

Proceedings of the 22nd International Conference on Gas Discharges and Their Applications

Vol. 1

Proceedings of the 22nd International Conference on Gas Discharges and Their Applications

> Novi Sad - Serbia September, 2-7, 2018

> > Volume 1

PROCEEDINGS OF THE XXIIND INTERNATIONAL CONFERENCE ON GAS DISCHARGES AND THEIR APPLICATIONS

- VOLUME 1 -

2nd - 7th September 2018 Novi Sad, SERBIA

Serbian Academy of Sciences and Arts & Institute of Physics, University of Belgrade

> Editors: Prof. Zoran Lj. Petrović Dr. Nevena Puač Dr. Saša Dujko Dr. Nikola Škoro

EXECUTIVE MANAGMENT COMMITTEE

Dr. J.E. Jones, Chair Prof. G.R. Jones Prof. J.W. Spencer Prof. K Hidaka Dr. A.B. Murphy Prof. D. Hong Dr. P. Robin-Jouan

INTERNATIONAL SCIENTIFIC COMMITTEE

Dr. J.-M. Bauchire, France Prof. Yann Cressault, France Prof. C.M. Franck, Switzerland Prof. K. Hidaka, Japan Prof. G.R. Jones, UK Dr. A.B. Murphy, Australia Prof. G.J. Pietsch, Germany Prof. Ph. Robin-Jouan, France Prof. Kohki Satoh, Japan Prof. J.W. Spencer, UK Dr. T. Teich, Switzerland Prof. J. -Y. Trepanier, Canada Prof. Y. Wu, China Dr. J. L. Walsh, UK Dr. J.-P. Borra, France Prof. M. Farzaneh, Canada Prof. A. Haddad, UK Prof. D. Hong, France Dr. J.E. Jones, UK Prof. Z. Lj. Petrović, Serbia Prof. V. Rakov, USA Prof. A. Robledo-Martinez, Mexico Dr. M. Seeger, Switzerland Dr. S. Stangherlin, Switzerland Dr. Igor Timoshkin, UK Prof. K.-D. Weltmann, Germany Dr. J. D. Yan, UK

LOCAL ORGANIZING COMMITTEE

Prof. Zoran Lj. Petrović, Chair Dr. Saša Dujko, Co-Chair

Dr. Danko Bošnjaković Dr. Dragana Marić Kosta Spasić Marija Puač Nenad Selaković Ilija Simonović Dr. Nevena Puač, Co-Chair Dr. Nikola Škoro, Secretary

Prof. Bratislav Obradović Dr. Gordana Malović Jelena Sivoš Dejan Maletić Jasmina Atić Vladan Simić

Panacomp Wonderland Travel

22nd International Conference on Gas Discharges and Their Applications September, 2-7, 2018. Novi Sad - Serbia

Electron transport in strongly attaching gases in radio-frequency electric and magnetic fields

J. Atić, D. Bošnjaković, Z.Lj. Petrović, J. de Urquijo, R.D. White and S. Dujko

MOTIVATIONAL FACTORS

The need for electron transport data in radio-frequency E(t) and B(t):

Input data

FLUID MODELS OF RF PLASMA DISCHARGES

Transport data as function of: frequency amplitude of E(t) and B(t) phases between E(t) and B(t)

SENSORS FOR ELECTROMEGNETIC WAVES DETECTION

CURRENT ISSUES IN MODELING :

- **1. lack of publicly available codes** Boltzmann equation based codes Monte Carlo codes
- 2. no swarm experiments

SIMULATION TECHNIQUES

f(**r**,**c**,t)

NUMERICAL SOLUTION OF BOLTZMANN'S EQUATION

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} \left(\mathbf{E} + \mathbf{c} \times \mathbf{B} \right) \cdot \frac{\partial f}{\partial \mathbf{c}} = -J(f, F_0)$$

We apply the moment method

1. The angular dependence of $f(\mathbf{r}, \mathbf{c}, t)$ in velocity space: expansion in spherical harmonics

$$f(\mathbf{r},\mathbf{c},t) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_m^{(l)}(\mathbf{r},c,t) Y_m^{[l]}(\hat{\mathbf{c}})$$

2. The space dependence of $f(\mathbf{r}, \mathbf{c}, t)$: <u>powers of the density gradient operator</u> $f^{(l)}(\mathbf{r}, \mathbf{c}, t) = \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{k=1}^{\lambda} f(lm \mid s\lambda u; \mathbf{c}, t) G^{(s\lambda)} n(\mathbf{r})$

$$f_m^{(l)}(\mathbf{r}, c, t) = \sum_{s=0} \sum_{\lambda=0} \sum_{\mu=-\lambda} f(lm \mid s\lambda\mu; c, t) G_{\mu}^{(s\lambda)} n(\mathbf{r}, t)$$

