Motivation LO and NLO perturbative results

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

Heavy quark diffusion coefficients in light of Gribov-Zwanziger action

Aritra Bandyopadhyay

Based on Phys.Lett.B 838 (2023) 137714 [2210.03076 [hep-ph]]

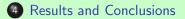
In collaboration with S.Madni, A.Mukherjee and N.Haque

Talk prepared for ExploreQGP workshop

Motiv	/ati	

LO and NLO perturbative results $_{\rm OOOOO}$

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$


Results and Conclusions

Outline

2 LO and NLO perturbative results

3 Gribov-Zwanziger action and its consequences

Motivation	LO and	NLO	perturbative	results
000				

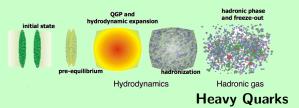
Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

Outline

2 LO and NLO perturbative results

3 Gribov-Zwanziger action and its consequences


Results and Conclusions

Motivation ○●○ LO and NLO perturbative results 00000

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

Heavy Quarks as QGP Signature

- QGP Signatures
- a) static properties
- b) dynamic quantities.

- large mass compared to T,
- external to the bulk medium.
- generated at the early stage
- experience drags & random kicks
- Theoretical inputs : momentum diffusion coefficient

Less contamination

- \rightarrow More information
- \rightarrow Langevin equations
- \rightarrow Momentum
- broadening, Energy loss

 Motivation
 LO and NLO perturbative results

 00•
 00000

Gribov-Zwanziger action and its consequences

Results and Conclusions

Static and Dynamic limit of HQ

• HQ momentum evolution according to the Langevin equations

$$\frac{dp_i}{dt} = \xi_i(t) - \eta_D p_i,$$

• Static limit $(M \gg T)$

$$\langle \xi_i(t)\xi_j(t')\rangle = \kappa \ \delta_{ij}\delta(t-t')$$

• Dynamic limit $(M \ge p \gg T)$

$$\begin{aligned} \langle \xi_i(t)\xi_j(t')\rangle &= \kappa_{ij}(\mathbf{p})\delta(t-t')\\ \kappa_{ij}(\mathbf{p}) &= \kappa_L(p)\hat{p}_i\hat{p}_j + \kappa_T(p)(\delta_{ij} - \hat{p}_i\hat{p}_j) \end{aligned}$$

• We have worked within the static limit. Dynamic limit calculation is under progress.

MotivationLO and NLO perturbative results00000000

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

Static and Dynamic limit of HQ

 $\ensuremath{\mathsf{HQ}}$ momentum evolution according to the Langevin equations within static limit

$$\frac{dp_i}{dt} = \xi_i(t) - \eta_D p_i,$$

$$\xi_i(t)\xi_j(t') = \kappa \delta_{ij}\delta(t-t'),$$

$$\langle x_i(t)x_j(t) \rangle = 2D_s t \delta_{ij},$$

$$D_s = \frac{T}{M\eta_D} = \frac{2T^2}{\kappa}$$

Motivation 000 LO and NLO perturbative results $_{\odot \odot \odot \odot \odot}$

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

Outline

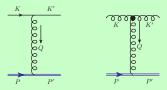
Motivation

2 LO and NLO perturbative results

3 Gribov-Zwanziger action and its consequences

4 Results and Conclusions

 Motivation
 LO and NLO perturbative results


 000
 0000

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

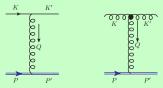
Results and Conclusions

Heavy quark scattering within Hard Thermal Loop

• $2 \leftrightarrow 2$ scattering : $qH \rightarrow qH$ (left) and $gH \rightarrow gH$ (right)

- Both the processes dominated by t-channel gluon exchange.
- In the static limit, Compton scattering is suppressed by factor $Q^2/PK\approx T/M.$
- $|\mathcal{M}|^2 \propto L_{\mu\nu}(P)M_{\alpha\beta}(K,K')G^{\mu\alpha}(Q)G^{\nu\beta}(Q)$
- Static limit, small energy transfer : $G(Q) \rightarrow 1/(q^2 + m_D^2)$

•
$$|\mathcal{M}|_{\mathrm{qH}}^2 \propto M^2 k_0^2 \frac{1+\cos\theta_{kk'}}{(q^2+m_D^2)^2}$$
; $|\mathcal{M}|_{\mathrm{gH}}^2 \propto M^2 k_0^2 \frac{1+\cos^2\theta_{kk'}}{(q^2+m_D^2)^2}$

