman mode energies experimentally obtained at T = 4 K.

n _o	$\omega_{A_g} (\mathrm{cm}^{-1})$	$\omega_{E_g} (\mathrm{cm}^{-1})$
1	62.6	56.5
2	73.3	63.3
3	83.4	75.3
4	114.9	82.0
5	121.9	90.5
6	129.5	101.1
7	228.7	134.8
8	244.1	244.0
9	271.9	248.9
10	284.2	257.5
11	298.6	266.6
12	307.2	278.3
13	308.2	285.0
14	313.0	292.9
15	321.2	300.5
16	324.2	332.7
17	332.0	369.2
18	367.2	392.6
19	388.4	397.7

FIG. 2. Raman spectra at T = 4 K, i.e., in the C-CDW phase, for parallel and crossed light polarizations. Red and blue solid lines represent fits of the experimental data using Voigt profiles. Spectra are offset for clarity. The short vertical lines depict central frequencies obtained from the data analysis. The exact energy values are presented in Table II.

lines, whereas the complete list of the corresponding phonon energies can be found in Table II.

2. IC-CDW phase

At the highest experimentally accessible temperatures 1T-TaS₂ adopts the IC-CDW phase. Data collected by Raman scattering at T = 370 K, containing all symmetries, are shown as a blue solid line in Fig. 3. As 1T-TaS₂ is metallic in this phase [25] we expect the phonon lines to be superimposed on a continuum of electron-hole excitations which we approximate using a Drude spectrum shown as a dashed line [35,36].

Since the IC-CDW phase arises from the normal metallic phase, described by space group $P\bar{3}m1$ [13,37], it is interesting to compare our Raman results on the IC-CDW phase to an *ab initio* calculation of the phonon dispersion in the normal phase, shown as an inset in Fig. 3. Four different optical modes were obtained at Γ : E_u at 189 cm⁻¹ (double degenerate), E_g at 247 cm⁻¹ (double degenerate), A_{2u} at 342 cm⁻¹, and A_{1g} at 346 cm⁻¹. A factor group analysis shows that two of these are Raman active, namely E_g and A_{1g} [13].

We observe that the calculated phonon eigenvalues of the simple metallic phase at Γ do not closely match the observed peaks in the experimental spectra of the IC-CDW phase. Rather, these correspond better to the calculated phonon density of states (PDOS), depicted in Fig. 3. There are essentially three different ways to project the PDOS in a Raman

FIG. 3. Raman response for parallel light polarizations in the IC-CDW phase at 370 K (blue line). The dashed line depicts the possible electronic continuum. The contributions of the Ta (dark brown) and S atoms (light brown) to the calculated PDOS (gray area) are shown below. The inset shows the calculated phonon dispersion of 1T-TaS₂ in the simple metallic phase, with the electron-phonon coupling (λ) of the optical branches indicated through the color scale.

experiment and to overcome the $q \approx 0$ selection given by the small momentum of visible light: (i) scattering on impurities [38], (ii) enhanced electron-phonon coupling [39], and (iii) breaking of the translational symmetry in the IC-CDW phase. (i) We rule out chemical impurity scattering, expected to exist at all temperatures, as the low-temperature spectra (Fig. 2) show no signs thereof. (ii) The additional scattering channel may come from the electron-phonon coupling (EPC). The calculated EPC, λ , in the optical modes (inset of Fig. 3) is limited, yet not negligible, reaching maxima of ~ 0.2 in the lower optical branches around the Brillouin zone (BZ) points Γ and A. The calculated atom-resolved PDOS shows the acoustic modes to be predominantly due to Ta and the optical modes due to S, as a result of their difference in atomic mass. The acoustic modes display several dips that are signatures of the latent CDW phases, for which the EPC cannot be reliably determined. Significant EPC in the optical modes of 1T-TaS₂ is furthermore supported by experimental results linking a sharp increase in the resistivity above the IC-CDW transition temperature to the EPC [37]. It also corroborates calculated [14] and experimentally obtained [13] values of the CDW gap, which correspond to intermediate to strong EPC [37]. (iii) Although EPC certainly contributes we believe that the majority of the additional scattering channels can be traced back to the incommensurate breaking of the translational invariance upon entering IC-CDW. Thus the "weighted" PDOS is projected into the Raman spectrum [see Figs. 1(a) and 1(b)]. These "weighting" factors depend on the specific symmetries along the phonon branches as well as the "new periodicity" and go well beyond the scope of this paper.

3. NC-CDW phase

The nearly commensurate phase is seen as a mixed phase consisting of regions of commensurate and incommensurate CDWs [40,41]. This coexistence of high- and low-temperature phases is observable in our temperature-dependent data as shown in Fig. 1. The spectra for the IC-CDW (red curves) and C-CDW phase (blue curves) are distinctly different, as also visible in the data shown above (Figs. 2 and 3). The spectra of the NC-CDW phase (235 K < T < 352 K) comprise contributions from both phases. As 352 K is the highest temperature at which the contributions from the C-CDW phase can be observed in the spectra, we suggest that the phase transition temperature from IC-CDW to NC-CDW phase is somewhere in between 352 and 360 K. This conclusion is in good agreement with experimental results regarding this transition [4–6].

B. Gap evolution

The opening of a typically momentum-dependent gap in the electronic excitation spectrum is a fundamental property of CDW systems which has also been observed in 1T-TaS₂ [13,37,42]. Here, in addition to the CDW, a Mott transition at the onset of the C-CDW phase leads to an additional gap opening in the bands close to the Γ point [21,43]. Symmetry-resolved Raman spectroscopy can provide additional information here using the momentum resolution provided by the selection rules. To this end, we look at the initial slopes of the electronic part of the spectra.

As shown in Figs. 4(a)-4(c), different symmetries project individual parts of the BZ [36,44]. The vertices given by the hexagonal symmetry of 1T-TaS₂ are derived in Appendix C. The A_{1g} vertex mainly highlights the area around the Γ point while the E_g vertices predominantly project the BZ boundaries. The opening of a gap at the Fermi level reduces $N_{\rm F}$, leading to an increase of the resistivity in the case of 1T-TaS₂. This reduction of N_F manifests itself also in the Raman spectra which, to zeroth order, are proportional to $N_{\rm F}$ [35,44]. As a result, the initial slope changes as shown Figs. 4(d) and 4(e), which zoom in on the low-energy region of the spectra from Fig. 1. The initial slope of the Raman response is $R \lim_{\Omega \to 0} \frac{\partial \chi''}{\partial \Omega} \propto N_{\rm F} \tau_0$, where *R* incorporates only experimental factors [44]. The electronic relaxation $\Gamma_0^* \propto (N_F \tau_0)^{-1}$ is proportional to the dc resistivity $\rho(T)$ [45]. If a gap opens up there is vanishing intensity at T = 0 below the gap edge for an isotropic gap. At finite temperature there are thermally excited quasiparticles which scatter. Thus, there is a linear increase at low energies [35]. The black lines in Figs. 4(d)-4(g) represent the initial slopes and their temperature dependences. The lines comprise carrier relaxation and gap effects, and we focus only on the relative changes.

Starting in the IC-CDW phase at T = 370 K [Fig. 4(d)] the initial slope is higher for the E_g spectrum than for A_{1g} symmetry. While the CDW gap started to open already at

FIG. 4. Evolution of the gaps. (a)–(c) Squared Raman vertices and Fermi surface of 1T-TaS₂ for the indicated symmetries in the normal phase above $T_{\rm IC}$. The derivation of Raman vertices is presented in Appendix C. (d)–(g) Low-energy Raman spectra for A_{1g} symmetry (blue) and E_g symmetries (red) at temperatures as indicated. The spectra shown are zooms on the data shown in Fig. 1. The black lines highlight the initial slope of the spectra. (h) High-energy spectra at 4 K. Vertical dashed lines and colored bars indicate the approximate size and error bars of the Mott gap for the correspondingly colored spectrum. (i) Temperature dependence of the Mott gap Δ_{μ} ($\mu = A_{1g}, E_g$).

554 K around the *M* points [43], which are highlighted by the E_{a} vertex, the Fermi surface projected by the E_{a} vertex continues to exist. Thus, we may interpret the different slopes as a manifestation of a momentum-dependent gap in the IC-CDW phase and assume overall intensity effects to be symmetry independent for all temperatures. At T = 352 K [Fig. 4(e)] the slope for E_g symmetry is substantially reduced to below the A_{1g} slope due to a strong increase of the CDW gap in the commensurate regions [43] which emerge upon entering the NC-CDW phase. Further cooling also decreases the slope for the A_{1g} spectrum, as the Mott gap around the Γ point starts to open within the continuously growing C-CDW domains [40,41]. Below T = 270 K the initial slopes are identical for both symmetries and decrease with temperature. Apparently, the Mott gap opens up on the entire Fermi surface in direct correspondence with the increase of the resistivity by approximately an order of magnitude [3]. Finally, at the lowest temperature close to 4 K the initial slopes drop to almost zero

FIG. 5. Raman spectra up to high energies for (a) parallel and (b) crossed polarizations of the incident and scattered light at temperatures as given in the legend.

[Fig. 4(g)], indicating vanishing conductivity or fully gapped bands in the entire BZ.

Concomitantly, and actually more intuitive for the opening of a gap, we observe the loss of intensity in the Raman spectra below a threshold at an energy Ω_{gap} . Below 30 cm⁻¹ the intensity is smaller than 0.2 counts(mW s)⁻¹ [Fig. 4(g)] and still smaller than 0.3 counts(mW s)⁻¹ up to 1500 cm⁻¹ [Fig. 4(h)]. For a superconductor or a CDW system the threshold is given by 2 Δ , where Δ is the single-particle gap, and a pileup of intensity for higher energies, $\Omega > 2\Delta$ [44]. A pileup of intensity cannot be observed here. Rather, the overall intensity is further reduced with decreasing temperature as shown in Figs. 5 and 6 in Appendixes A and B. In particular, the reduction occurs in distinct steps between the phases and continuous inside the phases with the strongest effect in the C-CDW phase below approximately 210 K (Fig. 5). In a system as clean as 1*T*-TaS₂ the missing pileup in the C-CDW phase is surprising and argues for an alternative interpretation.

In a Mott system, the gap persists to be observable but the pileup is not a coherence phenomenon and has not been observed yet. In fact, the physics is quite different, and the conduction band is split symmetrically about the Fermi energy $E_{\rm F}$ into a lower and a upper Hubbard band. Thus in the case of Mott-Hubbard physics the experimental signatures are more such as those expected for an insulator or semiconductor having a small gap, where at T = 0 there is a range without intensity and an interband onset with a band-dependent shape. At finite temperature there are thermal excitations inside the gap. For 1T-TaS₂ at the lowest accessible temperature, both symmetries exhibit a flat, nearly vanishing electronic continuum below a slightly symmetrydependent threshold (superposed by the phonon lines at low energies). Above the threshold a weakly structured increase is observed. We interpret this onset as the distance of the lower

FIG. 6. Luminescence contribution to the Raman data. (a), (b) Intensity as a function of the absolute frequency for (a) T = 330 K and (b) T = 4 K. The approximate peak maximum of the contribution attributed to luminescence is highlighted by the gray shaded area. (c), (d) Raman susceptibility calculated from (a) and (b), respectively, shown as a function of frequency (Raman) shift. The luminescence peak appears at different Raman shifts depending on the wavelength of the laser light. At T = 4 K the spectra are identical up to 1600 cm⁻¹ for all laser light wavelengths.

Hubbard band from the Fermi energy $E_{\rm F}$ or half of the distance between the lower and the upper Hubbard band, shown as vertical dashed lines at 1350–1550 cm⁻¹ \equiv 170–190 meV [Fig. 4(h)]. The energy is in good agreement with gap obtained from the in-plane angle-resolved photoemission spectroscopy (ARPES) [43], scanning tunneling spectroscopy [46], and infrared spectroscopy [13] which may be compared directly with our Raman results measured with in-plane polarizations. Upon increasing the temperature the size of the gap shrinks uniformly in both symmetries [Fig. 4(i)] and may point to an onset above the C-CDW phase transition, consistent with the result indicated by the initial slope. However, we cannot track the development of the gap into the NC-CDW phase as an increasing contribution of luminescence (see Appendix B) overlaps with the Raman data.

Recently, it was proposed on the basis of DFT calculations that 1T-TaS₂ orders also along the *c* axis perpendicular to the planes in the C-CDW state [24,25]. This quasi-onedimensional (1D) coupling is unexpectedly strong and the resulting metallic band is predicted to have a width of approximately 0.5 eV. For specific relative ordering of the star of David patterns along the *c* axis this band develops a gap of 0.15 eV at E_F [25], which is intriguingly close to the various experimental observations. However, since our light polarizations are strictly in plane, we have to conclude that the gap observed here (and presumably in the other experiments) is an in-plane gap. Our experiment cannot detect an out-of-plane gap. Thus, neither a quasimetallic dispersion along the *c* axis nor a gap in this band along k_z may be excluded in the C-CDW phase. However, there is compelling evidence for a Mott-like gap in the layers rather than a CDW gap.

IV. CONCLUSIONS

We have presented a study of the various charge density wave regimes in 1T-TaS₂ by inelastic light scattering, supported by *ab initio* calculations. The spectra of lattice excitations in the commensurate CDW (C-CDW) phase determine the unit cell symmetry to be $P\bar{3}$, indicating trigonal or hexagonal stacking of the "star-of-David" structure. The hightemperature spectra of the incommensurate CDW (IC-CDW) state are dominated by a projection of the phonon density of states caused by either a significant electron-phonon coupling or, more likely, the superstructure. The intermediate nearly commensurate (NC-CDW) phase is confirmed to be a mixed regime of commensurate and incommensurate regions contributing to the phonon spectra below an onset temperature $T_{\rm NC} \approx 352-360$ K, in good agreement with previously reported values. At the lowest measured temperatures, the observation of a virtually clean gap without a redistribution of spectral weight from low to high energies below $T_{\rm C}$ argues for the existence of a Mott metal-insulator transition at a temperature of order 100 K. The magnitude of the gap is found to be $\Omega_{gap}\approx 170\text{--}190\ \text{meV}$ and has little symmetry, thus momentum, dependence, in agreement with earlier ARPES results [37]. At 200 K, on the high-temperature end of the C-CDW phase, the gap shrinks to $\sim 60\%$ of its low-temperature value. Additionally, the progressive filling of the CDW gaps by thermal excitations is tracked via the initial slope of the spectra, and indicates that the Mott gap opens primarily on the parts of the Fermi surface closest to the Γ point.

Our results demonstrate the potential of using inelastic light scattering to probe the momentum dependence and energy scale of changes in the electronic structure driven by low-temperature collective quantum phenomena. This opens perspectives to investigate the effect of hybridization on collective quantum phenomena in heterostructures composed of different 2D materials, e.g., alternating T and H monolayers as in the 4*Hb*-TaS₂ phase [47].

ACKNOWLEDGMENTS

The authors acknowledge funding provided by the Institute of Physics Belgrade through the grant by the Ministry of Education, Science and Technological Development of the Republic of Serbia. The work was supported by the Science Fund of the Republic of Serbia, PROMIS, No. 6062656, StrainedFeSC, and by Research Foundation-Flanders (FWO). J.B. acknowledges support of a postdoctoral fellowship of the FWO, and of the Erasmus + program for staff mobility and training (KA107, 2018) for a research stay at the Institute of Physics Belgrade, during which part of the work was carried out. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. Work at Brookhaven is supported by the U.S. DOE under Contract No. DESC0012704. A.B. and R.H. acknowledge support by the German research foundation (DFG) via Projects No. Ha2071/12-1 and No. 107745057 – TRR 80 and by the DAAD via the project-related personal exchange program PPP with Serbia Grant No. 57449106.

APPENDIX A: RAW DATA

Figure 5 shows Raman spectra at temperatures ranging from T = 4 to 370 K for parallel [Fig. 5(a)] and crossed [Fig. 5(b)] in-plane light polarizations. The spectra were measured in steps of $\Delta \Omega = 50$ cm⁻¹ and a resolution of $\sigma \approx 20$ cm⁻¹. Therefore neither the shapes nor the positions of the phonon lines below 500 cm⁻¹ may be resolved. All spectra reach a minimum in the range from 500 to 1600 cm⁻¹. At energies above 500 cm⁻¹ the overall intensities are strongly temperature dependent and decreasing with decreasing temperature. Three clusters of spectra are well separated according to the phases they belong to.

In the C-CDW phase ($T \leq 200$ K, blue lines) the spectra start to develop substructures at 1500 and 3000 cm⁻¹. The spectra at 200 K increase almost linearly with energy. The spectra of the NC- and IC-CDW phases exhibit a broad maximum centered in the region of 2200–3200 cm⁻¹ which may be attributed to luminescence (see Appendix B). For clarification we measured a few spectra with various laser lines for excitation.

APPENDIX B: LUMINESCENCE

Figure 6 shows Raman spectra measured with parallel light polarizations for three different wavelengths λ_i of the incident laser light. Figures 6(a) and 6(b) depict the measured intensity *I* (without the Bose factor) as a function of the absolute frequency $\tilde{\nu}$ of the scattered light.

At high temperature [T = 330 K, Fig. 6(a)] a broad peak can be seen for all λ_i which is centered at a fixed frequency of 15 200 cm⁻¹ of the scattered photons (gray shaded area). The peak intensity decreases for increasing λ_i (decreasing energy). Correspondingly, this peak's center depends on the laser wavelength in the spectra shown as a function of the Raman shift [Fig. 6(c)]. This behavior indicates that the origin of this excitation is likely to be luminescence where transitions at fixed absolute final frequencies are expected.

At low temperature [Fig. 6(b)] we can no longer find a structure at a fixed absolute energy. Rather, as already indicated in the main part, the spectra develop additional, yet weak, structures which are observable in all spectra but are particularly pronounced for blue excitation. For green and yellow excitation the spectral range of the spectrometer, limited to 732 nm, is not wide enough for a deeper insight into the luminescence contributions (at energies different from those at high temperature) and no maximum common to all three spectra is observed. If these spectra are plotted as a function of the Raman shift, the changes in slope at 1500 and 3000 cm⁻¹ are found to be in the same position for all λ_i , values thus arguing for inelastic scattering rather than luminescence. Since we do currently not have the appropriate experimental

tools for an in-depth study, our interpretation is preliminary although supported by the observations in Fig. 6(d).

As shown in the inset of Fig. 6(d) we propose a scenario on the basis of Mott physics. In the C-CDW phase the reduced bandwidth is no longer the largest energy and the Coulomb repulsion U becomes relevant [22] and splits the conduction band into a lower and upper Hubbard band. We assume that the onset of scattering at 1500 cm⁻¹ corresponds to the distance of the highest energy of the lower Hubbard band to the Fermi energy $E_{\rm F}$. The second onset corresponds then to the distance between the highest energy of the lower Hubbard band and the lowest energy of the upper Hubbard band. An important question needs to be answered: Into which unoccupied states right above $E_{\rm F}$ does the first process scatter electrons? We may speculate that some DOS is provided by the metallic band dispersing along k_z or by the metallic domain walls between the different types of ordering patterns along the *c* axis observed recently by tunneling spectroscopy [46]. These quasi-1D domain walls would provide the states required for the onset of scattering at high energy but are topologically too small for providing enough density of states for a measurable intensity at low energy [Fig. 4(g)] in a location-integrated experiment such as Raman scattering.

APPENDIX C: DERIVATION OF THE RAMAN VERTICES

Phenomenologically, the Raman vertices can be derived based on lattice symmetry, which are proportional to the Brillouin zone harmonics. They are a set of functions that exhibit the symmetry and periodicity of the lattice structure proposed by Allen [48]. These functions make the k-space sums and energy integrals more convenient than that of the Cartesian basis or the spherical harmonics basis, especially for those materials who have anisotropic and/or multiple Fermi pockets. The three Cartesian components of the Fermi velocity v_k are recommended to generate this set of functions since they inherit the symmetry and periodicity of the crystal lattice naturally. However, in most cases, we do not know the details of band dispersion. A phenomenological method is needed to construct such a set of basis functions. Here, we demonstrate a method based on the group theory. The Brillouin zone harmonics can be obtained by the projection operation on specific trial functions.

For a certain group *G* with symmetry elements *R* and symmetry operators \hat{P}_R , it can be described by several irreducible representations Γ_n , where *n* labels the representation. For each irreducible representation, there are corresponding basis functions $\Phi_{\Gamma_n}^j$ that can be used to generate representation matrices for a particular symmetry. Here, *j* labels the component or partner of the representations. For an arbitrary function *F*, we have

$$F = \sum_{\Gamma_n} \sum_j f_j^{\Gamma_n} \Phi_{\Gamma_n}^j.$$
(C1)

According to the group theory, we can always define a projection operator by the relation [49]

$$\hat{P}^{\Gamma_n} = \frac{d}{N} \sum_R \chi^{\Gamma_n}(R) * \hat{P}_R, \qquad (C2)$$

TABLE III. Symmetry operations \hat{P}_R and corresponding character table of the D_{3d} point group.

\hat{P}_R	x'	<i>y</i> ′	z'	χ^{Γ_n}	(R)
				$\overline{A_{1g}}$	E_g
E	x	у	z	1	2
C_{3}^{1}	$-\frac{1}{2}x + \frac{\sqrt{3}}{2}y$	$-\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	1	-1
C_{3}^{-1}	$-\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	1	-1
C'_2	<i>x</i>	-y -	-z	1	0
C_2''	$-\frac{1}{2}x + \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	-z	1	0
C_{2}'''	$-\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$-\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	-z	1	0
Ī	-x		-z	1	2
S_{6}^{1}	$\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	-z	1	-1
S_{6}^{-1}	$\frac{1}{2}x + \frac{\sqrt{3}}{2}y$	$-\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	-z	1	-1
σ'_v	$-x^2$	y 2	z	1	0
σ_v''	$\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$-\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	1	0
σ_v'''	$\frac{\overline{1}}{2}x + \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	1	0

that satisfies the relation

$$\hat{P}^{\Gamma_n}F = \sum_j f_j^{\Gamma_n} \Phi_{\Gamma_n}^j, \tag{C3}$$

where *d* is the dimensionality of the irreducible representation Γ_n , *N* is the number of symmetry operators in the group, and $\chi^{\Gamma_n}(R)$ is the character of the matrix of symmetry operator *R* in irreducible representation Γ_n . By projection operation on a certain irreducible representation Γ_n , we can directly get its basis functions Φ^j_{Γ} .

The basis functions are not unique. In specific physical problems, it is useful to use physical insight to guess an appropriate arbitrary function to find the basis functions for specific

- J. C. Tsang, J. E. Smith, M. W. Shafer, and S. F. Meyer, Raman spectroscopy of the charge-density-wave state in 1*T* - and 2*H*-TaSe₂, Phys. Rev. B 16, 4239 (1977).
- [2] C. J. Sayers, H. Hedayat, A. Ceraso, F. Museur, M. Cattelan, L. S. Hart, L. S. Farrar, S. Dal Conte, G. Cerullo, C. Dallera, E. Da Como, and E. Carpene, Coherent phonons and the interplay between charge density wave and Mott phases in 1*T*-TaSe₂, Phys. Rev. B **102**, 161105(R) (2020).
- [3] A. J. Wilson, J. F. D. Salvo, and S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides, Adv. Phys. 24, 117 (1975).
- [4] C. B. Scruby, P. M. Williams, and G. S. Parry, The role of charge density waves in structural transformations of 1*T*-TaS₂, Philos. Mag. **31**, 255 (1975).
- [5] R. E. Thomson, B. Burk, A. Zettl, and J. Clarke, Scanning tunneling microscopy of the charge-density-wave structure in 1*T*-TaS₂, Phys. Rev. B **49**, 16899 (1994).
- [6] W. Wen, C. Dang, and L. Xie, Photoinduced phase transitions in two-dimensional charge-density-wave 1*T*-TaS₂, Chin. Phys. B 28, 058504 (2019).
- [7] D. Svetin, I. Vaskivskyi, S. Brazovskii, Mertelj, and D. Mihailovic, Three-dimensional resistivity and switching be-

problems. 1*T*-TaS₂ belongs to the D_{3d} point group. There are 12 symmetry operators in this group, i.e., E, C_3^1 , C_3^{-1} , C_2' , C_2'' , C_2''' , I, S_6^1 , S_6^{-1} , σ_v' , σ_v'' , σ_v''' . The coordinate transformations after symmetry operations and the corresponding character table are listed in Table III.

In order to simulate the periodicity of the Brillouin zone, trigonometric functions are used as trial functions. According to the parity of the irreducible representations, we can choose an appropriate trigonometric function, e.g., a sine function for odd parity representation and cosine function for even parity representation. The combinations of them are also available.

Here, we use $F = \cos(k_x a)$ as a trial function, where *a* is the in-plane crystal constant. The basis function of A_{1g} can be derived as

$$\Phi_{A_{1g}}(\mathbf{k}) = \frac{1}{3} \left[\cos(k_x a) + 2\cos\left(\frac{1}{2}k_x a\right)\cos\left(\frac{\sqrt{3}}{2}k_y a\right) \right].$$
(C4)

With the same method, we obtain a basis function of E_g as

$$\Phi_{E_g^1}(\mathbf{k}) = \frac{2}{3} \left[\cos(k_x a) - \cos\left(\frac{1}{2}k_x a\right) \cos\left(\frac{\sqrt{3}}{2}k_y a\right) \right].$$
(C5)

Since the E_g is a two-dimensional representation, the projection operation provides only one of the two basis functions of the corresponding subspace. The second function is found based on the subspace invariance under the symmetry operations (e.g., if we operate $\Phi_{E_g^1}$ with C_3^1 symmetry, the result can be presented as a linear combination of $\Phi_{E_g^1}$ and $\Phi_{E_g^2}$). Thus we obtain

$$\Phi_{E_g^2}(\mathbf{k}) = 2\sin\left(\frac{1}{2}k_xa\right)\sin\left(\frac{\sqrt{3}}{2}k_ya\right).$$
 (C6)

tween correlated electronic states in 1*T*-TaS₂, Sci. Rep. 7, 46048 (2017).

- [8] D. Svetin, I. Vaskivskyi, P. Sutar, E. Goreshnik, J. Gospodaric, T. Mertelj, and D. Mihailovic, Transitions between photoinduced macroscopic quantum states in 1*T*-TaS₂ controlled by substrate strain, Appl. Phys. Express 7, 103201 (2014).
- [9] G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, and A. A. Balandin, A charge-density wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature, Nat. Nanotechnol. 11, 845 (2016).
- [10] R. Salgado, A. Mohammadzadeh, F. Kargar, A. Geremew, C.-Y. Huang, M. A. Bloodgood, S. Rumyantsev, T. T. Salguero, and A. A. Balandin, Low-frequency noise spectroscopy of chargedensity-wave phase transitions in vertical quasi-2D 1*T*-TaS₂ devices, Appl. Phys. Express **12**, 037001 (2019).
- [11] Z. X. Wang, Q. M. Liu, L. Y. Shi, S. J. Zhang, T. Lin, T. Dong, D. Wu, and N. L. Wang, Photoinduced hidden CDW state and relaxation dynamics of 1*T*-TaS₂ probed by time-resolved terahertz spectroscopy, arXiv:1906.01500.
- [12] L. Stojchevska, I. Vaskivskyi, T. Mertelj, P. Kusar, D. Svetin, S. Brazovskii, and D. Mihailovic, Ultrafast switching to a stable

hidden quantum state in an electronic crystal, Science **344**, 177 (2014).

- [13] L. V. Gasparov, K. G. Brown, A. C. Wint, D. B. Tanner, H. Berger, G. Margaritondo, R. Gaál, and L. Forró, Phonon anomaly at the charge ordering transition in 1*T*-TaS₂, Phys. Rev. B 66, 094301 (2002).
- [14] O. R. Albertini, R. Zhao, R. L. McCann, S. Feng, M. Terrones, J. K. Freericks, J. A. Robinson, and A. Y. Liu, Zone-center phonons of bulk, few-layer, and monolayer 1*T*-TaS₂: Detection of commensurate charge density wave phase through Raman scattering, Phys. Rev. B **93**, 214109 (2016).
- [15] S. Uchida and S. Sugai, Infrared and raman studies on a commensurate CDW states in transition metal dichalcogenides, Physica B+C 105, 393 (1981).
- [16] R. Brouwer and F. Jellinek, The low-temperature superstructures of 1*T*-TaSe₂ and 2*H*-TaSe₂, Physica B+C **99**, 51 (1980).
- [17] A. Zong, X. Shen, A. Kogar, L. Ye, C. Marks, D. Chowdhury, T. Rohwer, B. Freelon, S. Weathersby, R. Li, J. Yang, J. Checkelsky, X. Wang, and N. Gedik, Ultrafast manipulation of mirror domain walls in a charge density wave, Sci. Adv. 4, eaau5501 (2018).
- [18] J. R. Duffay and R. D. Kirby, Raman scattering from 1*T*-TaS₂, Solid State Commun. **20**, 617 (1976).
- [19] T. Hirata and F. S. Ohuchi, Temperature dependence of the Raman spectra of 1*T*-TaS₂, Solid State Commun. **117**, 361 (2001).
- [20] S. L. L. M. Ramos, R. Plumadore, J. Boddison-Chouinard, S. W. Hla, J. R. Guest, D. J. Gosztola, M. A. Pimenta, and A. Luican-Mayer, Suppression of the commensurate charge density wave phase in ultrathin 1*T*-TaS₂ evidenced by Raman hyperspectral analysis, Phys. Rev. B 100, 165414 (2019).
- [21] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutis, From Mott state to superconductivity in 1*T*-TaS₂, Nat. Mater. 7, 960 (2008).
- [22] P. Fazekas and E. Tosatti, Electrical, structural and magnetic properties of pure and doped 1*T*-TaS₂, Philos. Mag. B **39**, 229 (1979).
- [23] E. Martino, A. Pisoni, L. Ćirić, A. Arakcheeva, H. Berger, A. Akrap, C. Putzke, P. J. W. Moll, I. Batistić, E. Tutiš, L. Forró, and K., Preferential out-of-plane conduction and quasione-dimensional electronic states in layered 1*T*-TaS₂, npj 2D Mater. Appl. 4, 7 (2020).
- [24] P. Darancet, A. J. Millis, and C. A. Marianetti, Threedimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides, Phys. Rev. B 90, 045134 (2014).
- [25] S.-H. Lee, J. S. Goh, and D. Cho, Origin of the Insulating Phase and First-Order Metal-Insulator Transition in 1*T*-TaS₂, Phys. Rev. Lett. **122**, 106404 (2019).
- [26] Y. Ma, Y. Hou, C. Lu, L. Li, and C. Petrovic, Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1*T*-TaS₂, Phys. Rev. B **97**, 195117 (2018).
- [27] L. J. Li, W. J. Lu, X. D. Zhu, L. S. Ling, Z. Qu, and Y. P. Sun, Fedoping induced superconductivity in the charge-density-wave system 1*T*-TaS₂, Europhys. Lett. **98**, 29902 (2012).
- [28] Y. Liu, R. Ang, W. J. Lu, W. H. Song, L. J. Li, and Y. P. Sun, Superconductivity induced by Se-doping in layered chargedensity-wave system 1*T*-TaS_{2-x}Se_x, Appl. Phys. Lett. **102**, 192602 (2013).

- [29] R. Ang, Y. Miyata, E. Ieki, K. Nakayama, T. Sato, Y. Liu, W. J. Lu, Y. P. Sun, and T. Takahashi, Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS_{2-x}Se_x, Phys. Rev. B **88**, 115145 (2013).
- [30] M. Bovet, D. Popović, F. Clerc, C. Koitzsch, U. Probst, E. Bucher, H. Berger, D. Naumović, and P. Aebi, Pseudogapped Fermi surfaces of 1*T*-TaS₂ and 1*T*-TaSe₂: A charge density wave effect, Phys. Rev. B 69, 125117 (2004).
- [31] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux *et al.*, ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. **180**, 2582 (2009).
- [32] S. Goedecker, M. Teter, and J. Hutter, Separable dualspace Gaussian pseudopotentials, Phys. Rev. B 54, 1703 (1996).
- [33] M. Krack, Pseudopotentials for H to Kr optimized for gradientcorrected exchange-correlation functionals, Theor. Chem. Acc. 114, 145 (2005).
- [34] X. Gonze, D. C. Allan, and M. P. Teter, Dielectric Tensor, Effective Charges, and Phonons in α -Quartz by Variational Density-Functional Perturbation Theory, Phys. Rev. Lett. **68**, 3603 (1992).
- [35] A. Zawadowski and M. Cardona, Theory of Raman scattering on normal metals with impurities, Phys. Rev. B 42, 10732 (1990).
- [36] N. Lazarević and R. Hackl, Fluctuations and pairing in Febased superconductors: Light scattering experiments, J. Phys.: Condens. Matter 32, 413001 (2020).
- [37] K. Rossnagel, On the origin of charge-density waves in select layered transition-metal dichalcogenides, J. Phys.: Condens. Matter 23, 213001 (2011).
- [38] R. Shuker and R. W. Gammon, Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials, Phys. Rev. Lett. 25, 222 (1970).
- [39] A. Baum, A. Milosavljević, N. Lazarević, M. M. Radonjić, B. Nikolić, M. Mitschek, Z. I. Maranloo, M. Šćepanović, M. Grujić-Brojčin, N. Stojilović, M. Opel, A. Wang, C. Petrovic, Z. V. Popović, and R. Hackl, Phonon anomalies in FeS, Phys. Rev. B 97, 054306 (2018).
- [40] A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen, X-ray crystal-structure refinement of the nearly commensurate phase of 1*T*-TaS₂ in (3 + 2)-dimensional superspace, Phys. Rev. B 56, 13757 (1997).
- [41] R. He, J. Okamoto, Z. Ye, G. Ye, H. Anderson, X. Dai, X. Wu, J. Hu, Y. Liu, W. Lu, Y. Sun, A. N. Pasupathy, and A. W. Tsen, Distinct surface and bulk charge density waves in ultrathin 1*T*-TaS₂, Phys. Rev. B 94, 201108(R) (2016).
- [42] G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60, 1129 (1988).
- [43] C. Sohrt, A. Stange, M. Bauer, and K. Rossnagel, How fast can a Peierls–Mott insulator be melted?, Faraday Discuss. 171, 243 (2014).
- [44] T. P. Devereaux and R. Hackl, Inelastic light scattering from correlated electrons, Rev. Mod. Phys. 79, 175 (2007).
- [45] M. Opel, R. Nemetschek, C. Hoffmann, R. Philipp, P. F. Müller, R. Hackl, I. Tüttő, A. Erb, B. Revaz, E. Walker, H. Berger, and L. Forró, Carrier relaxation, pseudogap, and superconducting

gap in high- T_c cuprates: A Raman scattering study, Phys. Rev. B **61**, 9752 (2000).

- [46] J. Skolimowski, Y. Gerasimenko, and R. Žitko, Mottness Collapse without Metallization in the Domain Wall of the Triangular-Lattice Mott Insulator 1*T*-TaS₂, Phys. Rev. Lett. 122, 036802 (2019).
- [47] A. Ribak, R. M. Skiff, M. Mograbi, P. K. Rout, M. H. Fischer, J. Ruhman, K. Chashka, Y. Dagan, and A. Kanigel, Chiral

superconductivity in the alternate stacking compound 4Hb-TaS₂, Sci. Adv. **6**, eaax9480 (2020).

- [48] P. B. Allen, Fermi-surface harmonics: A general method for nonspherical problems. Application to Boltzmann and Eliashberg equations, Phys. Rev. B 13, 1416 (1976).
- [49] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, *Group Theory* (Springer, Berlin, 2008).

Spin-phonon interaction and short-range order in Mn₃Si₂Te₆

S. Djurdjić Mijin,¹ A. Šolajić,¹ J. Pešić ⁽¹⁾,^{*} Y. Liu ⁽²⁾,[†] C. Petrovic ⁽¹⁾,² M. Bockstedte,³ A. Bonanni,⁴

Z. V. Popović,^{1,5} and N. Lazarević¹

¹Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

²Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

³Institute for Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria

⁴Institute of Semiconductor and Solid-State Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria

⁵Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

(Received 7 September 2022; revised 31 January 2023; accepted 3 February 2023; published 21 February 2023)

The vibrational properties of ferrimagnetic $Mn_3Si_2Te_6$ single crystals are investigated using Raman spectroscopy and density functional theory calculations. Eighteen Raman-active modes are identified, 14 of which are assigned according to the trigonal symmetry. Four additional peaks, obeying the A_{1g} selection rules, are attributed to the overtones. The unconventional temperature evolution of the A_{1g}^5 mode self-energy suggests a competition between different short-range magnetic correlations that significantly impact the spin-phonon interaction in $Mn_3Si_2Te_6$. The research provides comprehensive insight into the lattice properties, studies their temperature dependence, and shows arguments for the existence of competing short-range magnetic phases in $Mn_3Si_2Te_6$.

DOI: 10.1103/PhysRevB.107.054309

I. INTRODUCTION

Layered magnetic van der Waals materials have lately received widespread attention due to their potential application in spintronics, magnetoelectronics, data storage, and biomedicine [1–7]. Recent experimental confirmation of a long-range magnetism persisting down to a monolayer in CrI_3 [8] further affirmed these materials as a platform for magneto-optoelectronic devices [9], and as candidates for studying low-dimensional magnetism [10].

Mn₃Si₂Te₆ single crystals were first synthesized in 1985 [11]. However, few studies were carried out on this compound since. It was only recently that the attention has shifted to them, mainly through comparisons with quasi-twodimensional materials, specifically CrSiTe₃. The vast majority of recent studies were focused on explaining the magnetism in Mn₃Si₂Te₆ and determining its crystal structure. It was revealed that Mn₃Si₂Te₆ crystallizes in a trigonal structure described by the $P\bar{3}1c$ (No. 163) space group [11,12]. According to various magnetization studies, Mn₃Si₂Te₆ is an insulating ferrimagnetic with Curie temperature T_c between 74 and 78 K [12–15]. First-principles calculations suggested a competition between the ferrimagnetic ground state and three additional magnetic configurations, originating from the antiferromagnetic exchange for the three nearest Mn-Mn pairs [15]. Additionally, both magnetization and diffuse neutron scattering experiments point at the existence of strong spin correlations well above T_c , which may be associated with short-range order or to the preserved correlated excitations in the paramagnetic region [12,15].

Here, we present an experimental and theoretical Raman scattering study of Mn₃Si₂Te₆ single crystals, with the focus on phonon properties in the temperature range from 80 to 320 K. Out of 18 observed modes, 14 $(5A_{1g} + 9E_g)$ are identified and assigned in agreement with the $P\bar{3}1c$ space group. Phonon energies are in a good agreement with the theoretical predictions. Two most prominent Raman modes, A_{1e}^4 and A_{1e}^5 , are used to study the temperature evolution of phonon properties, and reveal three subsequent phase transitions at $T_1 =$ 142.5 K, $T_2 = 190$ K, and $T_3 = 285$ K. Furthermore, the A_{14}^5 mode exhibits strong asymmetry, most likely originating from enhanced spin-phonon coupling. Interestingly, the A_{1g}^5 phonon line is symmetric in the temperature range T_1-T_2 , while becoming more asymmetric above T_3 , potentially indicating that the strength of spin-phonon interaction changes with temperature. We speculate that the observed phenomenon, shown in the A_{1g}^5 phonon, originates from the shift in dominance between competing magnetic states, that are found to be very close in energy [15].

II. EXPERIMENTAL AND COMPUTATIONAL DETAILS

The $Mn_3Si_2Te_6$ single-crystal samples used in this study are prepared according to the procedure described in Ref. [12]. The Raman spectra have been obtained with a Tri Vista 557 spectrometer (Teledyne Princeton Instruments, Trenton, NJ, USA) with a 1800/1800/2400 grooves/mm diffraction grating combination in a backscattering configuration. The 514-nm line of a Coherent Ar^+/Kr^+ ion laser (Coherent, Santa Clara, CA, USA) is utilized as the excitation source. The direction of the incident (scattered) light coincides with

^{*}Corresponding author: jelena.pesic@ipb.ac.rs

[†]Present address: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

TABLE I. Wyckoff positions of atoms and their contributions to the Γ -point phonons together with the corresponding Raman tensors for the $P\bar{3}1c$ space group of Mn₃Si₂Te₆.

	Space group: <i>P</i> 31 <i>c</i>				
Atoms	Irreducible representations				
$\frac{1}{Mn (2c)}$ $\frac{1}{Mn (4f)}$	$A_{2g} + A_{2u} + E_g + E_u$ $A_{1u} + A_{2u} + A_{2u} + A_{2u} + 2E_u + 2E_u$	F			
Si (4 <i>e</i>)	$A_{1g} + A_{1u} + A_{2g} + A_{2u} + 2E_g + 2E_g$	Ξ_u			
Te (12 <i>i</i>)	$3A_{1g} + 3A_{1u} + 3A_{2g} + 3A_{2u}$ $+6E_g + 6E_u$ Raman tensors				
	$A_{1g} = \begin{pmatrix} a & & \\ & a & \\ & & b \end{pmatrix}$				
${}^{1}E_{g} = \begin{pmatrix} c \\ \end{pmatrix}$	$\begin{pmatrix} -c & d \\ d \end{pmatrix} \qquad \qquad {}^{2}E_{g} = \begin{pmatrix} -c & -d \\ -c & \\ d & \end{pmatrix}$				

the crystallographic *c* axis. Laser-beam focusing is achieved through a microscope objective with $50 \times$ magnification. The temperature-dependent Raman scattering measurements have been performed under high vacuum (10^{-6} mbar), with the sample being placed inside of a KONTI CryoVac continuous helium flow cryostat (CryoVac GmbH & Co. KG, Troisdorf, Germany) with a 0.5-mm-thick window. The samples are cleaved in air before being placed into the cryostat. The obtained Raman spectra are corrected by a Bose factor. The spectrometer resolution is comparable to a Gaussian width of 1 cm⁻¹.

The calculations are based on the density functional theory (DFT) formalism as implemented in the Vienna ab initio simulation package (VASP) [16–19], with the plane-wave basis truncated at a kinetic energy of 520 eV, using the Perdew-Burke-Ernzehof (PBE) exchange-correlation functional [20] and projector augmented-wave (PAW) method [19,21]. The Monkhorst and Pack scheme of k-point sampling is employed to integrate over the first Brillouin zone with $12 \times 12 \times 10$ at the Γ -centered grid. The convergence criteria for energy and force have been set to 10^{-6} eV and 0.001 eV Å⁻¹, respectively. The DFT-D2 method of Grimme is employed for van der Waals (vdW) corrections [22]. The vibrational modes are calculated using density functional perturbation theory implemented in VASP and PHONOPY [23]. Previous DFT results found the energy of the ferrimagnetic state to be well above an eV per Mn below that of the nonmagnetic state [15], thus this configuration is considered in this study.

III. RESULTS AND DISCUSSION

A. Polarization measurements

Mn₃Si₂Te₆ crystallizes in a trigonal $P\bar{3}1c$ crystal structure [11,12]. The Wyckoff positions of the atoms and their contributions to the Γ -point phonons, together with the corresponding Raman tensors, are listed in Table I. In total, there are 16 Raman-active modes ($5A_{1g} + 11E_g$) and 17 infraredactive modes ($6A_{2u} + 11E_u$). According to the Raman tensors presented in Table I, in our scattering configuration and with

FIG. 1. Raman spectra of $Mn_3Si_2Te_6$ single crystal measured in two scattering geometries at T = 100 K (blue solid line) and T = 300 K (red solid lines) with incident light being directed along [100]. Peaks observed in both geometries are identified as E_g modes, whereas peaks observed only for the parallel polarization configuration are assigned as A_{1g} modes. Gray line: TeO₂ spectrum at 300 K, scaled for clarity. The crystal structure of $Mn_3Si_2Te_6$ viewed laterally along the *c* axis is presented in the inset.

Raman scattering events within the crystallographic *ab* plane, E_g symmetry modes can be observed in the Raman spectra measured in both parallel and crossed polarization configurations, whereas A_{1g} modes arise only for those in parallel polarization configuration.

As depicted in Fig. 1, nine phonon lines are observed in a parallel polarization configuration only, and identified as A_{1g} symmetry modes. According to the symmetry analysis only five A_{1g} symmetry modes are expected, resulting in four excess modes at 53.3, 57.9, 95.3, and 366.7 cm⁻¹. These modes may arise from infrared/silent phonons activated by disorder and from the relaxation of the symmetry selection rules [24–27]. However, it is more likely they are overtones. Overtones, which are always observable in *A* symmetries, but can also be observed in other symmetries, can become observable in Raman spectra due to disorder and/or enhanced coupling of the phonons to other excitations such as in the case of spin-phonon coupling [28].

Aside from the discussed A_{1g} symmetry modes, our spectra host nine modes which obey the E_g selection rules. Therefore, nine out of the expected 11 E_g modes have been singled out and identified. The absence of two E_g modes might be attributed to their low intensity and/or the finite resolution of the spectrometer.

Calculated and experimental phonon energies are collected in Table II, and are found to be in good agreement with each

TABLE II. Phonon symmetries and phonon frequencies of $Mn_3Si_2Te_6$ phonons. The experimental values are determined at 100 K. All calculations have been performed at zero 0 K. The experimental uncertainty is 0.3 cm^{-1} .

Space group $P\bar{3}1c$			
$\overline{n_0}$	Symm.	Expt. (cm^{-1})	Calc. (cm ⁻¹)
1	E_g^1		53.1
2	P1	53.3	
3	P2	57.9	
4	E_g^2	58.7	58.5
5	E_g^3	62.6	61.8
6	A_{1g}^1	64.2	62.3
7	E_g^4	80.4	82.7
8	P3	95.3	
9	E_g^5	95.9	90.3
10	A_{1g}^{2}	107.3	104.3
11	$E_g^{\acute{6}}$	114.0	106.5
12	A_{1g}^{3}	135.4	134.2
13	E_g^{7}	136.6	136.1
14	E_g^8	149.8	143.4
15	A_{1g}^4	151.8	147.3
16	E_{g}^{9}	152.6	146.6
17	E_{g}^{10}		352.7
18	P4	366.7	
19	E_{g}^{11}	368.7	354.5
20	A_{1g}^5	486.7	475.8

other, with the discrepancy being below 8% for all observed modes.

Our data significantly differ from those presented in Ref. [14] where two Raman-active modes were reported, one at 118.4 cm⁻¹ and the other at 136.9 cm⁻¹, assigned as E_g and A_{1g} , respectively. The E_g and A_{1g} modes in our spectra closest (in terms of energy) to those reported in Ref. [14] are the peaks at ~114.3 and 135.4 cm⁻¹ (Table II). Although the discrepancy in phonon energy is not significant, the observed phonon linewidths strongly deviate from those presented in Ref. [14]. A possible explanation for the discrepancy is the presence of TeO₂ in samples presented in Ref. [14], as the peaks reported there match rather well with the Raman response of TeO₂ (Fig. 1). In order to avoid potential contamination in our study, measurements have been repeated on multiple crystals, and no oxide traces have been identified in the spectra.

B. Temperature dependence

Some of the modes represented in Fig. 1 exhibit an asymmetric line shape. Although the appearance of a mode asymmetry can be attributed to the presence of defects [29], this would have a significant impact also on the linewidths of other modes in the spectrum, which is not the case here. The asymmetry may arise from coupling between the phonon and other elementary excitations [30–32]. The line shape originating from such a coupling is given by the Fano

FIG. 2. Raman response as a function of the Raman shift. Quantitative analysis of the A_{1g}^5 mode at temperatures as indicated. (a) and (b) The blue solid lines represent the line shape obtained as a convolution of Fano profiles and Gaussian, whereas the green solid lines represent Voigt profiles. (c) Comparison between asymmetric (deep blue) and symmetric (light blue) line shapes obtained as a Fano-Gaussian convolution and a Voight profile. Experimental data are represented by open squares.

profile [33-36]

$$I(\omega) = I_0 \frac{(q+\epsilon)^2}{1+\epsilon^2},$$

where $\epsilon(\omega) = 2(\omega - \omega_0)/\Gamma$. Here, ω_0 is the phonon frequency in the absence of interaction, Γ is the full width at half maximum (FWHM), I_0 is the amplitude, and q is the Fano parameter. The Fano parameter and FWHM depend on the interaction strength between the phonon and the elementary excitation, and therefore can be used as its indicator. To include the finite spectral resolution of the experimental setup, the Fano profile is convoluted with a Gaussian function as demonstrated in Ref. [28].

The high-intensity peak at 486.7 cm⁻¹, identified as the A_{1g}^5 symmetry mode, does not overlap with any other mode. The quantitative analysis of this peak is performed using both the symmetric Voigt profile and the Fano-Gaussian convolution mentioned above. The comparison between the two models and the experimental data at 80 and 300 K are presented in Figs. 2(a) and 2(b), respectively. The asymmetric line shapes provide a satisfactory description of the measured phonon line shape, suggesting the presence of an additional scattering mechanism in Mn₃Si₂Te₆.

