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Mapping flows on sparse networks with missing links
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Unreliable network data can cause community-detection methods to overfit and highlight spurious structures
with misleading information about the organization and function of complex systems. Here we show how
to detect significant flow-based communities in sparse networks with missing links using the map equation.
Since the map equation builds on Shannon entropy estimation, it assumes complete data such that analyzing
undersampled networks can lead to overfitting. To overcome this problem, we incorporate a Bayesian approach
with assumptions about network uncertainties into the map equation framework. Results in both synthetic and
real-world networks show that the Bayesian estimate of the map equation provides a principled approach to
revealing significant structures in undersampled networks.
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I. INTRODUCTION

Unraveling the modular organization of social and biolog-
ical systems with interactions comprising measured move-
ments of some entity such as people, money, or information
requires reliable maps of network flows [1–5]. To find modu-
lar regularities in network flows, the map equation estimates
a modular description length of the flows with information-
theoretic measures. Optimizing the map equation with the
search algorithm Infomap maximally compresses the modular
description and detects significant flow-based communities
when enough links are observed [2,6]. However, if too many
links are missing, then the map equation may highlight spu-
rious communities resulting from mere noise. While there
are generative methods that can deal with uncertain net-
work structures, including link-prediction algorithms [7–9]
and network reconstruction approaches that often build on
the stochastic block model [10–14], no method can reliably
identify flow-based communities in networks with missing
links.

The map equation estimates the modular description length
of network flows with the Shannon entropy [15]. With missing
data, the Shannon entropy underestimates the actual entropy
of the complete data [16]. Consequently, when a network has
many missing links, the map equation underestimates the ac-
tual description length of the complete network, capitalizes on
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details in the observed network, and favors network partitions
with many small communities. While higher model complex-
ity can further compress the description length, the result-
ing communities become sensitive to network perturbations.
Having more missing links further obscures the community
structure and leads to higher sensitivity. Overfitting happens
when the communities poorly compress the description length
of the complete network or other samples of the complete
network [17,18].

Underestimating the entropy in networks with missing
links also causes problems for standard procedures that evalu-
ate model-prediction performance, including cross-validation:
When the modular description length depends on the number
of observed links, it also depends on the number of cross-
validation folds such that only balanced but wasteful equal-
sized splits of a network into training and test networks give
useful results.

To overcome these problems, we present two regulariza-
tion methods based on entropy estimation for undersampled
discrete data. First, we incorporate a Bayesian approach in
the map equation framework [19] and derive a closed-form
formula for the posterior mean of the map equation under the
Dirichlet prior distribution of network flows. Second, to en-
able more effective cross-validation, we measure the modular
description length of the training and test networks for a given
partition using Grassberger entropy estimation [20].

We show that the Bayesian estimate of the map equa-
tion does not detect spurious communities in the under-
sampled regime in either synthetic or real-world networks.
Also, compared with the degree-corrected stochastic block
model [21,22], this approach gives solutions that are more
robust to missing links in the analyzed networks. Moreover,
with Grassberger entropy estimation, the modular description
length becomes nearly independent of the amount of data:
Instead of wasteful equal-sized splits, we can use most links in
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the training network to detect communities with Infomap and
validate them using the remaining links in the test network.
These two complementary solutions help us reduce overfitting
and allow us to detect significant flow-based communities in
networks with missing links.

II. MAPPING FLOWS ON COMPLETE NETWORKS

The map equation is an information-theoretic objective
function for community detection based on the equivalence
between data compression and identifying regularities in data.
Building on this minimum description length principle, the
map equation estimates the per-step theoretical lower limit
of the average code word length needed to describe network
flows with a modular description [2,6]. When the links them-
selves do not represent flows, we can model the network flows
with a random walker traversing the network. The goal is to
identify the network partition that maximally compresses the
modular description, which, at the same time, best captures
the modular regularities of the network flows.

For simplicity, here we consider modular descriptions with
a two-level community hierarchy (for the multilevel map
equation, see Appendix B). In a network with a well-defined
community structure, the network flows stay for a relatively
long time within communities. Therefore, to encode move-
ments of the random walker between nodes with better com-
pression, the map equation reuses short code words in modu-
lar codebooks instead of using unique code words for each
node. For a uniquely decodable description, this approach
requires an additional index codebook to encode transitions
between communities.

The map equation measures the theoretical lower limit of
the code length using the Shannon entropy [15]. For partition
M of nodes α = 1 . . .V in communities i = 1 . . . m, the map
equation takes as input the probability that the random walker
enters community i, qi�, the probability to visit node α, pα ,
and the probability to exit community i, qi�. With p�i =
qi� + ∑

α∈i pα for the total use rate of module codebook i,
the average per-step code length needed to describe random
walker movements within community i is

H (Pi ) = −qi�

p�i
log2

qi�

p�i
−

∑
α∈i

pα

p�i
log2

pα

p�i
. (1)

Similarly, the average per-step code length needed to describe
random walker transitions between communities is

H (Q) = −
m∑

i=1

qi�

q�
log2

qi�

q�
, (2)

where q� = ∑m
i=1 qi� is the total use rate of the index

codebook. Therefore, we can express the map equation as the
sum of the average code length of all codebooks weighted by
their use rate:

L(M) = q�H (Q) +
m∑

i=1

p�i H (Pi ). (3)

To identify the partition that minimizes the map equation, In-
fomap explores the space of possible solutions in a stochastic
and greedy fashion.

(a)

(b)

FIG. 1. Illustration of the overfitting problem in a small modular
network. (a) The network has three communities. (b) When observ-
ing only a fraction of the links, the identified thirteen communities
misrepresent the underlying network structure.

III. MAPPING FLOWS ON SPARSE NETWORKS
WITH MISSING LINKS

Combined with Infomap, the map equation is an accurate
method for community detection when complete network data
are available [23]. However, empirical network data can lack
data or contain measurement errors that cause missing or
spurious links. When the map equation is applied to such
unreliable network data, it may identify spurious communities
with misleading information about the underlying network
structure and function (Fig. 1).

We focus on missing links, a common problem in social
and biological networks, that causes the sample estimates
of the random walker’s transition probabilities to lose preci-
sion. When plugging the estimates into the Shannon entropy,
the obtained entropy estimator suffers from a negative bias
and underestimates the entropy terms of the map equation
[16]. Consequently, for the same partition M, the description
length decreases and the relative code length savings over the
one-module solution, l = 1 − L(M)/L(1), increases with the
number of missing links (Fig. 2).

Worse yet, underestimating the index and module code-
books distorts their balance and shifts the optimal solution.
The index codebook underrates the increase in between-
module description length when using more communities, and
the module codebooks overrate the within-module compres-
sion gain when using smaller communities. Also, stochastic
fluctuations in missing links can lead the search algorithm off
track because more undersampled regions attract community
boundaries. Capitalizing on noise in this way underestimates
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FIG. 2. Modular compression in sparse networks. (a) Modular
code length for planted partitions after link removal. (b) Relative
code length savings in networks for planted partitions. With stan-
dard entropy estimation, the average description length decreases
as the number of missing links increases, and we cannot compare
relative code length savings in networks with different densities. In
contrast, Grassberger entropy estimation almost eliminates the code
length’s density dependency. For r > 0.7, the code length savings
are negative for the Bayesian estimate of the map equation with prior
aα = ln(V ). By preferring the one-module solution over the planted
partition in severely undersampled networks, the Bayesian estimate
of the map equation avoids overfitting. For each r, we plot averages
and variances over 100 network samplings of the synthetic network
described in Sec. IV.

not only the codebooks but also, primarily, the transition
rates between communities. As a result, the map equation
favors more and smaller communities in sparse networks with
missing links [9] (Fig. 1). This effect is evident when so many
links are missing that actual communities become sparse or
even form disconnected components. Then the map equation
cannot detect the actual communities; instead it overfits and
identifies spurious communities from mere noise in the net-
work. To overcome overfitting, we incorporate a Bayesian
estimate of the map equation.

A. Bayesian estimate of the map equation

Different methods have been proposed to address the
problem of entropy underestimation [19,20,24–27]. Meth-
ods based on bias reduction cannot prevent overfitting of
the map equation because they have a high variance in the
undersampled regime [20,24,25] and cannot deal with the
underestimation of the transition rates between communities.
Instead, we use a Bayesian approach proposed by Wolpert and
Wolf to estimate the function of probability distributions [19].
This method not only prevents overfitting to noisy structures
better than other Bayesian estimators [26,27]; it also enables
an analytical estimation of the map equation and a computa-
tionally efficient implementation in Infomap.

In general, we seek the Bayesian estimator f̂B of a func-
tion f (ρ) that takes a discrete probability distribution ρ =
(ρ1, ρ2, . . . , ρm) as input. When ρ is not given and we have
only observations n = (n1, n2, . . . , nm), with

∑m
i=1 ni = N

sampled according to the distribution ρ (E (ni ) = ρiN), we
must estimate f (ρ) using the observed data n. The Bayesian
estimator for f (ρ) is the posterior average,

f̂B(n) = E [ f |n] =
∫

f (ρ)P(ρ|n)dρ, (4)

where P(ρ|n) is the posterior over the unknown distribution ρ

given by Bayes’ rule,

P(ρ|n) = P(n|ρ)P(ρ)

P(n)
. (5)

To obtain P(ρ|n), we choose an appropriate prior probability
distribution P(ρ) and use the fact that the likelihood

P(n|ρ) = N!
m∏

i=1

ρ
ni
i

ni!
(6)

and the total probability of the data

P(n) =
∫

dρP(n|ρ)P(ρ). (7)

Applied to the map equation, we seek the Bayesian esti-
mator of f (ρ) = L(M). Assuming undirected and unweighted
links, the transition rate estimates are [28]

pα = kα∑V
α=1 kα

, (8)

qi� = ki�∑V
α=1 kα

, (9)

qi� = ki�∑V
α=1 kα

, (10)

where kα is the degree of node α and ki� = ki� is the degree
of module i, the number of links that connect nodes of module
i with nodes of other modules j, j �= i. However, when the
information about links is incomplete, the actual values of
node and module degrees can deviate from these estimates.
Therefore, we must apply a probabilistic approach, or the map
equation will overfit and exploit spurious network structures.

To develop a Bayesian treatment of the map equation,
for a given partition M, we specify a prior distribution
P(pα, qi�, qi�) over the transition rates pα, qi�, and qi�. A
convenient choice is the Dirichlet distribution, which has sim-
ple analytical properties and can be interpreted as a probability
distribution over the multinomial distribution of the transition
rates,

P(pα, qi�, qi�|aα, ai�, ai�)

= �(a1 + · · · + am�)

�(a1) . . . �(am�)

V∏
α=1

paα−1
α

m∏
i=1

qai�−1
i�

m∏
i=1

qai�−1
i� .

(11)

Here �(x) is the gamma function and a1, . . . , aV ,
a1�, . . . , am�, and a1�, . . . , am� are the parameters of the
distribution. While

∑V
α=1 pα + ∑m

i=1 qi� + ∑m
i=1 qi� �= 1,
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we can use normalized transition rates because the map
equation is scale invariant (see Appendix A).

We obtain the posterior distribution of the transition rates
in Eq. (5) by multiplying the Dirichlet prior by the likelihood
function and normalizing:

P(pα, qi�, qi�|kα, ki�, ki�, aα, ai�, ai�)

∝
V∏

α=1

pkα+aα−1
α

m∏
i=1

qki�+ai�−1
i�

m∏
i=1

qki�+ai�−1
i� . (12)

By combining this distribution and the expanded form of the
map equation,

L(M) = −
V∑

α=1

pα log2(pα ) −
m∑

i=1

qi� log2(qi�)

+
m∑

i=1

(
qi� +

∑
α∈i

pα

)
log2

(
qi� +

∑
α∈i

pα

)

−
m∑

i=1

qi� log2(qi�)

+
(

m∑
i=1

qi�

)
log2

(
m∑

i=1

qi�

)
, (13)

in Eq. (4), and integrating, we obtain a closed formula for the
posterior average of the map equation,

L̂B(M) = 1

ln(2)

1∑V
α=1 uα

×
[
−

V∑
α=1

uαψ (uα + 1) −
m∑

i=1

ui�ψ (ui� + 1)

+
m∑

i=1

(
ui� +

∑
α∈i

uα

)
ψ

(
ui� +

∑
α∈i

uα + 1

)

−
m∑

i=1

ui�ψ (ui� + 1)

+
(

m∑
i=1

ui�

)
ψ

(
m∑

i=1

ui� + 1

)]
, (14)

where ux = kx + ax and ψ (x) is the digamma function.
The parameters a reflect our prior assumption of the link

distribution in the network before we observed the network
data. After seeing the data, we update our assumption by
increasing the value of ax by kx and obtain the posterior
distribution. For a sparse, undersampled network, therefore,
the prior parameters a dominate the posterior link distribution.
Conversely, as the network density increases, the posterior
distribution becomes sharply peaked and the network data
dominate the posterior link distribution. Proper selection of
prior parameters a is important for good performance.

We consider as an uninformative prior an Erdős-Rényi
network with V nodes, where each pair of nodes is connected
with some constant probability p [29]. The average degree
is 〈k〉 = pV and sets the prior parameters to aα = 〈k〉 and
ai� = ai� = Vi(V − Vi)

〈k〉
V −1 , where Vi is the number of nodes

in module i. We aim to choose the average degree 〈k〉 such
that the prior prevents the map equation from overfitting in the
undersampled network, but also enables the map equation to
detect well-formed communities. Since the random network
experiences a phase transition from disconnected to connected
at 〈k〉 = ln(V ) [29], for 〈k〉 � ln(V ) the random network has
isolated components and the prior cannot prevent overfitting,
while for 〈k〉 � ln(V ) well-formed communities can merge
such that the map equation underfits. At the phase transi-
tion between these extremes, a ∼ ln(V ) forms a principled
prior.

Because there are no modular regularities in an Erdős-
Rényi network, this choice of prior induces positive bias
in the code length estimation [Fig. 2(a)]. When observing
fewer links in a network, the prior network influences the
posterior link distribution more such that the code length
increases for the planted partition. Eventually, for severely
undersampled networks, the Bayesian estimate of the map
equation prefers the one-module solution and thereby avoids
overfitting [Fig. 2(b)].

This Bayesian estimate of the map equation extends to
weighted networks where complete information about link
weights is missing. If the link weights represent flows such
that no flow modeling is necessary, then the method also
works for directed networks.

We have implemented the Bayesian estimate of the map
equation in Infomap, available for anyone to use [30]. While
we restrict our paper to the two-level formulation of the map
equation for the sake of simplicity, the code also handles
the Bayesian estimate of the multilevel map equation (see
Appendix B).

B. The map equation with Grassberger entropy estimation

An informative comparison between the standard map
equation and a map equation with corrected entropy terms
must take into account the structural properties of the detected
communities. When possible, we can compare detected com-
munities with planted communities; however, this approach
does not work for real networks without known communities.
To test for under- or overfitting in any network, we use cross-
validation.

We first split the network data into training and test sets
and apply Infomap to identify the partition that maximally
compresses the description length of the training network.
If Infomap successfully recovers a significant partition of
the training network, then the partition with maximal mod-
ular code length savings over the one-level code length will
also successfully compress the description length of the test
network. The opposite happens when there is not enough
evidence in the data. Then Infomap overfits and detects a parti-
tion in the training network without code length savings in the
test network. Thus, if Infomap detects a significant partition M
without overfitting, the relative code length savings in the test
network should be positive, l test = 1 − Ltest(M)/Ltest(1) > 0
and close to the relative code length savings of the training
network, l test ∼ l train. Conversely, if Infomap overfits we ex-
pect l test < 0.

However, the fact that the description length and the
relative code length savings vary with the fraction of
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observed links limits the choice of training and test networks
(Fig. 2). Only with equal-sized training and test networks
will the standard map equation underestimate their true de-
scription lengths to the same degree. But since equal splits
waste half of the links on the test network, the training
network of already sparse networks will be severely un-
dersampled and possibly below the detectability limit. To
reduce the description length’s dependency on the fraction
of observed links and enable effective cross-validation, we
incorporate Grassberger entropy estimation [20] into the map
equation.

For effective cross-validation, Grassberger entropy esti-
mation enables the use of most of the links in the training
network. We construct a test network by randomly removing
a fraction r of links from the network. The remaining links
form a training network. With E for the total number of links
in the network and kα for the degree of node α, the probability
that k′

α links of node α remain in the training network after
removing E − E ′ = rE links follows the hypergeometric dis-
tribution:

P(k′
α ) =

(kα

k′
α

)(E−kα

E ′−k′
α

)
(E

E ′
) . (15)

If E , E ′, and kα are sufficiently large, then the hypergeometric
distribution converges toward the Poisson distribution,

P(k′
α ) = λk′

α

k′
α!

e−λ, (16)

where the parameter λ = E ′kα

E = (1 − r)kα such that 〈k′
α〉 =

(1 − r)kα .
For a given incomplete set of observations

(n1, n2, . . . , nm), Grassberger entropy estimation assumes
that they come from Poisson distributions with mean values
(z1, z2, . . . , zm) and aims to construct a function φ(n) that
minimizes the error |zi ln(zi) − E [niφ(ni )]| across all values
of zi [20]. The solution that minimizes the error is a recursive
function φ(n) = Gn defined as

G1 = −γ − ln(2), G2 = 2 − γ − ln(2),

G2n+1 = G2n, G2n+2 = G2n + 2

2n + 1
, (17)

where γ is Euler’s constant [20].
While we cannot use Grassberger entropy estimation for

weighted or directed networks, where visit rates correspond
to the PageRank of the nodes [6], it does work for unweighted
and undirected networks, where node visit and module tran-
sition rate estimates are given by link counts, Eqs. (8)–
(10). Assuming incomplete observations, we can incorporate
Grassberger entropy estimation into the map equation such
that Eq. (13) takes the form

L̂G(M) = 1

ln(2)

1∑V
α=1 kα

×
[
−

V∑
α=1

kαGkα
−

m∑
i=1

ki�Gki�

+
m∑

i=1

(
ki� +

∑
α∈i

kα

)
Gki�+∑

α∈i kα

−
m∑

i=1

ki�Gki� +
(

m∑
i=1

ki�

)
G∑m

i=1 ki�

]
. (18)

Grassberger entropy estimation also works for the multilevel
formulation of the map equation [31].

Grassberger entropy estimation has high variance and low
bias [32]. Due to its high variance in the undersampled regime
(Fig. 2) and its lack of prior that can deal with underestimating
the transition rates between communities, the map equation
with Grassberger entropy estimation paired with Infomap
does not perform better than the standard map equation on
sparse networks with missing links. However, thanks to its low
bias, the map equation with Grassberger entropy estimation
applied to cross-validation with averaged code length over
several network samplings can dramatically reduce the code
length dependency on network density [Fig. 2(a)]. Also, for
planted partitions, the average relative code length savings
is practically independent of network density [Fig. 2(b)].
Consequently, we can use most links in the training network
to reliably detect communities with Infomap.

