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h i g h l i g h t s

• Kinetics of spherical particle deposition on a patterned substrates is studied.
• Patterns consist of square cells centered at the vertices of a square lattice.
• Cell size α and cell–cell separation β have a striking influence on the kinetics.
• When β + α/2 < 1, asymptotic approach of the coverage to the jamming limit is algebraic.
• Spatial distribution of particles inside the cell at the jammed state is studied.
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a b s t r a c t

The random sequential adsorption (RSA) approach is used to analyze adsorption of spheri-
cal particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged
in a square lattice pattern. To characterize such pattern two dimensionless parameters
are used: the cell size α and the cell–cell separation β , measured in terms of the particle
diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within
a cell area. We focus on the kinetics of deposition process in the case when no more than
a single disk can be placed onto any square cell (α < 1/

√
2 ≈ 0.707). We find that the

asymptotic approach of the coverage fraction θ (t) to the jamming limit θJ is algebraic if
the parameters α and β satisfy the simple condition, β + α/2 < 1. If this condition is
not satisfied, the late time kinetics of deposition process is not consistent with the power
law behavior. However, if the geometry of the pattern approaches towards ‘‘noninteracting
conditions’’ (β > 1), when adsorption on each cell can be decoupled, approach of the
coverage fraction θ (t) to θJ becomes closer to the exponential law. Consequently, changing
the pattern parameters in the present model allows to interpolate the deposition kinetics
between the continuum limit and the lattice-like behavior. Structural properties of the
jammed-state coverings are studied in terms of the radial distribution function g(r) and
spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are
observed depending on the geometry of the pattern.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The adsorption of particles on a flat substrate is a common phenomenon which has a great scientific and industrial
importance as it has been linked to a wide range of applications in biology [1–4], nanotechnology [5,6], device physics [7–9],
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physical chemistry [10,11], andmaterials science [12]. Depending on the application in question, the depositing objects could
be colloidal particles, polymer chains, globular proteins, nanotubes, DNA segments, or general geometrical shapes, such as
disks, polygons, etc. Due to its wide range of applications, there has been continuing effort to enrich our understanding of
deposition processes and experimentally observed structural properties of the adsorbed phase [13–15].

The kinetics of adsorption has been mainly studied through the formulation of different models, aiming to capture the
essential features of the deposition process. Random Sequential Adsorption (RSA) is the simplest model that can still provide
the generic features of the adsorption phenomenon for the case of very strong interaction betweenparticles and the substrate
(for a review on RSA models see [13]). In the RSA model, adsorption process is considered as sequential addition of particles
on the substrate such that at each time step only one particle is added on the substrate at a randomly selected position.
During the process of addition, newly adding particles are forbidden from overlapping with the already adsorbed particles
and any attempt of adsorption resulting in an overlap is rejected. The adsorbed particles are permanently fixed at their
spatial positions so that they affect the geometry of all later placements. Under these conditions, the system evolves rapidly
toward nonequilibriumconditions and the kinetics becomes essentially dominated by geometrical exclusion effects between
particles. The most common parameter to characterize the kinetic properties of a deposition process is the coverage θ (t),
defined as the fraction of the substrate area covered by the adsorbed particles at time t . Due to the blocking of the substrate
area by the already randomly adsorbed particles, at large times the coverage θ (t) approaches the jammed-state value θJ,
where only gaps too small to fit new particles are left in the monolayer.

Although RSA model formulated under those conditions may accurately reproduce many experimental situations, its
extension to more complex surfaces having an intrinsic structure is by nomeans trivial. For example, the supporting surface
may be prepatterned with preferential sites for specific particle attachment, which may alter the kinetics of the process and
the structure of the adsorbed layer. With the use of photolithographic techniques, high-power lasers, chemical treatments,
etc., such surface modifications are routinely realized on the microscale, or even on the nanoscale [16–19].

It must be stressed that the classical RSA approach can be used for modeling the kinetics of an idealized process only,
consisting in the creation of particles at a given distance from the interface with a constant rate and in a consecutive
manner. For particles of a submicrometer size range, in addition to hydrodynamic and electrostatic forces, Brownianmotion
significantly affects their trajectories and transport to boundary surfaces. It is not possible, within the framework of the RSA
model, to find a unique relationship between the kinetics of this idealized process and the kinetics of the particle adsorption
process governed by various transport mechanisms. One has, therefore, to rely on approximate models being useful for
specific transport mechanisms of particles [20].

There is a well-developed literature on irreversible adsorption on various types of two-dimensional (2D) patterned
surfaces [21–29]. Specifically, pre-patterned substrates have been studied in a model of irreversible deposition on a random
site surface (RSS),where the sites are represented by randomly distributedpoints [21,23]. Adamczyk et al. [24] have extended
the RSSmodel to the situation where the size of the landing sites, in the shape of circular disks, is finite and comparable with
the size of adsorbing spheres. Araújo et al. [28] and Marques et al. [29] have investigated the adsorption of disk-shaped
particles on a patterned substrate consisted of equal square cells centered at the vertices of a square lattice. They studied the
effect of the presence of a regular substrate pattern and particle polydispersity on the deposit morphology and density, as
well as on the in-cell particle population. In addition, Araújo [30] has discussed the influence of the pattern on the adsorption
kinetics. He has pointed out that time evolution towards the jammed state can be consistent with exponential or power-law
behavior, depending on the geometry of the pattern.

Recently, motivated by nano-patterning, we have analyzed irreversible deposition of spherical particles of a fixed radius
on nonuniform flat surfaces covered by non-overlapping rectangular cells that are randomly placed and fixed on the substrate
surface [31]. The basic assumption of our model is that a particle can only be adsorbed if the center of its disk-shaped
projection lies within one of the landing cells. We have studied structural properties of the jammed-state coverings in terms
of the radial distribution function g(r) and distribution of the Delaunay ‘free’ volumes P(v). Pore distribution P(v) has been
widely used to characterize the organization of grains at the local level in disordered granular packings and to quantify the
structural changes of the packing during the compaction process [32–36]. The convenient definition of a pore is based on the
Delaunay triangulation. Delaunay decomposition is a natural way to subdivide a planar structure of disks into a system of
minimal triangles with vertices on the centers of neighboring disks chosen in such a way that no other disks in the structure
have centers within the circumcircle of each Delaunay triangle. One of the advantages of such decomposition is that it does
not require the introduction of any threshold. Pore (Delaunay ‘‘free’’ volume) is defined as a part of the Delaunay triangle
not occupied by the disks [34,35]. It was shown that the porosity (pore volumes) of deposited monolayer can be controlled
by the size and shape of landing cells, and by anisotropy of the cell deposition procedure [31]. Furthermore, we have shown
that in the case of low densities of landing cells θ

(cell)
0 ≈ 0.1 the plot of the first derivative of coverage fraction θ (t) with

respect to time t at the very late times of the deposition process is not linear on a double logarithmic scale, indicating that
the approach to the jamming limit is not consistent with the power law behavior given by the time dependence:

θJ − θ (t) ∼ t−1/d. (1)

For irreversible deposition of spherically symmetric particles on continuum substrate, the above relation (1)was numerically
and analytically confirmed valid by many investigators [3,37–40]. Parameter d is interpreted as substrate dimension [37] in
the case of spherical particles adsorption or, more generally, as a number of degrees of freedom [41]. In addition, our results
have suggested that in the case of single particle per-cell adsorption and low densities of landing cells the approach to the
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jamming limit can be exponential, as in lattice RSA models [42–45]. For discrete substrates the approach of the coverage
fraction θ (t) to its jamming limit θJ is given by the time dependence:

θJ − θ (t) ∼ exp(−t/σ ), (2)

where parameter σ depends on the orientational freedom of depositing objects, and on the dimensionality of the sub-
strate [44,45].

The difference between deposition on finite-size landing cells and lattice RSA is in the particle positions, which can be
uncertain within the order of the size of the cell in the former case. Very recently Privman and Yan [46] have analyzed
both numerically and analytically extended model of one-dimensional deposition of segments of length a, on a lattice of
spacing ℓ between its sites, which instead of just being lattice points are symmetrically broadened (about the lattice points)
into segments of width w in which the centers of the depositing objects can land. They reported that even an arbitrarily
small imprecision in the lattice-site localization (w ≳ 0) changes the convergence to jamming from fast, exponential (2), to
slow, power-law (1). The present study in similar spirit investigates the rapidity of the approach to the jamming state in the
case of two-dimensional (2D) prepatterned substrate. Unlike the models studied in our previous work [31], here we analyze
deposition on the substrates patterned with a square grid of square-shaped cells onto which the particle can adhere. We
consider the process of the irreversible random sequential adsorption (RSA) of fixed size disks. The present work is focused
on the effect of the presence of a regular substrate pattern on the temporal evolution of the coverage fraction θ (t). Our aim
is to quantify changes in time coverage behavior θ (t) at densities near jamming limit θJ, associated with different cell size
and density.

The rest of the article is organized as follows. In Section 2we introduce themodel and give somedetails of our simulations.
We present the simulation results and discussions in Section 3. Finally, Section 4 contains some additional comments and
final remarks.

2. Model and numerical simulation

We study irreversible monolayer deposition of identical disks onto a prepared flat nonuniform substrate, where
the interparticle interaction is limited to hard-core exclusion. The substrate heterogeneities consist of non-overlapping
(identical) square cells that are fixed on the substrate surface. The landing cells are arranged to form a regular pattern,
i.e. squares are centered at the vertices of a square lattice and their edges are oriented parallel to the lattice principal axes. A
disk is irreversibly adsorbed at random position on the substrate if it does not overlap any of previously adsorbed particles
and if the center of disk lies inside one of the cells. Adsorbed disks are permanently fixed to their spatial positions.

The geometry of the pattern is controlled by the two dimensionless parameters,α andβ , measured in terms of the particle
diameter d0 = 2r0. Parameter α is the cell size, and parameter β is the shortest distance between the parallel sides of
the nearest neighboring cells. The Monte-Carlo simulations are performed on a planar substrate with typically 256 × 256
landing cells. In order to estimate coverages with higher precision, the number of cells is increased to 1024 × 1024 for some
landing-cell configurations (their specifications are provided later in the text). Periodic boundary conditions are used in all
directions.

In numerical calculations, the time t is gradually increased by an increment 1t , given by 1t = πr20/L
2, each time an

attempt is made to deposit a disk of radius r0 = d0/2 on a square surface (collector) of area L2. Consequently, we define
dimensionless adsorption time t = Nattπr20/L

2, where Natt is the overall number of attempts to place disk particles. By
plotting coverage θ (t) versus the adsorption time t , defined above, one can simulate the kinetics of particle adsorption.
However, in order to optimize the computing time, deposition is attempted only inside the cells. We chose a random cell
and attempt to deposit a particle at random position within that cell. This optimization affects time scaling, so that the
time increment can be calculated as 1t =

πr20
L2

(α+β)2

α2 . In some cases, we wanted to reach very large times which required
further optimizations of our calculations.When cells are small enough and can be occupied by one particle at most, we try to
achieve the deposition events only at free cells. Then, the time t is increased after every deposition attempt by an increment
1t =

πr20
Nfree

(α+β)2

α2 , where Nfree is the number of free cells.
Depending on the cell size α, one can place one or more disk centers inside each cell. For α < 1/

√
2 ≈ 0.707, at most

a single disk can be adsorbed at any given square cell. We denote this case as single particle per-cell adsorption (SPCA).
For squares with α ≥ 1/

√
2, more than a single disk can be placed in the square cell, and we denote this as multiparticle

per-cell adsorption (MPCA). For distances between neighboring cells β < 1, a disk attempting adsorption on a given cell
can overlap with a previously adsorbed one belonging to a neighboring cell, resulting in a failed adsorption attempt. This
excluded volume ‘‘interaction’’ between particles during adsorption at different cells affects the overall structure of the
adsorbed layer and causes slower asymptotic approach of the coverage fraction θ (t) to its jamming limit [28,31]. Such
regime is denoted interacting cell–cell adsorption (ICCA). For β ⩾ 1, disks attempting adsorption cannot overlap other disks in
neighboring cells, yielding the noninteracting cell–cell adsorption regime (NICCA). Deposition kinetics in the regime of NICCA
is completely determined by the kinetics of adsorption of particles on finite size substrate (a single cell) with appropriate
boundary conditions [28,31].
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Fig. 1. Shown here is dependence of the time evolution of the coverage fraction θ (t) on the gap size β between landing cells (in units of the disk diameter
d0), for the three values of cell size, α = 0.3 (a), 0.5 (b), and 0.7 (c). For each α, the gap β between cells is varied in the range [0, 1], with the step of 0.02.

3. Results and discussion

3.1. Effect of varying β on the long-time adsorption kinetics

In thisworkwe focus on the interacting cell–cell adsorption (ICCA) regime in the case of single particle per-cell adsorption
(SPCA). Kinetics of the irreversible deposition of disks is illustrated in Fig. 1(a)–(c) where the plots of time coverage behavior
θ (t) are given for the three values of cell size, α = 0.3, 0.5, and 0.7. Here, the plots of such time-dependence are shown for
various values of the gap β between the cells, in the range from β = 0 (continuous substrate and ICCA regime) to β = 1
(upper limit of the parameter β , above which the NICCA occurs). These 2D plots enable us to analyze how the time evolution
of the coverage θ (t) in the case of SPCA depends on the gap size β between the landing cells. It can be seen that for a fixed
size of landing cells α, coverage θ (t) in the early stage of the deposition process increases faster when the gaps between the
cells are smaller. Indeed, at very early times of the process, when the coverage fraction θ (t) is small, deposited object do
not ‘‘feel’’ the presence of the other ones, and the coverage grows rapidly in time. Then, adsorption process has overall rate
proportional to the surface density of landing cells onto which the particles can adhere. Since the flux of incoming particles
is fixed, the overall rate at which the coverage θ (t) increases is progressively reduced with increasing of the gap between
the landing cells.

At late enough time, when the coverage fraction is sufficiently high to make ‘‘excluded volumes’’ for deposited objects
begin to overlap, there is a strong dependence of the adsorption rate on the parameter β . Reduction of the rate of adsorption
events that occurs, with decreasing of the gap size β , corresponds to increasing of the impact the cell–cell excluded volume
interaction on the late stage of the deposition process.

It is interesting to emphasize that the dependence of the jamming coverage θJ is a nonmonotonic function of the gap size
β (see Fig. 1). It goes from jamming coverage for continuum θ cont

J = 0.5472 ± 0.0002 [47] (β = 0), reaches some local
minima (0 < β < 1), and tend to a definite value which corresponds to the coverings when each cell is occupied by a single
particle. Corresponding explanations of such variations of the jamming coverage θ with parameter β are provided later in
the text.

In order to gain a better insight into the complex kinetics of SPCA in the ICCA regime, it is useful to analyze in particular the
temporal evolution of the first derivative of coverage θ (t) with respect to time t . The time derivatives of θ (t) are calculated
numerically from the simulation data. Representative examples of double logarithmic plots of the time derivative dθ/dt are
shown in Fig. 2(a)–(c), for the three values of cell size, α = 0.3 (a), 0.5 (b), 0.7 (c). For each α, results are presented for various
values of the gap β between the cells in the range 0.60 ⩽ β ⩽ 0.98. In the case of the algebraic behavior of the coverage
fraction θ (t) (see Eq. (1)), a double logarithmic plot of the first time derivative dθ/dt ∝ t−(1+d)/d is a straight line. As seen
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Fig. 2. Test for the presence of the algebraic law (1) in the approach of the coverage θ (t) to the jamming limit θJ for different values of cell size, α = 0.3 (a),
0.5 (b), and 0.7 (c). The curves in each graph correspond to various values of the gap β between the cells, as indicated in the legend. Straight line sections
of the curves show where the law holds. The solid straight lines have the slope −3/2 and are guides for the eye. The dashed straight line has slope −5/2
indicating the late time RSA behavior of the system for the critical values of the parameter β: (a) βc = 0.85, (b) 0.75, (c) 0.65 (see Eq. (4)).

from Fig. 2, if the values of parameter β for cells of size α = 0.3, 0.5, 0.7 do not exceed, respectively, ≈ 0.84, 0.74 and
0.64, the late time kinetics of deposition process is similar to the one observed for disks with equal size, adsorbing on a clean
substrate. Additionally, thin straight lines with the slope −3/2 are shown in Fig. 2, indicating the late time RSA behavior for
clean continuous substrates [3,37–40]. However, the same is not valid for large values of the parameter β , regardless of the
cell size α (obviously, α < 1/

√
2 ≈ 0.707 in the case of SPCA). As it can be seen, at the late times of the deposition process

the plots of dθ/dt vs. t are not linear on a double logarithmic scale for sufficiently large values of the gap β . The deviation
from the power law (1) is particularly pronounced for low densities of landing cells, i.e. when β ≲ 1.

Theoretical arguments supporting Feder’s law (1) have been presented by Swendsen [37] and Pomeau [38]. Their analysis
is based on the exclusion of the area of radius d0 around each disk of radius d0/2 for selecting the center of the newly arriving
disk. After a certain time, characterizing the beginning of the asymptotic regime, the area that is available to the center of a
new disk consist of small disconnected areas that can be occupied by only one additional disk. When power law (1) holds, a
vanishing-small area that is available for the insertion of a new particle can be created with non-zero probability during the
deposition process. Arbitrarily small areas are reachedwith very small probability for a uniform flux of the arriving disks that
attempt deposition. In the case of ICCA-SPCA, since only one particle can fit per-cell, the existence of minimum finite area
is related with particles previously adsorbed on neighboring cells. As seen from Fig. 3(a), particles adsorbed on neighboring
cells can completely overlap the cell when the gap β and cell size α satisfy the relation [30]:

β + α/2 < 1. (3)

Hence, below the critical value of the parameter β ,

βc = 1 − α/2, (4)

there is no minimum finite area available to accommodate one particle. However, above the critical value βc particles
adsorbed on neighboring cells cannot prevent adsorption inside the cell. Then, there exist finite regionswhere the center of a
disk can land without overlapping a previously adsorbed particle (see Fig. 3(b)). For the critical value of the gap βc approach



D.Lj. Stojiljković, S.B. Vrhovac / Physica A 488 (2017) 16–29 21

Fig. 3. Illustration of how a particles adsorbed in a neighboring cells can prevent adsorption on the central cell: (a) the overlap of the shadowed regions of
the four neighboring particles completely overlap the central cell; (b) particles adsorbed on neighboring cells cannot prevent adsorption inside the cell.

to the jamming coverage θJ with time is still algebraic (1), with the exponent that approximately equals to −5/2 which does
not depend on the cell size α.

Our numerical results suggest that for βc < β < 1, the asymptotic approach of the coverage fraction θ (t) to its jamming
limit θJ is neither algebraic nor exponential. Semilogarithmic plots of the time derivative dθ/dt are shown in Fig. 4(a)–(c), for
three values of the cell size, α = 0.3 (a), 0.5 (b), 0.7 (c). For each α, results are displayed for various values of the parameter
β above the corresponding critical values (see Eq. (4)), βc = 0.85 (a), 0.75 (b), 0.65 (c). One clearly observes that for the fixed
value of cell size α, the time derivatives of θ (t) decays at the very late times of the deposition process more quickly for the
larger values of the gap β between the cells. Interestingly, in the limit of β → 1 approach of coverage θ (t) to the jamming
limit θJ is exponential of the form (2). The characteristic timescale σ is found to decrease with the cell size α according to
power-law, σ ∝ α−2.04±0.02. In other words, the relaxation time σ in Eq. (2) is inversely proportional to the cell area. It must
be stressed that the appearance of even a slight cell–cell excluded volume interaction violates the exponential asymptotic
approach (2).

3.2. Influence of the pattern on the jamming density θJ

Let us go back to the analysis of the nonmonotonic behavior of the jamming density θJ as a function of the gap size β
between the landing cells observed in Fig. 1. Dependences of the jamming coverage θJ on the separation distance α + β
between cell centers are presented in Fig. 5 for the three values of cell size, α = 0.3, 0.5 and 0.7. For the case of SPCA,
jamming coverage θJ can be exactly calculated for β larger than the critical value βc (Eq. (4)) [28]. Indeed, since each cell at
late enough time contains the center of a single deposited particle, the jamming coverage is simply

θ c
J =

r20π
(α + β)2

. (5)

The solid black line in Fig. 5 indicates values of the jamming coverages calculated from Eq. (5). The jammed-state value
θ cont
J = 0.5472 ± 0.0002 [47] of the coverage in the case of the irreversible disks deposition on continuum substrate is
marked on the same figure by horizontal dashed line. When gap between the cells β starts to increase, cell–cell excluded
volume interaction is still strong, but substrate area that is available for the insertion of a new particle is reduced, which
leads to decrease of the jamming coverage below the value for continuum θ cont

J . As a gap size β increases further, the
cell–cell excluded volume interaction weakens, but one expects a higher impact of patterning of the surface on the local
particle arrangements. An increase in the pattern-induced tendency for semiordering of the coverings leads to the formation
of jammed-state deposits of higher density. Then, for sufficiently large values of parameter β , jamming coverage exceeds
the jamming limit θ cont

J for continuum substrate and continues to grow with β . In this case, the theoretical value of the
highest possible coverage fraction is equal to π/4 ≈ 0.7854. This value corresponds to the local configurations of quadratic
symmetry when the disk centers are located at the vertices of a square with a side of α+β = 1 [48]. However, in the present
model this maximum of the jamming coverage θJ is not reached at α + β = 1. In Fig. 5 we observe the appearance of three
pronounced maxima of θJ on shifted positions, approximately at α + β = 1.04, 1.12 and 1.10, for α = 0.7, 0.5 and 0.3,
respectively. These maxima are not positioned at α + β = 1 due to the uncertainty in the position of the particle within
the cell. Actually, for β ≳ 1 − α excluded volume interaction with disks belonging to neighboring cells still substantially
lowers the average number of adsorbed disks per-cell. As the parameter β > 1 − α is increased further to the critical value
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Fig. 4. Plots of the time derivative of coverage dθ/dt for the three values of cell size, α = 0.3 (a), 0.5 (b), 0.7 (c). As indicated in the legend, the results are
reported for values of the gap β above the corresponding critical values (Eq. (4)), βc = 0.85 (a), 0.75 (b), 0.65 (c) . Additionally, the slanted straight line is
shown, indicating the exponential approach to the jamming limit (Eq. (2)), where σ = 8.80 (a), 3.15 (b), and 1.56 (c).

Fig. 5. Jamming coverage θJ as a function of separation distance α + β (in units of the disk diameter d0) for various values of the cell size α, as indicated in
the legend. The solid black line indicates values of the jamming coverages θ c

J calculated from Eq. (5).

βc (Eq. (4)), the average cell population rises, and the jamming coverage θJ increases until the appearance of large void space
between the cells, when it falls to the value given by Eq. (5).

We also study the influence of varying α on the jamming coverage θJ and on the late time kinetics of deposition process.
We carried out a series of simulations at fixed α + β = 1.0, 1.1, and varied cell size α. Numerical results regarding the
jamming coverages θJ for various α are shown in Fig. 6. For α + β = 1.1, the criteria (3) cannot be satisfied if α < 0.2.
Therefore, for α < 0.2 each cell host exactly one particle in the jamming state so that jamming coverage has the constant
value θJ = 0.6491 given by Eq. (5). As α > 0.2 increases, the cell–cell exclusion leads to a further reduction of the average
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Fig. 6. Jamming coverage θJ as a function of cell size α (in units of the disk diameter d0) for two values of separation distance α + β , as indicated in the
legend.