The spectral region of the A_{1g}^5 Raman-active mode in the temperature range of interest is presented in Fig. 3(a). The

Mn₃Si₂Te₆ (a) (b) emu/gł 10⁻²(b) 10⁻³) e_i || e_s 10⁻⁴Ē 10-5 80 K 487 140 K 8 (T) (cm⁻¹ 486 15 485 R_{χ} " (arb. units) 142.5 K 150 484 (C) 2.5 160 K 2.0 175 K 1.5 180 K Mett - Ann (d) 1.0 200 K 40 250 K 35 T₁ 30 280 K 25 а 20 300 K (e) 15 320 K 10 0 0 ò 00 0 00000 ***** 460 480 500 520 100 150 200 250 300 Raman Shift (cm⁻¹) Temperature (K)

FIG. 3. (a) The spectral region of the A_{1g}^5 Raman-active mode of Mn₃Si₂Te₆ at indicated temperatures measured in the parallel polarization configuration. Green solid lines represent line shapes obtained as a convolution of the Fano line shape and Gaussian, calculated to fit the experimental data. (b) Temperature dependence of ac susceptibility real part m'(T) and its temperature derivative plotted as a function of temperature with **H** || **ab**. Temperature dependence of (c) the energy of the A_{1g}^4 and A_{1g}^5 as well as (d) the linewidth, and (e) the Fano parameter |q| of the A_{1g}^5 mode.

blue solid lines represent fits to the experimental data obtained using the Fano-Gaussian line shape. The temperature dependence of the phonon energy, linewidth, and the Fano parameter |q| of the A_{1g}^5 mode are depicted in Figs. 3(c)–3(e), respectively. By increasing the temperature above 80 K, the A_{1g}^5 mode broadens and softens up to $T_1 = 142.5$ K, where it abruptly narrows and shifts to higher energies followed by further softening and narrowing up to $T^* = 160$ K. Additional heating leads to a broadening and hardening before the drop in phonon energy at $\sim T_2 = 190$ K. In the region T_2 the mode softens and broadens with an additional jump in phonon energy at $T_3 = 285$ K. A similar trend is also observed for the A_{1g}^4 mode, as evidenced in Fig. 3(b).

This intriguing temperature dependence is also manifested in the asymmetry, i.e., the Fano parameter |q| [Fig. 3(d)] of the A_{1g}^5 peak. At the lowest experimental temperature, 80 K, the A_{1g}^5 mode exhibits strong asymmetry with a Fano parameter |q| = 9.9. Upon heating the sample to $\sim T_1$ a Fano parameter remains nearly constant before the significant increase in the temperature range between T_1 and T^* resulting in a symmetric line shape [|q| = 38, Fig. 3(c)]. A further temperature increase leads to a strong decrease of |q| up to T_2 , where the asymmetry is restored (|q| = 9.9), remaining almost constant up to T_3 . At higher temperatures, the line shape becomes more asymmetric, reaching $|q| \sim 8$ at the highest experimentally accessible temperature T = 320 K.

While the ferrimagnetic order in Mn₃Si₂Te₆ is established only at $T_c = 78$ K [12,14], the asymmetry of the mode can be observed at all experimental temperatures. Based on the research done on Mn₃Si₂Te₆ and related materials, the most probable scenario is the one in which the observed asymmetry can be traced to an enhanced spin-phonon interaction related to short-range correlations, that can survive up to temperatures well above T_c [24,37–39]. We may speculate, according to the results presented in Ref. [15], that these short-range correlations are likely in terms of the antiferromagnetic exchange interaction between the three nearest Mn-Mn pairs (as depicted in Fig. 1) in the paramagnetic background. However, this alone cannot explain sudden changes in the properties of the A_{1a}^5 phonon mode. Rather, the existence of competing short-range magnetic phases may be responsible for the observed behavior of the phonon modes. The first phonon mode anomaly at $T_3 = 285$ K corresponds to the anomaly in $m'(T)_{ab}$ [Fig. 3(b)] and can be seen as the outlet of additional short-range order in the paramagnetic domains [40] and possibly change of their nature of previously established ones. The onset in temperature with the magnetization anomaly near 330 K [14,41] is likely the consequence of local disorder. At T_2 , Mn₃Si₂Te₆ becomes locally magnetically frustrated, resulting in the change in magnetostriction and a rapid decrease of the spin-phonon interaction that is manifested in the strong evolution of the phonon self-energy (Fig. 3). At this temperature both the magnetoresistance and nonlinearity of Hall resistance become observable [41]. In this scenario, by further lowering the temperature, at T_1 a new short-range magnetic order and the strong spin-phonon interaction are established. The new magnetic order is most likely antiferromagnetic [15]. In order to fully understand the complex evolution of the short-range magnetic correlation in Mn₃Si₂Te₆ that is manifested through the anomalous temperature development of the A_{1g}^{5} mode, further investigations are required.

IV. CONCLUSION

The lattice dynamic in single-crystalline Mn₃Si₂Te₆ using Raman spectroscopy in analyzed. Five A_{1g} modes and nine E_g modes are observed and assigned according to the $P\bar{3}1c$ symmetry group. Four additional peaks to the ones assigned to the $P\bar{3}1c$ symmetry group, obeying A_{1g} selection rules, are attributed to overtones. There is a pronounced asymmetry of the A_{1g}^5 phonon mode at 100 and 300 K. The unconventional temperature evolution of the A_{1g}^5 Raman mode reveals three successive, possibly magnetic, phase transitions that may significantly impact the strength of the spin-phonon interaction in Mn₃Si₂Te₆. These are likely caused by the competition between the various magnetic states, close in energy. This paper provides comprehensive insight into the lattice properties, their temperature dependence, and shows arguments for the existence of competing short-range magnetic phases in $Mn_3Si_2Te_6$.

ACKNOWLEDGMENTS

The authors acknowledge funding provided by the Institute of Physics Belgrade, through a grant from the Ministry of Science, Technological Development and Innovations of the Republic of Serbia, the Serbian Academy of Sciences and Arts - Project No. F-134, the Science Fund of the Republic of

- Z. Guguchia, Unconventional magnetism in layered transition metal dichalcogenides, Condensed Matter 5, 42 (2020).
- [2] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699 (2012).
- [3] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Graphene spintronics, Nat. Nanotechnol. 9, 794 (2014).
- [4] W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, Designing crystallization in phase-change materials for universal memory and neuro-inspired computing, Nat. Rev. Mater. 4, 150 (2019).
- [5] C. Zhu, G. Yang, H. Li, D. Du, and Y. Lin, Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem. 87, 230 (2015).
- [6] X. J. Zhou, Magnetism in medicine: A handbook, second completely revised and enlarged edition, Med. Phys. 34, 4978 (2007).
- [7] Q. H. Wang, A. Bedoya-Pinto, M. Blei, A. H. Dismukes, A. Hamo, S. Jenkins, M. Koperski, Y. Liu, Q.-C. Sun, E. J. Telford, H. H. Kim, M. Augustin, U. Vool, J.-X. Yin, L. H. Li, A. Falin, C. R. Dean, F. Casanova, R. F. L. Evans, M. Chshiev *et al.*, The magnetic genome of two-dimensional van der Waals materials, ACS Nano 16, 6960 (2022).
- [8] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature (London) 546, 270 (2017).
- [9] S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Controlling magnetism in 2D CrI₃ by electrostatic doping, Nat. Nanotechnol. **13**, 549 (2018).
- [10] N. Sethulakshmi, A. Mishra, P. Ajayan, Y. Kawazoe, A. K. Roy, A. K. Singh, and C. S. Tiwary, Magnetism in two-dimensional materials beyond graphene, Mater. Today 27, 107 (2019).
- [11] H. Vincent, D. Leroux, and D. Bijaoui, Crystal structure of Mn₃Si₂Te₆, J. Solid State Chem. 63, 349 (1986).
- [12] Y. Liu and C. Petrovic, Critical behavior and magnetocaloric effect in Mn₃Si₂Te₆, Phys. Rev. B 98, 064423 (2018).
- [13] R. Rimet, C. Schlenker, and H. Vincent, A new semiconducting ferrimagnet: A silicon manganese telluride, J. Magn. Magn. Mater. 25, 7 (1981).
- [14] L. M. Martinez, H. Iturriaga, R. Olmos, L. Shao, Y. Liu, T. T. Mai, C. Petrovic, A. R. Hight Walker, and S. R. Singamaneni, Enhanced magnetization in proton irradiated Mn₃Si₂Te₆ van der Waals crystals, Appl. Phys. Lett. **116**, 172404 (2020).

Serbia, PROMIS, 6062656, StrainedFeSC, Austrian Science Fund (FWF) through Project No. P31423, and the support of Austrian Academy of Sciences' Joint Excellence in Science and Humanities (JESH) Program (J.P.). DFT calculations were performed using computational resources at Johannes Kepler University (Linz, Austria). Materials synthesis was supported by the U.S. DOE-BES, Division of Materials Science and Engineering, under Contract No. DE-SC0012704 (BNL). The authors would like to thank Dr. Rudi Hackl for useful discussions that contributed to the finalized version of the manuscript.

- [15] A. F. May, Y. Liu, S. Calder, D. S. Parker, T. Pandey, E. Cakmak, H. Cao, J. Yan, and M. A. McGuire, Magnetic order and interactions in ferrimagnetic Mn₃Si₂Te₆, Phys. Rev. B 95, 174440 (2017).
- [16] G. Kresse and J. Hafner, *Ab initio* molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993).
- [17] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).
- [18] G. Kresse and J. Furthmuller, Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
- [19] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).
- [20] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- [21] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
- [22] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787 (2006).
- [23] A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015).
- [24] F. Jin, N. Lazarević, C. Liu, J. Ji, Y. Wang, S. He, H. Lei, C. Petrovic, R. Yu, Z. V. Popović, and Q. Zhang, Phonon anomalies and magnetic excitations in BaFe₂Se₂O, Phys. Rev. B 99, 144419 (2019).
- [25] M. Moskovits and D. Dilella, Surface-enhanced Raman spectroscopy of benzene and benzene- d_6 adsorbed on silver, J. Chem. Phys. **73**, 6068 (1980).
- [26] A. Dubroka, J. Humlíček, M. V. Abrashev, Z. V. Popović, F. Sapiña, and A. Cantarero, Raman and infrared studies of $La_{1-y}Sr_yMn_{1-x}M_xO_3$ (M = Cr, Co, Cu, Zn, Sc, or Ga): Oxygen disorder and local vibrational modes, Phys. Rev. B **73**, 224401 (2006).
- [27] A. G. Souza Filho, J. L. B. Faria, I. Guedes, J. M. Sasaki, P. T. C. Freire, V. N. Freire, J. Mendes Filho, M. M. Xavier, F. A. O. Cabral, J. H. de Araújo, and J. A. P. da Costa, Evidence of magnetic polaronic states in La_{0.70}Sr_{0.30}Mn_{1-x}Fe_xO₃ manganites, Phys. Rev. B 67, 052405 (2003).
- [28] A. Baum, A. Milosavljević, N. Lazarević, M. M. Radonjić, B. Nikolić, M. Mitschek, Z. I. Maranloo, M. Šćepanović, M. Grujić-Brojčin, N. Stojilović, M. Opel, A. Wang, C. Petrovic,

Z. V. Popović, and R. Hackl, Phonon anomalies in FeS, Phys. Rev. B **97**, 054306 (2018).

- [29] N. Lazarević, M. Radonjić, M. Šćepanović, H. Lei, D. Tanasković, C. Petrovic, and Z. V. Popović, Lattice dynamics of KNi₂Se₂, Phys. Rev. B 87, 144305 (2013).
- [30] M. Balkanski, K. P. Jain, R. Beserman, and M. Jouanne, Theory of interference distortion of Raman scattering line shapes in semiconductors, Phys. Rev. B 12, 4328 (1975).
- [31] D. Olego and M. Cardona, Self-energy effects of the optical phonons of heavily doped *p*-GaAs and *p*-Ge, Phys. Rev. B 23, 6592 (1981).
- [32] E. H. Hasdeo, A. R. T. Nugraha, M. S. Dresselhaus, and R. Saito, Breit-Wigner-Fano line shapes in Raman spectra of graphene, Phys. Rev. B 90, 245140 (2014).
- [33] U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124, 1866 (1961).
- [34] P. H. M. van Loosdrecht, J. P. Boucher, G. Martinez, G. Dhalenne, and A. Revcolevschi, Inelastic Light Scattering from Magnetic Fluctuations in CuGeO₃, Phys. Rev. Lett. **76**, 311 (1996).
- [35] M. Braden, B. Hennion, W. Reichardt, G. Dhalenne, and A. Revcolevschi, Spin-Phonon Coupling in CuGeO₃, Phys. Rev. Lett. 80, 3634 (1998).

- [36] J. W. Ager, W. Walukiewicz, M. McCluskey, M. A. Plano, and M. I. Landstrass, Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition, Appl. Phys. Lett. 66, 616 (1995).
- [37] S. Djurdjić Mijin, A. M. M. Abeykoon, A. Šolajić, A. Milosavljević, J. Pešić, Y. Liu, C. Petrovic, Z. V. Popović, and N. Lazarević, Short-range order in VI₃, Inorg. Chem. **59**, 16265 (2020).
- [38] L. J. Sandilands, Y. Tian, K. W. Plumb, Y.-J. Kim, and K. S. Burch, Scattering Continuum and Possible Fractionalized Excitations in α -RuCl₃, Phys. Rev. Lett. **114**, 147201 (2015).
- [39] A. Milosavljević, A. Šolajic, J. Pešić, Y. Liu, C. Petrovic, N. Lazarević, and Z. V. Popović, Evidence of spin-phonon coupling in CrSiTe₃, Phys. Rev. B 98, 104306 (2018).
- [40] Y. Liu, Z. Hu, M. Abeykoon, E. Stavitski, K. Attenkofer, E. D. Bauer, and C. Petrovic, Polaronic transport and thermoelectricity in Mn₃Si₂Te₆ single crystals, Phys. Rev. B 103, 245122 (2021).
- [41] Y. Ni, H. Zhao, Y. Zhang, B. Hu, I. Kimchi, and G. Cao, Colossal magnetoresistance via avoiding fully polarized magnetization in the ferrimagnetic insulator Mn₃Si₂Te₆, Phys. Rev. B 103, L161105 (2021).
MATERIALS RESEARCH SOCIETY OF SERBIA INSTITUTE OF TECHNICAL SCIENCES OF SASA

Programme and the Book of Abstracts

SEVENTEENTH YOUNG RESEARCHERS' CONFERENCE MATERIALS SCIENCE AND ENGINEERING

Belgrade, December 5–7, 2018

Materials Research Society of Serbia http://www.mrs-serbia.org.rs/index.php/young-researchers-conference

0000

ALC: NO

曹朝 唐

10-6

Raman Spectroscopy Study on phase transition in CrI₃ single crystals

Sanja Đurđić¹, Andrijana Šolajić¹, Jelena Pešić¹, Maja Šćepanović¹, Y. Liu²,

Andreas Baum^{3,4}, Čeda Petrović², Nenad Lazarević¹, Zoran V. Popović^{1,5} ¹Institute of Physics, Pregrevica 118, Belgrade, Serbia, ²Brookhaven National Laboratory, Upton, New York 11973-5000, USA, ³Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany, ⁴Fakultät für Physik E23, Technische Universität München, 85748 Garching, Germany, ⁵Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

By virtue of their unique properties and the potential for a wide spectrum of applications, such as the development of functional van derWaals heterostructures, CrI_3 among the other two dimensional materials, has received significant attention in the most recent studies on the ferromagnetic semiconductors. In this study we represent the vibrational properties of CrI_3 single crystals investigated using Raman spectroscopy together with the density functional theory (DFT) calculations. Experimental results show that first-order phase transition from the low-temperature ($R\overline{3}$) to the high-temperature (C2/m) phase occurs at 180K with no evidence of the two-phase coexistence. All observed modes, in both phases, are in good agreement with DFT calculations.

MATERIALS RESEARCH SOCIETY OF SERBIA INSTITUTE OF TECHNICAL SCIENCES OF SASA

EIGHTEENTH YOUNG RESEARCHERS' CONFERENCE MATERIALS SCIENCE AND ENGINEERING

Belgrade, December 4-6, 2019

http://www.mrs-serbia.org.rs/index.php/young-researchers-conference

7-5

Probing subsequent charge density waves in 1T-TaS₂ by inelastic light scattering

<u>S. Djurdjić-Mijin</u>,¹ J. Bekaert,² A. Šolajić,¹ J. Pešić,¹ Y. Liu,³

M. V. Milosevic, ² C. Petrovic, ³ N. Lazarević, ¹ and Z. V. Popović ^{1,4}

¹Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia, ²Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium, ³Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA, ⁴Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

Two-dimensional layered transition-metal dichalcogenides (TMDs) have attracted attention for over 30 years mostly due to multiple charge-density wave (CDW) states that had been observed. Prime candidate is $1T-TaS_2$ because of its unique and opulent electronic phase diagram. It experiences various phase transitions at high temperature, starting from the normal metallic to the incommensurate charge-density wave (IC-CDW) phase transition, at T=554 K. At T=355 K $1T-TaS_2$ CDW state changes to nearly-commensurate CDW (NC-CDW) phase, eventually leading to commensurate CDW (C-CDW) phase at approximately T=180 K. Recent discoveries indicate the possibility of yet another phase transition in $1T-TaS_2$ at T=80 K. The new state is identified as hidden CDW (H-CDW) state, and can be induced using ultra-fast laser pulse. We present a detailed Raman spectroscopy study on CDW transitions. Our data indicate the coexistence of different CDW states, as well as strong electron-phonon interaction in the IC-CDW state. The experimental results presented in this work are supported by density functional theory (DFT) calculations.

http://www.sfkm.ac.rs/

The 20th Symposium on Condensed Matter Physics

BOOK OF ABSTRACTS

University of Belgrade, Faculty of Physics

Institute of Physics Belgrade

Vinca Institute of Nuclear Sciences

Serbian Academy of Sciences and Arts

The vibrational properties of CrI₃ single crystals

S. Djurdjić-Mijin,¹ A. Šolajić,¹ J. Pešić,¹ M. Šćepanović,¹ Y. Liu,² A. Baum,^{3,4} C. Petrovic,² N. Lazarević,¹ and Z. V. Popović ^{1,5}

¹Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

²Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

³Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany

⁴*Fakultät für Physik E23, Technische Universität München, 85748 Garching, Germany*

⁵Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

Abstract. CrI₃ is a two-dimensional layered material and a ferromagnetic [1] with Curie temperature of 61K [1,2] and first order phase transition that occurs at 220K [3,4]. This class of materials has recently gained a lot of intention due to numerous potential applications. Here we represent our work consisting of both experimental and theoretical Raman scattering study of CrI₃ lattice dynamics. Based on our results we can distinguish two different phases for CrI₃ with monoclinic (*C2/m*) being the high-temperature and rhombohedral (**R**3) phase being the low-temperature phase. Abrupt changes to the spectra were found at the first order phase transition which was located at *T*s \approx 180 K, lower than in previous studies. In contrast to the prior reports we found no sign of phase coexistence over temperature range exceeding 5 K [5].

REFERENCES

[1] E. Navarro-Moratalla, B. Huang, G. Clark *et al.*, Layer dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature (London) **546**, 270 (2017).

[2] J. F. Dillon, Jr. and C. E. Olson, Magnetization, resonance, and optical properties of the ferromagnet CrI3, J. Appl. Phys. **36**, 1259 (1965).

[3] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27, 612 (2015).

[4] D. T. Larson and E. Kaxiras, Raman Spectrum of CrI3: An *ab initio* study, Phys. Rev. B **98**, 085406 (2018).

[5] S. Djurdjić-Mijin, A. Šolajić, J. Pešić, M. Šćepanović, Y. Liu, A. Baum, C. Petrovic, N. Lazarević, and Z. V. Popović, Lattice dynamics and phase transition in CrI3 single crystals, Phys. Rev. B 98, 104307 (2018.)

Lattice dynamics and phase transitions in $Fe_{3-x}GeTe_2$

A. Milosavljević^a, A. Šolajić^a, S. Djurdjić Mijin^a, J. Pešić^a, B. Višić^a, Y. Liu^b, C. Petrovic^b, N. Lazarević^a and Z. V. Popović^c

^aCenter for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

^bCondensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

^cCenter for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia and Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

Abstract. A new class of magnetic van der Waals bonded materials has recently become of great interest, as a suitable candidates for various applications. Whereas $CrXTe_3$ (X = Si, Ge, Sn) and CrX_3 (X = Cl, Br, I) classes maintain low phase transition temperatures even in a monolayer regime, $Fe_{3-x}GeTe_2$ has a high bulk transition temperature, between 220 and 230 K, making it a promising applicant.

Here we present DFT calculations of lattice dynamics and Raman spectroscopy measurements of the van der Waals bonded ferromagnet $Fe_{3-x}GeTe_2$ [1]. Four out of eight Raman active modes are observed and assigned, in agreement with numerical calculations. The energies and linewidths of the observed modes display an unconventional temperature dependence at about 150 and 220 K, followed by the nonmonotonic evolution of the Raman continuum. Whereas the former can be related to the magnetic phase transition, the origin of the latter anomaly remains an open question.

REFERENCES

 A. Milosavljević, A. Šolajić, S. Djurdjić-Mijin, J. Pešić, B. Višić, Yu Liu, C. Petrovic, N. Lazarević, and Z. V. Popović. "Lattice dynamics and phase transitions in Fe_{3-x}GeTe₂." Physical Review B 99, no. 21 (2019): 214304.

Lattice-based Quantum Simulation

726. WE-Heraeus-Seminar

29 November – 01 December 2021

ONLINE

Raman Spectroscopy of quasi-two-dimensional materials

<u>S. Djurdjić Mijin¹</u>, A. Baum², A. M. Milinda Abeykoon³, J. Bekaert⁴, A. Milosavljević¹, J. Pešić¹, M. Šćepanović¹, Y. Liu^{5,*}, Ge He², M. V Milošević⁴, C. Petrovic⁵, Z. V Popović^{1,6}, R. Hackl², N. Lazarević¹

¹Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, RS-11080 Belgrade, Serbia

 ²Walther Meissner Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Germany
 ³National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
 ⁴Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
 ⁵Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
 ⁶Serbian Academy of Sciences and Arts, Knez Mihailova 35, RS-11000 Belgrade, Serbia

*Present address: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Email: sanja@ipb.ac.rs

Quasi-2D materials, an emerging field of experimental Solid State physics, host various low-dimensional quantum phenomena making them potential candidates for quantum technology^{1,2,3}. The main focus being on transition metal dichalcogenides, quantum dots and single photon emitters were successfully demonstrated in various 2D materials such as hBN⁴, MoS₂⁵, MoSe₂⁶, WS₂⁷ and WSe₂⁸. Despite significant contributions to the field of 2D quantum information technologies, it remains insufficiently researched with many problems yet to be solved. To get a better insight into potential applications of 2D materials in quantum information technologies, we need to obtain a better understanding of 2D materials as such. Here we present Raman Spectroscopy studies of transition metal trihalides Crl₃ and Vl₃, and transition metal dichalcogenide 1T-TaS₂, all promising candidates for next-generation devices and quantum technologies ^{9,10,11,12}.

[1] Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).

[2] Nayak, C. et al. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

[3] Qian, X. et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

[4] Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

[5] Lee, K. et al. Coulomb blockade in monolayer MoS₂ single electron transistor. Nanoscale 8, 7755–7760 (2016).

[6] . Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe₂: Spatial mapping, magneto-optics, and charge tuning. *Appl. Phys. Lett.* **108**, 142101 (2016).

[7] Song, X.-X. et al. Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS₂ quantum dot. *Sci. Rep.* **5**, 16113 (2015).

[8] Song, X.-X. et al. A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe₂. Nanoscale 7, 16867–16873 (2015).

[9] I. Vaskivskyi, et al. Fast electronic resistance switching involving hidden charge density wave states *Nat. Commun.* **7**, 11442 (2016).

[10] Huang, C, et al. Quantum Anomalous Hall Effect in Ferromagnetic Transition Metal Halides. *Phys. Rev. B* 95 (4), 045113 (2014).
 [11] Ezawa, Z. F. Spin-Pseudospin Coherence and CP 3 Skyrmions in Bilayer Quantum Hall Ferromagnets. *Phys. Rev. Lett.* 82 (17), 3512–3515 (1999).

[12] Mukherjee, A. *et al.* Observation of site-controlled localized charged excitons in Crl₃/WSe₂ heterostructures. *Nat Commun* **11**, 5502 (2020).

NINETEENTH YOUNG RESEARCHERS' CONFERENCE MATERIALS SCIENCE AND ENGINEERING

December 1-3, 2021, Belgrade, Serbia

Program and the Book of Abstracts

Materials Research Society of Serbia & Institute of Technical Sciences of SASA

2021

12-1

Raman Spectroscopy of Quasi-two-dimensional transition metal trihalides

<u>S. Djurdjić Mijin</u>¹, AM Milinda Abeykoon², A. Solajić¹, A. Milosavljević¹, J. Pešić¹, M. Šćcepanović¹, Y. Liu³, A. Baum^{4,5}, C. Petrovic³, N. Lazarević¹, Z. V Popović^{1,6}
 ¹Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia, ²National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, ³Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States, ⁴Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany, ⁵Fakultat fur Physik E23, Technische Universit⁻at Munchen, 85748 Garching, Germany, ⁶Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

Theoretically speaking, the restriction of only one dimension in a three-dimensional material could result in its layered quasi-two-dimensional (2D) analog which has completely unpredictable properties and therefore hosts various unexpected physical phenomena. Successful exfoliation of quasi-2D grapheme by A. Geim's group in 2004 did not only confirm these expectations and create a platform for experimental investigation of lowdimensional phenomena, but also paved the way for the next-generation nanoelectronic devices. All of the above mentioned strongly contributed to the extensive research on the fundamental properties of quasi-2D materials. Great effort has been put towards realization of a magnetic atomically thin crystals which would open up the opportunities of exploring, or even exploiting, of different 2D magnetic states, expand the scope of their possible applications, and point to the possible emergence of a new quantum state of matter. That being said, it is not surprising that the experimental confirmation of 2D magnetism in transition-metal-trihalides (TMTs) caused a stir in scientific community. In an effort to better understand fundamental properties of these materials we have performed the Raman Spectroscopy Study of the two TMT members - CrI3 and VI3, both of which have been confirmed to host low-dimensional magnetism. This experimental technique was used to probe a reported phase transition in CrI3 and crystal structure of VI3. The phase transition, which transforms the low-temperature R_{3} structure into the high-temperature C2/m structure, with potential co-existence, has been observed at 220 K. Our findings confirm the mentioned phase transition but at much lower temperature of 180 K, and no co-existence has been tracked. Our investigation into the crystal structure of VI3 tried to give an answer to the long unsolved mystery whether at room temperatures VI3 crystallizes into a P3 1c, R 3 or C2/m crystal structure. Interestingly, what we have observed points to the coexistence of short-range ordered P3 1c and long-range ordered R 3 phases.

12-5

Lattice dynamics and magnetism in Fe_{3-x}GeTe₂

<u>Ana Milosavljević</u>¹, Andrijana Šolajić¹, Sanja Đurđić Mijin¹, Jelena Pešić¹, Bojana Višić¹, Yu Liu², Cedomir Petrovic², Zoran V. Popović^{1,3}, Nenad Lazarević¹ ¹Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia, ²Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA, ³Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

 $Fe_{3-x}GeTe_2$ belongs to a highly experimentally and theoretically studied class of van der Waals ferromagnetic materials. Due to the weak interaction between the layers, the exfoliation of the bulk crystals to mono and a few layers is relatively easy. The magnetic properties of these materials are kept even in a low-dimensional regime which makes this class suitable for possible applications in new device engineering.

 $Fe_{3-x}GeTe_2$ has a relatively high magnetic transition temperature (220-230 K). This temperature, as well as lattice parameters, strongly depends on vacancies concentration in the sample. Samples with a higher concentration of vacancies grown by flux method have lower T_C (150 K).

In Raman spectra of flux-grown $Fe_{3-x}GeTe_2$ single crystal four out of eight modes predicted by symmetry are detected $(2A_{1g} + 2E_{2g})$. The experimentally obtained phonon energies are in a good agreement with theoretically calculated values. Temperature dependence of phonon self-energies displays deviation from the conventional model at temperatures around 150 K and 220 K. In addition, at the same temperatures nonmonotonic behavior of electronic continuum is present. While the temperature of the first anomaly coincides with the magnetic phase transition temperature, the anomaly at 220 K remains an open question although can be related to a persistence of short-range magnetic ordering in this compound.

BPU11 CONGRESS

28 August 2022 - 1 September 2022

Book of Abstracts

Editors: Antun Balaž, Goran Djordjević, Jugoslav Karamarković, Nenad Lazarević

Belgrade, 2022

S06-CMPSP-112 / Oral presentation

Effects of structural disorder on phonon spectra of 2H-TaSe $_{2-x}$ S $_x$ $(0 \le x \le 2)$ single crystals

Authors: Jovan Blagojević¹; Sanja Djurdjic Mijin²; Jonas Bekaert³; Yu Liu⁴; Marko Opačić²; Milorad V. Milošević³; Cedomir Petrovic⁴; Nenad Lazarević²

- ¹ Faculty of Physics, University of Belgrade, Studentski trg 12, 11001 Belgrade, Serbia & Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
- ² Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
- ³ Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- ⁴ Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA

Presenter: M. Opačić (marko.opacic@ipb.ac.rs)

Transition metal dichalcogenides, as a well studied family of quasi-2D materials, have attracted considerable attention in recent years due to rich phase diagrams, thickness-dependent transport, unique optical properties and collective electron phenomena which occur at experimentally accessible temperatures. Additionally, it was recently shown that in the metallic single crystal alloys of 2*H*-TaSe $_{2-x}$ S x the crystalline disorder promotes superconductivity, while suppressing charge density wave (CDW) order. In this work, the lattice dynamics of TaSe $_{2-x}S_x$ ($0 \le x \le 2$) alloys was probed using Raman spectroscopy and results were compared to density functional theory (DFT) calculations. In order to investigate whether crystallographic disorder affects the phonons, spectra of doped materials were compared to the ones belonging to the end alloys. The Raman spectra of the end compounds (x = 0 and x = 2) host two out of three symmetry-expected Raman active modes for backscattering configuration. Calculated phonon energies agree well with the experimental ones. In Raman spectra of the doped samples additional peaks, though of low intensity, can be easily identified. These additional peaks most likely arise from the crystalline disorder. Dependence of phonon energies and linewidths on sulfur content *x* also reveals a clear fingerprint of crystallographic disorder.

S06-CMPSP-113 / Oral presentation

DFT study of AlF3 intercalated in HOPG: a rechargeable battery application

Authors: Sindy Julieth Rodriguez Sotelo¹; Adriana E. Candia²; Mario C.G. Passeggi (Jr.)¹; Gustavo Ruano³

- ¹ Laboratorio de Física de Superficies e Interfaces, Instituto de Física del Litoral (CONICET-UNL) & Departamento de Física, Facultad de Ingeniería Química (UNL)
- ² Laboratorio de Física de Superficies e Interfaces, Instituto de Física del Litoral (IFIS-CONICET-UNL)

INSTITUTE OF TECHNICAL SCIENCES OF SASA MATERIALS RESEARCH SOCIETY OF SERBIA

Programme and the Book of Abstracts

TWENTIETH YOUNG RESEARCHERS' CONFERENCE MATERIALS SCIENCE AND ENGINEERING

Belgrade, November 30 – December 2, 2022

6-7

Effect of disorder and electron-phonon interaction on 2*H*-TaSe_{2-x}S_x lattice dynamics probed by Raman spectroscopy

Jovan Blagojević¹, Sanja Đurđić Mijin¹, Jonas Bekaert², Milorad Milošević², Čedomir Petrović³, Yu Liu³, Marko Opačić¹, Zoran Popović^{1, 4} and Nenad Lazarević¹
 ¹Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia, ²Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium, ³Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA, ⁴Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

Transitional metal dichalcogenides have attracted a lot of attention due to their rich phase diagrams, thickness-dependent transport, distinctive optical characteristics, and the emergence of collective electron phenomena (e. g. charge density waves - CDW and superconductivity) which can co-exist, contrary to what was predicted by previous theoretical studies. Given that both superconductivity and CDW phase have been experimentally confirmed in the crystal alloys of 2H-TaSe_{2x}S_x, these materials represent perfect candidates to investigate an intricate connection between these two phenomena. Additionally, it was recently shown that in the metallic single crystal alloys of 2H-TaSe_{2-x}S_x the crystalline disorder favours superconductivity while suppressing CDW phase. In this study, Raman spectroscopy was used to investigate the lattice dynamics of 2H-TaSe_{2-x}S_x (0 $\leq x \leq 2$) alloys. Experimental results were compared to density functional theory (DFT) and density functional perturbation theory (DFPT) calculations. In the Raman spectra of pristine samples two out of three symmetry predicted Raman active modes were observed, with the missing mode being unobservable in the used backscattering geometry. Experimental values of phonon energies are in good agreement with theoretical calculations. The temperature dependence of phonon energies and line widths directly reflects existing CDW transitions. The Raman spectra of doped materials were compared to those of pure samples in order to inspect how the electron-phonon interaction and crystallographic disorder affect the phonons. Additional peaks and a dramatic development of the two-phonon structure are detected in the Raman spectra of the doped samples. A signature of the crystallographic disorder can also be identified in the sulfur content dependence of phonon energies, line widths and Fano parameter.

9-7

Infrared and Raman study of narrow-gap semiconductor FeGa₃

C. Martin¹, V. A. Martinez², <u>M. Opačić</u>³, S. Djurdjić-Mijin³, P. Mitrić³, A. Umićević⁴, V. N. Ivanovski⁴, A. Poudel¹, I. Sydoryk¹, Weijun Ren⁵, R. M. Martin⁶, D. B. Tanner², N. Lazarević³, C. Petrovic⁵, and D. Tanasković³

¹Ramapo College of New Jersey, Mahvah, NJ 07430, USA, ²Department of Physics, University of Florida, Gainesville, Florida 32611, USA, ³Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia, ⁴Vinca Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia, ⁵Brookhaven National Laboratory, NY 11973, USA, ⁶Montclair State University, Montclair, NJ 07043, USA

Narrow-gap semiconductors have been intensively studied in the last few years due to their huge thermoelectric power at low temperatures and possible impact of strong electronic correlations on their physical properties. Here, we analyse infrared and Raman spectra of FeGa₃ single crystal. The optical conductivity obtained from reflectance measurements suggests an indirect energy gap of around 0.4 eV, although the existence of substantial spectral weight at low energies prevents its precise determination. The energies of Raman and infrared active modes obtained by our DFT calculations agree very well with the experimental results. Temperature dependence of Raman mode energies and linewidths is weak between 80 and 300 K, indicating the absence of any phase transition. Most of the vibrational modes are very narrow due to weak electron-phonon and/or spin-phonon interactions, and good crystallinity of the single crystal, which is also confirmed by the Mössbauer spectra.

UNIVERZITET U BEOGRADU

FIZIČKI FAKULTET

Sanja Đurđić Mijin

Neelastično rasejanje svetlosti na kvazi-dvodimenzionalnim materijalima

doktorska disertacija

Beograd, 2022

UNIVERSITY OF BELGRADE FACULTY OF PHYSICS

Sanja Đurđić Mijin

Inelastic light scattering in Quasi-two-dimensional materials

doctoral dissertation

Belgrade, 2022.

Mojim roditeljima, Vanji, Dadi, Stefanu i baki

Zahvalnica

Ova disertacija u celosti je rezultat rada u Centru za fiziku čvrstog stanja i nove materijale, Instituta za fiziku, Univerziteta u Beogradu. Istraživanje je finansirano od strane Ministarstva prosvete, nauke i tehnološkog razvoja u okviru projekata III45018 i Fonda za nauku Republike Srbije u okviru projekta StrainedFeSC, broj 6062656. Numerički proračuni dobijeni su korišćenjem računarskih resursa univerziteta Johanes Kepler u Lincu i Flemish centra za superračunare u Belgiji. Uzorci su sintetisani u Brukhejven nacionalnoj laboratoriji u Sjedinjenim Američkim Državama.

Prvenstveno bih želela da se zahvalim mentoru ove doktroske disertacije dr Nenadu Lazareviću na izuzetnom zalaganju, stalnoj podršci i pomoći od mog prvog dana rada na Institutu za fiziku. Zahvalila bih mu se na želji da sopstveno znanje podeli sa mnom, svim korisnim savetima, strpljenu i razumevanju koje je pokazao u svim prethodnim godinama.

Akademiku Zoranu V. Popoviću dugujem zahavalnost na pruženoj prilici da u Centru za fiziku čvrstog stanja i nove materijale Instituta za fiziku u Beogradu budem deo naučnih istraživanja koja su me oblikovala kao istraživača. Hvala za izvanredne uslove za rad i priliku da učim od najboljih u oblasti Ramanove spektroskopije.

Zahvalnost dugujem i kolegama sa kojima sam sarađivala tokom izrade doktorske disertacije: dr Maji Šćepanović na savetima i pomoći vezanim za eksperimentalna merenja na trihalidima prelaznih metala, dr Jeleni Pešić, Andrijani Šolajić, dr Jonasu Bekaertu i dr Miloradu Miloševiću na izvršenim proračunima i korisnim diskusijama bez kojih ova teza ne bi bila kompletna. Prof. dr Čedomiru Petroviću i njegovim saradnicima se zahvaljujem na sintezi proučavanih uzoraka, eksperimentima, diskusijama i savetima. Duboku zahvalnost bih želela da izrazim prof. dr Rudi Hacklu i dr Andreas Baumu iz Valter Majsner instituta u Minhenu na izvanrednoj saradnji, kvalitetnim diskusijama, značajnim savetima i svom prenesenom znanju.

Posebnu zahvalnost izražavam svim kolegama sa Instituta, koji su mi pre svega bili prijatelji: dr Jasmini Lazarević, dr Ani Milosavljević, dr Marku Opačiću, dr Nataši Tomić, dr Bojani Višić i Stojku Stefanu. Hvala vam na ogromnoj podršci i razmevanju.

U mom profesionalnom usavršavanju izuzetno značajnu ulogu imale su redovni profesor dr Tatjana Vuković i docent dr Slavica Maletić sa Fizičkog fakulteta Univerziteta u Beogradu te ovu priliku koristim kako bih im se najiskrenije zahvalila. Ogromnu zahvalnost dugujem i prof. dr Mihajlu Vaneviću koji je učinio da zavolim fiziku čvrstog stanja i verovao u mene čak i onda kada ja nisam, i koji je sa mnom nesebično delio savete bez kojih moj istraživački put ne bi bio ni upola ovoliko uspešan. Vanedovnom profesoru Matematičkog fakulteta Univerziteta u Beogradu, prof. dr Đorđu Krtiniću dugujem zahvalnost za nesebičnu pomoć i za to što me je ohrabio kada mi je bilo najpotrebnije.

Osobi koja je napravila prekretnicu u mom stručnom usavršavanju, prof. dr Snežani Lazić, vanrednom profesoru Samostalnog Univerziteta u Madridu, dugujem zahvalnost za svo prenešeno znanje, za upoznavanje sa istraživačkim radom i za ljubav koju osećam prema nauci. Zahvalna sam za sve savete, korisne diskusije i pruženu podršku, i kao studentu i kao prijatelju.

Konačno, želela bih da pomenem sve osobe koje su doprinele mom ljudskom usavršavanju i bez kojih ništa od ovoga ne bi bilo moguće. Svojim roditeljima zahvaljujem na ljubavi i podršci koju mi pružaju čitav život i na tome što su me naučili da ništa nije nemoguće ako se dovoljno trudiš. Bratu Vanji i sestri Tanji na svoj ljubavi, nežnosti i zajedničkim trenucima koji su me oblikovali kao osobu. Suprugu Stefanu na tome što je uvek tu za mene i što je moja nepresušna inspiracije u svemu što radim. Jovani Beatović bez koje moji fakultetski dani ne bi bili isti, zahvalna sam na strpljenju, ljubavi i ohrabrenju tokom svih godina zajedničkog školovanja. Takođe, želela bih da se zahvalim svim ostalim prijateljima koji su me bodrili na ovom putu i pružali ljubav i podršku. Za kraj, želela bih da se zahvalim svojoj baki, koja me je naučila da verujem u sebe, da uvek mogu više, i koja mi je pružala svu potrebnu ljubav i podršku od prvog dana.

Sažetak

U okviru ove doktorske disertacije predstavljeni su rezultati ispitivanja dinamike rešetke kvazi-dvodimenzionalnih materijala metodom Ramanove spektroskopije. Ova spektroskopska tehnika uspešno se koristi za ispitivanje kristalne strukture, mehaničkih i termalnih karakteristika materijala, faznih prelaza, elektronske strukture sistema, te samim tim može da pruži najrazličitiji skup informacija o fundamentalnim svojstvima kvazi-dvodimenzionalnih materijala.

Trihalidi prelaznih metala MX₃ (M - prelazni metal, X - anjon halogenida) predstavljaju veliku familiju kvazi-dvodimenzionalnih materijala u kojoj je niskodimenzioni magnetizam dobio eksperimentalnu potvrdu, te su kao takvi idealni sistemi za njegovo izučavanje. Prvi među njima, u kom magnetno uređenje opstaje do monosloja, jeste CrI₃. Kako potvrda magnetnog uređenja do monosloja u nekom materijalu otvara široku mogućnost njegove potencijalne primene, veliki trud je uložen u detaljno ispitivanje fizičkih svojstava CrI₃. Kako pri prijavljenom faznom prelazu u CrI₃ dolazi do promene niskotemperaturske romboedarske $R\bar{3}$ strukture u visokotemperatursku monokliničnu C2/m, polarizovani ramanski spektri mereni na T = 100 K i T = 300 K analizirani su u saglasnosti sa odgovarajućom simetrijom kristalne strukture. U spektrima obe faze prepoznati su svi sem jednog simetrijom predviđenog moda. Eksperimentalne energije modova obe faze u saglasnosti su sa teorijskim proračunima. Na osnovu simetrije niskotemperaturske i visokotemperaturske faze utvrđeno je da je simetrija CrI_3 sloja $p\overline{3}1/m$, a ne prethodno prijavljena R32/m. Temperaturska zavisnost energije i širine Raman aktivnih modova pokazala je da na temperaturi od $T_S = 180$ K dolazi do cepanja romboedarskih E_g modova na monoklinične A_g
i $B_g. Romboedarski <math display="inline">A_g^2$ i A_g^4 modovi prelaze u monokliničnu B_g simetriju. U ramanskim spektrima ne postoji ništa što bi ukazalo na koegzistenciju niskotemperaturske i visokotemperaturske faze u opsegu \pm 5 K od temperature faznog prelaza, koliko iznosi korak merenja. U sklopu istraživanja na trihalidima prelaznih metala, ispitivana su vibraciona svojstva zapreminskih kristala VI₃. Polarizovani ramanski spektri analizirani su na osnovu tri predložene prostorne grupe simetrije -C2/m, $R\bar{3}$ i $P\bar{3}1c$ na osnovu čega je zaključeno da kristalna struktura VI₃ ne pripada C2/m prostornoj grupi simetrije. Poređenjem eksperimentalnih fononskih energija sa teorijskim proračunima za $R\bar{3}$ i $P\bar{3}1c$ kristalne strukture utvrđeno je da fononske vibracije na sobnoj temperaturi potiču od $P\bar{3}1c$ simetrije jedinične ćelije. Asignacija fononskih modova urađena je u skladu sa $P\bar{3}1c$ simetrijom jedinične ćelije. Utvrđeno je da se u spektrima javlja devet od dvanaest simetrijom predviđenih modova. Tri dodatna moda, koja se ponašaju kao A_{1g} modovi, mogu da se objasne kao *overtone* stanja ili kao A_{2g} modovi aktivirani usred narušenja simetrije. Najintenzivniji pik u spektrima – A_{1g}^3 mod ima asimetričan profil linije kao posledicu jake spin-fonon interakcije koja je karakteristična za kvazi-dvodimenzionalne materijale sa magnetnim uređenjem. Premda XRD eksperiment ukazuje na $R\bar{3}$ simetriju kristalne strukture, rezultati Ramanove spektroskopije i PDF analize ukazuju na koegzistenciju dugodometno uređene $R\bar{3}$ i kratkodomete uređene $P\bar{3}1c$ faze.

Formiranje talasa gustine naelektrisanja (CDW) u kvazi-dvodimenzionalnim materijalima ispitivano je u familiji dihalkogenida prelaznih metala. S obzirom na to da se 1T-TaS₂ odlikuje bogatim faznim dijagramom u kom se svi prelazi između različitih CDW faza dešavaju na eksperimentalno dostupnim temperaturama, ovaj materijal predstavlja idealan sistem za izučavanje ovog kolektivnog elektronskog fenomena. Vibracione osobine svih faza 1T-TaS₂ ispitivane su metodom Ramanove spektroskopije. U polarizovanim ramanskim spektri niskotemperaturske samerljive faze uočeno je 19 modova A_g i 19 modova E_q simetrije, ukazujući na $P\bar{3}$ simetriju sistema. Ovaj rezultat u suprotnosti je sa prethodno prijavljenim trikliničnim $P\bar{1}$ načinom pakovanja "Davidovih zvezda" u samerljivu superstrukturu. Poređenjem *ab initio* proračuna i spektara merenih na najvišoj eksperimentalno dostupnoj temperaturi T = 370 K, kada se 1T-TaS₂ nalazi u nesamerljivoj CDW fazi, utvrđeno je da dolazi do projektovanja fononske gustina stanja u ramanskim spektrima. Do projekcije fononske gustine stanja dolazi usled narušenja simetrija prilikom formiranja talasa gustine naelektrisanja i nezanemarljivog elektronfonon sparivanja. Ramanski spektri mereni u temperaturskom opsegu od 200 K do 352 K, kada se 1T-TaS₂ nalazi u približno samerljivoj CDW fazi, pokazuju jasno prisustvo doprinosa i samerljive i nesamerljive CDW faze. Ovakav rezultat ukazuje na to da je približno samerljiva faza zapravo koegzistencija samerljive i nesamerljive faze. Temperaturska zavisnost ramanske provodnosti ukazuje na postojanje Motovog metal-izolator prelaza na temperaturi oko T = 100 K. Procenjena vrednost procepa koji se tom prilikom otvara, i ima slabu simetrijsku zavisnost, u saglasnosti je sa rezultatima ARPES eksperimenta, i iznosi $\Omega_{procep} \approx 170$ –190 meV. Podizanje temperature na oko 200 K dovodi do sužavanja procepa na oko $\sim 60\%$ svoje nisko
temperaturske vrednosti.

 $Mn_3Si_2Te_6$, ferimagnetni kvazi-dvodimenzionalni materijal, uživa veliku pažnju zbog izuzetne sličnosti sa feromagnetnim kvazi-dvodimenzionalnim CrSiTe₃. U ramanskim spektrima ovog ferimagnetika identifikovano je svih pet $P\bar{3}1c$ prostornom grupom simetrije predviđenih A_{1g} modova, i osam od predviđenih jedanaest E_g modova. Izostanak tri moda E_g simetrije najverovatnije je posledica njihove slabe energije ili konačne rezolucije spektrometra. Pored asigniranih modova, u spektrima se javljaju i tri dodatna moda A_{1g} simetrije, koji su najverovatnije *overtone* stanja uočljiva uspled pojačanog spin-fonon sparivanja. Temperaturske zavisnosti fononskih energija A_{1g}^3 i A_{1g}^5 modova, i širine i Fano parametra A_{1g}^5 moda trpi tri uzastopna diskontinuiteta na temperaturama $T_1 = 142.5$ K, $T_2 = 190$ K i $T_3 = 280$ K. A_{1g}^5 mod je asimetričan usled jakog spin-fonon sparivanja u materijalu. Zanimljivo, (a)simetričnost moda se menja s temperaturom te on u opsegu temperatura od T_1 do T_2 postaje potpuno simetričan, dok je na temperaturama iznad T_3 najviše asimetričan. Do primećenih diskontinuiteta, koji imaju značajan uticaj na jačinu spin-fonon interakcije u materijalu, najverovatnije dolazi usled kompeticije u magnetnim fluktuacijama. Ovaj scenario podržan je primećenim diskontinuitetima u temperaturskoj zavisnosti prvog izvoda *ac* magnetne susceptibilnosti u **ab** ravni, do kojih dolazi na već pomenutim temperaturama.

Ključne reči: Ramanova spektroskopija, kvazi-dvodimenzionalni materijali, van der Valsovi materijali

Naučna oblast: Fizika

Oblast istraživanja: Fizika kondenzovanog stanja materije

UDK broj: 538.9

Abstract

The results of a Raman scattering study of Quasi-two-dimensional materials are presented as part of this doctoral dissertation. Considering that Raman Spectroscopy has been succesfully used to obtain information regarding crystal and electronic structure, mechanical and termal properties of the material in question, and to probe phase transitions, it is an experimental technique that provides a wide spectrum of information on fundamental properties of Quasi-two-dimensional materials.

The members of transition metal trihalides MX₃ (M - transition metal, X - chalogenide), a large family of Quasi-two-dimensional materials in which low-dimensional magnetism has been experimentally confirmed, are perfect candidates for research studies on magnetism in Quasi-two-dimensional systems. First among them, in which magnetic ordering persists down to a monolayer, is CrI_3 . In view of the fact that the confirmation of a magnetic ordering that persists down to monolayer in a material expands its potential application, numerous studies were performed to get a better understanding of CrI₃. Due to the reported structural phase transition in CrI_3 , the low-temperature rhombohedral R3structure transforms into the high-temperature monoclinic C2/m structure. Therefore, the polarized Raman spectra at 100 K and 300 K were analized in accordance to the corresponding space group symmetry. All but one symmetry predicted mode were assigned in spectra of each phase. Experimentally obtained phonon energies were compared with their theoretically calculated values, yielding a good agreement. Based on the symmetry analysis it was determined that the single layer of CrI_3 can be described in terms of the $p\bar{3}1/m$ diperiodic space group, contrary to the previously reported R32/m. In the temperature dependence of phonon energies and linewidths of the observed Raman active modes the spliting of rhombohedral E_g modes into a monoclinic A_g and B_g symmetry modes was clearly observed at $T_S = 180$ K. At the same temperature the rhombohedral A_q^2 and A_g^4 modes transform into the monoclinic B_g symmetry modes. There is no evidence of phase coexistance within the presented spectra over the temperature range exceeding 5 K. Single crystals of VI_3 were also investigated as part of the research on transition metal trihalides. Polarized Raman spectra were analized in accordance to the three potential crystal structures -C2/m, $R\bar{3}$ and $P\bar{3}1c$. This provided enough information to exclude

C2/m crystal structure as a possibility. After comparing experimental phonon energies to the theoretically calculated energies for $R\bar{3}$ and $P\bar{3}1c$ space groups, it was concluded that at room temperature phonon vibrations of VI₃ can be explained with the $P\bar{3}1c$ space group. Observed modes were assigned in accoradance to these findings. Nine out of twelve expected modes were singled out in spectra, which host three additional peaks. These peaks obey pure A_{1g} selection rules, and can be explain in terms of overtones or activation of inactive A_{2g} modes, caused by the symmetry breaking. The highest intensity peak – A_{1g}^3 symmetry mode, exhibits pronounced asymmetry which can be attributed to the enhanced spin-phonon interaction, usually observed in the Quasi-two-dimensional materials with magnetic ordering. Even though XRD results point to $R\bar{3}$ of unit cell, Raman experiment, together with the PDF analysis, indicate coexistance of a long-range ordered $R\bar{3}$ and short-range ordered $P\bar{3}1c$ phase.