IV. RESULTS AND DISCUSSION

We first analyze a synthetic network with planted com-
munity structure and a real-world Jazz collaboration net-
work [33]. We generate the synthetic network with the
Lancichinetti-Fortunato-Radicchi (LFR) method [34]. It has
V = 1000 nodes, average node degree 〈k〉 = 16, and nodes
partitioned into M = 35 communities. The mixing parameter
μ = 0.3 is the probability that a randomly chosen link will
connect nodes from different communities. In the Jazz collab-
oration network, each node represents a band and two nodes
are connected if there is at least one musician who has played
in both bands. For this network with 198 nodes and 2742 links,
there is no information about ground-truth communities and
no consensus about an optimal community partition [35,36].
To generate sparse networks with missing links, we randomly
remove a fraction r of links from the networks, and average
the results for each value of r over 100 samplings.

Using these two networks, we compare the performance of
the standard map equation, the Bayesian estimate of the map
equation with different values of Dirichlet prior parameter aα ,
and the degree-corrected stochastic block model [21,22]. We
are interested in the number of communities, the partition
similarities measured with the adjusted mutual information
(AMI), and the predictive accuracy with cross-validation.
Since the map equation and the degree-corrected stochastic
block model use stochastic search algorithms to detect com-
munities, we average the results over ten searches for each of
the 100 network samplings.

We analyze the Bayesian approach for prior a ∼ ln(V ).
For the node degree, therefore, we use aα = C ln(V ), where
α = 1 . . .V and C is a constant that we need to specify. For
the module degree, we use ai� = ai� = νiC ln(V ), where
νi = Vi

V −Vi
V −1 for i = 1 . . . M and Vi is the number of nodes in

module i.
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FIG. 3. Mean number of communities obtained by the standard
map equation, the Bayesian estimate of the map equation with
different values of Dirichlet prior parameter a, and the degree-
corrected stochastic block model (DC-SBM). The Bayesian estimate
of the map equation with prior aα = ln(V ) provides the best solution:
when sufficient network data are available it distinguishes significant
communities from mere noise, while in the undersampled regime
it detects no community structure. Results are averaged over 100
network samplings and ten algorithm searches. The standard error
of the mean is never higher than 0.58.

A. Number of communities

Applied to the synthetic network, the standard map equa-
tion favors the planted partition until we remove more than
approximately 55% of the links [Fig. 3(a)]. As we remove
more links, the network also becomes sparse within com-
munities. In the undersampled regime below the detectability
limit where it is not possible to recover the planted partition,
the map equation overfits to random fluctuations and favors
more, smaller communities. The Bayesian estimate of the map
equation behaves differently. For C = 0.5, the random prior
network is weakly connected and cannot prevent overfitting
when we remove 70–95% of the links. In contrast, for C = 2,
the random prior network is densely connected and hides the
communities in the noise induced by the prior such that the
Bayesian estimate of the map equation underfits even when
sufficient network data are available. In between, at the critical
point where the random prior network becomes connected,
the prior constant C = 1 balances over- and underfitting and
prevents the detection of spurious communities. Moreover, the
amount of noise that this prior network induces in the original
network is so low that it does not wash out any significant
community structure. While prior parameter C between 0.5
and 1 performs best for some analyzed networks, C = 1
remains a robust choice in general (Appendix C).

The degree-corrected stochastic block model detects the
planted partition until we remove more than 40% of the
links from the synthetic network. Compared to the Bayesian
estimate of the map equation with the prior constant C = 1,
the degree-corrected stochastic block model starts to underfit
the planted partition earlier. For r > 40%, the number of
communities decreases continuously and when r > 80%, the
degree-corrected stochastic block model detects no commu-
nity structure.

Similar behaviors appear accentuated when we apply
the methods to the real-world Jazz collaboration network
[Fig. 3(b)]. For the standard map equation, the number of
detected communities increases with the number of missing
links, whereas the degree-corrected stochastic block model

(a) (b)

0.0 0.3 0.5 0.7 0.0 0.3 0.5 0.7
Fraction of removed links, r Fraction of removed links, r

FIG. 4. Alluvial diagrams of the Jazz collaboration network
show changes in community structure with missing links for (a) the
standard map equation and (b) the Bayesian estimate of the map
equation with prior aα = ln(V ). Compared to the standard map
equation, the communities detected using the Bayesian estimate of
the map equation are more robust to missing links.

shows the opposite trend. Unlike when applied to the synthetic
network, the various map equation variants already favor dif-
ferent partitions before removing any links. The Bayesian esti-
mate of the map equation detects fewer communities than the
standard map equation, and its performance depends on the
choice of the prior. For C = 0.5, the average number of com-
munities is relatively stable when more than 50% of the links
remain. However, if we remove more than 50% of the links,
the number of communities increases because the prior pa-
rameter is too low. As for the synthetic network, the prior pa-
rameter C = 2 is too high and causes underfit: the method de-
tects no community structure when we remove more than 10%
of the links. Again, C = 1 offers a good tradeoff. The number
of communities is approximately constant as long as at least
50% of the links remain and then decreases to 1 when fewer
than 40% of the links remain, where the method deduces that
there no longer exists any significant community structure.

We illustrate differences in the community structure of the
Jazz collaboration network induced by missing links for the
standard and Bayesian map equation with alluvial diagrams
[37]. The standard map equation identifies more and smaller
communities with sparser networks, whereas its Bayesian
estimate keeps similar communities with few changes before
collapsing into one community when only 30% of the links
remain. The Bayesian estimate’s prior assumption of missing
links prevents the map equation from splitting communities
when the networks lose links (Fig. 4).

B. Adjusted mutual information

AMI is a standard measure used to compare two differ-
ent partitions [38]. For the synthetic network, we compare
identified partitions with the planted partition. The standard
map equation successfully recovers the planted partition when
more than 60% of the links are available (AMI = 1). When we
remove more links, the accuracy decreases [Fig. 5(a)]. The
Bayesian estimate of the map equation with prior constant
C = 0.5 has almost the same accuracy. If we use C = 1
instead, then the method performs slightly better when we re-
move 40–60% of the links. Again, when we remove more than
65% of the links, the Bayesian estimate of the map equation
with prior constant C = 1 deduces that there no longer exists
any significant community structure and AMI = 0.
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FIG. 5. Performance tests of the community-detection algo-
rithms using AMI. (a) AMI scores with the planted partition of
the synthetic network as reference. (b) AMI scores with a partition
obtained for the complete Jazz collaboration network as reference.
The Bayesian estimate of the map equation with prior aα = ln(V )
gives the most robust results when it is possible to detect significant
communities. Results are averaged over 100 network samplings and
ten algorithm searches. The standard error of the mean is never
higher than 0.01.

To measure the AMI for the Jazz collaboration network,
which has no planted partition, we compare the partitions
that the community detection methods return for networks
with different fractions of missing links to the partitions they
return for the complete network. For the complete network,
we measure the average AMI over ten searches. The Bayesian
estimate of the map equation with prior aα = ln(V ) is the most
consistent method when it is possible to detect significant
communities [Fig. 5(b)].

In both synthetic and real-world networks when 〈k〉 >

ln(V ), the Bayesian estimate of the map equation with prior
constant C = 1 shows robust performance. However, when
C = 2 it can fail to detect their community structure due to
the high level of noise induced by the prior. To understand
how the noise induced by the prior in the Bayesian estimate
of the map equation affects community detection in sparse
networks with 〈k〉 ∼ ln(V ) and weak community structure,
we test the performance on a range of different networks. We
generate LFR networks with various values of average degree
and mixing parameter, randomly remove a fraction of links,
detect communities using the standard map equation and its
Bayesian estimate with prior aα = 0.5 ln(V ) and ln(V ), and
classify the community detection as successful when the AMI
between the planted partition and the identified partition is
0.9 or higher. Even if the random prior network has higher
density than the original network, the Bayesian estimate of the
map equation achieves the same performance as the standard
map equation when the community structure is well defined
(μ < 0.5). However, if the community structure is weak (μ =
0.5), then the prior aα = ln(V ) can cause underfit before
the standard map equation starts to overfit to noise induced
by missing links (Fig. 6). These results rely on the cost
of overfitting and underfitting implied by the AMI. Specific
networks or research questions may require other penalties for
many or few communities.

C. Cross-validation

Cross-validation allows us to compare model-selection
performance without planted or known partitions. We validate

5 10 15 20
Average degree, 〈k〉

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
re

m
ov

ed
lin

ks
,r µ = 0.1

µ = 0.2

µ = 0.3

µ = 0.4

µ = 0.5

Standard
Bayes, 0.5ln(V)

5 10 15 20
Average degree, 〈k〉

µ = 0.1

µ = 0.2

µ = 0.3

µ = 0.4

µ = 0.5

Standard
Bayes, ln(V)

(a) (b)

FIG. 6. Impact of network structure on the performance of the
standard map equation and its Bayesian estimate. Prior parameter
C = 0.5 in (a) and C = 1 in (b). For LFR networks with V =
1000 nodes and various densities 〈k〉 and mixing parameters μ,
we show the critical fraction of removed links r(〈k〉, μ) where the
AMI between the planted partition and the identified partition falls
below 0.9. Except for weak community structures (μ = 0.5), where
the Bayesian estimate with prior constant C = 1 underfits for lower
fraction of removed links than the standard map equation overfits, the
methods are on par. Results are averaged over ten network samplings
and ten algorithm searches.

the significance of network partitions returned by Infomap
for training networks with a fraction 1 − r of links using the
standard map equation and its Bayesian estimate (Fig. 7).

As the link density of the training network decreases below
the detectability limit, the standard map equation mistakes
noisy substructures in the sparse training networks for actual
communities. As a result, the relative code length savings in
the training and test networks diverge, and partitions obtained
with the standard map equation give negative code length
savings in the test network. In contrast, the Bayesian estimate
of the map equation with prior constant C = 1 prevents over-
fitting in the sparse training network, implying that there is no
significant community structure.

To complement with results for other networks, we pro-
vide summary statistics for six real-world networks often
used to evaluate the performance of community detection
algorithms (Table I). The networks include a collaboration
network in Astrophysics extracted from the arXiv (AstroPh)
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FIG. 7. Performance tests of the map equation with and without
Bayesian estimates using cross-validation. The Bayesian estimate
of the map equation with prior aα = ln(V ) prevents overfitting in
the undersampled regime. Results are averaged over 100 network
samplings and ten algorithm searches. The code length is measured
with Grassberger entropy estimation. The standard error of the mean
is never higher than 0.38.
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TABLE I. Comparison between partitions detected by the stan-
dard map equation and the Bayesian estimate of the map equation
for six real-world networks. The notations m0.25 and m1.0 refer to
the number of communities in the network with 25% removed links
and the complete network, respectively. The last two columns report
the code length savings of test and training networks for partitions
detected in the training networks with 25% removed links

Network Nodes Links Method m0 m0.25 l train
0.25 (%) l test

0.25(%)

AstroPh 17,903 197,031 Bayes 707 771 24 18
Standard 663 1,080 24 18

Email 1,133 5,451 Bayes 34 1 0 0
Standard 50 104 16 2

Erdős N1 466 1,600 Bayes 1 1 0 0
Standard 38 67 17 −9

Football 115 613 Bayes 9 9 18 15
Standard 10 11 20 16

PGP 10,680 24,316 Bayes 956 1,057 49 19
Standard 897 2,210 49 16

Polblogs 1,222 16,717 Bayes 24 23 6 5
Standard 33 80 6 5

[39], the network of e-mails exchanged between members of
the University Rovira i Virgili (Email) [40], a collaboration
network of authors with Erdős number 1 (Erdős N1) [41],
the American College Football network (Football) [42], the
PGP social network of trust (PGP) [43], and the network of
political weblogs (Polblogs) [44]. In all networks, the standard
map equation returns partitions with a higher number of
communities when links are missing. Except for the Football
network, the number of detected communities increases by
60% or more compared with the number of communities
detected in the complete network. In contrast, except for the
AstroPh and PGP networks, the Bayesian estimate of the map
equation with prior constant C = 1 identifies partitions with
fewer communities. Nevertheless, the different community
structures detected by the two methods result in similar rel-
ative code length savings in all networks but the Email and
Erdős N1 networks. They are sparse with 〈k〉 < ln(V ). In the
complete Email network, the Bayesian estimate of the map
equation detects 34 communities but underfits and detects no
community structure after removing 25% of the links. After
removing links in the Erdős N1 network, the standard map
equation overfits and detects communities that, when applied
to the test network, gives worse compression than the one-
module solution. The Bayesian estimate of the map equation
prevents this overfitting by preferring the one-module solution
over any non-trivial solution.

Overall, the model-accuracy results quantified by number
of communities, AMI scores, and code length savings in
cross-validation on synthetic and real-world networks suggest
that the analyzed network and research question should deter-
mine whether to use the standard map equation or its Bayesian
estimate. Choose the standard map equation when the network
data are complete or when extra communities caused by
missing links are not a problem. Choose its Bayesian estimate
when spurious communities can harm the analysis.

V. CONCLUSION

We have derived a Bayesian approach of the map equation
that imposes prior information about the network structure
to reduce overfitting for sparse networks with missing links.
Using an uninformative Dirichlet prior, we show that the
Bayesian estimate of the map equation avoids finding spuri-
ous communities in sparse synthetic and real-world networks
with missing links. With a properly chosen prior constant,
the proposed method successfully balances the impact of
the imposed prior against the observed network data: The
Bayesian estimate of the map equation provides a principled
approach to reducing overfitting and detecting significant
communities in two or more levels. We also show how to
asses whether communities are significant using more ef-
fective cross-validation with Grassberger entropy estimation,
which enables larger training networks. The computational
overhead of the methods compared with the standard map
equation is low. We anticipate that more reliable flow-based
community detection of undersampled networks will be useful
in many applications, including better prediction of missing
links.
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APPENDIX A: NORMALIZED TRANSITION RATES

Proposition. The map equation,

L(M) = −
V∑

α=1

pα log2(pα ) −
m∑

i=1

qi� log2(qi�)

+
m∑

i=1

(
qi� +

∑
α∈i

pα

)
log2

(
qi� +

∑
α∈i

pα

)

−
m∑

i=1

qi� log2(qi�) +
(

m∑
i=1

qi�

)
log2

(
m∑

i=1

qi�

)
,

(A1)

is a scale invariant function.
Proof. If we scale the transition rates pα, qi� and qi� by

a constant K , where K > 0, and change L(M) to

L′
M = −

V∑
α=1

K pα log2(K pα ) −
m∑

i=1

Kqi� log2(Kqi�)

+
m∑

i=1

(
Kqi� +

∑
α∈i

K pα

)
log2

(
Kqi� +

∑
α∈i

K pα

)

−
m∑

i=1

Kqi� log2(Kqi�)

+
(

m∑
i=1

Kqi�

)
log2

(
m∑

i=1

Kqi�

)
,
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then

L′
M = −

��������

K
V∑

α=1

pα log2(K ) − K
V∑

α=1

pα log2(pα )

−
��������

K
m∑

i=1

qi� log2(K ) − K
m∑

i=1

qi� log2(qi�)

−
��������

K
m∑

i=1

qi� log2(K ) − K
m∑

i=1

qi� log2(qi�)

+
��������

K
m∑

i=1

qi� log2(K ) +
��������

K
V∑

α=1

pα log2(K )

+ K
m∑

i=1

(
qi� +

∑
α∈i

pα

)
log2

(
qi� +

∑
α∈i

pα

)

+
���������
K

(
m∑

i=1

qi�

)
log2(K )

+ K

(
m∑

i=1

qi�

)
log2

(
m∑

i=1

qi�

)

= KL(M).

If we choose �

K =
∑V

α=1 kα∑V
α=1 kα + ∑m

i=1 ki� + ∑m
i=1 ki�

, (A2)

such that

p′
α = K pα = kα∑V

α=1 kα + ∑m
i=1 ki� + ∑m

i=1 ki�

, (A3)

q′
i� = Kqi� = ki�∑V

α=1 kα + ∑m
i=1 ki� + ∑m

i=1 ki�

, (A4)

q′
i� = Kqi� = ki�∑V

α=1 kα + ∑m
i=1 ki� + ∑m

i=1 ki�

, (A5)

then we will have

V∑
α=1

p′
α +

m∑
i=1

q′
i� +

m∑
i=1

q′
i� = 1. (A6)

Now we can use

L(M) = 1

K

⎡
⎣−

V∑
α=1

p′
α log2(p′

α ) −
m∑

i=1

q′
i� log2(q′

i�)

+
m∑

i=1

(
q′

i� +
∑
α∈i

p′
α

)
log2

(
q′

i� +
∑
α∈i

p′
α

)

−
m∑

i=1

q′
i� log2(q′

i�)+
(

m∑
i=1

q′
i�

)
log2

(
m∑

i=1

q′
i�

)⎤
⎦

(A7)

to calculate the posterior average of the map equation

L̂B(M) = E [L(M)|k, a]

=
∫

L(M)P(p′, q′
�

, q′
�

|k, a)d p′dq′
�

dq′
�

, (A8)

where posterior probability distribution equals

P(p′, q′
�

, q′
�

|k, a)

∝
V∏

α=1

(p′
α )kα+aα−1

m∏
i=1

[(q′
i�)ki�+ai�−1(q′

i�)ki�+ai�−1].

(A9)

As a result, we obtain

L̂B(M) = 1

ln(2)

1∑V
α=1 uα

×
⎡
⎣−

V∑
α=1

uαψ (uα + 1) −
m∑

i=1

ui�ψ (ui� + 1)

+
m∑

i=1

(
ui� +

∑
α∈i

uα

)
ψ

(
ui� +

∑
α∈i

uα + 1

)

−
m∑

i=1

ui�ψ (ui� + 1)

+
(

m∑
i=1

ui�

)
ψ

(
m∑

i=1

ui� + 1

)⎤
⎦, (A10)

where ux = kx + ax and ψ is digamma function, ψ (x) =
d
dx ln[�(x)].

APPENDIX B: THE BAYESIAN ESTIMATE
OF THE MULTILEVEL MAP EQUATION

The multilevel formulation of the map equation [6,31]
measures the minimum average description length given a
multilevel map M of V nodes clustered into m communities,
for which each community i has a submap Mi with mi sub-
communities, for which each subcommunity i j has a submap
Mi j with mi j subcommunities, and so on. It uses hierarchically
nested code structures,

L(M) = q�H (Q) +
m∑

i=1

L(Mi ), (B1)

where the average per-step code length needed to describe ran-
dom walker transitions between communities at the coarsest
level is the same as in the case of two-level clusterings,

H (Q) = −
m∑

i=1

qi�

q�
log2

qi�

q�
, (B2)

and the average per-step code word length of the module
codebook i recursively takes into account contributions of the
description lengths of communities at finer levels,

L(Mi) = q�
i H (Qi ) +

mi∑
i=1

L(Mi j ). (B3)
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FIG. 8. Mean number of communities obtained by the Bayesian
estimate of the map equation with different values of the prior
constant C. Smaller prior constants give more communities when
many links are missing. Results are averaged over 100 network
samplings and ten algorithm searches.