Fig. 7. Test for the presence of the algebraic law (1) in the approach of the coverage θ (t) to the jamming limit θJ for different values of parameters α and
β that satisfy the condition α + β = 1 (see legend). Straight line sections of the curves show where the law holds. The solid straight lines have the slope
−3/2 and are guides for the eye.

cell population, thereby making the jamming coverage lower. However, in the case of α + β = 1 the jamming coverage
θJ(α) increases first and reaches the wide maximum at α ≈ 0.5, after that the curve θJ(α) is lowered to the jamming value
for continuum substrate θ cont

J . For α < 1 −
√
2/2 ≈ 0.3, a cell can only be blocked by disks deposited at the nearest lateral

neighbor cells. In that case, for more cell–cell exclusion effects, it is needed a smaller cell size. But, when cells are larger
than 1 −

√
2/2, a cell can also be blocked by disks deposited at the nearest diagonal neighbor cells, which enhances the

cell–cell excluded volume interaction. These two opposite effects that exist when cells increase lead to the formation of the
maximum of θJ(α) around α ≈ 0.5. Furthermore, when α +β = 1 there is discontinuity of the function θJ(α) at α = 0, since
θJ(0) = π/4 ≈ 0.7854, but limα→0+θJ(α) < θ cont

J ≈ 0.5472.

3.3. Effects of varying α on the long-time adsorption kinetics

It is interesting that in the case when α + β = 1, the approach to the jamming coverage θJ is always algebraic, regardless
of the size α of the landing cells. As can be seen from the Fig. 7, we find that for α ⩾ 0.02 the coverage θ reaches a power-law
time-behavior (1) within the length of the simulation. If a cell size α decreases, the value β + α/2 increases and gets closer
to unity when the condition (3) ceases to be valid. For very small cells (α ≳ 0), the coverage growth is slowed down by
the creation of smaller fraction of the layer that is available for the insertion of a new particle. Consequently, when cell size
α decreases the onset of long-time power-law behavior (1) shifts to later times (Fig. 7). Generally, this effect occurs when
the geometry of the pattern is close to the condition (4). In this case, it was necessary to increase the size of the substrate
(typically 1024 × 1024 cells) in order to gain a convincing confirmation of power-law approach of the coverage fraction
θ (t) to the jamming limit θJ at the very late times of the deposition process.

When α + β = 1.1, although there is no change of jamming coverage θJ for α < 0.2 (Fig. 6), changes in the dynamics
of deposition are obvious (see Fig. 8). The criteria (3) is satisfied for α > 0.2 and then the approach to the jamming limit is
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Fig. 8. Plots of the time derivative of coverage dθ/dt for different values of parameters α and β that satisfy the condition α + β = 1.1 (see legends): (a)
results are shown on a double logarithmic scale. Solid straight lines have the slope −3/2 and are guides for the eye. Dashed straight line has slope −5/2
indicating the late time RSA behavior of the system for the critical value of parameter β , βc = 0.20 (see Eq. (4)); (b) results for α ⩽ 0.22 are shown on a
semilogarithmic scale. Slanted straight line is shown, indicating the exponential approach to the jamming limit (Eq. (2)), where σ = 78.8.

consistent with the power law behavior given by Eq. (1). As seen from Fig. 8(a), at the late times of the deposition process
the plots of dθ/dt vs. t are linear on a double logarithmic scale with the slope of −3/2 for all α > 0.2. However, the slope of
dθ/dt abruptly changes to ≈ − 5/2 when the cell size α reaches the critical value of α = 0.2 (see Eq. (4)). By reducing the
size of cells below the critical value α = 0.2, algebraic approach disappears. Under conditions when the cell size α decreases
towards noninteracting condition (α → 0.10+, β → 1.0−), asymptotic approach of the coverage fraction θ (t) to its jamming
limit θJ becomes closer to the exponential law (2) (see Fig. 8(b)).

3.4. Spatial distribution of particles inside the cell

In order to gain additional insight into the late time kinetics of deposition process onto a nonuniform substrate it is
useful to analyze in particular the spatial distribution of particles inside the cells. In Figs. 9, 10, and 11 we show the spatial
distribution of particles inside the cell at the jammed state, for α = 0.3, 0.5 and 0.7, respectively, and for the twelve different
values of parameter β ∈ [0.02 0.98]. To calculate these probability distributions, we divided cell space inmeshwith 40 × 40
bins and counted the number of particles falling into bins. The data are averaged over 100 independent runs for each of
the investigated substrate patterns with 256 × 256 landing cells. Spatial distribution of particles shown in Figs. 9–11 are
accompanied by corresponding radial distribution functions g(r) (or pair-correlation functions) defined as

g(r) =
S
N2

⟨
N∑
i=1

N∑
j=1

δ
[
r⃗ − (r⃗j − r⃗i)

]⟩
, (6)

where r⃗ is the position vector of a point over the adsorption plane (measured from the center of an adsorbed particle),
δ is the Dirac delta function, r⃗i and r⃗j are the position vectors of the particles i and j, respectively, and angle brackets
mean the ensemble average. Here, S is the surface area, and N is the total number of particles adsorbed over this area.
Radial distribution g(r) gives information about the long-range interparticle correlations and their organization [13,49].
This function can be interpreted as an averaged probability of finding a particle at the distance r from another particle, with
the center located at r = 0. For sake of convenience, the distance r is usually normalized by using the particle radius d0/2
as a scaling variable. In the absence of external forces, when the system can be considered as isotropic, the vector r⃗ can be
replaced with the radial coordinate r and the pair correlation function may be calculated more directly by converting Eq. (6)
to the form

g(r) =
S
N

Na(r)
2πr1r

, (7)

where Na is the averaged number of particles within the annulus of the radius r and the thickness 1r .
To discuss the effect of the parameter β on the spatial distribution of particles inside the cell at the jammed state, let us

first consider the fixed value α = 0.3, with varying β = 0.02 − 0.98, as shown in Fig. 9. In the case of ICCA regime, the
temporal evolution of the coverage θ (t) towards its jamming state value θJ is a two-stage process. At very early times of
the process, when the coverage fraction is small, the coverage grows rapidly in time. Particles adsorbed during this stage are
homogeneously distributed in the cells. At late enough time,when the coverage fraction is sufficient tomake the geometry of
the unoccupied substrate complex, the growth of the coverage fraction θ (t) requires the filling of holes that are large enough
for the insertion of an additional particle. Consequently, the structure of the spatial distribution of particles inside the cell
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(a) β = 0.02. (b) β = 0.06. (c) β = 0.22. (d) β = 0.20.

(e) β = 0.54. (f) β = 0.70. (g) β = 0.72. (h) β = 0.76.

(i) β = 0.80. (j) β = 0.86. (k) β = 0.92. (l) β = 0.98.

Fig. 9. Spatial distribution of particles inside the cell and radial distribution function g(r) at the jammed state, for the fixed value of cell size α = 0.3 and
different values of parameter β .

is determined by the late stage of the deposition process. For β ⩽ 0.02, particles are distributed uniformly throughout the
whole substrate and the shape of radial distribution g(r) is the same as in the case of RSA of disks on a continuous substrate.
Since the cell–cell excluded volume interaction is changing with β , the spatial distribution of particles inside the cell reveals
various preferential regions. From the probability distribution plots in Fig. 9, we can identify various regions such as corners
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(a) β = 0.02. (b) β = 0.06. (c) β = 0.18. (d) β = 0.28.

(e) β = 0.40. (f) β = 0.48. (g) β = 0.54. (h) β = 0.60.

(i) β = 0.66. (j) β = 0.72. (k) β = 0.82. (l) β = 0.96.

Fig. 10. Spatial distribution of particles inside the cell and radial distribution function g(r) at the jammed state, for the fixed value of cell size α = 0.5 and
different values of parameter β .

(f), sides (g), interior ring (h), central square (i), central peak (j), etc., that are predominantly populated with particles. For
β below the critical value βc (Eq. (4)) particles adsorb preferentially at the cell edges. Approaching the critical value of
βc = 0.85 (α = 0.30), the probability of deposition in the center of cell increases. Close to the critical value, we observe the
appearance of pronounced peak of probability distribution in the center of the cell. In addition, as parameter β is increased,
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(a) β = 0.06. (b) β = 0.12. (c) β = 0.18. (d) β = 0.24.

(e) β = 0.28. (f) β = 0.34. (g) β = 0.38. (h) β = 0.42.

(i) β = 0.52. (j) β = 0.60. (k) β = 0.74. (l) β = 0.90.

Fig. 11. Spatial distribution of particles inside the cell and radial distribution function g(r) at the jammed state, for the fixed value of cell size α = 0.7 and
different values of parameter β .

one observes that the radial distribution functions g(r) becomes more detailed with peaks becoming sharper. There is also
peak splitting, related to aweaker excluded volume interaction between particles deposited into different cells. For the large
β = 0.98, since adsorption on an empty cell is weakly constrained by particles previously adsorbed on a neighboring one,
adsorption can occur, with almost equal probability all over the cell (Fig. 9(l)). The radial distribution function now shows a
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series of well developed peaks which correspond to the various cell-defined distances in the square lattice matrix. Finally,
in the NICCA regime (β > 1), the adsorption inside cells is entirely uniform and the shape of the radial distribution function
g(r) is no longer changing (not shown here).

Numerical simulations for the other cell sizes, α = 0.5, 0.7, produce qualitatively similar results for the spatial
distribution of particles inside the cell leading to qualitatively same phenomenology (see Figs. 10 and 11). However,
increasing the value of α in the NICCA-SPCA regime increases the uncertainty in the position of the particle within the
cell, i.e., it leads to peak broadening of the radial distribution function g(r).

4. Concluding remarks

We have investigated numerically RSA of disk-shaped particles on nonuniform planar substrates, with focus on the
kinetics of deposition process in the interacting cell–cell adsorption (ICCA) regime. We have considered as a pattern the
equal-size cells with square shape, positioned in a square-lattice matrix. An efficient numerical algorithmwas implemented
to simulate the disk deposition in the case of single particle per-cell adsorption (SPCA).

It was demonstrated that the two geometrical parameters, the cell size α and the cell–cell separation β , have a striking
influence on the kinetic properties of a deposition process, as well as on the in-cell particle population. By studying the
temporal evolution of the first derivative of coverage θ (t) we have found that the asymptotic approach of the coverage
fraction θ (t) to its jamming limit θJ is algebraic if the parameters α and β satisfy the simple condition (3). If the relation (3) is
valid, particles adsorbed on neighboring cells can block adsorption inside the central cell, so that there is no minimum finite
area available for adsorption. A vanishing-small area can be created with non-zero probability and power law (1) holds in
the late stage of the deposition process.

If the geometry of the pattern does not satisfy the criteria (3), the approach of the coverage fraction θ (t) to the jamming
limit is not consistent with the power law behavior. The existence of the minimum finite area where the center of a disk can
land without overlapping a previously adsorbed particle is a sufficient condition for deviation from the algebraic asymptotic
approach (1). When the geometry of the pattern approaches towards noninteracting condition (β → 1.0−), the asymptotic
approach of the coverage fraction θ (t) to its jamming limit θJ becomes closer to the exponential law (2). It must be stressed
that the appearance of even a slight cell–cell excluded volume interaction violates the exponential asymptotic approach.
Consequently, changing the pattern in our numerical model allows to interpolate the deposition kinetics between the
continuum limit and the lattice-like behavior.

To examine the short scale structure in the jammed-state coverings, we evaluated the spatial distribution of particles
inside the cell and radial distribution function g(r). Interesting, non-trivial spatial distributions are observed, with local
order resulting not only from the constraint of the pattern, but also due to steric effects that make certain insertions of
particles impossible owing to an effective high local density. Close to the critical values of parameters α and β determined
with Eq. (4), we observe the appearance of the pronounced peak of probability distribution in the center of the cell. Hence,
by tuning the pattern parameters on the critical values (Eq. (4)), it is possible to obtain jammed-state covering with high
ordered structure.
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h i g h l i g h t s

• Reversible RSA of objects of various shapes on a 2D triangular lattice is studied.
• We study the response of the model to an abrupt change in desorption probability.
• Short-time response strongly depends on the symmetry properties of the shapes.
• Density correlations decay slower for more symmetrical shapes.
• We observe the weakening of correlation features in multicomponent systems.
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a b s t r a c t

The out-of-equilibrium dynamical processes during the reversible random sequential ad-
sorption (RSA) of objects of various shapes on a two-dimensional triangular lattice are stud-
ied numerically by means of Monte Carlo simulations. We focused on the influence of the
order of symmetry axis of the shape on the response of the reversible RSA model to sud-
den perturbations of the desorption probability Pd. We provide a detailed discussion of the
significance of collective events for governing the time coverage behavior of shapes with
different rotational symmetries. We calculate the two-time density–density correlation
function C(t, tw) for various waiting times tw and show that longer memory of the initial
state persists for themore symmetrical shapes. Ourmodel displays nonequilibriumdynam-
ical effects such as aging.We find that the correlation function C(t, tw) for all objects scales
as a function of single variable ln(tw)/ ln(t). We also study the short-term memory effects
in two-component mixtures of extended objects and give a detailed analysis of the contri-
bution to the densification kinetics coming from eachmixture component. We observe the
weakening of correlation features for the deposition processes inmulticomponent systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Theunderstanding of randomsequential adsorption (RSA)model has attracted large attention as a paradigmatic approach
towards irreversibility, as well as due to the strong departure of the process from equilibrium behavior. In the RSAmodel [1],
particles are added randomly and sequentially onto a substrate without overlapping each other. RSA model assumes that
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deposited particles can neither diffuse along, nor desorb from the surface. The kinetic properties of a deposition process are
described by the time evolution of the coverage θ(t), which is the fraction of the substrate area covered by the adsorbed
particles.Within amonolayer deposit, each adsorbedparticle affects the geometry of all later placements. Due to the blocking
of the substrate area, at large times the coverage approaches the jammed-state value θJ, where only gaps too small to fit new
particles are left in the monolayer.

In pursuit of understanding the various aspects of the adsorption phenomenon large number of studies have taken
place. A comprehensive survey on RSA and cooperative sequential adsorptions is given by Evans [2]. Other surveys include
Privman [3–5], Cadilhe et al. [4], Senger et al. [6], and Talbot et al. [7].

In many real physical situations it is necessary to consider the possibility of desorption of deposited particles [8–10].
Adsorption–desorption processes are important in the binding of ions to a Langmuir monolayer [11], and in many catalytic
reactions. Binding and unbinding of kinesinmotors tomicrotubules [12], ofmyosin to actin filaments, and of proteins to DNA
are commonly studied biological examples. Possibility of desorptionmakes the process reversible and the system ultimately
reaches an equilibrium state when the rate of desorption events balances the rate of adsorption events. The kinetics of the
reversible RSA is governed by the ratio of adsorption to desorption rate, K = k+/k−. For large values of K , there is a rapid
approach to density θ ≃ θJ, followed by a slow relaxation to a higher steady-state value θ∞ [13–16].

The reversible RSA model is frequently used by many authors to reproduce qualitatively the densification kinetics
and other features of weakly vibrated granular materials [9,17,10]. The phenomenon of granular compaction involves the
increase of the density of a granular medium subjected to shaking or tapping [18–23]. The relaxation dynamics is extremely
slow, taking many thousands of taps to approach the steady state, and it slows down for lower vibration intensities. The
final steady-state density is a decreasing function of the vibration intensity [23]. Dynamics of the reversible RSA model
depends on the excluded volume and geometrical frustration, just as in the case of granular compaction. This model can be
regarded as a simple picture of a horizontal layer of a granular material, perpendicular to the tapping force. As a result of
a tapping event, particles leave the layer at random and compaction proceeds when particles fall back into the layer under
the influence of gravity. The ratio of desorption to adsorption rate 1/K = k−/k+ within the model plays a role similar to the
vibration intensityΓ in real experiments [24] (Γ is defined as the ratio of the peak acceleration of the tap to the gravitational
acceleration g).

One of the striking features of granular materials are thememory effects observed bymeasuring the short-time response
to an instantaneous change in the tapping accelerationΓ [25]. For a sudden decrease inΓ it was observed that on short-time
scales the compaction rate increases, while for a sudden increase in Γ the system dilates for short times. This behavior is
transient and after several taps there is a crossover to the ‘‘normal’’ behavior, with the relaxation rate becoming the same
as in constant vibration intensity mode. Furthermore, Nicolas et al. [26] have also shown that periodic shear compaction
exhibits a nontrivial response to a sudden change in shear amplitude. The rapid variation of volume fraction induced by the
sudden change of shear angle is proportional and opposite to the angle change. The short-termmemory effects observed in
granular materials are reflected in the fact that the future evolution of the packing fraction θ after time tw depends not only
on the θ(tw), but also on the previous tapping history. It is important to note that the parking lot model (PLM, 1D off-lattice
reversible RSAmodel) [24,9,27,17] is a widely usedmodel which can reproduce qualitatively the short-termmemory effects
of a weakly vibrated granular material. In Ref. [10] we have presented the detailed studies of the short-termmemory effects
in the framework of a two-dimensional reversible RSA model on a square lattice.

An important issue in two-dimensional deposition is the influence of the shape of the adsorbed particle. It is well known
that the size, aspect ratio and symmetry properties of the object have a significant role in the processes of both irreversible
and reversible deposition. The numerical analyses for the irreversible deposition of various shapes and their mixtures on a
triangular lattice [28,29] establish that the approach to the jamming limit follows the exponential law with the rate depen-
dent mostly on the order of symmetry axis of the shape. In the reversible case of deposition on a triangular lattice [15,30],
we have found that the coverage kinetics is severely slowed down with the increase of the order of symmetry of the shape.

The main goal of the present study is to investigate the interplay between the response of the reversible RSA model
to sudden perturbations of the desorption probability Pd and the symmetry properties of deposited shapes. Numerical
simulations of adsorption–desorption processes are performed for various shapes on the triangular lattice, shown in Table 1.
These shapes are made of self-avoiding walks of the same length ℓ = 2, but they differ in their symmetry properties. The
response in the evolution of the density θ(t) to a change in the desorption probability Pd at a given time tw is accompanied
by transformation of the local configurations in the covering. Essentially, collective (two-particle) events are responsible
for the evolution of θ for θ > θJ. Size of the objects and their symmetry properties have a significant influence on these
collective events, thus affecting the kinetics of the deposition process [15,31,30]. Sincewe focus our interest on the influence
of symmetry of the object on the response of the system to sudden perturbation of the desorption probability Pd, it is
necessary to analyze the processes with the objects of the same size. In this paper we also study the response of two-
componentmixtures of extended objects (see, Table 1) to suddenperturbations of the desorption probability Pd.Wedid carry
out a detailed analysis of the contribution to the densification kinetics coming from each mixture component. Finally, we
study the nonequilibrium two-time density–density correlation function C(t, tw). We focus, in particular, on the influence
of symmetry properties of the shapes on the decay of C(t, tw) and aging effects. This work provides for the first time the link
between the short-term memory effects and intrinsic properties of the shapes.

Recently, we have analyzed the growth of the coverage θ(t) above the jamming limit to its steady-state value θ∞ within
the framework of the adsorption–desorption model of dimers in one dimension [32]. We reported a numerical evidence
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Table 1
Various shapes (x) of length ℓ(x)

= 2 on a triangular lattice. Here n(x)
s denotes the order of the symmetry axis

of the shape (x), s(x) is the object size, and θ
(x)
J is the jamming coverage. The numbers in parentheses are the

numerical values of the standard uncertainty of θ (x)
J referred to the last digits of the quoted value.

(x) Shape n(x)
s s(x) ℓ(x) θ

(x)
J

(A) 2 2 0.8362(4)
(B) 1 1.5 2 0.8345(5)
(C) 3 1 0.7970(4)

that the time needed for a system to reach the given coverage θ can be significantly reduced if Pd decreases both stepwise
and linearly (continuously) over a certain time domain. Based on the results in the present paper, one would expect that the
growth of the coverage in the case of the two-dimensional reversible RSA model can also be accelerated by decreasing the
desorption rate during the deposition process. However, our results indicate that the efficiency of this process depends on
the symmetry properties of the deposited objects. This must be taken into account when developing an optimal protocol
which significantly hastens the process for achieving high coverage densities.

The paper is organized as follows. Section 2 describes the details of the simulations. We give the simulation results and
discussions in Section 3. Finally, Section 4 contains some additional comments and final remarks.

2. Definition of the model and numerical simulation

The depositing shapes aremodeled by directed self-avoidingwalks on a triangular lattice. A self-avoiding shape of length
ℓ is a sequence of distinct vertices (ω0, . . . , ωl) such that each vertex is a nearest neighbor of its predecessor. Consequently, a
walk of length ℓ covers ℓ+1 lattice sites. On a triangular lattice objects with a symmetry axis of first, second, third, and sixth
order can be formed. Rotational symmetry of order ns, also called n-fold rotational symmetry, with respect to a particular
axis perpendicular to the triangular lattice, means that rotation by an angle of 2π/ns does not change the object. In Table 1
three different shapes that can be made by self-avoiding walks of length ℓ = 2 are shown. It should be noted that size s of
an object is taken as the greatest projection of the walk that makes the object on one of the six directions. Thus the size of
a dot is s = 0, the size of a one-step walk is s = 1, and for example the size of the second object (B) in Table 1 is s = 1.5 in
lattice spacing.

The Monte Carlo simulations are performed on a triangular lattice of size L2 = 120 × 120. At each Monte Carlo step
adsorption is attempted with probability Pa and desorption with probability Pd. In the simulations of deposition processes
with desorption, the kinetics is governed by the desorption to adsorption probability ratio Γ = Pd/Pa [33,34]. Since we are
interested in the ratio Γ , in order to save computer time, it is convenient to take the adsorption probability to be Pa = 1,
i.e., to try an adsorption at each Monte Carlo step.

We start with an initially empty triangular lattice. Adsorption and desorption processes perform simultaneously with
corresponding probabilities. For each of these processes, a lattice site is chosen at random. In the case of adsorption, we
attempt to place the object with the beginning at the selected site. If the selected site is unoccupied, one of the six possible
orientations is chosen at random and deposition of the object is tried in that direction. We fix the beginning of the walk
that makes the shape of length ℓ at the selected site and search whether all successive ℓ sites are unoccupied. If they are
empty, we occupy these ℓ + 1 sites and place the object. If, however, any of the ℓ sites are already occupied, the deposition
attempt is rejected and the configuration remains unchanged. This scheme is usually called conventional or standardmodel
of deposition. The other strategy to perform an RSA, where we check all possible directions from the selected site, is named
the end-on model [28]. On the other hand, if the attempted process is desorption and if the selected site is already occupied
by a previously adsorbed object, the object is removed with probability Pd from the layer.

