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Electrical control of a spin qubit in InSb nanowire quantum dots: Strongly suppressed spin
relaxation in high magnetic field
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In this paper we investigate the impact of gating potential and magnetic field on phonon induced spin relaxation
rate and the speed of the electrically driven single-qubit operations inside the InSb nanowire spin qubit. We
show that a strong g factor and high magnetic field strength lead to the prevailing influence of electron-phonon
scattering due to deformation potential, considered irrelevant for materials with a weak g factor, like GaAs or
Si/SiGe. In this regime we find that spin relaxation between qubit states is significantly suppressed due to the
confinement perpendicular to the nanowire axis. We also find that maximization of the number of single-qubit
operations that can be performed during the lifetime of the spin qubit requres single quantum dot gating potential.
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I. INTRODUCTION

Spin of an electron confined in a semiconductor quantum
dot (QD) can act as a carrier of quantum information [1] and a
building block of quantum computers. In order to manipulate
electron spin, usage of the external magnetic [2,3] and electric
[4–6] field was suggested. Although spin control by means
of a magnetic field is straightforward, electrical control of
spin qubit through electric-dipole spin resonance (EDSR) is
technologically more desirable [7–10].

Spin-orbit coupling (SOC) plays an essential role in the
EDSR spin qubit scheme, since it allows transitions be-
tween qubit states using the spin-independent driving, such as
electric-dipole interaction. On the other hand, the presence of
SOC induces undesired phonon mediated transitions between
qubit states [11–21]. In order to suppress the coupling to
phonons, approaches like the optimal design of QDs [22,23]
or the control of system size [24] was suggested.

Relaxation rates are dependent on the full three-
dimensional QD potential, but in most cases contribution
of the confinement along the direction(s) perpendicular to
the substrate in which QDs are embedded can be neglected.
Assuming magnetic fields up to several tesla, this reduction
is justified in material with a weak effective Landé g factor.
A typical example that satisfies this assumption are lateral
GaAs QDs [25], while in the opposite direction lies an InSb
nanowire, having two orders of magnitude stronger g factor
[26]. Having also very strong SOC, spin qubits in InSb
nanowires [27–31] have attracted much attention due to the
observed [28] fast electric-dipole induced transition between
qubit states, whose speed is equal to the strength of Rabi
frequency.

Since both Rabi frequency and phonon induced relaxation
rates are dependent on the magnetic field orientation and
strength, design of the gating potential, and SOC, there is

a wide range of possibility to tune their strength, with the
goal of obtaining as much as possible single-qubit operations
during its lifetime.

In this paper we search for the optimal regime in which
electrical control of the InSb spin qubit can be achieved. We
analyze both single and double quantum dot (DQD) potential
and discuss its positive features and negative drawbacks on the
spin qubit. In the case of double quantum dot potential, there
is the possibility to tune the distance between the dots and to
analyze the effects of the asymmetric gating potential. Also,
we address the situations in which full three-dimensional con-
finement has nontrivial influence on spin relaxation rates. We
will show that scattering by deformation potential dominates
in this regime. Finally, to offer a quantitative insight into the
spin qubit quality, we define a figure of merit as the ratio of
Rabi frequency and the overall spin relaxation rate and discuss
the obtained results in terms of this measure.

This paper is organized as follows. In Sec. II the single-
electron Hamiltonian model of the InSb nanowire is in-
troduced. In Sec. III we start with the definition of Rabi
frequency and phonon induced spin relaxation rate between
spin qubit states. After that, we independently study their
dependence on tunable parameters of the system. Using the
obtained results, quality of the spin qubit is discussed with the
help of the figure of merit as a quantitative measure. In the end
we finish the paper with a short conclusion and the impact of
the presented results.

II. NANOWIRE SPIN QUBIT MODEL

We start with the Hamiltonian describing the electron
confined in an InSb nanowire [30]

H = p2

2m∗ + V (x) + Hso + Hz, (1)
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FIG. 1. (Upper panel) Nanowire QD—schematic view. Electron
dynamics along the nanowire (x) axis is described by the Hamilto-
nian H , given in Eq. (1). Angle between the nanowire x axis and
magnetic field direction n = (cos θ, sin θ, 0) is equal to θ , while the
spin-orbit vector a = (cos ϕ, sin ϕ, 0) builds an angle ϕ with the x
axis. (Lower panel) Confining potential used in Eq. (1): QD and
DQD potential. In the case of a DQD potential [Eq. (6)] symmetric
confinement is depicted (ωL = ωR), with distance between the dots
equal to 2d .

where m∗ is the effective mass, p = −ih̄∂/∂x momentum
in x direction, V (x) is the gating potential used to localize
the electron, while Hso represents the spin-orbit interaction
Hamiltonian consisting of two terms: Dresselhaus [32] and
Rashba [33]. The presence of the Dresselhaus SOC is due to
the material in which an electron is embedded. On the other
hand, Rashba SOC appears when an electric field E in the
z direction is applied (see Fig. 1). In an InSb nanowire, a
spin-orbit interaction Hamiltonian is equal to [30]

Hso = (αDσx + αRσy)p, (2)

where σx and σy are Pauli matrices, while αD and αR are
Dresselhaus and Rashba spin-orbit coupling strengths. Suit-

able change of parameters αR and αD with α =
√

α2
D + α2

R and
ϕ = arctan (αR/αD) allows us to write Eq. (2) as

Hso = αa · σp, (3)

using the unit spin-orbit vector a = (cos ϕ, sin ϕ, 0) and the
vector σ made of Pauli matrices. Finally, Hz is the Zeeman
term, describing the coupling of spin and magnetic field

Hz = g

2
μBB · σ, (4)

where g is the effective Landé factor, μB is the Bohr magneton,
while B = Bn is the applied magnetic field in the plane of
the substrate, building an angle θ with the growth x axis of
the nanowire (see the upper panel of Fig. 1). In this work a
magnetic field is considered to be in-plane to minimize the
orbital effects [22,34–36]. In Appendix A we have shown that
for B up to 3 T, orbital effects of a magnetic field are small
and can be neglected.

Typical gating that confines a single electron in experi-
mental setups [37] can be modeled as a harmonic oscillator
quantum dot (QD) [38] or double quantum dot (DQD) [29]
potential. Corresponding potentials are equal to (see the lower
panel of Fig. 1 as an illustration)

V QD(x) = 1
2 m∗ω2x2, (5)

V DQD(x) = 1
2 m∗ min

{
ω2

L(x + d )2, ω2
R(x − d )2

}
. (6)

In the case of a QD potential, the only degree of freedom
is the harmonic potential frequency ω, while in the DQD case
frequencies ωL and ωR can be tuned, as well as the distance
2d between the dots. Since DQD potential allows asymmetric
confinement, we introduce asymmetry parameter δ, equal to
the ratio of frequencies in the left and right dot, δ = ωL/ωR.
Impact of the DQD confinement will be discussed in terms of
δ, 2d , and ωR = ω (more detailed explanation can be found in
Sec. III A).

The Hamiltonian of the electron in different potential types
and magnetic field strengths can be solved using the numerical
diagonalization [39], although perturbative approaches in the
study of spin qubit properties are common [21,27,30]. In this
work we follow the numerical approach; the numerical pro-
cedure used in obtaining the eigenvalues and eigenvectors of
the Hamiltonian given in Eq. (1) is explained in Appendix B.
In order to successfully diagonalize the Hamiltonian, orbital
x0 = √

h̄/m∗ω and spin-orbit xso = h̄/m∗α lengths are de-
fined. In our calculations we have used m∗ = 0.014 me [29],
x0 = 30 nm [29], and xso = 165 nm [40] parameters for both
QD and DQD potentials (recall that ωR = ω in the DQD case),
related to the experimental reports on InSb nanowires. On the
other hand, we have used g factor in bulk InSb material, g =
−51.3 [41], being in the range of the experimentally reported
values [38,42]. Initial check of the numerical recipe presented
in Appendix B were exact analytical results obtained in the
special case of the infinite square well [43]. In this case we
were able to reproduce the results concerning the angular
dependence of the energy splitting between Zeeman sublevels,
Rabi frequency, and the relaxation rate.

The nanowire Hamiltonian [Eq. (1)] describes the single-
electron dynamics in the x direction only. To ensure the
validity of the one-dimensional approximation and to suppress
the dynamics in the yz plane, a much stronger yz plane
confinement than in the x direction is needed. In this case, a
wave function along both directions, y and z, will correspond
to the respective ground state. To take into the account the wire
geometry of the system, the same confinement length y0 =
z0 = 10 nm in the y(z) direction is assumed. We model the
confinement potential as harmonic [39], to which the ground
state wave function ψ (y) = e−y2/2y2

0/
√√

πy0 corresponds. In
the z direction an additional potential eEz (z > 0; z = 0
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corresponds to the position of the substrate) is present due
to the applied electric field. Finally, the substrate acts as an
infinite potential barrier for the confined electron, forbidding
him to propagate in the z < 0 region [44]. The ground state
ψ (z) of the Hamiltonian in the z direction is found using
the same numerical method as for the Hamiltonian in the x
direction. Thus, the ground state wave function in the yz plane
is equal to �(y, z) = ψ (y)ψ (z).

III. EDSR AND SPIN RELAXATION IN NANOWIRE
SPIN QUBIT

In order to achieve electrical control of the nanowire spin
qubit, an oscillating electric field in the x direction should
be switched on, resulting in the Rabi Hamiltonian HR =
eE0x cos(ωEt ). When the applied electric field is in resonance
with our quantum system, Rabi frequency �01 is defined as

�01 = eE0

h
|〈0|x|1〉|, (7)

measuring the speed of the single-qubit rotations. In Eq. (7)
states |0〉 and |1〉 correspond to the ground and first excited
state of the single electron Hamiltonian H , while e|〈0|x|1〉|
is the dipole matrix element. We are particularly interested
in the case where qubit states are Zeeman sublevels of the
orbital ground state, since in this regime strength of the Rabi
frequency can be manipulated by changing the magnetic field
orientation [30].

Besides providing the opportunity to electrically control
the spin qubit, SOC triggers the undesired phonon induced
transition between qubit states, setting up a limit on the qubit
lifetime. Rate of spin relaxation can be determined from the
Fermi golden rule

01 = 2π

h̄

∑
νq

|Mν (q)|2|〈ψ0|eiq·r|ψ1〉|2δ(�E01 − h̄ωνq).

(8)
Transition is triggered by acoustic phonons of energy h̄ωνq
that correspond to the energy separation between qubit states,
�E01 = |E0 − E1|. We assume a linear dispersion relation of
acoustic phonons with respect to the intensity of wave vector
q, ωνq = cν |q|, yielding |q| = �E01/h̄cν .

Next, three different geometric factors |Mν (q)|2 entering
spin relaxation rates originate from different types of electron-
phonon scattering: electron-longitudinal phonon scattering
due to the deformation potential [45]

|MLA−DP(q)|2 = h̄D2

2ρcLAV
|q|, (9)

electron-longitudinal phonon scattering due to the piezoelec-
tric field [45]

|MLA−PZ(q)|2 = 32π2h̄(eh14)2

ε2ρcLAV

(3qxqyqz )2

|q|7 , (10)

where h14 is piezoelectric constant, and electron-transverse
phonon scattering due to the piezoelectric field [45]

|MTA−PZ(q)|2 = 2
32π2 h̄(eh14)2

ε2ρcTAV

×
∣∣∣∣q2

x q2
y + q2

x q2
z + q2

y q2
z

|q|5 − (3qxqyqz )2

|q|7
∣∣∣∣. (11)

Finally, spin relaxation rates are dependent on the tran-
sition matrix element |〈ψ0|eiq·r|ψ1〉|2 which depends on
the full three-dimensional confinement. In order to divide
the contribution of confinements along the nanowire axis
and the yz plane, we write the transition matrix element
as |〈0|eiqxx|1〉|2|Tyz|2, where |〈0|eiqxx|1〉|2 is the contribution
along the nanowire direction, while

|Tyz|2 =
∣∣∣
∫∫

dydz|�(y, z)|2ei(qyy+qzz)
∣∣∣2

(12)

represents scattering in a plane perpendicular to the nanowire
axis.

The role of |Tyz|2 in the spin relaxation rate depends on
the regime in which spin qubit operates. At low magnetic
fields, when |q|z0 � 1 and |q|y0 � 1, dipole approximation
eiq·r ≈ 1 + iq · r is valid [22] and |Tyz|2 can be replaced
with (1 + |q|2z2

0 cos2 θ ) ≈ 1, implying that one-dimensional
approximation is justified. However, at higher magnetic fields,
dipole approximation is not valid and confinement in the yz
direction can play a significant role. To determine its role in
the spin relaxation rate, we have numerically calculated |Tyz|2
beyond the dipole approximation.

Magnetic field strengths for which the system operates out-
side of the dipole approximation (|q|y0 � 1) can be roughly
estimated; assuming energy separation between qubit states
proportional to gμBB, Fermi golden rule determines phonon
wave number |q| = gμBB/(h̄cλ), where cLA = 3800 m/s
[46] and cTA = 1900 m/s [47], giving us magnetic field
strengths for the electron-phonon scattering in the longitudi-
nal (0.084 T) and transverse (0.042 T) direction above which
we are outside of the dipole approximation.

Before we continue, we provide necessary param-
eters for the calculation of the spin relaxation rate:
eh14 = 1.41 × 109 eV/m [45], ε = 16.5, D = 7 eV [48],
ρ = 5775 kg/m3 [49].

A. Rabi frequency

We start the discussion of obtained results with the analysis
of Rabi frequency dependence on the parameters of interest.

In Fig. 2(a), dependence of �01 (in eE0x0/h units) on
θ − ϕ and magnetic field strength is presented for the QD
confinement potential. Our results confirm the expected π

periodic behavior with respect to θ − ϕ [30]. Depending
on the magnetic field strength, results can be divided into
two classes. In the first class qubit states represent Zeeman
sublevels of the orbital ground state; in this regime zero Rabi
frequency can be found for special magnetic field orientations
(θ − ϕ = 0, π ), since these qubit states have orthogonal spin
components. In the second class, magnetic field strengths have
led to rearrangement of energy levels, such that qubit states
originate from the ground and the first excited orbital state.
In this situation, an orbital qubit is constructed, with a very
weak dependence of �01 on θ − ϕ (�01 �= 0 in the orbital
qubit regime for any θ − ϕ). Critical magnetic field value Bc

of spin to orbital qubit transition is almost independent on
θ − ϕ and can be easily determined from the eigenspectrum
analysis. Alternatively, for θ − ϕ = 0, π , abrupt switch of �01

from zero to the nonzero value at Bc is a fingerprint of the
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(a) (b)

(c)

FIG. 2. (a) Dependence of Rabi frequency �
QD
01 (in eE0x0/h

units) on θ − ϕ ∈ (0, π ) and B ∈ (0, 3) T for QD gating potential.
(b) In the case of DQD confinement, dependence of Bc on the
asymmetry parameter δ ∈ (1, 5) and distance between the dots 2d ∈
(30, 120) nm is given. (c) Dependence of the ratio �

DQD
01 /�

QD
01

on θ − ϕ ∈ (0.05, 0.95)π and magnetic field strengths B = 0.01 T,
B = 0.05 T, and B = 0.08 T is presented for the symmetric DQD
potential; distance between the dots is equal to 2d = 120 nm. For
the same angle range and magnetic field values �

QD
01 in eE0x0/h units

is presented.

transition. In the case of the QD potential, we extract the
critical magnetic field value Bc ≈ 2.04 T.

Gating with DQD potential gives a qualitatively similar
dependence of �01 on B and θ − ϕ. Being interested in
the qualitative comparison of the impacts of QD and DQD
potentials, we first establish a basis for comparison between
them. To this end, we assume the same frequency of the QD
potential and the right dot of the DQD potential, ω = ωR, and
vary the asymmetry parameter δ and the distance between
the dots 2d . For highly asymmetric DQD confinement and the
large interdot distance, the electron will reside on only one
dot, i.e., this potential is effectively the same as the single
QD potential. The qualitative similarity of the single and
double QD potential is checked through the comparison of
the probability density of the ground and first excited state
(qubit states); similar probability density profiles of the qubit
states directly correspond to the similar Rabi frequency values
of the two systems. Using the numerical comparison of the
probability densities and the Rabi frequency in the case of QD
and DQD potential, it can be concluded that for 2d � 120 nm
and δ � 5 there is no effective difference between the results
arising from two potentials. In other words, one should use
δ < 5 and 2d < 120 nm to test the genuine effects of the DQD
potential.

Figure 2(b) depicts the dependence of Bc in the DQD case
on δ ∈ (1, 5) and 2d ∈ (30, 120) nm. When compared to the
Bc value in the QD case, drastically lower values are found,
especially in the case of symmetric confinement with well

separated left and right QD. As an example, critical magnetic
field value Bc ≈ 0.085 T for the symmetric DQD confinement
with 2d = 120 nm is roughly 24 times smaller than in the QD
case.

Lower Bc for the symmetric DQD confinement is followed
by at most factor 3 increase of �01(BDQD

c ), when compared to
�01(BQD

c ). This slight increase, followed by lower Bc below
which symmetric DQD operates, indicates a steeper rise of
Rabi frequency for symmetric DQD confinements and the
possibility to induce an even bigger difference between �

DQD
01

and �
QD
01 for the optimal magnetic field configuration. To

investigate this possibility, we have performed a numerical
analysis of the Rabi frequency ratio �

DQD
01 /�

QD
01 for a wide

range of DQD confinements and different magnetic field
strengths/orientations, such that both systems operate as spin
qubits. Our results confirm that symmetric DQD confinement
maximally enhances this ratio when operating at magnetic
field strengths close to Bc for the DQD potential, while the
field orientation should be chosen such that θ − ϕ is close
to 0 or π . In order to illustrate this conclusion, in the left
panel of Fig. 2(c) we present the ratio �

DQD
01 /�

QD
01 for 2d =

120 nm and δ = 1 in the DQD case, assuming field orienta-
tions θ − ϕ ∈ (0.05, 0.95)π and magnetic field strengths B =
0.01 T, B = 0.05 T, and B = 0.08 T (BDQD

c ≈ 0.085 T for this
setup). Since angles θ − ϕ = 0, π should be excluded from
the analysis because they correspond to zero Rabi frequency,
we have restricted our plots to a θ − ϕ region smaller than π

[see the right panel of Fig. 2(c) for the �
QD
01 values], obtaining

the highest ratio of around 800. It should be noticed that for
angles closer to 0/π even bigger ratios (104) can be obtained,
but at the cost of lowering the value of Rabi frequency.

