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Chapter 2

THE STRUCTURE AND DYNAMICS
OF MEETUP SOCIAL NETWORKS

Marija Mitrovi¢ Dankulov* and Jelena Smiljanic¢
Scientific Computing Laboratory,
Center for the Study of Complex Systems,
Institute of Physics Belgrade,
University of Belgrade, Belgrade, Serbia

Abstract

Computational social science is an emerging interdisciplinary field
whose main focus is on investigating human and social dynamics using
computational modeling and data analytics. Collective behavior in social
systems is of special interest due to its complex nature which demands
the use of computational techniques for uncovering and understanding
mechanisms that underlie its emergence. Here we demonstrate how com-
putational techniques can be used to quantify the structure and dynamics
of Meetup social groups. Dynamics and structure of any Meetup social
group strongly depend on the association of its members with the commu-
pity. We map the data about the group members and their participation in
the group events onto bipartite networks and use tools of complex network
theory to analyze their structure and structuré of their monopartite projec-
tions. We explore how the structure of social networks of these groups
evolve with time and identify the key topological features that influence
collective dynamics and success/survival of the Meetup social group.

e e
*Corresponding Author Email: mitrovic@ipb.ac.rs.
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I. Introduction

The abundance i i i

vt intg:;:is(;f;psl?r(]:lal (éa[lzil fs the main driving force behind the expansion

b Researcherjrf}:n; ;ﬂfomonly known as computational social sci-

e mathen;at‘c i eren.tﬁleds of science including physics, com-

oy Compu[;tjonal - 1 .S’ economics, and sociology, make the best :ISC of
echniques and resources to provide us with quantitative

description and under: i
standing of complex soci
ods from statistic: RIS ocial systems. Computati
i uqcru:nl& iusncdl me.(,hamcs and complex network theory h alic ional meth-
“mi : l;:o for quantitative description and uncovering the mccErGYen e
crie % i : i an \
Bt UdSCde [collecil;]ve behavior in social systems [3,4]. These techni lsmbh[hm
sed to explain the emergence of vari T o HUEs Dave
includine s s _ various collective social
: g segregation [5], cooperation [6], collective emoti e
ity [11,12], etc. otions [7-10], popular-
One manifestatio i
n of collective social b ior i
. = i ehavior is a soci: -
communit ki - social group, informz
o Altgoﬁf ;ndl\-’ldl..idls that emerges through repeated imeractigns ac:md[
it g a?volutlon and organization of social groups have been ‘Hib?ng
i \lﬁ]n s;:;:n;;log}y and related scientific disciplines for more than‘a ject
—10], evelopment of information icati een-
new quantitati i : communication technologies
(Iynagncg . t:’ve. techmq.ues have provided new insight into the strucli]:; an?j
: ]mma£1 behaa‘filous social groups. The availability of data enabled the stsg
R ‘:r andtthc emergence of social groups in online environme );
. as not possible just two d 1
thie dlynamies an twa ecades ago [8, 17-22]. Howeve
S d dstrucrure of event-driven social groups are still insufﬁci::;r’
e ‘i;n hy lue to the lack of data. These groups have a vital pl .}’
mlmic)sf ;}f :;lcet ey are aISIgmﬁcant part of human social life [23-25] l"i"}?ccdm
members m ie g(riol;]ps 1s very localized in time and space Funherm;o eth .
s meet and build social interacti ' Pl
- tions at group ¢ i
very differe : - p events, which makes
scvzral i ersltot;cri)hm other offline and online social groups. Recent rcsezictlf]lem
Erine theirr) i namfse groups [26,27], has shown that universal features chalrao-I1
y cs and that structure of social relations amon g their r‘nemb .
ers

g y
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In this chapter, we demonstrate how computational techniques from statis-
lical physics and complex network theory can be used to explore in details the
ulructure and dynamics of event-driven social groups. As a case study, we use
{our different Meetup groups, communities of individuals formed online that
gel engaged into joint offline activities. Meetup members are organized into
(hematic social groups, which differ in physical location, type of activity and
«ize. Thus, the analysis of these four groups allows us to detect and describe
(heir universal structural and dynamical features. In particular, we show how
(he data about members activity in a Meetup group can be mapped onto a bi-
partite graph, and how this network can be used to obtain the group’s social
relations. The topological structure of a bipartite network and its monopar-
lite projection reveals important details about social dynamics in these groups.
We show that four considered groups have very similar structural properties,
which further highlights the fact that universal principles govern dynamics of
these groups. These universal principles can be uncovered through quantitative
analysis of time series related to individual and collective activity. Our analy-
sis shows that correlations between the activity of individual members are the
principal cause of specific structural and dynamical patterns, which are charac-
teristic for Meetup, and presumably other event-driven, social groups.

In Section 2 we describe in detail the four considered Meetup social groups
and the data used for empirical analysis. The detailed description of structural
properties of bipartite and monopartite weighted social networks is given in
Section 3, while the analysis of dynamics of these groups is given in Section 4.

2. Data

Meetup [28] is an online social networking site that facilitates offline group
meetings in various locations around the world. Tt enables its members to find
and join social groups by their interests and get involved into activities of these
groups. Therefore, Meetup groups bring together people with common inter-
ests who are usually not acquainted outside of the group’s social circle. This
fact allows us to study the evolution of group'’s structure and dynamics from its
beginnings, as well as their mutual influence, using computational techniques
from complex network theory and statistical physics.

Depending on the interest of its members, a group can be assigned to one
of 33 categories, which ‘nclude careers, hobbies, socializing, health, politics,
books, etc. Besides topic and location, these groups also differ in size, event
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events organised per we
ek for two o )
chapter. ut of four groups we considered in this

dynamics, and organizational structure, Fi i
ORI B : - Figure 1(left) shows the abili
- d)ifstt;i;is;;?s:z: ;E istlzes] of groups belonging to category Careerczlgx?;zg;?
e S ad og normal behavior, which suggests that some mul—.
S s Ui uan .erlcllc the growth of Meetup social groups. Time se-
T, T et gdemze events per. week for two different groups, shown
e e O;ganizeﬁ ! monstrate the‘dlfference in event dynamics: the num-
s dilx:fa weekly basis in two different groups fluctuates dif-
o ey c‘rences, Meetgp groups have one thing in common
B e il::p.are am?l otgar?lze their events. Before each event, ali
i yé)s T elve;m 1nv1tat10r.1 to participate in an event to which
it e:;.n h;:e 1‘*eco'1'd1n gs of event attendance can be then
net\;foi]k .formed between the meprnbltfrlsp 2??11119133235 Rty
. n this work, we will demonstrate the power of c‘om utati i
;:::l::)x ::i }tlr:r:l gz{i)tgof ::m lz)ur different Mectup groups, ihereogzllicgzz 1:}11:1 flf:z
jieneral conclusions, \::L;fj jt?lgc(;ga;;(z)i?): ;enm::ls'?fe et
i1 >ha rom different categori i
hlil:;el;znt ttgpe‘ of. a.Ctl\«'ltICS. Speciﬁcal]y, our first group gefrfz?ﬁs({ggxlah
gether individuals, foodie thrill-seekers, who are mostly interested ir):

{rying new exotic foods and drinks.
collective visits to restaurants and bars.
of hikers who seek excitement and like to socialize through physical activities,
while members of our third (PGHF)
social events. Our fourth group (TECH) gathers tec
ested in networking, entrepreneurship,
sional development. We used the Meetup public A
four groups we compiled the list of a
beginning, and for each event, we co
that event. Every member of the

which allows us to follow her activity throug
of the data is given in Table 1. To protect the privacy of Meetup us

conducted a full anonymisation
analysis presented in this work can be found at [29].

Thus, the activities of this group include
The second group (LVHK) consists

group like to attend free, or almost free,

hnology professionals inter-

environmental sustainability, and profes-
PI to collect the data. For all
11 events organized by the group since its
llected the list of members who attended
Meetup community has a unique identifiers

h time. The detailed description
ers we have

of the data. The anonymised data used for the

Table 1. Description of four Meetup groups studied in this chapter. Ny is
total number of group members, while Ng is total number of organized

events
[ Meetup group [ Acronym | Category Nu | Ne |
geamclt GEAM Food & Drink 5377 | 3986
pittsburgh-free PGHF Socializing 4995 | 4617
techlifecolumbus | TECH Tech 3217 | 3162
LVHK Outdoors & Adventure | 6061 | 50906 |

VegasHikers

3. Structure of Meetup Social Groups

mapped onto monopartite
ber is represented by a
g either raw [33]

The data from event-driven social groups are typically
weighted graph [30-32]. In this framework, each mem
network node, while the link weight between two individuals i

or normalized [30,31] number of common events that they have attended to-
approach is that repeated co-occurrence of two

s does not necessarily imply social relationship
ding to this approach two very active individ-
s who attended a significant number

gether. The problem with this
group members at group’s event
between them. For instance, accor
uals, where by very active we mean person
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of group’s i i ili
dif;geren;: evcvents, will have a high probability to meet on one or even several
ents. In the monopartite network model, this manifests as a social

relati i indivi
tionship between these two individuals, although their relati

justa consequence of chance. onship can be

LI
L .
L il

g;;g;r:iilélef;) A part of Meetup bipartite network of GEAM community: light
o reprcs;ent noda:s from ME.:mbf:I'S partition while nodes from Events
L o relp:.ebemed with white circles. (right) Weighted network of signif;
P ations between the 10% most active members of LVHK grou

s of the same shade of gray belong to the same community. o

cve:ﬂdﬂljeirzzzzls work [27], we hav-e shown that relevant social relations in
network and then usger?liipi; ii?w?(ri:rl?l:;ag?d . m:gpi"g o
. 51 er out redundant links. First w
:;e'c:?l[a onto a network wn‘h.rwo partitions Members (M) and Events (?E??E
pd 1te networks, by definition, only links between nodes b 1
different partitions are allowed. Here, the link between nodes i""f
resen M j i
iorks E:; ;i:j:;mtf; aL‘e-vcnt j¥. This way we obtain binary bipartite net-
e e u +Ng, w 1c,h‘can be represented as a block diagonal matrix B
. ,gjg = L if there is a link between member i and event ki ,
i[:Ml-':‘f —2 l. fExan‘lple f)f bipartite networks of GEAM Meetup group is shown
In Fig. .( eft). Bipartite networks created in this way contain all the
information about event-driven activity in Meetup groups e

onging to two
and j* denotes

, otherwise

For instance, degree
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of a node ¢! in Members partition, defined as

Ng
gh=Y Bmj, (1)
fo=1

is equal to the number of events that member represented by that node has at-
tended, while the degree of a node belonging to Events partition is equal to the
size of corresponding event,

Ny
q?g = Z Bi‘"’jﬁ v (2}

M=l

In order to filter out redundant connections we use technique based on the con-
figuration model of bipartite random graphs (CMBR) [34, 35]. In this filtering
technique, CMBR is used for estimation of probability that two members have
occurred together on w events by chance, i.e. link m-value. If this chance is low,
below some threshold 6, we can claim at confidence level 1 — 6 that two mem-
bers have correlated participation in group events, i.e. social relation between
them is significant (real) and its strength is w. Before calculating this probabil-
ity we first need to determine the probability p j that member i™ has attended
some event j& by chance, i.e. a probability that there is a link between member
i and event jE in bipartite random network. For this we use graphs generated
with CMBR and maximal-entropy approach for calculating the link probability
in ensemble of networks [36-38]. CMBR graph has the same degree distribu-
tion for both partitions as the real network but all other properties, for instance
degree-degree correlations, are randomized. Specifically, if we use G to denote
the ensemble of bipartite random graphs with given degree distributions, then
probability to have a specific realization of graph G from this ensemble is given
by

1 Y eomg+B.eq5
P(G) = ze Lo je Opr Gy +BjEd g ’ (3)
where o, and B, are Lagrangian multipliers and Z is partition function. The
partition function for the ensemble of CMBR graphs can be easily calculated

(see [27,35]) and it is equal to

Z=Y¢é Lot (@pt +B ) Bt — [T 4o @mtBi)y 4)
G

M jM‘
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The values of Lagrangian multipliers can be calculated usin

g the following
equations

7 Ne  ,~om—PBir
=30 = Y 5)
O £ 14 %P,
and
g 0Z Nu %P ©)
A ap je ‘;«w=1 14 OB -

If we define a coupling parameter Am je = Ol + Bje then the link probability
between member /7 and event J* is equal to

0Z e jE ¢ OmtBiE
pi.Mﬂ;:-—-_:—-—l-_:—-—-T——. (7)
a?LI-MjE 14 M E 1 e % Bj-’f

The links in CMBR graph are uncorrelated, thus the probability that two mem-
bers i! and &' have attended the same event % is simply a product of Py & and

p j=- The probability that two members have co-occurred in w events is given
by Poisson binomial distribution

ﬁf’fgf(w) = Z H (Pf?fjﬁl’;'gfj-‘-') H (1 _pf‘?"jfpfg”j-‘—') ) (8)

Ew jEcEw JE€Ew

where Ew is the subset of w events that can be chosen from given E events [36].
Finally, n-value for a link between members i‘;” and fg“’ isa probability that these
two members have attended together at least Wi m events

T(wprar) = )" P (w) . )

W2Wag,
l ‘,51

If this 7-value for a pair of members is high we can assume that their activity

in group events is not correlated and that Wit CO-Occurrences are a result of
chance. On the other hand, if the w-value for some pair of members is low,
i.e. smaller than 0, we can assume at the level of confidence 1 — 0 that activity
of these members is correlated to a certain extent. This means that the link of
weight w between these members can not be created using CBMR graphs. The
T-values of weighted links between members of one Meetup group can be then

used to filter out the redundant links and create weighted network of significant
social relations.
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Figure 3. Probability distribution of link weights in a weiglhted n&?t:mk b(?:l(;;z
and after filtering, for four considered Meetup groups. [Figure right repri
with permissions from [27]]

We map the data from one Meetup group onto bipart.ile networks En(}ic
then apply the described filtering technique to obtain theg\;;l ghte:;ll élct:eo;evzl
i i i i bers at the & confiden
sienificant social relations between its mem : o :
(;}gz 0.05). This weighted network can be rcpresent‘?d with weighted matr‘lﬂ);
W. where W denotes the strength of the social relation between members :.1
? iy i
and 4. The Iprobal:vility distribution of the number of cor;nnon‘ ie\;:ntts. b i]{:g :)r::
o, 3, i 11 four networks. Fat-tail distr1
Fie. 3. has power-law behavior for a . . ! :
co%nmons is ItJyI:)ically found in techno-social systems ci_laractenzed bj;f( hi sg.i:;td
erogeneity of members activity [7, 17, 27,33]. The welght‘eFl net.vjfor oll :,er
from a projection of bipartite network onto one of the part&:or(ljs is usuath}; nety
i ections per node. We decrease -
dense, i.e. has a huge number of connec . ’
work density using the described filtering teChI’IIC]l’le. We‘ see ’from F1g. litﬂ:x;
although this method puts more emphasis on the links with higher weight,
overall distribution of link weights is preserved.
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. In our previous work [27], we have examined in detail h

;s : ow )
;iilnltjsﬁopéi:l;sr otfhmember s €go n.etwgrk evolve with the number[};i ;?ti(,),i:ﬁ}.d
oSt ,to ;I structure of bipartite and weighted monopartite networl:
W ity [ie : eetup groups has not been studied and described in delai!l
scopic and glol::talszmcmm-Of these networks by calculating several local, meso
e g Opologlc.al‘measures. The standard topological measu;e u;u,
e diStribufi() 5[3 ; coFqumectlwty pa?tcms in ‘the networks, is the node degreie 'llml
defined with Eqs g.angezdfvg;;z ?:1 ?hgtfc-li Members and Events partition‘s is
degree is equal to the nun;ber of its differz;gt 153?(;} ?:'Oparnte aetiotis thenade

W

whe . ; . s ;
s rgggﬁjﬂg 1)_1 I;i lHea\;mde_ function ({*‘f_r (x) =1ifx>0and 0 otherwise)
nebwork. bl ion P(q) A probability that randomly chosen node in z;
bipartite,netl; ke oo oy has a value of degree g. The connectivity in
Yol a(r)tr't s is quant_;hed with two-degree distributions, each correspond-
. partition. BeSde’s t.he degree and its distribution, one more |
petty 1s used for the description of local connectivity in a weighted netwgilil

node strength. Strength of a node i :
. i,e:g node is equal to a sum of weights of all links adja-

W
= W,

5 MM .
e (11)

g

i
z;iiz ii}?egrﬁxc;ﬁrrel:mons ifs another local tqpo]ogical measure with which we
o i g patterns in a network [39J. Specifically, with this measure
ik / e’s pref_ercnce to attach to similar nodes in a network. It :
mated by calculating the average nearest neighbor degree of a node (GCSI;

nn

and examining its de
pendence on node degree. Th e ne: i
degree of node with degree ¢* is given by e

}:J‘K’ q;{,’(r
qK‘
Here x : P
and ¥’ denote two different partitions in bipartite networks, in the ¢ f
, e case of

weigh = ;
ghted network k= ' = W, and 6’“-:* is degree of the nearest nei
In uncorrelated network ! : neighbor node.
orks, the average nearest neighbor degree does not depend
n

(gnn) = (12)

“epree (gpa)" . which measures the effectiv
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is increasing function of g we have assortative mixing,
nodes in this network have preference toward nodes with similar or higher

(e, while decreasing function of (g%,)(q) indicates disassortative mixing,
¢ degree nodes are linked to ones with small degree. Social networks are
uully characterized by assortative mixing patterns, while biological, techno-

pical and techno-social networks typically have disassortative mixing [39].
Jor weighted networks, one can also define weighted average nearest neighbor
¢ affinity of a node to connect with
th. Weighted

node’s degree. If (g5,

ligh- or low-degree neighbors concerning the connection streng
uyerage nearest neighbor degree of node i is given by

|
(%m)% = ;WM;WPW;{Q% . (13)
iy

1y

Another important measure Of topological structure of monopartite net-
works is clustering coefficient. It measures a probability that two first neighbors
of a node are also neighbors. For weighted monopartite social networks we can

define non-weighted clustering coefficient of node i

1
C:’.I;ﬂf - —W——__"“';_' E H(W!Tfir{f)}((W(?!‘g)%(wtgfgr) 5 (14)
a1 =430) i

and weighted clustering coefficient

e L gy aE AR T H (Wit ) H (W) H (W) - (13)
Cay — = - M M M3 .
i ngf(l — q';J:V;) i ) i Wil o

While the non-weighted clustering coefficient measures the number of closed
triples formed by node and its neighbours, the c‘iﬁ measures local cohesive-
ness of the node’s neighbourhood by taking into account the intensity of inter-
actions between local triplets [40]. Non-weighted (C) (weighted (C")) clus-
tering coefficient of the whole network is calculated as average value of non-
weighted(weighted) clustering coefficients of all nodes in the network. One can
also calculate the average clustering coefficient of nodes with degree g% and
thus obtain how ¢ and ¢¥ depend on g". This dependences reveal a lot aboul
the hierarchical organisation in network [39,40], while the averaged values of
clustering coefficients provide global information between weights and topol-
ogy in the network [40]. For instance, the comparison between (C) and (CY)
can reveal much about the importance of clustering in network evolution [40]:

I ——
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M t\:f;' ;iur:,tc 23:12:31;2 (;h:,l topological structure of bipartite networks correspond-

et 1mctf:elup groups by cz{lt?ulating the degree distribution for

St M.cmbeli ),' gnd Event§ partition Fig. 4(top right). Degree dis-
partition is equivalent to the distribution of the number

of attended events studied in [27]. Distributi
s . Distributions for ibi
same, truncated power-law, behavior B

P(M) o (MY Vorp D"
(9) (QJ exp( ;?) , (16)

with very similar values of €xponent ¥ ( 1.3 <y< 1.61) [27]. The observed
= PRl : e
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power-law dependence in Members partition is a result of universal event-driven
social dynamics [26,27]. In event-driven dynamics probability for a member to
attend the next event depends exclusively on balance between the number of
previous participations and non-participations. Our analysis of the evolution of
members ego networks in Meetup social groups has shown that through event
attendance members widen and strengthen their social connections and that ac-
tive members repeat attendance in the group events with a small subgroup of
their peers [27].

The probability distribution of degrees for Events partition is nothing more
than a distribution of the event sizes. For all four social groups, this event size
distribution follows log-normal behavior

U (17)
P = e  AEP | 1
& gEof\/2n

Three groups (GEAM, PGHF, and TECH) have the same value of mean =
—0.7(1) and standard deviation 6® = 0.95(5), while the degree distribution for
Events of LVHK group, with parameters 6© = 0.59(2) and p* = —0.16(2),
shows some deviations from log-normal curve for small values of normalized
degree. Log-normal distribution has been observed in many socioeconomic sys-
tems, including distribution of firm [41] and city [42] sizes, voting [11,43] and
citation patterns [12,44]. For all these processes proportional growth is a com-
mon mechanism that leads to a log-normal distribution of event sizes. As it
was argued in Section 2, the growth of Meetup groups can be described with
multiplicative process [45]. Since event participation is the primary activity in
a Meetup group, event size directly depends on the group’s growth. Thus, the
log-normal distribution of event sizes is just another indicator of the propor-
tional growth of Meetup social groups.

We also examine the mixing patterns in these bipartite networks by calcu-
lating the average nearest neighbor degree for the nodes in both partitions and
study its dependence on their degree, Fig. 4 (bottom). The average nearest
neighbor degree for Members partition, i.e. the average size of events attended
by a member, is independent of the magnitude of her activity Fig. 4(bottom
right). The descending curve in Fig. 4(bottom left) indicates disassortative mix-
ing for events. This observation is expected since in the previous study [27] we
have shown that significant events are predominantly attended by members with

a small number of participations.
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F'lgure 5. (top left) Dependence of normalized node strength on its degree. (to

nght) Scatter plot of nodes strength versus standard deviation of link we:icrhtp
adj.acenl to that node. Average nearest neighbor degree (bottom left) a ; 'tS
weighted counterpart (bottom right) in weighted network. o

. .The observed degree-degree correlations suggest that event-driven dyna
icsis outllined with correlated social behavior which is beyond random roieq m_‘
charfacterlstic for generation of random bipartite graphs. This evcnt—dpr"ivenhge.‘-j
namics f’f Meetup social group shapes and it is formed by the structure of Ll):
underlying weighted social network. Real world weighted ncgworkﬂ besid "
complex toPology, also display a considerable heterogeneity in the s-;::en th 2?‘
the COHI?SCIIOHS. Weighted quantities and their correlations with the ;Jndefl in
lopologlca] structure of the network provide additional information abouty thg
dyr{amlcal processes governing network’s evolution. We further explore to
log.ical.features of the weighted network between the Meetup group membg‘zq
\}fhlc_h 1s obtained by projecting bipartite network onto Members partiti d
filtering out non-significant links. i

Figure 5(left) shows dependence of normalized average strength (s%) /(w)
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of node on the value of its degree g”. Normalization constant (w) is aver-
age link weight in the whole network. In the Meetup weighted social network
the degree of a node equals to the number of different connections adjacent
(0 that node, while its strength measures the total magnitude of these relation-
ships. In uncorrelated weighted networks, the normalized average strength of
the node grows with its degree as (") /(w) = ¢". We see from 5(top left) that
for all four groups the dependence of normalized average node’s strength devi-
ates from uncorrelated approximation. Furthermore, normalized average node’s
strength is proportional to its degree for nodes with degree ¢" < 50, while for
nodes with large values of degrees it grows super-linearly. This indicates that
average weight of links adjacent to a node {wm) = 51%1;2:{-"#4 Wi TOWS with

node degree. In fact, the standard deviation of weightls of links adjacent to a
node also increases with its strength, Fig. 5 (top right), which suggests that
very active users are characterized by significant heterogeneity of strength of
their social connections. The described dependencies reveal one of the essential
characteristics of event-driven dynamics: at the beginning of their involvement
in group activities members mostly widen their social circle, while later, as their
participation in group activities progresses, they tend to pay more attention to
strengthening their existing social relations with particular members.

It was shown above that mixing patterns for Members partition in the bipar-
tite network of Meetup groups are uncorrelated, so it is not surprising that we
observe the lack of degree-degree correlations in corresponding weighted social
networks Fig. 5 (bottom left). On the other hand, the dependence of weighted
average nearest neighbor degree (gun)" on node degree shows weak assorta-
tive mixing. The weighted average nearest neighbor degree is defined in a way
to put more emphasis on the properties of strongest connections. Thus we see
that members with a large number of connections establish the most solid ones
with other high-degree members, forming in this way strongly connected core
of very active members. This finding is further confirmed with a comparison
of non-weighted C(¢") and weighted clustering " (¢") clustering coefficient
shown in Fig. 6. For all four groups, non-weighted clustering coefficient and
its weighted counterpart have the same value for low- and middle-degree nodes.
For nodes with ¢ =~ 50, the difference between these two topological mea-
sures becomes evident, and it further grows with the degree. The ratio between
non-weighted and weighted clustering coefficient of very active users suggests
that their involvement in group activities is not conditioned by the behaviour of
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5 s % e of most active members for considered networks. Ny and Ly are the

%(:5; ¢ EE“‘D—. " :i 107 s 6 | number of members and links in subnetwork, activity range is the lowest
" 0 g %o, o and highest number of attended events by selected group of members, and

s "3 N is the number of detected communities using LOUVAIN method
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) T GEAM_| 538 |
| 538 | 15575 |

z _
% ’ o Y94
5] £ ¥ou,
&5 vy “Vyg?
I A ".‘ ) All results presented in this section show that these four groups, although
10° g7 e Sl s N " essentially different when it comes to their topic, type of activity and personality
a" o0 107 of their members, have very similar, practically universal, internal structure.
) ¥ This further confirms the conclusion from our previous research [26,27] that
Figure 6. Dependence of non-weighted and weigh _ the forces that influence the behavior of the individuals and thus govern the
node degree for four studied Meetup social melg ted clustering coefficient on collective dynamics of the group are very fundamental, i.e. they do not depend
‘ B, on specific type of social group. In the next section we further support these

findings by analysing group dynamics.

other members from their social circles but r i
subgroups, as i , ) rather by the activity of the w
%rhisptype:es;;:;?vigl;ed e ' o 4. Dynamics of Meetup Social Groups
PR s y }::ads to thf{ ?ccgnence of communities which are man-
. T8 4 thep;flt;n Um(?%enmhes in the structure of weighted social net-
tence, observed in mz g7 o Stm“?ly inter-connected nodes. Their exis-
s e any online and o.ft?me social systems [7,9,17,33], is one of
communities in the ?»r;zif:éf;zrcgizr E\;?\E; (;clle; til:e Tynamics- i
using LO . i rk of the 10% most active mem
- Giphi E\gﬂgh{i:;}mumty detection method [46,47] and its implemczta?f;;
configuration of rouappr;?)aCh detects communities in a network by finding the
est value [46] FET alﬁo paies forwHich hemorulanty lunetam hes fiehigh:
communities ;.)r imil geEgrongs we find that they have between four and five
similar sizes, see the Table 2 for details. For the illustration, we

show the weighted social n

_ etwork of 10% most active indivi :

its community structure in Fig. 2(right) active individuals in LVHK and !
' tures of Meetup group dynamics.

Specificity of Meetup social groups is their event-driven dynamics. Members of
the group meet at a precise time and in a precisely determined place t0 partic-
ipate in some joint activity- Through these activities, they form and strengthen
social connections, which then influence the future dynamics of the group, 1.e.
the frequency and size of future events. The individual participations in group
events can be (ranslated into time series that either describes the activity of each
member or the collective activity of the subgroup of the whole group. The
quantitative analysis of these time series provides a characterization of system
dynamics and reveals valuable information about its organization and evolu-
tion [7, 8, 10, 17.33). In this section, we analyze activity patterns of individual
members as well as the total subgroup and group activity to find universal fea-
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Figure ? Time series of activity of one of the very active members (top left) and
low acn’ve members (top right) of LVHK group. (bottom left) Time series of
total activity in LVHK group. (bottom right) LVHK members activity pattern
The X axes in Fig.7 corresponds to event-time while y axes shows member’s‘
1ncl’e:f. Members are ordered according to their first occurrence time in grou

activities, and dot denotes member’s participation in event. ¢

The number of organized events per week varies not just between different
Meetup groups, but also within the group Fig. 1 (right). This frequency is
11?If1}lenced by various external and internal factors. To separate factors olf
different nature, we measure the activity in the group against the number of
hcld.events and thus omit real time from the further analysis. This way we
ot‘)i.am.different time series X () where 1 is a serial number of event. Time series
of individual member’s activity X« (¢), shown in Fig. 7 (top), is an array of(L)
and .l- (a member can either attend or not attend the event). Th:e time series that
descnbf':s the activity of the whole group X¢(r) is obtained through aggregation
of the time series for individual members. Xg(z) is nothing else but the time
series of event sizes Fig. 7(bottom left).

First, we study the patterns of member’s participation in group’s events.
Based on time series of individual member’s activity one can calculate the time
lag between two attended events ATM . measured in event-time, and obtain the
time series of inter-event times for each member {AT,"M,...,AT(:ﬂ_I}. As it
was shown in [27] the distributions of these time interval for all four Meetup
groups follow the truncated power-law behavior with power-law exponents in
interval [1.06,1.38]. This suggests that temporal patterns of members activity
have fractal structure [8,33] known as bursty behavior [49]. Bursty behavior,
characterized by intervals with persistent activity followed by the long inactive
intervals, is universal characteristic of human behavior and it has been observed
in various social systems [22, 33, 50]. This type of activity results in particular
pattern of members attendance of group events, shown for LVHK group in Fig.

7 (bottom right).
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Figure 8. (left) Dependence of member’s burstiness on the number of attended
events. (right) Dependence of memory coefficient on burstiness.

It was shown in [49] that there are two different mechanisms responsible
for the bursty nature of the signal: the inter-event time distribution and mem-
ory. Two measures used for distinguishing between these two mechanisms are
burstiness parameter B and memory coefficient . The burstiness parameter is
given by ,

(AT™") — Oy

. 18
(AT’M) rTGaT"M Ci8)

M= ;

M 2w 5
where (AT") and G, are average value and standard deviation of time lag
between two attended events respectively. B takes values between —1 and
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| and it is used for quantifying the inter-event time distribution of the sig-
nal: Bay = 1 corresponds to very bursty signal, B = 0 to random signal, and
B = —1 corresponds to very regular (periodic) signal. The memory coefficient
u, a correlation-based measure, measures autocorrelations between consecutive

. . M oM .
inter-event times (ATQ AT} H) for one member. It is calculated as

M_ M M M M
U B G G T e A D R
Hi qM_2 = 0,02 !

where (AT™), ((ATfM)g) and ©(0;) are sample mean and sample standard
deviation of AT;'M (A]Tf,) respectively.

We quantify the temporal patterns of individual member’s activities by cal-
culating the burstiness parameter B and memory coefficient pp [49]. Figure 8
(left) shows how burstiness of individual members depends on the size of their
activity. Figure 8 indicates that burstiness parameter decreases as the involve-
ment of member in group grows, suggesting that very active members attend
events on more regular basis than members with a small or moderate number
of participations. This is in line with previous findings [26,27] where it was
shown that probability of members future involvement in group activities de-
pends nonlinearly on the ratio between the number of previous participations
and non-participations in group events. Specifically, for very active members
their probability to attend the next event is very close to one and does not vary
much with time, which results in relatively regular patterns of participation (see
Fig. 7 (top left)). On the other hand, a member with a few attendances has the
typical pattern shown in Fig. 7(top right): inter-event time distribution is more
a Poissonian like with burstiness parameter close to zero. The dependence of
memory coefficient u on burstiness parameter, shown in Fig. 8 (right), further
confirms that members probability of attending the next group event depends on
the number of previously attended and not-attended events. Members with the
largest number of attended events, i.e. a negative value of burstiness parameter,
have the highest and positive value of memory coefficient. This suggests that
the origin of burstiness of their activity is memory and that regular members
have more predictable group activity patterns than temporary members. These
findings show that human event-participation dynamics is very different from
one typically observed in social systems where human behavior is characterized
with high burstiness parameter and memory coefficient close to zero.

As we saw in Section 3, members with medium and high number of atten-

L
5=0,49839(4)
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Figure 9. The relationship between fluctuations Oy and average (Xm) activity
of member time series at the scale of one (left) and ten events (right).
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i ‘ i at these -
ected friends. It was argued in .
groups of strongly conn : o e W
i A intain them are the primary drive
tions and member’s need to main . Sy
' activiti the other hand, it was shown that dy
volvement in group activities. On ' : £
various social groups is externally driven by lh? arr.wai of n’ew‘ members [“’,hiclh
We use formalism introduced in [51] to determine in quantitative manner ;
of the factors, endogenous or €X0genous, are responsible for Mcetulp glrc.tup[i H}:e
namics. Based on time series of activity, for every member, we ca t;uda e tin S
: . . ” . IC
average activity (Xp) and standard deviation oy, . The dnalySISdo I f‘r:)?:md
in various systems has shown that relationship between standard deviati
time average of activity follows the scaling law

Gyine o< (XY . (20)
The value of exponent 8 ~ 0.5 corresponds tg gysteg; \Z:f;:n:?c;zie;o?j ;;Zt?lfz
i namics, 0 = 1 to system driven s, Wi
iZ;E::I;Eg: Bg rb(:tlz:gn these two extremal values dencl:ite mixed dynamlcs.t}giu{r)e 59
(left) shows a perfect scaling for all four grfJups with \fa'lue of e:a(clponen ih;ir‘né
which indicates that Meetup group dynamics 18 pracucal_ly ran j:)m 0]:1)'1 e
scale of one event. If we do the same analysis on the time 36[11'165 onteaizzek i}é
aggregating members activity over ten events (which coTrespo*r: s Bo ;)Slw e
real time), we see that the scaling exponent & becomejs ldrge_r than 0.5 sugges
correlated members activity at longer time scales, Fig. 9 (right). ‘ s
The community structure of the network of the 10% most active mem e;s;ts
a direct consequence Of correlated co-occurrence of members at group events.
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l?lgure ].0 shows the temporal evolution of activity in these communities. Th
time series shown in Fig. 10 are obtained by aggregating time series of inc'i' 'de
ual act10.n§ of all members belonging to one community. We see that all tlgl‘-
COI‘{‘llenltleS have similar paths of evolution: at the beginnin;r the activi ‘355;
;helr members is low, almost sporadic; then we observe a gragilal groufhl t}Ecrol
uf)]\:f}?:(l:}y the pejak .of community activity, after which the activity decrease:; un-
ommunity eventually ceases to exist. This rise and fall of social gro

ha‘w.a been observed in both online and offline social systems [8, 9 52g F}IPS
ability of group. to dynamically alternate their composition is Ol‘lf; o}” thi' ma};s
features of persistent large groups. Obviously, the abtivity of members belon
Ing to one community is strongly correlated; we see that there is onl %i
over]z.ip I?etween the activity of different communities. This further i }(’1‘5’“3
tha.t si grpi_icant social relations are clustered in time and that ‘Lhese ncla[tr'l lca'tes
main driving force behind the dynamics of Meetup social groups [26 2’:‘;"]3 e
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Conclusion

Data from Meetup groups contain invaluable information about the human
event-driven offline activity. We have demonstrated how the combination of
computational methods from complex network theory and statistical physics
can be used to explore the structure and dynamics of four different Meetup so-
cial groups. Specifically, we have shown how the data from these networks can
be mapped onto bipartite networks of Members and Events, and how to project
these networks onto Members partition to obtain social relations. These net-
works have several specific features that are universal for Meetup and, presum-
ably other event-driven, social networks. In particular, both network types have
very rich topology which is directly related to event-driven group dynamics.
Bipartite networks are characterized by high degree heterogeneity in both parti-
tions, which is not surprising, since power-law dependencies are the distinctive
feature of members attendance patterns in event-driven social groups [26, 27].
What is surprising is a lack of degree-degree correlations in Members commu-
nity, which suggests that members attend events of different sizes with equal
probability. The weak degree-degree correlations observed for Events parti-
tion indicate that small events are predominately attended by active members
of Meetup group, which confirms the findings of event size importance in [27].
The analysis of features of weighted networks of significant social links shows
that network topology alone is not sufficient for capturing and understanding
the social mechanism that govern the Meetup group dynamics and that link
weights and their distributions need to be taken into account. The analysis of
weighted measures shows that connection weights become important for dy-
namics of members with more than 50 connections. It also indicates that very
active members tend to form strongly connected subgroups. The communities,
identified as topological mesoscopic inhomogeneities in weighted social net-
works of the 10% most active members, are distinctive sign that these groups
have self-organizing dynamics.

Meetup group collective dynamics is shaped by the behavior of individual
member and interactions between them. The analysis of patterns of members
behavior has again shown that human dynamics is bursty. What is different in
the case of Meetup dynamics is that origin of this burstiness is memory, which is
different from what is observed in other social dynamics. The positive value of
memory coefficient for active users shows that their activity is correlated in time.
We have shown that this correlation can be observed at the scale of ten and more
event, which corresponds to one week in real time. This correlated behavior is
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also the principal mechanism which leads to formation of communities i i
network of the 10% most active users. o
It has been shown earlier that Meetup group dynamics is universal, i.e. does
not d.epend on group category, location or type of activity [27]. The co.m. a.uis
of thlS- d){namics with conference participation patterns indicz'ltes that t}lljie O'H
vers_al:ty is independent of members motivation to take part in groups acti;i:l' -4
for instance, professional versus leisure. Here we show that this unpivcr%' l'tle's',
also observed in the structure of social networks. Members of all four i\‘/ilel f b
gf'o.upﬁ fgrm networks which have a remarkably similar structure: the aI]e .
hibit s.lm‘llar degree distributions, have the same degree-degree corr'elati)(f) ex‘;
very similar community structure with similar number of communities o
Thf.:. methodology that we demonstrated here by applying it to Mee;ill social
g.l‘Ol’JpS 1s a standard part of social computational science, ar? emergin igterd?
ciplinary scientific field. The presented methods and tools can be uscigi in st (lis_
of other social networks whose activity is localized in time and Spaclze .
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3.1 Introduction

The theory of complex networks provides powerful tools for studying complex systems
in various disciplines such as biology, social sciences, computer sciences, mathematics,
and physics [210]. One of the main research directions in network science studies the
structural properties of networks and how they affect the dynamical processes and func-
tions of systems represented by these various networks [17). The standard assumption
is that a self-organizing system should evolve to a network structure that makes these
dynamical processes, or network functions, efficient [209, 198, 50]. Thus, understanding
the network structure also reveals the mechanisms underlying the evolution of the system
represented by the network.

Topological structure of networks can be characterized by a great number of vanous
measures describing the system organization at different levels. Measures such as degree,
average neighbor degree, clustering coefficient, concentrations of small subgraphs,
betweenness, the distribution of shortest paths, and spectral properties have been used
to describe in quantitative manner features that are characteristic of wide classes of
complex networks. It has been shown that many complex networks have fat-tailed degree
distributions [16], possess the small world property [308], and are often organized in
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communities [96]. There is a common belief that the evolution of networks with similar
structural properties is governed by the same mechanism. For instance, preferential
attachment is often used for modeling networks with fat-tailed degree distributions [38].
Thus, classifving networks according to their topological properties is of great impor-
tance for identifving these mechanisms and better understanding the evolution, and
indirectly the function and dynamics, of various complex systems.

However. classifying network via such graph measures is problematic, as there is
no systematic way to determine which of them should be used. Besides, the measures
are interdependent, that is, they positively or negatively correlate with each other in a
complex way [303, 124, 289, 98, 63]. For these reasons, it 1s quite difficult to classify the
structure of networks in a unique way using these topological measures and thus idenufy
the evolution mechanisms characteristic for each class. For instance, the small world
property has been found in many real networks, including social networks and interareal
cortical networks in the primate brain. Yet in social networks, which are sparse graphs,
this property is due to randomness in the linking patterns between the nodes, whereas in
cortical networks it is trivially the consequence of network’s high density. Therefore, the
evolution of these two networks has been driven by different mechanisms, so that they
cannot be assigned to the same network class.

One way to address the problem of interdependence among network properties is to
find which of them are significant for a given network, and thus for its function, The
standard procedure for the identification of a significant property X and its dependence
on some other property Y is to generate a set of random graphs that have property
Y but are random in all other respects, and then to check whether the property X is
also characteristic of these graphs. If this is the case, then obviously property X is not
interesting and relevant for the network function and dynamical processes running on
it. We conclude that property X is a statustical consequence of property Y,and Y fully
describes the structure of the network. Mechanisms generating network property Y can
be thus considered to be relevant for the network evolution and dynamics. If X is not
a typical property of these random graphs, one cannot conclude anything about the
relevance of property X. The only conclusion that would follow from this is that property
X is independent of property Y. but that does not mean that it is also independent of
some other network property.

The identification of significant network features using the procedure described above
raises another, equally important, question about the choice of null models. Since there
are infinitely many network properties Y, there are infinitively many null models defined
by property Y, and these can be used to test the staustical significance of any other
property X [297]. For example, for most properties X, including motifs [195], their
significance is tested with respect to random graphs with the same degree distribution.
Although the choice of degree distribution as a Y property can seem natural, given the
fundamental role played by it [210], there is no evidence that this choice of null model
is less arbitrary than others. In general, there can be some other property which can be
explanatory for both Y (here, the degree distribution) and X, Thus. one needs to identify
the right reference property or properties Y in the null model that should be used for
the testing of the (statistical) significance of property X.
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In a recent work, Orsini ¢f al. [219] proposed a way to identify such basic properties,
enabling us to do a complete systematic description and unique classification of the
structure of real networks. It is based on a set of properties known as the dk-series [182],
a converging series of basic interdependent degree- and subgraph-based properties
that characterize the local network structure at an increasing level of detail. It has
been shown [182, 219] that the dk-series also defines a corresponding series of null
models or random graph ensembles. These random graph models have exactly the same
distribution of subgraphs of size d for all d-ples of nodes with degree (ki k2, k3,....k4)
as in the real network. Or, to be precise, they are random graphs with fixed average
degree, degree distribution, degree correlations, clustering, and so on. In Ref, [219],
the authors used this methodology to quantify the randomness of six real single-
layer networks, of very different function and dynamics. They showed that random
graphs with fixed degree distribution, degree—degree correlations, average clustering, and
degree-dependent average clustering reproduce all relevant topological properties for
most networks. Here, we apply this approach to three networks and show that they differ
in the randomness of their structure. We show that although many network properties
can be reduced to specific degree- and subgraph-based characteristics, some of them
cannot be explained with dk-series.

In recent years, a lot of attention in network science has been devoted to networks
in which the same set of nodes are connected with multiple links of different types.
These networks are referred to as multiplex or multilayer networks, since they consist
of correlated single-laver networks composed of links of the same type. Many of the
topological measures used to describe the structure of single-layer networks have
been adapted in order to characterize the structure of layers and correlations between
them [37]. We show how dk-series can be extended to describe in a systematic way the
structure of multiplex networks using dk-annotated series [79].

