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In online social dynamics, a robust scale invariance appears as a key feature of collaborative efforts that
lead to new social value. The underlying empirical data thus offers a unique opportunity to study the origin
of self-organized criticality (SOC) in social systems. In contrast to physical systems in the laboratory, various
human attributes of the actors play an essential role in the process along with the contents (cognitive, emotional)
of the communicated artifacts. As a prototypical example, we consider the social endeavor of knowledge creation
via Questions and Answers (Q&A). Using a large empirical data set from one of such Q&A sites and theoretical
modeling, we reveal fundamental characteristics of SOC by investigating the temporal correlations at all scales
and the role of cognitive contents to the avalanches of the knowledge-creation process. Our analysis shows
that the universal social dynamics with power-law inhomogeneities of the actions and delay times provides the
primary mechanism for self-tuning towards the critical state; it leads to the long-range correlations and the event
clustering in response to the external driving by the arrival of new users. In addition, the involved cognitive
contents (systematically annotated in the data and observed in the model) exert important constraints that identify
unique classes of the knowledge-creation avalanches. Specifically, besides determining a fine structure of the
developing knowledge networks, they affect the values of scaling exponents and the geometry of large avalanches
and shape the multifractal spectrum. Furthermore, we find that the level of the activity of the communities that
share the knowledge correlates with the fluctuations of the innovation rate, implying that the increase of innovation
may serve as the active principle of self-organization. To identify relevant parameters and unravel the role of
the network evolution underlying the process in the social system under consideration, we compare the social
avalanches to the avalanche sequences occurring in the field-driven physical model of disordered solids, where
the factors contributing to the collective dynamics are better understood.

DOI: 10.1103/PhysRevE.96.032307

I. INTRODUCTION

In recent years, the self-organized criticality (SOC) is
considered as one of the principal mechanisms responsible
for the emergence of new features at a larger scale in various
complex systems. The transition from the microscopic interac-
tions to the collective behavior involves nonlinear dynamical
phenomena when the system is driven out of equilibrium (for
an overview of physical systems exhibiting SOC, see recent
reviews in [1–3] and the references there). In this context,
SOC refers to the dynamical self-organization among the
interacting units in response to repeatedly applied infinitesimal
driving; the system’s adaptation to the driving force leads
to robust metastable states with system-wide correlations,
fractal dynamics, and avalanches as the key signatures of
criticality [2–6]. In this context, an avalanche is recognized
as a mesoscopic dynamical structure consisting of a sequence
of connected elementary events (a precise definition is given
in Sec. II). It has been newly pointed out that SOC plays a role
in the functioning of biological [7] and diverse other complex
systems from neuronal dynamics [8,9] to animal behavior [10]
and human history [11]. For instance, the analysis of vast
amounts of the available brain imaging data and theoretical
modelings provided the evidence that supports SOC as an
underlying mechanism of the brain functional stability [8,12].

Although the avalanching behavior and other signatures
of criticality are readily observable in the empirical data
of online social dynamics [13–19], much less attention has

been devoted to understanding the origin and the precise
role of SOC in social systems. The key open question is
whether the social avalanches represent a unique class of
self-organized phenomena or, otherwise, they can be reduced
to standard models of physical SOC systems, describing the
transition from the microscopic interactions to the observed
complex spatiotemporal patterns. Another interesting aspect
of the problem concerns the interplay of the coevolving
network structure and the social dynamics that it supports.
The question whether the SOC process shapes the structure,
or the network evolution enables the self-tuning towards the
criticality remains open. Here, we address these issues by
analysis of the empirical data of knowledge-creation social
endeavors and using theoretical modeling.

In physics, striking examples of the multiscale dynam-
ics characterizing SOC are observed in the turbulent flow
[2,20–22] and the kinetics of earthquakes [23,24]. The sig-
natures of SOC are also found in experiments with stressed
granular materials [25,26], driven disordered systems at a
hysteresis loop [27–30], and porous shape-memory alloys
[31,32]. Furthermore, the avalanching dynamics is charac-
teristic of the conduction in the assembled networks of
living neurons in a solvent [33] and nanoparticle films with
single-electron tunnelings conduction [34], as well as to
the motion of topological objects, such as vortices [35,36]
and domain walls [37–39]. The theoretical concepts were
developed to describe the emergence of collective behaviors
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from the microscopic interactions among many constitutive
elements both in the classical and quantum systems [40].
In this regard, often paradigmatic models were used as the
instruments for investigations. Further, the use of scaling and
renormalization group ideas provided a better understanding
of the role of different scales in the dynamical systems driven
away from the equilibrium [41–43]. The precise description of
the interactions in these physical systems allows investigating
the microscopic mechanisms responsible for the triggering
and propagation of an avalanche. The standard feature of all
SOC systems is the accumulation of free energy, which then
dissipates through the avalanches. While the energy source
and triggering mechanisms are physics specific, common to
all SOC systems is that the avalanching response is not
in proportion to the forcing. Consequently, the power-law
distributions of the avalanches appear as one of the key features
of SOC states. It has been recognized that the propagation
of avalanches involves three phases [2]: the initial growth
phase is supported by multiplicative chain reactions until the
maximum dissipation is reached in the peak period, after
which the activity is reduced and eventually diminishes, in
the stopping phase. Often, the essence of SOC can be captured
by the elementary dynamics of sand-pile automata [4,5] on a
two-dimensional lattice. In real systems, however, the presence
of many physical parameters that can influence the dynamics
makes it difficult to distinguish the potential SOC states
(attractor with a large basin of attraction) from the dynamical
phase transition, which occurs by fine tuning of a relevant
parameter.

In this work, we investigate the nature of avalanches in
the prototypical human collaborative endeavor of knowledge
creation [44]. In this process, the knowledge and exper-
tise of individual actors are transferred into a social value
[45,46]—the collective knowledge, which is shared by all
participants in the process. In contrast to the physical systems
in the laboratory, the human cooperation, as well as the new
collective states, are evident [44,47]. Therefore, the empirical
data on these social systems represent a valuable source to
investigate the origin of self-organized criticality. On the
other hand, certain attributes of the human participants are
crucial to the social cooperation; they remain elusive to
the accurate theoretical modeling of the interactions, which
underlie the avalanche formation. In particular, the process
of knowledge creation requires the appropriate expertise of
the participating actors among other human attributes. Thus,
the subdynamics representing the use of the communicated
cognitive contents tends to constrain the social process itself.
In this regard, it remains unclear how these different aspects
(social and cognitive) of the dynamics contribute to the
appearance and propagation of the avalanches. To address
this question, we combine the analysis of the empirical data
from Questions and Answers (Q&A) site Mathematics Stack
Exchange (https://math.stackexchange.com/) with the agent-
directed modeling; the cognitive contents of each artifact are
systematically encoded in the considered data sets. The agent’s
attributes are statistically similar to the users in the data, while
their expertise is varied. The system is driven by the arrival
of new agents. Our analysis reveals that the occurrence of
avalanches is a robust social phenomenon, whereas their
fine structure, geometrical, and fractal characteristics are

affected by the distribution of the expertise over the actors.
Furthermore, the interplay between the social and knowledge
processes is fueled by the constant tendency towards the
expansion of innovation. For a deeper understanding of the
potential mechanisms, we use a comparison with the better
controlled avalanching dynamics in physical systems. For
this purpose, we analyze the model of a disordered system
of the interacting spins, where the critical states at the
hysteresis loop appear in the interplay between the driving
by the applied magnetic field and the domain-wall pinning
along the implanted magnetic (soft) and structural (hard)
defects. Although an analogy between spin alignments can be
extended to knowledge matching among the social subjects,
our objective here is different. We compare the fractal features
of the avalanche sequences in both systems, which appear to
be similar in a particular range of parameters of the physical
system. These comparisons permit us to identify certain factors
of the social dynamics that are essential to the appearance of
the collective state and can motivate further research towards
a viable modeling of the social self-organization.

In the following Sec. II, we introduce the essential char-
acteristics of the processes of Q&A and describe details
of the agent-based model and the structure of the bipartite
network that coevolves with the social interaction. Then
Sec. III presents a detailed analysis of the knowledge-bearing
avalanches both from the empirical data and simulations. The
simulations and analysis of the avalanches in the driven spin
system are given in Sec. IV. A summary of the results and the
discussion are given in Sec. V.

II. THE STOCHASTIC PROCESS OF KNOWLEDGE
CREATION AND THE COEVOLVING NETWORKS

The knowledge creation via Questions & Answers is a
collaborative social endeavor, in which the knowledge of
each participant is shared with others. By its nature, the
interaction between these participants is indirect, mediated
by questions and answers, in a way similar to user interactions
via posted texts on blogs [13,48,49]. Thus, the environment of
the knowledge sharing can be represented as a coevolving
bipartite network with the actors (users, agents) as one
partition, and the artifacts (questions, answers) as the other
partition [44]. In epistemology, to create a common value
(knowledge), meaningful social interactions are required, in
which the actor’s response is adequate to the needs of others
[45,46]. Specifically, the actor possessing an expertise can
meaningfully act on the artifact where this particular expertise
is required. Thus, the essence of the dynamics is the contents-
matching rule, as schematically illustrated in Fig. 1(a). A
part of the evolving network extracted from the empirical
data is also shown in Fig. 1(b). Hence, the knowledge-
creation process consists of two mutually interconnected
factors: the social dynamics and the constrained use of the
cognitive contents. The strict use of the available expertise
in the knowledge-creation processes is in marked contrast
with the informal social communications on blogs and similar
systems, where the user’s natural interests and emotions drive
the activity [13].

In the data from the analyzed Q&A site, the cognitive
content of each artifact is encoded by up to five tags, according
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FIG. 1. (a) Schematic view of the knowledge exchange via Q&A on a bipartite network of actors (blue nodes) and questions and answers
(red nodes); boxes of different colors represent the cognitive contents (tags). A directed link from question to actor node indicates activity on
that question, where the matching (at least in one tag) between the actor’s expertise and the contents of the question is required; the outgoing
link represents posting the question or answer, whose content contains the actor’s knowledge. Panels (b),(c) show two bipartite networks
extracted from the empirical data; the user nodes (blue) connect to question nodes (red) which compress all existing answers to that question,
and the direction of the link indicates the question on which the user was active either by posting or answering it. Specifically, (b) the innovation
layer in the evolving bipartite network extracted at the end of year one, consists of the recently active questions and the users whose activity
on these questions occurred in the last T0 = 100 min and the nodes to which they were connected within the time depth of 6T0. (c) A close
up of the compressed bipartite network of users and the questions filtered such to contain the tag “Linear Algebra” among other tags; the
network represents the activity within the first two months of the considered empirical data. (d) The explicit-knowledge network containing
the innovation tags attached to the tags of year one.

to the standard mathematical classification scheme (MCS),
for example, “Graph Theory,” “Probability,” “Stochastic Pro-
cesses,” “Linear Algebra,” “Algebraic Topology,” “Differential
Geometry,” and others. Whereas, the information about the
user’s expertise participating in the process can be inferred

statistically as described in methods of [44]; see the inset
to Fig. 2(a). This figure suggests a rather broad distribution
of the expertise (i.e., different number of tags 2Ei ) over
the users in the native system. The main Fig. 2(a) shows
another key characteristic of the experimental system: the
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FIG. 2. (a) The distribution P (Ni) of the number of actions Ni per
user, the dependence g(Ni), and the delay time P (�T ) of the users in
the empirical data set. Inset: The distribution of entropy P (Ei) based
on the probability of the users’ expertise; the data are extracted from
the empirical set and used for designing the attributes of the agents.
(b) Scatter plot of the user-averaged delay times 〈�T 〉 against the
number of actions Ni .

user’s heterogeneity in the number of actions Ni and a broad
range of their interactivity times �T . While the scaling
exponents indicated by these histograms are system specific,
the prominent power-law decay of both quantities manifests
the universally observed characteristics of the human behavior
online. Further patterns of the user’s activity can be determined
from the time stamp. Notably, a significant part of the actions
of the present users is directed towards the issues posted
by new arrivals. Occasionally, an active user looks for an
older question with currently searched contents and brings
it to the view of others. The ratio of the posted versus
answered questions g(Ni) was found to depend on the number
of actions of a user; cf. Fig. 2(a). The very active users
are in the minority; they often respond to the questions.
On the other side, the majority of the least active users are
engaged in posting questions and, by getting the satisfactory
response, they disappear for a longer period. Note that a similar
dependence of the delay times on the number of actions applies
to the user-averaged delays; cf. Fig. 2(b), but not to each
particular user. Certain regularities may exist for groups of
users of a similar activity level [16], but they are not of interest
in the present context. The arrival of new users (referred to
the beginning of the data set) captured by the time series p(t)

represents a stochastic process, which depends on the user’s
off-line life. Here, we adopt the interval of 10 min as a suitable
time step for the pace of the activity in the system and use
the empirical time series p(t) and its randomized version, as
described in the following text, to create the number of agents
per time step in the simulations (on average less than one agent
per step). Then the reference time depth is T0 = 10.

Observing the requirements for the minimal agent-based
model (ABM) of the Web users [50], we have introduced a
model where the action rules and the attributes of the agents
are taken from these empirical distributions, whereas their
expertise can be varied [44]. Here, we briefly describe the
main features of the model which is used for the simulations
in this work. In particular, in each time step:

(i) Agents are created. The number p(t) of new agents is
created; their profiles are defined by the number of actions Ni ∈
P (Ni), the ratio of the posted vs answered questions g(Ni),
and the expertise (according to the selected distribution); the
new agents are placed on the active list;

(ii) The agent’s action performed. Each agent from the
active list either posts a new question or selects one from the
list of recently considered artifacts to act on it. The artifacts
that are connected to the agent’s network neighborhood are
looked at first; with a fixed probability (0.5) the agent also
finds a related question in the whole network, thus bringing
it to the currently active context. In each case, the expertise
matching rule applies.

(iii) The active questions and network are updated. The
list of active questions within time depth T0 is maintained, and
the network connections are updated according to the executed
actions; the agents linked to the questions on which the activity
occurred within the previous three steps are prompted for a new
action.

(iv) New delay times are determined. An agent gets a new
delay time �t ∈ P (�t) after every completed action or after
being prompted for a new action.

(v) The status of each agent is updated. The number of
actions of all agents is updated according to their activity,
and the agents, whose number of steps reached the predefined
Ni are removed; the delay times of each remaining agent is
updated, and each agent whose delay since the previous event
expired is placed on the active agents’ list.

The expertise of an agent is a set of tags taken randomly
from the list of 32 tags. The considered distributions of the
expertise are Exp1 and Exp3, corresponding to single-tag
and three-tag expertises, respectively, and a broad range of the
expertise ExpS, according to the empirical distribution shown
in the inset in Fig. 2. For a comparison, we also consider a
situation (μ process) where, instead of the actions described
above in step (ii), an agent finds an artifact in the entire system
and acts on it with a fixed probability (0.25) while disregarding
the expertise matching rule. Note that, in this case, the expertise
matching can occur by chance; the agent’s expertise is taken
from the distribution ExpS.

Considering the evolution of the system in [44], we have
shown that the process is characterized by the innovation
growth with the number of events. In this context, the inno-
vation is suitably defined as the number of new combinations
of tags. The innovation is introduced into the system by new
arrivals and the actions of the other agents through adding their
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expertise to the accumulating contents on different artifacts.
The innovation growth was observed both in the empirical
data as well as in the simulations [44]. It applies to various
distributions of the expertise, excluding the case where all
actors possess a strictly single-tag expertise. In this limiting
case, the tag-matching rule prevents interlinking with other
contents, thus leading to isolated communities that share the
same tag. In contrast, the innovation grows whenever at least a
single actor possesses a combination of different contents in its
expertise. The illustration in Fig. 1(a), for instance, indicates
how the green tag of the artifact Q3 remains detached until
the actor’s U6 expertise combines it with the contents of Q7
and the actor U2 who posted it. The observed pace of the
innovation growth depends on the distribution of the expertise
(by the fixed activity patterns of the actors) [44]. It is important
to stress that, in the empirical data, the combination of tags in
the expertise of each user already possesses a logical structure
of mathematical knowledge. Hence, through these meaningful
interactions that structure is preserved during the process.
Consequently, the developing network of the used contents
also exhibits the logical structure, as shown in [47] by the
community detection in the corresponding networks of tags;
an example of such an explicit knowledge network extracted
from the same data is shown in Fig. 1(d).

A. Growth of the bipartite networks by adding the
innovation layers

The interplay between the network structure and the
stochastic processes taking part on it consists of the central
problem in understanding the networks evolution and their
applications in various fields [51–53]. Typically, the graph
architecture represents geometrical constraints that shape the
diffusionlike processes, likely to cause an anomalous diffusion.
For example, the superdiffusion of the information packets
[54] occurs on the correlated scale-free network when the
traffic rules appropriately utilize the underlying structure.
Some unusual situations arise when the structure evolves at the
same pace as the SOC avalanching process on it. The random
rewiring during the steps of the SOC dynamics has been
shown to reduce the avalanche cutoffs [55], thus preventing
a catastrophic event to occur. When the rewirings are strictly
confined to the current avalanche area, the network appears
to have the scale-free degree distribution, where the scaling
exponent coincides with one of the avalanche size distributions
[56]. Other growth models that apply thresholdlike constraints
inspired by SOC dynamics may yield the nonextensive features
and scale freeness [57]. In bipartite networks, however,
each partition plays a different role in the process, which
leads to a more complicated structure–dynamics interplay.
As mentioned above, these types of networks often appear
in the social dynamics on websites which maintain indirect
communication between the users. The appropriate analysis of
the artifacts mediating the users revealed [13,44,48,49] how
their emotional or cognitive contents affect the network from
the node’s degree to the mesoscopic community structure.

In the Q&A data set that we consider here, the network
growth as well as the pattern of activity of each user and the
targeted questions can be extracted from the time stamp in
the data. Moreover, to visualize the bipartite networks, we

FIG. 3. The degree distribution of the actors and question nodes
in the bipartite networks for different expertise and driving indicated
in the legend. The power law fits with the exponent τU = 1.58 ±
0.07 and the stretching cutoffs in the range c ∈ [508,3920] between
two solid lines marked by ← U → are of the actor’s degree. The
distributions for the corresponding question nodes (indicated by the
same type of symbol) have smaller cutoffs d ∈ [5.8,42] between two
dashed lines marked by ← Q → and the exponent τQ = 1.09 ± 0.1.
In the case of Exp1 the exponents τQ ∼ 0.5 ± 0.16 apply in a very
narrow range, while the exponential distribution fits the data for the
μ process.

introduce a compressed node which includes the question and
all answers related to that question. A particular example of
such compressed bipartite network from the empirical data
is shown in Fig. 1(c). The corresponding networks from the
simulated data exhibit the mesoscopic structure. The structure
of communities sharing the emerging knowledge crucially
depends on how the expertise is distributed over the involved
participants, as it was shown in [44]. Here, we are interested in
the statistical properties of nodes in these bipartite networks.
The results of the degree distributions are shown in Fig. 3.
They can be fitted by the power law with stretched-exponential
cutoffs, which allows a comparison of the user properties in
Fig. 2(a). Statistically, the degree distribution of the agent’s
nodes in these networks follows the slope of the predefined
number of actions P (Ni), as expected, while their cutoffs
depend on the expertise of the agents. It is also interesting
to point out the constraints due to the power-law decay of the
delay time distribution; according to some recent studies [58],
it can contribute to the convergence towards scale invariance in
the growing systems. In the case of the question partition, the
cases where the expertise-matching dominates exhibit a similar
law but in a reduced range. In the meantime, the power-law
behavior is reduced and the cutoffs dominate in the case Exp1
and μ process (see Fig. 3).

For the purpose of this work, it is interesting to recognize
the innovation growth layer, see Fig. 1(b), as the segment of
the growing bipartite network where the most recent activity
occurs. As stated above, the new arrivals potentially bring the
new combinations of the knowledge contents in their expertise,
which is expressed in the questions and answers. The set
of currently active artifacts are posted or answered within a
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FIG. 4. (a) The driving signals that are used in simulations: p(t),
front curve, and its randomized version randPt, back curve. (b) Part
of the activity time series from the empirical data, exhibiting some
large and small avalanches above the baseline (dashed line).

relatively small time window (T0). These nodes often occur at
the outer layer of the network; see Fig. 1(b). Then the currently
active users connect to these new artifacts while obeying the
expertise matching rule; thus, they connect the new contents
to the issues of their previous activity and further through the
network of the connected users and their artifacts in a given
time depth. Therefore, the recently added artifacts connect
the in-depth network via the active users and their previously
established connections. Considering a particular time depth,
for instance, 6T0, with the window T0 = 100 min, we focus on
the currently active layer of the network. This layered growth
of the bipartite network is fundamentally conditioned by the
nature of online human communications, where the latest posts
appear on the top. Besides, at each event, an artifact older than
the considered time depth is searched with a small probability
and connected to the currently active matching contents. The
updated active layer then serves as an environment where the
next arrivals often attach to, and so on. In the context of open
dynamical systems, the addition of new users (or agents) and
their artifacts can be seen as the driving mode of this bipartite
networked system.

B. Extracting the time series and avalanches
from the sequence of events

Our focus in this work is on the avalanching behavior which
occurs as the network’s response to the driving. Therefore,
from the sequence of events in the empirical data or the
simulated events, we first construct the corresponding time
series that capture the fluctuations of the system’s activity over
time. The possible occurrence of the clustering of events along
these time series is a signature of the avalanching dynamics.
For the illustration, an example of the time series with the
avalanches is shown in Fig. 4(b). Specifically, an avalanche
is identified as a segment of the time series consisting of the
data points n(t) between two consecutive drops of the signal
to the baseline, which is set above a zero or the noise level. To
define the baseline, we use a standard approach, as described
in [27] for the experimental Barkhausen noise signal. When
the signal contains an (extrinsic) noise, the baseline is first
put as a horizontal line with a maximum number of intersects
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n t
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FIG. 5. (a) Examples of time series of the activity simulated by
the agent-based model for the different expertise of the agents and μ

processes. (b) Sequence of the avalanches determined in the empirical
data set—a closeup in the segments with large activity.

with the signal, then the part below the line is considered as
noise. The standard deviation σ of the noise is then computed,
and the baseline is shifted upward by the distance σ . In the
simulated quasistatic driving, Sec. IV, the signal drops to the
zero level before next driving event occurs, making the zero
level a natural baseline (see also the discussion below). The
two intersections of the signal with the baseline are recognized
as the beginning tb and the end te time of the avalanche. Then
the avalanche size s is given by the sum of all data points
between the marked beginning and the end of the avalanche
while the distance between these two points along the time
axis defines the avalanche duration T , i.e.,

s =
te∑

t=tb

n(t); T = te − tb. (1)

The representative examples of the time series studied in this
work are shown in Figs. 4 and 5(a). As the example in Fig. 4
shows, the avalanches in the considered stochastic process of
knowledge creation differ in size, duration, and shape, closely
reflecting the way that the activity propagates in the network.
Moreover, a massive avalanche may follow immediately after
a small one and vice versa. See also a closeup of the avalanche
sequence derived from the empirical data in Fig. 5(b).

It is important to notice that the time series studied in
Sec. III are fractal; hence, the avalanches defined through
Eq. (1) possess self-affinity. This implies that, by changing
a linear scale �, both the segment of the baseline along the
x axis, i.e., the avalanche duration T , and the corresponding
area above the baseline in the y direction, representing the
avalanche size s, scale with different exponents such that the
respective dimensionless quantities s/�D and T/�z remain
unchanged. Consequently, the distributions of the avalanche
sizes and durations then obey the following scale invariance
[1,2]

P (s,�) = sτsS(s/�D); P (T ,�) = T τT T (T/�z) , (2)

where τs and τT are the scaling exponents of the avalanche size
and duration, respectively, and D and z are the corresponding
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fractal exponents. Furthermore, for such self-affine objects,
the following relation holds between the size of avalanches
which have a given duration T and the duration T

〈s〉T ≡
tb+T∑
t=tb

n(t) ∼ T γST , (3)

with the scaling relation γST = (τT − 1)/(τs − 1). This prop-
erty of the analyzed avalanches, which we prove in Sec. III,
further implies that the scaling exponents are not sensitive to
the exact position of the baseline, which discriminates the noise
level. Note that we use the initial part of the empirical time
series comprising of 65 536 data points, where these methods
can be safely applied. In the next section, we quantitatively
study these features of the avalanches by considering the time
series from both the empirical data and the simulated events.

Figure 5(a) panel shows several examples of the time series
of the number of event n(t). Specifically, the time series
indicated by Exp1 corresponds to the case when each agent
possesses a single-tag expertise and these agents are added
with the pace p(t) as the new users appear in the real system.
The time series marked by randP t is the system of agents
with the distribution of the expertise ExpS taken from the
empirical data and driven by the randomly shuffled signal
p(t) signal. Apart from a few high values at the start, the
signal p(t) exhibits an increasing trend, which induces larger
activity at later times. By randomizing the time series, however,
these larger values may occur randomly along the time axis;
consequently, the initial part of the signal which is used for
simulations appears to be higher than the original p(t); cf.
Fig. 4(a). Hence, the underlying network grows faster when the
system is driven by randP t ; on average, the number of added
agents putting their artifacts per 1000 steps is 572, compared
to 199 in the case of the original signal p(t). In this way, this
accelerated network growth mimics a larger driving rate in the
context of SOC systems. The simulated data consist of 65 536
steps, corresponding to the first 15 months of the real system
time, where we find that 13 045 users were active, posting
21 998 questions and 179 537 answers. The bottom panel
of the same figure shows the avalanche sequence determined
from the empirical data set.

III. THE STRUCTURE OF AVALANCHES IN
KNOWLEDGE-CREATION PROCESSES

The use of fractal geometry and nonlinear analysis of time
series has advanced the understanding of complex systems.
Here, we employ the detrended multifractal analysis to study
the time series of events as well as the sequences of the
avalanches (clustered events) for various model parameters
and the empirical data of the knowledge-creation processes.
By investigating these complex time series at all scales, we
aim to reveal a fine structure of the underlying SOC states of
the system.

A. Temporal correlations and avalanche sizes

The occurrence of avalanches in composite signals is not
accidental but built on the temporal correlations at a larger
scale. These correlations are manifested in the corresponding
power spectrum as a power-law decay W (ν) ∼ ν−φ , for a broad

FIG. 6. The (a) power spectra and (b) avalanche size distributions
in the empirical data and ABM for different expertise. Inset: The
nonextensivity parameter qa vs τs for the considered cases.

range of frequencies ν. In Fig. 6(a), we show the results for the
power spectrum of the time series of events in the empirical
data and the simulated signals for different agent’s expertise
and two driving modes. The corresponding distributions of
the avalanche sizes obtained from these time series are shown
in Fig. 6(b). These figures indicate that an extended scaling
range occurs over several orders of magnitude in the power
spectrum as well as in the avalanche sizes. However, the driving
mode and the actor’s expertise affect the scale invariance in
a different manner. Specifically, the increasing trend in the
driving signal p(t) is pronounced in the power spectrum of the
empirical data and μ process. Whereas, the increased activity
in the innovation layer is balanced by the strict expertise-
matching, resulting in the correlations of the flicker-noise type
(middle curves). When the driving rate is elevated, i.e., randP t

case, the slope φ increases in the region of low frequencies and
decreases in the high-frequency region (top curve).

