




2. БИОГРАФСКИ И СТРУЧНИ ПОДАЦИ О КАНДИДАТУ

Петар Тадић је рођен 29.7.1994. у Никшићу, у Црној Гори, где је завршио Основну школу
„Милева Лајовић-Лалатовић“ и Гимназију „Стојан Церовић“. Основне академске студије
на  Физичком  факултету  Универзитета  у  Београду,  смер  Теоријска  и  експериментална
физика, завршио је 2017. године са просечном оценом 10,00. Мастер академске студије је
завршио 2018.  године на Универзитету у  Оксфорду.  Мастер рад  на тему „Quasinormal
modes of black branes“ („Квазинормалне моде црних брана“) урадио је под менторством др
Андреја Старинетса. По завршетку мастер академских студија, уписао је докторске студије
на Математичком факултету Тринити колеџа у Даблину, у Ирској. Докторску дисертацију
на  тему  „Conformal  bootstrap  and  thermalization  in  holographic  CFTs“  („Конформални
бутстрап и термализација у холографским конформалним теоријама поља“) урадио је под
менторством  др  Мануеле  Кулаксизи,  а  одбранио  је  августу  2021.  године.  Диплома
докторских студија призната је од стране Агенције за квалификације Републике Србије
12.1.2023. године, решење број 612-03-27/2023-03.

Током основних студија, током лета 2015., 2016. и 2017. године радио је стручну праксу на
Инсититуту за физику у Београду у Лабораторији за примену компјутера у науци и Групи
за гравитацију,  честице и поља. Током докторских студија,  током 2019.  и 2020.  године
радио је као асистент-демонстратор на курсевима Статистичка физика 1 и 2, на основним
академским студијама Тринити колеџа у Даблину. По завршетку докторских студија, од
септембра 2021. године запослен је као научни сарадник на постдокторском усавршавању
на Јејл Универзитету у Сједињеним Америчким Државама под руководством др Дејвида
Поланда.  На  овој  позицији  изучава  примене  конформалног  бутстрапа  у  решавању
конформалних теорија поља.

Током средње школе учествовао је на три Међународне физичке олимпијаде за ученике
средњих школа (IPhO) 2011., 2012. и 2013. године где је два пута освојио бронзану медаљу.
Године  2012.  добио  је  награду  Министарства  науке  Црне  Горе  за  најбољег  младог
научника.  Током  основних  студија  био  је  добитник  стипендије  „Проф.  др  Ђорђе
Живановић“ за изузетне резултате, додељене од стране Физичког факултета и Института за
физику у Београду,  као и стипендије „Србија за  Србе из региона“,  додељене од стране
Министарства  просвете,  науке  и  технолошког  развоја  Републике  Србије.  Током  мастер
студија био је добитник стипендије Дулвертон фондације намењене најбољим студентима
из Источне и Централне Европе за студије на Универзитету у Оксфорду. Током докторских
студија био је стипендиста Ушер фондације.

Петар је до сада објавио осам научних радова.  Радови су до сада цитирани 163 пута, не
рачунајући аутоцитате. 



3. ПРЕГЛЕД НАУЧНЕ АКТИВНОСТИ

У  досадашњем  научном  раду  кандидат  се  примарно  бавио  истраживачким  темама  из
области  конформалних  теорија  поља,  квантне  гравитације  и  релативистичке
хидродинамике.  Методолошки приступ кандидата  су  теоријска  изучавања и  нумерички
прорачуни.

Током докторских  студија  кандидат  се  бавио изучавањем холографских  конформалних
теорија  поља  које  за  финални  циљ  има  разумевање  квантне  гравитације.  На  основу
холографске  хипотезе  (која  се  још  зове  и  „АдС-ЦФТ  дуализам“)  овакве  теорије  су
еквивалентне  гравитационим теоријама  у  Анти-де  Ситер простору,  без  да  експлицитно
поседују  гравитационе  степене  слободе.  Дате  теорије  су  дефинисане  као  конформалне
теорије  поља са  централним наелектрисањем много већим од један где  сви  примарни
оператори  спина  већег  од  два  имају  конформалне  димензије  много  веће  од  један.
Карактеристика  холографског  дуализма  је  да  када  је  гравитациона  теорија  слабо
куплована,  њена  дуална  холографска  конформална  теорија  поља  је  јако  куплована  и
обратно.  Да  би  било  могуће  проучавати  ефекте  квантне  гравитације  кроз  дуалне
конформалне  теорије  поља  неопходно  је  прво  разумети  детаље  овог  дуализма  на
семикласичном нивоу, тј. у ситуацији када је гравитација на довољно ниским енергијама,
самим тим  и  слабо  куплована  и  могуће  ју  је  описати  Ајнштајновом  општом теоријом
релативности.  Тада је  дуална  конформална  теорија  поља јако  куплована и  није  могуће
применити  уобичајену  пертурбативану  анализу.  Идући  корак  у  опису  ефеката  квантне
гравитације је увођење квантних корекција у гравитационе теорије и дуалне конформалне
теорија поља, или други речима, корекција које су пропорционалне инверзном централном
наелектрисању. 

Кандидат се бавио аналитичким решавањем јако куплованих холографских конформалних
теорија  поља  користећи  непертурбативне  услове  конзистентности  и  анализом  датих
решења из перспективе дуалних гравитационих теорија. Резултати истраживања објављени
су у четири студије:

 Robin Karlsson, Manuela Kulaxizi,  Andrei Parnachev, and  Petar Tadić,  Black holes and
conformal Regge bootstrap. J. High Energ. Phys. 2019, 46 (2019). (врхунски међународни
часопис - категорија М21)

 Robin Karlsson, Manuela Kulaxizi, Andrei Parnachev, and Petar Tadić, Leading multi-stress
tensors  and  conformal  bootstrap. J.  High  Energ.  Phys.  2020,  76  (2020).  (врхунски
међународни часопис - категорија М21)

 Robin Karlsson, Manuela Kulaxizi, Andrei Parnachev, and Petar Tadić, Stress tensor sector
of conformal correlators. J.  High Energ. Phys. 2020, 19 (2020).  (врхунски међународни
часопис - категорија М21)

 Robin Karlsson, Andrei Parnachev,  and  Petar Tadić,  Thermalization in large-N CFTs. J.
High Energ. Phys. 2021, 205 (2021). (врхунски међународни часопис - категорија М21)

У  првој  студији  изучаван  је  Реге  лимит  корелатора  два  пара  идентичних  скаларних
оператора  у  холографским  конформалним  теоријама  поља,  од  којих  један  пар  има
конформалну димензију много већу од један, реда централног наелектрисања дате теорије.
Овај  лимит  се  у  гравитационој  теорији  може  интерпретирати  као  расејање  високо-
енергетске честице на црној рупи са фиксним параметром судара. Показано је да једнакост
између  фазног  помака  расејане  честице  у  гравитационој  теорији  и  аномалне  димензије
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оператора  дуплог  твиста  у  холографској  конформалној  теорији  поља  важи  у  вишим
редовима развоја аномалне димензије по степенима инверзног централног наелектрисања. 

У другој студији изучаван је исти корелатор у холографским теоријама поља у простор-
времену које има више од две димензије, међутим сада у лимиту када се један од четири
скаларна оператора приближава светлосном конусу другог скаларног оператора. У овом
лимиту,  доминантну  контрибуцију  корелатору  дају  размењени  примарни  оператори
минималног  твиста,  који  је  дефинисан  као  разлика  конформалне  димензије  и  спина
примарног оператора. Битну класу оператора минималног твиста чине очуване струје, на
првом месту, стрес-тензор. Производи више стрес-тензора такође дају примарне операторе
минималног твиста за дату конформалну димензију, под условом да се индекси исправно
симетризују и да се не контрахују. У овом раду су изучаване контрибуције свих оператора
минималног твиста добијених од стрес-тензора и нађен је егзактан аналитички израз који
сумира бесконачан број ових оператора у сваком реду у развоју по степенима инверзног
централног  наелектрисања.  Показано  је  да  су  коефицијенти  развоја  операторског
производа  између  мулти-стрес-тензора  минималног  твиста  и  два  идентична  скаларна
оператора  одређени  условима  конзистенције  холографске  конформалне  теорије  поља  и
самим тим не зависе од избора конкретне теорије, тј.  експлицитно је потврђена њихова
универзалност. У трећој студији разматрање је проширено на све операторе који се могу
написати као производи стрес-тензора. Нађен је аналитички облик збира свих оператора
фиксног твиста и показано је да једини коефицијенти развоја операторског производа који
нису фиксирани условима конзистенције  они за  мулти-стрес-тензоре  спина нула  и два.
Закључено је да ови коефицијенти параметризују холографске конформалне теорије поља. 

У четвртој студији разматрана је термализација мулти-стрес-тензора произвољног спина у
конформалним  теоријама  поља  са  централним  наелектрисањем  много  већим  од  један.
Показано  је  да  је  термализација  ових  оператора  еквивалентна  универзалности
коефицијената развоја операторских производа датих оператора са два идентична скаларна
оператора  конформалне  димензије  реда  централног  наелектрисања.  Експлицитно  је
показано  да  је  ова  универзалност  задовољена  упоређујући  коефицијенте  израчунате  у
слободној  и  холографској  теорији.  Такође  је  показано  да  мулти-стрес-тензори
задовољавају дијагонални део хипотезе термализације својствених вредности. 

У првој  и другој  студији кандидат је значајно допринео иницијалној теориској анализи
проблема,  произвео  све  резултате  студије,  значајно  учествовао  у  анализи  резултата  и
писању рада за објављивање. У трећој студији кандидат је такође произвео све резултате
студије и водио анализу резултата и писање објављеног рада. У четвртој студији кандидат
је водио избор метода студије, аналитичке прорачуне и анализу резултата, произвео све
резултате студије и значајно је учествовао у писању објављеног рада.  

У  оквиру  исте  научне  области  кандидат  се  бавио  и  генерализацијом  метода
дводимензионалних конформалних теорија  поља на стрес-тензоре  минималног твиста у
вишедимензионалним  конформалним  теоријама,  будући  да  су  њихови  коефицијенти
операторског  развоја  универзални  на  исти  начин  као  и  коефицијенти  оператора  у
Вирасоровом  блоку  јединичног  оператора  у  дводимензионалној  конформалној  теорији
поља. Испоставља се да је Вирасоров блок јединичног оператора одређен Каталановим
бројевима у одређеном лимиту. Користећи рекурзивну релацију која дефинише Каталанове
бројеве  могуће  је  написати  диференцијалну  једначину  чије  је  решење  Вирасоров  блок
јединичког  оператора.  У  вишедимензионалном  случају,  показано  је  да  се  уместо
Каталанових  бројева  јавља  њихова  генерализација  у  виду  броја  линеарних  екстензија



одређеног типа парцијално уређених сетова. Тренутно није позната рекурзивна релација
коју ови бројеви задовољавају па није могуће написати диференцијалну једначину коју би
задовољавала контрибуција свих мулти-стрес-тензора минималног твиста у више од две
димензије.  Такође  су  изучаване  и  генерализације  Вирасорове  алгебре  у  две  димензије,
којима  се  кандидат  посебно  бавио  у  оквиру  ове  студије.  Кандидат  је  изучавао
конформални  блок  јединичног  оператора  W3 алгебре  и  његове  везе  са  контрибуцијама
мулти-стрес-тензора  минималног  твиста  у  холографској  конформалној  теорији  поља  у
четвородимензионалном простор-времену:

 Robin Karlsson, Manuela Kulaxizi, Gim Seng Ng, Andrei Parnachev, and Petar Tadić,
CFT correlators,  W-algebras  and generalized  Catalan  numbers. J.  High Energ.  Phys.
2022, 162 (2022). (врхунски међународни часопис - категорија М21)

Кандидат  се  бавио  и  релативистичком  хидродинамиком  јако  куплованих  система
користећи  методе  АдС-ЦФТ  дуализма.  У  овом  приступу  идеја  је  да  се  користи
семикласични  гравитациони  дуал  јако  купловане  теорије  поља  како  би  се  изучавала
динамика  јако  купловане  теорије  без  гравитационих  степени  слободе.  У  оквиру  ове
области кандидат је објавио три студије:

 Sašo Grozdanov, Pavel K. Kovtun, Andrei O. Starinets, and Petar Tadić,  Convergence
of  the  Gradient  Expansion  in  Hydrodynamics. Phys.  Rev.  Lett.  122,  251601 (2019).
(међународни часопис изузетних вредности - категорија М21а)

 Sašo Grozdanov, Pavel K. Kovtun, Andrei O. Starinets, and Petar Tadić,  The complex
life  of  hydrodynamic  modes. J.  High  Energ.  Phys.  2019,  97  (2019).  (врхунски
међународни часопис - категорија М21)

 Sašo  Grozdanov,  Andrei  O.  Starinets,  and  Petar  Tadić,  Hydrodynamic  dispersion
relations  at  finite  coupling. J.  High  Energ.  Phys.  2021,  180  (2021).  (врхунски
међународни часопис - категорија М21)

У првој  студији  показано  је  да  је  радијус  конвергенције  хидродинамичке  дисперзионе
релације  одређен  позицијом  критичних  тачака  придружене  спектралне  криве  у
комплексној равни импулса које се поклапају са позицијом судара хидродинамичких мода
са  не-хидродинамичким  модама.  Нумерички  су  израчунати  радијуси  конвергенције
хидродинамичких  мода  у  Н=4  супер-Јанг-Милс  теорији  у  четири  просторно-временске
димензије. У другој студији је ова анализа проширена на гравитационе теорије у простор-
временима са другим бројем димензија. У тећој студији разматрана је зависност радијуса
конвергенције  хидродинамичких  мода  од  инверзне  константе  купловања  теорије  и
показано је ова зависност није монотона функција у случају Н=4 супер-Јанг-Милс теорије.

У првој и другој студији кандидат је урадио нумеричке прорачуне радијуса конвергенције
и  учествовао  у  анализи  резултата.  У  трећој  студији  кандидат  је  водио  избор  метода
истраживања и иницијалну теоријску анализу, произвео све резултате студије и учествовао
у писању текста за објављивање.

https://doi.org/10.1007/JHEP06(2021)180
https://doi.org/10.1007/JHEP06(2021)180
https://doi.org/10.1007/JHEP11(2019)097
https://doi.org/10.1007/JHEP11(2019)097
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.251601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.251601
https://doi.org/10.1007/JHEP06(2022)162


4. EЛЕМЕНТИ  ЗА  КВАЛИТАТИВНУ  ОЦЕНУ  НАУЧНОГ  ДОПРИНОСА
КАНДИДАТА

4.1. Квалитет научних резултата

4.1.1. Научни ниво и значај резултата, утицај научних радова

Кандидат је у досадашњој каријери објавио 8 научних радова, од чега 1 рад категорије
М21а и 7 радова категорије М21. Своја истраживања је представио и на 1 конференцији, тј.
остварио 1 допринос категорије М34.

До сада најутицајнији рад кандидатa из теме доктората је:

 Robin Karlsson, Manuela Kulaxizi,  Andrei Parnachev, and  Petar Tadić,  Stress tensor
sector of conformal correlators. J. High Energ. Phys. 2020, 19 (2020).
DOI: 10.1007/JHEP07(2020)019

Тема овог рада су све контрибуције стрес-тензор сектора корелатору са четири скаларна
оператора  од  којих  два  имају  конформалне  димензије  реда  централног  наелектрисања
холографске конформалне теорије поља. Нађен је аналитички облик за суме контрибуција
мулти-стрес-тензора  фиксног  твиста  и  показано  је  да  сви  коефицијенти  развоја
операторског  производа  могу  бити  израчунати  из  услова  конзистенције  конформалне
теорије  осим  оних  за  мулти-стрес-тензоре  спина  нула  и  два.  Такође  је  показано  како
коефицијенти развоја операторског производа мулти-стрес-тензора спина два могу бити
израчунати у дуалној гравитационој теорији разматрајући фазни помак расејане честице на
црној  рупи.  Кандидат  је  произвео  све  резултате  објављене  у  овом  раду  и  водио
интерпретацију и дискусију резултата као и писање рада.

Уочена је  сличност аналитичког  облика  збира  контрибуција  мулти-стрес  тензора  збиру
контрибуција  Вирасорових  наследника  јединичног  оператора  корелатору  у
дводимензионалним  конформалним  теоријама  поља.  Поставило  се  питање  постојања
алгебре  Вирасоровог  типа  у  вишедимензионалним  конформалним  теоријама  која  се
манифестује у лимиту светлосног конуса. Један од кандидата за дату алгебру је W 3 алгебра
која  је  изучавана  од  стране  кандидата  у  каснијем  раду.  Питање  постојања  алгебре
Вирасоровиг типа у вишедимензионалним конформалним теоријама поља је такође касније
изучавано у литератури од стране више аутора и за сада није пронађен пример алгебре која
би  задовољила  све  услове  и  дала  аналитички  облик  стрес-тензорских  контрибуција
непертурбативно по инверзном централном наелектрисању. 

4.1.2. Цитираност научних радова кандидата

Према подацима о цитираности аутора изведених из базе Web of Science 01.2.2023., радови
чији је кандидат ко-аутор цитирани су 174 пута, од чега 163 пута без аутоцитата, а Хиршов
фактор је 6.

4.1.3. Параметри квалитета радова и часописа

Кандидат је објавио 8 радова у часописима:

https://doi.org/10.1007/JHEP07(2020)019
https://doi.org/10.1007/JHEP07(2020)019


 7 радова у часопису  Journal of High Energy Physics (ISSN: 1029-8479), категорија
M21, IF(2021)=5.62, SNIP(2021)=1.27;

 1  рад  у  часопису  Physical  Review  Letters (ISSN:  0031-9007),  категорија  M21a,
IF(2019)=8.57, SNIP(2019)=2.50.

Додатни библиометријски показатељи квалитета часописа у којима је кандидат објављиваo
радове приказани су у табели: 

ИФ М СНИП
Укупно 47.91 66 11.39
Усредњено по чланку 5.99 8.25 1.42
Усредњено по аутору 12.63 17.43 3.00

4.1.4. Степен  самосталности  и  степен  учешћа  у  реализацији  радова  у  научним
центрима у земљи и иностранству

Кандидат  је  водећи аутор на четири објављена рада,  којима је  дао кључан допринос  у
погледу дефинисања проблема,  иницијалне теоријске анализе, нумеричких и аналитичких
прорачуна, интерпретације резултата и писања рада. Наведени радови су:

 Robin Karlsson, Manuela Kulaxizi,  Andrei Parnachev, and  Petar Tadić,  Stress tensor
sector of conformal correlators. J. High Energ. Phys. 2020, 19 (2020). 

 Robin Karlsson, Andrei Parnachev, and Petar Tadić, Thermalization in large-N CFTs. J.
High Energ. Phys. 2021, 205 (2021).

 Robin Karlsson, Manuela Kulaxizi, Gim Seng Ng, Andrei Parnachev, and Petar Tadić,
CFT correlators,  W-algebras  and generalized  Catalan  numbers. J.  High Energ.  Phys.
2022, 162 (2022). 

 Sašo  Grozdanov,  Andrei  O.  Starinets,  and  Petar  Tadić,  Hydrodynamic  dispersion
relations at finite coupling. J. High Energ. Phys. 2021, 180 (2021). 

Редослед  аутора  на  радовима  је  одређен  алфабетски,  не  према  доприносу  аутора.  На
осталим  радовима  кандидат  је  значајно  допринео  иницијалној  теоријској  анализи,
нумеричким и аналитичким прорачунима и интерпретацији резултата.

Кандидатк  је  већину  досадашњих  научних  активности  обављао  на  Тринити  колеџу  у
Даблину, у Ирској и Јејл Универзитету у Сједињеним Америчким Државама. Кроз наведене
доприносе  остварио  је  сарадњу,  између  осталог,  са  истраживачима  са  Универзитета  у
Оксфорду  и  Универзитета  у  Единбургу  у  Уједињеном  Краљевству,  Универзитета  у
Љубљани у Словенији и Универзитета у Викторији у Канади.  

4.2. Нормирање броја коауторских радова, патената и техничких решења

Од 8 радова, 3 рада су нумерички прорачуни од којих један има три аутора, а два имају по 4
аутора,  тако да се  сва три рада рачунају са пуним бројем бодова.  Осталих 5 радова су
теоријски радови, један од њих има три аутора, па се рачуна са пуним бројем бодова, а на
осталим радовима бодови се нормирају.  Укупан број М бодова је 66, а нормирани број је
60.

https://doi.org/10.1007/JHEP06(2021)180
https://doi.org/10.1007/JHEP06(2021)180
https://doi.org/10.1007/JHEP06(2022)162
https://doi.org/10.1007/JHEP09(2021)205
https://doi.org/10.1007/JHEP07(2020)019
https://doi.org/10.1007/JHEP07(2020)019


4.3. Активност у научним и научно-стручним друштвима

Кандидат  је  рецезент  у  два  научна  часописа:  Journal  of  High Energy  Physics  и  Nuclear
Physics, Section B.

4.4. Утицај научних резултата

Утицај научних резултата огледа се у подацима о цитираности, наведеним у секцији 4.1.2.

Кандидат је одржао и 7 семинара по позиву на којима је представио своје научне резултате,
на  Тринити  колеџу  у  Даблину  2019.  године,  Универзитету  у  Љубљани  2020.  године,
Holotube Junior конференцији 2020, Инсититуту за физику у Београду и Јејл Универзитету у
САД 2021. године,  Универзитету у Оксфорду и Универзитету у Бостону 2022 године.

4.5. Конкретан допринос  кандидата  у  реализацији  радова  у  научним центрима у
земљи и иностранству

Кандидат је водећи аутор на 4 објављена рада, којима је дао кључан допринос у погледу
дефинисања  проблема,  иницијалне  теоријске  анализе,  нумеричких  и  аналитичких
прорачуна, интерпретације резултата и писања рада.

Кандидат  је  већину  досадашњих  научних  активности  обављао  на  Тринити  колеџу  у
Даблину  у  Ирској,  као  студент  докторских  студија  и  Јејл  Универзитету  у  Сједињеним
Америчким Државама, на постдокторском усавршавању.



5. ЕЛЕМЕНТИ  ЗА  КВАНТИТАТИВНУ  ОЦЕНУ  НАУЧНОГ  ДОПРИНОСА
КАНДИДАТА

Остварени  резултати  у  периоду  након  одлуке  Научног  већа  о  предлогу  за  стицање
претходног научног звања ꓽ

Категорија М бодова по
раду

Број радова Укупно М
бодова

Нормирани
број М бодова

М21а 10 1 10 10
M21 8 7 56 49.7
М34 0.5 1 0.5 0.5
M70 6 1 6 6

Поређење са минималним квантитативним условима за избор у звање научни сарадник:

Минимални број М бодова
Неопхо

дно

Остварено,
број М

бодова без
нормирања

Остварено,
нормирани

број М
бодова

Укупно 16 72.5 66.2
М10+М20+М31+М32+М33+М41+М42+М90 10 66 59.7

М11+М12+М21+М22+М23 6 66 59.7



6. СПИСАК ОБЈАВЉЕНИХ РАДОВА

6.1. Радови у међународним часописима изузетних вредности (М21a):

 Sašo Grozdanov, Pavel K. Kovtun, Andrei O. Starinets, and Petar Tadić, Convergence
of the Gradient Expansion in Hydrodynamics. Phys. Rev. Lett. 122, 251601 (2019). 
DOI: 10.1103/PhysRevLett.122.251601
M21a, IF(2019)=8.57, SNIP(2019)=2.50.

6.2. Радови у врхунским међународним часописима (М21):

 Robin Karlsson, Manuela Kulaxizi, Andrei Parnachev, and Petar Tadić, Black holes and
conformal Regge bootstrap. J. High Energ. Phys. 2019, 46 (2019). 
DOI: 10.1007/JHEP10(2019)046
M21, IF(2019)=5.47, SNIP(2019)=1.30.

 Sašo Grozdanov, Pavel K. Kovtun, Andrei O. Starinets, and Petar Tadić,  The complex
life of hydrodynamic modes. J. High Energ. Phys. 2019, 97 (2019). 
DOI: 10.1007/JHEP11(2019)097
M21, IF(2019)=5.47, SNIP(2019)=1.30.

 Robin Karlsson, Manuela Kulaxizi, Andrei Parnachev, and Petar Tadić, Leading multi-
stress tensors and conformal bootstrap. J. High Energ. Phys. 2020, 76 (2020). 
DOI: 10.1007/JHEP01(2020)076
M21, IF(2020)=5.32, SNIP(2020)=1.23.

 Robin Karlsson, Manuela Kulaxizi,  Andrei Parnachev, and  Petar Tadić,  Stress tensor
sector of conformal correlators. J. High Energ. Phys. 2020, 19 (2020). 
DOI: 10.1007/JHEP07(2020)019
M21, IF(2020)=5.32, SNIP(2020)=1.23.

 Robin Karlsson, Andrei Parnachev, and Petar Tadić, Thermalization in large-N CFTs. J.
High Energ. Phys. 2021, 205 (2021).
DOI: 10.1007/JHEP09(2021)205
M21, IF(2021)=5.62, SNIP(2021)=1.27.

 Sašo  Grozdanov,  Andrei  O.  Starinets,  and  Petar  Tadić,  Hydrodynamic  dispersion
relations at finite coupling. J. High Energ. Phys. 2021, 180 (2021). 
DOI: 10.1007/JHEP06(2021)180
M21, IF(2021)=5.62, SNIP(2021)=1.27.

 Robin Karlsson, Manuela Kulaxizi, Gim Seng Ng, Andrei Parnachev, and Petar Tadić,
CFT correlators,  W-algebras  and generalized  Catalan  numbers. J.  High Energ.  Phys.
2022, 162 (2022).
DOI: 10.1007/JHEP06(2022)162
M21, IF(2021)=5.62, SNIP(2021)=1.27.

https://doi.org/10.1007/JHEP06(2022)162
https://doi.org/10.1007/JHEP06(2021)180
https://doi.org/10.1007/JHEP06(2021)180
https://doi.org/10.1007/JHEP09(2021)205
https://doi.org/10.1007/JHEP07(2020)019
https://doi.org/10.1007/JHEP07(2020)019
https://doi.org/10.1007/JHEP01(2020)076
https://doi.org/10.1007/JHEP01(2020)076
https://doi.org/10.1007/JHEP11(2019)097
https://doi.org/10.1007/JHEP11(2019)097
https://doi.org/10.1007/JHEP10(2019)046
https://doi.org/10.1007/JHEP10(2019)046
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.251601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.251601


6.3. Саопштења са међународног скупа штампана у изводу (М34):

 Robin Karlsson, Andrei Parnachev, and Petar Tadić, 
Thermalization of stress tensor sector,
XVI  Avogadro  Meeting,  Galileo  Galilei  Institute  for  Theoretical  Physics,  21-22
December 2020.
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1 Introduction and summary

1.1 Introduction

The AdS/CFT correspondence provides a non-perturbative definition of quantum gravity

in negatively curved spacetimes [1–3]. The correspondence in principle provides an oppor-

tunity to study generic properties of quantum gravity, possibly probing regimes unattain-

able by low-energy effective theories. Recent years have seen a development in conformal

bootstrap techniques following [4–7], leading to many results for CFTs with holographic

duals (see e.g. [8–30]). CFT methods have therefore become a powerful tool in the study

of quantum gravity.

Crossing symmetry in CFTs imposes highly non-trivial constraints on the theory. The

idea of conformal bootstrap is to use these constraints to put restrictions on the CFT data

or, if possible, even solve the theory. One way to make use of the crossing symmetry is to

isolate a small number of contributing operators in one channel, e.g. by going to a certain

kinematical regime. This typically has to be reproduced by the exchange of an infinite

number of operators in another channel. One such example is the lightcone limit where

the separation between two operators in a four-point function is close to being null. One

can then infer [31, 32] the existence of double-twist operators at large spin in any CFT in

dimensions d > 2. The Regge limit provides another opportunity to isolate the contribution

of a class of operators, those of highest spin.

Holographic CFTs satisfy the following defining properties: (1) large central charge

CT ∼ N2 and large-N factorization of correlation functions and (2) a parametrically large

gap in the spectrum of single trace operators above spin-2. As argued in [8], they are dual

to theories of quantum gravity in asymptotically AdS spacetimes with local physics below

the AdS scale. In holographic CFTs the Regge limit of a four-point function, extensively

studied in [33–38],1 is dominated by operators of spin two — the stress tensor and the

double-trace operators (this is a consequence of the gap in the spectrum). In gravity,

it reproduces a Witten diagram with graviton exchange (see e.g. [20]). The Regge limit

corresponds to special kinematics, which on the gravity side is described by the scattering

of highly energetic particles whose trajectories in the bulk are approximately null.

Such scattering can be described in the eikonal approximation where particles follow

classical trajectories but their wavefunctions acquire a phase shift δ(S,L). The phase shift

is a function of the total energy S and the impact parameter L. In the CFT language, this

phase shift can be extracted from the Fourier transform of the four-point function. In [34]

the phase shift extracted from the four-point function of the type 〈O1O1O2O2〉 was shown

to be equal (up to a factor of −π) to the anomalous dimension of the double-trace operators

[O1O2]n,l at leading order in 1/N2. The Regge limit implies that the calculation is valid

for n, l� 1. These anomalous dimensions have been subsequently verified in [26, 62–70].

So far both operators O1 and O2 were assumed to have conformal dimensions of order

one. In the following, we will refer to them as “light” operators and denote them by OL.

In [71] one pair of operators (which we denote by OH) was taken to be “heavy”, with

1See also [22, 39–61] for other recent applications of Regge limit in CFTs.
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conformal dimension ∆H scaling as the central charge. The ratio µ ∼ ∆H/CT is a useful

expansion parameter; its power k corresponds to the number of stress tensors in the multi-

stress tensor operators exchanged in the T-channel (OH ×OH → (Tµν)k → OL×OL).2 As

explained in [71], one can define the phase shift as a Fourier transform of the 〈OHOHOLOL〉
four-point function. It is related to the time delay and angle deflection of a highly energetic

particle traveling along a null geodesic in the background of an asymptotically AdS black

hole. The black hole corresponds to the insertion of the heavy operator OH ; its mass in

the units of AdS radius is proportional to µ.

The phase shift δ(S,L) was computed in gravity in [71] as an infinite series expansion

in µ, i.e.,

δ(S,L) =
∞∑
k=1

δ(k)µk , (1.1)

with terms subleading in 1/N2 suppressed. The anomalous dimensions of heavy-light

double-trace operators [OHOL]n,l admit a similar expansion

γ(n, l) =

∞∑
k=1

γ(k)µk. (1.2)

In [71] it was also proven that

γ(1) = −δ
(1)

π
(1.3)

where the following identifications are implied:

h = n+ l, h̄ = n, S = 4hh̄, e−2L =
h̄

h
. (1.4)

However, it was observed that this relation does not hold for higher order terms, i.e. in

general γ(k) is not proportional to δ(k). One of the aims of this paper is to explain how

higher order anomalous dimensions are related to higher order terms in the phase shift.

1.2 Summary of the results

In this paper we explain how to compute the anomalous dimensions of heavy-light double-

trace operators [OHOL]n,l order by order in µ, using the phase shift result of [71]. In

particular, we show that the O(µ2) anomalous dimensions in any d are given by

γ(2) = −δ
(2)

π
+
γ(1)

2
(∂h + ∂h̄)γ(1), ∆H � l, n� 1. (1.5)

Using known results for δ(1) and δ(2) from [71], we find an explicit expression for γ(2) and

compare it with the known results in the lightcone limit (∆H � l � n � 1). We find

perfect agreement.

The rest of the paper is organized as follows. In the next section, we review the 4-point

function with two heavy scalar operators OH and two light scalar operators OL. This is the

main object studied in this paper and we refer to it as a heavy-heavy-light-light correlator.

2Recently a similar limit was studied in [72].
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We consider holographic CFTs, where the T-channel exchange (where OH → OH and

OL → OL) is dominated by multi-trace operators made out of the stress tensor. We relate

this to corrections to the CFT data in the S-channel (OPE coefficients and anomalous

dimensions).

In section 3 we focus on four-dimensional holographic CFTs. At O(µ), we use the

crossing equation between the S- and T-channel to solve for the anomalous dimensions of

heavy-light double-trace operators [OHOL]n,l. The result is eq. (1.3), valid for l, n � 1.

We then introduce the impact parameter representation which allows us to rewrite the

S-channel expansion as a Fourier transform. We use this to relate the phase shift to the

anomalous dimensions of [OHOL]n,l at O(µ2), thereby deriving (1.5). Using a known result

for the phase shift δ(2), we write down an explicit expression for γ(2). In the subsequent

l� n limit it reduces to the result which has been obtained in [71] in a completely different

way (by computing corrections to the energies of excited states in the AdS-Schwarzschild

background).

In section 4 we generalize these results to any d (d = 2 is treated separately in ap-

pendix D). By solving the Casimir equation in the limit ∆H � ∆L, l, n, we obtain the

conformal blocks for heavy-light double-trace operators in the S-channel. Using the ex-

plicit expression for the blocks together with the mean field theory OPE coefficients, we

derive an impact parameter representation valid in general dimensions. Just as in the

d = 4 case, this allows us to write the S-channel sum as a Fourier transform. Hence, we

show that (1.5) holds for any d. We compute γ(2) in the lightcone limit and find perfect

agreement with the results quoted in [71]. In addition, we find an expression for the O(µ2)

corrections to the OPE coefficients.

Section 5 discusses various observations and mentions some open problems. Appendices

contain additional technical details. The conformal bootstrap calculations are summarized

in appendix A, the proof of the impact parameter representation in d = 4 in appendix B

and the proof in general dimension d in appendix C. The special case of d = 2 is treated in

appendix D. Appendix E discusses the fate of some boundary terms. Appendices F and G

contain some identities which are used in section 5.

2 Heavy-heavy-light-light correlator in holographic CFTs

In this section, crossing relations for a heavy-heavy-light-light correlator of pairwise iden-

tical scalars are reviewed. We consider large N CFTs, with N2 ∼ CT and CT the central

charge, with a parametrically large gap ∆gap in the spectrum of single trace operators with

spin J > 2. The object that we study is a four-point correlation function between two light

scalar operators OL, with scaling dimension of order one, and two heavy scalar operators

OH , with scaling dimension ∆H of O(CT ). Explicitly, we expand the CFT data in the

parameter µ defined in [71] as

µ =
4Γ(d+ 2)

(d− 1)2Γ(d/2)2

∆H

CT
, (2.1)

which is kept fixed as CT →∞. Our conventions mostly follow those of [71].

– 3 –
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The four-point function is fixed by conformal symmetry up to a function A(u, v) of

the cross-ratios as

〈OH(x4)OL(x3)OL(x2)OH(x1)〉 =
A(u, v)

x2∆H
14 x2∆L

23

, (2.2)

where u, v are cross-ratios

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

v = (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

(2.3)

and xij = xi−xj . Using conformal symmetry we can fix x1 = 0, x3 = 1 and x4 →∞, with

the last operator confined to a plane parameterized by (z, z̄). It will also be convenient to

introduce the following coordinates after the analytic continuation (z → ze−2iπ):

1− z = σeρ

1− z̄ = σe−ρ.
(2.4)

The Regge limit then corresponds to σ → 0 with ρ kept fixed.

The main object of study is an appropriately rescaled version of (2.2)

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉. (2.5)

This can be expanded in the S-channel OL(z, z̄)→ OH(0) as

G(z, z̄) = (zz̄)−
1
2

(∆H+∆L)
∑
O

(
−1

2

)J
λOHOLOλOLOHOg

∆HL,−∆HL
O (z, z̄), (2.6)

where ∆HL = ∆H −∆L, λijk are OPE coefficients and the sum runs over primaries O with

spin J and corresponding conformal blocks gO. The correlator can likewise be expanded

in the T-channel OL(z, z̄)→ OL(1) as

G(z, z̄) =
1

[(1− z)(1− z̄)]∆L

∑
O′

(
−1

2

)J ′
λOHOHO′λOLOLO′g

0,0
O′ (1− z, 1− z̄), (2.7)

where we again sum over primaries O′ with spin J ′. The equality of (2.6) and (2.7)

constitutes an example of a crossing relation, in both channels we sum over an infinite set

of conformal blocks g∆1,∆2

O (z, z̄). These contain the contribution from a primary O and all

its descendants. (For recent reviews on conformal bootstrap see [73–75].) Here we have

distinguished between operators O and O′, in the S- and T-channel, respectively, in order to

stress that generically different operators are relevant in different channels. As an example

of this, in the lightcone limit in d > 2 one finds [31, 32] that the T-channel is dominated

by the identity operator, while in the S-channel an infinite number of operators contribute.

These are the so-called double-twist operators that exist at large spin in any CFTd>2.

– 4 –
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We will assume the following scaling for a non-trivial single trace operator O (not

including the stress tensor)

〈OH,LOH,LO〉 ∼
1√
CT

. (2.8)

The conformal Ward identity fixes the following 3-pt function for the stress tensor

〈OH,LOH,LTµν〉 ∼ ∆H,L, (2.9)

which implies the following scaling for the exchange of the stress tensor in the T-channel

〈OHOHTµν〉〈TµνOLOL〉
CT

∼ ∆H∆L

CT
∼ µ. (2.10)

Keeping µ small, it follows that the leading contribution in the T-channel is given by

the disconnected correlator 〈OHOH〉〈OLOL〉, i.e., the exchange of the identity opera-

tor. Decomposing the disconnected correlator in the S-channel, we will infer the exis-

tence of the “double-trace operators” [OHOL]n,l for all integers n, l, with scaling dimension

∆ = ∆H + ∆L + 2n+ l + γ(n, l) and spin l. Moreover, the OPE coefficients scale as (the

explicit expression is given below)

〈OHOL[OHOL]n,l〉 ∼ 1. (2.11)

Keeping µ ∼ ∆H/CT fixed as CT → ∞, (2.10) implies that the CFT data of double-

trace operators [OHOL]n,l receives perturbative corrections in µ. We therefore expand the

anomalous dimensions of these double-trace operators, as well as the OPE coefficients

Pn,l ≡
(
−1

2

)l
λOHOL[OHOL]n,lλOLOH [OHOL]n,l , (2.12)

in µ as

γ(n, l) = µγ(1) + µ2γ(2) + . . .

Pn,l = P (0)(1 + µP (1) + µ2P (2) . . .),
(2.13)

with . . . denoting higher order terms.

To reach the Regge limit we analytically continue z → e−2πiz, under which the blocks

in the S-channel transform as (see e.g. [21, 50])

g∆,J(z, z̄)→ e−iπ(∆−J)g∆,J(z, z̄). (2.14)

In particular, for double-trace operators [OHOL]n,l with scaling dimension ∆ = ∆H+∆L+

2n+ l + γ(n, l), the blocks transform as

g∆HL,−∆HL

[OHOL]n,l
(z, z̄)→ e−iπ(∆H+∆L)e−iπγ(n,l)g∆HL,−∆HL

[OHOL]n,l
(z, z̄). (2.15)

In what follows it will be convienent to do a change of variables to h = n+ l and h̄ = n and

to denote the block due to a heavy-light double-trace operator [OHOL]h̄,h−h̄ as g∆HL,−∆HL

h,h̄
.

– 5 –
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Substituting the µ expansion (2.13) in the S-channel (2.6) and performing the usual analytic

continuation to O(µ) leads to

G(z, z̄)|µ0 = (zz̄)−
1
2

(∆H+∆L)
∞∑

h≥h̄≥0

P (0)g∆HL,−∆HL

h,h̄
(z, z̄)

G(z, z̄)|µ1 = (zz̄)−
1
2

(∆H+∆L)
∞∑

h≥h̄≥0

P (0)

(
P (1) + γ(1)

(
1

2
(∂h + ∂h̄)− iπ

))
× g∆HL,−∆HL

h,h̄
(z, z̄).

(2.16)

The new single trace operators that can possibly appear here would be subleading in 1/N2.

Continuing to O(µ2), the imaginary part of the S-channel is given by

Im(G(z, z̄))|µ2 =−iπ(zz̄)−
1
2

(∆H+∆L)

×
∞∑

h≥h̄≥0

P (0)

(
γ(2)+γ(1)P (1)+

(γ(1))2

2
(∂h+∂h̄)

)
g∆HL,−∆HL

h,h̄
(z, z̄).

(2.17)

Moreover, the real part of the correlator at the same order is given by

Re(G(z, z̄))|µ2 = (zz̄)−
1
2

(∆H+∆L)
∞∑

h≥h̄≥0

P (0)

(
P (2) − 1

2
π2(γ(1))2

+
1

2
(γ(2) + P (1)γ(1))(∂h + ∂h̄) +

1

8
(γ(1))2(∂h + ∂h̄)2

)
g∆HL,−∆HL

h,h̄
(z, z̄) .

(2.18)

The product of OPE coefficients P (0) is fixed by the correlator at O(µ0) in (2.16) and

can be found in [15]:

P (0) =
(∆H + 1− d/2)h̄(∆L + 1− d/2)h̄(∆H)h(∆L)h

h̄!(h− h̄)!(∆H + ∆L + h̄+ 1− d)h̄(∆H + ∆L + h+ h̄− 1)h−h̄

× 1

(h− h̄+ d/2)h̄(∆H + ∆L + h− d/2)h̄
,

(2.19)

where (a)b is the Pochhammer symbol. In the limit ∆H � ∆L, h, h̄, (2.19) simplifies

P (0) ≈ C∆L

Γ(∆L + h̄− d/2 + 1)Γ(∆L + h)

h̄!(h− h̄)!(h− h̄+ d/2)h̄
, (2.20)

where C∆L
= (Γ(∆L − d/2 + 1)Γ(∆L))−1. As we will see below, in the Regge limit the

dominant contribution in the S-channel comes from double-trace operators with h, h̄� 1.

In this limit the OPE coefficients are given by

P (0) ≈ C∆L
(hh̄)∆L− d2 (h− h̄)

d
2
−1. (2.21)

We will further need λOLOLTλOHOHT in (2.7), these are fixed by Ward Identities to be

λOLOLTλOHOHT
∆L

=

(
d

d− 1

)2 ∆H

CT
=
µΓ
(
d
2 + 1

)2
Γ (d+ 2)

. (2.22)

Note that as explained in [71], an expansion in µ corresponds in the bulk to an expansion

in the black hole Schwarzschild radius in AdS units.

– 6 –



J
H
E
P
1
0
(
2
0
1
9
)
0
4
6

3 Anomalous dimensions of heavy-light double-trace operators in d = 4

In this section we investigate the anomalous dimensions of heavy-light double-trace opera-

tors [OHOL]h̄,h−h̄ in d = 4 using conformal bootstrap. Moreover, using a four-dimensional

impact parameter representation we relate the anomalous dimensions to the bulk phase

shift to O(µ2). This procedure can be repeated order by order in µ to obtain the OPE

data (anomalous dimensions and OPE coefficients — see also section 4) to the desired order.

3.1 Anomalous dimensions in the Regge limit using bootstrap

The conformal blocks in d = 4 are given by [76]

g∆12,∆34

∆,J (z, z̄) =
zz̄

z − z̄
(k∆+J(z)k∆−J−2(z̄)− (z ↔ z̄)) (3.1)

where

kβ(z) = zβ/22F1

(
β −∆12

2
,
β + ∆34

2
, β, z

)
. (3.2)

In the limit ∆H ∼ CT � 1 the hypergeometric functions in (3.1) can be substituted by the

identity up to 1/∆H corrections. Explicitly, the conformal blocks of [OHOL]h̄,h−h̄ in the

heavy limit are given by

g∆HL,−∆HL

h,h̄
(z, z̄) =

(zz̄)
1
2

(∆H+∆L)(zh+1z̄h̄ − zh̄z̄h+1)

z − z̄
. (3.3)

Inserting this form of the conformal blocks in (2.16) together with the OPE coefficients

in the Regge limit (2.21), we approximate the sums by integrals and find the following

expression at O(µ0) in the S-channel

G(z, z̄)|µ0 =
C∆L

z − z̄

∫ ∞
0

dh

∫ h

0
dh̄(hh̄)∆L−2(h− h̄)

(
zh+1z̄h̄ − zh̄z̄h+1

)
. (3.4)

The integrals are explicitly computed in appendix A; the result is the disconnected corre-

lator in the T-channel [(1 − z)(1− z̄)]−∆L in the Regge limit σ → 0.

At O(µ) in holographic CFTs the leading corrections in the T-channel come from the

exchanges of the stress tensor and double-trace operators [OLOL]n,l=2 ([OHOH ]n,l=2 are

heavy and therefore decouple). The conformal block for the T-channel exchange of the

stress tensor is found after z → e−2πiz to be given by

gTµν =
360iπe−ρ

σ(e2ρ − 1)
+ . . . , (3.5)

where . . . denotes non-singular terms. The contribution from the stress tensor exchange in

the T-channel is thus imaginary for real values of σ and ρ. The only imaginary term at

order µ in the S-channel expansion (2.16) comes from the term proportional to −iπγ; it

must reproduce (3.5).
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In the Regge limit, we approximate the sum in the S-channel by an integral and insert

the OPE coefficients from (2.21); the imaginary part at O(µ) in the S-channel is thus

given by

Im(G(z, z̄))|µ1 =
−iπC∆L

z − z̄

∫ ∞
0

dh

∫ h

0
dh̄(hh̄)∆L−2(h− h̄)γ(1)(h, h̄)

(
zh+1z̄h̄ − zh̄z̄h+1

)
.

(3.6)

With the ansatz γ(1)(h, h̄) = c1h
ah̄b/(h − h̄) the integrals in (3.6) can be computed (for

more details see appendix A). In order to reproduce the exchange of the stress tensor, the

anomalous dimensions at O(µ) must be equal to

γ(1) = −
90λOHOHTµνλOLOLTµν

µ∆L

h̄2

h− h̄

= − 3h̄2

h− h̄
,

(3.7)

where in the second line we inserted the OPE coefficients from (2.22). With the form (3.7)

not only the stress tensor exchange is reproduced, but also an infinite sum of spin-2 double-

trace operators [OLOL]n,l=2 with scaling dimension ∆n = 2∆L + 2 + 2n. This is similar to

what happens in the light-light case [50].

To determine the second order corrections to the anomalous dimensions we use the

derivative relationship:

P (0)P (1) =
1

2
(∂h + ∂h̄)

(
P (0)γ(1)

)
. (3.8)

We will prove below (see section 4.3) that this relationship is true in the limit h, h̄ � 1.

The imaginary part at O(µ2) in the S-channel from (2.16) is then given by

Im(G(z, z̄))|µ2 = −iπ
∫ ∞

0
dh

∫ h

0
dh̄P (0)

(
γ(2) + γ(1)P (1) +

(γ(1))2

2
(∂h + ∂h̄)

)
gh,h̄. (3.9)

With the help of (3.8), one can write (3.9) as

Im(G(z, z̄))|µ2 = −iπ
∫ ∞

0
dh

∫ h

0
dh̄P (0)

(
γ(2) − γ(1)

2
(∂h + ∂h̄)γ(1)

)
gh,h̄

+ total derivative,

(3.10)

where the total derivate term does not contribute (see appendix E for details). In order

to fix γ(2) completely from crossing symmetry, we would need to consider the exchange

of infinitely many double-trace operators made out of the stress tensor in the T-channel.

Instead, we will use an impact parameter representation to relate γ(2) to the bulk phase

shift calculated from the gravity dual in [71].

3.2 4d impact parameter representation and relation to bulk phase shift

In [34] the anomalous dimensions of light-light double-trace operators in the limit h, h̄� 1

were shown to be related to the bulk phase shift. An impact parameter representation for
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the case when one of the operators is heavy was introduced in [71], where it was also shown

that the bulk phase shift and the anomalous dimensions are equal at O(µ). The goal of

this section is to see explicitly how the bulk phase shift and the anomalous dimensions are

related to O(µ2).

The correlator (2.5) can be written in an impact parameter representation as

G(z, z̄) =

∫ ∞
0

dh

∫ h

0
dh̄ Ih,h̄f(h, h̄), (3.11)

with Ih,h̄ given by

Ih,h̄ = (zz̄)−
(∆H+∆L)

2 P (0)g∆HL,−∆HL

h,h̄
(z, z̄) (3.12)

and f(h, h̄) some function that generically depends on the anomalous dimension and cor-

rections to the OPE coefficients. In particular, for f(h, h̄) = 1, (3.11) is equal to the

disconnected correlator. In appendix B it is shown that Ih,h̄ can be equivalently written as

Ih,h̄ ≡ C(∆L)

∫
M+

d4p

(2π)4
(−p2)∆L−2e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(
p2

4
+ hh̄

)
(3.13)

where M+ is the upper Milne wedge with {p2 ≤ 0, p0 ≥ 0}, C(∆L) given by (with d = 4)

C(∆) ≡ 2d+1−2∆π1+ d
2

Γ(∆)Γ(∆− d
2 + 1)

(3.14)

and ē = (1, 0, 0, 0). Moreover, following [71], we will set z = eix
+

and z̄ = eix
−

, with

x+ = t+ r and x− = t− r in spherical coordinates.

Using the identity

δ(p · ē+ h+ h̄) δ

(
p2

4
+ hh̄

)
=

1

|h− h̄|

(
δ

(
p+

2
− h
)
δ

(
p−

2
− h̄
)

+ (h↔ h̄)

)
, (3.15)

with p+ = pt + pr, p− = pt − pr, the integrals over h, h̄ in (3.11) are easily computed.

With the identification h = p+

2 and h̄ = p−

2 it follows that a generic term like (3.11) can be

written as a Fourier transform∫ ∞
0

dh

∫ h

0
dh̄ Ih,h̄f(h, h̄) = C(∆L)

∫
M+

d4p

(2π)4
(−p2)∆L−2e−ipxf

(
p+

2
,
p−

2

)
. (3.16)

We thus see that the impact parameter representation allows us to rewrite the S-channel

expression as a Fourier transform.

The phase shift δ(p) for a pair of operators OH and OL, with scaling dimensions

∆H/CT ∝ µ and ∆L/CT � 1, respectively, was defined in [71] by

B(p) ≡
∫
d4xeipxG(x) = B0(p)eiδ(p), (3.17)

where G(x) is given in (2.5) and B0(p) denotes the Fourier transform of the disconnected

correlator. As the OPE data, the phase shift admits an expansion in µ:

δ(p) = µδ(1)(p) + µ2δ(2)(p) + . . . , (3.18)
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where . . . denotes higher order terms in the expansion. Expanding the exponential in (3.17)

in µ we get

B(p) = B0(p)
(

1 + iµδ(1) + µ2(−(δ(1))2

2
+ iδ(2)) + . . .

)
. (3.19)

With (3.19) the relationship between the anomalous dimensions and the bulk phase shift

to O(µ2) can be established using (2.16), (2.17) and (3.16):

γ(1) = −δ
(1)

π

γ(2) = −δ
(2)

π
+
γ(1)

2
(∂h + ∂h̄)γ(1)(h, h̄).

(3.20)

The phase shift was calculated in closed form to all orders in µ for the four-dimensional

case [71], with the first and second order terms given by

δ(1) =
3π

2

√
−p2

e−L

e2L − 1

δ(2) =
35π

8

√
−p2

2eL − e−L

(e2L − 1)3
,

(3.21)

where

− p2 = p+p−, coshL =
p+ + p−

2
√
−p2

. (3.22)

Using (3.21) and (3.22), the O(µ) corrections to the anomalous dimensions are given by

γ(1) = −3n2/l, which agrees with (3.7). From (3.21) and (3.20), we deduce the anomalous

dimensions at O(µ2):

γ(2) = −35

4

(2l + n)n3

l3
+ 9

n3

l2
. (3.23)

Taking the lightcone limit (l� n� 1) in (3.23) we find

γ
(2)
l.c. = −17

2

n3

l2
. (3.24)

The anomalous dimensions in the lightcone limit (3.24) agree with eq. (6.40) in [71], which

was obtained independently by considering corrections to the energy levels in the AdS-

Schwarzschild background.

4 OPE data of heavy-light double-trace operators in generic d

In this section we will write the general form of conformal blocks for heavy-light double-

trace operators in the limit ∆H ∼ CT � 1 and general d > 2. These blocks will be used

to confirm the validity of the impact parameter representation in appendix C. Using the

impact parameter representation the OPE data will be related to the bulk phase shift. In

particular, we show that (3.20) remains valid in any number of dimensions and find explicit

expressions for the corrections to the OPE coefficients up to O(µ2).
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4.1 Conformal blocks in the heavy limit

In order to find conformal blocks in general spacetime dimension d in the limit ∆H �
∆L, h, h̄, we write them in the following form:

g∆HL,−∆HL

h,h̄
(z, z̄) = (zz̄)

∆H+∆L
2 F (z, z̄), (4.1)

where the function F (z, z̄) does not depend on ∆H and is symmetric with respect to the

exchange z ↔ z̄. Let us now insert the expression (4.1) into the Casimir equation and

consider the leading O(∆H) term:

z
∂

∂z
F (z, z̄) + z̄

∂

∂z̄
F (z, z̄)− (h+ h̄)F (z, z̄) = 0. (4.2)

The most general solution to eq. (4.2) is:

F (z, z̄) = zh+h̄f
( z̄
z

)
, (4.3)

where f is an arbitrary function that satisfies f( 1
x) = x−h−h̄f(x), since conformal blocks

must be symmetric with respect to the exchange z ↔ z̄.

The behaviour of the conformal blocks as z, z̄ → 0 and z/z̄ fixed is given by [76, 77]

g∆12,∆34

∆,l (z, z̄)→ l!

(d2 − 1)l
(zz̄)

∆
2 C

( d
2
−1)

l

( z + z̄

2
√
zz̄

)
, (4.4)

where ∆ = ∆1 + ∆2 + 2n+ l and C
(p)
q (x) are the Gegenbauer polynomials. Using (4.4), we

can completely determine the function f :

f
( z̄
z

)
=

(h− h̄)!

(d2 − 1)h−h̄

( z̄
z

)h+h̄
2
C

( d
2
−1)

h−h̄

( z + z̄

2
√
zz̄

)
. (4.5)

That is, the conformal blocks in the limit of large ∆H are given by

g∆HL,−∆HL

h,h̄
(z, z̄) =

(h− h̄)!

(d2 − 1)h−h̄
(zz̄)

∆H+∆L+h+h̄

2 C
( d

2
−1)

h−h̄

( z + z̄

2
√
zz̄

)
. (4.6)

It is easy to explicitly check that this form of the conformal blocks agrees with the one we

used in d = 4 in the previous section.

4.2 Anomalous dimensions

In appendix C we prove the validity of the impact parameter representation in any d. This

means that the derivation of (3.20) goes through for arbitrary d. Using known results for

the bulk phase shift from [71], we thus find

γ(1) = − h̄
d
2

h
d
2
−1

Γ(d)

Γ(d2)Γ(d2 + 1)
2F1

(
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h

)
. (4.7)

In the lightcone limit (h = l� h̄ = n) this reduces to

γ
(1)
l.c. = − h̄

d
2

h
d
2
−1

Γ(d)

Γ(d2)Γ(d2 + 1)
. (4.8)
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Similarly, using (3.20) together with eq. (2.29) and eq. (A.5) from [71], we find the O(µ2)

corrections to the anomalous dimensions in the limit h, h̄� 1:

γ(2) = −δ
(2)

π
+

1

2
γ(1)

{
2

h+ h̄
γ(1) − Γ(d)

Γ
(
d
2

)2 h̄ d2−1h
d
2
−1 (h− h̄)3−d

h+ h̄

}

= −
(
h̄d−1

hd−2

)
22d−4Γ

(
d+ 1

2

)
√
πΓ(d)

2F1

[
2d− 3, d− 2, d,

h̄

h

]
+
h̄dh2−d

(h+ h̄)

4Γ2(d)

d2 Γ4
(
d
2

) (
2F1

[
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h

])2

+
h̄d−1(h− h̄)3−d

h+ h̄

Γ2(d)

dΓ4
(
d
2

) 2F1

[
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h

]
(4.9)

Taking further the lightcone limit (h� h̄) we find that

γ
(2)
l.c. =

h̄d−1

hd−2

22d−4

π

(
dΓ
(
d+1

2

)2
Γ
(
d+2

2

)2 − √πΓ
(
d+ 1

2

)
Γ (d)

)
. (4.10)

The result (4.10) agrees with eq. (6.42) in [71] which was obtained independently using

perturbation theory in the bulk. In order to see this explicitly, one should notice the

following expression for the hypergeometric function:

3F2

(
1,−d

2
,−d

2
; 1 +

d

2
, 1 +

d

2
; 1

)
=

1

2

(
1 +

Γ4(1 + d
2)Γ(2d+ 1)

Γ4(d+ 1)

)
. (4.11)

4.3 Corrections to the OPE coefficients

So far, we have only considered the imaginary part of the S-channel. The real part at O(µ)

is given by the following expression:

Re(G(z, z̄))|µ = (zz̄)−
1
2

(∆H+∆L)

∫ +∞

0
dh

∫ h

0
dh̄P (0)

(
P (1)+

1

2
γ(1)(∂h+∂h̄)

)
g

∆HL,−∆HL

h,h̄
(z, z̄),

(4.12)

which can be rewritten as:

Re(G(z, z̄))|µ = (zz̄)−
1
2

(∆H+∆L)

∫ +∞

0
dh

∫ h

0
dh̄g

∆HL,−∆HL

h,h̄

×
(
P (0)P (1) − 1

2
(∂h + ∂h̄)(P (0)γ(1))

)
+ total derivative.

(4.13)

The total derivative term in (4.13) can be shown to vanish as explained in appendix E.

To derive a relation between the corrections to the OPE coefficients and the anomalous

dimensions at O(µ), let us consider the limit h, h̄ � 1 and substitute h̄ by h everywhere.

Using (4.7), one can deduce γ(1) ∝ h. Then, it follows that (∂h + ∂h̄)(P (0)γ(1)) ∝ P (0) and

hence the second term on the right hand side of (4.13) behaves as:

(zz̄)−
1
2

(∆H+∆L)

∫ +∞

0
dh

∫ h

0
dh̄

(
−1

2
g∆HL,−∆HL

h,h̄
(∂h + ∂h̄)(P (0)γ(1))

)
∝ 1

σ2∆L
. (4.14)
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On the other hand, we know that in the Regge limit the leading contribution in the

T-channel at O(µ) comes from the exchange of the stress tensor. The real part of its

conformal block is proportional to σd, so the T-channel result behaves as 1
σ2∆L−d

. This is

way less singular than (4.14). Hence (4.14) must be canceled by the first term on the right

hand side of (4.13), at least in the limit h, h̄� 1. That is:

P (0)P (1) =
1

2
(∂h + ∂h̄)(P (0)γ(1)). (4.15)

A similar relation holds for the OPE coefficients of light-light double-trace operators, e.g.

see [8, 15, 30]. In that case it was observed in [26] that the relation is not exact in (h, h̄). We

expect the same to be true here. Furthermore, the real part at O(µ2) was given in (2.18) as:

Re(G(z, z̄))|µ2 = (zz̄)−
1
2

(∆H+∆L)
∞∑

h≥h̄≥0

P (0)

(
P (2) − 1

2
(πγ(1))2

+
1

2
(γ(2) + P (1)γ(1))(∂h + ∂h̄) +

1

8
(γ(1))2(∂h + ∂h̄)2

)
g∆HL,−∆HL

h,h̄
.

(4.16)

Using the impact parameter representation this can be expressed as:

Re(G(z, z̄))|µ2 =

∫ ∞
0

dh

∫ h

0
dh̄Ih,h̄

(
P (2)−π

2

2
(γ(1))2

− 1

2P (0)
(∂h+∂h̄)(P (0)(γ(2)+P (1)γ(1)))+

1

8P (0)
(∂h+∂h̄)2(P (0)(γ(1))2)

)
,

(4.17)

where we repeatedly integrated by parts. It follows from (3.19) and (3.16), together with

πγ(1) = −δ(1), that the corrections to the OPE coefficients at O(µ2) satisfy the following

relationship:

P (0)P (2) =
1

2
(∂h + ∂h̄)(P (0)(γ(2) + P (1)γ(1)))− 1

8
(∂h + ∂h̄)2(P (0)(γ(1))2). (4.18)

The arguments above are similar to the ones used in [34, 50].

4.4 Flat space limit

In the flat space limit the relation between the scattering phase shift and the anomalous

dimensions has been previously discussed in [78]. Hence, it is interesting to consider the flat

space limit of eq. (1.5). This limit is achieved by taking the apparent impact parameter

to be much smaller than the AdS radius. This corresponds to the small L regime or,

equivalently, using e−2L = h̄/h to the 1� l� n� ∆H limit.

In this limit, according to (4.7), the behavior of γ(1) is given by

γ(1) ∝ n
(n
l

)d−3
. (4.19)

Hence, the γ(1)(∂h + ∂h̄)γ(1) term in eq. (1.5) behaves as

γ(1)∂nγ
(1) ∝ n

(n
l

)2d−6
. (4.20)
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Similarly, using equation (A.5) from [71], one finds that δ(2) behaves as

δ(2) ∝ n
(n
l

)2d−5
. (4.21)

Since (4.20) is subleading to (4.21), in the flat space limit the anomalous dimensions are

proportional to the phase shift,

γ(2) ≈ −δ
(2)

π
(4.22)

5 Discussion

In this paper we studied a four-point function of pairwise identical scalar operators, OH and

OL, in holographic CFTs of any dimensionality. Scaling ∆H with the central charge, the

CFT data admits an expansion in the ratio µ ∼ ∆H/CT which we keep fixed. Using crossing

symmetry and the bulk phase shift calculated in [71], we studied O(µ2) corrections to the

OPE data of heavy-light double-trace operators [OHOL]n,l for large l and n. In particular,

the relationship between the bulk phase shift and the OPE data of heavy-light double-trace

operators is found using an impact parameter representation. Furthermore, this allows us

in principle to determine the OPE data of [OHOL]n,l, for l, n � 1 to all orders in µ, i.e.,

to all orders in an expansion in the dual black hole Schwarzschild radius.

Scaling ∆H with the central charge enhances the effect of stress tensor exchanges

compared to the 1/CT corrections due to the exchange of generic operators. At O(µ2)

and higher, we therefore expect multi-stress tensor operators to contribute. The OPE

coefficients for such exchanges are not known in general. They would be needed to de-

termine corrections to the OPE data of heavy-light double-trace operators using purely

CFT methods. In a recent paper [72] some of these OPE coefficients have been computed.

In particular, the OPE coefficients with the multi-stress tensor operators of lowest twist

have been argued to be universal (independent of the higher derivative couplings in the

bulk gravitational lagrangian). It would be interesting to connect these results to the ones

discussed in this paper.

It is a curious fact that each term in the µ-expansion of the bulk phase shift as com-

puted in gravity in [71] can be expressed as an infinite sum of “Regge conformal blocks”

corresponding to operators of dimension ∆ = k(d− 2) + 2n+ 2 and spin J = 2. Explicitly,

i δ(k)(S,L) = f(k)

∞∑
n=0

λk(n) gRk(d−2)+2n+2, 2(S,L) , (5.1)

where the coefficients (f(k), λk(n)) are listed in appendix F and we set S ≡
√
−p2 com-

pared to [71]. Here gR∆,J(S,L) denotes a “Regge conformal block”, and is equal to the

leading behaviour of the analytically continued T-channel conformal block in the Regge

limit [49, 79]

gR∆,J(S,L) = i c∆,J S
J−1 Π∆−1,d−1(L) (5.2)

defined in terms of

1− z =
eL

S
, 1− z̄ =

e−L

S
(5.3)
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as S →∞ and L fixed. Here c∆,J are known coefficients which can be found in appendix F

and Π∆−1,d−1(L) denotes the (d−1)-dimensional hyperbolic space propagator for a massive

scalar of mass square m2 = (∆− 1).

To understand the implications of (5.1) let us focus on k = 2 and consider large impact

parameters, a.k.a. the lightcone limit. In this case, one expects that the dominant contri-

bution to the bulk phase shift comes from the infinite sum of the minimal twist double-trace

operators built from the stress tensor, schematically denoted by Tµν∂µ1 · · · ∂µ`Tρσ. (5.1)

implies that this infinite sum gives rise to a contribution which can be interpreted as com-

ing from a single conformal block of an “effective” operator of the same twist τ = 2(d− 2),

but spin J = 2. At finite impact parameter, one would then need to add the contributions

of an infinite tower of such effective operators of twist τ = 2(d− 2) + 2n and spin J = 2, as

expressed by the infinite sum in (5.1). From this point of view, the coefficients λn in (5.1)

can be interpreted as ratios of sums of OPE coefficients of double-trace operators. It is clear

that this picture appears to hold to all orders in
(

∆H
CT

)
or equivalently, the Schwarzschild

radius of the black hole.

It would be interesting to investigate whether Rindler positivity constrains the Regge

behaviour of the bulk phase shift to grow at most linearly with the energy S, similarly to

section 5.2 in [49]. If this were true, one would perhaps only need to understand the origin

of the λn to compute the bulk phase shift to arbitrary order in
(

∆H
CT

)
purely from CFT

techniques.
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A Details on the conformal bootstrap

Below we review some of the details of the confomal bootstrap calculations. Explicitly, we

will show that exchanges of heavy-light double-trace operators in the S-channel reproduce

the disconnected correlator at O(µ0) and the stress tensor exchange at O(µ).

A.1 Solving the crossing equation to O(µ) in d = 4

We start with the leading O(µ0) term in the S-channel that should reproduce the discon-

nected propagator in the T-channel. This is given in d = 4 by

G(z, z̄)|µ0 =
C∆L

z − z̄

∫ ∞
0

dh

∫ h

0
dh̄(hh̄)∆L−2(h− h̄)(zh+1z̄h̄ − zh̄z̄h+1). (A.1)
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Let us look at the following piece of (A.1):

−
∫ ∞

0
dh

∫ h

0
dh̄(hh̄)∆L−2(h−h̄)zh̄z̄h+1 =−

∫ ∞
0

dh̄

∫ ∞
h̄

dh(hh̄)∆L−2(h−h̄)zh̄z̄h+1

=
z̄

z

∫ ∞
0

dh

∫ ∞
h

dh̄(hh̄)∆L−2(h−h̄)zh+1z̄h̄ .

(A.2)

Setting z̄/z = 1 to leading order in the Regge limit, we find that the S-channel expression

reproduces the disconnected correlator:

G(z, z̄)|µ0 =
zC∆L

z − z̄

∫ ∞
0

dh

∫ ∞
0

dh̄(hh̄)∆L−2(h− h̄)zhzh̄

=
zC∆L

z − z̄
(log z̄ − log z)

(log z log z̄)∆L
Γ(∆L)Γ(∆L − 1) ' 1

(1− z)∆L(1− z̄)∆L
.

(A.3)

Notice that to arrive in the last equality we expanded (z, z̄) around unity and substituted

C∆L
= (Γ(∆L)Γ(∆L − 1))−1.

Consider now the imaginary part at O(µ) in the S-channel. For convenience we define

I(d=4) ≡ Im(G(z, z̄))|µ , (A.4)

which is then equal to:

I(d=4) =
−iπC∆L

σ(e−ρ−eρ)

×
∫ ∞

0
dh

∫ h

0
dh̄(hh̄)∆L−2(h−h̄)γ(h, h̄)

(
(1−σeρ)h+1(1−σe−ρ)h̄−(h↔ h̄)

)
.

(A.5)

Notice that we used the variables (σ, ρ) defined as z = 1− σeρ and z̄ = 1− σe−ρ.
Consider the following ansatz for γ = chah̄b

h−h̄ , where (a, b, c) are numbers tobe determined

by the crossing equation. Substituting into (A.5) and collecting the leading singularity σ−k

as σ → 0 with k = 2∆L + a+ b− 1 leads to

I(d=4)|σ−k =
−icπC∆L

(e−ρ−eρ)

(
Γ(∆L+a−1)Γ(∆L+b−1)(e(b−a)ρ−e(a−b)ρ)+

+
Γ(2∆L+a+b−2)

∆L+a−1
e−(2∆L+a+b−2)ρ

2F1(∆L+a−1,2∆L+a+b−2,∆L+a,−e−2ρ)

−Γ(2∆L+a+b−2)

∆L+a−1
e(2∆L+a+b−2)ρ

2F1(∆L+a−1,2∆L+a+b−2,∆L+a,−e2ρ)

)
.

(A.6)

Note that in order to do these integrals we need ∆L + a > 1 and ∆L + b > 1. Using the

following identity of the hypergeometric function

2F1(a, b, c, x) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−x)−a2F1

(
a, a− c+ 1, a− b+ 1,

1

x

)
+

Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−x)−b2F1

(
b, b− c+ 1,−a+ b+ 1,

1

x

)
,

(A.7)
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the third line in (A.6) can be simplified and we are left with

I(d=4)|σ−k =
icπC∆L

(e2ρ−1)

(
−Γ(∆L+a−1)Γ(∆L+b−1)e(a−b+1)ρ

+
Γ(2∆L+a+b−2)

∆L+a−1
e−(2∆L+a+b−3)ρ

2F1(∆L+a−1,2∆L+a+b−2,∆L+a,−e−2ρ)

+
Γ(2∆L+a+b−2)

∆L+b−1
e−(2∆L+a+b−3)ρ

2F1(∆L+b−1,2∆L+a+b−2,∆L+b,−e−2ρ)

)
.

(A.8)

On the other hand, the Regge limit in the T-channel is dominated by operators of

maximal spin. In a holographic CFT, we have J = 2. If we further take the lightcone

limit, ρ � 1, the dominant contribution is due to the stress tensor exchange and behaves

as σ−1e−(d−1)ρ. To reproduce this behavior from the S-channel, we must set a = 0 and

b = 2 and make an appropriate choice for the overall constant c. Substituting the designated

values of (a, b, c) revals that the first term in (A.8) precisely matches the T-channel stress

tensor contribution, which in the Regge limit (after analytic continuation) behaves like:

g∆,J ∝
1

σJ−1

e−(∆−3)ρ

(e2ρ − 1)
+ . . . , (A.9)

with ∆ = d and J = 2. Furthermore, the remaining terms correspond to the exchange of

operators with spin 2 and dimension 2∆L + 2 + 2n; these are the double-trace operators

[OLOL]n,l=2.

A.2 Integrating the S-channel result at O(µ2) in d = 4

Below we describe how to use the results for the anomalous dimensions at O(µ2) in order

to recover the imaginary part of the correlator to the same order. Using the obtained

expressions for the anomalous dimensions (3.7) and (3.23), we note that the integrand

in (3.10) can be written as

P (0)

(
γ(2) − γ(1)

2
(∂h + ∂h̄)γ(1)

)
= −35h̄3(2h− h̄)

4(h− h̄)3
P (0)

= − 35h∆L−3h̄∆L+1

2Γ(∆L − 1)Γ(∆L)

∞∑
n=0

(
h̄

h

)n (
1 +

n

2

)
.

(A.10)

Therefore we see that (3.10) can be written as an infinite sum of integrals of the same

form that appeared at O(µ) in (A.5). It then follows that the full S-channel result can

be integrated in order to obtain the correlator in position space. Especially, the lightcone

result is obtained by setting k = 0 in (A.10) and taking ρ→∞ which gives

Im(G(z, z̄))|µ2 =
i35π∆L(∆L + 1)

2(∆L − 2)

e−3ρ

σ2∆L+1(e2ρ − 1)
+ . . . , (A.11)

with . . . denoting terms that are subleading in the lightcone limit. The result (A.11) has

a form consistent with the contribution of an operator with spin-2 and ∆ = 6. The full

result (beyond the lightcone limit) further contains an infinite number of operators with

spin-2 of dimension ∆ = 6 + 2n and ∆ = 2∆L + 2n+ 2.
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A.3 Solving the crossing equation to O(µ) in d = 2

Here we review the calculations needed for the d = 2 case explained in appendix D. To

O(µ0) the S-channel (2.16) is given by

G(z, z̄)|µ0 =
1

Γ(∆L)2

∫ ∞
0

∫ h

0
dh̄(hh̄)∆L−1(zhz̄h̄ + (z ↔ z̄)). (A.12)

The integrand in (A.12) is symmetric w.r.t. h↔ h̄ and can thus be rewritten as

G(z, z̄)|µ0 =
1

Γ(∆L)2

∫ ∞
0

∫ ∞
0

dh̄(hh̄)∆L−1zhz̄h̄, (A.13)

which can easily be seen to reproduce the disconnected correlator [(1 − z)(1 − z̄)]−∆L in

the Regge limit.

As in the previous subsection we proceed to consider the imaginary part of the corre-

lator in the S-channel expansion to O(µ). Using a similar notation,

I(d=2) ≡ Im(G(z, z̄))|µ , (A.14)

combined with the ansatz γ1(h, h̄) = c hah̄b, allows us to write:

I(d=2) = − ic π
Γ(∆L)2

∫∞
0

∫ h
0 dh̄(hh̄)∆L−1hah̄b(zhz̄h̄ + (z ↔ z̄)). (A.15)

The integrals in (A.15) can be easily performed given that a + ∆L > 0 and b + ∆L > 0.

Changing variables to z = 1 − σeρ, z̄ = 1 − σe−ρ and collecting the most singular term

σ−k, with k = 2∆L + a+ b, leads to

I(d=2)|σ−k =
icπ

Γ(∆L)2

(
Γ(a+ ∆L)Γ(b+ ∆L)(−eρ(b−a) − eρ(a−b))

+
Γ(a+ b+ 2∆L)e−ρ(a+b+2∆L)

a+ ∆L
2F1(a+ ∆L, a+ b+ 2∆L, 1 + a+ ∆L,−e−2ρ)

+
Γ(a+ b+ 2∆L)eρ(a+b+2∆L)

a+ ∆L
2F1(a+ ∆L, a+ b+ 2∆L, 1 + a+ ∆L,−e2ρ)

)
.

(A.16)

Using again (A.7) we express (A.16) as follows

I(d=2)|σ−k =
icπ

Γ(∆L)2

(
−Γ(a+∆L)Γ(b+∆L)eρ(a−b)

+
Γ(a+b+2∆L)e−ρ(a+b+2∆L)

a+∆L
2F1(a+∆L,a+b+2∆L,1+a+∆L,−e−2ρ)

−Γ(a+b+2∆L)e−(a+b+2∆L)ρ

b+∆L
2F1(b+∆L,a+b+2∆L,1+b+∆L,−e−2ρ)

)
.

(A.17)

In matching (A.17) with the T-channel expansion, following the same logic as in the pre-

vious subsection we deduce that a = 0 and b = 1 and fix c. The first line in (A.17) then

reproduces the exchange of the stress tensor in the T-channel. The other two lines match

the contribution of double-trace operators [OLOL]n,l=2 with dimension ∆ = 2∆L + 2n+ 2

and spin 2 in the T-channel expansion.
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B Details on the impact parameter representation in d = 4

Here we will see how the impact parameter representation in four dimensions leads to the ex-

pression for the disconnected correlator in the Regge limit, in terms of the integral over h, h̄.

The objective of this section is to explicitly see that the disconnected contribution of

the correlator in the Regge limit

1

[(1−z)(1−z̄)]∆
=

1

Γ(∆)Γ(∆−1)

∫ ∞
0

dh

∫ h

0
dh̄(hh̄)∆−2h−h̄

z−z̄
(zh+1z̄h̄−zh̄z̄h+1) , (B.1)

can be equivalently written as ∫ ∞
0

dh

∫ h

0
dh̄ Ih,h̄ , (B.2)

with

Ih,h̄ ≡ C(∆)

∫
M+

d4p

(2π)4
(−p2)∆−2e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(
p2

4
+ hh̄

)
. (B.3)

where M+ is the upper Milne wedge with {p2 ≤ 0, p0 ≥ 0} and

C(∆) ≡ 2d+1−2∆π1+ d
2

Γ(∆)Γ(∆− d
2 + 1)

, (B.4)

with d the dimensionality of the spacetime, here d = 4.

In practice, we need to perform the integral over p in (B.3). To do so, we will use

spherical polar coordinates and write:

Ih,h̄ =
C(∆)

(2π)3

∫ ∞
−∞

dp0

∫ ∞
0

dpr (pr)2

∫ 1

−1
d(cos θ) (−p2)∆−2 θ(p0)θ(−p2)

× eip0x0
e−irp

r cos θ

[
δ

(
p0 + pr

2
− h
)
δ

(
p0 − pr

2
− h̄
)

+ h↔ h̄

]
.

(B.5)

The overall factor of (2π) is simply the result of the integration with respect to the angular

variable φ. Next we perform the integral over cos θ:

Ih,h̄ =
C(∆)

(2π)3

∫ ∞
−∞

dp0

∫ ∞
0

dpr (pr)2 (−p2)∆−2 eip
0x0

(
e−irp

r − eirpr

−irpr

)
θ(p0)θ(−p2) (δ δ),

(B.6)

where we set

(δ δ) ≡ δ
(
p0 + pr

2
− h
)
δ

(
p0 − pr

2
− h̄
)

+ h↔ h̄ . (B.7)

Notice that ∫ ∞
0

dpr
pr

ir
(−p2)∆−2 eirp

r
(δ δ)−

∫ ∞
0

dpr
pr

ir
(−p2)∆−2 e−irp

r
(δ δ)

=

∫ ∞
−∞

dpr
pr

ir
(−p2)∆−2 eirp

r
(δ δ) .

(B.8)
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Hence we can write (B.6) as follows

Ih,h̄ =
C(∆)

(2π)3

∫ ∞
−∞

dp+ dp−

2

p+ − p−

i(x+ − x−)
(−p2)∆−2 e

i
2

(p+x−+p−x+) θ(p+)θ(p−) (δ δ) . (B.9)

Performing the last two integrations is trivial due to the delta-functions. The result is

Ih,h̄ =
1

Γ(∆)Γ(∆− 1)

h− h̄
i(x+ − x−)

(hh̄)∆−2 (eihx
+
eih̄x

− − eih̄x+
eihx

−
) , (B.10)

which allows us to write (B.2) as follows:∫ ∞
0

dh

∫ h

0
dh̄ Ih,h̄ =

1

Γ(∆)Γ(∆− 1)

∫ ∞
0

dh

∫ h

0
dh̄

h− h̄
i(x+ − x−)

(hh̄)∆−2 (zhz̄h̄ − zh̄z̄h) .

(B.11)

Here we also used the identification (z = eix
+
, z̄ = eix

−
).

Observe that (B.11) is equal to (B.1) in the Regge limit, where

z

z − z̄
' 1

i(x+ − x−)
,

z̄

z − z̄
' 1

i(x+ − x−)
. (B.12)

However, when considering next order corrections in (x+, x−) the impact parameter repre-

sention may require corrections. Below we show that these are irrelevant for the questions

we are interested in.

B.1 Exact Fourier transform

Here we will compute the Fourier transform for the S-channel expression with the identifi-

cation (z = eix
+
, z̄ = eix

−
) and show that the leading order results in the Regge limit given

in the previous section do not miss any important contributions.

The generic term in the S-channel which we would like to Fourier transform looks like:∫
dh dh̄ g(x+, x−)f̃(h, h̄) , (B.13)

where

g(x+, x−) =
ei(1+h)x+

eih̄x
− − eih̄x+

ei(h+1)x−

(eix+ − eix−)
, (B.14)

and

f̃(h, h̄) = iπ(hh̄)∆−2(h− h̄)f(h, h̄) , (B.15)

where f(h, h̄) stands for all the contributions in the S-channel to a given order.

The Fourier transform is:∫
d4x eipx

∫
dh dh̄ g(x+, x−)f̃(h, h̄) =

∫
dh dh̄f̃(h, h̄)

∫
d4x eipxg(x+, x−) , (B.16)

where we simply reversed the order of integration. Our focus in what follows will be the

integral:

I ≡
∫
d4x eipxg(x+, x−) . (B.17)
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Since x+ = t + r and x− = t − r, it is convenient to use spherical polar coordinates to

perform the integration. The angular integration over φ gives us an overall factor of (2π) as

the integrand is independent of φ. Next we perform the integration over the other angular

variable. Similar to what was discussed in the previous section,∫ 1

−1
d(cos θ) eip

rr cos θ =
eirp

r − e−irpr

irpr
. (B.18)

Combining the above we can write:

I = 2π

∫ ∞
−∞

dte−itp
t

∫ ∞
0

drr
eirp

r − e−irpr

ipr
g(t, r) . (B.19)

It is easy to see that g(t, r) = g(t,−r) and as a result:∫ ∞
0

dr re−irp
r
g(t, r) = −

∫ 0

−∞
dr reirp

r
g(t, r) , (B.20)

which allows us to write the integral as:

I = 2π

∫ ∞
−∞

dx+dx−

2
eip·x

x+ − x−

i(p+ − p−)
g(x+, x−) . (B.21)

Here eip·x = e−
i
2

(p+x−+p−x+) and the above integral can be thought of as a two-dimensional

Fourier transform.

To proceed we need the explicit form of g(x+, x−) which we write as

g(x+, x−) =
eihx

+
eih̄x

−

1− e−i(x+−x−)
+ (x+ ↔ x−) (B.22)

and then expand the denominator in the Regge limit

1

1− e−i(x+−x−)
=

1

i(x+ − x−)

[
1− i

2
(x+ − x−) + · · ·

]
. (B.23)

Substituting into (B.21) leads to:

I = 2π
1

(−p+ + p−)

∫
dx+dx−

2
eip·x

{
eihx

+
eih̄x

−
[
1− i

2
(x+ − x−) + · · ·

]
+ (x+ ↔ x−)

}
.

(B.24)

Let us compute the integral term by term. The leading term in the Regge limit yields the

standard delta functions:

I0 = 22π3 1

p− − p+
δ

(
p+

2
− h̄
)
δ

(
p−

2
− h
)

+ (p+ ↔ p−)

= 2π3 1

h− h̄

{
δ

(
p+

2
− h̄
)
δ

(
p−

2
− h
)

+ (p+ ↔ p−)

}
= 2π3 1

h− h̄
δ(p · ē+ h+ h̄)δ

(
p2

4
+ hh̄

)
.

(B.25)

– 21 –



J
H
E
P
1
0
(
2
0
1
9
)
0
4
6

The subleading terms on the other hand produce the same result except that the delta

functions are replaced with derivatives of themselves with respect to pr = p+−p−
2 .

Let us now consider the full result which up to an overall numerical coefficient can be

written as: ∫
dh dh̄ f̃(h, h̄)

(
1− ∂

∂pr
+ · · ·

)
δ(p · ē+ h+ h̄)δ

(
p2

4
+ hh̄

)
. (B.26)

To evaluate the terms with derivatives of the delta function we need to integrate by parts.

Now recall that we are interested in the imaginary piece of the S-channel whose leading

behaviour is ∼
√
−p2 (this dependence is hidden in what we called f̃). It is obvious that

the derivatives will produce subleading terms which we are not interested in.

What about the other pieces in the S-channel which are not imaginary? To O(µ2) in

this case, we know that the leading behaviour grows like ∼ (
√
−p2)2, so by differentiation,

a term of the order
√
−p2 may be produced. However, it is clear that this term will never

contribute to the imaginary term of the S-channel (note that the coefficient in the first term

in the parenthesis in (B.26) is real). We thus deduce that the subleading terms in (B.24)

are irrelevant for our study.

C Impact parameter representation in general spacetime dimension d

Here we want to prove the following equation for general spacetime dimension d:

Ih,h̄ = (zz̄)−
(∆H+∆L)

2 P (0)g∆HL,−∆HL

h,h̄
(z, z̄), (C.1)

using the form of conformal blocks given in (4.6). We start with the definition of Ih,h̄ that

is given as:

Ih,h̄ = C(∆L)

∫
M+

ddp

(2π)d
(−p2)∆L− d2 e−ipx(h− h̄)δ(p · ē+ h+ h̄)δ

(
p2

4
+ hh̄

)
, (C.2)

where:

C(∆L) ≡ 2d+1−2∆Lπ1+ d
2

Γ(∆L)Γ(∆L − d
2 + 1)

. (C.3)

Using spherical coordinates we write (C.2) as:

Ih,h̄ =C(∆L)

∫ ∞
−∞

dpteip
tt

∫ ∞
0

dpr(pr)d−2

∫
Sd−2

sind−3φ1dφ1 dΩd−3

×e−iprr cosφ1(−p2)∆L− d2 θ(−p2)θ(pt)

{
δ

(
pt+pr

2
−h
)
δ

(
pt−pr

2
−h̄
)

+(h↔ h̄)

}
,

(C.4)

where Ωd−3 = 2π
d−2

2

Γ( d−2
2 )

denotes the area of the unit (d− 3)-dimensional hypersphere.

Notice now that∫ π

0
sind−3 φ1e

−iprr cosφ1dφ1 =
√
πΓ

(
d

2
− 1

)
0F1

(
d− 1

2
;−1

4
(pr)2r2

)
. (C.5)
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Substituting (C.5) back in to (C.4), one is left with integrals with respect to pt and pr only.

These integrals are trivial due to the presence of delta functions.3 When these integrations

are done, the expression for Ih,h̄ is given as:

Ih,h̄ =
23−d√π

Γ(∆L)Γ(∆L− d
2 +1)

eit(h+h̄)(h−h̄)d−2(hh̄)∆L− d2 0F1R

(
d−1

2
;−1

4
(h−h̄)2r2

)
, (C.6)

where 0F1R(a, x) = Γ(a)−1
0F1(a, x). Relations between coordinates t and r with x+ and

x− are given as: x+ = t+ r and x− = t− r.
On the other hand, using the explicit form for conformal blocks (4.6) and OPE coeffi-

cients in the Regge limit (2.21) one finds that:

(zz̄)−
(∆H+∆L)

2 P (0)g∆HL,−∆HL

h,h̄
(z, z̄)

=
Γ(d2 − 1)

Γ(∆L)Γ(∆L − d
2 + 1)

(hh̄)∆L+ d
2 (h− h̄)(zz̄)

h+h̄
2 C

( d
2
−1)

h−h̄

( z + z̄

2
√
zz̄

)
.

(C.7)

Using the relations between coordinates r, t and z, z̄ it is easy to see that (zz̄)
h+h̄

2 = eit(h+h̄).

Next, one can use the relation between Gegenbauer polynomials and hypergeometric

functions:

C(α)
n (z) =

(2α)n
n!

2F1

(
−n, 2α+ n, α+

1

2
;

1− z
2

)
, (C.8)

which for h− h̄ = l� 1 gives:

C
( d

2
−1)

l

( z + z̄

2
√
zz̄

)
=

ld−3

Γ(d− 2)
2F1

(
−l, l + d− 2,

d− 1

2
;

1

2
− 1

2

(
z + z̄

2
√
zz̄

))
. (C.9)

With the help of the following properties of hypergeometric functions:

2F1(a, b, c; z) = (1− z)−b2F1

(
c− a, b, c; z

z − 1

)
,

lim
m,n→∞ 2F1

(
m,n, b;

z

mn

)
= 0F1(b; z).

(C.10)

Using these, together with the assumption that in the Regge limit the values of x+l and

x−l are fixed constants: x+l = a1 and x−l = a2 while l→∞, one can easily see4 that (C.6)

reproduces (C.1). This confirms the validity of the impact parameter representation.

D Anomalous dimensions of heavy-light double-trace operators in d = 2

The OPE data of the heavy-light double trace operators in d = 2 dimensions can be directly

obtained from the heavy-light Virasoro vacuum block [17, 80]. For completeness, in this

3One only needs to remember that h ≥ h̄ ≥ 0.
4By noting that:

Γ

(
x− 1

2

)
= 22−2x√πΓ(2x− 1)

Γ(x)
. (C.11)
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appendix we investigate the anomalous dimension of [OHOL]h̄,h−h̄ in d = 2 following the

discussion in section 3. As in d = 4, we introduce an impact parameter representation

following [71]. We calculate the anomalous dimensions to O(µ) by solving the crossing

equation and then use the impact parameter representation to relate them to the bulk

phase shift. We find a precise agreement between the two. Using the bulk phase shift

we furthermore determine the anomalous dimension to second order in µ. Much of the

discussion follows closely the four-dimensional case and will be briefer.

D.1 Anomalous dimensions in the Regge limit using bootstrap

The conformal blocks in two dimension are given by [73, 76]

g∆12,∆34

∆,J (z, z̄) = k∆+J(z)k∆−J(z̄) + (z ↔ z̄) , (D.1)

where kβ(z) was defined in (3.2). Similar to the four dimensional case, the blocks for

heavy-light double-trace operators simplify in the heavy limit (∆H ∼ CT )

g∆HL,−∆HL

[OHOL]h,h̄
(z, z̄) = (zz̄)

1
2

(∆H+∆L)(zhz̄h̄ + (z ↔ z̄)) . (D.2)

Inserting this form of the conformal blocks in (2.16) together with the OPE coefficients in

the Regge limit (2.21) and approximating the sums with integrals, one can due to symmetry

extend the region of integration and it is easily found that the disconnected correlator in

the T-channel is reproduced.

Similar to the four-dimensional case the stress tensor dominates at order µ in the T-

channel. The block of the stress tensor after analytic continuation in the Regge limit is

given by

gTµν =
24iπe−ρ

σ
+ . . . , (D.3)

where . . . denote non-singular terms. As in the four-dimensional case, this has to be

reproduced in the S-channel by the term in (2.16) proportional to −iπγ.

With the conformal blocks (D.2), the imaginary part in the S-channel to O(µ) is

given by

Im(G(z, z̄))|µ = −iπC∆L

∫ ∞
0

dh

∫ h

0
dh̄(hh̄)∆L−1γ(1)(h, h̄)

(
zhz̄h̄ + zh̄z̄h

)
. (D.4)

Using the ansatz γ(1)(h, h̄) = c1h
ah̄b we find that the T-channel contribution is reproduced

for a = 0 and b = 1 (see appendix A.2 for details). We thus find using (2.22)

γ(1) = −6λOHOHTµνλOLOLTµν
µ∆L

h̄ = −h̄. (D.5)

To O(µ2) we can use (3.10) to find the following contribution to the purely imaginary terms

in the S-channel

Im(G(z, z̄))|µ2 = −iπC∆L

∫ ∞
0

dh

∫ h

0
dh̄(hh̄)∆L−1

(
γ(2) − c2

1h̄

2

)
(zhz̄h̄ + zh̄z̄h). (D.6)
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D.2 2d impact parameter representation and relation to bulk phase shift

Similar to the four-dimensional case we introduce an impact parameter representation in

order to relate the anomalous dimension with the bulk phase shift. The impact parameter

representation in d = 2 is given by

Ih,h̄ ≡ C(∆L)

∫
M+

d2p(−p2)∆−1e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(
p2

4
+ hh̄

)
, (D.7)

with straightforward generalization of the d = 4 case explained above. This is again chosen

such that when the impact parameter represetation is integrated over h, h̄ the disconnected

correlator is reproduced: ∫ ∞
0

dh

∫ h

0
Ih,h̄ =

1

[(1− z)(1− z̄)]∆L
. (D.8)

The discussion of the phase shift is completely analogous to the four-dimensional case,

as in (3.20) we find the following relation between the bulk phase shift and the anomalous

dimension to second order in µ

γ(1) = −δ
(1)

π

γ̃(2) − c2
1p
−

4
= −δ

(2)

π
.

(D.9)

In [71] the phase shift in d = 2 was found to be

δ(1) =
π

2

√
−p2e−L

δ(2) =
3π

8

√
−p2e−L.

(D.10)

Using the identification p+ = 2h and p− = 2h̄ together with (3.22) we find for the anoma-

lous dimension in the Regge limit

γ(1) = −h̄

γ(2) = −1

4
h̄.

(D.11)

We thus see that the first order result agrees with that obtained from bootstrap (D.5).

Furthermore, the second order correction agrees also in d = 2 with the result (6.40) in [71].

E Discussion of the boundary term integrals

There are a few integrals containing total derivative terms that we have ignored throughout

this paper and we analyze more carefully here. Let us start with a total derivative term

which shows up in the real part of the correlator at O(µ). It is given by:5

I1 =
1

2
(zz̄)−

1
2

(∆H+∆L)

∫ +∞

0
dl
[
P (0)γ(1)g∆HL,−∆HL

n+l,n (z, z̄)
]n→∞
n=0

. (E.1)

5We are again using variables n and l, one can notice that n = h̄ and l = h − h̄. It is trivial to prove

that ∂n = ∂h + ∂h̄.
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Let us focus on the integrand:
[
P (0)γ(1)g∆HL,−∆HL

n+l,n (z, z̄)
]n→∞
n=0

. When n = 0, the ex-

pression within the brackets trivially vanishes. On the other hand, when n → ∞, it

takes the form n2∆L−2(zz̄)n × f(l), where f is some function of l only. We are instructed

here to take the limit n → ∞ independently of all other limits (recall that the Regge

limit is taken after the integration). For generic values 0 < (z, z̄) < 1 it is clear that

limn→∞

[
P (0)γ(1)g∆HL,−∆HL

n+l,n (z, z̄)
]

= limn→∞ n
2∆L−2(zz̄)n×f(l)→ 0. In other words, the

expression
[
P (0)γ(1)g∆HL,−∆HL

n+l,n (z, z̄)
]n→∞
n=0

→ 0, and we conclude that the integral (E.1)

does not contribute to the S-channel expansion of the correlator.

There are a few more integrals of similar kind that appear at O(µ2). We will analyse

one of them here:

I2 =
−iπ

2
(zz̄)−

1
2

(∆H+∆L)

∫ +∞

0
dl
[
P (0)(γ(1))2g∆HL,−∆HL

n+l,n (z, z̄)
]n→∞
n=0

. (E.2)

The same logic can be applied here. Again, the value of the expression in brackets at

n = 0 is trivially zero, while for large n it behaves like: n2∆L+d−4(zz̄)nf̃(l). As long as

(z, z̄) < 1, this vanishes exponentially in the limit n → ∞. One concludes therefore that

the integral (E.2) vanishes. The same logic is valid for all other integrals of similar total

derivative terms that appear at O(µ2).

F An identity for the bulk phase shift

The aim is to elaborate on the results of [71] for the bulk phase shift in a black hole

background as computed in gravity. Firstly, let us note the following identity involving

hypergeometric functions:

∞∑
n=0

a(n)xn 2F1

[
τ0 + 2n+ 1,

d

2
− 1, τ0 + 2n− d

2
+ 3, x

]
= 2F1

[
τ0 + 1,

τ0

2
,
τ0

2
+ 2, x

]
a(n) =

22n

n!

τ0 + 2

τ0 + 2 + 2n

( τ02 + 1− d
2)n
(
τ0+1

2

)
n

(τ0 + n+ 2− d
2)n

, τ0 6= 0 . (F.1)

Given that both sides of the equality can be expressed as an infinite series expansion around

x = 0, one simply needs to show that the expansion coefficients match to all orders in x.

This is proven in appendix G.

Consider now the case τ0 = k(d− 2) where k ∈ N?. Setting x ≡ e−2L and multiplying

both sides with e−[k(d−2)+1]L yields:

Πk(d−2)+1,k(d−2)+1(L) =
∞∑
n=0

βnΠk(d−2)+2n+1,d−1(L)

β(n) ≡ π
(1−k)(d−2)

2
a(n)

(k(d− 2) + 1)n

Γ
[
k(d− 2)− d

2 + 2n+ 3
]

Γ
[
k(d−2)

2 + 2
] .

(F.2)

The left hand side represents the hyperbolic space propagator for a scalar field of squared

mass equal to k(d − 2) + 1 in a hyperbolic space of dimensionality k(d − 2) + 1 and is
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proportional to the k-th order expression for the bulk phase shift computed in gravity

in [71], where

δ(k)(S,L) =
1

k!

2Γ
(
dk+1

2

)
Γ
(
k(d−2)+1

2

) π1+
k(d−2)

2

Γ
(
k(d−2)

2 + 1
)SΠk(d−2)+1,k(d−2)+1(L) . (F.3)

On the other hand, the right-hand side of (F.2) expresses the k-th order term of the

bulk phase shift as an infinite sum of (d− 1)-dimensional hyperbolic space propagators for

fields with mass-squared equal to m2 = k(d− 2) + 1 + 2n.

It can be shown [49, 79] that the analytically continued T-channel scalar conformal

block in the Regge limit behaves like:

g∆,J(σ, ρ) = i c∆,J
Π∆−1,d−1(ρ)

σJ−1
, (F.4)

where

c∆,J =
4∆+J−1Γ

(
∆+J−1

2

)
Γ
(

∆+J+1
2

)
Γ(∆+J

2 )2

2Γ
(
∆− d

2 + 1
)

π1− d
2 Γ (∆− 1)

. (F.5)

Here Π∆−1,d−1 denotes as usual the (d− 1)-dimensional hyperbolic space propagator for a

massive scalar of mass-squared m2 = (∆− 1).

It follows that the k-th order term in the µ-expansion of the bulk phase shift in a black

hole background can be expressed as an infinite sum of conformal blocks corresponding to

operators of twist τ = τ0(k) + 2n = k(d − 2) + 2n and spin J = 2 in the Regge limit. In

other words, we can write:

i δ(k)(S,L) = f(k)
∞∑
n=0

λk(n) gRτ0(k)+2n+2,2(S,L)

λk(n) = a(n)
2−4n

[(
τ0(k)+4

2

)
n

]2

(
τ0(k)+3

2

)
n

(
τ0(k)+5

2

)
n

, τ0(k) = k(d− 2)

(F.6)

where

f(k) ≡
√
π

64

1

2k(d−2) k!

Γ
(
kd+1

2

)
Γ
(
k(d−2)+4

2

)
Γ
(
k(d−2)+5

2

)
Γ
(
k(d−2)+3

2

) , (F.7)

and

gR∆,J(S,L) = ic∆,J S
J−1 Π∆−1,d−1(L) . (F.8)

G An identity for hypergeometric functions

Here we will show that for q 6= 0,

∞∑
n=0

a(n)xn 2F1

[
q + 2n+ 1,

d

2
− 1, q + 2n− d

2
+ 3, x

]
= 2F1

[
q + 1,

q

2
,
q

2
+ 2, x

]

a(n) =
22n

n!

q + 2

q + 2 + 2n

( q2 + 1− d
2)n

(
q+1

2

)
n

(q + n+ 2− d
2)n

, q 6= 0 .

(G.1)
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Given that both sides of the equality can be expressed as an infinite series expansion around

x = 0, one simply needs to show that the expansion coefficients match to all orders in x.

Let us first set:

b(n,m) ≡ 1

m!

(q + 1 + 2n)m
(
d
2 − 1

)
m(

q − d
2 + 2n+ 3

)
m

c(`) ≡ 1

`!

(q + 1)`
( q

2

)
`( q

2 + 2
)
`

=
(q + 1)`

`!

q(q + 2)

(q + 2`)(q + 2`+ 2)
,

(G.2)

such that:

2F1[q + 2n+ 1,
d

2
− 1, q + 2n− d

2
+ 3, x] =

∞∑
m=0

b(n,m)xm,

2F1[q + 1,
q

2
,
q

2
+ 2, x] =

∞∑
`=0

c(`)x`.

(G.3)

It is easy to check that the coefficients of the first few powers of x precisely match. Indeed,

e.g.,

a(0)b(0, 0)− c(0) = 0

a(1)b(1, 0) + a(0)b(0, 1)− c(1) = 0

a(2)b(2, 0) + a(1)b(1, 1) + a(0)b(0, 2)− c(2) = 0.

(G.4)

To show that the above identity is true for all powers of x we must show that:

∑̀
k=0

a(k)b(k, `− k) = c(`) , (G.5)

for all ` ∈ N . The left-hand side of (G.5) can be easily summed to yield:

∑̀
k=0

a(k)b(k, `− k) =
1

`!

Γ[q + 1 + `]

Γ[q]

(q + 2)

(q + 2`)(2 + 2`+ q)
, (G.6)

which can be trivially shown to be equal to c(`).
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Hydrodynamic excitations corresponding to sound and shear modes in fluids are characterized by
gapless dispersion relations. In the hydrodynamic gradient expansion, their frequencies are represented by
power series in spatial momenta. We investigate the analytic structure and convergence properties of the
hydrodynamic series by studying the associated spectral curve in the space of complexified frequency and
complexified spatial momentum. For the strongly coupled N ¼ 4 supersymmetric Yang-Mills plasma, we
use the holographic duality methods to demonstrate that the derivative expansions have finite nonzero radii
of convergence. Obstruction to the convergence of hydrodynamic series arises from level crossings in the
quasinormal spectrum at complex momenta.
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Introduction.—Hydrodynamics is an established univer-
sal language for describing near-equilibrium phenomena in
fluids [1]. The equations of hydrodynamics are the local
conservation laws which can be written as

∂tρa þ ∇ · Ja ¼ 0; ð1Þ

where ρa are the densities of locally conserved charges
(energy, momentum, particle number, etc.) and Ja are the
corresponding fluxes. The conservation equations (1) can
be solved once the fluxes Ja are expressed in terms of the
densities ρa through the so-called constitutive relations,
Ja ¼ JaðρÞ. Conventionally, one works with the quantities
ϕa such as temperature, fluid velocity, and the chemical
potential which are conjugate to ρa in the grand canonical
ensemble. The constitutive relations ρa ¼ ρaðϕÞ, Ja ¼
JaðϕÞ are then used in the conservation laws (1) in order
to determine the macroscopic space-time evolution of the
fluid [1].
There are two basic physics principles that constrain

possible forms of the constitutive relations: symmetry and
the derivative expansion. Symmetry is what distinguishes
different types of fluids. The derivative expansion is a
reflection of the fact that hydrodynamics is only an
effective description on length scales much larger than
the microscopic scale (such as the mean free path). Thus,
the constitutive relations are schematically written as

ρa ¼ OðϕÞ þOð∇ϕÞ þOð∇2ϕÞ þ � � � ; ð2aÞ

Ja ¼ OðϕÞ þOð∇ϕÞ þOð∇2ϕÞ þ � � � ; ð2bÞ

which is a derivative (gradient) expansion. For normal
fluids, truncating the expansions (2) at OðϕÞ [i.e., neglect-
ing the termsOð∇ϕÞ and higher] gives rise to perfect fluids
and Euler equations of hydrodynamics. Truncating the
expansions at Oð∇ϕÞ gives rise to viscous fluids and
Navier-Stokes equations. Truncating at Oð∇2ϕÞ gives rise
to second-order hydrodynamics and Burnett equations, and
so on.
The naive expectation is that going to higher orders in the

derivative expansion improves the hydrodynamic descrip-
tion of the fluid, similar to how the Navier-Stokes equations
improve the perfect-fluid approximation by including the
viscous effects. The purpose of this Letter is thus to address
the following foundational question: viewed as an expan-
sion in small gradients, does the hydrodynamic derivative
expansion in fact converge?
In order to make this question precise, we will choose a

specific physical quantity whose exact value can be
compared with the prediction of the derivative expansion.
For fluids, the characteristic feature of the hydrodynamic
description is the existence of gapless modes: small near-
equilibrium fluctuations of the fluid whose frequencies
ωiðqÞ are such that ωiðqÞ → 0 as the magnitude of the wave
vector q → 0. The well-known example is the sound wave
whose dispersion relation is ωsoundðqÞ ¼ �vsqþOðq2Þ,
where vs is the speed of sound. More generally, the
hydrodynamic prediction is that
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ωiðqÞ ¼
X∞

n¼1

bðiÞn qn; ð3Þ

where, in principle, all orders in the derivative expansion
(2) contribute to the dispersion relation of the ith mode. In
this Letter, we shall investigate whether the infinite power
series expansions (3) converge, and if so, what determines
their radii of convergence. Recently, the convergence of the
shear-diffusion mode series in d ¼ 2þ 1 was investigated
in a holographic model with nonzero chemical potential
[2]. Using the coefficients of the series (3) and Padé
approximants, Ref. [2] found an obstruction to the con-
vergence in the form of a branch point at purely imaginary
momentum and identified this singularity as the collision of
two gapped quasinormal modes. Here, we show how
branch point singularities generically arise from the spec-
tral curves in classical hydrodynamics.
Besides the general physics interest in the foundations of

hydrodynamics, our motivation comes from the success of
the relativistic hydrodynamic framework to describe the
quark-gluon plasma produced in the collisions of heavy
nuclei [3]. Similarly, in the examples of strongly interacting
quantum field theories whose nonequilibrium evolution can
be determined from first principles using holographic
methods, the hydrodynamic description appears to be
unexpectedly robust, even when the gradients are large
[4,5]. If the expansions (3) indeed converge, this conver-
gence would be a step towards understanding the “unrea-
sonable effectiveness” of the hydrodynamic description of
the quark-gluon plasma and of similar strongly interacting
holographic fluids [6–9].
An important comment has to be made before we

proceed. The expansion (3) is a prediction of classical
hydrodynamics, which neglects the effects of statistical
fluctuations. As is well known [10], fluctuations lead to
infinitely many fractional powers of q appearing in ωiðqÞ,
thereby rendering the expansion (3) insufficient. While one
may rightly question the applicability of classical second-
and higher-order hydrodynamics to the quark-gluon plasma
on these grounds [11], one should keep in mind that the
complete effective description of the fluid involves both the
classical hydrodynamics and the fluctuation effects. Our
focus here is on the classical hydrodynamics part, with the
understanding that the fluctuation effects are to be included
later. In holographic hydrodynamics, these effects are
suppressed in the large-N limit of the corresponding
models [12].
Hydrodynamic modes from complex curves.—In order to

understand the origin of the series (3), consider the
constitutive relations (2) truncated at a finite order k in
the derivative expansion. Suppose there are m hydrody-
namic variables ϕa, with a ¼ 1;…; m. The hydrodynamic
equations (1) linearized near equilibrium can be written as
La½δϕ� ¼ 0, where La are linear differential operators of
order at most kþ 1. Upon Fourier transforming the

linearized fluctuations, δϕ ∝ expð−iωtþ iq · xÞ, the
frequencies are determined by the eigenvalue equation
detLabðω;qÞ ¼ 0, where Lab is an m ×m matrix whose
elements are polynomials in ω and q. Assuming a rotation-
invariant equilibrium state, the eigenvalue equation can
only depend on q2 and ω, and can be written as
Pkðq2;ωÞ ¼ 0, where Pk is a polynomial in q2 and ω.
Continuing the gradient expansion, we set Pðq2;ωÞ ¼
limk→∞Pkðq2;ωÞ. The all-order eigenvalue equation is then

Pðq2;ωÞ ¼ 0: ð4Þ

It is useful to treat z≡ q2 and ω as complex variables. The
eigenvalue equation Pðz;ωÞ ¼ 0 then defines a complex
spectral curve in C2. Regular points of the curve satisfy the
condition of the analytic implicit function theorem [13],

Pðz;ωÞ ¼ 0;
∂Pðz;ωÞ

∂ω ≠ 0; ð5Þ

which guarantees analyticity and uniqueness of the branch
ω ¼ ωðzÞ in the vicinity of a regular point. Of particular
interest are the so-called critical points, i.e., the points
ðzc;ωcÞ where, in addition to Pðzc;ωcÞ ¼ 0, the first
(p − 1) derivatives with respect to ω vanish,

∂Pðzc;ωcÞ
∂ω ¼ 0;…;

∂pPðzc;ωcÞ
∂ωp ≠ 0: ð6Þ

Assuming the analyticity of Pðz;ωÞ at ðzc;ωcÞ, the gen-
eralization of the implicit function theorem guarantees the
existence of p branches ωj ¼ ωjðzÞ, j ¼ 1;…; p, repre-
sented by Puiseux series [series in fractional powers of
ðz − zcÞ] converging in the vicinity of the branch point z ¼
zc [14]. The hydrodynamic (gapless) dispersion relations
are defined implicitly by Eq. (4). They arise as m functions
ωi ¼ ωiðzÞ satisfying ωiðz → 0Þ ¼ 0, i ¼ 1;…; m, and
P(z;ωðzÞ) ¼ 0.
Relativistic hydrodynamics.—In what follows, we focus

on relativistic hydrodynamics for concreteness [15], and set
ℏ ¼ c ¼ 1. In first-order hydrodynamics of an uncharged
fluid in 3þ 1 dimensions, one finds

P1ðq2;ωÞ ¼ ðωþ iDq2Þ2ðω2 þ iΓωq2 − v2sq2Þ ¼ 0; ð7Þ
where vs ¼ ð∂p=∂ϵÞ1=2 is the speed of sound, p and ϵ are
the equilibrium pressure and energy density, D¼η=ðϵþpÞ
is the diffusion coefficient of the transverse velocity, Γ ¼
½ð4=3Þηþ ζ�=ðϵþ pÞ is the damping coefficient of sound
waves, η is the shear viscosity, and ζ is the bulk viscosity.
More generally, one can show that the eigenvalue equa-
tion (4) factorizes as Pðq2;ωÞ ¼ F2

shearFsound, with

Fshear ≡ ωþ iq2γηðq2;ωÞ ¼ 0; ð8Þ
Fsound ≡ ω2 þ iωq2γsðq2;ωÞ − q2Hðq2;ωÞ ¼ 0: ð9Þ
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This factorization is a consequence of rotation invariance.
In the derivative expansion, the functions γη, γs, and H are
given by power series around ðz;ωÞ ¼ ð0; 0Þ.
For example, assuming analyticity of the function γη at

ðz;ωÞ ¼ ð0; 0Þ, the origin (0,0) is a regular point of the
complex curve (8). The implicit function theorem then
implies that the shear dispersion relation is given by a series
in powers of q2 converging in the vicinity of q2 ¼ 0,

wshear ¼ −i
X∞

n¼1

cnq2n ¼ −ic1q2 þ � � � ; ð10Þ

where we defined w≡ ω=2πT, q≡ jqj=2πT, and
c1 ¼ 2πTD. On the other hand, for the curve (9) we have
∂Fsound=∂ω ¼ 0 but ∂2Fsound=∂ω2 ≠ 0 at (0,0)—again,
assuming analyticity of the functions γs and H at the
origin. In this case, the two branches ω� ¼ ω�ðq2Þ are
given by Puiseux series in powers of q≡ ðq2Þ12,

w�
sound ¼ −i

X∞

n¼1

ane�ðiπn=2Þqn ¼ �a1qþ ia2q2 þ � � � ;

ð11Þ

converging in the vicinity of q2 ¼ 0. The dimensionless
coefficients are a1 ¼ vs, a2 ¼ −ΓπT. We expect the radius
of convergence of the hydrodynamic dispersion relation
series to be determined by the distance from the origin to
the nearest critical point (6).
The main example.—An example of a quantum field

theory in which the dispersion relations ωiðqÞ can be

analyzed to all orders in q is the N ¼ 4 supersymmetric
SUðNÞ Yang-Mills (SYM) theory at infinitely large
‘t Hooft coupling and infinite N. This theory has been
extensively studied through the use of holographic methods
in various contexts [16,17], including as a model of
collective properties of quantum chromodynamics in the
deconfined phase [18]. The theory is conformal, and the
only dimensionful scale is the equilibrium temperature T
that sets the finite correlation length. In any conformal
theory, we have a1 ¼ 1=

ffiffiffi
3

p
, a2 ¼ −ð2=3Þc1, and the bulk

viscosity ζ ¼ 0. In N ¼ 4 SYM theory, we further have
c1 ¼ 1=2 due to the universal holographic relation η=s ¼
1=4π (where s is the density of entropy) [19].
Holography.—To compute the coefficients cn and an in

N ¼ 4 SYM theory, we use the holographic duality to map
the quantum field-theoretic problem into a calculation in
classical general relativity. The duality implies that the
hydrodynamic modes (3) coincide with the gapless quasi-
normal modes of black branes in one higher dimension
[20,21]. The relevant gravitational perturbations of the
black brane are described by two functions: Z1ðuÞ (the
shear mode) and Z2ðuÞ (the sound mode), where u is the
radial coordinate ranging from u ¼ 0 (asymptotic boun-
dary) to u ¼ 1 (event horizon) [21]. The shear mode
equation is

Z00
1 −

ðw2 − q2fÞf − uw2f0

ufðw2 − q2fÞ Z0
1 þ

w2 − q2f
uf2

Z1 ¼ 0; ð12Þ

where fðuÞ ¼ 1 − u2. The sound mode equation is

Z00
2 −

3w2ð1þ u2Þ þ q2ð2u2 − 3u4 − 3Þ
uf½3w2 þ q2ðu2 − 3Þ� Z0

2 þ
3w4 þ q4ð3 − 4u2 þ u4Þ þ q2ð4u5 − 4u3 þ 4u2w2 − 6w2Þ

uf2½3w2 þ q2ðu2 − 3Þ� Z2 ¼ 0: ð13Þ

Both equations have to be solved with the boundary
condition ZiðuÞ ∼ ð1 − uÞ−iw=2 as u → 1, corresponding
to the infalling wave at the horizon. Near the boundary
u ¼ 0, the two independent solutions have exponents 0 and
2. Hence, the solution satisfying the infalling condition at
the horizon can be written near the boundary as
ZiðuÞ ∼Aið1þ � � �Þ þ Biu2 þ � � �, where the dots denote
higher powers of u, and Ai, Bi are the two integration
constants which depend on w and q2. The Dirichlet
condition [the holographic analogue of Eqs. (8) and (9)],

Aiðq2;wÞ ¼ 0; ð14Þ

relates w to q2 and gives the dispersion relations of the
hydrodynamic and other (gapped) modes [21]. We note that
the analyticity of the coefficient Aiðq2;wÞ at the origin is
not a priori guaranteed, and thus it is not obvious that the

hydrodynamic series in holography have a nonzero radius
of convergence. In order to find the coefficients cn, an in the
expansions (10), (11), we must solve Eqs. (12), (13). We do
this by constructing the Frobenius series solution at u ¼ 1,
and truncating the series at a sufficiently high order [21].
The results are shown in Fig. 1. The plots indicate that

the coefficients cn and an decrease exponentially with n,
and therefore the convergence radii are nonzero for both the
shear and the sound modes. Finite radii of convergence of
the series (10) and (11) imply the existence of singularities
in the complex q-plane obstructing analyticity. The abso-
lute value of the critical qci that sets the finite radius of
convergence is determined by the slope, and the argument
of qci is determined by the period of the oscillations in
Fig. 1. While the critical values qci can be extracted from
these data by fitting the coefficients to exponential func-
tions of n with complex exponents, a more precise way to
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find qci is by solving the set of equations [the holographic
analogue of Eq. (6)]

Aiðq2;wÞ ¼ 0;
∂Aiðq2;wÞ

∂w ¼ 0; ð15Þ

which determines the critical points. The Frobenius expan-

sion around the horizon gives Aiðq2;wÞ as explicit

algebraic functions of w and q2, and Eqs. (15) can be
solved numerically. For the shear mode, we find two pairs
ðq2c ;wcÞ with

q2c ≈ 1.8906469� 1.1711505i; ð16aÞ

wc ≈�1.4436414 − 1.0692250i; ð16bÞ

corresponding to the convergence radius of the shear mode
dispersion relation jqcshearj ≈ 1.49131. For the sound mode,
we find, similarly,

q2c ¼ �2i; wc ¼ �1 − i; ð17Þ

within the limits of our numerical accuracy. One can check
that the values (17) indeed satisfy Eq. (14), with a simple
analytic solution for Z2ðuÞ. This corresponds to the con-
vergence radius of the sound mode dispersion relation
jqcsoundj ¼

ffiffiffi
2

p
≈ 1.41421. The values of qc for the shear and

sound modes are not equal, but are quite close. Thus the
slopes of the two lines in Fig. 1 differ by approximately a
factor of 2, as the shear mode frequency is expanded in q2,
while the sound mode frequency is expanded in ðq2Þ1=2.
Quasinormal spectrum level crossing.—The origin of the

critical values (16) and (17) can be understood if we

FIG. 1. Coefficients of the expansions (10) and (11) in N ¼ 4
SYM theory. The circles are ln jcnj (shear mode), the squares are
ln janj (sound mode). Red (blue) indicate positive (negative)
values of cn or an.

FIG. 2. Poles of the retarded two-point function of the energy-momentum tensor in the complex w plane, at various values of the
complexified momentum q2 ¼ jq2jeiθ. Top row is the shear channel, bottom row is the sound channel. Large dots correspond to the
location of the poles for real q2 (θ ¼ 0) [21]. The hydrodynamic shear and sound poles are the poles closest to the real axis in the top left
and bottom left panels, correspondingly. As θ increases from 0 to 2π, each pole moves counterclockwise, following the trajectory of its
color. In the shear channel (top row), at jq2j ¼ 1, each pole follows a closed orbit (top left). At jq2j ¼ 2.22 (top center), the
hydrodynamic pole almost collides with the two gapped poles closest to the real axis. The actual collision would happen at the critical
momentum (16), jq2c j ≈ 2.224, with the corresponding frequencies marked by red asterisks in the figure. At jq2j ¼ 2.23 (top right), the
orbits of the three uppermost poles are no longer closed: the hydrodynamic pole and the two gapped poles exchange their positions
cyclically as the phase θ increases from 0 to 2π. Similar behavior is observed for the sound mode (bottom row). The dispersion relations
wiðqÞ thus have branch cuts starting at qc.
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consider the singularities (poles) of the retarded two-point
correlation functions of the energy-momentum tensor for
complex w, q. The poles, or quasinormal frequencies,
determined by Eq. (14), contain the hydrodynamic modes
wiðqÞ as well as an infinite tower of gapped modes
wgapped

n ðqÞ, such that wgapped
n ðq → 0Þ ≠ 0 [21]. Consider

now the locations of the poleswðqÞ in the complexw plane
as the phase θ of the complex momentum q2 ¼ jq2jeiθ
changes from 0 to 2π, as illustrated in Fig. 2. At small jq2j,
the poles (whose original location at θ ¼ 0 is indicated by
large dots) move along simple curves, as shown in the left-
most panels of Fig. 2. With jq2j increasing, the trajectories
of the poles exhibit more complicated behavior. The poles
effectively “interact” with each other, and at special values
of q ¼ qc, the hydrodynamic poles collide with one of the
gapped-mode poles. This is illustrated in Fig. 2, where we
show the trajectories of the poles just before and just after
the collision, with the collision points marked by asterisks.
The figures clearly show that the collision of poles happens
at the critical values given by Eqs. (16), (17) when the
hydrodynamic poles transform into one of the former
gapped poles. With jq2j further increasing, other poles
from the infinite tower of gapped quasinormal modes
become involved. By analogy with quantum mechanics,
we call this phenomenon the quasinormal spectrum level
crossing. Thus, the radius of convergence of the hydro-
dynamic series jqcj can be viewed as the absolute value of
(complex) q with the smallest possible jqj at which the
hydrodynamic pole collides with a gapped pole.
Discussion.—We have shown that the gradient expan-

sions for the hydrodynamic shear and sound frequencies in
the strongly coupled N ¼ 4 SYM theory have finite radii
of convergence given by qcsound ¼

ffiffiffi
2

p ð2πTÞ for the sound
mode, and by qcshear ≈ 1.49ð2πTÞ for the shear mode. In
general, all-order hydrodynamics gives rise to convergent
dispersion relations (3), provided the analyticity of the
corresponding spectral curves at the origin is established
independently. While the radius of convergence could, in
principle, be infinite, in the example of N ¼ 4 SYM
theory, it was limited by the collision of the poles of the
two-point correlation function of the energy-momentum
tensor at complex q. This obstruction to convergence would
be invisible had we only considered real values of q.
Returning to the question of the unreasonable effective-

ness of hydrodynamics, we note that the derivative expan-
sion in relativistic hydrodynamics has been previously
argued to diverge [22]. This is based on assuming that
the fluid undergoes a one-dimensional expansion, such that
all quantities only depend on proper time τ. One assumes
that an expansion of the fluid energy density in powers of
τ−2=3 can be performed, identifying this as a gradient
expansion. This large-τ expansion is divergent in holo-
graphic models [22], and in the Müller-Israel-Stewart
(MIS) extension of hydrodynamics [23]. The gradient
expansion we are considering here is different and thus

our results do not contradict [22,23]. Our interest is in the
near-equilibrium spatial gradient expansion, rather than in
the boost-invariant flow. In the same MIS theory where the
large-τ expansion diverges, the small-q expansions of
Eq. (3) converge [24]. Here we have shown that in the
same strongly coupled N ¼ 4 SYM theory where the
large-τ expansion diverges, the small-q expansions of
Eq. (3), again, converge. Therefore one must be careful
not to identify the divergence of the large-τ expansion with
the failure of the hydrodynamic gradient expansion. The
common conclusion of our results and those of Ref. [22] is
that the presence of the nonhydrodynamic degrees of
freedom (the gapped quasinormal modes) is what sets
the limit on the applicability of hydrodynamics.
Finally, we comment on the dependence of the radii of

convergence on coupling, limiting the discussion to the
sound mode in first-order hydrodynamics, where the first
nontrivial critical point occurs at jqcsoundj ¼ vs=πTΓ. For
conformal theories vs ¼ 1=

ffiffiffi
d

p
, and at infinitely strong

coupling, dual gravity approximation gives jqcsoundj ¼
2

ffiffiffi
d

p
=ðd − 1Þ ¼ ffiffiffi

3
p

in d ¼ 3, not too far from the correct
value in Eq. (17). For N ¼ 4 SYM theory, taking into
account the leading order correction to the shear visco-
sity-entropy density ratio at large but finite ‘t Hooft cou-
pling λ [25], we find jqcsoundj ¼

ffiffiffi
3

p ½1 − 15ζð3Þλ−3=2 þ � � ��.
Therefore, it appears that the radius of convergence is
smaller at weaker coupling, in line with the earlier
observations regarding validity of hydrodynamics at finite
coupling [9,26].
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1 Introduction

Hydrodynamics is an effective theory of fluids valid at sufficiently long times and sufficiently

large distances. Classical hydrodynamics is formulated by combining conservation laws for

energy, momentum, and other charges (such as the particle number in non-relativistic

systems) with the constitutive relations expressing the conserved fluxes in terms of the
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hydrodynamic variables: local temperature, fluid velocity, and charge density [1]. The

constitutive relations are written down on the basis of symmetry, using the derivative

expansion. The constitutive relations which contain no derivatives of the hydrodynamic

variables are said to describe “perfect fluids”, corresponding to “zeroth-order” hydrody-

namics. The constitutive relations which contain up to one derivative of the hydrodynamic

variables are commonly said to describe “viscous fluids”, corresponding to “first-order” or

“Navier-Stokes” hydrodynamics. One can proceed by adding terms with more derivatives

of the hydrodynamic variables to the constitutive relations, hoping to improve the hydro-

dynamic description of the actual physical fluids. The constitutive relations which contain

up to n derivatives of the hydrodynamic variables then give rise to nth-order hydrodynam-

ics. In this paper, we will use simple facts from the theory of complex curves in order to

study some aspects of convergence of the above derivative expansion. Our focus will be

on relativistic fluids, and we shall illustrate general results with the examples of strongly

interacting quantum field theories possessing a dual holographic description.

A neutral homogeneous and isotropic relativistic fluid whose energy-momentum tensor

is conserved supports collective excitations in the form of shear and sound hydrodynamic

modes [2]. The collective modes arise from the analysis of linearised fluctuations of energy

and momentum densities around the equilibrium state at temperature T . The mode’s

frequency ω is related to the wave vector q by the dispersion relation ω = ω(q). In

hydrodynamics, the dispersion relations are given by

Shear mode: ωshear(q) = −iDq2 + · · · , (1.1)

Sound mode: ω±sound(q) = ±vs|q| − i
Γs
2

q2 + · · · , (1.2)

where vs is the speed of sound, and D and Γs can be expressed through relevant transport

coefficients. In ds spatial dimensions, we have

D =
η

ε+ p
, (1.3)

Γs =
1

ε+ p

[
ζ +

2ds − 2

ds
η

]
, (1.4)

where ε and p are the equilibrium energy density and pressure, and η and ζ are the shear

and bulk viscosities. The shear mode (1.1) describes diffusion of the transverse (to the

wave vector) velocity fluctuations which are damped by the shear viscosity. The sound

mode (1.2) describes propagation of the longitudinal velocity fluctuations together with the

fluctuations in the energy density and pressure. The terms written down in (1.1) and (1.2)

represent the contributions from first-order hydrodynamics, while the ellipses denote terms

with higher powers of q, which can be matched to transport coefficients in second- and

higher-order hydrodynamics [3–5]. To all orders in the hydrodynamic derivative expansion,

the dispersion relations (1.1), (1.2) are represented by infinite series in q.

Are these hydrodynamic series convergent? If so, what are their radii of convergence

and what determines them? If the series are only asymptotic, can they be resummed?

The shear mode (1.1) appears to be an expansion in powers of q2, whereas the sound

– 2 –
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mode (1.2) seems to contain odd and even powers of |q| =
√

q2 in its real and imaginary

part, respectively. Can we prove that no other power of q2 or non-analytic terms appears

in the hydrodynamic expansions at any order?1 These questions were considered in our

recent short paper [8], and we shall provide more details here.

In general, proving convergence of a perturbative series and finding the correspond-

ing radius of convergence may constitute rather difficult (and rather different) problems.

For example, the convergence of the so called 1/Z series representing the lowest energy

eigenvalue of the two-electron atom with the nucleus of charge Z was rigorously proven

by Kato in 1951 [9] but reliably computing the actual value of the radius of convergence

from the series coefficients and their Padé extensions remained a controversial problem for

many decades [10, 11]. Yet another example is the series solution to Kepler’s equation

whose “mysterious” convergence properties were discussed by the giants such as Laplace

and Cauchy and were finally understood as arising from the critical points of the associated

curve in the complex eccentricity plane (see appendix C).

The problems involving re-summing all-order hydrodynamic expansions and finding

the radius of convergence of hydrodynamic series have been previously addressed in the lit-

erature. All-order linearised hydrodynamics was investigated by Bu and Lublinsky [12, 13]

using fluid-gravity correspondence. Re-summations of the hydrodynamic derivative expan-

sion have been also considered in the framework of kinetic theory [14] and in cosmological

models [15]. By far the largest body of work on the subject has been done in the setting

of the boost-invariant flow, where the gradient expansion in the position space typically

produces asymptotic rather than convergent series, and the Borel-Padé and “resurgence”

methods [16] can be used to re-sum the series and extract information about gapped modes

in the spectrum from the hydrodynamic series [17–26]. In ref. [27], Withers studied the

convergence properties and analytic continuation of a dispersion relation for the shear-

diffusion mode in a holographic model involving a dual Reissner-Nordstrom-AdS4 black

brane. There, a finite radius of convergence resulted from a branch point singularity at a

certain value of the purely imaginary momentum. From the point of view of the quasinor-

mal spectrum, this point corresponds to the collision of the modes or level-crossing, very

similar to the discussion in ref. [8] and in the present paper.

The prediction of classical hydrodynamics is that the above frequencies ω(q) appear

as poles of the retarded two-point functions2 of the energy-momentum tensor in thermal

equilibrium, as q → 0 [2, 28]. Assuming that the prediction of classical hydrodynamics

is correct and that the actual response functions computed from quantum field theory

(viewed as functions of ω) indeed have isolated poles at ω = ω(q) with ω(q → 0) → 0,

we can define the function ω(q) as the location of the relevant pole. In what follows, we

shall discuss several models where the poles of the full response functions can be readily

analysed, both analytically and numerically, for generic values of q, either real or complex,

1In this paper, we consider classical hydrodynamics only, ignoring the effects of statistical fluctuations

such as those discussed for example in refs. [6, 7]. Such fluctuation effects are suppressed in the holographic

models we study below.
2We shall often call the retarded two-point functions “response functions”, as they form the basis of the

linear response theory.
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small or large. This will allow us to study the analytic properties of the derivative expansion

in hydrodynamics by studying the dispersion relations ω(q) obtained from the poles of the

relevant retarded functions in thermal equilibrium.

In general, the hydrodynamic dispersion relations arise as solutions to

P (q2, ω) = 0 , (1.5)

where P is proportional to the inverse of the corresponding retarded two-point function.3

The hydrodynamic dispersion relations ω(q) are solutions to (1.5) obeying ω(q → 0) →
0, where q2 and ω are treated as complex variables. We shall refer to P (q2, ω) as the

hydrodynamic spectral curve. In order to obtain P (q2, ω) from classical hydrodynamics,

we choose a set of hydrodynamic variables ϕa (such as the fluid velocity and temperature),

and linearise the hydrodynamic equations about the equilibrium state, ϕa = ϕ
(eq)
a +δϕa. In

the absence of external sources, the hydrodynamic equations are homogeneous and, upon

Fourier transforming, can be written as a set of linear algebraic equations, Kabδϕb = 0.

The hydrodynamic spectral curve is then simply P = detK.

In nth-order (classical) hydrodynamics, P (q2, ω) is a polynomial of a finite order, and

eq. (1.5) defines a complex algebraic curve. The theorems of analysis such as the implicit

function theorem and the theorem of Puiseux then determine the structure and properties

of ω(q). In particular, these theorems guarantee that for any finite order of the derivative

expansion, the dispersion relations ω(q) are given by series converging in some vicinity of

the origin (q2, ω) = (0, 0), and the same is true as n→∞, provided P (q2, ω) is an analytic

function at (0, 0). We discuss the spectral curve and the associated dispersion relations of

the hydrodynamic modes in section 2 of the paper.

In addition to the spectral curve, we shall also study the retarded functions of the

energy-momentum tensor. As a simple example, the prediction of 1st-order hydrodynamics

for the retarded function of the transverse momentum density is [2]

GR⊥,⊥(q2, ω) =
(ε+p)Dq2

iω −Dq2
, (1.6)

where D = η/(ε + p), as before. When viewed as a function of ω, there is a simple pole

given by the shear mode dispersion relation (1.1). When viewed as a function of two

variables q2 and ω, one can immediately see that the point (q2
∗, ω∗) = (0, 0) is a singular

point of GR(q2, ω), such that the value of the response function at (q2
∗, ω∗) is undefined.

This is commonly expressed by saying that the limits ω → 0 and q→ 0 do not commute.

Such indeterminacy-type singularities in physical response functions can also exist at finite

non-zero (q2
∗, ω∗). This was recently explored for the sound mode (retarded function of the

energy density) in refs. [29–31], where the phenomenon of the indeterminacy-type singular-

ities at non-zero (q2
∗, ω∗) was called “pole-skipping”. Put differently, pole-skipping happens

when P (q2
∗, ω∗) = 0, and the residue of the corresponding pole of GR(q2, ω) vanishes at

(q2
∗, ω∗). In the example of eq. (1.6), the “skipping” of the shear pole happens at the origin.

3Here, the proportionality is assumed to be trivial in the sense that the equations G−1
R = 0 and (1.5)

are equivalent.
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A study of pole-skipping at non-zero (q2
∗, ω∗) will be another focus of our paper.4 In fact,

the original motivation for our work was to see whether the pole-skipping singularities in

response functions and the non-zero radius of convergence of the hydrodynamic derivative

expansion might be related to each other.

To illustrate our approach in a simple exactly solvable example, in section 3 we discuss

the holographic bottom-up model studied, in particular, by Davison and Goutéraux in

ref. [33]. The advantage of the model is that the effects of translation symmetry breaking

on hydrodynamics can be studied in a controlled manner, and that the hydrodynamic and

non-hydrodynamic degrees of freedom can be easily separated. The explicit breaking of

the translation symmetry means that momentum is no longer conserved, and the sound

mode is absent from the spectrum as q → 0. Thus, the only modes with ω(q → 0) = 0

are the diffusive modes of the energy and charge densities. For a certain special value of

the translation symmetry breaking parameter in the model, the response functions of the

energy and charge densities can be found exactly for all (not just small) momenta [33].

One then finds the following dispersion relation for the diffusive modes:

w(q) = − i
2

(
1−

√
1− 4q2

)
= −iq2 − iq4 + · · · . (1.7)

It is clear that the corresponding hydrodynamic series converges in the circle |q| < |qc| =
1/2 due to the branch point singularities at qc = ±1/2. We shall study the exact and

approximate spectral curves and obstruction to convergence in this model in section 3.

Our main example, considered in section 4, is the N = 4 supersymmetric SU(Nc)

Yang-Mills theory at infinite Nc and infinite ’t Hooft coupling, which we will abbreviate as

“strongly coupled N = 4 SYM theory”. In this theory, real-time equilibrium correlation

functions can be calculated by the methods of holographic duality [34, 35] (see for example

refs. [36–39] for an introduction to the holographic duality and applications). The disper-

sion relations of the shear and sound modes in the strongly coupled N = 4 SYM theory

obtained by holographic methods are shown in figure 1. Using the units ~ = c = 1, we plot

the dispersion relations in terms of dimensionless variables w ≡ ω/2πT and q ≡ |q|/2πT .

The function w(q) for the shear mode is purely imaginary for real q, while w(q) for the

sound mode has both real and imaginary parts for real q. The functions w(q) in figure 1

appear to be smooth and generally unremarkable functions of real positive q. Their be-

haviour at q � 1 has a clear hydrodynamic interpretation [40, 41] fully compatible with

eqs. (1.1), (1.2), and their asymptotics as q → ∞ were studied in refs. [42, 43]. Thus, at

least in the case of the N = 4 SYM theory, if the series (1.1), (1.2) have finite radii of

convergence, the obstacle to convergence must lie either at negative q =
√

q2, or more gen-

erally, at complex momenta. By studying complex q, one indeed finds that the functions

w(q) in the N = 4 SYM theory have finite non-zero radii of convergence: |qsound
c | =

√
2,

and |qshear
c | ≈ 1.49 [8]. In section 4, we show in detail how the finite radius of conver-

gence arises from the quasinormal mode level-crossing in the shear and sound channels,

4The connection between the pole-skipping values (q2
∗, ω∗) and the growth of the out-of-time-ordered

four-point correlation functions (OTOC) of local operators in quantum field theory has been studied in

refs. [29–32].
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Figure 1. Dispersion relations of the hydrodynamic modes in the strongly coupled N = 4 SYM

theory, obtained using the dual holographic description. The dispersion relations are plotted in

terms of dimensionless w ≡ ω/2πT and q ≡ |q|/2πT , with complex w as functions of real positive

q. The left panel shows wshear(q) for the shear mode, the right panel shows w+
sound(q) for one of the

two sound modes. In the left panel, the actual −Imwshear(q) for the shear mode is shown by the

solid red curve, and the analytic hydrodynamic approximation to O(q8) (computed in section 4.1)

is shown by the dashed blue curve. The blue dot indicates the pole-skipping point at q∗ =
√

3/2,

w∗ = −i, discussed in section 4.7. The right panel shows Rew+
sound(q) (solid red curve) and

−Imw+
sound(q) (dashed red curve) for the “+” sound mode. The straight dotted line indicates the

light cone Rew = q.

and demonstrate that the level-crossing phenomenon is also observed in the scalar channel

of the correlators.

One of our main results concerns the response functions of the energy-momentum

tensor in the strongly coupled N = 4 SYM theory. It was shown in refs. [29, 31] that there

is a pole-skipping singularity in the retarded two-point function of the energy density at

(q2
∗,w∗) = (−3/2, i), at which point the sound pole is “skipped”. The sound dispersion

curves pass through the point (q2
∗,w∗), as illustrated in figure 2. We observe that in close

analogy with the sound mode, the shear mode dispersion relation (1.1) passes through the

point q2
∗ = 3/2, w∗ = −i (see figure 1). It turns out that this is not an accident: we will

show that the pole-skipping phenomenon in the strongly coupled N = 4 SYM theory is

exhibited not only by the response functions which give rise to the sound mode (energy

density correlations), but also by the response functions which give rise to the shear mode

(transverse momentum density correlations). Moreover, we find that the pole-skipping at

non-zero complex momentum also occurs in response functions of those components of the

energy-momentum tensor that are not related to hydrodynamic modes. For example, for q

along the z direction, the fluctuations of T xy are gapped, and the response function of T xy

has no hydrodynamic singularities. Nevertheless, the gapped singularities of the retarded

function of T xy pass through (q2
∗,w∗) = (−3/2,−i), at which point one of the gapped

poles is “skipped”. This is illustrated in figure 3. In other words, all retarded functions

of Tµν in strongly coupled N = 4 SYM theory exhibit pole-skipping at |q∗| =
√

3/2 and

|w∗| = 1. The retarded functions of the energy-momentum tensor and the convergence of

the derivative expansion in the N = 4 SYM theory are discussed in section 4.

A natural question to ask is whether pole-skipping happens within the domain of

validity of the hydrodynamic approximation, as far as the convergence of the hydrodynamic

– 6 –
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Figure 2. The analytically continued sound mode frequencies in the strongly coupled N = 4 SYM

theory, obtained using the dual holographic description. The dimensionless frequencies w±
sound of

the two sound modes are plotted for purely imaginary dimensionless spatial momentum q, with the

“+” branch in red and the “−” branch in blue. The frequencies w±
sound are purely imaginary at

imaginary q. At small momenta, the curves are linear with slopes ±vs, with vs = 1/
√

3. The curves

pass through pole-skipping points (q∗,w∗) = (±i
√

3/2, i) indicated by the blue dots.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-6

-4

-2

2

Figure 3. The first two (closest to the origin) poles of the retarded function of T xy in the strongly

coupled N = 4 SYM theory, obtained using the dual holographic description. The locations of the

poles are plotted as functions of the dimensionless wave vector for q purely imaginary, with Rew

shown in blue, and Imw shown in red. The dots indicate the points (q∗,w∗) = (±i
√

3/2,−i),
where the response function of T xy exhibits pole-skipping.

derivative series is concerned. In other words, if the hydrodynamic dispersion relation wi(q)

has a finite radius of convergence |qic| and pole-skipping in the corresponding response

function happens at |qi∗|, how does |qic| compare with |qi∗|? In the strongly coupled N = 4

SYM theory we have |qsound
c | =

√
2, |qshear

c | ≈ 1.49 [8], and |q∗| =
√

3/2. Thus |q∗| < |qc|,
and therefore pole-skipping in correlation functions takes place within the convergence

domain of the hydrodynamic derivative expansion. On the other hand, in the model of

ref. [33], we have |qc| = 1/2, |q∗| =
√

2, hence |q∗| > |qc|, so pole-skipping occurs outside

the convergence domain of the hydrodynamic derivative expansion. This indicates that

the “skipping” of hydrodynamic poles in retarded functions of energy and momentum

– 7 –
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densities is not directly related to the convergence radius of the derivative expansion in

hydrodynamics.

More generally, pole-skipping singularities in real-time response functions at non-zero

momentum do not have to have any relation to hydrodynamics at all. As an example,

we consider response functions of spin-zero operators in 1+1 dimensional conformal field

theory (CFT). For a primary operator, the Euclidean correlation function on R2 is fixed

by conformal symmetry. Performing a conformal transformation to the cylinder R × S1

gives Euclidean thermal correlations functions [44], which can be Fourier transformed and

analytically continued to produce exact real-time retarded functions GR(w, q) [34]. These

functions have no hydrodynamic poles, yet we will see that there is an infinite number of

pole-skippings at non-zero values of (q∗,w∗). We discuss this in detail in section 5. Our

conclusions and discussion of the issues raised in the paper appear in section 6.

2 Hydrodynamic dispersion relations as Puiseux series

2.1 Hydrodynamic spectral curves

We start with a brief review of how the hydrodynamic dispersion relations are derived. Con-

sider hydrodynamics of a neutral homogeneous and isotropic relativistic fluid in flat space

in ds spatial dimensions. We are interested in linearised fluctuations in a homogeneous

and isotropic equilibrium state, Tµν = Tµνeq. + δTµν , where Tµν denotes the expectation

value of the symmetric energy-momentum tensor operator, and the equilibrium state is

characterised by T 00
eq. = ε, T ijeq. = pδij , T 0i

eq. = 0, where ε and p are the equilibrium en-

ergy density and pressure. The equations of hydrodynamics follow from the conservation

of the energy-momentum tensor, ∂µT
µν = 0. Translation invariance of the equilibrium

state implies that we can Fourier transform the fluctuations and take all variables to be

proportional to exp (−iωt+ iq·x). Furthermore, rotation invariance allows us to choose

the direction of the z axis along q. We then have the following system of conservation

equations for the linearised fluctuations:

−ω δT 0a + qz δT
za = 0 , (2.1a)

−ω δT 00 + qz δT
z0 = 0 , (2.1b)

−ω δT 0z + qz δT
zz = 0 , (2.1c)

where we use the index a and subsequent Latin indices to denote any of the ds − 1 spatial

directions orthogonal to z.

The above conservation equations need to be supplemented by the constitutive rela-

tions which express δTµν in terms of the hydrodynamic degrees of freedom. For linearised

hydrodynamics, a convenient choice of the degrees of freedom is the energy density δT 00

and momentum density δT 0i. This choice implies that we only need the constitutive rela-

tions for the spatial stress, δT ij = δT ij(δT 00, δT 0k). The constitutive relations will contain

derivatives of δT 00 and δT 0k, as is needed for example to describe the viscosity of fluids.

We will organise the constitutive relations according to the number of derivatives of the
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hydrodynamic variables. The hydrodynamics of k-th order is determined by the consti-

tutive relations in which δT ij contains up to k derivatives of δT 00 and δT 0i. It is then

straightforward to write down the linearised constitutive relations at any order, by noting

that under the spatial SO(ds), the stress fluctuation δT ij is a rank-two tensor, momentum

density δT 0i is a vector, and the energy density δT 00 is a scalar. For example, in the

first-order hydrodynamics of ref. [1], we have

δT ij = δij
∂p

∂ε
δT 00

− 1

ε+ p

[
η

(
∂i δT

0j + ∂j δT
0i − 2

ds
δij∂kδT

0k

)
+ ζδij∂k δT

0k

]
+ · · · , (2.2)

where η is the shear viscosity, ζ is the bulk viscosity, and the ellipses denote terms with

more than one derivative of δT 00, δT 0i. Combining the constitutive relations (2.2) with

the conservation equations (2.1) gives a system of linear equations for the fluctuations δT 00

and δT 0i. The equations have non-trivial solutions provided the corresponding determinant

vanishes:

P1(q2, ω) ≡
(
ω + iDq2

)ds−1 (
ω2 + iΓsωq2 − v2

sq
2
)

= 0 , (2.3)

where v2
s = ∂p/∂ε is the speed of sound squared, and D, Γs are defined by eqs. (1.3), (1.4).

In fact, rotation invariance implies that the most general linearised constitutive rela-

tions in momentum space take the following form:

δTnm = − iA
(
qnδT 0m + qmδT 0n

)
+ δT 00 (Bqnqm + Cδnm)

+ iqlδT
0l (Dqnqm + Eδnm) , (2.4)

where A, B, C, D, E are scalar functions of ω and q2. Substituting the constitutive

relations (2.4) into the conservation equations (2.1), we find a system of ds+1 linear equa-

tions for ds+1 hydrodynamic variables. This system has non-trivial solutions provided the

determinant of the corresponding matrix vanishes. The vanishing of the determinant is

equivalent to the vanishing of

P (q2, ω) ≡ F ds−1
shearFsound , (2.5)

where

Fshear(q
2, ω) ≡ ω + iq2γη(q

2, ω) = 0 , (2.6)

Fsound(q2, ω) ≡ ω2 + iωq2γs(q
2, ω)− q2H(q2, ω) = 0 . (2.7)

Here the coefficients are γη ≡ A, γs ≡ 2A−E −Dq2, H = Bq2 + C. Thus, the shear and

the sound modes decouple as a consequence of rotation invariance.5

5See refs. [12, 13] for a study of “resummed” holographic hydrodynamics to all orders in the derivative

expansion. In our language, this amounts to studying the functions γη(q2, ω), γs(q
2, ω), H(q2, ω) in a

holographic model.
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If the constitutive relations (2.4) are given by a local derivative expansion, then the

functions γη(q
2, ω), γs(q

2, ω) and H(q2, ω) are power series in ω and q2 with finite values

at ω = 0, q2 = 0:

γη(0, 0) = D , γs(0, 0) = Γs , H(0, 0) = v2
s , (2.8)

with vs, D and Γs as above. Truncating the derivative expansion at order k then gives a

sequence of algebraic equations defined by finite polynomials in q2 and ω,

F
(k)
shear(q

2, ω) = 0 , (2.9)

F
(k)
sound(q2, ω) = 0 . (2.10)

For general complex ω and q2, eqs. (2.6), (2.7), or (2.9), (2.10) define complex algebraic

curves6,7 which we will call hydrodynamic spectral curves. The complete dispersion rela-

tions of the i-th mode, ωi = ωi(q
2), can be obtained by solving eqs. (2.6), (2.7) for ω, while

the corresponding approximate expressions arising in k-th order hydrodynamics are found

from eqs. (2.9), (2.10). The hydrodynamic dispersion relations are the solutions which sat-

isfy ωi(q
2 → 0) = 0. They correspond to infinite relaxation times for infinite-wavelength

perturbations of conserved densities, i.e. to the conservation of energy and momentum.