B. Spin relaxation

Another important component for determining spin qubit
quality is the spin relaxation rate. Similarly as Rabi fre-
quency, 01 is dependent on the magnetic field and gating
potential. However, 01 can be additionally dependent on the
confinement in yz plane. In order to compare the influence
of three-dimensional confinement with the confinement along
the nanowire axis solely, we define one-dimensional approx-
imation of the relaxation rate 1D

01 by changing the transition
matrix element |〈ψ0|eiq·r|ψ1〉|2 with |〈0|eiqxx|1〉|2 in Eq. (8).

It has been known that in lateral GaAs QDs spin relaxation
rates are dominated by piezoelectric field [50,51]. In our case,
we wish to analyze the influence of each relaxation channel;
thus, the overall spin relaxation rate will be divided into three
contributions:

01 = LA−DP
01 + LA−PZ

01 + TA−PZ
01 , (13)

each dependent on a different geometric factor, see
Eqs. (9)–(11).

Before presenting the numerical results, conclusions inde-
pendent on the choice of gating potentials are provided. First,
01 shows oscillatory dependence on the θ − ϕ angle, being
equal to zero for θ − ϕ = 0, π and reaching the maximum
for θ − ϕ = π/2 in the spin qubit regime [21]. Second, for
weak magnetic field strengths (B < 0.1 T), piezoelectric fields
dominate relaxation rates. At the same time, yz confinement
can be ignored.
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(a)

(b)

FIG. 3. (a) Dependence of the relaxation rates on the magnetic
field strength B ∈ (0.1, 2) T for θ − ϕ = π/2. Red circles represent
the contribution of deformation potential in the scattering rates, while
inverted pink (blue) triangles show the contribution of piezoelectric
field for the electron-phonon scattering in the transverse (longitu-
dinal) direction. Finally, black squares represent relaxation rates in
the one-dimensional approximation, in which the contribution of
the confinement perpendicular to the nanowire axis is neglected.
(b) Dependence of 01 on the magnetic field strength B ∈ (0.1, 1.5) T
in the case of QD and DQD confinement potential. Magnetic field
orientation is chosen such that θ − ϕ = 0.05π . In the DQD case,
the distance between the dots is set at 90 nm, while the asymmetry
parameter is varied.

To explore a new type of behavior accessible in InSb spin
qubits, we focus our attention on stronger magnetic fields and
investigate its impact on each relaxation channel and one-
dimensional approximation of the total relaxation rate 1D

01 .
We start from the QD potential. In Fig. 3(a), dependence of
relaxation rates on B ∈ (0.1, 2) T for the fixed angle θ − ϕ =
π/2 is given [52]. Red circles represent the contribution of
deformation potential, pink inverse (blue) triangles denote the
impact of piezoelectric field in the electron-phonon scattering
along the transverse (longitudinal) direction. Graphs show
that relaxation rate LA−PZ

01 can safely be ignored, while
LA−DP

01 and TA−PZ
01 have nontrivial influence on 01. For

weak magnetic fields TA−PZ
01 term is dominant, while for

large magnetic fields LA−DP
01 should be considered solely

[39]. A different influence of TA−PZ
01 and LA−DP

01 lies in
the opposite behavior of the corresponding geometric factors:
|MTA−PZ(q)|2 [|MLA−DP(q)|2] is inversely (directly) propor-
tional to the energy splitting between the Zeeman levels and
decreases (increases) with the magnetic field rise.

Contribution of the yz plane confinement on the spin relax-
ation rate can be determined by comparing the 1D

01 with relax-
ation rate channels. The comparison is illustrated in Fig. 3(a),
clearly demonstrating that one-dimensional approximation of
the spin relaxation rate is valid only for weak magnetic fields,
below 0.1 T. At higher fields, due to the strong g factor
of the InSb material, both |q|y0 and |q|z0 are greater than
one, triggering the effects of the yz plane confinement for
each relaxation rate channel. Thus, suppressed spin relaxation
represents a fingerprint of a material with a strong g factor.

In the case of DQD potentials, dependence of Bc on the
form of gating presents a serious limitation on the regimes that
can be accessed. For example, if the Bc value is sufficiently
weak, Bc < 0.1 T, the spin qubit operates under the dominant
influence of the piezoelectric field. A strong magnetic field
regime is beneficial for spin qubit operation due to strong Rabi
frequency and suppressed spin relaxation. In order to operate
in this regime, asymmetric DQD potential should be used. To
compare the influence of QD and DQD potential on 01, in
Fig. 3(b), we plot the dependence of the spin relaxation rate in
the case of QD and DQD confinement on the magnetic field
strength B ∈ (0.1, 1.5) T, assuming θ − ϕ = π/2 and 2d =
90 nm. Besides the symmetric δ = 1 confinement, asymmetric
DQD confinements (δ = 2, 3) were analyzed as well. The
presented results show that DQD gating leads to increased
relaxation rates, when compared to the QD potential. This dif-
ference is minimized for highly asymmetric gating potentials.
Note that B independent 01 values suggest that orbital qubit
is created: energy difference between the states with the same
spin component (representing the orbital qubit states in our
case) is independent on B and triggers phonons on the same
energy, leading to the observed effect. Consequently, these
points should be excluded from the spin qubit analysis.

Finally, we emphasize that in the special case of the asym-
metric DQD potential with δ = 1.5 a similar trend of the spin
relaxation rate is ascertained [21], i.e., after the increase of the
spin relaxation rate in the dominant regime of the piezoelectric
field, suppression of spin relaxation is observed, followed by
the increase up to magnetic field independent saturation value
[see the green triangles in Fig. 3(b) as a comparison].

C. Spin qubit quality

Quantitative estimate of the spin qubit quality can be given
with the help of the figure of merit ξ [22],

ξ = �01

01 + o
, (14)

measuring the number of qubit operations that can be imple-
mented during the qubit lifetime. In Eq. (14) o represents
relaxation rate of decay channels different from phonons. To
divide the contribution of phonons from them, we rewrite ξ in
terms of the phonon figure of merit ξph = �01/01 and relative
influence of other channels with respect to phonons o/01.
Thus,

ξ = ξph

1 + o
01

. (15)

We first analyze ξph for the QD confinement. Neglect-
ing the weak magnetic field regime [53], in Fig. 4 we
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FIG. 4. For the QD confining potential, dependence of the fig-
ure of merit ξ

QD
ph (given in dimensionless unit 7.25 m

V × E0) and
Rabi frequency (in eE0x0/h units) on the relative angle θ − ϕ ∈
(0.05, 0.95)π and magnetic field strength B ∈ (0.1, 2) T is presented.

present the dependence of ξ
QD
ph on B ∈ (0.1, 2) T and θ − ϕ ∈

(0.05, 0.95)π . The restricted θ − ϕ domain plotted is due to
the a priori exclusion of θ − ϕ = 0, π values (QD

01 = 0 in
these situations). Plots show that to maximal value of ξ

QD
ph

correspond relative angles θ − ϕ = 0.05π, 0.95π . This result
suggests that for θ − ϕ closer to 0 or π than presented even
bigger ξQD values can be obtained, at the cost of lowering the
Rabi frequency. In other words, 

QD
01 has a steeper decline to

zero than �
QD
01 , when θ − ϕ goes from π/2 to 0 or π .

Magnetic field orientation isotropy of o [51] implies that
shift from θ − ϕ = π/2 increases o/

QD
01 also. Thus, in order

to maximize ξ , optimization of both ξ
QD
ph and o/

QD
01 is

needed. Since at high magnetic fields phonon induced relax-
ation dominates [51], deviation of θ − ϕ from π/2 improves
the spin qubit quality until o/

QD
01 drops below 1. This sets

up the optimal magnetic field orientation.
Finally, we compare the impacts of DQD and QD poten-

tials on the spin qubit quality. As discussed in Sec. III A,
Rabi frequency in the DQD case can be three orders of
magnitude greater than in the QD case. Enhanced Rabi fre-
quency suggests that SOC effects are more pronounced; thus,
phonon induced spin relaxation rate should be enhanced.
When compared to the QD case, an increase of 

DQD
01 followed

by the negative trend of ξ
DQD
ph ensures that spin qubit quality

decreases; symmetric DQD confinements give the poorest
results, while highly asymmetric DQD potentials provide
similar values as for QD gating.

IV. CONCLUSIONS

We have investigated the influence of gating potentials,
magnetic field strength and orientation on Rabi frequency
and spin relaxation rate in a single electron InSb nanowire
spin qubit. Due to the strong Landé g factor, we were able
to show that InSb spin qubit can operate in the regime in
which deformation potential of acoustic phonons dominate
relaxation rate. Qualitatively new behavior of spin relax-
ation rate comes from the confinement perpendicular to the
nanowire axis, offering a new regime in which spin qubit
can successfully operate. We have shown that gating potential
has a crucial role in enabling such a situation, additionally
pointing out simple harmonic potential as beneficial for the
optimal definition of a spin qubit. Although presented for InSb

nanowire spin qubits, conclusions remain valid for spin qubits
in other materials with a strong g factor. Thus, modifications
of g due to different effects, e.g., strong in-plane magnetic
field [54], do not interfere with the conclusions stated in this
work.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ONE-DIMENSIONAL HAMILTONIAN

Here we derive the effective one-dimensional Hamiltonian
H of the electron in an InSb quantum wire, by averag-
ing the three-dimensional kinetic energy term T3D and two-
dimensional spin-orbit Hamiltonian H2D

so over y and z direc-
tion. Thus, we start from the three-dimensional Hamiltonian

H3D = T3D + V (x) + H2D
so + Hz, (A1)

where T3D = ∑
i=x,y,z P2

i /2m∗ (Pi = pi + eAi),

H2D
so = αR(Pxσy − Pyσx ) + αD(Pxσx − Pyσy), (A2)

while V (x) and Hz are the gating potential and the Zeeman
term, defined in Eq. (4) and Eqs. (5) and (6), respectively. The
choice of the vector potential components Ax = −Bz sin θ ,
Ay = 0, Az = −By cos θ is such that it corresponds to the ap-
plied in-plane magnetic field B = B(cos θ, sin θ, 0). After av-
eraging the kinetic energy operator over the y and z direction
using the ground state wave function �(y, z) = ψ (y)ψ (z), we
get

〈T 〉 = p2
x

2m∗ − eB〈z〉 sin θ

m∗ px +
[ 〈p2

y〉
2m∗ + 〈(pz − eBy cos θ )2〉

2m∗

+e2B2 sin2 θ〈z2〉
2m∗

]
. (A3)

In the previous equation, only the first and second term affect
the dynamics in the x direction, while all terms in the square
brackets can be considered the constant shift of energy and,
therefore, can be neglected.

Next, effective one-dimensional spin-orbit interaction
Hamiltonian is equal to

〈Hso〉 = αR((px − eB〈z〉 sin θ )σy − 〈py〉σx )

+αD((px − eB〈z〉 sin θ )σx − 〈py〉σy)

= (px − eB〈z〉 sin θ )(αRσy + αDσx ), (A4)

where we have used the fact that expectation value of the
momentum py, 〈py〉 = ∫ ∞

−∞ �∗(y, z)py�(y, z), is explicitly
equal to zero.

A further simplification of the effective Hamiltonian can be
made by neglecting the term eB〈z〉 sin θ px/m∗ from Eq. (A3)
and eB〈z〉 sin θ from Eq. (A4). Assuming that intensity of px
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is proportional to h̄/x0, magnetic field dependent terms can be
neglected if the relation

h̄

x0
� eB〈z〉 (A5)

is satisfied. More concretely, when the h̄/x0 is for a factor of
10 stronger than the magnetic field dependent term, orbital
effects of the magnetic field are small and can be discarded.
In our calculations, the magnetic field strengths of interest are
up to 3 T, yielding the relation for the z expectation value

〈z〉 � 0.1
h̄

ex0 × 3 T
(A6)

that has to be satisfied to successfully operate in this regime.
As discussed in Sec. II, the wave function ψ (z) is dependent
on the strength of the applied electric field E : with the
increase of the electric field strength 〈z〉 increases. In other
words, the strength of the electric field is limited from above.
Numerical estimate for the critical value of electric field is
6.5 × 106 V/m, going to be used in our numerical calcula-
tions. Under these assumptions, the effective one-dimensional
Hamiltonian resembles the one defined in Eq. (1), used in the
rest of the paper.

APPENDIX B: NUMERICAL SOLUTION OF THE
ONE-DIMENSIONAL SCHRÖDINGER EQUATION

In order to find eigenvectors and eigenenergies of the
Hamiltonian H , given in Eq. (1), numerical diagonalization
is performed. After defining orbital and spin-orbit lengths as
x0 and xso = h̄/mα, respectively, such that x = x0u, where u
is dimensionless variable, H can be written in the following
form:

H = h̄2

2m∗x2
0

Hred. (B1)

Eigenvectors of H are the same as of Hred, while eigenvalues
of H and Hred differ for the factor h̄2/2m∗x2

0, having the energy
units. The benefits of using Hred instead of H stems from the
transfer into dimensionless units, more suitable for numerical
manipulation. The concrete form of Hred is equal to

Hred = − d2

du2
− 2i

x0

xso
a · σ

d

du
+ Veff (u) + geff n · σ, (B2)

where geff and Veff (u) are effective Landé factor and effective
potential, respectively,

geff = g
m∗x2

0μBB

h̄2 , Veff (u) = 2m∗x2
0

h̄2 V (x0u), (B3)

while vectors a and n are spin-orbit and magnetic field unit
vectors, respectively, defined in the main text. The form of
effective potential depends on the choice of gating potential
(5) and (6), while effective Landé factor is linearly dependent
on the magnetic field strength B.

To numerically solve the eigenproblem of Hred, orbital
space is discretized with an uniform grid. First and second
derivative of a wave function are approximated by finite
difference uniform grid formulas [55]

dψ (u)

du
= ψ−4

280h
− 4ψ−3

105h
+ ψ−2

5h
− 4ψ−1

5h

− ψ4

280h
+ 4ψ3

105h
− ψ2

5h
+ 4ψ1

5h
+ O(h8), (B4)

d2ψ (u)

du2
= − ψ−4

560h2
+ 8ψ−3

315h2
− ψ−2

5h2
+ 8ψ−1

5h2
− 205ψ0

72h2

− ψ4

560h2
+ 8ψ3

315h2
− ψ2

5h2
+ 8ψ1

5h2
+ O(h8), (B5)

with accuracy to the h8 order, where h is the uniform grid step.
By definition, ψ±n = ψ (u ± nh) represent wave functions
shifted in the left/right (−/+) direction of the coordinate
space for nh.

Uniform grid formulas allow us to represent the Hamilto-
nian as a square matrix. Effective potential is represented as
a diagonal matrix, while matrix representation of the first and
second order derivative have nondiagonal terms in addition.
Since Hred is dependent on spin degrees of freedom also,
the orbital part of the Hamiltonian is trivially extended in
the spin space. Also, the Zeeman Hamiltonian is trivially
extended in the orbital space, while the matrix form of the
spin-orbit Hamiltonian is obtained as a tensor product of the
first derivative matrix and spin Hamiltonian a · σ.

In the QD case, harmonic potential is centered at u = 0,
while in the case of DQD potential numerical calculations
assumed each QD center range from u = ±1/2 to u = ±2.
We have checked that for all studied situations the choice of u
from the interval (−8, 8) is enough to capture the smooth de-
cline of the orbital wave function to 0 at u = ±8. Also, the di-
vision of the orbital space into N = 2000 parts was enough to
ensure convergence of the results, i.e., for the increase of N to
4000 the relative difference between the results is below 10−4.
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We study the influence of quantum dot symmetry on the Rabi frequency and phonon-induced spin relaxation
rate in a single-electron GaAs spin qubit. We find that anisotropic dependence on the magnetic field direction
is independent of the choice of the gating potential. Also, we discover that relative orientation of the quantum
dot, with respect to the crystallographic frame, is relevant in systems with C1v, C2v, or Cn (n �= 4r) symmetry.
To demonstrate the important impact of the gating potential shape on the spin qubit lifetime, we compare the
effects of an infinite-wall equilateral triangle, square, and rectangular confinement with the known results for the
harmonic potential. In the studied cases, enhanced spin qubit lifetime is revealed, reaching almost six orders of
magnitude increase for the equilateral triangle gating.

DOI: 10.1103/PhysRevB.101.165302

I. INTRODUCTION

Every quantum two-level system can act as the quantum
bit, a basic unit of quantum information processing [1,2].
Among different solid-state implementations of the qubit sys-
tem [3–6], single-electron spin in a semiconductor quantum
dot (QD) can be used to achieve the task. In order to manipu-
late spins of charge carriers embedded inside a semiconductor
material electrically, through electric dipole spin resonance
(EDSR) [7], the presence of spin-orbit interaction (SOI) is
obligatory.

Besides its positive effect in EDSR-based schemes [8–16],
SOI enables the electron-phonon coupling-mediated transi-
tions between the qubit states [17–20], affecting the spin
qubit lifetime. To suppress the coupling to phonons, different
approaches like the optimization of the QD design [21,22] or
control of the system size [23] were suggested. The observed
anisotropy of the spin relaxation rate on the in-plane magnetic
field orientation [24] offered another playground for fine-
tuning the spin qubit’s desired properties. In circular QDs, this
is the only degree of freedom accessible in the optimization
of the spin qubit, while for the elliptical confining potential
[22,25–27] orientation of the QD potential with respect to the
crystallographic frame can be used as the tuning parameter.

Evidently, different symmetry of the gating potential [28] is
the main reason for the observed behavior. But to what extent
can the potential symmetry alter the basic properties of the
electrically controlled spin qubit? To address this question,
we have performed a general analysis valid for the lateral
GaAs QD system with Cnv or Cn symmetry of the gating
potential. Besides the expected anisotropy on the magnetic
field orientation, we were able to find potential symmetries for
which the QD orientation with respect to the crystallographic
frame can act as another control parameter of the spin qubit
characteristics. With our theory, we offer a simple and effi-

cient way to determine the impact of the gating potential on
the Rabi frequency and spin relaxation rate. This is shown in
the example of anisotropic and isotropic harmonic potential,
as well as for the infinite-wall equilateral triangle, square, and
rectangular potential.

