Heavy flavor measurements in STAR experiment

Jaroslav Bielcik

Czech Technical University in Prague

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Exploring Quark-Gluon Plasma through soft and hard probes, 29.-31. May 2023, Belgrade

STAR experiment

• Plan 2023-2025: Au+Au 200 GeV, p+p 200 GeV, p+Au 200 GeV

Forward upgrade: $2.5 < \eta < 4$

Heavy flavor tracker: 2014-2016

Probing Quark Gluon Plasma with charm quark

- Charm quark: m_c >> T_{QGP}, Λ_{QCD}
- Produced in hard scatterings at the early stage of nuclear collisions → experience the entire evolution of medium
- We aim to understand charm quark energy loss in the medium, charm quark transport and hadronization

STAR: PRD 86 (2012) 072013, NPA 931 (2014) 520 CDF: PRL 91 (2003) 241804; ALICE: JHEP01 (2012) 128 FONLL: PRL 95 (2005) 122001

 Its production rates are well described by pQCD in elementary collisions

Open charm hadron reconstruction

- Data from Au+Au collisions at Vs_{NN} = 200 GeV collected with Heavy flavor trigger in years 2014 and 2016
- HFT allows direct topological reconstruction of open-charm hadrons via their hadronic decays
- Significant suppression of combinatorial background
- Decay channels used:
 - $D^+ \rightarrow K^-\pi^+\pi^+$, $c\tau = (311.8 \pm 2.1) \ \mu m$

BR = (8.98 ± 0.28) %

■ $D^0 \rightarrow K^-\pi^+$, $c\tau = (122.9 \pm 0.4) \ \mu m$

BR = (3.93 ± 0.04) %

■ $D_s \rightarrow \pi^+ \phi, \phi \rightarrow K^- K^+, c\tau = (149.9 \pm 2.1) \mu m$ BR = (2.27 ± 0.08) %

•
$$\Lambda_c \rightarrow K^-\pi^+ p, c\tau = (59.9 \pm 1.8) \ \mu m$$

Nuclear modification factor R_{AA} of D^0 and D^{\pm}

 $\begin{array}{l} D^0 \mbox{ (STAR): Phys. Rev. C 99, 034908, (2019).} \\ \pi^{\pm} \mbox{ (STAR): Phys. Lett. B 655, 104 (2007).} \\ D \mbox{ (ALICE): JHEP 03, 081 (2016).} \\ h^{\pm} \mbox{ (ALICE): Phys. Lett. B 720, 52 (2013).} \\ LBT: Phys. Rev. C 94, 014909, (2016). \\ Duke: Phys. Rev. C 97, 014907, (2018). \end{array}$

Strong interaction between charm quarks and medium

- Suppression of D⁰ and D[±] mesons at high p_T comparable to light-flavor hadrons at RHIC and D mesons at LHC
- It is reproduced by models incorporating both radiative and collisional energy loss
- $D^{+/-}/D^0$ yield ratio in Au+Au is consistent with PYTHIA8.

D_s/D^0 yield ratio enhancement

- Observed strong enhancement of the D_s/D^0 yield ratio compared to PYTHIA version 6.4 p+p baseline The enhancement can be qualitatively described by model calculations incorporating thermal abundance of strange quarks in the QGP and coalescence hadronization
- **Recombination** of charm quarks with strange quarks in the QGP plays an important role

STAR, Phys. Rev. Lett. 127 (2021) 092301

 Λ_c/D^0 yield ratio

- Λ_c/D⁰ ratio is comparable to baryon-to-meson ratios of light-flavor hadrons
- Clear enhancement observed compared to PYTHIA 8.24
- Models incorporating charm quark hadronization
 via coalescence are consistent with data
- Enhancement of ratio increases in central collision
 Importance of coalescence of charm quarks

Charm production cross section

Collision System	Hadron	$d\sigma_{_{\rm NN}}/dy$ [µb]
Au+Au at 200 GeV Centrality: 10-40% 0 < p _T < 8 GeV/c	D^{0} [1]	$39 \pm 1 \pm 1$
	D^{\pm}	$18 \pm 1 \pm 3^{*}$
	D _s [2]	$15 \pm 2 \pm 4$
	Λ _c [3]	$40 \pm 6 \pm 27^{**}$
	Total	$112 \pm 6 \pm 27$
p+p at 200 GeV [4]	Total	$130 \pm 30 \pm 26$

D⁰ 2014STAR, Phys. Rev. Lett. 127 (2021) 092301 Ds (STAR): Phys. Rev. C 99, 034908, (2019) Lc STAR, Phys. Rev. Lett. 124 (2020) 172301 p+p (STAR): Phys. Rev. D 86 072013, (2012).

