

Quarkonium production in pp and Heavy Ion Collisions

Denys Yen Arrebato Villar, J. Zhao, P.B. Gossiaux, K. Werner J. Aichelin (Subatech, Nantes)

T. Song, E. Bratkovskaya (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt)

work in progress

pp: PRC 96 014907 2305.10750

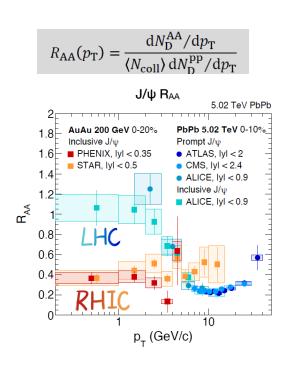
first results for AA: PRC107,054913

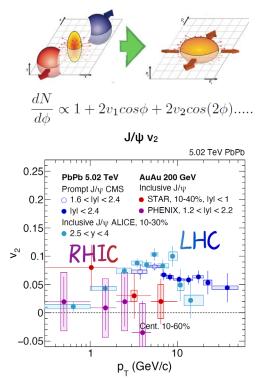
exploreQGPworkshop Belgrad, May 29-31, 2023

Why do we study J/ψ production in heavy-ion collisions?

J/ψ mesons

- are a hard probe: tests quark gluon plasma from creation to hadronization
- no consistent microscopical theory available yet
- show quite different results for key observables at RHIC and LHC which are not understood yet:



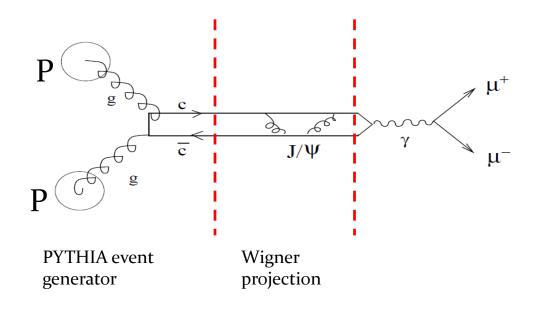


J/ψ production in p+p collisions

How to describe a composite object if perturbative QCD can only deal with quarks and gluons

Need non perturbative input → assumptions.

Our approach: Wigner density formalism (as successful at lower energies)



Interaction depends on relative coordinates only, \rightarrow plane wave of CM Starting point: Wave function (w.f.) of the relative motion of state i: $|\Phi_i\rangle$

$$|\Phi_i><\Phi_i|$$

Fourier transform of density matrix in relative coord. \rightarrow Wigner density of $|\Phi_i>$ (close to classical phase space density)

$$\Phi_i^W(\mathbf{r},\mathbf{p}) = \int d^3y e^{i\mathbf{p}\cdot\mathbf{y}} <\mathbf{r} - \frac{1}{2}\mathbf{y}|\Phi_i> <\Phi_i|\mathbf{r} + \frac{1}{2}\mathbf{y}>. \qquad \begin{array}{c} \mathbf{R} = \frac{\mathbf{r_1}+\mathbf{r_2}}{2}, \quad \mathbf{r} = \mathbf{r_1}-\mathbf{r_2}, \\ \mathbf{P} = \mathbf{p_1}+\mathbf{p_2}, \quad \mathbf{p} = \frac{\mathbf{p_1}-\mathbf{p_2}}{2}. \end{array}$$

$$n_i(\mathbf{R}, \mathbf{P}) = \int d^3r d^3p \, \Phi_i^W(\mathbf{r}, \mathbf{p}) n^{(2)}(\mathbf{r_1}, \mathbf{p_1}, \mathbf{r_2}, \mathbf{p_2})$$

 $n^{(2)}(\mathbf{r_1},\mathbf{p_1},\mathbf{r_2},\mathbf{p_2})$ two body c cbar density matrix

pp: In momentum space given by PYTHIA (Innsbruck tune)

In coordinate space
$$\sim r^2 \exp\left(-\frac{r^2}{2\delta^2}\right) \delta^2 = \langle r^2 \rangle/3 = 4/(3m_c^2)$$

If there are N c cbar pairs in the system the phase space density of states $|\Phi_i>$

$$n_{i}(\mathbf{R}, \mathbf{P}) = \sum \int \frac{d^{3}r d^{3}p}{(2\pi)^{3}} \Phi_{i}^{W}(\mathbf{r}, \mathbf{p}) \prod_{j} \int \frac{d^{3}r_{j} d^{3}p_{j}}{(2\pi)^{3}}$$
$$n^{(N)}(\mathbf{r}_{1}, \mathbf{p}_{1}, \mathbf{r}_{2}, \mathbf{p}_{2}, ..., \mathbf{r}_{N}, \mathbf{p}_{N})$$
(5)

Sum over all possible ccbar pairs after integration of the relative coordinates Integration over all N-2 left particles.