While the shape of the driving signal is essential for
the scaling in the power spectrum, the scale invariance
of the avalanches is equally sensitive to the actual expertise of
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FIG. 7. (a) The distribution of avalanche duration and (b) the
average size 〈S〉T of the avalanches of a fixed duration T plotted
against T for the empirical data and simulations with varied expertise
and driving rate, as indicated. (c) The average activity 〈n(t)〉T within
an avalanche of the duration T averaged over the avalanches in three
ranges: T � 10 (half-filled symbols, dotted line), T ∈ (10,100] (open
symbols, dashed lines), and T > 100 (filled symbols, full lines). The
symbol shape and color correspond to the legend in the panel (b).
(d) Extracted from the empirical data, the innovation I (t) increase
with time and the integrated activity time series N (t) = ∑

t n(t),
normalized by the ratio R = 〈n(t)〉/〈dI (t)/dt〉 = 32.5.

the agents. The slopes of the distribution of the avalanche sizes
τs are found in the range from 1.33 to 1.93, depending on the
expertise and driving; note that the degree distributions of user
and question partitions in Fig. 3 are within this range (see also
Discussion). However, the mathematical expressions that fit
these distributions are different. In particular, the distribution
of avalanche sizes, shown in Fig. 6(b) can be fitted by the
qa-exponential function

P (S) = A[1 − (1 − qa)S/S0]1/1−qa , (4)

where the parameter qa > 1 measures the degree of nonex-
tensivity in the underlying stochastic process [40,59–62].
The values of the scaling exponents of the avalanche size
distribution and the corresponding values of the nonextensivity
parameter qa are shown in the inset in Fig. 6(b). Notably, the
distribution of the avalanche sizes obtained from the empirical
data and simulations with the expertise of the agents ExpS

taken from the empirical distribution are similar and close to
the case of μ process. The probability of large avalanches
increases with the increased average expertise; the case Exp3
is shown. It is important to stress that the same type of
distribution with a power-law tail is also obtained in the case
of randP t , representing an increased driving rate with the
accelerated network growth, as mentioned above. Moreover,
the exponent of the distribution of avalanche sizes is smaller
than when the lower driving rate pertinent to p(t) signal is used;
see also Fig. 7(a) for the distribution of duration. The decrease
of the scaling exponents provides an observable measure
of the effects of avalanche merging, which occurs more
often at the elevated driving rate, to the critical state. These
findings are in agreement with the studies of SOC in cellular

automata [63] and physical systems [64] under various driving
rates.

B. Propagation and geometry of avalanches

Statistics of the avalanche sizes with power-law tails, as
shown in Fig. 6(b), is compatible with the occurrence of
self-organized dynamics. In the following, we show that the
propagation of avalanches and their shapes further confirm
these features of the underlying dynamics. The time-dependent
characteristics of the avalanches evaluated for the above-
studied sets of parameters are demonstrated in Figs. 7(a)–7(c).
Specifically, the distribution of the duration T of avalanches,
cf. Fig. 7(a), exhibits different scaling behavior for small
avalanches with the duration T < Tx ∼ 10 as compared to the
asymptotic scaling law P (T ) ∼ T b. In the asymptotic region,
we find that (within the numerical error bars) b = −2 for the
avalanche durations in the empirical data and a close value b =
−1.96 for the simulated system with ExpS. Gradually smaller
slopes are found for the cases Exp3 (not shown) and randP t .
Similarly, the scaling exponents in the short-avalanche region
vary with the expertise and the driving rate from a = −0.82 for
randP t to a = −1.35 for ExpS. The corresponding range for
the empirical data is even shorter; see Fig. 7(a). Given different
shapes, the size of the avalanches of a fixed duration can vary;
cf. Fig 4(b) and Eq. (1). Nevertheless, in the SOC systems,
the average size 〈S〉T of the avalanches of a given duration T

scales with T according to Eq. (3). Here, the tail exponent b

of the duration distribution appears, i.e., 〈S〉T ∼ T γST , where
the exponent γST = (b − 1)/(τs − 1). Figure 7(b) exhibits the
plots 〈S〉T against T corresponding to the avalanches studied
in this work. The apparent power-law dependence in this plot
suggests that the scale invariance of the avalanches can not be
affected by a reasonable shift of the baseline, for instance, by
2σ . The average exponent γST = 1.23 ± 0.07 suggests rather
narrow avalanches; apart from the duration range, which varies
with the simulation parameters, the variations of the exponent
are rather small.

The precise shape of the avalanche of the duration T is given
by the sequence of the elementary pulses n(t) over time. In
Fig. 7(c), we show the average height 〈n(t)〉T belonging to the
avalanche of a given duration T evaluated in bins of the reduced
time t/T . Three groups of avalanches are distinguished, in
particular, the small avalanches of the durations T � 10,
medium-duration 10 < T � 100, and large avalanches for the
durations T > 100. As the Fig. 7(c) shows, the shape of the
small avalanches is practically independent of the system’s
parameters. The same conclusion applies for the medium-size
avalanches in the peak region, whereas they slightly differ in
the decaying phase and even more in the raising phase. In the
case of the large avalanches, however, the major differences
occur in the peak phase. Moreover, the peak shifts towards
later times when the total expertise is increased, or a larger
driving rate applied.

In the panel (d) of Fig. 7, we show how the total innovation
I (t) increases over time. The innovation, which is precisely
defined as the number of unique combinations of tags, is
obviously related to the activity but its fluctuations over time
is a more subtle feature of the process, which depends on
the available expertise of the agents, as shown in [44]. Here,
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FIG. 8. For the case ExpS, (a) the avalanche sequence, (b)
the fluctuation function of the avalanche size series, and (c) the
generalized Hurst exponent H (q) for the avalanche series and the
underlying time series and their randomized versions. The panel
(d) shows the singularity multifractal spectrum for the avalanche
sequences determined for the cases with the varied expertise and
driving, as indicated in the legend.

we compute the temporal dependence of the innovation from
the empirical data. The total activity (scaled by a constant
factor) as a function of time is also shown in Fig. 7(d). These
results suggest that, apart from the excess of the innovation in
the initial period, the asymptotic law is the same for the total
activity and the innovation growth with time. While the average
activity is 32.5 times larger, we can conclude that the activity is
driven by the fluctuations of the innovation rate. As mentioned
earlier, the innovation is brought by the expertise of the actors.
Hence, the increase of the innovation can be considered as a
driving force for the knowledge-creation processes.

C. Avalanche sequences and multifractality

Compared to the time series of the number of events n(t),
the avalanches are the objects occurring at a mesoscopic scale.
Each avalanche consists of a certain number of the elementary
pulses, cf. (1); these pulses are combined in a different way
to embody the growth, peak, and relaxation phase of the
avalanche. Thus, the sequence of avalanches in time contains
additional information about the nature of the underlying
stochastic process. For instance, the avalanche return [61,62]
in many different complex systems reveals a non-Gaussian
relaxation. For the knowledge-creation processes, we have
demonstrated [44] that the avalanche first-return statistics
obeys a qr -Gaussian distribution with a large parameter qr ≈
2.45. Here, we apply multifractal analysis to examine another
signature of the complexity of these avalanche sequences. In
particular, we analyze the temporal sequences of the avalanche
sizes Sk , where k = 1,2, . . . ,Kmax is the index of the avalanche
and Kmax stands for the total number of avalanches that occur in
a particular time series. We consider the avalanche sequences
obtained for the combinations of the parameters studied in the
preceding sections and the empirical data; two examples of
such avalanche sequences are displayed in Fig. 5 (bottom) and
Fig. 8(a).

To determine the multifractal spectrum 	(α) for the
sequences Sk , we apply the detrended multifractal analysis
(DMFA); we use the approach which was applied to different
types of complex signals, as described in Refs. [65–68].
According to the standard procedure, the profile of the signal
is first constructed by the integration

Y (i) =
i∑

k=1

(Sk − 〈S〉). (5)

The profile is then divided into Ns = int(Kmax/n) nonover-
lapping segments of equal length n. Then for each segment
μ = 1,2 . . . ,Ns , the local trend yμ(i) is determined and the
standard deviation around the local trend

F 2(μ,n) = 1

n

n∑
i=1

{Y [(μ − 1)n + i] − yμ(i)}2 (6)

is found. Similarly, the procedure is repeated starting from the
end of the signal, resulting in F 2(μ,n) = 1

n

∑n
i=1{Y [N − (μ −

Ns)n + i] − yμ(i)}2 for μ = Ns + 1, . . . ,2Ns . Combining the
deviations at all segments, the qth order fluctuation function
Fq(n) is obtained according to

Fq(n) =
⎧⎨
⎩

1

2Ns

2Ns∑
μ=1

[F 2(μ,n)]q/2

⎫⎬
⎭

1/q

∼ nH (q) , (7)

and plotted against the varied segment length n ∈
[2,int(Kmax/4)]. The scale invariance of Fq(n) against the
segment length n is examined to determine the corresponding
scaling exponent H (q). Here, the distortion parameter q takes
a range of real values. The main idea is that the segments of the
signal with potentially different fractal features will be suitably
enhanced by a particular q value to become self-similar to
the full signal and the corresponding scaling exponent H (q)
as a function of q is measured. Notably, different small
fluctuation segments are enhanced by the negative values of
q, and the segments with large fluctuations dominate the
fluctuation function for the positive values of q. In the limiting
case of monofractal, H (q) = H (q = 2) is the standard Hurst
exponent. Using the scaling relation τ (q) = qH (q) − 1, the
exponent τ (q) of the box probability, defined in the partition
function method [65], is computed. Thus, the generalized
Hurst exponents H (q) can be related with the singularity
multifractal spectrum via the Legendre transform 	(α) =
qα − τ (q), where α = dτ/dq is the singularity strength.

Figures 8(a)–8(c) shows the results for the case ExpS,
which incorporates the features of the empirical data and
the expertise matching in the simulations. Specifically, the
avalanche series, the corresponding fluctuation function, and
the generalized Hurst exponent are shown to demonstrate the
procedure. Also, we show the results of the DMFA applied
to the underlying time series for the same parameters. For
the comparison, the analysis is performed for the randomized
signals; the corresponding scaling exponents H (q) are also
depicted in Fig. 8(c). Notably, both the time series of the
activity and the related avalanche series exhibit multifractal
features. The span of the generalized Hurst exponent is
much larger in the avalanche series. In the randomized case,
the avalanche series exhibit almost unchanged multifractality
while the time series of pulses becomes a monofractal with the
properties of white noise [H (q) = 0.5 within the numerical
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error bars]. These findings indicate that the origin of the
multifractality in the time series may be found in the temporal
correlations, which are of the 1/ν type; see Fig. 6(a). While,
for the avalanche series, the scale invariance of the distribution
of sizes can be the sole reason for the observed multifractality.
In this regard, it is interesting to analyze the width of the
singularity spectrum 	(α) for different parameters of the
model. These results are shown in Fig. 8(d). In agreement
with the values of H (q) for the case ExpS in the panel
(c), the spectra corresponding to the avalanche series and
the randomized avalanche series are wide. In contrast, the
multifractality of the original time series results in the narrow
range; further, the spectrum is reduced to a close vicinity of
the point 	(α = 0.5) = 1, corresponding to the monofractal
randomized time series. For the varied expertise of the actors,
we obtain wide spectra of the avalanche series, where the
singularity strength α ∈ [0.2,1.7]; cf. Fig. 8(d). Notably, the
various parameters of the model mostly affect the right
side of the spectrum, corresponding to q < 0 region, i.e.,
small fluctuation segments in the avalanche series. While,
the variations are less pronounced for the large fluctuation
segments, appearing in the left end of the spectrum 	(α).
In this end, the empirical data and model simulations lead
to similar results. These findings indicate how the sequences
of small and large avalanches are affected by the available
expertise; the occurrence of the large fluctuations in the
avalanche sizes might be chiefly conditioned by the number of
the actors involved.

IV. THE IMPACT OF VACANCIES ON MULTIFRACTAL
SPECTRUM: A COMPARISON TO SPIN-ALIGNMENT

AVALANCHES

As mentioned in the Introduction, the complexity of
the social interactions prevents the exact description of the
mechanisms at the elementary scale, calling for a comparison
to better-understood physics models. In this regard, the
interacting spin system described by the random-field Ising
model at zero temperature and driven along the hysteresis loop
represents a paradigm of complex dynamical behavior far from
the equilibrium [69]. In this example, the spin alignment along
the slowly increasing external field is balanced by spin-spin
interactions and the local constraints due to the random-field
disorder. The dynamics of spin flips under the disorder induced
constraints and interactions was often employed to model
opinion formation [70], processes driven by social balance
[71] and other cases. For the purpose of this work, we aim
to explore the impact of vacancies in the underlying network
onto the multifractal spectrum of the avalanche sequences. We
consider spin-alignment avalanches in the zero-temperature
random-field Ising model (ZTRFIMc) with the two-state
spin site Si(t) = ±1 at each lattice site i = 1,2, . . . ,N with
a fraction c > 0 of defect sites where the spin is absent.
The energy H = −∑

i h̃i(t)Si(t) is minimized by the spin
alignment along the current value of the local field h̃i(t), where

h̃i(t) =
∑
j∈nn

JijSj (t) + hi + B(t); Si(t + 1) = sgn[h̃i(t)]

(8)

Here, hi is the local quenched random field, which is described
by the Gaussian distribution of zero mean and the width �.
Starting from a large negative value, the system is driven
quasistatically, i.e., by the slowly increasing external field
B(t + T ) = B(t) + δB after an avalanche stops. The ferro-
magnetic interaction Jij among the pair of spins at the adjacent
sites i,j has the positive mean 〈Jij 〉 = J and the second
cumulant Jc(1 − c), where c > 0 is the probability that the
spin is absent at a randomly selected site. The dimensionless
parameters f ≡ �/J and r ≡ δB/J characterize the pinning
strength and the driving rate, respectively.

Given the domain structure in these disordered systems,
the magnetization reversal occurs in a series of jumps by
the slow field ramping along the hysteresis loop. These
magnetization changes are directly related to the motion of the
domain walls, accompanying the expansion of the domains
which are oriented parallel to the field. The size of the
magnetization changes thus occur in the interplay between
the driving by the external field and pinning of the domain
walls at by the local random fields, oriented opposite. These
magnetization changes in time represent the data points in the
Barkhausen noise, a complex time series from which then the
avalanches can be determined. The scale-invariant behavior
of the Barkhausen avalanches and their dependence on the
strength of the random-field disorder has been well understood
[27,69,72–74]. Recently, it has been shown [68] that the
Barkhausen noise exhibits multifractal structure. Moreover,
the dynamical regime in the central part of the hysteresis loop,
where large avalanches can occur for the weak disorder, has
a significantly different spectrum from the dynamics at the
beginning of the hysteresis loop. In contrast, the presence of
hard defects in ZTRFIMc has been much less investigated.
Specifically, even in the weak random-field pinning that allows
system-wide avalanches, the presence of hard defects induces
a characteristic length, which affects the cutoff size of the
avalanches and also the universality of the scaling exponents
[75,76]. Here, we are interested in the dynamics of the
avalanches in the presence of site defects.

We consider a small concentration of the randomly dis-
persed site defects c = 0.05 on top of the weak random
field disorder and slow driving; thus we use a representative
set of parameters in this regime [68]: f = 2.3 < fc and
r = 0.02 in the three-dimensional cubic lattice of 1003 spins.
In the absence of the site defects (c = 0), the system of
this dimension would undergo a domain-wall depinning via
large avalanches in the central part of the hysteresis loop
[68]. However, the small percentage of site defects suffices
to perturb this critical behavior by the pinning of the domain
walls at a distance � ∼ 1/c; whereas, at the distances x � �

the domain wall motion is accelerated by the external field,
corresponding to the regime of the weak random-field pinning.
Consequently, the small avalanches are similar as in the case
of weak pinning without site defects, while the propagation
of large avalanches is considerably hindered. These effects
are reflected in the multifractal spectrum of the avalanche
sequences, in particular, by increasing the difference in the
generalized Hurst exponent for q > 0 and q < 0 values. The
resulting singularity multifractal spectra are shown in the inset
to Fig. 9. Although the avalanches tend to be larger in the
central part of the hysteresis loop, the presence of site defects
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FIG. 9. The avalanche sequence at the beginning of the hysteresis
loop (HLB) of the ZTRFIMc for c = 0.05 and weak random field
pinning. Inset: The singularity multifractal spectra in the hysteresis
loop center (HLC) and the loop beginning (HLB) for c = 0.05 and
c = 0.0.

induces a mixture of small and large events, which results in
the substantial broadening of the spectrum in comparison to
the case of c = 0.

It is interesting to point the similarity between the spectra
in the avalanche series that are affected by site defects in Fig. 9
with the spectra of social avalanches of knowledge creation,
Fig. 8. In this case, the avalanche propagation is conditioned
by the actor’s activity patterns and the (non)possession of the
required expertise. According to Fig. 2(a), a large number
of users (agents) stops to be active after a given number of
actions, while their artifacts are still available and can be the
subject of interest to others. Thus, each avalanche becomes
pinned by reaching the network node of such a user, in
the manner that a site defect pins the moving domain wall.
Also, the users whose delay time is typically larger than the
avalanche duration may have a similar effect on the current
avalanche propagation. On the other hand, the extremely
active users [a small fraction, represented by the end of the
distribution in Fig. 2(a)] accelerate the propagation through
their numerous connections and also by being active at more
than one question within a short time interval. This type of the
actor’s heterogeneity results in a typical mixture of small and
large events, as seen in the analysis in Sec. III. Beyond the
shape of the multifractal spectra, representing a combination
of small and large events, the avalanche distributions differ in
the random-site ferromagnetic model. Among other reasons,
the evolving bipartite networks of the actors and their artifacts
are identified as those being of the key importance.

V. DISCUSSION AND CONCLUSIONS

Considering the large data set from Q&A site Mathematics
Stack Exchange and the agent-directed modeling, we have
analyzed the avalanching behavior and the bipartite network
that underlies the creation of collective knowledge. Given
the complexity of modeling the human actors, we have
kept the agent’s properties statistically similar to the features
of the users, detectable from the same empirical data. In

particular, the agent’s activity pattern is designed by the
distributions of the number of actions per user P (Ni) and
the interactivity time P (�t) as well as the arrival rate p(t),
which are mutually interconnected and characterize the human
dynamics in the considered empirical system. We have varied
the agent’s expertise, as the most relevant feature to the
knowledge creation. To evaluate its impact, the expertise
matching to the contents of the artifact has been clearly
observed in the simulations. (Other potential extensions of
the model, e.g., neglecting or altering the above distributions
independently, that goes beyond human dynamics [50], are not
discussed in this work.)

The analysis indicates that the knowledge-creation process
represents a particular class of social dynamics, in which the
self-tuning towards the criticality is controlled by the use of
knowledge in the meaningful actions and the coevolution of
the underlying network. Our key findings are here discussed.

The self-organized criticality. The robustly observed tem-
poral correlations, avalanching and multifractality, as well as
the scale-invariance dependence on the driving rate, indicate
that the criticality might occur in these stochastic processes
in a self-tuned manner. The social dynamics, driven by the
arrival of new actors and innovation that they bring, represents
the main source of the avalanching behaviors. Whereas, the
altered degree of branching (e.g., in the μ process) and,
more importantly, the strict use of the expertise imposes
the constraints to the social dynamics, which affects the
avalanche propagation. These constraints then manifest in the
nonuniversal scaling exponents of the avalanche sizes and
durations. Moreover, the relative fraction of the small and
large avalanches, which appear to be mixed in the course
of the process, depends on the available expertise of the
actors, thus affecting the width of the multifractal spectrum.
Nonextensivity (qa > 1) is another remarkable feature of
the knowledge-creation process, where the qa-exponential
distribution applies to the avalanche sizes and the qr -Gaussian
distribution to the avalanche returns. Although the observed
multifractality of the avalanche series is compatible with these
distributions, more theoretical work is needed to unravel their
origin.

The structure of network partitions. In this process, the
growth of the bipartite network occurs by the addition of
layers, which contain new arrivals and other active agents,
and their artifacts. How the network will grow is strongly
related to the expertise-conditioned linking. After a sufficient
time, the network exhibits a broad distribution of the degree of
nodes in both partitions. The scaling exponent of the agent’s
degree distribution in each case is close to the introduced
distribution of the activity P (Ni). However, the cutoffs of the
distributions, indicating the actual size of the network, vary
with the considered apportionment of the expertise. Notably,
the network size increases when the agents possess a larger
expertise in the average. In this case, the probability of an
agent to connect to a suitable artifact is elevated. Similarly,
the network growth is accelerated by the addition of a larger
number of actors in the initial stages of the process, which
results in a greater number of the available artifacts. Thus,
in the social process, the scale freeness of the user partition
is determined by the actual activity profiles alone. Where
the corresponding edges will appear in the network, and,
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consequently the network’s community structure [44], depends
on the available expertise and how it is distributed over
the actors. On the other hand, the question-partition degree
distribution strongly depends on the expertise. Note that in
both cases the determined scaling exponents are smaller than
2. These results suggest that the effective mechanisms might
be different from the popular “preferential” attachment-and-
rewiring rule that leads to the exponents larger than 2.

The self-tuning factors. The heterogeneity of the actor’s
profiles and the activity patterns, with the extended range of
delay times and the number of actions, is certainly an important
factor for the appearance of the avalanches in the studied social
dynamics. Apart from these “human factors,” it is stipulated
that some other ingredients of the knowledge creation may
contribute to the paths towards the criticality. Specifically, the
importance and the use of expertise in the human collaborative
endeavor makes the social process substantially different from,
for instance, the activity on popular blogs, where the negative
emotional charge of comments may lead to a supercritical
avalanche [13,14]. Here, the required expertise of the actors
needs to match the contents of the question, resulting in
a balanced activity (resembling the energy balance in the
driven physical system). Consequently, the activity stops
when sufficient knowledge is built through the answers on
a particular question, depending on the available expertise
of the actors. The same artifacts may become a focus in
the later stages when new necessary knowledge becomes
available, i.e., by the arrival of new players. Thus, in contrast
to the standard social dynamics, a kind of optimization of
the available expertise applies, which is also compatible with
the nonextensive dynamics mentioned above. Note that the
optimization of the system’s efficiency is often associated with
the functioning of biological systems [7] and the avalanching
process in neuronal assemblies [8,9] and the brain [12], which
are still not well understood. Furthermore, the underlying
network evolution by the addition of the innovative contents in
the active layer can be seen as another decisive factor to provide
a particular type of critical behavior. Theoretically, changing
the random environment for the self-organizing process affects
the universality of the critical behavior that can be achieved.
The renormalization group study of the critical sandpile model
in the presence of quenched [43] or annealed [42] random
currents has demonstrated that a new stable fixed point appears,
which is controlled by the variance of the random variable. For
the knowledge creation in the online Q&A communities, it
is relevant to mention that the innovation expansion builds

the network of contents with a logical structure, which
originates in the participant’s individual knowledge. For the
same empirical data, this aspect of knowledge creation was
demonstrated in [47] by analysis of the knowledge network
(containing the cognitive contents that are used in all questions
and answers, and encoded by the standard mathematical
classification scheme). Further research is needed to disclose
the potential importance of avalanches of knowledge creation
in the off-line social communities, where knowledge sharing
can lead to the creation of a common opinion and other
collective behavior [13,19].

In summary, the creation of collective knowledge through
questions and answers is a self-organized critical process
where the mechanisms of self-tuning are provided by the
interplay of the social and cognitive layer. The observed
SOC is robust to the increased driving rate within limits
pertinent to the considered experimental system. Our study
suggests some questions for further theoretical considerations,
in particular: the formal differences between knowledge
creation and common social dynamics; the potential similarity
between the knowledge creation and the brain avalanching
dynamics; the origin of the nonextensivity (although the
nonextensive character of the dynamics is intuitive in the
context of knowledge, the formal origin of the q-Gaussian
fluctuations is not understood), and other issues. The presented
results, based on the empirical data and the agent-directed
model, which is almost equally complex as the empirical
system itself, reveal many factors that act in unison and
contribute to the observed SOC. The presented comparison
to the driven spin system with site defects suggests that apart
from the expertise, the heterogeneity of the actor’s activity
patterns is an essential factor that prevents the appearance
of the supercritical avalanches. Our findings may help design
formal theoretical models of SOC, e.g., of the cellular automata
type or the continuous models suitable for the renormalization
group analysis, which may be capable of describing the unique
role of each of these factors.
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Cooperative self-assembly is a ubiquitous phenomenon found in natural systems which is used for designing
nanostructured materials with new functional features. Its origin and mechanisms, leading to improved func-
tionality of the assembly, have attracted much attention from researchers in many branches of science and
engineering. These complex structures often come with hyperbolic geometry; however, the relation between
the hyperbolicity and their spectral and dynamical properties remains unclear. Using the model of aggregation
of simplexes introduced by Šuvakov et al. [Sci. Rep. 8, 1987 (2018)], here we study topological and spectral
properties of a large class of self-assembled structures or nanonetworks consisting of monodisperse building
blocks (cliques of size n = 3, 4, 5, 6) which self-assemble via sharing the geometrical shapes of a lower order.
The size of the shared substructure is tuned by varying the chemical affinity ν such that for significant positive ν

sharing the largest face is the most probable, while for ν < 0, attaching via a single node dominates. Our results
reveal that, while the parameter of hyperbolicity remains δmax = 1 across the assemblies, their structure and
spectral dimension ds vary with the size of cliques n and the affinity when ν � 0. In this range, we find that ds > 4
can be reached for n � 5 and sufficiently large ν. For the aggregates of triangles and tetrahedra, the spectral
dimension remains in the range ds ∈ [2, 4), as well as for the higher cliques at vanishing affinity. On the other end,
for ν < 0, we find ds � 1.57 independently on n. Moreover, the spectral distribution of the normalized Laplacian
eigenvalues has a characteristic shape with peaks and a pronounced minimum, representing the hierarchical
architecture of the simplicial complexes. These findings show how the structures compatible with complex
dynamical properties can be assembled by controlling the higher-order connectivity among the building blocks.

DOI: 10.1103/PhysRevE.100.012309

I. INTRODUCTION

Controlled self-assembly of nanoparticles with various
properties has enabled the engineering of wide classes of
materials with new functional features [1]. Among others, the
possibilities of designing and assembling three-dimensional
(3D) structures of colloidal particles have increased signif-
icantly by the discovery of methods for the synthesis of
colloids with controlled symmetries and directional interac-
tions [2]. Further possibilities are opened with cooperative
self-assembly, where the groups of nanoparticles forming
small clusters can join the growing structure [3–7]. These
processes utilize a variety of interparticle forces [8], as well as
geometry-guided self-assembly [9–11]. By varying the build-
ing blocks in different self-assembly processes, the impact
of the system’s architecture on the emergent functionality
in nanostructured materials has been evidenced by experi-
mental investigation, e.g., by the charge transport or spin
diffusion, resulting in the enhanced collective dynamics of the
assembly [1,4–7,9,12]. On the other side, theoretical investi-
gations of the structure-function interdependence have been
greatly facilitated by mapping the assembly onto mathemati-
cal graphs or nanonetworks [13]. In this representation, nodes
can indicate nanoparticles with their geometrical, physical,

and chemical properties, and edges specify the interparticle
interaction or chemical bonding often enabled by their phys-
ical proximity. This representation allows the use of graph-
theory methods to quantify topology and facilitates numerical
modeling, as was done, for example, in the study of charge
transport by single-electron tunnelings in nanoparticle films
[12,14–16], carbon nanotube fillers [17], and others.

On a more global scale, the interplay between the structure
and dynamics is captured by spectral properties of networks
[18,19]. More specifically, spectral analysis of the adjacency
matrix or the Laplacian operator related to the adjacency ma-
trix [20] revealed Fiedler spectral partitioning of the graph and
detection of functional modules or mesoscopic communities
[21,22], hierarchical organization and homeostatic response
[23], the structural changes at the percolation threshold [24],
or the occurrence of assortative correlations between nodes
[25] and the origin and implications of the degeneracy in net-
work spectra [26,27]. A direct relation between the Laplacian
eigenspectrum and the diffusion processes on that network
revealed the role of the small-degree nodes and features of
the return time of random walks [21,28], as well as the
universality of dynamical phase transitions [29] and a deeper
understanding of synchronization on complex networks [30].
In this context, the key quantity that relates the structure
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to the diffusion and synchronization on a network is the
spectral dimension [31–33], which can be determined from
the properties of the Laplacian spectrum.