Note that the polynomials F
(k)
shear(q

2, ω), F
(k)
sound(q2, ω) are not defined uniquely be-

cause of the freedom to organise the derivative expansion in hydrodynamics, such as the

choice of “frame” and the use of on-shell conditions [2, 46]. As an example, the con-

servation equations (2.1) imply that the factors of ω in the constitutive relations (2.4)

can be eliminated at each order in the derivative expansion. Thus one can organise the

derivative expansion in such a way that the functions γη(q
2, ω), γs(q

2, ω) and H(q2, ω)

are all ω-independent at each given order in the expansion. Then eqs. (2.9), (2.10) give

simple explicit expressions for ωshear(q
2) and ωsound(q2) in terms of three scalar functions

γη(q
2), γs(q

2) and H(q2), whose small-q limits are given by eq. (2.8). In this way of im-

plementing the derivative expansion, the hydrodynamic dispersion relations are the only

solutions to (2.9), (2.10). Of course, other choices of organising the derivative expansion

are possible where the ω-dependence in γη(q
2, ω), γs(q

2, ω) and H(q2, ω) is retained, and

non-hydrodynamic (gapped) modes appear in addition to the hydrodynamic modes.

The above discussion was in the context of classical hydrodynamics. A similar fac-

torisation of the shear and sound modes happens in the full response functions of the

energy-momentum tensor, without any hydrodynamic assumptions [41]. For example, for

the wave vector along z, the shear mode is described by fluctuations of δT 0a, where the

direction a is orthogonal to z. The condition that the inverse of the equilibrium response

function of the T 0a operator vanishes can be written as Pshear(q
2, ω) = 0. In general,

Pshear(q
2, ω) is a complicated function which describes both hydrodynamic (long-distance,

long-time) and non-hydrodynamic (short-distance, short-time) physics. For small (appro-

priately defined) q2 and ω, the exact Pshear(q
2, ω) will reduce to the above Fshear(q

2, ω),

6Eq. (2.5) is an example of a reduced curve f(x, y) =
∏
i gi(x, y), where each gi can be considered

independently [45].
7The equations F ds−1

shear = 0 and Fshear = 0 define the same curve. To avoid any confusion, by the “shear

curve”, we shall always mean the definition Fshear = 0.
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provided hydrodynamics is a valid effective description of the system. The same applies

to the sound mode: the condition that the inverse of the equilibrium response function

of the T 00 operator vanishes can be written as Psound(q2, ω) = 0. For small (relative to

the appropriately defined scale) q2 and ω, the exact Psound(q2, ω) will reduce to the above

Fsound(q2, ω), provided hydrodynamics is a valid effective description of the system. In

this paper, we will only be studying physical systems in which the near-equilibrium physics

governed by the conserved densities can be described by classical hydrodynamics. In other

words, we will assume that the functions γη(q
2, ω), γs(q

2, ω), H(q2, ω) are defined by the

exact response functions of the Tµν operator.

2.2 Small-momentum expansions

For a given spectral curve, the small-q2 expansion of the hydrodynamic dispersion relation

ωi(q
2) can be found using the theorem of Puiseux (see appendix A and refs. [45, 47, 48]).

Starting with the shear mode, let us assume that γη(q
2, ω) is analytic at (q2, ω)=(0, 0)

and thus eq. (2.6) defines an analytic curve for complex (q2, ω) ∈ C2. This is of course not

guaranteed a priori and should be established by independent methods, e.g. by finding the

exact response function.8 The analyticity of γη(q
2, ω) implies that Fshear(q

2, ω) is analytic

at the origin as well, and, since ∂Fshear/∂ω = 1 6= 0 at (0, 0), the origin is a regular point

of the analytic curve (2.6). Then the analytic implicit function theorem (see appendix A)

guarantees that for sufficiently small q2 and ω, there exists a unique solution of eq. (2.6)

of the form

ωshear(q
2) = −i

∞∑
n=1

cnq
2n = −ic1q

2 +O(q4) , (2.11)

convergent in a neighbourhood of q2 = 0. The radius of convergence is determined by the

location of the nearest to the origin critical point of the curve (2.6).

Continuing with the sound mode, let us again assume that γs(q
2, ω) and H(q2, ω)

are analytic functions at (0, 0). The function Fsound(q2, ω) is then analytic at the origin

as well. Now we have ∂Fsound/∂ω = 0 at (0, 0), and thus the origin is a critical point of

the spectral curve. On the other hand, ∂2Fsound/∂ω
2 = 2 6= 0 at (0, 0), thus we expect

the sound dispersion relation to have p = 2 branches. The Puiseux series expansions are

then given by eqs. (A.6), (A.7), in other words ω
(j)
sound(q2) can be represented by series in

non-negative powers of (q2)1/mj , where mj are positive integers, and j = 1, 2 labels the

two branches corresponding to the two sound modes. Following the general analysis of

algebraic curves, the integers mj may be found using the Newton’s polygon method (see

refs. [45, 47, 48] for details). For analytic γs and H, we have the expansions

γs(q
2, ω) =

∞∑
n,m=0

γsnmω
nq2m , (2.12)

H(q2, ω) =

∞∑
n,m=0

Hnmω
nq2m . (2.13)

8Moreover, the analyticity fails when the statistical fluctuation effects are taken into account, see foot-

note 1 and ref. [49].
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Figure 4. The Newton polygon for the sound mode.

The coefficients in front of various powers of ω in the expression (2.7) are then given by

ω0 : −
∞∑
k=0

H0kq
2k+2 , (2.14)

ω1 : iq2γs00 +

∞∑
k=1

(iγs0k −H1k) q2k+2 , (2.15)

ω2 : 1 +

∞∑
k=0

(iγs1k −H2k) q2k+2 , (2.16)

ω3 :
∞∑
k=0

(iγs2k −H3k) q2k+2 , (2.17)

... (2.18)

ωn :

∞∑
k=0

(
iγsn−1k −Hnk

)
q2k+2 . (2.19)

The vertices of the Newton polygon are thus given by (0, 1+k0), (1, 1+k1), (2, 0), (3, 1+k3),

(4, 1 + k4), . . ., where k0, k1, . . . are the smallest indices such that H0k0 6= 0 as well as

H0k1 6= 0 or/and γs0k1 6= 0, etc. The Newton polygon for the sound mode is shown in

figure 4, where it is assumed that H00 6= 0 and that either Hn,0 6= 0 or γsn−1,0 6= 0 (or both)

are non-zero for n = 3, 4, . . .. The exponents of x ≡ q2 in the Puiseux series are given by

the negative slopes of the polygon’s lines, i.e. by 1/2 for H00 6= 0. Thus mj = 2, and the

lowest order term in the two branches is

ω = ±
√
H00 (q2)

1
2 + · · · . (2.20)

From the Newton polygon, it is clear that H00 6= 0 is the necessary and sufficient condition

for the fractional powers of q2 to appear in the dispersion relation. In the hydrodynamic

derivative expansion, H00 = ∂p/∂ε = v2
s is the speed of sound squared. One may have

H00 = 0 at the point of a phase transition (see e.g. ref. [50]) in which case the dispersion

relation contains only positive powers of q2.

Generically, for H00 = v2
s 6= 0, the sound mode dispersion relation will be given by

the two branches of Puiseux series in (q2)1/2 converging in some neighbourhood of the

point q2 = 0,

ω±sound(q2) = −i
∞∑
n=1

ane
± iπn

2 (q2)
n
2 = ±a1(q2)

1
2 + ia2q

2 ∓ a3(q2)
3
2 +O(q4) , (2.21)
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where an ∈ R and a1 = cs is the speed of sound. In particular, for q2 = e±iπ|q2|, the

functions ω±sound(q2) are purely imaginary as anticipated in ref. [29].

2.3 Convergence of the hydrodynamic series

The shear and sound dispersion relation series (2.11) and (2.21) have non-zero radii of

convergence as long as the corresponding spectral curves (2.6) and (2.7) are given by the

functions of q2 and ω analytic at the origin (0, 0). One way to find the radius of convergence

of the series is to analyse the behaviour of the coefficients an, cn at large n. This behaviour

will of course depend on the microscopic details of the particular physical system, and may

be difficult to study in practice (see, however, ref. [27]). Instead, here we use the spectral

curves to determine the radii of convergence.

The Puiseux analysis implies that the domain of convergence of Puiseux series centred

e.g. at the origin is the circle whose radius is set by the distance from the origin to the

nearest critical point of the associated spectral curve. Critical points of the spectral curve

F (q2, ω) = 0, where q2, ω ∈ C, are determined by the conditions

F (q2
c , ωc) = 0 ,

∂F

∂ω
(q2

c , ωc) = 0 . (2.22)

There are p > 1 branches of the solution ω = ω(q2) in the vicinity of the critical point,

provided that

F (q2
c , ωc) = 0 ,

∂F

∂ω
(q2

c , ωc) = 0 , . . . ,
∂pF

∂ωp
(q2

c , ωc) 6= 0 . (2.23)

For example, the origin (0, 0) is the critical point (with p = 2) of the sound hydrodynamic

spectral curve (2.7), as discussed in section 2.2. If the spectral curves happen to be known

exactly or approximately (as will be the case in the holographic models we study below),

eqs. (2.22) provide an efficient method to find the radii of convergence, without performing

the large-n analysis of the expansion coefficients.

When the function F (q2, ω) is a polynomial, the condition (2.22) means that the equa-

tion F (q2, ω) = 0, where F (q2, ω) is considered as a polynomial in ω with q2-dependent

coefficients, has multiple roots at ω = ωc. This is equivalent to the condition that the

discriminant of the polynomial F (q2, ω) vanishes. As an example, consider the first-order

hydrodynamics of [1], where the spectral curves following from eq. (2.3) are9

F
(1)
shear(q

2, ω) = ω + iDq2 = 0 , (2.24)

F
(1)
sound(q2, ω) = ω2 + iΓsωq2 − v2

sq
2 = 0 . (2.25)

9As mentioned in section 2.1, the expressions for the truncated spectral curves F (k) at each order k of

the hydrodynamic derivative expansion are not unique due to the freedom allowed by the “frame” choice.

Correspondingly, the critical points determined by the approximate spectral curves F (k) depend on the

“frame” choice. This dependence becomes less and less pronounced with k increasing and disappears in the

limit k → ∞. Thus, although the critical points of the exact spectral curve are “frame”-independent, the

rate of convergence of the approximate location of the critical points to the exact values can be affected by

the “frame” choice.
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These equations are simple enough to be solved explicitly: eq. (2.24) is solved by ω =

−iDq2, whereas the solutions of eq. (2.25) are

ω±sound(q2) = − iΓs
2

q2 ±

√
v2
sq

2

(
1− Γ2

s q2

4v2
s

)
= ±vsq −

iΓs
2
q2 + · · · , (2.26)

where in the expansion we only kept terms quadratic in q ≡
√

q2, since we expect the

coefficients in front of the higher powers of q to be modified by higher-derivative terms in

the hydrodynamic expansion. The series in q on the right-hand side of eq. (2.26) has the

radius of convergence

R
(1)
sound =

2vs
Γs

, (2.27)

determined by the branch points of the square root in eq. (2.26) or, equivalently, by the

zeros of the discriminant10 (−Γ2
s q4 + 4v2

sq
2) of the polynomial (2.25). Since first-order

hydrodynamics can only be trusted for |q| � 2vs/Γs = R
(1)
sound, the result (2.27) is only an

approximation. Alternatively, applying the condition (2.22) to the spectral curve (2.25),

we find

q2
c =

4v2
s

Γ2
s

, ω(sound)
c = −i2vs

Γs
, (2.28)

which coincides with (2.27). In what follows, we will be studying models where the conver-

gence radii of the small-q expansions can be determined from the exact response functions

of the theory, without resorting to the derivative expansion of hydrodynamics.

3 A holographic model with translation symmetry breaking

To illustrate the methods discussed in section 2.3, we consider the holographic model

with translation symmetry breaking [52], studied, in particular, in ref. [33]. The model is a

bottom-up gravity construction in 4d describing a hypothetical dual 2+1-dimensional QFT

with broken translational invariance. In the context of the present paper, the significance

of the construction discussed in ref. [33] lies in the fact that it provides exact analytic

formulae for the current and energy-momentum correlator two-point functions at a special,

self-dual symmetry point (see section 4 of ref. [33] for details). In particular, among the

poles of the correlation function, one finds a gapless excitation whose dispersion relation is

known analytically, possibly a unique example in holography.

The bulk action of the model is given by [33, 52] (see also ref. [31])

S =

∫
d4x
√
−g

(
R− 2Λ− 1

2

2∑
i=1

∂µφi∂µφi −
1

4
FµνF

µν

)
, (3.1)

where Λ = −3/L2 (we set L = 1 in the following). The background solution of interest

involves the AdS-Schwarzschild black brane with translational invariance broken by the

linear dilaton fields, and a vanishing Maxwell field.

10Similar methods have been used in spectroscopy [51].
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First, we recast the setup of ref. [33] in the form more convenient for our purposes,

having in mind the variables used in ref. [41]. The metric at the special symmetry point

has the form (see section 4 of ref. [33])

ds2 = −r
2
0

u
f(u) dt2 +

r2
0

u

(
dx2 + dy2

)
+

du2

4fu2
, (3.2)

where f = 1 − u, and we have used the coordinate u = r2
0/r

2. The horizon is located

at u = 1 and the boundary at u = 0. The Hawking temperature of the background is

T = r0/2π. The dilaton fields are given by φ1 =
√

2r0x and φ2 =
√

2r0y. They will not

play any role in the following.

Considering the Maxwell field fluctuations in the background (3.2), coupled to the

current operator on the boundary, one finds the equations of motion

a′′t +
1

2u
a′t −

1

4uf

(
q2at + wq ax

)
= 0 , (3.3)

a′′x +
1− 3u

2uf
a′x +

1

4uf2

(
qwat + w2ax

)
= 0 , (3.4)

wa′t + qfa′x = 0 , (3.5)

where w = ω/2πT = ω/r0, q = k/2πT = k/r0, and the momentum k is directed along

x. For the gauge-invariant variable (the longitudinal component of the electric field) Ex =

qat + wax [41], the equation of motion reads

E′′x +
w2(1− 3u)− q2f2

2uf(w2 − q2f)
E′x +

w2 − q2f

4uf2
Ex = 0 . (3.6)

The equation (3.6) has 4 regular singular points (located at u = 0, 1, 1 − w2/q2,∞) and

thus is of the Heun type. The indices of this equation are, respectively,

u = 0 : 0, 1/2 (3.7)

u = 1 : ± iw/2 (3.8)

u = 1− w2

q2
: 0, 2 (3.9)

u =∞ :
1

4

(
1±

√
1− 4q2

)
. (3.10)

Note that the local solution at u = 0 does not contain logarithms. The exact solution to

eq. (3.6) can be written as

Ex(u) =
4uf

q
G′(u) +

2f

q
G(u) , (3.11)

where G ≡ a′t is the solution of the hypergeometric equation11

G′′ − 5u− 3

2uf
G′ +

w2 − q2f − 2f

4uf2
G = 0 , (3.12)

11The very fact that an exact solution to the Heun equation can be found via the supplementary hyper-

geometric equation is rather curious and may warrant further reflection.
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obeying the incoming wave boundary condition at u = 1:

G =
q

2iw
x−iw/2 2F1

(
3− 2iw−

√
1− 4q2

4
,

3− 2iw +
√

1− 4q2

4
; 1− iw;x

)
, (3.13)

where x = 1 − u and the normalisation is chosen to ensure Ex → (1 − u)−iw/2 (1 + · · · )
at u→ 1.

3.1 The exact spectral curve

For the boundary value of the electric field, we find

Ex(u = 0; q2,w) ≡ F (q2,w) =
2
√
π Γ(−iw)

Γ [A+(q2,w)] Γ [A−(q2,w)]
, (3.14)

where

A± =
1

4

(
1±

√
1− 4q2 − 2iw

)
. (3.15)

The condition Ex(u = 0) = 0 determines the quasinormal modes and thus the poles of the

corresponding current-current correlators [34, 41]. One can also write down the explicit

analytic expressions for the correlators themselves [33], but this will not be necessary:

the expression F (q2,w) = 0, where F (q2,w) is given by eq. (3.14), is the exact spectral

curve containing all information about the poles of the two-point function. There are two

sequences of quasinormal frequencies

w±n (q2) = −i
(

2n± +
1

2

)
± i

2

√
1− 4q2 , n± = 0, 1, 2 . . . . (3.16)

The solutions E±x,n±(u) themselves (the quasinormal modes) have the form

E±x,n±(u) =
√
u (1− u)−n±−

1
4
± 1

4

√
1−4q2 P±n±(u, q2) , (3.17)

where P±n±(u, q2) are polynomials of degree n± in u with q2−dependent coefficients. In

particular,

E±x,0(u) =
√
u (1− u)−

1
4
± 1

4

√
1−4q2 . (3.18)

Note that apart from the prefactors determined by the indices, the solutions (3.17) are

polynomials, with P±0 = 1. We are especially interested in the gapless mode

w = w+
0 = − i

2

(
1−

√
1− 4q2

)
=
i

2

∞∑
n=1

(−1)n
(

1/2

n

)(
4q2
)n

= −iq2 − iq4 − 2iq6 − 5iq8 − 14iq10 + · · · . (3.19)

The power series in the second line of eq. (3.19) converges in the circle |q2| < 1/4, due

to the branch point singularity of the function at q2 = 1/4 evident from eq. (3.19). The

same conclusion can be obtained by analysing critical points of the spectral curve (3.14).
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Indeed, the critical points are determined by the equations (2.22) whose solutions are

w+
n+

(q2) = w−n−(q2), i.e.

q2
c =

1

4
− (n+ − n−)2 , (3.20a)

wc = − i
2

[1 + 2 (n+ + n−)] . (3.20b)

It is also clear that ∂2
wF (q2

c ,wc) 6= 0 and thus there are two branches of the spectral

curve emerging at each critical point. Put simply, the critical points occur when the two

quasinormal frequencies in eq. (3.16) collide. This happens for real q in case of n+ = n−,

and for purely imaginary q for n+ 6= n−. The critical point closest to the origin q2 = 0 is at

q2 = 1/4 (it corresponds to the collision of the modes w+
0 and w−0 ). This value determines

the radius of convergence of the series in eq. (3.19).

Exact spectral curves are rare: in addition to (3.14), we are aware of only one example

(involving the exact R-current two-point correlators in N = 4 SYM theory in appropriate

limit [53]) for a QFT in dimension higher than 1+1, and even in that case it is only known

exactly for q2 = 0:

FR(q2 = 0,w) = 2−
(1+i)w

2
Γ [1− iw]

Γ
[
1− (1+i)w

2

]
Γ
[
1 + (1−i)w

2

] . (3.21)

One can use the Weierstrass decomposition

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n , (3.22)

where γ is the Euler–Mascheroni constant, to write eqs. (3.14), (3.21) as infinite prod-

ucts: this ilustrates explicitly why the critical points determined by the condition (2.22)

correspond to multiple roots of (infinite order) polynomials.

3.2 The hydrodynamic approximation to the spectral curve

The expansion of the expression wF (q2,w) for small w, q (assuming the scaling w → εw,

q2 → εq2 with ε→ 0) truncated at order wk, q2k is a polynomial Fk(q
2,w), with

F1(q2,w) =w + iq2 , (3.23)

F2(q2,w) =w + iq2 − i
[
w2 ln 2− q4 (1− ln 2)

]
, (3.24)

F3(q2,w) =w + iq2 − i
[
w2 ln 2− q4 (1− ln 2)

]
− i

12

[
q6
(
π2 − 6(ln 2− 2)2

)
− 6iq4w ln2 2− 6iw3 ln2 2 + q2w2(π2 − 6 ln2 2)

]
,

(3.25)

and so on. Using this expansion to solve the equation wF (q2,w) = 0 for w perturbatively

in q2, one reproduces the series in eq. (3.19). The equation Fk(q
2,w) = 0 defines the

hydrodynamic spectral curve of order k as discussed in section 2. At each order, the critical

points are determined by the condition (2.22). In figure 5, we plot the corresponding value

|q2
c | for each of the spectral curves Fk(q

2,w) = 0 for k = 2, 3, . . . , 13. The resulting points

converge rapidly to the exact value |q2
c | = 1/4.
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Figure 5. The approximations to the exact position of the critical point |q2c | = 1/4 in the holo-

graphic model with broken translation symmetry determined from the hydrodynamic algebraic

curves Fk(q2,w) = 0 as a function of k.

3.3 Pole-skipping in the full response functions

Finally, we comment on the relationship between the critical point defining the hydrody-

namic series radius of convergence and the pole-skipping point in the holographic model

with broken translation symmetry, which occurs at |q2
∗| = 2 > |q2

c | [31]. Because gapless

excitations in the current and the energy density correlators have the same dispersion re-

lation, we can directly use w(q) from eq. (3.19) to discuss both the charge and the energy

sectors. At the pole-skipping point, the hydrodynamic series stated in the second line of

eq. (3.19) diverges but can be resummed using the Borel transform12

Bw(q) =
i

2

∞∑
n=1

(−1)n

n!

(
1/2

n

)(
4q2
)n

(3.26)

= − i
2

[
1− e2q2

(
(1− 4q2)I0(2q2) + 4q2I1(2q2)

)]
, (3.27)

where In(x) is the modified Bessel function. Since this is a series in q2 and not q, the

corresponding Borel integral has the form

Ω(q) =

∫ ∞
0

dt e−tBw(q
√
t) = I1 + I2 + I3 + I4 , (3.28)

where

I1 = − i
2

∫ ∞
0

dt e−t = − i
2
, (3.29)

I2 =
i

2

∫ ∞
0

dt e−te2q2tI0(2q2t) =
i

2

1√
1− 4q2

, (3.30)

I3 = −i
∫ ∞

0
dt e−t(2q2t)e2q2tI0(2q2t) = −2iq2 (1− 2q2)

(1− 4q2)3/2
, (3.31)

I4 = i

∫ ∞
0

dt e−t(2q2t)e2q2tI1(2q2t) = 4i
q2
√

q4

(1− 4q2)3/2
, (3.32)

12An alternative analytic continuation can be provided e.g. by the Mittag-Leffler summation. See e.g.

ref. [54].

– 18 –



J
H
E
P
1
1
(
2
0
1
9
)
0
9
7

each with their respective region of q for which the integral converges. Together, we find

that the Borel integral representation (3.28) of the series converges for q ∈ C in the region

defined by the function C(q):

C(q) ≡ Re[q2] < 1/4 . (3.33)

This is a significant improvement over the convergence region of the hydrodynamic power

series, |q2| < |q2
c | = 1/4. In particular, the Borel series is well suited for studying purely

imaginary q. By writing q = i`, with ` ∈ R, we see that

C(i`) = Re[−`2] = −Re[`2] ≤ 0 < 1/4 . (3.34)

Hence, the Borel representation of the series converges for all values of imaginary q, in-

cluding w(q) at the chaos point w∗(q∗ =
√

2i) = i. Finally, for q such that C(q) < 1/4, it

is easy to check that the sum of four terms in (3.28) indeed reproduces the full dispersion

relation (3.19).

4 Response functions in strongly coupled N = 4 SYM theory

In this section, we use holographic duality to find the spectral curves, determine the radii of

convergence of hydrodynamic series and analyse the pole-skipping phenomenon in the three

channels of the response function of the energy-momentum tensor in the N = 4 SU(Nc)

SYM theory at infinite ’t Hooft coupling and infinite Nc. The details of the duality are

well known, and the necessary ingredients can be found e.g. in refs. [35, 41, 55]. In short,

holography reduces the study of the response functions to the analysis of the fluctuations

of the dual gravitational background involving a black hole with translationally invariant

horizon — the AdS-Schwarzschild black brane.

The equations of motion describing fluctuations of the gravitational background dual

to finite-temperature N = 4 SYM theory are of the Heun type [56], and the exact analytic

solution for the spectral curve similar to eq. (3.14) is not available. The equations can

be solved perturbatively and analytically in w � 1, q � 1, as was done in refs. [35, 40],

thereby giving a hydrodynamic approximation to the spectral curve, or numerically, for

arbitrary w and q, along the lines of ref. [41]. In this section, we consider and compare

these two approaches.

4.1 Shear mode: hydrodynamic approximation to the spectral curve

We start with the analysis of the shear channel of the energy-momentum tensor response

function [41]. In the hydrodynamic approximation, the spectral curve can be found analyt-

ically from the boundary value of the solution to the ODE obeyed by one of the components

of the shear perturbation in dual gravity (see section 6.2 of ref. [35] for details):

G′′(u)−
(

2u

f
− iw

1− u

)
G′(u) +

1

f

(
2 +

iw

2
− q2

u
+

w2[4− u(1 + u)2]

4uf

)
G(u) = 0 , (4.1)
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where G is regular at u = 1. Rescaling w → λ2w and q2 → λ2q2, assuming λ � 1, and

looking for a perturbative solution of the form

G(u) =
∞∑
n=0

λ2nGn(u) , (4.2)

we find the following equation for coupled components Gn, Gn−1, Gn−2:

G′′n −
2u

f
G′n +

2

f
Gn

+
iw

1− u
G′n−1 +

iw

2f
Gn−1 −

q2

uf
Gn−1

+
w2[4− u(1 + u)2]

4uf2
Gn−2 = 0 , (4.3)

where Gn = 0 for n < 0, and we can set G0(1) = 1, Gi(1) = 0, i ≥ 1, without loss

of generality.13 The explicit formulae for G0(u), G1(u) and G2(u) obeying the boundary

conditions at u = 1 are written in appendix B. The solution of the homogeneous equation

g′′ − 2u

f
g′ +

2

f
g = 0 (4.4)

is given by g = C1 g1(u) + C2 g2(u), where

g1 = u , (4.5)

g2 =
u

2
ln

1 + u

1− u
− 1 . (4.6)

Note that the Wronskian is W (g1, g2) = 1/f . Then one can write the following expression

for Gn, n ≥ 2:

Gn(u) = g1(u)

∫ 1

u
g2(t)f(t)Fn(t)dt− g2(u)

∫ 1

u
g1(t)f(t)Fn(t)dt

+ C1 g1(u) + C2 g2(u) , (4.7)

where

Fn(u) = − iw

1− u
G′n−1 −

iw

2f
Gn−1 +

q2

uf
Gn−1 −

w2[4− u(1 + u)2]

4uf2
Gn−2 . (4.8)

Boundary conditions at u = 1 (regularity of Gn(u) at u = 1 and Gn(1) = 0 for n > 0)

require C1 = 0, C2 = 0. Thus, we have the equation determining Gn from Gn−1 and Gn−2,

Gn(u) =u

∫ 1

u
(1− t2)

(
t

2
ln

1 + t

1− t
− 1

)
Fn(t)dt

−
(
u

2
ln

1 + u

1− u
− 1

)∫ 1

u
t(1− t2)Fn(t)dt , (4.9)

13See appendix C of ref. [57].
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where Fn is given by eq. (4.8). This can be written as

Gn(u) =
u

2

∫ 1

u
t(1− t2) ln

[
1 + t− u− ut
1− t+ u− ut

]
Fn(t) dt

+

∫ 1

u
(t− u)(1− t2)Fn(t)dt , (4.10)

or

Gn(u) =

∫ 1

u

{
ut

2
ln

[
1 + t− u− ut
1− t+ u− ut

]
+ t− u

}
(1− t2)Fn(t) dt . (4.11)

Note that Fn(t) ∼ 1/(1− t) at t→ 1, and so all integrals converge. In particular,

Gn(0) =

∫ 1

0
t(1− t2)Fn(t)dt . (4.12)

The explicit expressions for Gi(0), with i = 1, 2, 3, 4, are written in appendix B. The results

for G0(0), G1(0) and G2(0) coincide with those in ref. [3]. The results for G3(0) and G4(0)

are new. The condition G(0) = 0 at this order in the hydrodynamic expansion defines the

algebraic curve

F (q2,w) = − iw +
q2

2

+
q4

4
− iwq2 ln 2

4
+

w2 ln 2

2

+ iw3

(
π2

24
+ ln 2− 3

8
ln2 2

)
+ q6

(
ln 2

4
− 1

8

)
+ iwq4

(
1

4
− ln 2

8

)
+ q2w2

(
π2

48
− ln 2

2
− ln2 2

16

)
+ q8

(
− 1

16
+
π2

64
− ln 2

8

)
− q4w2

(
π2

96
+ (12− 7 ln 2)

ln 8

96

)
− iq6w

(
π2

96
+ (−5 + ln 4)

ln 64

96

)
+ w4

(
(24− 5 ln 2)

ln2 2

48
+
π2

48
(−4 + ln 8)− 1

2
ζ(3)

)
+ iq2w3

(
−π

2 ln 2

96
+ (−24 + ln 2)

ln2 2

96
+

3

16
ζ(3)

)
= 0 . (4.13)

Here, ζ(z) is the Riemann zeta function. Solving eq. (4.13) perturbatively in q2, one finds

the dispersion relation for the shear mode

w = − i

2
q2 − i(1− ln 2)

4
q4 − i(24 ln2 2− π2)

96
q6

− i(2π2(5 ln 2− 1)− 21ζ(3)− 24 ln 2[1 + ln 2(5 ln 2− 3)])

384
q8 +O(q10) . (4.14)

The first two terms in (4.14) agree with the ones obtained in refs. [35] and [3], respectively.

Encouraged by the success of finding the critical point in the holographic model with

broken translation symmetry in section 3, we can apply the condition (2.22) to the polyno-

mial (4.13). Truncating (4.13) at linear (in w and q2), quadratic, cubic and quartic order,
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Figure 6. Approximations to the position of the critical point in the complex q2c plane in the

shear channel of the N = 4 SYM theory arising from the order k hydrodynamic polynomials

Fk(q2,w) = 0 (circles for k = 2, triangles for k = 3, squares for k = 4). The “exact” position

q2c ≈ 1.8906469± 1.1711505i (see section 4.2) is marked by red asterisks.

correspondingly, we obtain the algebraic curves Fk(q
2,w) = 0 for k = 1, 2, 3, 4. Using the

condition (2.22), we find that there are no solutions at k = 1, whereas for k = 2, 3, 4,

we have

k = 2 : q2
c ≈ −1.380398± 0.865925i , wc ≈ ±0.216481 + 1.097596i , (4.15)

k = 3 : q2
c ≈ 0.164953± 1.151910i , wc ≈ ±0.735771 + 0.164407i , (4.16)

k = 4 : q2
c ≈ 0.548173± 0.988705i , wc ≈ ±0.706672− 0.140043i . (4.17)

In figure 6, the k = 2, 3, 4 approximations are shown in the complex plane of q2
c together

with the “exact” value q2
c ≈ 1.8906469 ± 1.1711505i obtained via the quasinormal level-

crossing method (see section 4.2). In contrast with the holographic model with broken

translation symmetry (see figure 5), the convergence is slow (admittedly, we only have 3

points in the present case). However, we learn an important lesson, namely, that the critical

point can be located at a generic complex value of q2. In the next section, we use a more

efficient method of the quasinormal modes level-crossing to determine the critical points.

4.2 Shear mode: full spectral curve

To compute the spectral curve numerically for all values of q2 and w, it is more convenient

to use the ODE obeyed by the gauge-invariant perturbations. The gauge-invariant shear

mode gravitational perturbations of the AdS-Schwarzschild black brane are described by

the function Z1(u), where u is the radial coordinate ranging from u = 0 (asymptotic

boundary) to u = 1 (event horizon) [41]. The function Z1(u) obeys the equation

Z ′′1 −
(w2 − q2f)f − uw2f ′

uf(w2 − q2f)
Z ′1 +

w2 − q2f

uf2
Z1 = 0 , (4.18)
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where f(u) = 1 − u2, and the solution must obey the incoming wave boundary condition

at the horizon, Z1(u) ∼ (1 − u)−iw/2 as u → 1 [34, 41]. The full shear spectral curve is

then given by

F (q2,w) = Z1(u = 0; q2,w) = 0 . (4.19)

The spectral curve (4.19) can be determined numerically by e.g. using N terms of the

Frobenius series solution at u = 1 [41]. The stability of the numerical procedure is ensured

by checking that adding several more terms to the series does not appreciably change the

result. Applying (numerically) the criterion (2.22) to (4.19), we find the critical point

closest to the origin,

q2
c ≈ 1.8906469± 1.1711505i , wc ≈ ±1.4436414− 1.0692250i , (4.20)

implying the convergence radius of the shear mode dispersion relation |qc
shear| ≈ 1.49131.

There are other critical points with |q2| > |qc
shear|. The first three of them are located at

q2
c,1 ≈ −2.37737 , wc,1 ≈ −1.64659i , (4.21)

q2
c,2 ≈ −3.11051± 0.8105i , wc,2 ≈ ±1.41043− 2.87086i , (4.22)

q2
c,3 ≈ 2.90692± 1.66606i , wc,3 ≈ ±2.38819− 2.13154i . (4.23)

In figures 7 and 8, we show the corresponding quasinormal spectrum (solutions w =

w(q2) of eq. (4.19)) in the complex plane of frequency w, parametrised by q2. The difference

with previous works is that now, we treat q2 as a generic complex variable, q2 = |q2|eiθ, and

vary its phase, θ ∈ [0, 2π], at specific fixed values of the magnitude |q2|. From eq. (4.18), it

is clear that if Z1(u; q,w) is a solution satisfying the incoming wave boundary condition at

the horizon, then Z1(u; q,−w) is also a solution. The spectrum in figures 7 and 8 therefore

appears to be symmetric with respect to the imaginary axis. For real q2, the spectrum

coincides with the one originally found in ref. [58].

At small |q2|, the poles follow closed orbits as the phase θ varies from 0 to 2π (figure 7,

top panels). With the parameter |q2| increasing, the poles start feeling the presence of each

other, and their orbits become more complicated. Finally, at |q2
c | ≈ 2.224, the hydrody-

namic shear pole collides with one of the two closest non-hydrodynamic poles (see figure 7,

bottom panels). For |q2| > |q2
c |, those three poles no longer have closed orbits: as the phase

θ varies from 0 to 2π, they interchange their positions cyclically (figure 7, bottom right

panel). For even larger |q2|, other gapped poles become involved in this collective motion

of quasinormal modes in a similar manner (figure 8).

The phenomenon observed in figures 7, 8 is the quasinormal spectrum level-crossing,

reminiscent of the well-known effect in quantum mechanics. Indeed, for real q2, the real

and imaginary parts of the quasinormal frequencies do not exhibit level-crossing (see e.g.

figures 13 and 14 in ref. [58]). For complex momentum q2 = |q2|eiθ, the real and imaginary

parts of the shear hydrodynamic mode and the nearest gapped mode do cross at the fixed

phase θ ≈ 0.338858π and |q2| = |q2
c | ≈ 2.224, as shown in figure 9. A similar effect at

a purely imaginary momentum was observed by Withers (see figure 3 in ref. [27]), and

numerous instances of pole collisions (i.e. quasinormal level-crossings) at real momenta

were reported earlier (see e.g. [33, 57, 59–68]).
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Figure 7. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point func-

tion in the N = 4 SYM theory) in the shear channel plotted in the complex w-plane for different

values of the complex momentum q2 = |q2|eiθ. Large dots in all four plots correspond to the loca-

tion of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. The hydrodynamic shear pole

is the blue pole closest to the real axis in the top left panel. As θ increases from 0 to 2π, each

pole moves in a counter-clockwise direction, following the trajectory of its colour. At |q2| = 1, all

poles follow a closed orbit (top left panel). At |q2| = 2.15 (top right panel), the trajectory of the

hydrodynamic pole intersects the trajectories of the two nearest gapped poles. With |q2| further

increasing to |q2| = 2.21, the poles nearly collide at the positions marked by asterisks (bottom left

panel). The actual collision occurs at the critical point with the momentum (4.20), |q2c | ≈ 2.224.

At |q2| = 2.26 (bottom right panel), the orbits of the three poles closest to the origin (w = 0)

are no longer closed: the hydrodynamic pole and the two gapped poles exchange their positions

cyclically as the phase θ increases from 0 to 2π. This is a manifestation of the quasinormal mode

level-crossing. The dispersion relation w(q2) therefore has branch point singularities in the complex

momentum squared plane at q2c .

4.3 Sound mode: hydrodynamic approximation to the spectral curve

The gauge-invariant perturbation corresponding to the sound mode obeys the equation [41]

Z ′′2 −
3w2(1 + u2) + q2(2u2 − 3u4 − 3)

uf(3w2 + q2(u2 − 3))
Z ′2

+
3w4 + q4(3− 4u2 + u4) + q2(4u5 − 4u3 + 4u2w2 − 6w2)

uf2(3w2 + q2(u2 − 3))
Z2 = 0 . (4.24)

The full sound spectral curve is constructed from the solution Z2(u; q2,w) obeying the

incoming wave boundary conditions at the horizon and is given by

F (q2,w) = Z2(u = 0; q2,w) = 0 . (4.25)
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Figure 8. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point func-

tion in the N = 4 SYM theory) in the shear channel plotted in the complex w-plane for different

values of the complex momentum q2 = |q2|eiθ. Large dots in all four plots correspond to the lo-

cation of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. The second critical point

(occuring at |q2c,1| ≈ 2.377) is marked by asterisks in the figures showing the trajectories just before

and just after the pole collision (top panels). With |q2| further increasing, the second pair of gapped

modes becomes involved in the collisions leading to the third critical point at |q2c,2| ≈ 3.214 (bottom

panels).
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-2
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Figure 9. Quasinormal spectrum level-crossing: the real (blue curves) and the imaginary (red

curves) parts of the hydrodynamic shear mode and the closest gapped quasinormal mode dispersion

relations plotted as functions of |q2| at the fixed phase θ ≈ 0.338858π of the complex momentum

q2 = |q2|eiθ. At |q2| = |q2c | ≈ 2.224, the level-crossing occurs.
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Similarly to the shear mode case, one can first find a hydrodynamic approxima-

tion to eq. (4.25) analytically. For w � 1 and q � 1, eq. (4.24) can be solved

perturbatively. Writing

Z2(u) =
(
1− u2

)− iw
2

∞∑
n=0

λnzn(u) (4.26)

to enforce the boundary condition at the horizon, rescaling w → λw and q → λq, and

assuming λ� 1, we find the following recurrence relation for the functions zn(u):

z′′n−
3
(
1 + u2

)
w2 −

(
3− 2u2 + 3u4

)
q2

u (1− u2) [3w2 − (3− u2) q2]
z′n −

4u2q2

(1− u2) [3w2 − (3− u2) q2]
zn

+
2iuw

1− u2
z′n−1 −

4iu2wq2

(1− u2) [3w2 − (3− u2) q2]
zn−1

+

(
1 + u+ u2

)
w2 − (1 + u) q2

u (1− u) (1 + u)2 zn−2 = 0 , (4.27)

with z−1 = z−2 = 0. To fourth order in λ, we find the hydrodynamic algebraic curve to be

(see also eq. (4.18) in ref. [3])

F (q2,w) =
q2

2
− 3w2

2
− iwq2 +

w4

16

(
π2 − 12 ln2 2 + 24 ln 2

)
− q4

12
(2 ln 2− 8)

− w2q2

48

(
π2 − 12 ln2 2 + 48 ln 2

)
= 0 . (4.28)

The form of F (q2,w) for general w and q is at present not known to O(λ5). However,

assuming that w can be expanded in a series in powers of q, in ref. [5], F (q2) was computed

to order O(λ5) = O(q5), which was sufficient to find the coefficient in the sound mode

dispersion relation multiplying q4 (i.e. to third order in the gradient expansion):

w = ± 1√
3
q− i

3
q2 ± 3− 2 ln 2

6
√

3
q3 −

i
(
π2 − 24 + 24 ln 2− 12 ln2 2

)
108

q4 +O(q5) . (4.29)

The first two terms in the dispersion relation (4.29) coincide with those obtained in ref. [40].

The third term was found in ref. [3] (see also ref. [69]). The fourth term was computed in

ref. [5]. It appeared earlier in ref. [13] (with an incorrect coefficient in front of ln 2) and

(correctly) in ref. [70] in the context of the fluid-gravity correspondence.

Here, we use the form of the algebraic curve (4.28) and apply the condition (2.22) to

show that in the sound channel, the small w and q expansion of the spectral curve F (q2,w)

qualitatively correctly accounts for two sets of critical points:

q2
c = 0 , wc = 0 , (4.30)

q2
c ≈ 0.34739± 0.56763i , wc ≈ ±0.71165 + 0.39882i . (4.31)

The critical point (4.30) is expected from hydrodynamics, as discussed in section 2.2.

Having in mind the results of section 4.1, we may expect that the hydrodynamic approxi-

mation (4.31) to the position of the non-trivial critical point is not accurate. In section 4.4

we confirm this by finding the critical point exactly.
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Figure 10. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point

function in the N = 4 SYM theory) in the sound channel plotted in the complex w-plane for

different values of the complex momentum q2 = |q2|eiθ. Large dots in all four plots correspond to

the location of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. The hydrodynamic sound

poles are the blue and the green poles closest to the real axis. As θ is tuned from 0 to 2π, each pole

moves in a counter-clockwise direction and follows the trajectory of its colour. At |q2| = 1 (top

left panel), all poles follow a closed orbit. At |q2| = 1.95 (top right panel), the trajectory of the

two hydrodynamic sound poles comes close to the trajectories of the nearest gapped poles. With

|q2| further increasing to |q2| = 1.98, the poles nearly collide at the positions marked by asterisks

(bottom left panel). The actual collision occurs at the critical value of the momentum (4.32),

|q2c | = 2. At |q2| = 2.05 (bottom right panel), the orbits of the four uppermost poles are no longer

closed: the hydrodynamic poles and the two gapped poles exchange their positions cyclically as the

phase θ increases from 0 to 2π — again, a manifestation of the quasinormal mode level-crossing.

The dispersion relation w(q) therefore has branch cuts starting at qc.

4.4 Sound mode: full spectral curve

As discussed in section 4.3, the origin (4.30) is a critical point of the sound mode dispersion

relation w = w(q2), as predicted by hydrodynamics (see section 2.2). Proceeding as in

section 4.2, we find the first set of critical points nearest to the origin at

q2
c = ±2i , wc = ±1− i , (4.32)

within the limits of our numerical accuracy. Curiously, although eq. (4.24) looks rather

complicated, one can check that with w and q2 given by (4.32), a simple analytic solution

satisfying the correct boundary conditions at u = 1 and u = 0 is available. Explicitly, the
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Figure 11. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point

function in the N = 4 SYM theory) in the sound channel plotted in the complex w-plane for

different values of the complex momentum q2 = |q2|eiθ. Large dots in all four plots correspond to

the location of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. What is shown is the

level-crossing phenomenon for the critical points in eq. (4.35).

two solutions corresponding to the pair of critical points in (4.32) are

(q2
c = 2i,wc = 1− i) : Z2(u) = C+

2 (1− u)−
i(1−i)

2 (1 + u)−
1−i
2 u2 (u− 3i) , (4.33)

(q2
c = −2i,wc = −1− i) : Z2(u) = C−2 (1− u)−

i(−1−i)
2 (1 + u)

−1−i
2 u2 (u+ 3i) , (4.34)

where C±2 are arbitrary constants. Although we were not able to show analytically that

∂wZ(u = 0) = 0 at (4.32) as well, we have verified this numerically to high precision. The

existence of the critical point (4.32) implies that the convergence radius of the sound mode

dispersion relation is given by |qc
sound| =

√
2 ≈ 1.41421. The next set of critical points is

located at

q2
c ≈ −0.01681± 3.12967i , wc ≈ ±1.90134− 2.04492i . (4.35)

The behaviour of poles in the complex frequency plane is shown in figures 10 and 11, and

the quasinormal level-crossing phenomenon is presented in figure 12.

4.5 Scalar mode: full spectral curve

In the scalar channel, the gauge-invariant metric perturbation Z3(u) obeys the equation [41]

Z ′′3 −
(1 + u2)

uf
Z ′3 +

w2 − q2f

uf2
Z3 = 0 . (4.36)

The full spectral curve is constructed from the solution Z3(u; q2,w) obeying the incoming

wave boundary conditions at the horizon and is given by

F (q2,w) = Z3(u = 0; q2,w) = 0 . (4.37)

The quasinormal spectrum in the scalar channel has no hydrodynamic modes, but it ex-

hibits the phenomenon of level-crossing for the gapped modes, as shown in figure 13. The
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Figure 12. Quasinormal spectrum level-crossing in the sound channel: the real (blue curves)

and the imaginary (red curves) parts of the hydrodynamic sound mode and the closest gapped

quasinormal mode dispersion relations plotted as functions of |q2| at the fixed phase θ = π/2 of the

complex momentum q2 = |q2|eiθ. At |q2| = |q2c | = 2, the level-crossing occurs.
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Figure 13. Quasinormal spectrum (poles of the retarded energy-momentum tensor two-point

function in the N = 4 SYM theory) in the scalar channel plotted in the complex w-plane for

different values of the complex momentum q2 = |q2|eiθ. Large dots in all plots correspond to the

location of the poles for purely real momentum, q2 (i.e. at θ = 0) [41]. There are no hydrodynamic

modes in this channel, but the gapped modes exhibit the level-crossing phenomena at complex

values of momenta given by eq. (4.38).

first two sets of critical points nearest to the origin are given by

q2
c ≈ −1.25309 , wc ≈ −1.76937i , (4.38a)

q2
c ≈ −1.49704± 0.36674i , wc ≈ ∓1.47977− 2.79404i . (4.38b)

These are branch points in the scalar (gapped) dispersion relation w = w(q2).
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Figure 14. Branch point singularities, branch cuts and the domain of hydrodynamic series conver-

gence for the shear mode in the complex q2-plane (left panel) and the sound mode in the complex

q-plane (right panel).

4.6 Analytic structure of the hydrodynamic dispersion relations

From the discussion above, it is clear that the shear mode dispersion relation wshear(q
2) is

an analytic function of complex q2 in the circle |q2| < |q2
c | ≈ 2.224. Since the appropriate

second derivative of the spectral curve at the critical point is non-zero (i.e. p = 2 in the

Puiseux language of section 2.3; see eq. (2.23)) which corresponds to a collision of two

quasinormal modes, the critical point is the branch point singularity of the square root

type, with the Puiseux series in powers of ±
√
q2 − q2

c providing the extension beyond the

radius of convergence. We show the critical points, the radius of convergence and the

appropriate branch cuts in the complex plane of q2 in figure 14 (left panel).

For the sound mode dispersion relation, considered as a function of q2 ∈ C, the origin is

a branch point, and the corresponding Puiseux series is given by eq. (2.21). It will be more

convenient to consider the sound dispersion relation wsound(q) as a function of complexified

magnitude q ∈ C of the wave-vector q. The critical points, the radius of convergence and

the appropriate branch cuts in the complex plane of q are shown in figure 14 (right panel).

4.7 Pole-skipping in the full response functions

As already discussed in the Introduction, analytically continued hydrodynamic modes ap-

pear to be connected to the parameters of an OTOC related to the microscopic many-

body quantum chaos. The apparent connection is provided by the phenomenon of pole-

skipping [29–32], whereby a pole and a zero of a two-point correlation function collide for

some w, q ∈ C. In the sound channel of the energy-momentum tensor retarded two-point

function, the pole-skipping has been studied in the context of holography [29, 31, 32], effec-

tive field theory [30] and two-dimensional conformal field theory in the limit of large central
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charge [71]. Here, we extend the discussion in refs. [29, 31, 32] to show that pole-skipping

also occurs in other channels.

Consider a retarded two-point function GR(w, q) of the energy-momentum tensor com-

ponents at finite temperature. Schematically, and modulo tensor structure, the correlator

can be written as

GR(w, q) ∼ b(w, q)

a(w, q)
, (4.39)

where a(w, q) necessarily contains a gapless hydrodynamic mode w = w(q) (either shear or

sound) in the appropriate channels [41]. More generally, let Zd = {w = w(q) : a(w(q), q) =

0} and Zn = {w = w(q) : b(w(q), q) = 0}, where we assume for simplicity that all zeros

are simple. Then, pole-skipping occurs at generically complex (q∗,w∗) ∈ P = Zn ∩ Zd.
For theories with available gravity dual descriptions, the set P can be determined di-

rectly either by computing Zn and Zd (the set Zd is nothing but the quasinormal spectrum)

or from the dual gravity equations of motion (see below). In the case of energy-momentum

tensor correlators of the N = 4 SYM theory in the limit of infinite Nc and infinite ‘t Hooft

coupling λ, pole-skipping in the three channels occurs at points (q∗,w∗) given by

Sound channel : q∗ =

√
3

2
i , w∗ = i , (4.40)

Shear channel : q∗ =

√
3

2
, w∗ = −i , (4.41)

Scalar channel : q∗ =

√
3

2
i , w∗ = −i . (4.42)

We observe that |q∗| =
√

3/2, |w∗| = 1 in all three channels. The connection to the

Lyapunov exponent λL and the butterfly velocity vB is given by the formulae

Sound channel : w∗(q∗) =
iλL
2πT

= iO∗ , q∗ = i`∗ , (4.43)

Shear channel : w∗(q∗) = − iλL
2πT

= −iO∗ , q∗ = `∗ , (4.44)

Scalar channel : w∗(q∗) = − iλL
2πT

= −iO∗ , q∗ = i`∗ , (4.45)

where `∗ =
√

3/2, O∗ = 1, and vB = O∗/`∗. It is clear from figures 2 and 1 that the

sound and the shear dispersion relations pass through their respective “chaos” points (4.40)

or (4.41). In the scalar channel, which has no hydrodynamic modes, pole-skipping is

exhibited by (one of the pair of) the lowest-lying gapped modes in the spectrum. This

can be seen from figure 3. Thus, in the N = 4 SYM theory at infinite ‘t Hooft coupling,

the values of λL and vB defined by pole-skipping in the complexified dispersion relations

of the lowest-lying modes (either hydrodynamic or gapped) coincide with those obtained

from the appropriate limit of the OTOC:14

λL = 2πT , vB =

√
2

3
, `∗ =

λL
2πTvB

=

√
3

2
. (4.46)

14To subleading order in the inverse ’t Hooft coupling expansion, the butterfly velocity is vB =√
2/3

(
1 + 23ζ(3)

16
λ−3/2

)
while the relevant (long-distance) Lyapunov exponent remains uncorrected [32].
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In fact, irrespectively of the channel in question, we can define the (maximal holographic)

Lyapunov exponent and the butterfly velocity through the pole-skipping location exhibited

by the mode closest to the origin in the complex plane of w:

λL = 2πT |w∗| , vB =

∣∣∣∣w∗q∗
∣∣∣∣ =
|w∗|
`∗

. (4.47)

Pole-skipping points (q∗,w∗) can be found directly from the dual gravity equations of

motion [29, 31]. To show this explicitly for the N = 4 SYM theory, we follow the arguments

of ref. [31] and examine the horizon behaviour of Einstein’s equations

Eµν ≡ Rµν −
1

2
gµνR− 6gµν = 0 (4.48)

in the infalling Eddington-Finkelstein (EF) coordinates (v, r, xi) with

v = t+ r∗(r) ,
dr∗
dr

=
1

r2f(r)
. (4.49)

We perturb the 5d AdS-Schwarzschild metric ds2 = gµνdx
µdxν = −r2f(r)dv2 + 2dvdr +

r2d~x2 to first order, gµν → gµν + δgµν(r)e−iωv+ikz, and expand the (regular) metric fluctu-

ations around the horizon r = r0 as

δgµν(r) =
∞∑
n=0

δg(n)
µν (r − r0)n . (4.50)

Similarly to what was observed in ref. [31] for the sound channel, we find that in any

channel, there exists a linear combination of the components Eµν , which vanishes identically

at the horizon r → r0 at the pole-skipping values of the parameters (q∗,w∗). Explicitly,

Sound channel : lim
r→r0

Evv = 0 at (q∗,w∗) = (
√

3/2i, i) , (4.51)

Shear channel : lim
r→r0

(
Evx + i

√
2

3
Exz

)
= 0 at (q∗,w∗) = (

√
3/2,−i) , (4.52)

Scalar channel : lim
r→r0

Exy = 0 at (q∗,w∗) = (
√

3/2i,−i) . (4.53)

In other words, pole-skipping occurs at values of the parameters (q∗,w∗) for which the rank

of the matrix Eµν decreases at the horizon.

We note also that for the N = 4 SYM theory, the chaos point |q2
∗| = 3/2 lies within

the radius of convergence of the hydrodynamic series in both the shear (|q2
c | ≈ 2.224) and

the sound (|q2
c | = 2) channels.

5 Pole-skipping and level-crossing in 2d thermal CFT correlators

In a 2d CFT, the (equilibrium) retarded finite-temperature two-point correlation function

of an operator of non-integer scaling dimension ∆ and spin zero in momentum space is
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given by the expression15,16 [34]

GR(w, q) =C∆ Γ

(
∆

2
+
i(w− q)

2

)
Γ

(
∆

2
+
i(w + q)

2

)
Γ

(
∆

2
− i(w− q)

2

)
× Γ

(
∆

2
− i(w + q)

2

)[
cosh (πq)−cos (π∆) cosh (πw)+i sin (π∆) sinh (πw)

]
,

(5.1)

where C∆ is the normalisation constant, and we put TL = TR = T . Note also that here, in

1 + 1 dimensions, the symbol q denotes q/2πT , rather than |q|/2πT . Similar formulae can

be written for integer ∆ [34]. The correlator (5.1) has a sequence of poles at

wn(q) = ±q− i (2n+ ∆) , (5.2)

where n = 0, 1, 2, . . .. These are precisely the quasinormal frequencies of the dual BTZ black

hole [34, 72]. In this section, we shall examine these correlators for their pole-skipping and

level-crossing properties.17,18

5.1 Pole-skipping in the full response functions

The zeros of the correlator (5.1) come from the zeros of the expression in the

square brackets,

cosh (πq)− cos (π∆) cosh (πw) + i sin (π∆) sinh (πw)

= 2 sin
[π

2
(∆ + iw− iq)

]
sin
[π

2
(∆ + iw + iq)

]
, (5.3)

and are given by

∆ + iw− iq = 2n1 , (5.4)

∆ + iw + iq = 2n2 , (5.5)

where n1, n2 = 1, 2, 3, . . .. Note that the zeros of eq. (5.3) with n1, n2 = 0,−1,−2, . . . are

not among the zeros of the correlator since they are identically (i.e. for arbitrary w, q)

cancelled by the poles of the first two Gamma-functions in eq. (5.1).

15In ref. [34], the expression for GR(ω, q) was derived holographically from dual gravity. For integer ∆, it

was further checked in ref. [34] that thus obtained formula coincides (up to normalisation) with the retarded

correlator obtained from 2d CFT.
16The expression for GR(ω, q) in the form (4.16) of ref. [34] assumes w, q ∈ R. To be valid for generic

w, q ∈ C, it has to be rewritten in the form (5.1). We would like to thank D. Vegh for pointing this out.
17Similar issues have been recently independently studied in ref. [73]. The results of ref. [73] agree with

ours whenever they overlap.
18Here, we only consider correlation functions of 2d CFT operators with scaling dimension ∆ and spin

s = 0. The energy-momentum, having ∆ = 2 and s = 2, is not of this type. Its finite-temperature two-

point function (see e.g. refs. [71, 74]) in momentum space has a pole corresponding to a mode propagating

on the light cone. The corresponding dispersion relation line passes through the “chaos” point of that

correaltor [71], just as it does in 4d.
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The pole-skipping phenomenon in GR occures for w and q simultaneously satisfying

the conditions (5.2) and (5.4), (5.5), i.e. for

q∗ = ±i(∆ + n− n∗) , (5.6)

w∗ = −i(n+ n∗) , (5.7)

where n = 0, 1, 2, . . . and n∗ = 1, 2, . . . (here n∗ denotes either n1 or n2), and ∆ is not an

integer.19

We also note that the Euler reflection formula, Γ(z)Γ(1− z) = π/ sinπz, can be used

to rewrite the correlator (5.1) in the form

GR(w, q) = C∆

2π2Γ
(

∆
2 −

i(w−q)
2

)
Γ
(

∆
2 −

i(w+q)
2

)
Γ
(

1− ∆
2 −

i(w−q)
2

)
Γ
(

1− ∆
2 −

i(w+q)
2

) . (5.8)

For integer ∆, the poles of GR are still given by eq. (5.2), but the functional form of

the correlators is somewhat different from (5.1) (see ref. [34]). Here, we focus on the case

of ∆ = 2. For ∆ = 2, one has [34]

GR ∼
(
w2 − q2

) [
ψ

(
1− i

2
(w− q)

)
+ ψ

(
1− i

2
(w + q)

)]
, (5.9)

where ψ(x) = Γ′(x)/Γ(x). The singularities of the correlator (5.9) are simple poles lo-

cated at

wn(q) = ±q− 2i (n+ 1) , n = 0, 1, 2, . . . . (5.10)

In the case of pole-skipping, they are cancelled by the zeros coming from the numerator

w2 − q2, which occur when wn = ∓q. The discrete set of momenta q that satisfies this

condition is

q = ±i(n+ 1) , n = 0, 1, 2, . . . . (5.11)

Therefore, the pole-skipping points for ∆ = 2 are given by

q∗ = ±i(n+ 1) , (5.12)

w∗ = −i(n+ 1) , (5.13)

where n = 0, 1, 2, . . .. In particular, for the pair of poles that lies closest to the origin in

the complex w plane (ones with n = 0 among those in eq. (5.10)),

w±0 (q) = ±q− 2i , (5.14)

the branch w+
0 passes through the (lowest-lying) pole-skipping point q∗ = i, w∗ = −i,

whereas the branch w−0 does not. The branch w−0 passes through the pole-skipping point

q∗ = −i, w∗ = −i, whereas the branch w+
0 does not (see figure 15). Finally, we note that

for ∆ = 1, the correlator is directly proportional to the sum of two ψ−functions [34], and

there is no pole-skipping.

19Introducing Q = n∗ and N = n+n∗, the pole-skipping condition can be written as q∗ = ±i(∆+N−2Q),

w∗ = −iN , where N = 1, 2, . . . and Q = 1, . . . , N . This coincides with the results in ref. [73]. We would

like to thank R. Davison for pointing out an error in eqs. (5.6), (5.7) in the first version of this paper.
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Figure 15. Pole-skipping and level-crossing points in a 2d CFT correlator of operators with

conformal dimension ∆ = 2, for the smallest in magnitude poles w±
0 and w±

1 . The red stars at

Im q = ±1 correspond to the pole-skipping points and the red dots label the critical points of level-

crossings of w±
0 . The blue stars at Im q = ±2 correspond to the pole-skipping points and the blue

dots label the critical points of level-crossings of w±
1 .

5.2 BTZ spectrum level-crossing

Since the quasinormal spectrum w±n (q) is known explicitly (see eq. (5.2)), the level-crossing

points can be found directly. Such level-crossing points were used above in theories with

gapless excitations to determine the radius of convergence of their hydrodynamic series.

Considering complex q = |q|eiθ, we have

Rew±n = ±|q| cos θ ≡ X , (5.15)

Imw±n = ±|q| sin θ − 2n−∆ ≡ Y , (5.16)

and thus the orbits followed by the poles in the complex w plane when the phase θ changes

from 0 to 2π are circles

X2 + (Y + 2n+ ∆)2 = |q|2 , n = 0, 1, 2, . . . . (5.17)

The poles move counter-clockwise and collide on the imaginary axis of w (moreover, at

integer values of |w| if ∆ is an integer). More precisely, two poles collide when w−n = w+
m,

m 6= n, i.e. when (the case n = 0 or m = 0 is treated separately below)

qc = i (m− n) , (5.18)

wc = −i (m+ n+ ∆) , (5.19)

m,n = 1, 2, . . . , with m 6= n , (5.20)

with the first collision occurring for m = n ± 1, i.e. for qc = ±i, wc = −i (2n+ ∆± 1),

n = 1, 2, . . .. The mode with n = 0, i.e. w±0 = ±q − i∆, has only one neighbour, and the
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Figure 16. BTZ quasinormal spectrum for ∆ = 1/8 in the complex w-plane at complex momentum

q = |q|eiθ, with |q| = 1 and θ changing from 0 to 3π/4. The spectrum at θ = 0 is shown by large dots.

critical points correspond to w−0 = w+
n (i.e. qc = in and wc = −i(n+ ∆)) or w−n = w+

0 (i.e.

qc = −in and wc = −i(n+ ∆), n = 1, 2, . . .). Thus, the zero mode critical points are

qc = ±in , (5.21)

wc = −i (n+ ∆) , (5.22)

n = 1, 2, . . . . (5.23)

The motion of poles in the complex frequency plane and their level-crossings are illustrated

for ∆ = 1/8 and |q| = 1 in figure 16.

For larger |q|, the trajectories intersect but the poles miss each other, so there is no

phenomenon of one trajectory crossing into and continuing as the other. In a sense, here,

we have “level-touching” rather than “level-crossing”. The nearest critical points are thus

qc = ±i , wc = −i (2n+ ∆± 1) , n = 1, 2, . . . , (5.24)

qc = ±i , wc = −i (∆ + 1) , n = 0 . (5.25)

In particular, for ∆ = 2, we have20

qc = i , wc = −3i,−5i,−7i,−9i . . . , (5.26)

qc = −i , wc = −3i,−3i,−5i,−7i, . . . . (5.27)

20These critical points are single poles: the collisions may occur at the same point wc, but the phases are

different for different modes.
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We observe that for non-integer ∆, the values of q corresponding to the pole-skipping and

the level-crossing do not coincide. The same is (trivially) true for ∆ = 1 as well, where

there is no pole-skipping in the correlator at all. For ∆ = 2, however, a curious picture

emerges. Consider again the “sound” mode w±0 (5.14). The imaginary parts of the two

branches obey

Imw±0 = ±Im q− 2 . (5.28)

The pole-skipping points found in section 5.1 are q∗ = i, w∗ = −i and q∗ = −i, w∗ = −i,
and the critical points are qc = ±in, wc = −i(n + 2), n = 1, 2, . . .. For ∆ = 2, and the

mode with n = 1,

w±1 (q) = ±q− 4i , (5.29)

the pole-skipping occurs at q = ±2i and w = −2i. The critical points are located at

qc = ±i(m− 1), wc = −i(m+ 3), m = 2, 3, . . .. This is illustrated in figure 15.

6 Discussion

In this paper, we introduced spectral curves as a useful tool for investigating analytic

properties of gapless collective excitations in classical hydrodynamics.21 We showed that

the dispersion relations of hydrodynamic modes, such as shear and sound modes, are

generically given by Puiseux series expansions in rational powers of the spatial momentum

squared. These series are guaranteed to converge in some vicinity of the origin (the point

with zero frequency ω = 0 and zero spatial momentum q2 = 0 in the (ω, q2) ∈ C2 space), so

long as the analyticity of the spectral curve at the origin can be proven (e.g. by holographic

or other means). Thus, given the analyticity of the spectral curve, the asymptotic nature

of the series for hydrodynamic modes in momentum space can be automatically ruled out.

The radius of convergence of the series is given by the distance from the origin to the critical

point of the spectral curve nearest to the origin. After developing the general theory, we

then used holography as a theoretical laboratory where all these of features can be seen

and analysed explicitly. Before focusing on the main example of the strongly coupled

N = 4 supersymmetric Yang-Mills theory at finite temperature, to illustrate our method,

we first considered the holographic model with broken translation symmetry, where an exact

spectral curve is available. We have shown that the critical points of the spectral curves

can be found by studying quasinormal spectra at complex values of spatial momentum:

the critical points correspond to the collisions of quasinormal frequencies (poles of dual

correlators) in the complex frequency plane at critical (generically, complex) values of

spatial momentum. These values also set the radii of convergence for the dispersion relation.

We call this phenomenon the quasinormal mode level-crossing, in analogy with the well-

known phenomenon of level-crossing for eigenvalues of Hermitian operators.

Applying these methods to the strongly coupled N = 4 supersymmetric Yang-Mills

theory, we found that the gradient expansions for the hydrodynamic shear and sound

modes have finite radii of convergence given by qc
sound =

√
2ω0 for the sound mode and

21See footnote 1.
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by qc
shear ≈ 1.49ω0 for the shear mode, where ω0 = 2πT is the fundamental Matsubara

frequency. Thus, in both channels, the hydrodynamic series converge up to the order of

|q|/T ∼ O(10), which is a vast improvement over the naive expectation that |q|/T �
1 provides a natural expansion parameter for hydrodynamic dispersion relations. The

obstruction to convergence in the example of the N = 4 SYM theory comes from the

collision of poles of the two-point correlation function of the energy-momentum tensor at

complex q2.

As mentioned in the Introduction, the problem of extending the hydrodynamic modes

in the complex momentum plane beyond the branch point singularity was recently in-

vestigated by Withers [27] in the context of a holographic model in 2 + 1 dimensions

with finite chemical potential. The shear-diffusion mode series could be Padé-resummed

and extended beyond the branch point singularity, which was in that case located at an

imaginary value of momentum. The main focus of ref. [27] was on the possibility of recov-

ering the full spectrum from the hydrodynamic derivative expansion, similar to recovering

the non-hydrodynamic modes from asymptotic series via Borel resummation and resur-

gence [17, 18, 25]. The quasinormal spectrum in the holographic models with finite tem-

perature T and non-vanishing chemical potential µ such as the one considered in ref. [27] is

rather complicated and changes qualitatively as the parameter T/µ is varied (in particular,

it involves pole collisions even at real values of the momentum) [59, 66, 75–79]. In ref. [27],

the shear-diffusion mode was found to have a radius of convergence inversely proportional

to the chemical potential. Naively, this would imply infinite radius of convergence in the

limit of vanishing µ, in apparent contradiction with our results. However, the result of

ref. [27] was obtained at a specific fixed value of T/µ, and we expect it to change when the

complex momentum behaviour of other gapped modes in the model is taken into account

with T/µ increasing. This will require further study. It would be also interesting to extend

the results of the present work to the sound channel (not considered in ref. [27]) as well

as to other holographic models with finite chemical potential such as the STU model [80],

and other models [81–83], including those in the large D limit [84].

Pole collisions in the correlation functions appear in holographic models in different

contexts [33, 57, 59–68]. No less interesting are collisions among poles and zeros of the

correlators known as pole-skipping [29–32]. What we have shown here is that this phe-

nomenon, known to exist in the sound channel of strongly coupled N = 4 SYM theory [29],

exists also in the shear and scalar channels of the energy-momentum correlators. The con-

jectured connection to the OTOC thus allows one to determine the parameters quantifying

microscopic many-body chaos (scrambling time and butterfly velocity) by considering the

complexified behaviour of the lowest-lying modes (those with the smallest |ω| in the spec-

trum) in any channel, be it a channel with or without hydrodynamic modes. In general,

the critical points and the pole-skipping points are different. We have analysed the 2d CFT

finite-temperature correlators and the spectra of the dual BTZ black hole to demonstrate

this explicitly. What this implies for the relation between chaos and hydrodynamics is that

the “chaos” (or pole-skipping) points can lie within or outside of the radius of convergence

of the hydrodynamic series. In particular, while this is not the case in the holographic

model with broken translation symmetry considered in section 3, we found that in the
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N = 4 SYM theory, pole-skipping points for both of the two hydrodynamic modes lie

within the radius of convergence of the corresponding dispersion relations. This provides

an explanation for the observation of the fast convergence of the hydrodynamic series to

the exact chaos point in ref. [29].

Can finiteness of the convergence radius of the hydrodynamic modes dispersion rela-

tions expansion be taken as a criterion for validity of hydrodynamics? By analogy, one

may think of a free particle whose dispersion relation ω =
√
p2 +m2 −m = p2/2m + . . .

has branch points located at p = ±im, and for which the failure of the convergence of

the gradient expansion corresponds to the breakdown of the non-relativistic approxima-

tion. We hope our results may be of interest for studies of higher-order hydrodynamics

necessary for improving the precision of hydrodynamic predictions and also for justifying

the construction of the effective field theory of hydrodynamics formulated as a gradient

expansion [85–95]. As already mentioned in ref. [8] in the context of the discussion of

the “unreasonable effectiveness” of hydrodynamics as an effective theory, many previous

studies have reported the divergence of the derivative expansion in relativistic hydrody-

namics [15, 17, 18, 18, 25]. Possibly, the asymptotic nature of the expansion appearing in

those publications should be viewed as a reflection of the singular nature of the state about

which this expansion is performed, rather than a generic property of the hydrodynamic

gradient expansion itself. On the other hand, even for a free particle, the momentum space

and position space pictures look different in this respect: the small-momentum expansion

of the corresponding dispersion relation has a finite radius of convergence, whereas e.g. for

the position space propagator, the large-time expansion is only asymptotic.22 This issue

needs further investigation. The role of the non-hydrodynamic degrees of freedom is the

common feature of the mentioned works and the present paper.

Of special interest is the dependence of the radii of convergence on coupling. In ref. [8],

using eq. (2.27) as a crude approximation and the results of refs. [96, 97], we argued that

in the N = 4 SYM theory, the radius of convergence is smaller at weaker coupling. This,

of course, requires the actual study of the spectrum at finite coupling. More generally,

in the context of the problem of interpolating between weak and strong coupling regimes

of the same theory at finite temperature [60, 98], one may note23 that the problem of

convergence of hydrodynamic series has been raised and partially investigated in the 1960s

in kinetic theory [99]. This approach, together with recent studies of relevant issues at

weak coupling [14, 100–102], may deserve more attention in the context of the problem of

the validity of the hydrodynamic description at finite coupling.
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A Analytic implicit function theorem and Puiseux series

Here, we collect the necessary information from complex analysis regarding the following

problem. Given an implicit function f(x, y) = 0, where x, y ∈ C, we would like to find

explicit solution(s) in the form y = y(x), at least locally in the vicinity of some point

(x0, y0), where y(x) may be represented by a finite or infinite series in x. We would like to

determine, furthermore, what sets the radius of convergence of such series.

A simple example is provided by the function f(x, y) = x2 + y2 − 1 = 0. Since

f(x, y) is a polynomial, it determines a complex algebraic curve. Singular points of f(x, y)

are determined by the simultaneous solution of the equations f(x, y) = 0, f,x(x, y) = 0,

f,y(x, y) = 0, where the comma subscript denotes the partial derivative with respect to

the argument after the comma. Clearly, this particular curve has no singular points. It

does, however, have the so-called “points of multiplicity 1” or “one-fold points”, where

f,x(x, y) = 0 or f,y(x, y) = 0 (but not both simultaneously). These are sometimes called

critical points. We are interested in the local behaviour of y = y(x) near a critical point

defined by the conditions f(x, y) = 0, f,y(x, y) = 0. In our example, there are two such

points: (x, y) = (±1, 0). The series representation y = y(x) in the vicinity of e.g. (x, y) =

(1, 0) has two branches:

y = y1(x) = i
√

2(x− 1)
1
2 + i2−

3
2 (x− 1)

3
2 + · · · , (A.1)

y = y2(x) = −i
√

2(x− 1)
1
2 − i2−

3
2 (x− 1)

3
2 + · · · . (A.2)

This is an example of the Puiseux series, i.e. the power series with fractional exponents.

These series converge in the circle with the centre at (x, y) = (1, 0) and radius R = 2 which

is the distance from (1, 0) to the nearest critical point, (x, y) = (−1, 0).

One may be interest in the behaviour y = y(x) in the vicinity of a regular point, where

f,y(x, y) 6= 0, for example, near (x, y) = (0, 1) in our example. Here, since f,y(x, y) 6= 0,
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the implicit function theorem guarantees that we can compute the derivatives y′(x), y′′(x)

and so on, and represent y(x) by the Taylor series in the vicinity of x = 0,

y = y(x) = 1− x2

2
− x4

8
+ · · · . (A.3)

This series is convergent in the circle of radius R = 1, determined by the distance from the

point x = 0 to the nearest critical point(s) at x = ±1.

In general, for an implicit function given by the equation f(x, y) = 0, where f(x, y)

is either a finite polynomial in x and y, or an analytic function at a point (x, y) (i.e.

a polynomial of an infinite degree), the behaviour at a regular point is governed by the

analytic implicit function theorem [103], and the behaviour in the vicinity of a critical

point is determined by the Puiseux theorem. In the former case, y = y(x) is represented

by a Taylor series converging in some vicinity of a regular point. In the latter case, it is

represented by a Puiseux series converging in some vicinity of a critical point. We now

recall some facts from complex analysis [104] and explain the Puiseux construction [45, 47].

Definition. A function, f(x, y), from a neighbourhood of (x0, y0) ∈ C2 to C is called

analytic at (x0, y0) if near (x0, y0) it is given by the uniformly convergent power series

f(x, y) =

∞∑
n,m=0

anm(x− x0)n(y − y0)m . (A.4)

Theorem (Analytic implicit function). If f(x0, y0) = 0 and f,y(x0, y0) 6= 0, there exist

ε > 0 and δ > 0 so that Dε(x0) × Dδ(y0) is in the neighbourhood where f is defined, and

g is a map of Dε(x0) into Dδ(y0) so that f(x, g(x)) = 0 and for each x ∈ Dε(x0), g(x) is

the unique solution of f(x, g(x)) = 0 with g(x) ∈ Dδ(y0). Moreover, g(x) is analytic in

Dε(x0) and

g′(x) = −
∂f
∂x (x, g(x))
∂f
∂y (x, g(x))

. (A.5)

Similarly, one can compute higher derivatives of g(x) and represent it by a Taylor series

around x = x0 convergent in Dε(x0). Note that the statements of the theorem are local,

e.g. the size of the domain Dε(x0) is unspecified, it is only known that it exists for some

ε > 0. In other words, we know that the radius of convergence of the series of g(x) around

x = x0 is non-zero but its value is left unspecified. In the example above, we saw that

the value of the radius of convergence is determined by the distance from the centre of the

expansion x0 to the nearest critical point of f(x, y). Note also that the statements of the

theorem depend crucially on f(x, y) being an analytic function at (x0, y0) (in particular, a

finite order polynomial in x and y).

Now we return to the original problem: for f(x, y) = 0, where x, y ∈ C, find explicit

solution(s) in the form y = y(x), at least locally in the vicinity of some point (x0, y0),

where y(x) may be represented by series (possibly infinite) at x = x0. For simplicity, we

set x0 = 0. First, we check f(0, y). If this is a polynomial in y of degree n, then the

equation f(0, y) = 0 has n roots yi, i = 1, . . . , n. There are two possibilities.
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Local behaviour at regular points: all the roots yi, i = 1, . . . , n of the equation

f(0, y) = 0 are distinct. Then f,y(0, yi) 6= 0, and the analytic implicit function theorem

guarantees the existence of a unique Taylor expansion y = y(x) at x = 0.

Local behaviour at critical points: the equation f(0, y) = 0 has multiple roots.

For simplicity, let y0 = 0 be such a root. Then we have f(0, 0) = 0, f,y(0, 0) = 0,

(∂2f/∂y2)(0, 0) = 0, . . . (∂pf/∂yp)(0, 0) 6= 0, if y = 0 is a zero of f(0, y) = 0 of order p. We

expect p branches of the solutions y = Yj(x), j = 1, . . . , p, at x = 0. They are given by

Puiseux series

y = Yj(x) =

∞∑
k≥k0

akx
k
mj , j = 1, . . . , p , (A.6)

where mj are positive integers, and k0 is a non-negative integer which in general depends

on j. The exponents k0/mj , (k0 + 1)/mj , etc, and the coefficients ak0 , ak0+1, etc, can be

determined by the Newton polygon method (1671), as described e.g. in refs. [45, 47]. The

Puiseux series are converging in some vicinity of the point x = 0 provided f(x, y) is an

analytic function at (x, y) = (0, 0) (or a finite polynomial). If some mj > 1, we necessarily

have among those p branches a family of mj solutions of the form

y = Yl(x) =

∞∑
k≥k0

ak

(
e

2πil
mj

)k
x

k
mj , l = 0, 1, . . . ,mj − 1 . (A.7)

As an example, consider the algebraic curve [48]

f(x, y) = y5 − 4y4 + 4y3 + 2x2y2 − xy2 + 2x2y + 2xy + x4 + x3 = 0 . (A.8)

Since f(0, y) = y3(y−2)2, the points (0, 0) and (0, 2) are critical points with multiplicities 3

and 2, respectively. We expect y = y(x) to be given by 3 branches of Puiseux series at (0, 0)

and by 2 branches at (0, 2). Applying the Newton polygon method [45, 47, 48] at the point

(0, 0), we find m1 = m2 = 2 and k0 = 1, m3 = 1 and k0 = 2, with appropriate coefficients:

y = Y1(x) = i

√
2

2
x

1
2 − 1

8
x+ i

27
√

2

128
x

3
2 − 7

32
x2 + · · · , (A.9)

y = Y2(x) = −i
√

2

2
x

1
2 − 1

8
x− i27

√
2

128
x

3
2 − 7

32
x2 + · · · , (A.10)

y = Y3(x) = −1

2
x2 +

1

8
x4 − 1

8
x5 +

1

16
x6 + · · · . (A.11)

At the point (0, 2), we have 2 branches, as expected:

y = Y4(x) = 2 +
1 + i

√
95

8
x+ · · · , (A.12)

y = Y5(x) = 2 +
1− i

√
95

8
x+ · · · . (A.13)
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B Perturbative solution of eq. (4.1)

Here, we list the explicit expressions for the components of the perturbative solution of

eq. (4.1),

G0(u) =u ,

G1(u) =

(
q2

2
− iw

)
(1− u) + iw

u

2
ln

1 + u

2

=

(
q2

2
− iw

)
(1− u)− iw u

2
Li1

(
1− u

2

)
,

G2(u) =w2

[
u

2
Li2

(
1− u

2

)
+
u

8
Li21

(
1− u

2

)
+

1 + u

2
Li1

(
1− u

2

)]
+ q2

(
q2 − 3iw

2

)
u

2
Li1

(
1− u

2

)
− iwq2

4
Li1

(
1− u

2

)
+ q2

(
q2

2
− iw

)
u lnu+

q4

4
(1− u) ,

as well as the appropriate boundary values,

G0(0) = 0 ,

G1(0) = − iw +
q2

2
,

G2(0) =
q4

4
− iwq2 ln 2

4
+

w2 ln 2

2
,

G3(0) = iw3

(
π2

24
+ ln 2− 3

8
ln2 2

)
+ q6

(
ln 2

4
− 1

8

)
+ iwq4

(
1

4
− ln 2

8

)
+ q2w2

(
π2

48
− ln 2

2
− ln2 2

16

)
,

G4(0) = q8

(
− 1

16
+
π2

64
− ln 2

8

)
− q4w2

(
π2

96
+ (12− 7 ln 2)

ln 8

96

)
− iq6w

(
π2

96
+ (−5 + ln 4)

ln 64

96

)
+ w4

(
(24− 5 ln 2)

ln2 2

48
+
π2

48
(−4 + ln 8)− 1

2
ζ(3)

)
+ iq2w3

(
−π

2 ln 2

96
+ (−24 + ln 2)

ln2 2

96
+

3

16
ζ(3)

)
.

C Kepler’s equation at complex eccentricity

The connection between algebraic curves, their critical points and non-analyticity of asso-

ciated integrals has an interesting history [105]. Newton proved in “Principia” that every

algebraically integrable oval must have singular points: all smooth ovals are algebraically

non-integrable (hence the non-analyticity T ∝ a3/2 in the Kepler’s third law). Moreover,
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Figure 17. Left panel: solutions ψ(τ) of Kepler’s equation (C.4) at e = 0.75 for τ ∈ [0, π] (half

a period): “exact” numerical solution of (C.4) (solid black line), series solution (C.5) truncated at

50 terms (dashed red line) and 60 terms (dotted blue line). The rate of convergence is maximal

at τ = π/2. Right panel: the radius of convergence ec(τ) of the series (C.5) as a function of τ for

τ ∈ [0, π/2]. The red dotted line coresponds to Laplace’s value eL. For 0 < e < eL, the series

converges for all τ ∈ [0, 2π].
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Figure 18. Critical points of the Kepler’s curve (C.4) in the complex eccentricity plane. The blue

dots are the critical points at τ = π/2. The points closest to the origin are located at e ≈ ±0.662743i.

They determine the radius of convergence eL of the series (C.5). For τ < π/2, the critical points

are located at a larger distance from the origin. For example, the critical points at τ = π/4 are

shown by red asterisks. They determine the radius of convergence ec(τ), shown in the right panel

of figure 17. With τ → 0, the three critical points merge at e = 1.

the radius of convergence of the series solving Kepler’s equation is determined by the critical

points in the complex eccentricity plane.

Kepler’s law of motion of a planet in an elliptical orbit with eccentricity e, 0 < e < 1,

is usually expressed in a parametric form [106]

r = a (1− e cosψ) , (C.1)

t =
T

2π
(ψ − e sinψ) , (C.2)
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where r is the magnitude of the radius-vector from the centre of the force to the planet,

a is the major semi-axis of the ellipse, T is the period of revolution and ψ ∈ [0, 2π] is

the parameter known in astronomy as the eccentric anomaly. Knowing ψ(t), one can find

the position of the planet in the polar coordinates (r(t), ϕ(t)) as a function of time using

eq. (C.1) and the equation

tan
ϕ

2
=

√
1 + e

1− e
tan

ψ

2
. (C.3)

Introducing τ ≡ 2πt/T , we rewrite eq. (C.2) as

K = τ − ψ + e sinψ = 0 . (C.4)

Eq. (C.4) is known as Kepler’s equation. The task of finding a solution ψ = ψ(τ) pre-

occupied Kepler, Newton, Lagrange, Laplace, Bessel, Cauchy and other great minds and

led to progress in various mathematical disciplines. To quote V.I. Arnold [105]: “This

equation plays an important role in the history of mathematics. From the time of Newton,

the solution has been sought in the form of a series in powers of the eccentricity e. The

series converges when |e| ≤ 0.662743 . . .. The investigation of the origin of this mysterious

constant led Cauchy to the creation of complex analysis. Such fundamental mathematical

concepts and results as Bessel functions, Fourier series, the topological index of a vector

field, and the “principle of the argument” of the theory of functions of a complex variable

also first appeared in the investigation of Kepler’s equation”.

A formal series solution of Kepler’s equation was found by Lagrange [107] who ap-

parently was not concerned with the series convergence (more details can be found in the

book [108])

ψ(τ, e) = τ +

∞∑
n=1

an(τ)
en

n!
, (C.5)

where

an =
dn−1(sinn τ)

dτn−1
. (C.6)

As pointed out by Laplace [109], the series (C.5) converges for all τ ∈ [0, 2π] as long as

|e| ≤ eL ≈ 0.662743 . . .. For e > eL, the series diverges for some values of τ , in a rather

peculiar manner (see figure 17, left panel).

What determines the radius of convergence ec(τ) of the series (C.5)? This problem

was investigated by Cauchy, Puiseux and Serret in a series of papers in 1849-1859 [108]. In

modern language, the answer is the following. Treat Kepler’s equation (C.4) as a complex

analytic curve in the space of ψ ∈ C, e ∈ C, with τ remaining a real parameter. The

critical points of the curve K = 0 obey eq. (C.4) as well as the equation

∂K

∂ψ
= e cosψ − 1 = 0 . (C.7)
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The critical points closest to the origin in the complex eccentricity plane are shown in

figure 18. Their location is parametrised by τ . The radius of convergence ec(τ) is given

by the distance from the origin to the nearest singularity. This distance is a monotonic

function of τ in the interval [0, π] (half a period), with the minimum at τ = π/2 given

by ec(
π
2 ) = eL. Thus, for 0 < e < eL, the series (C.5) converges for all τ ∈ [0, 2π]. The

dependence of the radius of convergence on τ is shown in figure 17 (right panel).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[33] R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent

and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

– 47 –

https://doi.org/10.1103/PhysRevD.94.106011
https://arxiv.org/abs/1603.05344
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.05344
https://doi.org/10.1016/j.physrep.2019.02.003
https://arxiv.org/abs/1802.10441
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.10441
https://doi.org/10.1103/PhysRevLett.110.211602
https://arxiv.org/abs/1302.0697
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0697
https://doi.org/10.1103/PhysRevLett.115.072501
https://arxiv.org/abs/1503.07514
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07514
https://doi.org/10.1103/PhysRevD.92.125011
https://doi.org/10.1103/PhysRevD.92.125011
https://arxiv.org/abs/1509.05046
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.05046
https://doi.org/10.1103/PhysRevD.93.085008
https://doi.org/10.1103/PhysRevD.93.085008
https://arxiv.org/abs/1511.06358
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06358
https://doi.org/10.1103/PhysRevD.94.114025
https://arxiv.org/abs/1608.07558
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.07558
https://arxiv.org/abs/1608.07869
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.07869
https://doi.org/10.1088/1361-6633/aaa091
https://arxiv.org/abs/1707.02282
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.02282
https://doi.org/10.1016/j.physletb.2017.11.059
https://doi.org/10.1016/j.physletb.2017.11.059
https://arxiv.org/abs/1708.01921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.01921
https://doi.org/10.1007/JHEP04(2018)042
https://arxiv.org/abs/1712.02772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.02772
https://doi.org/10.1103/PhysRevD.98.054016
https://arxiv.org/abs/1802.08225
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.08225
https://doi.org/10.1007/JHEP06(2018)059
https://arxiv.org/abs/1803.08058
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08058
https://doi.org/10.1006/aphy.2000.6023
https://doi.org/10.1006/aphy.2000.6023
https://doi.org/10.1103/PhysRevLett.120.231601
https://arxiv.org/abs/1710.00921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.00921
https://doi.org/10.1007/JHEP10(2018)127
https://arxiv.org/abs/1801.00010
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.00010
https://doi.org/10.1007/JHEP10(2018)035
https://arxiv.org/abs/1809.01169
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.01169
https://doi.org/10.1007/JHEP01(2019)048
https://arxiv.org/abs/1811.09641
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.09641
https://doi.org/10.1007/JHEP01(2015)039
https://arxiv.org/abs/1411.1062
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1062


J
H
E
P
1
1
(
2
0
1
9
)
0
9
7

[34] D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence:

Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

[35] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to

hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

[36] M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press,

Cambridge U.K. (2015).

[37] J. Casalderrey-Solana et al., Gauge/string duality, hot QCD and heavy ion collisions,

arXiv:1101.0618 [INSPIRE].

[38] J. Zaanen, Y. Liu, Y. Sun and K. Schalm, Holographic duality in condensed matter physics,

Cambridge University Press, Cambridge U.K. (2015).

[39] S. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, MIT Press, U.S.A.

(2018).

[40] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to

hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

[41] P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72

(2005) 086009 [hep-th/0506184] [INSPIRE].

[42] G. Festuccia and H. Liu, A Bohr-Sommerfeld quantization formula for quasinormal

frequencies of AdS black holes, Adv. Sci. Lett. 2 (2009) 221 [arXiv:0811.1033].

[43] J.F. Fuini, C.F. Uhlemann and L.G. Yaffe, Damping of hard excitations in strongly coupled

N = 4 plasma, JHEP 12 (2016) 042 [arXiv:1610.03491] [INSPIRE].

[44] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in

Contemporary Physics, Springer, Germany (1997).

[45] C. Wall, Singular points of plane curves, Cambridge University Press, Cambridge U.K.

(2004).

[46] P. Kovtun, First-order relativistic hydrodynamics is stable, JHEP 10 (2019) 034

[arXiv:1907.08191] [INSPIRE].

[47] R.J. Walker, Algebraic curves, Princeton University Press, Princeton U.S.A. (1950).
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[109] P. Laplace, Mémoire sur le développement de l’anomalie vrai et du rayon-vecteur elliptique,
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1 Introduction and summary

1.1 Introduction

The two-point function of the stress tensor in Conformal Field Theories is proportional

to a single parameter, the central charge CT . It generally serves as a measure of the

number of degrees of freedom in the theory. In two spacetime dimensions this statement

can be made precise: one can define a c-function which monotonically decreases along

Renormalization Group flows and reduces to the central charge at conformal fixed points [1].

In four spacetime dimensions the situation is a bit more subtle and it is the a-coefficient

in the conformal anomaly which necessarily satisfies aIR ≤ aUV [2]. Nevertheless, in any

unitary conformal field theory a and CT can only differ by a number of O(1) (see [3] for

the original argument and [4–10] for more recent field theoretic proofs.) Hence, to consider

the limit of infinite number of degrees of freedom one needs to take CT to infinity.

In two spacetime dimensions conformal symmetry is described by the infinite-dimen-

sional Virasoro algebra. This symmetry strongly constrains correlators, especially when

combined with the CT → ∞ limit. Of particular interest is the “heavy-heavy-light-light”

correlator, which involves two “heavy” operators with conformal dimension ∆H ∼ CT and

two “light” operators with conformal dimension ∆L ∼ O(1). In this case the contribution

– 1 –
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of the identity operator and all its Virasoro descendants is known as the Virasoro vacuum

block and has been calculated in several ways [11–17]. The Virasoro vacuum block (and

finite CT corrections to it) is instrumental in a variety of settings, such as e.g. the problem

of information loss [18–23] and properties of the Renyi and entanglement entropies [24–27]

(see also [28, 29] for the original applications of large CT correlators in this context).

The heavy-heavy-light-light Virasoro vacuum block exponentiates

〈OH(∞)OL(1)OL(z)OH(0)〉 ∼ e∆LF(µ;z), (1.1)

with F a known function which admits an expansion in powers of µ ∼ ∆H/CT

F(µ; z) =
∑

k

µkF (k)(z). (1.2)

One can consider contributions of various quasi-primaries made out of the stress tensor to

F (k). At k = 1 the only such quasi-primary is the stress tensor itself, while for k = 2 one

needs to sum an infinite number of quasi-primaries quadratic in the stress tensor (double-

stress operators) and labeled by spin. The situation is similar for all other values of k. It

is possible to compute the OPE coefficients of the corresponding quasi-primaries, starting

from the known result for the Virasoro vacuum block. Interestingly, at each order in µ,

F (k) can be written as a sum of particular terms [30]1

F (k)(z) =
∑

{ip}

bi1...ikfi1(z) . . . fik(z),
k

∑

p=1

ip = 2k, (1.3)

where fa(z) = (1− z)a2F1(a, a, 2a, 1− z).

It is an interesting question whether a similar structure appears when the number

of spacetime dimensions d is greater than two. Unlike in two spacetime dimensions, in

addition to spin, multi-stress tensor operators are also labeled by their twist. An interesting

subset of multi-stress tensor operators is comprised out of those with minimal twist. These

operators dominate in the lightcone limit over those of higher twist. In [32] an expression

for the OPE coefficients of two scalars and minimal-twist double-stress tensor operators in

d = 4 was obtained, and the sum was performed to obtain a remarkably simple expression

for the near lightcone O(µ2) term in the heavy-heavy-light-light correlator. It was shown

to have a similar form to (1.3). One may now wonder if the minimal-twist multi-stress

tensor part of the correlator in higher dimensions exponentiates

〈OH(∞)OL(1)OL(z, z̄)OH(0)〉
∣

∣

multi-stress tensors
∼ e∆LF(µ;z,z̄), (1.4)

and whether F(µ; z, z̄) can be expressed as

F(µ; z, z̄) =
∑

k

µkF (k)(z, z̄), (1.5)

1Similar expressions in a slightly different context appeared in [31].

– 2 –
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with

F (k)(z, z̄) = (1− z̄)k(
d−2
2 )

∑

{ip}

bi1...ikfi1(z) . . . fik(z),
k

∑

p=1

ip = k

(

d+ 2

2

)

, (1.6)

and d an even number.

In this paper we investigate this further. We start by assuming that the multi-stress

tensor sector of the heavy-heavy-light-light correlator in the near lightcone regime z̄ → 1

admits an expansion in µ

〈OH(∞)OL(1)OL(z, z̄)OH(0)〉
∣

∣

multi−stress tensors
∼

∑

k

µkG(k)(z, z̄), (1.7)

where each coefficient function G(k)(z, z̄) takes a particular form:

G(k)(z, z̄) =
(1− z̄)k(

d−2
2 )

[(1− z)(1− z̄)]∆L

∑

{ip}

ai1...ikfi1(z) . . . fik(z),
k

∑

p=1

ip = k

(

d+ 2

2

)

. (1.8)

We subsequently use this ansatz to compute the contributions of the multi-stress tensor

operators to the near lightcone correlator and extract the corresponding OPE coefficients.

For even d, the hypergeometric functions in (1.8) reduce to terms which contain at most

one power of log(z) each. Their products contain multi-logs whose coefficients turn out to

be rational functions of z. We use the conformal bootstrap approach initiated in [33] (for a

review and references see e.g. [34–36]) to relate these functions to the anomalous dimensions

and OPE coefficients of the heavy-light double-twist operators in the cross channel. The

ansatz (1.8) has just a few coefficients at any finite k which can be determined completely

from the cross-channel data derived using the (k − 1)th term. This is related to the fact

that all the logm(z) terms with 2 ≤ m ≤ k are completely determined by the anomalous

dimensions and OPE coefficients at O(µk−1). At each step, we obtain an overconstrained

system of equations solved by the same set of ai1...ik . This provides strong support to the

ansatz (1.6). We then proceed to derive the OPE coefficients of the multi-stress tensor

operators with two light scalars from our result. In practice, we complete this program

to O(µ3) in d = 4 and to O(µ2) in d = 6. However the procedure outlined can be easily

generalised to arbitrary order in µ and any even d.

In [37] the authors considered holographic CFTs dual to gravitational theories defined

by the Einstein-Hilbert Lagrangian plus higher derivative terms and a scalar field minimally

coupled to gravity in AdSd+1. Interpreting the scalar propagator in an asymptotically

AdSd+1 black hole background as a heavy-heavy-light-light four point function, enabled

the authors of [37] to extract the OPE coefficients of a few multi-stress tensor operators

from holography (see also [38–40] for related work). Ref. [37] also argued that the OPE

coefficients of the leading, minimal-twist multi-stress operators are universal — they do

not depend on the higher derivative terms in the Lagrangian. Their results agree with

the general expressions obtained in this paper, upon substitution of the relevant quantum

numbers. We do not use holography in our work; our major assumption is (1.8). It would

be interesting to see what is the regime of applicability of our results.
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1.2 Summary of the results

In this paper we argue that for a large class of CFTs (including holographic CFTs) in even

d, the contribution of minimal-twist multi-stress tensors to the correlator in the lightcone

limit can be written as a sum of products of certain hypergeometric functions. To be

explicit, let us define functions fa(z) as

fa(z) = (1− z)a2F1(a, a, 2a; 1− z). (1.9)

The stress tensor contribution to the correlator in the lightcone limit is given in any di-

mension d by

G(1)(z, z̄) ≈
z̄→1

(1− z̄)
d−2
2

[(1− z)(1− z̄)]∆L

∆LΓ
(

d
2 + 1

)2

4Γ(d+ 2)
f d+2

2
(z). (1.10)

At O(µ2) the contribution from twist-four double-stress tensor operators in d = 4 is

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(

∆L

28800(∆L − 2)

)

×
(

(∆L − 4)(∆L − 3)f2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z) +

40

7
(∆L + 1)f1(z)f5(z)

)

. (1.11)

This result agrees with the expression obtained by different methods in [32].

The contribution from twist-six triple-stress tensors in the lightcone limit in d = 4 at

order O(µ3) is

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

(

a117f1(z)
2f7(z) + a126f1(z)f2(z)f6(z)

+ a135f1(z)f3(z)f5(z) + a225f2(z)
2f5(z) + a234f2(z)f3(z)f4(z) + a333f3(z)

3
)

,

(1.12)

where coefficients aijk are given by (3.18).

Furthermore, from (1.12) and (3.18), we find the OPE coefficients of twist-six triple-

stress tensor operators as a finite sum (for details see section 3.4). Two such OPE coef-

ficients for twist-6 triple-stress tensors were calculated holographically in [37] and agree

with our results.

The contribution from twist-eight double-stress tensors to the correlator in the light-

cone limit in d = 6 at order O(µ2) is

G(2)(z, z̄) ≈
z̄→1

(1− z̄)4

[(1− z)(1− z̄)]∆L
×

(

a13f1(z)f7(z) + a26f2(z)f6(z) + a35f3(z)f5(z) + a44f4(z)
2
)

, (1.13)

where amn are given by (4.7). Using (1.13) and (4.7) we find the OPE coefficients for

operators of type : Tµν∂λ1 . . . ∂λ2l
Tαβ : in d = 6 to be equal to:

P
(HH,LL)
8,s = µ2 c∆L

(∆L − 3)(∆L − 4)
(a3∆

3
L + a2∆

2
L + a1∆L + a0), (1.14)

where c and am, given by (4.15), are functions of the total spin s = 4 + 2l.
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In general we propose that the contribution from minimal-twist multi-stress tensor

operators to the correlator in even d at O(µk) in the lightcone limit takes the form

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k(
d
2
−1)

[(1− z)(1− z̄)]∆L

∑

{ip}

ai1...ikfi1(z) . . . fik(z),
k

∑

p=1

ip = k

(

d+ 2

2

)

, (1.15)

where the sum goes over all sets of {ip} with ip ≤ ip+1 and ai1...ik coefficients that need to

be fixed.2

We also check that the stress tensor sector of the near lightcone correlator exponentiates

〈OH(x4)OL(1)OL(z, z̄)OH(0)〉|multi-stress tensors ≈
z̄→1

1

[(1− z)(1− z̄)]∆L
e∆LF(µ;z,z̄), (1.16)

where F(µ; z, z̄) is a rational function of ∆L that remains O(1) as ∆L → ∞. We explicitly

verify this up to O(µ3) in d = 4 and O(µ2) in d = 6.

1.3 Outline

The rest of the paper is organized as follows. In section 2, we establish notation and write

general expressions for the heavy-heavy-light-light correlator in both the direct channel

(T-channel) and the cross channel (S-channel). We further write down the stress tensor

contribution to the correlator in the lightcone limit in arbitrary spacetime dimensions d.

In section 3, we find the contribution of minimal-twist double- and triple-stress tensor

operators in d = 4 in the lightcone limit. We show that this contribution exponentiates

and we write an expression for the OPE coefficients of minimal-twist triple-stress tensors

of spin s with scalar operators, in the form of a finite sum. In section 4, we repeat this

program up to O(µ2) in d = 6. Again we confirm exponentiation and we find a closed form

expression for the OPE coefficients of minimal-twist double-stress tensors of arbitrary spin

with scalar operators. We discuss our results in section 5.

2 Review of heavy-heavy-light-light correlator in the lightcone limit

Below we review the setup of a heavy-heavy-light-light correlator with focus on its be-

haviour in the lightcone limit. We mostly follow [30, 32, 41].

The object that we study is a four-point function of pairwise identical scalars

〈OH(x4)OL(x3)OL(x2)OH(x1)〉. Here OH and OL are scalar operators with scaling di-

mension ∆H ∝ O(CT ) and ∆L ∝ O(1), with CT ≫ 1 the central charge.

Using conformal transformations we define the stress tensor sector of the correlator by

G(z, z̄) = lim
x4→∞

x2∆H

4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉
∣

∣

∣

multi-stress tensors
, (2.1)

2One only needs to sum the linearly independent products of functions fa.
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where z and z̄ are the usual cross-ratios3

u = (1− z)(1− z̄) =
x214x

2
23

x213x
2
24

,

v = zz̄ =
x212x

2
34

x213x
2
24

. (2.2)

In (2.1) the “multi-stress tensor” subscript stands to indicate the contribution of the iden-

tity and all multi-stress tensor operators.

The correlator G(z, z̄) can be expanded in the “T-channel” OL(1)×OL(z, z̄) → Oτ,s as
4

G(z, z̄) = [(1− z)(1− z̄)]−∆L

∑

Oτ,s

P
(HH,LL)
Oτ,s

g(0,0)τ,s (1− z, 1− z̄), (2.3)

where τ = ∆− s and s denote the twist and spin of the exchanged operator, respectively,

and g
(0,0)
τ,s (z, z̄) the conformal block of the primary operator Oτ,s. Moreover, P

(HH,LL)
Oτ,s

are

defined as

P
(HH,LL)
Oτ,s

=

(

−1

2

)s

λOHOHOτ,sλOLOLOτ,s , (2.4)

where λOLOLO and λOHOHO denote the respective OPE coefficients.

We will mainly be interested in the lightcone limit defined by u ≪ 1 or equivalently

z̄ → 1. In this limit the T-channel expansion (2.3) is dominated by minimal-twist operators

as follows from the behaviour of the conformal blocks

G(u, v) ≈
u→0

u−∆L

∑

Oτ,s

P
(HH,LL)
Oτ,s

u
τ
2 (1− v)−

τ
2 f τ

2
+s(v), (2.5)

where τ = ∆− s is the twist and

f τ
2
+s(v) = (1− v)

τ
2
+s

2F1

(τ

2
+ s,

τ

2
+ s, τ + 2s, 1− v

)

(2.6)

is a SL(2;R) conformal block.

For any CFT in d > 2 the leading contribution in the lightcone limit comes from

the exchange of the identity operator with twist τ = 0. Another operator present in any

unitary CFT is the stress tensor with twist τ = d− 2. Its contribution to the correlator is

completely fixed by a Ward identity and

P
(HH,LL)
Tµν

= µ
∆L

4

Γ
(

d
2 + 1

)2

Γ(d+ 2)
, (2.7)

where

µ :=
4Γ(d+ 2)

(d− 1)2Γ
(

d
2

)2

∆H

CT
. (2.8)

3Note that (u, v) are exchanged compared to the more common convention.
4For reasons of convenience, here and in the rest of the paper we refer to G(z, z̄) as the correlator; the

reader should keep in mind that G(z, z̄) is not the full correlator but only its stress tensor sector, as defined

in (2.1).
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As explained in [30], the correlator admits a natural perturbative expansion in µ,

G(z, z̄) =
∑

k

µkG(k)(z, z̄) . (2.9)

Using (2.5) and (2.7), we find the following contribution due to the stress tensor atO(µ)

G(1)(z, z̄) ≈
z̄→1

(1− z̄)
d−2
2

[(1− z)(1− z̄)]∆L

∆LΓ
(

d
2 + 1

)2

4Γ(d+ 2)
(1− z)

d+2
2 2F1

(

d+ 2

2
,
d+ 2

2
; d+ 2; 1− z

)

.

(2.10)

Let us study the correlator perturbatively in µ in the lightcone limit. At k-th order in

that expansion we expect contributions from minimal-twist multi-stress tensor operators

of the schematic form [T k]τ,s =: Tµ1ν1 . . . ∂λ1 . . . ∂λl
Tµkνk :, where the minimal-twist τ and

spin s of these operators are given by

τ = k(d− 2),

s = 2k + l (2.11)

and l an even integer denoting the number of uncontracted derivatives. We moreover define

the product of OPE coefficients for minimal-twist operators at order k as

P
(HH,LL)

[T k]τ,s
= µkP (HH,LL);(k)

τ,s . (2.12)

Compared to the k = 1 case, there exists an infinite number of minimal-twist multi-stress

tensor operators for each value of k > 1. To obtain their contribution to the correlator in

the lightcone limit, we thus have to sum over all these operators.

The correlator can likewise be expanded in the “S-channel” OL(z, z̄) × OH(0) →
Oτ ′,s′ as

G(z, z̄) = (zz̄)−
1
2
(∆H+∆L)

∑

Oτ ′,s′

P
(HL,HL)
Oτ ′,s′

g
(∆HL,−∆HL)
τ ′,s′ (z, z̄). (2.13)

where P
(HL,HL)
Oτ ′,s′

are the products of the corresponding OPE coefficients and ∆HL =

∆H − ∆L. Operators contributing in the S-channel are “heavy-light double-twist oper-

ators” [30, 41]5 that can be schematically written as [OHOL]n,l =: OH∂2n∂lOL :, with

scaling dimension ∆n,l = ∆H +∆L +2n+ l+ γ(n, l) and spin l. In the ∆H → ∞ limit the

d = 4 blocks are given by

g
(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≈

(zz̄)
1
2
(∆H+∆L+2n+γ)

z̄ − z

(

z̄l+1 − zl+1
)

, (2.14)

and similarly in d = 6

g
(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≈

(zz̄)
1
2
(∆H+∆L+2n+γ(n,l))

(z̄ − z)3

(

z̄l+3 − l + 3

l + 1
z̄l+2z1 − (z ↔ z̄)

)

. (2.15)

5This the analogue of light-light double-twist operators that are present in the cross channel of

〈O1O2O2O1〉, with O1 and O2 both light, in any CFT [42, 43].
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The anomalous dimensions γ(n, l) admit an expansion in µ

γ(n, l) =
∞
∑

k=1

µkγ
(k)
n,l . (2.16)

Likewise, we expand the product of the OPE coefficients of the double-twist operators as

P
(HL,HL)
n,l = P

(HL,HL);MFT
n,l

∞
∑

k=0

µkP
(HL,HL);(k)
n,l , (2.17)

with P
(HL,HL);(0)
n,l = 1. The zeroth order OPE coefficients P

(HL,HL);MFT
n,l in the S-channel

are those of Mean Field Theory found in [44]. In the limit ∆H → ∞ they are given by

P
(HL,HL);MFT
n,l ≈ (∆L − d/2 + 1)n(∆L)l+n

n! l! (l + d/2)n
, (2.18)

where (a)n denotes the Pochhammer symbol. For large l we further approximate (2.18) by

P
(HL,HL);MFT
n,l ≈

l∆L−1
(

∆L − d
2 + 1

)

n

n! Γ(∆L)
. (2.19)

To reproduce the correct singularities manifest in the T-channel one has to sum over

infinitely many heavy-light double-twist operators with l ≫ 1. For such operators the

dependence of the OPE data on the spin l for l ≫ 1 is:6

P
(HL,HL);(k)
n,l =

P
(k)
n

l
k(d−2)

2

,

γ
(k)
n,l =

γ
(k)
n

l
k(d−2)

2

. (2.20)

Note that generally the OPE data in the S-channel receives corrections needed to reproduce

double-twist operators in the T-channel; however, since we are interested in the stress tensor

sector we consider only contributions of the form given in (2.20).

3 Multi-stress tensors in four dimensions

In this section we describe how to use crossing symmetry to fix the contribution of minimal-

twist multi-stress tensors to the heavy-heavy-light-light correlator in d = 4 to O(µ3). The

methods described generalize to other even spacetime dimensions, with the six-dimensional

case to O(µ2) described in section 4. In principle the same technology can also be used

to determine the correlator at higher orders. Moreover, the resulting expression can be

decomposed into multi-stress tensor blocks of minimal-twist, allowing us at each order to

read off the OPE coefficients of minimal-twist multi-stress tensors.

6This behavior in the large l limit is different from that of the OPE data of light-light double-twist

operators [42, 43].
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The idea is to study the S-channel expansion in (3.31) in the limit 1− z̄ ≪ z ≪ 1. In

this limit operators with l ≫ 1 and low values of n dominate. Expanding the conformal

blocks in (2.14) for small γ(n, l) and z̄ → 1, the blocks in d = 4 reduce to

(zz̄)−
1
2
(∆H+∆L)g

(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≈

z̄→1
z̄lp(log z, γ(n, l))

zn

1− z
, (3.1)

where p(log z, γ(n, l)) is given by

p(log z, γ(n, l)) = z
1
2
γ(n,l) =

∞
∑

j=0

1

j!

(

γ(n, l) log z

2

)j

. (3.2)

Inserting (3.1) into (3.31) and converting the sum into an integral, we have the following

expression for the correlator in the limit z̄ → 1

G(z, z̄) ≈
z̄→1

∞
∑

n=0

zn

1− z

∫ ∞

0
dlP

(HL,HL)
n,l z̄lp(log z, γ(n, l)). (3.3)

In the following we consider an expansion of (3.3) around z = 0. The key point is to note

that by expanding the anomalous dimensions and OPE coefficients, as in (2.16) and (2.17)

respectively, terms proportional to zp logi z with i = 2, 3, . . . , k and any p at O(µk), in (3.3)

are completely determined in terms of OPE data at O(µk−1). Moreover, using (2.20) one

sees that the integral over the spin l yields

∫ ∞

0
dll∆L−1−kz̄l =

Γ(∆L − k)

(− log z̄)∆L−k
≈

z̄→1

Γ(∆L − k)

(1− z̄)∆L−k
, (3.4)

at O(µk) in the limit z̄ → 1. This correctly reproduces the expected z̄ behaviour of

minimal-twist multi-stress tensors in the T-channel, thus verifying (2.20).

We now make the following ansatz for the correlator

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k

[(1− z)(1− z̄)]∆L

∑

{ip}

ai1...ikfi1(z) . . . fik(z), (3.5)

where the sum goes over all sets of {ip} with ip integers and ip ≤ ip+1 such that
∑k

p=1 ip =

3k and ai1...ik coefficients that need to be fixed. Generally fa(z) are given by

fa(z) = q1,a(z) + q2,a(z) log z, (3.6)

where q(1,2),a(z) are rational functions and the ansatz (3.5) at O(µk) is therefore a poly-

nomial in log z of degree k. By crossing symmetry terms with loga z, with 2 ≤ a ≤ k,

are determined by OPE data at O(µk−1). This is what we will use to determine the

coefficients ai1...ip .
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3.1 Stress tensor

We start by determining the OPE data at O(µ). This is easily obtained by matching (3.3)

at O(µ) with the stress tensor contribution (2.10). Explicitly, multiplying both channels

by (1− z) we have at O(µ)

∆Lf3(z)

120[(1− z)(1− z̄)]∆L−1
=

1

(1− z̄)∆L−1

∞
∑

n=0

Γ(∆L + n− 1)zn

Γ(∆L)n!

(

P (1)
n +

γ
(1)
n

2
log z

)

. (3.7)

Expanding the l.h.s. in (3.7) for z ≪ 1 we find

∆L/120

[(1− z)(1− z̄)]∆L−1
f3(z) =

1

(1− z̄)∆L−1

(

−∆L

4
(3 + log z)

− z
∆L

4
(3(∆L + 1) + (∆L + 5) log z)

− z2
∆L

8
(3∆L(∆L + 3) + (12 + ∆L(∆L + 11)))

+O(z3, z3 log z)

)

, (3.8)

while the r.h.s. is given by

∑∞
n=0

Γ(∆L+n−1)zn

Γ(∆L)n!

(

P
(1)
n + γ

(1)
n

2 log z

)

(1− z̄)∆L−1
=

1

(1− z̄)∆L−1





P
(1)
0 +

γ
(1)
0
2 log z

∆L − 1

+ z

(

P
(1)
1 +

γ
(1)
1

2
log z

)

+ z2
∆L

2

(

P
(1)
2 +

γ
(1)
2

2
log z

)

+O(z3, z3 log z)



 . (3.9)

Comparing (3.8) and (3.9) order-by-order in z one finds the following OPE data

γ
(1)
0 = −∆L(∆L − 1)

2
,

γ
(1)
1 = −∆L(∆L + 5)

2
,

γ
(1)
2 = −12 + ∆L(∆L + 11)

2
, (3.10)
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which agrees with eq. (6.10) in [30], and the OPE coefficients

P
(1)
0 = −3∆L(∆L − 1)

4
,

P
(1)
1 = −3∆L(∆L + 1)

4
,

P
(1)
2 = −3∆L(∆L + 3)

4
. (3.11)

It is straightforward to continue and compute the O(µ) OPE data in the S-channel for any

value of n.

3.2 Twist-four double-stress tensors

From (3.5) we infer the following expression for the contribution due to twist-four double-

stress tensors to the heavy-heavy-light-light correlator in the limit z̄ → 1:

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(

a15f1(z)f5(z) + a24f2(z)f4(z) + a33f
2
3 (z)

)

. (3.12)

By expanding (3.12) further in the limit z ≪ 1 and collecting terms that goes as zp log2 z,

we will match with known contributions obtained from (3.3).

Inserting (3.10) and (3.11) in the S-channel (3.3) fixes terms proportional to zp log2 z up

to O(z2 log2 z). Expanding the ansatz (3.12) and matching with the S-channel reproduces

the result obtained in [32]:

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(

∆L

28800(∆L − 2)

)

×
{

(∆L − 4)(∆L − 3)f2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z) +

40

7
(∆L + 1)f1(z)f5(z)

}

.

(3.13)

Using the O(µ) OPE data in the S-channel for n > 2 in (3.8) and (3.9) one gets an

overconstrained system which is still solved by (3.13). This is a strong argument in favor

of the validity of our ansatz (3.5).

We can now use (3.13) to derive the O(µ2) OPE data in the S-channel by matching

terms proportional to zp logi z as z → 0, with i = 0, 1, by comparing with (3.3). This is

done in the same way it was done for O(µ) OPE data in the S-channel. For example, one

finds the following data for n = 0, 1, 2, 3:

γ
(2)
0 = −(∆L − 1)∆L(4∆L + 1)

8
,

γ
(2)
1 = −∆L(∆L + 1)(4∆L + 35)

8
,

γ
(2)
2 = −(3 + ∆L)(68 + ∆L(69 + 4∆L))

8
,

γ
(2)
3 = −(5 + ∆L)(204 + ∆L(4∆L + 103))

8
, (3.14)
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which agrees with eq. (6.39) in [30], and for the OPE coefficients

P
(2)
0 =

(∆L − 1)∆L(−28 + ∆L(−145 + 27∆L))

96
,

P
(2)
1 =

∆L(−596 + ∆L(−399 + ∆L(−64 + 27∆L)))

96
,

P
(2)
2 =

−1248 + ∆L(−2252 + ∆L(−699 + ∆L(44 + 27∆L)))

96
,

P
(2)
3 =

−3744 + ∆L(−4940 + ∆L(−783 + ∆L(152 + 27∆L)))

96
. (3.15)

It is again straightforward to extract the OPE data for any value of n.

3.3 Twist-six triple-stress tensors

We now consider the multi-stress tensor sector of the correlator at O(µ3) and proceed

similarly to the previous section. From (3.5) we infer the following expression for the

contribution due to twist-six triple-stress tensors:

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

(

a117f
2
1 f7 + a126f1f2f6 + a135f1f3f5

+a225f
2
2 f5 + a234f2f3f4 + a333f

3
3

)

, (3.16)

where fi = fi(z) is given by (2.6).7 Taking the limit 1 − z̄ ≪ z ≪ 1 of (3.16), we fix the

coefficients by matching with terms proportional to zp log2 z and zp log3 z, with p = 0, 1, 2

from (3.3). This requires using the OPE data of the heavy-light double-twist operators

[OHOL]n,l for n = 0, 1, 2 and l ≫ 1 to O(µ2), given in (3.10), (3.11), (3.14) and (3.15).

We find the following solution:

a117 =
5∆L(∆L + 1)(∆L + 2)

768768(∆L − 2)(∆L − 3)
,

a126 =
5∆L(5∆

2
L − 57∆L − 50)

6386688(∆L − 2)(∆L − 3)
,

a135 =
∆L(2∆

2
L − 11∆L − 9)

1209600(∆L − 3)
,

a225 = − ∆L(7∆
2
L − 51∆L − 70)

2903040(∆L − 2)(∆L − 3)
,

a234 =
∆L(∆L − 4)(3∆2

L − 17∆L + 4)

4838400(∆L − 2)(∆L − 3)
,

a333 =
∆L(∆L − 4)(∆3

L − 16∆2
L + 51∆L + 24)

10368000(∆L − 2)(∆L − 3)
. (3.18)

7Note that we omitted a potential term of the form f1f
2
4 . This can be written in terms of f3

3 , f1f3f5,

f2
2 f5 and f2f3f4, as follows from:

f
3
3 (z) =

20

21
f1(z)f3(z)f5(z)−

27

28
f1(z)f

2
4 (z)−

20

21
f
2
2 (z)f5(z) +

55

28
f2(z)f3(z)f4(z). (3.17)
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We can also consider higher values of p and obtain an overconstrained system of equations,

whose solution is still (3.18). Inserting (3.18) into (3.16), we obtain the contribution from

minimal-twist triple-stress tensor operators to the heavy-heavy-light-light correlator in the

lightcone limit.

Note that for ∆L → ∞, the correlator is determined by the exponentiation of the stress

tensor discussed e.g. in [32], i.e.

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

1

3!

(

∆L

120
(1− z)32F1(3, 3; 6; 1− z)

)3

+ · · · , (3.19)

which one indeed obtains by taking ∆L → ∞ of (3.16) with (3.18). Here ellipses denote

terms subleading in ∆L.

By analytically continuing z → e−2πiz and sending z → 1, one can access the large

impact parameter regime of the Regge limit. To do this we use the following property of

the hypergeometric function (see e.g. [4]):

2F1(a, a, 2a, 1− ze−2πi) = 2F1(a, a, 2a, 1− z) + 2πi
Γ(2a)

Γ(a)2
2F1(a, a, 1, z). (3.20)

Using (3.20) the leading term from (3.16) with the coefficients (3.18) in the limit 1− z̄ ≪
1− z ≪ 1 is given by

G(3)(z, z̄) ≈
z̄→1,z→1

1

[(1− z)(1− z̄)]∆L
×

(

−9iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

(

1− z̄

(1− z)2

)3
)

. (3.21)

This agrees with the holographic calculation in a shockwave background at O(µ3) given by

eq. (45) in [39] based on techniques developed in [45–49].

3.4 Exponentiation of leading-twist multi-stress tensors

In d = 2 the heavy-heavy-light-light correlator is determined by the heavy-heavy-light-light

Virasoro vacuum block. This block contains the exchange of any number of stress tensors

and derivatives thereof in the T-channel [11, 12, 17], and therefore all multi-stress tensor

contributions. This block, together with the disconnected part, exponentiates as

〈OH(∞)OL(1)OL(z)OH(0)〉 = e∆LF(z), (3.22)

for a known function F(z) independent of ∆L. It is interesting to ask if something similar

happens for the contribution of the minimal-twist multi-stress tensors in the lightcone limit

of the correlator in higher dimensions. By this we mean whether the stress tensor sector

of the correlator can be written as

G(z, z̄) ≈
z̄→1

1

[(1− z)(1− z̄)]∆L
e∆LF(µ;z,z̄), (3.23)

for some function F(µ; z, z̄) which is a rational function of ∆L and remains O(1) as

∆L → ∞.
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The z̄ dependence implies the following form of F(µ; z, z̄):

F(µ; z, z̄) = µ(1− z̄)F (1)(z) + µ2(1− z̄)2F (2)(z) + µ3(1− z̄)3F (3)(z) +O(µ4). (3.24)

At leading order we observe F (1)(z) = 1
120f3(z), which is just the stress tensor contribution.

At second order we find:

F (2)(z) =
(12− 5∆L)f3(z)

2 + 15
7 (∆L − 8)f2(z)f4(z) +

40
7 (∆L + 1)f1(z)f5(z)

28800(∆L − 2)
. (3.25)

Note that F (2)(z) is independent of ∆L in the limit ∆L → ∞.

To find F (3)(z) we parametrise it as

F (3)(z) =
(

b117f
2
1 (z)f7(z) + b126f1(z)f2(z)f6(z) + b135f1(z)f3(z)f5(z)

+ b225f
2
2 (z)f5(z) + b234f2(z)f3(z)f4(z) + b333f

3
3 (z)

)

. (3.26)

It is clear that for terms which do not contain a factor of f3(z), the coefficients bijk should

satisfy bijk = aijk/∆L. This is not true for terms which contain a factor of f3. Inserting

F (1), F (2) and eq. (3.26) in (3.23), expanding in µ and matching with (3.16) yields

b117 =
a117
∆L

,

b126 =
a126
∆L

,

b225 =
a225
∆L

,

b135 = − 11∆2
L − 19∆L − 18

1209600(∆L − 2)(∆L − 3)
,

b234 =
(∆L − 2)(∆L + 2)

1209600(∆L − 2)(∆L − 3)
,

b333 =
7∆2

L − 18∆L − 24

2592000(∆L − 2)(∆L − 3)
. (3.27)

From (3.25) and (3.27), one finds that the correlator exponentiates to O(µ3) in the sense

described above, i.e. F(µ; z, z̄) is a rational function of ∆L of O(1) as ∆L → ∞.

To leading order in ∆L, exponentiation for large ∆L is a prediction of the AdS/CFT

correspondence. The two-point function of the operator OL in the state created by the

heavy operatorOH is given in terms of the exponential of the (regularized) geodesic distance

between the boundary points in the dual bulk geometry. For details on this, see e.g. [32].

3.5 OPE coefficients of triple-stress tensors

In this section we describe how to decompose the correlator (3.16) into an infinite sum

of minimal-twist triple-stress tensor operators. In order to do this we use the following

multiplication formula for hypergeometric functions [32]:

2F1(a, a; 2a;w)2F1(b, b; 2b;w) =
∞
∑

m=0

p[a, b,m]w2m
2F1[a+b+2m, a+b+2m, 2a+2b+4m,w],

(3.28)
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where

p[a, b,m]

=
2−4mΓ

(

a+ 1
2

)

Γ
(

b+ 1
2

)

Γ
(

m+ 1
2

)

Γ(a+m)Γ(b+m)Γ
(

a+ b+m− 1
2

)

Γ (a+ b+ 2m)
√
πΓ(a)Γ(b)Γ(m+ 1)Γ

(

a+m+ 1
2

)

Γ
(

b+m+ 1
2

)

Γ(a+ b+m)Γ
(

a+ b+ 2m− 1
2

) .

(3.29)

It is useful to note that by using (3.28) we can write a similar formula for the functions fa
defined in (2.6):

fa(z)fb(z) =
∞
∑

m=0

p[a, b,m]fa+b+2m(z), (3.30)

where p[a, b,m] is defined in (3.29). It is now clear that the correlator (3.16) can be written

as a double sum over functions f9+2(n+m). We can thus write the stress tensor sector of

the correlator in the lightcone limit at O(µ3) as

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

∞
∑

n,m=0

c[m,n]f9+2(n+m)(z), (3.31)

with

c[m,n] =
(

a333p[3, 3,m]p[3, 6 + 2m,n] + a117p[1, 7,m]p[1, 8 + 2m,n]

+ a126p[2, 6,m]p[1, 8 + 2m,n] + a135p[3, 5,m]p[1, 8 + 2m,n]

+ a225p[2, 5,m]p[2, 7 + 2m,n] + a234p[3, 4,m]p[2, 7 + 2m,n]
)

, (3.32)

where coefficients aijk are fixed in (3.18).

Comparing (3.31) with (2.5) we see that the contribution at O(µ3) comes from oper-

ators of the schematic form : TαβTγδ∂ρ1 . . . ∂ρ2lTµν :. These operators have τ
2 + s = 9 + 2l,

where s is total spin s = 6+2l. The corresponding OPE coefficients of such operators will

be a sum of all contributions in (3.31) for which n+m = l.

Now, one can write OPE coefficients of operators of type : TαβTγδ∂ρ1 . . . ∂ρ2lTµν : as

P
(HH,LL);(3)
6,6+2l =

l
∑

n=0

c[l − n, n]. (3.33)

Let us write a few of the coefficients explicitly here:

µ3P
(HH,LL);(3)
6,6 = µ3∆L(3024 + ∆L(7500 + ∆L(7310 + 143∆L(25 + 7∆L))))

10378368000(∆L − 2)(∆L − 3)
,

µ3P
(HH,LL);(3)
6,8 = µ3∆L(2688 + ∆L(7148 + ∆L(9029 + 13∆L(464 + 231∆L))))

613476864000(∆L − 3)(∆L − 2)
,

µ3P
(HH,LL);(3)
6,10 = µ3∆L(888 + ∆L(2216 + ∆L(3742 + 17∆L(181 + 143∆L))))

9468531072000(∆L − 3)(∆L − 2)
. (3.34)

We further find that P
(HH,LL);(3)
6,6 and P

(HH,LL);(3)
6,8 agree with the expression obtained

holographically in [37].
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4 Minimal-twist double-stress tensors in six dimensions

In this section we derive the contribution of minimal-twist double-stress tensors to the

heavy-heavy-light-light correlator in the lightcone limit in d = 6. The method is analogous

to the four-dimensional case described in section 3.

From (1.15) we make the following ansatz for the stress tensor sector in the lightcone

limit:

G(2)(z, z̄) ≈
z̄→1

(1− z̄)4

[(1− z)(1− z̄)]∆L
×

(

a17f1(z)f7(z) + a26f2(z)f6(z) + a35f3(z)f5(z) + a44f
2
4 (z)

)

. (4.1)

The S-channel conformal blocks in six dimensions in the limit ∆H → ∞ are given

by (2.15). In the lightcone limit z̄ → 1 operators with l ≫ 1 dominate and the blocks can

be approximated by

(zz̄)−
1
2
(∆H+∆L)g

(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≃

z̄lznp(log z, γ)

(1− z)2
, (4.2)

with p given by (3.2). Replacing the sum in (3.31) with an integral and inserting (4.2)

we have

G(2)(z, z̄) ≈
z̄→1

∞
∑

n=0

zn

(1− z)2

∫ ∞

0
dlP

(HL,HL)
n,l z̄lp(log z, γ). (4.3)

As in d = 4 one finds that terms proportional to logi z with i = 2, 3, . . . , k at O(µk), are

determined by the OPE data at O(µk−1).

At O(µ) we can use the known contribution from the stress tensor exchange (2.10) to

derive the anomalous dimensions γ
(1)
n and the OPE coefficients P

(1)
n just as it was done in

four dimensions. This is done by matching (4.3) order by order in the small z expansion.

Using (2.20) one can integrate over spin. E.g. for n = 0, 1, 2, 3:

γ
(1)
0 = −(∆L − 2)(∆L − 1)∆L

2
,

γ
(1)
1 = −(∆L − 1)∆L(∆L + 10)

2
,

γ
(1)
2 = −∆L(∆L + 2)(∆L + 19)

2
,

γ
(1)
3 = −(∆L + 4)(∆L(∆L + 29) + 30)

2
,

(4.4)

these anomalous dimensions agree with eq. (6.10) in [30]. Similarly, we obtain the following

OPE coefficients:

P
(1)
0 = −11(∆L − 2)(∆L − 1)∆L

12
,

P
(1)
1 = −(∆L − 1)∆L(11∆L + 38)

12
,
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P
(1)
2 = −∆L(22 + ∆L(87 + 11∆L))

12
,

P
(1)
3 = −∆L(202 + ∆L(147 + 11∆L))

12
.

(4.5)

It is straightforward to continue to higher values of n.

Plugging (4.4) into (4.3) in the limit 1− z̄ ≪ z ≪ 1 one finds the following contribution

to the terms proportional to zp log2 z
(1−z̄)∆L−4 at O(µ2):

p = 0 :
∆2

L(∆L − 1)(∆L − 2)

32(∆L − 3)(∆L − 4)
,

p = 1 :
∆2

L(∆L − 1)(∆L + 6)(∆L + 16)

32(∆L − 3)(∆L − 4)

p = 2 :
∆2

L(∆
4
L + 46∆3

L + 599∆2
L + 1898∆L + 1056)

64(∆L − 3)(∆L − 4)
,

p = 3 :
∆7

L + 72∆6
L + 1651∆5

L + 13344∆4
L + 40180∆3

L + 41952∆L
2 + 14400∆L

192(∆L − 3)(∆L − 4)
. (4.6)

It is now straightforward to expand the ansatz (4.1) in the limit 1 − z̄ ≪ z ≪ 1, collect

terms that behave as zp log2 z and compare them to the S-channel (4.6). This determines

the coefficients:

a17 =
∆L(∆L + 1)(∆L + 2)

64064(∆L − 3)(∆L − 4)
,

a26 =
∆L(−18 + (−12 + ∆L)∆L)

133056(∆L − 3)(∆L − 4)
,

a35 =
∆L(∆L − 6)(∆L − 15)

302400(∆L − 3)(∆L − 4)
,

a44 =
∆L(∆L − 5)(∆L − 6)

627200(∆L − 3)
. (4.7)

One can consider higher values of p; eq. (4.7) is still the solution of the corresponding

overconstrained system.

The double-stress tensor contribution to the correlator in the lightcone limit z̄ → 1 is

therefore given by

G(2)(z, z̄) ≈
z̄→1

(1− z̄)4

[(1− z)(1− z̄)]∆L

∆L

(∆L − 3)(∆L − 4)

(

1

627200

)

×
{

(∆L − 4)(∆L − 5)(∆L − 6)f2
4 (z) +

56(∆L − 6)(∆L − 15)

27
f3(z)f5(z)

+
1400(∆L(∆L − 12)− 18)

297
f2(z)f6(z) +

1400(∆L + 1)(∆L + 2)

143
f1(z)f7(z)

}

.

(4.8)
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Using (4.8) one can deduce the second order OPE data in the S-channel. The anoma-

lous dimensions at this order can then be compared to the holographic calculations in [30]

to reveal perfect agreement.

4.1 Exponentiation of minimal-twist multi-stress tensors in six dimensions

It is interesting to study whether the stress tensor sector of the correlator exponentiates in

the lightcone limit

G(z, z̄) ≈
z̄→1

1

[(1− z)(1− z̄)]∆L
e∆LF(µ;z,z̄), (4.9)

with F(µ; z, z̄) a rational function of ∆L that is of O(1) as ∆L → ∞. In the lightcone limit

F(µ; z, z̄) admits an expansion

F(µ; z, z̄) = µ(1− z̄)2F (1)(z) + µ2(1− z̄)4F (2)(z) +O(µ3). (4.10)

At O(µ) one finds F (1)(z) =
Γ( 6

2
+1)

2

4Γ(6+2) f4(z) from the stress tensor contribution. Using (4.8)

we find

F (2)(z) = b17f1(z)f7(z) + b26f2(z)f6(z) + b35f3(z)f5(z) + b44f
2
4 (z) (4.11)

with

b17 =
a17
∆L

,

b26 =
a26
∆L

,

b35 =
a35
∆L

,

b44 = − 4∆2
L − 31∆L + 60

313600(∆L − 3)(∆L − 4)
. (4.12)

From (4.12) we indeed see that the stress tensor sector of the correlator exponentiates at

least to O(µ2) in d = 6.

4.2 OPE coefficients of minimal-twist double-stress tensors

In this section we decompose the stress tensor sector of the correlator (4.1) into a sum over

minimal-twist double-stress tensors. The discussion follows that of section 3.5.

Applying (3.30) to (4.8), we find that a + b + 2l = 8 + 2l which is τ
2 + s + 2l, with

τ = 8 and s = 4 being the twist and spin of the simplest minimal-twist double-stress tensor

operator : TµνTρλ :. Non-zero value of l thus gives the contribution from operators of higher

spin of the form : Tµν∂ρ1 . . . ∂ρ2lTδλ :, where no indices are contracted and only even spin

operators contribute to the OPE between identical scalars.

It is now straightforward to write down the OPE coefficients for minimal-twist double-

stress tensors in six dimensions. E.g. one finds for the lowest-spin operators the following
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OPE coefficients:

µ2P
(HH,LL);(2)
8,4 = µ2∆L(600 + ∆L(1394 + ∆L(677 + 429∆L)))

269068800(∆L − 3)(∆L − 4)
,

µ2P
(HH,LL);(2)
8,6 = µ2∆L(30 + ∆L(187 + ∆L(−120 + 143∆L)))

3430627200(∆L − 3)(∆L − 4)
,

µ2P
(HH,LL);(2)
8,8 = µ2∆L(60 + ∆L(1382 + ∆L(−1857 + 1105∆L)))

657033721344(∆L − 3)(∆L − 4)
. (4.13)

For general spin we have (s = 4 + 2l)

P
(HH,LL)
8,s = µ2 c∆L

(∆L − 3)(∆L − 4)
(a3∆

3
L + a2∆

2
L + a1∆L + a0) (4.14)

where

c =
2−9−2s√πs(s+ 2)Γ(s− 1)

(s− 3)(s+ 4)(s+ 6)(s+ 8)(s+ 10)Γ(s+ 7
2)
,

a3 = (s− 2)s(s+ 2)(s+ 5)(s+ 7)(s+ 9),

a2 = −3(2880 + s(s+ 7)(−276 + s(s+ 7)(−56 + s(s+ 7)))),

a1 = 2(25920 + s(s+ 7)(3276 + s(s+ 7)(−80 + s(s+ 7)))),

a0 = 675× 27. (4.15)

5 Discussion

In this paper we consider the minimal-twist multi-stress tensor contributions to the heavy-

heavy-light-light correlator of scalars in large CT CFTs in even spacetime dimensions. We

provide strong evidence for the conjecture that all such contributions are described by

the ansatz (1.15) and determine the coefficients by performing a bootstrap procedure. In

practice this is completed for twist-four double-stress tensors and twist-six triple-stress

tensors in four dimensions as well as twist-eight double-stress tensors in six dimensions. In

principle it is straightforward to use our technology to determine the coefficients ai1...ik to

arbitrarily high order in µ; this must be related to the universality of the minimal-twist

OPE coefficients.

In two dimensions the heavy-heavy-light-light Virasoro vacuum block exponentiates

[see eq. (1.1)], with F(µ; z) independent of ∆L. In higher dimensions we observe a similar

exponentiation with F(µ; z, z̄) a rational function of ∆L that remains O(1) as ∆L → ∞.

It would be interesting to see whether it is possible to write down a closed-form recursion

formula for F(µ; z, z̄). Solving such a recursion formula would give a higher-dimensional

analogue of the two-dimensional Virasoro vacuum block.

An immediate technical question concerns CFTs in odd spacetime dimensions. We

could not immediately generalize our results in this context — the ansatz in eq. (1.15) fails
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in odd dimensions. However, the heavy-light conformal blocks are known [41], so a similar

approach should be feasible.

It would be interesting to study the regime of applicability of our results. We have not

used holography; our main assumption is the ansatz (1.8), known to be true for holographic

CFTs to O(µ2) in d = 4 [32]. Yet, our general expressions for the OPE coefficients agree

with the OPE coefficients computed in some holographic examples [37]. What happens

once one goes beyond holographic CFTs — will our ansatz need to be modified by the

inclusion of terms suppressed by the gap or the central charge? We leave these questions

for subsequent investigations.

Another interesting direction concerns the study of the bulk scattering phase-shift in

the presence of a black hole background. In the context of higher dimensional CFTs, this

problem was first considered in [30] where the gravitational expression was given to all

orders in µ and the CFT computation was performed to O(µ). Subsequently, O(µ2) was

discussed in [41]. In [39] the O(µ) contribution was exponentiated to yield the scattering

phase shift in the presence of a shock-wave geometry. A CFT computation of the phase

shift to all orders in µ is still lacking. This would in principle involve understanding Regge

theory beyond the leading order. It will be interesting to see whether the results of this

article could be helpful in this regard.
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1 Introduction and summary

1.1 Introduction

Conformal field theories (CFTs) are the harmonic oscillators of our times; besides being

significantly more amenable to analytic study compared to generic quantum field theories,

they also provide a non-perturbative definition of gravity in negatively curved spacetimes

via the AdS/CFT correspondence [1–3]. Their robust structure bears many important

consequences which have come to light in recent years due to the development of conformal

bootstrap techniques following [4–7]. This is especially pronounced in spacetime dimension

d > 2 which this article is focused upon.

Conformal symmetry imposes highly non-trivial constraints on the theory. Two- and

three-point correlation functions are fixed up to a handful of position-independent pa-

rameters [8]. Four- and higher-point functions [9–11] are determined as long as the CFT

spectrum of local operators and the respective OPE coefficients are known (for recent tech-

niques see the original works of [12, 13] and the modern approach developed in [14, 15]).

While computing four-point correlation functions is possible in principle, the amount

of necessary data makes it difficult in practice. Consistency principles, such as crossing

symmetry and unitarity, come to rescue. In fact, the idea of the conformal bootstrap

programme is to use these consistency conditions to place restrictions on the CFT data

(spectrum of operators and OPE coefficients) and, if possible, solve the theory completely.

One way to make use of crossing symmetry is to consider kinematic regimes which

enhance the contribution of a limited number of operators in a given channel, and are

typically reproduced by an infinite number of operators in another channel. A standard

example is the lightcone limit where the initially spacelike separation between two operators

is allowed to become null. Focusing on the lightcone limit of a four-point correlation

function allows one to deduce the existence of double-twist operators at large spin in any

CFT in dimensions d > 2 [16, 17].

A natural assumption when considering an arbitrary CFT is the existence of a stress

tensor. The two-point function of the stress-tensor depends on a single parameter, the

central charge CT , which serves as a rough measure of the number of degrees of freedom

in the theory. In this paper, we will consider local CFTs with a large number of degrees of

freedom, a.k.a. large central charge CT � 1.

Specifically, our goal herein is to study the contribution of the stress-tensor sector in

scalar CFT correlation functions, 〈O1O1O2O2〉. What we mean here by the “stress-tensor

sector” is the set of operators composed out of stress-tensors and derivatives,1 schematically

denoted by : Tµ1ν1 · · ·Tµp−1νp−1∂
2n∂λ1 · · · ∂λqTµpνp :. Such operators are present in large CT

CFTs, but their contribution to a correlation function is of particular interest in CFTs

with holographic duals since it is related to the contribution of multiple gravitons in the

corresponding Witten diagrams.

We consider the four-point function 〈OHOLOLOH〉 of two pairwise identical scalar

operators labeled as “light, L”, and “heavy, H”, depending on whether their conformal

dimension scales with the number of degrees of freedom, ∆H ∝ O(CT ), or not, ∆L ∝ O(1).

1The identity operator is considered as the first trivial entry of the stress-tensor sector.

– 2 –
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The reason this correlator is well-suited to the exploration of the stress-tensor sector is

the presence of an additional parameter, µ, proportional to the ratio of the conformal

dimension of the heavy operators with the central charge, µ ∝ ∆H/CT . This parameter

naturally counts the number of stress-tensors in a composite multi-stress tensor operator.

To distinguish the contribution of such operators from the full HHLL correlator in what

follows we will denote it as G(z, z̄), i.e.,

G(z, z̄) = 〈OH(∞)OL(1)OL(z, z̄)OH(0)〉
∣∣∣
multi-stress tensors

. (1.1)

Note that from G(z, z̄) in (1.1) one can read off the OPE coefficients of multi-stress tensor

operators to leading order in 1/CT but exact in ∆L.

The HHLL correlator is interesting in its own right. In the limit of a large number of

degrees of freedom, it is related to the thermal two-point function 〈OLOL〉T — as long as

the average energy of the canonical ensemble is roughly equal to the conformal dimension

of the heavy operator. When the CFT is additionally characterised by an infinite gap,

∆gap → ∞, in the spectrum of primary single-trace (non-composite) operators with spin

greater than two, the situation is even more interesting. In this case, the theory has

an equivalent description in terms of a classical, local gravitational theory in AdS [18].

Such a CFT is called holographic as a minimally defined realisation of the holographic

paradigm. When a holographic CFT is considered at finite temperature, the appropriate

gravitational description is that of an asymptotically AdS black hole [19]. In this case, the

HHLL correlator, in a certain kinematical regime, is expected to describe the scattering of

a light particle by the black hole in the dual gravitational theory [20].

To study the stress tensor sector of the HHLL correlator we will employ crossing sym-

metry and the conformal bootstrap. Specifically, we consider the lightcone limit where the

separation between the two OL operators is close to being null. In this limit, the domi-

nant contribution in the direct channel (T-channel, where the pairwise identical operators

approach each other) is coming from multi-stress tensor operators with low twist (where

the twist τ is the difference between the conformal dimension ∆ and the spin s of a given

operator, τ = ∆− s). In the cross-channel (S-channel), an infinite number of double-twist

operators of the schematic form : OH∂µ1 . . . ∂µl∂
2nOL : with l� 1 should be considered.

In [21], it was argued through a holographic calculation that the OPE coefficients of

minimal-twist multi-stress tensors are “universal” in the sense that they are completely

fixed in terms of just two CFT parameters: ∆L and 1
CT

(see also [22]). In [23], a formula

for the OPE coefficients of the minimal twist double-stress tensors was written. In [24], it

was shown how one can, at least in principle, evaluate the contribution of the stress tensor

sector to all orders in µ in arbitrary even number of spacetime dimensions d in the lightcone

limit. The strategy there was based on proposing an ansatz for G with a few undetermined

parameters and then fixing these parameters by means of the lightcone bootstrap. In the

process, one can extract the OPE coefficients of all multi-stress tensors with minimal twist.

A different approach based on the Lorentzian inversion formula [25, 26] for extracting the

minimal-twist double- and triple-stress tensor OPE coefficients was used in [27]2 and also

appears to confirm the universality of the minimal-twist stress tensor sector.

2One should exercise caution when using the Lorentzian inversion formula in the context of the HHLL

correlator as the Regge behaviour of the correlator has not been rigorously established.
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In this paper, we investigate the stress tensor sector further by considering contri-

butions from multi-stress tensors with non-minimal twist. Our goal is to determine the

structure of the correlator to subleading orders in the lightcone limit and extract the rel-

evant OPE coefficients. Once more, we motivate an ansatz similar to the one successfully

describing the leading lightcone behavior of G(z, z̄) and show that most of the parameters

in the ansatz can be fixed using lightcone bootstrap. A few parameters are, however, left

undetermined and might depend on the details of the theory. They correspond to the OPE

coefficients of multi-stress tensors with spin s = 0, 2. Our approach can be employed to

study the stress-tensor sector to arbitrary orders in µ and (1− z̄). In this paper, we com-

pleted this program for the O(µ2) subleading, subsubleading and subsubsubleading terms

as well as the O(µ3) subleading and subsubleading terms.

We also investigate a complementary approach to computing the OPE data of the

stress tensor sector using the Lorentzian inversion formula. As noted earlier, the validity

of the Lorentzian inversion formula for the HHLL correlator has not been rigorously es-

tablished. It is however natural to expect that it is applicable in the large-CT and small-µ

expansion, as long as a Regge bound is observed. Here we assume that the Regge behavior

of the correlator is given by σ−k at O(µk) in the large-CT limit, which is consistent with

the behaviour of the scattering phase shift from a black hole (or a massive star) computed

classically in AdS. We then find that whenever the Lorentzian inversion formula is applica-

ble, i.e., for operators of spin s > k + 1 at O(µk), OPE data extracted with both methods

are in perfect agreement. However, already at order O(µ3), our ansatz combined with the

crossing symmetry or Lorentzian inversion formula is more powerful than the Lorentzian

inversion formula alone. For instance, while the former procedure allows us to determine

the OPE coefficient of a triple-stress tensor with spin s = 4 and twist τ = 8, this is not

possible using solely the Lorentzian inversion formula.

Finally, we explore the possibility of obtaining the unknown OPE data from the gravi-

tational description of the CFT. We use the phase shift calculation in the dual gravitational

theory. The scattering phase shift — acquired by a highly energetic particle travelling in

the background of the AdS black hole — was first computed in the Regge limit in Einstein

gravity in [20]. To explicitly see how the presence of higher derivative gravitational terms

affects the OPE data, we work in Einstein-Hilbert + Gauss-Bonnet gravity with small

Gauss-Bonnet coupling λGB. To combine the gravitational results with those of the CFT

in the lightcone regime, we follow the approach first discussed in [23] and further developed

in [24], which involves an analytic continuation of the lightcone results around z = 0 and

an expansion around z = 1. Matching terms in the correlator obtained from the gravita-

tional calculation to those obtained from the CFT enables us to completely fix the stress

tensor sector of the HHLL correlator up to the OPE coefficients of the spin-0 multi-stress

tensors which are left undetermined. Non-universality is manifest by the presence of the

Gauss-Bonnet coupling in the expressions for the OPE coefficients.