Multiplicity of
$$|\Phi_i>$$

$$P_i = \int \frac{d^3Rd^3P}{(2\pi)^3} n_i(\mathbf{R}, \mathbf{P})$$

Momentum distribution

$$\frac{dP_i}{d^3P} = \int \frac{d^3R}{(2\pi)^3} n_i(\mathbf{R}, \mathbf{P})$$

The Wigner density of the state $|\Phi_i\rangle$ is different for S and P states We choose the simplest possible (harmonic oscillator) parametrization

$$\Phi_{\mathbf{S}}^{W}(\mathbf{r}, \mathbf{p}) = 8 \frac{D}{d_1 d_2} \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right],$$

$$\Phi_{\mathbf{P}}^{W}(\mathbf{r}, \mathbf{p}) = \frac{16}{3} \frac{D}{d_1 d_2} \left(\frac{r^2}{\sigma^2} - \frac{3}{2} + \sigma^2 p^2\right)$$

$$\times \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right],$$

$$r = r_c - r_{\bar{c}}$$
$$p = \frac{p_c - p_{\bar{c}}}{2}$$

D: degeneracy of Φ

 d_1 : degeneracy of c

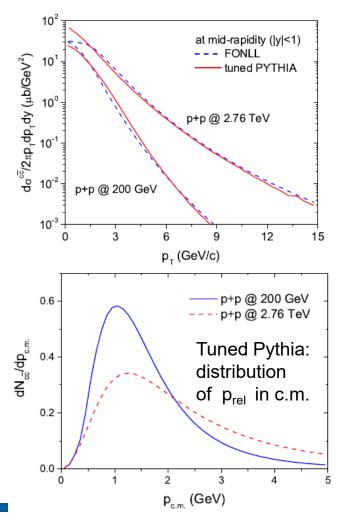
d₂: degeneracy of cbar

 σ ~ radius of Φ

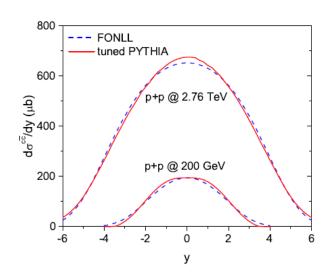
Where σ reproduces the rms radius of the vacuum c cbar state $|\Phi_i>$

$$\Phi = J/\psi(1S), \qquad \chi(1P), \ \psi'(2S)$$

The (Innsbruck) tuned PYTHIA reproduces FONLL calculations but in addition it keeps the ccbar correlation (not known in FONLL)



Distribution of charm quarks agrees



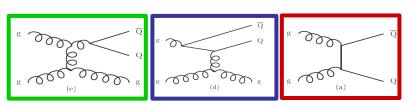
but quite different relative momenta at RHIC and LHC

T. Song et al., PRC 96 (2017) 1, 014907

Azimuthal correlations in EPOS4 and PHSD

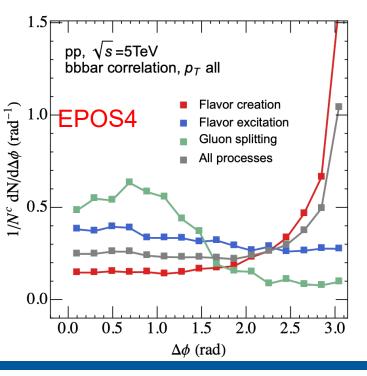
FONLL: only single quark p_T spectrum for J/□ or Y we need

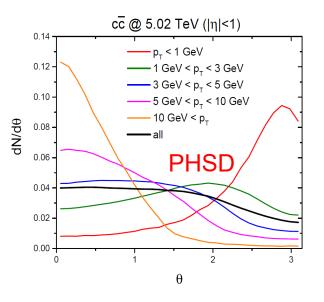
c cbar and b bbar correlations

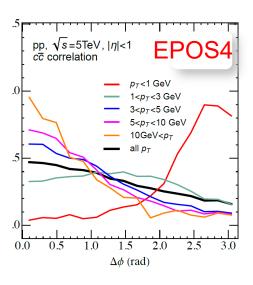


azimuthal correlations of EPOS4 and PHSD between c and cbar agree even as a function of p_T

