

ИНСТИТУТ ОД НАЦИОНАЛНОГ ЗНАЧАЈА ЗА РЕПУБЛИКУ СРБИЈУ

Effect of higher orders in opacity on high-p₁ observables

Bojana Ilic

Institute of Physics Belgrade, University of Belgrade

In collaboration with:

Stefan Stojku, Igor Salom and Magdalena Djordjevic

Република Србија МИНИСТАРСТВО НАУКЕ, ТЕХНОЛОШКОГ РАЗВОЈА И

ИНОВАЦИЈА

High-p₁ probes

- Rare high-p₁ particles are one of the main probes for inferring features of the Quark-Gluon Plasma, created at the RHIC and the LHC.
- Their interactions with QGP are dominated by radiative energy loss
- Realistic high-p₁ radiative energy loss model is crucial for understanding QGP properties
- Test of model validity: comparison of numerical predictions with experimental data
- Numerical framework to generate predictions for high-p_ observables (e.g. R_{AA} and v_2) is also needed

Motivation

- pQCD high-p₁ radiative energy loss medium assumptions:
 - Optically thin \rightarrow One scattering center (SHSA) GLV <u>NPB 594, 371</u>; DGLV <u>NPA 733, 265</u>; HT <u>NPA 696, 788</u>; <u>Prog. PPNP 66,41</u>
 - Optically thick → Infinite number of scattering centers (MSSA, Big Bang) BDMPS-Z. NPB 484, 265; NPB 531, 403; JETP Lett. 63, 952; JETP Lett. 65, 615; ASW PRD 69, 114003; AMY JHEP 12, 009
- Realistically, short finite-size droplets of QGP are created at RHIC and LHC (several *fm*s, $\lambda \approx 1$ *fm*)

<u>Relaxing</u> these approximations to the case of a finite number of scattering centers is <u>required</u>!

- Current theoretical attempts to address this highly nontrivial problem need to be more conclusive or complete (c. Andres et al., <u>JHEP 2007, 114; JHEP 2103, 102</u>; Y. Mehtar-Taní et al.,<u>JHEP 1907, 057; JHEP 2006, 187</u>; <u>PRD 98, 094010</u>; <u>PLB 795, 502</u>)
- Lacking phenomenological studies (not tested against experimental data)

These corrections need to be implemented in both analytical calculations (i.e., radiative energy loss model) and numerical framework!

The dynamical energy loss formalism

✓Includes:

- QCD medium of finite size and finite temperature
- The medium consists of dynamical (i.e., moving) partons
- Based on finite T field theory and generalized HTL approach

M. Djordjevic, PRC 74,064907; PRC 80,064909, M. Djordjevic, U. Heinz, PRL 101,022302

- Applicable to both light and heavy flavor M. Djordjevic and M. Gyulassy, NPA 733, 265
- Finite magnetic mass effects <u>M. Djordjevic and M. Djordjevic, PLB 709, 229</u>
- Running coupling M. Djordjevic and M. Djordjevic, PLB 734, 286

Developed up to the 1st order in opacity For improved QGP application: going beyond this approximation is required

Higher orders in opacity: analytical calculations

In static QGP (D(GLV)):

$$\begin{bmatrix}
x \frac{dN^{(n)}}{dx d^{2}\mathbf{k}} = \int_{0}^{L} dz_{1} \cdots \int_{z_{n-1}}^{L} dz_{n} \int \prod_{i=1}^{n} \left(d^{2}\mathbf{q}_{i} \frac{v^{2}(\mathbf{q}_{i}) - \delta^{2}(\mathbf{q}_{i})}{\lambda(z)} \right) \\
\times \frac{C_{R}\alpha_{s}(Q_{k}^{2})}{\pi^{2}} \left(-2 \mathbf{C}_{(1\cdots n)} \cdot \mathbf{B}_{n} \left[\cos \sum_{k=2}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right] \right)$$

$$= \sum_{k=2}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=2}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=2}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=2}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=2}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} - \cos \sum_{k=1}^{n} \omega_{(k\cdots n)} \Delta z_{k} \right]$$

$$= \sum_{k=1}^{n} \omega_{(k-1)} - \sum_{k$$

 $\left[\frac{\mu_E^2}{\pi(\mathbf{q}^2 + \mu_E^2)^2}\right]_{\text{stat}} \rightarrow \left[\frac{\mu_E^2 - \mu_M^2}{\pi(\mathbf{q}^2 + \mu_E^2)(\mathbf{q}^2 + \mu_M^2)}\right]_{\text{dyn}}$

 $\frac{1}{\lambda_{\text{stat}}} = c(n_f) \frac{1}{\lambda_{\text{dyn}}} = 6 \frac{1.202}{\pi^2} \frac{1 + n_f/4}{1 + n_f/6} 3\alpha_S T$

Effective potential

Mean free path

Obtained explicit analytical expressions up to <u>4th order in</u> <u>opacity</u> within Dynamical energy loss formalism for the first time.

