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Market fragmentation and market consolidation: Multiple steady states
in systems of adaptive traders choosing where to trade
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Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Peter Sollich
Institut fur Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

and Disordered Systems Group, Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom

(Received 19 February 2019; revised manuscript received 8 April 2019; published 21 June 2019)

Technological progress is leading to proliferation and diversification of trading venues, thus increasing the
relevance of the long-standing question of market fragmentation versus consolidation. To address this issue
quantitatively, we analyze systems of adaptive traders that choose where to trade based on their previous
experience. We demonstrate that only based on aggregate parameters about trading venues, such as the demand-
to-supply ratio, we can assess whether a population of traders will prefer fragmentation or specialization towards
a single venue. We investigate what conditions lead to market fragmentation for populations with a long memory
and analyze the stability and other properties of both fragmented and consolidated steady states. Finally, we
investigate the dynamics of populations with finite memory; when this memory is long the true long-time steady
states are consolidated but fragmented states are strongly metastable, dominating the behavior out to long times.
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I. INTRODUCTION

Whether a consolidated or a fragmented market is more
beneficial to a population of traders is a long-standing debate
[1–6]. In a consolidated or concentrated market, the majority
of trades occurs in one (or a few) as opposed to numerous
trading venues. With technological advances we have seen a
proliferation of trading venues such as online marketplaces.
Even more recently, alternative or dark trading venues have
appeared, e.g., dark pools. These are popular not least for
their lack of transparency, which makes them interesting for
trading large quantities of shares without strongly influencing
the price (see, e.g., [6,7]).

The emergence of collective behavior in systems of au-
tonomous agents is a research topic that has seen widespread
interest among physicists in the past couple of decades.
The main reason for this is the recognition that statistical
physics techniques, which contributed to the understanding
of macroscopic phenomena arising in large systems of in-
teracting microscopic entities, can be applied to a range of
biological, economic, and social systems. A large body of
work exists in the physics literature on collective effects in
socioeconomic systems [8,9], e.g., mass movement of people
[10,11], herd behavior of traders [12], and voting patterns
[13,14]. One of the most prominent examples is the minority
game, which continues to attract interest due to its simplicity
and its ability to reproduce at least “stylized” facts about
financial markets [15,16]; extensions of the model also predict
interesting grouping phenomena when multiple assets are
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available to agents [17]. In a similar vein, in this paper, we
investigate whether fragmentation and consolidation can arise
solely as a consequence of interactions at the level of the
agents, combined with individual adaptation.

Some studies of stylized models of market competitions
already exist, often pointing out the emergence of monopolies
whereby the majority of trades occurs in one trading venue.
Pagano [18] argued that when markets are identical (in terms
of their transaction costs), risk averse traders will concentrate
in a single market. On the other hand, when there is asym-
metry, fragmentation might arise with traders being clustered
based on the sizes of their desired transactions. Chowdhry
and Nanda [2] reached the same conclusion in a system with
asymmetrically informed traders and a general number of
markets.

Ellison et al. [19] and Shi et al. [20] also studied com-
petition among markets and the conditions under which such
competition can lead either to monopolies or to coexistence of
multiple markets. The authors named two significant effects in
a competition of double auction trading venues. One of them
is the positive size effect, i.e., agents prefer to trade in a market
where there are already many traders of the opposite type.
As an example, sellers like trading at markets where there
are many buyers as this gives them a wider choice of offers.
The authors of Refs. [19,20] also suggested the existence of
a negative size effect in a double auction market: Agents
will prefer being in the minority group of traders more often,
with, e.g., buyers benefiting from trading at a market where
there are not many other buyers (see, e.g., [21]). Ellison et al.
[19] pointed out that such negative size effects can enable the
coexistence of many markets. On the other hand, Shi et al. [20]
investigated which of the two effects is stronger and found that
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due to more substantial positive effects, a monopoly will be
the favored end state in many situations. The authors of [20]
argued that market coexistence remains a possibility when
there is strong market differentiation, especially for markets
that have different pricing policies: One market might charge
a fixed participation fee while another might take a profit fee.
A common feature of the studies mentioned above is that some
form of Nash equilibrium analysis was used, assuming perfect
information about the activity of all traders and maximization
of an underlying utility function for the agents.

The increased proportion of trades that take place in
dark trading venues—15% of the U.S. share market volume
was traded in dark pools in 2013 [22]—suggests increased
fragmentation at least between traditional and dark trading.
Calling for more research on reasons behind market frag-
mentation, Gomber et al. [23] suggested the heterogeneity of
traders and their needs as one of the main drivers of market
fragmentation. However, studies of similar effects such as the
emergence of market loyalty in fish markets [24], herding
[12], and grouping of agents in multiresource minority games
[17] show that fragmentationlike phenomena may also be
emergent. Nonetheless, existing models for such emergent
fragmentation often assume a considerable amount of struc-
ture, e.g., in the connectivity among agents, the information
available about the actions of other players, the rules of in-
teraction via the market mechanism, the asymmetry between
buyers and sellers, etc. In contrast, we study here a model
in which initially homogeneous agents adapt only to their
private information and show that even in such a system both
market fragmentation and consolidation can occur depending
on global system parameters.

Based on observations from the CAT tournament [25],
where the spontaneous emergence of long-lived market loyal-
ties was seen in complicated systems of adaptive markets and
traders, we hypothesize that the reason for fragmentation may
not lie in the intricacies of different market mechanisms or
trading strategies. Instead, we conjecture that fragmentation
is a collective phenomenon arising as a consequence of the
continuous adaptation of the individual agents to an evolving
system. To test this hypothesis, we developed a stylized
model of double auctions and adaptive traders [26,27] that
does indeed predict emergent fragmentation under minimal
assumptions on the complexity of market and trading mech-
anisms. The model also shows market consolidation under
some circumstances. Our focus in this study is to pin down
under what conditions fragmentation and consolidation occur
and what relative benefits they bring for the traders. As we
will see, the behavior of the model is remarkably rich in
spite of its simplicity, with multiple steady states coexist-
ing in the limit of long agent memory. For finite memory
length, this can lead to the existence of long-lived metastable
states that dominate before the true steady state is reached
eventually.

We start with a short description of the model [27] in
Sec. II and then proceed to the large memory limit analysis
of small systems with N = 2 and 4 agents in Sec. III. These
can be thought of as two- and four-player games. They are
convenient as we can easily track each trader’s adaptation.
At the same time they already reveal qualitative phenomena
related to those we find later in large systems, in particular

coordination at the same market (for N = 2) and onset of
fragmentation via pairwise coordination (for N = 4). Moving
on to the large population limit (N → ∞), we then first
analyze a population with homogeneous buying preferences in
Sec. IV A. We develop the relevant mathematical framework
and techniques of analysis here and then generalize the results
to systems with separate buyer and seller agent types. Finally,
we study the system dynamics in some detail to go beyond the
steady-state analysis in Sec. V.

Overall we follow a typical statistical physics philosophy
in using a model that reduces the underlying market choice
dynamics to its key ingredients, allowing us to obtain detailed
insights into the origins of the resulting collective behavior.
The analysis also relies significantly on statistical physics con-
cepts and methods: We focus mostly on the thermodynamic
limit of large agent populations, where we exploit the fact
that the behavior of N interacting agents for N → ∞ can be
captured by the dynamics of a single agent subject to self-
consistently determined population-level order parameters.
The main outcome from this physical point of view is the
emergence of multiple nontrivial steady states in the large
interacting nonequilibrium systems that we study.

II. MODEL

Here we summarize basic assumptions and properties of
the model introduced in [26,27], which is the foundation for
the analysis in this paper.

Learning. In the model, agents choose among the available
markets once in every trading period and submit their order to
the chosen market. A key assumption is that agents base their
decision of where to trade on their previous experience at the
different markets. Agents rely on the following reinforcement
rule, which is based on the experience-weighted attraction rule
[28,29] but neglects knowledge about the other markets (via
so-called fictitious payoffs):

Ai
m(n + 1)

=
{

(1 − r)Ai
m(n) + rSi

m(n) for m chosen in round n

(1 − r)Ai
m(n) otherwise.

(1)

Here Ai
m(n + 1) is agent i’s attraction to market m at trading

period n + 1 given the agent’s score or return Si
m(n) obtained

in the previous trading period (discussed below) and the
previous attraction Ai

m(n). To understand the role of r, one can
write down the resulting general expression for the attraction
at trading round n:

Ai
m(n) =

n−1∑
j=0

r(1 − r)n− jδmi ( j),mSi
m( j) + (1 − r)nAi

m(0),

where the Kronecker δ restricts updates to rounds where the
agent’s chosen market mi( j) is the one (m) being considered.
The factor r(1 − r)n− j in this expression is a weight that
decays exponentially into the past, becoming small once n − j
is of order 1/r. Thus each agent effectively averages scores
over a sliding window into the past of length approximately
equal to 1/r, so 1/r can be thought of as setting the length of
the agents’ memory.
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To choose a market at each trading round, an agent
translates the learned attractions into probabilities of choos-
ing each markets, using the multinomial logit or softmax
function

Pi
m(n) = exp

[
βAi

m(n)
]∑

m′ exp
[
βAi

m′ (n)
] . (2)

This aspect of the model is also in line with the experience-
weighted attraction literature [28,29]; β is the intensity of
choice and regulates how strongly the agents bias their prefer-
ences towards actions with high attractions. For β → ∞ the
agents choose the option with the highest attraction, while
for β → 0 they choose randomly and with equal probabilities
among all options.

We study agents whose choice of the type of trading order
(to buy or to sell) is not adaptive but rather set by a fixed
buying preferences pi

B. This assumption simplifies the anal-
ysis while still allowing both consolidation and fragmentation
behavior as shown previously [27].

Trading strategies. Agents do not have sophisticated
trading strategies in our model and are essentially zero-
intelligence traders [30–32]. Their orders to buy (bid) or sell
(ask) a single unit of the underlying good at a certain price
are independent of previous returns or other information.
We assume specifically that bids b and asks a are normally
distributed as a ∼ N (μa, σ

2
a ) and b ∼ N (μb, σ

2
b ), where we

fix μb > μa as in [27]. After each round of trading, each
agent receives a score, reflecting their payoff in the trade. This
depends on the global trading price set by a chosen market
m as well as the order the agent has submitted. The scores
of agents who do trade are assigned as in previous studies
[30,33]: buyers value paying less than they offered (b) and so
their score is S = b − π . Sellers value trading for more than
their ask a and so S = π − a is a reasonable model for their
payoff; in both cases π is the trading price.

Market mechanism. In the spirit of keeping the model as
simple as possible we consider double auction markets in
discrete time, counted as before in trading rounds. In every
round the global trading price is set by the market: Once all
orders have arrived, these are used to determine the average
bid 〈b〉 and average ask 〈a〉 and set the price

π = 〈a〉 + θ (〈b〉 − 〈a〉), (3)

where θ fixes the price closer to the average bid (θ > 0.5)
or the average ask (θ < 0.5), as in [26]. This parameter thus
represents the bias of the market towards buyers or sellers.
Once the trading price has been set, all bids below this price,
and all asks above it, are marked as invalid orders as they
cannot be executed at the current trading price. The remaining
orders are executed by randomly pairing buyers and sellers.
Excess buyers or sellers, i.e., those that cannot be paired,
receive zero score, as do the agents who submitted invalid
orders.

Note that traders are not informed about the market biases,
or the market mechanism in general. The only information
they have at their disposal to adapt their market preferences is
their personal score.

III. FINITE N

A. Two traders: Coordination

To understand collective effects in trading systems, we first
build up some intuition by looking at a very simple model
with only one buyer and one seller. The traders have a choice
between two markets with different biases. As the system
consists of only two agents and two markets, fragmentation
(or segregation as introduced previously [27]), in which a pop-
ulation will split into distinctive groups favoring one option,
is not feasible. However, we can investigate if long-lasting
loyalty to a single market emerges, which can signal market
consolidation.

To make trading possible the two agents effectively need
to coordinate, i.e., to submit orders to the same market. This
can lead to one of the agents earning less than they could have
done at the other market. One question of interest concerns the
conditions under which the agents prefer random decisions
of who will be a winner or loser in this manner, as opposed
to settling in these roles over longer periods of time. Thus
we will focus on the existence of coordination of traders and
investigate for which parameter settings agents develop strong
preferences for the same market. Intriguingly, this two-player
analysis ends up being largely similar to the work by Hanaki
et al. [34], where a two-agent case was likewise studied
as a first step to understanding collective effects. (In [34]
these concerned specialization behavior of agents searching
for parking spots.)

For the N = 2 analysis it is convenient to label the two
players as i = ±1 and similarly for the two markets. We use
the following specific parameter settings.

(i) Of the two players, player i = 1 always buys while
player i = −1 always sells (p1

B = 1 and p−1
B = 0).

(ii) Bids and asks are deterministic, i.e., b ∼ N (μb, 0)
and a ∼ N (μa, 0), with their difference being fixed to
μb − μa = 1.

(iii) The trading price at each market is set as defined in
[26], πm = 〈a〉 + θm(〈b〉 − 〈a〉).

(iv) We assume that the market biases are symmetric,
(θ1, θ−1) = (θ, 1 − θ ), where θ ∈ [0, 0.5].

The simplification over our previous work [26,27] of mak-
ing bids and asks deterministic allows us to focus solely on
the coordination of the market choices and does not change
the behavior of the system qualitatively. The deterministic
order prices then also make the trading prices deterministic:
πm = μa + θm(μb − μa) = μa + θm.

We can summarize the attraction update rule (1) as

Ai
m(n + 1) = (1 − r)Ai

m(n) + rSi
m(n),

with the convention that Si
m(n) = 0 if market m was not

chosen by agent i in round n. This generalized score is fully
determined by the market choice of the opposite player

Si
m(n) = δmi (n),mδm−i (n),m�i

m, (4)

where m(−)i(n) denotes the market of choice of the (co-)player
(−)i during trade n and

�i
m =

{
μb − πm = 1 − θm, i = 1
πm − μa = θm, i = −1 (5)

encodes the relevant nonzero score values that depend on the
type of market and agent. The logit assignment (2) by which
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agents choose a market m simplifies for N = 2 to

Pi
m(n) = 1

1 + exp[−βm�i(n)]
= σβ (m�i(n)),

where σβ (z) = [1 + exp(−βz)]−1 is the logistic sigmoid. The
choice probabilities do not depend on the attractions to the
two markets individually but only on their difference �i =
Ai

1 − Ai
−1. The latter is updated as

�i(n + 1) = Ai
1(n + 1) − Ai

−1(n + 1)

= rSi
1(n) + (1 − r)Ai

1(n)

− [
rSi

−1(n) + (1 − r)Ai
−1(n)

]
.

The stochastic variable �i(n + 1) thus depends on the choices
the agents make in trading round n, mi(n) and m−i(n), which
are drawn from distributions that depend on �i(n) and �−i(n).
This situation simplifies in the long memory limit r → 0,
where the attraction differences change sufficiently slowly to
average out stochastic fluctuations. One can then effectively
replace δmi (n),1 by its expected value σβ (�i(n)) (and similarly
for −i and other market choices) in the score (4). This gives

�i(n + 1) = r
[
σβ (�i(n))σβ (�−i(n))�i

1

− σβ (−�i(n))σβ (−�−i(n))�i
−1

]
+ (1 − r)�i(n),

which can be further simplified into

�i(n + 1) − �i(n)

r

= −�i(n) + [
σβ (�i(n))σβ (�−i(n))�i

1

− σβ (−�i(n))σβ (−�−i(n))�i
−1

]
.

The finite difference on the left-hand side becomes a deriva-
tive in the limit of small r if we switch to the rescaled time
t = nr, for which a unit time interval corresponds to 1/r
trading periods:

∂t�
i(t ) = −�i(t ) + [

σβ (�i(t ))σβ (�−i(t ))�i
1

− σβ (−�i(t ))σβ (−�−i(t ))�i
−1

]
.

A convenient change in variables that simplifies this pair of
differential equations is �1(t ) = ξ (t ) + ρ(t ) and �−1(t ) =
ξ (t ) − ρ(t ), which after some algebra and exploiting the
market symmetry gives

∂tξ (t ) = −ξ (t ) + 1

2

sinh[βξ (t )]

cosh[βξ (t )] + cosh[βρ(t )]
,

∂tρ(t ) = −ρ(t ) + 1 − 2θ

2

cosh[βξ (t )]

cosh[βξ (t )] + cosh[βρ(t )]
. (6)

Note that ξ = (�1 + �−1)/2 describes the average of the
attraction differences of the two agents, while ρ = (�1 −
�−1)/2 captures the deviation between them.

To understand the dynamics, we first consider its fixed
points, which need to satisfy

ξ ∗ = 1

2

sinh(βξ ∗)

cosh(βξ ∗) + cosh(βρ∗)
,

ρ∗ = 1 − 2θ

2

cosh(βξ ∗)

cosh(βξ ∗) + cosh(βρ∗)
. (7)

FIG. 1. Two-trader dynamics: flow diagrams (6) for (a) the in-
tensity of choice β = 2, with a unique fixed point where agents
decide largely randomly, and (b) β = 6, with two new fixed points
indicating where coordinated states appear. For the market bias used,
θ = 0.3, the critical intensity of choice where coordinated states
emerge is βc = 4.16.

The first of these equations is always satisfied if ξ ∗ = 0,
and in that case the equation for ρ∗ has a unique solution
whose sign depends on the sign of 1 − 2θ . When market 1
is favorable towards buyers (θ < 0.5), ρ∗ will be positive. As
�±1 = ±ρ∗, this can be interpreted as a state where buyers
and sellers learn which market is good for them and thus
have preferences for opposite markets. (Here �1 is positive,
meaning that player 1, the buyer, prefers market 1, which is
good for buyers.) As we will see shortly, this solution is only
stable for low intensities of choice where the agents’ market
choice dynamics remains largely random. The intuition for
the appearance of an instability with increasing β is that,
if agents were to follow through fully on their attractions
towards opposite markets, they would never get to trade.

The stability of the solution (ξ ∗ = 0, ρ∗) can be studied
by linearizing the dynamical equations (6), resulting in the
stability criterion

β

2

1

1 + cosh(βρ∗)
� 1.

Expressed in the original variables �i, the solution with
�1∗ + �−1∗ = 0 is stable as long as

β

2

1

1 + cosh[β(�1∗ − �−1∗)/2]
� 1. (8)

This stability condition is exactly the same as in Ref. [34]
because the learning dynamics we follow is essentially the
same and differs only in the details of the deterministic
returns.

We illustrate in Fig. 1 that for low intensities of choice,
where the stability criterion (8) is satisfied, the fixed point
discussed so far is the only one. At higher β the criterion
is violated and two new stable fixed points appear. Here the
agents’ attraction differences are of the same sign, i.e., they
prefer going to the same market. This happens even though
market 1 favors buyers while market −1 favors sellers.

At first sight it may seem puzzling that for high intensity
of choice, one of the agents decides to settle for less in
persistently choosing the market where the agent will be
awarded lower scores. However, this pattern of behavior in
fact maximizes the number of trades that take place. In the
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FIG. 2. Two traders: the (θ, β ) phase diagram and returns.
(a) Coordination and indecisiveness regions for different intensity of
choice and market biases (β and θ ). (b) Returns for different β in a
system with two fair markets θ = 0.5. (c) Returns for different β for
market bias θ = 0.3. At the critical βc = 4.16, the average return of
the two agents in the coordinated state is higher than it would be in
the continuation of the low-β fixed point (yellow dashed line), but
one of the agents needs to settle for less.

low-β regime, all four pairings of market choices are equally
probable, (m1, m−1) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)},
but only the first and the last enable trading. On the other
hand, in the high-β regime, when both agents persistently
choose the same market, they always get to trade, although
one of the traders always receives a lower return. For the
market parameters used in Fig. 1, (θ1, θ−1) = (0.3, 0.7), the
agent who settles for a lower score then receives a score of
0.3, while the other one obtains 0.7. This has to be compared
to the average payoff at low β, which by averaging over the
four market choice pairings is seen to be 1

4 (θ1 + θ−1) = 1
4 .

Hence both agents clearly earn more in the coordinated
regime than by choosing randomly.

We can find the domain of parameters θ and β where the
agents will coordinate [Fig. 2(a)] by starting from the regime
of agents choosing largely randomly and tracking where the
stability condition (8) is first violated as β is increased. As
in the case of large populations [27], we observe that βc

increases with increased market difference or bias. The sym-
metry breaking between markets that coordination requires is
therefore not driven by the difference between the markets. In
fact, the coordination threshold is lowest for a system with two
identical markets (θ = 0.5). One can rationalize this by saying
that the agents are happiest to coordinate at one of the markets
in this limit as neither needs to settle for less. We show average
returns for this setup—a pair of traders choosing between
two unbiased markets—as a function of β in Fig. 2(b). One
observes the expected average score of 1/4 for low β; as β

is increased, the agents effectively realize that coordination at
a single market enables more trades and consequently higher
average returns.

In Fig. 2(c) we show analogous results for the case of two
biased markets (θ = 0.3). We plot the individual agents’ pay-
offs and their average in the state where they coordinate at one
market and compare this to the payoff in the largely random
low-β state. As a reference we also plot the continuation of
the latter to larger β, where it is unstable. It is notable that
returns decrease with β on this branch: The more the agents
act on their preference for opposite markets, the less often
they manage to meet at the same market. This results in more
and more trading rounds where both receive a return of zero,
dragging down average returns.

By contrast, in the coordinated state the average return
increases with β, i.e., as the agents make more and more
definite choices. Interestingly, Fig. 2(c) shows that this in-
crease in the average return is accompanied by a growing
difference between the returns of the individual agents. These
payoff differences can occur in our model because agents
are unaware of the opposite player’s return, making decisions
only on the basis of their own scores. Borrowing terminology
from the large system limit [27], we will refer to the agent
with the higher return as return driven and the other as volume
driven. It is notable in Fig. 2(c) that there is a range of β

where the volume-driven agent receives an average return
that is lower than not only that of the return-oriented agent,
but also the hypothetical return both agents would achieve in
the (unstable) uncoordinated state; this regime grows as the
markets become more biased.

Intuitively, the return-driven player develops a strong pref-
erence for the market where the player can earn more. The
other agent will occasionally try the other market, but typi-
cally not get to trade there. As this results in a zero return,
the player is better off persisting with the coordinated choice,
which offers a low but at least nonzero return.

The two-agent systems studied so far can be mapped to
two-player games: the symmetric pure coordination game
when the markets are unbiased and the battle of the sexes
when markets are symmetrically biased. For these games
it is known that the two coordinated states correspond to
pure Nash equilibria (see, e.g., [35]). In the symmetric pure
coordination game, both of these are envy-free (i.e., both
agents earn the same), but not so in the battle of the sexes; this
is consistent with the differences we saw between unbiased
and biased markets, and the Nash equilibria correspond to
the β → ∞ limit of the coordinated states. There are also
mixed Nash equilibria. These correspond to the continuation
to β → ∞ of our uncoordinated state for the symmetric pure
coordination game, but not otherwise. A full correspondence
to Nash equilibria could be obtained by modifying the learn-
ing rule so that the attractions to markets that were not chosen
are kept unchanged. This can be interpreted as fictitious play
and is discussed in more detail in [36].

The results described above can be generalized to a pair
of traders who do not have strict buyer and seller roles but
instead decide to buy with some probability. We assume
symmetric preferences for buying, p1

B = 1 − p−1
B = pB. For

a trade to occur, agents now need to be at the same market and
need to submit opposite (buy and sell) orders. As the buying
preferences pi

B are fixed, this only changes �i
m from (5) to

�i
m = pi

B
(
1 − p−i

B
)
(1 − θm) + (

1 − pi
B
)
p−i
B θm. (9)
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FIG. 3. Two traders: coordination threshold as a function of θ

and pB . Note that the threshold is finite for all system parameters and
increases the more similar the agents become, i.e., as pB decreases
towards 0.5.

To see this, note that agent i receives a buyer payoff 1 − θm

when the agent assumes the role of a buyer (with prob pi
B)

while the opposite player acts as seller; agent i also receives a
seller payoff in the opposite configuration. Repeating the cal-
culation above, one then finds that the fixed point conditions
(7) both acquire a factor of p2

B + (1 − pB )2 on the right-hand
side, while the stability condition (8) is multiplied by the
same factor. Figure 3 shows contours of the resulting critical
βc for coordination. We note that the coordination threshold
increases as pB approaches 1/2: Agents without strong buy
and sell preferences need higher intensities of choice to benefit
from the coordinated state. This makes sense because agents
with pB closer to 1/2 derive a lower benefit from coordinating
at a market: As they need to assume buyer and seller roles,
trades at the same market happen only with some probability,
specifically p2

B + (1 − pB )2 in our setting, which approaches
1/2 for pB → 1/2.

B. Four traders: Onset of fragmentation

The two-player system studied above already exhibited an
interesting collective phenomenon: coordination at a market
to enable more trades, sometimes even to the detriment of
an individual agent. Turning to fragmentation, where other-
wise homogeneous agents nonetheless learn to adopt different
policies, the minimal system size where we can expect a
similar effect is N = 4. We first study two identical buyers
and two identical sellers, choosing agents with deterministic
buy and sell behavior (pi

B = 0 or 1) for simplicity. A system
with four agents is small enough so that we can still easily
write down deterministic equations for the evolution of market
attractions, but large enough for the first signals of fragmented
states to appear as agents can split across the markets in
pairs. We consider again symmetrically biased markets, θ1 =
1 − θ−1 = θ . As before, the market choice behavior of each
agent is determined by their market attraction difference �g,i.

Here the index g denotes the agent group (buyers or sellers),
while i labels agents within each group. For small r the
attraction differences again obey deterministic time evolution
equations that can be derived by following the reasoning in the
preceding section. The only difference lies in the calculation
of the return Sg,i

m (n) at a chosen market, which now depends
on the choices made by all other players:

Sg,i
m (n) = δmg,i (n),m

{
�

g
m

2
δmg,−i (n),m(δm−g,1(n),m + δm−g,−1(n),m)

+�g
m(1 − δmg,−i (n),m)(δm−g,1(n),m + δm−g,−1(n),m

− δm−g,1(n),mδm−g,−1(n),m)

}
,

In this expression, �
g
m denotes the deterministic part of the

return, which only depends on the chosen market m and the
agent type g, by analogy with the two-player case in Eq. (9).
The Kronecker δ symbols ensure that other agents are present
at the same market m. The first term describes the situation
where both agents of the same type go to a single market m;
the return is then zero if no agents of the opposite type are
at the same market, �

g
m if there are two, and �

g
m/2 if there is

only one (as our chosen agent then only has probability 1/2 of
being allowed to trade). On the other hand, when the second
player of the same type is not at the same market, the player
receives the full return if there is at least one trader of the
opposite group present. This is described by the second term.
The deterministic equations for r → 0 then take the form

∂t�
g,i(t ) = −�g,i(t ) +

1∑
m=−1

mSg,i
m (t ),

where Sg,i
m (t ) has the meaning of returns averaged over a long

time window so that the Kronecker δ’s in Sg,i
m (n) are replaced

with their expected values, exactly as in the derivation for two
players. We solve these equations numerically and find that
for low and intermediate intensity of choice β the behavior is
analogous to that for N = 2, showing a transition from a sin-
gle uncoordinated fixed point to two coordinated fixed points
as β increases; throughout this range the agents within each
group have identical market attractions. The novel feature of
the N = 4 system is that, when β is increased yet further, four
new stable states appear. We call these fragmented as each
group of agents now “fragments” into two individuals with
distinct, and essentially opposite, market preferences. Both
markets are then populated by a pair of traders, one from each
group. The fragmented fixed points appear in pairs (stable and
unstable fixed point) and for high enough value of β unstable
fragmented fixed points become partially fragmented, e.g.,
only one group splits across the markets, while the other group
specialize for one market. As these fixed points are not stable
we do not show this transition line in Fig. 4.

In Fig. 4 we show the two critical β lines (the coordination
and the fragmentation threshold) as a function of the market
bias θ , for the above scenario of four players with strict buy
and sell roles. The coordination line is very close to the one
for two players, which is included for comparison. Both the
coordination and fragmentation lines follow the same trend,
with the threshold in β increasing as θ departs from 0.5.
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FIG. 4. Four agents (two buyers and two sellers): phase diagram and returns. (a) Phase diagram showing steady states as a function of
intensity of choice β and market bias θ . Coordinated steady states exist to the right of the dark violet, solid line and fragmented steady states to
the right of the pink solid line with markers. (b) Returns against intensity of choice β for all agents and separately for return- and volume-driven
agents; market biases are (θ1, θ−1) = (0.3, 0.7). Dashed lines show coordinated states and solid lines fragmented states. The yellow dashed
line shows the average return in the uncoordinated steady state, continued into the instability region at high β.

Figure 4(b) shows return lines for different intensities of
choice β: Dashed lines correspond to coordinated states, while
solid lines are averages in the fragmented state. Note that the
difference in returns in the coordinate state is between groups
of agents, with all agents in a group either return driven or vol-
ume driven. In the fragmented states there is one return-driven
and one volume-driven agent in each group, on the other
hand. We note that in the large-β limit the returns achieved in
coordinated and fragmented states become identical. This is
because with either pattern of market choices, if these choices
are made deterministically, then all agents are guaranteed to
be able to trade. For finite β, returns in the coordinated state
are generally higher than for fragmentation.

Note that the four fragmented states arise because in each
agent group there are two ways to assign the two agents
to the two markets. For N agents, one therefore expects
{(N/2)!/[(N/4)!]2}2 such states. This number grows very
rapidly with N , while the number of coordinated states re-
mains at 2.

Finally, as in the analysis of the two-agent system, we
can generalize the results by allowing agents to assume the
role of buyer with some group-dependent probability p(g)

B . We
again take these probabilities as symmetric between groups,
p1
B = 1 − p−1

B = pB. The deterministic part �
g
m of the agents’

returns is then modified in a manner directly analogous to
Eq. (9), and one can determine the effect on the existence
of the various steady states. Figure 5 shows the results for
the symmetric markets (θ1, θ−1) = (0.3, 0.7) and symmetric
groups. As in the system with only two agents, when the
traders’ preferences for buying are similar (pB ≈ 1/2) they
have a weaker incentive to coordinate, resulting in a higher
coordination threshold for β (for the sake of clearer visualiza-
tion we use 1/β on the y axis). The same behavior is seen also
for the fragmentation threshold.