3.2 dk-Series for single-layer networks

As indicated in the previous section, one needs to find an ordered set of reference prop-
erties of networks Yy, Y7i,..., satisfving some criteria. The first criterion is mclisiveness:
every subsequent property provides more details about the network structure than its
predecessor. Formally, this 1s equivalent to the requirement that networks with property
Y4, d > 0, should also have all properties prior to it, that is, all properties Y, where
0 = d' < d. The second criterion is convergence, that is, the minimal set of properties has
to be finite, that is, the last property in series Y should fully characterize the adjacency
matrix of any given graph. The Y-series that satisfies these conditions allows us to claim
that, for any property X that is deemed important in a given real network, we can find a
minimal d* such that the property Yy« explains property X. The convergence of the
series ensures the existence of some d*, while the inclusiveness means that random
networks with Yy (d = (d* + 1),....D) also have property X, so if we go to higher
values of d, the random network has property X along with other significant properties.
This enables the classification of network structure in a systematic manner. Several
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approaches, including motifs [195], graphlets [314], and similar constructions [212], try
to fully characterize the structure of networks by using relatively small set of properties,
but they all violate the inclusiveness condition. On the other hand, one can still define
many Y-series satsfyving both conditons. We chose dk-serres [182], the most natural
choice due to their simplicity and the fact that they are a combination of subgraph- and
degree-based characteristics of networks.

In these series, properties Yy are dk-distnibutions. Each dk-distribution is actually a
collection of distributions, stating how the subgraphs of size d are distributed over nodes
with degrees k&, &, ...,k in a graph G. Note here that the isomorphic subgraphs of G
involving nodes of dlflerem degrees are thus countcd separately. Specifically, the 0k
“distribution” is simply the average degree k=2 ~\-. where N and M are the number
of nodes and links in a given graph, while the 12 distribution is the number of subgraphs
of size 1, nodes, with the degree &, that is, the standard degree distribution

N(k)

Pk = :
(R) N

(3.1)

where N(&) is the number of nodes of degree & The 2k distribution counts how many
nodes of degrees k& and &' are forming subgraphs with two nodes, and is known as joint
degree matrix P(k, k')

o iR EYM(RE)
P(k\k ) - 2"‘4 b J (3'2)
where
ﬂ(k,k')= 2 lfk:k, (3.3)

1 otherwise.

The 3k distribution is a set of two distributions corresponding to two non-isomorphic
subgraphs of size 3: wedges A and triangles A. It characterizes the connectivity patterns
between triples of nodes of degrees & &', and £”:

NA(F k)
2w °

Pukk By = vk, k”)f\—A(—,;—f—k

P (K k") = (k' R (3.4)

) (3.5)
where W and T are the total numbers of wedges and triangles in the network, and

6 ifk=kK=F,
V(k,k’,k") = l ifk # k' # k”v (3‘6)

2  otherwise,
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so that both P.(¥,k k") and Py (kK K") are normalized, and 3}, o Pa(R B R') =
> kwae Palk, B E") =1, We could continue in a similar manner to obtain a 44 dis-
tribution that consists of six distributions, each corresponding to one of the six non-
isomorphic subgraphs of size 4 and so on until we reach d = N, the Nk-distribution,
which characterizes the whole adjacency matrix of a given graph (see Figure 3.1).

The dk-series is directly related to some of the standard topological measures from
complex network theory. Besides the already mentuoned average degree and degree
distribution, which are directly related to the Ok and 1% distributions, the 24 distribution
defines the node degree correlations in networks, or network’s assortativity. The average
neighbor degree k,n(k) is a projection of P(k, k') via

= _ 2K PRE)
knn(k) = Zk' P(k,k’) .

T'he average clustering coefficient ¢ and degree-dependent clustering coefficient ¢(k) can
be calculated based on the number of triangles in the network. Specifically,

.- 1} 24;
C—J_\;Z',:k,'(k,‘— 15"

and

- ﬂ‘zbgy Pp (kR R
TN kE-01DPR

c(k) (3.7)

where A, is the number of triangles composed of node 7 and its neighbors, while T is
the total number of triangles. In general, the arbitrary dk-distribution characterizes both
degree correlations between nodes at the hop distances d’ < d, and the frequencies of
d'-sized subgraphs, d' < d, in graph G.

One can casily see that dk-series 18 inclusive. The (d + 1)k-distribution contains the
same information about the network structure at the level d as the dk-distribution, plus
some additional information about the degree correlations at the level d+ 1. Specifically,
the 1A-distribution defines the average degree (0Ok-distribution), via

k= "kP#),
»
while the 1A-distribution can be obtained from the 2% distribution as

k ;
Pty =7 ;P(k,k ).
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Similarly, the 3&-distribution defines the 24-distribution by

1 6T
9 4 o — otk k’k’, rr
Pk K) k+#_2;{Mm( K"y

W

L

[PA (k' k") + P,\(k,k',k")] . (3.8)

The opposite does not hold, that is, knowing the dk-distribution will not allow one to infer
anything about the (d 4+ 1)k-distribution, meaning that higher values of d correspond
to a greater level of details about the network structure.

The number of non-isomorphic subgraphs, and thus the number of distributions
needed to characterize network topology at the level d, grows exponentially with d;hence,
the calculation of dk-series becomes a computationally intensive task for higher values
of d. One could argue that just countung the number of d-sized subgraphs in a given
network regardless of their node degrees should be enough for the description of network
structure in a systematic manner [195, 314, 212]. The subgraph-based series obtained
from the count of d-subgraphs without including information about the degree, which
we can call a d-series, satisfies the convergence condition, and the statistics for d = N
subgraphs would also fully describe the topology of a given network, but, unlike dk-series,
they are not inclusive. Careful analysis of the first four elements of a d-series clearly
demonstrates its non-inclusiveness. For the d-series, the zeroth element is not defined,
while the number of nodes N and number of edges M are the properties corresponding
to d = 1 and d = 2, respectively. These two quantities are independent of each other, that
is, knowing the number of edges does not allow one to tell much about the number of
nodes in a network. Similarly, the properties at the level d = 3, the number of triangles
T and wedges W, define neither the size nor the density of the network [219]. This
analysis demonstrates that the elements in the d-series are independent of each other
and that each of them conveys a different kind of information about network topology.

Figure 3.1(b) illustrates the inclusiveness and convergence of dk-series, and also
suggests that all graphs with N nodes and M edges constitute a set of random graphs
Gok = Gyt with the same 0k property. Graphs with the same degree sequence, the 1%
property, form a smaller set of graphs Gz, which is a subset of Gyz, and so on. Each
set of graphs with a given dk-distribution, known as dk-graphs, is at the same ume a
subset of (d — 1)&- and a superset of (d + 1)k-graphs. It follows from this that a sequence
of dk-distributions defines a sequence of random graph ensembles (null models). In
order to compare a real network with the random graphs which have the same dk-
properties, and thus quantify the randomness of its structure of the real network, one
needs a maximum entropy ensemble of these graphs or dk-random graphs [182]. All
graphs in dk-random graphs have equal sampling probability P(G) = 1/N};, where N is
the number of dk-graphs. Each collection of dk-distributions is more informative about
the network structure and thus more constraining than (d — 1)k-distributions, that is,
Ao = Nj = --+ = Ny = 1. The size of the final ensemble at level N is clearly equal to 1,
since it just contains the network with the exact adjacency matrix. The number N is too
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Figure 3.1 The illustration of dk-series. (a) The dk-distributions for a graph of siz¢ 4. The 4k-
distribution is the graph itself. The 3k-distribution consists of uts three subgraphs of size 3: one triangle
connecting nodes of degrees 2, 2, and 3, and twwo wedges connecting nodes of degrees 2, 3, and 1. The
2k-distribution is the joint degree distribution in the graph. It specifies the mumber of links (subgraphs of
size 2) connecting nodes of different degrees: one link connects nodes of degrees 2 and 2, twwo links connect
nodes of degrees 2 and 3, and one link connects nodes of degree 3 and 1. The 1k-distribution is the degree
distribution in the graph. It lists the number of nodes (subgraphs of size 1) of different degree: one node of
degree 1, ttvo nodes of degree 2, and one node of degree 3. The Ok-distribution is just the average degree
in the graph, which is 2. (b) The inclusiveness and convergence of the dh-series are illustrated via the
hicrarchy of dk-graphs, which are graphs having the same dk-distribution of a given graph G of size N.
From Ref. [219].

large, especially for small values of d (exact or approximate calculations ford = 0,1,2can
be found in [32, 20]), making the construction of the whole set of dk-graphs impossible.
Thus, one needs to sample dk-random graphs uniformly in order to be able to compare
them with a given real network and properly test the significance of different topological
properues.
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The dk-series and dk-random graphs enable the systematic and full characterization of
the structure of any real network by finding the value of d for which all d'k-distributions
ford' = d do not contain any additional information of the network structure. This means
that any topology metric one can define on network & is captured with dk-random
graphs. The convergence and inclusiveness properties of dk-series ensure that this value
d exists, that is, they guarantee that any network property X of any given network GG
can be reproduced with any desired accuracy by high-enough d. Clearly, all properties
are reproduced exactly for d = N, but the question is whether there is a value d < N for
which all relevant topological propertes of a given network are captured with dk-random
graphs. By finding this value 4, one also quantifies the randomness of the structure of
a given network. The entropy of dk-ensembles is S; = InNy, and it is a nonincreasing
function of d, that is, the dk-random graphs are less random and more structured, the higher
d is. In the following section, we demonstrate how one can classify single-layer networks
based on their dk-randomness by applying the procedure described in Ref. [219] to three
real networks.

3.2.1 Classifying single-layer networks based on their
dk-randomness

First, we briefly discuss the constructibility of dk-random graphs, and the problem of
sampling graphs uniformly at random from the sets of dk-graphs. Here, we emphasize
that, in dk-graphs, the dk-distribution constraints are sharp, that is, all graphs in
dk-graphs set have exactly the same dk-distribution. Given a real network (7, there exist
two ways to sample de-random graphs: dk-randomize G, generalizing the randomization
algorithms in Refs. [186, 187], or construct random graphs with G’s dk-sequence from
scratch [182, 117], also called direct construcuon [148, 76, 147, 22]. We chose the first
option, dk-randomization, due to its simplicity and the existence of algorithms that enable
the uniform sampling of dk-random graphs for values of d greater than 2 (see the detailed
discussions about construction algorithms in [182, 219]).

The dk-randomization 1s an edge-swapping procedure where pairs of edges are
swapped at random, starting from (, such that the dk-distribution is preserved at
each swap. Figure 3.2 illustrates permitted swaps of edges for each dk-distribution.
Specifically, to preserve Ok-distribution, average degree, we disconnect a pair of nodes
and connect two other, non-neighboring, nodes. The graphs obtained in this procedure
are Erdas-Rényi graphs Gy a1 of fixed size N and average degree 2M/N. To preserve the
degree sequence (1k-distribution), we chose at random a pair of edges and swapped
their targeting nodes, while, for the 2A-distribution, we swapped edge pairs only if there
were at least two nodes of equal degrees adjacent to different edges belonging to
this pair. Allowed 3k-swaps are then 2k-swaps that preserve 3k-distribution, the same
connectivity patterns berween the triplets of nodes with respect to node degrees. From
this and the inclusiveness of dk-series, it follows that (d+ 1)k-swaps form a subset of
dk-swaps for d > 0 [182]. During all these rewiring procedures, the edge swapping is
only allowed if it does not lead to the creation of multiple edges between the same pair
of nodes.
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There are many concerns regarding the described rewiring procedure [316], two
of which are particularly important: (1) the ergodicity of the rewiring process, that is,
whether any nwo pairs of graphs with the same dk-properties are connected with a chain
of dk-swaps: (2) the uniformity of the rewiring process, that is, how close to uniform
sampling the dk-swap Markov chain is after its mixing time is reached. It has been shown
that dk-swapping processes for values of d = 1,2 are ergodic [186, 187, 67], while it is
common belief that there is no ergodic edge swapping, of any type, that preserves the
3k-distribution, and thus dk-distributions for values d > 4, although a rigorous proof of
this is lacking at the moment [219]. When it comes to the uniformity of the dk-swapping
process for d = 0, 1,2, it has been shown that if the edge-swap process is done correctly,
then the sampling is uniform [2, 11].

Since the 2k-random graphs do not capture all wopological properties for most of
the tested real networks [137, 219], we need algorithms that will allow us to go bevond
preserving only 2k-properties. The dk-targeting d' k-preserving rewiring, where d' < d,
has proven to be a good choice for generating random graphs with the same dk-
properties as in the considered real network [182, 219]. This procedure incorporates
the following modification of the d'k-rewinng algorithm: the d"k-swap is accepted with
probability min(1,exp(—=f#AH)), where g is the inverse temperature of this simulated
annealing process, and AH is the change in the L' distance between the dk-distribution
in the current graph and the targeted dk-distribution before and after the swap. The
numerical experiments with 3k-targeting rewiring have shown that this process does not
converge for most real networks [219], due to the extremely constraining nature of the
3k-distribution. Therefore, it is reasonable to retreat to numeric investigations of 2k-
random graphs in which, in addition to the 2&-distribution, some substatstics of the
3k-distribution are fixed. In partcular, we consider 2.1k-random graphs, which have the
same 2A-distribution and value of the average clustering coefficient ¢ as the given real
network, and 2.5k-random graphs with the same 2&-properties and average clustering
coefficient &(k) of nodes of degree £ [117]. Since 2.14- and 2. 5k-statistics are fully defined
by the 3k-distribution, and 2.1% is defined by 2.5k, the 3k-random graphs comprise a
subset of 2.5k-random graphs, which are, in turn, subsets of 2.1k-random graphs, that
is, N3 = N5 > ANss > N3, As a consequence, if a certain topological property of real
networks is captured by 2.5k-random graphs, it will be also captured by 3k-random
graphs, while the opposite is not generally true.

The scheme of algorithm(s) that we use for creating a set of dk-random graphs for
d=0,1,2,2.1,2.5 is given in Figure 3.2, while their detailed description and a link to a
Web page with publicly available software can be found in Ref. [75]. The dk-random
graphs for d=0,1,2 are created using the standard dk-swapping described above.
Although it is known that these procedures for general graphs do not lead to a uniform
sampling of dk-random graphs, unlike their modified versions [2, 11], it has been shown
that, for power-law distributions, the obtained sample of uniform graphs is very close
to uniform. To generate dk-random graphs for d = 2.1,2.5, we start with a 2k-random
graph and apply to it a described 2&k-preserving 2.xk-targeting (x = 1. 5) rewiring process
(see Figure 3.2). For this, we use a modified version of the algorithm [63, 219], which
ensures the convergence for all networks.
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Figure 3.2 dk-sampling and convergence of dk-series. The left column shows the elementary swaps
of dk-randomizing (for d = 0,1,2) and dk-targeting (for d = 2.1, 2.5) rewiring. The nodes are labeled
by ther degrees, and the arrotws are labeled by the rewiring acceprance probability. In dk-randomizing
reewiring, random (pairs of) edges are rewived preserving the graph'’s dk-distribution (and consequently
s d'K-distributions for all &' < d). In 2, 1k- and 2.5k-targeting retwiring, the moves préserve the 2k-
distribution, but each move is accepted with probability p designed to drive the graph closer to a target
value of average clustering € (2.1k) or degree-dependent clustering c(k) (2.5kk: p = min(1,¢ #AH),
where B is the mverse temperature of this simulated annealing process, AH = H; — Hy, and Hyp, are
the distances, after and before the move, betsveen the current and target values of dustering: Hj j =
|Courrane = Crargee| and Hy sy =¥ [Ccurrent kil = Crargec[kill. The right column shoswvs LaNet-
vr [29] visualizations of the results of these dk-resiring processes, applied to the Pretty Good Privacy
(PGP) network, visualized at the bottom of the left colomn. The node sizes are proportional to the logarithm
of their degrees, while the color reflects node coreness [29]. As d grows, the shown dk-random graphs quickly
become more similar 1o the real PGP network, From Ref. [219].
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To quantfy the randomness of the real network, that is, to determine the value of d
for which dk-random graphs capture most of its topological properties, we adopt the
following procedure. For a given real network, we calculate its average degree, degree
distribution, degree correlatons. average clustering coefficient, and averaging clustering
coefhicient of nodes of degree k; then, based on this, we generate 20 dk-random graphs,
using the methodology described in the previous paragraph, for d=0,1,2,2.1,2.5.
Then, for each sample, we compute a variety of network properties and compare their
values with the corresponding ones obtained for the real network. The value of d for
which the considered properties of dk-random graphs are in reasonable agreement with
the ones of a real network determines the randomness of its structure. The higher the
value of d, the more structured and less random a given network is.

In Ref. [219] the authors performed an extensive set of numernic experiments with
six real, very different networks with respect to their function. Here, we demonstrate
the described procedure by applying it to three of these networks: the Internet at the
level of autonomous systems (INTERNET) [183], a technosocial web of trust among
users of the distributed Pretty Good Privacy (PGP) cryptosystem [39], and a functional
MRI (fMRI) map of the human brain (BRAIN) [85]. In the first network, INTERNET,
the nodes are so-called autonomous systems (ASs; organizations owning parts of the
Internet infrastructure), and there is a link between two ASs if they have a business
relationship in which they exchange Internet traffic. The nodes in the second network
we consider, PGP, are users’ PGP certificates, while the edges denote the existence of
trust between two users. We consider here only the largest connected component of
the PGP network. The third network considered, BRAIN, is the largest component
of an fMRI map of the human brain, where voxels (representing small areas of a resting
brain, approximately 36 mm” in volume) are represented with nodes, and an edge exists
between two voxels if the correlation coefficient of the FMRI activity of the voxels exceeds
0.7. We chose these three nenworks because they have different values of d for which
dk-random graphs capture their structural properties [219]. In particular, most of the
considered properties for INTERNET are reproduced with 2k-random graphs, which
makes it the most random network among the three networks, while, to reproduce the
same properties of the PGP network. we need graphs with preserved 2.54-distribution.
Some of the properties of the BRAIN network are not reproduced even with 2.5k-
random graphs, meaning that this network is the least random one among these three
networks (Figures 3.3-3.7 and Tables 3.1 and 3.2).

The properties that we use to compare the structure of real networks with the ones
of random graphs can be divided into three categories: microscopic, mesoscopic, and
macroscopic. The microscopic properties describe the networks’ structure at the level
of individual nodes and subgraphs of small sizes (see Figures 3.3 and 3.4). Some of
these properties, namely, average degree, degree distribution, average degree of nearest
neighbors, average clustering coefficient, and average clustering coefficient of nodes
of degree k, are fixed by the corresponding dk-distributions. On the other hand, the
concentration of subgraphs of size 3 and 4 [219], as well as the distribution of the number
of common neighbors shared by a pair of nodes, are not fixed by dk-distributions for
d < 3. The distribution of common neighbors equals the probability that two connected
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Figurc 3.3 Microscopic properties of real complex networks and their dk-random graphs. The first
nine pancs show topological properties fixed by dk-distributions: the degree distribution P(k) for (a)
INTERNET, (b) PGP and (¢) BRAIN; the average degree of nearest nc:ghbor:knn(k) Jor (d INTERNET,

{¢) PGB and (f) BRAIN

‘rand the degree-dependent average dustering cocfficient (k) for (g) INTERNET,

(h) PGB and (1) BRAINZ The last three panels show the distribution of the number of common neighbors
P(m), tohich is not fixed by dk-distributions for d < 3: () INTERNET, (k) PGB and (1) BRAIN. Adapted

Srom Ref. [219].
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PGP (middle).and BRAIN (bottom). Adapted from Ref. [219].

nodes have m common neighbors and is exactly fixed by the 3k-distribution. Mesoscopic
properties depend on both local and global network organization. Here, we consider k-
coreness [9] and A-density [250] (see Figure 3.5). A node has k-coreness equal to & if it
belongs to k-core of the original graph, which 1s the largest induced subgraph of graph
in which every node has degree at least k. Similarly, an edge has k-denseness equal to
k if it belongs to the largest induced subgraph of the original graph in which all edges
have muluplicity at least k£ Macroscopic properties are truly global: betweenness. the
distribution of hop lengths of shortest paths, and spectral properties (see Figure 3.6
and Tables 3.1 and 3.2). We measure the distance berween real and dk-random graphs
with Kolmogorov-Smirnov distances between the distributions of all the considered
properties (see Figure 3.7).

For all three networks and for most of the considered properties, we observe a nice
convergence as d increases, that is, there is no statistically significant difference between
the property in the real network and in its 2.5k-random graphs. Although this is expected
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Figure 3.5 Mesoscopic properties: k-coreness and k-density distributions. The upper pancls shoew the
k-coreness of (a) INTERNET, (b) PGE and (¢) BRAIN netwworks, and the lower panels show thetr
k-density: (¢) INTERNET, (ff PGP and (g9 BRAIN. The ke-core of a graph G is the maximal subgraph
of G in wluch all nodes have degree at least ke. A node has k-coreness k¢ if it belongs to the ke-core but not
to the (ke + 1)-core. The ke-dense subgraph is the maxnmal subgraph of a graph m which all edges have
mudtiplicity (ke — 2); the multiplicity of an edge is the number of triangles the edge is part of. Adapied
Jrom Ref [219].

for microscopic properties that are fixed with dk-distributions, there is no reason to
expect convergence in the case of small subgraph frequencies, in the distribution of the
number of common neighbors, or for mesoscopic or macroscopic properties. Figure 3.4
shows that the relative difference between subgraph frequencies in real and 2.5k-random
graphs is very close to zero for subgraphs of sizes 3 and 4. For INTERNET, this
property is already captured with 1k-graphs, while it is clear that, for the BRAIN and
PGP networks, one needs to fix the degree-dependent clustering coefficient in order
to observe the same motif count as in the real systems. Mesoscopic properties are
reproduced with 2.5k-graphs for the BRAIN and PGP networks, and with 2k-random
graphs for the INTERNET network (see Figure 3.5). While betweenness and average
shortest-path distance require 12- and 2.54-random graphs for INTERNET and PGP,
respectively, such properties are not captured even with 2.5% graphs for BRAIN (see
Figure 3.6). Table 3.1 shows that the largest eigenvalue of the adjacency matrix is closely,
but not exactly, reproduced by d = 2.5 for all three networks. The spectral gap, the
difference between the largest and second largest eigenvalue of the adjacency matrix,
given in Table 3.2, shows that 24- and 2.1k-random graphs are better connected and
interlinked, compared to real networks. Figure 3.7 shows that the Kolmogorov-Smirnov
distances calculated for the distributions of INTERNET and PGP are either zero or
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Figure 3.6 Macroscopic properties:betteenness and average shortest hop distance. The average betwveen-
ness bik) of nodes of degree k is shown in the upper pancls: (@) INTERNET, (b PGE and (c) BRAIN.
The lower panels show the distribution P(l) of the length | of the shortest paths between all pairs of nodes:
{d) INTERNET te) PGP, and (f) BRAIN. Adapted from Ref. [219).

Table 3.1 Lamgest eigenvalues of the adjacency matrix for the three networks considered and their
corresponding dk-graphs. Tor the latter, we show averages across different realizations for cach d, and
their standard deviations in parentheses.

Original 0k 1k 2k 2.1k 2.5k
INTERNET 67.17  5.36(0.01) 56.02 (0.33) 61.15(0.03) 61.32(0.06) 65.34(0.10)
PGP 42.44 5.77(0.02) 19.50 (0.24) 34.08 (0.03) 34.40(0.05) 42.95(0.12)
BRAIN 119.66  8.91(0.01) 54.89(0.26) 113.41 (0.02) 114.09 (0.06) 122.27 (0.20)

Table 3.2 Spectral gap betioeen the largest and the second-largest eigenvalues of the adjacency matrix.
For the dk-graphs, the shown values are the averages across different realizations for each d; while thewr
standard deviations are reported in parentheses,

Original 0k 1k 2k 2.1k 2.5k
INTERNET  17.56  0.70(0.05) 14.94(0.53) 18.83(0.07) 18.55(0.11) 19.53(0.25)
PGP 4.25 0.98 (0.04) S5.51(0.31) 18.01(0.18) 17.55(0.21) 4.71(0.19)

BRAIN 40.97 2.90 (0.06) 35.52(0.31) 77.53(0.11) 76.39(0.27) 42.71(0.35)
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Figure 3.7 Kolmogorov=Smirnov distance between real networks and their dk-random graphs.
The Kolmogorov=Smirnov (KS) distances beteveen the distributions of per-node values of a given property
in the real netsvorks, and the same distvibutions in ther dk-random graphs for the following propertics:
degree ( k) average degree of nearest naghbors ( knn),clustering coefficient ( ¢),number of connmon neighbors
(comm.neigh), k-coreness ( kcore), k-density (kdense), betweermess (bet), and shortest-path distance
( path-Ten). Adapred from Ref. [219].

very close 1o zero for higher values of d, indicating that these two networks can be
well approximated with 2&- and 2.5k-random graphs. On the other hand, for BRAIN,
the global properties exhibit slow or no convergence at all, so it is an outlier, that
is, its properties can be captured with dk-random graphs with d > 3. Although many
properties can be reproduced with 2.5k-graphs, we find that community structure is not
preserved for any of these networks, regardless of the community detection algorithm.

3.3 dk-Series in multilayer networks

In this section, we discuss how dk-series generalize to multilayer networks in general
and to multiplex networks in particular. The key idea behind the generalized dk-series.
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is the same as in the case of monolayer networks: a dk-series is a series of inclusive and
convergent statistics based on the frequencies of degree-labeled subgraphs of increasing
size in a given network.

3.3.1 Multilayer networks

Here, we consider the most general case of multilayer networks with the most detailed
form of generalized dk-statistics.

The structure of a multlayer network is fully specified by the adjacency tensor Ay 55,
where indices o, # = 1,..., L indicate layers, while /,j = 1,..., N indicate nodes: Ay, 3, =
1 if node 7 at layer « is connected to node j at layer B, and Ay g = 0 otherwise [72] (see
also Chapter 1). To simplify the notation, from now on, we assume that networks are
undirected and have no loops—Ag; g; = Agjai> and Ay, ui = 0, for any combination of «,
B, i, and j—but the generalization to directed networks is straightforward.

The Ok-staustics, that is, the number of edges in the network, and the 0&-
“distribution,” that is, the average degree, are no longer scalar M and % as in the
monolayer case, but the L. x L-matrices

M=Mup = Auipjs (3.9)
5]
= M,
fukyetrd, (3.10)

.N'

specifving the number of interlayver edges between layers & and g if & # £, or the number
of intralayer edges at layer « if @ = . Similarly, the degree of node 7 is no longer scalar
but the L x L-matrix

,;:' = (R)ap = ZAai,ﬁ; (3.11)
J

specifving the number of node’s connections to other nodes in the same layerifa = g, or
to nodes in other layers if & # B. If node 7 is not present at layer a, then (&)qz = 0. Node
degrees are thus also matrices & = kyg. A node that has this degree has kg connections
from layer « to other nodes at layer 8, which can be equal to «. We note that the degree
matrices are not, in general, symmetric, even if the network is undirected.

The 1k-statistics, that 1s, the number of nodes N(l;) with degree l.:, and the 1k-
distribution are then

NGk =Y 5(kis b, (3.12)

r

N(k)
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where § stands for the Kronecker delta, and the distribution is properly normalized:
3’ i P(R) = 1. In contrast with the monolayer case, the degree distribution is no longer a
univariate distribution but a multivariate joint distribution of L2 variables. In particular,
this distribution contains all the information on the correlation of degrees of the same
node at different layers. As in the monolayer case, the 1k-distribution fully defines the
Ok-distribution via

k=" kPib. (3.14)
i

The 2k-statistics, that is, the number of links Ny ( k.R') between nodes of degrees 2
and £ atlayers a and o, and the corresponding 2k-distribution are given by the matrices

N (k') m Ny (kK'Y =) A8 iy )8 ey K, (3.15)
i<y
S . . Nk K
PR = BB R e (3.16)
2M
il v 4 2q .f*::k"g
N IEE : (3.17)

1, otherwise,

is the factor taking care of proper normalization } . ‘;,Pw'(&,l?) =1 for any a,o’.
Here and below, all vector, matrix, and tensor multiplication and divisions are ¢lement-

wise, for example, (.‘\‘-\'/A:I) .=1§",,a'/4.'fm/. Instead of a joint distribution of two
oo
variables P(k, k) in the monolayer case, we deal with L(L— 1) joint distributions of

21.% variables P‘,a-(ls.l?). These distributions contain strictly more information about
degree correlations than the 1k-distribution does. In particular, in addition to capturing
the degree correlations of the same node (1 = j) across layers, they also encompass all the
degree correlations of distinct connected nodes (7 # j) across both intralayer (« = &) and
interlaver (& # «') connecuons, The 2k-distributions define the 1 2-distribution similarly
to the monolayer case:

- Z -~ -~ ~
Pk)y= =Y P(kk). 3.18
k% (3.18)

It is evident from the expressions above that the dk-series in multilayer networks are
different from the dk-series in monolayer networks only in that the scalar number of
edges and node degrees are replaced by the L x L-matrices M — M and k— k, while
their dk-distributions form tensors of rank d whose indices are layers. If d = 1, this tensor
is trivial: P(k) = P, (k) = P(k) for any layer «; but, starting with d = 2, any two elements
of these dk-distribution tensors can, in general, be different, specifying in the d = 2 case,
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for instance, the degree correlations across pairs of different layers if @ # o', or within the
same layer if « = «'. Each element of these dk-tensors is a joint distribution of d degrees,
that is, of d.2 variables.

All higher-order statistics and distributions are then defined exactly as in the mono-
layer case, albeit with these two modifications. For instance, the 32-distribution is defined
by Egs (3.4)~(3.5) and determines the 2k-distributions via Eq. (3.8), except that scalar
degrees in these equations are replaced by degree matrices, and the numbers of wedges
and triangles have three indices specifying to which layers the three nodes forming these
two subgraphs belong. As in the monolayer case, higher-d dk-distributions determine
the degree correlations of nodes at distance d — 1, the frequencies of d-cliques, including
clustering at d = 3, and so on.

3.3.2 Multiplex networks

In node-aligned multiplex networks, all nodes are present in all layers, and all interlayer
connections are trivial: every node is connected only to all its copies in all other layers,
so that interlayer connections form N disjoint L-cliques: A, 5; = 1 for any combination
of r and & # B. The dk-series can therefore be excused from keeping track of statistics of
interlayer connections, which somewhat simplifies the formalism in the previous section,
as described below. This simplification boils down to per-laver projections of the most
detailed dk-statistics discussed in the previous section.

Since in multiplex networks &,z = L — 1 for all nodes and all 8 # «, all the off-diagonal

components of degree matrices k are not informative and can thus be dropped, mapping
degree L. x L-matrices to degree L-vectors composed of the diagonal elements of & &
k = diag(k). The a-component k, of this vector & specifies the number of intralayer
connections of a node at laver . Similarly, the number-of-edges matrix M maps to the
vector M = diag(M), whose components M, are the numbers of intralayer edges within
layer «a.

Similarly, it is convenient to project the dk-distribution tensors per layer, forming
vectors of distributions P(k,k',...) = P, (kK ,...), consisting of the diagonal clements
of the full distribution tensor P, . (R,R',...), that is, Po(R,K,...) = Pyu. (RFE,...),
thus keeping track only of intralayer correlations of degrees of different nodes. The
correlations of the degrees of the same node at different layers are still contained in (k).

Given this simplified representation, the dk-statistics, distributions, and their relations
are exactly as in the general mululayer case, except that all matrices and tensors are
replaced by vectors whose components are lavers. For d = 0, 1, 2, for instance, we have
the following expressions:

- 2M
k=23, (3.19)
N(k)y =" d(ki, k), (3.20)
:
P(k) = lﬁ—@ (3.21)

N
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= kam, (3.22)
k
N(k.k') = Nyl k') =~ Agiair 3(Ris RS (R ), (3.23)
Nk, k)

P + y - k,k' ST e 3. 4
(RyR') = pu( ) M (3.24)

| k .
P(k) = ,—z ;P(k,k ), (3.25)

which all are hists of L per-layer standard monolaver expressions, except that degrees
are vectors, Compared to general multilayer networks, the dk-distributions in multiplex
networks with these simplifications are all L-vectors, for d > 1, whose components
consists of joint distributions of d degrees, that is, of dL. variables.

3.3.3 Application to real networks

The general methodology behind the application of dk-series generalized to multilayer
networks is the same as in the monolayver case discussed in Section 3.2. Yet, one has
to keep in mind that multilaver dk-statstics tend to be extremely sparse and thus
extremely constraining, even in the multiplex-projected case. This is because, compared
to monolayer networks, the dk-distributions in mululayer networks contain much more
detailed information about degrees, which are no longer scalars but matrices or vectors,
and about their correlations within subgraphs of different sizes. Therefore, it is usually
convenient to consider summary staustics of these distributions and define graph
randomization procedures based on those. These procedures may depend on a particular
choice of real network, on its specifics, and on particular questions one is to answer about
the network.

For instance, in Ref. [79], generalized dk-series were applied to the Internet at the
AS level. This network is a multiplex network with two layers. One laver consists of
directed customer-provider links, for which, in order to send traffic over them, customer
ASs must pay provider ASs, while the other layer consists of undirected peer-to-peer
links connecting mostly large Internet service provider ASs, which exchange traffic
free of charge over these links, based on bilateral agreements. The specific question
addressed for this network was how to generate synthetic random graphs of varving
sizes that reproduce specific types of degree correlations that reflect realities of business
relationships between ASs in the Internet. For instance, peer-to-peer links tend to exist
only between large Internet providers of large AS degree. Large providers tend to have
large number of customers, a handful of peers, and few or no providers. Small customer
ASs have no customers, no peers, and a small number of providers, and so on.

To properly capture these correlations, three joint distributions were considered.
One was the full lk-distribution P(k) specifving the correlations among the
numbers of customer, provider, and peer connections that nodes have. Since the
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customer-provider layer is a directed network, this distribution is a joint distribution
of three variables: in- and out-degrees £y, and &; ., In the customer-provider
layer, and degrees k> in the peer-to-peer layer. The other two distributions were the
2k-distributions of the total degrees k=" R, = Ry iy + Ry o + 22 = |k} in the two
layers. These distributions are projections of the multiplex 2k-distributions: P(k, /') =
Y seae PR KNS (R SR |1, K'). After these distributions were determined from data
from the real Internet data, the dk-series were used to generate syntheuc graphs of
any size reproducing all the degree correlations contained in these distributions by
first computing the marginals of these distributions P(2y.,0)s P(R1 o) P(k2), and P(k),
and the three copulas [206] representing their correlations in their joint distributions
P(R) = PRy jns Ry s B2), Pyt k'), and P> (R R'). Joint degree sequences of varying
lengths were then sampled from these copulas, and random graphs were constructed
using stub-matching procedures. As expected, the degree correlations in these random
graphs reproduced the degree correlations in the real Internet. Many other important
structural properties of the Internet, including properties specific to the Internet, were
reproduced by these 2k-random graphs as well [79], corroborating the finding that the
Internet is nearly 2k-random with respect to many important properties [182, 219).

We conclude this section by reiterating that, when classifving, that 1s, determining
“how random™ a given multilayer or multiplex network is, the full matrix-degree-based
dk-series provides a rich set of inclusive and convergent statstics, which contain a
variety of summary statistics as different projections of the full dk-distnbutions, Any
combination of these statistics constrained to their values observed in a given network
defines a null random graph model, in which any structural property of the network
can be tested on its typicality in the model. There seems to be no good-for-all-networks
rule of what these projections are, as different multilayer networks may require different
projections, Yet, the full joint 1k-distribution should most likely be alwavs considered,
while per-layer projections of dk-distributions with d > 1 are likely to be good projection
choices for many networks, especially muluplex ones.

3.4 Discussion and conclusion

Topological measures commonly used for characterizing the structure of complex
networks are interdependent, but the relation and the extent of their mutual correlations
are often unknown. For this reason, systematic classification of networks via standard
topological measures is not feasible. Here, we show how the problem of interdependence
can be overcome by finding the set of base properties that can be used to explain all other
relevant topological features of a network’s structure. We describe the methodology pro-
posed in Ref. [219] and show that mosttopological properties, which are deemed relevant
for dvnamics and function of networks, can be reproduced by random graphs with fixed
degree distribution, degree-degree correlations, an average clustering coefficient and a
degree-dependent average clustering coefficient; as in a given real network,

There is no reason to expect that non-local properties, namely, mesoscopic and
macroscopic properties, cannot be reproduced by random graphs with local constraints.
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And, for some networks and some properties, this is true. Our numerical experiments
show that global features of brain networks, for example, the shortest-path length
and betweenness distributions, differ drastically between the original network and dk-
random graphs. This suggests that brain network evolution was subjected to some
global constraints, which is reflected in its structure. The human brain consists of two
weakly connected parts, corresponding 1o two brain hemispheres, a feature that cannot
be reproduced with dk-random graphs with small 4. In general, dk-random graphs
with fixed local properties can not reproduce the community structure of all complex
networks studied in Ref. [219], that is, the cluster organization is not robust to dk-
randomization.

On the other hand, INTERNET and PGP, and other networks considered in
Ref. [219], are clearly dk-random, with d < 2.5, Our analysis shows that the most basic
properties of these networks, including microscopic, mesoscopic, and macroscopic
ones, are a consequence of several local dk-properties: degree distribution, degree-
degree correlations, and global and degree-dependent average clustering coefficients.
This implies that the evolution of these networks was dominated by local dynamical
rules and that it can be explained to a certain extent by mechanisms that are responsible
for the manifestation of specific dk-properties. There already exists a multitude of
approaches [80, 151, 302, 10, 225, 34] proposing different mechanisms to explain the
emergence of these local topological properties. Clearly, the features that cannot be
reproduced by dk-random graphs require separate explanations, or maybe some other
set of base properties and different systems of null models.

The most basic topological features considered in this work can be considered non-
significant, that is, there exists a dk-property captured by the corresponding dk-random
graphs. In general, to tell how statistically significant a particular feature is, one needs to
compare this feature in a real network with the same feature in an ensemble of random
graphs, that is, a null model. The choice of the null model is free, but one should
be careful when choosing the null model, since the significance of a certain feature is
strongly dependent on it. The dk-random graphs discussed in this chapter can be used
for determining the right network topology generator. One should first check whether
most topological features of networks can be reproduced in dk-random graphs with a
low value of 4. If this is the case, then one may not need any sophisticated mission-
specific topology generators. The proposed extension of dk-series to multilayer graphs
enables the use of similar procedures on wider classes of real networks.

There are certain drawbacks of our approach that have to be mentioned. First, we
do not have a proof that the proposed dk-random graph generation algorithms for
d=2.1 and d = 2.5 sample graphs uniformly at random from the ensemble. Second,
it is known that the random graph ensembles and edge-rewiring processes employed
here suffer from problems such as degeneracy and hysteresis [97, 239, 133]. The ideal
solution would be to calculate analyucally the expected value of given property in an
ensemble. For this, we need an analytical description of null models which is currently
only available for soft d = 0, 1,2-random graph models [281, 282, 59, 58]. Unfortunately,
the null models for generation of random graphs ensembles with constraints d > 2 are
still not feasible, and they appear to be beyond the reach in the near future. We also
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lack algorithms for the generation of dk-random graphs for multiplex networks which
would allow us to apply similar procedures and quantify the randomness of mululayer
networks. Clearly, the solution of these problems will be of great importance for a full
understanding of the relationship between the structure, function, and dynamics of real
networks.
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1 Social networks theory
Definitions and practice

Marija Mitrovi¢ Dankulov, Maria del Mar
Alonso-Almeida, Fariya Sharmeen and Agnieszka
Lukasiewicz

Introduction

Humans are social beings. Development and organization of societies and the
behaviour of individuals are governed and shaped by social interactions (Was-
serman & Faust, 1994). That is why it is not surprising that the structure and
evolution of social networks are subject of various scientific disciplines, from
sociology, economics and transportation studies to mathematics, computer sci-
ence and physics. Sociologists introduced the term and the idea of social net-
works at the end of the 19th century to study the emergence of different social
phenomena. Further development of this field during the first half of the twentieth
century was led by scientists working in the field of psychology, anthropology and
mathematics. During this period, scientists started with systematic recordings and
analysis of social interactions in small groups, while mathematicians worked on
developing a formalism to quantify the structure of social networks graph theory.
The development of Information and Communication Technologies (ICT) at the
end of the twentieth century and the availability of large data sets about human
behaviour attracted the attention of physicists and computer scientists. These dis-
ciplines brought new concepts and powerful quantitative methods which further
advanced our knowledge about the structure and dynamics of social networks
(Sen & Chakrabarti, 2014).

This chapter provides a brief literature review of works on the topic of social
networks in transportation studies, economics and physics. All these disciplines
use a concept of social network and define it similarly. The differences between
these disciplines are research problems and questions related to social networks,
as well as their approaches. In the first part of the chapter, we provide a defini-
tion and classification scheme of social networks and describe some quantitative
measurements of the network structure. In the second part of the chapter, we sum-
marize the most relevant application of social network theory in transportation
studies, economics and physics. We pay particular attention to the results, which
indicate the connection between the structure of social networks and mobility pat-
terns and travel behaviour of individuals.
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Social networks theory

A social network is a theoretical concept used for the quantitative and qualita-
tive description of social entities and relations between them. The social entities,
actors, can be individuals, corporate or collective social units. A tie establishes a
linkage between a pair of actors, and it can express a relation between two social
entities like talking, kinship, friendship or business relations. In mathematical
terms, a social network is a set of nodes (vertices), representing actors, and edges
(links), representing social ties. Social ties can represent a direct relation, as in
friendship or sexual partners® networks, or actors can interact indirectly, through
artefacts, for example, a network of bloggers (Sen & Chakrabarti, 2014).

Social network analysis is used for exploring and quantifying patterns of
relationships that arise among interacting social bodies, mostly individuals. An
explicit assumption of such an approach is that indirect relationships in social
groups matter. A particular backbone of social network analysis is that it pro-
vides standardized mathematical methods for calculating measures of sociality
across levels of social organization, ranging from the population and group lev-
els to the individual level (Freeman, 1984; McCowan et al., 2011). The concept
of graphically representing social relationships is not new (Foster, Rapoport, &
Orwant, 1963). Nevertheless, recent developments and widespread accessibility
of network software have enabled easier visualization and exploration of complex
social structures.

Social networks can be roughly divided into three classes based on the type
of their ties: single-layer, temporal and multiplex networks (Boccaletti, Latora,
Moreno, Chavez, & Hwang, 2006, Holme & Saramaéki, 2012; Boccaletti et al.,
2014). Single-layer networks are used for representation social systems whose
actors interact through only one type of interaction, for example network of co-
workers in one company. Depending on whether there are one or two types of
actors, these networks can be monopartite or bipartite. Weighted networks are
used to represent the systems where interactions can be of different strength.
Finally, the interactions can be symmetric (undirected networks), as in the net-
work of co-workers where the relationship is mutual or asymmetric (directed
networks), where relationships are not reciprocal, such as student-mentor social
network. Temporal networks are used for the representation of networks where
ties and nodes are active at certain points in time (Holme & Saramiiki, 2012),
for example in mobile phone communication networks where phone call has a
limited duration. Multiplex or multilayer networks are composed of a multiplicity
of overlapping single-layer networks that capture different types of social connec-
tion, for instance actots can use different means of communication (phone calls,
short message services, or online media) where each layer of a communication
network has its own properties and dynamics. The size of this chapter does not
allow us to cover all three types of network representations. A detailed descrip-
tion of methods and tools for the quantitative description of these networks can
be found in review articles (Boccaletti et al., 2006; Holme & Saramiki, 2012;
Boccaletti et al., 2014). Here we present only several quantitative measures used
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for the description of the topological structure of single-layer binary undirected
networks: degree distribution, clustering coefficient and its dependence on node
degree, of assortativity index, the dependence of average first neighbour degree
on node degree and shortest path. It was shown that these properties are essential
for the description of the topological structure of most real complex networks,
including social networks (Orsini et al., 2015).