Charge density wave formation in Quasi-two-dimensional materials was investigated in the family of transition metal dichalcogenides. Among them, 1T-TaS₂ was chosen due to its rich phase diagram in which all subsequent phase transitions between multiple CDW phases occure at experimentally accessible temperatures. Vibrational properties of 1T- TaS_2 single crystals were investigated using Raman spectroscopy. In the polarized Raman spectra of the commensurate phase, 19 A_g and $19E_g$ symmetry modes were identified, suggesting $P\bar{3}$ symmetry of the system. This results contradicts previously reported $P\bar{1}$ stacking of "star-of-David" clusters in the commensurate super-structure. Comparison of ab initio calculations and Raman spectra at the highest experimental temperature T =370 K, when 1T-TaS₂ is in the incommensurate charge density wave phase, suggested there is a projection of the phonon-density of states in Raman spectra. This might be caused by the beaking of the translational invariance when entering charge density wave regimes and non-negligible electron-phonon coupling. Contributions from incommensurate and commensurate spectra can be clearly destinguished in Raman spectra measured in the temperature range of 200 K to 352 K. Considering that the 1T-TaS₂ is in the nearlycommensurate CDW phase in this temperature range, this result suggests that the nearlycommensurate phase represents the coexistance of incommensurate and commensurate phases. The temperature dependence of Raman conductivity indicates a Mott metalinsulator transition at about T = 100 K. The estimated magnitude of the gap, which develops concurrently, is $\Omega_{gap} \approx 170\text{--}190$ meV. This value agrees well with the results of ARPES studies. When the temperature reaches 200 K the gap shrinks down to 60% of its initial magnitude.

Mn₃Si₂Te₆, a ferrimagnetic quasi-two-dimensional material, recently recieved a lot of attention, mainly through comparisons with ferromagnetic quasi-two-dimensional CrSiTe₃. Raman spectra of this ferrimagnetic host all five A_{1g} modes predicted by $P\bar{3}1c$ symmetry of the unit cell, and eight out of the eleven expected E_g modes. The absence of three E_g modes in the spectra is most probably due to their small intensity or the finit resolution of the spectrometer. Three additional modes, which obey A_{1g} selection rules, can also be found in the spectra measured in the parallel polarization configuration. They can be explained in terms of overtones observable due to enhanced spin-phonon coupling. Three discontinuities can be observed in the temperature dependence of phonon energies of the A_{1g}^3 and A_{1g}^5 modes, as well as in the temperature dependence of line width and the Fano parametar of the A_{1g}^5 mode, at $T_1 = 142.5$ K, $T_2 = 190$ K and $T_3 = 280$ K. The A_{1g}^5 mode exhibits strong asymmetry, originating from enhanced spin-phonon coupling. Interestingly, the (a)symmetry of the A_{1g}^5 phonon line shows temperature dependence, becoming fully symmetric in the temperature range T_1 to T_2 . The A_{1g}^5 mode exhibits the strongest asymmetry above T_3 . The observed discontinuities, which strongly influence spin-phonon coupling, are most likely caused by the competition in the magnetic fluctuation. This scenario is furthermore supported by the observed discontinuities in the temperature dependence of the first derivative of **ac** susceptibility in the **ab** plane, which occure at the already mentioned temperatures.

Keywords: Raman Spectroscopy, Quasi-two-dimensional Materials, van der Waals Materials

Scientific field: Physics

Research area: Condensed Matter Physics

UDC number: 538.9

Akronimi

- 0D- Nuladimenzionalno
- 1D Jednodimnezionalno
- 2D Dvodimenzionalno
- 3D Trodimenzionalno
- BS Razdelnik snopa (*Beam Splitter*)

XRD - Rendgenska difrakciona analiza (X-Ray diffraction)

DFT - Teorija gustine funkcionala (Density Functional Theory)

PDF - Funkcija distribucije para (Pair Distribution Function)

ARPES - Uglovno razložena fotoemisiona spektroskopija (Angle Resolved Photo Emission Spectroscopy)

CVT - Chemical Vapor Transport

CDW - Talasi gustine naelektrisanja (Charge Density Wave)

IC-CDW - Nesamerljiva faza talasa gustine naelektrisanja (Incommensurate)

NC-CDW - Približno samerljiva faza talasa gustine naelektrisanja (*Nearly-commensurate*)

IC-CDW -Samerljiva faza talasa gustine naelektrisanja (Commensurate)

Sadržaj

Sadržaj							
1	Uvod						
2	Metod istraživanja						
	2.1	Istorij	ski razvoj Ramanove spekroskopije	5			
	2.2	Teorij	ski model	7			
		2.2.1	Klasična teorija Ramanovog rasejanja	7			
		2.2.2	Kvantno-mehanička teorija Ramanovog rasejanja	10			
		2.2.3	Efikasnost Ramanovog rasejanja	12			
		2.2.4	Svojstvena energija fonona	13			
		2.2.5	Profili spektralnih linija	15			
	2.3	Elektr	onsko Ramanovo rasejanje	18			
		2.3.1	Osnovna teorija elektronskog Ramanovog rasejanja	18			
		2.3.2	Efikasnost elektronskog Ramanovog rasejanja	19			
	2.4 Ramanov eksperiment						
		2.4.1	Geometrija rasejanja	22			
		2.4.2	Eksperimentalna postavka: Institut za fiziku u Beogradu $\ .\ .\ .$.	23			
		2.4.3	Eksperimentalna postavka: Valter Majsner institut u Minhenu	25			
3	Kva	Kvazi-dvodimenzionalni materijali					
	3.1	Trihal	idi prelaznih metala	30			
		3.1.1	CrI_3	32			
			3.1.1.1 Kristalna struktura CrI_3	32			
			3.1.1.2 Transportna i magnetna svojstva ${\rm CrI}_3$	33			
		3.1.2	$\mathrm{VI}_3\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	35			
			3.1.2.1 Kristalna struktura VI ₃	35			
			3.1.2.2 Transportna i magnetna svojstva VI_3	36			
	3.2	Dihalk	xogenidi prelaznih metala	39			
		3.2.1	1T-TaS ₂	40			
			3.2.1.1 Kristalna struktura $T - TaS_2$	41			

		3.1	2.1.2 Transportna svojstva $1T$ -TaS ₂	42		
	3.3	Mn ₃ Si ₂ Te	26 • • • • • • • • • • • • • • • • • • •	44		
		3.3.1 K	ristalna struktura $Mn_3Si_2Te_6$	44		
		3.3.2 M	agnetna svojstva $Mn_3Si_2Te_6$	45		
4	Analiza faznog prelaza u \mathbf{CrI}_3 metodom Ramanove spektroskopije					
	4.1	Sinteza i	kristalna struktura	47		
	4.2	2 Teorijski proračuni				
	4.3	4.3 Dinamika rešetke				
		4.3.1 Po	olarizaciona zavisnost: Asignacija fonona u Ramanovim spektrima	50		
		4.3.2 Te	emperaturska zavisnost: Određivanje temperature faznog prelaza .	56		
5	Kratkodometno i dugodometno uređenje kristalne strukture ${f VI}_3$					
	5.1	Sinteza i	kristalna struktura	59		
	5.2	? Teorijski proračuni				
	5.3	Dinamika	rešetke	61		
		5.3.1 Pe	olarizaciona zavisnost: Asignacija fonona	62		
		5.3.2 Sp	pin-fonon interakcija	66		
	5.4	Kratkodo	metno i dugodometno uređenje kristalne strukture	68		
6	Raz	ličite CD	W faze i Motov prelaz u $1T$ –TaS $_2$	70		
	6.1	Sinteza m	naterijala	70		
	6.2	Teorijski proračuni				
	6.3	Dinamika	rešetke	71		
		6.3.1 IC	C-CDW faza	71		
		6.3.2 C-	CDW faza	74		
		6.3.3 N	C-CDW faza	76		
	6.4	Eksperim	entalni dokazi otvaranja Motovog procepa u C-CDW fazi $1T\mathrm{-TaS}_2$	78		
		6.4.1 Ra	amanski verteksi	78		
		6.4.2 O	dređivanje veličine Motovog procepa	80		
7	Magnetni fazni prelazi u $Mn_3Si_2Te_6$					
	7.1	Sinteza i	kristalna struktura	86		
	7.2	Dinamika	${ m rešetke}$	87		
		7.2.1 Pe	olarizaciona zavisnost: Asignacija fononskih modova	87		
		7.2.2 Te	emperaturska zavisnost: Spin-fonon interakcija i fazni prelazi	90		
8	Zaključak					
		ijacan		30		

1 Uvod

Dugi niz godina u fizici čvrstog stanja vladalo je uverenje da dvodimenzionalni kristali ne mogu da postoje samostalno, već da moraju da se narastaju na zapreminskim kristalima koji imaju istovetnu kristalnu rešetku. Pretpostavka je bila da će pomeranje atoma, do kog dolazi usled jakih termalnih fluktuacija, dovesti do narušenja strukture i degradacije dvodimenzionalnog kristala [1, 2]. Ovo pomeranje atoma uporedivo je sa međuatomskim rastojanjima u materijalu 3. Ovakav stav naučne zajednice temeljen je na Merminovoj teoriji i na rezultatima eksperimentalnih istraživanja koja su pokazala da smanjenje debljine tankih materijala dovodi do naglog opadanja temperature topljenja istog [4, 5]. Nemogućnost sinteze dvodimenzionalnih materijala bez supstrata podudarajuće kristalne rešetke umnogome je doprinela ograničenom broju studija u oblasti dvodimenzionalnih materijala. Tek je uspešna sinteza grafena [6], koji je stabilan pri ambijentalnim uslovima, dovela do većeg interesovanja naučne zajednice. Od 2004. pa do sada, skup novootkrivenih dvodimenzionalnih materijala vrtoglavo se širio, najviše kao posledica eskperimentalno potvrđenih jedinstvenih fizičkih fenomena odsutnih kod njihovih trodimenzionalnih analogona, poput visokotemperaturskog balističkog transporta i netrivijalne topologije [7, 8, 9, 10]. Neisrcpno interesovanje koje uživaju nije uzrokovano samo zanimljivom fizikom ovih sistema, već i širokim spektrom mogućih primena, od kojih je svakako najznačajnija uloga koju imaju u razvoju nanoelektronike i spintronike [11]. Ono što je posebno zanimljivo kod ove grupe materijala jeste mogućnost kontrolisanja njihovih fizičkih i hemijskih karakteristika primenom spoljašnjih sila [12, 13, 14]. Sve navedeno jasan je pokazatelj da je reč o materijalima koji su od izuzetne važnosti za dalji tok razvoja nauke i industrije.

S obzirom na to da Mermin-Vagnerova teorema [15] zabranjuje postojanje magnetnog uređenja u kvazi-dvodimenzionalnim materijalima, a koje bi u kombinaciji sa njihovim jedinstvenim optičkim i transportnim karakteristikama dovela do novih magnetno-optičkih primena, većina aktivnog istraživanja usredsređena je na sintezu kvazi-dvodimenzionalnih materijala sa dugodometnim magnetnim uređenjem [15]. Premda su razne teorijske studije od 2004. godine pretpostavile feromagnetno uređenje u nekolicini kvazidvodimenzionalnih materijala, ono je eksperimentalnu potvrdu dobilo tek 2017. godine [16, 17] u porodici trihalida prelaznih metala. U okviru iste familije, konkretno u hromjodidu (CrI₃), potvrđeno je i magnetno uređenje koje opstaje do monosloja [17]. U skladu sa tim, a sa idejom da bi i ostali članovi ove familije mogli da imaju slična magnetna svojstva, započeta su iscrpna istraživanja na trihalidiima prelaznih metala. Danas, listi članova pomenute familije kvazi-dvodimenzionalnih materijala sa pretpostavljenim (anti)feromagnetnim uređenjem pripadaju CrX₃, OsCl₃, VX₃, NiCl₃, RuX₃ i MnX₃ (X= F, Cl, Br, I) [18, 19, 20, 21, 22, 23, 24]. Da bi se razumelo koje su to karakteristike materijala odgovorne za opstanak magnetnih osobina pri snižavanju dimenzionalnosti neophodno je njihovo odlično poznavanje. U cilju davanja doprinosa ovoj tematici, rađena su istraživanja na zapreminskim kristalima CrI₃, VI₃ i Mn₃Si₂Te₆.

U kvazi-dvodimenzionalnim materijalima javlja se izuzetno zanimljiv kolektivni kvantni fenomen – talasi gustine naelektrisanja. Prvi put u naučnoj literaturi talasi gustine naelektrisanja pominju se 1954. godine od strane H. Froliha (H. Fröhlich) |25|. U pomenutoj publikaciji, talasi gustine stanja opisani su kao strogo niskotemperaturska faza u kojoj dolazi do određenih nestabilnosti u periodičnosti kristalne rešetke, koja za posledicu ima otvaranje procepa u elektronskom spektru. Frolih je smatrao da su superprovodnost i ovaj fazni prelaz povezani. Svoje viđenje ovog fenomena je, zatim, 1955. ponudio Peierls [26]. U ovoj slici, talasi gustine stanja su i dalje opisani kao niskotemperaturski fenomen u kom periodično izmeštanje atoma iz čvorova rešetke, tzv. Peierlsovo izobličenje (*Peierls distortion*), dovodi do snižavanja energija jednodimenzionalnog atomskog lanca. Kao posledica nove periodičnosti talasnog vektora u elektronskim zonama dolazi do otvaranja procepa što znači da je prelaz iz normalne faze u fazu talasa gustine naelektrisanja praćem metal-izolator prelazom. Eksperimentalna potvrda ovog fenomena stigla je 1973. godine [27]. Zahvaljujući razvoju modernih eksperimentalnih tehnika, među kojima je i Ramanove spektroskopije, spisak materijala u kojima dolazi do formiranja talasa gustine naelektrisanja značajno je porastao. Najznačajniji među njima jesu svakako članovi dihalkogenida prelaznih metala, jedne od najvećih familije kvazi-dvodimenzionalnih materijala. Ono što izdvaja ove materijale jeste sam mehanizam formiranja talasa gustine naelektrisanja, koji je u nesaglasnosti sa Peierlsovom teorijom. Naime, u Peierlsovim sistema formiranje talasa gustine nelektrisanja je praćeno metalizolator prelazom, što u dihalkogenidima prelaznih metala nije slučaj. Pretpostavka je da se talasi gustine naelektrisanja fomiraju kada su određene fononske mode dovoljno omekšane jakim elektron-fonon sparivanje da postaju nestabilne [28]. Tada je talasni vektor određen matričnim elementima elektron-fonon interakcije [28]. Budući da mehanizam formiranja talasa gustine naelektrisanja, kao ni prijavljena koegzistencija ovog fenomena i superprovodnosti u dihalkogenidima prelaznih metala [29] ne mogu da se objasne u skladu sa postojećim teorijama, svako novo saznanje predstavlja korak bliže ka pružanju odgovora na ovo pitanje. U svemu pomenutom pronađena je motivacija za istraživanja rađena na $1T-TaS_2$, kvazi-dvodimenzionalnom materijalu sa najvećim brojem faznih prelaza između različitih faza talasa gustina naelektrisanja na eksperimentalno dostupnim temperaturama.

Ramanova spektroskopija jedna je od vodećih eksperimentalnih tehnika u naučnim

studijama o kvazi-dvodimenzionalnim materijalima. Ova nedestruktivna spektroskopska tehnika uspešno je korišćena za ispitivanja kristalne strukture, broja slojeva, atomskim vezama, kao i o mehaničkih i termalnih karakteristika ispitivanog materijala [30, 31, 32, 33, 34, 35]. Trend temperaturske zavisnosti energije i širine Raman aktivnih modova može da pruži uvid u različite tipove faznih prelaza, dok stepen (a)simetričnost spektralnih linija govori o jačini sparivanja fonona sa elektronskim kontinuumom. Dodatno, elektronsku Ramanovu spektroskopiju moguće je koristiti za određivanje veličine procepa u CDW materijalima [36, 37] i pominje se kao potencijalna tehnika za merenje naprezanja u materijalu [38]. S obzirom na to da je u pitanju eksperimentalna tehnika koja sa podjednakim uspehom može da bude temelj istraživanja magnetnih materijala, pružajući uvid u magnetne prelaze i opstanak magnetnog uređenja iznad Kirijeve temperature, i talasa gustine naelektrisanja, u kom slučaju može da se koristi za ispitivanje kristalne strukture, određivanje temperature faznog prelaza i veličine procepa, ona je izabrana kao glavni metod istraživanja ove doktorske disertacije.

Ova doktorska disertacija biće organizovana u osam poglavlja. U uvodnom delu predstavljene su glavne motivacije i ciljevi disertacije. Nakon toga, u drugom poglavlju pružen je uvid u istorijski razvoj Ramanove spektroskopije i njen teorijski opis. U istom poglavlju pružen je i pregled osnovnih teorijskih pojmova neophodnih za razumevanje prezentovanih rezultata, kao i detaljan opis korišćenih eksperimentalnih tehnika. Pregled najbitnijih rezultata u oblasti fizike kvazi-dvodimenzionalnih materijala, kao i tok razvoja oblasti, prikazani su u trećem poglavlju. Posebna pažnja je pružena dvema velikim familijama kvazi-dvodimenzionalnih materijala – trihalidima i dihalkogenidima prelaznih metala. U okviru istog poglavlja predstavljene su i osnovne karakteristike materijala na kojima su rađena istraživanja. Četvrto poglavlja posvećeno je rezultatima istraživanja na zapreminskim kristalima CrI₃. Predstavljeni rezultati potvrđuju fazni prelaz iz niskotemperaturske romboedarske u visokotemperatursku monokliničnu strukturu, ali na temperaturi koja je dosta niža od prethodno prijavljene. U spektrima merenim iznad temperature faznog prelaza ne postoje doprinosi niskotemperaturske faza. To znači da u CrI_3 ne dolazi do koegzistencije faza u širem temperaturskom opsegu. Na osnovu simetrija kristalne rešetke niskotemperaturske i visokotemperaturske faze, utvrđeno je da je simetrija sloja p31/m, a ne R32/m. U petom poglavlju prikazani su rezultati ispitivanja dinamike rešetke VI₃. Kako se u stručnoj literaturi pominju tri moguće kristalne strukture, polarizovani ramanskih spektara analizirani su u saglasnosti sa svakom od njih. Na osnovu toga je utvrđeno da uočene ramanske mode ne odgovaraju modovima C2/mprostorne grupe simetrije. Poređenjem DFT proračuna sa eksperimentalnim energijama fonona zaključeno je da vibracije zapreminskih kristala VI₃ potiču od P31c simetrije jedinične ćelije. Kako bi se utvrdilo odakle potiče neslaganje između XRD eksperimenta, koji ukazuje na R3 simetriju jedinične ćelije, i rezultata Ramanove spektroskopije urađena je PDF (*Pair Distribution Function*) analiza koja je pokazala da je kristalna struktura VI_3 koegzistencija dugodometne $R\bar{3}$ i kratkodometne $P\bar{3}1c$ faze. Istraživanje rađeno na

kristalima 1T-TaS₂ predstavljeno je u šestom poglavlju. U polarizovanim ramanskim spektrima merenim u paralelnoj i ukrštenoj polarizacionoj konfiguraciji na temperaturi $T=4~\mathrm{K},$ uočeno je 19 modova A_g i 19 modova E_g simetrije. Ovakav rezultat ukazuje na heksagonalno ili trigonalno slaganje "Davidovih zvezda" u samerljivu superstrukturu. U spektrima nesamerljive faze primećeno je da dolazi do projekcije fononske gustine stanja, primarno usled narušenja translacione invarijantnosti prilikom formiranja talasa gustine naelektrisanja. Kako je u ramanskim spektrima približno samerljive faze moguće prepoznati doprinose i samerljive i nesamerljive faze, pretpostavka je da je približno samerljiva faza koegzistencija nesamerljive i samerljive faze. Eksperiment elektronskog Ramanovog rasejanja iskorišćen je kao metod za praćenje razvoja CDW procepa i kako bi se utvrdilo da li, prilikom metal-izolator prelaza, dolazi do otvaranja Motovog procepa. Na osnovu dobijenih rezultata zaključeno je da na temperaturi od oko T = 100 K dolazi do otvaranja Motovog procepa, u okolini Γ tačke Briluenove zone, čija je širina $\Omega_{procep} = 170-190$ meV. Rezultati istraživanja zapreminskih kristala Mn₃Si₂Te₆ prikazani su u okviru sedmog poglavlja. U temperaturskim zavisnostima fononskih parametara dva najintenzivnija moda primećeni su diskontinuiteti na temperaturama $T_1 = 142,5$ K, $T_2 = 190$ K i $T_3 = 280$ K. Ovi diskontinuiteti imaju značajan uticaj na jačinu spin-fonon sparivanja u Mn₃Si₂Te₆, pa je pretpostavka da su posledica kompeticije različitih magnetnih faza i povezanih magnetnih fluktuacijama. Ovaj scenario podržan je analognim diskontinuitetima primećenim u temperaturskoj zavisnosti prvog izvoda *ac* magnetne susceptibilnosti u **ab** ravni, ravni u kojoj se uređuju magnetni momenti. Glavni zaključci predstavljenog istraživanja sumirani su u poglavlju 8. Pregled korišćene literature dat je na samom kraju disertacije.

2 Metod istraživanja

Kvazi-2D materijali predstavljaju relativno mladu i, kao takvi, nedovoljno istraženu oblast eksperimentalne fizike čvrstog stanja. Pored toga što je brza i nedestruktivna, Ramanova spektroskopija pokazala je zadovoljavajuće rezultate u ispitivanju strukture i broja slojeva, atomskih veza, simetrije kristalne strukture, mehaničkih i termalnih karakteristika kvazi-2D materijala, faznih prelaza i interakcije fonona sa kontinuumom (elektron-fonon, spin-fonon sparivanje) [30, 31, 32, 33, 34, 35]. Dodatno, elektronska Ramanova spektroskopija je uspešno korišćena za određivanje veličine procepa u CDW materijalima, a pominje se i kao potencijalna tehnika za merenje naprezanja u materijalu [36, 37, 38]. Zbog svega navedenog, kao glavna eksperimentalna tehnika u izradi ove doktorske disertacije korišćena je upravo Ramanova spektroskopija.

Ovo poglavlje je osmišljeno tako da čitaocu pruži uvid u teorijske osnove Ramanovog rasejanja, sa osvrtom na teorijski opis eksperimentalno uočljivih fenomena, i opis eksperimentalne postavke korišćene u predstavljenom istraživanju.

2.1 Istorijski razvoj Ramanove spekroskopije

Čandrasekara Venkata Raman (*C. V. Raman*) 1930. godine nagrađen je Nobelovom nagradom za eksperimentalnu potvrdu fenomena neelastičnog rasejanja svetlosti. Posledično, novootkriveni efekat nazvan je po njemu – Ramanov efekat. Iako zvanično potvrđen tek 1928. godine, ovo otkriće je usledilo kao rezultat gotovo decenijskog istraživanja koje je Raman sprovodio u saradnji sa svojim studentom Krišnanom (*K. S. Krishnan*) [39, 40, 41, 42]. Teorijsko predviđanje Ramanovog efekta dato je pet godina ranije od strane austrijskog fizičara Adolfa Smekala (*A. Smekal*) [43].

Ramanovo interesovanje za rasejanje svetlosti počinje 1921. godine, a prvi rad na tu temu objavljuje već naredne [40]. Na osnovu dotadašnjih rezultata istraživanja, baziranih na višegodišnjem ispitivanju rasejanja svetlosti na vodi i ostalim tečnostima, Raman i Krišnan postavljaju eksperiment očekujuću potvrdu Komptonovog efekta za vidljivu svetlost. Kao izvor zračenja korišćena je Sunčeva svetlost, za fokusiranje svetlosti na uzorak
korišćen je teleskop, dok je ljudsko oko poslužilo kao detektor. Neočekivano, glavni rezultat ovog eksperimenta nije bila potvrda Komptonovog efekta već demonstracija razmene energije između upadnog fotona i ekscitacija sredine u kojoj se svetlost rasejava [44]. Važnost ovog rezultata se ogleda u činjenici da je u toku prvih sedam godina od njegovog otkrića objavljeno čak 700 naučnih radova na temu Ramanovog efekta [45].

Bitno je napomenuti da isti efekat u rezultatima svojih istaživanja, samo tri meseca kasnije, prijavljuju i dva ruska naučnika - Mandeljštam (L. I. Mandelstam) i Landsberg (G. S. Landsberg) [46]. Međutim, usled ranijeg objavljivanja rezultata Nobelova nagrada dodeljena je indijskim naučnicima. U sovjetskoj naučnoj literaturi ovaj efekat je poznat pod nazivom – kombinaciono rasejanje.

Iako otkriven u prvoj polovini 20. veka, potencijal spektroskopske tehnike bazirane na Ramanovom efektu nije suštinski shvaćen do šezdesetih godina prošlog veka. Jedan od glavnih razloga relativno sporog razvoja Ramanove spektroskopije jeste mali presek rasejanja procesa neelastično rasejane svetlosti. S obzirom na to da se u početnim eksperimentima kao ekscitacioni izvor koristila Sunčeva svetlost, a da su eksperimenti rađeni u tečnostima, prva istraživanja u oblasti Ramanove spektroskopije fokusirala su se na unapređenje eksperimentalne postavke. Primat u ovom istraživanju preuzeli su izvori zračenja. Sa Sunčeve svetlosti prešlo se na lampe sa helijumom, zatim živom i argonom, međutim, pravi procvat ove spektroskopske tehnike počinje 1962. godine, kada je konstruisan prvi laser za primenu u Ramanovom eksperimentu [47].

Dodatni razlog sporog razvoja Ramanove spektroskopije, a koji se u stručnoj literaturi pominje i kao razlog kasnog otkrića samog efekta, leži u odnosu intenziteta elastično i neelastično rasejane svetlosti. Naime, od ukupnog intenziteta upadnog zračenja hiljaditi deo se raseje elastično (*Rejlijevo rasejanje*), dok se samo milioniti deo raseje neelastično (*Ramanovo rasejanje*). To znači da je zarad uspešnog kvantitativnog određivanja Ramanovog efekata bilo neophodno otkloniti doprinose elastično rasejane svetlosti iz spektra [48].

Konstrukcija prvog Ramanovog spektrometra morala je da sačeka do razvoja monohromatora 1953. godine [47]. Od tada pa do sada učinjena su znatna poboljšanja na instrumentima koji se koriste u Ramanovom eksperimentu – sa jednostepenih monohromatora prešlo se na trostepene monohromatore, 1974. godine se za fokusiranje svetlosti na uzorak prvi put koristi mikroskop, 1987. godine se pojavljuju CCD detektori [47]. Sva ova unapređenja eksperimentalne postavke doprinela su komercijalizaciji Ramanove spektroskopije i proširila oblasti potencijalnih primena, te se danas Ramanova spektroskopija uspešno koristi u najrazličitijim naučnim disciplinama – od fizike do arheologije [49, 50, 51, 52].

2.2 Teorijski model

Ramanov efekat može da se objasni kao neelastično rasejanje svetlosti u materijalu. U zavisnosti od toga u kojoj sredini do rasejanja dolazi, poreklo Ramanovog rasejanja može biti posledica promene polarizabilnosti molekula ili promene susceptibilnosti kristala pri ekscitaciji kvazičestice [53, 54], poput fonona, magnona, polarona. U Ramanovom rasejanju mogu učestvovati i elektroni.

Ovo poglavlje započinjemo klasičnom teorijom Ramanovog rasejanja, koja iako ne uzima u razmatranje kvantnu prirodu vibracija, te samim tim ne objašnjava u potpunosti vezu između osobina molekula i Ramanovog rasejanja, predstavlja dobru osnovu za razumevanje Ramanovog efekta.

2.2.1 Klasična teorija Ramanovog rasejanja

U klasičnoj teoriji Ramanovog rasejanja polazi se od ideje da vremenski zavisno elektromagnetno polje upadnog zračenja indukuje vremenski zavisni dipolni momenat. Ako posmatramo najjednostavniji sistem – dvoatomski molekul, koji je izložen elektičnom polju $\mathbf{E} = \mathbf{E}_{0} \cos 2\pi \omega_{0} t$, gde je \mathbf{E}_{0} amplituda polja, a ω_{0} učestanost lasera, indukovani dipolni momenat je [47]:

$$\mathbf{P} = \alpha \mathbf{E} = \alpha \mathbf{E}_0 \cos 2\pi \omega_0 t , \qquad (2.1)$$

gde α predstavlja konstantu proporcionalnosti koja se naziva *polarizabilnost*.

S obzirom na to da električna polarizabilnost predstavlja funkciju raspodele gustine naelektrisanja, $\alpha = \alpha(\rho)$, bilo koja promena atomske konfiguracije usled vibracija molekula za posledicu ima promenu polarizabilnosti. To znači da će za male vibracije molekula polarizabilnost biti linearna funkcija pomeraja atoma q [47]. Ako pomeraj atoma q napišemo kao funkciju učestanosti vibracije atoma ω_m [47]:

$$q = q_0 \cos 2\pi v_m t , \qquad (2.2)$$

razvojem α u Tejlorov red po pomerajima q dobijamo:

$$\alpha = \alpha_0 + \left(\frac{\partial \alpha}{\partial q}\right)_0 q_0 + \dots , \qquad (2.3)$$

gde je α_0 polarizabilnost u ravnotežnom položaju, a $\left(\frac{\partial \alpha}{\partial q}\right)_0$ stepen promene polarizabilnosti sa pomerajem. Ubacivanjem izraza za pomeraj atoma (2.2) i polarizabilnost (2.3) u izraz za dipolni momenat molekula, (2.1) postaje

$$\mathbf{P} = \alpha_0 \mathbf{E}_0 \cos 2\pi v_0 t + \left(\frac{\partial \alpha}{\partial q}\right)_0 q \mathbf{E}_0 \cos 2\pi \omega_0 t$$
(2.4)

$$= \alpha_0 \mathbf{E}_0 \cos 2\pi \omega_0 t + \left(\frac{\partial \alpha}{\partial q}\right)_0 q_0 \mathbf{E}_0 \cos 2\pi \omega_0 t \cos 2\pi \omega_m t .$$
 (2.5)

Primenom trigonometrijske transformacije

$$\cos a \, \cos b = \frac{\cos \left(a+b\right) + \cos \left(a-b\right)}{2} \,,$$
 (2.6)

u (2.4), dobijeni izraz za indukovani dipolni momenat konačno postaje [47]

$$\mathbf{P} = \alpha_0 \mathbf{E}_0 \cos 2\pi \omega_0 t \tag{2.7}$$

+
$$\frac{1}{2} \left(\frac{\partial \alpha}{\partial q} \right)_0 q_0 \mathbf{E}_0 [\cos\{2\pi(\omega_0 + \omega_m)t\} + \cos\{2\pi(\omega_0 - \omega_m)t\}].$$
 (2.8)

U poslednjem izrazu lako se razlikuju tri različite komponente indukovanog dipolnog momenta. Prvi član, u kom učestanost rasejanog talasa odgovara učestanosti upadnog (ω_0), predstavlja elastično rasejanje svetlosti (Rejlijevo rasejanje) [47]. Preostala dva člana, u kojima se učestanost rasejanog talasa razlikuje od učestanosti upadnog, odgovaraju neelastičnom, odnosno, Ramanovom rasejanju svetlosti. U zavisnosti od učestanosti rasejane svetlosti ovi procesi nazivaju se anti-Stoksovo ($\omega_0 + \omega_m$) i Stoksovo ($\omega_0 - \omega_m$) Ramanovo rasejanje [47]. Na osnovu (2.8) lako se zaključuje da je vibracija Raman aktivna ukoliko izaziva promenu polarizabilnosti molekula $\left(\frac{\partial \alpha}{\partial q}\right)_{q=0} \neq 0$.

Slika 2.1: Odnos intenziteta rasejanja u Rejlijevom, Stoksovom i anti-Stoksovom procesu rasejanja.

Ovim je demonstrirano da klasičan pristup tačno predviđa pojavu i daje uvid u mehanizme Rejlijevog i Ramanovog rasejanja, međutim, nije dovoljan za potpuno razumevanje Ramanovog rasejanja. Jedno od značajnijih pitanja na koje osnovna klasična teorija daje pogrešan odgovor jeste odnos intenziteta Stoksovih i anti-Stoksovih linija. Naime, na osnovu klasične teorije predviđeno je da odnos intenziteta bude propreionalan odnosu četvrtog stepena njihovih učestanosti [55]:

$$\frac{I_{Stoks}}{I_{anti-Stoks}} = \frac{(\omega_0 - \omega_m)^4}{(\omega_0 + \omega_m)^4} , \qquad (2.9)$$

odnosno, anti-Stoksove linije jačih intenziteta, što je u suprotnosti sa eksperimentom [Slika 2.1].

Dodatno, zbog neuzimanja u obzir konačnog vreme života kvazičestica pretpostavlja beskonačno uske spektralne linije, oblika δ -funkcije. Neslaganje između eksperimenta i teorije uspešno je otklonjeno u kvantnoj teoriji Ramanovog rasejanja, koja će biti predstavljena u poglavlju 2.2.2.

Kako bi se opisao proces rasejanja u kristalima neophodno je uzeti u obzir da se kristali sastoje od atoma, koji vrše neprestane vibracije oko svojih ravnotežnih položaja, te je njihov pomeraj ograničen simetrijskom vezom samih atoma i opisuje se generalisanim koordinatama vibracije. Broj normalnih vibracija zavisi od broja atoma u primitivnoj ćeliji kristala N i računa se kao 3N-3. U zavisnosti od simetrije kristala normalne vibracije mogu biti infracrveno i/ili Raman aktivne ili optički neaktivne. Ukoliko upadno zračenje dovodi do promene susceptibilnosti govori se o Raman aktivnim vibracijama, ukoliko dovodi do promene dielektrične propustljivosti vibracije su infracrveno aktivne [54]. U tom smislu analizu započinjemo isto kao i na početku ovog poglavlja, s tim što polarizabilnost molekula zamenjujemo tenzorom susceptibilnosti kristala $\chi_{j,l}$ i razvijamo ga u Tejlorov red po generisanim koordinatama [53, 54]

$$\chi_{j,l} = (\chi_{j,l})_0 + \sum_k \left(\frac{\partial \chi_{j,l}}{\partial q_k}\right)_0 q_k + \sum_{k,m} \left(\frac{\partial^2 \chi_{j,l}}{\partial q_k \partial q_m}\right)_0 q_k q_m + \dots$$
(2.10)

pri čemu k uzima uzima sve vrednosti unutar skupa 3N-3, a j i l vrednosti od 1 do 3. Analogno modelu dvoatomskog molekula, vibracija je Raman aktivna samo ukoliko je ispunjen uslov $\left(\frac{\partial \chi_{j,l}}{\partial q_k}\right) \neq 0$. Veličina koja se u izrazu (2.10) sumira po k naziva se Ramanov tenzor i u stručnoj literaturi se najčešće susreće kao $(\chi_{jl})_k$. Lako je pokazivo da je intenzitet rasejane svetlosti u kristalu proporcionalan sa [56, 57]

$$I \propto |\mathbf{e}_{\mathbf{S}} \cdot R \cdot \mathbf{e}_{\mathbf{L}}|^2$$
, (2.11)

gde su $\mathbf{e}_{\mathbf{S}}$ i $\mathbf{e}_{\mathbf{L}}$ jedinični vektori polarizacije rasejanog i upadnog zračenja, a R Ramanov tenzor. Upadni foton dovodi do Ramanovog rasejanja u kristalnoj rešetki samo ukoliko je ispunjen uslov

$$|\mathbf{e}_{\mathbf{S}} \cdot R \cdot \mathbf{e}_{\mathbf{L}}|^2 \neq 0 , \qquad (2.12)$$

Prethodna relacija predstavlja selekciona pravila za Ramanovo rasejanje i ukazuje na to da Ramanova aktivnost zavisi od nenultog karaktera Ramanovog tenzora i geometrije u kojoj se izvodi eksperiment.

2.2.2 Kvantno-mehanička teorija Ramanovog rasejanja

U kvantnoj teoriji Rejlijevo i Ramanovo rasejanje svetlosti opisuju se u vidu elastičnih i neelastičnih sudara fotona i kristala. Kao i u slučaju klasične teorije, neelastični sudari odgovaraju Stoksovom ili anti-Stoksovom procesu. Fotoni koji učestvuju u Stoksovom procesu gube, a fotoni koji učestvuju u anti-Stoksovom procesu primaju jedan, ili više od jednog, kvant vibracione energije. Pretpostavimo da u sudaru učestvuje samo jedan kvant vibracione energije – fonon, te da govorimo o rasejanju prvog reda, i neka kao ekscitacioni izvor koristimo izvor svetlosti učestanosti ω_L i talasnog vektora \mathbf{k}_L . Da bi takav upadni foton učestvovao u procesu sa fononom (ω_j , \mathbf{q}) pri čemu se kao rezultat izrači izlazni foton (ω_S , \mathbf{k}_S), moraju da budu ispunjeni sledeći zakoni održanja energije i kristalnog impulsa

$$\omega_L = \omega_S \pm \omega_j(\mathbf{q}) , \mathbf{k}_L = \mathbf{k}_S \pm \mathbf{q} , \qquad (2.13)$$

pri čemu znak + (-) odgovara Stoksovom (anti-Stoksovom) procesu. Dodatno, pozitivan i negativan znak u jednačinama redom ukazuju na kreaciju, odnosno anihilaciju fonona [55]. Šematski prikazi elektronskih procesa u Stoksovom i anti-Stoksovom rasejanju prvog reda, kao i odgovarajući Fajnmanovi dijagrami ova dva procesa prikazani su na slikama 2.2 i 2.3, redom. S obzirom na to da je ω_j zanemarljivo malo u odnosu na ω_L , iz (2.13) sledi da je $\omega_L \approx \omega_S$.

Slika 2.2: (a) Šematski prikaz elektronskih prelaza kod Stoksovog Ramanovog rasejanja prvog reda. (b) Fajnmanov dijagram Stoksovog Ramanovog procesa.

Pozivajući se na poznate relacije iz talasne optike ($\lambda = \frac{c}{\nu}, k = \frac{2\pi}{\lambda}, \omega = 2\pi\nu$) i vodeći računa o tome da su \mathbf{k}_L i \mathbf{k}_S unutar kristala, talasne brojeve možemo da izrazimo preko učestanosti u sledećem obliku:

$$k_L = n(\omega_{L,S}) \frac{\omega_{L,S}}{c} . \qquad (2.14)$$

Slika 2.3: (a) Sematski prikaz elektronskih prelaza kod anti-Stoksovog Ramanovog rasejanja prvog reda. (b) Fajnmanov dijagram anti-Stoksovog Ramanovog procesa.

gde je $n(\omega_{L,S})$ indeks prelamanja. Kako je $\omega_L \approx \omega_S$, zaključujemo da ista relacija važi i za talasne brojeve upadnog i rasejanog zračenja – $k_L \approx k_S$ [53].

Uzevši u obzir da su talasne dužine upadnog i rasejanog fotona, λ_L i λ_s , mnogo veće od parametra kristalne rešetke *a*, dolazimo do zaključujemo da je $k_{L,S} \ll \pi/a$, pri čemu je π/a intenziteta talasnog vektora fonona na ivici prve Briluenove zone. Pozivajući se na zakon održanja kristalnog impulsa (2.13) dolazimo do uslova koji važi za fonone koji učestvuju u Ramanov procesu prvog reda – $q \ll \pi/a$ [55]. Dakle, da bi fonon učestvovao u Ramanovom rasejanju prvog reda mora da ispunjava uslov $\mathbf{q} \cong 0$. Ovaj uslov je ispunjen samo za ekscitacije iz Γ-tačke Briluenove zone [53, 55].

Sumirano, Rejlijevo rasejanje je proces koji ne izaziva promenu energije sredine o koju se upadni foton rasejava, samim tim rasejani foton nosi istu energiju kao i upadni. U slučaju Ramanovog rasejanja dolazi do interakcije sredine sa rasejanim fotonom pri čemu se razlikuju Stoksov i anti-Stoksov proces.

Proces u kom dolazi do apsorpcije energije, praćeno ekscitacijom sistema u virtuelno stanje, a zatim prelazom u prvo pobuđeno stanje, koji rezultira emitovanjem fotona energije manje od upadnog naziva se Stoksov. Ukoliko foton interaguje sa sistemom koji je već bio u pobuđenom vibracionom stanju, nakon čega se sistem vrati u osnovno stanje praćeno emisijom fotona energije veće od energije upadnog, govorimo o anti-Stoksovom procesu. S obzirom na to da je naseljenost osnovnog vibracionog nivoa daleko veća nego bilo kog pobuđenog vibracionog nivoa, na osnovu ove uprošćene analize lako se da zaključiti da je Stoksov proces verovatniji od anti-Stoksovog [55]. Kako odnos intenzitet Stoksove i anti-Stoksove linije zavisi od odnosa naseljenosti vibracionih nivoa, koji je u Boze-Ajnštajnovoj statistici proporcionalan $e^{\hbar \omega_s/k_bT}$, on mora biti proporcionalan izrazu

$$\frac{I_{Stoks}}{I_{anit-Stoks}} \propto \frac{(\omega_L - \omega_s)^4}{(\omega_L + \omega_s)^4} e^{\hbar \omega_s / k_b T} , \qquad (2.15)$$

koji je mnogo veći od jedinice [55]. Ovakav rezultat dobar je pokazatelj da kvantna teorija uspešno rešava ograničenja klasičnog pristupa.

Kada govorimo o procesima rasejanja drugog reda govorimo o procesu u kome upadni

Slika 2.4: (a) Šematski prikaz elektronskih prelaza u anti-Stoksovom Ramanovom rasejanju drugog reda. (b) Fajnmanovi dijagrami procesa neelastičnog rasejanja drugog reda.

foton dovodi do pobuđivanja kristala iz početnog vibracionog i elektronskog stanja u virtuelno stanje, nakon čega se sistem vraća u novo stanje. To novo stanje se od početnog razlikuje za dva vibraciona kvanta. Ovaj proces nije rezervisan samo za optičke fonone, već može uključivati i akustičke fonone ili čak kombinaciju optičkih i akustičkih fonona. U Ramanovom rasejanju drugog reda učestvuju samo optički fononi. Kako zakoni održanja energije i kristalnog impulsa za Ramanove procese drugog reda imaju oblik:

$$\omega_L = \omega_S \pm \omega_{j'}(\mathbf{q}') \pm \omega_{j''}(\mathbf{q}'') , \mathbf{k}_L = \mathbf{k}_S \pm \mathbf{q}' \pm \mathbf{q}'' , \qquad (2.16)$$

ovi procesi nisu dozvoljeni samo za fonone iz centra Briluenove zone, već i za fonone iz cele Briluenove zone [55]. Elektronski prelazi u anti-Stoksovom rasejanju drugog reda predstavljena su na slici 2.4. Na istoj slici su prikazani i Fajnmanovi dijagrami dva najčešća tipa Ramanovog rasejanja drugog reda.

2.2.3 Efikasnost Ramanovog rasejanja

Veličina koje se koristi za kategorizaciju procesa Ramanovog rasejanja naziva se presek rasejanja. Makroskopski, presek Ramanovog rasejanja predstavlja odnos snage rasejanje svetlosti, koja se rasejava sa učestanošću (ω_S , $\omega_S + d\omega_S$), i snage upadne svetlosti, po jedinici dužine L i jediničnom prostornom uglu $d\Omega_S$ [58, 59]. U klasičnoj teoriji diferencijalni presek rasejanja ima oblik:

$$\frac{d^2S}{d\omega_S d\Omega_S} = \frac{dP}{P_L} \frac{1}{L} \frac{1}{d\omega_S d\Omega_S} \,. \tag{2.17}$$

Ukoliko proces Ramanovog rasejanja posmatramo mikroskopski, govorimo o procesu u kom se foton talasnog vektor $\mathbf{k}_{\mathbf{L}}$ rasejava o kristal i napušta ga s talasnim vektorom $\mathbf{k}_{\mathbf{S}}$, pri čemu sistem prelazi iz osnovnog stanja $|I\rangle$ u finalno stanje $|F\rangle$, menjajući svoje vibraciono stanje. Broj tako rasejanih fotona po jedinici dužine dat je formulom [59]:

$$dN_S = \frac{1}{u_l} \sum_{F_f} P_{FI} \frac{V}{(2\pi)^3} d^3 \mathbf{k_S} , \qquad (2.18)$$

$$d^{3}\mathbf{k}_{\mathbf{S}} = \left(\frac{n_{S}}{c}\right)^{3}\omega_{S}^{2}d\Omega_{S}d\omega_{S} , \qquad (2.19)$$

gde je u_L brzina upadnog fotona, a P_{FI} verovatnoća prelaza po jedinici vremena.

Jednačinu (2.18) možemo da predstavimo kroz odnos energije rasejanih i upadnih fotona ($dS = \frac{\hbar\omega_S}{\hbar\omega_L} dN_S$) na sledeći način

$$\frac{d^2S}{d\omega_S d\Omega_S} = \frac{V}{(2\pi)^3} \frac{\omega_S^3}{\omega_L} \frac{n_L n_S^3}{c^4} \sum_{Ff} P_{FI} . \qquad (2.20)$$

Koristeći Fermijevo zlatno pravilo za izračunavanje verovatnoće procesa Ramanovog rasejanja [58], i zamenom u jednačinu (2.20) dobijamo finalni izraz za presek Ramanovog procesa rasejanja [59]:

$$\frac{d^2 S}{d\Omega_S} = \frac{V}{(\hbar\omega_L)^2} \frac{\omega_L \omega_S^3}{(2\pi)^2} \frac{n_L n_S^3}{c^4} \sum_{Ff} |W_{FI}|^2 , \qquad (2.21)$$

gde je W_{FI} amplituda verovatnoće prelaza iz stanja $|I\rangle$ u finalno stanje $|F\rangle$.

2.2.4 Svojstvena energija fonona

U klasičnoj teoriji Ramanovog rasejanja kristal se opisuje modelom atoma međusobno povezanih elastičnim oprugama. U ovakvom sistemu vibracije kristalne rešetke opisuju se modelom harmonijskog oscilatora. Dielektrična propustljivost ovakvog sistema data je sledećim izrazom:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \varepsilon_{vib} ,$$
 (2.22)

gde ε_{∞} predstavlja doprinose procesa koji se odvijaju na učestanostima višim od učestanosti vibracija rešetke, ali nižim od učestanosti rezonantnih procesa. Kako je kvant vibracije rešetke fonon, drugi sabirak u (2.17) naziva se fononski doprinos [53]. Ovakav pristup prilično dobro aproksimira fonone u izotropnom kristalu, gde su zanemareni ograničeno vreme života fonona i njihova međusobna interakcija. Međutim, kako bismo opisali temperatursku zavisnost učestanosti i vremena života fonona u realnim kristalima, u analizu moramo da uključimo i anharmonijske doprinose. Realni kristali nisu harmonijski te kao popravku razmatramo i sudare između samih fonona. Ovi sudari dovode do promena učestanosti fonona koji u njima učestvuju, što za posledicu ima ograničeno vreme njhovih života. Ova interakcija naziva se *fonon-fonon* interkacija i opisuje se svojstvenom energijom fonona [53, 60, 61]:

$$\Sigma_i(T) = \Delta_i(T) + i\Gamma_i(T) , \qquad (2.23)$$

gde realni deo odgovara promeni učestanosti usled anharmoničnosti, a imaginarni deo odgovara širini moda, koja je obrnuto srazmerna vremenu života fonona. Obe ove veličine imaju temperatursku zavisnost koja se u Ramanovom eksperimentu manifestuje kroz pomeraj moda ka nižim energijama, odnosno širenje moda, sa porastom temperature.

Sirina fononskog moda učestanosti ω i talasnog vektora **q** može da se predstavi u vidu perturbacionog razvoja ukupne energije kao [60]:

$$\Gamma_{j}(\mathbf{q},\omega) = \frac{\pi}{2\hbar^{2}} \sum_{\mathbf{q}_{1},\mathbf{q}_{1},j_{1},j_{2}} \left| \frac{\partial^{3}E_{tot}}{\partial \mathbf{e}(\mathbf{q},j)\partial \mathbf{e}(\mathbf{q}_{1},j_{1})\partial \mathbf{e}(\mathbf{q}_{2},j_{2})} \right|^{2} \mathbf{\Delta}(-\mathbf{q}+\mathbf{q}_{1}+\mathbf{q}_{2}) \times \\ \left\{ [n(\mathbf{q}_{1},j_{1})+n(\mathbf{q}_{2},j_{2})+1]\delta(\omega-\omega_{j_{1}}(\mathbf{q}_{1})-\omega_{j_{2}}(\mathbf{q}_{2})) + 2[n(\mathbf{q}_{1},j_{1})-n(\mathbf{q}_{2},j_{2})]\delta(\omega+\omega_{j_{1}}(\mathbf{q}_{1})-\omega_{j_{2}}(\mathbf{q}_{2})) \right\},$$

$$(2.24)$$

gde je ω učestanost, **q** talasni vektor *j*-tog fonona, a **e** jedinični vektor koji određuje amplitudu odgovarajućeg moda. Funkcija $\Delta(\mathbf{q})$ je različita od nule samo ukoliko je vektor **q** vektor recipročne rešetke, dok član $n(\mathbf{q}, j)$ predstavlja Boze-Ajnštajnov okupacioni faktor *j*-tog fonona dat izrazom:

$$n(T,\omega_j) = e^{\hbar\omega_j/k_bT} - 1.$$
(2.25)

Prvi član unutar vitičaste zagrade u izrazu (2.24) odgovara procesu raspada fonona na dva fonona niže energije (*down-conversion*), a drugi opisuje procese sudara neravnotežnih fonona sa termalnim fononima pri čemu dolazi do kreacije novog fonona (*up-conversion*) [60].