We indicate in Fig. 5 also the regime where a further type of
fixed point exists: partially fragmented states. In these states
there is a single agent whose market preference is the opposite

of that of the other three players, so only one agent group
is fragmented. These states evolve for high enough β out of
unstable fragmented states, which themselves appear in pairs
with the stable fragmented states at the onset of fragmentation.
As we will see below, partially fragmented states exist in
the large population limit too, though in a limited region of
parameter space. In the small system here they are unstable.
Intuitively this is likely to be due to the smaller number of
trades: In the large-β limit of a partially fragmented fixed
point, there will be at most one trade per trading period (only
two out of the three agents going to one market will be able to
trade), while both fragmented and coordinated states lead to
two trades.

FIG. 5. Four traders: phase diagram when buy and sell roles
are probabilistic. Coordination takes place below the dark violet
(solid) line and fragmentation below the pink line (solid line with
circles). These regions shrink when the difference in the buy and
sell preferences of the agents decreases (pB → 0.5), similarly to the
trend in the two-player system (dashed line). Below the orange line
partially fragmented fixed points exist, where one of the four agents
has a preference for the opposite market.
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IV. LARGE POPULATION LIMIT

Population with a fixed buying preference

In studying systems with a small number of agents we
have already encountered a rich phenomenology: coordination
of agents at a single market, pairwise fragmentation across
two markets, and even some mixed states where one group
fragments while the other specializes in trading at a single
market. We now complement and generalize these results by
investigating the possible types of steady state in the large
population limit. We start with a simple setting, a population
in which all agents have identical preferences for buying
pi
B = pB∀i. The assumption of population homogeneity is a

strong one, but these traders still undergo fragmentation for
a broad range of parameters, while the system is simpler
to analyze. Thus it is a useful prelude to the analysis of a
population consisting of two or more groups with distinct
buying preferences.

To describe the steady states of such an initially homoge-
neous agent population we follow the distribution of attrac-
tion differences (�i = Ai

1 − Ai
2) across the population [27].

The state of each market m enters via the probability with
which buy (B) and sell (S) orders are executed successfully
[27,37]:

TBm = min

(
1,

QSm

QBmDm

)
,

TSm = min

(
1,

QBmDm

QSm

)
. (10)

Here the factors QB,Sm are the probabilities for submitted buy
or sell orders to be valid, i.e., on the right side of the trading
price (the explicit expressions are given in Appendix A). Note
that, whereas for small systems we simplified to deterministic
order prices, we return here to the full model where bids b
and asks a are stochastic and the trading price is calculated
as in Eq. (3). [As explained in Sec. II, we choose Gaus-
sian distributions for bids and asks, a ∼ N (μa, σ

2
a ) and b ∼

N (μb, σ
2
b ); for numerical evaluations we set μb − μa = 1 and

σa = σb = 1.] The Dm are demand-to-supply ratios, defined
as the number of buyers over the number of sellers at market
m. For small r, the attraction difference distribution evolves
according to a Fokker-Planck equation

∂t P(�|pB, Tγ ) = −∂�[M1(�|pB, Tγ )P(�|pB, Tγ )]

+ r

2
∂2
�[M2(�|pB, Tγ )P(�|pB, Tγ )], (11)

where the drift M1 and diffusion M2 both depend on the
buying preference of the agents and on the four trading
probabilities Tγ . [We use γ = (τ, m) as the generic label for a
combination of order type τ = B,S and market choice m.]
The drift term is (see Appendix A for details and for the
explicit expression of the return distribution from which 〈Sγ 〉
is calculated)

M1(�|pB, Tγ ) =
1∑

m=−1

∑
τ∈{B,S}

mpτ Tτm〈Sτm〉σβ (m�) − �,

(12)

where the sum runs over markets m and order types τ and we
use the convention pS = 1 − pB. The strength of the diffusion

FIG. 6. Critical intensities of choice as a function of market bi-
ases for (a) an indecisive population (pB = 0.5) and (b) a population
of decisive buyers (pB = 0.8).

term is

M2(�|pB, Tγ ) = �2 +
1∑

m=−1

∑
τ∈{B,S}

[
pτ Tτm

(〈
S2

τm

〉
− 2m�〈Sτm〉)]σβ (m�). (13)

The steady state of the Fokker-Planck equation is (see, e.g.,
[38])

P(�|pB, Tγ ) ∝ 1

M2(�|pB, Tγ )
exp

(
− f (�)

r

)
, (14)

where

f (�) = −2
∫ �

0
d�′ M1(�′|pB, Dm)

M2(�′|pB, Dm)
(15)

plays a role analogous to a free energy in thermodynamics.
When f (�) has a single minimum, P(�) will approach a
narrow peak at this location for r → 0 and we have an un-
fragmented state. Otherwise, as many peaks as there are local
minima in f (�) will appear, corresponding to a fragmented
state: Each peak represents a subgroup of agents following a
distinct market choice strategy.

Note that in the Fokker-Planck description, the market
order parameters Dm that determine the trading probabilities
Tγ have to be calculated self-consistently from P(�) [27,37].
The same self-consistency condition then also needs to hold
at a steady state. Initially we will treat the order parameters as
fixed exogenously however. Such a situation could arise if, for
example, our agents are just a very small fraction of the overall
trading cohort, with the latter fixing the demand-to-supply
ratio.

Fragmentation for r → 0

In Fig. 6 we show how the threshold value of the in-
tensity of choice depends on the market biases (θ1, θ−1)
for different agent populations, one indecisive (pB = 0.5)
and one made up of decisive buyers (pB = 0.8); for this
calculation we set the order parameters to their endoge-
nous value following the self-consistent procedure outlined
in (19). We see that for every pair of market biases there
is a finite threshold βc above which fragmentation sets
in. When agents are indecisive with regard to buying and
selling, the region where fragmentation occurs is greatest
when markets are identical or symmetrically biased. For
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FIG. 7. Steady-state attraction difference distributions of deci-
sive buyers (pB = 0.8). We compare steady states at β = 20 for
(a) two unbiased markets (θ1, θ−1) = (0.5, 0.5) and (b) two sym-
metrically biased markets (θ1, θ−1) = (0.3, 0.7), for r = 0.1 (dashed
dark violet line) and 0.05 (solid pink line). The distributions are
strongly and weakly fragmented, respectively: on the right, the
relative height of the lower peak decreases as r is reduced.

decisive buyers (pB = 0.8), on the other hand, the fragmen-
tation threshold is lowest when the markets are identical.
Intermediate values of pB provide a smooth interpolation
between these two situations.

To understand more closely the properties of the frag-
mented states, we show in Fig. 7 the steady-state distributions
of traders with pB = 0.8 when faced with the choice between
two unbiased or two symmetrically biased markets. To un-
derstand the trend with r, we show the distributions for two
different values of r in each case. As expected from (14), the
peak width decreases as approximately

√
r with decreasing

r, but in Fig. 7(b) we see that the relative peak heights also
depend on r. In fact, if the peaks are located at attraction
differences �1 and �2, then the peak height ratio can be
written as

P(�1|pB, Tγ )

P(�2|pB, Tγ )
= M2(�2|pB, Tγ )

M2(�1|pB, Tγ )
exp

(
− f (�2) − f (�1)

r

)
.

(16)

This ratio can stay finite for r → 0 only when

f (�1) = f (�2), (17)

and we call this situation strong fragmentation as it survives
even in the r → 0 limit. This is the situation in Fig. 7(a).
If the free energies at the two peaks are unequal, on the
other hand, one continues to have two peaks in P(�) for any
nonzero r but the height of one peak decreases (exponentially
in 1/r) as r goes to zero. We call this behavior, which is
illustrated in Fig. 7(b), weak fragmentation because the lower
peak may become unobservably small for low r; in the strict
limit r → 0, the distribution P(�) becomes unimodal again.
The strong-weak distinction as defined applies literally only to
this r → 0 limit; at nonzero r it becomes a crossover between
fragmented states where the emergent subgroups have roughly
even (strong) or very different (weak) sizes. At the weakly
fragmented state most of the trades happen at a single market
(increasingly so as r decreases); we relate this state to market
consolidation, and thus the question of fragmentation versus

consolidation becomes a question of strong versus weak frag-
mentation in our setup.

Now that we have a method for finding steady states and
classifying them, we return to the space of market order
parameters and investigate where fragmentation occurs. In
Fig. 8 we show where weakly (colored regions) and strongly
(solid lines inside these regions) fragmented states appear,
at a fixed intensity of choice β = 8.5. We compare again
indecisive (pB = 0.5) and decisive buyers (pB = 0.8), for
three different market setups. We first note that the weak frag-
mentation region encompasses a very wide range of market
conditions (order parameters Dm) for indecisive buyers, but
shrinks significantly when the agents have stronger prefer-
ences for buying. Looking at the dependence on market setup,
an obvious feature is that for two unbiased markets [shown
in Fig. 8(c)], equal demand-to-supply ratios (D1 = D−1 line)
produce strong fragmentation for both types of agents. This
makes sense as the markets are then identical both in their
setup θ1 = θ−1 and in the prevailing market conditions, mak-
ing it easy for groups of agents with opposite market pref-
erences to coexist. For the indecisive agents who will act as
buyers or sellers with equal probability, the same situation
arises when the markets have exactly opposite demand-to-
supply ratios (D1 = 1/D−1) and therefore still offer them
identical average returns.

With increasing market biases [Figs. 8(a) and 8(b)] the
picture obtained for two unbiased markets changes largely
smoothly, though note that for decisive buyers (top row) the
two crossing lines of strong fragmentation detach into two
separate lines [Fig. 8(b), top], with one eventually disappear-
ing out of range.

Market order parameters. So far we have looked at frag-
mentation behavior driven by exogenously set market condi-
tions (demand-to-supply ratios). We now return to our model
as originally set out, where only the adaptive agents we
describe trade at the two markets. This leads to the follow-
ing question: Will a population endogenously create market
conditions needed for its fragmentation?

For the case of traders with homogeneous buying prefer-
ences pB this question can be answered relatively straightfor-
wardly. If the steady-state distribution of attraction differences
is P(�|pB, Tγ ), then the fractions of the whole population
buying and selling at market m are

NBm = pB

∫
d� P(�|pB, Tγ )σβ (m�),

NSm = (1 − pB )
∫

d� P(�|pB, Tγ )σβ (m�). (18)

The demand-to-supply ratio then does not in fact depend on
the market preference distribution

Dm = NBm

NSm
= pB

1 − pB
(19)

and is fully determined by pB. In the space of market order
parameters in Fig. 8, this endogenous set of market conditions
is marked with a black dot. We see that, at high enough β,
the population of indecisive buyers fragments strongly when
the markets are unbiased or symmetrically biased, and one
can check that these results hold independently of the specific
market biases used in the figure. Decisive buyers, on the
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FIG. 8. Single population: steady-state types in the space of market order parameters (D1, D−1) for β = 8.5. Shown on top is the population
of decisive buyers (pB = 0.8) and on bottom the indecisive population (pB = 0.5) for (a) symmetrically biased markets (θ1, θ−1) = (0.3, 0.7),
(b) one unbiased and one biased market (θ1, θ−1) = (0.5, 0.7), and (c) two unbiased markets (θ1, θ−1) = (0.5, 0.5). Colored regions indicate
where weakly fragmented states exist (for r → 0). Solid lines inside these regions indicate strongly fragmented states.

other hand, fragment strongly only if the markets are equal
(the figure shows only θ = 0.5, but the statement is true for
general θ ). Otherwise weak fragmentation occurs, although
[see Fig. 8(c), top] when the markets are very different at a β

above that used in Fig. 8.
With these insights, it is worth revisiting Fig. 6. It shows

the existence of the fragmentation threshold βc for all market
biases, and we recall that this threshold is defined as the point
where P(�) first acquires two peaks. From what we have
seen above, we now understand that for most combinations
of market biases, the steady state one finds above βc is a
weakly fragmented one. The exceptions are the dark lines
in Fig. 6, which indicate equal (θ1 = θ−1) or symmetrically
biased (θ1 = 1 − θ−1) markets.

V. TWO-GROUP POPULATION

So far in our analysis of the large size limit of a homo-
geneous population of traders with buying preference pB, we
have shown how for any given pair of market order parameters
(D1, D−1) we can determine the population steady state. We
identified three possible types of steady states: unfragmented
(U), weakly fragmented (W), and strongly fragmented (S).
We now generalize the investigation to populations of agents
consisting of groups with different buying preferences. We
demonstrate the approach for the case of two groups of the
same size, but the principles are general and can be extended
to larger numbers of groups or different group sizes. We de-
note a steady state of a population consisting of two groups by

a pair of letters (X,X′). Here X, X′ ∈ {U, W, S} indicates the
type of steady state for each group, producing nine different
types of population steady states.

We can now find, in the space of market order parameters
(D1, D−1), the domains of different state types as we did in
Fig. 8. We can use the figure directly to read off the steady
states at β = 8.5 of a population of two groups with buying
preferences (p(1)

B , p(2)
B ) = (0.8, 0.5). For example, when the

market order parameters are (D1, D−1) = (5, 5) (the top right
corner of all the diagrams), the steady state of the two-group
population is (U,W) when the markets are symmetrically
biased or biased and unbiased (Fig. 8 left and center) and (S,S)
when both markets are unbiased (right diagrams). This simple
analysis can be extended to any number of groups because,
for market order parameters that are fixed exogenously, the
groups are independent.

Our primary interest, however, lies in the case of endoge-
nous market conditions where the agents we model capture
the entire trading population and thus define their own market
order parameters. In this case, we need to find the steady
states self-consistently. We have previously described a pro-
cedure for doing this, for nonzero r [27]: Starting from some
initial market order parameters (D1, D−1), one calculates the
steady states and updates (D1, D−1) iteratively, converging
eventually to a self-consistent set of order parameters. Here
we aim to get a complete picture of all possible steady states,
independently of initial conditions. To do this, we start from
the update equation for the market order parameters from
the iterative approach. These are simply the definitions of
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FIG. 9. Steady states of traders with decisive buy and sell preferences: order parameter diagrams. For a two-group system with (p(1)
B , p(2)

B ) =
(0.8, 0.2), each diagram shows the order parameter self-consistency lines (dashed black) and for each group the weak fragmentation region and
the strong fragmentation line; r = 0.001 throughout. (a) Single (U,U) solution with β = 1/0.31, (b) three (U,U) solutions with β = 1/0.29,
(c) one (S,S) and two (U,U) solutions with β = 1/0.265, (d) (U,W), (S,S), and (W,U) solutions with β = 1/0.245, and (e) (W,W), (S,S),
and (W,W) solutions with β = 1/0.2. We use the following abbreviations for the steady state of each group: U, unfragmented; W, weakly
fragmented; and S, strongly fragmented.

the market order parameters (18) and (19) extended to two groups:

D′
m = N (1)

Bm + N (2)
Bm

N (1)
Sm + N (2)

Sm

= p(1)
B

∫
d�σβ (m�)P

(
�|p(1)

B , Tγ

) + p(2)
B

∫
d�σβ (m�)P

(
�|p(2)

B , Tγ

)(
1 − p(1)

B
) ∫

d�σβ (m�)P
(
�|p(1)

B , Tγ

) + (
1 − p(2)

B
) ∫

d�σβ (m�)P
(
�|p(2)

B , Tγ

) . (20)

We can now define, in the market order parameter space,
the two loci where D′

1 = D1 and D′
−1 = D−1, respectively,

meaning that one of the order parameters is already self-
consistent. The intersection of these loci (two lines, for our
case of two markets) then gives us all the self-consistent sets
of market order parameters. To distinguish weak and strong
fragmentation, the limit r → 0 ought to be taken. To avoid
numerical issues we use here instead a small nonzero r to
determine the attraction difference distributions P(�|p(g)

B , Tγ )
from which the D′

m are calculated. In most of what follows
we focus on symmetric market setups (θ1 = 1 − θ−1) and
symmetric agent buying preferences (p(1)

B = 1 − p(2)
B = pB).

To avoid having too many parameters to vary, we will fix
the market biases to the default values (θ1, θ−1) = (0.3, 0.7)
unless stated otherwise.

A. Transitions in populations of decisive and indecisive traders

As shown in previous sections, the intensity of choice β

is a crucial parameter determining whether the steady state
in a system is fragmented or consolidated. Here we build
upon this analysis by investigating how the nature of steady
states changes as β is increased. We start this section with

examples of steady states of a population with decisive traders
(p(1)

B , p(2)
B ) = (0.8, 0.2) as well as one with largely indecisive

traders (p(1)
B , p(2)

B ) = (0.55, 0.45). We then generalize these
results to a full phase diagram for the r → 0 limit, giving the
number and type of steady states as a function of the intensity
of choice β and the buying preference pB.

1. Decisive traders

In Fig. 9 we show, for a series of different β, the market
order parameter space (D1, D−1) with the weak fragmentation
region and the strong fragmentation line marked for both
groups of a population with (p(1)

B , p(2)
B ) = (0.8, 0.2). The or-

der parameter self-consistency lines are also shown.
In Fig. 9(a) we show the low-β regime (β = 1/0.31), just

before the onset of fragmentation. Note that for this β, the
steady states of both groups are unfragmented across the
entire range of market order parameters shown. The unique
intersection of the D′

m = Dm loci identifies a single steady
state of type (U,U). Figure 9(b) shows a just slightly increased
β = 1/0.29 where most market order parameters settings still
give unfragmented states but there are now three intersections
of the self-consistency loci, giving as many (U,U) steady
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states. In the steady state that is a continuation of the low-β
solution the agents show only mild preferences among the
markets, with buyers slightly preferring the market that gives
higher returns for buyers and similarly for sellers. The other
two unfragmented solutions correspond to coordination at one
of the two markets so that overall the situation is similar to the
one we saw for N = 2 and N = 4.

Increasing β further [Fig. 9(c)], one crosses the threshold
(βc ≈ 1/0.28 here) where one of the unfragmented solutions
first fragments; the continuation of the low-β state is now
in the strongly fragmented domain of both groups, while
the other two steady states remain unfragmented. Note that
since the weak fragmentation regions surround the strong
fragmentation lines for both agent groups, there must in
fact be a narrow range of slightly-lower-β values where the
fragmentation is weak: The low-β solution must change from
(U,U) through (W,W) to (S,S) as β increases.

In Figs. 9(d) and 9(e) one observes that with increasing β

the fragmentation regions keep growing. This results in the
two unfragmented (U,U) solutions changing first into (U,W)
and finally (W,W).

We note that inferences about stability from diagrams
like Fig. 9 are in general unwarranted; for example, the
initial pitchfork bifurcation from one to three (U,U) states in
Figs. 9(a) and 9(b) does not necessarily imply that the middle
solution is unstable. It would be unstable under repeated
updating from Dm to D′

m. However, Eq. (20) shows that this
is not the real dynamics but would correspond to a scenario
where the dynamics of the order parameters is slowed down
artificially so that agents always have time to equilibrate their
attraction difference distributions P(�|p(g)

B , Tγ ) to the current
order parameter values.

We highlight one further feature of Fig. 9: For small r
as used in the figure, the order parameter self-consistency
lines tend to follow segments of the strong segregation lines
before emerging on either side into a weak segregation region.
This can be understood by noting that the self-consistency
line for D1, for example, is the zero contour of the function
D′

1(D1, D−1) − D1 in the order parameter plane. This function
varies steeply as a strong segregation line is crossed, devel-
oping discontinuities that look like cliff edges for r → 0. A
contour line that hits such a cliff must follow the line of the
cliff before returning to the smooth parts of the landscape,
which is the effect we see in Fig. 9.

The cliff edges themselves arise because on a segregation
line, the free energy function f (�) in Eq. (16) has two minima
of equal height. A small change of O(r) in D1 or D−1 will
cause similar small changes in the height of these minima, but
from Eq. (16) this is enough to cause the weight ratio between
the two peaks in P(�) to shift by a factor of order unity.
Changes larger than this will transfer all weight from one
peak to the other and correspondingly modify D′

1 by a finite
amount. For r → 0 the required order parameter changes
become infinitesimal, leading to the cliff edge structure of
D′

1 − D1 and analogously D′
−1 − D−1.

2. Indecisive traders

We now compare the results above with those for a
population consisting of two agent groups with only weak

preferences for buying and selling, (p(1)
B , p(2)

B ) = (0.55, 0.45).
The motivation for this comes from the fact that agents with
only mild buy and sell preferences should develop weaker
preferences for markets that offer higher returns for buyers or
sellers. They will also not be penalized much if only a single
group populates a market, as such an arrangement will still
sustain a large number of trades.

In Fig. 10 we observe several differences compared to the
situation in Fig. 9 for decisive traders, most notably with
regard to the number of solutions. Specifically, as can just be
discerned from Fig. 10, on crossing the fragmentation thresh-
old four new states appear. These states are also different in
nature: They are partially fragmented in the sense that one
group of agents is strongly fragmented and thus retains a
bimodal distribution of attraction differences for r → 0 while
the other is either weakly fragmented or unfragmented. We
have seen a similar state in the systems with four agents,
although there it was unstable because it reduced the number
of possible trades. In the large population limit, having one
fragmented and one unfragmented group of agents still leaves
many possibilities for trading, especially for indecisive agents
where roughly half of each group of agents will probabilisti-
cally assume the role of buyer or seller in each trading round.
On the general grounds discussed above, the appearance of
the partially fragmented (U,S) states is expected to proceed
via (U,W) states, though again the β range where the latter
appear is numerically small.

When the intensity of choice β is increased beyond that in
Fig. 10(a), the low-β solution transitions from (U,U) to (W,W)
[Fig. 10(b)] and eventually (S,S) [Fig. 10(d)], i.e., both agent
groups fragment first weakly and then strongly. Comparing
the partially fragmented solutions in Figs. 10(b) and 10(c), we
see that they change from (U,S) to (W,S); finally two of them
merge with the uncoordinated (W,W) state into an (S,S) state.
The other two partially fragmented states eventually transition
into (W,W) states; as in the case of decisive traders, these
represent coordination of the agents at a single market.

B. The (β, pB ) phase diagram

We have observed both market consolidation and fragmen-
tation when a population is faced with a choice of two sym-
metric markets, depending on the different choice of system
parameters (pB, β ). We next vary these parameters system-
atically to construct a detailed phase diagram and study the
regions where one finds the various states that we described
above. The size of these regions then also gives an indication
of how typical the different scenarios are. We continue to
focus on symmetric markets with (θ1, θ−1) = (0.3, 0.7) but
note that calculations for other (symmetric) market settings
give qualitatively similar results. In Fig. 11 we show the phase
diagram in the space of intensity of choice β and group pref-
erence for buying pB ≡ p(1)

B . This diagram is the large popu-
lation analog of the diagram for four agents (N = 4) shown
in Fig. 5. There we had identified regions with states that
are unfragmented and indecisive (low β), unfragmented and
coordinated, fragmented, and partially fragmented. Broadly,
these types of states persist in the large population limit, but
they have additional structure that makes for a richer phase
diagram.
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FIG. 10. Steady states of largely indecisive traders: order parameter diagrams. We show the behavior of largely indecisive traders
(p(1)

B , p(2)
B ) = (0.55, 0.45) for different intensities of choice β in the large memory limit, evaluated numerically for r = 0.00001: (a) β =

1/0.31, one unfragmented solution (U,U); (b) β = 1/0.285, one weakly fragmented (W,W) and four partially fragmented (U,S) states;
(c) β = 1/0.27 one weakly (W,W) and four partially fragmented (W,S) states; (d) β = 1/0.1, one strongly fragmented (S,S) and two partially
fragmented (W,S) states; and (e) β = 1/0.05, one strongly fragmented (S,S) and two weakly fragmented states (W,W).

To help visualize the structure of the phase diagram, we
show an additional version as an inset that has been distorted
to preserve the topology but make even small regions in
the phase diagram visible. Also, to avoid having too many
separate regions we do not distinguish in the diagram between
unfragmented and weakly fragmented states, which both have
distributions of market preferences that become unimodal for
r → 0. We label such states collectively V to separate them
from strongly fragmented states with their bimodal market
preference distributions. Two vertical dashed lines mark the
two scenarios of decisive and indecisive traders studied above
(see Figs. 9 and 10).

We now look in more detail at the structure of Fig. 11.
Crossing any line in the phase diagram changes either the
number of population solutions or the nature of the steady
state for one or both agent groups. We note that, due to the
symmetry of the system we consider, many of the changes for
the two groups happen simultaneously. In the inset, regions of
the parameter space are laid out according to the number of
solutions: five solutions on the left and three on the right, with
a single solution in the small-β region at the top.

The dark violet line in Fig. 11 is the line where the
multiplicity of states changes from 1 to 3 or 5. Looking at
the order parameter, self-consistency lines shows that this
transition takes place via a pitchfork bifurcation in the former
case and two symmetric saddle-node bifurcations in the latter.
The dark violet line is an analog of the line shown in the same
color in the phase diagram (Fig. 5) of the system with N = 4
players. The region of multiple solutions has grown for large

N , but the inverse critical intensity of choice 1/βc is still an
increasing function of pB.

As in Fig. 5, the pink line with circles in Fig. 11 marks the
appearance of a steady state where both groups are strongly
fragmented. We observe that the critical intensity of choice
where this happens diverges (1/β → 0) as pB → 0.5, i.e.,
the region of strong fragmentation shrinks as the difference
between the groups’ buying preferences diminishes. Further
lines in the phase diagram show where the solution multiplic-
ity changes directly from 3 to 5 (yellow line) and where partial
fragmentation occurs (green and orange line) as individual
solutions transition from (V,V) to (V,S). Note that in the
large population limit such partially fragmented states appear
only for populations with moderate preferences for buying, in
contrast to the system with N = 4 agents (Fig. 5) where they
exist for all pB.

We mark one further line (dashed pink) in the main graph
of Fig. 11, showing the transition within the small-β (V,V)
solution from the unfragmented (U,U) to the weakly frag-
mented (W,W) state. With this we make an explicit con-
nection to results reported previously (Fig. 7 in [27]) where
we investigated the appearance of (weak) fragmentation with
increasing intensity of choice. We note that for the system
of our first case study pB = 0.8 the thresholds for weak and
strong fragmentation almost overlap; the region of the weakly
fragmented indecisive state is very narrow for this choice of
parameters and in general for pB above approximately 0.7,
while it becomes larger for indecisive traders. The pink circle
on the y axis marks the end of the weak fragmentation line.
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FIG. 11. Types of steady states for two symmetric agent groups, shown in (β, pB ) space. Crossing each of the lines changes either the
number or the type of steady states. The inset shows the distorted but topologically equivalent diagram to show the phase diagram regions
more clearly. The dark violet and yellow lines show the change in solution multiplicity, the pink solid line with circles shows the strong
fragmentation, the pink dashed line shows the weak fragmentation of the uncoordinated low-β solution, the orange and green lines show the
partial fragmentation. Here V denotes a unimodal distribution of agents’ market preferences in the r → 0 limit, i.e., an unfragmented (U) or
weakly fragmented (W) steady state, and S denotes a strongly fragmented steady state.

It turns out that this is the strong fragmentation threshold of
the homogeneous population with even preference for buying
and selling (pB = 0.5), with the change from weak to strong
fragmentation caused by the additional symmetry between the
two groups for this value of pB.

Interestingly, there are two distinct regions in the phase di-
agram of Fig. 11 where we observe three (V,V) and two (V,S)
states, i.e., three unfragmented and two partially fragmented
solutions. It turns out that in the region at lower β (higher 1/β)
the partially fragmented solutions are coordinated, insofar
as both groups of agents have an overall preference for the
same market. For high β one has the opposite situation, and
it is those uncoordinated (V,S) solutions together with an
unfragmented (V,V) solution that then merge into a single
(S,S) state as pB is increased.

We note briefly that the various lines shown in Fig. 11 were
detected by solution tracking, e.g., by carefully varying pB
and β and tracking the number and type of solutions; further
details can be found in Appendix B. The tracking approach
is chosen as it is numerically faster and more reliable than
the finite-r procedure we used in previous figures, avoiding,
e.g., the numerical noise visible in the two loci in Fig. 10.
It is important to remember that the results only provide
information about the existence of steady states, not their
stability; the latter can be probed only using actual dynamics
as discussed below. Figure 11 also relates to fixed market
biases so trends with changes in these biases cannot be seen;
we have checked, however, that the overall structure of the
phase diagram remains intact as long as market biases are
symmetric. Quantitative trends were explored in our previous
work [27], where we saw that the fragmentation region shrinks
as markets become increasingly different.

In summary, the diagram in Fig. 11 shows that for systems
with two symmetric markets and two groups of traders with
symmetric buying preferences both fragmented and coordi-
nated (or consolidated) steady states exist across a substantial
range of values for the intensity of choice β. Single-market
dominance happens when the steady state is either unfrag-
mented or weakly or partially fragmented but coordinated:
The majority of trades then happens at a single market. On
the other hand, markets can coexist, receiving a roughly even
share of trades, when the steady state is strongly fragmented
or weakly or partially fragmented but uncoordinated. In the
former case both markets are visited by both groups, while in
the latter case an effective market and group loyalty appears.
In the following sections we analyze these different steady
states further, with regard to the average population returns
they produce and their stability in simulated systems with
finite N and r.

C. Average population returns

The phase diagram in Fig. 11 reveals a plethora of possible
steady states in the system of two markets and a large popula-
tion of traders, depending on the traders’ learning parameter
β and their propensity to act as buyers pB. We now investigate
whether these steady states induce differences in average
population returns as we saw in small systems, e.g., Figs. 2
and 4. We look at the average population return per trading
round, where we count also zero returns that arise from an
order being invalid or no trading partner being available.