Here, the average per-step code length needed to describe the
random walker at intermediate level i exiting to a coarser
level or entering the mi subcommunities Mi j at a finer
level is

H (Qi ) = −qi�

q�
i

log2
qi�

q�
i

−
mi∑
j=1

qi j�

q�
i

log2
qi j�

q�
i

, (B4)

where

q�
i = qi� +

mi∑
j=1

qi j� (B5)

is the total code rate use in subcommunity i. We add the
description lengths of codebooks for subcommunities at finer
levels in a recursive fashion down to the finest level,

L(Mi j...l ) = p�i j...lH (Pi j...l ), (B6)

where

H (Pi j...l ) = − qi j...l�

p�i j...l

log2
qi j...l�

p�i j...l

−
∑

α∈Mi j...l

πα

p�i j...l

log2
πα

p�i j...l

(B7)

and

p�i j...l = qi j...l� +
∑

α∈Mi j...l

πα (B8)

is the total code word use rate of module codebook i j . . . l .
To obtain the Bayesian estimate of the multilevel map

equation, we use Eq. (B1) to calculate the posterior average
according to Eq. (4). Following the same procedure described
in Sec. III A, we obtain a formula for the Bayesian estimate of
the multilevel map equation,

L̂B(M) = 1

ln(2)

1∑V
α=1 uα

⎡
⎣−

m∑
i=1

ui�ψ (ui� + 1) +
(

m∑
i=1

ui�

)
ψ

(
m∑

i=1

ui� + 1

)⎤
⎦ +

m∑
i=1

L̂B(Mi ), (B9)

where

L̂B(Mi ) = 1

ln(2)

1∑V
α=1 uα

⎡
⎣−ui�ψ (ui� + 1) −

mi∑
j=1

ui j�ψ (ui j� + 1)

+
⎛
⎝ui� +

mi∑
j=1

ui j�

⎞
⎠ψ

⎛
⎝ui� +

mi∑
j=1

ui j� + 1

⎞
⎠

⎤
⎦ +

mi∑
j=1

L̂B(Mi j ) (B10)

and at the finest level

L̂B(Mi j...l )= 1

ln(2)

1∑V
α=1 uα

⎡
⎣ − ui j...l�ψ (ui j...l�+1)−

∑
α∈Mi j...l

uαψ (uα + 1)

+
⎛
⎝ui j...l�+

∑
α∈Mi j...l

uα

⎞
⎠ψ

⎛
⎝ui j...l�+

∑
α∈Mi j...l

uα+1

⎞
⎠

⎤
⎦. (B11)

APPENDIX C: RESULTS FOR DIFFERENT VALUES
OF THE PRIOR PARAMETER

The number of communities obtained by the Bayesian
estimate of the map equation varies for different values of
the prior constant C between 0.5 and 1 (Fig. 8). For the
synthetic network in the undersampled regime, C < 0.8 can
lead to severe overfitting before removing so many links that
it becomes evident that there is no significant community
structure. For the Jazz collaboration network, the number of

detected communities is similar for prior constant C > 0.6 but
is higher for all values of r when C � 0.6.

To compare the performance for different prior parameters,
we also compute the AMI for C between 0.5 and 1 (Fig. 9).
For the synthetic network, the AMI results confirm that the
detected communities become sensitive to the choice of prior
when we remove more than 65% of the links. For example,
for C � 0.8, the detected communities have AMI down to
0.65 before dropping to 0. For C < 0.8, the method can detect
communities in sparser networks but these communities have
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FIG. 9. Performance tests of the Bayesian estimate of the map
equation with different values of the prior constant C using AMI.
(a) AMI scores with the planted partition of the synthetic network as
reference. (b) AMI scores with a partition obtained for the complete
Jazz collaboration network as reference. Smaller prior constants give
communities with non-zero AMI scores when many links are missing
at the cost of overall lower AMI-scores in the Jazz network. Results
are averaged over 100 network samplings and ten algorithm searches.

AMI scores below 0.5. For the Jazz collaboration network, the
AMI results confirm that the detected communities are more
robust when C > 0.6.

Cross-validation further confirms these results for different
prior parameters. For the synthetic network, the Bayesian
estimate of the map equation is more robust to overfitting
with prior constant C � 0.8 (Fig. 10). With C < 0.8 and more
than 75% of the links removed, the communities detected
in the training network applied to the test network give
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FIG. 10. Performance tests of the Bayesian estimate of the map
equation with different values of the prior constant C using cross-
validation. Smaller prior constants give higher compression in a
narrow range of missing links at the cost of lower compression for
more missing links. We show relative code length savings for the
test network compared to the one-community partition. The code
length is measured with Grassberger entropy estimation. Results are
averaged over 100 network samplings and ten algorithm searches.

worse compression than with a single community. For the
Jazz collaboration network, a prior with C � 0.6 prevents the
detection of communities in the training network that, when
applied to the test network, give negative relative code length
savings.

These results for different values of the prior parameter
indicate that there is no single prior C ln(V ) that achieves
optimal performance for all networks. We suggest using ln(V )
as a prior because it is robust to overfitting and has good
overall performance. If desired for specific networks, then C
can be optimized between 0.5 and 1 with cross-validation.
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Detecting significant community structure in networks with incomplete observations is challenging because
the evidence for specific solutions fades away with missing data. For example, recent research shows that
flow-based community detection methods can highlight spurious communities in sparse undirected and
unweighted networks with missing links. Current Bayesian approaches developed to overcome this problem
do not work for incomplete observations in weighted and directed networks that describe network flows.
To overcome this gap, we extend the idea behind the Bayesian estimate of the map equation for unweighted
and undirected networks to enable more robust community detection in weighted and directed networks.
We derive an empirical Bayes estimate of the transitions rates that can incorporate metadata information
and show how an efficient implementation in the community-detection method Infomap provides more
reliable communities even with a significant fraction of data missing.

Keywords: community detection, directed and weighted networks, incomplete data, the map equation

1. Introduction

Network models gain explainable power with additional information about node labels or link directions
and weights [1, 2]. But these data can also introduce uncertainties such as mislabelled nodes or noisy
link measurements that the network methods must address for reliable further analysis [3]. For example,
when community-detection methods disregard uncertainties in network data, they can overfit and generate
inaccurate node classifications that affect downstream analyses such as link prediction [4–6].
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2 J. SMILJANIĆ ET AL.

To assess the significance of detected communities, we can statistically compare them with expected
results under a null model [7, 8] or test how robust they are under random perturbations of the network [9].
However, both approaches are computationally expensive and impractical for large networks. Instead, we
can integrate regularization mechanisms in the community-detection methods themselves to prevent them
from capitalizing on spurious communities. Several community detection methods take this approach for
undirected and unweighted networks. For example, community-detection methods based on statistical
inference can incorporate assumptions about unreliable measurements into the generative network models
[10, 11]. For the flow-based community-detection method known as the map equation, which identifies
modular structure by searching for sets of nodes with long flow persistence [12, 13], we have derived a
Bayesian estimate that copes with missing unweighted and undirected links [6]. However, dealing with
incomplete observations for robust flow-based community detection in directed and weighted networks
remains unresolved.

Since link weights and directions naturally describe network flows, the map equation works effectively
for directed and weighted networks. But the Bayesian estimate of the map equation for unweighted and
undirected links requires an analytical expression for the network-flow distribution. For directed networks,
no such analytical solution exists. Because the Bayesian estimate of the map equation also assumes a
binary network to derive link probabilities, it cannot be applied directly to weighted and directed networks.

Instead, we start from the basic idea behind the Bayesian estimate of the map equation and derive
an empirical Bayes estimate of the transition rates between nodes in weighted, directed networks. Our
Bayesian estimate employs the continuous configuration model [14] and gives a teleportation-like dynam-
ics in a principled way with critical improvements for robust community detection. To ensure an ergodic
stationary flow distribution in directed networks, standard teleportation turns a random walker into a
random surfer that, besides following links proportional to their weights, teleports uniformly to nodes—
connected or disconnected—at a fixed rate. However, teleporting at a fixed rate disregards basic network
structure and can wash out significant communities, underfitting the data [15]. Other approaches that
reduce the teleportation rate’s influence on the community assignments can instead lead to overfitting in
networks with missing data. In our Bayesian estimate of the transition rates, the network flows depend on
the amount of available data and network type for robust flow-based community detection in unipartite
or bipartite weighted, directed networks with or without metadata (Fig. 1).

We provide an implementation in Infomap that runs at native speed, available for anyone to download
from https://www.mapequation.org. Using synthetic networks with planted community structures and
real-world networks with varying fraction of link observations, we evaluate the empirical Bayes estimate
of the transition rates. We find that Infomap with and without regularized network flows detects similar
and robust communities when enough observations are available. But for incomplete networks with many
missing observations, Infomap with empirical Bayes estimates of the transition rates outperforms standard
Infomap and prevents spurious communities.

2. Methodology

The map equation is an information-theoretic objective function for detecting flow-based communi-
ties [12, 13]. Conceptually, it models network flows as random walks, encodes random walker movements
between nodes using codewords, and estimates the theoretical lower limit of the average per-step code-
length for a given partition of the nodes into modules. In line with the minimum description length
principle, finding the partition that best compresses the network flows is equivalent to identifying most
modular regularities in the network data with respect to those flows. The Infomap software package [16]

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/9/6/cnab044/6458733 by U
m

ea universitet user on 24 M
arch 2023

https://www.mapequation.org


MAPPING FLOWS ON WEIGHTED AND DIRECTED NETWORKS WITH INCOMPLETE OBSERVATIONS 3

(a) (b) (c) (d)

Fig. 1. A schematic weighted network with complete and missing link observations. (a) A complete network with accurate network
flows and inferred communities. (b) Missing link observations introduce inaccuracies. (c) A standard teleportation scheme cannot
overcome the inaccuracies. (d) Regularized network flows with an empirical Bayes estimate of the transition rates using the relaxed
continuous configuration model recovers the complete network’s community structure. Light background areas indicate optimal
community assignments. The width of the light blue lines represents teleportation weight. The size of the light blue node centres
indicates teleportation probability. The dashed black lines show sample trajectories of random walks. We omit link directions in
this example for simplicity.

implements a fast and greedy search algorithm that maximizes flow compression over node partitions by
minimizing the map equation.

The basic idea behind the map equation is a communication game where a sender uses codewords to
update a receiver about the location of the random walker in the network. In a one-level partition without
modular structure, we assign unique codewords to nodes, and the sender communicates one codeword
per random-walker step to the receiver. The lower limit for the codelength is the Shannon entropy over
the nodes’ stationary visit rates according to Shannon’s source coding theorem [17]. When partitioning
nodes into more than one module, we can re-use codewords across modules and achieve shorter average
codelengths. We introduce an index-level codebook to encode transitions between modules and one exit
codeword per module for a uniquely decodable code. The sender uses one codeword to describe transitions
within modules and three codewords between modules: for exiting the old module, for entering the new
module, and for communicating the visited node in the new module. In the same fashion, we can extend
the coding scheme to hierarchies with three or more levels. The partition that compresses the flows on
the network the most reflects the network’s community structure regarding that flow the best.

When sufficiently many observations are available, Infomap returns reliable communities [18, 19].
Because the map equation describes the network as-is, missing observations can misrepresent the actual
stationary flow distribution, change the balance between module- and index-level codebooks, and distort
the communities. As a consequence, the map equation may capitalize on noise and detect spurious
partitions with more and smaller communities than actually present in the complete network [4, 6].

A Bayesian estimate that incorporates prior network assumptions into the map equation overcomes
this overfitting problem, and can be derived in closed form for unweighted undirected networks where the
stationary visit rate for node i is determined by its degree, ki, as pi = ki∑N

i=1 ki
[6, 20]. However, we cannot

directly apply this approach to directed or weighted networks for two reasons. First, we cannot express
a corresponding Bayesian estimate of the map equation analytically because no closed-form solution
exists for node visit rates in directed networks. Second, the prior for weighted networks must incorporate
link weights absent in previous work [6]. Instead, we formulate an empirical Bayes estimate of a random
walker’s transition rates to regularize node visit rates [21].
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4 J. SMILJANIĆ ET AL.

2.1 The map equation with a Bayesian estimate of the transition rates

We consider a weighted directed network with N nodes where A represents the adjacency matrix and
the matrix W contains information on observed link weights. We assume integer weights for simplicity,
but the method also works for non-negative real weights. In general, the probabilities that a random
walker steps from node i to other nodes are given by Ti = (ti1, . . . , tiN). If we interpret the network as
a multigraph, such that wij denotes the number of observed links between nodes i and j, we can explain
Wi = (wi1, . . . , wiN) as a sample of the hidden distribution Ti. Estimating transition rates tij using the
maximum likelihood estimator gives

t̃ij = wij∑
j wij

. (2.1)

However, with noisy data, t̃ij can deviate significantly from tij and cause the map equation to overfit
the observed data. To prevent the map equation from overfitting and increase its generalizability, we
regularize the transition rates using a Bayesian approach [21]. We introduce a prior distribution over Ti

and estimate posterior transition rates

t̂ij(Wi) =
∫

tijP(Ti|Wi)dTi, (2.2)

where P(Ti|Wi) is a posterior over the unknown distribution Ti given by Bayes’ rule,

P(Ti|Wi) = P(Wi|Ti)P(Ti)

P(Wi)
. (2.3)

As prior distribution P(Ti), we choose the Dirichlet distribution, which is the conjugate prior of the
multinomial distribution and enables analytical calculations:

P(Ti|γi) = �(γi1 + · · · + γiN)

�(γi1) . . . �(γiN)

N∏
j=1

t
γij−1
ij . (2.4)

�(x) is the gamma function and γi1 . . . γiN are parameters of the distribution. Given that the likelihood

P(Wi|Ti) = (wi1 + · · · + wiN)!
N∏

j=1

t
wij
ij

wij! (2.5)

and the total probability of the data

P(Wi) =
∫

P(Wi|Ti)P(Ti)dTi, (2.6)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/9/6/cnab044/6458733 by U
m

ea universitet user on 24 M
arch 2023



MAPPING FLOWS ON WEIGHTED AND DIRECTED NETWORKS WITH INCOMPLETE OBSERVATIONS 5

the posterior distribution

P(Ti|Wi, γi) ∝
N∏

j=1

t
wij+γij−1
ij . (2.7)

Finally, after integrating Eq. 2.2, we obtain

t̂ij = wij + γij∑N
j=1 wij + γij

(2.8)

= (1 − αi)
wij∑
j wij

+ αi
γij∑
j γij

, (2.9)

where αi =
∑N

j=1 γij∑N
j=1 wij+γij

. The first term is the maximum likelihood estimator weighted by (1 − αi) and

the second term is the transition rates from the prior distribution weighted by αi. Together they form our
empirical Bayes estimate of the transition rates.

The effect of this Bayesian estimate on the transition rates resemble modelling network flows with
teleportation. Standard teleportation allows a random walker to teleport uniformly to any node in the
network with a fixed small probability α independent of the visited node i. Teleportation is necessary
to ensure ergodicity in directed networks [22] but disregards the network structure and turns the flow
distribution dependent on the teleportation parameter α [15]. For the problem of missing observations,
teleportation is not a viable option: For low teleportation rates, the network structure dominates such
that the map equation can overfit to noise in the data (Fig. 1(c)). Conversely, for high teleportation rates,
random jumps dominate over the network structure such that the map equation can underfit and fail to
detect relevant community structures.

Interpreting the Bayesian estimate of the transition rates in terms of teleportation, Eq. (2.9) shows that
a random walker has node-dependent source and target teleportation probabilities. The random walker
chooses an observed link with probability 1 − αi, or a link in the fully connected prior network with
probability αi. In both cases, the probability to follow a link (i, j) is proportional to its observed weight
wij and prior weight γij, respectively. Thus, if node i has many out-links, the random walker will likely
follow them. Otherwise, if the number of out-links of node i is small, it will teleport with a higher
probability (Fig. 1(d)).

How the method performs depends on the parameters γ . We should choose them such that they
can reduce bias induced by incomplete observations while still not wash out regularities in the network
structure. We assume that the adjacency matrix A and the weight matrix W are decoupled and use

γij = λijcij, (2.10)

where λij is a connectivity parameter that reflects our prior assumption about connections between nodes
i and j and the weight parameter cij reflects our belief about link weights.

2.2 The connectivity parameter

We use the connectivity parameter λij = λ = ln N
N , which corresponds to the connectivity threshold of

random networks. This λ-value is the theoretical lower bound on density that guarantees almost surely a
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6 J. SMILJANIĆ ET AL.

giant connected component in the network [23, 24]. When no further node attributes are known, we assume
that the connectivity between each pair of nodes is λ = ln N

N . This choice creates a prior network strong
enough to prevent overfitting but permissive enough to detect well-supported communities, and works
well to regularize the map equation for undirected, unweighted networks [6]. The choice manifests a prior
belief that the network is connected without any community structure. When more information about
nodes is available, such as types, classes, or similar, the connectivity parameter, λij, should be adjusted
to reflect this information. We consider two concrete cases, bipartite networks and nodes annotated with
metadata.

2.2.1 Bipartite networks. Bipartite networks model interactions between two kinds of node types, A
and B, where only nodes with different types interact directly. A connectivity of λ = ln N

N between all pairs
of nodes violates the bipartite structure of the network. To preserve the bipartite nature of the network, we
set the connectivity parameter for links between same-type nodes to zero and adjust it for links between
different-type nodes.

We assume a bipartite network with NA nodes of type A, NB nodes of type B, and uniform distribution
of links between different-type nodes. As before, we pick the smallest connectivity parameter λAB such

that the resulting network is almost surely connected, λAB = ln(NA+NB)
min(NA ,NB)

[25]. The resulting bipartite prior

weight between nodes i and j, using bipartite connectivity λAB, is

γ bi
ij =

(
1 − δti tj

)
λABcij, (2.11)

where ti and tj are the types of nodes i and j, respectively, and δ is the Kronecker delta.

2.2.2 Metadata. Real-world networks often contain more information than links. For example, nodes
can have additional metadata. Metadata have primarily aided in interpreting detected communities. How-
ever, recent studies suggest that complementing network data with metadata for community detection
can help overcome limitations and uncertainties in the network structure [26–29].

We use discrete metadata to adjust the connectivity parameter. As before, we connect each pair of
nodes uniformly with connectivity λ = ln N

N . In addition, we use the metadata and reinforce connections
between nodes with the same label m by λm = ln Nm

Nm
, where Nm is the number of nodes with label m. With

metadata labels mi and mj for nodes i and j, respectively, the adjusted prior link weight is

γ meta
ij =

(
λ + δmimjλmi

)
cij. (2.12)

2.3 Weight parameter

To incorporate prior assumptions on weights into our method, we use an empirical Bayesian approach [30].
An uninformative prior, such as an exponential link weight distribution, is inadequate since it can wash
out regularities in the network structure. Instead, we assume that the data carry information about their
prior distribution and estimate prior link weights from the networks.

To derive link weights for a prior network, we adapt the so-called continuous configuration model
[14], which estimates the weight of the link from node i to j as

cij =
∑N

n=1 kin
n + kout

n∑N
n=1 sin

n + sout
n

sout
i sin

j

kout
i kin

j

, (2.13)
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MAPPING FLOWS ON WEIGHTED AND DIRECTED NETWORKS WITH INCOMPLETE OBSERVATIONS 7

where kin
i and kout

i denote observed in- and out-degrees, and sin
i = ∑

j wji and sout
i = ∑

j wij denote in- and
out-strengths for node i. The connectivity parameters defined by Eq. (2.13) preserve expected weights
of in- and out- links incident to a node. They provide higher link weights between nodes with strong
connections to their neighbours.