This paper is organized as follows. In Sec. II we define a
single-electron GaAs spin qubit model. In Sec. III we define
the dipole moment of the electrically controlled spin qubit
that describes both the Rabi frequency and SOI-induced spin
relaxation rate mediated by acoustic phonons. In Sec. IV we
present the main results of the paper: analytical expressions
for the dipole moment in the case of the gating potential with
Cnv or Cn symmetry. In Sec. V, to illustrate the impact of
the gating potential on the spin qubit lifetime we use the
obtained expressions to compare the influence of the harmonic
confinement with an infinite-wall equilateral triangle, square,
and rectangular potential. In Sec. VI we give our conclusions.

II. DYNAMICS OF THE LATERAL QD

We start with the Hamiltonian describing the lateral dy-
namics of a single-electron in the GaAs material,

H = H0 + Hz + Hso = p2
x + p2

y

2m∗ + V (x, y) + Hz + Hso, (1)

where px and py are the momentum operators, m∗ is the
effective mass (m∗ = 0.067me for GaAs, me is the electron
mass), while V (x, y) is the gating potential used to localize
the electron in a QD. In the lateral system, symmetries that
can be present are the n-fold rotational symmetry and the
vertical mirror plane symmetry σv. For simplicity, we assume
that σv coincides with the yz plane of the QD coordinate frame
(see Fig. 1). Thus, we assume a general form of the orbital
Hamiltonian H0 that has a Cnv or Cn (n = ∞ also) symmetry.
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FIG. 1. A schematic view of the GaAs lateral QD. The y axis
of the QD reference frame coincides with the vertical mirror plane
symmetry σv. We define the angle between the chosen x axis and the
crystallographic [100] axis as ϕ. The magnetic field is aligned along
the n direction, forming an angle α with the [100] direction.

Due to the symmetry, eigenenergies and eigenvectors of H0

can be classified according to the irreducible representations
(IRs) of a given point-group symmetry.

Besides H0, in Eq. (1) the Zeeman term Hz appears, de-
scribing the coupling of spin and magnetic field:

Hz = gμBB · s, (2)

where g is the effective Landé factor (g ≈ −0.44 for GaAs),
μB is the Bohr magneton, s = 1/2σ is the electron’s spin,
and B = Bn is the in-plane magnetic field forming an angle
α with the crystallographic [100] axis. In Eq. (1) we have
neglected the orbital effects of the in-plane magnetic field.
This is a reasonable assumption for the magnetic field strength
weaker than a few teslas [29]. In the case of the magnetic field
applied in the z direction, orbital effects would be much more
pronounced [29].

Eigenstates of H0 + Hz can be written in a direct prod-
uct form |�i±〉 = |�i〉 ⊗ |±〉, where |�i〉 corresponds to
the eigenvectors of the Hamiltonian H0 with an energy εi,
while |±〉 represents eigenvectors of Hz with spin projection
parallel or antiparallel to the magnetic field direction and
an eigenenergy ±gμBB/2, respectively. The effect of Hz on
the eigenspectra of H0 can be seen as the splitting of H0

eigenenergies into two branches with an energy difference
|g|μBB. In this work, we assume that |g|μBB is much weaker
than the energy difference between the ground and the first
excited state of the orbital Hamiltonian H0.

Besides H0 (Hz) that acts trivially in the spin (orbital)
space, the SOI Hamiltonian does not commute with H0 + Hz.
It consists of two terms, Dresselhaus [30] and Rashba [31]: the
Dresselhaus term exists due to the bulk inversion asymmetry
of the structure, while the Rashba term is present when an
electric field perpendicular to the growth direction is applied.
The form of spin-orbit coupling is dependent on the structure’s
symmetry. For GaAs, having the zincblende structure, the SOI
Hamiltonian is equal to

Hso = 2αd
(
pc

ysy − pc
xsx

) + 2αr
(
pc

xsy − pc
ysx

)
, (3)

where αr and αd are Rashba and Dresselhaus coupling con-
stants, while pc

x and pc
y are momentum operators in the [100]

and [010] crystallographic directions, respectively. The elec-
tron spin is locked to the crystal momentum, since the po-
tential trap confines electron of the crystal. Thus, an electron
in a QD inherits the features of the crystal for which the
crystal momentum is only appropriately defined. However,
we have the choice to define the x axis of our coordinate
frame independently on the crystallographic [100] direction.
Assuming that the angle between them is ϕ, pc

x and pc
y should

be written in terms of momentum operators in the chosen
frame: pc

x = px cos ϕ − py sin ϕ, pc
y = px sin ϕ + py cos ϕ.

The spin-orbit Hamiltonian can be written in a different
form using the Rashba lr = h̄2/2mαr and Dresselhaus ld =
h̄2/2mαd precession lengths:

Hso = h̄

(
pc

ysy − pc
xsx

m∗ld
+ pc

xsy − pc
ysx

m∗lr

)
. (4)

To compare the ratio of the spin-orbit precession length and
the orbital confinement length l , we redefine lr and ld in terms
of the overall spin-orbit length lso and the spin-orbit angle ν:

l−1
d = l−1

so sin ν, l−1
r = l−1

so cos ν. (5)

Since we assume no doping of the GaAs material [32], lso can
be considered constant. Moreover, the relation lso � l [29,33]
is satisfied in GaAs QDs, meaning that SOI can be treated as
a perturbation.

Without SOI, qubit states can be defined as |�0±〉 =
|�0〉 ⊗ |±〉, where |�0〉 corresponds to the ground state of
the spin-independent Hamiltonian H0. Because SOI can be
treated on the level of a perturbation, we calculate first-order
corrections of the qubit states due to spin-orbit coupling. Since
it is known that the standard perturbation technique badly
incorporates the spin-orbit-induced corrections [34,35], we
follow the procedure explained in Ref. [22]: the Hamiltonian
H is transformed using the unitary operator U = exp(inso · s),
defined with the help of the position-dependent spin-orbit
vector nso = l−1

so (r1 sin ν + r2 cos ν,−r1 cos ν − r2 sin ν, 0):

UHU † = H0 + Hz + H eff
so . (6)

The unitary operator U does not change the orbital and
Zeeman Hamiltonian. On the other hand, the SOI Hamiltonian
Hso is transformed into

H eff
so = gμB(nso × B) · s − h̄2

4m∗l2
so

(1 + 2lzsz cos 2ν), (7)

where lz = −i(r1∂r2 − r2∂r1 ) is the orbital angular momen-
tum. Using H eff

so , the first-order correction of the qubit states
can be written as

δ|�0σ
′〉 = U

∑
i �=0,σ ′′

〈�iσ
′′|H eff

so |�0σ
′〉

ε0 − εi + σ ′−σ ′′
2 gμBB

|�iσ
′′〉, (8)

where the sum over i �= 0 corresponds to all orbital eigenvec-
tors |�i〉 different from the ground state |�0〉, while σ ′′ = ±.

The lateral QD model is valid if the electron dynamics in
the z direction is suppressed; i.e., an electron is always in
the ground state. Thus, we assume that confinement length
in the z direction is much stronger than in the xy plane. The
Hamiltonian describing the quantum confinement in the z
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direction is equal to H (z) = p2
z/2m∗ + V (z), where V (z) =

eE0z for z � 0 and V (z) = ∞ for z < 0. To this Hamiltonian
corresponds the following ground state (for z > 0) [36]:

�0(z) = 1.4261
√

χAi(χz − 2.3381), (9)

where Ai is the Airy function, while χ = (2m∗eE0/h̄2)1/3 is
the inverse of the characteristic length z0 = 1.5587/χ in the z
direction.

In order to simplify the notation, in the rest of the paper
we assume that |↑〉 and |↓〉 represent SOI corrected qubit
states in the xy plane, while |�↑〉 = |↑〉�0(z) and |�↓〉 =
|↓〉�0(z) correspond to wavefunctions of the qubit states in
three dimensions.

III. RABI FREQUENCY AND PHONON-INDUCED SPIN
RELAXATION RATE

Electrical control of the spin qubit is possible by applying
the in-plane oscillating electric field E cos ωt , resulting in the
Rabi Hamiltonian HR = eE · r cos(ωt ). The Rabi frequency,
measuring the speed of the single-qubit rotations, is equal to
� = e/h̄|E · 〈↑|r|↓〉|, where

d↑↓ = 〈↑|r|↓〉 (10)

is the dipole moment (in e units), present due to the SOI-
induced spin mixing mechanism. Misalignment of the ap-
plied field direction and the dipole moment leads to a trivial
suppression of the Rabi frequency. Since it is beneficial to
increase the Rabi frequency as much as possible, the electric
field should be applied in the direction of the dipole moment.
Thus, for fixed |E|, the maximal value max(�) = �↑↓ of the
Rabi frequency

�↑↓ = e

h̄
|E||d↑↓| (11)

is completely dependent on the strength of the dipole moment.
Since spin-phonon interaction in semiconductor QDs is ir-

relevant [17], unlike donor-bound electrons in direct band-gap
semiconductors [37], only electron-phonon-induced transition
between the qubit states should be considered in the study of
spin relaxation. Electron-phonon coupling is triggered by the
SOI-induced admixture mechanism, being highly dependent
on the symmetry of the gating potential [37]. We determine
the rate of spin relaxation at T = 0 from the Fermi golden
rule,

↑↓ = 2π

h̄

∑
νq

|Mν (q)|2|〈�↑|eiq·rc |�↓〉|2δ(ε↑↓ − h̄ωνq),

(12)
assuming the dominant contribution of acoustic phonons,
having an energy h̄ωνq, equal to the level separation between
the qubit states, ε↑↓ = |g|μBB. For magnetic field strengths up
to a few teslas, relevant for this work, the linear dependence
of phonon frequencies on the crystal wave vector length can
be used, ωνq = cν |q|, giving us |q| = |g|μBB/h̄cν [38].

The geometric factor |Mν (q)|2 is dependent on the phonon
mode, longitudinal acoustic (LA) or transverse acoustic (TA).
The longitudinal geometric factor [39]

|MLA(q)|2 = h̄D2

2ρcLAV
|q| + 32π2h̄(eh14)2

ε2ρcLAV

(3qxqyqz )2

|q|7 (13)

depends on both D and h14, representing the deformation and
piezoelectric constant, respectively. On the other hand, the
transverse geometric factor [39]

|MTA(q)|2 = 2
32π2 h̄(eh14)2

ε2ρcTAV

×
∣∣∣∣∣q2

x q2
y + q2

x q2
z + q2

y q2
z

|q|5 − (3qxqyqz )2

|q|7
∣∣∣∣∣ (14)

is dependent on the piezoelectric constant solely. Other pa-
rameters for the GaAs material are [22,34] cLA = 5290 m/s,
cTA = 2480 m/s, ρ = 5300 kg/m3, D = 7 eV, eh14 = 1.4 ×
109 eV/m, and ε = 12.9.

Finally, in Eq. (12) both the lateral and the z-direction
confinement enter the relaxation rate through the scattering
matrix element |〈�↑|eiq·rc |�↓〉|2. We employ the dipole ap-
proximation eiq·rc ≈ 1 + iq · rc, justified for magnetic field
strengths below a few teslas.

To summarize, the phonon-induced relaxation rate can be
divided into three separate channels: the deformation phonons
def

↑↓ , the longitudinal piezoelectric phonons 
piez,LA
↑↓ , and

the transverse piezoelectric phonons 
piez,TA
↑↓ . In GaAs QDs,


piez,TA
↑↓ is the dominant relaxation channel, being two orders

of magnitude stronger than 
piez,LA
↑↓ + def

↑↓ in the dipole ap-
proximation regime. Thus, we can identify the total relaxation
rate with 

piez,TA
↑↓ [40]:

↑↓ = 256π (eh14)2(|g|μBB)3

105c5
TAρ h̄4ε2

(
1 + 7

33
K2

TAz2
0

)
|d↑↓|2, (15)

where KTA = |g|μBB/h̄cTA. We assume a typical confinement
length l = 10 nm [29,33] of the GaAs QD in an experimental
setup and magnetic field up to a few teslas (see Sec. II). Since
confinement in the z direction is much stronger than in the xy
plane, z0 � l , we conclude that 7K2

TAz2
0/33 is much weaker

than 1. In other words, the influence of the confinement in the
z direction can be neglected.

Note that ↑↓ is squarely dependent on the absolute value
of the dipole moment, meaning that the knowledge of the
dipole moment is sufficient to fully explain the behavior of
both the Rabi frequency and the spin relaxation rate.

IV. ANALYTICAL EXPRESSION FOR
THE DIPOLE MOMENT

Based on the previous conclusion, we come to the main ob-
jective: to derive symmetry-allowed expression for the dipole
moment. The results can be divided into three cases, according
to the system’s group symmetry: (1) Cnv (n � 3) and C∞v, (2)
C2v and C1v, and (3) Cn and C∞.

A. Dipole moment for systems with Cnv (n � 3)
or C∞v symmetry

To find the SOI-induced perturbative correction of the
qubit states, we first rewrite the unitarily transformed SOI
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|g|μBB

|Ea+>
i |g|μBB

y x xyx,yx,yx,yx,y

_

Cnv  C  v/ C2v∞

|Ea   >
i

|A0+>

|Eb+>
i

_|Eb   >
i

|A0     >_

|A1+>
i

_|A1   >
i

|A0+>
|g|μBB

|A0     >_

|g|μBB
|g|μBB |B1+>

i

_|B1   >
i

FIG. 2. A schematic view of the first-order perturbation correc-
tion of the qubit states |A0±〉 in the case of Cnv (C∞v) (left) and
C2v (right) symmetry. In the first case, states that correct the qubit
states have twofold orbital degeneracy and transform according to
the IR E1. These states are split by the Zeeman energy |g|μBB. The
transition between the SOI uncorrected qubit states and the |Ei

a,b〉
states is enabled by the x and y terms from H eff

so . In the second
case, orbital states involved in the qubit states correction transform
according to IRs A1 and B1; the transition is triggered by the terms y
and x from H eff

so , respectively.

Hamiltonian in the coordinate frame of the potential,

H eff
so = gμBBsz(x(sin (ν + ϕ) sin α + cos (ν − ϕ) cos α)

+ y(cos (ν + ϕ) sin α + sin (ν − ϕ) cos α)), (16)

and neglect the second term in Eq. (7), assuming magnetic
field strengths > μT needed to appropriately define the qubit
states. For simplicity, we define two factors,

vx = sin(ν + ϕ) sin α + cos(ν − ϕ) cos α, (17)

vy = cos (ν + ϕ) sin α + sin (ν − ϕ) cos α, (18)

with whose help H eff
so can be written in a more compact form.

The Hamiltonian H eff
so is in the orbital space dependent on

the coordinates x and y that transform according to the IR E1.
Their symmetry behavior restricts the states that can appear in
the perturbative correction of the qubit states. It is simple to
check that only states transforming according to the IR E1 are
allowed. This is illustrated in the left-hand panel of Fig. 2.

We label the ground state of the orbital Hamiltonian as
|A0〉, since the ground state in quantum mechanical systems
is of the maximal possible symmetry [41] and it should trans-
form according to the A0 IR, representing the objects invariant
under all group symmetry operations (see Table I). We write
two complex conjugate basis vectors of the two-dimensional
IR E1 as |Ei

a〉 and |Ei
b〉, where i labels the energy level. Also,

we define the energy difference between the excited level and
the ground state as εi = εi

ex − εgr .
Due to the negative g factor, the lowest qubit state |A0+〉 =

|A0〉 ⊗ |+〉 is parallel to the magnetic field direction, while
|A0−〉 = |A0〉 ⊗ |−〉 is the qubit state with spin projection
antiparallel to the magnetic field direction. The first-order
perturbative correction to the qubit states is written as |δA0±〉.
Thus, we can write the SOI corrected qubit states as |↑↓〉 =
|A0±〉 + |δA0±〉, where the normalization factor is omitted as
the correction is small. Correspondingly, the dipole moment

TABLE I. For Cnv and C∞v symmetry groups, tables of matrices
of the corresponding IRs are given [42], tabulated on the generators
Cn (Rβ ) and σv, where Cn (Rβ ) represents a rotation for the angle
2π/n (β) around the z axis. In the Cnv case, two-dimensional IRs
exist if n � 3. In both cases, two-dimensional IRs are written in a
complex conjugate basis.

Cnv IR m Cn σv

A0/B0 0 1 ±1

Em (0, n
2 )

(ei 2π
n m 0
0 e−i 2π

n m

) (0 1
1 0

)
A n

2
/B n

2

n
2 −1 ±1

C∞v IR m Rβ σv

A0/B0 0 1 ±1

Em 1, 2, . . .
(eiβm 0

0 e−iβm

) (0 1
1 0

)

is equal to

d =
∑
j=x,y

〈↑|r · e j |↓〉e j =
∑
j=x,y

(〈A0+|r · e j |δA0−〉e j

+〈δA0+|r · e j |A0−〉e j ). (19)

Since lso � l , we approximate the unitary operator U with
I2, where I2 is the identity 2 × 2 matrix. After noticing that
〈±|sz|∓〉 = −1/2, 〈±|sz|±〉 = 0, we find the SOI-induced
corrections of the qubit states

|δA0±〉 = |g|μBB

2lso

∑
i

(〈
Ei

a

∣∣xvx + yvy|A0〉
εi ± |g|μBB

∣∣Ei
a∓

〉

+
〈
Ei

b

∣∣xvx + yvy|A0〉
εi ± |g|μBB

∣∣Ei
b∓

〉)
. (20)

Additionally, transition dipole matrix elements are labeled as

X i = 〈
Ei

a

∣∣x|A0〉, Y i = 〈
Ei

a

∣∣y|A0〉. (21)

Since the Zeeman splitting is much smaller than the or-
bital excitation energies, |g|μBB � εi, the approximation εi ±
|g|μBB ≈ εi can be made. Thus, Eq. (20) is transformed into

|δA0±〉 = |g|μBB

2lso

∑
i

(
X ivx + Y ivy

εi

∣∣Ei
a∓

〉

+ (X i )∗vx + (Y i )∗vy

εi

∣∣Ei
b∓

〉)
, (22)

where (X i )∗ and (Y i )∗ are the complex conjugates of X i and
Y i, respectively. Components of the dipole moment can now
be written in a more compact form:

dx = 2|g|μBB

lso

∑
i

|X i|2vx + Re(X i(Y i )∗)vy

εi
,

dy = 2|g|μBB

lso

∑
i

|Y i|2vy + Re(X i(Y i )∗)vx

εi
, (23)

where Re(X i(Y i )∗) stands for the real part of X i(Y i )∗. Poten-
tial dependent parameters that enter Eq. (23) are the transition
dipole matrix elements and the excitation energies. Besides
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them, dipole moment components are dependent on the spin-
orbit angle ν, magnetic field angle α, and the angle ϕ between
the [100] crystallographic direction and the x axis.