1.2 Summary of results

In this paper, we show that the stress tensor sector of the HHLL correlator in d = 4 can

be written in terms of products of fa(z) functions defined as

fa(z) = (1− z)a2F1(a, a, 2a, 1− z). (1.2)
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The stress tensor sector of the HHLL correlator can be expanded in powers of µ and

then in powers of (1− z̄) as

G(z, z̄) =

∞∑
k=0

µkG(k)(z, z̄) =
1

((1− z)(1− z̄))∆L
+

∞∑
k=1

∞∑
m=0

µk(1− z̄)−∆L+k+mG(k,m)(z),

(1.3)

where we have explicitly separated the contribution of the identity operator.3 We explain

how one can write G(k,m)(z) for arbitrary k and m.

We write an ansatz for each G(k,m)(z) with a few unknown coefficients and fix all, but

a handful of them, via lightcone bootstrap. The undetermined coefficients correspond to

the OPE coefficients of spin-0 and spin-2 exchanged operators. We further show that in

holographic CFTs one can use the phase shift computed in the dual gravitational theory to

reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors

with spin zero.

Operators of non-minimal twist give a subleading contribution in the lightcone limit,

1 − z̄ � 1, which can be expressed as a sum of products of the functions fa(z) (times an

appropriate power of (1 − z̄)). This form is similar to the contribution of minimal-twist

multi-stress tensor operators considered in [24]. While our method can be used to address

the contribution of operators of arbitrary twist, here we focus on determining the specific

contributions of operators with twist τ = 6, 8, 10, at O(µ2) and τ = 8, 10, at O(µ3).

At O(µ), the only operator that contributes to the stress tensor sector of the correlator

is the stress tensor and its contribution is completely fixed by conformal symmetry. In d = 4

its exact (to all orders in z̄) contribution is given by

G(1)(z, z̄) =
1

[(1− z)(1− z̄)]∆L−1

∆L

120(z̄ − z)

(
f3(z)− f3(z̄)

)
. (1.4)

At O(µ2), the leading contribution in the lightcone limit, due to twist-four double-

stress tensors, was evaluated in [23]

G(2,0)(z) =
1

(1− z)∆L

(
∆L

28800(∆L − 2)

)
×[

(∆L − 4)(∆L − 3)f2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z) +

40

7
(∆L + 1)f1(z)f5(z)

]
. (1.5)

We show that the subleading contribution in the lightcone limit, due to twist-four and

twist-six double-stress tensors, is given by

G(2,1)(z) =
1

(1− z)∆L

[(
3− z

2(1− z)

)(
a33f3(z)2 + a24f2(z)f4(z) + a15f1(z)f5(z)

)
+ (b14f1(z)f4(z) + c16f1(z)f6(z) + c25f2(z)f5(z) + c34f3(z)f4(z))

]
, (1.6)

with coefficients amn and cmn given in (3.14). The coefficient b14 is non-universal and

generically depends on the details of the theory. It corresponds to the OPE coefficient of

3The contribution of the identity operator is denoted with k = 0.
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twist-six double-stress tensor with spin s = 2

b14 = P
(2)
8,2 , (1.7)

obtained holographically in [21] and here, via the gravitational phase-shift calculation

in (5.48).

The subsubleading contribution in the lightcone limit, due to twist-four, six and eight

double-stress tensor operators, is

G(2,2)(z) =
1

(1− z)∆L

((
z(2z − 7) + 11

6(z − 1)2

)
(a33f

2
3 + a24f2f4 + a15f1f5)

+

(
2− z
1− z

)
(b14f1f4 + c16f1f6 + c25f2f6 + c34f3f4) + (d17f1f7 + d26f2f6

+ d35f3f5 + d44f
2
4 + e15f1f5 + g13f1f3)

)
, (1.8)

with coefficients dmn given in (3.19). By fa we mean fa(z) which we will use for brevity.

The coefficients g13 and e15 are theory dependent and are related to the OPE coefficients

of twist-eight double-stress tensors with spin s = 0, 2 by

g13 = P
(2)
8,0 ,

e15 = P
(2)
10,2 −

5

252
P

(2)
8,0 . (1.9)

These coefficients were also obtained by a gravitational computation in [21]. Here we have

used the calculation of the phase shift in the dual gravitational theory to determine the

OPE coefficient of the spin-2 operator, P
(2)
10,2, in (5.51).

The subsubsubleading contribution in the lightcone limit, due to double-stress tensors

with twists τ = 4, 6, 8, 10, is given by

G(2,3)(z) =
1

(1− z)∆L

((
z((13− 3z)z − 23) + 25

12(1− z)3

)
(a33f

2
3 + a24f2f4 + a15f1f5)

+

(
1

(1− z)2
+

1

1− z
+

9

10

)
(b14f1f4 + c16f1f6 + c25f2f5 + c34f3f4)

+

(
1

1− z
+

3

2

)
(d17f1f7 + d26f2f6 + d35f3f5 + d44f

2
4 + e15f1f5 + g13f1f3+)

+ g13f3 + (h18f1f8 + h27f2f7 + h36f3f6 + h45f4f5 + j16f1f6 + i14f1f4)

)
,

(1.10)

with hmn given in (3.25). The non-universal coefficients here are i14 and j16 which are

related to the OPE coefficients of twist-ten double-stress tensor operators with spin s = 0, 2

i14 = P
(2)
10,0,

j16 = P
(2)
12,2 −

2

99
P

(2)
10,0. (1.11)
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The OPE coefficient P
(2)
12,2 is determined in (5.52) using the phase shift calculation in the

dual gravitational theory. Non-universality is manifest through dependence on the Gauss-

Bonnet coupling.

Using the results above, we also extract the OPE coefficients P
(2)
∆,s of double-stress

tensors of given twist. For τ = 6:

P
(2)
10+2`,4+2` =

√
π2−4`−17Γ(2n+ 7)

(`+ 4)(`+ 5)(`+ 6)(2`+ 1)(2`+ 3)(2`+ 5)Γ
(
2`+ 13

2

)
× ∆L

(∆L − 3)(∆L − 2)
(a1,`∆

3
L + b1,`∆

2
L + c1,`∆L + d1,`), (1.12)

where a1,`, b1,`, c1,`, d1,` can be found in (3.17). For τ = 8:

P
(2)
12+2`,4+2` =

√
π∆L2−4`−19Γ(2`+ 7)

3(∆L − 4)(∆L − 3)(∆L − 2)(`+ 4)(`+ 5)

×
a2,`∆

4
L + b2,`∆

3
L + c2,`∆

2
L + d2,`∆L + e2,`

(`+ 6)(`+ 7)(2`+ 1)(2`+ 3)(2`+ 5)Γ
(
2`+ 15

2

) , (1.13)

with a2,`, b2,`, c2,`, d2,` and e2,` given in (3.22). Similarly for τ = 10:

P
(2)
14+2`,4+2` =

√
π2−4`−22Γ(2`+ 9)

5(2`+ 1)(2`+ 3)(2`+ 5)(2`+ 7)Γ
(
2`+ 17

2

)
×

∆L(∆L + 1)(a3,`∆
4
L + b3,`∆

3
L + c3,`∆

2
L + d3,`∆L + e3,`)

(`+ 5)(`+ 6)(`+ 7)(`+ 8)(∆L − 5)(∆L − 4)(∆L − 3)(∆L − 2)
, (1.14)

with a3,`, b3,`, c3,`, d3,` and e3,` expressed in terms of ∆L in (3.28). Note that in all of

these formulas ` ≥ 0 and, therefore, the OPE coefficients of operators with spin s = 0, 2

are not included here. It appears that at O(µ2), the OPE coefficients of all operators with

spin s ≥ 4 are universal in the sense that they only depend on ∆L and CT . On the other

hand, the OPE coefficients of double-stress tensors with s = 0, 2 are non-universal.

At O(µ3), the leading contribution of twist-six triple-stress tensors in the lightcone

limit, was computed in [24]

G(3,0)(z) =
1

(1− z)∆L

(
a117f1(z)2f7(z) + a126f1(z)f2(z)f6(z) + a135f1(z)f3(z)f5(z)

+ a225f2(z)2f5(z) + a234f2(z)f3(z)f4(z) + a333f3(z)3
)
, (1.15)

where the coefficients aijk can be found in (4.2).

The subleading contribution to the correlator is due to twist-eight and twist-six triple-

stress tensors

G(3,1)(z) =
1

(1− z)∆L

((
2− z
1− z

)
(a117f

2
1 f7 + a126f1f2f6 + a135f1f3f5 + a225f

2
2 f5

+ a234f2f3f4 + a333f
3
3 ) + (b116f6f

2
1 + c118f8f

2
1 + c145f4f5f1 + c127f2f7f1

+ c244f2f
2
4 + c334f

2
3 f4 + c235f2f3f5 + c226f

2
2 f6)

)
, (1.16)
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with bijk and cijk given in (B.1). Terms proportional to aijk come from the subleading

contribution due to the minimal-twist triple-stress tensors in (1.15). Note that all of these

coefficients are non-universal, since they depend on b14 from the O(µ2) result. Accordingly,

no OPE coefficients of non-minimal-twist triple-stress tensors are universal.

A similar story holds for the subsubleading contribution to the correlator at O(µ3).

This is due to multi-stress tensors with twist six, eight and ten and takes the following form

G(3,2)(z) =
1

(1− z)∆L

((
144z2 − 448z + 464

160(z − 1)2

)
(a117f

2
1 f7 + a126f1f2f6 + a135f1f3f5

+ a225f
2
2 f5 + a234f2f3f4 + a333f

3
3 ) +

(
1

1− z
+

3

2

)
(b116f6f

2
1 + c118f8f

2
1 + c145f4f5f1

+ c127f2f7f1 + c244f2f
2
4 + c334f

2
3 f4 + c235f2f3f5 + c226f

2
2 f6) + (d117f

2
1 f7 + e115f

2
1 f5

+ g119f
2
1 f9 + g128f1f2f8 + g155f1f

2
5 + g227f

2
2 f7 + g236f2f3f6 + g245f2f4f5 + g335f

2
3 f5

+ g344f3f
2
4 )

)
,

(1.17)

with d117 and gijk in (C.1)–(C.3) and e115 in (5.56).

We further explain how one can write an ansatz for the correlator at arbitrary order in

µ and the lightcone expansion. All unknown coefficients in the ansatz, except those that

correspond to OPE coefficients of spin-0 and spin-2 operators, can be fixed by means of the

lightcone bootstrap. We further show that in holographic CFTs one can use the phase shift

computed in the dual gravitational theory to reduce the set of undetermined parameters

to the OPE coefficients of multi-stress tensors with spin zero. Our results for these OPE

coefficients precisely match those in [21] whenever available in the latter.

The OPE coefficients of multi-stress tensors can also be calculated using the Lorentzian

inversion formula as in [27]. In order to determine for which operators the formula can be

applied, one should consider the behavior of the correlation function in the Regge limit. The

Regge behavior of the correlator at O(µk) is 1/σk, implying that the Lorentzian inversion

formula can be used to extract the OPE coefficients of the operators with spin s > k + 1.

Accordingly, already at O(µ3), fixing the relevant OPE coefficients by combining an ansatz

with the lightcone bootstrap allows one to determine more OPE data compared to those

obtained with the sole use of the Lorentzian inversion formula. We explicitly check that it

is not possible to extract the OPE coefficient of a triple-stress tensor with spin s = 4 and

twist τ = 8 using the Lorentzian inversion formula. Note, however, that this coefficient is

completely determined in this article (where an ansatz is additionally employed).

1.3 Outline

This paper is organized as follows. In section 2, we set up the notation and review the

S- and T-channel expansions of the HHLL correlator. In section 3, we analyze the stress

tensor sector of the correlator at O(µ2), where we compute the subleading, subsubleading

– 8 –
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and subsubsubleading contributions in the lightcone expansion. We also compute the OPE

coefficients of double-stress tensors with twist τ = 6, 8, 10 and spin s > 2. In section 4, we

analyze the stress tensor sector of the correlator at O(µ3), where we explicitly calculate the

subleading and subsubleading contributions in the lightcone expansion. In section 5, we

investigate the Gauss-Bonnet dual gravitational theory and give additional evidence for the

universality of the OPE coefficients of minimal-twist multi-stress tensors using the phase

shift calculation. Furthermore, we calculate the OPE coefficients of double- and triple-

stress tensors with spin s = 2 (up to undetermined spin zero data). In section 6, we show

how one can use the Lorentzian inversion formula in order to extract the OPE coefficients of

double-stress tensors with twist τ = 4, 6. We discuss our results in section 7. Appendix A

contains certain relations that products of fa functions satisfy, while appendices B and C

contain explicit expressions for the coefficients which determine the correlator in subleading

and subsubleading lightcone order at O(µ3). Several OPE coefficients of twist-eight triple-

stress tensors are listed in appendix D. Finally, in appendix E we clarify the relationship

between the scattering phase shift as defined in [20] and the deflection angle.

2 Review of near lightcone heavy-heavy-light-light correlator

In this section, we review the procedure for extracting information about the stress tensor

sector of a four-point correlation function between two pairwise identical scalars OH , OL,

with scaling dimensions ∆H ∝ O(CT ) and ∆L ∝ O(1), respectively, via the lightcone boot-

strap. We closely follow ref. [24]. Using conformal transformations to fix the positions of

three of the operators at 0, 1, x4 →∞, we define the stress tensor sector of the correlator by

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉

∣∣∣
multi-stress tensors

, (2.1)

where (z, z̄) are the invariant cross-ratios given by

zz̄ =
x2

14x
2
23

x2
13x

2
24

,

(1− z)(1− z̄) =
x2

12x
2
34

x2
13x

2
24

. (2.2)

2.1 T-channel expansion

The notion of the stress-tensor sector comes from expanding the correlator in the T-channel

defined as OL(z, z̄)×OL(1)→ Oτ,s:

G(z, z̄) =
1

[(1− z)(1− z̄)]∆L

∑
Oτ,s

P
(HH,LL)
Oτ,s g(0,0)

τ,s (1− z, 1− z̄), (2.3)

where s and τ = ∆ − s denote the spin and the twist of the exchanged primary operator

Oτ,s. P (HH,LL)
Oτ,s denotes the product of OPE coefficients

P
(HH,LL)
Oτ,s =

(
−1

2

)s
λOHOHOτ,sλOLOLOτ,s (2.4)

and g
(0,0)
τ,s (1− z, 1− z̄) the corresponding conformal block.
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Consider the T-channel expansion (2.3) in d = 4. Conformal blocks in d = 4 are given

by [28]

g(0,0)
τ,s (1− z, 1− z̄) =

(1− z)(1− z̄)

z̄ − z

(
fβ

2
(z)f τ−2

2
(z̄)− fβ

2
(z̄)f τ−2

2
(z)
)
, (2.5)

with conformal spin, β = ∆ + s, and

fa(z) = (1− z)a2F1(a, a, 2a, 1− z). (2.6)

In the lightcone limit, defined by z̄ → 1 and z fixed, the leading contribution to the

conformal blocks (2.5) comes from the first term in parenthesis in (2.5)

g(0,0)
τ,s (1− z, 1− z̄) = (1− z̄)

τ
2

(
fβ

2
(z) +O((1− z̄))

)
. (2.7)

From (2.7) it is clear that the operators with the lowest twist in the T-channel dominate the

correlator in the lightcone limit. In any unitary CFT in d = 4 the operator with the lowest

twist is the identity operator with twist τ = 0. Another operator with low twist present

in any local CFT is the stress tensor operator with τ = 2. In particular, the exchange of

the stress tensor is completely fixed since the product of the relevant OPE coefficients is

determined by Ward identities

P
(HH,LL)
Tµν

= µ
∆L

120
, (2.8)

where

µ =
160

3

∆H

CT
. (2.9)

The central charge CT is defined via the two-point function of the stress tensor

〈Tµν(x)Tρσ(0)〉 =
CT

Ω2
d−1x

2d
Iµν,ρσ(x), (2.10)

where

Iµν,ρσ(x) =
1

2
(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x))− 1

d
ηµνηρσ,

Iµν = ηµν − 2
xµxν
x2

, Ωd−1 =
2πd/2

Γ
(
d
2

) . (2.11)

Note that the only single-trace primaries with twist equal to or lower than that of the

stress tensor are scalars O with dimension 1 ≤ ∆O ≤ 2, or conserved currents with twist

τ = 2. In a theory without supersymmetry there is no a priori reason for the contributions

of these operators, even if they exist, to be enhanced by a factor of ∆H , so generically we

expect them to be subleading in CT →∞ limit.4

4Interestingly, in [29] it is conjectured that OPE coefficients λφψψ of operators φ with conformal dimen-

sion ∆φ � ∆gap and ψ with conformal dimension ∆ψ, such that ∆φ � ∆ψ � C#>0
T , scale as λφψψ ∝

∆ψ√
CT

.

Note however that here we are working in different regime, as ∆H ∝ O(CT ).

– 10 –



J
H
E
P
0
7
(
2
0
2
0
)
0
1
9

The stress tensor sector of the correlator (2.1) admits a perturbative expansion in µ

given by

G(z, z̄) =

∞∑
k=0

µkG(k)(z, z̄), (2.12)

where the cases k = 0 and k = 1 correspond to the exchange of the identity and the stress

tensor, respectively. For higher k we expect “multi-stress tensors” to contribute to G(z, z̄);

the minimal-twist multi-stress tensor primaries are of the schematic form

[T k]τk,min,s =: Tµ1ν1 . . . Tµk−1νk−1
∂λ1 . . . ∂λ2`

Tµkνk : , (2.13)

with twist τk,min and spin s given by

τk,min = 2k,

s = 2k + 2`, (2.14)

with ` an integer. Since we are interested in the four-point function of pairwise identical

scalar operators, only multi-stress tensor operators with even spin give a nonvanishing

contribution. At O(µ2), the contribution of these operators was explicitly calculated in [23].

Following that, it was shown in [24] how one can write the contributions of these operators

at arbitrary order in the µ-expansion, in the lightcone limit (1−z̄)� 1, using an appropriate

ansatz and lightcone bootstrap. We briefly review this procedure here since the contribution

from non-minimal-twist operators is obtained in a similar manner.

At O(µk), there are infinitely many minimal-twist multi-stress tensors with twist 2k

according to (2.14) which are distinguished by their conformal spin β = ∆ + s given by

β = 6k + 4` with ` = 0, 1, 2, . . .. Inserting the leading behavior of the blocks (2.7) in (2.3)

one finds

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k

[(1− z)(1− z̄)]∆L

∑
`=0

P
(k)
∆(`),s(`)fβ(`)

2

(z), (2.15)

with

µkP
(k)
∆(`),s(`) = P

(HH,LL)

[Tk]τ,s(`)
, (2.16)

where ∆(`) = τ+β
2 , τ = 2k, s(`) = 2k + 2` and conformal spin β = 6k + 4`. Here ≈

z̄→1

means that only the leading contribution as z̄ → 1 is kept. It was shown in [24] that the

infinite sum in (2.15) takes a particular form

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k

[(1− z)(1− z̄)]∆L

∑
{ip}

ai1...ikfi1(z) . . . fik(z),
k∑
p=1

ip = 3k, (2.17)

with ip being integers and ai1...ik are coefficients that can be determined via lightcone

bootstrap. Furthermore, using an identity for the product of two fa functions (eq. (A.1)

in [23]) one can express the G(k)(z, z̄) in the form of (2.15) to read off the OPE coefficients

for the exchange of minimal-twist multi-stress tensors of arbitrary conformal spin.
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In this paper, we want to consider multi-stress tensors with non-minimal twist. These

operators are obtained by contracting indices in (2.13) either between the derivatives or

between the operators. At O
(
µk
)

there exist operators [T k]τk,m,s with twist

τk,m = τk,min + 2m, (2.18)

for any non-negative integer m. For m 6= 0, these operators provide subleading contribu-

tions to the correlator in the lightcone limit. To consider these subleading contributions it

is convenient to expand G(k)(z, z̄) from (2.12) as

G(k)(z, z̄) =
∞∑
m=0

(1− z̄)−∆L+k+mG(k,m)(z), (2.19)

where G(k,m)(z) comes from operators of twists τk,m and less.

For illustration, let us consider the case k = 2 with m = 1. There exist two infinite

families of operators with twist τ2,1 = 6 of the schematic form

O6,2`1+2 ∼ : Tµκ∂λ1 . . . ∂λ2`1
T κν : ,

O′6,2`2+4 ∼ : Tµν∂λ1 . . . ∂λ2`2
∂2Tρσ : . (2.20)

These two families share the same twist and spin for `1 = `2 + 1. Hence, they are indis-

tinguishable for `1 ≥ 1 at order 1/CT in the large CT expansion. A single operator stands

out; it corresponds to `1 = 0 and is of the schematic form : TµαT
α
ν :. Note that : TµαT

α
ν :

has minimal conformal spin β = 10, among the ones in (2.20), since β`1 = β`2+1 = 10+4`1,

for `1 ≥ 1.

Let us now move on to the case k = 2 and m = 2. Here, there are three infinite

families O8,s, O′8,s and O′′8,s with conformal spin 8+4`1, 12+4`2 and 16+4`3, respectively.

Schematically, these families can be represented as

O8,2`1 ∼ : Tαβ∂λ1 . . . ∂λ2`1
Tαβ : ,

O′8,2`2+2 ∼ : Tµα∂λ1 . . . ∂λ2`2
∂2Tαν : ,

O′′8,2`3+4 ∼ : Tµν∂λ1 . . . ∂λ2`3
(∂2)2Tρσ : . (2.21)

Notice once more that the infinite families are indistinguishable for conformal spin β ≥ 16.

Here, operators with β = 8, 12 stand out. The operator with β = 8 is of the schematic

form : TαβT
αβ :. For β = 12, there are two indistinguishable operators of the schematic

form : Tµα∂
2Tαν : and : Tαβ∂µ∂νT

αβ :.

The same holds for m ≥ 3 (and τ ≥ 10) since there is no other independent way to

contract stress tensor indices. The discussion above generalizes straightforwardly to O(µk)

with k + 1 number of infinite families at high enough twist.

2.2 S-channel expansion

The correlator (2.1) can also be expanded in the S-channel defined asOL(z, z̄)×OH(0)→Oτ ′,s′ ,

G(z, z̄) = (zz̄)−
1
2

(∆H+∆L)
∑
Oτ ′,s′

P
(HL,HL)
Oτ ′,s′

g
(∆HL,−∆HL)
τ ′,s′ (z, z̄), (2.22)
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where P
(HL,HL)
Oτ ′,s′

denotes the product of OPE coefficients in the S-channel, ∆HL = ∆H−∆L,

and g
(∆HL,−∆HL)
τ ′,s′ (z, z̄) are the relevant conformal blocks. Operators contributing in the S-

channel expansion are “heavy-light double-twist” operators [20, 30]5 of the schematic form

[OHOL]n,l =: OH(∂2)n∂µ1 . . . ∂µlOL :, with conformal dimensions ∆ = ∆H+∆L+2n+l+γ.

The conformal blocks for these heavy-light double-twist operators in d = 4 are given by

g
(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) =

(zz̄)
1
2

(∆H+∆L+2n+γn,l)

z̄ − z

(
z̄l+1 − zl+1

)
+O

(
1

∆H

)
. (2.23)

The anomalous dimensions and the product of OPE coefficients for heavy-light double-twist

operators admit an expansion in powers of µ:

γn,l =

∞∑
k=1

µkγ
(k)
n,l ,

P
(HL,HL)
n,l = P

(HL,HL);MFT
n,l

∞∑
k=0

µkP
(HL,HL);(k)
n,l , (2.24)

where P
(HL,HL);MFT
n,l are the Mean Field Theory coefficients [31], which can be found by

matching with the exchange of the identity in the T-channel, and P
(HL,HL);(0)
n,l = 1. Explic-

itly, in d = 4 and for ∆H � 1,

P
(HL,HL);MFT
n,l =

(∆L − 1)n(∆L)l+n
n! l! (l + 2)n

+O
(

1

∆H

)
, (2.25)

where (a)n is the Pochhammer symbol defined by (a)n = Γ(a+n)
Γ(n) .

We begin by briefly reviewing the calculation in the lightcone expansion, i.e. due to

the multi-stress tensors in the T-channel. Inserting the blocks (2.23) in the S-channel

expansion (2.22) one finds that

G(z, z̄) =
∞∑
n=0

(zz̄)n

z̄ − z

∫ ∞
0

dlP
(HL,HL)
n,l (zz̄)

1
2
γn,l(z̄l+1 − zl+1), (2.26)

where the sum was approximated by an integral over l. Expanding the OPE data in (2.26)

according to (2.24) and noting that

(zz̄)
1
2
γn,l =

∞∑
j=0

1

j!

(
γn,l log(zz̄)

2

)j
, (2.27)

it follows that terms proportional to logi z at O(µk), with i = 2, 3, . . . k, in (2.26) are

determined by OPE data at O(µk−1). These terms can therefore be matched with the

T-channel in order to fix the coefficients in the ansatz.

5In the lightcone limit of 〈O1O2O2O1〉, with O1,O2 both light, it was found in [16, 17] that the there

exists “light-light double-twist” operators [O1O2]n,l =: O1(∂2)n∂µ1 . . . ∂µlO2 : for l� 1. These are found by

matching with the identity exchange in the S-channel. The same is true for the heavy-heavy-light-light case.
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In [24], the leading contribution of the OPE data of heavy-light double-twist operators

as l→∞, together with the leading contribution of the conformal blocks as z̄ → 1, was used

to determine the minimal-twist contributions in the stress tensor sector of the T-channel.

This paper extends that analysis by considering subleading corrections in the lightcone

expansion and therefore probing non-minimal-twist contributions in the T-channel. In

particular, the S-channel OPE data have the following dependence on the spin l as l→∞:

γ
(k)
n,l =

1

lk

∞∑
p=0

γ
(k,p)
n

lp
,

P
(HL,HL);(k)
n,l =

1

lk

∞∑
p=0

P
(HL,HL);(k,p)
n

lp
, (2.28)

which is necessary in order to reproduce the correct power of (1 − z̄) as z̄ → 1. This can

be seen by substituting the expansion of (2.25) in the large-l limit

P
(HL,HL);MFT
n,l = l∆L

(
(∆L − 1)n
n!Γ(∆L)l

+
(2n(∆L − 2) + ∆L(∆L − 1))(∆L − 1)n

2(n!)Γ(∆L)l2

+O
(

1

l3

))
, (2.29)

and (2.28) in (2.26) which result in integrals of the form∫ ∞
0

dlz̄ll∆L−m−1 =
Γ(∆L −m)

(− log z̄)∆L−m
, (2.30)

where m is a positive integer. Expanding (2.30) for z̄ → 1, the correct z̄-behavior of the

stress tensor sector in the T-channel is reproduced from the S-channel.

3 Double-stress tensors in four dimensions

In this section, we analyze the stress tensor sector of the HHLL correlator at O(µ2) in

d = 4. The operators that contribute at this order in the T-channel are the double-stress

tensors. Here, we investigate the subleading contributions that are coming from families

of operators with nonminimal twist, specifically, τ2,1 = 6, τ2,2 = 8 and τ2,3 = 10, according

to (2.18).

The dominant contribution in the lightcone limit at O(µ2) was calculated in [23]. It

comes from the operators with minimal twist τ2,min = 4 and they are of the schematic

form : Tµν∂α1 . . . ∂α2`
Tρσ :. These operators have conformal dimension ∆ = 8 + 2` and spin

s = 4 + 2`. The result is [23]

G(2,0)(z) =
1

(1− z)∆L

(
∆L

28800(∆L − 2)

)
×[

(∆L − 4)(∆L − 3)f2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z) +

40

7
(∆L + 1)f1(z)f5(z)

]
,

(3.1)

where fa(z) = (1− z)a2F1(a, a, 2a, 1− z).
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3.1 Twist-six double-stress tensors

Twist-six double-stress tensors contribute at O(µ2) and at subleading order in the lightcone

expansion ∼ (1− z̄)−∆L+3 as z̄ → 1. As shown in this section, this contribution again takes

a particular form with a few undetermined coefficients which, except for a single one, can

be fixed using lightcone bootstrap. The undetermined data is shown to correspond to

a single OPE coefficient due to the exchange of the twist-six and spin-two double-stress

tensor : Tµ
ρTρν :.

We will now motivative an ansatz for the subleading contribution to the stress tensor

sector at O(µ2). Let us focus first on corrections due to the leading lightcone contribution

of twist-four double-stress tensors. These corrections originate from subleading terms in

the lightcone expansion of the conformal blocks in (2.7). Note however that they are purely

kinematical and do not contain any new data. Explicitly, the subleading corrections to the

blocks of twist-four double-stress tensors are given by

g
(0,0)
4,s (1− z, 1− z̄) ≈

z̄→1
(1− z̄)2

(
1 + (1− z̄)

(
3− z

2(1− z)

)
+O

(
(1− z̄)2

))
fβ

2
(z)

− (1− z̄)s+3

(
1 + (1− z̄)

(
s+ 2

2
+

1

1− z

)
+O((1− z̄)2)

)
f1(z).

(3.2)

Since we are interested in the subleading contribution, i.e. terms that behave as (1 − z̄)3

as z̄ → 1 in (3.2), only the first line in (3.2) needs to be considered. (Note that s ≥ 4 for

minimal-twist double-stress tensors.)

Next, consider the contribution of twist-six double-stress tensors. Recall that the

form of the minimal-twist double-stress tensors’ contribution to (3.1) can be motivated by

decomposing products of the type fa(z)fb(z) in terms of the lightcone conformal blocks.

This decomposition is explicitly given by [23]:

fa(z)fb(z) =

∞∑
`=0

p(a, b, `)fa+b+2`(z), (3.3)

where

p(a, b, `) =
2−4`Γ

(
a+1

2

)
Γ
(
b+1

2

)
Γ
(
`+1

2

)
Γ(a+`)Γ(b+`)Γ

(
a+b+`−1

2

)
Γ(a+b+2`)

√
πΓ(a)Γ(b)Γ(`+1)Γ

(
a+`+1

2

)
Γ
(
b+`+1

2

)
Γ(a+b+`)Γ

(
a+b+2`−1

2

) . (3.4)

Using the leading behavior of the conformal blocks (3.2) in the lightcone limit, it

was found that a + b + 2` should be identified with β
2 = ∆+s

2 . In order to reproduce

twist-six double-stress tensors of the form : Tµν∂
2∂α1 . . . ∂α2`

Tρσ : we should therefore

consider products fafb with a+ b = 7. Likewise, to take into account operators of the form

: Tµβ∂α1 . . . ∂α2`
T βν : we include products fafb with a+ b = 5.

From the arguments above, we make the following ansatz for the subleading correction

in the lightcone expansion due to double-stress tensors:

G(2,1)(z) =
1

(1− z)∆L

[(
3− z

2(1− z)

)(
a33f3(z)2 + a24f2(z)f4(z) + a15f1(z)f5(z)

)
+ (b14f1(z)f4(z) + b23f2(z)f3(z) + c16f1(z)f6(z) + c25f2(z)f5(z) + c34f3(z)f4(z))

]
, (3.5)
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where bij , cij are coefficients that will be determined using lightcone bootstrap and encode

the contribution from twist-six double-stress tensors. Once bij and cij are determined, one

can use the decomposition in (3.3) to read off the OPE coefficients of twist-six double-stress

tensors with any given spin. Moreover, aij in (3.5) are coefficients that can be read off from

the minimal-twist contribution in (3.1) and do therefore not contain any new information.

We proceed with the S-channel calculation to fix the unknown coefficients in (3.5). Let

us first mention that the products of fa(z) functions in the second line of (3.5) are not

linearly independent as one can see from (A.1), so we set b23 = 0. Moreover, the coefficients

aij must be the same as in (3.1). We will momentarily keep them undetermined to have

an extra consistency check of our calculation.

In the S-channel we have double-twist operators of the form : OH∂2n∂lOL : with

conformal dimension ∆ = ∆H +∆L+2n+ l+γn,l. The relevant anomalous dimensions γn,l
and OPE coefficients are given in (2.24) and (2.28) (k = 2 in this case). In the lightcone

limit, the dominant contribution comes from operators with large spin l, l� n. The mean

field theory OPE coefficients are given by (2.29). The conformal blocks of these operators

in the limit 1− z̄ � z � 1 are

g
(∆HL,−∆HL)
n,l (z, z̄) ≈ (zz̄)

∆H+∆L+γ(n,l)

2

z̄ − z
znz̄l+n+1. (3.6)

We first need to fix the OPE data at O(µ). Coefficients γ
(1,p)
n and P

(1,p)
n can be

determined for every p and n by matching the S-channel correlator with the correlator in

the T-channel at O(µ). This is just the stress tensor block times its OPE coefficient and

it is known for arbitrary z and z̄. As we saw earlier

(z̄ − z)G(1)(z, z̄) =
1

[(1− z)(1− z̄)]∆L−1

∆L

120
(f3(z)− f3(z̄)) . (3.7)

Expanding (3.7) near z̄ → 1 leads to

(z̄ − z)G(1)(z, z̄) =
(1− z̄)

((1− z)(1− z̄))∆L

(
−∆L

(
3

4
(1 + z) +

1 + z(z + 4)

4(1− z)
log(z)

)

−
∞∑
p=1

∆L(p− 2)(p− 1)(1− z)

4p(p+ 1) (p+ 2)
(1− z̄)p

)
. (3.8)

On the other hand, we expand the integrand of (2.26) up to the O(µ), integrate this

expansion over l, and then expand in the lightcone limit z̄ → 1 to obtain a result of

the form

(z̄ − z)G(1)(z, z̄) =
1

(1− z̄)∆L−1

∞∑
p=0

( ∞∑
n=0

rn,p(z)zn(1− z̄)p

)
. (3.9)

The functions rn,p(z) can be explicitly calculated. Here rn,0(z), rn,1(z) and rn,2(z) are
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given by

rn,0(z) =
Γ(∆L + n− 1)

2Γ(∆L)Γ(n+ 1)

(
2P (1,0)

n + log(z)γ(1,0)
n

)
,

rn,1(z) =
Γ(∆L + n− 1)

2Γ(∆L)Γ(n+ 1)(∆L − 2)

(
2(P (1,0)

n + P (1,1)
n )− (∆L − 2)γ(1,0)

n

+ log(z)(γ(1,0)
n + γ(1,1)

n )
)
,

rn,2(z) =
Γ(∆L + n− 1)

2(∆L − 2)(∆L − 3)Γ(∆L)Γ(n+ 1)

(
2(∆L + n− 1)P (1,0)

n + 2(∆L + n)P (1,1)
n

+ 2P (1,2)
n − 1

2
(∆L − 3)(∆Lγ

(1,0)
n + 2γ(1,1)

n ) + log(z)((∆L + n− 1)γ(1,0)
n

+ (∆L + n)γ(1,1)
n + γ(1,2)

n )

)
. (3.10)

Similarly, one can calculate any rn,p(z) for arbitrary p. In each rn,p(z) the z-dependence

enters only through a single logarithmic term as in (3.10). In order to extract the OPE

data we match (3.8) and (3.9) and obtain the following relations

∞∑
n=0

znrn,0(z) = − ∆L

(1− z)∆L

(
3

4
(1 + z) +

1 + z(z + 4)

4(1− z)
log(z)

)
,

∞∑
n=0

znrn,p(z) = − ∆L

(1− z)∆L

(p− 2)(p− 1)(1− z)

4p(p+ 1)(p+ 2)
, (3.11)

for p ≥ 1. To solve these equations, we start from the first line, expand the right-hand side

in z → 0 limit and match term by term on both sides. From terms with log(z) we extract

the γ
(1,0)
n and from terms without log(z), we extract the P

(1,0)
n . We move on to p = 1 case,

where we again expand the right-hand side of the second line in (3.11) in z → 0 limit.

Using γ
(1,0)
n and P

(1,0)
n , we extract γ

(1,1)
n and P

(1,1)
n . Straightforwardly, one can continue

this process and extract OPE data for any value of p.

By proceeding with this calculation to high enough values and p one can notice that

there is a simple expression for γ
(1,p)
n given by

γ(1,p)
n = (−1)p+1

(
1

2
(∆L − 1)∆L + 3n2 − 3(1−∆L)n

)
, (3.12)

for all p ≥ 0 and n ≥ 0. Note that for p = 0 this expression agrees with the one in [27].

There is no similar expression for P
(1,p)
n so we list results for first p-s:

P (1,0)
n = −3

4
(∆L − 1)∆L −

3∆Ln

2
,

P (1,1)
n = 3(n− 1)n− 1

4
∆L (∆L (∆L + 6n− 6) + 6(n− 4)n+ 5) ,

P (1,2)
n =

1

8
(∆L(∆L(∆2

L + 8n∆L + 6n(3n− 1)− 13) + 2(n(3n(2n− 5)− 25) + 6))

− 12n(2n2 + n− 3)),
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P (1,3)
n =

1

120
(180n(n(3− (n− 3)n) + 5)− 234)∆L + 3n(n3 + n2 − 2)

+
1

120
∆2
L(−∆L(∆L (11∆L + 90n− 20) + 90n(3n− 1) + 55)

+ 90(3− 4n)n2 + 280). (3.13)

After the calculation of the OPE data at O(µ), one can fix the coefficients in the

ansatz (3.5) by expanding the integrand of (2.26) up to O(µ2) and then integrating the

obtained expression over l. The result of the integration is expanded near z̄ → 1 and we

collect the term that behaves as (1 − z̄)−∆L+3. It depends on z, n and OPE data P
(k,p)
n

and γ
(k,p)
n for k = 1, 2 and p = 0, 1, but we are interested only in the part of this term that

contains log2(z). This part only depends on OPE data at O(µ), so it will be completely

determined. We collect terms that behave as (1 − z̄)−∆L+3 log2(z)zm. By expanding the

ansatz (3.5) near z → 0 we can collect terms that behave as log2(z)zm and by matching

these to the ones calculated through S-channel, we obtain a system of linear equations for

the coefficients in the ansatz. This system will be over-determined by taking m to be large

enough. Solving it for m ≤ 20, we obtain

a33 =
(∆L − 4)(∆L − 3)∆L

28800(∆L − 2)
,

a24 =
(∆L − 8)∆L

13440(∆L − 2)
,

a15 =
∆L(∆L + 1)

5040(∆L − 2)
,

c16 =
25

396
b14 +

∆L (∆L (∆L (83− 7∆L) + 158) + 108)

3193344 (∆L − 3) (∆L − 2)
,

c25 = − 1

12
b14 +

∆L (∆L (∆L (∆L + 19)− 146)− 108)

1451520 (∆L − 3) (∆L − 2)
,

c34 =
(∆L − 4) ∆L (11 (∆L − 4) ∆L − 27)

2419200 (∆L − 3) (∆L − 2)
. (3.14)

As expected, the coefficients amn are identical to those in (3.1). We are left with one

undetermined coefficient. This is perhaps not surprising since we know from [21] that the

OPE coefficients of the subleading twist multi-stress tensor operators are not universal.

This non-universality is introduced in our correlator through coefficient b14. One can check

that after inserting (3.14) to (3.5) the term that multiplies the unknown coefficient b14

corresponds to the lightcone limit of the conformal block of the operator with dimension

∆ = 8 and spin s = 2. We thus conclude that b14 is the OPE coefficient of : TµαT
α
ν :,

b14 = P
(2)
8,2 . (3.15)

Now, using (3.3) we can write the T-channel OPE coefficients for the remaining double-

stress tensor operators with twist τ2,1 = 6 and conformal spin ∆ + s ≥ 14. Explicitly, these
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are found to be given by

P
(2)
10+2`,4+2` =

√
π2−4`−17Γ(2`+ 7)

(`+ 4)(`+ 5)(`+ 6)(2`+ 1)(2`+ 3)(2`+ 5)Γ
(
2`+ 13

2

)
× ∆L

(∆L − 3)(∆L − 2)
(a1,`∆

3
L + b1,`∆

2
L + c1,`∆L + d1,`), (3.16)

where

a1,` = (`+ 2)(2`+ 9)(`(2`+ 13) + 9),

b1,` = 144− 2`(2`+ 13)(`(2`+ 13) + 12),

c1,` = `(2`+ 13)(`(2`+ 13) + 33) + 558,

d1,` = 216. (3.17)

Here ` ≥ 0 and P
(2)
∆,s is the sum of OPE coefficients of all operators with conformal dimension

∆ and spin s. There is no way to distinguish operators with the same quantum numbers

∆ and s at this level in the large CT expansion. This type of degeneracy occurs for each

conformal spin greater than 10 for twist τ2,1 = 6. Also, perfect agreement between (3.16)

and all the OPE coefficients of double-stress tensor operators of twist τ2,1 = 6 and spin

s > 2 calculated in [21] is observed. Note that P
(2)
8,2 can not be found from (3.16) by setting

` = −1, this would not agree with the result in [21]. In section 6 we rederive (3.16) using

the Lorentzian inversion formula.

3.2 Twist-eight double-stress tensors

We follow the same logic as in the previous section in order to write the subsubleading part

of the stress tensor sector of the HHLL correlator in the lightcone limit at O(µ2). This part

scales as (1 − z̄)−∆L+4. Here, we include contributions coming from operators with twist

τ2,2 = 8. These operators can be grouped in three families and they are schematically writ-

ten as : Tµν(∂2)2∂α1 . . . ∂α2`
Tρσ : with ∆ = 12 + 2` and s = 4 + 2`, : Tµβ∂

2∂α1 . . . ∂α2`
T βν :

with ∆ = 10 + 2` and s = 2 + 2` and finally : Tβγ∂α1 . . . ∂α2`
T βγ : with ∆ = 8 + 2` and

s = 2`. Subtleties with regard to the contributions of the different families are discussed

in section 2.1.

Once more, we need to include the contributions of lower twist operators, i.e. by

expanding their conformal blocks as z̄ → 1 up to order (1− z̄)4 and collect the additional

z dependence. Accordingly, we write the following ansatz

G(2,2)(z) =
1

(1− z)∆L

((
z(2z − 7) + 11

6(z − 1)2

)
(a33f

2
3 + a24f2f4 + a15f1f5)

+

(
2− z
1− z

)
(b14f1f4 + c16f1f6 + c25f2f6 + c34f3f4)

+ (d17f1f7 + d26f2f6 + d35f3f5 + d44f
2
4 + e15f1f5 + e24f2f4 + e33f

2
3

+ g13f1f3 + g22f
2
2 )

)
, (3.18)
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where fa means fa(z). Coefficients amn and cmn are already calculated, while b14 is un-

determined from the bootstrap. The linear dependence between certain products of fa(z)

functions (for more details see appendix A, in particular (A.2)) allows us to set three

coefficients to zero, e.g., g22 = 0, e33 = 0 and e24 = 0.

To fix the unknown coefficients in (3.18) we match terms that behave as (1−z̄)−∆L+4zm

· log2 z from the S-channel calculation of the correlator to terms with the same behavior

in (3.18) for small z. For the S-channel calculation, we need the OPE data at O(µ) up

to p = 2, given by (3.12) and (3.13). We obtain an over-constrained system of linear

equations, whose solution is

d17 =
9e15

143
+

5g13

4004
+

∆L (∆L (∆L (∆L (232− 17∆L) + 1009) + 1908) + 1008)

115315200 (∆L − 4) (∆L − 3) (∆L − 2)
,

d26 = −e15

12
+

5g13

1386
− ∆L (∆L ((∆L − 7) ∆L (11∆L − 179) + 3636) + 2736)

119750400 (∆L − 4) (∆L − 3) (∆L − 2)
,

d35 = − g13

180
+

∆L (∆L ((∆L − 7) ∆L (37∆L − 13) + 1332) + 3312)

108864000 (∆L − 4) (∆L − 3) (∆L − 2)
,

d44 =
(∆L − 6) ∆L (∆L + 2)

9408000 (∆L − 2)
. (3.19)

The undetermined coefficients g13 and e15 are related to the T-channel OPE coefficients

P
(2)
8,0 and P

(2)
10,2 by the following relations

g13 = P
(2)
8,0 ,

e15 = P
(2)
10,2 −

5

252
P

(2)
8,0 . (3.20)

Here P
(2)
8,0 is the T-channel OPE coefficient of the operator of the schematic form : TαβT

αβ :,

while P
(2)
10,2 is related to the OPE coefficients of the operators : Tαβ∂µ1∂µ2T

αβ : and :

Tµα∂
2Tαν : which have the same quantum numbers ∆ and s and are thus indistinguishable

at this order in large CT expansion. After inserting (3.20) and (3.19) into (3.18) one can

check that both P
(2)
8,0 and P

(2)
10,2 will be multiplied by the relevant lightcone conformal blocks.

Exactly as in the previous section, we can now extract the OPE coefficients P
(2)
∆,s for

operators with twist τ2,2 = 8 and ∆ = 12 + 2`, s = 4 + 2`, for ` ≥ 0,6

P
(2)
12+2`,4+2` =

√
π∆L2−4`−19Γ(2`+ 7)

3(∆L − 4)(∆L − 3)(∆L − 2)(`+ 4)(`+ 5)

×
a2,`∆

4
L + b2,`∆

3
L + c2,`∆

2
L + d2,`∆L + e2,`

(`+ 6)(`+ 7)(2`+ 1)(2`+ 3)(2`+ 5)Γ
(
2`+ 15

2

) , (3.21)

6For each ∆ = 12 + 2` and s = 4 + 2` with ` ≥ 0 there is a triple degeneracy, because all three families

of operators with twist τ2,2 = 8 will be mixed.
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where

a2,` = `(2`+ 15)(`(2`+ 15)(`(2`+ 15) + 59) + 1084) + 6012,

b2,` = 14004− 2`(2`+ 15)(`(2`+ 15)(`(2`+ 15) + 32)− 131),

c2,` = `(2`+ 15)(`(2`+ 15)(`(2`+ 15) + 113) + 4594) + 60984,

d2,` = 216(11`(2`+ 15) + 302),

e2,` = 864(`(2`+ 15) + 34). (3.22)

It is quite remarkable that these OPE coefficients are fixed purely by the bootstrap.

3.3 Twist-ten double-stress tensors

Now we want to go one step further and analyze the subsubsubleading contribution to

the stress tensor sector of the HHLL correlator. This contribution scales as (1 − z̄)−∆L+5

in the lightcone limit. We have to take in to account the double-stress tensor operators

of twist τ2,3 = 10 in order to calculate this contribution. These operators can again be

grouped in three families of the schematic form : Tµν(∂2)3∂α1 . . . ∂α2`
Tρσ : with ∆ = 14+2`

and s = 4 + 2`, : Tµβ(∂2)2∂α1 . . . ∂α2`
T βν : with ∆ = 12 + 2` and s = 2 + 2` and finally

: Tβγ∂
2∂α1 . . . ∂α2`

T βγ : with ∆ = 10 + 2` and s = 2`.

In order to include contributions from lower twist operators we have to expand their

conformal blocks up to (1− z̄)5 for z̄ → 1. The ansatz takes the following form

G(2,3)(z) =
1

(1− z)∆L

((
z((13− 3z)z − 23) + 25

12(1− z)3

)
(a33f

2
3 + a24f2f4 + a15f1f5)

+

(
1

(1− z)2
+

1

1− z
+

9

10

)
(b14f1f4 + c16f1f6 + c25f2f5 + c34f3f4)

+

(
1

1− z
+

3

2

)
(d17f1f7 + d26f2f6 + d35f3f5 + d44f

2
4 + e15f1f5 + g13f1f3)

− g13f3 + (h18f1f8 + h27f2f7 + h36f3f6 + h45f4f5 + j16f1f6 + j25f2f5

+ j34f3f4 + i14f1f4 + i23f2f3)

)
, (3.23)

with hmn, jmn and imn, coefficients that we need to determine, and with b14, e15 and g13

undetermined from the bootstrap. The term g13f3(z) in the next-to-last line of the previous

equation has its origin in the correction to the conformal block of operator : TαβT
αβ :. This

operator has β = τ2,2 = 8 which implies that both lines in the following expansion of the

conformal block

g
(0,0)
8,0 (1− z, 1− z̄) = (1− z̄)4

(
1 + (1− z̄)

(
3

2
+

1

1− z

)
+O

(
(1− z̄)2

))
f4(z)

− (1− z̄)5

(
1 + (1− z̄)

(
2 +

1

1− z

)
+O((1− z̄)2)

)
f3(z) (3.24)
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contribute. The contribution from the first line of (3.24) is included in the third line

of (3.23), while we had to explicitly add the contribution from the second line. Using (A.1)

and (A.3) we set i23 = 0, j34 = 0 and j25 = 0.

From the S-channel calculation, we collect the terms in the correlator which behave

as (1 − z̄)−∆L+5 log2(z)zm and are fixed in terms of OPE data at O(µ) for p ≤ 3. By

expanding (3.23) near z → 0 we obtain terms with the same behavior as linear functions

of unknown coefficients and by matching them with the terms from the S-channel, we

determine the unknown coefficients. These are

h18 =
49i14

38610
+

49j16

780
−∆L (∆L+1) (∆L (∆L (∆L (47∆L−721)−5182)−15204)−13680)

4942080000 (∆L−5) (∆L−4) (∆L−3) (∆L−2)
,

h27 =
5i14

1404
−j16

12
−∆L (∆L+1) (∆L (∆L (∆L (8∆L−229)+1097)+7224)+10080)

1383782400 (∆L−5) (∆L−4) (∆L−3) (∆L−2)
,

h36 = − i14

180
+

∆L (∆L+1) (∆L (∆L (∆L (34∆L−137)−1829)+5712)+23040)

2661120000 (∆L−5) (∆L−4) (∆L−3) (∆L−2)
,

h45 =
(∆L−6) ∆L (∆L+1) (∆L+2)

62720000 (∆L−3) (∆L−2)
. (3.25)

Our approach does not allow us to determine the coefficients j16 and i14. These are related

to the T-channel OPE coefficients of operators with twist τ2,3 = 10 and minimal conformal

spin by

i14 = P
(2)
10,0,

j16 = P
(2)
12,2 −

2

99
P

(2)
10,0. (3.26)

Notice that, despite the fact that the hmn depend on the undetermined OPE data, we are

able to extract all the OPE coefficients of double-stress tensors with twist τ2,3 = 10 and

conformal spin ∆ + s ≥ 18. Explicitly, they are given by:

P
(2)
14+2`,4+2` =

√
π2−4`−22Γ(2`+ 9)

5(2`+ 1)(2`+ 3)(2`+ 5)(2`+ 7)Γ
(
2`+ 17

2

)
×

∆L(∆L + 1)(a3,`∆
4
L + b3,`∆

3
L + c3,`∆

2
L + d3,`∆L + e3,`)

(`+ 5)(`+ 6)(`+ 7)(`+ 8)(∆L − 5)(∆L − 4)(∆L − 3)(∆L − 2)
, (3.27)

where

a3,` = `(2`+ 17)(`(2`+ 17)(`(2`+ 17) + 70) + 1513) + 9756,

b3,` = 38232− 2(`− 1)`(2`+ 17)(2`+ 19)(`(2`+ 17) + 44),

c3,` = 196164 + `(17 + 2`(11647 + `(17 + 2`)(196 + `(17 + 2`)))),

d3,` = 504(647 + 19`(17 + 2`)),

e3,` = 4320(53 + `(17 + 2`)). (3.28)

We expect that a similar picture is true for all subleading twist double-stress tensor

operators. At O(µ2), the ansatz for G(2,m)(z) will naturally include products of the type
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fa(z)fb(z), such that a + b = 6 + m, together with f1(z)f3+m(z) and f1(z)f1+m(z). The

coefficients of the latter two will be left undetermined from the lightcone bootstrap at every

order in the lightcone expansion. Such coefficients will be related to the non-universal OPE

coefficients of double-stress tensors with spin s = 0, 2 for a given twist. On the other hand,

the coefficients of the products fa(z)fb(z), with a + b = 6 + m, once determined, will

allow us to extract the OPE coefficients of all double-stress tensors with conformal spin

β ≥ 12 + 2m. We expect them to be universal, despite the fact that the coefficients of the

products fa(z)fb(z), with a+ b = 6 +m, will be plagued by the ambiguities present in the

determination of the OPE coefficients of operators spin s = 0, 2 — just as herein.

4 Triple-stress tensors in four dimensions

In this section, we consider the stress tensor sector of the HHLL correlator at O(µ3) in

d = 4. The operators which contribute in the T-channel are triple-stress tensors. Since we

are interested in the lightcone limit 1− z̄ � 1, we consider contributions of operators with

low twist. Triple-stress tensors with minimal twist can be written in the schematic form

: TµνTρσ∂α1 . . . ∂α2`
Tηξ :. These operators have twist τ3,min = 6 and their contribution to

the HHLL correlator in the lightcone limit was found in [24]:

G(3,0)(z) =
1

(1− z)∆L

(
a117f1(z)2f7(z) + a126f1(z)f2(z)f6(z)

+ a135f1(z)f3(z)f5(z) + a225f2(z)2f5(z) + a234f2(z)f3(z)f4(z) + a333f3(z)3
)
,

(4.1)

where the coefficients aikl are

a117 =
5∆L(∆L + 1)(∆L + 2)

768768(∆L − 2)(∆L − 3)
,

a126 =
5∆L(5∆2

L − 57∆L − 50)

6386688(∆L − 2)(∆L − 3)
,

a135 =
∆L(2∆2

L − 11∆L − 9)

1209600(∆L − 3)
,

a225 = −
∆L(7∆2

L − 51∆L − 70)

2903040(∆L − 2)(∆L − 3)
,

a234 =
∆L(∆L − 4)(3∆2

L − 17∆L + 4)

4838400(∆L − 2)(∆L − 3)
,

a333 =
∆L(∆L − 4)(∆3

L − 16∆2
L + 51∆L + 24)

10368000(∆L − 2)(∆L − 3)
. (4.2)

4.1 Twist-eight triple-stress tensors

We now consider the subleading contributions at O(µ3) coming from triple-stress tensor

operators with twist τ3,1 = 8. There are two families of such operators, these can be

schematically written as : TµνTρα∂α1 . . . ∂α2`
Tαξ : with ∆ = 12 + 2` and spin s = 4 + 2`
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and : TµνTρσ∂
2∂α1 . . . ∂α2`

Tηξ : with ∆ = 14 + 2` and spin s = 6 + 2`. The conformal spins

of these families are β = 16 + 4` and β = 20 + 4`, respectively, so we expect products of

three fa(z) functions such that their indices add up to 8 and 10. The contribution to the

correlator of these operators scales as (1− z̄)−∆L+4 for z̄ → 1. This implies that one needs

to include the contribution from the minimal twist triple-stress tensor operators (due to

corrections to their conformal blocks).

Our ansatz takes the form

G(3,1)(z) =
1

(1− z)∆L

((
2− z
1− z

)
(a117f

2
1 f7 + a126f1f2f6 + a135f1f3f5 + a225f

2
2 f5

+ a234f2f3f4 + a333f
3
3 ) + (b116f6f

2
1 + b134f3f4f1 + b125f2f5f1 + b233f2f

2
3

+ b224f
2
2 f4 + c118f8f

2
1 + c145f4f5f1 + c136f3f6f1 + c127f2f7f1 + c244f2f

2
4

+ c334f
2
3 f4 + c235f2f3f5 + c226f

2
2 f6)

)
, (4.3)

where ajkl are given in (4.2). The linear dependence between products of three fa functions,

with explicit relations given in appendix A, allows us to set the following coefficients to zero

b125 = b134 = b224 = b233 = c136 = 0. (4.4)

To fix the coefficients b116 and cjkl we perform an S-channel calculation up to O(µ3).

The relevant terms now scale as (1− z̄)−∆L+4 log3(z)zm and (1− z̄)−∆L+4 log2(z)zm when

z̄ → 1 and z → 0.

We fix the S-channel OPE data at O(µ2) using the results of the previous section,

specifically eqs. (3.5), (3.18) and (3.23). Since the OPE coefficients of double-stress oper-

ators of spin 0 and 2 are left undetermined, the S-channel OPE data is fixed in terms of

these. Concretely, γ
(2,0)
n and P

(2,0)
n are completely determined since the leading-twist OPE

coefficients are known and universal, while γ
(2,1)
n and P

(2,1)
n depend on b14, γ

(2,2)
n and P

(2,2)
n

depend on b14, g13 and e15 and so on.7

We were able to fix all the unknown coefficients in the ansatz (4.3) using bootstrap.

Crucially, there are no spin s = 0, 2 operators that contribute at this level. Here, we list

two of the coefficients while all others can be found in appendix B.

b116 = −∆L (∆L + 3) (∆L (∆L (∆L (1001∆L + 387)− 4326) + 13828) + 5040)

10378368000 (∆L − 4) (∆L − 3) (∆L − 2)

+
b14 (∆L (143∆L + 427) + 540)

17160 (∆L − 4)
,

c118 =
7 (∆L + 3)

(
604800b14

(
∆2
L − 5∆L + 6

)
+ ∆L

(
−21∆3

L + 229∆2
L + 414∆L + 284

))
856627200

(
∆3
L − 9∆2

L + 26∆L − 24
) .

(4.5)

7Explicit expressions for the S-channel OPE data are too cumbersome to quote here.
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Notice that they depend on b14. This is because the anomalous dimensions at O(µ2), γ
(2,2)
n

depend on it. Moreover, no OPE coefficient of triple-stress tensors with twist τ3,1 = 10 is

universal since all of them depend on b14. These OPE coefficients can be written in the

form of a finite sum, similarly to what happens for the OPE coefficients of leading twist

triple-stress tensor, given in [24]. We define i1(r, q) and i2(r, q) as

i1(r, q) = b116p(1, 1, r)p(2r + 2, 6, q), (4.6)

and

i2(r, q) = c118p(1, 1, r)p(2r + 2, 8, q) + c127p(1, 2, r)p(2r + 3, 7, q)

+ c145p(1, 4, r)p(2r + 5, 5, q) + c226p(2, 2, r)p(2r + 4, 6, q)

+ c235p(2, 3, r)p(2r + 5, 5, q) + c244p(2, 4, r)p(2r + 6, 4, q)

+ c334p(3, 3, r)p(2r + 6, 4, q), (4.7)

where p(a, b, `) are given by (3.4). The OPE coefficients can be written as

P
(3)
14+2`,6+2` =

`+1∑
r=0

i1(r, `+ 1− r) +
∑̀
r=0

i2(r, `− r), (4.8)

for k ≥ 0, while P
(3)
12,4 = i1(0, 0) = b116. We give the explicit expressions for some OPE

coefficients in appendix D.

4.2 Twist-ten triple-stress tensors

Here, we consider the contribution of triple-stress tensor operators of twist τ3,2 = 10. These

operators can be divided in three families of the schematic form : TµνTαβ∂µ1 . . . ∂µ2`
(∂2)2Tρσ :

with conformal dimension ∆ = 16 + 2` and spin s = 6 + 2`, : TµνTαβ∂µ1 . . . ∂µ2`
∂2T βρ :

with ∆ = 14 + 2` and s = 4 + 2` and finally : TµαTνβ∂µ1 . . . ∂µ2`
Tαβ : with ∆ = 12 + 2`

and s = 2 + 2`. One can see that in the last family an operator of spin s = 2 is included.

An appropriate ansatz in this case is

G(3,2)(z, z̄) =
1

(1− z)∆L

((
144z2 − 448z + 464

160(z − 1)2

)
(a117f

2
1 f7 + a126f1f2f6 + a135f1f3f5

+ a225f
2
2 f5 + a234f2f3f4 + a333f

3
3 ) +

(
1

1− z
+

3

2

)
(b116f6f

2
1 + c118f8f

2
1 + c145f4f5f1

+ c127f2f7f1 + c244f2f
2
4 + c334f

2
3 f4 + c235f2f3f5 + c226f

2
2 f6) + (d117f

2
1 f7 + e115f

2
1 f5

+ g119f
2
1 f9 + g128f1f2f8 + g155f1f

2
5 + g227f

2
2 f7 + g236f2f3f6 + g245f2f4f5 + g335f

2
3 f5

+ g344f3f
2
4 )

)
,

(4.9)

where fa = fa(z) and we have included only the linearly independent products of these

functions.
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The lightcone bootstrap fixes all coefficients except e115. One can check that this is

exactly the OPE coefficient P
(3)
12,2 of the spin-2 operator : TµαTνβT

αβ : with ∆ = 12 and

spin s = 2

e115 = P
(3)
12,2. (4.10)

All other coefficients can be found in appendix B. Notice that all coefficients depend on

b14, g13 and e15 because the S-channel OPE data at O(µ2) depend on them.

Again, we write the OPE coefficients for all triple-stress tensor operators with twist

τ3,2 = 10 and β ≥ 18 in the form of a finite sum. We define j1(r, q), j2(r, q) and j3(r, q) as

j1(r, q) = e115p(1, 1, r)p(2r + 2, 5, q), (4.11)

j2(r, q) = d117p(1, 1, r)p(2r + 2, 7, q) (4.12)

and

j3(r, q) = g119p(1, 1, r)p(2r + 2, 9, q) + g128p(1, 2, r)p(2r + 3, 8, q)

+ g155p(1, 5, r)p(2r + 6, 5, q) + g227p(2, 2, r)p(2r + 4, 7, q)

+ g236p(2, 3, r)p(2r + 5, 6, q) + g245p(2, 4, r)p(2r + 6, 5, q)

+ g335p(3, 3, r)p(2r + 6, 5, q) + g344p(3, 4, r)p(2r + 7, 4, q), (4.13)

where p(a, b, `) is given by (3.4). The OPE coefficients can now be written as

P
(3)
16+2`,6+2` =

`+2∑
r=0

j1(r, `+ 2− r) +

`+1∑
r=0

j2(r, `+ 1− r) +
∑̀
r=0

j(r, `− r), (4.14)

for ` ≥ 0, while

P
(3)
14,4 = j1(0, 1) + j1(1, 0) + j2(0, 0). (4.15)

Finally, we conclude that the stress tensor sector of the HHLL correlator to all orders

in µ and in the lightcone expansion will take a similar form in terms of products of fa
functions. One should be able to completely fix the coefficients, except for terms that

correspond to the OPE coefficients of multi-stress tensor operators with spin s = 0, 2,

using the lightcone bootstrap.

5 Holographic phase shift and multi-stress tensors

In this section, we demonstrate how to calculate the T-channel OPE coefficients of spin-2

operators (up to undetermined spin-0 data) which are left undetermined after the lightcone

bootstrap, using a gravitational calculation of the scattering phase shift. We are interested

in the scattering phase shift — or eikonal phase — resulting from the eikonal resummation

of graviton exchanges when a fast particle is scattered by a black hole.8 Seeking to explore

the universality properties of the undetermined OPE coefficients of the previous section,

we perform the calculation in Gauss-Bonnet gravity extending the results of [20] to this

case. We argue that the phase shift in the large impact parameter limit is independent of

8For CFT approach to the Regge scattering of scalar particles in pure AdS see [32–38].
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higher-derivative corrections to the dual gravitational lagrangian. This is consistent with

the universality of the minimal-twist multi-stress tensor sector in the dual CFT. On the

other hand, we observe that the subleading OPE data of spin-2 multi-stress tensors depend

explicitly on the Gauss-Bonnet coupling λGB.

The computation involves performing an inverse Fourier transform of the exponential

of the phase shift in the large impact parameter expansion, to obtain the HHLL correlator

in position space.9 This is done following the approach of [39]. Comparison with the

expressions for the HHLL correlator in the lightcone limit requires analytically continuing

the results of sections 3 and 4 and taking the limit z → 1. Identifying terms in the HHLL

four-point function with the same large impact parameter and z → 1 behavior allows us to

extract the spin-2 OPE coefficients of the double- and triple-stress tensor operators (up to

undetermined spin zero data).

5.1 Universality of the phase shift in the large impact parameter limit

In this subsection, we consider Gauss-Bonnet gravity in (d + 1)-dimensions and argue

that the phase shift obtained by a highly energetic particle traveling in a spherical AdS-

Schwarzschild background is independent of the Gauss-Bonnet coupling λGB in the large

impact parameter limit.

The action of Gauss-Bonnet gravity in (d+ 1)-dimensional spacetime is

S =
1

16πG

∫
dd+1√−g

(
R+

d(d− 1)

`2
+

λ̃GB

(d− 2)(d− 3)
(RµνγδR

µνγδ − 4RµνR
µν +R2)

)
,

(5.1)

where the coupling parameter λ̃GB is measured in units of the cosmological constant `:

λ̃GB = λGB`
2, with λGB being a dimensionless coefficient. The AdS-Schwarzschild black

hole metric which is a solution of the Gauss-Bonnet theory is given by [40, 41]:

ds2 = −r2
AdSf(r)dt2 +

dr2

f(r)
+ r2dΩ2

d−1, (5.2)

where

f(r) = 1 +
r2

2λGB

(
1−

√
1− 4λGB

(
1− µ̃

rd

))
, (5.3)

with

µ̃ =
16πGM

(d− 1)Ωd−1`d−2
, µ =

µ̃

rd−2
AdS

√
1− 4λGB

, (5.4)

and

rAdS =

(
1

2
(1 +

√
1− 4λGB)

)1/2

(5.5)

where Ωd−1 is the surface area of a (d − 1)-dimensional unit sphere embedded in d-

dimensional Euclidean space. The metric is normalized such that the speed of light is

9Recall that the exponential of the phase shift corresponds to the Regge limit of HHLL four-point

function in momentum space [20].
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equal to 1 at the boundary (i.e. gtt/gφφ → 1 as r → ∞) and all dimensionful param-

eters are measured in units of `. The product (`rAdS) is the radius of the asymptotic

Anti-de Sitter space.

The two conserved charges along the geodesics, pt and pφ, are

pt = r2
AdSf(r)

dt

dλ
,

pφ = r2dφ

dλ
, (5.6)

where λ denotes an affine parameter. Null geodesics are described by the following equation,

1

2

(
dr

dλ

)2

+
(pφ)2

2r2
f(r) =

1

2

(pt)2

r2
AdS

, (5.7)

similarly to Einstein gravity.

A light particle, starting from the boundary, traversing the bulk and reemerging on

the boundary experiences a time delay and a path deflection given by:

∆t = 2

∫ ∞
r0

dr

rAdSf(r)

√
1− α2 r

2
AdS
r2 f(r)

,

∆φ = 2α rAdS

∫ ∞
r0

dr

r2

√
1− α2 r

2
AdS
r2 f(r)

,

(5.8)

where α = pφ/pt and r0 the impact parameter determined by dr
dλ

∣∣
r(λ)=r0

= 0, i.e.,

1− α2 r
2
AdS

r2
0

f(r0) = 0. (5.9)

Defining the phase shift as δ = −p ·∆x = pt∆t− pφ∆φ, we find that

δ = 2
pt

rAdS

∫ ∞
r0

dr

f(r)

√
1− α2

r2
AdS

r2
f(r). (5.10)

Just as in [20], we are interested in expanding the phase shift order by order in µ. It

is easy to see that in terms of CFT data µ can be expressed as

µ =
4

(d− 1)2

Γ(d+ 2)

Γ(d/2)2

∆H

CT
, (5.11)

which is consistent with (2.9). Here CT is the central charge of the dual conformal the-

ory [42]:

CT =
π
d
2
−1

2(d− 1)

Γ(d+ 2)

Γ(d/2)3G
(rAdS`)

d−1
√

1− 4λGB, (5.12)

and ∆H = M`rAdS.
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In order to calculate the phase shift, we introduce a new variable y, given by y = r0
r .

Using this variable (5.10) can be written as:

δ = 2
ptr0

rAdS

∫ 1

0

dy

y2f
(
r0
y

) (1− α2 r
2
AdSy

2

r0
2

f

(
r0

y

))1/2

. (5.13)

Expanding the phase shift

δ =
∞∑
k=0

µkδ(k), (5.14)

and solving (5.9) perturbatively in µ reads

r0 = b− b3−d

2r2−d
AdS

µ+
b3−2d

8r4−2d
AdS

(
b2(3− 2d) +

4λGB√
1− 4λGB

)
µ2 +O(µ3). (5.15)

Generically, we get an expansion of the form

r0 = b+

∞∑
k=1

akµ
k, (5.16)

where the ak, which depend on b, in the large impact parameter limit (b→∞) behave as

ak ∝ b
(rAdS

b

)k(d−2)
. (5.17)

Notice that there is no explicit λGB dependence in the leading term,10 since the metric (5.2)

approaches the one in pure GR.

To study the leading behavior of the phase shift for large impact parameters it is

convenient to define a function g(x) as

g(x) = r2
AdS

f(x)

x2
, (5.18)

with f given by (5.3), and denote the integrand of (5.13) by h
(
g
(
r0
y

))
, with

h(x) =
1

x

√
1− α2x, (5.19)

to express (5.13) as

δ = 2pt
(
rAdS

r0

)∫ 1

0
h

(
g

(
r0

y

))
dy. (5.20)

In practice, to calculate the phase shift in the large impact parameter limit, we first expand

the integrand of (5.20) in powers of µ, perform the integration with respect to y, and then

expand the result in powers of b. The b-dependence of δ(k) is therefore fixed before the

integration and the integral just determines the overall numerical factor (assuming that it

is convergent).

10Except the overall dependence on rAdS.
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We can immediately see that g
(
r0
y

)
depends on µ explicitly and implicitly through

r0(µ) in (5.15). In order to make this clear we write g
(
r0
y , µ

)
instead of just g

(
r0
y

)
.

Defining g(n,m)
(
b
y , 0
)

as

g(n,m)

(
b

y
, 0

)
=

∂n∂m

∂rn0∂µ
m
g

(
r0

y
, µ

) ∣∣∣∣
r0=b,µ=0

, (5.21)

allows us to write the following expansion for h
(
g
(
r0
y , µ

))
:

h (g (r0/y, µ)) = h(g(b/y, 0)) + µh′(g(b/y, 0))
(
g(0,1)(b/y, 0) + a1g

(1,0)(b/y, 0)
)

+
µ2

2
h′′(g(b/y, 0))

(
g(0,1)(b/y, 0) + a1g

(1,0)(b/y, 0)
)2

+
µ2

2
h′(g(b/y, 0))

(
g(0,2)(b/y, 0) + 2a2g

(1,0)(b/y, 0)

+ 2a1g
(1,1)(b/y, 0) + a2

1g
(2,0)(b/y, 0)

)
+O(µ3), (5.22)

where ak are the coefficients appearing in (5.16). It is clear that at each order in the

µ-expansion we will have a sum of products composed from derivatives of h(x) and sums

of the form ∑
{
ki:

p∑
i=1

ki6n

} ak1ak2 . . . akpg
(p,n−

∑p
i=1 ki)(b/y, 0) . (5.23)

Notice first that g(b/y, 0), g(m,0)(b/y, 0) and g(m,1)(b/y, 0) do not depend on λGB as can

be seen from (5.18). The same is true for h(n)(g(b/y, 0)) for any n as follows from (5.19).

On the contrary, g(m,n)(b/y, 0) with n ≥ 2 depend explicitly on λGB. It is then evident that

any dependence on λGB will come from terms like the ones in parenthesis in (5.22) which

are of the type (5.23). We will now show that all the terms in such sums which contain

λGB, are subleading in the large impact parameter limit.

Recall that ak ∝ b1−k(d−2) for k ≥ 1. Using (5.18) one can check that g(m,n)(b/y, 0) ∝
b−m−nd for n > 0 and g(m,0)(b/y, 0) ∝ b−m−2. We thus need to spearately consider two

cases: products of the form ak1ak2 . . . akpg
(p,n−q)(b/y, 0), with q =

∑p
i=1 ki and q < n and

products of the form ak1ak2 . . . akpg
(p,0)(b/y, 0) for which q = n.

The former behave as

ak1ak2 . . . akpg
(p,n−q)(b/y, 0) ∝ 1

bnd−2q
. (5.24)

Clearly, the leading behavior in the large impact parameter regime corresponds in this case

to q = n − 1, recall, however, that g(p,1) does not depend on λGB. The behavior of the

latter terms is

ak1ak2 . . . akpg
(p,0)(b/y, 0) ∝ 1

bnd−2(n−1)
, (5.25)

which is again independent of λGB. The conclusion is that the leading behavior in the large

impact parameter regime comes from terms containing g(p,0)(b/y, 0) and g(p,1)(b/y, 0) that

do not contain λGB.
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One can extend these considerations straightforwardly to any gravitational theory that

contains a spherical black hole with a metric given by

ds2 = −(1 + r2f̃(r))dt2 +
dr2

1 + r2h̃(r)
+ r2dΩ2

d−1 (5.26)

where the functions f̃(r) and h̃(r) admit an expansion of the following form in the large r

limit:

f̃(r) = 1−
∞∑
n=0

f̃nd
rnd

= 1− f̃0

rd
− f̃d
r2d
− . . .

h̃(r) = 1−
∞∑
n=0

h̃nd
rnd

= 1− h̃0

rd
− h̃d
r2d
− . . . , (5.27)

for some constants f̃nd and h̃nd (these are the spherical black hole metrics considered in

eqs. (5.1) and (5.10) in [21]).

5.2 Spin-2 multi-stress tensor OPE data from the gravitational phase shift

The gravitational phase shift in a black hole background is related to the lightcone HHLL

four-point function discussed extensively in this article. In the following, we will exploit

the precise relationship between the two to extract the OPE data of multi-stress tensor

operators of spin-2 in the dual conformal field theory (modulo spin zero data). While the

explicit procedure can be worked out for arbitrary multi-stress tensors, we will herein focus

on double and triple-stress tensor operators, which control the O(µ2) and O(µ3) lightcone

behavior of the HHLL correlation function.

5.2.1 The phase shift in Gauss-Bonnet gravity to O(µ3)

In this section, we focus on the gravity side and determine the phase shift order by order

in µ up to O(µ3) relevant for this article. Starting from O(µ0) we consider the following

expression

δ(0) = 2b pt rAdS

√
1− α2

∫ 1

0

√
1− y2

b2 + r2
AdSy

2
dy. (5.28)

Evaluating this integral and using the following notation p± = pt ± pφ, −p2 = p+p−,

leads to

δ(0) = πp−. (5.29)

This is of course none other but the “phase shift” in pure AdS space.

At O(µ) the result is the same as in [20], where Einstein gravity was considered,

δ(1) =
√
−p2

(
b

rAdS

)1−d(d− 1

2

)
B

[
d− 1

2
,

3

2

]
2F1

(
1,
d− 1

2
,
d

2
+ 1,−

r2
AdS

b2

)
. (5.30)

At this order, the phase shift depends only on the single graviton exchange, which is

unaffected by the higher derivative terms in the gravitational action. According to the

holographic dictionary, the exchange of a single graviton is related to the exchange of a
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single stress tensor in the T-channel. The corresponding OPE coefficient is fixed by the

Ward identity, so it does not depend on the details of the theory.

We now consider the phase shift at higher orders in µ. For convenience herein all

results are presented in d = 4. At O(µ2), using the technique presented in the previous

subsection, we find that:

δ(2) =
7π

8

√
−p2

5
b

rAdS

√1 +
r2

AdS

b2
− 1

− 5

2

rAdS

b
+

5

4

r3
AdS

b3

+
λGB

r2
AdS

√
1− 4λGB

4
b

rAdS

√1 +
r2

AdS

b2
− 1

− 2
rAdS

b
+

1

2

r3
AdS

b3
− 1

4

r5
AdS

b5

 .
(5.31)

In the lightcone limit (b→∞) this reduces to

δ(2) ≈
b→∞

35π
√
−p2r5

AdS

128b5
−

35π
√
−p2r7

AdS

1024b7

(
5 +

4λGB

r2
AdS

√
1− 4λGB

)
+ . . . . (5.32)

We explicitly see that the leading contribution does not depend on λGB, while the sublead-

ing does.

Let us denote δ
(2)
GR to be equal to (5.31) when λGB = 0,

δ
(2)
GR =

35πr5
AdS

√
−p2

128b5
2F1

(
1,

5

2
, 4,−

r2
AdS

b2

)
, (5.33)

which is the pure Einstein gravity result for the phase shift at O(µ2). Then δ(2) can be

written as

δ(2) = δ
(2)
GR

(
1 +

4λGB

5r2
AdS

√
1− 4λGB

)
− 7π

√
−p2λGB

32r2
AdS

√
1− 4λGB

(rAdS

b

)5
. (5.34)

The phase shift at O(µ3) is given by

δ(3) = δ
(3)
GR

(
1 +

12λGB

7r2
AdS

√
1− 4λGB

+
16λ2

GB

21r4
AdS(1− 4λGB)

)
−
√
−p2

(rAdS

b

)7
(

495πλGB

512r2
AdS

√
1− 4λGB

+
55πλ2

GB

128r4
AdS(1− 4λGB)

)
+
√
−p2

(rAdS

b

)9 77πλ2
GB

256r4
AdS(1− 4λGB)

, (5.35)

where

δ
(3)
GR =

231r7
AdS

16b7

√
−p2B

(
7

2
,

3

2

)
2F1

(
1,

7

2
, 5,−

r2
AdS

b2

)
. (5.36)

By expanding (5.35) in the large impact parameter limit, one again explicitly sees that the

leading term does not depend on λGB.
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5.2.2 Inverse Fourier transform of the phase shift at O(µ2)

To make contact with the position space HHLL correlation function, one needs to perform

a Fourier transform of the phase shift. According to [20], the HHLL four-point function in

the Regge limit
√
−p2 � 1 is given by

G̃(x) =

∫
ddp

(2π)d
eipxB(p), (5.37)

where G̃(x) = 〈OH(x1)OL(x2)OL(x3)OH(x4)〉Regge limit and B(p) = B0(p)eiδ. The factor

B0(p) reproduces the disconnected correlator and it is given by

B0(p) = C(∆L)θ(p0)θ(−p2)eiπ∆L(−p2)∆L− d2 , (5.38)

with normalization

C(∆L) =
2d+1−2∆Lπ1+ d

2

Γ (∆L) Γ
(
∆L − d

2 + 1
) . (5.39)

We expand the integrand of (5.37) in powers of µ using (5.14), explicitly

B(p) = B0(p)

(
1 + µiδ(1) + µ2

(
iδ(2) − 1

2
δ(1)2

)

+ µ3

(
iδ(3) − δ(1)δ(2) − i

6
δ(1)3

)
+O(µ4)

)
. (5.40)

This generates an expansion for G̃(x) from (5.37) as

G̃(x) =

∞∑
k=0

µkG̃(k)(x). (5.41)

Let us start by studying the correlator at O(µ2). The imaginary part of the correlator in the

Regge limit at this order comes from iδ(2) in (5.40) while the real part comes from −1
2δ

(1)2
.

Consider first the imaginary part. To perform the inverse Fourier transform it is

convenient to first expand δ(2) as follows:

δ(2) = 7π2
√
−p2

(
5

2
Π5,3(L) +

(
15

4
− 5λGB

r2
AdS

√
1− 4λGB

)
Π7,3(L)

+

(
5− 16λGB

r2
AdS

√
1− 4λGB

)
Π9,3(L) + . . .

)
. (5.42)

In (5.42) b/rAdS = sinh(L) and

Π∆−1;d−1(x) =
π1− d

2 Γ(∆− 1)

2Γ
(
∆− d−2

2

) e−(∆−1)x
2F1

(
d

2
− 1,∆− 1,∆− d− 2

2
, e−2x

)
, (5.43)

the three-dimensional hyperbolic space propagator of a massive particle with mass square

equal to (∆ − 1)2. The dots in (5.42) stand for terms with hyperbolic space propagators
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with ∆ > 10. We can now perform the inverse Fourier transform of (5.42) with the help

of eqs. (3.23) in [20] and (3.4) in [39].

The term which contains Π5,3(L) includes (after the inverse Fourier transform) the

contribution of double-stress tensors with minimal twist τ = 4. As we have already shown

it does not depend on λGB, which we can also explicitly see in (5.42). The next term,

that contains Π7,3(L), includes the contribution from the double-stress tensor operators of

twist τ2,1 = 6. We can use this term to fix the coefficient b14 which was left undetermined

in (3.5). Similar reasoning applies to all the higher-order terms in the large impact pa-

rameter expansion of (5.42). Namely, the term proportional to Π2m+1,3(L) is related to

double-stress tensor operators of twist τ = 2m.

Performing the inverse Fourier transform following [39] leads to

iIm
(
G̃(2)(σ, ρ)

)
=

∫
d4p

(2π)4
eipxB0(p)iδ(2) =

2i

Γ(∆L)Γ(∆L − 1)σ2∆L+1

×
(
a1Π5,3(ρ)Γ(∆L − 2)Γ(∆L + 2) + b1Π7,3(ρ)Γ(∆L − 3)Γ(∆L + 3)

+ c1Π9,3(ρ)Γ(∆L − 4)Γ(∆L + 4) + . . .
)

+ . . . , (5.44)

where a1 = 35
2 π

2, b1 = 7π2
(

15
4 −

5λGB

r2
AdS

√
1−4λGB

)
and c1 = 7π2

(
5− 16λGB

r2
AdS

√
1−4λGB

)
. The

ellipses outside the parenthesis in (5.44) denote contributions due to double-trace operators

in the T-channel that are not important for studying the stress tensor sector. The position

space coordinates σ and ρ are defined as

z = 1− σeρ, z̄ = 1− σe−ρ. (5.45)

after the analytic continuation z → ze−2iπ. Once more, notice that the dominant contribu-

tion in the large impact parameter regime, ρ→∞, comes from the factor Π5,3(ρ) in (5.44)

which exactly matches the imaginary part of the correlator (3.1) in [20].

5.2.3 Comparison with the HHLL correlation function in the lightcone limit

at O(µ2)

A few simple steps are required before we can finally relate (5.44) with the results of

section 3 and determine the OPE coefficients of the spin-2 double-stress tensor operators.

As explained in [20], one has to analytically continue G(2,1), G(2,2) and G(2,3) (defined in

section 2) around the origin by taking z → ze−2iπ and expand the result in the vicinity of

σ → 0. The relevant term, which corresponds to the imaginary part of the correlator (3.5)

as σ → 0, reads:

iIm
(

(σe−ρ)3−∆LG(2,1)(1− σeρ)
)

= 7iπ
e−7ρ

σ2∆L+1

(
12600b14

+
∆L (∆L (∆L (123− 7∆L) + 78)− 12)

16 (∆L − 3) (∆L − 2)

)
. (5.46)
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Comparing this with the subleading term of (5.44) as ρ→∞, i.e.,

iIm
(
G̃(2)(σ, ρ)

)
|e−7ρ = −

35iπe−7ρ∆L (∆L + 1)
(
8λGB + ∆L

(
4λGB − 5

√
1− 4λGBr

2
AdS

))
4σ2∆L+1

√
1− 4λGBr2

AdS

(
∆2
L − 5∆L + 6

)
+ . . . , (5.47)

with the ellipses again denoting double-trace operators, allows one to obtain the following

expression for the unknown parameter b14:

b14 = P
(2)
8,2 =

∆L (∆L (∆L (7∆L − 23) + 22) + 12)

201600 (∆L − 3) (∆L − 2)

− λGB∆L (∆L + 1) (∆L + 2)

2520
√

1− 4λGBr2
AdS (∆L − 3) (∆L − 2)

. (5.48)

Note that this precisely matches the OPE coefficient of the double trace operator of con-

formal dimension ∆ = 8 and s = 2 calculated in [21] from gravity by other means. As

expected, the OPE coefficient in (5.48) explicitly depends on λGB.

Let us now go one step further and fix P
(2)
10,2 contributing to G(2,2)(z) through (3.20).

Analytically continuing (3.18) and taking the limit σ → 0, yields

iIm
(

(σe−ρ)4−∆LG(2,2)(1− σeρ)
)

= i
49

400

πe−9ρ

σ2∆L+1

(
720000b14 + 11404800

P
(2)
10,2

µ2

+
∆L (∆L (∆L (∆L (6327− 362∆L) + 749) + 12888) + 12288)

7 (∆L − 4) (∆L − 3) (∆L − 2)

)
. (5.49)

For reasons that will be explained later, we only consider here the imaginary part of the

subsubleading term in the correlator. To extract the OPE data we need to compare (5.49)

with the subsubleading contribution in the large impact parameter limit of (5.44), which is

iIm
(
G̃(2)(σ, ρ)

)
|e−9ρ = i

7

4

πe−9ρ

σ2∆L+1

(
10∆L (∆L+1)

∆L−2

−
7∆L (∆L+1) (∆L+2)

(
16λGB+∆L

(
12λGB−5

√
1−4λGBr

2
AdS

))
√

1−4λGBr2
AdS (∆L−4) (∆L−3) (∆L−2)

)
.

(5.50)

Substituting (5.48) in (5.49) and matching to (5.50) enables us to determine the OPE

coefficient P
(2)
10,2,

P
(2)
10,2 =

∆L (∆L (∆L (∆L (187∆L − 552) + 901) + 1012) + 912)

79833600 (∆L − 4) (∆L − 3) (∆L − 2)

− λGB∆L (∆L + 1) (∆L + 2) (∆L + 3)

12474
√

1− 4λGBr2
AdS (∆L − 4) (∆L − 3) (∆L − 2)

. (5.51)

This precisely matches the one calculated in [21].
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Similarly, one can match the CFT expression for Im
(
(σe−ρ)5−∆LG(2,3)(1− σeρ)

)
in (3.23), to its gravitational counterpart Im

(
G(2)(x)

)
|e−11ρ , by expanding (5.42) and (5.44)

up to O(e−11ρ). This allows one to additionally determine P
(2)
12,2 in (3.26)

P
(2)
12,2 =

∆L (∆L + 1) (∆L (∆L (∆L (6721∆L − 15603) + 46474) + 100828) + 143760)

44396352000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

− 5λGB∆L (∆L + 1) (∆L + 2) (∆L + 3) (∆L + 4)

453024
√

1− 4λGBr2
AdS (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

. (5.52)

Notice that we did not use the real part of G̃(2)(σ, ρ), which comes from the term

−1
2δ

(1)2
in (5.40) and behaves as σ−2∆L−2 for σ → 0. This term matches the corresponding

term with the same σ behavior in the correlator. It does not give us any new information,

because it is independent of the OPE coefficients of operators with spin s = 0, 2.

5.2.4 Extracting OPE data from the gravitational phase shift at O(µ3)

Let us now consider the O(µ3) terms in the correlator. Focusing on the gravity side, we

start by performing an inverse Fourier transform. (5.40) instructs us to consider three

terms iδ(3), δ(1)δ(2) and i(δ(1))3, which give rise to terms that behave as σ−2∆L−1, σ−2∆L−2

and σ−2∆L−3, respectively. Performing the relevant computations, we observe that δ(1)δ(2)

and i(δ(1))3 do not provide additional information because the corresponding terms in the

correlators are already fixed by bootstrap (these terms simply give us an extra consistency

check). Focusing on the inverse Fourier transform of iδ(3), we expand (5.35) in terms of

the hyperbolic space propagators, Πm,3(L),

δ(3) =
√
−p2

(
a2Π7,3(L) + b2Π9,3(L) + c2Π11,3(L) + . . .

)
, (5.53)

where

a2 =
1155

8
π2,

b2 = 231π2

(
− 3λGB

r2
AdS

√
1− 4λGB

+ 2

)
,

c2 =
231π2

8

(
32λ2

GB

r4
AdS(1− 4λGB)

− 120λGB

r2
AdS

√
1− 4λGB

+ 35

)
, (5.54)

which leads to

iIm
(
G̃(3)(σ, ρ)

) ∣∣∣
1

σ2∆L+1

=

∫
d4p

(2π)4
eipxB0(p)iδ(3) =

2i

Γ(∆L)Γ(∆L−1)σ2∆L+1

×
(
a2Π7,3(ρ)Γ(∆L−3)Γ(∆L+3)+b2Π9,3(ρ)Γ(∆L−4)Γ(∆L+4)

+c2Π11,3(ρ)Γ(∆L−5)Γ(∆L+5)+. . .
)

+double traces, (5.55)

The leading and subleading contributions in the large impact parameter limit ρ → ∞
come from Π7,3(ρ) and Π9,3(ρ) and behave as iπe−7ρ

σ2∆L+1 and iπe−9ρ

σ2∆L+1 , respectively. They are
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precisely matched by the relevant terms in (4.1) in the vicinity of σ → 0 after analytic

continuation [39]. This is another sanity check of the procedure described herein, since

these terms do not incorporate contributions from spin-2 operators.

To extract further OPE data, we proceed to match the subsubleading correction

of (5.55) in the large impact parameter limit to the term in (4.9) which behaves as ∼ iπe−11ρ

σ2∆L+1 .

This allows us to determine the coefficient e115 = P
(3)
12,2 in (4.9) which corresponds to the

OPE coefficient of the triple-stress tensors of spin s = 2 with conformal dimension ∆ = 12:

e115 = −
117∆6

L − 439∆5
L + 407∆4

L + 859∆3
L + 202∆2

L + 696∆L

172972800(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

−
λGB(143∆6

L − 231∆5
L − 3597∆4

L − 9489∆3
L − 11186∆2

L − 4920∆L)

43243200r2
AdS

√
1− 4λGB(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

+
λ2

GB∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

24024r4
AdS(1− 4λGB)(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

+ P
(2)
8,0

76 + 400
∆L−5 + 11∆L

1320
. (5.56)

Notice that e115 is not completely determined by the above procedure since the spin-0 OPE

data, P
(2)
8,0 , is not fixed. Summarising, we conclude that we are able to fix all coefficients

in the ansatz except those that correspond to the OPE coefficients of operators of spin-0.

However, using the expression for P
(2)
8,0 found in [21] one finds

P
(3)
12,2 =

1001∆7
L − 6864∆6

L + 12615∆5
L − 3980∆4

L − 6156∆3
L − 11736∆2

L − 1440∆L

3459456000(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

−
λGB(143∆6

L − 206∆5
L − 1631∆4

L − 3622∆3
L − 3540∆2

L − 1200∆L)

28828800r2
AdS

√
1− 4λGB(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

+
λ2

GB∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

24024r4
AdS(1− 4λGB)(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

. (5.57)

6 Lorentzian inversion formula

It was recently shown in [27] that one can obtain the OPE coefficients of minimal twist

double and triple-stress tensors using the Lorentzian inversion formula. Here, we review

this method and show how it can be generalized to extract the OPE coefficients of twist-

six double-stress tensors. In principle, it can also be generalized to multi-stress tensors of

arbitrarily high twist.

6.1 Twist-four double-stress tensors

Consider the correlation function

(ww̄)−∆LG(w, w̄) = 〈OH(∞)OH(1)OL(w, w̄)OL(0)〉. (6.1)
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The Lorentzian inversion formula is given by [25, 26]

c(τ, β) =
1 + (−1)

β−τ
2

2
κβ

∫ 1

0
dwdw̄µ(0,0)(w, w̄)

× g(0,0)

−τ+2(d−1),β+τ
2
−d+1

(w, w̄)dDisc[G(w, w̄)], (6.2)

where

µ(0,0)(w, w̄) =
|w − w̄|d−2

(ww̄)d
, (6.3)

κβ =
Γ(β2 )4

2π2Γ(β)Γ(β − 1)
, (6.4)

where τ = ∆− s and β = ∆ + s. Here g
(0,0)
τ,s is a conformal block given with ∆→ s+ d− 1

and s → ∆ − d + 1 and in d = 4 is given by (2.5). Moreover, dDisc denotes the double-

discontinuity of G(w, w̄) in (6.1), which is equal to the correlator of a double commutator,

and it is given by

dDisc[G(w, w̄)] = G(w, w̄)− 1

2
G	(w, w̄)− 1

2
G�(w, w̄) . (6.5)

Here G	 and G� correspond to the same correlator analytically continued in two different

ways around w = 1, namely (1 − w) → (1 − w)e±2πi. The OPE data, P τ ′+β
2

,β−τ
′

2

, can be

extracted from c(τ, β) via11

P τ ′+β
2

,β−τ
′

2

= −Resτ=τ ′c(τ, β), (6.6)

where τ ′ and β denote the twist and conformal spin of operators in the physical spectrum

of the theory exchanged in the channel OL ×OL → Oτ ′,J ′ → OH ×OH .

We would like to apply the Lorentzian inversion formula to the HHLL correlator to

extract the OPE data of the double-stress tensors. To this end, we will use information of

the correlator from the channel where OHOL merge. The function G(z, z̄) can be obtained

from G(z, z̄) via

G(w, w̄) = (ww̄)∆LG(1− w, 1− w̄). (6.7)

To apply the Lorentzian inversion formula we first need to calculate G(z, z̄) using

the S-channel operator product expansion (2.22). First, let us start with the leading

contribution of G(z, z̄) in the lightcone limit z̄ → 1 at O(µ2). These give the leading

contributions when w̄ → 0 in G(w, w̄). After the integration with respect to w̄ in (6.2),

these contributions fix the position of the pole and residue of c(τ, β) that corresponds

to lowest-twist double-stress tensors. Subleading contributions in z̄ → 1 (or w̄ → 0) only

create new poles, without changing the residue of existing ones, therefore, they do not affect

the OPE coefficients of lowest-twist operators. The leading contribution in the (1 − z̄)-

expansion comes from the leading contribution of the 1/l-expansion of the S-channel OPE

11In principle there is an extra term in this relation when τ − d = 0, 1, 2, . . . [25], however, it vanishes in

the cases considered.
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data. Only the term proportional to log2(z) contributes to the double-discontinuity and

we denote it by G(2)(z, z̄)
∣∣
log2(z)

. The number in the superscript denotes the power of µ in

which we are working. Substituting in to (2.26) equations (2.24), (2.29), (2.27) and (2.28),

we find that

G(2)(z, z̄)
∣∣
log2(z)

= log2(zz̄)

∫ ∞
0

dl

∞∑
n=0

(zz̄)nl∆L−3
(
zl+1 − z̄l+1

)
Γ (n+ ∆L − 1)

8(z − z̄)Γ(n+ 1)Γ (∆L − 1) Γ (∆L)
×

((
γ(1,0)
n

)2
+O

(
1

l

))
. (6.8)

In the lightcone limit, the dominant contribution to this expression comes from operators

with large spin l � 1, we can, therefore, approximate the sum over l by an integral. Note

that only O(µ) OPE data, i.e., γ
(1,0)
n , appears in (6.8). Using (3.12) we evaluate (6.8) and

collect the leading term as z̄ → 1,

G(2)(z, z̄)
∣∣
log2(z)

= log2(z)
(1− z̄)2−∆L(1− z)−∆L−4

32 (∆L − 2)
×

∆L

(
∆L

(
(z(z + 4) + 1)2∆L + z(z(54− (z − 28)z) + 28)− 1

)
+ 72z2

)
+O

(
(1− z̄)3−∆L

)
.

(6.9)

With the help of (6.7) one obtains

G(2)(w, w̄)
∣∣
log2(1−w)

=
∆Lw̄

2 log2(1− w)

32w4(∆L − 2)
×(

∆L

(
((w − 6)w + 6)2∆L − w(w(w(w + 24)− 132) + 216) + 108

)
+ 72(w − 1)2

)
+O(w̄3),

(6.10)

which agrees with (4.12) in [27]. Now, it is easy to see that

dDisc[G(2)(w, w̄)] =
πw̄2∆L

8w4(∆L − 2)
×(

∆L

(
((w − 6)w + 6)2∆L − w(w(w(w + 24)− 132) + 216) + 108

)
+ 72(w − 1)2

)
+O(w̄3).

(6.11)

To compute the integral (6.2) we substitute

µ(0,0)(w, w̄) =
1

w2w̄4
+O

(
1

w̄3

)
, (6.12)

g
(0,0)

−τ+2(d−1), τ+β
2
−d+1

(w, w̄) = w̄3− τ
2

(
fβ

2
(1− w) +O(w̄)

)
, (6.13)

valid in the lightcone limit w̄ → 0 (or z̄ → 1), and set (−1)
β−τ

2 = 1 since only even-spin
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operators contribute. Combining the above we arrive at the following expression for c(τ, β)

c0(τ, β) = −

√
π2−β+1∆LΓ

(
β
2

)
(τ − 4)(β − 10)(β − 6)(β − 2)β(β + 4)

×(
384 (∆L − 7) ∆L + 4608

(β + 8) (∆L − 2) Γ
(

1
2(β − 1)

) +
(β − 2)β∆L ((β − 2)β (∆L − 1)− 56∆L + 200)

(β + 8) (∆L − 2) Γ
(

1
2(β − 1)

) )
,

(6.14)

where the subscript denotes that this result is obtained in the leading order of the lightcone

expansion. The OPE coefficients of the minimal-twist double-stress tensors are given by

P
(2)
β
2

+2,β
2
−2

= −Resτ=4c0(τ, β), (6.15)

where β = 12 + 4`, ` ≥ 0, and are in precise agreement with (1.6) in [23] and (4.15) in [27].

6.2 Twist-six double-stress tensors

Here we use the same method to obtain the OPE coefficients of double-stress tensors with

twist τ2,1 = 6. We first need to compute the subleading contribution in the lightcone limit

to eqs. (6.11), (6.12) and (6.13). Specifically, the integration measure

µ(0,0)(w, w̄) =
1

w2w̄4
− 2

w3w̄3
+O

(
w̄−2

)
, (6.16)

and the conformal block,

g
(0,0)

−τ+2(d−1), τ+β
2
−d+1

(w, w̄) = w̄3− τ
2 fβ

2
(1− w)

(
1 + w̄

(
1− τ

4
+

1

w

)
+O(w̄2)

)
, (6.17)

were obtained from the explicit expressions given in (6.3) and (2.5).

To evaluate the subleading term in dDisc[G(2)(w, w̄)] we reconsider the S-channel

computation. Similarly to the case of leading twist, only the part of the correlator

with log2(z) contributes to the discontinuity. However, we now have to include the

subleading corrections in the 1/l-expansion of the S-channel OPE data. With the help

of (2.26), (2.24), (2.27), (2.28) and (2.29) one finds that

G(2)(z, z̄)
∣∣
log2(z)

=
log2(zz̄)

16(z − z̄)Γ(∆L)Γ(∆L − 1)

∞∑
n=0

(zz̄)n
Γ(∆L − 1 + n)

Γ(n+ 1)

∫ ∞
0

dl

l∆L−6
(
zl+1 − z̄l+1

)
(2(l − 2n) + ∆L (∆L + 2n− 1))

(
lγ(1,0)
n + γ(1,1)

n

)2
+O

(
l∆L−7

)
.

(6.18)

To proceed, one evaluates (6.18) using (3.12) and collects the leading and subleading con-

tributions as z̄ → 1, which behave as (1 − z̄)2−∆L and (1 − z̄)3−∆L respectively. Us-

ing (6.7) it is then simple to obtain G(2)(w, w̄)
∣∣
log2(1−w)

up to O(w̄4) and evaluate its
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double-discontinuity:

dDisc[G(2)(w, w̄)] = − π2w̄2∆L

8w5 (∆L − 3) (∆L − 2)

(
− 3w5∆L − 72w4∆L + 324w3∆L

− 504w2∆L + 252w∆L + 216w3 − 432w2 + 216w + 4w5∆2
L − 12w4∆2

L + 12w3∆2
L

− 36w∆3
L − w5∆3

L + 12w4∆3
L − 48w3∆3

L + 72w2∆3
L + w̄(−144∆L + 612w∆L + 216w3

− 432w2 + 216w − w5∆L − 52w4∆L + 324w3∆L − 744w2∆L + 540w∆2
L − 216∆2

L

− 72∆3
L + w5∆2

L − 18w4∆2
L + 156w3∆2

L − 456w2∆2
L + 144w∆3

L − 2w4∆3
L + 24w3∆3

L

− 96w2∆3
L)
)

+O(w̄4) . (6.19)

Substituting (6.16), (6.17) and (6.19) in (6.2) and integrating leads to an analytic expression

for c(τ, β). The relevant part of this expression — the one with non-zero residue at τ = 6

— turns out to be:

c1(τ, β) = −
24−β√πΓ

(
β
2

)
∆L

(β − 12)(β − 8)(β − 4)(τ − 10)(τ − 8)(τ − 6)(τ − 4)

×

(
β4∆L − 4β3∆L − 68β2∆L − 960β∆2

L + 144β∆L − 14976∆2
L

(β + 2)(β + 6)(β + 10)Γ
(
β−1

2

)
(∆L − 3) (∆L − 2)

+
β4∆3

L − 2β4∆2
L − 4β3∆3

L + 8β3∆2
L − 116β2∆3

L + 472β2∆2
L

(β + 2)(β + 6)(β + 10)Γ
(
β−1

2

)
(∆L − 3) (∆L − 2)

+
240β∆3

L + 2304∆3
L + 19584∆L + 13824

(β + 2)(β + 6)(β + 10)Γ
(
β−1

2

)
(∆L − 3) (∆L − 2)

)
+ . . . , (6.20)

where the ellipsis stands for the terms with zero residue at τ = 6 and 1 in the subscript

denotes that this expression is obtained in the subleading order of the lightcone expansion.

It is now straightforward to read off the OPE coefficients of double-stress tensors with

twist τ2,1 = 6 from

P
(2)
β
2

+3,β
2
−3

= −Resτ=6c1(τ, β). (6.21)

For β = 14 + 4` (3.16) is reproduced. It is already stated in section 3 that this formula

does not reproduce the right OPE coefficient P
(2)
8,2 for ` = −1. Thus, we explicitly see

that the Lorentzian inversion formula does not allow us to obtain the OPE data of spin-2

double-stress tensors with twist τ = 6.

In general, to determine for which operators at O(µk) the Lorentzian inversion formula

can be applied, one has to consider the behavior of the correlator in the Regge limit. At

O(µk) the correlator in the Regge limit behaves like 1/σ2∆L+k. Therefore, the Lorentzian

inversion formula correctly produces the OPE coefficients of multi-stress tensor operators

with spin s > k + 1. Accordingly, already at order O(µ3), fixing the OPE coefficients by

combining an ansatz for the correlator with the crossing symmetry (or Lorentzian inversion

formula) appears more powerful than the Lorentzian inversion formula alone. Namely, we
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were able to fix the OPE coefficients of spin-4 operators and the one with twist τ = 8 is

given by (D.1), while using the Lorentzian inversion formula one can only fix the OPE

coefficients of operators with spin s > 4.

7 Discussion

In this paper, we consider the stress tensor sector of a four-point function of pairwise

identical scalars in a class of CFTs with a large central charge. It is completely determined

by the OPE coefficients of multi-stress tensor operators, which can be read off the result

for a heavy-heavy-light-light correlator. The stress tensor sector of the HHLL correlator is

naturally expanded perturbatively in µ ∼ ∆H
CT

, where ∆H is the scaling dimension of the

heavy operator. The power of µ counts the number of stress tensors within the exchanged

multi-stress tensor operators. By further expanding the HHLL stress tensor sector in the

lightcone limit, the multi-stress tensor operators can be organized into sectors of different

twists. Similarly to the minimal-twist sector, combining an appropriate ansatz with the

lightcone bootstrap, we show that the contribution from the non-minimal twist multi-stress

tensors is almost completely determined. Unlike the minimal twist case, a few coefficients

are not fixed by the bootstrap — these correspond to the OPE coefficients of multi-stress

tensors with spin s = 0, 2.

An extra check is provided by applying the Lorentzian OPE inversion formula (see [27]

for an earlier application of the inversion formula in this context). It gives the same results

but has less predictive power than the ansatz.

The OPE coefficients for double-stress tensors are particularly simple and we provide

closed-form expressions for those with twist τ = 4, 6, 8, 10 and any spin greater than 2. All

of these OPE coefficients are completely fixed by the bootstrap. This is related to their

independence of the higher-derivative terms in the dual bulk gravitational Lagrangian.

The OPE coefficients for double-stress tensors with spin s = 0, 2 are not fixed by the

bootstrap and do depend on such higher derivative terms. It is interesting that at the level

of double-stress tensors, only the OPE coefficients with spin s = 0, 2 are not fixed by the

bootstrap (non-universal). On the other hand, all non-minimal twist triple-stress tensor

OPE coefficients are non-universal.12

Assuming a holographic dual, we show that the OPE coefficients for spin-2 multi-stress

tensors can be determined by studying the large impact parameter regime of the Regge

limit, following [20, 30, 39] (modulo the spin zero OPE data). This is done explicitly in

Einstein Hilbert+Gauss-Bonnet gravity. Some of these OPE coefficients are known [21]

and agree with our results.

It would be interesting if one could compute the spin zero and spin two multi stress

tensor OPE coefficients with CFT techniques. Perhaps the conglomeration approach first

discussed in [31] or the more recent work [45, 46] will be useful in this direction.

The regime of applicability of the ansatz (and the exact meaning of universality) used

in this paper remains unsettled (the ansatz seems to work in holographic CFTs, but does it

12Here we use universality and “fixed by the bootstrap” terms interchangeably. However, it remains to be

determined what is the universality class and whether it the same as the set of unitary holographic theories.
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also apply for other CFTs with a large central charge?). This question appears already in

the leading twist case studied in [24]. To address this issue, it would be interesting to inves-

tigate the OPE coefficients of multi-stress tensors in CFTs with a large central charge, but

not necessarily holographic. A related question is the existence of an infinite-dimensional

algebra responsible for the form of the near-lightcone correlator. In two dimensions the

relevant algebra is simply the Virasoro algebra. The Virasoro vacuum block has been

computed in several ways [47–53]. Recently an algebraic way of reproducing the near light-

cone contribution of the stress tensor was discussed in [54] — it would be interesting to

investigate this further.

Returning to holographic theories, one interesting question would be to understand

the critical behavior of geodesics in the vicinity of the circular light orbit, recently studied

in [55], from the CFT point of view. This corresponds to the situation where the deflection

angle is very large. The deflection angle ϕ in asymptotically flat Schwarzschild geometries

is supposed to be related to the eikonal phase δ via

2 sin
ϕ

2
= − 1

E

∂δ

∂b
(7.1)

where E is the incoming particle energy and b is the impact parameter (see e.g. [56] for

a recent discussion). This agrees with eq. (E.1) for small deflection angles, but deviations

might occur for large deflection angles. It would be interesting to investigate this further.
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A Linear relations between products of fa(z) functions

Here we list some linear relations between products of the fa(z) functions used in the

main text.

f1(z)f4(z) +
1

15
f3(z)f4(z)− 4

63
f2(z)f5(z)− f2(z)f3(z) = 0,

(A.1)

308

25
f2

2 (z)− 308

25
f1(z)f3(z) +

5929

375
f2

3 (z)− 2673

2500
f2

4 (z)− 396

25
f1(z)f5(z) + f2(z)f6(z) = 0,

245f2
2 (z)− 245f1(z)f3(z)− 7

12
f2

3 (z)− 81

80
f2

4 (z) + f3(z)f5(z) = 0,

140

9
f2

2 (z)− 140

9
f1(z)f3(z)− 28

27
f2

3 (z) + f2(z)f4(z) = 0,

(A.2)

3991680

16000
f2(z)f3(z)− 99

125
f4(z)f3(z) + f6(z)f3(z)− 6237

25
f1(z)f4(z)− 891

875
f4(z)f5(z) = 0,
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f2(z)f7(z) +
7007

500
f2(z)f3(z) +

39611

2500
f4(z)f3(z)− 7007

500
f1(z)f4(z)− 4719

4375
f4(z)f5(z)

−143

9
f1(z)f6(z) = 0,

(A.3)

− 1

15
f6(z)f2(z)2 +

297

4375
f4(z)2f2(z) + f1(z)f5(z)f2(z) +

44

625
f3(z)f5(z)f2(z)

+
9

143
f1(z)f7(z)f2(z)− 44

625
f3(z)2f4(z)− 297

4375
f1(z)f4(z)f5(z)− f1(z)f1(z)f6(z) = 0,

(A.4)

−f6(z)f1(z)2 + f3(z)f4(z)f1(z)− 297

4375
f4(z)f5(z)f1(z) +

9

143
f2(z)f7(z)f1(z)

+
9

2500
f2(z)f4(z)2 − 7

1875
f3(z)2f4(z) +

7

1875
f2(z)f3(z)f5(z)− 7

1980
f2(z)2f6(z) = 0,

(A.5)

−f6(z)f1(z)2 +
9

143
f2(z)f7(z)f1(z)− 297

4375
f4(z)f5(z)f1(z) +

297

4375
f2(z)f4(z)2

+f2(z)2f4(z)− 44

625
f3(z)2f4(z) +

7

1875
f2(z)f3(z)f5(z)− 7

1980
f2(z)2f6(z) = 0,

(A.6)

−f6(z)f1(z)2 +
9

143
f2(z)f7(z)f1(z)− 297

4375
f4(z)f5(z)f1(z) + f2(z)f3(z)2

+
9

2500
f2(z)f4(z)2 − 44

625
f3(z)2f4(z) +

2647

39375
f2(z)f3(z)f5(z)− 7

1980
f2(z)2f6(z) = 0,

(A.7)

−f6(z)f2(z)2 +
891

875
f4(z)2f2(z) +

132

125
f3(z)f5(z)f2(z)− 132

125
f3(z)2f4(z)

−891

875
f1(z)f4(z)f5(z) + f1(z)f3(z)f6(z) = 0.

(A.8)

B Coefficients in G(3,1)(z)

Here we list the coefficients in G(3,1)(z):

b116 = −∆L (∆L+3) (∆L (∆L (∆L (1001∆L+387)−4326)+13828)+5040)

10378368000 (∆L−4) (∆L−3) (∆L−2)

+
b14 (∆L (143∆L+427)+540)

17160 (∆L−4)
,

c118 =
7 (∆L+3)

(
604800b14

(
∆2
L−5∆L+6

)
+∆L

(
−21∆3

L+229∆2
L+414∆L+284

))
856627200

(
∆3
L−9∆2

L+26∆L−24
) ,

c127 =
∆L (∆L (∆L (∆L (∆L (14∆L−15)+6040)−36125)−75814)−49620)

2306304000 (∆L−4) (∆L−3) (∆L−2)

−3b14 (∆L (2∆L+3)+135)

11440 (∆L−4)
,
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c145 =
∆L (∆L (∆L (∆L ((32680−1183∆L) ∆L−183605)+34900)+570808)+436440)

47040000000 (∆L−4) (∆L−3) (∆L−2)

+
3b14 (∆L (257∆L−2227)+510)

700000 (∆L−4)
,

c226 =
∆L (∆L (∆L (∆L ((40020−1337∆L) ∆L−274845)+96350)+2323212)+1910160)

71850240000 (∆L−4) (∆L−3) (∆L−2)

+
b14 (∆L (22∆L−267)+960)

39600 (∆L−4)
,

c235 =
b14 ((10283−1153∆L) ∆L−5790)

900000 (∆L−4)
+

∆L

(
51463∆5

L−846480∆4
L+1320405∆3

L

)
1632960000000

(
∆3
L−9∆2

L+26∆L−24
)

+
∆L

(
22381100∆2

L−46886088∆L−46446840
)

1632960000000
(
∆3
L−9∆2

L+26∆L−24
) ,

c244 =
∆L (∆L (∆L (∆L (∆L (1337∆L−32145)+160095)+19525)−266712)−182160)

70560000000 (∆L−4) (∆L−3) (∆L−2)

+
9b14 (∆L (71−11∆L)+270)

175000 (∆L−4)
,

c334 =
∆L (∆L (∆L (∆L (∆L (509∆L−1515)+83415)−808325)+823116)+902880)

90720000000 (∆L−4) (∆L−3) (∆L−2)

+
b14 (∆L (11∆L−71)−270)

18750 (∆L−4)
. (B.1)

C Coefficients in G(3,2)(z)

Here we list the coefficients in G(3,2)(z):

g119 =
g13 (7∆L (128− 77∆L) + 6720)

16409250 (∆L − 5)
+

49b14 (∆L (∆L (170− 11∆L) + 981) + 1620)

16409250 (∆L − 5) (∆L − 4)

+
196e115

49725
+

539∆7
L − 15386∆6

L + 54215∆5
L + 951510∆4

L + 2911426∆3
L

472586400000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
98e15 (∆L + 4)

16575 (∆L − 5)
+

3737076∆2
L + 1779120∆L

472586400000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g128 = −7g13 (∆L (4∆L − 469) + 930)

12355200 (∆L − 5)
−

7b14

(
∆L

(
22∆2

L − 64∆L + 4197
)

+ 11745
)

6177600 (∆L − 5) (∆L − 4)

+
462∆7

L − 24203∆6
L + 1044630∆5

L − 3466005∆4
L − 24181012∆3

L − 39855972∆2
L

1779148800000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

− 49e15 (∆L (∆L + 2) + 102)

93600 (∆L − 5)
− 61201∆L

4942080000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g155 =
11e15 (∆L (278∆L − 2789) + 126)

2756250 (∆L − 5)
+

11g13 (∆L (2279∆L − 7400)− 8370)

231525000 (∆L − 5)

− 3146e115

275625
+
b14

(
12063∆3

L − 88048∆2
L − 131165∆L + 196110

)
77175000 (∆L − 5) (∆L − 4)
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+
−244401285∆4

L + 853023786∆3
L + 2178372216∆2

L + 1399907880∆L

233377200000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
−1406986∆7

L + 28367309∆6
L − 123035140∆5

L

233377200000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g227 =
e15 (∆L (52∆L − 751) + 3234)

93600 (∆L − 5)
− e115

240
+
g13 (∆L (1051∆L − 12370)− 52530)

86486400 (∆L − 5)

+
b14 (∆L (∆L (3131∆L − 33896)− 62985) + 1236870)

86486400 (∆L − 5) (∆L − 4)

+
−213549∆7

L + 6031106∆6
L − 23990385∆5

L − 205647690∆4
L

87178291200000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
853227874∆3

L + 2135805744∆2
L + 1445776920∆L

87178291200000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g236 =
e15 ((15074− 1223∆L) ∆L − 39816)

6804000 (∆L − 5)
+
g13 (∆L (186926∆L − 1951295) + 5891220)

6286896000 (∆L − 5)

+
143e115

340200
+
b14 (∆L (∆L (23001∆L − 469741) + 3383740)− 7782480)

1047816000 (∆L − 5) (∆L − 4)

−
9324749∆7

L − 433851406∆6
L + 5233472135∆5

L − 21967190310∆4
L

6337191168000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

−
10644674676∆3

L + 72859312056∆2
L + 65903302080∆L

6337191168000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
, (C.1)

g245 = −99e15 (∆L (83∆L − 754)− 1064)

4900000 (∆L − 5)
+
g13 (73∆L (275− 274∆L) + 170060)

137200000 (∆L − 5)

+
5577e115

245000
+
b14 (∆L (∆L (79801− 14981∆L) + 410980)− 55320)

68600000 (∆L − 5) (∆L − 4)

+
1300313∆7

L − 22489422∆6
L + 63989995∆5

L + 399569530∆4
L

138297600000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
−690996588∆3

L − 2276065528∆2
L − 1491467040∆L

138297600000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g335 =
1144e115

5315625
+
g13 (∆L (6426275− 894839∆L) + 685170)

17860500000 (∆L − 5)

− 11e15 (∆L (11143∆L − 143659) + 451206)

212625000 (∆L − 5)

− b14 (∆L (∆L (446853∆L − 4788638) + 4992635) + 44234910)

5953500000 (∆L − 5) (∆L − 4)

+
43544683∆7

L − 877022702∆6
L + 4877336920∆5

L − 1356232020∆4
L

9001692000000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
−28767381333∆3

L − 34411007748∆2
L − 12217009140∆L

9001692000000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,
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g344 =
11e15 (∆L (278∆L − 2789) + 126)

2625000 (∆L − 5)
+
g13 (∆L (17194∆L − 10525)− 249570)

220500000 (∆L − 5)

− 1573e115

131250
+
b14 (∆L (∆L (9438∆L − 48673)− 325415) + 511110)

73500000 (∆L − 5) (∆L − 4)

+
−1593347∆7

L + 27045868∆6
L − 6670280∆5

L − 1193221320∆4
L

444528000000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
1878076947∆3

L + 5698801932∆2
L + 3877115760∆L

444528000000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
, (C.2)

d117 = − 9

220
e115 +

84 + ∆L(53 + 13∆L)

1560(∆L − 5)
e15 +

13∆L (209∆L + 409) + 8340

7207200 (∆L − 5)
g13

−
4641∆7

L + 22727∆6
L + 44901∆5

L + 67569∆4
L + 519742∆3

L

290594304000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

−
828876∆2

L + 333648∆L

290594304000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
∆L (∆L (5317∆L + 18140) + 68763) + 69660

7207200 (∆L − 5) (∆L − 4)
b14. (C.3)

D OPE coefficients of twist-eight triple-stress tensors

Here we list a few OPE coefficients of twist-eight triple-stress tensors which are found

using (4.8):

P
(3)
12,4 =

P
(2)
8,2 (∆L (143∆L+427)+540)

17160 (∆L−4)

−
1001∆6

L+3390∆5
L−3165∆4

L+850∆3
L+46524∆2

L+15120∆L

10378368000 (∆L−4) (∆L−3) (∆L−2)
, (D.1)

P
(3)
14,6 =

9P
(2)
8,2 (∆L (13∆L+11)+12)

544544 (∆L−4)

+
7917∆6

L+38174∆5
L+140795∆4

L+266390∆3
L+253908∆2

L+97776∆L

548900352000 (∆L−4) (∆L−3) (∆L−2)
, (D.2)

P
(3)
16,8 =

5P
(2)
8,2 (∆L (17∆L+2)+6)

9876048 (∆L−4)

+
362593∆6

L+881129∆5
L+2782307∆4

L+4155839∆3
L+3518084∆2

L+1198176∆L

438022480896000 (∆L−4) (∆L−3) (∆L−2)
,

(D.3)

P
(3)
18,10 =

P
(2)
8,2 (∆L (323∆L−77)+54)

823727520 (∆L−4)
+

17413253∆6
L+23717684∆5

L+79039447∆4
L

377794389772800000 (∆L−4) (∆L−3) (∆L−2)

+
92754344∆3

L+73231064∆2
L+22535496∆L

377794389772800000 (∆L−4) (∆L−3) (∆L−2)
. (D.4)
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Assuming Einstein-Hilbert + Gauss-Bonnet gravity in the bulk, the OPE coefficient

P
(2)
8,2 was derived in (5.48) and can be inserted in (D.1)–(D.4).

E Derivation of the deflection angle from the phase shift

Here we simply show that the bulk phase shift, defined as δ = pt(∆t) − pφ(∆φ) in [20] is

consistent with the standard equation relating the eikonal phase and the scattering angle

∂δ

∂b
= −pt ∆φ (E.1)

obtained with the use of the stationary phase approximation for small scattering angles.

Our discussion is focused on asymptotically flat space. In this case, the formulas in classical

gravity which provide the deflection angle and the time delay are:

∆t = 2

∫ ∞
r0

dr

f
√

1− b2f
r2

∆φ = 2b

∫ ∞
r0

dr

r2

√
1− b2f

r2

. (E.2)

They can be obtained from eq. (2.9) in [20] with the substitution pφ

pt = b (and the appropri-

ate definition of the blackening factor f(r)). Note that the equation for the turning point

of the geodesic, r0, reduces in Schwarzchild geometry to:

1− b2

r2f(r0)
= 0 (E.3)

Defining the bulk phase shift via δ = pt(∆t)− pφ(∆φ), leads to

δ = pt(∆t)− pφ(∆φ) = pt (∆t− b∆φ) = 2pt
∫ ∞
r0

dr

f

√
1− b2f

r2
. (E.4)

Differentiating the bulk phase shift with respect to the impact parameter yields:

∂δ

∂b
= −2pt b

∫ ∞
r0

dr

r2

√
1− b2f

r2

− 2pt
1

f(r0)

√
1− b2f(r0)

r2
0

= −pt(∆φ) , (E.5)

where to arrive at the last equality we used the equation satisfied by the turning point r0.

Hence,

∆φ = − 1

pt
∂δ

∂b
. (E.6)

Finally note that assuming the classical relation J ≡ pφ = b pt, the deflection angle can

also be computed through

∆φ = − ∂δ
∂J

. (E.7)
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1 Introduction and summary

Holography [1–3] provides us with a useful tool to study d-dimensional CFTs at large
central charge CT , especially when combined with modern CFT techniques (see e.g. [4–6]
for reviews). One of the basic objects in this setup is a Witten diagram with a single
graviton exchange which contributes to four-point functions. It can be decomposed into
the conformal blocks of the stress-tensor and of the double-trace operators made out of
external fields [7].

When a pair of the external operators denoted by OH is taken to be heavy, with the
conformal dimension ∆H ∼ CT , and the other pair denoted by OL stays light, the resulting
heavy-heavy-light-light (HHLL) correlator describes a light probe interacting with a heavy
state. In this case, operators which are comprised out of many stress tensors (multi stress
tensor operators) contribute, together with the multi-trace operators involving OL. As we
review below, the OPE coefficients of the scalar operators with a (unit-normalized) multi
stress tensor operator T kτ,s, which contains k stress tensors and has twist τ and spin s, scale
like λO∆O∆Tkτ,s

∼ ∆k/C
k/2
T for large ∆.

The contribution of a given multi stress tensor operator to the HHLL four-point func-
tion 〈OHOLOLOH〉 can be compared to the contribution of the same operator to the
corresponding two-point function at finite temperature1 β−1, 〈OLOL〉β . In this paper we
argue that they are the same in generic large-CT CFTs. As we explain later, this means
that OPE coefficients of T kτ,s with the two heavy operators OH , 〈OHT kτ,sOH〉, are equal
to their finite temperature expectation values, 〈T kτ,s〉β . The relation between the inverse
temperature β and the conformal dimension ∆H is set by considering the stress tensor
(k = 1, τ = d− 2, s = 2), but the equality between the thermal expectation values and the
OPE coefficients for all other multi stress tensor operators is a nontrivial statement. We
call it “the thermalization of the stress tensor sector”.2 It is directly related to the Eigen-
state Thermalization Hypothesis (ETH) [26–30], as we review below. Hence, we argue that
all multi stress tensor operators in the large-CT CFTs satisfy the ETH. In d = 2 the ETH
and thermalization have been studied in e.g. [31–61].

1See [8–25] for some previous work on finite temperature conformal field theories in d > 2.
2We show this explicitly for certain primary heavy operators OH in free CFTs. We also observe that

other light operators do not satisfy the thermalization property that the stress tensor sector enjoys.
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Here we want to address the d > 2 case. In holographic theories CFT and bootstrap
techniques provide a lot of data which indicates that the thermalization of the stress tensor
sector happens [62–73]. Some of the OPE coefficients in holographic CFTs were computed
using two-point functions in a black hole background [63] — these are thermal correlators
according to the standard holographic dictionary. It is also worth noting that the leading ∆
behavior of the OPE coefficients in holographic models does not depend on the coefficients
of the higher derivative terms in the bulk lagrangian [71] (this should not be confused with
the universality of the OPE coefficients of the minimal-twist multi stress tensors [63]). Such
a universality follows from the thermalization of the stress tensor sector as we discuss below.

A natural question is whether the thermalization of the stress tensor sector is just a
property of holographic CFTs or if it holds more generally. In this paper we argue for the
latter scenario. We compute the OPE coefficients (and the thermal expectation values) for
a number of multi stress tensor operators in a free CFT and observe thermalization as well
as universality of OPE coefficients. We also provide a bootstrap argument for all CFTs
with a large central charge.

The rest of the paper is organized as follows. In section 2, we begin by considering the
thermalization of multi stress tensor operators T kτ,s. The heavy state we consider is created
by a scalar operator OH with dimension ∆H ∼ CT and by thermalization of a multi stress
tensor operator we mean3

〈OH |T kτ,s|OH〉
∣∣∣ ∆k

H

C
k/2
T

= λOHOHTkτ,s

∣∣∣ ∆k
H

C
k/2
T

= 〈T kτ,s〉β , (1.1)

where the heavy state |OH〉 on the sphere of unit radius is created by the operator OH ,
λOHOHTkτ,s are the OPE coefficients of T kτ,s in the OH × OH OPE and |∆k

H/C
k/2
T

means

we keep only leading terms that scale like ∆k
H/C

k/2
T ∼ C

k/2
T . In (1.1) 〈T kτ,s〉β is the one-

point function on the sphere at finite temperature β−1. Note that the OPE coefficients
involving the stress tensor are fixed by the Ward identity, and hence eq. (1.1) for the
stress tensor establishes a relation between the temperature β−1 and ∆H . By the large-CT
factorization,4 the thermal one-point functions of multi stress tensors can be related to the
thermal one-point function of the stress tensor itself. Explicitly,

〈T kτ,s〉β = ckτ,s(〈T 1
d−2,2〉β)k = ckτ,s

(
λOHOHT 1

d−2,2

)k
, (1.2)

where ckτ,s are theory-independent coefficients that appear because of the index structure in
〈T kτ,s〉β . In the second equality in (1.2) we used (1.1) for the stress tensor. Note that (1.1)
and (1.2) imply that the leading ∆H behavior of the multi stress tensor OPE coefficients
is universal, i.e. it does not depend on the theory.5 We provide a bootstrap argument for

3Here we are suppressing the tensor structure. Note that all terms scale like Ck/2T which is consistent
with T kτ,s being unit-normalized.

4See [74] for a general discussion of large-N factorization and [75, 76] and [8] for the discussion in the
context of gauge theories and CFTs respectively. The factorization holds in adjoint models in the ’t Hooft
limit at finite temperature, but there are counterexamples, like e.g. a direct product of low-CT CFTs.
However the factorization of multi stress tensors would still apply in these models.

5This amounts to the large-CT factorization of correlators 〈OH |Tµν . . . Tαβ |OH〉 in heavy states.
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this universality in all large-CT theories. Also note that (1.2) is written for multi-trace
operators T kτ,s which do not contain derivatives, but the presence of derivatives does not
affect the statement of universality.

In section 3, we check the universality by computing a number of the multi stress tensor
OPE coefficients in a free SU(N) adjoint scalar theory in d = 4 dimensions. We compare
the leading ∆H behavior in the free theory with results from holography/bootstrap and
find perfect agreement in all cases listed below. After fixing the coefficients for the stress
tensor case in section 3.1, we look at the first nontrivial case, T 2

4,4 in section 3.2. Section 3.3
is devoted to the double stress tensor with two derivatives, T 2

4,6. This is an operator whose
finite temperature expectation value vanishes in the large volume limit (on the plane), but is
finite on the sphere. In section 3.4 we consider minimal twist multi stress tensors of the type
T k2k,2k. Section 3.5 is devoted to multi stress tensors with non-minimal twist, T 2

6,2 and T 2
8,0.

In section 4, we verify that (1.1) holds in the free adjoint scalar theory for a variety
of operators. In this section we again consider d = 4, but in addition, take the infinite
volume limit. This is for technical reasons — it is easier to compute a finite temperature
expectation value on the plane than on the sphere. We spell out the index structure in (1.1)
in detail and go over all the examples discussed in the previous section. In addition, we
discuss some triple stress tensor operators.

We continue in section 5 by studying thermal two-point functions in the free adjoint
scalar model in d = 4. By decomposing the correlator into thermal blocks we read off
the product of thermal one-point functions and the OPE coefficients for several operators
of low dimension and observe agreement with the results of sections 3 and 4. Due to the
presence of multiple operators with the same dimension and spin, we have to solve a mixing
problem to find which operators contribute to the thermal two-point function.

In section 6 we explain the relation between our results and the Eigenstate Ther-
malization Hypothesis. We observe that unlike multi stress tensors, other light operators
explicitly violate the Eigenstate Thermalization Hypothesis and do not thermalize. We
end with a discussion in section 7.

Appendices A, B, and C contain explicit calculations of OPE coefficients while in
appendices D and E thermal one-point functions are calculated. In appendix F we review
the statement that the thermal one-point functions of multi-trace operators with derivatives
vanish on S1×Rd−1. In appendix G we study a free scalar in two dimensions and calculate
thermal two-point functions of certain quasi-primary operators. In appendix H we consider
a free scalar vector model in four dimensions. Appendix I discusses the factorization of
multi-trace operators in the large volume limit.

2 Thermalization and universality

In the following we consider large-CT CFTs on a (d − 1)-dimensional sphere of radius R,
which we set to unity for most of this section. As reviewed in [71], the stress tensor sector
of conformal four-point functions consists of the contributions of the stress tensor and all
its composites (multi stress tensors). The HHLL correlators we consider involve two heavy
operators inserted at x0

E = ±∞ and two light operators inserted on the Euclidean cylinder,
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with angular separation ϕ and time separation x0
E . The correlator in a heavy state (the

HHLL correlator on the cylinder) is related to the correlator on the plane by a conformal
transformation

〈OH |O(x0
E , ϕ)O(0)|OH〉 = lim

x4→∞
x2∆H

4 (zz̄)−∆/2〈OH(x4)O(1)O(z, z̄)OH(0)〉, (2.1)

where the cross-ratios (z, z̄) on the plane are related to the coordinates (x0
E , ϕ) via

z = e−x
0
E−iϕ, z̄ = e−x

0
E+iϕ. (2.2)

The stress tensor sector of the HHLL correlator is given by

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)O(1)O(z, z̄)OH(0)〉

∣∣∣
multi stress tensors

(2.3)

and can be expanded in conformal blocks

G(z, z̄) = 1
[(1− z)(1− z̄)]∆

∑
Tkτ,s

P
(HH,LL)
Tkτ,s

g(0,0)
τ,s (1− z, 1− z̄), (2.4)

where τ, s, k label the twist, spin, and multiplicity of multi stress tensors. We are interested
in the double scaling limit where the central charge and the dimension of OH are large,
CT ,∆H → ∞ with their ratio µ ∝ ∆H/CT fixed. In this limit the products of the OPE
coefficients which appear in (2.4) are given by

P
(HH,LL)
Tkτ,s

=
(
−1

2

)s
λOOTkτ,sλOHOHTkτ,s

∣∣∣∣∣(∆H
CT

)k , (2.5)

where we only keep the leading,
(

∆H√
CT

)k
term in the OPE coefficients λOHOHTkτ,s , but

retain all terms in the OPE coefficients of the light operators λOOTkτ,s . The contribution of
the conformal family of a multi stress operator T kτ,s to the HHLL correlator is therefore

〈OH |O(x0
E , ϕ)O(0)|OH〉|Tkτ,s =

P
(HH,LL)
Tkτ,s

g
(0,0)
τ,s (1− z, 1− z̄)

[
√
zz̄(1− z)(1− z̄)]∆

. (2.6)

We now consider these CFTs at finite temperature β−1. To isolate the contribution of
the conformal family associated with T kτ,s, we can write the thermal correlator as

〈O(x0
E , ϕ)O(0)〉β = 1

Z(β)
∑
i

e−β∆i〈Oi|O(x0
E , ϕ)O(0)|Oi〉

= 1
[
√
zz̄(1− z)(1− z̄)]∆

∑
Tkτ,s

(
−1

2

)s
λOOTkτ,sg

(0,0)
τ,s (1− z, 1− z̄) 〈T kτ,s〉β

+ . . . , (2.7)

where
〈T kτ,s〉β = 1

Z(β)
∑
i

e−β∆iλOiOiTkτ,s (2.8)
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is the finite temperature one-point function on the sphere of the T kτ,s operator and the dots
denote contributions from other operators. In (2.8) Z(β) is the partition function and the
sum runs over all operators, including descendants.6 Note that

〈T kτ,s〉β = β−(τ+s)fkτ,s(β). (2.9)

Here and below the indices are suppressed (see e.g. [17] for the explicit form) and fkτ,s(β) ∼
C
k/2
T is a theory-dependent nontrivial function of β which approaches a constant fkτ,s(0) in

the large volume (β → 0) limit.
Consider the thermalization of the stress tensor sector:

〈OH |T kτ,s|OH〉
∣∣∣ ∆k

H

C
k/2
T

= λOHOHTkτ,s

∣∣∣ ∆k
H

C
k/2
T

= 〈T kτ,s〉β . (2.10)

Note that T kτ,s is unit-normalized, so all terms in (2.10) scale like Ck/2T . Eq. (2.10) implies
the equality between (2.6) and the corresponding term in (2.7). Note that the left-hand side
of (2.10) is a function of the energy density while the right-hand side is a function of tem-
perature. The relationship is fixed by considering the stress tensor case: the corresponding
function f1

d−2,2(β) is determined by the free energy on the sphere (see section 6).
In the following, we will first discuss the case where the multi stress operators T kτ,s do

not have any derivatives inserted, and then show that the derivatives do not change the
conclusions. Assuming large-CT factorization, the leading CT behavior of 〈T kτ,s〉β on the
sphere is determined by that of the stress tensor. Schematically,

〈T kτ,s〉β = ckτ,s (〈T 1
d−2,2〉β)k + . . . , (2.11)

where ckτ,s are numerical coefficients, which depend on k, τ, s, but are independent of the
details of the theory and the dots stand for terms subleading in C−1

T . By combining (2.11)
and (2.10), one can formulate a universality condition

λOHOHTkτ,s

∣∣∣ ∆k
H

C
k/2
T

= ckτ,s(λOHOHT 1
d−2,2

)k = ckτ,s

(
d

1− d

)k ∆k
H

C
k
2
T

, (2.12)

where the last equality follows from the stress tensor Ward identity for the three-point
function which fixes λOHOHT 1

d−2,2
(T 1
d−2,2 here is unit-normalized). In other words, ther-

malization and large-CT factorization imply that the leading ∆k/C
k/2
T behavior of the multi

stress tensor OPE coefficients is completely fixed and given by (2.12) in all large-CT CFTs.
In the paragraph above we considered multi stress tensor operators that did not contain

any derivatives in them. However, the story largely remains the same when the derivatives
are included, as long as their number does not scale with CT . Indeed, the three-point
function involving the stress-tensor with added derivatives, ∂α . . . ∂βTµν still behaves like
λOHOH∂α...∂βTµν ' ∆H/

√
CT up to a theory-independent coefficient. Hence, (2.12) still

holds, provided thermalization and large-CT factorization hold on the sphere.
6The corresponding conformal blocks can be obtained in the usual way by applying the quadratic con-

formal Casimir and solving the resulting differential equation [77].
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Note that due to conformal invariance, correlators on the sphere depend on R only
through the ratio β/R. Moreover, in the large volume limit, factors of R need to drop out
of (2.6) and (2.7) to have a well defined limit. To see this we use that (1 − z) → 0 and
(1− z̄)→ 0 when R→∞ and the conformal blocks behave as (see e.g. [6])

g(0,0)
τ,s (1− z, 1− z̄) ∼ Nd,s[(1− z)(1− z̄)]

τ+s
2 C(d/2−1)

s

(
(1− z) + (1− z̄)
2
√

(1− z)(1− z̄)

)

∼ Nd,s
|x|τ+s

Rτ+s C
(d/2−1)
s

(
x0
E

|x|

)
,

(2.13)

where |x| =
√

(x0
E)2 + x2, C(d/2−1)

s (x
0
E
|x| ) is a Gegenbauer polynomial and Nd,s = s!

(d/2−1)s .
Including the factor [(1 − z)(1 − z̄)]−∆ from (2.6) in (2.13) this agrees with the thermal
block on S1 ×Rd−1 in [13]. Now from the thermalization of the stress tensor we will find
in the large volume limit that

∆H

CT
∝
(
R

β

)d
, (2.14)

and from (2.12) and (2.13) it follows that

g(0,0)
τ,s (1− z, 1− z̄)λOOTkτ,sλOHOHTkτ,s

∣∣∣∆k
H

Ck
T

∝ Rdk−(τ+s)β−dk. (2.15)

The dimension of multi stress tensors T kτ,s is given by τ + s = dk + n where n = 0, 2, . . ..
Therefore, the only multi stress tensors that contribute in the large volume limit have
dimensions dk. Restoring R in (2.6)–(2.7) and inserting (2.15) one finds that R drops out
in the large volume limit. The correct dependence β−(τ+s) from (2.9) in the R→∞ limit is
also recovered in (2.6) using (2.15). The multi stress tensor operators that contribute in the
large volume limit are therefore of the schematic form Tµ1ν1Tµ2ν2 · · ·Tµkνk with arbitrarily
many contractions and no derivatives.

In holographic theories thermalization and the Wilson line prescription for the cor-
relator allows one to compute the universal part of the OPE coefficients (see [66, 78] for
explicit computations in the d = 4 case). It is also easy to check explicitly that the uni-
versality (2.12) holds for holographic theories with a Gauss-Bonnet gravitational coupling
added. While the statement was shown to be true for the leading twist OPE coefficients
in [63], it was not immediately obvious for multi stress tensors of non-minimal twist. Some
such OPE coefficients were computed in [63, 71]. (See e.g. eqs. (5.48), (5.51), (5.52), (5.57)
and (D.1)-(D.5) in [71]). Indeed, the leading ∆k/C

k/2
T behavior of these OPE coefficients

is independent of the Gauss-Bonnet coupling.
What about a general large-CT theory? We first consider the OPE coefficients of

double-stress tensors. To this end, consider the four point function7 〈OTµνTρσO〉 where O
is a scalar operator with scaling dimension ∆. In the direct channelO×O → O′ → Tµν×Tρσ
for finite ∆ and large CT , the leading contribution in the large-CT limit comes from the

7This correlator for finite ∆ was recently considered in holographic CFTs with ∆gap � 1 and ∆� ∆gap

in [73].
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identity operator O × O → 1 → Tµν × Tρσ. The subleading contributions in the direct-
channel are due to single trace operators as well as double trace operators made out of
the external operators of the schematic form T 2

τ,s and [OO]n,l =: O∂2n∂1 . . . ∂lO :. The
exchange of the identity operator is reproduced in the cross-channel O×Tµν → [OTαβ ]n,l →
O × Tρσ by mixed double-trace operators [OTαβ ]n,l with OPE coefficients fixed by the
MFT [79–81]. The subleading contributions in 1/CT are then due to corrections to the
anomalous dimension and OPE coefficients of [OTαβ ]n,l and single trace operators in the
O × Tµν OPE. An important example of the latter is the exchange of the single trace
operator O, whose contribution is universally fixed by the stress tensor Ward identity to
be (λOT 1

d−2,2O
)2 ∝ ∆2/CT times the conformal block. This gives a universal contribution

to λOOT 2
τ,s

as was also noted in [73].

We now want to consider the case where ∆ ∼ CT and study the OPE coefficients of
the double-stress tensor operators in the O ×O OPE. Firstly, note that the contribution
from T 2

τ,s to the four-point function expanded in the direct channel is proportional to
λOOT 2

τ,s
λTTT 2

τ,s
. The OPE coefficients λTTT 2

τ,s
are fixed by the MFT and are independent

of ∆ and therefore the dependence on the scaling dimension comes solely from the OPE
coefficients λOOT 2

τ,s
. In the cross-channel, we analyze two kinds of contributions: from the

exchanged operator O and from all other operators O′ 6= O. From the operator O we get a
universal contribution to the OPE coefficients in the direct channel λOOT 2

τ,s
, that we denote

by λ(1)
OOT 2

τ,s
. This contribution is universal since it only depends on (λOT 1

d−2,2O
)2 ∝ ∆2/CT

in the cross-channel, which is fixed by the Ward identity. The contributions from other
operators O′ to the same OPE coefficient will be denoted by λ(2)

OOT 2
τ,s
, such that λOOT 2

τ,s
=

λ
(1)
OOT 2

τ,s
+ λ

(2)
OOT 2

τ,s
. Note that it also follows from the stress tensor Ward identity that the

only scalar primary that appears in the cross-channel is O. The operator O′ therefore
necessarily has spin s 6= 0.

To prove universality we need to show that λ(2)
OOT 2

τ,s
� ∆2/CT in limit 1 � ∆ ∝ CT

by studying the ∆ dependence of the OPE coefficients λOT 1
d−2,2O′

in the cross-channel.
For operators O′, such that ∆O′ � ∆, we expect that these OPE coefficients are heavily
suppressed. It would be interesting to understand if one could put a general bound on the
contribution of these operators in the cross-channel in any large-CT theory. On the other
hand, assuming thermalization, the OPE coefficients due to operators O′ such that ∆O′ ∼
∆ have been calculated in [23]. The obtained results are in agreement with our expectation,
namely, these OPE coefficients are suppressed in 1 � ∆ ∝ CT limit. Additionally, in the
cross-channel we have double-trace operators [OTαβ ]n,l, whose OPE is fixed by the MFT
and it does not get ∆-enhanced. Note that in holographic theories with a large gap,
1 � ∆gap � CT , in the regime ∆ � ∆gap there is a coupling λOT 1

d−2,2T
1
d−2,2

which scales
like 1

∆2
gap
√
CT

and its contribution to multi-stress tensor OPE coefficients was studied in [73].
This is different from the regime considered in this paper where ∆� ∆gap.

One can iteratively extend the argument given here to multi stress tensors operators
(with k > 2) by considering multi stress tensors as external operators. For example,
to argue the universality of λOOT 3

τ,s
one may consider 〈OT 1

d−2,2T
2
τ,sO〉. The bootstrap
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argument above can be applied again by using the fact that OPE coefficients λOOT 2
τ,s

are
universal, and the OPE coefficients λOT 2

τ,sO′ are again expected to be subleading.

3 OPE coefficients in the free adjoint scalar model

In this section we consider a four-dimensional theory of a free scalar in the adjoint repre-
sentation of SU(N), see [82–87] for related work. The relation between N and the central
charge CT in this theory is [88]

CT = 4
3(N2 − 1), (3.1)

and we consider the large-N (large-CT ) limit. The propagator for the scalar field φij is
given by

〈φij(x)φkl(y)〉 =
(
δilδ

k
j −

1
N
δijδ

k
l

) 1
|x− y|2

. (3.2)

A single trace scalar operator with dimension ∆ is given by

O∆(x) = 1
√

∆N
∆
2

: Tr(φ∆) : (x), (3.3)

where : . . . : denotes the oscillator normal ordering and the normalization is fixed by

〈O∆(x)O∆(y)〉 = 1
|x− y|2∆ . (3.4)

The CFT data that we compute in this section are the OPE coefficients of multi stress
tensors in the O∆ ×O∆ OPE. Assuming we can take ∆→ ∆H ∼ CT , the large-∆ limit of
these OPE coefficients is shown to be universal. One may worry that for ∆H ∼ CT we can
no longer trust the planar expansion, but, as we show in appendix C, the large-∆ limit of
the planar result yields the correct expression even for ∆H ∼ CT .

3.1 Stress tensor

The stress tensor operator is given by

Tµν(x) = 1
3
√
CT

: Tr
(
∂µφ∂νφ−

1
2φ∂µ∂νφ− (trace)

)
: (x), (3.5)

where the normalization

〈Tµν(x)Tρσ(0)〉 = 1
|x|8

(
I(µ

ρ(x)Iν)
σ(x)− (traces)

)
, (3.6)

with Iµν(x) := δµν− 2xµxν
|x|2 . The OPE coefficient is fixed by the stress tensor Ward identity

to be
λO∆O∆T

1
2,2

= − 4∆
3
√
CT

. (3.7)

It is also useful to find (3.7) using Wick contractions since an analogous calculation will be
necessary for multi stress tensors. We do this explicitly in appendix A.
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3.2 Double-stress tensor with minimal twist

In this section we study the minimal-twist composite operator made out of two stress
tensors

(T 2)µνρσ(x) = 1√
2

: T(µνTρσ) : (x)− (traces), (3.8)

with the normalization

〈(T 2)µνρσ(x)(T 2)κλδω(0)〉 = 1
|x|16

(
I(µ

κI
ν
λI

ρ
δI
σ)
ω − (traces)

)
. (3.9)

Consider the following three-point function

〈O∆(x1)O∆(x2)(T 2)µνρσ(x3)〉 =
λO∆O∆T

2
4,4

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) , (3.10)

where Zµ = xµ13
|x13|2 −

xµ12
|x12|2 . It is shown in appendix A that the OPE coefficient λO∆O∆T

2
4,4

is given at leading order in the large-CT limit by

λO∆O∆T
2
4,4

= 8
√

2∆(∆− 1)
9CT

. (3.11)

Evaluating P (HH,LL)
T 2

4,4
defined by (2.5) in the large-∆ limit,8 we obtain

P
(HH,LL)
T 2

4,4
=
(
−1

2

)4
λOHOHT 2

4,4
λO∆O∆T

2
4,4

∣∣∣∣∣(∆H
CT

)2

= 8
81

∆2
H

C2
T

(
∆2 +O (∆)

)
= µ2

(
∆2

28800 +O(∆)
)
,

(3.12)

where we use the following relation

µ = 160
3

∆H

CT
. (3.13)

The result (3.12) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [66, 68].