The complex functional systems often exhibit a hier-
archical architecture and the related hyperbolic geometry.
The underlying higher-order connectivity in these structures
can be modeled with simplicial complexes and describe it
with mathematical techniques of the algebraic topology of
graphs [34–38]. In this context, simplexes are cliques of
different orders q = 0, 1, 2, 3, . . . representing, respectively,
nodes, edges, triangles, tetrahedra, and so on, which are joined
into larger-scale structures. Note that a clique of the order
q contains cliques of the lower orders up to q − 1 as its
faces. The assemblies of cliques can be regarded as topolog-
ical spaces represented by simplicial complexes. Formally, it
holds that in a simplicial complex K, every face of a clique
σ ∈ K also belongs to K, and that a nonempty intersection
of two simplexes σ1, σ2 ∈ K is a face of both of them. In
the context of simplicial complexes, the 1-skeleton consists
of nodes and edges, which is the topological graph that is
accessible to analysis using standard methods of graph theory.
The idea of hierarchical architecture is a center piece in the
development of many modern innovative technologies such
as 3D printing [39]. In the materials science that motivates our
work, such structures are grown by cooperative self-assembly
[1,4,6–8,11,40]. Recently, these processes have been modeled
by attachments of preformatted objects or simplexes [10,41]
under geometric constraints and suitably specified binding
rules and parameters. We also draw attention to several other
contemporary studies [42–47] that show the importance of
simplexes in modeling interactions of higher orders and com-
plex geometry in various physical and biological systems.
Whereas in real complex systems whose structure is de-
tectable from experimental data, the corresponding structure
can be decomposed into simplicial complexes. For example,
in the case of human connectome studied in Refs. [48,49],
these simplicial complexes comprise the inner structure of
brain anatomical modules. The presence of cliques leading to
a hierarchical organization was also found in social network-
ing dynamics [50–52], problems related to traffic dynamics
[53], protein-protein interaction networks [23], and so on.

As mentioned above, the hierarchically organized networks
possess emergent hyperbolicity or negative curvature in the
shortest-path metric, that is, they are Gromov hyperbolic
graphs [54–58]. Recently the graphs with a small hyperbol-
icity parameter δ have been in the focus of the scientific
community for their ubiquity in real systems and applications,
as well as due to their mathematically interesting structure
[55–57,59]. Namely, the upper bound of a small hyperbol-
icity parameter can be determined from a subjacent smaller
graph of a given structure. Generally, it is assumed that both
naturally evolving, biological, physical, and social systems
develop a negative curvature to optimize their dynamics
[42,49,52,60,61]. However, the precise relationship between
the hyperbolicity of a network and its spectral and dynamical
features remains mostly unexplored.

In this paper, we tackle these issues by systematically
analyzing the spectral properties of a class of Gromov
1-hyperbolic graphs, which represent nanonetworks with
different architectures of simplicial complexes. Based on

the model for the cooperative self-assembly of simplexes
introduced in Ref. [41], here we grow several classes of
nanonetworks and analyze their topology and spectral
properties; the monodisperse building blocks are cliques of
the order n = 3, 4, 5, 6 while the geometrical compatibility
tunes their assembly in the interplay with the varying chemical
affinity ν of the growing structure towards the binding group.
Specifically, for the negative values of the parameter ν, the
effective repelling interaction between the simplexes occurs,
while it is gradually attractive for the positive ν. At ν = 0
purely geometrical factors play a role. Our results show that
while the hyperbolicity parameter remains constant δ = 1 for
all classes, their spectral dimension varies with the chemical
affinity ν and the size of the elementary building blocks n.
Moreover, these networks exhibit a community structure when
the parameter ν � 0. The inner structure of these communities
consists of simplicial complexes with a hierarchical
architecture, which manifests itself in the characteristic
spectral properties of the Laplacian of the network.

In Sec. II we present details of the model and parameters,
while in Sec. III we study different topology features of
the considered networks. In Sec. IV we analyze in detail
spectral properties of all classes of these networks for varied
parameters ν and the size of elementary blocks. Section V is
devoted to discussion of the results.

II. SELF-ASSEMBLY OF SIMPLEXES AND THE TYPE
OF EMERGENT STRUCTURES

For the growth of different nanonetworks, we use the
model rules for the cooperative self-assembly [41,62] with
the chemical aggregation of simplexes. Preformatted groups
of particles are described by simplexes (full graphs, cliques)
of different size n ≡ qmax + 1, where qmax indicates the
order of the clique. Starting from an initial simplex, at each
step, a new simplex is added and attached to the growing net-
work by docking along one of its faces, which are recognized
as simplexes of the lower order q = 0, 1, 2, . . . , qmax − 1; see
online demo [63]. For example, a tetrahedron can be attached
by sharing a single node, i.e., a simplex of the order q = 0
with the existing network, or sharing an edge, q = 1, or a tri-
angle, q = 2, with an already existing simplex in the network.
The attaching probability depends both on the geometrical
compatibility of the q-face of the adding simplex with the cur-
rent structure as well as on the parameter ν that describes the
chemical affinity of that structure towards the addition of new
na nodes, where na = qmax − q. More precisely, we have [41]

p(qmax, q; t ) = cq(t )e−ν(qmax−q)

∑qmax−1
q=0 cq(t )e−ν(qmax−q)

(1)

for the normalized probability that a clique of the order qmax

attaches along its face of the order q. Here cq(t ) is the number
of the geometrically similar docking sites of the order q at the
evolution time t . Eventually, one of them is selected randomly.
By varying the parameter ν from large negative to large posi-
tive values, the probability of docking along with a particular
face is considerably changed. For example, for the negative
values of ν, the growing system “likes” new vertices; conse-
quently, a simplex preferably attaches along a shared vertex
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FIG. 1. Aggregates of tetrahedra with strong repulsion, a seg-
ment is shown in the top panel, and the case with strong attraction
resulting in the network with communities indicated by different
colors is shown in the bottom panel.

rather than a larger structure. Effectively, a repulsion between
simplexes occurs; see Fig. 1 top. In the other limit, for a large
positive ν, the most probable docking is along the potentially
largest face, such that an added simplex of the size n shares the
maximum number n − 1 of vertices with the existing struc-
ture; see bottom panel in Figs. 1 and 2. Here the simplexes
in question experience a strong attraction, which gradually
decreases with decreasing ν. For the neutral case ν = 0, the
assembly is regulated by strictly geometrical compatibility
factors Cq(t ), which change over time as the network grows.

In the original model [41], the size of the incoming sim-
plexes is taken from a distribution, whose parameters can
be varied. To reveal the impact of the size of these building
blocks on the spectral properties of the new structure, here
we focus on the networks with monodisperse cliques; in
particular, we investigate separately the structures grown by
aggregation of cliques of the size n = 3, 4, 5, and 6 for contin-
uously varied affinity ν. For comparison, we also consider the
case with a distribution of simplexes in the range n ∈ [3, 6].
As the examples in Fig. 1 and Fig. 2 show, the structure
of the assembly varies considerably with both the size of
simplexes and the level of attraction between them. Notice
that in the case n = 2 the simplex consists of two vertices with
an edge between them resulting in a random tree graph. Here
qmax = 1 and all docking faces are single-vertex sites (q = 0).
Therefore, the probability p(1, 0; t ) = 1 is independent of the
value of the parameter ν. In this work, we consider networks
of different number of vertices N = 1000, 5000, and 10 000.

FIG. 2. The networks of the aggregated cliques of mixed sizes
n ∈ [3, 6] distributed according to ∝ n−2 for ν = 5 (top), and aggre-
gates of triangles for ν = 9 (bottom). The community structure is
indicated by different colors of nodes.

III. TOPOLOGICAL PROPERTIES OF THE ASSEMBLED
NANONETWORKS

The structure of the assemblies strongly depends on the
chemical affinity ν and the size n of the building blocks. For
example, a strong repulsion between cliques enables sharing
a single node, thus minimizing the geometrical compatibility
factor and resulting in a sparse graph (a tree-of-cliques). An
example with the tetrahedra as building blocks at ν = −9 is
shown in the top panel of Fig. 1. However, for extremally
attractive cliques, e.g., for ν = 9, the same building blocks
attach mostly via sharing their largest subgraphs (in this case,
triangles); thus the geometrical constraints play an important
role. This situation results in a dense nanonetwork with a
nontrivial community structure, determined by the modularity
optimization method [64], as shown in the bottom panel of
Figs. 1 and 2. Meanwhile, the modules in the sparse structure
can be recognized as the elementary cliques. Notably, the
presence of a large clique increases the efficiency of building
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TABLE I. Graph measures of the assemblies of cliques of the size n with N ≈ 1000 vertices for three representative values of the affinity
parameter ν: The number of edges E , average degree 〈k〉, and clustering coefficient 〈Cc〉, graph’s modularity mod , diameter D, and ratio of the
hyperbolicity parameter δmax to D/2. Two bottom rows are for mixed clique sizes n ∈ [3, 6] distributed according to ∝ n−α .

bb ν E 〈k〉 〈Cc〉 〈�〉 mod D δmax/D/2

n = 3 −5 1501 2.999 0.766 9.789 0.928 22 1/11
0 1734 3.465 0.741 7.265 0.902 16 1/8

+5 1991 3.982 0.735 4.958 0.861 10 1/5

n = 4 −5 2009 4.61 0.847 8.718 0.927 19 2/19
0 2426 4.852 0.808 6.023 0.895 12 1/6

+5 2984 5.968 0.813 3.23 0.715 8 1/4

n = 5 −5 2514 5.013 0.878 8.89 0.921 19 2/19
0 3182 6.351 0.829 5.01 0.856 11 2/11

+5 3997 7.958 0.850 2.703 0.850 5 2/5

α = 2 +5 2905 5.810 0.820 3.172 0.620 7 2/7
α = 0 +5 3464 6.298 0.844 2.857 0.569 6 1/3

a nontrivial structure, even for a small attractive potential; cf.
Fig. 2 top. We will further discuss the community structure
of these networks in connection with their spectral properties
in Sec. IV. As explained in the Introduction, we analyze the
standard Laplacian operator, which is related to the adjacency
matrix of the graph, i.e., a 1-skeleton of the simplicial com-
plex. (A study of combinatorial Laplacians associated with
higher-order structures remains out of the scope of this work.)
Therefore, we examine the graph’s properties that can be
related to the Laplacian spectra. In Table I we summarize
different graph measures of some monodisperse assemblies
whose spectral properties are studied in Sec. IV. We note
that the self-assembly process of cliques can result in a broad
range of the degree of vertices. Depending on the size of
cliques n � 3, several hubs and a power-law tail can appear
at the sufficiently strong attraction between them [41]. For
illustration, Fig. 3(a) shows the ranking distribution of the
degree for several monodisperse assemblies in the case of
intense attraction. To get an insight into the structure of
the simplicial complexes of these assemblies, we show in
Fig. 3(b), how the population fq of cliques and faces along
different topological levels q varies with the size of the
building block n. For comparison, we also display fq in the
case of the size n ∈ [3, 6] distributed as ∼n−α with a small
number of larger cliques (α = 2) and the statistically similar
number of cliques of all sizes (α = 0).

As mentioned above, the assemblies of cliques possess
a negative curvature in the graph metric space, which im-
plies that they fulfill the Gromov four-point hyperbolicity
criterion [54]. More precisely, the graph G is hyperbolic
iff there is a constant δ(G) such that for any four ver-
tices (a, b, c, d ), the relation d (a, b) + d (c, d ) � d (a, d ) +
d (b, c) � d (a, c) + d (b, d ) implies that

δ(a, b, c, d ) = d (a, c)+d (b, d )−d (a, d )−d (b, c)

2
� δ(G),

(2)

where d (u, v) indicates the shortest path distance. Note that
the difference in (2) is bounded from above by the minimum
distance in the smallest sum dmin ≡ min{d (a, b), d (c, d )}.

Thus, by plotting δ(a, b, c, d ) against dmin for a large num-
ber of 4-tuples, we numerically estimate δ(G) ≡ δmax as the
maximum value observed in the entire graph.

As described in Sec. II, the cliques aggregate by sharing
their faces, i.e., cliques of a lower order, which leads to
some specific properties of the grown structures [41]. In
particular, the order of the simplicial complex cannot exceed
the order of the largest attaching clique. Moreover, theoretical
investigations of these types of structures predict [55–58] that
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FIG. 3. (a) Ranking distribution of nodes i = 1, 2, . . . , 5000 ac-
cording to the decreasing degree. The degree ki of the vertex i
is plotted against its rank ri for different assemblies of cliques of
size n, indicated in the legend, and ν = 9. Stretched exponential
curve approximates the data for the random tree (n = 2), while the
asymptotic power-law decay with the exponent γ is appropriate for
n � 3. (b) The number of simplexes and faces fq at different topology
level q is plotted against q + 1 for the same monodisperse assemblies
of the size n as in the top panel (the same legend applies). The
additional dotted and dashed lines with diamonds are for the mixed
sizes n ∈ [3, 6] with the distribution ∼n−α and two values of α given
in the legend of panel (b).
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vs the distance d . The corresponding bottom panels display the
hyperbolicity parameter δmax (upper curves, full lines) and 〈δ〉 (lower
curves, dashed lines) against dmin. Thin dotted line indicates the level
δmax = 1.

the upper bound of the hyperbolicity parameter of the graph
differs from the hyperbolicity of the “atoms” of the structure
by at most one unit, that is, δmax = δa + 1. Given that a clique
is ideally hyperbolic (i.e., treelike in the shortest path metric
space), we have δa = 0, which gives δmax = 1 for all clique
complexes grown by the rules of our model. By sampling
up to 109 4-tuples of vertices and computing the graph hy-
perbolicity parameter δ(G) in Eq. (2), we demonstrate that
the hyperbolicity parameter remains δ(G) � 1 for all studied
assemblies. More precisely, while the structure of different
assemblies, as well as their distribution of the shortest-path
distances, varies with the chemical affinity ν, the upper bound
of their hyperbolicity parameter remains fixed in agreement
with the theoretical prediction. In Fig. 4 we show the results
of the numerical analysis for three representative sets of the
assemblies of cliques of different sizes. See also Table I.

IV. SPECTRAL ANALYSIS OF MONODISPERSE
ASSEMBLIES

Spectral dimension ds of a graph, which is defined via
limt→∞

logPii (t )
logt = − ds

2 , characterizes the distribution of return
time Pii(t ) of a random walk on that graph [31,65–67]. The
diffusion type of processes on network is described by Lapla-
cian operators [21,28]. More precisely, for the undirected
graph of N vertices, two diffusion operators are defined, i.e.,
the Laplacian operator with the components

Li j = kiδi j − Ai j, (3)

and the symmetric normalized Laplacian [68]

Ln
i j = δi j − Ai j√

kik j
. (4)

Here Ai j are the matrix elements of the adjacency matrix, ki

is the degree of the node i, and δi j is the Kroneker symbol.

FIG. 5. The lines with different symbols represent the spectral
dimension ds plotted against chemical affinity ν for the aggregates of
monodisperse cliques of sizes n = 3, 4, 5 and a mixture of cliques of
different sizes in the range n ∈ [3, 6]. The bottom line corresponds
to the random tree case n = 2.

The operators defined with Eqs. (3) and (4) are symmetric
and have real non-negative eigenvalues. Both operators have
the eigenvalue λ = 0 with the degeneracy that is equal to the
number of connected components in the network. For the net-
works that have a finite spectral dimension, spectral densities
of both Laplacians scale as P(λ) � λ

ds
2 −1 for small values of

λ. Therefore, the corresponding cumulative distribution Pc(λ)
scales as

Pc(λ) � λ
ds
2 , λ � 1, (5)

and it is suitable [33] for estimating the spectral dimension
ds of the network. Here we analyze the spectral properties of
both Laplacian operators (3) and (4) for the networks grown
with different building blocks and varied chemical affinity ν;
see Figs. 5–7.

We analyze the cumulative spectral density Pc(λ) for the
Laplacian defined by the expressions (3) and (4) to determine
the spectral dimension of the graphs with the adjacency matrix
Ai j . Note that the spectrum is bounded from below, i.e., 0 � λ

for all eigenvalues λ. According to Eq. (5), we estimate ds

for each sample by fitting the data of Pc(λ) for the values
in the range λ � 0.3, as illustrated in Fig. 6. The error bars
are determined by taking the average from different samples
of networks that have 1000 and 5000 nodes. The results
summarized in Fig. 5 show how the spectral dimension of
the corresponding graphs varies with the chemical affinity ν

depending on the size of the elementary building blocks.
As Fig. 5 shows, the impact of the size of the cliques

strongly depends on the way that they aggregate, which
is controlled by the chemical affinity ν. Precisely, for the
sparse structures grown under the considerable repulsion
between cliques when ν < 0, we find that the spectral di-
mension is practically independent of the size of cliques
until the repulsion becomes vanishingly weak. In contrast,
when ν � 0 the spectral dimension increases with the size
of the elementary cliques. Here the attaching cliques can
share their larger faces, thus increasing the impact of the
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FIG. 6. Several examples of the cumulative spectral density
Pc(λ) in the range of small λ for the Laplacian operator (4) for
the aggregates of triangles (top), tetrahedra (middle), and 5-cliques
(bottom). In each panel, three lines in the top-to-bottom order cor-
respond to different values of the chemical affinity ν = −5, 0, and
+5, respectively. The corresponding symbol and color for the online
version are indicated in the legend.

geometrical compatibility factor. Remarkably, the spectral
dimension increases with the strength of the attraction be-
tween cliques, which favors sharing increasingly larger faces.
These faces are limited by the size of the elementary cliques.
More specifically, for all ν � 0 values, ds is systematically
larger in the aggregates of tetrahedra than those of triangles.
In both cases we have that ds exceeds the limit of the transient
random walk, ds = 2, for relatively weak attraction between
cliques ν ∼ 1. However, both curves remain below ds = 4 for
the entire range of ν values. Note that ds > 4 is recognized
as the full synchronization condition for the Kuramoto os-
cillators on network [33], whereas, in the region ds ∈ (2, 4],
an entrained synchronization with a complex spatiotemporal
pattern can be expected [33,69]. Even though a quite com-
pact structure is grown by attaching tetrahedrons via their
triangular faces (see bottom panel in Fig. 1), its spectral
dimension remains limited as ds < 4, enabling the complex
synchronization patterns. We find that the limit ds = 4 can
be exceeded when the size of the clique is at least n = 5
and the attraction is considerably large, i.e., ν � 5. In this
situation, the agglomerate consists of 5-cliques sharing many
tetrahedrons as their largest faces. Interestingly, it suffices to
have a few cliques of a large size to grow such agglomerates
that cause the spectral dimension ds � 4. For example, the
mixture shown in the top panel of Fig. 2 with n ∈ [3, 6], where
the population of 6-cliques is only 1/4 of the population of
3-cliques, leads to the spectral dimension shown by the top
line in Fig. 5. Furthermore, Fig. 6 indicates that not only the
spectral dimension but the entire spectrum changes with the
size of the cliques and the chemical affinity, as we discuss in
more detail in the following.

Next, we determine the spectral density of the normalized
Laplacian, defined by (4), by averaging over 10 networks of

size N ≈ 1000 generated for the same values of the model
parameters. Note that the eigenvalues of the normalized
Laplacian are bounded in the range [21,28] λLN ∈ [0, 2].
In Fig. 7 we show the spectral density of the normalized
Laplacian for several representative cases, in particular, for
three different aggregates of tetrahedrons corresponding to the
strong repulsion, vanishing interaction, and strong attraction,
respectively. Also, in panel (e), the spectral distribution is
shown for the case of strong attraction ν = 9 for the cliques
of different sizes n � 3. It should be noted that iso-spectral
structures are observed in the case of the significant repul-
sion between the cliques ν = −9. In this limit, apart from
a structure at small eigenvalues, there is a prominent peak
at λLN = n/(n − 1), i.e., λ = −1 in the adjacency matrix,
indicating the presence of minimally connected cliques. In
contrast, for ν � 0, the attraction between cliques and the
relevance of the geometrical compatibility factors lead to the
appearance of larger simplicial complexes. A peak at λLN = 1,
which is absent in panel (a), starts building at ν = 0, and
gradually increases with the increasing ν, as shown in panels
(c) and (e). The occurrence of the peak at λLN = 1, (i.e., λ = 0
in the corresponding adjacency matrix [20,26,27]) appears as
a characteristic feature of these hyperbolic networks. Accord-
ing to previous studies of scale-free and modular networks
[21,28], this peak can be related to the nodes of the lowest
degrees in the network. In the present study, such nodes are
found in the bottom-right corner of the ranking distribution
in Fig. 3(a). Apart from the random tree case, the appearance
of this peak reflects the fact that with the increased chemical
affinity a broad distribution of degrees occurs with a power-
law tail; cf. Fig. 3(a). Notably, the highest peak is when the
building cliques are of different sizes n ∈ [3, 6], compared
to the monodisperse structure with n = 6. Recently, a more
insightful analysis [26,27] revealed different origins of the
degeneracy in the adjacency matrix that leads to these two
peaks in the spectra. More specifically, this analysis suggests
that the occurrence of substructures of nodes, which are
equally connected to a surrounding structure in the network,
increases the degeneracy of the −1 eigenvalue. Moreover, the
reasons for the degeneracy of the 0-eigenvalue were found
in the nodes duplication, which is known to characterize
the evolution of biological networks, notably demonstrated
in analysed protein-protein interaction networks [26,27]. We
note that such situations often occur in our model by com-
bining simplexes through their shared faces. The two peaks
mentioned above are increasingly more prominent in the case
of larger cliques n for ν > 0, where the dominant docking
events occur via sharing the largest subclique. Similar spectral
properties can be expected for the simplicial complexes grown
by different rules, for example, in the models described in
Refs. [42–47].

A further exciting feature of these spectral densities is
that a characteristic minimum appears between λLN = 1 and
the structure above it. The results in previous investigations
[23] suggest that such minimum in the spectral density is a
signature of the hierarchical organization, as demonstrated by
an artificial network, which also occurs in the protein-protein
interaction network. In the present study, the hierarchical
organization of cliques into simplicial complexes occurring
at ν � 0 has been demonstrated by the algebraic topology
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FIG. 7. Spectral distribution (left column) and the corresponding scatter plots of the eigenvectors v1, v2, v3 of the three lowest nonzero
eigenvalues of the normalized Laplacian (right column) for the aggregates of tetrahedra n = 4 for three different values of the affinity parameter
ν = −9 (a, b), ν = 0 (c), (d), and ν = +9 (e), (f). The bottom panels (g) and (h) are for the random tree structure n = 2, which is independent
of ν. For comparison, we also show the spectra for the cliques of different sizes n = 3, 5, and 6, and the mixture n ∈ [3, 6] in panel (e); the
corresponding lines are explained in the legend. The orientation of each 3D plot in panels (b), (d), (f), and (h) is such that it best depicts the
number and size of different branches of nonzero components of the corresponding eigenvectors.

methods in Ref. [41]. Here we show by the spectral analysis
that these simplicial complexes make the inner structure of
mesoscopic communities, which can be identified by the
localization of the eigenvectors of the lowest nonzero eigen-
values [21]. In the right column of Fig. 7, panels (b), (d), and

(f) show the scatter plot of the three eigenvectors related to the
lowest nonzero eigenvalues corresponding to the aggregates
of tetrahedrons in the left column. In the limit of strong repul-
sion between the cliques, the modularity of the entire structure
is determined by the original cliques; see Figs. 7(a) and 7(b),
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whereas the larger communities with subcommunities appear
for ν � 0 where higher-order connections are increasingly
more effective; cf. panels (d) and (f) of Fig. 7. We can expect
that similar spectral properties can be found in various real-
world networks with the prominent hierarchical organization
mentioned in the Introduction. More precisely, the spectra of
networks representing functional brain connections, protein-
protein interaction networks, as well as various hyperbolic
graphs with cliques emerging from the online social dynamics
can have features qualitatively similar to the ones discussed
above. For completeness, panels (g) and (h) of Fig. 7 show the
case n = 2, exhibiting the spectral density of a typical random
tree structure.

V. DISCUSSION AND CONCLUSIONS

We have studied topological and spectral properties of
classes of hyperbolic nanonetworks grown by the cooperative
self-assembly. The growth rules [41] that can be tuned by
changing the parameter of chemical affinity ν enable us to in-
vestigate the role of higher-order connectivity in the properties
of the emerging structure. Attaching groups of particles are
parameterized by simplexes (cliques) of different sizes which
share a geometrical substructure by docking along with the
growing network. For the negative values ν < 0, the repulsion
among cliques makes them share a single node rather than an
edge or a higher structure. On the other hand, ν � 0 implies
that the geometrical factors and the size of the attaching clique
become relevant. In particular, the higher positive value of
ν implies that a new clique attaches to a previously added
clique by sharing its face of the larger order, thus building a
more compact structure. Mathematically [58], the attachment
of cliques by sharing a face (of any order) leads to simplicial
complexes whose hyperbolicity parameter cannot exceed one.

Our results revealed that, while the hyperbolicity param-
eter remains fixed δmax = 1 across different assemblies, their
topological and spectral properties change with the increased
chemical affinity; see Table I and Figs. 5 and 7. Remark-
ably, the spectral dimension of the structure of strongly
repelled cliques of any size is practically indistinguishable
from the one of a random tree of the same number of ver-

tices. However, the rest of the spectrum is different from
the one of the tree structure; its dominant feature is the
presence of cliques as the prominent network modules. On the
other hand, the compelling attraction between the cliques for
ν � 0 results in the spectral dimension that for all sizes
n � 3 exceeds the limit ds = 2, compatible with the transient
random walk on the network. Further increase of the spectral
dimension with the increased affinity parameter ν strongly
depends on the size of the cliques. Our results suggest that
for a strong attraction with the cliques of size n � 5, the
spectral dimension of the network can exceed the limit ds = 4,
above which the synchronized phase is expected to exist [33].
However, more interesting structures are grown by smaller
cliques or a mixture of different clique sizes with a weak
attraction (small positive values of the parameter ν) allowing
the sharing a variety of clique’s faces. In these cases, we find
that the spectral dimension remains in the range of ds ∈ (2, 4].
These spectral properties are expected to be compatible with
an entrained synchronization [33] or a frustrated hierarchical
synchronization with intricate spatiotemporal patterns [69]. A
detailed analysis of such synchronization patterns on these
graphs as well as potentially superdiffusive processes [70]
remains for future work. Due to their spectral properties,
these structures can be interesting for modeling the complex
dynamics in a variety of biological systems and for poten-
tial applications. In the framework of the cooperative self-
assembly of nanoparticle groups, our analysis shows how the
control of the chemical affinity can lead to complex struc-
tures with different functional properties. Furthermore, the
presented results can be relevant for a deeper understanding of
the functional complexity of many important structures with
built-in simplicial complexes, such as human connectome [49]
and other hierarchically modular networks.
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Abstract We find that nitrogen plasma treatment of

micro/nanofibrillated cellulose films increases wetta-

bility of the surface by both liquid polar water and

nonpolar hexadecane. The increased wetting effect is

more pronounced in the case of polar liquid, favouring

the use of plasma treated micro/nanofibrillated cellu-

lose films as substrates for a range of inkjet printing

including organic-based polar-solvent inks. The films

were formed from aqueous suspensions of progres-

sively enzymatic pretreated wood-free cellulose

fibres, resulting in increased removal of amorphous

species producing novel nanocellulose surfaces dis-

playing increasing crystallinity. The mechanical prop-

erties of each film are shown to be highly dependent on

the enzymatic pretreatment time. The change in

surface chemistry arising from exposure to nitrogen

plasma is revealed using X-ray photoelectron spec-

troscopy. That both polar and dispersive surface

energy components become increased, as measured

by contact angle, is also linked to an increase in

surface roughness. The change in surface free energy

is exemplified to favour the trapping of photovoltaic

inks.

Keywords DBD plasma � Nitrogen plasma surface

treatment � Nanocellulose films � Enzymatic

nanocellulose � Printing of organic-based polar inks

Introduction and background

Sustainability is one of the key targets for industrial

practice today. The related research aimed at new

biobased materials derived from renewable sources, is

relevant for the sustainable economy. In the bioprod-

ucts industry, micro/nanofibrillated cellulose (MNFC)

has attracted attention in a number of potential

applications (Hubbe et al. 2017a). It can be used in

standard wood products, such as paper and boards.