In Fig. 12 we show average population returns for the two
scenarios of decisive [(p(1)

B , p(2)
B ) = (0.8, 0.2), Fig. 12(a)] and

indecisive [(p(1)
B , p(2)

B ) = (0.55, 0.45), Fig. 12(b)] traders. The
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FIG. 12. Average population returns for different steady states in the r → 0 limit. The yellow line shows the low-β steady state representing
uncoordinated population (dashed in the regime where it is no longer a bona fide steady state). The dashed dark violet line marks the
value of β where the multiplicity of solutions changes (see Fig. 11); at the dashed pink line strongly fragmented steady states first appear.
(a) Decisive population (p(1)

B , p(2)
B ) = (0.8, 0.2). The dark violet line shows the average population return for a coordinated unfragmented or

weakly fragmented steady state and the pink line similarly for a strongly fragmented state. (b) Indecisive population (p(1)
B , p(2)

B ) = (0.55, 0.45).
The dark violet line gives the average population returns for partially fragmented steady states (coordinated on top, uncoordinated on bottom)
and the pink line similarly for a strongly fragmented state.

β dependences reflect the transitions between solution types
we saw earlier (in Figs. 9 and 10 and the phase diagram
in Fig. 11). The overall trends resemble those for finite N .
First, we note that the return of the uncoordinated low-β
solution (marked in yellow in Fig. 12) is the lowest among
the alternatives once multiple solutions exist. Second, the
coordinated states (dark violet) lead to the highest average
return. Interestingly, this is not influenced by the type of
fragmentation, i.e., it is true for both weakly fragmented
and partially fragmented states as long as a majority of the
population develops a preference for a single market. By
comparison, the strongly fragmented state (pink) always leads
to a lower average population return.

The differences in the returns achieved by populations of
decisive and indecisive traders, respectively, are driven mainly
by the fact that indecisive groups can sustain more trades with-
out requiring the presence of other groups at a market. This
is particularly visible in the higher population average return
for low β; in this range the decisive population suffers from
the group-specific market preferences that tend to separate
traders towards different markets and consequently result in
a lower number of trades. Additionally, the continuation of
the low-β solution is a viable steady state for a broader range
of intensities of choice for the indecisive population. The
dashed yellow line marks the region of β for which this fixed
point is no longer a genuine steady state, as the free energy
has multiple minima when evaluated at the order parameters
calculated for this fixed point. Along this line the indecisive

population return again does not drop as far as it does in the
case of a more decisive population.

In Fig. 12(b) we note the occurrence of the saddle node
bifurcation in the transition of the indecisive population, with
four new (V,S) solutions (which come in two pairs giving
identical returns) emerging at once. The top branch corre-
sponds to the average population returns at the coordinated
partially fragmented states; for greater values of β (outside
the range shown) these states smoothly transition into weakly
fragmented, coordinated, states. The bottom branch relates to
uncoordinated partially fragmented states that merge into the
strongly fragmented (S,S) state for greater β.

Interestingly, the average population return in the high-β
limit of the coordinated state also corresponds to the average
population return when all traders choose randomly (i.e.,
β = 0). This is true because in both limits the average number
of agents trading at each market is equal. Intriguingly, this
means that when learning is introduced, for low intensities
of choice, an agent who makes decisions based on their
previous history may be worse off than an agent who plays at
random. This effect disappears again only in the large-β limit
of the weakly fragmented state, though note that in the latter
case one group earns more than the other. Returning to the
strongly fragmented state, despite indications that for a given
β this is best among the states that do not distinguish between
groups in the long run (see Fig. 6 of [27]), in terms of average
population return this state is outperformed by random traders
(β = 0).
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FIG. 13. Memory length dependence of phase boundaries. The
pink line (solid with circles and dotted) shows the fragmentation
threshold, where at least one steady state is fragmented (weakly or
strongly). The dark violet line (dark solid and dashed) shows the
boundary of the region where multiple steady states exist. Solid lines
represent indecisive traders (p(1)

B , p(2)
B ) = (0.55, 0.45) and dashed

lines decisive traders (p(1)
B , p(2)

B ) = (0.8, 0.2). Multiple steady states
exist for small enough r, i.e., long enough memory 1/r. The market
parameters are (θ1, θ−1) = (0.3, 0.7).

D. Dynamics

We now ask what effect the existence of multiple steady
states, as predicted by theory for infinite populations, has
on the dynamics. We simulate the dynamics numerically,
necessarily for finite N and with learning rate r > 0, i.e., for
finite memory length 1/r. In previous work we have already
shown that the theory predicts the steady-state properties of
finite populations quite well (see, e.g., Fig. 4 in [27]). The
role of r is more important as this can shift phase boundaries
[27]. (Conceptually, the precise distinction for r → 0 between
weakly and strongly fragmented states is also lost for r > 0
and becomes a crossover.)

In Fig. 13 we illustrate the r dependence of two key phase
boundaries for the two populations we have mainly considered
so far (decisive pB = 0.8 and indecisive pB = 0.55). We
note that the region of multiple steady states shrinks with
increasing r for both populations while the fragmentation line
is only weakly r dependent. The lines are related to the lines of
the same color in the (β, pB ) phase diagram in Fig. 11 and the
dashed gray lines marked in Fig. 11 correspond to the r → 0
limit of the (r, β ) phase diagram in Fig. 13.

Overall, Fig. 13 tells us that we need to use reasonably
small r, certainly below 0.05 for pB = 0.8, to see multiple
steady states in numerical simulations. As smaller r slow the
dynamics, we choose in practice values of r that are as large as
possible while staying well within the multiple states regime.

In Fig. 14 we show numerical data for the actual dynamics
of a system of decisive traders (p(1)

B , p(2)
B ) = (0.8, 0.2) at our

standard market parameters (θ1, θ2) = (0.3, 0.7), taken from
a single run for a population with N = 2000 traders (see [37]
for simulation details) using the learning rate and inverse de-
cision strength (r, 1/β ) = (0.05, 0.16). For these parameters
the phase diagram of Fig. 13 predicts the existence of three
steady states, two weakly fragmented states (with the majority
of both groups coordinated at the same market, m = −1 or
m = 1) and a strongly fragmented state (this state was studied
in [27]; see Fig. 3 there; it is the unique steady state for the
larger r = 0.1 used in [27]). As a global summary statistic of
the shape of the attraction distributions of the two groups of
agents we use the Binder cumulant [39]

B = 1 − 〈�4〉P(�)

3〈�2〉2
P(�)

and plot this over time (see further discussion in [27,37]).
Away from the strongly fragmented state the attraction

FIG. 14. Metastability of the strongly fragmented state and transition to the weakly fragmented state: dynamical evolution of a system
with N = 2000 agents using (r, 1/β ) = (0.05, 0.16), with preferences for buying (p(1)

B , p(2)
B ) = (0.8, 0.2), and market parameters (θ1, θ2 ) =

(0.3, 0.7). (a) Evolution of Binder cumulants of the two attraction distributions of the two agent groups [buyers (green) and sellers (orange)].
Dashed lines are theoretical predictions for the strongly fragmented steady state (dark violet denotes equal for both groups) and weakly
fragmented state (green and orange for the two groups). (b) Attraction distributions predicted from theory for the weakly fragmented steady
state (solid line) compared to simulation data at t = 500 (histogram).
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FIG. 15. Lifetime of strongly fragmented state for different system sizes N . (a) Binder cumulant time series (averaged over the two agent
groups for compactness) along with the N → ∞ theoretical prediction for the strongly fragmented state (dashed line), showing an increase of
lifetime with N . 1/β = 0.15 while the other parameters are as in Fig. 14. (b) Autocorrelation function of single agent attraction differences
C(t ) = 〈[�i(τ ) − �(τ )][�i(τ + t ) − �(τ + t )]〉. The single agent autocorrelation time is essentially N independent.

distributions of the two groups are not related by a symmetry,
so we plot their Binder cumulants separately.

Figure 14 shows that the system quickly reaches the
strongly fragmented state, with the Binder cumulants being
close to the theoretically predicted value; the slight deviation
can be attributed to the finite population size. The dynamics
then branches off from the theoretical prediction at t ≈ 50,
showing that the strongly fragmented state is, for finite N ,
only metastable. The departure is led by one of the agent
groups and reaches one of the theoretically expected weakly
fragmented states at t ≈ 500, as shown in Fig. 14 by the
agreement of both the relevant Binder cumulants [Fig. 14(a)]
and the full attraction distributions [Fig. 14(b)].

We proceed in Fig. 15(a) to analyze the lifetime of the
strongly fragmented steady state in more detail. The figure
displays Binder cumulant time series for different population
sizes at the learning parameters (r, 1/β ) = (0.05, 0.15) and
shows that the lifetime increases with system size (we have
not analyzed the N dependence in detail; in the range shown
it is approximately linear). We can compare this with the
time correlations of the attraction difference � for individual
agents: Fig. 15(b) graphs this correlation function, measured
from the point in time when the strongly fragmented state is
first reached. One sees clearly that the single agent correlation
time is essentially independent of N , while the lifetime of the
strongly fragmented state grows significantly with system size
N . The conclusion is that strong fragmentation is a long-lived
state of the population for large N , within which single agents
effectively “equilibrate” by losing all memory of their initial
preferences.

In Fig. 16 we move to the r dependence of the lifetime
of the strongly fragmented state, showing Binder cumulants
for a small system N = 200 for different r values at fixed
1/β = 0.15. For all values of r, rapid initial convergence to
the strongly fragmented state is observed. Within this state
the Binder cumulants depend weakly on r (as has been noted

previously [27]), reflecting the r dependence of the attraction
distributions. The lifetime of the strongly fragmented state,
set by the decay of the Binder cumulant to lower values,
increases with r. This is consistent with the results of Fig. 13,
which showed that above some β-dependent threshold value
for r the strongly fragmented state is the only steady state
and thus must be stable, corresponding to an infinite life-
time. For the value β = 1/0.15 in Fig. 16, theory predicts
this threshold to be r ≈ 0.055. Numerically, we see that the
strongly fragmented state has a finite lifetime up to r = 0.07,
presumably due to finite population effects for the relatively
small N = 200 used in the simulations presented in the figure.

We find qualitatively the same features as above also in
numerical simulations of the dynamics of a system of indeci-
sive traders, with populations first reaching a long-lived (for
large N) strongly fragmented state and eventually decaying

FIG. 16. Binder cumulant time series for different learning rates
r at the fixed intensity of choice 1/β = 0.15. All parameters are
as in Fig. 14, except for the smaller population size N = 200 and
r as shown. The lifetime of the strongly fragmented state lifetime
increases with r, eventually becoming infinite when this state is the
only steady-state solution.
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into a partially fragmented state. This is the behavior when
such multiple steady states are predicted by our theory, i.e.,
for small r; for larger r (above rc ≈ 0.02; see Fig. 13) strong
fragmentation is the only steady state. Quantitatively, we find
that where strong fragmentation is metastable its lifetimes are
significantly longer than for the decisive traders, exceeding
our maximal simulation times of 106 trading rounds (t =
20 000) for the largest r < rc.

We comment finally on the role of initial conditions. In
the dynamical simulations shown so far we used for these
P(�|pB ) = δ(�), corresponding to the reasonable assump-
tion that the agents have no initial preference for either market.
We also explored Gaussian initial distributions for the attrac-
tion differences, P(�|pB ) = N (μ, σ 2). Where there is only
a single steady state we then find, as expected, that this state
is reached irrespective of the chosen initial condition. On the
other hand, where the theory predicts multiple steady states,
the initial conditions do matter. We observe that the metastable
strongly fragmented state continues to be reached whenever
the mean initial attraction difference |μ| is small enough,
irrespective of the standard deviation σ . As |μ| is increased
we see that the dynamics “misses” the metastable strongly
fragmented state and rapidly moves to a final weakly or
partially fragmented state. This is consistent with the intuition
that these states break the symmetry between markets, and
hence are favored when the population already starts off with
an overall initial preference for one of the markets.

VI. DISCUSSION AND CONCLUSIONS

In this paper, our aim was to investigate the existence
of coordinated and fragmented steady states in a system of
agents choosing adaptively between two markets. We focused
primarily on the long memory limit, where the transition to
fragmentation is sharp. We first studied two traders who learn
how to coordinate at a market and maximize their average
return even though one of them will necessarily earn less.
Moving to a four-player system, we observed fragmentation
in addition to coordination. Interestingly, we found that co-
ordinated and fragmented states lead to the same average
population return for high intensity of choice β, in spite of the
presence of two different types of agents (buyers and sellers).
In the coordinated state one of the agent types will always earn
less, while in the fragmented state both types have the same
average, but one agent from each group is less satisfied. Thus,
at the fragmented state, average returns do not discriminate
between types of agents.

We then introduced a general method for determining
the type and number of steady states in the limit of large
populations with long memory. This can be done in our setup
with only a single order parameter per market. After a prelim-
inary analysis for exogenously determined order parameters,
we saw that in the general case a self-consistency criterion
determines the order parameters in the steady state. Analyzing
a quantity analogous to a free energy then allows one to say
whether a population (or one of its groups) is fragmented and
whether this fragmentation is strong or weak.

Already for small system sizes we noticed that the agents’
preference for buying pB is an important system parameter.
Not only does it influence the critical intensity of choice β on

pB for the onset of fragmentation, but for N � 4 it also qual-
itatively affects the nature of the steady states. This remains
true also for the N → ∞ limit, where we find a rich variety of
steady states in the (β, pB ) diagram, in spite of the simplified
nature of our models for markets and traders. These include
market coexistence, where both markets attract both types of
traders (S,S) and where market–trader specialization occurred
(W,W) (uncoordinated weakly fragmented state for moder-
ately indecisive traders); single market dominance (W,W)
(coordinated weakly fragmented states); market indifference
(U,U) (e.g., for low β); and general vs specialized markets
[e.g., (U,S), where a single market attracts both groups of
agents while the other can be viewed as specializing towards
only one group]. Interestingly, all these different steady states
arise without imposing any heterogeneity onto the agents (in
contrast to assumptions elsewhere [23]) and fragmentation
is the preferred state even when the markets have identical
properties (contrary to views expressed in [2,18]).

To interpret our results for the prevalence of fragmentation
more broadly we can draw on the work of Cheung and Fried-
man [40], who used evidence from behavioral game theory
to suggest that values of β are consistent across games but
increase in more informative environments. The authors also
argued that a parameter closely analogous to r increases with
the trustworthiness of information in the system. Bearing in
mind the results shown in Fig. 13, where for large r and large
β the only steady state is the fragmented one, this suggests
that more informative environments, or ones where informa-
tion is more trustworthy because of, e.g., stability over long
timescales, might naturally lead to fragmented states. The
prevalence of the strongly fragmented state is clear also from
Fig. 11, which shows that this state exists for all populations
with groups symmetrically biased towards buying and selling,
respectively.

One of the nontrivial predictions of our theory is the
existence of partially fragmented states, where one group of
agents (e.g., those who have a preference for buying) frag-
ments while the other (where agents prefer to sell) does not.
We saw that the region in the phase diagram where such states
appear increases with N for indecisive traders and shrinks for
decisive traders (compare Fig. 5 for N = 4 and Fig. 11 for
N → ∞).

We studied also the average population returns achieved
by agents in the various steady states. For large populations
we saw that the coordinated weakly fragmented steady state
leads to the highest population average returns, even though
one agent group earns less in that state. We also noticed that
such steady states, which essentially represent coordination
at a single market when r → 0, lead to the same average
payoff for large β as for random agents (β = 0). This is
because coordination at a single market, just like random
market choice, leads to the same number of buyers and sellers
at a single market and thus the same number of successful
trades and average returns. Interestingly, this shows that weak
learning (finite β) leads to lower returns, e.g. not choosing
the strictly best trading venue (in terms of returns) can be
worse for an agent than random guessing. This behavior is
rather similar to the J-curve effect studied in [41,42] where,
in the context of trading agents with different information
levels, moderately informed agents earn less from higher
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informed agents but also from uninformed, randomly trading,
agents.

Finally we investigated, by means of numerical simula-
tions, how the theoretically predicted steady states appear
in the dynamics of finite agent populations. If the agents
start as “blank canvasses” (without initial market preference),
we found that the adaptation process always leads to the
strongly fragmented state first. This state is metastable, with a
lifetime that grows large with population size, and the system
eventually settles into one of the weakly fragmented states.
This remains true even if there is scatter in the agents’ initial
preferences, while a systematic initial bias towards one of
the markets can cause the dynamics to miss the metastable
strongly fragmented state. To put this result into more intuitive
terms, two markets that enter into competition to attract on
average indifferent traders will always exhibit a period of
coexistence in a strongly fragmented state (and if r > rc this
coexistence will last indefinitely), whereas if the population
is not indifferent initially then a market monopoly will arise
much more quickly.
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APPENDIX A: DETAILS OF THE FOKKER-PLANCK
DESCRIPTION

In this Appendix we provide some of the explicit ex-
pressions appearing in the Fokker-Planck description of our
market choice model. As per definitions of bid and ask dis-
tributions and score assignments, defined in the discussion
of trading strategies of Sec. II, the return distributions for an
agent choosing a market m and an order type B or S are

P(S|m,B) = QBmTBm
1

QBmσb

√
2π

exp

(
− [S − (μb − πm)]2

2σ 2
b

)
θ (S) + δ(S)(1 − QBmTBm),

P(S|m,S ) = QSmTSm︸ ︷︷ ︸
agent trades

1

QSmσa

√
2π

exp

(
− [S − (πm − μa)]2

2σ 2
a

)
θ (S)︸ ︷︷ ︸

non-negative return

+δ(S) (1 − QSmTSm)︸ ︷︷ ︸
agent does not trade

.
(A1)

(Note that in statements of these distributions in previous
publications [27], μa and μb were omitted due a typographical
error.) When agents have fixed buying preferences pB, their
return distribution is then dependent only on the chosen
market m:

P(S|m) = pBP(S|m,B) + (1 − pB )P(S|m,S ).

The probabilities that an order is valid Qγ are given by

QBm = 1

σb

√
2π

∫ ∞

πm

db exp

(
− (b − μb)2

2σ 2
b

)
,

QSm = 1

σa

√
2π

∫ πm

−∞
da exp

(
− (a − μa)2

2σ 2
a

)
and can be expressed in terms of error functions [37].

The transition kernel between two states � and �′ of an
agent with buying preference pB is

K (�′|�, pB ) =
∫

dS
1∑

m=−1

[pBP(S|m,B)

+ (1 − pB )P(S|m,S )]P(m|�)

× δ(�′ − mrS − (1 − r)�). (A2)

The resulting drift and diffusion terms for small r are dis-
cussed in detail in [37]; here (Fig. 17) we provide plots cor-
responding to Eqs. (12) and (13), evaluated at three different
sets of market order parameters for illustration. We consider
the value β = 1/0.265 for the intensity of choice, in order to
match Fig. 9(c). The three sets of market order parameters all

lie on a horizontal line (D−1 = −1), while D1 is changed so
that the order parameters lie in the unfragmented, the weakly
fragmented, or the strongly fragmented region, respectively.
Plots in Fig. 17(a) illustrate market conditions leading to
an unfragmented distribution; there is a unique solution of
M1(�|pB, Tγ ) = 0, corresponding to the unique free energy
minimum [calculated from Eq. (15) and shown in the bottom
row of the figure]. Both are marked by a circle. Figure 17(b)
illustrates the weakly fragmented case, where there are three
zeros of the drift term (two stable fixed points and one unsta-
ble one), corresponding to two minima of the free energy; as
the minima are at different heights, the resulting (steady-state)
distribution of � will become concentrated around the lowest
minimum for r → 0, as discussed in the main text. Finally,
the case shown in Fig. 17(c) has two equal minima of the free
energy and thus represents a strongly fragmented scenario.
Note that the diffusion term M2(�) is in all three cases of
order unity and does not affect the number of free energy
minima; it only makes a quantitative contribution to the free
energy and hence to P(�|pB, Tγ ).

APPENDIX B: ALGORITHMIC REMARKS

The method of finding all steady-state solutions by iden-
tifying loci of self-consistent market order parameters is
the best way to exhaust market order parameter space and
thus to find all the solutions for the finite r. By identifying
the domains where these solutions lie, we can also fully
characterize the solution at nonzero r, obtaining information
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FIG. 17. Drift M1(�) (top), diffusion M2(�) (middle), and free energy f (�) (bottom) functions for a subgroup with preference for buying
pB = 0.8. Function plots illustrate three qualitatively different conditions for the following pairs of market order parameters: (a) (D1, D−1) =
(1, 1), unfragmented region; (b) (D1, D−1) = (1.1, 1), weakly fragmented region; and (c) (D1, D−1) = (1.15, 1), strongly fragmented region.
Market biases are set to the standard values (θ1, θ−1) = (0.7, 0.3). All functions are evaluated at the intensity of choice β = 1/0.265.

about the limit r → 0 by extrapolation. However, this method
is numerically demanding as for every point in order pa-
rameter space we need to find a steady-state distribution
(its normalization usually takes most of the processing
time) and recalculate the corresponding order parameters.
Checking what corrections arise for r → 0 takes additional
time. We describe numerically less demanding alternatives
below.

Population with homogeneous market preferences. We have
seen that, depending on system parameters, the attraction
distribution for a group of agents can be unimodal in the
r → 0 limit (U and W states). These states represent a pop-
ulation where the market preferences within the group are
homogeneous. This realization offers a straightforward way
to find all the states of this type for any system parameter. The
demand-to-supply order parameters simplify to

Dm = p(1)
B

∫
d�σβ (m�)P(�|p(1)

B ) + p(2)
B

∫
d�σβ (m�)P(�|p(2)

B )

(1 − p(1)
B )

∫
d�σβ (m�)P(�|p(1)

B ) + (1 − p(2)
B )

∫
d�σβ (m�)P(�|p(2)

B )
= p(1)

B σβ (m�(1) ) + p(2)
B σβ (m�(2) )

(1 − p(1)
B )σβ (m�(1) ) + (1 − p(2)

B )σβ (m�(2) )
,

(B1)
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where in the right hand side we have used 〈σβ (�)〉 =
σβ (〈�〉), a relation that is exact in the r → 0 limit where the
steady-state distribution is a δ distribution centered at �(g).
To identify these peak positions we find the zeros of the first
jump moment M1 as defined in Eq. (12), taking into account
the dependence of Dm on the attraction difference �(g) in
each group. This means that when searching for a steady state
in which both groups of traders have homogeneous market
preferences, we need to solve the peak position equations for
the two groups simultaneously:

M (1)
1

(
�(1)

∣∣p(1)
B , Dm(�(1),�(2) )

) = 0,

M (2)
1

(
�(2)

∣∣p(2)
B , Dm(�(1),�(2) )

) = 0. (B2)

Every solution (�(1)∗,�(2)∗) found in this way needs to be
checked for consistency with the initial assumption of homo-
geneous market preferences, i.e., the market order parameters
corresponding to every solution pair need to belong to the
unfragmented or weakly fragmented solution domain. This is
done by calculating the corresponding order parameters Dm

from Eq. (B1) and finding the free energy corresponding to
these order parameters. If the global free energy minimum
is centered at �(g)∗ the solution is consistent with our initial
assumption and we have found a (homogeneous) population
steady state. Depending on the signs of �∗, we classify such
steady states further as either coordinated for �(1)∗�(2)∗ > 0
or uncoordinated for �(1)∗�(2)∗ < 0. For any finite intensity
of choice β, a single agent can of course choose another
market even if the state is categorized as coordinated at market
1, but the categorization is exact for the β → ∞ limit.

In the second case study (pB = 0.55), the continuation of
the low-β fixed point is a solution we can consistently find by
this method for a wide range of intensities of choice, much
wider than when the groups have more pronounced buy and
sell preferences. Crossing the dark violet line in the phase
diagram (Fig. 11), the new fixed points that arise all turn out to
be inconsistent with the homogeneous population assumption
until very high intensities of choice. This is why we need
to employ different techniques to find the other solutions
presented in Fig. 10. Only when the intensity of choice is
increased further do partially fragmented states cease to exist,
and solutions consistent with the homogeneous population
assumption return.

Strongly cofragmented state (S,S). To find if these states
exist we apply a procedure based on a Maxwell construction
argument outlined in Sec. IV A and in [37] for a population
consisting of a single group. For each group we define a
locus in the space of order parameters (D1, D2) for which the
strong fragmentation condition (8) is satisfied. If there is an
intersection (D∗

1, D∗
2 ) between the two loci there are market

demand-to-supply ratios in which both groups favor a strongly
fragmented state. We finally need to confirm that the two order
parameters can be created if only the two fragmented groups
trade on the markets. If we assume the strongly fragmented
distributions are of the form

P
(
�

∣∣p(g)
B

) = ω(g)δ
(
� − �

(g)
1

) + (1 − ω(g) )δ
(
� − �

(g)
2

)
,

then the corresponding order parameters are

Dm = NBm

NSm
,

Dm = p(1)
B

[
ω(1)σβ

(
m�

(1)
1

) + (1 − ω(1) )σβ

(
m�

(1)
2

)] + p(2)
B

[
ω(2)σβ

(
m�

(2)
1

) + (1 − ω(2) )σβ

(
m�

(2)
2

)](
1 − p(1)

B
)[

ω(1)σβ

(
m�

(1)
1

) + (1 − ω(1) )σβ

(
m�

(1)
2

)] + (
1 − p(2)

B
)[

ω(2)σβ

(
m�

(2)
1

) + (1 − ω(2) )σβ

(
m�

(2)
2

)] . (B3)

If there are weights ω(g) ∈ [0, 1] corresponding to the
intersection point (D∗

1, D∗
2 ), then the strongly fragmented

state exists. These states leave both markets equally active
and as we showed in the discussion in Sec. V they entail
benefits for the population as a whole, not favoring any of the
symmetric groups.

Partially fragmented states. Finally, we outline a procedure
to find a population steady state that is a combination of
a bimodal (S) state in one group and a unimodal (U or
W) state in the other, for r → 0. A starting point for this
search can be obtained by solving the homogeneous popu-
lation equations (B2). When one of the groups is consistent
with the homogeneous population assumption while the other
is not, we can investigate whether the strongly fragmented
solution for this other population exists. To find these states,
we assume that the group that is inconsistent with a given

homogeneous population solution is in the fragmented state.
Thus possible order parameters for this state are on the locus
defined by the Maxwell construction. For every pair (D1, D2)
from the fragmented state locus we investigate the free energy
of the second group (whether it is unfragmented or weakly
fragmented). We find the peak position and represent the
attraction distribution as a unimodal distribution centered at
the (global) free energy minimum. We only need to examine
whether by peak weight redistribution of the strongly frag-
mented group we can retrieve the initial order parameters
(D1, D2). When this is possible, the partially fragmented
state exists. In the example shown in Fig. 10, due to mild
buy and sell preferences, when one of the groups is frag-
mented there are two unfragmented options for the second
group, corresponding to specialization to either of the two
markets.
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Abstract

In order to investigate how high school students and researchers perceive science-related

(STEM) subjects, we introduce forma mentis networks. This framework models how people

conceptually structure their stance, mindset or forma mentis toward a given topic. In this

study, we build forma mentis networks revolving around STEM and based on psycholinguis-

tic data, namely free associations of STEM concepts (i.e., which words are elicited first and

associated by students/researchers reading “science”?) and their valence ratings concepts

(i.e., is “science” perceived as positive, negative or neutral by students/researchers?). We

construct separate networks for (Ns = 159) Italian high school students and (Nr = 59) inter-

disciplinary professionals and researchers in order to investigate how these groups differ in

their conceptual knowledge and emotional perception of STEM. Our analysis of forma men-

tis networks at various scales indicate that, like researchers, students perceived “science”

as a strongly positive entity. However, differently from researchers, students identified

STEM subjects like “physics” and “mathematics” as negative and associated them with

other negative STEM-related concepts. We call this surrounding of negative associations

a negative emotional aura. Cross-validation with external datasets indicated that the nega-

tive emotional auras of physics, maths and statistics in the students’ forma mentis network

related to science anxiety. Furthermore, considering the semantic associates of “mathemat-

ics” and “physics” revealed that negative auras may originate from a bleak, dry perception

of the technical methodology and mnemonic tools taught in these subjects (e.g., calculus

rules). Overall, our results underline the crucial importance of emphasizing nontechnical

and applied aspects of STEM disciplines, beyond purely methodological teaching. The

quantitative insights achieved through forma mentis networks highlight the necessity of

establishing novel pedagogic and interdisciplinary links between science, its real-world com-

plexity, and creativity in science learning in order to enhance the impact of STEM education,

learning and outreach activities.
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Introduction

Increasing evidence indicates that many students develop a negative perception of STEM sub-

jects before ending high school [1–3]. Mathematics is viewed as a difficult subject, physics is

perceived as too abstract, and statistics is often considered an uninterpretable black box [3, 4].

A growing disinterest of students towards Science, Technology, Engineering and Mathematics

(STEM) disciplines represents an unseen societal cost, as it translates into a lower interest in

pursuing technological and scientific careers which are increasingly found to positively corre-

late with job growth, higher employment rates, societal innovation through functional literacy

and economic development [5, 6]. Before addressing students’ (mis)perception of STEM sub-

jects, educators and policymakers first need to understand the detailed nature of the students’

opinions and beliefs about science.

With this aim, this paper capitalizes on an innovative combination of methods from net-

work science and cognitive science to examine the perception of STEM subjects among a

population of students and another population of researchers. Specifically, we introduce the

methodology of forma mentis networks (FMNs), which represent the associative structure of

concepts as well as their valence, and show how FMNs can be harnessed to study a popula-

tion’s stance toward a given topic.

Forma mentis networks are constructed from language data. Linguistic information, such

as text or speech, often conveys the opinion or attitude of an individual towards a given entity

[7, 8], e.g., a human reading a blog can understand which posts are in favor or against a given

political view. However, stance detection, i.e., detecting the stance of an individual or popula-

tion from language [9, 10], is not an easy task.

In the past few decades, stance detection has spurred research at the interface of psycholin-

guistics and computer science, which has led to the development of a variety of methodologies

through the human coding of grammatical features of text [9, 11], e.g. the use of specific

adverbs or writing styles. Such approaches are centralised, in that they require a human coder,

e.g. a linguist, to parse the input and detect the features that are important for the identification

of the author’s stance.