This method also works for unweighted and undirected networks. Undirected networks can be con-
sidered as a special case of directed networks where kout

i = kin
i = ki and sout

i = sin
i = si for all nodes i. The

relaxed continuous configuration model assigns weights cij = 1 to all links for unweighted networks. In
this case, our method presented here and the Bayesian estimate of the map equation [6] provide identical
results. While we can express the effect of the prior network analytically in the Bayesian estimate of the
map equation for undirected, unweighted networks, we can also express it as a Bayesian estimate of the
transition rates as in Eq. (2.9) and use it with the standard map equation.

We provide an efficient implementation of the Bayesian estimate of the transition rates for anyone
to download from https://www.mapequation.org. The general implementation for regularized network
flows works for unipartite and bipartite, unweighted and weighted, undirected and directed networks with
and without metadata. The code runs at native speed because it does not express the all-to-all transition
rates from the prior distribution in Eq. (2.9) as links.

3. Results

We evaluate the performance of Infomap with our empirical Bayes estimate of the transition rates in
networks with missing observations. Our focus is on weighted, directed networks with unweighted and
undirected networks as special cases. For simplicity, we restrict our analyses to networks with integer
weights and interpret them as multigraphs, such that link weights wij denote the number of observed
edges between nodes i and j. To create networks with missing observations, we sample from synthetic
and empirical multigraphs by removing an r-fraction of their multiedges uniformly at random, resulting in
reduced edge weights. For robust results, we average over 100 repetitions for each r-value. As a baseline,
we use the performance of the standard map equation and compare the number of detected communities,
partition similarity and predictive accuracy. We measure partition similarity with the adjusted mutual
information (AMI) [31] between detected and planted partition and predictive accuracy with cross-
validation.

3.1 Synthetic networks

We use the Lancichinetti–Fortunato–Radicchi (LFR) method [18] to generate a weighted directed network
with N = 1000 nodes, average node degree k = 7, and mixing parameter η = 0.4. The resulting network
has M = 31 communities and an average link weight of 4.9 with integer link weights. We have included
results for synthetic networks with different parameters in Appendix A.

To construct synthetic networks with metadata, we first assign metadata labels in perfect alignment
with the community assignments of the LFR networks. Because metadata labels and network community
structure are not always aligned [32], we assign one of the existing M = 31 metadata labels to a
μ-fraction of the nodes at random to evaluate the performance for different metadata and community
structure correlations. In this way, we can use the same network to test our empirical Bayes estimate of
the transition rates both with and without metadata.

With uniform connectivity and as long as we remove up to half of the edges, corresponding to r ≤ 0.5,
the standard map equation and the map equation with regularized network flows detect virtually the same
number of communities [Fig. 2(a)]. When we remove more than half of the data and move beyond r = 0.5,
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(a) (b)

Fig. 2. Mean number of communities in synthetic weighted and directed networks with and without our empirical Bayes estimate
of transition rates. Without metadata in (a) and with metadata in (b), where a fraction μ of the nodes have randomly assigned
metadata. Results are averages over 100 network samplings.

the standard map equation begins to detect more and smaller communities. In contrast, the map equation
with regularized network flows does not detect community structure anymore. The relative weight of
the prior network increases as we remove more data and the remaining evidence is not strong enough to
support communities.

With a metadata-based Bayesian estimate of the transition rates, the fraction of removed links, r, does
not affect the number of detected communities if the correlation between metadata and planted partition,
μ, is high [Fig. 2(b)]. When we randomize half of the metadata labels, corresponding to μ = 0.5, and
move beyond the detectability point at r ≈ 0.65, we find two regimes. First, two opposing forces are
at work, the noisy network structure and the metadata, and we detect no community structure. Then,
as we approach r = 1 and almost no link observations remain in the network, we detect the partition
corresponding to the metadata labels.

Although the standard map equation detects the correct number of M = 31 communities when
we remove less than half of the observations, the AMI scores show that Infomap assigns some nodes to
incorrect communities [Fig. 3(a)]. The map equation with regularized network flows detects communities
that better match the planted communities. When we remove more than half of the observations, r > 0.5,
the standard map equation detects more communities and the AMI score decreases. In contrast, the
map equation with regularized network flows detects only one community with an AMI score of zero,
indicating that the available data is insufficient to infer community structure.

When using a metadata-based Bayesian estimate of the transition rates, our method detects the planted
partition reliably if the metadata and the planted partition match perfectly, corresponding to μ = 0
[Fig. 3(b)]. The method assigns some nodes incorrectly for μ > 0 and weaker correlations with less
aligned structural and metadata information. When many observations are missing, the performance
depends on how well the metadata align with the planted community structure.

Many communities and low AMI scores in the undersampled regime indicate that the standard map
equation returns spurious communities. To understand better how this affects the system characterization,
we use a cross-validation approach where we first split the multiedge counts of a network into training
and test multiedges such that the same edge (i, j) can occur in the training and validation data, and their
counts sum to the original observed count. Then, we infer the partition that maximizes compression in
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(a) (b)

Fig. 3. Adjusted mutual information in synthetic weighted and directed networks with and without Bayesian estimate of the transition
rates. Without metadata in (a) and with metadata in (b), where a fraction μ of the nodes have randomly assigned metadata. Results
are averages over 100 network samplings.

the training network with Infomap and calculate the test network’s description length using that partition.
If the partition captures the structure of the training network well, we expect that it also compresses
the description length in the test network. However, if insufficient data are available in the training
network, Infomap overfits and returns a partition that inaccurately describes the structure of the test
network, resulting in low compression. Since the modular description length depends on the number of
link observations [6], we construct balanced two-fold splits. For a multigraph with m observed edges,
we choose m

2 edges uniformly at random and without replacement for the training network and place
the remaining m

2 edges in the test network. Because this split induces further undersampling, we cannot
compare the link-removal performance with the previous analysis that started with a complete network.
Nevertheless, we can use the results to provide more insights into how each method performs in the
undersampled regime.

To quantify the level of compression that a partition M achieves in the test network, we consider the
relative codelength savings, the codelength for partition M compared to the one-module solution M1 that
assigns all nodes to the same module, l = 1 − L(M)

L(M1)
. Although the standard map equation does not find

the optimal partition under incomplete observations, the results indicate that it captures some regularities
and achieves positive codelength savings [Fig. 4(a)]. However, when the codelength savings are negative,
a correct delineation of the network structure is likely infeasible. The map equation with regularized
network flows and uniform connectivity achieves better compression up until r ≈ 0.4, indicating that
it better captures the network structure. Beyond this point, and in the regime where the standard map
equation detects partitions with negative compression, the map equation with regularized network flows
without metadata information assigns all nodes to the same community, resulting in no compression and
codelength savings of zero [Fig. 4(a)].

The map equation with metadata-based Bayesian estimate of the transition rates detects partitions that
capture the network regularities well and provide positive codelength savings, even when the metadata
labels do not match the planted community assignments for a moderate fraction of the nodes, for example,
μ = 0.15. [Fig. 4(b)]. However, when the correlation between metadata and planted partition is weak
(μ = 0.5), and many observations are missing, the method cannot identify significant communities
anymore.
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(a) (b)

Fig. 4. Codelength savings in synthetic weighted and directed networks with and without regularized network flows. Without
metadata in (a) and with metadata in (b), where a fraction μ of the nodes have randomly assigned metadata. Results are averages
over 100 network samplings.

3.2 Empirical networks

We analyse the performance of the map equation with and without regularized network flows on six
empirical networks from different domains where four of the networks are weighted, and three are
directed.

Sociopatterns The social network of recorded interactions between female and male students in a high
school in Marseille organized as bipartite network [33]. The students are assigned to
one of nine classes which we use as metadata.

CoRA The network covers citations between computer science research papers [34]. The papers
are classified into nine different research topics that we use as metadata.

Industry The network contains companies that are connected if they appeared together in a busi-
ness story [34]. We use Yahoo!’s 12 industry sectors as metadata.

cit-HepTh The network contains citations from within arXiv’s HEP-TH section [35]. We consider
only published articles and use information about the journals as metadata.

Pokémon Using information from all seven generations of Pokémon, we create a network by
connecting two Pokémon who share the same abilities [36]. The primary type of the
Pokémon is used as metadata.

Openflights The network contains links between non-USA airports [37]. We use countries as
metadata.

Table 1 provides summary information of topological properties of the networks and their metadata.

We analyse each of the six empirical networks and report the number of communities (Fig. 5) and
relative codelength savings (Fig. 6). However, because there is no ground truth partition for empirical
data, we cannot use AMI to evaluate our results.
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Table 1 Summary of network data. The column Kind denotes if the network is directed (D)
or undirected (U). The notations w and M refer to the average link weight and the number
of metadata categories in the network, respectively. The last column reports the AMI between
metadata and partition detected by the standard map equation in the complete network

Network Nodes Links Kind w M AMI

Sociopatterns [33] 143+175 2265 U 1.33 9 0.9
CoRA [34] 3385 22092 D 1.00 9 0.3
Industry [34] 1778 14154 U 2.79 12 0.2
cit-HepTh [35] 4378 55186 D 1.00 9 0.0
Pokémon [36] 743 18184 U 1.10 18 0.3
Opeflights [37] 964 8850 D 1.48 97 0.4

The empirical networks behave like the synthetic networks when analysed with the standard map
equation and the map equation with regularized network flows. In the complete networks, and when we
remove only a small fraction of the observations, the methods detect partitions with a similar number of
communities. When we remove more observations and enter the undersampled regime, the standard map
equation detects more and smaller communities. In contrast, the map equation with regularized network
flows without metadata information detects no community structure (Fig. 5).

The empirical networks enter the undersampled regime at different points. In the Pokémon and
Industry networks, the map equation with regularized network flows detects communities even after
removing 70% of the observations. In the Pokémon network, the number of communities detected by the
map equation with regularized network flows increases slightly with the fraction of removed observations
before it drops sharply to 1 at r = 0.8 and no community structure is detected anymore. However, the
community structure in the cit-HepTh network is sensitive to undersampling, and the map equation with
regularized network flows cannot detect communities if we remove more than 5% of the observations.

The cross-validation results show that partitions with noisy substructures detected by the standard
map equation sometimes compress flows on the test network better than the one-level partition. With more
data missing, eventually, the detected partitions lead to negative codelength savings, and the one-level
partition offers a better description of the network flows (Fig. 6). The map equation with teleportation
does not suffer from this issue. The mechanism we have implemented prevents overfitting and instead
returns the one-level partition when not enough data is available to support community structure in the
network.

How well metadata labels align with the network structure determines the performance for the map
equation with regularized network flows using metadata. We use the partitions detected by the standard
map equation on the complete networks as a proxy for the network structures and report the AMI with
the metadata labels in Table 1. For example, in the Sociopatterns network, the metadata contains useful
information and improves the performance in the undersampled regime. The number of communities
remains the same for all r-values [Fig. 5(a)] and, as the cross-validation results show, we achieve high
compression in the test network [Fig. 6(a)]. In contrast, in the cit-HepTh network, where journals do
not support citation patterns between articles, the metadata does not reveal significant communities
in the network structure [Fig. 5(d)]. Similarly, in the Pokémon network where metadata labels align
only weakly with community structure, we observe lower performance than for the map equation with
regularized network flows without employing metadata. When we remove almost all link observations,
using uncorrelated metadata can lead to negative codelength savings [Fig. 6(d and e)].
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Mean number of communities in empirical networks obtained by the standard map equation, the map equation with tele-
portation and uniform connectivity, and the map equation with metadata-based Bayesian estimate of the transition rates. Results
are averages over 100 network samplings.

In the remaining three networks, even though the correlation between metadata and community
structure is low, we find that the map equation with regularized network flows benefits from employing
the metadata in the undersampled regime. The map equation with metadata-based Bayesian estimate of the
transition rates detects fewer communities than the other two methods. The higher codelength savings
indicate that the detected partitions better capture the structural patterns in the networks by avoiding
overfitting to weakly supported substructures [Fig. 6(b, c and f)].

Our analyses show that using regularized network flows with or without metadata prevents overfitting
in the undersampled regime. Instead of returning spurious partitions from sparse observations, the map
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Codelength savings in test networks obtained by the standard map equation, the map equation with teleportation and uniform
connectivity, and the map equation with metadata-based Bayesian estimate of the transition rates. Results are averages over 100
network samplings.

equation with regularized network flows returns the one-level partition, indicating insufficient evidence to
support any community structure. To detect more regularities with better compression, the metadata-based
Bayesian estimate of the transition rates detects more regularities and achieves better compression when
correlations between metadata and the network structure are moderate or higher. With low correlations,
the map equation with regularized network flows with metadata can underfit, and the map equation with
regularized network flows without employing metadata performs better.

Overall, we recommend the standard map equation for complete network data or when communities
from missing links are not problematic. When spurious communities can harm the analysis, the map
equation with regularized network flows provides a robust approach.
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4. Conclusion

We have equipped the flow-based map equation framework with a regulatory mechanism to deal with
missing link observations in weighted and directed networks. By deriving an empirical Bayes estimate of
the transition rates that employs a relaxed continuous configuration model, the network flow dynamics
account for the uncertainty of observed node degrees and strengths. The empirical Bayes estimate of
the transition rates can incorporate additional information about node types and attributes, enabling
extensions to bipartite networks and networks with metadata. Our adaptable solution also supersedes
artificial teleportation for mathematically sound flow modelling on directed networks.

We have implemented the map equation with empirical Bayes estimates of the transition rates in
Infomap and analysed synthetic and real-world networks to evaluate the performance. Our results show
that regularizing the network flows prevents overfitting in undersampled networks, even when a substantial
fraction of the data are missing. Incorporating metadata to reflect prior knowledge about the network can
compensate for missing link observations when the metadata correlate with the network structure. Our
results suggest that the map equation with an empirical Bayes estimate of the transition rates provides
an effective way to identify robust communities in weighted and directed networks with incomplete
observations.

Code

We have implemented the map equation with our Bayesian estimate of the transition rates in Infomap.
Full documentation of Infomap, including tutorials, instructions and visualization tools is available at
https://www.mapequation.org.
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A. Results for different configurations of synthetic networks

To understand how the Bayesian estimate of the transition rates affects community detection in networks
with different structures, we test the performance on synthetic networks with various sizes, densities, and
community strengths. We create six weighted directed LFR networks with various number of nodes, N ,
average degree, k and mixing parameter, η, then randomly remove an r-fraction of the link observations
and detect communities with the standard map equation and the map equation with regularized network
flows.

(a) (b)

(c) (d)

(e) (f)

Fig. A.1. Mean number of communities in synthetic weighted and directed networks with and without regularized network flows.
Dotted line indicates number of planted communities.
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(a) (b)

(c) (d)

(e) (f)

Fig. A.2. Adjusted mutual information in synthetic weighted and directed networks with and without regularized network flows.

Our results show similar trends in terms of robustness to noise in all six networks (Figs A.1 and A.2).
In the undersampled regime, the performance of the standard map equation decreases fast as the number
of missing observations increases. The map equation with regularized network flows undergoes a sharp
transition from detecting robust communities to not detecting any community structure. The uninformative
assumption that a network has no modular structure prevents the map equation with regularized network
flows from detecting modular regularities in networks with weak community structure [Fig. A.2(f)].
However, in sparse networks with stronger support for community structure, we find that our Bayesian
estimate of the transition rates can improve detection accuracy significantly [Fig. A.2(c)].
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Abstract. Social groups are fundamental elements of any social system. Their
emergence and evolution are closely related to the structure and dynamics of a
social system. Research on social groups was primarily focused on the growth
and the structure of the interaction networks of social system members and how
members’ group affiliation influences the evolution of these networks. The distri-
bution of groups’ size and how members join groups has not been investigated
in detail. Here we combine statistical physics and complex network theory tools
to analyze the distribution of group sizes in three data sets, Meetup groups
based in London and New York and Reddit. We show that all three distributions
exhibit log-normal behavior that indicates universal growth patterns in these
systems. We propose a theoretical model that combines social and random diffu-
sion of members between groups to simulate the roles of social interactions and
members’ interest in the growth of social groups. The simulation results show
that our model reproduces growth patterns observed in empirical data. Moreover,
our analysis shows that social interactions are more critical for the diffusion of
members in online groups, such as Reddit, than in offline groups, such as Meetup.
This work shows that social groups follow universal growth mechanisms that need
to be considered in modeling the evolution of social systems.

∗Author to whom any correspondence should be addressed.

© 2022 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/22/123402+19$33.00

mailto:ana.vranic@ipb.ac.rs
mailto:jelena.smiljanic@ipb.ac.rs
mailto:marija.mitrovic.dankulov@ipb.ac.rs
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/aca0e9&domain=pdf&date_stamp=2022-12-7
https://doi.org/10.1088/1742-5468/aca0e9


J.S
tat.

M
ech.

(2022)
123402

Universal growth of social groups: empirical analysis and modeling

Keywords: network dynamics, random graphs, networks, scaling in socio-
economic systems, stochastic processes

Contents

1. Introduction ...................................................................... ...2

2. Data ...................................................................................4

3. Empirical analysis of social group growth .................................. ...5

4. Model .............................................................................. ...8

5. Results ............................................................................. .11

5.1. Model properties ..........................................................................11

5.2. Modeling real systems .............................................................. .....12

6. Discussion and conclusions..................................................... .16

Acknowledgments................................................................ 18

References......................................................................... 18

1. Introduction

The need to develop methods and tools for their analysis and modeling comes with
massive data sets. Methods and paradigms from statistical physics have proven to be
very useful in studying the structure and dynamics of social systems [1]. The main
argument for using statistical physics to study social systems is that they consist of
many interacting elements. Due to this, they exhibit different patterns in their structure
and dynamics, commonly known as collective behavior . While various properties can
characterize a social system’s building units, only a few enforce collective behavior in
the systems. The phenomenon is known as universality in physics and is commonly
observed in social systems such as in voting behavior [2], or scientific citations [3]. It
indicates the existence of the universal mechanisms that govern the dynamics of the
system [1].

Social groups, informal or formal, are mesoscopic building elements of every socio-
economic system that direct its emergence, evolution, and disappearance [4]. The exam-
ples span from countries, economies, and science to society. Settlements, villages, towns,
and cities are formal and highly structured social groups of countries. Their organization
and growth determine the functioning and sustainability of every society [5]. Companies
are the building blocks of an economic system, and their dynamics are essential indica-
tors of the level of its development [6]. Scientific conferences, as scientific groups, enable
fast dissemination of the latest results, exchange, and evaluation of ideas as well as a
knowledge extension, and thus are an integral part of science [7]. The membership of
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individuals in various social groups, online and offline, can be essential when it comes
to the quality of their life [8–10]. Therefore, it is not surprising that the social group
emergence and evolution are at the center of the attention of many researchers [11–14].