Adsorption–desorption processes on discrete substrates display a surprisingly complex kinetics [9,35]. Here we consider
the case of rapid adsorption and slow desorption (Γ = Pd/Pa ≪ 1). Then there exist two time scales controlling the
evolution of the coverage θ(t). The first stage of the process is dominated by adsorption events and the kinetics displays an
RSA-like behavior. With the growth of the coverage the desorption process becomes more and more important. Increasing
the coverage over the jamming limit is possible only due to the collective rearrangement of the adsorbed particles in order
to open a hole large enough for the adsorption of an additional particle.We are interested in the approach to the equilibrium
coverage in this later, post-jamming time range.

Periodic boundary conditions are used in all directions. The time t is counted by the number of adsorption attempts and
scaled by the total number of lattice sites L2. The data are averaged over 103 independent runs for each shape and each
desorption probability. The finite-size effects, which are generally weak, can be neglected for object sizes <L/8 [36].

Furthermore, during the simulation of irreversible deposition we record the number of inaccessible sites in the lattice.
A site is inaccessible if it is occupied or it cannot be the beginning of the shape. The jamming limit θJ is reached when the
number of inaccessible sites is equal to the total number of lattice sites. Values of jamming coverages θ

(x)
J for three objects

(x) ∈ {(A), (B), (C)} of length ℓ = 2 are given in Table 1. Fig. 1 shows a typical snapshot configuration at coverage fraction
θ = 0.89 obtained in the case of Pd = 0.0045 for line-segments of length ℓ = 2 (object (A) from Table 1).
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Fig. 1. Snapshot of pattern formed during the reversible deposition of object (A) from Table 1 correspond to coverage fraction θ = 0.89, and Pd = 0.0045.
Nodes of the grid corresponding to the beginning of the walk that makes the shape are indicated by large open points. Empty nodes are marked with black
points. A lattice of size L2 = 60 × 60 is used.

3. Results and discussion

In order to analyze the response of the reversible RSAmodel to sudden perturbations of the desorption probability Pd, we
have carried out series ofMonte Carlo simulations for objects (A), (B), and (C), all of them starting from an empty lattice. The
system was evolved at a fixed desorption probability P (1)

d . At a certain time, tw , the value of the desorption probability P (1)
d

was instantaneously changed to another value P (2)
d . The variations of coverage θ(t) in the case of object (A), for three different

values of tw are reported in Fig. 2. It must be emphasized that the same kind of numerical experiments for objects (B) and
(C) produce qualitatively similar results for the time evolution of the coverage θ(t). First, in Fig. 2 we show the response of
the system to the desorption probability shift from P (1)

d = 0.0045 to P (2)
d = 0.0015 at the times tw = 139, 205, 307 needed

for a system to reach the coverages θw = 0.87, 0.88, 0.89, respectively, in the process of reversible RSA with P (1)
d = 0.0045.

As it can be seen, when P (1)
d > P (2)

d , the compaction rate of the perturbed system first increases on short-time scales. After
a transient, compaction slows down and the rate of compaction crosses over to the one observed at constant desorption
probability P (2)

d .
Fig. 2 also shows typical response of the system at short times after an abrupt change of the desorption probability

from P (1)
d = 0.0015 to P (2)

d = 0.0045 at the times tw = 304, 441, 639 needed for a system to reach the coverages
θw = 0.87, 0.88, 0.89, respectively, in the process of reversible RSA with P (1)

d = 0.0015. For P (1)
d < P (2)

d we find a short-
term response of the system opposite to the previous case. First, as the desorption probability is increased, one observes a
decompaction. Later on, the larger desorption probability P (2)

d begins to prevail and the compaction proceeds faster, at the
normal rate for constant P (2)

d . In addition, the comparison (not shown here) of the density relaxations θ(t) at various changes
in the desorption probability Pd indicates that the amplitude of the jump in the compaction rate is larger for larger jump of
the desorption probability ∆Pd = |P (2)

d − P (1)
d |. The probabilities of P (1)

d = 0.0015 and P (2)
d = 0.0045 are chosen to provide

a wide density range θ ∈ (0.86, 0.89) for all three objects where desorption probability can be abruptly changed. We have
verified that usage of different, but sufficiently small, values of desorption probabilities P (1)

d and P (2)
d gives quantitatively

similar results leading to qualitatively same phenomenology.
This shows that the system has some memory of its history at tw . Memory effect implies that the system can be found

in states, characterized by the same coverage fraction θ , that evolve differently under further reversible deposition with
the same desorption probability Pd [17]. This is illustrated in the inset of Fig. 2. The points M and N correspond to states
with equal coverage fraction θc = 0.8686, equal value of Pd = 0.0045, but different further evolution. Their responses to
the same desorption probability Pd are different: coveringM becomes looser whereas covering N pursues its compaction. In
other words, the density evolution θ(t) after the pointsM andN depends not only on the density θc , but also on the previous
tapping history. Thememory of the history up to the density θc is encoded in the arrangement of the objects in the covering.
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Fig. 2. Time evolution of the coverage θ(t) for object (A) when the desorption probability is changed from P (1)
d = 0.0045 to P (2)

d = 0.0015 (from
P (1)
d = 0.0015 to P (2)

d = 0.0045) at times tw = 139, 205, 307 (tw = 304, 441, 639) needed for the system to reach the coverages θw = 0.87, 0.88, 0.89,
respectively, in the process of reversible RSA with P (1)

d = 0.0045 (P (1)
d = 0.0015). Inset: Zoom up on the region around tw = 304 (θ(tw) = 0.87) when

the desorption probability switches from P (1)
d = 0.0015 to P (2)

d = 0.0045. The pointsM and N correspond to states with equal density θc = 0.8686, equal
value of P (2)

d = 0.0045, but different further evolution.

Interpretation of these results for all objects (A), (B), and (C) is quite straightforward using the results of Refs. [37,9,
34]. The compaction rate just before tw is determined by the desorption probability Pd(tw − 0) and by the fraction of the
substrate, Φ(tw − 0), that is available for the insertion of a new particle. The quantity Φ(tw − 0) (the insertion probability)
strongly depends on the state of the system, but it is not unambiguously determined by the coverage fraction θ(tw − 0) at
the same instant [9,10]. When Pd is abruptly lowered, the first effect is that the particles tend to decrease the fraction of
the substrate that is available for deposition of new particles, and the layer becomes more compact. Therefore the rate of
compaction first increases with respect to the unperturbed case. At larger times, however, the compaction is slowed down
by the creation of a denser substrate and smaller fraction of the layer that is available for the insertion of a new particle.

When the desorption probability Pd is suddenly increased at tw , the first effect is decompaction. On short-time scales,
the interplay between the insertion probability and desorption probability leads to the fast density changes. During this
transient stage the fraction of the substrate that is available for the insertion of a new particle is an increasing function
of time. After this transient interval, the adsorption events prevail, and the compaction proceeds faster. Growing of the
insertion probability, Φ(t), during the transient time, leads to the more efficient densification afterwards.

Here we focus our interest on the influence of the order of symmetry axis of the shape on the response of the reversible
RSA model to sudden perturbation of the desorption probability Pd. Consequently, we considered series of numerical
experiments where the short-term memory effects were analyzed for the three systems. In this set of experiments the
objects (A), (B), and (C) were deposited to the same density θw with desorption probability P (1)

d . After the density θw was
achieved, desorption probability Pd was switched from P (1)

d to P (2)
d (P (2)

d ≶ P (1)
d ). In Fig. 3 we show the time evolution of

the density θ(t) during the deposition of objects (A), (B), and (C), when the desorption probability Pd is changed from
P (1)
d = 0.0045 to P (2)

d = 0.0015. Here, the results for three different values of θw are reported, namely, 0.87, 0.88, and 0.89.
The time origin for each experiment has been taken at the timewhen the system reached the prescribed density θw . In Fig. 4
the same set of numerical experiments is carried out, with the only difference that in this case the desorption probability is
changed from P (1)

d = 0.0015 to P (2)
d = 0.0045. These simulations show that the short-time response to an instantaneous

change in desorption probability Pd strongly depends on the symmetry properties of the shapes. From Figs. 3 and 4, it follows
that the change in the compaction rate on short-time scales is less pronounced as order of symmetry axis of the shape ns
increases.

Qualitative interpretation of these results can be attained by exploiting themechanism of collective events for governing
the late-time changes in the coverage fraction (θ(t) > θJ). In the following, we restrict ourselves to the case of weak
desorption (large values of K = Pa/Pd), when the system of adsorbed particles evolves continuously toward an equilibrium
disordered state.When a value of θJ is reached, the rare desorption events are generally followed by immediate readsorption.
The total number of particles is not changed by these single particle events. Essentially, collective events are responsible for
the evolution of coverage fraction θ above the jamming limit θJ. The rearrangement of state corresponding to θ > θJ, to its
steady-state value θ∞, is dominated by the following two-particle processes:

(a) in one process (‘‘2 → 1’’), responsible for decreasing the number of deposited objects by 1, two adjacent objects leave
and a single one comes in their stead;
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Fig. 3. Time evolution of the coverage θ(t) for objects (A), (B), and (C) when the desorption probability is changed from P (1)
d = 0.0045 to P (2)

d = 0.0015
at the times tw needed for the system to reach the coverages θw = 0.87, 0.88, 0.89 in the process of reversible RSA with P (1)

d = 0.0045. The time origin
for each experiment has been taken at the time when the system reached the prescribed density θw .

Fig. 4. Time evolution of the coverage θ(t) for objects (A), (B), and (C) when the desorption probability is changed from P (1)
d = 0.0015 to P (2)

d = 0.0045
at the times tw needed for the system to reach the coverages θw = 0.87, 0.88, 0.89 in the process of reversible RSA with P (1)

d = 0.0015. The time origin
for each experiment has been taken at the time when the system reached the prescribed density θw .

(b) the opposite process (‘‘1 → 2’’) results in adding an extra object to the lattice: an object exits and leaves a space big
enough for two objects.

The rate of the ‘‘2 → 1’’ process has three contributions. First, an object must leave the lattice. Then, an adjacent objectmust
leave before the hole left by the first object fills. Finally, the big hole must be blocked by a badly sited object. In the opposite,
‘‘1 → 2’’ process, the void left by the object must be large enough for two objects. Note that the first incoming object must
park with a sufficient precision in order to leave enough space for the second object.

It is obvious that the process ‘‘1 → 2’’ has an overall rate proportional to Pd (Pd < 1). Since the process ‘‘2 → 1’’ includes
two consecutive desorption events, it is plausible that its overall rate is proportional to (Pd)2 < Pd < 1. That is the main
reasonwhy, for coverages that are not close to the steady-state value, the collective event ‘‘1 → 2’’ ismore frequent than the
opposite event ‘‘2 → 1’’. This regime persists until the coverage is very close to the equilibrium value. Since the coverage
fraction θ(t) increases and the available surface function Φ decreases, the overall rate at which the density increases is
progressively reduced. The efficiency of desorption relative to adsorption increases, and the process reaches a steady state
in which the rate of the ‘‘2 → 1’’ process is balanced by the ‘‘1 → 2’’ process.

Note that in Ref. Kolan et al. [24], the authors calculated the transition rates for the collective processes ‘‘1 � 2’’ in the
case of a 1D RSA model and found that these rates account for the additional slow time scales. Ghaskadvi and Dennin [11]
directly monitored the transition rates for the two-particle processes ‘‘1 � 2’’ as part of the simulation. They have directly
confirmed the importance of multiparticle transitions ‘‘1 � 2’’ for governing the late time behavior of the system.
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Fig. 5. Two-time density–density correlation function C(t, tw) for objects (a) (A), (b) (B), and (c) (C), as a function of t−tw . Thewaiting time tw corresponds
to the time needed for the system to reach the coverage θw = 0.88. The solid lines represent the temporal behavior of C(t, tw) obtained for the fixed
desorption probabilities Pd = 0.0015, 0.0045, as indicated in the legend. The dashed lines represent the temporal dependence of C(t, tw) obtained from
the runs during which an abrupt change of desorption probability P (1)

d = 0.0045 → P (2)
d = 0.0015 (P (1)

d = 0.0015 → P (2)
d = 0.0045) occurs at instant tw ,

as indicated in the legend.

Now we try to explain how the order of symmetry axis of the shape changes the dynamics of the collective processes.
Symmetry properties of the shapes have a significant influence on the filling of small isolated targets on the lattice. Indeed,
there is only a restricted number of possible orientations in which an object can reach a previously opened location,
provided the location is small enough. A shape with a symmetry axis of higher order has a greater number of possible
orientations for deposition into small isolated locations on the lattice, and therefore enhanced probability of single-particle
readsorption. This extends the mean waiting time between consecutive two-particle events ‘‘1 → 2’’, responsible for the
density growth above θJ, and causes a slowing down of the density growth. On the contrary, for the asymmetrical shapes
(angled objects) there is a greater probability for blocking the neighboring sites. The noticeable drop in the probability of
single-particle readsorption for the asymmetrical shapes is thus a clear consequence of the enhanced frustration of the
spatial adsorption. Therefore, desorption process effectively opens holes that are large enough for insertion of two or more
particles. This reduces the mean waiting time between consecutive multiparticle events which leads to more rapid growth
of the density. When Pd is abruptly lowered, such a different object view is the cause of the enhanced density growth in
the case of asymmetrical shapes as compared to those in the case of more round (symmetric) shapes. When the desorption
probability Pd is suddenly increased, decompaction rate of the perturbed system on short-time scales is larger for shapes
with a symmetry axis of lower order (Fig. 4). This is a consequence of the fact that unlike for the more symmetrical
objects, much less orientations are allowed for irregular and asymmetric shapes falling in the isolated selective target
spaces.

Below we try to further quantitatively characterize the out-of equilibrium dynamics in our system. Specifically, we
have evaluated the two-time density–density correlation function, C(t, tw), and qualitatively analyzed its dependence
on symmetry properties of the shapes. The normalized two-time density–density correlation function is defined as
follows,

C(t, tw) =
⟨θ(t)θ(tw)⟩ − ⟨θ(t)⟩ ⟨θ(tw)⟩

θ2(tw)

− ⟨θ(tw)⟩2

, t ≥ tw, (1)
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Fig. 6. Two-time density–density correlation function C(t, tw) for objects (A), (B), and (C), as a function of t − tw . The waiting times tw for each object
correspond to the time needed for the system to reach the coverages θw = 0.87, 0.88, 0.89 in the process of reversible RSA with Pd = 0.0015. The aging
behavior is evident. Inset: The correlation C(t, t0) as a function of the scaling variable α = ln[(t0 + ts)/τ ]/ ln[(t + ts)/τ ]. Fitting parameters are ts = 1760,
and τ(A) = 81, τ (B) = 210, τ (C) = 43.

Fig. 7. Shown here is the time dependence of the coverage fraction θ (B)+(C) for the mixture (B) + (C) and its components for two different values of
desorption probability, Pd = 0.0015, 0.0045. Black (red) and grey (light blue) lines represent the results obtained for Pd = 0.0045 and Pd = 0.0015,
respectively. The solid lines represent the temporal behavior of the coverage fraction θ (B)+(C)(t) (left-hand axis). The dashed and dotted lines are plotted
against the right-hand axis and give the coverage fraction versus time t of the component shapes (C), θ (C)(t) (dashed), and (B), θ (B)(t) (dotted). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where the angular brackets ⟨· · ·⟩ denote an average over independent runs. In order to obtain reasonable statistics, it is
necessary to average over many independent runs (typically 104). Out of equilibrium, C(t, tw) is a function of both times, t
and tw .

In Fig. 5 we show the behavior of the correlation function C(t, tw) for objects (A), (B), and (C). The waiting time tw
corresponds to the time needed for a system to reach the coverage θw = 0.88. Numerical simulations for other densities,
θw = 0.87, 0.89, produce qualitatively similar results for the time evolution of the correlation function C(t, tw). In each
plot of Fig. 5, the temporal dependence of C(t, tw) is displayed for the fixed desorption probabilities, Pd = 0.0015, 0.0045.
For comparison, we also show the temporal dependence of C(t, tw) calculated from 104 independent runs during which
an abrupt change of desorption probability P (1)

d = 0.0045 → P (2)
d = 0.0015 (P (1)

d = 0.0015 → P (2)
d = 0.0045) occurs

at instant tw . Correlation function obtained from the numerical simulation in which there is an instantaneous change of
desorption probability P (1)

d → P (2)
d , interpolates between two correlation functions calculated for constant desorption

probabilities P (1)
d and P (2)

d . At short times, this correlation function behaves as C(t, tw) obtained in the case when the
desorption probability has the constant value P (1)

d = 0.0045 (P (1)
d = 0.0015). However, its long time behavior is consistent

with the decay of C(t, tw) obtained in the casewhen the desorption probability has the constant value P (2)
d = 0.0015 (P (2)

d =

0.0045). By comparing the three panels in Fig. 5, it is obvious that global properties of the correlation function C(t, tw) of
the density fluctuations depend on the order of symmetry axis of the shape ns: as ns grows, the correlation decays slower. In
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Fig. 8. Snapshot of pattern formed during the reversible deposition ofmixture (B)+(C) ((B)-red, (C)-blue) fromTable 1 correspond to (a) coverage fraction
θ (B)+(C)

= 0.88, and (b) steady-state coverage θ
(B)+(C)
∞ = 0.9066. Nodes of the grid corresponding to the beginning of the walk that makes the shapes are

indicated by large open points. Empty nodes are marked with black points. A lattice of size L2 = 60 × 60 and Pd = 0.0045 are used. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

other words, longer memory of the initial state persists for the more symmetrical shapes. Indeed, the increase of the order
of symmetry of the shape enhances the rate of single particle readsorption. This extends the time needed for a system to
forget the initial configuration. However, the correlation curves do not differ qualitatively and they have similar shapes for
all objects.

It is well known that the aging properties of the system are characterized by specific scaling properties of C(t, tw). For
example, in the Tetris and Ising frustrated lattice gas models, it was found that the relaxation of C(t, tw) is given by the
form [38]:

C(t, tw) = (1 − c∞)
ln[(tw + ts)/τ ]

ln[(t + ts)/τ ]
+ c∞, (2)

where τ , ts and c∞ are fitting parameters. The above behavior is found in our model. In Fig. 6 we show the behavior of
the correlation function C(t, tw) for objects (A), (B), and (C), when Pd = 0.0015. The waiting times tw correspond to the
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Fig. 9. Time evolution of coverage fraction θ (B)+(C) for the mixture (B) + (C) when the desorption probability is changed from P (1)
d = 0.0045 to

P (2)
d = 0.0015 (from P (1)

d = 0.0015 to P (2)
d = 0.0045) at the time tw = 126 (tw = 182) needed for the system to reach the coverage θ (B)+(C)

w = 0.88, in the
process of reversible RSA with P (1)

d = 0.0045 (P (1)
d = 0.0015). The time origin for each experiment has been taken at the time when the system reached

the prescribed density θw .

time needed for a system to reach the coverages θw = 0.87, 0.88, 0.89. For all the shapes, the typical aging behavior
is observed: the larger tw , the longer memory of the initial state persists. The inset of Fig. 6 illustrates that when the
two-time correlation function C(t, tw) is plotted as a function of ln[(tw + ts)/τ ]/ ln[(t + ts)/τ ] the data for all three
objects collapse onto single curve. This figure clearly demonstrates the existence of the single universal master function.
It is interesting that the parameter ts is equal for all objects, ts = 1760. However, parameter τ depends on the shape:
τ(A) = 81, τ (B) = 210, τ (C) = 43. The shapes of higher order of symmetry ns have lower values of scaling parameter τ .

3.1. Memory effects in mixtures

In the following, we shall investigate the role that the mixture composition and the symmetry properties of component
shapes play in the deposition process. We shall mainly concentrate on the response of the reversible RSA model to sudden
perturbations of the desorption probability Pd in the case of binary mixtures, composed of the shapes of different rotational
symmetries but of the same number of segments.

Consider the two-component mixture of objects (B) and (C) with the symmetry axis of n(B)
s = 1 and n(C)

s = 3 order,
respectively. The reversible RSA process for a binary mixture is as follows. From a large reservoir of shapes, that contains
the shapes (B) and (C) with equal fractional concentrations, we choose one shape at random. We randomly select a lattice
site and try to deposit the chosen shape in the same manner as in the case of the reversible RSA of pure depositing objects.
Each adsorption attempt is followed by a desorption one with probability Pd. The quantity of interest is the fraction of total
lattice sites, θ (B)+(C)(t), covered by the deposited objects (B) and (C) at time t .

Fig. 7 shows the time dependence of the partial coverages θ (B)(t) and θ (C)(t) resulting from the reversible RSA of the
binary mixture of (B) and (C) shapes, for two values of desorption probability, Pd = 0.0045, 0.0015. For shape (C) of higher
order of symmetry n(C)

s = 3, the partial coverage θ (C)(t) is a monotonously increasing function of time and has the same
general features as the coverage θ (B)+(C)(t) for the mixture (B) + (C). On the other hand, for shape (B) of lower order of
symmetry n(B)

s = 1, the partial coverage θ (B)(t) is not monotonic in time. When the coverage θ (B)+(C)(t) approaches to
the coverage fraction that is equal to the jamming limit θ

(B)+(C)
J = 0.8624, the partial coverage θ (B)(t) reaches a broad

maximum. This is followed by a slow relaxation of θ (B)(t) to the smaller steady-state value θ
(B)
∞ . At late enough time, when

the coverage fraction is sufficient to make the geometry of the unoccupied sites complex, there is a strong dependence of
the adsorption rate on the adsorbed shape [28,15]. Then, both rotational symmetry of the shapes and desorption events
manage the single-particle readsorptions on the lattice and, eventually, allow replacements of the less symmetric particles
by the more symmetric ones. This is reflected in the gradual decrease of the coverage fraction with time for the shape with
the symmetry axis of lower order. Our results confirm that, for sufficiently high coverages of a mixture, the large times
coverage fraction of more symmetric shapes exceeds the coverage fraction of less symmetric ones [31]. The steady-state
value of the coverage fraction of the mixture components is always larger for the shapes with the symmetry axis of higher
order ns [31]. In Fig. 8 we compare the geometric status of the representative snapshots of patterns formed during the
reversible deposition of mixture (B) + (C). The snapshots are taken at the times tw needed for the system to reach (a) the
coverage θ (B)+(C)(tw) = 0.88, and (b) the steady-state coverage θ

(B)+(C)
∞ = 0.9066 in the process of reversible deposition

with Pd = 0.0045. In Fig. 8(a) the partial coverage of triangles (C) (θ (C)(tw) = 0.4375) is slightly smaller than that of angled
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Fig. 10. Shown here is the response of the mixture (B) + (C) to the desorption probability shift P (1)
d → P (2)

d . Black (red) lines represent the results
obtained for the abrupt change P (1)

d = 0.0045 → P (2)
d = 0.0015 at the time tw needed for the system to reach the coverage θ (B)+(C)

w = 0.88 in the process
of reversible RSA with P (1)

d = 0.0045. Grey (light blue) lines represent the results obtained for the abrupt change P (1)
d = 0.0015 → P (2)

d = 0.0045 at the
time tw needed for the system to reach the coverage θ (B)+(C)

w = 0.88 in the process of reversible RSA with P (1)
d = 0.0015. The solid lines represent the

temporal behavior of the coverage fraction θ (B)+(C)(t) (left-hand axis). The dashed and dotted lines are plotted against the right-hand axis and give the
coverage fraction versus time t of the component shapes (C), θ (C)(t) (dashed), and (B), θ (B)(t) (dotted). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Two-time density–density correlation function C(t, tw) for the mixture (B) + (C), as a function of t − tw . The waiting time tw corresponds to
the time needed for the system to reach the coverage θ (B)+(C)

w = 0.88. The solid lines represent the temporal behavior of C(t, tw) obtained for the fixed
desorption probabilities Pd = 0.0015 and 0.0045, as indicated in the legend. The dashed lines represent the temporal dependence of C(t, tw) obtained
from the runs during which an abrupt change of desorption probability P (1)

d = 0.0045 → P (2)
d = 0.0015 (P (1)

d = 0.0015 → P (2)
d = 0.0045) occurs at

instant tw , as indicated in the legend.

objects (B) (θ (B)(tw) = 0.4433). However, at the steady-state density θ
(B)+(C)
∞ = 0.9066 (Fig. 8(b)) the partial coverage

fraction is larger for the shape with symmetry axis of higher order, i.e. θ (C)
∞ = 0.5266 > θ

(B)
∞ = 0.3800.