Centralised human coding cannot deal with the large volumes of linguistic data that are

increasingly available, for instance from social media platforms [12]. This motivated the devel-

opment of automatic techniques for detecting stance based on computer science approaches

such as machine learning [10, 13, 14]. A notable example is a recent approach by Mohammad

and colleagues [14], who deployed machine learning of sentiment features and word embed-

dings for successfully detecting the stance of individual messages from social media. The

results of Mohammad and colleagues clearly show that stance detection is not the same as sen-

timent analysis. Sentiment analysis determines the specific affect valence of a given piece of lin-

guistic data, i.e. how universally positive/negative/neutral are the concepts elicited by a given

portion of text. Instead, stance emerges at a higher level as a non-trivial combination of differ-

ent patterns of affect and sentiment. For example, the sentence “The dictator who killed my

relatives has been finally executed” includes concepts of negative sentiment (e.g. dictator,

executions, etc.), but nonetheless elicits a positive stance towards the execution itself. It is

important to underline the additional complexity of stance in comparison with sentiment, as

affective patterns in the language need to be integrated with additional contextual information

before achieving an accurate classification of stance itself [14].

Although machine learning approaches are powerful in underlining the different psycho-

logical dimensions of stance in terms of context and sentiment [14], these automatic tech-

niques have at least two limitations: (i) performance depends on the availability and

quality of large-scale annotated training data, and (ii) machine learning builds “black-box”
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representations of data that cannot be directly accessed or interpreted. Due to these two ele-

ments, supervised learning approaches to stance detection are not yet widespread in the cogni-

tive sciences, although they represent an interesting and powerful perspective for future work.

Beyond supervised learning, network models stand as a promising avenue to the investiga-

tion of cognitive and linguistic data, leading to the emergence of the field of cognitive network

science [15]. Network models of language are often interpreted as descriptive representations

of themental lexicon, a repository of linguistic and semantic knowledge in human memory

[7]. Decades of research in psycholinguistics has shown that the mental lexicon is not a static

list of words, e.g. a dictionary, but it rather is a dynamical system optimized for cognitive com-

puting which stores and processes individual concepts together with their associated linguistic

data, e.g. semantic overlap in meaning [16], phonological similarities [17, 18], syntactic rela-

tionships between word categories [19]. Psycholinguistic evidence has shown that the associa-

tive structure of the mental lexicon influences language processes such as word learning [20–

22] and processing [16, 23–25]. This strong link between mental lexicon structure and lan-

guage usage promoted the use of network models for a variety of processes such as the discov-

ery of writing styles and text authorship from word co-occurrences in texts [26, 27], improving

the accuracy of clinical diagnosis of Alzheimer’s Disease risk [28], modelling and understand-

ing the success rates of picture naming in people with aphasia [29], predicting the creativity of

individuals [30–32], their curiosity [33, 34], their openness to new experience [35], their exper-

tise in a given domain [36, 37] and their perceived anxiety toward a topic [38]. Forma mentis

networks rely on the framework of cognitive network science to represent the associative and

emotional structure of concepts in the mental lexicon.

One of the main ingredients of FMNs is free association data to specify the connections

between concepts. Indeed, free associations represent a powerful and meaningful way of build-

ing network models of the mental lexicon [23–25, 31]. Free associations are obtained empiri-

cally from experiments where participants have to produce associates when primed with a cue

word. Hence, free associations are largely free from any specific semantic definition (e.g., syno-

nyms). Previous work [19, 20] has shown that free associations partially overlap with other

semantic word-word similarities such as synonyms (i.e., two words sharing the same meaning

in a given context) or generalisations (i.e., a concept being a special type of another word) but

also display a small overlap with phonological similarities among words (e.g., when pronuncia-

tions differ in one phoneme).

Forma mentis networks combine free associations with affective patterns of concepts. In a

FMN, nodes represent concepts or words, links indicate free associations provided by a given

population and every node has a valence attribute [39–41] that represent how the population

perceives a given concept or word (positive, negative, or neutral). Recent psycholinguistic

evidence has shown that the emotional valence of words influences language processing and

memory [41, 42], highlighting an important link between affect and the cognitive mechanisms

of language processing in the mental lexicon. Therefore, representing knowledge and senti-

ment combined in a forma mentis network gives access to the structure of the aggregated men-

tal lexicon and affect of a given population.

We emphasize that the addition of valence attributes and the adoption of free associations

makes forma mentis networks different from conceptual maps [43–46], which represent

important network models of knowledge acquisition and structuring during learning but do

not incorporate information about how learners perceive individual conceptual units. Another

difference is that conceptual maps are often based on concept co-occurrence in a syllabus and

therefore capture temporal information [46], which is not present in a forma mentis network.

Notice that forma mentis networks rely on free associations, which capture the associative

structure of semantic memory [23–25] through an empirical assessment of which concepts
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quickly remind of each other. Hence, these associations mirror memory patterns and are

“free” from basic communication demands in sentences, such as the need to link words

according to specific syntactic rules [25]. This aspect makes free associations qualitatively

different from other types of word-word relationships like word co-occurrences or syntactic

dependencies [27] which rather capture syntactic relationships (e.g., a verb being related to a

noun). In quantitative terms, co-occurrences and syntactic dependencies can be derived auto-

matically from written corpora, whereas free associations usually require a behavioral experi-

ment. Furthermore, it is important to underline that free associations might overlap with

syntactic dependencies but also comprise a wider variety of conceptual associations [7, 23, 25],

ranging from sound similarities to meaning overlap, from visual similarity to semantic feature

sharing. Forma mentis networks build on this richness of associative knowledge for represent-

ing the mindset or forma mentis of groups of individuals.

In this paper, we investigated the attitude of students and researchers towards science and

STEM subjects through this innovative combination of tools from psycholinguistics and net-

work science to quantify their stances toward STEM subjects. Through the comparison of the

FMN of students and research professionals, we provide quantitative evidence for sharp differ-

ences in the perception of STEM among the two different groups. Specifically, the combina-

tion of conceptual associations and affect patterns allowed us to identify and paint a richer

picture of the disaffection towards mathematics and physics exhibited by students and absent

in STEM professionals.

Methods

Participants

We collected data from 159 students and 59 researchers. Students were selected from three

different Italian high schools, without consideration of their grades in STEM subjects. All stu-

dents were in their final year of high school, with ages ranging between 18 and 19 years (mode:

18 years). In order to build a sample representative of the national Italian student population

in high schools, entire classes were selected for testing, to ensure a mixture of socio-economic

backgrounds and STEM proficiency levels. Participants were roughly evenly distributed

between female (53%) and male (47%) students.

Researchers were selected from large-scale international workshops because of the necessity

of physically interviewing large numbers of experts at once. Our selection focused on early

career scientists, which included doctoral students and post-doctoral researchers, with the

aim of including as many diverse backgrounds as possible. We focused our selection towards

researchers applying quantitative tools originating in the fields of mathematics, physics and

computer science to study emerging phenomena in complex systems ranging from biological

to socioeconomic systems. Hence, all the interviewed researchers possessed advanced training

and expertise in STEM and were actively pursuing a professional career in science. The age of

the interviewed researchers ranged between 24 and 39 years, with a mode of 29 years. Partici-

pants were roughly evenly distributed between male (56%) and female (44%) researchers.

Cognitive tasks

Each participant took part in a survey composed of two tasks: (i) a free association task and (ii)

a valence evaluation task. Participants were given precise instructions about the study before

proceeding. Participants were then asked to provide informed consent if they agreed to take

part in the study by signing a consent form that described essential points about privacy and

ethics. All consent forms were gathered at the end of the study and are available upon inquiry

to the first author.
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In the free association task, each participant was presented with a list of 50 cue words.

In order to investigate attitudes toward key STEM subjects, 10 out of the 50 cue words were

present in all participants’ lists. These words were:mathematics, complex, physics, chemistry,
system, biology, life, art, school and university. In Italian, these words were translated as:mate-
matica, complesso, fisica, chimica, sistema, biologia, vita, arte, scuola and università. Although

“art” is not a STEM subject, its inclusion in the list of essential words was meant to provide

some comparison between the humanities and technical subjects. Additionally, adding art to

the list of essential words provides a way to probe students’ perception of connections between

STEM subjects and creativity, a link that has been investigated in previous studies about atti-

tudes towards STEM [3]. The other 40 cue words were drawn at random from a subsample of

STEM-focused 390 words. The pool of 390 potential cue words was obtained by considering

the highest frequency non-stop words from the Wikipedia webpages about “Complex System”,

“Physics”, “Mathematics”, “Biology”, “Chemistry” and “Psychology” (as accessed on: 15 Janu-

ary 2017).

Participants were randomly assigned to one of the 50 files containing a different random

realisation with 50 of the previously described words. The order of words in each list was

scrambled with the aim of reducing recency effects or other associative biases due to the order

of cues.

In order to obtain denser networks of free associations, we used the continuous free associa-

tion task, which has been shown to provide higher quality data that could account for more

variance in lexical retrieval tasks [23]. In the continuous free association task, each participant

generated three associative responses to each item in the list of 50 cue words. The association

task took place in a lab setting, with each participant filling in electronic forms on a computer

terminal while under supervision. Forms that contained more than 25 percent blank responses

were discarded. This occurred in roughly 2% of the cases. The first three associates in each

form were discarded in order to minimize potential priming effects that might follow the

given instructions. The association task lasted for 10 minutes, followed by a short break.

In the second task, we collected the valence of each cue and for all associations from the

free association task. Participants were asked to rate the valence of each cue and their associ-

ated responses using a Likert scale ranging from 1 (very negative) to 5 (very positive), with

neutrality being represented either by a blank space or by a score of 3. Participants completed

this task in about 10 minutes. Those participants who did not finish the task in 10 minutes left

the remaining spaces blank. Forms that contained more than 25 percent blank responses were

discarded. This occurred in roughly 3% of the cases. Data collection was conducted anony-

mously, such that no demographic or educational data was obtained from the participants and

directly linked to the filled forms.

Data cleaning and network building

Associative responses were converted to lowercase letters and checked automatically and man-

ually for common spelling mistakes. The automatic spell checkers used were based on Google

Translate and Wolfram’s Mathematica 11.3 (manufactured by Wolfram Research, Champaign,

US). Different word forms were manually converted to match their singular forms (e.g. in

English “muscles” was changed to “muscle”) and composite responses were changed to single-

word forms (e.g. in Italian “da dove” was changed to “dove”).

A forma mentis network was constructed such that nodes represented lexical items and

edges indicated free associations between words. Two networks of free associations were con-

structed from the students’ data, one network where only associations provided by at least two

different participants were considered N C
S (filtered) and a second network where no filtering
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was performed N S. Given the considerably smaller sample size of researchers, only a single

unfiltered network of free associations was constructed N R. We note that considering idiosyn-

cratic associations, i.e., associations provided by a single participant, like in N S, is common

practice when working with free association data obtained from small samples [43, 44, 47] and

they are still considered to be insightful of cognitive patterns [48]. Each node in the network

was also assigned a valence score and an attribute (“positive”, “neutral”, or “negative”).

In the remainder of the paper, forma mentis network refers to the network representation

that simultaneously represents conceptual knowledge derived from free associations and

the emotional perceptions of those concepts among a given population (i.e., students or

researchers).

Statistical analysis of word valence

In order to categorize positive, neutral and negative concepts we used a non-parametric statis-

tical test (Kruskall-Wallis test). The statistical test was used to assess whether the scores attrib-

uted to word i, namely wi, had a lower, compatible, or higher median valence as compared to

the remaining distribution of valence scores, in formulas
S
j6¼i wj. Non-parametric testing was

used because the original distribution of valence scores
S
j wj were skewed with a heavy left

tail (Pearson’s skewness coefficient ss = 3(means −medians)/σ = 1.39 for students’ data and sr =

1.45 for researchers). Concepts which had a median valence score lower than the rest, accord-

ing to a Kruskall-Wallis test with significance level α = 0.1, were labelled as negative. Concepts

which had a median valence score higher than the rest, according to a Kruskall-Wallis test

with significance level α = 0.1, were labelled as positive. Remaining concepts were labelled as

neutral.

Defining valence beyond lexical items: Valence “auras”

Valence is a commonly used feature in psycholinguistic models that assesses the sentiment of

a given text [8, 39]. At the word level, the valence of a word represents the positive, neutral, or

negative connotation is elicited by the word in a given population. Hence, valence is a feature

of individual words, and does not further consider the way in which words are associated with

each other.

Combining free associations with their valence in forma mentis networks naturally pro-

vides a way of extending the concept of word valence to a given cluster of associated words.

We introduce the concept of valence aura, which identifies the valence of the immediate neigh-

bors of a word on a network of free associations. A concept has a negative valence aura if the

given concept is associated with more negative concepts than it is associated with positive con-

cepts. On the other hand, a concept has a positive valence aura if the given concept is associ-

ated with more positive concepts than it is associated with negative concepts. The polarity of

an aura is determined by the most frequent valence of words in the neighborhood (following a

majority rule). It is important to note that positively valenced words could have either a nega-

tive or positive valence aura, and negatively valenced words could have either a negative or

positive valence aura. Hence, valence auras provide us with a way of juxtaposing or contrasting

sentiment polarities with consideration of the structural organisation of knowledge beyond

how individual concepts are valenced in isolation.

We use the methodology of valence auras to investigate potential differences in the way that

students and researchers structure their conceptual knowledge and the role of the perceived

valence of those concepts. Firstly, within a given population, it would be interesting to assess

the tendency of positive concepts to be associated with other positive concepts (i.e., to have a

positive valence aura), and equivalently for negative concepts (i.e. negative concepts with other
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negative ones). This would bolster the idea that sentiment polarities of individual words have

the potential of influencing the structural organisation of semantic memory. Secondly, and

more importantly, there might be different tendencies to surround positive concepts with posi-

tive or negative auras between students and researchers. Differences in the mixing of (individ-

ual) word valence and word auras between the forma mentis networks of different populations

could potentially highlight important differences in the organisation and perception of knowl-

edge between such populations.

Validation of the definition of auras through additional psycholinguistic

data

In order to validate our operationalization of valence auras and the valence ratings collected

in the present study, we used external datasets of word valence for comparison. For English

words in the researchers’ forma mentis network, we used the affective ratings by Warriner and

colleagues [40], whereas for Italian words in the students’ forma mentis network we used the

valence norms recently gathered by Fairfield and colleagues [49]. Kendall tau correlation tests

indicate that in both cases there is a statistically significant positive correlation (at α = 0.1)

between the mean valence scores collected in the current study and the ones obtained from

previous investigations (for students: τ = 0.51, p< 10−5; for researchers: τ = 0.38, p< 10−5).

For students, the dataset by Fairfield et al. contained valence scores for only 491 of the 4483

words in the Italian unfiltered forma mentis network. For researchers, the overlap between

our dataset and Warriner and colleagues’ was higher, covering 1173 of the 1616 words in the

English unfiltered forma mentis network.

In the following, we will not use directly the mean valence scores gathered from students

or researchers but rather valence attributes (i.e., positive, neutral, or negative) to define the

valence auras of words. In the results section, we will show that our retrieved valence attributes

are compatible with the valence scores obtained by other studies.

Results

Network structure and valence identify auras, which in turn identify words

of extreme valence and arousal

The operationalization of valence auras as reported in the Methods section combines network

structure with the valence of individual words. Does this combination of topological and

valence information provide further insights into students and researchers’ perception of

STEM subjects? In order to answer this question, we compared the mean valence and arousal

scores from external psycholinguistic datasets (cf. Methods) of negative words with either posi-

tive or negative auras, and positive words with either positive or negative auras. Recall that

auras were defined by using the valence ratings and network structures obtained from the cog-

nitive tasks described above, whereas mean valence scores come from external sources (i.e.,

the Fairfield [49] and Warriner [40] databases).

Fig 1 reports the mean valence and arousal of words from the students’ forma mentis net-

work. In the students’ FMN, negative words surrounded by a negative aura have a lower mean

valence (based on an external dataset, cf. Methods) as compared to negative words surrounded

by any aura. This difference was statistically significant at the 0.1 significance level α (Kruskal-

Wallis, N = 116, s = 2.8994, p = 0.088). The difference in mean valence between positive words

surrounded by any aura and positive words surrounded by a positive aura was not statistically

significant at the α = 0.1 level (Kruskal-Wallis, N = 238, s = 2.2891, p = 0.1314). The forma men-

tis network of students also highlighted an interesting difference in the mean arousal of negative
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words surrounded by a negative aura as compared to negative words surrounded by any aura

(cf. Fig 1, left plot). Negative words surrounded by a negative aura elicited a stronger arousal as

compared to negative words surrounded by any aura, and the difference was statistically signifi-

cant at the α = 0.1 level (Kruskal-Wallis, N = 116, s = 2.7338, p = 0.0984). A threshold of 0.1 was

chosen in order to cope with the limited overlap of our data with the external databases.

The above differences suggest that negative auras correspond to a boosted arousal when

surrounding words of negative valence. Positive words did not elicit any analogous difference.

No statistically significant difference was found among words in the researchers’ forma mentis

network.

These results indicate that in the organisation of STEM-related concepts as represented by

the forma mentis network, negative concepts surrounded by a negative aura are in general per-

ceived as more negative and elicit higher arousal than concepts surrounded by any aura. Since

the arousal scores might be a by-product of valence in rating experiments [41], negative words

surrounded by a negative aura represent negative concepts that can activate or be activated by

other negative concepts and thus lead to an increase in arousal and emotional intensity. The

above analysis presents quantitative evidence showing that our operationalization of valence

auras of an individual word’s direct neighbors in an associative network can highlight addi-

tional affective patterns that valence scores of individual words cannot.

The unfiltered forma mentis network of researchers is smaller, less connected and has fewer

negative words than the students’ forma mentis network. Hence, no significant differences

were found at the α = 0.1 level of significance (Kruskal Wallis, for positive words: s = 1.0674,

p = 0.3033; for negative words: s = 0.0574, p = 0.8119). We hypothesized that this is due to the

forma mentis network of researchers lacking the resolution or power to detect distinct affective

patterns.

Forma mentis networks show assortative mixing of word valence

As described above, in a forma mentis network, each word has a valence attribute (e.g. “posi-

tive” or “negative”). Links represent associations between two concepts but also between their

respective valence attributes (e.g., there can be a link connecting a “positive” concept to a

Fig 1. Valence auras identify more extreme negative words in the students’ population. Mean valence (left plot)

from external psycholinguistic datasets of negative/positive words either surrounded by any valence auras (full colours)

or by the same aura (lighter colours). In the students’ forma mentis network, negative words surrounded by negative

auras are perceived as more strongly negative on average as compared to negative words surrounded by any aura.

Negative words surrounded by a negative aura had higher arousal than negative words with any aura (right plot). No

difference was found for positive words.

https://doi.org/10.1371/journal.pone.0222870.g001
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“negative” concept). Investigating the assortative or disassortative mixing of valence attributes

across network links can shed light on potential trends in students’ and researchers’ structural

and emotional organisation of knowledge.

In the unfiltered network of student associations N S, a Kendall Tau test between the valence

attributes of links’ endpoints reveals a statistically significant positive correlation τ = 0.163,

p< 10−5. This value might indicate that students tend to associate positive (negative) concepts

to other positive (negative) concepts. However, comparison with a reference null model is nec-

essary in order to assess the relative strength of the above correlation and test whether it might

be a direct consequence of either the distribution of node degree or the counts of positive, neu-

tral, or negative attributes. We used as null reference a configuration model fixing both the

empirical degree distribution and the valence attributes of words in the original network but

randomising links. An average Kendall Tau of τr = −0.0001 (p> 0.310) was obtained over 50

independent realisations of the null model. As the empirical correlation τ = 0.163 was several

orders of magnitude larger than random expectation, this indicated that there was a strong ten-

dency for students to associate positive (negative) concepts with other positive (negative) con-

cepts independently of the distributions of either degree or valence attributes. We found a

similar pattern in the way that researchers organised and perceived their STEM knowledge

(empirical Kendal Tau τ = 0.116, p< 10−5, reference null model τr = 0.027, p> 0.112).

Forma mentis networks indicate clustering of word valence and valence

auras

In this section we investigated whether there was a tendency for words to be surrounded by

other words with the same valence. To do this, we attributed arbitrary scores to valence attri-

butes, i.e. −m to negative words, 0 to neutral words and +m to positive words. We usedm = 1

for convenience, although our correlation analysis does not depend on the specific value ofm.

In the students’ forma mentis network N S, a Kendall Tau test between the valence attri-

butes of a word and the average valence attributes of its neighbors revealed a statistically

significant positive correlation τ = 0.385, p< 10−5. With 50 independent realisations of a con-

figuration null model with fixed word attributes and degrees but random associations, we

found an average correlation of τr = 0.053 (p = 0.060). A similar result was found for the

researchers’ forma mentis network N R, where the empirical correlation value (τ = 0.323,

p< 10−5) was considerably higher than random expectation (τr = 0.060,p = 0.056).

Given that the empirical correlations were several orders of magnitude larger than the refer-

ence values, our results showed a tendency for both students and researchers to associate

words of a given valence with auras of the same valence, i.e., negative concepts tend to have a

negative aura whereas positive concepts tend to have a positive aura. This indicates that the

forma mentis networks of researchers and students are on average highly clustered in neigh-

borhoods of words with similar valence attributes. Deviations from this general trend, such as

negative words in the positive aura of a positive word, can be informative of the way in which

a given population perceives STEM subjects.

Forma Mentis networks highlight differing stances towards STEM subjects

In this section we focus our attention on the semantic content of associations. Fig 2 reports

the attribute and aura of the 10 words that were always provided to participants as cues (see

Methods). Positive (negative) words are highlighted in cerulean (red) for both students (top

panel) and researchers (lower panel). Researchers associated STEM-related words with mainly

positive concepts, whereas students associated STEM-related words with both positive and

negative concepts.
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The analysis of individual words reveals that researchers perceived almost all the 10 STEM-

related words as positive concepts. On the other hand, students perceived words such as “com-

plex”, “physics”, “mathematics”, “school” and “system” as negative concepts. Furthermore, the

network structure of forma mentis networks highlighted additional critical differences in the

way that students and researchers attributed positive or negative auras of valence to such nega-

tively perceived STEM words. Specifically, students associated concepts such as “physics” and

“mathematics” to other negative concepts, surrounding STEM words of quantitative disci-

plines with a negative valence aura. The ratio of negative to positive concepts is particularly

high in the case of “mathematics”, where almost 43% of associations were to other negative

concepts. These patterns were absent in the forma mentis network of researchers. This com-

parison suggests that the presence of negative auras attributed to some STEM-related concepts

is not merely a consequence of the network construction but reflects the negative stance that

students have towards quantitative disciplines such as physics and mathematics.

However, it is worth noticing how the data also indicates that students did not perceive all

STEM subjects as negative. In fact, concepts such as “biology” and “university” were perceived

as positive and were surrounded by a positive valence aura in the students’ forma mentis net-

work. This contrast suggests that the aversion of STEM-related concepts might be related to

Fig 2. Valence auras identify a negative stance of students towards specific STEM subjects. Top panel: Fraction of

neighbors of concepts having a positive or a negative average valence. Concepts with positive valence are reported in

blue. Concepts with negative valence are reported in red. Students perceive quantitative scientific subjects such as

Mathematics and Physics negatively. Students also attributed a negative aura to these disciplines, i.e., they associated

Physics mainly with other negative, rather than positive, concepts. The auras of negativity were not aimed towards all

STEM subjects, since biology was perceived as positive and surrounded by an aura of positive valence. Bottom panel:

Valence auras for researchers. Notice that all essential concepts were perceived as positive and surrounded by auras of

positive valence.

https://doi.org/10.1371/journal.pone.0222870.g002
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the quantitative disciplines that underlie the scientific method used in these fields. Fig 3 shows

the neighborhoods of “university” in the filtered forma mentis network of students (left) and

researchers (right). Notice that “university” is perceived as positive and surrounded by other

positive concepts such as “degree”, “study”, “work”, and “specialisation”. Even the word

“researcher” is positively perceived by students, indicating a positive stance towards the gen-

eral concepts of research and education. Importantly, students strongly associated the concepts

of “studying” and “work”, as indicated by the presence of this connection in the statistically fil-

tered FMN. This result suggests that students might be aware of the positive impact of educa-

tion has with respect to future success in the job market [5, 6].

Fig 4 shows the neighborhoods of “physics” (top) and “mathematics” (bottom) in the fil-

tered forma mentis network of students (left) and the FMN of researchers (right). Notice

how concepts such as “physics” or “mathematics” gave rise to mostly negative associations

in the students’ population. The hierarchical edge bundling visualisation implemented in

Mathematica 11.3 highlights that negative associations tend to cluster together, in agreement

with the above clustering analysis. An inspection of the semantic content of the neighbor-

hood for “mathematics” reveals the presence of clusters of negative concepts associated with

the topic of calculus and geometry. Interestingly, most of these negative concepts were con-

crete tools and methodologies used in mathematics (e.g. “algorithm”, “derivative”, “graph”,

“theorem”), rather than abstract, more general terms such as “complexity”. A similar result

holds for “physics” (e.g., “function”, “test”, “integral”). A closer look at the semantic informa-

tion embedded in the negative aura surrounding “physics” and “mathematics” provides pre-

liminary evidence that the negative perception students have of these subjects may come

predominantly from a negative perception of the quantitative tools usually taught in schools.

In other words, the negative aura surrounding “mathematics” or “physics” does not come

from a general negativity towards the whole educational system but rather from specific,

concrete elements of teaching curricula. Improving the appreciation of students towards

these concrete tools (e.g. “algorithm”, “graph”, “function”) might have a beneficial effect on

Fig 3. Neighborhoods in forma mentis networks determine the valence aura of concepts. Examples of the forma

mentis networks in the neighborhood of “university” for students (left) and researchers (right). In a forma mentis

network, nodes have valence attributes, i.e. “positive” (cerulean), “neutral” (grey) and “negative” (red). Links are

weighted based on the number of participants providing a given association between concepts. Links between positive

(negative, neutral, opposing) concepts are cerulean (red, grey, purple). The above examples include only associations

provided by at least two participants. The neighbors surrounding a given word, together with their valence attributes,

constitute the valence aura of that word. Both students and researchers perceive “university” as a positive concept and

surround it with a positive aura.

https://doi.org/10.1371/journal.pone.0222870.g003
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the perception that students have of “mathematics” or “physics”, given the average trend

reported above indicating that positive concepts tend to be surrounded by positive auras.

However, it is important to note that our study by itself cannot either prove or disprove a

causal link about concepts being perceived as positive because of their positive auras and

additional research is required.

However, it is important to underline that although “mathematics” and “physics” displayed

negative auras, in both the unfiltered and filtered forma mentis networks students were able

to associate these subjects to “science”, which is perceived as a positive concept (see also Fig 5).

This link may indicate that students are aware of the importance of quantitative disciplines for

the advancement of science.

Forma mentis networks further highlight the critical negative perception of students

towards “mathematics” and “physics”. As reported in Fig 5, those are the only negative con-

cepts in the otherwise positive valence aura surrounding “science”. This contrast indicates

that, although on a technical level students were aware about the links between quantitative

disciplines and science, they were unable to transfer their positive perception of science to the

building blocks of the scientific method.

Fig 4. Mathematics and physics are perceived differently by students and researchers. The neighborhoods of

“physics” (top) and “mathematics” (bottom) for students (left) and researchers (right). Red links indicate associations

between concepts of negative valence. Stronger, more frequent associations are thicker. Students not only perceive

“mathematics” and “physics” as negative concepts but also surround them with strongly negative auras of valence. This

phenomenon is absent in the forma mentis network of researchers, indicating a critical negative attitude of students

towards STEM quantitative subjects. Notice that for both physics and maths in students the negative aura comes

mainly from clusters of specific concepts relating to specific tools (e.g. “derivative”, “test”, “integral”).

https://doi.org/10.1371/journal.pone.0222870.g004
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Discussion

Forma mentis networks represent an innovative combination of free associations, i.e. words

that are elicited in response to cue words [48], with additional affective information of each

word’s valence [39, 40], i.e. how positively or negatively a given concept is perceived.

From a methodological perspective, this combination of two sources of linguistic informa-

tion fills a gap in the literature of language networks modelling the mental lexicon [15], where

conceptual units are considered only in terms of their semantic features [16, 23, 25, 30, 31],

and not their valence. Given that recent evidence indicates that emotions deeply influence lan-

guage processing and memory even at nonconscious levels [41, 42], forma mentis networks

represent a natural extension of semantic representations of the mental lexicon that includes

affective attributes of individual concepts.

The combination of sentiment and semantic structure leads to the definition of valence

auras, in which concepts are not isolated affective entities but rather interacting emotional

elements of an associative network. The empirical evidence reported in this work shows a ten-

dency for concepts of a given valence to cluster with words of the same valence. This assorta-

tive mixing of links is known as homophily in social network analysis [50] and represents a

tendency for units to link mainly to other units sharing similar features. To the best of our

knowledge, our work represents the first evidence of emotional homophily in the human men-

tal lexicon. This emotional homophily leads to concepts of a given valence being surrounded

by other concepts with the same valence. By cross-validating our data with independent data-

sets of affective norms [40, 49], we showed that negative words surrounded by a negative aura

elicited a higher arousal compared to negative words surrounded by any (neutral, negative, or

positive) aura. This difference could be interpreted in terms of individual concepts exerting an

influence over their associated neighbors, with negative words increasing levels of emotional

intensity elicited during cognitive processing such that negative words surrounded by other

negative words have higher arousal ratings than expected. This interaction between emotional

processing and the structure of semantic memory itself should be further explored in future

psycholinguistic research.

Fig 5. Maths and physics are the main negative outliers in the otherwise positive aura of “science” as perceived by

students. “Science” was never provided as a cue either to students or to researchers. It was one of the associations

provided by participants. Neighborhoods of “science” in the forma mentis networks of students (left) and researchers

(right): although students perceived science and other STEM subjects as positive concepts, surrounding science itself

with an aura of positive valence, students also perceived mathematics and physics as negative concepts. This plot

included only statistically significant free associations.

https://doi.org/10.1371/journal.pone.0222870.g005

Forma mentis networks in STEM

PLOS ONE | https://doi.org/10.1371/journal.pone.0222870 October 17, 2019 13 / 21

https://doi.org/10.1371/journal.pone.0222870.g005
https://doi.org/10.1371/journal.pone.0222870


In the present paper, emotional homophily in forma mentis networks provides us with new

ways of detecting the stance of a given population. Our application of the forma mentis net-

works has led to three main insights into the way that students and researchers perceive STEM

topics.