A quantitative description of social and complex networks requires the right set
of tools. Graph theory is a natural framework for the mathematical representation
of social and complex networks (Boccaletti et al., 2006). A network or a graph
consists of two sets: a set of nodes (vertices) and a set of links (edges) that con-
nects those nodes. Two connected nodes are said to be adjacent or neighbouring.
The node degree is the number of its first neighbours.

One of the essential topological features of a network is degree distribution
P(q) defined as the probability that randomly chosen node has a degree q. The
degree distribution is used for quantifying network heterogeneity at the local level
and can be estimated as the fraction of nodes in the network having a degree q.
The degree distribution is sufficient for a complete description of the structure
of uncorrelated complex networks (Boccaletti et al., 2006; Orsini et al., 2015).
However, most of the real, complex networks are correlated in the sense nodes
with certain values of degree are more likely to be linked to each other. The
degree correlations are characterized by conditional probability P(q|q") which
equals a probability that there is a link between nodes with degrees q and q'. The
direct evaluation of conditional probability from the data is often not possible.
Degree—degree correlations in a network can be estimated using average-nearest-
neighbours degree and its dependence-on-node degree. For uncorrelated
networks, the average-nearest-neighbours degree is independent of node degree.
Correlated networks can be divided into two classes: assortative networks for
which the average degree of nearest neighbours grows with g, and is disassorta-
tive where the opposite behaviour is observed.

Clustering, or transitivity, is another topological property of the networks
which is particularly important for social networks. The clustering coefficient
of a node is the probability that two randomly chosen neighbours of a node are
also neighbours. It is estimated as a fraction of existing links out of all possible
links between neighbours of a node. By averaging clustering coefficients over all
nodes, one obtains the network clustering coefficient. Node and network cluster-
ing coefficients take the values between 0 and 1. Networks with a high value of
clustering coefficient are considered to be clustered.

The shortest path has been one of the most important properties for characteri-
zation of network structure. A path between two nodes is an alternating sequence
of nodes and edges, in which no node is visited more than once. The path of the
minimal length is known as the shortest path. The shortest path of the largest
length in the network is known as network diameter. The average shortest path
of a network is defined as the mean of geodesic lengths over all pairs of nodes in
the network. Most of the real, complex networks have relatively small average
shortest-path length compared to their size, which is why they are often called
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small-world networks. A recent study (Orsini et al., 2015) has shown that small-
world property can be explained using degree distribution, degree—degree correla-
tion and dependence of clustering coefficient the on node degree.

Real complex networks are characterized by inhomogeneities on the meso-
scopic level, also known as communities. The notion of community and the term
itself have been proposed in the social sciences (Wasserman & Faust, 1994). In
single-layer networks community is defined as a group of nodes more densely
connected than with the rest of the network. The detection and quantitative
description of the community structure of complex networks have attracted much
attention in the past two decades (Fortunato, 2010). The networks can be charac-
terized by different community structure. The community structure can be simple,
with distinct communities. However, typical real-world networks have overlap-
ping communities or communities that are hierarchically embedded. A detailed
description of different algorithms and methods for finding different types of
communities in static single-layered complex networks can be found in the paper
by Fortunato (2010).

Social networks in various disciplines

Social networks in transportation studies

In the field of transportation, seminal empirical research on social networks has
been documented. Among them are the studies by Wellman, Carrasco and col-
leagues (Carrasco, Hogan, Wellman, & Miller, 2008; Carrasco, Miller, & Well-
man, 2008; Carrasco & Miller, 2005); Axhausen, Frei and Kowald (Axhausen,
2008; Frei & Axhausen, 2008; Kowald & Axhausen, 2012); and Timmermans,
Van den Berg, Arentze, Sharmeen and colleagues (van den Berg, Arentze, & Tim-
mermans, 2008, 2009, 2010, 2011, 2012; Sharmeen, Arentze, & Timmermans,
2013, 2014a, 2014b, 2015a, 2015b, 2016, 2017), based in Toronto, Zurich and
Eindhoven, respectively. Most of those studies collected primary survey data,
asking respondents to report a section of their social networks. Those studies
came together into a comparative analysis of personal social network features
in different spatial settings (Kowald et al., 2013) and were also combined in a
recent book providing a much-needed overview of the relevant studies (Kow-
ald & Axhausen, 2015).

Among the first attempts to understand social networks in transportation stud-
ies, is the connected lives study where name generators were employed to collect
social network data (Carrasco & Miller, 2005; Carrasco et al., 2008a, 2008b).
They focused on social activity generation, explicitly incorporating social net-
work characteristics of each network member (alter) as well as the characteristics
of the overall social structure. For a better understanding of the spatial distribu-
tion of social activity, they incorporated activity space anchor points, based in
the home, institution and public spaces. Simultaneously, they characterized those
places based on recurrence ~ whether these are regular places or not. The role of
ICT on social interaction was also investigated.

Social networks theory 11

On the other hand, Axhausen (2008) argued that social network membership
influences a person’s mental map, and therefore, the geographical network should
have an impact on travel behaviour. In this study, he discussed in detail the survey
instruments and data requirements for social network studies. In a subsequent
study, Frei and Axhausen (2008) elaborated how geographical distances in per-
sonal social networks influence travel behaviour. They found that face-to-face
contact frequency decreases with increasing distance whereas ICT (email) fre-
quency increases.

Van den Berg et al. (2008, 2009, 2010, 2011, 2012, 2013) went in detail to
investigate the interactions among ICT, socio-demographics, land use and social
interactions. They reported a series of analyses of their social interaction diary
and social network data collected in Eindhoven in 2008. The study employed a
social interaction diary, followed by a name generator survey, to collect social net-
work and interaction data. They extensively examined the impact of ICT on social
travel behaviour and reported that the results differ significantly from a previ-
ous study conducted by Molin, Arentze, and Timmermans (2008), who used data
about social networks collected in the 1980s, also in the Dutch context, implying
that the inter-relations of social network and travel demand have changed over
last two decades. They further investigated social travel for the elderly (2011) and
the effect of club memberships on social interaction (2012). They reported that
the elderly were as mobile as the young population in terms of frequency of social
trips. The only difference in travel-mode choice was reported. They also deline-
ated reciprocity in social network size and club memberships and, as expected,
involvement in clubs and voluntary organizations increased social trips.

In most of the studies (including those mentioned earlier), social interaction
diaries were commonly used, some in a different manner than the other. For exam-
ple Silvis, Niemeier, and D’Souza (2006) used a similar social interaction diary,
where instead of collecting information about network members, they provided
an option for the network member to volunteer for the survey. Starting with three
seed respondents, they collected information about 24 individuals over three
phases of survey design. They concluded that individuals did not mind making
longer trips for socializing and visiting family. They studied primarily concen-
trated on trip generation influence of social network. They also mapped the geog-
raphy of trip frequencies.

In a similar direction, built environment effects of social interactions were
investigated using time geography approach. In a recent study, Farber, Neutens,
Carrasco, and Rojas (2014) calculated a Social Interaction Potential (SIP) metric
that estimated the potential for an individual to engage in social activities given a
specific time and space window. The metric was evaluated using data from cities
Ghent and Concepcion. It was developed to assess the relationships between spa-
tial structure and the potential opportunities for face-to-face contacts. The study
provided a framework to assess the sociability of urban environments.

Sociability has been investigated from the perspective of solo versus joint activ-
ity planning. Ettema and Kwan (2010) analysed the company of social activities
among ethnic groups in the Netherlands. They tested many hypotheses, contextual
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to social and recreational travel, and found that individuals had multiple networks
(such as family, friends, associational and professional) which potentially perform
multiple roles.

Thus far, the interplay between social networks and travel behaviour has been
explored in travel behaviour research, in a particular space and time context.
These studies are focused on static concepts of social networks, whereas social
networks are dynamic. To develop a comprehensive understanding of network
influence on individual/household’s travel behaviour, it is imperative to examine
those in a dynamic setting. Given the recency of the inclusion of social network
components in travel behaviour studies, it is understandable the forthcoming
arena of exploration.

The major setback of investigating social network evolution is perhaps data defi-
ciency. Ideally, a panel study would be required, which is difficult with limited
resources. Alternatively, social influences can be computed using stated preference
surveys of expressed choices using non-linear utility functions (Kim, Rasouli, &
Timmermans, 2014a, 2014b). Reviews of such efforts have also been detailed out
in recent papers (Kim et al., 2018). The use of simulated or synthetic datasets has
also shown potential to account for network dynamics. Dugundji and Gulyés (2008)
aimed to incorporate social influence on transportation mode choice. They devel-
oped a multi-agent simulation model of household interactions, looking at how
they decided on transportation mode alternatives by carefully distinguishing social
and spatial network interdependencies. Paez, Scott, and Volz (2008) described a
discrete choice model to account for social influence on decision making as an
advancement over auto-correlation analysis. Social network simulation was devel-
oped based on the structure analysis tradition of sociology by developing an infor-
mal support network. In an earlier publication, P4ez and Scott (2007) applied a
similar methodology for decisions about telecommuting research. They pointed
out certain limitations: first, the limited scope for empirical analysis due to limited
mobility data with social network information and second, the dynamics of social
networks were not taken into account. For example, although changing residential
location meant new neighbours, schoolmates or gym mates, the social network
was kept static in their model. Finally, they mentioned that they incorporated no
influence from the “rest of the world”. It is relatively difficult to incorporate that.

Han, Arentze and Timmermans (2011) presented a dynamic model that simu-
lated habitual behaviour versus exploitation and exploration as a function of dis-

crepancies between dynamic, context-dependent aspiration levels and expected
utilities. Principles of social learning and knowledge transfer were used in model-
ling the impact of social networks, and related information exchange, adaptations
of mutual choice sets and formation of common aspiration levels,

Dynamics concerning short-term decision making have been studied, as well
as opening the scope for empirical analysis. Hackney and Axhausen (Axhausen &
Hackney, 2006; Hackney, 2009) developed a multi-agent representation, incorpo-
rating dynamics of the social network, by addition and deletion links, based on
feedback through activity-choice sets. They accounted for homophily and asso-
ciations and assumed some maximum number of contacts per agent.
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However, the structure of the social network and its characteristics have not
yet been incorporated. To that end, Arentze and Timmermans (2008) developed
a theoretical and modelling framework to capture the essence of social networks,
social interactions and activity-travel behaviour. The core assumption was that the
utility that a person derives from social interaction is a function of dynamic social
and information needs, on one hand, and of similarity between the relevant char-
acteristics of the persons involved, on the other. The model is consistent with the
traditional social network theories (such as homophily and transitivity) developed
in the social science literature. The process model has been tested using arbitrary
agents. It led to the conclusion that an individual’s social network had an t_aqui]ib-
rium size dependent on several factors and changes over time. Although this study
does formulate a theory and model of social network dynamics, no empirical data
were collected to estimate the parameters of the model and test their theory. The
same conclusion holds for Ronald, Dignum, Jonker, Arentze, and Timmermaqs
(2012), which can best be seen of that line of work extension focusing on numeri-
cal simulation.

An elaboration of the framework is developed in Kowald and Axhausen
(2012). Two Swiss data sets were used to simulate connected personal networks
and encounters between actors. The model investigated leisure relationships and
provided insights on the connectedness between actors and the factors affecting
the leisure relationships between them. Illenberger, Flotersd, Kowald, and Nagel
(2009) conducted a similar simulation with a different approach. They test@:d
network indicators, including edge-length distribution and network-degree dis-
tribution, in their model but did not account for properties such as, homop.hily.
Although those simulation frameworks were promising, most remain relatively
simple. Thus, it remained a computational challenge to integrate large networks
and complex social dynamics.

Hence, the dimensions and components of a social network may affect transpor-
tation choices in many ways, viz to perform joint activities, as a valuable source
of information and social support and influencing daily as well as life choices
(Sharmeen et al., 2015a). When social networks change, they potentially blri.ng
changes in any, or all, of the ways, eventually changing am individual’s activity
and travel patterns.

Seminal scholar Wellman and colleagues (Wellman, Wong, Tindall, & Nazer,
1997) reported a complete turnover in the network composition to those who got
married during the study period. Furthermore, they outlined that continued tel-
ephone interaction and social support positively influenced tie maintenance. In a
similar attempt of a qualitative study in three waves, Bidart and Lavenu (2005)
found patterns of social network maintenance due to entry to the mafket, a s?tart
of a romantic relationship, childbirth and geographic mobility. Social interactions
and relations to activity and travel schedule, however, remained largely unex-
plored. Furthermore, it is not readily evident how such research can be elaborated
to fit the agenda of transportation research.

Only recently empirical studies of the influence of dynamics of social networks
on activity and travel behaviour were reported (Chavez, Carrasco, Tudela, 2018;
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Sharmeen, 2015; van den Berg, Weijs-Perrée, & Arentze, 2017). While, on one
hand, time effects were investigated (Chévez et al., 2018), theories of life-cycle
events to trigger changes were employed in the other ( Sharmeen & Timmermans,
2014, Sharmeen et al., 2014a, 2014b, 2015a, 2015b; Sharmeen, Chévez, Car-
rasco, Arentze, & Tudela, 2016; Sharmeen & Sivakumar, 2017; Sharmeen, 2015;
van den Berg et al., 2017), Through a series of studies, Sharmeen and colleagues
documented the effects of life-cycle events on the interaction frequencies (Shar-
meen et al., 2014b), mode choice (Sharmeen & Timmermans, 2014), time allo-
cation (Sharmeen et al., 2013) and overall activity-travel need (Sharmeen et al.,
2014a). Beyond those, they constructed a model to compute the population-wide
evolution of social networks (Sharmeen et al., 2015b). This model was also repli-
cated in other countries to predict the social network evolution (Sharmeen et al.,
2016). The forecasting power and predictability of social contextual variables of
individuals and positive correlation with different active travel dimensions were
reported (Sharmeen & Sivakumar, 2017).

Empirical evidence from all these studies suggests that personal social net-
works do evolve with socio-demographic status and life-cycle events. Some ties
got stronger and intertwined while others fade due to either a change in priori-
ties or changes in an individual’s or a household’s time budget. Individuals alter
and update their choices under the social influence or at specific points in life,
Those points or life-cycle events act as triggers to deliberate choice decisions.
Such decisions are better understood when the broader contextual environment of
individuals is incorporated. Mainly, the social network composition and geogra-
phy are overall found to be primarily associated with all aspects of activity-travel
scheduling (and residential location choice). Therefore, social network attributes
are found to offer a better understanding and are crucial for incorporation in large-
scale travel demand forecasting models not only at any one point of time and space
but also during the progression and consecutive changes over the short and long
term. Together with the growing leisure travel duration and location choices and
the explosion of social media, social networks have become increasingly crucial in
travel behaviour research. Fuelled by the demand landscape, the field has gained
momentum in recent years in transportation research summarized earlier. There is
much to be done to realize the full potential of social influence in travel predictions.

Social networks explanation in the transportation field is through the charac-
ter of social activities, their spatial distribution and frequency, and related travel
behaviour. They are the driver behind the activity-travel decisions and a key source
of explanation of activity-travel generation (Carrasco & Miller, 2009; Calastri,
Hess, Daly, & Carrasco, 2017). Nevertheless, research on the effects of social
networks on activity-travel patterns emerged for understanding social travel, in its
own right, better and for improving the performance of comprehensive activity-

based models of travel demand forecasting in which the prediction of social travel
Wwas a weak link. Over the last decade, numerous empirical studies have confirmed
the contention that the intensity and nature of social activity-travel behaviour are
significantly influenced by the properties of personal social networks (Kim et al.,
2018). Thus, while the activity-based modelling has shifted from cross-sectional
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to multiple-horizon dynamic models (Sharmeen et all., 2015b; Ras‘ouli & Timmer-
mans, 2014), there is still space of further examination of the subject.

Social networks in economics

Social networks theory is widely applied, including e(‘:on.or.nics and travel studlgs.
There is the economic problem of scarcity in which mdfwdualsl must fa'ce trat le-
offs while making choices. The available resources are 1nsuffiment to give sai 15;
faction to all human wants. Choices made by persons determine the al]OC&tl(.Jl‘l. 0

scarce resources. Social interactions and social petworks are useful for examining
how such decisions are made and what is the trigger {_)ff. ~ '

The social context where many economic interactions arise is takerf into con&
sideration as a significant factor and the driver .Of behaviours, dec1§1on!§ a{;
outcomes. Social networks are used in obtaining qus. T'he_y have an mevIltath:
impact on decisions about buying products, education ch{.nce and so on,h n
field of economic sociology, after Granovetter (1985) published a paper, t e nev\;
economic sociology aroused. Thus, Granovetter has been ‘con_nf:cted to th; ideao
embeddedness. In such the economic relations between 1nd1v1‘dual§ or firms arte
embedded in actual social networks, as well as they_ do not continue in an' abstract,
idealized market. Granovetter (1977) stressed the 1¥np0rta.nce of 'weak tlals, mortf
casual acquaintances outside the group of c]losest frlen(.is, for the Job-seel.(mg pr(t}o
cess. Montgomery (1991) digested the findings of various surveys corgl?hg up i
the conclusion that about half of all currently efnployed workers found their j
through information provided by friends or family lmembenl's. ) ol

The late attentiveness of economists concerning socllall nt?twor S pOSSlh y
comes from having pushed many economic models to the_lr limits and fm_md that
social circumstances can help explain observed economic phenomena in ways
that restricted economic models cannot. Lndividual:? are assumed to fom; or n;‘am-
tain relationships that they find beneﬁcialland avqld or remove themsehves r](:;}n
relationships that are not beneficial. That is sometimes captured thro_ug qu -
rium notions of network formation but is also mf::delled t_hr_ough various );ln?;lnt

ics, as well as agent-based models where specific heuristics are specifie ha
govern behaviour. That choice perspective traces the structure and i.;he pr9pert1es
of networks back to the costs and benefits that they bestow upon their participants
Ua%ﬁ?? ’is gor’ii'ing interest in social issues notice5d in eco'nor.nics. The. all:upro’acif
of new applied models can be connected with fam:lfess criteria and existing m;en
qualities among different groups, for exam pif: regarding employmept or wages.
such conditions, the problem of market efficiency comes as_the social context carﬁ
change the ways the resources could be allqcated. The z}tntude qne can comr:cin
coming to the relatively new concept which is collaborat:.ve, sharing eco;gn;yf
which social networks are successfully applied: The sharing economy, W l1c cllstz
fast-growing sector, attracts the attention of .pohcy’-makers, as s%lzmngil 1§ rlj ated Lo
democracy and seems to involve openness, mclu:slon .and equahlty and is base
social networks and, at some point, could not exist without social media.
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In the field of economics, models of network formation based on stochastic
algorithms are used. Economists also model the formation of social networks as
the outcome of optimization decisions. Social relations are connected with costs
and benefits, and in the process of making a decision, the elements are weighted
against each other. Those models make it possible to analyse the consequences of
technological changes that alter the cost of communication (Mayer, 2009).

Social network analysis in economics has also been used to understand complex
economics or management problems and make optimal decisions. Thus, there are
some economics and management fields where social networks empirical analysis
has been widely developed, such as the following:

¢ Operations where efficiency measures are used (Sadri, Ukkusuri, & Gladwin,
2017; Blas, Martin, & Gonzalez, 2018)

*  The power of diversity in organizations regarding creativity, productivity or
knowledge sharing among others (Park, Im, & Sung, 2017; Goyal, Rosenk-
ranz, Weitzel, & Buskens, 2017; Chua, 2018)

¢ Organizations’ collaboration (Shane & Cable, 2002; Chua, 2018; Boschet &
Rambonilaza, 2018)

*  Finance issues (Mollick, 2014; Huang & Knight, 2017; Polzin, Toxopeus, &
Stam, 2018)

* Inversion issues (Garlaschelli, Battiston, Castri, Servedio, & Caldarelli,
2005; Wang & Wang, 2018)

*  International trade flows (Barigozzi, Fagiolo, & Garlaschelli, 201 0; Barigozzi,
Fagiolo, & Mangioni, 2011; Lovri¢, Da Re, Vidale, Pettenella, & Mavsar,
2018)

According to Boccaletti et al. (2006, p. 176), the extensive and comparative anal-
ysis of networks from different fields has produced a series of unexpected and
dramatic results. Therefore, another theory to surplus the limitations of social
network theory was needed. Thus, the authors, such as those mentioned earlier,
explain the research on complex networks begun with the effort of defining new
concepts and measures to characterize the topology of real networks.

Complex networks theory, according to some authors, provides a framework
that can explain how changes in context, economics or human behaviour happen
and which way the evolution could be. The theory explains that all networks share
common properties. Therefore, applying complex network theory in economics
makes possible identification and measure of social networks in this field and
make decisions on the matter. Besides, this theory could shed light on how coun-
tries, firms or people interact and relate to themselves.

The mobility paradigm states that all places are linked into thin (or fat) net-
works of connections that stretch beyond each place (Sheller & Urry, 2006).
In other words, nowhere can be an island (Gogia, 2006). Mobility, in a broad
sense, also includes movements of income, information and images on local and
global ways and one-to-one in different ways of communication, such as phones,
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smartphones and social media. Empirical analysis with this theory can use quali-
tative and quantitative methods (Hollstein, 2011).

For example, in the case of tourism, activities are not separated from the plz'ac':es
visited. Indeed, the places travelled used to depend, at least in part, on actlymes
can be practised within them. Authors mentioned earlier asserted that exists a
complex relationship between the mean and the way of travel and the traveller.
Thus, it is necessary to examine the topology of social networks and the patterns
of weak ties that could generate small-world property (Urry, 2003, 2004).

Nevertheless, a specific theory which explains complex patterns forms and
changes does not exist yet. For that reason, some authors suggest that economics
involves the analysis of complex systems that are neither perfectly ordered nor
anarchic (Capra, 2004; Sheller & Urry, 2006).

Social network theory can help to identify “critical networks” for example,
main stakeholders in a specific place. Besides, it can provide action patterns and
the role of every member in the network (Timur & Getz, 2008; Scott, Baggio,' &
Cooper, 2008). Moreover, complex network theory provides a robust foun('latlon
for identifying critical stakeholders and their relationships inside and offside of
the network (Timur & Getz, 2008).

Boccaletti et al. (2006) define a complex system that comprises a large num-
ber of components usually non-linear and operated in a non-predictive way. In a
tourism destination, it is possible to find a vast number of components, both tan-
gible and intangible (Alonso-Almeida & Celemin-Pedroche, 2016). A comp}ex
adaptive system is continuously interacting with the environment and generatllng
dynamic adjustments on the structure and behaviour, Therefore, a theory wh1f:h
studies complex systems such as complex network theory will be able to predict
future conditions based on past trends (Andersen & Sornette, 2005).

Complex network theory has been built from observation of the rea! worl.c!
network properties and structures (Miguéns & Mendes, 2008). In economics, this
theory has been applied to ecological networks, financial relations and compa-
nies’ collaboration mainly (Caldarelli, Battiston, Garlaschelli, & Catanzaro, 2004;
Tibély, Onnela, Saraméki, Kaski, & Kertész, 2006).

Statistical physics of social networks

Different systems and macroscopic, collective, phenomena require different mod-
els for the description of their dynamics. However, there is one common' feature
present in all many-body systems, regardless of their nature: the underlying net-
work of interactions between elements that constitute them. The empirical analy-
sis of data collected for different biological and sociotechnical systems has shown
that complex and heterogeneous connectivity patterns, typically found' in those
systems, are one of the key signatures of their self-organizing dynamics (Boc-
caletti et al., 2006; Holme & Saramiki, 2012; Boccaletti et al., 2014). In the past
few decades, physicists have put much effort into understanding the mutual influ-
ence between the structure of the interaction network and system dynamics. They
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de'velope_d a set of quantitative methods and measures that allowed them to stud,
this f'elatlcfnship in detail and better understand the emergence of various phenom{;
ena in soFlal systems (Sen & Chakrabarti, 2014; Boccaletti et al., 2006; Holme &
Saraméik_l, 2.012; Boccaletti et al., 2014; Castellano, Fortunato, & Loret’o 2009)
Quantitative analysis of the structure of different social networks hz;s sho“;n
that several universal features characterize all of them. Famous Milgram experi-
{-nent has shown that an average number of connections between any two humans
in .the United States equals six, and that world is, in general, small (Travers &
Milgram, 1967). A recent analysis of the shortest paths in Facebook has indi-
cated that the \}!orid is even smaller than it was expected (Backstrom, Boldi, Rosa
Ugander, & Vigna, 2012). In a mathematical sense, small-world pr;perty }nean;
that the average shortest path in the network grows logarithmically with its size
(Sen & Chakrabarti, 2014; Boccaletti et al., 2006). Many real-world networks are
small world. Social networks are heterogeneous, on both the local and mesosco ic
sc:ales‘. On the local scale, that heterogeneity is manifested in long-tail degree dFi)s-
tribution. Individuals differ in the number of friends and acquaintances they have:
many of them have only a few friends, while still there are some that have a 1 e;
number of f:riends and acquaintances. Societies and social groups are not hom (’c:l"%_
neous; that is they always consist of smaller groups of people who have more cfn-
nections with each other than with the rest of the network. Social networks exhibit
various types of community structure, from well-defined and separated communi-
ties to oxierlapping communities and communities which can be nested and thus
form a hierarchical structure (Fortunato, 2010). Communities can grow, shrink
and dla:*,appear (Palla, Barabisi, & Vicsek, 2007). The size of the commur,ﬁty has
a cr?c1a] .role for its dynamics and survival: smaller communities have longer
survival time, and their membership is very stable over the long period, while the
only way for a large community to survive is to change its members re;gularly

.Soclal networks exhibit positive degree—degree correlations. While Frie;1d~
sf’np, c.:o]laborative and online social networks are assortative (Newman, 2002)
bipartite networks, which represent social dynamics in different techn:)-sociai
networks, are characterized with weak disassortative mixing (Mitrovi¢ & Tadi¢
201.2). A high value for the clustering coefficient is also a prominent feature o,f
S.0013[ netwolrks (Boccaletti et al., 2006). The knowledge of how the basic proper-
tfes emerge in real social networks thus is essential for understanding the evolu-
tion and d)‘/namics of related social system and/or phenomena.

Theore.tlcal models of complex networks have proved to be an invaluable tool
for s‘r.ud,\,izng the evolution of social and complex systems. In parallel with the
quantitative exploration of the structure of real social networks, physicists have
worked on constructing theoretical models of evolving networks (Boccaletti
et al., 200§; Holme & Saramiki, 2012; Boccaletti et al., 2014). Those models
although m_mplistic, can mimic the properties of real networks. These models cna:
bled a detailed analysis of the emergence of different topological properties in net-
works _and understanding of the primary mechanism that underlie social network
evolution. Besides, models enable a comprehensive study on how and to which
extent the network structure influences dynamical processes and the emergence
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of macroscopic phenomena. We provide a brief description of some of the most
fundamental models.

The first and basic model in complex network theory is Erdés- Rényi (ER) ran-

dom graph model (Erdés & Rényi, 1960). The degree distribution of ER graphs
is Poasonian, and they belong to a class of uncorrelated graphs. The value of
their clustering coefficient is very low and tends to zero as network size tends to
infinity. The ER model is instrumental and irreplaceable as a null model in testing
hypothesis related to complex networks. Watts—Strogatz (WS) model, or small-
world, model was the first model that successfully reproduced a small diameter
and large clustering coefficient of social networks (Watts & Strogatz, 1998). The
properties of networks strongly depend on the value of the single parameter that
controls the percentage of rewired links. Network without rewired links is a regu-
lar graph, while the graph obtained after rewiring of all links is equivalent to ER
graph. Graphs with more than 0% and less than 100% of rewired links have a
small-world property and a high value of clustering coefficients. However, WS
networks do not have a broad degree distribution, one of the most prominent fea-
tures of many real-world networks, but instead their degree distribution exhibits
exponential decay. In order to reproduce the property, Barabasi and Alber (BA)
proposed an evolving model of networks (Barabasi & Albert, 1999). In the BA
model, networks grow by following the preferential attachment rule. In the pref-
erential attachment mechanism, the probability for an old node to be chosen as a
target of a new link is proportional to the number of its previous connections. The
obtained network has broad, power-law degree distribution, with the exponent
equal to three in the limit of infinite size network. Although the average shortest
path of these network grows logarithmically with the network size, the clustering
coefficient tends towards zero when network size tends to infinity. Other models
have been proposed, including different modifications of the BA model, in order
to reproduce other properties of real-world social networks. Some of these models
are based on the fact that many social networks are embedded in Euclidean space
(Barthélemy, 2011), while others take into account different temporal factors, for
instance, ageing (Hajra & Sen, 2005).

Network structure has a crucial role in the emergence of different collective
states in social systems. The real-world and model-generated networks have been
used for studying dynamical processes and their connection with network struc-
ture. Opinion dynamics, a process of collective opinion emerging in the social
systems, in the convergence time and possibility to reach the consensus in the
social group, depend on the topological properties of its underlying social net-
work (Sen & Chakrabarti, 2014). Local heterogeneity of social networks plays
a vital role in how and to which extent the disease spread through it. The quan-
titative methods of complex networks have proved very useful for identifying
the individuals that play a crucial role in disease spreading and create the most
effective immunization plans (Pastor-Satorras, Castellano, Van Mieghem, & Ves-
pignani, 2015). The structure of social contacts influences long-distance travel of
humans (Cho, Myers, & Leskovec, 2011) and can be used for predicting and mod-
elling mobility patterns (Palchykov, Mitrovié, Jo, Saramiki, & Pan, 2014). Social
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networks are not fixed. They evolve and are influenced by dynamics and activity
in social systems. The exchange of emotions has been found to be an essential
factor in life and death of online social communities (Mitrovi¢ & Tadié, 2012),

Conclusion

Social interactions shape and determine the evolution of human society. In that
sense, social network theory, developed in parallel by different scientific disci-
plines, provided necessary tools for understanding the emergence of various social
phenomena. This chapter provides an overview of the most important methods
and results related to social networks in transport, economy and physics. Results
from transportation studies show that social networks have a significant influence
on every aspect of human transportation and travel behaviour. It has been shown
that the length and duration of the trips of individual depend on the structure
of its social contacts, However, the question of mutual dependence between the
social network and travelling behaviour still stays an open question. Transporta-
tion and travel behaviour are inevitably significant and are one of the many activi-
ties that are influenced by social media and networks. Economic studies have
shown that social contacts have a crucial role in the socio-economic development
of any human society and that social networks are an essential component of
both empirical and theoretical studies in the economy. The concept of complex
networks, a broader class of studied systems that includes social networks, has
originated from physics. A large number of empirical studies from physics has
shown that social networks can be characterized with a relatively small set of
properties: they are heterogeneous at the local and mesoscopic scales, assortative,
cluster and have small-world property. Empirical studies, in combination with
theoretical modelling, have shown that social networks determine the emergence
of many collective phenomena in social systems, including travelling behaviour.
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2 How to define social network
in the context of mobilities

Bridgette Wessels, Sven Kesselring and
Pnina O. Plaut

Introduction

Social activities steaming from social relations are one of the main motivators for
the use of transport systems. A social network is a social structure, based upon group
members and the relations among them. Social network studies are concerned with
the structure of sociocultural systems, such as the number of contacts and the levels
of communication among different members of a certain social group. The past
decade has witnessed rapid communication developments, which had major social
impacts. The use of new Information and Communication Technologies accelerated
the shift from social groups that were defined through a specific location (e.g. resi-
dential neighbourhood or workplace) to individually based social networks. This
shift, coined by Wellman (2001, 2002) as “networked individualism”, is a stage
in which mobile, high-speed telecommunication allows for personalized networks
and “person-to-person” social ties. These new social networks are associated with
several changes, when comparing to the past 50 years, including people having a
larger set of active contacts today than in the past, with wider spatial distribution,
the contacts spread across more social networks than in the past and typical social
networks less coherent; that is fewer people share multiple affiliations today than
in the past, and leisure travel is increasing (Axhausen, 2005). All of the preceding
have an impact on travel and mobility within the urban realm.

In this chapter, we present social networks in the context of mobilities. We argue
that traditional approaches to travel and travel behaviour based on ego-centred
perspectives do not fully address the way in which travel is embedded within
social networks and connections. We argue that senses of mobility are created
from the ways in which people meaningfully organize their lives. Mobility is gen-
erated through social networks, both personal and impersonal or as Urry (2003)
puts it “social networks, travel and talk” are closely and indissolubly intertwined.

Egocentred approaches to the analysis of social networks
and travel behaviour

Research on the impact of Information and Communication Technology (ICT)
social networks on travel behaviour is still in its infancy (about a decade old).
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In online social dynamics, a robust scale invariance appears as a key feature of collaborative efforts that
lead to new social value. The underlying empirical data thus offers a unique opportunity to study the origin
of self-organized criticality (SOC) in social systems. In contrast to physical systems in the laboratory, various
human attributes of the actors play an essential role in the process along with the contents (cognitive, emotional)
of the communicated artifacts. As a prototypical example, we consider the social endeavor of knowledge creation
via Questions and Answers (Q&A). Using a large empirical data set from one of such Q&A sites and theoretical
modeling, we reveal fundamental characteristics of SOC by investigating the temporal correlations at all scales
and the role of cognitive contents to the avalanches of the knowledge-creation process. Our analysis shows
that the universal social dynamics with power-law inhomogeneities of the actions and delay times provides the
primary mechanism for self-tuning towards the critical state; it leads to the long-range correlations and the event
clustering in response to the external driving by the arrival of new users. In addition, the involved cognitive
contents (systematically annotated in the data and observed in the model) exert important constraints that identify
unique classes of the knowledge-creation avalanches. Specifically, besides determining a fine structure of the
developing knowledge networks, they affect the values of scaling exponents and the geometry of large avalanches
and shape the multifractal spectrum. Furthermore, we find that the level of the activity of the communities that
share the knowledge correlates with the fluctuations of the innovation rate, implying that the increase of innovation
may serve as the active principle of self-organization. To identify relevant parameters and unravel the role of
the network evolution underlying the process in the social system under consideration, we compare the social
avalanches to the avalanche sequences occurring in the field-driven physical model of disordered solids, where

the factors contributing to the collective dynamics are better understood.

DOI: 10.1103/PhysRevE.96.032307

I. INTRODUCTION

In recent years, the self-organized criticality (SOC) is
considered as one of the principal mechanisms responsible
for the emergence of new features at a larger scale in various
complex systems. The transition from the microscopic interac-
tions to the collective behavior involves nonlinear dynamical
phenomena when the system is driven out of equilibrium (for
an overview of physical systems exhibiting SOC, see recent
reviews in [1-3] and the references there). In this context,
SOC refers to the dynamical self-organization among the
interacting units in response to repeatedly applied infinitesimal
driving; the system’s adaptation to the driving force leads
to robust metastable states with system-wide correlations,
fractal dynamics, and avalanches as the key signatures of
criticality [2-6]. In this context, an avalanche is recognized
as a mesoscopic dynamical structure consisting of a sequence
of connected elementary events (a precise definition is given
in Sec. II). It has been newly pointed out that SOC plays a role
in the functioning of biological [7] and diverse other complex
systems from neuronal dynamics [8,9] to animal behavior [10]
and human history [11]. For instance, the analysis of vast
amounts of the available brain imaging data and theoretical
modelings provided the evidence that supports SOC as an
underlying mechanism of the brain functional stability [8,12].

Although the avalanching behavior and other signatures
of criticality are readily observable in the empirical data
of online social dynamics [13—19], much less attention has
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been devoted to understanding the origin and the precise
role of SOC in social systems. The key open question is
whether the social avalanches represent a unique class of
self-organized phenomena or, otherwise, they can be reduced
to standard models of physical SOC systems, describing the
transition from the microscopic interactions to the observed
complex spatiotemporal patterns. Another interesting aspect
of the problem concerns the interplay of the coevolving
network structure and the social dynamics that it supports.
The question whether the SOC process shapes the structure,
or the network evolution enables the self-tuning towards the
criticality remains open. Here, we address these issues by
analysis of the empirical data of knowledge-creation social
endeavors and using theoretical modeling.

In physics, striking examples of the multiscale dynam-
ics characterizing SOC are observed in the turbulent flow
[2,20-22] and the kinetics of earthquakes [23,24]. The sig-
natures of SOC are also found in experiments with stressed
granular materials [25,26], driven disordered systems at a
hysteresis loop [27-30], and porous shape-memory alloys
[31,32]. Furthermore, the avalanching dynamics is charac-
teristic of the conduction in the assembled networks of
living neurons in a solvent [33] and nanoparticle films with
single-electron tunnelings conduction [34], as well as to
the motion of topological objects, such as vortices [35,36]
and domain walls [37-39]. The theoretical concepts were
developed to describe the emergence of collective behaviors

©2017 American Physical Society
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from the microscopic interactions among many constitutive
elements both in the classical and quantum systems [40].
In this regard, often paradigmatic models were used as the
instruments for investigations. Further, the use of scaling and
renormalization group ideas provided a better understanding
of the role of different scales in the dynamical systems driven
away from the equilibrium [41-43]. The precise description of
the interactions in these physical systems allows investigating
the microscopic mechanisms responsible for the triggering
and propagation of an avalanche. The standard feature of all
SOC systems is the accumulation of free energy, which then
dissipates through the avalanches. While the energy source
and triggering mechanisms are physics specific, common to
all SOC systems is that the avalanching response is not
in proportion to the forcing. Consequently, the power-law
distributions of the avalanches appear as one of the key features
of SOC states. It has been recognized that the propagation
of avalanches involves three phases [2]: the initial growth
phase is supported by multiplicative chain reactions until the
maximum dissipation is reached in the peak period, after
which the activity is reduced and eventually diminishes, in
the stopping phase. Often, the essence of SOC can be captured
by the elementary dynamics of sand-pile automata [4,5] on a
two-dimensional lattice. In real systems, however, the presence
of many physical parameters that can influence the dynamics
makes it difficult to distinguish the potential SOC states
(attractor with a large basin of attraction) from the dynamical
phase transition, which occurs by fine tuning of a relevant
parameter.

In this work, we investigate the nature of avalanches in
the prototypical human collaborative endeavor of knowledge
creation [44]. In this process, the knowledge and exper-
tise of individual actors are transferred into a social value
[45,46]—the collective knowledge, which is shared by all
participants in the process. In contrast to the physical systems
in the laboratory, the human cooperation, as well as the new
collective states, are evident [44,47]. Therefore, the empirical
data on these social systems represent a valuable source to
investigate the origin of self-organized criticality. On the
other hand, certain attributes of the human participants are
crucial to the social cooperation; they remain elusive to
the accurate theoretical modeling of the interactions, which
underlie the avalanche formation. In particular, the process
of knowledge creation requires the appropriate expertise of
the participating actors among other human attributes. Thus,
the subdynamics representing the use of the communicated
cognitive contents tends to constrain the social process itself.
In this regard, it remains unclear how these different aspects
(social and cognitive) of the dynamics contribute to the
appearance and propagation of the avalanches. To address
this question, we combine the analysis of the empirical data
from Questions and Answers (Q&A) site Mathematics Stack
Exchange (https://math.stackexchange.com/) with the agent-
directed modeling; the cognitive contents of each artifact are
systematically encoded in the considered data sets. The agent’s
attributes are statistically similar to the users in the data, while
their expertise is varied. The system is driven by the arrival
of new agents. Our analysis reveals that the occurrence of
avalanches is a robust social phenomenon, whereas their
fine structure, geometrical, and fractal characteristics are
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affected by the distribution of the expertise over the actors.
Furthermore, the interplay between the social and knowledge
processes is fueled by the constant tendency towards the
expansion of innovation. For a deeper understanding of the
potential mechanisms, we use a comparison with the better
controlled avalanching dynamics in physical systems. For
this purpose, we analyze the model of a disordered system
of the interacting spins, where the critical states at the
hysteresis loop appear in the interplay between the driving
by the applied magnetic field and the domain-wall pinning
along the implanted magnetic (soft) and structural (hard)
defects. Although an analogy between spin alignments can be
extended to knowledge matching among the social subjects,
our objective here is different. We compare the fractal features
of the avalanche sequences in both systems, which appear to
be similar in a particular range of parameters of the physical
system. These comparisons permit us to identify certain factors
of the social dynamics that are essential to the appearance of
the collective state and can motivate further research towards
a viable modeling of the social self-organization.

In the following Sec. II, we introduce the essential char-
acteristics of the processes of Q&A and describe details
of the agent-based model and the structure of the bipartite
network that coevolves with the social interaction. Then
Sec. III presents a detailed analysis of the knowledge-bearing
avalanches both from the empirical data and simulations. The
simulations and analysis of the avalanches in the driven spin
system are given in Sec. IV. A summary of the results and the
discussion are given in Sec. V.

II. THE STOCHASTIC PROCESS OF KNOWLEDGE
CREATION AND THE COEVOLVING NETWORKS

The knowledge creation via Questions & Answers is a
collaborative social endeavor, in which the knowledge of
each participant is shared with others. By its nature, the
interaction between these participants is indirect, mediated
by questions and answers, in a way similar to user interactions
via posted texts on blogs [13,48,49]. Thus, the environment of
the knowledge sharing can be represented as a coevolving
bipartite network with the actors (users, agents) as one
partition, and the artifacts (questions, answers) as the other
partition [44]. In epistemology, to create a common value
(knowledge), meaningful social interactions are required, in
which the actor’s response is adequate to the needs of others
[45,46]. Specifically, the actor possessing an expertise can
meaningfully act on the artifact where this particular expertise
is required. Thus, the essence of the dynamics is the contents-
matching rule, as schematically illustrated in Fig. 1(a). A
part of the evolving network extracted from the empirical
data is also shown in Fig. 1(b). Hence, the knowledge-
creation process consists of two mutually interconnected
factors: the social dynamics and the constrained use of the
cognitive contents. The strict use of the available expertise
in the knowledge-creation processes is in marked contrast
with the informal social communications on blogs and similar
systems, where the user’s natural interests and emotions drive
the activity [13].

