What we can learn about the QGP dynamics from jets

Yacine Mehtar-Tani (BNL & RBRC)

Exploring the QGP Workshop @ SANU, Belgrade, May 29-31, 2023

Introduction

Jets at Colliders

• QCD Jets are a direct manifestation of high energy quarks and gluons

Multi-jet event at LHC

• Extensively studied: from the discovery of the gluon to precision tests of QCD

DESY 1979 - electron positron collisions

• Paramount for Higgs discovery and new physics searches

Jets in heavy ion collisions: The new pQCD frontier

Thermal equilibrium (T≠ 0)

Jets in pp

Non-equilibrium

 $T=0$

Multiscale dynamics

 \sim 1 GeV $p_T \sim$

Discovery of the QGP (from RHIC to LHC)

- Strong suppression of jets in ultra-relativistic heavy ion collisions: evidence of the formation of the quark gluon plasma
- Jet quenching mechanisms: radiative and collisional parton energy loss

Nuclear modification factor

 $R_{AA} = \frac{dN_{AA}}{N_{\text{coll}} dN_{\text{pp}}}$

8

- QCD dynamics at high energy and high partons density
- Mechanisms of thermalization
- Transport properties of the QGP: \hat{q} , \hat{e} , η/s , ...
- Emergence of the nearly perfect liquid behavior

What can we learn by studying jets?

Ultra-cold atoms Viscosity Helium Water

QGP 100 x less viscous than water

• Theory:

- Rich physics, new emergent phenomena,... \odot
- lack of a comprehensive framework \odot
- Phenomenology/Experiement:
	- Versatile tools: dijet, R dependence, substructure, ... \bullet
	- Convolved processes, large soft background (semi-soft scale

contamination)

A challenging problem

Elements of jet quenching theory

Transverse momentum broadening

• Multiple scattering cause transverse momentum diffusion

• Diffusion coefficient $\hat{q} \sim m_D^2/I_{mfp} \sim g^4T^3$ probes medium properties

Baier, Dokshitzer, Mueller, Peigné, Schiff (1996)

Laudau-Pomeranchuk-Migdal effect

• Medium induced gluon radiation: Multiple scattering act coherently during tr to produce the gluon

Gluon coherent/formation time:

$$
t_f \sim \frac{\omega}{k_{\perp}^2} \sim \sqrt{\frac{\omega}{\hat{q}}}
$$
 (k_{^\perp} $\sim \hat{q} t$

Baier, Dokshitzer, Mueller, Peigné, Schiff (1996) Zakharov (1996)

- Wiedemann, Gyulassy, Levai, Vitev (2001)
	- Arnold, Moore, Yaffe (2002)

Radiative corrections to transverse momentum diffusion

• Quantum corrections to momentum broadening:

 $Normal$ diffusion \rightarrow Anomalous (super) diffusion

$$
\langle k_{\perp}^2 \rangle \sim t^{\gamma} \qquad \gamma \sim 1 + 2\sqrt{2}
$$

 $\sqrt{N_c} \alpha_s / \pi > 1$

- Energy loss/thermalization via large angle turbulent medium-induced cascade [Baier, Mueller, Schiff, Son (2001) Jeon, Moore (2003) Blaizot, Dominguez, Iancu, MT (2014)]
- Normal diffusion \rightarrow anomalous (super)-diffusion [Liou, Mueller, Wu, Blaizot, MT, Iancu (2014) Caucal, MT (2021)]
- Color coherence \rightarrow unresolved multi-partonic state lose energy as a single color charge [MT, Salgado, Tywoniuk, Casalderrey-Solana, Iancu (2011-2013)]
- Open quantum system formulation (see J- P-Blaizot's talk)

logarithms): emergent phenomena

- Energy loss/thermalization via large angle turbulent medium-induced cascade [Baier, Mueller, Schiff, Son (2001) Jeon, Moore (2003) Blaizot, Dominguez, Iancu, MT (2014)]
- Normal diffusion \rightarrow anomalous (super)-diffusion [Liou, Mueller, Wu, Blaizot, MT, Iancu (2014) Caucal, MT (2021)]
- Color coherence \rightarrow unresolved multi-partonic state lose energy as a single color charge [MT, Salgado, Tywoniuk, Casalderrey-Solana, Iancu (2011-2013)]
- Open quantum system formulation (see J- P-Blaizot's talk)

logarithms): emergent phenomena

MT, Schilchting, Soudi (2022)