The availability of large-scale and long-term data on various online social groups has
enabled the detailed empirical study of their dynamics. The focus was mainly on the
individual groups and how structural features of social interaction influence whether
individuals will join the group [15] and remain its active members [7, 16]. The study on
LiveJournal [15] groups has shown that decision of an individual to join a social group
is greatly influenced by the number of her friends in the group and the structure of their
interactions. The conference attendance of scientists is mainly influenced by their con-
nections with other scientists and their sense of belonging [7]. The sense of belonging of
an individual in social groups is achieved through two main mechanisms [16]: expanding
the social circle at the beginning of joining the group and strengthening the existing
connections in the later phase. Analysis of the evolution of large-scale social networks
has shown that edge locality plays a critical role in the growth of social networks [17].
The dynamics of social groups depend on their size [18]. Small groups are more cohesive
with continued long-term, while large groups change their active members constantly
[18]. These findings help us understand the growth of a single group, the evolution of its
social network, and the influence of the network structure on group growth. However,
how the growth mechanisms influence the distribution of members of one social system
among groups is yet to be understood.

Furthermore, it is not clear whether the growth mechanisms of social groups are uni-
versal or system-specific. The size distribution of social groups has not been extensively
studied. Rare empirical evidence of the size distribution of social groups indicates that
it follows power-law behavior [19]. However, the distribution of company sizes follows
log-normal behavior and remains stable over decades [20, 21]. Analysis of the cities’ sizes
shows that all cities’ distribution also follows a log-normal distribution [22]. In contrast,
the distribution of the largest cities resembles Zipf’s distribution [23].

A related question that should be addressed is whether we can create a unique
yet relatively simple microscopic model that reproduces the distribution of members
between groups and explains the differences observed between social systems. French
economist Gibrat proposed a simple growth model to produce companies’ and cities’
observed log-normal size distribution. However, the analysis of the growth rate of the
companies [20] has shown that growth mechanisms are different from those assumed
by Gibrat. In addition, the analysis of the growth of the online social networks showed
that the population size and spatial factors do not determine population growth, and
it deviates from Gibrat’s law [24]. Other mechanisms, for instance, growth through
diffusion, have been used to model and predict rapid group growth [25]. However, the
growth mechanisms of various social groups and the source of the scaling observed in
socio-economic systems remain hidden.

Here we analyze the size distribution of formal social groups in three data sets:
Meetup groups based in London and New York and subreddits on Reddit. We are
interested in the scaling behavior of size distributions and the distribution of growth
rates. Empirical analysis of the dependence of growth rates, shown in this work, indicates
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that growth cannot be explained through Gibrat’s model. Here we contribute with a
simple microscopic model that incorporates some of the findings of previous research
[15, 19]. We show that the model can reproduce size and growth rate distributions for
both studied systems. Moreover, the model is flexible and can produce a broad set of
log-normal size distributions depending on the value of model parameters.

The paper is organized as follows: in section 2 we describe the data, while in section 3
we present our empirical results. In section 4 we introduce model parameter and princi-
ples. In section 5 we demonstrate that model can reproduce the growth of social groups
in both systems and show the results for different values of model parameters. Finally,
in section 6, we present concluding remarks and discuss our results.

2. Data

We analyze the growth of social groups from two widely used online platforms: Reddit
and Meetup. Reddit3 enables sharing of diverse web content, and members of this plat-
form interact exclusively online through posts and comments. The Meetup4 allows people
to use online tools to organize offline meetings. The building elements of the Meetup
system are topic-focused groups, such as food lovers or data science professionals. Due
to their specific activity patterns—events where members meet face-to-face—Meetup
groups are geographically localized, and interactions between members are primarily
offline.

We compiled the Reddit data from https://pushshift.io/. This site collects data daily
and, for each month, publishes merged comments and submissions in the form of JSON
files. Specifically, we focus on subreddits—social groups of Reddit members interested
in a specific topic. We selected subreddits created between 2006 and 2011 that were
active in 2017 and followed their growth from their beginning until 2011. The consid-
ered dataset contains 17073 subreddits with 2195 677 active members, with the oldest
originating from 2006 and the youngest being from 2011. For each post under a subred-
dit, we extracted the information about the member-id of the post owner, subreddit-id,
and timestamp. As we are interested in the subreddits growth in the number of mem-
bers, for each subreddit and member-id, we selected the timestamp when a member
made a post for the first time. Finally, in the dataset, we include only subreddits active
for at least two months.

The Meetup data were downloaded in 2018 using public API. The Meetup platform
was launched in 2003, and when we accessed the data, there were more than 240 000
active groups. For each group, we extracted information about the date it had been
founded, its location, and the total number of members. We focused on the groups
founded in a period between 2003 and 2017 in big cities, London and New York, where
the Meetup platform achieved considerable popularity. We considered groups active for
at least two months. There were 4673 groups with 831 685 members in London and 4752
groups with 1059 632 members in New York. In addition, we extracted the ids of group

3 https://reddit.com/.

4 www.meetup.com.
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members, the information about organized events, and which members attended these
events. Based on this, we obtained the date when a member joined a group, the first
time she participated in a group event.

For all systems, we extracted the timestamp when the member joined the group.
Each data set has a form (uid, gid, ti), representing the connection between users and
groups. When the system has two separate partitions, the natural extension is a bipar-
tite network where links are drawn between nodes of different sets, indicating the user’s
memberships. The degree of group nodes is exactly the group size. Having the temporal
component in data, we can follow the evolution of the network. Based on this infor-
mation, we can calculate the number of new members per month Ni(t), the group size
Si(t) at each time step, and the growth rate for each group. The time step for all three
data sets is one month. The size of the group i at time step t is the number of members
that joined that group ending with the month, i.e. Si(t) =

∑k=t
k=ti0

Ni(t), where ti0 is the
time step in which the group i was created. Once the member joins the group, it has an
active status by default, which remains permanent. For these reasons, the size of con-
sidered groups is a non-decreasing function. The growth rate Ri(t) at step i is obtained
as logarithm of successive sizes Ri(t) = log(Si(t)/Si(t− 1)).

While the forms of communication between members and activities that members
engage in differ for considered systems, some common properties exist between them.
Members can form new groups and join the existing ones. Furthermore, each member
can belong to an unlimited number of groups. For these reasons, we can use the same
methods to study and compare the formation of groups on Reddit and Meetup.

3. Empirical analysis of social group growth

Figure 1 summarizes the properties of the groups in Meetup and Reddit systems. The
number of groups grows exponentially over time. Nevertheless, we notice that Reddit
has a substantially larger number of groups than Meetup. The Reddit groups are prone
to engage more members in a shorter period. The size of the Meetup groups ranges from
several members up to several tens of thousands of members, while sizes of subreddits
are between a few tens of members up to several million. The distributions of normalized
group sizes follow the log-normal distribution (see table S1 and figure S1 in SI)

P (S) =
1

S
S0
σ
√
2π

exp

⎛
⎜⎝−

(
ln
(

S
S0

)
− μ

)2

2σ2

⎞
⎟⎠, (1)

where S is the group size, S0 is the average group size in the system, and μ and σ
are parameters of the distribution. We used power-law package [26] to fit equation (1)
to empirical data and found that distribution of groups sizes for Meetup groups in
London and New York follow similar distributions with the values of parameters
μ = −0.93, σ = 1.38 and μ = −0.99 and σ = 1.49 for London and New York respectively.
The distribution of sizes of subreddits also has the log-normal shape with parameters
μ = −5.41 and σ = 3.07.
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Figure 1. The number of groups over time, normalized sizes distribution, normal-
ized log-rates distribution and dependence of log-rates and group sizes for Meetup
groups created in London and New York and subreddits. The number of groups
grows exponentially over time, while the group size distributions, and log-rates dis-
tributions follow log-normal. Logrates depend on the size of the group, implying
that the growth cannot be explained by Gibrat law.

https://doi.org/10.1088/1742-5468/aca0e9 6

https://doi.org/10.1088/1742-5468/aca0e9


J.S
tat.

M
ech.

(2022)
123402

Universal growth of social groups: empirical analysis and modeling

Figure 2. The figure shows the groups’ sizes distributions and log-rates distri-
butions. Figures in the top panels show the distribution of normalized sizes of
groups created in the same year. Distributions for the same system and different
years follow same log-normal distribution indicating existence of universal growth
patterns.

Multiplicative processes can generate the log-normal distributions [27]. If there is a
quantity with size Si(t) at time step t, it will grow so after time period δ the size of
the quantity is S(t+Δt) = S(t)r, where r represents a random number. The Gibrat law
states that growth rates r are uncorrelated and do not depend on the current size. To
describe the growth of social groups, we calculate the logarithmic growth rates Ri(t).
According to Gibrat law the distribution of logarithmic growth rates is normal, or,
as it is shown in many studies, it is better explained with Laplacian (‘tent-shaped’)
distribution [28, 29]. In figure 1 we show the distributions of log-rates for all three data
sets. Log-rates are very well approximated with a log-normal distribution. Furthermore,
the bottom panels of figure 1 show that log-rates are not independent of group size.
Figure 1 shows that these findings imply that the growth of Meetup and Reddit groups
violates the basic assumptions of Gibrat’s law [30, 31] and that it cannot be explained
as a simple multiplicative process.

We are considering a relatively significant period for online groups. The fast expan-
sion of information communications technologies (ICT) changed how members access
online systems. With the use of smartphones, online systems became more available,
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which led to the exponential growth of ICTs systems and potential change in the mech-
anisms that influence the social groups’ growth. For these reasons, we aggregate groups
according to the year they were founded for each of the three data sets and look at
the distributions of their sizes at the end of 2017 for Meetup groups and 2011 for
Reddit. For each year and each of the three data sets, we calculate the average size of
the groups created in a year y〈S y〉. We normalize the size of the groups originating in
year y with the corresponding average size sy

i = S y
i /〈S y〉 and calculate the distribution

of the normalized sizes for each year. The distribution of normalized sizes for all years
and data sets is shown in figure 2. All distributions exhibit log-normal behavior. Fur-
thermore, the distributions for the same data set and different years follow a universal
curve with the same value of parameters μ and σ. The universal behavior is observed
for the distribution of normalized log-rates as well, see figure 2 (bottom panels). These
results indicate that the growth of the social groups did not change due to the increased
growth of members in systems. Furthermore, it implies that the growth is independent
of the size of the whole data set.

4. Model

The growth of social groups cannot be explained by the simple rules of Gibrat’s law.
Previous research on group growth and longevity has shown that social connections with
members of a group influence individual’s choice to join that group [19, 25]. Individuals’
interests and the need to discover new content or activity also influence the diffusion
of individuals between groups. Furthermore, social systems constantly grow since new
members join every minute. The properties of the growth signal that describes the arrival
of new members influence both dynamics of the system [32, 33] and the structure of social
interactions [34]. The number of social groups in the social systems is not constant. They
are constantly created and destroyed.

In [19], the authors propose the co-evolution model of the growth of social net-
works. In this model, the authors assume that the social system evolves through the
co-evolution of two networks: a network of social contacts between members and a net-
work of members’ affiliations with groups. This model addresses the problem of the
growth of social networks that includes both linking between members and social group
formation. In this model, a member of a social system selects to join a group either
through random selection or according to her social contacts. In the case of random
selection, there is a selection preference for larger groups. If a member chooses to select
a group according to her social contacts, the group is selected randomly from the list of
groups with which her friends are already affiliated.

In [19], the authors demonstrate that mechanisms postulated in the model could
reproduce the power-law distribution of group sizes observed for some social networks.
However, as illustrated in section 3, the distribution of group sizes in real systems is
not necessarily power-law. Our rigorous empirical analysis shows that the distribution
of social group sizes exhibits log-normal behavior. To fill the gap in understanding how
social groups in the social system grow, we propose a model of group growth that
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Figure 3. The top panel shows bipartite (member-group) and social (member-
member) network. Filled nodes are active members, while thick lines are new links
in this time step. In the social network dashed lines show that members are friends
but still do not share same groups. The lower panel shows model schema. Example:
member u6 is a new member. First it will make random link with node u4, and then
with probability pg makes new group g5. With probability pa member u3 is active,
while others stay inactive for this time step. Member u3 will with probability 1− pg
choose to join one of old groups and with probability paff linking is chosen to be
social. As its friend u2 is member of group g1, member u3 will also join group g1.
Joining group g1, member u3 will make more social connections, in this case it is
member u1.

combines random and social diffusion between groups but follows different rules than
the co-evolution model [19].

Figure 3 shows a schematic representation of our model. Similar to the co-evolution
model [19], we represent a social system with two evolving networks, see figure 3. One
network is a bipartite network that describes the affiliation of individuals to social groups
B(VU ,VG,EUG). This network consists of two partitions, members VU and groups VG, and
a set of links EUG, where a link e(u, g) between a member u and a group g represents the
member’s affiliation with that group. Bipartite network grows through three activities:
the arrival of new members, the creation of new groups, and members joining groups.
In bipartite networks, links only exist between nodes belonging to different partitions.
However, as we explained above, social connections affect whether a member will join a
certain group or not. In the simplest case, we could assume that all members belonging
to a group are connected. However, previous research on this subject [15, 16, 19] has
shown that the existing social connections of members in a social group are only a subset
of all possible connections. For these reasons, we introduce another network G(VU ,EUU)
that describes social connections between members. The social network grows by adding
new members to the set VU and creating new links between them. The member partition
in bipartite network B(VU ,VG,EUG) and set of nodes in members’ network G(VU ,EUU)
are identical.

For convenience, we represent the bipartite and social network of members with
adjacency matrices B and A. The element of the matrix Bug equals one if member u
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is affiliated with group g, and zero otherwise. In matrix A, the element Au1u2 equals
one if members u1 and u2 are connected and zero otherwise. The neighborhood Nu of
member u is a set of groups with which the member is affiliated. On the other hand,
the neighborhood Ng of a group g is a set of members affiliated with that group. The
size Sg of set Ng equals to the size of the group g.

In our model, the time is discrete, and networks evolve through several simple rules.
In each time step, we add NU(t) new members and increase the size of the set VU. For
each newly added member, we create the link to a randomly chosen old member in the
social network G. This condition allows each member to perform social diffusion [25],
i.e. to select a group according to her social contacts. Not all members from setting VU

are active in each time step. Only a subset of existing members is active in each time
step. The activity of old members is a stochastic process determined by parameter pa;
every old member is activated with probability pa. Old members are activated in this
way, and new members make a set of active members AU at time t .

The group partition VG grows through creating new groups. Each active member
u ∈ AU can decide with probability pg to create a new group or to join an already
existing one with probability 1− pg.

If the active member u decides that she will join an existing group, she first needs to
choose a group. A member u with probability paff decides to select a group based on her
social connections. For each active member, we look at how many social contacts she
has in each group. The number of social contacts sug that member u has in the group g
equals the overlap of members affiliated with a group g and social contacts of member
u, and is calculated according to

sug =
∑
u1∈Ng

Auu1. (2)

Member u selects an old group g to join according to probability Pug that is proportional
to sug. Member-only considers groups with which it has no affiliation. However, if an
active member decides to neglect her social contacts in the choice of the social group,
she will select a random group from the set VG with which she is not yet affiliated.

After selecting the group g, a member joins that group, and we create a link in the
bipartite network between a member u and a group g. At the same time, the member
selects X members of a group g which do not belong to her social circle and creates
social connections with them. As a consequence of this action, we make X new links
in-network G between member u and X members from a group g.

The evolution of bipartite and social networks, and consequently growth of social
groups, is determined by parameters pa, pg and paff. Parameter pa determines the activity
level of members and takes values between 0 and 1. Higher values of pa result in a
higher number of active members and thus faster growth of the number of links in
both networks and the size and number of groups. Parameter pg in combination with
parameter pa determines the growth of the set VG. pg = 1 means that members only
create new groups, and the existing network consists of star-like subgraphs with members
being central nodes and groups as leaves. On the other hand, pg = 0 means that there
is no creation of new groups, and the bipartite network only grows through adding new
members and creating new links between members and groups.
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Parameter paff determines the importance of social diffusion. paff = 0 means that
social connections are irrelevant, and the group choice is random. On the other hand,
paff = 1 means that only social contacts become important for group selection.

Several differences exist between the model presented in this work and the co-
evolution model [19]. In our model, paff is constant and the same for all members.
In the co-evolution model, this probability depends on members’ degrees. The members
are activated in our model with probability pa. In contrast, in the co-evolution model,
members are constantly active from the moment they are added to a set VU until they
become inactive after time ta. Time ta differs for every member and is drawn from an
exponential distribution. In the co-evolution model, the number of social contacts mem-
bers have within the group is irrelevant to its selection. On the other hand, in our model,
members tend to choose groups more often in which there is a greater number of social
contacts. While in our model, in the case of a random selection of a group, a member
selects with equal probability a group that she is not affiliated with, in the co-evolution
model, the choice of group is preferential.

5. Results

The distribution of group sizes produced by our and co-evolution models significantly
differ. The distribution of group sizes in the co-evolution model is a power-law. Our
model enables us to create groups with log-normal size distribution and expand classes
of social systems that can be modeled.

5.1. Model properties

First, we explore the properties of size distribution depending on parameters pg and paff,
for the fixed value of activity parameter pa and constant number of members added in
each step N(t) = 30. When the group is created, its size S(t0) = 1, so the group creator
cannot make new social connections until new members arrive. While a group has less
than X members, new users will make social connections with all available members in
the group. After the group size reaches the threshold of X members, a new user creates X
connections. Our detailed analysis of the results for different parameter values X shows
that these results are independent of their value. We set the value of parameter X to
25 for all simulations presented in this work. Our detailed analysis of the results for
different parameter values X shows that these results are independent of their value.

Figure 4 shows some of the selected results and their comparison with power-law
and log-normal fits. We see that values of both pg and paff parameters, influence the
type and properties of size distribution. For low values of parameter pg, left column in
figure 4, the obtained distribution is log-normal. The width of the distribution depends
on paff. Higher values of paff lead to a broader distribution.

As we increase pg, right column in figure 4, the size distribution begins to deviate from
log-normal distribution. The higher the value of parameter pg, the total number of groups
grows faster. For pg = 0.5, half of the active members in each time step create a group,
and the number of groups increases fast. How members are distributed in these groups
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Figure 4. The distribution of sizes for different values of pg and paff and constant
pa and growth of the system. The combination of the values of parameters of pg
and paff determine the shape and the width of the distribution of group sizes.

depends on the parameter paff value. When paff = 0, social connections are irrelevant
to the group’s choice, and members select groups randomly. The obtained distribution
slightly deviates from log-normal, especially for large group sizes. In this case, large
group sizes become more probable than in the case of the log-normal distribution. The
non-zero value of parameter paff means that the choice of a group becomes dependent on
social connections. When a member chooses a group according to her social connections,
larger groups have a higher probability of being affiliated with the social connections
of active members, and thus this choice resembles preferential attachment. For these
reasons, the obtained size distribution has more broad tail than log-normal distribution
and begins to resemble power-law distribution.

The top panel of figure S3 in SI shows how the shape of distribution is changing
with the value of parameter paff and fixed values of pa = 0.1 and pg = 0.1. Preferential
selection groups according to their size instead of one where a member selects a group
with equal probability leads to a drastic change in the shape of the distribution, bottom
panel figure S3 in SI. As is to be expected, the distribution of group sizes with preferential
attachment follows power-law behavior.