In the data from the analyzed Q&A site, the cognitive
content of each artifact is encoded by up to five tags, according
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FIG. 1. (a) Schematic view of the knowledge exchange via Q&A on a bipartite network of actors (blue nodes) and questions and answers
(red nodes); boxes of different colors represent the cognitive contents (tags). A directed link from question to actor node indicates activity on
that question, where the matching (at least in one tag) between the actor’s expertise and the contents of the question is required; the outgoing
link represents posting the question or answer, whose content contains the actor’s knowledge. Panels (b),(c) show two bipartite networks
extracted from the empirical data; the user nodes (blue) connect to question nodes (red) which compress all existing answers to that question,
and the direction of the link indicates the question on which the user was active either by posting or answering it. Specifically, (b) the innovation
layer in the evolving bipartite network extracted at the end of year one, consists of the recently active questions and the users whose activity
on these questions occurred in the last 7y = 100 min and the nodes to which they were connected within the time depth of 67j. (c) A close
up of the compressed bipartite network of users and the questions filtered such to contain the tag “Linear Algebra” among other tags; the
network represents the activity within the first two months of the considered empirical data. (d) The explicit-knowledge network containing
the innovation tags attached to the tags of year one.

to the standard mathematical classification scheme (MCS), statistically as described in methods of [44]; see the inset
for example, “Graph Theory,” “Probability,” “Stochastic Pro-  to Fig. 2(a). This figure suggests a rather broad distribution
cesses,” “Linear Algebra,” “Algebraic Topology,” “Differential of the expertise (i.e., different number of tags 2%) over
Geometry,” and others. Whereas, the information about the  the users in the native system. The main Fig. 2(a) shows
user’s expertise participating in the process can be inferred another key characteristic of the experimental system: the
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FIG. 2. (a) The distribution P (N;) of the number of actions N; per
user, the dependence g(N;), and the delay time P(AT) of the users in
the empirical data set. Inset: The distribution of entropy P(E;) based
on the probability of the users’ expertise; the data are extracted from
the empirical set and used for designing the attributes of the agents.
(b) Scatter plot of the user-averaged delay times (AT) against the
number of actions N;.

user’s heterogeneity in the number of actions N; and a broad
range of their interactivity times AT. While the scaling
exponents indicated by these histograms are system specific,
the prominent power-law decay of both quantities manifests
the universally observed characteristics of the human behavior
online. Further patterns of the user’s activity can be determined
from the time stamp. Notably, a significant part of the actions
of the present users is directed towards the issues posted
by new arrivals. Occasionally, an active user looks for an
older question with currently searched contents and brings
it to the view of others. The ratio of the posted versus
answered questions g(N;) was found to depend on the number
of actions of a user; cf. Fig. 2(a). The very active users
are in the minority; they often respond to the questions.
On the other side, the majority of the least active users are
engaged in posting questions and, by getting the satisfactory
response, they disappear for a longer period. Note that a similar
dependence of the delay times on the number of actions applies
to the user-averaged delays; cf. Fig. 2(b), but not to each
particular user. Certain regularities may exist for groups of
users of a similar activity level [16], but they are not of interest
in the present context. The arrival of new users (referred to
the beginning of the data set) captured by the time series p(t)
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represents a stochastic process, which depends on the user’s
off-line life. Here, we adopt the interval of 10 min as a suitable
time step for the pace of the activity in the system and use
the empirical time series p(¢) and its randomized version, as
described in the following text, to create the number of agents
per time step in the simulations (on average less than one agent
per step). Then the reference time depth is 7y = 10.

Observing the requirements for the minimal agent-based
model (ABM) of the Web users [50], we have introduced a
model where the action rules and the attributes of the agents
are taken from these empirical distributions, whereas their
expertise can be varied [44]. Here, we briefly describe the
main features of the model which is used for the simulations
in this work. In particular, in each time step:

(i) Agents are created. The number p(¢) of new agents is
created; their profiles are defined by the number of actions N; €
P(N;), the ratio of the posted vs answered questions g(N;),
and the expertise (according to the selected distribution); the
new agents are placed on the active list;

(i) The agent’s action performed. Each agent from the
active list either posts a new question or selects one from the
list of recently considered artifacts to act on it. The artifacts
that are connected to the agent’s network neighborhood are
looked at first; with a fixed probability (0.5) the agent also
finds a related question in the whole network, thus bringing
it to the currently active context. In each case, the expertise
matching rule applies.

(iii) The active questions and network are updated. The
list of active questions within time depth Tj is maintained, and
the network connections are updated according to the executed
actions; the agents linked to the questions on which the activity
occurred within the previous three steps are prompted for a new
action.

(iv) New delay times are determined. An agent gets a new
delay time At € P(At) after every completed action or after
being prompted for a new action.

(v) The status of each agent is updated. The number of
actions of all agents is updated according to their activity,
and the agents, whose number of steps reached the predefined
N; are removed; the delay times of each remaining agent is
updated, and each agent whose delay since the previous event
expired is placed on the active agents’ list.

The expertise of an agent is a set of tags taken randomly
from the list of 32 tags. The considered distributions of the
expertise are Expl and Exp3, corresponding to single-tag
and three-tag expertises, respectively, and a broad range of the
expertise ExpS, according to the empirical distribution shown
in the inset in Fig. 2. For a comparison, we also consider a
situation (u process) where, instead of the actions described
above in step (ii), an agent finds an artifact in the entire system
and acts on it with a fixed probability (0.25) while disregarding
the expertise matching rule. Note that, in this case, the expertise
matching can occur by chance; the agent’s expertise is taken
from the distribution ExpS.

Considering the evolution of the system in [44], we have
shown that the process is characterized by the innovation
growth with the number of events. In this context, the inno-
vation is suitably defined as the number of new combinations
of tags. The innovation is introduced into the system by new
arrivals and the actions of the other agents through adding their
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expertise to the accumulating contents on different artifacts.
The innovation growth was observed both in the empirical
data as well as in the simulations [44]. It applies to various
distributions of the expertise, excluding the case where all
actors possess a strictly single-tag expertise. In this limiting
case, the tag-matching rule prevents interlinking with other
contents, thus leading to isolated communities that share the
same tag. In contrast, the innovation grows whenever at least a
single actor possesses a combination of different contents in its
expertise. The illustration in Fig. 1(a), for instance, indicates
how the green tag of the artifact Q3 remains detached until
the actor’s U6 expertise combines it with the contents of Q7
and the actor U2 who posted it. The observed pace of the
innovation growth depends on the distribution of the expertise
(by the fixed activity patterns of the actors) [44]. It is important
to stress that, in the empirical data, the combination of tags in
the expertise of each user already possesses a logical structure
of mathematical knowledge. Hence, through these meaningful
interactions that structure is preserved during the process.
Consequently, the developing network of the used contents
also exhibits the logical structure, as shown in [47] by the
community detection in the corresponding networks of tags;
an example of such an explicit knowledge network extracted
from the same data is shown in Fig. 1(d).

A. Growth of the bipartite networks by adding the
innovation layers

The interplay between the network structure and the
stochastic processes taking part on it consists of the central
problem in understanding the networks evolution and their
applications in various fields [51-53]. Typically, the graph
architecture represents geometrical constraints that shape the
diffusionlike processes, likely to cause an anomalous diffusion.
For example, the superdiffusion of the information packets
[54] occurs on the correlated scale-free network when the
traffic rules appropriately utilize the underlying structure.
Some unusual situations arise when the structure evolves at the
same pace as the SOC avalanching process on it. The random
rewiring during the steps of the SOC dynamics has been
shown to reduce the avalanche cutoffs [55], thus preventing
a catastrophic event to occur. When the rewirings are strictly
confined to the current avalanche area, the network appears
to have the scale-free degree distribution, where the scaling
exponent coincides with one of the avalanche size distributions
[56]. Other growth models that apply thresholdlike constraints
inspired by SOC dynamics may yield the nonextensive features
and scale freeness [57]. In bipartite networks, however,
each partition plays a different role in the process, which
leads to a more complicated structure-dynamics interplay.
As mentioned above, these types of networks often appear
in the social dynamics on websites which maintain indirect
communication between the users. The appropriate analysis of
the artifacts mediating the users revealed [13,44,48,49] how
their emotional or cognitive contents affect the network from
the node’s degree to the mesoscopic community structure.

In the Q&A data set that we consider here, the network
growth as well as the pattern of activity of each user and the
targeted questions can be extracted from the time stamp in
the data. Moreover, to visualize the bipartite networks, we
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FIG. 3. The degree distribution of the actors and question nodes
in the bipartite networks for different expertise and driving indicated
in the legend. The power law fits with the exponent 7, = 1.58 £
0.07 and the stretching cutoffs in the range ¢ € [508,3920] between
two solid lines marked by «<— U — are of the actor’s degree. The
distributions for the corresponding question nodes (indicated by the
same type of symbol) have smaller cutoffs d € [5.8,42] between two
dashed lines marked by < Q — and the exponent 7y = 1.09 £ 0.1.
In the case of Expl the exponents 7y ~ 0.5+ 0.16 apply in a very
narrow range, while the exponential distribution fits the data for the
L process.

introduce a compressed node which includes the question and
all answers related to that question. A particular example of
such compressed bipartite network from the empirical data
is shown in Fig. 1(c). The corresponding networks from the
simulated data exhibit the mesoscopic structure. The structure
of communities sharing the emerging knowledge crucially
depends on how the expertise is distributed over the involved
participants, as it was shown in [44]. Here, we are interested in
the statistical properties of nodes in these bipartite networks.
The results of the degree distributions are shown in Fig. 3.
They can be fitted by the power law with stretched-exponential
cutoffs, which allows a comparison of the user properties in
Fig. 2(a). Statistically, the degree distribution of the agent’s
nodes in these networks follows the slope of the predefined
number of actions P(N;), as expected, while their cutoffs
depend on the expertise of the agents. It is also interesting
to point out the constraints due to the power-law decay of the
delay time distribution; according to some recent studies [58],
it can contribute to the convergence towards scale invariance in
the growing systems. In the case of the question partition, the
cases where the expertise-matching dominates exhibit a similar
law but in a reduced range. In the meantime, the power-law
behavior is reduced and the cutoffs dominate in the case Exp1
and p process (see Fig. 3).

For the purpose of this work, it is interesting to recognize
the innovation growth layer, see Fig. 1(b), as the segment of
the growing bipartite network where the most recent activity
occurs. As stated above, the new arrivals potentially bring the
new combinations of the knowledge contents in their expertise,
which is expressed in the questions and answers. The set
of currently active artifacts are posted or answered within a
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FIG. 4. (a) The driving signals that are used in simulations: p(t),
front curve, and its randomized version randPt, back curve. (b) Part
of the activity time series from the empirical data, exhibiting some
large and small avalanches above the baseline (dashed line).

relatively small time window (7). These nodes often occur at
the outer layer of the network; see Fig. 1(b). Then the currently
active users connect to these new artifacts while obeying the
expertise matching rule; thus, they connect the new contents
to the issues of their previous activity and further through the
network of the connected users and their artifacts in a given
time depth. Therefore, the recently added artifacts connect
the in-depth network via the active users and their previously
established connections. Considering a particular time depth,
for instance, 6T}, with the window T, = 100 min, we focus on
the currently active layer of the network. This layered growth
of the bipartite network is fundamentally conditioned by the
nature of online human communications, where the latest posts
appear on the top. Besides, at each event, an artifact older than
the considered time depth is searched with a small probability
and connected to the currently active matching contents. The
updated active layer then serves as an environment where the
next arrivals often attach to, and so on. In the context of open
dynamical systems, the addition of new users (or agents) and
their artifacts can be seen as the driving mode of this bipartite
networked system.

B. Extracting the time series and avalanches
from the sequence of events

Our focus in this work is on the avalanching behavior which
occurs as the network’s response to the driving. Therefore,
from the sequence of events in the empirical data or the
simulated events, we first construct the corresponding time
series that capture the fluctuations of the system’s activity over
time. The possible occurrence of the clustering of events along
these time series is a signature of the avalanching dynamics.
For the illustration, an example of the time series with the
avalanches is shown in Fig. 4(b). Specifically, an avalanche
is identified as a segment of the time series consisting of the
data points n(t) between two consecutive drops of the signal
to the baseline, which is set above a zero or the noise level. To
define the baseline, we use a standard approach, as described
in [27] for the experimental Barkhausen noise signal. When
the signal contains an (extrinsic) noise, the baseline is first
put as a horizontal line with a maximum number of intersects
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FIG. 5. (a) Examples of time series of the activity simulated by
the agent-based model for the different expertise of the agents and
processes. (b) Sequence of the avalanches determined in the empirical
data set—a closeup in the segments with large activity.

with the signal, then the part below the line is considered as
noise. The standard deviation o of the noise is then computed,
and the baseline is shifted upward by the distance o. In the
simulated quasistatic driving, Sec. IV, the signal drops to the
zero level before next driving event occurs, making the zero
level a natural baseline (see also the discussion below). The
two intersections of the signal with the baseline are recognized
as the beginning #, and the end 7, time of the avalanche. Then
the avalanche size s is given by the sum of all data points
between the marked beginning and the end of the avalanche
while the distance between these two points along the time
axis defines the avalanche duration 7, i.e.,

fe

s=Yn): T=t—1t. (1)

=t

The representative examples of the time series studied in this
work are shown in Figs. 4 and 5(a). As the example in Fig. 4
shows, the avalanches in the considered stochastic process of
knowledge creation differ in size, duration, and shape, closely
reflecting the way that the activity propagates in the network.
Moreover, a massive avalanche may follow immediately after
a small one and vice versa. See also a closeup of the avalanche
sequence derived from the empirical data in Fig. 5(b).

It is important to notice that the time series studied in
Sec. III are fractal; hence, the avalanches defined through
Eq. (1) possess self-affinity. This implies that, by changing
a linear scale ¢, both the segment of the baseline along the
X axis, i.e., the avalanche duration 7', and the corresponding
area above the baseline in the y direction, representing the
avalanche size s, scale with different exponents such that the
respective dimensionless quantities s/¢° and T/¢° remain
unchanged. Consequently, the distributions of the avalanche
sizes and durations then obey the following scale invariance
(1,2]

P(s,0) = s"S(s/LP);  P(T.0)=T"T(T/C), (2)

where 7, and t7 are the scaling exponents of the avalanche size
and duration, respectively, and D and z are the corresponding
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fractal exponents. Furthermore, for such self-affine objects,
the following relation holds between the size of avalanches
which have a given duration 7 and the duration T

t,+T

(S)r=Y ne)~T", 3)

=t

with the scaling relation ysy = (rp — 1)/(ts — 1). This prop-
erty of the analyzed avalanches, which we prove in Sec. III,
further implies that the scaling exponents are not sensitive to
the exact position of the baseline, which discriminates the noise
level. Note that we use the initial part of the empirical time
series comprising of 65 536 data points, where these methods
can be safely applied. In the next section, we quantitatively
study these features of the avalanches by considering the time
series from both the empirical data and the simulated events.

Figure 5(a) panel shows several examples of the time series
of the number of event n(¢). Specifically, the time series
indicated by Exp1 corresponds to the case when each agent
possesses a single-tag expertise and these agents are added
with the pace p(t) as the new users appear in the real system.
The time series marked by rand Pt is the system of agents
with the distribution of the expertise ExpS taken from the
empirical data and driven by the randomly shuffled signal
p(t) signal. Apart from a few high values at the start, the
signal p(¢) exhibits an increasing trend, which induces larger
activity at later times. By randomizing the time series, however,
these larger values may occur randomly along the time axis;
consequently, the initial part of the signal which is used for
simulations appears to be higher than the original p(¢); cf.
Fig. 4(a). Hence, the underlying network grows faster when the
system is driven by rand Pt; on average, the number of added
agents putting their artifacts per 1000 steps is 572, compared
to 199 in the case of the original signal p(¢). In this way, this
accelerated network growth mimics a larger driving rate in the
context of SOC systems. The simulated data consist of 65 536
steps, corresponding to the first 15 months of the real system
time, where we find that 13 045 users were active, posting
21 998 questions and 179 537 answers. The bottom panel
of the same figure shows the avalanche sequence determined
from the empirical data set.

III. THE STRUCTURE OF AVALANCHES IN
KNOWLEDGE-CREATION PROCESSES

The use of fractal geometry and nonlinear analysis of time
series has advanced the understanding of complex systems.
Here, we employ the detrended multifractal analysis to study
the time series of events as well as the sequences of the
avalanches (clustered events) for various model parameters
and the empirical data of the knowledge-creation processes.
By investigating these complex time series at all scales, we
aim to reveal a fine structure of the underlying SOC states of
the system.

A. Temporal correlations and avalanche sizes

The occurrence of avalanches in composite signals is not
accidental but built on the temporal correlations at a larger
scale. These correlations are manifested in the corresponding
power spectrum as a power-law decay W (v) ~ v, for a broad
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FIG. 6. The (a) power spectra and (b) avalanche size distributions
in the empirical data and ABM for different expertise. Inset: The
nonextensivity parameter g, vs t, for the considered cases.

range of frequencies v. In Fig. 6(a), we show the results for the
power spectrum of the time series of events in the empirical
data and the simulated signals for different agent’s expertise
and two driving modes. The corresponding distributions of
the avalanche sizes obtained from these time series are shown
in Fig. 6(b). These figures indicate that an extended scaling
range occurs over several orders of magnitude in the power
spectrum as well as in the avalanche sizes. However, the driving
mode and the actor’s expertise affect the scale invariance in
a different manner. Specifically, the increasing trend in the
driving signal p(t) is pronounced in the power spectrum of the
empirical data and p process. Whereas, the increased activity
in the innovation layer is balanced by the strict expertise-
matching, resulting in the correlations of the flicker-noise type
(middle curves). When the driving rate is elevated, i.e., rand Pt
case, the slope ¢ increases in the region of low frequencies and
decreases in the high-frequency region (top curve).

While the shape of the driving signal is essential for
the scaling in the power spectrum, the scale invariance
of the avalanches is equally sensitive to the actual expertise of
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FIG. 7. (a) The distribution of avalanche duration and (b) the
average size (S)r of the avalanches of a fixed duration T plotted
against 7 for the empirical data and simulations with varied expertise
and driving rate, as indicated. (c) The average activity (n(¢))r within
an avalanche of the duration T averaged over the avalanches in three
ranges: T < 10 (half-filled symbols, dotted line), T € (10,100] (open
symbols, dashed lines), and T > 100 (filled symbols, full lines). The
symbol shape and color correspond to the legend in the panel (b).
(d) Extracted from the empirical data, the innovation /(¢) increase
with time and the integrated activity time series N(t) =Y, n(1),
normalized by the ratio R = (n(¢t))/(d1(t)/dt) = 32.5.

the agents. The slopes of the distribution of the avalanche sizes
7, are found in the range from 1.33 to 1.93, depending on the
expertise and driving; note that the degree distributions of user
and question partitions in Fig. 3 are within this range (see also
Discussion). However, the mathematical expressions that fit
these distributions are different. In particular, the distribution
of avalanche sizes, shown in Fig. 6(b) can be fitted by the
qq-exponential function

P(S) = All — (1 — q,)S/Sol"/! 7%, )

where the parameter g, > 1 measures the degree of nonex-
tensivity in the underlying stochastic process [40,59-62].
The values of the scaling exponents of the avalanche size
distribution and the corresponding values of the nonextensivity
parameter g, are shown in the inset in Fig. 6(b). Notably, the
distribution of the avalanche sizes obtained from the empirical
data and simulations with the expertise of the agents ExpS
taken from the empirical distribution are similar and close to
the case of u process. The probability of large avalanches
increases with the increased average expertise; the case Exp3
is shown. It is important to stress that the same type of
distribution with a power-law tail is also obtained in the case
of rand Pt, representing an increased driving rate with the
accelerated network growth, as mentioned above. Moreover,
the exponent of the distribution of avalanche sizes is smaller
than when the lower driving rate pertinent to p(¢) signal is used;
see also Fig. 7(a) for the distribution of duration. The decrease
of the scaling exponents provides an observable measure
of the effects of avalanche merging, which occurs more
often at the elevated driving rate, to the critical state. These
findings are in agreement with the studies of SOC in cellular
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automata [63] and physical systems [64] under various driving
rates.

B. Propagation and geometry of avalanches

Statistics of the avalanche sizes with power-law tails, as
shown in Fig. 6(b), is compatible with the occurrence of
self-organized dynamics. In the following, we show that the
propagation of avalanches and their shapes further confirm
these features of the underlying dynamics. The time-dependent
characteristics of the avalanches evaluated for the above-
studied sets of parameters are demonstrated in Figs. 7(a)-7(c).
Specifically, the distribution of the duration T of avalanches,
cf. Fig. 7(a), exhibits different scaling behavior for small
avalanches with the duration 7 < T, ~ 10 as compared to the
asymptotic scaling law P(T) ~ T?. In the asymptotic region,
we find that (within the numerical error bars) b = —2 for the
avalanche durations in the empirical data and a close value b =
—1.96 for the simulated system with ExpS. Gradually smaller
slopes are found for the cases Exp3 (not shown) and rand Pt.
Similarly, the scaling exponents in the short-avalanche region
vary with the expertise and the driving rate froma = —0.82 for
rand Pt toa = —1.35 for ExpS. The corresponding range for
the empirical data is even shorter; see Fig. 7(a). Given different
shapes, the size of the avalanches of a fixed duration can vary;
cf. Fig 4(b) and Eq. (1). Nevertheless, in the SOC systems,
the average size (S)7 of the avalanches of a given duration T
scales with T according to Eq. (3). Here, the tail exponent b
of the duration distribution appears, i.e., (S)r ~ T7", where
the exponent ys7 = (b — 1)/(t; — 1). Figure 7(b) exhibits the
plots (S)r against T corresponding to the avalanches studied
in this work. The apparent power-law dependence in this plot
suggests that the scale invariance of the avalanches can not be
affected by a reasonable shift of the baseline, for instance, by
20 . The average exponent ys7 = 1.23 4= 0.07 suggests rather
narrow avalanches; apart from the duration range, which varies
with the simulation parameters, the variations of the exponent
are rather small.

The precise shape of the avalanche of the duration 7 is given
by the sequence of the elementary pulses n(¢) over time. In
Fig. 7(c), we show the average height (n(¢))7 belonging to the
avalanche of a given duration T evaluated in bins of the reduced
time 7/T. Three groups of avalanches are distinguished, in
particular, the small avalanches of the durations 7 < 10,
medium-duration 10 < T < 100, and large avalanches for the
durations 7 > 100. As the Fig. 7(c) shows, the shape of the
small avalanches is practically independent of the system’s
parameters. The same conclusion applies for the medium-size
avalanches in the peak region, whereas they slightly differ in
the decaying phase and even more in the raising phase. In the
case of the large avalanches, however, the major differences
occur in the peak phase. Moreover, the peak shifts towards
later times when the total expertise is increased, or a larger
driving rate applied.

In the panel (d) of Fig. 7, we show how the total innovation
1(t) increases over time. The innovation, which is precisely
defined as the number of unique combinations of tags, is
obviously related to the activity but its fluctuations over time
is a more subtle feature of the process, which depends on
the available expertise of the agents, as shown in [44]. Here,
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FIG. 8. For the case ExpS, (a) the avalanche sequence, (b)
the fluctuation function of the avalanche size series, and (c) the
generalized Hurst exponent H(g) for the avalanche series and the
underlying time series and their randomized versions. The panel
(d) shows the singularity multifractal spectrum for the avalanche
sequences determined for the cases with the varied expertise and
driving, as indicated in the legend.

we compute the temporal dependence of the innovation from
the empirical data. The total activity (scaled by a constant
factor) as a function of time is also shown in Fig. 7(d). These
results suggest that, apart from the excess of the innovation in
the initial period, the asymptotic law is the same for the total
activity and the innovation growth with time. While the average
activity is 32.5 times larger, we can conclude that the activity is
driven by the fluctuations of the innovation rate. As mentioned
earlier, the innovation is brought by the expertise of the actors.
Hence, the increase of the innovation can be considered as a
driving force for the knowledge-creation processes.

C. Avalanche sequences and multifractality

Compared to the time series of the number of events n(t),
the avalanches are the objects occurring at a mesoscopic scale.
Each avalanche consists of a certain number of the elementary
pulses, cf. (1); these pulses are combined in a different way
to embody the growth, peak, and relaxation phase of the
avalanche. Thus, the sequence of avalanches in time contains
additional information about the nature of the underlying
stochastic process. For instance, the avalanche return [61,62]
in many different complex systems reveals a non-Gaussian
relaxation. For the knowledge-creation processes, we have
demonstrated [44] that the avalanche first-return statistics
obeys a g,-Gaussian distribution with a large parameter g, ~
2.45. Here, we apply multifractal analysis to examine another
signature of the complexity of these avalanche sequences. In
particular, we analyze the temporal sequences of the avalanche
sizes Sy, where k = 1,2, ..., Kpnax 1S the index of the avalanche
and K .« stands for the total number of avalanches that occur in
a particular time series. We consider the avalanche sequences
obtained for the combinations of the parameters studied in the
preceding sections and the empirical data; two examples of
such avalanche sequences are displayed in Fig. 5 (bottom) and
Fig. 8(a).

PHYSICAL REVIEW E 96, 032307 (2017)

To determine the multifractal spectrum W(«) for the
sequences S, we apply the detrended multifractal analysis
(DMFA); we use the approach which was applied to different
types of complex signals, as described in Refs. [65-68].
According to the standard procedure, the profile of the signal
is first constructed by the integration

Y(i) =) (S — (S)). %)
k=1

The profile is then divided into N; = int(Kmax/n) nonover-
lapping segments of equal length n. Then for each segment
u=12... Ny, the local trend y, (i) is determined and the
standard deviation around the local trend

F(un) =+ Y Wi —Dn+il—y@OF (6
g
is found. Similarly, the procedure is repeated starting from the
end of the signal, resulting in F2(u,n) = 1 7 {Y[N — (u —
Non +i] — y, (i)} for p = Ny + 1, ... ,2N,. Combining the
deviations at all segments, the gth order fluctuation function
F,(n) is obtained according to

IN /9
2 2
Fym) = 1 557 IR E ~ @)
n=1
and plotted against the varied segment length n €

[2,int(Kmax/4)]. The scale invariance of F,(n) against the
segment length n is examined to determine the corresponding
scaling exponent H(q). Here, the distortion parameter g takes
arange of real values. The main idea is that the segments of the
signal with potentially different fractal features will be suitably
enhanced by a particular g value to become self-similar to
the full signal and the corresponding scaling exponent H(q)
as a function of g is measured. Notably, different small
Sfluctuation segments are enhanced by the negative values of
q, and the segments with large fluctuations dominate the
fluctuation function for the positive values of ¢. In the limiting
case of monofractal, H(q) = H(q = 2) is the standard Hurst
exponent. Using the scaling relation t(g) = gH(q) — 1, the
exponent t(g) of the box probability, defined in the partition
function method [65], is computed. Thus, the generalized
Hurst exponents H(g) can be related with the singularity
multifractal spectrum via the Legendre transform W(w) =
qa — t(q), where o = dt/dq is the singularity strength.
Figures 8(a)-8(c) shows the results for the case ExpS,
which incorporates the features of the empirical data and
the expertise matching in the simulations. Specifically, the
avalanche series, the corresponding fluctuation function, and
the generalized Hurst exponent are shown to demonstrate the
procedure. Also, we show the results of the DMFA applied
to the underlying time series for the same parameters. For
the comparison, the analysis is performed for the randomized
signals; the corresponding scaling exponents H(q) are also
depicted in Fig. 8(c). Notably, both the time series of the
activity and the related avalanche series exhibit multifractal
features. The span of the generalized Hurst exponent is
much larger in the avalanche series. In the randomized case,
the avalanche series exhibit almost unchanged multifractality
while the time series of pulses becomes a monofractal with the
properties of white noise [H(g) = 0.5 within the numerical
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error bars]. These findings indicate that the origin of the
multifractality in the time series may be found in the temporal
correlations, which are of the 1/v type; see Fig. 6(a). While,
for the avalanche series, the scale invariance of the distribution
of sizes can be the sole reason for the observed multifractality.
In this regard, it is interesting to analyze the width of the
singularity spectrum W(«) for different parameters of the
model. These results are shown in Fig. 8(d). In agreement
with the values of H(g) for the case ExpS in the panel
(c), the spectra corresponding to the avalanche series and
the randomized avalanche series are wide. In contrast, the
multifractality of the original time series results in the narrow
range; further, the spectrum is reduced to a close vicinity of
the point W(« = 0.5) = 1, corresponding to the monofractal
randomized time series. For the varied expertise of the actors,
we obtain wide spectra of the avalanche series, where the
singularity strength o € [0.2,1.7]; cf. Fig. 8(d). Notably, the
various parameters of the model mostly affect the right
side of the spectrum, corresponding to g < 0 region, i.e.,
small fluctuation segments in the avalanche series. While,
the variations are less pronounced for the large fluctuation
segments, appearing in the left end of the spectrum W(«).
In this end, the empirical data and model simulations lead
to similar results. These findings indicate how the sequences
of small and large avalanches are affected by the available
expertise; the occurrence of the large fluctuations in the
avalanche sizes might be chiefly conditioned by the number of
the actors involved.

IV. THE IMPACT OF VACANCIES ON MULTIFRACTAL
SPECTRUM: A COMPARISON TO SPIN-ALIGNMENT
AVALANCHES

As mentioned in the Introduction, the complexity of
the social interactions prevents the exact description of the
mechanisms at the elementary scale, calling for a comparison
to better-understood physics models. In this regard, the
interacting spin system described by the random-field Ising
model at zero temperature and driven along the hysteresis loop
represents a paradigm of complex dynamical behavior far from
the equilibrium [69]. In this example, the spin alignment along
the slowly increasing external field is balanced by spin-spin
interactions and the local constraints due to the random-field
disorder. The dynamics of spin flips under the disorder induced
constraints and interactions was often employed to model
opinion formation [70], processes driven by social balance
[71] and other cases. For the purpose of this work, we aim
to explore the impact of vacancies in the underlying network
onto the multifractal spectrum of the avalanche sequences. We
consider spin-alignment avalanches in the zero-temperature
random-field Ising model (ZTRFIMc) with the two-state
spin site S;(¢#) = £1 at each lattice site i = 1,2,...,N with
a fraction ¢ > 0 of defect sites where the spin is absent.
The energy H=—7, hi(t)S;(t) is minimized by the spin
alignment along the current value of the local field h; (1), where

hi(t) =" JiiSj(®) + hi + B(t);  Si(t + 1) = sgn[h;(1)]

jenn

®)
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Here, h; is the local quenched random field, which is described
by the Gaussian distribution of zero mean and the width A.
Starting from a large negative value, the system is driven
quasistatically, i.e., by the slowly increasing external field
B(t + T) = B(t) + 6 B after an avalanche stops. The ferro-
magnetic interaction J;; among the pair of spins at the adjacent
sites 7,j has the positive mean (J;;) = J and the second
cumulant Jc(1 — ¢), where ¢ > 0 is the probability that the
spin is absent at a randomly selected site. The dimensionless
parameters f = A/J and r = § B/ J characterize the pinning
strength and the driving rate, respectively.

Given the domain structure in these disordered systems,
the magnetization reversal occurs in a series of jumps by
the slow field ramping along the hysteresis loop. These
magnetization changes are directly related to the motion of the
domain walls, accompanying the expansion of the domains
which are oriented parallel to the field. The size of the
magnetization changes thus occur in the interplay between
the driving by the external field and pinning of the domain
walls at by the local random fields, oriented opposite. These
magnetization changes in time represent the data points in the
Barkhausen noise, a complex time series from which then the
avalanches can be determined. The scale-invariant behavior
of the Barkhausen avalanches and their dependence on the
strength of the random-field disorder has been well understood
[27,69,72—74]. Recently, it has been shown [68] that the
Barkhausen noise exhibits multifractal structure. Moreover,
the dynamical regime in the central part of the hysteresis loop,
where large avalanches can occur for the weak disorder, has
a significantly different spectrum from the dynamics at the
beginning of the hysteresis loop. In contrast, the presence of
hard defects in ZTRFIMc has been much less investigated.
Specifically, even in the weak random-field pinning that allows
system-wide avalanches, the presence of hard defects induces
a characteristic length, which affects the cutoff size of the
avalanches and also the universality of the scaling exponents
[75,76]. Here, we are interested in the dynamics of the
avalanches in the presence of site defects.

We consider a small concentration of the randomly dis-
persed site defects ¢ = 0.05 on top of the weak random
field disorder and slow driving; thus we use a representative
set of parameters in this regime [68]: f =2.3 < f. and
r = 0.02 in the three-dimensional cubic lattice of 100* spins.
In the absence of the site defects (¢ = 0), the system of
this dimension would undergo a domain-wall depinning via
large avalanches in the central part of the hysteresis loop
[68]. However, the small percentage of site defects suffices
to perturb this critical behavior by the pinning of the domain
walls at a distance £ ~ 1/c; whereas, at the distances x < ¢
the domain wall motion is accelerated by the external field,
corresponding to the regime of the weak random-field pinning.
Consequently, the small avalanches are similar as in the case
of weak pinning without site defects, while the propagation
of large avalanches is considerably hindered. These effects
are reflected in the multifractal spectrum of the avalanche
sequences, in particular, by increasing the difference in the
generalized Hurst exponent for ¢ > 0 and ¢ < 0 values. The
resulting singularity multifractal spectra are shown in the inset
to Fig. 9. Although the avalanches tend to be larger in the
central part of the hysteresis loop, the presence of site defects
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FIG. 9. The avalanche sequence at the beginning of the hysteresis
loop (HLB) of the ZTRFIMc for ¢ = 0.05 and weak random field
pinning. Inset: The singularity multifractal spectra in the hysteresis
loop center (HLC) and the loop beginning (HLB) for ¢ = 0.05 and
¢ =0.0.

induces a mixture of small and large events, which results in
the substantial broadening of the spectrum in comparison to
the case of ¢ = 0.

It is interesting to point the similarity between the spectra
in the avalanche series that are affected by site defects in Fig. 9
with the spectra of social avalanches of knowledge creation,
Fig. 8. In this case, the avalanche propagation is conditioned
by the actor’s activity patterns and the (non)possession of the
required expertise. According to Fig. 2(a), a large number
of users (agents) stops to be active after a given number of
actions, while their artifacts are still available and can be the
subject of interest to others. Thus, each avalanche becomes
pinned by reaching the network node of such a user, in
the manner that a site defect pins the moving domain wall.
Also, the users whose delay time is typically larger than the
avalanche duration may have a similar effect on the current
avalanche propagation. On the other hand, the extremely
active users [a small fraction, represented by the end of the
distribution in Fig. 2(a)] accelerate the propagation through
their numerous connections and also by being active at more
than one question within a short time interval. This type of the
actor’s heterogeneity results in a typical mixture of small and
large events, as seen in the analysis in Sec. III. Beyond the
shape of the multifractal spectra, representing a combination
of small and large events, the avalanche distributions differ in
the random-site ferromagnetic model. Among other reasons,
the evolving bipartite networks of the actors and their artifacts
are identified as those being of the key importance.

V. DISCUSSION AND CONCLUSIONS

Considering the large data set from Q&A site Mathematics
Stack Exchange and the agent-directed modeling, we have
analyzed the avalanching behavior and the bipartite network
that underlies the creation of collective knowledge. Given
the complexity of modeling the human actors, we have
kept the agent’s properties statistically similar to the features
of the users, detectable from the same empirical data. In
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particular, the agent’s activity pattern is designed by the
distributions of the number of actions per user P(N;) and
the interactivity time P(At) as well as the arrival rate p(t),
which are mutually interconnected and characterize the human
dynamics in the considered empirical system. We have varied
the agent’s expertise, as the most relevant feature to the
knowledge creation. To evaluate its impact, the expertise
matching to the contents of the artifact has been clearly
observed in the simulations. (Other potential extensions of
the model, e.g., neglecting or altering the above distributions
independently, that goes beyond human dynamics [50], are not
discussed in this work.)

The analysis indicates that the knowledge-creation process
represents a particular class of social dynamics, in which the
self-tuning towards the criticality is controlled by the use of
knowledge in the meaningful actions and the coevolution of
the underlying network. Our key findings are here discussed.

The self-organized criticality. The robustly observed tem-
poral correlations, avalanching and multifractality, as well as
the scale-invariance dependence on the driving rate, indicate
that the criticality might occur in these stochastic processes
in a self-tuned manner. The social dynamics, driven by the
arrival of new actors and innovation that they bring, represents
the main source of the avalanching behaviors. Whereas, the
altered degree of branching (e.g., in the w process) and,
more importantly, the strict use of the expertise imposes
the constraints to the social dynamics, which affects the
avalanche propagation. These constraints then manifest in the
nonuniversal scaling exponents of the avalanche sizes and
durations. Moreover, the relative fraction of the small and
large avalanches, which appear to be mixed in the course
of the process, depends on the available expertise of the
actors, thus affecting the width of the multifractal spectrum.
Nonextensivity (g, > 1) is another remarkable feature of
the knowledge-creation process, where the ¢g,-exponential
distribution applies to the avalanche sizes and the g,-Gaussian
distribution to the avalanche returns. Although the observed
multifractality of the avalanche series is compatible with these
distributions, more theoretical work is needed to unravel their
origin.

The structure of network partitions. In this process, the
growth of the bipartite network occurs by the addition of
layers, which contain new arrivals and other active agents,
and their artifacts. How the network will grow is strongly
related to the expertise-conditioned linking. After a sufficient
time, the network exhibits a broad distribution of the degree of
nodes in both partitions. The scaling exponent of the agent’s
degree distribution in each case is close to the introduced
distribution of the activity P(N;). However, the cutoffs of the
distributions, indicating the actual size of the network, vary
with the considered apportionment of the expertise. Notably,
the network size increases when the agents possess a larger
expertise in the average. In this case, the probability of an
agent to connect to a suitable artifact is elevated. Similarly,
the network growth is accelerated by the addition of a larger
number of actors in the initial stages of the process, which
results in a greater number of the available artifacts. Thus,
in the social process, the scale freeness of the user partition
is determined by the actual activity profiles alone. Where
the corresponding edges will appear in the network, and,
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consequently the network’s community structure [44], depends
on the available expertise and how it is distributed over
the actors. On the other hand, the question-partition degree
distribution strongly depends on the expertise. Note that in
both cases the determined scaling exponents are smaller than
2. These results suggest that the effective mechanisms might
be different from the popular “preferential” attachment-and-
rewiring rule that leads to the exponents larger than 2.

The self-tuning factors. The heterogeneity of the actor’s
profiles and the activity patterns, with the extended range of
delay times and the number of actions, is certainly an important
factor for the appearance of the avalanches in the studied social
dynamics. Apart from these “human factors,” it is stipulated
that some other ingredients of the knowledge creation may
contribute to the paths towards the criticality. Specifically, the
importance and the use of expertise in the human collaborative
endeavor makes the social process substantially different from,
for instance, the activity on popular blogs, where the negative
emotional charge of comments may lead to a supercritical
avalanche [13,14]. Here, the required expertise of the actors
needs to match the contents of the question, resulting in
a balanced activity (resembling the energy balance in the
driven physical system). Consequently, the activity stops
when sufficient knowledge is built through the answers on
a particular question, depending on the available expertise
of the actors. The same artifacts may become a focus in
the later stages when new necessary knowledge becomes
available, i.e., by the arrival of new players. Thus, in contrast
to the standard social dynamics, a kind of optimization of
the available expertise applies, which is also compatible with
the nonextensive dynamics mentioned above. Note that the
optimization of the system’s efficiency is often associated with
the functioning of biological systems [7] and the avalanching
process in neuronal assemblies [8,9] and the brain [12], which
are still not well understood. Furthermore, the underlying
network evolution by the addition of the innovative contents in
the active layer can be seen as another decisive factor to provide
a particular type of critical behavior. Theoretically, changing
the random environment for the self-organizing process affects
the universality of the critical behavior that can be achieved.
The renormalization group study of the critical sandpile model
in the presence of quenched [43] or annealed [42] random
currents has demonstrated that a new stable fixed point appears,
which is controlled by the variance of the random variable. For
the knowledge creation in the online Q&A communities, it
is relevant to mention that the innovation expansion builds
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the network of contents with a logical structure, which
originates in the participant’s individual knowledge. For the
same empirical data, this aspect of knowledge creation was
demonstrated in [47] by analysis of the knowledge network
(containing the cognitive contents that are used in all questions
and answers, and encoded by the standard mathematical
classification scheme). Further research is needed to disclose
the potential importance of avalanches of knowledge creation
in the off-line social communities, where knowledge sharing
can lead to the creation of a common opinion and other
collective behavior [13,19].

In summary, the creation of collective knowledge through
questions and answers is a self-organized critical process
where the mechanisms of self-tuning are provided by the
interplay of the social and cognitive layer. The observed
SOC is robust to the increased driving rate within limits
pertinent to the considered experimental system. Our study
suggests some questions for further theoretical considerations,
in particular: the formal differences between knowledge
creation and common social dynamics; the potential similarity
between the knowledge creation and the brain avalanching
dynamics; the origin of the nonextensivity (although the
nonextensive character of the dynamics is intuitive in the
context of knowledge, the formal origin of the g-Gaussian
fluctuations is not understood), and other issues. The presented
results, based on the empirical data and the agent-directed
model, which is almost equally complex as the empirical
system itself, reveal many factors that act in unison and
contribute to the observed SOC. The presented comparison
to the driven spin system with site defects suggests that apart
from the expertise, the heterogeneity of the actor’s activity
patterns is an essential factor that prevents the appearance
of the supercritical avalanches. Our findings may help design
formal theoretical models of SOC, e.g., of the cellular automata
type or the continuous models suitable for the renormalization
group analysis, which may be capable of describing the unique
role of each of these factors.
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Cooperative self-assembly is a ubiquitous phenomenon found in natural systems which is used for designing
nanostructured materials with new functional features. Its origin and mechanisms, leading to improved func-
tionality of the assembly, have attracted much attention from researchers in many branches of science and
engineering. These complex structures often come with hyperbolic geometry; however, the relation between
the hyperbolicity and their spectral and dynamical properties remains unclear. Using the model of aggregation
of simplexes introduced by Suvakov ef al. [Sci. Rep. 8, 1987 (2018)], here we study topological and spectral
properties of a large class of self-assembled structures or nanonetworks consisting of monodisperse building
blocks (cliques of size n = 3, 4, 5, 6) which self-assemble via sharing the geometrical shapes of a lower order.
The size of the shared substructure is tuned by varying the chemical affinity v such that for significant positive v
sharing the largest face is the most probable, while for v < 0, attaching via a single node dominates. Our results
reveal that, while the parameter of hyperbolicity remains §,,,x = 1 across the assemblies, their structure and
spectral dimension d, vary with the size of cliques n and the affinity when v > 0. In this range, we find that d; > 4
can be reached for n > 5 and sufficiently large v. For the aggregates of triangles and tetrahedra, the spectral
dimension remains in the range d, € [2, 4), as well as for the higher cliques at vanishing affinity. On the other end,
forv < 0, we find d; < 1.57 independently on n. Moreover, the spectral distribution of the normalized Laplacian
eigenvalues has a characteristic shape with peaks and a pronounced minimum, representing the hierarchical
architecture of the simplicial complexes. These findings show how the structures compatible with complex
dynamical properties can be assembled by controlling the higher-order connectivity among the building blocks.

