Light-nuclei production and QCD critical point

Shanjin Wu(吴善进)¹

In collaboration with Koichi Murase², Shian Tang³, Shujun Zhao³, Huichao Song³

資加大学 Lanzhou Univ.¹ , YITP, Kyoto Univ.², Peking Univ.³

The International Workshop "Exploring Quark-Gluon Plasma through soft and hard probes", May 31, 2023@Belgrade

QCD phase diagram

- Lattice QCD (small μ_B finite T):
 - Crossover
- Effective models (large μ_B)
 - 1st order phase trans.
- \rightarrow Critical point
- Lattice QCD: sign problem at large μ_B
- Effective models: parameters dependent
- \rightarrow Heavy-ion collisions :
 - tuning $\sqrt{s_{NN}}$, mapping $T \mu$ phase diagram: RHIC(BES), NICA, FAIR, J_PARC....

Net-proton fluctuations near critical point

- Characteristic feature of critical point:
 - long range correlation
 - large fluctuations
- Non-monotonicity of Net-Proton Cumulant

Fluctuations is non-trivial in expanding QGP

S.Tang, SW, H.Song, 2303.15017

- Hydro background cools down => Critical Slowing Down.
- Critical slowing down effects suppress the fluctuations
- Fireball closer to critical point, Larger fluctuations but larger suppression

Other observable: Light Nuclei?

Light Nuclei Production

- Light nuclei produced at late stage of heavy-ion collisions
- Non-monotonic behavior also been observed

Dynamical models on Light-Nuclei

3.0E (a) 2.5E 0 - IYI<0.3 2.0 . o 1.0E 0.5E 0.0^E 20 30 50 60 70 40 10 80 S_{NN} (GeV) X.Deng et al., PLB (2020)

K.Sun et al., PRC (2021)

And others....

W. Zhao et al., PRC (2018)

P.Hillmann et al., 2109.05972

Can light nuclei detect critical effects?

• Light-nuclei production:

phase-space, nucleons interaction Fireball size *R*, homogeneity length *l*

• Homogeneity:

Nucleons close to each other in \boldsymbol{r} space have similar momentum \boldsymbol{p}

=>Homogeneity length $l \sim 1/\partial_{\mu}u^{\mu}$

R.Scheibl, U.Heinz, PRC 59, 1585

• When not so close to critical point:

- Fireball size R, homogeneity length $l \gg \xi$
- Background is large, comparing critical signal

R : Fireball size*l*:homogeneity lengthξ: correlation length

Light Nuclei Yield Ratio (Background+Critical):

Suppress the background

Coalescence is widely used model

Anti Light nuclei as Indirect detection of Dark Matter

See N.Fornengo et al., JCAP 09 (2013) 031 for review

Coalescence in Heavy-Ion Collisions

- quark + quark -> hardon
- S quark -> Lambda polarization
- nucleon + nucleon -> light nuclei
 R.J.Fries et al., PRC 68.044902
 L.-W.Chen et al., PRC 68.017601
 X.-L. Sheng et al., PRD 102. 056013

10

Coalescence model

SW, K.Murase, S.Tang, H.Song, Phys.Rev.C.106.034905

$$N_A = g_A \int \left[\prod_i^A d^3 \boldsymbol{r}_i d^3 \boldsymbol{p}_i f(\boldsymbol{r}_i, \boldsymbol{p}_i)\right] W_A(\{\boldsymbol{r}_i, \boldsymbol{p}_i\}_{i=1}^A)$$

Coalescence model

SW, K.Murase, S.Tang, H.Song, Phys.Rev.C.106.034905

• Wigner func.(probability to produce the light nuclei):

Only depends on the relative distance in phase space $x_p - x_n$ NOT $(x_p + x_n)/2$

Examples of phase-space density

Gaussian form distribution of nucleon phase-space is trivial

Light-nuclei yield (Background)

SW, K.Murase, S.Tang, H.Song, Phys.Rev.C.106.034905

$$N_d: A = 2$$

 $N_t: A = 3$
 $N_{4He}: A = 4$

- Divide the distribution into Gaussian and Non-Gaussian component
- using **phase-space cumulant** $\langle r^n p^m \rangle \sim \int f(r,p)r^n p^m$

Light-nuclei yield (Background)

SW, K.Murase, S.Tang, H.Song, Phys.Rev.C.106.034905

 N_d , N_t , N_{4He} have similar behavior in case of Gaussian phase-space density Similar result with: R.Scheibl, U.Heinz, PRC 59, 1585; K.Blum, M.Takimoto, PRC 99,044913 15

Phase-space cumulant in light nuclei

SW, K.Murase, S.Tang, H.Song, Phys.Rev.C.106.034905

Relevant scales in light-nuclei yield N_A : Fireball size $R_{fireball}$, homogeneity length l_{homoge} and freeze-out temperature T_{fo}

Example: Anisotropic flow (Blast-Wave)

SW, K.Murase, S.Tang, H.Song, Phys.Rev.C.106.034905

17

Light-nuclei yield (Background)

SW, K.Murase, S.Tang, H.Song, Phys.Rev.C.106.034905

 N_d , N_t , N_{4He} have similar behavior in case of Gaussian phase-space density

Light Nuclei Ratio Near QCD Critical Point: (Background+Critical)

Critical fluctuations δf in light nuclei

SW, K.Murase, S.Zhao, H.Song, in preparation

Introduce critical fluctuations
$$\delta f$$

 $N_A \sim \langle (f_0 + \delta f)^A \rangle_{\sigma} \sim f_0^A + \langle (\delta f)^2 \rangle_{\sigma}^{\beta_2} + \langle (\delta f)^3 \rangle_{\sigma}^{\beta_3} + \langle (\delta f)^4 \rangle_{\sigma}^{\beta_4} + \cdots$
2-point 3-point 4-point
correlator correlator

- *N_A*: includes contribution from **2**, **3**, ... *A*-point critical correlator
- Contribution hierarchy: $f_0^A \gg \left\langle (\delta f)^2 \right\rangle_{\sigma}^{\beta_2} \gg \left\langle (\delta f)^3 \right\rangle_{\sigma}^{\beta_3} \gg \cdots \gg \left\langle (\delta f)^A \right\rangle_{\sigma}^{\beta_A}$

Light nuclei yield: Background+Critical

SW, K.Murase, S.Zhao, H.Song, in preparation

 N_A share a analogous structure $N_A \propto [...]^{A-1}[Bkg + Cri] =>$ Construct ratios of N_A suppress *Bkg* and highlight *Cri*

 $\widetilde{R}(A,B) = \operatorname{Ratio}(N_t, N_d) - \operatorname{statistical factor} \qquad \widetilde{R}(A,B,C) = \operatorname{Ratio}(N_t, N_d) - \#\operatorname{Ratio}(N_t, N_d, N_{4He}) \\ \sim \mathcal{O}(\xi) \qquad \sim \mathcal{O}(\xi)$

Example: near critical regime

SW, K.Murase, S.Zhao, H.Song, in preparation

Light nuclei ratios have a peak near critical point μ_c , also have double peak because of (2pt.)^{2.} when the critical effect is large 22

Conclusion and Outlook

- N_d , N_t , N_{4He} depends on fireball size, homogeneity length, freeze temperature in analogous way when nucleon distribution close to Gaussian, because Wigner function depends on relative distance
- Construct the ratios to suppress the background effects
- Long range correlation results a peak, and the square of 2-point correlation induces a double peak
- Non-critical EbyE in light-nuclei: K.Murase, ATHIC2023

Backup

Example: in the Ising critical regime

25