1st order in opacity:

$$\begin{split} \left(\frac{dN_g^{(1)}}{dx}\right) \, &=\, \frac{2C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \int \frac{d^2 \mathbf{q}_1}{\pi} \, \alpha_s(Q_k^2) \frac{L}{\lambda_{dyn}} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \\ & \quad \frac{\chi^2 (\mathbf{q}_1 \cdot (\mathbf{q}_1 - \mathbf{k})) + (\mathbf{q}_1 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_1)^2}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1)^2)^2} \left(1 - \frac{\sin(L\omega_{(1)})}{L\omega_{(1)}}\right) \end{split}$$

2nd order in opacity:

$$\begin{split} \left(\frac{dN_g^{(2)}}{dx}\right)_1 &= \frac{2C_R}{\pi x} \int \frac{d^2\mathbf{k}}{\pi} \iint \frac{d^2\mathbf{q}_1}{\pi} \frac{d^2\mathbf{q}_2}{\pi} \,\alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^2} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2^2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \\ & \frac{\chi^2(\mathbf{q}_2 \cdot (\mathbf{q}_1 + \mathbf{q}_2 - \mathbf{k})) + (\mathbf{q}_2 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_2)^2 + (\mathbf{k} \cdot \mathbf{q}_1)(\mathbf{q}_2 \cdot (\mathbf{q}_2 - 2\mathbf{k})) + \mathbf{k}^2(\mathbf{q}_2 \cdot \mathbf{q}_1)}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_2)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2)^2)} \\ & \frac{1}{\omega_{(2)}} \left(\frac{\omega_{(2)} \cos\left(L\left(\omega_{(2)} + \omega_{(12)}\right)\right)}{(\omega_{(2)} + \omega_{(12)})\omega_{(12)}} + L\sin\left(L\omega_{(2)}\right) - \frac{\left(\omega_{(2)} - \omega_{(12)}\right)\cos\left(L\omega_{(2)}\right)}{\omega_{(2)}\omega_{(12)}} - \frac{\omega_{(12)}}{\omega_{(2)}(\omega_{(2)} + \omega_{(12)})} \right) \\ \end{split}$$

3rd order in opacity:

$$\begin{split} \left(\frac{dN_g^{(3)}}{dx}\right)_1 &= \frac{2C_R}{\pi x} \int \frac{d^2\mathbf{k}}{\pi} \iiint \frac{d^2\mathbf{q}_1}{\pi} \frac{d^2\mathbf{q}_2}{\pi} \frac{d^2\mathbf{q}_3}{\pi} \\ & \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^3} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2^2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_3^2 + \mu_M^2)} \\ & \frac{\chi^2(\mathbf{q}_3 \cdot (\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_3 - \mathbf{k})) + (\mathbf{q}_3 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_3)^2 + (\mathbf{k} \cdot (\mathbf{q}_1 + \mathbf{q}_2))(\mathbf{q}_3 \cdot (\mathbf{q}_3 - 2\mathbf{k})) + \mathbf{k}^2(\mathbf{q}_3 \cdot (\mathbf{q}_1 + \mathbf{q}_2))}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_3)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3)^2)} \\ & \left(\frac{\omega_{(3)}\omega_{(123)} + 2\omega_{(23)}\omega_{(123)} - \omega_{(23)}^2 - \omega_{(3)}\omega_{(23)}}{\omega_{(23)}^2(\omega_{(3)} + \omega_{(23)})^2\omega_{(123)}} \sin\left(L(\omega_{(3)} + \omega_{(23)})\right) - \frac{\omega_{(123)}\sin\left(L\omega_{(3)}\right)}{\omega_{(3)}\omega_{(23)}^2\left(\omega_{(23)} + \omega_{(123)}\right)} \\ & + \frac{\sin\left(L\left(\omega_{(3)} + \omega_{(23)} + \omega_{(123)}\right)\right)}{\omega_{(123)}\left(\omega_{(23)} + \omega_{(123)}\right)\left(\omega_{(3)} + \omega_{(23)} + \omega_{(123)}\right)} - \frac{L\cos\left(L\left(\omega_{(3)} + \omega_{(23)}\right)\right)}{\omega_{(23)}\left(\omega_{(3)} + \omega_{(23)}\right)} \right) \end{split}$$

4th order in opacity:

Highly oscillatory, and difficult to converge!

$$\begin{split} \left(\frac{dN_g^{(4)}}{dx}\right)_1 &= \frac{2C_R}{\pi x} \int \frac{d^2\mathbf{k}}{\pi} \iiint \frac{d^2\mathbf{q}_1}{\pi} \frac{d^2\mathbf{q}_2}{\pi} \frac{d^2\mathbf{q}_3}{\pi} \frac{d^2\mathbf{q}_4}{\pi} \\ & \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^4} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2^2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_3^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_4^2 + \mu_E^2)(\mathbf{q}_4^2 + \mu_E^2)(\mathbf{q}_4^2 + \mu_M^2)} \\ & \frac{\chi^2(\mathbf{q}_4 \cdot (\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_3 + \mathbf{q}_4 - \mathbf{k})) + (\mathbf{q}_4 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_4)^2 + (\mathbf{k} \cdot (\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_3))(\mathbf{q}_4 \cdot (\mathbf{q}_4 - 2\mathbf{k})) + \mathbf{k}^2(\mathbf{q}_4 \cdot (\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_3)))}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_4)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3 - \mathbf{q}_4)^2)} \\ & \left(- \frac{L\sin\left(L\left(\omega_{(4)} + \omega_{(34)} + \omega_{(234)}\right)}{\omega_{(234)}\left(\omega_{(34)} + \omega_{(234)}\right)\left(\omega_{(4)} + \omega_{(34)} + \omega_{(234)}\right)} \right) \\ & - \frac{\cos\left(L\left(\omega_{(4)} + \omega_{(34)}\right) + \omega_{(234)} + \omega_{(1234)}\right)}{\omega_{(1234)}\left(\omega_{(34)} + \omega_{(234)}\right)^2\left(\omega_{(4)} + \omega_{(34)} + \omega_{(234)}\right)} \cos\left(L(\omega_{(4)} + \omega_{(34)})\right)} \\ & + \frac{F_{41}}{\omega_{(234)}^2(\omega_{(34)} + \omega_{(234)})^2\left(\omega_{(4)} + \omega_{(34)} + \omega_{(234)}\right)^2\omega_{(1234)}}} \cos\left(L(\omega_{(4)} + \omega_{(34)}) + \omega_{(234)}\right)} \\ & + \frac{\omega_{(1234)}\cos\left(L\left(\omega_{(4)} + \omega_{(34)}\right)\right)}{\omega_{(34)}\left(\omega_{(4)} + \omega_{(34)}\right)\left(\omega_{(234)} + \omega_{(1234)}\right)} - \frac{\omega_{(1234)}\cos\left(L\omega_{(4)}\right)}{\omega_{(4)}\omega_{(34)}\left(\omega_{(34)} + \omega_{(234)}\right)^2\left(\omega_{(34)} + \omega_{(234)}\right)} \right)}, \end{split}$$