A further simplification of Eq. (23) stems from the ex-
istence of the vertical mirror symmetry σv, requiring that
Re(X i(Y i )∗) must be zero. This can be proven in a few
simple steps. First, we deduce from the matrix of an IR E1,
representing the vertical mirror plane, that σv transforms one
IR vector into the other, E1(σv)|Ei

a,b〉 = |Ei
b,a〉. Furthermore,

y remains unchanged, while x acquires a minus sign, leading
to the following behavior of the transition matrix elements X i

and Y i under vertical mirror plane symmetry:

X i σv−→ −(X i )∗, Y i σv−→ (Y i )∗. (24)

From the previous relations, we conclude that the term
Re(X i(Y i )∗) transforms into −Re(X i(Y i )∗), meaning that this
object does not obey the symmetry of a system and must
vanish.

Additionally, rotational symmetry of a system imposes
that matrix elements |X i|2 and |Y i|2 are equal. This can be
concluded from the action of the rotation Cn for an angle βn =
2π/n around the z axis, being the element of the group sym-
metry. An element Cn leaves the vector |A0〉 unchanged and
adds a phase exp(iβn) to the vector |Ei

a〉. Also, it transforms x
and y to x cos βn + y sin βn and −x sin βn + y cos βn. Thus, X i

and Y i are transformed into exp(−iβn)(X i cos βn + Y i sin βn)
and exp(−iβn)(−X i sin βn + Y i cos βn), respectively. Corre-
spondingly,

|X i|2 Cn−→ |X i|2 cos2 βn + |Y i|2 sin2 βn,

|Y i|2 Cn−→ |X i|2 sin2 βn + |Y i|2 cos2 βn, (25)

where we have neglected the Re(X i(Y i )∗) term, which was
previously proven to equal to zero. Since |X i|2 and |Y i|2 must
remain unchanged under the group symmetry operations, we
conclude that the relation |X i|2 = |Y i|2 must hold. Thus, we
have obtained a general relation for the dipole moment in the
case of the potential symmetry Cnv (n � 3):

dCnv
↑↓ = 2|g|μBB

lso

(∑
i

|X i|2
εi

)
(vxex + vyey). (26)

In these situations, the absolute value of the dipole moment
|dCnv

↑↓ |2 ∼ (1 + sin 2α sin 2ν) is independent of the orientation
of the potential with respect to the crystallographic frame.

Analogous analysis can be conducted in the C∞v case.
Since the matrix form of the IRs A0 and E1 (see Table I) for
this symmetry group is the same as for Cnv, the procedure
is exactly the same if the change βn → β in the previous
discussion is made.

As an example, we implement the derived formula (26) in
the case of the isotropic two-dimensional harmonic confine-
ment V iho(x, y) = 1/2m∗ω2(x2 + y2) with C∞v symmetry, as-
suming only one excited level in the perturbative correction
of the qubit states. With the help of the states ψ0 and ψ1,
corresponding to the ground and the first excited states of
the one-dimensional harmonic oscillator, we can define the
ground state |A0〉 and two complex conjugate eigenstates |Ea〉
and |Eb〉 of the degenerate level: |A0〉 = ψ0(x)ψ0(y), |Ea〉 =
(ψ0(x)ψ1(y) + iψ1(x)ψ0(y))/

√
2, and |Eb〉 = (ψ0(x)ψ1(y) −

iψ1(x)ψ0(y))/
√

2. In this case, the squared norm of the tran-
sition matrix element is equal to |X |2 = h̄/4m∗ω. Using the
energy difference of the ground and the first excited energy
level ε = h̄ω and the confinement length l = √

h̄/m∗ω, an
expression for the dipole moment is obtained [22]:

diho
↑↓ = |g|μBBm∗l4

2lsoh̄2 (vxex + vyey). (27)

B. Dipole moment for systems with C2v or C1v symmetry

As the next step, we discuss potentials with C2v symmetry.
In this case, coordinates x and y transform according to the
IRs B1 and A1, respectively. Their symmetry behavior imposes
the following: x (y) couples the ground state |A0〉 with states
transforming according to the IR B1 (A1) (see the right-hand
panel of Fig. 2). Thus, the SOI-induced corrections of the
qubit states are

|δA0±〉 = |g|μBB

2lso

∑
i

(〈
Bi

1

∣∣xvx|A0〉
εi

B1

|Bi
1∓〉

+
〈
Ai

1

∣∣yvy|A0〉
εi

A1

∣∣Ai
1∓

〉)
, (28)

where εi
B1

(εi
A1

) is the energy difference between the energy
level transforming according to the IR B1 (A1) and the ground-
state energy. We define the transition matrix elements as

X i = 〈
Bi

1

∣∣x|A0〉, Y i = 〈
Ai

1

∣∣y|A0〉, (29)

and obtain the formula for the dipole moment,

dC2v
↑↓ = |g|μBB

lso

∑
i

(
|X i|2
εi

B1

vxex + |Y i|2
εi

A1

vyey

)
. (30)

In this case, anisotropy of the dipole moment appears since it
is not forbidden that

∑
i |X i|2/εi

B1
differs from

∑
i |Y i|2/εi

A1
.

The anisotropy of the dipole moment can be illuminated
using the example of the anisotropic two-dimensional har-
monic potential V aho(x, y) = 1/2m∗(ω2

x x2 + ω2
y y2), with dif-

ferent confinement lengths lx = √
h̄/m∗ωx and ly = √

h̄/m∗ωy

along the x and y directions. We set l = lx and ly = kl ,
where k < 1 is the measure of anisotropy. We assume two
excited orbital states in the perturbative correction: one of
type A1 and one of type B1. In this case we define the
ground state |A0〉 = ψ0(x)ψ0(y) and two excited orbital states
|A1〉 = ψ0(x)ψ1(y) and |B1〉 = ψ1(x)ψ0(y), where ψ0/1(x/y)
represents the ground or first excited state (subscript 0 or
1, respectively) of the one-dimensional harmonic oscillator
problem in the x or y direction. The obtained result

daho
↑↓ = |g|μBBm∗l4

2lsoh̄2 (vxex + k4vyey) (31)

is again consistent with Ref. [22].
In the case of the C1v symmetry, using a similar analysis as

in the previous case, we obtain the expression for the dipole
moment,

dC1v
↑↓ = |g|μBB

lso

∑
i

(
|X i|2
εi

B0

vxex + |Y i|2
εi

A0

vyey

)
, (32)

165302-5
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where X i = 〈Bi
0|x|A0〉, Y i = 〈Ai

0|y|A0〉, and εi
A0/B0

is the en-
ergy difference between the nondegenerate energy level trans-
forming according to the IR A0/B0 and the ground-state
energy.

C. Dipole moment for systems with Cn or C∞ symmetry

In the case of Cn symmetry, all IRs Am (m ∈ (−n/2, n/2])
are one dimensional and represent an element of symmetry
Cs

n (s = 0, 1, . . . , n − 1) as ei2πms/n. Besides the geometric
symmetry, the time-reversal symmetry � should be included
also [43]. Time-reversal � changes the sign of the quantum
number m labeling the IR vector |Am〉, since it acts as a
complex conjugation in the orbital space:

�|Am〉 = |A−m〉. (33)

The eigenproblem of the Hamiltonian H |Am〉 = εm|Am〉,
when combined with the commutation relation [�, H0] = 0,
gives us

H |A−m〉 = εm|A−m〉, (34)

stating that, for n � 3, vectors |Am〉 and |A−m〉 are eigen-
states of the degenerate level εm. To this degenerate level
corresponds the reducible representation Am ⊕ A−m (except
for m = n/2). The representation Am ⊕ A−m is equivalent to
the IR Em of the Cnv group (see Table I) if the generator σv is
neglected. In other words, Eq. (23) for the dipole moment is
valid also in this case, since it is obtained without assuming
the presence of vertical mirror symmetry. In this case vectors
|Ei

a〉 and |Ei
b〉 coincide with |Ai

1〉 and |Ai
−1〉, respectively.

A further simplification of Eq. (23) appears for systems
whose symmetry element is π/2 rotation. This happens if the
relation n = 4r (r ∈ N) is satisfied. Since Re(X i(Y i )∗) = 0
and |X i|2 = |Y i|2 in this case, Eq. (26) is relevant. Using the
same reasoning it can be concluded that Eq. (26) is valid in
the C∞ case also.

Finally, the dipole moment components for the C2 symme-
try are equal to

(dC2
↑↓)x = |g|μBB

lso

∑
i

|X i|2vx + Re(X i(Y i )∗)vy

εi
A1

,

(dC2
↑↓)y = |g|μBB

lso

∑
i

|Y i|2vy + Re(X i(Y i )∗)vx

εi
A1

, (35)

where X i = 〈Ai
1|x|A0〉, Y i = 〈Ai

1|y|A0〉, and εi
A1

is the energy
difference between the level transforming according to the IR
A1 and the ground-state energy.

To conclude, anisotropy of the potential orientation with
respect to the crystallographic frame is present in systems
without the π/2 group element (n �= 4r, r ∈ N); isotropic
behavior is present if a rotation for π/2 is the group element,
i.e., if n = 4r (r ∈ N) or n = ∞.

V. APPLICATIONS: INFINITE-WALL EQUILATERAL
TRIANGLE, SQUARE, AND RECTANGULAR POTENTIAL

The results presented in the previous section fully explain
the dependence of the Rabi frequency and spin relaxation
rate on the spin-orbit angle, magnetic field direction, and the

a

[100]

φ
α x

y

n

[100]

φ
α x

y

n

a

b

FIG. 3. Infinite-wall equilateral triangle (left) and rectangular
(right) gating potential. In both cases, potential is zero inside the area
of the polygon; otherwise it is ∞.

relative orientation of the gating potential with respect to the
crystallographic frame.

However, symmetry arguments alone cannot provide us
with a qualitative estimation of the spin relaxation rate, corre-
sponding to the phonon-allowed spin qubit lifetime. Since ↑↓
is known for the harmonic gating [22], we wish to compare
the phonon-induced spin relaxation rate of other confinement
potentials with the known values. To this end, we analyze the
spin qubit confined inside the infinite-wall equilateral triangle,
square, and rectangular gating potential (see Fig. 3):

V tqd =
{

0 for x ∈ [ y
√

3−a
3 ,

a−y
√

3
3

]
, y ∈ [−a

√
3

6 , a
√

3
3

]
∞ otherwise,

(36)

V rqd =
{

0 for x ∈ [− a
2 , a

2

]
, y ∈ [− b

2 , b
2

]
∞ otherwise.

(37)

In the first case, Eq. (36), the potential has C3v symmetry
and the corresponding eigenvectors of the spin-independent
Hamiltonian H0 transform according to the one-dimensional
IRs A0 and B0 and two-dimensional E1 IR of the C3v group.
The set of eigenenergies ε

tqd
p,q and eigenvectors ψA0

p,q, ψB0
p,q, and

ψE1±
p,q [44] are dependent on two parameters p and q that have

different sets of allowed values for each IR. Their concrete
form is given in Appendix A.

In the second case, Eq. (37), the symmetry of the po-
tential is dependent on the ratio k = b/a ∈ (0, 1]: if k = 1,
the symmetry of the problem is C4v; otherwise, C2v is the
symmetry of the spin-independent Hamiltonian H0. In both
situations, eigenenergies and eigenvalues can be found by
using the separation of variables. The set of eigenenergies ε

rqd
p,q

and eigenvectors ψ
rqd
p,q in this case is

εrqd
p,q = h̄2π2

2m∗a2

(
p2 + q2

k2

)
, (38)

ψ rqd
p,q = 2

a
√

k
sin

[ pπ

a

(
x + a

2

)]
sin

[
qπ

ak

(
y + ka

2

)]
, (39)

defined using the two independent parameters p � 1 and
q � 1 that take integer values. However, these solutions
do not have any definite symmetry [45]. Therefore, they
need to be symmetrized to apply the general results from
Sec. IV. Symmetry-adapted eigenfunctions can be found in
Appendix B.
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After calculating the transition dipole matrix element and
the excitation energies for two excited states in the perturba-
tive correction [46], we obtain the desired results

dtqd
↑↓ = 324

226352π8

|g|μBBm∗a4

lsoh̄2 (vxex + vyey), (40)

drqd
↑↓ = 29

35π6

|g|μBBm∗a4

lsoh̄2 (vxex + k4vyey), (41)

where the first result corresponds to the infinite-wall equilat-
eral triangle potential, while the second one is valid for both
the infinite-wall square, k = 1, and rectangular, k �= 1, poten-
tials. Dipole moment constants 324/226352π8 ≈ 3.6 × 10−4

and 29/35π6 ≈ 2.2 × 10−3 from Eqs. (40) and (41) suggest a
much weaker dipole moment when compared to the harmonic
gating of the same confinement length [see Eqs. (27) and
(31)].

Using the relation ↑↓ ≈ |d↑↓|2, we conclude that square
and rectangular confined QDs have a relaxation rate that is
four orders of magnitude weaker than the harmonic potential;
in the equilateral triangle case, a decrease of almost six
orders of magnitude is observed. Thus, our result indicates
a significant influence of the gating potential on the spin
qubit lifetime and a beneficial role of the equilateral triangle
confinement.

VI. CONCLUSIONS

We have investigated the influence of the gating potential
symmetry on the Rabi frequency and phonon-induced spin
relaxation rate in a single-electron GaAs quantum dot. Our
results suggest that, independently of the symmetry of the
gating potential, both the Rabi frequency and spin relaxation
rate are dependent on the orientation of the magnetic field
and the spin-orbit angle. Additionally, in systems with C1v,
C2v, and Cn (n �= 4r) symmetry, orientation of the quantum
dot potential with respect to the crystallographic reference
frame is another degree of freedom that can be used to
tune the desired properties of the system. The validity of
the approach is confirmed on the known results for the
isotropic and anisotropic harmonic potential. Additionally,
we have compared the spin qubit lifetime in the case of
an infinite-wall rectangular, square, and equilateral triangle
gating with the harmonic confinement. Our results indicate
the enhanced lifetime of the spin qubit, reaching an almost
six-order-of-magnitude increase in the case of the equilateral
triangle gating. In the end, we emphasize that in the regime
of strong electric field, nonlinear effects [47–49] cannot be
fully explained by the symmetry of the gating potential, thus
placing the conclusions of our work in the weak driving
regime solely.
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FIG. 4. Infinite-wall equilateral triangle potential with the point
group symmetry C3v. Inside the equilateral triangle potential is 0,
otherwise it is ∞.

APPENDIX A: PARTICLE IN THE INFINITE-WALL
EQUILATERAL TRIANGLE POTENTIAL:
EIGENENERGIES AND EIGENVECTORS

Here we summarize the results from Ref. [44] regarding the
Schrödinger equation solution of the particle in the infinite-
wall equilateral triangle potential, having C3v symmetry. Due
to the symmetry, eigenvectors transform according to the one-
dimensional IRs A0 and B0 and the two-dimensional IR E1.
The concrete forms of eigenenergies and eigenstates,

εtqd
p,q = 8h̄2π2

3m∗a2
(p2 + pq + q2), (A1)

ψA0
p,q(x, y) = cos

[
2πq

a
x

]
sin

[
2π (2p + q)

a
√

3
y

]

− cos

[
2π p

a
x

]
sin

[
2π (p + 2q)

a
√

3
y

]

− cos

[
2π (p + q)

a
x

]
sin

[
2π (p − q)

a
√

3
y

]
,

q = 0, 1, 2, . . . , p = q + 1, q + 2, . . . , (A2)

ψB0
p,q(x, y) = sin

[
2πq

a
x

]
sin

[
2π (2p + q)

a
√

3
y

]

− sin

[
2π p

a
x

]
sin

[
2π (p + 2q)

a
√

3
y

]

+ sin

[
2π (p + q)

a
x

]
sin

[
2π (p − q)

a
√

3
y

]
,

q = 1, 2, 3, . . . , p = q + 1, q + 2, . . . , (A3)

ψE1±
p,q (x, y) = ψB0

p,q(x, y) ± iψA0
p,q(x, y),

q = 1

3
,

2

3
,

4

3
,

5

3
, . . . , p = q + 1, q + 2, . . . ,

(A4)

are dependent on two parameters p and q that have different
allowed values for each IR. Note that the coordinate frame
used to derive the previous equations (see Fig. 4) differs from
the frame used in our work (see the left-hand panel of Fig. 3).
To adapt the eigenfunction from Eqs. (A2)–(A4) to our case,
a suitable change of coordinates x → x + a/2 and y → y +
a
√

3/6 should be made.
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PAVLE STIPSIĆ AND MARKO MILIVOJEVIĆ PHYSICAL REVIEW B 101, 165302 (2020)

APPENDIX B: PARTICLE IN THE INFINITE-WALL
SQUARE AND RECTANGULAR POTENTIAL:

EIGENVECTORS

The infinite-wall square potential has C4v symmetry with
the corresponding IRs A0/B0, A2/B2, and E1. Eigenvectors
that transform according to the given IRs and the set of
allowed quantum numbers are

ψA0
p,q(x, y) = cos

[ pπ

a
x
]

cos
[qπ

a
y
]

+ cos
[qπ

a
x
]

cos
[ pπ

a
y
]
,

q = 1, 3, 5, . . . , p = q, q + 2, q + 4, . . . , (B1)

ψB0
p,q(x, y) = sin

[ pπ

a
x
]

sin
[qπ

a
y
]

− sin
[qπ

a
x
]

sin
[ pπ

a
y
]
,

q = 2, 4, 6, . . . , p = q + 2, q + 4, . . . , (B2)

ψA2
p,q(x, y) = cos

[ pπ

a
x
]

cos
[qπ

a
y
]

− cos
[qπ

a
x
]

cos
[ pπ

a
y
]
,

q = 1, 3, 5, . . . , p = q + 2, q + 4, . . . , (B3)

ψB2
p,q(x, y) = sin

[ pπ

a
x
]

sin
[qπ

a
y
]

+ sin
[qπ

a
x
]

sin
[ pπ

a
y
]
,

q = 2, 4, 6, . . . , p = q, q + 2, q + 4, . . . , (B4)

ψE1±
p,q (x, y) = cos

[ pπ

a
x
]

sin
[qπ

a
y
]
±i sin

[qπ

a
x
]

cos
[ pπ

a
y
]
,

p = 1, 3, 5, . . . , q = p + 1, p + 3, . . . . (B5)

In the case of the infinite-wall rectangular potential C2v

symmetry is relevant. Eigenfunctions transforming according
to the IRs A0/B0 and A1/B1 and the corresponding set of
quantum numbers are

ψA0
p,q(x, y) = cos

[ pπ

a
x
]

cos
[qπ

ka
y
]
,

q = 1, 3, 5, . . . , p = q, q + 2, q + 4, . . . , (B6)

ψB0
p,q(x, y) = sin

[ pπ

a
x
]

sin
[qπ

ka
y
]
,

q = 2, 4, 6, . . . , p = q, q + 2, q + 4, . . . , (B7)

ψA1
p,q(x, y) = cos

[ pπ

a
x
]

sin
[qπ

ka
y
]
,

p = 1, 3, 5, . . . , q = p + 1, p + 3, p + 5, . . . ,

(B8)

ψB1
p,q(x, y) = sin

[ pπ

a
x
]

cos
[qπ

ka
y
]
,

q = 1, 3, 5, . . . , p = q + 1, q + 3, q + 5, . . . .

