

ADVANCES IN JET THERMALIZATION USING **QCD KINETIC THEORY**

Oscar Garcia-Montero

Fakultät für Physik

Universität Bielefeld

GARCIA@PHYSIK.UNI-BIELEFELD.DE

Based on Schlichting and Soudi,, Phys.Rev.D 105 (2022) 7, 7 Mehtar-Tani, Soudi, Schlichting 2209.10569 GM, Schlichting, Soudi, *work in progress*

In collaboration with Ismail Soudi and Soeren Schlichting

Bundesministerium für Bildung und Forschung

MOTIVATION

Energy loss and thermalization of jets may be one of the only ways to explore QCD thermalization in experiment

> Equilibration of soft large angle fragments in HE jets + complete disappearance of LE jets

Need for a clear understanding of a diverse array of mechanisms

 degradation of energy — medium response

• out-of-cone energy loss hard parton/jets thermalization

Soft physics typically enters in available jet-energy loss models via a few parameters ($\hat{q}_{,p_{min}}$)

> Final Goal: Develop QCD kinetic theory based Jet Monte-Carlo

ALICE, arXiv: 2303.00592

Angular + soft structure will be instrumental handles in the phenomenology,

Cuts change behavior, 1-prong vs n-prong, etc.

THE METHOD: EFFECTIVE KINETIC THEORY (EKT)

Challenge: Description of jet thermalization requires theoretical description which is valid at scales $E \sim E_{iet}$ (hard fragments) down to scales $E \sim T_{med}$ (soft fragments & thermal medium)

Kinetic description: in-medium evolution jet fragments as collection of on-shell partons in QCD EKT. Evolution is given by

$$\left(\partial_t + rac{oldsymbol{p}}{|oldsymbol{p}|} \cdot
abla_x
ight) f_a(oldsymbol{p}, \mathbf{x})$$

Here, the *jet* is a linearized perturbation (static) equilibrium background

Effective calculation of the Green's function for a perturbation (hard Parton) in a medium

(c.f. Arnold, Moore, Yaffe (LO); Ghiglieri, Moore, Teaney (NLO))

 $(x,t) = -C_a^{2\leftrightarrow 2}[\{f_i\}] - C_a^{1\leftrightarrow 2}[\{f_i\}]$

on top of
$$\Rightarrow \left(\partial_t + \frac{|p|}{p} \cdot \nabla_x\right) \delta f = C[T; \delta f]$$

Rephrase the evolution thinking about the energy distribution $D(t, x, \theta) = x \frac{du}{dx d \cos(\theta)}$

$$^{+2}\left|\mathcal{M}^{ab}_{cd}(m{p}_{1},m{p}_{2};m{p}_{3},m{p}_{4})
ight|^{2}\delta\mathcal{F}(m{p}_{1},m{p}_{2};m{p}_{3},m{p}_{4})$$

Including quantum statistics (Fermi suppression/Bose enhancement)effects,

$$p_3)n_d(p_4) - n_b(p_2)(1 \pm n_c(p_3) \pm n_d(p_4))]$$

Detailed balance allows for exact conservation of energy, momentum and valence charge of

THE METHOD: EFFECTIVE KINETIC THEORY (EKT)

Inelastic interactions are responsible for the radiative break-up of hard partons

Numerical studies re-construction of in-medium rates in the AMY framework (incl. LPM & Bethe-Heitler regime) for an infinite medium

$$C_{g}^{q\leftrightarrow gg}[\{D_{i}\}] = \int_{0}^{1} dz \frac{d\Gamma_{gg}^{g}(\left(\frac{xE}{z}\right), z)}{dz} \left[D_{g}\left(\frac{x}{z}\right) \left(1 + n_{B}(xE) + n_{B}\left(\frac{\bar{z}xE}{z}\right)\right) + \frac{D_{g}(x)}{z^{3}} \left(n_{B}\left(\frac{xE}{z}\right) - n_{B}\left(\frac{\bar{z}xE}{z}\right)\right) + \frac{D_{g}\left(\frac{\bar{z}xE}{z}\right)}{\bar{z}^{3}} \left(n_{B}\left(\frac{xE}{z}\right) - n_{B}(xE)\right) \right] - \frac{1}{2} \int_{0}^{1} dz \frac{d\Gamma_{gg}^{g}(xE, z)}{dz} \left[D_{g}(x)(1 + n_{B}(zxE) + n_{B}(\bar{z}xE)) + \frac{D_{g}(zx)}{z^{3}} (n_{B}(xE) - n_{B}(\bar{z}xE)) + \frac{D_{g}(\bar{z}x)}{\bar{z}^{3}} (n_{B}(xE) - n_{B}(zxE)) \right],$$