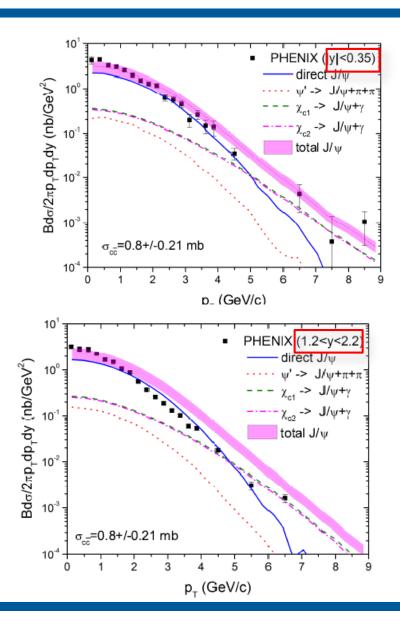
basis for a model independent production of quarkonia

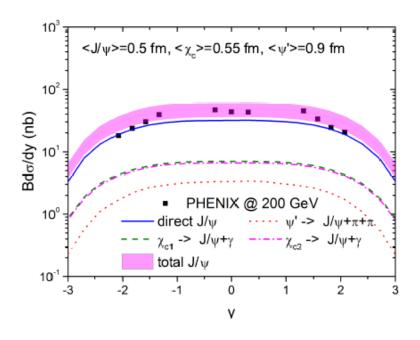






pp: comparison with PHENIX data





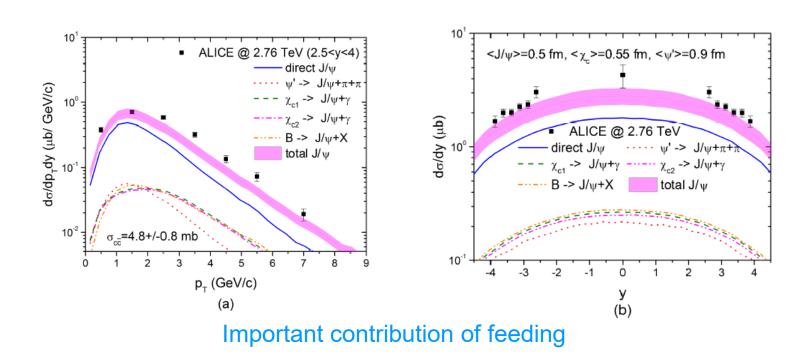
Good agreement for rapidity spectra pt spectra at |y| < 0.35 pt spectra at 1.25 < |y| < 2.2

Feeding at RHIC not very important

T. Song et al., PRC 96 (2017) 1, 014907

pp: comparison with ALICE data

same charmonia radii as at RHIC



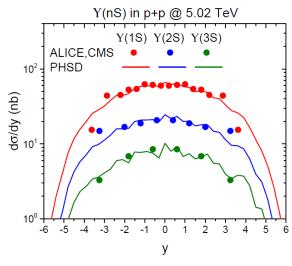
The observed J/ψ data in pp at RHIC and LHC can be well described by Wigner dens.

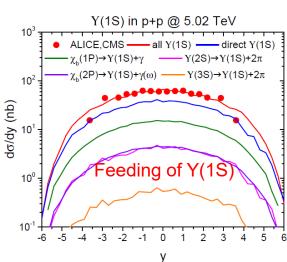
T. Song et al., PRC 96 (2017) 1, 014907

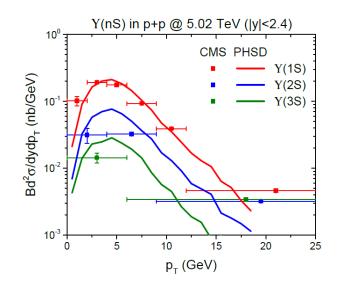
pp: comparison of Y(nS) with CMS/ALICE data

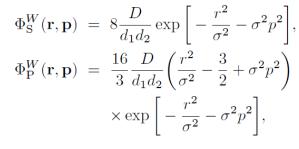
Wigner density approach works also for Y(nS)

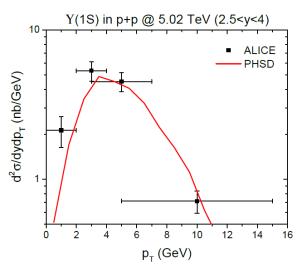
2305.10750 [nucl-th]











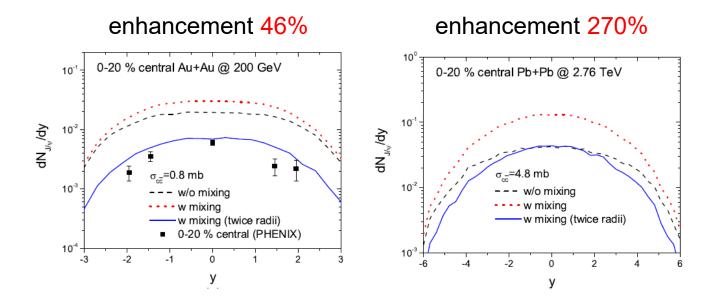
$$\sigma^2 = 2/3\langle r^2 \rangle$$
 for S -state $\sigma^2 = 2/5\langle r^2 \rangle$ for P -state