(B9)

In both cases, eigenenergies are given in Eq. (38) (k = 1 in
the C4v case and k �= 1 for the C2v symmetry).
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Recent years have seen a revived interest in the diagrammatic Monte Carlo (DiagMC) methods for interacting
fermions on a lattice. A promising recent development allows one to now circumvent the analytical continuation
of dynamic observables in DiagMC calculations within the Matsubara formalism. This is made possible by sym-
bolic algebra algorithms, which can be used to analytically solve the internal Matsubara frequency summations
of Feynman diagrams. In this paper, we take a different approach and show that it yields improved results. We
present a closed-form analytical solution of imaginary-time integrals that appear in the time-domain formulation
of Feynman diagrams. We implement and test a DiagMC algorithm based on this analytical solution and show
that it has numerous significant advantages. Most importantly, the algorithm is general enough for any kind
of single-time correlation function series, involving any single-particle vertex insertions. Therefore, it readily
allows for the use of action-shifted schemes, aimed at improving the convergence properties of the series. By
performing a frequency-resolved action-shift tuning, we are able to further improve the method and converge the
self-energy in a nontrivial regime, with only 3–4 perturbation orders. Finally, we identify time integrals of the
same general form in many commonly used Monte Carlo algorithms and therefore expect a broader usage of our
analytical solution.

DOI: 10.1103/PhysRevResearch.3.023082

I. INTRODUCTION

Finding controlled solutions of the Hubbard model is
one of the central challenges in condensed matter physics
[1–4]. Many common approaches to this problem rely on the
stochastic (Monte Carlo) summation of various expansions
and decompositions of relevant physical quantities. How-
ever, Monte Carlo (MC) algorithms are often plagued by
two notorious problems: the fermionic sign problem and the
analytical continuation of frequency-dependent quantities in
calculations based on the Matsubara formalism [5–8] (alter-
natively, the dynamical sign problem in the Kadanoff-Baym
and Keldysh formalism calculations [9–23]). In diagrammatic
Monte Carlo (DiagMC) methods [24–38] (as opposed to
determinantal methods such as continuous-time interaction-
expansion quantum Monte Carlo (CTINT) or, auxiliary-field
quantum Monte Carlo (CTAUX) [39–42]), an additional prob-
lem is often the slow (or absence of) convergence of the series
with respect to the perturbation order. In recent years, sev-
eral works have started to address the problems of obtaining

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

real-frequency quantities [43–51] and series convergence in
DiagMC [52–57].

In Refs. [43,52], it has been shown that a convenient trans-
formation of the interaction-expansion series can be used to
significantly improve its convergence and sometimes allows
one to converge the electronic self-energy with only a few
perturbation orders where it would have otherwise been im-
possible. The method relies on a transformation of the action
which affects the bare propagator at the cost of an additional
expansion, i.e., more diagram topologies need to be taken into
account. Alternatively, this transformation can be viewed as a
Maclaurin expansion of the bare propagator with respect to
a small chemical potential shift. The resulting convergence
speedup comes from an increased convergence radius of the
transformed series.

In a separate line of work, DiagMC methods have been
proposed that are based on the Matsubara formalism that do
not require an ill-defined analytical continuation [47]. Such
methods have so far been implemented for the calculation
of the self-energy [48,49] and the dynamical spin suscep-
tibility [50]. The algorithms differ in some aspects, but all
rely on the symbolic algebra solution of the internal Matsub-
ara frequency summations appearing in Feynman diagrams.
However, this approach has some downsides. First, numeri-
cal regulators are needed to properly evaluate Bose-Einstein
distribution functions and diverging ratios that appear in the
analytical expressions, and also poles on the real axis (effec-
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tive broadening of the real-frequency results). In the case of
finite cyclic lattice calculations, multiple precision algebra is
needed in order to cancel divergences even with relatively
large regulators [48]. Most importantly, in the Matsubara
summation algorithm, applying the series transformation from
Refs. [43,52] would require a separate analytical solution for
each of the additional diagram topologies, which are very
numerous, and the calculation would become rather imprac-
tical. More generally, treating any distinct diagram requires
that the Matsubara frequency summations be performed algo-
rithmically beforehand. This makes it difficult to devise MC
sampling algorithms that go to indefinite perturbation orders,
unless the Matsubara summation part is sufficiently optimized
so that it no longer presents a prohibitive performance penalty
if performed at the time of the Monte Carlo sampling.

In this paper, we show that it can be advantageous to start
from the imaginary-time domain formulation of Feynman
diagrams. A diagram contribution then features a multiple
imaginary-time integral, rather than sums over Matsubara
frequencies. The multiple integral can be solved analytically
and we present a general solution. This analytical solution,
although equivalent to the analytical Matsubara summation,
has a simpler and more convenient form that does not feature
Bose-Einstein distribution functions or diverging ratios. As
a result, numerical regulators are not needed and the need
for multiple precision arithmetic may arise only at very high
perturbation orders. The numerical evaluation yields a sum of
poles of various orders on a uniform grid on the real axis. The
ability to separate contributions of poles of different orders
allows one to formally extract the real-frequency result with-
out any numerical broadening. Finally, the analytical solution
is general and applies to all diagram topologies that would
appear in the transformed series proposed in Refs. [43,52]
or any other diagrammatic series for single-time correlation
functions. This paves the way for real-frequency diagram-
matic algorithms formulated in real space that are not a priori
limited to small perturbation orders (similarly to CTINT or
CTAUX [42]).

In this work, we apply the analytical time integral to the
momentum-space DiagMC for the calculation of the self-
energy, and implement and thoroughly test the method. We
reproduce the self-energy results from Ref. [52] and sup-
plement them with real-axis results, free of the uncontrolled
systematic error that would otherwise come from the ana-
lytical continuation. Furthermore, we show that even if a
full convergence is not possible with a single choice of the
action-tuning parameter, one can choose the optimal tuning
parameter for each frequency independently [46]. Such a
frequency-resolved resummation can be used to improve the
solution and in some cases systematically eliminate the non-
physical features that appear in the result due to the truncation
of the series at a finite order.

The paper is organized as follows. In Sec. II, we define
the model and the basic assumptions of our calculations. In
Sec. III, we introduce our method in detail. First, in Sec. III A,
we present the analytical solution of the general multiple-time
integral that appears in the time-domain formulation of Feyn-
man diagrams and discuss the numerical evaluation of the
final expression. Then, in Sec. III B, we show the analytical
solution for the Fourier transform of the Maclaurin expansion

of the bare propagator, which is essential for our DiagMC al-
gorithm. In Sec. III C, we discuss in detail how our analytical
solutions can be applied in the context of DiagMC for the self-
energy. In Sec. IV, we discuss our results and benchmarks and
then give closing remarks in Sec. V. Additional details of the
analytical derivations and further benchmarks and examples
of the calculations can be found in the appendices.

II. MODEL

We solve the Hubbard model given by the Hamiltonian

H = −
∑
σ,i j

ti jc
†
σ,icσ, j + U

∑
i

n↑,in↓,i − μ
∑
σ,i

nσ,i, (1)

where σ ∈ {↑,↓}, i, j enumerate lattice sites, ti j is the hop-
ping amplitude between the sites i and j, U is the on-site
coupling constant, and μ is the chemical potential. We only
consider the Hubbard model on the square lattice with the
nearest-neighbor hopping t and next-nearest-neighbor hop-
ping t ′. The bare dispersion is given by

εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky. (2)

We define D = 4t , which will be used as the unit of energy
unless stated otherwise. We restrict to thermal equilibrium and
paramagnetic phases with full lattice symmetry.

III. METHODS

The idea of DiagMC algorithms is to stochastically com-
pute the coefficients of a perturbation series describing some
physical quantity. We will focus on expansions in the cou-
pling constant U and a shift in the chemical potential δμ.
The calculation of each coefficient involves the evaluation
of many Feynman diagrams expressed in terms of the bare
propagator, in our case taken as a function of momentum
and two imaginary times. The evaluation of a diagram then
boils down to a sum over multiple momentum variables and a
multiple imaginary-time integral that is always of the same
generic form. The goal of this section is to find a general
analytical solution for these time integrals and reformulate the
perturbation series as a function of a complex frequency z.

A. Analytical solution of time integrals

We are interested in analytically solving (N − 1)-fold inte-
grals over {τi=2...N } of the form

IX(i�η ) =
N∏

i=2

∫ τi+1

0
dτi τ

li
i eτi (i�ηδr,i+ωi ), (3)

where the parameters of the integrand are given by

X = (r, {l2...lN }, {ω2...ωN }). (4)

The argument r is an integer and determines which of the
times τi is multiplied by the external Matsubara frequency
i�η in the exponential. The frequency i�η can be any Mat-
subara frequency, either fermionic or bosonic, depending on
η; i�η=−1 ≡ iω ≡ i(2m + 1)πT and i�η=1 ≡ iν ≡ 2imπT ,
with m ∈ Z. The integer powers of τi outside of the exponent
are given by li � 0, and the parameters ωi may be complex.
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The limit of the outermost integration is the inverse tempera-
ture τN+1 ≡ β. We denote by δx,y the Kronecker delta (it will
be used throughout this paper, also in the shortened version
δx ≡ δx,0). The reason for our choice to label times starting
from 2 will become clear later.

The main insight is that upon applying the innermost inte-
gral, one gets a number of terms, but each new integrand has
the same general form ∼τ neτ z. The solution therefore boils
down to a recursive application of

∫ τf

0
τ neτ zdτ =

n+1∑
k=0

(−)kCnk
τ

n+1−k−Bnk
f eBnkzτf

zk+Bnk
, (5)

with Bnk = 1 − δk,n+1 and Cnk = n!
(n−k+δk,n+1 )! (for the proof,

see Appendix D), and

lim
z→0

∫ τf

0
τ neτ zdτ = τ n+1

f

n + 1
. (6)

The number of terms obtained after each integration is ap-
parently 1 + (1 − δz )(n + 1), and we can enumerate all terms
obtained after the full integration by a set of integers, {ki=2...N },
where ki � 0 denotes the choice of the term of the integral i
(over dτi).

For a given choice of {ki}, the propagation of exponents
[n and z in Eqs. (5) and (6)] across successive integrals can
be fully described by a simple set of auxiliary quantities. We
denote the exponent of e in the integration i as z̃i, and it is
given by

z̃i ≡ zi + bi−1z̃i−1, z̃2 ≡ z2, (7)

zi ≡ δi,r i�η + ωi, (8)

where we introduced bi ≡ Bni,ki . The meaning of bi can be
understood by looking at Eq. (5): The exponent of e that
enters the integral on the left-hand side survives in all but
the last term (k = n + 1) on the right-hand side. Therefore,
bi = 1 means that the exponent propagates from integration i
to integration i + 1, while bi = 0 means it does not, and the
calculation of the recursive z̃i is reset with each bi = 0. The
auxiliary quantity ni are the exponents of τi and is specified
below.

We will need to obtain a more convenient expression for
the exponent z̃i, where i�η appears explicitly. Straightfor-
wardly, we can write

z̃i = i�ηhi + ω̃i, (9)

with auxiliary quantities

ω̃i ≡ ωi + bi−1ω̃i−1, ω̃2 ≡ ω2, (10)

and

hi ≡
⎧⎨
⎩

0, i < r
1, i = r

bi−1hi−1, i > r.
(11)

To be able to determine whether the exponent in the integrand,
z̃i, is zero and then employ Eq. (6) if needed, we can now use

δz̃i =
{

1, hi = 0 ∧ ω̃i = 0
0 otherwise. (12)

It is important to note that at the time of integration, i�η

is unspecified and whether z̃i is zero cannot be tested by
numerical means, unless i�η does not appear in z̃i. With the
convenient rewriting of Eq. (7) as Eq. (9), one can tell whether
i�η appears in z̃i by looking at hi. If i�η does appear in z̃i

(i.e., hi = 1), we cannot use Eq. (6) even if one can find such
i�η that cancels ω̃i. This is because we are working towards
an analytical expression which ought to be general for all
possible i�η.

The exponent of τ that will be carried over from integration
i to integration i + 1 depends on the choice of the term from
the integral i, and is given by Pos(ni − ki ), where Pos denotes
the positive part of the number [Pos(x) = (x + |x|)/2]. ni

denotes the maximum exponent that can be carried over from
integration i, and is obtained as

ni =
{
δz̃i + li + Pos(ni−1 − ki−1), i > 2

δz̃i + li, i = 2.
(13)

In the case of Eq. (5), the maximal exponent that can be
carried over to the next integration coincides with the expo-
nent that entered the integral [the integral given by Eq. (5)
does not raise the power of τ ], so the definition of ni coincides
with the meaning of n in Eq. (5). In the case of the integral
given by Eq. (6), ni rather denotes the exponent after the
integration, i.e., n + 1.

After the last integration, it can happen that i�η appears
in the exponent of e (this is signaled by hN bN = 1). We can
then use the property ei�ηβ = (−1)δη,−1 to eliminate it from
this exponent. Then, the solution for the integral can be con-
tinued to the whole of the complex plane i�η → z, and can
be written as (introducing the additional superscript η because
the fermionic/bosonic nature of the expression can no longer
be inferred from the external Matsubara frequency)

Iη

X(z) =
∑

{bi∈[δz̃i ,1]}i=2...N

ebN βω̃N
∑

{ki∈[0,(1−δz̃i )ni]}i:bi=1

×
∏

i:δz̃i =1

1

ni

×(−1)bN hN δη,−1+
∑N

i=2 ki × βnN +1−bN −kN

×
∏

i:hi=0∧ω̃i 
=0

Cni,ki

ω̃
ki+bi
i

∏
i:hi=1

Cni,ki

(z + ω̃i )ki+bi
. (14)

Note that we have expressed the sum over {ki} as a sum over
{bi} and a partial (inner) sum over {ki}. This is not necessary,
being that bi is a function of ki. Each bi is fully determined by
ki, but not the other way around, so the inner sum over ki in
Eq. (14) goes over values that are allowed by the correspond-
ing bi. We present this form of Eq. (14) to emphasize that the
factor ebN βω̃N depends only on {bi}, and can thus be pulled out
of the inner {ki} sum. The notation “i : bi = 1” means that we
only consider indices i such that bi = 1. We therefore only
sum over those ki for which the corresponding bi = 1. The
remaining ki are fixed to ni + 1, which is the only possibility if
bi = 0. The notation is applied analogously in other products
over i.
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TABLE I. Illustration of the calculation of a single term in Eq. (14). Rows correspond to successive integrations over dτi. The second to
fourth columns are parameters of the integrand. The choice of the term is colored red. The remaining columns are auxiliary quantities, the
integrand before and after each integration. The prefactors that are “collected” after each integration are written in blue. The full contribution
is written in the last column and then simplified to the form of a term in Eq. (16).

i δr,i li ωi ki bi ni ω̃i hi δz̃i Integrand Integral Total

2 0 0 1 0 1 0 1 0 0 eτ21 1
1 eτ31 − 1

1 1

3 0 1 2 1 1 1 3 0 0 τ3eτ3(2+1) 1
3 τ4eτ43 − 1

32 eτ43 + 1
32 1

4 1 0 1 1 0 0 4 1 0 eτ4(i�η+1+3) 1
i�η+4 eτ5(i�η+4) − 1

i�η+4 1 1
1 (− 1

32 )(− 1
i�η+4 ) 1

1
1
4 βeβ4

5 0 0 0 0 1 1 0 0 1 eτ50 1
1 τ 1

6 → βe4β /36
[z−(−4)]1

6 0 0 4 0 1 1 4 0 0 τ6eτ64 1
4 βeβ4 − 1

42 eβ4 + 1
42 1

The only remaining step is to expand the product of poles
in Eq. (14) into a sum of poles (see Ref. [48] for more details),

∏
γ

1

(z − zγ )mγ
=

∑
γ

mγ∑
r=1

1

(z − zγ )r

×(−1)mγ −r
∑

C{pγ ′ 
=γ ∈N0}:
∑

γ ′ 
=γ pγ ′ =mγ −r

×
∏
γ ′ 
=γ

(mγ ′ + pγ ′ − 1)!

pγ ′!(mγ ′ − 1)!

1

(zγ − zγ ′ )mγ ′+pγ ′ ,

(15)

and the final expression has the form

Iη

X(z) =
∑

j,p∈N

A j,p

(z − Z j )p
. (16)

In order to illustrate our solution, we present in tabular
form (Table I) a summary of all intermediate steps, integrand
parameters, and auxiliary quantities that are used in calculat-
ing the contribution for a single choice of {ki}, in an example
with N = 6 and r = 4.

Also note that if r /∈ [2, N] (no Matsubara frequency ap-
pearing in any exponent), the result of the integral is a number,
rather than a frequency-dependent quantity. In that case, the
integral can be straightforwardly generalized to the case of
real time, where integrations go to some externally given time
t (instead of β), and the resulting expression is a function of
that time. The step given by Eq. (15) is then not needed. See
Appendix A for details.