However, most of the benefits derived from MNFC

stem from its wider uptake in a range of industrial

value chains, such as biodegradable packaging films

and laminates. MNFC has interesting intrinsic prop-

erties derived from large specific surface area and its
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alternate regions of crystallinity. The hydroxylated

surface chemistry is readily suitable for chemical

modification. Films formed from MNFC are consid-

ered smart materials and studied for functional mate-

rials applications. Enzyme-treated fibres used to

produce cellulose nanofibrils provide higher crys-

tallinity in the resulting nanocellulose, as enzymes

digest amorphous cellulose, which acts as the glue

between crystalline cellulose regions. Direct hydrogen

bonding of crystalline cellulose, therefore, gives a

stronger material film. An example of an important

application of MNFC is as a substrate for printed solar

cells based on organic inks (Zhu et al. 2014). The

surface properties of MNFC films, such as wettability

by liquid, topography, chemistry, surface charge, the

presence of hydrophobic and hydrophilic domains,

density and conformation of functional groups, all

play a crucial role in printability and barrier properties.

Their ability to support controlled migration of solvent

ink vehicle and chromatographic differentiation of ink

components is important in the printing of inkjet

printable (IP) inks, and especially for production of

bio-based printed functionality in a wide range of

applications, such as printed electronics and printed

diagnostics (Hoeng et al. 2016; Jutila et al. 2018).

Solar panel IP photovoltaic (PV) inks contain a

complex mix of materials, including the organic

electron acceptor (p-type) and negative electron donor

(n-type) suspended in solvent together with specific

surfactant(s) intended to keep the p-type and n-type

components de-mixed (Kumar and Chand 2012).

Although drop-on-demand (DoD) inkjet printing is a

very competitive candidate for printing PV inks on

film substrates, there are limitations in respect to

mutual compatibility between the surface of MNFC

films and mixed polar-dispersive solvents constituting

the PV ink (Singh et al. 2010; Yinhua et al. 2013).

Electrolyte is highly polar, for example, and so

sufficient wettability is needed by providing a polar

surface, despite the parallel requirement for wettabil-

ity by organic species (Schultz et al. 1977; Özkan et al.

2016). This complex polar-dispersive surface energy

balance is, therefore, critical (Hansson et al. 2011).

Exposure to plasma is a convenient method to

modify the surface properties of polymeric materials,

while keeping their bulk properties intact, making a

material better adapted for printing (Möller et al. 2010;

Kramer et al. 2006; Catia et al. 2015). Furthermore, as

we demonstrate, it is a convenient way to introduce

desired groups onto the surface of materials (Mi-

hailovic et al. 2011). Surface properties depend on

parameters of plasma treatment such as applied

electrical field energy, type of feed gas, pressure,

exposure time, and reactor geometry (van de Vyver

et al. 2011; Jun et al. 2008).

In this work, we modify enzyme pretreated fibre-

derived MNFC film surfaces using nitrogen plasma to

enhance their amphiphilic surface affinity to polar and

non-polar IP PV inks. Measurements of the surface

free energy, surface roughness (atomic force micro-

scopy (AFM)) and material composition [X-ray pho-

toelectron spectroscopy (XPS)] were used to

characterise the MNFC film surface before and after

plasma treatment. The affinity for IP PV ink was

assessed visually after inkjet printing.We also identify

a correlation between the observed change in free

surface energy of the MNFC film, arising from the

plasma treatment, with the effect of the enzymatic

pretreatment. This is related to the level of residual

crystallinity increasing as a function of progressive

enzymatic pretreatment (Galagan et al. 2011; Cer-

nakova et al. 2006; Pertile et al. 2010; Vanneste et al.

2017).

To meet the requirement of sufficient tensile

strength of MNFC films for the application exempli-

fied, the rheological properties of enzymatically

pretreated MNFC fibrillar suspensions were compared

with the mechanical properties of corresponding

obtained films, so that rheology can be used as a

predictor of film strength (Maloney 2015; Zhu et al.

2014).

Materials and methods

Preparation of MNFC

For the manufacture of short MNFC fibrils, the pulp

was first washed to create the sodium form by adding

sodium hydroxide to a 2 w/w% fibre suspension until

the pH reached 10, and then re-washed with deionised

water to a conductivity of 8.2 lS. The enzymatic

treatment was performed with a commercial enzyme

ECOPULP� R (Ecopulp Finland Oy), produced by a

genetically modified strain of Trichoderma reesei

fungus (Rantanen et al. 2015). The activity properties

of the enzyme are reported to be 17,700 nkat cm-3

cellulase with a protein level of 93 mg cm-3

123

3846 Cellulose (2019) 26:3845–3857



(Willberg-Keyriläainen et al. 2019). An amount of

3 mg of enzyme per gram of pulp fibre was added to a

2.5 w/w% suspension and the temperature was

increased to 57 �C at pH 5.5 during hydrolysis, whilst

keeping under constant agitation. The period of

digestion was increased for each subsequent sample

in 30 min steps, Table 1. The enzymatic activity was

terminated by adjusting the pH to 9–10 by sodium

carbonate and increasing the temperature to 90 �C.
After cooling the suspension overnight in cold storage,

the samples were refined using an homogeniser (model

M-110P, Microfluidics, USA), passing the material

under a pressure of 2000 bar through a 100 lm flow

gap. The solids content of the MNFC suspension after

the fluidisation was 1.65 w/w%.

The enzymatic pretreatment of pulp as a route for

producing low-charged MNFC resulted in the produc-

tion of short fibrils, which, in the case studied here,

have much lower aspect ratio than MFC and NFC

produced via chemical oxidative pretreatment or

mechanical refining alone, as illustrated in Fig. 1

comparing MNFC/300/and MNFC/0/suspensions

(Table 1), revealing much shorter fibrils obtained

upon 300 min of enzymatic hydrolysis.

MNFC film preparation

With increasing enzymatic treatment time, the result-

ing MNFC suspension viscosity decreased signifi-

cantly, and the solid content for preparation of the

respective films ranged from 0.6 to 1.9 w/w% to meet

the target film grammage of 60 g m-2 produced under

conditions of 23 �C and relative humidity (RH) 50%.

Films were made on a sheet-former according to

ISO standard 5269-1, with some modification of the

screen to aid fines retention. Due to the very strong

water retention of MNFC, and its fine size, a

polyamide monofilament open mesh fabric SEFAR

NITEX� 03-1/1 with a pore size of 1 lm was placed

on top of a 125 lmmetal screen. The pulp suspension

was poured at high viscosity onto the former without

adding water or stirring the slurry. The system was

pressurised to 0.3 bar and the sealing lid was used on

the sheet-former. Double-sided adhesive tape, of

5 mm width, was attached to the edges of the drying

plate between plate and formed film, with purpose of

fixing the edge of the film to prevent it shrinking

during drying (Fig. 2).

Material treatment and characterisation

Optical microscopy was used to study the fibrillar

sample suspensions and films using an Olympus BX

61 microscope equipped with a DP12 camera.

Water retention the water retention value (WRV) of

the MNFC was determined in accordance to the

standard SCAN-C 102XEwith a slight modification in

that 10 w/w% suspension of the MNFC was added in

various ratios to a suspension of bleached unrefined

pulp. The pulp matrix helps the MNFC dewater and

remain retained on the screen. The WRV of neat

MNFC can be evaluated by extrapolating to zero pulp,

not including the swelling of the pulp fibres (Möller

et al. 2010). The experiment was performed in

triplicate for each sample.

Dielectric barrier discharge (DBD) plasma oper-

ates in a thermodynamically non-equilibrium condi-

tion (so-called cold plasma) in which the ion and

molecular translational temperature is much lower

than the electron temperature, such that excessive gas

heating can be suppressed (Kostic et al. 2009;

Prysiazhnyi et al. 2013). The advantage is that the

plasma can be generated at atmospheric pressure,

either in open or closed environment. In an open

atmosphere, the plasma discharges can be produced

with a gas flow between the electrodes (Mihailovic

et al. 2011; Chu et al. 2002; Jens et al. 2017).

Table 1 Materials used in this study: bleached hardwood Kraft pulp treated with enzymes under controlled conditions, with

progressive increase in enzymatic digestion time by 30 min steps for each subsequent sample

Enzymatic

treatment time/

min

0

(reference)

30 60 90 120 150 180 210 240 270 300

Sample label MNFC/0/ MNFC/

30/

MNFC/

60/

MNFC/

90/

MNFC/

120/

MNFC/

150/

MNFC/

180/

MNFC/

210/

MNFC/

240/

MNFC/

270/

MNFC/

300/
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A further attractive characteristic of the DBD

plasma at atmospheric pressure is that it can be used

to modify or activate surfaces of a wide range of

materials, from polymers, textile fibres to biological

tissues, without damaging them (Kostic et al. 2009;

Pertile et al. 2010; Mihailovic et al. 2011). To generate

the DBD plasma we used a home-made device built at

the Faculty of Physics, University Belgrade, Fig. 3.

The DBD is assembled in a chamber with nitrogen gas

injected into the discharge volume (6 dm3 min-1)

through ten equidistant holes to ensure homogeneous

gas flow. MNFC films were treated for 0 s, 30 s and

60 s, respectively. The device was operated at 6 kV

DC and 300 electric field pulses per second (Hz) for

the prescribed durations of time, for all the films, as a

higher voltage resulted in burning of the thin MNFC

films, especially for those made from pulp exposed to

long enzymatic pretreatment time.

Fig. 1 Images of fibrils sample suspensions obtained with

optical microscopy revealing the effect of processing conditions

on the fibril size and aspect ratio: a without enzymatic treatment

produced MNFC/0/yielding long fibrils, b MNFC/300/short,

low aspect ratio fibrils, and c displaying the corresponding 2 w/

w % MNFC suspensions of MFC/0/and MNFC/300/. The

difference in gelation strength is due to the different size of

fibrils and corresponding amount of water dispersed within the

fibrillar matrix

Fig. 2 MNFC film preparation: a sheet forming device with

b 10 lmmesh supplemented nylon screen, and c samples of cut-

offs (60 9 15 mm2) from MNFC films produced from pulp

refined with different enzymatic pretreatment time (Table 1).

Transparency and uniformity of films increases with hydrolysis

time
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Determination of free surface energy (FSE)

components

For the evaluation of any change in free surface energy

of MNFC films arising from nitrogen plasma treat-

ment, the contact angle (CA) is determined.

Most liquids are rapidly spreading on a high energy

surface, and so a representative contact angle (CA)

cannot be readily measured, Schultz et al. (1977)

developed a method where CA can be measured by

submerging the surface in one liquid and using a

second liquid to measure the contact angle. In this case

a hydrocarbon n-hexadecane is used as the submerging

liquid having the purely dispersive liquid–vapour

surface tension of cLV
h = 27.4 mJ m-2, much lower

than the expected surface free energy of the MNFC

samples, and water as the contact angle liquid with the

highly polar liquid–vapour surface tension

cLV
w = 72.8 mJ m-2 (Hansson et al. 2011). A sessile

drop of water is lowered into contact with the

horizontal film immersed under hexadecane using a

precise pipette delivering 70 ll of liquid and the

progressive change in drop shape due to the change in

CA recorded with a Nikon camera (D5000) in time

steps of 1 ms. The CA of water is also recorded

separately to represent the print challenge of a highly

polar ink (Özkan et al. 2016; Dimic-Misic et al. 2015).

For each given MNFC sample and given liquid data

variation is within 10%. The identification of contact

line geometry and evaluation of CA uses numeric

software tools, as presented visually in Fig. 4. For a

parallel optimal method for polar FSE determination

with water alone, the Girifalco and Good approach

(1957), combined with the Neumann equation of state

was used. This latter allowed the polar contribution to

FSE be estimated and thus can be added to the

formerly measured dispersive component. Each mea-

surement was conducted five times. For each given

MNFC sample, the relative error of measured FSE was

shown to be * 10%.

Surface topography

Plasma action on the film surface can lead to a degree

of debonding of fibrils as well as electrostatic charging

and potential for subsequent additional moisture

adsorption. Such changes can lead to re-conformation

of the surface, even though no mechanical forces have

been applied (Kostic et al. 2009; Chu et al. 2002). The

change in topography of the MNFC films was

investigated by Atomic Force Microscopy (AFM)

(Veeco Instruments, model Dimension V). Using a

MultiMode 8 with Bruker NanoScope V controller.

Each MNFC film sample was dry-cast onto a Mica

support for AFM imaging. Micrographs were obtained

in trapping mode under ambient conditions, using

TAP 300 tips (resonant frequency 300 kHz, line force

being kept constant at 40 Nm-1 and the AFM images

were processed and analysed with the Bruker NanoS-

cope Analysis 1.5 software.

Fig. 3 DBD device with

two electrodes and sample

placed between them:

a schematic illustration of

DBD plasma devise,

b plasma chamber housing

the sample placed 1 mm

from the upper electrode,

and c closed plasma set up

with glass lid placed above

the top of the upper

electrode
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Mechanical properties

Mechanical properties of the MNFC films were

measured by an MTS 400/M vertical tensile tester

equipped with a 20 N load cell. The instrument was

controlled by a TestWorks 4.02 program. Specimen

strips with dimensions of 60 9 15 mm2 were clipped

from the MNFC films with a lab paper cutter (Afsahi

et al. 2018). The thickness of the strips was separately

measured with an L&W micrometer SE 250. The

gauge length was 40 mm and the testing velocity was

0.5 mm min-1. The results are presented as an

average value obtained from five parallel specimens.

Surface chemical composition

Surface composition of theMNFC films was evaluated

with X-ray photoelectron spectroscopy (XPS), using a

Kratos AXIS Ultra electron spectrometer, with

monochromatic Al Ka irradiation at 100 W and under

charge neutralisation. Both the untreated MNFC films

and plasma treated specimens were analysed. For the

preparation, samples were pre-evacuated for at least

12 h, after which wide area survey spectra (for

elemental analysis) as well as high resolution regions

of C1s and O1s were recorded from several locations,

and an in situ reference of pure cellulose was recorded

for each sample batch (Johansson and Campbell

2004). With the parameters used, XPS analysis was

recorded on an area of 1 mm2 and the analysis depth is

less than 10 nm. Carbon high resolution data were

fitted using CasaXPS and a four component Gaussian

fit tailored for celluloses.

Fig. 4 Set-up for evaluating water CA under n-hexadecane with high speed camera (Nikon D5000): a images of films on camera

viewfinder and b image processing of drop spreading (see also Fig. 8)
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MNFC suspension rheology

The rheological properties of MNFC suspensions were

analysed at 2 w/w% concentration at 23 �C with an

Anton Paar MCR 300 shear rheometer. The dynamic

viscosity (g) was determined by steady shear-flow

measurements, using the bob-in-cup geometry (Mo-

htaschemi et al. 2014). Due to the potential for wall

depletion (apparent slip) and thixotropic behaviour of

MNFC suspensions, the ‘‘bob’’ was a four-bladed vane

spindle with a diameter of 10 mm and a length of

8.8 mm, while the metal cup had a diameter of 17 mm.

A pre-shear protocol was applied using constant shear

at a shear rate _c = 100 s-1 for 5 min, followed by a

rest time of 10 min prior to recording the flow curves.

Flow curves of MNFC suspensions were constructed

under decreasing shear rate of _c = 1000–0.01 s-1,

with a logarithmic spread of data points (Dimic-Misic

et al. 2013). To distinguish the MNFC suspensions in

terms of their colloidal interactions as an effect of

hydrolysis time, aspect ratio, crystallinity and friction

between nanofibrils during the flow (Pääkkönen et al.

2016; Dimic-Misic et al. 2018), the log–log plot flow

curves were fitted to a power law according to the

Oswald–de Waele empirical model, as shown in

Eq. (1)

g ¼ k _c1�n ð1Þ

where k and n are the flow index and the power-law

exponent, respectively: n = 1 indicates a Newtonian

fluid and n[ 1 indicates pseudo-plastic (shear thin-

ning) behaviour.

The Herschel–Bulkley equation describes the

dynamic yield stress sd
0 as

s ¼ s0d þ k _cn ð2Þ

where s is the shear stress.

Printing

The photovoltaic (PV) inkjet printing inks (IP) contain

a complex mix of materials, solvent and surfactants

that keep the p-type and n-type components de-mixed

(Hashmi et al. 2015; Özkan et al. 2016). A piezoelec-

tric laboratory scale drop-on-demand (DoD) materials

inkjet printer (Dimatix 2831-DMP) was used to test

the printability of the plasma treated MNFC films

(Dimic-Misic et al. 2015). The solvent of the IP ink is

3-methoxypropionitrile, which is highly polar and

non-volatile (boiling point 164 �C), viscosity

1.2 mPa s and density 0.937 g cm-3, as stated by

the supplier, Sigma Aldrich. The surface tension

measurement was performed on the ink with an optical

tensiometer (CAM 200 from KSV instruments) in

pendant drop mode, giving a value of 29.2 mN m-1

(mJ m-2).

Results and discussion

The rheological properties of the MNFC suspensions

are given in Table 2, showing the change in dewater-

ing, dynamic yield point and flocculation/water trap-

ping gel-like structure (consistency coefficient, k) and

shear thinning properties (index, n, expressed as the

positive difference n - 1) and change in fibre mor-

phology expressed as the fines content using the

dynamic drainage jar (DDJ).

It is clear to see that with increase in enzymatic

hydrolysis time, dewatering decreases as fibrils

become thinner and smaller, and suspensions become

more gel-like rheologically (Rantanen et al. 2015). At

the same time, crystallinity of fibrils increases and

water trapping structure/flocculation within the matrix

with contrasting increased mobility in the flow regime

once the structure is broken (Pääkkönen et al. 2016).

The dynamic yield point, the minimum stress needed

to be induced to set the suspension into flow increases

as the suspensions become more gel like, but, also,

breakage of that suspension induces greater shear

thinning as fibrils are smaller and more crystalline,

orienting easily in the flow direction (Pääkkönen et al.

2016; Hubbe et al. 2017b).

The mechanical and optical properties of MNFC

films are presented in Table 3, where it is evident that

the sheet density of the films increases with increase in

hydrolysis time, while the packing density of the

smaller crystalline particles increases. The permeabil-

ity of those films created with the finer nanofibrils

obtained after 120 min hydrolysis in turn falls rapidly,

and it was not possible to measure using air flow

techniques. The light scattering coefficient decreases

also as the packing density is increased and the

amorphous parts of the cellulose fibres were reduced,

while, due also to higher packing density, the elasticity

modulus increases, showing that films had improved

strength.
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Roughness colour contour and profile plots of the

surface of MNFC/30/150/300 films before and after

plasma treatment are presented in Fig. 5. Before

plasma treatment, the roughness of the films is

directional, being different in in the two measured

directions (red and blue profile lines). The map for

MFC/30/indicates that there are voids present between

1 and 2 lm wide, while in the case of MFC/300/the

surface is flatter with less voids and of much smaller

size. This means that the degree of enzyme hydrolysis

directly increases the resulting smoothness due to the

ever finer fibrillar elements produced, as the crys-

talline parts are separated due to breakdown of the

amorphous constituent. After plasma treatment, the

amorphous material containing surfaces, e.g. MNFC/

30/, are also seen to become relatively rougher than the

highly hydrolysed crystalline films, e.g. MNFC/300/.

The action of the plasma is to increase voyage in the

courser particulate systems, as previously described,

due to effects of charge, fibril debonding etc. (Jun et al.

2008). In MNFC/30/, it is possible to identify irregular

both small and large voids appearing after plasma

Table 2 Properties of MNFC suspensions

Enzymatic treatment

time (min)

WRV

(cm3 g-1)

Yield point, sd
0

(Pa)

Consistency coefficient,

k (Pa s–n)

Shear thinning coefficient,

|(1 - n)|

DDJ fines

value (%)

MNFC suspension properties

0 1.25 34.12 431.23 0.82 93.8

30 1.61 47.34 241.3 0.81 88.8

60 1.83 54.23 139.65 0.81 79.5

90 2.19 68.45 89.67 0.81 62.4

120 2.55 91.45 69.45 0.84 27.0

150 2.85 438.34 57.23 0.84 21.0

180 2.98 29.82 35.15 0.86 11.8

210 3.33 19.64 19.67 0.86 9.6

240 3.37 12.67 14.34 0.87 6.5

270 3.32 8.99 9.97 0.89 1.5

300 3.34 4.74 5.45 0.91 0.2

Table 3 Mechanical and optical properties of MNFC films

Enzymatic treatment

time (min)

Film weight

(g m-2)

Density

(g cm-3)

Permeability

[lm(Pa s)-1]

Light scattering coefficient

(m2 kg-1)

E-Modulus

(GPa)

Film properties

0 73.91 0.637 69.86 37.43 2.53

30 76.12 0.794 9.96 22.83 4.16

60 71.35 0.910 1.06 16.12 5.12

90 72.31 1.016 NA 9.94 7.02

120 70.53 1.090 NA 6.93 8.59

150 70.81 1.127 NA 5.81 9.13

180 69.57 1.145 NA 4.48 8.95

210 71.08 1.178 NA 3.74 11.26

240 70.10 1.179 NA 3.08 9.17

270 71.18 1.226 NA 3.11 9.76

300 65.27 1.187 NA 3.31 10.03
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treatment, while in MNFC/300/, the surface of the film

has almost no such jagged appearance with voids only

smaller than 1 lm. Nitrogen plasma treatment, thus,

obviously changes the morphology of the films, on

both the micro (nano) and macro level, which is likely

also to have an influence on the wetting behaviour and

decrease in CA due to the increased meniscus liquid–

solid wetting line length (Prysiazhnyi et al. 2013;

Pertile et al. 2010).

The surface chemical species are revealed by the

XPS spectra, from which the atomic % of C–C, C–O,

O–C=O and N can be derived, Fig. 6. The effect of

surface modification after nitrogen plasma can be

clearly seen as the level of N attachment increasing as

a function of the enzymatic removal of amorphous

content (Johansson and Campbell 2004). The samples

with increased crystalline proportion after longer

enzymatic treatment nonetheless show similar C–C

bond content. Similarly, with reduction of the

Fig. 5 Surface morphology and roughness of a MNFC/30/, b MNFC/150/ and c MNFC/300/before and after DBD nitrogen plasma

treatment
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amorphous part with increased hydrolysis, the number

of C–O groups decreases while C=O groups and other

C and N containing groups are formed.

The results shown in Fig. 7 reveal that with the

increase in enzymatic treatment of the raw material

pulp there is a reduction of total FSE in the

corresponding MNFC films in both polar and disper-

sive energy (green and blue unfilled symbols, respec-

tively). A reversal of the decline in FSE as a function

of enzymatic treatment can be observed resulting from

nitrogen plasma treatment, showing compensating

increases in both polar and dispersive measured

components (green and blue filled symbols, respec-

tively). Thus, an increase in wettability for water and

n-hexadecane is reflected by a decrease in CA as the

plasma treatment acts on the more crystalline samples

(Johansson and Campbell 2004). However, as the

roughness is also seen to increase as a function of

plasma treatment for the lower crystalline samples

(less exposure to enzymatic breakdown), one would

expect from the Wenzel model that the wettability

would increase. That we see a recorded increase in

n-hexadecane CA, and thus decrease in dispersive

FSE, we can conclude that the action of the plasma

Fig. 6 Surface

modification obtained

through XPS data showing

a increase in N atoms at

constant carbon content, and

b change in ratio of C–O/O–

C=O groups

Fig. 7 Surface free energy

(SFE) of MNFC films as a

function of the treatment

time (Table 1)
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discharge on the amorphous part is initially to reduce

the dispersive energy component, and so likely act, at

least partially, to breakdown first the amorphous

content resulting in debonding and hence roughening

(Hansson et al. 2011). This effective etching of

amorphous parts of fibrils is then replaced by the

action of nitrogen attachment, such that the higher

average FSE values regained in the more crystalline

samples after plasma treatment are significantly higher

than the theoretical FSE 59.4 mJ m-2 of cellulose,

and this is achieved via the major contribution of the

plasma-induced increase in polar component.

The increased contribution of the polar component

in the FSE donated by the cationic N adsorption under

plasma exposure is, therefore, expected to enhance the

compatibility with the application of highly polar inks,

especially if their components are anionic (Vanneste

et al. 2017; Ma et al. 2010; Hoth et al. 2008). The

images in Fig. 8 confirm this expectation, where the

improved wetting of the surface by water as a function

of plasma exposure time is paralleled by the greater

pick-up (trapping) of ink colorant (Hoeng et al. 2016).

Summary and conclusions

Micro nanofibrillated cellulose films formed from

aqueous suspension can be made stronger by pretreat-

ment of the raw fibre using enzymatic hydrolysis.

However, the wettability by ionic liquids, including

functional inkjet printing inks, such as are suitably

used for printed electronics, solar cells etc., decreases

as a result, limiting the use of such films in practice.

Nitrogen plasma treatment, however, enables wetta-

bility by such formulations to be improved. The

mechanism by which this occurs has been studied in

this work presented in this paper and the following

conclusions can be drawn:

• Total free surface energy increases with nitrogen

plasma treatment of highly enzymatically hydrol-

ysed fibrillar films (contact angle decreases), with a

major increase in the polar component.

• Nitrogen is also included into the surface.

• Upon exposure to nitrogen plasma, dispersive

surface energy initially decreases on those films

made of pulp that was not treated or undergone

short enzymatic treatment time, whereas the polar

surface energy component remains relatively

unchanged on such films.

• This effect is related to the interaction of the

nitrogen plasma with the amorphous cellulose

component in the non-hydrolysed fibrils.

• The dispersive energy component can once

again be increased by exposure to nitrogen

plasma in the case of the more crystalline

fibrillar material derived from increased

hydrolysis via enzymatic pretreatment.

• The surface area per unit mass was increased by the

plasma treatment, apparently due to increased

roughness on a nanometre scale.

• Highly ionic liquids, water and solvents typically

used to disperse surfactant-containing organic-

Fig. 8 IP ink printed on

MNFC/300/film showing

the dependence on

wettability of the surface

after nitrogen plasma

treatment (see also Fig. 4);

lower water droplet CA on

the film corresponds with a

significant increase in print

colour density: a untreated

film, b plasma treated for

30 s and c plasma treated for

60 s
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based inks, wet MNFC film better as hydrolysing

pretreatment of fibres is increased and subsequent

nitrogen plasma is applied.

Perspectives and future work arising from these

findings include the need to study the origins of the

surface roughening effect. Is this a random generation

of surface disruption or is there a material transfer

mechanism at play, involving perhaps vaporisation

and redisposition? The impact on the amorphous

component by plasma treatment could offer a means to

induce a phase change at the material surface.

Similarly, other gas plasma treatments should be

investigated in the longer term to understand whether

the role of atomic substitution versus the application of

energy discharge has the greater treatment potential.
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Abstract. Network science provides an indispensable theoretical framework for
studying the structure and function of real complex systems. Different network
models are often used for finding the rules that govern their evolution, whereby
the correct choice of model details is crucial for obtaining relevant insights. Here,
we study how the structure of networks generated with the aging nodes model
depends on the properties of the growth signal. We use different fluctuating
signals and compare structural dissimilarities of the networks with those obtained
with a constant growth signal. We show that networks with power-law degree
distributions, which are obtained with time-varying growth signals, are correlated
and clustered, while networks obtained with a constant growth signal are not.
Indeed, the properties of the growth signal significantly determine the topology
of the obtained networks and thus ought to be considered prominently in models
of complex systems.
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1. Introduction

Emergent collective behavior is an indispensable property of complex systems [1]. It
occurs as a consequence of interactions between a large number of units that compose
a complex system, and it cannot be easily predicted from the knowledge about the
behavior of these units. The previous research offers definite proof that the interaction
network structure is inextricably associated with the dynamics and function of the
complex system [2–9]. The structure of complex networks is essential for understanding
the evolution and function of various complex systems [10–13].

The structure and dynamics of real complex systems are studied using complex
network theory [1, 10, 11]. It was shown that real networks have similar topological prop-
erties regardless of their origins [14]. They have broad degree distribution, degree–degree
correlations, and power-law scaling of clustering coefficient [11, 14]. Understanding
how these properties emerge in complex networks leads to the factors that drive their
evolution and shape their structure [2].

