Heavy quark diffusion coefficients in light of Gribov-Zwanziger action

Aritra Bandyopadhyay

Based on Phys.Lett.B 838 (2023) 137714 [2210.03076 [hep-ph]]

In collaboration with S.Madni, A.Mukherjee and N.Haque

Talk prepared for ExploreQGP workshop

Outline

[LO and NLO perturbative results](#page-6-0)

[Gribov-Zwanziger action and its consequences](#page-15-0)

[Gribov-Zwanziger action and its consequences](#page-15-0) [Results and Conclusions](#page-22-0)
00000 00000

Outline

2 [LO and NLO perturbative results](#page-6-0)

4 [Results and Conclusions](#page-22-0)

)

Heavy Quarks as QGP Signature

- QGP Signatures
- a) static properties
- b) dynamic quantities.

- large mass compared to T ,
- **e** external to the bulk medium.
- o generated at the early stage
- **e** experience drags & random kicks
- Theoretical inputs : momentum diffusion coefficient

Less contamination

- \rightarrow More information
- \rightarrow Langevin equations
- \rightarrow Momentum
- broadening, Energy loss

[Motivation](#page-2-0) [LO and NLO perturbative results](#page-6-0) [Gribov-Zwanziger action and its consequences](#page-15-0) [Results and Conclusions](#page-22-0)
00000 00000 00000 00000 00000 00000 000

00000

Static and Dynamic limit of HQ

HQ momentum evolution according to the Langevin equations

$$
\frac{dp_i}{dt} = \xi_i(t) - \eta_D p_i,
$$

• Static limit $(M \gg T)$

$$
\langle \xi_i(t)\xi_j(t')\rangle = \kappa \delta_{ij}\delta(t-t')
$$

• Dynamic limit $(M \ge p \gg T)$

$$
\langle \xi_i(t)\xi_j(t')\rangle = \kappa_{ij}(\mathbf{p})\delta(t-t')
$$

$$
\kappa_{ij}(\mathbf{p}) = \kappa_L(p)\hat{p}_i\hat{p}_j + \kappa_T(p)(\delta_{ij} - \hat{p}_i\hat{p}_j)
$$

We have worked within the static limit. Dynamic limit calculation is under progress.

[Motivation](#page-2-0) [LO and NLO perturbative results](#page-6-0) [Gribov-Zwanziger action and its consequences](#page-15-0) [Results and Conclusions](#page-22-0)
00000 00000 00000 00000 00000 00000

Static and Dynamic limit of HQ

HQ momentum evolution according to the Langevin equations within static limit

$$
\frac{dp_i}{dt} = \xi_i(t) - \eta_D p_i,
$$

$$
\langle \xi_i(t)\xi_j(t') \rangle = \kappa \delta_{ij}\delta(t - t'),
$$

$$
\langle x_i(t)x_j(t) \rangle = 2D_s t \delta_{ij},
$$

$$
D_s = \frac{T}{M\eta_D} = \frac{2T^2}{\kappa}
$$

Outline

2 [LO and NLO perturbative results](#page-6-0)

4 [Results and Conclusions](#page-22-0)

00000

Heavy quark scattering within Hard Thermal Loop Q

 $2 \leftrightarrow 2$ scattering : $qH \rightarrow qH$ (left) and $gH \rightarrow gH$ (right)

- Both the processes dominated by t-channel gluon exchange.
- In the static limit, Compton scattering is suppressed by factor $Q^2/PK \approx T/M$.
- $|\mathcal{M}|^2 \propto L_{\mu\nu}(P) M_{\alpha\beta}(K,K') G^{\mu\alpha}(Q) G^{\nu\beta}(Q)$
- Static limit, small energy transfer : $\,G(Q)\rightarrow 1/(q^2+m_D^2)\,$

$$
\bullet \ |\mathcal{M}|^2_{\mathrm{qH}} \propto M^2 k_0^2 \tfrac{1+\cos\theta_{kk'}}{(q^2+m_D^2)^2} \ ; \quad \ |\mathcal{M}|^2_{\mathrm{gH}} \propto M^2 k_0^2 \tfrac{1+\cos^2\theta_{kk'}}{(q^2+m_D^2)^2}
$$

.

Heavy quark scattering within Hard Thermal Loop

 $2 \leftrightarrow 2$ scattering : $qH \rightarrow qH$ (left) and $gH \rightarrow gH$ (right)

$$
3\kappa = \frac{1}{16M^2} \int \frac{d^3 \mathbf{k}}{(2\pi)^4 k k'} \int q^2 dq \int_{-1}^1 d\cos\theta_{\mathbf{kq}} \Big[q^2 \delta(k'-k) + \Big\{ |\mathcal{M}|_{\text{qH}}^2 n_F(k)[1 - n_F(k')] + |\mathcal{M}|_{\text{gH}}^2 n_B(k)[1 + n_B(k')] \Big\} \Big]_{\mathbf{k}' = \mathbf{k} + \mathbf{q}}
$$

[Gribov-Zwanziger action and its consequences](#page-15-0) [Results and Conclusions](#page-22-0)
00000 00000

LO results

NLO results

NLO results

 P P' ′

 K K[°]

2

NLO results

[Gribov-Zwanziger action and its consequences](#page-15-0) [Results and Conclusions](#page-22-0)
00000 00000

NLO results

compared for pure glue, i.e. $N_f = 0$.

00000

Need for alternative results

- Even though NLO HTLpt result matches with the lattice QCD, the correction to LO is huge! \rightarrow Indication of the poor convergence.
- Improvement is needed near T_c and for pure glue results.
- **Gribov-Zwanziger framework** showed improvements over 3-loop HTLpt for gluon thermodynamics, specifically near T_c . [K Fukushima, N Su, PRD 88, 076008 (2013)]
- Gribov prescription can be a promising setup to go forward!