Realni deo svojstvene energije fonona može se rastaviti na tri člana – prvi član $\Delta_1^{(0)}$ predstavlja promene učestanosti usled termalnog širenja kristalne reštke, dok druga dva člana potiču od fonon-fonon interakcije [53, 60, 62, 63, 64]:

$$\Delta_j(\omega) = \Delta_j^{(0)} + \Delta_j^{(3)}(\omega) + \Delta_j^{(4)} .$$
 (2.26)

Kao i u slučaju širine fononskog moda, doprinosi fononske interakcije posledica su down-conversion ili up-conversion procesa. Ovi procesi se još nazivaju trofononski procesi i predstavljeni su članom $\Delta_j^{(3)}(\omega)$. Doprinosi četvorofononskih procesa dati su članom $\Delta_j^{(4)}$ [65]. Ovi članovi analitički su dati kao:

$$\Delta_j^{(0)}(\omega) = \omega_j [e^{-3\gamma_j \int_0^T \alpha(T')dT'} - 1], \qquad (2.27)$$

$$\Delta_j^{(3)}(\omega) = -\frac{2}{\pi} P \int_0^\infty \frac{\omega' \Gamma_j(\omega')}{(\omega'^2 - \omega^2)} d\omega' , \qquad (2.28)$$

$$\Delta_{j}^{(4)} = \frac{12}{\hbar} \sum_{\mathbf{q}_{1}, j_{1}} \frac{\partial^{4} E_{tot}}{\partial \mathbf{e}(\mathbf{q}, j) \partial \mathbf{e}(-\mathbf{q}, \mathbf{j}) \partial \mathbf{e}(\mathbf{q}_{1}, j_{1}) \partial \mathbf{e}(\mathbf{q}_{2}, j_{2})} [2n(\mathbf{q}_{1}, j_{1}) + 1], \qquad (2.29)$$

gde su γ_j , $\alpha(T)$ i *P* redom Grinajzenov (*Grüneisen*) parametar datog moda, koeficijent zapreminskog širenja i Košijeva glavna vrednost integrala [60, 66].

Ukoliko u razmatranje uzmemo samo optičke fonone u Γ-tački Briluenove zone koji se raspadaju na dva akustička fonona čije učestanosti zadovoljavaju relaciju $\omega_{ph} = \omega_1(\mathbf{q}, j_1) + \omega_2(-\mathbf{q}, j_2)$, i ako je ispunjena Klemensova pretpostavka da se optički fononi raspadaju na akustičke fonone iste učestanosti, koji pripadaju istim granama [67], tada izrazi za promenu širine i učestanost fononskog moda imaju oblik [62]:

$$\Gamma_{ph,i}(T) = \Gamma_i(0) \left(1 + \frac{2\lambda_{p-p,i}}{e^{\hbar\omega_i(0)/2k_bT} - 1}\right), \qquad (2.30)$$

$$\omega_{ph,i}(T) = \omega_i(0) + \omega_i(0)(e^{-3\gamma_i \int_0^T \alpha(T')dT'} - 1) - C_i(1 + \frac{4\lambda_{p-p,i}}{e^{\hbar\omega_i(0)/2k_bT} - 1}) .$$
(2.31)

U gornjim izrazima $\Gamma_i(0)$ i $\omega_i(0)$ su položaji *i*-te Ramanove linije kada temperatura teži 0, a $\lambda_{p-p,i}$ jačina fonon-fonon sparivanja. Konstanta C_i zadovoljava relaciju $C_i = \Gamma_i(0)^2/2\omega_i(0)$ [62].

2.2.5 Profili spektralnih linija

Jedan od početnih i najbitnijih koraka za uspešno tumačenje Ramanovih spektra jeste utvđivanje profila spektralnih linija. Da bismo razumeli koji se sve oblici linija javljaju u spektrima krenućemo od jednostavne slike prostiranja elektromagnetnog zračenja kao prigušenog harmonijskog oscilatora. U takvoj slici zračenje vremenski zavisnog električnog polja dato je sledećom diferencijalnom jednačinom:

$$\ddot{E} + \gamma \dot{E} + \omega_0^2 E = 0 , \qquad (2.32)$$

gde je γ konstantna prigušenja, a ω_0 učestanost oscilatora bez prigušenja. Svojstvene vrednosti jednačine (2.32) su takve da je opšte kompleksno rešenje dato u obliku linearne kombinacije $e^{\alpha t}$ sa kompleksnim koeficijentima [54]:

$$\alpha_{1,2} = -\frac{\gamma}{2} \pm i\sqrt{\omega_0^2 - \frac{\gamma^2}{4}} .$$
 (2.33)

Kako nas zanima samo realni deo električnog polja, uzimamo sledeće rešenje diferencijalne jednačine (2.32)

$$E(t) = C_1 e^{-\gamma t/2} \cos \omega t + C_2 e^{-\gamma t/2} \sin \omega t , \qquad (2.34)$$

gde je $\omega = \sqrt{\omega_0^2 - \gamma^2/4}$. Da bi oscilovanje imalo prigušen karakter mora biti ispunjen uslov $\gamma/2 < \omega_0$. Koeficijenti $C_{1,2}$ vode računa o tome da su ispunjeni granični uslovi.

Ukoliko posmatramo maksimalno električno polje, čiji je izvod po vremenu u trenutku t = 0 jednak nuli, rešenje jednačine (2.32) takvog polja biće:

$$E(t) = E_0 e^{-\gamma t/2} (\cos \omega t + \frac{\gamma}{2\omega} \sin \omega t) . \qquad (2.35)$$

Kako su u eksperimentu vreme i učestanost uvek pozitivne vrednosti, gornju jednačinu možemo svesti na nešto jednostavniji oblik (2.36), koji iako ne predstavlja generalno rešenje jednačine (2.32), predstavlja dovoljno dobru matematičku osnovu za opisivanje energetskog spektra prigušenog oscilatora [54]:

$$E(t) = E_0 e^{-\gamma t/2} \cos \omega t$$
 . (2.36)

Da bismo dobili spektar vremenski zavisne funkcije E(t) neophodno je primeniti Furijeovu transformaciju. Međutim, s obzirom da funkcija E(t) trpi nagli skok za t = 0, Furije transform ovakve funkcije bio bi izuzetno komplikovan, s toga se ona predstavlja u sledećem kompleksnom obliku [54]:

$$E(t) = E_0 e^{-\gamma t/2} e^{i\omega t} . (2.37)$$

Primenom Furije transformacije na (2.37) dobijamo izraz za energetski spektar prigušenog oscilatora:

$$E(f) = \int_0^\infty E_0 e^{-\gamma t/2} e^{i\omega_0 t} e^{-i2\pi f t} dt = \frac{E_0}{\gamma/2 + i2\pi (f - f_0)} , \qquad (2.38)$$

gde je ω_0 učestanost prigušenih oscilacija.

Kada govorimo o eksperimentu govorimo o veličini koja je data kao kvadrat amplitude energetskog spektra, i koja se naziva intenzitet spektralnog zračenja. U slučaju zračenja prigušenog oscilatora ova veličina ima oblik [54]:

$$S(\omega) = E(\omega)E^*(\omega) = \frac{E_0^2}{(\gamma/2)^2 + (\omega - \omega_0)^2}.$$
 (2.39)

Ovakav oblik intenziteta spektralnog zračenja naziva se Lorencov profil spektralne linije (*Lorentzian*). Širina linije koja se opisuje Lorencovim profilom zavisi od parametra γ , koji je obrnuto srazmeran vemenu života oscilacije τ . Kako se ovaj oblik linije vezuje za osnovne procese emisije i apsorpcije, poznat je i pod nazivom prirodni oblik linije. U ω prostoru, normiran na jedinicu površine, dat je kao [54]:

$$I_L(\omega - \omega_0) = \frac{\gamma/2}{(\omega - \omega_0)^2 + (\gamma/2)^2} .$$
 (2.40)

Lorencov profil nije jedini koji se koristi za opisivanje spektralnih linija u eksperimentima. U slučaju kada energija svih emitijućih oscilatora nije jednaka, već je njihova energija statistički raspoređena, u spektrima se javljaju linije koje se opisuju Gausovim profilom. U kristalima one su najčešće posledica perturbacija elektronskih nivoa elektrona izazvanih defektima rešetke [54]. Analitički oblik Gausove linije je:

$$I_G(\omega - \omega_0) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(\omega - \omega_0)}{2\sigma^2}} , \ \sigma^2 = \frac{\gamma^2}{8\ln 2} , \qquad (2.41)$$

gde je γ poluširina linije, a σ^2 disperzija Gausove raspodele.

Spektralne linije koje se dobijaju u eksperimentima ne moraju nužno da budu istog profila kao i linije izvora zračenja. Ovo odstupanje je najčešće posledica instrumentalnog širenja, koje se opisuje Gausovim profilom linije. U tom slučaju, eksperimentalna li-

Slika 2.5: Grafički prikaz (a) Lorencovog, (b) Gausovog, (c) Voitovog i (d) Fano profila spektralnih linija. Preuzeto iz [68]

nija opisuje se Voitovim profilom (*Voigtian*), koji predstavlja konvoluciju Lorencovog i Gausovog profila, i koji ne može biti predstavljen analitički. Poluširina Voitove linije približno je [54]:

$$\gamma = 0.5346\gamma_L + \sqrt{0.2153\gamma_L^2 + \gamma_G^2} . \qquad (2.42)$$

Pored simetričnih linija koje se javljaju u spektrima, a koje se opisuju sa tri gore navedena profila, u ekpserimentu se neretko javljaju asimetrične spektralne linije. U slučaju kristala, one su najčešće posledica postojećih defekata u kristalnoj rešetlki ili sparivanja fonona sa kontinuumom [69]. Ovakav oblik linija opisuje se Fano profilima, čiji je najjednostavniji analitički oblik [70]:

$$I_F(\omega - \omega_0) = I_0 \frac{q + \bar{\epsilon}^2}{1 + \bar{\epsilon}^2}, \ \bar{\epsilon} = \frac{2(\omega - \omega_0)}{\Gamma} .$$
(2.43)

U izrazu (2.43) ω_0 predstavlja učestanost fonona u odsustvu interakcije, Γ širinu na polovini makismalnog intenziteta, I_0 amplitudu, a q Fano parametar. Fano parametar q obrnuto je srazmeran asimetriji linije, i ukoliko ima vrednost veću od 30 posmatrana linija smatra se simetričnom. S obzirom na to da širina linije i Fano parametar zavise od interakcije između fonona i kontinuuma, neretko se koriste kao stepen određivanja njene jačine.

Pomenuti profili spektralnih linija grafički su predstavljeni na slici 2.5.

2.3 Elektronsko Ramanovo rasejanje

Do ovog trenutka razmatrano je isključivo Ramanovo rasejanje u kom učestvuju fononi. Međutim, Ramanovo rasejanje nije ograničeno samo na fonone, već u njemu mogu učestvovati i razne druge kvazi-čestice poput plazmona ili slobodni elektronski gas. U ovom potpoglavlju biće objašnjeni osnovni teorijski koncepti elektronskog Ramanovog rasejanja neophodni i dovoljni za razumevanje prezentovanih rezultata. Elektronsko Ramanovo rasejanje detaljno je objašnjenju u [71].

2.3.1 Osnovna teorija elektronskog Ramanovog rasejanja

Pod elektronskim Ramanovim rasejanjem podrazumevamo procese u kojima se ekscitovani visokoenergetski elektron-šupljina par sparuje sa provodnim elektronima metala. Takav Ramanov spektar se sastoji od fononskih linija superponiranih na elektron-šupljina kontinuum. U Ramanovom eksperimentu se meri broj upadnih fotona, koji se u jedinici vremena, rasejava u prostornom uglu $\Omega + d\Omega$. Ovaj broj je direktno proporcionalan sa merom prelaza \Re [72]:

$$\mathcal{R} = \frac{1}{\mathcal{Z}} \sum_{i,f} e^{-\beta E_i} |M_{f,i}|^2 \delta(E_f - E_i - \hbar\Omega) , \qquad (2.44)$$

gde je Z particiona funkcija, a $M_{f,i} = \langle f | M | i \rangle$ matrični element prelaza u kome je sadržana interakcija svetlosti sa uzorkom. Matrični element $M_{f,i}$ određen je Hamiltonijanom elektrona spregnutih sa električnim poljem (2.45) u koji su uračunati doprinosi Kulonove interakcije, slobodnog elektromagnetnog polja, sparivanja elektronske struje sa pojedinačnim fotonima i sparivanje nalektrisanja elektrona sa dva fotona [73]. Poslednja tri člana u izrazau (2.45) doprinose matričnom elementu $M_{f,i}$.

$$\mathcal{H} = \mathcal{H} + H_{polje} + \frac{e}{2mc} \sum_{i} [\hat{p}_i \cdot \hat{A}(r_i) + \hat{A}(r_i) \cdot \hat{p}_i] + \frac{e}{2mc^2} \sum_{i} \hat{A}(r_i) \cdot \hat{A}(r_i) . \qquad (2.45)$$

Ukoliko svojstvena stanja Hamiltonijana \mathcal{H} , $|\alpha\rangle$, imaju svojstvene vrednosti E_{α} , onda je $\mathcal{H} |\alpha\rangle = E_{\alpha} |\alpha\rangle$, a izraz za matrični element zapisan u drugoj kvantizaciji [74]:

$$M_{f,i} = \mathbf{e}_{\mathbf{L}} \cdot \mathbf{e}_{\mathbf{S}} \sum_{\alpha,\beta} \rho_{\alpha,\beta}(\mathbf{q}) \langle f | \alpha^{\dagger} | i \rangle + \frac{1}{m} \sum_{\nu} \sum_{\alpha,\alpha',\beta,\beta'} p_{\alpha,\alpha'}(\mathbf{q}_{\mathbf{S}}) p_{\beta,\beta'}(\mathbf{q}_{\mathbf{L}}) \\ \times \left(\frac{\langle F | c_{\alpha}^{\dagger} c_{\alpha'} | \nu \rangle \langle \nu | c_{\beta}^{\dagger} c_{\beta'} | i \rangle}{E_{i} - E_{\nu} + \hbar \omega_{L}} + \frac{\langle F | c_{\beta}^{\dagger} c_{\beta'} | \nu \rangle \langle \nu | c_{\alpha}^{\dagger} c_{\alpha'} | i \rangle}{E_{i} - E_{\nu} - \hbar \omega_{S}} \right),$$

$$(2.46)$$

gde su matrični elementi jednočestične gustine stanja i gustine impulsa koja uključuju stanja α i β , redom [74]:

$$\rho_{\alpha,\beta}(\mathbf{q}) = \int d^3 r \varphi^*_{\ \alpha}(\mathbf{r}) e^{i\mathbf{q}\cdot\mathbf{r}} \varphi_{\beta}(\mathbf{r}) = \langle \alpha | e^{i\mathbf{q}\cdot\mathbf{r}} | \beta \rangle , \qquad (2.47)$$

$$p_{\alpha,\beta}(\mathbf{q}_{L,S}) = \langle \alpha | \mathbf{p} e_{L,S}^{\pm i \mathbf{q}_{L,S} \cdot \mathbf{r}} | \beta \rangle .$$
(2.48)

 $|i\rangle, |\nu\rangle$ i $|f\rangle$ u izrazima (2.47) i (2.48) predstavljaju početno, srednje i krajnje stanje kojima, redom, odgovaraju energije E_i, E_{ν} i E_f .

Prvi član u izrazu (2.46) potiče od dvofononskog rasejanja, a ostali od rasejanja pojedinačnog fotona. Izračunavanje ovako datog matričnog elemenata je izuzetno kompleksan proces koji može da se uprosti ukoliko se prepostavi da se višečestična međustanja razlikuju od krajnjeg i početnog samo po ekscitacijama pojedinačnih elektrona [72]. Sa ovom pretpostavkom izraz (2.46) dobija oblik:

$$M_{f,i} = \sum_{\alpha,\beta} \gamma_{\alpha,\beta} \langle f | c_{\alpha}^{\dagger} c_{\beta} | i \rangle ,$$

$$\gamma_{\alpha,\beta} = \rho_{\alpha,\beta}(\mathbf{q}) \mathbf{e}_{L} \cdot \mathbf{e}_{S} + \frac{1}{m} \sum_{\beta'} \left(\frac{p_{\alpha,\beta'}^{S} p_{\beta',\beta}^{L}}{E_{\beta} - E_{\beta'} + \hbar\omega_{L}} + \frac{p_{\alpha,\beta'}^{L} p_{\beta',\beta}^{S}}{E_{\beta} - E_{\beta'} - \hbar\omega_{L}} \right) .$$
(2.49)

Iz prethodnog izraza moguće je odrediti amplitudu rasejanja ($Raman \ vertekse$) u zavisnosti od vektora polarizacije upadnih i rasejanih fonona [72]:

$$\gamma_{\mathbf{k},\mathbf{q}} = \sum_{\alpha,\beta} e_L^{\alpha} \gamma_{\alpha,\beta}(\mathbf{k},\mathbf{q}) e_S^{\beta}.$$
(2.50)

2.3.2 Efikasnost elektronskog Ramanovog rasejanja

Neka elektron, koji se nalazi na položaju \mathbf{r} , interaguje sa poljem zračenja, čiji je vektorski potencijal $\mathbf{A}(\mathbf{r}, t)$. Hamiltonijan takve interakcije ima oblik:

$$\mathcal{H} = e^2 \frac{|A|^2}{2mc^2} + \frac{1}{2} e^{\frac{(\mathbf{p} \cdot \mathbf{A})}{mc}} + \frac{1}{2} e^{\frac{(\mathbf{A} \cdot \mathbf{p})}{mc}} .$$
(2.51)

Ako vektorske potencijale upadnih i rasejanih fotona predstavimo kao $A_{L,S}\mathbf{e}_{\mathbf{L},\mathbf{S}}e^{i(\mathbf{k}_{\mathbf{L},\mathbf{S}}\cdot\mathbf{r}-\omega_{L,S})}$ + Hermitski konjugat (H.K.), izraz (2.51) može da se zapiše u sledećem obliku:

$$\mathcal{H} = r_0(\mathbf{e}_{\mathbf{L}} \cdot \mathbf{e}_{\mathbf{S}}) A_L A_S^{\dagger} e^{i(\mathbf{q} \cdot \mathbf{p} - \omega t)} + \mathrm{H.K} , \qquad (2.52)$$

gde je $\mathbf{q} = \mathbf{k_L} - \mathbf{k_S}$, $\omega = \omega_L - \omega_S$, a $r_0 = e^2/mc^2 = 2.83 \cdot 10^{-13}$ cm poluprečnik elektrona [71].

Ako početno i krajnje stanje elektrona označimo sa $|i\rangle$ i $|f\rangle$, nakon primene perturbacione teorije i Fermijevog zlatnog pravila, diferencijalni presek rasejanja elektrona je

$$\frac{d^2S}{d\omega d\Omega} = \left(\frac{\omega_S}{\omega_L}\right)^2 r_0^2 (\mathbf{e_L} \cdot \mathbf{e_S})^2 \sum_f |\langle f| e^{i(\mathbf{q} \cdot \mathbf{p})} |i\rangle|^2 \cdot \delta(\omega - \omega_f + \omega_i) .$$
(2.53)

Diferencijalni presek rasejanja fotona dobijamo kada izraz (2.53) pomnožimo sa ω_L/ω_S . Kada u procesu rasejanja učestvuje skup elektrona, a ne samo jedan elektron, član $e^{i(\mathbf{q}\cdot\mathbf{r})}$ menjamo operatorom

$$\rho_{\mathbf{q}} = \sum_{j} e^{i(\mathbf{q} \cdot \mathbf{r}_{j})} = \sum_{\mathbf{K}} C^{\dagger}_{\mathbf{K}+\mathbf{q}} C_{\mathbf{K}} , \qquad (2.54)$$

gde su $C^{\dagger}_{\mathbf{K}+\mathbf{q}}$ i $C_{\mathbf{K}}$ operatori kreaciji i anihilacije [71]. Uvodeći ovu smenu u (2.52), izraz za Hamiltonijan postaje:

$$\mathcal{H} = r_0 (\mathbf{e_L} \cdot \mathbf{e_S}) A_L A_S^{\dagger} e^{-i\omega t} \rho_{\mathbf{q}} + \mathrm{H.K} . \qquad (2.55)$$

Nakon primene zlatnog pravila dolazimo do konačnog izraza za efikasnost elektronskog Ramanovog rasejanja za n elektrona po jedinici zapremine [71]:

$$\frac{d^2 R}{d\omega d\Omega} = n \frac{d^2 S}{d\omega d\Omega} = \left(\frac{\omega_S}{\omega_L}\right)^2 r_0^2 (\mathbf{e_L} \cdot \mathbf{e_S})^2 S(\mathbf{q}, \omega) , \qquad (2.56)$$

$$S(\mathbf{q},\omega) = Sr_i\left[\sum_{f} |\langle f | \rho_{\mathbf{q}} | i \rangle|^2 \delta(\omega_{fi} - \omega)\right].$$
(2.57)

gde je $S(\mathbf{q}, \omega)$ dinamički strukturni faktor koji predstavlja osobinu elektronskog sistema u odsustvu perturbacije \mathcal{H} , a Sr_i predstavlja usrednjavanje po početnim stanjima $|i\rangle$.

Kako bez znanja tačnih stanja $|i\rangle$ i $|f\rangle$ iz (2.56) nije moguće izračunati presek rasejanja, koristi se aproksimacija nasumične faze (RPA) koja kaže da je $S(\mathbf{q}, \omega)$ jednaka proizvodu $(-\pi^{-1})$ i odgovoru sistema na spoljašnji vremensko zavisni potencijal, $\bar{F}(\mathbf{q}, \omega)$ [71]. Kao posledica ovog odgovara, postoji nenulta indukovana gustina naelektrisanja za koju važi

$$\rho_{ind} = -e\varphi_{ext}\bar{F}(\mathbf{q},\omega) . \qquad (2.58)$$

Ukoliko zanemarimo sve doprinose Kulonove interakcije mnogo
elektronskog sistema, koji su uračunati u \bar{F} , sem one između spoljašnjeg potencijala
i $\rho_{\mathbf{q}}$, efikasnost rasejanja svetlosti će biti [71]:

$$\frac{d^2 R}{d\omega d\Omega} = \left(\frac{\omega_S}{\omega_L}\right)^2 (\mathbf{e}_{\mathbf{L}} \cdot \mathbf{e}_{\mathbf{S}})^2 r_0^2 (1+n_\omega) \hbar \pi^{-1} (-Im\{F\}) |\varepsilon|^{-2}, \qquad (2.59)$$

$$\frac{d^2R}{d\omega d\Omega} = \left(\frac{\omega_S}{\omega_L}\right)^2 (\mathbf{e_L} \cdot \mathbf{e_S})^2 r_0^2 (1+n_\omega) \frac{\hbar q^2}{4\pi e^2} Im\{\frac{-1}{\varepsilon}\},\tag{2.60}$$

gde je $n_{\omega} = (e^{\hbar \omega/k_b T} - 1)^{-1}$.

Ukoliko se ε modifikuje tako da uključi i ekraniranje slobodnih nosioca od strane virtuelnih unutarzonskih prelaza u kristalu, izraz za efikasnost elektronskog Ramanovog rasejanja (2.60) važi i za elektrone koji učestvuju u untarzonskom rasejanju svetlosti. Amplituda ovakvog rasejanja je proporcionalna $\omega_G - \omega_L$ i $\omega_G + \omega_S$, gde $h\omega_G$ odgovara energiji procepa unutarzonskog prelaza [71].

Kao što je o tome bilo reči, selekciona pravila za kvazičestice koje mogu da učestvuju u procesu Ramanovog rasejanja dobijaju se iz simetrije kristala, odnosno primenom teorije grupa na kristalnu strukturu uzorka. U slučaju elektronskog Ramanovog rasejanja, u kom upadno zračenje dovodi do modulacije gustine naelektrisanje u pravcu koji zavisi od vektora polarizicije upadnih i rasejanih fotona, selekciona pravila strogo zavise od geometrije rasejanja. Matrični element $M_{f,i}$ možemo razviti po bazisnim funkcijama ireducibilnih reprezentacija tačkastih grupa simetrije kristala, μ , tako da bude oblika:

$$M_{f,i}(\mathbf{q} \to 0) = \sum_{\mu} M_{\mu} \Phi_{\mu} .$$
 (2.61)

Odabir skupa ireducibilnih reprezentacija, po kojima se sumira u prethodnom izrazu, vrši se na osnov geometrije rasejanja [72].

2.4 Ramanov eksperiment

S obzirom na to da Ramanov efekat daje izuzetno slab signal potrebno je odabrati optičku aparaturu specijalno dizajniranu za Ramanov eksperiment kako bi isti bio uspešan. U zavisnosti od merenog uzorka i željenih rezultata biraju se odgovarajući izvori zračenja, detektori, geometrije rasejanja, što nije jednostavan niti pravolinijski proces. Naime, ukoliko želimo da pojačamo Ramanovu osetljivost eksperimenta, a koja zavisi od četvrtog stepena učestanosti izvora zračenja, koristićemo UV ekscitacione izvore. Međutim, kako UV fotoni nose veliku energiju, postoji rizik od oštećenja uzorka. Zbog svega toga neophodno je dobro poznavanje sve dostupne aparature, kao i uticaj pojedinačnih elemenata eksperimentalne postavke na dobijeni spektar.

Za potrebe izrade ove doktorske disertacije korišćena su dva sistema za merenje Ramanovog rasejanja - Tri Vista 557 na Institutu za fiziku u Beogradu i sistem za elektronsko Ramanovo rasejanje na Valter Majsner institutu u Minhenu. Svi spektri koji će biti prezentovani, sem oni snimljeni na zapreminskim kristalima 1T-TaS₂, dobijeni su na sistemu Tri Vista 557 na Institutu za fiziku u Beogradu.

2.4.1 Geometrija rasejanja

Ramanova eksperimentalna postavka obično se sastoji od lasera, spektralnog analizatora (monohromator ili interferometar), optike za sakupljanje signala i detektora. Poslednje dve komponente biraju se u zavisnosti od talasne linije lasera, pri čemu je uloga optike za sakupljanje signala da sakupi što je moguće više ramanski rasejane svetlosti i usmeri je na spektralni analizator.

Slika 2.6: Geometrija rasejanja pod uglom od 90°.

Iako se ramanski rasejana svetlost rasejava u svim pravcima u eksperimentalnim postavkama su se izdvojile dve geometrije skupljanja rasejane svetlosti – pod uglom od 90° i pod uglom od 180°, tzv. geometrija rasejanja unazad (*backscattering*). Kod geometrije u kojoj se signal skuplja pod uglom od 90° [Slika 2.6] laserska svetlost dolazi do uzorka, rasejava se i pada na sočivo koje ima ulogu da je usmeri pod uglom od 90° na optički element za sakupljanje rasejane svetlosti. Kako se rasejana svetlost širi u obliku sfere, neophodno je korišćenje sočiva sa kratkim fokalnim dužinama.

Slika 2.7: Različite eksperimentalne postavke sa geometrijom rasejanja unazad.

U slučaju geometrije rasejanja unazad, u svim konfiguracijama, laserski snop je uvek koaksijalan sa sakupljenim "snopom" što se postiže korišćenjem ogledala ili razdelnik snopa, BS. Na slici (2.7) prikazane su najčešće konfiguracije sa geometrijom rasejanja unazad. U konfiguracijama (a), (c) i (d) omogućena je brža zamena sočiva L1, te samim tim i modifikacija dužine optičkog puta i optičke dubine polja. Nedostatak ove tri konfiguracije je pozadinski signal koji dolazi od sočiva L1, ukoliko je ono sačinjeno od materijala sklonog luminiscenciji. Dodatno, u konfiguraciji (c) pozadinski signal može poticati i od BS. Konfiguracija (b) se najčešće koristi u kombinovanim eksperimentima Raman–Furije transform jer omogućava podešavanje laserskog fokusa bez uticaja na sakupljanje rasejane svetlosti.

Glavna prednost geometrije rasejanja unazad ogleda se u činjenici da je radno rastojanje između sočiva i uzorka prilično dugačko, tako da su merenja neinvanzivna jer je moguće postaviti prozor od odgovarajućeg materijala između uzorka i spektrometra. Prozori se najčešće izrađuju od kvarca, koji ne doprinosi pozadinskom signalu u Ramanovom eksperimentu. Dodatne prednosti u odnosu na geometriju rasejanja pod uglom od 90° su mogućnosti simultanog merenja Ramanovog rasejanja i UV-vidljive apsorpcije, mogućnost merenja izuzetno malih kristala na niskim temperaturama i laka reprodukcija dobijenih spektara zbog poklapanja ose laserskog i sakupljenog snopa.

2.4.2 Eksperimentalna postavka: Institut za fiziku u Beogradu

Kao što je pomenuto, sve eksperimentalne postavke koje se koriste u Ramanovom eksperimentu sastoje od četiri bitne komponente:

- 1. izvora pobude,
- 2. sistema sočiva i ogledala za usmeravanje snopa,
- 3. monohromatora i
- 4. detektora.

Laseri su se pokazali kao najpogodiniji izvori svetlosti u Ramanovoj spektroskopiji zbog visoke monohromatičnosti snopa, velike izlazne snage i male veličine snopa. Mali laserski snop, koji korišćenjem pogodnih sistema sočiva može da se smanji do 0.1 mm, znači mogućnost usmeravanja celokupnog fluksa zračenja na uzorke malih dimenzija, poput zapreminskih kristala [47]. Dodatno, laserski snop je skoro uvek linearno polarisan tako da je dodatnim optičkim elementima moguća precizna kontrola polarizacije upadnih fotona. Glavni nedostatak laserskih izvora jeste postojanje plazma linija. Iste se relativno lako uklanjaju korišćenjem filtera sa zarezima (*notch* filteri), koji se postavljaju između lasera i uzorka. U okviru eksperimentalne postavke na Institutu za fiziku u Beogradu korišćena su dva Coherent lasera – jonski Ar^+/K^+ i čvrstotelni Verdi G laser. Glavna razlika među

Slika 2.8: (a) Oduzimajući i (b) sabirajući princip rada monohromatora. Preuzeto iz [75].

njima je to što Verdi G emituje samo zelenu lasersku liniju na 532 nm, dok jonski laser poseduje deset linija u rasponu talasnih dužina od 457.9 nm do 647.1 nm. Korišćena izlazna snaga lasera birana je u skladu sa merenim uzorkom i željenim rezultatima, i to tako da se dobije maksimalni signal rasejanog zračenja bez rizika od oštećenja po uzorka koji se meri. Dodatno, za eksperimente u kojima su praćeni temeperatursko zavisni fenomeni snaga lasera je birana tako da efekti lokalnog zagrevanja budu zanemarljivi.

Laserski snop usmeren je na uzorak pomoću konfokalnog mikroskopa, čime se postiže još bolje fokusiranje snopa na male uzorke, reda veličine nekoliko μ m. Korišćena geometrija rasejanja je geometrija rasejanja unazad, što znači da se neelastično rasejana svetlost istim mikroskopom saskuplja i odvodi do monohromatora. Glavni zadatak monohromatora jeste da eliminiše neželjene doprinose u spektru. Kao što je pomenuto u potpoglavljima 2.2.1 i 2.2.2, intenzitet linija koje potiču od elastično rasejane svetlosti je za nekoliko reda veličina jači od intenziteta Ramanovih linija, te je radi uspešnosti eksperimenta od velike bitnosti odstraniti doprinose elastično rasejane svetlosti.

Kod trostepenog ramanskog sistema Tri Vista 557, centralnog dela eksperimentalne postavke na Institutu za fiziku, prva dva stepena imaju ulogu pre-monohromatora, dok treći stepen služi kao spektrometra. TriVista 557 poseduje dva moguća režima rada – sabirajući i oduzimajući režim [Slika 2.8(a) i (b)]. U sabirajućem režimu polihromatska svetlost, koja u sistem dospeva kroz ulazni otvor S_1 , razlaže se difrakcionom rešetkom G_1 . Tako razložena svetlost se usmerava na izlazni prorez $S_{1,2}$, koji ima ulogu da propusti svetlost u određenom ospegu učestanosti. Time se postiže da samo mali procenat upadne svetlosti bude propušten u drugi stepen spektrometra. U drugom stepenu spektrometra, svetlost se opet razlaže na drugoj rešetki G_2 i stiže do proreza $S_{2,3}$, nakon čega se na rešetki G_3 razlaže po treći put i tako razložena projektuje do detektora. Disperzija TriVista sistema koji radi u sabirajućem modu jednaka je zbiru disperzija sva tri stepena. Korišećenjem ovog režima rada postiže se visoka spektralna rezolucija i linearna disperzija.

Kada TriVista radi u oduzimajućem režimu rada, svetlost dospeva u sistem preko

Slika 2.9: Trostepeni ramanski sistem TriVista 557. Preuzeto iz [75].

proreza S_1 , razlaže se na rešetki G_1 i kroz prorez $S_{1,2}$ propušta u drugi stepen, ali samo u rasponu talasnih dužima od λ_1 do λ_2 . Tako dospela svetlost se rekombinuje u polihromatsku svetlost rešetkom G_2 i fokusira na sredinu proreza $S_{2,3}$. U trećem stepenu se svetlost opet razlaže i sistemom ogledala usmerava na CCD detektor, gde se optički signal pretvara u električni. Oduzimajući režim rada postiže se rotiranjem rešetki G_1 i G_2 za isti ugao, ali u suprotnom smeru. Pri izradi ove disertacije korišćen je oduzimajući režim rada TriVista 557 ramanskog sistema, čime su dobijeni spektri bez doprinosa "zalutale svetlosti" i omogućena je detekcija niskoenergetskog dela spektra. Šematski prikaz TriVista 557 spektrometarskog sistema dat je na slici (2.9).

2.4.3 Eksperimentalna postavka: Valter Majsner institut u Minhenu

Eksperimentalna postavka za merenje elektronskog Ramanovog rasejanja mora da bude specijalno dizajnirana kako bi uspela da detektuje izuzetno mali broj neelastično rasejanih fotona (jedan od 10^{13} upadnih fotona). Primer jedne takve postavke, iz Valter Majsner instituta u Minhenu, prikazan je na slici 2.10. Kao eksicationi izvori koriste se Ar⁺ kontinualni laser, koji poseduje šest linija u rasponu talasnih dužina od 457.9 nm do 514.6 nm, i Nd-Yag laser, koji poseduje samo zelenu liniju na 532 nm. Promenom položaja ogledala M1 bira se izvor koji će biti korišćen u eksperimentu. Kako je sistem podešen na prečnik snopa Ar⁺ lasera, a prečnici dva ekscitacion izvora se ne poklapaju, neophodno je sistemom sočiva otkloniti ovo odstupanje (L1 i L2 na slici 2.10).

Slika 2.10: Eksperimentalna postavka za merenje elektronskog Ramanovo rasejanja. Preuzeto iz [72].

Da bi se otklonile plazma linije i druge nečistoće laserskog snopa, na optički put postavljen je sistem koji ima ulogu prostornog filtera (PH1), a koji se sastoji od dva ahromatska sočiva i cirkularne aperture. Međutim, to nije dovoljno kako bi se u potpunosti uklonio doprinos plazma linija u spektru, te se u tu svrhu koristi monohromator sa prizmom. Njegova uloga je da razloži lasersku svetlosti i projektuje je na prorez, koji odseca svu svetlost sem svetlost određene talasne dužine, pa samim tim i veliku većinu plazma linija. Plazma linije, koje prežive i ovaj deo optičkog puta, uklanjaju se dodatnim prostornim filterom (PH2). PH2 se sastoji od dva ahromatska sočiva i proreza S2. Željena polarizacija svetlosti postiže se pomoću Glen-Tompsonovog polarizatora (P), a snaga lasera korišćenjem $\lambda/2$ polarizatora. Za tačno utvrđivanje snage lasera koristi se digitalni merač laserske snage (PM).

Kako u Ramanovom eskperimentu polarizacija svetlosti unutar uzorka igra jako bitnu ulogu, neophodno je omogućiti nezavisni odabir polarizacije i faze svetlosti. To se postiže korišćenjem kompenzatora (SBC). Pre usmeravanja snopa na uzorak sočivom L8, snop prolazi kroz još jedan prostorni filter (PH3) koji uklanja posledice interferencije optičkih elementa, kako bi laserski snop imao Gausov profil.

Geometrija rasejanja korišćena u ovoj eksperimentalnoj postavci naziva se geometrija rasejanja pod pseudo-Brusterovim uglom, koji u ovom konkretnom slučaju iznosi 66° u odnosu na površinu normalnu na uzorak [Slika 2.11]. Ovakav odabir geometrije rasejanja pruža sistem u kom nema doprinosa reflektovane svetlosti, i u kome je udeo elastično rasejane svetlosti sveden na minimum.

Nevezano od korišćene eksperimentalne postavke, za vreme trajanja eksperimenta uzorak se postavlja u kriogenu sredinu, koja poseduje helijumski sistem hlađenja. Time se pruža mogućnost merenja Ramanovog rasejanja u širokom temperaturskom opsegu $2 \text{ K} \leq T \leq 370 \text{ K}$, u kojem se javljaju slabo ispitavani niskodimenzioni fizički fenomeni. Kako ne bi došlo do zagađenja uzorka, sva merenja vrše se u visokom vakuumu, koji se

Slika 2.11: Geometrija rasejanja pod pseudo-Brusterovim uglom. Preuzeto iz [68]. postiže povezivanjem kriostata sa turbomolekularnom vakuumskom pumpom.

3 Kvazi-dvodimenzionalni materijali

Dimenzionalnost predstavlja jedan od najuticajnijih parametara na fizičko-hemijske karakteristike materijala. Materijali kod kojih je ograničena samo jedna dimenzija nazivaju se slojeviti ili dvodimenzionalni materijali. Slično, kod 1D materijala (nanožica) ograničene su dve dimenzije, dok su kod 0D materijala sve dimenzije ograničene na nekoliko nm. Slojevite strukture sa jakim kovalentnih vezama između atoma slojeva, ali slabim van der Valsovim vezama među samim slojevima, poznati su kao kvazi-dvodimenzionalni materijali. Slabe van der Valsove veze u ovim materijalima omogućavaju njihovo cepanje na mono i polislojeve.

Prva istraživanja na monoslojevima, fokusirana na ispitivanje formiranja atoma alkalnih metala na metalnim filmovima, datiraju još iz tridesetih godina prošlog veka [76]. Međutim, do prve uspešne sinteze pravog 2D materijala, grafena, u Mančesteru 2004. godine od strane A. Geima i K. Novoselova [6], ispitivanje fizičkih i hemijskih karakteristika 2D materijala ostalo je u okvirima fizike površina (*surface science*) [11]. Bitnost ovog rezultata ne ogleda se samo u uspešnoj sintezi materijala debljine jednog atoma, sa makroskopskim lateralnim dimenzijama, već i u jednostavnosti i lakoj reproducibilnosti korišćene tehnike [77]. Ekstenzivna istraživanja na grafenu doprinela su razvoju metodologije, i raznih eksperimentalnih tehnika, koje su uspešnu primenu našle i u sintezi novih kvazi-2D materijala, i doprinele dubljem razumevanju njihovih uzbudljivih fizičkih i hemijskih karakteristika. Sa porastom broja postojećih kvazi-2D materijala, raste i lista novootkrivenih niskodimenzionih fizičkih fenomena, kao i širina industrijskih primena. Do današnjeg dana, 15 glavnih familija kvazi-2D materijala je potvrđeno ekpserimentalno ili predviđeno teorijom [11]. Na slici 3.1 prikazana je vremenska skala sinteze osnovnih 2D materijala.

Optičke i električne karakteristike kvazi-2D materijala značajno se razlikuju od njihovih 3D analogona usled ograničavanja elektrona i odsustva interakcije između slojeva. Iako generalno izuzetno slaba, ova interakcija ima nezanemarljiv uticaj na zonsku strukturu materijala [77]. Glavni uticaj na električne, termalne i optičke osobine ovih materijala ima raspored atoma u kristalnoj rešetki. Iako svi elementi IV grupe periodnog sistema imaju slične električne karakteristike kao ugljenik, kristalna struktura 2D analogona silicijuma, germanijuma i kalaja se značajno razlikuje od kristalne strukture grafena. Najstabilnija struktura 2D analoga kalaja – stanena je simetrija poput one u MoS₂, dok

Slika 3.1: Vremenska skala sinteze nekih od osnovnih 2D materijala. Slika je preuzeta iz [11].

u slučaju silicena i germanena najstabilnija struktura ima geometriju saća [78]. Kada su u pitanju elementi III grupe periodnog sistema, teorija predviđa nekoliko podjednako stabilnih alotropa aluminena, borofena i galenena i jedinstvenu zonsku strukturu [11, 79]. Elementi V i VI grupe periodnog sistema kristališu u nekoliko različitih kristalnih struktura, od kojih su najstabilnije kristalne strukture tzv. α i β struktura. Jedini izuzetak je kristalna rešetka Te 2D analoga, kod koga je jedina stabilna struktura heksagonalna α struktura, dok su pravougaona β i heksagonalna γ metastabilne strukture [80]. Pored kristalne strukture, veliki uticaj na najrazličitije zanimljive karakteristike kvazi-2D materijala imaju i razlike u valentnim elektronima i njihove relativne energije. Što se tiče zonske strukture, krećući se s leva na desno duž periodnog sistema, smenjuju se metali, semimetali, poluprovodnici i izolatori. Svi elementi IV grupe imaju Dirakovu konusnu semimetal zonsku strukturu sličnu grafenu [11]. Još jedna naučno značajna osobina kvazi-2D materijala jeste postojanje spin-orbitalnog sparivanja, koje je posebno izraženo kod težih elementa IV, V i VI grupe [81, 82, 83, 84].

Binarni 2D materijali mogu se podeliti na karbide, boride, okside, nitride, halide i halkogenide. Unutar svake klase nalaze se podklase poput mono-, di-, trihalkogenida. Halkogenidi predstavljaju klasu binarnih kvazi-2D materijala sa najvećim brojem stabilnih jedinjenja pri različitim uslovima. Kako imaju relativno jaku van der Valsovu silu među slojevima (u poređenju sa ostalim kvazi-2D materijalima), zonska struktura ovih materijala zavisi od broj slojeva [85, 86]. Ono što je posebno zanimljivo u vezi binarnih kvazi-2D materijala jeste mogućnost kontrolisanja njihovih fizičkih i hemijskih karakteristika primenom spoljašnjih uticaja [12, 13, 14, 87, 88]. Dodatno, zavisno od dizajna, kvazi-2D materijali mogu biti superprovodnici, feroelektrici i magnetici [16, 17, 89, 90]. Zbog slabe van der Valsove sile među slojevima, te samim tim i mogućeg cepanja na manji broj slojeva, ovi materijali predstavljaju idealne sisteme za ispitivanje egzotičnih osobina slojevitih materijala. Površina dobijena cepanjem je izuzetno stabilna pri ambijentalnim uslovima, i u velikoj većini slučajeva bez defekata, te je moguće koristiti ih kao podlogu za narastanje drugih materijala ili međusobno slaganje različitih materijala [91, 92]. I pored slabe interakcione sile između slojeva, hibridizacija i narušenje simetrije imaju izuzetno jak uticaj na zonsku strukturu van der Valsovih materijala. Konkretno, broj slojeva utiče na to da li će zonski procep u materijalu biti direktan ili indirektan. Dodatno, debljina materijala utiče na fazne prelaze povezane sa talasima gustine na-elektrisanja i superprovodnošću [11]. Jaka Kulonova sila, koja je posledica smanjenog ekraniranja usled slabe interakcije slojeva [93], ima za posledicu jaku vezivnu energiju ekscitona u poluprovodnim kvazi-2D materijalima. U zavisnosti od merenog materijala i njegove debljine, vezivne energije ekscitona imaju vrednosti koje su za jedan red veličine veće nego kod 3D materijala i zbog kojih postoje čak i na sobnim temperaturama [94, 95].

Kako bi realizacija 2D materijala sa dugodometnim magnetnim uređenjem, u kombinaciji sa njihovim jedinstvenim optičkim i električnim karakteristikama, dovela do novih magnetno-optičkih primena, većina novih studija bazirana je na sintezi materijala sa dugodometnim feromagnetnim uređenjem. Tehnike koje su do sada korišćene za indukovanje magnetizma u kvazi-2D materijalima uključuju korišćenje defekata [96], dopiranje uzoraka [97] i narastanje materijala na magnetnim supstratima [16], međutim nijedna od ovih metoda nije dala zadovoljavajuće rezultate. Iako su teorijske studije odavno pretpostavile feromagnetno uređenje u kvazi-2D materijalima, ono je eksperimentalnu potvrdu dobilo tek 2017. godine [16, 17]. Ovakav razvoj događaja znatno je uticao na već veliko interesovanje koje su kvazi-2D materijali uživali, jer je po prvi put omogućeno eksperimentalno ispitivanje niskodimenzionog magnetizma.

Sve navedeno jeste dovoljan, ali ne i jedini, razlog zbog koga su kvazi-2D materijali stavljeni u centar istraživanja fizike kondenzovanog stanja. Tome doprinosi i mogućnost ispitivanja do sada nepoznatih, ili eksperimentalno nedostupnih, fizičkih fenomena poput visokotemperaturskog balističkog transporta [7], netrivijalne topologije [8, 9, 10] i različitih optoelektronskih karakteristika [98], kao i mogućnost njihove primene u nanoelektronici i spintronici [11].

Istraživanja predstavljena u okviru ove doktroske disertacije rađena su na jedinjenima koja pripadaju trihalidima (CrI₃ i VI₃) i dihalkogenidima prelaznih metala (1T-TaS₂), i na slojevitim kristalima Mn₃Si₂Te₆. Stoga će glavni cilj ovog poglavlja biti osvrt na najbitnije karakteristike ovih familija kvazi-2D materijala, uz detaljan pregled postojećih saznanja i najbitnijih rezultata na ispitivanim materijalima, kao i otvorena pitanja na koje su rezultati ove disertacije pokušali da pruže odgovor.

3.1 Trihalidi prelaznih metala

Trihalidi prelaznih metala, MX_3 (M - katjon metala, X anjon halogenida), predstavljaju jednu od najplodonosnijih i najistraživanijih familija kvazi-2D materijala. Svi članovi ove familije kvazi-2D materijala kristališu ili u monokliniču strukturu AlCl₃ tipa ili u romboedarsku BiI₃ kristalnu strukturu, koje su sačinjene od M katjona složenih u formi saća smeštenih na ivice oktaedara sačinjenih od halogenih anjona [Slika 3.2] [99]. Kod svih trihalidnih jedinjenja koja kristališu u BiI₃ kristalnu strukturu uvek dolazi do formiranja saća, dok u slučaju AlCl₃ strukture forma saća može biti izobličena što za posledicu ima različita rastojanja između M–M elemenata.

Slika 3.2: Kristalne strukture BiI_3 i $AlCl_3$ tipa. Gornji deo slike predstavlja zajednički sloj građe obe strukture. Slika je preuzeta iz [99].

Kao jedni od prvih slojevitih materijala u kojima je niskodimenzioni feromagnetizam dobio eksperimentalnu potvrdu, trihalidi prelaznih metala predstavljaju idealne sisteme za ispitivanje magnetnih monoslojeva. Pored toga što bi magnetizam u 2D materijalima značajno proširio domene njihove moguće primene, postojanje istog otvara i mogućnost pojave novog kvantnog stanja materije, zabranjenog Mermin-Vagnerovom teoremom [15]. Da bismo razumeli zašto Mermin-Vagnerova teorema isključuje mogućnost 2D magnetizma krenućemo od najjednostavnijeg 2D modela za opisivanje spin-spin interakcije:

$$\mathcal{H} = -J_{\parallel} \sum_{k,l} (S_k^x S_{k+l}^x + (S_k^y S_{k+l}^y) - J_{\perp} \sum_{k,l} S_k^z S_{k+l}^z , \qquad (3.1)$$

gde $S_k^{x,y,z}$ predstavlja komponentu spina na strani k, a J_{\parallel} (J_{\perp}) energiju razmene spina u ravni (van ravni). Sumiranje u izrazu (3.1) vrši se po najbližim susedima k, l. Ukoliko van ravni ne dolazi do razmene spinova, gornji izraz se uprošćava na X–Y Izingov spinski model [100]. U slučaju kada je energija razmene spinova u i van ravni jednaka, govorimo o izotropnom Hajzenbergovom spinskom modelu [100]. U oba slučaja, M-V teorema isključuje mogućnost magnetnog uređenja u 2D materijalima kao posledicu narušenja spinskog uređenja usled termalnih i kvantnih fluktuacija [15]. Međutim, određene teorijske studije ukazuju na mogućnost magnetnog uređivanja u materijalima čije se spinsko uređenje opisuje Izingovim ili anizotropnim Hajzenbergovim modelom $(J_{\parallel} \neq J_{\perp})$, najčešće kao posledica narušene simetrije [100, 101]. Potvrda istih stigla je 2017. godine kada je eksperimentalno potvrđen feromagnetizam u monoslojevima CrI₃, kod kojih se spinovi uređuju po Izingovom modelu [17, 102, 103].