Numerical evaluation of the analytical expression
and relation to other algorithms

The implementation of Eq. (14) is rather straightforward
and much simpler than the algorithmic Matsubara sum-
mations in our previous work [48]. Indeed, most of the
calculations just require the numerical evaluation of an an-
alytical expression and it is not necessary to implement a
dedicated symbolic algebra to manipulate the expressions.
The only exception is the last step, Eq. (15). This transfor-
mation was the centerpiece of the algorithm in Ref. [48]
and was applied recursively many times, leading to com-
plex bookkeeping and data structures. Ultimately, the result
was a symbolic expression that was stored, and a separate

implementation was needed for the comprehension and nu-
merical evaluation of such a general symbolic expression. In
the present context, however, Eq. (15) is applied only once to
produce numbers, and is simple to implement.

The other important point is that we analytically treat
cases with δz̃i = 1 by employing Eq. (6). With the frequency-
summation algorithms [48,49], one cannot take into account
possible cancellations of the ωi terms in Eq. (10) without
computing a large number of separate analytical solutions.
When untreated, these cancellations yield diverging ratios in
the final expressions, which need to be regularized. On the
contrary, in Eq. (14), the ratio 1/ω̃

ki+bi
i cannot have a van-

ishing denominator and its size will, in practice, be limited
by the energy resolution. This will also allow us to have the
final result in the form of a sum of poles on an equidistant
grid on the real axis, and extract the real-axis results with-
out any numerical pole broadening (see Sec. III C 2 and
Appendix B).

It is interesting to compare the computational effort for the
numerical evaluation of our analytical solution to the straight-
forward numerical integration. In the most straightforward
integration algorithm, one would discretize the imaginary-
time interval [0, β] with Nτ times, and then perform the
summation which has the complexity O(NN−1

τ ) for each ex-
ternal τ , so that overall O(NN

τ ). With our algorithm, we do not
have to go through all of the configurations of internal times,
but we do need to go through all of the possible permutations
of the internal times, and for each permutation there is at least
2N−1 terms to be summed over. So the number of terms one
has to sum grows at least as O[(N − 1)!2N−1]. At sufficiently
high N , this number is bound to outgrow the exponential NN

τ ,
whatever the Nτ . This will happen, however, only at very large
N . For example, if Nτ = 30, the analytical solution becomes
slower at around N = 40. Moreover, one actually needs a
much larger Nτ , especially at low temperature. In any case, the
additional computational effort can be understood as coming
from the difference in the information content of the result,
which is a lot more substantial in the case of the analytical
solution.

At orders N < 6 (within context of DiagMC), we find that
the implementation of our algorithm is significantly more
efficient than our current implementation of the Matsubara
summations from Ref. [48], and at N = 6, they are about
equally efficient. However, we anticipate that further opti-
mizations will be possible at the level of Eq. (14).
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B. Expansion of the bare propagator

The central quantity is the Green’s function defined in
Matsubara formalism as

Gσk(τ − τ ′) = −〈Tτ cσk(τ )c†
σk(τ ′)〉

=
{−〈cσk(τ )c†

σk(τ ′)〉, τ > τ ′

〈c†
σk(τ ′)cσk(τ )〉, τ ′ > τ,

(17)

where τ, τ ′ ∈ [0, β]. The noninteracting Green’s function (or
the bare propagator) in the eigenbasis of the noninteracting
Hamiltonian has a very simple general form,

G0(ε, iω) ≡ 1

iω − ε
, (18)

and for the plane wave k, the propagator is G0,k(iω) =
G0(εk − μ, iω).

As we will discuss below, the diagrammatic series for
the self-energy will, in general, be constructed from different
powers of the bare propagator,

Gl
0(ε, iω) ≡ 1

(iω − ε)l
. (19)

Indeed, these powers naturally arise after expanding the bare
propagator in a Maclaurin series, 1

z+x = ∑∞
n=0

(−x)n

zn+1 , around a
small chemical potential shift,

G0(ε, iω) =
∞∑

l=1

(−δμ)l−1Gl
0(ε + δμ, iω). (20)

This series converges (for all iω) if δμ is smaller in amplitude
than the first Matsubara frequency: |δμ| < πT . Nevertheless,
this expression will become a part of a larger series with addi-
tional expansion parameters, which may result in a modified
convergence radius of the overall series with respect to δμ.

We anticipate that the Feynman diagrams will be formu-
lated in the imaginary-time domain, so it is essential to work
out the Fourier transform of Gl

0(ε, iω). We present the full
derivation in Appendix E and here only write the final solu-
tion,

Gl
0(ε, τ − τ ′)

= sτ,τ ′e−ε(τ−τ ′ )nF(sτ,τ ′ε)
l−1∑
ζ=0

l−ζ−1∑
ς=0

c
sτ,τ ′
lζς

(ε) τ ζ τ ′ς , (21)

with sτ,τ ′ = sgn(τ ′ − τ ). In our notation, l in Gl
0 is a su-

perscript index, rather than the power of G0 [although these
meanings coincide in the case of Gl

0(ε, iω)]. The Fermi func-
tion is defined as nF(ε) = 1/(eβε + 1) and the coefficients that
go with the τ ζ τ ′ς terms are

c−
l,ζ ,ς (ε) =

l−ς−ζ−1∑
n=0

n!(−1)l+ς−1[−nF(ε)]nβ l−ς−ζ−1

(l − ς − ζ − 1)!(ς + ζ )!

×
{

l − ς − ζ − 1

n

}(
ς + ζ

ζ

)
, (22)

and c+
l,ζ ,ς

(ε) = (−1)l−1c−
l,ς,ζ

(−ε). Here we make use of bino-

mial coefficients
(n

k

) = n!
k!(n−k)! and the Stirling number of the

second kind,
{n

k

} = ∑k
i=0

(−1)i

k!

(k
i

)
(k − i)n.

C. Application to DiagMC

In the following, we apply the analytic time integral and the
expansion of the bare propagator in the context of DiagMC.
We discuss two kinds of self-energy series (Hartree shifted
and bare) and the corresponding implementation details. Note
that some symbols will be redefined with respect to previous
sections.

1. Hartree-shifted series

In this section, we discuss the construction of the self-
energy series, where all tadpolelike insertions are omitted in
the topologies of the diagrams. Rather, the full Hartree shift
is absorbed in the bare propagator. The diagrams are therefore
expressed in terms of the Hartree-shifted bare propagator,

GHF
0,k(iω) = G0(ε̃k, iω), (23)

with the Hartree-shifted dispersion defined as

ε̃k = εk − μ + U 〈nσ 〉, (24)

where 〈nσ̄ 〉 is the average site occupation per spin.
After constructing the tadpoleless topologies, we are free to

expand all propagators that appear in the diagrams according
to Eq. (20):

GHF
0,k(iω) =

∞∑
l=1

(−δμ)l−1Gl
0(ε̃k + δμ, iω). (25)

In the frequency domain, this step can be viewed as in-
troducing new topologies: we now have diagrams with any
number of single-particle-vertex (δμ) insertions on any of
the propagator lines. Each arrangement of these additional
single-particle vertices on the diagram does require a separate
solution by the symbolic algebra algorithm, as presented in
Refs. [48,49]. Nevertheless, as a δμ vertex cannot carry any
momentum or energy, the formal effect of it is that it just raises
the power l of the propagator that passes through it. In the
imaginary-time domain, it turns out that the contribution of
the δμ-dressed diagrams is readily treatable by the analytical
expression (14) and we no longer have to view the δμ inser-
tions as changes to topology, but rather as additional internal
degrees of freedom to be summed over. This is illustrated in
Fig. 1.

Up to the Hartree shift, the self-energy expansion can
now be made in powers of the interaction U and the small
chemical-potential shift δμ,

�
(HF)
k (τ ) =

∑
N

(−U )N

×
∞∑

l1,...,l2N−1=1

(−δμ)
∑

j (l j−1)
∑
ϒN

DϒN ,k,{l j },δμ(τ ),

(26)

where j enumerates the propagators, of which there are
Nprop = 2N − 1, N is the perturbation order in U , each l j

goes from 1 to ∞, ϒN enumerates distinct topologies of the
diagram at order N (without any δμ or Hartree insertions), and
D is the contribution of the diagram. The general form of the
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FIG. 1. Illustration of the use of the Gl
0(ε, τ − τ ′) propagator. The entire series of diagrams with all possible δμ insertions can be captured

by a single diagram with additional degrees of freedom.

diagram contribution is

DϒN ,k,{l j },δμ(τ )

= (−1)Nbub

N−1∏
i=2

∫ β

0
dτi

∑
k1...kN

2N−1∏
j=1

G
lj

0

(
ε̄k̃ j

, τ̃ j − τ̃ ′
j

)
, (27)

with ε̄k ≡ ε̃k + δμ. We denote Nbub as the number of closed
fermion loops in the diagram; τ1...τN−1 are internal times,
and we fix τi=1 = 0; τ is the external time, k is the external
momentum, k1...kN are the independent internal momenta,
j indexes the propagator lines, and k̃ are the corresponding

linear combinations of the momenta k̃ j ≡ ∑N
λ=0 s̃ jλkλ, where

s̃ jλ ∈ {−1, 0, 1}, and we index with 0 the external momentum
k0 ≡ k. τ̃ j and τ̃ ′

j are the outgoing and incoming times for the
propagator j, and take values in {τ1...τN }, where we denote
with index N the external time τN ≡ τ . The coefficients s̃ jλ,
times τ̃ j, τ̃

′
j , and the number Nbub are implicit functions of the

topology ϒN . Throughout the paper, we assume normalized k
sums,

∑
k ≡ 1

Nk

∑
k, where Nk is the number of lattice sites.

We can perform the Fourier transform of the external time
to obtain the contribution of the diagram in the Matsubara-
frequency domain,

DϒN ,k,{l j },δμ(iω) = (−1)Nbub

N∏
i=2

∫ β

0
dτie

iωτN
∑

k1...kN

2N−1∏
j=1

G
lj

0

(
ε̄k j , τ̃ j − τ̃ ′

j

)
. (28)

The Green’s function Gl
0(ε, τ − τ ′) is discontinuous at τ = τ ′, so to be able to perform the τ integrations analytically, we

first need to split the integrals into ordered parts,

∫ β

0
dτ2...

∫ β

0
dτN =

∑
(τp2 ...τpN )∈P ({τ2...τN })

∫ β

0
dτpN

∫ τpN

0
dτpN−1 ...

∫ τp4

0
dτp3

∫ τp3

0
dτp2 , (29)

where P denotes all (N − 1)! permutations of the time indices. p labels the permutation and pi is the permuted index of vertex i.
Let us rewrite the contribution of the diagram, with propagators written explicitly using the expression (21),

DϒN ,k,{l j },δμ(iω) = (−1)Nbub
∑

k1...kN

∑
(τp2 ...τpN )∈P ({τ2...τN })

(−1)Nfwd (p)
∏

j

nF
(
s j ε̄k̃ j

) l j−1∑
ζ j=0

l j−ζ j−1∑
ς j=0

c
s j

l j ,ζ j ,ς j

(
ε̄k̃ j

) ∏
j∈Ji (i=1)

δζ j

∏
j∈Jo(i=1)

δς j

×
∫ β

0
dτpN

∫ τpN

0
dτpN−1 ...

∫ τp4

0
dτp3

∫ τp3

0
dτp2 eiωτN

N∏
i=2

τ

∑
j∈Ji (i) ζ j+

∑
j∈Jo (i) ς j

i e
τi (

∑
j∈Jo (i) ε̄k̃ j

−∑
j∈Ji (i) ε̄k̃ j

)
, (30)

where Ji/o(i) is the set of incoming/outgoing propagators j of the vertex i, which depends on the topology ϒN . We also
introduced shorthand notation s j = sτ̃ j ,τ̃

′
j
. Practically, s j depends on whether p(i( j)) > p(i′( j)) or the other way around, where

i( j)/i′( j) is the outgoing/incoming vertex of propagator j in the given permutation p. The total number of forward-facing
propagators is Nfwd(p) = ∑

j δ−1,s j , which depends on the permutation and the topology. The products of δζ j and δς j are there to
ensure that the time τ1 = 0 is not raised to any power other than 0, as such terms do not contribute.

Now we can apply the analytic solution for the time integrals [Eq. (14)] to arrive at the final expression:

DϒN ,k,L,δμ(z) = (−1)Nbub
∑

{l̃ j�0}:∑ j l̃ j=L

∑
k1...kN

∑
(τp2 ...τpN )∈P ({τ2...τN })

(−1)Nfwd (p)

×
∏

j

nF
(
s j ε̄k̃ j

) l̃ j∑
ζ j=0

l̃ j−ζ j∑
ς j=0

c
s j

l̃ j+1,ζ j ,ς j

(
ε̄k̃ j

) ∏
j∈Ji (i=1)

δζ j

∏
j∈Jo(i=1)

δς jI
η=−1
X (z),

X =
⎛
⎝p(N ),

⎧⎨
⎩

∑
j∈Ji (i(pi′ ))

ζ j +
∑

j∈Jo(i(pi′ ))

ς j

⎫⎬
⎭

i′=2...N

,

⎧⎨
⎩

∑
j∈Jo(i(pi′ ))

ε̄k̃ j
−

∑
j∈Ji (i(pi′ ))

ε̄k̃ j

⎫⎬
⎭

i′=2...N

⎞
⎠, (31)
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where i(pi′ ) is the vertex index i of the permuted index pi′ and
we have introduced a new expansion variable L = ∑

j (l j − 1)

and a convenient variable l̃ j = l j − 1, so that

�
(HF)
k (z) =

∞∑
K=2

K∑
N=2

K−N∑
L=0

(−U )N (−δμ)L
∑
ϒN

DϒN ,k,L,δμ(z),

(32)

which is the series that we implement and use in practice.
The meaning of K is the number of all independent (internal
and external) times in the diagram. Note that in D, we per-
form only N − 1 integrations over time. Those are the times
associated with N interaction vertices, minus the one that is
fixed to zero. The integrations of the times associated with
δμ insertions have already been performed in Eq. (21), and
there are L such integrals. Overall, the number of independent
times is K = N + L. Ultimately, we group contributions by
the expansion order K and look for convergence with respect
to this parameter.

2. Numerical implementation of DiagMC and relation to other
algorithms

The expression (31) is very convenient for numerical eval-
uation. First, we restrict the values of ε̄k to a uniform grid on
the real axis with the step �ω (ε̄k = j�ω). These appear in
ω2, ..., ωK as terms with integer coefficients, which means that
{ωi} entering IX will also be restricted to the same uniform
grid. The final result therefore has the form

DϒN ,k,L,δμ(z) =
∑

j∈Z,p∈N

A j,p

(z − j�ω)p
. (33)

This form allows us to reinterpret the finite-lattice results as
that of the thermodynamic limit and extract DϒN ,k,L,δμ(ω +
i0+) without any numerical broadening (see Appendix B for
details).

In our present implementation, we perform a flat-weight
(uniform) MC sampling over internal momenta {ki}, do
a full summation of all the other sums, and accumulate
the amplitudes A j,p. There are, however, other options.
For example, one may sample {ki}, {pi}, {bi} and use P ≡∏

j nF(s j ε̄k̃ j
)ebN βω̃N as the weighting function. We have thor-

oughly checked that the factor P closely correlates with
the contribution to A j,p coming from a given choice of the
{ki}, {pi}, {bi} variables (with other variables summed over),
and thus P could be a good choice for a weighting function.
However, this requires additional operations related to move
proposals and trials, and we have not yet been able to make
such an algorithm more efficient than the flat-weight MC.
Nevertheless, it is apparent that our approach offers more flex-
ibility than the algorithmic Matsubara summations (AMS). In
AMS, no convenient weighting function can be defined for the
Monte Carlo, so one either does the flat-weight summation
[48] or uses the whole contribution to the result as the weight,
which comes at the price of having to repeat the calculation for
each frequency of interest [49] (on the contrary, in Ref. [48],
as well as in this paper, the entire frequency dependence of
the self-energy is obtained in a single MC run). At present, it
is unclear which scheme is best—whether one should evaluate

D(z) one z at a time or capture all z at once as we do here. This
choice, as well as the choice of the weighting function, likely
needs to be made on a case-by-case basis, as it is probable
that in different regimes, different approaches will be optimal.
In that sense, the added flexibility of our time-integration
approach in terms of the choice of the weighting function may
prove valuable in the future.

Concerning floating-point arithmetic, it is important that
the factor ebN βω̃N stemming from IX can always be absorbed
into the product of nF functions in the second row of Eq. (31).
This can be understood as follows. A given ε̄k̃ j

can, at most,
appear twice as a term in ω̃N , once with sign +1 and once
with sign −1, corresponding to the incoming τ̃ ′

j and outgoing
τ̃ j ends of the propagator j. In that case, the exponent cancels.
The other possibility is that it appears only once, in which case
it must correspond to the later time in the given permutation.
If the later time is the outgoing end of the propagator, then the
propagator is forward facing and the sign in front is s = −1; if
it is the incoming end, then the propagator is backward facing
and the sign in front is s = 1. In both cases, we can make use
of

esβεnF(sε) = nF(−sε). (34)

Therefore, no exponentials will appear in the final expression.
A product of nF functions is, at most, 1 and the coeffi-
cients c are not particularly big. Then, the size of the pole
amplitudes that come out of Eq. (14) is determined by the
energy resolution (1/�ω) and temperature (βnN +1−bN −kN ).
In our calculations so far, the amplitudes remain relatively
small. Our approach ensures that we do not have very large
canceling terms, such as we had in Ref. [48]. Indeed, we
have successfully implemented Eq. (31) without the need for
multiple-precision floating-point types.

Compared to the Matsubara-frequency summation algo-
rithm [47–49], Eq. (31) presents an improved generality.
Equation (31) is valid for any number and arrangement of in-
stantaneous (i.e., frequency-independent) insertions, i.e., any
choice of {l̃ j}. In contrast, the algorithmic Matsubara summa-
tion has to be performed for each choice of {l̃ j} independently,
and the resulting symbolic expressions need to be stored. For
example, at N = 4, we have 12 ϒN topologies. Therefore, at
L = 0, the number of analytical solutions to prepare is 12.
However, at L = 2, this number is 336, i.e., 28-fold bigger (we
can place L = 2 insertions on 2N − 1 = 7 fermionic lines in
7 × 6/2 + 7 = 28 ways, times 12 ϒN topologies, i.e., 336).