Fig. 9 shows typical short-term memory effects after an abrupt change of the desorption probability Pd for the mixture
(B) + (C) and for pure component shapes, (B) and (C). Desorption probability Pd is switched from P (1)

d = 0.0045 to
P (2)
d = 0.0015 and vice-versa, at the time tw needed for a mixture to reach the coverage θw = 0.88. Again, we observe

that after several adsorption/desorption events the ‘‘anomalous’’ response ceases and there is a crossover to the ‘‘normal’’
behavior, with the relaxation rate becoming the same as in the constant forcing mode. However, it is interesting to note
that during this transient stage, the temporal evolution of the total coverage fraction θ (B)+(C)(t) is very similar to the one
observed for the shapewith the symmetry axis of lower order. Hence, the dynamics of the short-time response of themixture
(B) + (C) to sudden perturbation of the desorption probability Pd is usually determined by the shape (B) of lower order of
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Fig. 12. Two-time density–density correlation function C(t, tw) for objects (B), (C), and mixture (B) + (C), as a function of t − tw . The waiting time tw
corresponds to the time needed for the system to reach the coverage θw = 0.88when the desorption probability has the constant values (a) P (1)

d = 0.0045,
and (b) P (1)

d = 0.0015.

symmetry, n(B)
s = 1. Fig. 10 puts into evidence the temporal behavior of the partial coverage fraction for component shapes

(B) and (C) during the transient time. As in the case of pure lattice shapes, we observe that the change in the compaction
rate on short-time scales is less pronounced for the component shape of higher symmetry order.

In Fig. 11 we show the temporal dependence of C(t, tw) (see, Eq. (1)) for the mixture (B)+ (C), when the waiting time tw
corresponds to the time needed for a system to reach the coverage θ (B)+(C)

w = 0.88. Correlation function C(t, tw) is displayed
both for the fixed desorption probabilities, Pd = 0.0015, 0.0045, and for the cases with abrupt changes of desorption
probability P (1)

d = 0.0045 → P (2)
d = 0.0015, and P (1)

d = 0.0015 → P (2)
d = 0.0045 at instant tw . As for the pure lattice

shapes, correlation functions calculated for the mixture (B) + (C) in the case of perturbed systems (∆Pd = P (1)
d − P (2)

d ≶ 0)
interpolates between the two correlation functions obtained for the systems with constant desorption probabilities P (1)

d ,
and P (2)

d .
It is instructive to compare the temporal behavior of the correlation function C(t, tw) for the mixture with results for

C(t, tw) in the case of reversible deposition of pure component shapes. In Fig. 12 we show the time evolution of C(t, tw)
during the deposition of objects (B), (C), and themixture (B)+ (C), for the waiting time tw needed for a system to reach the
coverage θw = 0.88 when the desorption probability has the constant values P (1)

d = 0.0045 (Fig. 12(a)) and P (1)
d = 0.0015

(Fig. 12(b)). We can clearly see that for short times, C(t, tw) for themixture (B)+(C) decays in a similar way as for shape (B)
with the symmetry axis of lower order, n(B)

s = 1. This changes slightly at intermediate times, when the correlation function
C(t, tw) for the mixture starts to decay faster than the density correlations of component shapes. Hence, we observe the
weakening of correlation features in multicomponent systems.
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4. Conclusions

Along this paper, we have studied the nonequilibrium response of reversible RSA model to an instantaneous change in
the value of desorption probability Pd. We have performed extensive simulations of reversible deposition using objects of
different rotational symmetries on a triangular lattice. The shapes aremade by self-avoiding lattice steps. First, it was shown
that the change in the compaction rate has opposite sign than that of the modification of the desorption probability Pd, in
contrast with the long-time behavior, where the relaxation is faster for larger Pd. These results are in a qualitative agreement
with the observations in experiments on granular compaction [25]. Further, our numerical simulations have shown that
the short-time response to an instantaneous change in the desorption probability Pd strongly depends on the symmetry
properties of the shapes.We have found that the dynamical behavior is severely slowed downwith the increase of the order
of symmetry of the shape. When the desorption probability Pd is suddenly decreased/increased, compaction/decompaction
rate of the perturbed system on short-time scales is larger for shapes with symmetry axis of lower order. We have also
pointed out the importance of collective events for governing the short-time coverage behavior of shapes with different
rotational symmetry.

We have also considered the nonequilibrium two-time density–density correlation function C(t, tw). We have observed
that decay of the correlation function C(t, tw) depends on the order of symmetry axis of the shape ns. It was confirmed
that the density correlation decays slower for more symmetrical shapes. Eq. (2) states that, for the long enough times, the
correlation C(t, tw) is a function of the ratio ln(tw)/ ln(t). Such scaling behavior is in agreement with the Ising frustrated
lattice gas model and the Tetris model [38], but in contrast with the parking lot model [27], for which a t/tw behavior has
been observed.

Special attention has been paid to the mixtures containing objects of various shapes, but made of the same number of
segments. It was found that the dynamics of the short-time response of themixture to sudden perturbation of the desorption
probability Pd is determined by the shape of lower order of symmetry. In addition, our results confirm the weakening of
correlation features for the deposition processes in multicomponent systems.
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Abstract. The random sequential adsorption (RSA) approach is used to analyze
adsorption of spherical particles of a fixed radius on nonuniform flat surfaces
covered by rectangular cells. The configuration of the cells (heterogeneities) was
produced by performing RSA simulations to a prescribed coverage fraction θ

(cell)
0 .

Adsorption was assumed to occur if the particle (projected) center lies within a
rectangular cell area, i.e. if sphere touches the cells. The jammed-state properties
of the model were studied for different values of cell size α (comparable with the
adsorbing particle size) and density θ

(cell)
0 . Numerical simulations were carried out

to investigate adsorption kinetics, jamming coverage, and structure of coverings.
Structural properties of the jammed-state coverings were analyzed in terms of the
radial distribution function g(r) and distribution of the Delaunay ‘free’ volumes
P (v). It was demonstrated that adsorption kinetics and the jamming coverage
decreased significantly, at a fixed density θ

(cell)
0 , when the cell size α increased.

The predictions following from our calculation suggest that the porosity (pore
volumes) of deposited monolayer can be controlled by the size and shape of
landing cells, and by anisotropy of the cell deposition procedure.
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1. Introduction

Recent developments in new and emerging technologies have generated increased demand
for nano and micro-sized particles with carefully tailored properties for use in applications
such as photonics, micro-electronics, plasmonics, biosensors, bio-medical devices, etc. In
many applications, such nanoparticles are often integrated onto surfaces in the form of
deposits in order to achieve improved performance and/or new functionalities of the final
product. Thus, in addition to specific requirements for particles of definite shape, size,
internal structure, surface properties or chemical composition, it is also important to be
able to manipulate collective arrangements of such particles with firm control over the
morphology and structure of their surface layers. To achieve this goal, the supporting
surfaces are frequently prepatterned to form the templates favoring particle attachments
at specific locations [1,2], or dimples, or along specified shapes, regular or otherwise [3,4].
With the use of photolithographic techniques, high-power lasers [1], chemical treatments,
etc, such surface modifications are routinely realized on the microscale, but the trend is
towards the nanosize patterning [1–4].

In contrast with homogeneous surfaces, the prepatterned heterogeneous substrates are
designed with preferential attachment sites, or regions [4]. Thus, it is of theoretical and
experimental interest to understand and analyze how specific surface modifications affect
the morphology of deposited layers, late-stage kinetics of attachment, etc. Our analysis,
described below, focuses on structural properties of particle deposits and is applicable
to the presence of randomness in surface patterning on the scales comparable to particle
size.
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Specifically, in the present work, we report a study of the irreversible deposition of
spherical particles on flat nonuniform substrates covered by rectangular cells onto which
the particles can adhere. The adsorption sites (landing cells) have finite size, comparable
with the adsorbing particle size. We consider the process of the irreversible random
sequential adsorption (RSA) of fixed size disks (projection of spherical particles). RSA is
a process in which the objects of specified shape are randomly and sequentially deposited
onto a substrate [5–10]. The particle-particle interaction is incorporated by rejection
of deposition overlap (the hard sphere model), while the particle-substrate interaction
is modeled by the irreversibility of deposition. Adsorption attempt of a particle at a
randomly chosen cell is abandoned if there is an overlap with a previously adsorbed one,
at the same or at a neighboring cell. Since the dominant effect in RSA is the blocking
of the available surface area, after sufficiently long time a jammed state is reached when
there is no more possibility for a deposition event on any landing cell. In this work we
focus on the jammed-state properties.

There is a well-developed literature on irreversible adsorption on heterogeneous
surfaces where particles are represented as hard spheres that bind to adsorption sites
[10–15]. Our present model represents a generalized version of deposition on a random
site surface (RSS), where the sites are represented by randomly distributed points [11,13].
Adamczyk et al [14] has extended the RSS model to the situation where the size of the
landing sites, in the shape of circular disks, is finite and comparable with the size of
adsorbing spheres. The available surface function, adsorption kinetics, jamming coverage,
and the structure of the particle monolayer were determined as a function of the site
density and the particle/site size ratio.

The motivation of our present work comes from Margues et al [16] and Araújo et
al [17], who investigated the adsorption of disk-shaped particles on a patterned substrate.
The pattern consisted of equal square cells centered at the vertices of a square lattice. They
studied the effect of the presence of a regular substrate pattern and particle polidispersity
on the deposit morphology and density, as well as on the in-cell particle population. A
specific distribution function was used to describe the degree to which the cell pattern
affects the overall structure of the adsorbed layer for various values of cell size and cell–cell
separation parameters. It was found that the structural organization of the deposit could
be latticelike, locally homogeneous, and locally oriented.

The present work is focused on the effect of the presence of randomness in substrate
pattern on the structural properties of the disordered jammed state. Our aim is to quantify
structural changes of the jamming covering associated with different cell size and density.
Analysis at the ‘microscopic’ scale is based on the Voronöı tessellation [18]. Voronöı tessel-
lation divides a two-dimensional region occupied by disks into space filling, nonoverlapping
convex polygons. Further, the Delaunay triangulation is used to quantify the volume dis-
tribution of pores P (v) for disk monolayers deposited on a heterogeneous substrate. This
quantity has been widely used to characterize the structure of disordered granular pack-
ings and to quantify the structural changes during compaction process [19–23]. We choose
as our additional tool of exploration the shape of radial correlation function g(r) [24].
This is because this function provides a simple yet powerful encoding of the distribution of
interparticle gaps. We also study the effect of the presence of a regular substrate pattern
on the temporal evolution of the coverage fraction θ(t) and the pore distribution P (v).
The pattern consists of an array of cells centered on the vertices of a square lattice [16,17].

doi:10.1088/1742-5468/2015/06/P06032 3

http://dx.doi.org/10.1088/1742-5468/2015/06/P06032


J. S
tat. M

ech. (2015) P
06032

Structural properties of particle deposits at heterogeneous surfaces

The following section 2 describes the details of our numerical simulations. We present
simulation results and discussions in section 3. Finally, section 4 contains some additional
comments and concluding remarks.

2. Model and numerical simulation

We study irreversible monolayer deposition of identical disks (sphere projections) with
hard-core exclusion on a prepared flat nonuniform substrate. The substrate heterogeneities
are represented by non-overlapping rectangular cells that are randomly placed and fixed
on the substrate surface. The basic assumption of our model is that a particle can only
be adsorbed if it is in contact with one of the cells, i.e. if the center of its disk-shaped
projection lies within one of the rectangles. The substrates can be prepared in a number of
ways by arranging the rectangles to form different patterns, e.g. by placing the midpoint
of rectangles at the vertices of a square or triangular lattice (regular pattern), or by
performing random deposition (random pattern), the procedure adopted in our work. We
consider particles of fixed radius, comparable with the typical geometrical cell length.
Moreover, we assume that the size of the particles is much larger than the length scale
between binding sites, so that adsorption over the length scales of cell linear dimensions
can be regarded as an off-lattice process. We impose the condition that deposited particles
can neither diffuse along, nor desorb from the substrate on the time scales of the dense
coverage formation. These assumptions are typical of the RSA model.

The simplest RSA model is defined by the following three rules: (i) objects are
placed one after another at a random position on the substrate; (ii) adsorbed objects
do not overlap; and (iii) adsorbed objects are permanently fixed to their spatial positions.
The kinetic properties of a deposition process are described by the time evolution of
the coverage θ(t), which is the fraction of the substrate area covered by the adsorbed
particles. Within a monolayer deposit, each adsorbed particle affects the geometry of all
later placements. Due to the blocking of the substrate area by the previously adsorbed
particles, at large times the coverage approaches the jammed-state value θJ, where only
gaps too small to accommodate new particles (provided their centers fall within landing
cells) are left in the monolayer.

The entire simulation procedure consisted of two main stages:

1. The simulation area was covered with identical rectangles (or squares) to a prescribed
coverage fraction θ

(cell)
0 < θ

(cell)
J , where θ

(cell)
J is the jamming coverage for landing cells.

During this stage the usual RSA simulation algorithm was used. In this way we are
able to prepare the randomly patterned heterogeneous substrate with a statistically
reproducible density θ

(cell)
0 .

2. Then, for each initially prepared configuration, we switch the cell deposition events off
and initiate a random deposition of disks, with diameter d0, by choosing at random
their position within the simulation area. The overlapping test between disks was
carried out by considering the distances between the disk centers. A disk deposition
attempt fails if disk’s center falls outside the deposited landing cells, or if the arriving
disk overlaps at least one of previously adsorbed ones.
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The Monte-Carlo simulations are performed on a planar continuous substrate of size
L×L = (256d0)2 with periodic boundary conditions. In calculations, the time t is gradually
increased by an increment δt, given by δt = πr2

0/L
2, each time an attempt is made to

deposit a disk of radius r0 = d0/2. Consequently, we define dimensionless parameter
t = Nattπr2

0/L
2, where Natt is the overall number of attempts to place disk particles. The

dimensionless adsorption time t was set to zero at the beginning of the second stage. By
plotting θ(t) versus the adsorption time t, defined above, one can simulate the kinetics of
particle adsorption.

For purposes of our modeling, each landing cell is a rectangle with sides a and b
(b � a) whose midpoint is located on a continuous substrate. The cells can take arbitrary
orientations, but in some numerical simulations we have introduced anisotropy in the
deposition procedure for landing cells. This simple modification introduces a preferential
direction in the deposition process and, depending on the aspect ratio of deposited
rectangles, imposes specific ‘patterning’ on the deposited layer. We rescale the lengths
relative to the diameter of the disks d0, and define three dimensionless parameters:

α =
a

2r0
, β =

b

2r0
(1)

γ =
α√
θ

(cell)
0

(2)

The parameter γ (an average distance between cell centers) is a meaningful measure only
if the landing cells are squares (a = b).

For a fixed values of parameters α and β, simulations were carried out for various
values of θ

(cell)
0 , ranging from 0.10 to 0.50. For each case, the simulations are carried out

up to 1010 deposition attempts, or up until L2 × 104 consecutive deposition attempts are
rejected. The results are obtained by averaging over 100 simulation runs.

3. Results and discussion

In the first part of this section simulation results are presented and discussed for random
deposition of identical disks on nonuniform substrates covered by squares of arbitrary
orientation. We characterize the jammed state in terms of radial distribution function of
distances between the particle centers and distribution of the Delaunay ‘free’ volumes.
After that, further analysis is extended to adsorption of disks on rectangular cells
deposited with arbitrary or fixed orientation.

3.1. Circles on squares

First, we consider the irreversible deposition of disks of fixed diameter d0 = 1 whose
centers are inside the square cells arranged randomly at the surface. Depending on the
cell size α, one can place one or more disk centers inside each cell. We are interested
in the range of α where the number of disks adsorbed per cell is a small number
(less than five). For α < 1/

√
2, at most a single disk can be adsorbed at any given

square cell. We denote this case as single particle per-cell adsorption (SPCA). For
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squares with α � 1/
√

2, more than a single disk can be placed in the square cell,
and we denote this as multiparticle per-cell adsorption (MPCA). The cases of up-to-
two, -three and -four disks per square cell are obtained, respectively, for α in the ranges
1/

√
2 � α < (1 +

√
3)/(2

√
2), (1 +

√
3)/(2

√
2) � α < 1, and 1 � α <

√
2. In other

words, the numbers {αk : k = 1, 2, 3, 4} = {1/
√

2, (1 +
√

3)/(2
√

2), 1,
√

2} determine
the size of the largest cell in which at most k = 1, 2, 3, 4 disks can be deposited,
respectively.

The effect of density of landing cells θ
(cell)
0 on the adsorption process is illustrated

in figure 1 by snapshots of the jammed-state coverings for (a) θ
(cell)
0 = 0.3 and (b)

θ
(cell)
0 = 0.5, for two values of the cell size α, namely, α4 =

√
2 ≈ 1.41 (figure 1(a))

and α2 = (1 +
√

3)/(2
√

2) ≈ 0.966 (figure 1(b)). For low values of θ
(cell)
0 , adsorption on a

given cell is weakly affected by disks previously adsorbed on neighboring cells. Therefore,
most of the cells shown in figure 1(a) contain at least three discs. However, in the case
shown in figure 1(b) one can see a significant impact of the cell–cell excluded volume
interaction on the cell population. Although each cell has enough area to accommodate
up to two disks, only one disk is deposited on most of the cells.

3.1.1. Densification kinetics. Kinetics of the irreversible deposition of disks is illustrated
in figures 2(a)–(e) where the plots of time coverage behavior θ(t) are given for the five
values of coverage fraction of landing cells, θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.5. Here the plots of

such time-dependence are shown for various values of the cell size, αk (k = 1, 2, 3, 4). It can
be seen that for a fixed density of landing cells θ

(cell)
0 , jamming coverage θJ = limt→∞ θ(t)

decreases with increasing the cell size αk. This effect is clearly visible in the case of the
lowest density of the landing cells θ

(cell)
0 = 0.1 (figure 2(a)), when the average distance

between the squares γ (equation (2)) is several times larger than the diameter of the
disks. Then, the cell–cell separation is large enough so that adsorption on a given cell
is negligibly affected by disks previously adsorbed on neighboring cells. Therefore, for
sufficiently low densities θ

(cell)
0 � 0.2, the global kinetics of deposition is determined by

the kinetics of independent adsorption processes on finite-size substrates (landing cells)
with specific boundary conditions (disks can be adsorbed on finite α×α square as long as
their centers are within the square). Consequently, for this range of θ

(cell)
0 values, formula

θJ = (π/4α2)〈n〉θ(cell)
0 gives very close estimation of the jamming density θJ, where 〈n〉 is

the mean number of disks per cell. The dashed (black) line in figure 3 shows the simulation
results for the mean number of particles per cell 〈n〉 as a function of the cell size α in the
noninteracting cell–cell adsorption regime (i.e. in the case of single cell on a substrate).

Consider now the case of up-to-two disks per square cell (α2 = (1 +
√

3)/(2
√

2) ≈
0.966), when 〈n〉 � 1.6 (see, figure 3). Then, during the deposition process, disk can
be adsorbed at the position inside the cell that blocks the chance for other disks to be
adsorbed on the same cell at later times. Consequently, the probability of having a second
adsorbed particle in any given cell is smaller than the probability of having at least one
particle adsorbed on it. Similar reasoning applies as α crosses α3, α4, . . .. In addition,
in figure 3 we show simulation results for the probability that the configurations with
only one disk, or n = 2, . . . , 5 disks, occur on square cell of size α in the noninteracting
cell–cell adsorption regime. If α = α1 ≈ 0.707, each landing cell (square) can contain no
more than one disk. If α = α2 ≈ 0.966, the number of cells with one and two disks is
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(a)

(b)

Figure 1. Typical jammed-state configuration of a region of size 30 × 30 in units
of the disk diameter d0, for (a) θ

(cell)
0 = 0.3, α4 =

√
2 ≈ 1.41, and (b) θ

(cell)
0 = 0.5,

α2 = (1 +
√

3)/(2
√

2) ≈ 0.966.

approximately equal (figure 3). However, if density θ
(cell)
0 is unchanged, then the increasing

of the cell size α1 → α2 reduces the total number of landing cells on the substrate by a
factor ≈ 2. Reduction in number of adsorbed disks is a consequence of these two effects.
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Figure 2. Shown here is the time evolution of the coverage fraction θ(t) for the
five values of density of landing cells, θ

(cell)
0 = 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d),

0.5 (e). The curves in each graph correspond to various values of the cell size,
αk (k = 1, 2, 3, 4), as indicated in the legend. The αcont line shows the time
dependence of the coverage θ(t) for RSA of disks on a continuous substrate. The
entire αcont curve can be seen in plot (e).
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Figure 3. Simulation results for the probability that the configurations with
n = 1, 2, . . . , 5 disks occur on square cell of size α in the noninteracting cell–cell
adsorption regime (left-hand axis). The dashed line is plotted against the right-
hand axis and gives the simulation results for the average number of particles per
cell 〈n〉 as a function of the cell size α in the noninteracting cell–cell adsorption
regime.

This discussion indicates that the jamming density θJ decreases with cell size α at fixed
density θ

(cell)
0 .

As can be seen from figure 2, the time coverage behavior θ(t) is markedly slowed down
with the increase of the cell size α for the fixed density of landing cells θ

(cell)
0 . Indeed,

in MPCA case the large times are needed for filling of small isolated vacant targets
on landing cells, remaining in the late stages of deposition. Furthermore, in this regime,
density curves θ(t) show a noticeable slowing down of deposition process at coverages that
are significantly smaller than jamming densities. Coverage growth starts to slow down at
the moment when the number of adsorbed disks reaches the number of landing cells. After
this initial filling of the landing cells, adsorption events take place on isolated islands of
partially occupied cells. This extends the time interval between successful consecutive
adsorption events and causes a slowing down of the densification.