First, we used the network structure of FMNs to identify and define the “aura” of a concept,

i.e., its first neighbors in the association network created by the participants. An analysis of

valence auras, in addition to the words’ individual valence attributes, uncovers a clear pattern

in the students’ FMN in which negative words surrounded by a negative aura were correlated

with higher arousal ratings. Moreover, words of the same valence tended to cluster together,

indicating a conceptual organization that may have been shaped by the valences of words.

Overall, it appeared that the students’ stance towards STEM subjects is mixed, combining both

positive and negative stances, whereas the researchers’ stance toward STEM was predomi-

nantly positive.

Second, at the semantic level, the comparison between students’ and researchers’ networks

led both to unexpected similarities as well as interesting contrasts. On the one hand, Italian

high school students are almost as skilled as experts in relating key concepts of STEM subjects

to “science”, such that “science” itself was a key concept in their forma mentis network. This

finding provides evidence that at a global level Italian students possess a good technical aware-

ness of STEM subjects in comparison with STEM professionals. Analogously, a comparable

level of student competence has also been reported in other educational systems, such as the

Finnish one, by independent studies from Koponen and Nousiainen using concept maps [46].

Furthermore, students perceived concepts such as “mathematics” and “physics” not only as

negative, but surrounded by negative auras as well, whereas words such as “science” were posi-

tively perceived by both students and researchers. This dichotomy between the positive aura

of science and the negative auras of mathematics and physics is absent in the group of STEM

professionals, and it suggests that students might not be sufficiently aware of the connections

between science, its methods and its applications. Another interpretation of the negative auras

surrounding mathematics, physics and other concepts like statistics (cf. S1 Appendix) might

relate to emotional homophily and anxiety. As discussed above, negative concepts surrounded

by a negative aura tended to also have higher arousal and lower valence ratings (based on

external datasets). In the circumplex model of emotions [39], higher arousal and negative

valence correspond to emotions of stress and anxiety. Hence, the negative emotional auras of

physics, maths and statistics in the forma mentis of students suggest that high school students

may experience stress and anxiety toward such disciplines. This finding is supported by an

increasingly developing literature about mathematics anxiety [4], physics anxiety [51] and

even statistics anxiety [38] affecting students’ learning at the high school level and continuing

even through university. Notice that emotional auras and anxiety represent a crucial problem

in Education, since recent results show that stress and anxiety inhibit the acquisition and

retention of STEM-related concepts [52]. When interpreted against the relevant literature, our

results concretely point out the urgency for identifying and acting upon negative auras/percep-

tions in student populations in order to enhance STEM learning. Forma mentis networks rep-

resent an innovative way of quantifying science anxiety in student populations, potentially

working in synergy with other network studies quantifying anxiety levels with complex net-

works [38] and psychological methodologies [4].

In spite of the bleak perception of mathematics and physics, the students showed a positive

perception of both “university” and “researcher”, which indicates an awareness of the impor-

tance of education for their professional future.

Third, valence auras allowed us to hypothesize viable reasons for the disaffection towards

mathematics and physics beyond anxiety: Words with a negative valence in those subjects’
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aura are mostly mathematical tools and techniques, such as “integral” or “function”. This result

highlights how the negative stance on physics and mathematics might not originate from a

wider distrust of the subjects themselves but perhaps from the difficulty in seeing the value of

these techniques, particularly when devoid of interdisciplinary connections. This result opens

possible avenues for intervention in education by, for instance, helping students to embed

mathematics and physics within a richer network of conceptual associations.

What might be missing from the educational curriculum of the students participating in

this study is an emphasis on the connections between quantitative disciplines and real-world

settings. Beyond sterile arguments that a discipline should be appreciated because of its inner

beauty, our results suggest that even at the high school level, educators should provide as many

opportunities as possible for students to discover the beauty of STEM subjects and learn about

the implications of mathematical modelling of real-world systems, as previously highlighted in

the relevant educational literature [45, 47, 53, 54].

A positive stance towards mathematics and physics among early career complexity

researchers could be due to the fact that many real-world models of complexity science are

grounded in quantitative disciplines such as mathematics and physics [53, 55]. However, a

large proportion of complex systems scientists do not identify as mathematicians or physicists,

and come from a diverse range of disciplines, including biology, economics, chemistry, archae-

ology, art, psychology, and the social sciences. The application of quantitative tools to aid the

understanding of complex systems might have led to a positive perception of these concepts

among professionals, as reflected in their forma mentis network.

Complexity science seems to be a natural candidate for improving the perception of STEM

subjects among students. Indeed, previous attempts at building network science courses at the

high school level are generally met with interest by high school students [47, 54, 56]. In addi-

tion, the Complex Forma Mentis project (www.complexmentis.com Last Accessed: 19 Febru-

ary 2019) provided seminars about complexity science at the high school level that were met

with strong interest. Although these initiatives are still early in their implementation, the

framework of complexity science may prove to be useful in helping students learn about how

the technical aspects of STEM disciplines can be used to address important societal problems,

and as a result improve their perception of technical, sometimes obscure, concepts related to

mathematical theory and physics.

Another reason behind the dissonant stance of students towards physics and mathematics

might be related to a lack of creativity. Recently, Valenti and colleagues [3] measured the

implicit attitudes towards science in a population of students and found that the increase of

scientific rigour is accompanied by a decrease in associating science with creativity. In the

FMN of researchers, “art” is connected to “creative” and “science”, whereas these concepts

were disconnected in the forma mentis network of students. Researchers also associated “phys-

ics” with “creative”, an association that is missing in students’ FMN. These missing links fur-

ther underline the importance for students to build a more complete and broader perception

of STEM subjects, focusing on the creative process behind science and its real-world, complex

implications. Creating such links in high school students, even through simple actions like

complexity-focused outreach events, represents a practical task outlined by our results of

utmost importance for improving STEM perception.

Nevertheless, the current approach of FMNs has some limitations that we discuss below.

The most prominent one is that forma mentis networks operate at the population level, as is

common in psycholinguistic approaches relying on free association networks [23, 48] or in

educational studies using concept maps [43–45]. Hence, the above patterns have to be inter-

preted in terms of average trends, as individual students might differ from the aggregated

pattern. However, recent approaches have constructed association networks at the level of
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individuals [31, 36] and even reported how individualized free association networks were pre-

dictive of creativity levels [31] or knowledge mastery [36]. With larger sample sizes and a more

substantive free association task (leading to denser networks), building forma mentis networks

for the individuals represents an exciting research direction for the future.

Another limitation is the experimental effort in engaging participants within a cognitive

task, compared to the relative ease of mining online data from social media in order to infer

stance. A possible solution could be the use of social media mining to extract semantic associa-

tions for forma mentis networks, analogous to the semantic networks of concept co-occur-

rences in Twitter by [12]. Although this might decrease the difficulty of building a network

representation of the mental lexicon of a given population, co-occurrences of words in text are

different from free associations and provide different cognitive information with regards to

language acquisition and use. For instance, in [20], free associations proved to be more predic-

tive of early word learning compared to word co-occurrences in child directed speech. Hence,

despite the difficulty of collection free associations, we argue that free associations provide

important insights into the structure of the mental lexicon and that such data are worth the

time and cost of data collection.

Potential impact of forma mentis networks in education and beyond

Forma mentis networks represent a powerful new framework that can help tackle important

research question within Education research and beyond.

We envision that the most useful educational utilisation of FMNs lies in learning assess-

ment and data-driven educational policy making. The cognitive representation of students’

mindsets provided by FMNs represents a powerful way of testing the impact and effectiveness

of different teaching methods. Comparisons between the FMNs of a class of students before

and after attending a course could provide global and microscopic quantitative information

about how students changed their perception and deep understanding of course topics. Fur-

thermore, individual FMNs could be built and correlated with course grades in order to assess

the most beneficial changes in mindsets correlating with best exam performances. Promising

language network applications of this type have been recently suggested [36, 37, 46] and they

confirm the power of network-based representations of knowledge for performance assess-

ment beyond standard tests or quizzes. Once corroborated against individual-level learning

performances, FMNs would provide a data-informed approach for facilitating and accelerating

conceptual learning based on learners’ mindsets.

Forma mentis networks constitute a novel representation of conceptual knowledge and as

such can be of great relevance for the understanding of cognition and information processing

beyond educational setting. Recently, networks of conceptual knowledge have proved valuable

models for understanding knowledge building and exploration in relation to personality traits

such as curiosity, openness to experience and creativity [33, 57]. Modelling knowledge acquisi-

tion through the statistical mechanics of network walks, de Arruda and colleagues [57] showed

that on artificial networks of conceptual associations, knowledge building is consistently stron-

ger in central network regions, i.e. for tightly connected concepts connected by a few steps to

all other words. Testing the same dynamics over a “real” mindset represented by a FMN would

further characterize the relevance and meaning of key concepts in a given forma mentis. For

instance, how relevant “robotics” and “health” can be in healthcare knowledge building across

different groups of medical professionals?

Notice that knowledge creation has been recently shown to be driven not only by concep-

tual centrality/relevance but also by individual personality aspects, such as curiosity (i.e.,

the proclivity to search for information). It would be interesting to investigate whether the
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structure of individual FMNs correlate with longitudinal data about curiosity levels. This

would allow us to identify distinctive features in mindset organisation around specific topics

in high and low curiosity people. Building on the powerful approach by Lydon-Staley and

colleagues [34], who recently found that higher curiosity corresponds to tighter networks of

associations, FMNs would offer the possibility to assess the impact that positive/negative/

neutral concepts and emotional auras play in knowledge building across various levels of

curiosity. Another personality trait investigated through associative network approaches was

Openness to Experience, the enjoyment of novel ideas and experiences. Christensen and col-

leagues [35] showed that groups of individuals with a higher Openness to Experience gave

rise to a more interconnected network of conceptual associations, thus opening new chal-

lenges for characterizing such personality trait in terms of network data. Formulating a

predictor of Openness to Experience relying on the conceptual knowledge and sentiment

patterns encapsulated in a FMN would complement the descriptive power of forma mentis

networks in outlining the stance, and acceptance, a given group has toward a given topic.

Another interesting interplay to investigate with FMNs would be the one between knowledge

structure and creativity levels. Several recent network approaches managed to correlate the

structure of semantic memory with creativity levels [30, 31]. At a population level, Stella and

Kenett [32] showed that the multiplex combination of free associations with other semantic,

categorical and phonological word-word relationships identifies a central region in the net-

work of conceptual knowledge. The authors found that high/low creativity level people

accessed this central region in several different ways. The authors exploited these differences

for implementing a machine learning predictor of creativity levels. Replacing the layer of free

associations with a forma mentis network and following the protocol by [32] would enable

novel ways of testing how creativity levels impact knowledge exploration for different, spe-

cific mindsets. Also, building upon our above findings about negative emotional auras

correlating with anxiety eliciting and anxiety being a distinctive trait of creative people [8],

this application could shed more light on the interplay between the emotional homophily

detected in this work, negative/positive sentiment and knowledge exploration across high

and low creativity levels.

Conclusions

This article introduced the new methodology of forma mentis networks and demonstrated

its potential to identify contrasting stances in different populations. A forma mentis network

consists of words as nodes, each with a valence attribute, and free associations as links. Rather

than being based on automatic natural language processing, these networks directly access

the mental lexicon of human participants, addressing the orthogonal influences of semantic

knowledge and emotional affect that drive the processing of information [15, 17, 18] and its

consequences [33, 35, 41, 42].

We found substantial differences in the stances of young researchers in complexity science

and high school students towards STEM concepts such as physics and mathematics. Students

tended to surround these concepts with a negative emotional aura, which could related to a

perceived anxiety toward these subjects (cf. [4, 38, 39]). This negative emotional aura was

absent in the forma mentis of researchers. Furthermore, the words with a negative valence

in the students’ neighborhoods were mostly that of mathematical tools, such as “integral” or

“function”. This result highlighted how the students’ negative stance toward physics and math-

ematics might predominantly originate from an arid view of the tools and methods used in

mathematics and physics, which students (but not researchers) perceived as deprived of more

interdisciplinary and creative connections.
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This quantitative evidence opens new avenues for intervention in education: Encouraging

students to incorporate mathematics and physics into a richer association network and draw-

ing new connections to other concepts in the scientific realm represent promising pathways

to change their stance. In that lies the potential of the forma mentis network approach–by

providing a map of the students’ mental lexicon, it is able to show which and where new mean-

ingful links, i.e. associations, could be constructed to maximize the effectiveness of future

intervention policies and outreach programmes.
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Technological advancement has led to an increase in the
number and type of trading venues and a diversification of
goods traded. These changes have re-emphasized the
importance of understanding the effects of market
competition: does proliferation of trading venues and
increased competition lead to dominance of a single market
or coexistence of multiple markets? In this paper, we address
these questions in a stylized model of zero-intelligence
traders who make repeated decisions at which of three
available markets to trade. We analyse the model numerically
and analytically and find that the traders’ decision
parameters—memory length and how strongly decisions are
based on past success—make the key difference between
consolidated and fragmented steady states of the population
of traders. All three markets coexist with equal shares of
traders only when either learning is too weak and traders
choose randomly, or when markets are identical. In the
latter case, the population of traders fragments across the
markets. With different markets, we note that market
dominance is the more typical scenario. Overall we show
that, contrary to previous research emphasizing the role
of traders’ heterogeneity, market coexistence can emerge
simply as a consequence of co-adaptation of an initially
homogeneous population of traders.
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1. Introduction
The possible risks and benefits of market competition have been the subject of a long-standing debate,
which is often expressed as ‘market consolidation versus market fragmentation’ [1,2]. When the
New York Stock Exchange had by far the strongest influence on price formation, the financial trading
system was much closer to a consolidated state (Hasbrouck’s [3]), but more recently technological
progress has created a variety of trading venues and led to ever-increasing market fragmentation.
Particularly interesting in this regard are the so-called dark pools. These trading venues have gained a
certain notoriety from their lack of transparency and the possibility to trade large volumes without
large price impacts, and they frequently offer a greater variety of market mechanisms compared to the
conventional exchanges. Shorter & Miller [4] noted that in only five years (from 2008 to 2013) the US
market share traded in dark pools increased from 4% to 15%, signalling a distinct increase in market
fragmentation. Gomber et al. [1] suggest that the main driver of market fragmentation is the
heterogeneity of traders’ needs, which will be more easily satisfied by a variety of different markets
rather than a single trading venue. In this paper, we show that even when identical markets compete,
economic agents can develop loyalties to specific markets, thus effectively fragmenting trading.
Conversely, we find in the case of competition of markets that are biased towards different classes
within the population of traders, single market dominance is the typical outcome.

To tackle this question of market coexistence versus single market dominance, we build on previous
work [5–8] where we introduced and analysed a system consisting of double auction markets and a large
number of traders choosing between them. What we showed in this setting is that for a range of
parameters describing the markets and agents, the agents split into groups with a strong loyalty
towards one of the markets, often giving an overall market coexistence with an equal share of traders
at both markets. When the agents have a long memory to previous trading outcomes, other steady
states with single market dominance also exist and are in fact stable, whereas the system state with
markets splitting trades roughly equally between them is only metastable [6,8]. While these initial
studies focused on settings with two markets for simplicity, traders do in general have a choice
between multiple markets (e.g. [1]) and this feature was also present in the CAT game [9] that
originally motivated our research into market-trader co-fragmentation. We therefore extend the double
auction market model from two to three markets in this paper, and use the results to formulate
conjectures for the expected behaviour in cases where more than three markets compete.

There is a large body of work that uses the JCAT library [10] to explore competition between
continuous double auction markets [11–13]. In a spirit similar to our work, they use simple learning
algorithms such as Zero-Intelligence [14] or Zero-Intelligence-Plus [15] for both markets and traders,
and analyse the allocation efficiency of double auction markets when they are competing against each
other. Multi-agent-based simulations have mostly been used in this context and allow additional
layers of complexity such as adaptive markets and heterogeneous agents to be added. We pursue instead
a modelling approach that strips out as much detail as possible [6–8] to allow for detailed theoretical
analysis, which can often reveal features that would be missed when relying exclusively on numerical
simulations. In this spirit, while the market mechanisms implemented in the JCAT library are
continuous double auctions, we use in our model a mechanism more similar to a clearing house where
the clearing process takes place at discrete time steps. This makes a largely analytical approach
possible, which reveals the learning process of the agents as the main driver of fragmentation. This
conclusion was shown in [6] to carry over to models with more complex market mechanisms and
more sophisticated agent strategies, based e.g. on [16].

Authors such as Ellison et al. [17] and Shi et al. [18] have focused on studying the competition between
markets and the conditions under which this led to multiple market coexistence or the emergence of a
market monopoly. The authors name two significant effects in the competition of double auctions,
one of them is the positive size effect, i.e. agents prefer trading in a market where there are already
many traders of the opposite type (e.g. sellers like trading at markets where there are many buyers),
as the choice among offers is better. The authors additionally suggest the existence of a negative size
effect in a double auction market, as agents will prefer being in the minority group to trade more
often (e.g. buyers see the benefit of trading at a market where there are not many buyers, e.g. [19]).
Ellison et al. [17] point out that due to this negative size effect, coexistence of many markets is
possible. On the other hand, Shi et al. [18] investigate which of the two effects is stronger and finds
that due to more substantial positive effects, a monopoly will in many situations be the preferred
outcome. When there is strong market differentiation, Shi et al. [18] argue that market coexistence is
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possible, especially for markets that have different pricing policies, e.g. where one market charges a fixed
participation fee while another charges a profit fee. Although in what follows we will consider markets
without fee charging policies, we will find nonetheless there are system parameter ranges that enable
coexistence, where markets are populated by roughly the same numbers of traders; conversely, we also
identify the parameter regimes for which one market is dominant. It is important to note that the
studies cited above have focused on finding either the Nash equilibria or states favoured by the
replicator dynamics. By contrast, we consider dynamics based on agents learning to improve their
market choosing strategy, which we believe is more appropriate in the context of agents engaging in
economic interactions. In this study, we show that fragmentation can arise even in an initially
homogeneous population of traders, only because the traders adapt to their past record of successful
trades.
l/rsos
R.Soc.Open

Sci.8:202233
2. Agent-based model
Here we summarize the basic assumptions and properties of the model introduced in [5,6,8] and extend
it to include multiple markets.

2.1. Traders
We study a population of agents without sophisticated trading strategies, essentially zero-intelligence
traders [14,20,21]. The orders to buy at a certain price (bids) and orders to sell at a certain price (asks)
are assumed to be unrelated to previous trading success or any other information. We assume that
bids, b, and asks, a, are normally distributed (a � N ðma, s

2
aÞ and b � N ðmb, s

2
bÞ), where μb > μa, in line

with [6]. After each round of trading each agent receives a score, reflecting their payoff in the trade.
The scores of agents who do trade are assigned as elsewhere in the literature [14,22]: buyers value
paying less than they offered (b), and so their score is S = b− π, where π is the trading price. Sellers
value trading for more than their ask (a), and so S = π− a is a reasonable model for their payoff.

2.2. Markets
The role of a market is to facilitate trades so we define markets in terms of their price-setting and order-
matching mechanisms. We consider a single-unit discrete time double auction market where all orders
arrive simultaneously and market clearing happens once every period after the orders are collected. We
also assume that a uniform price is set by the market—once all orders have arrived, these are used to
determine average bid 〈b〉 and average ask 〈a〉 and then set a global trading price in between the two

p ¼ hai þ uðhbi � haiÞ, ð2:1Þ
where θ fixes the price closer to the average bid (θ > 0.5) or the average ask (θ < 0.5); the parameter θ thus
represents the bias of the market towards sellers (they earn more when θ > 0.5) or buyers (earn more when
θ < 0.5).1 Once the trading price has been set, all bids below this price, and all asks above it, are marked as
invalid orders that cannot be executed at the current trading price. The remaining orders are executed by
randomly pairing buyers and sellers; the execution price is π. Note that we assume here that each order is
for a single unit of the good traded.

The most efficient resource allocation happens when demand equals supply, i.e. at the equilibrium
trading price. In a set-up like ours where the bids and asks are Gaussian random variables with equal
variances (σa = σb) and when the number of buyers is equal to the number of sellers at a given market,
the equilibrium trading price corresponds to θ = 0.5, i.e. the price is πeq = (〈b〉 + 〈a〉)/2. We start off
below by considering such efficient markets and will also call these fair as θ = 0.5; later we allow for
the possibility that markets are not fair and set the price closer to the average bid or ask (θ≠ 0.5).

2.3. Learning rules
Agents trade repeatedly in our model, and they adapt their preferences for the various choices at their
disposal from one trading period to the next. We assume that each agent decides where to trade
1Note that traders are not informed about these market biases, nor the market mechanism in general; they only obtain information
through the scores they receive.
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(which of many markets) at the beginning of each trading period, only based on his or her past
experience. To formalize this we introduce a set of attractions Am for each player, one for each market
m = 1, 2, 3. The attractions will generally differ from player to player, but we suppress this in the
notation for now. The attractions are updated after every trading period, n, using the following
reinforcement learning rule (similar to Q-learning [23] and the experience-weighted attraction rule
[24,25])

Amðnþ 1Þ ¼ ð1� rÞAmðnÞ þ rSmðnÞ if the agent chose market m in round n
ð1� rÞAmðnÞ otherwise.

�
ð2:2Þ

The quantity Sm(n) is the score gained trading at market m in the nth trading period. The length of the
agents’memory is set by r: effectively an agent takes into account a sliding window of length of order 1/r
for the weighted averaging of past returns.

Once each preference is updated, traders use the multinomial logit function to choose at which market
to trade in the next round

PðM ¼ mÞ ¼ expðbAmÞP
m0 expðbAm0 Þ : ð2:3Þ

This is inspired by the experience-weighted attraction literature [24,25], where β is the intensity of choice
and regulates how strongly the agents bias their preferences towards actions with high attractions. For
β→∞, the agents choose the option with the highest attraction, while for β→ 0 they choose randomly
with equal probabilities among all options.

Agents randomly take the role of buyer or seller in each trading round: they act as buyers with
probability pB, which we call their buying preference. We will study a population of traders consisting
of two classes of agents with fixed buying preferences pB ¼ pð1ÞB and pB ¼ pð2ÞB , respectively. The
attractions of agents from different classes will be denoted by AðcÞ

m with c∈ {1, 2}.
We will frequently study a set-up with symmetric markets (i.e. θ1 = 1− θ2 < 0.5) and a population

consisting of two symmetrically biased classes (i.e. pð1ÞB ¼ 1� pð2ÞB . 0:5). The setting considered as
default in [6] is ðu1, u2, pð1ÞB , pð2ÞB Þ ¼ ð0:3, 0:7, 0:8, 0:2Þ. It is such that the class 1 (buyers) prefer trading at
market 1, that is biased to award buyers with higher returns, while agents of class 2 (sellers) prefer
market 2. It has been shown previously that for low intensity of choice β, the unique fixed point of the
learning dynamics is such that agents develop a higher attraction to the market that is better for them;
nonetheless, they trade largely at random because of the low β. When β is increased, this fixed point
becomes unstable as buyers and sellers would congregate in different markets and so lose many trading
opportunities. Instead the population fragments: agents of both classes self-organize to divide into two
groups within each class. One of these groups is return oriented (e.g. buyers at market 1) and the
corresponding agents earn more per single trade; the other group can be characterized as volume
oriented (e.g. sellers at market 1), earning less per trade but having the opportunity to trade more often.
2.4. Numerical simulations
To motivate the use of this stylized model of agents choosing between multiple markets, we start with
multi-agent simulations of the system. We look at a default population of traders consisting of two
classes—some tend to act more as buyers (pB ¼ 0:8), others more as sellers (pB ¼ 0:2). These traders
choose between three markets that differ in their biases θ. We show an example of three qualitatively
different distributions of the attractions of the agents in figure 1. To facilitate the interpretation of
these distributions, we mark by coloured regions in each panel which market an agent prefers at the
given attraction (differences), i.e. which market s/he chooses with the highest probability.

We now give a brief description of the attractions distributions in each of the panels and explain the
difference between (i) strong fragmentation, which persists in the large memory limit, and (ii) weak
fragmentation, which disappears in the same limit; similar results for two market systems are
discussed in [6,8]. In figure 1a, one sees that the distribution of attractions has three peaks, all of
which have a size of order O(1) and correspond to subpopulations of traders who choose to trade
mainly at a single market. In other words, the trader population (in the class shown in the figure)
splits into three subpopulations that are more attracted to one market over the others, e.g. traders
develop individual loyalties to one of the markets. Such distributions of attractions with more than
one peak with a size of order one are called strongly fragmented [8]. As discussed in previous works,
this does not mean the traders’ preferences are frozen: they do change their preferred market but only
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Figure 1. Distribution of attraction differences of population of traders for market and learning parameters as indicated in each
graph title. In (a), the population is strongly fragmented into three groups of equal size. In (b), the population is weakly
fragmented, the distribution has two peaks: one large peak and one peak that (as we will later see) becomes exponentially
small as the memory length increases. In (c), the population is strongly fragmented, but only across two markets. To obtain
those graphs, we ran simulations with r = 0.01 and N/2 = 10 000 traders in each class until a steady state was reached.
Traders from class 1 have preference to buy pð1ÞB ¼ 0:8 and traders from class 2 have preference to buy pð2ÞB ¼ 0:2. The
(A1− A2, A1− A3) plane is shown subdivided into three zones that indicate which market an agent with the corresponding
attractions chooses most often. The zones are coloured blue, red and green for markets 1, 2 and 3, respectively, as indicated in (a).
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after a long persistence time [6]. We also note that in the state shown, i.e. for the given parameters, three
identical markets coexist and receive an equal share of traders, on average.

The second distribution, shown in panel (b), corresponds to a population divided into two loyalty
groups but with different sizes: one large (order N) subpopulation is attracted to the second market
(the fair market, θ = 0.5), while the second, smaller subpopulation persistently tries to trade at market
3. The size of the smaller peak in the attraction distribution decreases exponentially as r→ 0 [7,8], and
although markets 2 and 3 coexist for any finite r, in the large memory limit, market 2 has a
monopoly. When attraction distributions are multimodal but only one peak has a weight of order 1
(i.e. fragmentation is only present at finite r) we call them weakly fragmented.

The distribution plotted in panel (c) corresponds to a strongly fragmented population, but contrary to
the case depicted in panel (a) the third market has now lost the competition. Additionally, the share of
attracted traders is not the same between the markets (as in panel (a)), but both peaks persist in the
long memory limit.

The above simulation results offer a glimpse into a rich variety of qualitatively different structures of
the attraction distributions (number and size of peaks) and consequently different outcomes of a three-
market competition. To study these in more detail, we focus on the analytical and numerical methods
described previously [7,8] for large populations of traders and in the large memory limit (r→ 0).
3. Analysis
To proceed with the analysis, in line with our earlier studies [6–8], we start from the fact that the system is
Markovian and accordingly the master equation introduced in [6] is an exact and complete description of
the evolution of agents in the limit of an infinite population N and large memory 1/r. We focus here on the
steady states of this dynamical evolution. For a population with fixed buy/sell preferences, this is specified
by a steady-state distribution PðAjpBÞ where A is an M-dimensional vector of attractions and conditioning
on the buying preference and distinguishes the different classes of traders. When we study more than two
markets the distribution is multivariate, though we can introduce attraction differences and look for a
solution in the resulting M− 1 variables. The master equation describing the evolution of the system [6]
across the different trading rounds n is not a standard linear Chapman–Kolmogorov equation as the
transition kernel K depends on the trading probabilities, which in turn depend on PnðAjpBÞ. This self-
consistent nature of the description arises from the reduction from a description in terms of the
attractions of all N agents to one for a single agent; this reduction becomes exact for N→∞. In
principle, a steady state could then be found by tracking the evolution in time from the initial condition
P0ðAjpBÞ ¼ dðAÞ, which corresponds to all agents having zero attraction to all markets. We take a
different route and first transform the time evolution equation to a Fokker–Planck description using the
Kramers–Moyal expansion. This is appropriate for small r, i.e. for agents with long memory.
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Even after the simplification to a Fokker–Planck equation, the dimensionality of the problem makes
finding the steady state a non-trivial task. But we can make progress by considering the limit r→ 0; this
will allow us to evaluate the onset of fragmentation. We do this by analysing the drift mðcÞ

m in the Fokker–
Planck equation, defined in appendix A. To find the single agent steady state, we will search for zeros of
the drift assuming fixed market order parameters, i.e. trading probabilities. We start by assuming that the
two classes have homogeneous preferences for the markets (i.e. PðAðcÞjpðcÞB Þ is a delta distribution). This is
the expected solution in the low β-limit, when the steady state is unfragmented. With this assumption,
the expressions for the market order parameters simplify, and we can solve the simultaneous
equations for the two classes. At any fixed point solution (A (1)�, A (2)�) we evaluate the market order
parameters and check if the single agent dynamics is consistent with the homogeneous population
assumption: when we solve m

ðcÞ
m ðAÞ ¼ 0 we expect only one zero that coincides with (A�). The onset of

fragmentation (weak or strong) is then given by the intensity of choice where the single agent
dynamics first has multiple zeros when evaluated at the homogeneous population market order
parameters, which indicates that for r > 0 the distribution of attractions will have multiple peaks. To
find the weights of the attraction distribution at each peak, corresponding to a fixed point, we use the
Freidlin–Wentzell approach detailed in appendix B. This allows us to differentiate between small
peaks, which decay exponentially with the memory length 1/r, and large peaks, whose weight
remains finite and of order unity when the r→ 0 limit is taken.

In the rest of the paper, we focus our analysis on a scenario with M = 3 markets and we describe each
of the two classes in terms of the two attraction differences ΔA2 =A1−A2 and ΔA3 =A1−A3. We perform
a Kramers–Moyal expansion of the trader’s learning dynamics and obtain two Fokker–Planck equations
(one for each class c∈ {1, 2} of traders) for the distribution of attraction differences P(ΔA (c), t)

@tPðDAðcÞ, tÞ ¼ �
X3
m¼2

@
DAðcÞ

m
[mðcÞ

m ðDAðcÞ, f1, f2, f3ÞPðDAðcÞ, tÞ]

þ r
2

X3
m,m0¼2

@
DAðcÞ

m
@
DAðcÞ

m0
[SðcÞ

mm0 ðDAðcÞ, f1, f2, f3ÞPðDAðcÞ, tÞ]: ð3:1Þ

Here the time variable t = nr is a rescaled number of trading rounds, DAðcÞ ¼ ðDAðcÞ
2 , DAðcÞ

3 Þ and fm is the
market order parameter, i.e. the ratio of buyers to sellers at market m (effectively the demand-to-supply
ratio). The expressions for the drift vectors m

ðcÞ
m ðDAðcÞ, f1, f2, f3Þ and the covariance matrices

S
ðcÞ
mm0 ðDAðcÞ, f1, f2, f3Þ for each class are given in appendix A.
3.1. Three fair markets
We start by looking at what happens when the three markets available are all fair, i.e. θ1 = θ2 = θ3 = 0.5.
This means they set their trading price to be exactly the mean of the average bid and the average ask.
As mentioned previously, the fair market corresponds to a market mechanism delivering the
equilibrium trading price, provided the number of buyers equals number of sellers.