$$F_{41} = (\omega_{(34)} + \omega_{(234)}) \left[(\omega_{(4)} + \omega_{(34)})(\omega_{(234)} - \omega_{(1234)}) + \omega_{(234)}^2 - 3\omega_{(234)}\omega_{(1234)} \right] - \omega_{(4)}\omega_{(234)}\omega_{(1234)}$$

$$\underbrace{\text{S. Stojku, BI, I. Salom, M. Djordjevic,}}_{arXiv:2303.14527}$$

Higher orders in opacity: Numerical calculations

Representative contribution:

S. Stojku, BI, I.

Diminishes with the increase of high- p_{\perp} partons energy and mass, as well as with the decrease of QCD medium size.

<u>PRD 81 091501;</u> <u>PRD 69, 014506</u>

Effect of higher orders in opacity on radiative R_{AA} and v_2

Qualitatively and quantitatively similar effect on R_{AA} and v_2 : Decreases for more peripheral collisions. Effect on B meson insignificant (short formation time; approaches incoherent limit), whereas increases with decreasing mass.

Effect of higher orders in opacity on radiative R_{AA} (I) (dependence on magnetic mass)

<u>S. Stojku, BI, I. Salom, M. Djordjevic,</u> arXív:2303.14527 Surprisingly, the effect is opposite in sign for limiting values of $\frac{\mu_M}{M}$ For $\frac{\mu_M}{M} = 0.6$: negligible and decreases energy loss μ_E (increases R_{AA}) For $\frac{\mu_M}{M} = 0.4$: noticeable and increases energy loss μ_E (decreases R_{AA}) What is the origin of such behavior?

PRD 81, 091501; PRD 69, 014506

Effective potential in dynamical QCD medium: theoretical analysis <u>S. Stojku, BI, I. Salom, M.</u> <u>M. Djordjevic, PLB 709, 229</u> $v(\mathbf{q}) = v_L(\mathbf{q}) - v_T(\mathbf{q})$ Djordjevic, arXiv:2303.14527 $v_L(\mathbf{q}) = \frac{1}{\pi} \left(\frac{1}{(\mathbf{q}^2 + \mu_{pl}^2)} - \frac{1}{(\mathbf{q}^2 + \mu_E^2)} \right), \quad v_T(\mathbf{q}) = \frac{1}{\pi} \left(\frac{1}{(\mathbf{q}^2 + \mu_{pl}^2)} - \frac{1}{(\mathbf{q}^2 + \mu_M^2)} \right) \\ \mu_{pl} = \mu_E / \sqrt{3}$ $\mu_{pl} < \mu_E$ Transverse (magnetic) contribution to effective potential Longitudinal (electric) changes sign. contribution to effective potential is always positive. Consistent with $\mu_M/\mu_E = 0.6$ previous slide If $\mu_M > \mu_{pl}$ decreases radiative and energy loss (increases R_{AA}) provides Radiative energy loss > 0 ($R_{\Delta\Delta} < 1$). If $\mu_M < \mu_{pl}$ increases radiative possible energy loss (decreases R_{AA}) explanation of $|\mu_M/\mu_E| = 0.4$ R_{AA} behavior.

Effect of higher orders in opacity on electric contribution to R_{AA} in <u>dynamical QCD medium</u>:

<u>Electric effective potential</u> is well-defined within dynamical QCD medium, as $\mu_{\rm E}$ is set from lattice QCD, consistently with perturbative calculations.

Effect of higher orders in opacity on radiative RAA (II)

 $\mu_{pl}/\mu_E = 1/\sqrt{3}$

Effect of higher orders in opacity on radiative RAA (II)

 $\mu_{pl}/\mu_E = 1/\sqrt{3}$

 $0.58 < \mu_M/\mu_E < 0.64$

<u>S. Borsanyí et al., JHEP 1504, 138</u>

The effect of higher orders in opacity on R_{AA} is negligible ($\leq 5\%$) in a dynamical medium!

Effect of higher orders in opacity on radiative R_{AA} in <u>static QCD medium</u> (DGLV)

Effect of higher orders in opacity in evolving medium: a preview

Quite a demanding task, out of the scope of this talk

We mimic medium evolution by assuming different medium T

<u>S. Stojku, BI, I. Salom, M.</u> <u>Djordjevic, arXiv:2303.14527</u>

Uppermost curves: T=200 MeV Middle curves: T=400 MeV Lowest curves: T=600 MeV

 $\mu_M/\mu_E = 0.6$

The higher orders in opacity should be negligible in evolving medium.