With this validation of the new approach for quarkonium production in pp we are ready for AA collisions

AA collisions

AA: without any QGP

Without the formation of a QGP we expect a (large) enhancement of the J/ψ production because c and cbar from different vertices can form a J/ψ.



but experiments show suppression

Reason: J/ψ production in HI collisions is a very complex process

The different processes which influence the J/ψ yield

- Creation of heavy quarks (shadowing)
- J/ψ are first unstable in the quark gluon plasma and are created later
- c and cbar interact with the QGP
- c and cbar interact among themselves (← lattice QCD)
- If QGP arrives at the dissociation temperature T_{diss}, stable J/ψ are possible
- J/ψ creation ends when the QGP hadronizes
- J/ψ can be further suppressed or created by hadronic interaction (task for the future → Torres-Rincon)
- There are in addition J/ψ from the corona (do not pass the QGP)
 Our model follows the time evolution of all c and cbar quarks,
 is based, as our pp calculation, on the Wigner density formalism
 assumes that

all c and cbar interact with the medium as those observed finally as D-mesons all c and cbar interact among themselves

uses EPOS2 to describe the expanding QGP

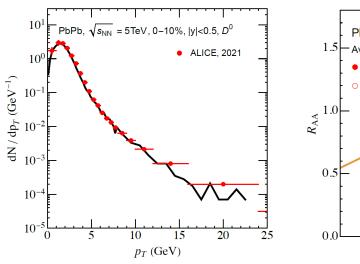
HQ interactions with QGP verified by D meson results

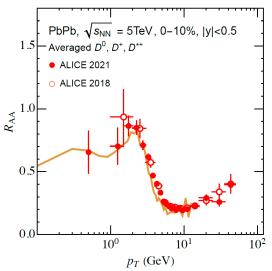
D mesons test the energy loss and v_2 of heavy quarks in a QGP energy loss tests the initial phase

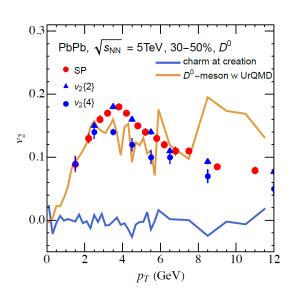
v₂ the late stage of the expansion

Two mechanisms: collisional energy loss: PRC78 (2008) 014904

radiative energy loss: PRD 89 (2014) 074018







EPOS4HQ reproduces dN/dp_T , R_{AA} and v_2 quite well

→ Heavy quark dynamics in the medium under control

Starting point: von Neumann equation for the density matrix of all particles

$$\partial \rho_N / \partial t = -i[H, \rho_N]$$
 with $H = \sum_i K_i + \sum_{i>j} V_{ij}$

gives the probability that at time t the state Φ is produced:

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_N(t)] \qquad \qquad \rho^{\Phi} = |\Psi^{\Phi}> <\Psi_{\Phi}|$$

This is the solution if we could calculate the quantal $ho^N(t)$

In our semiclassical approach (correlations are lost) preferable to calculate the rate

$$\Gamma^{\Phi}(t) = \frac{dP^{\Phi}}{dt} = \frac{d}{dt} \text{Tr}[\rho^{\Phi}\rho_N(t)] \qquad P^{\Phi}(T) = \int_0^T \Gamma^{\Phi}(t)dt$$

For time independent ρ^{Φ}

$$\Gamma^{\Phi} = Tr(\rho^{\Phi} d\rho^{N}(t)/dt) = -iTr(\rho^{\Phi}[H, \rho^{N}(t)]) = -iTr(\rho^{\Phi}[U_{12}, \rho^{N}])$$

$$U_{12} = \sum_{i \le 3} (V_{1j} + V_{2j})$$

Heavy ion studies (BUU,QMD,PHSD) have shown that we obtain very satisfying results if we assume

$$W_N = \langle W_N^{c(classical)} \rangle$$

We assume in addition that heavy quarks and QGP partons interact by collisions only

$$\frac{dP^{\Phi}(t)}{dt} = \prod_{j}^{N} \int d^{3}\mathbf{r}_{j} d^{3}\mathbf{p}_{j} W^{\Phi} \frac{d}{dt} W_{N}^{c}(t).$$

with

$$\frac{\partial}{\partial t} W_N^c(t) = \Sigma_i v_i \cdot \partial_{r_i} W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t)$$

$$+ \Sigma_{j \geq i} \Sigma_n \delta(t - t_{ij}(n))$$

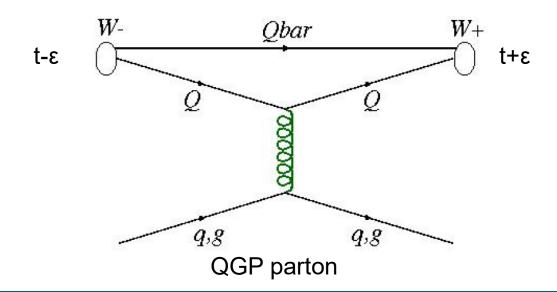
$$\cdot (W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t + \epsilon) - W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t - \epsilon)).$$
(19)