5.2. Modeling real systems

The social systems do not grow at a constant rate. In [34], the authors have shown that
features of growth signal influence the structure of social networks. For these reasons,
we use the real growth signal from Meetup groups located in London and New York
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Figure 5. The time series of the number of new members (top panels). The time
series of the ratio between several old active members and total members in the
system (middle panels); its median value approximates the parameter pa, the prob-
ability that the user is active. The bottom panels show the time series of the
ratio between new groups and active members; its median value approximates the
probability that active users create a new group, parameter pg.

and Reddit to simulate the growth of the social groups in these systems. Figure 5 (top)
shows the time series of the number of new members that join each of the considered
systems each month. All three data sets have relatively low growth at the beginning,
and then the growth accelerates as the system becomes more popular.

We also use empirical data to estimate pa, pg and paff. The data can approximate
the probability that old members are active pa and that new groups are created pg.
Activity parameter pa is the ratio between the number of old members active in month
t and the total number of members in the system at time t. Figure 5 (middle) shows the
variation of parameter pa during the considered time interval for each system. The value
of this parameter fluctuates between 0 and 0.2 for London and New York based Meetup
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Table 1. Jensen Shannon divergence between group sizes distributions from model
and data. In the model we vary affiliation parameter paff and find its optimal value
(bold text).

paff JS cityLondon JS cityNY JS reddit2012

0.1 0.0161 0.0097 0.002 41
0.2 0.0101 0.0053 0.002 05
0.3 0.0055 0.0026 0.001 59
0.4 0.0027 0.0013 0.001 04
0.5 0.0016 0.0015 0.000 74
0.6 0.0031 0.0035 0.000 48
0.7 0.0085 0.0081 0.000 39
0.8 0.0214 0.0167 0.00034
0.9 0.0499 0.0331 0.000 47

groups, while its value is between 0 and 0.15 for Reddit. To simplify our simulations, we
assume that pa is constant in time and estimate its value as its median value during the
170 months for Meetup and 80 months for Reddit systems. For Meetup groups based
in London and New York pa = 0.05, while Reddit members are more active on average
and pa = 0.11 for this system.

Figure 5 bottom row shows the evolution of parameter pg for the considered sys-
tems. The pg in month t is estimated as the ratio between the groups created in
month tNgnew(t) and the total number of groups in that month Ngnew(t) + Ngold(t), i.e.

pg(t) =
Ngnew(t)

Nnew(t)+Nold(t)
. We see from figure 5 that pg(t) has relatively high values at the

beginning of the system’s existence. This is not surprising. Initially, these systems have
a relatively small number of groups and often cannot meet the needs of the content of all
their members. As the time passes, the number of groups and content scope within the
system grows, and members no longer have a high need to create new groups. Figure 5
shows that pg fluctuates less after the first few months, and thus we again assume that pg
is constant in time and set its value to the median value during 170 months for Meetup
and 80 months for Reddit. For all three systems pg has the value of 0.003.

The affiliation parameter paff cannot estimate directly from the empirical data. For
these reasons, we simulate the growth of social groups for each data set with the time
series of new members obtained from the real data and estimated values of parameters
pa and pg, while we vary the value of paff. We compare the distribution of group sizes
obtained from simulations for different values of paff with ones obtained from empirical
analysis using Jensen Shannon (JS) divergence. The JS divergence [35] between two
distributions P and Q is defined as

JS(P ,Q) = H

(
P +Q

2

)
− 1

2
(H(P ) +H(Q)) (3)

where H(p) is Shannon entropy H(p) =
∑

x p(x) log(p(x). The JS divergence is sym-
metric and if P is identical to Q, JS = 0. The smaller the value of JS divergence, the
better is the match between empirical and simulated group size distributions. Table 1
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Figure 6. The comparison between empirical and simulation distribution for group
sizes (top panels) and log-rates (bottom panels).

shows the value of JS divergence for all three data sets. We see that for London based
Meetup groups the affiliation parameter is paff = 0.5, for New York groups paff = 0.4,
while the affiliation parameter for Reddit paff = 0.8. Our results show that social diffu-
sion is important in all three data sets. However, Meetup members are more likely to
join groups at random, while for the Reddit members their social connections are more
important when it comes to choice of the subreddit.

Figure 6 compares the empirical and simulation distribution of group sizes for con-
sidered systems. We see that empirical distributions for Meetup groups based in London
and New York are well reproduced by the model and chosen values of parameters. In
the case of Reddit, the distribution is broad, and the model reproduces the tail of the
distribution well. Figure S2 and table S2 in SI confirm that the distribution of group
sizes follow a log-normal distribution.

The bottom row of figure 6 shows the distribution of logarithmic values of growth
rates of groups obtained from empirical and simulated data. We see that the tails of
empirical distributions for all three data sets are well emulated by the ones obtained
from the model. The deviations we observe are the most likely consequence of using
median values of parameters pa, pg, and paff .
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6. Discussion and conclusions

The results of empirical analysis show that there are universal growth rules that govern
the growth of social systems. We analysed the growth of social groups for three data
sets, Meetup groups located in London and New York and Reddit. We showed that
the distribution of group sizes has log-normal behaviour. The empirical distributions of
normalised sizes of groups created in different years in a single system fall on top of each
other, following the same log-normal distributions. Due to a limited data availability,
we only study three data sets which may affect the generality of our results. However,
the substantial differences between Reddit and Meetup social systems when it comes
to their popularity, size and purpose, demonstrate that observed growth patterns are
universal.

Even though the log-normal distribution of group sizes can originate from the pro-
portional growth model, Gibrat law, we show that it does not apply to the growth of
online social groups. The monthly growth rates are log-normally distributed and depen-
dent on the size of a group. Gibrat law was proposed to describe the growth of various
socio-economical systems, including the cities and firms. Recent studies showed that the
growth of cities and firms [21, 36, 37] goes beyond Gibrat law. Still, our findings confirm
the existence of universal growth patterns, indicating the presence of the general law in
the social system’s growth.

While the growth of the social groups does not follow the Gibrat law, one could
ask whether there are other simple models of social group growth. The basic growth
model underlying any log-normal distribution is a multiplicative process. The size of
the system in time t is equal to its size in time t− 1 multiplied by some factor. In our
case, where the groups only grow and do not shrink, the factor has to be larger than one.
When we model the growth of real social groups, we need to take into account several
factors: (1) social systems grow through the addition of new members; (2) the number
of social groups is not constant, it grows with time; (3) one person can be a member of
multiple groups at the same time. The simplest model that considers all three factors but
disregards social factors, and thus a network structure, would be the one where members
randomly choose the groups they will join. The described situation is an extreme case
of our model with paff = 0, see figure 4, top left panel. By setting the values of paff = 0
and taking the value of N(t) and pg as an estimate from real data, we can reproduce a
log-normal distribution with parameters that do not match empirical data, see table 1.
While the distributions of group size in different systems follow log-normal behavior,
the parameters of these distributions differ from system to system. This indicates the
existence of additional factors in the multiplicative process that govern multiplicative
growth. The network effect is crucial in explaining many instances of collective social
dynamics, including the person’s choice to join a certain group [14]. Here we show that
members’ diffusion between groups governed by social influence allows us to use the
same model to explain the growth of groups in different social systems by tuning its
importance.
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The model proposed in [19] is able to produce only power-law distributions of group
sizes. However, our empirical analysis shows that these distributions can also have a log-
normal behavior. Thus, we propose a new model that emulate log-normal distributions.
The analysed groups grow through two mechanisms [19]: members join a group that is
chosen according to their interests or by social relations with the group’s members. The
number of members in the system is growing as well as the number of groups. While the
processes that govern the growth of social groups are the same, their importance varies
among the systems. The distributions for Meetup groups located in the London and
New York have similar log-normal distribution parameter values, while for Reddit, the
distribution is broader. Numerical simulations further confirm these findings. Different
modalities of interactions between their members can explain the observed differences.

Meetup members need to invest more time and resources to interact with their
peers. The events are localised in time and space, and thus the influence of peers in
selecting another social group may be limited. On the other hand, Reddit members
do not have these limitations. The interactions are online, asynchronous, and thus not
limited in time. The influence of peers in choosing new subreddits and topics thus
becomes more important. The values of paff parameters for Meetup and Reddit imply
that social connections in diffusion between groups are more critical in Reddit than in
Meetup.

The purpose of the research presented in this paper was to provide a model of
social group growth that can reproduce the log-normal distribution of group sizes in
different systems. The model is based on bipartite network dynamics allowing us to
study other network properties and compare them to empirical data. The empirical
data are limited and only contain explicit information about the connections between
groups and their members. The distribution of group sizes is the exact degree distri-
bution of the group partition. We show that these properties are reproduced with our
model, see figure 6. When it comes to the degree distribution of members, that is, the
number of groups a member is affiliated with, our model does not reproduce this dis-
tribution. The number of groups a member is affiliated to is equal to number of her
activities. The activity of a member is controlled with probability pa. In our model, the
probability pa is equal for all members, and thus the emerging degree distribution is
exponential [38]. We do not study the properties of the members’ partitions in detail,
as our focus is on the growth of groups’ partitions and mechanisms that influence the
members’ choice to join the groups. On the other hand, studying how groups are dis-
tributed among members could give us insight into what motivates members to be active.
Previous work proposed that each member has a lifetime [17], but different linking rules
could be considered; for example, pa could be preferential toward high-degree members,
and the age or even social connections of members could be relevant.

The results presented in this paper contribute to our knowledge of the growth of
socio-economical systems. The previous study analysed the social systems in which size
distributions follow the power-law, which is the consequence of a preferential choice
of groups during the random diffusion of members. Our findings show that preferential

https://doi.org/10.1088/1742-5468/aca0e9 17

https://doi.org/10.1088/1742-5468/aca0e9


J.S
tat.

M
ech.

(2022)
123402

Universal growth of social groups: empirical analysis and modeling

selection of groups during social diffusion and uniform selection during random diffusion
result in log-normal distribution of groups sizes. Furthermore, we show that broadness
of the distribution depends on the involvement of social diffusion in the growth process.
Our model increases the number of systems that can be modelled and help us better
understand the growth and segmentation of social systems and predict their evolution.
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[35] Briët J and Harremoës P 2009 Properties of classical and quantum Jensen–Shannon divergence Phys. Rev. A

79 052311
[36] Mansfield E 1962 Entry, Gibrat’s law, innovation, and the growth of firms Am. Econ. Rev. 52 1023–51
[37] Barthelemy M 2019 The statistical physics of cities Nat. Rev. Phys. 1 406–15
[38] Barabási A-L, Albert R and Jeong H 1999 Mean-field theory for scale-free random networks Physica A 272

173–87

https://doi.org/10.1088/1742-5468/aca0e9 19

https://doi.org/10.1051/jp1:1997180
https://doi.org/10.1051/jp1:1997180
https://doi.org/10.1051/jp1:1997180
https://doi.org/10.1051/jp1:1997180
https://doi.org/10.1038/379804a0
https://doi.org/10.1038/379804a0
https://doi.org/10.1038/379804a0
https://doi.org/10.1038/379804a0
https://doi.org/10.1016/j.econlet.2019.04.026
https://doi.org/10.1016/j.econlet.2019.04.026
https://doi.org/10.1016/j.econlet.2019.04.026
https://doi.org/10.1016/j.econlet.2019.04.026
https://doi.org/10.1111/jors.12205
https://doi.org/10.1111/jors.12205
https://doi.org/10.1111/jors.12205
https://doi.org/10.1111/jors.12205
https://doi.org/10.1371/journal.pone.0100023
https://doi.org/10.1371/journal.pone.0100023
https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1371/journal.pone.0100527
https://doi.org/10.1371/journal.pone.0100527
https://doi.org/10.1073/pnas.0509543102
https://doi.org/10.1073/pnas.0509543102
https://doi.org/10.1073/pnas.0509543102
https://doi.org/10.1073/pnas.0509543102
https://doi.org/10.1103/physrevx.4.011008
https://doi.org/10.1103/physrevx.4.011008
https://doi.org/10.1103/physreve.89.062808
https://doi.org/10.1103/physreve.89.062808
https://doi.org/10.1088/1742-5468/2011/02/P02005
https://doi.org/10.1038/srep12197
https://doi.org/10.1038/srep12197
https://doi.org/10.1038/srep12197
https://doi.org/10.1038/srep12197
https://doi.org/10.1088/1742-5468/abd30b
https://doi.org/10.1088/1742-5468/abd30b
https://doi.org/10.1103/physreva.79.052311
https://doi.org/10.1103/physreva.79.052311
https://doi.org/10.1038/s42254-019-0054-2
https://doi.org/10.1038/s42254-019-0054-2
https://doi.org/10.1038/s42254-019-0054-2
https://doi.org/10.1038/s42254-019-0054-2
https://doi.org/10.1016/s0378-4371(99)00291-5
https://doi.org/10.1016/s0378-4371(99)00291-5
https://doi.org/10.1016/s0378-4371(99)00291-5
https://doi.org/10.1016/s0378-4371(99)00291-5
https://doi.org/10.1088/1742-5468/aca0e9


Similarity-based Link Prediction from Modular Compression
of Network Flows

Jelena Smiljanić∗
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Abstract

Node similarity scores are a foundation for machine learning in graphs for cluster-
ing, node classification, anomaly detection, and link prediction with applications
in biological systems, information networks, and recommender systems. Recent
works on link prediction use vector space embeddings to calculate node similarities
in undirected networks with good performance. Still, they have several disad-
vantages: limited interpretability, need for hyperparameter tuning, manual model
fitting through dimensionality reduction, and poor performance from symmetric
similarities in directed link prediction. We propose MapSim, an information-
theoretic measure to assess node similarities based on modular compression of
network flows. Unlike vector space embeddings, MapSim represents nodes in
a discrete, non-metric space of communities and yields asymmetric similarities
in an unsupervised fashion. We compare MapSim on a link prediction task to
popular embedding-based algorithms across 47 networks and find that MapSim’s
average performance across all networks is more than 7% higher than its closest
competitor, outperforming all embedding methods in 11 of the 47 networks. Our
method demonstrates the potential of compression-based approaches in graph
representation learning, with promising applications in other graph learning tasks.

1 Introduction
Calculating similarity scores between objects is a fundamental problem in machine learning tasks,
from clustering, anomaly detection, and text mining to classification and recommender systems. In
Euclidean feature spaces, similarities between feature vectors are commonly calculated as lengths,
norms, angles, or other geometric concepts, possibly using kernel functions that perform implicit
non-linear mappings to high-dimensional feature spaces [1]. For relational data represented as
graphs, methods using the graph topology to calculate pairwise node similarities can address learning
problems such as graph clustering, node classification, and link prediction. For link prediction, recent
works take a multi-step approach and separate representation learning and link prediction [2, 3]: First,
they learn a latent-space node embedding from the graph’s topology, using methods such as graph
or matrix factorisation [4, 5], or random walk-based techniques [6–8]. Then, they interpret node
positions as points in a high-dimensional feature space, possibly applying downstream dimensionality
reduction. Finally, they use node positions in the resulting feature space to assign new “features”
to pairs of nodes, which can be used to predict links. Taking an unsupervised approach, links are
predicted based on node similarities [9] by calculating distance metrics or similarity scores between
∗Also with the Center for the Study of Complex Systems, Institute of Physics, University of Belgrade.

C. Blöcker et al., Similarity-based Link Prediction from Modular Compression of Network Flows. Proceedings
of the First Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December 9–12, 2022.
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Figure 1: We calculate node similarities for predicting links based on a network’s modular coding
scheme of the map equation. Blue and orange nodes have a unique codeword within their module,
shown next to the nodes and derived from their stationary visit rates. Decimal numbers show
the theoretical lower limit for the codeword length in bits. Map equation similarity, MapSim for
short, derives description lengths for predicted links, connecting more similar nodes uses fewer bits.
Intra-community links tend to have shorter description lengths than inter-community links.

node pairs to rank them. We can alternatively use a supervised approach [10] by (i) using binary
operators like the Hadamard product [7], (ii) sampling negative instances (node pairs not connected
by links), and (iii) using the features of positive and negative instances to train a supervised binary
classifier [7].

Advances in graph embedding and representation learning have considerably improved our ability to
predict links in networks, with applications in biological [11] and social [12] networks and in recom-
mender systems [13]. However, these methods introduce challenges for real-world link-prediction
tasks: First, they require specifying hyperparameters that control aspects regarding the scale of
patterns in graphs, the influence of local and non-local structures, and the latent space dimensionality
[14]. Network-specific hyperparameter tuning addresses these issues, but is challenging in real
applications and aggravates the risk of overfitting; recent systematic comparisons reveal that the
performance of different methods largely varies across data sets [2, 3]. These challenges make it
difficult for practitioners to choose and optimally parametrise an embedding method. Second, using
latent metric spaces implies symmetric similarities, limiting the performance when predicting directed
links [5, 15]. Third, compared with hand-crafted features, embeddings tend to have low interpretabil-
ity: We can assess the similarity of nodes, but we cannot explain why some nodes are more similar
than others [2–4]. Nevertheless, recent graph neural network-based approaches focus on learning
features for link prediction from local subgraphs [16], overlapping node neighbourhoods [17], or
shortest paths [18], achieving favourable performance. Finally, recent works highlight fundamental
limitations of low-dimensional representations of complex networks [19], questioning to what extent
Euclidean embeddings can capture patterns relevant to link prediction.

Motivated by recent works highlighting the importance of community structures for link prediction
[2, 20, 21], we propose a novel approach to similarity-based link prediction that addresses these
issues. Our contributions are:

• We introduce map equation similarity, MapSim for short, an information-theoretic method to
calculate asymmetric node similarities. MapSim builds on the map equation [22], a framework
that applies coding theory to compress random walks based on hierarchical cluster structures.

• Unlike other random walk-based embedding techniques, our work builds on an analytical
approach to calculate the minimal expected description length of random walks, neither requiring
simulating random walks nor tuning hyperparameters.

• Following the minimum description length principle, MapSim incorporates Occam’s razor
and balances explanatory power with model complexity, making dimensionality reduction
superfluous. With hierarchical cluster structures, MapSim captures patterns at multiple scales
simultaneously and combines the advantages of local and non-local similarity scores.

• We validate MapSim in an unsupervised, similarity-based link prediction task and compare its
performance to six well-known embedding-based techniques in 47 empirical networks from
different domains. This analysis highlights challenges in the generalisability of embedding
techniques and parametrisations across different networks.

• Confirming recent surveys, we find that the performance of popular embedding techniques
for unsupervised link prediction without network-specific hyperparameter tuning depends on
the data. In contrast, MapSim provides high performance across a wide range of networks,
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with an average performance 7.7% and 7.5% better than the best competitor in undirected and
directed networks, respectively. MapSim outperforms the chosen baseline methods in 11 of
the 47 networks with a worst-case performance 44% and 33% better than popular embedding
techniques in undirected and directed networks, respectively.