Ovako veliko otkriće dovelo je do još iscrpnijeg istraživanja trihalida prelaznih metala, koje je iznedrilo podužu listu materijala sa pretpostavljenim (anti)feromagnetnim uređenjem. Kao glavni kandidati za istraživanje niskodimenzionog magnetizma pominju se CrX_3 , $OsCl_3$, VCl_3 , $NiCl_3$, RuX_3 i MnX_3 (X= F, Cl, Br, I) [18, 19, 20, 21, 22, 23, 24].

3.1.1 CrI_3

Eksperimentalna potvrda magnetizma u monoslojevima CrI₃, člana familije hromtrihalida, dovela je do velikog broja eksperimentalnih studija usmerenih ka dubljem razumevanju ovog kvazi-2D materijala. Kao što će u ovom poglavlju biti pokazano, CrI₃ je feromagnetni poluprovodnik sa optičkim zonskim procepom od 1,2 eV i Kirijevom temperaturom u rasponu od $T_C = 45$ K do 61 K, zavisno od broja i debljine slojeva [17, 104, 105, 106, 107].

3.1.1.1 Kristalna struktura CrI₃

Prva istraživanja rađena na CrI_3 datiraju još iz šezdesetih godina prošlog veka [104, 108]. Od tada, pa do sada, prijavljeno je više različitih istraživanja na temu kristalne strukture hrom-jodida. Kao i kod svih trihalida hroma, i u CrI_3 joni Cr^{3+} smešteni su u mrežu oblika saća koja deli ivice sa oktaedrom određenim sa šest jona halogenida I⁻. Svaki jon joda vezan je sa po dva jona hroma. Tako dobijeni slojevi povezani su izuzetno slabom van der Valsovom silom, čime je omogućeno lako cepanje ovog materijala na slojeve.

Na osnovu XRD studija rađenih na sobnoj temperaturi utvrđeno je da CrI_3 , kao što je to slučaj i kod ostalih trihalida prelaznih metala, kristališe u kristalnu strukturu Al Cl_3 tipa [103, 109]. Ova struktura opisuje se C2/m prostornom grupom simetrije. Rezultati iz pomenutog istraživanja prikazani su na slikama 3.3(a) i 3.3(b), redom. Ono oko čega se sva prijavljena istraživanja rađena na CrI_3 kristalima slažu jeste postojanje strukturnog faznog prelaza na oko 220 K [103, 109]. Shodno tome, podaci dobijeni u XRD eksperimentu rađenom na niskim temperaturama, očekivano, ne daju najbolje slaganje sa C2/m simetrijom kristalne rešetke, već je prostorna grupa simetrije nove niskotemperaturske strutkure $R\bar{3}$. DFT rezultati sugerišu da se usled strukturnog faznog prelaza C2/m struktura transformiše u $R\bar{3}$ strukturu zbog njihovih bliskih energija formiranja. Suptilna razlika u energijama formiranja potiče od različitog intenziteta van der Valsove sile između CrI₃ slojeva u ove dve strukture [103]. U niskotemperaturskoj kristalnoj strukturi slojevitog kristala monoslojevi CrI₃, tačkaste grupe simetrije D_{3d} , spakovani su po tzv. Bernalovom ABC načinu pakovanja, pri čemu je svaki sloj bočno izmaknut za [2/3, 1/3] u odnosu na najbliži sloj. Snižavanje simetrije prilikom faznog prelaza praćeno je dodatnim bočnim izmicanjem B i C slojeva za [1/3, 0] i [2/3, 0], redom, ostavljajući monosloj nepromenjenim [103].

Slika 3.3: (a) XRD visokotemperaturske C2/m faze CrI₃. (b) Kristalna struktura visokotempraturske faze CrI₃. (c) Intenzitet u zavisnosti od ugla difrakcije i temperature meren u procesima hlađenja i grejanja. (d) Temperaturska zavisnost rastojanja među slojevima pri zagrevanju uzorka, nakon jednog procesa hlađenja. Slika je preuzeta iz [103].

Ono što je posebno zanimljivo, i što traži dodatnu eksperimentalnu potvrdu, jeste prijava koegzistencije niskotemperaturske i visokotemperaturske faze u jednoj od objavljenih XRD studija [103]. Postojanje doprinosa niskotemperaturske faze iznad temperature faznog prelata u suprotnosti je sa prijavljenim faznim prelazom prvog reda. Rezultati koji sugerišu koegzistenciju predstavljeni su na slikama 3.3(c) i 3.3(d).

3.1.1.2 Transportna i magnetna svojstva CrI₃

Početni korak u ispitivanju električnih, magnetnih i optičkih osobina ma kog materijala jeste uvid u njegovu elektronsku zonsku strukturu. Kako su u okviru ove doktorske disertacije ispitivani samo slojeviti kristali CrI₃ predstavljene električne, magnetne i optičke karakteristike odnosiće se samo na njih. Detaljan opis električnih, magnetnih i optičkih osobina mono i bislojeva CrI_3 moguće je pronaći u referencama [110, 111, 112] i [113].

Na osnovu elektronske zonske strukture CrI_3 , predstavljene na slici 3.4(a), lako se zaključuje da je CrI_3 poluprovodnik sa indirektnim zonskim procepom. Procenje vrednost zonskog procepa iznosi 0,6 eV [111]. Kao što se može videti, minimum provodne zone leži u T-tački, dok valentna zona dostiže svoj maksimum u Γ -tački.

Slika 3.4: (a) Zonska struktura CrI₃. Vrh valentne zone predstavljen je isprekidanom linijom. Slika je preuzeta iz [111]. (b) Temperaturska zavisnost magnetizacije sa primenjenim poljem H = 1 kOe u **ab** ravni i duž *c*-ose. U umetku je predstavljena vrednost dM/dTu zavisnosti od temperature. Slika je preuzeta iz [109].

Temperaturska zavisnost magnetizacije merena na kristalima CrI_3 pokazala je da na temperaturi $T_C \approx 61$ K dolazi do faznog prelaza između paramagnetne i feromagnetne faze [Slika 3.4(b)]. Merenja su vršena sa poljem jačine H = 1 kOe primenjenim duž *c*-ose i u **ab** ravni. Vrednost dobijene temperature magnetnog faznog prelaza procenjena je na osnovu minimuma krive dM/dT predstavljene na umetku slike 3.4(b). Prijavljeni fazni prelaz je drugog reda [109].

Cepanje slojevitog kristala CrI₃ na slojeve dovodi do uzastopnog smenjivanja feromagnetnog i antiferomagnetnog uređenja u materijalu, pri čemu je magnetno uređenje u monosloju feromagnetno, dok je bisloj antiferomagnetan [17]. Istraživanja bazirana na neelastičnom neutronskom rasejanju pokazala su da je feromagnetna faza određena magnetnom anizotropijom, koja je posledica spin-orbitalnog sparivanja [114]. U istoj studiji pokazano je da magnetna anizotropija, koja se vidi kao spinski procep u centru Briluenove zone, opada sa temperaturom sve do T_C , kada u potpunosti nestaje.

Kao što je moguće primetiti na slici 3.4(b), temperaturska zavisnost dM/dT trpi još jedan pad na temperaturi od oko 212 K. Ova anomalija, u skladu sa rezultatima predstavljenim u potpoglavlju 3.1.1.1, protumačena je kao manifestacija strukturnog faznog prelaza prvog reda i kao dokaz sparivanja kristalne strukture i magnetnog uređenja u CrI₃.

3.1.2 VI₃

Pretražujući stručnu literaturu prve rezultate istraživanja na kristalima VI_3 moguće je pronaći u radovima publikovanim pre više od 60 godina [115, 116, 117]. Međutim, od tada pa do relativno skoro, gotovo je nemoguće bilo pronaći teorijske i eksperimentalne studije bazirane isključivo na ovom materijalu. Potvrdom postojanja feromagnetnog uređenja u slojevima trihalida prelaznih metala situacija se drastično menja. Kako je utvrđeno da se, zavisno od broja slojeva, u hrom-jodidu smenjuju feromagnetno i antiferomagnetno uređenje, pojavila se ideja o realizaciji feromagnetnog materijala kod koga ta zavisnost ne bi postojala. Zbog sličnosti u strukturi, ali i magnetnim karakteristikama, vanadijumjodid izdvojio se kao primarni kandidat. S tim u vezi, prethodne godine iznedrile su veliki broj naučnih studija usredsređenih na ispitivanje električnih i magnetnih karakteristika ovog jedinjenja. Najvažniji rezultati iz njih biće predstavljeni u ovom potpoglavlju.

3.1.2.1 Kristalna struktura VI₃

Kada je kristalna struktura VI₃ u pitanju, u stručnoj literaturi postoje velike nesuglasice u interpretaciji dobijenih eksperimentalnih rezultata. Konkretno, prvi rezultati ukazivali su na to da na sobnoj temperaturi VI₃ kristališe u strukturu karakterističnu za trihalide prelaznih metala – BiI₃ strukturu saća, koja se opisuje prostornom grupom simetrije R3. Međutim, skorašnji rezultati tri različite XRD studije predlažu tri različite simetrije jedinične ćelije VI₃ – $P\bar{3}1c$ [118], $R\bar{3}$ [119, 120] i C2m/m [121]. Šematski prikaz predloženih kristalnih struktura $P\bar{3}1c$, C2/m i $R\bar{3}$ simetrije predstavljen je na slikama 3.5(a), 3.5(b) i 3.5(c), redom. U $P\bar{3}1c$ strukturi jedinična ćelija sastoji se od idealne dvoslojne strukture saća sačinjene od V^{3+} katjona smeštenih unutar $[VI_6]^{3-}$ oktaedara, pri čemu sve V–V i V–I veze imaju iste dužine [118]. Što se tiče monoklinične C2/m kristalne strukture, katjoni prelaznog metala V^{3+} , okruženi sa po šest anjona I⁻. V^{3+} formiraju neidealnu strukturu saća, usled izduženja V veza, koja deli ivice sa oktaedrom određenim I⁻ anjonima. Slojevi, između kojih se nalaze van der Valsovi procepi i koji su međusobno izmaknuti duž a ose, pakuju se duž c ose. U slučaju romoboedarske kristalne strutkure, prostorne grupe simetrije R3, slojevi se izmiču duž ivice V–V saća 121.

Svi XRD rezultati prijavljuju fazni prelaz na oko 79 K, međutim, priroda faznog prelaza do trenutka pisanja ove disertacije nije u potpunosti razjašnjena. Naime, u nekoliko publikacija prijavljen je strukturni fazni prelaz sličan onom do koga dolazi u CrI_3 kristalima [120, 121]. S obzirom na to da nedoumice u vezi kristalne strukture visokotemperaturske faze VI_3 , u trenutku publikovanja pomenutih radova, nisu bile u potpunosti razjašnjene, onemogućeno je precizno utvrditi da li je pomenuti fazni prelaz strukturni i ako jeste kako transformiše kristalnu strukturu.

Slika 3.5: Visokotemperaturska (a) $P\bar{3}1c$, (b) C2/m i (c) $R\bar{3}$ kristalna struktura VI₃.

3.1.2.2 Transportna i magnetna svojstva VI₃

Pitanje kristalne strukture VI_3 nije jedino na koje su različite studije, što eksperimentalne što teorijske, dale različite odgovore. Ako se u literaturi potraži pitanje elektronske strukture VI_3 dobijaju se međusobno protivrečni odgovori. Shodno tome, moguće je pronaći eksperimentalne studije u kojima se VI_3 opisuje kao poluprovodnik, i teorijske studije koje pokazuju da je VI_3 polumetal ili Motov izolator.

Kod kristalne strukture VI₃, V joni se nalaze u centru kristalnog oktaedarskog polja koje potiče od I₆ oktaedra. Takvo polje razdvaja V-d orbitale u dvostruko degenerisane e_g i trostruko degenerisane t_{2g} orbitale. Kao posledicu takve konfiguracije, u kojoj su orbitale delimično popunjene, teorija predviđa polumetalnu prirodu VI₃ [122]. Ovakva pretpostavka važi kada ne postoje, ili postoje jako mala, izobličenja I₆ oktaedra. Ukoliko u razmatranje uključimo postojanje odbojne Kulonove sile, koja se javlja između *d*-elektrona istog V jona, i koja nadjačava *p*-*d* hibridizaciju odgovornu za delimično popunjene orbitale, orbitale t_{2g} postaju ili potpuno popunjene ili potpuno prazne. Ovakva konfiguracija odgovara stanju Motovog izolatora [122]. Proračuni elektronske zonske strukture, predstavljeni u teorijskim studijama [118] i [121], ukazuju na to da je VI₃ Motov izolator sa zonskim procepom ~1 eV. Izračunate gustine stanja, zajedno sa vrednostima zonskih procepa, za dve moguće elektronske konfiguracije osnovnog stanja VI₃ predstavljene su na slici 3.6.

Na slici 3.7(a) predstavljena je optička apsorpcija VI₃ u fukciji talasne dužine, koja

Slika 3.6: Spinski razložena gustina stanja (a) Motovog izolatora i (b) polumetaličnog VI₃. (c) Izračunate vrednosti zonskog procepa Motovog izolatora i razlike zonskog procepa za polumetalično stanje i stanje Motovog izolatora VI₃. Slike su preuzete iz [122].

zajedno sa merenjima otpronosti, predstavljenim u umetku iste slike, ukazuje na poluprovodnički karakter VI₃. Na osnovu grafika zavisnosti $(\alpha h\nu)^2$ energije fotona [Slika 3.7(a)], procenjena vrednost optičkog zonskog procepa za direktni prelaz duplo je manja od one prijavljene u CrI₃, i iznosi oko ~ 0,6 eV [119].

Slika 3.7: (a) Optička apsorpcija u funkciji talasne dužine i (b) električna otpornost VI_3 . Slike su preuzete iz [119] i [118], redom.

Nasuprot ovim rezultatima, merenja električne otpornosti VI₃ predstavljena na slici 3.7(b), pokazuju da je ispitivani materijal izolator [118], premda je procenjena veličina optičkog zonskog procepa od ~ 0.6 eV ista kao i u referenci [119]. Kako ništa od posto-

jećih saznanja ne može da objasni veliko neslaganje između izmerene veličine elektronskog $(\sim 0.32 \text{ eV})$ i optičkog zonskog procepa, prijavljeno u referenci [118], ono ostaje otvoreno za tumačenja.

Temperaturska zavisnost magnetne susceptibilnosti χ merena pri različitim jačinima polja H primenjenim u **ab** ravni i duž c^* ose, prikaza na slikama 3.8(a) i 3.8(b), jasno pokazuje feromagnetni fazni prelaz u okolini $T_C = 50$ K [123]. Kako je magnetno uređenje u VI₃ spregnuto sa njegovom kristalnom strukturom, formiranje feromagnetnog uređenja dovodi do njene deformacije [124]. Dodatno, temperaturska zavisnost magnetne susceptibilnosti sa poljem primenjenim duž c^* ose trpi još jedan pad na oko 78 K (umetak na slici 3.8(b)) koji je prepoznat kao manifestacija strukturnog faznog prelaza u VI₃. Ovi rezultati u saglasnosti su ostalim eksperimentalim istraživanjima [118, 119, 121]. Ono što je posebno interesantno kod ovog binarnog kvazi-2D materijala jeste to što teorijski proračuni predviđaju feromagnetno uređenje do monosloja VI₃ [118].

Slika 3.8: Temperaturska zavisnost magnetne susceptibilnosti χ merena pri različitim jačinama polja H primenjenim (a) u **ab** ravni i (b) duž c^* ose. (c) Zavisnost magnetizacije od jačine polja H na temperaturi T = 2 K. (d) Temperaturska zavisnost realnog dela magnetne susceptibilnosti merene pri oscilatornom ac polju jačine H = 3.8 Oe i sa učestanosti 499 Hz primenjenim u **ab** ravi i duž c^* ose. Slike je preuzeta iz [123].

Najnovija studija o magnetnom uređenju u VI₃ kristalima ukazuje na postojanje čak četiri fazna prelaza [124], od kojih prva dva, prijavljena na $T_1 = 53$ K i $T_2 = 51,4$ K, odgovaraju početnim tačkama formiranja feromagnetizma u određenim slojevima kristala. Do formiranja feromagnetnog uređenja u celom kristalu dolazi na $T_C = 49,5$ K. Poslednji fazni prelaz, između dve feromagnetne faze, primećen je na temperaturi $T_{FM} = 26$ K.

3.2 Dihalkogenidi prelaznih metala

Uspešna sinteza dvodimenzionalnih dihalkogenida prelaznih metala dovela je do velikog naučnog interesovanja za ovu klasu materijala. Ovo interesovanje rezultovalo je opsežnim istraživanjem njihovih hemijskih i fizičkih karakteristika, čime je utvrđeno da ih odlikuju jedinstvena optička i mehanička svojstva koja, u kombinaciji sa hemijskom stabilnošću slojeva i nenultim zonskom procepu, predstavlja odličnu osnovu za njihovu primenu u elektronici, optoelektronici i sistemima baziranim na tranzistorima sa efektrom polja (FET) [125, 126, 127, 128].

Hemijska formula dihalkogenida prelaznih metala je oblika MX_2 , gde je sa M označen prelazni metal, a sa X halkogenid. Slojevita kristalna struktura slojevitih dihalkogenida prelaznih metala sačinjena je od slabo vezanih MX_2 slojeva, koji sadrže sloj atoma metala (Mo, W, Ti, Zr, Hf, V, Nb, Hf, Fe, Co, Ni, Zn) upakovanog između dva sloja atoma halkogenida (S, Se, ili Te). Kako je van der Vaslova sila među slojevima izuzetno slaba, osobine slojevitih kristala određene su osobinama njihovih kvazi-2D slojeva [129]. Na osnovu dosadašnjih rezultata istaživanja može se reći da se dihalkogenidi prelaznih metala najčešće javljaju u dve osnovne faze – termodinamički stabilna 2H i metastabilna 1T. H i T u nazivima odnose se, redom, na heksagonalnu i trigonalnu kristalnu strukturu.

Slika 3.9: Tri najčešća tipa strukture kod dihalkogenida prelaznih metala. Slika je preuzeta iz [125].

Fizičke osobine ove dve strukture mogu se drastično razlikovati, a prelaz sa poluprovodne 2H na metaličnu 1T postiže se pomeranjem slojeva sačinjenih od atoma halkogenida [125]. Dodatno, u literaturi je moguće pronaći i kvazi-metaličku fazu 1T' koja, umesto sloja atoma prelaznih metala smeštenih između dva sloja atoma halkogenida, sadrži deformisane slojeve dikalkogenidnih atoma između kojih atomi prelaznih metala formiraju zig-zag lanac. Kristalne strukture tri najčešće faze dihalkogenida prelaznih metala predstavljene su na slici 3.9.

Sto se tiče električnih osobina ovih kvazi-2D materijala, one u mnogome zavise od broja slojeva i načina njihovog pakovanja u strukturi. Smanjivanje broja slojeva izaziva promenu indirektnog zonskog procepa u direktni, koji je niži po energiji za ~0.6 eV [130, 131, 132, 132, 133]. Jedini dihalkogenid prelaznog metala kod koga ne postoji zavisnost električnih osobina od broja slojeva jeste ReS_2 [134]. Ovaj zanimljivi rezultat objašnjava se odsustvom uređenja načina pakovanja slojeva u kristalnoj strukturi $\text{Re}S_2$.

Vrednost gustine stanja u metaličnim dihalkogenidima prelaznih metala ukazuje na to da se elektroni u njima najčešće pomeraju duž metalnih slojeva. Dodatno, njena vrednost na Fermijevom nivou predviđa eksperimentalno potvrđene fazne prelaze u ovim materijalima. Glavni razlog velikog interesovanja za metalične dihalkogenide prelaznih metala leži u bogatom faznom dijagramu koji poseduju. Naime, za ovu klasu materijala karakteristični su talasi gustine naelektrisanja (CDW) i superprovodnost. Kako prilikom ulaska u CDW fazu dolazi do otvaranja procepa i potiskivanja gustinje stanja na Fermi nivou, ona najčešći ima izolatorski karakter. Ovaj fenomen u direktnoj je suprotnosti sa fenomenom superprovodnosti, za čiju je pojavu neophodno postojanje konačne vrednosti gustine naelektrisanja. Kao posledica takmičenja između ova dva stanja metalične dihaklogenide prelaznih metala odlikuje značajan broj faznih prelaza sa nehomogenim električnim i strukturnim promenama [135, 136, 137]. Budući da postojeća teorija ne uspeva da opiše mehanizam formiranja CDWa u ovim materijalima, kao ni da objasni prijavljenu koegzistenciju CDW i superprovodne faze [29], razumevanje fundamentalnih svojstava dihalkogenida prelaznih metala stavljeno je u centar teorijskih i eksperimentalnih studija u poslednjoj deceniji, sa glavnim akcentom na $1T-TaS_2$.

$3.2.1 \quad 1T - TaS_2$

Veliko interesovanje koje uživa 1T struktura TaS₂ ne potiče samo od činjenice da se u ovom materijalu javljaju i CDW i superprovodnost, već od toga što do formiranja oba stanja dolazi na eksperimentalno dostupnim temperaturama. Shodno tome, slojeviti kristali 1T-TaS₂ predstavljaju idealne kandidate za ispitivanje koegzistencije supeprovodnosti i drugih kolektivnih elektronskih fenomena [138, 139]. Dodatno, 1T-TaS₂ odlikuje bogati fazni dijagram, sa sukcesivnim faznim prelazima između različitih CDW faza u rasponu temperatura od 180 K do 355 K, tako da predstavlja idealan sistem za ispitivanje fizike CDW fenomena. Premda je lista eksperimentalnih i teorijskih studija rađenih na ovom materijalu podugačka, postoji značajan broj rezultata koji se ne mogu interpretirati u skladu sa postojećim saznanjima. U ovom poglavlju biće dat pregled najbitnijih od njih.

3.2.1.1 Kristalna struktura 1T-TaS₂

Na temperaturama iznad prvog faznog prelaza, $T_{IC} = 554$ K, 1T-TaS₂ nalazi se u normalnoj fazi koja se karakteriše jednostavnom kristalnom strukturom CdI₂ tipa (prostorna grupa simetrije $P\bar{3}m1$) [slika 3.10(a)], čiji su parametri kristalne rešetke $a_0 = b_0 = 3,36$ Å i $c_0 = 5,90$ Å [140, 141, 142]. Hlađenjem slojevitih kristala 1T-TaS₂ ispod ove temperature dolazi do formiranja CDWa u njima. Kako CDW predstavlja modulaciju elektronske gustine, te samim tim menja jonski potencijal kristalne rešetke, ono za posledicu ima i promenu same kristalne strukture [143, 144, 145]. Shodno tome, snižavanjem temperature i ulaskom u IC-CDW fazu, kristalna struktura 1T-TaS₂ više ne može da se opiše $P\bar{3}m1$ prostornom grupom simetrije ali može da se opiše u skladu sa njom. Svaki sledeći fazni prelaz izaziva dodatne modifikacije kristalne rešetke, tako da se blago izmenjena kristalna struktura IC faze transformiše u NC strukturu koja se sastoji od IC domena razdvojenih C zidovima, koja se zatim pretvara u C-CDW superstrukturu [Slika 3.11].

Slika 3.10: (a) Kristalna struktura normalne faze TT-TaS₂. (b) Prikaz "Davidovih zvezda" sa jednim od načina pakovanja. (c) Tri najverovatnija načina pakovanja C-CDW kristalne strukture TT-TaS₂. Slika (a) preuzeta je iz [146], slika (b) iz [147], a slika (c) iz [148].

Od svih CDW faza, C faza ima najjednostavniju kristalnu strukturu koja se sastoji od dva koncentrična prstena šest Ta atoma koji su blago privučeni ka središnjem Ta atomu formirajući tzv. "Davidove zvezde" [Slika 3.10(b) i Slika 3.11(a)]. "Davidove zvezde" pakuju se duž c ose u $\sqrt{13}a \times \sqrt{13}a \times 13c$ CDW superstukturu, koja se opisuje sa tri CDW vektora koji međusobno obrazuju uglove od 120°, i koji su zarotirani za 13.9° u odnosu na kristalne vektore primitivne ćelije [138, 149]. S obzirom na to da način pakovanja "Davidovih zvezda" u superstrukturu izuzetno utiče na svojstva materijala, značajan trud uložen je u razrešenje ove misterije. Naime, postoji 13 mogućnosti pakovanja samo jednog
sloja na jednu od 13 ivica svakog Ta klastera [150]. Kako je broj mogućih konfiguracija izuzetno velik, način pakovanja, te samim tim i mehanizam iza formiranja superstrukture, ostaje nerazjašnjen i predstavlja jedno od pitanja na koje bi buduća istraživanja trebalo da ponude odgovor. Najverovatniji načini slaganja zvezda u C-CDW kristalnu strutkuru prikazani su na slikama 3.10(b) i 3.10(c).

Slika 3.11: (a) C-CDW, (b) NC-CDW i (c) IC-CDW faza 1T-TaS₂. Slika je preuzeta iz [139].

3.2.1.2 Transportna svojstva 1T-TaS₂

U jonskoj slici konfiguracija Ta atoma je $5d^36s^2$, a halkogeni S atom, koji se odlikuje velikim afinitetom prema elektronima, ima s^2p^4 konfiguraciju. U ovoj konfiguraciji halkogenom atomu fale dva elektrona do potpuno popunjene ljuske [146]. To znači da, po formulskoj jedinici, četiri Ta elektrona iz dili s ljuske mogu biti privučena od strane dva S atoma. U ovakvom sistemu, svojstva materijala zavise od stepena popunjenosti najnižeg d nivoa. Naravno, modifikacija istih od strane hibridizacije ne može biti zanemarena, ali eksperimenti sugerišu da je broj d elektrona taj koji igra najbitniju ulogu u fundamentalnim svojstvima ovih kvazi-2D materijala. Kako nestabilnost sistema zavisi od broja elektrona na Fermi nivou, usled smanjenog ili povećanog ekraniranja, TaS₂, dihalkogenid prelaznog metala sa najtežim metalom i najlakšim halkogenidom, predstavlja najnestabilniji od njih. Samim tim ne iznenađuje činjenica da $1T-TaS_2$ ima najkompleksniji fazni dijagram među svim dihalkogenidima prelaznih metala [146]. Proračuni zonske strukture, predstavljeni na slici 3.12, potvrđuju da su šest najnižih zona dominantno sp halkogene S zone. One su praćene delimično popunjenim d zonama atoma prelaznog metala. Pet dzona se cepa na viša dubletna i niža tripletna stanja, e_g i t_{2g} , redom, usled oktaedarskih koordinata Ta atoma. Kako orbitale e_g interaguju sa okolnim halkogenim atoma, njihove vezivne energije su veće nego u slučaju t_{2g} orbitala [146].

Slika 3.12: (a) Proračuni zonske srukture. (b) Briluenova zona sloja i slojevitog kristala sa naznačenim tačkama visoke simetrije za 1T strukturu. (c) Gustina stanja na orbitalama jonske strukture. Slika je preuzeta iz [146].

Na osnovu izložene analize može se reći da je elektronska konfiguracija 1T-TaS₂ d^1 konfiguracija. Kako se svaki sloj 1T-TaS₂ sastoji od Ta atoma smeštenih između dve trougaone rešetke sačinjene od S atoma, d^1 konfiguracija je nestabilna i omogućava formiranje CDWa [148]. U C-CDW fazi, u kojoj dolazi do pojave "Davidovih zvezda", Ta jon koji se nalazi u središtu jedne takve zvezde ima polupopunjena stanja na polovini zonskog procepa. Veruje se da su ta stanja odgovorna za poluprovodnički karakter C-CDW faze $1T-TaS_2$ [148]. Kako su sve ostale CDW faze koje se javljaju u dihalkogenidima prelaznih metala metalične, otkriće CDW faze sa poluprovodničkim svojstvima dovelo je do još opsežnijih ispitivanja električnih svojstava 1T-TaS₂. Kao rezultat ovih istraživanja izdvojili su se scenariji u kojima opažena poluprovodnička svojstva potiču od Mot-Hubardovih elektron-elektron korelacija, ili su posledica nepravilnog pakovanja orbitala u C-CDW fazi [147, 147, 151]. U prvom slučaju, pojedinačni 5*d* elektroni, od kojih svaki potiče iz različite "Davidove zvezde", nalaze se unutar polupopunjene uske provodne zone. Kao posledica dovoljno jake Kulonove odbojne sile dolazi do pretpostavljenog Mot-Hubard prelaza sa preklapanjima Hubardovih podzona [147, 152, 153], koji je zatim praćen metal-izolator prelazom. Ova dva simultana prelaza odgovorna su za poluprovodnička transportna svojstva [154, 155]. Ovo neočekivano svojstvo 1T-TaS₂ omogućilo je realizaciju eksperimentalnih studija usmerenih ka dubljem razumevanju metal-izolator prelaza, odnosno Mot-Hubardove fizike. Bitno je pomenuti da se uz otvaranja CDW procepa, karakterističnog za sve materijalime u kojima dolazi do formiranja CDWa, u literaturi prijavljuje i postojanje dodatnog procepa u okolini Γ tačke Briluenove zone, koji se manifestuje kao posledica Mot-Hubard prelaza [156, 157].

3.3 $Mn_3Si_2Te_6$

Kristali $Mn_3Si_2Te_6$ su prvi put sintetisani 1985. godine [158]. Premda je od tada prošlo 35 godina, jako malo istraživanja je odrađeno na ovom materijalu, od kojih većina datira iz poslednje 4 godine. Iznenadno skorašnje interesovanje za $Mn_3Si_2Te_6$ može se objasniti njegovom sličnošću sa CrSiTe₃, novootkrivenim kvazi-2D materijalom sa kratkodometnim magnetnim uređenjem koje je posledica jake spin-fonon interakcije [159]. Dosadašnji rezultati ukazuju na to da je $Mn_3Si_2Te_6$ izolatorski ferimagnetik sa Kirijevom temperaturom između 74 i 78 K [160, 161, 162, 163], te kao takav predstavlja idealnu platformu za magnetooptičke uređaje i ispitivanje niskodimenzionog magnetizma [164, 165].

3.3.1 Kristalna struktura $Mn_3Si_2Te_6$

Slika 3.13: (a) Kristalna struktura $Mn_3Si_2Te_6$. (b) Kristalna struktura $Mn_3Si_2Te_6$ gledana bočno duž c ose i gledana u **ab** ravni. Slika (a) je preuzeta iz [160], a slika (b) iz [166].

Na svim eksperimentalno dostupnim temperaturama $Mn_3Si_2Te_6$ kristališe u trikliničnu kristalnu strukturu koja se opisuje prostornom grupom simetrije $P\bar{3}1c$ [Slika 3.13] [158, 160]. Mn i parovi Si atoma smešeteni su u stranice oktaedra, dok se Ta atomi slažu u skladu sa heksagonalnim zatvorenim pakovanjem duž c ose. Rastojanje između dva uzastopna Ta atoma je c/4. Oktaedar koji sadrži Mn1 atome okružen je sa tri oktaedra koji sadrže parove Si atoma i sa tri oktaedra koji sadrže Mn1 atome, dok je oktaedar koji sadrži Mn2 atome okružen sa šest praznih oktaedara [Slika 3.13]. Duž c ose, oni se pakuju tako da sloj potpuno popunjenih Mn1 ili Si oktaedara prati sloj Mn2 okatedara, pa tako redom. Dužine veza između Mn–Te, Si–Si i Si–Te atoma su, redom, 2,93 Å, 2,32 Å i 4,17 Å [158].

3.3.2 Magnetna svojstva $Mn_3Si_2Te_6$

Nekoliko različitih eksperimentalnih studija usredsređenih na ispitivanje magnetnih svojstava Mn₃Si₂Te₆ složile su se da je u pitanju ferimagnetnik sa Kirijevom temperaturom $T_C \sim 74$ K [160, 161, 162, 163]. Na slici 3.14 prikazani su podaci iz [163] dobijeni merenjem magnetizacije pri jačini polja od H = 20 kOe. Temperaturska zavisnost magnetizacije ukazuje na magnetni fazni prelaz na oko 74 K, međutim, ono na šta treba obratiti posebnu pažnju u ovim rezultatima jeste temperaturska zavisnost $1/\chi$. Naime, u pomenutoj zavisnosti primećeno je odstupanje od visokotemperaturskog modela na temperaturama ispod 330 K [slika 3.14(b)], koje potiče od magnetne anizotropije koja se javlja na oko 330 K. Kako je primećena anizotropija ista kao i anizotropija ferimagnetne faze Mn₃Si₂Te₆, pretpostavka je da ista potiče od malog, ali nezanemarljivog, feromagnetnog doprinosa u temperaturskom ospegu od T_C do 330 K [163]. Isti zanimljiv rezultat primećen je u magnetizacionim merenjima Y. Ni i saradnika [167]. Kao objašnjenje neobičnog ponašanja M/H krive, Y. Liu i saradnici su predložili scenario u kom odstupanje od očekivane zavisnosti potiče od niskodometnog uređenja ili prisustva korelisanih ekscitacija u paramagnetnoj oblasti [160]. Kako temperaturska zavisnost c parametra kristalne rešetke pokazuje odstupanje od očekivane zavisnosti na temperaturama iznad 300 K, pretpostavlja se da u ovom materijalu postoji sparivanje magnetnog faznog prelaza na 330 K i kristalne rešetke [163]. Na osnovu izložene kratke diskusije da se zaključiti da jasno definisan odgovor na pitanje anomalnog ponašanja magnetizacije, u oblasti temperature oko 330 K, još uvek ne postoji, te da isto iziskuje dodatni trud i resurse kako bi se na njega odgovorilo.

Slika 3.14: (a) Magnetizaciona merenja pri jačini polja H = 20 kOe. (b) Temperaturska zavisnost $1/\chi$. Odstupanje od očekivanog ponašanja ispod 330 K ukazuje na postojanje magnetnih doprinosa iznad T_C . Leva i desna skala na obe slike su iste. Slika je preuzeta iz [163].

Na osnovu rezultata dobijenih u eksperimentu difrakcije neutronima [163] zaključeno je da je spinska struktura $Mn_3Si_2Te_6$ dobijena kombinacijom paralelno poravnatih Mn1

i antiparalelno poravnatih Mn2 momenata. Vrednost magnetnih momenata ista je za sve Mn atome. Magnetni momenti primarno leže u **ab** ravni [163]. Spinska struktura $Mn_3Si_2Te_6$, kao i uređenje spinova u Mn1 i Mn2 slojevima, prikazana je na slici 3.15.

Slika 3.15: (a) Spinska struktura $Mn_3Si_2Te_6$. (b) Uređenje magnetnih momenata u Mn1 sloju. (c) Uređenje magnetnih momenata u Mn2 sloju. Slika je preuzeta iz [163].

Eksperimentalno posmatrano, nema sumnje da je osnovno magnetno uređenje $Mn_3Si_2Te_6$ ferimagnetno, međutim, teorijski proračuni, iako potvrđuju ferimagnetno osnovno stanje, daju izuzetno komplikovan sistem u kom se tri konkurentska magnetna stanja takmiče sa osnovnim ferimagnetnim stanjem. Ovo takmičenje, koje je posledica antiferomagnetnih interakcija razmene između tri najbliža Mn-Mn para, utiče na snižavanje Kirijeve temperature i, povećavajući uticaj fluktuacija na strukturu, dovodi do kratkodometnih korelacija iznad T_C [163]. Tri konkurentska uređenja su dva različita antiferomagnetna i novo ferimagnetno stanje. Energija prvog antiferomagnetnog stanja samo je za $\Delta E = 19, 1 \text{ meV/Mn}$ iznad energije osnovnog ferimagnetnog stanja [163].

4 Analiza faznog prelaza u CrI_3 metodom Ramanove spektroskopije

4.1 Sinteza i kristalna struktura

Slojeviti kristali CrI₃ korišćeni u ovom istraživanju narastani su CVT (*chemical vapor transport*) metodom. U procesu narastanja korišćena je smeša sačinjena od praha hroma čistoće 99,95% i dehidriranih kuglica joda čistoće 99,99%, sa molarnim odnosom 1:3 korišćenih hemijskih elemenata. Tako napravljena smeša zatvorena je unutar evakuisane kvarcne cevi, koja je zatim stavljena u višezonsku peć u kojoj je stajala sedam dana. Zona izvora zagrevana je na 650°, dok su temperature srednje i treće zone narastanja, redom, 550° i 600°.

Slika 4.1: (a) Visokotemperaturska kristalna struktura CrI₃. (b) XRD šablon CrI₃ praha na sobnoj temperaturi. Bragove refleksije prostorne grupe C2/m su date vertikalnim linijama. Slika je preuzeta iz [109].

Kako bi se utvrdila kristalna struktura tako narastanih uzoraka urađen je XRD eksperiment. U te svrhe korišćen je Rigaku Miniflex difraktometar sa Cu $K\alpha$ izvorom zračenja $(\lambda = 0.15418 \text{ nm})$. Osnovna analiza je urađena korišćenjem energetski-razložene spektroskopije X zračenja unutar JEOL LSM-6500 skenirajućeg elektronskog mikroskopa. Na osnovu dobijenih XRD šablona utvrđeno je da je visokotemperaturska kristalna struktura CrI_3 monoklinična AlCl₃ tipa (prostorna grupa simetrije C2/m). Ovi rezultati predstavljeni su na slici 4.1.

Detaljnije objašnjenje metode narastanja, tumačenje XRD rezultata, kao i ispitivanje magnetnih svojstava korišćenih kristala CrI_3 moguće je pronaći u referenci [109].

Narastanje, XRD eksperiment i ispitivanje magnetnih svojstava kristala CrI₃ urađeni su od strane prof. dr Čedomira Petrovića i saradnika u Brukhejven nacionalnoj laboratoriji u Sjedinjenim Američkim Državama.

4.2 Teorijski proračuni

Kako bi se utvrdila konzistentnost između eksperimentalnih rezultata i postojećih teorijskih saznanja pogodno je uporediti eksperimentalno dobijene vrednosti parametara sa numerički proračunima istih. U svrhu dobijanja teorijskih energija fonona za određenu kristalnu strukturu ispitivanog materijala korišćeni su poračuni bazirani na teoriji gustine funkcionala (density-functional theory).

Za potrebe istraživanja koje će biti prezentovano u ovom poglavlju, DFT proračuni rađeni su u softverskom paketu Quantum Espresso [168] sa PWA pseudopotencijalom [169, 170] i PBE izmensko-korelisanim funkcionalom [171]. Uzorkovanje Briluenove zone izvršeno je Monkhorst–Pak 8 \times 8 \times 8 mrežom. Ova mreža centrirana je oko Γ –tačke Briluenove zone. Ograničenja energije za gustinu naelektrisanja i talasne funkcije postavljene su redom na 425 Ry i 85 Ry. S obzirom na to da LDA i GGA funkcionali ne uključuju dugodometne sile između slojeva, Grimme-D2 korekcija [172] je korišćena kako bi se opisala van der Valsova sila u sistemu. Korišćenje ove korekcije ima pozitivan uticaj na tačnost izračunatih parametara kristalne rešetke, koji su dobijeni optimizacijom položaja atoma u jediničnoj ćeliji dok vrednost među-atomskih sila nije dostigla vrednost manju od 10^{-6} Ry/Å. Učestanosti fonona u Γ -tački Briluenove zone računate su u okviru istog softverskog paketa, korišćenjem metoda linearnog odziva. Svi proračuni su rađeni pod pretpostavkom da je temperatura sistema T = 0 K, a da su prostorne grupe simetrija visokotemperaturske i niskotemperaturske kristalne strukture CrI_3 , redom, C2/m i $R\overline{3}$. Podsećajući da je primarna svrha rezultata dobijenih numeričkim proračunima ukazivanje na slaganje ili odstupanje prezentovanih eksperimentalnih rezultata i njihovih teorijskih predikcija, oni će biti predstavljeni u okviru poglavlja u kojima će se diskutovati o rezultatima Ramanovog eksperimenta.

Numeričke kalkulacije rezultat su rada dr Jelene Pešić i Andrijane Šolajić iz Centra za fiziku čvrstog stanja i nove materijale Instituta za fiziku.

4.3 Dinamika rešetke

Dinamika rešetke CrI₃ ispitivana je metodom Ramanove spektroskopije. U te svrhe korišćena je eksperimentalna postavka u Centru za fiziku čvrstog stanja i nove materijale Instituta za fiziku u Beogradu, predstavljena u poglavlju 2.4.2. Korišćeni Tri Vista 557 spektrometar podešen je da radi u oduzimajućem režimu sa kombinacijom difrakcionih rešetki 1800/1800/2400 zareza/mm. Eksperiment je vršen u geometriji rasejanja unazad. Kako bi se izbegli doprinosi nečistoća i oksida u spektrima, uzorak je cepan pre stavljanja u helijumski kriostat. Vodilo se računa o tome da se uzorak unutar kriostata smešta tako da se kristalografska c osa poklapa sa pravcem upadnog zračenja. Temperaturska merenja obuhvatila su temperature u opsegu od 100 K do 300 K. Temperaturski zavisna merenja vršena su u visokom vakuumu (10⁻⁶ mbar). Svi prezentovani spektri korigovani su za Boze faktor.

Na osnovu rezultata XRD eksperimenata, koji su detaljno predstavljeni u poglavljima 3.1.1.1 i 4.1, utvđeno je da na sobnoj temperaturi CrI_3 kristališe u monokliničnu strukturu AlCl₃ tipa, koja se opisuje prostornom grupom simetrije C2/m. Ova kristalna struktura se na temperaturi od oko 220 K transformiše u romboedarsku $R\bar{3}$ [103, 109]. Glavna razlika između ove dve strukture potiče od različitog načina pakovanja gotovo istovetnih CrI_3 slojeva. Naime, u monokliničnoj kristalnoj strukturi slojevi se pakuju duž *a* ose tako da se položaji tek svakog četvrog Cr atoma poklapaju.

	Pros	torna grupa $R\bar{3}$	Prostorna grupa $C2/m$			
_	Teorija	Eksperiment [109]	Teorija	Eksperiment [109]		
a (Å)	6.87	6.85	6.866	6.6866		
b (Å)	6.87	6.85	11.886	11.856		
c (Å)	19.81	19.85	6.984	6.966		
$\alpha ~({\rm deg})$	90	90	90	90		
β (deg)	90	90	108.51	108.68		
$\gamma ~({\rm deg})$	120	120	90	90		

Tabela 4.1: Teorijske i eksperimentalne vrednosti parametara rešetke CrI_3 u viskotemperaturskoj C2/m i niskotemperaturskoj $R\bar{3}$ fazi.

Spuštanjem temperature i prelaskom iz monoklinične u romboedarsku strukturu, pakovanje CrI_3 slojeva u kristalnoj strukturi se menja i to tako da su Cr atomi jednog sloja smešteni tačno iznad centra praznog dela mreže saća sačinjene od dva susedna sloja. Strukturni fazni prelaz dovodi do malih izmena van der Valsove interakcije među slojevima i njihovog rastojanja. Visokotemperaturska i niskotemperaturska kristalna struktura CrI_3 predstavljene su šematski na slici 4.2(a) i 4.2(b). Odgovarajući kristalografski parametri predstavljeni u tabeli 4.3. Na osnovu podataka prikazanih u tabeli može se videte veoma dobro slaganje teorijski izračunatih i ekperimentalnih parametara rešetke.

Slika 4.2: Šematski prikaz (a) visokotemperaturske C2/m i (b) niskotemperaturske $R\bar{3}$ kristalne strukture CrI_3 .

4.3.1 Polarizaciona zavisnost: Asignacija fonona u Ramanovim spektrima

Prva eksperimentalna merenja rađena na CrI_3 izvršena su na temperaturi od 300 K. Kako je na osnovu rezultata XRD eksperimenta na merenim kristalima utvrđena kristalna struktura AlCl₃ tipa, kojoj odgovara prostorna grupa simetrije C2/m, očekivano je da se u ramanskim spektrima vide modovi različite polarizacione zavisnosti. Naime, na osnovu faktor-grupa analize moguće je odrediti jedinstvenu raspodelu fononskih modova, koja je određena prostornom grupom simetrije i brojem atoma u jediničnoj ćeliji. Kako je broj formulskih jedinki po jediničnoj ćeliji Z = 6, a prostorna grupa simetrije C2/m, predviđena raspodela fononskih modova za visokotemperatursku fazu CrI_3 je

$$\Gamma_{Raman} = 6A_g + 6B_g , \qquad (4.1)$$

$$\Gamma_{IR} = 5A_u + 7B_u , \qquad (4.2)$$

$$\Gamma_{acoustic} = A_u + 2B_u . \tag{4.3}$$

U tabeli 4.2 prikazane su pozicione simetrije atoma (Wyckoff pozicije) i njihovi doprinosi fononima iz Γ -tačke, ireducibilne reprezentacije i odgovarajući Ramanovi tenzori.

Pro	ostorna grupa simetrije: $Rar{3}$	Prostorna grupa simetrije: $C2/m$		
Atomi	Ireducibilne reprezentacije	Atomi	Ireducibilne reprezentacije	
$\operatorname{Cr}(6c)$	$A_g + A_u + E_g \!+ E_u$	$\operatorname{Cr}(4g)$	$A_g + A_u + 2B_g + 2B_u$	
I (18f)	$3A_g+3A_u+3E_g\!+3E_u$	$\begin{array}{c} \mathrm{I} \ (4i) \\ \mathrm{I} \ (8j) \end{array}$	$2A_g + A_u + B_g + 2B_u$ $3A_g + 3A_u + 3B_g + 3B_u$	
${}^{1}E_{g} = \begin{pmatrix} c \\ d \\ e \end{pmatrix}$	$A_{g} = \begin{pmatrix} a \\ & a \end{pmatrix}$ $\begin{pmatrix} d & e \\ -c & f \\ f \end{pmatrix}^{2} E_{g} = \begin{pmatrix} d & -c & -f \\ -c & -d & e \\ -f & e \end{pmatrix}$		$A_g = \begin{pmatrix} a & d \\ c & \\ d & b \end{pmatrix}$ $B_g = \begin{pmatrix} e & \\ e & f \\ f & \end{pmatrix}$	

Tabela 4.2: Pozicione simetrije Cr i I atoma, i njihov doprinos fononima iz Γ -tačke za niskotemperatursku $R\bar{3}$ i visokotemperatursku C2/m fazu. Ramanovi tenzori odgovarajuće prostorne grupe predstavljeni su u donjim redovima tabele.

Dakle, na osnovu faktor-grupa analize očekivani broj Raman aktivnih fonona je dvanaest $(6A_g+6B_g)$. Ako se pogledaju Ramanovi tenzori A_g i B_g modova, pozivajući se na relaciju za određivanje intenziteta Raman aktivnog moda predstavljenu u poglavlju 2.2.1, lako se zaključuje da su A_g modovi opservabilni samo u paralelnoj polarizacionoj konfiguraciji, dok su B_g modovi opservabilni samo u ukrštenoj polarizacionoj konfiguraciji za sve orijentacije uzorka.

Oslanjajući se samo na ovu prostu analizu, za očekivati je da asignacija snimljenih spektara bude prilično jednostavna. Međutim, kao što je moguće primetiti na slici 4.3, na kojoj su predstavljeni spektri dobijeni u paralelnoj i ukrštenoj polarizacionoj konfiguraciji na T = 300 K, energije fononskih A_g i B_g modova su skoro pa nerazlučivo bliske. Da bi se utvrdio tačan broj modova, kao i odgovarajuće energije svakog od njih, spektri snimljeni u dve polarizacione konfiguracije analizirani su istovremeno. To je postignuto korišćenjem funkcije posebno dizajniranog da modeluje sve fononske linije u spektrima. Pomenuta funkcija sačinjena je od dvanaest linija Voitovog profila, i to tako da šest od njih opisuje linije koje odgovaraju A_g simetrijskim modovima, dok preostale opisuju fononske linije B_g simetrije. Kako se oba spektra simultano analiziraju modelovanje je vršeno sa deljenim parametrima fononskih linija, i to tako da su pozicije i širine pikova povezane, a jedini nepovezani parametar je površina pika, koja za A_g , odnosno B_g , simetrijske modove postaje nula u spektrima u ukrštenoj, odnosno u paralelnoj polarizaciji. Na taj način je omogućeno uspešno razdvajanje modova bliskih po energiji, te samim tim i njihova asignacija. Rezultat korišćenja ovakvog modela, kao i asignacija eksperimentalnih modova, predstavljeni su na slici 4.3. Tačnu listu fononskih energija i njihovo poređenje sa teorijski izračunatim vrednostima za C2/m prostornu grupu simetrije moguće je pronaći u tabeli 4.3. Zbog ograničene rezolucije korišćenog spektrometra, nije moguće odvojiti

Slika 4.3: Ramanski spektri visokotemperaturske C2/m kristalne strukture CrI_3 mereni u paralelnoj (kvadrati) i ukrštenoj polarizacionoj (krugovi) konfiguraciji. Fononske linije modelovane su Voitovim profilima. Spektri su analizirani simultano.