The results for the time evolution of the coverage θ(t) in the case of up-to-two disks
per square cell (α = α2) are shown in figure 4 for various values of θ

(cell)
0 . Qualitatively

similar results are obtained with landing cells of other sizes α. As expected, the jamming
density θJ increases with higher coverage fraction of landing cells θ

(cell)
0 . At high values

of θ
(cell)
0 � 0.5 when γ ∼ 1, a disk attempting adsorption can overlap with a previously

adsorbed one belonging to a different cell, resulting in a failed adsorption attempt. This
excluded volume interaction between particles during adsorption at different cells causes
even slower asymptotic approach of the coverage fraction θ(t) to its jamming limit. In
addition, the analysis of the time evolution of the coverage θ(t) was carried out for
deposition on square cells centered at the vertices of a square lattice. Consequently, the
temporal evolution of the coverage θ(t) obtained for regular substrate pattern are included
in figure 4. Here, the size α and density θ

(cell)
0 of landing cells are the same as those used in

doi:10.1088/1742-5468/2015/06/P06032 9

http://dx.doi.org/10.1088/1742-5468/2015/06/P06032


J. S
tat. M

ech. (2015) P
06032

Structural properties of particle deposits at heterogeneous surfaces

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10-4 10-2 100 102 104

θ(
t)

t

θ0
(cell) = 0.1

θ0
(cell) = 0.2

θ0
(cell) = 0.3

θ0
(cell) = 0.4

θ0
(cell) = 0.5

Figure 4. Temporal behavior of the coverage θ(t) for various values of θ
(cell)
0 in the

case of up-to-two disks per square cell (cell size: α2 = (1 +
√

3)/(2
√

2) ≈ 0.966).
The curves correspond to various values of density θ

(cell)
0 = 0.1–0.5, as indicated

in the legend. Thick lines represent results obtained for regular substrate pattern
while thin lines are results for random pattern case.

our previous calculations for random pattern case. It can be seen that lower values of the
jamming coverage fraction are reached by the deposition process involving randomness
in the pattern compared to a deposition process in the presence of a regular substrate
pattern, regardless of the value of the density θ

(cell)
0 .

Below we try to characterize quantitatively the time dependence of the approach to the
jammed state at large times. Depending on the system of interest modeled by RSA, the
substrate can be continuous (off lattice) or discrete. Asymptotic approach of the coverage
fraction θ(t) to its jamming limit, θJ = θ(t → ∞), is known to be given by an algebraic
time dependence for continuous substrates [25–29]:

θ(t) ∼ θJ − At−1/d, (3)

where A is a constant coefficient and d is interpreted as substrate dimension [26] in case of
spherical particles adsorption or, more generally, as a number of degrees of freedom [30].
For lattice RSA models, the approach to the jamming coverage is exponential [31–36]:

θ(t) ∼ θJ − ∆θ exp(−t/σ), (4)

where parameters θJ, ∆θ, and σ depend on the shape and orientational freedom of
depositing objects [34,36].

Representative examples of the double logarithmic plots of the first derivative of
coverage θ(t) with respect to time t are shown in Figure 5(a), for various values of the
cell size, αk (k = 1, 2, 3, 4), and for high density of landing cells, θ

(cell)
0 = 0.5. The time

derivatives of θ(t) are calculated numerically from the simulation data. In the case of the
algebraic behavior of the coverage fraction θ(t) (equation (3)), a double logarithmic plot
of the first time derivative dθ

dt ∝ t−
1+d

d is a straight line. One can see that curves shown
in figure 5(a) are straight lines in the late stage of deposition process. However, the same
is not valid for all values of densities of landing cells θ

(cell)
0 . The double logarithmic plots
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Figure 5. Test for the presence of the algebraic law (3) in the approach of the
coverage θ(t) to the jamming limit for different densities of landing cells: (a)
θ
(cell)
0 = 0.5, and (b) θ

(cell)
0 = 0.1. The curves in each graph correspond to various

values of the cell size, αk (k = 1, 2, 3, 4), as indicated in the legend. Straight line
sections of the curves show where the law holds. The dashed black line has slope
−3/2 and is a guide for the eye.

of the numerically calculated derivatives of θ(t) for the data obtained in the case of low
density of landing cell θ

(cell)
0 = 0.1 are shown in figure 5(b). As it can be seen, at the very

late times of the deposition process the plot of the first derivative of coverage fraction
θ(t) with respect to time t is not linear on a double logarithmic scale, indicating that the
approach to the jamming limit is not consistent with the power law behavior given by
equation (3). The deviation from the power law is particularly pronounced in the case of
single particle per-cell adsorption (SPCA).

Kinetics of the irreversible deposition under SPCA conditions is illustrated in figure 6
where a logarithmic plots of θJ − θ(t) versus t are shown for various densities of landing
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Figure 6. Plots of θJ − θ(t) versus t in the single particle per-cell adsorption
case for various densities of landing cells θ

(cell)
0 = 0.1–0.5. The solid lines are the

exponential fit of equation (4).

cells θ
(cell)
0 . These plots are straight lines for the late times of deposition, suggesting that

in the case of SPCA the approach to the jamming limit is indeed exponential, as in lattice
RSA models. Indeed, the kinetics of deposition in SPCA case is determined by the kinetics
of adsorption processes on finite-size landing cells. The difference relative to the lattice
RSA is in the particle positions, which here are uncertain within the order of the size of
the cell.

3.1.2. Radial distribution function. Here we compare quantitatively the structural
characteristics of jamming coverings corresponding to different values of the cell size α
for various densities θ

(cell)
0 . In order to gain basic insight into the ‘microstructure’ of the

jammed state, we first consider the radial distribution function g(r) (or pair-correlation
function) which gives information about the long-range interparticle correlations and their
organization [24]. In absence of external forces, the pair correlation function can be
calculated from expression

g(r) =
S

N

Na(r)
2πr∆r

, (5)

where r is the radial coordinate, S is the surface area, N is total number of particles
adsorbed over this area, and Na is the averaged number of particles within the annulus
of the radius r and the thickness ∆r. In figure 7(a) we compare the radial distribution
function g(r) at various densities θ

(cell)
0 = 0.1–0.5 in the SPCA case. As expected, the

random deposition process never leads to correlation distances between the deposited
particles exceeding two or three particle diameters. The position of the first peak measures
typical distances between the closest disks. Decreasing the value of θ

(cell)
0 in the SPCA case

increases the uncertainty in the position of the particles which leads to peak broadening.
The shape of radial distribution g(r) is more structured at higher densities, showing higher
first and second peaks, because, when the system gets denser, particles will be deposited
closer to one another. As can be seen from figure 7(a), the minima of g(r) curves shift to
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Figure 7. Radial distribution function g(r) for jamming coverings as a function
of separation r (in units of the disk diameter d0) for various values of the cell
size α: (a) α1 = 1/

√
2, (b) α2 = (1 +

√
3)/(2

√
2), (c) α3 = 1, (d) α4 =

√
2. The

curves in each graph correspond to various values of density θ
(cell)
0 = 0.1, 0.2,

0.3, 0.4, 0.5, as indicated in the legend.

shorter distances (∼
√

3) when the density θ
(cell)
0 increases. At a very low densities, the

broad minima are located near the distance ∼2d0. Indeed, since the particles are added
at random, the probability that disks are connected as a three-bead chain is negligible.

The results for g(r) in the MPCA case are shown in figures 7(b)–(d). The shape of the
radial distribution function g(r) is significantly affected by the values of the cell size α.
In the case of up-to-two disks per square cell (figure 7(b)) the peak which appears at unit
distance is the most pronounced for low densities of landing cells θ

(cell)
0 . For low values of

θ
(cell)
0 , one expects a lower impact of the cell–cell excluded volume interaction on the cell

population. However, as θ
(cell)
0 increases, the first peak of g(r) becomes broader because

excluded volume interaction with disks belonging to neighboring cells reduces the average
number of adsorbed disks per cell. This is opposite to what is observed under SPCA
conditions (figure 7(a)), where the distance to the closest disk, on average, is determined
by the distance of the nearest-neighbor landing cells.
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The comparison of figures 7(b) and (c) shows that the results for g(r) in the case of
up-to-two and up-to-three disks per square cell are very similar. This arises as a direct
consequence of the fact that cells with sizes α2 ≈ 0.966 and α3 = 1 have very similar
population of particles (see figure 3). Figure 7(d) shows the radial distribution function
g(r) of jamming coverings at several densities θ

(cell)
0 obtained in simulations carried out

with the cell size of α4 =
√

2. For this value of the parameter α, each cell is of sufficient
size to accommodate up to four particles. As can be seen in figures 7(b)–(d), increasing
the value of parameter α in the MPCA case increases the uncertainty in the position of
the disk within the cell, i.e. it leads to peak broadening.

3.1.3. Volume distribution of the pores. Further analysis is based on the Voronöı
tessellation, which allows us to unambiguously decompose any arbitrary arrangement of
disks into space-filling set of cells. Given a set A of discrete points in the plane π (centers
of disks), for almost any point x ∈ π in the plane π there is one specific point ai ∈ A
which is closest to x. The set of all points of the plane which are closer to a given point
ai ∈ A than to any other point aj 
= ai, aj ∈ A, is the interior of a convex polygon Pi

usually called the Voronöı cell of ai. The set of the polygons {Pi}, each corresponding
to (and containing) one point ai ∈ A, is the Voronöı tessellation corresponding to A,
and provides a partitioning of the plane π. Voronöı cells are convex and their edges join
at trivalent vertices, i.e. each vertex is equidistant to three neighboring disks. Two disks
sharing a common cell edge are neighbors. In this work, the Quickhull algorithm [37]
is used to compute the Voronöı diagrams in MATLAB� for a given set of disks on
a plane.

The jammed-state coverings are analyzed in terms of volume distributions of the pores.
The convenient definition of a pore is based on the Delaunay triangulation (DT), which is
a natural way to subdivide a 2D structure of disks into a system of triangles with vertices
at the centers of neighboring disks. Consequently, the circle circumscribing a Delaunay
triangle has its center at the vertex of a Voronöı polygon. In this work we define the pore
as a part of the Delaunay triangle not occupied by the disks (Delaunay ‘free’ volume)
[21, 22]. The pore volume v is normalized by the ‘volume’ of the disks, v0 = d2

0π/4. In
figure 8 we show Delaunay triangulation of typical jammed-state covering obtained for the
same conditions as in figure 1(a) (θ(cell)

0 = 0.3, α4 =
√

2 ≈ 1.41). Looking at the diagram
of figure 8, one can observe variations in the area of Delaunay triangles, which indicates
the presence of pores of various sizes in the deposit.

Here we consider the probability distribution P (v) of the Delaunay ‘free’ volume v.
The distribution function P (v) represents the probability of finding a pore with volume
v. Fluctuations in the measurements of P (v) are reduced by averaging over 100 different
simulations, performed under the same conditions. We compare volume distribution of the
pores P (v) for jamming coverings corresponding to different values of the cell size α and
various densities of landing cells θ

(cell)
0 , as illustrated in figures 9(a)–(e). Here, the pore

distributions P (v) obtained for densities θ
(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.5 have been plotted.

At very low value of θ
(cell)
0 = 0.1 (figure 9(a)), the curves of volume distribution P (v)

are asymmetric with a quite long tail on the right-hand side, which progressively reduces
while the cell size α increases at the fixed density. At the same time, the distribution
P (v) becomes narrower and more localized around the low values of the pore volume v.
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Figure 8. Delaunay triangulation of a set of points (centers of disks). Diagram
corresponds to jammed-state covering obtained for density of landing cells
θ
(cell)
0 = 0.3 and cell size α4 =

√
2; see figure 1(a) for a typical configuration.

The red dots are centers of the adsorbed disks. Length is measured in units of
the disk diameter d0.

This behavior of the distribution P (v) was not observed for all densities of landing cells
θ

(cell)
0 = 0.1–0.5 (see figures 9(a)–(e)). For densities θ

(cell)
0 � 0.2, the pore distributions

P (v) obtained for deposition on square cells of size α2 and α3 are broader and shifted
to higher values of volumes v compared to the pore distribution P (v) corresponding to
SPCA case (α1). Qualitative interpretation of this result is given below.

In the case of up-to-four disks per square cell (α4 =
√

2), we observe the appearance of
pronounced peak of P (v) at low values of v, approximately at v = 0.15–0.20. It is easy to
understand which kind of local configuration contributes mostly to this peak of the P (v).
The Delaunay cells with free dimensionless volume vhex =

√
3/π−1/2 ≈ 0.051 correspond

to the local arrangements of hexagonal symmetry, when three disks are all in touch with
each other with centers on the vertices of a unilateral triangle. The cells with free volume
vquad = 2/π − 1/2 ≈ 0.13 correspond to the local configurations of quadratic symmetry,
when centers of four touching disks are positioned on the vertices of a square. These are
minimal values of pore volumes that can be formed with three and four disks deposited
on a single landing cell of size α4 =

√
2. However, the probability that the previously

described structures of quadratic and hexagonal symmetry arise during the process of
random deposition is negligibly small. Therefore, the ‘free’ volumes formed with random
deposition of disks into a single cell are larger than the minimal values vhex ≈ 0.051 and
vquad ≈ 0.13, so that observed peak of P (v) is around v � 0.20.
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Figure 9. Main panel: Volume distribution of the pores P (v) for jamming
coverings at different values of density of the landing cells corresponding to
θ
(cell)
0 = 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d), 0.5 (e) are shown in the case of random

pattern. The curves in each graph correspond to various values of the cell size,
αk (k = 1, 2, 3, 4), as indicated in the legend. The αcont line shows distribution
P (v) for jamming covering in the case of the irreversible disks deposition on a
continuous substrate. Insets: Volume distribution of the pores P (v) for jamming
coverings obtained from simulations carried out using the heterogeneous surface
covered by square cells centered at the vertices of a square lattice. The size α
and density θ

(cell)
0 of landing cells are the same as those used in the main panel.

At high values of density of landing cells θ
(cell)
0 = 0.5 (figure 9(e)), distribution

P (v) obtained under SPCA conditions becomes very similar to pore volume distribution
for RSA of disks on a continuous substrate, as expected. The results for the volume
distribution of the pores P (v) obtained in the cases of up-to-two and up-to-three disks
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Figure 10. Various types of Delaunau triangles (T1–T3) depending on the
position of vertices.

per square cell are almost identical at all densities θ
(cell)
0 (see figure 9). The similarity of

these distributions at small values of pore volumes can be explained by the results shown
in figure 3. Small pores appear due to the presence of configurations with three or more
disks on a single landing cell. But, in the case of up-to-three disks per square cell, the
number of in-cell configurations with three disk is considerably smaller than the number
of configurations with one or two disks. Consequently, broad maximum in P (v), centered
at v = 0.4–0.6 is caused by contribution of large pores formed mostly in the space between
the landing cells.

Further, we study the effect of the presence of a regular substrate pattern of squares
on volume distribution of the pores P (v). Distributions P (v) for jamming coverings
corresponding to θ

(cell)
0 = 0.1–0.5 and different values of the cell size αk (k = 1, 2, 3, 4)

are shown in insets of figure 9. At low density of landing cells θ
(cell)
0 = 0.1 and for large

cell size α � α4 =
√

2 (see inset of figure 9(a)) we observe the appearance of three peaks
of P (v). The first peak at v ≈ 0.2 is due to Delaunay triangles with their vertices inside
a single landing cell (see T1 triangle in figure 10). The third peak at v ≈ 8 corresponds
to Delaunay triangles with vertices located in different landing cells (see T3 triangle
in figure 10). Central peak at v ≈ 2 arises due to Delaunay triangles with two vertices
belonging to single cell, while the third one is located in a neighboring cell (see T2 triangle
in figure 10). The first peak at very low values of pore volumes v does not appear for the
smaller landing cells, α = α1, α2, α3. Indeed, if α � α3, the Delaunau triangles that lie
within a single landing cell are very rare (α = α3) or they can not exist (α � α2). In the
case of single particle per-cell adsorption (α = α1) vertices of each Delaunay triangle are
located in three different cells, so that distribution P (v) has only one broad maximum.
As can be seen from insets of figure 9, the difference between distribution P (v) for regular
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Figure 11. Radial distribution function g(r) for jamming coverings as a function
of separation r (in units of the disk diameter d0) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of arbitrary
orientation. The curves correspond to various values of density θ

(cell)
0 = 0.1, 0.2,

0.3, 0.4, 0.45, as indicated in the legend.

substrate pattern of squares and for random pattern case decreases with the increase of
the cell density θ

(cell)
0 .

3.2. Circles on rectangles

We have also performed numerical simulations of random deposition of identical disks on
heterogeneous surfaces covered by rectangles of arbitrary orientation. In these simulations,
each landing cell is a rectangle with sides α = 8 and β = 1 (in units of the disk diameter
d0). The choice of the value of aspect ratio α/β plays important role in our model.
Increasing of the aspect ratio of the landing cells (rectangles) leads to the formation
of domains of increased regularity. The chosen value of α/β = 8 is large enough to
provide patterned substrate that is significantly different from the surfaces in the case
with the square cells. We have verified that usage of a different, but large, values of
aspect ratio α/β gives quantitatively very similar results leading to qualitatively same
phenomenology.

To characterize the jammed state we studied radial distribution function g(r) and
probability distribution P (v) of pore volume v for different values of density of landing
cells: θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.45. Figure 11 shows the corresponding results for radial

distribution function g(r). Comparing the results from figures 7(b)–(d) and 11, one can
see that the first peak near r/d0 = 1 and local maximum at r/d0 � 2 of g(r) are more
pronounced in the case of elongated rectangular cells than in the case of multi-particle
adsorption (MPCA) at squares. This emergence of a better local order is a correlation
effect that develops during the deposition stage, due to the formation of arrays of disks
along a single elongated rectangular cells.

Figure 12 compares volume distribution of the pores P (v) for jamming coverings
corresponding to different densities θ

(cell)
0 . Similar to the case of MPCA on square cells,
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Figure 12. Volume distribution of the pores P (v) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of arbitrary
orientation. The curves correspond to various values of density θ

(cell)
0 = 0.1, 0.2,

0.3, 0.4, 0.45, as indicated in the legend. Distribution P (v) for jamming covering
in the case of the irreversible disks deposition on a continuous substrate is shown
for comparison.

here we observe the peak of P (v) at small values of v ≈ 0.2. As previously mentioned,
such small pores are feature of coverings which occurs when three or more particles can
be adsorbed on a single cell. The observed peak of the distribution P (v) broadens when
density θ

(cell)
0 increases. Deposition of elongated objects at high densities is characterized

with compact domains of parallel objects and large islands of unoccupied substrate area.
Figure 13 shows typical snapshot of the jammed-state covering obtained for rectangular
cells of arbitrary orientation and density θ

(cell)
0 = 0.45. Relatively high local packing of

nearly parallel adsorbed rectangles reduces the number of disks effectively adsorbed at
a cell. This process is associated with the appearance of larger interstitial voids, which
causes the peak broadening.

It is now useful to explore the interplay between the anisotropy in deposition procedure
for landing cells and structural characteristics of jamming coverings. In this case the
orientation of rectangular cells is fixed to the one preferential direction. The configuration
formed in the long time regime is made up of a large number of domains; see figure 14
for typical configuration. As expected, any such domain contains parallel cells all close to
each other. This produces better packing of landing cells and higher impact of the cell–cell
excluded volume interaction on the average cell population. Hence, anisotropic deposition
of landing cells lowers the average cell population, which enhances the appearance of larger
pores, resulting in a peak broadening. Volume distributions of pores P (v) for jamming
coverings of disks corresponding to anisotropic deposition of cells are shown in figure 15
with thick lines, while the case of arbitrarily oriented cells from figure 12 is drawn with
thin lines for comparison. Figure 15 clearly shows enhanced peak broadening of P (v)
in the case of anisotropic deposition of landing cells, which is consistent with previous
discussion.
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Figure 13. Typical jammed-state configuration of a region of size 30 × 30 (in
units of the disk diameter d0), for θ

(cell)
0 = 0.45. Orientation of rectangular

cells with sides α = 8 and β = 1 is arbitrary. Deposition of elongated objects
(cells) is characterized with domains of nearly parallel objects and large islands
of unoccupied space.

4. Concluding remarks

We investigated numerically RSA of disk-shaped particles on a nonuniform substrates,
with focus on the jammed-state properties. A surface heterogeneities consisting of square
cells and elongated rectangles were considered. The influence of the cell size and density
of landing cells on kinetics of deposition process, and on morphological characteristics of
the coverings were studied.

We found that for a given density of landing cells, the highest jamming coverage and
the fastest kinetics of the deposition process can be achieved in the SPCA case. Due to the
fact that the densification kinetics is dictated by geometric exclusion effects, the coverage
kinetics is severely slowed down in the MPCA case.

To examine the short scale structure in the jammed-state coverings, we evaluated the
radial correlation function g(r) which measures the particle density-density correlation at
distance r for various shapes and sizes of the landing cells. The oscillation of g(r) quickly
decays for all densities of landing cells θ

(cell)
0 , which means that long-range order does not

exist in the system. In the MPCA case, the peak of g(r) which appears at unit distance
is the most pronounced for low densities of landing cells θ

(cell)
0 . This is opposite to what

is observed under SPCA conditions when the shape of radial distribution g(r) is more
structured at higher densities θ

(cell)
0 .
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Figure 14. Typical jammed-state configuration of a region of size 30 × 30 (in
units of the disk diameter d0,) for θ

(cell)
0 = 0.45. Orientation of rectangular cells

with sides α = 8 and β = 1 is fixed to the horizontal direction.
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Figure 15. Volume distribution of the pores P (v) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of fixed
orientation (thick lines) and arbitrary orientations (thin lines). The curves
correspond to various values of density θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.45, as indicated

in the legend.

Morphology of deposited disks has also been analyzed through the distribution of pore
volumes. This distribution is sensitive to small structural changes of the covering and
therefore describes the degree to which the cell size and cell density affects the deposit
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morphology. Delaunay ‘free’ volumes have a distribution with a long tail, particularly at
low densities θ

(cell)
0 . We have found that the distribution P (v) becomes narrower and more

localized around the low values of v with increasing of θ
(cell)
0 . In the case of the largest cells

(α � α4 =
√

2), we have observed the pronounced peak of P (v) at low values of v = 0.15–
0.20, which appears due to presence of configurations with three or more disks on a single
landing cell. We have also studied the influence of a regular substrate pattern on volume
distribution of the pores P (v). At low densities θ

(cell)
0 , distribution function P (v) shows

a well developed peaks which correspond to the various types of Delaunay triangles,
as shown in figure 10. Cell–cell excluded volume interaction increases with the cell
density θ

(cell)
0 , so that distribution P (v) for regular substrate pattern of squares becomes

similar to P (v) for random pattern case at densities near jamming limit for RSA of
square cells.