Conclusions

- ✓ We included a finite number of scattering centers in our dynamical energy loss (and DGLV) formalism (analytical expressions up to 4th order in opacity), and DREENA-C numerical framework
- ✓ Bottom probes practically unaffected (short gluon formation time, i.e., incoherent limit)
- ✓ Charm and light probes: 2nd order in opacity sufficient
- ✓ In static QCD medium (DGLV): 1st order in opacity approximation adequate
- ✓In dynamic QCD medium: Surprisingly, impact on electric contribution to radiative energy loss negligible
- ✓Magnetic contribution to radiative energy loss sensitive to higher orders in opacity. The sign and magnitude of the effect depend on the magnetic mass value
- ✓ For most recent magnetic screening estimates higher orders can be safely disregarded.
- ✓ 1st order in opacity approximation is adequate for a finite size medium created at the RHIC and LHC
- \checkmark The same conclusions should remain valid when evolving medium is introduced.

Thank you for your attention!

BACK UP

$$\begin{pmatrix} \frac{dN_g}{dx} \end{pmatrix} = \left(\frac{dN_g^{(1)}}{dx} \right) + \left(\frac{dN_g^{(2)}}{dx} \right)_1 - \left(\frac{dN_g^{(2)}}{dx} \right)_2$$

$$+ \left(\frac{dN_g^{(3)}}{dx} \right)_1 - \left(\frac{dN_g^{(3)}}{dx} \right)_2 - \left(\frac{dN_g^{(3)}}{dx} \right)_3 + \left(\frac{dN_g^{(3)}}{dx} \right)_4$$

$$+ \left(\frac{dN_g^{(4)}}{dx} \right)_1 - \left(\frac{dN_g^{(4)}}{dx} \right)_2 - \left(\frac{dN_g^{(4)}}{dx} \right)_3 + \left(\frac{dN_g^{(4)}}{dx} \right)_4$$

$$- \left(\frac{dN_g^{(4)}}{dx} \right)_5 + \left(\frac{dN_g^{(4)}}{dx} \right)_6 + \left(\frac{dN_g^{(4)}}{dx} \right)_7 - \left(\frac{dN_g^{(4)}}{dx} \right)_8$$

1st order in opacity:

$$\begin{pmatrix} \frac{dN_g^{(1)}}{dx} \end{pmatrix} = \frac{2C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \int \frac{d^2 \mathbf{q}_1}{\pi} \alpha_s(Q_k^2) \frac{L}{\lambda_{dyn}} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \\ \frac{\chi^2(\mathbf{q}_1 \cdot (\mathbf{q}_1 - \mathbf{k})) + (\mathbf{q}_1 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_1)^2}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1)^2)^2} \left(1 - \frac{\sin(L\omega_{(1)})}{L\omega_{(1)}}\right)$$

2nd order in opacity:

$$\begin{split} \left(\frac{dN_g^{(2)}}{dx}\right)_1 &= \frac{2C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \iint \frac{d^2 \mathbf{q}_1}{\pi} \frac{d^2 \mathbf{q}_2}{\pi} \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^2} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2^2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \\ & \frac{\chi^2 (\mathbf{q}_2 \cdot (\mathbf{q}_1 + \mathbf{q}_2 - \mathbf{k})) + (\mathbf{q}_2 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_2)^2 + (\mathbf{k} \cdot \mathbf{q}_1)(\mathbf{q}_2 \cdot (\mathbf{q}_2 - 2\mathbf{k})) + \mathbf{k}^2 (\mathbf{q}_2 \cdot \mathbf{q}_1)}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_2)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2)^2)} \\ & \frac{1}{\omega_{(2)}} \left(\frac{\omega_{(2)} \cos(L(\omega_{(2)} + \omega_{(12)}))}{(\omega_{(2)} + \omega_{(12)})\omega_{(12)}} + L\sin(L\omega_{(2)}) - \frac{(\omega_{(2)} - \omega_{(12)})\cos(L\omega_{(2)})}{\omega_{(2)}\omega_{(12)}} - \frac{\omega_{(12)}}{\omega_{(2)}(\omega_{(2)} + \omega_{(12)})} \right) \end{split}$$

$$\begin{split} \left(\frac{dN_g^{(2)}}{dx}\right)_2 \, &=\, \frac{2C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \int \frac{d^2 \mathbf{q}_2}{\pi} \, \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^2} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2^2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \\ & \quad \frac{\chi^2 (\mathbf{q}_2 \cdot (\mathbf{q}_2 - \mathbf{k})) + (\mathbf{q}_2 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_2)^2}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_2)^2)^2} \frac{\sin\left(L\omega_{(2)}\right) \left(L\omega_{(2)} - \sin\left(L\omega_{(2)}\right)\right)}{\omega_{(2)}^2} \end{split}$$