DOI: 10.1103/PhysRevE.100.012309

I. INTRODUCTION

Controlled self-assembly of nanoparticles with various
properties has enabled the engineering of wide classes of
materials with new functional features [1]. Among others, the
possibilities of designing and assembling three-dimensional
(3D) structures of colloidal particles have increased signif-
icantly by the discovery of methods for the synthesis of
colloids with controlled symmetries and directional interac-
tions [2]. Further possibilities are opened with cooperative
self-assembly, where the groups of nanoparticles forming
small clusters can join the growing structure [3—7]. These
processes utilize a variety of interparticle forces [8], as well as
geometry-guided self-assembly [9—11]. By varying the build-
ing blocks in different self-assembly processes, the impact
of the system’s architecture on the emergent functionality
in nanostructured materials has been evidenced by experi-
mental investigation, e.g., by the charge transport or spin
diffusion, resulting in the enhanced collective dynamics of the
assembly [1,4-7,9,12]. On the other side, theoretical investi-
gations of the structure-function interdependence have been
greatly facilitated by mapping the assembly onto mathemati-
cal graphs or nanonetworks [13]. In this representation, nodes
can indicate nanoparticles with their geometrical, physical,
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and chemical properties, and edges specify the interparticle
interaction or chemical bonding often enabled by their phys-
ical proximity. This representation allows the use of graph-
theory methods to quantify topology and facilitates numerical
modeling, as was done, for example, in the study of charge
transport by single-electron tunnelings in nanoparticle films
[12,14-16], carbon nanotube fillers [17], and others.

On a more global scale, the interplay between the structure
and dynamics is captured by spectral properties of networks
[18,19]. More specifically, spectral analysis of the adjacency
matrix or the Laplacian operator related to the adjacency ma-
trix [20] revealed Fiedler spectral partitioning of the graph and
detection of functional modules or mesoscopic communities
[21,22], hierarchical organization and homeostatic response
[23], the structural changes at the percolation threshold [24],
or the occurrence of assortative correlations between nodes
[25] and the origin and implications of the degeneracy in net-
work spectra [26,27]. A direct relation between the Laplacian
eigenspectrum and the diffusion processes on that network
revealed the role of the small-degree nodes and features of
the return time of random walks [21,28], as well as the
universality of dynamical phase transitions [29] and a deeper
understanding of synchronization on complex networks [30].
In this context, the key quantity that relates the structure

©2019 American Physical Society
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to the diffusion and synchronization on a network is the
spectral dimension [31-33], which can be determined from
the properties of the Laplacian spectrum.

The complex functional systems often exhibit a hier-
archical architecture and the related hyperbolic geometry.
The underlying higher-order connectivity in these structures
can be modeled with simplicial complexes and describe it
with mathematical techniques of the algebraic topology of
graphs [34-38]. In this context, simplexes are cliques of
different orders ¢ = 0, 1, 2, 3, ... representing, respectively,
nodes, edges, triangles, tetrahedra, and so on, which are joined
into larger-scale structures. Note that a clique of the order
q contains cliques of the lower orders up to g — 1 as its
faces. The assemblies of cliques can be regarded as topolog-
ical spaces represented by simplicial complexes. Formally, it
holds that in a simplicial complex K, every face of a clique
o € K also belongs to K, and that a nonempty intersection
of two simplexes o1, 0, € K is a face of both of them. In
the context of simplicial complexes, the 1-skeleton consists
of nodes and edges, which is the topological graph that is
accessible to analysis using standard methods of graph theory.
The idea of hierarchical architecture is a center piece in the
development of many modern innovative technologies such
as 3D printing [39]. In the materials science that motivates our
work, such structures are grown by cooperative self-assembly
[1,4,6-8,11,40]. Recently, these processes have been modeled
by attachments of preformatted objects or simplexes [10,41]
under geometric constraints and suitably specified binding
rules and parameters. We also draw attention to several other
contemporary studies [42—47] that show the importance of
simplexes in modeling interactions of higher orders and com-
plex geometry in various physical and biological systems.
Whereas in real complex systems whose structure is de-
tectable from experimental data, the corresponding structure
can be decomposed into simplicial complexes. For example,
in the case of human connectome studied in Refs. [48,49],
these simplicial complexes comprise the inner structure of
brain anatomical modules. The presence of cliques leading to
a hierarchical organization was also found in social network-
ing dynamics [50-52], problems related to traffic dynamics
[53], protein-protein interaction networks [23], and so on.

As mentioned above, the hierarchically organized networks
possess emergent hyperbolicity or negative curvature in the
shortest-path metric, that is, they are Gromov hyperbolic
graphs [54-58]. Recently the graphs with a small hyperbol-
icity parameter § have been in the focus of the scientific
community for their ubiquity in real systems and applications,
as well as due to their mathematically interesting structure
[55-57,59]. Namely, the upper bound of a small hyperbol-
icity parameter can be determined from a subjacent smaller
graph of a given structure. Generally, it is assumed that both
naturally evolving, biological, physical, and social systems
develop a negative curvature to optimize their dynamics
[42,49,52,60,61]. However, the precise relationship between
the hyperbolicity of a network and its spectral and dynamical
features remains mostly unexplored.

In this paper, we tackle these issues by systematically
analyzing the spectral properties of a class of Gromov
1-hyperbolic graphs, which represent nanonetworks with
different architectures of simplicial complexes. Based on

the model for the cooperative self-assembly of simplexes
introduced in Ref. [41], here we grow several classes of
nanonetworks and analyze their topology and spectral
properties; the monodisperse building blocks are cliques of
the order n = 3,4, 5, 6 while the geometrical compatibility
tunes their assembly in the interplay with the varying chemical
affinity v of the growing structure towards the binding group.
Specifically, for the negative values of the parameter v, the
effective repelling interaction between the simplexes occurs,
while it is gradually attractive for the positive v. At v =0
purely geometrical factors play a role. Our results show that
while the hyperbolicity parameter remains constant § = 1 for
all classes, their spectral dimension varies with the chemical
affinity v and the size of the elementary building blocks .
Moreover, these networks exhibit a community structure when
the parameter v > 0. The inner structure of these communities
consists of simplicial complexes with a hierarchical
architecture, which manifests itself in the characteristic
spectral properties of the Laplacian of the network.

In Sec. II we present details of the model and parameters,
while in Sec. III we study different topology features of
the considered networks. In Sec. IV we analyze in detail
spectral properties of all classes of these networks for varied
parameters v and the size of elementary blocks. Section V is
devoted to discussion of the results.

II. SELF-ASSEMBLY OF SIMPLEXES AND THE TYPE
OF EMERGENT STRUCTURES

For the growth of different nanonetworks, we use the
model rules for the cooperative self-assembly [41,62] with
the chemical aggregation of simplexes. Preformatted groups
of particles are described by simplexes (full graphs, cliques)
of different size n = gm.x + 1, where ¢m.x indicates the
order of the clique. Starting from an initial simplex, at each
step, a new simplex is added and attached to the growing net-
work by docking along one of its faces, which are recognized
as simplexes of the lower order g = 0, 1,2, ..., gmax — 1; see
online demo [63]. For example, a tetrahedron can be attached
by sharing a single node, i.e., a simplex of the order g = 0
with the existing network, or sharing an edge, ¢ = 1, or a tri-
angle, g = 2, with an already existing simplex in the network.
The attaching probability depends both on the geometrical
compatibility of the g-face of the adding simplex with the cur-
rent structure as well as on the parameter v that describes the
chemical affinity of that structure towards the addition of new
n, nodes, where n, = gmax — g- More precisely, we have [41]

¢4 (t )er(qmurq)

Z':G*I Cq(;)er(qmurq)

p(Qmam q;t) = (1)

for the normalized probability that a clique of the order gmax
attaches along its face of the order g. Here ¢, () is the number
of the geometrically similar docking sites of the order ¢ at the
evolution time 7. Eventually, one of them is selected randomly.
By varying the parameter v from large negative to large posi-
tive values, the probability of docking along with a particular
face is considerably changed. For example, for the negative
values of v, the growing system “likes” new vertices; conse-
quently, a simplex preferably attaches along a shared vertex
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FIG. 1. Aggregates of tetrahedra with strong repulsion, a seg-
ment is shown in the top panel, and the case with strong attraction
resulting in the network with communities indicated by different
colors is shown in the bottom panel.

rather than a larger structure. Effectively, a repulsion between
simplexes occurs; see Fig. 1 top. In the other limit, for a large
positive v, the most probable docking is along the potentially
largest face, such that an added simplex of the size n shares the
maximum number n — 1 of vertices with the existing struc-
ture; see bottom panel in Figs. 1 and 2. Here the simplexes
in question experience a strong attraction, which gradually
decreases with decreasing v. For the neutral case v = 0, the
assembly is regulated by strictly geometrical compatibility
factors C, (1), which change over time as the network grows.
In the original model [41], the size of the incoming sim-
plexes is taken from a distribution, whose parameters can
be varied. To reveal the impact of the size of these building
blocks on the spectral properties of the new structure, here
we focus on the networks with monodisperse cliques; in
particular, we investigate separately the structures grown by
aggregation of cliques of the size n = 3, 4, 5, and 6 for contin-
uously varied affinity v. For comparison, we also consider the
case with a distribution of simplexes in the range n € [3, 6].
As the examples in Fig. 1 and Fig. 2 show, the structure
of the assembly varies considerably with both the size of
simplexes and the level of attraction between them. Notice
that in the case n = 2 the simplex consists of two vertices with
an edge between them resulting in a random tree graph. Here
gmax = 1 and all docking faces are single-vertex sites (g = 0).
Therefore, the probability p(1, 0;¢) = 1 is independent of the
value of the parameter v. In this work, we consider networks
of different number of vertices N = 1000, 5000, and 10 000.

FIG. 2. The networks of the aggregated cliques of mixed sizes
n € [3, 6] distributed according to oc n~2 for v = 5 (top), and aggre-
gates of triangles for v = 9 (bottom). The community structure is
indicated by different colors of nodes.

III. TOPOLOGICAL PROPERTIES OF THE ASSEMBLED
NANONETWORKS

The structure of the assemblies strongly depends on the
chemical affinity v and the size n of the building blocks. For
example, a strong repulsion between cliques enables sharing
a single node, thus minimizing the geometrical compatibility
factor and resulting in a sparse graph (a tree-of-cliques). An
example with the tetrahedra as building blocks at v = —9 is
shown in the top panel of Fig. 1. However, for extremally
attractive cliques, e.g., for v = 9, the same building blocks
attach mostly via sharing their largest subgraphs (in this case,
triangles); thus the geometrical constraints play an important
role. This situation results in a dense nanonetwork with a
nontrivial community structure, determined by the modularity
optimization method [64], as shown in the bottom panel of
Figs. 1 and 2. Meanwhile, the modules in the sparse structure
can be recognized as the elementary cliques. Notably, the
presence of a large clique increases the efficiency of building
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TABLE 1. Graph measures of the assemblies of cliques of the size n with N =~ 1000 vertices for three representative values of the affinity
parameter v: The number of edges E, average degree (k), and clustering coefficient (Cc), graph’s modularity mod, diameter D, and ratio of the

hyperbolicity parameter §max to D/2. Two bottom rows are for mixed clique sizes n € [3, 6] distributed according to o< ™.

bb v E (k) (Cc) (£) mod D Omax/D/2
n=3 -5 1501 2.999 0.766 9.789 0.928 22 1/11
0 1734 3.465 0.741 7.265 0.902 16 1/8
+5 1991 3.982 0.735 4.958 0.861 10 1/5
n=4 =5 2009 4.61 0.847 8.718 0.927 19 2/19
0 2426 4.852 0.808 6.023 0.895 12 1/6
+5 2984 5.968 0.813 3.23 0.715 8 1/4
n=>5 =5 2514 5.013 0.878 8.89 0.921 19 2/19
0 3182 6.351 0.829 5.01 0.856 11 2/11
+5 3997 7.958 0.850 2.703 0.850 5 2/5
a=2 +5 2905 5.810 0.820 3.172 0.620 7 2/7
a=0 +5 3464 6.298 0.844 2.857 0.569 6 1/3

a nontrivial structure, even for a small attractive potential; cf.
Fig. 2 top. We will further discuss the community structure
of these networks in connection with their spectral properties
in Sec. IV. As explained in the Introduction, we analyze the
standard Laplacian operator, which is related to the adjacency
matrix of the graph, i.e., a 1-skeleton of the simplicial com-
plex. (A study of combinatorial Laplacians associated with
higher-order structures remains out of the scope of this work.)
Therefore, we examine the graph’s properties that can be
related to the Laplacian spectra. In Table I we summarize
different graph measures of some monodisperse assemblies
whose spectral properties are studied in Sec. IV. We note
that the self-assembly process of cliques can result in a broad
range of the degree of vertices. Depending on the size of
cliques n > 3, several hubs and a power-law tail can appear
at the sufficiently strong attraction between them [41]. For
illustration, Fig. 3(a) shows the ranking distribution of the
degree for several monodisperse assemblies in the case of
intense attraction. To get an insight into the structure of
the simplicial complexes of these assemblies, we show in
Fig. 3(b), how the population f, of cliques and faces along
different topological levels g varies with the size of the
building block n. For comparison, we also display f;, in the
case of the size n € [3, 6] distributed as ~n~% with a small
number of larger cliques (¢ = 2) and the statistically similar
number of cliques of all sizes (¢ = 0).

As mentioned above, the assemblies of cliques possess
a negative curvature in the graph metric space, which im-
plies that they fulfill the Gromov four-point hyperbolicity
criterion [54]. More precisely, the graph G is hyperbolic
iff there is a constant §(G) such that for any four ver-
tices (a, b, ¢, d), the relation d(a, b) +d(c,d) < d(a,d) +
d(b,c) < d(a,c)+d(b,d)implies that

d(a, c)+d (b, d)—d(a, d)—d(b, c)

8(a,b,c,d) = >

< 8(G6),
2)

where d(u, v) indicates the shortest path distance. Note that
the difference in (2) is bounded from above by the minimum
distance in the smallest sum dp,;, = min{d(a, b), d(c, d)}.

Thus, by plotting 6(a, b, ¢, d) against dp;, for a large num-
ber of 4-tuples, we numerically estimate §(G) = §max as the
maximum value observed in the entire graph.

As described in Sec. II, the cliques aggregate by sharing
their faces, i.e., cliques of a lower order, which leads to
some specific properties of the grown structures [41]. In
particular, the order of the simplicial complex cannot exceed
the order of the largest attaching clique. Moreover, theoretical
investigations of these types of structures predict [S5-58] that

=)
™
w

[T T T T %

FIG. 3. (a) Ranking distribution of nodes i = 1, 2, ..., 5000 ac-
cording to the decreasing degree. The degree k; of the vertex i
is plotted against its rank r; for different assemblies of cliques of
size n, indicated in the legend, and v = 9. Stretched exponential
curve approximates the data for the random tree (n = 2), while the
asymptotic power-law decay with the exponent y is appropriate for
n > 3. (b) The number of simplexes and faces f, at different topology
level g is plotted against ¢ + 1 for the same monodisperse assemblies
of the size n as in the top panel (the same legend applies). The
additional dotted and dashed lines with diamonds are for the mixed
sizes n € [3, 6] with the distribution ~n~* and two values of « given
in the legend of panel (b).
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FIG. 4. For the assemblies of simplexes of the size n given in the
legend, and three indicated values of the chemical affinity parameter
v. Top panels show the shortest-path distance distributions P(d)
vs the distance d. The corresponding bottom panels display the
hyperbolicity parameter 8, (upper curves, full lines) and () (lower
curves, dashed lines) against dy;,. Thin dotted line indicates the level
Smax = 1.

the upper bound of the hyperbolicity parameter of the graph
differs from the hyperbolicity of the “atoms” of the structure
by at most one unit, that is, émax = 8, + 1. Given that a clique
is ideally hyperbolic (i.e., treelike in the shortest path metric
space), we have 6, = 0, which gives §y.x = 1 for all clique
complexes grown by the rules of our model. By sampling
up to 10° 4-tuples of vertices and computing the graph hy-
perbolicity parameter 6(G) in Eq. (2), we demonstrate that
the hyperbolicity parameter remains §(G) < 1 for all studied
assemblies. More precisely, while the structure of different
assemblies, as well as their distribution of the shortest-path
distances, varies with the chemical affinity v, the upper bound
of their hyperbolicity parameter remains fixed in agreement
with the theoretical prediction. In Fig. 4 we show the results
of the numerical analysis for three representative sets of the
assemblies of cliques of different sizes. See also Table I.

IV. SPECTRAL ANALYSIS OF MONODISPERSE
ASSEMBLIES

Spectral dimension d; of a graph, which is defined via
lim,;_, o % = —%, characterizes the distribution of return
time P;(t) of a random walk on that graph [31,65-67]. The
diffusion type of processes on network is described by Lapla-
cian operators [21,28]. More precisely, for the undirected
graph of N vertices, two diffusion operators are defined, i.e.,
the Laplacian operator with the components

Lij = kiéij — Aij, 3)
and the symmetric normalized Laplacian [68]
L =8 — o)
= 8 k[kj.
Here A;; are the matrix elements of the adjacency matrix, k;
is the degree of the node i, and §;; is the Kroneker symbol.

mix[3,6] |

v

FIG. 5. The lines with different symbols represent the spectral
dimension d; plotted against chemical affinity v for the aggregates of
monodisperse cliques of sizes n = 3, 4, 5 and a mixture of cliques of
different sizes in the range n € [3, 6]. The bottom line corresponds
to the random tree case n = 2.

The operators defined with Eqgs. (3) and (4) are symmetric
and have real non-negative eigenvalues. Both operators have
the eigenvalue A = 0 with the degeneracy that is equal to the
number of connected components in the network. For the net-
works that have a finite spectral dimension, spectral densities

of both Laplacians scale as P(1) =~ A%~ for small values of
A. Therefore, the corresponding cumulative distribution P.(})
scales as

PO ~A%, a«l, (5)

and it is suitable [33] for estimating the spectral dimension
d, of the network. Here we analyze the spectral properties of
both Laplacian operators (3) and (4) for the networks grown
with different building blocks and varied chemical affinity v;
see Figs. 5-7.

We analyze the cumulative spectral density P.(A) for the
Laplacian defined by the expressions (3) and (4) to determine
the spectral dimension of the graphs with the adjacency matrix
A;;. Note that the spectrum is bounded from below, i.e., 0 < A
for all eigenvalues A. According to Eq. (5), we estimate d;
for each sample by fitting the data of P.(A) for the values
in the range A < 0.3, as illustrated in Fig. 6. The error bars
are determined by taking the average from different samples
of networks that have 1000 and 5000 nodes. The results
summarized in Fig. 5 show how the spectral dimension of
the corresponding graphs varies with the chemical affinity v
depending on the size of the elementary building blocks.

As Fig. 5 shows, the impact of the size of the cliques
strongly depends on the way that they aggregate, which
is controlled by the chemical affinity v. Precisely, for the
sparse structures grown under the considerable repulsion
between cliques when v < 0, we find that the spectral di-
mension is practically independent of the size of cliques
until the repulsion becomes vanishingly weak. In contrast,
when v > 0 the spectral dimension increases with the size
of the elementary cliques. Here the attaching cliques can
share their larger faces, thus increasing the impact of the
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FIG. 6. Several examples of the cumulative spectral density
P.(A) in the range of small A for the Laplacian operator (4) for
the aggregates of triangles (top), tetrahedra (middle), and 5-cliques
(bottom). In each panel, three lines in the top-to-bottom order cor-
respond to different values of the chemical affinity v = -5, 0, and
+35, respectively. The corresponding symbol and color for the online
version are indicated in the legend.

geometrical compatibility factor. Remarkably, the spectral
dimension increases with the strength of the attraction be-
tween cliques, which favors sharing increasingly larger faces.
These faces are limited by the size of the elementary cliques.
More specifically, for all v > 0 values, d; is systematically
larger in the aggregates of tetrahedra than those of triangles.
In both cases we have that d; exceeds the limit of the transient
random walk, d; = 2, for relatively weak attraction between
cliques v ~ 1. However, both curves remain below d; = 4 for
the entire range of v values. Note that d; > 4 is recognized
as the full synchronization condition for the Kuramoto os-
cillators on network [33], whereas, in the region d; € (2, 4],
an entrained synchronization with a complex spatiotemporal
pattern can be expected [33,69]. Even though a quite com-
pact structure is grown by attaching tetrahedrons via their
triangular faces (see bottom panel in Fig. 1), its spectral
dimension remains limited as d; < 4, enabling the complex
synchronization patterns. We find that the limit d; =4 can
be exceeded when the size of the clique is at least n =5
and the attraction is considerably large, i.e., v > 5. In this
situation, the agglomerate consists of 5-cliques sharing many
tetrahedrons as their largest faces. Interestingly, it suffices to
have a few cliques of a large size to grow such agglomerates
that cause the spectral dimension d; > 4. For example, the
mixture shown in the top panel of Fig. 2 with n € [3, 6], where
the population of 6-cliques is only 1/4 of the population of
3-cliques, leads to the spectral dimension shown by the top
line in Fig. 5. Furthermore, Fig. 6 indicates that not only the
spectral dimension but the entire spectrum changes with the
size of the cliques and the chemical affinity, as we discuss in
more detail in the following.

Next, we determine the spectral density of the normalized
Laplacian, defined by (4), by averaging over 10 networks of

size N ~ 1000 generated for the same values of the model
parameters. Note that the eigenvalues of the normalized
Laplacian are bounded in the range [21,28] Ay € [0, 2].
In Fig. 7 we show the spectral density of the normalized
Laplacian for several representative cases, in particular, for
three different aggregates of tetrahedrons corresponding to the
strong repulsion, vanishing interaction, and strong attraction,
respectively. Also, in panel (e), the spectral distribution is
shown for the case of strong attraction v = 9 for the cliques
of different sizes n > 3. It should be noted that iso-spectral
structures are observed in the case of the significant repul-

sion between the cliques v = —9. In this limit, apart from
a structure at small eigenvalues, there is a prominent peak
at Apy =n/(n—1), i.e., A = —1 in the adjacency matrix,

indicating the presence of minimally connected cliques. In
contrast, for v > 0, the attraction between cliques and the
relevance of the geometrical compatibility factors lead to the
appearance of larger simplicial complexes. A peak at A,y y = 1,
which is absent in panel (a), starts building at v =0, and
gradually increases with the increasing v, as shown in panels
(c) and (e). The occurrence of the peak at Ay y = 1, (i.e., A =0
in the corresponding adjacency matrix [20,26,27]) appears as
a characteristic feature of these hyperbolic networks. Accord-
ing to previous studies of scale-free and modular networks
[21,28], this peak can be related to the nodes of the lowest
degrees in the network. In the present study, such nodes are
found in the bottom-right corner of the ranking distribution
in Fig. 3(a). Apart from the random tree case, the appearance
of this peak reflects the fact that with the increased chemical
affinity a broad distribution of degrees occurs with a power-
law tail; cf. Fig. 3(a). Notably, the highest peak is when the
building cliques are of different sizes n € [3, 6], compared
to the monodisperse structure with n = 6. Recently, a more
insightful analysis [26,27] revealed different origins of the
degeneracy in the adjacency matrix that leads to these two
peaks in the spectra. More specifically, this analysis suggests
that the occurrence of substructures of nodes, which are
equally connected to a surrounding structure in the network,
increases the degeneracy of the —1 eigenvalue. Moreover, the
reasons for the degeneracy of the O-eigenvalue were found
in the nodes duplication, which is known to characterize
the evolution of biological networks, notably demonstrated
in analysed protein-protein interaction networks [26,27]. We
note that such situations often occur in our model by com-
bining simplexes through their shared faces. The two peaks
mentioned above are increasingly more prominent in the case
of larger cliques n for v > 0, where the dominant docking
events occur via sharing the largest subclique. Similar spectral
properties can be expected for the simplicial complexes grown
by different rules, for example, in the models described in
Refs. [42-47].

A further exciting feature of these spectral densities is
that a characteristic minimum appears between A;y = 1 and
the structure above it. The results in previous investigations
[23] suggest that such minimum in the spectral density is a
signature of the hierarchical organization, as demonstrated by
an artificial network, which also occurs in the protein-protein
interaction network. In the present study, the hierarchical
organization of cliques into simplicial complexes occurring
at v > 0 has been demonstrated by the algebraic topology
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FIG. 7. Spectral distribution (left column) and the corresponding scatter plots of the eigenvectors v1, v2, v3 of the three lowest nonzero
eigenvalues of the normalized Laplacian (right column) for the aggregates of tetrahedra n = 4 for three different values of the affinity parameter
v=-9(a,b),v=01(c), (d),and v = +9 (e), (f). The bottom panels (g) and (h) are for the random tree structure n = 2, which is independent
of v. For comparison, we also show the spectra for the cliques of different sizes n = 3, 5, and 6, and the mixture n € [3, 6] in panel (e); the
corresponding lines are explained in the legend. The orientation of each 3D plot in panels (b), (d), (f), and (h) is such that it best depicts the
number and size of different branches of nonzero components of the corresponding eigenvectors.

methods in Ref. [41]. Here we show by the spectral analysis
that these simplicial complexes make the inner structure of
mesoscopic communities, which can be identified by the
localization of the eigenvectors of the lowest nonzero eigen-
values [21]. In the right column of Fig. 7, panels (b), (d), and

(f) show the scatter plot of the three eigenvectors related to the
lowest nonzero eigenvalues corresponding to the aggregates
of tetrahedrons in the left column. In the limit of strong repul-
sion between the cliques, the modularity of the entire structure
is determined by the original cliques; see Figs. 7(a) and 7(b),
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whereas the larger communities with subcommunities appear
for v > 0 where higher-order connections are increasingly
more effective; cf. panels (d) and (f) of Fig. 7. We can expect
that similar spectral properties can be found in various real-
world networks with the prominent hierarchical organization
mentioned in the Introduction. More precisely, the spectra of
networks representing functional brain connections, protein-
protein interaction networks, as well as various hyperbolic
graphs with cliques emerging from the online social dynamics
can have features qualitatively similar to the ones discussed
above. For completeness, panels (g) and (h) of Fig. 7 show the
case n = 2, exhibiting the spectral density of a typical random
tree structure.

V. DISCUSSION AND CONCLUSIONS

We have studied topological and spectral properties of
classes of hyperbolic nanonetworks grown by the cooperative
self-assembly. The growth rules [41] that can be tuned by
changing the parameter of chemical affinity v enable us to in-
vestigate the role of higher-order connectivity in the properties
of the emerging structure. Attaching groups of particles are
parameterized by simplexes (cliques) of different sizes which
share a geometrical substructure by docking along with the
growing network. For the negative values v < 0, the repulsion
among cliques makes them share a single node rather than an
edge or a higher structure. On the other hand, v > 0 implies
that the geometrical factors and the size of the attaching clique
become relevant. In particular, the higher positive value of
v implies that a new clique attaches to a previously added
clique by sharing its face of the larger order, thus building a
more compact structure. Mathematically [58], the attachment
of cliques by sharing a face (of any order) leads to simplicial
complexes whose hyperbolicity parameter cannot exceed one.

Our results revealed that, while the hyperbolicity param-
eter remains fixed §,.x = 1 across different assemblies, their
topological and spectral properties change with the increased
chemical affinity; see Table I and Figs. 5 and 7. Remark-
ably, the spectral dimension of the structure of strongly
repelled cliques of any size is practically indistinguishable
from the one of a random tree of the same number of ver-

tices. However, the rest of the spectrum is different from
the one of the tree structure; its dominant feature is the
presence of cliques as the prominent network modules. On the
other hand, the compelling attraction between the cliques for
v 2 0 results in the spectral dimension that for all sizes
n > 3 exceeds the limit d; = 2, compatible with the transient
random walk on the network. Further increase of the spectral
dimension with the increased affinity parameter v strongly
depends on the size of the cliques. Our results suggest that
for a strong attraction with the cliques of size n > 5, the
spectral dimension of the network can exceed the limit dy; = 4,
above which the synchronized phase is expected to exist [33].
However, more interesting structures are grown by smaller
cliques or a mixture of different clique sizes with a weak
attraction (small positive values of the parameter v) allowing
the sharing a variety of clique’s faces. In these cases, we find
that the spectral dimension remains in the range of d; € (2, 4].
These spectral properties are expected to be compatible with
an entrained synchronization [33] or a frustrated hierarchical
synchronization with intricate spatiotemporal patterns [69]. A
detailed analysis of such synchronization patterns on these
graphs as well as potentially superdiffusive processes [70]
remains for future work. Due to their spectral properties,
these structures can be interesting for modeling the complex
dynamics in a variety of biological systems and for poten-
tial applications. In the framework of the cooperative self-
assembly of nanoparticle groups, our analysis shows how the
control of the chemical affinity can lead to complex struc-
tures with different functional properties. Furthermore, the
presented results can be relevant for a deeper understanding of
the functional complexity of many important structures with
built-in simplicial complexes, such as human connectome [49]
and other hierarchically modular networks.
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Abstract We find that nitrogen plasma treatment of
micro/nanofibrillated cellulose films increases wetta-
bility of the surface by both liquid polar water and
nonpolar hexadecane. The increased wetting effect is
more pronounced in the case of polar liquid, favouring
the use of plasma treated micro/nanofibrillated cellu-
lose films as substrates for a range of inkjet printing
including organic-based polar-solvent inks. The films
were formed from aqueous suspensions of progres-
sively enzymatic pretreated wood-free cellulose
fibres, resulting in increased removal of amorphous
species producing novel nanocellulose surfaces dis-
playing increasing crystallinity. The mechanical prop-
erties of each film are shown to be highly dependent on
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the enzymatic pretreatment time. The change in
surface chemistry arising from exposure to nitrogen
plasma is revealed using X-ray photoelectron spec-
troscopy. That both polar and dispersive surface
energy components become increased, as measured
by contact angle, is also linked to an increase in
surface roughness. The change in surface free energy
is exemplified to favour the trapping of photovoltaic
inks.

Keywords DBD plasma - Nitrogen plasma surface
treatment - Nanocellulose films - Enzymatic
nanocellulose - Printing of organic-based polar inks

Introduction and background

Sustainability is one of the key targets for industrial
practice today. The related research aimed at new
biobased materials derived from renewable sources, is
relevant for the sustainable economy. In the bioprod-
ucts industry, micro/nanofibrillated cellulose (MNFC)
has attracted attention in a number of potential
applications (Hubbe et al. 2017a). It can be used in
standard wood products, such as paper and boards.
However, most of the benefits derived from MNFC
stem from its wider uptake in a range of industrial
value chains, such as biodegradable packaging films
and laminates. MNFC has interesting intrinsic prop-
erties derived from large specific surface area and its
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alternate regions of crystallinity. The hydroxylated
surface chemistry is readily suitable for chemical
modification. Films formed from MNFC are consid-
ered smart materials and studied for functional mate-
rials applications. Enzyme-treated fibres used to
produce cellulose nanofibrils provide higher crys-
tallinity in the resulting nanocellulose, as enzymes
digest amorphous cellulose, which acts as the glue
between crystalline cellulose regions. Direct hydrogen
bonding of crystalline cellulose, therefore, gives a
stronger material film. An example of an important
application of MNFC is as a substrate for printed solar
cells based on organic inks (Zhu et al. 2014). The
surface properties of MNFC films, such as wettability
by liquid, topography, chemistry, surface charge, the
presence of hydrophobic and hydrophilic domains,
density and conformation of functional groups, all
play a crucial role in printability and barrier properties.
Their ability to support controlled migration of solvent
ink vehicle and chromatographic differentiation of ink
components is important in the printing of inkjet
printable (IP) inks, and especially for production of
bio-based printed functionality in a wide range of
applications, such as printed electronics and printed
diagnostics (Hoeng et al. 2016; Jutila et al. 2018).
Solar panel IP photovoltaic (PV) inks contain a
complex mix of materials, including the organic
electron acceptor (p-type) and negative electron donor
(n-type) suspended in solvent together with specific
surfactant(s) intended to keep the p-type and n-type
components de-mixed (Kumar and Chand 2012).
Although drop-on-demand (DoD) inkjet printing is a
very competitive candidate for printing PV inks on
film substrates, there are limitations in respect to
mutual compatibility between the surface of MNFC
films and mixed polar-dispersive solvents constituting
the PV ink (Singh et al. 2010; Yinhua et al. 2013).
Electrolyte is highly polar, for example, and so
sufficient wettability is needed by providing a polar
surface, despite the parallel requirement for wettabil-
ity by organic species (Schultz et al. 1977; Ozkan et al.
2016). This complex polar-dispersive surface energy
balance is, therefore, critical (Hansson et al. 2011).
Exposure to plasma is a convenient method to
modify the surface properties of polymeric materials,
while keeping their bulk properties intact, making a
material better adapted for printing (Moller et al. 2010;
Kramer et al. 2006; Catia et al. 2015). Furthermore, as
we demonstrate, it is a convenient way to introduce

@ Springer

desired groups onto the surface of materials (Mi-
hailovic et al. 2011). Surface properties depend on
parameters of plasma treatment such as applied
electrical field energy, type of feed gas, pressure,
exposure time, and reactor geometry (van de Vyver
et al. 2011; Jun et al. 2008).

In this work, we modify enzyme pretreated fibre-
derived MNFC film surfaces using nitrogen plasma to
enhance their amphiphilic surface affinity to polar and
non-polar IP PV inks. Measurements of the surface
free energy, surface roughness (atomic force micro-
scopy (AFM)) and material composition [X-ray pho-
toelectron spectroscopy (XPS)] were used to
characterise the MNFC film surface before and after
plasma treatment. The affinity for IP PV ink was
assessed visually after inkjet printing. We also identify
a correlation between the observed change in free
surface energy of the MNFC film, arising from the
plasma treatment, with the effect of the enzymatic
pretreatment. This is related to the level of residual
crystallinity increasing as a function of progressive
enzymatic pretreatment (Galagan et al. 2011; Cer-
nakova et al. 2006; Pertile et al. 2010; Vanneste et al.
2017).

To meet the requirement of sufficient tensile
strength of MNFC films for the application exempli-
fied, the rheological properties of enzymatically
pretreated MNFC fibrillar suspensions were compared
with the mechanical properties of corresponding
obtained films, so that rheology can be used as a
predictor of film strength (Maloney 2015; Zhu et al.
2014).

Materials and methods
Preparation of MNFC

For the manufacture of short MNFC fibrils, the pulp
was first washed to create the sodium form by adding
sodium hydroxide to a 2 w/w% fibre suspension until
the pH reached 10, and then re-washed with deionised
water to a conductivity of 8.2 uS. The enzymatic
treatment was performed with a commercial enzyme
ECOPULP® R (Ecopulp Finland Oy), produced by a
genetically modified strain of Trichoderma reesei
fungus (Rantanen et al. 2015). The activity properties
of the enzyme are reported to be 17,700 nkat cm™>
cellulase with a protein level of 93 mgcm >
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(Willberg-Keyrildainen et al. 2019). An amount of
3 mg of enzyme per gram of pulp fibre was added to a
2.5 w/w% suspension and the temperature was
increased to 57 °C at pH 5.5 during hydrolysis, whilst
keeping under constant agitation. The period of
digestion was increased for each subsequent sample
in 30 min steps, Table 1. The enzymatic activity was
terminated by adjusting the pH to 9-10 by sodium
carbonate and increasing the temperature to 90 °C.
After cooling the suspension overnight in cold storage,
the samples were refined using an homogeniser (model
M-110P, Microfluidics, USA), passing the material
under a pressure of 2000 bar through a 100 pm flow
gap. The solids content of the MNFC suspension after
the fluidisation was 1.65 w/w%.

The enzymatic pretreatment of pulp as a route for
producing low-charged MNFC resulted in the produc-
tion of short fibrils, which, in the case studied here,
have much lower aspect ratio than MFC and NFC
produced via chemical oxidative pretreatment or
mechanical refining alone, as illustrated in Fig. 1
comparing MNFC/300/and MNFC/0/suspensions
(Table 1), revealing much shorter fibrils obtained
upon 300 min of enzymatic hydrolysis.

MNEC film preparation

With increasing enzymatic treatment time, the result-
ing MNFC suspension viscosity decreased signifi-
cantly, and the solid content for preparation of the
respective films ranged from 0.6 to 1.9 w/w% to meet
the target film grammage of 60 g m~~ produced under
conditions of 23 °C and relative humidity (RH) 50%.

Films were made on a sheet-former according to
ISO standard 5269-1, with some modification of the
screen to aid fines retention. Due to the very strong
water retention of MNFC, and its fine size, a
polyamide monofilament open mesh fabric SEFAR
NITEX® 03-1/1 with a pore size of 1 pm was placed

on top of a 125 um metal screen. The pulp suspension
was poured at high viscosity onto the former without
adding water or stirring the slurry. The system was
pressurised to 0.3 bar and the sealing lid was used on
the sheet-former. Double-sided adhesive tape, of
5 mm width, was attached to the edges of the drying
plate between plate and formed film, with purpose of
fixing the edge of the film to prevent it shrinking
during drying (Fig. 2).

Material treatment and characterisation

Optical microscopy was used to study the fibrillar
sample suspensions and films using an Olympus BX
61 microscope equipped with a DP12 camera.

Water retention the water retention value (WRYV) of
the MNFC was determined in accordance to the
standard SCAN-C 102XE with a slight modification in
that 10 w/w% suspension of the MNFC was added in
various ratios to a suspension of bleached unrefined
pulp. The pulp matrix helps the MNFC dewater and
remain retained on the screen. The WRV of neat
MNEFC can be evaluated by extrapolating to zero pulp,
not including the swelling of the pulp fibres (Moller
et al. 2010). The experiment was performed in
triplicate for each sample.

Dielectric barrier discharge (DBD) plasma oper-
ates in a thermodynamically non-equilibrium condi-
tion (so-called cold plasma) in which the ion and
molecular translational temperature is much lower
than the electron temperature, such that excessive gas
heating can be suppressed (Kostic et al. 2009;
Prysiazhnyi et al. 2013). The advantage is that the
plasma can be generated at atmospheric pressure,
either in open or closed environment. In an open
atmosphere, the plasma discharges can be produced
with a gas flow between the electrodes (Mihailovic
et al. 2011; Chu et al. 2002; Jens et al. 2017).

Table 1 Materials used in this study: bleached hardwood Kraft pulp treated with enzymes under controlled conditions, with
progressive increase in enzymatic digestion time by 30 min steps for each subsequent sample

Enzymatic 0 30 60 90
treatment time/ (reference)
min

150 180 210 240 270 300

Sample label MNEC/0/

30/ 60/ 90/

MNFC/ MNFC/ MNFC/ MNFC/ MNFC/ MNFC/ MNFC/ MNFC/ MNFC/ MNFC/
120/ 150/ 180/ 210/ 240/ 270/ 300/
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MNFC/300/

Fig. 1 Images of fibrils sample suspensions obtained with
optical microscopy revealing the effect of processing conditions
on the fibril size and aspect ratio: a without enzymatic treatment
produced MNFC/0/yielding long fibrils, b MNFC/300/short,
low aspect ratio fibrils, and ¢ displaying the corresponding 2 w/
w % MNEFC suspensions of MFC/0/and MNFC/300/. The
difference in gelation strength is due to the different size of
fibrils and corresponding amount of water dispersed within the
fibrillar matrix
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Pressure

(b)

|

_Vacdur_n

(c)
I MNFC/0/ I MNFC/210/

Fig. 2 MNFC film preparation: a sheet forming device with
b 10 um mesh supplemented nylon screen, and ¢ samples of cut-
offs (60 x 15 mm?) from MNFC films produced from pulp
refined with different enzymatic pretreatment time (Table 1).
Transparency and uniformity of films increases with hydrolysis
time

A further attractive characteristic of the DBD
plasma at atmospheric pressure is that it can be used
to modify or activate surfaces of a wide range of
materials, from polymers, textile fibres to biological
tissues, without damaging them (Kostic et al. 2009;
Pertile et al. 2010; Mihailovic et al. 2011). To generate
the DBD plasma we used a home-made device built at
the Faculty of Physics, University Belgrade, Fig. 3.
The DBD is assembled in a chamber with nitrogen gas
injected into the discharge volume (6 dm® min™")
through ten equidistant holes to ensure homogeneous
gas flow. MNFC films were treated for O s, 30 s and
60 s, respectively. The device was operated at 6 kV
DC and 300 electric field pulses per second (Hz) for
the prescribed durations of time, for all the films, as a
higher voltage resulted in burning of the thin MNFC
films, especially for those made from pulp exposed to
long enzymatic pretreatment time.
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Fig. 3 DBD device with (a)
two electrodes and sample
placed between them:

MNFC film

-~  /

a schematic illustration of

DBD plasma devise, Exhaust

.

b plasma chamber housing
the sample placed 1 mm
from the upper electrode,

e Nitrogen
£ :[m: e

Mass flow controller

and c closed plasma set up

with glass lid placed above

the top of the upper (b)
electrode

Determination of free surface energy (FSE)
components

For the evaluation of any change in free surface energy
of MNFC films arising from nitrogen plasma treat-
ment, the contact angle (CA) is determined.

Most liquids are rapidly spreading on a high energy
surface, and so a representative contact angle (CA)
cannot be readily measured, Schultz et al. (1977)
developed a method where CA can be measured by
submerging the surface in one liquid and using a
second liquid to measure the contact angle. In this case
a hydrocarbon n-hexadecane is used as the submerging
liquid having the purely dispersive liquid—vapour
surface tension of ylﬂv =274 mJ m~2, much lower
than the expected surface free energy of the MNFC
samples, and water as the contact angle liquid with the
highly polar liquid—vapour surface tension
v = 72.8 mJ m?2 (Hansson et al. 2011). A sessile
drop of water is lowered into contact with the
horizontal film immersed under hexadecane using a
precise pipette delivering 70 pl of liquid and the
progressive change in drop shape due to the change in
CA recorded with a Nikon camera (D5000) in time
steps of 1 ms. The CA of water is also recorded
separately to represent the print challenge of a highly
polar ink (Ozkan et al. 2016; Dimic-Misic et al. 2015).
For each given MNFC sample and given liquid data
variation is within 10%. The identification of contact
line geometry and evaluation of CA uses numeric
software tools, as presented visually in Fig. 4. For a
parallel optimal method for polar FSE determination

with water alone, the Girifalco and Good approach
(1957), combined with the Neumann equation of state
was used. This latter allowed the polar contribution to
FSE be estimated and thus can be added to the
formerly measured dispersive component. Each mea-
surement was conducted five times. For each given
MNFC sample, the relative error of measured FSE was
shown to be ~ 10%.