The complex network models substantially contribute to our understanding of the
connection between the network topology and system dynamics and uncover underlying
mechanisms that lead to the emergence of distinctive properties in real complex networks
[15–17]. For instance, the famous Barabási–Albert model [15] finds the emergence of
broad degree distribution to be a consequence of preferential attachment and network
growth. Degree–degree anti-correlations of the internet can be explained, at least to a
certain extent, by this constraint [18, 19]. Detailed analysis of the emergence of clustered
networks shows that clustering is either the result of finite memory of the nodes [20] or
occurs due to triadic closure [21].

Network growth, in combination with linking rules, shapes the network topology
[22]. While various rules have been proposed to explain the topology of real networks
[10], most models assume a constant rate of network growth, i.e., the addition of a
fixed number of nodes at each time step [15, 20, 21]. However, empirical analysis of
numerous technological and social systems shows that their growth is time-dependent
[23–26]. The time-dependent growth of the number of nodes and links in the networks
has been considered as a parameter in uncovering network growth mechanisms [27]. The
accelerated growth of nodes in complex networks is the cause of the high heterogeneity
in the distribution of web pages among websites [23] and the emergence of highly cited
authors in citation networks [26]. The accelerated growth of the number of new links
added in each time step changes the shape and scaling exponent of degree distribution
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in the Barabási–Albert model [28] and model with preferential attachment with aging
nodes [29].

The growth of real systems is not always accelerated. The number of new nodes
joining the system varies in time, has trends, and exhibits circadian cycles typical for
human behavior [24, 25, 30]. These signals are multifractal and have long-range corre-
lations [31]. Some preliminary evidence shows that the time-varying growth influences
the structure and dynamics of the social system and, consequently, the structure of
interaction networks in social systems [25, 30, 32–34]. Still, which properties of the real
growth signal have the most considerable influence, how different properties influence
the topology of the generated networks, and to what extent is an open question.

In this work, we explore the influence of real and computer-generated time-varying
growth signals on complex networks’ structural properties. We adapt the aging nodes
model [35] to enable time-varying growth. We compare the networks’ structure using the
growing signals from empirical data and randomized signals with ones grown with the
constant signal using D-measure [36]. We demonstrate that the growth signal determines
the structure of generated networks. The networks grown with time-varying signals
have significantly different topology compared to networks generated through constant
growth. The most significant difference between topological properties is observed for the
values of model parameters for which we obtain networks with broad degree distribution,
a common characteristic of real networks [10]. Our results show that real signals, with
trends, cycles, and long-range correlations, alter networks’ structure more than signals
with short-range correlations.

This paper is divided as follows. In section 2, we provide a detailed description of
growth signals. In section 3, we briefly describe the original model with aging nodes and
structural properties of networks obtained for different values of model parameters [35].
We also describe the changes in the model that we introduce to enable time-varying
growth. We describe our results in section 4 and show that the values of D-measure
indicate large structural differences between networks grown with fluctuating and ones
grown with constant signals. This difference is particularly evident for networks with
power-law degree distribution and real growth signals. The networks generated with real
signals are correlated and have hierarchical clustering, properties of real networks that
do not emerge if we use constant growth. We discuss our results and give a conclusion
in section 5.

2. Growth signals

The growth signal is the number of new nodes added in each time step. Real complex
networks evolve at a different pace, and the dynamics of link creation define the time unit
of network evolution. For instance, the co-authorship network grows through establishing
a link between two scientists when they publish a paper [37]. In contrast, the links in an
online social network are created at a steady pace, often interrupted by sudden bursts
[38]. A paper’s publication is thus a unit of time for the evolution of co-authorship
networks, while the most appropriate time unit for social networks is 1 min or 1 h.
While systems may evolve at a different pace, their evolution is often driven by the
related mechanisms reflected by the similarity of their structure [10].
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Figure 1. Growth signals for TECH (a) and MySpace (b) social groups, their ran-
domized counterparts, and random signal drawn from Poissonian distribution with
mean 1. The cumulative sums of signals’ deviations from average mean value are
shown in insets.

In this work, we use two different growth signals from real systems figure 1: (a) the
data set from TECH community from Meetup social website [39] and (b) two months
dataset of MySpace social network [40]. TECH is an event-based community where
members organize offline events through the Meetup site [39]. The time unit for TECH
is event since links are created only during offline group meetings. The growth signal
is the number of people that attend the group’s meetings for the first time. MySpace
signal shows the number of new members occurring for the first time in the dataset [40]
with a time resolution of 1 min. The number of newly added nodes for the TECH signal
is N = 3217, and the length of the signal is T s = 3162 steps. We have shortened the
MySpace signal to T s = 20 221 time steps to obtain the network with N = 10 000 nodes.
The signals in the inset of figures 1(a) and (b) show the cumulative sum of deviations
of signals from their average mean value, which is 1.017 for TECH and random TECH
signal, 0.47 for MySpace and random MySpace, and 1 for Poissonian signal.

Real growth signals have long-range correlations, trends and cycles [25, 30, 40]. We
also generate networks using randomized signals and one computer-generated white-
noise signal to explore the influence of signals’ features on evolving networks’ structure.
We randomize real signals using a reshuffling procedure. The reshuffling procedure con-
sists of E steps. We randomly select two signal values at two distinct time steps and
exchange their position in each step. The number of reshuffling steps is proportional
to the length of the signal T s, and in our case, it equals 100T s. Using this procedure,
we keep the signal length and mean value, the number of added nodes, and the proba-
bility density function of fluctuations intact, but destroy cycles, trends, and long-range
correlations. Besides, we generate a white-noise signal from a Poissonian probability dis-
tribution with a mean equal to 1. The length of the signal is T = 3246, and the number
of added nodes in the final network is the same as for the TECH signal.

We characterize the long-range correlations of the growth signals calculating Hurst
exponent [41, 42]. Hurst exponent describes the scaling behavior of time series
M(xt) = xHM(t). It takes values between 0.5 and 1 for long-range correlated signals
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and H = 0.5 for short-range correlated signals. The most commonly used method for
estimating Hurst exponent of real, often non-stationary, temporal signals is detrended
fluctuation analysis (DFA) [41]. The DFA removes trends and cycles of real signals and
estimates Hurst exponent based on residual fluctuations. The DFA quantifies the scal-
ing behavior of the second-moment fluctuations. However, signals can have deviations
in fractal structure with large and small fluctuations that are characterized by different
values of Hurst exponents [31].

We use multifractal detrended fluctuation analysis (MFDFA) [31, 43] to estimate
multifractal Hurst exponent H(q). For a given time series {xi} with length N , we first
define global profile in the form of cumulative sum equation (1), where 〈x〉 represents
an average of the time series:

Y (j) =

j∑
i=0

(xi − 〈x〉), j = 1, . . . ,N. (1)

Subtracting the mean of the time series is supposed to eliminate global trends.
Insets of figure 1 show global profiles of TECH, MySpace, their randomized signals
and Poissonian distribution. The profile of the signal Y is divided into N s = int(N/s)
non overlapping segments of length s . If N is not divisible with s the last segment will be
shorter. This is handled by doing the same division from the opposite side of time series
which gives us 2N s segments. From each segment ν, local trend pmν,s—polynomial of order

m—should be eliminated, and the variance F 2(ν, s) of detrended signal is calculated as
in equation (2):

F 2(ν, s) =
1

s

s∑
j=1

[
Y (j)− pmν,s(j)

]2
. (2)

Then the qth order fluctuating function is:

Fq(s) =

{
1

2Ns

2Ns∑
ν

[
F 2(ν, s)

] q
2

} 1
q

, q �= 0

F0(s) = exp

{
1

4Ns

2Ns∑
ν

ln
[
F 2(ν, s)

]}
, q = 0.

(3)

The fluctuating function scales as power-law Fq(s) ∼ sH(q) and the analysis of log–log
plots Fq(s) gives us an estimate of multifractal Hurst exponent H(q). Multifractal signal
has different scaling properties over scales while monofractal is independent of the scale,
i.e., H(q) is constant.

Figures 1(a) and 2 show that the TECH signal has long trends and a broad prob-
ability density function of fluctuations. The trends are erased from the randomized
TECH signal, but the broad distribution of the signal and average value remain intact.
MFDFA analysis shows that real signals have long-range correlations with Hurst expo-
nent approximately 0.6 for q = 2, figure 2. The TECH signal is multifractal, resulting
from both broad probability distribution for the values of time series and different long-
range correlations of the intervals with small and large fluctuations. Reshuffling of the
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Figure 2. Dependence of Hurst exponent on parameter q for all five signals shown
in figure 1 obtained with MFDFA.

time series does not destroy the broad distribution of values, which is the cause for the
persistent multifractality of the TECH randomized signal is figure 2.

MySpace signal has a long trend with additional cycles that are a consequence of
human circadian rhythm, figure 1(b). Circadian rhythm is an internal process that regu-
lates the sleep-wake cycle and activity, and its period for humans is 24 h [44]. Circadian
rhythm leads to periodic changes in online activity during the day and the emergence
of a well-defined daily rhythm of activity that we see in figure 1(b). MySpace signal is
multifractal for q < 0, and has constant value of H(q) for q > 0, figure 2. In MFDFA,
with negative values of q, we emphasize segments with smaller fluctuations, while for
positive q, the emphasis is more on segments with larger fluctuations [43]. Segments
with smaller fluctuations have more persistent long-range correlations in both real sig-
nals, see figure 2. Randomized MySpace signal and Poissonian signal are monofractal
and have short-range with H = 0.5 correlations typical for white noise.

Detailed MDFA analysis of real, shuffled, and computer-generated sig-
nals are shown in figure S1 and table S1 of the supplementary material
(https://stacks.iop.org/JSTAT/2021/013405/mmedia). In figure S1 we show in details
how the Fq(s) depends on s for different values of parameter q. The curve Fq(s) exhibits
different slopes for different values of q for multifractal signals, i.e., TECH, random
TECH, and MySpace. Fq(s) curves for monofractal signals are parallel. We provide the
estimated values of H(q) with estimated errors for q in a range from −4 to 4 for all five
signals in table S1 of the supplementary material.

3. Model of aging nodes with time-varying growth

To study the influence of temporal fluctuations of growth signal on network topology,
we need a model with linking rules where linking probability between network nodes
depends on time. We use a network model with aging nodes [35]. In this model, the
probability of linking the newly added node and the old one is proportional to their age
difference and an old node’s degree. In the original version of the model, one node is
added to the network and linked to one old node in each time step. The old node is
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chosen according to probability

Πi(t) ∼ ki(t)
βτα

i (4)

where ki(t) is a degree of a node i at time t, and τ i is age difference between node i
and newly added node. As was shown in [35], the values of model parameters β and α
determine the topological properties of the resulting networks grown with the constant
signal. According to this work, the networks generated using constant growth signals
are uncorrelated trees for all values of model parameters. The phase diagram in α–β
plain, obtained for β > 0 and α < 0, shows that the degree distribution P (k) ∼ k−γ with
γ = 3 is obtained only along the line β(α∗), see [35] and figure S2 in the supplementary
material. For α > α∗ networks have gel-like small world behavior, while for α < α∗ but
close to line β(α∗) networks have stretched exponential shape of degree distribution [35].

Here we slightly change the original aging model [35] to enable the addition of more
than one node and more than one link per newly added node in each time step. In each
time step, we add M � 1 new nodes to the network and link them to L � 1 old nodes
according to probability Πi given in equation (4). Again, the networks with broad degree
distribution are only generated for the combination of the model parameters along the
critical line β(α∗). This line’s position in the α–β plane changes with link density, while
the addition of more than one node in each time step does not influence its position.
Our analysis shows that the critical line’s position is independent of the growth signal’s
properties, see figure S2 in the supplementary material showing phase diagram. For
instance, for L = 1 networks and α = −1.25 and β = 1.5 we obtain networks with power-
law degree, while for L = 2 and β = 1.5 we need to increase the value of parameter α
to −1.0 in order to obtain networks with broad degree distribution. Networks obtained
for the values of model parameters β(α∗), L � 2, and constant growth have power-
law degree distribution, are uncorrelated and have a finite non-zero value of clustering
coefficient which does not depend on node degree, figure 4(b). If we fix the value of
parameter β and lower down the value of parameter α to −1.5, the resulting networks
are uncorrelated with a small value of clustering coefficient, see figure 4(a). For α < α∗ we
obtain networks with stretched exponential degree distribution, without degree–degree
correlations and small value of clustering exponent that does not depend on node degree
(see figure S2 in the supplementary material). For α � α∗ the resulting networks are
regular graphs. If we keep the value of α to 1.0 but increase the value β to 2.0 we enter
the region of small world gels, see figure 4(c). The networks created for the values of
α > α∗ are correlated networks with power-law dependence of the clustering coefficient
on the degree (see figure S2 in the supplementary material). However, these networks
do not have a power-law degree distribution.

The master equation approach is useful for studying the model with aging nodes
when M(t) = 1 [45]. However, this approach is not sufficient for time-varying growth
signals. In this work, we use numerical simulations to explore the case when M(t) is a
correlated time-varying function and study how these properties influence the structure
of generated networks for different values of parameter −∞ < α � 0 and β � 1 and
constant L.
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4. Structural differences between networks generated with different growth
signals

We generate networks for different values of L, and different growth signal profiles
M(t). To examine how these properties influence the network structure, we compare
the network structure obtained with different growth signals with networks of the same
size grown with constant signal M = 1. The M = 1 is the closest constant value to
average values of the signals, which are 1.017 for TECH, 0.47 for MySpace, and 1 for
Poissonian signals. We explore the parameter space of the model by generating networks
for pairs of values (α, β) in the range −3 � α � −0.5 and 1 � β � 3 with steps 0.5. For
each pair of (α, β) we generated networks of different link density by varying parameter
L ∈ 1, 2, 3, and for each combination of (α, β,L), we generate a sample of 100 networks
and compare the structure of the networks grown with M = 1 with the ones grown with
M(t) shown in figure 1.

We quantify topological differences between two networks using D-measure defined
in [36]

D(G,G′) = ω

∣∣∣∣∣∣
√

J(P1, . . . ,PN)

log(d+ 1)
−

√
J(P ′

1, . . . ,P
′
N)

log(d′ + 1)

∣∣∣∣∣∣+ (1− ω)

√
J(μG,μG′)

log 2
. (5)

D-measure captures the topological differences between two networks, G and G′, on a
local and global level. The first term in equation (5) evaluates dissimilarity between two
networks on a local level. For each node in the network G one can define the distance dis-
tribution P i = {pi(j)}, where pi(j) is a fraction of nodes in network G that are connected
to node i at distance j. The set of N node-distance distributions {P 1, . . . ,PN} contains a
detailed information about network’s topology. The heterogeneity of a graph G in terms
of connectivity distances is measured through node network dispersion (NND). In [36]
authors estimate NND as Jensen–Shannon divergence between N distance distributions
J(P 1, . . . ,PN) normalized by log(d+ 1), where d is diameter of network G, and show
that NND captures relevant features of heterogeneous networks. The difference between
NNDs for graph G and G′ captures the dissimilarity between the graph’s connectivity
distance profile.

However, certain graphs, such as k -regular graphs, have NND = 0 and can not be
compared using NND. For these reasons, authors also introduce average node distance
distribution of a graph μ(G) = {μ(1), . . . , μ(d)}, where μ(k) is the fraction of all pair
of nodes in the network G that are at a distance k. The Jensen–Shannon divergence
between μ(G) and μ(G′) measures the difference between nodes’ average connectivity in
a graph G and G′. This term captures the differences between nodes on a global scale.

The original definition of D-measure also includes the third term, which quantifies
dissimilarity in node α-centrality. The term can be omitted without precision loss [36].
The parameter ω in equation (5) determines the weight of each term. The extensive
analysis shows that the choice ω = 0.5 is the most appropriate for quantifying structural
differences between two networks [36].

The D-measure takes the value between 0 and 1. The lower the value of D-measure
is the more similar two networks are, with D = 0 for isomorphic graphs. The D-measure
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Figure 3. The comparison of networks grown with growth signals shown in figure 1
versus ones grown with constant signal M = 1, for value of parameter α ∈ [−3,−1]
and β ∈ [1, 3]. M(t) is the number of new nodes, and L is the number of links
added to the network in each time step. The compared networks are of the same
size.

outperforms previously used network dissimilarity measures such as Hamming distance
and graph editing distance and clearly distinguishes between networks generated with
the same model but with different values of model parameters [36].

For each pair of networks, one grown with constant and one with the fluctuating
signal, we calculate the D-measure. The structural difference between networks grown
with constant and fluctuating growth signal for fixed L and values of parameters α and β
is obtained by averaging the D-measure calculated between all possible pairs of networks,
see figure 3. We observe the non-zero value of D-measure for all time-varying signals.
The D-measure has the largest value in the region around the line β(α∗). The values
of D-measure in this region are similar to ones observed when comparing Erdös–Rényi
graphs grown with linking probability below and above critical value [36]. For values
β < β(α∗), the structural differences between networks grown with constant signal and
M(t) still exist, but they become smaller as we are moving away from the critical line.
Networks obtained with constant signal and fluctuating signals have statistically similar
structural properties in the region of small-world network gels, i.e., α > α∗.
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We focus on the region around the critical line and observe the significant structural
discrepancies between networks created for constant versus time-dependent growth sig-
nals for all signals regardless of their features. However, the value of D-measure depends
on the signal’s properties, figure 3. Networks grown with multifractal signals, TECH,
random TECH, and MySpace signals, are the most different from those created by a
constant signal. The D-measure has the maximum value for the original TECH signal,
with Dmax = 0.552, the signal with the most pronounced multifractal properties among
all signals shown in figure 2. Networks generated with randomized MySpace signal and
Poisson signal are the least, but still notably dissimilar from those created with M = 1.

Randomized MySpace signal and Poissonian signal are monofractal signals with
Hurst exponent H = 0.5. To investigate the influence of monofractal correlated sig-
nals on the network structure, we generate six signals with a different value of
H ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, see figure S3 in the supplementary material. We use
each of these signals to generate networks following the same procedure as for signals
shown in figure 1. The results shown in figure S4 of the supplementary material confirm
that short-range correlated signals create networks with different structures from ones
grown with the constant signal. The increase of the Hurst exponent leads to increases
in the D-measure. However, D-measure’s maximal value is smaller than one observed
for multifractal signals shown in figure 3.

The value of D-measure rises with a decline of α∗. This observation can be explained
by examining linking rules and how model parameters determine linking dynamics
between nodes. The ability of a node to acquire a link declines with its age and grows
with its degree. A node’s potential to become a hub, node with a degree significantly
larger than average network degree, depends on the number of nodes added to the net-
work in the T time steps after its birth. The length of the interval T decreases with
parameter α. For constant signal, the number of nodes added during this time inter-
val is constant and equal to MT . For fluctuating growth signals, the number of added
nodes during the time T varies with time. In signals that have a broad distribution of
fluctuations, like TECH signals, the peaks of the number of newly added nodes lead to
the emergence of one or several hubs and super hubs. The emergence of super hubs,
nodes connected to more than 30% of the nodes in the network, significantly alters the
network’s topology. For instance, super hubs’ existence lowers the value of average path
length and network diameter [10]. The emergence of hubs occurs for values of parame-
ter α relative close to −1.0 for signals with long-range correlations. As we decrease the
parameter α, the fluctuations present in the time-varying signals become more impor-
tant, and we observe the emergence of hubs even for the white-noise signals. The trends
present in real growth signals further promote the emergence of hubs. The impact of
fluctuations and their temporal features on the structure of complex networks increases
with link density.

The large number of structural properties observed in real networks are often conse-
quences of particular degree distributions, degree correlations, and clustering coefficient
[47]. Figure 4 shows the degree distribution P (k), dependence of average neighboring
degree on node degree 〈k〉nn(k), and dependence of clustering coefficient on node degree
c(k) for networks with average number of links per node L = 2. The significant struc-
tural differences between networks grown with real time-varying and constant signals
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Figure 4. Degree distribution, the dependence of average first neighbor degree on
node degree, dependence of node clustering on node degree for networks grown
with different time-varying and constant signals. Model parameters have the values
α = −1.5, β = 1.5 (a), α = −1.0, β = 1.5 (b), α = −1.0, β = 2.0 (c), and L = 2 for
all networks.
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are observed for the values of model parameters α = −1.0 and β = 1.5, figures 3 and
4(b). The degree distribution of networks generated for real signals shows the occur-
rence of super hubs in these networks. In contrast, degree distributions of networks
generated with white-noise like signals do not differ from one created with constant
signal, figure 4(b). Networks obtained for the real signals are disassortative and have a
hierarchical structure, i.e., their clustering coefficient decreases with the degree. On the
other hand, networks generated with constant and randomized signals are uncorrelated,
and their clustering weakly depends on the degree.

We observe a much smaller, but still noticeable, difference between the topologi-
cal properties of networks evolved with constant and time-varying signal for α < α∗,
figure 4(a). The difference is particularly observable for degree distribution and depen-
dence of average neighboring degree on node degree of networks grown with real TECH
signal. The fluctuations of time-varying growth signals do not influence the topological
properties of small-world gel networks, figure 4(c). For α > α∗, the super hubs emerge
even with the constant growth. Since this is the mechanism through which the fluctu-
ations alter the structure of evolving networks for α � α∗, the features of the growth
signals cease to be relevant.

5. Discussion and conclusions

We demonstrate that the resulting networks’ structure depends on the time-varying
signal features that drive their growth. The previous research [25, 30] indicated the pos-
sible influence of temporal fluctuations on network properties. Our results show that
growth signals’ temporal properties generate networks with power-law degree distribu-
tion, non-trivial degree–degree correlations, and clustering coefficient even though the
local linking rules, combined with constant growth, produce uncorrelated networks for
the same values of model parameters [35].

We observe the most substantial dissimilarity in network structure along the critical
line, the values of model parameters for which we generate broad degree distribution
networks. Figure 3 shows that dissimilarity between networks grown with time-varying
signals and ones grown with constant signals always exists along this line regardless of
the features of the growth signal. However, the magnitude of this dissimilarity strongly
depends on these features. We observe the largest structural difference between networks
grown with multifractal TECH signal and networks that evolve by adding one node in
each time step. The identified value of D-measure is similar to one calculated in the
comparison between sub-critical and super-critical Erdös–Rényi graphs [36] indicating
the considerable structural difference between these networks. Our findings are further
confirmed in figure 4(b). The networks generated with signals with trends and long-
range temporal correlations differ the most from those grown with the constant signal.
Our results show that even white-noise type signals can generate networks significantly
different from ones created with constant signal for low values of α∗.

Randomized and computer-generated signals do not have trends or cycles. Never-
theless, networks grown with these signals have a significantly different structure from
ones grown with constant M . Our results demonstrate that growth signals’ temporal
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fluctuations are the leading cause for the structural differences between networks evolved
with the constant and time-varying signal. We observe the smallest, but significant,
difference between networks generated with constant M and monofractal signal with
short-range correlations. As we increase the Hurst exponent, the value of the D-measure
increases. The most considerable differences are observed for multifractal signals TECH,
random TECH, and MySpace.

The value of D-measure declines as we move away from the critical line, figure 3. The
primary mechanism through which the fluctuations influence the structure of evolved
networks is the emergence of hubs and super hubs. For values of α � α∗, the nodes
attache to their immediate predecessors creating regular networks without hubs. For
α � α∗ graphs have stretched exponential degree distribution with low potential for the
emergence of hubs. Still, multifractal signal TECH enables the emergence of hub even
for the values of parameters for which we observe networks with stretched-exponential
degree distribution in the case of constant growth figure 4(a). By definition, small-world
gels generated for α > α∗ have super-hubs [35] regardless of the growth signal. Therefore
the effects that fluctuations produce in the growth of networks do not come to the fore
for values of model parameters in this region of α–β plane.

In this work, we focus on the role of the node growth signal in evolving networks’
structure. However, real networks do not evolve only due to the addition of new nodes,
but also through addition of new links [27–29, 38]. Furthermore, the deactivation of
nodes [48] and the links [48] influence the evolving networks’ structure. Each of these
processes alone can result in a different network despite having the same linking rules.
The next step would be to examine how different combinations of these processes influ-
ence the evolving networks’ structure. For instance, in [28], authors have examined the
influence of the time-dependent number of added links L(t) on the Barabási–Albert
networks’ structure. They show that as long as the average value of time-dependent
signal 〈L(t)〉 is independent of time, the generated networks have a similar structure
as Barabási–Albert networks, and that the degree distribution depends strongly on the
behavior of 〈L(t)〉. It would be interesting to examine how correlated L(t) signals influ-
ence networks’ structure with aging nodes, where the age of a node plays a vital role
in linking between new and old nodes. Moreover, we expect that the combination of
time-varying growth of the number of nodes and the number of links will significantly
influence these networks’ structure.

Evolving network models are an essential tool for understanding the evolution of
social, biological, and technological networks and mechanisms that drive it [10]. The
most common assumption is that these networks evolve by adding a fixed number of
nodes in each time step [10]. So far, the focus on developing growing network models was
on linking rules and how different rules lead to networks of various structural properties
[10]. Growth signals of real systems are not constant [25, 30]. They are multifractal,
characterised with long-range correlations [25], trends and cycles [40]. Research on tem-
poral networks has shown that temporal properties of edge activation in networks and
their properties can affect the dynamics of the complex system [12]. Our results imply
that modeling of social and technological networks should also include non-constant
growth. Its combination with local linking rules can significantly alter the structure of
generated networks.
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[39] Smiljanić J and Dankulov M M 2017 Associative nature of event participation dynamics: a network theory

approach PloS One 12 e0171565
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Abstract: Various mathematical frameworks play an essential role in understanding the economic
systems and the emergence of crises in them. Understanding the relation between the structure of
connections between the system’s constituents and the emergence of a crisis is of great importance.
In this paper, we propose a novel method for the inference of economic systems’ structures based
on complex networks theory utilizing the time series of prices. Our network is obtained from the
correlation matrix between the time series of companies’ prices by imposing a threshold on the values
of the correlation coefficients. The optimal value of the threshold is determined by comparing the
spectral properties of the threshold network and the correlation matrix. We analyze the community
structure of the obtained networks and the relation between communities’ inter and intra-connectivity
as indicators of systemic risk. Our results show how an economic system’s behavior is related to its
structure and how the crisis is reflected in changes in the structure. We show how regulation and
deregulation affect the structure of the system. We demonstrate that our method can identify high
systemic risks and measure the impact of the actions taken to increase the system’s stability.

Keywords: complex networks; time series; economic systems; evolution of community structure

1. Introduction

Economic crises negatively impact people’s lives. They influence every aspect of
individual and social development. Therefore, it is essential to prevent a crisis or alleviate
its impact by promptly taking appropriate action. Thus, it is necessary to understand the
economic system’s functioning and behavior before, after, and during the crisis. Different
approaches have been applied towards that end, including economic [1,2] and quantitative
approaches [3–9].

The economic system is a complex system consisting of many interacting units whose
collective behavior cannot be inferred from individual units’ behavior. The behavior of
the complex system is determined by its structure [10,11]. To understand the behavior and
function of a complex system, one needs to describe its structure and understand how
this structure evolves. Complex networks theory provides tools for the inference of the
structure of a wide range of systems, including biological [12], social [11], technological
[13], and economic systems [14]. The construction of economic networks is mostly achieved
by mapping the flow of funds between companies [15] or transforming time series into a
correlation matrix [14]. These two networks are complementary, although they overlap
to a certain extent. The former network requires more time-consuming data collection,
while the advantage of obtaining a network from time series is in its simplicity and the
availability of data. The appropriate method for efficiently extracting information from
time series is essential since it provides insights into the system’s structure at a relatively
low data collection cost.
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Existing methods for obtaining networks use as input data either the time series of
logarithmic returns [16] or methods based on detrended logarithmic returns [14]. Both are
derived from the time series of prices. The direct use of the prices is often avoided because
they are non-stationary and contain trends.