If the collisions are point like in time and if $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ is time independent

$$\Gamma^{\Phi}(t) = \sum_{i=1,2} \sum_{j\geq 3} \delta(t - t_{ij}(n)) \prod_{k=1}^{N} \int d^{3}\mathbf{r}_{i} d^{3}\mathbf{p}_{i}$$

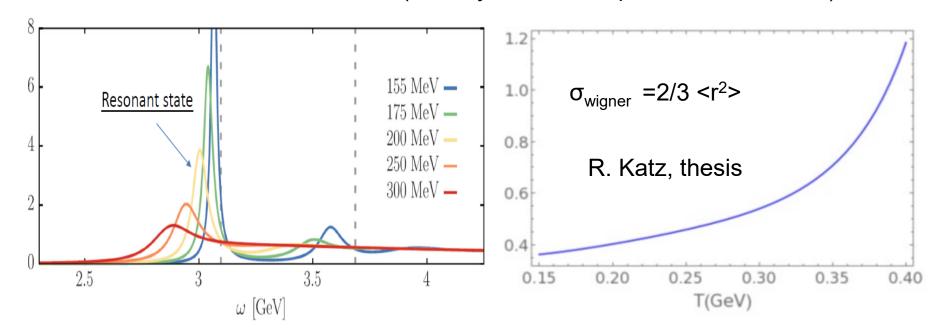
$$\cdot W^{\Phi}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{p}_{1}, \mathbf{p}_{2})$$

$$\cdot [W_{N}(\{\mathbf{r}, \mathbf{p}\}; t + \epsilon) - W_{N}(\{\mathbf{r}, \mathbf{p}\}; t - \epsilon)].$$



Lattice calc: In an expanding QGP $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ depends on the temperature and hence on time

Parametrization of the lattice results (Lafferty and Rothkopf PRD 101,056010)



This creates an additional rate, called local rate.

Local Rate

Lattice : J/ψ wavefct is a function of the local QGP temperature

The QGP temperature decreases during the expansion

→ J/ψ wavefct becomes time dependent

creates for T<T_{diss} =400 MeV a local J/ψ prod. rate

$$\begin{split} \Gamma_{loc} &= (2\pi\hbar)^3 \int d^3r d^3p \ W_{Q\bar{Q}}(\mathbf{r},\mathbf{p},t) \dot{W}_{\Phi}(\mathbf{r},\mathbf{p},T(t)). \\ &= \int d^3r d^3p \ \frac{16}{(\pi)^3} \dot{\sigma}(T(t)) (\frac{\mathbf{r}^2}{\sigma^3(T)} - \frac{\sigma(T)\mathbf{p}^2}{\hbar^2}) e^{-(\frac{\mathbf{r}^2}{\sigma^2} + \frac{\sigma^2\mathbf{p}^2}{\hbar})} \end{split}$$

Total J/ψ multiplicity at time t is then given by

$$P_{Q\bar{Q}}(t) = P^{\text{prim}}(t_{\text{init}}^{Q,\bar{Q}}) + \int_{t_{\text{init}}^{Q,\bar{Q}}}^{t} (\Gamma_{\text{coll},Q\bar{Q}}(t^{'}) + \Gamma_{\text{loc},Q\bar{Q}}(t^{'})) dt^{'}$$

For $t \to \infty$ P(t) is the observable J/ ψ multiplicity

Interaction of c and cbar in the QGP

V(r) = attractive potential between c and cbar (PRD101,056010) We work in leading order in γ^{-1}

$$\mathcal{L} = -\gamma^{-1}mc^2 - V(r)$$

$$\mathcal{L} = -\gamma^{-1}mc^2 - V(r) \qquad \qquad H = \sqrt{m^2 + p_r^2 + \frac{p_\theta^2}{r^2}} + V(r) \qquad \qquad p^2 = p_r^2 + p_\theta^2/r^2$$
 Time evolution equation:
$$\gamma^{-1} = \sqrt{1 - v^2/c^2} \qquad \frac{\partial \mathcal{L}}{\partial v_i} = p_i = \gamma m v_i$$