Surface topography

Plasma action on the film surface can lead to a degree
of debonding of fibrils as well as electrostatic charging
and potential for subsequent additional moisture
adsorption. Such changes can lead to re-conformation
of the surface, even though no mechanical forces have
been applied (Kostic et al. 2009; Chu et al. 2002). The
change in topography of the MNFC films was
investigated by Atomic Force Microscopy (AFM)
(Veeco Instruments, model Dimension V). Using a
MultiMode 8 with Bruker NanoScope V controller.
Each MNFC film sample was dry-cast onto a Mica
support for AFM imaging. Micrographs were obtained
in trapping mode under ambient conditions, using
TAP 300 tips (resonant frequency 300 kHz, line force
being kept constant at 40 Nm ™' and the AFM images
were processed and analysed with the Bruker NanoS-
cope Analysis 1.5 software.
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Fig. 4 Set-up for evaluating water CA under n-hexadecane with high speed camera (Nikon D5000): a images of films on camera
viewfinder and b image processing of drop spreading (see also Fig. 8)

Mechanical properties

Mechanical properties of the MNFC films were
measured by an MTS 400/M vertical tensile tester
equipped with a 20 N load cell. The instrument was
controlled by a TestWorks 4.02 program. Specimen
strips with dimensions of 60 x 15 mm? were clipped
from the MNFC films with a lab paper cutter (Afsahi
et al. 2018). The thickness of the strips was separately
measured with an L&W micrometer SE 250. The
gauge length was 40 mm and the testing velocity was
0.5 mm min~'. The results are presented as an
average value obtained from five parallel specimens.

Surface chemical composition

Surface composition of the MNFC films was evaluated
with X-ray photoelectron spectroscopy (XPS), using a

@ Springer

Kratos AXIS Ultra electron spectrometer, with
monochromatic Al Ko irradiation at 100 W and under
charge neutralisation. Both the untreated MNFC films
and plasma treated specimens were analysed. For the
preparation, samples were pre-evacuated for at least
12 h, after which wide area survey spectra (for
elemental analysis) as well as high resolution regions
of Cls and Ols were recorded from several locations,
and an in situ reference of pure cellulose was recorded
for each sample batch (Johansson and Campbell
2004). With the parameters used, XPS analysis was
recorded on an area of 1 mm? and the analysis depth is
less than 10 nm. Carbon high resolution data were
fitted using CasaXPS and a four component Gaussian
fit tailored for celluloses.
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MNFC suspension rheology

The rheological properties of MNFC suspensions were
analysed at 2 w/w% concentration at 23 °C with an
Anton Paar MCR 300 shear rheometer. The dynamic
viscosity () was determined by steady shear-flow
measurements, using the bob-in-cup geometry (Mo-
htaschemi et al. 2014). Due to the potential for wall
depletion (apparent slip) and thixotropic behaviour of
MNEC suspensions, the “bob” was a four-bladed vane
spindle with a diameter of 10 mm and a length of
8.8 mm, while the metal cup had a diameter of 17 mm.
A pre-shear protocol was applied using constant shear
at a shear rate y = 100 s~! for 5 min, followed by a
rest time of 10 min prior to recording the flow curves.
Flow curves of MNFC suspensions were constructed
under decreasing shear rate of j = 1000-0.01 s,
with a logarithmic spread of data points (Dimic-Misic
et al. 2013). To distinguish the MNFC suspensions in
terms of their colloidal interactions as an effect of
hydrolysis time, aspect ratio, crystallinity and friction
between nanofibrils during the flow (Pdékkonen et al.
2016; Dimic-Misic et al. 2018), the log—log plot flow
curves were fitted to a power law according to the
Oswald—de Waele empirical model, as shown in

Eq. (1)
n=kj'™" (1)

where k and n are the flow index and the power-law
exponent, respectively: n = 1 indicates a Newtonian
fluid and n > 1 indicates pseudo-plastic (shear thin-
ning) behaviour.

The Herschel-Bulkley equation describes the
dynamic yield stress 7] as

T =19+ kj" (2)

where 71 is the shear stress.
Printing

The photovoltaic (PV) inkjet printing inks (IP) contain
a complex mix of materials, solvent and surfactants
that keep the p-type and n-type components de-mixed
(Hashmi et al. 2015; Ozkan et al. 2016). A piezoelec-
tric laboratory scale drop-on-demand (DoD) materials
inkjet printer (Dimatix 2831-DMP) was used to test
the printability of the plasma treated MNFC films
(Dimic-Misic et al. 2015). The solvent of the IP ink is

3-methoxypropionitrile, which is highly polar and
non-volatile  (boiling point 164 °C), viscosity
1.2 mPas and density 0.937 g cm™>, as stated by
the supplier, Sigma Aldrich. The surface tension
measurement was performed on the ink with an optical
tensiometer (CAM 200 from KSV instruments) in
pendant drop mode, giving a value of 29.2 mN m™'
(mJ m™?).

Results and discussion

The rheological properties of the MNFC suspensions
are given in Table 2, showing the change in dewater-
ing, dynamic yield point and flocculation/water trap-
ping gel-like structure (consistency coefficient, k) and
shear thinning properties (index, n, expressed as the
positive difference n — 1) and change in fibre mor-
phology expressed as the fines content using the
dynamic drainage jar (DDJ).

It is clear to see that with increase in enzymatic
hydrolysis time, dewatering decreases as fibrils
become thinner and smaller, and suspensions become
more gel-like rheologically (Rantanen et al. 2015). At
the same time, crystallinity of fibrils increases and
water trapping structure/flocculation within the matrix
with contrasting increased mobility in the flow regime
once the structure is broken (Pdikkonen et al. 2016).
The dynamic yield point, the minimum stress needed
to be induced to set the suspension into flow increases
as the suspensions become more gel like, but, also,
breakage of that suspension induces greater shear
thinning as fibrils are smaller and more crystalline,
orienting easily in the flow direction (Padkkonen et al.
2016; Hubbe et al. 2017b).

The mechanical and optical properties of MNFC
films are presented in Table 3, where it is evident that
the sheet density of the films increases with increase in
hydrolysis time, while the packing density of the
smaller crystalline particles increases. The permeabil-
ity of those films created with the finer nanofibrils
obtained after 120 min hydrolysis in turn falls rapidly,
and it was not possible to measure using air flow
techniques. The light scattering coefficient decreases
also as the packing density is increased and the
amorphous parts of the cellulose fibres were reduced,
while, due also to higher packing density, the elasticity
modulus increases, showing that films had improved
strength.
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Table 2 Properties of MNFC suspensions

Enzymatic treatment WRV Yield point, rg Consistency coefficient, Shear thinning coefficient, DDJ fines
time (min) (cm® g7 (Pa) k (Pas™) (1 — n)l value (%)
MNFC suspension properties

0 1.25 34.12 431.23 0.82 93.8

30 1.61 47.34 241.3 0.81 88.8

60 1.83 54.23 139.65 0.81 79.5

90 2.19 68.45 89.67 0.81 62.4

120 2.55 91.45 69.45 0.84 27.0

150 2.85 438.34 57.23 0.84 21.0

180 2.98 29.82 35.15 0.86 11.8

210 333 19.64 19.67 0.86 9.6

240 3.37 12.67 14.34 0.87 6.5

270 3.32 8.99 9.97 0.89 1.5

300 3.34 4.74 545 0.91 0.2
Table 3 Mechanical and optical properties of MNFC films

Enzymatic treatment Film weight Density Permeability Light scattering coefficient E-Modulus
time (min) (g m?) (g cm™?) [um(Pa s (m? kgfl) (GPa)
Film properties

0 73.91 0.637 69.86 37.43 2.53
30 76.12 0.794 9.96 22.83 4.16
60 71.35 0.910 1.06 16.12 5.12
90 72.31 1.016 NA 9.94 7.02
120 70.53 1.090 NA 6.93 8.59
150 70.81 1.127 NA 5.81 9.13
180 69.57 1.145 NA 4.48 8.95
210 71.08 1.178 NA 3.74 11.26
240 70.10 1.179 NA 3.08 9.17
270 71.18 1.226 NA 3.11 9.76
300 65.27 1.187 NA 3.31 10.03

Roughness colour contour and profile plots of the
surface of MNFC/30/150/300 films before and after
plasma treatment are presented in Fig. 5. Before
plasma treatment, the roughness of the films is
directional, being different in in the two measured
directions (red and blue profile lines). The map for
MEFC/30/indicates that there are voids present between
1 and 2 um wide, while in the case of MFC/300/the
surface is flatter with less voids and of much smaller
size. This means that the degree of enzyme hydrolysis
directly increases the resulting smoothness due to the
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ever finer fibrillar elements produced, as the crys-
talline parts are separated due to breakdown of the
amorphous constituent. After plasma treatment, the
amorphous material containing surfaces, e.g. MNFC/
30/, are also seen to become relatively rougher than the
highly hydrolysed crystalline films, e.g. MNFC/300/.
The action of the plasma is to increase voyage in the
courser particulate systems, as previously described,
due to effects of charge, fibril debonding etc. (Jun et al.
2008). In MNFC/30/, it is possible to identify irregular
both small and large voids appearing after plasma
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Fig. 5 Surface morphology and roughness of a MNFC/30/, b MNFC/150/ and ¢ MNFC/300/before and after DBD nitrogen plasma

treatment

treatment, while in MNFC/300/, the surface of the film
has almost no such jagged appearance with voids only
smaller than 1 pm. Nitrogen plasma treatment, thus,
obviously changes the morphology of the films, on
both the micro (nano) and macro level, which is likely
also to have an influence on the wetting behaviour and
decrease in CA due to the increased meniscus liquid—
solid wetting line length (Prysiazhnyi et al. 2013;
Pertile et al. 2010).

The surface chemical species are revealed by the
XPS spectra, from which the atomic % of C-C, C-O,
O—-C=0 and N can be derived, Fig. 6. The effect of
surface modification after nitrogen plasma can be
clearly seen as the level of N attachment increasing as
a function of the enzymatic removal of amorphous
content (Johansson and Campbell 2004). The samples
with increased crystalline proportion after longer
enzymatic treatment nonetheless show similar C-C
bond content. Similarly, with reduction of the
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Fig. 6 Surface
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amorphous part with increased hydrolysis, the number
of C-0O groups decreases while C=0 groups and other
C and N containing groups are formed.

The results shown in Fig. 7 reveal that with the
increase in enzymatic treatment of the raw material
pulp there is a reduction of total FSE in the
corresponding MNFC films in both polar and disper-
sive energy (green and blue unfilled symbols, respec-
tively). A reversal of the decline in FSE as a function
of enzymatic treatment can be observed resulting from
nitrogen plasma treatment, showing compensating
increases in both polar and dispersive measured

Fig. 7 Surface free energy

components (green and blue filled symbols, respec-
tively). Thus, an increase in wettability for water and
n-hexadecane is reflected by a decrease in CA as the
plasma treatment acts on the more crystalline samples
(Johansson and Campbell 2004). However, as the
roughness is also seen to increase as a function of
plasma treatment for the lower crystalline samples
(Iess exposure to enzymatic breakdown), one would
expect from the Wenzel model that the wettability
would increase. That we see a recorded increase in
n-hexadecane CA, and thus decrease in dispersive
FSE, we can conclude that the action of the plasma
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discharge on the amorphous part is initially to reduce
the dispersive energy component, and so likely act, at
least partially, to breakdown first the amorphous
content resulting in debonding and hence roughening
(Hansson et al. 2011). This effective etching of
amorphous parts of fibrils is then replaced by the
action of nitrogen attachment, such that the higher
average FSE values regained in the more crystalline
samples after plasma treatment are significantly higher
than the theoretical FSE 59.4 mJ m™2 of cellulose,
and this is achieved via the major contribution of the
plasma-induced increase in polar component.

The increased contribution of the polar component
in the FSE donated by the cationic N adsorption under
plasma exposure is, therefore, expected to enhance the
compatibility with the application of highly polar inks,
especially if their components are anionic (Vanneste
et al. 2017; Ma et al. 2010; Hoth et al. 2008). The
images in Fig. 8 confirm this expectation, where the
improved wetting of the surface by water as a function
of plasma exposure time is paralleled by the greater
pick-up (trapping) of ink colorant (Hoeng et al. 2016).

Summary and conclusions

Micro nanofibrillated cellulose films formed from
aqueous suspension can be made stronger by pretreat-
ment of the raw fibre using enzymatic hydrolysis.
However, the wettability by ionic liquids, including
functional inkjet printing inks, such as are suitably
used for printed electronics, solar cells etc., decreases

Fig. 8 1P ink printed on
MNFC/300/film showing
the dependence on
wettability of the surface
after nitrogen plasma
treatment (see also Fig. 4);
lower water droplet CA on
the film corresponds with a
significant increase in print
colour density: a untreated
film, b plasma treated for
30 s and ¢ plasma treated for
60 s

as a result, limiting the use of such films in practice.
Nitrogen plasma treatment, however, enables wetta-
bility by such formulations to be improved. The
mechanism by which this occurs has been studied in
this work presented in this paper and the following
conclusions can be drawn:

e Total free surface energy increases with nitrogen
plasma treatment of highly enzymatically hydrol-
ysed fibrillar films (contact angle decreases), with a
major increase in the polar component.

e Nitrogen is also included into the surface.

e Upon exposure to nitrogen plasma, dispersive
surface energy initially decreases on those films
made of pulp that was not treated or undergone
short enzymatic treatment time, whereas the polar
surface energy component remains relatively
unchanged on such films.

e This effect is related to the interaction of the
nitrogen plasma with the amorphous cellulose
component in the non-hydrolysed fibrils.

e The dispersive energy component can once
again be increased by exposure to nitrogen
plasma in the case of the more crystalline
fibrillar material derived from increased
hydrolysis via enzymatic pretreatment.

e The surface area per unit mass was increased by the
plasma treatment, apparently due to increased
roughness on a nanometre scale.

e Highly ionic liquids, water and solvents typically
used to disperse surfactant-containing organic-
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based inks, wet MNFC film better as hydrolysing
pretreatment of fibres is increased and subsequent
nitrogen plasma is applied.

Perspectives and future work arising from these
findings include the need to study the origins of the
surface roughening effect. Is this a random generation
of surface disruption or is there a material transfer
mechanism at play, involving perhaps vaporisation
and redisposition? The impact on the amorphous
component by plasma treatment could offer a means to
induce a phase change at the material surface.
Similarly, other gas plasma treatments should be
investigated in the longer term to understand whether
the role of atomic substitution versus the application of
energy discharge has the greater treatment potential.

Acknowledgments Open access funding provided by Aalto
University. The authors from the Institute of Physics Belgrade
gratefully acknowledge financial help from the Ministry of
Education, Science and Technological Development of the
Republic of Serbia. The authors wish to thank to Prof. Milorad
M. Kuraica from the Faculty of Physics, Laboratory for Plasma
Physics, University of Belgrade, for his patience and skill in
assisting with plasma experiments. Open access funding
provided by Aalto University.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made.

References

Afsahi G, Dimic-Misic K, Gane P, Budtova T, Maloney T,
Vuorinen T (2018) The investigation of rheological and
strength properties of NFC hydrogels and aerogels from
hardwood pulp by short catalytic bleaching (H cat). Cel-
lulose 25:1637-1655

Catia R, Castro G, Rana S, Fangueiro R (2015) Characterization
of physical, mechanical and chemical properties of quiscal
fibres: the influence of atmospheric DBD plasma treatment.
Plasma Chem Plasma Process 35:863-878

Cernakova L, Stahel P, Kovacik C, Johansson K, Cernak M
(2006) Low-cost high-speed plasma treatment of paper
surfaces. In: 9th TAPPI advanced coating fundamentals
symposium, Turku, Finland, pp 8-10

Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface
modification of biomaterials. Mater Sci Eng R Rep
36:143-206

@ Springer

Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Pal-
takari J, Maloney T (2013) The role of MFC/NFC swelling
in the rheological behaviour and dewatering of high con-
sistency furnishes. Cellulose 20:2847-2861

Dimic-Misic K, Karakoc A, Ozkan M, Ghufran HS, Maloney T,
Paltakari J (2015) Flow characteristics of ink-jet inks used
for functional printing. J Appl Eng Sci 13:207-212

Dimic-Misic K, Maloney T, Gane P (2018) Effect of fibril
length, aspect ratio and surface charge on ultralow shear-
induced structuring in micro and nanofibrillated cellulose
aqueous suspensions. Cellulose 25:117-136

Galagan Y, Rubingh JEJ, Andriessen R, Fan CC, Blom PW,
Veenstra SC, Kroon JM (2011) ITO-free flexible organic
solar cells with printed current collecting grids. Solar
Energy Mater Solar Cells 95:1339-1343

Girifalco LA, Good RJ (1957) A theory for the estimation of
surface and interfacial energies. I. Derivation and appli-
cation to interfacial tension. J Phys Chem 61:904-909

Hansson PM, Skedung L, Claesson PM, Swerin A, SchoelkopfJ,
Gane PAC, Rutland MW, Thormann E (2011) Robust
hydrophobic surfaces displaying different surface rough-
ness scales while maintaining the same wettability. Lang-
muir 27:8153-8159

Hashmi SG, Ozkan M, Halme J, Dimic-Misic K, Zakeerud-
dinSM PJ, Gritzel M, Lund PD (2015) High performance
dye-sensitized solar cells with inkjet printed ionic liquid
electrolyte. Nano Energy 17:206-215

Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in
printed electronics: a review. Nanoscale 8:13131-13154

Hoth CN, Schilinsky P, Choulis SA, Brabec CJ (2008) Printing
highly efficient organic solar cells. Nano Lett
8(2008):2806-2813

Hubbe MA, Ferrer A, Tyagi P, Yin Y, Salas C, Pal L, Rojas OJ
(2017a) Nanocellulose in thin films, coatings, and plies for
packaging applications: a review. BioResources
12:2143-2233

Hubbe MA, Tayeb P, Joyce M, Tyagi P, Kehoe M, Dimic-Misic
K, Pal L (2017b) Rheology of nanocellulose-rich aqueous
suspensions: a review. BioResources 12:9556-9661

Jens V, Ennaert T, Vanhulsel A, Sels B (2017) Unconventional
pretreatment of lignocellulose with low-temperature
plasma. Chemsuschem 10:14-31

Johansson LS, Campbell JM (2004) Reproducible XPS on
biopolymers: cellulose studies. Surf Interface Anal
36:1018-1022

Jun W, Fengcai Z, Bingqiang C (2008) The solubility of natural
cellulose after DBD plasma treatment. Plasma Sci Technol
10:743

Jutila E, Koivunen R, Kiiski I, Bollstrom R, Sikanen T, Gane
PAC (2018) Microfluidic lateral flow cytochrome P450
assay on a novel printed functionalized calcium carbonate-
based platform for rapid screening of human xenobiotic
metabolism. Adv Funct Mater 28(31):1802793-1802803

Kosti¢ M, Radi¢ N, Obradovi¢ BM, Dimitrijevi¢ S, Kuraica
MM, Skundrié P (2009) Silver-loaded cotton/polyester
fabric modified by dielectric barrier discharge treatment.
Plasma Process Polym 6(1):58-67

Kramer F, Klemm D, Schumann D, HeBler N, Wesarg F, Fried
W, Stadermann D (2006) Nanocellulose polymer com-
posites as innovative pool for (bio) material development.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Cellulose (2019) 26:3845-3857

3857

In: Macromolecular symposia, WILEY-VCH Verlag, vol
244, pp 136-148

Kumar P, Chand S (2012) Recent progress and future aspects of
organic solar cells. Prog Photovolt Res Appl 20:377-415

MaH, Yip HL, Huang F, Jen AKY (2010) Interface engineering
for organic electronics. Adv Funct Mater 20:1371-1388

Maloney TC (2015) Network swelling of TEMPO-oxidized
nanocellulose. Holzforschung 69:207-213

Mihailovi¢ D, gaponjic’ Z, Radoi¢i¢ M, Lazovié S, Baily CJ,
Jovancic¢ P, Nedeljkovi¢ J, Radeti¢ M (2011) Functional-
ization of cotton fabrics with corona/air RF plasma and
colloidal TiO, nanoparticles. Cellulose 18:811-825

Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M,
Maloney T, Paltakari J, Alava MJ (2014) Rheological
characterization of fibrillated cellulose suspensions via
bucket vane viscometer. Cellulose 21:1305-1312

Moller M, Leyland N, Copeland G, Cassidy M (2010) Self-
powered electrochromic display as an example for inte-
grated modules in printed electronics applications. Eur
Phys J Appl Phys 5:33205

Ozkan M, Dimic-Misic K, Karakoc A, Hashm SG, Lund P,
Maloney T, Paltakari J (2016) Rheological characterization
of liquid electrolytes for drop-on-demand inkjet printing.
Organ Electron 38:307-315

Pidkkonen T, Dimic-Misic K, Orelma H, Ponni R, Vuorinen T,
Maloney T (2016) Effect of xylan in hardwood pulp on the
reaction rate of TEMPO-mediated oxidation and the rhe-
ology of the final nanofibrillated cellulose gel. Cellulose
23(1):277-293

Pertile RA, Andrade FK, Alves JC, Gama M (2010) Surface
modification of bacterial cellulose by nitrogen-containing
plasma for improved interaction with cells. Carbohydr
Polym 82:692-698

Prysiazhnyi V, Kramar A, Dojcinovic B, Zekic A, Obradovic
BM, Kuraica MM, Kostic M (2013) Silver incorporation on

viscose and cotton fibers after air, nitrogen and oxygen
DBD plasma pretreatment. Cellulose 20:315-325

Rantanen J, Dimic-Misic K, Kuusisto J, Maloney TC (2015) The
effect of micro and nanofibrillated cellulose water uptake
on high filler content composite paper properties and fur-
nish dewatering. Cellulose 22:4003-4015

Schultz J, Tsutsumi K, Donnet JB (1977) Surface properties of
high-energy solids: II. Determination of the nondispersive
component of the surface free energy of mica and its energy
of adhesion to polar liquids. J Colloid Interface Sci
59:277-282

Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet
printing-process and its applications. Adv Mater
22:673-685

van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent
advances in the catalytic conversion of cellulose. Chem-
CatChem 3:82-94

Vanneste J, Ennaert T, Vanhulsel A, Sels B (2017) Unconven-
tional pretreatment of lignocellulose with low-temperature
plasma. ChemSusChem 10(1):14-31

Willberg-Keyrildainen P, Ropponen J, Lahtinen M, Pere J
(2019) Improved reactivity and derivitization of cellulose
after pre-hydrolysis with commercial enzymes. BioRe-
sources 14(1):561-574

Yinhua Z, Fuentes-Hernandez C, Khan TM, Liu JC, Hsu J, Shim
JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B
(2013) Recyclable organic solar cells on cellulose
nanocrystal substrates. Sci Rep 3:1536

Zhu H, Narakathu BB, Fang Z, Aijazi AT, Joyce M, Atashbar M,
Hu L (2014) A gravure printed antenna on shape-
stable transparent nanopaper. Nanoscale 6(15):9110-9115

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



Journal of Statistical Mechanics:
Theory and Experiment

PAPER

Growth signals determine the topology of evolving networks

To cite this article: Ana Vrani and Marija Mitrovi Dankulov J. Stat. Mech. (2021) 013405

View the article online for updates and enhancements.

This content was downloaded from IP address 147.91.80.24 on 21/04/2021 at 10:23


https://doi.org/10.1088/1742-5468/abd30b
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssm4Ie36UykNC28yxishNCWT0Qq7fRvWbubXaoMy8eEJt__Ca7xg7mQ8is0L1ufx81ylyH96FjyAYAkAy0eM-q4tPzFiqgPbNZx5uDIOThpUNMBuhKD8AcOcd6P8OIkLYtS95pGPg8p-be6654IAQBbwvyiCX0T_3AyQ6c3edpgKvLnugSZFhoBRMZwdkAayLmRO9j17Gid3Uzs29GuEzB-BuEfx3cMeHIasQA0EbXQ_rmufbZXf4UJkRP1FBxAFD5w6gG94nLeR27O42ewBZBm&sig=Cg0ArKJSzJP7-EeTbDd0&adurl=http://iopscience.org/books

ournal of Statistical Mechanics: Theory and Experiment

An IOP and SISSA journal

PAPER: Interdisciplinary statistical mechanics

Growth signals determine the
topology of evolving networks

Ana Vrani¢ and Marija Mitrovi¢ Dankulov*

Institute of Physics Belgrade, University of Belgrade, Pregrevia 118, 11080
Belgrade, Serbia
E-mail: anav@ipb.ac.rs and mitrovic@ipb.ac.rs

Received 2 November 2020
Accepted for publication 15 November 2020
Published 22 January 2021 CroseMark

Online at stacks.iop.org/JSTAT /2021/013405
https://doi.org/10.1088/1742-5468 /abd30b

Abstract. Network science provides an indispensable theoretical framework for
studying the structure and function of real complex systems. Different network
models are often used for finding the rules that govern their evolution, whereby
the correct choice of model details is crucial for obtaining relevant insights. Here,
we study how the structure of networks generated with the aging nodes model
depends on the properties of the growth signal. We use different fluctuating
signals and compare structural dissimilarities of the networks with those obtained
with a constant growth signal. We show that networks with power-law degree
distributions, which are obtained with time-varying growth signals, are correlated
and clustered, while networks obtained with a constant growth signal are not.
Indeed, the properties of the growth signal significantly determine the topology
of the obtained networks and thus ought to be considered prominently in models
of complex systems.
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1. Introduction

Emergent collective behavior is an indispensable property of complex systems [1]. Tt
occurs as a consequence of interactions between a large number of units that compose
a complex system, and it cannot be easily predicted from the knowledge about the
behavior of these units. The previous research offers definite proof that the interaction
network structure is inextricably associated with the dynamics and function of the
complex system [2-9]. The structure of complex networks is essential for understanding
the evolution and function of various complex systems [10-13].

The structure and dynamics of real complex systems are studied using complex
network theory [1, 10, 11]. It was shown that real networks have similar topological prop-
erties regardless of their origins [14]. They have broad degree distribution, degree—degree
correlations, and power-law scaling of clustering coefficient [11, 14]. Understanding
how these properties emerge in complex networks leads to the factors that drive their
evolution and shape their structure [2].

The complex network models substantially contribute to our understanding of the
connection between the network topology and system dynamics and uncover underlying
mechanisms that lead to the emergence of distinctive properties in real complex networks
[15-17]. For instance, the famous Barabasi-Albert model [15] finds the emergence of
broad degree distribution to be a consequence of preferential attachment and network
growth. Degree—degree anti-correlations of the internet can be explained, at least to a
certain extent, by this constraint [18, 19]. Detailed analysis of the emergence of clustered
networks shows that clustering is either the result of finite memory of the nodes [20] or
occurs due to triadic closure [21].

Network growth, in combination with linking rules, shapes the network topology
[22]. While various rules have been proposed to explain the topology of real networks
[10], most models assume a constant rate of network growth, i.e., the addition of a
fixed number of nodes at each time step [15, 20, 21]. However, empirical analysis of
numerous technological and social systems shows that their growth is time-dependent
[23-26]. The time-dependent growth of the number of nodes and links in the networks
has been considered as a parameter in uncovering network growth mechanisms [27]. The
accelerated growth of nodes in complex networks is the cause of the high heterogeneity
in the distribution of web pages among websites [23] and the emergence of highly cited
authors in citation networks [26]. The accelerated growth of the number of new links
added in each time step changes the shape and scaling exponent of degree distribution
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in the Barabasi—Albert model [28] and model with preferential attachment with aging
nodes [29].

The growth of real systems is not always accelerated. The number of new nodes
joining the system varies in time, has trends, and exhibits circadian cycles typical for
human behavior [24, 25, 30]. These signals are multifractal and have long-range corre-
lations [31]. Some preliminary evidence shows that the time-varying growth influences
the structure and dynamics of the social system and, consequently, the structure of
interaction networks in social systems [25, 30, 32—34]. Still, which properties of the real
growth signal have the most considerable influence, how different properties influence
the topology of the generated networks, and to what extent is an open question.

In this work, we explore the influence of real and computer-generated time-varying
growth signals on complex networks’ structural properties. We adapt the aging nodes
model [35] to enable time-varying growth. We compare the networks’ structure using the
growing signals from empirical data and randomized signals with ones grown with the
constant signal using D-measure [36]. We demonstrate that the growth signal determines
the structure of generated networks. The networks grown with time-varying signals
have significantly different topology compared to networks generated through constant
growth. The most significant difference between topological properties is observed for the
values of model parameters for which we obtain networks with broad degree distribution,
a common characteristic of real networks [10]. Our results show that real signals, with
trends, cycles, and long-range correlations, alter networks’ structure more than signals
with short-range correlations.

This paper is divided as follows. In section 2, we provide a detailed description of
growth signals. In section 3, we briefly describe the original model with aging nodes and
structural properties of networks obtained for different values of model parameters [35].
We also describe the changes in the model that we introduce to enable time-varying
growth. We describe our results in section 4 and show that the values of D-measure
indicate large structural differences between networks grown with fluctuating and ones
grown with constant signals. This difference is particularly evident for networks with
power-law degree distribution and real growth signals. The networks generated with real
signals are correlated and have hierarchical clustering, properties of real networks that
do not emerge if we use constant growth. We discuss our results and give a conclusion
in section 5.

2. Growth signals

The growth signal is the number of new nodes added in each time step. Real complex
networks evolve at a different pace, and the dynamics of link creation define the time unit
of network evolution. For instance, the co-authorship network grows through establishing
a link between two scientists when they publish a paper [37]. In contrast, the links in an
online social network are created at a steady pace, often interrupted by sudden bursts
[38]. A paper’s publication is thus a unit of time for the evolution of co-authorship
networks, while the most appropriate time unit for social networks is 1 min or 1 h.
While systems may evolve at a different pace, their evolution is often driven by the
related mechanisms reflected by the similarity of their structure [10].
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Figure 1. Growth signals for TECH (a) and MySpace (b) social groups, their ran-
domized counterparts, and random signal drawn from Poissonian distribution with
mean 1. The cumulative sums of signals’ deviations from average mean value are
shown in insets.

In this work, we use two different growth signals from real systems figure 1: (a) the
data set from TECH community from Meetup social website [39] and (b) two months
dataset of MySpace social network [40]. TECH is an event-based community where
members organize offline events through the Meetup site [39]. The time unit for TECH
is event since links are created only during offline group meetings. The growth signal
is the number of people that attend the group’s meetings for the first time. MySpace
signal shows the number of new members occurring for the first time in the dataset [40]
with a time resolution of 1 min. The number of newly added nodes for the TECH signal
is NV = 3217, and the length of the signal is Ty = 3162 steps. We have shortened the
MySpace signal to Ty = 20 221 time steps to obtain the network with N = 10000 nodes.
The signals in the inset of figures 1(a) and (b) show the cumulative sum of deviations
of signals from their average mean value, which is 1.017 for TECH and random TECH
signal, 0.47 for MySpace and random MySpace, and 1 for Poissonian signal.

Real growth signals have long-range correlations, trends and cycles [25, 30, 40]. We
also generate networks using randomized signals and one computer-generated white-
noise signal to explore the influence of signals’ features on evolving networks’ structure.
We randomize real signals using a reshuffling procedure. The reshuffling procedure con-
sists of E steps. We randomly select two signal values at two distinct time steps and
exchange their position in each step. The number of reshuffling steps is proportional
to the length of the signal T, and in our case, it equals 1007. Using this procedure,
we keep the signal length and mean value, the number of added nodes, and the proba-
bility density function of fluctuations intact, but destroy cycles, trends, and long-range
correlations. Besides, we generate a white-noise signal from a Poissonian probability dis-
tribution with a mean equal to 1. The length of the signal is 7' = 3246, and the number
of added nodes in the final network is the same as for the TECH signal.

We characterize the long-range correlations of the growth signals calculating Hurst
exponent [41, 42]. Hurst exponent describes the scaling behavior of time series
M (xt) = 2 M (t). Tt takes values between 0.5 and 1 for long-range correlated signals
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and H = 0.5 for short-range correlated signals. The most commonly used method for
estimating Hurst exponent of real, often non-stationary, temporal signals is detrended
fluctuation analysis (DFA) [41]. The DFA removes trends and cycles of real signals and
estimates Hurst exponent based on residual fluctuations. The DFA quantifies the scal-
ing behavior of the second-moment fluctuations. However, signals can have deviations
in fractal structure with large and small fluctuations that are characterized by different
values of Hurst exponents [31].

We use multifractal detrended fluctuation analysis (MFDFA) [31, 43] to estimate
multifractal Hurst exponent H(q). For a given time series {x;} with length N, we first
define global profile in the form of cumulative sum equation (1), where (z) represents
an average of the time series:

)

Subtracting the mean of the time series is supposed to eliminate global trends.
Insets of figure 1 show global profiles of TECH, MySpace, their randomized signals
and Poissonian distribution. The profile of the signal Y is divided into Ny = int(N/s)
non overlapping segments of length s. If N is not divisible with s the last segment will be
shorter. This is handled by doing the same division from the opposite side of time series
which gives us 2V segments. From each segment v, local trend p;’—polynomial of order
m~—should be eliminated, and the variance F?(v, s) of detrended signal is calculated as
in equation (2):

Pv.s) = -3 [Y() - ()] 2)

j=1

Then the ¢th order fluctuating function is:

Fy(s) = {2]1\[52[1?2(1/,5)]%} : q#0

14

(3)

Fy(s) = exp {4;\@2 In [Fz(u, s)}} , q=0.

The fluctuating function scales as power-law F,(s) ~ s@ and the analysis of log—log
plots F',(s) gives us an estimate of multifractal Hurst exponent H (¢). Multifractal signal
has different scaling properties over scales while monofractal is independent of the scale,
i.e., H(q) is constant.

Figures 1(a) and 2 show that the TECH signal has long trends and a broad prob-
ability density function of fluctuations. The trends are erased from the randomized
TECH signal, but the broad distribution of the signal and average value remain intact.
MFDFA analysis shows that real signals have long-range correlations with Hurst expo-
nent approximately 0.6 for ¢ = 2, figure 2. The TECH signal is multifractal, resulting
from both broad probability distribution for the values of time series and different long-
range correlations of the intervals with small and large fluctuations. Reshuffling of the
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Figure 2. Dependence of Hurst exponent on parameter ¢ for all five signals shown
in figure 1 obtained with MFDFA.

time series does not destroy the broad distribution of values, which is the cause for the
persistent multifractality of the TECH randomized signal is figure 2.

MySpace signal has a long trend with additional cycles that are a consequence of
human circadian rhythm, figure 1(b). Circadian rhythm is an internal process that regu-
lates the sleep-wake cycle and activity, and its period for humans is 24 h [44]. Circadian
rhythm leads to periodic changes in online activity during the day and the emergence
of a well-defined daily rhythm of activity that we see in figure 1(b). MySpace signal is
multifractal for ¢ < 0, and has constant value of H(q) for ¢ > 0, figure 2. In MFDFA
with negative values of ¢, we emphasize segments with smaller fluctuations, while for
positive ¢, the emphasis is more on segments with larger fluctuations [43]. Segments
with smaller fluctuations have more persistent long-range correlations in both real sig-
nals, see figure 2. Randomized MySpace signal and Poissonian signal are monofractal
and have short-range with H = 0.5 correlations typical for white noise.

Detailed MDFA analysis of real, shuffled, and computer-generated sig-
nals are shown in figure S1 and table S1 of the supplementary material
(https://stacks.iop.org/JSTAT /2021/013405/mmedia). In figure S1 we show in details
how the F',(s) depends on s for different values of parameter g. The curve F(s) exhibits
different slopes for different values of ¢ for multifractal signals, i.e., TECH, random
TECH, and MySpace. F,(s) curves for monofractal signals are parallel. We provide the
estimated values of H(q) with estimated errors for ¢ in a range from —4 to 4 for all five
signals in table S1 of the supplementary material.

3. Model of aging nodes with time-varying growth

To study the influence of temporal fluctuations of growth signal on network topology,
we need a model with linking rules where linking probability between network nodes
depends on time. We use a network model with aging nodes [35]. In this model, the
probability of linking the newly added node and the old one is proportional to their age
difference and an old node’s degree. In the original version of the model, one node is
added to the network and linked to one old node in each time step. The old node is
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chosen according to probability
IL(t) ~ k;(t)"7¢ (4)

where k;(t) is a degree of a node i at time ¢, and 7; is age difference between node i
and newly added node. As was shown in [35], the values of model parameters  and «
determine the topological properties of the resulting networks grown with the constant
signal. According to this work, the networks generated using constant growth signals
are uncorrelated trees for all values of model parameters. The phase diagram in a—/j
plain, obtained for § > 0 and « < 0, shows that the degree distribution P(k) ~ k™7 with
~ = 3 is obtained only along the line S(a*), see [35] and figure S2 in the supplementary
material. For a > o networks have gel-like small world behavior, while for o < o but
close to line S(a*) networks have stretched exponential shape of degree distribution [35].

Here we slightly change the original aging model [35] to enable the addition of more
than one node and more than one link per newly added node in each time step. In each
time step, we add M > 1 new nodes to the network and link them to L > 1 old nodes
according to probability II; given in equation (4). Again, the networks with broad degree
distribution are only generated for the combination of the model parameters along the
critical line B(a*). This line’s position in the a—/ plane changes with link density, while
the addition of more than one node in each time step does not influence its position.
Our analysis shows that the critical line’s position is independent of the growth signal’s
properties, see figure S2 in the supplementary material showing phase diagram. For
instance, for L = 1 networks and o = —1.25 and 8 = 1.5 we obtain networks with power-
law degree, while for L =2 and § = 1.5 we need to increase the value of parameter «
to —1.0 in order to obtain networks with broad degree distribution. Networks obtained
for the values of model parameters f(a*), L > 2, and constant growth have power-
law degree distribution, are uncorrelated and have a finite non-zero value of clustering
coefficient which does not depend on node degree, figure 4(b). If we fix the value of
parameter 5 and lower down the value of parameter o to —1.5, the resulting networks
are uncorrelated with a small value of clustering coefficient, see figure 4(a). For a < o* we
obtain networks with stretched exponential degree distribution, without degree—degree
correlations and small value of clustering exponent that does not depend on node degree
(see figure S2 in the supplementary material). For o < o the resulting networks are
regular graphs. If we keep the value of o to 1.0 but increase the value S to 2.0 we enter
the region of small world gels, see figure 4(c). The networks created for the values of
a > o are correlated networks with power-law dependence of the clustering coefficient
on the degree (see figure S2 in the supplementary material). However, these networks
do not have a power-law degree distribution.

The master equation approach is useful for studying the model with aging nodes
when M(t) =1 [45]. However, this approach is not sufficient for time-varying growth
signals. In this work, we use numerical simulations to explore the case when M (t) is a
correlated time-varying function and study how these properties influence the structure
of generated networks for different values of parameter —oo < @ <0 and S > 1 and
constant L.
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4. Structural differences between networks generated with different growth
signals

We generate networks for different values of L, and different growth signal profiles
M(t). To examine how these properties influence the network structure, we compare
the network structure obtained with different growth signals with networks of the same
size grown with constant signal M = 1. The M =1 is the closest constant value to
average values of the signals, which are 1.017 for TECH, 0.47 for MySpace, and 1 for
Poissonian signals. We explore the parameter space of the model by generating networks
for pairs of values (a, 8) in the range —3 < o < —0.5 and 1 < 8 < 3 with steps 0.5. For
each pair of (o, #) we generated networks of different link density by varying parameter
L € 1,2,3, and for each combination of («, 3, L), we generate a sample of 100 networks
and compare the structure of the networks grown with M = 1 with the ones grown with
M (t) shown in figure 1.

We quantify topological differences between two networks using D-measure defined
in [36]

N J(Pl,...,PN) J(P{,,PJ,\/) J(ug,ugf)
D(G,G)—w\/ log(d +1) _\/ log(d' 4+ 1) - log2 (5)

D-measure captures the topological differences between two networks, G and G’, on a
local and global level. The first term in equation (5) evaluates dissimilarity between two
networks on a local level. For each node in the network GG one can define the distance dis-
tribution P; = {p;(j)}, where p,(j) is a fraction of nodes in network G that are connected
to node i at distance j. The set of N node-distance distributions { Py, ..., Py} contains a
detailed information about network’s topology. The heterogeneity of a graph G in terms
of connectivity distances is measured through node network dispersion (NND). In [36]
authors estimate NND as Jensen—Shannon divergence between N distance distributions
J(Py,...,Py) normalized by log(d + 1), where d is diameter of network G, and show
that NND captures relevant features of heterogeneous networks. The difference between
NNDs for graph G and G’ captures the dissimilarity between the graph’s connectivity
distance profile.

However, certain graphs, such as k-regular graphs, have NND = 0 and can not be
compared using NND. For these reasons, authors also introduce average node distance
distribution of a graph u(G) = {u(1),..., u(d)}, where u(k) is the fraction of all pair
of nodes in the network G that are at a distance k. The Jensen—Shannon divergence
between u(G) and p(G") measures the difference between nodes’ average connectivity in
a graph G and G'. This term captures the differences between nodes on a global scale.

The original definition of D-measure also includes the third term, which quantifies
dissimilarity in node a-centrality. The term can be omitted without precision loss [36].
The parameter w in equation (5) determines the weight of each term. The extensive
analysis shows that the choice w = 0.5 is the most appropriate for quantifying structural
differences between two networks [36].

The D-measure takes the value between 0 and 1. The lower the value of D-measure
is the more similar two networks are, with D = 0 for isomorphic graphs. The D-measure

https://doi.org/10.1088/1742-5468 /abd30b 8


https://doi.org/10.1088/1742-5468/abd30b

Growth signals determine the topology of evolving networks

L=1 L=2 L=3
0.60
I
O
w
'_
0.48
Ex
Sy
o=
_
0.36
—1+ g
c >
2 2
S
s 2 . £
o T
1 fa)
-3 [ Fo.24
g -1 L 2
£, . .
> 2 '
= 1
-3 T 1 0.12
_1.
£ 3
o 86
52
LZ N
-3 : : : L1 0.00
1 2 31 2 31 2 3
B B B

Figure 3. The comparison of networks grown with growth signals shown in figure 1
versus ones grown with constant signal M = 1, for value of parameter o € [—3, —1]
and S € [1, 3]. M(t) is the number of new nodes, and L is the number of links
added to the network in each time step. The compared networks are of the same
size.

outperforms previously used network dissimilarity measures such as Hamming distance
and graph editing distance and clearly distinguishes between networks generated with
the same model but with different values of model parameters [36].

For each pair of networks, one grown with constant and one with the fluctuating
signal, we calculate the D-measure. The structural difference between networks grown
with constant and fluctuating growth signal for fixed L and values of parameters a and
is obtained by averaging the D-measure calculated between all possible pairs of networks,
see figure 3. We observe the non-zero value of D-measure for all time-varying signals.
The D-measure has the largest value in the region around the line S(a*). The values
of D-measure in this region are similar to ones observed when comparing Erdos—Rényi
graphs grown with linking probability below and above critical value [36]. For values
B < B(a*), the structural differences between networks grown with constant signal and
M (t) still exist, but they become smaller as we are moving away from the critical line.
Networks obtained with constant signal and fluctuating signals have statistically similar
structural properties in the region of small-world network gels, i.e., a > .
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We focus on the region around the critical line and observe the significant structural
discrepancies between networks created for constant versus time-dependent growth sig-
nals for all signals regardless of their features. However, the value of D-measure depends
on the signal’s properties, figure 3. Networks grown with multifractal signals, TECH,
random TECH, and MySpace signals, are the most different from those created by a
constant signal. The D-measure has the maximum value for the original TECH signal,
with Dy, = 0.552, the signal with the most pronounced multifractal properties among
all signals shown in figure 2. Networks generated with randomized MySpace signal and
Poisson signal are the least, but still notably dissimilar from those created with M = 1.