3. Bare series

We are also interested in constructing a bare series where
tadpole insertions are present in diagram topologies. Tadpole
(or Hartree) insertions are instantaneous and an evaluation
of their amplitudes can be done relatively simply by vari-
ous means. At the level of the Hubbard model, the Hartree
insertions factor out: For each Hartree diagram, the internal
momentum summations and time integrations can be per-
formed beforehand and only once, leading to a significant
speedup.

In the expression (31), there is no difference between a
Hartree insertion and a chemical-potential vertex insertion.
Therefore, the inclusion of the Hartree insertions can be en-
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FIG. 2. Top: Illustration of possible Hartree diagrams, without
any δμ insertions. Middle: Amplitude of a Hartree diagram with a
single δμ insertion. Bottom: An example of a diagram dressed with
both Hartree and δμ insertions, and the values of the parameters
N, L, {ML′

i }, K that it falls under (with ML′ 
=1
i 
=1 = 0).

tirely accounted for in the resummation of the DϒN ,k,L,δμ(z)
contributions from the previous section, with the replacement

ε̄k ≡ εk − μ + δμ (35)

(i.e., full Hartree shift excluded).

Note that the expansion of the propagators in δμ is per-
formed in Hartree insertions as well, so we need to account for
possible additional δμ insertions inside the Hartree diagrams.
As before, our expansion order will be K , which is the total
number of independent times, with each time associated to
a single interaction or a δμ vertex, including those within
Hartree insertions.

We will for now focus on the series up to K = 5. As the
number of interactions in ϒN is at least two, we can have, at
most, three interaction vertices in a Hartree insertion. There
are only five such Hartree diagrams (Fig. 2). We can evaluate
these five amplitudes with very little effort by making use of
spatial and temporal Fourier transforms.

Before we proceed with the calculation of the amplitudes
D of possible Hartree insertions relevant for the series up to
K = 5, we define some auxiliary quantities. We first define the
bare density,

nl̃
0 =

∑
k

Gl=1+l̃
0 (ε̄k, τ = 0−), (36)

and the real-space propagator,

Gl=1+l̃
0,r =

∑
k

eik·rGl=1+l̃
0 (ε̄k, τ = 0−). (37)

We will also need the polarization bubble diagram,

χ
l̃1,l̃2
0,r (τ ) = Gl=1+l̃1

0,r (τ )Gl=1+l̃2
0,−r (−τ ), (38)

χ
l̃1,l̃2
0,q=0(iν = 0) =

∑
r

∫
dτχ

l̃1,l̃2
0,r (τ ), (39)

and the second-order self-energy diagram (up to the constant
prefactor),

�
l̃1,l̃2,l̃3
2,r (τ ) = Gl=1+l̃1

0,r (τ )χ l̃2,l̃3
0,r (τ ), (40)

which can be Fourier transformed to yield �
l̃1,l̃2,l̃3
2,k (iω).

We can now calculate the amplitudes of the possible
Hartree insertions with a number L of δμ insertions on them,
in any arrangement

DL
1 = (−)nL

0 , (41)

DL
2 = (−)2

∑
l̃1, l̃2, l̃3

l̃1 + l̃2 + l̃3 = L

nl̃1
0 χ

l̃2,l̃3
0,q=0(iν = 0), (42)

DL
3 = (−)3

∑
l̃1, ..., l̃5∑

i l̃i = L

nl̃1
0 χ

l̃2,l̃3
0,q=0(iν = 0)χ l̃4,l̃5

0,q=0(iν = 0), (43)

DL
4 = (−)3

∑
l̃1, ..., l̃3∑

i l̃i = L

(
2 + l̃3

2

)
nl̃1

0 nl̃2
0 n2+l̃3

0 , (44)

DL
5 = (−)2

∑
l̃1, ..., l̃5∑

i l̃i = L

T
∑

iω

e−iω0− ∑
k

Gl=1+l̃1
0,k (iω)� l̃2,l̃3,l̃4

2,k (iω)Gl=1+l̃5
0,k (iω). (45)

As we are restricting to K � 5 calculations, the DL
3...5 insertions can only be added once, and only with L = 0. We now define

ML
i as the number of insertions of DL

i tadpoles, and we define Ni as the number of interaction vertices contained in the tadpole
Di (regardless of L, we have N1 = 1, N2 = 2, N3 = N4 = N5 = 3).
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(a) (b) (c)

(d) (e) (f)

FIG. 3. DiagMC solution for the Hubbard model on a square lattice. Parameters of the model are t ′ = −0.3t , μ = 0, U = 1D, and T =
0.125D, which corresponds to 〈nσ 〉 ≈ 0.3625. Top row: Imaginary part of self-energy at k = (π/4, π ) on the real axis (with broadening
η = 0.3D) obtained with three different series, up to perturbation order K . Bottom row: Illustration of convergence with respect to perturbation
order K , using values of the imaginary part of the self-energy at the lowest four Matsubara frequencies, iωn=0...3. Full lines are our result,
dash-dotted lines with crosses are the analogous result with a numerical τ -integration algorithm from Ref. [52], and horizontal dashed lines
are the determinantal QMC result on a 16 × 16 lattice from Ref. [52].

The series can now be resummed as

�
(HF)
k (z) =

∞∑
K=2

K∑
N=2

K−N∑
L=0

K−N−L∑
{ML′

i } = 0
N + L + ∑

i,L′ ML′
i (Ni + L′ ) = K

(−U )N+∑
i,L′ ML′

i Ni (−δμ)L+∑
i,L′ ML′

i L′ ∏
i,L′

(
DL′

i

)ML′
i
�

(
L,

{
ML′

i

})

×
∑
ϒN

DϒN ,k,L+∑
i,L′ ML′

i
(z), (46)

where �(L, {ML′
i }) is the combinatorial prefactor which

counts all the possible ways the selected single-particle ver-
tices δμ, {Di} can be arranged. This corresponds to the
number of permutations of the multisets,

�
(
L,

{
ML′

i

}) =
(
L + ∑

i,L′ ML′
i

)
!

L!
∏

i,L′ ML′
i !

. (47)

We emphasize that Eq. (46) is fully general, but at orders K �
5, additional Hartree insertions D [compared to Eqs. (41)–
(45)] need to be considered.

Finally, we stress that our analytical time-integral solution
and action-shift tuning scheme in DiagMC are not restricted
to the treatment of the Hubbard Hamiltonian. See Appendix F
for a discussion of DiagMC in the case of a general Hamilto-
nian with two-body interactions.

IV. RESULTS

A. Convergence speedup with δμ expansion in the bare series

Here we focus on supplementing the results from Ref. [52]
with real-frequency self-energies calculated without any nu-
merically ill-defined analytical continuation.

The model parameters are t ′ = −0.3t , μ = 0, U = 1.0D,
T = 0.125D, and 〈nσ 〉 = 0.3625. In Ref. [52], the calculation
was performed with the Hartree-shifted series with δμ = 0,
as well as with the bare series, with two values of δμ, namely,
0.15D and 0.3825D. We repeat these calculations with our
method. We use lattice size 32 × 32, and project the disper-
sion onto a uniform energy grid, as described in Ref. [48] and
discussed in Sec. III C 2. In Fig. 3, we show our results and
compare them with the results of Ref. [52].

In the upper row of Fig. 3 are the real-frequency self-
energies calculated up to order K � 5. We are keeping a finite
broadening η = 0.3D to smoothen the curves. As discussed in
Appendix B, in our method, numerical pole broadening is not
a formal necessity. However, there is still a significant amount
of statistical noise in our real-frequency result (although the
imaginary-frequency result is already very well converged).
It is important to note that some of the noisy features in our
real-frequency result may be artifacts of the finite-lattice size
that would not vanish with increasing number of MC steps.
However, by comparing the result with a 256 × 256 lattice
calculation (Appendix C), we check that already at η = 0.2D,
no such artifact should be visible. It appears that for the given
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external k and broadening η = 0.2D, increasing the lattice
size further from 32 × 32 brings no new information, but it
also does not present an additional cost: at η = 0.2D, our
256 × 256 lattice calculation appears equally well converged
as the 32 × 32 lattice calculation, with the equal number of
MC steps and a similar runtime, and yields a result that is on
top of the 32 × 32 calculation.

In the bottom row of Fig. 3, we show the change in the
imaginary part of the self-energy at the first four Matsubara
frequencies, as a function of the maximal order K . Full-line
and dots are the result of our calculations. The dash-dotted
lines with crosses are data points taken from Ref. [52]. The
horizontal dashed lines are the 16 × 16-lattice determinantal
QMC result, also from Ref. [52].

The excellent agreement with the results from Ref. [52]
serves as a stringent test of our implementation. In the δμ =
0.3825D calculation, even on the real axis, the self-energy
does appear well converged by order K = 5, although there
is some discrepancy between K = 4 and K = 5 at around
ω = 1.5D.

B. ω-resolved resummation

We can now go one step further by resumming the series
presented in Figs. 3(a) and 3(c) for each ω individually, using
an ω-dependent optimal shift δμ∗(ω). The results are shown
in Figs. 4 and 5.

We determine the optimal δμ∗(ω) by minimizing the
spread of the Im�(ω + iη) results between orders K = 3
and K = 5. This spread as a function of ω and δμ is color
plotted in Figs. 4 and 5. We have results for a discrete set of
δμ ∈ {δμi}, so the optimal δμ∗(ω) is a priori a discontinuous
curve. As this is clearly nonsatisfactory, we smoothen the
curve (shown with the blue line on the top panels in Figs. 4 and
5). However, we do not have results for each precise value of
this optimal δμ∗(ω). One could take, for each ω, the available
δμi that is closest to δμ∗(ω), but this would, again, result in
a discontinuous curve. To avoid this, we average the available
results as

�(ω) =
∑

i �δμi�(ω; δμi )w(δμ∗(ω), δμi )∑
i �δμiw(δμ∗(ω), δμi )

, (48)

where �δμi is the size of the δμ step in the available results at
the ith value (allows for nonuniform grids). We use a narrow
Gaussian weighting kernel,

w(δμ∗(ω), δμi ) = e−(δμi−δμ∗(ω))2/W 2
. (49)

The width of the kernel W is chosen such that it is as narrow
as possible, while still encompassing at least 3–4 δμi points,
so that the final result is reasonably smooth as a function of ω;
W is therefore determined according to the resolution in δμ.
We use W = 0.05 and �δμi ≈ 0.02 and have checked that the
results are insensitive to the precise choice of this numerical
parameter.

The results of the averaging around the optimal δμ∗(ω) are
shown in the middle and bottom panels of Figs. 4 and 5. In
both cases, the ω-resolved resummation helps to converge the
result. In the case of the bare series, the convergence is now
almost perfect, and already order K = 3 is on top of the exact
result. In the case of the Hartree-shifted series, the results are

(a)

(b)

(c)

FIG. 4. Results of the Hartree-shifted series with ω-resolved re-
summation, to be compared to Figs. 3(a) and 3(d) (all parameters
are the same). Top panel: Color plot of the spread of the imaginary
part of the self-energy at a given ω + iη between orders K = 3 and
5, in a calculation with a given δμ. The blue line smoothly connects
the minima of the spread (at each ω), and defines the ω-dependent
optimal shift δμ∗(ω) used in the resummation. Middle and bottom
panels are analogous to Figs. 3(a) and 3(d). In the bottom panel, the
dash-dotted and dashed lines are the same as in Fig. 3(d).

not perfectly converged at ω < 0, yet the K = 5 calculation
is practically on top of the exact result on the imaginary axis,
and presents an improvement to the δμ = 0 series in Fig. 3(a).
Note that the improvement in convergence is seen on the
imaginary axis, as well.

C. Removing nonphysical features

In this section, we focus on the parameters case dis-
cussed in Ref. [48]. We calculate the Hartree-shifted series
with parameters of the model t ′ = 0, μ − U 〈nσ 〉 = −0.1D,
T = 0.1D, and employ various δμ shifts. The lattice size is
again 32 × 32 and we focus on the self-energy at k = (0, π ).
Note that in Hartree-shifted series, the quantity that enters the
calculation is μ − U 〈nσ 〉, rather than μ. If 〈n〉 is calculated,
μ can be estimated a posteriori. In our calculation, we fix
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(a)

(b)

(c)

FIG. 5. Results of the bare series with ω-resolved resummation,
to be compared to Figs. 3(c) and 3(f) (all parameters are the same).
The top panel is analogous to Fig. 4(a). The horizontal orange dashed
line denotes the value of δμ used in Figs. 3(c) and 3(f) to best con-
verge the imaginary-axis result. The middle and bottom panels are
analogous to Figs. 3(c) and 3(f). In the bottom panel, the dash-dotted
and dashed lines are the same as in Fig. 3(f).

μ − U 〈nσ 〉, and 〈nσ 〉 is then U dependent. Roughly, as given
in Ref. [48], at U = 1, we have 〈nσ 〉 ≈ 0.455.

FIG. 7. Analogous to Fig. 4(a), for the parameters of the model
corresponding to Fig. 6. The blue line is the optimal δμ∗, to be used
in Fig. 8.

The results are presented in Fig. 6 for three values of U .
At low U , the series is well converged by K = 5, and the
result is entirely insensitive to the choice of δμ, as expected.
At intermediate and high U , the result can be strongly δμ

sensitive. The δμ dependence of the result, however, strongly
varies with ω. It appears that for a given ω, there are ranges of
the δμ value where the result (at fixed order K) is insensitive
to the precise choice of δμ. This presents an alternative way
of choosing an optimal δμ (a similar idea was employed in a
different context in Ref. [58]).

The striking feature at large U is the causality violations at
|ω| ≈ 2 that were previously discussed in Ref. [48] (note that
the broadening somewhat masks the extent of the problem).
The dips in the self-energy spectrum appear to happen only
at certain values of δμ: at ω = −2, the problem is present at
δμ large and negative, and at ω = 2, at δμ large and positive.
In particular, at ω = 2, the result appears to vary uniformly
with δμ, and one cannot select an optimal δμ based on the
sensitivity of the result to the δμ value. We therefore repeat
the procedure from the previous section and select the optimal
δμ∗(ω) based on the level of convergence between orders K =
4 and K = 5. The spread of the results and a smooth choice of
δμ∗(ω) are presented in Fig. 7.

In Fig. 8, the results of the averaging are shown and
compared to the δμ = 0 results at the highest available
orders K = 4 and K = 5, at three values of U . The conver-
gence is visibly better around our δμ∗ than with δμ = 0 at
problematic frequencies |ω| ≈ 2. More importantly, the non-
physical features are clearly absent. At U = 1, in the δμ = 0

(a) (b) (c)

FIG. 6. Imaginary part of the self-energy on the real axis (with broadening η), at different values of coupling constant U , obtained with
our method at K = 5 using different chemical-potential shifts δμ. The parameters of the calculation are the same as in Ref. [48], i.e., t ′ = 0,
μ − U 〈nσ 〉 = −0.1D, T = 0.1D. The self-energy is calculated at k = (0, π ). Passing of the curves above the gray dashed line indicates
breaking of causality.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Imaginary part of self-energy, real-frequency results
(with broadening η). Right column: obtained with the ω-resolved
resummation for the model parameters from Fig. 6, using the op-
timal δμ∗(ω) from Fig. 7; to be compared to the standard δμ = 0
calculation in the left column. Purple dashed lines in the top row are
the K = 6 calculation with δμ = 0.

calculation, the causality is not yet violated, but the dip at
ω = 2 is already starting to appear, which is clearly an artifact
of the series truncation which should be removed systemati-
cally. It is important that the intermediate frequency behavior
that we obtained by averaging results around the optimal δμ

is indeed the correct one, and it will not change much further
with increasing orders. We show in the top panels the K = 6,
the δμ = 0 result of which has been benchmarked against a
fully converged imaginary-axis result in Fig. 9 (the converged
result was obtained with the �Det method [59,60] at order

FIG. 9. Matsubara-frequency self-energy result, with model pa-
rameters as in Fig. 6. Crosses are the real part, pluses are the
imaginary part, and lines are eye guides. Solid lines are the Hartree-
shifted series with δμ = 0 at different maximal K . The same result
was obtained with both the algorithm presented in this work and the
algorithmic Matsubara summation method from Ref. [48] (the two
methods were compared diagram by diagram). Black dashed lines
are the �Det result at maximal order N = 8.

8). Clearly, the improved convergence between orders 4 and
5 that we have achieved by choosing δμ appropriately does
indeed mean an improved final result. However, our proce-
dure does not improve the result at around ω = 0, where the
optimal δμ does appear to be close to 0. The K = 6, δμ = 0
result shown in the upper panels of Fig. 8 is still a bit different
from the K = 5, δμ ≈ δμ∗(ω) results around ω = 0.

In the case of U = 1D, it is interesting that a large negative
δμ does bring the ω ≈ 0 result at order K = 5 much closer to
the exact value. This can be anticipated from Fig. 6, where we
show the corresponding results for U = 0.8D and U = 1.2D.
Also, by looking at the color plot in Fig. 7, we see that at
ω = 0, there is indeed a local minimum in the spread at around
δμ = −0.2, which could be used as the optimal δμ∗. This
minimum, however, cannot be continuously connected with
the other minima that we observe at ω < 0, so we chose a dif-
ferent trajectory in the (ω, δμ) space. It would be interesting
for future work to inspect the behavior at even more negative
δμ, where another continuous trajectory δμ∗(ω) might be
found.

V. DISCUSSION, CONCLUSIONS, AND PROSPECTS

In this paper, we have derived an analytical solution for
the multiple-time integral that appears in the imaginary-time
Feynman diagrams of an interaction series expansion. The
solution is general for any diagram with a single external
time or no external times. We find this generality to be a
great advantage compared to the recently proposed algo-
rithmic solutions of the corresponding Matsubara-frequency
summations. Our analytical solution allowed us to develop
a very flexible DiagMC algorithm that can make use of the
possibility to optimize the series with shifted actions. As
a result, we were able to almost perfectly converge a real-
frequency self-energy in just 3–4 orders of perturbation, in
a nontrivial regime and practically in the thermodynamic
limit.