 $^*\Lambda_c$ cross-section was derived using Λ_c/D^0 yield ratio

- p_T integrated total D⁰ cross-section per binary collision is smaller in Au+Au than p+p
- Total charm production cross-section per binary collision in Au+Au
 - Au+Au result is consistent with that measured in p+p collisions within uncertainties
 - Redistribution of charm quarks among open-charm hadron species

Electrons from HF@ Au+Au 200GeV

- Precise high-p_T measurement
 3.5 < p_T < 9 GeV/c
- A suppression by about a factor of 2 is observed in central and semi-central collisions
- No p_T dependence observed
- A hint of R_{AA} decreasing from peripheral to central collisions
- Models describe the data well
- Indication of substantial energy loss of heavy quarks in the QGP

Mass ordering of heavy quarks energy loss

Heavy-flavor hadron decayed electrons: $c \rightarrow e$ and $b \rightarrow e$ separation in 200 GeV Au+Au collisions thanks to HFT

- Observation of less suppression for $B \rightarrow e$ than $D \rightarrow e$
- Consistent with expected mass hierarchy for parton energy loss $\Delta E_c > \Delta E_b$ 10

Energy dependence of HFE eliptic flow

- v_2 vs coll. energy \rightarrow temperature dependence of charm quark diffusion coefficient
- At 27 GeV v_2 of c,b \rightarrow e consistent with zero
- Significant non-zero v_2 of c,b \rightarrow e at 54.4 200 GeV
- At low p_T models underestimate data
- HF quarks interact strongly with the medium at 54.4 200 GeV
- A hint of mass hierarchy is observed where the v₂ of heavier particles drops faster than lighter ones with decreasing collision energy

Quarkonia

J/ψ production in heavy-ion collisions

- Low p_T < 2 GeV/c: Cold nuclear matter effect
 High p : suppression in Aut Au due to OGP
- High p_T: suppression in Au+Au due to QGP
- No significant collision system dependence of the J/ ψ suppression at similar $<N_{part}>$
- Suppression driven by system size <N_{part}> not collision geometry
- At high p_T: Strong suppression at RHIC and regeneration at LHC

Y(nS) suppression in heavy-ion collisions

14

Outlook of 2023-2025

STAR BUR-2022:

$\sqrt{s_{ m NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	Au+Au	$20{ m B}~/~40~{ m nb^{-1}}$	2023 + 2025
200	$p{+}p$	$235~{ m pb}^{-1}$	2024
200	$p{+}\mathrm{Au}$	$1.3~{ m pb}^{-1}$	2024

- Broader momentum coverage at RHIC
- Complementary between RHIC and LHC

https://indico.bnl.gov/event/15148/attachments/40846/68609/STAR_ BUR_Runs23_25___2022 (1).pdf

Summary

- STAR extensively studied production of open-charmed hadrons thanks to the successful HFT period in 2014-2016
- D^0 , D^{\pm} meson R_{AA} in Au+Au collisions:
 - Indicate strong charm-medium interactions
- Λ_c/D^0 and D_s/D^0 yield ratios are enhanced in Au+Au collisions with respect to p+p collisions
 - Coalescence plays an important role in charm quark hadronization
- Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e$
 - Consistent with expected mass hierarchy of parton energy loss
- Observation of **non-zero flow** of HFE 54-200 GeV
- J/ψ suppression: no significant collision system and energy dependence
 - Interplay of dissociation and regeneration effects
- Sequential Y suppression at RHIC
 - Thermodynamic properties of the medium

Heavy Flavor Tracker (HFT)

- Took data in 2014-2016.
- First application of Monolithic Active Pixel Sensors technology in collider experiments.
- Radiation length: 0.4 % X₀ for the 1st layer of pixel detectors.
- Pointing resolution ~50 μm for p_T=750 MeV/c Kaon.