Numerical simulations of random deposition on heterogeneous substrates covered by
elongated rectangles have shown that the shape of the pore distribution function P (v)
is affected by the anisotropy in deposition procedure for landing cells. It is shown that
anisotropic deposition of landing cells lowers the average cell population and reduces the
number of small pores. Our results suggest that the porosity of deposit (pore volumes) can
be controlled by the size and shape of landing cells, and by anisotropy of cell deposition
procedure. It must be emphasized that radial correlation function g(r) for jamming
coverings of disks corresponding to anisotropic deposition of rectangles is quite similar
to g(r) for the case of isotropic landing-cell pattern and is not detailed here.
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Abstract. We present Path Integral Monte Carlo C code for calculation of quantum
mechanical transition amplitudes for 1D models. The SPEEDUP C code is based on the
use of higher-order short-time effective actions and implemented to the maximal order
p=18 in the time of propagation (Monte Carlo time step), which substantially improves
the convergence of discretized amplitudes to their exact continuum values. Symbolic
derivation of higher-order effective actions is implemented in SPEEDUP Mathematica
codes, using the recursive Schrödinger equation approach. In addition to the general
1D quantum theory, developed Mathematica codes are capable of calculating effective
actions for specific models, for general 2D and 3D potentials, as well as for a general
many-body theory in arbitrary number of spatial dimensions.
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1 Introduction

Exact solution of a given many-body model in quantum mechanics is usually expressed
in terms of eigenvalues and eigenfunction of its Hamiltonian

Ĥ=
M

∑
i=1

p̂2
i

2mi
+V̂(q̂1,··· ,q̂M), (1.1)

but it can be also expressed through analytic solution for general transition amplitude

A(a,b;T)= 〈b|e−iTĤ/h̄|a〉 from the initial state |a〉 to the final state |b〉 during the time of
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propagation T. Calculation of transition amplitudes is more suitable if one uses path inte-
gral formalism [1–3], but in principle, if eigenproblem of the Hamiltonian can be solved,
one should be able to calculate general transition amplitudes, and vice versa. However,
mathematical difficulties may prevent this, and even more importantly, exact solutions
can be found only in a very limited number of cases. Therefore, use of various analytic
approximation techniques or numerical treatment is necessary for detailed understand-
ing of the behavior of almost all models of interest.

In numerical approaches it could be demanding and involved to translate numerical
knowledge of transition amplitudes to (or from) eigenstates, but practically can be always
achieved. It has been implemented in various setups, e.g. through extraction of the
energy spectra from the partition function [2–5], and using the diagonalization of space-
discretized matrix of the evolution operator, i.e. matrix of transition amplitudes [6–10].
All these applications use the imaginary-time formalism [11, 12], typical for numerical
simulations of such systems.

Recently introduced effective action approach [13–17] provides an ideal framework
for exact numerical calculation of quantum mechanical amplitudes. It gives systematic
short-time expansion of amplitudes for a general potential, thus allowing accurate cal-
culation of short-time properties of quantum systems directly, as has been demonstrated
in [8–10]. For numerical calculations that require long times of propagation to be con-
sidered using e.g. Monte Carlo method, effective action approach provides improved
discretized actions leading to the speedup in the convergence of numerically calculated
discretized quantities to their exact continuum values. This has been also demonstrated
in Monte Carlo calculations of energy expectation values using the improved energy es-
timators [5, 18].

In this paper we present SPEEDUP codes [19] which implement the effective action
approach, and which were used for numerical simulations in [4, 5, 8–10, 13–17]. The pa-
per is organized as follows. In Section 2 we briefly review the recursive approach for
analytic derivation of higher-order effective actions. SPEEDUP Mathematica codes capa-
ble of symbolic derivation of effective actions for a general one- and many-body theory
as well as for specific models is described in detail in Section 3, while in Section 4 we
describe SPEEDUP Path Integral Monte Carlo C code, developed for numerical calcula-
tion of transition amplitudes for 1D models. Section 5 summarizes presented results and
gives outlook for further development of the code.

2 Theoretical background

From inception of the path integral formalism, expansion of short-time amplitudes in
the time of propagation was used for the definition of path integrals through the time-
discretization procedure [2, 3]. This is also straightforwardly implemented in the Path
Integral Monte Carlo approaches [20], where one usually relies on the naive discretization
of the action. Several improved discretized actions, mainly based on the Trotter formula
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and its generalizations, were developed and used in the past [21–23]. A recent analysis of
this method can be found in Jang et al [24]. Several related investigations dealing with the
speed of convergence have focused on improvements in short-time propagation [25, 26]
or the action [27]. More recently, split-operator method has also been developed [28–32],
later extended to include higher-order terms [33–36], and systematically improved using
the multi-product expansion [37–39].

The effective action approach is based on the ideal discretization concept [16]. It was
introduced first for single-particle 1D models [13–15] and later extended to general many-
body systems in arbitrary number of spatial dimensions [5, 17]. This approach allows
systematic derivation of higher-order terms to a chosen order p in the short time of prop-
agation.

Recursive method for deriving discretized effective actions, established in [17], is
based on solving the underlying Schrödinger equation for the amplitude. It has proven
to be the most efficient tool for treatment of higher-order expansion. In this section we
give brief overview of the recursive method, which will be implemented in Mathematica
in the next section. We start with the case of single particle in 1D, used in the SPEEDUP
C code. Throughout the paper we will use natural system of units, in which h̄ and all
masses are set to unity.

2.1 One particle in one dimension

In the effective action approach, transition amplitudes are expressed in terms of the ideal
discretized action S∗ in the form

A(a,b;T)=
1√

2πT
e−S∗(a,b;T), (2.1)

which can be also seen as a definition of the ideal action [16]. Therefore, by definition,
the above expression is correct not only for short times of propagation, but for arbitrary
large times T. We also introduce the ideal effective potential W,

S∗(a,b;T)=T

[

1

2

(

b−a

T

)2

+W

]

, (2.2)

reminiscent of the naive discretized action, with the arguments of the effective potential
(a, b, T) usually written as W

(

a+b
2 , b−a

2 ;T
)

, to emphasize that we will be using mid-point
prescription.

However, ideal effective action and effective potential can be calculated analytically
only for exactly solvable models, while in all other cases we have to use some approxi-
mative method. We use expansion in the time of propagation, assuming that the time T
is small. If this is not the case, we can always divide the propagation into N time steps,
so that ε= T/N is small. Long-time amplitude is than obtained by integrating over all
short-time ones,

A(a,b;T)=
∫

dq1 ···dqN−1 A(a,q1;ε)A(q1,q2;ε)···A(qN−1,b;ε), (2.3)
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paving the way towards Path Integral Monte Carlo calculation, which is actually imple-
mented in the SPEEDUP C code.

If we consider general amplitude A(q,q′;ε), introduce the mid-point coordinate x =
(q+q′)/2 and deviation x̄=(q′−q)/2, and express A using the effective potential,

A(q,q′;ε)=
1√
2πε

e−
2
ε x̄2−εW(x,x̄;ε) , (2.4)

the time-dependent Schrödinger equation for the amplitude leads to the following equa-
tion for W

W+ x̄ ∂̄W+ε∂εW− 1

8
ε∂2W− 1

8
ε∂̄2W+

1

8
ε2(∂W)2+

1

8
ε2(∂̄W)2=

1

2
(V++V−), (2.5)

where V±=V(x±x̄), i.e. V−=V(q), V+=V(q′). The short-time expansion assumes that we
expand W to power series in ε to a given order, and calculate the appropriate coefficients
using Eq. (2.5). We could further expect that this results in coefficients depending on the
potential V(x) and its higher derivatives. However, this scheme is not complete, since
the effective potential depends not only on the mid-point x, but also on the deviation
x̄, and the obtained equations for the coefficients cannot be solved in a closed form. In
order to resolve this in a systematic way, we make use of the fact that, for short time of
propagation, deviation x̄ is on the average given by the diffusion relation x̄2 ∝ ε, allowing
double expansion of W in the form

W(x, x̄;ε)=
∞

∑
m=0

m

∑
k=0

cm,k(x)εm−k x̄2k . (2.6)

Restricting the above sum over m to p−1 leads to level p effective potential Wp(x, x̄;ε)
which gives expansion of the effective action S∗

p to order εp, and hence the level desig-
nation p for both the effective action and the corresponding potential Wp. Thus, if the
diffusion relation is applicable (which is always the case in Monte Carlo calculations), in-
stead of the general double expansion in x̄ and ε, we are able to obtain simpler, systematic
expansion in ε only.

As shown previously [13–15], when used in Path Integral Monte Carlo simulations for
calculation of long time amplitudes according to Eq. (2.3), use of level p effective action
leads to the convergence of discretized amplitudes proportional to εp, i.e. as 1/Np, where
N is the number of time steps used in the discretization.

If we insert the above level p expansion of the effective potential to Eq. (2.5), we obtain
the recursion relation derived in [17],

8(m+k+1)cm,k =(2k+2)(2k+1)cm,k+1+c′′m−1,k−
m−2

∑
l=0

∑
r

c′l,r c′m−l−2,k−r

−
m−2

∑
l=1

∑
r

2r(2k−2r+2)cl,r cm−l−1,k−r+1, (2.7)
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Figure 1: Order in which the coefficients cm,k are calculated: diagonal ones from Eq. (2.8), off-diagonal from
recursion (2.7).

where the sum over r goes from max{0, k−m+l+2} to min{k, l}. This recursion can
be used to calculate all coefficients cm,k to a given level p, starting from the known initial
condition, c0,0=V. The diagonal coefficients can be calculated immediately,

cm,m=
V(2m)

(2m+1)!
, (2.8)

and for a given value of m=0,··· p−1, the coefficients cm,k follow recursively from evalu-
ating (2.7) for k=m−1,··· ,1,0, as illustrated in Fig. 1.

2.2 Extension to many-body systems

The above outlined approach can be straightforwardly applied to many-body systems.
Again the amplitude is expressed through the effective action and the corresponding
effective potential, which now depends on mid-point positions and deviations of all par-
ticles. For simplicity, these vectors are usually combined into D×M dimensional vectors
x and x̄, where D is spatial dimensionality, and M is the number of particles. In this
notation,

A(q,q′;ε)=
1

(2πε)DM/2
e−

2
ε x̄2−εW(x,x̄;ε) , (2.9)

where initial and final position q=(q1,··· ,qM) and q′=(q′
1,··· ,q′

M) are analogously de-
fined D×M dimensional vectors. Here we will not consider quantum statistics of parti-
cles. The required symmetrization or antisymmetrization must be applied after transition
amplitudes are calculated using the effective potential.

Many-body transition amplitudes satisfy D×M-dimensional generalization of the
time-dependent Schrödinger equation, which leads to the equation for the effective po-
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tential similar to Eq. (2.5), with vectors replacing previously scalar quantities,

W+ x̄·∂̄W+ε∂εW− 1

8
ε∂

2W− 1

8
ε∂̄

2
W+

1

8
ε2(∂W)2+

1

8
ε2(∂̄W)2=

1

2
(V++V−). (2.10)

The effective potential for short-time amplitudes again can be written in the form of the
double expansion in ε and x̄. However, it turns out to be advantageous to use the expan-
sion

W(x,x̄;ε)=
∞

∑
m=0

m

∑
k=0

εm−kWm,k(x,x̄) , (2.11)

and work with fully contracted quantities Wm,k

Wm,k(x,x̄)= x̄i1 x̄i2 ··· x̄i2k
c

i1,···,i2k

m,k (x), (2.12)

rather than with the respective coefficients ci1,···,i2k

m,k . In this way we avoid the computa-
tionally expensive symmetrization over all indices i1,··· ,i2k. After inserting the above
expansion into the equation for the effective potential, we obtain the recursion relation
which represents a generalization of previously derived Eq. (2.7) for 1D case, and has the
form

8(m+k+1)Wm,k =∂
2Wm−1,k+ ∂̄

2
Wm,k+1−

m−2

∑
l=0

∑
r

(∂Wl,r)·(∂Wm−l−2,k−r)

−
m−2

∑
l=1

∑
r

(∂̄Wl,r)·(∂̄Wm−l−1,k−r+1). (2.13)

The sum over r runs from max{0, k−m+l+2} to min{k, l}, while diagonal quantities
Wm,m can be calculated directly,

Wm,m=
1

(2m+1)!
(x̄·∂)2m V . (2.14)

The above recursion disentangles, in complete analogy with the previously outlined case
of one particle in 1D, and is solved in the order shown in Fig. 1.

3 SPEEDUP Mathematica codes for deriving the higher-order

effective actions

The effective action approach can be used for numerically exact calculation of short-time
amplitudes if the effective potential Wp can be analytically derived to sufficiently high
values of p such that the associated error is smaller than the required numerical pre-
cision. The error εp for the effective action, obtained when level p effective potential
is used, translates into εp−DM/2 for a general many-body short-time amplitude. How-
ever, when amplitudes are calculated using the Path Integral Monte Carlo SPEEDUP C
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code [19], which will be presented in the next section, the errors of numerically calculated
amplitudes are always proportional to εp∼1/Np, where N is number of time-steps in the
discretization of the propagation time T.

Therefore, accessibility of higher-order effective actions is central to the application of
this approach if it is used for direct calculation of short-time amplitudes [8–10], as well
as in the case when PIMC code is used [4, 5, 18]. However, increase in the level p leads
to the increase in complexity of analytic expressions for the effective potential. On one
hand, this limits the maximal accessible level p by the amount of memory required for
symbolic derivation of the effective potential. On the other hand, practical use of large
expressions for Wp may slow down numerical calculations, and one can opt to use lower
than the maximal available level p when optimizing total CPU time required for numer-
ical simulation. The suggested approach is to study time-complexity of the algorithm in
practical applications, and to choose optimal level p by minimizing the execution time
required to achieve fixed numerical precision.

We have implemented efficient symbolic derivation of higher-order effective actions
in Mathematica using the recursive approach. All source files described in this section
are located in the Mathematica directory of the SPEEDUP code distribution.

3.1 General 1D Mathematica code

SPEEDUP code [19] for symbolic derivation of the effective potential to specified level
p is implemented in Mathematica [40], and is available in the EffectiveAction-1D.nb

notebook. It implements the algorithm depicted in Fig. 1 and calculates the coefficients
cm,k for m= 0,··· ,p−1 and k=m,··· ,0, starting from the initial condition c0,0 =V. For a
given value of m, the diagonal coefficient cm,m is first calculated from Eq. (2.8), and then
all off-diagonal coefficients are calculated from the recursion (2.7).

In this code the potential V(x) is not specified, and the effective potential is derived
for a general one-particle 1D theory. The resulting coefficients cm,k and the effective po-
tential are expressed in terms of the potential V and its higher derivatives. Level p effec-
tive potential, constructed as

Wp(x, x̄;ε)=
p−1

∑
m=0

m

∑
k=0

cm,k(x)εm−k x̄2k , (3.1)

contains derivatives of V to order 2p−2.

The only input parameter of this Mathematica code is the level p to which the effec-
tive potential should be calculated. As the code runs, it prints used amount of memory
(in MB) and CPU time. This information can be used to estimate the required comput-
ing resources for higher values of p. The calculated coefficients can be exported to a
file, and later imported for further numerical calculations. As an illustration, the file
EffectiveAction-1D-export-p5.m contains exported definition of all the coefficients
cm,k calculated at level p=5, while the notebook EffectiveAction-1D-matching-p5.nb
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contains matching output from the interactive session used to produce the above p= 5
result.

The execution of this code on a typical 2 GHz CPU for level p=10 requires 10-15 MB
of RAM and several seconds of CPU time. We have successfully run this code for levels as
high as p= 35 [19]. SPEEDUP C code implements effective actions to the maximal level
p = 18, with the size of the corresponding C function around 2 MB. If needed, higher
levels p can be easily implemented in C and added to the existing SPEEDUP code.

3.2 General 2D and 3D Mathematica code

Although we have developed Mathematica code capable of deriving effective actions
for a general many-body theory in arbitrary number of spatial dimensions, in practical
applications in 2D and 3D it can be very advantageous to use simpler codes, able to
produce results to higher levels p than the general code [9, 10].

This is done in files EffectiveAction-2D.nb and EffectiveAction-3D.nb, where
the recursive approach is implemented directly in 2D and 3D. Execution of these codes
requires more memory: for p = 10 effective action one needs 60 MB in 2D case, while
in 3D case the needed amount of memory increases to 860 MB. On the other hand, the
execution time is several minutes for 2D code and around 30 minutes for 3D code.

The distribution of the SPEEDUP code contains exported p = 5 definitions of con-
tractions Wm,k for both 2D and 3D general potential, as well as matching outputs from
interactive sessions used to generate these results.

3.3 Model-specific Mathematica codes

When general expressions for the effective actions, obtained using the above described
SPEEDUP Mathematica codes, are used in numerical simulations, one has to specify the
potential V and its higher derivatives to order 2p−2 in order to be able to calculate tran-
sition amplitudes. Such approach is justified for systems where the complexity of higher
derivatives increases. However, for systems where this is not the case, or where only a
limited number of derivatives is non-trivial (e.g. polynomial interactions), it might be
substantially beneficial to specify the potential at the beginning of the Mathematica code
and calculate the derivatives explicitly when iterating the recursion.

Using this approach, one is able to obtain coefficients cm,k and the effective poten-
tial W directly as functions of the mid-point x. This is implemented in the notebooks
EffectiveAction-1D-AHO.nb and EffectiveAction-2D-AHO.nb for the case of anhar-
monic oscillators in 1D and 2D,

V1D−AHO(x)=
A

2
x2+

g

24
x4 , (3.2)

V2D−AHO(x)=
A

2
(x2+y2)+

g

24
(x2+y2)2 . (3.3)
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These codes can be easily executed within few seconds and with the minimal amounts of
memory even for p= 20. For 1D anharmonic oscillator we have successfully calculated
effective actions to excessively large value p= 144, and in 2D to p= 67 [19], to illustrate
the advantage of this model-specific method.

Similar approach can be also used in another extreme case, when the complexity of
higher derivatives of the potential V increases very fast, so that entering the correspond-
ing expressions to the code becomes impractical. Even in this situation expressions for
effective actions can be usually simplified using some appropriate model-specific ansatz.
The form of such ansatz can be deduced from the form of model-specific effective po-
tentials, and then used to simplify their derivation. Such use-case is illustrated in the
SPEEDUP Mathematica code for the modified Pöscl-Teller potential,

V1D−MPT(x)=− λ

(coshαx)2
. (3.4)

For this potential, the coefficients cm,k of the effective potential can be expressed in the
form

cm,k(x)=
m

∑
l=0

dm,k,l
(tanhαx)2l

(coshαx)2m−2l+2
, (3.5)

and newly introduced constant coefficients dm,k,l can be calculated using the model-speci-
fic recursion in EffectiveAction-1D-MPT.nb. The form of the ansatz (3.5) is deduced
from the results of executing general 1D Mathematica code, with the model-specific po-
tential (3.4) defined before the recursion calculation of the coefficients is performed. Us-
ing this approach, we were able to obtain maximal level p=41 effective action [19].

3.4 General many-body Mathematica code

SPEEDUP Mathematica code for calculation of effective action for a general many-body
theory is implemented using the MathTensor [41] package for tensorial calculations in
Mathematica. This general implementation required some new functions related to the
tensor calculus to be defined in the source notebook EffectiveAction-ManyBody.nbpro-
vided with the SPEEDUP code.

The function GenNewInd[n] generates the required number n of upper and lower in-
dices using the MathTensor function UpLo, with the assigned names up1, lo1,···, as well
as lists upi and loi, each containing n strings corresponding to the names of generated
indices. These new indices are used in the implementation of the recursion for calcula-
tion of derivatives of Wm,k, contractions of the effective potential, and for this reason had
to be explicitly named and properly introduced.

The expressions obtained by iterating the recursion contain large numbers of contrac-
tions, and function NewDefUnique[contr] replaces all contracted indices with the newly-
introduced dummy ones in the contraction contr, so that they do not interfere with the
calculation of derivatives in the recursion. This is necessary since the derivatives in re-
cursion do not distinguish contracted indices from non-contracted ones if their names
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happen to be generated by the function GenNewInd. Note that the expression contr does
not have to be full contraction, i.e. function NewDefUnique will successfully act on ten-
sors of any kind if they have contracted indices, while it will leave them unchanged if no
contractions are present.

The function NewDerivativeVec[contr, vec, ind] implements calculation of the
first derivative of the tensor contr (which may or may not contain contracted indices,
but if it does, they are supposed to be uniquely defined dummy ones, which is achieved
using the function NewDefUnique). The derivative is calculated with respect to vector vec
with the vectorial index ind. The index ind can be either lower or upper one, and has to
be generated previously by the function GenNewInd.

Finally, the function NewLaplacianVec[contr, vec] implements the Laplacian of the
tensor contr with respect to the vector vec, i.e. it performs the calculation of contractions
of the type

∂

∂veci

∂

∂veci
contr. (3.6)

After all described functions are defined, the execution of the code proceeds by set-
ting the desired level of the effective action p, generating the needed number of named
indices using the function call GenNewInd[2 p + 2], and then by performing the recur-
sion according to the scheme illustrated in Fig. 1. The use of MathTensor function CanAll

in the recursion ensures that the obtained expressions for W[m, k] will be simplified if
possible. This is achieved in MathTensor by sorting and renaming all dummy indices
using the same algorithm and trying to simplify the expression obtained in such way. By
default, Mathematica will distinguish contracted indices in two expressions if they are
named differently, and MathTensor works around it using the renaming scheme imple-
mented in CanAll.

The computing resources required for the execution of the many-body SPEEDUP
Mathematica code depend strongly on the level of the effective action. For example,
for level p = 5 the code can be run within few seconds with the minimal memory re-
quirements. The notebook with the matching output of this calculation is available as
EffectiveAction-ManyBody-matching-p5.nb, and the exported results for W[m, k] are
available in EffectiveAction-ManyBody-export-p5.m. We were able to achieve maxi-
mal level p= 10 [19], with the CPU time of around 2 days on a recent 2 GHz processor.
The memory used by Mathematica was approximately 1.6 GB.

Note that exporting the definition of the effective potential from Mathematica to a file
will yield lower and upper indices named ll1, uu1, etc. In order to import previous re-
sults and use them for further calculations with the provided Mathematica code, it is nec-
essary to replace indices in the exported file to the proper index names used by the func-
tion GenNewInd. This is easily done using find/replace feature of any text editor. Prior to
importing definition of the effective potential, it is necessary to initialize MathTensor and
all additional functions defined in the notebook EffectiveAction-ManyBody.nb, and to
generate the needed number of named indices using the function call GenNewInd[2p+2].
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4 SPEEDUP C codes for Monte Carlo calculation of 1D

transition amplitudes

For short times of propagation, the effective actions derived using the above described
Mathematica codes can be directly used. This has been extensively used in [8, 9], where
SPEEDUP codes were applied for numerical studies of several lower-dimensional models
and calculation of large number of energy eigenvalues and eigenfunctions. The similar
approach is used in [10], where SPEEDUP code was used to study properties of fast-
rotating Bose-Einstein condensates in anharmonic trapping potentials. The availability
of a large number of eigenstates allowed not only precise calculation of global properties
of the condensate (such as condensation temperature and ground state occupancy), but
also study of density profiles and construction of time-of-flight absorption graphs, with
the exact quantum treatment of all available eigenfunctions.

However, in majority of applications the time of propagation cannot be assumed to
be small. The effective actions are found to have finite radius of convergence [8], and if
the typical propagation times in the considered case exceed this critical value, Path Inte-
gral Monte Carlo approach must be used in order to accurately calculate the transition
amplitudes and the corresponding expectation values [4, 18]. As outlined earlier, in this
case the time of propagation T is divided into N time steps, such that ε= T/N is suffi-
ciently small and that the effective action approach can be used. The discretization of the
propagation time leads to the following expression for the discretized amplitude

A
(p)
N (a,b;T)=

∫

dq1 ···dqN−1

(2πε)N/2
e−S

(p)
N , (4.1)

where S
(p)
N stands for the discretized level p effective action,

S
(p)
N =

N−1

∑
k=0

[

(qk+1−qk)
2

2ε
+εWp(xk, x̄k;ε)

]

, (4.2)

and q0= a, qN =b, xk =(qk+1+qk)/2, x̄k =(qk+1−qk)/2.
Level p discretized effective action is constructed from the corresponding effective

potential Wp, calculated as power series expansion to order εp−1. Since it enters the action
multiplied by ε, this leads to discretized actions correct to order εp, i.e. with the errors of

the order εp+1. The long-time transition amplitude A
(p)
N (a,b;T) is a product of N short-

time amplitudes, and its errors are expected to scale as N·εp+1∼1/Np, as has been shown
in [5, 13–15] for transition amplitudes, and in [5, 18] for expectation values, calculated
using the corresponding consistently improved estimators.