More importantly, the fact that one does not have to prepare
a solution for each diagram topology individually opens the
possibility to develop algorithms more akin to CTINT and
allow the MC sampling to go to indefinite perturbation orders.
In fact, upon a simple inspection of CTINT and continuous-
time hybridization-expansion quantum Monte Carlo in the
segment picture (segment-CTHYB) equations [42], it be-
comes clear that our solution can, in principle, be applied
there, so as to reformulate these methods in real frequency.
This would, however, come at the price of having to break
into individual terms the determinant that captures all the
contributions to the partition function at a given perturbation
order. In turn, this may lead to a more significant sign prob-
lem, and an effective cap on the perturbation orders that can
be handled in practice. On the other hand, it is not entirely
clear how much of the sign problem comes from summing
the individual terms and how much from the integration of
the internal times, and we leave such considerations for future
work. In any case, DiagMC algorithms based on hybridization
expansion have been proposed before (see Refs. [23,28,61]),
where our analytical solution may be applied.

Our solution also trivially generalizes to real-time inte-
grals and may have use in Keldysh and Kadanoff-Baym [9]
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calculations, where the infamous dynamical sign problem
arises precisely due to oscillating time integrands. There have
been recent works [62,63] with imaginary-time propagation
of randomized walkers where our solution may also find ap-
plication.

Finally, we emphasize that avoiding analytical continuation
could be beneficial at high temperature where the Matsub-
ara frequencies become distant from the real axis, and thus
noisy imaginary-axis correlators contain little information
[64,65]. The high-temperature regime is particularly relevant
for optical lattice simulations of the Hubbard model [66].
In that context, we anticipate our method will find appli-
cation in the calculation of conductivity and other response
functions.
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APPENDIX A: REAL-TIME INTEGRATION

Let us consider the following special case of the integral
given by Eq. (3), which is relevant for real-time integrations
featuring integrands of the form eitE :

Ĩ{l2...lN },{E2...EN }(t ) =
N∏

i=2

∫ ti+1

0
dti t li

i eitiEi , (A1)

with tN+1 ≡ t . This corresponds to the case r /∈ [2, N] in
Eq. (3), and ωi = iEi, and we will define Ẽi analogously to ω̃i.
The result is then obtained straightforwardly from Eq. (14),

Ĩ{l2...lN },{E2...EN }(t ) =
∑

{bi∈[δz̃i ,1]}i=2...N

eitẼN bN
∑

{ki∈[0,(1−δz̃i )ni]}i:bi=1

× (−1)
∑N

i=2 ki
∏

i:δz̃i =1

1

ni

× t nN +1−bN −kN
∏

i:Ẽi 
=0

Cni,ki

(iẼi )ki+bi
, (A2)

which has the following general form:

Ĩ(t ) =
∑

j;p∈N0

Zp, jt
peitE j . (A3)

APPENDIX B: EXTRACTING REAL-AXIS RESULTS
WITHOUT POLE BROADENING

In this section, we show how the results on the real axis can
be extracted without any numerical broadening of the poles.
Rather, we make use of the pole amplitudes by interpreting
the result as being representative of the thermodynamic limit,
where poles on the real axis merge into a branch cut, and thus
we consider that the pole amplitude is a continuous function
of the real frequency. We extract the imaginary part of the
contribution [ImD(ω)], and then the Hilbert transform can be
used to reconstruct the real part.

The procedure relies on the following construction: A func-
tion f (z) which is analytic everywhere in the upper half of the
complex plane (z+ = x + iy with y > 0) and decays to zero
with |z+| satisfies the relation

f (z+) = − 1

π

∫
dx′ Im f (x′ + i0+)

z+ − x′ . (B1)

After applying the pth derivative with respect to x (i.e., the
real part of z+) on both sides of the equation, one obtains

∂ p
x f (z+) = − 1

π

∫
dx′∂ p

x

Im f (x′ + i0+)

z+ − x′

= − 1

π

∫
dx′(−1)p(p + 1)!

Im f (x′ + i0+)

(z+ − x′)p+1
. (B2)

We can now move the constant prefactors to the left-hand side
and rename p + 1 → p. Just above the real axis, we have

(−1)pπ

p!
∂ p−1

x f (x + i0+) =
∫

dx′ Im f (x′ + i0+)

(x − x′ + i0+)p
. (B3)

We can now discretize the expression on a uniform x grid with
the step �x, say, x j = j�x, and we see that the right-hand side
has the form of a sum of poles of order p, equidistant along
the real axis, and with amplitudes A j = Im f (x j + i0+),

(−1)pπ

p!
∂̃

p−1
j A j ≈ Im

∑
j′

�x
A j′

(x j − x j′ + i0+)p
, (B4)

where ∂̃ is the finite-difference approximation for the deriva-
tive along the x axis. Clearly, the imaginary part of the entire
sum of p-order poles at a certain point x j can be estimated by
looking only at the (p − 1)th derivative of the amplitudes of
these poles at x j , as given in the above expression.

The expression (B4) can be readily applied in our case
[Eq. (33)] where the real axis is the frequency axis ω, with step
�ω and ω j = j�ω, and the sum of the poles determines our
diagram contribution D. In general we have poles of various
orders, but we can group the poles by order and treat their
contributions separately. We therefore have

ImD(ω j + i0+) ≈ π

�ω

∑
p

(−1)p

p!
∂̃

p−1
j A j,p. (B5)

In the case of simple poles only, the contribution at any ω j is
simply proportional to the amplitude of the pole A j,1. Other-
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FIG. 10. Illustration of a η = 0+ result obtained from Eq. (31)
without any numerical broadening, based only on pole amplitudes.
The diagram used is the second-order diagram (illustrated in the top
panel), with L = 2. In the propagators, we take δμ = 0. The rest of
the parameters are μ − U 〈nσ 〉 = −0.1D, T = 0.1D, and the external
momentum is k = (0, π ). The top three panels are contributions
from first-, second-, and third-order poles, respectively. The bottom
panel is the total result. Lines with η > 0 are obtained with numerical
broadening. The crosses on the η = 0 result denote the available
frequencies (in between, we assume linear interpolation).

wise, the procedure requires that the pole amplitudes form a
reasonably smooth function of the real frequency. Addition-
ally, the energy resolution is a measure of the systematic error
made in this procedure.

To avoid statistical noise and noisy features coming from
the finite size of the lattice (see next section), we test our
method on the example of a N = 2, L = 2 diagram, which
we can solve with the full summation of Eq. (31), on a lattice

FIG. 11. Comparison of the real-frequency imaginary self-
energy result for a single fifth-order diagram (illustrated in the
bottom-left corner), for the lattice sizes 32 × 32 and 256 × 256,
at three different levels of broadening. The calculation is in both
cases performed with the same number of MC steps and took sim-
ilar time. The parameters are L = 0, δμ = 0, μ − U 〈nσ 〉 = −0.1D,
T = 0.1D, and the external momentum is k = (0, π ).

of the size 96 × 96. This diagram produces poles up to order
3. The result is shown in Fig. 10. In the first three panels, we
show the contribution from the poles of each order, and in the
bottom panel, we show the total result.

APPENDIX C: CONVERGENCE WITH LATTICE SIZE

In this section we discuss the convergence of the result with
respect to the lattice size. In Fig. 11, we compare the results
for a single N = 5, L = 0 diagram on the lattices of size 32 ×
32 and 256 × 256. We observe that the result is almost exactly
the same at broadening level η = 0.2, which brings further
confidence in the results in the main part of the paper.

In Fig. 12, we illustrate how the size of the lattice de-
termines the highest energy resolution that one can have,
under requirement that the results form a continuous curve
on the real axis and are, therefore, representative of the ther-
modynamic limit. We perform the full summation for the
second-order diagram with L = 0, with various sizes of the
lattice and various resolutions. Clearly, the bigger the lattice,
the higher the energy resolution one can set without affecting
the smoothness of the results.

The numerical parameters of the calculation are there-
fore the size of the lattice, the energy resolution, and the
broadening (the resolution and the broadening can be tuned
a posteriori), and one can tune them to get the optimal ratio
between performance and the error bar. If the pole amplitudes
A j p are a relatively smooth function of j, no broadening is
then needed at all.
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FIG. 12. Real-frequency result (η = 0+) for the contribution of the lowest-order diagram (illustrated in the rightmost panel) at various
lattice sizes and frequency resolutions, obtained with full summation (gray code). The step of the uniform energy grid is denoted �ω. The
parameters are L = 0, δμ = 0, μ − U 〈nσ 〉 = −0.1D, T = 0.1D, and the external momentum is k = (0, π ).

APPENDIX D: DERIVATION OF EQ. (5)

After applying n times the partial integration over the integral from the left-hand side of Eq. (5), we get∫ τ f

0
τ neτ zdτ = 1

zn+1

∫ zτ f

0
τ neτ dτ

= 1

zn+1

[
ezτ f (zτ f )n − nezτ f (zτ f )n−1 + · · · + (−1)nn!

∫ zτ f

0
τ 0eτ dτ

]

= 1

zn+1

[
n!

(n − 0)!
(−1)0ezτ f (zτ f )n−0 + (−1)1 n!

(n − 1)!
ezτ f (zτ f )n−1 + · · · + (−1)n n!

(n − n)!

∫ zτ f

0
τ 0eτ dτ

]

= 1

zn+1

[
n!

(n − 0)!
(−1)0ezτ f (zτ f )n−0 + (−1)1 n!

(n − 1)!
ezτ f (zτ f )n−1 + · · · + (−1)n n!

(n − n)!
(zτ f )0(ezτ f − 1)

]

= 1

zn+1
ezτ f

n∑
k=0

(−1)k (zτ f )n−k n!

(n − k)!
− (−1)n n!

zn+1
, (D1)

which can be readily identified with the right-hand side of Eq. (5).

APPENDIX E: DERIVATION OF EQ. (21)

We are looking for a solution of the Fourier transform

Gl
0(ε, τ ) = 1

β

∑
i�η

e−i�ητ

(i�η − ε)l
. (E1)

For any τ , we can express the sum above as a contour integral,
and we find

Gl
0(ε, τ ) = −Resz=ε

e−zτ

(z − ε)l

η� τ
β �e� τ

β �βz

1 − ηe−βz
dz

= − η� τ
β �

(l − 1)!

dl−1

dzl−1

e−βz{ τ
β
}

1 − ηe−βz

∣∣∣∣
z=ε

, (E2)

where �...� denotes the integer part (floor function), and {x} ≡
x − �x� denotes the fractional part.

We see that it will be useful to have an expression for
derivatives of (1 − ηez )−1. They have the general form

dk

dzk

1

1 − ηez
=

k∑
n=0

Ck
n

(ez )n

(1 − ηez )n+1
. (E3)

By deriving this expression on both sides, one obtains a recur-
sion for the coefficients Ck

n ,

Ck+1
n = nCk

n + ηnCk
n−1, (E4)

with holds for k > −1 and n > 0 with C0
0 = 1. That can be

rewritten

ηn

n!
Ck+1

n = n
ηn

n!
Ck

n + ηn−1

(n − 1)!
Ck

n−1. (E5)

If we define Sk
n = ηn

n! C
k
n , we have the recursion Sk+1

n = nSk
n +

Sk
n−1, which is the recursion for the Stirling numbers of the

second kind. This allows one to have the following important
result:

dk

dzk

1

1 − ηez
=

k∑
n=0

ηnn!

{
k
n

}
(ez )n

(1 − ηez )n+1

=
k∑

n=0

ηnn!

{
k
n

}
e−z

(e−z − η)n+1
. (E6)
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With this, one obtains the following expression:

Gl
0(ε, τ ) = −eεβ(1−{ τ

β })η� τ
β �+1(−β )l−1

×
l−1∑
m=0

l−m−1∑
n=0

n!

(l − m − 1)!m!

{
l − m − 1

n

}

×
(

1

ηeεβ − 1

)n+1{
τ

β

}m

, (E7)

which already satisfies the (anti)periodicity properties of the
Green’s function.

To make use of the result given by Eq. (E7), we need to
express Gl

0(ε, τ ) as a function of two times Gl
0(ε, τ, τ ′) ≡

Gl
0(ε, τ − τ ′), with τ, τ ′ ∈ [0, β]. We first consider τ � τ ′.

By substituting (τ − τ ′)m = ∑m
ζ=0(−1)m−ζ

(m
ζ

)
τ ζ τ ′m−ζ into

Eq. (E7) and substituting m − ζ with ς , we get

Gl
0(ε, τ − τ ′) = ηeε(τ ′−τ )nη(−ε)

l−1∑
ζ=0

l−ζ−1∑
ς=0

c−
l,ζ ,ς (ε)τ ζ τ ′ς ,

(E8)
with c−

l,ζ ,ς
(ε) as defined in Eq. (22). The result for τ < τ ′ can

then be easily obtained by proving the property Gl
0(ε, τ ) =

(−1)lGl
0(−ε,−τ ),

Gl
0(ε,−τ ) = 1

β

∞∑
n=−∞

ei�ητ

(i�η − ε)l

= 1

β

∞∑
n=−∞

e−i�ητ

(−i�η − ε)l

= (−1)l 1

β

∞∑
n=−∞

e−i�ητ

(i�η + ε)l

= (−1)lGl
0(−ε, τ ),

which implies that in the definition (21), we must have

c+
l,ζ ,ς (ε) = (−1)l−1c−

l,ς,ζ (−ε). (E9)

APPENDIX F: GENERAL HAMILTONIAN CASE

It is important to show that our method is not restricted
to a specific choice of Hamiltonian. The local density-density
interaction and the single band of the Hubbard Hamiltonian
bring many simplifications, but none of them are necessary for
our imaginary-time integral solution or the chemical-potential
tuning scheme.

Consider the general Hamiltonian

H =
∑

α

(εα − μ) +
∑

α1α2α3α4

Uα1α2α3α4 c†
α1

cα2 c†
α3

cα4 . (F1)

The α are the eigenstates of the noninteracting Hamil-
tonian, e.g., a combined momentum, band, and spin
index. The self-energy can be now expressed as a

series,

�
(HF)
α,α′ (τ ) =

∑
N

∑
ϒN

2N−1∏
j=1

∞∑
l j=1

∑
α j,1...α j,l j

l j−1∏
n=1

∑
V j,n

× [V j,n]α j,nα j,n+1

N∏
i=1

Uα j1 (i)α j2 (i)α j3 (i)α j4 (i)

×
N−1+∑

j (l j−1)∏
m=1

∫ β

0
dτm G0

(
ε̄α j,n , τ̃ j,n − τ̃ ′

j,n

)
.

(F2)

Similarly as before, ϒN enumerates topologies without any
instantaneous insertions (Hartree or chemical potential) at
perturbation order N (the number of interaction vertices).
The fermionic lines in the ϒN topology are enumerated with
j. On each fermionic line, we make any number l j − 1 of
instantaneous insertions with amplitudes V j,n (interaction am-
plitudes in Hartree insertions are included in V; n enumerates
the insertions at the fermionic line j). In general, Hartree
insertions may contain off-diagonal terms in the α basis and
are therefore a matrix in the α space. However, it is necessary
that chemical-potential shifts are diagonal in this basis, as
we want to have the bare propagator diagonal in this basis
as well. Otherwise, the form of G0 from Eq. (18) would
no longer hold. Nevertheless, one may still have a separate
chemical-potential shift for each state, δμα . After making
insertions, the number of fermionic lines increases to

∑
j l j .

The fermionic lines are now enumerated with j, n, and the
corresponding states are α j,n. The index i enumerates the in-
teraction vertices outside of any Hartree insertions. We denote
α j1...4 (i) as the single-particle states at four terminals of each
interaction vertex. The interaction vertices at incoming (i = 1)
and outgoing (i = N) terminals of the self-energy diagram
are α j1 (i = N ) = α, α j2 (i = 1) = α′. With m, we enumerate
all times to be integrated over. With each interaction vertex
i > 1, we associate one time, and there is a time associated to
each instantaneous insertion of which there are

∑
j (l j − 1).

We assume that the incoming time corresponding to the vertex
i = 1 is 0. The times on the terminals of each bare propa-
gator j, n are τ̃ j,n and τ̃ ′

j,n and they take on values from the
set {τm}m=0...N−1+∑

j (l j−1), with the external incoming time
fixed, τ0 ≡ 0. τ̃ j,n, τ̃

′
j,n, and α j1...4 (i) are implicit functions of

topology ϒN . Finally, ε̄α j,n ≡ εα j,n − μ + δμα j,n . We can now
focus only on the time-integral part and proceed completely
analogously to Eqs. (27)–(31).

It is worth noting that with general interactions, pulling
the coupling constant in front of the diagram contribution is
impossible, as the frequency dependence of the contribution
of each diagram will depend on the precise form of Uα1α2α3α4 .
In the most general case, one must set specific values for
Uα1α2α3α4 and δμα before performing the Monte Carlo summa-
tion. One can then choose the variables that will be sampled
stochastically and the ones that will be fully summed over.
In the end, the contributions can be easily grouped by total
number of independent times (K), including those in Hartree
insertions. The integration of times in Hartree insertions can
always be performed beforehand. Therefore, in the fully
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general case, the number of integrations to be performed at
the time of Monte Carlo sampling is N − 1 + ∑

j (l j − 1).
In the case of purely density-density interactions (as is the
case in the Hubbard model) or spin-spin interactions in the
absence of external magnetic fields, this simplifies further
because instantaneous insertions lead to expressions of the
type 1

(iω−ε)l for which we can work out the temporal Fourier
transform analytically [Eq. (21)] and the remaining number of
integrations to perform is N − 1 [as we do in Eq. (31)]. In the
general case, when Hartree insertions are not diagonal in the α

basis, one has expressions of the type 1
iω−ε1

1
iω−ε2

· · · 1
iω−εl

. In

principle, one could prepare the analytical Fourier transforms
for a general function of this form, but it might be increasingly
involved at large l , so we assume one would do these integra-
tions at the level of the Monte Carlo, when ε1...l are already
specified.

We finally emphasize that even more general construc-
tions are possible, even in bases other than the noninteracting
eigenbasis. In such cases, the G0’s are nondiagonal and
may have a continuous real-frequency dependence, instead
of being a single pole. We leave such considerations for
future work.
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[48] J. Vučičević and M. Ferrero, Real-frequency diagrammatic
Monte Carlo at finite temperature, Phys. Rev. B 101, 075113
(2020).

[49] A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Optimal
grouping of arbitrary diagrammatic expansions via analytic pole
structure, Phys. Rev. B 101, 125109 (2020).

[50] A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Algorith-
mic approach to diagrammatic expansions for real-frequency
evaluation of susceptibility functions, Phys. Rev. B 102, 045115
(2020).
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