3.3 Double-stress tensor with minimal twist and spin s = 6

We consider double-stess tensor operator with two (uncontracted) derivatives inserted

(T 2)µνρσηκ(x) = 1
2
√

182
:
(
T(µν∂ρ∂σTηκ)(x)− 7

6
(
∂(ρTµν

) (
∂σTηκ)

)
(x)− (traces)

)
: .

(3.14)
Using the conformal algebra eq. (C.2), it is straightforward to check that this operator is
primary. It is unit-normalized such that

〈(T 2)µνρσηκ(x)(T 2)αβγδξε(0)〉 = 1
|x|20

(
I(µ

αI
ν
βI

ρ
γI
σ
δI
η
ξI
κ)
ε − (traces)

)
. (3.15)

8By the large-∆ limit, we strictly speaking mean 1 � ∆ � CT . However in this paper we often
extrapolate this to the ∆ ∼ CT regime.
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By a calculation similar to those summarized in appendix A, we observe that the OPE
coefficient of (T 2)µνρσηκ in the O∆ × O∆ OPE is given at leading order in the large-CT
limit by

λO∆O∆T
2
4,6

= 8
3

√
2
91

∆(∆− 1)
CT

. (3.16)

Evaluating P (HH,LL)
T 2

4,6
, defined by (2.5), in the large-∆ limit, we obtain

P
(HH,LL)
T 2

4,6
=
(
−1

2

)6
λOHOHT 2

4,6
λO∆O∆T

2
4,6

∣∣∣∣∣(∆H
CT

)2

= 2
819

∆2
H

C2
T

(
∆2 +O (∆)

)
= µ2

(
∆2

1164800 +O(∆)
)
.

(3.17)

The result (3.17) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [66, 68].

3.4 Minimal-twist multi stress tensors

We now consider multi stress tensors T k2k,2k. Just like the double stress tensor (k = 2), we
show that these have universal OPE coefficients in the large-∆ limit for any k.

Consider the unit-normalized minimal-twist multi stress tensor operator given by

(T k)µ1µ2...µ2k(x) = 1√
k!

: T(µ1µ2Tµ3µ4 · · ·Tµ2k−1µ2k) : (x)− (traces). (3.18)

The OPE coefficient of (T k)µ1µ2...µ2k in the O∆×O∆ OPE, in the large-CT limit is given by9

λO∆O∆T
k
2k,2k

=
(
−4

3

)k 1
√
k!Ck/2T

Γ(∆ + 1)
Γ(∆− k + 1) . (3.19)

First, we write P (HH,LL)
T 3

6,6
, defined by (2.5), in the large-∆ limit. We obtain this OPE

coefficient from (3.19) for k = 3,

P
(HH,LL)
T 3

6,6
=
(
−1

2

)6
λOHOHT 3

6,6
λO∆O∆T

3
6,6

∣∣∣∣∣(∆H
CT

)3

= 32
2187

∆3
H

C3
T

(
∆3 +O

(
∆2
))

= µ3
(

∆3

10368000 +O(∆2)
)
.

(3.20)

The result (3.20) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [68].

9See appendix A for detailed computations of similar OPE coefficients.
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Additionally, we consider the OPE coefficient P
(HH,LL)
Tk2k,2k

in the large-∆ limit for
general k,

P
(HH,LL)
Tk2k,2k

=
(
−1

2

)2k
λOHOHTk2k,2k

λO∆O∆T
k
2k,2k

∣∣∣∣∣(∆H
CT

)k
= 1
k!

(2
3

)2k ∆k
H

CkT

(
∆k +O

(
∆k−1

))
= µk

(
∆k

120kk! +O(∆k−1)
)
.

(3.21)

If we consider the limit 1 − z̄ � 1 − z � 1, such that µ(1 − z̄)(1 − z)3 is held fixed,
only operators T k2k,2k contribute to the heavy-heavy-light-light four-point function given by
eq. (2.3). The conformal blocks of T k2k,2k in this limit are given by

g
(0,0)
2k,2k(1− z, 1− z̄) ≈ (1− z̄)k(1− z)3k, (3.22)

and we can sum all contributions in eq. (2.4) explicitly to obtain

G(z, z̄) ≈ 1
((1− z)(1− z̄))∆ e

µ∆
120 (1−z̄)(1−z)3

. (3.23)

Notice that the term in the exponential is precisely the stress-tensor conformal block in the
limit 1− z̄ � 1− z � 1 times its OPE coefficient. Therefore, the OPE coefficients (3.19)
imply the exponentiation of stress-tensor conformal block. We conclude that these OPE
coefficients are the same as the ones computed using holography and bootstrap in the limit
of large ∆.

3.5 Double-stress tensors with non-minimal twist

So far we have shown that the minimal-twist multi stress tensor OPE coefficients are
universal in the limit of large ∆. In this subsection, we extend this to show that the simplest
non-minimal twist double-stress tensors also have universal OPE coefficients at large ∆.

The subleading twist double-stress tensor with twist τ = 6 is of the schematic form
: TµαTαν : and has dimension ∆ = 8 and spin s = 2. It is given by

(T 2)µν(x) = 1√
2

: TµαTαν : (x)− (trace). (3.24)

The normalization in (3.24) is again chosen such that (T 2)µν is unit-normalized, see
appendix B for details.

The OPE coefficient of (T 2)µν in the O∆ × O∆ OPE is found from the three-point
function in the large-CT limit, for details see appendix B,

〈O∆(x1)O∆(x2)(T 2)µν(x3)〉 = 4
√

2∆(∆− 1)
9CT

ZµZν − (trace)
|x12|2∆−6|x13|6|x23|6

, (3.25)

from which we read off the OPE coefficient

λO∆O∆T
2
6,2

= 4
√

2∆(∆− 1)
9CT

. (3.26)
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Evaluating P (HH,LL)
T 2

6,2
, defined by (2.5), in the large-∆ limit, we obtain

P
(HH,LL)
T 2

6,2
=
(
−1

2

)2
λOHOHT 2

6,2
λO∆O∆T

2
6,2

∣∣∣∣∣(∆H
CT

)2

= 8
81

∆H
2

C2
T

(
∆2 +O (∆)

)
= µ2

(
∆2

28800 +O(∆)
)
.

(3.27)

The result (3.27) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [71].

We further consider the scalar double-stress tensor with ∆ = 8 and spin s = 0 which
is given by

(T 2)(x) = 1
3
√

2
: TµνTµν : (x). (3.28)

The three point function 〈O∆(x1)O∆(x2)(T 2)(x3)〉 is found in appendix B to be

〈O∆(x1)O∆(x2)(T 2)(x3)〉 = 2
√

2∆(∆− 1)
9CT

1
|x12|2∆−8|x13|8|x23|8

, (3.29)

from which we read off the OPE coefficient

λO∆O∆T
2
8,0

= 2
√

2∆(∆− 1)
9CT

. (3.30)

We write P (HH,LL)
T 2

8,0
in the large-∆ limit

P
(HH,LL)
T 2

8,0
= λOHOHT 2

8,0
λO∆O∆T

2
8,0

∣∣∣∣∣(∆H
CT

)2

= 8
81

∆H
2

C2
T

(
∆2 +O(∆)

)
= µ2

(
∆2

28800 +O(∆)
)
.

(3.31)

The result (3.31) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [71].

4 Thermal one-point functions in the free adjoint scalar model

In this section we explicitly show that multi stress tensor operators thermalize in the free
theory by calculating the thermal one-point function of some of these operators on S1×R3.
One-point functions of primary symmetric traceless operators at finite temperature are
fixed by symmetry up to a dimensionless coefficient bO (see e.g. [8, 13])

〈Oµ1···µsO 〉β = bO
β∆O

(
eµ1 · · · eµsO − (traces)

)
. (4.1)

Here eµ is a unit vector along the thermal circle.
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To compare the thermal one-point functions and OPE coefficients from the previous
section, we need to derive a relation between ∆H

CT
and the temperature10 β−1. Here ∆H ∼

N2 refers to the scaling dimension of a heavy operator OH with OPE coefficients given by
the large-∆ limit of those obtained in section 3. One can relate the inverse temperature β
to the parameter µ = 160

3
∆H
CT

using the Stefan-Boltzmann’s law E/vol(S3) = N2π2/30β4.
The energy of the state E is related to its conformal dimension ∆ via E = ∆/R. One can
then use vol(S3) = 2π2R3 and the relation between N and CT given by (3.1), to find

µ = 160
3

∆H

CT
= 160

3 E
R

CT
= 8

3

(
πR

β

)4
. (4.2)

4.1 Stress tensor

The thermal one-point function for the stress tensor T 1
2,2 = Tµν is calculated in appendix D

where we find that bT 1
2,2

is given by

bT 1
2,2

= −2π4N

15
√

3
. (4.3)

Using (4.2) and (D.6) one arrives at

bT 1
2,2
β−4 = λOHOHT 1

2,2
. (4.4)

4.2 Double-stress tensor with minimal twist

In this section we calculate the thermal one-point function of the double-stress tensor
operator with τ = 4 and spin s = 4. The operator is written explicitly in (3.8). The
leading contribution to the thermal one-point function of (T 2)µνρσ follows from the large-
N factorization and is given by

〈(T 2)µνρσ〉β = 1√
2
〈T(µν〉β〈Tρσ)〉β − (traces)

= 2
√

2π8N2

675β8 (eµeνeρeσ − (traces)) .
(4.5)

Using the relation (4.2) and the OPE coefficient (3.11), we observe the thermalization of
this operator,

bT 2
4,4
β−8 = λOHOHT 2

4,4

∣∣∣∆2
H

CT

. (4.6)

4.3 Minimal-twist multi stress tensors

Consider now multi stress tensors T k2k,2k with twist τ = 2k and spin s = 2k. We show that
these operators thermalize for any k by calculating their thermal one-point functions:

〈(T k)µ1µ2...µ2k〉β =
bTk2k,2k
β4k (eµ1eµ2 · · · eµ2k − (traces)), (4.7)

10See also section 6 and appendix D for alternative derivations.
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where the leading behavior of bTk2k,2k follows from the large-N factorization:

bTk2k,2k
= 1√

k!
(bT 1

2,2
)k =

(−2
5)kNkπ4k

3
3k
2
√
k!

. (4.8)

Eqs. (4.2) and (4.8) may be combined to yield

bTk2k,2k
β−4k = λOHOHTk2k,2k

∣∣∣ ∆k
H

C
k/2
T

. (4.9)

4.4 Double-stress tensors with non-minimal twist

The subleading twist double-stress tensor is of the schematic form : TµαTαν : and has twist
τ = 6 and spin s = 2. The explicit form can be found in (3.24). The leading term in the
thermal one-point function is given by

〈(T 2)µν〉β = 1√
2
〈Tµα〉β〈T να〉β − (trace)

=
b2
T 1

2,2

2
√

2β8

(
eµeν − 1

4δ
µν
)

=
√

2N2π8

675β8

(
eµeν − 1

4δ
µν
)
,

(4.10)

therefore,

bT 2
6,2

=
√

2N2π8

675 . (4.11)

Taking the large-∆ limit of the OPE coefficient in (3.26) and substituting (4.2), we observe
thermalization,

bT 2
6,2
β−8 = λOHOHT 2

6,2

∣∣∣∆2
H

CT

. (4.12)

We further consider the scalar double-stress tensor with τ = 8 and s = 0 which is given
by (3.28). The thermal one-point function for this operator is

〈(T 2)〉β = 1
3
√

2
〈Tµν〉β〈Tµν〉β

= 1
3
√

2
3
4b

2
T 1

2,2
β−8 = π8N2

675
√

2β8 ,

(4.13)

where the factor of 3
4 in the first line comes from the index contractions. Hence,

bT 2
8,0

= π8N2

675
√

2
. (4.14)

Using (4.14), (3.30) and (4.2), we again observe thermalization,

bT 2
8,0
β−8 = λOHOHT 2

8,0

∣∣∣∆2
H

CT

. (4.15)
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4.5 Triple-stress tensors with non-minimal twist

We consider the triple stress tensors with τ = 8, s = 4 and τ = 10, s = 2. The unit-
normalized triple stress tensor with τ = 8 can be written as

(T 3)µνρσ(x) = 1√
3

(
: T(µνTρ|α|T

α
σ) : (x)− (traces)

)
, (4.16)

where |α| denotes that index α is excluded from the symmetrization. The thermal one-point
function follows from large-N factorization

〈(T 3)µνρσ〉β = 1√
3

(
〈T(µν〉β〈Tρ|α|〉β〈Tασ)〉β − (traces)

)

= 1
2
√

3

b3
T 1

2,2

β12 (eµeνeρeσ − (traces))

= − 4π12N3

30375β12 (eµeνeρeσ − (traces)) ,

(4.17)

therefore,

bT 3
8,4

= −4π12N3

30375 . (4.18)

The OPE coefficient of the operator with same quantum numbers (∆ = 12, s = 4)
is calculated holographically and is given by (D.1) in [71]. In the large-∆ limit it can be
written as

P
(HH,LL)
T 3

8,4
=
(
−1

2

)4
λO∆O∆T

3
8,4
λOHOHT 3

8,4

∣∣∣∣∣(∆H
CT

)3
= 64

2187
∆3
H∆3

C3
T

+O(∆2). (4.19)

Now, one can easily read-off λO∆O∆T
3
8,4

in the large-∆ limit

λO∆O∆T
3
8,4

= − 32∆3

27
√

3CT 3/2 +O(∆2) = −4∆3

9N3 +O(∆2), (4.20)

where we use the relation between central charge CT and N given by (3.1). Using (4.2)
one can obtain

bT 3
8,4
β−12 = λOHOHT 3

8,4

∣∣∣ ∆3
H

C
3/2
T

. (4.21)

We also consider the triple stress tensors with quantum numbers ∆ = 12 and s = 2.
There are two linearly independent such operators that schematically can be written as
: TαβTαβTµν : and : TµαTαβTβν :. We write the following linear combinations of these
operators

(T 3)µν(x) = 1
10
√

2

(
: TαβTαβTµν : (x) + 4 : TµαTαβTβν : (x)− (trace)

)
, (4.22)

(T̃ 3)µν(x) = 7
20

(
: TαβTαβTµν : (x)− 12

7 : TµαTαβTβν : (x)− (trace)
)
. (4.23)
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Both (T 3)µν and (T̃ 3)µν are unit-normalized and their overlap vanishes in the large-N limit

〈(T 3)µν(x)(T̃ 3)ρσ(y)〉 = O(1/N2). (4.24)

The thermal one-point functions of these operators, obtained by large-N factorization, in
the large-N limit are given by

〈(T 3)µν〉β = −
√

2
3

N3π12

10125β12 (eµeν − (trace)) ,

〈(T̃ 3)µν〉β = O(N),
(4.25)

therefore,

bT 3
10,2

= −
√

2
3
N3π12

10125 ,

bT̃ 3
10,2

= 0.
(4.26)

The holographic OPE coefficient of the operator with the same quantum numbers
(∆ = 12, s = 2), with external scalar operators is given by (5.57) in [71]. In the large-∆
limit it can be written as

P
(HH,LL)
T 3

10,2
=
(
−1

2

)2
λO∆O∆T

3
10,2

λOHOHT 3
10,2

∣∣∣∣∣(∆H
CT

)3
= 32

729
∆3
H∆3

C3
T

+O(∆2). (4.27)

We can read-off λO∆O∆T
3
10,2

:

λO∆O∆T
3
10,2

= −8
√

2
27

∆3

C
3/2
T

+O(∆2) = −
√

2
3
√

3
∆3

N3 +O(∆2). (4.28)

Again, using (4.2), one can confirm that this operator thermalizes

bT 3
10,2

β−12 = λOHOHT 3
10,2

∣∣∣ ∆3
H

C
3/2
T

. (4.29)

5 Thermal two-point function and block decomposition

In this section we study the thermal two-point function 〈O∆O∆〉β and decompose it in
thermal blocks. We determine the contributions of a few low-lying operators, including the
stress tensor T 1

2,2 and the double stress tensor T 2
4,4. They exactly match the corresponding

OPE coefficients and thermal expectation values computed in previous sections. Due to
the presence of multiple operators with equal scaling dimension and spin, there is a mixing
problem which we solve explicitly in a few cases. Related appendices include appendix F,
where we review the statement that the thermal one-point functions of multi-trace operators
with derivatives vanish on S1×Rd−1 and appendix G, where we consider two-dimensional
thermal two-point functions. In appendix H we do a similar analysis for the vector model
in four dimensions.
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5.1 Thermal two-point function of a single trace scalar operator

The correlator at finite temperature β−1 in the free theory can be calculated by Wick
contractions using the propagators on S1×R3. Explicitly, the two-point function at finite
temperature is given by11

〈O∆(x)O∆(0)〉β = g̃(x0
E , |x|)∆ + π4∆(∆− 2)

9β4 g̃(x0
E , |x|)∆−2 + . . . , (5.1)

where

g̃(x0
E , |x|) =

∞∑
m=−∞

1
(x0
E +mβ)2 + x2

= π

2β|x|

[
Coth

(
π

β
(|x| − ix0

E)
)

+ Coth
(
π

β
(|x|+ ix0

E)
)]

.

(5.2)

The dots in (5.1) contain contributions due to further self-contractions which will not be
important below.12 Taking the β →∞ limit of (5.1) we can read off the decomposition of
the two-point function in terms of thermal conformal blocks on S1 ×R3 with coordinates
x = (x0

E ,x).
Following [13], if |x| =

√
(x0
E)2 + x2 ≤ β the two-point function can be evaluated using

the OPE:

〈O∆(x)O∆(0)〉β =
∑
O
λO∆O∆O|x|

τ−2∆xµ1 · · ·xµsO 〈O
µ1···µsO 〉β , (5.3)

where λO∆O∆O is the OPE coefficient, τ and sO is the twist and spin of O, respectively.
Using (4.1) together with (5.3), the two-point function on S1×R3 can be organized in the
following way [13]:

〈O∆(x)O∆(0)〉β =
∑

Oτ,s∈O∆×O∆

aOτ,s
β∆O

1
|x|2∆−τ+sC

(1)
s

(
x0
E

|x|

)
, (5.4)

where we sum over primary operators Oτ,s, with twist τ and spin s, appearing in the OPE
O∆ ×O∆ ∼ Oτ,s + . . .. In (5.4) C(1)

s (x0
E/|x|) is a Gegenbauer polynomial which, together

with a factor of |x|−2∆+τ−s, forms a thermal conformal block in d = 4 dimensions and the
coefficients aOτ,s are given by

aOτ,s =
(1

2

)s
λO∆O∆Oτ,sbOτ,s . (5.5)

Expanding (5.1) for β →∞ one finds:

〈O∆(x)O∆(0)〉β = 1
|x|2∆

[
1 + π2∆

3β2 |x|
2

+ π4∆
90β4 |x|

2(3x2(5∆− 9) + (15∆− 19)(x0
E)2) +O(β−6)

]
.

(5.6)

11Here and below we assume that ∆ > 4. We further drop the disconnected term 〈O∆〉2β ∼ N2.
12These terms will be proportional to β−2ag̃(x0

E , |x|)∆−a, with a ≥ 4. When decomposed into thermal
blocks, these will not affect the operators with dimension ∆ < 8 or ∆ = 8 with non-zero spin s 6= 0.
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From the expansion (5.6), we can read off the coefficients aτ ′,s′ :=
∑
Oτ ′,s′ aOτ ′,s′ where we

sum over all operators with twist τ ′ and spin s′:

a2,0 = π2∆
3 ,

a4,0 = π4∆(3∆− 5)
18 ,

a2,2 = π4∆
45 .

(5.7)

For future reference, expanding (5.1) to O( 1
β8 ) one finds

a2,4 = 2π6∆
945 ,

a4,4 = π8∆(∆− 1)
1050 .

(5.8)

Note that due to the mixing of operators with the same twist and spin, aτ,s generically
contains the contribution from multiple operators. In the following section we calculate the
OPE coefficients and thermal one-point functions of operators which are not multi stress
tensors but contribute to (5.7) and (5.8).

5.2 CFT data of scalar operators with dimensions two and four

We explicitly calculate the thermal one-point functions 〈O〉β = bOβ
−∆O and OPE coeffi-

cients λO∆O∆O for scalar operators O with twist τ ′ = 2 and τ ′ = 4 using Wick contractions.
This is done to find which operators contribute to the thermal two-point function and to
resolve a mixing problem.

For τ ′ = 2 there is only one such operator, the single trace operator O2(x) = 1√
2N :

Tr(φ2) : (x) given in (3.3). The OPE coefficient is found by considering the three-point
correlator

〈O∆(x1)O∆(x2)O2(x3)〉 = λO∆O∆O2

|x12|2∆−2|x13|2|x23|2
. (5.9)

The three-point function is calculated in appendix A, in the large-N limit, and it is given by

〈O∆(x1)O∆(x2)O2(x3)〉 =
√

2∆
N

1
|x12|2∆−2|x13|2|x23|2

, (5.10)

and therefore λO∆O∆O2 =
√

2∆
N to leading order in 1/N . To calculate the thermal one-point

function ∝ 〈Tr(φ2)〉β , we include self-contractions, i.e. contractions of fundamental fields
within the same composite operator separated by a distance mβ along the thermal circle
for m 6= 0 and integer. Explicitly, the one-point function of O2 is given by

〈O2(x)〉β = 1√
2N

∑
m 6=0

N2

(mβ)2 = π2N

3
√

2β2 , (5.11)

therefore,

bO2 = π2N

3
√

2
. (5.12)
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The contribution to the thermal two-point function aO2 is found using (5.10) and (5.12)

a2,0 = bO2λO∆O∆O2 = π2∆
3 . (5.13)

This agrees with (5.7) which was obtained from the thermal two-point function.
We now continue with scalar operators of twist four. There are two such linearly inde-

pendent operators appearing in the O∆ ×O∆ OPE. In order to construct an orthonormal
basis, consider the following single and double trace operators:

O4(x) = 1
2N2 : Tr(φ4) : (x),

O4,DT(x) = 1
2
√

2N2 : Tr(φ2)Tr(φ2) : (x).
(5.14)

We further construct the operator Õ4 that has vanishing overlap with O4,DT(x) as follows:

Õ4 = N
[
O4 − cO4O4,DTO4,DT

]
, (5.15)

with N a normalization constant and cO4O4,DT is the overlap defined by

〈O4(x)O4,DT(y)〉 =
cO4O4,DT

|x− y|8
. (5.16)

Explicit calculation gives cO4O4,DT = 2
√

2
N and N = 1√

2 in the large-N limit, and the scalar
dimension four operator orthogonal to the double trace operator O4,DT is therefore

Õ4 = 1√
2

[
O4 −

2
√

2
N
O4,DT

]
. (5.17)

Note that even though the second term in (5.15) is suppressed by 1/N , it can still contribute
to the thermal two-point function due to the scaling of OPE coefficients and one-point
function of a k-trace operator O(k):

bO(k) ∼ Nk,

λO∆O∆O(k) ∼
1
Nk

,
(5.18)

in the limit N →∞.
The one-point function and the OPE coefficient for O4 is found analogously to that of

O2 in the large-N limit

bO4 = π4N

9 ,

λO∆O∆O4 = 2∆
N
.

(5.19)

Consider now the double trace operator given in (5.14). The one-point function fac-
torizes in the large-N limit:

〈O4,DT(x)〉β = 1√
2

(〈O2(x)〉β)2

= π4N2

18
√

2β4 .

(5.20)
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Likewise, the OPE coefficient can be computed in the large-N limit (see appendix A)

λO∆O∆O4,DT =
√

2∆(3∆− 5)
N2 . (5.21)

Consider now the thermal one-point function of Õ4 in (5.17)

〈Õ4〉β = 1√
2β4

[
bO4 −

2
√

2
N

bO4,DT

]
= O(N−1),

(5.22)

where we have used (5.19) and (5.20). Since the corresponding OPE coefficient is suppressed
by N−1, it follows that the only scalar operator with dimension four contributing to the
thermal two-point function is the double trace operator O4,DT. From the OPE coefficient
and thermal one-point function of this double trace operator, using (5.20) and (5.21), we
find the following contribution to the thermal two-point function

a4,0 = π4∆(3∆− 5)
18 , (5.23)

which agrees with (5.7).

5.3 CFT data of single-trace operator with twist two and spin four

The primary single trace operator Ξ = O2,4 with twist τ = 2 and spin s = 4 is given by

Ξµνρσ(x) = 1
96
√

35N
: Tr

(
φ(∂µ∂ν∂ρ∂σφ)− 16(∂(µφ)(∂ν∂ρ∂σ)φ)

+ 18(∂(µ∂νφ)(∂ρ∂σ)φ)− (traces)
)

: (x).
(5.24)

The relative coefficients follow from requiring that the operator is a primary, see appendix E
for details.

The thermal one-point function of this operator is found from Wick contractions in
the large-N limit to be

〈Ξµνρσ〉β = 8π6N

27
√

35β6 (eµeνeρeσ − (traces)) . (5.25)

Moreover, the OPE coefficient in the O∆ × O∆ OPE can again be calculated using Wick
contractions similarly to how it was done for T 2

4,4 in appendix A. By explicit calculation
one finds

〈O∆(x1)O∆(x2)Ξµνρσ(x3)〉 = 4∆√
35N

ZµZνZρZσ − (traces)
|x12|2∆−2|x13|2|x23|2

, (5.26)

and therefore the OPE coefficient λO∆O∆O2,4 is given by

λO∆O∆O2,4 = 4∆√
35N

. (5.27)

Now, it is easy to check that

1
24λO∆O∆O2,4bO2,4 = 2π6∆

945 , (5.28)

which agrees with a2,4 in (5.8).
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5.4 CFT data of double-trace operators with twist and spin equal to four

To find the full contribution to the thermal two-point function from the operators with
τ = 4 and s = 4 we need to take into account the contribution of all operators with these
quantum numbers and solve a mixing problem. In addition to the double-stress tensor
operator with these quantum numbers, the other double trace primary operator which
contributes is given by

ODT
µνρσ(x) = 1

96
√

70N2 : Tr(φ2)
(
Tr(φ∂µ∂ν∂ρ∂σφ)− 16Tr(∂(µφ∂ν∂ρ∂σ)φ)

+18Tr(∂(µ∂νφ∂ρ∂σ)φ)(x)− (traces)
)

: (x),
(5.29)

where the operator is unit-normalized. Notice that this is the double trace operator ob-
tained by taking the normal ordered product of two single trace operators, the scalar
operator with dimension 2 and the single trace spin-4 operator with dimension 6. There
are more double trace operators with these quantum numbers which are, however, not sim-
ply products of single trace operators. These do not contribute to the thermal two-point
function to leading order in 1

N2 (see appendix F).
Note that it follows from large-N factorization that the overlap of this operator with

(T 2)µνρσ is suppressed by powers of 1
N ; since both of these are double trace operators and

obey the scaling (5.18), to study the thermal two-point function to leading order in N2,
one can therefore neglect this overlap.

The thermal one-point function of ODT
µνρσ follows from the large-N factorization and

we find that

bODT
4,4

=
√

2
35

4π8N2

81 , (5.30)

where we used the thermal one-point functions for each single trace operator given by (5.11)
and (5.25). The OPE coefficient is calculated in appendix A,

λO∆O∆ODT
4,4

=
√

2
35

4∆(∆− 1)
N2 . (5.31)

Using the thermal one point function and the OPE coefficient in (5.30) and (5.31) respec-
tively, it is found that it the operator ODT

µνρσ gives the following contribution to the thermal
two point function:

aODT
4,4

=
(1

2

)4
bODT

4,4
λO∆O∆ODT

4,4
= 2π8∆(∆− 1)

2835 . (5.32)

The total contribution from T 2
4,4 together with that of ODT

4,4 , using (3.11), (4.5)
and (5.32), is

a4,4 = (aT 2
4,4

+ aODT
4,4

) = π8∆(∆− 1)
1050 . (5.33)

This agrees with a4,4 in (5.8).
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6 Comparison with the eigenstate thermalization hypothesis

In this section we discuss the relation of our results to the eigenstate thermalization hypoth-
esis (ETH). We argue that the stress tensor sector of the free SU(N) adjoint scalar theory
in d = 4 satisfies the ETH to leading order in CT ∼ N2 � 1. We explain the equivalence of
the micro-canonical and canonical ensemble when ∆H ∼ CT in large-CT theories. In this
regime, the diagonal part of the ETH is (up to exponentially suppressed terms which we
do not consider), equivalent to thermalization. Note that in two dimensions the Virasoro
descendants of the identity satisfy the ETH (see e.g. [42] for a recent discussion).

We begin by showing the equivalence between the micro-canonical and the canonical
ensemble on S1

β ×Sd−1 when ∆H ∼ CT � 1. See [9, 11, 12, 14, 89] for a similar discussion
at infinite volume as well as [47] in the two-dimensional case. The expectation value in the
micro-canonical ensemble of an operator O, which we take to be a scalar for simplicity, at
energy E = ∆H/R is given by

〈O〉(micro)
E = 1

N(E)
∑
Õ

〈Õ|O|Õ〉, (6.1)

where we sum over states |Õ〉 with energy (E,E + δE) and N(E) is the number of states
in this interval. On the other hand, consider the partition function at inverse temperature
β given by

Z(β) =
∑
Õ

e−
β∆̃
R =

∫
d∆̃ρ(∆̃)e−

β∆̃
R , (6.2)

where we sum over all states in the theory. In the second line in (6.2) we have approx-
imated the sum of delta-functions by a continuous function ρ(∆̃). Expectation values in
the canonical ensemble is then computed by13

〈O〉β = Z(β)−1
∫
d∆̃ρ(∆̃)〈O〉(micro)

E e−
β∆̃
R . (6.3)

Consider the partition function in (6.2) with a free energy F = −β−1 logZ(β). By an
inverse Laplace transform of (6.2) we find the density of states

ρ(∆H) = 1
2πiR

∫
dβ′e

β′
(

∆H
R
−F (β′)

)
. (6.4)

For ∆H ∼ CT and a large free energy14 F ∼ CT , we can evaluate (6.4) using a saddlepoint
approximation with the saddle at β given by

∆H

R
= ∂β′(β′F )|β . (6.5)

Consider now the thermal expectation value in (6.3), multiplying both sides by Z(β) and
doing an inverse Laplace transform evaluated at ∆H ∼ CT we find

ρ(∆H)〈O〉(micro)
∆H/R

= 1
2πiR

∫
dβ′〈O〉β′e

β′
(

∆H
R
−F (β′)

)
. (6.6)

13It was argued in [14] that the existence of the thermodynamic limit implies that we only need to sum
over operators with low spin.

14We consider a CFT in a high temperature phase.
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For F ∼ CT � 1 we again use a saddlepoint approximation to evaluate (6.6) with the saddle
at β determined by (6.5), assuming 〈O〉β′ does not grow exponentially with CT . The r.h.s.
of (6.6) is therefore the thermal expectation value 〈O〉β multiplied by the saddlepoint
approximation of the density of states in (6.4). It then follows that

〈O〉(micro)
∆H/R

≈ 〈O〉β , (6.7)

with β determined by (6.5). In particular, in the infinite volume limit R → ∞, the free
energy is given by15

F =
b
T

(can)
µν

SdR
d−1

dβd
, (6.8)

where Sd = V ol(Sd−1) = 2π
d
2 /Γ(d2). Inserting (6.8) in (6.5) we find [9]

β

R
=

−(d− 1)b
T

(can)
µν

Sd

d∆H

 1
d

. (6.9)

We can use (6.7) to see the thermalization of the stress tensor. The free energy is
related to the expectation value of the stress tensor T (can)

µν [5]

〈T (can)
00 〉β = 1

SdRd−1∂β(−βF (β)). (6.10)

On the other hand, the expectation value of T (can)
00 in a heavy state |OH〉 is fixed by the

Ward identity to be
〈OH |T (can)

00 |OH〉 = − ∆H

SdRd
. (6.11)

Multiplying (6.5) with (SdRd−1)−1 and comparing with (6.10)–(6.11) we find that

〈OH |T (can)
00 |OH〉 = 〈T (can)

00 〉β . (6.12)

This shows the thermalization of the stress tensor in heavy states where F ∼ ∆H ∼ CT
in large-CT theories. Note that this follows from (6.7) since we can replace the micro-
canonical expectation value at E = ∆H/R, on the l.h.s., with the expectation value in any
single heavy state with dimension ∆H due to the Ward identity, independent of the heavy
state. Put differently, the stress tensor satisfies the ETH as we will review below.

We now consider the eigenstate thermalization hypothesis for CFTs at finite temper-
ature on the sphere Sd−1 of radius R. The diagonal part of the ETH is given by

〈OH |Oτ,s|OH〉 = 〈Oτ,s〉(micro)
E +O

(
e−S(E)

)
, (6.13)

where OH and Oτ,s are local primary operators and 〈Oτ,s〉(micro)
E is the expectation value

of Oτ,s in the micro-canonical ensemble at energy E = ∆H
R . Here we assume that the

15Here we denote the canonically normalized stress tensor by T (can)
µν , whose two-point function is given

by 〈T (can)µν(x)T (can)
ρσ (y)〉 = CT

S2
d

(Iµ(ρI
ν
σ) − (trace)).
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operator OH is a heavy scalar operator with large conformal dimension ∆H ∝ CT � 1.
The operator Oτ,s on the other hand can have non-zero spin.16 In (6.13), eS(E) is the
density of states at energy E = ∆H/R. As shown in (6.7), in the limit ∆H ∼ CT � 1, the
micro-canonical ensemble is equivalent to the canonical ensemble at inverse temperature
β determined by (6.5). It then follows from (6.13) that the diagonal part of the ETH can
written in terms of OPE coefficients and thermal one-point functions:

λOHOHOτ,s
Rτ+s =

bOτ,sfOτ,s (β/R)
βτ+s +O

(
e−S(E)

)
, (6.14)

where fOτ,s also appears in (2.9). This is equivalent to the statement of thermalization
discussed in the rest of the paper.

In this paper we observed that the multi stress tensor operators satisfy (6.14). One
can also ask if (6.14) holds for any operator in the specific heavy state we considered. By
comparing eqs. (5.10) and (5.11) using (4.2), one can check that operator O2 = 1√

2N :
Tr(φ2) : does not satisfy (6.14). Since this is a free theory, it is not a surprise that the
ETH is not satisfied by all operators in the spectrum which is seen explicitly in this case.

7 Discussion

In this paper we argued that multi stress tensor operators T kτ,s in CFTs with a large central
charge CT thermalize: their expectation values in heavy states are the same as their thermal
expectation values. This is equivalent to the statement that multi stress tensor operators
in higher-dimensional CFTs satisfy the diagonal part of the ETH in the thermodynamic
limit. The analogous statement in the d = 2 case is that the Virasoro descendants of the
identity satisfy the ETH condition in the large-CT limit.

We observed that the operator O2 = 1√
2N : Tr(φ2) : does not satisfy the ETH. This is

seen by comparing eqs. (5.10) and (5.11) using (4.2). While this operator does not thermal-
ize in the heavy states we considered, the OPE coefficient averaged over all operators with
∆H ∼ CT is expected to be proportional to the thermal one-point function. The averaged
OPE coefficients should therefore scale like ∼

√
∆H compared to λOHOHO2 ∼ ∆H/

√
CT

for the heavy states we considered. It would be interesting to exhibit heavy operators that
produce the former scaling.

We provided a bootstrap argument in favor of the thermalization of multi stress tensor
operators. One should be able to refine it to give an explicit form for leading behavior
of the multi stress tensor OPE coefficients — we leave it for future work. The holo-
graphic/bootstrap OPE coefficients for the leading twist double stress tensor operators can
be found in e.g. [66] — they are nontrivial functions of the spin. As explained in [66, 68],
the leading ∆ behavior of the minimal-twist double- and triple-stress tensor OPE coeffi-
cients is consistent with the exponentiation of the near lightcone stress tensor conformal
block. One can go beyond the leading twist multi stress tensors. In holographic HHLL
correlators each term of the type (∆µ)k ∼ (∆∆H/CT )k comes from the exponentiation of

16The tensor structure in (6.13) is suppressed.
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the stress-tensor block — this follows from the Wilson line calculation of the correlator in
the AdS-Schwarzschild background [66, 78, 90].

In this paper we argue that this behavior is universal, and is not just confined to
holographic theories. Hence, one can formulate another statement equivalent to the ther-
malization of multi stress tensor operators. Namely, scalar correlators of pairwise identical
operators of dimensions ∆1,2 in large-CT theories in the limit ∆1,2 � 1, ∆1∆2/CT fixed
are given by the exponentials of the stress tensor conformal block.17 This is similar to what
happens in two-dimensional CFTs.

Note that the universality of the OPE coefficients is naively in tension with the results
of [73], where finite gap (∆gap) corrections to the multi stress tensor OPE coefficients were
considered. In particular, for double stress tensors, such corrections behave like ∆3/∆gap
which is clearly at odds with the universality statement. Of course, the results of [73]
are obtained in the limit ∆ � ∆gap, while in this paper we consider the opposite regime
∆� ∆gap.

One may also wonder what happens with the universality of the OPE coefficients
beyond leading order in ∆. In particular, in [78], it was shown that the bootstrap result
for the HHLL correlator exactly matches the holographic Wilson line calculation (in the
double scaling limit where only the minimal twist multi stress tensor operators contribute).
This corresponds to including terms beyond the exponential of the stress tensor block —
one needs to compute the HHLL correlator, take a logarithm of the result, divide by ∆,
and then take the large-∆ limit. The result is sensitive to terms subleading in the large-∆
limit of the multi stress tensor OPE coefficients. In four spacetime dimensions the result
in [78] is given by an elliptic integral — is it applicable beyond holography?

In [66] terms subleading in ∆ were shown to be important for the computation of the
phase shift. The simplest nontrivial case in two spacetime dimensions is the operator Λ4
which is a level four Virasoro descendant of the identity (see e.g. [91]). One could also
get it by using the CFT normal ordering and imposing the quasi-primary condition [92].
Consider now the case of minimal twist (twist four) operators in four dimensions. How do
we determine the analog of Λ4? There is no Virasoro algebra now.

Presumably, one can reconstruct the analog of Λ4 in four spacetime dimensions by
considering a CFT normal ordered product of stress tensors, and adding a single trace term
to ensure that the resulting operator is a primary and is orthogonal to the stress tensor itself.
Note that the CFT normal ordering differs from the oscillator normal ordering in a free
theory by the addition of a single trace operator, as reviewed in appendix G. This procedure
can then be generalized to other multi-trace operators. We leave it for future work.

It is also helpful to imagine what happens in a theory like N = 4 Super Yang-Mills,
where there is a marginal line connecting the weak and the strong coupling (the latter
admits a holographic description). Presumably, as the coupling is turned on, only one
operator remains light (with dimension eight and spin four), while others get anomalous
dimensions. It would be interesting to see this explicitly even to the leading nontrivial
order in the ’t Hooft coupling. It would also be interesting to see how the corresponding
OPE coefficient interpolates between its free and strong coupling values.

17See [33] for previous work on the eikonalization of the multi stress tensor OPE coefficients at large spin.
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Using crossing symmetry, we argued that the universality of multi stress tensor OPE
coefficients is related to the OPE coefficients λOHTµνO′ , with O′ 6= OH being either heavy
or light, present in the cross-channel expansion. Such OPE coefficients with at least one
operator being heavy were recently studied in [23, 93]. It would be interesting to further
study the connection of our results to this work.

Another interesting question concerns the fate of the double trace operators of the
schematic form [O∆O∆]n,l. Consider the d = 4 case in the large volume limit and n, l = 0,
for simplicity. We expect that the corresponding OPE coefficients in the free theory behave
like λOHOH [O∆O∆]0,0 ∝ ∆2

H/CT ∝ CTµ
2,18 while their thermal one-point functions behave

like 〈[O∆O∆]0,0〉β ∝ CTβ
−2∆. Comparing the two results with the help of (4.2) one

observes that such operators do not thermalize in the free theory for generic ∆. The
situation is more nontrivial in holography where we do not know the large µ behavior of
the OPE coefficients.19 As pointed out in [63], the contribution of double-trace operators
to thermal two-point functions is different from that of multi stress tensors. The latter is
only sensitive to the behavior of the metric near the boundary, but the former knows about
the full black hole metric. This seems to indicate that the thermalization of the double
trace operators in holographic theories is also unlikely.20

It is a natural question how generic are the heavy states for which the stress tensor
sector thermalizes. The results of our paper seem to suggest that such thermalization is
more generic than the thermalization of other light operators.21 Other interesting questions
include generalizations to the case of finite but large central charge and to non-conformal
quantum field theories.
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A OPE coefficients from Wick contractions

In this appendix we go through the calculations needed for finding the OPE coefficients of
various operators using Wick contractions. This mainly amounts to counting the number of
contractions leading to a planar diagram. For simplicity, the figures are shown for external

18This scaling is obtained by computing the OPE coefficient λOHOH [O∆O∆]0,0 for 1 � ∆H � CT and
extrapolating it to the ∆H ∼ CT regime.

19Note that the large-N scaling in holography is different. Both the OPE coefficients and the thermal
expectation values behave like C0

T as opposed to CT ∼ N2.
20A simple way to decouple such operators is to take the large-∆ limit.
21A closely related question of finding “typical” states where the stress tensor sector thermalizes in the

large volume limit in d = 2 was recently discussed in [58]. There it was observed that such states are
Virasoro descendants when the central charge is finite.
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Figure 1. The two-point function 〈: Tr(φ4) :: Tr(φ4) :〉 before any contractions.

Figure 2. The two-point function 〈: Tr(φ4) :: Tr(φ4) :〉 completely contracted.

operators with ∆ = 4 while we write down the result for general ∆ as this is needed for
the main body of the paper.

To begin with, since we consider a large-N matrix theory, it is convenient to use the
double-line notation for fundamental field propagators. In figure 1 the two-point function
〈: Tr(φ4) :: Tr(φ4) :〉 is visualised. In figure 2, the planar diagram is shown for ∆ = 4 and
there are ∆ number of such contractions giving a planar diagram

P〈:Tr(φ∆)::Tr(φ∆):〉 = ∆, (A.1)

where the P〈...〉 denotes the number of planar diagrams for 〈. . .〉.
We further need the OPE coefficient λO∆O∆O2 . This is shown in figure 3 for ∆ = 4

and there are 2∆ possibilities for step (1), ∆ number of possibilites for step (2) after which
everything is fixed assuming that the diagram is planar. This gives

P〈:Tr(φ∆)::Tr(φ∆)::Tr(φ2):〉 = 2∆2. (A.2)

In figure 4 the three-point function 〈: Tr(φ∆) :: Tr(φ∆) :: Tr(φ4) :〉 for ∆ = 4 is shown.
For the first contraction (1) there are 2∆ possibilites, for the second contraction there are
∆ and for step (3) there are two possibilites. This gives overall

P〈:Tr(φ∆)::Tr(φ∆)::Tr(φ4):〉 = 4∆2. (A.3)
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Figure 3. The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2) :〉 completely contracted.

Figure 4. The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ4) :〉 completely contracted.

In figure 5 and figure 6, the three-point function 〈: Tr(φ4) :: Tr(φ4) : Tr(φ2)Tr(φ2) :〉
is shown. The reason for there being two different types of diagrams is because each trace
term in the double trace operator : Tr(φ2)Tr(φ2) : can either be contracted with the same
: Tr(φ4) : (figure 5, type B), or to both (figure 6, type A).

Consider first the type of diagrams in figure 5. For the first contraction there are 2∆
such terms and the second contraction gives another factor of 2. Contraction (3) and (4)
contributes factors of ∆ and 2 respectively. What remains is equivalent to the two-point
function 〈: Tr(φ∆−2) :: Tr(φ∆−2) :〉 which further give a factor of (∆ − 2) and therefore
there are 8∆2(∆− 2) contractions of type B in figure 5.

Continuing with figure 6, the first contraction gives a factor of 2∆, the second con-
traction ∆ and the third one a factor of 2(∆− 1). What remains is then fixed by imposing
that the diagram is planar. The type A diagrams in figure 6 therefore further contributes
4∆2(∆ − 1) planar diagrams to 〈: Tr(φ∆) :: Tr(φ∆) : Tr(φ2)Tr(φ2) :〉. It is therefore
found that

P〈:Tr(φ∆)::Tr(φ∆):Tr(φ2)Tr(φ2):〉 = 4∆2(3∆− 5). (A.4)
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Figure 5. The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2)Tr(φ2) :〉. There are two such
types of contractions that give planar diagrams, here it shown when each : Tr(φ2) : connect to a
separate : Tr(φ4) :.

Figure 6. The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2)Tr(φ2) :〉. There are two such
types of contractions that give planar diagrams, here it shown when each : Tr(φ2) : connect to both
: Tr(φ4) : operators.

Consider now the stress tensor OPE coffiecient λO∆O∆Tµν where

Tµν(x) = 1
2
√

3N
: Tr

(
∂µφ∂νφ−

1
2φ∂µ∂νφ− (trace)

)
: (x) (A.5)

and the three-point function 〈O∆O∆Tµν〉:

〈O∆(x1)O∆(x2)Tµν(x3)〉 = λO∆O∆Tµν
ZµZν − traces

|x12|2∆−2|x23|2|x13|2
, (A.6)

where Zµ = x13µ
|x13|2 −

x12µ
|x12|2 . From the definition of Tµν in (A.5) it is clear that the only

term that contributes to term x13µx13ν comes from the second term in (A.5) that is of the
form ∝ Tr(φ∂µ∂νφ). Up to the derivatives, the diagram will look like those visualised in
figure 3. The number of diagrams is half of that given in (A.2) since we restrict to terms
proportional to x13µx13ν :

P〈O∆O∆Tµν〉|x13µx13ν
= ∆2, (A.7)

from which we reproduce (3.7).

– 29 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
5

Now we want to find the OPE coefficient λO∆O∆T
2
4,4

for the double-stress tensor T 2
4,4.

This is done similarly to the way the stress tensor OPE coefficient was found. First, the
operator (T 2)µνρσ was given in (3.8) to be

(T 2)µνρσ(x) = 1√
2

: T(µνTρσ) : (x)− (traces) (A.8)

and the three-point function 〈O∆O∆(T 2)µνρσ〉 is fixed by conformal symmetry to be

〈O∆(x1)O∆(x2)(T 2)µνρσ(x3)〉 =
λO∆O∆T

2
4,4

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) . (A.9)

Consider the term in (A.9) proportional to x13µx13νx13ρx13σ. This will be due to the term
in (T 2)µνρσ of the form Tr(φ∂(µ∂νφ)Tr(φ∂ρ∂σ)φ). Using this we find that

〈O∆(x1)O∆(x2)(T 2)µνρσ(x3)〉|x13µx13νx13ρx13σ = 1
∆N∆

1√
2

( −1
4
√

3N

)2
82N∆

×
P〈O∆O∆T

2
4,4〉|x13µx13νx13ρx13σ

|x12|2(∆−2)|x23|4|x13|12 .

(A.10)

The number of contractions giving a planar diagram, P〈O∆O∆T
2
4,4〉|x13µx13νx13ρx13σ

, come from
diagrams of the form given in figure 6. Since we are considering the term proportional
x13µx13νx13ρx13σ, the number of such diagrams are reduced compared to scalar double
trace operator. Instead the first contraction, (1) in figure 6, give a factor of ∆, the second
contraction, (2), a factor of (∆−1), the third contraction (3) gives a further factor ∆ after
which everything is fixed by imposing that the diagram is planar. We therefore find that

P〈O∆O∆T
2
4,4〉|x13µx13νx13ρx13σ

= ∆2(∆− 1), (A.11)

and inserting this in (A.10) gives

λO∆O∆T
2
4,4

= 2
√

2∆(∆− 1)
3N2 , (A.12)

and therefore reproduces (3.11).
Similar to the double-stress tensor, consider the dimension-eight spin-four double trace

operator

ODT
µνρσ(x) = 1

96
√

70N2 : Tr(φ2)
(
Tr(φ∂µ∂ν∂ρ∂σφ)− 16Tr(∂(µφ∂ν∂ρ∂σ)φ)

+ 18Tr(∂(µ∂νφ∂ρ∂σ)φ)(x)− (traces)
)

: (x).
(A.13)

The three-point function 〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉 is given by

〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉 =

λO∆O∆ODT
µνρσ

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) . (A.14)

By again considering terms in (A.14) proportional to x13µx13νx13ρx13σ we find that each
term in (A.13) will contribute planar diagram of the type in figure 5, while only the

– 30 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
5

term ∼ Tr(φ∂4φ) also give a contribution of the type in figure 6. Considering first the
terms coming from the diagram in figure 5, one finds that this contribution vanishes. The
remaining contribution to the term (A.14) proportional to x13µx13νx13ρx13σ comes from
the first term in (A.13) and the planar diagram pictured in figure 6; there are 2∆2(∆− 1)
contractions giving such a planar diagram leading to

〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉|x13µx13νx13ρx13σ = 1

∆N∆
384

96
√

70N2N
∆

× 2∆2(∆− 1)
|x12|2(∆−2)|x23|4|x13|12 ,

(A.15)

where the 384 in the numerator come from the derivatives. This gives the OPE coefficient:

λO∆O∆ODT
µνρσ

=
√

2
35

4∆(∆− 1)
N2 +O(N−4). (A.16)

B Subleading twist double-stress tensors

In this appendix we study the subleading twist double-stress tensors, both with dimension
8 and spin s = 0, 2 denoted (T 2) and (T 2)µν respectively. The calculations needed to find
the OPE coefficient in the O∆ × O∆ OPE are reviewed as well as the normalization of
(T 2)µν .

The (T 2)µν was defined in (3.24) which we repeat here:

(T 2)µν(x) = 1√
2

: TµαTαν : (x)− δµν

4
√

2
: T βαTαβ : (x). (B.1)

The operator (T 2)µν can be seen to be unit-normalized to leading order in N :

〈(T 2)µν(x1)(T 2)ρσ(x2)〉 = 1√
2
〈Tµα(x1)Tρβ(x2)〉〈T να(x1)T βσ〉

+ (ρ←→ σ)− (traces) +O(N−2).
(B.2)

Using the two-point function of the stress tensor in (3.6) and IµαIαρ = δµρ one finds

〈(T 2)µν(x1)(T 2)ρσ(x2)〉 = 1
|x|16

(
I(µ

ρI
ν)
σ − (traces)

)
, (B.3)

from which it is seen that (T 2)µν is unit-normalised.
We now want to find the OPE coefficient of (T 2)µν in the O∆ × O∆ OPE. It can be

found from the basic objects I(1)
µνρσ, I(2)

µνρσ and I(3)
µνρσ which we calculate below.

We first consider a similar quantity J (1)µνρσ:

J (1)µνρσ = 〈: Tr(φ∆) : (x1) : Tr(φ∆) : (x2) :: Tr(∂µφ∂νφ)Tr(∂ρφ∂σφ) : (x3)〉

= 24N∆

|x13|8|x23|8|x12|2∆−4 ×
[
(2∆)2(∆− 2)(xµ13x

ν
13x

ρ
23x

σ
23 + xµ23x

ν
23x

ρ
13x

σ
13)+

∆2(∆− 1)(xµ13x
ν
23(xρ13x

σ
23 + xρ23x

σ
13) + xµ23x

ν
13(xρ13x

σ
23 + xρ23x

σ
13))

]
. (B.4)
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Definining Xµν
13 = 1

|x13|4 (−δµν + 4x
µ
13x

ν
13

|x13|2 ) we then study J (2)µνρσ:

J (2)µνρσ = 〈: Tr(φ∆) : (x1) : Tr(φ∆) : (x2) :: Tr(φ∂µ∂νφ)Tr(φ∂ρ∂σφ) : (x3)〉

= N∆

|x12|2∆−4

[
∆2(∆− 1)22

(
Xµν

13
1
|x23|2

Xρσ
13

1
|x23|2

+Xµν
13

1
|x23|2

Xρσ
23

1
|x13|2

)
+ ((2∆)2(∆− 2))22Xµν

13
1
|x13|2

Xρσ
23

1
|x23|2

+ (13)←→ (23)
]
. (B.5)

And lastly J (3)µνρσ:

J (3)µνρσ = 〈: Tr(φ∆) : (x1) : Tr(φ∆) : (x2) :: Tr(φ∂µ∂νφ)Tr(∂ρφ∂σφ) : (x3)〉

= N∆

|x12|2∆−4

[
((2∆)2(∆− 2))23Xµν

13
1
|x13|2

xρ23x
σ
23

|x23|8
+

+ ∆2(∆− 1)23Xµν
13

1
|x23|2

xρ13x
σ
23 + xρ23x

σ
13

|x13|4|x23|4

+ (13)←→ (23)
]
. (B.6)

We further need to make (B.4)–(B.6) traceless in the pairs (µ, ν) and (ρ, σ) and therefore
define I(i)µνρσ as

I(i)µνρσ = J (i)µνρσ − δµν

4 J (i)α
α
ρσ
− δρσ

4 J (i)µνα
α + δµνδρσ

16 J (i)α
α
γ
γ . (B.7)

From (B.4)–(B.6), the three-point function 〈O∆(x1)O∆(x2)(T 2)µν(x3)〉 is given by

〈O∆(x1)O∆(x2)(T 2)µν〉= 1
12
√

2∆N∆+2

(
I(1)(µ|α

α

|ν)
−I(3)(µ|α

α

|ν)
+ 1

4I
(2)(µ|α

α

|ν)
−(trace)

)
.

(B.8)
Explicitly we find that

〈O∆(x1)O∆(x2)(T 2)µν(x3)〉 =
√

2∆(∆− 1)
3N2

ZµZν − (trace)
|x12|2∆−6|x13|6|x23|6

+O(N−4). (B.9)

Consider now the scalar operator (T 2) defined by

(T 2)(x) = 1
36
√

2N2 : TµνTµν : (x). (B.10)

The three-point function 〈O∆(x1)O∆(x2)(T 2)(x3)〉 can be found using I(i) defined in (B.7)
as follows

〈O∆(x1)O∆(x2)(T 2)(x3)〉 = 1
36
√

2∆N2+∆

(
I(1)µν

µν − I(3)µν
µν + 1

4I
(2)µν

µν

)
+O(N−4)

= ∆(∆− 1)
3
√

2N2
1

|x12|2∆−8|x13|8|x23|8
+O(N−4). (B.11)
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C Single trace operator with dimension ∆ ∼ CT

In this appendix we study the single trace scalar operator O∆H
given by

OH(x) = 1√
N∆H

: Tr(φ∆H ) : (x), (C.1)

with ∆H ∼ CT and N∆H
a normalization constant.22 When calculating the normaliza-

tion constant N∆H
as well as the three-point functions 〈OH(x1)OH(x2)O(x3)〉, non-planar

diagrams generically gets enhanced by powers of ∆H and therefore invalidates the naive
planar expansion. The goal of this appendix is to show that

〈OH(x1)OH(x2)Ô(x3)〉 = 〈O∆(x1)O∆(x2)Ô(x3)〉|∆=∆H
, (C.2)

where Ô is either : Tr(φ2) : or, more importantly, minimal-twist multi stress tensors with
any spin. Moreover, note that the l.h.s. in (C.2) is in principle exact in CT ∼ N2 while the
r.h.s. is obtained by keeping only planar diagrams with ∆� CT and then setting ∆ = ∆H

in the end.
The propagator for the field φ was given in (3.2) by

〈φij(x)φkl(y)〉 =
(
δilδ

k
j −

1
N
δijδ

k
l

) 1
|x− y|2

. (C.3)

Consider now the three-point function 〈: Tr(φ∆H ) : (x1) : Tr(φ∆H ) : (x2) : Tr(φ2) : (x3)〉.
Due to the normal ordering, one φ field in : Tr(φ2) : (x3) need to be contracted with
: Tr(φ∆H ) : (x1) : and the other one with : Tr(φ∆H ) : (x2) :. Note that for this contraction
the second term in (C.3) give a contribution proportional to Tr(φ(x3)) = 0. It is therefore
seen that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ2
3) :〉 = 2∆H〈: Tr(φ3φ

∆H−1
1 ) :: Tr(φ∆H

2 ) :〉, (C.4)

where we introduced the notation φi = φ(xi) and dropped the |xij |−2 coming from (C.3).
The position dependence is easily restored in the end. Now it is seen that the r.h.s. of (C.4)
is proportional to the two-point function23 of OH and we therefore find that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ2
3) :〉 = 2∆HN∆H

, (C.5)

which is exact to all orders in CT . Including the normalization factor of OH in (C.1) and
O2 from (3.3) we find that

〈OH(x1)OH(x2)O2(x3)〉 =
√

2∆H

N

1
|x12|2∆H−2|x13|2|x23|2

+O(N−3). (C.6)

By comparing (C.6) with (5.10) we find that

λOHOHO2 = λO∆O∆O2 |∆=∆H
. (C.7)

22Mixing with other operators with ∆ ∼ CT is not important for this discussion.
23Up to the position dependence.
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Note that in (C.6) the normalization of OH cancels the contribution from non-planar
diagrams in limit ∆H ∼ CT . For ∆ = 2 in (3.3), it is trivial to compute the normalization
exact in N to get the correction to λO∆O∆O2 in (C.6).

Consider now the stress tensor operator defined in (3.5) and the three-point function
〈OH(x1)OH(x2)Tµν(x3)〉. This is fixed by the Ward identity but is an instructive example
before considering more general multi stress tensors. In the same way as the OPE coefficient
was found in the O∆ × O∆ OPE, due to the tensor structure being fixed by conformal
symmetry, we consider the term proportional to xµ13x

ν
13 in the three-point function. This

comes from the − 1
6
√
CT
Tr(φ∂µ∂νφ) term in the stress tensor when ∂µ∂νφ is contracted with

one of the ∆H number of φ(x1) fields. Doing this contraction we therefore see that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ3∂µ∂νφ3) :〉|xµ13x
ν
13

= 8∆H〈: Tr(φ3φ
∆H−1
1 ) :: Tr(φ∆H

2 ) :〉,
(C.8)

where the factor 8 comes from the derivatives and we again suppress the spacetime de-
pendence. The r.h.s. of (C.8) is also proportional to the normalization constant of OH .
Including the normalization factor of the stress tensor in (3.5) and that of OH in (C.1),
the three-point function 〈OHOHTµν〉 can be obtained from (C.8) from which we read off
the OPE coefficient

λOHOHTµν = − 4∆H

3
√
CT

. (C.9)

This agrees with (3.7).
We now want to show that is true for minimal-twist multi stress tensors with any spin.

For simplicity, consider the double-stress tensor with spin 4 defined in (3.8)

(T 2)µνρσ(x) = 1√
2

: T(µνTρσ) : (x)− (traces). (C.10)

Similarly to the calculation of the three-point function with the stress tensor, we can
obtain the three-point function 〈OH(x1)OH(x2)(T 2)µνρσ(x3)〉 by considering the term pro-
portional to xµ13x

ν
13x

ρ
13x

σ
13. This will be due to the term 1√

262CT
Tr(φ∂µ∂νφ)Tr(φ∂ρ∂σφ)

when contracting ∂µ∂νφ with some φ(x1) and likewise contracting ∂ρ∂σφ with some other
φ(x1). The number of such contractions is given by ∆H(∆H − 1) and we find that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) : : Tr(φ3∂µ∂νφ3)Tr(φ3∂ρ∂σφ3) :〉|xµ13x
ν
13x

ρ
13x

σ
13

= 82∆H(∆H − 1)〈: Tr(φ2
3φ

∆H−2
1 ) :: Tr(φ∆H

2 ) :〉, (C.11)

where the factor of 82 again is due to acting with the derivatives and note that the po-
sition of the φ3 fields in the last line is not important. It is again seen that the r.h.s.
of (C.11) is proportional to the normalization constant of OH . Including the normaliza-
tion in (3.8) and (C.1) we find the three-point function 〈OHOH(T 2)µνρσ〉 and read off the
OPE coefficient:

λOHOHT 2
4,4

= 8
√

2∆H(∆H − 1)
9CT

+O(C−3/2
T ), (C.12)

which is seen to agree with (3.11) when setting ∆H = ∆. Note that the corrections in (C.12)
are solely due to corrections in the normalization of T 2

4,4 and therefore λOHOHT 2
4,4

=
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λO∆O∆T
2
4,4

to all orders in CT . These arguments generalize straightforwardly to minimal-
twist multi stress tensor with any spin such that the results are the same as those obtained
in the planar limit for ∆ � C2

T in section 3 by setting ∆H = ∆. The only correction in
CT is then due to the normalization of the multi stress tensor.

The same argument applies to any scalar primary multi-trace operator O∆, without
any derivatives, with OPE coefficients given by (C.6), (C.9) and (C.12).

D Stress tensor thermal one-point function

In order to calculate thermal one-point functions in the free adjoint scalar model we use
the fact that the thermal correlation function is related to the zero-temperature case by
summing over images. Consider now the thermal one-point function of the stress tensor.
Generally, the one-point function of a spin-s symmetric traceless operator with dimension
∆O on S1 ×Rd−1 is given by [13]

〈Oµ1...µs(x)〉β = bO
β∆O

(eµ1 . . . eµs − (traces)), (D.1)

where eµ1 is a unit-vector along the thermal circle. Consider first the canonically normalized
stress tensor given by T

(can)
µν = 1

3Sd (Tr(∂µφ∂µφ) − 1
2Tr(φ∂µ∂νφ) − (traces)). In order to

find the one-point function, use the following:

〈Tr(∂(x)
µ φ(x)∂(y)

ν φ(y))〉 = 2(N2 − 1)
|x− y|4

(
δµν − 4(y − x)µ(y − x)ν

1
|x− y|2

)
(D.2)

and

〈Tr(∂(x)
µ ∂(x)

ν φ(x)φ(y))〉 = 2(N2 − 1)
|x− y|4

(
−δµν + 4(y − x)µ(y − x)ν

1
|x− y|2

)
. (D.3)

To get the thermal correlator, we use (D.2) and (D.3) with x, y along the thermal circle
separated by a distance mβ, with m integer, and sum over m 6= 0. The relevant terms for
calculating the one-point functions in terms of fundamental fields are therefore

〈Tr(∂µφ∂νφ)〉β,m = −8(N2 − 1)
(mβ)4 eµeν + 2(N2 − 1)

(mβ)4 δµν ,

〈Tr(∂µ∂νφφ)〉β,m = 8(N2 − 1)
(mβ)4 eµeν − 2(N2 − 1)

(mβ)4 δµν ,

(D.4)

where we note that only the first term in each equation in (D.4) contribute to the non-trace
term in (D.1).

We therefore find for the stress tensor one-point function:

〈T (can)
µν 〉β = 1

3Sd
(〈Tr(∂µφ∂νφ)〉β −

1
2〈Tr(∂µ∂νφφ)〉β − trace)

= −12(N2 − 1)
3Sd

2ζ(4)
β4 (eµeν − (trace)),

(D.5)
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where the 2ζ(4) comes from summing over images and we therefore have

b
T

(can)
µν

= −4(N2 − 1)
Sd

2ζ(4) = − 4π4

45Sd
(N2 − 1). (D.6)

This agrees with f =
b
T

(can)
µν

d in eq. (2.17) in [13] for (N2 − 1) free scalar fields. This also
agrees with a2,2 = π4∆

45 found from the two-point thermal correlator using:

a2,2 = π4∆
45 =

(1
2

)2 λO∆O∆T (can)b
T

(can)
µν

CT
S2
d

, (D.7)

using λO∆O∆T (can) = − 4∆
3Sd in this normalization and CT = 4

3(N2 − 1). This is simply
related to the one-point function for the unit-normalized stress tensor by (to leading order
in N)

bTµν =
b
T

(can)
µν√
CT
Sd

≈ −2π4N

15
√

3
.

(D.8)

Let us now consider the thermalization of the stress tensor, keeping all the index
structures. To compare the thermal two-point function with the heavy-heavy-light-light
correlator, we want to relate the dimension of the heavy operator, ∆H , to the inverse
temperature β. Consider the expectation value of the stress tensor in a heavy state created
by OH on the cylinder R × S3

〈OH |Tµν(x0
E,2, n̂)|OH〉cyl = lim

x3→∞
|x3|2∆H |x2|4λOHOHTµν

ZµZν − 1
4δ
µνZρZρ

|x13|2∆H−2|x23|2|x12|2
, (D.9)

where the r.h.s. is found by a conformal transformation to the plane with Zµ=
(

xµ12
|x12|2 + xµ23

|x23|2
)
.

When x1 = 0 and x3→∞, it is seen that Zµ =− xµ2
|x2|2 and (D.9) only depends on x̂µ = xµ21

|x21| =
r̂, where r̂ is a radial unit vector. In radial quantization it follows that

〈OH |Tµν(x0
E,2, n̂)|OH〉cyl =

λOHOHTµν
R4

(
êµêν −

1
4δµν

)
(D.10)

where we reintroduced the radius of the sphere R, λOHOHTµν is the OPE coefficient of Tµν
in the OH ×OH OPE and êµ = (1, 0, 0, 0).

The thermal one-point function of an operator Oτ,s, with twist τ and spin s, on S1×S3

is fixed by conformal symmetry [13]

〈Oτ,s(x)〉β =
bOτ,sfOτ,s(

β
R)

βτ+s (eµ1 · · · eµs − (traces)), (D.11)

where fOτ,s(0) = 1 and eµ = (1, 0, 0, 0).
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We assume thermalization of the stress tensor in the heavy state:

〈OH |Tµν(x)|OH〉 = 〈Tµν(x)〉β (D.12)

where 〈Tµν(x)〉β is the thermal one-point function at inverse temperature β evaluated on
S1 × S3, with R being the radius of S3. Using (D.10)–(D.12) we find

λOHOHTµν
R4 =

bTµνfTµν ( βR)
β4 . (D.13)

Using (D.13) for R → ∞ in the free adjoint scalar theory, together with the one-
point function bTµν = −2π4N

15
√

3 and the OPE coefficient λOHOHTµν = − 4∆H

3
√
CT

, one finds the
following relation between µ = 160∆H

3CT and the inverse temperature β:

µ = 8
3

(
πR

β

)4
. (D.14)

This agrees with (4.2).

E Dimension-six spin-four single trace operator

We want to calculate the contribution of the single trace operator with τ = 2 and s = 4.
The unit-normalised O2,4 operator is given by24

Ξµνρσ(x) = 1
96
√

35N
: Tr

(
φ(∂µ∂ν∂ρ∂σφ)− 16(∂(µφ)(∂ν∂ρ∂σ)φ)

+ 18(∂(µ∂νφ)(∂ρ∂σ)φ)− (traces)
)

: (x).
(E.1)

The relative coefficients are fixed by demanding that it is a primary operator [Kα,Ξµνρσ] =
0. Explictily, this is done using the conformal algebra

[Kµ, Pν ] = 2i(ηµνD −Mµν),
[Mµν , Pρ] = −i(ηρµPν − ηρνPµ),

(E.2)

and the action on the fundamental field φ
Pµφ(0) = −i∂µφ(0),
Dφ(0) = iφ(0).

(E.3)

The relevant commutators in order to fix Ξµνρσ are

[Kα, Pµφ] =− 2ηαµφ,
[Kα, PµPνφ] =− 4ηαµPνφ− 4ηανPµφ+ 2ηµνPαφ,

[Kα, PµPνPρφ] =− 6ηαµPνPρφ− 6ηανPµPρφ− 6ηαρPνPµφ
+ 2ηµνPρPαφ+ 2ηρνPµPαφ+ 2ηµρPνPαφ,

[Kα, PµPνPρPσφ] =− 8ηαµPνPρPσφ− 8ηανPµPρPσφ− 8ηαρPνPµPσφ− 8ηασPνPρPµφ
+ 2ηµνPρPσPαφ+ 2ηµρPνPσPαφ+ 2ηµσPρPνPαφ+ 2ηνρPµPσPαφ
+ 2ηνσPµPρPαφ+ 2ηρσPµPνPαφ, (E.4)

which can also be found in e.g. appendix F in [94].
24We denote this operator either as O2,4 or Ξµνρσ depending whether we want to explicitly list the indices

or not.
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The thermal one-point function of this operator is found from Wick contractions to be

〈Ξµνρσ〉β = 8(πT )6N

27
√

35
(eµeνeρeσ − (traces)) . (E.5)

Moreover, the three-point function with operators O∆(x) = 1√
∆N∆ : Tr

(
φ∆
)

: (x) can
again be calculated using Wick contractions similarly to how it was done for T 2

µνρσ in
appendix A. By explicit calculation one finds

〈O∆(x1)O∆(x2)Ξµνρσ(x3)〉 = 4∆√
35N

ZµZνZρZσ − (traces)
|x12|2∆−2|x13|2|x23|2

, (E.6)

and therefore the OPE coefficient λO∆O∆O2,4 is given by

λO∆O∆O2,4 = 4∆√
35N

. (E.7)

Now, it is easy to check that

1
24λO∆O∆O2,4bO2,4 = 2π6∆

945 , (E.8)

which agrees with a2,4 in (5.8).

F Thermal one-point functions of multi-trace operators in the
large-N limit

In (5.33), it was shown that a4,4 was due to double trace operators which were normal
ordered products of single trace operators without any derivatives. There are, however,
other double trace operators that have the same quantum numbers and are schematically
represented as [OaOb]n,l. Concretely, the double trace operators with twist and spin four
besides (T 2)µνρσ and (ODT)µνρσ are [O2O2]0,4 and [O2Tµν ]0,2. We argue that the thermal
one-point functions of these operators are subleading in the large-N limit when evaluated
on the plane.

Consider the thermal one-point function of a double trace operator [OaOb]n,l =
Oa∂2n∂lOb + . . ., where Oa and Ob are single trace primary operators and dots repre-
sent terms where derivatives acts on Oa as well, in order to make [OaOb]n,l a primary
operator. The term in the thermal one-point function that behaves as Nk (N2 for double
trace operators) comes from contracting the fundamental field within each trace separately.
Therefore we have

〈Oa∂2n∂lOb〉β ≈ 〈Oa〉β〈∂2n∂lOb〉β +O(1), (F.1)

which is simply due to large-N factorization. As ∂2n∂lOb is a descendant of Ob, it is easy
to explicitly show that 〈∂2n∂lOb〉β = 0 for n 6= 0 or l 6= 0, from which it follows that

〈Oa∂2n∂lOb〉β = O(1). (F.2)

Similar reasoning holds for all terms in [OaOb]n,l, so we conclude for n 6= 0 or l 6= 0 that

〈[OaOb]n,l〉β = O(1). (F.3)
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It is easy to generalise (n and/or l non-zero)

〈[Oa1 . . .Oak ]n,l〉β = O(Nk−2). (F.4)

Using the canonical scaling for the OPE coefficients (5.18) it is found that these multi-trace
operators give a suppressed contribution to the thermal two point function in the large-N
limit:

λO∆O∆[Oa1 ...Oak ]n,l〈[Oa1 . . .Oak ]n,l〉β = O
( 1
N2

)
. (F.5)

The conclusion is that these operators with n 6= 0 or l 6= 0 do not contribute to the
thermal two-point functions to leading order in N . Note that for n = l = 0, the operator
is just : Oa1Oa2 . . .Oak : and it does contribute to the thermal 2pt function since

λO∆O∆[Oa1 ...Oak ]n=0,l=0〈[Oa1 . . .Oak ]n=0,l=0〉β = O(1). (F.6)

From (F.5) it is seen that multi stress tensor operators of the schematic form [T k]n,l
with either n or l, or both, being non-zero will not contribute to the thermal correlator to
leading order in N on the plane.

G Free boson in two dimensions

In this appendix we discuss free scalars in two dimensions. We first consider a single
scalar and then the case of the SU(N) adjoint scalar. We compute two-point functions
of a particular class of quasi-primary operators at finite temperature 1/β. These two-
point functions are not determined by the conformal symmetry, because the quasi-primary
operators do not transform covariantly from the plane to the cylinder. They transform
covariantly only with respect to the global conformal transformations. The only operators
that have the non-zero thermal one-point functions are the Virasoro descendants of the
vacuum and therefore, only these operators contribute to the thermal two-point function
of the quasi-primary operators.25 Virasoro descendants of the vacuum have different OPE
coefficients with external quasi-primary operators compared with the case when primary
external operators are considered.26

G.1 Review free boson in two dimensions

We consider single free boson φ(z) in two dimensions. The stress tensor can be written in
terms of Virasoro modes as

T (z) =
√

2
∑
n

z−n−2Ln. (G.1)

This stress tensor is unit-normalized

〈T (z)T (w)〉 = 1
(z − w)4 . (G.2)

25We check this explicitly up to the O(1/β4).
26Deviation from the Virasoro vacuum block in the Regge limit of four-point HHLL correlator is observed

in [95] as well.
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The fundamental field can be expressed as Laurent series

∂φ(z) =
+∞∑

n=−∞
z−n−1αn, (G.3)

where oscillators αn obey the following algebra

[αn, αm] = nδn+m,0. (G.4)

They act on the vacuum as
αn|0〉 = 0, n ≥ 0. (G.5)

The two-point function of the fundamental fields is given by

〈∂φ(z)∂φ(w)〉 = 1
(z − w)2 . (G.6)

The unit-normalized stress tensor can be expressed in terms of the fundamental field as

T (z) = 1√
2

: ∂φ∂φ : (z) = 1√
2
∑
m,n

z−m−n−2 : αmαn :, (G.7)

where : ab : denotes product of operators a and b with the corresponding free theory oscil-
lators being normally ordered such that the operators annihilating the vacuum are put at
the rightmost position. Then, it follows

Ln = 1
2
∑
m

: αn−mαm := 1
2

∑
m≥0

αn−mαm +
∑
m<0

αmαn−m

 . (G.8)

G.2 Thermal two-point function of quasi-primary operator

We are interested in computing the thermal two-point function of quasi-primary operators
at temperature 1/β. Quasi-primary operators O(z) are defined as [L1,O(z)] = 0, or
equivalently, in therms of their asymptotic in-states O(0)|0〉 = |O〉, as L1|O〉 = 0. We
denote the quantum numbers of quasi-primary operators that correspond to eigenvalues
of L0 and L̄0 by (h, h̄). We consider the following unit-normalized quasi-primary operator
with quantum numbers (h, 0)

Oh(z) = 1√
h!

: (∂φ)h : (z) = 1√
h!

∑
m1,m2,...,mh

z−
∑h

i=1 mi−h : αm1 . . . αmh :, (G.9)

which is properly defined when h is a positive integer. Its asymptotic in-state is given by

|Oh〉 = Oh(0)|0〉 = 1√
h!

(α−1)h|0〉. (G.10)

One can check that this operator is a quasi-primary but not a Virasoro primary.
The thermal two-point function of this operator for even h is given by

〈Oh(z)Oh(0)〉β =
1
2 (h−2)∑
n=0

h!
4n(h− 2n)!

(2ζ(2)
β2

)2n( ∞∑
m=−∞

1
(z +mβ)2

)h−2n

+ 2hπ

Γ
(

1
2 −

h
2

)2
Γ(h+ 1)

(2ζ(2)
β2

)h
.

(G.11)
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This expression is obtained by writing all possible Wick contractions between fundamental
fields ∂φ, including those that belong to same operator Oh, that we call self-contractions.
Fundamental fields are separated along the thermal circle in all Wick contractions. Factors(

2ζ(2)
β2

)
are due to the self-contractions,

∞∑
m=−∞,m 6=0

1
β2m2 =

(2ζ(2)
β2

)
. (G.12)

The sum over n comes from doing n self-contractions within each of the external operators.
Term h!

4n(h−2n)! counts the number of Wick contractions with n self-contractions for each
external operator, including 1/

√
h! normalization factors. The term in the second line

of (G.11) is due to the case when we take n = h/2 self-contractions in both external
operators, i.e. it represents the disconnected contribution.

Since the state Oh is quasi-primary, it transforms properly only with respect to the
global conformal transformation. These are just the Möbius transformations in two-
dimensional spacetime z → az+b

cz+d , with ad − bc = 1. On the other hand, the usual way to
calculate the thermal two-point function of primary operators in two dimensions is to do a
conformal transformation from the plane to the cylinder with radius β, z → β

2π log(z). This
transformation is clearly not one of the Möbius transformations and that is why we can not
use this method to compute the thermal two-point functions of quasi-primary operators.

Expanding (G.11) for T = 1
β → 0 one finds

z2h〈Oh(z)Oh(0)〉β = 1 + h

3
(πz)2

β2 +
h(h− 1

5)
12

(πz)4

β4 +O
( 1
β6

)
. (G.13)

G.3 Quasi-primaries, OPE coefficients, and thermal one-point functions

In expansion (G.13), terms O(zh1) are due to the quasi-primary operator with quantum
numbers (h1, 0) in the operator product expansion Oh × Oh. Identity in the expansion is
due to the identity operator. We show that the second term on the r.h.s. is due to the
stress tensor. The quantum numbers of stress tensor T (z) are (2, 0). First, we evaluate the
thermal one-point function of the stress tensor

〈T 〉β = 1√
2

∞∑
m=−∞,m 6=0

1
β2m2 = π2

3
√

2β2 . (G.14)

This is obtained by the Wick contractions of fundamental fields in the stress tensor, that
are separated along the thermal circle. The same result can be obtained by the transform
of the stress tensor from the plane to the cylinder using the Schwarzian derivative.

We define the OPE coefficient of unit-normalized operator O, with quantum numbers
(hO, 0), with two Oh operators as

〈Oh(z1)Oh(z2)O(z3)〉 = λOhOhO
(z1 − z3)hO(z2 − z3)hO(z1 − z2)2h−hO

. (G.15)

Next, we evaluate its OPE coefficient of the stress tensor with Oh by doing the Wick
contractions between fundamental fields

〈Oh(z1)Oh(z2)T (z3)〉 =
√

2h 1
(z1 − z3)2(z2 − z3)2(z1 − z2)2(h−1) , (G.16)
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therefore λOhOhT =
√

2h. This OPE coefficient is fixed by the Ward identity. Now, it
follows

z2λOhOhT 〈T 〉β = h

3
(πz)2

β2 , (G.17)

which reproduces the second term on the r.h.s. of (G.13).
We are now interested in the contributions of quasi-primary operators with quantum

numbers (4, 0). There are only two linearly independent operators with these quantum
numbers given by27

: TT : (z) = 1√
24

: (∂φ)4 : (z) = 1√
24

∑
a,b,c,d

z−a−b−c−d−4 : αaαbαcαd :, (G.18)

Λ4(z) =
√

10
27

 ∞∑
m,n=−∞

z−m−n−4 ∗ LmLn ∗ −
3
10

∞∑
m=−∞

z−m−4(m+ 2)(m+ 3)Lm

 ,
(G.19)

where ∗ab∗ denotes the product where the relevant Virasoro generators are normally or-
dered. It should be noted that the operator Λ4(z) is Virasoro descendant of unity, while
: TT : (z) is not. The relevant asymptotic in-states are given by

| : TT :〉 =: TT : (0)|0〉 = 1√
24

(α−1)4|0〉,

|Λ4〉 = Λ4(0)|0〉 =
√

10
27

(
L2
−2 −

3
5L−4

)
|0〉.

(G.20)

In terms of oscillators, |Λ4〉 state can be represented as

|Λ4〉 =
√

10
27

(1
4(α−1)4 + 2

5α−1α−3 −
3
10(α−2)2

)
|0〉. (G.21)

From eqs. (G.20) and (G.21) one can see that | : TT :〉 and |Λ4〉 are the only quasi-primary
states with quantum numbers (4, 0). Namely, all such states have to be linear combinations
of the following states

α−4|0〉, α−3α−1|0〉, α2
−2|0〉, α−2α

2
−1|0〉, α4

−1|0〉, (G.22)

because

L0

(
N∏
i=1

α−ki

)
|0〉 =

(
N∑
i=1

ki

)(
N∏
i=1

α−ki

)
|0〉, (G.23)

where ki > 0. It is straightforward to check

L1α−4|0〉 = 4α−3|0〉,
L1α−3α−1|0〉 = 3α−2α−1|0〉,

L1α
2
−2|0〉 = 4α−2α−1|0〉,

L1α−2α
2
−1|0〉 = 2α3

−1|0〉,
L1α

4
−1|0〉 = 0.

(G.24)

27Both of them are unit-normalized.

– 42 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
5

It follows that α4
−1|0〉 is already quasi-primary and one can make only one more as

α−3α−1|0〉 − 3
4α−2α−2|0〉.28 | : TT :〉 and |Λ4〉 are just the linear combination of these

two states with overall normalization.
Now, one can calculate the overlap of | : TT :〉 and |Λ4〉 states as

〈0|Λ4(0) : TT : (0)|0〉 =
√

5
3 . (G.25)

The state orthogonal to |Λ4〉 can be written as

|Λ̃4〉 = 3
2

(
: TT : (0)−

√
5

3 Λ4(0)
)
|0〉. (G.26)

Using (G.20) and (G.21), it can be written in terms of free theory oscillators.
We compute the OPE coefficients of : TT : and Λ4 with two Oh operators. We express

all states in terms of free theory oscillators and use algebra (G.4) to find

λOhOh:TT : = 〈Oh|Oh(1)| : TT :〉 =
√

6
2 h(h− 1), (G.27)

λOhOhΛ4 = 〈Oh|Oh(1)|Λ4〉 =
√

5
6h
(
h− 1

5

)
, (G.28)

λOhOhΛ̃4
= 〈Oh|Oh(1)|Λ̃4〉 = 2√

6
h (h− 2) . (G.29)

Now, we evaluate the thermal one-point functions of Λ4 and Λ̃4. From (3.4) in [58] we
have

〈∗T 2∗〉β = 3π4

20β4 , (G.30)

which is the thermal one-point function of the first term on the r.h.s. of (G.19). The second
term can be written as − 3

10
∑∞
m=−∞ z

−m−4(m + 2)(m + 3)Lm = − 3
10
√

2∂
2T (z). It is clear

that it will not affect the thermal one-point function of Λ4(z), as 〈∂2T 〉β = 0.
Therefore, from (G.19), we have

〈Λ4〉β =
√

10
27〈∗T

2∗〉β = π4

2
√

30β4 . (G.31)

Now, it follows

z4〈Λ4〉βλOhOhΛ4 = π4z4

12β4h

(
h− 1

5

)
, (G.32)

which is the third therm at the r.h.s. of (G.13). On the other hand, we can evaluate the
thermal one-point function of : TT : (z) operator by Wick contractions of fundamental
fields separated along the thermal circle

〈: TT :〉β = π4

6
√

6β4 . (G.33)

28These states are not unit-normalized.
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Using (G.26), it is straightforward to confirm that 〈Λ̃4〉β = 0. Therefore, as we expected,
operator Λ̃4 does not contribute to the thermal two-point function of Oh operators, even
thought it is present in the operator product expansion Oh ×Oh.

This is a general property of two-dimensional CFTs, that only the operators in the
Virasoro vacuum module have non-zero expectation value on the cylinder.

G.4 Free adjoint scalar model in two dimensions

In this subsection we study a large-c theory. Consider the free adjoint SU(N) scalar in 2d
with

∂φ(z)ab =
∑
m

z−m−1(αm)ab (G.34)

with
[(αm)ab, (αn)cd] = mδm+n

(
δadδ

c
b −

1
N
δabδ

c
d

)
. (G.35)

The thermal two point of the quasi-primary operator Oh = 1√
hNh

: Tr((∂φ)h) : follows im-
mediately from the result in four dimensions upon replacing the propagator of fundamental
fields. We find that

〈Oh(z)Oh(0)〉β = g2d(z)h + π4h(h− 2)
9β4 g2d(z)h−2 + . . . , (G.36)

where

g2d(z) =
∞∑

m=−∞

1
(z +mβ)2

=
(

π

β sin(πz/β)

)2
.

(G.37)

Expanding (G.36) for β →∞ we find

〈Oh(z)Oh(0)〉β = z−2h
[
1 + π2h

3β2 z
2 + π4h(15h− 19)

90β4 z4 +O(β−6)
]
. (G.38)

Consider first the normalized stress tensor which is given by

T = 1√
2N

: Tr(∂φ∂φ) :, (G.39)

with c = N2 so that 〈T (z)T (0)〉 = 1
z4 . By calculating the OPE coefficient with Oh and

the thermal one-point function of T , one finds that these are the same as those for the
scalar Tr(φ2) operator in four dimensions so that 〈T 〉β = π2N

3
√

2β2 and λOhOhT =
√

2h
N , and

the product reproduces the weight two term in (G.38):

〈T 〉βλOhOhT = π2h

3β2 . (G.40)

Consider now ∗TT∗ defined by

∗ TT ∗ (0) = lim
z→0

T (z)T (0)− (sing. terms). (G.41)
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The OPE of the stress tensor in (G.39) can be found in the free theory by first performing
Wick contractions

T (z)T (0) = 1
2N2 : Tr(∂φ(z)∂φ(z)) :: Tr(∂φ(0)∂φ(0)) :

=: TT : (0) + . . .+ 2
N2z2 : Tr(∂φ(z)∂φ(0)) : + 1

z4 ,
(G.42)

and expanding the second term in (G.42) for z → 0 we find

T (z)T (0) =: TT : (0) + . . .+ 2
N2z2 : Tr(∂φ(0)∂φ(0)) :

+ 2
N2z

: Tr(∂2φ(0)∂φ(0)) : + 1
N2 : Tr(∂3φ(0)∂φ(0)) : + . . .

+ 1
z4 ,

(G.43)

where the dots refer to higher order terms in z. Inserting the OPE (G.43) in (G.41) we
find that

∗ TT ∗ (0) =: TT : (0) + 1
N2 : Tr(∂3φ(0)∂φ(0)) : . (G.44)

Consider the state ∗TT ∗ (0)|0〉, which is given in terms of oscillator modes by

∗ TT ∗ (0)|0〉 = 1
2N2Tr(α

2
−1)Tr(α2

−1)|0〉+ 2 1
N2Tr(α−3α−1)|0〉. (G.45)

Now Tr(αm−1)|0〉 is a quasi-primary while Tr(α−3α−1)|0〉 is not. One way to make it a
quasi-primary is to simply remove the second term in (G.45) and then we get a quasi-
primary state which is just : TT : |0〉. Another option is to remove a descendant of the
stress tensor to construct |Λ4〉. To do the latter we need to remove the descendant of the
stress tensor with weight 4 given by ∂2T

∂2T =
√

2
N

: Tr(∂3φ∂φ) : +
√

2
N

: Tr(∂2φ∂2φ) : . (G.46)

Acting on the vacuum we find

∂2T (0)|0〉 = 2
√

2
N

Tr(α−3α−1)|0〉+
√

2
N
Tr(α2

−2)|0〉. (G.47)

Consider now L1 =
√

2
N (Tr(α−1α2) + Tr(α−2α3 + . . .)) which acts as L1Tr(α2

−2)|0〉 =
4
√

2
N Tr(α−1α−2)|0〉 and as L1Tr(α−3α−1)|0〉 = 3

√
2

N Tr(α−1α−2)|0〉. We can therefore con-
struct a quasi-primary state annihilated by L1: Tr(α−3α−1)|0〉 − 3

4Tr(α
2
−2)|0〉. The quasi-

primary |Λ4〉 is then given by:

|Λ4〉 = 1√
2

[
∗TT ∗ (0)|0〉 − 3

5
√

2N
∂2T (0)|0〉

]
= 1

2
√

2N2

[
Tr(α2

−1)Tr(α2
−1)|0〉 − 6

5Tr(α
2
−2)|0〉+ 8

5Tr(α−1α−3)|0〉
]

(G.48)
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There are two more weight 4 single trace quasi-primary operators given by

O(1) = 1
2N2Tr((∂φ)4)

O(2) = nO(2)

N

(
Tr(∂3φ∂φ)− 3

2Tr(∂
2φ∂2φ)

)
,

= nO(2)

N

(1
2∂

2Tr(∂φ∂φ)− 5
2Tr(∂

2φ∂2φ)
)
,

(G.49)

where nO(2) is some N -independent normalization constant. The state |Λ4〉 can be written
in terms of : TT : (0)|0〉+ aO2(0)|0〉 in the following way

|Λ4〉 = 1√
2

[
: TT : (0)|0〉+ 2

5NnO(2)
O(2)|0〉

]
. (G.50)

The OPE coefficient for : TT : is up to a normalization the same as the scalar dimension
4 double trace operator in 4d and is given by

〈OhOh : TT :〉 = 1
hNh

1
2N2 4h2(3h− 5)Nh 1

z4
13z

4
23z

2h−4
12

= 1
N2 2h(3h− 5) 1

z4
13z

4
23z

2h−4
12

,
(G.51)

where 4h2(3h−5) come from the number of contractions giving planar diagrams. Consider
now the OPE coefficient for O(2). One finds

〈OhOhO(2)〉 = nO(2)Nh

hNh+1z4
13z

4
23z

2h−2
12

[
(−2)(−3)h2(z2

13 + z2
23)− 3

22h2(−2)2z13z23

]
= 6hnO(2)

Nz4
13z

4
23z

2h−4
12

.

(G.52)

Using (G.51), (G.52) and (G.50) we find the OPE coefficient for |Λ4〉

〈OhOhΛ4〉 =
√

2h(15h− 19)
5N2 . (G.53)

Note that the h dependence matches that of the weight 4 term in the two-point func-
tion (G.38). Additionally, the OPE coefficient given by (G.53) can not be extrapolated to
the limit when h ∼ CT , as in this limit the planar expansion used for calculating (G.53)
breaks down. For this reason, we can not test the thermalization of Λ4 in heavy state OhH .
Let us consider the thermal one-point function which is given by

〈Λ4〉β =
[ 1√

2
b2T +O(1)

]
= π4N2

18
√

2β4 , (G.54)

where the term ∝ 1
N 〈O

(2)〉β is subleading since it is single trace. We find that

〈Λ4〉βλOhOhΛ4 = π4h(15h− 19)
90β4 , (G.55)

which agrees with the weight 4 term in (G.38).
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Note that it is explicitly seen that one can write Λ4 either as ∗TT ∗ +(desc. of T) or
as : TT : + 1

NOST with OST a quasi-primary single trace operator. In this case the single
trace operator which one needs to add to : TT : to get Λ4 can be written as a sum of
descendants O(2) ∝ ∂2T − 5√

2Tr(∂
2φ∂2φ). Explicitly, we have

|Λ4〉 = 1√
2

[
∗TT ∗ (0)− 3

5
√

2N
∂2T (0)

]
|0〉

= 1√
2

[
: TT : (0) + 2

5NnO(2)
O(2)

]
|0〉.

(G.56)

As we saw above, using the second line in (G.56) it is straightforward to calculate correlation
functions using Wick contractions to see that Λ4 gives the full weight four contributions to
the thermal two-point function for large-N theories.

Now, we consider the following quasi-primary operator

O∆(z, z̄) =
√

2√
∆N∆/2

: Tr
(
(∂φ∂̄φ̄)

∆
2
)

: (z, z̄), (G.57)

where we denote the anti-holomorphic part of the free field by φ̄ = φ̄(z̄). The thermal
two-point function of this operator, up to the terms subleading in large-N expansion, is
given by

〈O∆(z, z̄)O∆(0, 0)〉β = π2∆

β2∆ sin∆
(
πz
β

)
sin∆

(
πz̄
β

)
= 1

(zz̄)∆

(
1 + π2∆(z2 + z̄2)

6β2 + π4∆(5∆ + 2)
360β4 (z4 + z̄4) + π4∆2

36β4 z
2z̄2 +O

( 1
β6

))
.

(G.58)

One can easily check that the OPE coefficients of stress tensor T and its anti-holomorphic
partner T̄ with O∆ are given by

λO∆O∆T = λO∆O∆T̄
= ∆√

2N
, (G.59)

while their thermal one-point function are given by

〈T 〉β = 〈T̄ 〉β = π2N

3
√

2β2 . (G.60)

It is easy to check that terms proportional to β−2 in (G.58) are contributions of T and T̄
operators

〈T 〉βλO∆O∆T z
2 + 〈T̄ 〉βλO∆O∆T̄

z̄2 = π2∆(z2 + z̄2)
6β2 . (G.61)

We compute the OPE coefficient of operators Λ4, defined by (G.48), and its anti-holomor-
phic partner Λ̄4 with O∆ and obtain

λO∆O∆Λ4 = λO∆O∆Λ̄4
= ∆(5∆ + 2)

10
√

2N2 , (G.62)
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which agrees with (C.26) in [66]. Its thermal one-point function (which is the same as 〈Λ̄4〉β)
is given by (G.54). Another operator that contributes to thermal two-point function (G.58)
is : T T̄ :. Its OPE coefficient with O∆ and thermal one-point function are given by

λO∆O∆:T T̄ : = ∆2

2N2

〈: T T̄ :〉β = π4N2

18β4 .

(G.63)

Again, it is easy to check

〈Λ4〉βλO∆O∆Λ4z
4 + 〈Λ̄4〉βλO∆O∆Λ̄4

z̄4 + 〈: T T̄ :〉βλO∆O∆:T T̄ :z
2z̄2 =

= π4∆(5∆ + 2)
360β4 (z4 + z̄4) + π4∆2

36β4 z
2z̄2,

(G.64)

which matches with the corresponding terms in (G.58).
The OPE coefficients λO∆O∆Λ4 , λO∆O∆Λ̄4

, and λO∆O∆:T T̄ : can be extrapolated to the
limit ∆ ∼ N2, by the same logic as in appendix C. Then, we can explicitly check the
thermalization property of Λ4, Λ̄4, and : T T̄ :. To establish a relation between the inverse
temperature β and the conformal dimension ∆H of heavy state OH = O∆∼N2 , we assume
the thermalization of stress tensor

〈T 〉β = λOHOHT , (G.65)

which implies
∆H

N2 = π2

3β2 . (G.66)

Using this relation, it is easy to show

〈Λ4〉β = λOHOHΛ4

∣∣∣∆2
H
N2

,

〈Λ̄4〉β = λOHOH Λ̄4

∣∣∣∆2
H
N2

,

〈: T T̄ :〉β = λOHOH :T T̄ :

∣∣∣∆2
H
N2

.

(G.67)

This means that operators Λ4, Λ̄4, and : T T̄ : thermalize in the quasi-primary state OH
similarly to the thermalization in a Virasoro primary states in large-c theory, that was
analyzed in [42].

H Vector model

In this section we study the free scalar vector model at large-N . Consider the scalar
operator

O∆ = 1√
N (∆)

: (ϕiϕi)
∆
2 : (x), (H.1)
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where N (∆) is a normalization constant which to leading order in N is given by

N (∆) ≈ (∆)!!N
∆
2 . (H.2)

The thermal two-point function is given by

〈O∆(x)O∆(0)〉β = g̃(x0
E , |x|)∆ +

(∆
2

)2 1
∆ g̃(x0

E , |x|)∆−2 + . . . , (H.3)

where

g̃(x0
E , |x|) =

∞∑
m=−∞

1
(x0
E +mβ)2 + x2

= π

2β|x|

[
Coth

(
π

β
(|x| − ix0

E)
)

+ Coth
(
π

β
(|x|+ ix0

E)
)]

.

(H.4)

The thermal aτ,J coefficients a2,2 and a4,4 are the same as in the adjoint model (this is so
since the second term in (H.3) does not affect these):

a2,2 = π4∆
45 ,

a4,4 = π8∆(∆− 1)
1050 .

(H.5)

The unit-normalized stress tensor is given by

Tµν(x) = 1
3
√
CT

:
(
∂µϕ

i∂νϕ
i − 1

2ϕ
i∂µ∂νϕ

i − (trace)
)

: (x), (H.6)

where CT = 4
3N . The OPE coefficient of the stress tensor is again found by Wick contrac-

tions to be
λO∆O∆Tµν = − 4∆

3
√
CT

, (H.7)

in agreement with the stress tensor Ward identity. The double-stress tensor is given by

T 2
µνρσ = 1√

2
: T(µνTρσ) : −(traces), (H.8)

and the OPE coefficient is calculated precisely as for the adjoint model and we find

λO∆O∆T
2
4,4

= 8
√

2
9CT

∆(∆− 1). (H.9)

There is another double-trace operator with twist 4 and spin 4 and takes the same form
: O2O2,4 : as for the adjoint model

ODT
µνρσ(x) = 1

96
√

70N
: ϕiϕi

(
ϕj∂µ∂ν∂ρ∂σϕ

j − 16∂(µϕ
j∂ν∂ρ∂σ)ϕ

j

+ 18∂(µ∂νϕ
j∂ρ∂σ)ϕ

j − (traces)
)

: (x).
(H.10)

The OPE coefficient and the thermal one-point function yields the same result as for the
corresponding operator in the adjoint model.29 It then follows that the a4,4 extracted
from (H.3) is reproduced by the sum of the double stress tensor and (H.10).

29Note that this is not true for all operators but is in line with the fact that a4,4 is unaffected by the
second term in (H.3).
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I Factorization of thermal correlators

In this appendix we argue for the factorization of thermal expectation values of multi-trace
operators in large-CT theories on S1 ×Rd−1. Consider the thermal two-point function of
a scalar operator O with dimension ∆:

〈O(x)O(0)〉β = 〈O〉β〈O〉β + 〈O(x)O(0)〉β,c, (I.1)

where the second term consist of the connected part of the correlator. Note that the
disconnected term in (I.1) is independent of the position x. On the other hand we can
evaluate (I.1) using the OPE on the plane which takes the form

O(x)O(0) = 1
|x|2∆ +

∑
n,l

λOO[OO]n,lx
2n+l[OO]n,l + . . . , (I.2)

when written in terms of primaries and the dots refer to terms surpressed in the large-CT
limit. Note that λOO[OO]n,l are the MFT OPE coefficient which are of order 1. The term
in (I.2) that is independent of x is due to the n = l = 0 term in (I.2) and inserting the
OPE on the l.h.s. of (I.2), we find that

λOO[OO]0,0〈[OO]0,0〉β = 〈O〉2β . (I.3)

When [OO]0,0 is unit-normalized the OPE coefficient is given by λOO[OO]0,0 =
√

2 and it
follows that

〈[OO]0,0〉β = 1√
2
〈O〉2β . (I.4)

We therefore see the that the thermal one-point function of the double-trace operator
factorizes on the plane. We expect a similar argument to hold for multi stress tensors.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Abstract: By using holographic methods, the radii of convergence of the hydrodynamic
shear and sound dispersion relations were previously computed in the N = 4 supersym-
metric Yang-Mills theory at infinite ’t Hooft coupling and infinite number of colours. Here,
we extend this analysis to the domain of large but finite ’t Hooft coupling. To leading order
in the perturbative expansion, we find that the radii grow with increasing inverse coupling,
contrary to naive expectations. However, when the equations of motion are solved using a
qualitative non-perturbative resummation, the dependence on the coupling becomes piece-
wise continuous and the initial growth is followed by a decrease. The piecewise nature
of the dependence is related to the dynamics of branch point singularities of the energy-
momentum tensor finite-temperature two-point functions in the complex plane of spatial
momentum squared. We repeat the study using the Einstein-Gauss-Bonnet gravity as a
model where the equations can be solved fully non-perturbatively, and find the expected
decrease of the radii of convergence with the effective inverse coupling which is also piece-
wise continuous. Finally, we provide arguments in favour of the non-perturbative approach
and show that the presence of non-perturbative modes in the quasinormal spectrum can
be indirectly inferred from the analysis of perturbative critical points.
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1 Introduction

In the hydrodynamic regime, quantum field theory is expected to contain collective ex-
citations such as sound waves [1, 2]. These hydrodynamic modes are characterised in
momentum space by their gapless dispersion relations ω = ω(q), where ω is the frequency
of the mode and q is its wave-vector. In the simplest case of a relativistic neutral isotropic
fluid, two hydrodynamic modes known as shear and sound modes have dispersion relations

ωshear(q2) = −iDq2 + · · · , (1.1)

ωsound(q2) = ±vs(q2)
1
2 − iΓ2 q2 + · · · . (1.2)

These modes arise as linearised fluctuations of an equilibrium state and describe transverse
momentum (shear) and longitudinal energy-momentum (sound) transfer. The coefficients
of the series such as the speed of sound vs, the transverse momentum diffusion constant
D = η/sT and the sound attenuation constant Γ = (ζ + 4η/3)/sT , where η and ζ are,
respectively, shear and bulk viscosities and s is the equilibrium entropy density at temper-
ature T , are determined by the underlying microscopic quantum field theory [2]. In the
following, it will be convenient to use the frequency w = ω/2πT and the spatial momentum
q = q/2πT normalised by the Matsubara frequency.

Recently, in the context of exploring the domain of applicability of hydrodynamics, the
radii of convergence of the series (1.1), (1.2) have been investigated in some strongly inter-
acting quantum field theories by using their dual gravitational descriptions in refs. [3–8] and
by using field theory methods in refs. [9, 10]. In particular, by promoting q2 to a complex
variable and analysing critical points of the associated spectral curves, in refs. [4, 5], it was
found that for the N = 4 supersymmetric SU(Nc) Yang-Mills theory (SYM) in the limit
of infinite number of colours Nc → ∞ and infinite ’t Hooft coupling λ = g2

YMNc → ∞,
the radii of convergence R = |q2| of the hydrodynamic series w = w(q2) in the complex
q2-plane are given by

R
(∞)
shear ≈ 2.22 , (1.3)

R
(∞)
sound = 2 . (1.4)

The physical reason behind the breakdown of the convergence of hydrodynamic series is the
presence of the gapped non-hydrodynamic degrees of freedom whose spectra “cross levels”
with the hydrodynamic degrees of freedom at some (generically complex) value of q2.

Our main goal in this paper is to find the ’t Hooft coupling constant corrections to
the infinite coupling results (1.3), (1.4), similar to the coupling constant corrections to
the entropy [11, 12], shear viscosity [13, 14] and other transport coefficients (see ref. [15]
and references therein) computed for the N = 4 SYM theory earlier. Our methods are
discussed in detail in section 2, and in appendices A and B.

Naively, one may expect that the radius of convergence R(λ) decreases with the cou-
pling decreasing from its infinite value. Indeed, schematically [16], while at infinite coupling
the characteristic spectral distance ν(∞) (set by the location of quasinormal modes in the
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dual gravity theory [17–19]) is coupling-independent, its counterpart ν(0) at small coupling
(set by the eigenvalues of a suitable linearised collision operator [20, 21], [22]) is coupling-
dependent and parametrically small, hence,

R(∞) ∼ ν(∞)/T ∼ 1 , (1.5)

R(0) ∼ ν(0)/T ∼ λ2 ln λ−1 � 1 , (1.6)

where eq. (1.5) is clearly consistent with the results (1.3), (1.4).
However, these expectations are shattered by a concrete calculation. Using pertur-

bative methods only, in section 3 we find instead that at large coupling the radius of
convergence increases with the coupling decreasing from its infinite value, namely,

Rshear(λ) = R
(∞)
shear

(
1 + 674.15λ−3/2 + · · ·

)
, (1.7)

Rsound(λ) = R
(∞)
sound

(
1 + 481.68λ−3/2 + · · ·

)
, (1.8)

where R(∞)
shear and R

(∞)
sound are given by eqs. (1.3) and (1.4). This result is unexpected.

Admittedly, the large numerical coefficients in eqs. (1.7) and (1.8) may reflect the necessity
of a non-perturbative “resummation” along the lines of ref. [23]. Indeed, applying such
a resummation (discussed in detail below), we find that Rshear(λ) and Rsound(λ) become
decreasing functions of the decreasing λ after the initial growth that is well-approximated
by eqs. (1.7) and (1.8) (see figure 1). In consequence, for the N = 4 SYM theory, our
analysis implies that R(λ) should be a non-monotonic and piecewise continuous function.
The dependence of Rshear and Rsound on γ ∼ λ−3/2 shown in figure 1 constitutes the main
result of this paper. The non-perturbative part of the curve Rshear(γ) (the red segment
of the curve in the right panel of figure 1) coincides with the boundary of validity of
hydrodynamics previously discussed in ref. [16]. We note that the piecewise character
of this dependence is similar to the one recently observed for infinitely strongly coupled
theories with finite chemical potential [7, 24] and the Sachdev-Ye-Kitaev chain at finite
coupling [9].

To understand the non-perturbative aspects of the analysis better, in section 4, we com-
pute the radii of convergence of hydrodynamic series using the Einstein-Gauss-Bonnet grav-
ity in five dimensions as a theoretical laboratory. There, the second-order bulk equations
of motion can be solved fully non-perturbatively in the Gauss-Bonnet coupling [16, 25, 26],
and thus the outcome of relevant perturbative resummations can be compared with exact
results. We find (see figures 13 and 16) that the radius of convergence decreases (and the
dependence is piecewise continuous) with what can be phenomenologically identified as
the direction of decreasing CFT coupling [16, 26–28], which is qualitatively similar to the
results obtained for the N = 4 SYM theory in section 3.

The question of the hydrodynamic series convergence at finite coupling was recently
addressed in ref. [10] for experimentally realisable fluids, and in ref. [9] for the Sachdev-Ye-
Kitaev chain. The calculations of ref. [10] are based on estimating the size of the k-gap [29]
and show an increasing R with increasing Coulomb coupling strength, while ref. [9] finds a
non-monotonic dependence, with R growing towards weak coupling. Radii of convergence

– 2 –



J
H
E
P
0
6
(
2
0
2
1
)
1
8
0

0 1 ·10-5 2 ·10-5 3 ·10-5 4 ·10-5

2.0

2.1

2.2

2.3

0 1 ·10-5 2 ·10-5 3 ·10-5 4 ·10-5

1.95

2.00

2.05

2.10

Figure 1. Radii of convergence Rshear and Rsound of the hydrodynamic shear (left panel) and sound
(right panel) modes in the N = 4 SYM theory as a function of the coupling γ ∝ λ−3/2. Solid blue
curves correspond to the perturbative results of eqs. (1.7), (1.8), black dots are the non-perturbative
results. The red curves are determined by the level-crossings of the hydrodynamic modes with the
modes not present in the perturbative spectrum.

of hydrodynamic series in relativistic kinetic theory (in the relaxation time approximation)
were recently studied in ref. [30].

This paper is structured as follows. In section 2, we briefly review the method of crit-
ical points of spectral curves introduced in refs. [4, 5] to compute the radii of convergence,
as well as the non-perturbative resummation approach for theories with higher-derivative
equations of motion. In section 3, we use the dual higher-derivative gravity to compute
the radii of convergence for the shear and sound modes in the N = 4 SYM theory at large
but finite ‘t Hooft coupling. This analysis is done perturbatively and non-perturbatively
by using the “resummed” version of the first-order theory. In section 4, we perform similar
calculations in Einstein-Gauss-Bonnet gravity to check the validity of our approach. We
also demonstrate level-crossings at higher momenta. Then, in section 5, we discuss the
validity of non-perturbative “resummations” used in holography. We first consider a toy
algebraic example and then study in detail the shear channel of the Einstein-Gauss-Bonnet
theory. These examples are used to draw plausible conclusions about the N = 4 SYM the-
ory and the emergence of purely relaxing gapped modes in that theory. We conclude with
a discussion of open problems in section 6. Appendix A is a short review of the methods
involving critical points and quasinormal level-crossing. Appendix B introduces a useful
method for determining the Puiseux exponent at a critical point by analysing the coeffi-
cients of hydrodynamic series of a dispersion relation w = w(q2). Finally, appendices C
and D contain the coefficients of the differential equations used in the paper.

2 Critical points, quasinormal level-crossings and the “resummation”

In this section, we briefly review the methods used to obtain the main results of the paper.
These methods were formulated in refs. [4, 5], where the interested reader can find more
details and examples.
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2.1 Critical points, Puiseux series and quasinormal level-crossing

In momentum space, the hydrodynamic dispersion relations arise from the hydrodynamic
spectral curve PH(q2,w) = 0 given by the zeros of the determinant of the matrix of lin-
earised fluctuations around an equilibrium state [4, 5]. Using the symmetry of the sys-
tem and applying the Newton polygon method, one can write generic expressions for the
dispersion relations describing transverse momentum and longitudinal energy-momentum
fluctuations in terms of the converging Puiseux series centred at the origin:

wshear(q2) = −i
∞∑
n=1

cn
(
q2
)n

, (2.1)

wsound(q2) = −i
∞∑
n=1

ane
± iπn2

(
q2
)n/2

. (2.2)

The modes (2.1) and (2.2) are gapless. The coefficients cn and an of the series are real
functions proportional to the transport coefficients. In particular, c1 = 2πTD, a1 = ±vs,
a2 = −ΓπT . In the underlying quantum field theory, the full spectral curve P (q2,w), which
reduces to PH(q2,w) in the hydrodynamic limit, is proportional to the denominator of the
two-point retarded correlation function of the corresponding conserved current (here, the
energy-momentum tensor). The spectral curve equation P (q2,w) = 0 contains the full
spectrum of modes w = w(q2), gapless and gapped. Identifying gapless modes with (2.1)
and (2.2), one reads off the transport coefficients in terms of the quantum field theory
parameters.

Each Puiseux series is an expansion around a critical point (q2
c ,wc) of order p which

is a solution of the following set of equations:

P (q2
c ,wc) = 0 , ∂wP (q2

c ,wc) = 0 , · · · , ∂pwP (q2
c ,wc) 6= 0 . (2.3)

The order p determines the number of branches of the curve at the critical point. The
analytic properties of the branches can be found by using e.g. the Newton polygon method,
as explained in ref. [5] and references therein. Accordingly, a critical point may constitute
a branch point singularity (or worse) or be a regular point depending on the coefficients of
the original complex curve. For example, a point with p = 1 is always a regular point, as
guaranteeed by the implicit function theorem, in which case a Puiseux series is the ordinary
Taylor series. In terms of eq. (2.3), the shear mode is a Puiseux series in q2 of order p = 1
around the origin (q2

c ,wc) = (0, 0) (i.e., a Taylor series around a regular point), whereas
for the sound mode, the origin is a branch point singularity generating a Puiseux series of
order p = 2 [4, 5].

The radii of convergence of the series (2.1) and (2.2) are set by the locations of the
closest to the origin singularities of the functions wshear(q2) and wsound(q2), respectively,
in the complex q2-plane. Critical points of the spectral curve P (q2,w) = 0 having branch
points at q2 = q2

c are the common source of such singularities. At the critical points with
p > 1, the equation P (q2

c ,wc) = 0 has multiple roots, and hence the hydrodynamic mode
“collides” with one or more gapped modes in the complex w-plane. If the corresponding
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q2 = q2
c is a branch point, this is the level-crossing phenomenon,1 albeit happening here

at complex values of frequency and momentum squared. We illustrate this with simple
examples in appendix A. In appendix B, we also introduce a method based on the Darboux
theorem which allows one to compute the Puiseux exponent at a critical point closest to
(but different from) the origin by analysing the coefficients of a series centred at the origin.

Computing a spectral curve in quantum field theory, even perturbatively, is a difficult
problem. However, for strongly interacting theories with gravity dual descriptions, this
task is rather straightforward. Indeed, the recipe for computing the two-point retarded
correlators from dual gravity [31] implies that the spectral curve P (q2,w) = 0 is determined
by the boundary value Z(u = 0, q2,w) of the solution Z(u, q2,w) to the bulk equations of
motion for the fluctuations coupled to the relevant conserved current: P (q2,w) = Z(u =
0, q2,w) = 0 [4, 5]. Analytic properties of the spectral curve such as the location of branch
point singularities are thus inherited from the properties of the bulk ODEs. In practice,
the ODEs are sufficiently complicated and have to be solved numerically. Having such
a solution, one first solves eqs. (2.3) to find the critical points in the complex q2-plane,
and then determines the degree of singularity at the critical points by considering the
quasinormal mode behaviour in the complex w-plane under the monodromy q2 = |q2|eiϕ,
where ϕ ∈ [0, 2π] (see appendix A). The closest to the origin (in the complex q2-plane)
critical point exhibiting a branch point singularity sets the radius of convergence of the
series (2.1), (2.2). In the N = 4 SYM theory at infinite Nc and infinite ‘t Hooft coupling,
the critical points closest to the origin in the shear and sound channels are located at

Shear : q2
c ≈ 1.8906469± 1.1711505i, wc ≈ ±1.4436414− 1.0692250i , (2.4)

Sound : q2
c = ±2i, wc = ±1− i , (2.5)

leading to the radii of convergence (1.3) and (1.4). In general, a multitude of critical points
is expected to exist in the complex q2-plane, representing level-crossings among two or
more branches of the spectrum. Moreover, at finite Nc or at weak coupling described by
kinetic theory, one may also expect other types of singularities to appear [30].

Here, we continue working in the limit Nc →∞, and extend the approach of refs. [4, 5]
to bulk gravity theories with higher derivative terms, i.e., to the domain of large but finite
‘t Hooft coupling.

2.2 Non-perturbative “resummation”

Inverse ’t Hooft coupling corrections in the N = 4 SYM theory arise from higher-derivative
terms in the dual type IIB string theory low energy effective action (see e.g. refs. [11–15]).
In a holographic calculation of a quasinormal spectrum, the bulk equations of motion
typically produce a differential equation for the background fluctuation Z = Z(u,w, q2) of
the form [13–15]

∂2
uZ +A(u,w, q2)∂uZ + B(u,w, q2)Z = γH

[
Z, ∂uZ, ∂

2
uZ, ∂

3
uZ, . . .

]
, (2.6)

1At the critical points with regular branches we have “level-touching” rather than “level-crossing”, as
happens e.g. for the BTZ background [4]. See appendix A for details.
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where u is the radial coordinate in the bulk with u = 0 the location of the boundary, γ
is a small parameter proportional to the inverse coupling (e.g. γ ∼ λ−3/2 in the N = 4
SYM with the ‘t Hooft coupling λ), and the right hand side comes from the leading higher-
derivative correction to Einsten-Hilbert action (e.g. from the R4 term in type IIB super-
gravity). To avoid issues such as Ostrogradsky instability (see e.g. ref. [26] and references
therein), the higher-derivative terms in eq. (2.6) are usually treated as perturbations of the
second-order ODE, and its left-hand-side is used to eliminate all derivatives higher than
the first one from the right-hand-side, ignoring contributions of order γ2 and higher. The
resulting equation,

∂2
uZ + Ā(u,w, q2, γ)∂uZ + B̄(u,w, q2, γ)Z = 0 , (2.7)

is a homogeneous linear second-order ODE whose coefficients Ā and B̄ now depend on γ.
As discussed above, the spectral curve is then determined by the boundary value of the
solution Z(u,w, q2, γ) to that ODE, i.e. P (q2,w) ≡ Z(u→ 0,w, q2, γ) = 0.

In the standard approach, one looks for a perturbative solution to eq. (2.7) in the form
Z = Z0 +γZ1. Similarly, the perturbative ansatz for the spectrum is w = w0 +γw1, where
w0 is the quasinormal frequency at γ = 0. Alternatively, one can solve eq. (2.7) without
assuming a perturbative ansatz. Such a non-perturbative solution, if it can be expanded
in series in powers of γ � 1, will not be fully quantitatively correct beyond linear order
in γ, since both in the original equation (2.6) and in the steps leading to eq. (2.7) terms
of order γ2 and higher were ignored. Quantitatively, the solution only captures the non-
perturbative effects in γ related to eq. (2.7) and in this sense only partially “resums” the
contributions nonlinear in γ in the approximation to the full solution. However, such a
solution may provide a more faithful qualitative approximation to the exact solution at
finite γ. Moreover, if the exact solution is non-perturbative in γ � 1, any perturbative
ansatz would necessarily miss it completely, whereas the non-perturbative approach is
capable of describing the situation qualitatively correctly. The choice of a correct ansatz
is the crucial step in singular perturbation theory [32]. We discuss these issues in more
detail in section 5 and illustrate them with simple examples. In the context of holography,
partial “resummations” have been used in refs. [23], [16, 33] and criticised in ref. [34]. A
crucial feature of such a “resummation” in holography, first pointed out in [16], is that the
quasinormal spectrum now contains new, non-pertubative gapped modes which seem to
play an important role in describing physics at finite coupling qualitatively correctly [16,
33, 35, 36]. We shall see in section 3 that the situation with the radii of convergence is
similar: the non-perturbative “resummation” reverses the tendency seen in eqs. (1.7), (1.8),
making the radii to decrease (after an initial rise) with the coupling decreasing. In section 4,
we compare this behaviour with that in the Einstein-Gauss-Bonnet theory, where both
perturbative and non-perturbative results are available, using it as a theoretical laboratory
to test our methods, and find a qualitative agreement with the N = 4 SYM case. Curiously,
in section 5 we find that it is in fact possible in some cases to infer the existence of non-
perturbative critical points by using perturbative data. While we are able to explicitly
demonstrate this in the Einstein-Gauss-Bonnet theory, for the N = 4 SYM theory, this
may serve as an indicative argument that the same behaviour is plausible.
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3 Convergence of hydrodynamic series in the N = 4 SYM theory

We begin by studying the coupling dependence of the radii of convergence of the hydrody-
namic shear and sound modes of the N = 4 SU(Nc) SYM theory in the Nc →∞ limit and
at large but finite ’t Hooft coupling λ. Our analysis uses its gravitational dual, namely,
the type IIB supergravity with higher-derivative terms in the action. For the N = 4 SYM
theory, the source of finite ’t Hooft coupling corrections is the ten-dimensional low-energy
effective action of type IIB string theory

SIIB = 1
2κ2

10

∫
d10x
√
−g

(
R− 1

2 (∂φ)2 − 1
4 · 5!F

2
5 + γe−

3
2φW + . . .

)
, (3.1)

where γ = α′3ζ(3)/8, with α′ set by the length of the fundamental string, and the term W
proportional to the contractions of the four copies of the Weyl tensor,

W = CαβγδCµβγνC
ρσµ
α Cνρσδ + 1

2C
αδβγCµνβγC

ρσµ
α Cνρσδ . (3.2)

Considering corrections to the AdS-Schwarzschild black brane background and its fluctua-
tions, potential α′ corrections to supergravity fields other than the metric and the five-form
field have been argued to be irrelevant [37]. Moreover, as discussed in [38], for the purposes
of computing the corrected quasinormal spectrum, one can use the Kaluza-Klein reduced
five-dimensional action

S = 1
2κ2

5

∫
d5x
√
−g

(
R+ 12

L2 + γW
)
, (3.3)

where W is now given by eq. (3.2) in 5d. The effective five-dimensional gravitational
constant is related to the rank of the gauge group SU(Nc) by the expression κ5 = 2π/Nc.
The parameter γ is related to the value of the ’t Hooft coupling constant λ in the N = 4
SYM theory via γ = λ−3/2ζ(3)L6/8. This parameter is dimensionless in units of L. Higher
derivative terms in the equations of motion are treated as perturbations in γ. In the
following, we shall use λ and

γ = ζ(3)
8λ3/2 � 1 (3.4)

interchangeably.
The black brane solution to the equations of motion following from the action (3.3),

which is dual to an equilibrium thermal state of the CFT at temperature T , is given
by [11, 12]

ds2 = (πTL)2

u

(
−eA(u)f(u)dt2 + dx2 + dy2 + dz2

)
+ eB(u)L

2du2

4u2f
, (3.5)

where f(u) = 1− u2. The radial coordinate is denoted by u, with the boundary located at
u = 0 and the horizon at u = 1. To leading order in γ, the functions A(u) and B(u) were
found to be

A(u) = −15γ
(
5u2 + 5u4 − 3u6

)
, B(u) = 15γ

(
5u2 + 5u4 − 19u6

)
. (3.6)
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The correction to the N = 4 SYM entropy density is then given by [11]

s

s0
= 3

4 (1 + 15γ + · · · ) , (3.7)

where s0 = 2π2N2
c T

3/3 is the Stefan-Boltzmann entropy density of the ideal gas of particles
in the N = 4 SYM theory (i.e., in the theory at λ = 0). The metric (3.5) was also used to
compute ‘t Hooft coupling constant corrections to the ratio of shear viscosity η to entropy
density [13, 14],

η

s
= 1

4π (1 + 120γ + · · · ) , (3.8)

and to all of the second-order transport coefficients of the N = 4 SYM plasma.2 Computing
transport coefficients and, in general, correlation functions of the energy-momentum tensor
in the N = 4 SYM plasma requires considering small fluctuations of the metric gµν =
g

(0)
µν + hµν(u, t, x, y, z), where g(0)

µν is the background (3.5). Due to translational invariance
and spatial isotropy of the background, we can Fourier transform the fluctuations and
choose the direction of spatial momentum along z, so that

hµν(u, t, z) =
∫
dωdq

(2π)2 e
−iωt+iqz hµν(u, ω, q) . (3.9)

Following the recipes of ref. [19] and choosing the radial gauge huν = 0, one can write
down the linearised equations of motion for the three gauge-invariant linear combinations
Zi, i = 1, 2, 3, of the modes hµν(u, ω, q) in the scalar, shear and sound channels, respec-
tively [16, 19, 39].

The linearised equations of motion obtained following the procedure outlined in
section 2 are given in the three channels by [16]

∂2
uZi +A(i)(u,w, q2, γ)∂uZi + B(i)(u,w, q2, γ)Zi = 0 , (3.10)

where A(i)(u,w,q2,γ) =A(0)
(i) (u,w,q2)+γA(1)

(i) (u,w,q2) and B(i)(u,w,q2,γ) =B(0)
(i) (u,w,q2)+

γB(1)
(i) (u,w,q2). The coefficients are given explicitly in appendix C. As discussed in sec-

tion 2, using the ODEs (3.10), the quasinormal spectrum can now be computed either
perturbatively by expanding Z =Z0+γZ1 along with w=w0+γw1 and q2 = q2

0+γq2
1 [40],

or non-perturbatively by treating eq. (3.10) as being exact in the parameter γ [23], [16, 33].
As an example, the shear channel quasinormal spectrum for γ = 1 · 10−5 is shown

in figure 2. Its novel feature, discussed in detail in ref. [16], is the existence of the non-
perturbative (in γ) gapped modes on the imaginary axis. The highest (closest to the real
axis) of those modes is shown in figure 2 by the red square: with real q2 increasing, this mode
moves up the axis and at q2 = q2

∗ it collides with the hydrodynamic shear mode (shown
in figure 2 by the red circle). For q2 > q2

∗, the two modes move off the imaginary axis,
effectively destroying the diffusive pole of the correlator. In ref. [16], this was interpreted
as the end of the hydrodynamic regime at sufficiently large spatial momentum (small
wavelength), where the microscopic effects prevail over the collective ones. The dependence

2The complete list of the coefficients can be found e.g. in refs. [15, 26].
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Figure 2. Quasinormal spectrum in the shear channel of the N = 4 SYM for γ = 1 ·10−5 and q2 = 1
(left panel). The hydrodynamic shear mode at w ≈ −0.60064i is shown by the red circle. The new
feature, not seen in a perturbative calculation, is the appearance of an extra mode on the imaginary
axis (shown by the red square), ascending from complex infinity with γ increasing [16]. With real q2

increasing, the hydrodynamic mode moves down the imaginary axis, while the new non-perturbative
mode moves up. They collide at q2

∗ ≈ 2.72 and move off the axis for q2 > q2
∗ (right panel).

1 ·10-5 2 ·10-5 3 ·10-5 4 ·10-5

1

2

3

4

Figure 3. The value of the (real) spatial momentum squared, limiting the hydrodynamic regime, as
a function of the (inverse) coupling γ in the shear channel of the N = 4 SYM [16]. Hydrodynamics
has a wider range of applicability in q2 at smaller γ (larger ’t Hooft coupling).

q2
∗ = q2

∗(γ), shown in figure 3, suggests that the domain of applicability of the hydrodynamic
description is smaller at larger γ (i.e., at smaller ‘t Hooft coupling), but it seems to extend
to arbitrarily large momentum in the limit of infinite coupling (at γ → 0) [16].

To see how this qualitative picture is amended at very large but finite ’t Hooft coupling,
we now consider the radius of convergence of the hydrodynamic shear and sound dispersion
series in this theory, which requires us to solve eq. (2.3) and look for critical points with
p = 2. With P (q2,w) given by P (q2,w) = Z(w, q2) ≡ Z(u = 0,w, q2) for any channel (we
omit the index “i” labeling the channel), we are therefore looking for solutions w = wc and
q2 = q2

c to the system
Z(w, q2) = 0 , ∂wZ(w, q2) = 0 , (3.11)

with ∂2
wZ(w, q2) 6= 0. In the non-perturbative approach (in γ), critical points follow directly
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from eq. (3.11), where Z(w, q2) can be found by constructing a Frobenius series solution
Z(u,w, q2) to eq. (3.10) around the horizon in the standard way [17–19], and setting u = 0.
For γ = 0, this is the same procedure as the one used in refs. [4, 5].

To find the critical points perturbatively, we expand equations (3.11) as

Z0(w, q2) + γZ1(w, q2) = 0 ,
∂wZ0(w, q2) + γ∂wZ1(w, q2) = 0 ,

(3.12)

and also expand

wc = wc,0 + γwc,1 , q2
c = q2

c,0 + γq2
c,1 . (3.13)

Together, these expansions yield a system of equations at O(γ0):

Z0(wc,0, q
2
c,0) = 0 ,

∂wZ0(wc,0, q
2
c,0) = 0 ,

(3.14)

and a system at O(γ):

Z1(wc,0, q
2
c,0) + ∂q2Z0(wc,0, q

2
c,0) q2

c,1 = 0 ,
∂wZ1(wc,0, q

2
c,0) + ∂2

wZ0(wc,0, q
2
c,0)wc,1 + ∂w∂q2Z0(wc,0, q

2
c,0) q2

c,1 = 0 .
(3.15)

Eqs. (3.14) and (3.15) are sufficient to find wc,0, wc,1, q2
c,0 and q2

c,1. More explicitly,
eq. (3.15) allows us to express

q2
c,1 = −

Z1(wc,0, q
2
c,0)

∂q2Z0(wc,0, q2
c,0)

,

wc,1 = 1
∂2
wZ0(wc,0, q2

c,0)

(
Z1(wc,0, q

2
c,0)∂w∂q2Z0(wc,0, q

2
c,0)

∂q2Z0(wc,0, q2
c,0)

− ∂wZ1(wc,0, q
2
c,0)
)
.

(3.16)

As before, the function Z0(w, q2) can be obtained as the boundary value of the Frobenius
solution to eq. (3.10) with γ = 0 and Z1(w, q2) as the boundary value of the Frobenius
solution to the corresponding inhomogeneous equation.

3.1 Shear channel

At infinite ‘t Hooft coupling, the shear mode dispersion relation w = w(q2) has numerous
branch point singularities [4, 5]. At finite coupling, we expect those singularities, now
parametrised by γ ∝ λ−3/2, to move in the complex q2-plane with γ varying. As discussed
in section 2.2, one can compute relevant corrections by using either the “conservative”
perturbative or the non-perturbative approach.
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3.1.1 Perturbative calculation

For a perturbative calculation of the coupling constant correction to the radius of conver-
gence in the shear channel of the N = 4 SYM theory, we use eq. (3.10) with i = 2. To first
order in γ ∝ λ−3/2, from eqs. (3.16) we find the following first set of critical points closest
to the origin in the complex q2-plane:

q2
c ≈ 1.89065± 1.17115i+ γ(4081.99± 1862.06i) , (3.17)

wc ≈ ±1.44364− 1.06923i+ γ(±3671.27 + 1360.52i) . (3.18)

The value of q2
c in eq. (3.17) gives the convergence radius |q2

c | quoted in eq. (1.7). The radius
increases with γ increasing (i.e. with the coupling λ decreasing from its infinite value). The
numerical coefficients multiplying the parameter γ in eqs. (3.17), (3.18) are large: the
perturbative terms give small corrections to the γ = 0 result only for γ . 10−4 − 10−5.

The next closest to the origin critical point (i.e. the critical point with larger value of
|q2| than (3.17)) is located on the negative real axis of q2:

q2
c,1 ≈ −2.37737 + γ 2608.88 , (3.19)

wc,1 ≈ −1.64659i− γ 6599.64i . (3.20)

At γ = 0, this critical point plays no role in determining the radius of convergence. At
finite γ, the point (3.19) moves closer to the origin with γ increasing, whereas the pair
of points (3.17) moves away from it. At γ = γ∗ ≈ 2.172 · 10−5, the critical point (3.19)
formally becomes dominant (closest to the origin), changing the situation qualitatively. We
view this as an indication of the breakdown of linear (in γ) approximation.

The next two sets of critical points with yet larger values of |q2| are

q2
c,2 ≈ −3.11051∓ 0.81050i+ γ(−52560.3± 77406.3i) , (3.21)

wc,2 ≈ ±1.41043− 2.87086i+ γ(±31019.2− 11091.7i) , (3.22)
q2

c,3 ≈ 2.90684± 1.66612i+ γ(40520.1± 17681.1i) , (3.23)
wc,3 ≈ ±2.38819− 2.13154i+ γ(±26733.9 + 13539.1i) . (3.24)

Notice again the large numerical coefficients multiplying the perturbative parameter γ in
eqs. (3.21)–(3.24). For illustration, several perturbative closest to the origin critical points
in the complex q2-plane for γ = 1 · 10−5 are shown in figure 4 in blue colour.

3.1.2 Non-perturbative calculation

For a non-perturbative calculation, we solve eqs. (3.10) and (3.11) numerically without
assuming γ to be small. We observe three qualitatively different scenarios of quasinormal
modes’ behaviour, and illustrate them by showing the modes at γ = 1 · 10−5, γ = 2 · 10−5

and γ = 3 · 10−5, respectively (see figures 5, 7, 8):

(a) At γ = 1 · 10−5, the top modes in the spectrum are shown in figure 5 in the complex
plane of w, for complex values of the spatial momentum squared q2 = |q2|eiϕ, where
the phase ϕ is varied from 0 to 2π. The figure shows how the critical points (we show
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Figure 4. The closest to the origin branch points (see table 1) of the N = 4 SYM shear mode
dispersion relation w = w(q2) in the complex q2-plane at γ = 1 · 10−5. The critical points seen
in perturbation theory and their branch cuts are shown by blue colour, the two non-perturbative
critical points on the real axis are shown in red. The radius of convergence at γ = 1 · 10−5,
Rshear ≈ 2.27, is determined by the pair of branch points at q2 ≈ 1.93 ± 1.19i. We note that it is
the sole inclusion of the non-perturbative red critical point on the positive real q2-axis that leads
to the non-perturbative result of figure 3.

# q2
c (non-pert.) |q2

c | (non-pert.) q2
c (pert.) |q2

c | (pert.)
1 1.93027± 1.19123i 2.268 1.93147± 1.18977i 2.269
2 −2.34715 2.347 −2.35128 2.351
3 −2.46848 2.469 n/a n/a
4 2.70094 2.701 n/a n/a
5 −3.69434± 0.18770i 3.699 −3.63611± 0.03644i 3.528
6 3.22474± 1.88845i 3.737 3.31204± 1.84293i 3.790

Table 1. The six closest to the origin (in the complex q2-plane) critical points for γ = 1 · 10−5.

the first four points closest to the origin) arise from the collision of quasinormal modes
trajectories as the phase ϕ varies. The closest to the origin (in the complex q2-plane;
see figure 4) pair of critical points sets the radius of convergence Rshear = |q2

c | ≈ 2.27
of the hydrodynamic series (in the complex w-plane, this point is shown in the top
left panel in figure 5). The location of the six closest to the origin critical points at
γ = 1 · 10−5 is given in tables 1 and 2, where a comparison between perturbative and
non-perturbative results is also made. For γ = 1 · 10−5, the location of the critical
points is in a reasonably good agreement with the perturbative results (3.17), (3.18)
and (3.19), (3.20), except when the collision of modes involves the mode on the
imaginary axis which has no perturbative analogue.
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Figure 5. Quasinormal spectrum in the shear channel at γ = 1·10−5, computed non-perturbatively
in γ. The trajectories are plotted for complex values of the spatial momentum squared, q2 = |q2|eiϕ,
where phase ϕ is varied from 0 to 2π. The positions of quasinormal modes at ϕ = 0 are shown
by dots. The positions of the two critical points (closest to the origin in the complex q2-plane) are
shown by red stars. The first pair of critical points corresponds to the collision of trajectories of the
two top gapped modes (shown in green) with the hydrodynamic shear mode trajectory (shown in
blue) at q2

c ≈ 1.93027±1.19123i and wc ≈ ±1.47755−1.05400i. The corresponding value |q2| ≈ 2.27
sets the radius of convergence of the hydrodynamic mode (top left panel). The second critical point
arises from the collision on the imaginary axis between the parts of the common curve involving
the three top modes including the shear mode (top right panel). The two plots in the bottom row
show the third and the fourth critical points. Both points arise on the imaginary axis of complex
frequency from the collision involving the new, non-perturbative mode in the quasinormal spectrum.

(b) At γ = 2 · 10−5, the top modes in the spectrum are shown in figure 7. Here, the first
level-crossing (i.e., the level-crossing with the minimal value of |q2|) occurs between
the two top gapped modes and the non-perturbative mode on the imaginary axis,
as shown in the top left panel of figure 7. However, the shear mode is not affected
by this crossing: its first non-analyticity still arises as a result of the collision with
the top two gapped modes as shown in the top right panel of figure 7. This collision
sets the radius of convergence of the shear mode at Rshear(γ) = |q2

c | ≈ 2.31. In the
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# wc (non-perturbative) wc (perturbative)
1 ±1.47755− 1.05400i ±1.48035− 1.05562i
2 −1.73447i −1.71258i
3 −2.60274i n/a
4 −2.93397i n/a
5 ±1.53654− 2.71700i ±1.72062− 2.98177i
6 ±2.54972− 1.99267i ±2.65553− 1.99615i

Table 2. The six closest to the origin (in the complex w-plane) critical points for γ = 1 · 10−5.

Figure 6. The closest to the origin branch points of the shear mode dispersion relation w = w(q2)
in the complex q2-plane (shown schematically). The radius of convergence is determined by the
pair of branch points (left panel) or the branch point on the real axis (right panel).

complex q2-plane, the position of the branch point singularities is thus qualitatively
the same as at γ = 1 · 10−5 (see figure 6, left panel), but the radius of convergence
Rshear(γ) increases with γ increasing (i.e. with the coupling λ decreasing).

c) Finally, at γ = 3 · 10−5, the top modes in the spectrum are shown in figure 8. In
this case, the situation is qualitatively different. Now the first level-crossing occurs
at a real value of q2

c ≈ 2.12157 and at wc ≈ −2.096i, which is a result of the collision
between the shear mode and the non-perturbative mode on the imaginary axis (top
left panel in figure 8). This is the collision of the type shown in figure 2 and interpreted
in ref. [16], where it was discovered, as the end point q2

∗(γ) of the hydrodynamic regime
(in the sense that for real q2 > q2

∗ the hydrodynamic purely imaginary shear mode
does not exist). The radius of convergence in the q2-plane is set by the corresponding
value of |q2

∗| = |q2
c | ≈ 2.12157 (see figure 6, right panel, where this situation is shown

schematically). Thus, at γ = 3 · 10−5, the radius of convergence is determined by
the non-perturbative mode. In this regime, the convergence radius decreases with
γ increasing.

– 14 –



J
H
E
P
0
6
(
2
0
2
1
)
1
8
0

★★

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

★★

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

★★

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

Figure 7. Quasinormal spectrum in the shear channel at γ = 2·10−5, computed non-perturbatively
in γ. The level-crossing occurring at the smallest value of |q2| (top left panel) does not affect the
hydrodynamic mode (shown in blue colour). The first (smallest in |q2|) critical point of the shear
mode arises from the level-crossing with the top gapped modes (top right panel). This point sets
the radius of convergence of the hydrodynamic series. The critical point with an even higher value
of |q2| is shown in the bottom panel.
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Figure 8. Quasinormal spectrum in the shear channel at γ = 3·10−5, computed non-perturbatively
in γ. The radius of convergence is set by the level-crossing between the shear mode and the non-
perturbative mode on the imaginary axis (left panel). This critical point coincides with the endpoint
of the hydrodynamic regime discussed in ref. [16]. An example of critical points with a larger |q2|
is shown in the right panel.
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The three examples considered above illustrate the general situation fully. For in-
finitesimally small γ, the radius of convergence of the shear mode dispersion relation is
an increasing function of γ. In the complex q2-plane, the obstacle to convergence is the
pair of critical points, as shown in figure 6 (left panel). These points move away from the
origin with γ increasing. At γ = γ∗ ≈ 2.05 · 10−5, the picture changes qualitatively, as
the transition between the regimes a) and c) occurs. Now the new critical point arising
from the level-crossing with the non-perturbative mode is located closer to the origin in
the complex q2-plane than the previous pair of critical points (figure 6, right panel). This
new critical point is located on the positive real axis of q2 and corresponds to the end point
of hydrodynamic regime as discussed in ref. [16]. This point moves closer to the origin
with γ increasing. The dependence of the radius of convergence on γ is thus a piecewise
continuous function,3 shown in figure 1 (left panel), which is the main result of this sec-
tion. The results of the perturbative and non-perturbative calculations for the closest to
the origin critical points (the ones seen in perturbation theory) are in good agreement, as
can be observed from table 1.

We emphasise that the non-perturbative effects discussed in this section are at best
qualitative, since terms of order γ2 and higher will inevitably modify them. We believe
these effects are qualitatively correct as they fit well with various physical expectations [16,
23, 33, 36]. In particular, the existence of the non-perturbative critical point makes the
radius of convergence decrease with the ‘t Hooft coupling decreasing from its infinite value.
Admittedly, an alternative conservative point of view would simply limit any considerations
by the range of γ up to γ . 2 · 10−5, beyond which the perturbative treatment becomes
unreliable.

3.2 Sound channel

For the sound channel, the analysis follows the strategy used in the previous section and
in refs. [4, 5] very closely. The relevant equation of motion is eq. (3.10) with i = 3.

3.2.1 Perturbative calculation

Solving the equations perturbatively to linear order γ, we find the following correction to
the location of the closest to the origin critical point

q2
c ≈ ±2i+ γ(166.844± 3201.39i) , (3.25)

wc ≈ ±1− i+ γ(±2948.55 + 1459.36i) . (3.26)

Eq. (3.25) gives the radius of convergence Rsound = |q2
c | stated in eq. (1.8). The next critical

point is given by

q2
c,1 ≈ −0.01681± 3.12967i+ γ(9108.90± 36862.6i) , (3.27)

wc,1 ≈ ±1.90135− 2.04492i+ γ(±24615.9 + 12589.5i) . (3.28)
3Curiously, the same type of a piecewise smooth dependence is observed when considering the radius of

convergence as a function of chemical potential [7, 24] and as a function of the coupling in the Sachdev-Ye-
Kitaev chain [9].
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As in the case of the shear mode, the coefficients of the perturbative expansion are quite
large: the correction becomes comparable to the γ = 0 result already for γ ∼ 10−4–10−5.

3.2.2 Non-perturbative calculation

Non-perturbative treatment implies solving the equation of motion (3.10) without assuming
γ to be small. As in the shear mode case, there are essentially two qualitatively different
scenarios of the distribution of critical points. We illustrate them by showing trajectories
of quasinormal modes in the complex w-plane at complex q2 = |q2|eiϕ, ϕ ∈ [0, 2π], for
γ = 2 · 10−5 and γ = 4.5 · 10−5 in figures 9 and 10, respectively.

In figure 9, left panel, the critical point limiting the radius of convergence of the sound
mode’s dispersion relation arises from the level-crossing between that mode and the top
gapped modes (this situation is qualitatively the same as at γ = 0 [4, 5]). The pair of
critical points closest to the origin in the complex q2-plane is well approximated by the
perturbative expression (3.27) for γ . 3 · 10−5 (figure 1, right panel). The radius of
convergence, Rsound = |q2

c |, increases with γ (see the blue curve in figure 1, right panel).
For γ > γ∗ ≈ 3.225·10−5, the situation changes qualitatively, as illustrated in figure 10.

Now the sound mode first collides with the non-perturbative mode (in figure 10, i.e. at γ =
4.5 ·10−5, this happens at q2

c = 0.9568±1.7083i, wc ≈ ∓0.16513−1.8681i, corresponding to
Rsound = |q2

c | ≈ 1.958). In this regime, the radius of convergence, Rsound = |q2
c |, decreases

with γ (see the red curve in figure 1, right panel). This dependence is very similar, although
not identical, to the one observed in figure 1 (left panel) for the shear channel.

As before, in a conservative approach we would limit ourselves to the blue part of
the curve in the right panel of figure 1, which ends in the region where perturbation
theory becomes unreliable. We believe, however, that the red part of the curve, although
not quantitatively precise, reflects the dependence of the radius of convergence on coupling
qualitatively correctly. The piecewise smooth dependence on the coupling, shown in figure 1
(right panel), is likely to persist even with γ2 and higher terms in the action taken into
account quantitatively correctly, since it corresponds to the discrete change of “status” of
the closest to the origin critical point, even though the critical points move continuously
in the complex plane with varying coupling.

4 Convergence of hydrodynamic series in the Einstein-Gauss-Bonnet
theory

We now consider the radii of convergence of gapless quasinormal modes in five-dimensional
Einstein-Gauss-Bonnet gravity. Although this theory may not have a healthy QFT
dual [41], it is nevertheless a very useful theoretical laboratory for relevant bulk calcu-
lations in higher-derivative gravity: by design, its equations of motion are second-order in
derivatives and can thus be solved fully non-perturbatively in terms of the higher-derivative
coupling.

The Einstein-Gauss-Bonnet action in 5d is

SGB = 1
2κ2

5

∫
d5x
√
−g

[
R+ 12

L2 + l2GB
2
(
R2 − 4RµνRµν +RµνρσR

µνρσ
)]

, (4.1)
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Figure 9. Quasinormal spectrum in the sound channel at γ = 2·10−5, computed non-perturbatively
in γ. The positions of critical points are shown by red stars.
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Figure 10. Quasinormal spectrum in the sound channel at γ = 4.5 · 10−5, computed non-
perturbatively in γ.
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where the scale l2GB of the higher-derivative term can be chosen to be set by a cosmological
constant, l2GB = λGBL

2, where λGB is a dimensionless parameter.
The black brane metric solution of Einstein-Gauss-Bonnet equations of motion can be

found analytically and is given by4

ds2 = −f(r)N2
GBdt

2 + 1
f(r)dr

2 + r2

L2

(
dx2 + dy2 + dz2

)
, (4.2)

where

f(r) = r2

L2
1

2λGB

1−

√√√√1− 4λGB

(
1− r4

0
r4

) (4.3)

and the constant NGB can be chosen to normalise the speed of light at the boundary to
c = 1:

N2
GB = 1

2
(
1 +

√
1− 4λGB

)
. (4.4)

The position of the horizon is at r = r0. The Hawking temperature corresponding to the
solution (4.2) is given by

T = NGBr0
πL2 = r0

√
1 + γGB√
2πL2 , (4.5)

where we introduced the notation γGB ≡
√

1− 4λGB. We shall use λGB and γGB inter-
changeably in the following. The range λGB < 0 corresponds to γGB ∈ (1,∞) and the
interval λGB ∈ (0, 1/4] maps onto γGB ∈ [0, 1), with λGB = 0 corresponding to γGB = 1.

To compute the quasinormal mode spectrum, we again consider linearised metric per-
turbations. In analogy with our discussion in section 3, we arrive at three gauge-invariant
equations of motion for the scalar, shear and sound channels (i = 1, 2, 3, respectively):

∂2
uZi +A(i)(u,w, q2, λGB)∂uZi + B(i)(u,w, q2, λGB)Zi = 0 , (4.6)

where the coefficients A(i) and B(i) are given in appendix D. All relevant details regarding
the theory and the derivation of these equations can be found in ref. [26].

4.1 Shear channel

The shear channel spectrum is determined by eq. (4.6) with i = 2. As in the case of the
N = 4 theory, we compare calculations done perturbatively and non-perturbatively in the
Gauss-Bonnet coupling λGB.