	Prostorna gru	ıpa $R\bar{3}$		Prostorna grupa $C2/m$			
Sim.	Eksp. (cm^{-1})	Teor. (cm^{-1})		Sim.	Eksp. (cm^{-1})	Teor. (cm^{-1})	
E_g^1	54.1	59.7	\triangleleft	B_g^1 A_q^1	$\begin{array}{c} 52.0\\ 53.6\end{array}$	$\begin{array}{c} 57.0 \\ 59.8 \end{array}$	
A_g^1	73.33	89.6	\longrightarrow	A_g^2	78.6	88.4	
E_g^2	102.3	99.8	\triangleleft	$\begin{array}{c} A_g^3 \\ B_g^2 \end{array}$	$101.8\\102.4$	$\begin{array}{c} 101.9 \\ 101.8 \end{array}$	
E_g^3	106.2	112.2	\triangleleft	B_g^3 A_g^4	$\frac{106.4}{108.3}$	$108.9 \\ 109.3$	
A_g^2	108.3	98.8	\longrightarrow	B_{g}^{4}	106.4	97.8	
A_g^3	128.1	131.1	\longrightarrow	A_g^5	128.2	131.7	
A_g^{4}	-	195.2	\longrightarrow	$B_g^{\tilde{5}}$	-	198.8	
E_g^4	236.6	234.4	\triangleleft	$\begin{array}{c} A_g^6 \\ B_g^6 \end{array}$	$234.6\\235.5$	$\begin{array}{c} 220.1 \\ 221.1 \end{array}$	

i precizno odrediti energije B_g^3 i B_g^4 modova, dok B_g^5 simetrijski mod nije moguće uočiti u spektrima, najverovatnije zbog njegovog isuviše malog intenziteta. Teorijski dobijeni atomski pomeraji A_g i B_g modova predstavljeni su na slici 4.4.

Tabela 4.3: Simetrije fonona, eksperimentalne i teorijske energije fonona za niskotemperatursku $R\bar{3}$ i visokotemperatursku C2/m fazu CrI_3 . Eksperimentalne vrednosti energije fonona određene su na 100 K i 300 K za $R\bar{3}$ i C2/m fazu, redom, dok su teorijske vrednosti računate za T = 0 K. Strelice predstavljaju vezu između modova dve faze. Kako je razlika između teorijskih proračuna fononskih energija za C2/m prostornu grupu simetrije i energija fonona primećenih u Ramanovom eksperimentu manja od 10%, može se reći da je jedan od prvih zaključaka donetih na osnovu predstavljenog istraživanja na slojevitim kristalima CrI₃ potvrda da na sobnoj temperaturi CrI₃ kristališe u kristalnu strukturu prostorne grupe simetrije C2/m. Snižavanjem temperature ispod prijavljene temperature faznog prelaza lako je utvrditi da li dolazi do promene u spektrima, koje bi bile posledica faznog prelaz u CrI₃. Dodatno, poznavajući obe kristalne strukture, odnosno odgovarajuće prostorne grupe simetrije, moguće je odrediti simetriju pojedinačnih slojeva CrI₃. Kako osobine slojevitih materijala najčešće zavise od osobina njihovih pojedinačnih slojeva, neupitan je značaj poznavanja njihove simetrije.

Slika 4.4: Atomski pomeraji Raman aktivnih A_g i B_g modova monoklinične stukture CrI₃. Primitivna jedinična ćelija predstavljena je sivim linijama, a Cr i I atomi, redom, plavim i ljubičastim sferama. Dužine linija sa strelicama odgovaraju kvadratnim korenima međuatomskih sila.

Kada se temperatura uzorka spusti na 100 K dobijaju se spektri predstavljeni na slici 4.5. Na prvi pogled, poređenjem spektara predstavljenih na slikama 4.3 i 4.5, sem očekivanog većeg intenziteta spektara snimljenih na 100 K, ne pronalazi se ništa što ukazuje na prijavljeni fazni prelaz. Međutim, ukoliko bismo se usredsredili na deo spektra sa najvećim brojem fononskih linija, kao što je to prikazano u umetku slike 4.5, primetna je razlika u položajima i broju pikova. S obzirom na to da su spektri mereni pri istim uslovima, kao i da su sva merenja vršena na istim kristalima, jedini uzročnik ove razlike može biti strukturni fazni prelaz.

Kako bi se utvrdila tačna simetrija niskotemperaturske faze, i u skladu sa njom izvršila asignacija fononskih modova predstavljenih na slici 4.4, dobijeni eksperimentalni rezultati

Slika 4.5: Ramanski spektri visokotemperaturske $R\bar{3}$ kristalne strukture CrI₃ mereni u paralelnoj (kvadrati) i ukrštenoj polarizacionoj (krugovi) konfiguraciji. Fononske linije modelovane su Voitovim profilima. Poređenje spektara dobijenih na $T = 100 \,\mathrm{K}$ i $T = 300 \,\mathrm{K}$ u spektralnoj regiji od 100 do 115 cm⁻¹ prikazano je u umetku.

analizirani su u skladu sa pretpostavljenom $R\overline{3}$ prostornom grupom simetrije. Na osnovu faktor-grupa analize očekivani broj fononskih moda za ovu prostornu grupu simetrije je:

$$\Gamma_{Raman} = 4A_g + 4E_g , \qquad (4.4)$$

$$\Gamma_{IR} = 4A_u + 4E_u , \qquad (4.5)$$

$$\Gamma_{acoustic} = A_u + E_u . \tag{4.6}$$

U tabeli 4.2 mogu se pronaći pozicione simetrije atoma i njihovi doprinosi fononima iz Γ -tačke, ireducibilne reprezentacije i odgovarajući Ramanovi tenzori za $R\bar{3}$ prostornu grupu simetrije. Polarizaciona zavisnost A_g simetrijskih modova je takva da se isti javljaju isključivo u paralelnoj polarizacionoj konfiguraciji, dok je E_g modove moguće detektovati u spektrima merenim u obe polarizacione konfiguracije. Kao i u slučaju visokotemperaturskih spektara, spektri su analizirani istovremeno kako bi se se omogućila uspešna asignacija modova i smanjile potencijalne greške. Na ovaj način dobijene vrednosti fononskih modova zapisane su u tabeli 4.3.

Pikovi koji se javljaju na oko 54 cm⁻¹, 102 cm⁻¹, 106 cm⁻¹ i 235 cm⁻¹ dodeljeni su E_g simetrijskim modovima. Preostali pikovi na oko 78 cm⁻¹, 108 cm¹ i 128 cm⁻¹ ponašaju se u skladu sa polarizacionom zavisnošću A_g simetrijskih modova. Iako A_g modovi ne bi trebalo da budu uočeni u spektrima u ukrštenoj polarizacionoj konfiguraciji, zbog lošeg poravnjanja uzorka i/ili prisutnih defekata u merenom kristalu, najintenzivniji od njih

se pojavljuju u pomenutim spektrima. Kako teorijske energije fonona pokazuju dobro slaganje sa eksperimentalno dobijenim energijama, zaključuje se da se vibracije nisko-temperaturske kristalne strukture mogu opisati u saglasnosti sa $R\bar{3}$ prostornom grupom simetrije. Atomski pomeraji A_g i E_g simetrijskih modova dobijeni teorijskim proračunima prikazani su na slici 4.6.

Slika 4.6: Atomski pomeraji Raman aktivnih A_g i B_g modova romboedarske stukture CrI₃. Primitivna jednična ćelija predstavljena je sivim linijama, a Cr i I atomi, redom, plavim i ljubičastim sferama. Dužine strelicama odgovaraju kvadratnim korenima međuatomskih sila.

Izloženi rezultati predstavljaju potvrdu prijavljenog strukturnog faznog prelaza između niskotemperaturske $R\bar{3}$ i visokotemperaturske C2/m strukture. Na prelasku iz jedne u drugu fazu dolazi do cepanja E_g modova na A_g i B_g simetrijske modove, dok romboedarski modovi A_g^2 i A_g^4 prelaze u monoklinične B_g modove. Veza između romobedarskih i monokliničnih modova istaknuta je u vidu strelica u tabeli 4.3.

Slika 4.7: Relacije usklađenosti simetrije sloja i simetrije kristalne strukture dve faze.

Pozivajući se na predstavljene rezultate o niskotemperaturskoj i visokotemperaturskoj strukturi CrI_3 moguće je odrediti simetriju pojedinačnih slojeva. Za opisivanje simetrije

sloja koristi se neka od 80 diperiodičnih grupa simetrije. Njih je moguće dobiti ukidanjem translacione invarijantnosti u pravcu normalnom na sloj [173]. Prijavljena simetrija CrI_3 sloja $R\bar{3}2/m$ [174] ne može u potpunosti da objasni simetriju kristala obe faze. Grupa koja je, na osnovu simetrijske analize, najkompatibilnija sa kristalnim strukturama visokotemperaturske i niskotemperaturske faze je $P\bar{3}1/m$ (D_{3d}^1). Ramani modovi D_{3d} grupe simetrije u potpunosti odgovaraju ramanskim modovima $R\bar{3}$ i C2/m kristalne strukture. Korelacione veze između simetrije sloja i simetrija kristalnih struktura prikazane su na slici 4.7.

4.3.2 Temperaturska zavisnost: Određivanje temperature faznog prelaza

Nakon što je utvrđeno da u slojevitim kristalima CrI_3 zaista dolazi do strukturnog faznog prelaza između niskotemperaturske $R\overline{3}$ i visokotemperaturske C2/m faze, trebalo je ispitati na kojoj se on tačno temperaturi javlja i da li u ramanskim spektrima postoji nešto što bi ukazalo na koegzistenciju faza.

U tom cilju urađena su temperaturski zavisna merenja u rasponu temperatura od 100 K do 300 K. Kao što je prethodno objašnjeno, romboedarski E_g modovi se prilikom faznog prelaza cepaju na monoklinične A_g i B_g modove, dok romboedarski A_g modovi zadržavaju A_g simetriju i u visokotemperaturskoj fazi, ili se potpuno transformišu u monoklinične B_g modove. Kako je u spektrima mnogo lakše ispratiti pojavu dodatnih modova, kao posledicu cepanja E_g modova na dva nova moda iznad određene temperature, nego suptilne promene u temperaturskoj zavisnosti energija fonona i širine fononskih linija romboedarskih A_g modova.

Temperaturska zavisnost E_g modova prikazana je na slici 4.8. Ako krenemo od analize spektara na najnižoj eksperimentalnoj temperaturi, primećuje se da se do T \approx 180 K E_g simetrijski modovi pomeraju ka nižim energijama. Na temperaturi T \approx 180 K jasno je primetno cepanje romboedarskih E_g modova na monoklinične A_g i B_g modove. U spektrima merenim na temperaturi od 185 K nije moguće pronaći doprinose romboedarske faze. To je jasan pokazatelj da fazni prelaz gotovo trenutno izaziva strukturnu promenu. Shodno tome, koegzistencija dve faze je malo verovatna. Naravno, nemoguće je tvrditi da do koegzistencije dve faze ne dolazi u malom opsegu ± 5 K oko temperature faznog prelaza, koliko iznosi korak merenja.

U slučaju temperaturske zavisnosti energija romboedarskih A_g^1 i A_g^2 simetrijskih modova [Slike 4.9(c) i 4.9(d)], primetno je da podizanje temperature uzorka dovodi do njihovog pomeraja ka nižim energijama, sve do temperature faznog prelaza. Na ovoj temperaturi oba moda trpe značajni energetski pad. Pored toga, u temperaturskoj za-

Slika 4.8: Temperaturska zavisnost romobedarski
h E_g modova. (a-c) Ramanski spektri mereni u paralelnoj (kvadrati) i ukrštenoj polarizacionoj (krugovi) konfiguraciji. (d-f) Energije fonona dobijene modelovanjem spektara linijama Voitovog profila. Na T
 $\approx 180 \,\mathrm{K}$ sve E_g mode pocepale su se na
 A_g i B_g mode.

visnosti širine fononskih linija [Slike 4.9(e) i 4.9(f)] primetan je diskontinuitet u okolini tačke faznog prelaza. Ni u temperaturskoj zavisnosti A_g modova nije primećeno ništa što bi ukazivalo na koegzistenciju romboedarske i monoklinične faze.

S obzirom na to da je vrednost temperature faznog prelaza dobijene u ovom istraživanju znatno niža od prethodno prijavljene T = 220 K, kao i da bi se otklonila bilo kakva mogućnost koegzistencije faza u širem temperaturskom opsegu, a koja je iz nekog razloga ostala neprimećena u prvim analizama rezultata, merenja su vršena na više kristala, sa nekoliko ponovljenih ciklusa grejanja i hlađenja. Podaci dobijeni u svakom od ciklusa međusobno su konzistentni i odgovaraju prezentovanim rezultatima.

Slika 4.9: Temperaturska zavisnost romboedarskih A_g modova. (a, b) Ramanski spektri mereni u paralelnoj polarizacionoj konfiguraciji. (c-f) Temperaturska zavisnost energije fonona i širine fononskih linija dobijenih iz Voitovig profila kojima su modelovani podaci. Oba moda trpe značajne promene oko temperature faznog prelaza T ≈ 180 K.

5 Kratkodometno i dugodometno uređenje kristalne strukture VI₃

5.1 Sinteza i kristalna struktura

Slojeviti kristali VI₃ korišćeni u ovom istraživanju narastani su CVT metodom. Smeša koja je korišćena u procesu narastanja sačinjena je od praha vanadijuma čistoće 99,95% i dehidriranih kuglica joda čistoće 99,99%. Smeša je pravljena tako da molarni odnos korišćenih hemijskih elemanata bude 1:3. Ovako pripremljena smeša smeštena je unutar očišćene kvarcne cevi, koja je postavljena unutar višezonske peći. Temperatura zone izvora održavana je na 650°C, dok su temperature srednje zone narastanja i treće zona podešene na 550°C i 600°C, redom. Mešavina vanadijuma i joda ostavljena je u peći u periodu od sedam dana.

Slika 5.1: (a) Kristalna struktura VI₃ (b) Sinhrotronski XRD šablon VI₃ praha na sobnoj temperaturi. Bragove refleksije prostorne grupe $R\bar{3}$ su date vertikalnim linijama. Slika je preuzeta iz [123].

Zarad određivanja kristalne strukture slojevitih kristala VI_3 narastanih goreopisanom metodom, urađen je sinhrotronski XRD eksperiment. Merenje rasejanja X–zraka vršeno

je u transmisionoj kapilarnoj geometriji pri čemu je površinski detektor PerkinElmer, napravljen od amorfnog silicijuma, postavljen na rastojanju 983 mm nizvodno od uzorka. Kao izvor pobuđenja korišćena je linija snopa 28-ID-1 Nacionalnog sinhrotronskoh svetlosnog izvora II u Brukhejven Nacionalnoj Laboratoriji. Energija korišćenog X-zraka je 74,3 keV ($\lambda = 1,668$ nm). Na oosnvu dobijenih šablona sinhrotronskog XRD eksperimenta utvrđeno je da je kristalna struktura VI₃ na sobnoj temperaturi BiI₃ tipa (prostorna grupa simetrije $R\bar{3}$). Ovi rezultati predstavljeni su na slici 5.1.

Detaljnije objašnjenje metode narastanja, rezultate sinhrotronskog XRD eksperimenta, kao i ispitivanje magnetnih svojstava korišćenih slojevitih kristala VI_3 moguće je pronaći u referenci [109].

Narastanje, XRD eksperiment i ispitivanje magnetnih svojstava kristala VI₃ urađeni su od strane prof. dr Čedomira Petrovića i saradnika u Brukhejven nacionalnoj laboratoriji u Sjedinjenim Američkim Državama.

5.2 Teorijski proračuni

S obzirom na to da je u stručnoj literaturi moguće pronaći informacije o tri različite kristalne strukture VI₃ [118, 119, 120], pri čemu predviđeni Raman aktivni modovi dve od njih imaju istovetnu polarizacionu zavisnost, da bi se utvrdila tačna kristalna struktura neophodno je uporediti teorijske i ekperimentalne vrednosti energija fonona. Teorijske vrednosti energije fonona za tri moguće simetrije kristalne rešetke VI₃ dobijeni su korišćenjem poračuna baziranih na teoriji gustine funkcionala.

Proračuni teorije gustine funkcionala rađeni su u softverskom paketu Quantum Espresso [168], koristeći se PWA pseudopotencijalom [169, 170] i PBE izmenskokorelisanim funkcionalom [171]. Za uzorkovanje Briluenove zone $R\bar{3}$ i C2/m strukture VI₃ korišćena je Monkhorst–Pak 6× 6 × 6 mreža. Za slučaj $P\bar{3}1c$ strukture izabrana mreža je $12 \times 12 \times 12$. Sve mreže centrirane su oko Γ -tačke Briluenove zone. Ograničenja energije za gustinu naelektrisanja i talasne funkcije postavljene su redom na 650 Ry i 48 Ry. Grimme-D2 korekcija [172] je korišćena kako bi se opisala van der Valsova sila u strukrurama. Parametri kristalnih rešetki računati su dok vrednost među-atomskih sila nije bila ispod 10^{-6} Ry/Å. Hubardova U (LDA+U) popravka, gde je U = 3,68 eV, korišćena je za tretiranje korelacionih efekata [175]. Zonske strukture su računate sa 800 k-tačaka duž pravaca visokih simetrija. Učestanosti fonona u Γ -tački Briluenove zone računate su metodom linearnog odziva unutar fononskog paketa u Quantum Espresso programu. Rezultati numeričkih proračuna biće predstavljeni u okviru potpoglavlja 5.3.1.

Numeričke kalkulacije rezultat su rada dr Jelene Pešić i Andrijane Šolajić iz Centra za fiziku čvrstog stanje i nove materijale Instituta za fiziku.

5.3 Dinamika rešetke

Dinamike rešetke i vribacione osobine VI₃ ispitivane su na eksperimentalnoj postavci za Ramanovu spektroskopiju u Centru za fiziku čvrstog stanja i nove materijale Instituta za fiziku u Beogradu, koja je predstavljena u poglavlju 2.4.2. Eksperiment je rađen u geometriji rasejanja unazad, pri čemu je Tri Vista 557 spektrometar podešen da radi u oduzimajućem režimu. Korišćena kombinacija difrakcionih rešetki je 1800/1800/2400 zareza/mm. S obzirom na to da slojeviti kristali VI₃ na kojima je rađeno istraživanje izuzetno brzo oksidiraju u tečni oksid, kako bi se izbegli doprinosi oksida u spektrima i obezbedila tačnost eksperimentalnih rezultata, uzorak je cepan pre stavljanja u visoki vakuum (10⁻⁶ mbar) unutar helijumskog kriostata. Uzorak je smešten unutar kriostata tako da se kristalografska *c* osa poklopi sa pravcem upadnog zračenja. Svi spektri koji će biti predstavljeni u okviru ovog poglavlja korigovani su za Boze faktor.

Na osnovu rezultata različitih XRD studija, pomenutih u potpoglavlju 3.1.2.2, moguće je reći da na sobnoj temperaturi VI₃ kristališe u jednu od tri ponuđene kristalne strukture – $P\bar{3}1c$, $R\bar{3}$ ili C2/m. Šematski prikaz ovih struktura dat je na slici 5.2.

Slika 5.2: Šematski prikaz (a, d) $P\bar{3}1c$, (b, f) $R\bar{3}$ i (c, e) C2/m kristalne strukture VI₃. Jedinične ćelije prikazane su crnim linijama.

	Prostorna grupa simetrije					
	$P\bar{3}1c$		$R\bar{3}$		C2/m	
	Teor. Eksp.[118]		Teor. $Eksp.[119]$		Teor.	Eksp. [121]
a (Å)	6.87	6.89	6.69	6.89	7.01	6.84
$b~({ m \AA})$	6.87	6.89	6.69	6.89	12.14	11.83
c (Å)	13.224	13.289	19.81	19.81	7.01	6.95
$\alpha ~({ m deg})$	90	90	90	90	90	90
$\beta ~({ m deg})$	90	90	90	90	109.05	108.68
$\gamma~({ m deg})$	120	120	120	120	90	90
Zapremina ćelije (\AA^3)	je ($Å^3$) 547.74(10)		814.09(8)		533.66(36)	

U tabeli 5.1 predstavljene su teorijske i eksperimentalne vrednosti parametara $P\bar{3}1c$, $R\bar{3}$ i C2/m kristalnih struktura VI₃.

Tabela 5.1: Teorijske i eksperimentalne vrednosti parametara jediničnih ćelija $P\bar{3}1c$, $R\bar{3}$ i C2/m kristalne strukture VI₃.

5.3.1 Polarizaciona zavisnost: Asignacija fonona

Prvi ramanski spektri na slojevitim kristalima VI₃ dobijeni su početkom 2019. godine. U tom trenutku u stručnoj literaturi bilo je moguće pronaći da na sobnoj temperaturi VI₃ kristališe u monokliničnu C2/m kristalnu strukturu. Kako je broj formulskih jedinica po jediničnoj ćeliji C2/m kristalne strukture Z = 4, faktor-grupa analiza predviđa sledeću raspodelu fononskih modova:

$$\Gamma_{Raman} = 6A_g + 6B_g , \qquad (5.1)$$

$$\Gamma_{IR} = 5A_u + 7B_u , \qquad (5.2)$$

$$\Gamma_{acoustic} = A_u + 2B_u . \tag{5.3}$$

Na osnovu Ramanovih tenzora, prikazanih u tabeli 5.2, vidi se da intenzitet A_g modova opada na nulu u ukrštenoj polarizacionoj konfiguraciji, dok B_g modovi iščezavaju u spektrima merenim u paralelnoj polarizacionoj kofiguraciji. Drugim rečima, nezavisno od polarizacione konfiguracije u kojoj su spektri dobijeni, u svakom od spektara trebalo bi da se javlja samo šest fononskih linija.

Ukoliko se pogleda spektar dobijen na temperaturi od 100 K, u paralelnoj polarizacionoj konfiguraciji, prikazan na slici 5.3, jasno se vidi da je broj primećenih pikova veći od šest. Poređenjem spektara dobijenih u paralelenoj i u ukrštenoj polarizaciji [Slika 5.3]

Prostorna grupa simetrije: $P\bar{3}1c$		Pro	ostorna grupa simetrije: $R\bar{3}$	Prostorna grupa simetrije: $C2/m$		
Atomi	Ireducibilne reprezentacije	Atomi	Ireducibilne reprezentacije	Atomi	Ireducibilne reprezentacije	
V $(2a)$	$A_{2g} + A_{2u} + E_g + E_u$	V(3a)		V $(4g)$	$A_g + A_u + 2B_g + 2B_u$	
V $(2c)$	$A_{2g} + A_{2u} + E_g + E_u$	V $(6c)$	$A_g + A_u + E_g + E_u$	I(4i)	$2A_g + A_u + B_g + 2B_u$	
I $(12i)$	$3A_{1g} + 3A_{1u} + 3A_{2g} + 3A_{2u}$	I $(18f)$	$3A_g + 3A_u + 3E_g + 3E_u$	I $(8j)$	$3A_g + 3A_u + 3B_g + 3B_u$	
	$+6E_g + 6E_u$					
$^{1}E_{g} = \begin{pmatrix} c \\ \end{pmatrix}$	$A_{1g}=egin{pmatrix} a&&&\ &b\end{pmatrix}&&\ &-c&d\end{pmatrix}^2E_g=egin{pmatrix}-c&-d&\ -c&-d&\ d&\end{pmatrix}$	${}^{1}E_{g} = \begin{pmatrix} c \\ d \\ e \end{pmatrix}$	$A_g = \begin{pmatrix} a \\ b \end{pmatrix}$ $d e \\ -c f \\ f \end{pmatrix}^2 E_g = \begin{pmatrix} d & -c & -f \\ -c & -d & e \\ -f & e \end{pmatrix}$		$A_g = \begin{pmatrix} a & d \\ c & b \\ d & b \end{pmatrix}$ $B_g = \begin{pmatrix} e & f \\ e & f \\ f & \end{pmatrix}$	

Tabela 5.2: Pozicione simetrije V i I atoma, njihov doprinos fononima iz Γ -tačke i Ramanovi tenzori za $P\bar{3}1c$, $R\bar{3}$ i C2/m strukturu VI₃.

takođe se može zaključiti da se određene fononske linije javljaju u oba spektra. Dakle, pored toga što vidimo veći broj pikova nego što je očekivano, u dobijenim spektrima postoje pikovi koji se ne povinuju selekcionim pravilima ni A_g ni B_g simetrijskih modova. Logičan zaključak koji sledi iz ovih saznanja je da fononske vibracije slojevitih kristala VI₃ ne potiču od C2/m simetrije kristalne strukture.

Slika 5.3: Ramanski spektri slojevitih kristala VI₃ mereni na T = 100 K i na T = 300 K (umetak) u paralelnoj (crvena linija) i ukrštenoj (plava linija) polarizacionoj konfiguraciji. Pikovi koji se vide samo u crvenom spektru prepoznati su kao A_{1g} simetrijski modovi, dok pikovi koji se javljaju u oba spektra odgovaraju E_g modovima. Pikovi P1, P2 i P3 zadovoljavaju A_{1g} selekciona pravila, ali ne mogu da se povežu sa teorijski predviđenim modovima.

Nakon toga ramanski spektri analizirani su u skladu sa preostale dve moguće strukture. Faktor-grupa analiza za prostornu grupu simetrije $R\bar{3}$ predviđa sledeću raspodelu fononskih modova

$$\Gamma_{Raman} = 4A_g + 4E_g , \qquad (5.4)$$

$$\Gamma_{IR} = 4A_u + 4E_u , \qquad (5.5)$$

$$\Gamma_{acoustic} = A_u + E_u , \qquad (5.6)$$

dok u slučaju $P\bar{3}1c$ strukture ona ima oblik:

$$\Gamma_{Raman} = 3A_{1g} + 8E_g , \qquad (5.7)$$

$$\Gamma_{IR} = 5A_{2u} + 8E_u , \qquad (5.8)$$

$$\Gamma_{acoustic} = A_{2u} + E_u . \tag{5.9}$$

Na osnovu Ramanovih tenzora modova ove dve prostorne grupe simetrije, predstavljenih u tabeli 5.2, vidi se da A_q modovi prostorne grupe $R\bar{3}$ i A_{1q} modovi prostorne grupe $P\bar{3}1c$ imaju istu polarizacionu zavisnost, odnosno, vidljivi su samo u spektrima snimljenim u paralelnoj polarizacionoj konfiguraciji. Slično važi i za E_g modove obe strukture, sa razlikom da je njih moguće opaziti i u spektrima u paralelnoj i u spektrima u ukrštenoj polarizacionoj konfiguraciji. S obzirom na to da se u spektrima u paralelnoj polarizaciji (crveni spektar na slici 5.3) vidi dvanaest pikova, od kojih je pet vidljivo i u spektrima ukrštene polarizacije (uz dodatnu široku struktura na oko $\sim 180 \text{ cm}^{-1}$), moglo bi se reći da broj Raman aktivnih modova $P\bar{3}1c$ strukture bliže odgovara eksperimentalnim rezultatima. Premda dodatni pikovi u ramanskim spektrima mogu poticati od aktiviranih IR ili akustičnih fonona, kao i od prisutnih defekata, razlika u broju eksperimentalnih i teorijski predviđenih pikova nije dovoljna kako bi se isključila $R\bar{3}$ struktura. Pogotovo ako se uzme u obzir da rezultati sinhrotronskog XRD eksperimenta, predstavljeni u poglavlju 5.1, a koji su rađeni na istim uzorcima na kojima je rađen i eksperiment Ramanovog rasejanja, ukazuju na $R\bar{3}$ strukturu. Shodno tome, kako nije moguće isključiti jednu od struktura samo na osnovu ramanskih spektara, eksperimentalni rezultati upoređeni su sa teorijskim proračunima.

U tabeli 5.3 prikazane su teorijske vrednosti energija fonona za tri predložene kristalne strukture. Kako je navedeno u poglavlju, postoje dva moguća elektronska stanja $P\bar{3}1c$ strukture VI₃ – Motov izolator i polumetalično. Finim podešavanjem parametara u DFT + U proračunima moguće je dobiti proračune za oba stanja. Kao rezultat dobijaju se stanja jako bliske energije, od kojih stanje Motovog izolatora ima nižu energiju te predstavlja osnovnu elektronsku konfiguraciju VI₃. Radi sveobuhvatnosti predstavljenog istaživanja u tabeli 5.3 prikazane su energije fonona i za stanje Motovog izolatora

Prostorna grupa simetrije: $P\bar{3}1c$				Prostorna grupa simetrije: $R\bar{3}$		Prostorna grupa simetrije: $C2/m$	
Sim.	Teor. (cm^{-1})	Teor. (cm^{-1})	Eksp. (cm^{-1})	Sim.	Teor. (cm^{-1})	Sim.	Teor. (cm^{-1})
E_q^1	17.2	15.2	-	E_q^1	45.2	A_q^1	58.1
A_{2g}^1 (neaktivan)	35.0	56.8		E_g^2	69.9	B_g^1	60.0
E_g^2	62.2	61.6	59.8	A_g^1	99.3	A_g^2	82.7
A_{2g}^2 (neaktivan)	69.4	72.3		E_g^3	99.8	B_g^2	82.9
E_g^3	74.1	75.9	77.2	A_g^2	105.1	A_g^3	85.7
$A_{1g}^{\overline{1}}$	83.3	84.2	-	A_g^3	135.5	B_g^3	88.9
E_g^4	84.9	86.6	86.7	A_g^4	167.9	A_g^4	99.3
E_g^5	91.5	98.4	95.2	E_g^4	176.8	B_g^4	99.3
A_{2g}^3 (neaktivan)	92.2	96.3				A_g^5	122.3
E_g^6	97.4	108.3	100.4			B_g^5	149.9
A_{1g}^{2}	113.2	119.3	116.8			B_g^6	161.0
A_{1g}^{3}	117.1	123.9	123.4			A_g^6	164.0
A_{2g}^4 (neaktivan)	121.3	147.8				-	
E_g^7	132.2	151.9	-				
E_g^8	149.4	166.9	-				
A_{2g}^5 (nekativan)	185.9	212.1					

Tabela 5.3: Poređenje eksperimentalnih i teorijskih energija fonona za tri predviđene simetrije kristalne strukture VI₃. Proračuni su rađeni za dve elektronske konfiguracije $P\bar{3}1c$ strukture – Motov izolator i polumetal. Teorijske vrednosti energija računate su na T = 0 K, a eksperimentalne su određene iz spektara dobijenih na T = 100 K. Greška procene eksperimentalnih vrednosti je 0.3 cm⁻¹. Radi sveobuhvatnosti istraživanja, prikazane su i vrednosti za C2/m strukturu VI₃.

i za polumetalično stanje. Iako je na osnovu selekcionih pravila, u ranijem delu ovog poglavlja, demonstrirano da C2/m struktura ne može biti kristalna struktura u koju kristališe VI₃, dobijene teorijske energije fonona predstavljene su u tabeli radi dodatne ilustracije neusklađenosti predložene simetrije sa rezultatima Ramanovog eksperimenta.

Gledajući odnos eksperimentalnih rezultata i teorijskih proračuna za $R\bar{3}$ prostornu grupu simetrije lako je primetno da ne postoji zadovoljavajuće slaganje među njima. Naime, u slučaju teorijskog A_g^1 moda energije 99,3 cm⁻¹, najbliži eksperimentalni mod koji zadovoljava A_g selekciona pravila je mod energije ~ 64,1 cm⁻¹ (mod P1 na slici 5.3). Razlika između teorijski dobijene energije i eksperimentalnih rezultata je oko 30%. Takođe, ako razmatramo teorijski mod A_g^4 ni njega nije moguće uočiti u dobijenim ramanskim spektrima, a razlika u njegovoj energiji i energiji najbližih A_g modova veća je od 20%. Ovako velika neusaglašenost između teorijskih i eksperimentalnih rezultata ukazuje na to da kristalna struktura ne pripada prostornoj grupi simetrije $R\bar{3}$.

Analiza rezultata urađena do ovog trenutka pokazala je da ramanski spektri dobijeni na slojevitim kristalima VI₃ ne mogu da se objasne u saglasnosti ni sa jednom od dve najčešće kristalne strukture trihalida prelaznih metala – C2/m i $R\bar{3}$ strukturom. U skladu sa postojećim saznanjima, jedina preostala opcija jeste $P\bar{3}1c$ kristalna struktura. Kada se pogledaju vrednosti predstavljene u tabeli 5.3 jasno se vidi da se eksperimentalni rezultati najbolje slažu sa proračunima za $P\bar{3}1c$ prostornu grupe simetrije. Bez obzira na to da li posmatramo strukturu u kojoj je osnovno elektronsko stanje Motov izolator ili polumetal, odstupanje između teorijskih i eksperimentalnih energija fonona ne prelazi 15%.

Izuzetno široka struktura primećena u spektrima na oko 180 cm⁻¹ [Slika 5.3] zahteva

nešto opsežniju analizu. Premda njen oblik ukazuje na dvomagnonske ekscitacije u slučaju feromagnetnih materijala, kao što je VI₃, verovatnoća detektovanja ovakvih ekscitacija je jako mala. Druga mogućnost jeste da je u pitanju dvofononska ekscitacija, međutim, dvofononske ekscitacije imaju mali presek rasejanja, što za posledicu ima da njima dominiraju overtone stanja. Kao takve, one su vidljive samo u paralelnoj polarizacionoj konfiguraciji (poput pika na oko ~ 250 cm⁻¹, prikazanog u umetku slike 5.3), a u dobijenim ramanskim spektrima široka struktura primetna je i u ukrštenoj polarizacionoj konfiguraciji. S obzirom na to da pomenuta struktura odgovara energijama teorijskih E_g^7 i E_g^8 , najverovatniji scenario kojim se može objasniti ova struktura jeste kombinacija ovih modova. Velika širina mogla bi da se objasni kao posledica spin-fonon interakcije koja se izuzetno oslikava na E_g modove. Naravno, kako se ova dva moda spajaju u široku strukturu nije moguće razlučiti njihove pojedinače energije, zbog čega one nisu ni prikazane u tabeli 5.3. U skladu sa gorenavedenim zaključuje se da je od teorijski predviđenih jedanaest modova u ramanskim spektrima uočeno devet. Odsustvo E_g^1 moda najverovatnije je posledica njegove niske energije, a A_{1g}^1 moda njegovog niskog intenziteta.

U spektrima se javljaju i tri dodatna pika koja se ponašaju u skladu sa selekcionim pravilima za A_{1g} modove. Eksperimentalne energije dodatnih pikova su procenjene na oko 64,2 cm⁻¹, 110,1 cm⁻¹ i 220,6 cm⁻¹ za P1, P2 i P3 pik, redom. Ukoliko se pogledaju teorijske energije fononskih modova za $P\bar{3}1c$ prostornu grupu, nemoguće je ne primetiti koliko su slične vrednosti energija neaktivnih A_{2g}^2 , A_{2g}^3 i A_{2g}^5 modova. Iako su A_{2g} modovi Raman neaktivni, do njihove aktivacije može doći relaksiranjem striktnosti selekcionih pravila zadate grupe simetrije usled narušenja translatorne simetrije [176, 177]. S obzirom na to da će narušenje simetrije biti detalno analizirano u potpoglavlju 5.4, aktivacija inače neaktivnih Raman modova predstavlja najverovatniji scenario. Međutim, ne treba zanemariti ni mogućnosti da pikovi P1, P2 i P3 potiču od dvofononskih ekscitacija, koji se javljaju kao posledica pojačanog fonon-fonon sparivanja usled jake spin-fonon interakcije ili nesavršenosti kristalne strukture [178].

Na osnovu toga što polarizaciona zavisnost Raman aktivnih modova $P\bar{3}1c$ prostorne grupe simetrije odgovara polarizacionoj zavisnosti dobijenih fononskih linija, i toga što su DFT proračuni za $P\bar{3}1c$ strukturu u saglasnosti sa eksperimentalnim rezultatima, zaključuje se da fononske vibracije slojevitih kristala VI₃ potiču od $P\bar{3}1c$ simetrije jedinične ćelije.

5.3.2 Spin-fonon interakcija

Inspekcijom spektara prikazanih na slici 5.3 da se zaključiti da su skoro sve fononske linije asimetričnog oblika. U cilju provere ovog opažanja najintenzivniji pik u spektru – A_{1g}^3 modelovan je linijom Voitovog profila i linijom koja je nastala kao konvolucija Fano

profila i Gausijana. Naime, u poglavlju 2.2.5 obrađeni su najčešći profili spektralnih linija koji se javljaju u eksperimentu, i objašnjeno je da se Voitovi profili koriste za opisivanje simetričnih linija Lorencovog tipa modifikovanih usled konačne rezolucije spektrometra.

Slika 5.4: Modelovanje A_{1g}^3 moda. Zelenom i plavom linijom, redom, prikazan je rezultat modelovanja spektra Voitovim profilom i rezultat dobijen konvolucijom Fano profila i Gausijana. Eksperimentalni podaci prikazani su kvadratima.

Takođe je rečeno da se konvolucija Fano profila i Gausijana koristi za opisivanje spektralnih linija asimetričnog oblika, gde Gausijan služi da uključi instrumentalno širenje u model. Mera asimetričnosti linije obrnuto je srazmerna vrednosti Fano parametra, i po konvenciji se linija smatra asimetričnom ukoliko je vrednost Fano parametra manja od 25. Rezultati modelovanja linije A_{1q}^3 moda prikazani su na slici 5.4.

Kao što je moguće primetiti eksperimentalni podaci su u mnogo boljoj saglasnosti sa linijom dobijenom konvolucijom Fano profila i Gausijana, pri čemu je vrednost Fano parametra dobijene linije |q| = 12,3. Uzročnik asimetričnog oblika fononskih linija u ramanskim spektrima može biti postojanje defekata u materijalu, ali i jako sparivanje između fonona i elektronskih i/ili spinskih ekscitacija [69]. Kako bi se postojanje defekata u materijalu u spektrima manifestovalo u vidu izuzetno širokih linija svih modova, malo je verovatno da mereni uzorci imaju defekte. Suprotno tome, verovatnoća scenarija u kom jaka spin-fonon interakcija utiče na vibracije fonona nije zanemarljiva. Naime, ne sme se zaboraviti da je VI₃ kvazi-2D feromagnetik, a da je u sličnim sistemima, poput CrSiTe₃ [159], jaka spin-fonon interakcija dobila eksprimentalnu potvrdu. ovakva analiza ukazuje na pojačanu spin-fonon interakciju u ovom kvazi-2D materijalu.

5.4 Kratkodometno i dugodometno uređenje kristalne strukture

S obzirom na to da rezultati Ramanovog eksperimenta ukazuju na $P\bar{3}1c$ simetriju kristalne strukture, a XRD rezultati rađeni na istim uzorcima daju difraktograme koji odgovaraju $R\bar{3}$ prostornoj grupi simetrije, postavlja se pitanje odakle potiče neslaganje ove dve srodne eksperimentalne tehnike. Premda obe tehnike pružaju uvid u simetriju kristalne strukture merenog materijala, rezultati XRD eksperimenta predstavljaju usrednjene rezultate kratkodometnog i dugodometnog uređenja kristalne strukture, dok ramanski spektri potiču od vibracija lokalne strukture. Shodno tome, razlika između XRD i ramanskih rezultata može da se pripiše različitom kratkodometnom i dugodometnom uređenju kristalne strukture. Dok se dugodometno uređenje kristalne strukture uspostavlja za velike dužine pakovanja slojeva, kratkodometno uređenje kristalne strukture određeno je prostornom grupom koja je energetski bliska monosloju. Kako bi se proverilo da li su kratkodometno i dugodometno uređenje kristalne strukture u slojevitim kristalima VI₃ zaista različiti korišćeni je sinhrotronski XRD eksperiment, opisan u poglavlju 5.1, zajedno sa PDF (*pair distribution function*) analizom. Ritveldova (*Rietveld*) i PDF analiza izvršena je korišćenjem softverskih paketa GSAS-II [179] i PDFgui [180], redom. Dobijeni rezultati predstavljeni su na slici 5.5.

Ukoliko u materijalu koegzistiraju kratkodometno i dugodometno uređenje, doprinosi kratkodometnog uređenja u XRD eksperimentu javljaju se u vidu difuznog rasejanja na koji su superponirani Bragovi pikovi. Difuzno rasejanje se u Ritveldovoj analizi uklanja zajedno sa pozadinskim signalom, te je rezultat ove analize struktura materijala u kojoj su dugodometno i kratkodometno uređenje usrednjeni. Nasuprot tome, PDF analiza, koja se vrši na Furije transformu difrakcionih šablona, modelira i difuzione i Bragove doprinose. PDF funkcija je funkcija u realnom prostoru koja pruža uvid u među-atomska rastojanja, pa samim tim sadrži podatke o kristalnoj strukturi na svim dužinama [181].

Dužinska skala (10–30) Å je osetljivija na dugodometno, a dužinska skala (1–20) Å na kratkodometno uređenje. U slučaju slojevitih kristala VI₃, kao što je prikazano u poglavlju 5.1, najbolji Ritveldov model je dobijen korišćenjem $R\bar{3}$ prostorne grupe simetrije [Slika 5.5(a)]. Shodno tome, ne čudi da su PDF rezultati na dužinskoj skali (10–30) Å pokazali odlično slaganje sa $R\bar{3}$ prostornom grupom. Međutim, rezultati koji odgovaraju dužinskoj skali (1,5~15) Å, prikazani na slici 5.5(b), ne mogu da se efikasno modeluju $R\bar{3}$ prostornom grupom. Slično, $P\bar{3}1c$ prostorna grupa simetrije dala je dobre rezultate za kratkodometno uređenje, ali loše rezultate za dugodometno uređenje. Na osnovu ovih rezultata napravljen je PDF dvofazni otežinjeni model sačinjen od 75% dugodometne $R\bar{3}$ i 25% kratkodometne $P\bar{3}1c$ faze. Kao što je primetno na slici 5.5(c), ovaj model odlično se slaže sa eksperimentalnim podacima. To može značiti sledeće dve stvari: ili je kristalna struktura sačinjena od koegzistencije dugodometnog $R\bar{3}$ i kratkodometnog

Slika 5.5: Rezultati modelovanja podataka dobijenih u difrakcionom eksperimentu. (a) Spektar modelovan Ritvieldovim modelom za $R\bar{3}$ prostornu grupu simetrije. Položaj pikova označen je crnim linijama. PDF model za (b) $R\bar{3}$ prostornu grupu simetrije i (c) dvofazni model korišćen da modeluje dugodometno uređenje sa $R\bar{3}$ prostornom grupom simetrije i kratkodometno uređenje sa $P\bar{3}1c$ prostornom grupom simetrije. Eksperimentalni podaci su predstavljeni plavim krugovima, a crvene linije predstavljaju dobijene modele.

 $P\bar{3}1c$ uređenja, ili postoje nasumično raspoređeni $P\bar{3}1c$ domeni unutar kristalne rešetke sa $R\bar{3}$ dugodometnim uređenjem. Ovakav rezultat u saglasnosti je sa predstavljenim rezultatima XRD i Ramanovog eksperimenta, i daje objašnjenje zašto su rezultati XRD istraživanja inicijalno bili protivrečni, kao i zašto vibracije koje se vide u ramanskim spektrima potiču od $P\bar{3}1c$ simetrija jedinične ćelije.

Sinhrotronski XRD eksperiment i PDF analiza urađena je od strane dr A. M. Milinda Abeykoona u Brukhejven nacionalnoj laboratoriji u Sjedinjenim Američkim Državama.

6.1 Sinteza materijala

Slojeviti kristali 1T-TaS₂ narastani su CVT medotom u peći sa gradijentom temperature. Komadići tantala i sumpora, koji su se nalazili u aluminijumskom sudu, stavljeni su unutar kvarcne cevi, nakon čega je peć je zagrevana do 900°C kako bi se izazvala hemijska predreakcija. Peć je održavana na toj temperaturi u periodu od 50h. U narednih 12h temperatura je spuštana na 780°C, nakon čega je nastavljeno prirodno hlađenje. Temperature toplog i hladnog kraja održavane su na 900°C i 800°C, redom. Period narastanja trajao je sedam dana, nakon čega je kvarcna cev izvučena iz peći i brzo ohlađena u hladnoj vodi.

Detaljnije objašnjenje metode narastanja i ispitivanje transportnih svojstava korišćenih slojevitih kristala 1T-TaS₂ moguće je pronaći u referenci [182].

Narastanje slojevitih kristala 1T-TaS₂ urađeno je od strane prof. dr Čedomira Petrovića i saradnika u Brukhejven nacionalnoj laboratoriji u Sjedinjenim Američkim Državama.

6.2 Teorijski proračuni

Proračuni teorije gustine funkcionala rađeni su u softverskom ABINIT paketu [183]. Korišćen je PBE funkcional sa energetskim odsecanjima od 50 Ha za bazis ravnih talasa. Kako bi se uračunali i doprinosi spin-orbit sparivanja, korišćen je relativistički Goedecker pseudopotencijal [184, 185], pri čemu su za valentne elektrone uzeta $S-3s^23p^4$ i Ta- $5d^36s^2$ stanja. Optimizacija kristalne strukture vršena je dok ukupan pritisak na jediničnu ćeliju nije bio ispod 1 bar, a sile koje deluje na sve atome ispod 10 μ eV/Å. Parametri kristalne ćelije dobijeni na ovaj način imaju vrednosti a = 3,44 Å i c = 6,83 Å.

Fononi i elektron-fonon sparivanje računati su korišćenjem perturbacione teorije gustine funkcionala (DFPT) [186]. Ovi proračuni takođe su deo ABINIT softverskog paketa. Za izračunavanje elektronskih talasnih vektora korišćena je 18 × 18 × 12 mreža k-tačaka, dok je za izračunavanje talasnih vektora fonona korišćena 6 × 6 × 4 mreža qtačaka. Kako bi se izbegli nestabilni CDW fononski modovi, korišćeno je Fermi-Dirakovo razmazivanje (*smearing*) sa faktorom širenja $\sigma_{FD} = 0.01$ Ha.

Teorijski proračuni rezultat su rada prof. dr Miroslava Miloševića i dr Jonasa Bekaerta sa odseka za fiziku i Nanolab centra izvrsnosti na Univerzitetu u Antverpenu u Belgiji.

6.3 Dinamika rešetke

Za ispitivanje dimanike rešetke 1T-TaS₂ korišćena je eksperimentalna postavka na Valter Majsner institutu u Nemačkoj, opisana u poglavlju 2.4.3. Kao izvor pobude korišćena je 575 nm laserska linija Coherent Genesis MX-SLM čvrstotelnog lasera. Dodatna merenja vršena su korišćenjem plave 458 nm i zelene 514 nm linije Coherent Innova 304C argonskog jonskog lasera. Podaci za niskoenergetski deo spektra (do 550 cm⁻¹) sakupljani su u koracima od $\Delta\Omega = 1$ cm⁻¹ i sa rezolucijom od oko $\sigma \approx 3$ cm⁻¹. Podaci za visokoenergetski deo spektara sakupljani su sa rezolucijom od oko $\sigma \approx 20$ cm⁻¹ u koracima od $\Delta\Omega = 50$ cm⁻¹. Svi spektri korigovani su za Boze faktor.

6.3.1 IC-CDW faza

 $T-\text{TaS}_2$ odlikuje se izuzetno bogatim faznim dijagramom. Prvi fazni prelaz do kog dolazi u $T-\text{TaS}_2$ jeste prelaz između normalne metalne faze u IC-CDW fazu. Prijavljena temperatura ovog faznog prelaza je $T_{IC} = 554 \text{ K}$ [141]. Ovaj prelaz je zatim praćen prelazom između IC-CDW i NC-CDW faza, na temperaturi od $T_{IC} = 355 \text{ K}$ [141]. O IC-CDW fazi $T-\text{TaS}_2$ zna se jako malo. Ono što je poznato jeste da je u pitanju metalična faza. Glavni razlog izuzetno malog broja eksperimenatalnih ispitivanja IC-CDW faze najverovatnije leži u jako visokoj temperaturi na kojoj se transformiše u NC-CDW fazu, čineći je gotovo nepristupačnom za većinu eksperimentalnih tehnika. Da bi se dobili spektri koji zasigurno potiču od IC-CDW, a ne od NC-CDW faze, eksperimentalni podaci prikupljani su na temperaturi od 370 K, koja je dosta iznad temperature IC-CDW u NC-CDW faznog prelaza. Zbog toga što IC-CDW faza potiče iz normalne faze zanimljivo je uporediti dobijene rezultate sa rezultatima za normalnu fazu.

$$A_{1g} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix} {}^{1}E_{g} = \begin{pmatrix} c & 0 & 0 \\ 0 & -c & d \\ 0 & d & 0 \end{pmatrix} {}^{2}E_{g} = \begin{pmatrix} 0 & -c & -d \\ -c & 0 & 0 \\ -d & 0 & 0 \end{pmatrix}$$

Tabela 6.1: Ramanovi tenzori A_{1g} i E_g modova prostorne grupe simetrije $P\bar{3}m1$.

Kako temperature na kojima se 1T-TaS₂ nalazi u normalnoj fazi nisu eksperimentalno dostupne, karakteristike normalne faze ispitivane su teorijski, korišćenjem *ab initio* proračuna.

Slika 6.1: Izračunata fononska disperzija normalne faze 1T-TaS₂ i elektron-fonon sparivanje (λ) optičkih grana.

Kristalna struktura normalne faze opisana je prostornom grupom simetrije $P\bar{3}m1$ [141]. Raspodela fononskih modova predviđena faktor-grupa analizom za ovu prostornu grupu simetrije je:

$$\Gamma_{Raman} = A_{1g} + E_g , \qquad (6.1)$$

$$\Gamma_{IR} = A_u + E_u , \qquad (6.2)$$

$$\Gamma_{acoustic} = A_u + E_u . \tag{6.3}$$

Ramanske tenzore A_{1g} i E_g modova moguće je pronaći u tabeli 6.1.

Na osnovu *ab initio* proračuna fononskih disperzija, prikazanih na slici 6.1, očekivane energije dva Raman aktivna moda E_g i A_{1g} su, redom, 247 cm⁻¹ i 346 cm⁻¹. Na istoj slici moguće je pronaći i izračunate vrednosti konstante elektron-fonon sparivanja, λ , koje je od izuzetnog značaja za CDW fenomen. Kao što se može videti, elektron-fonon sparivanje dostiže maksimum $\lambda \sim 0.2$ u okolini Γ i A tačaka Briluenove zone u nižim optičkim granama.