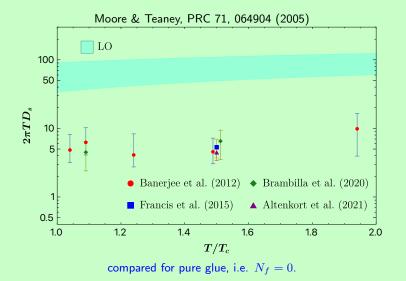

otivation LO and NLO perturbative results

Gribov-Zwanziger action and its consequences ${\scriptstyle 00000}$

Results and Conclusions

Heavy quark scattering within Hard Thermal Loop

• $2 \leftrightarrow 2$ scattering : $qH \rightarrow qH$ (left) and $gH \rightarrow gH$ (right)


$$3\kappa = \frac{1}{16M^2} \int \frac{d^3\mathbf{k}}{(2\pi)^4 kk'} \int q^2 dq \int_{-1}^{1} d\cos\theta_{\mathbf{kq}} \Big[q^2 \delta(k'-k) \Big\{ |\mathcal{M}|^2_{\mathbf{qH}} n_F(k) [1-n_F(k')] + |\mathcal{M}|^2_{\mathbf{gH}} n_B(k) [1+n_B(k')] \Big\} \Big]_{\mathbf{k'}=\mathbf{k+q}}$$

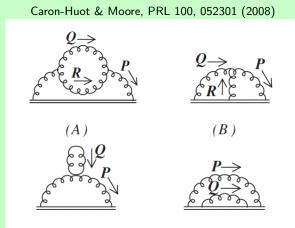
Motivation	LO and	NLO	perturbative	result
	00000			

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

LO results

Mot		

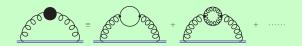

LO and NLO perturbative results $_{\odot O \odot \odot \odot }$

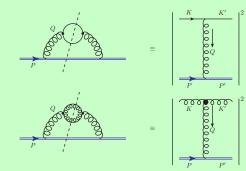
(C)

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions 00000

NLO results


(D)

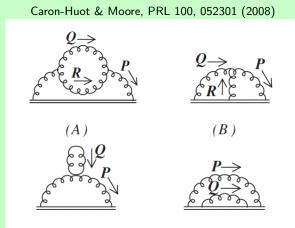

Motivation 000 LO and NLO perturbative results $_{\odot OO \odot \odot}$

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions 00000

NLO results

Mot		


LO and NLO perturbative results $_{\odot O \odot \odot \odot }$

(C)

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions 00000

NLO results

(D)


Motivation	LO and NLO p
	00000

and NLO perturbative results

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

NLO results

Motivation LO and NLO perturbative results

Gribov-Zwanziger action and its consequences

Results and Conclusions

Need for alternative results

- Even though NLO HTLpt result matches with the lattice QCD, the correction to LO is huge! \rightarrow Indication of the poor convergence.
- Improvement is needed near T_c and for pure glue results.
- Gribov-Zwanziger framework showed improvements over 3-loop HTLpt for gluon thermodynamics, specifically near T_c.
 [K Fukushima, N Su, PRD 88, 076008 (2013)]
- Gribov prescription can be a promising setup to go forward!

Motivation 000 LO and NLO perturbative results 00000

Gribov-Zwanziger action and its consequences $\odot{}\circ{}\circ{}\circ{}\circ$

Results and Conclusions

Outline

Motivation

2 LO and NLO perturbative results

3 Gribov-Zwanziger action and its consequences

4 Results and Conclusions

Motivation LO and NLO perturbative results 000 00000

Gribov-Zwanziger action and its consequences ${\scriptstyle \odot \bullet \odot \odot \odot}$

Results and Conclusions 00000

Gribov-Zwanziger (GZ) framework

- The presence of a long-range force is required in QCD that confines colored objects.
- But the massless gluons that are supposed to transmit this force are absent from the physical spectrum.
- Apparent contradictory statements → Confinement Paradox
 → How does QCD incorporate confinement?
- \bullet addressed by Gribov and modified by Zwanziger \rightarrow GZ framework.

Motivation LO and NLO perturbative results 000 00000

Gribov-Zwanziger action and its consequences $\circ \bullet \circ \circ \circ$

Results and Conclusions

Gribov-Zwanziger (GZ) framework

- Gribov demonstrated for the first time in 1978 that the gauge condition proposed by Faddeev and Popov is not ideal.
- Gribov showed that for certain scenarios, multiple copies of a gauge field can obey Landau gauge condition.

If $A^{a'}_{\mu} = A^a_{\mu} + \mathcal{D}^{ab}_{\mu}\omega^b$, a vanishing $\partial_{\mu}\mathcal{D}^{ab}_{\mu}\omega^b$ generates Gribov copies \rightarrow problem of overcounting.

- Faddeev-Popov operator : has no zero modes → first Gribov region. has its first zero mode → Gribov horizon.
- Gribov argued that overcounting problem will not be there if we limit the path integral up to the Gribov horizon.

Motivation LO and NLO perturbative results 000 00000

Gribov-Zwanziger action and its consequences $\circ \bullet \circ \circ \circ$

Results and Conclusions

Gribov-Zwanziger (GZ) framework

- GZ framework improves the infrared behaviour of QCD.
- GZ gluon propagator in covariant gauge

$$G^{\mu\alpha}(Q) = \left[\delta^{\mu\alpha} - (1-\xi)\frac{Q^{\mu}Q^{\alpha}}{Q^2}\right]\frac{Q^2}{Q^4 + \gamma_G^4},$$

 $\xi \rightarrow$ gauge parameter.