4Exact solutions and thermodynamics of black branes and black holes in Einstein-Gauss-Bonnet gravity
were considered in [42] (see also [43–46]).
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4.1.1 Perturbative calculation

Solving eqs. (3.16) (with the eq. (4.6), i = 2, as the underlying equation of motion) per-
turbatively in λGB, we find the critical point closest to the origin in the complex q2-plane:

q2
c ≈ 1.89065± 1.17115i+ λGB(−2.01742± 22.5317i) +O(λ2

GB) , (4.7)
wc ≈ ±1.44364− 1.06923i+ λGB(∓1.69340 + 8.39996i) +O(λ2

GB) . (4.8)

The radius of convergence for the shear hydrodynamic mode is then given by Rshear = |q2
c |:

Rshear(λGB) ≈ 2.22 + 22.6λGB +O(λ2
GB) . (4.9)

The coefficient in front of λGB is a positive number, which is similar to the N = 4 case.
However, the “physical” regime of the hypothetical field theory dual to Gauss-Bonnet
gravity corresponds to λGB < 0 [16, 26–28, 47]. In this case, the radius of convergence
decreases with |λGB| increasing, the trend opposite to the one found for the N = 4 SYM
theory in section 3.1.

We also compute perturbative λGB corrections to the next three higher critical points,
finding

q2
c,1 ≈ −2.37737− 2.59245λGB +O(λ2

GB) , (4.10)
wc,1 ≈ −1.64659− 3.44719λGB +O(λ2

GB) , (4.11)

for the first point,

q2
c,2 ≈ −3.11051∓ 0.81050i+ λGB(−1.70074± 5.98722i) +O(λ2

GB) , (4.12)
wc,2 ≈ ±1.41043− 2.87086i+ λGB(∓0.31643− 4.26447i) +O(λ2

GB) , (4.13)

for the second, and

q2
c,3 ≈ 2.90684± 1.66612i+ λGB(−2.16892± 68.0434i) +O(λ2

GB) , (4.14)
wc,3 ≈ ±2.38819− 2.13154i+ λGB(∓3.28617 + 19.0509i) +O(λ2

GB) , (4.15)

for the third.

4.1.2 Non-perturbative calculation

Eqs. (3.16) and (4.6) can be solved fully non-perturbatively in λGB. Several examples of the
shear channel Gauss-Bonnet quasinormal spectrum are shown in figure 11 and figure 12.
Their characteristic feature, explored in refs. [16, 26], is the presence of non-perturbative
modes located (for real q2) on the imaginary axis in the complex w-plane. At sufficiently
small values of |λGB|, these modes lead to new critical points only for large values of |q2|:
the closest to the origin critical points setting the radius of convergence of the shear mode
are not affected by them (see figure 11, where the spectrum is shown for λGB = −0.01 and
various values of complex q2). At larger values of |λGB|, however, the situation changes
qualitatively. Now the closest to the origin critical point and thus the radius of convergence
are set by the non-perturbative mode (this is illustrated by figure 12, where the spectrum is
shown for λGB = −0.03). The transition between the two regimes occurs at λGB ≈ −0.0198.
The dependence of the radius of convergence of the shear mode’s dispersion relation on
Gauss-Bonnet coupling is shown in figure 13.
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Figure 11. Quasinormal spectrum in the shear channel of Gauss-Bonnet theory, computed non-
perturbatively in λGB, at λGB = −0.01. The trajectories are plotted for complex values of the
spatial momentum squared, q2 = |q2|eiϕ, where phase ϕ is varied from 0 to 2π. The positions of
quasinormal modes at ϕ = 0 are shown by dots. The positions of the critical points are shown by
red stars.

4.2 Sound channel

Finally, we repeat the same analysis for the sound channel of the Einstein-Gauss-Bonnet
theory using eqs. (3.16) and the equation of motion (4.6) with i = 3.

4.2.1 Perturbative calculation

To linear order in the perturbative expansion in λGB, we find the closest to the origin pair
of critical points at

q2
c ≈ ±2i+ λGB(−10.8809± 10.4314i) +O(λ2

GB) , (4.16)
wc ≈ ±1− i+ λGB(∓2.05394 + 3.49495i) +O(λ2

GB) . (4.17)

Hence, the radius of convergence in the sound channel is given (perturbatively) by

Rsound(λGB) ≈ 2 + 15.0735λGB +O(λ2
GB) . (4.18)

For “physical” values of λGB (λGB < 0), this is a decreasing function of |λGB| (which is
different from the N = 4 SYM theory).

4.2.2 Non-perturbative calculation

Computing critical points in the sound channel of the Einstein-Gauss-Bonnet theory non-
perturbatively in λGB, we find that for sufficiently small |λGB|, the situation remains qual-
itatively the same as in the λGB = 0 case: the radius of convergence is determined by the
level-crossing between sound modes and the top gapped modes in the complex w-plane, as
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Figure 12. Quasinormal spectrum in the shear channel of Gauss-Bonnet theory, computed non-
perturbatively in λGB, at λGB = −0.03.

shown in figure 14 (left panel). The non-perturbative mode also leads to critical points,
but this happens at larger value of |q2| (see the right panel of figure 14).

At larger value of the coupling |λGB|, the picture changes qualitatively and the radius
of convergence of the sound dispersion relation is now determined by the level-crossing with
the non-perturbative quasinormal mode, as shown in the left panel of figure 15.

The transition between the two regimes happens at λGB ≈ −0.0338. The dependence
of Rsound (including both perturbative and non-perturbative results) is shown in figure 16.

5 Non-perturbative quasinormal modes and singular perturbation
theory

In our analysis of the radii of convergence in the N = 4 SYM theory, as well as in pre-
vious works on higher-derivative holography [23], [16, 33, 35, 36], the non-perturbative
“resummation” and the appearance of the non-perturbative quasinormal modes played
a rather prominent role. In particular, the existence of these non-perturbative features
seems to be fully consistent with the requirement of a physically reasonable interpolation
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Figure 13. Radius of convergence of the hydrodynamic shear mode in the Einstein-Gauss-Bonnet
theory as a function of the higher-derivative coupling λGB (λGB < 0). The blue line is the pertur-
bative result (4.9). Black dots on top of the blue line denote the radius of convergence computed
non-perturbatively in λGB (see figure 11, top left panel). The red dots correspond to the critical
point involving the shear mode and the non-perturbative mode (see figure 12, top left panel). The
transition between the two regimes occurs at λGB ≈ −0.0198.
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Figure 14. Quasinormal spectrum in the sound channel of Gauss-Bonnet theory, computed non-
perturbatively in λGB, at λGB = −0.02. The trajectories are plotted for complex values of the
spatial momentum squared, q2 = |q2|eiϕ, where phase ϕ is varied from 0 to 2π. The positions of
quasinormal modes at ϕ = 0 are shown by dots. The positions of the critical points are shown by
red stars.
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Figure 15. Quasinormal spectrum in the sound channel of Gauss-Bonnet theory, computed non-
perturbatively in λGB, at λGB = −0.04. The trajectories are plotted for complex values of the
spatial momentum squared, q2 = |q2|eiϕ, where phase ϕ is varied from 0 to 2π. The positions of
the quasinormal modes at ϕ = 0 are shown by dots. The positions of the critical points are shown
by red stars.

between strongly coupled (holographic) regime and weakly coupled (e.g. kinetic) regime in
the same theory. This interpolation, even for simplest theories such as CFTs considered at
finite temperature, is not fully understood [16, 33, 36, 48–52]. Admittedly, relying — even
only qualitatively — on the non-perturbative treatment in models arising as truncations
of a perturbative expansion may seem to be unwarranted [34]. However, before dismissing
such an approach as ineffable nonsense, one may wish to consider examples where it is
known to be successful.
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Figure 16. Radius of convergence of the hydrodynamic sound mode in the Einstein-Gauss-Bonnet
theory as a function of the magnitude of the higher-derivative coupling λGB (λGB < 0). The blue
line is the linear approximation (4.18). Black dots are the non-perturbative result for the radius
of convergence arising as shown in figure 14, left panel. Red dots are the radius of convergence
arising as a result of the level-crossing between the sound mode and the non-perturbative mode
(see figure 15, top left panel). The transition between the two regimes occurs at λGB ≈ −0.0338.

In this section, we first outline the problem as we see it, and then discuss in detail
a simple example of an algebraic equation containing a small parameter, where similar
issues arise.

Consider the full set of solutions to an equation (algebraic or differential), which we
schematically write as

L[x, ε] = 0 . (5.1)

We denote this (possibly infinite) set of solutions by X = {x1(ε), x2(ε), . . .}. Here ε is a
small parameter such that L[x, ε] can be formally expanded in a series,

L[x, ε] = L(0)[x] + εL(1)[x] + ε2L(2)[x] + . . . = 0 . (5.2)

Truncating the series (5.1) at order ε0, ε1, ε2, . . . , and solving the corresponding equations,
we obtain sets of solutions X(0) = {x(0)

1 , x
(0)
2 , . . .}, X(1) = {x(1)

1 (ε), x(1)
2 (ε), . . .}, X(2) =

{x(2)
1 (ε), x(2)

2 (ε), . . .} and so on. A natural question to ask is in what sense the solutions
X(0), X(1), X(2), . . . approximate the true solution X. Note that even the number of roots
in each “truncated” set X(n) depends on n. For example, the equation

L[x] = L(0)[x] = 1− x = 0 (5.3)

has a single solution X(0) = {x(0)
1 = 1}, whereas extending L[x] by adding a term εx2,

L[x, ε] = L(0)[x] + εL(1)[x] = 1− x+ εx2 = 0 , (5.4)

leads to two solutions, X(1) = {x(1)
1 (ε), x(1)

2 (ε)}, one of which is perturbative and another
one is non-perturbative in ε:

x
(1)
1 (ε) = 1

2ε
(
1−
√

1− 4ε
)

= 1 + ε+O(ε2) , (5.5)

x
(1)
2 (ε) = 1

2ε
(
1 +
√

1− 4ε
)

= 1
ε
− 1− ε+O(ε2) . (5.6)
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The solution x
(1)
1 (ε) can be constructed order by order in ε via standard perturbation

theory (i.e., assuming a perturbative ansatz for the solution), whereas the x(1)
2 (ε) is “invis-

ible” in the standard perturbative approach yet it can be built consistently using singular
perturbation theory [32]. Now imagine that eq. (5.4) is a truncation of the equation

L(N)[x, ε] = x− 1 +
N∑
n=1

εnxn+1 = 1− x+ εx2 +O(ε2) = 0 . (5.7)

At any finite N , among the N + 1 roots of the equation (5.7), one is perturbative in ε (it
is a regular perturbation of the solution x = 1 of the equation (5.3)) and the remaining
N roots are non-perturbative: they disappear to infinity in the limit ε → 0. These extra
N roots are located (approximately) along the circle |x| = 1/ε in the complex x-plane.
Finally, we note that eq. (5.7) can be regarded as a truncation at order εN of an exact
function

L(∞)[x, ε] = x− 1 + εx2

1− εx = 0 . (5.8)

Note that eq. (5.8) has only one solution,

x = 1
1 + ε

, (5.9)

whose small ε expansion coincides (for |ε| < 1) with the perturbative solution of the equa-
tion (5.7) at the appropriate order. Thus, in this example, truncating the small ε expansion
of eq. (5.8) at order N produces one correct and N spurious roots located approximately
at the boundary of analyticity of the function L(∞)[x, ε], i.e. at |x| = 1/ε.

This simple example seems to reinforce the “conservative” approach to the quasinormal
spectrum in higher-derivative gravity suggesting that only perturbative solutions can be
trusted. Non-perturbative solutions exist (and can be constructed via singular perturbation
theory) at each given order of the expansion in a small parameter, but these solutions
appear to be artefacts of the expansion and disappear when the full function is considered.
However, such a verdict might be too quick, as the example in the next subsection shows.

5.1 An algebraic equation example

Consider the algebraic equation

L[x, ε] = ix− 1− x sinh εx = 0 , (5.10)

where ε is a parameter. At ε = 0, eq. (5.10) has a single root, x = x0 = −i. For ε > 0,
however, there are infinitely many solutions, parametrised by ε (see figure 17, left panel,
where the roots of eq. (5.10) closest to the origin in the complex x-plane are shown for
ε = 0.5). Note that all these solutions but one are non-perturbative in ε, since they must
disappear from the set of solutions in the limit ε→ 0 leaving the single root x = x0 at ε = 0.

The solutions to eq. (5.10) can be constructed as series in ε� 1. One such solution is
the finite ε correction to the solution x0 = −i of the equation at ε = 0. Using the standard
perturbation theory, we find

x0(ε) = −i
[
1− ε+ 2ε2 − 29

6 ε
3 + 13ε4 − 4481

120 ε
5 + 5048

45 ε6 +O(ε7)
]
. (5.11)
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Figure 17. The roots of eq. (5.10) (at ε = 0.5) closest to the origin in the complex x-plane (left
panel). The large red dot corresponds to the perturbative root at x ≈ −0.735544i. (Note that the
perturbative series (5.11) fails to converge for this value of ε.) The other roots on the imaginary axis
are at x ≈ −8.4414i, x ≈ −10.3128i, x ≈ −21.3770i, x ≈ −22.5885i, x ≈ −34.0718i, x ≈ −35.0365i,
x ≈ −46.7093i, x ≈ −47.5349i. In the right panel, the same set of roots as in the left panel is
approximated by the first 100 roots of the polynomial (5.14). The blue dots accurately reproduce
the actual values from the left panel. The purpose of the zoomed-out plot is to show the spurious,
unphysical red dots which move to infinity as the order of approximation is increased.

The non-perturbative roots can be found analytically by using the methods of singular
perturbation theory [32]. Introducing a new variable x = x̄/ε and taking the limit of ε→ 0
in eq. (5.10) while keeping x̄ fixed, we find the equation

i− sinh x̄ = 0 . (5.12)

The infinite set of solutions to this equation, x̄n = iπ(1 + 4n)/2, where n ∈ Z, then gives
all the non-perturbative roots of the original eq. (5.10) as

x±n (ε) = 1
ε

[
iπ (1 + 4n)

2 ± 2√
π (1 + 4n)

ε1/2 + 4i
[π (1 + 4n)]2

ε±O(ε3/2)
]
. (5.13)

The series in eqs. (5.11) and (5.13) converge5 for ε < |εc| ≈ 0.2625.
We now replace L[x, ε] by a finite polynomial (a truncated Taylor expansion of

eq. (5.10)),

L(2N+2)[x, ε] = ix− 1− εx2
N∑
n=0

ε2nx2n

(2n+ 1)! = 0 , (5.14)

and ask whether the 2N+2 roots of eq. (5.14) approximate the exact solutions of eq. (5.10)
as we increase N . Our previous discussion implies that at least one such approximation,
a regular perturbative correction to the zeroth-order root x0 = −i, should exist. Indeed,
solving the corresponding equations L(2)[x, ε] = 0, L(4)[x, ε] = 0, etc., perturbatively in ε,
we reproduce the series (5.11) term by term. All others roots are non-perturbative in ε,
disappearing to complex infinity in the limit ε→ 0.

To mimic our approach to the quasinormal spectra in higher-derivative gravity, we
now solve eq. (5.14) numerically at each order of N , without assuming ε to be small. A

5The radius of convergence is determined by the closest to the origin critical point of the function (5.10).
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Figure 18. The two closest to the origin solutions x0 and x1 to eq. (5.10) in the complex x-plane
as functions of the complexified parameter ε = −|ε|eiϕ, where ϕ ∈ [0, 2π] for |ε| = 0.25 (left panel)
and |ε| = 0.27 (right panel). Coloured dots correspond to ϕ = 0. The critical point setting the
radius of convergence of the series (5.11) is located at x ≈ −2.1176i (it is shown by the red star).

generic result is illustrated in the right panel of figure 17, where ε = 0.5, and both the exact
solutions to eq. (5.10) and the roots of the polynomial (5.14) with N = 50 are shown. It
is clear that in a (large) region of the complex plane containing the origin, the solutions
of eq. (5.10) (both perturbative and non-perturbative) are well approximated by some of
the roots of the polynomial (5.14). There are also “spurious roots”, forming the top and
the bottom red “arcs” in figure 17, right panel: they do not approximate any solution.
The exact solutions of eq. (5.10) located outside of the domain bounded by the red arcs
are not approximated by any of the roots of the polynomial (5.14) and remain “invisible”.
The domain bounded by the red arcs of spurious roots increases with N increasing. Our
main conclusion is that it is possible in principle to approximate at least some of the exact
non-perturbative solutions by the non-perturbative roots of the perturbative truncation of
the exact equation. Of course, this example is not a justification of our “resummation” of
quasinormal spectra but we hope it shows that such an approach has the right to exist.

We now ask a different question. As noted in footnote 5, the radius of convergence of
the series (5.11) representing the perturbative solution x0 = x0(ε) of eq. (5.10) is set by
the closest to the origin (in the complex ε-plane) critical point of the complex curve (5.10)
determined by the conditions

L[x, ε] = 0 , ∂xL[x, ε] = 0 . (5.15)

The solution of eqs. (5.15) with the smallest |ε| is x ≈ −2.1176i, ε ≈ −0.2625. In the
complex x-plane, the critical point corresponds to the level-crossing between the per-
turbative mode x0 and the nearest non-perturbative solution of eq. (5.10), as shown in
figure 18. Now suppose that we only have access to the successive polynomial approx-
imations (5.14) to the full equation (5.10). Can we detect the existence of the correct
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Figure 19. The critical points εc(N) computed perturbatively using the polynomial approxima-
tions (5.14) of order 2N + 2 (blue line) converges to the “exact” critical point εc ≈ −0.2625 (flat
red line) of the full equation (5.10) (left panel). The dependence of real and imaginary parts of the
root x on ε (right panel). The level-crossing occurs at εc ≈ −0.2625. The same transition in the
complex x-plane is shown in figure 18.

critical point and hence the non-perturbative solution by using only these polynomial ap-
proximations and the regular perturbation theory? The answer is affirmative: solving
perturbatively eqs. (5.15) with L[x, ε] replaced by the polynomial approximation (5.14) of
order 2N+2, we find that the (smallest in magnitude) critical value εc(N) converges to the
“exact” result εc ≈ −0.2625 with N increasing (see figure 19, left panel). Since the critical
point corresponds to the level-crossing (see figure 19, right panel), i.e., a collision between
perturbative and non-perturbative roots in the complex x-plane (see figure 18), the above
observation suggests that the perturbative calculation “knows” about this collision, even
though the non-perturbative root responsible for it is inaccessible in perturbation theory
and remains “invisible”. This raises a question of whether the non-perturbative quasinor-
mal modes arising in higher-derivative gravity can be indirectly detected by a perturbative
analysis of the relevant critical points. We investigate this question in the next section.

5.2 A signature of non-perturbative modes from the perturbative analysis of
the Einstein-Gauss-Bonnet critical points

The quasinormal spectrum in the shear channel of Einstein-Gauss-Bonnet gravity contains
modes located on the imaginary axis which are non-perturbative in the Gauss-Bonnet
coupling λGB (see figure 11 and refs. [16, 26]). As discussed in section 4, for some range
of parameters, the top (closest to the origin) non-perturbative mode collides with the
hydrodynamic shear mode at real q2

c and purely imaginary wc, as illustrated in figure 12.
This collision is followed by another collision between the emergent pair of propagating
modes with the pair of gapped modes from the standard “Christmas tree” sequence. For a
fixed value of λGB, the second collision again occurs at real q2

c . We illustrate this in figure 20,
where the shear channel Einstein-Gauss-Bonnet spectrum is shown at λGB ≈ −0.04956 for
several values of real q2: as q2 is increased from q2 = 0.81 to q2 = 1.17, the hydrodynamic
mode and the non-perturbative mode on the imaginary axis approach each other, colliding
at q2

c ≈ 1.18544 and forming a pair of propagating modes, which move off the axis and at
q2

c ≈ 1.87785 collide again, now with the pair of the “Christmas tree” gapped modes. The
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two (sets of) critical points resulting from these collisions are given by

λGB ≈ −0.04956 : (5.16)
q2

c ≈ 1.18544 , wc ≈ −1.63793i , (5.17)
q2

c ≈ 1.87785 , wc ≈ ±1.67253− 1.41811i . (5.18)

We emphasise that the existence of the critical points (5.17) and (5.18) is the direct con-
sequence of the existence of the non-perturbative mode on the imaginary axis, absent at
λGB = 0. Indeed, for λGB = 0 (which corresponds to the N = 4 SYM theory at infinite ‘t
Hooft coupling), the hydrodynamic shear mode travels unobstructedly along the imaginary
w axis towards negative infinity as the real q2 is increased: no critical point exists in the
theory for purely imaginary wc at purely real and positive q2

c . In contrast, at finite λGB, the
shear mode collides with the non-perturbative mode on the imaginary axis at real and pos-
itive q2

c given by eq. (5.17), and then the resulting two propagating modes give rise to the
pair of critical points at another real value of q2

c (eq. (5.18)). The pair of the propagating
modes leading to the pair of critical points in eq. (5.18) does not exist in the perturbative
spectrum: it is created by the collision of the shear mode and the non-perturbative mode
on the imaginary axis.

Can the existence of non-perturbative critical points such as the ones in eq. (5.18) be
inferred from the perturbative data (i.e., from eqs. (2.3), solved perturbatively in λGB), in
analogy with what has been observed in section 5.1? The goal is to find a perturbative
approximation to the pair of critical points (5.18) with real q2.

Perturbatively, to leading order in λGB, the closest to the origin critical point is given
by eq. (4.7), reproduced here for convenience:

q2
c ≈ 1.89065± 1.17115i+ λGB(−2.01742± 22.5317i) +O(λ2

GB) , (5.19)
wc ≈ ±1.44364− 1.06923i+ λGB(∓1.69340 + 8.39996i) +O(λ2

GB) . (5.20)

Eq. (5.19) implies that the critical value of q2 is purely real for λGB ≈ −0.0519780, and is
given by

λGB ≈ −0.0519780 : (5.21)
q2

c ≈ 1.9955 +O(λ2
GB) , wc ≈ ±1.53166− 1.50584i+O(λ2

GB) . (5.22)

We conjecture that the critical point (5.22) at λGB ≈ −0.0519780 is the perturbative
approximation to the “exact” critical point (5.18) at λGB ≈ −0.04956. To see that this is
indeed the case, we extend the perturbative expansion in eqs. (5.19), (5.20) to orderO(λNGB).
At each N , we then numerically compute the value of λGB (denoted by λGB(N)) from the
algebraic condition that sets Im q2

c(λGB) = 0 (among multiple roots λGB(N), we choose the
solution which is real and closest to the non-perturbative value λGB ≈ −0.04956). Then,
we use thus obtained λGB(N) to evaluate wc(N) and q2

c(N) from the perturbative series
in λGB. The numerical sequences wc(N), q2

c(N) do not converge and have to be Padé-
resummed. The Padé-resummed values then converge to the corresponding values for the
non-perturbative critical point (5.18) with N increasing (see figure 21).
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Figure 20. The non-perturbative quasinormal spectrum in the shear channel of the Einstein-Gauss-
Bonnet theory at λGB ≈ −0.04956, plotted for several (increasing) values of q2 ∈ R. At q2 = 0.81,
the shear mode and the non-perturbative mode are present on the imaginary axis; with q2 increasing,
the two modes approach each other on the imaginary axis, collide at the critical point (5.17), move off
the axis as the pair of propagating modes (shown in plots with q2 = 1.19; 1.32; 1.70; 1.85; 1.87) and
then collide with the pair of the “Christmas tree” gapped modes at the second critical point (5.18).
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Figure 21. Parameters of the critical point λGB(N), |wc(N)|, q2
c(N) obtained from the perturbative

analysis of eqs. (2.3) supplemented by a Padé resummation (blue dots). The orders of the Padé
approximant [a/b] were chosen as follows: [N/N ] for 1 ≤ N < 5; [N − 3/2] for 5 ≤ N < 15; [N −
11/10] for 15 ≤ N ≤ 50. The red lines are the non-perturbative results given by eqs. (5.16), (5.17)
and (5.18).

Hence, a perturbative analysis of eqs. (2.3) (admittedly, aided by a Padé resummation)
seems to be capable of reproducing at least one of the non-perturbative critical points of
the full quasinormal spectrum. Since such a point can only occur due to the presence
of a non-perturbative mode in the spectrum, we conclude that the calculation indirectly
confirms the existence of the non-perturbative mode itself.
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Another example of an inherently non-perturbative critical point that can be repro-
duced this way is the critical point located at

λGB ≈ −0.02327 :
q2

c ≈ 2.8462 , wc ≈ ±2.6329− 2.4987i . (5.23)

The appropriate perturbative critical point is given by eq. (4.14). Requiring Im q2
c(λGB) =

0, to first order in λGB we have

λGB ≈ −0.024486 :
q2

c = 2.95995 +O(λ2
GB) , wc = ±2.46865− 2.59802i+O(λ2

GB) . (5.24)

Continuing the expansion (5.24) to higher orders of λGB as described above, we find that
the sequence of order-N critical points λGB(N), wc(N), q2

c(N) converges to the non-
perturbative result (5.23) with N increasing.

5.3 A signature of non-perturbative modes from the perturbative analysis of
critical points in the N = 4 SYM theory

We now turn to the perturbative analysis of critical points in the N = 4 SYM theory. Can
we detect the existence of non-perturbative modes in the quasinormal spectrum by using
the approach of the previous section? The recipe is to look for a pair of critical points
with real value of q2. Considering the lowest perturbative critical point (3.17) and finding
γ from the condition Im q2

c(γ) = 0, we find to leading order in γ:

γ ≈ −0.0006290 :
q2

c ≈ −0.67674 , wc ≈ ±0.86542− 1.92493i . (5.25)

Such a pair of critical points at a single real q2
c does not exist in an infinitely strongly

coupled theory (at γ = 0). At finite γ, it can arise as a result of the collision on the
imaginary axis between the shear mode and the non-perturbative mode, followed by the
second collision between the pair of the resulting propagating modes and the two gapped
“Christmas tree” modes, similarly to what happens in the Einstein-Gauss-Bonnet case as
described in section 5.2. We conjecture that eqs. (5.25) are approximations to the non-
perturbative critical point appearing in the right panel of figure 8. Of course, unlike in the
Einstein-Gauss-Bonnet theory, here we have no access to γ2 and higher terms in the action
and thus cannot verify this conjecture. Nevertheless, we can interpret the existence of the
point (5.25) as an indirect evidence for the existence of the non-perturbative modes in the
full quasinormal spectrum of the gravitational background dual to the N = 4 SYM theory.

6 Discussion

In this paper, we have determined the dependence on the coupling of the radii of conver-
gence of the shear and sound hydrodynamic dispersion relations in the strongly coupled
N = 4 SYM theory. This dependence is shown in figure 1. Limiting ourselves to the results
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obtained using the standard perturbation theory only, the coupling constant dependence
of the radii in the shear and sound channels is given by eqs. (1.7), (1.8) (the blue lines
in figure 1), respectively. These perturbative results suggest that the radii of convergence
increase with the ‘t Hooft coupling decreasing from its infinite value.

However, we argued that the presence of non-perturbative modes in the quasinormal
spectrum of the dual black brane background at large but finite coupling will modify the
perturbative result by making the radii’s dependence on the coupling piecewise continuous,
as shown in figure 1. This type of dependence is familiar from the finite density examples
of holographic theories at infinite coupling [7, 24] and from the Sachdev-Ye-Kitaev (SYK)
chain at finite coupling [9]. The origin of this similarity is not entirely clear to us.6 In
the SYK case, it is the coupling dependence that gives rise to the piecewise behaviour, in
parallel to what we observe in this paper. The strong-weak dependence in that case is,
however, reversed. In the charged case, the chemical potential normalised by temperature
plays the role of the coupling in the present paper being responsible both for the extra
modes on the imaginary axis and the piecewise continuous dependence of the radius of
convergence. One plausible guess is the emergence of approximate symmetries in all these
cases in line with what was discussed in ref. [35].

Curiously, in the regime where the non-perturbative mode becomes relevant, the radius
of convergence of the shear mode dispersion relation coincides with the endpoint q2

c(λ) of
the hydrodynamic regime introduced earlier in ref. [16]. We then repeated our analysis for
the case of the Einstein-Gauss-Bonnet theory using it as a theoretical laboratory to test
our methods. Again, due to the presence of non-perturbative quasinormal modes in the
spectrum, we found the piecewise dependence of the radii of convergence on the coupling
(see figures 13 and figure 16 for the shear and sound channel results, respectively). The role
of the non-perturbative modes in a quasinormal spectrum thus appears to be significant.
Their properties are similar to the properties of non-perturbative roots of algebraic equa-
tions with a small parameter, where singular perturbation theory is often useful. We have
discussed in detail a simple example of an algebraic equation whose perturbative and non-
perturbative roots can be consistently found using singular perturbation theory. Although
at present we cannot offer a generalisation of such a discussion to differential operators,
we believe a qualitatively similar picture should hold there, too, and therefore the non-
perturbative quasinormal modes can represent the qualitatively correct feature of the full
theory. Finally, we show that the presence of the non-perturbative modes in the spectrum
can be indirectly inferred by the analysis of critical points using the perturbative data only.

From the work in refs. [4, 5] it is clear that thermal two-point functions of the energy-
momentum tensor in the N = 4 SYM theory at infinite ‘t Hooft coupling contain multiple
branch point singularities in the complex plane of q2. At large but finite coupling, the
location of these singularities acquires a dependence on the coupling. Our analysis in the
present paper suggests that the property of being a singularity closest to the origin (and
thus setting the radius of convergence) may change discretely as a function of the coupling,
leading to the piecewise nature of the dependence of the radii of convergence on coupling,

6We would like to thank the anonymous referee for raising this issue.
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and that such a change is induced by the presence of non-perturbative quasinormal modes in
the spectrum of a dual gravitational theory. It would be interesting to investigate whether
a similar phenomenon is observed at small but finite coupling. Of special interest are the
studies of the hydrodynamic series convergence in strongly coupled theories with non-zero
chemical potential [6, 7], [53], where the coupling dependence has not yet been explored.
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A Critical points and the radius of convergence in holography

Here, we briefly review the main points of the method introduced in refs. [4, 5] to determine
the radii of convergence of hydrodynamic dispersion relations in holography. In the limit
where the dual gravity description of a QFT is valid (e.g. in the Nc →∞ limit of the N = 4
SU(Nc) SYM theory), information about the hydrodynamic and other dispersion relations
is contained in the quasinormal spectrum of the bulk equations of motion. In terms of a
gauge-invariant variable Z, a typical bulk equation of motion is a second-order ODE

∂2
uZ +A(u,w, q2)∂uZ +B(u,w, q2)Z = 0 , (A.1)

where u is the bulk radial coordinate with u = 0 corresponding to the boundary of the
dual gravity background. The dependence of the coefficients of the equation on q2 reflects
the rotation invariance of the theory, whereas the dependence on w is a consequence of the
choice of the boundary condition at the horizon. The quasinormal spectrum wi = wi(q2)
is determined by the equation

P (q2,w) ≡ Z(u = 0, q2,w) = 0 , (A.2)

which also defines the spectral curve. The critical point condition (2.3) means that p ≥ 2
branches wi = wi(q2) collide at (wc, q

2
c) ∈ C2. The branches are locally represented by

Puiseux series whose analytic structure is determined by the coefficients of the spectral
curve via, e.g., the Newton polygon method. The situations when wi ∼ (q2 − q2

c)−ν ,
where ν is a fractional power, e.g. ν = −1/2, are common. The closest to the origin
(in the complex q2-plane) critical point with such a branch point singularity limits the
convergence of the series wi = wi(q2) centered at q2 = 0 and thus sets its radius of
convergence, R = |q2

c |. This is the phenomenon of quasinormal level-crossing, analogous
to the quantum-mechanical level-crossing [4, 5]. When ν is a negative integer or zero, the
branches are locally analytic, and we have “level-touching” rather than “level-crossing” [5].

In practice, the bulk ODEs are sufficiently complicated and have to be solved numer-
ically. With such a solution in hand, one first solves eqs. (2.3) to find the critical points
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Figure 22. Level-touching: the two branches y(1,2)
1 (x2) of the spectral curve P1 at complex x2 =

|x2|eiϕ, with ϕ varying from 0 to 2π, at fixed |x2
1| < |x2

c | (left panel) and |x2
2| > |x2

c | (right panel).

in the complex q2-plane, and then determines the degree of the singularity at the critical
points by considering the quasinormal mode behaviour in the complex w-plane under the
monodromy q2 = |q2|eiϕ, where ϕ ∈ [0, 2π]. We illustrate the difference between “level-
crossing” and “level-touching” by the following simple example.

Consider the complex curves

P1(x2, y) = a2 − b2 + 2bcx2 − c2x4 − 2ay + y2 = 0 , (A.3)
P2(x2, y) = a2 − b+ cx2 − 2ay + y2 = 0 , (A.4)

where x2 ∈ C, y ∈ C, and the coefficients a, b, c are some fixed complex numbers. Applying
the criterium (2.3) to P1 and P2, we find that both curves have the p = 2 type crtitical
point at (x2

c , yc) = (b/c, a). The two branches of the curve P1 are given by

y
(1)
1 (x2) = a+ b− cx2 = yc − c(x2 − x2

c) , (A.5)

y
(2)
1 (x2) = a− (b− cx2) = yc + c(x2 − x2

c) , (A.6)

whereas the two branches of P2 are

y
(1)
2 (x2) = a−

√
b− cx2 = yc − i

√
c(x2 − x2

c)1/2 , (A.7)

y
(2)
2 (x2) = a+

√
b− cx2 = yc + i

√
c(x2 − x2

c)1/2 . (A.8)

For the curve P1, the two branches at the critical point are analytic functions of x2. For the
curve P2, the critical point is a branch point singularity. Numerically, one can distinguish
between the regular and the singular behaviour by finding local solutions yi = yi(x2) to
eqs. (A.3), (A.4) at complex x2 = |x2|eiϕ, with fixed |x2| and ϕ ∈ [0, 2π]. The “trajectories”
traced by the branches as the phase ϕ varies from 0 to 2π are shown in figure 22 for the
curve P1 and in figure 23 for the curve P2 at fixed |x2

1| < |x2
c | < |x2

2|. The regular branches of
P1 approach and touch each other at x2 = x2

c , with individual trajectories remaining closed
under monodromy at |x2| > |x2

c |, as shown in figure 22. This is “level-touching”, observed
e.g. in the case of the BTZ quasinormal spectrum [5]. In case of a branch point singularity
at the critical point, the two branches merge into a single trajectory for |x2| > |x2

c |, as they
are mapped into each other under the monodromy (figure 23). This is the level-crossing
phenomenon [4, 5].
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Figure 23. Level-crossing: the two branches y(1,2)
2 (x2) of the spectral curve P2 at complex x2 =

|x2|eiϕ, with ϕ varying from 0 to 2π, at fixed |x2
1| < |x2

c | (left panel) and |x2
2| > |x2

c | (right panel).

B How to reconstruct the Puiseux exponent from the power series

Given the hydrodynamic expansion (e.g. (2.1) or (2.2)) of the dispersion relation w = w(q2)
around q2 = 0, one can determine, at least in principle, the exponent of the Puiseux
expansion w ∼ (q2 − q2

c)−ν at the nearest to the origin critical point q2
c , given by eq. (2.3).

This can be done by using the Darboux theorem (see e.g. [54], Theorem 11.10b) which
states that if a function p(t) has a singularity at t = t0 of the form

p(t) ∼ r(t)
(

1− t

t0

)−ν
, t→ t0 , (B.1)

where r(t) is an analytic function and ν is not a negative integer or zero, then the coeffi-
cients an of the Taylor expansion of p(t) at the origin, p(t) =

∞∑
n=0

ant
n, have the following

asymptotic form as n→∞

an ∼
Γ(n+ ν)
Γ(ν)tn0n!

[
r(t0)− (ν − 1)t0r′(t0)

(n+ ν − 1) + (ν − 1)(ν − 2)t20r′′(t0)
2!(n+ ν − 1)(n+ ν − 2) + · · ·

]
. (B.2)

Keeping only the leading term in eq. (B.2), we find

ν = lim
n→∞

(
t0(n+ 1)an+1

an
− n

)
. (B.3)

Then, using the subdominant terms in eq. (B.2), one can in principle reconstruct the
function r(t) by recovering its derivatives. In practice, a finite (and often relatively small)
number of the coefficients an (e.g. computed numerically) is sufficient to determine ν with
a good precision. Thus, if t0 is the critical point closest to the origin, one can determine
(or, strictly speaking, conjecture) whether this point is a singularity of p(t) (i.e., whether
ν is a fractional or positive integer number) and therefore sets the radius of convergence
and reconstruct the Puiseux expansion around t0 by analysing the coefficients an.

A complication arises when there are two or more critical points located at the same
distance from the origin. This is the case for the hydrodynamic dispersion relations in the
N = 4 SYM theory at infinite ‘t Hooft coupling, where for the shear and sound modes we
have a pair of complex conjugate critical points in the complex q2-plane [4]. Such cases
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were studied for example in ref. [55]. Instead, we find it more convenient to reduce the case
with two critical points to the previous one with the help of a conformal transformation.
Indeed, let t = t1 and t = t2, where |t1| = |t2|, be the critical points located at the same
distance from the origin t = 0. By performing a Möbius transformation

t→ z = at+ b

ct+ d
(B.4)

and requiring that under the map, 0 → 0, t1 → 1 and t2 → z2, where |z2| > 1, we reduce
the situation to the one of the Darboux theorem: e.g., the exponent ν1 of the branch point
t = t1 is determined by applying the Darboux procedure to the point z = 1. The inverse
transformation is

t = dz − b
a− cz

. (B.5)

We must also require that the singularity at z ≡ zs = a/c stays outside of the unit
circle in the complex z-plane, so that any analytic part of p(t) remains analytic after the
transformation. This implies the requirement |a/c| > 1. Moreover, removing zs sufficiently
far from the unit circle is advisable from the following technical point of view: analytic
functions such as et acquire an essential singularity ∼ exp[1/(z − zs)] at z = zs, and this
would complicate numerics if zs were too close to the unit circle. Explicitly, we have

t→ z = tz2(t1 − t2)
t(t1z2 − t2) + t1t2(1− z2) , (B.6)

whereas the inverse transformation is given by

t = zt1t2(z2 − 1)
(t1z2 − t2)z + (t2 − t1)z2

. (B.7)

The singularity zs is at
zs = (t1 − t2)z2

t1z2 − t2
= (α− 1)z2

αz2 − 1 ,

where α ≡ t1/t2, with |α| = 1. We need to choose |z2| > 1. Let z2 = x+ iy. Then,

|zs|2 = |α− 1|2(x2 + y2)
x2 + y2 + 1− 2xReα+ 2 y Imα

. (B.8)

The zero of the denominator of (B.8) is at x = Reα, y = −Imα, with |z2|2 = x2 + y2 = 1,
since |α| = 1. By choosing x = Reα + ε and y = −Imα − ε, where ε > 0, we can satisfy
the requirements |z2| > 1 and |zs| � 1. Indeed,

|zs|2 = |α− 1|2

2ε2
(
1 + 2 εReα+ 2 ε Imα+ 2ε2

)
, (B.9)

and so |zs| ∼ |α− 1|/
√

2ε for small ε (in numerical calculations, ε should not be too small,
otherwise we need a large number of the coefficients an to achieve a satisfactory convergence
in eq. (B.3)).

Applying this procedure to the hydrodynamic series of the N = 4 SYM theory using
the data of ref. [4], we find ν = −1/2 to a good precision, confirming that the dispersion
relations have branch point singularities of the square root type at the closest to the origin
critical points. This is fully consistent with the characteristic quasinormal mode behaviour
described in appendix A.
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C Coefficients A(i) and B(i) of eq. (3.10) in the N = 4 SYM theory

The coefficients can be written in the form

A(i)(u,w, q, γ) = A(0)
(i) (u,w, q) + γA(1)

(i) (u,w, q) , (C.1)

B(i)(u,w, q, γ) = B(0)
(i) (u,w, q) + γB(1)

(i) (u,w, q) , (C.2)

where i = 1, 2, 3 for the scalar, shear and sound channels, respectively. We have for the
scalar channel:

A(0)
(1)(u,w,q) =− 1+u2

u(1−u2) , (C.3)

B(0)
(1)(u,w,q) = w2−q2 (1−u2)

u(1−u2)2 , (C.4)

A(1)
(1)(u,w,q) = 6u

(
160q2u3+129u4+94u2−25

)
, (C.5)

B(1)
(1)(u,w,q) = 192q4u5−q2 (851u6−789u4+75u2+30

)
+6
(
−89u4+30u2+5

)
w2

u(1−u2) . (C.6)

For the shear channel:

A(0)
(2)(u,w, q) = −

(
1 + u2)w2 − q2 (1− u2)2

u (1− u2) (w2 − q2 (1− u2)) , (C.7)

B(0)
(2)(u,w, q) = w2 − q2 (1− u2)

u (1− u2)2 , (C.8)

A(1)
(2)(u,w, q) = 2u

(w2 − q2 (1− u2))2

[
640q6u3

(
u2 − 1

)2

− 4q4u2
(
135u6 − 450u4 − 248u3w2 + 495u2 + 200uw2 − 180

)
+ q2w2

(
−462u6 + 1374u4 + 160u3w2 − 1002u2 + 75

)
+ 3

(
129u4 + 94u2 − 25

)
w4
]
, (C.9)

B(1)
(2)(u,w, q) = − 3

u (1− u2) (w2 − q2 (1− u2))

[
− 64q6u5

(
u2 − 1

)
+ q4

(
425u8 − 880u6 − 64u5w2 + 480u4 − 15u2 − 10

)
+ q2

(
699u6 − 693u4 + 75u2 + 20

)
w2 + 2

(
89u4 − 30u2 − 5

)
w4
]
. (C.10)
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For the sound channel:

A(0)
(3)(u,w, q) = −3

(
1 + u2)w2 − q2 (3− 2u2 + 3u4)
u (1− u2) (3w2 − q2 (3− u2)) , (C.11)

B(0)
(3)(u,w, q) = 3w4 − 2

(
3− 2u2)w2q2 − q2 (1− u2) (4u3 + q2 (u2 − 3

))
u (1− u2)2 (3w2 − q2 (3− u2))

, (C.12)

A(1)
(3)(u,w, q) = 2u

(3w2 − q2 (3− u2))3

[
32q8u3

(
35u6 − 291u4 + 753u2 − 585

)
− 3q6

(
3741u10 − 27911u8 − 2720u7w2 + 60804u6 + 12992u5w2 − 50112u4

−12960u3w2 + 16887u2 − 225
)

+ 3q4w2
(
−19401u8 + 59832u6 + 4960u5w2

−53892u4 − 7200u3w2 + 26094u2 − 1125
)

+ 9q2w4
(
−1263u6 + 99u4

+160u3w2 − 3915u2 + 525
)

+ 81
(
129u4 + 94u2 − 25

)
w6
]
, (C.13)

B(1)
(3)(u,w, q) = 1

u (1− u2) (3w2 − q2 (3− u2))3

[
192q10u5

(
u2 − 3

)3

− q8
(
u2 − 3

) (
5811u10 − 41287u8 − 1728u7w2 + 74004u6 + 5184u5w2

−35169u4 + 495u2 + 270
)
− 3q6

(
11184u13 − 90072u11 + 17099u10w2

+223952u9 − 106323u8w2 − 16u7
(
108w4 + 12971

)
+ 185876u6w2

+1728u5
(
3w4 + 34

)
− 91107u4w2 + 1800u3 + 2835u2w2 + 1080w2

)
+ 3q4w2

(
−68316u11 + 279504u9 − 40333u8w2 − 319056u7 + 121158u6w2

+36u5
(
48w4 + 2713

)
− 81018u4w2 + 3600u3 + 6075u2w2 + 1620w2

)
− 9q2w4

(
21708u9 − 37140u7 + 7003u6w2 + 12972u5 − 10017u4w2

+600u3 + 1755u2w2 + 360w2
)
− 162

(
89u4 − 30u2 − 5

)
w8
]
. (C.14)

See ref. [16] for details.

D Coefficients A(i) and B(i) of eq. (4.6) in the Einstein-Gauss-Bonnet
theory

In the scalar, shear and sound channels (i = 1, 2, 3) we have, correspondingly,

A(1) =−1
u
−u

[
1

(γ2
GB−1)(1−u2)2+1−u2

+ 1
(1−u2)

√
γ2
GB−(γ2

GB−1)u2

]
, (D.1)

B(1) = (γGB−1)(γGB+1)2 (3(γ2
GB−1

)
u2−γ2

GB

)(
−γ2

GB+
(
γ2
GB−1

)
u2+U

)
4u(γ2

GB−(γ2
GB−1)u2)3/2 (−γ2

GB+(γ2
GB−1)u2+2U−1)

q2

+
(
γ2
GB−1

)2 (−γ2
GB+

(
γ2
GB−1

)
u2+U

)
4u(U−1)

√
γ2
GB−(γ2

GB−1)u2 (−γ2
GB+(γ2

GB−1)u2+2U−1)
w2 , (D.2)
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A(2) =−
2γ4

GB(γGB+1)
[

1
2
(
1−γ2

GB

)(
u2−1

)
(U−2)+U−1

]
u(U−1)U3 [γ2

GB(γGB+1)(U−1)q2−(γ2
GB−1)U2w2]q

2

−

(
1−γ2

GB

)(
γ4
GB+

(
1−γ2

GB

)2
u4−2

(
1−γ2

GB

)
u2 (U−γ2

GB

)
−γ2

GBU
)

u(U−1)U [γ2
GB(γGB+1)(U−1)q2−(γ2

GB−1)U2w2] w2 , (D.3)

B(2) = γ2
GB(γGB+1)(U+1)

4u(u2−1)U2 q2+
(
U2+2U+1

)
4u(u2−1)2 w2 , (D.4)

A(3) = 3
2u+ 3(γGB−1)

[(
γ2
GB−1

)
u2−γ2

GB

][(
γ2
GB−1

)
u2(5U−7)−5γ2

GB(U−1)
]

2u(U−1)U2D1
w2

+
(
γ2
GB−1

)2
u4 (−3γ2

GB+5U−7
)
+γ2

GB

(
γ2
GB−1

)
u2 (18γ2

GB−13U+10
)

2u(U−1)U2D1
q2

− 15γ4
GB

(
γ2
GB−2U+1

)
2u(U−1)U2D1

q2 , (D.5)

B(3) =
(
γ2
GB−1

)2
D0

{
12(γGB−1)2γ2

GB(γGB+1)q2u5−4(γGB−1)γ2
GBq

2u3
(
3γ2

GB−7U+4
)

+
(
γ2
GB−1

)3
q2u6

(
3(γGB−1)w2+q2

)
−u2γ2

GB

(
γ2
GB−1

)[
q4
(
γ2
GB+2U

)
+(γGB−1)q2w2

(
9γ2

GB−4U
)
−6(γGB−1)2Uw4

]
+
(
γ2
GB−1

)2
u4
[
q4
(
3γ2

GB(U−2)+U
)

+2(γGB−1)q2Uw2−3(γGB−1)2Uw4
]

−3γ4
GB

[
q4
(
γ2
GB(U−2)+U

)
+2(γGB−1)q2w2

(
U−γ2

GB

)
+(γGB−1)2Uw4

] }
, (D.6)

where we have defined

D1 ≡
(
γ2
GB − 1

)
u2
(
3(γGB − 1)w2 + q2

)
+ 3γ2

GB

(
q2(U − 1)− (γGB − 1)w2

)
, (D.7)

D0 ≡ 4(γGB − 1)u(U − 1)2U3D1 . (D.8)

In the above expressions, we also used U2 = u2 +γ2
GB−u2γ2

GB, as well as the dimensionless
frequency and momentum w = ω/2πT , q = q/2πT , where T is the Hawking temperature
of the black brane background. See ref. [26] for details.
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1 Introduction and summary of results

The local conformal algebra in two dimensions is the infinite-dimensional Virasoro algebra
and is generated by the modes of the stress tensor operator T (z). It induces a natural
decomposition of correlation functions into Virasoro conformal blocks which capture the
contribution from a given Virasoro primary and all its Virasoro descendants. With respect
to the global conformal algebra, each Virasoro representation contains an infinite number
of quasi-primaries — the Virasoro symmetry therefore imposes strong constraints on the
theory as seen from the perspective of someone that only knew about its global part.

Further, the presence of symmetries in CFTs is deeply connected to universal features.
An example is Cardy’s formula for the density of high energy of states in two-dimensional
CFTs [1]. It follows from the large conformal transformation of the torus and the dominance
of the lowest dimension operator in the partition function in the low-temperature limit. An-
other example of universality is the presence of large-spin double-twist composite operators
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in any unitary d > 2-dimensional CFT [2, 3]. This follows from studying the lightcone limit
of a four-point function of scalar operators and utilizing crossing symmetry. In one channel
the identity operator dominates because it is the operator with the smallest twist τ = 0.
Interpreting this in a different channel leads to the existence of double-twist operators with
large spin ` and universal OPE data to leading order in the `−1 expansion. Furthermore,
in the absence of light scalars (∆min > d− 2), the correction in the lightcone limit is due
to conserved currents, in particular, the stress tensor operator. Its OPE coefficient in the
OPE T ⊂ O∆ ×O∆ of identical scalars is fixed by Ward identities in terms of the scaling
dimension ∆ and the central charge CT . This leads to further universal corrections for the
OPE data of the double-twist operators in the other channel.

In two dimensions, the Virasoro vacuum block of a four-point function O1 × O1 →
[T k] → O2 × O2 contains contributions from the stress tensor and an infinite family of
composite operators of the schematic form [T k] for each k which are completely fixed by the
symmetries. In higher-dimensional CFTs with a large central charge CT , there are similar
composite operators [T k]τ,s — with τ and s denoting the twist and spin, respectively. A
priori, the multi-stress tensor OPE coefficients in the OPE of identical scalar operators,
[T k]τ,s ⊂ O∆ ×O∆, are not fixed by symmetries in contrast to the two-dimensional case.
These operators are, however, ubiquitous in theories with gravity duals since they are related
to the exchange of multi-graviton states in the bulk. Therefore in order to understand
the emergence of gravity in the bulk from the CFT data on the boundary, these operators
play a vital role. It is further interesting to ask if there is a notion of universality in the
exchanges of multi-stress tensors in holographic CFTs with large CT and a large gap in the
spectrum of higher-spin single trace operators.

An important case where the exchange of these multi-stress tensors is expected to
dominate compared to that of generic operators is when considering heavy states. This is so
because the OPE coefficients of multi-stress tensors [T k] in a scalar OPE O∆×O∆ scale like
∆k for large ∆. An extreme example of this is when the heavy states have dimension ∆ of
order CT . Such heavy states are expected to thermalize in holographic CFTs and according
to the AdS/CFT dictionary, thermal states on the boundary are dual to black holes in the
bulk. Correlation functions of light operators in heavy states therefore provide a possible
window into one of the most interesting questions in the AdS/CFT correspondence, the
physics of black holes.

In two dimensions, the heavy-heavy-light-light (HHLL) Virasoro vacuum block was
found in [4, 5] and contains a wealth of information that can be used to shed light on black
hole information loss and the thermalization of heavy states, entanglement entropy and
much more [6–22]. In four dimensions,1 recent progress has been made in studying the
contribution of multi-stress tensor operators to HHLL correlators, both using conformal
bootstrap techniques and the gravitational dual description [23–36]. In [29] following [27],
it was argued that the contribution of all minimal-twist operators [T k]τmin,s, with τmin = 2k
and spin s = 2k + l for l = 0, 2, 4, . . ., in holographic CFTs, takes a specific form which is
reminiscent to that obtained from the Virasoro vacuum block. It repackages an infinite

1Similar results also holds for d > 2 with d even.
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number of minimal-twist multi-stress tensor OPE coefficients in the HHLL correlator and it
is natural to ask if this is governed by an underlying emergent symmetry in the lightcone
limit similar to the Virasoro symmetry.

In this work we present further progress in this direction by studying the HHLL vacuum
blocks of two-dimensional CFTs with WN higher-spin symmetry,2 see [37–41] for related
work. The semi-classical vacuum blocks were found for N = 3 in [39, 42] and for general
N in [40]. In this case, the charges of the “light” operator are large but much smaller
than those of the heavy operator which scale with the central charge c � 1. Expanding
the WN vacuum blocks in q

(i)
H
c , where q(i)

H is the spin−i charge of the heavy operator, we
find that the result is again similar to the expansion of the Virasoro vacuum block, with a
decomposition in terms of composite operators with the correct weight under the global
conformal algebra. In particular, when q(3)

H ∼ c� q
(i 6=3)
H , the dominant contributions3 are

due to composite quasi-primary operators with the schematic form [W k]2l made out the
spin-3 current W (z). The resulting functions, which are linear combinations of products of
hypergeometric functions, are also present in the result for the minimal-twist stress tensor
sector of the d = 4 HHLL correlator. This is one of the main motivations for our work.

We further explicitly compute the first few terms of the WN HHLL vacuum blocks
for N = 3, 4 in the limit q(3)

H ∼ c � q
(i 6=3)
H using an explicit mode calculation. This limit

has the advantage that the charges of the light operators are kept fixed as c → ∞ and
sheds further light on how the resulting structure that appears in the four-dimensional
stress tensor sector of the HHLL correlator could appear from an underlying symmetry
algebra. The results agree with those obtained from the expansion of the semi-classical
vacuum blocks which assumed that the charges of the light operators were large. This gives
further evidence that those results remain true also for finite charge. The mode calculation
presented in this work can in principle also be used to compute 1

c corrections to the HHLL
vacuum blocks.

Focusing on the logarithm of the W3 HHLL vacuum block we further show that it
satisfies a non-linear differential equation which, in a certain limit, reduces to a cubic
equation for the generating function for the sequence of integers given by A085614 in [43].
The W3 HHLL vacuum block can also be obtained from a set of diagrammatic rules similar
to the Virasoro vacuum block [12]. The story can be generalized in the case of the W4
HHLL block both in the limit where the spin-4 charge scales with the central charge and
is parametrically larger than all other charges and in the limit where the spin-3 charge
scales with the central charge and is parametrically larger than the rest of the charges. We
expect a similar story to hold for all WN blocks. From a mathematician’s point of view,
the WN vacuum blocks provide generating functions for several new sequences which can
be understood as different generalizations of the Catalan numbers’ sequence.

2We will mainly consider N = 3, 4 but the methods used and the structure remains similar for any N .
3Note that it is only the spin-3 charge of the “heavy” operators that scales with c and, in particular,

their scaling dimension is small compared to c. We will still refer to these as heavy. It is possible to extend
our results to the case when all the charges of the heavy operators are large but we will not attempt to do
so since it is the spin-3 sector that resembles the stress tensor sector in four dimensions.
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Further, we examine the stress tensor sector of the four-dimensional HHLL correlator
when the conformal dimension of the light operator vanishes, ∆L → 0.4 A similar picture
emerges with the relevant sequence of numbers given by the number of linear extensions of
the one-level grid partially ordered set (poset) G[(1k−1), (0k−2), (0k−2)].5 We observe the
same structure appearing in d = 6, 8 as well. In this case, the sequences of numbers are
related to the linear extensions of the G[(d−2

2 )k−1, (0)k−2, (0k−2)] posets. In the spirit of the
two-dimensional cases examined here, one would hope that knowing the algebraic equation
satisfied by the generating function of this sequence, would allow the determination of a
differential equation satisfied by the all-orders stress-tensor sector of the HHLL correlator
in the lightcone limit for ∆L → 0. However, to our knowledge, the generating functions of
the number of linear extensions of G[(d−2

2 )k−1, (0)k−2, (0k−2)] are not known.

1.1 Summary of results

Consider a heavy-heavy-light-light (HHLL) four-point function in a two-dimensional CFT
with a large central charge c and a higher-spin WN symmetry 〈OH(∞)OH(1)OL(z)OL(0)〉.
The operators OH and OL are WN primaries and carry higher-spin charges q(i)

H and q(i),
with i = 2, 3, . . . , N , respectively. Such a four-point function can be decomposed into blocks
which contain contributions from a WN primary O and all its WN -descendants. We define
GN (z) as the holomorphic part of the HHLL correlator restricted to the identity block
contribution in the direct channel OL×OL → 1WN

→ OH ×OH . We specify our discussion
to the cases N = 3, 4 although it can be generalized to any N .

1.1.1 HHLL blocks by mode decomposition

We start by considering the case N = 3 where the CFT protagonists are the stress tensor
T (z) and a spin-3 field W (z). G3(z) contains the exchange of all states schematically
denoted by

|{ai, bj}〉 := Wa1Wa2 . . .WanLb1Lb2 . . . Lbk |0〉 − (. . .)|0〉, (1.1)

where Lb and Wa are the modes of T (z) and W (z), respectively, and the ellipses ensure
that these states are mutually orthogonal. In particular, the subsector consisting of only
states with modes Lb acting on the vacuum is that of the Virasoro vacuum block and
was studied in detail in [12]. We are interested in heavy states with a large spin-3 charge
wH ≡ q(3)

H with6

hH � wH ∼ c→∞,

h, w � c, (1.2)

4Note that this is below the unitarity bound. There are, however, certain observables such as the phase
shift [23] that do not depend on ∆L that one might be able to extract from the ∆L → 0 limit.

5The Catalan numbers are also the numbers of linear extensions of the one-level grid poset
G[(0k−1), (0k−2), (0k−2)].

6It is straightforward to extend our results to the case when all the heavy charges are O(c) but we will
not attempt to do so. See however appendix A and B.
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where hH and h are the conformal weights of the heavy and light operator, respectively, and
w is the spin-3 charge of the light operator. The effect of using (1.2) is that the dominant
contribution to G3(z) is due to states of the form

|{ai}〉 = Wa1Wa2 . . .Wan |0〉 − (. . .)|0〉 (1.3)

because each W -mode will to leading order contribute a factor of wH when acting on the
heavy operators. Inserting the projection on the single mode states W−m|0〉 in the correlator
one finds the O(wHc ) term of the vacuum block

G3(z)
∣∣∣wH
c

= 3wwH
c

f3(z)
z2h , (1.4)

where z−2h is the disconnected correlator and fa(z) is an SL(2;R) conformal block given by

fa(z) = za2F1(a, a; 2a, z). (1.5)

The result in (1.4) is the conformal block due to the exchange of the quasi-primary W (z)
and all its descendants under the global conformal group.

It is useful to recall the behavior of a d-dimensional conformal block, g(0,0)
τ,s (z, z̄), in the

lightcone limit z̄ → 0
g(0,0)
τ,s (z, z̄) ∼ z̄

τ
2 f τ

2 +s(z). (1.6)

In four dimensions, the stress tensor block with τ = s = 2 has the same z-dependence
as (1.4) (as can be seen from (1.6)).

Going back to d = 2, we consider the O(w
2
H
c2 ) contribution to G3(z). This is due to the

(unnormalized) states

|Ym,n〉 =
[
W−nW−m −

(3n+ 2m)m
(
m2 − 1

) (
m2 − 4

)
30(m+ n)((m+ n)2 − 1) L−m−n

]
|0〉, (1.7)

where the second term ensures that they are orthogonal to the states L−n−m|0〉. Projecting
onto these states one finds that

G3 (z)
∣∣∣w2

H
c2

=
[

1
2

(3wwH
c

f3 (z)
)2
− 9w2

Hh

70c2 w3 (z)
]
z−2h, (1.8)

where w3 = −14f2
3 + 15f2f4. The resulting simple-looking expression can be decomposed

into global conformal blocks of [W 2]2l, with weights h = 6, 8, . . ., with the use of a product
formula for hypergeometric functions found in [27].

Eq. (1.8) shows that the vacuum block contribution to the correlation function at
quadratic order in the heavy charge expansion can be written as a sum of products fafb
such that a + b = 6, where h = 6 is the weight of the lightest operator [W 2]0. In
higher, even spacetime dimension a similar picture emerges. In particular it was shown
in [27, 29] that the minimal-twist double-stress tensor contributions to HHLL correlators in
four dimensions can be written as Gd=4|∆2

H/C
2
T
∝ a15f1f5 + a24f2f4 + a33f

2
3 , for some ∆L

dependent coefficients aij .
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Let us now include a spin-4 current U(z). With the four-dimensional results quoted
above in mind, we consider the W4 HHLL vacuum block in the limit where the spin-3
charge is parametrically larger than the rest (this is done in appendix B). The states (1.7)
have a non-vanishing overlap with the single mode states U−m−n|0〉 and by removing this
overlap, one finds that the correction to the O(w

2
H
c2 ) term in (1.8) is proportional to the

spin-4 charge u of the light operator. The result takes the form

G4(z)
∣∣∣w2

H
c2

∝ a4,15f1f5 + a4,24f2f4 + a4,33f
2
3 , (1.9)

with coefficients a4,ij linear in the charges (h, u) of the light operator and quadratic in w
due to the first term in (1.8).7

The results herein, obtained using explicit mode calculations, are in agreement with
those for the WN semi-classical vacuum blocks obtained in [40]. While the mode calculation
becomes tedious at higher orders in wH

c , the expansion of the semi-classical vacuum block is
straightforward. Generally, we find that the expansion of the logarithm of the HHLL vacuum
block in powers of wHc can be written as a linear combination of products of hypergeometric:

log
(
z2hGN (z)

)
=
∞∑
k=1

(wH
c

)k∑
{ip}

bN,i1...ikfi1(z) . . . fik(z), (1.10)

where we have normalized the expression by the (holomorphic) part of the disconnected
correlator z−2h. ip are integers such that i1 + . . .+ ik = 3k and the coefficients bN,i1,...ip are
linear in the charges q(i) of the light operator.8

1.1.2 Generalized Catalan numbers and differential equations

It is instructive to examine the behavior of the vacuum blocks when z → 1. Similarly to the
case of the Virasoro vacuum block, we observe that the logarithm of the WN vacuum block,
with one of the heavy charges qH ∼ c→∞ and all other charges fixed and parametrically
smaller, has the following behavior in the limit z → 1:

log(GN (z)) ∼ BN
(
q(i),

qH
c

)
log(1− z), (1.11)

where the function BN is linear in the light charges q(i) and can be perturbatively expanded
in qH

c . This behavior is non-trivial since generally a product of k functions fa is a k-th
order polynomial in log(1− z) with coefficients that are rational functions of z.

For the Virasoro case, the corresponding function B2 is the generating function of the
Catalan numbers. For W3 in the limit wH ∼ c→∞, with the other charges parametrically
smaller and for certain values of the ratio of the charges of the light operator, we find that
B3 satisfies a cubic equation. Inspired by it, one can construct similarly to the Virasoro

7Whilst the form of the G4(z) at quadratic order matches that of the four-dimensional result (notice the
presence of the f1f5-term), there is no choice of the charges of the light operators which would yield an
exact match.

8Although the form of the WN vacuum block expansion resembles that of the four-dimensional one, there
is no value of N that would yield an exact match.
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case, a cubic differential equation satisfied by F3 ≡ log G3 with (1.2). We present it below
in the case h = 3w:

1
6w

d3

dz3F3(z) = − 1
54w3

(
d

dz
F3(z)

)3
+ 1

6w2

(
d2

dz2F3(z)
)(

d

dz
F3(z)

)
+ 2x

(1− z)3 ,

(1.12)
where x = 6wHc . We also derive diagrammatic rules for theW3 HHLL vacuum block satisfies.

We also consider the W4 HHLL vacuum block in appendix B. We study its behavior
in the region z ∼ 1 in two different cases; when the spin-4 charge, uH ∼ c � 1 while
hH , wH � c and when the spin-3 charge scales with c, wH ∼ c � 1 but uH , hH � c. In
both cases the logarithm of the HHLL vacuum block behaves as F4 ∼ log (1− z) in the
limit z → 1. In the former case, the generating function B4 defined according to (1.11),
satisfies a quartic equation for four different choices of the ratio h/u. In particular, when
h = 5u one can show that log G(z) solves a differential equation whose form is inspired by
the algebraic equation satisfied by B4. The situation is similar but slightly more involved
when the spin-3 charge, wH ∼ c.

Finally, we study the stress tensor sector of the HHLL correlator in d-spacetime
dimensions in the limit z → 1. In this case, we further have to take the ∆L → 0 limit in
order to remove higher log terms and find that the corresponding sequence of numbers
are those of the number of linear extensions of posets G[(d−2

2 )k−1, (0)k−2, (0k−2)]. These
are generalizations of the Catalan numbers which can be obtained as the number of linear
extensions of the simpler poset G[(0k−1), (0k−2), (0k−2)].

1.2 Outline

Section 2 is devoted to explicit mode calculations of the HHLL vacuum blocks. Specifically,
in section 2.1 we review the Virasoro result and in section 2.2 we generalize this calculation
to the case of the W3 HHLL vacuum block. In section 3, we study the behavior of the
HHLL vacuum blocks in the region z ∼ 1. After a short review of the Virasoro case, in
section 3.2 we focus on the W3 vacuum block. We observe the appearance of a generalized
Catalan sequence, determine its generating function and the algebraic equation the latter
satisfies. Inspired by this algebraic equation, we determine a cubic differential equation
satisfied by the logarithm of the W3 vacuum block for certain ratios of the charges of the
light operators. We conclude the discussion of the spin-3 case with new diagrammatic rules
for the W3 vacuum block expansion. In section 3.3 we investigate in a similar manner the
stress tensor sector of the four-dimensional HHLL correlator in holographic CFTs. We
conclude with a discussion in section 4. In appendix A one finds further details on the
explicit mode calculations for the W3 HHLL vacuum block. In appendix B we consider the
W4 HHLL vacuum block. When wH is the only large charge, we show using the W4-algebra
that one gets an extension of the W3 result which takes a form similar to that of the stress
tensor sector of the HHLL correlator in d = 4. When uH is the only large charge, we show
that the HHLL vacuum block and a specific choice of the light charges is again governed by
a generalization of the Catalan numbers, and that a corresponding non-linear differential
equation can be written down analogous to the W3 case. A similar albeit more involved
story emerges in the z → 1 limit when the only large charge is wH .
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2 HHLL blocks by mode decomposition

In this section we perform a mode calculation of WN higher-spin vacuum blocks in two-
dimensional CFTs with large central charge. We review the calculation of the Virasoro
vacuum block in section 2.1 following [4, 5] and extend this to include higher-spin currents
in section 2.2 and appendix B. The semi-classical vacuum block, for large charges, in WN

theories has been calculated in [39, 42] for N = 3 and in [40] for general N in the dual bulk
theory using a Wilson line prescription. Expanding these known results we find agreement
with those obtained from the mode calculation. The calculation of the WN vacuum block
using an explicit mode expansion can in principle be extended to include finite central
charge as well as finite charges of the external operators.

2.1 Review of the Virasoro vacuum block

In this section we use the Virasoro modes to explicitly calculate the first terms due to
Virasoro descendants of the vacuum following [4, 5].

We consider a four point function of pair-wise identical operators OH and OL with
conformal weight H and h, respectively, given by 〈OH(∞)OH(1)OL(z)OL(0)〉, where we
suppress the anti-holomorphic part, have used conformal symmetry to fix the operators at
0, z, 1,∞ and set OH(∞) = limz→∞ z

2HOH(z). The limit that will be considered is c→∞
with h and H

c fixed.
We are interested in the contribution due to Virasoro descendants of the vacuum, i.e.

states of the schematic form

G2(z) = 〈OH(∞)OH(1)
∑

{mi},{nj}

L−m1L−m2 . . . L−mi |0〉〈0|Lnj . . . Ln2Ln1

N{mi},{nj}
OL(z)OL(0)〉,

(2.1)
where N{mi},{nj} is a normalization factor and G2(z) is defined as the HHLL correlator
restricted to the contribution of the identity block in the direct channel (the subscript (2)
here stands for the Virasoro algebra as opposed to (N) for the WN ). In [12] an orthogonal
basis was constructed in the limit c→∞ and it was shown how to perform this sum using
a recursion relation. The correlator organizes into powers of H

c and we will study the first
two terms in this expansion. These are due to single and double mode states respectively.

To begin with, consider the contribution from states of the form L−n|0〉 in (2.1). To
calculate this, we need the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + c

12m
(
m2 − 1

)
δm+n,0, (2.2)

as well as the action on primary operators

[Ln,O (z)] = zn [h(n+ 1) + z∂]O(z). (2.3)

It is straightforward to evaluate 〈0|LnO(z)O(0)〉 and 〈OH(∞)OH(1)L−n|0〉 for n ≥ 2 with
the help of (2.3). We find that

〈0|LnO(z)O(0)〉 = zn[h(n+ 1) + z∂]z−2h = h(n− 1)zn−2h

〈OH(∞)OH(1)L−n|0〉 = H(n− 1). (2.4)

– 8 –
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The norm of these states is given by the central term

Nn,n = 〈LnL−n〉 = c

12n
(
n2 − 1

)
. (2.5)

Combining the above allows one to obtain the single mode state contribution to the
vacuum block

G2(z)|H
c

= z−2h
∞∑
n=2

12Hh
c

(n− 1)
(n+ 1)

zn

n
= 2Hh

c
f2(z)z−2h, (2.6)

where the SL(2,R) blocks fa are given by

fa(z) = za2F1(a, a; 2a; z). (2.7)

Consider now states of the schematic form L−mL−n|0〉. These are not orthogonal to the
single mode states L−m−n|0〉 since

〈Lm+nL−nL−m〉 = (2n−m) c

12m
(
m2 − 1

)
6= 0. (2.8)

Removing this overlap one can construct states |Xm,n〉,9 that are orthogonal to L−m−n|0〉:

|Xm,n〉 =
[
L−nL−m −

〈Lm+nL−nL−m〉
〈Lm+nL−m−n〉

L−m−n

]
|0〉, (2.9)

which contribute at O(H2

c2 ) to G(z). The contribution of these states can be found from (for
details see appendix A, as well as [12])

〈0|LmLnOL(z)OL(0)〉 =
[
h2(n− 1)(m− 1) + hm(m− 1)

]
zs−2h,

〈0|Lm+nOL(z)OL(0)〉 = h(s− 1)zs−2h, (2.10)

where s = m+ n. With the help of (2.10) one finds that

〈Xm,n|OL (z)OL (0) |0〉 =
[
h2 (n− 1) (m− 1) + hm (m− 1)

−
(2n−m) c

12m
(
m2 − 1

)
c

12s (s2 − 1) h (s− 1)
]
zs−2h

=
[
h2 (m− 1) (n− 1) + h

n (n− 1)m(m− 1)
s(s+ 1)

]
zs−2h (2.11)

as in [12]. Furthermore, keeping only the leading term for large H gives

〈OH(∞)OH(1)|Xm,n〉 = H2(n− 1)(m− 1). (2.12)

The norm of the states |Xm,n〉 in the large-c limit is given by the square of the central
terms, i.e. ,

NXm,n = 〈LmLnL−nL−m〉 =
(
c

12

)2
m
(
m2 − 1

)
n
(
n2 − 1

)
+ . . . , (2.13)

9Note that the states |Xm,n〉 thus defined are not unit normalised.
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where the ellipses refer to terms subleading in c. Combining the above one finds the
contribution of the states |Xm,n〉 to the vacuum block in (2.1) to be

G2(z)|H2
c2

= z−2h

2
(12Hh

c

)2 ∞∑
m,n=2

(m− 1)(n− 1)
(m+ 1)(n+ 1)

zm+n

mn

+ z−2h 72H2h

c2

∞∑
m,n=2

(m− 1)(n− 1)
(m+ 1)(n+ 1)

zm+n

(m+ n)(m+ n+ 1) , (2.14)

where we have included a symmetry factor of 1
2 due to the exchange symmetry (m↔ n).

The first line in (2.14) comes from the exponentiation of the first term, i.e., it is the square
of (2.6) divided by 2

G2(z)|H2h2
c2

= 1
2

(2Hh
c

f2

)2
z−2h. (2.15)

The second line in (2.14) can be written as a sum of products of functions fafb such that
a+ b = 4 in the following way

G2(z)|H2h
c2

= z−2h 2H2h

c2

[
−f2

2 + 6
5f1f3

]
(2.16)

as was noted in [23].
The relative coefficient between the terms in the bracket of (2.16) is precisely such that

in the limit z → 1 the coefficient in front of log2(1− z) vanishes and (2.16) behaves as

G2(z)|H2h
c2
≈
z→1

log(1− z). (2.17)

In [12] it was noticed that this behavior persists to all orders, i.e, the coefficients of all the
logp (1− z) with p > 1 vanish in the limit z → 1 and hence G2(z) has a simple logarithmic
behavior in this limit. Moreover, the authors of [12] observed that the coefficients in front
of the log(1 − z) terms at each order in H

c form the Catalan numbers’ sequence. In the
following sections we will see a similar statement being true for WN=3,4 vacuum blocks.10

2.2 W3 vacuum block

In an effort to elucidate the connection between the structure of the vacuum block in the H
c

expansion and the underlying symmetry algebra, we consider now a 2d CFT with a spin-3
current W (z). The spin-3 modes are defined by

W (z) =
∑
n

Wnz
−n−3, (2.18)

and satisfy the W3 algebra

[Lm,Wn] = (2m− n)Wm+n,

[Wm,Wn] = c

360m
(
m2 − 1

) (
m2 − 22

)
δm+n+

+ (m− n)
[ 1

15 (m+ n+ 3) (m+ n+ 2)− 1
6 (m+ 2) (n+ 2)

]
Lm+n

+ 16
22 + 5c (m− n) Λm+n, (2.19)

10We expect this to be true for arbitrary N .
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where Λm =
∑
p : Lm−pLp : − 3

10(m+ 2)(m+ 3)Lm. The spin-3 current W (z) is a primary
operator normalised so that 〈W (z)W (0)〉 = c

3z6 . Note that the non-linear terms in (2.19)
are suppressed in the large-c limit.

We will study the W3 vacuum block G3 contribution to the four point function of
pairwise identical scalars OH and OL. These are W3 primaries and have conformal weights
H and h, as before, as well spin-3 charges ±wH and ±w, respectively, with the following
scaling as c→∞:11

wH � H,h,w,
wH
c

= fixed. (2.20)

As we will see, the contribution from the pure Virasoro modes considered in the previous
section is suppressed compared to that containing the spin-3 charge modes of the “heavy”
operator and is due to states of the schematic form W−m1 . . .W−miL−n1 . . . L−nj |0〉. To
evaluate the contribution of such states explicitly, we need to construct an orthogonal basis
using the algebra (2.19) and find the commutator [Wm,O].

Consider first the commutator [Wm,O]. This is determined by the singular terms
in the OPE

W (z)O (0) |0〉 = z−3W0|h,w〉+ z−2W−1|h,w〉+ z−1W−2|h,w〉+O
(
z0
)

= z−3wO|0〉+ z−2
(
Oh+1 + 3w

2h ∂O
)
|0〉

+ z−1
(
Oh+2 + 2

h+ 1∂Oh+1 + 3w
h (2h+ 1)∂

2O
)
|0〉+ . . . , (2.21)

where Oh+1 and Oh+2 are quasi-primary operators with conformal weight h+ 1 and h+ 2,
respectively, and are given by

Oh+1 (0) |0〉 :=
[
W−1O −

3w
2h L−1O

]
|0〉,

Oh+2 (0) |0〉 :=
[
W−2O −

2
h+ 1L−1Oh+1 −

3w
h (2h+ 1)L

2
−1O

]
|0〉. (2.22)

Being quasi-primaries, they satisfy [L1,Oh+1(0)] = [L1,Oh+2(0)] = 0 which can be verified
using the algebra (2.19). The commutator [Wn,O] can be found using translation invariance,
multiplying with

∫
C(z)

dw
2πiw

n+2 and using the OPE (2.21)

[Wm,O (z)] =w (m+ 1) (m+ 2)
2 zmO (z) + (m+ 2) zm+1

(
Oh+1 (z) + 3w

2h ∂O (z)
)

+ zm+2
(
Oh+2 (z) + 2

h+ 1∂Oh+1 (z) + 3w
h (2h+ 1)∂

2O(z)
)
. (2.23)

Consider now the contribution to G(z) from states W−n|0〉. In order to calculate
〈WnO(z)O(0)〉,12 we note that 〈Oh+1(z)O(0)〉 = 〈Oh+2(z)O(0)〉 = 0 since these and O

11In [44] it was shown that unitary representations have weight h̃ ∼ c and therefore neither the heavy nor
the light operators we consider are unitary.

12We denote OL ≡ O to simplify the notation.
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are quasi-primaries with different conformal weights. It follows that only O and its global
descendants in (2.23) contribute to 〈WmO(z)O(0)〉, leading to

〈WnO (z)O (0)〉 = zn
[
w

2 (n+ 1) (n+ 2) + 3w
2h (n+ 2) z∂z + 3w

h (2h+ 1)z
2∂2
z

]
z−2h

= w

2 (n− 1) (n− 2) zn−2h, (2.24)

where the operator at z has spin-3 charge w and the operator at 0 has charge (−w). On
the other hand, for the heavy part, one finds that

〈OH(∞)OH(1)Wn〉 = wH
2 (n− 1)(n− 2), (2.25)

where the operator at z = 1 carries spin-3 charge (−wH) and the one at z →∞, charge wH .
Multiplying (2.24) with (2.25), dividing with the norm given by the central term in (2.19)
and summing over n = 3, 4, . . ., one finds the expected result for the W3 vacuum block due
to the exchange of a spin-3 quasi-primary

G3 (z) |wHw
c

= z−2h 90wHw
c

∞∑
n=3

(n− 1) (n− 2)
(n+ 1) (n+ 2)

zn

n
= 3wHw

c
f3 (z) z−2h. (2.26)

Consider now states of the form W−nW−m|0〉. These are orthogonal to W−n|0〉 since
W (0) does not appear in the OPE W (z)W (0). On the other hand, the stress tensor appears
in this OPE and the overlap 〈Lm+nW−nW−m〉 is non-zero. The overlap can be calculated
using the fact that W (z) is a primary field. With the help of the first line in (2.19) one finds

〈Lm+nW−nW−m〉 = c

360 (3n+ 2m)m
(
m2 − 1

) (
m2 − 4

)
. (2.27)

Removing this overlap leads to states orthogonal to the single-mode ones

|Ym,n〉 =

W−nW−m − (3n+ 2m)m
(
m2 − 1

) (
m2 − 4

)
30 (m+ n)

(
(m+ n)2 − 1

) L−m−n

 |0〉, (2.28)

with norm NYm,n = 〈Ym,n|Ym,n〉 = ( c
360)2m(m2 − 1)(m2 − 4)n(n2 − 1)(n2 − 4). The overlap

with the double-mode states L−mL−n|0〉 is suppressed in the large-c limit.
The next step is to compute 〈WmWnO(z)O(0)〉 using the commutator [Wn,O(z)]

in (2.23). We find that

〈WmWnO (z)O (0)〉

= zn
[
w

2 (n+ 1) (n+ 2) + 3w
2h (n+ 2) z∂z + 3w

h (2h+ 1)z
2∂2
z

]
〈WmO (z)O (0)〉

+ zn+1
[
(n+ 2) + 2

h+ 1z∂
]
〈WmOh+1 (z)O (0)〉

+ zn+2〈WmOh+2 (z)O (0)〉. (2.29)

To evaluate (2.29) one may use the commutators [Wm,Oh+1(z)] and [Wm,Oh+2(z)] which are
found in appendix A. Alternatively, recall that the three-point functions 〈W (z)Oh+1(z)O(z)〉,
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and 〈W (z)Oh+2(z)O(z)〉, are fixed by conformal symmetry up to the respective OPE
coefficients. This gives

zn+1
[
(n+ 2) + 2

h+ 1z∂
] ∫

dz3
2πiz

m+2
3 〈W (z3)Oh+1 (z)O (0)〉

= λWOh+1O
m (m− 1) (m− 2) (h (n− 2) + 2m+ n)

6 (h+ 1) zm+n−2h, (2.30)

where λWOh+1O is the OPE coefficient of O in the OPE W × Oh+1. Likewise,
〈WmOh+2(z)O(0)〉 is given by

zn+2〈WmOh+2(z)O(0)〉 =
λWOh+1O

24 (m− 2)(m− 1)m(m+ 1)zm+n−2h. (2.31)

The OPE coefficients are found with the help of the algebra, (2.19), by taking the limit z → 0

〈O (z3)W (z)Oh+1 (0)〉 ≈ z−4〈O (z3)W1

(
W−1 −

3w
2h L−1

)
O (0)〉

= z−4z−2h
3

[
h (2− c+ 32h)

22 + 5c − 9w2

2h

]
, (2.32)

and

〈O (z3)W (z)Oh+2 (0)〉

≈ z−5〈O (z3)W2

(
W−2 −

2
h+ 1L−1W−1 + 3w

(h+ 1) (2h+ 1)L
2
−1

)
O (0)〉

= z−5z−2h
3

[
8h (6 + c+ 8h)

22 + 5c − 2
h+ 1

4h (2− c+ 32h)
22 + 5c + 36w2

(h+ 1) (2h+ 1)

]
. (2.33)

From (2.32) and (2.33) we deduce that for large-c

λWOh+1O = −h5 −
9w2

2h ,

λWOh+2O = 8h
5 + 8h

5(h+ 1) + 36w2

(h+ 1)(2h+ 1) . (2.34)

Using (2.30) and (2.31) and the OPE coefficients given in (2.34) to evaluate (2.29), we find
that 〈Ym,n|O(z)O(0)〉 is given by

〈Ym,n|O (z)O (0)〉6 =
[
w2

4 (m− 1) (m− 2) (n− 1) (n− 2)

− h

30
m (m− 1) (m− 2)n (n− 1) (n− 2)

(m+ n) (m+ n+ 1)

]
zm+n−2h, (2.35)

with |Ym,n〉 defined in (2.28). The heavy part 〈OH(∞)OH(1)|Ym,n〉 can be calculated in a
similar manner,

〈OH(∞)OH(1)|Ym,n〉 = w2
H

4 (m− 1)(m− 2)(n− 1)(n− 2), (2.36)
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in the limit wH � H. Multiplying (2.35) and (2.36), dividing by the norm ( c
360)2m(m2 −

1)(m2−4)n(n2−1)(n2−4) and summing over m,n = 3, 4, . . . we determine the contribution
of the states |Ym,n〉 to the W3 vacuum block to be:

G3 (z) |w2
H
c2

= z−2h

2

∞∑
m,n=3

[(90wHw
c

)2 (m− 1) (m− 2) (n− 1) (n− 2)
(m+ 1) (m+ 2) (n+ 1) (n+ 2)

1
mn

− 540w2
Hh

c2
(m− 1) (m− 2) (n− 1) (n− 2)
(m+ 1) (m+ 2) (n+ 1) (n+ 2)

1
s(s+ 1)

]
zs, (2.37)

where s = m + n. The first line in (2.37) is the exponentiated term analogous to the
Virasoro case:

G3 (z) |w2
H
w2

c2

= 1
2

(3wHw
c

f3

)2
z−2h, (2.38)

while the second line can be summed to

G3(z)|w2
H
h

c2

= −9w2
Hh

70c2 w3(z)z−2h, (2.39)

where w3(z) is a sum of products fafb with a+ b = 6:

w3(z) ≡− 14f2
3 (z) + 15f2(z)f4(z)

=4200
∞∑

m,n=3

(m− 1)(m− 2)(n− 1)(n− 2)
(m+ 1)(m+ 2)(n+ 1)(n+ 2)

zs

s(s+ 1) . (2.40)

Similar to the Virasoro case, it is easy to verify that the non-exponentiated term w3(z)
behaves as log(1− z) when z → 1.

We can also calculate the contribution to the W3 vacuum block from states of the
form

[
L−mW−n − 〈Wm+nL−mW−n〉

〈Wm+nW−m−n〉 W−m−n
]
|0〉. This results in a term that contributes to

exponentation and takes the form ∝ wHHwh
c2 f2f3, as well as a term ∝ wHHw

c2 (f1f4 − 7
9f2f3).

Such terms are subleading in the limit wH � H (see appendix A.1 for further details).

3 Generalized Catalan numbers and differential equations

In this section we study the logarithm of the correlator defined by FN ≡ log GN . We start
by reviewing the behavior of the logarithm of the Virasoro vacuum block, F2 = log G2, in
the limit z → 1, the appearance of the Catalan numbers’s sequence, and the differential
equation satisfied by F2, following [12]. Next, we focus on the case N = 3 where a very
similar story emerges. Besides a certain generalization of the Catalan sequence, we also find
a set of diagrammatic rules governing the expansion of the W3 vacuum block along with a
differential equation satisfied by F3 for certain ratios of the values of the charges of the light
operators. We also consider the logarithm of the stress-tensor sector of the four-dimensional
correlator in the lightcone limit, which we denote by Gd=4 and Fd=4 respectively. We
investigate the behavior in the limit z → 1 and observe similarities with the two-dimensional
cases when ∆L → 0.
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Figure 1. Posets denoted by G([0, 0, 0, 0], [0, 0, 0], [0, 0, 0]) and G([1, 0, 2], [1, 1], [2, 1]), respectively.

3.1 The Virasoro vacuum block

In [12] it was shown how one can derive a differential equation satisfied by the logarithm of
the Virasoro vacuum block, by studying its behavior in the z → 1 limit. Expanding F2 in
powers of hH/c the authors of [12] observed that F2 behaves logarithmically when z → 1.
Furthermore they noticed that the sequence of the numerical coefficients multiplying the
logarithm at the each order forms the sequence of Catalan numbers given by c2,k:

c2,k = Γ(2k − 1)
Γ(k)Γ(k + 1) , k ≥ 1. (3.1)

These numbers are generated by the following generating function

B2(x) =
∞∑
k=1

c2,kx
k = 1−

√
1− 4x
2 , (3.2)

which satisfies
B2(x) = B2(x)2 + x. (3.3)

The Catalan numbers c2,k are known to appear in various problems in combinatorics. Here
we would like to point out that they can also be understood as the numbers of linear
extensions of one-level grid posets13 G([0k−1], [0k−2], [0k−2]), for k ≥ 1. Generally, one-level
grid-like posets G[v, t,b], where v = (v1, . . . , vn), t = (t1, . . . , tn−1) and b = (b1, . . . , bn−1),
can be represented with Hasse diagrams of the following type:

The numbers vi denote the number of nodes in the i-th vertical edge, ti denote the
number of nodes in the i-th top edge and bi denote the number of nodes in the i-th
bottom edge, with the endpoints excluded. The Catalan numbers are the numbers of linear
extensions of posets of the type depicted in the left Hasse diagram of figure 1.

The logarithm of the correlator F2(z) = log G2(z) when z → 1 therefore behaves as

F2(z) ≈
z→1
−2hB2(x) log(1− z), (3.4)

with x = 6hHc . Inspired by (3.3) and (3.4) the authors of [12] find a differential equation
satisfied by F2(z) for all z:

1
2h

d2

dz2F2(z) = 1
4h2

(
d

dz
F2(z)

)2
+ x

(1− z)2 . (3.5)
13Partially ordered sets (posets) have a notion of ordering between some of the elements but not necessarily

all of them. A linear extension of a partial ordering is a linear extension to a totally ordered set where all
the elements are ordered in such a way that the original partial ordering is preserved.
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3.2 The W3 vacuum block

Here we uncover a similar story for the W3 vacuum block G3. Expanding in powers of wHc ,

log G3 ≡ F3(z) =
∞∑
k=0

(
wH
c

)k
F (k)

3 (z), (3.6)

with
F (0)

3 (z) = −2h log(z), (3.7)

and using the exact expression known for the W3 vacuum block (see for example eq. (4.24)
in [41]) one finds that{

lim
z→1

(
− F (k)

3 (z)
6k+1 log(1− z)

) ∣∣∣∣∣k = 1, 2, . . .
}

= w ×
{
1, n, 16, 35n, 768, 2002n, 49152, 138567n, . . .

}
, (3.8)

where we set n ≡ h/w. F3 in the limit z → 1 is given by

F3(z) ≈
z→1
−6w log(1− z)B3(x, n), (3.9)

where B3(x, n) is the generating function of the sequence (3.8)

B3(x, n) =
∞∑
k=1

c3,kx
k = 1

6

(√
3 sin

(1
3 arcsin

(
6
√

3x
))
− n cos

(1
3 arcsin

(
6
√

3x
))

+ n

)
.

(3.10)
Remarkably, there exist exactly three values of n for which B3(x, n) satisfies a cubic

equation; these are n = ±3 and n = 0. For these values of the ratios of the light charges, the
W3 vacuum block simplifies dramatically; it can be expressed in terms of a single function
of z raised to a given power.14

For n = ±3 the sequence of (3.8) reduces to{
lim
z→1

[
−
(
±1

6

)k+1 F (k)
3 (z)

log(1− z)

] ∣∣∣∣∣k = 1, 2, . . .
}

= w ×
{
1,±3, 16,±105, 768,±6006, 49152,±415701, . . .

}
. (3.11)

Each term in this sequence can be derived from the following formula

c3,k = (±2)k−1 (3k − 3)!!
k! (k − 1)!! , k ≥ 1. (3.12)

Moreover, one can check that function (3.10) with n = ±3 satisfies the following relation

B3(x,±3) = −2B3(x,±3)3 ± 3B3(x,±3)2 + x. (3.13)
14For other values of n the generating function satisfies a sixth order algebraic equation. As a result

writing a differential equation becomes cumbersome.

– 16 –



J
H
E
P
0
6
(
2
0
2
2
)
1
6
2

with x = 6wHc . Inspired by (3.13) we search for a cubic differential equation satisfied by
F3(z). It is easy to see, using the exact expression for the W3 block given for example in
eq. (4.24) of [41], that F3(z, n = 3) ≡ F̂3(z) satisfies the following differential equation

1
6w

d3

dz3 F̂3(z) = − 1
54w3

(
d

dz
F̂3(z)

)3
+ 1

6w2

(
d2

dz2 F̂3(z)
)(

d

dz
F̂3(z)

)
+ 2x

(1− z)3 .

(3.14)
When h

w = −3 a similar equation can be found by taking w → −w and 1− z → 1
1−z . The

case n = 0 is special and is discussed in appendix B.

3.2.1 Diagrammatic rules for the W3 block

Here we formulate diagrammatic rules for computing the logarithm of W3 vacuum block
F3(z) = log G3(z), in the limit where wH ∼ c� 1 and all other charges are parametrically
suppressed. The ratio of the charges of the light operator, n, is left arbitrary. The rules are
similar to those in [12] for computing the logarithm of the Virasoro vacuum block.

We now have cubic and quartic vertices and the exchanged states are modes of the
stress tensor and spin-3 current, which we refer to collectively as currents. The only relevant
diagrams in the limit we consider, are those where a single propagator connects to the light
operator OL. The rules can be stated as follows:

1. Label the k initial currents connected to operator OH with integers a1, a2, . . . , ak.

2. Draw all diagrams where the k initial currents combine via 3-pt and 4-pt vertices to
become a single current, which connects with the light operators.

3. For each propagator define its momentum p as the sum of the ai flowing through it.
Momentum is conserved at vertices. Each propagator comes with a factor

1
(p+ 1)(p+ 2) .

4. For each vertex coupling a current of momentum ai to the external operator OH ,
include a factor of

wH√
c

(ai − 1)(ai − 2).

5. For each vertex coupling a current of momentum p to the external operator OL,
include a factor of

1
6
√
c

(
(−1)k(h− 3w) + h+ 3w

)
(p− 1)(p− 2).

6. For each 4-current vertex, include a factor of −2/3c. For each 3-current vertex, where
two currents carry momentum m and n, while the third current carries momentum
m+ n (see figure 3), include a factor of

1√
c
(m+ n+ 2).
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Figure 2. Vertices denoting the coupling of an exchanged current with the external states OH and
OL, respectively.

Figure 3. Vertices denoting 3-pt and 4-pt coupling of currents, respectively.

7. Take the product of the propagators and vertices and then multiply the result by

36k

k!
zs

s(s− 1)(s− 2) ,

where s =
∑k
i=1 ai.

8. Sum the resulting tree diagrams over all ai from 3 to∞ to obtain the wkH
ck

term in F(z)|W3 .

At orders wH/c and w2
H/c

2 there is just one diagram to take into account, while
at order w3

H/c
3 there are two different types of diagrams, see figure 4 and 5. This

way, one obtains the expansion of the logarithm of W3 vacuum block, which is given by
eq. (4.24) in [41].15

15We explicitly checked this up to O(w4
H/c4).
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Figure 4. Diagrams at orders wH/c and w2
H/c

2, respectively.

Figure 5. Diagrams at order w3
H/c

3.

3.3 Stress tensor sector in d = 4

The stress tensor sector of the HHLL correlator in four-dimensional spacetime and in the
lightcone limit (z̄ → 0) is given according to [29] by

Gd=4(z, z̄) = 1
(zz̄)∆L

(
1 +

∞∑
k=1

µkz̄kG(k)
d=4(z)

)
, (3.15)

G(k)
d=4(z) =

∑
{ip}

ai1...ikfi1(z) . . . fik(z), (3.16)

where the sum goes over all sets of {ip} with ip ≤ ip+1 and ai1...ik coefficients that depend
on ∆L, and the expansion parameter µ is given by

µ ≡ 160
3

∆H

CT
. (3.17)

Explicit expressions for G(k)
d=4 with k = 1, 2, 3 are given in [29]. There it was also shown that

Gd=4(z, z̄) can be written as

Gd=4(z, z̄) = e∆LFd=4(z,z̄), (3.18)

Fd=4(z, z̄) being of O(1) in the limit ∆L →∞ and which can be expanded as follows

Fd=4(z, z̄) = F (0)
d=4(z, z̄) +

∞∑
k=1

µkz̄kF (k)
d=4(z). (3.19)
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with F (k)
d=4 being schematically of the same form as the G(k)

d=4 in (3.16). For k = 0, 1, 2, 3 for
instance, we have

F (0)
d=4(z, z̄) = − log(zz̄),

F (1)
d=4(z) = 1

120f3(z),

F (2)
d=4(z) =

(12− 5∆L)f3(z)2 + 15
7 (∆L − 8)f2(z)f4(z) + 40

7 (∆L + 1)f1(z)f5(z)
28800(∆L − 2) ,

F (3)
d=4(z) = b117f

2
1 (z)f7(z) + b126f1(z)f2(z)f6(z) + b135f1(z)f3(z)f5(z)

+ b225f
2
2 (z)f5(z) + b234f2(z)f3(z)f4(z) + b333f

3
3 (z), (3.20)

where

b117 = 5(∆L + 1)(∆L + 2)
768768(∆L − 2)(∆L − 3) ,

b126 = 5(5∆2
L − 57∆L − 50)

6386688(∆L − 2)(∆L − 3) ,

b225 = − 7∆2
L − 51∆L − 70

2903040(∆L − 2)(∆L − 3) ,

b135 = − 11∆2
L − 19∆L − 18

1209600(∆L − 2)(∆L − 3) ,

b234 = (∆L − 2)(∆L + 2)
1209600(∆L − 2)(∆L − 3) ,

b333 = 7∆2
L − 18∆L − 24

2592000(∆L − 2)(∆L − 3) . (3.21)

Inspired by the two-dimensional case, we consider the F (k)
d=4(z) in the limit z → 1. We

observe that all terms proportional to logi(1− z) with i ≥ 2 vanish in this limit as long as
∆L → 0. In this special case, one can show that{

lim
z→1,∆L→0

(−4)k(k!)F (k)
d=4(z)

log(1− z)

∣∣∣∣∣k = 1, 2, 3, 4, 5, . . .
}

=
{
1, 1, 6, 71, 1266, . . .

}
. (3.22)

The sequence of numbers in the (3.22) is known as the number of linear extensions of
the one-level grid poset G[(1k−1), (0k−2), (0k−2)], for k ≥ 1, given by A274644 in [43].
As an example, the k = 5 case is represented by the Hasse diagram in figure 6. We
do not explicitly discuss it here but the relevant posets in even number of dimension d

are G[(d−2
2 )k−1, (0)k−2, (0k−2)]. The generating functions and the general formulas for the

numbers of linear extensions of posets G[(d−2
2 )k−1, (0)k−2, (0k−2)] are not (currently) known.

4 Discussion

We consider the WN vacuum block contributions to heavy-heavy-light-light correlators in
two-dimensional CFTs with higher-spin symmetries. We perform explicit mode calculations
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Figure 6. The poset denoted by G([1, 1, 1, 1], [0, 0, 0], [0, 0, 0]).

for W3 and W4 blocks and show that they reproduce the semi-classical vacuum blocks
whose explicit form can be found in e.g. [40]. We observe that terms in the expansion of
these blocks in powers of (q(i)

H /c) satisfy the suitably modified ansatz which was used to
compute the stress tensor sector of the d = 4 HHLL correlator in [29].

The HHLL Virasoro vacuum block is governed by the Catalan numbers whose generating
function satisfies a quadratic equation allowing the construction of a non-linear differential
equation for the logarithm of the vacuum block [12]. We show that the W3 and W4 HHLL
vacuum blocks are governed by generalizations of the Catalan numbers; for certain values
of the light operator charges, their generating functions satisfy cubic and quartic algebraic
equations respectively. We further show that these equations uplift to non-linear differential
equations satisfied by the logarithm of the blocks. What’s more, the leading twist stress
tensor sector of HHLL correlators in even number of spacetime dimensions d has the same
structure in the limit ∆L → 0. The relevant generalization of the Catalan numbers is now
the number of linear extensions of partially ordered sets G[(d−2

2 )k−1, (0)k−2, (0)k−2]. For
d > 2 the generating functions for these sequences are not known.

The appearance of the generating function BN (x) comes from the limit z → 1 of the
logarithm FN of the block, where FN ∼ BN (x) log(1− z). For example, eq. (3.13) defines
generalizations of Catalan numbers; this and similar equations were studied in [45]. For the
W3 case, we observe that for generic light charges h and w, the generating function satisfies
a polynomial equation of degree 6, rather than 3, which however does not take the form
studied in [45]. The numbers relevant for the d = 4 result also do not seem to come from
equations of this form; it would be interesting to understand this better.

Note that in the d = 4 case, the logarithm of the minimal-twist stress tensor sector
of HHLL correlators, Fd=4, is a rational function of ∆L which is O(1) for large ∆L. An
important difference with the d = 2 WN result is that in the limit z → 1, at k-th order in
the µ ' ∆H

CT
expansion, F (k)

d=4 ∼ g(∆L) logk(1− z) for some function g(∆L). However, in the
limit ∆L → 0, we do find that Fd=4 ∼ Bd=4(µ) log(1− z) with Bd=4 being the generating
function of the number of linear extensions of the G[(1k−1), (0k−2), (0k−2)] posets (this is
also the number of Young tableaux with restrictions; similar numbers were recently studied
in [46]).16 If we knew an algebraic equation satisfied by Bd=4, we could perhaps construct
a differential equation whose solution would give the full minimal-twist stress tensor sector
in d = 4 large-N CFTs in the limit ∆L → 0.

16A similar story holds in d dimensions with the relevant poset now being G[( d−2
2 )k−1, (0)k−2, (0k−2)].
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Heavy-heavy-light-light WN vacuum blocks where the spin-3 charge q(3)
H ∼ c and

qi 6=3
H � c take a form similar to the minimal-twist stress tensor sector in four spacetime

dimensions. In both cases, at order ( q
(3)
H
c )k in d = 2 and order µk ' (∆H

CT
)k in d = 4, the

result is a sum of products fa1fa2 . . . fak with a1 +a2 + . . .+ak = 3k. In two dimensions, we
have shown how at k = 1, 2 and N = 3, 4, this follows from an explicit mode calculation and
the knowledge of the higher-spin algebra. It would be interesting to understand if the d = 4
minimal-twist stress tensor sector can also be related to an emergent symmetry algebra in
the lightcone limit. Recently there have been several works devoted to the lightray operators
made out of the stress tensor and to the study of the algebra of such operators [47–51]. It
would be interesting to understand if there is a connection to our work.

In [21] the Chern-Simons description of pure gravity on AdS3 and on Euclidean BTZ
was related to the quantization of a certain co-adjoint orbit of the Virasoro group [52]. In
this framework the HHLL Virasoro vacuum block, and corrections to it, can be computed.
It would be interesting to explore a similar framework in the setup of our paper, where
higher-spin currents are present.
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A Some details on the calculation of the W3 block

We now make explicit the contribution of the operator O to the commutator [Wm,Oh+j(z)].
To this end, consider the OPE between two quasiprimaries φi(z1)× φj(z2)|φk :

φi(z1)× φj(z2)|φk = λijk

∞∑
p=0

ap(hi, hj , hk)
p!

∂pz2φ
k(z2)

(z1 − z2)hi+hj−hk−p
, (A.1)

where ap(hi, hj , hk) = (hi − hj + hk)p(2hk)−1
p . Setting φi(z1) = W (z1), φj = Oh+j(z2),

φk = O and integrating against
∫
C(z2)

dz1
2πiz

m+2
1 W (z1)Oh+j(z2) we find that

[Wm,Oh+j(z2)]|O = λWOh+jO

∫
C(z2)

dz1
2πiz

m+2
1

j+2∑
n=0

ap(3, h+ j, h)∂pz2O(z2)
(z1 − z2)3+j−pp! , (A.2)

and performing the integral we find that

[Wm,Oh+j(z2)]|O = λWOh+jO

j+2∑
p=0

ap(3, h+ j, h)(m+ 2)!
(m+ p− j)!(j + 2− p)!p!z

m+n+p−j
2 ∂pz2O(z2). (A.3)
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A.1 Mixed states W−nL−m|0〉

We now consider the following states

|Am,n〉 = L−mW−n|0〉 −
〈Wm+nL−mW−n〉
〈Wn+mW−n−m〉

W−m−n|0〉, (A.4)

where (for c→∞)

〈Wm+nL−mW−n〉 = (3m+ n) c

360n
(
n2 − 1

) (
n2 − 4

)
,

〈Wn+mW−n−m〉 = c

360 (m+ n)
(
(m+ n)2 − 1

) (
(m+ n)2 − 4

)
,

〈WnLmL−mW−n〉 = c2

12× 360n
(
n2 − 1

) (
n2 − 4

)
m(m2 − 1). (A.5)

Now, one finds that 〈Am,n|OL(z)OL(0)〉

〈Am,n|OL(z)OL(0)〉 = DL,mDW,n〈OL(z)OL(0)〉

− 〈Wm+nL−mW−n〉
〈Wn+mW−n−m〉

DW,m+n〈OL(z)OL(0)〉

= 1
2(m− 1)(n− 1)(n− 2)whzm+n−2h+

+ (m− 1)m(n− 2)(n− 1)n(4 +m+ 3n)
2(m+ n)(m+ n+ 1)(m+ n+ 2) wzm+n−2h, (A.6)

where

[Q(N)
m ,Oh,q(N)(z)]|O

h,q(N) = q(N)
∫
C(z)

dz1
2πiz

m+N−1
1

N−1∑
p=0

ap(N,h, h)
(z1 − z)N−pp!∂

p
zOh,q(N)(z)

= q(N)
N−1∑
p=0

ap(N,h, h)
p!

(m+N − 1)!
(N − p− 1)!(m+ p)!z

m+p∂pzOh,q(N)(z)

:= DN,mOh,q(N)(z). (A.7)

For the heavy part, we keep only the quadratic part in the charges such that

lim
z4→∞

z2H
4 〈OH(z4)OH(1)|Am,n〉 = 1

2(m− 1)(n− 2)(n− 1)wHH. (A.8)

Multiplying (A.6) with (A.8) and dividing by the norm 〈WnLmL−mW−n〉 in (A.5),
we find that

∞∑
m,n=2

lim
z4→∞

z2hH
4
〈OH(z4)OH(1)|Am,n〉〈Am,n|OL(z)OL(0)〉

〈WnLmL−mW−n〉

∣∣∣wHHwh
c2

= 1080wHHwh
c2 z−2h

∞∑
m,n=2

(m− 1)(n− 1)(n− 2)
(m+ 1)(n+ 1)(n+ 2)

zm+n

mn

= 6wHHwh
c2 f2f3, (A.9)
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which as expected is the “exponentiated term”. On the other hand, consider

∞∑
m,n=2

lim
z4→∞

z2H
4
〈OH(z4)OH(1)|Am,n〉〈Am,n|OL(z)OL(0)〉

〈WnLmL−mW−n〉

∣∣∣wHHw
c2

= 1080wHHw
c2 z−2h

∞∑
m,n=2

(m− 1)(n− 1)(n− 2)
(m+ 1)(n+ 1)(n+ 2)

(4 +m+ 3n)zm+n

(m+ n)(m+ n+ 1)(m+ n+ 2)

∝ wHHw

c2

(
f1f4 −

7
9f2f3

)
. (A.10)

Note that in both sums we have trivially extended the summation from m > 3 to m > 2.
On the other hand, by expanding the vacuum block we find precisely the same structure

〈OH(∞)OH(1)OL(z)OL(0)〉|1W3 ,
wHHwh

c2
∝ f2f3,

〈OH(∞)OH(1)OL(z)OL(0)〉|1W3 ,
wHHw

c2
∝
(
f1f4 −

7
9f2f3

)
.

(A.11)

B W4 vacuum block

In this appendix we further include a spin-4 current and consider the W4 algebra. We will
show that including a spin-4 current modifies the term proportional to w2

H
c2 discussed in

section 2. The result can again be written as a sums of the following combination fa(z)fb(z),
with a+ b = 6. Compared to the case of W3, the term proportional to w2

H
c2 in the vacuum

block will now depend also on the spin-4 charge u of the light operator.
We denote the spin-4 current by U(z) and the external operators carry eigenvalues

±uH and ±u. The heavy operator again has a spin-3 charge of O(c) while the conformal
weight H and the spin-4 charge are small compared to wH , i.e. H,uH � wH . In this limit,
there are no new contributions due to the states U−m|0〉 since they will be proportional to
uHu
c f4z

−2h, which is suppressed as c→∞. The first contribution will appear at O(w
2
H
c2 ) and

is due to the fact that the modes |Ym,n〉 are not orthogonal to U−m−n|0〉. In this section we
will therefore study the contribution due to the following states:

|Ỹm,n〉 =
[
W−nW−m −

〈Lm+nW−nW−m〉
〈Lm+nL−m−n〉

L−m−n −
〈Um+nW−nW−m〉
〈Um+nU−m−n〉

U−m−n
]
|0〉.

(B.1)
There are two new contributions to 〈Ỹm,n|O(z)O(0)〉 compared to 〈Ym,n|O(z)O(0)〉, one is
simply that we need to include the last term in (B.1). The second is a correction to the
OPE coefficients λWOh+1O and λWOh+2O, these pick up a contribution that depends on the
spin-4 charge u due to the fact that [Wm,W−m] contain the spin-4 zero mode U0. Note
that the heavy part remains unchanged since wH � uH and is therefore given by (2.36):

〈OH(∞)OH(1)|Ỹm,n〉 = w2
H

4 (m− 1)(m− 2)(n− 1)(n− 2), (B.2)
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and the norm of |Ỹm,n〉 is also the same as that of |Ym,n〉 (to leading order in c):

NỸm,n = 〈Ỹm,n|Ỹm,n〉 =
(

c

360

)2
m
(
m2 − 1

) (
m2 − 4

)
n
(
n2 − 1

) (
n2 − 4

)
. (B.3)

We therefore only need to calculate 〈Ỹm,n|O(z)O(0)〉.
The modes Um of U(z) are defined by

U(z) =
∑
m

Umz
−m−4, (B.4)

and since U is primary we know that

[Lm, Un] = (3m− n)Um+n. (B.5)

Consider now various OPEs of the spin-3 and spin-4 field,17 in terms of quasi-primaries

W (z)W (0) = c

3z6 + 2T (0)
z4 + λWWUU(0)

z2 + . . . ,

W (z)U(0) = λWUWW (0)
z4 + . . . ,

U(z)U(0) = c

4z8 + 2T (0)
z6 + λUUU

U(0)
z4 + . . . , (B.6)

where λWUW = 3
4λWWU = 3

4
4√
3

√
(2+c)(114+7c)
(7+c)(22+5c) ≈

√
21
5 and the ellipses denote non-linear

terms that will be suppressed when c→∞. From (B.6), we can derive the commutator of
the various modes. Especially, we want to consider [Wn, Um], [Wn,Wm] and [Un, Um]. The
last one is given by

[Um, Un] = c

20160m
(
m2 − 1

) (
m2 − 4

) (
m2 − 9

)
δm+n

+ (m− n)
1680

[
3
(
m4 + n4

)
+ 4m2n2 − (2mn+ 39)

(
m2 + n2

)
+ 20mn+ 108

]
Lm+n + . . . , (B.7)

while [Wn,Wm]|U is given by

[Wm,Wn]|U = λWWU
m− n

2 Un+m, (B.8)

as well as

[Wm, Un]|W = λWUW

84
[
5m3 + 9n− 5m2n− n3 − 17m+ 3mn2

]
Wm+n (B.9)

Using (B.8) and (B.9), we find that

〈Um+nW−nW−m〉 = λWUW cm
(
m2 − 1

) (
m2 − 4

)
30240

×
[
−9m+m3 − 26n+ 6m2n+ 14mn2 + 14n3

]
(B.10)

17See e.g. appendix A.2 in [53] for the W4 algebra.
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and
〈Um+nU−m−n〉 = c

20160s
(
s2 − 1

) (
s2 − 4

) (
s2 − 9

)
. (B.11)

From the three-point function 〈U(z3)O(z)O(0)〉 and λUOO = u one finds that

〈Um+nO(z)O(0)〉 = u

6 (m+ n− 1)(m+ n− 2)(m+ n− 3)zm+n−2h. (B.12)

Lastly, we need to compute the corrections to the OPE coefficients λWOh+1O and λWOh+2O.
This is similar to the calculation in the W3 case and one finds that (c→∞, z → 0)

〈O (z3)W (z)Oh+1 (0)〉 ≈ z−4〈O (z3)W1

(
W−1 −

3w
2h L−1

)
O (0)〉

= z−4z−2h
3

[
−h5 + λWWUu−

9w2

2h

]
, (B.13)

where we used [W1,W−1] = . . . + λWWUU0 and that U0O(0)|0〉 = uO|0〉. Likewise, one
finds that

〈O(z3)W (z)Oh+2(0)〉

≈ z−5〈Oh (z3)W2

(
W−2 −

2
h+ 1L−1W−1 +

[ 3w
h (h+ 1) −

3w
h (2h+ 1)

]
L2
−1

)
O (0)〉

= z−5z−2h
3

[
8h
5 + 8h

5 (h+ 1) + 36w2

(2h+ 1) (h+ 1) + 2λWWUu−
8u
h+ 1λWWU

]
, (B.14)

to leading order when c → ∞ and using [W2,W−2]|U = . . . + 2U0. Putting this alto-
gether gives

〈Ỹm,n|O(z)O(0)〉 = 〈Ym,n|O(z)O(0)〉

+ uλWWU (m− 2)(m− 1)m(n− 2)(n− 1)nzm+n−2h

12s(s+ 1)(s+ 2)(s+ 3)

× (17 + 2m2 + 15n+ 2n2 + 15m+ 9mn) + . . . . (B.15)

Given (B.15), (B.2) and (B.3), we find the contribution to the vacuum block from the
states |Ỹm,n〉 proportional to u is given by

G(z)|w2
H
u

c2

= 37800w2
HuλWWUz

−2h

c2

[
25w̃4(z) + 3w3(z)

]
, (B.16)

where w3 is given by (2.40) and w̃4 is a sum of products of functions fafb with a+ b = 6
given by

w̃4 = 3
(
−f2f4 + 4

3f1f5

)
=
∞∑
m=3

∞∑
n=3

1260(m− 2) (n− 2) (n− 1)n
(
m2 + 6 (n+ 2) (n+ 3) +m (9 + 4n)

)
m (n+ 2) (n+ 3) (n+ 4) s (s+ 1) (s+ 2) (s+ 3) zm+n.

(B.17)
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B.1 Differential equation for the W4 vacuum block

Here we study the W4 vacuum block, or rather its logarithm, as z → 1. The W4 HHLL
vacuum block is known exactly. One can find it for instance in eq. (C.1) of [41]. In this case,
we can choose to scale the spin-3 charge wH with the central charge c — as in appendix A
— with the hope of uncovering relations similar to those valid for the stress-tensor sector
of the four-dimensional correlator in the light cone limit. However, we may also choose to
consider the limit uH ∼ c� 1, with all other charges parametrically smaller.

Remarkably, F4(z) behaves logarithmically in the limit z → 1 in both cases. A sequence
of numbers, the numerical coefficients of log (1− z) in the expansion of the relevant heavy
charge can be determined, and a quartic differential equation satisfied by the logarithm of
the block for certain ratios of the light charges can be found.

Let us first consider the scaling uH ∼ c� 1 and expand F4(z) = log G4(z) in powers of
uH/c as F4(z) =

∑∞
k=0

(uH
c

)k F (k)
4 (z) to obtain in the limit z → 1:

{
lim
z→1

(
− F (k)(z)

20× 6k log(1− z)

) ∣∣∣∣∣k = 1, 2, . . .
}

= u×
{
1, n− 7, 458− 14n, 1001n− 13307, 732374− 34034n, 1939938n− 31667622, . . .

}
,

(B.18)

where we set
n = 18

5
h

u
. (B.19)

If B4(x, n) with x ≡ 6uHc is the generating function of (B.18), then F(z) behaves in the
limit z → 1 as

F4(z) ≈
z→1
−20u log(1− z)B4(x, n) (B.20)

There exist four different values of n for which the generating function B4(x, n) satisfies a
quartic equation. These are: n = {18, 3,−2,−12}.

When n = 18, we find the following quartic order equation for the generating function:

B4(x, 18) = 36B4(x, 18)4 − 36B4(x, 18)3 + 11B4(x, 18)2 + x. (B.21)

Inspired by this relation one finds that F4(z, n = 18) ≡ F̃4(z) satisfies the following
differential equation

F̃ ′′′′(z) = 120u
(

x

(1− z)4 + 9F̃ ′(z)4

40000u4 −
9F̃ ′(z)2F̃ ′′(z)

2000u3 + 3F̃ ′′(z)2 + 4F̃ ′′′(z)F̃ ′(z)
400u2

)
,

(B.22)

which reduces to the equation (B.21) in the limit z → 1 using (B.20).
When n = −12 the generating function B4(x,−12) satisfies

B4(x,−12) = −144B4(x,−12)4 − 96B4(x,−12)3 − 19B4(x,−12)2 + x, (B.23)
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whilst F4(z, n = −12) ≡ F̂(z) is a solution of the following differential equation

F̂ ′′′′(z) = 120u
(

x

(1− z)4 −
9F̂ ′(z)4

10000u4 −
3F̂ ′(z)2F̂ ′′(z)

250u3 − 7F̂ ′′(z)2 + 6F̂ ′′′(z)F̂ ′(z)
400u2

)
.

(B.24)

For n = −2, 3 we find the following quartic order equations for the generating function:

n = 3, B4(x, 3) = −2304B4(x, 3)4 + 384B4(x, 3)3 − 4B4(x, 3)2 + x,

n = −2, B4(x,−2) = 2916B4(x,−2)4 + 324B4(x,−2)3 − 9B4(x,−2)2 + x. (B.25)

In these cases however, the differential equations similarly constructed do not correctly
reproduce the vacuum block beyond z → 1 limit. This is analogous to what happens in the
case of the W3 vacuum block for h = 0, where the generating function satisfies

n = 0, B3(x, 0) = 16B3(x, 0)3 + x. (B.26)

It is curious that these special cases correspond to values for the ratios of the light charges
for which h < w, u.

Let us now consider the case with wH ∼ c� 1 and the other charges parametrically
smaller. For notational simplicity, we will use here the same symbol F4(z). We hope that
this will not create any confusion. In this case, F4(z) is expanded as

F4(z) =
∞∑
k=0

(
wH
c

)k
F (k)(z), (B.27)

with
F (0)

4 = −2h log(z). (B.28)

Using the exact expression for the W4 block one finds that{
lim
z→1

(
(−1)k+1F (k)

4 (z)
2k+132k log(1−z)

)∣∣∣k= 1,2, . . .
}

=w×
{

1, 2
45 (18n+85m) ,10, 2

81 (882n+2785m) ,318, 44
3645 (67158n+225635m) ,13620, . . .

}
,

(B.29)

where n,m denote the ratios of the light charges n = h
w and m = u

w , respectively. Notice
that in this case ratios of both charges appear as opposed to the previous scaling for which
additional simplifications occurred that eliminated w. This may be related to the fact that
a spin-3 current, having odd spin, does not appear in the OPE of two spin-4 currents.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 28 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
6
(
2
0
2
2
)
1
6
2

References

[1] J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl.
Phys. B 270 (1986) 186 [INSPIRE].

[2] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013)
140 [arXiv:1212.4103] [INSPIRE].

[3] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and
AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

[4] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics
from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

[5] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality
from Classical Background Fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].

[6] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

[7] T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT,
arXiv:1303.7221 [INSPIRE].

[8] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy
from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392]
[INSPIRE].

[9] P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum Entanglement of Localized
Excited States at Finite Temperature, JHEP 01 (2015) 102 [arXiv:1410.2287] [INSPIRE].

[10] E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks,
JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].

[11] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS3
gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].

[12] A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Hawking from Catalan, JHEP 05
(2016) 069 [arXiv:1510.00014] [INSPIRE].

[13] A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP 05
(2016) 075 [arXiv:1512.03052] [INSPIRE].

[14] T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion,
JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].

[15] A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS3/CFT2, JHEP
05 (2016) 109 [arXiv:1603.08925] [INSPIRE].

[16] B. Chen and J.-q. Wu, Holographic Entanglement Entropy For a Large Class of States in 2D
CFT, JHEP 09 (2016) 015 [arXiv:1605.06753] [INSPIRE].

[17] B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in
Semi-classical Limit, JHEP 10 (2016) 110 [arXiv:1609.00801] [INSPIRE].

[18] A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a
Classification of Semiclassical Saddles, JHEP 04 (2017) 072 [arXiv:1609.07153] [INSPIRE].

[19] H. Chen, C. Hussong, J. Kaplan and D. Li, A Numerical Approach to Virasoro Blocks and the
Information Paradox, JHEP 09 (2017) 102 [arXiv:1703.09727] [INSPIRE].

[20] T. Faulkner and H. Wang, Probing beyond ETH at large c, JHEP 06 (2018) 123
[arXiv:1712.03464] [INSPIRE].

– 29 –

https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1016/0550-3213(86)90552-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB270%2C186%22
https://doi.org/10.1007/JHEP11(2013)140
https://doi.org/10.1007/JHEP11(2013)140
https://arxiv.org/abs/1212.4103
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.4103
https://doi.org/10.1007/JHEP12(2013)004
https://arxiv.org/abs/1212.3616
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.3616
https://doi.org/10.1007/JHEP08(2014)145
https://arxiv.org/abs/1403.6829
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.6829
https://doi.org/10.1007/JHEP11(2015)200
https://arxiv.org/abs/1501.05315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.05315
https://arxiv.org/abs/1303.6955
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.6955
https://arxiv.org/abs/1303.7221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.7221
https://doi.org/10.1007/JHEP02(2015)171
https://arxiv.org/abs/1410.1392
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.1392
https://doi.org/10.1007/JHEP01(2015)102
https://arxiv.org/abs/1410.2287
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.2287
https://doi.org/10.1007/JHEP07(2015)131
https://arxiv.org/abs/1501.02260
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.02260
https://doi.org/10.1007/JHEP12(2015)077
https://arxiv.org/abs/1508.04987
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.04987
https://doi.org/10.1007/JHEP05(2016)069
https://doi.org/10.1007/JHEP05(2016)069
https://arxiv.org/abs/1510.00014
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.00014
https://doi.org/10.1007/JHEP05(2016)075
https://doi.org/10.1007/JHEP05(2016)075
https://arxiv.org/abs/1512.03052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.03052
https://doi.org/10.1007/JHEP07(2016)123
https://arxiv.org/abs/1603.04856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.04856
https://doi.org/10.1007/JHEP05(2016)109
https://doi.org/10.1007/JHEP05(2016)109
https://arxiv.org/abs/1603.08925
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.08925
https://doi.org/10.1007/JHEP09(2016)015
https://arxiv.org/abs/1605.06753
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06753
https://doi.org/10.1007/JHEP10(2016)110
https://arxiv.org/abs/1609.00801
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.00801
https://doi.org/10.1007/JHEP04(2017)072
https://arxiv.org/abs/1609.07153
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.07153
https://doi.org/10.1007/JHEP09(2017)102
https://arxiv.org/abs/1703.09727
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.09727
https://doi.org/10.1007/JHEP06(2018)123
https://arxiv.org/abs/1712.03464
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.03464


J
H
E
P
0
6
(
2
0
2
2
)
1
6
2

[21] J. Cotler and K. Jensen, A theory of reparameterizations for AdS3 gravity, JHEP 02 (2019)
079 [arXiv:1808.03263] [INSPIRE].

[22] S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge Trajectories and the
Virasoro Analytic Bootstrap, JHEP 05 (2019) 212 [arXiv:1811.05710] [INSPIRE].

[23] M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and
Anomalous Dimensions, SciPost Phys. 6 (2019) 065 [arXiv:1812.03120] [INSPIRE].

[24] A.L. Fitzpatrick and K.-W. Huang, Universal Lowest-Twist in CFTs from Holography, JHEP
08 (2019) 138 [arXiv:1903.05306] [INSPIRE].

[25] R. Karlsson, M. Kulaxizi, A. Parnachev and P. Tadić, Black Holes and Conformal Regge
Bootstrap, JHEP 10 (2019) 046 [arXiv:1904.00060] [INSPIRE].

[26] Y.-Z. Li, Z.-F. Mai and H. Lü, Holographic OPE Coefficients from AdS Black Holes with
Matters, JHEP 09 (2019) 001 [arXiv:1905.09302] [INSPIRE].

[27] M. Kulaxizi, G.S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress
Tensors, JHEP 10 (2019) 107 [arXiv:1907.00867] [INSPIRE].

[28] A.L. Fitzpatrick, K.-W. Huang and D. Li, Probing universalities in d > 2 CFTs: from black
holes to shockwaves, JHEP 11 (2019) 139 [arXiv:1907.10810] [INSPIRE].

[29] R. Karlsson, M. Kulaxizi, A. Parnachev and P. Tadić, Leading Multi-Stress Tensors and
Conformal Bootstrap, JHEP 01 (2020) 076 [arXiv:1909.05775] [INSPIRE].

[30] Y.-Z. Li, Heavy-light Bootstrap from Lorentzian Inversion Formula, JHEP 07 (2020) 046
[arXiv:1910.06357] [INSPIRE].

[31] R. Karlsson, Multi-stress tensors and next-to-leading singularities in the Regge limit, JHEP 08
(2020) 037 [arXiv:1912.01577] [INSPIRE].

[32] R. Karlsson, M. Kulaxizi, A. Parnachev and P. Tadić, Stress tensor sector of conformal
correlators operators in the Regge limit, JHEP 07 (2020) 019 [arXiv:2002.12254] [INSPIRE].

[33] Y.-Z. Li and H.-Y. Zhang, More on heavy-light bootstrap up to double-stress-tensor, JHEP 10
(2020) 055 [arXiv:2004.04758] [INSPIRE].

[34] A. Parnachev, Near Lightcone Thermal Conformal Correlators and Holography, J. Phys. A 54
(2021) 155401 [arXiv:2005.06877] [INSPIRE].

[35] A.L. Fitzpatrick, K.-W. Huang, D. Meltzer, E. Perlmutter and D. Simmons-Duffin,
Model-dependence of minimal-twist OPEs in d > 2 holographic CFTs, JHEP 11 (2020) 060
[arXiv:2007.07382] [INSPIRE].

[36] A. Parnachev and K. Sen, Notes on AdS-Schwarzschild eikonal phase, JHEP 03 (2021) 289
[arXiv:2011.06920] [INSPIRE].

[37] A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin
Theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].

[38] M.R. Gaberdiel, K. Jin and E. Perlmutter, Probing higher spin black holes from CFT, JHEP
10 (2013) 045 [arXiv:1307.2221] [INSPIRE].

[39] J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and WN

conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].

[40] A. Hegde, P. Kraus and E. Perlmutter, General Results for Higher Spin Wilson Lines and
Entanglement in Vasiliev Theory, JHEP 01 (2016) 176 [arXiv:1511.05555] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP02(2019)079
https://doi.org/10.1007/JHEP02(2019)079
https://arxiv.org/abs/1808.03263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.03263
https://doi.org/10.1007/JHEP05(2019)212
https://arxiv.org/abs/1811.05710
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.05710
https://doi.org/10.21468/SciPostPhys.6.6.065
https://arxiv.org/abs/1812.03120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.03120
https://doi.org/10.1007/JHEP08(2019)138
https://doi.org/10.1007/JHEP08(2019)138
https://arxiv.org/abs/1903.05306
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.05306
https://doi.org/10.1007/JHEP10(2019)046
https://arxiv.org/abs/1904.00060
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.00060
https://doi.org/10.1007/JHEP09(2019)001
https://arxiv.org/abs/1905.09302
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.09302
https://doi.org/10.1007/JHEP10(2019)107
https://arxiv.org/abs/1907.00867
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.00867
https://doi.org/10.1007/JHEP11(2019)139
https://arxiv.org/abs/1907.10810
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.10810
https://doi.org/10.1007/JHEP01(2020)076
https://arxiv.org/abs/1909.05775
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.05775
https://doi.org/10.1007/JHEP07(2020)046
https://arxiv.org/abs/1910.06357
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.06357
https://doi.org/10.1007/JHEP08(2020)037
https://doi.org/10.1007/JHEP08(2020)037
https://arxiv.org/abs/1912.01577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01577
https://doi.org/10.1007/JHEP07(2020)019
https://arxiv.org/abs/2002.12254
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.12254
https://doi.org/10.1007/JHEP10(2020)055
https://doi.org/10.1007/JHEP10(2020)055
https://arxiv.org/abs/2004.04758
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.04758
https://doi.org/10.1088/1751-8121/abec16
https://doi.org/10.1088/1751-8121/abec16
https://arxiv.org/abs/2005.06877
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.06877
https://doi.org/10.1007/JHEP11(2020)060
https://arxiv.org/abs/2007.07382
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.07382
https://doi.org/10.1007/JHEP03(2021)289
https://arxiv.org/abs/2011.06920
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.06920
https://doi.org/10.1007/JHEP02(2012)096
https://arxiv.org/abs/1111.3381
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.3381
https://doi.org/10.1007/JHEP10(2013)045
https://doi.org/10.1007/JHEP10(2013)045
https://arxiv.org/abs/1307.2221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.2221
https://doi.org/10.1007/JHEP07(2015)168
https://arxiv.org/abs/1412.7520
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7520
https://doi.org/10.1007/JHEP01(2016)176
https://arxiv.org/abs/1511.05555
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.05555


J
H
E
P
0
6
(
2
0
2
2
)
1
6
2

[41] E. Perlmutter, Bounding the Space of Holographic CFTs with Chaos, JHEP 10 (2016) 069
[arXiv:1602.08272] [INSPIRE].

[42] A. Castro and E. Llabrés, Unravelling Holographic Entanglement Entropy in Higher Spin
Theories, JHEP 03 (2015) 124 [arXiv:1410.2870] [INSPIRE].

[43] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.

[44] N. Afkhami-Jeddi, K. Colville, T. Hartman, A. Maloney and E. Perlmutter, Constraints on
higher spin CFT2, JHEP 05 (2018) 092 [arXiv:1707.07717] [INSPIRE].

[45] E. Liszewska and W. Młotkowski, Some relatives of the Catalan sequence, Adv. Appl. Math.
121 (2020) 102105 [arXiv:1907.10725].

[46] C. Banderier, P. Marchal and M. Wallner Rectangular Young tableaux with local decreases and
the density method for uniform random generation, arXiv:1805.09017.

[47] K.-W. Huang, Stress-tensor commutators in conformal field theories near the lightcone, Phys.
Rev. D 100 (2019) 061701 [arXiv:1907.00599] [INSPIRE].

[48] A. Belin, D.M. Hofman, G. Mathys and M.T. Walters, On the stress tensor light-ray operator
algebra, JHEP 05 (2021) 033 [arXiv:2011.13862] [INSPIRE].

[49] M. Beşken, J. De Boer and G. Mathys, On local and integrated stress-tensor commutators,
JHEP 21 (2020) 148 [arXiv:2012.15724] [INSPIRE].

[50] K.-W. Huang, d > 2 stress-tensor operator product expansion near a line, Phys. Rev. D 103
(2021) 121702 [arXiv:2103.09930] [INSPIRE].

[51] G.P. Korchemsky and A. Zhiboedov, On the light-ray algebra in conformal field theories,
JHEP 02 (2022) 140 [arXiv:2109.13269] [INSPIRE].

[52] A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the
Virasoro Group and 2D Gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].

[53] J. Rasmussen and C. Raymond, Galilean contractions of W -algebras, Nucl. Phys. B 922
(2017) 435 [arXiv:1701.04437] [INSPIRE].

– 31 –

https://doi.org/10.1007/JHEP10(2016)069
https://arxiv.org/abs/1602.08272
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.08272
https://doi.org/10.1007/JHEP03(2015)124
https://arxiv.org/abs/1410.2870
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.2870
http://oeis.org/
https://doi.org/10.1007/JHEP05(2018)092
https://arxiv.org/abs/1707.07717
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07717
https://doi.org/10.1016/j.aam.2020.102105
https://doi.org/10.1016/j.aam.2020.102105
https://arxiv.org/abs/1907.10725
https://arxiv.org/abs/1805.09017
https://doi.org/10.1103/PhysRevD.100.061701
https://doi.org/10.1103/PhysRevD.100.061701
https://arxiv.org/abs/1907.00599
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.00599
https://doi.org/10.1007/JHEP05(2021)033
https://arxiv.org/abs/2011.13862
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.13862
https://doi.org/10.1007/JHEP21(2020)148
https://arxiv.org/abs/2012.15724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15724
https://doi.org/10.1103/PhysRevD.103.L121702
https://doi.org/10.1103/PhysRevD.103.L121702
https://arxiv.org/abs/2103.09930
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.09930
https://doi.org/10.1007/JHEP02(2022)140
https://arxiv.org/abs/2109.13269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.13269
https://doi.org/10.1016/0550-3213(89)90130-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB323%2C719%22
https://doi.org/10.1016/j.nuclphysb.2017.07.006
https://doi.org/10.1016/j.nuclphysb.2017.07.006
https://arxiv.org/abs/1701.04437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.04437


Conformal bootstrap and thermalization

in holographic CFTs

Petar Tadic

School of Mathematics, Trinity College Dublin, Dublin 2, Ireland

This dissertation is submitted for the degree of

Doctor of Philosophy

September 2021



Declaration and coauthorship

I declare that this thesis has not been submitted as an exercise for a degree

at this or any other university and it is entirely my own work. I agree to de-

posit this thesis in the open access institutional repository of the University,

or allow the library to do so on my behalf, subject to Irish Copyright Legis-

lation and Trinity College Library conditions of use and acknowledgement. I

consent to the examiners retaining a copy of the thesis beyond the examining

period, should they so wish. This thesis contains, among others, results of four

coauthored research papers, three with Robin Karlsson, Manuela Kulaxizi and

Andrei Parnachev [12-14], and one with Robin Karlsson and Andrei Parnachev

[16].

Petar Tadic

September 2021



This thesis is the result of three years of PhD studies. Parts of this thesis are

based on the publications [12-14], which were published in the journal JHEP.

Furthermore, parts of this thesis are based on the preprint [16]. The content of

[12] can be found in Section 4. The content of [13] can be found in Section 5.

The content of [14] can be found in Section 6. Section 7 is based on the preprint

[16].

Supervisor: Prof. Dr. Manuela Kulaxizi

Internal referee: Prof. Dr. Tristan McLoughlin

External referee: Prof. Dr. Kostas Skenderis



Summary

This thesis covers a number of topics in conformal field theories that are sup-

posed to have gravity duals according to the AdS/CFT correspondence. We use

the conformal bootstrap in the Regge and lightcone limits as the technique for

studying these theories. We also explore their thermal properties by studying

the large-N conformal field theories at finite temperature.

In Section 2 we review the basic implications of conformal symmetry in

quantum field theories in spacetime with the number of dimensions d > 3 and

d = 2 separately. We precisely define the holographic CFTs and briefly describe

the idea of conformal bootstrap as the consistency condition of all conformal

field theories.

In Section 3 we introduce the “heavy-heavy-light-light” correlator in Regge

and lightcone limit. We review the calculation of correlators of this type and

we set up the notation for the rest of the thesis.

In Section 4 we study the heavy-heavy-light-light correlation function of

the holographic CFTs in the Regge limit, based on [12]. The gravitational

dual of this correlator in the Regge limit is the high energy scattering of the

light probe with the fixed impact parameter in the asymptotically AdS black

hole background. The Schwarzschild radius of the black hole in AdS units is

proportional to the ratio of the conformal dimension of the heavy operator and

the central charge. This ratio serves as a useful expansion parameter whose

power counts the number of stress tensors in the multi-stress tensor operators

which contribute to the four-point correlation function. In the cross-channel

the four-point function is determined by the OPE coefficients and anomalous

dimensions of the heavy-light double-trace operators. We explain how this data

can be obtained and explicitly compute the first and second order terms in

the expansion of the anomalous dimensions. We observe perfect agreement

with known results in the lightcone limit, which were obtained by computing

perturbative corrections to the energy eigenstates in AdS spacetimes.

In Section 5 we study the heavy-heavy-light-light correlation function in

the lightcone limit, based on [13]. Near-lightcone correlators are dominated by

the contributions of exchanged operators with the lowest twist. We consider the

contributions of such leading lowest twist multi-stress tensor operators to the



correlator in a holographic CFT of any even dimensionality. An infinite number

of such operators contribute, but their sum is described by a simple ansatz. We

show that the coefficients in this ansatz can be determined recursively, thereby

providing an operational procedure to compute them. This is achieved by boot-

strapping the corresponding near lightcone correlator: conformal data for any

minimal-twist determines that for the higher-order minimal-twist contributions

and so on. To illustrate this procedure in four spacetime dimensions we de-

termine the contributions of double- and triple-stress tensors. We compute the

OPE coefficients; whenever results are available in the literature, we observe the

complete agreement. We also compute the contributions of double-stress tensors

in six spacetime dimensions and determine the corresponding OPE coefficients.

In all cases the results are consistent with the exponentiation of the near light-

cone correlator. This is similar to the situation in two spacetime dimensions for

the Virasoro vacuum block.

In Section 6 we generalize the technique developed in Section 5 to include

the contributions of multi stress tensor operators of arbitrary twist to the heavy-

heavy-light-light correlator, based on [14]. We show how one can compute the

unknown coefficients in the generalized version of the ansatz from Section 5

by the lightcone bootstrap, for the entire stress tensor sector of the correlator.

Therefore, iteratively computing the OPE coefficients of multi-stress tensor op-

erators with an increasing twist. Some parameters are not fixed by the bootstrap

- they correspond to the OPE coefficients of multi-stress tensors with spin zero

and two. We further show that in holographic CFTs one can use the phase shift

computed in the dual gravitational theory to reduce the set of undetermined pa-

rameters to the OPE coefficients of multi-stress tensors with spin zero. Finally,

we verify some of these results using the Lorentzian OPE inversion formula and

comment on its regime of applicability.

Finally, in Section 7 we study the thermalization of the stress tensor sector

in CFTs with a large number of degrees of freedom, based on [16]. We show

that the thermalization of operators from this sector, or the equality between

their expectation values in heavy states and at finite temperature, is equivalent

to a universal behavior of their OPE coefficients with a pair of identical heavy

scalar operators. We verify this behavior in a number of examples which include

holographic and free CFTs and provide a bootstrap argument for the general



case. In a free CFT we check the thermalization of multi stress tensor operators

directly and also confirm the equality between the contributions of multi stress

tensors to heavy-heavy-light-light correlators and to the corresponding thermal

light-light two-point functions by disentangling the contributions of other light

operators. Unlike multi stress tensors, we show that these light operators violate

the Eigenstate Thermalization Hypothesis and do not thermalize.



Dedicated to my wife Tijana, my mother Daliborka, my father Lazar,

and my brother Milorad.
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1. Motivation

Constructing the theory of quantum gravity has been an open problem for many

years. The lack of experimental data at energies so high that the quantum-

gravitational effects are detectable implies the necessity for alternative ways

for learning about quantum gravity. Modern approaches to this problem in-

clude using the dualities between gravitational theories and theories without

gravitational degrees of freedom. The term “duality” means that theories have

equivalent Hilbert spaces and dynamics. Their mathematical descriptions, on

the other hand, can differ, for example, they can have different Lagrangians,

degrees of freedom, and be situated in different spacetimes. The hope with this

type of duality is that one can indirectly approach the regime where the quantum

effects in gravity are important using the dual, non-gravitational description and

therefore learn the general properties of quantum gravity. Knowing these prop-

erties will help the achievement of the ultimate goal, i.e. the construction of the

fundamental microscopic theory of quantum gravity.

1.1. Holographic principle and AdS/CFT duality

The works of Bekenstein and Hawking [1-3] gave the first indirect hint of the

existence of dualities that include gravitational theories. They showed that

black holes are dynamic objects that emit thermal radiation. The entropy of a

neutral, non-rotating black hole is shown to be proportional to the area of the

horizon A:

SBH =
Ac3

4G~
. (1.1)

Colloquially, one can interpret this entropy as being proportional to the amount

of information in the physical system. Naively, one might have expected that

it scales with the volume of the space behind the horizon (or volume of the

black hole). The fact that it scales with the area of the horizon was the first

indication that the gravitational theory where the black hole is present has the

degrees of freedom that fit in spacetime with one spatial dimension less. This

was the first sign of the so-called holographic principle of gravitational theories

[4-5].

Another important indication of the existence of dualities between gravita-

tional and non-gravitational theories came from the work of ’t Hooft [6], where
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he studied non-Abelian gauge theories in the limit of a large number of colors

(large-N limit). He showed that in this limit the Feynman diagrams rearrange

in a such way that the expansion looks the same as the perturbative expansion

in string theory with string coupling 1/N . Since the string theories necessarily

include gravity, this was strong evidence of the relation between gravitational

string theories and non-gravitational gauge theories at the deep fundamental

level.

The work of Brown and Henneaux [7] gave further insight into what kind

of theories one should be looking at to find the dual descriptions of the gravita-

tional theories. Namely, by studying gravity in three-dimensional Anti de-Sitter

spacetime, they found the conformal symmetry algebra of conformal field the-

ory in two-dimensional spacetime as the algebra of asymptotic symmetries in

three-dimensional gravity. This was the first evidence of the relation between

gravitational theories in Anti-de Sitter spacetime and the conformal field theo-

ries in spacetime with one spatial dimension less.

The first concrete instance of the duality between gravitational and non-

gravitational theories was established in the work of Maldacena [8] in 1997. By

studying black branes in supersymmetric string theory he proposed the famous

anti-de Sitter/conformal field theory (AdS/CFT) conjecture which states that

type IIB string theory with string length ls =
√
α′ and coupling constant gs on

AdS5 × S5 with radius of curvature L of both five-dimensional Anti-de Sitter

AdS5 and sphere S5, is dual to N = 4 super-Yang-Mills (SYM) in flat four-

dimensional spacetime with gauge group SU(N) and gauge coupling gYM . The

parameters of these theories are related by the following equations

g2YM = 2πgs, g2YMN =
L4

2α′2 . (1.2)

The N = 4 gauge theory is conformally invariant which is the reason why it is

called the “CFT side” of the duality. The gravitational part (type IIB string

theory) of the duality is usually called the “AdS side”, or simply the “gravity

side”.

The string theory reasoning behind this duality is the equivalence between

the open and closed string descriptions of the Dirichlet branes (D-branes). These

are the non-perturbative higher-dimensional objects present in the superstring
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theory. They can be viewed in the open and closed string perspectives, and

which one is right depends on the value of the string coupling gs. In terms

of open strings, D-branes might be viewed as the higher-dimensional objects

where the open strings end. Since the open strings must be treated as small

perturbations that do not affect the gravitational background, this description is

only valid when the coupling between open and closed strings gs is small gs ≪ 1.

Furthermore, if we neglect the massive string excitations by focusing on the low

energy regime, the dynamics of the D-branes will be described in terms of the

pure supersymmetric gauge theory. If there are N coincident branes, the gauge

group will be1 SU(N) and the effective ’t Hooft coupling will be gsN . It follows

that this description works for gsN ≪ 1. In terms of the closed strings, the

D-branes can be viewed as the solitonic solutions of the low-energy limit of

the string theory, i.e. the supergravity, and they represent the source of the

gravitational field, therefore, they curve the spacetime around them. For the

supergravity approximation to hold, there must be a scale separation between

the characteristic length L of the spacetime considered and the string length√
α′, or in other words, L4/α′2 → ∞. In the case of N coincident branes,

L4/α′2 ∝ gsN ≫ 1. Therefore, this description is valid in the opposite limit

compared to the open string description, gsN ≫ 1.

One concludes that there are two, very different theories with different de-

grees of freedom and that even live in different spacetimes, but still describe the

dynamics of the same physical objects, the D-branes, in the different limits of

the effective coupling. The conjectured part of the duality is that the respective

descriptions are valid even beyond the limits specified above and one can relate

the parameters of these two theories by (1.2). Concretely, the candidate for the

theory of quantum gravity (type IIB string theory) can be mapped to the N = 4

SYM gauge theory without gravitational degrees of freedom. Additionally, the

information about gravitational theory in five-dimensional spacetime (obtained

after Kaluza-Klein reduction of type IIB string theory on five-dimensional sphere

S5) is mapped to the gauge conformal field theory in four-dimensional space-

time, following the idea from the works of Hawking and Bekenstain and there-

fore satisfying the holographic principle. In the rest of the thesis, we do not

1 Actually, the gauge group is U(N), but it turns out that the U(1) ⊆ U(N) degrees

of freedom decouple from the SU(N) degrees of freedom.
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use the string theory language behind the AdS/CFT and for the more detailed

discussion of the duality, we refer the reader to the original papers [8-10].

The duality conjecture as stated above is the strongest version of the con-

jecture as it is assumed to hold for all values of parameters in both theories.

Unfortunately, studying and proving the duality at a generic value of param-

eters is not feasible at the moment as one would have to study string theory

away from the classical limit in gravity and gauge theory at an arbitrary value of

coupling constant. This is the reason why the practical exploration of duality is

mostly limited to the classical limit in the string theory, intending to go beyond

it.

The classical limit in gravity is the limit where the string length, in units

of AdS radius
√
α′/L, and the string coupling gs go to zero

√
α′/L→ 0, gs → 0.

This implies that the limit of classical gravity is equivalent to the limit of infinite

’t Hooft coupling λ = gYMN2 → ∞ and infinite number of colors N → ∞ in

N = 4 SYM gauge theory according to eqs. (1.2). Therefore, the classical limit

in gravity is dual to the limit of infinite coupling in the dual non-gravitational

theory.

The idea of holographic duality is generalized using the previous example.

The general statement of the AdS/CFT correspondence is that a gravitational

theory in (d+1)-dimensional asymptotically Anti-de Sitter spacetime is dual to a

certain, strongly coupled conformal field theory in d-dimensional flat spacetime.

This d-dimensional flat spacetime where the CFT is present is the boundary

of AdS spacetime [9-10]. The generalization of the AdS/CFT correspondence

beyond the type IIB string theory andN = 4 SYM is assumed to be independent

of the string realization of both of the theories in the duality. The properties of

strongly coupled conformal field theories that have the gravitational duals are

conjectured in [11] and theories satisfying these are called holographic CFTs.

We give the precise definition of holographic CFTs in Section 2. Most of the

work in this thesis is devoted to studying the properties of holographic CFTs

and their relations to the dual gravitational theories on the AdS side of the

duality.
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1.2. Outline

To understand the generic properties of quantum gravity using the AdS/CFT

correspondence, two things are needed: first, we need to fully understand the

duality at the classical level in gravity and therefore we need to establish the

mappings between all variables in classical gravity with their counterparts in

terms of observables in the dual CFT, and second, we need a better under-

standing of strongly coupled, holographic CFTs. This is the reason why we

are interested in understanding better the whole class of holographic CFTs, in-

cluding the parametrization of the class as well as the universal aspects of the

dynamics of theories within the class.