Current works obtain a network from a correlation matrix by applying filtering meth-
ods such as the minimum spanning tree (MST) [17], planar maximally filtered graph
(PMFG) [14], and threshold method [18]. Complex networks, including economic networks,
are characterized by the rich mesoscopic structure, known as communities [19]. MST and
PMFG techniques are not appropriate for analyzing communities in a network and their
interconnections as they focus on including all nodes in the network, disregarding stronger
intra-community connectivity [20]. Existing methods that use the threshold method do not
differentiate between relevant and less relevant edges, filtering out essential information
about the system.

The economic crisis is a common research topic [3–9]. These works contribute to
a better understanding of crisis by examining the system’s functioning using different
quantitative methodologies. This diverse approach is especially beneficial for a better
understanding of the crisis. Input data are the time series of market indices coming from
different countries [21] or time series of companies’ stock prices constituting, for example,
the S&P 500 index [6]. The former data do not include many constituents and are used
in works where the subject understands global interaction. The latter focuses on the USA
market, which can have up to 500 constituents, the largest USA companies, and all sectors.

In this work, we propose a new approach for obtaining the network from price time
series, which provides insight into the system’s structure. Our motivation is to obtain an
optimal network containing sufficient information and as few edges as possible, allowing
efficient analysis. Moreover, we want to gain insight into the change in the system’s
structure due to the economic crisis. We use a time series of prices and apply detrending
to those series. We demonstrate that the system’s structure can be inferred from these
data, thus broadening the dataset options for the empirical study of complex systems. We
applied this approach for obtaining a network from a correlation matrix that differentiates
between edges based on their relevance to network topology. Using this approach, we
studied the evolution of the USA financial sector’s network structure. The financial sector is
the heart of the economy since companies in this sector enable a flow of funds through the
economy. The 2008 economic crisis was catalyzed by subprime mortgage-backed securities
in the USA and spread to mutual funds, pensions, and other parts of the financial sector,
with national and global impacts. The USA financial sector occupied a central place in the
emergence and development of the 2008 crisis. For these reasons, we focus on studying the
evolution of company relations in this sector. Our input data present all companies from the
domestic financial sector, the source of the 2008 crisis. We identify the relationship between
the economic system’s structure and behavior before, during, and after the crisis. Our
analysis shows how an economic crisis affects a system’s structure on a mesoscopic level.
We examine the relationship between inter- and intra-community connectivity. We show
that, using this approach, we can detect crises and different interventions by governments
and policy-makers by examining the community structure and their connections. By adding
the different perspectives of observing the system’s behavior in crisis, we contribute to a
better understanding of connectivity and relations within the economic system.

The rest of the paper is organized as follows. In Section 2, we give an overview of
previous work on the following topics: time series processing, obtaining networks from
correlation matrix, and methods for studying economic crisis. In Section 3.2, we provide
a detailed description of our approach. We present our results in Section 3.1, and discuss
these results and conclude in Section 5.
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2. Related Work
2.1. Time Series Processing

The time series of prices are not suitable for calculating the correlation matrix since
they have strong trends and are non-stationary. Different methods were applied in order
to overcome these problems. One of the methods is based on the simple transformation
of prices into logarithmic returns [6,21–25], derived as rt = ln Pt

Pt−1
, where Pt presents the

price at time t. These series fluctuate around the mean, which is constant and close to zero.
The other methods apply detrending techniques on the time series of returns [14,26–28].

These detrending techniques differ according to trend calculation. Zhao et al. [14] make a
cumulative time series of returns and calculate the trend for each series separately based on
the detrending fluctuation analysis technique [29]. Random matrix theory is used to calcu-
late market component, representing the trend in [26,28]. Musmeci et al. [27] calculate the
market component based on average returns for all companies considered in the analysis.

Some works used the auto-correlation of time series of returns to derive residuals,
which are then used to calculate the correlation matrix [17,30]. Dynamic conditional
correlation multivariate generalized autoregressive conditionally heteroscedastic (GARCH)
model, DCC-MVGARCH, is used in these works.

2.2. Obtaining Network from Correlation Matrix

Obtaining a network from a correlation matrix suitable for gaining insights into the
system’s structure is a complex problem. It involves the usage of an appropriate filtering
method. The method should ensure that relevant information is present in the network
and that redundant edges are removed. Not satisfying any of the two requirements
can lead to false conclusions. Existing filtering methods include the minimum-spanning
tree (MST) [17,30–32], planar maximally filtered graph (PMFG) [6,14,33,34] and threshold
method [18,20–23,28].

The threshold method filters out information based on correlation strength, while
MST and PMFG combine correlation strength to include all graph nodes and planarity.
From the perspective of inter- and intra-connectivity between communities, inclusion and
planarity criteria result in a connected graph at the price of not including all relevant
edges. Onnela et al. [20] compared the threshold method with MST and showed that a
threshold network with the same number of edges as MST results in a disconnected graph.
These results imply that intra-community edges are more robust than edges between
the communities. Moreover, in [6], PMFG leads to the conclusion that in times of crisis,
communities are less connected than they out of crisis, which is in contrast to results
obtained using random matrix theory [3,7].

The threshold method is more suitable for analyzing community structure in the
network. However, the problem is finding the optimal threshold value. A lower threshold
is desirable to include as much information as possible. On the other hand, a higher
threshold is preferable since it provides a sparse network, which is easier for analysis.
The optimal threshold is the one that filters out noise from the network structure and
leaves the edges that carry relevant information about mutual relations between entities.
Onnela et al. [20] proposed clustering coefficient as the criteria for determining the threshold
value. However, there is no substantial evidence that the clustering coefficient is more
relevant than other network measures.

X. Cao et al. [28] calculated the optimal threshold by comparing clustering coefficients,
the average shortest path length, and the size of the giant component between random
graph and empirical network for different threshold values. They determine the optimal
threshold at which the structural difference between empirical and random networks is at
the highest level. While these network properties are one of the most investigated ones, they
are not inclusive of other topological properties [35]. The work from C. Orsini et al. [35]
indicates that the degree sequence, joint degree matrix, average clustering coefficient,
and its dependence on the node degree are sufficient to describe the topology of most of the
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networks. In contrast, the giant component’s average shortest path length and size depend
on these properties.

Xue Guo et al. [18] determine the threshold based on the community’s correlation
strength. This approach underestimates the inter-connectivity between communities as
higher importance is given to intra-community edges. Inter-community edges impact
the diffusion process in a network and should be recognized appropriately. Moreover,
according to the max-flow min-cut theorem, edges between communities are essential since
the information flow is maximal through them.

S. Kumar et al. [21] set different thresholds to show how network characteristics,
such as the component number and maximum clique size, change with the threshold.
Xia et al. [23] determine the threshold by using the probability distribution of corre-
lation coefficients and setting the threshold at the expected value plus multiples of
standard deviations.

The mentioned threshold methods do not provide quantitative insights into how
much information is filtered from the network. The complete correlation matrix carries
all information about the structure of the network. Once threshold filtering is applied,
a certain amount of information is lost. Therefore, it is essential to have quantitative insight
into how much information we included in the network. It is vital to see which edges carry
the relevant information about the systems’ topology and which are redundant. Here, we
propose a quantitative measure based on the network’s spectral properties to determine
the optimal value of the threshold.

2.3. Crisis Examined Using Quantitative Methodologies

Different quantitative methods have been applied to better understand the impact
of the crisis on the economic system. V. Filimonov et al. [5] used the Poisson Hawkes
model and developed a measure to determine whether price fluctuations are due to an
endogenous feedback process as opposed to exogenous news. A. M. Petersen et al. [4]
studied cascading dynamics and related the Omori, productivity, and Bath laws with
financial shocks. G. Oh et al. [36] used entropy density function in return time series, while
K. Yim et al. [37] used the Hurst exponent.

Complex networks theory is also used for the analysis of crisis impact. X. Cao et al. [28]
have shown that the crisis impacts the average degree, size of the giant component, and clus-
tering coefficient. S. Kumar et al. [21] presented how the crisis affects the formation of
clusters and the structure of minimum spanning trees. A. Nobi [24] showed the impact of
the crisis on degree distribution and cluster formation. M. Wilinski [38] showed that MST
changes structure from a hierarchical scale-free MST to a superstar-like MST decorated by
a scale-free hierarchy of trees. L. Zhao et al. [6] examined how the crisis affects the number
of communities and inter-sector edges.

Existing methods that use complex networks to analyze the impact of a crisis primarily
consider either mapping country indices [21] or the constituents of leading indices S&P
500 [6]. The former network comprises nodes representing different countries, while
the latter network nodes represent companies from different sectors. These companies
are, for example, for index S&P 500, the largest 500 companies in the USA. This work
demonstrates our approach to studying the evolution of relations between companies in
the USA financial sector. We show that laws and policies strongly influence the system’s
structure. The network’s community structure reflects the pre-crisis, crisis, and post-
crisis periods.

3. Materials and Methods
3.1. Data

Innovative solutions such as derivatives and securitization in the financial sector that
were not followed by developing the system’s regulatory framework created a bubble in
the housing and credit supply markets. The bubble burst in 2008 due to the subprime
mortgage crisis, which led to a worldwide economic crisis. This work studies the long-term
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relations between companies in the USA’s financial sector and its evolution from 2002
until 2017. This period includes the time before the 2008 crisis, the period during the
crisis, and the economic recovery period. The financial sector includes companies whose
main economic activity is asset management, real estate investment trusts (REITs), banks,
insurance, and municipal funds.

We obtained data from the publicly available Finance Yahoo database https://finance.
yahoo.com/ accessed on 27 September 2018 which contains various information data about
the company’s values and how they have changed with time. The database comprises differ-
ent data types, for instance, opening, closing, intraday, adjusted closing prices, and trading
volume. The information is given for different aggregation intervals: day, week, and month.
For this study, we used adjusted daily closing prices. The closing price means that the price
is taken at the end of the business day after trading is closed. The price fluctuates between
the opening and closing of a business day. Adjusted means that the price is corrected to
exclude the effect of dividend pay-out and stock split. The impact of dividend pay-out
and splits of stock would provide misleading information. A split or dividend pay-out can
significantly change the price, although the company’s real value did not change.

For each year T ∈ {2002, . . . , 2017}, we collected the time series xT
i (t) of the adjusted

closing price at the end of each trading day t for each company i. Each time series’ length
equals the one-year or 252 trading days. The number of companies in each year Nc(T)
varies since some companies were founded after 2002, and some of them were closed before
2017. Table 1 shows the number of companies active in year T in the USA financial sector
according to the Yahoo Finance database.

Table 1. The number of USA financial sector companies in each year T according to the Ya-
hoo database.

T Nc(T) T Nc(T)

2002 518 2010 762
2003 558 2011 786
2004 609 2012 804
2005 653 2013 825
2006 695 2014 855
2007 711 2015 884
2008 740 2016 892
2009 748 2017 888

Table 1 shows that the number of companies in the USA financial sector grew by
7.5% per year on average before 2007. The crisis and economic recovery period from 2007
until 2015 had much slower growth, with an average relative increase in the number of
companies of approximately 2.7%. There was a certain stagnation of this growth in 2016
and 2017.

3.2. Methodology

This work proposes a method for determining the network of relations between
companies based on their stock price time series. We use this method to study the evolution
of cohesion of financial sector companies whose stocks are publicly traded on the USA’s
stock exchange. With this method, we explore the evolution of mutual influences and
how this evolution is shaped by different critical events, such as the world economic crisis
in 2008.

Our method consists of three steps. In the first step, we perform a detrending time
series of stock prices for each considered company. In the second step, we calculate the
matrix of Pearson correlation coefficients using this detrended time series. In the final
step, we apply the threshold filtering of correlation coefficients to extract the companies’

https://finance.yahoo.com/
https://finance.yahoo.com/


Entropy 2022, 24, 1005 6 of 17

network of relations. We then analyze and compare the topology of the networks obtained
for different years.

3.2.1. Time Series of Prices for Obtaining Network

In our approach, the companies are represented by nodes, and edges represent com-
panies’ relationships. As input data, we use the time series of stock prices. We consider
the time series of each company’s adjusted daily closing prices. The considered time series
are non-stationary and have strong trends, as can be seen in Figure 1 (green line), which
are often the consequence of different external influences. The non-stationarity of the time
series and the trends can lead to false, highly positive, or negative correlations between
companies. To avoid this, we remove the trends by detrending the time series using the
method proposed in [29]. The detrended time series is the time series of the fluctuations.

Original time series xT
i (t) consists of 252 values of adjusted daily stock prices of the

company i during year T. In [29], the authors considered the differential time series of
fluctuations and then performed detrending on the cumulative time series. Our original
time series are already cumulative, thus omitting this step in our calculations. We divide the
time series on k non-overlapping segments of equal size l, so that k = n

l . We determine the

linear trend of time series xi by fitting the equation yj
i(t) = aj

i × t + bj
i and determining the

coefficients aj
i and bj

i for each segment j, as can be seen in Figure 1 (red line). The detrended

time series equals the original time series minus the trend on each segment, i.e., xT
i (t) =

xT
i (t)− yj

i(t). The resulting time series is stationary, and its average value is approximately
zero. By removing the trend typical for period l, we only consider fluctuations that result
from mutual influence between companies.

Figure 1. Example of a time series of prices for one company belonging to the USA financial sector.
The green line is the original time series, the red line shows the trend, and the blue line is a detrended
time series of prices.

We apply detrending to each company’s time series. The detrended time series are
used for the calculation of the Pearson correlation coefficient matrix for year T, where each
element of the matrix is calculated using the following formula:

ρ̂T
i,j =

∑n
t=1(xT

i (t)− µ̂
xT

i
)(xT

j (t)− µ̂
xT

j
)√

∑n
t=1(xT

i (t)− µ̂
xT

i
)2 ∑n

t=1(xT
j (t)− µ̂

xT
j
)2

, (1)
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where xT
i (t) and xT

j (t) are the detrended time series of companies i and j in year T, µ̂
xT

i
and µ̂

xT
j

are estimated average values over period n = 252 for the detrended time series of

companies i and j. The matrix with ρ̂T
i,j elements is symmetrical and takes values from −1

to 1.
In order to obtain the network of mutual influences between considered companies

for the year T, we only take into account the correlation coefficient with a value above a
certain threshold θ, i.e.,

wT
i,j =

{
ρ̂T

i,j if ρ̂T
i,j > θ

0 if ρ̂T
i,j ≤ θ

. (2)

Determining the threshold value θ is not a simple task. In their approach, Živković et al. [39]
assumed that the most optimal value of the threshold can be determined from the relation
between the threshold value and the size of the largest component in the network obtained
for that value. The giant component is the largest set of connected nodes in the network [10].
The dependence of the size of giant component S on the threshold value θ has a charac-
teristic steep decline in the giant component’s size for a particular value of the threshold
θc. The abrupt deterioration implies the detachment of a group of nodes forming separate
components. θc is the threshold value for which one can observe essential changes in the
network structure. The threshold value is determined as the one which is slightly smaller
than θc.

Figure 2 shows the dependence of the size of the giant component S on the value
of threshold θ for the financial sector in the year 2015. There are two steep drops in the
value of the giant component’s size, one for the values of the threshold starting from 0.54
and ending at 0.56, and one starting from 0.78 and ending at 0.82. This indicates that
observed networks elapse through a series of significant structural changes; thus, it is hard
to determine the optimal threshold value.

Figure 2. Dependence of size of giant component (S) on value of threshold (θ).

For these reasons, we adopted a different approach. We determine the optimal thresh-
old for filtering the correlation matrix based on the networks’ spectral properties. The prob-
ability distribution of the eigenvalues of the adjacency matrix fundamentally describes
a system and contains the complete information about its topology [40–42]. Different
networks, such as Erdos–Reniy and Barabasi–Albert graphs, have different probability
distributions of eigenvalues. The difference between the two networks is proportional to
their structural differences.

We compare the empirical economic network’s spectra with the spectra of different
random networks to demonstrate our claims. C. Orsini et al. [35] proposed a method to
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create a line of random networks, each topologically more similar to an empirical network.
We obtained a network from the correlation matrix by applying the threshold method
and using it as the empirical network. We generated three random networks (RNs) based
on the empirical network properties. RN1 has the same average degree as the empirical
network, while other topological properties are random. The RN2 has the same degree
sequence and consequently, the average degree as the original network. The RN3 has the
same joint degree matrix, degree sequence, average degree, and the most similar topology
to the empirical network.

Figure 3 shows the spectra of the empirical network obtained for 2005 and three
random networks. The RN1 has the most different spectral properties than the empirical
network, while the RN3 has the most similar spectra. Each random network only contains
a fraction of information about the relations between nodes in the empirical network.
The difference between spectra decreases as we increase the number of properties similar to
the empirical network. Our analysis demonstrates that we can use the comparison between
spectra to evaluate the optimal threshold.

Figure 3. The probability distribution of eigenvalues for empirical network for year 2005 and three
random networks.

We used the same approach to compare the full correlation matrix, represented as a
weighted and filtered network.

The correlation matrix contains complete information about the system and can be
represented as a weighted graph. Once the threshold is applied to the correlation matrix,
edges with weights less than the threshold are removed. A filtered network thus only
has a fraction of information about companies’ relations. By comparing the probability
distributions of eigenvalues for original and filtered matrices, we understand how much
information is lost due to filtering.

To quantify this difference, we use the Kolmogorov–Smirnov (KS) distance. We
calculate the KS distance between the probability distributions of eigenvalues for the
original and filtered correlation matrices for different threshold values. The lower value
of KS distance implies a better agreement between spectra and higher similarity between
networks’ topologies. Therefore, we want the KS distance to be as low as possible.

Figure 4 shows the KS dependence on the threshold for 2008, 2009, 2014, and 2015.
As we expect, the KS distance increases with the threshold value. At the threshold −0.5,
the KS distance is equal to zero as complete information is included in the network, while
the KS distance reaches its maximum for a threshold close to 1. The dependence of KS
on threshold has a local minimum at the value θm > 0 and is similar to the KS distance
at the threshold θ = 0. We keep the same information about the network structure by
fixing the threshold’s value at 0 or θm. However, a network at 0 is denser and thus more
complicated for the analysis. By setting the threshold value to θm for which we observe
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the local minimum for the KS distance, and we obtain the optimal network with enough
information about the relations between companies, which is not excessively dense.

Figure 4. Kolmogorov–Smirnov distance between the probability distributions of the eigenvalues of
correlation matrices obtained from original and filtered matrix for the years 2008 (a), 2009 (b), 2014
(c), and 2015 (d).

The probability distributions of correlation coefficients differ for each year, as can be
seen in Figure 5; thus, it is not surprising that the local minimum is different for each year.
We calculate the local minimum for each year separately and obtain the network based on
corresponding thresholds. Table 2 shows the local minima θ for different years.

Figure 5. Probability distribution of the correlation coefficients for the years 2015, (a,b), and 2009,
(c,d). (a,c) present distributions obtained from original time series, while (b,d) are the distributions
obtained from detrended series.
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Table 2. The threshold values obtained for different years.

Year θ Year θ

2002 0.35 2010 0.525
2003 0.325 2011 0.55
2004 0.425 2012 0.475
2005 0.35 2013 0.475
2006 0.35 2014 0.45
2007 0.475 2015 0.5
2008 0.55 2016 0.55
2009 0.475 2017 0.375

3.2.2. Measuring the Intra- and Inter-Community Connectivity

We are interested in the mesoscopic structure of the networks and how it changes
with time. A community is a group of nodes more densely connected than the rest of the
network [19]. Communities are an indicator of the system’s collective behavior, and the
network’s community structure provides essential information about its dynamics and
function [19]. In this work, we apply the Louvain algorithm [43] to find communities in
weighted networks. The results of the Louvain algorithm for a single run may differ due
to different initial conditions. We run a Louvain algorithm each year 100 times for these
reasons. For each community CMT,r

i , where T denotes a year and r denotes the run of
the Louvain algorithm, we calculate the ratio between edges inside the community and
all edges formed by nodes belonging to that community. We calculate the ratio using the
following equation

P
CMT,r

i
in =

L
CMT,r

i
in

L
CMT,r

i
Total

, i = 1, 2, ..., RT,r (3)

where L
CMT,r

i
in is the sum of weighted edges inside the community CMT,r

i , L
CMT,r

i
Total is the

total sum of weighted edges of nodes in the community CMT,r
i , and RT,r is the number

of communities for the network obtained for time period T and run r. First, the average

P
CMT,r

i
in over all communities obtained in the single run

〈PT,r
in 〉 =

∑i P
CMT,r

i
in

RT,r , (4)

and then we obtain the average over all runs

〈PT
in〉 =

∑r〈PT,r
in 〉

100
, (5)

and standard deviation

σPT
in
=

√
∑r (〈PT

in〉 − 〈P
T,r
in 〉)

2

99
(6)

4. Results

This work focuses on how the network structure changed when the system went
through the 2008 economic crisis. We selected the period between 2002 and 2017, which
covers the time before, during, and after the crisis. The number of companies varies
between 518 in 2002 and 888 in 2017, as can be seen in Table 2.

We detrended each segment separately and calculated the correlation matrix {ρ̂i,j}
between the companies for each year T ∈ {2002, ..., 2017}. We detrended the time series
for the interval l = 21 trading days, which equals one average trading month. We then
mapped the correlation matrix to the adjacency matrix using the threshold method and
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obtained an undirected weighted network for the year T. We use the approach described
in Section 3.2 to determine the threshold. We performed community structure analysis
and calculated the PT

in and σPT
in

for each year. The analysis of community structure and the
evolution of their cohesion shows how the network structure evolves.

4.1. Characteristics of the Correlation Matrix and Obtained Network

Detrending helps extract information about the economic system’s internal behavior
and relationships between companies. Figure 5 shows a probability distribution of correla-
tion coefficients p(ρ̂i,j) for the original time series and detrended time series for years 2009
and 2015. The pij(ρ̂i,j) shown in Figure 5a was calculated for the original time series for
the year 2015 and resembles a uniform distribution. Figure 5b shows the probability dis-
tribution obtained from the detrended series and is more similar to Gaussian distribution.
The center of Gaussian varies between years. The distribution of correlation coefficients
changes during the economic crisis period, as can be seen in Figure 5c,d. If we obtain
the correlation matrix from the original time series, most companies are highly correlated,
with correlation coefficients between 0.9 and 1, as can be seen in Figure 5c. The distribution
of correlation coefficients obtained from detrended time series during an economic crisis is
a convolution of two Gaussians, Figure 5d.

After detrending the time series and calculating the correlation matrix, we used a
method described in Section 3.2 to obtain an undirected weighted network. We ran Louvain
on the networks and found the community structure. Figure 6 shows the networks for
the years 2004, 2006, 2008, and 2015. Based on examining communities by comparing
their constituents’ characteristics, we concluded that their edges imply exposure to similar
factors. Namely, the nodes belonging to a community, i.e., companies in the same sector,
have different owners, operate in different states, and have different clients. Common to
these companies is their economic activity, i.e., their functioning is similar. Therefore, we
obtain a network where edges reflect exposure to similar factors.

Figure 6. Networks obtained from detrended time series in the years 2004 (a), 2006 (b), 2008 (c),
and 2015 (d). Networks are obtained by applying the threshold given in Table 1. The number of
nodes and edges, respectively, is equal to 554 and 23,340 (a), 652 and 43,167 (b), 677 and 47,590 (c),
and 793 and 58,291 (d). Nodes of the same color belong to the same community.
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Inter-community edges indicate that even companies belonging to different subsectors
may operate under similar conditions. For example, a bank and REIT company are exposed
to similar external factors if they are linked to the residential project, where a bank lends
money to home buyers while REIT invests in project development.

Robust intra-community connectivity indicates that companies in the same community
operate under similar conditions and are susceptible to the same factors. The low value
of correlation coefficients between companies belonging to different sub-sectors suggests
that specific factors typically affect them. Strong connectivity between network nodes
is an indicator of its high vulnerability. A system with a distinct community structure
and stronger connectivity within the communities than between the communities is more
robust than one with similar strengths of connections between and within the communities.

We are interested in the evolution of the ratio between intra- and inter-community
connectivity and how this ratio changes when the system is in different states, such as
during crisis and out-of-crisis periods.

4.2. Relation between Inter and Intra-Connectivity of Communities and Its Evolution

We analyze the community structure of networks for each year from 2002 to 2017
using the Louvain method. The results of applying the Louvain method, which includes
the number and structure of communities, depend on the initial conditions. As a result,
different runs of the Louvain algorithm on the same network may result in a different num-
ber of communities depending on how network nodes are assigned to these communities.
For these reasons, we ran the Louvain algorithm 100 times on each of the 16 networks
and calculated the average number of communities and the average connectivity of these
communities. Figure 7a shows the evolution of the number of communities between 2002
and 2017. The number of communities fluctuates with time and grows after the peak of the
crisis in 2008, with two distinctive local minima in 2010 and 2013. Furthermore, the number
of detected communities in 2004, 2008, and 2015 is equal for each of the 100 runs of the
Louvain algorithm, suggesting a stable community structure in these networks. We observe
the lowest number of communities for 2008, which indicates the lowest differentiation
between sectors within the financial industry during the financial crash.

Figure 7. The evolution of the average number of communities (a) and average intra-connectivity (b)
for networks from 2002 to 2017.

We analyze the intra- and inter-community connectivity for the networks obtained
for each year from 2002 to 2017. Figure 7b shows <PT

in> for the years from 2002 to 2017.
Higher values of <PT

in> imply higher community intra-connectivity, while lower values
indicate higher community inter-connectivity. The error bars shown in Figure 7b are
standard deviations calculated on the sample of 100 runs. Low standard deviation implies
similar intra-community connectivity among communities. The peak of intra-community
connectivity is observed in the year 2004. The interconnectivity then drops to its minimal
value in 2006, where the connectivity within the communities grows and has local maxima
in 2008, which slowly decreases until 2014. In 2015, we observed another smaller rise
in connectivity.
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The networks of the years 2004, 2008, and 2015 have two essential features. They
have a very stable number of communities, independent from the initial conditions of the
Louvain method. Furthermore, the intra-community connectivity for these networks has a
local maximum in these years with a very low standard deviation.

Figure 7a shows that the intra-community connectivity 〈PT
in〉 has the local minima in

the year 2006, indicating high connectivity between communities. In 2006, the system had
the highest potential for diffusion between communities, meaning that one community’s
disturbance could easily be transmitted to any other community. If this disturbance is a
failure, the system is at high risk of efficiently spreading failure and breaking down. Our
result matches what happened to the USA financial sector since 2006 was the year before
the crisis started in 2008. Other researchers have predicted the beginning of the crisis [1].
High and consistent inter-community connectivity in 2006 indicates that companies in
different sectors were susceptible to the influence of the same factor. This factor was real
estate lending, which pulled most of the financial industry. Many financial sectors were
directly or indirectly involved in real estate lending, leading to the relationship network’s
almost homogeneous structure. The local minima in 2006 preceded a peak in 2004, where
communities were well defined.

A crisis is followed by a period of recession, which is recognized by lower values of
economic indicators such as employment, gross domestic product, household net worth,
and federal surplus or deficit. Figure 8 shows the relative change of these four indicators for
the USA economy between 2002 and 2017. We see that the recession period lasted from 2009
and ended in 2014. Our results indicate that the standard deviation for intra-community
connectivity has higher values for the same period, while its values decrease between
2014 and 2017. We see from Figure 7b that standard deviation 〈PT

in〉 was higher during the
economic recovery compared to the post-crisis period.

Figure 8. Economic variables which indicate whether the system is in the state of crisis or out of crisis
such as (left top) employment, (right top) gross domestic product, (left bottom) household net worth,
and (right bottom) federal surplus or deficit.