Based on intuition from similar physical systems, one might expect spontaneous symmetry breaking,
where random fluctuations lead the whole population to select only one of the possible symmetric
markets. However, in stochastic multi-agent simulations we observe instead steady states with
fragmented populations within each class; we therefore focus on steady states of the traders’ learning
dynamics without symmetry breaking.

Since the three markets have the same bias θ, in a symmetric solution, they should attract the same
number of agents, irrespective of their class. On the other hand, as we study classes of agents with
symmetric preferences to buy pð1ÞB ¼ 1� pð2ÞB , the difference between the number of buyers and the
number of sellers at a single market is of order

ffiffiffiffi
N

p
, NB ¼ NS þO

ffiffiffiffi
N

p� �
. As a consequence, in the

large size limit, the ratio of the number of buyers to the number of sellers in each market is equal to
1. This simplification is the reason why we choose to start the analysis with the simple case of three
fair markets, which allows one to explore the phenomenon of fragmentation across three double
auction markets without the need for a self-consistent determination of market order parameters [7,8].

We start by looking at the fixed point structure of the single agent dynamics when the intensity of
choice β is small. As expected, the only fixed point of the learning dynamics is A1−A2 =A1−A3 = 0
and corresponds to a trader who chooses to randomize between the three markets (figure 2a). When
the intensity of choice β reaches a critical value βc = 1/0.254, three saddle node bifurcations take place
simultaneously and three pairs of stable and unstable fixed points appear (figure 2b). The reason why
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Figure 2. Flow diagram and fixed points of the learning dynamics of a single trader with pð2ÞB ¼ 0:2, choosing between three fair
markets. (a) Below the weak fragmentation threshold β = 1/0.254, the dynamics only has one fixed point, which is stable (denoted
with red star). (b) When β reaches the weak fragmentation threshold βc = 1/0.254, three pairs of unstable (blue) and meta-stable
(red empty circles) fixed points appear and the system becomes weakly fragmented with one large peak, which corresponds to
traders randomizing between the three markets, and three small peaks where agents trade preferentially at one of the three
available markets. (c) At βc0 = 1/0.252, the three outer fixed points become stable and the central one meta-stable and the
system is now strongly fragmented, with three peaks of equal size each of which corresponds to preferentially trading at a
single market. (d ) As β increases, the meta-stable fixed points eventually becomes unstable. Above each graph we indicate in
triangular notation the category to which each of the fixed point structures belongs (see main text for details).
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those three saddle node bifurcations take place at the same time lies in the markets’ symmetry, i.e. their
identical bias θ = 0.5. In the more general case where the three markets are different, we expect the
appearance of each pair of new fixed points to take place at a different value of β.

When looking at the deterministic dynamics for low intensity of choice (figure 2a), it is obvious
that the system is not fragmented and there is only one stable fixed point. At larger intensities of
choice as in figure 2b–d, knowing the deterministic dynamics is not sufficient to distinguish between
‘stable’ fixed points (the ones where, in our terminology, large peaks will be centred) and ‘metastable’
ones (which for us indicate the positions of the small peaks). To assess the stability of fixed points in
figure 2 and weight sizes of potential peaks, we use the Freidlin–Wentzell approach detailed in
appendix B.

As an example of an attraction distribution that has both small and large peaks we consider the
range 1/0.252≥ β≥ 1/0.254 for the intensity of choice, where the system is weakly fragmented (as in
figure 2b). The central fixed point is stable and a large peak in the attraction distribution is located at
this fixed point, while the three outer fixed points are metastable and correspond to small peaks. As β
is increased to a second critical value of βc0 = 1/0.252, the three outer fixed points become stable and
the system undergoes a strong fragmentation transition. For any values of β above this second
fragmentation threshold, the system will be strongly fragmented as the distribution of preferences of
the traders will have three peaks of equal weight, each of which corresponds to a stable fixed point of
the single agent dynamics (red points in figure 2c,d ). For 1/0.237≤ β≤ 1/0.252, the distribution of
attractions retains an additional peak at the fixed point at (0, 0) but the weight of this peak will
become exponentially small as the memory length increases (figure 2c). This metastable fixed
point and the associated small peak in the attraction distribution then disappear for β≥ βc00 = 1/0.237
(figure 2d ).

We summarize briefly the intuitive meaning of the above results for the attraction distributions in a
system of agents with long memory choosing between three fair markets. When the intensity of choice is
small the agents cannot develop strong attractions to any particular market as low β implies that they
choose a market largely randomly. With increasing β, three small subpopulations of the agents in each
class develop a loyalty to one of the markets, signalled by increased attractions, but the random
choice strategy remains dominant. These loyal subpopulations grow until (beyond βc0) they encompass
most of each agent class.

To help with understanding the variety of different steady states, we introduced an attraction
distribution notation in the shape of triangles, as depicted in panels of figure 2. We focus on the
number and size of the peaks, rather than their exact position, and use the triangle to visualize
attraction to any of the three markets (circle close to the corner) or market indifference (star shape). To
distinguish between large and small peaks we use filled or empty objects (both stars and circles).

In the simple case of three competing markets considered so far, we find that they always coexist,
but in different scenarios ranging from all traders choosing a market randomly to traders splitting
into subpopulations with persistent market loyalties. An obvious question is then whether this
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fragmentation is critically dependent on the fact that all the markets are identical. To answer this, we next
extend our analysis to markets with different biases.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:202233
4. Exploration of the parameter space: markets with different biases
Each market bias θ1, θ2, θ3 is between zero and one, i.e. the market parameter space is a unit cube. Of
course the phenomenon of fragmentation is independent under permutation of the market biases as
this effectively just changes the labelling of the markets. We can therefore restrict our analysis to 1/6
of the cube where θ1≤ θ2≤ θ3 and can reconstruct the behaviour in the rest of the parameter space by
symmetry. We will mostly follow this scheme but sometimes allow a different parameter ordering to
get simpler two-dimensional phase diagrams, with a typical bias along the x-axis and the inverse
intensity of choice along the y-axis. We study three different types of scenarios, guided by
explorations in our previous work: (i) one fair market θ2 = 0.5 and two symmetrically biased markets
θ1 = 1− θ3, with θ1 as a free parameter varying between 0 and 1/2, shown in figure 3, (ii) two
symmetrically biased markets θ1 = 0.3, θ2 = 0.7 with θ3 varied as a free parameter, shown in figure 4,
(iii) θ1 = 0.3, θ2 = 0.5 and θ3 again ranging from 0 to 1, shown in figure 6. As will become clear in the
rest of this section, these parameter settings allow for the analysis of the effect of a number of
properties on the occurrence of fragmentation, such as the market symmetry, the ‘distance’ between
market biases and the effect of market fairness.

4.1. Two symmetrically biased markets and one fair market
Following the reasoning we used in the case of three fair markets, we continue to focus on solutions that
do not break the market symmetries. This assumption is supported by stochastic multi-agent simulations
in which we do not observe market symmetry breaking. We use the symmetries to restrict the possible
values of the ‘market aggregates’, i.e. the demand-to-supply ratios. In particular, we can show that these
ratios are inverses of each other for the symmetrically biased markets, and that the ratio is unity at the fair
market as before. To see this, note first that when θ1 = 1− θ3 and θ2 = 0.5, for traders with symmetric
preferences to buy, the role played by market 1 for traders from class 1 is the same as the role played
by market 3 for traders from class 2 and vice versa. As a consequence, the probability of trading at
the first market for a trader from class 1 (resp. 2) is equal to the probability of trading at the third
market for a trader of class 2 (resp. 1). We can write the buyer/seller ratios in market 1 and 3 as

f1 ¼ Pð1ÞðM ¼ 1Þpð1ÞB þ Pð2ÞðM ¼ 1Þpð2ÞB
Pð1ÞðM ¼ 1Þð1� pð1ÞB Þ þ Pð2ÞðM ¼ 1Þð1� pð2ÞB Þ

and f3 ¼ Pð1ÞðM ¼ 3Þpð1ÞB þ Pð2ÞðM ¼ 3Þpð2ÞB
Pð1ÞðM ¼ 3Þð1� pð1ÞB Þ þ Pð2ÞðM ¼ 3Þð1� pð2ÞB Þ

:

9>>>>>=
>>>>>;

ð4:1Þ

When substituting into these expressions the equalities P(1)(M = 1) = P(2)(M = 3), P(2)(M = 1) = P(1)(M = 3)
and remembering that pð1ÞB ¼ 1� pð2ÞB , one sees that f1 = 1/f3. The fact that the ratio of buyers to sellers
at the fair market (market 2) is unity follows by analogous reasoning.

Let us first calculate the value of the intensity of choice at which traders start to fragment weakly. To
do so, for a given value of the free parameter θ1, we start from low values of β and gradually increase the
intensity of choice until it reaches a critical value where the single agent dynamics has two stable fixed
points. Those values of β are shown by the upper solid line in figure 3.

The natural continuation of this analysis is to look—if it exists—for the strong fragmentation
threshold. While thanks to our previous analysis of symmetric markets we know that for θ1 = 0.5
strong fragmentation takes place at β = 1/0.252, our numerical methods show that for reasonably
asymmetric markets, i.e. θ1 < 0.48, strong fragmentation does not take place across the entire range of
values of β that we consider numerically for our phase diagram. For θ1 between 0.48 and 0.5, our
numerics suggest possible strong fragmentation but a definite conclusion cannot be reached given the
numerical precision limits of the required action minimizations.

To distinguish between different types of steady states in the following analysis—the number of
emergent loyalty groups, their market preferences and sizes, we now introduce a triangle notation
that is illustrated in figure 2 and used in the (θ1, 1/β) phase diagram there. Each of the triangle
corners represent preferences for one of the three markets, while full and empty circles represent
large/small peaks; different colours denote the different trader classes. This notation allows us to



M3

preferences for
different markets:

large peak
positions
small peak
positions

A1
 – A2 A1

 – A2 A1
 – A2

A
1 –

 A
3

A
1 –

 A
3

A
1 –

 A
3

M1 M3

q1

–1 11

1

–1

1

1–1

1

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

1/
b

(a)

(a)

(b)

(c)

(b) (c)

Figure 3. Peak structure of the steady-state distribution of traders’ preferences when they learn to choose between three markets,
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(black = class 1, red = class 2) differentiate between the agent classes. The grey band at θ1 = 0.5 shows the type of attraction
distribution for the case θ1 = 0.5, i.e. when the three markets are fair; examples of attraction distribution peak structures in that
region are shown in figure 2.
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quickly realize whether some markets lost the competition, which markets are dominant, and which
might attract only a single class of traders. Additionally, we use a star to denote an attraction
distribution peak without preferences for a specific market. This is present only for the scenario with
three fair markets, as depicted in the right band of the phase diagram in figure 4. The triangular
representations shown on the right correspond to the flow diagrams with fixed points depicted in
figure 2.

In figure 3, we see that for any value of β and θ1 < 0.5, the majority of the traders will prefer to trade at
the fair market (market number two), so that this market will have a monopoly in the r→ 0 limit. When
agents have finite memory, all three markets coexist when β is greater than the weak fragmentation
threshold, but market 2 still attracts the majority of trades. Interestingly, in the region of the phase
diagram with intermediate β (see inset (b)), all three markets coexist, but markets 1 and 3 are visited
by only a single class, despite the fact that trading opportunities are lower that way.

In summary, the results depicted in figure 3 tell us that, apart from the particular case when the three
markets are all fair, strong fragmentation does not take place when a fair market competes against two
symmetrically biased markets. We therefore move next to an even less symmetric situation.
4.2. Two symmetric markets and one biased market
We continue exploration of the space of market biases by considering two symmetric markets with fixed
market biases θ1 = 0.3 and θ3 = 0.7; this is the market set-up we mostly studied in previous works. Without
the third market, when the two classes of traders adaptively choose between two symmetric markets one
finds both weak and strong fragmentation above βc = 1/0.28 [8]. Here, we add the third market and vary
its bias, which as figure 4 shows leads to a range of different steady-state attraction distributions.

We first note that strong fragmentation appears, and does so across a reasonably broad range of
market biases (grey zone in figure 4). This range excludes the case studied above where market 2 is
fair: strong fragmentation occurs only for u2 � ½0:45, 0:55�, i.e. when the second market is sufficiently
biased. For θ2 < 0.45 (resp. θ2 > 0.55) the traders from the first (resp. second) class strongly fragment
across the two markets that maximize average profit per trade for each class. For example, in the case
of θ2 = 0.4, buyers (traders in class 1, who have pð1ÞB ¼ 0:8) will prefer trading at markets 1 and 2 while
the sellers remain unfragmented.
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Figure 4. Types of attraction distributions in the population choosing between markets θ1 = 1 − θ3 = 0.3 and varying θ2. The grey
zone indicates the region in parameter space where the distribution of attractions has two large peaks for at least one class of
agents, i.e. where strong fragmentation occurs. Note that between every unfragmented and strongly fragmented region
(appearance of large loyalty groups at market 1 and 3) there is always a weakly fragmented region (where the same loyalty
group, i.e. peak in the distribution, is small), but these regions are mostly too narrow to be visible. The grey line in the
centre corresponds to the dashed line in figure 3.
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Figure 5. Distribution of attraction differences of traders who choose between three markets with market biases (θ1, θ2, θ3) = (0.3,
0.35, 0.7). The population consists of two classes of N/2 = 104 traders with symmetric buy-sell preferences pð1ÞB ¼ 1� pð2ÞB ¼ 0:8,
inverse memory length r = 0.01 and intensity of choice β = 1/0.21. We see that the attraction distribution of the first class is
strongly fragmented ( panel (a)), while the second one is unfragmented (panel (b)), as predicted by the phase diagram
in figure 4.
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We do not explore the phase diagram below the first strong fragmentation threshold as this would
require the numerical solution of self-consistency conditions for multiple aggregates in the presence of
two (or more) strong fragmentation peaks in the traders’ attraction distributions. This is numerically
very challenging and so we leave it for future work. However, it is possible to get an intuition about
the shape of the phase diagram below this threshold by extrapolating the zones of weak
fragmentation in the range of θ2 where the second market is close to fair.

We show in figure 4 graphically the types of steady state attraction distribution within the different
regions of the phase diagram. These predictions are obtained using single agent flow diagrams as shown
in figures 2 and 3. We show an exemplary comparison to stochastic multi-agent simulations in figure 5
and find excellent qualitative agreement. The agent class that mostly buys (class 1, left panel) fragments
into two subpopulations mainly trading at markets 1 and 2, respectively, where they maximize their
profit because θ1, θ2 < 0.5. Agents in the class that mostly sells prefer market 2 as the less biased of the
two markets that are populated by the buyers. We conjecture that it is the asymmetry imposed by
two markets favouring buyers that leads to a consolidation around markets favouring buyers, while
sellers do not develop attractions toward the market that favours them.

Having described the range of values of θ2 for which strong fragmentation takes place, we inspect
more closely the range of parameters for which only weak fragmentation occurs (figure 4). To do so,
we look at how the attraction distributions of both classes of traders evolve at fixed θ2 = 0.47 when β
increases. For values of β small enough in relation to the agents’ attractions, they will essentially
randomize their market choice, with a weak preference towards the market that is closest to fair,
market 2. This preference increases with β so that traders from the two classes effectively coordinate
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at market 2, providing a good trade-off between profit and trading volume. As β grows further,
additional small peaks arise in the attraction distributions while most of the traders remain in the
fairer market. In particular, at β = 1/0.246 a peak corresponding to the strategy ‘trading at the profit
maximizing market’ (market 1, which has θ1 = 0.3) appears for class 1. Then at β = 1/0.228, a peak
corresponding to the strategy ‘trading at the profit maximizing market’ (market 3 with θ3 = 0.7)
appears in the attraction distribution of the agents from the second class. After those two successive
appearances of weak fragmentation between the fairer market and the profit maximizing market for
both class 1 and class 2, further peaks in the attraction distribution—which correspond to the strategy
‘trading at the volume maximizing market’—appear successively for class 2 at β = 1/0.207 and then
for class 1 at β = 1/0.198.

Our phase diagram suggests that fairness of the second market weakens fragmentation. We cannot
exclude, however, that strong fragmentation might occur even for θ2 close to 0.5, for larger β (lower
1/β) than investigated in the phase diagram of figure 4.

Interestingly, addition of the third market leads to trade shifting away from one of the symmetric
markets, throughout the entire strong fragmentation region in figure 4. Only when the added market
is close to fair can the two symmetric markets continue to coexist, though with both receiving only a
small fraction of trades. Market 2 in fact has the largest market share throughout figure 4.

We can summarize the intuition behind the above results as follows. As the intensity of choice
increases, each class of agents will first fragment weakly between a market that is close to fair (market
2) and the market that maximizes profit for them, and then fragment weakly across all three markets.
On the other hand, if the second market is not fair, the class for which this market is more profitable
will fragment strongly between their two profit maximizing markets, while the other class will only
trade at the market that is closest to fair. The results of this subsection suggest that as soon as traders
have at their disposal a reasonably fair market, they are not going to fragment and will prefer to trade
with the fair market; when they have no fair market they will always prefer the profit maximizing
market, and will visit the volume maximizing market (which brings lower profits but typically more
trades) only as a last resort.

4.3. Markets without symmetry
The two examples presented in §§4.1 and 4.2 lead to the conjecture that the presence of a fair or nearly
fair market—which provides a good trade-off between profit in individual trades and trading volume—
can suppress fragmentation. To confirm this conjecture, we consider three markets where the first one is
biased toward buyers (θ1 = 0.3) and the second one is fair (θ2 = 0.5); the bias of the third market is the
parameter we will vary.

As we did in the previous subsections, we will draw a phase diagram of the type of attraction
distribution for the two agent classes, as a function of the intensity of choice β and the bias of the
third market θ3∈ [0, 1]. The result in figure 6 shows that within the range of parameters explored, if
there is fragmentation it is weak, so that the attraction distributions for both trader classes always
become unimodal in the r→ 0 limit. (Extrapolation to lower 1/β than shown in figure 6 suggests that
this situation does not change at even larger intensity of choice.) Only one peak has weight of order
one and, depending on the values of β and θ3, the steady state is either unfragmented or weakly
fragmented, having one or two small peaks that disappear in the r→ 0 limit.

One notes that once the intensity of choice increases above a certain threshold value shown by the full
black line in figure 6, a weak peak corresponding to the strategy ‘trading at market 1’ appears in the
distribution of attractions of the first class of agents, whose attractions are marked by black circles;
recall here that market 1 provides buyers, who are more frequent among agents of the first class, with
higher returns. When β crosses the second fragmentation threshold (red line in figure 6), the same
type of weak peak emerges in the distribution of attractions of the second class of agents (denoted by
a red empty circle as before).

The fact that the two solid lines just described are close to horizontal reflects the fact that since almost
all of the population trades at the fair market, the bias of the third market will not significantly influence
the preference of traders. This is the reason why the intensity of choice at which traders of class 1 (resp.
class 2) will weakly fragment between markets 1 and 2 is almost independent of the bias of the third
market. The same is not true of the thresholds for the appearance of a peak corresponding to the
strategy ‘trade at market 3’, which are indicated by the sloping dashed lines in figure 6.

Consistent with previously discussed results, the existence of fair market suppresses strong
fragmentation and within the space of parameters depicted in figure 6 we note only weak
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Figure 6. Peak structure of the different attraction distributions when θ1 = 0.3, θ2 = 0.5, pð1ÞB ¼ 1� pð2ÞB ¼ 0:8. The solid/
dashed lines show weak fragmentation transitions where subpopulations emerge that favour markets 1 or 3 (line colours
denote class of agents in which transition occurs).
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fragmentation. This means that across the parameter range investigated the fair market attracts most of
the traders. We also note that the third market loses the competition when it is very biased and the
intensity of choice is not large enough (note regions where market 3 either attracts none or only one
class). However, it is interesting to see that for sufficiently large intensity of choice β all three markets
coexist independently of the third market bias.
5. General number of markets M
So far we have discussed various cases of fragmentation in the three-market set-up. We found that above
some critical value of the intensity of choice β, the solution in which the population remains indecisive
towards the markets is never stable and at least one market loyalty group is formed. The obvious
question is now whether we can say something about the number of distinct agent subpopulations in
the general case of M markets.

The theoretical description of the population’s adaptation in the most general case, without market or
agent symmetry requires the self-consistent procedure of calculating order parameters (one per market)
and the steady-state distribution of the agent attractions. This is a non-trivial task in higher dimensions
but the general existence of solutions can be rationalized within a simple counting argument.

In the following, we make the assumption that for all M there is a fragmentation threshold βs above
which the drift in the Fokker–Planck representation of the dynamics has multiple zeros. However, even
when this is the case it is not clear whether all agent classes will develop loyalty groups towards each of
the markets (and the corresponding attraction distribution peaks), whether the peaks will be small or
large; in the latter case fragmentation persists by definition in the r→ 0 limit. To address this question
we consider an agent class that is strongly fragmented across M markets so that in the limit r→ 0 its
attraction distribution consists of M delta peaks with weights of order unity. We can find the peak
positions by locating the zeros of the drift, but without the Fokker–Planck solution, we cannot obtain
the peak weights and the Freidlin–Wentzell approach becomes difficult. We therefore ask how many
non-zero peak weights can exist in general, for C agent classes and M markets. As explained, we
assume the general shape of the steady-state distribution

PðcÞðAÞ ¼
XM
m¼1

vðcÞ
m dðA�AðcÞ

m Þ:

Each of the agent classes is described by peak weights v
ðcÞ
1 , . . ., vðcÞ

M that satisfy the normalization
condition

PM
m¼1 v

ðcÞ
m ¼ 1, thus in the absence of any symmetry we have M− 1 free variables per class.

On the other hand, for each market we define an order parameter fm, thus the system of equations we
need to solve to find a strongly fragmented solution is

Fmðvð1Þ
1 , vð1Þ

2 , . . ., vð1Þ
M , . . . , vðCÞ

M Þ ¼ fm:
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Here Fm denotes the relationship between the peak weights and market order parameters; an example of
this for C = 2 andM = 3 is written explicitly in equation (4.1). Without symmetries, when all the equations
and variables are independent, this system of M equations and C(M− 1) variables has a unique solution
only when the number of equations is equal to the number of variables, i.e. M =C(M− 1). This equation
has an integer solution pair only when both number of market M and classes C is equal to two,
(C, M) = (2, 2). For example, the population studied so far with its C = 2 agent classes requires 2(M−
1) weights for strong fragmentation across M markets, and equating the number of variables 2(M− 1)
and the number of equations M gives M = 2 markets, which is the case studied in [6].

Since we have seen that full fragmentation, with all agent classes developing separate loyalty groups
for all markets, can only happen (without symmetries) in systems with two markets and two agent
classes, we next relax the assumption on the number of loyalty groups. Let us suppose there are M
markets and two agent classes, each of them fragmenting into η(c) subgroups (i.e. having only η(c)

non-zero peak weights), the system of equations for these weights has a unique solution when η(1) +
η(2)− 2 =M. This shows that if one class divides into M loyalty groups, the second class will fragment
only across two markets; other combinations satisfying η(1) + η(2) =M + 2 are also possible. For a
general number of agent classes, the analogous constraint reads

hð1Þ þ hð2Þ þ � � � þ hðCÞ ¼ Mþ C: ð5:1Þ
As an example, if one class develops loyalty groups to all M markets, the other C− 1 classes can have C
such subpopulations in total, equating to one bimodal and C− 2 unimodal steady-state distributions.
More generally, if we associate each loyalty group with its preferred market then (5.1) shows that it is
impossible for the population classes to develop disjoint sets of preferred markets, as that would
require hð1Þ þ hð2Þ þ � � � þ hðCÞ � M. For example, in the case C = 2, there will be at least two markets
for which both classes have loyalty groups; the overlap will be even greater if some markets lose out
and have no associated loyalty group.

Summarizing, the conclusion of our counting argument is that in the r→ 0 limit at most C +M loyalty
groups can coexist. In the three-market scenario with two classes, this is at most five loyalty groups. We
saw an exception in the case of three fair markets, where six loyalty groups can exist; this is because of the
symmetry between the markets, which our general argument excludes. It is remarkable how the simple
counting argument gives a variety of new conjectures for the systems with multiple markets. It provides a
maximal number of loyalty groups; it tells us that all markets can in principle coexist, and that the loyalty
groups of different agent classes must overlap at C markets at least. An interesting consequence is the
emergence of a state where some markets are persistently visited only by a subset of the overall
population of traders.
6. Summary and outlook
In this paper, we have investigated whether market coexistence is possible in systems with more than two
markets when agents with fixed buy/sell preferences adapt dynamically to optimize their choice of
market. This research question is motivated by empirical observations of multiple markets coexisting
and attracting loyal traders both in in silico and real market competitions. Rather than aiming to
reproduce market stylized facts, here we investigate mechanisms that might lead to a previously
neglected phenomenon, namely, that multiple market loyalties, and thus market coexistence, could
emerge without any underlying heterogeneity of agents or markets and only as a consequence of the
co-adaptation of the agents. To this end, we studied the possible steady states of the agent dynamics,
in particular with regard to the occurrence of fragmentation, where a homogeneous class of agents
spontaneously forms subpopulations with long-lived market preferences.

The proposed model contains an implicit assumption of bounded rationality as the agents do not
optimize any utility function or aim to make the rational/optimal choice; instead their behaviour is
based on their past observed outcomes. Depending on the learning parameters the agents are tunable
between trading randomly and a behaviour that repeats the most rewarding past choices. The agents
do not possess knowledge about market mechanisms nor the existence of various different agents nor
their scores, they only make decisions based on their past observations. In this regard, these
assumptions violate rational agent assumptions due to the lack of information and lack of utility-
optimizing behaviour. Nonetheless, in the case of two markets it has been shown [7] that when the
agents’ memory is infinitely long (r→ 0) and they do not update their preferences for options they did
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not try in the last steps, then the expected outcome under rational behaviour (Nash equilibrium) is
retrieved.

Motivated by the wide variety of structures of the attraction distributions that one observes in multi-
agent simulations, we explored different combinations of market biases and their influence on the
phenomenon of fragmentation. First we studied fragmentation across three fair markets, i.e. with θ1 =
θ2 = θ3 = 0.5. This was the only scenario where we found that all three markets coexist across the full
range of the intensity of choice β of the agents. As β increases we nonetheless see a change, from an
indecisive population (where agents visit all three markets randomly) to a strongly fragmented
population where each agent class splits into three equal-sized loyalty groups with a distinct
preference for one market.

We continued by exploring different market configurations to get an intuition for the factors that
drive fragmentation. This enabled us to identify two principal causes of fragmentation: (i) the
similarity between the markets’ biases, (ii) the average volume of trade and average profit earned at a market.
The similarity between two markets is going to enhance fragmentation because traders are more likely
to split across two markets if they effectively cannot tell them apart. This effect is visible in §4.3 where
the strong and weak fragmentation thresholds are the highest (in terms of 1/β) when the second
market and the fair market have the same bias. The ordering of the appearance of the peaks in the
traders’ attraction distributions suggests—as we pointed out in §4.2—that traders will have an initial
preference for markets that provide a good balance between trading volume and profit, then as the
intensity of choice increases they will first spread to the market that maximizes their profit and then
subsequently to the one that maximizes their trading volume.

The concepts of positive and negative size effects introduced previously [17,18] are useful when
thinking about traders who develop loyalty for markets that do not reward them highly. At these
markets, traders benefit from the many trading options available (positive size effects), and the fact
that they are in the minority group (negative size effects). However, contrary to the findings of Ellison
et al. [17] and Shi et al. [18], we note that market coexistence is more prevalent when the markets are
similar—the fragmentation region shrinks with increased market difference.

Apart from the case of three identical markets, we find that once β is large enough for agents to stop
choosing markets at random, the three markets never coexist fully in the large memory limit, i.e. at least
one of them will have a market share that vanishes for r→ 0. At most, we observe that the population
fragments strongly across two markets (see strong fragmentation in figure 4). These markets then each
have a finite share of the trading volume for r→ 0, though with one being subdominant because it is
visited only by (some of the) agents from a single class.

From a general counting argument, we found further that full market coexistence, where all agent
classes develop the ( joint) maximal number of loyalty groups, leads to apparently specialized
markets: some agent classes develop loyalties only to a subset of all markets (as in figure 4) and
conversely some markets are not visited by agents from all classes. This is not a consequence of a
market explicitly targeting some subset of the agent population, but rather of the limited number of
market loyalties the different agent classes can support.

We mostly considered moderate values of β driven by our interest in finding domains of different
steady states, and for those purposes our straightforward implementation of the action minimization
algorithm served us well. However, for large values of β it occasionally fails to find minimal action
path, thus robustness and accuracy improvements are needed if one is interested particularly in this
regime. One possibility might be to use the geometric minimum action method [26].

Although the analytical and numerical methodology we have proposed to study agents who choose
between multiple markets is valid for any number of markets M, it is challenging for two reasons: (i) the
parameter space dimension grows with M thus making numerical exploration of all possible behaviours
difficult, and (ii) analytical approaches also become harder to implement as the analysis is done in the
space of attraction differences of dimension M− 1.

Turning to implications for market competition, our results show that loyalty groups for all three
markets rarely exist for large intensity of choice β in the large memory limit (r→ 0). However, for
finite memory (r > 0), one should expect that the small peaks persist. In two market systems, above
certain values of r (effectively for short memory) only a strongly fragmented steady state exists [6]
instead of two weakly fragmented and metastable strongly fragmented states; it would be interesting
to investigate if similar results also hold for multiple markets.

