Fluctuations near the liquid-gas and chiral phase transitions

Michał Marczenko

Incubator of Scientific Excellence – Centre for Silumations of Superdense Fluids University of Wrocław

> MM, K. Redlich, C. Sasaki, Phys.Rev.D 103 (2021) 5, 054035 MM, K. Redlich, C. Sasaki, Phys.Rev.D 107 (2023) 5, 054046

Exploring Quark-Gluon Plasma through soft and hard probes Belgrade, 30.05.2023

Hadron Resonance Gas vs Lattice QCD

Pressure in the HRG:
$$P^{\text{HRG}}(T, \mu_B, \mu_S, \mu_Q) = \sum_{i \in \text{had}} P^{\text{ideal}}(T, \mu_i; m_i)$$

- HRG describes well LQCD equation of state and some fluctuations up to $\simeq T_c$
- Taylor expansion of LQCD Pressure: $P = \sum_{k=0}^{\infty} \left(\frac{\mu_B}{T}\right)^k \frac{\chi_k^B}{k!}$, where $\chi_k^B = \frac{\partial^k P}{\partial(\mu_B/T)^k}$

• Kurtosis: $\frac{\chi_4^B}{\chi_2^B} \sim B^2$: breakdown around $T_c \rightarrow$ changeover to QGP

Parity Doubling in Lattice QCD Aarts et al, JHEP 1706, 034 (2017)

- imprint of chiral symmetry restoration in the baryonic sector
- general tendency: N^+ const; N^- dramatic drop toward chiral crossover
- chiral partners N^{\pm} stay massive around T_c

Parity Doubling in SU(2) Chiral Models: Parity Doublet Model

Model a'la DeTar, Kunihiro PRD 39 (1989) $\longrightarrow \mathcal{L}_{mass} = m_0(\bar{\psi}_1\gamma_5\psi_2 - \psi_2\gamma_5\psi_1)$

$$M_{\pm} = \sqrt{4m_0^2 + \alpha^2 \sigma^2 \mp \beta \sigma} \xrightarrow{\sigma \to 0} m_0$$

In-medium Hadron Resonance Gas vs Lattice QCD

- parity doubling \rightarrow agreement with LQCD _{Aarts et al (2018)}
- mass shift → agreement is accidental Morita *et al* (2018)

- \blacksquare excluded volume \rightarrow agreement with LQCD
- deviations from HRG → repulsive int. Vovchenko et al (2017)

To what extent the behavior is due to chiral criticality and repulsive interactions?

Fluctuations and In-medium Effects in $\sigma-\omega$ Models

- HRG non-critical baseline
- HRG $\xrightarrow{+chiral} \sigma$ HRG $\xrightarrow{+repulsion}$ Parity Doublet

• Qualitative differences in $\chi_2 \rightarrow$ repulsive interactions: $\chi_2 = \chi_2^{id} \beta_{rep}$

Ratios of higher-order cumulants: (hyper) kurtosis

- structure dictated by chiral symmetry
- \blacksquare no chiral-critical behavior encoded in β
- χ_4/χ_2 and χ_6/χ_2 suppressed by repulsion, but qualitative structure the same

Comparison with excluded volume HRG

Excluded Volume HRG $P^{
m ev}({\it T},\mu)=P^{
m id}({\it T},\mu-v_0P^{
m ev}({\it T},\mu))$

Fluctuations no longer skellam:
kurtosis
$$\frac{\chi_4^{ev}}{\chi_2^{ev}} \simeq 1 - 12 \nu_0 \phi(T)$$

hyperkurtosis $\frac{\chi_6^{ev}}{\chi_2^{ev}} \simeq 1 - 60 \nu_0 \phi(T)$

- qualitatively different structure of the ratios
- χ₆/χ₂ fails to capture the characteristic properties

compare with Borsanyi et al (2018); Bazavov et al (2020)

consistent framework with chiral effects and repulsive interactions needed

Fluctuations of Chiral Partners at Finite Density

Critical mode couples to N(939) at liquid-gas phase transition

Critical mode couples to N(939) and $N^{*}(1535)$ at chiral phase transition

• χ_2^+ becomes negative at small T

Chiral Critical Mode and Behavior of Nucleon Mass

- χ_2^{\pm} diverge with the same critical exp. at CP
- Negativity of χ_2^+ from the restoration of chiral symmetry

Approaching Critical Point at Phase Boundary

Summary

dominance of chiral criticality at phase boundary

net-proton \leftrightarrow net-baryon not necessarily correct

Thank You

Parity Doubling for Light Baryons Aarts et al, PRD 99 (2019)

Different decomposition

$$\chi_2^{\pm} = rac{rac{\partial n_B^{\pm}}{\partial \mu_B} + \chi_2^{\pm, ext{crit}}}{1 + g_\omega rac{\partial n_B^{\pm}}{\partial \mu_B}}$$