We observe the increase in 〈PT
in〉, see Figure 7a in the years 2007 and 2008, after reaching

its minimum in 2006. In 2007, companies in the financial system understood that the
economy was in bad condition and that interconnection was high. Communities tried to
depart from each other, leading to a high 〈PT

in〉 and low σPT
in

in the year 2008. However,
the number of communities NC(T) decreased in 2008 because two communities merged
into one, regional banks and REITs. We observed the homogenizing of the system in a
different form where the number of different sectors decreased.
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Effect of Regulation on Structure and Behavior

The USA financial system has to be controlled to prevent the system break down
and decrease systemic risk [1]. Control is realized through appropriate regulations. High
restrictive regulation may prevent a crisis. However, it can jeopardize economic growth
since it limits companies’ profits [1]. Less stringent regulations enable higher yields but
increase systemic risk. Therefore, an optimal level of regulation has to be implemented,
allowing a thriving economy while decreasing systemic risk. The regulations impose
restrictions on companies’ behavior, while deregulation provides companies with a higher
degree of freedom. They both define the behavior of comprising elements of the system.
The effect of regulation and deregulation on the system results from the collective behavior
of incorporating elements. One needs tools to measure the impact of regulations on the
system to create optimal regulations. Our methodology provides insight into the influence
of regulation and deregulation on a system’s structure and behavior.

Deregulation took place in 2004 [44] and proposed a system of voluntary regulations
where investment banks can hold less capital in reserve. Having less money in reserve
means that companies become more dependent on other companies and more vulnerable.
Higher connectivity between companies leads to an increase in systemic risk. Deregulation
is considered one of the leading causes of crisis [45]. Our results show that 〈PT

in〉 sharply
decreased in 2005, indicating higher inter-dependence between communities and higher
systemic risk. 〈PT

in〉 and the standard deviation σPT
in

further decreased in 2006, implying
higher homogeneity within the system.

Regulations were implemented between 2011 and 2014 to respond to the crisis. The
Dodd–Frank Wall Street Reform and Consumer Protection Act of 2010 was designed to
increase financial stability and prevent future crises [46]. As this was the most comprehen-
sive overhaul of the financial system [47], it took time to be implemented. Implementation
started in 2011 and reached 50% of planned regulations in 2014 [48]. Our results show
a sharp increase in 〈PT

in〉 in 2014 when the economy recovered. Standard deviation σPT
in

is higher during the crisis period compared to the period of the recovering economy,
2014–2017.

5. Discussion and Conclusions

In this work, we used a novel method to infer network structure from time series to
study the cohesion between USA companies in the financial sector. Compared to exist-
ing methods, we used detrended prices instead of detrended returns. We introduced a
technique for obtaining an optimal network from a correlation matrix and used a mea-
sure based on community structure that allows us to examine the evolution of cohesion.
Our results show that the USA financial system’s network structure between 2002 and
2017 underwent several phases: deregulation, crisis, and post-crisis. Each of these peri-
ods is characterized by different intra-community connectivity and standard deviation.
The strength of connections between communities is directly related to the system’s level
of risk and stability.

Understanding the connections between the system’s components is crucial for pre-
venting crises. Our approach can identify the points of high systemic risk. This knowledge
enables timely actions to increase the system’s stability. Moreover, measuring the effect of
these actions, such as regulation and deregulation, can be performed using our method.
This is of great importance as inadequate efforts can further deteriorate financial stability.
In 2008, the government’s actions to increase financial stability and save the economy in the
form of capital injection into the financial system were inadequate, which further pushed
the economy into recession [1]. The price of wrong measures for recovering the economy is
high in times of crisis because resources are even more limited. Our results show that the
system’s structure did not change due to these measures.

The economic system has to be regulated to prevent crises while securing the un-
restrained behavior of individual companies to allow economic growth and prosperity.
The economic system is dynamic and should be constantly monitored by policymakers
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to secure an optimal trade-off between of the economic growth and limiting behavior of
composing elements. Policymakers must act on time since a delay of adequate actions can
have a negative impact. Our method allows policymakers to see whether their actions are
adequate and act promptly. As per our analysis, deregulation, which took place in 2004
to enable economic growth, had a strong impact on increasing systemic risk. This signal
can be seen in 2005, where 〈Pin〉 sharply decreased, while standard deviation implied that
connectivity between a certain number of communities increased. In addition, in 2006, all
communities were strongly interconnected, which presents a high systemic risk and can be
seen in low 〈Pin〉, standard deviation, and the number of communities. This led to the 2008
crisis, when some of the communities merged.

Existing techniques for constructing networks from the correlation matrix, MST and
PMFG, put strict constraints on the network structure. MST forbids cycles between nodes
and conditions the number of links to N − 1, where N is the number of nodes. PMFG only
allows short cycles and the maximal number of links 3(N− 2). There is no economic reason
behind these topological constraints for economic systems. Furthermore, the limit on the
number of connections is too strict and may filter out some critical information about the
network’s connectivity. The lack of this forbids the study of the cohesion of the network
and its dynamics.

Our method can be used by researchers interested in studying collective behavior
in real systems such as economic, social, biological, and technological systems. The pre-
requisite is the availability of data in the form of time series. Our method enables dis-
covering hidden relationships between the constituents of the system, leading to a better
understanding of the system, predicting its behavior and controlling it.
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35. Orsini, C.; Dankulov Mitrović, M.; Colomer-de Simón, P.; Jamakovic, A.; Mahadevan, P.; Vahdat, A.; Bassler, K.E.; Toroczkai, Z.;

Boguná, M.; Caldarelli, G.; et al. Quantifying randomness in real networks. Nat. Commun. 2015, 6, 1–10. [CrossRef]
36. Oh, G.; Kim, H.Y.; Ahn, S.W.; Kwak, W. Analyzing the financial crisis using the entropy density function. Phys. A 2015,

419, 464–469. [CrossRef]
37. Yim, K.; Oh, G.; Kim, S. An analysis of the financial crisis in the KOSPI market using Hurst exponents. Phys. A Stat. Mech. Its

Appl. 2014, 410, 327–334. [CrossRef]
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Analysis of Worldwide Time-Series
Data Reveals SomeUniversal Patterns
of Evolution of the SARS-CoV-2
Pandemic
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Predicting the evolution of the current epidemic depends significantly on understanding the
nature of the underlying stochastic processes. To unravel the global features of these
processes, we analyse the world data of SARS-CoV-2 infection events, scrutinising two 8-
month periods associated with the epidemic’s outbreak and initial immunisation phase.
Based on the correlation-network mapping, K-means clustering, and multifractal time
series analysis, our results reveal several universal patterns of infection dynamics,
suggesting potential predominant drivers of the pandemic. More precisely, the
Laplacian eigenvectors localisation has revealed robust communities of different
countries and regions that break into clusters according to similar profiles of infection
fluctuations. Apart from quantitative measures, the immunisation phase differs significantly
from the epidemic outbreak by the countries and regions constituting each cluster. While
the similarity grouping possesses some regional components, the appearance of large
clusters spanning different geographic locations is persevering. Furthermore,
characteristic cyclic trends are related to these clusters; they dominate large temporal
fluctuations of infection evolution, which are prominent in the immunisation phase.
Meanwhile, persistent fluctuations around the local trend occur in intervals smaller than
14 days. These results provide a basis for further research into the interplay between
biological and social factors as the primary cause of infection cycles and a better
understanding of the impact of socio-economical and environmental factors at different
phases of the pandemic.

Keywords: complex networks, k-means, time-series analysis, spectral analysis, community structure, SARS-CoV-2

1 INTRODUCTION

In cooperative social dynamics [1, 2], the genesis of a collective phenomenon arising from contagious
social interactions involves mechanisms of self-organised criticality [3, 4]. It depends on each
individual involved, based on its actual contacts, psychology and behaviour. In the presence of
viruses, these mechanisms are additionally shaped by firm biological factors. Recent developments of
SARS-CoV-2 pandemic [5, 6] revealed a specific global phenomenon emerging from the stochastic
multi-scale processes. The infection incidence occurs with a high temporal resolution at the

Edited by:
Matjaž Perc,

University of Maribor, Slovenia

Reviewed by:
Marian-Gabriel Hancean,

University of Bucharest, Romania
Nuno A. M. Araújo,

University of Lisbon, Portugal
Yinhai Fang,

Nanjing Forestry University, China

*Correspondence:
Marija Mitrović Dankulov

mitrovic@ipb.ac.rs

Specialty section:
This article was submitted to

Interdisciplinary Physics,
a section of the journal

Frontiers in Physics

Received: 05 May 2022
Accepted: 23 May 2022
Published: 29 June 2022

Citation:
Mitrović Dankulov M, Tadić B and

Melnik R (2022) Analysis of Worldwide
Time-Series Data Reveals Some

Universal Patterns of Evolution of the
SARS-CoV-2 Pandemic.
Front. Phys. 10:936618.

doi: 10.3389/fphy.2022.936618

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9366181

ORIGINAL RESEARCH
published: 29 June 2022

doi: 10.3389/fphy.2022.936618

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.936618&domain=pdf&date_stamp=2022-06-29
https://www.frontiersin.org/articles/10.3389/fphy.2022.936618/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.936618/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.936618/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.936618/full
http://creativecommons.org/licenses/by/4.0/
mailto:mitrovic@ipb.ac.rs
https://doi.org/10.3389/fphy.2022.936618
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.936618


interactions between the virus and human hosts, whose biological
features, social behaviours and mobility [7] significantly
contribute to the epidemic’s spreading [8]. At the molecular
scale, the virus-host interactions [9–11] crucially depend on
the virus biology and genetic factors determining the host’s
immunity towards the virus in question [12, 13]. Thus, the
occurrence of an infection event and the infection
manifestation may lead to a range of different scenarios from
asymptomatically infected to severe health issues and fatalities
[14–17]. Multiple other factors may play a role [18], depending
on the population genetic features and social life [19]. They
include cultural, political and economic aspects, official and
spontaneous reaction to the crisis, and the organisation of the
health care system, all of which may significantly differ between
different geographical locations [20]. Moreover, the actual impact
of these factors changes over time as the epidemic develops, in
particular, since the appropriate vaccines targeting SARS-CoV-2
viruses [3, 21] are available, thus enabling potentially substantial
changes due to massive immunisation of the population given the
theoretical analysis in [22–24]. Attempts were made to identify
different parameters that may influence the epidemic and
estimate their mutual interdependence and impact. For
example, the human-development index, built-up-area-per-
capita, and the immunisation coverage appear among the
statistically high-ranking drivers of SARS-CoV-2 epidemic [18].

In addition, temporal variations occur at all scales, from the
virus mutations [11] to changed behaviours of each individual
and population groups, e.g., due to the government imposed
measures [6, 25], or adaptation caused by the awareness of the
current epidemiological situation [26, 27]. These variations
increase the stochasticity of the infection and contact
processes, making the prediction of their output even more
difficult. For real-time epidemic management and the
predictions of further developments, it is crucial to understand
the nature of the underlying stochastic processes and the factors
that can significantly influence them. For this purpose, the
empirical data analysis and theoretical modelling [28] provide
complementary views of these complex processes. For example,
agent-based models capture the interplay of the bio-social factors
at the elementary scale of the virus-host interactions at high
temporal resolution [8, 29–37]. On the other hand, more
traditional compartmental models [38] consider a coarse-
grained picture of the population groups having different roles
in the process. Another research line aims at the mathematical
description of the exact empirical data, in particular, for the
outbreak phase [39, 40]. For instance, different studies provided
tangible arguments for the cause of the changing shape of the
infection curve comprising the appearance of linear and power-
law segments [41, 42], prolonged stagnation periods, andmultiple
waves [43]. Since the beginning of the epidemic, empirical data
were collected over different countries or provinces [44]. Despite
the coarse-grained spatial and temporal structure (daily
resolution), these data may contain relevant information about
the temporal aspects of the epidemic at different geographical
locations. Previous studies, based on the empirical data regarding
the dynamics of interacting units in many complex systems,
provided valuable information about the related stochastic

processes. Some striking examples across different spatial and
temporal scales include the influence of the world financial index
dynamics on different countries [45, 46], traffic jamming [47, 48],
brain-to-brain coordination dynamics [49, 50], and the
cooperative gene expressions along different phases of the cell
cycle [51, 52]. Similarly, the collected data of SARS-CoV-2
spreading enable a possibility to investigate the infection
dynamics in various details and more appropriate modelling
of the emergent behaviours. In this respect, a larger-scale
picture may emerge by studying temporal fluctuations of the
world infection dynamics. More subtle questions regard the
indicators for hidden mechanisms arising from the interplay
of the above-mentioned biological factors and different social
behaviours [8, 27, 29, 53, 54] behind the observed epidemic
development.

In this work, we address some of these critical issues aiming
to unveil the inherent features of infection dynamics by studying
time-series data that are publicly available at GitHub [44]
collected over different countries or regions (provinces).
Using the datasets of the daily recorded number of confirmed
infection cases, we consider two separate segments of time
series. Defining two distinct 8-month periods in the
epidemic’s evolution is motivated by the appearance of
SARS-CoV-2 vaccines in the latter period, enabling
pharmaceutical intervention measures not available in the
outbreak phase, cf. Figure 1. Namely, the records for the first
8 months of the epidemic, starting from the first registered case
in each country, represent the epidemic’s outbreak phase.
Meanwhile, the last 8 months (preceding the data collection
on 30 September 2021), during which the pharmaceutical
intervention was available in most of the countries,
characterises the initial immunisation phase of this pandemic.
Our quantitative analysis comprises three levels of information:
the network mapping and spectral analysis, K-means clustering
of pairs of time series, and detrended fractal analysis of
individual time series. Each of these methods provides just
partial information about the studied dynamics. We combine
them to create a comprehensive picture of the course of the
epidemic in different countries and how they relate to each
other. In addition to quantifying the differences between the
outbreak and immunisation phase, our results reveal two global
features of the SARS-CoV-2 pandemic. Firstly, the worldwide
groups of countries (and provinces) robustly appear in clusters
having a similar temporal evolution of the infection dynamics.
This clustering suggests that the environmental and socio-
economical factors and government-imposed measures can
certainly influence small-scale fluctuation characteristics of
the clusters but do not significantly change the course of the
process on larger scales. Secondly, the epidemic evolution
exhibits ubiquitous waves driven by the cyclic infection
dynamics, where several typical cycles appear associated with
the identified clusters. Again, the shape of these specific cycles
coincides with the mentioned clustering mechanisms. Hence,
their origin and potential control will remain challenging within
purely social measures. A more detailed analysis of the complex
feedback between biological and social factors at all scales is
needed.
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2 MATERIALS AND METHODS

2.1 Data Acquisition, Preparation, and
Mapping
We consider the worldwide data of the number of new infection
cases downloaded from GitHub [44]. The dataset contains the
number of daily detected new cases for 279 countries including
separated data for some provinces. For this work, we select time
series in two eight-mount periods comprising the epidemic’s
outbreak phase (starting from the first registered case in a
given country or province) and the immunisation phase (22
January 2020 until 30 September 2021). The corresponding
number of countries and provinces with the active epidemic’s
data traced in both periods is 255. For instance, the first case in
France was detected on 24 January 2020, and thus the outbreak
time series covers the period from that date until 19 September
2020. However, Slovenia had the first registered case on 5 March
2020; hence its outbreak time series cover 5 March until 30
October 2020. Meanwhile, the immunisation period is from 3
February 2021 to 30 September 2021, equal for all considered
countries and provinces.

By mapping these datasets, we obtain two correlation
networks for the outbreak and immunisation phase,
respectively, where the network’s links stand for significant
positive correlations. We first compute the Pearson’s
correlation coefficient for the corresponding pairs (i, j) of the
time series

Cτ
ij �

1
NT − 1

∑NT

t�1

Xτ
i t( ) − μτi
στi

Xτ
j t( ) − μτj
στj

, (1)

where τ ∈ {O, V}, μτi is average value of the time series of country i
during period τ, στi is standard deviation of time seriesXτ

i (t), and
NT = 240 is the length of time series. To remove spurious
correlations, we apply the filtering procedure standardly used
in these type of network mapping [47, 49, 51]. More precisely, the
matrix elements Cτ

ij are first transformed to the interval [0, one]
byCPτ

ij � 1
2 (Cτ

ij + 1), and thenmultiplied by a factorMτ
ij which is

obtained in the following way. From the rows i and j, the diagonal
elements are removed and the considered elements CPτ

ij and CP
τ
ji

are placed at the beginning of the row i and j, respectively, thus
obtaining two n = N − 1 dimensional vectors C̃Pτ

i and C̃Pτ
j . Then

Mτ
ij is computed as Pearson’s coefficient between these two

vectors. The matrix element of the filtered correlation matrix
Cτ
ij � Mτ

ijCP
τ
ij is then mapped back to the interval [ − 1, 1].

Finally, the elements of the network’s adjacency matrix are
defined as Aτ

ij � 1 when the matrix elements Cτ
ij > θ exceed a

specified threshold value θ, and zero otherwise. The threshold
value θ is determined concerning the network’s spectral
properties, as described below.

2.2 Network’s Spectral Analysis and
Community Detection
The above-described data mapping should lead to undirected
unweighted networks; the nodes represent countries (or
provinces), and links indicate the positive correlations between
infection incidences exceeding a threshold θ. We use the spectral
properties of networks to obtain the adequate threshold value,
where the guiding criteriums are the network’s sparseness and the
relative stability of the community structure. Starting from θ = 0,
we increase it by the value 0.05 and solve the eigenvalue problem
of the corresponding adjacency matrix, Avi = λivi|θ, and calculate
the spectrum {λ1, . . . , λN}θ for each threshold θ. We compare the
adjacency matrix spectrum for network θ = 0 with spectra of each
network obtained for considered θ > 0 using Kolmogorov-
Smirnov (KS) distance. For each θ > 0 we obtain one KS
distance and plot its dependence of θ, see Figure 2B. The KS-
distance has a minimum of around θ = 0.5 for the outbreak and
immunisation phase. We use this value of θ to obtain the
networks used in our analysis.

We study the community structure of the networks for the
outbreak and immunisation period using spectral analysis and
the eigenvalue problem of the normalised Laplacian related to the
network’s adjacency matrix. In mathematics theory [55, 56], the
number of smallest non-zero eigenvalues of the Laplacian matrix
is a good indicator of the number of communities. The matrix
elements of the normalised Laplacian for undirected
binary network represented by the adjacency matrix A are
defined as

FIGURE 1 | Examples of time series. Temporal evolution of confirmed infection cases in different countries, belonging to different groups in the outbreak (A) and
immunisation phase (B).
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Lij � δij − Aij����
qiqj

√ , (2)

where qi and qj are degrees of nodes i and j. For the normalised
Laplacian [2], we solve the eigenvalue equation LvL � λNi v

L
i and

determine all eigenvalues and eigenvectors. In the case of a
connected network, these eigenvalues are non-negative. One
zero-eigenvalue appears with strictly positive eigenvector’s
components [55]. Consequently, the orthogonal eigenvectors
corresponding to the three smallest non-zero eigenvalues localise
on the communities of the network. Hence, the scatter plot of the
components of these eigenvectors shows a branching structure. Each
branch contains indexes of the non-zero eigenvector components,
that is, the nodes belonging to a network’s community [56].The size
of the q-core of the networks is determined by removing the nodes
with the increasing degree q. Several other graph properties are
determined, and the networks are visualised using Gephi
software [57].

2.3 K-Means Clustering of Time Series
The implementation of the K-means algorithm for clustering of
time series in Python known as tslearn [58] is used. K-means is an
unsupervised machine learning algorithm that aggregates data
points according to similarities, starting with K randomly
positioned centroids. Based on these centroids, data points are
assigned to the centroid closest to that data point according to
some distance metric. The algorithm consists of a certain number
of iterative (repetitive) calculations used to optimise the positions
of the centroids. Considering each time series of lengthNT as a data
point in NT dimensional space, the appropriate measures enable
calculating the distances between these data points. We use the
Dynamic Time Wrapping (DTW) algorithm to align time series
with centroids andmeasure their similarities. The DTW is a widely
used algorithm measuring similarities between time series and
their classification. It does not transform the time series; it only
finds the minimal distance between time series beyond simple
correlation. Specifically, it performs an optimal alignment between
two time series by matching the indices from the first time series to
the second time series, subject to several constraints. The mapping
of indices from the first series to the second series must be
monotonically increasing. For the indices i > j from the first

time series, there must be two indices from the second series
l > k such that i is matched with l and j is matched with k.
Meanwhile, the first index from the first series must match the first
index of the second time series, and similarly, the last index from
the first series must be matched to the last index of the second time
series, but these points may have more other matches. The optimal
alignment is the one that satisfies all of these restrictions with the
minimal cost, where cost is the sum of absolute differences of
values for each matched pair of indices. The DTW distance in the
K-means algorithm is the value of cost. We use the K-means
algorithm with DTW distance to cluster time series and find
centroids. Each centroid is again a time series that describes the
average behaviour of the time series belonging to one cluster.

2.4 Trends and Fractal Analysis of Time
Series
Temporal fluctuations are studied by the fractal detrended
analysis of each time series. For each time series x(k), k = 1, 2,
/T, the profile Y(i) � ∑i

k�1(x(k) − <x> ) of the time series is
divided in Ns segments of the length n. The fluctuation function
Fq(n) with the varied segment length n is defined as

Fq n( ) � 1
Ns

∑Ns

μ�1
F2 μ, n( )[ ]q/2⎛⎝ ⎞⎠1/q

~ nhq , (3)

Here, F2(μ, n) � 1
n∑n

i�1[Y((μ − 1)n + i) − yμ(i)]2 is the standard
deviation from a local trend yμ(i) on the segment μ. For q = 2, we
determine the Hurst exponent h2 from the straight-line segments
of the log-log plot of the fluctuation function F2(n). For the
multifractal analysis, the values of q ∈ [ − 4, 4] are varied.

To determine cyclic trends, we use the local adaptive
detrending algorithm, see [59, 60], where time series is divided
into segments of the length 2m + 1 overlapping overm + 1 points.
The polynomial interpolation is applied in each segment, and its
contribution in the overlapped region is weighted such that it
decreases linearly with the distance from the segment’s centre. As
stated in the Introduction, we consider worldwide recorded time
series of the infection cases. For illustration, a few examples of
time series recorded in different countries are shown in Figure 1.

FIGURE 2 |Networkmeasures. (A) The normalised probability density function of the filtered correlation coefficients for the outbreak and immunisation periods. (B)
The Kolmogorov-Smirnov distance between the eigenvalue spectrums of networks obtained for θ = 0 and different values of θ > 0, plotted against θ > 0. (C) The
distribution of the shortest-path distances P(d) vs. the distance d and the cumulative distribution Pc(q) of the node’s degree q for the outbreak and immunisation
networks with the threshold θ = 0.5. (D) The size of the q-core of these networks plotted against the q-rank.
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2.5 The Correlation Networks Mapping in
the Outbreak and Immunisation Phase
The network mapping is based on the cross-correlation
coefficient Cij of the pairs of time series {i, j} and a suitably
selected threshold. Hence, the correlations exceeding the
threshold θ are accepted, making the adjacency-matrix
elements Aij(θ) = Θ(Cij − θ) − δij of an undirected unweighted
network. Before selecting the threshold, a filtering procedure was
applied to the complete correlationmatrix to enhance the positive
correlations of interest in this work (see Methods). The applied
methodology was proved useful in quantifying correlations of
time series in diverse type of data [45, 47–52]. Figure 2A shows
probability distributions of filtered correlations coefficients for
the outbreak and immunisation period. While both probability
distributions have a peak at a value Cij < 0, they have slightly
different shapes. They both have a pronounced tail for positive
values of correlation coefficients, where the distribution P(Cij) for
the outbreak period has a slower decay at correlations Cij > 0.2.
The appropriate threshold is selected considering changes in
spectral properties of the adjacency matrix with the increasing
threshold, as explained in the following. Figure 2B shows the
Kolmogorov-Smirnov (KS) distance between the eigenvalues of
the Aij(θ) compared to the one at θ = 0 depending on the
threshold θ for the outbreak and immunisation networks. We
see that the KS distance grows slowly with θ up to the value ~ 0.4;
meanwhile, the growth becomes rapid for the values of θ > 0.5 for
both networks, suggesting a profound change in the networks’
structure when the threshold exceeds θ = 0.5. Thus, we select this
turning point as the optimal threshold value. Moreover, the
networks obtained by applying the threshold weight θ = 0.5
are sufficiently sparse; meanwhile, their spectral properties do not

differ drastically from the corresponding outbreak and
immunisation period networks at θ = 0 containing all positive
correlations. The resulting networks for θ = 0.5 are visualised in
Figure 3. See also Supplementary Information (SI) for more
details.

The giant connected component of each network exhibits a
community structure, i.e., the occurrence of groups of nodes that
are better connected among themselves than with the nodes
outside that group, cf. Figure 3. The identity of nodes
comprising each community is determined using the
localisation of the eigenvectors associated with the three lowest
nonzero eigenvalues of the normalised Laplacian operator [55], as
explained in Methods [56]. The eigenvalues of the normalised
Laplacians for two networks are shown in ranking order in
Figure 4, middle panel. Several lowest nonzero eigenvalues
appear to be separated from the bulk in both networks. This
network feature is compatible with the existence of mesoscale
communities, on which the corresponding eigenvectors tend to
localise [55, 56]. The scatterplots of the eigenvectors associated
with three lowest nonzero eigenvalues, see Figure 4, show three
differentiable branches, here indicated as G1, G2, G3 for the
outbreak, and g1, g2, g3 for the immunisation phase network. The
indexes with a nonzero component of the eigenvectors in each
branch mark the IDs of the nodes belonging to the corresponding
community. The complete lists of nodes in each community
(group) are given in Supplementary Tables S1–S6 in SI.

Even though both networks exhibit three major communities,
the structural differences between the two networks in Figure 3
are apparent. They indicate the corresponding differences in the
fluctuations of the infection rates in the world regions during the
immunisation phase, compared to the epidemic’s outbreak, when

FIGURE 3 | Giant connected components of the correlation networks at the threshold θ =0.5 for the outbreak period (A) and the immunisation period (B). Red,
green and blue colours indicate groups of nodes in three respective communities G1, G2, G3 in the outbreak network, and g1, g2, g3 in the immunisation period
network, determined by the eigenvector-localisation, see text and Figure 4. Unclassified borderline nodes are shown in white colour. Labels on nodes identify the
corresponding country or province. The complete lists of nodes in each community are given in Supplementary Tables S1–S6 in Supplementary Information.
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the whole population was practically susceptible to the infection.
These differences are quantified by several graph measures, see
Figures 2A–D and Table 1. Compatible with these graph-theory
measures are the span of the exponentially-decaying degree
distributions Pc(q) and different distributions of the shortest-
path distances P(d), shown in Figure 2C. We also show the
prominent differences in the q-core structure of these networks,
cf. Figure 2D.

More importantly, the majority of nodes that belong to the
same community in the outbreak phase network appear to be a
part of entirely different communities in the immunisation phase
network, cf. Figure 3 and the corresponding lists in
Supplementary Information. More precisely, we find that only
625 edges established in the outbreak phase persist in the
immunisation phase network. They are shown in
Supplementary Figure S2 left, in Supplementary Information.
A more systematic comparison is made by computing the overlap
(Jaccard index defined in Methods) for the correlation networks
determined from the successive 2-month intervals, see
Supplementary Figure S2, right. The overlap systematically
remains below 15%, suggesting that the fluctuation patterns at
these intervals can vary between the countries or even provinces
within the same country.

2.6 K-Means Clustering and Multi-Fractality
of Time Series Within Identified
Communities
To further explore the nature of temporal fluctuations of the
infection time series of the countries and provinces within each
community found using spectral analysis, we apply the K-means

algorithm adapted for time series analysis [58], see Methods. It
appears that each topological community is further partitioned
into several clusters, for example, G1c1/G1c4, for the group G1,
and so on. Inside each cluster, the corresponding time series have
a similar evolution pattern. Hence, the cluster’s typical time series
(centroid) is determined for each identified cluster. The results
are shown in Figure 5 both for the outbreak and immunisation
phase; in the figure legends, the number of countries or provinces
belonging to a given cluster is indicated in the brackets in each
panel. The names of countries and provinces belonging to each
cluster in each group are given in Supplementary Tables S1–S6
in Supplementary Information. Notably, in each network’s group,
there is one large and one medium-size cluster. Meanwhile, there
are several single-country centroids; as a rule, they indicate a
large-population country.