Generally, there are two different approaches for studying holographic

CFTs. The first approach is to use the classical gravitational dual of a partic-

ular CFT, such as Einstein-Hilbert gravity or the modifications thereof, and to

extract the implications to the strongly coupled, holographic CFT by studying

the gravity side of the duality. These implications can sometimes be generalized

to the whole class of the holographic CFTs. This was the dominant approach

in the early days of the AdS/CFT duality and we use it in Section 4. The

other approach is to directly use the field theory techniques to solve and clas-

sify holographic CFTs and it became more dominant recently. We mostly use

this approach in the rest of the thesis.

In Section 2 we give a brief introduction to the conformal field theories

in general, with special attention to the holographic CFTs and the conformal

bootstrap that is a technique used for studying them. In Section 3 we give

a detailed introduction for studying “heavy-heavy-light-light” correlator. We

also review the calculation of such correlator, we establish the notation and

define Regge and lightcone limits that will be used later. In Section 4 we

study the CFT version of the high energy scattering of the light probe with

the fixed impact parameter in the black hole background [12]. In Section 5

and Section 6 we develop an algorithm for computing the CFT analog of the

contributions of multiple gravitons to the scattering of the light probe in the

black hole background [13,14]. We show that some of these contributions are

universal, i.e. they are the same for all holographic CFTs, in agreement with

the claim in [15]. In Section 7 we study the holographic CFTs at the finite

temperature [16].
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2. The dictionary of the conformal field theory

In this section we review the basics of conformal field theories in two-dimensional

and higher-dimensional spacetime and we precisely define the class of holo-

graphic CFTs that have a gravitational dual according to [11]. We discuss the

basics of the conformal bootstrap, as the technique used in studying the holo-

graphic CFTs. We conclude the section with the discussion of holographic CFTs

at finite temperature and thermalization.

2.1. Brief introduction to the CFT

In this subsection we give a brief introduction to the kinematics of conformal

field theories and establish the notation that we will be using in the rest of the

thesis. We consider CFTs in spacetime with number of dimensions d > 3 and

d = 2 separately.

2.1.1. CFT in spacetime with the number of dimensions d > 3

Conformal field theory is a quantum field theory invariant under the transfor-

mations of the conformal group. These are the diffeomorphisms that transform

the metric in the following way

ds2 → ds′2 = f(x)2ds2, (2.1)

where f(x) is an arbitrary function of coordinates. These transformations pre-

serve angles (i.e. causal structure in Lorentzian signature) but not the dis-

tances. In spacetime with d dimensions and the Lorentzian signature, these

transformations make conformal group SO(d, 2), while in the Euclidean signa-

ture, the conformal group is SO(d + 1, 1). For now, we assume that d > 3,

as the conformal symmetry when d = 2 is described differently than in the

case of higher-dimensional spacetime. The conformal group in spacetime with

d > 3 consists of transformations in Poincaré group plus the scale transfor-

mations and the special conformal transformations. Poincaré group includes

translations, with generators Pµ, rotations with generators2 Mij , and boosts

2 In our notation Greek letters (µ, ν, . . .) denote all spacetime coordinates, while

Latin letters (i, j, . . .) denote just the spatial part of the coordinates.
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with generators M0j. Scale transformations, whose generator is denoted by D,

act on spacetime coordinates as

D : xµ → λxµ, (2.2)

while special conformal transformations, with generators denoted by Kµ, act as

Kµ : xµ → xµ − bµx2

1− 2xb+ b2x2
, (2.3)

where bµ is an arbitrary constant vector. The full conformal algebra in spacetime

with the number of dimensions d > 3 is given by

[Pµ, Pν ] = [Kµ, Kν ] = [Mµν , D] = 0,

[D,Pµ] = iPµ,

[D,Kµ] = −iKµ,

[Kµ, Pν ] = 2i(δµνD −Mµν),

[Mµν ,Mρσ] = i (δνρMµσ − δµρMνσ − δνσMµρ + δµσMνρ) ,

[Mµν , Pρ] = i (δνρPµ − δµρPν) ,

[Mµν , Kρ] = i (δνρKµ − δµρKν) ,

(2.4)

where δµν is the identity matrix if we are working in the Euclidean signature

and if we are working in the Lorentzian signature it should be exchanged with

the Minkowski metric ηµν . The Euclidean space Rd with the metric in the

spherical coordinates

ds2 = dr2 + r2dΩ2
d−1, (2.5)

can be conformally mapped to the cylinder R× Sd−1, with the transformation

τ = log(r), and one obtains the metric

ds2 = e2τ (dτ2 + dΩ2
d−1). (2.6)

The coordinate τ is the Euclidean time on the cylinder. Dilatation operator D,

that in the Rd shifts r coordinate r → λr, generates the time translations on

the cylinder τ → τ + log(λ). Therefore, the dilatation operator plays the role

of the Hamiltonian on the cylinder and its eigenvalues are treated as energies.

This is the physical reason why we need to demand that the eigenvalues of the
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dilatation operator, also known as the conformal dimensions, are bounded from

below. From the algebra (2.4) it is obvious that the generators of translations Pµ

increase the conformal dimension of the operator by one, while the generators

of special conformal transformations Kµ lower the conformal dimension by one.

We define the set of operators whose conformal dimensions can not be lowered

further and we call these primary operators

[Kµ,O∆,s(0)] = 0. (2.7)

These operators are also known as the highest weight vectors that define the

irreducible representation of the conformal group. They are characterized by

the eigenvalues of the dilatation operator (i.e. the conformal dimensions) and

their spin
[D,O∆,s(0)] = i∆O∆,s(0),

[Mµν ,O∆,s(0)] = M̂µνO∆,s(0),
(2.8)

where M̂µν are generators of representation s of the group3 SO(d). Starting

from the primary operator O∆,s, the entire, infinite-dimensional, irreducible

representation of the conformal group is obtained by acting on primary opera-

tors O∆,s with generators of translations, which are represented by derivatives

in coordinate representation. The Hilbert space of the conformal field theory

factorizes in a sum of irreducible representations generated from highest weight

vectors, i.e. primary operators with quantum numbers (∆, s).

The main objects of study in the conformal field theory are the correlation

functions of the local operators present in the spectrum of the theory. The

conformal symmetry fixes the one-point, two-point and three-point correlation

functions up to the position-independent constants [17,18]. For external scalar

primary operators φi with conformal dimension ∆i, these are given by

〈φi(x)〉 = 0, 〈φi(xi)φj(xj)〉 =
δij

x2∆i
ij

,

〈φi(xi)φj(xj)φk(xk)〉 =
λijk

x∆−2∆k
ij x

∆−2∆j
ik x∆−2∆i

jk

,

(2.9)

where xab = xa− xb and ∆ = ∆i +∆j +∆k. The two-point functions are fixed

by the normalization of the operators and we are using a basis of orthogonal

3 s denotes the spin of these representations.
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operators, hence the Kronecker delta δij . The coefficients λijk are called op-

erator product expansion coefficients. Once the normalization of operators is

fixed, they can not be scaled away, therefore they represent physical parameters

of the theory. For spinning operators, multiple independent tensor structures

are allowed by conformal symmetry in the three-point functions, so these are

determined by more than one position-independent constant multiplying every

allowed tensor structure.

The simplest non-trivial correlation functions whose spacetime dependence

is not fixed by the conformal symmetry are the four-point correlation functions

of the external scalar primary operators. In this thesis, we mostly focus on them

in four-dimensional spacetime.

2.1.2. CFT in spacetime with the number of dimensions d = 2

The conformal symmetry in two-dimensional spacetime is described differently

than the conformal symmetry in higher-dimensional spacetime. Namely, the

conformal algebra in two dimensions is an infinite algebra that puts much

stronger constraints on the dynamics of the theory compared to the conformal

algebra in higher dimensions (2.4).

In two-dimensional spacetime with Euclidean spherical coordinates (r, φ)

and metric given by

ds2 = dr2 + r2dφ2 = dzdz̄, (2.10)

where

z = reiφ, z̄ = re−iφ, (2.11)

the set of all conformal transformations is equal to the set of all holomorphic

and anti-holomorphic functions of complex coordinates z and z̄

For practical purposes, we can lift the condition that z and z̄ are the com-

plex conjugate and treat them as the independent complex variables. Then, at

the end of the calculation, if one wants to evaluate the result in the Euclidean

signature, one requires z∗ = z̄. The vector space of infinitesimal conformal

transformations has a basis given by {(ℓn, ℓ̄n)|n ∈ Z}, where ℓn = −zn+1∂z and
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ℓ̄n = −z̄n+1∂z̄. It is easy to check that generators ℓn and ℓ̄n create the two

copies of the Witt algebras given by

[ℓn, ℓm] = (n−m)ℓn+m,

[ℓ̄n, ℓ̄m] = (n−m)ℓ̄n+m,

[ℓn, ℓ̄m] = 0.

(2.12)

The subalgebras {ℓ−1, ℓ0, ℓ1} and {ℓ̄−1, ℓ̄0, ℓ̄1} generate the globally well-defined

conformal transformations on the Riemann sphere S2 ∼ C ∪ {∞}. These six

generators are the two-dimensional version of Pµ, Kµ and Mµν in higher di-

mensions. It is obvious that generators ℓ−1 and ℓ̄−1 generate translations in

the complex plane, therefore they are the two-dimensional version of Pµ, and

similarly one can check that ℓ1 and ℓ̄1 generates the special conformal transfor-

mations, therefore being the two-dimensional version of Kµ. Generators ℓ0 and

ℓ̄0 are related to the dilatation operator D and the generator of rotations. It is

useful to write these generators in terms of (r, φ) coordinates

ℓ0 = −1

2
r∂r +

i

2
∂φ, ℓ̄0 = −1

2
r∂r −

i

2
∂φ. (2.13)

Now, it is easy to see that the dilatation and the rotation generators can be

expressed as

D = (ℓ0 + ℓ̄0) = −r∂r, M = (ℓ0 − ℓ̄0) = i∂φ. (2.14)

By the standard quantum-mechanical reasoning, for example, by demanding the

unitarity of the theory, one concludes that the conformal algebra of the charges

in two-dimensional spacetime has actually to be a central extension of the Witt

algebra, also known as the Virasoro algebra and given by

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, (2.15)

and similarly for L̄n, while [Ln, L̄m] = 0. Here, c is a constant that multiplies the

center of the Virasoro algebra given by the identity operator, and it is called

the central charge of a two-dimensional conformal field theory. The physical

meaning of the two-dimensional central charge c is that it counts the number

of degrees of freedom in the theory, as shown in [19].
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One immediately observes that in contrast with the higher-dimensional

case, the conformal algebra in two-dimensional spacetime is infinite-dimensional

and therefore it gives stronger constraints on the dynamics of the theory. From

(2.14) we conclude that the eigenvalues of the dilatation operator are related

to the eigenvalues of the operators L0 and L̄0. We use the same logic as in

the higher-dimensional case to argue that the eigenvalue of the dilatation op-

erator must be bounded from below, which now translates to the fact that the

eigenvalues of L0 and L̄0 are bounded from below as well. From the Virasoro

algebra (2.15) it follows that operators Ln, for n > 0, decreases the eigenvalue

of L0, while the operators L−n, for n > 0, increases this eigenvalue. Therefore,

we define Virasoro primary operators as those whose eigenvalue of L0 (and L̄0)

can not be decreased further

[Ln,O(0)] = [L̄n,O(0)] = 0, n ≥ 1. (2.16)

These are characterized by quantum numbers (h, h̄), which are eigenvalues of

L0 and L̄0

[L0,O(0)] = hO(0), [L̄0,O(0)] = h̄O(0). (2.17)

The quantum numbers (h, h̄) can be related to the two-dimensional version of

the quantum numbers (∆, s) using (2.14), by the following relations:

∆ = h+ h̄, s = h− h̄. (2.18)

Descendants of the Virasoro primary state are obtained by acting with L−n and

L̄−n, for n > 1, on the primary state. This way, the highest weight irreducible

representation of the Virasoro algebra is generated. These representations are

called Verma modules. The Hilbert space of two-dimensional CFT factorizes

into a sum of the Verma modules.

Generators {L−1, L0, L1} and {L̄−1, L̄0, L̄1} make the global subalgebra of

the Virasoro algebra. One can notice that there is no central charge in the

commutators of elements of the global subalgebra, similarly to the conformal

algebra in higher-dimensional spacetime (2.4). If eqs. (2.16) hold only for n = 1

generators from the global subalgebra, we say that operator O is quasi-primary.

Therefore, every Virasoro primary is a quasi-primary as well, but not the other

way around. Each Verma module can be factorized into the sum of the highest
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weight representations of the global subalgebra, where the highest weight vectors

are quasi-primary operators from the given Verma module.

The four-point correlation functions are not fixed by the conformal sym-

metry even in two dimensions. But here the Virasoro algebra grants a much

better analytic control over them compared to the higher-dimensional cases,

which is the reason we often use the two-dimensional CFT as the toy model

for the calculation of the four-point correlators in CFT in higher-dimensional

spacetime.

2.2. Holographic CFTs

In [11] it was conjectured that there are two necessary and sufficient conditions

for CFTs to have a gravitational dual with local physics below the AdS scale.

The first condition can be stated as:

The central charge CT is large, CT → ∞, and the correlation functions in the

theory factorize at large CT .

The central charge CT of the conformal field theory in spacetime with Euclidean

signature and arbitrary number of dimensions, is defined via the two-point cor-

relation function of the canonically normalized stress tensor

〈Tµν(x)Tρσ(0)〉 =
CT

Ω2
d−1x

2d
Iµν,ρσ(x), (2.19)

where

Iµν,ρσ(x) =
1

2
(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x))−

1

d
δµνδρσ,

Iµν = δµν − 2
xµxν

x2
, Ωd−1 =

2πd/2

Γ(d2 )
.

(2.20)

In the two-dimensional spacetime, the central charge defined this way is related

to the central charge c defined via the Virasoro algebra (2.15) with the relation

CT = c/2. However, one should remember that CT in higher-dimensional CFTs

does not satisfy the c-theorem and therefore it can not be treated as the number

of degrees of freedom in the theory. The coordinate dependence of the two-

point correlation function (2.19) is fixed by the conformal symmetry, while the

coefficient CT is a characteristic of a particular theory. The stress tensor in the
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holographic CFT is a CFT dual of the single graviton state on the AdS side of

duality.

In the example of the duality with the type IIB string theory and N = 4

SYM, the central charge of N = 4 SYM scales in terms of numbers of colors N

as

CT ∝ N2. (2.21)

Therefore, the fact that the classical gravity limit in type IIB string theory is

obtained by taking the large number of colors (N → ∞) is equivalent to the

statement that the central charge of the N = 4 SYM has to be large.

The gravitational interpretation of the central charge in holographic CFTs

follows from [7]. Namely, in the case of three-dimensional gravitational theory

in Anti-de Sitter spacetime, the infinite-dimensional Virasoro algebra (2.15)

is found as the algebra of the asymptotic symmetry with the central charge

c = 3L/2GN , where GN is the Newton’s constant. Therefore, we generally

interpret the central charge as the inverse Newton’s constant GN of the dual

gravitational theory, or equivalently, the inverse graviton coupling constant. In

the case when the CFT has a finite central charge, the effects of the finiteness

of the central charge would, therefore, correspond to the graviton quantum loop

corrections in the dual gravitational theory.

The second condition that the holographic CFTs have to satisfy can be

stated as follows:

There is a parametrically large gap ∆gap → ∞ in the spectrum of conformal

dimensions of primary single-trace operators with spin greater than two.

When considering CFTs with the gauge symmetry, the physically relevant op-

erators are the gauge-invariant operators. In the CFTs with the matter in the

adjoint representation of the gauge group, the gauge-invariant operators are

made of multiple traces of fundamental fields. The second condition which the

holographic CFTs have to satisfy requires that the primary single-trace opera-

tors with spin greater than two have a large conformal dimension.

Multi-trace, gauge-invariant, primary operators are constructed as the

products of single-trace primaries with a number of derivatives inserted in a
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such way that the product is still the primary operator (or in other words, com-

mutes with Kµ). The large gap condition does not affect these operators in

holographic CFTs.

In the language of dual gravity, this condition can be interpreted as the

requirement that the fields with spin greater than two in gravity decouple from

the rest of the degrees of freedom. Namely, the single-trace primary operators in

CFT are dual of the single particle states in gravity. Mass of the field in gravity

is proportional to the conformal dimension of the CFT operator. The large

gap in the spectrum of conformal dimensions of single-trace primary operators

with spin greater than two means that higher-spin fields in gravity have a large

mass, and therefore, decouple from the rest of the degrees of freedom. In the

example with type IIB string theory and N = 4 SYM, the fact that in the

classical limit in gravitational theory we have large ’t Hooft coupling (λ→∞) in

N = 4 SYM is responsible for this decoupling of higher-spin primary single-trace

operators. Namely, these operators receive the large anomalous dimensions at

large coupling (λ → ∞) and end up with large conformal dimensions, even

though they have conformal dimensions of order one at the weak coupling (λ→
0).

In the context of the string theory, requiring the large gap in the holographic

CFTs accounts for the decoupling of the stringy degrees of freedom in the dual

gravitational description. For the CFT with the finite gap, we would have a

dual gravitational description with higher-spin, stringy modes in the spectrum.

Additionally, one should notice that having the gauge symmetry is not

necessary for holographic CFTs. Without the gauge symmetry, we still use the

notion of single and multiple-trace operators in the spectrum of the CFT, but

in this case they differ by the large-CT scaling of the corresponding three-point

functions. In the conformal field theories where we do not assume the existence

of the gauge symmetry, we also still use the “large-N” terminology by which we

mean the large central charge, according to (2.21).

2.3. The conformal bootstrap

We review the important technique for studying strongly coupled CFTs, called

conformal bootstrap. It was developed in [20-23]. For recent, more detailed

reviews of the conformal bootstrap see [24-26].
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The conformal symmetry allows us to write the convergent operator prod-

uct expansion (OPE)

φ1(x1)φ2(x2) =
∑

primary O
λ12OC(x12, ∂y)O(y)

∣

∣

∣

y=x2

, (2.22)

where the sum goes over all unit-normalized primary operators O (with arbi-

trary spin) in the spectrum, functions C(x12, ∂y) are fixed by the conformal

symmetry and they account for the contribution of the descendants of the pri-

mary operator O. The operator O and the derivatives do not have to be eval-

uated at x2, they can be evaluated at any point between x1 and x2, only the

function C will change accordingly. The expansion converges within correlation

functions in the Euclidean signature as long as x1 is closer to x2 than any other

operators inserted at yi, or in other words, as long as there is a sphere enclosing

points x1 and x2 with no other external operator inserted within the sphere

(see eg. [27-29]). The operator product expansion is always done first in the

Euclidean signature and then it can be analytically continued to the Lorentzian

signature if necessary.

Using the operator product expansion we reduce any n-point to (n − 1)-

point functions and so on until we arrive at two-point functions that are fixed

by the conformal symmetry. Therefore, if we know quantum numbers (∆, s) of

all primary operators in the spectrum of the theory and all OPE coefficients

λijk, we can, in principle, compute any correlation function and the theory is

solved. These data are colloquially called OPE data.

The conformal bootstrap relies on the fact that the operator product ex-

pansion is the convergent expansion, therefore it has to be associative. By

requiring the associativity of the operator product expansion, also called the

crossing symmetry, we put bounds on the OPE data, or sometimes even solve

the theory. Let us consider the four-point correlation function of scalar pri-

mary operators φi, 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉. Using the following operator

product expansions

φ1(x1)φ2(x2) =
∑

O
λ12OC(x12, ∂y)O(y)

∣

∣

∣

y=x2

,

φ3(x3)φ4(x4) =
∑

O
λ34OC(x34, ∂z)O(z)

∣

∣

∣

z=x4

,
(2.23)
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the four-point correlation function can be written as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
∑

O
λ12Oλ34OC(x12, ∂y)C(x34, ∂z)〈O(y)O(z)〉

∣

∣

∣

y=x2,z=x4

.
(2.24)

On the other hand, we can choose to write the operator product expansions

between φ1 and φ4, as well as φ2 and φ3

φ1(x1)φ4(x4) =
∑

O′

λ14OC(x14, ∂y)O′(y)
∣

∣

∣

y=x4

,

φ2(x2)φ3(x3) =
∑

O′

λ23O′C(x23, ∂z)O′(z)
∣

∣

∣

z=x3

.
(2.25)

In this case, the four-point correlation function is given by

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
∑

O′

λ14O′λ23O′C(x14, ∂y)C(x23, ∂z)〈O′(y)O′(z)〉
∣

∣

∣

y=x4,z=x3

.
(2.26)

The different ways of writing the OPE are called different channels of expansion.

Now, the condition of consistency of the theory (or the associativity of the OPE

or the crossing symmetry) requires that these two channels give the same result

∑

O
λ12Oλ34OC(x12, ∂y)C(x34, ∂z)〈O(y)O(z)〉

∣

∣

∣

y=x2,z=x4

=
∑

O′

λ14O′λ23O′C(x14, ∂y)C(x23, ∂z)〈O′(y)O′(z)〉
∣

∣

∣

y=x4,z=x3

.
(2.27)

This equation is a non-trivial constraint on the OPE data and it is known as

the bootstrap equation. It bounds the spectrum of the theory, as well as on the

OPE coefficients.

One should notice that generally we do not have the contributions of the

same primary operators in both channels, that is why they are denoted differ-

ently by O and O′. The parts of the contributions of these operators that are

fixed by conformal symmetry, C(x12, ∂y)C(x34, ∂z)〈O(y)O(z)〉|y=x2,z=x4
and

C(x14, ∂y)C(x23, ∂z)〈O′(y)O′(z)〉|y=x4,z=x3
, are called conformal blocks (or con-

formal partial waves). They are not crossing symmetric independently, but their

corresponding sums have to be, which is the reason why the condition (2.27)
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is the non-trivial requirement on the spectrum of the theory. The explicit ana-

lytic expressions for the blocks are known in even-dimensional spacetime since

the work of Dolan and Osborn [30,31]. Their expressions play a crucial role in

the conformal bootstrap technique as they help to solve (2.27). The conformal

bootstrap technique has brought many new results for holographic CFTs in

recent years (see e.g. [11-14,32-55]).

We solve this equation by taking a particular kinematic limit which isolates

the small number of operators that contribute in one channel and their contri-

butions have to be recovered by an infinite number of operators in the other

channel. Examples of such limits are the lightcone and Regge limits. Physically,

the lightcone limit is a limit where one of the external scalar operators in the

four-point function approaches the lightcone of one of the other external op-

erators, while the Regge limit corresponds to special kinematics, which on the

gravity side is described by the scattering of highly energetic particles whose

trajectories in the bulk are approximately null.

The usefulness of the conformal bootstrap technique for solving CFTs lies

in the fact that one does not have to specify the theory, for example, with its

Lagrangian. The set of reasonable assumptions about the spectrum of the theory

allows one to run the bootstrap program and learn more about the whole class

of theories for which the assumptions work. The particular class of theories that

we are interested in are the strongly coupled, holographic CFTs. The bootstrap

equation is perfectly well-defined for the strongly coupled theories as it does not

rely on the perturbative expansion in the coupling constant.

In the rest of the thesis we mostly consider the holographic CFTs in four-

dimensional spacetime. We study the four-point correlation function of two pair-

wise identical primary single-trace scalar operators OL and OH , with conformal

dimensions ∆L and ∆H , that scale as ∆L ∼ O(1) and ∆H ∼ O(CT ). Because of

this scaling, operator OL is called “light”, while OH is called “heavy”. Taking

into account the dual gravitational picture, OH is a CFT analog of the black

hole, while OL represents a light probe. Instead of the usual 1/CT expansion

parameter in the correlators of the holographic CFTs, for the four-point cor-

relation function that includes two heavy states OH as the external operators,

one has to use µ ∼ ∆H/CT as the expansion parameter.
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Two channels of the expansion are called “T-channel”, where two OPEs

are written between OL ×OL and OH ×OH , and “S-channel”, where we have

two OPEs OH × OL and OL × OH . The important set of primary operators

that contribute to the T-channel is called “the stress tensor sector” and consists

of the stress tensor (which is a single-trace operator) and multi-trace operators

made of the stress tensor. Operators made of k stress tensors contribute at order

µk to the correlator. As the stress tensor is a conserved current of the theory, its

OPE coefficient with two external scalar operators is fixed by the Ward identity.

On the other hand, the operators with k > 2 are not the conserved currents,

therefore, their OPE coefficients are not fixed by the conformal symmetry. The

gravitational analog of the stress tensor sector contributions to the correlator is

the exchange of the single graviton in the Witten diagram and Witten diagrams

with multi-graviton exchanges (the graviton loops).

In the kinematical limits we consider the stress tensor sector decouples from

the rest of the operators contributing in the T-channel, which allows us to solve

this sector completely, i.e. to write an algorithm for computing all of the OPE

coefficients of operators in the stress tensor sector with external scalar operators.

The contributions of these operators in the T-channel are reproduced by the

double-trace operators made of one OL and one OH operator in the S-channel.

These double-trace operators receive an anomalous dimension and correction to

the zeroth order OPE coefficients due to the stress tensor sector contributions

in T-channel. Solving the stress tensor sector of the holographic CFT accounts

also for finding the analytic expressions for these anomalous dimensions and

corrections to the MFT OPE.

2.4. Thermalization in holographic CFTs

Due to the presence of finite temperature states (the black holes and black

branes with finite Hawking temperature) on the gravity side of AdS/CFT du-

ality, at least in the classical gravity limit, studying the thermal properties of

the dual CFTs represents the essential task to understand the full scope of the

duality and to be able to describe these states via their CFT counterparts.

One should notice that the conformal symmetry is broken at the finite tem-

perature, as the one-point functions of the local operators are not set to zero
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by symmetry anymore. This is because the temperature introduces the dimen-

sionful parameter in the theory which allows the thermal one-point functions

to be non-zero. All other assumptions on the spectrum of the CFT, including

the factorization of the Hilbert space and the operator product expansion4, are

assumed to hold when the CFT is set at finite temperature.

We have already suggested that the pure heavy scalar primary state OH

is the CFT equivalent of the black hole in gravity. This might seem to be in

contradiction with the usual AdS/CFT dictionary which says that black holes

(or black branes) in gravity correspond to a (mixed) thermal state in CFT, and

the Hawking temperature of the black hole is equal to the temperature of the

thermal state. Additionally, there is an obvious mismatch between the finite

Bekenstein-Hawking entropy of the black hole and the zero entropy of the pure

state, which could seem to completely invalidate the assumption.

However, we argue that the operators in the stress tensor sector thermalize

in the pure heavy states, such that their OPE coefficients with scalar heavy op-

erators are equal to their thermal one-point functions at the temperature that is

related to the conformal dimension of the heavy operator ∆H . This justifies the

identification of the black hole with a pure heavy state in the dual holographic

CFT, as long as one is interested in studying the graviton contributions to the

gravitational or the CFT correlators. This also explains why the OPE coeffi-

cients of stress tensor sector computed in the thermal black hole background in

gravity [15] are equal to those computed in CFT by the conformal bootstrap

[13,14]. Other operators that are generically present in the spectrum of the

holographic CFTs do not thermalize in this sense, and their contribution would

see a difference between the mixed thermal state and the pure heavy state.

We extend the analysis of thermalization from holographic CFTs to all

large-CT (or equivalently, large-N) theories, without assuming the large gap in

the spectrum. We show that thermalization works even in the opposite limit,

for free large-CT theories whose gap goes to zero.

4 with modified convergence criteria
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3. Introduction

The AdS/CFT correspondence provides a non-perturbative definition of quan-

tum gravity in negatively curved spacetimes [8-10]. The correspondence in prin-

ciple provides an opportunity to study generic properties of quantum gravity,

possibly probing regimes unattainable by low-energy effective theories. Recent

years have seen a development in conformal bootstrap techniques following [20-

23], leading to many results for CFTs with holographic duals (see e.g. [11,32-

55]). CFT methods have therefore become a powerful tool in the study of

quantum gravity.

Crossing symmetry in CFTs imposes highly non-trivial constraints on the

theory. The idea of conformal bootstrap is to use these constraints to put

restrictions on the CFT data or, if possible, even solve the theory. One way to

make use of the crossing symmetry is to isolate a small number of contributing

operators in one channel, e.g. by going to a certain kinematical regime. This

typically has to be reproduced by the exchange of an infinite number of operators

in another channel. One such example is the lightcone limit where the separation

between two operators in a four-point function is close to being null. One can

then infer [56,57] the existence of double-trace operators at large spin in any

CFT in dimensions d > 2. The Regge limit provides another opportunity to

isolate the contribution of a class of operators, those of highest spin.

3.1. The conformal bootstrap in the Regge limit

In holographic CFTs the Regge limit of a four-point function, extensively stud-

ied in [58-63]5, is dominated by operators of spin two – the stress tensor and the

double-trace operators (this is a consequence of the gap in the spectrum). In

gravity, it reproduces a Witten diagram with graviton exchange (see e.g. [43]).

The Regge limit corresponds to special kinematics, which on the gravity side

is described by the scattering of highly energetic particles whose trajectories in

the bulk are approximately null.

Such scattering can be described in the eikonal approximation where par-

ticles follow classical trajectories but their wavefunctions acquire a phase shift

δ(S, L). The phase shift is a function of the total energy S and the impact

5 See also [45,64-86] for other recent applications of Regge limit in CFTs.
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parameter L. In the CFT language, this phase shift can be extracted from the

Fourier transform of the four-point function. In [59] the phase shift extracted

from the four-point function of the type 〈O1O1O2O2〉 was shown to be equal

(up to a factor of −π) to the anomalous dimension of the double-trace operators

[O1O2]n,l =: O1∂
2n∂µ1

. . . ∂µlO2 :, at leading order in 1/N2. The Regge limit

implies that the calculation is valid for n, l ≫ 1. These anomalous dimensions

have been subsequently verified in [49,87-95].

So far both operators O1 and O2 were assumed to have conformal dimen-

sions of order one. In the following, we will refer to them as “light” operators

and denote them by OL. In [55] one pair of operators (which we denote by OH)

was taken to be “heavy”, with conformal dimension ∆H scaling as the central

charge. The ratio µ ∼ ∆H/CT is a useful expansion parameter; its power k

corresponds to the number of stress tensors in the multi-stress tensor operators

exchanged in the T-channel (OH×OH → (Tµν)
k → OL×OL)

6. As explained in

[55], one can define the phase shift as a Fourier transform of the 〈OHOHOLOL〉
four-point function. It is related to the time delay and angle deflection of a

highly energetic particle traveling along a null geodesic in the background of an

asymptotically AdS black hole. The black hole corresponds to the insertion of

the heavy operator OH ; its mass in the units of AdS radius is proportional to

µ.

The phase shift δ(S, L) was computed in gravity in [55] as an infinite series

expansion in µ, i.e.,

δ(S, L) =
∞
∑

k=1

δ(k)µk , (3.1)

with terms subleading in 1/N2 suppressed. Conformal dimensions ∆ and spins

s of heavy-light double-trace operators [OHOL]n,l are given by

∆ = ∆H +∆L + 2n+ l + γ(n, l), s = l, (3.2)

where the anomalous dimensions γ(n, l) admit a similar expansion in powers of

µ

γ(n, l) =

∞
∑

k=1

γ
(k)
n,lµ

k. (3.3)

6 Recently a similar limit was studied in [15].
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In [55] it was also proven that

γ
(1)
n,l = −

δ(1)

π
, (3.4)

where the following identifications are implied:

h = n+ l, h̄ = n, S = 4hh̄, e−2L =
h̄

h
. (3.5)

However, it was observed that this relation does not hold for higher order terms,

i.e. in general γ
(k)
n,l is not proportional to δ(k). One of the aims of Section 4 is

to explain how higher order anomalous dimensions are related to higher order

terms in the phase shift.

3.2. The minimal twist multi stress tensors

As reviewed before, the two-point function of the stress tensor in Conformal

Field Theories is proportional to a single parameter, the central charge CT .

It generally serves as a measure of the number of degrees of freedom in the

theory. In two spacetime dimensions this statement can be made precise: one

can define a c-function which monotonically decreases along Renormalization

Group flows and reduces to the central charge at conformal fixed points [19].

In four spacetime dimensions the situation is a bit more subtle and it is the a-

coefficient in the conformal anomaly which necessarily satisfies aIR ≤ aUV [96].

Nevertheless, in any unitary conformal field theory a and CT can only differ

by a number of O(1) (see [97] for the original argument and [98-104] for more

recent field theoretic proofs.) Hence, to consider the limit of infinite number of

degrees of freedom one needs to take CT to infinity.

In two spacetime dimensions conformal symmetry is described by the

infinite-dimensional Virasoro algebra. This symmetry strongly constrains corre-

lators, especially when combined with the CT →∞ limit. Of particular interest

is the heavy-heavy-light-light correlator, which involves two heavy operators

with conformal dimension ∆H ∼ CT and two light operators with conformal

dimension ∆L ∼ O(1). In this case the contribution of the identity operator

and all its Virasoro descendants is known as the Virasoro vacuum block and

has been calculated in several ways [40,105-110]. The Virasoro vacuum block

(and finite CT corrections to it) is instrumental in a variety of settings, such as
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e.g. the problem of information loss [111-116] and properties of the Renyi and

entanglement entropies [117-120] (see also [121,122] for the original applications

of large CT correlators in this context).

The heavy-heavy-light-light Virasoro vacuum block exponentiates

〈OH(∞)OL(1)OL(z)OH(0)〉 ∼ e∆LF(µ;z), (3.6)

with F a known function which admits an expansion in powers of µ ∼ ∆H/CT

F(µ; z) =
∑

k

µkF (k)(z). (3.7)

One can consider contributions of various quasi-primaries made out of the stress

tensor to F (k). At k = 1 the only such quasi-primary is the stress tensor itself,

while for k = 2 one needs to sum an infinite number of quasi-primaries quadratic

in the stress tensor (double-stress operators) and labeled by spin. The situation

is similar for all other values of k. It is possible to compute the OPE coefficients

of the corresponding quasi-primaries, starting from the known result for the

Virasoro vacuum block. Interestingly, at each order in µ, F (k) can be written

as a sum of particular terms [55]7

F (k)(z) =
∑

{ip}
bi1...ikfi1(z)...fik(z),

k
∑

p=1

ip = 2k, (3.8)

where fa(z) = (1− z)a2F1(a, a, 2a, 1− z).

It is an interesting question whether a similar structure appears when the

number of spacetime dimensions d is greater than two. Unlike in two spacetime

dimensions, in addition to spin, multi-stress tensor operators are also labeled by

their twist. An interesting subset of multi-stress tensor operators is comprised

out of those with minimal twist. These operators dominate in the lightcone limit

over those of higher twist. In [124] an expression for the OPE coefficients of two

scalars and minimal-twist double-stress tensor operators in d = 4 was obtained,

and the sum was performed to obtain a remarkably simple expression for the

near lightcone O(µ2) term in the heavy-heavy-light-light correlator. It was

7 Similar expressions in a slightly different context appeared in [123].
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shown to have a similar form to (3.8). One may now wonder if the minimal-twist

multi-stress tensor part of the correlator in higher dimensions exponentiates

〈OH(∞)OL(1)OL(z, z̄)OH(0)〉
∣

∣

multi−stress tensors
∼ e∆LF(µ;z,z̄), (3.9)

and whether F(µ; z, z̄) can be expressed as

F(µ; z, z̄) =
∑

k

µkF (k)(z, z̄), (3.10)

with

F (k)(z, z̄) = (1− z̄)k(
d−2
2 )
∑

{ip}
bi1...ikfi1(z)...fik(z),

k
∑

p=1

ip = k

(

d+ 2

2

)

,

(3.11)

and d an even number.

In Section 5 we investigate this further. We start by assuming that the

multi-stress tensor sector of the heavy-heavy-light-light correlator in the near

lightcone regime z̄ → 1 admits an expansion in µ

〈OH(∞)OL(1)OL(z, z̄)OH(0)〉
∣

∣

multi−stress tensors
∼
∑

k

µkG(k)(z, z̄), (3.12)

where each coefficient function G(k)(z, z̄) takes a particular form:

G(k)(z, z̄) = (1− z̄)k(
d−2
2 )

[(1− z)(1− z̄)]∆L

∑

{ip}
ai1...ikfi1(z)...fik(z),

k
∑

p=1

ip = k

(

d+ 2

2

)

.

(3.13)

We subsequently use this ansatz to compute the contributions of the multi-stress

tensor operators to the near lightcone correlator and extract the corresponding

OPE coefficients.

For even d, the hypergeometric functions in (3.13) reduce to terms which

contain at most one power of log(z) each. Their products contain multi-logs

whose coefficients turn out to be rational functions of z. We use the conformal

bootstrap approach initiated in [22] (for a review and references see eg. [24-26])

to relate these functions to the anomalous dimensions and OPE coefficients of

the heavy-light double-trace operators in the cross channel. The ansatz (3.13)

has just a few coefficients at any finite k which can be determined completely
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from the cross-channel data derived using the (k− 1)th term. This is related to

the fact that all the logm(z) terms with 2 ≤ m ≤ k are completely determined

by the anomalous dimensions and OPE coefficients at O(µk−1). At each step,

we obtain an overconstrained system of equations solved by the same set of

ai1...ik . This provides strong support to the ansatz (3.11). We then proceed to

derive the OPE coefficients of the multi-stress tensor operators with two light

scalars from our result. In practice, we complete this program to O(µ3) in

d = 4 and to O(µ2) in d = 6. However the procedure outlined can be easily

generalised to arbitrary order in µ and any even d.

In [15] the authors considered holographic CFTs dual to gravitational theo-

ries defined by the Einstein-Hilbert Lagrangian plus higher derivative terms and

a scalar field minimally coupled to gravity in AdSd+1. Interpreting the scalar

propagator in an asymptotically AdSd+1 black hole background as a heavy-

heavy-light-light four-point function, enabled the authors of [15] to extract the

OPE coefficients of a few multi-stress tensor operators from holography (see

also [125-127] for related work). Ref. [15] also argued that the OPE coefficients

of the leading, minimal-twist multi-stress operators are universal – they do not

depend on the higher derivative terms in the Lagrangian. Their results agree

with the general expressions obtained in this section, upon substitution of the

relevant quantum numbers. We do not use holography in Section 5; our major

assumption is (3.13).

3.3. The full stress tensor sector of conformal correlators

In Section 6 we study the contribution of the entire stress-tensor sector to the

scalar CFT correlation functions, 〈OHOLOLOH〉. We go beyond the limitation

of considering only the minimal twist multi stress tensor operators. We inves-

tigate the stress tensor sector further by considering contributions from multi-

stress tensors with non-minimal twist. Our goal is to determine the structure

of the correlator to subleading orders in the lightcone limit and extract the rel-

evant OPE coefficients. Once more, we motivate an ansatz similar to the one

successfully describing the leading lightcone behavior of G(z, z̄) and show that

most of the parameters in the ansatz can be fixed using lightcone bootstrap.

A few parameters are, however, left undetermined and might depend on the

details of the theory. They correspond to the OPE coefficients of multi-stress
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tensors with spin s = 0, 2. Our approach can be employed to study the stress-

tensor sector to arbitrary orders in µ and (1− z̄). We completed this program

for the O(µ2) subleading, subsubleading and subsubsubleading terms as well as

the O(µ3) subleading and subsubleading terms.

The OPE coefficients of the minimal twist multi stress tensors can be ob-

tained by the Lorentzian inversion formula [73,78] as shown in [128]8. We also

investigate this complementary approach to computing the OPE data of the

stress tensor sector. As noted earlier, the validity of the Lorentzian inversion

formula for the HHLL correlator has not been rigorously established. It is

however natural to expect that it is applicable in the large-CT and small-µ ex-

pansion, as long as a Regge bound is observed. Here we assume that the Regge

behavior of the correlator is given by σ−k at O(µk) in the large-CT limit, which

is consistent with the behaviour of the scattering phase shift from a black hole

(or a massive star) computed classically in AdS. We then find that whenever the

Lorentzian inversion formula is applicable, i.e., for operators of spin s > k+1 at

O(µk), OPE data extracted with both methods are in perfect agreement. How-

ever, already at order O(µ3), our ansatz combined with the crossing symmetry

or Lorentzian inversion formula is more powerful than the Lorentzian inversion

formula alone. For instance, while the former procedure allows us to determine

the OPE coefficient of a triple-stress tensor with spin s = 4 and twist τ = 8,

this is not possible using solely the Lorentzian inversion formula.

Finally, we explore the possibility of obtaining the unknown OPE data from

the gravitational description of the CFT. We use the phase shift calculation in

the dual gravitational theory. The scattering phase shift – acquired by a highly

energetic particle travelling in the background of the AdS black hole – was

first computed in the Regge limit in Einstein gravity in [55]. To explicitly

see how the presence of higher derivative gravitational terms affects the OPE

data, we work in Einstein-Hilbert + Gauss-Bonnet gravity with small Gauss-

Bonnet coupling λGB. To combine the gravitational results with those of the

CFT in the lightcone regime, we follow the approach first discussed in [124]

8 One should exercise caution when using the Lorentzian inversion formula in the

context of the HHLL correlator as the Regge behaviour of the correlator has not been

rigorously established.
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and further developed in [13], which involves an analytic continuation of the

lightcone results around z = 0 and an expansion around z = 1. Matching terms

in the correlator obtained from the gravitational calculation to those obtained

from the CFT enables us to completely fix the stress tensor sector of the HHLL

correlator up to the OPE coefficients of the spin-0 multi-stress tensors which are

left undetermined. Non-universality is manifest by the presence of the Gauss-

Bonnet coupling in the expressions for the OPE coefficients.

3.4. Review of heavy-heavy-light-light correlator in holographic CFTs

In this section, crossing relations for a heavy-heavy-light-light correlator of pair-

wise identical scalars are reviewed. We consider large-N CFTs, with CT ∼ N2,

with a parametrically large gap ∆gap in the spectrum of single trace operators

with spin J > 2. The object that we study is a four-point correlation func-

tion between two light scalar operators OL, with scaling dimension of order

one, and two heavy scalar operators OH , with scaling dimension ∆H of O(CT ).

Explicitly, we expand the CFT data in the parameter µ defined in [55] as

µ =
4Γ(d+ 2)

(d− 1)2Γ(d/2)2
∆H

CT
, (3.14)

which is kept fixed as CT →∞.

The four-point function is fixed by conformal symmetry up to a function

A(u, v) of the cross-ratios as

〈OH(x4)OL(x3)OL(x2)OH(x1)〉 =
A(u, v)

x2∆H
14 x2∆L

23

, (3.15)

where u, v are cross-ratios9

v = zz̄ =
x2
12x

2
34

x2
13x

2
24

u = (1− z)(1− z̄) =
x2
14x

2
23

x2
13x

2
24

(3.16)

and xij = xi − xj . Using conformal symmetry we can fix x1 = 0, x3 = 1 and

x4 →∞, with the last operator confined to a plane parameterized by (z, z̄).

9 Note that (u, v) are exchanged compared to the more common convention.
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The main object of study is an appropriately rescaled version of (3.15)

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉. (3.17)

This can be expanded in the S-channel OL(z, z̄)→ OH(0) as

G(z, z̄) = (zz̄)−
1
2 (∆H+∆L)

∑

O′

(

−1

2

)J ′

λOHOLO′λOLOHO′g∆HL,−∆HL
O′ (z, z̄),

(3.18)

where ∆HL = ∆H −∆L, λijk are OPE coefficients and the sum runs over pri-

maries O′ with spin J ′ and corresponding conformal blocks g′O. The correlator

can likewise be expanded in the T-channel OL(z, z̄)→ OL(1) as

G(z, z̄) =
1

[(1− z)(1− z̄)]∆L

∑

O

(

−1

2

)J

λOHOHOλOLOLOg
0,0
O (1− z, 1− z̄),

(3.19)

where we again sum over primaries O with spin J . The equality of (3.18) and

(3.19) constitutes an example of a crossing relation, in both channels we sum

over an infinite set of conformal blocks g∆1,∆2

O (z, z̄). These contain the contribu-

tion from a primary O and all its descendants. (For recent reviews on conformal

bootstrap see [24-26].) Here we have distinguished between operators O′ and

O, in the S- and T-channel, respectively, in order to stress that generically dif-

ferent operators are relevant in different channels. As an example of this, in

the lightcone limit in d > 2 one finds [56,57] that the T-channel is dominated

by the identity operator, while in the S-channel an infinite number of operators

contribute. These are the so-called double-trace operators that exist at large

spin in any CFTd>2.

We will assume the following scaling for a non-trivial single trace operator

O (not including the stress tensor)

〈OH,LOH,LO〉 ∼
1√
CT

. (3.20)

The conformal Ward identity fixes the following 3-pt function for the stress

tensor

〈OH,LOH,LTµν〉 ∼ ∆H,L, (3.21)
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which implies the following scaling for the exchange of the stress tensor in the

T-channel
〈OHOHTµν〉〈TµνOLOL〉

〈TµνTµν〉
∼ ∆H∆L

CT
∼ µ. (3.22)

Keeping µ small, it follows that the leading contribution in the T-channel is

given by the disconnected correlator 〈OHOH〉〈OLOL〉, i.e. the exchange of the

identity operator. Decomposing the disconnected correlator in the S-channel,

we will infer the existence of the “double-trace operators” [OHOL]n,l for all

integers n, l, with scaling dimension ∆ = ∆H +∆L + 2n + l + γ(n, l) and spin

l. Moreover, the OPE coefficients scale as

〈OHOL[OHOL]n,l〉 ∼ 1. (3.23)

Keeping µ ∼ ∆H/CT fixed as CT →∞, (3.22) implies that the CFT data

of double-trace operators [OHOL]n,l receives perturbative corrections in µ. We

therefore expand the anomalous dimensions of these double-trace operators, as

well as the OPE coefficients

P
(HL,HL)
n,l ≡

(

−1

2

)l

λOHOL[OHOL]n,lλOLOH [OHOL]n,l , (3.24)

in µ as

γ(n, l) = µγ
(1)
n,l + µ2γ

(2)
n,l + . . .

P
(HL,HL)
n,l = P

(HL,HL);MFT
n,l (1 + µP

(HL,HL);(1)
n,l + µ2P

(HL,HL);(2)
n,l + . . .),

(3.25)

with . . . denoting higher order terms. The OPE coefficients P
(HL,HL);MFT
n,l are

fixed and can be found in [38]:

P
(HL,HL);MFT

h̄,h−h̄
=

(∆H + 1− d/2)h̄(∆L + 1− d/2)h̄(∆H)h(∆L)h
h̄!(h− h̄)!(∆H +∆L + h̄+ 1− d)h̄(∆H +∆L + h+ h̄− 1)h−h̄

× 1

(h− h̄+ d/2)h̄(∆H +∆L + h− d/2)h̄
,

(3.26)

where (a)b is the Pochhammer symbol and the relation between (n, l) and (h, h̄)

variables is given by

h = n+ l, h̄ = n. (3.27)

In the limit ∆H ≫ ∆L, h, h̄, (3.26) simplifies

P
(HL,HL);MFT

h̄,h−h̄
≈ C∆L

Γ(∆L + h̄− d/2 + 1)Γ(∆L + h)

h̄!(h− h̄)!(h− h̄+ d/2)h̄
, (3.28)

where C∆L = (Γ(∆L − d/2 + 1)Γ(∆L))
−1.
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3.4.1. Regge limit of HHLL correlator

After the analytic continuation z → ze−2iπ we use (σ, ρ) coordinates defined

by:
1− z = σeρ

1− z̄ = σe−ρ.
(3.29)

The Regge limit corresponds to σ → 0 with ρ kept fixed. The easiest way

to understand the kinematics of the Regge limit is to consider the four-point

correlation function on Euclidean cylinder with coordinates (τ, n̂), as in [55]:

〈OH(τ4, n̂4)OL(τ3, n̂3)OL(τ2, n̂2)OH(τ1, n̂1)〉, (3.30)

where the relation between the operators on the cylinder and plane (with coor-

dinates x) is given by

O∆(x) = e−τ∆O∆(τ, n̂), x2 = e2τ . (3.31)

The heavy operators are evaluated at τ4 → ∞ and τ1 → −∞ and via the

operator-state correspondence, they correspond to heavy states. The light op-

erators are evaluated near reference points P2 and P3, that are null separated

after Wick rotation to Lorentzian signature τ = −it. Basically, their time sepa-

ration is t3P −t2P = π, and they are placed on the opposite sides of Sd−1 sphere

n̂3P = −n̂2P . Using the translational symmetry along τ direction and rotational

symmetry on Sd−1 we set OL(τ3, n̂3) = OL(P3). Now, time component of the

other light operator τ2 is measured with respect to P3, and it is given by

τ2 = τ3 + ix0. (3.32)

We use (x0, n̂2) as the coordinates of the other light operator that will be Fourier

transformed to get the gravitational phase shift as in [55]. It is easy to check

zz̄ =
x2
2

x2
3

= e2(τ2−τ3) = e2ix
0

,

(1− z)(1− z̄) =
x2
23

x2
3

= 1 + e2ix
0 − 2eix

0

cosφ,

(3.33)

where φ is the angle between vectors n̂3P = n̂3 and n̂2. These conditions are

satisfied by the following relations:

z = eix
+

, z̄ = eix
−

, x± = x0 ± φ. (3.34)
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In the correlation function (3.30) we start from the configuration where light

operators are inserted close to each other, x0 ≈ φ ≈ 0, and we shift one of them

OL(x
0, n̂2) near the reference point P2. In this case, x0 ≈ φ ≈ −π. Therefore,

we need to shift x+ → x+−2π, or in terms of z variable z → ze−2πi. Correlation

function on the cylinder (3.30) is related to the correlation function on the plane

(3.17) by the simple conformal transformation.

After the analytic continuation, in σ → 0 limit the dominant contribution

to the correlator comes from high-spin operators, which follows from the fact

that the conformal blocks that scale as σ−J+1. These contributions can be

calculated via the means of conformal Regge theory, as explained in [63].

The conformal blocks in the S-channel transform as (see e.g. [44, 75])

g∆,J (z, z̄)→ e−iπ(∆−J)g∆,J (z, z̄), (3.35)

after the analytic continuation. In particular, for double-trace operators

[OHOL]n,l with scaling dimension ∆ = ∆H +∆L + 2n+ l + γ(n, l), the blocks

transform as

g∆HL,−∆HL
[OHOL]n,l (z, z̄)→ e−iπ(∆H+∆L)e−iπγ(n,l)g∆HL,−∆HL

[OHOL]n,l (z, z̄). (3.36)

In what follows it will be convienent to do a change of variables to h = n + l

and h̄ = n and to denote the block due to a heavy-light double-trace operator

[OHOL]h̄,h−h̄ as g∆HL,−∆HL
h,h̄

. Substituting the µ expansion (3.25) in the S-

channel (3.18) and performing the usual analytic continuation to O(µ) leads

to

G(z, z̄)|µ0 = (zz̄)−
1
2 (∆H+∆L)

∞
∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h−h̄
g∆HL,−∆HL
h,h̄

(z, z̄)

G(z, z̄)|µ1 = (zz̄)−
1
2 (∆H+∆L)

∞
∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h−h̄

(

P
(HL,HL);(1)

h̄,h−h̄

+γ
(1)

h̄,h−h̄

(

1

2
(∂h + ∂h̄)− iπ

)

)

g∆HL,−∆HL
h,h̄

(z, z̄).

(3.37)

The new single trace operators that can possibly appear here would be sublead-

ing in 1/N2. Continuing to O(µ2), the imaginary part of the S-channel is given

by
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Im(G(z, z̄))|µ2 = −iπ(zz̄)− 1
2 (∆H+∆L)

∞
∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h−h̄
×

×
(

γ
(2)

h̄,h−h̄
+ γ

(1)

h̄,h−h̄
P

(HL,HL);(1)

h̄,h−h̄
+

(γ
(1)

h̄,h−h̄
)2

2
(∂h + ∂h̄)

)

g∆HL,−∆HL
h,h̄

(z, z̄).

(3.38)

Moreover, the real part of the correlator at the same order is given by

Re(G(z, z̄))|µ2 = (zz̄)−
1
2 (∆H+∆L)

∞
∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h−h̄

(

P
(HL,HL);(2)

h̄,h−h̄

− 1

2
π2(γ

(1)

h̄,h−h̄
)2 +

1

2
(γ

(2)

h,h̄
+ P

(HL,HL);(1)

h̄,h−h̄
γ
(1)

h̄,h−h̄
)(∂h + ∂h̄)

+
1

8
(γ

(1)

h̄,h−h̄
)2(∂h + ∂h̄)

2
)

g∆HL,−∆HL
h,h̄

(z, z̄) .

(3.39)

As we will see below, in the Regge limit the dominant contribution in the S-

channel comes from double-trace operators with h, h̄≫ 1. In this limit the OPE

coefficients are given by

P
(HL,HL);MFT

h̄,h−h̄
≈ C∆L(hh̄)

∆L− d
2 (h− h̄)

d
2−1. (3.40)

We will further need λOLOLTλOHOHT in (3.19), these are fixed by Ward Iden-

tities to be

P
(HH,LL)
Tµν

=

(

−1

2

)2

λOLOLTλOHOHT =
∆L

4

(

d

d− 1

)2
∆H

CT
= µ

∆L

4

Γ
(

d
2 + 1

)2

Γ (d+ 2)
.

(3.41)

Note that as explained in [55], an expansion in µ corresponds in the bulk to

an expansion in the black hole Schwarzschild radius in AdS units. The bulk

description of Regge limit follows almost intuitively from the CFT consideration.

Namely, the heavy operators generate the black hole background where the light

(but not massless) operators propagate on almost null geodesics. This implies

that the energy of the light operators has to be large compared to the inverse

impact parameter. On the more formal level, one can analyze the CFT Regge

limit in the momentum space, for Mellin amplitude, where it is given by s→∞
and fixed t. This is the limit where we have high energy scattering with fixed

momentum transfer which justifies the usage of the eikonal approximation in

the bulk calculation.
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3.4.2. Lightcone limit of the HHLL correlator

Below we review the setup of a heavy-heavy-light-light correlator with focus on

its behaviour in the lightcone limit. Using conformal transformations we define

the stress tensor sector of the correlator by

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉

∣

∣

∣

multi−stress tensors
, (3.42)

where z and z̄ are the cross-ratios given by (3.16). In (3.42) the “multi-stress

tensor” subscript stands to indicate the contribution of the identity and all

multi-stress tensor operators.

The correlator G(z, z̄) can be expanded in the “T-channel” OL(1) ×
OL(z, z̄)→ Oτ,s as10

G(z, z̄) = [(1− z)(1− z̄)]−∆L
∑

Oτ,s
P

(HH,LL)
Oτ,s g(0,0)τ,s (1− z, 1− z̄), (3.43)

where τ = ∆ − s and s denote the twist and spin of the exchanged operator,

respectively, and g
(0,0)
τ,s (z, z̄) the conformal block of the primary operator Oτ,s.

Moreover, P
(HH,LL)
Oτ,s are defined as

P
(HH,LL)
Oτ,s =

(

−1

2

)s

λOHOHOτ,sλOLOLOτ,s , (3.44)

where λOLOLO and λOHOHO denote the respective OPE coefficients.

We will mainly be interested in the lightcone limit defined by u ≪ 1 or

equivalently z̄ → 1. In this limit the T-channel expansion (3.43) is dominated

by minimal-twist operators as follows from the behaviour of the conformal blocks

G(u, v) ≈
u→0

u−∆L
∑

Oτ,s
P

(HH,LL)
Oτ,s u

τ
2 (1− v)−

τ
2 f τ

2 +s(v), (3.45)

where twist τ is given just above and

f τ
2 +s(v) = (1− v)

τ
2+s

2F1

(τ

2
+ s,

τ

2
+ s, τ + 2s, 1− v

)

(3.46)

10 For reasons of convenience, here and in the rest of the thesis we refer to G(z, z̄)
as the correlator; the reader should keep in mind that G(z, z̄) is not the full correlator

G(z, z̄) but only its stress tensor sector, as defined in (3.42).
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is a SL(2;R) conformal block.

For any CFT in d > 2 the leading contribution in the lightcone limit comes

from the exchange of the identity operator with twist τ = 0. Another operator

present in any unitary CFT is the stress tensor with twist τ = d − 2. Its

contribution to the correlator is completely fixed by a Ward identity and given

by (3.41).

As explained in [55], the correlator admits a natural perturbative expansion

in µ,

G(z, z̄) =
∑

k

µkG(k)(z, z̄) . (3.47)

Using (3.45) and (3.41), we find the following contribution due to the stress

tensor at O(µ)

G(1)(z, z̄) ≈
z̄→1

(1− z̄)
d−2
2 (1− z)

d+2
2

[(1− z)(1− z̄)]∆L
∆LΓ(

d
2 + 1)2

4Γ(d+ 2)
2F1

(d+ 2

2
,
d+ 2

2
; d+ 2; 1− z

)

.

(3.48)

Let us study the correlator perturbatively in µ in the lightcone limit. At

k-th order in that expansion we expect contributions from minimal-twist multi-

stress tensor operators of the schematic form

[T k]τk,min,s =: Tµ1ν1
. . . ∂λ1

. . . ∂λℓTµkνk :, (3.49)

where the minimal-twist τk,min and spin s of these operators are given by

τk,min = k(d− 2),

s = 2k + ℓ
(3.50)

and ℓ an even integer denoting the number of uncontracted derivatives. We

moreover define the product of OPE coefficients for minimal-twist operators at

order k as

P
(HH,LL)

[Tk]τk,min,s
= µkP (HH,LL);(k)

τk,min,s
. (3.51)

Compared to the k = 1 case, there exists an infinite number of minimal-twist

multi-stress tensor operators for each value of k > 1. To obtain their contribu-

tion to the correlator in the lightcone limit, we thus have to sum over all these

operators.
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The correlator can likewise be expanded in the “S-channel” OL(z, z̄) ×
OH(0)→ Oτ ′,s′ as

G(z, z̄) = (zz̄)−
1
2 (∆H+∆L)

∑

Oτ′,s′
P

(HL,HL)
Oτ′,s′ g

(∆HL,−∆HL)
τ ′,s′ (z, z̄). (3.52)

where P
(HL,HL)
Oτ′,s′ are the products of the corresponding OPE coefficients and

∆HL = ∆H − ∆L. Operators contributing in the S-channel are heavy-light

double-trace operators [55,12]11 [OHOL]n,l. In the ∆H → ∞ limit the d = 4

blocks are given by

g
(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≈

(zz̄)
1
2 (∆H+∆L+2n+γ)

z̄ − z

(

z̄l+1 − zl+1
)

, (3.53)

and similarly in d = 6

g
(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≈

(zz̄)
1
2 (∆H+∆L+2n+γ(n,l))

(z̄ − z)3

×
(

z̄l+3 − l + 3

l + 1
z̄l+2z1 − (z ↔ z̄)

)

.

(3.54)

The anomalous dimensions γ(n, l) and the product of the OPE coefficients

of the double-trace operators P
(HL,HL)
n,l admit an expansion in µ given by (3.25).

The zeroth order OPE coefficients in large ∆H limit, given by (3.28), can be

subsequently expanded in large l limit (l≫ n ∼ 1). We obtain

P
(HL,HL);MFT
n,l ≈ l∆L−1(∆L − d

2 + 1)n

n! Γ(∆L)
. (3.55)

To reproduce the correct singularities manifest in the T-channel one has to sum

over infinitely many heavy-light double-trace operators with l ≫ 1. For such

operators the dependence of the OPE data on the spin l for l ≫ 1 is12:

P
(HL,HL);(k)
n,l =

P
(k)
n

l
k(d−2)

2

,

γ
(k)
n,l =

γ
(k)
n

l
k(d−2)

2

.

(3.56)

3.4.3. Higher-twist multi stress tensors contributions to HHLL correlator

Here, we review the contributions of the higher-twist multi stress tensor op-

erators to the heavy-heavy-light-light correlator in four-dimensional spacetime

(d = 4).

11 This the analogue of light-light double-trace operators that are present in the

cross channel of 〈O1O2O2O1〉, with O1 and O2 both light, in any CFT [56,57].
12 This behavior in the large l limit is different from that of the OPE data of light-

light double-trace operators [56,57].
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3.4.3.1. T-channel expansion

Consider the T-channel expansion (3.43) in d = 4. Conformal blocks in d = 4

are given by [30,31]

g(0,0)τ,s (1− z, 1− z̄) =
(1− z)(1− z̄)

z̄ − z

(

f β
2
(z)f τ−2

2
(z̄)− f β

2
(z̄)f τ−2

2
(z)
)

, (3.57)

with conformal spin, β = ∆+ s, and

fa(z) = (1− z)a2F1(a, a, 2a, 1− z). (3.58)

In the lightcone limit, defined by z̄ → 1 and z fixed, the leading contribution to

the conformal blocks (3.57) comes from the first term in parenthesis in (3.57)

g(0,0)τ,s (1− z, 1− z̄) = (1− z̄)
τ
2

(

f β
2
(z) +O((1− z̄))

)

. (3.59)

From (3.59) it is clear that the operators with the lowest twist in the T-channel

dominate the correlator in the lightcone limit.

Note that the only single-trace primaries with twist equal to or lower than

that of the stress tensor are scalars O with dimension 1 ≤ ∆O ≤ 2, or conserved

currents with twist τ = 2. In a theory without supersymmetry there is no a

priori reason for the contributions of these operators, even if they exist, to be

enhanced by a factor of ∆H , so generically we expect them to be subleading in

CT →∞ limit.13

The stress tensor sector of the correlator (3.42) admits a perturbative ex-

pansion in µ given by (3.47), where the cases k = 0 and k = 1 correspond to

the exchange of the identity and the stress tensor, respectively. For higher k we

expect “multi-stress tensors” to contribute to G(z, z̄) . Since we are interested in

the four-point function of pairwise identical scalar operators, only multi-stress

tensor operators with even spin give a nonvanishing contribution. At O(µ2),

the contribution of these operators was explicitly calculated in [124]. Following

that, it was shown in [13] how one can write the contributions of these operators

13 Interestingly, in [129] it is conjectured that OPE coefficients λφψψ of operators φ

with conformal dimension ∆φ ≪ ∆gap and ψ with conformal dimension ∆ψ, such that

∆φ ≪ ∆ψ ≪ C#>0
T , scale as λφψψ ∝ ∆ψ√

CT
. Note however that here we are working

in different regime, as ∆H ∝ O(CT ).
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at arbitrary order in the µ-expansion, in the lightcone limit (1−z̄)≪ 1, using an

appropriate ansatz and lightcone bootstrap. We briefly review this procedure

here since the contribution from non-minimal-twist operators is obtained in a

similar manner.

At O(µk), there are infinitely many minimal-twist multi-stress tensors with

twist 2k according to (3.50) which are distinguished by their conformal spin

β = ∆ + s given by β = 6k + 4ℓ with ℓ = 0, 1, 2, . . .. Inserting the leading

behavior of the blocks (3.59) in (3.43) one finds

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k

[(1− z)(1− z̄)]∆L

∑

ℓ=0

P
(k)
∆(ℓ),s(ℓ)f β(ℓ)

2

(z), (3.60)

with

µkP
(k)
∆(ℓ),s(ℓ) = P

(HH,LL)

[Tk]τ,s(ℓ)
, (3.61)

where ∆(ℓ) =
τk,min+β

2 , τk,min = 2k, s(ℓ) = 2k + 2ℓ and conformal spin β =

6k + 4ℓ. Here ≈
z̄→1

means that only the leading contribution as z̄ → 1 is kept.

It was shown in [13] that the infinite sum in (3.60) takes a particular form

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k

[(1− z)(1− z̄)]∆L

∑

{ip}
ai1...ikfi1(z)...fik(z),

k
∑

p=1

ip = 3k,

(3.62)

with ip being integers and ai1...ik are coefficients that can be determined via

lightcone bootstrap. Furthermore, using an identity for the product of two fa

functions (Eq. (A.1) in [124]) one can express the G(k)(z, z̄) in the form of (3.60)

to read off the OPE coefficients for the exchange of minimal-twist multi-stress

tensors of arbitrary conformal spin.

In this section, we want to consider multi-stress tensors with non-minimal

twist. These operators are obtained by contracting indices in (3.49) either be-

tween the derivatives or between the operators. At O
(

µk
)

there exist operators

[T k]τk,m,s with twist

τk,m = τk,min + 2m, (3.63)

for any non-negative integer m. For m 6= 0, these operators provide sublead-

ing contributions to the correlator in the lightcone limit. To consider these

subleading contributions it is convenient to expand G(k)(z, z̄) from (3.47) as

G(k)(z, z̄) =
∞
∑

m=0

(1− z̄)−∆L+k+mG(k,m)(z), (3.64)
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where G(k,m)(z) comes from operators of twists τk,m and less.

For illustration, let us consider the case k = 2 with m = 1. There exist two

infinite families of operators with twist τ2,1 = 6 of the schematic form

O6,2ℓ1+2 ∼ : Tµκ∂λ1
. . . ∂λ2ℓ1

Tκ
ν :,

O′
6,2ℓ2+4 ∼ : Tµν∂λ1

. . . ∂λ2ℓ2
∂2Tρσ : .

(3.65)

These two families share the same twist and spin for ℓ1 = ℓ2 + 1. Hence, they

are indistinguishable for ℓ1 ≥ 1 at order 1/CT in the large CT expansion. A

single operator stands out; it corresponds to ℓ1 = 0 and is of the schematic form

: TµαT
α
ν :. Note that : TµαT

α
ν : has minimal conformal spin β = 10, among

the ones in (3.65), since βℓ1 = βℓ2+1 = 10 + 4ℓ1, for ℓ1 ≥ 1.

Let us now move on to the case k = 2 and m = 2. Here, there are three

infinite families O8,s, O′
8,s and O′′

8,s with conformal spin 8 + 4ℓ1, 12 + 4ℓ2 and

16 + 4ℓ3, respectively. Schematically, these families can be represented as

O8,2ℓ1 ∼ : Tαβ∂λ1
. . . ∂λ2ℓ1

Tαβ :,

O′
8,2ℓ2+2 ∼ : Tµα∂λ1

. . . ∂λ2ℓ2
∂2Tα

ν :,

O′′
8,2ℓ3+4 ∼ : Tµν∂λ1

. . . ∂λ2ℓ3
(∂2)2Tρσ : .

(3.66)

Notice once more that the infinite families are indistinguishable for conformal

spin β ≥ 16. Here, operators with β = 8, 12 stand out. The operator with β = 8

is of the schematic form : TαβT
αβ :. For β = 12, there are two indistinguishable

operators of the schematic form : Tµα∂
2Tα

ν : and : Tαβ∂µ∂νT
αβ :.

The same holds for m ≥ 3 (and τ ≥ 10) since there is no other inde-

pendent way to contract stress tensor indices. The discussion above generalizes

straightforwardly to O(µk) with k+1 number of infinite families at high enough

twist.

3.4.3.2. S-channel expansion

The anomalous dimensions and the product of OPE coefficients for heavy-light

double-trace operators that contribute to the S-channel admit an expansion in

powers of µ given by (3.25).
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We begin by briefly reviewing the calculation in the lightcone expansion,

i.e. due to the multi-stress tensors in the T-channel. Inserting the blocks (3.53)

in the S-channel expansion (3.52) one finds that

G(z, z̄) =
∞
∑

n=0

(zz̄)n

z̄ − z

∫ ∞

0

dlP
(HL,HL)
n,l (zz̄)

1
2γn,l(z̄l+1 − zl+1), (3.67)

where the sum was approximated by an integral over l, with (1− z̄) being the

small parameter. Namely, the difference between sum and integral is O(1− z̄)

and since we are always interested in the singular terms when 1 − z̄ ≪ 1, this

difference does not affect the calculation. Expanding the OPE data in (3.67)

according to (3.25) and noting that

(zz̄)
1
2γn,l =

∞
∑

j=0

1

j!

(

γn,l log(zz̄)

2

)j

, (3.68)

it follows that terms proportional to logi z at O(µk), with i = 2, 3, . . . k, in

(3.67) are determined by OPE data at O(µk−1). These terms can therefore be

matched with the T-channel in order to fix the coefficients in the ansatz.

In [13], the leading contribution of the OPE data of heavy-light double-trace

operators as l → ∞, together with the leading contribution of the conformal

blocks as z̄ → 1, was used to determine the minimal-twist contributions in

the stress tensor sector of the T-channel. This section extends that analysis

by considering subleading corrections in the lightcone expansion and therefore

probing non-minimal-twist contributions in the T-channel. In particular, the

S-channel OPE data have the following dependence on the spin l as l →∞:

γ
(k)
n,l =

1

lk

∞
∑

p=0

γ
(k,p)
n

lp
,

P
(HL,HL);(k)
n,l =

1

lk

∞
∑

p=0

P
(HL,HL);(k,p)
n

lp
,

(3.69)

which is necessary in order to reproduce the correct power of (1− z̄) as z̄ → 1.

This can be seen by substituting the expansion of (3.28) in the large-l limit

P
(HL,LH);MFT
n,l = l∆L

(

(∆L − 1)n
n!Γ(∆L)l

+
(2n(∆L − 2) + ∆L(∆L − 1))(∆L − 1)n

2(n!)Γ(∆L)l2

+O
(

1

l3

)

)

,

(3.70)
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and (3.69) in (3.67) which result in integrals of the form

∫ ∞

0

dlz̄ll∆L−m−1 =
Γ(∆L −m)

(− log z̄)∆L−m
, (3.71)

wherem is a positive integer. Expanding (3.71) for z̄ → 1, the correct z̄-behavior

of the stress tensor sector in the T-channel is reproduced from the S-channel.

3.5. The rest of the thesis

Our first goal is to get insight into the heavy-heavy-light-light correlator at

O(µ2), where there are the contributions of double-trace operators, made of

two stress tensors, whose OPE coefficients, in general, are unknown, although

some of these OPE coefficients are found in [15]. In Section 4 we study the

heavy-heavy-light-light correlator in the Regge limit. We show how to compute

the anomalous dimensions and the corrections to the MFT OPE coefficients of

the double-trace operators in the S-channel at O(µ2) using the gravitational

calculation of the wave function phase shift of the light probe in the black hole

background.

In Section 5 we establish the complete algorithm for computing the con-

tributions of the minimal-twist14 subset of the stress tensor sector at arbitrary

order µk in even-dimensional spacetime. The algorithm relies on the appropriate

functional ansatz for these contributions and the lightcone conformal bootstrap

that fixes the coefficients in the ansatz. When these coefficients in the ansatz

are fixed, one can read off the OPE coefficients of arbitrary multi stress tensor

operator with a minimal twist at the given order µk. We show that these oper-

ators have universal OPE coefficients in agreement with the statement in [15],

which means that they are the same in the whole class of holographic CFTs.

In Section 6 we extend the algorithm to include the contributions of multi

stress tensor operators with an arbitrary twist at each order in µ. We show

that the only OPE coefficients that can not be determined by the conformal

bootstrap technique are those of operators of spin s = 0, 2. These OPE coeffi-

cients can be thought of as the parameters of the theory, that are not fixed by

the consistency condition and they parametrize the class of holographic CFTs.

14 Twist τ of the operator is defined as the difference between the conformal dimen-

sion and spin, τ = ∆− s.
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We show how the OPE coefficients of operators of spin two can be extracted

directly from the gravitational computation of the wave function phase shift of

the light probe in the black hole background.

Finally, in Section 7 we study the thermalization properties of the stress

tensor sector in general large-N theories, without the large gap assumptions.

We show that the stress tensor sector of the theory thermalizes in the pure

heavy scalar state OH with the large conformal dimension ∆H ∼ O(CT ). The

thermalization is manifested by the equality of the OPE coefficients of the multi

stress tensor operators with two heavy operators and the thermal expectation

value of stress multi stress tensor. Section 8 sums up the conclusions.

41



4. Black holes and conformal Regge bootstrap

4.1. Summary of the results

In this section we explain how to compute the anomalous dimensions of heavy-

light double-trace operators [OHOL]n,l order by order in µ, using the phase shift

result of [55]. In particular, we show that the O(µ2) anomalous dimensions in

any d are given by

γ
(2)

h̄,h−h̄
= −δ(2)

π
+

γ
(1)

h̄,h−h̄

2
(∂h + ∂h̄)γ

(1)

h̄,h−h̄
, ∆H ≫ h, h̄≫ 1. (4.1)

Using known results for δ(1) and δ(2) from [55], we find an explicit expression

for γ
(2)

h̄,h−h̄
and compare it with the known results in the lightcone limit ( ∆H ≫

h≫ h̄≫ 1). We find perfect agreement.

The rest of this section is organized as follows. In Section 4.2 we focus

on four-dimensional holographic CFTs. At O(µ), we use the crossing equation

between the S- and T-channel to solve for the anomalous dimensions of heavy-

light double-trace operators [OHOL]n,l. The result is eq. (3.4), valid for l, n≫
1. We then introduce the impact parameter representation which allows us to

rewrite the S-channel expansion as a Fourier transform. We use this to relate

the phase shift to the anomalous dimensions of [OHOL]n,l at O(µ2), thereby

deriving (4.1). Using a known result for the phase shift δ(2), we write down

an explicit expression for γ
(2)
n,l . In the subsequent l ≫ n limit it reduces to

the result which has been obtained in [55] in a completely different way (by

computing corrections to the energies of excited states in the AdS-Schwarzschild

background).

In Section 4.3 we generalize these results to any d (d = 2 is treated

separately in Appendix A.4.). By solving the Casimir equation in the limit

∆H ≫ ∆L, l, n, we obtain the conformal blocks for heavy-light double-trace

operators in the S-channel. Using the explicit expression for the blocks together

with the zeroth order OPE coefficients, we derive an impact parameter repre-

sentation valid in general dimensions. Just as in the d = 4 case, this allows

us to write the S-channel sum as a Fourier transform. Hence, we show that

(4.1) holds for any d. We compute γ
(2)
n,l in the lightcone limit and find perfect

agreement with the results quoted in [55]. In addition, we find an expression

for the O(µ2) corrections to the OPE coefficients.
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Section 4.4 discusses various observations and mentions some open prob-

lems. Appendices contain additional technical details. The conformal bootstrap

calculations are summarized in Appendix A.1, the proof of the impact parame-

ter representation in d = 4 in Appendix A.2 and the proof in general dimension

d in Appendix A.3. The special case of d = 2 is treated in Appendix A.4. Ap-

pendix A.5 discusses the fate of some boundary terms. Appendices A.6 and A.7

contain some identities which are used in Section 4.4.

4.2. Anomalous dimensions of heavy-light double-trace operators in d = 4

In this section we investigate the anomalous dimensions of heavy-light double-

trace operators [OHOL]h̄,h−h̄ in d = 4 using conformal bootstrap. Moreover,

using a four-dimensional impact parameter representation we relate the anoma-

lous dimensions to the bulk phase shift to O(µ2). This procedure can be re-

peated order by order in µ to obtain the OPE data (anomalous dimensions and

OPE coefficients – see also Section 4.3) to the desired order.

4.2.1. Anomalous dimensions in the Regge limit using bootstrap

The conformal blocks in d = 4 are given by [30]

g∆12,∆34

∆,J (z, z̄) =
zz̄

z − z̄
(k∆+J (z)k∆−J−2(z̄)− (z ↔ z̄)) (4.2)

where

kβ(z) = zβ/22F1

(

β −∆12

2
,
β +∆34

2
, β, z

)

. (4.3)

In the limit ∆H ∼ CT ≫ 1 the hypergeometric functions in (4.2) can be substi-

tuted by the identity up to 1/∆H corrections. Explicitly, the conformal blocks

of [OHOL]h̄,h−h̄ in the heavy limit are given by

g∆HL,−∆HL
h,h̄

(z, z̄) =
(zz̄)

1
2 (∆H+∆L)(zh+1z̄h̄ − zh̄z̄h+1)

z − z̄
. (4.4)

Inserting this form of the conformal blocks in (3.37) together with the OPE

coefficients in the Regge limit (3.40), we approximate the sums by integrals and

find the following expression at O(µ0) in the S-channel

G(z, z̄)|µ0 =
C∆L

z − z̄

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)
(

zh+1z̄h̄ − zh̄z̄h+1
)

. (4.5)
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The integrals are explicitly computed in Appendix A.1; the result is the dis-

connected correlator in the T-channel [(1 − z)(1 − z̄)]−∆L in the Regge limit

σ → 0.

At O(µ) in holographic CFTs the leading corrections in the T-channel come

from the exchanges of the stress tensor and double-trace operators [OLOL]n,l=2

([OHOH ]n,l=2 are heavy and therefore decouple). The conformal block for the

T-channel exchange of the stress tensor is found after z → e−2πiz to be given

by

gTµν =
360iπe−ρ

σ(e2ρ − 1)
+ . . . , (4.6)

where . . . denotes non-singular terms. The contribution from the stress tensor

exchange in the T-channel is thus imaginary for real values of σ and ρ. The

only imaginary term at order µ in the S-channel expansion (3.37) comes from

the term proportional to −iπγ; it must reproduce (4.6).

In the Regge limit, we approximate the sum in the S-channel by an integral

and insert the OPE coefficients from (3.40); the imaginary part at O(µ) in the

S-channel is thus given by

Im(G(z, z̄))|µ1 =
−iπC∆L

z − z̄

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)γ
(1)

h̄,h−h̄

(

zh+1z̄h̄ − zh̄z̄h+1
)

.

(4.7)

With the ansatz γ
(1)

h̄,h−h̄
= c1h

ah̄b/(h− h̄) the integrals in (4.7) can be computed

(for more details see Appendix A.1). In order to reproduce the exchange of the

stress tensor, the anomalous dimensions at O(µ) must be equal to

γ
(1)

h̄,h−h̄
= −90λOHOHTµνλOLOLTµν

µ∆L

h̄2

h− h̄

= − 3h̄2

h− h̄
,

(4.8)

where in the second line we inserted the OPE coefficients from (3.41). With

the form (4.8) not only the stress tensor exchange is reproduced, but also an

infinite sum of spin-2 double-trace operators [OLOL]n,l=2 with scaling dimension

∆n = 2∆L+2+2n. This is similar to what happens in the light-light case [75].
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To determine the second order corrections to the anomalous dimensions we

use the derivative relationship:

P
(HL,HL);MFT

h̄,h−h̄
P

(HL,HL);(1)

h̄,h−h̄
=

1

2
(∂h + ∂h̄)

(

P
(HL,HL);MFT

h̄,h−h̄
γ
(1)

h̄,h−h̄

)

. (4.9)

We will prove below (see Section 4.3.3) that this relationship is true in the limit

h, h̄ ≫ 1. The imaginary part at O(µ2) in the S-channel from (3.37) is then

given by

Im(G(z, z̄))|µ2 = −iπ
∫ ∞

0

dh

∫ h

0

dh̄P
(HL,HL);MFT

h̄,h−h̄

(

γ
(2)

h̄,h−h̄

+ γ
(1)

h̄,h−h̄
P

(HL,HL);(1)

h̄,h−h̄
+

(γ
(1)

h̄,h−h̄
)2

2
(∂h + ∂h̄)

)

gh,h̄.

(4.10)

With the help of (4.9), one can write (4.10) as

Im(G(z, z̄))|µ2 =− iπ

∫ ∞

0

dh

∫ h

0

dh̄P
(HL,HL);MFT

h̄,h−h̄
gh,h̄

×



γ
(2)

h̄,h−h̄
−

γ
(1)

h̄,h−h̄

2
(∂h + ∂h̄)γ

(1)

h̄,h−h̄



+ total derivative,

(4.11)

where the total derivate term does not contribute (see Appendix A.5 for de-

tails). In order to fix γ
(2)

h̄,h−h̄
completely from crossing symmetry, we would need

to consider the exchange of infinitely many double-trace operators made out

of the stress tensor in the T-channel. Instead, we will use an impact parame-

ter representation to relate γ
(2)

h̄,h−h̄
to the bulk phase shift calculated from the

gravity dual in [55].

4.2.2. 4d impact parameter representation and relation to bulk phase shift

In [59] the anomalous dimensions of light-light double-trace operators in the

limit h, h̄ ≫ 1 were shown to be related to the bulk phase shift. An impact

parameter representation for the case when one of the operators is heavy was

introduced in [55], where it was also shown that the bulk phase shift and the

anomalous dimensions are equal at O(µ). The goal of this section is to see

explicitly how the bulk phase shift and the anomalous dimensions are related

to O(µ2).
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The correlator (3.17) can be written in an impact parameter representation

as

G(z, z̄) =

∫ ∞

0

dh

∫ h

0

dh̄ Ih,h̄f(h, h̄), (4.12)

with Ih,h̄ given by

Ih,h̄ = (zz̄)−
(∆H+∆L)

2 P
(HL,HL);MFT

h̄,h−h̄
g∆HL,−∆HL
h,h̄

(z, z̄) (4.13)

and f(h, h̄) some function that generically depends on the anomalous dimension

and corrections to the OPE coefficients. In particular, for f(h, h̄) = 1, (4.12) is

equal to the disconnected correlator. In Appendix A.2 it is shown that Ih,h̄ can

be equivalently written as

Ih,h̄ ≡ C(∆L)

∫

M+

d4p

(2π)4
(−p2)∆L−2e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(

p2

4
+ hh̄

)

(4.14)

where M+ is the upper Milne wedge with {p2 ≤ 0, p0 ≥ 0}, C(∆L) given by

(with d = 4)

C(∆) ≡ 2d+1−2∆π1+ d
2

Γ(∆)Γ(∆− d
2 + 1)

(4.15)

and ē = (1, 0, 0, 0). Moreover, following [55], we will set z = eix
+

and z̄ = eix
−

,

with x+ = t+ r and x− = t− r in spherical coordinates.

Using the identity

δ(p · ē+ h+ h̄) δ

(

p2

4
+ hh̄

)

=
1

|h− h̄|

(

δ

(

p+

2
− h

)

δ

(

p−

2
− h̄

)

+ (h↔ h̄)

)

,

(4.16)

with p+ = pt + pr, p− = pt − pr, the integrals over h, h̄ in (4.12) are easily

computed. With the identification h = p+

2 and h̄ = p−

2 it follows that a generic

term like (4.12) can be written as a Fourier transform

∫ ∞

0

dh

∫ h

0

dh̄ Ih,h̄f(h, h̄) = C(∆L)

∫

M+

d4p

(2π)4
(−p2)∆L−2e−ipxf

(

p+

2
,
p−

2

)

.

(4.17)

We thus see that the impact parameter representation allows us to rewrite the

S-channel expression as a Fourier transform.

The phase shift δ(p) for a pair of operators OH and OL, with scaling

dimensions ∆H/CT ∝ µ and ∆L/CT ≪ 1, respectively, was defined in [55] by

46



B(p) ≡
∫

d4xeipxG(x) = B0(p)eiδ(p), (4.18)

where G(x) is given in (3.17) and B0(p) denotes the Fourier transform of the

disconnected correlator. As the OPE data, the phase shift admits an expansion

in µ:

δ(p) = µδ(1)(p) + µ2δ(2)(p) + . . . , (4.19)

where . . . denotes higher order terms in the expansion. Expanding the expo-

nential in (4.18) in µ we get

B(p) = B0(p)
(

1 + iµδ(1) + µ2(−(δ(1))2

2
+ iδ(2)) + . . .

)

. (4.20)

With (4.20) the relationship between the anomalous dimensions and the bulk

phase shift to O(µ2) can be established using (3.37), (3.38) and (4.17):

γ
(1)

h̄,h−h̄
= −δ(1)

π

γ
(2)

h̄,h−h̄
= −δ(2)

π
+

γ
(1)

h̄,h−h̄

2
(∂h + ∂h̄)γ

(1)

h̄,h−h̄
.

(4.21)

The phase shift was calculated in closed form to all orders in µ for the

four-dimensional case [55], with the first and second order terms given by

δ(1) =
3π

2

√

−p2 e−L

e2L − 1

δ(2) =
35π

8

√

−p2 2e
L − e−L

(e2L − 1)3
,

(4.22)

where

−p2 = p+p−, coshL =
p+ + p−

2
√

−p2
. (4.23)

Using (4.22) and (4.23), the O(µ) corrections to the anomalous dimensions are

given by γ
(1)
n,l = −3n2/l, which agrees with (4.8). From (4.22) and (4.21), we

deduce the anomalous dimensions at O(µ2):

γ
(2)
n,l = −

35

4

(2l + n)n3

l3
+ 9

n3

l2
. (4.24)

Taking the lightcone limit (l≫ n≫ 1) in (4.24) we find

γ
(2)
n,l ≈ −

17

2

n3

l2
. (4.25)

The anomalous dimensions in the lightcone limit (4.25) agree with eq. (6.40) in

[55], which was obtained independently by considering corrections to the energy

levels in the AdS-Schwarzschild background.
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4.3. OPE data of heavy-light double-trace operators in generic d

In this section we will write the general form of conformal blocks for heavy-light

double-trace operators in the limit ∆H ∼ CT ≫ 1 and general d > 2. These

blocks will be used to confirm the validity of the impact parameter represen-

tation in Appendix A.3. Using the impact parameter representation the OPE

data will be related to the bulk phase shift. In particular, we show that (4.21)

remains valid in any number of dimensions and find explicit expressions for the

corrections to the OPE coefficients up to O(µ2).

4.3.1. Conformal blocks in the heavy limit

In order to find conformal blocks in general spacetime dimension d in the limit

∆H ≫ ∆L, h, h̄, we write them in the following form:

g∆HL,−∆HL
h,h̄

(z, z̄) = (zz̄)
∆H+∆L

2 F (z, z̄), (4.26)

where the function F (z, z̄) does not depend on ∆H and is symmetric with

respect to the exchange z ↔ z̄. Let us now insert the expression (4.26) into the

Casimir equation and consider the leading O(∆H) term:

z
∂

∂z
F (z, z̄) + z̄

∂

∂z̄
F (z, z̄)− (h+ h̄)F (z, z̄) = 0. (4.27)

The most general solution to eq. (4.27) is:

F (z, z̄) = zh+h̄f
( z̄

z

)

, (4.28)

where f is an arbitrary function that satisfies f( 1
x
) = x−h−h̄f(x), since confor-

mal blocks must be symmetric with respect to the exchange z ↔ z̄.

The behavior of the conformal blocks as z, z̄ → 0 and z/z̄ fixed is given by

[30,130]

g∆12,∆34

∆,l (z, z̄)→ l!

(d
2
− 1)l

(zz̄)
∆
2 C

( d2−1)

l

( z + z̄

2
√
zz̄

)

, (4.29)

where ∆ = ∆1 + ∆2 + 2n + l and C
(p)
q (x) are the Gegenbauer polynomials.

Using (4.29), we can completely determine the function f :

f
( z̄

z

)

=
(h− h̄)!

(d
2
− 1)h−h̄

( z̄

z

)
h+h̄

2

C
( d2−1)

h−h̄

( z + z̄

2
√
zz̄

)

. (4.30)
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That is, the conformal blocks in the limit of large ∆H are given by

g∆HL,−∆HL
h,h̄

(z, z̄) =
(h− h̄)!

(d2 − 1)h−h̄

(zz̄)
∆H+∆L+h+h̄

2 C
( d2−1)

h−h̄

( z + z̄

2
√
zz̄

)

. (4.31)

It is easy to explicitly check that this form of the conformal blocks agrees with

the one we used in d = 4 in the previous section.

4.3.2. Anomalous dimensions

In Appendix A.3 we prove the validity of the impact parameter representation

in any d. This means that the derivation of (4.21) goes through for arbitrary d.

Using known results for the bulk phase shift from [55], we thus find

γ
(1)

h̄,h−h̄
= − h̄

d
2

h
d
2−1

Γ(d)

Γ(d2 )Γ(
d
2 + 1)

2F1(
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h
). (4.32)

In the lightcone limit (h = l ≫ h̄ = n) this reduces to

γ
(1)

h̄,h−h̄
≈ − h̄

d
2

h
d
2−1

Γ(d)

Γ(d2 )Γ(
d
2 + 1)

. (4.33)

Similarly, using (4.21) together with eq. (2.29) and eq. (A.5) from [55], we find

the O(µ2) corrections to the anomalous dimensions in the limit h, h̄≫ 1:

γ
(2)

h̄,h−h̄
= −δ(2)

π
+

1

2
γ
(1)

h̄,h−h̄

{

2

h+ h̄
γ
(1)

h̄,h−h̄
− Γ(d)

Γ
(

d
2

)2 h̄
d
2−1h

d
2−1 (h− h̄)3−d

h+ h̄

}

=

= −
(

h̄d−1

hd−2

)

22d−4Γ
(

d+ 1
2

)

√
πΓ(d)

2F1[2d− 3, d− 2, d,
h̄

h
] +

+
h̄dh2−d

(h+ h̄)

4Γ2(d)

d2 Γ4
(

d
2

)

(

2F1[
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h
]

)2

+

+
h̄d−1(h− h̄)3−d

h+ h̄

Γ2(d)

dΓ4
(

d
2

) 2F1[
d

2
− 1, d− 1,

d

2
+ 1,

h̄

h
]

(4.34)

Taking further the lightcone limit (h≫ h̄) we find that

γ
(2)

h̄,h−h̄
≈ h̄d−1

hd−2

22d−4

π

(

dΓ
(

d+1
2

)2

Γ
(

d+2
2

)2 −
√
πΓ
(

d+ 1
2

)

Γ (d)

)

. (4.35)
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The result (4.35) agrees with eq. (6.42) in [55] which was obtained independently

using perturbation theory in the bulk. In order to see this explicitly, one should

notice the following expression for the hypergeometric function:

3F2(1,−
d

2
,−d

2
; 1 +

d

2
, 1 +

d

2
; 1) =

1

2

(

1 +
Γ4(1 + d

2
)Γ(2d+ 1)

Γ4(d+ 1)

)

. (4.36)

4.3.3. Corrections to the OPE coefficients

So far, we have only considered the imaginary part of the S-channel. The real

part at O(µ) is given by the following expression:

Re(G(z, z̄))|µ =(zz̄)−
1
2 (∆H+∆L)

∫ +∞

0

dh

∫ h

0

dh̄P
(HL,HL);MFT

h̄,h−h̄

×
(

P
(HL,HL);(1)

h̄,h−h̄
+

1

2
γ
(1)

h̄,h−h̄
(∂h + ∂h̄)

)

g
∆HL,−∆HL

h,h̄
(z, z̄),

(4.37)

which can be rewritten as:

Re(G(z, z̄))|µ = (zz̄)−
1
2 (∆H+∆L)

∫ +∞

0

dh

∫ h

0

dh̄g
∆HL,−∆HL

h,h̄
×

×
(

P
(HL,HL);MFT

h̄,h−h̄
P

(HL,HL);(1)

h̄,h−h̄
− 1

2
(∂h + ∂h̄)(P

(HL,HL);MFT

h̄,h−h̄
γ
(1)

h̄,h−h̄
)
)

+ total derivative.

(4.38)

The total derivative term in (4.38) can be shown to vanish as explained in

Appendix A.5.

To derive a relation between the corrections to the OPE coefficients and the

anomalous dimensions at O(µ), let us consider the limit h, h̄≫ 1 and substitute

h̄ by h everywhere. Using (4.32), one can deduce γ
(1)

h̄,h−h̄
∝ h. Then, it follows

that (∂h + ∂h̄)(P
(HL,HL);MFT

h̄,h−h̄
γ
(1)

h̄,h−h̄
) ∝ P

(HL,HL);MFT

h̄,h−h̄
and hence the second

term on the right hand side of (4.38) behaves as:

(zz̄)−
1
2 (∆H+∆L)

2

∫ +∞

0

dh

∫ h

0

dh̄g∆HL,−∆HL
h,h̄

(∂h + ∂h̄)(P
(HL,HL);MFT

h̄,h−h̄
γ
(1)

h̄,h−h̄
)

∝ 1

σ2∆L
.

(4.39)

On the other hand, we know that in the Regge limit the leading contribution

in the T-channel at O(µ) comes from the exchange of the stress tensor. The
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real part of its conformal block is proportional to σd, so the T-channel result

behaves as 1
σ2∆L−d . This is way less singular than (4.39). Hence (4.39) must be

canceled by the first term on the right hand side of (4.38), at least in the limit

h, h̄≫ 1. That is:

P
(HL,HL);MFT

h̄,h−h̄
P

(HL,HL);(1)

h̄,h−h̄
=

1

2
(∂h + ∂h̄)(P

(HL,HL);MFT

h̄,h−h̄
γ
(1)

h̄,h−h̄
). (4.40)

A similar relation holds for the OPE coefficients of light-light double-trace op-

erators, e.g. see [11,38,53]. In that case it was observed in [49] that the relation

is not exact in (h, h̄). We expect the same to be true here. Furthermore, the

real part at O(µ2) was given in (3.39) as:

Re(G(z, z̄))|µ2 = (zz̄)−
1
2 (∆H+∆L)

∞
∑

h≥h̄≥0

P
(HL,HL);MFT

h̄,h−h̄

(

P
(HL,HL);(2)

h̄,h−h̄

− 1

2
(πγ

(1)

h̄,h−h̄
)2 +

1

2
(γ

(2)

h̄,h−h̄
+ P

(HL,HL);(1)

h̄,h−h̄
γ
(1)

h̄,h−h̄
)(∂h + ∂h̄)

+
1

8
(γ

(1)

h̄,h−h̄
)2(∂h + ∂h̄)

2
)

g∆HL,−∆HL
h,h̄

.

(4.41)

Using the impact parameter representation this can be expressed as:

Re(G(z, z̄))|µ2 =

∫ ∞

0

dh

∫ h

0

dh̄Ih,h̄
(

P
(HL,HL);(2)

h̄,h−h̄
− π2

2
(γ

(1)

h̄,h−h̄
)2

− 1

2P
(HL,HL);MFT

h̄,h−h̄

(∂h + ∂h̄)(P
(HL,HL);MFT

h̄,h−h̄
(γ

(2)

h̄,h−h̄
+ P

(HL,HL);(1)

h̄,h−h̄
γ
(1)

h̄,h−h̄
))

+
1

8P
(HL,HL);MFT

h̄,h−h̄

(∂h + ∂h̄)
2(P

(HL,HL);MFT

h̄,h−h̄
(γ

(1)

h̄,h−h̄
)2)
)

,

(4.42)

where we repeatedly integrated by parts. It follows from (4.20) and (4.17),

together with πγ
(1)

h̄,h−h̄
= −δ(1), that the corrections to the OPE coefficients at

O(µ2) satisfy the following relationship:

P
(HL,HL);MFT

h̄,h−h̄
P

(2)

h̄,h−h̄
= −1

8
(∂h + ∂h̄)

2(P
(HL,HL);MFT

h̄,h−h̄
(γ

(1)

h̄,h−h̄
)2)

+
1

2
(∂h + ∂h̄)(P

(HL,HL);MFT

h̄,h−h̄
(γ

(2)

h̄,h−h̄
+ P

(HL,HL);(1)

h̄,h−h̄
γ
(1)

h̄,h−h̄
)).

(4.43)

The arguments above are similar to the ones used in [75,59].

51



4.3.4. Flat space limit

In the flat space limit the relation between the scattering phase shift and the

anomalous dimensions has been previously discussed in [131]. Hence, it is in-

teresting to consider the flat space limit of eq. (4.1). This limit is achieved by

taking the apparent impact parameter to be much smaller than the AdS radius.

This corresponds to the small L regime or, equivalently, using e−2L = h̄/h to

the 1≪ l ≪ n≪ ∆H limit.

In this limit, according to (4.32), the behavior of γ
(1)
n,l is given by

γ
(1)
n,l ∝ n

(n

l

)d−3

. (4.44)

Hence, the γ
(1)

h̄,h−h̄
(∂h + ∂h̄)γ

(1)

h̄,h−h̄
term in eq. (4.1) behaves as

γ
(1)
n,l∂nγ

(1)
n,l ∝ n

(n

l

)2d−6

. (4.45)

Similarly, using equation (A.5) from [55], one finds that δ(2) behaves as

δ(2) ∝ n
(n

l

)2d−5

. (4.46)

Since (4.45) is subleading to (4.46), in the flat space limit the anomalous di-

mensions are proportional to the phase shift,

γ
(2)
n,l ≈ −

δ(2)

π
. (4.47)

4.4. Discussion

In this section we studied a four-point function of pairwise identical scalar oper-

ators, OH and OL, in holographic CFTs of any dimensionality. Scaling ∆H with

the central charge, the CFT data admits an expansion in the ratio µ ∼ ∆H/CT

which we keep fixed. Using crossing symmetry and the bulk phase shift cal-

culated in [55], we studied O(µ2) corrections to the OPE data of heavy-light

double-trace operators [OHOL]n,l for large l and n. In particular, the relation-

ship between the bulk phase shift and the OPE data of heavy-light double-trace

operators is found using an impact parameter representation. Furthermore, this

allows us in principle to determine the OPE data of [OHOL]n,l, for l, n ≫ 1
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to all orders in µ, i.e., to all orders in an expansion in the dual black hole

Schwarzschild radius.

Scaling ∆H with the central charge enhances the effect of stress tensor

exchanges compared to the 1/CT corrections due to the exchange of generic

operators. At O(µ2) and higher, we therefore expect multi-stress tensor oper-

ators to contribute. The OPE coefficients for such exchanges are not known

in general. They would be needed to determine corrections to the OPE data

of heavy-light double-trace operators using purely CFT methods. In a recent

paper [15] some of these OPE coefficients have been computed. In particular,

the OPE coefficients with the multi-stress tensor operators of lowest twist have

been argued to be universal (independent of the higher derivative couplings in

the bulk gravitational lagrangian). It would be interesting to connect these

results to the ones discussed in this section.

It is a curious fact that each term in the µ-expansion of the bulk phase shift

as computed in gravity in [55] can be expressed as an infinite sum of “Regge

conformal blocks” corresponding to operators of dimension ∆ = k(d−2)+2n+2

and spin J = 2. Explicitly,

i δ(k)(S, L) = f(k)
∞
∑

n=0

λk(n) gR
k(d−2)+2n+2, 2

(S, L) , (4.48)

where the coefficients (f(k), λk(n)) are listed in Appendix A.6 and we set S ≡
√

−p2 compared to [55]. Here gR
∆,J

(S, L) denotes a “Regge conformal block”,

and is equal to the leading behaviour of the analytically continued T-channel

conformal block in the Regge limit [132,74]

gR∆,J(S, L) = i c∆,J SJ−1 Π∆−1,d−1(L) (4.49)

defined in terms of

1− z =
eL

S
, 1− z̄ =

e−L

S
(4.50)

as S → ∞ and L fixed. Here c∆,J are known coefficients which can be found

in Appendix A.6 and Π∆−1,d−1(L) denotes the (d− 1)-dimensional hyperbolic

space propagator for a massive scalar of mass square m2 = (∆− 1).

To understand the implications of (4.48) let us focus on k = 2 and consider

large impact parameters, a.k.a. the lightcone limit. In this case, one expects
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that the dominant contribution to the bulk phase shift comes from the infinite

sum of the minimal twist double-trace operators built from the stress tensor,

schematically denoted by Tµν∂µ1
· · ·∂µℓTρσ. (4.48) implies that this infinite sum

gives rise to a contribution which can be interpreted as coming from a single

conformal block of an “effective” operator of the same twist τ = 2(d−2), but spin
J = 2. At finite impact parameter, one would then need to add the contributions

of an infinite tower of such effective operators of twist τ = 2(d−2)+2n and spin

J = 2, as expressed by the infinite sum in (4.48). From this point of view, the

coefficients λn in (4.48) can be interpreted as ratios of sums of OPE coefficients

of double-trace operators. It is clear that this picture appears to hold to all

orders in
(

∆H
CT

)

or equivalently, the Schwarzschild radius of the black hole.

It would be interesting to investigate whether Rindler positivity constrains

the Regge behaviour of the bulk phase shift to grow at most linearly with the

energy S, similarly to Section 5.2 in [74]. If this were true, one would perhaps

only need to understand the origin of the λn to compute the bulk phase shift

to arbitrary order in
(

∆H
CT

)

purely from CFT techniques.
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5. The minimal twist multi-stress tensors and conformal bootstrap

5.1. Summary of the results

In this section we argue that for a large class of CFTs (including holographic

CFTs) in even d, the contribution of minimal-twist multi-stress tensors to the

correlator in the lightcone limit can be written as a sum of products of certain

hypergeometric functions. To be explicit, let us define functions fa(z) as

fa(z) = (1− z)a2F1(a, a, 2a; 1− z). (5.1)

The stress tensor contribution to the correlator in the lightcone limit is given

in any dimension d by

G(1)(z, z̄) ≈
z̄→1

(1− z̄)
d−2
2

[(1− z)(1− z̄)]∆L
∆LΓ(

d
2 + 1)2

4Γ(d+ 2)
f d+2

2
(z). (5.2)

At O(µ2) the contribution from twist-four double-stress tensor operators in

d = 4 is

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(

∆L

28800(∆L − 2)

)

×
(

(∆L − 4)(∆L − 3)f2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z) +

40

7
(∆L + 1)f1(z)f5(z)

)

.

(5.3)

This result agrees with the expression obtained by different methods in [124].

The contribution from twist-six triple-stress tensors in the lightcone limit

in d = 4 at order O(µ3) is

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

(

a117f1(z)
2f7(z) + a126f1(z)f2(z)f6(z)

+ a135f1(z)f3(z)f5(z) + a225f2(z)
2f5(z) + a234f2(z)f3(z)f4(z) + a333f3(z)

3
)

,

(5.4)

where coefficients aijk are given by (5.26).

Furthermore, from (5.4) and (5.26), we find the OPE coefficients of twist-

six triple-stress tensor operators as a finite sum (for details see Section 5.2.5).

Two such OPE coefficients for twist-6 triple-stress tensors were calculated holo-

graphically in [15] and agree with our results.
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The contribution from twist-eight double-stress tensors to the correlator in

the lightcone limit in d = 6 at order O(µ2) is

G(2)(z, z̄) ≈
z̄→1

(1− z̄)4

[(1− z)(1− z̄)]∆L
×

(

a13f1(z)f7(z) + a26f2(z)f6(z) + a35f3(z)f5(z) + a44f4(z)
2
)

,

(5.5)

where amn are given by (5.49). Using (5.5) and (5.49) we find the OPE coeffi-

cients for operators of type : Tµν∂λ1
. . . ∂λ2ℓ

Tαβ : in d = 6 to be equal to:

P
(HH,LL)
8,s = µ2 c∆L

(∆L − 3)(∆L − 4)
(a3∆

3
L + a2∆

2
L + a1∆L + a0), (5.6)

where c and am, given by (5.57), are functions of the total spin s = 4 + 2ℓ .

In general we propose that the contribution from minimal-twist multi-stress

tensor operators to the correlator in even d at O(µk) in the lightcone limit takes

the form

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k(
d
2−1)

[(1− z)(1− z̄)]∆L

∑

{ip}
ai1...ikfi1(z)...fik(z),

k
∑

p=1

ip = k
(d+ 2

2

)

,

(5.7)

where the sum goes over all sets of {ip} with ip ≤ ip+1 and ai1...ik coefficients

that need to be fixed.15

We also check that the stress tensor sector of the near lightcone correlator

exponentiates

〈OH(x4)OL(1)OL(z, z̄)OH(0)〉|multi−stress tensors ≈
z̄→1

e∆LF(µ;z,z̄)

[(1− z)(1− z̄)]∆L
, (5.8)

where F(µ; z, z̄) is a rational function of ∆L that remains O(1) as ∆L → ∞.

We explicitly verify this up to O(µ3) in d = 4 and O(µ2) in d = 6.

5.1.1. Outline

The rest of Section 5 is organized as follows. In Section 5.2 we find the contri-

bution of minimal-twist double- and triple-stress tensor operators in d = 4 in

the lightcone limit. We show that this contribution exponentiates and we write

15 One only needs to sum the linearly independent products of functions fa.
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an expression for the OPE coefficients of minimal-twist triple-stress tensors of

spin s with scalar operators, in the form of a finite sum. In Section 5.3, we

repeat this program up to O(µ2) in d = 6. Again we confirm exponentiation

and we find a closed form expression for the OPE coefficients of minimal-twist

double-stress tensors of arbitrary spin with scalar operators. We discuss our

results in Section 5.4.

5.2. Multi-stress tensors in four dimensions

In this section we describe how to use crossing symmetry to fix the contribution

of minimal-twist multi-stress tensors to the heavy-heavy-light-light correlator

in d = 4 to O(µ3). The methods described generalize to other even spacetime

dimensions, with the six-dimensional case to O(µ2) described in Section 5.3.

In principle the same technology can also be used to determine the correlator

at higher orders. Moreover, the resulting expression can be decomposed into

multi-stress tensor blocks of minimal-twist, allowing us at each order to read off

the OPE coefficients of minimal-twist multi-stress tensors.

The idea is to study the S-channel expansion in (3.52) in the limit 1− z̄ ≪
z ≪ 1. In this limit operators with l ≫ 1 and low values of n dominate. Namely,

the OPE coefficients and the anomalous dimensions of the S-channel operators

can be expanded in powers of 1/l. The leading contribution in 1− z̄ ≪ 1 limit

is due to the leading term in 1/l expansion and same is true for subleading

contributions. Subsequently, the leading contribution in z ≪ 1 limit is due to

the n = 0 term, the subleading is due to the n = 1, and so on. Expanding

the conformal blocks in (3.53) for small γ(n, l) and z̄ → 1, the blocks in d = 4

reduce to

(zz̄)−
1
2 (∆H+∆L)g

(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≈z̄→1

z̄lp(log z, γ(n, l))
zn

1− z
, (5.9)

where p(log z, γ(n, l)) is given by

p(log z, γ(n, l)) = z
1
2γ(n,l) =

∞
∑

j=0

1

j!

(

γ(n, l) log z

2

)j

. (5.10)

Inserting (5.9) into (3.52) and converting the sum into an integral, we have the

following expression for the correlator in the limit z̄ → 1

G(z, z̄) ≈
z̄→1

∞
∑

n=0

zn

1− z

∫ ∞

0

dlP
(HL,HL)
n,l z̄lp(log z, γ(n, l)). (5.11)

57



In the following we consider an expansion of (5.11) around z = 0. The key point

is to note that by expanding the anomalous dimensions and OPE coefficients,

as in (3.25), terms proportional to zp logi z with i = 2, 3, . . . , k and any p at

O(µk), in (5.11) are completely determined in terms of OPE data at O(µk−1).

Moreover, using (3.56) one sees that the integral over the spin l yields16

∫ ∞

0

dll∆L−1−k z̄l =
Γ(∆L − k)

(− log z̄)∆L−k
≈

z̄→1

Γ(∆L − k)

(1− z̄)∆L−k
, (5.12)

at O(µk) in the limit z̄ → 1. This correctly reproduces the expected z̄ behavior

of minimal-twist multi-stress tensors in the T-channel, thus verifying (3.56).

Additionally, it is easy to check that the difference between the integral and the

sum of expression z̄ll∆L−k−1 is O(1− z̄) in 1− z̄ ≪ 1 limit, while both integral

and sum scale as (1− z̄)−∆L+k when z̄ → 1. As we always (implicitly) assume

that ∆L > k, at each order in µ we are only interested in singular terms of sum

or integral, therefore, the O(1− z̄) difference will never affect the calculation.

We now make the following ansatz for the correlator

G(k)(z, z̄) ≈
z̄→1

(1− z̄)k

[(1− z)(1− z̄)]∆L

∑

{ip}
ai1...ikfi1(z) . . . fik(z), (5.13)

where the sum goes over all sets of {ip} with ip integers and ip ≤ ip+1 such that
∑k

p=1 ip = 3k and ai1...ik coefficients that need to be fixed. Generally fa(z) are

given by

fa(z) = q1,a(z) + q2,a(z) log z, (5.14)

where q(1,2),a(z) are rational functions and the ansatz (5.13) at O(µk) is there-

fore a polynomial in log z of degree k. By crossing symmetry terms with loga z,

with 2 ≤ a ≤ k, are determined by OPE data at O(µk−1). This is what we will

use to determine the coefficients ai1...ip .

16 At each order in µ we implicitly assume that integrals of this type converge, i.e.

that ∆L > k.
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5.2.1. Stress tensor

We start by determining the OPE data at O(µ). This is easily obtained by

matching (5.11) at O(µ) with the stress tensor contribution (3.48). Explicitly,

multiplying both channels by (1− z) we have at O(µ)

∆Lf3(z)

120[(1− z)(1− z̄)]∆L−1
=

1

(1− z̄)∆L−1

∞
∑

n=0

Γ(∆L + n− 1)zn

Γ(∆L)n!

×
(

P (1)
n +

γ
(1)
n

2
log z

)

.

(5.15)

Expanding the LHS in (5.15) for z ≪ 1 we find

∆L/120

[(1− z)(1− z̄)]∆L−1
f3(z) =

1

(1− z̄)∆L−1

(

− ∆L

4
(3 + log z)

− z
∆L

4
(3(∆L + 1) + (∆L + 5) log z)

− z2
∆L

8
(3∆L(∆L + 3) + (12 +∆L(∆L + 11)))

+O(z3, z3 log z)
)

,

(5.16)

while the RHS is given by

∑∞
n=0

Γ(∆L+n−1)zn

Γ(∆L)n!
(P

(1)
n +

γ(1)
n

2 log z)

(1− z̄)∆L−1
=

1

(1− z̄)∆L−1

(P
(1)
0 +

γ
(1)
0

2
log z

∆L − 1

+ z(P
(1)
1 +

γ
(1)
1

2
log z)

+ z2
∆L

2
(P

(1)
2 +

γ
(1)
2

2
log z)

+O(z3, z3 log z)
)

.

(5.17)

Comparing (5.16) and (5.17) order-by-order in z one finds the following OPE

data

γ
(1)
0 = −∆L(∆L − 1)

2
,

γ
(1)
1 = −∆L(∆L + 5)

2
,

γ
(1)
2 = −12 + ∆L(∆L + 11)

2
,

(5.18)
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which agrees with eq. (6.10) in [55], and the OPE coefficients

P
(1)
0 = −3∆L(∆L − 1)

4
,

P
(1)
1 = −3∆L(∆L + 1)

4
,

P
(1)
2 = −3∆L(∆L + 3)

4
.

(5.19)

It is straightforward to continue and compute the O(µ) OPE data in the S-

channel for any value of n.

5.2.2. Twist-four double-stress tensors

From (5.13) we infer the following expression for the contribution due to twist-

four double-stress tensors to the heavy-heavy-light-light correlator in the limit

z̄ → 1:

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(

a15f1(z)f5(z) + a24f2(z)f4(z) + a33f
2
3 (z)

)

.

(5.20)

By expanding (5.20) further in the limit z ≪ 1 and collecting terms that goes

as zp log2 z, we will match with known contributions obtained from (5.11).

Inserting (5.18) and (5.19) in the S-channel (5.11) fixes terms proportional

to zp log2 z up to O(z2 log2 z). Expanding the ansatz (5.20) and matching with

the S-channel reproduces the result obtained in [124]:

G(2)(z, z̄) ≈
z̄→1

(1− z̄)2

[(1− z)(1− z̄)]∆L

(

∆L

28800(∆L − 2)

)

×
(

(∆L − 4)(∆L − 3)f2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z)

+
40

7
(∆L + 1)f1(z)f5(z)

)

.

(5.21)

Using the O(µ) OPE data in the S-channel for n > 2 in (5.16) and (5.17) one

gets an overconstrained system which is still solved by (5.21). This is a strong

argument in favor of the validity of our ansatz (5.13).

We can now use (5.21) to derive the O(µ2) OPE data in the S-channel by

matching terms proportional to zp logi z as z → 0, with i = 0, 1, by comparing
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with (5.11). This is done in the same way it was done for O(µ) OPE data in

the S-channel. For example, one finds the following data for n = 0, 1, 2, 3:

γ
(2)
0 = −(∆L − 1)∆L(4∆L + 1)

8
,

γ
(2)
1 = −∆L(∆L + 1)(4∆L + 35)

8
,

γ
(2)
2 = −(3 + ∆L)(68 + ∆L(69 + 4∆L))

8
,

γ
(2)
3 = −(5 + ∆L)(204 + ∆L(4∆L + 103))

8
,

(5.22)

which agrees with Eq. (6.39) in [55], and for the OPE coefficients

P
(2)
0 =

(∆L − 1)∆L(−28 + ∆L(−145 + 27∆L))

96
,

P
(2)
1 =

∆L(−596 + ∆L(−399 + ∆L(−64 + 27∆L)))

96
,

P
(2)
2 =

−1248 +∆L(−2252 +∆L(−699 +∆L(44 + 27∆L)))

96
,

P
(2)
3 =

−3744 +∆L(−4940 +∆L(−783 +∆L(152 + 27∆L)))

96
.

(5.23)

It is again straightforward to extract the OPE data for any value of n.

5.2.3. Twist-six triple-stress tensors

We now consider the multi-stress tensor sector of the correlator at O(µ3) and

proceed similarly to the previous section. From (5.13) we infer the following

expression for the contribution due to twist-six triple-stress tensors:

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

(

a117f
2
1 f7 + a126f1f2f6 + a135f1f3f5

+a225f
2
2 f5 + a234f2f3f4 + a333f

3
3

)

,

(5.24)

where fi = fi(z) is given by (3.46).17 Taking the limit 1 − z̄ ≪ z ≪ 1 of

(5.24), we fix the coefficients by matching with terms proportional to zp log2 z

17 Note that we omitted a potential term of the form f1f
2
4 . This can be written in

terms of f3
3 , f1f3f5, f

2
2 f5 and f2f3f4, as follows from:

f3
3 (z) =

20

21
f1(z)f3(z)f5(z)−

27

28
f1(z)f

2
4 (z)−

20

21
f2
2 (z)f5(z) +

55

28
f2(z)f3(z)f4(z).

(5.25)
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and zp log3 z, with p = 0, 1, 2 from (5.11). This requires using the OPE data of

the heavy-light double-trace operators [OHOL]n,l for n = 0, 1, 2 and l ≫ 1 to

O(µ2), given in (5.18), (5.19), (5.22) and (5.23).

We find the following solution:

a117 =
5∆L(∆L + 1)(∆L + 2)

768768(∆L − 2)(∆L − 3)
,

a126 =
5∆L(5∆

2
L − 57∆L − 50)

6386688(∆L − 2)(∆L − 3)
,

a135 =
∆L(2∆

2
L − 11∆L − 9)

1209600(∆L − 3)
,

a225 = − ∆L(7∆
2
L − 51∆L − 70)

2903040(∆L − 2)(∆L − 3)
,

a234 =
∆L(∆L − 4)(3∆2

L − 17∆L + 4)

4838400(∆L − 2)(∆L − 3)
,

a333 =
∆L(∆L − 4)(∆3

L − 16∆2
L + 51∆L + 24)

10368000(∆L − 2)(∆L − 3)
.

(5.26)

We can also consider higher values of p and obtain an overconstrained system of

equations, whose solution is still (5.26). Inserting (5.26) into (5.24), we obtain

the contribution from minimal-twist triple-stress tensor operators to the heavy-

heavy-light-light correlator in the lightcone limit.

Note that for ∆L →∞, the correlator is determined by the exponentiation

of the stress tensor discussed e.g. in [124], i.e.

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L
1

3!

(

∆L

120
(1− z)32F1(3, 3; 6; 1− z)

)3

+ · · · ,
(5.27)

which one indeed obtains by taking ∆L →∞ of (5.24) with (5.26). Here ellipses

denote terms subleading in ∆L.

By analytically continuing z → e−2πiz and sending z → 1, one can access

the large impact parameter regime of the Regge limit. To do this we use the

following property of the hypergeometric function (see e.g. [98]):

2F1(a, a, 2a, 1− ze−2πi) = 2F1(a, a, 2a, 1− z) + 2πi
Γ(2a)

Γ(a)2
2F1(a, a, 1, z). (5.28)
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Using (5.28) the leading term from (5.24) with the coefficients (5.26) in the limit

1− z̄ ≪ 1− z ≪ 1 is given by

G(3)(z, z̄) ≈
z̄→1,z→1

1

[(1− z)(1− z̄)]∆L
×

(

−9iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

(

1− z̄

(1− z)2

)3
)

.

(5.29)

This agrees with the holographic calculation in a shockwave background at

O(µ3) given by Eq. (45) in [126] based on techniques developed in [58-60,63,133].

5.2.4. Exponentiation of leading-twist multi-stress tensors

In d = 2 the heavy-heavy-light-light correlator is determined by the heavy-

heavy-light-light Virasoro vacuum block. This block contains the exchange

of any number of stress tensors and derivatives thereof in the T-channel

[40,105,110], and therefore all multi-stress tensor contributions. This block,

together with the disconnected part, exponentiates as

〈OH(∞)OL(1)OL(z)OH(0)〉 = e∆LF(z), (5.30)

for a known function F(z) independent of ∆L. It is interesting to ask if some-

thing similar happens for the contribution of the minimal-twist multi-stress

tensors in the lightcone limit of the correlator in higher dimensions. By this we

mean whether the stress tensor sector of the correlator can be written as

G(z, z̄) ≈
z̄→1

1

[(1− z)(1− z̄)]∆L
e∆LF(µ;z,z̄), (5.31)

for some function F(µ; z, z̄) which is a rational function of ∆L and remains O(1)
as ∆L →∞.

The z̄ dependence implies the following form of F(µ; z, z̄):

F(µ; z, z̄) = µ(1− z̄)F (1)(z) + µ2(1− z̄)2F (2)(z) + µ3(1− z̄)3F (3)(z) +O(µ4).

(5.32)

At leading order we observe F (1)(z) = 1
120

f3(z), which is just the stress tensor

contribution. At second order we find:

F (2)(z) =
(12− 5∆L)f3(z)

2 + 15
7 (∆L − 8)f2(z)f4(z) +

40
7 (∆L + 1)f1(z)f5(z)

28800(∆L − 2)
.

(5.33)
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Note that F (2)(z) is independent of ∆L in the limit ∆L →∞.

To find F (3)(z) we parametrise it as

F (3)(z) =
(

b117f
2
1 (z)f7(z) + b126f1(z)f2(z)f6(z) + b135f1(z)f3(z)f5(z)

+ b225f
2
2 (z)f5(z) + b234f2(z)f3(z)f4(z) + b333f

3
3 (z)

)

.
(5.34)

It is clear that for terms which do not contain a factor of f3(z), the coefficients

bijk should satisfy bijk = aijk/∆L. This is not true for terms which contain a

factor of f3. Inserting F (1), F (2) and Eq. (5.34) in (5.31), expanding in µ and

matching with (5.24) yields

b117 =
a117
∆L

,

b126 =
a126
∆L

,

b225 =
a225
∆L

,

b135 = − 11∆2
L − 19∆L − 18

1209600(∆L − 2)(∆L − 3)
,

b234 =
(∆L − 2)(∆L + 2)

1209600(∆L − 2)(∆L − 3)
,

b333 =
7∆2

L − 18∆L − 24

2592000(∆L − 2)(∆L − 3)
.

(5.35)

From (5.33) and (5.35), one finds that the correlator exponentiates to O(µ3) in

the sense described above, i.e. F(µ; z, z̄) is a rational function of ∆L of O(1) as
∆L →∞.

To leading order in ∆L, exponentiation for large ∆L is a prediction of the

AdS/CFT correspondence. The two-point function of the operator OL in the

state created by the heavy operator OH is given in terms of the exponential

of the (regularized) geodesic distance between the boundary points in the dual

bulk geometry. For details on this, see e.g. [124].

5.2.5. OPE coefficients of triple-stress tensors

In this section we describe how to decompose the correlator (5.24) into an infinite

sum of minimal-twist triple-stress tensor operators. In order to do this we use
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the following multiplication formula for hypergeometric functions [124]:

2F1(a, a; 2a;w)2F1(b, b; 2b;w) =
∞
∑

m=0

p[a, b,m]w2m×

2F1[a+ b+ 2m, a+ b+ 2m, 2a+ 2b+ 4m,w],

(5.36)

where

p[a, b,m] =
Γ(a+ b+ 2m)

Γ(a+ b+ 2m− 1
2 )
×

2−4mΓ(a+ 1
2
)Γ(b+ 1

2
)Γ(m+ 1

2
)Γ(a+m)Γ(b+m)Γ(a+ b+m− 1

2
)√

πΓ(a)Γ(b)Γ(m+ 1)Γ(a+m+ 1
2 )Γ(b+m+ 1

2 )Γ(a+ b+m)
.

(5.37)

It is useful to note that by using (5.36) we can write a similar formula for the

functions fa defined in (3.46):

fa(z)fb(z) =
∞
∑

m=0

p[a, b,m]fa+b+2m(z), (5.38)

where p[a, b,m] is defined in (5.37). It is now clear that the correlator (5.24)

can be written as a double sum over functions f9+2(n+m). We can thus write

the stress tensor sector of the correlator in the lightcone limit at O(µ3) as

G(3)(z, z̄) ≈
z̄→1

(1− z̄)3

[(1− z)(1− z̄)]∆L

∞
∑

n,m=0

c[m,n]f9+2(n+m)(z), (5.39)

with

c[m,n] =
(

a333p[3, 3, m]p[3, 6 + 2m,n] + a117p[1, 7, m]p[1, 8 + 2m,n]

+ a126p[2, 6, m]p[1, 8 + 2m,n] + a135p[3, 5, m]p[1, 8 + 2m,n]

+ a225p[2, 5, m]p[2, 7 + 2m,n] + a234p[3, 4, m]p[2, 7 + 2m,n]
)

,

(5.40)

where coefficients aijk are fixed in (5.26).

Comparing (5.39) with (3.45) we see that the contribution at O(µ3) comes

from operators of the schematic form : TαβTγδ∂ρ1
. . . ∂ρ2ℓ

Tµν :. These operators

have
τ3,min

2
+ s = 9 + 2ℓ, where s is total spin s = 6 + 2ℓ. The corresponding

OPE coefficients of such operators will be a sum of all contributions in (5.39)

for which n+m = ℓ.

65



Now, one can write OPE coefficients of operators of type : TαβTγδ∂ρ1
. . . ∂ρ2ℓ

Tµν :

as

P
(HH,LL);(3)
6,6+2ℓ =

ℓ
∑

n=0

c[ℓ− n, n]. (5.41)

Let us write a few of the coefficients explicitly here:

µ3P
(HH,LL);(3)
6,6 = µ3∆L(3024 + ∆L(7500 + ∆L(7310 + 143∆L(25 + 7∆L))))

10378368000(∆L − 2)(∆L − 3)
,

µ3P
(HH,LL);(3)
6,8 = µ3∆L(2688 + ∆L(7148 + ∆L(9029 + 13∆L(464 + 231∆L))))

613476864000(∆L − 3)(∆L − 2)
,

µ3P
(HH,LL);(3)
6,10 = µ3∆L(888 + ∆L(2216 +∆L(3742 + 17∆L(181 + 143∆L))))

9468531072000(∆L − 3)(∆L − 2)
.

(5.42)

We further find that P
(HH,LL);(3)
6,6 and P

(HH,LL);(3)
6,8 agree with the expression

obtained holographically in [15].

5.3. Minimal-twist double-stress tensors in six dimensions

In this section we derive the contribution of minimal-twist double-stress tensors

to the heavy-heavy-light-light correlator in the lightcone limit in d = 6. The

method is analogous to the four-dimensional case described in Section 5.2.

From (5.7) we make the following ansatz for the stress tensor sector in the

lightcone limit:

G(2)(z, z̄) ≈
z̄→1

(1− z̄)4

[(1− z)(1− z̄)]∆L
×

(

a17f1(z)f7(z) + a26f2(z)f6(z) + a35f3(z)f5(z) + a44f
2
4 (z)

)

.

(5.43)

The S-channel conformal blocks in six dimensions in the limit ∆H → ∞
are given by (3.54). In the lightcone limit z̄ → 1 operators with l ≫ 1 dominate

and the blocks can be approximated by

(zz̄)−
1
2 (∆H+∆L)g

(∆HL,−∆HL)
∆H+∆L+2n+γ,l(z, z̄) ≃

z̄lznp(log z, γ)

(1− z)2
, (5.44)

with p given by (5.10). Replacing the sum in (3.52) with an integral and insert-

ing (5.44) we have

G(2)(z, z̄) ≈
z̄→1

∞
∑

n=0

zn

(1− z)2

∫ ∞

0

dlP
(HL,HL)
n,l z̄lp(log z, γ). (5.45)
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As in d = 4 one finds that terms proportional to logi z with i = 2, 3, . . . , k at

O(µk), are determined by the OPE data at O(µk−1).

At O(µ) we can use the known contribution from the stress tensor exchange

(3.48) to derive the anomalous dimensions γ
(1)
n and the OPE coefficients P

(1)
n

just as it was done in four dimensions. This is done by matching (5.45) order by

order in the small z expansion. Using (3.56) one can integrate over spin. E.g.

for n = 0, 1, 2, 3:

γ
(1)
0 = −(∆L − 2)(∆L − 1)∆L

2
,

γ
(1)
1 = −(∆L − 1)∆L(∆L + 10)

2
,

γ
(1)
2 = −∆L(∆L + 2)(∆L + 19)

2
,

γ
(1)
3 = −(∆L + 4)(∆L(∆L + 29) + 30)

2
,

(5.46)

These anomalous dimensions agree with eq. (6.10) in [55]. Similarly, we obtain

the following OPE coefficients:

P
(1)
0 = −11(∆L − 2)(∆L − 1)∆L

12
,

P
(1)
1 = −(∆L − 1)∆L(11∆L + 38)

12
,

P
(1)
2 = −∆L(22 + ∆L(87 + 11∆L))

12
,

P
(1)
3 = −∆L(202 + ∆L(147 + 11∆L))

12
.

(5.47)

It is straightforward to continue to higher values of n.

Plugging (5.46) into (5.45) in the limit 1−z̄ ≪ z ≪ 1 one finds the following

contribution to the terms proportional to zp log2 z
(1−z̄)∆L−4 at O(µ2):

p = 0 :
∆2

L(∆L − 1)(∆L − 2)

32(∆L − 3)(∆L − 4)
,

p = 1 :
∆2

L(∆L − 1)(∆L + 6)(∆L + 16)

32(∆L − 3)(∆L − 4)

p = 2 :
∆2

L(∆
4
L + 46∆3

L + 599∆2
L + 1898∆L + 1056)

64(∆L − 3)(∆L − 4)
,

p = 3 :
∆7

L + 72∆6
L + 1651∆5

L + 13344∆4
L + 40180∆3

L + 41952∆L
2 + 14400∆L

192(∆L − 3)(∆L − 4)
.

(5.48)
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It is now straightforward to expand the ansatz (5.43) in the limit 1−z̄ ≪ z ≪ 1 ,

collect terms that behave as zp log2 z and compare them to the S-channel (5.48).

This determines the coefficients:

a17 =
∆L(∆L + 1)(∆L + 2)

64064(∆L − 3)(∆L − 4)
,

a26 =
∆L(−18 + (−12 + ∆L)∆L)

133056(∆L − 3)(∆L − 4)
,

a35 =
∆L(∆L − 6)(∆L − 15)

302400(∆L − 3)(∆L − 4)
,

a44 =
∆L(∆L − 5)(∆L − 6)

627200(∆L − 3)
.

(5.49)

One can consider higher values of p; eq. (5.49) is still the solution of the

corresponding overconstrained system.

The double-stress tensor contribution to the correlator in the lightcone limit

z̄ → 1 is therefore given by

G(2)(z, z̄) ≈
z̄→1

(1− z̄)4

[(1− z)(1− z̄)]∆L
∆L

(∆L − 3)(∆L − 4)

(

1

627200

)

×
(

(∆L − 4)(∆L − 5)(∆L − 6)f2
4 (z) +

56(∆L − 6)(∆L − 15)

27
f3(z)f5(z)

+
1400(∆L(∆L − 12)− 18)

297
f2(z)f6(z)

+
1400(∆L + 1)(∆L + 2)

143
f1(z)f7(z)

)

.

(5.50)

Using (5.50) one can deduce the second order OPE data in the S-channel.

The anomalous dimensions at this order can then be compared to the holo-

graphic calculations in [55] to reveal perfect agreement.

5.3.1. Exponentiation of minimal-twist multi-stress tensors in six dimensions

It is interesting to study whether the stress tensor sector of the correlator ex-

ponentiates in the lightcone limit

G(z, z̄) ≈
z̄→1

1

[(1− z)(1− z̄)]∆L
e∆LF(µ;z,z̄), (5.51)
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with F(µ; z, z̄) a rational function of ∆L that is of O(1) as ∆L → ∞. In the

lightcone limit F(µ; z, z̄) admits an expansion

F(µ; z, z̄) = µ(1− z̄)2F (1)(z) + µ2(1− z̄)4F (2)(z) +O(µ3). (5.52)

At O(µ) one finds F (1)(z) =
Γ( 6

2+1)2

4Γ(6+2) f4(z) from the stress tensor contribution.

Using (5.50) we find

F (2)(z) = b17f1(z)f7(z) + b26f2(z)f6(z) + b35f3(z)f5(z) + b44f
2
4 (z) (5.53)

with
b17 =

a17
∆L

,

b26 =
a26
∆L

,

b35 =
a35
∆L

,

b44 = − 4∆2
L − 31∆L + 60

313600(∆L − 3)(∆L − 4)
.

(5.54)

From (5.54) we indeed see that the stress tensor sector of the correlator expo-

nentiates at least to O(µ2) in d = 6.

5.3.2. OPE coefficients of minimal-twist double-stress tensors

In this section we decompose the stress tensor sector of the correlator (5.43) into

a sum over minimal-twist double-stress tensors. The discussion follows that of

Section 5.2.5.

Applying (5.38) to (5.50), we find that a+b+2ℓ = 8+2ℓ which is
τ2,min

2
+s+

2ℓ, with τ2,min = 8 and s = 4 being the twist and spin of the simplest minimal-

twist double-stress tensor operator : TµνTρλ :. Non-zero value of ℓ thus gives

the contribution from operators of higher spin of the form : Tµν∂ρ1
. . . ∂ρ2ℓ

Tδλ :,

where no indices are contracted and only even spin operators contribute to the

OPE between identical scalars.

It is now straightforward to write down the OPE coefficients for minimal-

twist double-stress tensors in six dimensions. E.g. one finds for the lowest-spin

operators the following OPE coefficients:

µ2P
(HH,LL);(2)
8,4 = µ2∆L(600 + ∆L(1394 + ∆L(677 + 429∆L)))

269068800(∆L − 3)(∆L − 4)
,

µ2P
(HH,LL);(2)
8,6 = µ2∆L(30 + ∆L(187 +∆L(−120 + 143∆L)))

3430627200(∆L − 3)(∆L − 4)
,

µ2P
(HH,LL);(2)
8,8 = µ2∆L(60 + ∆L(1382 +∆L(−1857 + 1105∆L)))

657033721344(∆L − 3)(∆L − 4)
.

(5.55)
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For general spin we have (s = 4 + 2ℓ)

P
(HH,LL)
8,s = µ2 c∆L

(∆L − 3)(∆L − 4)
(a3∆

3
L + a2∆

2
L + a1∆L + a0) (5.56)

where

c =
2−9−2s

√
πs(s+ 2)Γ(s− 1)

(s− 3)(s+ 4)(s+ 6)(s+ 8)(s+ 10)Γ(s+ 7
2 )

,

a3 = (s− 2)s(s+ 2)(s+ 5)(s+ 7)(s+ 9),

a2 = −3(2880 + s(s+ 7)(−276 + s(s+ 7)(−56 + s(s+ 7)))),

a1 = 2(25920 + s(s+ 7)(3276 + s(s+ 7)(−80 + s(s+ 7)))),

a0 = 675× 27.

(5.57)

5.4. Discussion

In this section we consider the minimal-twist multi-stress tensor contributions

to the heavy-heavy-light-light correlator of scalars in large CT CFTs in even

spacetime dimensions. We provide strong evidence for the conjecture that all

such contributions are described by the ansatz (5.7) and determine the coeffi-

cients by performing a bootstrap procedure. In practice this is completed for

twist-four double-stress tensors and twist-six triple-stress tensors in four dimen-

sions as well as twist-eight double-stress tensors in six dimensions. In principle

it is straightforward to use our technology to determine the coefficients ai1...ik

to arbitrarily high order in µ; this must be related to the universality of the

minimal-twist OPE coefficients.

In two dimensions the heavy-heavy-light-light Virasoro vacuum block expo-

nentiates [see eq. (3.6)], with F(µ; z) independent of ∆L. In higher dimensions

we observe a similar exponentiation with F(µ; z, z̄) a rational function of ∆L

that remains O(1) as ∆L → ∞. It would be interesting to see whether it is

possible to write down a closed-form recursion formula for F(µ; z, z̄). Solv-

ing such a recursion formula would give a higher-dimensional analogue of the

two-dimensional Virasoro vacuum block.

An immediate technical question concerns CFTs in odd spacetime dimen-

sions. We could not immediately generalize our results in this context – the

ansatz in eq. (5.7) fails in odd dimensions. However, the heavy-light conformal

blocks are known [12], so a similar approach should be feasible.
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It would be interesting to study the regime of applicability of our results.

We have not used holography; our main assumption is the ansatz (3.13), known

to be true for holographic CFTs to O(µ2) in d = 4 [124]. Yet, our general

expressions for the OPE coefficients agree with the OPE coefficients computed

in some holographic examples [15]. What happens once one goes beyond holo-

graphic CFTs - will our ansatz need to be modified by the inclusion of terms

suppressed by the gap or the central charge? We leave these questions for

subsequent investigations.

Another interesting direction concerns the study of the bulk scattering

phase-shift in the presence of a black hole background. In the context of higher

dimensional CFTs, this problem was first considered in [55] where the gravita-

tional expression was given to all orders in µ and the CFT computation was

performed to O(µ). Subsequently, O(µ2) was discussed in [12]. In [126] the

O(µ) contribution was exponentiated to yield the scattering phase shift in the

presence of a shock-wave geometry. A CFT computation of the phase shift to

all orders in µ is still lacking. This would in principle involve understanding

Regge theory beyond the leading order. It will be interesting to see whether the

results of this article could be helpful in this regard.
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6. Stress tensor sector of conformal correlators

6.1. Summary of the results

In this section, we show that the stress tensor sector of the HHLL correlator in

d = 4 can be written in terms of products of fa(z) functions defined as

fa(z) = (1− z)a2F1(a, a, 2a, 1− z). (6.1)

The stress tensor sector of the HHLL correlator can be expanded in powers

of µ and then in powers of (1− z̄) as

G(z, z̄) =
∞
∑

k=0

µkG(k)(z, z̄) = 1

((1− z)(1− z̄))∆L

+
∞
∑

k=1

∞
∑

m=0

µk(1− z̄)−∆L+k+mG(k,m)(z),

(6.2)

where we have explicitly separated the contribution of the identity operator.18

We explain how one can write G(k,m)(z) for arbitrary k and m.

We write an ansatz for each G(k,m)(z) with a few unknown coefficients

and fix all, but a handful of them, via lightcone bootstrap. The undetermined

coefficients correspond to the OPE coefficients of spin-0 and spin-2 exchanged

operators. We further show that in holographic CFTs one can use the phase shift

computed in the dual gravitational theory to reduce the set of undetermined

parameters to the OPE coefficients of multi-stress tensors with spin zero.

Operators of non-minimal twist give a subleading contribution in the light-

cone limit, 1 − z̄ ≪ 1, which can be expressed as a sum of products of the

functions fa(z) (times an appropriate power of (1 − z̄) ). This form is similar

to the contribution of minimal-twist multi-stress tensor operators considered in

[13]. While our method can be used to address the contribution of operators

of arbitrary twist, here we focus on determining the specific contributions of

operators with twist τ = 6, 8, 10, at O(µ2) and τ = 8, 10, at O(µ3).

At O(µ), the only operator that contributes to the stress tensor sector of

the correlator is the stress tensor and its contribution is completely fixed by

18 The contribution of the identity operator is denoted with k = 0, schematically

(Tµν)
0 = 1.
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conformal symmetry. In d = 4 its exact (to all orders in z̄) contribution is given

by

G(1)(z, z̄) = 1

[(1− z)(1− z̄)]∆L−1

∆L

120(z̄ − z)

(

f3(z)− f3(z̄)
)

. (6.3)

At O(µ2), the leading contribution in the lightcone limit, due to twist-four

double-stress tensors, was evaluated in [124]

G(2,0)(z) = 1

(1− z)∆L

(

∆L

28800(∆L − 2)

)

×
(

(∆L − 4)(∆L − 3)f2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z)

+
40

7
(∆L + 1)f1(z)f5(z)

)

.

(6.4)

We show that the subleading contribution in the lightcone limit, due to

twist-four and twist-six double-stress tensors, is given by

G(2,1)(z) = 1

(1− z)∆L

(

(

3− z

2(1− z)

)

(

a33f3(z)
2 + a24f2(z)f4(z) + a15f1(z)f5(z)

)

+(b14f1(z)f4(z) + c16f1(z)f6(z) + c25f2(z)f5(z) + c34f3(z)f4(z))
)

,

(6.5)

with coefficients amn and cmn given in (6.30). The coefficient b14 is non-universal

and generically depends on the details of the theory. It corresponds to the OPE

coefficient of twist-six double-stress tensor with spin s = 2

b14 = P
(2)
8,2 , (6.6)

obtained holographically in [15] and here, via the gravitational phase-shift cal-

culation in (6.107).

The subsubleading contribution in the lightcone limit, due to twist-four,

six and eight double-stress tensor operators, is

G(2,2)(z) = 1

(1− z)
∆L

(

(

z(2z − 7) + 11

6(z − 1)2

)

(a33f
2
3 + a24f2f4 + a15f1f5)

+

(

2− z

1− z

)

(b14f1f4 + c16f1f6 + c25f2f6 + c34f3f4) + (d17f1f7 + d26f2f6

+ d35f3f5 + d44f
2
4 + e15f1f5 + g13f1f3)

)

,

(6.7)
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with coefficients dmn given in (6.35). By fa we mean fa(z) which we will use

for brevity. The coefficients g13 and e15 are theory dependent and are related

to the OPE coefficients of twist-eight double-stress tensors with spin s = 0, 2 by

g13 = P
(2)
8,0 ,

e15 = P
(2)
10,2 −

5

252
P

(2)
8,0 .

(6.8)

These coefficients were also obtained by a gravitational computation in [15].

Here we have used the calculation of the phase shift in the dual gravitational

theory to determine the OPE coefficient of the spin-2 operator, P
(2)
10,2, in (6.110).

The subsubsubleading contribution in the lightcone limit, due to double-

stress tensors with twists τ = 4, 6, 8, 10, is given by

G(2,3)(z) = 1

(1− z)
∆L

(

(

z((13− 3z)z − 23) + 25

12(1− z)3

)

(a33f
2
3 + a24f2f4 + a15f1f5)

+

(

1

(1− z)2
+

1

1− z
+

9

10

)

(b14f1f4 + c16f1f6 + c25f2f5 + c34f3f4)

+

(

1

1− z
+

3

2

)

(d17f1f7 + d26f2f6 + d35f3f5 + d44f
2
4 + e15f1f5 + g13f1f3+)

+ g13f3 + (h18f1f8 + h27f2f7 + h36f3f6 + h45f4f5 + j16f1f6 + i14f1f4)

)

,

(6.9)

with hmn given in (6.41). The non-universal coefficients here are i14 and j16

which are related to the OPE coefficients of twist-ten double-stress tensor op-

erators with spin s = 0, 2

i14 = P
(2)
10,0,

j16 = P
(2)
12,2 −

2

99
P

(2)
10,0.

(6.10)

The OPE coefficient P
(2)
12,2 is determined in (6.111) using the phase shift cal-

culation in the dual gravitational theory. Non-universality is manifest through

dependence on the Gauss-Bonnet coupling.

Using the results above, we also extract the OPE coefficients P
(2)
∆,s of double-

stress tensors of given twist. For τ = 6:

P
(2)
10+2ℓ,4+2ℓ =

√
π2−4ℓ−17Γ(2n+ 7)

(ℓ+ 4)(ℓ+ 5)(ℓ+ 6)(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)Γ
(

2ℓ+ 13
2

)

× ∆L

(∆L − 3)(∆L − 2)
(a1,ℓ∆

3
L + b1,ℓ∆

2
L + c1,ℓ∆L + d1,ℓ),

(6.11)
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where a1,ℓ, b1,ℓ, c1,ℓ, d1,ℓ can be found in (6.33). For τ = 8:

P
(2)
12+2ℓ,4+2ℓ =

√
π∆L2

−4ℓ−19Γ(2ℓ+ 7)

3(∆L − 4)(∆L − 3)(∆L − 2)(ℓ+ 4)(ℓ+ 5)

× a2,ℓ∆
4
L + b2,ℓ∆

3
L + c2,ℓ∆

2
L + d2,ℓ∆L + e2,ℓ

(ℓ+ 6)(ℓ+ 7)(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)Γ
(

2ℓ+ 15
2

) ,

(6.12)

with a2,ℓ, b2,ℓ, c2,ℓ, d2,ℓ and e2,ℓ given in (6.38). Similarly for τ = 10:

P
(2)
14+2ℓ,4+2ℓ =

√
π2−4ℓ−22Γ(2ℓ+ 9)

5(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)Γ
(

2ℓ+ 17
2

)

× ∆L(∆L + 1)(a3,ℓ∆
4
L + b3,ℓ∆

3
L + c3,ℓ∆

2
L + d3,ℓ∆L + e3,ℓ)

(ℓ+ 5)(ℓ+ 6)(ℓ+ 7)(ℓ+ 8)(∆L − 5)(∆L − 4)(∆L − 3)(∆L − 2)
,

(6.13)

with a3,ℓ, b3,ℓ, c3,ℓ, d3,ℓ and e3,ℓ expressed in terms of ∆L in (6.44). Note that

in all of these formulas ℓ ≥ 0 and, therefore, the OPE coefficients of operators

with spin s = 0, 2 are not included here. It appears that at O(µ2), the OPE

coefficients of all operators with spin s ≥ 4 are universal in the sense that

they only depend on ∆L and CT . On the other hand, the OPE coefficients of

double-stress tensors with s = 0, 2 are non-universal.

At O(µ3), the leading contribution of twist-six triple-stress tensors in the

lightcone limit, was computed in [13]

G(3,0)(z) = 1

(1− z)∆L

(

a117f1(z)
2f7(z) + a126f1(z)f2(z)f6(z)

+ a135f1(z)f3(z)f5(z) + a225f2(z)
2f5(z) + a234f2(z)f3(z)f4(z) + a333f3(z)

3
)

,

(6.14)

where the coefficients aijk can be found in (6.46).

The subleading contribution to the correlator is due to twist-eight and

twist-six triple-stress tensors

G(3,1)(z) = 1

(1− z)∆L

(

(

2− z

1− z

)

(a117f
2
1 f7 + a126f1f2f6 + a135f1f3f5

+ a225f
2
2 f5 + a234f2f3f4 + a333f

3
3 ) + (b116f6f

2
1 + c118f8f

2
1 + c145f4f5f1

+ c127f2f7f1 + c244f2f
2
4 + c334f

2
3 f4 + c235f2f3f5 + c226f

2
2 f6)

)

,

(6.15)
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with bijk and cijk given in (B.2.1). Terms proportional to aijk come from the

subleading contribution due to the minimal-twist triple-stress tensors in (6.14).

Note that all of these coefficients are non-universal, since they depend on b14

from the O(µ2) result. Accordingly, no OPE coefficients of non-minimal-twist

triple-stress tensors are universal.

A similar story holds for the subsubleading contribution to the correlator

at O(µ3). This is due to multi-stress tensors with twist six, eight and ten and

takes the following form

G(3,2)(z) = 1

(1− z)∆L

(

(

144z2 − 448z + 464

160(z − 1)2

)

(a117f
2
1 f7 + a126f1f2f6

+ a135f1f3f5 + a225f
2
2 f5 + a234f2f3f4 + a333f

3
3 ) +

(

1

1− z
+

3

2

)

(b116f6f
2
1

+ c118f8f
2
1 + c145f4f5f1 + c127f2f7f1 + c244f2f

2
4 + c334f

2
3 f4 + c235f2f3f5

+ c226f
2
2 f6) + (d117f

2
1 f7 + e115f

2
1 f5 + g119f

2
1 f9 + g128f1f2f8 + g155f1f

2
5

+ g227f
2
2 f7 + g236f2f3f6 + g245f2f4f5 + g335f

2
3 f5 + g344f3f

2
4 )

)

,

(6.16)

with d117 and gijk in (B.3.1)-(B.3.3) and e115 in (6.115).