- Energy loss/thermalization via large angle turbulent medium-induced cascade [Baier, Mueller, Schiff, Son (2001) Jeon, Moore (2003) Blaizot, Dominguez, Iancu, MT (2014)]
- Normal diffusion \rightarrow anomalous (super)-diffusion [Liou, Mueller, Wu, Blaizot, MT, Iancu (2014) Caucal, MT (2021)]
- Color coherence \rightarrow unresolved multi-partonic state lose energy as a single color charge [MT, Salgado, Tywoniuk, Casalderrey-Solana, Iancu (2011-2013)]
- Open quantum system formulation (see J- P-Blaizot's talk)

logarithms): emergent phenomena

- Energy loss/thermalization via large angle turbulent medium-induced cascade [Baier, Mueller, Schiff, Son (2001) Jeon, Moore (2003) Blaizot, Dominguez, Iancu, MT (2014)]
- Normal diffusion \rightarrow anomalous (super)-diffusion [Liou, Mueller, Wu, Blaizot, MT, Iancu (2014) Caucal, MT (2021)]
- Color coherence \rightarrow unresolved multi-partonic state lose energy as a single color charge [MT, Salgado, Tywoniuk, Casalderrey-Solana, Iancu (2011-2013)]
- Open quantum system formulation (see J- P-Blaizot's talk)

logarithms): emergent phenomena

- Energy loss/thermalization via large angle turbulent medium-induced cascade [Baier, Mueller, Schiff, Son (2001) Jeon, Moore (2003) Blaizot, Dominguez, Iancu, MT (2014)]
- Normal diffusion \rightarrow anomalous (super)-diffusion [Liou, Mueller, Wu, Blaizot, MT, Iancu (2014) Caucal, MT (2021)]
- Color coherence \rightarrow unresolved multi-partonic state lose energy as a single color charge [MT, Salgado, Tywoniuk, Casalderrey-Solana, Iancu (2011-2013)]
- Open quantum system formulation (see J- P-Blaizot's talk)

logarithms): emergent phenomena

MT, Schilchting, Soudi (2022)

Phenomenology: where do we stand?

• Thrust 1: All purpose Monte Carlo event generator (CoLBT, Hybrid,

- Thrust 2: first principle analytic approaches limited in phase space and
	- observables \odot better control on theoretical uncertainties? \odot

JEWEL, MARTINI, JetMed, Q-Pythia, JETSCAPE, …)

- Observables are easy to compute \heartsuit
- Extensive modeling of perturbative and non-perturbative physics \odot

 $1 - z_{\rm g}$

 $Z_{\rm g}$

- Access the hard components of the jet by reducing soft contamination with Groomed jet observables: jet mass, $\theta_{\rm g}$, $z_{\rm g}$ \rightarrow jet collimation observed
- Also: Jet mass, jet shape, fragmentation function, angularities, …
- Promising new observable: Energy-Energy Correlator (EEC) (see Carlota Andres' talk)

ALICE Collaboration (2021)

Jet substrucure observables

Inclusive jet spectra A substructure observable in disguise

Non-linear evolution of jet quenching

−Z

- resolution angle $\theta_c = (\hat{q}L^3)^{1/2}$
- Quenching factor: Q ~ R_{AA} <

• Energy loss of a muti-parton system is sensitive to coherence effects:

MT, Tywoniuk (2017)

Two effective color charges One effective color charge

 $\frac{1}{\partial \ln \theta} Q_a(\theta, p_T) = \bar{\alpha} \int dz \, p_{bc}^a(z) \, \Theta_{res}(z, \theta) \, \left[Q_b(\theta, z p_T) \, Q_c(\theta, (1-z) p_T) - Q_a(\theta, p_T) \right]$

Jet nuclear modification factor

- Theory calculation includes: multiple gluon radiation, color coherence, collinear shower, collision geometry
- Free parameter: medium coupling constant $_{\text{med}} \sim 2.2 - 2.$
- Theory uncertainties dominated by parton shower at leading log accuracy, up to $\sim 20\,\%$

→ Good agreement with ATLAS data as function of pT and centrality

MT, Pablos, Tywoniuk (2021)

Predictions for R dependence

→ Good agreement with 2023 ALICE data as function of pT and jet cone size

• R dependence encodes color coherence effects

- Jets constitue unique tools to advance our understanding of QCD dynamics at high density
- color decoherence, medium response, …
- Probing these emergent phenomena in experiment proves to be challenging but tailored observables are being developed
- Outlook: higher order analytic computations and state-of-the-art MC $implementation theory \rightarrow towards high precision phenomenology$

Conclusion

• Despite the complexity of the topic a lot of progress has been achieved on the theory front: LPM effect, turbulent thermalization, anomalous diffusion,