Ramanski spektri mereni na temperaturi $T = 370 \,\text{K}$ u paralelnoj polarizacionoj konfiguraciji prikazani su na slici 6.2. Kako je 1T-TaS₂ u IC-CDW fazi metaličan za očekivati je da fononske linije budu superponirane na elektronski kontinuum. Ovaj kontinuum elektron-šupljina ekscitacija modelovan je Drudeovim spektrom [187, 188], koji je na slici 6.2 prikazan u vidu isprekidane linije.

Slika 6.2: Ramanski spektri IC-CDW faze 1T-TaS₂ mereni u paralelnoj polarizacionoj konifguraciji na temperaturi T = 370 K. Elektronski kontinuum modelovan je Drudeovim modelom i prikazan je isprekidanom linijom. Doprinosi Ta i S atoma izračunatoj fononskoj gustini stanja (siva površina) prikazani su tamno braon i svetlo braon linijom, redom.

Zbog narušenja translacione invarijantnosti, do kojeg dolazi prilikom prelaza iz normalne u IC-CDW fazu, očekivano je da se u ramanskim spektrima vide doprinosi iz čitave Briluenove zone, a ne samo iz Γ tačke. Zbog toga su eksperimentalni rezultati upoređeni sa *ab initio* proračunima i fononskih disperzija i fononske gustine stanja (PDOS) normalne faze. Izračunat PDOS prikazan na donjem delu slike 6.2 pokazuje da akustički modovi dominantno potiču od Ta atoma, dok optički dominantno potiču od S atoma. Kao što se može videti, ramanski spektri u dobroj su saglasnosti sa PDOS proračunima. Međutim, do projekcije PDOS-a u ramanskim spektrima, i prevazilaženja uslova $q \approx 0$ pomenutog u poglavlju 2.2.2, dolazi samo u specijalnim slučajevima. Konkretno, do projekcije PDOS na ramanske spektre može doći usled postojanja nečistoća u materijalu [189]. Kako u spektrima koji će biti prezentovati u okviru ovog poglavlja ne postoji ništa što bi ukazalo na prisustvo nečistoća u merenim uzorcima, projekcija PDOS-a usled prisustva nečistoća u merenim kristalima isključena kao mogućnost. Preostala dva načina projekcije PDOS-a jesu postojanje jakog elektron-fonon sparivanja [178] ili narušenje translacione simetrije. Premda ab initio proračuni ne sugerišu jako elektron-fonon sparivanje u 1T-TaS₂, eksperimentalni rezultati u vidu naglih promena otpornosti na temperaturama iznad IC-CDW prelaza dovedeni su u vezu sa njim 157. Pored toga, eksperimentalne 141 i teorijske [149] vrednosti CDW procepa odgovaraju vrednostima CDW procepa u sistemima sa jakim elektron-fonon sparivanjem. Shodno tome, elektron-fonon sparivanja sigurno je jedan, ali ne i jedini, razlog projekcije PDOS-a. Naime, translaciona invarijantnost nesamerljivo je narušena prilikom faznog prelaza iz normalne u IC-CDW fazu. Ovo narušenje dovodi do stvaranja dodatnih kanala rasejanja, koji su glavni način projekcije PDOS-a u ramanskim spektrima.

6.3.2 C-CDW faza

Na najnižoj eksperimentalnoj temperaturi 1T-TaS₂ se nalazi u C-CDW fazi. Ova faza karakteriše se formiranjem superstrukture sačinjene od paketa "Davidovih zvezda". Način njihovog pakovanja u superstrukturu nije u potpunosti razrešen. Ono što je utvrđeno na osnovu teorijskih i eksperientalnih istraživanja jeste da pakovanje može biti triklinično (prostorna grupa simetrije $P\bar{1}$), trigonalno/heksagonalno (prostorna grupa simetrije $P\bar{3}$) ili njihova kombinacija [190, 191, 192, 193]. Kako svaki od predloženih načina pakovanja pretpostavlja drugačiju konfiguraciju ramanskih spektara, uvidom u eksperimentalne rezultate Ramanove spektroskopije moguće je reći koja od ponuđenih opcija je više verovatna. Faktor-grupa analiza predviđa 57 A_g modova i $19A_g + 19E_g$ modova za $P\overline{1}$ i $P\bar{3}$ način pakovanja, redom. Dakle, u slučaju $P\bar{1}$ simetrije može se očekivati 57 modova u spektrima snimljenim u oba kanala rasejanja. Nasuprot tome, predviđeni Raman aktivni modovi za $P\bar{3}$ način pakovanja imaju različite polarizacione zavisnosti, i to takve da se E_g modovi vide u svim kanalima rasejanja,
a A_g samo u spektrima dobijenim u paralelnoj polarizacionoj konfiguraciji. Na slici 6.3 prikazani su ramanski spektri snimljeni na temperaturi $T = 4 \,\mathrm{K}$ u oba kanala rasejanja. Evidentno je da u priloženim spektrima postoje modovi koji se vide samo pri paralelnoj polarizaciji svetlosti, i modovi koje se vide u oba polarizacione konfiguracije. Ovakvo ponašanje Raman aktivnih modova ukazuje na trigonalni/heksagonalni način pakovanja "Davidovih zvezda".

Slika 6.3: Ramanski spektri C-CDW faze $1T-\text{TaS}_2$ u paralelnoj i ukrštenoj polarizacionoj konifguraciji na temperaturi T = 4 K. Spektri su modelovani linijama Voitovog profila (plava i crvena linija). Položaji pikova dobijeni modelovanjem spektara prikazani su vertikalnim linijama. Lista tačnih energija modova prikazana je u tabeli 6.2.

S obzirom na to da se u literaturi pominje mogućnost kombinacije dva načina pakovanja "Davidovih zvezda", spektri su modelovani linijama Voitovog profila kako bi se utvrdio tačan broj fononskih linija A_g i E_g simetrije. Kako je očekivani broj modova izuzetno velik, te je samim tim rezultat modelovanja pojedinačnih spektara manje pouzdan, spektri su modelovani simultano. U te svrhe korišćen je objedinjeni model sačinjen od 38 linija Voitovog profila. Položaji i širine pikova su deljenni između modela korišćenih za fitovanje spektara u polarizacionoj i ukrštenoj polarizacionoj konfiguraciji, a

jedini promenljiv parametar bio je intenzitet (površina) pika. Svi pikovi za koje intenzitet opada na nulu u spektrima dobijenim u ukrštenoj polarizacionoj konfiguraciji prepoznati su kao A_g simetrijski modovi. Ovakav pristup rezultovao je asignacijom tačno 38 pikova, od kojih je 19 prepoznato kao A_g , a 19 kao E_g simetrijskih modova, još jednom potvrđujući trigonalan/heksagonalan način pakovanja "Davidovih zvezda" u C-CDW superstrukturu. Lista eksperimentalnih energija fonona data je u tabeli 6.2.

n _o	$\omega_{A_g}[cm^{-1}]$	$\omega_{E_g}[cm^{-1}]$
1	$62,\! 6$	56, 5
2	$73,\!3$	$63,\!3$
3	$83,\!4$	75,3
4	$114,\!9$	82,0
5	$121,\!9$	90,5
6	129,5	101, 1
7	228,7	$134,\!8$
8	$244,\!1$	244,0
9	$271,\!9$	248,9
10	284,2	257,5
11	$298,\! 6$	$266,\! 6$
12	$307,\!2$	$278,\!3$
13	308,2	285,0
14	$313,\!0$	$292,\!9$
15	$321,\!2$	300,5
16	$324,\!2$	332,7
17	$332,\!0$	369,2
18	$367,\!2$	$392,\! 6$
19	388,4	397,7

Tabela 6.2: Eksperimentalne vrednosti energije A_g i E_g ramanskih modova na T=4 K.

6.3.3 NC-CDW faza

Nekolicina istraživanja fokusiranih na ispitivanje fundamentalnih karakteristika NC-CDW faze složila se da ova je CDW faza 1T-TaS₂ zapravo koegzistencija IC-CDW i C-CDW faza [150, 194]. To znači da bi u ramanskim spektrima snimljenim u temperaturskom opsegu između T_{IC} i T_C trebalo da postoje doprinosi oba faze. Ukoliko se pogledaju eksperimentalni podaci sakupljeni u opsegu temperatura od T = 4 K do T = 370 K, tj. u sve tri CDW faze, jasno se vidi da se spektri u temperaturskom opsegu 235 K < T < 352 K, kada se 1T-TaS₂ nalazi u NC-CDW fazi, sastoje od C-CDW (plave linije) i IC-CDW (crvene linije) doprinosa.

Slika 6.4: Simetrijski razloženi Ramanski spektri IC-CDW, NC-CDW i C-CDW faze 1T-TaS₂ na naznačenim temperaturama. U spektrima NC-CDW faze vide se doprinosi IC-CDW i C-CDW faza.

Na osnovu izložene diskusije zaključuje se da i rezultati Ramanove spektroskopije podržavaju scenario u kom je NC-CDW faza mešana faza koja se sastoji od C-CDW i IC-CDW domena koji se uzastopno smenjuju. Kako je spektar snimljen na T = 352 K poslednji u kom je moguće prepoznati doprinose C-CDW faze, a prva sledeća eksperimentalna temperatura je T = 360 K, procenjeno je da je temperatura faznog prelaza koji transformiše IC-CDW u NC-CDW strukturu između dve pomenute temperature.
6.4 Eksperimentalni dokazi otvaranja Motovog procepa u C-CDW fazi 1T-TaS₂

Jedno od osnovnih svojstava CDW sistema je otvaranje impulsno zavisnog procepa u spektrima elektronskih ekscitacija. Ovaj procep često se u literaturi naziva CDW procep, i eksperimentalno je potvrđen u slojevitim kristalima 1T–TaS₂ [141, 142, 195]. Međutim, CDW procep nije jedini koji se otvara u C-CDW fazi 1T–TaS₂. Rezultati različitih ARPES studija pokazali su da je Motov prelaz, do kog dolazi prilikom formiranja C-CDW faze, praćen otvaranjem dodatnog procepa. Ovaj dodatni procep otvara se u zonama koje se nalaze u okolini Γ tačke [156, 157]. Posmatrajući početne nagibe elektronskih delova ramanskih spektara može se doći do dodatnih saznanja o procepima. Naime, otvaranje procepa dovodi do smanjenja ukupnog broja elektrona N_F na Fermijevom nivou. Kako je početni nagib ramanskih spektara $R \lim_{\Omega \to 0} \frac{\partial \chi''}{\partial \Omega} \propto N_F \tau_0$, gde su u R uračunati samo eksperimentalni faktori, jasno je da će otvaranje procepa dovodi do potpunog opadanja intenziteta ispod ivica procepa na T = 0, na konačnim tempetarurama dolazi do linearnog povećanja intenziteta na niskim energijama koji potiče od termalnih ekscitacija kvazičestica koje se rasejavaju.

6.4.1 Ramanski verteksi

S obzirom na to da različite simetrije projektuju različite delove Briluenove zone u spektrima, pre početka analize ramanskih spektara, potrebno je izračunati ramanske vertekse za heksagonalnu simetriju 1T-TaS₂.

Ako posmatramo određenu grupu simetrije G, čiji su simetrijski elementi R, a simetrijski operatori \hat{P}_R , možemo je opisati koristeći ireducibilne reprezentacije Γ_n , gde n označava određenu reprezentaciju. Za svaku od mogućih ireducibilnih reprezentacija postoje odgovarajuće bazisne funkcije $\Phi_{\Gamma_n}^j$. Ove bazisne funkcije koriste se kako bi se dobile matrice reprezentacije. Na osnovu teorije grupa za proizvoljnu funkciju

$$F = \sum_{\Gamma_n} \sum_j f_j^{\Gamma_n} \Phi_{\Gamma_n}^j, \tag{6.4}$$

moguće je definisati operator projekcije na sledeći način

$$\hat{P}^{\Gamma_n} = \frac{d}{N} \sum_R \chi^{\Gamma_n}(R) * \hat{P}_R, \qquad (6.5)$$

pri čemu isti mora da zadovoljava relaciju

$$\hat{P}^{\Gamma_n}F = \sum_j f_j^{\Gamma_n} \Phi_{\Gamma_n}^j.$$
(6.6)

U izrazu (6.5) N predstavlja broj simetrijskih operacija grupe G, d je dimenzionalnost ireducibilne reprezentacije Γ_n , a $\chi^{\Gamma_n}(R)$ je karakter matrice simetrijskog operatora R. Ako primenimo operaciju projekcije na određene ireducibilne reprezentacije dobijamo njene bazisne funkcije. Kako bazisne funkcije nisu jedinstvene, izbor proizvoljne funkcije F bira se u zavisnosti od konkretnog problema. 1T-TaS₂ pripada tačkastoj grupi simetrije D_{3d} u kojoj postoji 12 simetrijskih operatora. Odgovarajuće transformacije koordinata usled delovanja ovih 12 simetrijskih operatora, kao i tabela odgovarajućih karaktera, predstavljene su u tabeli 6.3.

\hat{P}_R	x'	y'	z'	χ^{Γ_n} ($\chi^{\Gamma_n}(R)$	
				A_{1g}	E_g	
E	x	y	z	1	2	
C_3^1	$-\frac{1}{2}x + \frac{\sqrt{3}}{2}y$	$-\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	1	-1	
C_{3}^{-1}	$-\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	1	-1	
C'_2	x	-y	-z	1	0	
C_2''	$-\frac{1}{2}x + \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	-z	1	0	
$C_2^{\prime\prime\prime}$	$-\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$-\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	-z	1	0	
Ι	-x	-y	-z	1	2	
S_6^1	$\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	-z	1	-1	
S_{6}^{-1}	$\frac{1}{2}x + \frac{\sqrt{3}}{2}y$	$-\frac{\sqrt{3}}{2}x + \frac{1}{2}y$	-z	1	-1	
σ_v^{\prime}	-x	y	z	1	0	
$\sigma_v^{''}$	$\frac{1}{2}x - \frac{\sqrt{3}}{2}y$	$-\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	1	0	
$\sigma_v^{\prime\prime\prime}$	$\frac{1}{2}x + \frac{\sqrt{3}}{2}y$	$\frac{\sqrt{3}}{2}x - \frac{1}{2}y$	z	1	0	

Tabela 6.3: Simetrijske operacije \hat{P}_R sa odgovarajućom tabelom karaktera za D_{3d} tačkastu grupu simetrije.

Jedan od najbitnijih zadataka prilikom računanja ramanskih verteksa jeste određivanje funkcija koje će opisati periodičnost Briluenove zone. Kao probne funkcije moguće je odabrati sinusnu i kosinusnu funkciju koje će, redom, odgovarati neparnom i parnom paritetu reprezentacija. Ako u skladu sa tim za probnu funkciju F odaberemo funkciju koja od unutarravanske kristalne konstante a zavisi na sledeći način: $F = \cos(k_x a)$, za bazisnu fukciju A_{1g} se dobija

$$\Phi_{A_{1g}}(\mathbf{k}) = \frac{1}{3} \left[\cos(\mathbf{k}_{\mathbf{x}} \mathbf{a}) + 2\cos\left(\frac{1}{2}\mathbf{k}_{\mathbf{x}} \mathbf{a}\right) \cos\left(\frac{\sqrt{3}}{2}\mathbf{k}_{\mathbf{y}} \mathbf{a}\right) \right].$$
(6.7)

Analogni postupak dovodi do bazisnih funkcija E_g , koje su:

$$\Phi_{E_g^1}(\mathbf{k}) = \frac{2}{3} \left[\cos(\mathbf{k}_x \mathbf{a}) - \cos\left(\frac{1}{2}\mathbf{k}_x \mathbf{a}\right) \cos\left(\frac{\sqrt{3}}{2}\mathbf{k}_y \mathbf{a}\right) \right].$$
(6.8)

Kako je E_g dvodimenzionalna reprezentacija, druga bazisna funkcija pronalazi se na osnovu potprostorne invarijantnosti simetrijskih operacija. Tako dobijena bazisna funkcija ima oblik

$$\Phi_{E_g^2}(\mathbf{k}) = 2\sin\left(\frac{1}{2}\mathbf{k}_{\mathbf{x}}\mathbf{a}\right)\sin\left(\frac{\sqrt{3}}{2}\mathbf{k}_{\mathbf{y}}\mathbf{a}\right).$$
(6.9)

Na osnovu gore opisanog postupka dobijeni su ramanski verteksi heksagonalne simetrije 1*T*–TaS₂, prikazani na slikama 6.5(a)-6.5(c). Kao što se vidi, A_{1g} verteks projektuje oblast oko Γ tačke, dok E_g verteksi većinski projektuju granice Briluenove zone. Na osnovu ARPES merenja pokazano je da do otvaranja CDW procepa dolazi u oblasti oko M tačaka, te bi njegovo otvaranje trebalo da ima veći uticaj na spektre merene u E_g kanalu. Nasuprot tome, Motov procep koji se otvara u okolini Γ tačke trebalo bi da dovede do snižavanja nagiba A_{1g} spektara.

6.4.2 Određivanje veličine Motovog procepa

Početni nagibi ramanskih spektara mogu da posluže kao parametri za praćenje razvoja procepa u ispitivanom sistemu. Kako ne postoje eksperimentalni podaci za normalnu fazu, te se ne zna odnos inicijalnih nagiba spektara merenih u A_{1g} i E_g kanalima rasejanja u fazi u kojoj zasigurno ne postoji CDW procep, promena nagiba o kojoj se priča ima strogo relativno značenje. Ukoliko se analiza započne sa spektrima u prvoj CDW faze koja se javlja u 1T-TaS₂, spektrima IC-CDW faze, primetno je da je inicijalni nagib manji u spektrima merenim u A_{1g} , nego u E_g kanalu rasejanja. Kako je već u IC-CDW fazi započeto otvaranje CDW procepa u okolini M tačaka, a koje su projektovane E_g verteksima, očekivao bi se suprotan odnos inicijalnih nagiba spektara.

Međutim kako, i pored toga što u IC-CDW fazi dolazi do delimičnog otvaranja CDW procepa, E_g verteksi i dalje projektuju Fermi površinu veruje se da su ovi doprinosi odgovorni za veći nagib spektra merenog u E_g kanalu rasejanja. Spuštanje temperature na $T = 352 \,\mathrm{K}$ dovodi do naglog pada nagiba spektra merenog u E_g kanalu, ispod nagiba spektra merenog u A_{1g} kanalu rasejanja. Ovaj pad objašnjava se činjenicom da se na temperaturi $T = 352 \,\mathrm{K}$ 1T-TaS₂ nalazi u NC-CDW fazi, koja se opisuje postojanjem C-CDW domena unutar IC-CDW strukture. Pojava C-CDW domena dovodi do širenja CDW procepa, te samim tim i do primećenog pada u nagibu spektra merenog u E_g kanalu

Slika 6.5: Otvaranje Motovog i CDW procepa. (a-c) Fermi povrišina i ramanski verteksi normalne faze 1T-TaS₂ u naznačenim simetrijama. (d-g) Niskoenergetski ramanski spektri na naznačenim temperaturama u E_g (plava linija) i A_{1g} (crvena linija) simetriji. (h) Visokoenergetski spektri snimljeni na T = 4 K. Vertikalne linije odgovaraju procenjenoj veličini Motovog procepa, a obojeni pravougaonici veličini greške. (i) Promena veličine Motovog procepa sa temperaturom.

rasejanja. Širenje C-CDW domena unutar približno samerljive strukture ne dovodi samo do povećanja CDW procepa, već i do postepenog otvaranja Motovog procepa u okolini Γ tačke. Kako dodatno snižavanje temperature dovodi do širenja i Motovog i CDW procepa to za posledicu ima postepeni pad nagiba spektra obe simetrije. Prva temperatura na kojoj se nagibi spektara merenih u oba kanala rasejanja poklapaju je T = 270 K. Dalje spuštanje temperature izaziva istovetne promene u nagibima ovih spektara, koji na temperaturi T = 4 K gotovo opadaju na nulu. Nagib koji je približno jednak nuli ukazuje na to da u celoj Brilenovoj zoni dolazi do potpunog otvaranja procepa.

Slika 6.6: Ramanski spektri u rasponu energija od 0 cm⁻¹ do 3600 cm⁻¹ u (a) paralelnoj i (b) ukrštenoj polarizacionoj konfiguraciji na naznačenim temperaturama.

Praćenje relativne promene početnih nagiba spektara dve simetrije nije jedini način na koji je moguće doći do informacija o procepima u sistemu. Zapravo možda je i smislenije govoriti o procepima u vidu gubitka intenziteta u spektrima ispod nekog određenog energetskog praga Ω_{procep} . Ukoliko se pogledaju slike 6.5(g) i 6.5(h) vidi se da intenzitet u spektrima ne premašuje 0,2 odbroja(mWs)⁻¹ ispod 30 cm⁻¹ i 0,3 odbroja(mWs)⁻¹ u rasponu od 30 do 1500 cm⁻¹. U sistemima sa kolektivnim elektronskim fenomenima, poput CDWa ili superprovodnosti, pomenuti prag je dat kao 2Δ , gde Δ odgovara jednočestičnom procepu. Ove sisteme najčešće karakteriše postojanje nagomilavanja intenziteta na višim energijama, $\Omega > 2\Delta$. Kao što se vidi na slikama 6.6 i 6.7, spuštanje temperature ne dovodi do nagomilavanja inteziteta, već do njegovog opadanja. Ovo opadanje dešava se u svim fazama, ali sa druačijim stepenom promene. Očekivano, najveći pad dešava se u C-CDW fazi, i to ispod T = 210 K. Na osnovu dosadašnjih saznanja o 1T-TaS₂ nije moguće objasniti odsustvo očekivanog nagomilavanja intenziteta. Spektri predstavljeni na slici 6.6 mereni su sa korakom merenja od $\Delta\Omega = 50$ cm⁻¹, pri čemu je rezolucija korišćenog sistema bila $\sigma \approx 20$ cm⁻¹. U ovakvoj eksperimentalnoj postavci nemoguće je precizno odrediti položaje i oblike fononskih linija u delu spektra ispod 500 cm⁻¹. Kao što je moguće primetiti, u spektrima merenim u NC-CDW i IC-CDW fazi javlja se široka struktura čiji je maksimum centriran u energetskoj oblasti od 2200 cm⁻¹ do 3200 cm⁻¹. Ova široka struktura najverovatnije je posledica doprinosa luminiscencije. U C-CDW fazi dodatne podstrukture moguće je primetiti na oko 1500 cm⁻¹ i 3000 cm⁻¹.

Nasuprot CDW sistemima, kod Motovih sistema fenomen nagomilavanja intenziteta na višim energijama usled otvaranja Motovog procepa još uvek nije uočen. Kako se u Motovim sistemima provodna zona oko Fermijeve energije E_F simetrično cepa na višu i nižu Hubardovu zonu [Slika 6.7(d)] očekivano je da eksperimentalni rezultati budu isti kao i u slučaja poluprovodnika sa izuzetno malom provodnom zonom ili izolatora. To znači da je kada je temperatura T = 0 K moguće razlikovati međuzonski deo čiji oblik zavisi od samih zona i oblast u kojoj uopšte nema intenziteta. Očekuje se da unutar procepa dolazi do termalnih ekscitacija kada se sistem nalazi na nekoj konačnoj temperaturi T. Kada se pogledaju spektri snimljeni na najnižoj eksperimentalnoj temperaturi, u obe simetrije, vidi se da ispod energetskog praga postoji ravni gotovo nestajući elektronski kontinuum na koji su superponirane fononske linije. Ovaj prag ima malu zavisnost od simetrije. Posmatrajući visokoenergetski deo spektra primetno je da iznad energetskog praga dolazi do porasta inteziteta. Ovaj prag energije, prikazan u vidu vertikalne linije na slici 6.5(g), može da se shvati kao dužina udaljenosti niže Hubardove zone od Fermijeve energije E_F ili kao polovina rastojanja između više i niže Hubardove zone. Njegova procenjena vrednost iznosi 1350–1550 cm $^{-1} \equiv 170–190~{\rm meV}$ i odlično se slaže sa veličinom procepa dobijenom skenirajućom elektronskom mikroskopijom, infracrvenom spektroskopijom i u ARPES eksperimentu [141, 157, 196]. S obzirom na to da se sa podizanjem temperature smanjuje veličina procepa u obe simetrije, rezultati analizirani na ovaj način ukazuju na mogućnost postojanja procepa u NC-CDW fazi. Nažalost, zbog prisustva doprinosa luminiscencije u spektrima u NC-CDW fazi [Slika 6.7], koji se preklapaju sa ramanskim signalom, nije moguće ispratiti razvoj procepa iznad temperature C-CDW faznog prelaza.

Da bi se potvrdila tačnost dobijenih rezultata veličine procepa provereno je da li i na kojim energijama postoje doprinosi luminiscencije u ramanskim spektrima. Ramanski spektri mereni u paralelnoj polarizacionoj konfiguraciji koristeći tri različite laserske linije kao izvore pobude prikazani su na slici 6.7. Na temperaturi T = 330 K u svim spektrima javlja se široki pik koji je centriran na oko 15200 cm⁻¹. Kako se intenzitet ovog pika smanjuje sa smanjenjem energije lasera, u spektrima u kojima je intenzitet prikazan u funkciji ramanskog pomeraja vidi se da se položaj pika menja sa promenom talasne dužine lasera. Ovakvo ponašanje ukazuje na luminiscentnu prirodu pika. Na niskim temperaturama nemoguće je pronaći isti pik, već se javlja slaba struktura koja je najintenzivnija kada se koristi plava laserska linija. Kada se spektri predstave u funkciji Ramanovog pomeraja primetne su dve promene u spektrima za sve talasne dužine lasera – na 1500 cm⁻¹ i na 3000 cm^{-1} .

Slika 6.7: Doprinosi luminiscencije ramanskim spektrima. Zavisnost intenziteta od učestanosti na temperaturama (a) T = 330 K i (b) T = 4 K. (c) i (d) Ramanska susceptibilnost izračunata iz (a) i (b) u funkciji Ramanovog pomeraja. Maksimum doprinosa luminiscentnog pika osenčen je sivom bojom.

S obzirom na to da se položaji ovih struktura ne menjaju sa promenom talasne dužine lasera oni su najverovatnije doprinosi neelastično rasejane svetlosti. Kao što je prethodno pomenuto, u C-CDW fazi dolazi do cepanja provodne zone na višu i nižu Hubardovu zonu. Ovo cepanje posledica je toga što Kulonova odbojna sila nadjačava smanjenu širinu zone. Shodno tome, pretpostavka je da promene u spektru na oko 1500 cm⁻¹ potiču od ovog cepanja i odgovaraju razlici najviše energije niže Hubardove zone i Fermi energije E_F , dok pik na oko 3000 cm⁻¹ odgovara rastojanju između najviše energije niže i najniže energije više Hubardove zone. Ako se ovaj scenario uzme kao tačan, neophodno je ponuditi odgovor na pitanje u koje nepopunjeno stanje iznad E_F se rasejavaju elektroni u procesima rasejanja prvog reda. U skladu sa skorašnjim rezultatima tunelirajuće spektroskopije moglo bi da se očekuje da određena gustina stanja potiče od metaličnih zidova između različito uređenih oblasti duž c ose. Kako su ovi kvazi-jednodimenzionalni zidovi topološki izuzetno mali, oni bi dali osnovu za rasejanje na visokim energijama, ali gustina stanja ne bi bila dovoljna da njihov intenzitet na niskim energijama bude merljiv u eksperimentu Ramanovog rasejanja.

7.1 Sinteza i kristalna struktura

Slojeviti kristali $Mn_3Si_2Te_6$ dobijeni su topljenjem mešavine sačinjene od Mn žetona, grumena Si i kuglica Te. Ovako pripremljena smeša ubačena je u izolovanu kvarcnu cev. Kvarcna cev u period d 20 h zagrevana je na temperaturu od 1100°. Nakon tih 20 h, hlađena je sa korakom od 1°C/h do postizanja temperature od 850°C.

Slika 7.1: (a) Kristalna struktura $Mn_3Si_2Te_6$. (b) XRD difraktorgram $Mn_3Si_2Te_6$ praha na sobnoj temperaturi. Bragove refleksije prostorne grupe $P\bar{3}1c$ su date vertikalnim linijama. Slika je preuzeta iz [160].

Kristalna struktura ovako dobijenih slojevitih $Mn_3Si_2Te_6$ određena je na osnovu rezultata XRD eksperimenta. XRD podaci dobijeni su korišćenjem Rigaku Miniflex difraktometar sa Cu $K\alpha$ izvorom zračenja ($\lambda = 0.15418$ nm).

Detaljnije objašnjenje metode narastanja, tumačenje XRD rezultata, kao i ispitivanje magnetnih svojstava korišćenih slojevitih kristala $Mn_3Si_2Te_6$ moguće je pronaći u referenci [160]. Dobijeni difraktogrami uspešno su modelovani modelom koji odgovara pros-

tornoj grupi simetrije $P\bar{3}1c$, i pokazali su veliku čistoću dobijenih uzoraka. Vrednosti parametara kristalne rešetke dobijeni iz XRD eksperimenta su a = 7,046(2) Å i c = 14,278(2) Å.

Narastanje, XRD eksperiment i ispitivanje magnetnih svojstava kristala CrI₃ urađeni su od strane prof. dr Čedomira Petrovića i saradnika u Brukhejven nacionalnoj laboratoriji u Sjedinjenim Američkim Državama.

7.2 Dinamika rešetke

Dinamika rešetke slojevitih kristala $Mn_3Si_2Te_6$ ispitivana je u eksperimentu Ramanovog rasejanja. Eksperimentalna postavka u Centru za čvrsto stanje i nove materijale Instituta za fiziku u Beogradu, korišćena u tu svrhu, opisana je u poglavlju 2.4.2. Spektrometar je podešen da radi u oduzimajućem režimu sa kombinacijom difrakcionih rešetki 1800/1800/2400 zareza/mm. Rezolucija spektrometra uporediva je sa širinom Gausijana od 1 cm⁻¹. Korišćena geometrija rasejanja je geometrija rasejanja unazad. Kao izvor pobude korišćena je 514 nm linija Coherent Ar⁺/Kr⁺ jonskog lasera. Laser je fokusiran na uzorak pomoću objektiva sa uveličanjem $50\times$. Sva merenja vršena su sa uzorkom u kriostatu, sa visokim vakuumom (10^{-6} bar). Primećeno je da se na površini kristala $Mn_3Si_2Te_6$, kada se nađu u kontaktu sa vazduhom, jako brzo formira sloj TeO₂ koji nadjačava ostale doprinose u eksperimentu Ramanovog rasejanja. Da bi se izbegli doprinosi TeO₂ u spektrima, cepanje uzorka vršeno je na uzorku smeštenom unutar kriostata, kako bi se odmah nakon cepanja započelo s vakuumiranjem. Uzorak je smešten unutar kriostata tako da se pravac upadnog zračenja poklapa sa kristalografskom *c* osom. Svi spektri korigovani su za Boze faktor.

7.2.1 Polarizaciona zavisnost: Asignacija fononskih modova

Na svim eksperimentalno dostupnim temperaturama $Mn_3Si_2Te_6$ kristališe u trigonalnu kristalnu strukturu koja pripada $P\bar{3}1c$ prostornoj grupi simetrije. Raspodela fononskih modova predviđena simetrijskom analizom u tom slučaju je:

$$\Gamma_{Raman} = 5A_{1g} + 11E_g , \qquad (7.1)$$

$$\Gamma_{IR} = 6A_{2u} + 11E_u , \qquad (7.2)$$

$$\Gamma_{acoustic} = A_{2u} + E_u . \tag{7.3}$$

Prostorna grupa simetrije: $P\bar{3}1c$				
Atomi	Ireducibilne reprezentacije			
Mn $(2c)$	$A_{2g} + A_{2u} + E_g + E_u$			
$\operatorname{Mn}(4f)$	$A_{1g} + A_{1u} + A_{2g} + A_{2u} + 2E_g + 2E_u$			
Si $(4e)$	$A_{1g} + A_{1u} + A_{2g} + A_{2u} + 2E_g + 2E_u$			
Te $(12i)$	$3A_{1g} + 3A_{1u} + 3A_{2g} + 3A_{2u} + 6E_g + 6E_u$			
$A_{1g} = \begin{pmatrix} a & & \\ & a & \end{pmatrix}$	$ b \end{pmatrix} {}^{1}E_{g} = \begin{pmatrix} c & & \\ & -c & d \\ & d \end{pmatrix} {}^{2}E_{g} = \begin{pmatrix} & -c & -d \\ -c & & \\ d & & \end{pmatrix} $			

U tabeli 7.1 prikazane su pozicione simetrije atoma, njihovi doprinosi fononima iz Γ -tačke, ireducibilne reprezentacije i Ramanovi tenzori modova.

Tabela 7.1: Pozicione simetrije Mn, Si i Te atoma, njihov doprinos fononima iz Γ -tačke za $P\bar{3}1c$ simetriju kristalne strukture. Ramanovi tenzori odgovarajuće prostorne grupe predstavljeni su u donjem delu tabele.

Na osnovu Ramanovih tenzora vidi se da se od šesnaest Raman aktivnih modova očekuje jedanest E_q modova koji se javljaju u spektrima snimljenim i u paralelnoj i u ukrštenoj polarizacionoj konfiguraciji, dok se preostalih pet A_{1g} modova javlja samo u paralelnoj polarizacionoj konfiguraciji. Ramanski spektri slojevitih kristala Mn₃Si₂Te₆ snimljeni u obe polarizacione konfiguracije, na temperaturama 100 K i 300 K, prikazani su na slici 7.2. Kao što se vidi, u spektrima paralelne polarizacione konfiguracije vidi se osam, umesto pet, fononskih linija. Razlog povećanog broja modova može biti višestruk. Naime, dodatni pikovi mogu biti posledica aktivacije infracrvenih ili neaktivnih modova usled neuređenosti kristalne strukture i/ili smanjena striknosti selekcionih pravila. Međutim, s obzirom na to su dodatni pikovi vidljivi samo u A simetriji, veća je verovatnoća da su u pitanju overtone stanja. Do uočavanja overtone stanja u ramanskim spektrima može doći kao posledica pojačanog sparivanja fonona sa drugim ekscitacijama, poput spin-fonon sparivanja. Pored spomenutih modova A_{1g} simetrije, u spektrima se javlja još devet pikova koji se ponašaju u skladu sa selekcionim pravila E_g simetrijskih modova. Pik koji se u svim spektrima nalazi na oko 153,1 cm⁻¹ odgovara A_{1q}^3 modu. Njegova uočljivost u spektrima dobijenim u ukrštenoj geometriji posledica je efekta curenja (leakage) usled prisustva defekata ili lošeg poravnjanja uzorka. To znači da se u spektrima slojevitih kristala Mn₃Si₂Te₆ javlja osam od očekivanih jedana
est E_g simetrijskih modova. Odsustvo tri moda može da se objasni njihovim slabim intenzitetom ili ograničenom rezolucijom spektrometra. U skladu sa iznetom analizom urađena je asignacija spektara, koja je predstavljena u okviru slike 7.2. Eksperimentalne energije fonona i njihove simetrije prikazane su u tabeli 7.2.

Predstavljeni ramanski spektri drastično se razlikuju od spektara slojevitih kristala $Mn_3Si_2Te_6$ koje je moguće pronaći u referenci [162]. U pomenutom istraživanju prijavljena su samo dva moda, jedan E_g mod na oko 118,4 cm⁻¹ i jedan A_{1g} mod na oko 136,9 cm⁻¹. Ovaj broj drastično se razlikuje od očekivanih šestanest Raman aktivnih

Slika 7.2: Ramanski spektri slojevitih kristala $Mn_3Si_2Te_6$ u dve geometrije rasejanja na 300 K (crvena linija) i 100 K (plava linija). Siva linija predstavlja skalirani spektar TeO_2 snimljen na 300 K. Pikovi koji se javljaju u obe geometrije prepoznati su kao E_g simetrijski modovi, dok su oni koji se vide samo za paralelnu polarizacionu konfiguraciju prepoznati kao A_{1g} simetrijski modovi.

moda i jedanaest uočenih u ramanskim spektrima na slici 7.2. Takođe, ako se uporede energije modova prijavljenih u [162] i energije najbližih modova odgovorajuće simetrije iz tabele 7.2 primećuje se neslaganje veće od 30%. Uz sve to, širina fononskih linija prijavljena u [162] drastično je veća od širine bilo koje fononske linije u ramanskim spektrima na slici 7.2. Shodno tome, postavlja se pitanje odakle potiče toliko neslaganje između ramanskih spektara istog materijala. Kako je već pomenuto, u toku ovog istraživanja primećeno je da slojeviti kristali $Mn_3Si_2Te_6$ jako brzo oksidiraju, što za posledicu ima formiranje sloja TeO_2 na površini, te je jedno od mogućih objašnjenja ove razlike prisustvo TeO_2 u spektrima prikazanim u [162]. Ukoliko se detaljnije pogledaju ramanski

spektri TeO₂ mereni na 300 K prikazani u vidu sive linije na slici 7.2, uočljivo je odlično slaganje sa spektrima prijavljenim u [162]. U shvru što tačnijih rezultata istraživanja dinamike rešetke slojevitih kristala $Mn_3Si_2Te_6$ eksperiment Ramanovog rasejanja vršen je nekoliko različitih kristala $Mn_3Si_2Te_6$. U svakom od njih dobijeni su istovetni rezultati, koji su u saglasnosti sa spektrima prikazanim na slici 7.2.

Prostorna grupa $P\bar{3}1c$				
Simetrija	Eksperiment (cm^{-1})			
$P1^*$	53,3			
$P2^*$	$57,\! 6$			
E_g^1	58,5			
E_g^2	$62,\!51$			
$P3^*$	64,2			
E_g^3	80,4			
A_{1g}^1	95,3			
E_g^4	95,9			
A_{1g}^{2}	107,3			
E_g^{5}	114,0			
E_g^6	$136,\! 6$			
E_g^7	149,8			
A_{1q}^{3}	153,1			
A_{1q}^4	367,9			
$E_{g}^{\check{8}}$	369,4			
$A_{1g}^{\tilde{5}}$	486,7			

 $\,\,^*$ pikovi se ponašaju u skladu sa A_{1g} selekcionim pravilima

Tabela 7.2: Simetrije i energije $Mn_3Si_2Te_6$ fonona. Eksperimentalne vrednosti su dobijene na temperaturi 100 K, sa eksperimentalnom greškom 0,3 cm⁻¹.

7.2.2 Temperaturska zavisnost: Spin-fonon interakcija i fazni prelazi

Ukoliko se detaljnije pogledaju fononske linije u spektrima na slici 7.2 vidi se da većina linija ima asimetrični oblik. Asimetričnost fononskih linija može poticati od prisustva defekata u merenim uzorcima. Međutim, kada su defekti prisutni u merenim materijalima oni ne utiču samo na oblik linije, već i na širinu. Kako su pikovi na slici 7.2 prilično uski, mala je verovatnoća da asimetričnost potiče od prisustva defekata. Sparivanje fonona sa kontinuumom (npr. spin-fonon sparivanje) takođe može dovesti do asimetrije fononskih linija. S obzirom na to da asimetričnost fononskih linija može ukazivati na zanimljive fizičke fenomene u materijalu, neophodno je detaljno ispitivanje oblika fononskih linija. U tu svrhu analiziran je najintenzivniji mod u spektrima, koji se ne preklapa ni sa jednom drugom fononskom linijom, i koji se javlja na oko 486,7 cm⁻¹ – A_{1q}^5 mod.

Slika 7.3: Kvantitativna analiza ramanskog A_{1g}^5 simetrijskog moda na naznačenim temperaturama. Linija dobijena korišćenjem Voitovog profila prikazane su zelenom bojom, a linija dobijena kao konvolucija Fano profila i Gausijana prikazane su zelenom bojom.

Kvantitativna analiza fononske linije ovog moda urađena korišćenjem simetričnog Voitovog profila i konvolucije asimetričnog Fano profila sa Gausovim profilom. Oba profila spektralnih linija detaljno su objašnjena u poglavlju 2.2.5 ove disertacije. Rezultati modelovanja spektralne regije A_{1g}^5 simetrijskog moda na naznačenim temperaturama, zajedno sa vrednostima Fano parametrra |q|, prikazani su na slici 7.3. Linije dobijene korišćenjem Voitovog profila prikazane su zelenom bojom, a linije koje su dobijene modelovanjem spektra sa konvolucijom Fano profila i Gausijana prikazane su plavom bojom. Na temperaturama 80 K i 300 K [Slike 7.3(a) i 7.3(c)] bolje slaganje dobijeno je korišćenjem asimetrične linije. Na suprot tome, na temperaturi od 160 K dobijena vrednost Fano parametra, kao i poređenje između dva korišćena profila, ukazuje na simetričnu liniju. To znači da se oblik linije transformiše iz asimetričnog u simetrični, da bi se opet vratio u asimetrični. Da bi se tačno utvrdilo na kojim temperaturama do ovih transformacija dolazi urađena su temperaturski zavisna merenja.

Slika 7.4: (a) Spektralna oblast A_{1g}^5 Raman aktivnog moda merena u paralelnoj polarizacionoj konfiguraciji na naznačenim temperaturama. Spektri su modelovani linijama konvolucije Fano profila i Gausijana (zelene linije). Temperaturska zavisnost (b) energije A_{1g}^3 i A_{1g}^5 modova, kao i (c) širine i (d) Fano parametra $|q| A_{1g}^5$ moda dobijena u drugom ciklusu merenja.

Spektralna regija A_{1g}^5 simetrijskog moda na naznačenim temperaturama, zajedno sa

temperaturskom zavisnosti parametara A_{1g}^3 i A_{1g}^5 modova predstavljena je na slici 7.4. A_{1g}^3 modelovan je linijom Voitovog profila, dok je A_{1g}^5 modelovan linijom koja predstavlja konvoluciju Fano profila i Gausijana. Posmatrajući rezultate predstavljene na slici 7.4 vidi se da se sa podizanje temperature A_{1g}^5 mod pomera ka nižim energija, i širi, sve do temperature $T_1 = 142,5$ K. Na sledećoj eksperimentalnoj temperaturi dolazi do naglog sužavanja istog moda i pomeranja ka višim energijama. Nakon toga, mod nastavlja da se sužava, ali počinje da se pomera ka nižim energijama. Na temperaturi $T^* = 160$ K A_{1g}^5 moda dostiže svoj najuži oblik. Podizanje temperature do $T_2 = 190$ K dovodi do ponovnog širenja fononske linije i pomeranja moda ka nižim temperaturama. Na temperaturi $T_2 =$ 190 K energija A_{1g}^5 mod opet naglo opada, i nastavlja da pada sve do $T_3 = 280$ K. U ovom rasponu temperatura širina fononske linije je u blagom porastu. Temperaturska zavisnost energije A_{1g}^3 Raman aktivnog moda pokazuje slično ponašanje.

Zanimljiva i krajnje neočekivana temperaturska zavisnost primećena je i u slučaju Fano parametra |q| [Slika 7.4(d)] A_{1g}^5 simetrijskog moda. Naime, na najnižim eksperimentalnim temperaturama A_{1g}^5 mod je izraženo asimetričan sa Fano parametrom |q| =9,9. Zagrevanje uzorka sve do temperature $T_1 = 142,5$ K nema preterano velik uticaj na asimetričnost. Međutim, dalje podizanje temperature dovodi do naglog skoka Fano paramtera, odnosno smanjene asimetričnosti fononske linije A_{1g}^5 moda. Na temperaturi $T^* = 160$ K mod A_{1g}^5 postaje potpuno simetričan, sa vrednosti Fano parametra |q| =38,8 [Slika 7.3(c)]. Dodatno povećanje temperature dovodi do snižavanja Fano parametra i do ponovne uspostave asimetrične linije na T_2 . U temperaturskom rasponu od T_2 do T_3 vrednost Fano parametra je skoro konstantna. Prelaskom temperature T_3 A_{1g}^5 mod postaje još asimetričniji, postižući minimum vrednosti Fano parametra na najvišoj eksperimentalno dostupnoj temperaturi T = 320 K.

Primećene promene u ramanskim paramerima najčešće ukazuju na jedan ili više faznih prelaza. Međutim, kao što je pomenuto, jedini prijavljeni fazni prelaz u $Mn_3Si_2Te_6$ je fazni prelaz drugog reda između ferimagnetne i paramagnetne faze, do kog dolazi na temperaturi od T = 78 K [160, 162]. Ova temperatura znatno je niža od svih eksperimentalnih temperatura na kojima su primećene najznačajnije promene u ramanskim spektrima. Premda primećena asimetrja fononskih linija na temperaturama iznad T_C može biti povezana sa pojačanom spin-fonon interakcijom, kao što je to slučaj kod $CrSiT_3$ [159], ona nije dovoljna kako bi se objasnile nagle promene karakteristika A_{1q}^5 moda. Jedan od mogućih scenarija je da ono potiče od postojanje frustriranih magnentnih faza. Ako se dobijeni rezultati analiziraju u skladu sa tom pretpostavkom može se reći da na temperaturi T_1 dolazi do promene u prirodi magnetnih fluktuacija. Ova promena izaziva skok u energiji fonona, praćen snižavanjem spin-fonon sparivanja koje se u spektrima manifestuje kao sužavanje i promena oblika fononske linije moda. Na temperaturi T^* mod postaje u potpunosti simetričan, te je spin-fonon interakcija gotovo zanemarljiva. Podizanje temperature dovodi do postepenog porasta spin-fonon interakcija, koja na temperaturi T_2 dostiže vrednosti uporedive sa početnim (~ 10), usled još jedne promene u prirodi magnetnih fluktuacija. Nakon monotonog razvoja fononskih parametara na temperaturi T_3 energija fonona trpi još jednu naglu promenu praćenu jačanjem spin-fonon interakcije. Premda dve studije ukazuju na anomaliju u magnetizacionim merenjima na oko 330 K, povezanu sa anizotropnim magnetizmom za koju je odgovorna mala feromagnetna komponenta [162, 167], razlika između ove temperature i T_3 je dovoljno velika da bi promene u ramanskim spektrima bile povezane sa njom.

Slika 7.5: Temperaturska zavisnosnot realnog dela ac susceptibilnosti m'(T) i njen temperaturskih izvod u funkciji temperature za $\mathbf{H}||\mathbf{ab}|$.

Iako prethodno prijavljeni eksperimentalni rezultati ne ukazuju na fazni prelaz prvog reda u rasponu temperaura u kojima je primećeno anomalno ponašanje A_{1g}^5 moda [160, 162, 163], nakon dodatnih inspekcija primećen je diskontinuitet prvog izvoda *ac* susceptibilnosti u **ab** ravni [slika 7.5(a)] [197]. S obzirom na to da se magnetni momenti uređuju baš u toj ravni [163], kao i da prvi izvodi otpornosti i termalne provodnosti ne trpe diskontinuitete, primećeni diskontinuitet dodatno ukazuje na scenario u kom dolazi do takmičenja u magnetnim fluktuacijama.

8 Zaključak

U sklopu ove doktorske disertacije izloženi su rezultati ispitivanja vibracionih osobina slojevitih kristala kvazi-dvodimenzionalnih materijala. S obzirom na to da je fizika kvazidvodimenzionalnih materijala relativno sveža oblast eksperimentalne fizike čvrstog stanja, svako novo saznanje može biti od izuzetnog značaja za dalji tok njenog razvoja. Shodno tome, ne čudi da je otkriće fizičkih fenomena, eksperimentalno nedostupnih kod njihovih trodimenzionalnih analogona, iznedrilo veliki broj istraživanja usmerenih ka dubljoj spoznaji transportnih, magnetnih i hemijskih karakteristika ovih sistema. U cilju davanja značajnog doprinosa trenutnim saznanjima o niskodimenzionom magnetizmu, kao i u razrešavanju misterije iza mehaniza formiranja kolektivnog elektronskog fenomenena talasa gustine naelektrisanja, u okviru ove disertacije ispitavani su trenutno najznačajniji predstavnici kvazi-dvodimenzionalnih materijala za ova dva fenomena.

Kvazi-dvodimenzionalni materijali u kojima je niskodimenzioni magnetizam dobio eksperimentalnu potvrdu, a koji su zbog svojih jedinstvenih svojstava izabrani da budu deo predstavljenog istraživanja, su CrI₃, VI₃ i Mn₃Si₂Te₆. Polarizovani ramanski spektri na CrI₃ mereni na 100 K i na 300 K pokazali su da niskotemperaturska i visokotemperaturska faza mogu da se opišu u saglasnosti sa R3 i C2/m prostornom grupom simetrije, redom. Od očekivanih osam, odnosno dvanaest, Raman aktivnih modova u niskotemperaturskom, odnosno visokotemperaturskom, spektru, samo jedan mod nije prisutan. Odsustvo ovog moda u spektrima najverovatnije je posledica njegovog slabog intenziteta. Eksperimentalne energije konzistentne su sa DFT proračunima, za obe faze. Nakon potvde simetrija kristalnih struktura obe faze utvrđeno je da je simetrija pojedinačnog sloja CrI_3 $p\bar{3}1/m$, a ne prethodno prijavljena $R\bar{3}2/m$. Kako bi se odredila tačna temperatura na kojoj dolazi do faznog prelaza, kao i kakav je tačno njegov uticaj na vibracione osobine slojevitih kristala CrI₃, odrađena su temperaturski zavisna merenja. Posmatrajući temperatursku zavisnost romboedarskih modova utvrđeno je da na temperaturi od $T_S = 180$ K dolazi do cepanja E_g modova na monoklinične A_g i B_g modove, dok se romboedarski A_q^2 i A_q^4 modovi transformišu u monoklinične B_g modove. S obzirom na to da iznad ove temperature u spektrima ne postoji ništa što može da se poveže sa doprinosima romboedarske faze, zaključeno je da ne postoji koegzistencija faza na dužoj temperaturskoj skali. Korak merenja je iznosio 5 K, tako da ne može da se tvrdi da unutar tih 5 K od temperature faznog prelaza ne postoje neki mali doprinosi romboedarske faze.