Next we consider the fluctuation function F2(n) vs. the interval
length n for each time series separately, see some examples in
Figure 6, and Supplementary Figure S4 in SI. We realised that
the similarity of the time series belonging to each cluster
manifests itself in the apparent similarity of the slopes of their
fluctuation function, which defines the corresponding Hurst
exponent. As Figure 6 shows, two different slopes of the
fluctuation function can be identified for a majority of time
series. At the intervals n < 14, a Hurst exponent 0.5 ≲ h2 ≲ 1
can be determined, indicating persistent fluctuations occurring at
these time intervals. Meanwhile, an exponent h2 > 1,
characteristic to the fractional Brownian motion, is found for
n ≥ 14. In some cases, the determined Hurst exponent reaches
values close to two. The histograms of the observed Hurst
exponents are shown in Figures 6D,E. Compatible with the
grouping and different shapes of centroids in the
immunisation phase, the distributions of lower and higher
values of the Hurts exponents are also different with the
increased incidence of the value h2 2 0.5 (white noise), and
h2 2 2 (periodic signals) in the immunisation phase. In the
following, we show that these large values of the Hurst exponent
in many of the studied time series can be related to the occurrence
of cyclic trends.

Two prominent examples are shown in Figure 7. The
methodology of determining local trends in these time series is
described in Methods. The original time series shows a cyclic

FIGURE 4 | The ranking of eigenvalues of the normalised Laplacian for the outbreak and immunisation networks (B). Scatter plots of the eigenvectors v1, v2, v3
corresponding to the three smallest non-zero eigenvalues for the outbreak (A) and immunisation period networks (C). Branches indicated by different colours identify the
communities (groups) of nodes of the corresponding network in Figure 3.

TABLE 1 | For the outbreak and immunisation period networks: the number of
nodes N, edges E, and triangles #△; the graph diameter D and density ρ; the
average path length < ℓ > , degree <q> , and clustering coefficient <Cc > .

N E D < ℓ > <q > <Cc > # △ ρ

Outbreak 243 9,284 11 3.55 38.2 0.735 58,508 0.158
immunis 227 5,660 7 3.10 24.9 0.656 18,857 0.112
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trend, where the cycle length can vary from region to region. A
separate analysis of the fluctuation functions for the trend and the
fluctuations around the local trend (detrended signal) reveals that
the trend drives the fluctuations beyond the intervals of
approximately 14 days; see the insets to Figure 7. The trend
has true cyclic fluctuations (the Hurst exponent equals two,
within error bars) in the range up to n ≲ 30 days. Meanwhile,

beyond this range, both the original signal and trend have a lower
Hurst exponent in the range h2 ≳ 1, characterising a fractional
Brownian motion. By extending a similar analysis to the above-
mentioned typical time series (centroids), we find that they also
exhibit cyclic trends but with different cycles characterising
different clusters of countries. The corresponding trends are
also shown in each panel of Figure 5 as a red line on the top

FIGURE 5 |Centroids of clusters c1 to c5, found for three groups G1, G2 andG3, in the outbreak phase network (A), and groups g1, g2 and g3 in the immunisation
phase network (B). In each panel, the number of countries and provinces belonging to that cluster is shown in brackets; the smooth red line represents the centroid’s
trend. The top left panel in each figure shows the fluctuations function F2(n) vs. segment length n for the identified trends; the slope h2 = 2 is indicated by the dashed line.

FIGURE 6 | Examples of the standard deviation F2(n) of time series vs. the interval length n for K-means clusters G1c1 and G3c1 identified within topological
communities G1 and G3 in the outbreak (A,C), and cluster g2c3 in the immunisation phase networks (C). The distribution of the measured Hurst exponents for the
intervals n < 14 days and n ≥ 14 days in the outbreak and immunisation phase (D,E).

FIGURE 7 | Two examples of the infection time series showing cyclic trends during the outbreak phase [from Israel, (A)], and during the immunisation phase [from
Portugal, (B)]. Insets show the corresponding functions of the standard deviation fluctuations for the identified trends and the original and detrended time series.
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of the related centroid. The trend fluctuation functions F2(n) vs. n
shows the cycle characteristics in a large range of the intervals n,
cf. top left panels of Figure 5. They differ from cluster to cluster
and, even for the same country, the cycles also differ in the
outbreak and immunisation phase. Generally, larger cycles (in the
length and amplitude) are observed in the immunisation phase as
compared to the outbreak period, cf. Supplementary Figure S5 in
SI. Remarkably, these findings imply that the cycles (or the
infection waves) represent an inherent feature of current
pandemic which may have some long-lasting consequences.

3 DISCUSSION AND CONCLUSION

In search of universal characteristics of infection dynamics, we have
analysed the worldwide empirical data of the SARS-CoV-2 epidemic
[44], focusing on the new-infection time series with a daily
resolution. The data are purposefully divided into two periods,
corresponding to the epidemic’s outbreak and the initial
immunisation phase, respectively. Three complementary methods
of quantitative analysis have been performed. Specifically, we have
analysed the mesoscopic structure of the networks, which embody
the significant pairwise correlations among the infection time series
of different countries or provinces. The further similarity in the pairs
of time series has been analysed by K-means clustering. Finally, the
fluctuation function of each time series has been determined using
the detrended time series analysis. Our analysis has revealed global
clustering and several universal features of the infection dynamics.
Our main conclusions are:

• the worldwide clustering represented by fourteen temporal
patterns of evolution of infection reveals significant
similarities transcending geographical regions;

• the cyclic trends dominate the infection fluctuations,
implying the prevalent infection waves and multi-scale
fluctuations around these cycles; typically determined
cycles appear in conjunction with the identified clusters;

• the immunisation phase differs from the epidemic outbreak
phase in all measures considered here, thus quantifying the
impact of the (partial) immunisation coverage on the
underlying stochastic process and the course of the
pandemic.

The mesoscopic (community) structure, as shown in Figure 3
is one of the striking characteristics of the infection-correlation
networks; remarkably, it occurs already at zero thresholds, see
Supplementary Figure S1 in SI. What comes as a surprise is that
these communities constitute almost entirely different nodes
(countries or provinces) in the immunisation phase compared
to the outbreak phase. Only a few edges established during the
outbreak phase persist throughout the entire evolution of the
epidemic, as shown in Supplementary Figure S2 in SI.
Consequently, the same applies to the contents of the clusters
found in these two phases, cf. Supplementary Tables S1–S6 in SI.
Notably, a given geographic location and potentially similar
cultural and economic development levels, similar healthcare
systems and other related factors play some role. However,

even such regional groups appear to be a part of a worldwide
cluster in both representative phases of the pandemic. Such a
picture probably emerges under another dominant driver,
common to countries at different locations, and with different
cultural and economic developments. In this context, the biology
factors, the virus mutations in the interplay with the social
behaviour of individuals and groups in the crisis seems to be
of the primary importance for the genesis of sustained infection
waves, quantified by cyclic trends in different clusters, cf.
Figure 7. Our analysis suggests that the waves are ubiquitous
in all countries and regions in both representative phases of the
pandemic. Meanwhile, the timing, duration and amplitude of
these waves vary between different clusters of countries and
provinces, likely depending on the applied measures and the
corresponding variations in the population behaviours.
Moreover, the small-scale fluctuations around these cyclic
trends seem to be more region-specific, and depending on the
immunisation measures; two comparative examples are shown in
Supplementary Figure S5 in SI. A more systematic analysis of
these fluctuations and the impact of the immunisation level on
the infection dynamics merits future study.

Our analysis of the world infection dynamics of the SARS-
CoV-2 pandemic revealed several universal features of the
underlying multiscale stochastic processes that go beyond the
geographical impact, locally-imposed governmental measures,
and partial immunisation phases. Indeed, while these measures
are truly valuable for short-term effects, saving lives, and
maintaining the functional healthcare system in each country
[25], they are much less effective in changing the fundamental
nature of the infection process, rooted in the interplay of biology
and social behaviours. This work has provided an in-depth
analysis of the pandemic’s fundamental phases with an
overview that can guide further research into the nature of
biosocial interdependencies. The latter factor plays a
critical role in the SARS-CoV-2 evolution, where individual
biological features of the participants and their role in the
collective behaviours need to be better understood. Our
effective long-term management of the pandemic and
prediction of its future developments rely upon our ability to
continue unfolding critical attributes of the underlying biosocial
stochastic dynamics.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/CSSEGISandData/
COVID-19/.

AUTHOR CONTRIBUTIONS

BT, RM, and MM designed research, MM collected data, MM
and BT contributed program tools and performed analysis,
BT, MM, and RM analysed data, BT produced figures, BT and
RM wrote the manuscript, all authors reviewed the
manuscript.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9366188

Mitrović Dankulov et al. Universal Patterns of SARS-CoV-2 Pandemic

https://github.com/CSSEGISandData/COVID-19/
https://github.com/CSSEGISandData/COVID-19/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FUNDING

BT work supported by the Slovenian Research Agency (research
code funding number P1-0044). MMD. acknowledge funding
provided by the Institute of Physics Belgrade, through the grant
by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia. RM is grateful to the
NSERC and the CRC Program for their support and he is also
acknowledging the support of the BERC 2022-2025 program and
Spanish Ministry of Science, Innovation, and Universities

through the Agencia Estatal de Investigacion (AEI) BCAM
Severo Ochoa excellence accreditation SEV-2017-0718, and the
Basque Government fund AI in BCAM EXP. 2019/00432.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2022.936618/
full#supplementary-material

REFERENCES

1. Jusup M, Holme P, Kanazawa K, Takayasu M, Romić I, Wang Z, et al. Social
Physics. Phys Rep (2022) 948:1–148. doi:10.1016/j.physrep.2021.10.005

2. Perc M, Jordan JJ, Rand DG, Wang Z, Boccaletti S, Szolnoki A. Statistical
Physics of Human Cooperation. Phys Rep (2017) 687:1–51. doi:10.1016/j.
physrep.2017.05.004

3. Tadić B, Melnik R. Self-organised Critical Dynamics as a Key to Fundamental
Features of Complexity in Physical, Biological, and Social Networks. Dynamics
(2021) 1:181–97.

4. Tadić B, Dankulov MM, Melnik R. Mechanisms of Self-Organized Criticality
in Social Processes of Knowledge Creation. Phys Rev E (2017) 96:032307.
doi:10.1103/PhysRevE.96.032307

5. Chilamakuri R, Agarwal S. Covid-19: Characteristics and Therapeutics. Cells
(2021) 10:206. doi:10.3390/cells10020206

6. Gerotziafas GT, Catalano M, Theodorou Y, Dreden PV, Marechal V,
Spyropoulos AC, et al. The Covid-19 Pandemic and the Need for an
Integrated and Equitable Approach: an International Expert Consensus
Paper. Thromb Haemost (2021) 121:992–1007. doi:10.1055/a-1535-8807

7. Hâncean MG, Slavinec M, Perc M. The Impact of Human Mobility Networks
on the Global Spread of Covid-19. J Complex Networks (2020) 8:cnaa041.

8. Tadić B, Melnik R. Modeling Latent Infection Transmissions through
Biosocial Stochastic Dynamics. PloS one (2020) 15:e0241163. doi:10.1371/
journal.pone.0241163

9. Doms RW. Basic Concepts. In: Viral Pathogenesis. Amsterdam: Elsevier
(2016). p. 29–40. doi:10.1016/b978-0-12-800964-2.00003-3

10. Schneider M, Johnson JR, Krogan NJ, Chanda SK. The Virus-Host
Interactome. In: Viral Pathogenesis. Amsterdam: Elsevier (2016). p. 157–67.
doi:10.1016/b978-0-12-800964-2.00012-4

11. Callaway E. The Coronavirus Is Mutating - Does it Matter? Nature (2020) 585:
174–7. doi:10.1038/d41586-020-02544-6

12. Lu C, Gam R, Pandurangan AP, Gough J. Genetic Risk Factors for Death with
Sars-Cov-2 from the uk Biobank. MedRxiv (2020). doi:10.1101/2020.07.01.
20144592

13. Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, et al. New Understanding of the
Damage of Sars-Cov-2 Infection outside the Respiratory System. Biomed
Pharmacother (2020) 127:110195. doi:10.1016/j.biopha.2020.110195

14. Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, Transmission, and
Pathogenesis of Sars-Cov-2. BMJ (2020) 371:m3862. doi:10.1136/bmj.m3862

15. Meyers KJ, Jones ME, Goetz IA, Botros FT, Knorr J, Manner DH, et al. A
Cross-sectional Community-based Observational Study of Asymptomatic
SARS-CoV-2 Prevalence in the Greater Indianapolis Area. J Med Virol
(2020) 92:2874–9. doi:10.1002/jmv.26182

16. Chen J. Pathogenicity and Transmissibility of 2019-nCoV-A Quick Overview
and Comparison with Other Emerging Viruses. Microbes Infect (2020) 22:
69–71. doi:10.1016/j.micinf.2020.01.004

17. Wang Y, Wang Y, Chen Y, Qin Q. Unique Epidemiological and Clinical
Features of the Emerging 2019 Novel Coronavirus Pneumonia (COVID-19)
Implicate Special Control Measures. J Med Virol (2020) 92:568–76. doi:10.
1002/jmv.25748

18. Djordjevic M, Salom I, Markovic S, Rodic A, Milicevic O, Djordjevic M.
Inferring the Main Drivers of Sars-Cov-2 Global Transmissibility by Feature

Selection Methods. GeoHealth (2021) 5:e2021GH000432. doi:10.1029/
2021GH000432

19. Bavel JJV, Baicker K, Boggio PS, Capraro V, Cichocka A, Cikara M, et al. Using
Social and Behavioural Science to Support Covid-19 Pandemic Response. Nat
Hum Behav (2020) 4:460–71. doi:10.1038/s41562-020-0884-z

20. Chaudhry R, Dranitsaris G, Mubashir T, Bartoszko J, Riazi S. A Country Level
Analysis Measuring the Impact of Government Actions, Country
Preparedness and Socioeconomic Factors on Covid-19 Mortality and
Related Health Outcomes. EClinicalMedicine (2020) 25:100464. doi:10.
1016/j.eclinm.2020.100464

21. Funk CD, Laferrière C, Ardakani A. A Snapshot of the Global Race for
Vaccines Targeting Sars-Cov-2 and the Covid-19 Pandemic. Front Pharmacol
(2020) 11:937. doi:10.3389/fphar.2020.00937

22. Wang Z, Bauch CT, Bhattacharyya S, d’Onofrio A, Manfredi P, Perc M, et al.
Statistical Physics of Vaccination. Phys Rep (2016) 664:1–113. doi:10.1016/j.
physrep.2016.10.006

23. Khajanchi S, Das DK, Kar TK. Dynamics of Tuberculosis Transmission with
Exogenous Reinfections and Endogenous Reactivation. Physica A: Stat Mech
its Appl (2018) 497:52–71. doi:10.1016/j.physa.2018.01.014

24. Khajanchi S, Perc M, Ghosh D. The Influence of Time Delay in a Chaotic
Cancer Model. Chaos (2018) 28:103101. doi:10.1063/1.5052496

25. Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al.
Ranking the Effectiveness of Worldwide Covid-19 Government Interventions.
Nat Hum Behav (2020) 4:1303–12. doi:10.1038/s41562-020-01009-0

26. Weitz JS, Park SW, Eksin C, Dushoff J. Awareness-driven Behavior Changes
Can Shift the Shape of Epidemics Away from Peaks and toward Plateaus,
Shoulders, and Oscillations. Proc Natl Acad Sci U.S.A (2020) 117:32764–71.
doi:10.1073/pnas.2009911117

27. Tkachenko AV, Maslov S, Elbanna A, Wong GN, Weiner ZJ, Goldenfeld N.
Time-dependent Heterogeneity Leads to Transient Suppression of the Covid-
19 Epidemic, Not Herd Immunity. Proc Natl Acad Sci (2021) 118. doi:10.1073/
pnas.2015972118

28. Brauer F. Mathematical Epidemiology: Past, Present, and Future. Infect Dis
Model (2017) 2:113–27. doi:10.1016/j.idm.2017.02.001

29. Tadić B, Melnik R. Microscopic Dynamics Modeling Unravels the Role of
Asymptomatic Virus Carriers in Sars-Cov-2 Epidemics at the Interplay
between Biological and Social Factors. Comput Biol Med (2021) 133:
104422. doi:10.1016/j.compbiomed.2021.104422

30. Nagel K, Rakow C, Müller SA. Realistic Agent-Based Simulation of Infection
Dynamics and Percolation. Physica A: Stat Mech its Appl (2021) 584:126322.
doi:10.1016/j.physa.2021.126322

31. Burda Z. Modelling Excess Mortality in Covid-19-like Epidemics. Entropy
(2020) 22:1236. doi:10.3390/e22111236

32. Chang SL, Harding N, Zachreson C, Cliff OM, Prokopenko M. Modelling
Transmission and Control of the Covid-19 Pandemic in australia. Nat
Commun (2020) 11:5710–3. doi:10.1038/s41467-020-19393-6

33. Jackson ML. Low-impact Social Distancing Interventions to Mitigate Local
Epidemics of Sars-Cov-2. Microbes Infect (2020) 22:611–6. doi:10.1016/j.
micinf.2020.09.006

34. Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, et al. A Conceptual Model for
the Coronavirus Disease 2019 (Covid-19) Outbreak in Wuhan, china with
Individual Reaction and Governmental Action. Int J Infect Dis (2020) 93:
211–6. doi:10.1016/j.ijid.2020.02.058

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9366189

Mitrović Dankulov et al. Universal Patterns of SARS-CoV-2 Pandemic

https://www.frontiersin.org/articles/10.3389/fphy.2022.936618/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.936618/full#supplementary-material
https://doi.org/10.1016/j.physrep.2021.10.005
https://doi.org/10.1016/j.physrep.2017.05.004
https://doi.org/10.1016/j.physrep.2017.05.004
https://doi.org/10.1103/PhysRevE.96.032307
https://doi.org/10.3390/cells10020206
https://doi.org/10.1055/a-1535-8807
https://doi.org/10.1371/journal.pone.0241163
https://doi.org/10.1371/journal.pone.0241163
https://doi.org/10.1016/b978-0-12-800964-2.00003-3
https://doi.org/10.1016/b978-0-12-800964-2.00012-4
https://doi.org/10.1038/d41586-020-02544-6
https://doi.org/10.1101/2020.07.01.20144592
https://doi.org/10.1101/2020.07.01.20144592
https://doi.org/10.1016/j.biopha.2020.110195
https://doi.org/10.1136/bmj.m3862
https://doi.org/10.1002/jmv.26182
https://doi.org/10.1016/j.micinf.2020.01.004
https://doi.org/10.1002/jmv.25748
https://doi.org/10.1002/jmv.25748
https://doi.org/10.1029/2021GH000432
https://doi.org/10.1029/2021GH000432
https://doi.org/10.1038/s41562-020-0884-z
https://doi.org/10.1016/j.eclinm.2020.100464
https://doi.org/10.1016/j.eclinm.2020.100464
https://doi.org/10.3389/fphar.2020.00937
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physa.2018.01.014
https://doi.org/10.1063/1.5052496
https://doi.org/10.1038/s41562-020-01009-0
https://doi.org/10.1073/pnas.2009911117
https://doi.org/10.1073/pnas.2015972118
https://doi.org/10.1073/pnas.2015972118
https://doi.org/10.1016/j.idm.2017.02.001
https://doi.org/10.1016/j.compbiomed.2021.104422
https://doi.org/10.1016/j.physa.2021.126322
https://doi.org/10.3390/e22111236
https://doi.org/10.1038/s41467-020-19393-6
https://doi.org/10.1016/j.micinf.2020.09.006
https://doi.org/10.1016/j.micinf.2020.09.006
https://doi.org/10.1016/j.ijid.2020.02.058
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


35. Magal P, Webb G. Predicting the Number of Reported and Unreported Cases
for the Covid-19 Epidemic in south korea, italy, france and germany (2020).
Italy, France and Germany (March 19, 2020).

36. Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, et al. A
Stochastic Agent-Based Model of the Sars-Cov-2 Epidemic in france. Nat Med
(2020) 26:1417–21. doi:10.1038/s41591-020-1001-6

37. Rice BL, Annapragada A, Baker RE, Bruijning M, Dotse-Gborgbortsi W,
Mensah K, et al. Variation in Sars-Cov-2 Outbreaks across Sub-saharan Africa.
Nat Med (2021) 27:447–53. doi:10.1038/s41591-021-01234-8

38. Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, DiMatteo A, et al.
Modelling the Covid-19 Epidemic and Implementation of Population-wide
Interventions in italy. Nat Med (2020) 26:855–60. doi:10.1038/s41591-020-
0883-7

39. Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based Analysis,
Modelling and Forecasting of the Covid-19 Outbreak. PloS one (2020) 15:
e0230405. doi:10.1371/journal.pone.0230405

40. Christopoulos DT. A Novel Approach for Estimating the Final Outcome of
Global Diseases like Covid-19. medRxiv (2020). doi:10.1101/2020.07.03.
20145672

41. Thurner S, Klimek P, Hanel R. A Network-Based Explanation of Why Most
Covid-19 Infection Curves Are Linear. Proc Natl Acad Sci U.S.A (2020) 117:
22684–9. doi:10.1073/pnas.2010398117

42. Vasconcelos GL, Macêdo AMS, Duarte-Filho GC, Brum AA, Ospina R,
Almeida FAG. Power Law Behaviour in the Saturation Regime of Fatality
Curves of the Covid-19 Pandemic. Sci Rep (2021) 11:4619–2. doi:10.1038/
s41598-021-84165-1

43. Tkachenko AV, Maslov S, Wang T, Elbana A, Wong GN, Goldenfeld N.
Stochastic Social Behavior Coupled to Covid-19 Dynamics Leads to Waves,
Plateaus, and an Endemic State. Elife (2021) 10:e68341. doi:10.7554/eLife.
68341

44. [Dataset] CSSE. Covid-19 Data Repository by the center for Systems Science
and Engineering (Csse) at the Johns hopkins university (2020).

45. Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Stanley HE.
Econophysics: Financial Time Series from a Statistical Physics point of
View. Physica A: Stat Mech its Appl (2000) 279:443–56. doi:10.1016/s0378-
4371(00)00010-8

46. Maslov S. Measures of Globalization Based on Cross-Correlations of World
Financial Indices. Physica A: Stat Mech its Appl (2001) 301:397–406. doi:10.
1016/s0378-4371(01)00370-3

47. Tadić B, Mitrović M. Jamming and Correlation Patterns in Traffic of
Information on Sparse Modular Networks. The Eur Phys J B (2009) 71:631–40.

48. Isufaj R, Koca T, Piera MA. Spatiotemporal Graph Indicators for Air Traffic
Complexity Analysis. Aerospace (2021) 8:364. doi:10.3390/aerospace8120364

49. Baruchi I, Ben-Jacob E. Functional Holography of Recorded Neuronal
Networks Activity. Ni (2004) 2:333–52. doi:10.1385/ni:2:3:333

50. Tadić B, Andjelković M, Boshkoska BM, Levnajić Z. Algebraic Topology of
Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional
Patterns during Spoken Communications. PLoS One (2016) 11:e0166787.
doi:10.1371/journal.pone.0166787

51. Madi A, Friedman Y, Roth D, Regev T, Bransburg-Zabary S, Jacob EB.
Genome Holography: Deciphering Function-form Motifs from Gene
Expression Data. PLoS One (2008) 3:e2708. doi:10.1371/journal.pone.
0002708

52. Živković J, Tadić B, Wick N, Thurner S. Statistical Indicators of Collective
Behavior and Functional Clusters in Gene Networks of Yeast. Eur Phys
J B-Condensed Matter Complex Syst (2006) 50:255–8.

53. Lahiri D, Dubey S, Ardila A. Impact of Covid-19 Related Lockdown on
Cognition and Emotion: A Pilot Study. medRxiv (2020).
2020.06.30.20138446. doi:10.1101/2020.06.30.20138446

54. Browning R, SulemD,Mengersen K, Rivoirard V, Rousseau J. Simple Discrete-
Time Self-Exciting Models Can Describe Complex Dynamic Processes: A Case
Study of Covid-19. PloS one (2021) 16:e0250015. doi:10.1371/journal.pone.
0250015

55. Biyikoglu T, Leydold J, Stadler PF. Laplacian Eigenvectors of Graphs: Perron-
Frobenius and Faber-Krahn Type Theorems. Heidelberg: Springer (2007).

56. Mitrović M, Tadić B. Spectral and Dynamical Properties in Classes of
Sparse Networks with Mesoscopic Inhomogeneities. Phys Rev E (2009) 80:
026123.

57. Bastian M, Heymann S, Jacomy M. Gephi: an Open Source Software for
Exploring and Manipulating Networks. Proc Int AAAI Conf web Soc media
(2009) 3:361–2.

58. Tavenard R, Faouzi J, Vandewiele G, Divo F, Androz G, Holtz C, et al. Tslearn,
a Machine Learning Toolkit for Time Series Data. J Mach Learn Res (2020)
21:1–6.

59. Hu J, Gao J, Wang X. Multifractal Analysis of sunspot Time Series: the Effects
of the 11-year Cycle and Fourier Truncation. J Stat Mech (2009) 2009:P02066.
doi:10.1088/1742-5468/2009/02/p02066

60. Šuvakov M, Mitrovic M, Gligorijevic V, Tadic B. How the Online Social
Networks Are Used: Dialogues-Based Structure of Myspace. J R Soc Interf
(2013) 10:20120819. doi:10.1098/rsif.2012.0819

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Mitrović Dankulov, Tadić and Melnik. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 93661810

Mitrović Dankulov et al. Universal Patterns of SARS-CoV-2 Pandemic

https://doi.org/10.1038/s41591-020-1001-6
https://doi.org/10.1038/s41591-021-01234-8
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1371/journal.pone.0230405
https://doi.org/10.1101/2020.07.03.20145672
https://doi.org/10.1101/2020.07.03.20145672
https://doi.org/10.1073/pnas.2010398117
https://doi.org/10.1038/s41598-021-84165-1
https://doi.org/10.1038/s41598-021-84165-1
https://doi.org/10.7554/eLife.68341
https://doi.org/10.7554/eLife.68341
https://doi.org/10.1016/s0378-4371(00)00010-8
https://doi.org/10.1016/s0378-4371(00)00010-8
https://doi.org/10.1016/s0378-4371(01)00370-3
https://doi.org/10.1016/s0378-4371(01)00370-3
https://doi.org/10.3390/aerospace8120364
https://doi.org/10.1385/ni:2:3:333
https://doi.org/10.1371/journal.pone.0166787
https://doi.org/10.1371/journal.pone.0002708
https://doi.org/10.1371/journal.pone.0002708
https://doi.org/10.1101/2020.06.30.20138446
https://doi.org/10.1371/journal.pone.0250015
https://doi.org/10.1371/journal.pone.0250015
https://doi.org/10.1088/1742-5468/2009/02/p02066
https://doi.org/10.1098/rsif.2012.0819
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
















 

Информативни подаци о малом
патенту/пријави малог патента

Регистарски број (Registration number) 1566
Број и датум решења о признању права (Number and date of
decision to grant the right)

2018/15457    31.10.2018

Број пријаве (Application number) МП-2017/0074
Датум пријема пријаве (Reception date) 29.12.2017
Признати датум подношења пријаве (Filing date) 29.12.2017
Статус (Legal status) Регистрован  (Registered)
Датум објављивања и број службеног гласила признатог
права (B1) (Publication date and number of gazette of granted
right)

(U1) 30.11.2018. 11/2018

Међународна класификација патената (IPC) F16H 51/02; B01F 15/00
Назив проналаска (Title of invention) PODESIVI MEHANIZAM LABORATORIJSKE MEŠALICE

ADJUSTABLE MECHANISM FOR LABORATORY
SHAKER

Подаци о проналазачу (Inventor) VUKOVIĆ, Đorđe

 LAZOVIĆ, Saša

 DIMITRIJEVIĆ, Dragoljub

 MITROVIĆ-DANKULOV, Marija

 JOVANOVIĆ, Stevan

 ĐUKIĆ, VUKOVIĆ, Aleksandra
Подаци о носиоцу права (Owner) INSTITUT ZA FIZIKU ZEMUN, Pregrevica 118, 11080

Beograd-Zemun, RS

- 1 -



 

 

- 2 -