We further explain how one can write an ansatz for the correlator at arbi-

trary order in µ and the lightcone expansion. All unknown coefficients in the

ansatz, except those that correspond to OPE coefficients of spin-0 and spin-2

operators, can be fixed by means of the lightcone bootstrap. We further show

that in holographic CFTs one can use the phase shift computed in the dual

gravitational theory to reduce the set of undetermined parameters to the OPE

coefficients of multi-stress tensors with spin zero. Our results for these OPE

coefficients precisely match those in [15] whenever available in the latter.

The OPE coefficients of multi-stress tensors can also be calculated using

the Lorentzian inversion formula as in [128]. In order to determine for which

operators the formula can be applied, one should consider the behavior of the

correlation function in the Regge limit. The Regge behavior of the correlator at

O(µk) is 1/σk, implying that the Lorentzian inversion formula can be used to

extract the OPE coefficients of the operators with spin s > k+ 1. Accordingly,

already at O(µ3), fixing the relevant OPE coefficients by combining an ansatz
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with the lightcone bootstrap allows one to determine more OPE data compared

to those obtained with the sole use of the Lorentzian inversion formula. We

explicitly check that it is not possible to extract the OPE coefficient of a triple-

stress tensor with spin s = 4 and twist τ = 8 using the Lorentzian inversion

formula. Note, however, that this coefficient is completely determined in this

article (where an ansatz is additionally employed).

6.1.1. Outline

This section is organized as follows. In Section 6.2 we analyze the stress tensor

sector of the correlator at O(µ2), where we compute the subleading, subsub-

leading and subsubsubleading contributions in the lightcone expansion. We also

compute the OPE coefficients of double-stress tensors with twist τ = 6, 8, 10 and

spin s > 2. In Section 6.3, we analyze the stress tensor sector of the correla-

tor at O(µ3), where we explicitly calculate the subleading and subsubleading

contributions in the lightcone expansion. In Section 6.4, we investigate the

Gauss-Bonnet dual gravitational theory and give additional evidence for the

universality of the OPE coefficients of minimal-twist multi-stress tensors us-

ing the phase shift calculation. Furthermore, we calculate the OPE coefficients

of double- and triple-stress tensors with spin s = 2 (up to undetermined spin

zero data). In Section 6.5, we show how one can use the Lorentzian inversion

formula in order to extract the OPE coefficients of double-stress tensors with

twist τ = 4, 6. We discuss our results in Section 6.6. Appendix B.1 contains

certain relations that products of fa functions satisfy, while Appendices B.2 and

B.3 contain explicit expressions for the coefficients which determine the corre-

lator in subleading and subsubleading lightcone order at O(µ3). Several OPE

coefficients of twist-eight triple-stress tensors are listed in Appendix B.4. In

Appendix B.5 we clarify the relationship between the scattering phase shift as

defined in [55] and the deflection angle and finally, in Appendix B.6 we explicitly

write some of the S-channel anomalous dimensions at O(µ2) and we investigate

their relation with the phase shift.
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6.2. Double-stress tensors in four dimensions

In this section, we analyze the stress tensor sector of the HHLL correlator at

O(µ2) in d = 4. The operators that contribute at this order in the T-channel

are the double-stress tensors. Here, we investigate the subleading contributions

that are coming from families of operators with nonminimal twist, specifically,

τ2,1 = 6, τ2,2 = 8 and τ2,3 = 10, according to (3.63).

The dominant contribution in the lightcone limit at O(µ2) was calculated

in [124]. It comes from the operators with minimal twist τ2,min = 4 and they are

of the schematic form : Tµν∂α1
. . . ∂α2ℓ

Tρσ :. These operators have conformal

dimension ∆ = 8 + 2ℓ and spin s = 4 + 2ℓ. The result is [124]

G(2,0)(z) = 1

(1− z)∆L

(

∆L

28800(∆L − 2)

)

×
(

(∆L − 4)(∆L − 3)f2
3 (z) +

15

7
(∆L − 8)f2(z)f4(z) +

40

7
(∆L + 1)f1(z)f5(z)

)

,

(6.17)

where fa(z) = (1− z)a2F1(a, a, 2a, 1− z).

6.2.1. Twist-six double-stress tensors

Twist-six double-stress tensors contribute at O(µ2) and at subleading order in

the lightcone expansion ∼ (1− z̄)−∆L+3 as z̄ → 1. As shown in this section, this

contribution again takes a particular form with a few undetermined coefficients

which, except for a single one, can be fixed using lightcone bootstrap. The

undetermined data is shown to correspond to a single OPE coefficient due to

the exchange of the twist-six and spin-two double-stress tensor : Tµ
ρTρν :.

We will now motivative an ansatz for the subleading contribution to the

stress tensor sector at O(µ2). Let us focus first on corrections due to the leading

lightcone contribution of twist-four double-stress tensors. These corrections

originate from subleading terms in the lightcone expansion of the conformal

blocks in (3.59). Note however that they are purely kinematical and do not

contain any new data. Explicitly, the subleading corrections to the blocks of

twist-four double-stress tensors are given by

g
(0,0)
4,s (1− z, 1− z̄) ≈

z̄→1
(1− z̄)2

(

1 + (1− z̄)

(

3− z

2(1− z)

)

+O
(

(1− z̄)2
)

)

f β
2
(z)

−(1− z̄)s+3

(

1 + (1− z̄)

(

s+ 2

2
+

1

1− z

)

+O((1− z̄)
2
)

)

f1(z).

(6.18)

78



Since we are interested in the subleading contribution, i.e. terms that behave as

(1− z̄)3 as z̄ → 1 in (6.18), only the first line in (6.18) needs to be considered.

(Note that s ≥ 4 for minimal-twist double-stress tensors.)

Next, consider the contribution of twist-six double-stress tensors. Recall

that the form of the minimal-twist double-stress tensors’ contribution to (6.17)

can be motivated by decomposing products of the type fa(z)fb(z) in terms of

the lightcone conformal blocks. This decomposition is explicitly given by [124]:

fa(z)fb(z) =
∞
∑

ℓ=0

p(a, b, ℓ)fa+b+2ℓ(z), (6.19)

where

p(a, b, ℓ) =
Γ(a+ b+ 2ℓ)

Γ
(

a+ b+ 2ℓ− 1
2

)×

2−4ℓΓ
(

a+ 1
2

)

Γ
(

b+ 1
2

)

Γ
(

ℓ+ 1
2

)

Γ(a+ ℓ)Γ(b+ ℓ)Γ
(

a+ b+ ℓ− 1
2

)

√
πΓ(a)Γ(b)Γ(ℓ+ 1)Γ

(

a+ ℓ+ 1
2

)

Γ
(

b+ ℓ+ 1
2

)

Γ(a+ b+ ℓ)
.

(6.20)

Using the leading behavior of the conformal blocks (6.18) in the lightcone

limit, it was found that a+ b+ 2ℓ should be identified with β
2 = ∆+s

2 . In order

to reproduce twist-six double-stress tensors of the form : Tµν∂
2∂α1

. . . ∂α2ℓ
Tρσ :

we should therefore consider products fafb with a + b = 7. Likewise, to take

into account operators of the form : Tµβ∂α1
. . . ∂α2ℓ

T β
ν : we include products

fafb with a+ b = 5.

From the arguments above, we make the following ansatz for the subleading

correction in the lightcone expansion due to double-stress tensors:

G(2,1)(z) = 1

(1− z)∆L

(

(

3− z

2(1− z)

)

(a33f3(z)
2 + a24f2(z)f4(z)

+ a15f1(z)f5(z)) + (b14f1(z)f4(z) + b23f2(z)f3(z) + c16f1(z)f6(z)

+ c25f2(z)f5(z) + c34f3(z)f4(z))
)

,

(6.21)

where bij , cij are coefficients that will be determined using lightcone bootstrap

and encode the contribution from twist-six double-stress tensors. Once bij and

cij are determined, one can use the decomposition in (6.19) to read off the OPE

coefficients of twist-six double-stress tensors with any given spin. Moreover, aij

in (6.21) are coefficients that can be read off from the minimal-twist contribution

in (6.17) and do therefore not contain any new information.

79



We proceed with the S-channel calculation to fix the unknown coefficients

in (6.21). Let us first mention that the products of fa(z) functions in the second

line of (6.21) are not linearly independent as one can see from (A.1), so we set

b23 = 0. Moreover, the coefficients aij must be the same as in (6.17). We will

momentarily keep them undetermined to have an extra consistency check of our

calculation.

In the S-channel we have double-trace operators of the form : OH∂2n∂lOL :

with conformal dimension ∆ = ∆H+∆L+2n+l+γn,l. The relevant anomalous

dimensions γn,l and OPE coefficients are given in (3.25) and (3.69) (k = 2 in this

case). In the lightcone limit, the dominant contribution comes from operators

with large spin l, l ≫ n. The zeroth order OPE coefficients are given by (3.70).

The conformal blocks of these operators in the limit 1− z̄ ≪ z ≪ 1 are

g
(∆HL,−∆HL)
n,l (z, z̄) ≈ (zz̄)

∆H+∆L+γ(n,l)

2

z̄ − z
znz̄l+n+1. (6.22)

We first need to fix the OPE data at O(µ). Coefficients γ
(1,p)
n and P

(1,p)
n

can be determined for every p and n by matching the S-channel correlator with

the correlator in the T-channel at O(µ). This is just the stress tensor block

times its OPE coefficient and it is known for arbitrary z and z̄. As we saw

earlier

(z̄ − z)G(1)(z, z̄) = 1

[(1− z)(1− z̄)]∆L−1

∆L

120
(f3(z)− f3(z̄)) . (6.23)

Expanding (6.23) near z̄ → 1 leads to

(z̄ − z)G(1)(z, z̄) = −1 + z̄

((1− z)(1− z̄))∆L

(

∆L

(

3

4
(1 + z) +

1 + z(z + 4)

4(1− z)
log(z)

)

∞
∑

p=1

∆L(p− 2)(p− 1)(1− z)

4p(p+ 1) (p+ 2)
(1− z̄)p

)

.

(6.24)

On the other hand, we expand the integrand of (3.67) up to the O(µ), integrate
this expansion over l, and then expand in the lightcone limit z̄ → 1 to obtain a

result of the form

(z̄ − z)G(1)(z, z̄) = 1

(1− z̄)∆L−1

∞
∑

p=0

( ∞
∑

n=0

rn,p(z)z
n(1− z̄)p

)

. (6.25)
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The functions rn,p(z) can be explicitly calculated. Here rn,0(z), rn,1(z) and

rn,2(z) are given by

rn,0(z) =
Γ(∆L + n− 1)

2Γ(∆L)Γ(n+ 1)

(

2P (1,0)
n + log(z)γ(1,0)

n

)

,

rn,1(z) =
Γ(∆L + n− 1)

2Γ(∆L)Γ(n+ 1)(∆L − 2)

(

2(P (1,0)
n + P (1,1)

n )− (∆L − 2)γ(1,0)
n

+ log(z)(γ(1,0)
n + γ(1,1)

n )
)

,

rn,2(z) =
Γ(∆L + n− 1)

2(∆L − 2)(∆L − 3)Γ(∆L)Γ(n+ 1)

(

2(∆L + n− 1)P (1,0)
n

+ 2(∆L + n)P (1,1)
n + 2P (1,2)

n − 1

2
(∆L − 3)(∆Lγ

(1,0)
n + 2γ(1,1)

n )

+ log(z)((∆L + n− 1)γ(1,0)
n + (∆L + n)γ(1,1)

n + γ(1,2)
n )

)

.

(6.26)

Similarly, one can calculate any rn,p(z) for arbitrary p. In each rn,p(z) the z-

dependence enters only through a single logarithmic term as in (6.26). In order

to extract the OPE data we match (6.24) and (6.25) and obtain the following

relations

∞
∑

n=0

znrn,0(z) = −
∆L

(1− z)∆L

(

3

4
(1 + z) +

1 + z(z + 4)

4(1− z)
log(z)

)

,

∞
∑

n=0

znrn,p(z) = −
∆L

(1− z)∆L
(p− 2)(p− 1)(1− z)

4p(p+ 1)(p+ 2)
,

(6.27)

for p ≥ 1. To solve these equations, we start from the first line, expand the right-

hand side in z → 0 limit and match term by term on both sides. From terms

with log(z) we extract the γ
(1,0)
n and from terms without log(z), we extract the

P
(1,0)
n . We move on to p = 1 case, where we again expand the right-hand side

of the second line in (6.27) in z → 0 limit. Using γ
(1,0)
n and P

(1,0)
n , we extract

γ
(1,1)
n and P

(1,1)
n . Straightforwardly, one can continue this process and extract

OPE data for any value of p.

By proceeding with this calculation to high enough values and p one can

notice that there is a simple expression for γ
(1,p)
n given by

γ(1,p)
n = (−1)p+1

(

1

2
(∆L − 1)∆L + 3n2 − 3(1−∆L)n

)

, (6.28)
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for all p ≥ 0 and n ≥ 0. Note that for p = 0 this expression agrees with the one

in [128]. There is no similar expression for P
(1,p)
n so we list results for first p-s:

P (1,0)
n =− 3

4
(∆L − 1)∆L −

3∆Ln

2
,

P (1,1)
n =3(n− 1)n− 1

4
∆L (∆L (∆L + 6n− 6) + 6(n− 4)n+ 5) ,

P (1,2)
n =

1

8
(∆L(∆L(∆

2
L + 8n∆L + 6n(3n− 1)− 13)

+ 2(n(3n(2n− 5)− 25) + 6))− 12n(2n2 + n− 3)),

P (1,3)
n =

1

120
(180n(n(3− (n− 3)n) + 5)− 234)∆L + 3n(n3 + n2 − 2)

+
1

120
∆2

L(−∆L(∆L (11∆L + 90n− 20) + 90n(3n− 1) + 55)

+ 90(3− 4n)n2 + 280).

(6.29)

After the calculation of the OPE data at O(µ), one can fix the coefficients

in the ansatz (6.21) by expanding the integrand of (3.67) up to O(µ2) and

then integrating the obtained expression over l. The result of the integration is

expanded near z̄ → 1 and we collect the term that behaves as (1− z̄)−∆L+3. It

depends on z, n and OPE data P
(k,p)
n and γ

(k,p)
n for k = 1, 2 and p = 0, 1, but we

are interested only in the part of this term that contains log2(z). This part only

depends on OPE data at O(µ), so it will be completely determined. We collect

terms that behave as (1− z̄)−∆L+3 log2(z)zm. By expanding the ansatz (6.21)

near z → 0 we can collect terms that behave as log2(z)zm and by matching these

to the ones calculated through S-channel, we obtain a system of linear equations

for the coefficients in the ansatz. This system will be over-determined by taking

m to be large enough. Solving it for m ≤ 20, we obtain
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a33 =
(∆L − 4)(∆L − 3)∆L

28800(∆L − 2)
,

a24 =
(∆L − 8)∆L

13440(∆L − 2)
,

a15 =
∆L(∆L + 1)

5040(∆L − 2)
,

c16 =
25

396
b14 +

∆L (∆L (∆L (83− 7∆L) + 158) + 108)

3193344 (∆L − 3) (∆L − 2)
,

c25 = − 1

12
b14 +

∆L (∆L (∆L (∆L + 19)− 146)− 108)

1451520 (∆L − 3) (∆L − 2)
,

c34 =
(∆L − 4)∆L (11 (∆L − 4)∆L − 27)

2419200 (∆L − 3) (∆L − 2)
.

(6.30)

As expected, the coefficients amn are identical to those in (6.17). We are

left with one undetermined coefficient. This is perhaps not surprising since we

know from [15] that the OPE coefficients of the subleading twist multi-stress

tensor operators are not universal. This non-universality is introduced in our

correlator through coefficient b14. One can check that after inserting (6.30) to

(6.21) the term that multiplies the unknown coefficient b14 corresponds to the

lightcone limit of the conformal block of the operator with dimension ∆ = 8

and spin s = 2. We thus conclude that b14 is the OPE coefficient of : TµαT
α
ν :,

b14 = P
(2)
8,2 . (6.31)

Now, using (6.19) we can write the T-channel OPE coefficients for the

remaining double-stress tensor operators with twist τ2,1 = 6 and conformal spin

∆ + s ≥ 14. Explicitly, these are found to be given by

P
(2)
10+2ℓ,4+2ℓ =

√
π2−4ℓ−17Γ(2ℓ+ 7)

(ℓ+ 4)(ℓ+ 5)(ℓ+ 6)(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)Γ
(

2ℓ+ 13
2

)

× ∆L

(∆L − 3)(∆L − 2)
(a1,ℓ∆

3
L + b1,ℓ∆

2
L + c1,ℓ∆L + d1,ℓ),

(6.32)

where
a1,ℓ = (ℓ+ 2)(2ℓ+ 9)(ℓ(2ℓ+ 13) + 9),

b1,ℓ = 144− 2ℓ(2ℓ+ 13)(ℓ(2ℓ+ 13) + 12),

c1,ℓ = ℓ(2ℓ+ 13)(ℓ(2ℓ+ 13) + 33) + 558,

d1,ℓ = 216.

(6.33)
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Here ℓ ≥ 0 and P
(2)
∆,s is the sum of OPE coefficients of all operators with con-

formal dimension ∆ and spin s. There is no way to distinguish operators with

the same quantum numbers ∆ and s at this level in the large CT expansion.

This type of degeneracy occurs for each conformal spin greater than 10 for twist

τ2,1 = 6. Also, perfect agreement between (6.32) and all the OPE coefficients of

double-stress tensor operators of twist τ2,1 = 6 and spin s > 2 calculated in [15]

is observed. Note that P
(2)
8,2 can not be found from (6.32) by setting ℓ = −1,

this would not agree with the result in [15]. In Section 6.5 we rederive (6.32)

using the Lorentzian inversion formula.

6.2.2. Twist-eight double-stress tensors

We follow the same logic as in the previous section in order to write the subsub-

leading part of the stress tensor sector of the HHLL correlator in the lightcone

limit at O(µ2). This part scales as (1− z̄)−∆L+4. Here, we include contributions

coming from operators with twist τ2,2 = 8. These operators can be grouped in

three families and they are schematically written as : Tµν(∂
2)2∂α1

. . . ∂α2ℓ
Tρσ :

with ∆ = 12 + 2ℓ and s = 4 + 2ℓ, : Tµβ∂
2∂α1

. . . ∂α2ℓ
T β

ν : with ∆ = 10 + 2ℓ

and s = 2 + 2ℓ and finally : Tβγ∂α1
. . . ∂α2ℓ

T βγ : with ∆ = 8 + 2ℓ and s = 2ℓ.

Subtleties with regard to the contributions of the different families are discussed

in Section 3.4.3.1.

Once more, we need to include the contributions of lower twist operators,

i.e. by expanding their conformal blocks as z̄ → 1 up to order (1 − z̄)4 and

collect the additional z dependence. Accordingly, we write the following ansatz

G(2,2)(z) = 1

(1− z)
∆L

(

(

z(2z − 7) + 11

6(z − 1)2

)

(a33f
2
3 + a24f2f4 + a15f1f5)

+

(

2− z

1− z

)

(b14f1f4 + c16f1f6 + c25f2f6 + c34f3f4)

+ (d17f1f7 + d26f2f6 + d35f3f5 + d44f
2
4 + e15f1f5 + e24f2f4

+ e33f
2
3 + g13f1f3 + g22f

2
2 )

)

,

(6.34)

where fa means fa(z). Coefficients amn and cmn are already calculated, while

b14 is undetermined from the bootstrap. The linear dependence between certain
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products of fa(z) functions (for more details see Appendix B.1, in particular

(A.2)) allows us to set three coefficients to zero, e.g., g22 = 0, e33 = 0 and

e24 = 0.

To fix the unknown coefficients in (6.34) we match terms that behave as

(1− z̄)−∆L+4zm log2 z from the S-channel calculation of the correlator to terms

with the same behavior in (6.34) for small z. For the S-channel calculation, we

need the OPE data at O(µ) up to p = 2, given by (6.28) and (6.29). We obtain

an over-constrained system of linear equations, whose solution is

d17 =
9e15
143

+
5g13
4004

+
∆L (∆L (∆L (∆L (232− 17∆L) + 1009) + 1908) + 1008)

115315200 (∆L − 4) (∆L − 3) (∆L − 2)
,

d26 = −e15
12

+
5g13
1386

− ∆L (∆L ((∆L − 7)∆L (11∆L − 179) + 3636) + 2736)

119750400 (∆L − 4) (∆L − 3) (∆L − 2)
,

d35 = − g13
180

+
∆L (∆L ((∆L − 7)∆L (37∆L − 13) + 1332) + 3312)

108864000 (∆L − 4) (∆L − 3) (∆L − 2)
,

d44 =
(∆L − 6)∆L (∆L + 2)

9408000 (∆L − 2)
.

(6.35)

The undetermined coefficients g13 and e15 are related to the T-channel OPE

coefficients P
(2)
8,0 and P

(2)
10,2 by the following relations

g13 = P
(2)
8,0 ,

e15 = P
(2)
10,2 −

5

252
P

(2)
8,0 .

(6.36)

Here P
(2)
8,0 is the T-channel OPE coefficient of the operator of the schematic

form : TαβT
αβ :, while P

(2)
10,2 is related to the OPE coefficients of the operators

: Tαβ∂µ1
∂µ2

Tαβ : and : Tµα∂
2Tα

ν : which have the same quantum numbers ∆

and s and are thus indistinguishable at this order in large CT expansion. After

inserting (6.36) and (6.35) into (6.34) one can check that both P
(2)
8,0 and P

(2)
10,2

will be multiplied by the relevant lightcone conformal blocks.

Exactly as in the previous section, we can now extract the OPE coefficients

P
(2)
∆,s for operators with twist τ2,2 = 8 and ∆ = 12 + 2ℓ, s = 4 + 2ℓ, for ℓ ≥ 019

P
(2)
12+2ℓ,4+2ℓ =

√
π∆L2

−4ℓ−19Γ(2ℓ+ 7)

3(∆L − 4)(∆L − 3)(∆L − 2)(ℓ+ 4)(ℓ+ 5)

× a2,ℓ∆
4
L + b2,ℓ∆

3
L + c2,ℓ∆

2
L + d2,ℓ∆L + e2,ℓ

(ℓ+ 6)(ℓ+ 7)(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)Γ
(

2ℓ+ 15
2

) ,

(6.37)

19 For each ∆ = 12 + 2ℓ and s = 4 + 2ℓ with ℓ ≥ 0 there is a triple degeneracy,

because all three families of operators with twist τ2,2 = 8 will be mixed.
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where

a2,ℓ = ℓ(2ℓ+ 15)(ℓ(2ℓ+ 15)(ℓ(2ℓ+ 15) + 59) + 1084) + 6012,

b2,ℓ = 14004− 2ℓ(2ℓ+ 15)(ℓ(2ℓ+ 15)(ℓ(2ℓ+ 15) + 32)− 131),

c2,ℓ = ℓ(2ℓ+ 15)(ℓ(2ℓ+ 15)(ℓ(2ℓ+ 15) + 113) + 4594) + 60984,

d2,ℓ = 216(11ℓ(2ℓ+ 15) + 302),

e2,ℓ = 864(ℓ(2ℓ+ 15) + 34).

(6.38)

It is quite remarkable that these OPE coefficients are fixed purely by the boot-

strap.

6.2.3. Twist-ten double-stress tensors

Now we want to go one step further and analyze the subsubsubleading contri-

bution to the stress tensor sector of the HHLL correlator. This contribution

scales as (1 − z̄)−∆L+5 in the lightcone limit. We have to take in to account

the double-stress tensor operators of twist τ2,3 = 10 in order to calculate this

contribution. These operators can again be grouped in three families of the

schematic form : Tµν(∂
2)3∂α1

. . . ∂α2ℓ
Tρσ : with ∆ = 14 + 2ℓ and s = 4 + 2ℓ,

: Tµβ(∂
2)2∂α1

. . . ∂α2ℓ
T β

ν : with ∆ = 12 + 2ℓ and s = 2 + 2ℓ and finally

: Tβγ∂
2∂α1

. . . ∂α2ℓ
T βγ : with ∆ = 10 + 2ℓ and s = 2ℓ.

In order to include contributions from lower twist operators we have to

expand their conformal blocks up to (1− z̄)5 for z̄ → 1. The ansatz takes the

following form

G(2,3)(z) = 1

(1− z)
∆L

(

(

z((13− 3z)z − 23) + 25

12(1− z)3

)

(a33f
2
3 + a24f2f4 + a15f1f5)

+

(

1

(1− z)2
+

1

1− z
+

9

10

)

(b14f1f4 + c16f1f6 + c25f2f5 + c34f3f4)

+

(

1

1− z
+

3

2

)

(d17f1f7 + d26f2f6 + d35f3f5 + d44f
2
4 + e15f1f5

+ g13f1f3)− g13f3 + (h18f1f8 + h27f2f7 + h36f3f6 + h45f4f5

+ j16f1f6 + j25f2f5 + j34f3f4 + i14f1f4 + i23f2f3)

)

,

(6.39)

with hmn, jmn and imn, coefficients that we need to determine, and with b14, e15

and g13 undetermined from the bootstrap. The term g13f3(z) in the next-to-last
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line of the previous equation has its origin in the correction to the conformal

block of operator : TαβT
αβ :. This operator has β = τ2,2 = 8 which implies that

both lines in the following expansion of the conformal block

g
(0,0)
8,0 (1− z, 1− z̄) = (1− z̄)4

(

1 + (1− z̄)

(

3

2
+

1

1− z

)

+O
(

(1− z̄)2
)

)

f4(z)

− (1− z̄)5
(

1 + (1− z̄)

(

2 +
1

1− z

)

+O((1− z̄)
2
)

)

f3(z)

(6.40)

contribute. The contribution from the first line of (6.40) is included in the third

line of (6.39), while we had to explicitly add the contribution from the second

line. Using (A.1) and (A.3) we set i23 = 0, j34 = 0 and j25 = 0.

From the S-channel calculation, we collect the terms in the correlator which

behave as (1−z̄)−∆L+5 log2(z)zm and are fixed in terms of OPE data atO(µ) for
p ≤ 3. By expanding (6.39) near z → 0 we obtain terms with the same behavior

as linear functions of unknown coefficients and by matching them with the terms

from the S-channel, we determine the unknown coefficients. These are

h18 =− ∆L (∆L + 1) (∆L (∆L (∆L (47∆L − 721)− 5182)− 15204)− 13680)

4942080000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
49i14
38610

+
49j16
780

,

h27 =− ∆L (∆L + 1) (∆L (∆L (∆L (8∆L − 229) + 1097) + 7224) + 10080)

1383782400 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
5i14
1404

− j16
12

,

h36 =
∆L (∆L + 1) (∆L (∆L (∆L (34∆L − 137)− 1829) + 5712) + 23040)

2661120000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

− i14
180

,

h45 =
(∆L − 6)∆L (∆L + 1) (∆L + 2)

62720000 (∆L − 3) (∆L − 2)
.

(6.41)

Our approach does not allow us to determine the coefficients j16 and i14. These

are related to the T-channel OPE coefficients of operators with twist τ2,3 = 10

and minimal conformal spin by

i14 = P
(2)
10,0,

j16 = P
(2)
12,2 −

2

99
P

(2)
10,0.

(6.42)
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Notice that, despite the fact that the hmn depend on the undetermined OPE

data, we are able to extract all the OPE coefficients of double-stress tensors

with twist τ2,3 = 10 and conformal spin ∆ + s ≥ 18. Explicitly, they are given

by:

P
(2)
14+2ℓ,4+2ℓ =

√
π2−4ℓ−22Γ(2ℓ+ 9)

5(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)Γ
(

2ℓ+ 17
2

)

× ∆L(∆L + 1)(a3,ℓ∆
4
L + b3,ℓ∆

3
L + c3,ℓ∆

2
L + d3,ℓ∆L + e3,ℓ)

(ℓ+ 5)(ℓ+ 6)(ℓ+ 7)(ℓ+ 8)(∆L − 5)(∆L − 4)(∆L − 3)(∆L − 2)
,

(6.43)

where

a3,ℓ =ℓ(2ℓ+ 17)(ℓ(2ℓ+ 17)(ℓ(2ℓ+ 17) + 70) + 1513) + 9756,

b3,ℓ =38232− 2(ℓ− 1)ℓ(2ℓ+ 17)(2ℓ+ 19)(ℓ(2ℓ+ 17) + 44),

c3,ℓ =196164 + ℓ(17 + 2ℓ(11647 + ℓ(17 + 2ℓ)(196 + ℓ(17 + 2ℓ))),

d3,ℓ =504(647 + 19ℓ(17 + 2ℓ)),

e3,ℓ =4320(53 + ℓ(17 + 2ℓ)).

(6.44)

We expect that a similar picture is true for all subleading twist double-stress

tensor operators. At O(µ2), the ansatz for G(2,m)(z) will naturally include prod-

ucts of the type fa(z)fb(z), such that a+b = 6+m, together with f1(z)f3+m(z)

and f1(z)f1+m(z). The coefficients of the latter two will be left undetermined

from the lightcone bootstrap at every order in the lightcone expansion. Such

coefficients will be related to the non-universal OPE coefficients of double-stress

tensors with spin s = 0, 2 for a given twist. On the other hand, the coefficients

of the products fa(z)fb(z), with a + b = 6 +m, once determined, will allow us

to extract the OPE coefficients of all double-stress tensors with conformal spin

β ≥ 12 + 2m. We expect them to be universal, despite the fact that the coef-

ficients of the products fa(z)fb(z), with a + b = 6 +m, will be plagued by the

ambiguities present in the determination of the OPE coefficients of operators

spin s = 0, 2 – just as herein.

6.3. Triple-stress tensors in four dimensions

In this section, we consider the stress tensor sector of the HHLL correlator at

O(µ3) in d = 4. The operators which contribute in the T-channel are triple-

stress tensors. Since we are interested in the lightcone limit 1 − z̄ ≪ 1, we
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consider contributions of operators with low twist. Triple-stress tensors with

minimal twist can be written in the schematic form : TµνTρσ∂α1
. . . ∂α2ℓ

Tηξ :.

These operators have twist τ3,min = 6 and their contribution to the HHLL

correlator in the lightcone limit was found in [13]:

G(3,0)(z) = 1

(1− z)∆L

(

a117f1(z)
2f7(z) + a126f1(z)f2(z)f6(z)

+ a135f1(z)f3(z)f5(z) + a225f2(z)
2f5(z) + a234f2(z)f3(z)f4(z) + a333f3(z)

3
)

,

(6.45)

where the coefficients aikl are

a117 =
5∆L(∆L + 1)(∆L + 2)

768768(∆L − 2)(∆L − 3)
,

a126 =
5∆L(5∆

2
L − 57∆L − 50)

6386688(∆L − 2)(∆L − 3)
,

a135 =
∆L(2∆

2
L − 11∆L − 9)

1209600(∆L − 3)
,

a225 = − ∆L(7∆
2
L − 51∆L − 70)

2903040(∆L − 2)(∆L − 3)
,

a234 =
∆L(∆L − 4)(3∆2

L − 17∆L + 4)

4838400(∆L − 2)(∆L − 3)
,

a333 =
∆L(∆L − 4)(∆3

L − 16∆2
L + 51∆L + 24)

10368000(∆L − 2)(∆L − 3)
.

(6.46)

6.3.1. Twist-eight triple-stress tensors

We now consider the subleading contributions at O(µ3) coming from triple-

stress tensor operators with twist τ3,1 = 8. There are two families of such

operators, these can be schematically written as : TµνTρα∂α1
. . . ∂α2ℓ

Tα
ξ : with

∆ = 12+2ℓ and spin s = 4+2ℓ and : TµνTρσ∂
2∂α1

. . . ∂α2ℓ
Tηξ : with ∆ = 14+2ℓ

and spin s = 6 + 2ℓ. The conformal spins of these families are β = 16 + 4ℓ and

β = 20 + 4ℓ, respectively, so we expect products of three fa(z) functions such

that their indices add up to 8 and 10. The contribution to the correlator of

these operators scales as (1− z̄)−∆L+4 for z̄ → 1. This implies that one needs

to include the contribution from the minimal twist triple-stress tensor operators

(due to corrections to their conformal blocks).
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Our ansatz takes the form

G(3,1)(z) = 1

(1− z)∆L

(

(

2− z

1− z

)

(a117f
2
1 f7 + a126f1f2f6 + a135f1f3f5

+ a225f
2
2 f5 + a234f2f3f4 + a333f

3
3 ) + (b116f6f

2
1 + b134f3f4f1

+ b125f2f5f1 + b233f2f
2
3 + b224f

2
2 f4 + c118f8f

2
1 + c145f4f5f1

+ c136f3f6f1 + c127f2f7f1 + c244f2f
2
4 + c334f

2
3 f4 + c235f2f3f5

+ c226f
2
2 f6)

)

,

(6.47)

where ajkl are given in (6.46). The linear dependence between products of three

fa functions, with explicit relations given in Appendix B.1, allows us to set the

following coefficients to zero

b125 = b134 = b224 = b233 = c136 = 0. (6.48)

To fix the coefficients b116 and cjkl we perform an S-channel calculation

up to O(µ3). The relevant terms now scale as (1 − z̄)−∆L+4 log3(z)zm and

(1− z̄)−∆L+4 log2(z)zm when z̄ → 1 and z → 0.

We fix the S-channel OPE data at O(µ2) using the results of the previous

section, specifically eqs. (6.21), (6.34) and (6.39). Since the OPE coefficients

of double-stress operators of spin 0 and 2 are left undetermined, the S-channel

OPE data is fixed in terms of these. Concretely, γ
(2,0)
n and P

(2,0)
n are completely

determined since the leading-twist OPE coefficients are known and universal,

while γ
(2,1)
n and P

(2,1)
n depend on b14, γ

(2,2)
n and P

(2,2)
n depend on b14, g13 and

e15 and so on.20

We were able to fix all the unknown coefficients in the ansatz (6.47) using

bootstrap. Crucially, there are no spin s = 0, 2 operators that contribute at

this level. Here, we list two of the coefficients while all others can be found in

Appendix B.2.

20 Explicit expressions for the S-channel OPE data are too cumbersome to quote

here.
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b116 =
−∆L (∆L + 3) (∆L (∆L (∆L (1001∆L + 387)− 4326) + 13828) + 5040)

10378368000 (∆L − 4) (∆L − 3) (∆L − 2)

+
b14 (∆L (143∆L + 427) + 540)

17160 (∆L − 4)
,

c118 =7 (∆L + 3)×
604800b14

(

∆2
L − 5∆L + 6

)

+∆L

(

−21∆3
L + 229∆2

L + 414∆L + 284
)

856627200 (∆3
L − 9∆2

L + 26∆L − 24)
.

(6.49)

Notice that they depend on b14. This is because the anomalous dimensions at

O(µ2), γ
(2,2)
n depend on it. Moreover, no OPE coefficient of triple-stress tensors

with twist τ3,1 = 10 is universal since all of them depend on b14. These OPE

coefficients can be written in the form of a finite sum, similarly to what happens

for the OPE coefficients of leading twist triple-stress tensor, given in [13]. We

define i1(r, q) and i2(r, q) as

i1(r, q) = b116p(1, 1, r)p(2r+ 2, 6, q), (6.50)

and

i2(r, q) = c118p(1, 1, r)p(2r+ 2, 8, q) + c127p(1, 2, r)p(2r+ 3, 7, q)

+ c145p(1, 4, r)p(2r+ 5, 5, q) + c226p(2, 2, r)p(2r+ 4, 6, q)

+ c235p(2, 3, r)p(2r+ 5, 5, q) + c244p(2, 4, r)p(2r+ 6, 4, q)

+ c334p(3, 3, r)p(2r+ 6, 4, q),

(6.51)

where p(a, b, ℓ) are given by (6.20). The OPE coefficients can be written as

P
(3)
14+2ℓ,6+2ℓ =

ℓ+1
∑

r=0

i1(r, ℓ+ 1− r) +

ℓ
∑

r=0

i2(r, ℓ− r), (6.52)

for k ≥ 0, while P
(3)
12,4 = i1(0, 0) = b116. We give the explicit expressions for

some OPE coefficients in Appendix B.4.

6.3.2. Twist-ten triple-stress tensors

Here, we consider the contribution of triple-stress tensor operators of twist τ3,2 =

10. These operators can be divided in three families of the schematic form
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: TµνTαβ∂µ1
. . . ∂µ2ℓ

(∂2)2Tρσ : with conformal dimension ∆ = 16 + 2ℓ and spin

s = 6 + 2ℓ, : TµνTαβ∂µ1
. . . ∂µ2ℓ

∂2T β
ρ : with ∆ = 14 + 2ℓ and s = 4 + 2ℓ and

finally : TµαTνβ∂µ1
. . . ∂µ2ℓ

Tαβ : with ∆ = 12 + 2ℓ and s = 2 + 2ℓ. One can see

that in the last family an operator of spin s = 2 is included.

An appropriate ansatz in this case is

G(3,2)(z) = 1

(1− z)∆L

(

(

144z2 − 448z + 464

160(z − 1)2

)

(a117f
2
1 f7 + a126f1f2f6

+ a135f1f3f5 + a225f
2
2 f5 + a234f2f3f4 + a333f

3
3 ) +

(

1

1− z
+

3

2

)

(b116f6f
2
1

+ c118f8f
2
1 + c145f4f5f1 + c127f2f7f1 + c244f2f

2
4 + c334f

2
3 f4 + c235f2f3f5

+ c226f
2
2 f6) + (d117f

2
1 f7 + e115f

2
1 f5 + g119f

2
1 f9 + g128f1f2f8 + g155f1f

2
5

+ g227f
2
2 f7 + g236f2f3f6 + g245f2f4f5 + g335f

2
3 f5 + g344f3f

2
4 )

)

,

(6.53)

where fa = fa(z) and we have included only the linearly independent products

of these functions.

The lightcone bootstrap fixes all coefficients except e115. One can

check that this is exactly the OPE coefficient P
(3)
12,2 of the spin-2 operator

: TµαTνβT
αβ : with ∆ = 12 and spin s = 2

e115 = P
(3)
12,2. (6.54)

All other coefficients can be found in Appendix B.2. Notice that all coefficients

depend on b14, g13 and e15 because the S-channel OPE data at O(µ2) depend

on them.

Again, we write the OPE coefficients for all triple-stress tensor operators

with twist τ3,2 = 10 and β ≥ 18 in the form of a finite sum. We define j1(r, q),

j2(r, q) and j3(r, q) as

j1(r, q) = e115p(1, 1, r)p(2r+ 2, 5, q), (6.55)

j2(r, q) = d117p(1, 1, r)p(2r+ 2, 7, q) (6.56)
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and

j3(r, q) = g119p(1, 1, r)p(2r+ 2, 9, q) + g128p(1, 2, r)p(2r+ 3, 8, q)

+ g155p(1, 5, r)p(2r+ 6, 5, q) + g227p(2, 2, r)p(2r+ 4, 7, q)

+ g236p(2, 3, r)p(2r+ 5, 6, q) + g245p(2, 4, r)p(2r+ 6, 5, q)

+ g335p(3, 3, r)p(2r+ 6, 5, q) + g344p(3, 4, r)p(2r+ 7, 4, q),

(6.57)

where p(a, b, ℓ) is given by (6.20). The OPE coefficients can now be written as

P
(3)
16+2ℓ,6+2ℓ =

ℓ+2
∑

r=0

j1(r, ℓ+ 2− r) +
ℓ+1
∑

r=0

j2(r, ℓ+ 1− r) +
ℓ
∑

r=0

j(r, ℓ− r), (6.58)

for ℓ ≥ 0, while

P
(3)
14,4 = j1(0, 1) + j1(1, 0) + j2(0, 0). (6.59)

Finally, we conclude that the stress tensor sector of the HHLL correlator to

all orders in µ and in the lightcone expansion will take a similar form in terms of

products of fa functions. One should be able to completely fix the coefficients,

except for terms that correspond to the OPE coefficients of multi-stress tensor

operators with spin s = 0, 2, using the lightcone bootstrap.

6.4. Holographic phase shift and multi-stress tensors

In this section, we demonstrate how to calculate the T-channel OPE coeffi-

cients of spin-2 operators (up to undetermined spin-0 data) which are left un-

determined after the lightcone bootstrap, using a gravitational calculation of

the scattering phase shift. We are interested in the scattering phase shift – or

eikonal phase – resulting from the eikonal resummation of graviton exchanges

when a fast particle is scattered by a black hole21. Seeking to explore the univer-

sality properties of the undetermined OPE coefficients of the previous section,

we perform the calculation in Gauss-Bonnet gravity extending the results of

[55] to this case. We argue that the phase shift in the large impact parameter

limit is independent of higher-derivative corrections to the dual gravitational

lagrangian. This is consistent with the universality of the minimal-twist multi-

stress tensor sector in the dual CFT. On the other hand, we observe that the

21 For CFT approach to the Regge scattering of scalar particles in pure AdS see

[58-63,126,134].
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subleading OPE data of spin-2 multi-stress tensors depend explicitly on the

Gauss-Bonnet coupling λGB.

The computation involves performing an inverse Fourier transform of the

exponential of the phase shift in the large impact parameter expansion, to obtain

the HHLL correlator in position space22. This is done following the approach of

[135]. Comparison with the expressions for the HHLL correlator in the lightcone

limit requires analytically continuing the results of Sections 6.2 and 6.3 and

taking the limit z → 1. Identifying terms in the HHLL four-point function with

the same large impact parameter and z → 1 behavior allows us to extract the

spin-2 OPE coefficients of the double- and triple-stress tensor operators (up to

undetermined spin zero data).

6.4.1. Universality of the phase shift in the large impact parameter limit

In this subsection, we consider Gauss-Bonnet gravity in (d+1)–dimensions and

argue that the phase shift obtained by a highly energetic particle traveling in

a spherical AdS-Schwarzschild background is independent of the Gauss-Bonnet

coupling λGB in the large impact parameter limit.

The action of Gauss-Bonnet gravity in (d+ 1)-dimensional spacetime is

S =
1

16πG

∫

dd+1√−g
(

R +
d(d− 1)

ℓ2

+
λ̃GB

(d− 2)(d− 3)
(RµνγδR

µνγδ − 4RµνR
µν +R2)

)

,

(6.60)

where the coupling parameter λ̃GB is measured in units of the cosmological

constant ℓ: λ̃GB = λGBℓ
2, with λGB being a dimensionless coefficient. The

AdS-Schwarzschild black hole metric which is a solution of the Gauss-Bonnet

theory is given by [136,137]:

ds2 = −r2AdSf(r)dt
2 +

dr2

f(r)
+ r2dΩ2

d−1, (6.61)

where

f(r) = 1 +
r2

2λGB

(

1−
√

1− 4λGB(1−
µ̃

rd
)

)

, (6.62)

22 Recall that the exponential of the phase shift corresponds to the Regge limit of

HHLL four-point function in momentum space [55].
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with

µ̃ =
16πGM

(d− 1)Ωd−1ℓd−2
, µ =

µ̃

rd−2
AdS

√
1− 4λGB

, (6.63)

and

rAdS =
(1

2
(1 +

√

1− 4λGB)
)1/2

(6.64)

where Ωd−1 is the surface area of a (d−1)-dimensional unit sphere embedded in

d-dimensional Euclidean space. The metric is normalized such that the speed

of light is equal to 1 at the boundary (i.e. gtt/gφφ → 1 as r → ∞) and all

dimensionful parameters are measured in units of ℓ. The product (ℓrAdS) is the

radius of the asymptotic Anti-de Sitter space.

The two conserved charges along the geodesics, pt and pφ, are

pt = r2AdSf(r)
dt

dλ
,

pφ = r2
dφ

dλ
.

(6.65)

where λ denotes an affine parameter. Null geodesics are described by the fol-

lowing equation,

1

2

(

dr

dλ

)2

+
(pφ)2

2r2
f(r) =

1

2

(pt)2

r2AdS

. (6.66)

similarly to Einstein gravity.

A light particle, starting from the boundary, traversing the bulk and

reemerging on the boundary experiences a time delay and a path deflection

given by :

∆t = 2

∫ ∞

r0

dr

rAdSf(r)

√

1− α2 r2
AdS

r2
f(r)

,

∆φ = 2α rAdS

∫ ∞

r0

dr

r2
√

1− α2 r2
AdS

r2 f(r)

,

(6.67)

where α = pφ/pt and r0 the impact parameter determined by dr
dλ
|r(λ)=r0 = 0,

i.e.,

1− α2 r
2
AdS

r20
f(r0) = 0. (6.68)

Defining the phase shift as δ = −p ·∆x = pt∆t− pφ∆φ, we find that

δ = 2
pt

rAdS

∫ ∞

r0

dr

f(r)

√

1− α2
r2AdS

r2
f(r). (6.69)
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Just as in [55], we are interested in expanding the phase shift order by order

in µ. It is easy to see that in terms of CFT data µ can be expressed as

µ =
4

(d− 1)2
Γ(d+ 2)

Γ(d/2)2
∆H

CT
, (6.70)

which is consistent with (3.14). Here CT is the central charge of the dual

conformal theory [138]:

CT =
π
d
2−1

2(d− 1)

Γ(d+ 2)

Γ(d/2)3G
(rAdSℓ)

d−1
√

1− 4λGB, (6.71)

and ∆H = MℓrAdS.

In order to calculate the phase shift, we introduce a new variable y, given

by y = r0
r
. Using this variable (6.69) can be written as:

δ = 2
ptr0
rAdS

∫ 1

0

dy

y2f( r0
y
)

(

1− α2 r
2
AdSy

2

r02
f(

r0
y
)

)1/2

. (6.72)

Expanding the phase shift

δ =

∞
∑

k=0

µkδ(k), (6.73)

and solving (6.68) perturbatively in µ reads

r0 = b− b3−d

2r2−d
AdS

µ+
b3−2d

8r4−2d
AdS

(

b2(3− 2d) +
4λGB√
1− 4λGB

)

µ2 +O(µ3). (6.74)

Generically, we get an expansion of the form

r0 = b+
∞
∑

k=1

akµ
k, (6.75)

where the ak, which depend on b, in the large impact parameter limit (b→∞)

behave as

ak ∝ b
(rAdS

b

)k(d−2)

. (6.76)

Notice that there is no explicit λGB dependence in the leading term23, since the

metric (6.61) approaches the one in pure GR.

23 Except the overall dependence on rAdS .
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To study the leading behavior of the phase shift for large impact parameters

it is convenient to define a function g(x) as

g(x) = r2AdS

f(x)

x2
, (6.77)

with f given by (6.62), and denote the integrand of (6.72) by h
(

g
(

r0
y

))

, with

h(x) =
1

x

√

1− α2x, (6.78)

to express (6.72) as

δ = 2pt
(

rAdS

r0

)
∫ 1

0

h

(

g

(

r0
y

))

dy. (6.79)

In practice, to calculate the phase shift in the large impact parameter limit, we

first expand the integrand of (6.79) in powers of µ, perform the integration with

respect to y, and then expand the result in powers of b. The b-dependence of

δ(k) is therefore fixed before the integration and the integral just determines the

overall numerical factor (assuming that it is convergent).

We can immediately see that g
(

r0
y

)

depends on µ explicitly and implicitly

through r0(µ) in (6.74). In order to make this clear we write g
(

r0
y
, µ
)

instead

of just g
(

r0
y

)

. Defining g(n,m)
(

b
y
, 0
)

as

g(n,m)

(

b

y
, 0

)

=
∂n∂m

∂rn0 ∂µ
m
g

(

r0
y
, µ

)

∣

∣

∣

r0=b,µ=0
. (6.80)

allows us to write the following expansion for h
(

g
(

r0
y
, µ
))

:

h (g (r0/y, µ)) =h(g(b/y, 0)) + µh′(g(b/y, 0))
(

g(0,1)(b/y, 0) + a1g
(1,0)(b/y, 0)

)

+
µ2

2
h′′(g(b/y, 0))

(

g(0,1)(b/y, 0) + a1g
(1,0)(b/y, 0)

)2

+
µ2

2
h′(g(b/y, 0))

(

g(0,2)(b/y, 0) + 2a2g
(1,0)(b/y, 0)

+ 2a1g
(1,1)(b/y, 0) + a21g

(2,0)(b/y, 0)
)

+O(µ3),

(6.81)
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where ak are the coefficients appearing in (6.75). It is clear that at each order

in the µ-expansion we will have a sum of products composed from derivatives

of h(x) and sums of the form

∑

{ki:
p
∑

i=1

ki6n}

ak1
ak2

. . . akpg
(p,n−

∑

p

i=1
ki)(b/y, 0) . (6.82)

Notice first that g(b/y, 0), g(m,0)(b/y, 0) and g(m,1)(b/y, 0) do not depend

on λGB as can be seen from (6.77). The same is true for h(n)(g(b/y, 0)) for

any n as follows from (6.78). On the contrary, g(m,n)(b/y, 0) with n ≥ 2 depend

explicitly on λGB. It is then evident that any dependence on λGB will come from

terms like the ones in parenthesis in (6.81) which are of the type (6.82). We will

now show that all the terms in such sums which contain λGB, are subleading in

the large impact parameter limit.

Recall that ak ∝ b1−k(d−2) for k ≥ 1. Using (6.77) one can check that

g(m,n)(b/y, 0) ∝ b−m−nd for n > 0 and g(m,0)(b/y, 0) ∝ b−m−2. We thus need to

spearately consider two cases: products of the form ak1
ak2

. . . akpg
(p,n−q)(b/y, 0),

with q =
∑p

i=1 ki and q < n and products of the form ak1
ak2

. . . akpg
(p,0)(b/y, 0)

for which q = n.

The former behave as

ak1
ak2

. . . akpg
(p,n−q)(b/y, 0) ∝ 1

bnd−2q
. (6.83)

Clearly, the leading behavior in the large impact parameter regime corresponds

in this case to q = n − 1, recall, however, that g(p,1) does not depend on λGB.

The behavior of the latter terms is

ak1
ak2

. . . akpg
(p,0)(b/y, 0) ∝ 1

bnd−2(n−1)
. (6.84)

which is again independent of λGB. The conclusion is that the leading behavior

in the large impact parameter regime comes from terms containing g(p,0)(b/y, 0)

and g(p,1)(b/y, 0) that do not contain λGB.

One can extend these considerations straightforwardly to any gravitational

theory that contains a spherical black hole with a metric given by

ds2 = −(1 + r2f̃(r))dt2 +
dr2

1 + r2h̃(r)
+ r2dΩ2

d−1 (6.85)
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where the functions f̃(r) and h̃(r) admit an expansion of the following form in

the large r limit:

f̃(r) = 1−
∞
∑

n=0

f̃nd
rnd

= 1− f̃0
rd
− f̃d

r2d
− . . .

h̃(r) = 1−
∞
∑

n=0

h̃nd

rnd
= 1− h̃0

rd
− h̃d

r2d
− . . . ,

(6.86)

for some constants f̃nd and h̃nd (these are the spherical black hole metrics

considered in eqs. (5.1) and (5.10) in [15]).

6.4.2. Spin-2 multi-stress tensor OPE data from the gravitational phase shift

The gravitational phase shift in a black hole background is related to the light-

cone HHLL four-point function discussed extensively in this article. In the fol-

lowing, we will exploit the precise relationship between the two to extract the

OPE data of multi-stress tensor operators of spin-2 in the dual conformal field

theory (modulo spin zero data). While the explicit procedure can be worked

out for arbitrary multi-stress tensors, we will herein focus on double and triple-

stress tensor operators, which control the O(µ2) and O(µ3) lightcone behavior

of the HHLL correlation function.

6.4.2.3. The phase shift in Gauss-Bonnet gravity to O(µ3).

In this section, we focus on the gravity side and determine the phase shift order

by order in µ up to O(µ3) relevant for this article. Starting from O(µ0) we

consider the following expression

δ(0) = 2b pt rAdS

√

1− α2

∫ 1

0

√

1− y2

b2 + r2AdSy
2
dy. (6.87)

Evaluating this integral and using the following notation p± = pt ± pφ, −p2 =

p+p−, leads to

δ(0) = πp−. (6.88)

This is of course none other but the “phase shift” in pure AdS space.
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At O(µ) the result is the same as in [55], where Einstein gravity was con-

sidered,

δ(1) =
√

−p2
(

b

rAdS

)1−d(
d− 1

2

)

B
[d− 1

2
,
3

2

]

2F1

(

1,
d− 1

2
,
d

2
+ 1,−r2AdS

b2

)

.

(6.89)

At this order, the phase shift depends only on the single graviton exchange,

which is unaffected by the higher derivative terms in the gravitational action.

According to the holographic dictionary, the exchange of a single graviton is

related to the exchange of a single stress tensor in the T-channel. The corre-

sponding OPE coefficient is fixed by the Ward identity, so it does not depend

on the details of the theory.

We now consider the phase shift at higher orders in µ. For convenience

herein all results are presented in d = 4. AtO(µ2), using the technique presented

in the previous subsection, we find that:

δ(2) =
7π

8

√

−p2
(

5
b

rAdS
(

√

1 +
r2AdS

b2
− 1)− 5

2

rAdS

b
+

5

4

r3AdS

b3

+
λGB

r2AdS

√
1− 4λGB

(

4
b

rAdS
(

√

1 +
r2AdS

b2
− 1)− 2

rAdS

b
+

1

2

r3AdS

b3

− 1

4

r5AdS

b5

)

)

.

(6.90)

In the lightcone limit (b→∞) this reduces to

δ(2) ≈
b→∞

35π
√

−p2r5AdS

128b5
− 35π

√

−p2r7AdS

1024b7

(

5 +
4λGB

r2AdS

√
1− 4λGB

)

+ . . . . (6.91)

We explicitly see that the leading contribution does not depend on λGB, while

the subleading does.

Let us denote δ
(2)
GR to be equal to (6.90) when λGB = 0,

δ
(2)
GR =

35πr5AdS

√

−p2
128b5

2F1(1,
5

2
, 4,−r2AdS

b2
), (6.92)

which is the pure Einstein gravity result for the phase shift at O(µ2). Then δ(2)

can be written as

δ(2) = δ
(2)
GR

(

1 +
4λGB

5r2AdS

√
1− 4λGB

)

− 7π
√

−p2λGB

32r2AdS

√
1− 4λGB

(rAdS

b

)5

. (6.93)
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The phase shift at O(µ3) is given by

δ(3) =δ
(3)
GR

(

1 +
12λGB

7r2AdS

√
1− 4λGB

+
16λ2

GB

21r4AdS(1− 4λGB)

)

−
√

−p2
(rAdS

b

)7
(

495πλGB

512r2AdS

√
1− 4λGB

+
55πλ2

GB

128r4AdS(1− 4λGB)

)

+
√

−p2
(rAdS

b

)9 77πλ2
GB

256r4AdS(1− 4λGB)
,

(6.94)

where

δ
(3)
GR =

231r7AdS

16b7

√

−p2B
(

7

2
,
3

2

)

2F1(1,
7

2
, 5,−r2AdS

b2
). (6.95)

By expanding (6.94) in the large impact parameter limit, one again explicitly

sees that the leading term does not depend on λGB.

6.4.2.4. Inverse Fourier transform of the phase shift at O(µ2).

To make contact with the position space HHLL correlation function, one needs

to perform a Fourier transform of the phase shift. According to [55], the HHLL

four-point function in the Regge limit
√

−p2 ≫ 1 is given by

G̃(x) =
∫

ddp

(2π)d
eipxB(p), (6.96)

where G̃(x) = 〈OH(x1)OL(x2)OL(x3)OH(x4)〉Regge limit and B(p) = B0(p)eiδ.
The factor B0(p) reproduces the disconnected correlator and it is given by

B0(p) = C(∆L)θ(p
0)θ(−p2)eiπ∆L(−p2)∆L− d

2 , (6.97)

with normalization

C(∆L) =
2d+1−2∆Lπ1+d

2

Γ(∆L)Γ(∆L − d
2 + 1)

. (6.98)

We expand the integrand of (6.96) in powers of µ using (6.73), explicitly

B(p) = B0(p)
(

1 + µiδ(1) + µ2

(

iδ(2) − 1

2
δ(1)

2
)

+ µ3

(

iδ(3) − δ(1)δ(2) − i

6
δ(1)

3
)

+O(µ4)

)

.

(6.99)
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This generates an expansion for G̃(x) from (6.96) as

G̃(x) =
∞
∑

k=0

µkG̃(k)(x). (6.100)

Let us start by studying the correlator at O(µ2). The imaginary part of the

correlator in the Regge limit at this order comes from iδ(2) in (6.99) while the

real part comes from −1
2δ

(1)2.

Consider first the imaginary part. To perform the inverse Fourier transform

it is convenient to first expand δ(2) as follows:

δ(2) = 7π2
√

−p2
(

5

2
Π5,3(L) +

(

15

4
− 5λGB

r2AdS

√
1− 4λGB

)

Π7,3(L)

+

(

5− 16λGB

r2AdS

√
1− 4λGB

)

Π9,3(L) + . . .

)

.

(6.101)

In (6.101) b/rAdS = sinh(L) and

Π∆−1;d−1(x) =
π1−d

2 Γ(∆− 1)

2Γ(∆− d−2
2 )

e−(∆−1)x
2F1(

d

2
− 1,∆− 1,∆− d− 2

2
, e−2x) ,

(6.102)

the three-dimensional hyperbolic space propagator of a massive particle with

mass square equal to (∆− 1)2. The dots in (6.101) stand for terms with hyper-

bolic space propagators with ∆ > 10. We can now perform the inverse Fourier

transform of (6.101) with the help of eqs. (3.23) in [55] and (3.4) in [135].

The term which contains Π5,3(L) includes (after the inverse Fourier trans-

form) the contribution of double-stress tensors with minimal twist τ = 4. As

we have already shown it does not depend on λGB, which we can also explicitly

see in (6.101). The next term, that contains Π7,3(L), includes the contribu-

tion from the double-stress tensor operators of twist τ2,1 = 6. We can use this

term to fix the coefficient b14 which was left undetermined in (6.21). Similar

reasoning applies to all the higher-order terms in the large impact parameter

expansion of (6.101). Namely, the term proportional to Π2m+1,3(L) is related

to double-stress tensor operators of twist τ = 2m.
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Performing the inverse Fourier transform following [135] leads to

iIm
(

G̃(2)(σ, ρ)
)

=

∫

d4p

(2π)4
eipxB0(p)iδ(2) =

2i

Γ(∆L)Γ(∆L − 1)σ2∆L+1

×
(

a1Π5,3(ρ)Γ(∆L − 2)Γ(∆L + 2) + b1Π7,3(ρ)Γ(∆L − 3)Γ(∆L + 3)

+ c1Π9,3(ρ)Γ(∆L − 4)Γ(∆L + 4) + . . .
)

+ . . . ,

(6.103)

where a1 = 35
2
π2, b1 = 7π2

(

15
4
− 5λGB

r2
AdS

√
1−4λGB

)

and c1 = 7π2
(

5− 16λGB

r2
AdS

√
1−4λGB

)

.

The ellipses outside the parenthesis in (6.103) denote contributions due to

double-trace operators in the T-channel that are not important for studying

the stress tensor sector. The position space coordinates σ and ρ are defined as

z = 1− σeρ, z̄ = 1− σe−ρ. (6.104)

after the analytic continuation z → ze−2iπ . Once more, notice that the dom-

inant contribution in the large impact parameter regime, ρ → ∞, comes from

the factor Π5,3(ρ) in (6.103) which exactly matches the imaginary part of the

correlator (6.17) in [55].

6.4.2.5. Comparison with HHLL correlation function in the lightcone limit at

O(µ2).

A few simple steps are required before we can finally relate (6.103) with the

results of Section 6.2 and determine the OPE coefficients of the spin-2 double-

stress tensor operators. As explained in [55], one has to analytically continue

G(2,1), G(2,2) and G(2,3) (defined in Section 6.1) around the origin by taking

z → ze−2iπ and expand the result in the vicinity of σ → 0. The relevant term,

which corresponds to the imaginary part of the correlator (6.21) as σ → 0,

reads:

iIm
(

(σe−ρ)3−∆LG(2,1)(1− σeρ)
)

=7iπ
e−7ρ

σ2∆L+1

(

12600b14

+
∆L (∆L (∆L (123− 7∆L) + 78)− 12)

16 (∆L − 3) (∆L − 2)

)

.

(6.105)
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Comparing this with the subleading term of (6.103) as ρ→∞, i.e.,

iIm
(

G̃(2)(σ, ρ)
)

|e−7ρ =

− 35iπe−7ρ∆L (∆L + 1)
(

8λGB +∆L

(

4λGB − 5
√
1− 4λGBr

2
AdS

))

4σ2∆L+1
√
1− 4λGBr

2
AdS (∆2

L − 5∆L + 6)
+ . . . ,

(6.106)

with the ellipses again denoting double-trace operators, allows one to obtain the

following expression for the unknown parameter b14:

b14 = P
(2)
8,2 =

∆L (∆L (∆L (7∆L − 23) + 22) + 12)

201600 (∆L − 3) (∆L − 2)

− λGB∆L (∆L + 1) (∆L + 2)

2520
√
1− 4λGBr

2
AdS (∆L − 3) (∆L − 2)

.

(6.107)

Note that this precisely matches the OPE coefficient of the double trace operator

of conformal dimension ∆ = 8 and s = 2 calculated in [15] from gravity by other

means. As expected, the OPE coefficient in (6.107) explicitly depends on λGB.

Let us now go one step further and fix P
(2)
10,2 contributing to G(2,2)(z)

through (6.36). Analytically continuing (6.34) and taking the limit σ → 0,

yields

iIm
(

(σe−ρ)4−∆LG(2,2)(1− σeρ)
)

= i
49

400

πe−9ρ

σ2∆L+1

(

720000b14 + 11404800
P

(2)
10,2

µ2

+
∆L (∆L (∆L (∆L (6327− 362∆L) + 749) + 12888) + 12288)

7 (∆L − 4) (∆L − 3) (∆L − 2)

)

.

(6.108)

For reasons that will be explained later, we only consider here the imaginary

part of the subsubleading term in the correlator. To extract the OPE data

we need to compare (6.108) with the subsubleading contribution in the large

impact parameter limit of (6.103), which is

iIm
(

G̃(2)(σ, ρ)
)

|e−9ρ = i
7

4

πe−9ρ

σ2∆L+1

(

10∆L (∆L + 1)

∆L − 2

− 7∆L (∆L + 1) (∆L + 2)
(

16λGB +∆L

(

12λGB − 5
√
1− 4λGBr

2
AdS

))

√
1− 4λGBr2AdS (∆L − 4) (∆L − 3) (∆L − 2)

)

.

(6.109)
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Substituting (6.107) in (6.108) and matching to (6.109) enables us to determine

the OPE coefficient P
(2)
10,2,

P
(2)
10,2 =

∆L (∆L (∆L (∆L (187∆L − 552) + 901) + 1012) + 912)

79833600 (∆L − 4) (∆L − 3) (∆L − 2)

− λGB∆L (∆L + 1) (∆L + 2) (∆L + 3)

12474
√
1− 4λGBr2AdS (∆L − 4) (∆L − 3) (∆L − 2)

.

(6.110)

This precisely matches the one calculated in [15].

Similarly, one can match the CFT expression for Im
(

(σe−ρ)5−∆LG(2,3)(1− σeρ)
)

in (6.39), to its gravitational counterpart Im
(

G(2)(x)
)

|e−11ρ , by expanding

(6.101) and (6.103) up to O(e−11ρ). This allows one to additionally determine

P
(2)
12,2 in (6.42)

P
(2)
12,2 = − 5λGB∆L (∆L + 1) (∆L + 2) (∆L + 3) (∆L + 4)

453024
√
1− 4λGBr2AdS (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+

∆L (∆L + 1) (∆L (∆L (∆L (6721∆L − 15603) + 46474) + 100828) + 143760)

44396352000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
.

(6.111)

Notice that we did not use the real part of G̃(2)(σ, ρ), which comes from the

term −1
2δ

(1)2 in (6.99) and behaves as σ−2∆L−2 for σ → 0. This term matches

the corresponding term with the same σ behavior in the correlator. It does not

give us any new information, because it is independent of the OPE coefficients

of operators with spin s = 0, 2.

6.4.2.6. Extracting OPE data from the gravitational phase shift at O(µ3).

Let us now consider the O(µ3) terms in the correlator. Focusing on the gravity

side, we start by performing an inverse Fourier transform. (6.99) instructs us to

consider three terms iδ(3), δ(1)δ(2) and i(δ(1))3, which give rise to terms that be-

have as σ−2∆L−1, σ−2∆L−2 and σ−2∆L−3, respectively. Performing the relevant

computations, we observe that δ(1)δ(2) and i(δ(1))3 do not provide additional

information because the corresponding terms in the correlators are already fixed

by bootstrap (these terms simply give us an extra consistency check). Focus-

ing on the inverse Fourier transform of iδ(3), we expand (6.94) in terms of the

hyperbolic space propagators, Πm,3(L),

δ(3) =
√

−p2
(

a2Π7,3(L) + b2Π9,3(L) + c2Π11,3(L) + . . .
)

, (6.112)
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where

a2 =
1155

8
π2,

b2 = 231π2

(

− 3λGB

r2AdS

√
1− 4λGB

+ 2

)

,

c2 =
231π2

8

(

32λ2
GB

r4AdS(1− 4λGB)
− 120λGB

r2AdS

√
1− 4λGB

+ 35

)

,

(6.113)

which leads to

iIm
(

G̃(3)(σ, ρ)
) ∣

∣

∣

1

σ2∆L+1

=

∫

d4p

(2π)4
eipxB0(p)iδ(3) =

2i

Γ(∆L)Γ(∆L − 1)σ2∆L+1

×
(

a2Π7,3(ρ)Γ(∆L − 3)Γ(∆L + 3) + b2Π9,3(ρ)Γ(∆L − 4)Γ(∆L + 4)

+ c2Π11,3(ρ)Γ(∆L − 5)Γ(∆L + 5) + . . .
)

+ double traces,

(6.114)

The leading and subleading contributions in the large impact parameter limit

ρ → ∞ come from Π7,3(ρ) and Π9,3(ρ) and behave as iπe−7ρ

σ2∆L+1 and iπe−9ρ

σ2∆L+1 ,

respectively. They are precisely matched by the relevant terms in (6.45) in

the vicinity of σ → 0 after analytic continuation [135]. This is another sanity

check of the procedure described herein, since these terms do not incorporate

contributions from spin-2 operators.

To extract further OPE data, we proceed to match the subsubleading cor-

rection of (6.114) in the large impact parameter limit to the term in (6.53) which

behaves as ∼ iπe−11ρ

σ2∆L+1 . This allows us to determine the coefficient e115 = P
(3)
12,2

in (6.53) which corresponds to the OPE coefficient of the triple-stress tensors

of spin s = 2 with conformal dimension ∆ = 12:

e115 =− 117∆6
L − 439∆5

L + 407∆4
L + 859∆3

L + 202∆2
L + 696∆L

172972800(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

− λGB(143∆
6
L − 231∆5

L − 3597∆4
L − 9489∆3

L − 11186∆2
L − 4920∆L)

43243200r2AdS

√
1− 4λGB(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

+
λ2
GB∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

24024r4AdS(1− 4λGB)(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

+ P
(2)
8,0

76 + 400
∆L−5 + 11∆L

1320
.

(6.115)
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Notice that e115 is not completely determined by the above procedure since the

spin-0 OPE data, P
(2)
8,0 , is not fixed. Summarising, we conclude that we are able

to fix all coefficients in the ansatz except those that correspond to the OPE

coefficients of operators of spin-0. However, using the expression for P
(2)
8,0 found

in [15] one finds

P
(3)
12,2 =

1001∆7
L − 6864∆6

L + 12615∆5
L − 3980∆4

L − 6156∆3
L − 11736∆2

L − 1440∆L

3459456000(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

− λGB(143∆
6
L − 206∆5

L − 1631∆4
L − 3622∆3

L − 3540∆2
L − 1200∆L)

28828800r2AdS

√
1− 4λGB(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)

+
λ2
GB∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

24024r4AdS(1− 4λGB)(∆L − 2)(∆L − 3)(∆L − 4)(∆L − 5)
.

(6.116)

6.5. Lorentzian inversion formula

It was recently shown in [128] that one can obtain the OPE coefficients of

minimal twist double and triple-stress tensors using the Lorentzian inversion

formula. Here, we review this method and show how it can be generalized to

extract the OPE coefficients of twist-six double-stress tensors. In principle, it

can also be generalized to multi-stress tensors of arbitrarily high twist.

6.5.1. Twist-four double-stress tensors

Consider the correlation function

(ww̄)−∆L Ĝ(w, w̄) = 〈OH(∞)OH(1)OL(w, w̄)OL(0)〉. (6.117)

The Lorentzian inversion formula is given by [73,78]

c(τ, β) =
1 + (−1) β−τ2

2
κβ

∫ 1

0

dwdw̄µ(0,0)(w, w̄)

× g
(0,0)

−τ+2(d−1),β+τ2 −d+1
(w, w̄)dDisc[Ĝ(w, w̄)],

(6.118)

where

µ(0,0)(w, w̄) =
|w − w̄|d−2

(ww̄)d
, (6.119)
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κβ =
Γ(β2 )

4

2π2Γ(β)Γ(β − 1)
, (6.120)

where τ = ∆ − s and β = ∆ + s. Here g
(0,0)
τ,s is a conformal block given with

∆ → s + d− 1 and s → ∆ − d + 1 and in d = 4 is given by (3.57). Moreover,

dDisc denotes the double-discontinuity of Ĝ(w, w̄) in (6.117), which is equal to

the correlator of a double commutator, and it is given by

dDisc[Ĝ(w, w̄)] = Ĝ(w, w̄)− 1

2
Ĝ	(w, w̄)− 1

2
Ĝ�(w, w̄) . (6.121)

Here Ĝ	 and Ĝ� correspond to the same correlator analytically continued in

two different ways around w = 1, namely (1 − w) → (1 − w)e±2πi. The OPE

data, P τ′+β
2 , β−τ

′

2

, can be extracted from c(τ, β) via24

P τ′+β
2 ,β−τ

′

2

= −Resτ=τ ′c(τ, β), (6.122)

where τ ′ and β denote the twist and conformal spin of operators in the physical

spectrum of the theory exchanged in the channel OL×OL → Oτ ′,J ′ → OH×OH .

We would like to apply the Lorentzian inversion formula to the HHLL

correlator to extract the OPE data of the double-stress tensors. To this end,

we will use information of the correlator from the channel where OHOL merge.

The function Ĝ(z, z̄) can be obtained from G(z, z̄) via

Ĝ(w, w̄) = (ww̄)∆LG(1− w, 1− w̄). (6.123)

To apply the Lorentzian inversion formula we first need to calculate G(z, z̄)
using the S-channel operator product expansion (3.52). First, let us start with

the leading contribution of G(z, z̄) in the lightcone limit z̄ → 1 at O(µ2). These

give the leading contributions when w̄ → 0 in G(w, w̄). After the integration

with respect to w̄ in (6.118), these contributions fix the position of the pole

and residue of c(τ, β) that corresponds to lowest-twist double-stress tensors.

Subleading contributions in z̄ → 1 (or w̄ → 0) only create new poles, without

changing the residue of existing ones, therefore, they do not affect the OPE

24 In principle there is an extra term in this relation when τ − d = 0, 1, 2, . . . [73],

however, it vanishes in the cases considered.
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coefficients of lowest-twist operators. The leading contribution in the (1 − z̄)-

expansion comes from the leading contribution of the 1/l-expansion of the S-

channel OPE data. Only the term proportional to log2(z) contributes to the

double-discontinuity and we denote it by G(2)(z, z̄)
∣

∣

log2(z)
. The number in the

superscript denotes the power of µ in which we are working. Substituting in to

(3.67) equations (3.25), (3.70), (5.10) and (3.69), we find that

G(2)(z, z̄)
∣

∣

log2(z)
= log2(zz̄)

∫ ∞

0

dl
∞
∑

n=0

(zz̄)nl∆L−3
(

zl+1 − z̄l+1
)

Γ (n+∆L − 1)

8(z − z̄)Γ(n+ 1)Γ (∆L − 1) Γ (∆L)

×
(

(

γ(1,0)
n

)2

+O
(

1

l

))

.

(6.124)

In the lightcone limit, the dominant contribution to this expression comes from

operators with large spin l ≫ 1, we can, therefore, approximate the sum over l

by an integral. Note that only O(µ) OPE data, i.e., γ
(1,0)
n , appears in (6.124).

Using (6.28) we evaluate (6.124) and collect the leading term as z̄ → 1,

G(2)(z, z̄)
∣

∣

log2(z)
= log2(z)

(1− z̄)2−∆L(1− z)−∆L−4

32 (∆L − 2)
×

∆L

(

∆L

(

(z(z + 4) + 1)2∆L + z(z(54− (z − 28)z) + 28)− 1
)

+ 72z2
)

+O
(

(1− z̄)3−∆L
)

.

(6.125)

With the help of (6.123) one obtains

Ĝ(2)(w, w̄)
∣

∣

log2(1−w)
=

∆Lw̄
2 log2(1− w)

32w4(∆L − 2)
×

(

∆L

(

((w − 6)w + 6)2∆L − w(w(w(w + 24)− 132) + 216) + 108
)

+ 72(w − 1)2
)

+O(w̄3),

(6.126)

which agrees with (4.12) in [128]. Now, it is easy to see that

dDisc[Ĝ(2)(w, w̄)] = πw̄2∆L

8w4(∆L − 2)
×

(

∆L

(

((w − 6)w + 6)2∆L − w(w(w(w + 24)− 132) + 216) + 108
)

+ 72(w − 1)2
)

+O(w̄3).

(6.127)

To compute the integral (6.118) we substitute

µ(0,0)(w, w̄) =
1

w2w̄4
+O

(

1

w̄3

)

, (6.128)

109



g
(0,0)

−τ+2(d−1), τ+β2 −d+1
(w, w̄) = w̄3− τ

2

(

f β
2
(1− w) +O(w̄)

)

, (6.129)

valid in the lightcone limit w̄ → 0 (or z̄ → 1), and set (−1) β−τ2 = 1 since only

even-spin operators contribute. Combining the above we arrive at the following

expression for c(τ, β)

c0(τ, β) = −
√
π2−β+1∆LΓ

(

β
2

)

(τ − 4)(β − 10)(β − 6)(β − 2)β(β + 4)
×

(

384 (∆L − 7)∆L + 4608

(β + 8) (∆L − 2) Γ
(

1
2(β − 1)

)+

+
(β − 2)β∆L ((β − 2)β (∆L − 1)− 56∆L + 200)

(β + 8) (∆L − 2) Γ
(

1
2 (β − 1)

)

)

,

(6.130)

where the subscript denotes that this result is obtained in the leading order

of the lightcone expansion. The OPE coefficients of the minimal-twist double-

stress tensors are given by

P
(2)
β
2 +2, β2 −2

= −Resτ=4c0(τ, β), (6.131)

where β = 12 + 4ℓ, ℓ ≥ 0, and are in precise agreement with (1.6) in [124] and

(4.15) in [128].

6.5.2. Twist-six double-stress tensors

Here we use the same method to obtain the OPE coefficients of double-stress

tensors with twist τ2,1 = 6. We first need to compute the subleading contribu-

tion in the lightcone limit to eqs. (6.127), (6.128) and (6.129). Specifically, the

integration measure

µ(0,0)(w, w̄) =
1

w2w̄4
− 2

w3w̄3
+O

(

w̄−2
)

, (6.132)

and the conformal block,

g
(0,0)

−τ+2(d−1), τ+β2 −d+1
(w, w̄) =w̄3− τ

2 f β
2
(1− w)

(

1 + w̄

(

1− τ

4
+

1

w

)

+O(w̄2)

)

,

(6.133)

were obtained from the explicit expressions given in (6.119) and (3.57).
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To evaluate the subleading term in dDisc[Ĝ(2)(w, w̄)] we reconsider the S-

channel computation. Similarly to the case of leading twist, only the part of

the correlator with log2(z) contributes to the discontinuity. However, we now

have to include the subleading corrections in the 1/l-expansion of the S-channel

OPE data. With the help of (3.67), (3.25), (5.10), (3.69) and (3.70) one finds

that

G(2)(z, z̄)
∣

∣

log2(z)
=

log2(zz̄)

16(z − z̄)Γ(∆L)Γ(∆L − 1)

∞
∑

n=0

(zz̄)n
Γ(∆L − 1 + n)

Γ(n+ 1)
∫ ∞

0

dll∆L−6
(

zl+1 − z̄l+1
)

(2(l − 2n) + ∆L (∆L + 2n− 1))
(

lγ(1,0)
n + γ(1,1)

n

)2

+O
(

l∆L−7
)

.

(6.134)

To proceed, one evaluates (6.134) using (6.28) and collects the leading and

subleading contributions as z̄ → 1, which behave as (1− z̄)2−∆L and (1− z̄)3−∆L

respectively. Using (6.123) it is then simple to obtain Ĝ(2)(w, w̄)
∣

∣

log2(1−w)
up to

O(w̄4) and evaluate its double-discontinuity:

dDisc[Ĝ(2)(w, w̄)] = − π2w̄2∆L

8w5 (∆L − 3) (∆L − 2)

(

− 3w5∆L − 72w4∆L

+ 324w3∆L − 504w2∆L + 252w∆L + 216w3 − 432w2 + 216w + 4w5∆2
L

− 12w4∆2
L + 12w3∆2

L − 36w∆3
L − w5∆3

L + 12w4∆3
L − 48w3∆3

L + 72w2∆3
L

+ w̄(−144∆L + 612w∆L + 216w3 − 432w2 + 216w − w5∆L − 52w4∆L

+ 324w3∆L − 744w2∆L + 540w∆2
L − 216∆2

L − 72∆3
L + w5∆2

L − 18w4∆2
L

+ 156w3∆2
L − 456w2∆2

L + 144w∆3
L − 2w4∆3

L + 24w3∆3
L − 96w2∆3

L)
)

+O(w̄4) .

(6.135)

Substituting (6.132), (6.133) and (6.135) in (6.118) and integrating leads to an

analytic expression for c(τ, β). The relevant part of this expression – the one
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with non-zero residue at τ = 6 – turns out to be:

c1(τ, β) = −
24−β

√
πΓ
(

β
2

)

∆L

(β − 12)(β − 8)(β − 4)(τ − 10)(τ − 8)(τ − 6)(τ − 4)

×
(

β4∆L − 4β3∆L − 68β2∆L − 960β∆2
L + 144β∆L − 14976∆2

L

(β + 2)(β + 6)(β + 10)Γ
(

β−1
2

)

(∆L − 3) (∆L − 2)

+
β4∆3

L − 2β4∆2
L − 4β3∆3

L + 8β3∆2
L − 116β2∆3

L + 472β2∆2
L

(β + 2)(β + 6)(β + 10)Γ
(

β−1
2

)

(∆L − 3) (∆L − 2)

+
240β∆3

L + 2304∆3
L + 19584∆L + 13824

(β + 2)(β + 6)(β + 10)Γ
(

β−1
2

)

(∆L − 3) (∆L − 2)

)

+ . . . ,

(6.136)

where the ellipsis stands for the terms with zero residue at τ = 6 and 1 in the

subscript denotes that this expression is obtained in the subleading order of the

lightcone expansion.

It is now straightforward to read off the OPE coefficients of double-stress

tensors with twist τ2,1 = 6 from

P
(2)
β
2 +3, β2 −3

= −Resτ=6c1(τ, β). (6.137)

For β = 14 + 4ℓ, eq. (6.32) is reproduced. It is already stated in Section 6.2

that this formula does not reproduce the right OPE coefficient P
(2)
8,2 for ℓ = −1.

Thus, we explicitly see that the Lorentzian inversion formula does not allow us

to obtain the OPE data of spin-2 double-stress tensors with twist τ = 6.

In general, to determine for which operators at O(µk) the Lorentzian inver-

sion formula can be applied, one has to consider the behavior of the correlator

in the Regge limit. At O(µk) the correlator in the Regge limit behaves like

1/σ2∆L+k. Therefore, the Lorentzian inversion formula correctly produces the

OPE coefficients of multi-stress tensor operators with spin s > k + 1. Ac-

cordingly, already at order O(µ3), fixing the OPE coefficients by combining an

ansatz for the correlator with the crossing symmetry (or Lorentzian inversion

formula) appears more powerful than the Lorentzian inversion formula alone.

Namely, we were able to fix the OPE coefficients of spin-4 operators and the

one with twist τ = 8 is given by (D.1), while using the Lorentzian inversion

formula one can only fix the OPE coefficients of operators with spin s > 4.
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6.6. Discussion

In this section, we consider the stress tensor sector of a four-point function of

pairwise identical scalars in a class of CFTs with a large central charge. It is

completely determined by the OPE coefficients of multi-stress tensor operators,

which can be read off the result for a heavy-heavy-light-light correlator. The

stress tensor sector of the HHLL correlator is naturally expanded perturbatively

in µ ∼ ∆H
CT

, where ∆H is the scaling dimension of the heavy operator. The power

of µ counts the number of stress tensors within the exchanged multi-stress tensor

operators. By further expanding the HHLL stress tensor sector in the lightcone

limit, the multi-stress tensor operators can be organized into sectors of different

twists. Similarly to the minimal-twist sector, combining an appropriate ansatz

with the lightcone bootstrap, we show that the contribution from the non-

minimal twist multi-stress tensors is almost completely determined. Unlike the

minimal twist case, a few coefficients are not fixed by the bootstrap – these

correspond to the OPE coefficients of multi-stress tensors with spin s = 0, 2.

An extra check is provided by applying the Lorentzian OPE inversion for-

mula (see [128] for an earlier application of the inversion formula in this context).

It gives the same results but has less predictive power than the ansatz.

The OPE coefficients for double-stress tensors are particularly simple and

we provide closed-form expressions for those with twist τ = 4, 6, 8, 10 and any

spin greater than 2. All of these OPE coefficients are completely fixed by the

bootstrap. This is related to their independence of the higher-derivative terms

in the dual bulk gravitational Lagrangian. The OPE coefficients for double-

stress tensors with spin s = 0, 2 are not fixed by the bootstrap and do depend

on such higher derivative terms. It is interesting that at the level of double-

stress tensors, only the OPE coefficients with spin s = 0, 2 are not fixed by

the bootstrap (non-universal). On the other hand, all non-minimal twist triple-

stress tensor OPE coefficients are non-universal25 .

Assuming a holographic dual, we show that the OPE coefficients for spin-2

multi-stress tensors can be determined by studying the large impact parameter

25 Here we use universality and “fixed by the bootstrap” terms interchangeably.

However, it remains to be determined what is the universality class and whether it

the same as the set of unitary holographic theories.
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regime of the Regge limit, following [55,12,135] (modulo the spin zero OPE

data). This is done explicitly in Einstein Hilbert+Gauss-Bonnet gravity. Some

of these OPE coefficients are known [15] and agree with our results.

It would be interesting if one could compute the spin zero and spin two

multi stress tensor OPE coefficients with CFT techniques. Perhaps the con-

glomeration approach first discussed in [38] or the more recent work [139,140]

will be useful in this direction.

The regime of applicability of the ansatz (and the exact meaning of uni-

versality) used in this section remains unsettled (the ansatz seems to work in

holographic CFTs, but does it also apply for other CFTs with a large central

charge?). This question appears already in the leading twist case studied in [13].

To address this issue, it would be interesting to investigate the OPE coefficients

of multi-stress tensors in CFTs with a large central charge, but not necessar-

ily holographic. A related question is the existence of an infinite-dimensional

algebra responsible for the form of the near-lightcone correlator. In two dimen-

sions the relevant algebra is simply the Virasoro algebra. The Virasoro vacuum

block has been computed in several ways [40,105-108,110,141]. Recently an al-

gebraic way of reproducing the near lightcone contribution of the stress tensor

was discussed in [142] – it would be interesting to investigate this further.

Returning to holographic theories, one interesting question would be to

understand the critical behavior of geodesics in the vicinity of the circular light

orbit, recently studied in [143], from the CFT point of view. This corresponds

to the situation where the deflection angle is very large. The deflection angle ϕ

in asymptotically flat Schwarzschild geometries is supposed to be related to the

eikonal phase δ via

2 sin
ϕ

2
= − 1

E

∂δ

∂b
(6.138)

where E is the incoming particle energy and b is the impact parameter (see e.g.

[144] for a recent discussion). This agrees with eq. (B.5.1) for small deflection

angles, but deviations might occur for large deflection angles. It would be

interesting to investigate this further.
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7. Thermalization in large-N CFTs

7.1. Introduction and summary

Holography [8-10] provides us with a useful tool to study d-dimensional CFTs

at large central charge CT , especially when combined with modern CFT tech-

niques (see e.g. [24-26] for reviews). One of the basic objects in this setup is a

Witten diagram with a single graviton exchange which contributes to four-point

functions. It can be decomposed into the conformal blocks of the stress-tensor

and of the double-trace operators made out of external fields [43].

When a pair of the external operators denoted by OH is taken to be heavy,

with the conformal dimension ∆H ∼ CT , and the other pair denoted by OL

stays light, the resulting heavy-heavy-light-light (HHLL) correlator describes a

light probe interacting with a heavy state. In this case, operators which are

comprised out of many stress tensors (multi stress tensor operators) contribute,

together with the multi-trace operators involving OL. As we review below, the

OPE coefficients of the scalar operators with a (unit-normalized) multi stress

tensor operator T k
τ,s, which contains k stress tensors and has twist τ and spin

s, scale like λO∆O∆Tkτ,s
∼ ∆k/C

k/2
T for large ∆.

The contribution of a given multi stress tensor operator to the HHLL four-

point function 〈OHOLOLOH〉 can be compared to the contribution of the same

operator to the corresponding two-point function at finite temperature26 β−1,

〈OLOL〉β. In this section we argue that they are the same in generic large-CT

CFTs. As we explain later, this means that OPE coefficients of T k
τ,s with the

two heavy operators OH , 〈OHT k
τ,sOH〉, are equal to their finite temperature

expectation values, 〈T k
τ,s〉β . The relation between the inverse temperature β

and the conformal dimension ∆H is set by considering the stress tensor (k =

1, τ = d−2, s = 2), but the equality between the thermal expectation values and

the OPE coefficients for all other multi stress tensor operators is a nontrivial

statement. We call it “the thermalization of the stress tensor sector” 27. It is

26 See [29,35,82,145-156] for some previous work on finite temperature conformal

field theories in d > 2.
27 We show this explicitly for certain primary heavy operators OH in free CFTs.

We also observe that other light operators do not satisfy the thermalization property

that the stress tensor sector enjoys.
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directly related to the Eigenstate Thermalization Hypothesis (ETH) [157-161],

as we review below. Hence, we argue that all multi stress tensor operators in

the large-CT CFTs satisfy the ETH. In d = 2 the ETH and thermalization have

been studied in e.g. [105,108,111-117,162-181].

Here we want to address the d > 2 case. In holographic theories CFT

and bootstrap techniques provide a lot of data which indicates that the ther-

malization of the stress tensor sector happens [12-15,54,55,124-126,128,135,182].

Some of the OPE coefficients in holographic CFTs were computed using two-

point functions in a black hole background [15] – these are thermal correlators

according to the standard holographic dictionary. It is also worth noting that

the leading ∆ behavior of the OPE coefficients in holographic models does not

depend on the coefficients of the higher derivative terms in the bulk lagrangian

[14] (this should not be confused with the universality of the OPE coefficients

of the minimal-twist multi stress tensors [15]). Such a universality follows from

the thermalization of the stress tensor sector as we discuss below.

A natural question is whether the thermalization of the stress tensor sector

is just a property of holographic CFTs or if it holds more generally. In this

section we argue for the latter scenario. We compute the OPE coefficients (and

the thermal expectation values) for a number of multi stress tensor operators in a

free CFT and observe thermalization as well as universality of OPE coefficients.

We also provide a bootstrap argument for all CFTs with a large central charge.

The rest of the section is organized as follows. In Section 7.2, we begin by

considering the thermalization of multi stress tensor operators T k
τ,s. The heavy

state we consider is created by a scalar operator OH with dimension ∆H ∼ CT

and by thermalization of a multi stress tensor operator we mean28

〈OH |T k
τ,s|OH〉

∣

∣

∣ ∆k
H

C
k/2
T

= λOHOHTkτ,s

∣

∣

∣ ∆k
H

C
k/2
T

= 〈T k
τ,s〉β, (7.1)

where the heavy state |OH〉 on the sphere of unit radius is created by the

operator OH , λOHOHTkτ,s
are the OPE coefficients of T k

τ,s in the OH ×OH OPE

and |
∆k
H
/C

k/2
T

means we keep only leading terms that scale like ∆k
H/C

k/2
T ∼ C

k/2
T .

28 Here we are suppressing the tensor structure. Note that all terms scale like C
k/2
T

which is consistent with T kτ,s being unit-normalized.
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In (7.1) 〈T k
τ,s〉β is the one-point function on the sphere at finite temperature β−1.

Note that the OPE coefficients involving the stress tensor are fixed by the Ward

identity, and hence eq. (7.1) for the stress tensor establishes a relation between

the temperature β−1 and ∆H . By the large-CT factorization29, the thermal one-

point functions of multi stress tensors can be related to the thermal one-point

function of the stress tensor itself. Explicitly,

〈T k
τ,s〉β = ckτ,s(〈T 1

d−2,2〉β)k = ckτ,s(λOHOHT 1
d−2,2

)k, (7.2)

where ckτ,s are theory-independent coefficients that appear because of the index

structure in 〈T k
τ,s〉β . In the second equality in (7.2) we used (7.1) for the stress

tensor. Note that (7.1) and (7.2) imply that the leading ∆H behavior of the

multi stress tensor OPE coefficients is universal, i.e. it does not depend on the

theory30. We provide a bootstrap argument for this universality in all large-CT

theories. Also note that (7.2) is written for multi-trace operators T k
τ,s which

do not contain derivatives, but the presence of derivatives does not affect the

statement of universality.

In Section 7.3, we check the universality by computing a number of the

multi stress tensor OPE coefficients in a free SU(N) adjoint scalar theory in

d = 4 dimensions. We compare the leading ∆H behavior in the free theory with

results from holography/bootstrap and find perfect agreement in all cases listed

below. After fixing the coefficients for the stress tensor case in Section 7.3.1, we

look at the first nontrivial case, T 2
4,4 in Section 7.3.2. Section 7.3.3 is devoted to

the double stress tensor with two derivatives, T 2
4,6. This is an operator whose

finite temperature expectation value vanishes in the large volume limit (on the

plane), but is finite on the sphere. In Section 7.3.4 we consider minimal twist

multi stress tensors of the type T k
2k,2k. Section 7.3.5 is devoted to multi stress

tensors with non-minimal twist, T 2
6,2 and T 2

8,0.

29 See [183] for a general discussion of large-N factorization and [184,185] and [35]

for the discussion in the context of gauge theories and CFTs respectively. The fac-

torization holds in adjoint models in the ’t Hooft limit at finite temperature, but

there are counterexamples, like e.g. a direct product of low-CT CFTs. However the

factorization of multi stress tensors would still apply in these models.
30 This amounts to the large-CT factorization of correlators 〈OH |Tµν . . . Tαβ |OH〉

in heavy states.
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In Section 7.4, we verify that (7.1) holds in the free adjoint scalar theory

for a variety of operators. In this section we again consider d = 4, but in

addition, take the infinite volume limit. This is for technical reasons – it is

easier to compute a finite temperature expectation value on the plane than on

the sphere. We spell out the index structure in (7.1) in detail and go over all

the examples discussed in the previous section. In addition, we discuss some

triple stress tensor operators.

We continue in Section 7.5 by studying thermal two-point functions in the

free adjoint scalar model in d = 4. By decomposing the correlator into thermal

blocks we read off the product of thermal one-point functions and the OPE

coefficients for several operators of low dimension and observe agreement with

the results of Sections 7.3 and 7.4. Due to the presence of multiple operators

with the same dimension and spin, we have to solve a mixing problem to find

which operators contribute to the thermal two-point function.

In Section 7.6 we explain the relation between our results and the Eigenstate

Thermalization Hypothesis. We observe that unlike multi stress tensors, other

light operators explicitly violate the Eigenstate Thermalization Hypothesis and

do not thermalize. We end with a discussion in Section 7.7.

Appendices C.1, C.2, and C.3 contain explicit calculations of OPE coeffi-

cients while in Appendices C.4 and C.5 thermal one-point functions are calcu-

lated. In Appendix C.6 we review the statement that the thermal one-point

functions of multi-trace operators with derivatives vanish on S1 × Rd−1. In

Appendix C.7 we study a free scalar in two dimensions and calculate thermal

two-point functions of certain quasi-primary operators. In Appendix C.8 we

consider a free scalar vector model in four dimensions. Appendix C.9 discusses

the factorization of multi-trace operators in the large volume limit.

7.2. Thermalization and universality

In the following we consider large-CT CFTs on a (d − 1)-dimensional sphere

of radius R, which we set to unity for most of this section. As reviewed in

[14], the stress tensor sector of conformal four-point functions consists of the

contributions of the stress tensor and all its composites (multi stress tensors).

The HHLL correlators we consider involve two heavy operators inserted at x0
E =

±∞ and two light operators inserted on the Euclidean cylinder, with angular
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separation ϕ and time separation x0
E . The correlator in a heavy state (the

HHLL correlator on the cylinder) is related to the correlator on the plane by a

conformal transformation

〈OH |O(x0
E , ϕ)O(0)|OH〉 = lim

x4→∞
x2∆H
4 (zz̄)−∆/2〈OH(x4)O(1)O(z, z̄)OH(0)〉,

(7.3)

where the cross-ratios (z, z̄) on the plane are related to the coordinates (x0
E , ϕ)

via

z = e−x0
E−iϕ, z̄ = e−x0

E+iϕ. (7.4)

The stress tensor sector of the HHLL correlator is given by

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)O(1)O(z, z̄)OH(0)〉

∣

∣

∣

multi stress tensors
(7.5)

and can be expanded in conformal blocks

G(z, z̄) = 1

[(1− z)(1− z̄)]∆

∑

Tkτ,s

P
(HH,LL)

Tkτ,s
g(0,0)τ,s (1− z, 1− z̄), (7.6)

where τ, s, k label the twist, spin, and multiplicity of multi stress tensors. We are

interested in the double scaling limit where the central charge and the dimension

of OH are large, CT ,∆H →∞ with their ratio µ ∝ ∆H/CT fixed. In this limit

the products of the OPE coefficients which appear in (7.6) are given by

P
(HH,LL)

Tkτ,s
=

(

−1

2

)s

λOOTkτ,s
λOHOHTkτ,s

∣

∣

∣

∣

∣
(

∆H
CT

)k

, (7.7)

where we only keep the leading,
(

∆H√
CT

)k

term in the OPE coefficients

λOHOHTkτ,s
, but retain all terms in the OPE coefficients of the light operators

λOOTkτ,s
. The contribution of the conformal family of a multi stress operator

T k
τ,s to the HHLL correlator is therefore

〈OH |O(x0
E , ϕ)O(0)|OH〉|Tkτ,s =

P
(HH,LL)

Tkτ,s
g
(0,0)
τ,s (1− z, 1− z̄)

[
√
zz̄(1− z)(1− z̄)]∆

. (7.8)
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We now consider these CFTs at finite temperature β−1. To isolate the

contribution of the conformal family associated with T k
τ,s, we can write the

thermal correlator as

〈O(x0
E , ϕ)O(0)〉β =

1

Z(β)

∑

i

e−β∆i〈Oi|O(x0
E , ϕ)O(0)|Oi〉

=
1

[
√
zz̄(1− z)(1− z̄)]∆

∑

Tkτ,s

(

−1

2

)s

λOOTkτ,s
g(0,0)τ,s (1− z, 1− z̄) 〈T k

τ,s〉β

+ . . . ,

(7.9)

where

〈T k
τ,s〉β =

1

Z(β)

∑

i

e−β∆iλOiOiTkτ,s (7.10)

is the finite temperature one-point function on the sphere of the T k
τ,s operator

and the dots denote contributions from other operators. In (7.10) Z(β) is the

partition function and the sum runs over all operators, including descendants31.

Note that

〈T k
τ,s〉β = β−(τ+s)fk

τ,s(β). (7.11)

Here and below the indices are suppressed (see e.g. [151] for the explicit form)

and fk
τ,s(β) ∼ C

k/2
T is a theory-dependent nontrivial function of β which ap-

proaches a constant fk
τ,s(0) in the large volume (β → 0) limit.

Consider the thermalization of the stress tensor sector:

〈OH |T k
τ,s|OH〉

∣

∣

∣ ∆k
H

C
k/2
T

= λOHOHTkτ,s

∣

∣

∣ ∆k
H

C
k/2
T

= 〈T k
τ,s〉β. (7.12)

Note that T k
τ,s is unit-normalized, so all terms in (7.12) scale like C

k/2
T . Eq.

(7.12) implies the equality between (7.8) and the corresponding term in (7.9).

Note that the left-hand side of (7.12) is a function of the energy density while

the right-hand side is a function of temperature. The relationship is fixed by

considering the stress tensor case: the corresponding function f1
d−2,2(β) is de-

termined by the free energy on the sphere (see Section 7.6).

31 The corresponding conformal blocks can be obtained in the usual way by applying

the quadratic conformal Casimir and solving the resulting differential equation [31].
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In the following, we will first discuss the case where the multi stress opera-

tors T k
τ,s do not have any derivatives inserted, and then show that the derivatives

do not change the conclusions. Assuming large-CT factorization, the leading

CT behavior of 〈T k
τ,s〉β on the sphere is determined by that of the stress tensor.

Schematically,

〈T k
τ,s〉β = ckτ,s (〈T 1

d−2,2〉β)k + . . . , (7.13)

where ckτ,s are numerical coefficients, which depend on k, τ, s, but are indepen-

dent of the details of the theory and the dots stand for terms subleading in C−1
T .

By combining (7.13) and (7.12), one can formulate a universality condition

λOHOHTkτ,s

∣

∣

∣ ∆k
H

C
k/2

T

= ckτ,s (λOHOHT 1
d−2,2

)k = ckτ,s

(

d

1− d

)k
∆k

H

C
k
2

T

, (7.14)

where the last equality follows from the stress tensor Ward identity for the

three-point function which fixes λOHOHT 1
d−2,2

(T 1
d−2,2 here is unit-normalized).

In other words, thermalization and large-CT factorization imply that the leading

∆k/C
k/2
T behavior of the multi stress tensor OPE coefficients is completely fixed

and given by (7.14) in all large-CT CFTs.

In the paragraph above we considered multi stress tensor operators that

did not contain any derivatives in them. However, the story largely remains

the same when the derivatives are included, as long as their number does not

scale with CT . Indeed, the three-point function involving the stress-tensor with

added derivatives, ∂α . . . ∂βTµν still behaves like λOHOH∂α...∂βTµν ≃ ∆H/
√
CT

up to a theory-independent coefficient. Hence, (7.14) still holds, provided ther-

malization and large-CT factorization hold on the sphere.

Note that due to conformal invariance, correlators on the sphere depend

on R only through the ratio β/R. Moreover, in the large volume limit, factors

of R need to drop out of (7.8) and (7.9) to have a well defined limit. To see

this we use that (1− z)→ 0 and (1− z̄)→ 0 when R→∞ and the conformal

blocks behave as (see e.g. [24])

g(0,0)τ,s (1− z, 1− z̄) ∼ Nd,s[(1− z)(1− z̄)]
τ+s
2 C(d/2−1)

s

( (1− z) + (1− z̄)

2
√

(1− z)(1− z̄)

)

∼ Nd,s
|x|τ+s

Rτ+s
C(d/2−1)

s

(x0
E

|x|
)

,

(7.15)
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where |x| =
√

(x0
E)

2 + x2, C
(d/2−1)
s (

x0
E

|x| ) is a Gegenbauer polynomial andNd,s =
s!

(d/2−1)s
. Including the factor [(1− z)(1− z̄)]−∆ from (7.8) in (7.15) this agrees

with the thermal block on S1 ×Rd−1 in [82]. Now from the thermalization of

the stress tensor we will find in the large volume limit that

∆H

CT
∝
(R

β

)d

, (7.16)

and from (7.14) and (7.15) it follows that

g(0,0)τ,s (1− z, 1− z̄)λOOTkτ,s
λOHOHTkτ,s

∣

∣

∣∆k
H

Ck
T

∝ Rdk−(τ+s)β−dk. (7.17)

The dimension of multi stress tensors T k
τ,s is given by τ + s = dk + n where

n = 0, 2, . . .. Therefore, the only multi stress tensors that contribute in the large

volume limit have dimensions dk. Restoring R in (7.8)-(7.9) and inserting (7.17)

one finds that R drops out in the large volume limit. The correct dependence

β−(τ+s) from (7.11) in the R→∞ limit is also recovered in (7.8) using (7.17).

The multi stress tensor operators that contribute in the large volume limit

are therefore of the schematic form Tµ1ν1
Tµ2ν2

· · ·Tµkνk with arbitrarily many

contractions and no derivatives.

In holographic theories thermalization and the Wilson line prescription for

the correlator allows one to compute the universal part of the OPE coefficients

(see [124,186] for explicit computations in the d = 4 case). It is also easy

to check explicitly that the universality (7.14) holds for holographic theories

with a Gauss-Bonnet gravitational coupling added. While the statement was

shown to be true for the leading twist OPE coefficients in [15], it was not

immediately obvious for multi stress tensors of non-minimal twist. Some such

OPE coefficients were computed in [15,14]. (See e.g. eqs. (5.48), (5.51), (5.52),

(5.57) and (D.1)-(D.5) in [14]). Indeed, the leading ∆k/C
k/2
T behavior of these

OPE coefficients is independent of the Gauss-Bonnet coupling.

What about a general large-CT theory? We first consider the OPE co-

efficients of double-stress tensors. To this end, consider the four point func-

tion32 〈OTµνTρσO〉 where O is a scalar operator with scaling dimension ∆.

32 This correlator for finite ∆ was recently considered in holographic CFTs with

∆gap ≫ 1 and ∆ ≪ ∆gap in [54].
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In the direct channel O × O → O′ → Tµν × Tρσ for finite ∆ and large

CT , the leading contribution in the large-CT limit comes from the identity

operator O × O → 1 → Tµν × Tρσ . The subleading contributions in the

direct-channel are due to single trace operators as well as double trace op-

erators made out of the external operators of the schematic form T 2
τ,s and

[OO]n,l =: O∂2n∂1 . . . ∂lO :. The exchange of the identity operator is repro-

duced in the cross-channel O × Tµν → [OTαβ ]n,l → O × Tρσ by mixed double-

trace operators [OTαβ]n,l with OPE coefficients fixed by the MFT [38,56-57].

The subleading contributions in 1/CT are then due to corrections to the anoma-

lous dimension and OPE coefficients of [OTαβ]n,l and single trace operators in

the O × Tµν OPE. An important example of the latter is the exchange of the

single trace operator O, whose contribution is universally fixed by the stress

tensor Ward identity to be (λOT 1
d−2,2

O)
2 ∝ ∆2/CT times the conformal block.

This gives a universal contribution to λOOT 2
τ,s

as was also noted in [54].

We now want to consider the case where ∆ ∼ CT and study the OPE

coefficients of the double-stress tensor operators in the O × O OPE. Firstly,

note that the contribution from T 2
τ,s to the four-point function expanded in the

direct channel is proportional to λOOT 2
τ,s

λTTT 2
τ,s

. The OPE coefficients λTTT 2
τ,s

are fixed by the MFT and are independent of ∆ and therefore the dependence

on the scaling dimension comes solely from the OPE coefficients λOOT 2
τ,s

. In

the cross-channel, we analyze two kinds of contributions: from the exchanged

operator O and from all other operators O′ 6= O. From the operator O we get a

universal contribution to the OPE coefficients in the direct channel λOOT 2
τ,s

, that

we denote by λ
(1)
OOT 2

τ,s
. This contribution is universal since it only depends on

(λOT 1
d−2,2

O)
2 ∝ ∆2/CT in the cross-channel, which is fixed by the Ward identity.

The contributions from other operators O′ to the same OPE coefficient will be

denoted by λ
(2)
OOT 2

τ,s
, such that λOOT 2

τ,s
= λ

(1)
OOT 2

τ,s
+ λ

(2)
OOT 2

τ,s
. Note that it also

follows from the stress tensor Ward identity that the only scalar primary that

appears in the cross-channel is O. The operator O′ therefore necessarily has

spin s 6= 0.

To prove universality we need to show that λ
(2)
OOT 2

τ,s
≪ ∆2/CT in limit

1≪ ∆ ∝ CT by studying the ∆ dependence of the OPE coefficients λOT 1
d−2,2

O′

in the cross-channel. For operators O′, such that ∆O′ ≪ ∆, we expect that
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these OPE coefficients are heavily suppressed. It would be interesting to under-

stand if one could put a general bound on the contribution of these operators in

the cross-channel in any large-CT theory. On the other hand, assuming thermal-

ization, the OPE coefficients due to operators O′ such that ∆O′ ∼ ∆ have been

calculated in [154]. The obtained results are in agreement with our expectation,

namely, these OPE coefficients are suppressed in 1≪ ∆ ∝ CT limit. Addition-

ally, in the cross-channel we have double-trace operators [OTαβ]n,l, whose OPE

is fixed by the MFT and it does not get ∆-enhanced.

One can iteratively extend the argument given here to multi stress ten-

sors operators (with k > 2) by considering multi stress tensors as external

operators. For example, to argue the universality of λOOT 3
τ,s

one may consider

〈OT 1
d−2,2T

2
τ,sO〉. The bootstrap argument above can be applied again by using

the fact that OPE coefficients λOOT 2
τ,s

are universal, and the OPE coefficients

λOT 2
τ,sO′ are again expected to be subleading.

7.3. OPE coefficients in the free adjoint scalar model

In this section we consider a four-dimensional theory of a free scalar in the

adjoint representation of SU(N), see [187-192] for related work. The relation

between N and the central charge CT in this theory is [18]

CT =
4

3
(N2 − 1), (7.18)

and we consider the large-N (large-CT ) limit. The propagator for the scalar

field φi
j is given by

〈φi
j(x)φ

k
l(y)〉 =

(

δilδ
k
j −

1

N
δijδ

k
l

)

1

|x− y|2 . (7.19)

A single trace scalar operator with dimension ∆ is given by

O∆(x) =
1√

∆N
∆
2

: Tr(φ∆) : (x), (7.20)

where : . . . : denotes the oscillator normal ordering and the normalization is

fixed by

〈O∆(x)O∆(y)〉 =
1

|x− y|2∆ . (7.21)

The CFT data that we compute in this section are the OPE coefficients of

multi stress tensors in theO∆×O∆ OPE. Assuming we can take ∆→ ∆H ∼ CT ,

the large-∆ limit of these OPE coefficients is shown to be universal. One may

worry that for ∆H ∼ CT we can no longer trust the planar expansion, but,

as we show in Appendix C.3, the large-∆ limit of the planar result yields the

correct expression even for ∆H ∼ CT .
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7.3.1. Stress tensor

The stress tensor operator is given by

Tµν(x) =
1

3
√
CT

: Tr

(

∂µφ∂νφ−
1

2
φ∂µ∂νφ− (trace)

)

: (x), (7.22)

with the normalization

〈Tµν(x)Tρσ(0)〉 =
1

|x|8
(

I(µρ(x)I
ν)

σ(x)− (traces)
)

, (7.23)

where Iµν(x) := δµν − 2xµxν
|x|2 . The OPE coefficient is fixed by the stress tensor

Ward identity to be

λO∆O∆T 1
2,2

= − 4∆

3
√
CT

. (7.24)

It is also useful to find (7.24) using Wick contractions since an analogous cal-

culation will be necessary for multi stress tensors. We do this explicitly in

Appendix C.1.

7.3.2. Double-stress tensor with minimal twist

In this section we study the minimal-twist composite operator made out of two

stress tensors

(T 2)µνρσ(x) =
1√
2
: T(µνTρσ) : (x)− (traces), (7.25)

with the normalization

〈(T 2)µνρσ(x)(T 2)κλδω(0)〉 =
1

|x|16
(

I(µκI
ν
λI

ρ
δI

σ)
ω − (traces)

)

. (7.26)

Consider the following three-point function

〈O∆(x1)O∆(x2)(T
2)µνρσ(x3)〉 =

λO∆O∆T 2
4,4

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) ,

(7.27)

where Zµ =
xµ13

|x13|2 −
xµ12

|x12|2 . It is shown in Appendix C.1 that the OPE coefficient

λO∆O∆T 2
4,4

is given at leading order in the large-CT limit by

λO∆O∆T 2
4,4

=
8
√
2∆(∆− 1)

9CT
. (7.28)
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Evaluating P
(HH,LL)

T 2
4,4

defined by (7.7) in the large-∆ limit33, we obtain

P
(HH,LL)

T 2
4,4

=

(

−1

2

)4

λOHOHT 2
4,4

λO∆O∆T 2
4,4

∣

∣

∣

∣

∣
(

∆H
CT

)2

=
8

81

∆2
H

C2
T

(

∆2 +O (∆)
)

= µ2

(

∆2

28800
+O(∆)

)

,

(7.29)

where we use the following relation

µ =
160

3

∆H

CT
. (7.30)

The result (7.29) agrees with the leading behavior of the corresponding OPE

coefficients computed using holography in [15] and bootstrap in [124,13].

7.3.3. Double-stress tensor with minimal twist and spin s = 6

We consider double-stess tensor operator with two (uncontracted) derivatives

inserted

(T 2)µνρσηκ(x) =
1

2
√
182

:
(

T(µν∂ρ∂σTηκ)(x)−
7

6

(

∂(ρTµν

) (

∂σTηκ)

)

(x)

− (traces)
)

: .

(7.31)

Using the conformal algebra eq. (C.2), it is straightforward to check that this

operator is primary. It is unit-normalized such that

〈(T 2)µνρσηκ(x)(T 2)αβγδξǫ(0)〉 =
1

|x|20
(

I(µαI
ν
βI

ρ
γI

σ
δI

η
ξI

κ)
ǫ − (traces)

)

.

(7.32)

By a calculation similar to those summarized in Appendix C.1, we observe that

the OPE coefficient of (T 2)µνρσηκ in the O∆×O∆ OPE is given at leading order

in the large-CT limit by

λO∆O∆T 2
4,6

=
8

3

√

2

91

∆(∆− 1)

CT
. (7.33)

33 By the large-∆ limit, we strictly speaking mean 1 ≪ ∆ ≪ CT . However in this

section we often extrapolate this to the ∆ ∼ CT regime.
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Evaluating P
(HH,LL)

T 2
4,6

, defined by (7.7), in the large-∆ limit, we obtain

P
(HH,LL)

T 2
4,6

=

(

−1

2

)6

λOHOHT 2
4,6

λO∆O∆T 2
4,6

∣

∣

∣

∣

∣
(

∆H
CT

)2

=
2

819

∆2
H

C2
T

(

∆2 +O (∆)
)

= µ2

(

∆2

1164800
+O(∆)

)

.

(7.34)

The result (7.34) agrees with the leading behavior of the corresponding OPE

coefficients computed using holography in [15] and bootstrap in [124,13].

7.3.4. Minimal-twist multi stress tensors

We now consider multi stress tensors T k
2k,2k. Just like the double stress tensor

(k = 2), we show that these have universal OPE coefficients in the large-∆ limit

for any k.

Consider the unit-normalized minimal-twist multi stress tensor operator

given by

(T k)µ1µ2...µ2k
(x) =

1√
k!

: T(µ1µ2
Tµ3µ4

· · ·Tµ2k−1µ2k) : (x)− (traces). (7.35)

The OPE coefficient of (T k)µ1µ2...µ2k
in the O∆ × O∆ OPE, in the large-CT

limit is given by34

λO∆O∆Tk
2k,2k

=

(

−4

3

)k
1√

k!C
k/2
T

Γ(∆ + 1)

Γ(∆− k + 1)
. (7.36)

First, we write P
(HH,LL)

T 3
6,6

, defined by (7.7), in the large-∆ limit. We obtain this

OPE coefficient from (7.36) for k = 3,

P
(HH,LL)

T 3
6,6

=

(

−1

2

)6

λOHOHT 3
6,6

λO∆O∆T 3
6,6

∣

∣

∣

∣

∣
(

∆H
CT

)3

=
32

2187

∆3
H

C3
T

(

∆3 +O
(

∆2
))

= µ3

(

∆3

10368000
+O(∆2)

)

.

(7.37)

The result (7.37) agrees with the leading behavior of the corresponding OPE

coefficients computed using holography in [15] and bootstrap in [13].

34 See Appendix C.1 for detailed computations of similar OPE coefficients.
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Additionally, we consider the OPE coefficient P
(HH,LL)

Tk
2k,2k

in the large-∆ limit

for general k,

P
(HH,LL)

Tk
2k,2k

=

(

−1

2

)2k

λOHOHTk
2k,2k

λO∆O∆Tk
2k,2k

∣

∣

∣

∣

∣
(

∆H
CT

)k

=
1

k!

(

2

3

)2k
∆k

H

Ck
T

(

∆k +O
(

∆k−1
))

= µk

(

∆k

120kk!
+O(∆k−1)

)

.

(7.38)

If we consider the limit 1 − z̄ ≪ 1 − z ≪ 1, such that µ(1− z̄)(1 − z)3 is held

fixed, only operators T k
2k,2k contribute to the heavy-heavy-light-light four-point

function given by eq. (7.5). The conformal blocks of T k
2k,2k in this limit are

given by

g
(0,0)
2k,2k(1− z, 1− z̄) ≈ (1− z̄)k(1− z)3k, (7.39)

and we can sum all contributions in eq. (7.6) explicitly to obtain

G(z, z̄) ≈ 1

((1− z)(1− z̄))
∆
e
µ∆
120 (1−z̄)(1−z)3 . (7.40)

Notice that the term in the exponential is precisely the stress-tensor conformal

block in the limit 1 − z̄ ≪ 1 − z ≪ 1 times its OPE coefficient. Therefore,

the OPE coefficients (7.36) imply the exponentiation of stress-tensor confor-

mal block. We conclude that these OPE coefficients are the same as the ones

computed using holography and bootstrap in the limit of large ∆.

7.3.5. Double-stress tensors with non-minimal twist

So far we have shown that the minimal-twist multi stress tensor OPE coefficients

are universal in the limit of large ∆. In this subsection, we extend this to show

that the simplest non-minimal twist double-stress tensors also have universal

OPE coefficients at large ∆.

The subleading twist double-stress tensor with twist τ = 6 is of the

schematic form : Tµ
αT

αν : and has dimension ∆ = 8 and spin s = 2. It is

given by

(T 2)µν(x) =
1√
2
: TµαT

α
ν : (x)− (trace). (7.41)

The normalization in (7.41) is again chosen such that (T 2)µν is unit-normalized,

see Appendix C.2 for details.
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The OPE coefficient of (T 2)µν in the O∆ × O∆ OPE is found from the

three-point function in the large-CT limit, for details see Appendix C.2,

〈O∆(x1)O∆(x2)(T
2)µν(x3)〉 =

4
√
2∆(∆− 1)

9CT

ZµZν − (trace)

|x12|2∆−6|x13|6|x23|6
, (7.42)

from which we read off the OPE coefficient

λO∆O∆T 2
6,2

=
4
√
2∆(∆− 1)

9CT
. (7.43)

Evaluating P
(HH,LL)

T 2
6,2

, defined by (7.7), in the large-∆ limit, we obtain

P
(HH,LL)

T 2
6,2

=

(

−1

2

)2

λOHOHT 2
6,2

λO∆O∆T 2
6,2

∣

∣

∣

∣

∣
(

∆H
CT

)2

=
8

81

∆H
2

C2
T

(

∆2 +O (∆)
)

= µ2

(

∆2

28800
+O(∆)

)

.

(7.44)

The result (7.44) agrees with the leading behavior of the corresponding OPE

coefficients computed using holography in [15] and bootstrap in [14].

We further consider the scalar double-stress tensor with ∆ = 8 and spin

s = 0 which is given by

(T 2)(x) =
1

3
√
2
: TµνT

µν : (x). (7.45)

The three point function 〈O∆(x1)O∆(x2)(T
2)(x3)〉 is found in Appendix C.2 to

be

〈O∆(x1)O∆(x2)(T
2)(x3)〉 =

2
√
2∆(∆− 1)

9CT

1

|x12|2∆−8|x13|8|x23|8
, (7.46)

from which we read off the OPE coefficient

λO∆O∆T 2
8,0

=
2
√
2∆(∆− 1)

9CT
. (7.47)

We write P
(HH,LL)

T 2
8,0

in the large-∆ limit

P
(HH,LL)

T 2
8,0

= λOHOHT 2
8,0

λO∆O∆T 2
8,0

∣

∣

∣

∣

∣
(

∆H
CT

)2

=
8

81

∆H
2

C2
T

(

∆2 +O(∆)
)

= µ2

(

∆2

28800
+O(∆)

)

.

(7.48)

The result (7.48) agrees with the leading behavior of the corresponding OPE

coefficients computed using holography in [15] and bootstrap in [14].
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7.4. Thermal one-point functions in the free adjoint scalar model

In this section we explicitly show that multi stress tensor operators thermalize in

the free theory by calculating the thermal one-point function of some of these

operators on S1 × R3. One-point functions of primary symmetric traceless

operators at finite temperature are fixed by symmetry up to a dimensionless

coefficient bO (see e.g. [35,82])

〈Oµ1···µsO 〉β =
bO
β∆O

(

eµ1
· · · eµsO − (traces)

)

. (7.49)

Here eµ is a unit vector along the thermal circle.

To compare the thermal one-point functions and OPE coefficients from the

previous section, we need to derive a relation between ∆H
CT

and the temperature35

β−1. Here ∆H ∼ N2 refers to the scaling dimension of a heavy operator OH

with OPE coefficients given by the large-∆ limit of those obtained in Section

7.3. One can relate the inverse temperature β to the parameter µ = 160
3

∆H
CT

using the Stefan-Boltzmann’s law E/vol(S3) = N2π2/30β4. The energy of the

state E is related to its conformal dimension ∆ via E = ∆/R. One can then

use vol(S3) = 2π2R3 and the relation between N and CT given by (7.18), to

find

µ =
160

3

∆H

CT
=

160

3
E

R

CT
=

8

3

(πR

β

)4

. (7.50)

7.4.1. Stress tensor

The thermal one-point function for the stress tensor T 1
2,2 = Tµν is calculated in

Appendix C.4 where we find that bT 1
2,2

is given by

bT 1
2,2

= −2π4N

15
√
3
. (7.51)

Using (7.50) and (7.51) one arrives at

bT 1
2,2

β−4 = λOHOHT 1
2,2

. (7.52)

7.4.2. Double-stress tensor with minimal twist

In this section we calculate the thermal one-point function of the double-stress

tensor operator with τ = 4 and spin s = 4. The operator is written explicitly in

35 See also Section 7.6 and Appendix C.4 for alternative derivations.
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(7.25). The leading contribution to the thermal one-point function of (T 2)µνρσ

follows from the large-N factorization and is given by

〈(T 2)µνρσ〉β =
1√
2
〈T(µν〉β〈Tρσ)〉β − (traces)

=
2
√
2π8N2

675β8
(eµeνeρeσ − (traces)) .

(7.53)

Using the relation (7.50) and the OPE coefficient (7.28), we observe the ther-

malization of this operator,

bT 2
4,4

β−8 = λOHOHT 2
4,4

∣

∣

∣∆2
H

CT

. (7.54)

7.4.3. Minimal-twist multi stress tensors

Consider now multi stress tensors T k
2k,2k with twist τ = 2k and spin s = 2k.

We show that these operators thermalize for any k by calculating their thermal

one-point functions:

〈(T k)µ1µ2...µ2k
〉β =

bTk
2k,2k

β4k
(eµ1

eµ2
· · · eµ2k

− (traces)), (7.55)

where the leading behavior of bTk
2k,2k

follows from the large-N factorization:

bTk
2k,2k

=
1√
k!
(bT 1

2,2
)k =

(−2
5
)kNkπ4k

3
3k
2

√
k!

. (7.56)

Eqs. (7.50) and (7.56) may be combined to yield

bTk
2k,2k

β−4k = λOHOHTk
2k,2k

∣

∣

∣ ∆k
H

C
k/2

T

. (7.57)

7.4.4. Double-stress tensors with non-minimal twist

The subleading twist double-stress tensor is of the schematic form : Tµ
αT

αν :

and has twist τ = 6 and spin s = 2. The explicit form can be found in (7.41).

The leading term in the thermal one-point function is given by

〈(T 2)µν〉β =
1√
2
〈Tµα〉β〈T ν

α〉β − (trace)

=
b2
T 1
2,2

2
√
2β8

(eµeν − 1

4
δµν)

=

√
2N2π8

675β8
(eµeν − 1

4
δµν),

(7.58)
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therefore,

bT 2
6,2

=

√
2N2π8

675
. (7.59)

Taking the large-∆ limit of the OPE coefficient in (7.43) and substituting (7.50),

we observe thermalization,

bT 2
6,2

β−8 = λOHOHT 2
6,2

∣

∣

∣∆2
H

CT

. (7.60)

We further consider the scalar double-stress tensor with τ = 8 and s = 0

which is given by (7.45). The thermal one-point function for this operator is

〈(T 2)〉β =
1

3
√
2
〈Tµν〉β〈Tµν〉β

=
1

3
√
2

3

4
b2T 1

2,2
β−8 =

π8N2

675
√
2β8

,

(7.61)

where the factor of 3
4 in the first line comes from the index contractions. Hence,

bT 2
8,0

=
π8N2

675
√
2
. (7.62)

Using (7.62), (7.47) and (7.50), we again observe thermalization,

bT 2
8,0

β−8 = λOHOHT 2
8,0

∣

∣

∣∆2
H

CT

. (7.63)

7.4.5. Triple-stress tensors with non-minimal twist

We consider the triple stress tensors with τ = 8, s = 4 and τ = 10, s = 2. The

unit-normalized triple stress tensor with τ = 8 can be written as

(T 3)µνρσ(x) =
1√
3

(

: T(µνTρ|α|T
α
σ) : (x)− (traces)

)

, (7.64)

where |α| denotes that index α is excluded from the symmetrization. The

thermal one-point function follows from large-N factorization

〈(T 3)µνρσ〉β =
1√
3

(

〈T(µν〉β〈Tρ|α|〉β〈Tα
σ)〉β − (traces)

)

=
1

2
√
3

b3
T 1
2,2

β12
(eµeνeρeσ − (traces))

= − 4π12N3

30375β12
(eµeνeρeσ − (traces)) ,

(7.65)
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therefore,

bT 3
8,4

= −4π12N3

30375
. (7.66)

The OPE coefficient of the operator with same quantum numbers (∆ = 12,

s = 4) is calculated holographically and is given by (D.1) in [14]. In the large-∆

limit it can be written as

P
(HH,LL)

T 3
8,4

=

(

−1

2

)4

λO∆O∆T 3
8,4

λOHOHT 3
8,4

∣

∣

∣

∣

∣
(

∆H
CT

)3

=
64

2187

∆3
H∆3

C3
T

+O(∆2).

(7.67)

Now, one can easily read-off λO∆O∆T 3
8,4

in the large-∆ limit

λO∆O∆T 3
8,4

= − 32∆3

27
√
3CT

3/2
+O(∆2) = − 4∆3

9N3
+O(∆2), (7.68)

where we use the relation between central charge CT and N given by (7.18).

Using (7.50) one can obtain

bT 3
8,4

β−12 = λOHOHT 3
8,4

∣

∣

∣ ∆3
H

C
3/2

T

. (7.69)

We also consider the triple stress tensors with quantum numbers ∆ = 12

and s = 2. There are two linearly independent such operators that schematically

can be written as : TαβT
αβTµν : and : TµαT

αβTβν :. We write the following

linear combinations of these operators

(T 3)µν(x) =
1

10
√
2

(

: TαβT
αβTµν : (x) + 4 : TµαT

αβTβν : (x)− (trace)
)

,

(7.70)

(T̃ 3)µν(x) =
7

20

(

: TαβT
αβTµν : (x)− 12

7
: TµαT

αβTβν : (x)− (trace)

)

.

(7.71)

Both (T 3)µν and (T̃ 3)µν are unit-normalized and their overlap vanishes in the

large-N limit

〈(T 3)µν(x)(T̃
3)ρσ(y)〉 = O(1/N2). (7.72)

The thermal one-point functions of these operators, obtained by large-N fac-

torization, in the large-N limit are given by

〈(T 3)µν〉β = −
√

2

3

N3π12

10125β12
(eµeν − (trace)) ,

〈(T̃ 3)µν〉β = O(N),

(7.73)
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therefore,

bT 3
10,2

= −
√

2

3

N3π12

10125
,

bT̃ 3
10,2

= 0.

(7.74)

The holographic OPE coefficient of the operator with the same quantum

numbers (∆ = 12, s = 2), with external scalar operators is given by (5.57) in

[14]. In the large-∆ limit it can be written as

P
(HH,LL)

T 3
10,2

=

(

−1

2

)2

λO∆O∆T 3
10,2

λOHOHT 3
10,2

∣

∣

∣

∣

∣
(

∆H
CT

)3

=
32

729

∆3
H∆3

C3
T

+O(∆2).

(7.75)

We can read-off λO∆O∆T 3
10,2

:

λO∆O∆T 3
10,2

= −8
√
2

27

∆3

C
3/2
T

+O(∆2) = −
√
2

3
√
3

∆3

N3
+O(∆2). (7.76)

Again, using (7.50), one can confirm that this operator thermalizes

bT 3
10,2

β−12 = λOHOHT 3
10,2

∣

∣

∣ ∆3
H

C
3/2

T

. (7.77)

7.5. Thermal two-point function and block decomposition

In this section we study the thermal two-point function 〈O∆O∆〉β and decom-

pose it in thermal blocks. We determine the contributions of a few low-lying

operators, including the stress tensor T 1
2,2 and the double stress tensor T 2

4,4.

They exactly match the corresponding OPE coefficients and thermal expecta-

tion values computed in previous sections. Due to the presence of multiple

operators with equal scaling dimension and spin, there is a mixing problem

which we solve explicitly in a few cases. Related appendices include Appendix

C.6, where we review the statement that the thermal one-point functions of

multi-trace operators with derivatives vanish on S1 ×Rd−1 and Appendix C.7,

where we consider two-dimensional thermal two-point functions. In Appendix

C.8 we do a similar analysis for the vector model in four dimensions.
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7.5.1. Thermal two-point function of a single trace scalar operator

The correlator at finite temperature β−1 in the free theory can be calculated by

Wick contractions using the propagators on S1 ×R3. Explicitly, the two-point

function at finite temperature is given by36

〈O∆(x)O∆(0)〉β = g̃(x0
E , |x|)∆ +

π4∆(∆− 2)

9β4
g̃(x0

E , |x|)∆−2 + . . . , (7.78)

where

g̃(x0
E , |x|) =

∞
∑

m=−∞

1

(x0
E +mβ)2 + x2

=
π

2β|x|
[

Coth
(π

β
(|x| − ix0

E)
)

+Coth
(π

β
(|x|+ ix0

E)
)]

.

(7.79)

The dots in (7.78) contain contributions due to further self-contractions which

will not be important below37. Taking the β → ∞ limit of (7.78) we can read

off the decomposition of the two-point function in terms of thermal conformal

blocks on S1 ×R3 with coordinates x = (x0
E ,x).

Following [82], if |x| =
√

(x0
E)

2 + x2 ≤ β the two-point function can be

evaluated using the OPE:

〈O∆(x)O∆(0)〉β =
∑

O
λO∆O∆O|x|τ−2∆xµ1

· · ·xµsO
〈Oµ1···µsO 〉β , (7.80)

where λO∆O∆O is the OPE coefficient, τ and sO is the twist and spin of O,
respectively. Using (7.49) together with (7.80), the two-point function on S1 ×
R3 can be organized in the following way [82]:

〈O∆(x)O∆(0)〉β =
∑

Oτ,s∈O∆×O∆

aOτ,s
β∆O

1

|x|2∆−τ+s
C(1)

s

(

x0
E

|x|

)

, (7.81)

36 Here and below we assume that ∆ > 4. We further drop the disconnected term

〈O∆〉2β ∼ N2.
37 These terms will be proportional to β−2ag̃(x0E , |x|)∆−a, with a ≥ 4. When decom-

posed into thermal blocks, these will not affect the operators with dimension ∆ < 8

or ∆ = 8 with non-zero spin s 6= 0.
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where we sum over primary operators Oτ,s, with twist τ and spin s, appearing

in the OPE O∆×O∆ ∼ Oτ,s+ . . .. In (7.81) C
(1)
s (x0

E/|x|) is a Gegenbauer poly-

nomial which, together with a factor of |x|−2∆+τ−s, forms a thermal conformal

block in d = 4 dimensions and the coefficients aOτ,s are given by

aOτ,s =

(

1

2

)s

λO∆O∆Oτ,sbOτ,s . (7.82)

Expanding (7.78) for β →∞ one finds:

〈O∆(x)O∆(0)〉β =
1

|x|2∆
[

1 +
π2∆

3β2
|x|2

+
π4∆

90β4
|x|2(3x2(5∆− 9) + (15∆− 19)(x0

E)
2) +O(β−6)

]

.

(7.83)

From the expansion (7.83), we can read off the coefficients aτ ′,s′ :=
∑

Oτ′,s′ aOτ′,s′

where we sum over all operators with twist τ ′ and spin s′:

a2,0 =
π2∆

3
,

a4,0 =
π4∆(3∆− 5)

18
,

a2,2 =
π4∆

45
.

(7.84)

For future reference, expanding (7.78) to O( 1
β8 ) one finds

a2,4 =
2π6∆

945
,

a4,4 =
π8∆(∆− 1)

1050
.

(7.85)

Note that due to the mixing of operators with the same twist and spin, aτ,s

generically contains the contribution from multiple operators. In the following

section we calculate the OPE coefficients and thermal one-point functions of

operators which are not multi stress tensors but contribute to (7.84) and (7.85).

7.5.2. CFT data of scalar operators with dimensions two and four

We explicitly calculate the thermal one-point functions 〈O〉β = bOβ−∆O and

OPE coefficients λO∆O∆O for scalar operators O with twist τ ′ = 2 and τ ′ = 4
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using Wick contractions. This is done to find which operators contribute to the

thermal two-point function and to resolve a mixing problem.

For τ ′ = 2 there is only one such operator, the single trace operatorO2(x) =
1√
2N

: Tr(φ2) : (x) given in (7.20). The OPE coefficient is found by considering

the three-point correlator

〈O∆(x1)O∆(x2)O2(x3)〉 =
λO∆O∆O2

|x12|2∆−2|x13|2|x23|2
. (7.86)

The three-point function is calculated in Appendix C.1, in the large-N limit,

and it is given by

〈O∆(x1)O∆(x2)O2(x3)〉 =
√
2∆

N

1

|x12|2∆−2|x13|2|x23|2
, (7.87)

and therefore λO∆O∆O2
=

√
2∆
N

to leading order in 1/N . To calculate the

thermal one-point function ∝ 〈Tr(φ2)〉β, we include self-contractions, i.e. con-

tractions of fundamental fields within the same composite operator separated

by a distance mβ along the thermal circle for m 6= 0 and integer. Explicitly,

the one-point function of O2 is given by

〈O2(x)〉β =
1√
2N

∑

m 6=0

N2

(mβ)2
=

π2N

3
√
2β2

, (7.88)

therefore,

bO2
=

π2N

3
√
2
. (7.89)

The contribution to the thermal two-point function aO2
is found using (7.87)

and (7.89)

a2,0 = bO2
λO∆O∆O2

=
π2∆

3
. (7.90)

This agrees with (7.84) which was obtained from the thermal two-point function.

We now continue with scalar operators of twist four. There are two such

linearly independent operators appearing in the O∆ × O∆ OPE. In order to

construct an orthonormal basis, consider the following single and double trace

operators:

O4(x) =
1

2N2
: Tr(φ4) : (x),

O4,DT(x) =
1

2
√
2N2

: Tr(φ2)Tr(φ2) : (x).
(7.91)
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We further construct the operator Õ4 that has vanishing overlap with O4,DT(x)

as follows:

Õ4 = N
[

O4 − cO4O4,DT
O4,DT

]

, (7.92)

with N a normalization constant and cO4O4,DT
is the overlap defined by

〈O4(x)O4,DT(y)〉 =
cO4O4,DT

|x− y|8 . (7.93)

Explicit calculation gives cO4O4,DT
= 2

√
2

N
and N = 1√

2
in the large-N limit,

and the scalar dimension four operator orthogonal to the double trace operator

O4,DT is therefore

Õ4 =
1√
2

[

O4 −
2
√
2

N
O4,DT

]

. (7.94)

Note that even though the second term in (7.92) is suppressed by 1/N , it can

still contribute to the thermal two-point function due to the scaling of OPE

coefficients and one-point function of a k-trace operator O(k):

bO(k) ∼ Nk,

λO∆O∆O(k) ∼ 1

Nk
,

(7.95)

in the limit N →∞.

The one-point function and the OPE coefficient for O4 is found analogously

to that of O2 in the large-N limit

bO4
=

π4N

9
,

λO∆O∆O4
=

2∆

N
.

(7.96)

Consider now the double trace operator given in (7.91). The one-point

function factorizes in the large-N limit:

〈O4,DT(x)〉β =
1√
2
(〈O2(x)〉β)2

=
π4N2

18
√
2β4

.

(7.97)

Likewise, the OPE coefficient can be computed in the large-N limit (see Ap-

pendix C.1)

λO∆O∆O4,DT
=

√
2∆(3∆− 5)

N2
. (7.98)
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Consider now the thermal one-point function of Õ4 in (7.94)

〈Õ4〉β =
1√
2β4

[

bO4
− 2
√
2

N
bO4,DT

]

= O(N−1),

(7.99)

where we have used (7.96) and (7.97). Since the corresponding OPE coefficient

is suppressed by N−1, it follows that the only scalar operator with dimension

four contributing to the thermal two-point function is the double trace operator

O4,DT. From the OPE coefficient and thermal one-point function of this double

trace operator, using (7.97) and (7.98), we find the following contribution to

the thermal two-point function

a4,0 =
π4∆(3∆− 5)

18
, (7.100)

which agrees with (7.84).

7.5.3. CFT data of single-trace operator with twist two and spin four

The primary single trace operator Ξ = O2,4 with twist τ = 2 and spin s = 4 is

given by

Ξµνρσ(x) =
1

96
√
35N

: Tr
(

φ(∂µ∂ν∂ρ∂σφ) − 16(∂(µφ)(∂ν∂ρ∂σ)φ)

+ 18(∂(µ∂νφ)(∂ρ∂σ)φ)− (traces)
)

: (x).

(7.101)

The relative coefficients follow from requiring that the operator is a primary,

see Appendix C.5 for details.

The thermal one-point function of this operator is found from Wick con-

tractions in the large-N limit to be

〈Ξµνρσ〉β =
8π6N

27
√
35β6

(eµeνeρeσ − (traces)) . (7.102)

Moreover, the OPE coefficient in the O∆ × O∆ OPE can again be calculated

using Wick contractions similarly to how it was done for T 2
4,4 in Appendix C.1.

By explicit calculation one finds

〈O∆(x1)O∆(x2)Ξµνρσ(x3)〉 =
4∆√
35N

ZµZνZρZσ − (traces)

|x12|2∆−2|x13|2|x23|2
, (7.103)
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and therefore the OPE coefficient λO∆O∆O2,4
is given by

λO∆O∆O2,4
=

4∆√
35N

. (7.104)

Now, it is easy to check that

1

24
λO∆O∆O2,4

bO2,4
=

2π6∆

945
, (7.105)

which agrees with a2,4 in (7.85).

7.5.4. CFT data of double-trace operators with twist and spin equal to four

To find the full contribution to the thermal two-point function from the op-

erators with τ = 4 and s = 4 we need to take into account the contribution

of all operators with these quantum numbers and solve a mixing problem. In

addition to the double-stress tensor operator with these quantum numbers, the

other double trace primary operator which contributes is given by

ODT
µνρσ(x) =

1

96
√
70N2

: Tr(φ2)
(

Tr(φ∂µ∂ν∂ρ∂σφ)− 16Tr(∂(µφ∂ν∂ρ∂σ)φ)

+18Tr(∂(µ∂νφ∂ρ∂σ)φ)(x)− (traces)
)

: (x),

(7.106)

where the operator is unit-normalized. Notice that this is the double trace

operator obtained by taking the normal ordered product of two single trace

operators, the scalar operator with dimension 2 and the single trace spin-4 op-

erator with dimension 6. There are more double trace operators with these

quantum numbers which are, however, not simply products of single trace op-

erators. These do not contribute to the thermal two-point function to leading

order in 1
N2 (see Appendix C.6).

Note that it follows from large-N factorization that the overlap of this

operator with (T 2)µνρσ is suppressed by powers of 1
N ; since both of these are

double trace operators and obey the scaling (7.95), to study the thermal two-

point function to leading order in N2, one can therefore neglect this overlap.

The thermal one-point function of ODT
µνρσ follows from the large-N factor-

ization and we find that

bODT
4,4

=

√

2

35

4π8N2

81
, (7.107)

140



where we used the thermal one-point functions for each single trace operator

given by (7.88) and (7.102). The OPE coefficient is calculated in Appendix C.1,

λO∆O∆ODT
4,4

=

√

2

35

4∆(∆− 1)

N2
. (7.108)

Using the thermal one point function and the OPE coefficient in (7.107) and

(7.108) respectively, it is found that it the operator ODT
µνρσ gives the following

contribution to the thermal two point function:

aODT
4,4

=

(

1

2

)4

bODT
4,4

λO∆O∆ODT
4,4

=
2π8∆(∆− 1)

2835
. (7.109)

The total contribution from T 2
4,4 together with that of ODT

4,4 , using (7.28),

(7.53) and (7.109), is

a4,4 = (aT 2
4,4

+ aODT
4,4

) =
π8∆(∆− 1)

1050
. (7.110)

This agrees with a4,4 in (7.85).

7.6. Comparison with the eigenstate thermalization hypothesis

In this section we discuss the relation of our results to the eigenstate thermal-

ization hypothesis (ETH). We argue that the stress tensor sector of the free

SU(N) adjoint scalar theory in d = 4 satisfies the ETH to leading order in

CT ∼ N2 ≫ 1. We explain the equivalence of the micro-canonical and canoni-

cal ensemble when ∆H ∼ CT in large-CT theories. In this regime, the diagonal

part of the ETH is (up to exponentially suppressed terms which we do not

consider), equivalent to thermalization. Note that in two dimensions the Vi-

rasoro descendants of the identity satisfy the ETH (see e.g. [165] for a recent

discussion).

We begin by showing the equivalence between the micro-canonical and the

canonical ensemble on S1
β×Sd−1 when ∆H ∼ CT ≫ 1. See [29,148] for a similar

discussion at infinite volume as well as [116] in the two-dimensional case. The

expectation value in the micro-canonical ensemble of an operator O, which we

take to be a scalar for simplicity, at energy E = ∆H/R is given by

〈O〉(micro)
E =

1

N(E)

∑

Õ

〈Õ|O|Õ〉, (7.111)
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where we sum over states |Õ〉 with energy (E,E+δE) and N(E) is the number

of states in this interval. On the other hand, consider the partition function at

inverse temperature β given by

Z(β) =
∑

Õ

e−
β∆̃
R =

∫

d∆̃ρ(∆̃)e−
β∆̃
R , (7.112)

where we sum over all states in the theory. In the second line in (7.112) we

have approximated the sum of delta-functions by a continuous function ρ(∆̃).

Expectation values in the canonical ensemble is then computed by38

〈O〉β = Z(β)−1

∫

d∆̃ρ(∆̃)〈O〉(micro)
E e−

β∆̃
R . (7.113)

Consider the partition function in (7.112) with a free energy F =

−β−1 logZ(β). By an inverse Laplace transform of (7.112) we find the den-

sity of states

ρ(∆H) =
1

2πiR

∫

dβ′eβ
′(

∆H
R −F (β′)). (7.114)

For ∆H ∼ CT and a large free energy39 F ∼ CT , we can evaluate (7.114) using

a saddlepoint approximation with the saddle at β given by

∆H

R
= ∂β′(β′F )|β. (7.115)

Consider now the thermal expectation value in (7.113), multiplying both sides

by Z(β) and doing an inverse Laplace transform evaluated at ∆H ∼ CT we find

ρ(∆H)〈O〉(micro)
∆H/R =

1

2πiR

∫

dβ′〈O〉β′eβ
′(

∆H
R −F (β′)). (7.116)

For F ∼ CT ≫ 1 we again use a saddlepoint approximation to evaluate (7.116)

with the saddle at β determined by (7.115), assuming 〈O〉β′ does not grow

exponentially with CT . The RHS of (7.116) is therefore the thermal expectation

value 〈O〉β multiplied by the saddlepoint approximation of the density of states

in (7.114). It then follows that

〈O〉(micro)
∆H/R ≈ 〈O〉β , (7.117)

38 It was argued in [148] that the existence of the thermodynamic limit implies that

we only need to sum over operators with low spin.
39 We consider a CFT in a high temperature phase.
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with β determined by (7.115). In particular, in the infinite volume limitR→∞,

the free energy is given by40

F =
b
T

(can)
µν

SdR
d−1

dβd
, (7.118)

where Sd = V ol(Sd−1) = 2π
d
2 /Γ(d2 ). Inserting (7.118) in (7.115) we find [29]

β

R
=

(−(d− 1)b
T

(can)
µν

Sd

d∆H

)
1
d

. (7.119)

We can use (7.117) to see the thermalization of the stress tensor. The free

energy is related to the expectation value of the stress tensor T
(can)
µν [25]

〈T (can)
00 〉β =

1

SdRd−1
∂β(−βF (β)). (7.120)

On the other hand, the expectation value of T
(can)
00 in a heavy state |OH〉 is

fixed by the Ward identity to be

〈OH |T (can)
00 |OH〉 = −

∆H

SdRd
. (7.121)

Multiplying (7.115) with (SdR
d−1)−1 and comparing with (7.120)-(7.121) we

find that

〈OH |T (can)
00 |OH〉 = 〈T (can)

00 〉β . (7.122)

This shows the thermalization of the stress tensor in heavy states where F ∼
∆H ∼ CT in large-CT theories. Note that this follows from (7.117) since we can

replace the micro-canonical expectation value at E = ∆H/R, on the LHS, with

the expectation value in any single heavy state with dimension ∆H due to the

Ward identity, independent of the heavy state. Put differently, the stress tensor

satisfies the ETH as we will review below.

We now consider the eigenstate thermalization hypothesis for CFTs at finite

temperature on the sphere Sd−1 of radius R. The diagonal part of the ETH is

given by

〈OH |Oτ,s|OH〉 = 〈Oτ,s〉(micro)
E +O

(

e−S(E)
)

, (7.123)

40 Here we denote the canonically normalized stress tensor by T
(can)
µν , whose two-

point function is given by 〈T (can)µν(x)T
(can)
ρσ (y)〉 = CT

S2
d

(Iµ(ρI
ν
σ) − (trace)).
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where OH and Oτ,s are local primary operators and 〈Oτ,s〉(micro)
E is the expec-

tation value of Oτ,s in the micro-canonical ensemble at energy E = ∆H
R . Here

we assume that the operator OH is a heavy scalar operator with large confor-

mal dimension ∆H ∝ CT ≫ 1. The operator Oτ,s on the other hand can have

non-zero spin.41. In (7.123), eS(E) is the density of states at energy E = ∆H/R.

As shown in (7.117), in the limit ∆H ∼ CT ≫ 1, the micro-canonical ensemble

is equivalent to the canonical ensemble at inverse temperature β determined by

(7.115). It then follows from (7.123) that the diagonal part of the ETH can

written in terms of OPE coefficients and thermal one-point functions:

λOHOHOτ,s
Rτ+s

=
bOτ,sfOτ,s (β/R)

βτ+s
+O

(

e−S(E)
)

, (7.124)

where fOτ,s also appears in (7.11). This is equivalent to the statement of ther-

malization discussed in the rest of the section.