In this and previous studies, we have investigated how agents adapt based on their exploration of
markets; the adaptation mechanism implicitly assumes that markets do not change. Realistically, one
would expect that a market tries to adapt as well once the number of traders using it decreases. If
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markets only try to maximize this number of traders, one could speculate that by adapting their θ biases
they would converge to all-fair markets (similarly to the Hotelling paradox [27]). If on the other hand
markets were to adapt to optimize the number of successful trades, by e.g. charging fixed or profit-
dependent fees, then it would be intriguing to know what types of steady states would be realized in
the overall system of agents and markets.

Finally, a broad implication of our study is that fragmentation (weak or strong) can emerge
spontaneously within a class of homogeneous traders, in contrast to statements elsewhere [1] arguing
that heterogeneity among traders is the reason for market fragmentation. This we think is a very
interesting result as it demonstrates that structure in the preferences of economic agents might emerge
out of adaptation rather than being present from the start. To this end, we made an assumption of
homogeneity of agents in terms of their learning parameters, which simplified the mathematical
description but could be relaxed and investigated further. Heterogeneity in agents’ memory parameter
r was investigated in [28] where it was shown that a population containing both fast (r = 1) and slow
(r≪ 1) agents still fragments across two markets, with the critical β depending on the fraction of fast
traders. Heterogeneity in β might be mathematically more challenging but could in principle be
tackled following the procedures outlined in [8]. The population can be split into subgroups of traders
with the same β whose steady-state market preference distributions should be found assuming fixed
demand-to-supply market parameters. Finally, it should be checked whether those market aggregated
parameters can be reproduced from the trader preferences obtained, i.e. whether the overall solution
is self-consistent. This would be an interesting next step to investigate, together with heterogeneities in
terms of trading strategies and budget constraints.
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Appendix A. Kramers–Moyal expansion
In this appendix, we give the expression of the drift and covariance matrix that appear in the Kramers–
Moyal expansion in equation (3.1). We only give the results here; the steps of the derivation can be found
in the thesis of Aloric ́ [29]. First, the drifts of the attraction differences are

m
ðcÞ
2 ðDAðcÞ, f1, f2, f3Þ ¼ PðcÞ

1 ðf1ÞPðM ¼ 1Þ � PðcÞ
2 ðf2ÞPðM ¼ 2Þ

� �
� DAðcÞ

2 (A 1Þ

and

m
ðcÞ
3 ðDAðcÞ, f1, f2, f3Þ ¼ PðcÞ

1 ðf1ÞPðM ¼ 1Þ � PðcÞ
3 ðf3ÞPðM ¼ 3Þ

� �
� DAðcÞ

3 : (A 2Þ

Here PðcÞ
m ðfmÞ is the average payoff of a trader from class c at market m and P(M =m) is the probability to

trade at market m, which depends on the vector ΔA(c) of attraction differences. We do not write this
dependence explicitly to lighten the notations. The fm are the market aggregates, i.e. buyer-to-seller
ratios, at the three markets. In order to check the validity of our calculations we compared the
dynamics of the aggregate f1 during a multi-agent simulation with the evolution of the aggregates
under the homogeneous population dynamics as detailed in [7], finding good agreement as shown
in figure 7.

We next look at the covariance matrix of the effective noise acting on the attraction differences

S
ðcÞ
22 S

ðcÞ
23

S
ðcÞ
23 S

ðcÞ
33

 !
, (A 3Þ
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Figure 7. Comparison between the time series of the aggregate (ratio of buyers to sellers) at the first market during a multi-agent
simulation (with r = 0.01 and 104 agents in each class) and its evolution under the homogeneous population dynamics. The
parameters for the plots in this figure are (θ1, θ2, θ3) = (0.2, 0.5, 0.8), β = 1/0.3 and pð1ÞB ¼ 1� pð2ÞB ¼ 0:8.
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which is given by

S
ðcÞ
22 ðDAðcÞ, f1, f2, f3Þ ¼ QðcÞ

1 ðf1Þ � 2DAðcÞ
2 PðcÞ

1 ðf1Þ
� �

PðM ¼ 1Þ

þ QðcÞ
2 ðf2Þ � 2DAðcÞ

2 PðcÞ
2 ðf2Þ

� �
PðM ¼ 2Þ þ DAðcÞ

2

2
,

(A 4Þ

S
ðcÞ
33 ðDAðcÞ, f1, f2, f3Þ ¼ QðcÞ

1 ðf1Þ � 2DAðcÞ
3 PðcÞ

1 ðf1Þ
� �

PðM ¼ 1Þ

þ QðcÞ
3 ðf3Þ � 2DAðcÞ

3 PðcÞ
3 ðf3Þ

� �
PðM ¼ 3Þ

þ DAðcÞ
3

2

(A 5Þ

and S
ðcÞ
23 ðDAðcÞ, f1, f2, f3Þ ¼ DAðcÞ

2 PðM ¼ 3ÞPðcÞ
3 ðf3Þ � PðM ¼ 1ÞPðcÞ

1 ðf1Þ
� �

þ DAðcÞ
3 PðM ¼ 2ÞPðcÞ

2 ðf2Þ � PðM ¼ 1ÞPðcÞ
1 ðf1Þ

� �
þ PðM ¼ 1ÞQðcÞ

1 ðf1Þ þ DAðcÞ
2 DAðcÞ

3 ,

(A 6Þ

where QðcÞ
m ðfmÞ is the average squared payoff, see [7].
Appendix B. Freidlin–Wentzell theory
We describe in this section the large deviation methods we use to study multimodal attraction
distributions in the steady state of our agents’ learning dynamics. As explained in more detail in [7],
steady-state attraction distributions for small r will be peaked around the stable fixed points of the
single agent dynamics. The shape of these peaks becomes Gaussian for r→ 0, with a covariance
matrix proportional to r that is straightforward to determine. Much more difficult to find are the
weights of the peaks as these involve rare fluctuations of an agent making the transition from one
peak to another. In one dimension, the problem is tractable as an explicit formula for the steady-state
distribution of attractions can be given [6]. In higher dimensions detailed balance [31] would have a
similar simplifying effect, but our single agent dynamics in the two-dimensional attraction space (for
each class of agents) does not have this property.

In our approach, we therefore consider the peak weights in an attraction distribution as a result of the
balance between transitions between the various peaks. We therefore need to find the rates for these
transitions. To do this, note from the Kramers–Moyal expansion that the single agent learning is
described by a Langevin equation with noise variance O(r). For r→ 0, we are therefore looking for
transition rates in a low noise limit. This allows us to use Freidlin–Wentzell theory, which deals with
large deviations of Langevin dynamics in exactly this limit [32].

B.1. Freidlin–Wentzell theory

We use Freidlin–Wentzell theory in the form developed in [33,34], which generalizes the Eyring–Kramers
[35] formula for the rates of noise-activated transitions to non-conservative dynamics. We give a brief
summary of those aspects of Freidlin–Wentzell theory that we use in our numerical application
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and refer to [32] for a mathematically rigorous description and to [33] for a more statistical
physics-oriented summary.

Freidlin–Wentzell theory is concerned with the transition rates between two stable states (here Aw
1

and Aw
2 ; below we drop the Δ from the notation for the attraction differences for brevity) of a non-

conservative stochastic dynamics in the low noise limit. A general Langevin equation can be written
in the form

_AðtÞ ¼ mðAðtÞÞ þ ffiffi
r

p ½SðAðtÞÞ�1=2jðtÞ, (B 1Þ
where jðtÞ is white noise with unit covariance matrix. The drift μ and the covariance matrix S of the noise
in the Langevin equation are given in [7] for our learning dynamics. In the generic version above, we
have omitted the superscript (c) indicating the class of agents we are considering, as well as the
dependence of drift and noise covariance on the market aggregates.

Associated with the Langevin dynamics is an Onsager–Machlup action S½A� for any path A(t)

S½A� ¼
ðt2
t1

1
2

�
_AðtÞ � mðAðtÞÞ

�T
S�1ðAðtÞÞ

�
_AðtÞ � mðAðtÞÞ

�
dt: (B 2Þ

The action determines the probability of observing any path [A(t)] according to

G1!2 � exp �S½A�
r

� 	
, (B 3Þ

where ∼means that the equality is true up to a prefactor (which depends on the time discretization used).
The main Freidlin–Wentzell result we need is that the rate G1!2 for a transition from Aw

1 to Aw
2 ( forward

path) is [32,36]

G1!2 � exp �Sw
1!2

r

� 	
, (B 4Þ

where Sw
1!2 is the minimal action achievable by any path from Aw

1 to Aw
2 in the infinite time interval

(t1, t2) = (−∞, ∞). The rate G2!1 for the reverse transition from Aw
2 to Aw

1 is similarly
G2!1 � expð�Sw

2!1=rÞ.
The attraction distributions we are after will consist of narrow (for small r) peaks at Aw

1 and Aw
2 . The

weights ω1 and ω2 of these two peaks, which represent the probability for an agent to be within each
peak, must then be such that forward and backward transitions balance

v1G1!2 ¼ v2G2!1 (B 5Þ
and

v1

v2
/ exp

Sw
1!2 � Sw

2!1

r

� 	
: (B 6Þ

This expression shows that when the forward and backward minimal actions are not equal, then one of
the two peaks will have an exponentially small weight as r→ 0. In practice, this is true when the action
difference inside the exponential in (B 5) is large compared with r. If it is only of order r or smaller, then
we cannot say anything about the weights as we do not determine the prefactor in (B 5), though we
would expect them to be of order unity.
B.2. Finding the minimal action path numerically

Following the method of Bunin et al. [36], we find the minimal action by discretizing the path [A(t)],
evaluating the action as a function of this discretized path and then minimizing with respect to the
(discretized) path. The path is discretized into 10 equally spaced time steps between t = 0 and t = 10;
we found this choice of parameters to be a reasonable trade-off between the precision of our result
and the complexity of minimizing the discretized action.

There are other methods for finding the minimal value of the action defined in equation (B 2), such as
solving a Hamilton–Jacobi equation [33], but we chose to use the path discretization method because we
found this to be more robust with respect to changes of model parameters. The discretization approach
could also be improved further, using for example the geometric minimum action method [26], but we
found that this was not necessary to achieve the desired precision. We tested this e.g. by benchmarking
against closed-form results that can be obtained for M = 2 [6].
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The numerical path optimization can be simplified by restricting attention to the activation part of the
path. Generally, for a system with two stable fixed points Aw

1 and Aw
2 and one saddle point �A between

them, the optimal path starting from Aw
1 will pass through the saddle point �A and then relax to Aw

2

following the relaxation dynamics _AðtÞ ¼ mðAðtÞÞ, equation (B 2) shows that the relaxation dynamics
does not contribute to the total action as the integrand (the Lagrangian) vanishes identically along this
section of the path. As a consequence, the problem of finding a minimal action path between Aw

1 and
Aw

2 can be reduced to finding the minimal action path between Aw
1 and �A, i.e. from the initial fixed

point to the saddle. This restriction significantly improves the precision of the numerical path
optimization.

With the above method, we can work out the action difference between any two fixed points of the
single agent dynamics, as a function of the market aggregates. The values of these aggregates where the
action difference between two single agent fixed points vanishes identify the points where the steady
state attraction distribution of our learning can have more than one peak. Either side of these values,
a single peak is dominant in the attraction distribution; which peak this is changes discontinuously at
a zero action difference value of the market aggregates.
c.Open
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Abstract
Knowledge-sharing communities are fundamental elements of a knowledge-based
society. Understanding how different factors influence their sustainability is of crucial
importance. We explore the role of the social network structure and social trust in
their sustainability. We analyze the early evolution of social networks in four pairs of
active and closed Stack Exchange communities on topics of physics, astronomy,
economics, and literature and use a dynamical reputation model to quantify the
evolution of social trust in them. In addition, we study the evolution of two active
communities on mathematics topics and two closed communities about startups
and compare them with our main results. Active communities have higher local
cohesiveness and develop stable, better-connected, trustworthy cores. The early
emergence of a stable and trustworthy core may be crucial for sustainable
knowledge-sharing communities.

Keywords: Networks structure; Dynamic reputation; Knowledge exchange; Stack
Exchange; Sustainability of Q&A communities

1 Introduction
The development of a knowledge-based society is one of the critical processes in the mod-
ern world [1, 2]. In a knowledge-based society, knowledge is generated, shared, and made
available to all members. It is a vital resource. Sharing this resource between individuals
and organizations is a necessary process, and knowledge-sharing communities are one of
the fundamental elements of a knowledge society.

Often, these knowledge-sharing communities depend on the willingness of their mem-
bers to engage in an exchange of information and knowledge. Participation in the com-
munity is voluntary, with no noticeable material gains for members. Recent research has
shown that the process of knowledge and information exchange is strongly influenced
by trust [3, 4]. The exchange of knowledge depends on trust between a member and the
community. It is a collective phenomenon that depends on and is built through social
interactions between community members. This is why we believe it is crucial to under-
stand how trustworthy knowledge-sharing communities emerge and disappear, as well as
to unveil the fundamental mechanisms that underlie their evolution and determine their
sustainability.

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
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Unlike small offline knowledge-sharing groups, online communities consist of a large
number of members where repeatable mutual interactions between all members are not
possible. Thus, the trustworthiness of individuals in these communities has to be assessed
and signaled using other means. It was shown that the reputation of an individual within
the community is a strong signal of her trustworthiness that can override the main sources
of social bias [5]. The reputation helps users manage the complexity of the collaborative
environment by signaling out trustworthy members.

In the past two decades, we have witnessed the emergence of an online knowledge-
sharing community Stack Overflow, which has become one of the most popular sites in the
world and the primary knowledge resource for coding. The success of Stack Overflow led
to the emergence of similar communities on various topics and formed the Stack Exchange
(SE) network.1 The advancement of Information and communication technologies (ICTs)
have enabled faster and easier creation and sharing of knowledge, but also the access to
a large amount of data that allowed a detailed study of their emergence and evolution
[6], as well as user roles [7], and patterns of their activity [8–10]. However, relatively little
attention has been paid to the sustainability of SE communities. Most research focused
on the activity and factors that influence the users’ activity in these communities. Factors
such as the need for experts and the quality of their contributions have been thoroughly
investigated [11]. It was shown that the growth of communities and mechanisms that drive
it might depend on the topic around which the community was created [12].

In this paper, we investigate the role of network structure and social trust dynamical
user reputation in the sustainability of a knowledge-sharing community. Research on the
sustainability of social groups shows that social interaction and their structure influence
the dynamics and sustainability of social groups [13–16]. Due to large number of users and
the smaller probability of repeated interactions dyadic trust between members may not
play an essential role in the group dynamics of knowledge-sharing communities. However,
it is known that the reputation of users, one of the proxies of trust in online communities,
is the primary for them to become and maintain their productive member status [17–19].

With the proliferation of misinformed decisions, it is crucial to understand how to foster
communities that promote collaborative knowledge exchange and understand how coop-
erative norms of trustworthy behavior emerge. The way people interact, specifically the
structure of their interactions [20], and how inclusive and trustworthy the key members
of the community can influence the sustainability of the knowledge-sharing communities.
Although the topic and early adopters are essential in establishing a new SE community,
they are not sufficient for sustainability. The current SE network has several examples of
communities where the first instance of the community did not survive the SE evaluation
process and was shut down, while the second attempt resulted in a sustainable commu-
nity. Focusing on attempts to establish a community on the same or similar topic with a
different outcome allows us to investigate the relevance of social network structure and
social trust in the sustainability of knowledge-sharing communities. They are particularly
relevant if we wish to understand why some communities established themselves in their
second attempt. For those pairs of communities, the topic is the same, and all the initial

1More information about Stack Overflow is available at: https://stackoverflow.co/ and broad introduction to Stack Ex-
change (SE) network is available at: https://stackexchange.com/tour. Visit https://area51.stackexchange.com/faq for more
details about closed and beta SE communities and the review process.

https://stackoverflow.co/
https://stackexchange.com/tour
https://area51.stackexchange.com/faq
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Figure 1 Visual abstract: Top row illustrates how user interaction via questions, answers, and comments is
translated into an undirected network of interactions between users and finally aggregated over 30 day
windows. The bottom row shows activity and corresponding dynamic reputation for one user from the
closed Literature SE community. Networks on the right illustrate differences between closed and active SE
Literature communities. Nodes are colored according to the core/periphery affiliation, while their size
corresponds to dynamic reputation on the last day of interaction that the network contains

SE platform requirements were satisfied, but something else was crucial for community
decay in the first attempt and its in the second.

Our methods and key results are summarised in a visual abstract in Fig. 1. In our main
analysis, we analyze four pairs of SE communities and study the differences in the evo-
lution of social structure and trust between closed and active communities. We have se-
lected four topics from the STEM and humanities: astronomy, physics, economics, and
literature. We focus on topics where we could find a matched pair of closed and active
communities to control for the differences in topic popularity and, partially, community
size. For this reason alone, we do not include Stack Overflow as the most popular com-
munity in our analysis. We analyze each pair’s early stages of evolution and look at the
differences between active and closed communities. Specifically, we map the interactions
onto complex networks and examine how their properties evolve during the first 180 days
of communities’ existence. Using complex network theory [21] we quantify the structure
of these networks and compare their evolution in active and closed communities on the
same topic. We pay special attention to the core-periphery structure of these networks
since it is one of the most prominent features of social networks [22]. We examine how
core-periphery structure of active and closed communities evolve and analyze their differ-
ence. We show that active communities have a higher value of local normalized clustering
and a more stable core membership. On average, the core of the sustainable communities
has higher inner connectivity.

To study the evolution of social trust, we adapted the Dynamic Interaction Based Rep-
utation Model (DIBRM) [23]. The model allows us to quantify the trust of each individual
over time. We can quantify members’ mean and total trust within the core and periph-
ery and follow their evolution through time. The mean reputation of members is higher
in sustainable communities than in closed ones, indicating higher levels of social trust.
Furthermore, the mean reputation of core members of active communities is constantly
above the mean reputation of core members in closed communities, indicating that the
creation of trust in the early stages of a community’s life may be crucial for its survival.
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Our results show that social organization and social trust in the early phases of the life of
a knowledge-sharing community play an essential role in its sustainability. Our analysis
reveals differences in the evolution of these properties in communities on different topics.

The paper is organized as follows. In Sect. 2 we give a short overview of previous re-
search. Section 3 describes the data and outlines some specific properties of each com-
munity. In Sect. 4 we describe the measures and models used for describing the local or-
ganization and measuring reputation. Section 5 shows our results. Finally, we discuss our
results and selection of model parameters and time window, as well as its consequences
in Sect. 6.

2 Previous research
The availability of data from the SE network led to detailed research on the different as-
pects of dynamics of knowledge sharing communities [6, 8–10], the roles of users [7], and
their motivations to join and remain members of these communities [24–28]. The focus
of the research in the previous decade was on the evolution of activity in SE communities
and the different factors that influence this growth. Ahmed et al. [29] have investigated
differences between technical and non-technical communities and showed that within
the first four years, technical communities have a higher growth rate, more activity, and
are more modular. The comparison of UX community in SE and Reddit [30] showed that
the Reddit community grows faster, while SE becomes less diverse and active over time.
Special attention was paid to the activities of individual users. In Ref. [31] authors argue
that while the overall quality of the answers, measured in the answer score, decays over
time, the quality of the answers of the individual user remains constant. This observation
suggests that good answerers are born and not made within the community. Reputation is
used as a proxy for the recognition of experts [32] by other members. However, contrary
to common sense, the authors show that the presence of experts can reduce the activ-
ity of other members [32]. In [12] authors explore the role of self-and cross excitation
in the temporal development of user activity. Differences between growing and declin-
ing communities and communities on STEM and humanities topics were explored. Their
results show that the early stages of growing communities are characterized by the high
cross-excitation of a small fraction of popular users. In contrast, later stages exhibit strong
long-term self-excitation in general and cross-excitation by casual users. It was also shown
that cross-excitation with power users is more important in the humanities than in STEM
communities, where casual users have a more critical role.

A relatively small number of papers focus on the sustainability of SE communities. In
Ref. [11], authors examine SE sites through an economic lens. They analyze the relation-
ship between content production based on the number of participants and activities and
show that an increase in the number of questions (input) increases the number of answers
(output). In their works, Oliveira et al. [33] investigate activity practices and identify the
tension between community spirit as proclaimed in SE guidance and individualistic values
as in reputation measurement through focus groups and interviews.

Our assumption about the relevance of the structure of social networks in the sustain-
ability of knowledge-sharing communities is supported by research on other social groups.
Various factors influence the emergence [34, 35], the evolution, and the sustainability of
the groups [13, 20, 36, 37]. The number of committed members [37] and the minimal level
of interdependence between members [35] are important factors for the emergence of the
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community. The levels of activity have an important role in the emergence and stability of
social groups [34, 37], while social factors, such as the size of the group, number of social
contacts, or social capital, influence their emergence and collapse [13–16].

Another important branch of research of interest in the sustainability of online com-
munities is the topic of trust. While ICTs make it easier for individuals to establish and
maintain social contacts and exchange information and goods, they are also exposed to
new risks and vulnerabilities. Social trust relationships, based on positive or negative sub-
jective expectations of another person’s future behavior, play an important but largely un-
explored role in managing those risks. Recent works show that the vital element of trust
is the notion of vulnerability in social relations, and as negative expectations of a trustee’s
behavior most often imply damage or harm to the trustor, decisions about which users to
trust in an online community become paramount [38–40].

In communities such as SE, individuals have three sources of information to rely on when
deciding to trust someone in a specific context: (1) knowledge of previous interactions,
(2) expectations about future interactions, and (3) indirect information gained through
a broader social network. Suppose that the number of active users in such a community
increases over a more extended period. In that case, the individuals have little or no history
together, no direct interactions, and almost no memory of past interactions. In that case,
the social network created by the community becomes a crucial source of information.
Therefore, from a network perspective, trust can be the result of reputational concerns
and can flow through indirect connections linking actors to one another [40, 41].

In that case, users rely on reputation as a public measure of the reliability of other users
active within the same community. Reputation is often quantified based on the history
of behavior valued or promoted by a set of community norms and, as such, represents a
social resource within the community [42–44]. Since reputation is public information, it
is also an incentive. Agents with high reputations are motivated to act trustworthy in the
future in order to preserve their status in the community [41]. This idea is supported by
psychological findings suggesting that trust is primarily motivated by effects produced by
the act of trust itself, regardless of more rational or instrumental outcomes of trustworthy
behavior [39].

In terms of modeling collective trust and reputation in online communities, knowledge
about past behaviors can be implemented in a trust model in different ways. When esti-
mating trust between agents in a social network, graph-based models focus on the topo-
logical information, position, and centrality of agents in a social network to estimate both
dyadic and collective measures of social trust. On the other hand, interaction-based mod-
els, such as the dynamic reputation model implemented in this paper (DIBRM) [23] es-
timate trust or reputation based on the frequency and type of agent’s interactions over
time without taking into account the structure and topology of the interactions between
different agents in a network.

3 Data
In our main analysis, we focus on pairs of closed and active SE communities matched by
topic. Astronomy, Literature, and Economics are currently active communities. All three
communities thrived the second time they were proposed. The first attempt to create com-
munities on these topics resulted in website closure within a year. We add to the compar-
ison the early days of the Physics community and compare its evolution with the closed
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Theoretical Physics community. The topics of these communities are not identical, but
it is safe to assume that there is a high overlap in user demographics and interests. For
these reasons, we treat this pair in the same manner as others. Furthermore, to further
solidify our results we have examined the early evolution of four additional communities:
Mathematics, Mathematica, Startup Business, Startups. These communities are used to
inspect the robustness of our main analysis by comparing main communities with others
of similar size, user growth, and activity trends.

The SE data are publicly available and released at regular time intervals. We are primarily
interested in the activity and interaction data, which means that we extract the following
information for posts (questions and answers) and comments: (1) for each post or com-
ment, we extract its unique ID, the time of its creation, and unique ID of its creator - user;
(2) for every question, we extract information about IDs of all answers to that question
and ID of the accepted answer; (3) for each post, we collect information about IDs of its
related comments. The data contains information about the official SE reputation of each
user but only as a single value measuring the final reputation of the user on a day when
the data archive was released. Due to this significant shortcoming, we do not include this
information in our analysis. In SE, users can give positive or negative votes to questions
and answers and mark questions as favorites. However, the data is again provided as a fi-
nal score recorded at the release. Since this does not allow us to analyze the evolution of
scores, we omit this data from our analysis.

All SE communities follow the same path from their creation until they are considered
mature enough or closed. In a Definition phase, a small number of SE users start by design-
ing a community by proposing hypothetical questions about a certain topic. A successful
Definition phase is followed by a Commitment phase. In this phase, interested users com-
mit to the community to make it more active. The Beta phase, which follows after the
Commitment phase, is the most important. It consists of two steps: a three-week private
beta phase, where only committed users may ask/answer/comment questions, and a pub-
lic beta phase when other members are allowed to join the community. The duration of
the public beta phase is not limited. Depending on this analysis, there are three possible
outcomes: (1) the community is considered successful and it graduates; (2) the commu-
nity is active but needs more work to graduate, which means that the public beta phase
continues; (3) the community dies and the site is closed. The community evaluation/re-
view process is guided by simple metrics: the average number of questions per day, aver-
age number of answers per question, percentage of answered questions, total number of
users and number of avid users, and average number of visits per day. However, it should
be noted that process is not straightforward and that decision criteria have substantially
changed in previous years and sometimes exceptions are made for specific communities.2

We study how the social network properties of these social communities and the social
trust created among their members evolve during the first 180 days. The first 90 days are
recognized as the minimal time a newly established community should spend in the beta
phase. We investigate a period that is twice as long since closed communities were active
between 180 and 210 days. Given that differences in the first few months of the life of the

2For example, in 2022 59 websites graduated according to new criteria established in 2019 (which excluded ques-
tions per day metric), but as explained in the announcement (https://meta.stackexchange.com/questions/374096/
congratulations-to-the-59-sites-that-just-left-beta) exception was made for the AI community which graduated although
it didn’t meet the criteria that minimum 70% questions have at least one upvoted answer.

https://meta.stackexchange.com/questions/374096/congratulations-to-the-59-sites-that-just-left-beta
https://meta.stackexchange.com/questions/374096/congratulations-to-the-59-sites-that-just-left-beta
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Table 1 Community overview for first 180 days according to SE evaluation criteria

Site Status Answered Questions per day Answer ratio

Physics Closed 83% 1.93 1.64
Active 93% 11.76 2.74

Literature Closed 79% 1.77 1.65
Active 74% 5.04 1.10

Astronomy Closed 95% 2.62 2.02
Active 96% 3.57 1.49

Economics Closed 68% 2.04 1.25
Active 84% 5.66 1.37

Stack Exchange criteria Excellent >90% >10 >2.5
Needs some work <80% < 5 <1

online community can help predict its survival and evolution [45], we focus on the early
evolution of SE sites.

Although the official review of SE communities in the beta phase is mostly based on sim-
ple activity indicators such as the number of questions or ratio of answers to questions,3

these simple metrics do not provide enough information to differentiate between closed
communities and those that have been proven to be sustainable in the long term. This may
explain why the official guidelines for SE community review have changed and have been
applied inconsistently.

Table 1 shows the values of some of these measures at 180 days point for considered com-
munities. Although the Physics community had better metrics than Theoretical Physics
and other considered communities, we see that these differences are not as apparent if we
compare the remaining three pairs of communities. For instance, some of the parameters
for the closed Astronomy community, for example, the percentage of answered questions
and answer ratio, were better than for the community that is still active.

Another simple indicator can be the time series of active questions for the 7 days shown
in Fig. 2. The question is considered active if it had at least one activity, posted answer, or
comment, during the previous 7 days. The four pairs of compared communities show that
active communities have a higher number of active questions after 180 days. Although
this difference is evident for the Physics and Economics community, Fig. 2 shows that its
value is smaller for Astronomy and Literature. Furthermore, in the case of Astronomy, the
closed community had a higher number of active questions in the first 75 days.

The values of the measures shown in Tables 1 and A1 in Additional file 1, and Fig. 2 sug-
gest that these simple measures are not good indicators of long-term sustainability. There-
fore, we need a deeper understanding of the structure and dynamics of the community
to understand the factors behind its sustainability. All communities must start with the
same number of interesting questions, the same number of committed users, and satisfy
the same thresholds to enter the public beta phase. These basic aggregated statistics are
not enough to differentiate between active and closed communities. Hence, other factors
determine the sustainability of communities. We investigate the role of social interaction
structure and the dynamics of collective trust in the sustainability of SE communities.

3https://stackoverflow.blog/2011/07/27/does-this-site-have-a-chance-of-succeeding/

https://stackoverflow.blog/2011/07/27/does-this-site-have-a-chance-of-succeeding/
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Figure 2 Variations in the number of active questions in SE communities. Number of active questions within
7 days sliding windows on the four pairs of Stack Exchange websites: Astronomy, Literature, Economics and
Physics. Solid lines – active sites; dashed lines – closed sites

4 Method
We are interested in the position of trustworthy members in SE communities and how ac-
tive and closed communities differ regarding this factor. First, we map the interaction data
onto networks and analyze their properties and how they evolve during the first 180 days.
Furthermore, we use the dynamical reputation model to estimate the trustworthiness of
each member of the community and the dynamics of collective trust by studying the evo-
lution of the mean value of reputation in the community. The entire analysis was done in
Python, and the entire code for reproducing the results and figures is publicly available in
an online repository.4

4.1 Network mapping
We treat all user interactions, answering questions, posting questions or comments, and
accepting answers equally. We construct a network of users where the link between two
nodes, users i and j, exists if i answers or comments on the question posted by j and vice
versa, or i comments on the answer posted by j and vice versa, i accepts the answer posted
by user j. We do not consider the direction or frequency of the interaction between users
i and j; thus, the obtained networks are unweighted and undirected.

We create a network snapshot G(t, t + τ ) at the time t for the time window length τ .
Two users (i, j) are connected in a network snapshot G(t, t + τ ) if they have had at least one

4https://github.com/ana-vranic/Stack-Exchange-communities

https://github.com/ana-vranic/Stack-Exchange-communities
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interaction during the time [t, t + τ ]. Our first network accounts for interaction within
the first 30 days G[0, 30), and we slide the interaction window by one day and finish with
G[149, 179) network. This way, we create 150 interaction networks for each community.
By sliding the time window by one day, we create two consecutive networks that overlap
significantly. In this way, we can capture subtle structural changes resulting from daily
added/removed interactions. We calculate the different structural properties of these net-
works and analyze how they change over 180 days.