- γ_G (Gribov parameter) \rightarrow shifts the poles off the energy axis to an unphysical location $Q^2 = \pm i \gamma_G^2$, suggesting that the gluons are not physical excitations.
- Zwanziger (PRL94, 182301 (2005)) phenomenologically showed that a free gas of Gribov quasiparticles qualitatively captures the nonperturbative features of the lattice EoS.

Motivation LO and NLO perturbative results 000 00000

Gribov-Zwanziger action and its consequences $\circ \circ \circ \circ \circ \circ$

Results and Conclusions

Fixing γ_G - perturbative

 The Gribov mass parameter can be determined by the variational principle, leading to the following gap equation :

[K Fukushima & N Su, PRD 88 (2013), 076008]

$$\oint_P \frac{1}{P^4 + \gamma_G^4} = \frac{d}{(d-1)N_c g^2}$$

• Analytic form of γ_G in the limit $T \to \infty$,

$$\gamma_G(T) = \frac{d-1}{d} \frac{N_c}{4\sqrt{2}\pi} g^2(T)T,$$

where g(T) is the one loop running coupling given by

$$\frac{g^2(T)}{4\pi} = \frac{6\pi}{\left(11N_c - 2N_f\right)\ln\left(\frac{\Lambda}{\Lambda_{\bar{MS}}}\right)}$$

Motivation LO and NLO perturbative results 000 00000

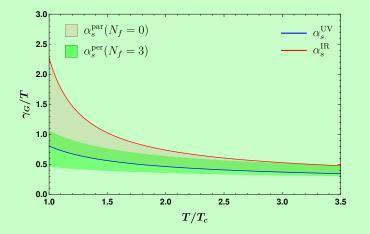
Gribov-Zwanziger action and its consequences $\circ \circ \circ \circ \circ \circ$

Results and Conclusions

Fixing γ_G - LQCD fitted coupling

• The running coupling g(T) can also be parameterised with a single parameter c as: [K Fukushima & N Su, PRD 88 (2013), 076008]

$$\alpha_s(T/T_c) \equiv \frac{g^2(T/T_c)}{4\pi} = \frac{6\pi}{11 \operatorname{N_c} \ln[c(T/T_c)]}.$$


- The parameter c was calculated by fitting lattice QCD running coupling in the infrared and ultraviolet regime with $c_{IR} = 1.43$ for IR case and $c_{UV} = 2.97$ for UV case.
- The fitted parameter values correspond to the coupling data extracted from the large distance (IR) and the short distance (UV) behaviour of the heavy quark free energy.

MotivationLO and NLO perturbative results00000000

Gribov-Zwanziger action and its consequences $\circ \circ \circ \circ \circ \bullet$

Results and Conclusions

Fixing γ_G - comparison

Motiv	ation

LO and NLO perturbative results 00000

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

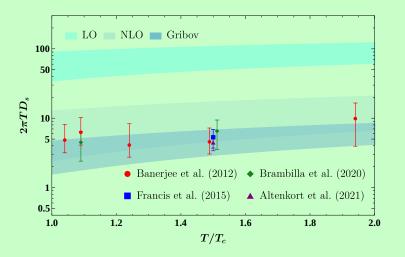
Results and Conclusions

Outline

Motivation

2 LO and NLO perturbative results

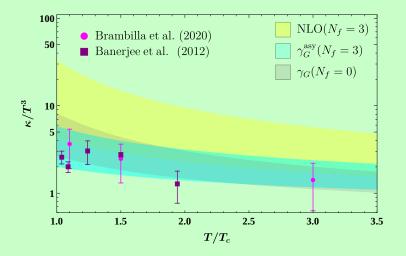
3 Gribov-Zwanziger action and its consequences



Motivation LO and NLO perturbative results 0000

Gribov-Zwanziger action and its consequences

Results and Conclusions


Spatial diffusion coefficients

Motivation LO and NLO perturbative results 000 00000 Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

Momentum diffusion coefficients

Notivation	LO	and	NLO	perturbative	results
000					

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

Summary

- We have discussed existing LO and NLO HTLpt results for heavy quark diffusion coefficient.
- We have discussed the motivation to include the Gribov Zwanziger framework in our calculation.
- Different procedures to fix the Gribov parameter γ_G have been explored.
- HQ diffusion coefficient (κ) within the static limit in light of GZ action shows reasonable improvements over the existing results.
- A natural next step is to go beyond the HQ static limit adopted in the present work.

Motivation 000 LO and NLO perturbative results 00000

Gribov-Zwanziger action and its consequences $_{\rm OOOOO}$

Results and Conclusions

Thanksgiving

Thank you for your kind attention.