Randomized MySpace signal and Poissonian signal are monofractal signals with
Hurst exponent H = 0.5. To investigate the influence of monofractal correlated sig-
nals on the network structure, we generate six signals with a different value of
H €{0.5,0.6,0.7,0.8,0.9,1.0}, see figure S3 in the supplementary material. We use
each of these signals to generate networks following the same procedure as for signals
shown in figure 1. The results shown in figure S4 of the supplementary material confirm
that short-range correlated signals create networks with different structures from ones
grown with the constant signal. The increase of the Hurst exponent leads to increases
in the D-measure. However, D-measure’s maximal value is smaller than one observed
for multifractal signals shown in figure 3.

The value of D-measure rises with a decline of a*. This observation can be explained
by examining linking rules and how model parameters determine linking dynamics
between nodes. The ability of a node to acquire a link declines with its age and grows
with its degree. A node’s potential to become a hub, node with a degree significantly
larger than average network degree, depends on the number of nodes added to the net-
work in the T time steps after its birth. The length of the interval T decreases with
parameter «. For constant signal, the number of nodes added during this time inter-
val is constant and equal to MT. For fluctuating growth signals, the number of added
nodes during the time 7' varies with time. In signals that have a broad distribution of
fluctuations, like TECH signals, the peaks of the number of newly added nodes lead to
the emergence of one or several hubs and super hubs. The emergence of super hubs,
nodes connected to more than 30% of the nodes in the network, significantly alters the
network’s topology. For instance, super hubs’ existence lowers the value of average path
length and network diameter [10]. The emergence of hubs occurs for values of parame-
ter « relative close to —1.0 for signals with long-range correlations. As we decrease the
parameter «, the fluctuations present in the time-varying signals become more impor-
tant, and we observe the emergence of hubs even for the white-noise signals. The trends
present in real growth signals further promote the emergence of hubs. The impact of
fluctuations and their temporal features on the structure of complex networks increases
with link density.

The large number of structural properties observed in real networks are often conse-
quences of particular degree distributions, degree correlations, and clustering coefficient
[47]. Figure 4 shows the degree distribution P(k), dependence of average neighboring
degree on node degree (k),,(k), and dependence of clustering coefficient on node degree
c(k) for networks with average number of links per node L = 2. The significant struc-
tural differences between networks grown with real time-varying and constant signals
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Figure 4. Degree distribution, the dependence of average first neighbor degree on
node degree, dependence of node clustering on node degree for networks grown
with different time-varying and constant signals. Model parameters have the values
a=-15 =15 (a),a=-1.0,8=1.5(b),a = —-1.0, 8 =2.0 (c), and L = 2 for
all networks.
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are observed for the values of model parameters « = —1.0 and § = 1.5, figures 3 and
4(b). The degree distribution of networks generated for real signals shows the occur-
rence of super hubs in these networks. In contrast, degree distributions of networks
generated with white-noise like signals do not differ from one created with constant
signal, figure 4(b). Networks obtained for the real signals are disassortative and have a
hierarchical structure, i.e., their clustering coefficient decreases with the degree. On the
other hand, networks generated with constant and randomized signals are uncorrelated,
and their clustering weakly depends on the degree.

We observe a much smaller, but still noticeable, difference between the topologi-
cal properties of networks evolved with constant and time-varying signal for a < o,
figure 4(a). The difference is particularly observable for degree distribution and depen-
dence of average neighboring degree on node degree of networks grown with real TECH
signal. The fluctuations of time-varying growth signals do not influence the topological
properties of small-world gel networks, figure 4(c). For a > a*, the super hubs emerge
even with the constant growth. Since this is the mechanism through which the fluctu-
ations alter the structure of evolving networks for a < o, the features of the growth
signals cease to be relevant.

5. Discussion and conclusions

We demonstrate that the resulting networks’ structure depends on the time-varying
signal features that drive their growth. The previous research [25, 30] indicated the pos-
sible influence of temporal fluctuations on network properties. Our results show that
growth signals’ temporal properties generate networks with power-law degree distribu-
tion, non-trivial degree—degree correlations, and clustering coefficient even though the
local linking rules, combined with constant growth, produce uncorrelated networks for
the same values of model parameters [35].

We observe the most substantial dissimilarity in network structure along the critical
line, the values of model parameters for which we generate broad degree distribution
networks. Figure 3 shows that dissimilarity between networks grown with time-varying
signals and ones grown with constant signals always exists along this line regardless of
the features of the growth signal. However, the magnitude of this dissimilarity strongly
depends on these features. We observe the largest structural difference between networks
grown with multifractal TECH signal and networks that evolve by adding one node in
each time step. The identified value of D-measure is similar to one calculated in the
comparison between sub-critical and super-critical Erdos—Rényi graphs [36] indicating
the considerable structural difference between these networks. Our findings are further
confirmed in figure 4(b). The networks generated with signals with trends and long-
range temporal correlations differ the most from those grown with the constant signal.
Our results show that even white-noise type signals can generate networks significantly
different from ones created with constant signal for low values of a*.

Randomized and computer-generated signals do not have trends or cycles. Never-
theless, networks grown with these signals have a significantly different structure from
ones grown with constant M. Our results demonstrate that growth signals’ temporal
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fluctuations are the leading cause for the structural differences between networks evolved
with the constant and time-varying signal. We observe the smallest, but significant,
difference between networks generated with constant M and monofractal signal with
short-range correlations. As we increase the Hurst exponent, the value of the D-measure
increases. The most considerable differences are observed for multifractal signals TECH,
random TECH, and MySpace.

The value of D-measure declines as we move away from the critical line, figure 3. The
primary mechanism through which the fluctuations influence the structure of evolved
networks is the emergence of hubs and super hubs. For values of a < o, the nodes
attache to their immediate predecessors creating regular networks without hubs. For
a < o graphs have stretched exponential degree distribution with low potential for the
emergence of hubs. Still, multifractal signal TECH enables the emergence of hub even
for the values of parameters for which we observe networks with stretched-exponential
degree distribution in the case of constant growth figure 4(a). By definition, small-world
gels generated for a > o* have super-hubs [35] regardless of the growth signal. Therefore
the effects that fluctuations produce in the growth of networks do not come to the fore
for values of model parameters in this region of a—f plane.

In this work, we focus on the role of the node growth signal in evolving networks’
structure. However, real networks do not evolve only due to the addition of new nodes,
but also through addition of new links [27-29, 38]. Furthermore, the deactivation of
nodes [48] and the links [48] influence the evolving networks’ structure. Each of these
processes alone can result in a different network despite having the same linking rules.
The next step would be to examine how different combinations of these processes influ-
ence the evolving networks’ structure. For instance, in [28], authors have examined the
influence of the time-dependent number of added links L(¢) on the Barabési—Albert
networks’ structure. They show that as long as the average value of time-dependent
signal (L(t)) is independent of time, the generated networks have a similar structure
as Barabasi—Albert networks, and that the degree distribution depends strongly on the
behavior of (L(t)). It would be interesting to examine how correlated L(t) signals influ-
ence networks’ structure with aging nodes, where the age of a node plays a vital role
in linking between new and old nodes. Moreover, we expect that the combination of
time-varying growth of the number of nodes and the number of links will significantly
influence these networks’ structure.

Evolving network models are an essential tool for understanding the evolution of
social, biological, and technological networks and mechanisms that drive it [10]. The
most common assumption is that these networks evolve by adding a fixed number of
nodes in each time step [10]. So far, the focus on developing growing network models was
on linking rules and how different rules lead to networks of various structural properties
[10]. Growth signals of real systems are not constant [25, 30]. They are multifractal,
characterised with long-range correlations [25], trends and cycles [40]. Research on tem-
poral networks has shown that temporal properties of edge activation in networks and
their properties can affect the dynamics of the complex system [12]. Our results imply
that modeling of social and technological networks should also include non-constant
growth. Its combination with local linking rules can significantly alter the structure of
generated networks.
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Abstract: Various mathematical frameworks play an essential role in understanding the economic
systems and the emergence of crises in them. Understanding the relation between the structure of
connections between the system’s constituents and the emergence of a crisis is of great importance.
In this paper, we propose a novel method for the inference of economic systems’ structures based
on complex networks theory utilizing the time series of prices. Our network is obtained from the
correlation matrix between the time series of companies’ prices by imposing a threshold on the values
of the correlation coefficients. The optimal value of the threshold is determined by comparing the
spectral properties of the threshold network and the correlation matrix. We analyze the community
structure of the obtained networks and the relation between communities’ inter and intra-connectivity
as indicators of systemic risk. Our results show how an economic system’s behavior is related to its
structure and how the crisis is reflected in changes in the structure. We show how regulation and
deregulation affect the structure of the system. We demonstrate that our method can identify high
systemic risks and measure the impact of the actions taken to increase the system’s stability.

Keywords: complex networks; time series; economic systems; evolution of community structure

1. Introduction

Economic crises negatively impact people’s lives. They influence every aspect of
individual and social development. Therefore, it is essential to prevent a crisis or alleviate
its impact by promptly taking appropriate action. Thus, it is necessary to understand the
economic system’s functioning and behavior before, after, and during the crisis. Different
approaches have been applied towards that end, including economic [1,2] and quantitative
approaches [3-9].

The economic system is a complex system consisting of many interacting units whose
collective behavior cannot be inferred from individual units” behavior. The behavior of
the complex system is determined by its structure [10,11]. To understand the behavior and
function of a complex system, one needs to describe its structure and understand how
this structure evolves. Complex networks theory provides tools for the inference of the
structure of a wide range of systems, including biological [12], social [11], technological
[13], and economic systems [14]. The construction of economic networks is mostly achieved
by mapping the flow of funds between companies [15] or transforming time series into a
correlation matrix [14]. These two networks are complementary, although they overlap
to a certain extent. The former network requires more time-consuming data collection,
while the advantage of obtaining a network from time series is in its simplicity and the
availability of data. The appropriate method for efficiently extracting information from
time series is essential since it provides insights into the system’s structure at a relatively
low data collection cost.
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Existing methods for obtaining networks use as input data either the time series of
logarithmic returns [16] or methods based on detrended logarithmic returns [14]. Both are
derived from the time series of prices. The direct use of the prices is often avoided because
they are non-stationary and contain trends.

Current works obtain a network from a correlation matrix by applying filtering meth-
ods such as the minimum spanning tree (MST) [17], planar maximally filtered graph
(PMFG) [14], and threshold method [18]. Complex networks, including economic networks,
are characterized by the rich mesoscopic structure, known as communities [19]. MST and
PMEFG techniques are not appropriate for analyzing communities in a network and their
interconnections as they focus on including all nodes in the network, disregarding stronger
intra-community connectivity [20]. Existing methods that use the threshold method do not
differentiate between relevant and less relevant edges, filtering out essential information
about the system.

The economic crisis is a common research topic [3-9]. These works contribute to
a better understanding of crisis by examining the system’s functioning using different
quantitative methodologies. This diverse approach is especially beneficial for a better
understanding of the crisis. Input data are the time series of market indices coming from
different countries [21] or time series of companies’ stock prices constituting, for example,
the S&P 500 index [6]. The former data do not include many constituents and are used
in works where the subject understands global interaction. The latter focuses on the USA
market, which can have up to 500 constituents, the largest USA companies, and all sectors.

In this work, we propose a new approach for obtaining the network from price time
series, which provides insight into the system’s structure. Our motivation is to obtain an
optimal network containing sufficient information and as few edges as possible, allowing
efficient analysis. Moreover, we want to gain insight into the change in the system’s
structure due to the economic crisis. We use a time series of prices and apply detrending
to those series. We demonstrate that the system’s structure can be inferred from these
data, thus broadening the dataset options for the empirical study of complex systems. We
applied this approach for obtaining a network from a correlation matrix that differentiates
between edges based on their relevance to network topology. Using this approach, we
studied the evolution of the USA financial sector’s network structure. The financial sector is
the heart of the economy since companies in this sector enable a flow of funds through the
economy. The 2008 economic crisis was catalyzed by subprime mortgage-backed securities
in the USA and spread to mutual funds, pensions, and other parts of the financial sector,
with national and global impacts. The USA financial sector occupied a central place in the
emergence and development of the 2008 crisis. For these reasons, we focus on studying the
evolution of company relations in this sector. Our input data present all companies from the
domestic financial sector, the source of the 2008 crisis. We identify the relationship between
the economic system’s structure and behavior before, during, and after the crisis. Our
analysis shows how an economic crisis affects a system’s structure on a mesoscopic level.
We examine the relationship between inter- and intra-community connectivity. We show
that, using this approach, we can detect crises and different interventions by governments
and policy-makers by examining the community structure and their connections. By adding
the different perspectives of observing the system’s behavior in crisis, we contribute to a
better understanding of connectivity and relations within the economic system.

The rest of the paper is organized as follows. In Section 2, we give an overview of
previous work on the following topics: time series processing, obtaining networks from
correlation matrix, and methods for studying economic crisis. In Section 3.2, we provide
a detailed description of our approach. We present our results in Section 3.1, and discuss
these results and conclude in Section 5.
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2. Related Work
2.1. Time Series Processing

The time series of prices are not suitable for calculating the correlation matrix since
they have strong trends and are non-stationary. Different methods were applied in order
to overcome these problems. One of the methods is based on the simple transformation
of prices into logarithmic returns [6,21-25], derived as r; = In %, where P; presents the
price at time ¢. These series fluctuate around the mean, which is constant and close to zero.

The other methods apply detrending techniques on the time series of returns [14,26-28].
These detrending techniques differ according to trend calculation. Zhao et al. [14] make a
cumulative time series of returns and calculate the trend for each series separately based on
the detrending fluctuation analysis technique [29]. Random matrix theory is used to calcu-
late market component, representing the trend in [26,28]. Musmeci et al. [27] calculate the
market component based on average returns for all companies considered in the analysis.

Some works used the auto-correlation of time series of returns to derive residuals,
which are then used to calculate the correlation matrix [17,30]. Dynamic conditional
correlation multivariate generalized autoregressive conditionally heteroscedastic (GARCH)
model, DCC-MVGARCH, is used in these works.

2.2. Obtaining Network from Correlation Matrix

Obtaining a network from a correlation matrix suitable for gaining insights into the
system’s structure is a complex problem. It involves the usage of an appropriate filtering
method. The method should ensure that relevant information is present in the network
and that redundant edges are removed. Not satisfying any of the two requirements
can lead to false conclusions. Existing filtering methods include the minimum-spanning
tree (MST) [17,30-32], planar maximally filtered graph (PMFG) [6,14,33,34] and threshold
method [18,20-23,28].

The threshold method filters out information based on correlation strength, while
MST and PMFG combine correlation strength to include all graph nodes and planarity.
From the perspective of inter- and intra-connectivity between communities, inclusion and
planarity criteria result in a connected graph at the price of not including all relevant
edges. Onnela et al. [20] compared the threshold method with MST and showed that a
threshold network with the same number of edges as MST results in a disconnected graph.
These results imply that intra-community edges are more robust than edges between
the communities. Moreover, in [6], PMFG leads to the conclusion that in times of crisis,
communities are less connected than they out of crisis, which is in contrast to results
obtained using random matrix theory [3,7].

The threshold method is more suitable for analyzing community structure in the
network. However, the problem is finding the optimal threshold value. A lower threshold
is desirable to include as much information as possible. On the other hand, a higher
threshold is preferable since it provides a sparse network, which is easier for analysis.
The optimal threshold is the one that filters out noise from the network structure and
leaves the edges that carry relevant information about mutual relations between entities.
Onnela et al. [20] proposed clustering coefficient as the criteria for determining the threshold
value. However, there is no substantial evidence that the clustering coefficient is more
relevant than other network measures.

X. Cao et al. [28] calculated the optimal threshold by comparing clustering coefficients,
the average shortest path length, and the size of the giant component between random
graph and empirical network for different threshold values. They determine the optimal
threshold at which the structural difference between empirical and random networks is at
the highest level. While these network properties are one of the most investigated ones, they
are not inclusive of other topological properties [35]. The work from C. Orsini et al. [35]
indicates that the degree sequence, joint degree matrix, average clustering coefficient,
and its dependence on the node degree are sufficient to describe the topology of most of the
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networks. In contrast, the giant component’s average shortest path length and size depend
on these properties.

Xue Guo et al. [18] determine the threshold based on the community’s correlation
strength. This approach underestimates the inter-connectivity between communities as
higher importance is given to intra-community edges. Inter-community edges impact
the diffusion process in a network and should be recognized appropriately. Moreover,
according to the max-flow min-cut theorem, edges between communities are essential since
the information flow is maximal through them.

S. Kumar et al. [21] set different thresholds to show how network characteristics,
such as the component number and maximum clique size, change with the threshold.
Xia et al. [23] determine the threshold by using the probability distribution of corre-
lation coefficients and setting the threshold at the expected value plus multiples of
standard deviations.

The mentioned threshold methods do not provide quantitative insights into how
much information is filtered from the network. The complete correlation matrix carries
all information about the structure of the network. Once threshold filtering is applied,
a certain amount of information is lost. Therefore, it is essential to have quantitative insight
into how much information we included in the network. It is vital to see which edges carry
the relevant information about the systems’ topology and which are redundant. Here, we
propose a quantitative measure based on the network’s spectral properties to determine
the optimal value of the threshold.

2.3. Crisis Examined Using Quantitative Methodologies

Different quantitative methods have been applied to better understand the impact
of the crisis on the economic system. V. Filimonov et al. [5] used the Poisson Hawkes
model and developed a measure to determine whether price fluctuations are due to an
endogenous feedback process as opposed to exogenous news. A. M. Petersen et al. [4]
studied cascading dynamics and related the Omori, productivity, and Bath laws with
financial shocks. G. Oh et al. [36] used entropy density function in return time series, while
K. Yim et al. [37] used the Hurst exponent.

Complex networks theory is also used for the analysis of crisis impact. X. Cao et al. [28]
have shown that the crisis impacts the average degree, size of the giant component, and clus-
tering coefficient. S. Kumar et al. [21] presented how the crisis affects the formation of
clusters and the structure of minimum spanning trees. A. Nobi [24] showed the impact of
the crisis on degree distribution and cluster formation. M. Wilinski [38] showed that MST
changes structure from a hierarchical scale-free MST to a superstar-like MST decorated by
a scale-free hierarchy of trees. L. Zhao et al. [6] examined how the crisis affects the number
of communities and inter-sector edges.

Existing methods that use complex networks to analyze the impact of a crisis primarily
consider either mapping country indices [21] or the constituents of leading indices S&P
500 [6]. The former network comprises nodes representing different countries, while
the latter network nodes represent companies from different sectors. These companies
are, for example, for index S&P 500, the largest 500 companies in the USA. This work
demonstrates our approach to studying the evolution of relations between companies in
the USA financial sector. We show that laws and policies strongly influence the system’s
structure. The network’s community structure reflects the pre-crisis, crisis, and post-
crisis periods.

3. Materials and Methods
3.1. Data

Innovative solutions such as derivatives and securitization in the financial sector that
were not followed by developing the system’s regulatory framework created a bubble in
the housing and credit supply markets. The bubble burst in 2008 due to the subprime
mortgage crisis, which led to a worldwide economic crisis. This work studies the long-term
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relations between companies in the USA’s financial sector and its evolution from 2002
until 2017. This period includes the time before the 2008 crisis, the period during the
crisis, and the economic recovery period. The financial sector includes companies whose
main economic activity is asset management, real estate investment trusts (REITs), banks,
insurance, and municipal funds.

We obtained data from the publicly available Finance Yahoo database https://finance.
yahoo.com/ accessed on 27 September 2018 which contains various information data about
the company’s values and how they have changed with time. The database comprises differ-
ent data types, for instance, opening, closing, intraday, adjusted closing prices, and trading
volume. The information is given for different aggregation intervals: day, week, and month.
For this study, we used adjusted daily closing prices. The closing price means that the price
is taken at the end of the business day after trading is closed. The price fluctuates between
the opening and closing of a business day. Adjusted means that the price is corrected to
exclude the effect of dividend pay-out and stock split. The impact of dividend pay-out
and splits of stock would provide misleading information. A split or dividend pay-out can
significantly change the price, although the company’s real value did not change.

For each year T € {2002, ...,2017}, we collected the time series x] (t) of the adjusted
closing price at the end of each trading day ¢ for each company i. Each time series’ length
equals the one-year or 252 trading days. The number of companies in each year N.(T)
varies since some companies were founded after 2002, and some of them were closed before
2017. Table 1 shows the number of companies active in year T in the USA financial sector
according to the Yahoo Finance database.

Table 1. The number of USA financial sector companies in each year T according to the Ya-
hoo database.

T N(T) T N.(T)
2002 518 2010 762
2003 558 2011 786
2004 609 2012 804
2005 653 2013 825
2006 695 2014 855
2007 711 2015 884
2008 740 2016 892
2009 748 2017 888

Table 1 shows that the number of companies in the USA financial sector grew by
7.5% per year on average before 2007. The crisis and economic recovery period from 2007
until 2015 had much slower growth, with an average relative increase in the number of
companies of approximately 2.7%. There was a certain stagnation of this growth in 2016
and 2017.

3.2. Methodology

This work proposes a method for determining the network of relations between
companies based on their stock price time series. We use this method to study the evolution
of cohesion of financial sector companies whose stocks are publicly traded on the USA’s
stock exchange. With this method, we explore the evolution of mutual influences and
how this evolution is shaped by different critical events, such as the world economic crisis
in 2008.

Our method consists of three steps. In the first step, we perform a detrending time
series of stock prices for each considered company. In the second step, we calculate the
matrix of Pearson correlation coefficients using this detrended time series. In the final
step, we apply the threshold filtering of correlation coefficients to extract the companies’
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network of relations. We then analyze and compare the topology of the networks obtained
for different years.

3.2.1. Time Series of Prices for Obtaining Network

In our approach, the companies are represented by nodes, and edges represent com-
panies’ relationships. As input data, we use the time series of stock prices. We consider
the time series of each company’s adjusted daily closing prices. The considered time series
are non-stationary and have strong trends, as can be seen in Figure 1 (green line), which
are often the consequence of different external influences. The non-stationarity of the time
series and the trends can lead to false, highly positive, or negative correlations between
companies. To avoid this, we remove the trends by detrending the time series using the
method proposed in [29]. The detrended time series is the time series of the fluctuations.

Original time series xiT (t) consists of 252 values of adjusted daily stock prices of the
company i during year T. In [29], the authors considered the differential time series of
fluctuations and then performed detrending on the cumulative time series. Our original
time series are already cumulative, thus omitting this step in our calculations. We divide the
time series on k non-overlapping segments of equal size l,so that k = 7. We determine the

linear trend of time series x; by fitting the equation y; ( ) = a X t+ b] and determining the
coefficients a’ ; and bf for each segment j, as can be seen in Figure 1 (red line). The detrended

time series equals the original time series minus the trend on each segment, i.e., x! (t) =

xI(t) — yf: (t). The resulting time series is stationary, and its average value is approximately
zero. By removing the trend typical for period I, we only consider fluctuations that result

from mutual influence between companies.

—— Original Series
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---------- Detrended Series
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Figure 1. Example of a time series of prices for one company belonging to the USA financial sector.
The green line is the original time series, the red line shows the trend, and the blue line is a detrended
time series of prices.

We apply detrending to each company’s time series. The detrended time series are
used for the calculation of the Pearson correlation coefficient matrix for year T, where each
element of the matrix is calculated using the following formula:

o (e (O = ) (e () = i)

Pij= — —
] W_l(x?(t) i) i (] (1) = i P

, M
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T

where x; (t) and ?(t) are the detrended time series of companies i and j in year T, fi_r

and fI_ are estimated average values over period 1 = 252 for the detrended time series of
i
companies i and j. The matrix with ﬁlT] elements is symmetrical and takes values from —1
tol.

In order to obtain the network of mutual influences between considered companies
for the year T, we only take into account the correlation coefficient with a value above a

certain threshold 9, i.e.,

AT ip AT
T )P if i > 0 )
YT o gl <o @
;=

Determining the threshold value 6 is not a simple task. In their approach, Zivkovi¢ et al. [39]
assumed that the most optimal value of the threshold can be determined from the relation
between the threshold value and the size of the largest component in the network obtained
for that value. The giant component is the largest set of connected nodes in the network [10].
The dependence of the size of giant component S on the threshold value 6 has a charac-
teristic steep decline in the giant component’s size for a particular value of the threshold
6c. The abrupt deterioration implies the detachment of a group of nodes forming separate
components. 6. is the threshold value for which one can observe essential changes in the
network structure. The threshold value is determined as the one which is slightly smaller
than 6..

Figure 2 shows the dependence of the size of the giant component S on the value
of threshold 0 for the financial sector in the year 2015. There are two steep drops in the
value of the giant component’s size, one for the values of the threshold starting from 0.54
and ending at 0.56, and one starting from 0.78 and ending at 0.82. This indicates that
observed networks elapse through a series of significant structural changes; thus, it is hard
to determine the optimal threshold value.

800

600 o

5(0)

200 \

0
02 03 04 05 06 07 08 09
6

Figure 2. Dependence of size of giant component (S) on value of threshold (6).

For these reasons, we adopted a different approach. We determine the optimal thresh-
old for filtering the correlation matrix based on the networks’ spectral properties. The prob-
ability distribution of the eigenvalues of the adjacency matrix fundamentally describes
a system and contains the complete information about its topology [40—42]. Different
networks, such as Erdos—Reniy and Barabasi—Albert graphs, have different probability
distributions of eigenvalues. The difference between the two networks is proportional to
their structural differences.

We compare the empirical economic network’s spectra with the spectra of different
random networks to demonstrate our claims. C. Orsini et al. [35] proposed a method to
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create a line of random networks, each topologically more similar to an empirical network.
We obtained a network from the correlation matrix by applying the threshold method
and using it as the empirical network. We generated three random networks (RNs) based
on the empirical network properties. RN1 has the same average degree as the empirical
network, while other topological properties are random. The RN2 has the same degree
sequence and consequently, the average degree as the original network. The RN3 has the
same joint degree matrix, degree sequence, average degree, and the most similar topology
to the empirical network.

Figure 3 shows the spectra of the empirical network obtained for 2005 and three
random networks. The RN1 has the most different spectral properties than the empirical
network, while the RN3 has the most similar spectra. Each random network only contains
a fraction of information about the relations between nodes in the empirical network.
The difference between spectra decreases as we increase the number of properties similar to
the empirical network. Our analysis demonstrates that we can use the comparison between
spectra to evaluate the optimal threshold.

RN1
50 —— RN2
—— RN3
50 — Empirical Network
40
=
3 30
20
10
0
-20 0 20 40 60

A

Figure 3. The probability distribution of eigenvalues for empirical network for year 2005 and three
random networks.

We used the same approach to compare the full correlation matrix, represented as a
weighted and filtered network.

The correlation matrix contains complete information about the system and can be
represented as a weighted graph. Once the threshold is applied to the correlation matrix,
edges with weights less than the threshold are removed. A filtered network thus only
has a fraction of information about companies’ relations. By comparing the probability
distributions of eigenvalues for original and filtered matrices, we understand how much
information is lost due to filtering.

To quantify this difference, we use the Kolmogorov-Smirnov (KS) distance. We
calculate the KS distance between the probability distributions of eigenvalues for the
original and filtered correlation matrices for different threshold values. The lower value
of KS distance implies a better agreement between spectra and higher similarity between
networks’ topologies. Therefore, we want the KS distance to be as low as possible.

Figure 4 shows the KS dependence on the threshold for 2008, 2009, 2014, and 2015.
As we expect, the KS distance increases with the threshold value. At the threshold —0.5,
the KS distance is equal to zero as complete information is included in the network, while
the KS distance reaches its maximum for a threshold close to 1. The dependence of KS
on threshold has a local minimum at the value 6,, > 0 and is similar to the KS distance
at the threshold 6 = 0. We keep the same information about the network structure by
fixing the threshold’s value at 0 or 6,,. However, a network at 0 is denser and thus more
complicated for the analysis. By setting the threshold value to 6,, for which we observe
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the local minimum for the KS distance, and we obtain the optimal network with enough
information about the relations between companies, which is not excessively dense.
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Figure 4. Kolmogorov-Smirnov distance between the probability distributions of the eigenvalues of
correlation matrices obtained from original and filtered matrix for the years 2008 (a), 2009 (b), 2014

(), and 2015 (d).

The probability distributions of correlation coefficients differ for each year, as can be
seen in Figure 5; thus, it is not surprising that the local minimum is different for each year.
We calculate the local minimum for each year separately and obtain the network based on
corresponding thresholds. Table 2 shows the local minima 6 for different years.
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Figure 5. Probability distribution of the correlation coefficients for the years 2015, (a,b), and 2009,
(c,d). (a,c) present distributions obtained from original time series, while (b,d) are the distributions

obtained from detrended series.
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Table 2. The threshold values obtained for different years.

Year 0 Year 0
2002 0.35 2010 0.525
2003 0.325 2011 0.55
2004 0.425 2012 0.475
2005 0.35 2013 0.475
2006 0.35 2014 0.45
2007 0.475 2015 0.5
2008 0.55 2016 0.55
2009 0.475 2017 0.375

3.2.2. Measuring the Intra- and Inter-Community Connectivity

We are interested in the mesoscopic structure of the networks and how it changes
with time. A community is a group of nodes more densely connected than the rest of the
network [19]. Communities are an indicator of the system’s collective behavior, and the
network’s community structure provides essential information about its dynamics and
function [19]. In this work, we apply the Louvain algorithm [43] to find communities in
weighted networks. The results of the Louvain algorithm for a single run may differ due
to different initial conditions. We run a Louvain algorithm each year 100 times for these
reasons. For each community CMiT’r, where T denotes a year and r denotes the run of
the Louvain algorithm, we calculate the ratio between edges inside the community and
all edges formed by nodes belonging to that community. We calculate the ratio using the
following equation

cm!”
cm! L. .
P = i=12,.,R (3)
LM,
Total
cMmT Ty ,CMI7
where L, "' is the sum of weighted edges inside the community CM; ", Ly | is the

total sum of weighted edges of nodes in the community CMiT’r, and RT” is the number
of communities for the network obtained for time period T and run r. First, the average
T,r

CM; o . . .
P, " over all communities obtained in the single run

M
T, LiP,
(Py") = ZR% ’ (4)
and then we obtain the average over all runs
£ (Py")
Py = in
< li’l> 100 4 (5)

and standard deviation

Ty _ (pIryy?
%#z«m (PL")) ©

99

4. Results

This work focuses on how the network structure changed when the system went
through the 2008 economic crisis. We selected the period between 2002 and 2017, which
covers the time before, during, and after the crisis. The number of companies varies
between 518 in 2002 and 888 in 2017, as can be seen in Table 2.

We detrended each segment separately and calculated the correlation matrix {p; ;}
between the companies for each year T € {2002, ...,2017}. We detrended the time series
for the interval | = 21 trading days, which equals one average trading month. We then
mapped the correlation matrix to the adjacency matrix using the threshold method and
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obtained an undirected weighted network for the year T. We use the approach described
in Section 3.2 to determine the threshold. We performed community structure analysis

and calculated the P! and oy, for each year. The analysis of community structure and the
m
evolution of their cohesion shows how the network structure evolves.

4.1. Characteristics of the Correlation Matrix and Obtained Network

Detrending helps extract information about the economic system’s internal behavior
and relationships between companies. Figure 5 shows a probability distribution of correla-
tion coefficients p(g; ;) for the original time series and detrended time series for years 2009
and 2015. The p;;(0; ;) shown in Figure 5a was calculated for the original time series for
the year 2015 and resembles a uniform distribution. Figure 5b shows the probability dis-
tribution obtained from the detrended series and is more similar to Gaussian distribution.
The center of Gaussian varies between years. The distribution of correlation coefficients
changes during the economic crisis period, as can be seen in Figure 5c¢,d. If we obtain
the correlation matrix from the original time series, most companies are highly correlated,
with correlation coefficients between 0.9 and 1, as can be seen in Figure 5c. The distribution
of correlation coefficients obtained from detrended time series during an economic crisis is
a convolution of two Gaussians, Figure 5d.

After detrending the time series and calculating the correlation matrix, we used a
method described in Section 3.2 to obtain an undirected weighted network. We ran Louvain
on the networks and found the community structure. Figure 6 shows the networks for
the years 2004, 2006, 2008, and 2015. Based on examining communities by comparing
their constituents” characteristics, we concluded that their edges imply exposure to similar
factors. Namely, the nodes belonging to a community, i.e., companies in the same sector,
have different owners, operate in different states, and have different clients. Common to
these companies is their economic activity, i.e., their functioning is similar. Therefore, we
obtain a network where edges reflect exposure to similar factors.

a

Figure 6. Networks obtained from detrended time series in the years 2004 (a), 2006 (b), 2008 (c),
and 2015 (d). Networks are obtained by applying the threshold given in Table 1. The number of
nodes and edges, respectively, is equal to 554 and 23,340 (a), 652 and 43,167 (b), 677 and 47,590 (c),
and 793 and 58,291 (d). Nodes of the same color belong to the same community.
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Inter-community edges indicate that even companies belonging to different subsectors
may operate under similar conditions. For example, a bank and REIT company are exposed
to similar external factors if they are linked to the residential project, where a bank lends
money to home buyers while REIT invests in project development.

Robust intra-community connectivity indicates that companies in the same community
operate under similar conditions and are susceptible to the same factors. The low value
of correlation coefficients between companies belonging to different sub-sectors suggests
that specific factors typically affect them. Strong connectivity between network nodes
is an indicator of its high vulnerability. A system with a distinct community structure
and stronger connectivity within the communities than between the communities is more
robust than one with similar strengths of connections between and within the communities.

We are interested in the evolution of the ratio between intra- and inter-community
connectivity and how this ratio changes when the system is in different states, such as
during crisis and out-of-crisis periods.

4.2. Relation between Inter and Intra-Connectivity of Communities and Its Evolution

We analyze the community structure of networks for each year from 2002 to 2017
using the Louvain method. The results of applying the Louvain method, which includes
the number and structure of communities, depend on the initial conditions. As a result,
different runs of the Louvain algorithm on the same network may result in a different num-
ber of communities depending on how network nodes are assigned to these communities.
For these reasons, we ran the Louvain algorithm 100 times on each of the 16 networks
and calculated the average number of communities and the average connectivity of these
communities. Figure 7a shows the evolution of the number of communities between 2002
and 2017. The number of communities fluctuates with time and grows after the peak of the
crisis in 2008, with two distinctive local minima in 2010 and 2013. Furthermore, the number
of detected communities in 2004, 2008, and 2015 is equal for each of the 100 runs of the
Louvain algorithm, suggesting a stable community structure in these networks. We observe
the lowest number of communities for 2008, which indicates the lowest differentiation
between sectors within the financial industry during the financial crash.
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Figure 7. The evolution of the average number of communities (a) and average intra-connectivity (b)
for networks from 2002 to 2017.

We analyze the intra- and inter-community connectivity for the networks obtained
for each year from 2002 to 2017. Figure 7b shows <P!> for the years from 2002 to 2017.
Higher values of <Pl-£> imply higher community intra-connectivity, while lower values
indicate higher community inter-connectivity. The error bars shown in Figure 7b are
standard deviations calculated on the sample of 100 runs. Low standard deviation implies
similar intra-community connectivity among communities. The peak of intra-community
connectivity is observed in the year 2004. The interconnectivity then drops to its minimal
value in 2006, where the connectivity within the communities grows and has local maxima
in 2008, which slowly decreases until 2014. In 2015, we observed another smaller rise
in connectivity.
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The networks of the years 2004, 2008, and 2015 have two essential features. They
have a very stable number of communities, independent from the initial conditions of the
Louvain method. Furthermore, the intra-community connectivity for these networks has a
local maximum in these years with a very low standard deviation.

Figure 7a shows that the intra-community connectivity (PI ) has the local minima in
the year 2006, indicating high connectivity between communities. In 2006, the system had
the highest potential for diffusion between communities, meaning that one community’s
disturbance could easily be transmitted to any other community. If this disturbance is a
failure, the system is at high risk of efficiently spreading failure and breaking down. Our
result matches what happened to the USA financial sector since 2006 was the year before
the crisis started in 2008. Other researchers have predicted the beginning of the crisis [1].
High and consistent inter-community connectivity in 2006 indicates that companies in
different sectors were susceptible to the influence of the same factor. This factor was real
estate lending, which pulled most of the financial industry. Many financial sectors were
directly or indirectly involved in real estate lending, leading to the relationship network’s
almost homogeneous structure. The local minima in 2006 preceded a peak in 2004, where
communities were well defined.

A crisis is followed by a period of recession, which is recognized by lower values of
economic indicators such as employment, gross domestic product, household net worth,
and federal surplus or deficit. Figure 8 shows the relative change of these four indicators for
the USA economy between 2002 and 2017. We see that the recession period lasted from 2009
and ended in 2014. Our results indicate that the standard deviation for intra-community
connectivity has higher values for the same period, while its values decrease between
2014 and 2017. We see from Figure 7b that standard deviation (Pl ) was higher during the
economic recovery compared to the post-crisis period.
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Figure 8. Economic variables which indicate whether the system is in the state of crisis or out of crisis
such as (left top) employment, (right top) gross domestic product, (left bottom) household net worth,
and (right bottom) federal surplus or deficit.

We observe the increase in (P! ), see Figure 7a in the years 2007 and 2008, after reaching
its minimum in 2006. In 2007, companies in the financial system understood that the
economy was in bad condition and that interconnection was high. Communities tried to
depart from each other, leading to a high (P!} and low o}y in the year 2008. However,
the number of communities N (T) decreased in 2008 because two communities merged
into one, regional banks and REITs. We observed the homogenizing of the system in a
different form where the number of different sectors decreased.
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Effect of Regulation on Structure and Behavior

The USA financial system has to be controlled to prevent the system break down
and decrease systemic risk [1]. Control is realized through appropriate regulations. High
restrictive regulation may prevent a crisis. However, it can jeopardize economic growth
since it limits companies’ profits [1]. Less stringent regulations enable higher yields but
increase systemic risk. Therefore, an optimal level of regulation has to be implemented,
allowing a thriving economy while decreasing systemic risk. The regulations impose
restrictions on companies’ behavior, while deregulation provides companies with a higher
degree of freedom. They both define the behavior of comprising elements of the system.
The effect of regulation and deregulation on the system results from the collective behavior
of incorporating elements. One needs tools to measure the impact of regulations on the
system to create optimal regulations. Our methodology provides insight into the influence
of regulation and deregulation on a system’s structure and behavior.

Deregulation took place in 2004 [44] and proposed a system of voluntary regulations
where investment banks can hold less capital in reserve. Having less money in reserve
means that companies become more dependent on other companies and more vulnerable.
Higher connectivity between companies leads to an increase in systemic risk. Deregulation
is considered one of the leading causes of crisis [45]. Our results show that (PL) sharply
decreased in 2005, indicating higher inter-dependence between communities and higher
systemic risk. (PI) and the standard deviation o1 further decreased in 2006, implying

mn

higher homogeneity within the system.

Regulations were implemented between 2011 and 2014 to respond to the crisis. The
Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 was designed to
increase financial stability and prevent future crises [46]. As this was the most comprehen-
sive overhaul of the financial system [47], it took time to be implemented. Implementation
started in 2011 and reached 50% of planned regulations in 2014 [48]. Our results show
a sharp increase in (Pl ) in 2014 when the economy recovered. Standard deviation opr
is higher during the crisis period compared to the period of the recovering economglf,
2014-2017.

5. Discussion and Conclusions

In this work, we used a novel method to infer network structure from time series to
study the cohesion between USA companies in the financial sector. Compared to exist-
ing methods, we used detrended prices instead of detrended returns. We introduced a
technique for obtaining an optimal network from a correlation matrix and used a mea-
sure based on community structure that allows us to examine the evolution of cohesion.
Our results show that the USA financial system’s network structure between 2002 and
2017 underwent several phases: deregulation, crisis, and post-crisis. Each of these peri-
ods is characterized by different intra-community connectivity and standard deviation.
The strength of connections between communities is directly related to the system’s level
of risk and stability.

Understanding the connections between the system’s components is crucial for pre-
venting crises. Our approach can identify the points of high systemic risk. This knowledge
enables timely actions to increase the system’s stability. Moreover, measuring the effect of
these actions, such as regulation and deregulation, can be performed using our method.
This is of great importance as inadequate efforts can further deteriorate financial stability.
In 2008, the government’s actions to increase financial stability and save the economy in the
form of capital injection into the financial system were inadequate, which further pushed
the economy into recession [1]. The price of wrong measures for recovering the economy is
high in times of crisis because resources are even more limited. Our results show that the
system’s structure did not change due to these measures.

The economic system has to be regulated to prevent crises while securing the un-
restrained behavior of individual companies to allow economic growth and prosperity.
The economic system is dynamic and should be constantly monitored by policymakers
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to secure an optimal trade-off between of the economic growth and limiting behavior of
composing elements. Policymakers must act on time since a delay of adequate actions can
have a negative impact. Our method allows policymakers to see whether their actions are
adequate and act promptly. As per our analysis, deregulation, which took place in 2004
to enable economic growth, had a strong impact on increasing systemic risk. This signal
can be seen in 2005, where (P;n) sharply decreased, while standard deviation implied that
connectivity between a certain number of communities increased. In addition, in 2006, all
communities were strongly interconnected, which presents a high systemic risk and can be
seen in low (P;,), standard deviation, and the number of communities. This led to the 2008
crisis, when some of the communities merged.

Existing techniques for constructing networks from the correlation matrix, MST and
PMFG, put strict constraints on the network structure. MST forbids cycles between nodes
and conditions the number of links to N — 1, where N is the number of nodes. PMFG only
allows short cycles and the maximal number of links 3(N — 2). There is no economic reason
behind these topological constraints for economic systems. Furthermore, the limit on the
number of connections is too strict and may filter out some critical information about the
network’s connectivity. The lack of this forbids the study of the cohesion of the network
and its dynamics.

Our method can be used by researchers interested in studying collective behavior
in real systems such as economic, social, biological, and technological systems. The pre-
requisite is the availability of data in the form of time series. Our method enables dis-
covering hidden relationships between the constituents of the system, leading to a better
understanding of the system, predicting its behavior and controlling it.
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Predicting the evolution of the current epidemic depends significantly on understanding the
nature of the underlying stochastic processes. To unravel the global features of these
processes, we analyse the world data of SARS-CoV-2 infection events, scrutinising two 8-
month periods associated with the epidemic’s outbreak and initial immunisation phase.
Based on the correlation-network mapping, K-means clustering, and multifractal time
series analysis, our results reveal several universal patterns of infection dynamics,
suggesting potential predominant drivers of the pandemic. More precisely, the
Laplacian eigenvectors localisation has revealed robust communities of different
countries and regions that break into clusters according to similar profiles of infection
fluctuations. Apart from quantitative measures, the immunisation phase differs significantly
from the epidemic outbreak by the countries and regions constituting each cluster. While
the similarity grouping possesses some regional components, the appearance of large
clusters spanning different geographic locations is persevering. Furthermore,
characteristic cyclic trends are related to these clusters; they dominate large temporal
fluctuations of infection evolution, which are prominent in the immunisation phase.
Meanwhile, persistent fluctuations around the local trend occur in intervals smaller than
14 days. These results provide a basis for further research into the interplay between
biological and social factors as the primary cause of infection cycles and a better
understanding of the impact of socio-economical and environmental factors at different
phases of the pandemic.