In summary, we take a novel perspective on graph representation learning that fundamentally differs
from other random walk-based graph embeddings. Instead of embedding nodes into a metric space,
leading to symmetric similarities, we develop an unsupervised learning framework where (i) positions
of nodes in a coding tree capture their representation in a non-metric latent space, and (ii) node
similarities are calculated based on how well transitions between nodes are compressed by a network’s
hierarchical modular structure (figure 1). Apart from node similarities that can be “explained” based
on community structures captured in the coding tree, MapSim yields asymmetric similarity scores
that naturally support link prediction in directed networks. We provide a simple, non-parametric, and
scalable unsupervised method with high generalisability across data sets. Our work demonstrates the
power of compression-based approaches to graph representation learning, with promising applications
in other graph learning tasks.

2 Related Work and Background
We first summarise recent works on graph embedding and similarity-based link prediction. Then, we
review the map equation, an information-theoretic objective function for community detection and
the theoretical foundation of our compression-based similarity score.

2.1 Related Work

Focusing on unsupervised similarity-based link prediction, we consider methods that calculate a
bivariate function sim(u, v) ∈ Rd, where u, v ∈ V are nodes in a directed or undirected, possibly
weighted graphG = (V,E) [23, 24]. While similarity metrics often consider scalar functions (d = 1),
recent vector space embeddings use binary operators to assign vector-valued “features” with d > 1
to node pairs. Since vectorial features are typically used in downstream classification techniques,
this can be seen as an implicit mapping to similarities, for example “similar” features being assigned
similar class probabilities. We limit our discussion to topological or structural approaches [23], and
consider functions sim(u, v) that can be calculated solely based on the edges E in graph G without
requiring additional information such as node attributes or other non-topological graph properties.

Several works define scalar similarities based on local topological characteristics such as the Jaccard
index of neighbour sets, degrees of nodes, or degree-weighted measures of common neighbours
[25]. Other methods define similarities based on random walks, paths, or topological distance
between nodes [9, 26–28]. Compared to purely local approaches, an advantage of random walk-based
methods is their ability to incorporate both local and non-local information, which is crucial for
sparse networks where nodes may lack common neighbours. Since walk-based methods reveal cluster
patterns in networks [22], they generally perform well in downstream tasks such as link prediction
and graph clustering [2]. Graph factorisation approaches that use eigenvectors of different types
of Laplacian matrices that represent relationships between nodes share this high performance [29],
likely because (i) Laplacians capture the dynamics of continuous-time random walks [30], and (ii)
spectral methods can capture small cuts in graphs [31].

Building on these ideas, recent works on graph representation learning combine random walks and
deep learning to obtain high-dimensional vector space embeddings of nodes, serving as features
in downstream learning tasks [3, 14]: Perozzi et al. [6] generate a large number of short random
walks to learn latent space representations of nodes by applying a word embedding technique
that considers node sequences as word sequences in a sentence. This corresponds to an implicit
factorisation of a matrix whose entries capture the logarithm of the expected probabilities to walk
between nodes in a given number of steps [32]. Following a similar walk-based approach, Grover
and Leskovec [7] generate node sequences with a biased random walker whose exploration behaviour
can be tuned by search bias parameters p and q. The resulting walk sequences are used as input
for the word embedding algorithm word2vec [33], which embeds objects in a latent vector space
with configurable dimensionality. Tang et al. [8] construct vector space embeddings of nodes that
simultaneously preserve first- and second-order proximities between nodes. Similar to Adamic and
Adar [25], second-order node proximities are defined based on common neighbours. Extending the
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random walk approach in [6], Perozzi et al. [34] learn embeddings from so-called walklets, random
walks that skip some nodes, resulting in embeddings that capture structural features at multiple scales.

The abovementioned graph embedding methods compute a representation of nodes in a, compared to
the number of nodes in the network, low-dimensional Euclidean space. A suitably defined metric
for similarity or distance of nodes enables recovering the link topology with high fidelity [35],
forming the basis for similarity-based link prediction. In contrast, Lichtenwalter et al. [10] argued
for a new perspective that uses supervised classifiers based on (i) multi-dimensional features of
node pairs, and (ii) an undersampling of negative instances to address inherent class imbalances
in link prediction. Recent applications of graph embedding to link prediction have taken a similar
supervised approach, for example using vector-valued binary operators to construct features for
node pairs from node vectors [6, 7, 24]. Despite good performance, recent works have cast a more
critical light on such applications of low-dimensional graph embeddings. Questioning the distinction
between deep learning-based embeddings and graph factorisation techniques, Qiu et al. [4] show that
popular embedding techniques can be understood as (approximate) factorisations of matrices that
capture graph topology. Thus, low-dimensional embeddings can be viewed as a (lossy) compression
of graphs, while link prediction or graph reconstruction can be viewed as the decompression step.
Fitting this view, a recent study of the topological characteristics of networks’ low-dimensional
Euclidean representations has highlighted fundamental limitations of embeddings to capture complex
structures found in real networks [19].

Techniques like node2vec, LINE, or DeepWalk have been reported to perform well for link prediction
despite those limitations. However, recent surveys concur that finetuning their hyperparameters to the
specific data set is required [2, 21, 36], which can be problematic in large data sets and increase the
risk of overfitting. When used for link prediction, graph embedding methods are typically combined
with dimensionality reduction and supervised classification algorithms, possibly using non-linear
kernels. Comparative studies found that the performance of Euclidean graph embeddings for link
prediction is connected to their ability to represent communities in graphs as clusters in the feature
space [2], which, due to the non-linear nature of graph data [37], strongly depends on their topology.
Using symmetric operators or distance measures in metric spaces limits their ability to predict directed
links because the ground truth for (u, v) can differ from (v, u) [15].

These issues raise the general question whether we should use low-dimensional Euclidean embeddings
for link prediction tasks. Recent works addressed some of those open questions, for example with
hyperbolic or non-linear embeddings [20, 37], extensions of Euclidean embeddings for directed
link prediction [15], or embeddings that explicitly account for community structures [21, 38, 39].
However, existing works still use hyperparameters, require separate dimensionality reduction or
model selection to identify the optimal number of dimensions, fail to capture rich hierarchically nested
community structures present in real-world networks [40], or do not integrate community detection
with representation learning. Addressing all issues at once, we take a novel approach that treats
graph representation learning as a compression problem: We use the map equation [22], an analytical
information-theoretic approach to compress flows of random walks in directed or undirected, possibly
weighted networks based on their modular structure. Unlike recent work by Ghasemian et al. [41]
that predicts links based on how they influence the map equation’s estimated codelength, requiring
inefficient recalculations, we take advantage of the map equation’s coding machinery without any
computational overhead. The map equation’s hierarchical coding tree with node assignments provides
an embedding in a discrete, non-metric latent space of possibly hierarchical community labels with
automatically optimised dimensionality using a minimum description length approach. Following
the map equation’s compression principles, we relate the similarity between nodes u and v to how
efficiently we can compress the link (u, v) with respect to the network’s modular structure. As an
analytical approach, our method neither introduces hyperparameters nor needs to simulate random
walks, and naturally yields asymmetric node similarities suitable to predict directed links.

2.2 Background: the map equation

The map equation is an information-theoretic objective function for community detection that,
conceptually, models network flows with random walks [22]. To detect communities, the map
equation compresses the random walks’ per-step description length by searching for sets of nodes
with long flow persistence: network areas where a random walker tends to stay for a longer time.
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Figure 2: Map equation coding principles. Left: An example network with nine nodes, ten links,
and two communities, A and B, indicated by colours. Each random-walker step is encoded by one
codeword for intra-module transitions, or three codewords for inter-module transitions. Codewords
are shown next to nodes in colours, their length in bits in the information-theoretic limit in black.
Module entry and exit codewords are shown to the left and right of the coloured arrows, respectively.
The black trace shows a possible section of a random walk with its encoding and theoretical length
at the bottom. Right: The corresponding coding tree. Links are annotated with transition rates
to calculate similarities in the information-theoretic limit. Each coding tree path corresponds to
a network link, which may or may not exist. The coder remembers the random walker’s module
but not the most recently visited node. Describing the intra-module transition from node 5 to 3
requires − log2 (3/12) = 2 bits. The inter-module transition from node 5 to 7 requires three steps
and − log2 (1/12 · 1/2 · 2/10) ≈ 6.9 bits.

Consider a communication game where the sender observes a random walker on a network, and uses
binary codewords to update the receiver about the random walker’s location. In the simplest case,
all nodes belong to the same module and we use a Huffman code to assign unique codewords to the
nodes based on their stationary visit rates. With a one-module partition, M1, the sender communicates
one codeword per random-walker step to the receiver. The theoretical lower limit for the per-step
description length, we call it codelength, is the entropy of the nodes’ visit rates [42],

L (M1) = H (P ) = −
∑
u∈V

pu log2 pu, (1)

whereH is the Shannon entropy, P is the set of the nodes’ visit rates, and pu is node u’s visit rate.

In networks with modular structure, we can compress the random walks’ description by grouping
nodes into more than one module such that a random walker tends to remain within modules, and
module switches become rare. This lets us re-use codewords across modules and design a codebook
per module based on the nodes’ module-normalised visit rates. However, sender and receiver need
a way to encode module switches. The map equation uses a designated module-exit codeword per
module and an index-level codebook with module-entry codewords. In a two-level partition, the
sender communicates one codeword for intra-module random-walker steps to the receiver, or three
codewords for inter-module steps (figure 2). The lower limit for the codelength is given by the sum
of entropies associated with module and index codebooks, weighted by their usage rates. Given a
partition of the network’s nodes into modules, M, the map equation [22] formalises this relationship,

L (M) = qH (Q) +
∑
m∈M

pmH (Pm) . (2)

Here q =
∑

m∈M qm is the index-level codebook usage rate, qm is the entry rate for module m,
and Q = {qm |m ∈ M} is the set of module entry rates; mexit is the exit rate for module m, pm =
mexit +

∑
u∈m pu is the codebook usage rate for module m, and Pm = {mexit} ∪ {pu |u ∈ m} is the

set of node visit rates in m, including m’s module exit rate.

The map equation can detect communities in simple, weighted, directed, and higher-order networks,
and can be generalised to hierarchical partitions through recursion [40]. To make use of node metadata
for detecting communities, we can either incorporate a corresponding term in the map equation [43],
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Figure 3: Illustration of map equation similarity between nodes u and v with addresses
addr (M, u) = [p1, . . . , pi, uj , uk] and addr (M, v) = [p1, . . . , pi, vj , vk, vl]. M is the complete
network partition. The longest common prefix between the addresses for u and v is p = [p1, . . . , pi],
and M〈p〉 is the sub-module at address p within M, that is the smallest module that contains u and v.

design metadata-informed flow models [44], or introduce a prior network and reinforce link weights
between nodes with the same metadata label [45].

3 MapSim: node similarities from modular flow compression
Compression-based similarity measures consider pairs of objects more similar if they jointly compress
better. Extending this idea to networks, we exploit the coding of network flows based on the map
equation, and use it to calculate information-theoretic pairwise similarities between nodes: MapSim.
We interpret a network’s community structure as an implicit embedding and, roughly speaking,
consider nodes in the same community as more similar than nodes in different communities.

To calculate node similarities, we begin with a network partition and its corresponding modular
coding scheme2, which can be visualised as a tree, annotated with the transition rates defined by
the link patterns in the network (figure 2). While the network’s topology constrains random walks
to transitions along existing links, the coding scheme is more flexible and can describe transitions
between any pair of nodes. To describe the transition from node u to v, we find the corresponding path
in the partition tree and multiply the transition rates along that path, that is, we use the coarse-grained
description of the network’s community structure, not the network’s actual link pattern; it can describe
any transition regardless of whether the link (u, v) exists in the network or not. The description
length in bits for a path with transition rate r is − log2 (r). For example, consider the scenario in
figure 2 where we calculate similarity scores for the two directed links (5, 3) and (5, 7), neither of
which exists in the network. Nodes 5 and 3 are in module A, and the rate at which a random walker
in A visits node 3 is 3/12, requiring − log2 (3/12) = 2 bits to describe that transition. Node 7 is in
module B, and a random walker in A exits A at rate 1/12, enters B at rate 1/2, and then visits node
7 at rate 2/10, that is, at rate 1/120, requiring − log2 (1/120) ≈ 6.9 bits.

Paths to derive similarities emanate from modules, not from nodes, because the model must generalise
to unobserved data. If compression was our sole purpose, we would use node-specific codebooks
containing codewords for neighbouring nodes, but no longer detect communities, and only be able
to describe observed links. Instead, the map equation’s coding scheme is designed to capitalise
on modular network structures: The modular code structure provides a model that generalises to
unobserved data, coarse-grains the path descriptions, and prevents overfitting.

For the general case, where M can be a hierarchical network partition, we number the sub-modules
within each module m from 1 to nm – we refer to these numbers as addresses – such that an ordered

2In principle, arbitrary network partitions can be used, regardless of the used community detection method.
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sequence of addresses uniquely identifies a path starting at the root of the partition tree. We let
addr: M×N → List (N) be a function that takes a network partition and a node as input, and returns
the node’s address in the partition. To calculate the similarity of node v to u, we identify the longest
common prefix p of the nodes’ addresses, addr (M, u) and addr (M, v), and select the partition tree’s
sub-tree M〈p〉 that corresponds to the prefix p: M〈p〉 is the smallest sub-tree that contains u and
v. We obtain the addresses for u and v within sub-tree M〈p〉 by removing the prefix p from their
addresses. That is, addr (M, u) = p++addr(M〈p〉, u) and addr (M, v) = p++addr(M〈p〉, v), where
++ is list concatenation. The rate at which a random walker transitions from u to v is the product
of (i) the rate at which the random walker moves along the path addr(M〈p〉, u) in reverse direction,
rev(M〈p〉, addr(M〈p〉, u)), that is from u to the root of M〈p〉, and (ii) the rate at which the random
walker moves along the path addr(M〈p〉, v) in forward direction, forw(M〈p〉, addr(M〈p〉, v)), that is
from the root of M〈p〉 to v, where

rev (M, a) =

{
1 if a = [x]

M〈[x]〉,exit · rev(M〈[x]〉, a′) if a = [x] ++ a′
(3)

forw (M, a) =

{
p〈[x]〉/pM if a = [x]

M〈[x]〉,enter · forw(M〈[x]〉, a′) if a = [x] ++ a′
(4)

and a′ denotes non-empty sequences. Here pM is the codebook use rate for module M and p〈[x]〉 is
the visit rate for the node identified by address x within the given module. The final addresses in
equation 3 and equation 4 are treated differently, reflecting that the map equation forgets the most
recently visited node.

We illustrate these ideas in a generic example (figure 3). In short, we define map equation similarity,

MapSim (M,u, v) = rev(M〈p〉, addr(M〈p〉, u)) · forw(M〈p〉, addr(M〈p〉, v)), (5)

where p is the longest common prefix shared by the addresses of u and v in the partition tree defined
by M. To express map equation similarity in terms of description length, we take the − log2 of
MapSim and regard pairs of nodes that yield a shorter description length as more similar.

MapSim is asymmetric since module entry and exit rates are, in general, different and u and v can
have different visit rates. MapSim is zero if one node is in a disconnected component; the exit rate
for regions without out-links is zero, so the corresponding description length is infinitely long. This
issue can be addressed with the regularised map equation [45], a Bayesian approach that introduces
an empirical prior to model incomplete data with weak links between all pairs of nodes, where prior
link strengths depend on the connection patterns of each node.

We calculate node similarities in three steps: (i) inferring a network’s community with Infomap [46], a
greedy, search-based optimisation algorithm for the map equation, (ii) representing the corresponding
coding scheme in a suitable data structure, and (iii) using MapSim to computing similarities based on
the coding scheme. The overall approach is illustrated in figs. 1 – 3 and algorithm 1.

Algorithm 1: Pseudo-code of function MapSim to calculate similarity score for node pair (u, v).
Input :graph G and pair of nodes (u, v)
Output :similarity score of (u, v)

1 // Use Infomap to construct coding tree for compression
2 modules = Infomap.minimiseMapEquation(G)
3 tree = buildPartitionTree(G,modules)
4 p = longestCommonPrefix(tree, u, v)
5 tree〈p〉 = smallestSubtree(tree,p)
6 // calculate code length of random walks from u to v
7 addrU = addr(tree〈p〉, u)
8 addrV = addr(tree〈p〉, v)
9 revRate = rev(tree〈p〉,addrU)

10 fwdRate = forw(tree〈p〉,addrV)
11 return − log2(revRate · fwdRate)
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Figure 4: Link-prediction performance of MapSim, DeepWalk, node2vec, LINE, and NERD on 47
real-world networks. Left: AUC performance. Right: AUPR performance.

4 Experimental Validation
We evaluate the performance of MapSim in unsupervised, similarity-based link prediction for 47
real-world networks, 35 directed (table 1) and 12 undirected (table 3), retrieved from Netzschleuder
[47] and Konect [48]. Details of the directed and undirected networks are shown in tables 2 and 4,
respectively. Our analysis is based on a Python-implementation available on GitHub3, building on
Infomap, a fast and greedy search algorithm for minimising the map equation with an open source
implementation in C++ [46, 49]. As baseline, we use four random walk and neighbourhood-based
embedding methods: DeepWalk [6], node2vec [7], LINE [8], and NERD [15], using the respective
author’s implementation. We also include results for MapSim based on the one-module partition for
each network for comparison, which ignores community structure. Adopting the argument by [7], we
exclude graph factorisation methods and simple local similarity scores because they have already
been shown to be inferior to node2vec. We include NERD because it is a recent random walk-based
embedding method proposed for directed link prediction with higher reported performance than other
walk-based embeddings [15].

4.1 Unsupervised Link Prediction

Different from works that use graph embeddings for supervised link prediction, we address unsuper-
vised link prediction. Like Goyal and Ferrara [2] and Khosla et al. [15], we take a similarity-based
approach that does not require training a classifier. We compute similarity scores based on node
embeddings, rather than applying a supervised classifier to features computed for node pairs. We
adopt the approach by Khosla et al. [15] and calculate node similarities as the sigmoid over the
feature vectors’ dot product.

Considering how different embedding techniques generalise across data sets, we purposefully re-
frained from hyperparameter tuning. We chose a single set of hyperparameters for each method,
informed by the default parameters given by the respective authors and recent surveys’ discussion
regarding which hyperparameter values generally provide good link prediction performance. For
DeepWalk and node2vec, we sample r = 80 random walks of length l = 40 per node, and use a win-
dow size of w = 10. For both methods, the underlying word embedding is applied using the default
model parameters fixed by the authors, skipgram = 1, k = 10 and mincount = 0. For node2vec
we set the return parameter to p = 1. Since for q = p = 1 node2vec is identical to DeepWalk, we
use q = 4, which was found to provide good performance for link prediction [2]. We run LINE
with first-order (LINE1), second-order (LINE2), and combined first-and-second-order proximity
(LINE1+2), use 1,000 samples per node, and s = 5 negative samples. For NERD, we use 800 samples
and κ = 3 negative samples per node. We set the number of neighbourhood nodes to n = 1, as
suggested by the authors for link prediction. We use d = 128 dimensions for all embeddings. Since
MapSim is a non-parametric method, it does not require setting any hyperparameters. However, to
avoid local optima when heuristically minimising the map equation, we run Infomap 100 times and
select the partition with the shortest description length.