In this section we observed that the multi stress tensor operators satisfy

(7.124). One can also ask if (7.124) holds for any operator in the specific heavy

state we considered. By comparing eqs. (7.87) and (7.88) using (7.50), one can

check that operator O2 = 1√
2N

: Tr(φ2) : does not satisfy (7.124). Since this is

a free theory, it is not a surprise that the ETH is not satisfied by all operators

in the spectrum which is seen explicitly in this case.

7.7. Discussion

In this section we argued that multi stress tensor operators T k
τ,s in CFTs with

a large central charge CT thermalize: their expectation values in heavy states

are the same as their thermal expectation values. This is equivalent to the

statement that multi stress tensor operators in higher-dimensional CFTs satisfy

the diagonal part of the ETH in the thermodynamic limit. The analogous

statement in the d = 2 case is that the Virasoro descendants of the identity

satisfy the ETH condition in the large-CT limit.

We observed that the operator O2 = 1√
2N

: Tr(φ2) : does not satisfy the

ETH. This is seen by comparing eqs. (7.87) and (7.88) using (7.50). While this

operator does not thermalize in the heavy states we considered, the OPE coeffi-

cient averaged over all operators with ∆H ∼ CT is expected to be proportional

41 The tensor structure in (7.123) is suppressed.
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to the thermal one-point function. The averaged OPE coefficients should there-

fore scale like ∼ √∆H compared to λOHOHO2
∼ ∆H/

√
CT for the heavy states

we considered. It would be interesting to exhibit heavy operators that produce

the former scaling.

We provided a bootstrap argument in favor of the thermalization of multi

stress tensor operators. One should be able to refine it to give an explicit form

for leading behavior of the multi stress tensor OPE coefficients – we leave it for

future work. The holographic/bootstrap OPE coefficients for the leading twist

double stress tensor operators can be found in e.g. [124] – they are nontrivial

functions of the spin. As explained in [124,13], the leading ∆ behavior of the

minimal-twist double- and triple-stress tensor OPE coefficients is consistent with

the exponentiation of the near lightcone stress tensor conformal block. One can

go beyond the leading twist multi stress tensors. In holographic HHLL correla-

tors each term of the type (∆µ)k ∼ (∆∆H/CT )
k comes from the exponentiation

of the stress-tensor block – this follows from the Wilson line calculation of the

correlator in the AdS-Schwarzschild background [193,124,186].

In this section we argue that this behavior is universal, and is not just

confined to holographic theories. Hence, one can formulate another statement

equivalent to the thermalization of multi stress tensor operators. Namely, scalar

correlators of pairwise identical operators of dimensions ∆1,2 in large-CT the-

ories in the limit ∆1,2 ≫ 1, ∆1∆2/CT fixed are given by the exponentials of

the stress tensor conformal block42. This is similar to what happens in two-

dimensional CFTs.

Note that the universality of the OPE coefficients is naively in tension with

the results of [54], where finite gap (∆gap) corrections to the multi stress tensor

OPE coefficients were considered. In particular, for double stress tensors, such

corrections behave like ∆3/∆gap which is clearly at odds with the universality

statement. Of course, the results of [54] are obtained in the limit ∆ ≪ ∆gap,

while in this section we consider the opposite regime ∆≫ ∆gap.

One may also wonder what happens with the universality of the OPE co-

efficients beyond leading order in ∆. In particular, in [186], it was shown that

42 See [105] for previous work on the eikonalization of the multi stress tensor OPE

coefficients at large spin.
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the bootstrap result for the HHLL correlator exactly matches the holographic

Wilson line calculation (in the double scaling limit where only the minimal twist

multi stress tensor operators contribute). This corresponds to including terms

beyond the exponential of the stress tensor block – one needs to compute the

HHLL correlator, take a logarithm of the result, divide by ∆, and then take the

large-∆ limit. The result is sensitive to terms subleading in the large-∆ limit of

the multi stress tensor OPE coefficients. In four spacetime dimensions the result

in [186] is given by an elliptic integral – is it applicable beyond holography?

In [124] terms subleading in ∆ were shown to be important for the computa-

tion of the phase shift. The simplest nontrivial case in two spacetime dimensions

is the operator Λ4 which is a level four Virasoro descendant of the identity (see

e.g.[194]). One could also get it by using the CFT normal ordering and impos-

ing the quasi-primary condition [195]. Consider now the case of minimal twist

(twist four) operators in four dimensions. How do we determine the analog of

Λ4? There is no Virasoro algebra now.

Presumably, one can reconstruct the analog of Λ4 in four spacetime di-

mensions by considering a CFT normal ordered product of stress tensors, and

adding a single trace term to ensure that the resulting operator is a primary

and is orthogonal to the stress tensor itself. Note that the CFT normal ordering

differs from the oscillator normal ordering in a free theory by the addition of a

single trace operator, as reviewed in Appendix C.7. This procedure can then

be generalized to other multi-trace operators. We leave it for future work.

It is also helpful to imagine what happens in a theory like N = 4 Super

Yang-Mills, where there is a marginal line connecting the weak and the strong

coupling (the latter admits a holographic description). Presumably, as the cou-

pling is turned on, only one operator remains light (with dimension eight and

spin four), while others get anomalous dimensions. It would be interesting to

see this explicitly even to the leading nontrivial order in the ’t Hooft coupling.

It would also be interesting to see how the corresponding OPE coefficient inter-

polates between its free and strong coupling values.

Using crossing symmetry, we argued that the universality of multi stress

tensor OPE coefficients is related to the OPE coefficients λOHTµνO′ , with O′ 6=
OH being either heavy or light, present in the cross-channel expansion. Such

OPE coefficients with at least one operator being heavy were recently studied in
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[154,196]. It would be interesting to further study the connection of our results

to this work.

Another interesting question concerns the fate of the double trace operators

of the schematic form [O∆O∆]n,l. Consider the d = 4 case in the large volume

limit and n, l = 0, for simplicity. We expect that the corresponding OPE co-

efficients in the free theory behave like λOHOH [O∆O∆]0,0 ∝ ∆2
H/CT ∝ CTµ

2,43

while their thermal one-point functions behave like 〈[O∆O∆]0,0〉β ∝ CTβ
−2∆.

Comparing the two results with the help of (7.50) one observes that such oper-

ators do not thermalize in the free theory for generic ∆. The situation is more

nontrivial in holography where we do not know the large µ behavior of the OPE

coefficients44. As pointed out in [15], the contribution of double-trace operators

to thermal two-point functions is different from that of multi stress tensors.

The latter is only sensitive to the behavior of the metric near the boundary, but

the former knows about the full black hole metric. This seems to indicate that

the thermalization of the double trace operators in holographic theories is also

unlikely45.

It is a natural question how generic are the heavy states for which the

stress tensor sector thermalizes. The our results seem to suggest that such ther-

malization is more generic than the thermalization of other light operators46.

Other interesting questions include generalizations to the case of finite but large

central charge and to non-conformal quantum field theories.

43 This scaling is obtained by computing the OPE coefficient λOHOH [O∆O∆]0,0 for

1 ≪ ∆H ≪ CT and extrapolating it to the ∆H ∼ CT regime.
44 Note that the large-N scaling in holography is different. Both the OPE coeffi-

cients and the thermal expectation values behave like C0
T as opposed to CT ∼ N2.

45 A simple way to decouple such operators is to take the large-∆ limit.
46 A closely related question of finding “typical” states where the stress tensor

sector thermalizes in the large volume limit in d = 2 was recently discussed in [179].

There it was observed that such states are Virasoro descendants when the central

charge is finite.
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8. Discussion and conclusions

We started this research to learn more about the whole class of holographic con-

formal field theories and their implications for the dual gravity. The conformal

bootstrap in the Regge and lightcone limit allowed us to gain a better insight

into the four-point correlation functions at higher orders of the inverse central

charge. We specifically focus on the stress tensor sector of the conformal field

theory that consists of the stress tensor itself and the multi-trace primary oper-

ators made from the stress tensor. The importance of this sector lies in the fact

that it is necessarily present in all holographic CFTs that have a dual theory

with dynamical gravity. The gravitational analog of multi stress tensor oper-

ators that contribute to the correlators in CFTs are the graviton loops in the

corresponding Witten diagrams. In the four-point correlation functions where

two operators OH have the large conformal dimension ∆H , the contributions

of the stress tensor sector get enhanced by factors of ∆H compared to the con-

tributions of other, generic, multi-trace operators, and therefore decouple from

them. That is the reason why the heavy-heavy-light-light correlation function

is the perfect setup for studying the stress tensor sector contributions.

We confirm that the OPE coefficients of the multi stress tensor operators

with a minimal twist at each order in µ are universal, i.e. they are the same in

all holographic CFTs, as claimed in [15]. Introducing the finite gap in the theory

breaks this universality, as shown in [54]. One can still ask is it possible to add

up all contributions of the minimal twist subset of the stress tensor sector and

obtain the correlator exact in µ. As the contributions of these operators domi-

nate in the lightcone limit, one could hope to obtain the exact non-perturbative

correlator in this limit by adding up all of them. This result would be the higher-

dimensional analog of the Virasoro vacuum block in two-dimensional CFT. So

far, it has not been established how to write this non-perturbative correlator

and we leave this for future work. The general idea is that there exists some

Virasoro-like symmetry algebra generated by the components of the stress ten-

sor that emerges near the lightcone limit and protects the OPE coefficients of

the minimal twist multi stress tensors in the holographic CFTs [127,142,197-

199]. If we had the closed algebra of this type, computing the contributions

of its irreducible representations to the correlator would greatly simplify the

problem.
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The important property of the OPE coefficients of multi-trace operators

in the stress tensor sector with external scalars is that they have poles at the

integer values of ∆L. These poles are the consequence of the mixing of multi

stress tensors with double-trace operators [OLOL]n,l when ∆L are integers. It

would be interesting to find a way to solve this mixing problem and obtain finite

contributions for integer ∆L. According to the statement in [15], to calculate the

OPE coefficients of these double trace operators using the dual gravity approach,

one would have to analytically solve the equation of motion of the light probe in

the black hole background all the way to the horizon, therefore, the perturbative

1/r calculation that works for the stress tensor sector is not applicable here. One

comes to a similar conclusion when trying to compute the OPE coefficients of

[OLOL]n,l operators using the conformal bootstrap technique. Namely, in this

case one would have to solve the bootstrap equation non-perturbatively in large

spin, for which the non-perturbative results for the anomalous dimensions of the

operators in the S-channel are needed. Therefore, we leave this task for future

work as well.

The multi stress tensor operators whose OPE coefficients are not fixed by

the conformal bootstrap are those with spin s = 0, 2. As they are not fixed by

the consistency conditions of the underlying CFT these OPE coefficients can be

viewed as the parameters in the class of holographic CFTs. They depend on

the other parameters of the holographic CFT, besides ∆L and µ, which is the

reason we say they are not universal. They introduce these parameters in the

correlation function and then the bootstrap forces the other OPE coefficients

of multi stress tensor operators with the non-minimal twist and higher spin to

depend on them. The universality of the OPE coefficients of the minimal twist

multi stress tensors at all orders in µ can be explained by the fact that there

are no multi stress tensor operators with a minimal twist and spin s = 0, 2 that

would introduce additional parameters in the OPE coefficients of the minimal

twist subset of the stress tensor sector.

One could ask if there is some other consistency condition in the CFT that

could fix or bound the coefficients of multi stress tensors with spin s = 0, 2, for

example, obtained from the bootstrap of the higher-point correlation functions

or correlation functions of spinning operators. We leave these questions for

future research. We showed how one can fix the OPE coefficients of spin-2
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multi stress tensor operators using the wave function phase shift calculation in

the gravity dual. In our case, this is done for Gauss-Bonnet gravity dual and

the results obtained match with those from [15] whenever available in the latter.

The only way, known so far, to fix the OPE coefficients of the spin zero multi

stress tensors through the gravity dual is the one developed in [15].

One obvious question to ask is which part of the formalism developed for the

stress tensor sector would apply to the case when we have additional conserved

currents in the holographic CFT, for example, U(1) current Jµ. In this case,

one would have to consider the contributions of the stress tensor sector together

with the contributions of the conserved current sector and multi-trace operators

created from both single-traces Tµν and Jµ. We plan to tackle this problem in

the near future.

Finally, by studying the thermalization properties of the stress tensor sec-

tor, we demonstrated that it satisfies the diagonal part of the eigenstate thermal-

ization hypothesis in the thermodynamic limit of large-N CFTs. This justifies

using the pure heavy state OH as the CFT analog of the black hole when we

are interested in the graviton contributions to the correlation functions in holo-

graphic CFTs. We also showed that the other operators generically present in

the large-N CFTs do not thermalize in this sense. Here, one could again ask

what happens in the large-N theory with additional conserved charges, whether

the conserved current sector thermalizes the same way the stress tensor sector

does. Additionally, it would be interesting to check what happens with the

off-diagonal elements of the eigenstate thermalization hypothesis for both the

stress tensor sector and the conserved current sector.
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Appendix A.1. Details on the conformal bootstrap

Below we review some of the details of the confomal bootstrap calculations.

Explicitly, we will show that exchanges of heavy-light double-trace operators

in the S-channel reproduce the disconnected correlator at O(µ0) and the stress

tensor exchange at O(µ).

A.1.1. Solving the crossing equation to O(µ) in d = 4

We start with the leading O(µ0) term in the S-channel that should reproduce

the disconnected propagator in the T-channel. This is given in d = 4 by

G(z, z̄)|µ0 =
C∆L

z − z̄

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)(zh+1z̄h̄ − zh̄z̄h+1). (A.1.1)

Let us look at the following piece of (A.1.1):

−
∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)zh̄z̄h+1 =

−
∫ ∞

0

dh̄

∫ ∞

h̄

dh(hh̄)∆L−2(h− h̄)zh̄z̄h+1 =

z̄

z

∫ ∞

0

dh

∫ ∞

h

dh̄(hh̄)∆L−2(h− h̄)zh+1z̄h̄ .

(A.1.2)

Setting z̄/z = 1 to leading order in the Regge limit, we find that the S-channel

expression reproduces the disconnected correlator:

G(z, z̄)|µ0 =
zC∆L

z − z̄

∫ ∞

0

dh

∫ ∞

0

dh̄(hh̄)∆L−2(h− h̄)zhzh̄

=
zC∆L

z − z̄

(log z̄ − log z)

(log z log z̄)∆L
Γ(∆L)Γ(∆L − 1) ≃ 1

(1− z)∆L(1− z̄)∆L
.

(A.1.3)

Notice that to arrive in the last equality we expanded (z, z̄) around unity and

substituted C∆L = (Γ(∆L)Γ(∆L − 1))−1.

Consider now the imaginary part at O(µ) in the S-channel. For convenience

we define

I(d=4) ≡ Im(G(z, z̄))|µ , (A.1.4)

which is then equal to:

I(d=4) =
−iπC∆L

σ(e−ρ − eρ)

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−2(h− h̄)γ
(1)

h̄,h−h̄

×
(

(1− σeρ)h+1(1− σe−ρ)h̄ − (h↔ h̄)
)

.

(A.1.5)
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Notice that we used the variables (σ, ρ) defined as z = 1−σeρ and z̄ = 1−σe−ρ.

Consider the following ansatz for γ
(1)

h̄,h−h̄
= chah̄b

h−h̄
, where (a, b, c) are num-

bers to be determined by the crossing equation. Substituting into (A.1.5) and

collecting the leading singularity σ−k as σ → 0 with k = 2∆L + a+ b− 1 leads

to

I(d=4)|σ−k =
−icπC∆L

(e−ρ − eρ)

(

Γ(∆L + a− 1)Γ(∆L + b− 1)(e(b−a)ρ − e(a−b)ρ)+

+
Γ(2∆L + a+ b− 2)

(∆L + a− 1)e(2∆L+a+b−2)ρ
×

2F1(∆L + a− 1, 2∆L + a+ b− 2,∆L + a,−e−2ρ)

− Γ(2∆L + a+ b− 2)

(∆L + a− 1)e−(2∆L+a+b−2)ρ
×

2F1(∆L + a− 1, 2∆L + a+ b− 2,∆L + a,−e2ρ)
)

.

(A.1.6)

Note that in order to do these integrals we need ∆L + a > 1 and ∆L + b > 1.

Using the following identity of the hypergeometric function

2F1(a, b, c, x) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−x)−a

2F1(a, a− c+ 1, a− b+ 1,
1

x
)

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
(−x)−b

2F1(b, b− c+ 1,−a+ b+ 1,
1

x
),

(A.1.7)

the third line in (A.1.6) can be simplified and we are left with

I(d=4)|σ−k =
icπC∆L

(e2ρ − 1)

(

− Γ(∆L + a− 1)Γ(∆L + b− 1)e(a−b+1)ρ

+
Γ(2∆L + a+ b− 2)

∆L + a− 1
e−(2∆L+a+b−3)ρ×

2F1(∆L + a− 1, 2∆L + a+ b− 2,∆L + a,−e−2ρ)

+
Γ(2∆L + a+ b− 2)

∆L + b− 1
e−(2∆L+a+b−3)ρ×

2F1(∆L + b− 1, 2∆L + a+ b− 2,∆L + b,−e−2ρ)
)

.

(A.1.8)

On the other hand, the Regge limit in the T-channel is dominated by

operators of maximal spin. In a holographic CFT, we have J = 2. If we further

take the lightcone limit, ρ ≫ 1, the dominant contribution is due to the stress

tensor exchange and behaves as σ−1e−(d−1)ρ. To reproduce this behavior from
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the S-channel, we must set a = 0 and b = 2 and make an appropriate choice

for the overall constant c. Substituting the designated values of (a, b, c) revals

that the first term in (A.1.8) precisely matches the T-channel stress tensor

contribution, which in the Regge limit (after analytic continuation) behaves

like:

g∆,J ∝
1

σJ−1

e−(∆−3)ρ

(e2ρ − 1)
+ . . . , (A.1.9)

with ∆ = d and J = 2. Furthermore, the remaining terms correspond to the

exchange of operators with spin 2 and dimension 2∆L + 2 + 2n; these are the

double-trace operators [OLOL]n,l=2.

A.1.2. Integrating the S-channel result at O(µ2) in d = 4

Below we describe how to use the results for the anomalous dimensions at O(µ2)

in order to recover the imaginary part of the correlator to the same order. Using

the obtained expressions for the anomalous dimensions (4.8) and (4.24), we note

that the integrand in (4.11) can be written as

P
(HL,HL);MFT

h̄,h−h̄



γ
(2)

h̄,h−h̄
−

γ
(1)

h̄,h−h̄

2
(∂h + ∂h̄)γ

(1)

h̄,h−h̄





= −35h̄3(2h− h̄)

4(h− h̄)3
P

(HL,HL);MFT

h̄,h−h̄
= − 35h∆L−3h̄∆L+1

2Γ(∆L − 1)Γ(∆L)

∞
∑

n=0

(

h̄

h

)n

(1 +
n

2
).

(A.1.10)

Therefore we see that (4.11) can be written as an infinite sum of integrals of

the same form that appeared at O(µ) in (A.1.5). It then follows that the full

S-channel result can be integrated in order to obtain the correlator in position

space. Especially, the lightcone result is obtained by setting k = 0 in (A.1.10)

and taking ρ→∞ which gives

Im(G(z, z̄))|µ2 =
i35π∆L(∆L + 1)

2(∆L − 2)

e−3ρ

σ2∆L+1(e2ρ − 1)
+ . . . , (A.1.11)

with . . . denoting terms that are subleading in the lightcone limit. The result

(A.1.11) has a form consistent with the contribution of an operator with spin-

2 and ∆ = 6. The full result (beyond the lightcone limit) further contains

an infinite number of operators with spin-2 of dimension ∆ = 6 + 2n and

∆ = 2∆L + 2n+ 2.
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A.1.3. Solving the crossing equation to O(µ) in d = 2

Here we review the calculations needed for the d = 2 case explained in Appendix

D. To O(µ0) the S-channel (3.37) is given by

G(z, z̄)|µ0 =
1

Γ(∆L)2

∫ ∞

0

∫ h

0

dh̄(hh̄)∆L−1(zhz̄h̄ + (z ↔ z̄)). (A.1.12)

The integrand in (A.1.12) is symmetric w.r.t. h↔ h̄ and can thus be rewritten

as

G(z, z̄)|µ0 =
1

Γ(∆L)2

∫ ∞

0

∫ ∞

0

dh̄(hh̄)∆L−1zhz̄h̄, (A.1.13)

which can easily be seen to reproduce the disconnected correlator [(1− z)(1−
z̄)]−∆L in the Regge limit.

As in the previous subsection we proceed to consider the imaginary part of

the correlator in the S-channel expansion to O(µ). Using a similar notation,

I(d=2) ≡ Im(G(z, z̄))|µ , (A.1.14)

combined with the ansatz γ
(1)

h̄,h−h̄
= c hah̄b, allows us to write:

I(d=2) = − ic π

Γ(∆L)2

∫ ∞

0

∫ h

0

dh̄(hh̄)∆L−1hah̄b(zhz̄h̄ + (z ↔ z̄)). (A.1.15)

The integrals in (A.1.15) can be easily performed given that a + ∆L > 0 and

b+∆L > 0. Changing variables to z = 1−σeρ, z̄ = 1−σe−ρ and collecting the

most singular term σ−k, with k = 2∆L + a+ b, leads to

I(d=2)|σ−k =
icπ

Γ(∆L)2

(

Γ(a+∆L)Γ(b+∆L)(−eρ(b−a) − eρ(a−b))

+
Γ(a+ b+ 2∆L)e

−ρ(a+b+2∆L)

a+∆L
2F1(a+∆L, a+ b+ 2∆L, 1 + a+∆L,−e−2ρ)

+
Γ(a+ b+ 2∆L)e

ρ(a+b+2∆L)

a+∆L
2F1(a+∆L, a+ b+ 2∆L, 1 + a+∆L,−e2ρ)

)

.

(A.1.16)

Using again (A.1.7) we express (A.1.16) as follows

I(d=2)|σ−k =
icπ

Γ(∆L)2

(

− Γ(a+∆L)Γ(b+∆L)e
ρ(a−b)

+
Γ(a+ b+ 2∆L)e

−ρ(a+b+2∆L)

a+∆L
2F1(a+∆L, a+ b+ 2∆L, 1 + a+∆L,−e−2ρ)

− Γ(a+ b+ 2∆L)e
−(a+b+2∆L)ρ

b+∆L
2F1(b+∆L, a+ b+ 2∆L, 1 + b+∆L,−e−2ρ)

)

.

(A.1.17)
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In matching (A.1.17) with the T-channel expansion, following the same logic

as in the previous subsection we deduce that a = 0 and b = 1 and fix c. The

first line in (A.1.17) then reproduces the exchange of the stress tensor in the T-

channel. The other two lines match the contribution of double-trace operators

[OLOL]n,l=2 with dimension ∆ = 2∆L + 2n + 2 and spin 2 in the T-channel

expansion.

Appendix A.2. Details on the impact parameter representation in

d = 4

Here we will see how the impact parameter representation in four dimensions

leads to the expression for the disconnected correlator in the Regge limit, in

terms of the integral over h, h̄.

The objective of this section is to explicitly see that the disconnected con-

tribution of the correlator in the Regge limit

1

((1− z)(1− z̄))∆
=

1

Γ(∆)Γ(∆− 1)

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆−2 h− h̄

z − z̄

(zh+1z̄h̄ − zh̄z̄h+1) ,

(A.2.1)

can be equivalently written as

∫ ∞

0

dh

∫ h

0

dh̄ Ih,h̄ , (A.2.2)

with

Ih,h̄ ≡ C(∆)

∫

M+

d4p

(2π)4
(−p2)∆−2e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(

p2

4
+ hh̄

)

.

(A.2.3)

where M+ is the upper Milne wedge with {p2 ≤ 0, p0 ≥ 0} and

C(∆) ≡ 2d+1−2∆π1+ d
2

Γ(∆)Γ(∆− d
2 + 1)

, (A.2.4)

with d the dimensionality of the spacetime, here d = 4.
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In practice, we need to perform the integral over p in (A.2.3). To do so, we

will use spherical polar coordinates and write:

Ih,h̄ =
C(∆)

(2π)3

∫ ∞

−∞
dp0

∫ ∞

0

dpr (pr)2
∫ 1

−1

d(cos θ) (−p2)∆−2 θ(p0)θ(−p2)×

eip
0x0

e−irpr cos θ

(

δ

(

p0 + pr

2
− h

)

δ

(

p0 − pr

2
− h̄

)

+ h↔ h̄

)

.

(A.2.5)

The overall factor of (2π) is simply the result of the integration with respect to

the angular variable φ. Next we perform the integral over cos θ:

Ih,h̄ =
C(∆)

(2π)3

∫ ∞

−∞
dp0

∫ ∞

0

dpr (pr)2 (−p2)∆−2 eip
0x0

(

e−irpr − eirp
r

−irpr
)

×

θ(p0)θ(−p2) (δ δ),
(A.2.6)

where we set

(δ δ) ≡ δ

(

p0 + pr

2
− h

)

δ

(

p0 − pr

2
− h̄

)

+ (h↔ h̄). (A.2.7)

Notice that
∫ ∞

0

dpr
pr

ir
(−p2)∆−2 eirp

r

(δ δ)−
∫ ∞

0

dpr
pr

ir
(−p2)∆−2 e−irpr (δ δ) =

=

∫ ∞

−∞
dpr

pr

ir
(−p2)∆−2 eirp

r

(δ δ) .

(A.2.8)

Hence we can write (A.2.6) as follows

Ih,h̄ =
C(∆)

(2π)3

∫ ∞

−∞

dp+ dp−

2

p+ − p−

i(x+ − x−)
(−p2)∆−2 e

i
2 (p

+x−+p−x+)×

θ(p+)θ(p−) (δ δ) .

(A.2.9)

Performing the last two integrals is trivial due to the delta-functions. The result

is

Ih,h̄ =
1

Γ(∆)Γ(∆− 1)

h− h̄

i(x+ − x−)
(hh̄)∆−2 (eihx

+

eih̄x
− − eih̄x

+

eihx
−

) ,

(A.2.10)

which allows us to write (A.2.2) as follows:

∫ ∞

0

dh

∫ h

0

dh̄ Ih,h̄ =
1

Γ(∆)Γ(∆− 1)

∫ ∞

0

dh

∫ h

0

dh̄
h− h̄

i(x+ − x−)
(hh̄)∆−2×

(zhz̄h̄ − zh̄z̄h) .

(A.2.11)
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Here we also used the identification (z = eix
+

, z̄ = eix
−

).

Observe that (A.2.11) is equal to (A.2.1) in the Regge limit, where

z

z − z̄
≃ 1

i(x+ − x−)
,

z̄

z − z̄
≃ 1

i(x+ − x−)
. (A.2.12)

However, when considering next order corrections in (x+, x−) the impact pa-

rameter represention may require corrections. Below we show that these are

irrelevant for the questions we are interested in.

A.2.1. Exact Fourier transform

Here we will compute the Fourier transform for the S-channel expression with

the identification (z = eix
+

, z̄ = eix
−

) and show that the leading order results

in the Regge limit given in the previous section do not miss any important

contributions.

The generic term in the S-channel which we would like to Fourier transform

looks like:
∫

dh dh̄ g(x+, x−)f̃(h, h̄) , (A.2.13)

where

g(x+, x−) =
ei(1+h)x+

eih̄x
− − eih̄x

+

ei(h+1)x−

(eix+ − eix−)
, (A.2.14)

and

f̃(h, h̄) = iπ(hh̄)∆−2(h− h̄)f(h, h̄) , (A.2.15)

where f(h, h̄) stands for all the contributions in the S-channel to a given order.

The Fourier transform is:

∫

d4x eipx
∫

dh dh̄ g(x+, x−)f̃(h, h̄) =

∫

dh dh̄f̃(h, h̄)

∫

d4x eipxg(x+, x−) ,

(A.2.16)

where we simply reversed the order of integration. Our focus in what follows

will be the integral:

I ≡
∫

d4x eipxg(x+, x−) . (A.2.17)

Since x+ = t + r and x− = t − r, it is convenient to use spherical polar coor-

dinates to perform the integration. The angular integration over φ gives us an

overall factor of (2π) as the integrand is independent of φ. Next we perform
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the integration over the other angular variable. Similar to what was discussed

in the previous section,

∫ 1

−1

d(cos θ) eip
rr cos θ =

eirp
r − e−irpr

irpr
. (A.2.18)

Combining the above we can write:

I = 2π

∫ ∞

−∞
dte−itpt

∫ ∞

0

drr
eirp

r − e−irpr

ipr
g(t, r) . (A.2.19)

It is easy to see that g(t, r) = g(t,−r) and as a result:

∫ ∞

0

dr re−irpr g(t, r) = −
∫ 0

−∞
dr reirp

r

g(t, r) , (A.2.20)

which allows us to write the integral as:

I = 2π

∫ ∞

−∞

dx+dx−

2
eip·x

x+ − x−

i(p+ − p−)
g(x+, x−) . (A.2.21)

Here eip·x = e−
i
2 (p

+x−+p−x+) and the above integral can be thought of as a

two-dimensional Fourier transform.

To proceed we need the explicit form of g(x+, x−) which we write as

g(x+, x−) =
eihx

+

eih̄x
−

1− e−i(x+−x−)
+ (x+ ↔ x−) (A.2.22)

and then expand the denominator in the Regge limit

1

1− e−i(x+−x−)
=

1

i(x+ − x−)

(

1− i

2
(x+ − x−) + · · ·

)

. (A.2.23)

Substituting into (A.2.21) leads to:

I = 2π
1

(−p+ + p−)

∫

dx+dx−

2
eip·x

(

eihx
+

eih̄x
−

(

1− i

2
(x+ − x−) + · · ·

)

+ (x+ ↔ x−)

)

.

(A.2.24)
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Let us compute the integral term by term. The leading term in the Regge limit

yields the standard delta functions:

I0 = 22π3 1

p− − p+
δ(
p+

2
− h̄)δ(

p−

2
− h) + (p+ ↔ p−) =

= 2π3 1

h− h̄

{

δ(
p+

2
− h̄)δ(

p−

2
− h) + (p+ ↔ p−)

}

=

= 2π3 1

h− h̄
δ(p · ē+ h+ h̄)δ(

p2

4
+ hh̄) .

(A.2.25)

The subleading terms on the other hand produce the same result except that

the delta functions are replaced with derivatives of themselves with respect to

pr = p+−p−

2
.

Let us now consider the full result which up to an overall numerical coeffi-

cient can be written as:

∫

dh dh̄ f̃(h, h̄)

(

1− ∂

∂pr
+ · · ·

)

δ(p · ē+ h+ h̄)δ(
p2

4
+ hh̄) . (A.2.26)

To evaluate the terms with derivatives of the delta function we need to integrate

by parts. Now recall that we are interested in the imaginary piece of the S-

channel whose leading behaviour is ∼
√

−p2 (this dependence is hidden in

what we called f̃). It is obvious that the derivatives will produce subleading

terms which we are not interested in.

What about the other pieces in the S-channel which are not imaginary? To

O(µ2) in this case, we know that the leading behaviour grows like ∼ (
√

−p2)2,
so by differentiation, a term of the order

√

−p2 may be produced. However,

it is clear that this term will never contribute to the imaginary term of the S-

channel (note that the coefficient in the first term in the parenthesis in (A.2.26)

is real). We thus deduce that the subleading terms in (A.2.24) are irrelevant for

our study.

Appendix A.3. Impact parameter representation in general spacetime

dimension d

Here we want to prove the following equation for general spacetime dimension

d:
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Ih,h̄ = (zz̄)−
(∆H+∆L)

2 P
(HL,HL);MFT

h̄,h−h̄
g∆HL,−∆HL
h,h̄

(z, z̄), (A.3.1)

using the form of conformal blocks given in (4.31). We start with the definition

of Ih,h̄ that is given as:

Ih,h̄ = C(∆L)

∫

M+

ddp

(2π)d
(−p2)∆L− d

2 e−ipx(h− h̄)δ(p · ē+ h+ h̄)δ(
p2

4
+ hh̄),

(A.3.2)

where:

C(∆L) ≡
2d+1−2∆Lπ1+d

2

Γ(∆L)Γ(∆L − d
2
+ 1)

. (A.3.3)

Using spherical coordinates we write (A.3.2) as:

Ih,h̄ = C(∆L)

∫ ∞

−∞
dpteip

tt

∫ ∞

0

dpr(pr)d−2

∫

Sd−2

sind−3 φ1dφ1 dΩd−3

× e−iprr cos φ1(−p2)∆L− d
2 θ(−p2)θ(pt)

{

δ

(

pt + pr

2
− h

)

δ

(

pt − pr

2
− h̄

)

+ (h↔ h̄)
}

,

(A.3.4)

where Ωd−3 = 2π
d−2
2

Γ( d−2
2 )

denotes the area of the unit (d − 3)-dimensional hyper-

sphere.

Notice now that
∫ π

0

sind−3 φ1e
−iprr cosφ1dφ1 =

√
πΓ(

d

2
− 1)0F1(

d− 1

2
;−1

4
(pr)2r2) . (A.3.5)

Substituting (A.3.5) back in to (A.3.4), one is left with integrals with respect

to pt and pr only. These integrals are trivial due to the presence of delta

functions.47 When these integrals are calculated, the expression for Ih,h̄ is

given as:

Ih,h̄ =
23−d
√
π

Γ(∆L)Γ(∆L − d
2 + 1)

eit(h+h̄)(h− h̄)d−2(hh̄)∆L−
d
2×

0F1R(
d− 1

2
;−1

4
(h− h̄)2r2),

(A.3.6)

47 One only needs to remember that h ≥ h̄ ≥ 0.
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where 0F1R(a, x) = Γ(a)−1
0F1(a, x). Relations between coordinates t and r

with x+ and x− are given as: x+ = t+ r and x− = t− r.

On the other hand, using the explicit form for conformal blocks (4.31) and

OPE coefficients in the Regge limit (3.40) one finds that:

(zz̄)−
(∆H+∆L)

2 P
(HL,HL);MFT

h̄,h−h̄
g∆HL,−∆HL
h,h̄

(z, z̄) =

=
Γ(d2 − 1)

Γ(∆L)Γ(∆L − d
2 + 1)

(hh̄)∆L+
d
2 (h− h̄)(zz̄)

h+h̄
2 C

( d2−1)

h−h̄

( z + z̄

2
√
zz̄

)

.
(A.3.7)

Using the relations between coordinates r, t and z, z̄ it is easy to see that

(zz̄)
h+h̄

2 = eit(h+h̄). Next, one can use the relation between Gegenbauer poly-

nomials and hypergeometric functions:

C(α)
n (z) =

(2α)n
n!

2F1(−n, 2α+ n, α+
1

2
;
1− z

2
), (A.3.8)

which for h− h̄ = l≫ 1 gives:

C
( d2−1)

l

( z + z̄

2
√
zz̄

)

=
ld−3

Γ(d− 2)
2F1(−l, l + d− 2,

d− 1

2
;
1

2
− 1

2
(
z + z̄

2
√
zz̄

)). (A.3.9)

With the help of the following properties of hypergeometric functions:

2F1(a, b, c; z) = (1− z)−b
2F1(c− a, b, c;

z

z − 1
),

lim
m,n→∞2F1(m,n, b;

z

mn
) = 0F1(b; z).

(A.3.10)

Using these, together with the assumption that in the Regge limit the values

of x+l and x−l are fixed constants: x+l = a1 and x−l = a2 while l → ∞, one

can easily see48 that (A.3.6) reproduces (A.3.1). This confirms the validity of

the impact parameter representation.

48 By noting that:

Γ(x− 1

2
) = 22−2x√πΓ(2x− 1)

Γ(x)
. (A.3.11)
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Appendix A.4. Anomalous dimensions of heavy-light double-trace

operators in d = 2

The OPE data of the heavy-light double trace operators in d = 2 dimensions

can be directly obtained from the heavy-light Virasoro vacuum block [40,105].

For completeness, in this appendix we investigate the anomalous dimension of

[OHOL]h̄,h−h̄ in d = 2 following the discussion in Section 4.2. As in d = 4,

we introduce an impact parameter representation following [55]. We calculate

the anomalous dimensions to O(µ) by solving the crossing equation and then

use the impact parameter representation to relate them to the bulk phase shift.

We find a precise agreement between the two. Using the bulk phase shift we

furthermore determine the anomalous dimension to second order in µ. Much of

the discussion follows closely the four-dimensional case and will be briefer.

A.4.1. Anomalous dimensions in the Regge limit using bootstrap

The conformal blocks in two dimension are given by [30,24]

g∆12,∆34

∆,J (z, z̄) = k∆+J (z)k∆−J (z̄) + (z ↔ z̄) , (A.4.1)

where kβ(z) was defined in (4.3). Similar to the four dimensional case, the blocks

for heavy-light double-trace operators simplify in the heavy limit (∆H ∼ CT )

g∆HL,−∆HL
[OHOL]h,h̄ (z, z̄) = (zz̄)

1
2 (∆H+∆L)(zhz̄h̄ + (z ↔ z̄)) . (A.4.2)

Inserting this form of the conformal blocks in (3.37) together with the OPE

coefficients in the Regge limit (3.40) and approximating the sums with integrals,

one can due to symmetry extend the region of integration and it is easily found

that the disconnected correlator in the T-channel is reproduced.

Similar to the four-dimensional case the stress tensor dominates at order µ

in the T-channel. The block of the stress tensor after analytic continuation in

the Regge limit is given by

gTµν =
24iπe−ρ

σ
+ . . . , (A.4.3)

where . . . denote non-singular terms. As in the four-dimensional case, this has

to be reproduced in the S-channel by the term in (3.37) proportional to −iπγ(1).
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With the conformal blocks (A.4.2), the imaginary part in the S-channel to

O(µ) is given by

Im(G(z, z̄))|µ = −iπC∆L

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−1γ
(1)

h̄,h−h̄

(

zhz̄h̄ + zh̄z̄h
)

.

(A.4.4)

Using the ansatz γ
(1)

h̄,h−h̄
= c1h

ah̄b we find that the T-channel contribution is

reproduced for a = 0 and b = 1 (see Appendix A.2 for details). We thus find

using (3.41)

γ
(1)

h̄,h−h̄
= −6λOHOHTµνλOLOLTµν

µ∆L
h̄ = −h̄. (A.4.5)

To O(µ2) we can use (4.11) to find the following contribution to the purely

imaginary terms in the S-channel

Im(G(z, z̄))|µ2 = −iπC∆L

∫ ∞

0

dh

∫ h

0

dh̄(hh̄)∆L−1

(

γ
(2)

h̄,h−h̄
− c21h̄

2

)

×

(zhz̄h̄ + zh̄z̄h).

(A.4.6)

A.4.2. 2d impact parameter representation and relation to bulk phase shift

Similar to the four-dimensional case we introduce an impact parameter repre-

sentation in order to relate the anomalous dimension with the bulk phase shift.

The impact parameter representation in d = 2 is given by

Ih,h̄ ≡ C(∆L)

∫

M+

d2p(−p2)∆−1e−ipx(h− h̄)δ(p · ē+ h+ h̄) δ

(

p2

4
+ hh̄

)

,

(A.4.7)

with straightforward generalization of the d = 4 case explained above. This is

again chosen such that when the impact parameter represetation is integrated

over h, h̄ the disconnected correlator is reproduced:

∫ ∞

0

dh

∫ h

0

Ih,h̄ =
1

[(1− z)(1− z̄)]∆L
. (A.4.8)

The discussion of the phase shift is completely analogous to the four-

dimensional case, as in (4.21) we find the following relation between the bulk

phase shift and the anomalous dimension to second order in µ

γ
(1)

h̄,h−h̄
= −δ(1)

π

γ̃
(2)

h̄,h−h̄
− c21p

−

4
= −δ(2)

π
.

(A.4.9)

163



In [55] the phase shift in d = 2 was found to be

δ(1) =
π

2

√

−p2e−L

δ(2) =
3π

8

√

−p2e−L.
(A.4.10)

Using the identification p+ = 2h and p− = 2h̄ together with (4.23) we find for

the anomalous dimension in the Regge limit

γ
(1)

h̄,h−h̄
= −h̄

γ
(2)

h̄,h−h̄
= −1

4
h̄.

(A.4.11)

We thus see that the first order result agrees with that obtained from bootstrap

(A.4.5). Furthermore, the second order correction agrees also in d = 2 with the

result (6.40) in [55].

Appendix A.5. Discussion of the boundary term integrals

There are a few integrals containing total derivative terms that we have ignored

throughout this section and we analyze more carefully here. Let us start with a

total derivative term which shows up in the real part of the correlator at O(µ).
It is given by49:

I1 =
1

2
(zz̄)−

1
2 (∆H+∆L)

∫ +∞

0

dl
[

P
(HL,HL);MFT
n,l γ

(1)
n,lg

∆HL,−∆HL
n+l,n (z, z̄)

]n→∞

n=0
.

(A.5.1)

Let us focus on the integrand:
[

P
(HL,HL);MFT
n,l γ

(1)
n,lg

∆HL,−∆HL
n+l,n (z, z̄)

]n→∞

n=0
.

When n = 0, the expression within the brackets trivially vanishes. On the

other hand, when n → ∞, it takes the form n2∆L−2(zz̄)n × f(l), where f is

some function of l only. We are instructed here to take the limit n → ∞
independently of all other limits (recall that the Regge limit is taken af-

ter the integration). For generic values 0 < (z, z̄) < 1 it is clear that

limn→∞
[

P
(HL,HL);MFT
n,l γ

(1)
n,lg

∆HL,−∆HL
n+l,n (z, z̄)

]

= limn→∞ n2∆L−2(zz̄)n× f(l)→

49 We are again using variables n and l, one can notice that n = h̄ and l = h − h̄.

It is trivial to prove that ∂n = ∂h + ∂h̄.
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0. In other words, the expression
[

P
(HL,HL);MFT
n,l γ

(1)
n,lg

∆HL,−∆HL
n+l,n (z, z̄)

]n→∞

n=0
→

0, and we conclude that the integral (A.5.1) does not contribute to the S-channel

expansion of the correlator.

There are a few more integrals of similar kind that appear at O(µ2). We

will analyse one of them here:

I2 =
−iπ
2

(zz̄)−
1
2 (∆H+∆L)

∫ +∞

0

dl
[

P
(HL,HL);MFT
n,l (γ

(1)
n,l )

2g∆HL,−∆HL
n+l,n (z, z̄)

]n→∞

n=0
.

(A.5.2)

The same logic can be applied here. Again, the value of the expression in brack-

ets at n = 0 is trivially zero, while for large n it behaves like: n2∆L+d−4(zz̄)nf̃(l).

As long as (z, z̄) < 1, this vanishes exponentially in the limit n→∞. One con-

cludes therefore that the integral (A.5.2) vanishes. The same logic is valid for

all other integrals of similar total derivative terms that appear at O(µ2).

Appendix A.6. An identity for the bulk phase shift.

The aim is to elaborate on the results of [55] for the bulk phase shift in a

black hole background as computed in gravity. Firstly, let us note the following

identity involving hypergeometric functions:

∞
∑

n=0

a(n)xn
2F1[τ0 + 2n+ 1,

d

2
− 1, τ0 + 2n− d

2
+ 3, x] = 2F1[τ0 + 1,

τ0
2
,
τ0
2

+ 2, x]

a(n) =
22n

n!

τ0 + 2

τ0 + 2 + 2n

( τ02 + 1− d
2 )n

(

τ0+1
2

)

n

(τ0 + n+ 2− d
2 )n

, τ0 6= 0 .

(A.6.1)

Given that both sides of the equality can be expressed as an infinite series ex-

pansion around x = 0, one simply needs to show that the expansion coefficients

match to all orders in x. This is proven in Appendix G.

Consider now the case τ0 = k(d− 2) where k ∈ N⋆. Setting x ≡ e−2L and

multiplying both sides with e−[k(d−2)+1]L yields:

Πk(d−2)+1,k(d−2)+1(L) =

∞
∑

n=0

βnΠk(d−2)+2n+1,d−1(L)

β(n) ≡ π
(1−k)(d−2)

2
a(n)

(k(d− 2) + 1)n

Γ
[

k(d− 2)− d
2 + 2n+ 3

]

Γ
[

k(d−2)
2 + 2

] .

(A.6.2)
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The left hand side represents the hyperbolic space propagator for a scalar field

of squared mass equal to k(d − 2) + 1 in a hyperbolic space of dimensionality

k(d− 2) + 1 and is proportional to the k-th order expression for the bulk phase

shift computed in gravity in [55], where

δ(k)(S, L) =
1

k!

2Γ
(

dk+1
2

)

Γ
(

k(d−2)+1
2

)

π1+
k(d−2)

2

Γ
(

k(d−2)
2

+ 1
)S Πk(d−2)+1,k(d−2)+1(L) . (A.6.3)

On the other hand, the right-hand side of (A.6.2) expresses the k-th order

term of the bulk phase shift as an infinite sum of (d−1)-dimensional hyperbolic

space propagators for fields with mass-squared equal to m2 = k(d−2)+1+2n.

It can be shown [132,74] that the analytically continued T-channel scalar

conformal block in the Regge limit behaves like:

g∆,J(σ, ρ) = i c∆,J
Π∆−1,d−1(ρ)

σJ−1
, (A.6.4)

where

c∆,J =
4∆+J−1Γ

(

∆+J−1
2

)

Γ
(

∆+J+1
2

)

Γ(∆+J
2 )2

2Γ
(

∆− d
2
+ 1
)

π1− d
2 Γ (∆− 1)

. (A.6.5)

Here Π∆−1,d−1 denotes as usual the (d− 1)-dimensional hyperbolic space prop-

agator for a massive scalar of mass-squared m2 = (∆− 1).

It follows that the k-th order term in the µ-expansion of the bulk phase

shift in a black hole background can be expressed as an infinite sum of conformal

blocks corresponding to operators of twist τ = τ0(k) + 2n = k(d− 2) + 2n and

spin J = 2 in the Regge limit. In other words, we can write:

i δ(k)(S, L) = f(k)
∞
∑

n=0

λk(n) g
R
τ0(k)+2n+2,2

(S, L)

λk(n) = a(n)
2−4n

[(

τ0(k)+4
2

)

n

]2

(

τ0(k)+3
2

)

n

(

τ0(k)+5
2

)

n

, τ0(k) = k(d− 2)

(A.6.6)

where

f(k) ≡
√
π

64

1

2k(d−2) k!

Γ
(

kd+1
2

)

Γ
(

k(d−2)+4
2

)

Γ
(

k(d−2)+5
2

)

Γ
(

k(d−2)+3
2

) , (A.6.7)

and

gR∆,J(S, L) = ic∆,J SJ−1 Π∆−1,d−1(L) . (A.6.8)
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Appendix A.7. An identity for hypergeometric functions.

Here we will show that for q 6= 0,

∞
∑

n=0

a(n)xn
2F1[q + 2n+ 1,

d

2
− 1, q + 2n− d

2
+ 3, x] = 2F1[q + 1,

q

2
,
q

2
+ 2, x]

a(n) =
22n

n!

q + 2

q + 2 + 2n

( q
2
+ 1− d

2
)n
(

q+1
2

)

n

(q + n+ 2− d
2 )n

, q 6= 0 .

(A.7.1)

Given that both sides of the equality can be expressed as an infinite series ex-

pansion around x = 0, one simply needs to show that the expansion coefficients

match to all orders in x. Let us first set:

b(n,m) ≡ 1

m!

(q + 1 + 2n)m
(

d
2
− 1
)

m
(

q − d
2 + 2n+ 3

)

m

c(ℓ) ≡ 1

ℓ!

(q + 1)ℓ
(

q
2

)

ℓ
(

q
2 + 2

)

ℓ

=
(q + 1)ℓ

ℓ!

q(q + 2)

(q + 2ℓ)(q + 2ℓ+ 2)
,

(A.7.2)

such that:

2F1[q + 2n+ 1,
d

2
− 1, q + 2n− d

2
+ 3, x] =

∞
∑

m=0

b(n,m)xm,

2F1[q + 1,
q

2
,
q

2
+ 2, x] =

∞
∑

ℓ=0

c(ℓ)xℓ.

(A.7.3)

It is easy to check that the coefficients of the first few powers of x precisely

match. Indeed, e.g.,

a(0)b(0, 0)− c(0) = 0

a(1)b(1, 0) + a(0)b(0, 1)− c(1) = 0

a(2)b(2, 0) + a(1)b(1, 1) + a(0)b(0, 2)− c(2) = 0.

(A.7.4)

To show that the above identity is true for all powers of x we must show that:

ℓ
∑

k=0

a(k)b(k, ℓ− k) = c(ℓ) , (A.7.5)

for all ℓ ∈ N . The left-hand side of (A.7.5) can be easily summed to yield:

ℓ
∑

k=0

a(k)b(k, ℓ− k) =
1

ℓ!

Γ[q + 1 + ℓ]

Γ[q]

(q + 2)

(q + 2ℓ)(2 + 2ℓ+ q)
, (A.7.6)

which can be trivially shown to be equal to c(ℓ).
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Appendix B.1. Linear relations between products of fa(z) functions

Here we list some linear relations between products of the fa(z) functions

used in the main text.

f1(z)f4(z) +
1

15
f3(z)f4(z) −

4

63
f2(z)f5(z)− f2(z)f3(z) = 0, (B.1.1)

308

25
f2
2 (z)−

308

25
f1(z)f3(z) +

5929

375
f2
3 (z)−

2673

2500
f2
4 (z)−

396

25
f1(z)f5(z)

+ f2(z)f6(z) = 0,

245f2
2 (z)− 245f1(z)f3(z)−

7

12
f2
3 (z) −

81

80
f2
4 (z) + f3(z)f5(z) = 0,

140

9
f2
2 (z)−

140

9
f1(z)f3(z) −

28

27
f2
3 (z) + f2(z)f4(z) = 0,

(B.1.2)
3991680

16000
f2(z)f3(z) −

99

125
f4(z)f3(z) + f6(z)f3(z)−

6237

25
f1(z)f4(z)

− 891

875
f4(z)f5(z) = 0,

f2(z)f7(z) +
7007

500
f2(z)f3(z) +

39611

2500
f4(z)f3(z)−

7007

500
f1(z)f4(z)

− 4719

4375
f4(z)f5(z)−

143

9
f1(z)f6(z) = 0,

(B.1.3)

− 1

15
f6(z)f2(z)

2 +
297

4375
f4(z)

2f2(z) + f1(z)f5(z)f2(z) +
44

625
f3(z)f5(z)f2(z)

+
9

143
f1(z)f7(z)f2(z) −

44

625
f3(z)

2f4(z) −
297

4375
f1(z)f4(z)f5(z)

− f1(z)f1(z)f6(z) = 0,

(B.1.4)

− f6(z)f1(z)
2 + f3(z)f4(z)f1(z)−

297

4375
f4(z)f5(z)f1(z) +

9

143
f2(z)f7(z)f1(z)

+
9

2500
f2(z)f4(z)

2 − 7

1875
f3(z)

2f4(z) +
7

1875
f2(z)f3(z)f5(z)

− 7

1980
f2(z)

2f6(z) = 0,

(B.1.5)

− f6(z)f1(z)
2 +

9

143
f2(z)f7(z)f1(z) −

297

4375
f4(z)f5(z)f1(z) +

297

4375
f2(z)f4(z)

2

+ f2(z)
2f4(z) −

44

625
f3(z)

2f4(z) +
7

1875
f2(z)f3(z)f5(z) −

7

1980
f2(z)

2f6(z)

+
297

4375
f2(z)f4(z)

2 − 7

1980
f2(z)

2f6(z) = 0,

(B.1.6)
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− f6(z)f1(z)
2 +

9

143
f2(z)f7(z)f1(z)−

297

4375
f4(z)f5(z)f1(z) + f2(z)f3(z)

2

+
9

2500
f2(z)f4(z)

2 − 44

625
f3(z)

2f4(z) +
2647

39375
f2(z)f3(z)f5(z)

− 7

1980
f2(z)

2f6(z) = 0,

(B.1.7)

−f6(z)f2(z)2 +
891

875
f4(z)

2f2(z) +
132

125
f3(z)f5(z)f2(z)−

132

125
f3(z)

2f4(z)

− 891

875
f1(z)f4(z)f5(z) + f1(z)f3(z)f6(z) = 0,

(B.1.8)
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Appendix B.2. Coefficients in G(3,1)(z)

Here we list the coefficients in G(3,1)(z):

b116 = −∆L (∆L + 3) (∆L (∆L (∆L (1001∆L + 387)− 4326) + 13828) + 5040)

10378368000 (∆L − 4) (∆L − 3) (∆L − 2)

+
b14 (∆L (143∆L + 427) + 540)

17160 (∆L − 4)
,

c118 = 7 (∆L + 3)×
(

604800b14
(

∆2
L − 5∆L + 6

)

+∆L

(

−21∆3
L + 229∆2

L + 414∆L + 284
))

856627200 (∆3
L − 9∆2

L + 26∆L − 24)
,

c127 =
∆L (∆L (∆L (∆L (∆L (14∆L − 15) + 6040)− 36125)− 75814)− 49620)

2306304000 (∆L − 4) (∆L − 3) (∆L − 2)

− 3b14 (∆L (2∆L + 3) + 135)

11440 (∆L − 4)
,

c145 =
3b14 (∆L (257∆L − 2227) + 510)

700000 (∆L − 4)
+ ∆L×

(∆L (∆L (∆L ((32680− 1183∆L)∆L − 183605) + 34900) + 570808) + 436440)

47040000000 (∆L − 4) (∆L − 3) (∆L − 2)
,

c226 =
b14 (∆L (22∆L − 267) + 960)

39600 (∆L − 4)
+ ∆L×

(∆L (∆L (∆L ((40020− 1337∆L)∆L − 274845) + 96350) + 2323212) + 1910160)

71850240000 (∆L − 4) (∆L − 3) (∆L − 2)
,

c235 =
b14 ((10283− 1153∆L)∆L − 5790)

900000 (∆L − 4)

+
∆L

(

51463∆5
L − 846480∆4

L + 1320405∆3
L

)

1632960000000 (∆3
L − 9∆2

L + 26∆L − 24)

+
∆L

(

22381100∆2
L − 46886088∆L − 46446840

)

1632960000000 (∆3
L − 9∆2

L + 26∆L − 24)
,

c244 =
9b14 (∆L (71− 11∆L) + 270)

175000 (∆L − 4)
+ ∆L×

(∆L (∆L (∆L (∆L (1337∆L − 32145) + 160095) + 19525)− 266712)− 182160)

70560000000 (∆L − 4) (∆L − 3) (∆L − 2)
,

c334 =
b14 (∆L (11∆L − 71)− 270)

18750 (∆L − 4)
+ ∆L×

(∆L (∆L (∆L (∆L (509∆L − 1515) + 83415)− 808325) + 823116) + 902880)

90720000000 (∆L − 4) (∆L − 3) (∆L − 2)
.

(B.2.1)
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Appendix B.3. Coefficients in G(3,2)(z)
Here we list the coefficients in G(3,2)(z):

g119 =
g13 (7∆L (128− 77∆L) + 6720)

16409250 (∆L − 5)

+
49b14 (∆L (∆L (170− 11∆L) + 981) + 1620)

16409250 (∆L − 5) (∆L − 4)

+
196e115
49725

+
539∆7

L − 15386∆6
L + 54215∆5

L + 951510∆4
L + 2911426∆3

L

472586400000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
98e15 (∆L + 4)

16575 (∆L − 5)
+

3737076∆2
L + 1779120∆L

472586400000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g128 = −7g13 (∆L (4∆L − 469) + 930)

12355200 (∆L − 5)

− 7b14
(

∆L

(

22∆2
L − 64∆L + 4197

)

+ 11745
)

6177600 (∆L − 5) (∆L − 4)
+

462∆7
L − 24203∆6

L + 1044630∆5
L − 3466005∆4

L − 24181012∆3
L − 39855972∆2

L

1779148800000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

− 49e15 (∆L (∆L + 2) + 102)

93600 (∆L − 5)

− 61201∆L

4942080000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g155 =
11e15 (∆L (278∆L − 2789) + 126)

2756250 (∆L − 5)

+
11g13 (∆L (2279∆L − 7400)− 8370)

231525000 (∆L − 5)

− 3146e115
275625

+
b14
(

12063∆3
L − 88048∆2

L − 131165∆L + 196110
)

77175000 (∆L − 5) (∆L − 4)

+
−244401285∆4

L + 853023786∆3
L + 2178372216∆2

L + 1399907880∆L

233377200000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
−1406986∆7

L + 28367309∆6
L − 123035140∆5

L

233377200000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g227 =
e15 (∆L (52∆L − 751) + 3234)

93600 (∆L − 5)

− e115
240

+
g13 (∆L (1051∆L − 12370)− 52530)

86486400 (∆L − 5)

+
b14 (∆L (∆L (3131∆L − 33896)− 62985) + 1236870)

86486400 (∆L − 5) (∆L − 4)

+
−213549∆7

L + 6031106∆6
L − 23990385∆5

L − 205647690∆4
L

87178291200000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
853227874∆3

L + 2135805744∆2
L + 1445776920∆L

87178291200000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

(B.3.1)
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g245 = −99e15 (∆L (83∆L − 754)− 1064)

4900000 (∆L − 5)

+
g13 (73∆L (275− 274∆L) + 170060)

137200000 (∆L − 5)

+
5577e115
245000

+
b14 (∆L (∆L (79801− 14981∆L) + 410980)− 55320)

68600000 (∆L − 5) (∆L − 4)

+
1300313∆7

L − 22489422∆6
L + 63989995∆5

L + 399569530∆4
L

138297600000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
−690996588∆3

L − 2276065528∆2
L − 1491467040∆L

138297600000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g335 =
1144e115
5315625

+
g13 (∆L (6426275− 894839∆L) + 685170)

17860500000 (∆L − 5)

− 11e15 (∆L (11143∆L − 143659) + 451206)

212625000 (∆L − 5)

− b14 (∆L (∆L (446853∆L − 4788638) + 4992635) + 44234910)

5953500000 (∆L − 5) (∆L − 4)

+
43544683∆7

L − 877022702∆6
L + 4877336920∆5

L − 1356232020∆4
L

9001692000000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
−28767381333∆3

L − 34411007748∆2
L − 12217009140∆L

9001692000000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

g344 =
11e15 (∆L (278∆L − 2789) + 126)

2625000 (∆L − 5)

+
g13 (∆L (17194∆L − 10525)− 249570)

220500000 (∆L − 5)

− 1573e115
131250

+
b14 (∆L (∆L (9438∆L − 48673)− 325415) + 511110)

73500000 (∆L − 5) (∆L − 4)

+
−1593347∆7

L + 27045868∆6
L − 6670280∆5

L − 1193221320∆4
L

444528000000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
1878076947∆3

L + 5698801932∆2
L + 3877115760∆L

444528000000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
.

(B.3.2)
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d117 = − 9

220
e115 +

84 + ∆L(53 + 13∆L)

1560(∆L − 5)
e15

+
13∆L (209∆L + 409) + 8340

7207200 (∆L − 5)
g13

− 4641∆7
L + 22727∆6

L + 44901∆5
L + 67569∆4

L + 519742∆3
L

290594304000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

− 828876∆2
L + 333648∆L

290594304000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

+
∆L (∆L (5317∆L + 18140) + 68763) + 69660

7207200 (∆L − 5) (∆L − 4)
b14.

(B.3.3)

g236 =
e15 ((15074− 1223∆L)∆L − 39816)

6804000 (∆L − 5)

+
g13 (∆L (186926∆L − 1951295) + 5891220)

6286896000 (∆L − 5)

+
143e115
340200

+
b14 (∆L (∆L (23001∆L − 469741) + 3383740)− 7782480)

1047816000 (∆L − 5) (∆L − 4)

− 9324749∆7
L − 433851406∆6

L + 5233472135∆5
L − 21967190310∆4

L

6337191168000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)

− 10644674676∆3
L + 72859312056∆2

L + 65903302080∆L

6337191168000000 (∆L − 5) (∆L − 4) (∆L − 3) (∆L − 2)
,

(B.3.4)

Appendix B.4. OPE coefficients of twist-eight triple-stress tensors

Here we list a few OPE coefficients of twist-eight triple-stress tensors which

are found using (6.52):

P
(3)
12,4 =

P
(2)
8,2 (∆L (143∆L + 427) + 540)

17160 (∆L − 4)

− 1001∆6
L + 3390∆5

L − 3165∆4
L + 850∆3

L + 46524∆2
L + 15120∆L

10378368000 (∆L − 4) (∆L − 3) (∆L − 2)
,

(B.4.1)

P
(3)
14,6 =

9P
(2)
8,2 (∆L (13∆L + 11) + 12)

544544 (∆L − 4)

+
7917∆6

L + 38174∆5
L + 140795∆4

L + 266390∆3
L + 253908∆2

L + 97776∆L

548900352000 (∆L − 4) (∆L − 3) (∆L − 2)
,

(B.4.2)
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P
(3)
16,8 =

5P
(2)
8,2 (∆L (17∆L + 2) + 6)

9876048 (∆L − 4)

+
362593∆6

L + 881129∆5
L + 2782307∆4

L

438022480896000 (∆L − 4) (∆L − 3) (∆L − 2)

4155839∆3
L + 3518084∆2

L + 1198176∆L

438022480896000 (∆L − 4) (∆L − 3) (∆L − 2)
,

(B.4.3)

P
(3)
18,10 =

P
(2)
8,2 (∆L (323∆L − 77) + 54)

823727520 (∆L − 4)

+
17413253∆6

L + 23717684∆5
L + 79039447∆4

L

377794389772800000 (∆L − 4) (∆L − 3) (∆L − 2)

+
92754344∆3

L + 73231064∆2
L + 22535496∆L

377794389772800000 (∆L − 4) (∆L − 3) (∆L − 2)
.

(B.4.4)

Assuming Einstein-Hilbert + Gauss-Bonnet gravity in the bulk, the OPE coef-

ficient P
(2)
8,2 was derived in (6.107) and can be inserted in (B.4.1)-(B.4.4).

Appendix B.5. Derivation of the deflection angle from the phase shift.

Here we simply show that the bulk phase shift, defined as δ = pt(∆t)− pφ(∆φ)

in [55] is consistent with the standard equation relating the eikonal phase and

the scattering angle
∂δ

∂b
= −pt ∆φ (B.5.1)

obtained with the use of the stationary phase approximation for small scattering

angles. Our discussion is focused on asymptotically flat space. In this case, the

formulas in classical gravity which provide the deflection angle and the time

delay are:

∆t = 2

∫ ∞

r0

dr

f
√

1− b2f
r2

∆φ = 2b

∫ ∞

r0

dr

r2
√

1− b2f
r2

.

(B.5.2)

They can be obtained from eq. (2.9) in [55] with the substitution pφ

pt = b (and

the appropriate definition of the blackening factor f(r)). Note that the equation

for the turning point of the geodesic, r0, reduces in Schwarzchild geometry to:

1− b2

r2f(r0)
= 0 (B.5.3)
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Defining the bulk phase shift via δ = pt(∆t)− pφ(∆φ), leads to

δ = pt(∆t)− pφ(∆φ) = pt (∆t− b∆φ) = 2pt
∫ ∞

r0

dr

f

√

1− b2f

r2
(B.5.4)

Differentiating the bulk phase shift with respect to the impact parameter yields:

∂δ

∂b
= −2pt b

∫ ∞

r0

dr

r2
√

1− b2f
r2

− 2pt
1

f(r0)

√

1− b2f(r0)

r20
= −pt(∆φ) , (B.5.5)

where to arrive at the last equality we used the equation satisfied by the turning

point r0. Hence,

∆φ = − 1

pt
∂δ

∂b
. (B.5.6)

Finally note that assuming the classical relation J ≡ pφ = b pt, the deflection

angle can also be computed through

∆φ = − ∂δ

∂J
. (B.5.7)

Appendix B.6. Anomalous dimensions and phase shift at O(µ2)

We give explicit expressions for γ
(2,0)
n , γ

(2,1)
n and γ

(2,2)
n from (3.69)

γ(2,0)
n =− 1

8
(∆L − 1)∆L (4∆L + 1)− 51

4
n2 (∆L − 1)

+
1

4
n (3 (11− 7∆L)∆L − 17)− 17

2
n3,

(B.6.1)

γ(2,1)
n =

1

8
√
1− 4λGBr2AdS

(

λGB(4∆
4
L + 8∆3

L − 4∆2
L − 8∆L + 560n3∆L

+ 360n2∆2
L − 600n2∆L + 80n∆3

L − 120n∆2
L + 200n∆L + 280n4

− 560n3 + 440n2 − 160n) + r2AdS

√

1− 4λGB(−∆4
L + 6∆3

L − 5∆2
L

− 140n3∆L − 90n2∆2
L + 354n2∆L − 20n∆3

L + 114n∆2
L

− 182n∆L − 70n4 + 276n3 − 314n2 + 108n)
)

,

(B.6.2)
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γ(2,2)
n =

1

8
√
1− 4λGBr

2
AdS

(

λGB(16∆
3
L − 16∆L + 840n4∆L + 720n3∆2

L

− 2880n3∆L + 240n2∆3
L − 1440n2∆2

L + 3720n2∆L + 24n∆4
L − 192n∆3

L

+ 888n∆2
L − 1536n∆L + 336n5 − 1680n4 + 3440n3 − 3120n2 + 1024n)

+ r2AdS

√

1− 4λGB(3∆
4
L − 10∆3

L + 6∆2
L +∆L + 420n3∆L + 270n2∆2

L

− 876n2∆L + 60n∆3
L − 264n∆2

L + 420n∆L + 210n4 − 704n3 + 756n2

− 262n)
)

,

(B.6.3)

where we use the expression for P
(2)
8,0 , found in [15], to fix γ

(2,2)
n . If one considers

limit 1≪ l, n≪ ∆H one gets

γ
(2)
n,l ≈

l,n→∞
− 17n3

2l2
− 35n4

4l3

(

1− 4λGB

r2AdS

√
1− 4λGB

)

+
42λGBn

5

√
1− 4λGBl4r2AdS

+ . . . ,

(B.6.4)

where . . . denote terms that come from γ
(2,m)
n for m > 2 and they have higher

powers of l (and n) as well as terms that are subleading in the given limit and

behave as O(1).
By using the following relations from [55,12]

sinh(L) =
b

rAdS
, cosh(L) =

p+ + p−

2
√

−p2
, (B.6.5)

with

−p2 = p+p−, p+ = 2h, p− = 2h̄, (B.6.6)

where

h = n+ l, h̄ = n, (B.6.7)

one obtains δ(2) from (6.93) in terms of the S-channel variables n and l

δ(2) =
7πn3

4l5

(

10l3 + 5l2n− 4n(5l2 + 6ln+ 2n2)λGB

r2AdS

√
1− 4λGB

)

. (B.6.8)

From (6.28) and (3.69) one concludes that the leading behavior in the large-

l and large-n limit (1≪ n, l≪ ∆H) of γ
(1)
n,l is

γ
(1)
n,l ≈

l,n→∞
− 3n2

l
+O (1) . (B.6.9)
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Now, one can evaluate (1.5) from [12] using (B.6.8) and (B.6.9)

γ
(2)
n,l ≈

l,n→∞
− δ(2)

π
+

1

2
γ
(1)
n,l∂nγ

(1)
n,l

≈
l,n→∞

− 17n3

2l2
− 35n4

4l3

(

1− 4λGB

r2AdS

√
1− 4λGB

)

+
42λGBn

5

√
1− 4λGBl4r2AdS

+
14λGBn

6

√
1− 4λGBl5r2AdS

+O(1).
(B.6.10)

We see that first three terms in (B.6.10) precisely matches with terms in (B.6.4),

which explicitly confirms the validity of relation (1.5) in [12]. One would expect

that term 14λGBn6
√
1−4λGBl5r2

AdS

is due to
γ(2,3)
n

l5 in (3.69), while all other
γ(2,k)
n

l2+k
, for

k > 3, should behave as O(1) in 1 ≪ n, l ≪ ∆H limit for (1.5) from [12] to be

true.

Appendix C.1. OPE coefficients from Wick contractions

In this appendix we go through the calculations needed for finding the

OPE coefficients of various operators using Wick contractions. This mainly

amounts to counting the number of contractions leading to a planar diagram.

For simplicity, the figures are shown for external operators with ∆ = 4 while

we write down the result for general ∆ as this is needed for the main body of

the section.

To begin with, since we consider a large-N matrix theory, it is convenient

to use the double-line notation for fundamental field propagators. In Fig. 1 the

two-point function 〈: Tr(φ4) :: Tr(φ4) :〉 is visualised.

Fig. 1: The two-point function 〈: Tr(φ4) :: Tr(φ4) :〉 before any con-

tractions.

177



In Fig. 2, the planar diagram is shown for ∆ = 4 and there are ∆ number

of such contractions giving a planar diagram

P〈:Tr(φ∆)::Tr(φ∆):〉 = ∆, (C.1.1)

where the P〈...〉 denotes the number of planar diagrams for 〈...〉.

Fig. 2: The two-point function 〈: Tr(φ4) :: Tr(φ4) :〉 completely con-

tracted.

We further need the OPE coefficient λO∆O∆O2
. This is shown in Fig. 3 for

∆ = 4 and there are 2∆ possibilities for step (1), ∆ number of possibilites for

step (2) after which everything is fixed assuming that the diagram is planar.

This gives

P〈:Tr(φ∆)::Tr(φ∆)::Tr(φ2):〉 = 2∆2. (C.1.2)

Fig. 3: The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2) :〉 com-

pletely contracted.
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In Fig. 4 the three-point function 〈: Tr(φ∆) :: Tr(φ∆) :: Tr(φ4) :〉 for
∆ = 4 is shown. For the first contraction (1) there are 2∆ possibilites, for the

second contraction there are ∆ and for step (3) there are two possibilites. This

gives overall

P〈:Tr(φ∆)::Tr(φ∆)::Tr(φ4):〉 = 4∆2. (C.1.3)

Fig. 4: The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ4) :〉 com-

pletely contracted.

In Fig. 5 and Fig. 6, the three-point function 〈: Tr(φ4) :: Tr(φ4) :

Tr(φ2)Tr(φ2) :〉 is shown. The reason for there being two different types of dia-

grams is because each trace term in the double trace operator : Tr(φ2)Tr(φ2) :

can either be contracted with the same : Tr(φ4) : (Fig. 5, type B), or to both

(Fig. 6, type A).

Consider first the type of diagrams in Fig. 5. For the first contraction

there are 2∆ such terms and the second contraction gives another factor of

2. Contraction (3) and (4) contributes factors of ∆ and 2 respectively. What

remains is equivalent to the two-point function 〈: Tr(φ∆−2) :: Tr(φ∆−2) :〉 which
further give a factor of (∆− 2) and therefore there are 8∆2(∆− 2) contractions

of type B in Fig. 5.

Continuing with Fig. 6, the first contraction gives a factor of 2∆, the

second contraction ∆ and the third one a factor of 2(∆ − 1). What re-

mains is then fixed by imposing that the diagram is planar. The type A di-

agrams in Fig. 6 therefore further contributes 4∆2(∆ − 1) planar diagrams to

〈: Tr(φ∆) :: Tr(φ∆) : Tr(φ2)Tr(φ2) :〉. It is therefore found that

P〈:Tr(φ∆)::Tr(φ∆):Tr(φ2)Tr(φ2):〉 = 4∆2(3∆− 5). (C.1.4)
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Fig. 5: The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2)Tr(φ2) :

〉. There are two such types of contractions that give planar diagrams,

here it shown when each : Tr(φ2) : connect to a separate : Tr(φ4) :.

Fig. 6: The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2)Tr(φ2) :

〉. There are two such types of contractions that give planar diagrams,

here it shown when each : Tr(φ2) : connect to both : Tr(φ4) : operators.

Consider now the stress tensor OPE coffiecient λO∆O∆Tµν where

Tµν(x) =
1

2
√
3N

: Tr

(

∂µφ∂νφ−
1

2
φ∂µ∂νφ− (trace)

)

: (x) (C.1.5)

and the three-point function 〈O∆O∆Tµν〉:

〈O∆(x1)O∆(x2)Tµν(x3)〉 = λO∆O∆Tµν

ZµZν − traces

|x12|2∆−2|x23|2|x13|2
, (C.1.6)

where Zµ =
x13µ

|x13|2 −
x12µ

|x12|2 . From the definition of Tµν in (C.1.5) it is clear that

the only term that contributes to term x13µx13ν comes from the second term in

(C.1.5) that is of the form ∝ Tr(φ∂µ∂νφ). Up to the derivatives, the diagram

will look like those visualised in Fig. 3. The number of diagrams is half of that

given in (C.1.2) since we restrict to terms proportional to x13µx13ν :

P〈O∆O∆Tµν〉|x13µx13ν = ∆2, (C.1.7)
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from which we reproduce (7.24).

Now we want to find the OPE coefficient λO∆O∆T 2
4,4

for the double-stress

tensor T 2
4,4. This is done similarly to the way the stress tensor OPE coefficient

was found. First, the operator (T 2)µνρσ was given in (7.25) to be

(T 2)µνρσ(x) =
1√
2
: T(µνTρσ) : (x)− (traces) (C.1.8)

and the three-point function 〈O∆O∆(T
2)µνρσ〉 is fixed by conformal symmetry

to be

〈O∆(x1)O∆(x2)(T
2)µνρσ(x3)〉 =

λO∆O∆T 2
4,4

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) .

(C.1.9)

Consider the term in (C.1.9) proportional to x13µx13νx13ρx13σ. This will be

due to the term in (T 2)µνρσ of the form Tr(φ∂(µ∂νφ)Tr(φ∂ρ∂σ)φ). Using this

we find that

〈O∆(x1)O∆(x2)(T
2)µνρσ(x3)〉|x13µx13νx13ρx13σ

=
1

∆N∆

1√
2

( −1
4
√
3N

)2

82N∆

×
P〈O∆O∆T 2

4,4〉|x13µx13νx13ρx13σ
|x12|2(∆−2)|x23|4|x13|12

.

(C.1.10)

The number of contractions giving a planar diagram, P〈O∆O∆T 2
4,4〉|x13µx13νx13ρx13σ ,

come from diagrams of the form given in Fig. 6. Since we are considering the

term proportional x13µx13νx13ρx13σ, the number of such diagrams are reduced

compared to scalar double trace operator. Instead the first contraction, (1) in

Fig. 6, give a factor of ∆, the second contraction, (2), a factor of (∆ − 1), the

third contraction (3) gives a further factor ∆ after which everything is fixed by

imposing that the diagram is planar. We therefore find that

P〈O∆O∆T 2
4,4〉|x13µx13νx13ρx13σ = ∆2(∆− 1), (C.1.11)

and inserting this in (C.1.10) gives

λO∆O∆T 2
4,4

=
2
√
2∆(∆− 1)

3N2
, (C.1.12)

and therefore reproduces (7.28).
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Similar to the double-stress tensor, consider the dimension-eight spin-four

double trace operator

ODT
µνρσ(x) =

1

96
√
70N2

: Tr(φ2)
(

Tr(φ∂µ∂ν∂ρ∂σφ)− 16Tr(∂(µφ∂ν∂ρ∂σ)φ)

+18Tr(∂(µ∂νφ∂ρ∂σ)φ)(x)− (traces)
)

: (x).

(C.1.13)

The three-point function 〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉 is given by

〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉 =

λO∆O∆ODT
µνρσ

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) .

(C.1.14)

By again considering terms in (C.1.14) proportional to x13µx13νx13ρx13σ we

find that each term in (C.1.13) will contribute planar diagram of the type in

Fig. 5, while only the term ∼ Tr(φ∂4φ) also give a contribution of the type

in Fig. 6. Considering first the terms coming from the diagram in Fig. 5, one

finds that this contribution vanishes. The remaining contribution to the term

(C.1.14) proportional to x13µx13νx13ρx13σ comes from the first term in (C.1.13)

and the planar diagram pictured in Fig. 6; there are 2∆2(∆ − 1) contractions

giving such a planar diagram leading to

〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉|x13µx13νx13ρx13σ

=
1

∆N∆

384

96
√
70N2

N∆

× 2∆2(∆− 1)

|x12|2(∆−2)|x23|4|x13|12
,

(C.1.15)

where the 384 in the numerator come from the derivatives. This gives the OPE

coefficient:

λO∆O∆ODT
µνρσ

=

√

2

35

4∆(∆− 1)

N2
+O(N−4). (C.1.16)

Appendix C.2. Subleading twist double-stress tensors

In this Appendix we study the subleading twist double-stress tensors, both

with dimension 8 and spin s = 0, 2 denoted (T 2) and (T 2)µν respectively. The

calculations needed to find the OPE coefficient in the O∆ × O∆ OPE are re-

viewed as well as the normalization of (T 2)µν .
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The (T 2)µν was defined in (7.41) which we repeat here:

(T 2)µν(x) =
1√
2
: Tµ

αT
αν : (x)− δµν

4
√
2
: T β

αT
α
β : (x). (C.2.1)

The operator (T 2)µν can be seen to be unit-normalized to leading order in N :

〈(T 2)µν(x1)(T
2)ρσ(x2)〉 =

1√
2
〈Tµα(x1)Tρβ(x2)〉〈T ν

α(x1)T
β
σ〉

+ (ρ←→ σ)− (traces) +O(N−2).

(C.2.2)

Using the two-point function of the stress tensor in (7.23) and IµαI
α
ρ = δµρ

one finds

〈(T 2)µν(x1)(T
2)ρσ(x2)〉 =

1

|x|16
(

I(µρI
ν)

σ − (traces)
)

, (C.2.3)

from which it is seen that (T 2)µν is unit-normalised.

We now want to find the OPE coefficient of (T 2)µν in the O∆×O∆ OPE. It

can be found from the basic objects I
(1)
µνρσ, I

(2)
µνρσ and I

(3)
µνρσ which we calculate

below.

We first consider a similar quantity J (1)µνρσ:

J (1)µνρσ = 〈: Tr(φ∆) : (x1) : Tr(φ
∆) : (x2) :: Tr(∂µφ∂νφ)Tr(∂ρφ∂σφ) : (x3)〉

=
24N∆

|x13|8|x23|8|x12|2∆−4
×
[

(2∆)2(∆− 2)(xµ
13x

ν
13x

ρ
23x

σ
23 + xµ

23x
ν
23x

ρ
13x

σ
13)+

∆2(∆− 1)(xµ
13x

ν
23(x

ρ
13x

σ
23 + xρ

23x
σ
13) + xµ

23x
ν
13(x

ρ
13x

σ
23 + xρ

23x
σ
13))

]

.

(C.2.4)

Definining Xµν
13 = 1

|x13|4 (−δ
µν + 4

xµ13x
ν
13

|x13|2 ) we then study J (2)µνρσ:

J (2)µνρσ = 〈: Tr(φ∆) : (x1) : Tr(φ
∆) : (x2) :: Tr(φ∂µ∂νφ)Tr(φ∂ρ∂σφ) : (x3)〉

=
N∆

|x12|2∆−4

[

∆2(∆− 1)22
(

Xµν
13

1

|x23|2
Xρσ

13

1

|x23|2
+Xµν

13

1

|x23|2
Xρσ

23

1

|x13|2
)

+((2∆)2(∆− 2))22Xµν
13

1

|x13|2
Xρσ

23

1

|x23|2

+(13)←→ (23)
]

.

(C.2.5)
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And lastly J (3)µνρσ:

J (3)µνρσ =〈: Tr(φ∆) : (x1) : Tr(φ
∆) : (x2) :: Tr(φ∂µ∂νφ)Tr(∂ρφ∂σφ) : (x3)〉

=
N∆

|x12|2∆−4

[

((2∆)2(∆− 2))23Xµν
13

1

|x13|2
xρ
23x

σ
23

|x23|8
+

+∆2(∆− 1)23Xµν
13

1

|x23|2
xρ
13x

σ
23 + xρ

23x
σ
13

|x13|4|x23|4

+ (13)←→ (23)
]

.

(C.2.6)

We further need to make (C.2.4)-(C.2.6) traceless in the pairs (µ, ν) and (ρ, σ)

and therefore define I(i)
µνρσ

as

I(i)
µνρσ

= J (i)µνρσ − δµν

4
J (i)α

α

ρσ − δρσ

4
J (i)µνα

α +
δµνδρσ

16
J (i)α

α

γ

γ . (C.2.7)

From (C.2.4)-(C.2.6), the three-point function 〈O∆(x1)O∆(x2)(T
2)µν(x3)〉

is given by

〈O∆(x1)O∆(x2)(T
2)µν〉 = 1

12
√
2∆N∆+2

(I(1)
(µ|α

α

|ν)
− I(3)

(µ|α
α

|ν)

+
1

4
I(2)

(µ|α
α

|ν)
− (trace)).

(C.2.8)

Explicitly we find that

〈O∆(x1)O∆(x2)(T
2)µν(x3)〉 =

√
2∆(∆− 1)

3N2

ZµZν − (trace)

|x12|2∆−6|x13|6|x23|6
+O(N−4).

(C.2.9)

Consider now the scalar operator (T 2) defined by

(T 2)(x) =
1

36
√
2N2

: TµνT
µν : (x). (C.2.10)

The three-point function 〈O∆(x1)O∆(x2)(T
2)(x3)〉 can be found using I(i) de-

fined in (C.2.7) as follows

〈O∆(x1)O∆(x2)(T
2)(x3)〉 =

1

36
√
2∆N2+∆

(I(1)
µν

µν − I(3)
µν

µν +
1

4
I(2)

µν
µν)

+O(N−4) =
∆(∆− 1)

3
√
2N2

1

|x12|2∆−8|x13|8|x23|8
+O(N−4).

(C.2.11)

184



Appendix C.3. Single trace operator with dimension ∆ ∼ CT

In this appendix we study the single trace scalar operator O∆H given by

OH(x) =
1

√

N∆H

: Tr(φ∆H ) : (x), (C.3.1)

with ∆H ∼ CT and N∆H a normalization constant50. When calculat-

ing the normalization constant N∆H as well as the three-point functions

〈OH(x1)OH(x2)O(x3)〉, non-planar diagrams generically gets enhanced by pow-

ers of ∆H and therefore invalidates the naive planar expansion. The goal of this

appendix is to show that

〈OH(x1)OH(x2)Ô(x3)〉 = 〈O∆(x1)O∆(x2)Ô(x3)〉|∆=∆H , (C.3.2)

where Ô is either : Tr(φ2) : or, more importantly, minimal-twist multi stress

tensors with any spin. Moreover, note that the LHS in (C.3.2) is in principle

exact in CT ∼ N2 while the RHS is obtained by keeping only planar diagrams

with ∆≪ CT and then setting ∆ = ∆H in the end.

The propagator for the field φ was given in (7.19) by

〈φi
j(x)φ

k
l(y)〉 =

(

δilδ
k
j −

1

N
δijδ

k
l

)

1

|x− y|2 . (C.3.3)

Consider now the three-point function 〈: Tr(φ∆H ) : (x1) : Tr(φ∆H ) : (x2) :

Tr(φ2) : (x3)〉. Due to the normal ordering, one φ field in : Tr(φ2) : (x3) need to

be contracted with : Tr(φ∆H ) : (x1) : and the other one with : Tr(φ∆H ) : (x2) :.

Note that for this contraction the second term in (C.3.3) give a contribution

proportional to Tr(φ(x3)) = 0. It is therefore seen that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ2
3) :〉 = 2∆H〈: Tr(φ3φ

∆H−1
1 ) :: Tr(φ∆H

2 ) :〉,
(C.3.4)

where we introduced the notation φi = φ(xi) and dropped the |xij |−2 coming

from (C.3.3). The position dependence is easily restored in the end. Now it is

seen that the RHS of (C.3.4) is proportional to the two-point function51 of OH

and we therefore find that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ2
3) :〉 = 2∆HN∆H , (C.3.5)

50 Mixing with other operators with ∆ ∼ CT is not important for this discussion.
51 Up to the position dependence.
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which is exact to all orders in CT . Including the normalization factor of OH in

(C.3.1) and O2 from (7.20) we find that

〈OH(x1)OH(x2)O2(x3)〉 =
√
2∆H

N

1

|x12|2∆H−2|x13|2|x23|2
+O(N−3). (C.3.6)

By comparing (C.3.6) with (7.87) we find that

λOHOHO2
= λO∆O∆O2

|∆=∆H . (C.3.7)

Note that in (C.3.6) the normalization of OH cancels the contribution from non-

planar diagrams in limit ∆H ∼ CT . For ∆ = 2 in (7.20), it is trivial to compute

the normalization exact in N to get the correction to λO∆O∆O2
in (C.3.6).

Consider now the stress tensor operator defined in (7.22) and the three-

point function 〈OH(x1)OH(x2)Tµν(x3)〉. This is fixed by the Ward identity but

is an instructive example before considering more general multi stress tensors.

In the same way as the OPE coefficient was found in the O∆ × O∆ OPE, due

to the tensor structure being fixed by conformal symmetry, we consider the

term proportional to xµ
13x

ν
13 in the three-point function. This comes from the

− 1
6
√
CT

Tr(φ∂µ∂νφ) term in the stress tensor when ∂µ∂νφ is contracted with one

of the ∆H number of φ(x1) fields. Doing this contraction we therefore see that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ3∂µ∂νφ3) :〉|xµ13xν13 =

8∆H〈: Tr(φ3φ
∆H−1
1 ) :: Tr(φ∆H

2 ) :〉,
(C.3.8)

where the factor 8 comes from the derivatives and we again suppress the space-

time dependence. The RHS of (C.3.8) is also proportional to the normalization

constant of OH . Including the normalization factor of the stress tensor in (7.22)

and that ofOH in (C.3.1), the three-point function 〈OHOHTµν〉 can be obtained

from (C.3.8) from which we read off the OPE coefficient

λOHOHTµν = − 4∆H

3
√
CT

. (C.3.9)

This agrees with (7.24).

We now want to show that is true for minimal-twist multi stress tensors

with any spin. For simplicity, consider the double-stress tensor with spin 4

defined in (7.25)

(T 2)µνρσ(x) =
1√
2
: T(µνTρσ) : (x)− (traces). (C.3.10)
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Similarly to the calculation of the three-point function with the stress tensor,

we can obtain the three-point function 〈OH(x1)OH(x2)(T
2)µνρσ(x3)〉 by con-

sidering the term proportional to xµ
13x

ν
13x

ρ
13x

σ
13. This will be due to the term

1√
262CT

Tr(φ∂µ∂νφ)Tr(φ∂ρ∂σφ) when contracting ∂µ∂νφ with some φ(x1) and

likewise contracting ∂ρ∂σφ with some other φ(x1). The number of such con-

tractions is given by ∆H(∆H − 1) and we find that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) : : Tr(φ3∂µ∂νφ3)Tr(φ3∂ρ∂σφ3) :〉|xµ13xν13xρ13xσ13
= 82∆H(∆H − 1)〈: Tr(φ2

3φ
∆H−2
1 ) :: Tr(φ∆H

2 ) :〉,
(C.3.11)

where the factor of 82 again is due to acting with the derivatives and note that

the position of the φ3 fields in in the last line is not important. It is again

seen that the RHS of (C.3.11) is proportional to the normalization constant of

OH . Including the normalization in (7.25) and (C.3.1) we find the three-point

function 〈OHOH(T 2)µνρσ〉 and read off the OPE coefficient:

λOHOHT 2
4,4

=
8
√
2∆H(∆H − 1)

9CT
+O(C−3/2

T ). (C.3.12)

which is seen to agree with (7.28) when setting ∆H = ∆. Note that the correc-

tions in (C.3.12) are solely due to corrections in the normalization of T 2
4,4 and

therefore λOHOHT 2
4,4

= λO∆O∆T 2
4,4

to all orders in CT . These arguments gener-

alize straightforwardly to minimal-twist multi stress tensor with any spin such

that the results are the same as those obtained in the planar limit for ∆≪ C2
T

in Section 7.3 by setting ∆H = ∆. The only correction in CT is then due to the

normalization of the multi stress tensor.

The same argument applies to any scalar primary multi-trace operator

O∆, without any derivatives, with OPE coefficients given by (C.3.6), (C.3.9)

and (C.3.12).

Appendix C.4. Stress tensor thermal one-point function

In order to calculate thermal one-point functions in the free adjoint scalar

model we use the fact that the thermal correlation function is related to the
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zero-temperature case by summing over images. Consider now the thermal one-

point function of the stress tensor. Generally, the one-point function of a spin-s

symmetric traceless operator with dimension ∆O on S1×Rd−1 is given by [82]

〈Oµ1...µs(x)〉β =
bO
β∆O

(eµ1 . . . eµs − (traces)), (C.4.1)

where eµ1 is a unit-vector along the thermal circle. Consider first the canonically

normalized stress tensor given by T
(can)
µν = 1

3Sd
(Tr(∂µφ∂µφ) − 1

2
Tr(φ∂µ∂νφ) −

(traces)). In order to find the one-point function, use the following:

〈Tr(∂(x)
µ φ(x)∂(y)

ν φ(y))〉 = 2(N2 − 1)

|x− y|4 (δµν − 4(y− x)µ(y− x)ν
1

|x− y|2 ) (C.4.2)

and

〈Tr(∂(x)
µ ∂(x)

ν φ(x)φ(y))〉 = 2(N2 − 1)

|x− y|4 (−δµν + 4(y − x)µ(y − x)ν
1

|x− y|2 ).
(C.4.3)

To get the thermal correlator, we use (C.4.2) and (C.4.3) with x, y along the

thermal circle separated by a distance mβ, with m integer, and sum over m 6= 0.

The reason for summing over m 6= 0 is the normal ordering of the operators.

Namely, at T = 0, the normal ordering means that the correlation functions

are computed without the self contractions, which would give the divergent

contributions to the correlator. Removing the self-contractions in the correlation

functions at T = 0 is the same as removing the divergent term with m = 0 when

computing the thermal expectation value. The relevant terms for calculating

the one-point functions in terms of fundamental fields are therefore

〈Tr(∂µφ∂νφ)〉β,m = −8(N2 − 1)

(mβ)4
eµeν +

2(N2 − 1)

(mβ)4
δµν ,

〈Tr(∂µ∂νφφ)〉β,m =
8(N2 − 1)

(mβ)4
eµeν − 2(N2 − 1)

(mβ)4
δµν ,

(C.4.4)

where we note that only the first term in each equation in (C.4.4) contribute to

the non-trace term in (C.4.1).

We therefore find for the stress tensor one-point function:

〈T (can)
µν 〉β =

1

3Sd
(〈Tr(∂µφ∂νφ)〉β −

1

2
〈Tr(∂µ∂νφφ)〉β − trace)

=
−12(N2 − 1)

3Sd

2ζ(4)

β4
(eµeν − (trace)),

(C.4.5)
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where the 2ζ(4) comes from summing over images and we therefore have

b
T

(can)
µν

= −4(N2 − 1)

Sd
2ζ(4) = − 4π4

45Sd
(N2 − 1). (C.4.6)

This agrees with f =
b
T

(can)
µν

d in eq. (2.17) in [82] for (N2 − 1) free scalar fields.

This also agrees with a2,2 = π4∆
45 found from the two-point thermal correlator

using:

a2,2 =
π4∆

45
=

(

1

2

)2 λO∆O∆T (can)b
T

(can)
µν

CT
S2
d

, (C.4.7)

using λO∆O∆T (can) = − 4∆
3Sd

in this normalization and CT = 4
3
(N2 − 1). This is

simply related to the one-point function for the unit-normalized stress tensor

by (to leading order in N)

bTµν =
b
T

(can)
µν√
CT
Sd

≈ −2π4N

15
√
3
.

(C.4.8)

Let us now consider the thermalization of the stress tensor, keeping all

the index structures. To compare the thermal two-point function with the

heavy-heavy-light-light correlator, we want to relate the dimension of the heavy

operator, ∆H , to the inverse temperature β. Consider the expectation value of

the stress tensor in a heavy state created by OH on the cylinder R× S3

〈OH |Tµν(x0
E,2, n̂)|OH〉cyl = lim

x3→∞
|x3|2∆H |x2|4λOHOHTµν

ZµZν − 1
4δ

µνZρZρ

|x13|2∆H−2|x23|2|x12|2
,

(C.4.9)

where the RHS is found by a conformal transformation to the plane with Zµ =
(

xµ12
|x12|2 +

xµ23
|x23|2

)

. When x1 = 0 and x3 → ∞, it is seen that Zµ = − xµ2
|x2|2 and

(C.4.9) only depends on x̂µ =
xµ21
|x21| = r̂, where r̂ is a radial unit vector. In radial

quantization it follows that

〈OH |Tµν(x0
E,2, n̂)|OH〉cyl =

λOHOHTµν

R4
(êµêν −

1

4
δµν) (C.4.10)

where we reintroduced the radius of the sphere R, λOHOHTµν is the OPE coef-

ficient of Tµν in the OH ×OH OPE and êµ = (1, 0, 0, 0).
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The thermal one-point function of an operator Oτ,s, with twist τ and spin

s, on S1 × S3 is fixed by conformal symmetry [82]

〈Oτ,s(x)〉β =
bOτ,sfOτ,s(

β
R )

βτ+s
(eµ1 · · · eµs − (traces)), (C.4.11)

where fOτ,s(0) = 1 and eµ = (1, 0, 0, 0).

We assume thermalization of the stress tensor in the heavy state:

〈OH |Tµν(x)|OH〉 = 〈Tµν(x)〉β (C.4.12)

where 〈Tµν(x)〉β is the thermal one-point function at inverse temperature β

evaluated on S1 × S3, with R being the radius of S3. Using (C.4.10)-(C.4.12)

we find
λOHOHTµν

R4
=

bTµνfTµν (
β
R )

β4
. (C.4.13)

Using (C.4.13) for R → ∞ in the free adjoint scalar theory, together with

the one-point function bTµν = −2π4N
15

√
3

and the OPE coefficient λOHOHTµν =

− 4∆H
3
√
CT

, one finds the following relation between µ = 160∆H
3CT

and the inverse

temperature β:

µ =
8

3

(

πR

β

)4

. (C.4.14)

This agrees with (7.50).

Appendix C.5. Dimension-six spin-four single trace operator

We want to calculate the contribution of the single trace operator with

τ = 2 and s = 4. The unit-normalised O2,4 operator is given by52

Ξµνρσ(x) =
1

96
√
35N

: Tr
(

φ(∂µ∂ν∂ρ∂σφ) − 16(∂(µφ)(∂ν∂ρ∂σ)φ)

+ 18(∂(µ∂νφ)(∂ρ∂σ)φ)− (traces)
)

: (x).

(C.5.1)

The relative coefficients are fixed by demanding that it is a primary operator

[Kα,Ξµνρσ] = 0. Explictily, this is done using the conformal algebra

[Kµ, Pν ] = 2i(ηµνD −Mµν),

[Mµν , Pρ] = −i(ηρµPν − ηρνPµ),
(C.5.2)

52 We denote this operator either as O2,4 or Ξµνρσ depending whether we want to

explicitly list the indices or not.
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and the action on the fundamental field φ

Pµφ(0) = −i∂µφ(0),
Dφ(0) = iφ(0).

(C.5.3)

The relevant commutators in order to fix Ξµνρσ are

[Kα, Pµφ] =− 2ηαµφ,

[Kα, PµPνφ] =− 4ηαµPνφ− 4ηανPµφ+ 2ηµνPαφ,

[Kα, PµPνPρφ] =− 6ηαµPνPρφ− 6ηανPµPρφ− 6ηαρPνPµφ

+ 2ηµνPρPαφ+ 2ηρνPµPαφ+ 2ηµρPνPαφ,

[Kα, PµPνPρPσφ] =− 8ηαµPνPρPσφ− 8ηανPµPρPσφ− 8ηαρPνPµPσφ

+ 2ηµνPρPσPαφ+ 2ηµρPνPσPαφ+ 2ηµσPρPνPαφ

+ 2ηνρPµPσPαφ+ 2ηνσPµPρPαφ+ 2ηρσPµPνPαφ

− 8ηασPνPρPµφ,

(C.5.4)

which can also be found in e.g. Appendix F in [34].

The thermal one-point function of this operator is found from Wick con-

tractions to be

〈Ξµνρσ〉β =
8(πT )6N

27
√
35

(eµeνeρeσ − (traces)) . (C.5.5)

Moreover, the three-point function with operators O∆(x) =
1√

∆N∆
: Tr

(

φ∆
)

:

(x) can again be calculated using Wick contractions similarly to how it was

done for T 2
µνρσ in Appendix A. By explicit calculation one finds

〈O∆(x1)O∆(x2)Ξµνρσ(x3)〉 =
4∆√
35N

ZµZνZρZσ − (traces)

|x12|2∆−2|x13|2|x23|2
, (C.5.6)

and therefore the OPE coefficient λO∆O∆O2,4
is given by

λO∆O∆O2,4
=

4∆√
35N

. (C.5.7)

Now, it is easy to check that

1

24
λO∆O∆O2,4

bO2,4
=

2π6∆

945
, (C.5.8)

which agrees with a2,4 in (7.85).
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Appendix C.6. Thermal one-point functions of multi-trace operators

in the large-N limit

In (7.110), it was shown that a4,4 was due to double trace operators which

were normal ordered products of single trace operators without any derivatives.

There are, however, other double trace operators that have the same quantum

numbers and are schematically represented as [OaOb]n,l. Concretely, the double

trace operators with twist and spin four besides (T 2)µνρσ and (ODT)µνρσ are

[O2O2]0,4 and [O2Tµν ]0,2. We argue that the thermal one-point functions of

these operators are subleading in the large-N limit when evaluated on the plane.

Consider the thermal one-point function of a double trace operator

[OaOb]n,l = Oa∂
2n∂lOb + . . ., where Oa and Ob are single trace primary opera-

tors and dots represent terms where derivatives acts on Oa as well, in order to

make [OaOb]n,l a primary operator. The term in the thermal one-point function

that behaves as Nk (N2 for double trace operators) comes from contracting the

fundamental field within each trace separately. Therefore we have

〈Oa∂
2n∂lOb〉β ≈ 〈Oa〉β〈∂2n∂lOb〉β +O(1), (C.6.1)

which is simply due to large-N factorization. As ∂2n∂lOb is a descendant of Ob,

it is easy to explicitly show that 〈∂2n∂lOb〉β = 0 for n 6= 0 or l 6= 0, from which

it follows that

〈Oa∂
2n∂lOb〉β = O(1). (C.6.2)

Similar reasoning holds for all terms in [OaOb]n,l, so we conclude for n 6= 0 or

l 6= 0 that

〈[OaOb]n,l〉β = O(1). (C.6.3)

It is easy to generalise (n and/or l non-zero)

〈[Oa1
. . .Oak ]n,l〉β = O(Nk−2). (C.6.4)

Using the canonical scaling for the OPE coefficients (7.95) it is found that these

multi-trace operators give a suppressed contribution to the thermal two point

function in the large-N limit:

λO∆O∆[Oa1 ...Oak ]n,l〈[Oa1
. . .Oak ]n,l〉β = O

( 1

N2

)

. (C.6.5)

192



The conclusion is that these operators with n 6= 0 or l 6= 0 do not contribute

to the thermal two-point functions to leading order in N . Note that for n = l =

0, the operator is just : Oa1
Oa2

. . .Oak : and it does contribute to the thermal

2pt function since

λO∆O∆[Oa1 ...Oak ]n=0,l=0
〈[Oa1

. . .Oak ]n=0,l=0〉β = O(1). (C.6.6)

From (C.6.5) it is seen that multi stress tensor operators of the schematic

form [T k]n,l with either n or l, or both, being non-zero will not contribute to

the thermal correlator to leading order in N on the plane.

Appendix C.7. Free boson in two dimensions

In this appendix we discuss free scalars in two dimensions. We first con-

sider a single scalar and then the case of the SU(N) adjoint scalar. We compute

two-point functions of a particular class of quasi-primary operators at finite tem-

perature 1/β. These two-point functions are not determined by the conformal

symmetry, because the quasi-primary operators do not transform covariantly

from the plane to the cylinder. They transform covariantly only with respect

to the global conformal transformations. The only operators that have the non-

zero thermal one-point functions are the Virasoro descendants of the vacuum

and therefore, only these operators contribute to the thermal two-point function

of the quasi-primary operators53. Virasoro descendants of the vacuum have dif-

ferent OPE coefficients with external quasi-primary operators compared with

the case when primary external operators are considered.54

C.7.1. Review free boson in two dimensions

We consider single free boson φ(z) in two dimensions. The stress tensor

can be written in terms of Virasoro modes as

T (z) =
√
2
∑

n

z−n−2Ln. (C.7.1)

53 We check this explicitly up to the O(1/β4).
54 Deviation from the Virasoro vacuum block in the Regge limit of four-point HHLL

correlator is observed in [200] as well.
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This stress tensor is unit-normalized

〈T (z)T (w)〉 = 1

(z − w)4
. (C.7.2)

The fundamental field can be expressed as Laurent series

∂φ(z) =

+∞
∑

n=−∞
z−n−1αn, (C.7.3)

where oscillators αn obey the following algebra

[αn, αm] = nδn+m,0. (C.7.4)

They act on the vacuum as

αn|0〉 = 0, n ≥ 0. (C.7.5)

The two-point function of the fundamental fields is given by

〈∂φ(z)∂φ(w)〉 = 1

(z − w)2
. (C.7.6)

The unit-normalized stress tensor can be expressed in terms of the funda-

mental field as

T (z) =
1√
2
: ∂φ∂φ : (z) =

1√
2

∑

m,n

z−m−n−2 : αmαn :, (C.7.7)

where : ab : denotes product of operators a and b with the corresponding free

theory oscillators being normally ordered such that the operators annihilating

the vacuum are put at the rightmost position. Then, it follows

Ln =
1

2

∑

m

: αn−mαm :=
1

2





∑

m≥0

αn−mαm +
∑

m<0

αmαn−m



 . (C.7.8)

C.7.2. Thermal two-point function of quasi-primary operator

We are interested in computing the thermal two-point function of quasi-

primary operators at temperature 1/β. Quasi-primary operators O(z) are de-

fined as [L1,O(z)] = 0, or equivalently, in therms of their asymptotic in-states

O(0)|0〉 = |O〉, as L1|O〉 = 0. We denote the quantum numbers of quasi-primary
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operators that correspond to eigenvalues of L0 and L̄0 by (h, h̄). We consider

the following unit-normalized quasi-primary operator with quantum numbers

(h, 0)

Oh(z) =
1√
h!

: (∂φ)h : (z) =
1√
h!

∑

m1,m2,...,mh

z−
∑

h

i=1
mi−h : αm1

. . . αmh
:,

(C.7.9)

which is properly defined when h is a positive integer. Its asymptotic in-state

is given by

|Oh〉 = Oh(0)|0〉 =
1√
h!
(α−1)

h|0〉. (C.7.10)

One can check that this operator is a quasi-primary but not a Virasoro primary.

The thermal two-point function of this operator for even h is given by

〈Oh(z)Oh(0)〉β =

1
2 (h−2)
∑

n=0

h!

4n(h− 2n)!

(2ζ(2)

β2

)2n
( ∞
∑

m=−∞

1

(z +mβ)2

)h−2n

+
2hπ

Γ
(

1
2
− h

2

)2
Γ(h+ 1)

(2ζ(2)

β2

)h

.

(C.7.11)

This expression is obtained by writing all possible Wick contractions between

fundamental fields ∂φ, including those that belong to same operator Oh, that

we call self-contractions. Fundamental fields are separated along the thermal

circle in all Wick contractions. Factors
(

2ζ(2)
β2

)

are due to the self-contractions,

∞
∑

m=−∞,m 6=0

1

β2m2
=

(

2ζ(2)

β2

)

. (C.7.12)

The sum over n comes from doing n self-contractions within each of the external

operators. Term h!
4n(h−2n)! counts the number of Wick contractions with n self-

contractions for each external operator, including 1/
√
h! normalization factors.

The term in the second line of (C.7.11) is due to the case when we take n = h/2

self-contractions in both external operators, i.e. it represents the disconnected

contribution.

Since the stateOh is quasi-primary, it transforms properly only with respect

to the global conformal transformation. These are just the Möbius transforma-

tions in two-dimensional spacetime z → az+b
cz+d

, with ad − bc = 1. On the other
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hand, the usual way to calculate the thermal two-point function of primary op-

erators in two dimensions is to do a conformal transformation from the plane

to the cylinder with radius β, z → β
2π log(z). This transformation is clearly not

one of the Möbius transformations and that is why we can not use this method

to compute the thermal two-point functions of quasi-primary operators.

Expanding (C.7.11) for T = 1
β → 0 one finds

z2h〈Oh(z)Oh(0)〉β = 1 +
h

3

(πz)2

β2
+

h(h− 1
5)

12

(πz)4

β4
+O

(

1

β6

)

. (C.7.13)

C.7.3. Quasi-primaries, OPE coefficients, and thermal one-point functions

In expansion (C.7.13), terms O(zh1) are due to the quasi-primary operator

with quantum numbers (h1, 0) in the operator product expansion Oh × Oh.

Identity in the expansion is due to the identity operator. We show that the

second term on the RHS is due to the stress tensor. The quantum numbers of

stress tensor T (z) are (2, 0). First, we evaluate the thermal one-point function

of the stress tensor

〈T 〉β =
1√
2

∞
∑

m=−∞,m 6=0

1

β2m2
=

π2

3
√
2β2

. (C.7.14)

This is obtained by the Wick contractions of fundamental fields in the stress

tensor, that are separated along the thermal circle. The same result can be

obtained by the transform of the stress tensor from the plane to the cylinder

using the Schwarzian derivative.

We define the OPE coefficient of unit-normalized operatorO, with quantum

numbers (hO, 0), with two Oh operators as

〈Oh(z1)Oh(z2)O(z3)〉 =
λOhOhO

(z1 − z3)hO (z2 − z3)hO (z1 − z2)2h−hO
. (C.7.15)

Next, we evaluate its OPE coefficient of the stress tensor with Oh by doing

the Wick contractions between fundamental fields

〈Oh(z1)Oh(z2)T (z3)〉 =
√
2h

1

(z1 − z3)2(z2 − z3)2(z1 − z2)2(h−1)
, (C.7.16)

therefore λOhOhT =
√
2h. This OPE coefficient is fixed by the Ward identity.

Now, it follows

z2λOhOhT 〈T 〉β =
h

3

(πz)2

β2
, (C.7.17)
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which reproduces the second term on the RHS of (C.7.13).

We are now interested in the contributions of quasi-primary operators with

quantum numbers (4, 0). There are only two linearly independent operators

with these quantum numbers given by55

: TT : (z) =
1√
24

: (∂φ)4 : (z) =
1√
24

∑

a,b,c,d

z−a−b−c−d−4 : αaαbαcαd :,

(C.7.18)

Λ4(z) =

√

10

27

(

∞
∑

m,n=−∞
z−m−n−4 ∗ LmLn∗

− 3

10

∞
∑

m=−∞
z−m−4(m+ 2)(m+ 3)Lm

)

,

(C.7.19)

where ∗ab∗ denotes the product where the relevant Virasoro generators are

normally ordered. It should be noted that the operator Λ4(z) is Virasoro de-

scendant of unity, while : TT : (z) is not. The relevant asymptotic in-states are

given by

| : TT :〉 =: TT : (0)|0〉 = 1√
24

(α−1)
4|0〉,

|Λ4〉 = Λ4(0)|0〉 =
√

10

27

(

L2
−2 −

3

5
L−4

)

|0〉.
(C.7.20)

In terms of oscillators, |Λ4〉 state can be represented as

|Λ4〉 =
√

10

27

(

1

4
(α−1)

4 +
2

5
α−1α−3 −

3

10
(α−2)

2

)

|0〉. (C.7.21)

From eqs. (C.7.20) and (C.7.21) one can see that | : TT :〉 and |Λ4〉 are the only
quasi-primary states with quantum numbers (4, 0). Namely, all such states have

to be linear combinations of the following states

α−4|0〉, α−3α−1|0〉, α2
−2|0〉, α−2α

2
−1|0〉, α4

−1|0〉, (C.7.22)

because

L0

(

N
∏

i=1

α−ki

)

|0〉 =
(

N
∑

i=1

ki

)(

N
∏

i=1

α−ki

)

|0〉, (C.7.23)

55 Both of them are unit-normalized.
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where ki > 0. It is straightforward to check

L1α−4|0〉 = 4α−3|0〉,
L1α−3α−1|0〉 = 3α−2α−1|0〉,

L1α
2
−2|0〉 = 4α−2α−1|0〉,

L1α−2α
2
−1|0〉 = 2α3

−1|0〉,
L1α

4
−1|0〉 = 0.

(C.7.24)

It follows that α4
−1|0〉 is already quasi-primary and one can make only one more

as α−3α−1|0〉− 3
4α−2α−2|0〉.56 | : TT :〉 and |Λ4〉 are just the linear combination

of these two states with overall normalization.

Now, one can calculate the overlap of | : TT :〉 and |Λ4〉 states as

〈0|Λ4(0) : TT : (0)|0〉 =
√
5

3
. (C.7.25)

The state orthogonal to |Λ4〉 can be written as

|Λ̃4〉 =
3

2

(

: TT : (0)−
√
5

3
Λ4(0)

)

|0〉. (C.7.26)

Using (C.7.20) and (C.7.21), it can be written in terms of free theory oscillators.

We compute the OPE coefficients of : TT : and Λ4 with two Oh operators.

We express all states in terms of free theory oscillators and use algebra (C.7.4)

to find

λOhOh:TT : = 〈Oh|Oh(1)| : TT :〉 =
√
6

2
h(h− 1), (C.7.27)

λOhOhΛ4
= 〈Oh|Oh(1)|Λ4〉 =

√

5

6
h

(

h− 1

5

)

, (C.7.28)

λOhOhΛ̃4
= 〈Oh|Oh(1)|Λ̃4〉 =

2√
6
h (h− 2) . (C.7.29)

Now, we evaluate the thermal one-point functions of Λ4 and Λ̃4. From (3.4)

in [179] we have

〈∗T 2∗〉β =
3π4

20β4
, (C.7.30)

56 These states are not unit-normalized.
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which is the thermal one-point function of the first term on the RHS of (C.7.19).

The second term can be written as − 3
10

∑∞
m=−∞ z−m−4(m + 2)(m + 3)Lm =

− 3
10

√
2
∂2T (z). It is clear that it will not affect the thermal one-point function

of Λ4(z), as 〈∂2T 〉β = 0.

Therefore, from (C.7.19), we have

〈Λ4〉β =

√

10

27
〈∗T 2∗〉β =

π4

2
√
30β4

. (C.7.31)

Now, it follows

z4〈Λ4〉βλOhOhΛ4
=

π4z4

12β4
h

(

h− 1

5

)

, (C.7.32)

which is the third therm at the RHS of (C.7.13). On the other hand, we can

evaluate the thermal one-point function of : TT : (z) operator by Wick contrac-

tions of fundamental fields separated along the thermal circle

〈: TT :〉β =
π4

6
√
6β4

. (C.7.33)

Using (C.7.26), it is straightforward to confirm that 〈Λ̃4〉β = 0. Therefore, as

we expected, operator Λ̃4 does not contribute to the thermal two-point function

of Oh operators, even thought it is present in the operator product expansion

Oh ×Oh.

This is a general property of two-dimensional CFTs, that only the operators

in the Virasoro vacuum module have non-zero expectation value on the cylinder.

C.7.4. Free adjoint scalar model in two dimensions

In this subsection we study a large-c theory. Consider the free adjoint

SU(N) scalar in 2d with

∂φ(z)ab =
∑

m

z−m−1(αm)
a
b (C.7.34)

with

[(αm)
a
b, (αn)

c
d] = mδm+n

(

δadδ
c
b −

1

N
δabδ

c
d

)

. (C.7.35)

The thermal two point of the quasi-primary operator Oh = 1√
hNh

: Tr((∂φ)h) :

follows immediately from the result in four dimensions upon replacing the prop-

agator of fundamental fields. We find that

〈Oh(z)Oh(0)〉β = g2d(z)
h +

π4h(h− 2)

9β4
g2d(z)

h−2 + . . . , (C.7.36)
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where

g2d(z) =
∞
∑

m=−∞

1

(z +mβ)2

=
( π

β sin(πz/β)

)2

.

(C.7.37)

Expanding (C.7.36) for β →∞ we find

〈Oh(z)Oh(0)〉β = z−2h
[

1 +
π2h

3β2
z2 +

π4h(15h− 19)

90β4
z4 +O(β−6)

]

. (C.7.38)

Consider first the normalized stress tensor which is given by

T =
1√
2N

: Tr(∂φ∂φ) :, (C.7.39)

with c = N2 so that 〈T (z)T (0)〉 = 1
z4 . By calculating the OPE coefficient

with Oh and the thermal one-point function of T , one finds that these are

the same as those for the scalar Tr(φ2) operator in four dimensions so that

〈T 〉β = π2N
3
√
2β2

and λOhOhT =
√
2h
N

, and the product reproduces the weight two

term in (C.7.38):

〈T 〉βλOhOhT =
π2h

3β2
. (C.7.40)

Consider now ∗TT∗ defined by

∗TT ∗ (0) = lim
z→0

T (z)T (0)− (sing. terms). (C.7.41)

The OPE of the stress tensor in (C.7.39) can be found in the free theory by first

performing Wick contractions

T (z)T (0) =
1

2N2
: Tr(∂φ(z)∂φ(z)) :: Tr(∂φ(0)∂φ(0)) :

=: TT : (0) + . . .+
2

N2z2
: Tr(∂φ(z)∂φ(0)) : +

1

z4
,

(C.7.42)

and expanding the second term in (C.7.42) for z → 0 we find

T (z)T (0) =: TT : (0) + . . .+
2

N2z2
: Tr(∂φ(0)∂φ(0)) :

+
2

N2z
: Tr(∂2φ(0)∂φ(0)) : +

1

N2
: Tr(∂3φ(0)∂φ(0)) : + . . .

+
1

z4
,

(C.7.43)
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where the dots refer to higher order terms in z. Inserting the OPE (C.7.43) in

(C.7.41) we find that

∗TT ∗ (0) =: TT : (0) +
1

N2
: Tr(∂3φ(0)∂φ(0)) : . (C.7.44)

Consider the state ∗TT ∗ (0)|0〉, which is given in terms of oscillator modes by

∗TT ∗ (0)|0〉 = 1

2N2
Tr(α2

−1)Tr(α
2
−1)|0〉+ 2

1

N2
Tr(α−3α−1)|0〉. (C.7.45)

Now Tr(αm
−1)|0〉 is a quasi-primary while Tr(α−3α−1)|0〉 is not. One way to

make it a quasi-primary is to simply remove the second term in (C.7.45) and

then we get a quasi-primary state which is just : TT : |0〉. Another option is to

remove a descendant of the stress tensor to construct |Λ4〉. To do the latter we

need to remove the descendant of the stress tensor with weight 4 given by ∂2T

∂2T =

√
2

N
: Tr(∂3φ∂φ) : +

√
2

N
: Tr(∂2φ∂2φ) : . (C.7.46)

Acting on the vacuum we find

∂2T (0)|0〉 = 2
√
2

N
Tr(α−3α−1)|0〉+

√
2

N
Tr(α2

−2)|0〉. (C.7.47)

Consider now L1 =
√
2

N
(Tr(α−1α2)+Tr(α−2α3+. . .)) which acts as L1Tr(α

2
−2)|0〉 =

4
√
2

N
Tr(α−1α−2)|0〉 and as L1Tr(α−3α−1)|0〉 = 3

√
2

N
Tr(α−1α−2)|0〉. We can

therefore construct a quasi-primary state annihilated by L1: Tr(α−3α−1)|0〉 −
3
4Tr(α

2
−2)|0〉. The quasi-primary |Λ4〉 is then given by:

|Λ4〉 =
1√
2

(

∗ TT ∗ (0)|0〉 − 3

5
√
2N

∂2T (0)|0〉
)

=
1

2
√
2N2

(

Tr(α2
−1)Tr(α

2
−1)|0〉 −

6

5
Tr(α2

−2)|0〉+
8

5
Tr(α−1α−3)|0〉

)

(C.7.48)

There are two more weight 4 single trace quasi-primary operators given by

O(1) =
1

2N2
Tr((∂φ)4)

O(2) =
nO(2)

N
(Tr(∂3φ∂φ)− 3

2
Tr(∂2φ∂2φ)),

=
nO(2)

N
(
1

2
∂2Tr(∂φ∂φ)− 5

2
Tr(∂2φ∂2φ)),

(C.7.49)
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where nO(2) is some N -independent normalization constant. The state |Λ4〉 can
be written in terms of : TT : (0)|0〉+ aO2(0)|0〉 in the following way

|Λ4〉 =
1√
2

(

: TT : (0)|0〉+ 2

5NnO(2)

O(2)|0〉
)

. (C.7.50)

The OPE coefficient for : TT : is up to a normalization the same as the scalar

dimension 4 double trace operator in 4d and is given by

〈OhOh : TT :〉 = 1

hNh

1

2N2
4h2(3h− 5)Nh 1

z413z
4
23z

2h−4
12

=
1

N2
2h(3h− 5)

1

z413z
4
23z

2h−4
12

,

(C.7.51)

where 4h2(3h−5) come from the number of contractions giving planar diagrams.

Consider now the OPE coefficient for O(2). One finds

〈OhOhO(2)〉 = nO(2)Nh

hNh+1z413z
4
23z

2h−2
12

(

(−2)(−3)h2(z213 + z223)

− 3

2
2h2(−2)2)z13z23

)

=
6hnO(2)

Nz413z
4
23z

2h−4
12

.

(C.7.52)

Using (C.7.51), (C.7.52) and (C.7.50) we find the OPE coefficient for |Λ4〉

〈OhOhΛ4〉 =
√
2h(15h− 19)

5N2
. (C.7.53)

Note that the h dependence matches that of the weight 4 term in the two-point

function (C.7.38). Additionally, the OPE coefficient given by (C.7.53) can not

be extrapolated to the limit when h ∼ CT , as in this limit the planar expansion

used for calculating (C.7.53) breaks down. For this reason, we can not test the

thermalization of Λ4 in heavy state OhH . Let us consider the thermal one-point

function which is given by

〈Λ4〉β =
[ 1√

2
b2T +O(1)

]

=
π4N2

18
√
2β4

, (C.7.54)

where the term ∝ 1
N 〈O(2)〉β is subleading since it is single trace. We find that

〈Λ4〉βλOhOhΛ4
=

π4h(15h− 19)

90β4
, (C.7.55)

which agrees with the weight 4 term in (C.7.38).
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Note that it is explicitly seen that one can write Λ4 either as ∗TT ∗
+(desc. of T) or as : TT : + 1

NOST with OST a quasi-primary single trace oper-

ator. In this case the single trace operator which one needs to add to : TT : to

get Λ4 can be written as a sum of descendants O(2) ∝ ∂2T − 5√
2
Tr(∂2φ∂2φ).

Explicitly, we have

|Λ4〉 =
1√
2

[

∗ TT ∗ (0)− 3

5
√
2N

∂2T (0)
]

|0〉

=
1√
2

[

: TT : (0) +
2

5NnO(2)

O(2)
]

|0〉.
(C.7.56)

As we saw above, using the second line in (C.7.56) it is straightforward to

calculate correlation functions using Wick contractions to see that Λ4 gives the

full weight four contributions to the thermal two-point function for large-N

theories.

Now, we consider the following quasi-primary operator

O∆(z, z̄) =

√
2√

∆N∆/2
: Tr

(

(∂φ∂̄φ̄)
∆
2

)

: (z, z̄), (C.7.57)

where we denote the anti-holomorphic part of the free field by φ̄ = φ̄(z̄). The

thermal two-point function of this operator, up to the terms subleading in large-

N expansion, is given by

〈O∆(z, z̄)O∆(0, 0)〉β =
π2∆

β2∆ sin∆
(

πz
β

)

sin∆
(

πz̄
β

)

=
1

(zz̄)∆

(

1 +
π2∆(z2 + z̄2)

6β2
+

π4∆(5∆ + 2)

360β4
(z4 + z̄4)

+
π4∆2

36β4
z2z̄2 +O

(

1

β6

)

)

.

(C.7.58)

One can easily check that the OPE coefficients of stress tensor T and its anti-

holomorphic partner T̄ with O∆ are given by

λO∆O∆T = λO∆O∆T̄ =
∆√
2N

, (C.7.59)

while their thermal one-point function are given by

〈T 〉β = 〈T̄ 〉β =
π2N

3
√
2β2

. (C.7.60)
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It is easy to check that terms proportional to β−2 in (C.7.58) are contributions

of T and T̄ operators

〈T 〉βλO∆O∆T z
2 + 〈T̄ 〉βλO∆O∆T̄ z̄

2 =
π2∆(z2 + z̄2)

6β2
. (C.7.61)

We compute the OPE coefficient of operators Λ4, defined by (C.7.48), and its

anti-holomorphic partner Λ̄4 with O∆ and obtain

λO∆O∆Λ4
= λO∆O∆Λ̄4

=
∆(5∆+ 2)

10
√
2N2

, (C.7.62)

which agrees with (C.26) in [124]. Its thermal one-point function (which is

the same as 〈Λ̄4〉β) is given by (C.7.54). Another operator that contributes to

thermal two-point function (C.7.58) is : T T̄ :. Its OPE coefficient with O∆ and

thermal one-point function are given by

λO∆O∆:T T̄ : =
∆2

2N2

〈: T T̄ :〉β =
π4N2

18β4
.

(C.7.63)

Again, it is easy to check

〈Λ4〉βλO∆O∆Λ4
z4 + 〈Λ̄4〉βλO∆O∆Λ̄4

z̄4 + 〈: T T̄ :〉βλO∆O∆:T T̄ :z
2z̄2 =

=
π4∆(5∆+ 2)

360β4
(z4 + z̄4) +

π4∆2

36β4
z2z̄2,

(C.7.64)

which matches with the corresponding terms in (C.7.58).

The OPE coefficients λO∆O∆Λ4
, λO∆O∆Λ̄4

, and λO∆O∆:T T̄ : can be extrap-

olated to the limit ∆ ∼ N2, by the same logic as in Appendix C. Then, we can

explicitly check the thermalization property of Λ4, Λ̄4, and : T T̄ :. To establish

a relation between the inverse temperature β and the conformal dimension ∆H

of heavy state OH = O∆∼N2 , we assume the thermalization of stress tensor

〈T 〉β = λOHOHT , (C.7.65)

which implies
∆H

N2
=

π2

3β2
. (C.7.66)
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Using this relation, it is easy to show

〈Λ4〉β = λOHOHΛ4

∣

∣

∣∆2
H
N2

,

〈Λ̄4〉β = λOHOH Λ̄4

∣

∣

∣∆2
H
N2

,

〈: T T̄ :〉β = λOHOH :T T̄ :

∣

∣

∣∆2
H
N2

.

(C.7.67)

This means that operators Λ4, Λ̄4, and : T T̄ : thermalize in the quasi-primary

state OH similarly to the thermalization in a Virasoro primary states in large-c

theory, that was analyzed in [165].

Appendix C.8. Vector model

In this section we study the free scalar vector model at large-N . Consider

the scalar operator

O∆ =
1

√

N (∆)
: (ϕiϕi)

∆
2 : (x), (C.8.1)

where N (∆) is a normalization constant which to leading order in N is given

by

N (∆) ≈ (∆)!!N
∆
2 . (C.8.2)

The thermal two-point function is given by

〈O∆(x)O∆(0)〉β = g̃(x0
E , |x|)∆ +

(∆

2

)2 1

∆
g̃(x0

E , |x|)∆−2 + . . . , (C.8.3)

where

g̃(x0
E , |x|) =

∞
∑

m=−∞

1

(x0
E +mβ)2 + x2

=
π

2β|x|
[

Coth
(π

β
(|x| − ix0

E)
)

+Coth
(π

β
(|x|+ ix0

E)
)]

.

(C.8.4)

The thermal aτ,J coefficients a2,2 and a4,4 are the same as in the adjoint model

(this is so since the second term in (C.8.3) does not affect these):

a2,2 =
π4∆

45
,

a4,4 =
π8∆(∆− 1)

1050
.

(C.8.5)
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The unit-normalized stress tensor is given by

Tµν(x) =
1

3
√
CT

:

(

∂µϕ
i∂νϕ

i − 1

2
ϕi∂µ∂νϕ

i − (trace)

)

: (x), (C.8.6)

where CT = 4
3N . The OPE coefficient of the stress tensor is again found by

Wick contractions to be

λO∆O∆Tµν = − 4∆

3
√
CT

, (C.8.7)

in agreement with the stress tensor Ward identity. The double-stress tensor is

given by

T 2
µνρσ =

1√
2
: T(µνTρσ) : −(traces), (C.8.8)

and the OPE coefficient is calculated precisely as for the adjoint model and we

find

λO∆O∆T 2
4,4

=
8
√
2

9CT
∆(∆− 1). (C.8.9)

There is another double-trace operator with twist 4 and spin 4 and takes the

same form : O2O2,4 : as for the adjoint model

ODT
µνρσ(x) =

1

96
√
70N

: ϕiϕi
(

ϕj∂µ∂ν∂ρ∂σϕ
j − 16∂(µϕ

j∂ν∂ρ∂σ)ϕ
j

+18∂(µ∂νϕ
j∂ρ∂σ)ϕ

j − (traces)
)

: (x).

(C.8.10)

The OPE coefficient and the thermal one-point function yields the same result

as for the corresponding operator in the adjoint model57. It then follows that

the a4,4 extracted from (C.8.3) is reproduced by the sum of the double stress

tensor and (C.8.10).

Appendix C.9. Factorization of thermal correlators

In this appendix we argue for the factorization of thermal expectation val-

ues of multi-trace operators in large-CT theories on S1 ×Rd−1. Consider the

thermal two-point function of a scalar operator O with dimension ∆:

〈O(x)O(0)〉β = 〈O〉β〈O〉β + 〈O(x)O(0)〉β,c, (C.9.1)

57 Note that this is not true for all operators but is in line with the fact that a4,4 is

unaffected by the second term in (C.8.3).
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where the second term consist of the connected part of the correlator. Note

that the disconnected term in (C.9.1) is independent of the position x. On the

other hand we can evaluate (C.9.1) using the OPE on the plane which takes the

form

O(x)O(0) = 1

|x|2∆ +
∑

n,l

λOO[OO]n,lx
2n+l[OO]n,l + . . . , (C.9.2)

when written in terms of primaries and the dots refer to terms surpressed in the

large-CT limit. Note that λOO[OO]n,l are the MFT OPE coefficient which are

of order 1. The term in (C.9.2) that is independent of x is due to the n = l = 0

term in (C.9.2) and inserting the OPE on the LHS of (C.9.2), we find that

λOO[OO]0,0〈[OO]0,0〉β = 〈O〉2β. (C.9.3)

When [OO]0,0 is unit-normalized the OPE coefficient is given by λOO[OO]0,0 =√
2 and it follows that

〈[OO]0,0〉β =
1√
2
〈O〉2β. (C.9.4)

We therefore see the that the thermal one-point function of the double-trace

operator factorizes on the plane. We expect a similar argument to hold for

multi stress tensors.
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XVI Avogadro Meeting

Online Event

Dec 21, 2020 - Dec 22, 2020

Abstract
The Avogadro Meetings started in 2005 as an occasion for young Italian theoretical physicists to share their ideas and results in an informal
atmosphere. The meeting is named after the University of Piemonte Orientale that hosted its first three editions. The meeting is traditionally
scheduled just before the Christmas break to facilitate the participation of Italian postdocs and PhD students working abroad who can take the
chance of their travel back home for Christmas to meet young colleagues and exchange ideas.

Format:
In view of the ongoing pandemic, the conference will take place online and will consist of a series of short contributed talks and discussions (of
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about 10 minutes each). Students and postdocs are invited to propose a talk by filling in the application form before December 1st. The schedule
will be published at the beginning of December.

Past Editions:
See this webpage for a list of past editions and topics.

The meeting will take place on Zoom on the following days: Monday December 21st, from 2pm to 6pm Italian time, and Tuesday
December 22nd, from 2pm to 6pm Italian time.

Click here to join the Meeting.
We kindly ask you to joint the Meeting with your full name and surname in order to check your identity.
The Avogadro Meeting will be recorded and posted on the GGI YouTube channel.

Organizers
Simone Giacomelli (Oxford University);
Francisco Gil Pedro (Bologna University);
Raffaele Savelli (Tor Vergata University);
Alessandro Sfondrini (Padova University);
Massimo Taronna (Federico II University);
Chiara Toldo (Ecole Polytechnique Paris & CEA Saclay);

Contact
avogadro.meetings@gmail.com

Poster

Talks

Date Speaker Title Type Useful Links

Dec 21, 2020 - 14:00-
14:15

Fabrizio Del
Monte

BPS quivers of five-dimensional SCFTs,
Topological Strings and q-Painlevé
equations

Talk Abstract Slides Video

Dec 21, 2020 - 14:15-
14:30

Nadir Fasola Eight-dimensional ADHM construction
and orbifold DT invariants

Talk Abstract Slides Video
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Dec 21, 2020 - 14:30-
14:45

Fran Globlek ABCDEFG of Gauge and Painlevé Talk Abstract Slides Video

Dec 21, 2020 - 14:45-
15:00

Luigi Guerrini Latitude Wilson loop in ABJM theory and
dual line operators

Talk Abstract Slides Video

Dec 21, 2020 - 15:00-
15:30

Break Discussion

Dec 21, 2020 - 15:30-
15:45

Tommaso
Macrelli

BRST-Lagrangian Double Copy of Yang-
Mills Theory

Talk Abstract Slides Video

Dec 21, 2020 - 15:45-
16:00

Giulia Peveri Mellin Transform in 1D CFTs: Motivation
and Definition

Talk Abstract Slides Video

Dec 21, 2020 - 16:00-
16:15

Filippo
Revello

The Holographic Swampland Talk Abstract Slides Video

Dec 21, 2020 - 16:15-
16:30

Petar Tadic Thermalization of the Stress Tensor
Sector

Talk Abstract Slides Video

Dec 21, 2020 - 16:30-
17:00

Break Discussion

Dec 21, 2020 - 17:00-
17:15

Riccardo
Gonzo

Light-ray operators and gravitational
wave detectorsv

Talk Abstract Slides Video

Dec 21, 2020 - 17:15-
17:30

Salvatore
Mancani

Infrared duality in Unoriented Pseudo del
Pezzo

Talk Abstract Slides Video

Dec 21, 2020 - 17:30-
17:45

Alessandro
Mininno

Dynamical Tadpoles and Weak Gravity
Constraints

Talk Abstract Slides Video

Dec 21, 2020 - 17:45-
18:00

Andrea
Sangiovanni

Singular Calabi-Yau threefolds: Springer
resolution and quiver gauge theories

Talk Abstract Slides Video

Dec 21, 2020 - 18:00-
18:00

End day Discussion

Dec 22, 2020 - 14:00-
14:15

Suvajit
Majumder

Protected Spectrum in $AdS3xS3xT4$ Talk Abstract Slides Video

Dec 22, 2020 - 14:15-
14:30

Sara Murciano Entanglement and symmetry resolution
in two dimensional free quantum field

Talk Abstract Slides Video
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Largo Enrico Fermi, 2
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theories

Dec 22, 2020 - 14:30-
14:45

Chiara Paletta Free-fermion conditions in the context of
AdS/CFT

Talk Abstract Slides Video

Dec 22, 2020 - 14:45-
15:00

Leonardo
Santilli

$T \bar{T}$-deformation of $q$-Yang-
Mills theory

Talk Abstract Slides Video

Dec 22, 2020 - 15:00-
15:30

Break Break Discussion

Dec 22, 2020 - 15:30-
15:45

Ángel Murcia Electromagnetic Quasitopological
Gravities

Talk Abstract Slides Video

Dec 22, 2020 - 15:45-
16:00

Pietro Ferrero M2- and D3-branes wrapped on a
spindle

Talk Abstract Slides Video

Dec 22, 2020 - 16:00-
16:15

Giulia Fardelli All loop structures in Supergravity
Amplitudes on AdS5xS5 from CFT

Talk Abstract Slides Video

Dec 22, 2020 - 16:15-
16:30

Ziruo Zhang Black hole entropy from superconformal
indices and a glimpse of black holes in
AdS_5 x T^{1,1}

Talk Abstract Slides Video

Dec 22, 2020 - 16:30-
17:00

Break Discussion

Dec 22, 2020 - 17:00-
17:15

Igor Broeckel Moduli Stabilisation and the Statistics of
SUSY Breaking in the Landscape

Talk Abstract Slides Video

Dec 22, 2020 - 17:15-
17:30

Chiara Crinò On de Sitter string vacua from anti-D3-
branes in the Large Volume Scenario

Talk Abstract Slides Video

Dec 22, 2020 - 17:30-
17:45

Riccardo
Finotello

Inception Neural Networks for Complete
Intersection Calabi-Yau Manifolds

Talk Abstract Slides Video

Dec 22, 2020 - 17:45-
18:00

Nicole Righi Harmonic Hybrid Inflation Talk Abstract Slides Video

Home

Workshops

Schools

Other Events

Talk Schedule

GGI Tea Breaks' Seminars

Theory Lectures by Young
Researchers

GGI Post-Docs

Simons Visiting Scientists

GGI Visiting Program

Affiliated Members

Galileo Galilei Medal Award

Apply to GGI Events

Call for 2024 Workshop
Proposals

Call for Other Events

https://www.ggi.infn.it/talkfiles/slides/slides5021.pdf
https://www.youtube.com/watch?v=qa3XkLsnj1k&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=15
https://www.ggi.infn.it/talkfiles/slides/slides5022.pdf
https://www.youtube.com/watch?v=RLr79Yal4ao&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=16
https://www.ggi.infn.it/talkfiles/slides/slides5024.pdf
https://www.youtube.com/watch?v=mKXLy9hgTj0&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=17
https://www.ggi.infn.it/talkfiles/slides/slides5025.pdf
https://www.youtube.com/watch?v=IbA9iDNUt4g&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=24
https://www.ggi.infn.it/talkfiles/slides/slides5026.pdf
https://www.youtube.com/watch?v=3rrtKS5WAgU&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=18
https://www.ggi.infn.it/talkfiles/slides/slides5027.pdf
https://www.youtube.com/watch?v=YjCdglY7L1A&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=19
https://www.ggi.infn.it/talkfiles/slides/slides5029.pdf
https://www.youtube.com/watch?v=dG3bJDqo48U&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=20
https://www.ggi.infn.it/talkfiles/slides/slides5030.pdf
https://www.youtube.com/watch?v=6SyuPqy8kRM&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=21
https://www.ggi.infn.it/talkfiles/slides/slides5031.pdf
https://www.youtube.com/watch?v=GbZ8QMHtGTs&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=22
https://www.ggi.infn.it/talkfiles/slides/slides5032.pdf
https://www.youtube.com/watch?v=nMADqksRnMY&list=PL1CFLtxeIrQpBFoPO0X7X1_zowEzAgVHc&index=23
https://www.ggi.infn.it/
https://www.ggi.infn.it/workshops.html
https://www.ggi.infn.it/schools.html
https://www.ggi.infn.it/otherevents.html
https://www.ggi.infn.it/talkschedule.html
https://www.ggi.infn.it/seminars.pl
https://www.ggi.infn.it/thlyr.pl
https://www.ggi.infn.it/assegnisti.html
https://www.ggi.infn.it/simons.html
https://www.ggi.infn.it/ltvisits.html
https://www.ggi.infn.it/affiliate.html
https://www.ggi.infn.it/galileomedal.html
https://www.ggi.infn.it/bee/application/switch
https://www.ggi.infn.it/calls.html
https://www.ggi.infn.it/guidelines.html


tel: +39 055 275 5255
email: ggi@fi.infn.it
Staff
Privacy
Dichiarazione di accessibilita

Powered with Perl Template Toolkit and W3.css
Page created: 2016
Last update: 02:49:00 04-Feb-2023

 

 

Home

Workshops

Schools

Other Events

Talk Schedule

GGI Tea Breaks' Seminars

Theory Lectures by Young
Researchers

GGI Post-Docs

Simons Visiting Scientists

GGI Visiting Program

Affiliated Members

Galileo Galilei Medal Award

Apply to GGI Events

Call for 2024 Workshop
Proposals

Call for Other Events

https://www.ggi.infn.it/staff.html
https://www.ggi.infn.it/informativa_privacy.html
https://form.agid.gov.it/view/7bf0dd29-b6d4-4ff3-bcc6-ec214f97e722/
https://www.ggi.infn.it/staff.html
https://www.ggi.infn.it/informativa_privacy.html
https://form.agid.gov.it/view/7bf0dd29-b6d4-4ff3-bcc6-ec214f97e722/
http://template-toolkit.org/index.html
http://www.w3schools.com/w3css/
https://www.ggi.infn.it/
https://www.ggi.infn.it/workshops.html
https://www.ggi.infn.it/schools.html
https://www.ggi.infn.it/otherevents.html
https://www.ggi.infn.it/talkschedule.html
https://www.ggi.infn.it/seminars.pl
https://www.ggi.infn.it/thlyr.pl
https://www.ggi.infn.it/assegnisti.html
https://www.ggi.infn.it/simons.html
https://www.ggi.infn.it/ltvisits.html
https://www.ggi.infn.it/affiliate.html
https://www.ggi.infn.it/galileomedal.html
https://www.ggi.infn.it/bee/application/switch
https://www.ggi.infn.it/calls.html
https://www.ggi.infn.it/guidelines.html


Home > Workshops > Workshop

Event at Galileo Galilei Institute

Mini Workshop

XVI Avogadro Meeting

Online Event

Dec 21, 2020 - Dec 22, 2020

Abstract
The Avogadro Meetings started in 2005 as an occasion for young Italian theoretical physicists to share their ideas and results in an informal
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scheduled just before the Christmas break to facilitate the participation of Italian postdocs and PhD students working abroad who can take the
chance of their travel back home for Christmas to meet young colleagues and exchange ideas.
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about 10 minutes each). Students and postdocs are invited to propose a talk by filling in the application form before December 1st. The schedule
will be published at the beginning of December.

Past Editions:
See this webpage for a list of past editions and topics.

The meeting will take place on Zoom on the following days: Monday December 21st, from 2pm to 6pm Italian time, and Tuesday
December 22nd, from 2pm to 6pm Italian time.

Click here to join the Meeting.
We kindly ask you to joint the Meeting with your full name and surname in order to check your identity.
The Avogadro Meeting will be recorded and posted on the GGI YouTube channel.

Organizers
Simone Giacomelli (Oxford University);
Francisco Gil Pedro (Bologna University);
Raffaele Savelli (Tor Vergata University);
Alessandro Sfondrini (Padova University);
Massimo Taronna (Federico II University);
Chiara Toldo (Ecole Polytechnique Paris & CEA Saclay);

Contact
avogadro.meetings@gmail.com

Poster

Talks

Date Speaker Title Type Useful Links

Dec 21, 2020 - 14:00-
14:15

Fabrizio Del
Monte

BPS quivers of five-dimensional SCFTs,
Topological Strings and q-Painlevé
equations

Talk Abstract Slides Video

Dec 21, 2020 - 14:15-
14:30

Nadir Fasola Eight-dimensional ADHM construction
and orbifold DT invariants

Talk Abstract Slides Video
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Dec 21, 2020 - 14:30-
14:45

Fran Globlek ABCDEFG of Gauge and Painlevé Talk Abstract Slides Video

Dec 21, 2020 - 14:45-
15:00

Luigi Guerrini Latitude Wilson loop in ABJM theory and
dual line operators

Talk Abstract Slides Video

Dec 21, 2020 - 15:00-
15:30

Break Discussion

Dec 21, 2020 - 15:30-
15:45

Tommaso
Macrelli

BRST-Lagrangian Double Copy of Yang-
Mills Theory

Talk Abstract Slides Video

Dec 21, 2020 - 15:45-
16:00

Giulia Peveri Mellin Transform in 1D CFTs: Motivation
and Definition

Talk Abstract Slides Video

Dec 21, 2020 - 16:00-
16:15

Filippo
Revello

The Holographic Swampland Talk Abstract Slides Video

Dec 21, 2020 - 16:15-
16:30

Petar Tadic Thermalization of the Stress Tensor
Sector

Talk Abstract Slides Video

Dec 21, 2020 - 16:30-
17:00

Break Discussion

Dec 21, 2020 - 17:00-
17:15

Riccardo
Gonzo

Light-ray operators and gravitational
wave detectorsv

Talk Abstract Slides Video

Dec 21, 2020 - 17:15-
17:30

Salvatore
Mancani

Infrared duality in Unoriented Pseudo del
Pezzo

Talk Abstract Slides Video

Dec 21, 2020 - 17:30-
17:45

Alessandro
Mininno

Dynamical Tadpoles and Weak Gravity
Constraints

Talk Abstract Slides Video

Dec 21, 2020 - 17:45-
18:00

Andrea
Sangiovanni

Singular Calabi-Yau threefolds: Springer
resolution and quiver gauge theories

Talk Abstract Slides Video

Dec 21, 2020 - 18:00-
18:00

End day Discussion

Dec 22, 2020 - 14:00-
14:15

Suvajit
Majumder

Protected Spectrum in $AdS3xS3xT4$ Talk Abstract Slides Video

Dec 22, 2020 - 14:15-
14:30

Sara Murciano Entanglement and symmetry resolution
in two dimensional free quantum field

Talk Abstract Slides Video

Thermalization of the Stress Tensor Sector

In d-dimensional CFTs with a large number of degrees of freedom an important set of
primary operators is comprised out of the stress tensor and its products, multi stress
tensors. We argue that the thermal expectation value of all such operators on the (d-1)-
sphere equals their expectation value in a heavy state, therefore, the stress tensor
sector satisfies the Eigenstate Thermalization Hypothesis. This is equivalent to the
universal leading behavior of the OPE coefficients of multi stress tensors with a pair of
identical scalar operators in the limit of large conformal dimensions of the scalars. We
verify this in a number of examples which include holographic and free CFTs. We check
the thermalization of the stress tensor sector directly by computing thermal expectation
values of multi stress tensor operators in a free CFT.
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theories

Dec 22, 2020 - 14:30-
14:45

Chiara Paletta Free-fermion conditions in the context of
AdS/CFT

Talk Abstract Slides Video

Dec 22, 2020 - 14:45-
15:00

Leonardo
Santilli

$T \bar{T}$-deformation of $q$-Yang-
Mills theory

Talk Abstract Slides Video

Dec 22, 2020 - 15:00-
15:30

Break Break Discussion

Dec 22, 2020 - 15:30-
15:45

Ángel Murcia Electromagnetic Quasitopological
Gravities

Talk Abstract Slides Video

Dec 22, 2020 - 15:45-
16:00

Pietro Ferrero M2- and D3-branes wrapped on a
spindle

Talk Abstract Slides Video

Dec 22, 2020 - 16:00-
16:15

Giulia Fardelli All loop structures in Supergravity
Amplitudes on AdS5xS5 from CFT

Talk Abstract Slides Video

Dec 22, 2020 - 16:15-
16:30

Ziruo Zhang Black hole entropy from superconformal
indices and a glimpse of black holes in
AdS_5 x T^{1,1}

Talk Abstract Slides Video

Dec 22, 2020 - 16:30-
17:00

Break Discussion

Dec 22, 2020 - 17:00-
17:15

Igor Broeckel Moduli Stabilisation and the Statistics of
SUSY Breaking in the Landscape

Talk Abstract Slides Video

Dec 22, 2020 - 17:15-
17:30

Chiara Crinò On de Sitter string vacua from anti-D3-
branes in the Large Volume Scenario

Talk Abstract Slides Video

Dec 22, 2020 - 17:30-
17:45

Riccardo
Finotello

Inception Neural Networks for Complete
Intersection Calabi-Yau Manifolds

Talk Abstract Slides Video

Dec 22, 2020 - 17:45-
18:00

Nicole Righi Harmonic Hybrid Inflation Talk Abstract Slides Video
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