3rd order in opacity:

$$\begin{split} \left(\frac{dN_g^{(3)}}{dx}\right)_1 &= \frac{2C_R}{\pi x} \int \frac{d^2\mathbf{k}}{\pi} \iiint \frac{d^2\mathbf{q}_1}{\pi} \frac{d^2\mathbf{q}_2}{\pi} \frac{d^2\mathbf{q}_3}{\pi} \\ & \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^3} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2^2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_3^2 + \mu_M^2)} \\ & \frac{\chi^2(\mathbf{q}_3 \cdot (\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_3 - \mathbf{k})) + (\mathbf{q}_3 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_3)^2 + (\mathbf{k} \cdot (\mathbf{q}_1 + \mathbf{q}_2))(\mathbf{q}_3 \cdot (\mathbf{q}_3 - 2\mathbf{k})) + \mathbf{k}^2(\mathbf{q}_3 \cdot (\mathbf{q}_1 + \mathbf{q}_2))}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_3)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3)^2)} \\ & \left(\frac{\omega_{(3)}\omega_{(123)} + 2\omega_{(23)}\omega_{(123)} - \omega_{(23)}^2 - \omega_{(3)}\omega_{(23)}}{\omega_{(23)}^2(\omega_{(3)} + \omega_{(23)})^2\omega_{(123)}} \sin\left(L(\omega_{(3)} + \omega_{(23)})\right) - \frac{\omega_{(123)}\sin\left(L\omega_{(3)}\right)}{\omega_{(3)}\omega_{(23)}^2(\omega_{(23)} + \omega_{(123)})} \\ & + \frac{\sin\left(L\left(\omega_{(3)} + \omega_{(23)} + \omega_{(123)}\right)\right)}{\omega_{(123)}\left(\omega_{(23)} + \omega_{(23)} + \omega_{(123)}\right)} - \frac{L\cos\left(L\left(\omega_{(3)} + \omega_{(23)}\right)\right)}{\omega_{(23)}\left(\omega_{(3)} + \omega_{(23)}\right)} \right), \end{split}$$

$$\begin{split} \left(\frac{dN_g^{(3)}}{dx}\right)_2 &= \frac{C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \iint \frac{d^2 \mathbf{q}_1}{\pi} \frac{d^2 \mathbf{q}_3}{\pi} \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^3} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_3^2 + \mu_M^2)} \\ & \frac{\chi^2 (\mathbf{q}_3 \cdot (\mathbf{q}_1 + \mathbf{q}_3 - \mathbf{k})) + (\mathbf{q}_3 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_3)^2 + (\mathbf{k} \cdot \mathbf{q}_1)(\mathbf{q}_3 \cdot (\mathbf{q}_3 - 2\mathbf{k})) + \mathbf{k}^2 (\mathbf{q}_3 \cdot \mathbf{q}_1)}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_3)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_3)^2)} \\ & \frac{\left(\frac{\left(\frac{3\omega_{(13)}}{2} - \omega_{(3)}\right)\sin(2L\omega_{(3)})}{\omega_{(3)}^3\omega_{(13)}} - \frac{2\omega_{(13)}\sin(L\omega_{(3)})}{\omega_{(3)}^3(\omega_{(3)} + \omega_{(13)})} + \frac{\sin(2L\left(\omega_{(3)} + \frac{\omega_{(13)}}{2}\right))}{(\omega_{(3)} + \frac{\omega_{(13)}}{2})\omega_{(13)}(\omega_{(3)} + \omega_{(13)})} - \frac{L\cos\left(2L\omega_{(3)}\right)}{\omega_{(3)}^2}\right)}{\omega_{(3)}^2} \end{split}$$

3rd order in opacity:

$$\begin{split} \left(\frac{dN_g^{(3)}}{dx}\right)_3 &= \frac{2C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \iint \frac{d^2 \mathbf{q}_2}{\pi} \frac{d^2 \mathbf{q}_3}{\pi} \alpha_s (Q_k^2) \frac{1}{\lambda_{dyn}^3} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2^2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_3^2 + \mu_M^2)} \\ &= \frac{\chi^2 (\mathbf{q}_3 \cdot (\mathbf{q}_2 + \mathbf{q}_3 - \mathbf{k})) + (\mathbf{q}_3 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_3)^2 + (\mathbf{k} \cdot \mathbf{q}_2)(\mathbf{q}_3 \cdot (\mathbf{q}_3 - 2\mathbf{k})) + \mathbf{k}^2(\mathbf{q}_3 \cdot \mathbf{q}_2)}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_3)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_2 - \mathbf{q}_3)^2)} \\ &= \left(\frac{\sin\left(2L\left(\frac{\omega_{(3)}}{2} + \omega_{(23)}\right)\right)}{4\omega_{(23)}^2\left(\frac{\omega_{(3)}}{2} + \omega_{(23)}\right)} - \frac{\sin\left(L\omega_{(3)}\right)}{2\omega_{(23)}^2\omega_{(3)}} + \frac{\frac{\sin(L(\omega_{(3)}+\omega_{(23)}))}{\omega_{(3)} + \omega_{(23)}} - L\cos\left(L\left(\omega_{(3)} + \omega_{(23)}\right)\right)}{\omega_{(23)}\left(\omega_{(3)} + \omega_{(23)}\right)}\right), \\ &\left(\frac{dN_g^{(3)}}{dx}\right)_4 &= \frac{C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \int \frac{d^2 \mathbf{q}_3}{\pi} \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^3} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_3^2 + \mu_M^2)} \frac{\chi^2 (\mathbf{q}_3 \cdot (\mathbf{q}_3 - \mathbf{k})) + (\mathbf{q}_3 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_3)^2}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_3)^2)^2} \\ &= \frac{1}{\omega_{(3)}^2} \left(-\frac{\sin\left(L\omega_{(3)}\right)}{\omega_{(3)}} + \frac{\sin\left(2L\omega_{(3)}\right)}{2\omega_{(3)}} + \frac{\sin\left(3L\omega_{(3)}\right)}{3\omega_{(3)}} - L\cos\left(2L\omega_{(3)}\right)\right), \end{split}$$