U slučaju feromagnetnog VI₃ glavno pitanje na koje je trebalo odgovoriti jeste pitanje kristalne strukture. Naime, tri različite XRD studije ponudile su tri različite mogućnosti. Kako je poznavanje simetrije kristalne strukture krucijalno za tačnu analizu skoro svih eksperimentalnih i teorijskih istraživanja, glavni fokus bio je otkriti razlog neslaganja rezultata i ponuditi rešenje. U tom cilju, modovi primećeni u polarizovanim ramanskim spektrima upoređeni su sa predviđenim modovima za svaku od ponuđenih simetrija jedinične ćelije. Kako je ovaj postupak eliminisao samo jednu od tri mogućnosti, eksperimentalne vrednosti fononskih energija upoređene su sa DFT proračunima. Utvrđeno je da ramanski spektri potiču od $P\bar{3}1c$ simetrije kristalne strukture. Međutim, rezultati sinhrotronskog XRD eksperimenta na istim uzorcima pokazali su da kristalna struktura ipak pripada R3 prostornoj grupi simetrije. Znajući da XRD eksperiment daje usrednjenu kristalnu strukturu, s obzirom na to da se većinadoprinosa kratkodometnog uređenja otklanja sa pozadinskim signalom, a da signal u ramanskim spektrima najčešće potiče od lokalne ideje, javila se ideja da se uradi PDF analiza koja bi koristila model sačinjen od doprinosa dugodometne $R\bar{3}$ i kratkodometne $P\bar{3}1c$ faze. Najbolji rezultat dobijen je korišćenjem 75% dugodometnih i 25% kratkodometnih doprinosa. Time je rešeno pitanje kristalne strukure VI₃ i pruženo je objašnjenje odakle potiče neslaganje tri XRD eksperimenta.

Ramanski spektri ferimagnetnog $Mn_3Si_2Te_6$ analizirani su u skladu sa kristalnom strukturom prostorne grupe simetrije $P\bar{3}1c$. Od simetrijom predviđenih šesnaest modova $(5A_{1g} + 11E_g)$ identifikovano je trinaest $(5A_{1g} + 8E_g)$. Pored ovih modova, u spektrima je primećeno još tri moda, koja se ponašaju u skladu sa A_{1g} selekcionim pravilima. S obzirom na to da se ovi modovi pojavljuju samo u spektrima u paralelnoj polarizacionoj konfiguraciji, oni su najverovatnije *overtone* stanja uočljiva usled jake spin-fonon interakcije u materijalu. Na pojačano spin-fonon sparivanje ukazuje i asimetričnost fononskih linija u spektrima. Temperaturska zavisnost energije fonona, širine i Fano parametra A_{1g}^5 moda posebno je zanimljiva. Naime, u temperaturskoj zavisnosti sva tri parametra jasno se manifestuju tri diskontinuiteta. Do njih dolazi na temperaturama $T_1 = 142,5$ K, $T_2 = 190$ K i $T_3 = 280$ K. Svaki je praćen je naglim promenama Fano parametra te se da zaključiti da imaju izuzetno jak uticaj na spin-fonon sparivanje u $Mn_3Si_2Te_6$. Ovi diskontinuiteti najverovatnije su posledica kompeticija različitih magnetnih faza i povezanih magnetnih fluktuacija. Na ovaj scenario ukazuju i diskontinuiteti primećeni u temperaturskoj zavisnosti prvog izvoda magnetne *ac* susceptibilnosti u **ab** ravni.

Formiranje talasa gustine naelektrisanja ispitivano je na kristalima 1T-TaS₂. Prelazi između tri CDW faze u ovom materijalu javljaju na temperaturama koje su dostupne u eksperimentu Ramanovog rasejanja, te 1T-TaS₂ predstavlja idealan sistem za ramansku analizu talasa gustine naelektrisanja. Polarizovani ramanski spektri sve tri faze analizirani su u skladu sa postojećim saznanjima. U ramanskim spektrima samerljive faze, snimljenim u oba kanala rasejanja, identifikovano je $19A_g$ i $19E_g$ simetrijskih modova, ukazujući na heksagonalan/trigonalan način pakovanja "Davidovih zvezda" u samerljivu superstrukturu. Ovaj rezultat u suprotnosti je sa prethodno prijavljenim trikliničnim načinom pakovanja. Posmatrajući spektre nesamerljive faze, i poredeći ih sa ab initio proračunima za normalnu metalnu fazu, utvrđeno je da se isti mogu objasniti u skladu sa fononskom gustinom stanja, pre nego na osnovu izračunatih fononskih disperzija. Do projekcije fononske gustine stanja u ramanskim spektrima nesamelrjive faze najverovatnije dolazi usled narušenja translacione invarijantnosti prilikom formiranja talasa gustine naelektrisanja, kao i usled nezanemarljivog elekton-fonon sparivanja. U ramanskim spektrima merenim u opsegu temperatura za koje je 1T-TaS₂ u tzv. približno samerljivoj fazi, primećeni su doprinosti samerljive i nesamerljive faze. Ovakav rezultat potvrda je pretpostavke da je približno samerljiva faza koegzistencija samerljive i nesamerljive faze. S obzirom na to da je 1T-TaS₂ u normalnoj fazi metaličan, a u samerljivoj fazi izolator, i imajući uvidu da se u literaturi 1T-TaS₂ pominje kao Motov sistem, javila se ideja o ispitivanju elektronske strukture 1T-TaS₂. Rezultati eksperimenta elektronskog Ramanovog rasejanja pokazali su da se, pored CDW procepa karakterističnog za sve materijale u kojima dolazi do formiranja talasa gustine naelektrisanja, u samerljivoj fazi na temperaturi oko T = 100 K otvara i Motov procep. Ovaj procep posledica je metal-izolator prelaza i njegova procenjena veličina $\Omega_{procep} \approx 170 - 190$ meV u saglasnosti je sa rezultatima ARPES studija. Ovim nije samo pokazano da je eksperiment elektronskog Ramanovog rasejanja tehnika koja može precizno da odredi veličine procepa u Motovim sistemima, već i da može da se koristi za ispitivanje impulsne zavisnosti i energetske skale promena elektronske strukture izazvane niskotemperaturskim kvantnim fenomenima.

Literatura

- R. Peierls. Quelques propriétés typiques des corps solides. Annales de l'institut Henri Poincaré, 5(3):177-222, 1935.
- [2] L. D. Landau. Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion, 11(545):26-35, 1937. 1
- [3] L. D. Landau and E. M. Lifshitz. Chapter I-The Fundamental Principles of Statistical Physics. *Course of Theoretical Physics*, pages 1-33, 1980. 1
- [4] N. D. Mermin. Crystalline order in two dimensions. *Physical Review*, 176(1):250, 1968.
- [5] J. A. Venables and G. D. T. Spiller. Nucleation and growth of thin films. Surface Mobilities on Solid Materials, pages 341-404, 1983.
- [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. *Science*, 306(5696):666-669, 2004. 1, 28
- [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. *Nature*, 438(7065):197–200, Nov 2005. 1, 30
- [8] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045–3067, Nov 2010. 1, 30
- [9] C. L. Kane and E. J. Mele. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett., 95:226801, Nov 2005. 1, 30
- [10] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang. Quantum Spin Hall Insulator State in HgTe Quantum Wells. *Science*, 318(5851):766-770, 2007. 1, 30
- [11] N. R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, and P. M. Ajayan. Emerging Applications of Elemental 2D Materials. Advanced Materials, 32(7):1904302, 2020. 1, 28, 29, 30

- [12] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov. Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. *Science*, 323(5914):610–613, 2009. 1, 29
- [13] A. J. M. Giesbers, K. Uhlířová, M. Konečný, E. C. Peters, M. Burghard, J. Aarts, and C. F. J. Flipse. Interface-Induced Room-Temperature Ferromagnetism in Hydrogenated Epitaxial Graphene. *Phys. Rev. Lett.*, 111:166101, Oct 2013. 1, 29
- [14] H. Gonzalez-Herrero, J. M. Gomez-Rodriguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M. M. Ugeda, J.-Y. Veuillen, F. Yndurain, and I. Brihuega. Atomic-scale control of graphene magnetism by using hydrogen atoms. *Science*, 352(6284):437– 441, Apr 2016. 1, 29
- [15] N. D. Mermin and H. Wagner. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. *Phys. Rev. Lett.*, 17:1133– 1136, Nov 1966. 1, 31, 32
- [16] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, and et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. *Nature*, 546(7657):265-269, Apr 2017. 1, 29, 30
- [17] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, and et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. *Nature*, 546(7657):270-273, Jun 2017. 1, 29, 30, 32, 34
- [18] J. Liu, Q. Sun, Y. Kawazoe, and P. Jena. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. *Phys. Chem. Chem. Phys.*, 18:8777–8784, 2016. 2, 32
- [19] W.-B. Zhang, Q. Qu, P. Zhu, and C.-H. Lam. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C, 3:12457–12468, 2015. 2, 32
- [20] X.-L. Sheng and B. K. Nikolić. Monolayer of the 5d transition metal trichloride OsCl₃: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions. *Phys. Rev. B*, 95:201402, May 2017. 2, 32
- [21] Y. Zhou, H.-F. Lu, X. Zu, and F. Gao. Evidencing the existence of exciting halfmetallicity in two-dimensional TiCl₃ and VCl₃ sheets. *Scientific reports*, 6:19407, 01 2016. 2, 32
- [22] J. He, X. Li, P. Lyu, and P. Nachtigall. Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer. *Nanoscale*, 9:2246– 2252, 2017. 2, 32

- [23] S. Sarikurt, Y. Kadioglu, F. Ersan, E. Vatansever, O. Üzengi Aktürk, Y. Yüksel, Ü. Akıncı, and E. Aktürk. Electronic and magnetic properties of monolayer α-RuCl3: a first-principles and Monte Carlo study. *Phys. Chem. Chem. Phys.*, 20:997–1004, 2018. 2, 32
- [24] Qilong Sun and Nicholas Kioussis. Prediction of manganese trihalides as twodimensional Dirac half-metals. *Phys. Rev. B*, 97:094408, Mar 2018. 2, 32
- [25] Herbert Fröhlich. On the theory of superconductivity: the one-dimensional case. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 223(1154):296-305, 1954. 2
- [26] R. E. Peierls. Quantum theory of solids. Oxford University Press, 1955. 2
- [27] P. W. Anderson, P. A. Lee, and M. Saitoh. Remarks on giant conductivity in TTF-TCNQ. Solid State Communications, 13(5):595-598, 1973. 2
- [28] Albertini, O. R. First-principles Study of Charge Density Waves and Electronphonon Coupling in Transition Metal Dichalcogenides, and Magnetism of Surface Adatoms. PhD thesis, Georgetown University, January 2017. 2
- [29] H.F. Hess, R.B. Robinson, and J.V. Waszczak. STM spectroscopy of vortex cores and the flux lattice. *Physica B: Condensed Matter*, 169(1):422–431, 1991. 2, 40
- [30] M. Bayle, N. Reckinger, A. Felten, P. Landois, O. Lancry, B. Dutertre, J. Colomer, A. Zahab, L. Henrard, J. Sauvajol, and M. Paillet. Determining the number of layers in few-layer graphene by combining Raman spectroscopy and optical contrast. *Journal of Raman Spectroscopy*, 49(1):36–45, 2018. 3, 5
- [31] G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schüller, and T. Korn. Raman spectroscopy of the interlayer shear mode in few-layer MoS₂ flakes. *Applied Physics Letters*, 101(10):101906, 2012. 3, 5
- [32] D. Machon, C. Bousige, R. Silva Alencar, A. Cefas Torres Dias, F. Balima, J. Nicolle,
 G. Pinheiro, A. Souza Filho, and A. San-Miguel. Raman scattering studies of graphene under high pressure. *Journal of Raman Spectroscopy*, 49, 11 2017. 3, 5
- [33] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus. Raman spectroscopy in graphene. *Physics Reports*, 473(5):51–87, 2009. 3, 5
- [34] A. C. Ferrari and D. M. Basko. Raman spectroscopy as a versatile tool for studying the properties of graphene. *Nature Nanotechnology*, 8(4):235–246, Apr 2013. 3, 5
- [35] X. Li, W. Han, J. Wu, X. Qiao, J. Zhang, and P. Tan. Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination. Advanced Functional Materials, 27(19):1604468, 2017. 3, 5

- [36] T. P. Devereaux and R. Hackl. Inelastic light scattering from correlated electrons. *Rev. Mod. Phys.*, 79:175–233, Jan 2007. 3, 5
- [37] N. Lazarević and R. Hackl. Fluctuations and pairing in Fe-based superconductors: light scattering experiments. *Journal of Physics: Condensed Matter*, 32(41):413001, jul 2020. 3, 5
- [38] M. Huang, H. Yan, T. F. Heinz, and J. Hone. Probing Strain-Induced Electronic Structure Change in Graphene by Raman Spectroscopy. Nano Letters, 10(10):4074– 4079, 2010. 3, 5
- [39] C. V. Raman. The Molecular Scattering of Light in Liquids and Solids. Nature, 108:402-403, 1921. 5
- [40] C. V. Raman and G. T. Walker. On the molecular scattering of light in water and the colour of the sea. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 101(708):64-80, 1922. 5
- [41] C. V. Raman and K. S. Krishnan. The optical analogue of the Compton effect. *Nature*, 121(3053):711-711, 1928. 5
- [42] C. V. Raman and K. S. Krishnan. The negative absorption of radiation. Nature, 122(3062):12–13, 1928. 5
- [43] A. Smekal. Zur Quantentheorie der Dispersion. Naturwissenschaften, 11(43):873– 875, Oct 1923. 5
- [44] C. V. Raman and K. S. Krishnan. A new type of secondary radiation. Nature, 121(3048):501, 1928. 6
- [45] American Chemical Society International Historic Chemical Landmarks. The Raman Effect. https://www.acs.org/content/acs/en/education/ whatischemistry/landmarks/ramaneffect.html. Accessed: 2021-10-04. 6
- [46] G. Landsberg and L. Mandelstam. A novel effect of light scattering in crystals. Naturwissenschaften, 16(5):5, 1928. 6
- [47] J. R. Ferraro, K. Nakamoto, and C. W. Brown. Chapter 1 Basic Theory. In J. R. Ferraro, K. Nakamoto, and C. W. Brown, editors, *Introductory Raman Spectroscopy (Second Edition)*, pages 1–94. Academic Press, San Diego, second edition edition, 2003. 6, 7, 8, 23
- [48] D. A. Long. Handbook of Raman spectroscopy. From the research laboratory to the process line. Edited by I. R. Lewis, H. G. M. Edwards and M. Dekker, New York and Basel, 2001. Journal of Raman Spectroscopy, 35(1):91–91, 2004. 6

- [49] Y. Ozaki. Medical Application of Raman Spectroscopy. Applied Spectroscopy Reviews, 24(3-4):259-312, 1988. 6
- [50] A. Germond, V. Kumar, T. Ichimura, J. Moreau, C. Furusawa, H. Fujita, and T. M. Watanabe. Raman spectroscopy as a tool for ecology and evolution. *Journal of The Royal Society Interface*, 14(131):20170174, 2017. 6
- [51] D. Bersani and J. M. Madariaga. Applications of Raman spectroscopy in art and archaeology. Journal of Raman Spectroscopy, 43(11):1523-1528, 2012.
- [52] L. A. Nafie. Recent advances in linear and nonlinear Raman spectroscopy. Part VII. Journal of Raman Spectroscopy, 44(12):1629–1648, 2013. 6
- [53] Z. D. Dohčević-Mitrović, M. J. Šćepanović, M. Grujić-Brojčin, and Z. V. Popović. Optička svojstva nanomaterijala. Institut za fiziku i Akademska misao, Beograd, str. 254, ISBN: 978-86-7466-414-8, 2011. 7, 9, 11, 13, 14
- [54] H. Kuzmany. Solid-State Spectroscopy, An Introduction. Springer, 2009. 7, 9, 15, 16, 17
- [55] P. Brüesch. Phonons: Theory and experiments II. Springer Series in Solid State Sciences, 65:172, 1986. 9, 10, 11, 12
- [56] M. Cardona. Light Scattering in Solids II, edited by M. Cardona and G. Guntherodt. Topic in Applied Physics, 50:117, 1982. 9
- [57] Z. V. Popovic. Raman Scattering by Defects and Impurities. Science of sintering, 28:35-42, 1996. 9
- [58] P. Y. Yu and M. Cardona. Fundamentals of semiconductors. Physics and materials properties. 4. ed., Jul 2010. 12, 13
- [59] A. Cros Stötter. Effecto Raman resonante con campos magnéticos intensos en heteroestructuras semiconductora. PhD thesis, Universidad de Valencia, Valencia, Spain, 1994. 12, 13
- [60] A. Debernardi, F. Geuser, J. Kulda, M. Cardona, and E. Haller. Anharmonic Self-Energy of Phonons: Ab Initio Calculations and Neutron Spin Echo Measurements. 01 2003. 14, 15
- [61] J. Menéndez and M. Cardona. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α – Sn: Anharmonic effects. *Phys. Rev. B*, 29:2051–2059, Feb 1984. 14
- [62] H.-M. Eiter, P. Jaschke, R. Hackl, A. Bauer, M. Gangl, and C. Pfleiderer. Raman study of the temperature and magnetic-field dependence of the electronic and lattice properties of MnSi. *Physical Review B*, 90(2), Jul 2014. 14, 15

- [63] E. Haro, M. Balkanski, R. F. Wallis, and K. H. Wanser. Theory of the anharmonic damping and shift of the Raman mode in silicon. *Phys. Rev. B*, 34:5358–5367, Oct 1986. 14
- [64] M. Opačić, N. Lazarević, M. M. Radonjić, M. Šćepanović, H. Ryu, A. Wang, D. Tanasković, C. Petrovic, and Z. V. Popović. Raman spectroscopy of K_xCo_{2-y}Se₂ single crystals near the ferromagnet-paramagnet transition. *Journal of Physics: Condensed Matter*, 28(48):485401, oct 2016. 14
- [65] F. Vallée. Time-resolved investigation of coherent LO-phonon relaxation in III-V semiconductors. Phys. Rev. B, 49:2460–2468, Jan 1994. 14
- [66] W. J. Borer, S. S. Mitra, and K. V. Namjoshi. Line shape and temperature dependence of the first order Raman spectrum of diamond. *Solid State Communications*, 9(16):1377–1381, 1971. 15
- [67] P. G. Klemens. Anharmonic Decay of Optical Phonons. Phys. Rev., 148:845–848, Aug 1966. 15
- [68] A. Milosavljević. Elektron-fonon i spin-fonon interakcija u superprovodnicima na bazi gvožđa i kvazi-2D materijalima izučavana metodom Ramanove spektroskopije. PhD thesis, Univerzitet u Beogradu-Fizički fakultet, 2021. 17, 27
- [69] N. Lazarević, M. Radonjić, M. Sćepanović, Hechang Lei, D. Tanasković, C. Petrovic, and Z. V. Popović. Lattice dynamics of KNi₂Se₂. *Physical Review B*, 87(14), Apr 2013. 17, 67
- [70] U. Fano. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev., 124:1866–1878, Dec 1961. 17
- [71] M. Cardona. Light Scattering in Solids I: Introductory Concepts, volume 8. Springer Science & Business Media, 2006. 18, 20, 21
- [72] F. Kretzschmar. Nematic Fluctuatuins, Fermiology and the Pairing Potential in Iron-Based superconductors. PhD thesis, Techniche Universität München, Facultät fur Physik, Munchen, Germany, july 2015. 18, 19, 21, 26
- [73] D. Pines and P. Nozières. The Theory of Quantum Liquids. 1966. 18
- [74] T. P Devereaux and R. Hackl. Inelastic light scattering from correlated electrons. *Reviews of modern physics*, 79(1):175, 2007. 18, 19
- [75] https://www.princetoninstruments.com/wp-content/uploads/2020/04/TriVista-System-Manual-Issue-1B-4411-0113.pdf. 24, 25
- [76] I. Langmuir. The collected works of Irving Langmuir, volume 12. Pergamon Press, 1962. 28

- [77] R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, and F. Zamora. 2D materials: to graphene and beyond. *Nanoscale*, 3:20–30, 2011. 28
- [78] F. Matusalema, M. Marques, L. Teles, and F. Bechstedt. Stability and electronic structure of two-dimensional allotropes of group-IV materials. *Physical Review B* -*Condensed Matter and Materials Physics*, 92, 07 2015. 29
- [79] Y. Huang, S. N. Shirodkar, and B. I. Yakobson. Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration. *Journal of the American Chemical Society*, 139(47):17181–17185, 2017. 29
- [80] Z. Zhu, X. Cai, S. Yi, J. Chen, Y. Dai, C. Niu, Z. Guo, M. Xie, F. Liu, J.-H. Cho, Y. Jia, and Z. Zhang. Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental study. *Phys. Rev. Lett.*, 119:106101, Sep 2017. 29
- [81] F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. *Science*, 357(6348):287–290, 2017. 29
- [82] J. Yuhara, B. He, N. Matsunami, M. Nakatake, and G. Le Lay. Graphene's Latest Cousin: Plumbene Epitaxial Growth on a "Nano WaterCube". Advanced Materials, 31(27):1901017, 2019. 29
- [83] E. Aktürk, O. Üzengi Aktürk, and S. Ciraci. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. *Phys. Rev. B*, 94:014115, Jul 2016. 29
- [84] Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C. Zhang. Large-Gap Quantum Spin Hall Insulators in Tin Films. *Phys. Rev. Lett.*, 111:136804, Sep 2013. 29
- [85] Z. Zhu, Y. Cheng, and U. Schwingenschlögl. Topological Phase Transition in Layered GaS and GaSe. *Phys. Rev. Lett.*, 108:266805, Jun 2012. 29
- [86] Y. Ma, Y. Dai, M. Guo, L. Yu, and B. Huang. Tunable electronic and dielectric behavior of GaS and GaSe monolayers. *Phys. Chem. Chem. Phys.*, 15:7098–7105, 2013. 29
- [87] A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu,
 B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov,
 M. C. Hersam, and N. P. Guisinger. Synthesis of borophenes: Anisotropic, twodimensional boron polymorphs. *Science*, 350(6267):1513-1516, December 2015. 29

- [88] Q. Zhong, L. Kong, J. Gou, W. Li, S. Sheng, S. Yang, P. Cheng, H. Li, K. Wu, and L. Chen. Synthesis of borophene nanoribbons on Ag(110) surface. *Phys. Rev. Materials*, 1:021001, Jul 2017. 29
- [89] Y. Li, M. Gong, and H. Zeng. Atomically thin α-In₂Se₃: an emergent twodimensional room temperature ferroelectric semiconductor. *Journal of Semiconductors*, 40(6):061002, jun 2019. 29
- [90] A. F. Kusmartseva, B. Sipos, H. Berger, L. Forró, and E. Tutiš. Pressure Induced Superconductivity in Pristine 1T--TiSe₂. Phys. Rev. Lett., 103:236401, Nov 2009.
 29
- [91] E. Wisotzki, Andreas Klein, and W. Jaegermann. Quasi van der Waals epitaxy of ZnSe on the layered chalcogenides InSe and GaSe. *Thin Solid Films*, 380:263–265, 12 2000. 30
- [92] E. S. Kim, J. Y. Hwang, K. H. Lee, Hiromichi O., Y. H. Lee, and S. W. Kim. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film. *Advanced Materials*, 29(8), February 2017. 30
- [93] K.S. Thygesen. Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures: Topical Review. 2D materials, 4(2), 2017. 30
- [94] K. Mak and J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. *Nature Photonics*, 10:216–226, 03 2016. 30
- [95] S. Koch, M. Kira, G. Khitrova, and H Gibbs. Semiconductor excitons in new light. *Nature materials*, 5:523–31, 08 2006. 30
- [96] R. Raveendran-Nair, M. Sepioni, I-L. Tsai, O. Lehtinen, J. Keinonen, A. Krasheninnikov, T. Thomson, A. Geim, and I. Grigorieva. Spin-half paramagnetism in graphene induced by point defects. *Nature Physics*, 8, 11 2011. 30
- [97] M. S. Dresselhaus. Intercalation in layered materials, volume 148. Springer, 2013.
 30
- [98] Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. Coleman, and M. Strano. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. *Nature nanotechnology*, 7:699-712, 11 2012. 30
- [99] M. A. McGuire. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides. Crystals, 7(5), 2017. 31
- [100] S. Tomar, B. Ghosh, S. Mardanya, P. Rastogi, Y. Chauhan, A. Agarwal, and S. Bhowmick. Intrinsic magnetism in monolayer transition metal trihalides: A

comparative study. Journal of Magnetism and Magnetic Materials, 489:165384, 05 2019. 31, 32

- [101] Lars Onsager. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev., 65:117–149, Feb 1944. 32
- [102] N. Samarth. Condensed-matter physics: Magnetism in flatland. Nature, 546:216– 218, 2017. 32
- [103] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI₃. *Chemistry* of Materials, 27(2):612–620, 2015. 32, 33, 49
- [104] J. F. Dillon and C. E. Olson. Magnetization, Resonance, and Optical Properties of the Ferromagnet CrI₃. Journal of Applied Physics, 36(3):1259–1260, 1965. 32
- [105] H. H. Kim, B. Yang, T. Patel, F. Sfigakis, C. Li, S. Tian, H. Lei, and A. W. Tsen. One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. Nano Letters, 18(8):4885–4890, Jul 2018. 32
- [106] Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, and A. F Morpurgo. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI₃. *Nature communications*, 9(1):1–8, 2018. 32
- [107] L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, and P. Maletinsky. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. *Science*, 364(6444):973-976, Apr 2019. 32
- [108] L. L. Handy and N. W. Gregory. Structural Properties of Chromium(III) Iodide and Some Chromium(III) Mixed Halides. Journal of the American Chemical Society, 74(4):891–893, 1952. 32
- [109] Y. Liu and C. Petrovic. Three-dimensional magnetic critical behavior in CrI₃. *Phys. Rev.* B, 97:014420, Jan 2018. 32, 34, 47, 48, 49, 60
- [110] N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao. Stacking-Dependent Magnetism in Bilayer CrI₃. Nano Letters, 18(12):7658–7664, Nov 2018. 34
- [111] V. Kumar Gudelli and G.-Y. Guo. Magnetism and magneto-optical effects in bulk and few-layer CrI₃: a theoretical GGA +U study. New Journal of Physics, 21(5):053012, May 2019. 34
- [112] J L Lado and J Fernández-Rossier. On the origin of magnetic anisotropy in two dimensional CrI₃. 2D Materials, 4(3):035002, Jun 2017. 34

- [113] H. Wang, F. Fan, S. Zhu, and H. Wu. Doping enhanced ferromagnetism and induced half-metallicity in CrI₃ monolayer. *EPL (Europhysics Letters)*, 114(4):47001, may 2016. 34
- [114] L. Chen, J.-H. Chung, T. Chen, C. Duan, A. Schneidewind, I. Radelytskyi, D. J. Voneshen, R. A. Ewings, M. B. Stone, A. I. Kolesnikov, B. Winn, S. Chi, R. A. Mole, D. H. Yu, B. Gao, and P. Dai. Magnetic anisotropy in ferromagnetic CrI₃. *Phys. Rev. B*, 101:134418, Apr 2020. 34
- [115] D. Juza, Dieter D. Giegling, and H. Schäfer. Über die Vanadinjodide VJ₂ und VJ₃.
 Z. Anorg. Allg. Chem, 366:121 129, 11 1969. 35
- [116] K. O. Berry, R. R. Smardzewski, and R. E. McCarley. Vaporization reactions of vanadium iodides and evidence for gaseous vanadium(IV) iodide. *Inorganic Chemistry*, 8(9):1994–1997, 1969. 35
- [117] W. Klemm and E. Krose. Die Kristallstrukturen von ScCl₃, TiCl₃ und VCl₃. Z. Anorg. Allg. Chem., 253(3-4):218-225, 1947. 35
- [118] S. Son, M. J. Coak, N. Lee, J. Kim, T. Y. Kim, H. Hamidov, and et. al. Bulk properties of the van der Waals hard ferromagnet VI₃. *Phys. Rev. B*, 99:041402, Jan 2019. 35, 36, 37, 38, 60, 62
- [119] T. Kong, K. Stolze, E. I. Timmons, J. Tao, D. Ni, S. Guo, and et. al. VI₃ a New Layered Ferromagnetic Semiconductor. Adv. Mater., 31(17):1808074, 2019. 35, 37, 38, 60, 62
- [120] P. Doležal, M. Kratochvílová, V. Holý, P. Čermak, V. Sechovský, M. Dušek, and et. al. Crystal structures and phase transitions of the van der Waals ferromagnet VI₃. *Phys. Rev. Materials*, 3:121401, Dec 2019. 35, 60
- [121] S. Tian, J-F. Zhang, C. Li, T. Ying, S. Li, X. Zhang, and et. al. Ferromagnetic van der Waals Crystal VI₃. J. Am. Chem. Soc., 141(13):5326-5333, 2019. 35, 36, 38, 62
- [122] Yun-Peng Wang and Meng-Qiu Long. Electronic and magnetic properties of van der Waals ferromagnetic semiconductor VI₃. Phys. Rev. B, 101:024411, Jan 2020. 36, 37
- [123] Yu Liu, Milinda Abeykoon, and C. Petrovic. Critical behavior and magnetocaloric effect in VI₃. Phys. Rev. Research, 2:013013, Jan 2020. 38, 59
- [124] J. Valenta, M. Kratochvílová, M. Míšek, K. Carva, J. Kaštil, P. Doležal, P. Opletal, P. Čermák, P. Proschek, K. Uhlířová, J. Prchal, M. J. Coak, S. Son, J-G. Park, and V. Sechovský. Pressure-induced large increase of Curie temperature of the van der Waals ferromagnet VI₃. *Phys. Rev. B*, 103:054424, Feb 2021. 38

- [125] X. Yin, C. S. Tang, Y. Zheng, J. Gao, J. Wu, H. Zhang, M. Chhowalla, W. Chen, and A. T. S. Wee. Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. *Chem. Soc. Rev.*, 50:10087–10115, 2021. 39
- [126] Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. N. Coleman, and M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. *Nature nanotechnology*, 7 11:699–712, 2012. 39
- [127] X. Xu, W. Yao, D. Xiao, and T. F. Heinz. Spin and pseudospins in layered transition metal dichalcogenides. *Nature Physics*, 10:343–350, 2014. 39
- [128] F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam. Two-dimensional material nanophotonics. *Nature Photonics*, 8(12):899–907, Nov 2014. 39
- [129] Leonid Chernozatonskii and Anastasiya Artyukh. Quasi- two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications. Uspekhi Fizicheskih Nauk, 188, 02 2017. 39
- [130] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX₂ semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B, 85:033305, Jan 2012. 40
- M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, and F. Besenbacher. One-Dimensional Metallic Edge States in MoS₂. *Phys. Rev. Lett.*, 87:196803, Oct 2001. 40
- [132] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz. Atomically thin mos₂: A new direct-gap semiconductor. *Phys. Rev. Lett.*, 105:136805, Sep 2010.
 40
- [133] W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and R. M. Osgood. Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS₂ Using Angle-Resolved Photoemission Spectroscopy. *Phys. Rev. Lett.*, 111:106801, Sep 2013. 40
- [134] S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. Peeters, and J. Wu. Monolayer behaviour in bulk ReS₂ due to electronic and vibrational decoupling. Nature communications, 5:3252, 02 2014. 40
- [135] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto. 2D materials and van der Waals heterostructures. *Science*, 353(6298):aac9439, 2016. 40

- [136] J. A. Wilson and A. D. Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18(73):193-335, 1969. 40
- [137] A. H. Castro Neto. Charge density wave, superconductivity, and anomalous metallic behavior in 2d transition metal dichalcogenides. *Phys. Rev. Lett.*, 86:4382–4385, May 2001. 40
- [138] J.A. Wilson, F.J. Di Salvo, and S. Mahajan. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Advances in Physics, 24(2):117–201, 1975. 40, 41
- [139] W. Wen, C. Dang, and L. Xie. Photoinduced phase transitions in two-dimensional charge-density-wave 1T TaS₂. Chinese Physics B, 28(5):058504, may 2019. 40, 42
- [140] F. Jellinek. The system tantalum-sulfur. Journal of the Less Common Metals, 4(1):9-15, 1962. 41
- [141] L. V. Gasparov, K. G. Brown, A. C. Wint, D. B. Tanner, H. Berger, G. Margaritondo, R. Gaál, and L. Forró. Phonon anomaly at the charge ordering transition in 1T - TaS₂. Phys. Rev. B, 66:094301, Sep 2002. 41, 71, 72, 74, 78, 83
- [142] K. Rossnagel. On the origin of charge-density waves in select layered transitionmetal dichalcogenides. 23(21):213001, may 2011. 41, 78
- [143] G Gruner. Density waves in solids, Vol. 89. Frontiers in Physics, 1994. 41
- [144] R. E. Peierls. Quantum theory of solids. Clarendon Press, 1996. 41
- [145] X. Zhu, J. Guo, J. Zhang, and E. W. Plummer. Misconceptions associated with the origin of charge density waves. Advances in Physics: X, 2(3):622-640, 2017. 41
- [146] F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, M. Garnier, and P. Aebi. Fermi surface of layered compounds and bulk charge density wave systems. *Journal of Physics: Condensed Matter*, 19:355002, 08 2007. 41, 42, 43
- [147] T. Ritschel, H. Berger, and J. Geck. Stacking-driven gap formation in layered 1T-TaS₂. Phys. Rev. B, 98:195134, Nov 2018. 41, 43
- [148] S.-H. Lee, J. S. Goh, and D. Cho. Origin of the Insulating Phase and First-Order Metal-Insulator Transition in 1T-TaS₂. Phys. Rev. Lett., 122:106404, Mar 2019. 41, 43
- [149] O. R. Albertini, R. Zhao, R. L. McCann, S. Feng, M. Terrones, J. K. Freericks, J. A. Robinson, and A. Y. Liu. Zone-center phonons of bulk, few-layer, and monolayer

 $1T-\text{TaS}_2$: Detection of commensurate charge density wave phase through Raman scattering. *Phys. Rev. B*, 93:214109, Jun 2016. 41, 74

- [150] A. Spijkerman, J. L. de Boer, A. Meetsma, G. A. Wiegers, and S. van Smaalen. X-ray crystal-structure refinement of the nearly commensurate phase of 1T – TaS₂ in (3+2)-dimensional superspace. *Phys. Rev. B*, 56:13757–13767, Dec 1997. 42, 76
- [151] P. Darancet, A. J. Millis, and C. A. Marianetti. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. *Phys. Rev. B*, 90:045134, Jul 2014. 43
- [152] P. Fazekas and E. Tosatti. Electrical, structural and magnetic properties of pure and doped $1T - \text{TaS}_2$. *Philosophical Magazine B*, 39(3):229-244, 1979. 43
- [153] P. Fazekas and E. Tosatti. Charge carrier localization in pure and doped $1T \text{TaS}_2$. Physica B+C, 99(1):183-187, 1980. 43
- [154] B. Dardel, M. Grioni, D. Malterre, P. Weibel, Y. Baer, and F. Lévy. Temperaturedependent pseudogap and electron localization in 1T-TaS₂. *Phys. Rev. B*, 45:1462– 1465, Jan 1992. 43
- [155] B. Dardel, M. Grioni, D. Malterre, P. Weibel, Y. Baer, and F. Lévy. Spectroscopic signatures of phase transitions in a charge-density-wave system: 1T-TaS₂. *Phys. Rev. B*, 46:7407–7412, Sep 1992. 43
- [156] B. Sipos, A. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutis. From Mott state to superconductivity in 1T-TaS₂. Nature materials, 7:960-5, 01 2009. 43, 78
- [157] C. Sohrt, A. Stange, M. Bauer, and K. Rossnagel. How fast can a Peierls-Mott insulator be melted? *Faraday Discuss.*, 171, 08 2014. 43, 74, 78, 83
- [158] H. Vincent, D. Leroux, and D. Bijaoui. Crystal structure of Mn₃Si₂Te₆. Journal of Solid State Chemistry, 63(3):349-352, 1986. 44
- [159] A. Milosavljević, A. Solajic, J. Pešić, Y. Liu, C. Petrovic, N. Lazarević, and Z. V Popović. Evidence of spin-phonon coupling in CrSiTe₃. *Phys. Rev. B*, 98:104306, 09 2018. 44, 67, 93
- [160] Y. Liu and C. Petrovic. Critical behavior and magnetocaloric effect in Mn₃Si₂Te₆. Phys. Rev. B, 98:064423, Aug 2018. 44, 45, 86, 93, 94
- [161] R. Rimet, C. Schlenker, and H. Vincent. A new semiconducting ferrimagnet: A silicon manganese telluride. Journal of Magnetism and Magnetic Materials, 25(1):7– 10, 1981. 44, 45

- [162] L. M. Martinez, H. Iturriaga, R. Olmos, L. Shao, Y. Liu, T. T. Mai, C. Petrovic, W. Hight, R. Angela, and S. R. Singamaneni. Enhanced magnetization in proton irradiated Mn₃Si₂Te₆ van der Waals crystals. *Applied Physics Letters*, 116(17):172404, 2020. 44, 45, 88, 89, 90, 93, 94
- [163] A. F. May, Y. Liu, S. Calder, D. S. Parker, T. Pandey, E. Cakmak, H. Cao, J. Yan, and M. A. McGuire. Magnetic order and interactions in ferrimagnetic Mn₃Si₂Te₆. *Phys. Rev. B*, 95:174440, May 2017. 44, 45, 46, 94
- [164] S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan. Controlling magnetism in 2D CrI₃ by electrostatic doping. *Nat. Nanotechnol.*, 13(7):549–553, May 2018. 44
- [165] N. Sethulakshmi, A. Mishra, P.M. Ajayan, Y. Kawazoe, A. K. Roy, A. K. Singh, and C. S. Tiwary. Magnetism in two-dimensional materials beyond graphene. *Materials Today*, 27:107–122, 2019. 44
- [166] R. Olmos, J. A. Delgado, H. Iturriaga, L. M. Martinez, C. L. Saiz, L. Shao, Y. Liu, C. Petrovic, and S. R. Singamaneni. Critical phenomena of the layered ferrimagnet Mn₃Si₂Te₆ following proton irradiation. *Journal of Applied Physics*, 130(1):013902, 2021. 44
- [167] Y. Ni, H. Zhao, Y. Zhang, B. Hu, I. Kimchi, and G. Cao. Colossal magnetoresistance via avoiding fully polarized magnetization in the ferrimagnetic insulator Mn₃Si₂Te₆. *Phys. Rev. B*, 103:L161105, Apr 2021. 45, 94
- [168] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, and et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phy. Condens. Mat., 21(39):395502 (19pp), 2009. 48, 60
- [169] P. E. Blöchl. Projector augmented-wave method. *Phys. Rev. B*, 50:17953–17979, Dec 1994. 48, 60
- [170] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B*, 59:1758–1775, Jan 1999. 48, 60
- [171] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996. 48, 60
- [172] S. Grimme. Semiempirical GGA-type density functional constructed with a longrange dispersion correction. J. Comput. Chem., 27(15):1787–1799. 48, 60
- [173] Wood E. A. The 80 Diperiodic Groups in Three Dimensions. Bell Syst. Tech. J., 43(1):541-559. 56
- [174] D. T. Larson and E. Kaxiras. Raman spectrum of CrI₃: An *ab initio* study. *Phys. Rev. B*, 98:085406, Aug 2018. 56

- [175] M. Cococcioni and S. de Gironcoli. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. *Phys. Rev. B*, 71:035105, Jan 2005. 60
- [176] M. Moskovits and D. Dilella. Surface-enhanced Raman spectroscopy of benzene and benzene-d6 adsorbed on silver. J. Chem. Phys., 73:6068–6075, 12 1980. 66
- [177] A. Dubroka, J. Humlíček, M. V. Abrashev, Z. V. Popović, F. Sapiña, and A. Cantarero. Raman and infrared studies of $La_{1-y}Sr_yMn_{1-x}M_xO_3$ (M = Cr, Co, Cu, Zn, Sc or Ga): Oxygen disorder and local vibrational modes. *Phys. Rev. B*, 73:224401, Jun 2006. 66
- [178] A. Baum, A. Milosavljević, N. Lazarević, M. M. Radonjić, B. Nikolić, and et al. Phonon anomalies in FeS. *Phys. Rev. B*, 97:054306, Feb 2018. 66, 74
- [179] X. Yang, P. Juhas, C. L. Farrow, and S. J. L. Billinge. xPDFsuite: an end-to-end software solution for high throughput pair distribution function transformation, visualization and analysis, 2014. 68
- [180] C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Božin, J. Bloch, Th. Proffen, and S. J. L. Billinge. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. *Journal of Physics: Condensed Matter*, 19(33):335219, jul 2007. 68
- [181] T. Proffen, Katharine, L. Page, S. E. McLain, and et al. Atomic pair distribution function analysis of materials containing crystalline and amorphous phases. Z. Kristallogr., 220:1002–1008, 2005. 68
- [182] Y. Ma, Y. Hou, Cuimin Lu, L. Li, and C. Petrovic. Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T – TaS₂. *Phys. Rev. B*, 97:195117, May 2018. 70
- [183] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, and et al. ABINIT: First-principles approach to material and nanosystem properties. *Comput. Phys. Commun.*, 180(12):2582, 2009. 70
- [184] S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B, 54:1703, 1996. 70
- [185] M. Krack. Pseudopotentials for H to Kr optimized for gradient-corrected exchangecorrelation functionals. *Theor. Chem. Acc.*, 114:145, 2005. 70
- [186] X. Gonze, D. C. Allan, and M. P. Teter. Dielectric tensor, effective charges, and phonons in α-quartz by variational density-functional perturbation theory. *Phys. Rev. Lett.*, 68:3603, 1992. 71

- [187] A. Zawadowski and M. Cardona. Theory of Raman scattering on normal metals with impurities. *Phys. Rev. B*, 42:10732, 1990. 73
- [188] N. Lazarević and R. Hackl. Fluctuations and pairing in Fe-based superconductors: light scattering experiments. Journal of Physics: Condensed Matter, 32(41):413001, jul 2020. 73
- [189] Reuben Shuker and Robert W. Gammon. Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials. *Phys. Rev. Lett.*, 25:222–225, Jul 1970. 74
- [190] S. Uchida and S. Sugai. Infrared and Raman studies on a commensurate CDW states in transition metal dichalcogenides. *Physica* B+C, 105B:393, April 1981. 74
- [191] R. Brouwer and F. Jellinek. The low-temperature superstructures of $1T TaSe_2$ and $2H - TaSe_2$. *Physica* B+C, 99(1):51, 1980. 74
- [192] J. R. Duffay and R. D. Kirby. Raman Scattering from 1T TaS₂. Solid State Communications, 20:617, july 1976. 74
- [193] T. Hirata and F. S. Ohuchi. Temperature dependence of the Raman spectra of $1T TaS_2$. Solid State Communications, 117:361, january 2001. 74
- [194] R. He, J. Okamoto, Z. Ye, G. Ye, H. Anderson, X. Dai, X. Wu, J. Hu, Y. Liu, W. Lu, Y. Sun, A. N. Pasupathy, and A. W. Tsen. Distinct surface and bulk charge density waves in ultrathin 1T – TaS₂. *Phys. Rev. B*, 94:201108, Nov 2016. 76
- [195] G. Grüner. The dynamics of charge-density waves. Rev. Mod. Phys., 60:1129–1181, Oct 1988. 78
- [196] Jan Skolimowski, Yaroslav Gerasimenko, and Rok Žitko. Mottness collapse without metallization in the domain wall of the triangular-lattice Mott insulator $1T \text{TaS}_2$. *Phys. Rev. Lett.*, 122:036802, Jan 2019. 83
- [197] Yu Liu, Zhixiang Hu, Milinda Abeykoon, Eli Stavitski, Klaus Attenkofer, Eric D. Bauer, and C. Petrovic. Polaronic transport and thermoelectricity in Mn₃Si₂Te₆ single crystals. *Phys. Rev. B*, 103:245122, Jun 2021. 94
Spisak naučnih radova kandidata korišćenih u disertaciji

 S. Djurdjić Mijin, A. Šolajić, J. Pešić, M. Šćepanović, Y. Liu, A. Baum, C. Petrovic, N. Lazarević, and Z. V. Popović, "Lattice dynamics and phase transition in CrI₃ single crystals", *Phys. Rev. B* 98, 104307, 2018.

[2] S. Djurdjić Mijin, AM Milinda Abeykoon, A. Šolajić, A. Milosavljević, J. Pešić, Y. Liu, C. Petrovic, Z. V. Popović, and N. Lazarević, "Short-Range Order in VI₃", *Inorg. Chem.* 59, 16265, 2020.

[3] S. Djurdjić Mijin, A. Baum, J. Bekaert, A. Šolajić, J. Pešić, Y. Liu, Ge He, M. V. Milošević, C. Petrovic, Z. V. Popović, R. Hackl, and N. Lazarević, "Probing charge density wave phases and the Mott transition in 1*T*-TaS₂ by inelastic light scattering", *Phys. Rev. B* 103, 245133, 2021.

[4] S. Djurdjić Mijin, A. Šolajić, J. Pešić, Y. Liu, C. Petrovic, Z. V. Popović, and N. Lazarević, "Phonon anomalies and spin-phonon interaction in Mn₃Si₂Te₆", *U pripremi*

Biografija

Sanja Đurđić Mijin rođena je u Beogradu 29. 09. 1993. godine. Nakon završene osnovne škole i gimanzije, 2012. godine upisuje Fizički fakultet Univerziteta u Beogradu. smer Primenjena i kompjuterska fizika, na kome diplomira 2016. godine sa prosečnom ocenom 9,57. Nakon uspešno završenih osnovnih studija, iste godine upisuje master studije na Fizičom fakultetu, smer Teorijska i eksperimenalna fizika. U okviru projekta 2015-2-ES01-KA107-022648 programa ERASMUS+ master tezu pod nazivom Komparativna studija polarizovane optičke emisije iz polarnih i nepolarnih kvantnih tačaka u GaN/InGaN nanožicama radi na Tehničkom Univerzitetu u Madridu, pod mentorstvom dr Žarka Gačevića, a i na Samostalnom Univerzitetu u Madridu, pod mentorstvom dr Snežane Lazić. Master rad, pod mentorstvom dr Slavice Maletić i komentorstvom dr Snežane Lazić, brani 5. jula 2017. godine, čime završava master studije sa prosečnom ocenom 10,00. U februaru 2018. svoj naučno-istraživački rad nastavlja na Institutu za fiziku u Beogradu, gde je od 03. 12. 2018. zaposlena u Centru za čvrsto stanje i nove materijale u grupi akademika Zorana V. Popovića i gde se pod mentorstvom dr Nenada Lazarevića bavi Ramanovom spektroskopijom kvazi-dvodimenzionalnih materijala. Sanja Đurđić Mijin je od decembra 2018. do decembra 2019. godine bila angažovana na projektu Nanostrukturni multifunkcionalni nanomaterijali i nanokompoziti (III450018) Ministarstva prosvete, nauke i tehnološkog razvoja Republike Srbije pod rukovodstvom akademika Zorana V. Popovića, a od avgusta 2020. angažovana je i na projektu StrainedFeSc, broj 6062656, Fonda za nauku Republike Srbije, čiji je rukovodilac dr Nenad Lazarević. Učesnik je bilateralnih projekata sa Valter Majsner institutom u Minhenu. Do sada je publikovala 4 naučna rada: 1 iz kategorije M21a i 3 iz katerogije M21, od kojih je vodeći autor na 3 rada, i šest saopštenja sa međunarodnih skupova štampanih u izvodu (M34). Njeni radovi do sada su citirani 58 puta uz h-indeks 3 (Google Akademik).

Изјава о ауторству

Име и презиме аутора: Сања Ђурђић Мијин

Број индекса: 8017/2018

Изјављујем

да је докторска дисертација под насловом

Нееластично расејање светлости на квазидводимензионалним материјалима

- резултат сопственог истраживачког рада;
- да дисертација у целини ни у деловима није била предложена за стицање друге дипломе према студијским програмима других високошколских установа;
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио/ла интелектуалну својину других лица.

Потпис аутора

У Београду, 10. 03. 2022.

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора: Сања Ђурђић Мијин

Број индекса: 8017/2018

Студијски програм: Физика

Наслов рада: Нееластично расејање светлости на квази-дводимензионалним материјалима

Ментор: др Ненад Лазаревић

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла ради похрањена у **Дигиталном репозиторијуму Универзитета у Београду.**

Дозвољавам да се објаве моји лични подаци везани за добијање академског назива доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис аутора

У Београду, 10. 03. 2022.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

Нееластично расејање светлости на квази-дводимензионалним материјалима

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигиталном репозиторијуму Универзитета у Београду и доступну у отвореном приступу могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

- 1. Ауторство (СС ВҮ)
- 2. Ауторство некомерцијално (СС ВУ-NС)
- 3. Ауторство некомерцијално без прерада (СС ВУ-NC-ND)
- 4. Ауторство некомерцијално делити под истим условима (СС ВУ-NC-SA)
- 5. Ауторство без прерада (СС ВУ-ND)
- 6. Ауторство делити под истим условима (СС ВУ-SA)

(Молимо да заокружите само једну од шест понуђених лиценци. Кратак опис лиценци је саставни део ове изјаве).

Потпис аутора

У Београду, 10. 03. 2022.

1. Ауторство. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. **Ауторство – некомерцијално – без прерада**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

4. Ауторство – некомерцијално – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

5. **Ауторство – без прерада**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. **Ауторство – делити под истим условима**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.