3. The speed dependence of $f(\mathbf{r}, \mathbf{c}, t)$: <u>Sonine polinomes</u> $f(lm | s\lambda\mu; c, t) = \omega(\alpha, c) \sum_{\nu=0}^{\infty} F(\nu lm | s\lambda\mu; \alpha, t) R_{\nu l}(\alpha c)$ moments **flux and bulk**

of $f(\mathbf{r},\mathbf{c},t)$

transport coefficients

MONTE CARLO SIMULATION TECHNIQUE

CROSS SECTIONS AND ELECTRON TRANSPORT IN SF₆

- Measurements vs. our calculations: the agreement is good for the intermediate range of E/n₀.
 Bulk drift velocity:
 - 1. dominates the flux drift velocity over the entire range of E/n_0 ,
 - 2. exhibits a very strong negative differential conductivity effect (NDC).

CROSS SECTIONS AND ELECTRON TRANSPORT IN CF₃I

HOW DOES THE FIELD FREQUENCY AFFECT ELECTRON TRANSPORT?

- Modulation amplitude decreases with increasing frequency.

- Phase-shift of the temporal profiles with respect to the \mathbf{E} field increases with frequency.

Quasi-static approximation (QSA):

instantaneous relaxation of energy and momentum
corresponding temporal profiles are constructed from the DC data

- QSA is not valid for the higher field frequencies!

Time-resolved NDC:

- QSA predicts instantaneous NDC

inability of momentum
to fully relax + explicit
effects of electron
attachment: just one of the
sub-maximums stays

HOW DOES THE MAGNETIC FIELD AMPLITUDE AFFECT ELECTRON TRANSPORT?

- Mean energy could be increased by applying the time-varying magnetic field. Never observed in DC electric and magnetic fields! Dielectric characteristics can be improved by $B_0/n_0!$
- There is a transition from a sinusoidal to the non-sinusoidal (triangular) profile.
- For B_0/n_0 less than 2000 Hx the phase-shift of the drift velocity with respect to the applied electric field is decreased.
- Strong oscillations are induced due to cyclotron motion.

ELECTRON TRANSPORT IN SF₆-CF₃I MIXTURES

- Mean energy is reduced by adding CF_3I in the mixture.
- Attachment rate does not follow the mean energy.

CONCLUSION

OUR CONTRIBUTION:

• CF₃I: we have developed a <u>complete set of cross sections for electron scattering</u> Standard swarm procedure Measurements of swarm properties, PT conditions

Electrons in SF₆ and CF₃I:
 Rescaling procedures for electron compensation <u>the first calculations at low E/n₀!</u>

WE HAVE OBSERVED:

- Strong NDC in SF_6 and CF_3I in DC fields induced by electron attachment
- QSA: valid in the limit of the lowest frequencies
- Temporal profiles of transport coefficients:

The increase of the mean energy with B_0/n_0

Time-resolved NDC in the profile of the bulk drift velocity: inability of momentum to be fully relaxed + explicit effects of electron attachment

ЗАВРШНА ТРИБИНА У ГО ЧУКАРИЦА

завршној трибини у оквиру пројекта "ММА- знаменита Српкиња", одржаној 8.јуна 2016.године у Свечаној сали ГО Чукарица, приказан је целокупан пројекта, са многобројним различитим активностима, сусретима учесника пројекта из основних и средњих школа Београда. Присуствовали су фесори и ученици из Земунске гимназије, Техничке школе из Железника, ОШ Веселин Маслеша, као и представници Канцеларије за младе ГО арица, ДКЦБ-а и чланови Друштва физичара Србије.

скници трибине су имали прилику да добију одговор на питање **Зашто је важно проучавати природне науке?** Свој пут од школске клупе до ска у свет науке изложиле су Александра Димић и Јасмина Мирић.

ивој дискусији, ученици основних и средњих школа показали су заинтересованост за свет природних наука и ових младих амбициозних научница, 1 су примери заиста инспиративни.

о је ово био завршни сусрет пројекта "Милева Марић Ајнштајн – знаменита Српкиња", учесници пројекта су се осврнули на активности планиране и лизоване током пројекта, уручене су захвалнице учесницима пројекта, сарадницима на пројекту и партнерима пројекта: Канцеларији за младе ГО арица и Дечијем културном центру Београда.