4th order in opacity:

$$\begin{split} \left(\frac{dN_{g}^{(4)}}{dx}\right)_{1} &= \frac{2C_{R}}{\pi x} \int \frac{d^{2}\mathbf{k}}{\pi} \iiint \int \frac{d^{2}\mathbf{q}_{1}}{\pi} \frac{d^{2}\mathbf{q}_{2}}{\pi} \frac{d^{2}\mathbf{q}_{3}}{\pi} \frac{d^{2}\mathbf{q}_{4}}{\pi} \frac{d^{2}\mathbf{q}_{2}}{\pi} \frac{d^{2}\mathbf{q}_{4}}{\pi} \frac{\mu_{E}^{2} - \mu_{M}^{2}}{(\mathbf{q}_{1}^{2} + \mu_{E}^{2})(\mathbf{q}_{1}^{2} + \mu_{M}^{2})} \frac{\mu_{E}^{2} - \mu_{M}^{2}}{(\mathbf{q}_{2}^{2} + \mu_{E}^{2})(\mathbf{q}_{2}^{2} + \mu_{M}^{2})} \frac{\mu_{E}^{2} - \mu_{M}^{2}}{(\mathbf{q}_{3}^{2} + \mu_{E}^{2})(\mathbf{q}_{3}^{2} + \mu_{E}^{2})(\mathbf{q}_{3}^{2} + \mu_{M}^{2})} \frac{\mu_{E}^{2} - \mu_{M}^{2}}{(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_$$

4th order in opacity:

$$\begin{split} \left(\frac{dN_g^{(4)}}{dx}\right)_2 &= \frac{C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \iiint \frac{d^2 \mathbf{q}_1}{\pi} \frac{d^2 \mathbf{q}_2}{\pi} \frac{d^2 \mathbf{q}_4}{\pi} \\ & \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^4} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2^2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_4^2 + \mu_E^2)(\mathbf{q}_4^2 + \mu_M^2)} \\ & \frac{\chi^2(\mathbf{q}_4 \cdot (\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_4 - \mathbf{k})) + (\mathbf{q}_4 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_4)^2 + (\mathbf{k} \cdot (\mathbf{q}_1 + \mathbf{q}_2))(\mathbf{q}_4 \cdot (\mathbf{q}_4 - 2\mathbf{k})) + \mathbf{k}^2(\mathbf{q}_4 \cdot (\mathbf{q}_1 + \mathbf{q}_2))}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_4)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_4)^2)} \\ & \left(\frac{2\left(\omega_{(24)}\left(2\omega_{(4)}^2 + 3\omega_{(24)}\omega_{(4)} + \omega_{(24)}^2\right) - \left(2\omega_{(4)}^2 + 6\omega_{(24)}\omega_{(4)} + 3\omega_{(24)}^2\right)\omega_{(124)}\right)\cos\left(L\left(2\omega_{(4)} + \omega_{(24)}\right)\right)}{\omega_{(24)}^2\left(\omega_{(4)} + \omega_{(24)}\right)^2\left(2\omega_{(4)} + \omega_{(24)}\right)^2\left(2\omega_{(4)} + \omega_{(24)}\right)^2\omega_{(124)}} \\ & - \frac{2\cos\left(L\left(2\omega_{(4)} + \omega_{(24)}\right)\omega_{(4)} + \omega_{(24)} + \omega_{(124)}\right)}{\omega_{(124)}\left(\omega_{(24)} + \omega_{(124)}\right)\left(\omega_{(4)} + \omega_{(24)} + \omega_{(124)}\right)\left(2\omega_{(4)} + \omega_{(24)} + \omega_{(124)}\right)}{\omega_{(24)}^2\left(\omega_{(4)} + \omega_{(24)}\right)^2\left(\omega_{(4)} + \omega_{(24)}\right)^2\left($$

4th order in opacity:

$$\begin{split} \left(\frac{dN_g^{(4)}}{dx}\right)_4 &= \frac{C_R}{3\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \iint \frac{d^2 \mathbf{q}_1}{\pi} \frac{d^2 \mathbf{q}_1}{\pi} \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^4} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_H^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_1^2 + \mu_E^2)(\mathbf{q}_1^2 + \mu_M^2)} \\ & \frac{\chi^2 (\mathbf{q}_4 \cdot (\mathbf{q}_1 + \mathbf{q}_4 - \mathbf{k})) + (\mathbf{q}_4 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_4)^2 + (\mathbf{k} \cdot \mathbf{q}_1)(\mathbf{q}_4 \cdot (\mathbf{q}_4 - 2\mathbf{k})) + \mathbf{k}^2(\mathbf{q}_4 \cdot \mathbf{q}_1)}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_1 - \mathbf{q}_4)^2)} \\ & \frac{1}{\omega_{(4)}^3} \left(- \frac{6\omega_{(4)}^3 \cos\left(L\left(3\omega_{(4)} + \omega_{(14)}\right)\right)}{(\omega_{(4)} + \omega_{(14)})\left(2\omega_{(4)} + \omega_{(14)}\right)\left(3\omega_{(4)} + \omega_{(14)}\right)} + \left(\frac{1}{\omega_{(14)}} - \frac{11}{6\omega_{(4)}}\right)\cos(3L\omega_{(4)}) \\ & -L\sin\left(3L\omega_{(4)}\right) - \frac{3\omega_{(14)}\cos\left(L\omega_{(4)}\right)}{4\omega_{(4)}^2 + 2\omega_{(14)}\omega_{(4)}} + \frac{3\omega_{(14)}\cos\left(2L\omega_{(4)}\right)}{(\omega_{(4)} + \omega_{(14)})\omega_{(4)}} + \frac{\omega_{(14)}}{9\omega_{(4)}^2 + 3\omega_{(14)}\omega_{(4)}}\right), \end{split} \right), \end{split} \\ \left(\frac{dN_g^{(4)}}{dx}\right)_5 &= \frac{C_R}{\pi x} \int \frac{d^2 \mathbf{k}}{\pi} \iiint \int \frac{d^2 \mathbf{q}_2}{\pi} \frac{d^2 \mathbf{q}_3}{\pi} \frac{d^2 \mathbf{q}_4}{\pi} \\ & \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^4} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_2 + \mu_E^2)(\mathbf{q}_2^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_3^2 + \mu_M^2)} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_3^2 + \mu_E^2)(\mathbf{q}_4^2 + \mu_M^2)} \\ & \frac{\chi^2 (\mathbf{q} \cdot (\mathbf{q}_2 + \mathbf{q}_3 + \mathbf{q}_4 - \mathbf{k})) + (\mathbf{q}_4 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_4)^2 (\mathbf{k} \cdot (\mathbf{q}_2 + \mathbf{q}_3))(\mathbf{q} \cdot (\mathbf{q}_4 - 2\mathbf{k})) + \mathbf{k}^2 (\mathbf{q} \cdot (\mathbf{q}_2 + \mathbf{q}_3))}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_4)^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_2 - \mathbf{q}_3 - \mathbf{q}_4)^2)} \\ & \frac{1}{\omega_{(234)}^2} \left(\frac{2\omega_{(334)}^3}{(\omega_{(4)}(\omega_{(4)} + \omega_{(34)})(\omega_{(4)} + \omega_{(34)} + \omega_{(234)})^2}{(\omega_{(4)}(\omega_{(4)} + \omega_{(34)})(\omega_{(4)} + \omega_{(34)} + \omega_{(234)})} - \frac{2\omega_{(234)}^3}{(\omega_{(34)} + \omega_{(234)})} + \frac{\cos(L(\omega_{(4)} + \omega_{(34)})}{(\omega_{(34)} + \omega_{(234)})}} \\ & - \frac{\cos(L(\omega_{(4)} + \omega_{(34)} + 2\omega_{(234)})}{(\omega_{(4)} + \omega_{(34)} + 2\omega_{(234)})}} - \frac{2L(\omega_{(234)}\sin(L(\omega_{(4)} + \omega_{(34)} + \omega_{(234)}))}{(\omega_{(4)} + \omega_{(34)} + \omega_{(234)})^2} \right)$$

$$\begin{pmatrix} dN_{g}^{(4)} \\ dx \end{pmatrix}_{6}^{} = \frac{C_{R}}{\pi x} \int \frac{d^{2}\mathbf{k}}{\pi} \int \int \frac{d^{2}\mathbf{q}}{\pi} \alpha_{s}(Q_{k}^{2}) \frac{1}{\lambda_{dyn}^{4}} \frac{\mu_{E}^{2} - \mu_{M}^{2}}{(\mathbf{q}_{2}^{2} + \mu_{E}^{2})(\mathbf{q}_{2}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{M}^{2})}{(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{M}^{2})} \\ \frac{\chi^{2}(\mathbf{q}_{4} \cdot (\mathbf{q}_{2} + \mathbf{q}_{4} - \mathbf{k})) + (\mathbf{q}_{4} \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_{4})^{2} + (\mathbf{k} \cdot \mathbf{q}_{2})(\mathbf{q}_{4} \cdot (\mathbf{q}_{4} - 2\mathbf{k})) + \mathbf{k}^{2}(\mathbf{q}_{4} \cdot \mathbf{q}_{2})}{(\chi^{2} + \mathbf{k}^{2})(\chi^{2} + (\mathbf{k} - \mathbf{q}_{4})^{2})(\chi^{2} + (\mathbf{k} - \mathbf{q}_{2} - \mathbf{q}_{4})^{2}} \\ \begin{pmatrix} \frac{\omega(24)}{(\chi^{2} + \mathbf{k}^{2})(\chi^{2} + (\mathbf{k} - \mathbf{q}_{4})^{2})(\chi^{2} + (\mathbf{k} - \mathbf{q}_{2} - \mathbf{q}_{4})^{2}}{(\omega_{4} + \frac{\omega_{(24)}}{2})(\omega_{4} + \omega_{(24)})} \\ \begin{pmatrix} \frac{\omega(24)}{8\omega_{4}^{2}(\omega_{4})} \frac{\omega_{4}(2)}{(\omega_{4} + \frac{\omega_{4}(24)}{2})^{2}(\omega_{4} + \omega_{(24)})} \\ + \frac{\left(\frac{\cos(2L\omega_{4})}{2\omega_{4}} - \frac{\omega_{4}\cos(2RL(\omega_{4}) + \omega_{(24)})}{4\left(\frac{\omega_{4}}{2} + \omega_{(24)}\right)(\omega_{4} + \omega_{(24)})}\right)}{(\omega_{4} + \omega_{24})(\omega_{4})(\omega_{4} + \omega_{(24)})\omega_{4}(\omega_{4}) \\ \end{pmatrix}} \\ + \frac{\left(\frac{\cos(2L\omega_{4})}{2\omega_{4}} - \frac{\omega_{4}\cos(2RL(\omega_{4}) + \omega_{(24)})}{4\left(\frac{\omega_{4}}{2} + \omega_{(24)}\right)(\omega_{4} + \omega_{(24)})}\right)}{\omega_{4}(\omega_{4}^{2})^{2}(\omega_{4})} \\ - \frac{\omega_{4}(2)\cos(L\omega_{4})}{(\omega_{4} + \omega_{(24)})(\omega_{4} + \omega_{(24)})}\omega_{4}(\omega_{4}) \\ \end{pmatrix}} \\ \begin{pmatrix} \frac{dN_{9}^{(4)}}{dx} \end{pmatrix}_{7} = \frac{C_{R}}{2\pi x} \int \frac{d^{2}\mathbf{q}}{\pi} \int \int \frac{d^{2}\mathbf{q}_{3}}{\pi} \frac{d^{2}\mathbf{q}}{\alpha}\alpha_{s}(Q_{k}^{2})\frac{1}{\lambda_{dyn}^{4}}} \frac{\mu_{E}^{2} - \mu_{M}^{2}}{(\mathbf{q}_{3}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})}(\omega_{4}^{2} + \mu_{E}^{2})}{(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})} \\ \frac{\chi^{2}(\mathbf{q}_{4} \cdot (\mathbf{q}_{3} + \mathbf{q}_{4} - \mathbf{k})) + (\mathbf{q}_{4} \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_{4})^{2}(\chi^{2} + (\mathbf{k} - \mathbf{q}_{3} - \mathbf{q}_{4})^{2}}{(\chi^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})}) \frac{\omega_{4}^{2}(\omega_{4} \cdot \mathbf{q}_{3})}{(\omega_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})(\mathbf{q}_{4}^{2} + \mu_{E}^{2})} \\ \frac{\chi^{2}(\mathbf{q}_{4} \cdot (\mathbf{q}_{3} + \mathbf{q}_{4} - \mathbf{k})) + (\mathbf{q}_{4} \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_{4})^{2}(\chi^{2} + (\mathbf{k} - \mathbf{q}_{3}$$