We use 5-fold cross-validation to split links into train and test sets, treating weighted links as
indivisible. We calculate the node embedding (for MapSim the coding tree) in the training network,
derive predictions based on node similarities, and evaluate them based on the links in the validation set.

3https://github.com/mapequation/map-equation-similarity
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Figure 5: Runtime behavior for inferring the community structure with Infomap and constructing
the coding tree for MapSim in synthetic k-regular networks with different size.

For each fold, we restrict the resulting training network to its largest (weakly) connected component.
For a validation set with k positive links, we sample k negative links uniformly at random, and
calculate scores for all 2k links. In undirected networks, for each positive link (u, v), we also
consider (v, u) as positive, and, therefore, sample two negative links per positive link. Varying the
discrimination threshold, we obtain a receiver operator characteristic (ROC) per fold, and calculate
the area under the curve (AUC). Detailed results, including average and worst-case performance, are
shown in tables 2 and 4; we also report precision-recall performance (table 5). We include MapSim
based on the one-module partition4 in the results and note that it performs better than using a modular
partition in some cases: this suggests that the network does not have a strong community structure,
which could be addressed with the regularised map equation [45]. When mentioning MapSim in the
following, we refer to using modular partitions.

On average, MapSim outperforms all baseline methods across the 47 data sets in terms of AUC and
AUPR (figure 4); for detailed results on a per-network basis see tables 2, 4, and 5 in the appendix.
Using a one-sided two-sample t-test, we find that MapSim’s average performance across all networks
is significantly higher than that of the best graph embedding method, LINE1+2, both in directed
and undirected networks (p ≈ 0.008 and p ≈ 0.039, respectively). MapSim provides the best
performance in 11 of the 47 networks, with a standard deviation of the AUC score less than half of
that of the best embedding-based method (LINE1+2). For undirected networks, MapSim achieves the
best performance for five of the 12 networks, while none of the embedding methods beats MapSim’s
performance in more than two networks. We find the largest performance gain in the directed
network linux, where MapSim yields an increase of AUC of approximately 22.6% compared to the
best embedding (NERD). MapSim’s worst-case performance across all networks is approximately
44% and 33% above that of the best-performing embedding for directed and undirected networks,
respectively. MapSim’ performance advantage can be as high as 84%, for example AUC = 0.988 of
MapSim in foursquare-friendships-new vs. AUC = 0.537 for node2vec. While node2vec performs
best in the largest directed network, MapSim performs best in the largest undirected network and in
several small networks, suggesting that MapSim works well both for small and large networks.

We attribute those encouraging results to multiple features of our method: Different from graph
embedding techniques that require downstream dimensionality reduction, MapSim’s compression
approach implicitly includes model selection and avoids overfitting. Moreover, the representation of
nodes in the coding tree is integrated with the optimisation of hierarchical community structures in
the network. Due to its non-parametric approach and the use of the analytical map equation, MapSim
performs well in absence of tuning to the specific data set.

4.2 Scalability Analysis

We analyse MapSim’s scalability in synthetically generated networks with modular structure and
tunable size and link density. We generate k-regular random graphs with N nodes and (mean) degree
k. To avoid trivial configurations where a modular structure is absent, we create a network by first
generating two k-regular random graphs with N

2 nodes each and “cross” two links, one from each
of the two graphs, to obtain a single connected network with strong community structure. We then
apply Infomap to (i) minimise the map equation and extract the network’s modular structure, and

4With the one-module partition, MapSim becomes equivalent to preferential attachment.
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(ii) construct the coding tree for calculating node similarities. We repeat this 10 times for random
networks with different numbers of N nodes and degrees k. The average run times are reported
in figure 5, which shows that, for sparse networks, the runtime of MapSim is linear in the size
of the network. Edler et al. [49] report that the theoretical asymptotic bound of computational
complexity for the optimisation of the map equation is inO(NlogN), which is the same as for vector
space embedding techniques like node2vec and DeepWalk5. Thus, MapSim does not entail higher
computational complexity compared to popular graph embeddings. This makes it an interesting
choice for practitioners looking for a simple and scalable method that works well in small, large,
directed, and undirected networks.

5 Conclusion and Outlook
We propose MapSim, a novel information-theoretic approach to compute node similarities based on a
modular compression of network flows. Different from vector space embeddings, MapSim represents
nodes in a discrete, non-metric space of communities that yields asymmetric similarities suitable to
predict links in directed and undirected networks. The results are highly interpretable because the
network’s modular structure explains the similarities. Using description length minimisation, MapSim
naturally accounts for Occam’s razor, which avoids overfitting and yields a parsimonious coding
tree. Performing unsupervised link prediction, we compare MapSim to popular embedding-based
algorithms on 47 data sets covering networks from a few hundred to hundreds of thousands of nodes
and millions of edges. Our analysis shows that the average performance of MapSim is more than 7%
higher than its closest competitor, outperforming all competing methods in 11 of the 47 networks.
Taking a new perspective on graph representation learning, our work demonstrates the potential of
compression-based methods with promising applications in other graph learning tasks. Moreover,
recent generalisations of the map equation to temporal and higher-order networks [49] suggest that
our method also applies to graphs with non-dyadic or time-stamped relationships.
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A Appendix

Table 1: Properties of 35 directed networks, where weighted networks are marked with W, temporal
link counts before aggregation into a static network are marked with ∗, and ρ is link reciprocity.

Data Ref Nodes Edges ρ

uni-email [50] 1,133 10,903 1.000
polblogs [51] 1,490 19,090 0.243
interactome-stelzl [52] 1,706 6,207 0.972
interactome-figeys [53] 2,239 6,452 0.006
us-air-trafficW [54] 2,278 ∗6,390,340 0.757
word-adjacency-japanese [55] 2,704 8,300 0.073
openflightsW [56] 3,214 66,771 0.978
jdk [48] 6,434 150,985 0.009
advogatoW [57] 6,541 51,127 0.307
word-adjacency-spanish [55] 11,586 45,129 0.091
dblp-cite [58] 12,590 49,759 0.004
anybeat [59] 12,645 67,053 0.535
chicago-road [60] 12,982 39,018 0.943
foldocW [61] 13,356 120,238 0.479
google [62] 15,763 171,206 0.254
word-assocW [63] 23,132 312,342 0.094
cora [64] 23,166 91,500 0.051
arxiv-citation-HepTh [65] 27,770 352,807 0.003
digg-replyW [66] 30,398 ∗87,627 0.002
linux [48] 30,837 213,954 0.002
arxiv-citation-HepPh [65] 34,546 421,578 0.003
email-enron [67] 36,692 367,662 1.000
inploid [68] 39,749 57,276 0.272
pgp-strong [69] 39,796 301,498 0.660
facebook-wallW [70] 46,952 ∗876,993 0.588
slashdot-threadsW [71] 51,083 ∗140,778 0.210
python-dependency [72] 58,743 108,399 0.004
lkml-replyW [48] 63,399 ∗1,096,440 0.635
epinions-trust [73] 75,888 508,837 0.405
prosper [48] 89,269 3,394,979 < 0.001
google-plus [74] 211,187 1,506,896 0.482
twitter-higgs-retweetW [75] 256,491 328,132 0.005
amazon-copurchases-302 [76] 262,111 1,234,877 0.543
notre-dame-web [77] 325,729 1,497,134 0.507
twitter-followers [78] 465,017 834,797 0.003
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Table 2: ROC AUC for link prediction in 35 directed networks for DeepWalk (DW), node2vec
(n2v), LINE1 (L1), LINE2 (L2), LINE1+2 (L1+2), NERD, MapSim based on the one-level partition
(MapSim1), and MapSim based on modular partitions. Networks marked with W are weighted. †
marks cases with AUC < 0.5 where we flipped the predicted link scores for AUC > 0.5. The best
results per network are shown in bold, second-best underlined, and then rounded.

Data DW n2v L1 L2 L1+2 NERD MS1 MS

uni-email 0.911 †0.505 0.957 0.903 0.932 0.667 0.711 0.852
polblogs 0.705 0.695 0.804 0.823 0.841 0.652 0.868 0.914
interactome-stelzl 0.810 †0.505 0.913 0.758 0.849 0.524 0.710 0.755
interactome-figeys 0.524 †0.828 †0.905 0.529 †0.850 0.605 0.773 0.839
us-air-trafficW 0.649 0.572 0.563 0.935 0.933 0.774 0.858 0.916
word-adjacency-japanese †0.538 †0.645 †0.580 0.748 0.743 0.526 0.811 0.800
openflightsW 0.782 †0.665 0.918 0.934 0.948 0.708 0.838 0.941
jdk 0.746 0.857 0.820 0.695 0.755 0.725 0.974 0.986
advogatoW 0.738 0.563 0.806 0.865 0.883 0.742 0.812 0.878
word-adjacency-spanish †0.538 0.672 †0.713 0.824 0.791 0.632 0.811 0.805
dblp-cite 0.840 †0.537 †0.589 0.646 0.549 0.877 0.823 0.890
anybeat 0.647 0.539 0.644 0.841 0.857 0.683 0.834 0.850
chicago-road 0.998 0.816 0.981 0.670 0.835 †0.583 †0.608 0.848
foldocW 0.927 0.549 0.951 0.832 0.905 0.571 0.618 0.845
google 0.844 0.792 0.831 0.868 0.896 0.697 0.867 0.962
word-assocW 0.729 0.830 0.813 0.869 0.916 0.884 0.837 0.849
cora 0.939 0.839 0.950 0.761 0.831 0.830 0.839 0.906
arxiv-citation-HepTh 0.878 0.839 0.958 0.857 0.901 0.850 0.842 0.942
digg-replyW †0.546 0.618 †0.552 0.714 0.693 0.841 0.845 0.836
linux 0.704 0.726 0.567 0.722 0.734 0.784 0.959 0.961
arxiv-citation-HepPh 0.959 0.897 0.975 0.835 0.898 0.860 0.830 0.942
email-enron 0.823 †0.594 0.983 0.946 0.963 0.819 0.840 0.931
inploid 0.631 0.766 0.516 0.838 0.828 0.753 0.845 0.870
pgp-strong 0.873 0.527 0.984 0.890 0.924 0.795 0.782 0.925
facebook-wallW 0.877 0.789 0.931 0.809 0.855 0.813 0.768 0.867
slashdot-threadsW 0.565 0.781 0.629 0.748 0.771 0.796 0.877 0.876
python-dependency 0.751 0.735 †0.556 0.520 †0.505 0.832 0.965 0.913
lkml-replyW 0.537 0.731 0.590 0.945 0.944 0.724 0.908 0.933
epinions-trust 0.599 0.777 0.806 0.943 0.952 0.887 0.916 0.937
prosper 0.828 0.631 0.697 †0.614 †0.518 0.952 0.891 0.945
google-plus 0.752 0.725 0.957 0.787 0.893 0.891 0.862 0.946
twitter-higgs-retweetW 0.620 0.879 †0.695 †0.522 †0.569 0.799 0.977 0.820
amazon-copurchases-302 0.963 0.826 0.980 0.896 0.936 0.575 0.638 0.910
notre-dame-web 0.965 0.926 0.975 0.919 0.964 0.923 0.867 0.962
twitter-followers 0.526 †0.993 †0.993 0.510 †0.973 0.917 0.809 0.871

Average 0.750 0.719 0.802 0.786 0.832 0.757 0.830 0.892
Worst 0.524 0.505 0.516 0.510 0.505 0.524 0.608 0.755
Standard Deviation 0.148 0.131 0.164 0.129 0.128 0.118 0.088 0.054
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Table 3: Properties of 12 undirected networks, where weighted networks are marked with W.

Data Ref Nodes Edges

new-zealand-collabW [79] 1,511 4,273
urban-streets-venice [80] 1,840 2,407
urban-streets-ahmedabad [80] 2,870 4,387
power [81] 4,941 6,594
facebook-organizations-L1 [82] 5,793 45,266
reactome [83] 6,327 147,547
physics-collab-arXivW [84] 14,488 59,026
marvel-universe [85] 19,428 95,497
internet-as [86] 22,963 48,436
marker-cafe [74] 69,413 1,644,849
livemocha [48] 104,103 2,193,083
foursquare-friendships-new [87] 114,324 607,333

Table 4: ROC AUC on 12 undirected networks for DeepWalk (DW), node2vec (n2v), LINE1 (L1),
LINE2 (L2), LINE1+2 (L1+2), NERD, MapSim based on the one-level partition (MS1), and MapSim
based on modular partitions (MS). Networks marked with W are weighted. † marks cases with AUC
< 0.5 where we flipped the predicted link scores for AUC > 0.5. The best results per network are
shown in bold, second-best underlined, and then rounded.

Data DW n2v L1 L2 L1+2 NERD MS1 MS

new-zealand-collabW 0.616 0.734 †0.660 0.921 0.895 †0.559 0.834 0.839
urban-streets-venice 0.872 0.834 0.777 0.570 0.668 0.573 †0.607 0.889
urban-streets-ahmedabad 0.939 0.890 0.828 †0.533 0.629 †0.575 †0.731 0.897
power 0.919 0.863 0.827 0.741 0.777 0.600 0.552 0.959
facebook-organizations-L1 0.937 0.516 0.968 0.954 0.966 0.846 0.864 0.979
reactome 0.934 0.592 0.983 0.925 0.950 0.846 0.820 0.978
physics-collab-arXivW 0.929 0.521 0.977 0.807 0.871 0.695 0.568 0.955
marvel-universe 0.854 †0.633 0.879 0.834 0.902 0.852 0.679 0.900
internet-as 0.641 †0.705 0.535 0.921 0.920 0.744 0.766 0.927
marker-cafe 0.576 0.906 0.760 0.920 0.914 0.930 0.907 0.916
livemocha 0.708 0.758 0.839 0.861 0.876 0.924 0.855 0.876
foursquare-friendships-new 0.924 0.537 0.968 0.932 0.950 0.836 0.791 0.988

Average 0.821 0.707 0.834 0.826 0.860 0.748 0.748 0.925
Worst 0.576 0.521 0.535 0.533 0.629 0.559 0.552 0.839
Standard Deviation 0.136 0.140 0.132 0.137 0.106 0.136 0.116 0.045
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Table 5: Average precision on 47 directed and undirected networks for DeepWalk (DW), node2vec
(n2v), LINE1 (L1), LINE2 (L2), LINE1+2 (L1+2), NERD, MapSim based on the one-level partition
(MapSim1), and MapSim based on modular partitions. Weighted networks are marked with W. Results
marked with † correspond to cases with AUC < 0.5 where we flipped the predicted link scores.
Results are rounded, the best results are shown in bold, second-best are underlined.

Data DW n2v L1 L2 L1+2 NERD MS1 MS

uni-email 0.914 †0.513 0.964 0.916 0.940 0.736 0.692 0.870
polblogs 0.627 0.631 0.817 0.838 0.853 0.724 0.851 0.903
new-zealand-collabW 0.643 0.661 †0.768 0.925 0.907 †0.606 0.855 0.865
interactome-stelzl 0.835 †0.513 0.944 0.773 0.853 0.612 0.757 0.820
urban-streets-venice 0.897 0.870 0.828 0.634 0.711 0.597 †0.564 0.890
interactome-figeys 0.533 †0.703 †0.889 0.653 †0.865 0.730 0.730 0.819
us-air-trafficW 0.616 0.552 0.685 0.937 0.934 0.835 0.833 0.903
word-adjacency-japanese †0.494 †0.570 †0.623 0.801 0.796 0.628 0.855 0.831
urban-streets-ahmedabad 0.953 0.919 0.864 †0.577 0.685 †0.523 †0.658 0.915
openflightsW 0.767 †0.621 0.934 0.950 0.960 0.798 0.840 0.950
power 0.936 0.897 0.874 0.800 0.828 0.620 0.566 0.962
facebook-organizations-L1 0.919 0.508 0.977 0.966 0.974 0.882 0.835 0.976
reactome 0.908 0.580 0.985 0.944 0.961 0.890 0.786 0.978
jdk 0.777 0.862 0.891 0.737 0.807 0.761 0.973 0.987
advogatoW 0.769 0.505 0.868 0.892 0.905 0.805 0.810 0.890
word-adjacency-spanish †0.496 0.652 †0.754 0.863 0.848 0.732 0.863 0.851
dblp-cite 0.834 †0.485 †0.551 0.742 0.646 0.908 0.828 0.905
anybeat 0.672 0.523 0.748 0.884 0.894 0.784 0.867 0.883
chicago-road 0.998 0.863 0.986 0.735 0.874 †0.559 †0.579 0.909
foldocW 0.946 0.575 0.966 0.848 0.914 0.629 0.658 0.888
physics-collab-arXivW 0.939 0.592 0.983 0.858 0.899 0.725 0.634 0.964
google 0.859 0.775 0.903 0.878 0.907 0.775 0.889 0.976
marvel-universe 0.864 †0.666 0.914 0.840 0.899 0.884 0.615 0.910
internet-as 0.685 †0.742 0.659 0.930 0.930 0.822 0.817 0.932
word-assocW 0.727 0.846 0.873 0.896 0.922 0.902 0.848 0.862
cora 0.938 0.815 0.958 0.834 0.880 0.847 0.826 0.926
arxiv-citation-HepTh 0.865 0.812 0.966 0.896 0.925 0.868 0.839 0.952
digg-replyW †0.501 0.585 †0.604 0.772 0.761 0.873 0.835 0.834
linux 0.734 0.663 0.701 0.733 0.754 0.835 0.959 0.965
arxiv-citation-HepPh 0.952 0.890 0.975 0.881 0.923 0.870 0.813 0.952
email-enron 0.816 †0.541 0.988 0.963 0.974 0.873 0.860 0.949
inploid 0.667 0.736 0.532 0.879 0.875 0.819 0.869 0.891
pgp-strong 0.879 0.568 0.989 0.927 0.946 0.848 0.804 0.954
facebook-wallW 0.865 0.744 0.951 0.865 0.890 0.833 0.753 0.890
slashdot-threadsW 0.604 0.769 0.744 0.835 0.848 0.855 0.883 0.886
python-dependency 0.790 0.763 †0.715 0.653 †0.632 0.889 0.965 0.915
lkml-replyW 0.494 0.612 0.719 0.959 0.958 0.821 0.920 0.942
marker-cafe 0.539 0.853 0.832 0.921 0.917 0.949 0.901 0.912
epinions-trust 0.611 0.679 0.875 0.960 0.964 0.925 0.921 0.947
prosper 0.818 0.531 0.616 †0.650 †0.465 0.956 0.855 0.927
livemocha 0.694 0.737 0.880 0.868 0.884 0.930 0.854 0.881
foursquare-friendships-new 0.918 0.520 0.976 0.948 0.961 0.858 0.792 0.988
google-plus 0.704 0.679 0.960 0.870 0.921 0.921 0.870 0.960
twitter-higgs-retweetW 0.630 0.880 †0.800 †0.634 †0.707 0.874 0.976 0.822
amazon-copurchases-302 0.966 0.850 0.987 0.931 0.957 0.589 0.656 0.946
notre-dame-web 0.967 0.938 0.980 0.946 0.971 0.930 0.891 0.971
twitter-followers 0.549 †0.987 †0.989 0.714 †0.977 0.955 0.839 0.887
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