4.1 Algorithm and structure of the code

SPEEDUP C source is located in the src directory of the code distribution [19]. It uses the
standard Path Integral Monte Carlo algorithm for calculation of transition amplitudes.
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The trajectories are generates by the bisection algorithm [20], hence the number of time-
steps N is always given as a power of two, N = 2s. When the amplitude is calculated
with 2s time steps, we can also easily calculate all discretized amplitudes in the hierarchy
2s−1,··· ,20 at no extra cost. This requires only minor additional CPU time and memory,
since the needed trajectories are already generated as subsets of maximal trajectories with
2s time-steps.

The trajectory is constructed starting from bisection level n= 0, where we only have
initial and final position of the particle. At bisection level n=1 the propagation is divided
into two time-steps, and we have to generate coordinate q of the particle at the moment
T/2, thus constructing the piecewise trajectory connecting points a at the time t = 0, q
at t= T/2, and b at t= T. The coordinate q is generated from the Gaussian probability
density function centered at (a+b)/2 and with the width σ1 =

√
T/2. The procedure

continues iteratively, and each time a set of points is added to the piecewise trajectory. At
each bisection level n the coordinates are generated from the Gaussian centered at mid-
point of coordinates generated at level n−1, with the width σn =

√
T/2n. To generate

numbers η from the Gaussian centered at zero we use Box-Müller method,

η=
√

−2σ2
n lnξ1 cos2πξ2 , (4.3)

where numbers ξ1 and ξ2 are generated from the uniform distribution on the interval
[0,1], using the SPRNG library [42]. If the target bisection level is s, then at bisection
level n≤ s we generate 2n−1 numbers using the above formula, and construct the new
trajectory by adding to already existing points the new ones, according to

q[(1+2i)·2s−n ]=ηi+
q[i·2s−n+1]+q[(i+1)·2s−n+1]

2
, (4.4)

where i runs from 0 to 2n−1−1. This ensures that at bisection level s we get trajectory
with N=2s time-steps, consisting of N+1 points, with boundary conditions q[0]= a and
q[N]= b. At each lower bisection level n, the trajectory consists of 2n+1 points obtained
from the maximal one (level s trajectory) as a subset of points q[i·2s−n ] for i=0,1,··· ,2n.

The use of trajectories generated by the bisection algorithm requires normalization
factors from all Gaussian probability density functions with different widths to be taken
into account. This normalization is different for each bisection level, but can be calculated
easily during the initialization phase.

The basic C code is organized in three source files, main.c, p.c and potential.c,
with the accompanying header files. The file potential.c (its name can be changed, and
specified at compile time) must contain a user-supplied function V0(), defining the po-
tential V. For a given input value of the coordinate, V0() should initialize appropriate
variables to the value of the potential V and its higher derivatives to the required or-
der 2p−2. When this file is prepared, SPEEDUP code can be compiled and used. The
distributed source contains definition of 1D-AHO potential in the file potential.c, the
same as in the file 1D-AHO.c.
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The execution of the SPEEDUP code starts with the initialization and allocation of
memory in the main() function, and then the array of amplitudes and associated MC
error estimates for each bisection level n = 0,··· ,s is calculated by calling the function
mc(). After printing the output, main() deallocates used memory and exits. Function
mc() which implements the described MC algorithm is also located in the file main.c, as
well as the function distr(), which generates maximal (level s) trajectories.

The function mc() contains main MC sampling loop. In each step new level s trajec-
tory is generated by calling the function distr(). Afterwards, for each bisection level n,
function func() is invoked. This function is located in the file p.c, and returns the value
of the function e−S, properly normalized, as described earlier. This value (and its square)
is accumulated in the MC loop for each bisection level n and later averaged to obtain the
estimate of the corresponding discretized amplitude and the associated MC error.

The function func() makes use of C implementation of earlier derived effective ac-
tions for a general 1D potential. For a given trajectory at the bisection level n, func()
will first initialize appropriate variables with the values of the potential and its higher
derivatives (to the required level 2p−2) by calling the user-supplied function V0(), lo-
cated in the file potential.c. Afterwards the effective action is calculated according to
Eq. (4.2), where the effective potential is calculated by the function Wp(), located in the
file p.c. The desired level p of the effective action is selected by defining the appropriate
pre-processor variable when the code is compiled.

In addition to this basic mode, when SPEEDUP code uses general expression for level
p effective action, we have also implemented model-specific mode, described earlier. If
effective actions are derived for a specific model, then user can specify an alternative p.c

file to be used within the directory src/models/<model>, where <model> corresponds
to the name of the model. If this mode is selected at compile time, the compiler will
ignore p.c from the top src directory, and use the model-specific one, defined by the user.
The distributed source contains model definitions for 1D-AHO and 1D-MPT potentials
in directories src/models/1D-AHO and src/models/1D-MPT. Note that in this mode the
potential is specified directly in the definition of the effective potential, and therefore the
function V0() is not used (nor the potential.c file).

4.2 Compiling and using SPEEDUP C code

SPEEDUP C source can be easily compiled using the Makefile provided in the top direc-
tory of the distribution. The compilation has been thoroughly tested with GNU, Intel and
IBM XLC compilers. In order to compile the code one has to specify the compiler which
will be used in the Makefile by setting appropriately the variable COMPILER, and then to
proceed with the standard command of the type make <target>, where <target> could
be one of all, speedup, sprng, clean-all, clean-speedup, clean-sprng.

The SPRNG library [42] is an external dependency, and for this reason it is located in
the directory src/deps/sprng4.0. In principle, it has to be compiled only once, after the
compiler has been set. This is achieved by executing the command make sprng. After-
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wards the SPEEDUP code can be compiled and easily linked with the already compiled
SPRNG library. Note that if the compiler is changed, SPRNG library has to be recompiled
with the same compiler in order to be successfully linked with the SPEEDUP code.

To compile the code with level p=10 effective action and user-supplied function V0()

located in the file src/1D-AHO.c, the following command can be used:

make speedup P=10 POTENTIAL=1D-AHO.c

If not specified, POTENTIAL=potential.c is used, while the default level of the effective
action is P=1. To compile the code using a model-specific definition of the effective poten-
tial, instead of the POTENTIAL variable, we have to appropriately set the MODEL variable
on the command line. For example, to compile the supplied p.c file for 1D-MPT model
located in the directory src/models/1D-MPT using the level p=5 effective action, the fol-
lowing command can be used:

make speedup P=5 MODEL=1D-MPT

All binaries compiled using the POTENTIALmode are stored in the bin directory, while the
binaries for the MODEL mode are stored in the appropriate bin/models/<model>directory.
This information is provided by the make command after each successful compilation is
done.

The compilation is documented in more details in the supplied README.txt files. The
distribution of the SPEEDUP code also contains examples of compilation with the GNU,
Intel and IBM XLC compilers, as well as matching outputs and results of the execution
for each tested compiler, each model, and for a range of levels of the effective action p.

Once compiled, the SPEEDUP code can be used to calculate long-time amplitudes of
a system in the specified potential V. If executed without any command-line arguments,
the binary will print help message, with details of the usage. The obligatory arguments
are time of propagation T, initial and final position a and b, maximal bisection level s,
number of MC samples Nmc and seed for initialization of the SPRNG random number
generator. All further arguments are converted to numbers of the double type and made
available in the array par to the function V0(), or to the model-specific functions in the
file src/models/<model>/p.c. The output of the execution contains calculated value of
the amplitude for each bisection level n= 0,··· ,s and the corresponding MC estimate of
its error (standard deviation). At bisection level n = 0, where no integrals are actually
calculated and the discretized N=1 amplitude is simply given by an analytic expression,
zero is printed as the error estimate.

Fig. 2 illustrates the typical results obtained from the SPEEDUP code on the example
of 1D-MPT theory. In this figure we can see the convergence of numerically calculated
amplitudes with the number of time-steps N to the exact continuum value, obtained in
the limit N → ∞. Such convergence is obtained for each level p of the effective action
used. However, the convergence is much faster when higher-order effective action is
used. Note that all results corresponding to the one value of level p on the graph are
obtained from a single run of the SPEEDUP code with the maximal bisection level s=10.
The simplest way to estimate the continuum value of the amplitude is to fit numerical
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results from single run of the code to the appropriate level p fitting function [13–15],

A
(p)
N =A(p)+

B(p)

Np
+

C(p+1)

Np+1
+··· (4.5)

The constant term obtained by fitting corresponds to the best estimate of the exact ampli-
tude which can be found from the available numerical results.

As mentioned earlier, the effective action approach can be used for accurate calcula-
tion of a large number of energy eigenstates and eigenvalues by diagonalization of the
space-discretized matrix of transition amplitudes [6–10]. Fig. 3 illustrates this for the case
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of an anharmonic and double-well potential. The graph on the left gives several eigenval-
ues and eigenstates for 1D-AHO potential with A=1 and quartic anharmonicity g=48,
while the graph on the right gives low-lying spectrum and eigenfunctions of the double-
well potential, obtained for A =−10, with the moderate anharmonicity g = 12. More
details on this approach, including study of all errors associated with the discretization
process, can be found in [8, 9].

5 Conclusions

In this paper we have presented SPEEDUP Mathematica and C codes, which implement
the effective action approach for calculation of quantum mechanical transition ampli-
tudes. The developed Mathematica codes provide an efficient tool for symbolic deriva-
tion of effective actions to high orders for specific models, for a general 1D, 2D and 3D
single-particle theory, as well as for a general many-body systems in arbitrary number of
spatial dimensions. The recursive implementation of the code allows symbolic calcula-
tion of extremely high levels of effective actions, required for high-precision calculation
of transition amplitudes.

For calculation of long-time amplitudes we have developed SPEEDUP C Path Integral
Monte Carlo code. The C implementation of a general 1D effective action to maximal
level p = 18 and model-specific effective actions provide fast 1/Np convergence to the
exact continuum amplitudes.

Further development of the SPEEDUP C codes will include parallelization using MPI,
OPENMP and hybrid programming model, C implementation of the effective potential
to higher levels p, as well as providing model-specific effective actions for relevant po-
tentials, including many-body systems.
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Abstract

A newly developed method for systematically improving the convergence of path integrals for transition amplitudes [A. Bogojević, A. Balaž,
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Phys. Lett. A 344 (2005) 84] and expectation values [J. Grujić, A. Bogojević, A. Balaž, Phys. Lett. A 360 (2006) 217] is here applied to the
efficient calculation of energy spectra. We show how the derived hierarchies of effective actions lead to substantial speedup of the standard path
integral Monte Carlo evaluation of energy levels. The general results and the ensuing increase in efficiency of several orders of magnitude are
shown using explicit Monte Carlo simulations of several distinct models.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Feynman’s path integrals [5,6] provide the general math-
ematical framework for dealing with quantum and statistical
systems. The formalism has been successfully applied in gener-
alizing the quantization procedure from the archetypical quan-
tum mechanical problem of the dynamics of a single particle
moving in one dimension, to more particles, more dimensions,
as well as to more complicated objects such as fields, strings [7],
etc. Symmetries of physical systems can be more easily treated
and applied in this formalism, since it gives a simple and nat-
ural setup for their use [8]. Various approximation techniques
are more easily derived within the framework of this formalism,
and it has been successfully used for deriving non-perturbative
results. The parallel application of this formalism in both high
energy and condensed matter physics makes it an important
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general tool [9,10]. The analytical and numerical approaches
to path integrals have by now become central to the develop-
ment of many other areas of physics, chemistry and materials
science, as well as to the mathematics and finance [11–14]. In
particular, general numerical approaches such as the path inte-
gral Monte Carlo method have made possible the treatment of
a wealth of non-trivial and previously inaccessible models.

The key impediment to the development of the path in-
tegral formalism is a lack of complete understanding of the
general mathematical properties of these objects. In numeri-
cal approaches limited analytical input generally translates into
lower efficiency of employed algorithms. The best path gen-
erating algorithms, for example, are efficient precisely because
they have built into them the kinematic consequences of the sto-
chastic self-similarity of paths [15]. A recent series of papers
[1–3] has for this reason focused on the dynamical implications
of stochastic self-similarity by studying the relation between
path integral discretizations of different coarseness. This has
resulted in a systematic analytical construction of a hierarchy
of N -fold discretized effective actions S

(p)
N labeled by a whole

number p and built up from the naively discretized action in
the mid-point ordering prescription (corresponding to p = 1).

0375-9601/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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The level p effective actions lead to discretized transition am-
plitudes and expectation values differing from the continuum
limit by a term of order 1/Np .

In this Letter we extend the applicability of the above
method for improving the efficiency of path integral calcu-
lations to the evaluation of energy spectra. We show how
the increased convergence of path integrals translates into the
speedup in the numerical calculation of energy levels. Through-
out the Letter we present and comment on the Monte Carlo
simulations conducted using the hierarchy of effective actions
for the case of several different models including anharmonic
oscillator, Pöschl–Teller potential, and Morse potential. All the
numerical simulations presented were done using Grid-adapted
Monte Carlo code and were run on EGEE-II and SEE-GRID-2
infrastructure [16,17]. The effective actions and the codes used
can be found on our web site [18].

2. Partition function and energy spectra

The partition function is the central object in statistical me-
chanics. The path integral formalism gives us an elegant frame-
work for calculating partition functions which can be used
either for deriving analytical approximation techniques or for
carrying out numerical evaluation. The starting point is the ex-
pression for the partition function in the coordinate basis,

(1)Z(β) =
∞∫

−∞
da A(a, a;β),

where A(a,b;β) = 〈b|e−βĤ |a〉 is the quantum mechanical
transition amplitude for going from a to b in (Euclidean)
time β . In the path integral formalism transition amplitudes are
given as the N → ∞ limit of the (N − 1)-fold integral expres-
sion

(2)AN(a, b;β) =
(

1

2πεN

)N/2 ∫
dq1 · · ·dqN−1 e−SN .

SN is the naively discretized action of the theory, εN = β/N

the discrete time step. For the physical models that we consider
the action is of the form

(3)S =
β∫

0

dt

(
1

2
q̇2 + V (q)

)
,

and its naive discretization equals

(4)SN =
N−1∑
n=0

(
δ2
n

2εN

+ εNV (q̄n)

)
,

where δn = qn+1 − qn, and q̄n = 1
2 (qn+1 + qn). Note that we

are using units in which the particle mass and h̄ have been set
to unity and that we are evaluating path integrals in the so-called
mid-point ordering prescription.

From the above we have obtained a path integral represen-
tation for the partition function that is directly amenable to
numerical evaluation. On the other hand, by evaluating the trace

Fig. 1. The curves depict the exact solution of the discretized free energies
FN(β) for the harmonic oscillator in the left ordering prescription given in
Eq. (7) for various values of N . The data points give the results and error bars
of the corresponding numerical calculations, used to verify the code. Parameters
are ω = 1 and NMC = 107.

in Eq. (1) in the energy basis we find

(5)Z(β) ≡ e−βF(β) =
∞∑

n=0

e−βEn.

As we can see, the partition function, or equivalently the free
energy F(β), completely determines the energy spectrum and
vice-versa. For example, if we define a series of auxiliary func-
tions as

(6)Fn(β) = − 1

β
ln

(
e−βF −

n−1∑
i=0

e−βEi

)
,

then it immediately follows that Fn(β) → En for large β . It
would be ideal, therefore, if we could calculate the free energy
(and the other auxiliary functions) for arbitrarily large values
of β . This is not possible in numerical calculations. First of all
the calculations become much more demanding with growth
of “time of propagation” β (just as the physics becomes more
interesting). More importantly, when doing numerical calcu-
lations we evaluate discretized quantities such as FN , and the
N → ∞ and β → ∞ limits that one would need to perform do
not commute. The best way to see this is to look at the free en-
ergy of an exactly solvable model—the harmonic oscillator. In
this case the N -fold discretized free energy (in the left ordering
prescription) equals [14]

(7)FN(β) = 1

β
ln

(
2 sinh(ω̃β)

)
,

where ω̃ = (2/εN) arcsinh(ωεN/2). This solution is illustrated
in Fig. 1. It follows that, unlike its continuum limit F(β), the
discretized free energy FN(β) does not tend to a constant value
for large β . Said another way, the discretized energy levels
themselves depend on εN and thus on β . For example, for the
harmonic oscillator we have EN,n(εN) = ω̃(n + 1/2).

In the case of a general theory the free energy is related to
its discretized value as F(β) − FN(β) = O(εN). We see that
FN(β) slowly converges to its continuum limit, i.e. that we



D. Stojiljković et al. / Physics Letters A 360 (2006) 205–209 207

Fig. 2. The dependance of F
(p)
N

(β) on N for different levels p. The plot is
for the anharmonic oscillator with quartic coupling g = 1, inverse temperature
β = 1 and NMC = 107 Monte Carlo samples. The same kind of behavior is
seen for other parameters as well as for other potentials.

need a large number of discretization points N to approach that
value. In addition, the larger the value of β we want, the larger
N must be in order to achieve a given accuracy. The price we
pay is in the computer time which grows linearly with N .

A recent series of papers [1–3] analytically studied the rela-
tion between path integral discretizations of different coarse-
ness for the case of a general theory. This work resulted in
a systematic construction of a hierarchy of N -fold discretized
effective actions S

(p)
N labeled by a whole number p and built up

from the naively discretized action in the mid-point prescription
(corresponding to p = 1). The level p effective action leads to
discretized transition amplitudes and expectation values differ-
ing from the continuum limit by a term of order 1/Np . Thus,
moving up the hierarchy we are guaranteed to get expressions
which converge ever faster to the continuum limit. The direct
application of these results to the free energy gives

(8)F(β) − F
(p)
N (β) = O

(
ε
p
N

)
.

For a given inverse temperature β , and for εN � 1 the dis-
cretized free energy F

(p)
N (β) converges faster to the continuum

as we increase the hierarchy level p. This is illustrated in Fig. 2.
When using the path integral Monte Carlo method to calcu-

late the free energy F(β) there are two sources of errors. The
first comes from the limited number of Monte Carlo samples
NMC and is proportional to N

−1/2
MC . The second type of error

comes from discretization—in our case from approximating the
free energy with F

(p)
N (β) for some N and p. As we have seen,

for a given β this discretization error is proportional to N−p .
These two types of errors should optimally be of the same or-
der, e.g. there is no point in decreasing the discretization error
bellow the Monte Carlo error as this would not decrease the
overall error. In practice we fix the precision we want by choos-
ing the number of Monte Carlo samples and then decrease the
discretization error to match this either by increasing N or the
hierarch level p. The second choice is far better; however, since
computation times grow linearly with N , but are almost inde-
pendent of p (at least for p � 9, the hierarchy levels studied

in [1,2]). As a consequence of this, the speedup coming from
using higher values of p at fixed precision δ is proportional to
δ−1+1/p . Therefore, by using p = 9 we are in fact quite near to
the point of optimal benefit for which the speedup of the new
method is inversely proportional to the precision. As an illustra-
tion, for two decimal precision the new method gives a hundred
fold speedup over the defining algorithm, for four decimal pre-
cision the speedup is ten thousand fold, etc. It is important to
note that the greatest utility of the new evaluation scheme is,
therefore, when calculating quantities with high precision. We
stress that all of this holds for εN � 1, i.e. as long as N � β is
satisfied.

3. Numerical results

As we have seen in the previous section, F(β) can be eval-
uated with arbitrary precision on any interval of inverse tem-
peratures [0, βmax] for any given potential by appropriately in-
creasing and adjusting N , p, and NMC. Let us now numerically
compare the quality of different discretizations of the free en-
ergy F

(p)
N with F ∗, the most accurate one that may be calculated

on a given set {βi}. To do this we use the standard χ2 function,

(9)χ2(N,p) = 1

M

∑
{βi }

(F
(p)
N (βi) − F ∗(βi))

2

(�F
(p)
N (βi))2 + (�F ∗(βi))2

,

where M is the number of points in the set {βi}, and �F is
the Monte Carlo error. By including the Monte Carlo error of
F ∗ into the χ2 weights we took into account the fact that it is
also calculated numerically. χ2 should be around one for well
optimized N and p. Note that χ2 � 1 if the exact value of F ∗
is not within the error bars of F

(p)
N , while χ2 	 1 if the Monte

Carlo error is too large.
We conducted this test on the anharmonic oscillator with

quartic coupling V (q) = 1
2q2 + g

4!q
4. The discretized free en-

ergies were calculated for β ∈ [0.5,8] with step 0.5, N � 1024
and p = 1,2, . . . ,9. The number of Monte Carlo samples used
was 106. The comparisons were done for a range of coupling
constants g ∈ {0,0.1,1,10,100,1000}. Taking F

(9)
1024 as the ex-

act result, we calculated χ2 for each pair of parameters (N,p)

and coupling g, and looked for (N,p) pairs with approximately
the same values of χ2. These pairs are given in Fig. 3. As we
can see, the relation 1/ log2 N ∝ p that is implicit in Eq. (8)
actually holds, i.e. the error indeed scales as N−p .

We now turn to calculating the energy spectrum using the
outlined efficient procedure for evaluating the free energy of
a general theory. For the range of inverse temperatures β that
will be used for numerical calculations of the energies we
choose βmax so that FN(β) = F(β) within the error bars on
the whole [0, βmax] interval. We also need to ensure that all the
assumptions mentioned above hold (εN � 1, βmax fixed). The
free energy F(β) and all its auxiliary functions can be written
as

(10)Fn(β) = En − 1

β
ln

(
1 +

∞∑
i=n+1

e−β(Ei−En)

)
.
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Fig. 3. Pairs of N and p which give similar values of χ2. The plot gives
1/ log2 N on y axis as a function of p. The general behavior is illustrated on
the case of the anharmonic oscillator with quartic coupling g = 1, βmax = 8,
NMC = 106, χ2 ≈ 2–4.

Fig. 4. Dependance of the free energy F and the associated auxiliary functions
F1 and F2 on β for the anharmonic oscillator with quartic coupling g = 1. The
solid lines are the fits to curves of the form given in Eq. (11). The horizontal
lines in black correspond to the energy levels En determined from these fits (see
Table 1). Numerical simulations were performed with p = 9 level improved
actions, N = 256, and NMC = 107.