$$\left(\frac{dN_g^{*\gamma}}{dx}\right)_8 = \frac{C_R}{3\pi x} \int \frac{d^2\mathbf{k}}{\pi} \int \frac{d^2\mathbf{q}_4}{\pi} \alpha_s(Q_k^2) \frac{1}{\lambda_{dyn}^4} \frac{\mu_E^2 - \mu_M^2}{(\mathbf{q}_4^2 + \mu_E^2)(\mathbf{q}_4^2 + \mu_M^2)} \frac{\chi^2\mathbf{q}_4 \cdot (\mathbf{q}_4 - \mathbf{k}) + (\mathbf{q}_4 \cdot \mathbf{k})(\mathbf{k} - \mathbf{q}_4)^2}{(\chi^2 + \mathbf{k}^2)(\chi^2 + (\mathbf{k} - \mathbf{q}_4)^2)^2} - \frac{1}{\omega_{(4)}^3} \left(\frac{1}{12\omega_{(4)}} - L\sin(3L\omega_{(4)}) - \frac{\cos(L\omega_{(4)})}{2\omega_{(4)}} + \frac{3\cos(2L\omega_{(4)})}{2\omega_{(4)}} - \frac{5\cos(3L\omega_{(4)})}{6\omega_{(4)}} - \frac{\cos(4L\omega_{(4)})}{4\omega_{(4)}}\right)$$

Numerical framework: DREENA-C

D. Zígíc, I. Salom, J. Auvinen, M. Djordjevic and M. Djordjevic, JPG 46, no.8, 085101

• Light and heavy flavor production

(Z.B. Kang, I. Vítev, H. Xíng, PLB 718, 482; R. Sharma, I. Vítev and B.W. Zhang, PRC 80, 054902)

• Dynamical energy loss

(M. Djordjevic, PRC 80, 064909; M. Djordjevic and U. Heinz, PRL 101, 022302)

• Multi-gluon fluctuations

(M. Gyulassy, P. Levaí, I. Vítev, PLB 538, 282)

• Path-length fluctuations, hard sphere restriction $r < R_A$ introduced in WS nuclear density distribution

(A. Daínese, EPJ C33, 495; D. Zígíc, I. Salom, J. Auvinen, M. Djordjevic and M. Djordjevic, JPG 46, 085101)

• Fragmentation for light and heavy flavor

(D. de Florían, R. Sassot, M. Stratmann, PRD 75, 114010; M. Caccíarí, P. Nason, JHEP 0309, 006, E. Braaten, K.-M. Cheung, S. Fleming and T. C. Yuan, PRD 51, 4819; V. G. Kartvelishvili, A.K. Likhoded, V.A. Petrov, PLB 78, 615)

M. Gyulassy, P. Levaí and I. Vítev, NPB 594 371 M. Djordjevíc, M. Djordjevíc and B. Blagojevíc, PLB 737, 298

$$\alpha_s(Q^2) = \frac{4\pi}{(11 - 2/3n_f)\ln(Q^2/\Lambda_{QCD})}$$
$$Q_k^2 = \frac{\mathbf{k}^2 + M^2 x^2 + m_g^2}{x}$$

$$\frac{\mu_E^2}{\Lambda_{QCD}^2} \ln\left(\frac{\mu_E^2}{\Lambda_{QCD}^2}\right) = \frac{1 + n_f/6}{11 - 2/3 n_f} \left(\frac{4\pi T}{\Lambda_{QCD}}\right)^2$$

 $Q_v^2 = ET$