4.2 Clustering
There are many local and global measures of network properties [21]. These measures are
not independent. However, it was shown that the degree distribution, degree-degree cor-
relations, and clustering coefficient are sufficient to fully describe most complex networks,
including social networks [46]. Furthermore, research on the dynamics of social group
growth shows that links between persons’ friends who are members of a social group in-
crease the probability that that person will join that social group [47]. Successful social
diffusion typically occurs in networks with a high value of the clustering coefficient [48].
These results suggest that higher local cohesion should be a characteristic of sustainable
communities.

The clustering coefficient of a node quantifies the average connectivity between its
neighbors and the cohesion of its neighborhood [21]. It is a probability that two neigh-
bours of a node i are also neighbours, and is calculated using the following formula:

ci =
ei

1
2 ki(ki – 1)

. (1)

Here ei is the number of links between the neighbours of the node i, while 1
2 ki(ki – 1) is the

maximum possible number of links determined by the degree of the node ki. The cluster-
ing coefficient of the network C is the value of the clustering averaged over all nodes. We
investigate how the clustering coefficient in an SE community changes over time by cal-
culating its value for all network snapshots. We normalize the clustering coefficients with
the value of expected clustering for the random Erdos-Renyi network with the same num-
ber of nodes N and links L: cer = p = 2L

(N(N–1)) [21, 49]. We compare normalized clustering
coefficient for active and closed communities on the same topic to better understand the
evolution of cohesion of these communities.

4.3 Core-periphery structure
Real networks, including social networks, have a distinct mesoscopic structure [22, 50].
The mesoscopic structure is manifested either through the community structure or the
core-periphery structure. Networks with a community structure consist of a certain num-
ber of groups of nodes that are densely connected, with sparse connections between
groups. Networks with core-periphery structures consist of two groups of nodes, with
higher edge density within one group, core, and between groups. However, low edge den-
sity in the second group, periphery [22]. Research on user interaction dynamics in SE
communities shows that there is a small group of highly active members who have fre-
quent interactions with casual or low active members [8, 12]. These results indicate that we
should expect a core-periphery structure in SE communities. The classification of nodes
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into one of these two groups provides information on their functional and dynamic roles
in the network.

To investigate the core-periphery structure of SE communities and how it evolves over
time, we analyze the core-periphery structure of every network snapshot. For this purpose,
we use the Stochastic Block Model (SBM) adapted for the inference of the core-periphery
of the network structure [22].

SBM is a model where each node belongs to one group in the given network G. For the
core-periphery structure, the number of blocks is two. Thus, the elements of the vector
θi are 1 if the node i belongs to the core or 2 for the periphery. The block connectivity
matrix {p}2x2 specifies the probability prs that nodes from group r are connected to nodes
in group s, where r, s ∈ {1, 2}.

The SBM model seeks the most probable model that can reproduce a given network
G. The probability of having model parameters θ , p given network G is proportional to
the likelihood of generating network G, P(G|θ , p), prior on SBM matrix P(p) and prior on
block assignments P(θ ):

P(θ , p|G) = P(G|p, θ )P(p)P(θ ), (2)

The likelihood of generating a network G is defined as:

P(G|θ , p) =
∏

i<j

pAij
risj (1 – prisj )

1–Aij , (3)

where the adjacency matrix element Aij is equal to 1 whenever nodes i and j are connected
and it is 0 otherwise.

Prior on p is the uniform distribution over all block matrices whose elements satisfy
the constraint for the core-periphery structure 0 < p22 < p12 < p11 < 1. Prior on θ consists
of three parts: the probability of having 2 blocks; given the number of blocks, probability
P(n|2) of having groups of sizes {n1, n2} and probability P(θ |n) of having particular assign-
ments of nodes to blocks.

To fit the model, we follow the procedure set by the authors of Ref. [22] and use the
Metropolis-within-Gibbs algorithm. For each 30 days snapshot network, we run 50 iter-
ations and choose the model parameters θ and p according to the minimum description
length (MDL). MDL does not change much among inferred core-periphery structures,
see Fig. A1 in Additional file 1, while looking into the Adjusted Rand Index (ARI), we can
notice that difference exists. Still, the ARI between pair-wise compared partitions is sig-
nificant (ARI > 0.9), indicating the stability of the inferred structures. The definition and
detailed descriptions of MDL and ARI are given in the Additional file 1.

4.4 Dynamic reputation model
Any dynamical trust or reputation model has to take into account distinct social and psy-
chological attributes of these phenomena in order to estimate the value of any given trust
metric [43]. First, the dynamics of trust are asymmetric, meaning that trust is easier to
lose than to gain. As part of asymmetric dynamics, to make trust easier to lose, the trust
metric has to be sensitive to new experiences, recent activity, or the absence of the user’s
activity while still maintaining the non-trivial influence of old behavior. The impact of
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new experiences must be independent of the total number of recorded or accumulated
past interactions, making high levels of trust easy to lose. Finally, the trust metric must
detect and penalize behavior that deviates from community norms.

We estimate the dynamic reputation of SE users using the Dynamic Interaction Based
Reputation Model (DIBRM) [23]. This model is based on the idea of dynamic reputation,
which means that the reputation of users within the community changes continuously
over time: it should rapidly decrease when there is no registered activity from the specific
user in the community, reputation decay, and it should grow when frequent, constant in-
teractions and contributions to the community are detected. The highest growth in users’
reputations is found through bursts of activity followed by a short period of inactivity.

Our model implementation does not distinguish between positive and negative interac-
tions in SE communities. Therefore, we treat any interaction in the community, posting
a question, answer, or comment, as a potentially valuable contribution. The evaluation
criteria for SE websites that go through beta testing described in Additional file 1 do not
distinguish between positive and negative interactions. The percentage of negative inter-
actions in the communities we investigated was below 5%, see Table A2 in Additional file
1. Filtering positive interactions would also require filtering out comments because the
community does not rate them. That would eliminate a large portion of direct interac-
tions between community users, which is essential for estimating their reputation. The
only negative aspect of behavior in our model is the absence of valuable contributions -
the user’s inactivity. This behavior can be seen as a deviation from community norms as
we look at new communities in the early stages of development, where constant contribu-
tions are crucial to community growth and survival.

In DIBRM, the reputation value for each user of the community is estimated by combin-
ing two different factors: (1) reputation growth - the cumulative factor that represents the
importance of users’ activities; (2) reputation decay - the forgetting factor that represents
the continuous decrease in reputation due to inactivity. In the case of SE communities,
the forgetting factor has a literal meaning, as we can assume that active users forget users’
past contributions as their attention is captured by more recent content.

In the bottom left part of Fig. 1 we see an example of reputation dynamics for a single
user. There are bursts of reputation growth after multiple interactions are recorded, like
in the case of two interactions in a single day recorded between days 25 and 50, followed
by a period of inactivity which leads to reputation decay. In this case, the decay is inter-
rupted by a single recorded activity before the 75th day, but then an even longer inactivity
period ensued, leading to a decay that reduced the reputation of the user nearly to 0 be-
fore the 100th day. Two contrasting examples of real user reputation are explained in the
Additional file 1 (Fig. A2).

Reputation dynamics revolves around the varying influence of past and recent behav-
ior. Thus, DIBRM has two components: cumulative factor - estimating the contribution of
the most recent activities to the overall reputation of the user; forgetting factor - estimating
the weight of past behavior. Estimating the value of recent behavior starts with the defi-
nition of the parameter storing the basic value of a single interaction Ibn . The cumulative
factor Icn then captures the additive effect of successive recent interactions. In Fig. 1 we
see this cumulative effect with two consecutive interactions (gray vertical lines) after day
150 which sudden jump in reputation previously reduced to zero. The reputational con-
tribution In of the most recent interaction n of any given user is estimated in the following
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way:

In = Ibn + Icn = Ibn

(
1 + α

(
1 –

1
Sn + 1

))
. (4)

Here, α is the weight of the cumulative part, and Sn is the number of sequential activi-
ties. If there is no interaction at tn, this part of interactions has a value of 0. An essential
property of this component of dynamic reputation is the notion of sequential activities.
Two subsequent interactions by a user are considered sequential if the time between these
two activities is less than or equal to the time parameter ta that represents the time win-
dow of interaction. This time window represents the maximum time spent by the user to
make a meaningful contribution, post a question or answer, or leave a comment,

�n =
tn – tn–1

ta
. (5)

If �n < 1, the number of sequential activities Sn will increase by one, which means that
the user continues to communicate frequently. However, large values �n significantly in-
crease the effect of the forgetting factor. This factor plays a vital role in updating the total
dynamic reputation of a user at each time step, after every recorded interaction:

Tn = Tn–1β
�n + In . (6)

Here, β is the forgetting factor. In our model implementation, the trust is updated each
day for every user regardless of their activity status. Therefore, the decay itself is a combi-
nation of β and �n: the more days pass without recorded interaction from a specific user,
the more their reputation decays. Lower values of β lead to faster trust decay, as shown in
Fig. A2 in the Additional file 1. In Fig. 1 we observe this long-tailed reputation loss when
the user has more than 25 inactive days between days 120 and 150, reducing the reputation
almost to 0.

For this work, we select the following values of these parameters: (1) we set the basic
reputation contribution Ibn = 1, which means that each activity contributes 1 to the dy-
namical reputation; (2) for the cumulative factor α we choose the value 2 and place higher
weight on recent successive interactions; (3) forgetting factor β we select the value 0.96;
4) the value of ta = 2. By setting α > 1 we enable faster growth of reputation due to a large
number of subsequent interactions; see Fig. A2 in Additional file 1. Furthermore, by set-
ting the value of β < 1.0, we increase the penalty for long inactivity periods; see Fig. A2 in
Additional file 1. We discuss the selection of model parameters and their consequences in
detail below. The selected values of parameters are used to measure the dynamical repu-
tation of users in all four pair SE communities. Given these parameter values, the minimal
reputation of the user immediately after having made an interaction in the SE community
is 1. This reputation will decay below 1 if the user does not perform another interaction
within the one-day window. Users with a reputation below the value 1 are considered in-
active and invisible in the community; that is, their past contributions at that time are
unlikely to impact other users.
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4.4.1 The choice of model parameters
In this work, we used snapshots of the network of 30 days. This period corresponds to the
average month, and it is common in the analyses of the structure and dynamics of social
networks [51–53]. Still, there is no well-specified procedure to choose the time window.
Previous studies have shown that if τ is small, subnetworks become sparse, while for too
large sliding windows, some important structural changes cannot be observed [52, 54].
Thus, we have analysed how the time window choice influences our results. Figure A11
in Additional file 1 shows how considered network properties and dynamical reputation
depend on the time window size for active and closed communities in case of Astronomy
communities. We observe that fluctuations of all measures are more pronounced for a
time window of 10 days than for 30 and 60 days. However, we find that while the struc-
tural properties of networks evolve at different rates over varied time windows, the trends
remain very similar. The qualitative difference observed between closed and active com-
munities is independent of the time window size, especially when comparing the 30 and
60 day windows. The 30-day time window ensures enough interaction, even for closed
communities, while the number of observation points remains relatively high. For these
reasons, we choose a sliding window of 30 days.

The initial purpose of DIBRM was to replicate the dynamics of the official SE reputation
metric [23, 55]. In previous studies [55] the official SE reputation is obtained with ta = 2,
α = 1.4, β = 1. This configuration of model parameters implies that there is no reputation
decay and points toward the fact that the official SE reputation is hard to lose. Our ap-
plication is oriented towards estimating a reputation metric which takes into account the
fundamental properties of social trust, i.e. reputation decreases with members’ inactivity,
so we opted for a different set of parameter values.

For the basic reputation contribution of a single interaction, we selected Ibn = 1, and, at
the same time, this is the threshold value of an active user. This value is intuitive as every
interaction has the initial contribution of +1 to the user’s reputation, although the previous
works have used values of +2 and +4. Following the previous work and after examining
the median/average time between subsequent interactions of the same user, we selected
ta = 1, which also means that the reputation in our model will be updated every day during
the time window of the analysis, regardless of whether the user is active or not.

The combination of parameters α and β can significantly influence the dynamic of the
single user reputation, as shown in Fig A2. We show that higher values for parameter
α = 2, highlight the burst of user activity and frequent interaction. On the other hand, the
parameter beta is the forgetting factor, which at the same time determines the weight of
past interactions and the reputational punishment due to user inactivity. Here, we need to
select the parameter β value, so we include forgetting due to inactivity but do not penalize
it too much. In Fig. A2, we show how different values of parameter β influence the time
needed for a user’s reputation to fall on value In = 1 due to the user’s inactivity and value
of dynamical reputation at the moment of the last activity. The higher the value of the
parameter β and the initial dynamical reputation of the users, the longer it takes for the
user’s reputation to fall to the baseline value. For parameters β = 0.9 and In = 5, the user’s
reputation drops to value In = 1 after less than 20 days, while this time is doubled for
β = 0.96. We see that for higher values of the parameter β , the time it takes for In to drop
to 1 becomes longer and that the initial value of the reputation becomes less important.
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We estimated the difference between the number of users who had at least one activity
in the 30-day window and the number of users with a reputation greater than 1 during the
same period for different parameter β values. We calculated the root mean square error
(RMSE) between the time series of the number of active users for τ = 30 and different
values of β parameters; see Fig. A12 in Additional file 1. The minimal difference between
these two variables is for β between 0.94 and 0.96 for both active and closed communities.
Since we want to compare communities, we select β = 0.96. Our analysis reveals that the
reputational decay parameter β set at 0.96 does not reduce the number of active users
(based on their dynamic reputation) below the actual number of users who have been
active (interacted with the community) in the time window of 30 days; see Fig. A13 in
Additional file 1. Furthermore, we examine and compare the trends of two types of time
series: (1) time series of active users, according to dynamical reputation; (2) time series
of permanent users, users who were active in a given sliding window and continued to be
active in the next one. Figure A14 in Additional file 1 shows that while the absolute number
of users differs in these time series, they follow similar trends for all communities.

5 Results
5.1 Clustering and core-periphery structure of knowledge-sharing networks
We first analyze the structural properties of SE communities and examine the difference
between active and closed ones. We calculate the normalized mean clustering coefficient
for 30-day window networks and examine how it changes over time. Figure 3 shows the
evolution of the normalized mean clustering coefficient for the eight communities. All
communities that are still active are clustered, with the value of normalized clustering co-
efficient above 5, with Physics, the only launched community, having the highest value of
normalized clustering coefficient during the first 180 days. During the larger part of the
observed period, an active community’s normalized clustering coefficient is higher than
the normalized clustering coefficient of its closed pair. For pairs where active communities
are still in the beta phase, some of closed communities have a higher value of the normal-
ized clustering coefficient in the first 50 days. After this period, active communities have
higher values of the normalized clustering coefficient. These results suggest that all com-
munities have relatively high local cohesiveness compared to random graphs, however,
the value of normalized clustering below the value 5 in the later phase of community life
may indicate its decline.

Furthermore, we examine the core-periphery structure of these communities and their
evolution. Specifically, we are interested in the evolution of connectivity in the core. Fig-
ure 4 shows the change in the number of links between nodes, averaged on the core nodes,
Lc
Nc

over time. 2Lc
Nc

is the average degree of the node in the core and, thus, Lc
Nc

is the half of
the average degree. Again, the Physics community has a much higher value of this quan-
tity than Theoretical Physics during the observed period, indicating higher connectivity
between core members. Higher connectivity between core members in the active com-
munity is also characteristic of Literature. However, this quantity has the same value for
active and closed communities at the end of the observation period. The differences be-
tween active and closed communities are not that prominent for Economics and Astron-
omy, see Fig. 4. Active and closed Economics communities have similar connectivity in
the core during the first 50 days. After this period, the connectivity in the core of the ac-
tive community is twice as large as in the closed community, and the difference grows at
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Figure 3 Normalized mean clustering coefficient of 30 days sub-networks for four pairs of Stack Exchange
websites: Astronomy, Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

Figure 4 Connectivity among users within the core and between core and periphery. Links per node in core -
top panel and links per node between core and periphery - bottom panel for the four pairs of Stack Exchange
websites: Astronomy, Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

the end of the observation period. The connectivity in the core of the closed Astronomy
community is higher than the connectivity in the core of the active community during the
first 50 days. However, as time progresses, this difference changes in favor of the active
community, while this difference disappears at the end of the observation period.

The difference between active and closed communities is observed compared to the av-
erage number of core-periphery edges per network node. The connectivity between core
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and periphery is higher for the active communities than for the closed ones, see Fig. 4,
which is very obvious if we compare Physics and Theoretical Physics communities. More-
over, the Physics community has the highest connectivity compared to all other commu-
nities. Active Literature and Economics communities have the same core-periphery con-
nectivity as their closed counterpart. The core of the active Astronomy community has
weaker connections with the periphery than the closed community during the first 50
days, see Fig. 4.

Our motivation to examine the core-periphery structure comes from reference [12]. The
authors have selected 10% of the most active users and examined their mutual connec-
tivity and connectivity with the remaining users. The split of 10% to 90% users according
to their activity may appear arbitrary. The core-periphery provides a more consistent net-
work division based on its structure. However, the connectivity patterns between popular-
popular and popular-casual users, shown in Fig. A3 in Additional file 1, are similar to one
observed for core-periphery in Fig. 4.

On average, the cores of active communities have a higher number of nodes than closed
communities. However, the size of the core relative to the size of the network is similar for
active and closed communities (Fig. A4 in Additional file 1). The size of the core fluctu-
ates over time for active and closed communities. The core membership also changes over
time. This core membership is changing more for the closed communities. We quantify
this by calculating the Jaccard index between the cores of the subnetworks at the moment
ti and tj. Figure A5 in Additional file 1 shows the value of the Jaccard index between any
pair of the 150 subnetworks. The highest value of the Jaccard index is around the diago-
nal and has a value close to 1. The compared subnetworks are for consecutive days and
have a similar structure. The value of the Jaccard index decreases with the number of days
between two subnetworks |ti – tj| faster in closed communities; see Fig. A6 in Additional
file 1. This difference is the most prominent for the Literature communities, while this
difference is practically non-existent for Astronomy. The relatively high value of overlap
between cores of distant subnetworks for active communities further confirms that the
core is more stable in these communities that in their closed counterparts.

5.2 Dynamic reputation of users within the network of interactions
To explore the differences between active and closed communities, we focus on dynami-
cal reputation, our proxy for collective trust in these communities. The number of active
users (top panel) and the mean user reputation (bottom panel) for different SE communi-
ties are shown in Fig. 5. Except in the case of Astronomy, closed communities generated
less engaged users from the start and the number of active users saturated at lower values.
In the case of Astronomy, the closed community started with a faster-increasing number
of active users. However, within the first two months, their number dropped, while the
second time around, the community started slower but kept engaging more users. Only
in the still active Physics community is the number of active users an increasing function
over the whole 180 day period we have observed. Panels in the bottom show mean rep-
utation among active users, and we see that most of the time, it was higher in the still
active communities than in the closed ones. The Physics community kept these mean val-
ues more stable at higher levels, whereas in other communities, we note that the initial
high mean reputation decays faster. Astronomy is an exciting exception again, where we
see a second sudden increase in mean user reputation, which signals an increase in user
activity.
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Figure 5 Active users within SE communities and their mean dynamic reputation. The number of active
users (users with a reputation higher than 1) - top panel, and mean Dynamic Reputation within active users –
bottom panel for the four pairs of Stack Exchange websites: Astronomy, Literature, Economics, and Physics.
Solid lines – active sites; dashed lines - closed sites

Figure 6 Mean Dynamical reputation within the core for four pairs of Stack Exchange websites: Astronomy,
Literature, Economics, and Physics. Solid lines – active sites; dashed lines – closed sites

In addition, we investigate whether and how the core-periphery structure is related to
collective trust in the network. Figure 6 shows the mean dynamical reputation in the core
of active and closed communities and its evolution during the observation period. There
are apparent differences between active and closed communities regarding dynamical rep-
utation. The mean dynamical reputation of core users is always higher in active commu-
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nities than in closed. The most significant difference is observed between the Physics and
Theoretical Physics communities. The difference between active communities, which are
still in the beta phase, and their closed counterparts is not as prominent. However, the ac-
tive communities have a higher mean dynamical reputation, especially in the later phase
of the observation period. The only difference in the pattern is observed for Astronomy
communities at the early stage of their life. The closed community has a higher value of
dynamic reputation than the active community. This observation is in line with similar
patterns in the evolution of mean clustering, core-periphery structure, and mean reputa-
tion.

By definition, the core consists of very active individuals. Thus we expect a higher to-
tal dynamical reputation of users in the core than the total reputation of users belong-
ing to subnetworks periphery. Figure A7 in Additional file 1 shows the ratio between the
total reputation of the core and periphery for closed and active communities and their
evolution. The ratio between the total reputation of core and periphery in Physics is al-
ways higher than in the Theoretical Physics community. A similar pattern can be observed
for Literature communities, although the difference is not as prominent as in the case of
Physics. The ratio of total dynamical reputation between core and periphery was higher
in the closed Economics community during the early days of its existence. However, this
ratio becomes higher for active communities in the later stage of their lives. Communities
around the astronomy topic deviate from this pattern, which shows the specificity of these
two communities.

To complete the description of the evolution of dynamic reputation, we examine the evo-
lution of the Gini index of dynamical reputation among the active members of SE sites,
shown in Fig. A8 in Additional file 1. Both closed and active communities have high values
of the Gini index, indicating that the dynamic reputation is distributed unequally among
users. Notably, all communities have the highest Gini index at the start, signaling that the
inequality in users’ activity at the start, and thus their dynamic reputation is the highest.
After this initial peak, the Gini index decreases, but it persists at higher levels in com-
munities that are still active than in the closed ones, except in the case of the Astronomy
community. In this case, the active community had a higher Gini index until just before
the observation period, when the Gini coefficient increased in the closed community.

Figure A9 in Additional file 1 shows the evolution of the assortativity coefficient for
users’ dynamical reputation. The observed networks are disassortative during the most
significant part of 180 days period. Users with high dynamical reputations tend to con-
nect with users with a low value of dynamical reputation in all eight communities. We
also compare the degree and betweenness centrality of the users and their dynamical rep-
utation by calculating the correlation coefficient between these measures for each slid-
ing window, see Fig. A10 and detailed explanation in Additional file 1. The correlation
between these centrality measures and dynamical reputation is very high. In active com-
munities on physics, economics, and literature topics, the correlation between centrality
measures and users’ reputation is exceptionally high, above 0.85, and does not fluctuate
much during the observation period. There is a clear difference between active and closed
communities for these three pairs. The Astronomy pair deviates from this pattern for the
first 100 days. After this period, the pattern is similar to one observed for the other three
pairs of communities. The results reveal that degree and betweenness centrality are cor-
related more with a reputation in active than in closed communities.



Vranić et al. EPJ Data Science            (2023) 12:4 Page 19 of 24

6 Discussion and conclusions
In this work, we have explored whether the structure and dynamics of social interac-
tions determine the sustainability of knowledge-sharing communities. We have adopted a
model of dynamical reputation to measure the collective trust of members and analyzed its
dynamics. For this purpose, we use the data from the SE platform of knowledge-sharing
communities where members ask and answer questions on focused topics. We selected
four pairs of active and closed communities on the same or similar topic. Specifically, two
topics are from the STEM field, physics, and astronomy, and two are from social sciences
and humanities, economics and literature.

We have examined the evolution of the normalized average clustering coefficient in
closed and active SE communities. Our results show that active communities have sig-
nificantly higher values of clustering coefficient compared to ER graphs of the same size
in the later phase of community life than closed communities. In the early phase of com-
munities’ lives, the clear difference between active and closed communities is observed
only for the physics topic; see Fig. 3. The high value of the normalized clustering coef-
ficient observed for the active Physics community suggests that communities with high
local cohesiveness are sustainable and mature faster than others.

The core in active communities is more strongly connected with the periphery than in
closed communities, indicating that active members engage more often with occasionally
active members; see Fig. 4. These results suggest that active communities are more inclu-
sive than closed ones. Furthermore, our analysis shows that average connectivity between
core members is not as crucial to community sustainability as expected. Although active
Physics and Economics communities exhibit much higher connectivity in the core than
their closed counterparts, this is not true for communities focused on astronomy and lit-
erature. However, our results show that a member’s lifetime in the core is longer for active
communities, indicating a more stable core in active communities.

Analysis of the evolution of the core-periphery and its connectivity patterns suggests
a higher trust between active and sporadically active members. To further explore this,
we have adapted the dynamical reputation model [23], which allowed us to follow the
evolution of trust of each member.

The total dynamical reputation of core members during their first 180 days was higher
for active communities than for their closed counterparts. While relative core size is less
than 40%, Fig. A4 in Additional file 1, the ratio between the total reputation of nodes in the
core and ones in the periphery is consistently above 0.5, indicating that the average repu-
tation of members in the core is higher than the reputation of the node in the periphery.
The ratio between the total reputation of core and periphery nodes has a higher value in
the active community of Physics, Literature, and Economics. For most of the 180 days, this
ratio has a value higher than one. The Astronomy communities are outliers, but the core
members have a higher total reputation than members on the periphery, even for these
two communities. Our results imply that the most trusted members in the community
are the core members, who also generate more trust in active communities. They have a
higher reputation generated through interactions with both core and nodes in the periph-
ery, see Fig. 6. Furthermore, the overall levels of trust are higher in active communities,
which is reflected in the fact that the mean user reputation is higher in these communities;
see Fig. 5.
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The choice of the topics and selection of SE communities of a various number of users,
question, answer and comments, see Table A1 in the Additional file 1, guarantees, up to
a certain extent, the generality of our results. However, there are certain limitations to
the generalizability of our findings. While SE communities provide very detailed data that
enable the study of the structure and dynamics of knowledge-sharing communities, we
must not ignore the fact that they have some properties that make them specific.

SE communities are about specific topics; they mostly bring together people who are
passionate about or are experts in a specific field. These communities attract people from
the general population. Since we were interested in excluding the factor of the topic in our
research, we studied and compared active and closed communities on the same topic. In
the SE network, these pairs of communities are pretty rare, which has substantially limited
our sample size, leaving the possibility for the occurrence of outliers that do not follow our
general conclusions.

To further solidify our results, we have examined the early evolution of four additional
communities: Mathematics, Mathematica, Startup Business, and Startups. Mathematics
and Mathematica communities graduated early in the process, while both communities
on startup topics were closed after spending some time in the public beta phase. Figures
A15 and A16 in the Additional file 1 show that both communities on the subject of math-
ematics exhibit a similar evolutionary path as the Physics community. They have a high
mean reputation, stable and relatively large cores with high average trustworthiness of core
members, see Fig. A15 in Additional file 1. While the numbers of active users in these two
communities and the Physics community differ, we see that this does not influence the av-
erage reputation of users or the size of the core. This is even more evident if we compare
the Physics community with the closed Startup Business community. We see from Fig. A16
in Additional file 1 that the number of active users grows much faster for this community
than for Physics. However, the average reputation in the community is comparable with
the ones that were eventually closed, Theoretical Physics and Startups. Furthermore, the
core size is comparable with the core of Physics, but the average trustworthiness of core
members is similar to one for closed communities. These results demonstrate that even
the communities with high early activity and a number of active users will not become
sustainable if they do not develop a core of trustworthy members. Startups community
has a behavior very similar to Theoretical Physics community. The comparison between
two startup communities, shows that despite their difference in the activity levels these
communities have similar evolution path during the first 180 days.

We have also decided to map interactions to networks so that the resulting network is
unweighted and undirected. We use unweighted edges for a finer distinction between the
structure and community dynamics. The number of repeated user interactions is captured
with dynamic reputation, while the edges carry only structural information without the
number of repeated interactions. Furthermore, as we map interactions to networks using
sliding windows, the repeated presence of an edge throughout different windows gives
us partial information about the durability and the frequency of the dyadic relationship.
Similarly, we opted against directed weights as we are not interested in diffusion or flow of
information and undirected edges represent a more parsimonious view of the community
structure. However, these choices did have consequences in the choice of core-periphery
detection method, and it is possible that with different network mapping, other methods
would prove more suitable.
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Finally, there are many ways to measure collective trust and reputation in online social
communities. We have selected the dynamical reputation model because it was devel-
oped to measure reputation in SE communities. Furthermore, the model allowed us to
study the evolution of trust in communities. However, the model requires fine-tuning of
its parameters and does not distinguish positive from negative interactions. We have se-
lected our parameters to replicate the activity of the SE communities in the time window
of τ = 30 days. Our analysis shows that while the choice of the sliding window, τ , may
seem arbitrary, the different values do not influence the general conclusions; see Fig. A11
in Additional file 1. The interactions in SE communities are mostly not emotional, and
thus, the model is suitable for measuring collective trust in these communities. However,
the interaction in other knowledge-sharing communities can be much more emotional,
and therefore the dynamical reputation model needs to be adapted to measure reputation
in these communities.

Our results show that the trustworthiness of core members thus represents one of the
essential parameters for determining community sustainability. Sustainable communities
have a core of trustworthy members. The core of sustainable communities is more densely
connected, and its connectivity with the periphery is more significant than in closed com-
munities. The observed feature is especially prominent in the Physics community, which
is the only active community considered to be mature. As we stated, active communities
on topics of astronomy, economics and literature were in the beta phase. However, since
December 2021,5 these communities graduated. The core of sustainable communities ex-
hibits higher degrees of stability during their first 180 days. Sustainable communities have
higher local cohesiveness, which is reflected in the relatively high value of the normalized
clustering coefficient. Our results show that these conclusions hold for both STEM and
humanities topics. However, we do not observe apparent differences between active and
closed Astronomy communities for some quantities. In the case of Astronomy and some-
times Economics, we find that closed communities had higher normalized clustering co-
efficients and higher core-core and core-periphery connectivity during the early phase of
community life. These observations suggest that the properties of the network during the
early phase of the community’s existence may lead to wrong conclusions about its sustain-
ability. Our results also imply that information about community sustainability is hidden
in the evolution of different network and trust properties.
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