Time evolution equation:

$$\dot{r} = \frac{\partial H}{\partial p_r} = \frac{p_r}{\sqrt{m^2 + p_r^2 + \frac{p_\theta^2}{r^2}}}$$

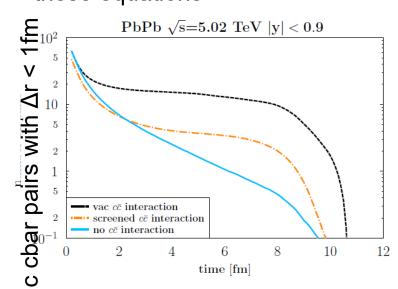
$$\dot{\theta} = \frac{\partial H}{\partial p_{\theta}} = \frac{p_{\theta}}{r^2 \sqrt{m^2 + p_r^2 + \frac{p_{\theta}^2}{r^2}}}$$

$$\dot{p}_r = -\frac{\partial H}{\partial r} = \frac{p_\theta^2}{r^3 \sqrt{m^2 + p_r^2 + \frac{p_\theta^2}{r^2}}} - \frac{\partial V}{\partial r}$$

$$=\frac{p_{\theta}\theta}{r}-\frac{\partial V}{\partial r}$$

$$\dot{p}_{\theta} = -\frac{\partial H}{\partial \theta} = 0 \rightarrow p_{\theta} = \text{const} = L$$

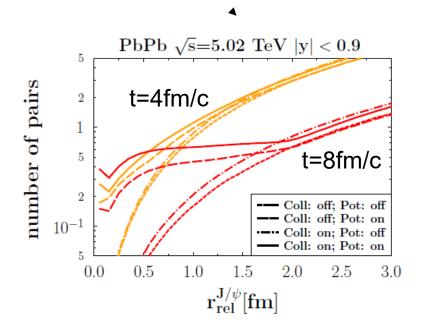
position and momentum of each c cbar pair evolve according to these equations

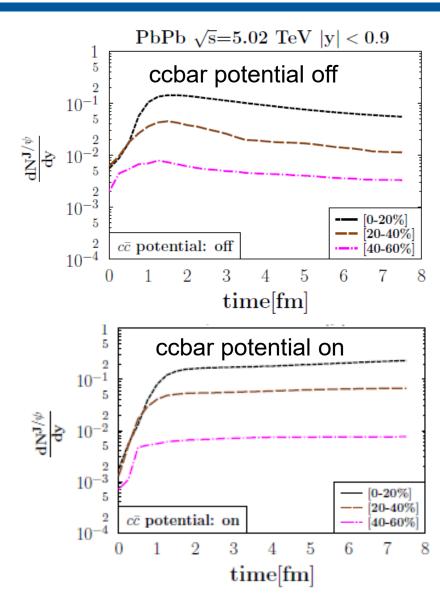


Consequences of the c cbar Interaction

Qq and Qg collisions shift p_T spectra to lower values (as for D mesons)

QQbar potential interaction increases the production rate





Influence of the Corona

Standard hydrodynamical calculations (EPOS 2) show two classes of particles of initially produced particles:

- Core particles which become part of QGP
- Corona particles from the surface of the interaction zone (energy density too low, no collision after production → like pp) importent for high pt and for v2

Confirmed by centrality dependence of multiplicity

For elementary particles it is easy to define corona and core particle

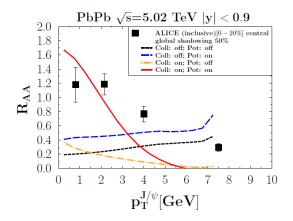
For J/ψ mesons we use working description:

Corona J/ ψ are those where none of its constituents suffers from a momentum change of q > q_{thres} . Larger q would destroy a J/ ψ .