Outline

2 [LO and NLO perturbative results](#page-6-0)

3 [Gribov-Zwanziger action and its consequences](#page-15-0)

4 [Results and Conclusions](#page-22-0)

ംറററ

00000

Gribov-Zwanziger (GZ) framework

- The presence of a long-range force is required in QCD that confines colored objects.
- But the massless gluons that are supposed to transmit this force are absent from the physical spectrum.
- Apparent contradictory statements \rightarrow Confinement Paradox \rightarrow How does QCD incorporate confinement?
- addressed by Gribov and modified by Zwanziger \rightarrow GZ framework.

00000

Gribov-Zwanziger (GZ) framework

- Gribov demonstrated for the first time in 1978 that the gauge condition proposed by Faddeev and Popov is not ideal.
- Gribov showed that for certain scenarios, multiple copies of a gauge field can obey Landau gauge condition.

If $A_\mu^{a'}=A_\mu^a+{\cal D}_\mu^{ab}\omega^b$, a vanishing $\partial_\mu{\cal D}_\mu^{ab}\omega^b$ generates Gribov $copies \rightarrow problem$ of overcounting.

- Faddeev-Popov operator : has no zero modes \rightarrow first Gribov region. has its first zero mode \rightarrow Gribov horizon.
- Gribov argued that overcounting problem will not be there if we limit the path integral up to the Gribov horizon.

[Motivation](#page-2-0) [LO and NLO perturbative results](#page-6-0) **[Gribov-Zwanziger action and its consequences](#page-15-0)** [Results and Conclusions](#page-22-0)
00000 00000 00000 000

ംറററ

00000

Gribov-Zwanziger (GZ) framework

- GZ framework improves the infrared behaviour of QCD.
- GZ gluon propagator in covariant gauge

$$
G^{\mu\alpha}(Q) = \left[\delta^{\mu\alpha} - (1 - \xi) \frac{Q^{\mu}Q^{\alpha}}{Q^2}\right] \frac{Q^2}{Q^4 + \gamma_G^4},
$$

 $\xi \rightarrow$ gauge parameter.

- γ_G (Gribov parameter) \rightarrow shifts the poles off the energy axis to an unphysical location $Q^2=\pm i\gamma_{G^{\prime}}^2$ suggesting that the gluons are not physical excitations.
- Zwanziger (PRL94, 182301 (2005)) phenomenologically showed that a free gas of Gribov quasiparticles qualitatively captures the nonperturbative features of the lattice EoS.

[Motivation](#page-2-0) [LO and NLO perturbative results](#page-6-0) [Gribov-Zwanziger action and its consequences](#page-15-0) [Results and Conclusions](#page-22-0)

 00000

00000

Fixing γ_G - perturbative

• The Gribov mass parameter can be determined by the variational principle, leading to the following gap equation :

[K Fukushima & N Su, PRD 88 (2013), 076008]

$$
\sum_{P} \frac{1}{P^4 + \gamma_G^4} = \frac{d}{(d-1)N_c g^2}
$$

• Analytic form of γ_G in the limit $T \to \infty$,

$$
\gamma_G(T) = \frac{d-1}{d} \frac{N_c}{4\sqrt{2}\pi} g^2(T) T,
$$

where $g(T)$ is the one loop running coupling given by

$$
\frac{g^2(T)}{4\pi} = \frac{6\pi}{(11N_c - 2N_f)\ln\left(\frac{\Lambda}{\Lambda_{\bar{MS}}}\right)}
$$

[Motivation](#page-2-0) [LO and NLO perturbative results](#page-6-0) [Gribov-Zwanziger action and its consequences](#page-15-0) [Results and Conclusions](#page-22-0) 000

ററൈ∙െ

00000

Fixing γ_G - LQCD fitted coupling

• The running coupling $g(T)$ can also be parameterised with a single parameter c as: [K Fukushima & N Su, PRD 88 (2013), 076008]

$$
\alpha_s(T/T_c) \equiv \frac{g^2(T/T_c)}{4\pi} = \frac{6\pi}{11 \text{ N}_c \ln[c(T/T_c)]}.
$$

- \bullet The parameter c was calculated by fitting lattice QCD running coupling in the infrared and ultraviolet regime with $c_{IR} = 1.43$ for IR case and $c_{UV} = 2.97$ for UV case.
- The fitted parameter values correspond to the coupling data extracted from the large distance (IR) and the short distance (UV) behaviour of the heavy quark free energy.

[Motivation](#page-2-0) [LO and NLO perturbative results](#page-6-0) [Gribov-Zwanziger action and its consequences](#page-15-0) [Results and Conclusions](#page-22-0)

Fixing γ_G - comparison

Outline

¹ [Motivation](#page-2-0)

2 [LO and NLO perturbative results](#page-6-0)

Spatial diffusion coefficients

Momentum diffusion coefficients

[Gribov-Zwanziger action and its consequences](#page-15-0) **[Results and Conclusions](#page-22-0)** 00000

ററൈ

Summary

- We have discussed existing LO and NLO HTLpt results for heavy quark diffusion coefficient.
- We have discussed the motivation to include the Gribov Zwanziger framework in our calculation.
- Different procedures to fix the Gribov parameter γ_G have been explored.
- HQ diffusion coefficient (κ) within the static limit in light of GZ action shows reasonable improvements over the existing results.
- A natural next step is to go beyond the HQ static limit adopted in the present work.

Thanksgiving

Thank you for your kind attention.