Keywords: complex networks, k-means, time-series analysis, spectral analysis, community structure, SARS-CoV-2

1 INTRODUCTION

In cooperative social dynamics [1, 2], the genesis of a collective phenomenon arising from contagious
social interactions involves mechanisms of self-organised criticality [3, 4]. It depends on each
individual involved, based on its actual contacts, psychology and behaviour. In the presence of
viruses, these mechanisms are additionally shaped by firm biological factors. Recent developments of
SARS-CoV-2 pandemic [5, 6] revealed a specific global phenomenon emerging from the stochastic
multi-scale processes. The infection incidence occurs with a high temporal resolution at the
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interactions between the virus and human hosts, whose biological
features, social behaviours and mobility [7] significantly
contribute to the epidemic’s spreading [8]. At the molecular
scale, the virus-host interactions [9-11] crucially depend on
the virus biology and genetic factors determining the host’s
immunity towards the virus in question [12, 13]. Thus, the
occurrence of an infection event and the infection
manifestation may lead to a range of different scenarios from
asymptomatically infected to severe health issues and fatalities
[14-17]. Multiple other factors may play a role [18], depending
on the population genetic features and social life [19]. They
include cultural, political and economic aspects, official and
spontaneous reaction to the crisis, and the organisation of the
health care system, all of which may significantly differ between
different geographical locations [20]. Moreover, the actual impact
of these factors changes over time as the epidemic develops, in
particular, since the appropriate vaccines targeting SARS-CoV-2
viruses [3, 21] are available, thus enabling potentially substantial
changes due to massive immunisation of the population given the
theoretical analysis in [22-24]. Attempts were made to identify
different parameters that may influence the epidemic and
estimate their mutual interdependence and impact. For
example, the human-development index, built-up-area-per-
capita, and the immunisation coverage appear among the
statistically high-ranking drivers of SARS-CoV-2 epidemic [18].

In addition, temporal variations occur at all scales, from the
virus mutations [11] to changed behaviours of each individual
and population groups, e.g., due to the government imposed
measures [6, 25], or adaptation caused by the awareness of the
current epidemiological situation [26, 27]. These variations
increase the stochasticity of the infection and contact
processes, making the prediction of their output even more
difficult. For real-time epidemic management and the
predictions of further developments, it is crucial to understand
the nature of the underlying stochastic processes and the factors
that can significantly influence them. For this purpose, the
empirical data analysis and theoretical modelling [28] provide
complementary views of these complex processes. For example,
agent-based models capture the interplay of the bio-social factors
at the elementary scale of the virus-host interactions at high
temporal resolution [8, 29-37]. On the other hand, more
traditional compartmental models [38] consider a coarse-
grained picture of the population groups having different roles
in the process. Another research line aims at the mathematical
description of the exact empirical data, in particular, for the
outbreak phase [39, 40]. For instance, different studies provided
tangible arguments for the cause of the changing shape of the
infection curve comprising the appearance of linear and power-
law segments [41, 42], prolonged stagnation periods, and multiple
waves [43]. Since the beginning of the epidemic, empirical data
were collected over different countries or provinces [44]. Despite
the coarse-grained spatial and temporal structure (daily
resolution), these data may contain relevant information about
the temporal aspects of the epidemic at different geographical
locations. Previous studies, based on the empirical data regarding
the dynamics of interacting units in many complex systems,
provided valuable information about the related stochastic

Universal Patterns of SARS-CoV-2 Pandemic

processes. Some striking examples across different spatial and
temporal scales include the influence of the world financial index
dynamics on different countries [45, 46], traffic jamming [47, 48],
brain-to-brain coordination dynamics [49, 50], and the
cooperative gene expressions along different phases of the cell
cycle [51, 52]. Similarly, the collected data of SARS-CoV-2
spreading enable a possibility to investigate the infection
dynamics in various details and more appropriate modelling
of the emergent behaviours. In this respect, a larger-scale
picture may emerge by studying temporal fluctuations of the
world infection dynamics. More subtle questions regard the
indicators for hidden mechanisms arising from the interplay
of the above-mentioned biological factors and different social
behaviours [8, 27, 29, 53, 54] behind the observed epidemic
development.

In this work, we address some of these critical issues aiming
to unveil the inherent features of infection dynamics by studying
time-series data that are publicly available at GitHub [44]
collected over different countries or regions (provinces).
Using the datasets of the daily recorded number of confirmed
infection cases, we consider two separate segments of time
series. Defining two distinct 8-month periods in the
epidemic’s evolution is motivated by the appearance of
SARS-CoV-2 vaccines in the latter period, enabling
pharmaceutical intervention measures not available in the
outbreak phase, cf. Figure 1. Namely, the records for the first
8 months of the epidemic, starting from the first registered case
in each country, represent the epidemic’s outbreak phase.
Meanwhile, the last 8 months (preceding the data collection
on 30 September 2021), during which the pharmaceutical
available in most of the countries,
characterises the initial immunisation phase of this pandemic.
Our quantitative analysis comprises three levels of information:
the network mapping and spectral analysis, K-means clustering
of pairs of time series, and detrended fractal analysis of
individual time series. Each of these methods provides just
partial information about the studied dynamics. We combine
them to create a comprehensive picture of the course of the
epidemic in different countries and how they relate to each
other. In addition to quantifying the differences between the
outbreak and immunisation phase, our results reveal two global
features of the SARS-CoV-2 pandemic. Firstly, the worldwide
groups of countries (and provinces) robustly appear in clusters
having a similar temporal evolution of the infection dynamics.
This clustering suggests that the environmental and socio-
economical factors and government-imposed measures can
certainly influence small-scale fluctuation characteristics of
the clusters but do not significantly change the course of the
process on larger scales. Secondly, the epidemic evolution
exhibits ubiquitous waves driven by the cyclic infection
dynamics, where several typical cycles appear associated with
the identified clusters. Again, the shape of these specific cycles
coincides with the mentioned clustering mechanisms. Hence,
their origin and potential control will remain challenging within
purely social measures. A more detailed analysis of the complex
feedback between biological and social factors at all scales is
needed.

intervention was
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2 MATERIALS AND METHODS

2.1 Data Acquisition, Preparation, and
Mapping

We consider the worldwide data of the number of new infection
cases downloaded from GitHub [44]. The dataset contains the
number of daily detected new cases for 279 countries including
separated data for some provinces. For this work, we select time
series in two eight-mount periods comprising the epidemic’s
outbreak phase (starting from the first registered case in a
given country or province) and the immunisation phase (22
January 2020 until 30 September 2021). The corresponding
number of countries and provinces with the active epidemic’s
data traced in both periods is 255. For instance, the first case in
France was detected on 24 January 2020, and thus the outbreak
time series covers the period from that date until 19 September
2020. However, Slovenia had the first registered case on 5 March
2020; hence its outbreak time series cover 5 March until 30
October 2020. Meanwhile, the immunisation period is from 3
February 2021 to 30 September 2021, equal for all considered
countries and provinces.

By mapping these datasets, we obtain two correlation
networks for the outbreak and immunisation phase,
respectively, where the network’s links stand for significant
positive  correlations. We first compute the Pearson’s
correlation coefficient for the corresponding pairs (i, j) of the
time series

Nroxr (1) -t X5(t) -yt
z()T Aut ]()1 #J) (1)

o} o;

Cl = !
Y Nr-1%

where 7 € {O, V}, y} is average value of the time series of country i
during period 7, 07 is standard deviation of time series X7 (¢), and
Nr = 240 is the length of time series. To remove spurious
correlations, we apply the filtering procedure standardly used
in these type of network mapping [47, 49, 51]. More precisely, the
matrix elements C; are first transformed to the interval [0, one]
by CP}; = 5 (Cj; + 1), and then multiplied by a factor M, which is
obtained in the following way. From the rows i and j, the diagonal
elements are removed and the considered elements CPj; and CP;

are placed at the beginning of the row i and j, respectively, thus
obtaining two n = N — 1 dimensional vectors 6}? and CP?. Then
M;; is computed as Pearson’s coefficient between these two
vectors. The matrix element of the filtered correlation matrix
CTTj = M;,CP;j; is then mapped back to the interval [ — 1, 1].
Finally, the elements of the network’s adjacency matrix are
defined as A7, = 1 when the matrix elements CI; >0 exceed a
specified threshold value 6, and zero otherwise. The threshold
value 6 is determined concerning the network’s spectral
properties, as described below.

2.2 Network’s Spectral Analysis and

Community Detection

The above-described data mapping should lead to undirected
unweighted networks; the nodes represent countries (or
provinces), and links indicate the positive correlations between
infection incidences exceeding a threshold 6. We use the spectral
properties of networks to obtain the adequate threshold value,
where the guiding criteriums are the network’s sparseness and the
relative stability of the community structure. Starting from 0 = 0,
we increase it by the value 0.05 and solve the eigenvalue problem
of the corresponding adjacency matrix, Av; = 1,v|g, and calculate
the spectrum {1, ..., An}q for each threshold 6. We compare the
adjacency matrix spectrum for network 6 = 0 with spectra of each
network obtained for considered 6 > 0 using Kolmogorov-
Smirnov (KS) distance. For each 8 > 0 we obtain one KS
distance and plot its dependence of 0, see Figure 2B. The KS-
distance has a minimum of around 6 = 0.5 for the outbreak and
immunisation phase. We use this value of 0 to obtain the
networks used in our analysis.

We study the community structure of the networks for the
outbreak and immunisation period using spectral analysis and
the eigenvalue problem of the normalised Laplacian related to the
network’s adjacency matrix. In mathematics theory [55, 56], the
number of smallest non-zero eigenvalues of the Laplacian matrix
is a good indicator of the number of communities. The matrix
elements of the normalised Laplacian for undirected
binary network represented by the adjacency matrix A are
defined as
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FIGURE 2 | Network measures. (A) The normalised probability density function of the filtered correlation coefficients for the outbreak and immunisation periods. (B)

The Kolmogorov-Smirnov distance between the eigenvalue spectrums of networks obtained for 6 = 0 and different values of 6 > 0, plotted against 6 > 0. (C) The
distribution of the shortest-path distances P(d) vs. the distance d and the cumulative distribution P.(g) of the node’s degree g for the outbreak and immunisation
networks with the threshold 6 = 0.5. (D) The size of the g-core of these networks plotted against the g-rank.
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where g; and g; are degrees of nodes i and j. For the normalised
Laplacian [2], we solve the eigenvalue equation Lv* = Af\] vF and
determine all eigenvalues and eigenvectors. In the case of a
connected network, these eigenvalues are non-negative. One
zero-eigenvalue appears with strictly positive eigenvector’s
components [55]. Consequently, the orthogonal -eigenvectors
corresponding to the three smallest non-zero eigenvalues localise
on the communities of the network. Hence, the scatter plot of the
components of these eigenvectors shows a branching structure. Each
branch contains indexes of the non-zero eigenvector components,
that is, the nodes belonging to a network’s community [56].The size
of the g-core of the networks is determined by removing the nodes
with the increasing degree gq. Several other graph properties are
determined, and the networks are visualised using Gephi
software [57].

=4

Lij

2.3 K-Means Clustering of Time Series

The implementation of the K-means algorithm for clustering of
time series in Python known as tslearn [58] is used. K-means is an
unsupervised machine learning algorithm that aggregates data
points according to similarities, starting with K randomly
positioned centroids. Based on these centroids, data points are
assigned to the centroid closest to that data point according to
some distance metric. The algorithm consists of a certain number
of iterative (repetitive) calculations used to optimise the positions
of the centroids. Considering each time series of length Nras a data
point in Ny dimensional space, the appropriate measures enable
calculating the distances between these data points. We use the
Dynamic Time Wrapping (DTW) algorithm to align time series
with centroids and measure their similarities. The DTW is a widely
used algorithm measuring similarities between time series and
their classification. It does not transform the time series; it only
finds the minimal distance between time series beyond simple
correlation. Specifically, it performs an optimal alignment between
two time series by matching the indices from the first time series to
the second time series, subject to several constraints. The mapping
of indices from the first series to the second series must be
monotonically increasing. For the indices i > j from the first

time series, there must be two indices from the second series
I > k such that i is matched with [ and j is matched with k.
Meanwhile, the first index from the first series must match the first
index of the second time series, and similarly, the last index from
the first series must be matched to the last index of the second time
series, but these points may have more other matches. The optimal
alignment is the one that satisfies all of these restrictions with the
minimal cost, where cost is the sum of absolute differences of
values for each matched pair of indices. The DTW distance in the
K-means algorithm is the value of cost. We use the K-means
algorithm with DTW distance to cluster time series and find
centroids. Each centroid is again a time series that describes the
average behaviour of the time series belonging to one cluster.

2.4 Trends and Fractal Analysis of Time

Series

Temporal fluctuations are studied by the fractal detrended
analysis of each time series. For each time series x(k), k = 1, 2,
-+ T, the profile Y (i) = Z;(:l (x (k) — <x>) of the time series is
divided in N; segments of the length n. The fluctuation function
F,(n) with the varied segment length # is defined as

1 N, 1/q
Fo = LIF@n]” )~ )
S p=1

Here, F? (4,n) = Y7 [Y (4 — Dn+1i) - y,(i)]° is the standard
deviation from a local trend y,(i) on the segment . For q = 2, we
determine the Hurst exponent h, from the straight-line segments
of the log-log plot of the fluctuation function F,(n). For the
multifractal analysis, the values of g € [ — 4, 4] are varied.

To determine cyclic trends, we use the local adaptive
detrending algorithm, see [59, 60], where time series is divided
into segments of the length 2m + 1 overlapping over m + 1 points.
The polynomial interpolation is applied in each segment, and its
contribution in the overlapped region is weighted such that it
decreases linearly with the distance from the segment’s centre. As
stated in the Introduction, we consider worldwide recorded time
series of the infection cases. For illustration, a few examples of
time series recorded in different countries are shown in Figure 1.
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FIGURE 3 | Giant connected components of the correlation networks at the threshold 6 =0.5 for the outbreak period (A) and the immunisation period (B). Red,
green and blue colours indicate groups of nodes in three respective communities G1, G2, G3 in the outbreak network, and g1, g2, g3 in the immunisation period
network, determined by the eigenvector-localisation, see text and Figure 4. Unclassified borderline nodes are shown in white colour. Labels on nodes identify the
corresponding country or province. The complete lists of nodes in each community are given in Supplementary Tables S1-S6 in Supplementary Information.

2.5 The Correlation Networks Mapping in

the Outbreak and Immunisation Phase

The network mapping is based on the cross-correlation
coefficient Cj; of the pairs of time series {i, j} and a suitably
selected threshold. Hence, the correlations exceeding the
threshold 6 are accepted, making the adjacency-matrix
elements A;;(0) = ©(C;; — ) — J;; of an undirected unweighted
network. Before selecting the threshold, a filtering procedure was
applied to the complete correlation matrix to enhance the positive
correlations of interest in this work (see Methods). The applied
methodology was proved useful in quantifying correlations of
time series in diverse type of data [45, 47-52]. Figure 2A shows
probability distributions of filtered correlations coefficients for
the outbreak and immunisation period. While both probability
distributions have a peak at a value C; < 0, they have slightly
different shapes. They both have a pronounced tail for positive
values of correlation coefficients, where the distribution P(Cy) for
the outbreak period has a slower decay at correlations C;; > 0.2.
The appropriate threshold is selected considering changes in
spectral properties of the adjacency matrix with the increasing
threshold, as explained in the following. Figure 2B shows the
Kolmogorov-Smirnov (KS) distance between the eigenvalues of
the A;(0) compared to the one at 6 = 0 depending on the
threshold 6 for the outbreak and immunisation networks. We
see that the KS distance grows slowly with 6 up to the value ~ 0.4;
meanwhile, the growth becomes rapid for the values of 6 > 0.5 for
both networks, suggesting a profound change in the networks’
structure when the threshold exceeds 6 = 0.5. Thus, we select this
turning point as the optimal threshold value. Moreover, the
networks obtained by applying the threshold weight 6 = 0.5
are sufficiently sparse; meanwhile, their spectral properties do not

differ drastically from the corresponding outbreak and
immunisation period networks at 8 = 0 containing all positive
correlations. The resulting networks for 0 = 0.5 are visualised in
Figure 3. See also Supplementary Information (SI) for more
details.

The giant connected component of each network exhibits a
community structure, i.e., the occurrence of groups of nodes that
are better connected among themselves than with the nodes
outside that group, cf. Figure 3. The identity of nodes
comprising each community is determined using the
localisation of the eigenvectors associated with the three lowest
nonzero eigenvalues of the normalised Laplacian operator [55], as
explained in Methods [56]. The eigenvalues of the normalised
Laplacians for two networks are shown in ranking order in
Figure 4, middle panel. Several lowest nonzero eigenvalues
appear to be separated from the bulk in both networks. This
network feature is compatible with the existence of mesoscale
communities, on which the corresponding eigenvectors tend to
localise [55, 56]. The scatterplots of the eigenvectors associated
with three lowest nonzero eigenvalues, see Figure 4, show three
differentiable branches, here indicated as G1, G2, G3 for the
outbreak, and g1, g2, g3 for the immunisation phase network. The
indexes with a nonzero component of the eigenvectors in each
branch mark the IDs of the nodes belonging to the corresponding
community. The complete lists of nodes in each community
(group) are given in Supplementary Tables S1-S6 in SI.

Even though both networks exhibit three major communities,
the structural differences between the two networks in Figure 3
are apparent. They indicate the corresponding differences in the
fluctuations of the infection rates in the world regions during the
immunisation phase, compared to the epidemic’s outbreak, when
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TABLE 1 | For the outbreak and immunisation period networks: the number of
nodes N, edges E, and triangles #4; the graph diameter D and density p; the
average path length <>, degree <q>, and clustering coefficient <C¢ >.

N E D <€> <q> <Cc> #A P
Outbreak 243 9284 11 355 382 0.735 58,508 0.158
immunis 227 5660 7 310 249 0.656 18,857 0.112

the whole population was practically susceptible to the infection.
These differences are quantified by several graph measures, see
Figures 2A-D and Table 1. Compatible with these graph-theory
measures are the span of the exponentially-decaying degree
distributions P.q) and different distributions of the shortest-
path distances P(d), shown in Figure 2C. We also show the
prominent differences in the g-core structure of these networks,
cf. Figure 2D.

More importantly, the majority of nodes that belong to the
same community in the outbreak phase network appear to be a
part of entirely different communities in the immunisation phase
network, cf. Figure 3 and the corresponding lists in
Supplementary Information. More precisely, we find that only
625 edges established in the outbreak phase persist in the
immunisation phase network. They are shown in
Supplementary Figure S2 left, in Supplementary Information.
A more systematic comparison is made by computing the overlap
(Jaccard index defined in Methods) for the correlation networks
determined from the successive 2-month intervals, see
Supplementary Figure S2, right. The overlap systematically
remains below 15%, suggesting that the fluctuation patterns at
these intervals can vary between the countries or even provinces
within the same country.

2.6 K-Means Clustering and Multi-Fractality
of Time Series Within Identified

Communities

To further explore the nature of temporal fluctuations of the
infection time series of the countries and provinces within each
community found using spectral analysis, we apply the K-means

algorithm adapted for time series analysis [58], see Methods. It
appears that each topological community is further partitioned
into several clusters, for example, G1c1---Gle4, for the group G1,
and so on. Inside each cluster, the corresponding time series have
a similar evolution pattern. Hence, the cluster’s typical time series
(centroid) is determined for each identified cluster. The results
are shown in Figure 5 both for the outbreak and immunisation
phase; in the figure legends, the number of countries or provinces
belonging to a given cluster is indicated in the brackets in each
panel. The names of countries and provinces belonging to each
cluster in each group are given in Supplementary Tables S1-S6
in Supplementary Information. Notably, in each network’s group,
there is one large and one medium-size cluster. Meanwhile, there
are several single-country centroids; as a rule, they indicate a
large-population country.

Next we consider the fluctuation function F,(n) vs. the interval
length n for each time series separately, see some examples in
Figure 6, and Supplementary Figure $4 in SI. We realised that
the similarity of the time series belonging to each cluster
manifests itself in the apparent similarity of the slopes of their
fluctuation function, which defines the corresponding Hurst
exponent. As Figure 6 shows, two different slopes of the
fluctuation function can be identified for a majority of time
series. At the intervals n < 14, a Hurst exponent 0.5 < h, < 1
can be determined, indicating persistent fluctuations occurring at
these time intervals. Meanwhile, an exponent h, > 1,
characteristic to the fractional Brownian motion, is found for
n > 14. In some cases, the determined Hurst exponent reaches
values close to two. The histograms of the observed Hurst
exponents are shown in Figures 6D,E. Compatible with the
grouping and different shapes of centroids in the
immunisation phase, the distributions of lower and higher
values of the Hurts exponents are also different with the
increased incidence of the value h, = 0.5 (white noise), and
h, = 2 (periodic signals) in the immunisation phase. In the
following, we show that these large values of the Hurst exponent
in many of the studied time series can be related to the occurrence
of cyclic trends.

Two prominent examples are shown in Figure 7. The
methodology of determining local trends in these time series is
described in Methods. The original time series shows a cyclic
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FIGURE 5 | Centroids of clusters c1 to ¢5, found for three groups G1, G2 and G3, in the outbreak phase network (A), and groups g1, g2 and g3 in the immunisation
phase network (B). In each panel, the number of countries and provinces belonging to that cluster is shown in brackets; the smooth red line represents the centroid’s
trend. The top left panel in each figure shows the fluctuations function F»(n) vs. segment length n for the identified trends; the slope h, = 2 is indicated by the dashed line.
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FIGURE 6 | Examples of the standard deviation F,(n) of time series vs. the interval length n for K-means clusters G1c1 and G3c1 identified within topological
communities G1 and G3 in the outbreak (A,C), and cluster g2¢3 in the immunisation phase networks (C). The distribution of the measured Hurst exponents for the
intervals n < 14 days and n > 14 days in the outbreak and immunisation phase (D,E).
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FIGURE 7 | Two examples of the infection time series showing cyclic trends during the outbreak phase [from Israel, (A)], and during the immunisation phase [from
Portugal, (B)]. Insets show the corresponding functions of the standard deviation fluctuations for the identified trends and the original and detrended time series.

trend, where the cycle length can vary from region to region. A beyond this range, both the original signal and trend have a lower
separate analysis of the fluctuation functions for the trend and the ~ Hurst exponent in the range h, > 1, characterising a fractional
fluctuations around the local trend (detrended signal) reveals that ~ Brownian motion. By extending a similar analysis to the above-
the trend drives the fluctuations beyond the intervals of  mentioned typical time series (centroids), we find that they also
approximately 14 days; see the insets to Figure 7. The trend  exhibit cyclic trends but with different cycles characterising
has true cyclic fluctuations (the Hurst exponent equals two,  different clusters of countries. The corresponding trends are
within error bars) in the range up to n < 30 days. Meanwhile,  also shown in each panel of Figure 5 as a red line on the top
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of the related centroid. The trend fluctuation functions F,(n) vs. n
shows the cycle characteristics in a large range of the intervals n,
cf. top left panels of Figure 5. They differ from cluster to cluster
and, even for the same country, the cycles also differ in the
outbreak and immunisation phase. Generally, larger cycles (in the
length and amplitude) are observed in the immunisation phase as
compared to the outbreak period, cf. Supplementary Figure S5 in
SI. Remarkably, these findings imply that the cycles (or the
infection waves) represent an inherent feature of current
pandemic which may have some long-lasting consequences.

3 DISCUSSION AND CONCLUSION

In search of universal characteristics of infection dynamics, we have
analysed the worldwide empirical data of the SARS-CoV-2 epidemic
[44], focusing on the new-infection time series with a daily
resolution. The data are purposefully divided into two periods,
corresponding to the epidemic’s outbreak and the initial
immunisation phase, respectively. Three complementary methods
of quantitative analysis have been performed. Specifically, we have
analysed the mesoscopic structure of the networks, which embody
the significant pairwise correlations among the infection time series
of different countries or provinces. The further similarity in the pairs
of time series has been analysed by K-means clustering. Finally, the
fluctuation function of each time series has been determined using
the detrended time series analysis. Our analysis has revealed global
clustering and several universal features of the infection dynamics.
Our main conclusions are:

o the worldwide clustering represented by fourteen temporal
patterns of evolution of infection reveals significant
similarities transcending geographical regions;

e the cyclic trends dominate the infection fluctuations,
implying the prevalent infection waves and multi-scale
fluctuations around these cycles; typically determined
cycles appear in conjunction with the identified clusters;

o the immunisation phase differs from the epidemic outbreak
phase in all measures considered here, thus quantifying the
impact of the (partial) immunisation coverage on the
underlying stochastic process and the course of the
pandemic.

The mesoscopic (community) structure, as shown in Figure 3
is one of the striking characteristics of the infection-correlation
networks; remarkably, it occurs already at zero thresholds, see
Supplementary Figure S1 in SI. What comes as a surprise is that
these communities constitute almost entirely different nodes
(countries or provinces) in the immunisation phase compared
to the outbreak phase. Only a few edges established during the
outbreak phase persist throughout the entire evolution of the
epidemic, as shown in Supplementary Figure S2 in SI
Consequently, the same applies to the contents of the clusters
found in these two phases, cf. Supplementary Tables S1-S6 in SI.
Notably, a given geographic location and potentially similar
cultural and economic development levels, similar healthcare
systems and other related factors play some role. However,

Universal Patterns of SARS-CoV-2 Pandemic

even such regional groups appear to be a part of a worldwide
cluster in both representative phases of the pandemic. Such a
picture probably emerges under another dominant driver,
common to countries at different locations, and with different
cultural and economic developments. In this context, the biology
factors, the virus mutations in the interplay with the social
behaviour of individuals and groups in the crisis seems to be
of the primary importance for the genesis of sustained infection
waves, quantified by cyclic trends in different clusters, cf.
Figure 7. Our analysis suggests that the waves are ubiquitous
in all countries and regions in both representative phases of the
pandemic. Meanwhile, the timing, duration and amplitude of
these waves vary between different clusters of countries and
provinces, likely depending on the applied measures and the
corresponding  variations in the population behaviours.
Moreover, the small-scale fluctuations around these cyclic
trends seem to be more region-specific, and depending on the
immunisation measures; two comparative examples are shown in
Supplementary Figure S5 in SI. A more systematic analysis of
these fluctuations and the impact of the immunisation level on
the infection dynamics merits future study.

Our analysis of the world infection dynamics of the SARS-
CoV-2 pandemic revealed several universal features of the
underlying multiscale stochastic processes that go beyond the
geographical impact, locally-imposed governmental measures,
and partial immunisation phases. Indeed, while these measures
are truly valuable for short-term effects, saving lives, and
maintaining the functional healthcare system in each country
[25], they are much less effective in changing the fundamental
nature of the infection process, rooted in the interplay of biology
and social behaviours. This work has provided an in-depth
analysis of the pandemic’s fundamental phases with an
overview that can guide further research into the nature of
biosocial interdependencies. The latter factor plays a
critical role in the SARS-CoV-2 evolution, where individual
biological features of the participants and their role in the
collective behaviours need to be better understood. Our
effective long-term management of the pandemic and
prediction of its future developments rely upon our ability to
continue unfolding critical attributes of the underlying biosocial
stochastic dynamics.
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11 prenosi orbitalno kretanje na laboratorijski
uzorak preko osovinice 4 &ja se radijalno
odstojanje od a time i amplituda orbitalnog
kretanja, podeSava putem vretena 2. Na ovaj nadin
je omoguéeno kontinualno podefavanje amplitude
orbitalnog kretanja laboratorijskog uzorka na
mesalici.
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OfaacT TeXHAKE Ba KOjy ¢¢ NPOHANAIAK 0AHOCH

~ TNponanasak ce onnocH Ha yHanpehewe nocrojehux naboparopujcxux mMemanmia
KOje ¢e KOPHCTE 32 PHIpEeMy PazIMINTHX (apMaleyTCKUX, GHONOLIKMX H XeMHjCKHX
arceaca u IpoM3B0Ja, NeKopa, 6oja wrx.

Ipema Mebynapoasoj xnacuduxaunju narenara (MKIT) o3naka je: F 16 H 51/02.

Texauaxu npodaem

ITponanasax peinasa mpobaeM KOHCTPYKIHjE MEXaHM3Ma 3a OACHIABALE AMIUIHTY S
opOuTanHOr KpeTamkha THME IHTO oMoryhaBa THHEapHO NMOJicIIaBame HCHTpUBYTanste cune

KOja Jeqyje Ha y30paK ITOCTABJbeH Ha TaBopaTOpHjcKy MeIlaMILy.

Crame TeXHnKe

JlabopaTopHjcKe MEmanMIe C€ KOPHCTE 3a BPEMEHCKE M Op3uMHCKH IOJIECHBO
MEIIarhe ¥ XOPU3OHTANHO) PasHM palIMYMTHX y3opaka, KoMepusjanue Memanmiie, xoje ce
Mory Halii Ha TPKHIITY, IPOH3BOIE C€ Ca MEXAHH3MOM C2 HENPOMEH/BABOM AMILIATYIOM,
T}. PajM)yCOM EKCLieHTpUUHOTr Kperama of ¥2 uHua (12,7 mm) umm 1 uxua (25,4 mm). Koz
IBBX CE peryJiandja NeHTpugyTarHe Chae BPIK caMo npoMeHoM Gpoja o6praja moroHa, mro
33 MOCJICAMIYY HMa Aa ce HeHTpH(yraiHa cujia MeHha KBaIpaTHO (Marbe TPELH3H0), H3Y3EB
nateHTta 6p. GB2277043A rae je To 1380/ 1/bHBO APOMEHOM MO3HIKjE Y30PKa,

I'naBna npeBHOCT OBOT TIAaTEHTA j€ y IOAECHBOM MeXaHA3My KojH oMoryhaea na ce
aMIUTKTY/1a Meha KORTHHYUTHO o 12,7 mm go 25,4 mm. Hapogumo nprMepe nareHaTa Koju
onucyjy 1abopaTopijcke MelIaauile CTUYHEX KapaKTEpHCTHKA.

Hatent GB1601590A omucyje MewamWiy, Kon koje ce Opsuma olprama H
aMONMTYAA [OAELIABA]Y HPOMEHOM XyxuHe ogropapajyhux nonyra. Ilpomena jeasor
mapamMerpa ycioBibaBa HpoMeHy Hpyror. Ypehaj He omoryhaa koHTHHyanHy mpoMeHY

LEHTPH{YTAJIRE CHIIE KOja ACTyje Ha Y30paK.
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Harenr GB2277043A onucyje MeWaiHHY Ca POTOPOM EIEKTPOMOTOpa Koju je
UCTOBPEMERO W Hoceha Iuroua y3opka koju ce Mema. OpOMTaIHO KpeTame y3pPOKORaHO je
TIPOMECHOM MarHeTHOr MoJba cTaTopa. CsBu mapamerpm 3asuce of onrepehema Moropa u
HO3HLM]E Y30PKa. AMIUIATYIa MELIAba 3aBUCH O MO3KIU]E Y30PKAa.

ITatent GB2310147A opbutanmHo xperame Hocelie mnode pasnoXeHO je Ha Jisa
meljycofbHO ylnpaBHa jiMHEApHA KPeTaha TaKo JIa H3 KPYKHOT MoKe npehl Ha NpaBoiiMHHE]CKO
KpeTame. AMIUIATYAY Huje Moryhie nojemasary. YaecTaHOCT ce Merma ca Gp3uHoM obprama
MOTOpA.

IlaTenr US8226291B2 aMnnuTyha Mellaika ce NOACINABZ Y UMBY €IMMHHALMjE
AejcTRa MHEpLUUjaTHHMX cHiia Ha porupajyhe cknonome. [lapamerpn ¢y ONTHMHIOBAHM 3a
Npony*¥aBame pagHor Beka ypebaja a e 3a edeKTHBHOCT MeHiarha, AMILIMTYAA 3aBUCH OX
Mace y30pka.

Ilatent USZ015098300A1 onucyje TeXHUUKO peIIee €a KperameM mnomohy
3yN4acTor NPEHOCHHKA. 3ynyaHMiK uHAYKY]y ¢umue BuOpaunje koje mocmemyjy Meniarbe.
Moryhe je nogeianame y4eCTaHOCTH, alli HE M aMIUTHTYAE MEIIaiba.

[Hatenr WO02016020176A1 onucyje MEMANHIY Ca AYTOMaTCKMM AHHAMUYKHM
YPABHOTEXKARAHKEM, UHME CE CIMMHHHIDE JSjCTBO HWHEPUM)ATHHX CHNa Ba porupajyhe
aenose, To oMoryhasa cmamberse gumensnja ypehaja. [Ipomena napamerapa Memmama HHje
o0yxBalieHa OBHM IIATEHTOM.

IMaTesnT WO2016075214A1 onucyje BeoOMa CI0XKEHA MEXAHH3aM Ca HH30M
MeXaHHUKHX PEHOCHAKA KOJHMa C€ IIPEHU3HO JI0eIIaBa yIeCTaHOCT MEIHAba Y30PKa.
AMNIHTYAA j¢ KOHCTAHTHA. 3JaBUCHOCT LIEHTpHQYyrajlHe CHile O MIapaMeTpa Koju ce

noaeiasa (Y4eCTAaHOCTH) j€ KBaaparHa pyHKumja.

Hsaarame CYMTHHE NpoHadacka

[Noaecusu Mexanu3aM mabopaTopujcke MEIDaNMIE j€ CACTaBbEH O CKIOIa pyKe
MOHTHPAHOT Ha BPATHAO nozoHckoz2 exekmpomomopa 11, koju y cebu canpxu ocosunuyy 4
Koja ce noMmohy epemena 2 Moxe nomeparu fyx pyke 3. OKpeTameM gpemena 2 nojeniapa
ce pasmak u3Melyy BpaTHiIa eleKTPOMOTOpa H acosunuye 4 Koja NPSKO Ky2auioz aexcaja 5 y

kyhueumy 9 noMepa panHy Iovy Ha Kojoj ¢y nabopatopujcke y3opuu. IIpennoct oror
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IpOHATAcKa je y MOryhHOCTH noAemaBana pa3Maka uamMel)y sparuia MOTopa 4 OCOBUHMIIE
T). aMIUTMTY A€ OPOMTANHOr KpeTaka Koje ce H3BOIU AMPEKTHUM OKPETAHEM BPETEHA

NOTIYHO HE3aBMCHO O] OCTAINX napameTapa ypehaja.

Kparak onuc cauka Haupra

Ilpoxanasax je AeTaJbHO ONMCAH ¥ MPUKA3AH HA HAUPTY ¥ KOME:
Canka 1 - npencrassba €KCTIAH/IMpPaHH NPAKa3 €KCLCHTPHYHOI MEXAHH3IME

OpOUTAIHE MEILATHIIC Ha KOME j€ IIPENCTaB/beH MPOHATA3aK,

Aeraban onHC NPOHAIACKA

Ilocrojn Bume BpcTa NabopaTOPHJCKUX MEHIANHMIE NpeMa KUHEMATHIM KpeTara
KOjuM Bpue memame. OBpe NMpHKazaH NOASCUBH MEXaHH3IaM C€ OZHOCH HA MENIATMIE ¢a
pazHoM IUIOMOM Koja ce kpehe y xopusonTanHoj paBHH, Tj. Napane/HO OCHOBHM K40 IITO j&
HaBeZICHO Y IPUMEPHMA KOj¥ CY M3HETH ¥ Jely KOjH Ce OJHOCH Ha CTalhe TeXHHKE.

Ha pamyy nnowy ce mocraBipajy nocyie ca arcHCHMa, a 0 Mory OHTH wvalie,
epIieHMajepy, enpyseTe, HT/. Koje noMohy MpHIarofHuX HOcaya Jexe WM cy npHyspiiheHe
32 paaHy mouy.

3axTeBH KOje AMKTHpaJy MaTepdje M wuxoba o0paga, HApOUMTO OUOMOMIKM Are€HCH
Koje Tpeba MemiarTd, ¢y TAKBH Ja ¢€ MEIIame BPIOM Y XOPU3OHTANHO) paBHH, oApeheHoM
yuyectaoinhy, ca oapehieHoM aMimMTyznoM, Ja LeHTpHYTANHE CiHile OCTaHy Y Ke/LeHUM
OKBHpHMa Kako He ©u pasopune hemijecxe 3ugoBe, MeMOpane, paciojune Matepuje
pa3MYATHX TYCTHHA, Kao M Aa ce GhopMupa ONTHMaltHA KOHTAKTHA MOBPIIMHA MarepHje ca
arMocepoM, HTA.

Y HaBefeHHM TpHMEpPMMa CBH TATCHTHpaHH ypehaju umajy pasHy NAod4y Koja ce
Kpehe y XOpU3OHTANHO] paBHH MoMohly MexaHu3Ma 3aCHOBAHOI HA KOJCHACTOM BpaTHIy,
TMHEApHOM MEXAHH3MY, 3yNUaHHUMMA MTA. ajiM HY jellaH O] HABEACHHMX He Jaje MoryhHocT
NPOMEHE AMILIUTYAE MEIarha.

Takole, eKCHCHTPUYHY MEXaHH3aM j¢ MHOI'O JEIHOCTABHUJH M IIOY3HaHMj¥ OF CBUX
rope HaBCJICHHUX NPHMEPA M3 CTama TEXHUKe. MexanmsaM ce cacToju U3 feceT MO3ullMja U
AOBE3aH j€ ca apamunom nozouckoz enexmpomomopa 11 xoje ce obphe oko ceoje oce. [Ipexo

pyxe 3 Koja je KpyTo MOBe3aHa ca epamuiom erekmpomomopa 11 w 3a mera yuspirhena
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APEKIONHOM BE30M — gujkoM 6 ca noonowxom 8 ¥ HASPMKOM 7, KPETame e MPEHOCH 10
ocoguruye 4. llosunuja ocosurnuya 4 je 0GNMKOBAHA TAKO JIa CBOjHM JIOHHM JAEJIOM J€XH Y
#KLe0y Koju ce npocTupe ayx pyke 3. O0auk QOmer dena ocosunuye 4 je Takap Ja He MOKeE
ma ce obphe oko CBOjE Oce, HUTH JIa HCTIaIHe, AIM MOXe 12 Knu3a ayx xneba. Ha ocosunuyu
4 NOCTOjH MONPEYHH HABOJHH OTBOP KPO3 KOjH TIPOJasH HABOjHO gpemento 2 3a OASIIABALS.
Bpemeno 2 je Ha CBOM CYNPOTHOM Kpajy, KOji ce Hanasd M3saH pyxe 3 cHabGaeseHO
To4YKKieM KOjU ce MOXKE OKPETAaTH PYKOM K OCIOHEHO je Ha opoiicay eujxa 1. [pocay 1 je
npauspinhed 3a pyky 3 nomohuum sujyuma 10. OxperameM spemena 2, ocosuiuya 4 ce
MOXe roMeparh JiyxK xibeba yayrap pyxe 3 quUMe c& MeHhA YRAIBEHOCT ocosunuye 4 o oce
obprama epamuna enexmpomomopa 11, 1 Ha Taj HAaYHE ce MEHa aMIIMTYIA KpYAKHOT
KpeTama. EjleMEeHTH KOjH 4MHE 0Baj CKION €Y TaKO JMMEH3HOHMCAHU, Aa cC¢ HONYOpPCUHHK,
O/JIHOCHO aMIIIMTY/a o0pTama, MOXe MEHAaTH KOHTHHYaNHO Y rpaHHIaMa ox Y2 uxua (12,7
mm) Ao uenor uHya (25,4 mm) unMe ¢y nokpuseHe obe onuuje aMnauTyga (12,7 mm u 25,4
mm) gabopaTopujcKMX MellaTHNa KOje ce TPEHYTHO HyAe Ha Tpxkuinty. [lopen ‘rora ce
aMNIMTYJa Mellakha, OAHOCHO LEeHTpU{yraiHa chia MOXe TOAELIABAaTH 3a CBE BPEAHOCTH
Koje ce Hanale u3Mehy oBe JIBE OHIHjE.

Ha ocosunuyy 4 je MOHTHpaH CTaHRApAHU Kyeauuuy nedxicaj 5. Jlewaj je cmeinted y
xkyhuwme 9 Koje je npuuBpmbeHo 3a UeHTap panHe miode, ca mene jome crpane. Kako je
pajiHa [MII0Ya Be3aHa 3a Kim3aue JIMHeapHuX BohHia Koje Cy CMEINTEHE Ha TeNTy METmanuIe, y
XOPU3OHTAIHO] DAaBHH, PafHa mnoda Moxe fa ce Kpehe opbutanHo, caMo y XOpHZOHTATHO]
paBHH. Jlexcaj 5, He npenocd oOpTHU MOMEHT, Beh caMo CHIly ca ocosunuye 4 Xoja mpeko

xyhwwma 9 nokpehe paHy 004Uy MEIIANKIE 4 FTOHH je Ha OPOHTANHO KPETamwe.

Bpemenom 2 ce JeAHOCTABHO MELa TIONYIPEYHHK, OMHOCHO aMIUINTYAa opOuTamHor
Kpetama Tj. Mewama. [lorpedHo je camo oxBHTH Wil 3aBBTH ToukMi Ha gpemeny 2. bpoj
OCHUIAIMja OAHOCHO YYECTAHOCT Memaiha peryiume ce GpojeM obpraja MoTopa, WITO HUje
NPEIMET OROT MAJIOT TATEHTA.

Hpe nymrama MeIIATHEE Y pajl, Ha TOpe ONHCAHH HAYHH IOAECH C€ IIOJYNPEUHHUK,
OJHOCHO aMIUIMTY/Ia MELlaa Koja ocTaje CTaHA TOKOM paia Mematiie. Memanuua ca
OBAKBHM MEXaHU3IMOM 3aMerbyje MEeIlannLle ca aMILTUTYAOM 12,7 mm u 25,4 mm Kao u cBe

MehysenuuuHe.



1566 U1

IlaTeHTHH 3aXTEB

[Tonecnsr Mexanuszam naGopaTopHjcke MeLHANMLE, HAHAYEH THME, WITO C€ CACTOjH
u3 pyxe (3) Koja je MOHTHpAHA Ha BPATH/IO NOTOHCKOT erexmponomopa (11), wmo je
Ka pyyu (3) uzgeoen OmMeop Kpo3 Koju je nposyuena ocogunuya (4} koja je npeko
Kyenuwnoz aedxcaja (6) v kyfuauma (9) nogezana Ha panHy IUIOUY MELLANMUE, W WMo je
Ha pyyu (3} uzgeden omaop Kpo3 Koju Bpoaqzu gpenteno (2) za nodewaeawe W

HO3HLHOHKPaHE ocogutine (4).
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Caka 1

Izdaje i Stampa: Zavod za intelektualnu svojinu, Beograd, Kneginje Ljubice 5
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