Quantum statistics (Fermi suppression/Bose enhancement)effects are important at the temperature scale

Vacuum-like effects not included, as they effectively enter initial condition/source

EVOLUTION OF THE JET

Collinear energy cascade towards the soft sector confined to narrow cone θ <0.3

> Radiative break-up of the parton is the main contribution

Angular cascade: Soft fragments $x \sim T/E$ spread out to large angles (θ ~1) via elastic 3 interactions

Jet thermalizes in a parametrically long time, when all hard partons have decayed

En

 $D(x, \theta)$

ENERGY-LOSS OUT OF CONE

The energy inside a cone is given by

$$E(R,\tau) = E \sum_{a} \int dx \int_{\cos R}^{1} d\cos \theta$$

Out-of-cone energy loss for narrow cones ($R \sim 0.3$) governed by radiative break-up of hard fragments + rapid broadening of soft fragments

 $D_{a/{
m jet}}(x, heta, au)$

Energy (E/T) dependence governed by radiative emission rates of the primary hard parton; confirming energy loss picture

IMPROVED IN-MEDIUM SPLITTING RATES

• Determination of the finite L in-medium splitting rates for non-perturbatively determined collisional broadening kernel $C(q_{\perp})$ • strong enhancement of small q_{\perp} processes

- Significant effect of $C(q_{\perp})$ on in-medium splitting rates, not clear that medium induced radiation is properly described in terms of one phenomenological quenching parameter \hat{q}

WHAT'S COMING UP?

INELASTIC

Following up on the improvement on the inelastic rates to finite size \rightarrow Inclusion of medium temperature variability.

ELASTIC

By using a set of a complete set of interpolators, the problem is mapped to a linear algebra problem

$$\partial_t \delta f = C[T, \delta f] \quad \Rightarrow \quad \partial_t |\delta f\rangle = \hat{C}[T]|$$

Now, the problem is easy to solve, but \hat{C} is expensive. Treat it as a change of basis. $\left|\delta f(t_{i+1})\right\rangle = L[T(t)]\exp\left|\int_{t}^{t}$

Goal: The formulation of a fast code which will allow evaluation of this evolution *en-masse* in a jet-MC.

$$dt T(t) \hat{C}[T=1] M[T(t)] |\delta f(t_i)\rangle$$

WHAT'S COMING UP?

JET-PHOTONS

 Explore electro-magnetic probes induced by jets as additional possibility to study thermalization of soft fragments

Electro-magnetic radiation sensitive to current fluctuations

$$\Gamma(Q) \sim \int_{x-y} \langle J^{\mu}(x) J^{\nu}(y) \rangle e^{iQ(x)}$$

- Electro-magnetic hard fragments induce rare high- p_{\perp} radiation

- Soft fragments ($\sim T$) induce large current fluctuations that are correlated with the jet

GM, Gebhard, Elfner, Schlichting, in preparation.

Sensitive to energy deposition into soft medium but still need to estimate yields/feasibility

SUMMARY AND CONCLUSIONS Energy loss out of the jet's cone and thermalization of highly energetic partons/jets are governed by a two stage process: 1) nearly collinear cascade + 2) broadening of soft fragments

Jets with strong suppression may be excellent probes for the thermalization dynamics, due to variation of the observables wrt. the cone-size and energy range $p_{\perp,min'}$

Next steps towards development of full MC Generator for jet quenching & medium response within QCD Kinetic Theory:

Include finite L emission rates

early vacuum like emissions

evolution of realistic medium Background

STRUCTURE OF THE ANGULAR CASCADE

THE ENERGY CASCADE: IN-CONE ENERGY LOSS

- In-elastic processes dominate at intermediate scales, $T/E \ll x \ll 1$
- thermal QGP and goes out to large angles

(c.f. Baier, Mueller, Schiff, Son; Blaizot, Mehtar-Tani, Iancu)

 In the intermediate scales, transport of energy is done via the quasi-stationary solution of the radiative kernel, namely $D(x) \sim x^{-1/2}$, which is analogous to the Kolmogorov-Zhakarov turbulent spectrum.

• The energy is transported through such a cascade all the way to T/E, where energy is absorbed by the

THE ENERGY CASCADE

- In-elastic processes dominate at intermediate scales, $T/E \ll x \ll 1$
- thermal QGP and goes out to large angles

(c.f. Baier, Mueller, Schiff, Son; Blaizot, Mehtar-Tani, Iancu)

 In the intermediate scales, transport of energy is done via the quasi-stationary solution of the radiative kernel, namely $D(x) \sim x^{-1/2}$, which is analogous to the Kolmogorov-Zhakarov turbulent spectrum.

The energy is transported through such a cascade all the way to T/E, where energy is absorbed by the