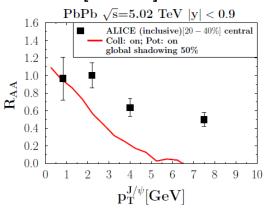
Comparison with ALICE data

Caution: excited states decay, b decay and hadronic rescattering not in yet

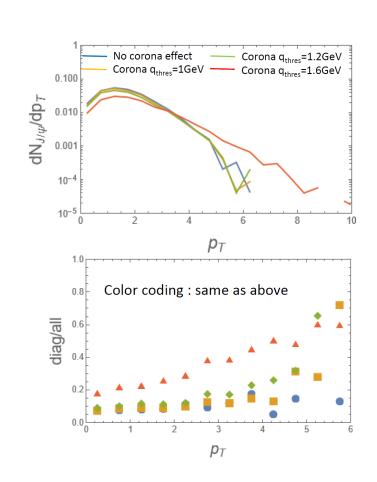
[0-20%] no corona



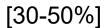
[20-40%] no corona

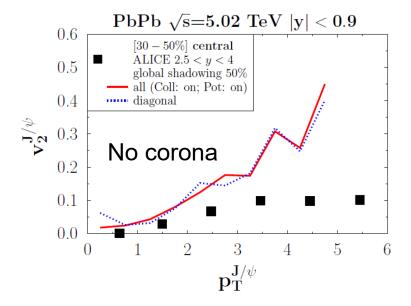


influence of the corona

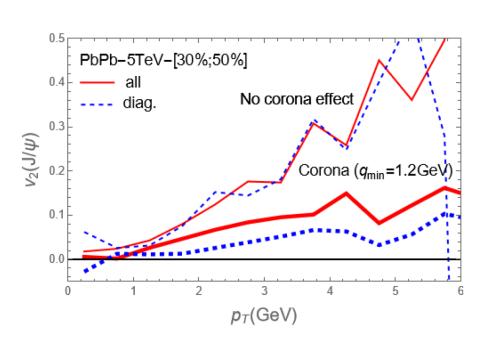


Comparison with ALICE data





[30-50%]



Corona J/ψ

- bring v₂ closer
 to the experimental values
- create difference between diagonal and off-diagonal

caution: comparison of mid and forward rapidities

Summary

We presented a new approach for quarkonia production in pp collision based on the quantal density matrix It describes the y and p_T dependence of the spectra for J/[], [] and Y from RHIC to LHC

Based on these results we presented a new microscopic quantal approach for J/ \Box production in AA which follows each c and cbar from creation until detection as J/ ψ

(no rate equation, no Fokker Planck eq., no thermal assumptions)

- c and cbar are created in initial hard collisions (controlled by pp data)
- when entering the QGP J/ψ become unstable
- c and cbar interact by potential interaction (lattice potential)
 c and cbar interact by collisions with q,g from QGP
- when T < T_{diss} = 400 MeV J/ ψ can be formed (and later destroyed)
- formation described by Wigner density formalism (as in pp)

- \triangleright Including corona J/ \square , preliminary results agree reasonably with ALICE data for R_{AA} as well as for v₂.
- > The later production (over) compensates the expected multiplicity increase (with respect to pp) due to c and cbar from different vertices
- Has many common features with open quantum system approach (however bottom up)

Outlook

a lot remains to be done:

- Follow the color structure, excited states
- Relativistic kinematics,
- J/ψ interaction in the hadronic expansion reduced cross section of preformed J/ψ (r < \square_{gluon}) with QGP partons (dipole cross section)

- ...

Our approach and open quantum systems

Von Neuman eq.

$$\partial \rho_N / \partial t = -\frac{i}{\hbar} [H, \rho_N]$$
 $H = H_{1,2} + H_{N-2} + U_{1,2}$ $U_{1,2} = \Sigma_j V_{1,j} + \Sigma_j V_{2,j}$

Prob. to find quarkonium

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_N(t)]$$

$$P^{\Phi}(t) = \text{Tr}[\rho^{\Phi}\rho_N(t)]$$
 with $[\rho^{\Phi}, H_{1,2}] = 0$ $[\rho^{\Phi}, H_{N-2}] = 0$

Quarkonium rate:

$$\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = \frac{-i}{\hbar} Tr[\rho^{\Phi}[U_{1,2}, \rho_N(t)]]$$

$$\partial \rho_N(t)/\partial t = -\frac{i}{\hbar} \Sigma_j [K_j, \rho_N(t)] - \frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)].$$

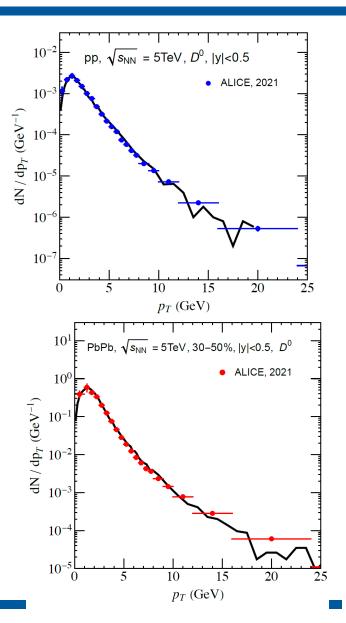
$$-\frac{i}{\hbar} \sum_{k>j} [V_{jk}, \rho_N(t)] \equiv \langle \Sigma_{k>j} \Sigma_n \delta(t - t_{jk}(n)) \rangle$$

$$(W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t+\epsilon) - W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t-\epsilon)))$$

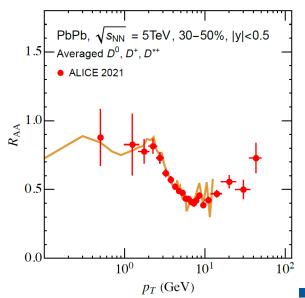
Interaction: coll. heavy quarks – partons:
$$-\frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)] \equiv \langle \Sigma_{k>j} \Sigma_n \delta(t-t_{jk}(n)) \rangle$$
 yields
$$\frac{dP^\Phi(t)}{dt} = \Gamma^\Phi(t) = h^3 \frac{d}{dt} \int \prod_j^N d^3 r_j d^3 p_j W_{12}^\Phi W_N^c(t) = h^3 \int \prod_i^N d^3 \mathbf{r}_j d^3 \mathbf{p}_j \ W_{12}^\Phi \frac{\partial}{\partial t} W_N^c(t)$$
 Lindblad eq. (open quantum systems) in the quantal Brownian motion regime
$$\frac{d}{dt} \rho(t) = -i \left[\frac{p^2}{M} + \Delta H, \rho \right] + \sum_n \int \frac{d^3k}{(2\pi)^3} \left[C_n(\vec{k}) \rho C_n^\dagger(\vec{k}) - \frac{1}{2} \left\{ C_n^\dagger(\vec{k}) C_n(\vec{k}), \rho \right\} \right]$$

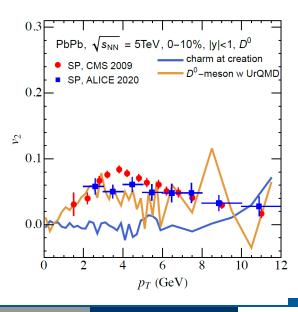
$$\frac{d}{dt}\rho(t) = -i\left[\frac{p^2}{M} + \Delta H, \rho\right] + \sum_{n} \int \frac{d^3k}{(2\pi)^3} \left[C_n(\vec{k})\rho C_n^{\dagger}(\vec{k}) - \frac{1}{2}\left\{C_n^{\dagger}(\vec{k})C_n(\vec{k}), \rho\right\}\right]$$

Miura, Akamatsu, 2205.15551



First EPOS4HQ results





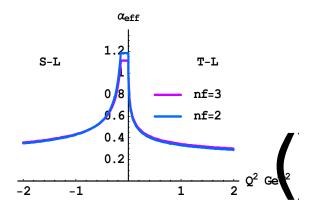
HQ interactions with the QGP

The interaction between HQ and q and g is described by Born type diagrams

$$\frac{d\sigma_F}{dt} = \frac{\mathbf{g^4}}{\pi (s - M^2)^2} \left[\frac{(s - M^2)^2}{(t - \kappa \mathbf{m_D^2})^2} + \frac{s}{t - \kappa \mathbf{m_D^2}} + \frac{1}{2} \right] \quad \stackrel{\bigoplus}{\Theta \Theta \Theta} \stackrel{\nabla}{\bullet} \stackrel{V(r)}{\sim} \stackrel{\exp(-m_b r)}{r}$$

q/g is randomly chosen from a Fermi/Bose distribution with the hydro cell temperature

coupling constant and infrared screening are input

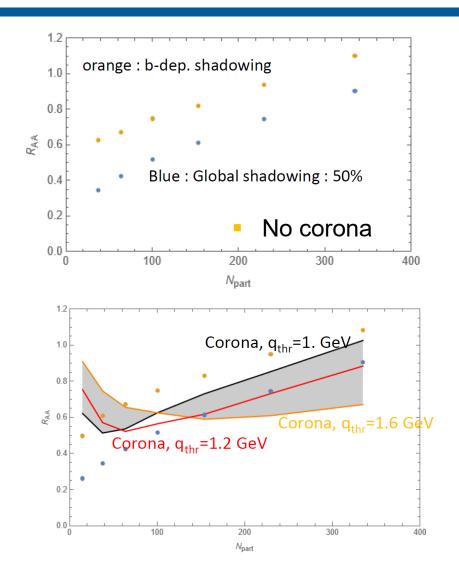


Peshier NPA 888, 7 based on universality constraint of Dokshitzer If t is small (<<T): Born has to be replaced by a hard thermal loop (HTL) approach For t>T Born approximation is (almost) ok

(Braaten and Thoma PRD44 1298,2625) for QED: Energy loss indep. of the artificial scale t* which separates the regimes Extension to QCD (PRC78:014904)

κ ≈ 0.2

Comparison with ALICE data



Corona J/ψ bring

- R_{AA} close to one for peripheral reactions
- the participant dependence close to data