As a result, we have fit the numerical data to functions of the
form

(11)Fn(β) = En − 1

β
ln

(
1 + Ae−Bβ

)
,

where En, A and B are the parameters of the fit. Fig. 4 shows
the free energy F(β) (approximated by its discretization for
N = 256 and p = 9) along with the associated auxiliary func-
tions F1(β), and F2(β) for the anharmonic oscillator with quar-
tic coupling g = 1. Note that the class of functions given in
Eq. (11) gives a better fit for larger values of β . This can in-
deed be explicitly seen from Fig. 4. The data points for the free
energy F(β) were obtained directly from our Monte Carlo sim-
ulations and were used to determine the ground state energy E0.
The auxiliary functions Fn(β) were obtained recursively using
Eq. (6) and the already determined energy levels. The error bars
presented in the figure also follow directly from Eq. (6) and are

Table 1
Low lying energy levels of the anharmonic oscillator with quartic coupling g,
calculated using N = 256, p = 9, and NMC = 107

g E0 E1 E2 E3

0 0.49993(2) 1.502(2) 2.48(6) 3.6(5)

0.1 0.50301(2) 1.516(1) 2.54(5) 3.5(2)

1 0.52765(2) 1.6295(8) 2.85(2) 3.98(7)

10 0.67335(2) 2.230(1) 4.12(2)

100 1.16247(4) 4.058(6)

1000 2.3578(2)

given by

(12)�Fn = �Fe−βF + ∑n−1
i=0 �Eie

−βEi

e−βF − ∑n−1
i=0 e−βEi

.

For large inverse temperatures β the above denominator be-
comes exponentially small, and so the error bars become very
large. Such points soon cease to give relevant contributions to
the calculations of the corresponding energy level owing to the
fact that we use a weighted fit. Note that, in fact, the lack of
exponential growth of error bars with β is an indication of bad
data points!

This effect of growing error bars becomes more pronounced
for higher energy levels. In addition, from Eq. (12) we see that
there is an accumulation of errors associated with all the lower
energy levels. Both of these effects taken together give practi-
cal limits to the number of energy levels we can calculate. The
precise depth to which we can probe the energy spectrum de-
pends on the number of Monte Carlo samples used as well as
the number of points βi selected within the range of inverse
temperatures available to us. As an illustration, Table 1 gives
the low lying energy levels of the anharmonic oscillator for sev-
eral values of coupling g. For all of these calculations we use
the same range of β . The ground state energy level was calcu-
lated to five significant digits for all values of g. As we have
already noted the errors increase as we go to higher energy lev-
els. In fact, this increase is faster for larger couplings since then
the energies themselves become higher and so the e−βEn terms
become much smaller.

We have conducted explicit Monte Carlo calculations of the
spectra of the Pöschl–Teller and Morse potentials and have ob-
tained the same qualitative behavior. In particular, we have ex-
plicitly determined that the expected speedup in convergence,
coming from using the p-level hierarchy of effective actions,
holds for all of these potentials.

Obtained low lying energy levels for several values of the
parameters of the modified Pöschl–Teller potential,

(13)V (q) = −α2

2

λ(λ − 1)

cosh2 αx
,

are given in Table 2. We considered this exactly solvable poten-
tial since it allows comparison of numerically calculated energy
levels and the exact ones, given by

Eexact
n = −α2

2
(λ − 1 − n)2, 0 � n � λ − 1, n ∈ N.
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Table 2
Low lying energy levels of the modified Pöschl–Teller potential, calculated us-
ing N = 256, p = 9, and NMC = 107

α λ E0 Eexact
0 E1 Eexact

1

0.25 5.5 −0.6329(2) −0.63281 −0.3819(7) −0.38281
0.25 15.5 −6.5704(6) −6.57031 −5.694(9) −5.69531
0.5 5.5 −2.5313(3) −2.53125 −1.530(3) −1.53125
0.5 15.5 −26.281(1) −26.2813 −22.80(3) −22.7813

α λ E2 Eexact
2 E3 Eexact

3

0.25 5.5 −0.18(2) −0.19531 −0.09(3) −0.07031
0.25 15.5 −4.92(2) −4.88281 −3.8(4) −4.13281
0.5 5.5 −0.80(2) −0.78125 −0.31(6) −0.28125
0.5 15.5 −19.6(5) −19.5313 −16.9(9) −16.5313

As can be seen from Table 2, numerical results are in excellent
agreement with the exact energy levels even for a small value
of discretization coarseness N .

As a conclusion, we have investigated a newly developed
method for increasing the convergence of path integrals to the
continuum limit. The method has previously been shown to lead
to a many order of magnitude speedup in the numerical evalua-
tion of path integrals for transition amplitudes [1–3] and expec-
tation values [4]. In this Letter we have applied that method to
the evaluation of energy spectra. We have shown that the above
stated increase in convergence leads to a significant increase of
the efficiency of path integral Monte Carlo calculations of low

lying energy levels of a generic theory. The analytical results
were checked explicitly in a series of Monte Carlo simulations
of several distinct models over a wide range of parameters.
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Abstract— Many complex quantum physical systems can be most 
effectively described by the path integral formalism. The 
SPEEDUP code implements recently introduced analytical 
approach that systematically improves convergence of 
numerically calculated transition amplitudes of a generic 
quantum non-relativistic theory that leads to significant speedup 
of Path Integral Monte Carlo algorithms. In this paper we report 
on the optimization, porting and testing of the SPEEDUP code, 
done on several new computing architectures: IBM POWER6, 
PowerXCell and the latest Intel CPUs. We give overview of 
optimization techniques used and present results on the use of 
advanced features of new CPU types, which can be efficiently 
applied for the optimization of the SPEEDUP code.  

Keywords-  Monte Carlo; SCL; SPEEDUP; Path Integral; 
Optimization; Porting; 

I.  INTRODUCTION  
Path integral Monte Carlo code SPEEDUP [1] is used for 

various calculations, mainly for studies of Quantum 
Mechanical systems and investigation of global and local 
properties of Bose-Einstein condensates. Porting of this code to 
new computing architectures will enable its use on a broader 
set of clusters and supercomputer facilities. The purpose of the 
code optimization is to fully utilize available computing 
resources, eliminating bottlenecks that may be located in 
different parts of the code, depending on the details of 
hardware implementation and architecture of the CPU. In some 
situations even compiling, linking or choosing more 
appropriate (optimized) libraries can lead to significant 
reduction in program execution times. However, the 
optimization must be performed carefully and the new code has 
to be verified after each change by comparison of its numerical 
results with the correct reference values. 

In addition to obtaining highly optimized code, the above 
procedure can be also used to benchmark different hardware 
platforms and to compare their performance on a specific 
application/code. Such application-specific benchmarking, 
based on the assessment of hardware performance for the 
chosen set of applications, can be also used for the proper 
planning of hardware upgrades of computing centers 
supporting several user communities. 

II. SPEEDUP CODE 
Functional formalism in quantum theories naturally 

introduces Monte Carlo simulations as a method of choice for 
numerical studies of relevant physical systems. The 
discretization of the phase space (necessary in any numerical 
calculation) is already built in to the functional formalism 
through the definition of continuous (path) integrals, and can 
be directly translated into the Monte Carlo algorithm. A 
detailed study of the relationship between discretization of 
different coarseness in the case of a general quantum theory 
leads to substantial increase in convergence of path integral to 
its continuum limit [2-4]. This study resulted in an analytic 
procedure for deriving a hierarchy of effective actions up to an 
arbitrary level p. We will illustrate the use of higher-level 
effective actions for calculation of the transition amplitude A 
for a quantum system that evolves from the initial state i to the 
final state f in time T. In the path integral formalism, this 
amplitude is given as N→∞  limit of the (N-1)-fold integral 
expression: 

 

where SN is the discretized action of the theory and εN=T/N is 
the discrete time step. Using naively discretized action, the 
transition amplitude would converge to its continuum limit as 
slow as 1/N. Numerical simulations based on the use of 
effective action of the level p have much faster convergence, 
approaching the continuous limit as 1/Np. The effective 
discretized actions up to level p=18 are implemented in the 
Path Integral Monte Carlo SPEEDUP code [1] in C 
programming language. It is used for efficient calculation of 
transition amplitudes, partition functions, expectation values, as 
well as low lying energy spectra. 

The algorithm of a serial SPEEDUP code can be divided to 
the following steps: 

1. Initialize variables; allocate memory; set input 
parameters of the model, number of time and MC 
steps, and random number generator (RNG) seed. 
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2. Main Monte Carlo loop, which accumulates 
contributions of sampled trajectories to intermediate 
variables; each loop step consists of the following 
steps: 

a. Generate trajectory using the bisection 
method [5]. The number of time steps is 
N=2s, where s is the discretization level 
(input parameter). 

b. Calculate effective action for a generated 
trajectory and each sub-trajectory with 
smaller discretization level (s-1, ..., 1). 

c. Accumulate variables used to calculate 
observables and their error estimates at each 
discretization level. 
 

3. Calculate observables and associated errors by 
averaging variables accumulated in the previous step 
at each discretization level. 
 

4. Print the results, deallocate memory and exit the 
program. 
 

Parallelization of the above Monte Carlo algorithm is very 
simple, since each loop step 2 is independent. Therefore, the 
total number of Monte Carlo steps can be easily and evenly 
divided to a desired number of CPU threads or parallel 
processes (in MPI or in other available parallelization 
environment). 

The SPEEDUP code generates large numbers of random 
trajectories and relies on the MC theory to achieve no 
correlations between the generated trajectories. This 
necessitates high-quality RNG, able to produce large numbers 
of uncorrelated random numbers from the uniform probability 
density distribution, in a form suitable for parallel simulation. 
For the SPEEDUP code we have used SPRNG - Scalable 
Parallel Random Number Generator [6], which is verified to 
satisfy all of the above criteria. SPRNG can generate large 
numbers of separate uncorrelated streams of random numbers, 
making it ideal for parallel applications. 

III. TESTED HARDWARE ARCHITECTURES 
 

The hardware platform used for the testing reported in this 
paper was IBM BladeCenter with 3 kinds of servers within the 
H-type chassis commonly used in high performance computing 
and a separate 1U server based on latest Intel Nehalem Xeon 
processors: 

• HX21XM blade Server based on Intel Xeon 
technology. It features two Intel Xeon E5405 processors that 
run on 2.0 GHz with front side bus of 1333MHz and level two 
cache (L2) of 12MB with support for Intel SSE2, SSE3, 
SSE4.1 extensions. Along with standard GCC (GNU Compiler 
Collection) compiler (gcc version 4.1.2), Intel C++ Compiler 
Professional Edition 11.1 by Intel Corporation (ICC) [7] that 
includes advanced optimization, multithreading, and processor 
support, as well as automatic processor dispatch, vectorization, 
and loop unrolling was used for testing in this paper. 

• The BladeCenter JS22 server is a single-wide, 4-core, 
2-socket with two cores per socket, 4.0 GHz POWER6 [8] 
SCM processors. Each processor includes 64 KB I-cache and 
32 KB D-cache L1 cache per core with 4 MB L2 cache per 
core. Processors in this blade server are based on POWER 
RISC instruction set architecture (ISA) with AltiVec, a single-
instruction, multiple-data (SIMD) extensions. IBM provides 
XL C/C++ compiler solution (XLC) [9] that offers automated 
SIMD capabilities for application code that can be quite help 
for programmers. Beside GCC compiler IBM XLC/C++ is 
used for benchmark purposes in this paper. 

• The IBM BladeCenter QS22 is based on 2 multi-core 
IBM PowerXCell 8i processors, based on Cell Broadband 
Engine Architecture (Cell/B.E.) [10]. The Cell Broadband 
Engine is a single-chip multiprocessor with 1+8 processors, 
specialized into two types: 

1. The PowerPC Processor Element (PPE) is a general-
purpose, dual-threaded, 64-bit RISC processor fully 
compliant with the 64-bit PowerPC Architecture, with 
the Vector/SIMD Multimedia Extension operating at 
3.2 GHz. It is intended primarily for control 
processing, running operating systems, managing 
system resources, and managing SPE threads. 

2. The SPE (Synergetic Processing Element) is core 
optimized for running compute-intensive applications. 
SPEs are single-instruction, multiple-data (SIMD) 
processor elements that are meant to be used for data-
rich operations allocated to them by the PPE. Each 
SPE contains a RISC core, 256 KB software-
controlled locale storage (LS) for instructions and 
data, and a 128-bit, 128-entry unified register file. The 
SPEs provide a deterministic operating environment. 
An SPE accesses both main memory and the local 
storage of other SPE’s exclusively with DMA 
commands. They do not have caches, so cache misses 
are not a factor in their performance and programmer 
should to avoid branch intensive code. 

Such a heterogeneous multi-core architecture of the Cell CPU 
requires that a developer adopts several new programming 
paradigms in order to fully utilize the full potential of Cell B/E 
processor. In addition to the GNU tools (including C and C++ 
compilers) which are provided with the Software Developer's 
Kit for Multicore Acceleration [11], one can also use IBM XL 
C/C++ Compiler [9] for Multicore Acceleration, specialized for 
Cell Broadband Engine solution. 

• Intel Server System SR1625UR based on latest Intel 
Xeon processors with Nehalem micro-architecture. Two quad-
core Xeon X5570 processors are present within the system. 
These CPUs run on 2.93GHz with triple channel DDR3 
memory subsystem with support of latest SSE4.2 extensions. 
They are equipped with 256 Kb of Mid-Level cache per core 
and 8MB of cache shared between cores (L3). With this micro-
architecture Intel reintroduced its Hyper-Threading technology 
that supposed to enhance parallelization of computational 
tasks. Beside GCC, Intel ICC compiler, as for the other Intel 
system, was used for obtaining results of testing described in 
this paper. 
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IV. RESULTS 
Here we describe the performed optimization and the 

obtained benchmarking results. In all benchmarks in this paper 
we have executed the code with Nmc=5120000 MC samples 
for the quantum-mechanical amplitude of the quartic 
anharmonic oscillator with the boundary conditions q(t=0)=0, 
q(t=T=1)=1, with zero anharmonicity and with level p=9 
effective action. We always used the same seed for SPRNG 
generator so that the results can be easily compared. Section A 
gives results for a serial SPEEDUP code on each platform 
with different compilers. These results are later used as a 
reference in benchmarking and in verification of the optimized 
code. Section B gives results for SPEEDUP MPI code tested 
on Intel platform, while Section C presents the threaded 
SPEEDUP code and results obtained with Intel and POWER 
architectures. In Section D we give results for the Cell 
SPEEDUP code, and in Section E we compare all results. 

 

A. Serial SPEEDUP code 
 

For Intel Xeon 5405 Blade server we compiled the serial 
code with GCC C compiler using optimization flag -O1, which 
turns to give the best performance. Along with GCC, we also 
used ICC compiler with optimization flag –fast, equivalent to 
the combination -O3 -xHOST -ipo -no-prec-div -static. 

Intel Nehalem platform shows best results with GCC flags -
O1 –funroll-loops (loop unrolling), and with the -fast flag for 
Intel's ICC. 

On POWER6 and Cell Blades the code was compiled with 
both GCC and IBM XLC compiler. On Cell Blade we used the 
flags -O1 -funroll-loops with GCC, and with XLC flags -O5 
-qaltivec -qenablevmx. Appropriate versions of GCC and XLC 
binaries were used (ppu-gcc and ppuxlc). On POWER6 Blade -
q64 -O5 –qaltivec -qenablevmx flags were used with XLC and 
-O3 -funroll-loops with GCC. Results for the serial program 
benchmarking are presented in Table 1. 

 

Platform/Compiler GCC ICC XLC 

Intel Xeon 5405 (6280±20) s (1600±20) s - 

Intel Nehalem (3520±10) s (920±10) s - 

POWER6 (8980±10) s - (1830±10) s 

Cell (25350±50) s - (12550±50) s 
 

Table 1: Average times of execution of a serial SPEEDUP code on all 
tested platforms with different compilers. The flags used are given in the text. 

Table 1 demonstrates the significant increase in the speed 
of the execution of the code when platform-specific compiler is 
used. New Nehalem platform in conjunction with ICC 
compiler gives the best performance compared to all other 
platforms. On the other hand, it is clear that Cell version, 
running only on the PPE is no match for other two platforms. 
Real utilization of the Cell platform can be achieved only when 
additional available SPEs are used. 

B. MPI SPEEDUP code 
 

On the Intel Blade Xeon 5405 and Intel Nehalem platform, 
we tested the performance of the SPEEDUP code with MPI 
implementation, compiled by the ICC compiler with -fast flag. 
Also we tested the behavior of Nehalem CPUs with Hyper-
Threading feature enabled and disabled. The results are shown 
in Figure 1.  

 
Figure 1: Average times of execution of the MPI SPEEDUP code on Intel 

Xeon 5405 and Intel Nehalem platforms compiled with ICC (-fast flag). The 
curves give fits to the expected dependence A + B / (Number of MPI 
processes). 

As we can see, the MPI version of the code shows excellent 
scalability with the number of MPI processes. When the 
number of MPI processes exceeds the number of physical cores 
in the system (eight), the operating system is trying to 
distribute the load among already fully loaded cores, which 
creates additional overhead. This is less pronounced at the 
Nehalem platform, with the Hyper-Threading enabled. In that 
case, as shown in Figure 2, slightly better results are achieved 
when the numbers of MPI instances exceeds the number of 
physical cores. Below this threshold the results are identical.  

 
Figure 2: Average times of execution of the MPI SPEEDUP code on Intel 

Nehalem platform compiled with ICC (fast flag) with Hyper-Threading 
technology enabled (HT on) and disabled (HT off). 
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MPI implementation gives minimal execution time of 
around 100s for Nehalem platform and around 200s for Intel 
Xeon 5405. 

C. Modified  SPEEDUP code 
 

To fully optimize the parallel SPEEDUP code, instead of 
using MPI API, we implemented its threaded version using the 
POSIX threads (pthreads). Each thread calculates Nmc/Nth of 
Monte Carlo samples, where Nth represents the number of 
initiated threads. Also, some minor additional modifications of 
the code were performed, focusing on specific improvements 
for p=9 effective action. The Intel version of the code was 
compiled with ICC, while the POWER version was compiled 
with XLC. The obtained numerical results are summarized in 
Figure 3. 

 

 
 

Figure 3: Average times of execution of the threaded SPEEDUP code on 
Intel and POWER6 platforms.  

 

 
 

Figure 4: Average times of execution of the threaded SPEEDUP code on 
Intel Nehalem platform with Hyper-Threading enabled (HT on) and disabled 
(HT off).  

 
With the threaded code we obtained non-negligible 

increase in the speed of the code compared to previous 

implementations. Again, Intel Nehalem with the ICC compiler 
was much faster than all other platforms. If we compare the 
increase in the speed gained by implementing the threaded 
code, the POWER6 platform shows a 12% performance gain 
(threaded vs. the serial code), while we get around 6% gain for 
Intel platforms (threaded vs. MPI code). 

The minimal execution time with the threaded code was 
190s on Intel Xeon 5405 Blade, 95s on Intel Nehalem and 
235s on the POWER Blade.  Again, we can see a small impact 
on the execution speed when Hyper-Threading technology is 
enabled on the Intel Nehalem CPUs (Figure 4.). 

 

 
 

Figure 5: Times of execution of the threaded SPEEDUP code on Intel 
Nehalem platform with ICC and GCC compiler.  
 

We have also observed an interesting behavior on Intel 
platforms, which is presented in Figure 5. Although the 
threaded code gives better performance when compiled with 
ICC compared to the code compiled with GCC, the times of 
execution of the ICC-complied code for the same parameters 
and the same number of threads differ significantly for several 
consecutive runs. Such relatively large scattering of execution 
times around the average might be accredited to the low-level 
hardware implementation details of Intel CPUs, as well as to 
the aggressive optimization techniques used by the –fast flag. 
On the other hand, the execution of the same code compiled 
with GCC did not exhibit such behavior. This might point to 
the load-balancing issues when aggressive optimization is 
used with ICC, while GCC is not able to achieve such level of 
optimization and thus is not affected. The similar behavior 
was also observed on Intel Xeon 5405 platform. 
 

D. Cell  SPEEDUP code 
 

The heterogeneity of the Cell architecture required the 
slight rearrangement of the SPEEDUP code. We used MPI 
version of the code as a basis, and modified it so as to separate 
serial sections to be executed on the PPE from the parallel 
sections that can be executed on as many SPEs as available in 
the system. Our main implementation idea was to create a 
number of pthreads on the PPE that will pass control and start 

SEE-GRID-SCI
e-INFRASTRUCTURE
for regional eScience

User Forum 2009



137

execution of the code on the dedicated SPE for each pthread. 
Each SPE performs Nmc/Number_of_SPEs Monte Carlo steps, 
running the same code, only with different parameters passed 
by the PPE.  After all SPEs finish their work, the final 
processing of gathered data is done on the PPE. 

The main problem in a proper porting of the SPEEDUP 
code to the Cell architecture was missing Cell SPRNG library 
code that can be compiled and executed on each SPU. For this 
reason, we have compiled SPRNG for the PPE and performed 
all random number generation operations only on PPEs. This 
was done in parallel through several pthreads, distributed 
between both PPE processors of a QS22 Blade. Each pthread 
was associated with one of SPEs and synchronized with it 
using the mailbox technique. It is one of the simplest hardware 
based ways of communication within Cell CPU. The PPE 
mailbox checking is implemented through the interrupt, 
without active waiting (such as polling through the loop). 
Access to the main memory by all SPEs is realized through the 
Direct Memory Access (DMA) transfers. We have one initial 
transfer where control data from the PPE are received, one final 
transfer where computation results are sent back to the main 
memory and intermediate transfers of generated random 
numbers for each MC step. The XLC-compiled code was 
superior in the performance compared to the GCC-compiled 
code. The results for the XLC-compiled code are shown in 
Figure 6.  

 
Figure 6: Average times of execution of the Cell SPEEDUP code. For 

comparison, we also give execution times for the code without generation of 
random numbers. 

As we can see, the fact that only PPEs are used for 
generation of random trajectories leads to a saturation of the 
performance when we increase the number of used SPEs to 
around 4. After that, PPEs are not able to generate random 
numbers sufficiently enough, and further increase in the 
number of SPEs used does not lead to any improvement in the 
performance. In the ideal case, if PPEs would be able to 
produce enough random trajectories for all SPEs, the 
simulation execution time would be around 260s, as can be 
seen in Figure 6 for the code without random number 
generation. We also tested the code with the communication 
part disabled (no DMA memory transfers). From Table 2 we 
see that the communication does not have significant impact on 
the execution time and does not represent a bottleneck. To 

confirm this, we tested also the code that only generates 
random trajectories on PPEs, and observed the saturation in its 
performance at about 770s for the given number of Monte 
Carlo samples Nmc. This clearly corresponds to the minimal 
execution time for the full version of the Cell code in Figure 6. 

Number of SPEs 
No random 
trajectories 
generation 

No 
communication 

1 (4220±5) s (4200±5) s 

2 (2110±5) s (2100±5) s 

4 (1055±5) s (1050±5) s 

8 (530±5) s (525±5) s 

16 (265±5) s (260±5) s 

 
Table 2: Average times of execution of the Cell SPEEDUP code without 

random trajectories generation and without PPE-SPE communication. 

Therefore, as we can see, the missing implementation of the 
SPRNG library was a limiting factor in fully utilizing the 
capabilities of all SPEs of the Cell Blade. However, this 
problem would not be even seen in the case when individual 
MC steps take more time to finish their calculation, since then 
PPEs would be able to generate random trajectories at a 
sufficient rate. Such situation can be easily achieved e.g. if one 
uses higher effective action level p code [1-4]. We have 
demonstrated similar situation in Figure 7, where we have used 
unoptimized Cell SPEEDUP code, and where we observe 
perfect scaling of the code with the number of SPEs. Disabling 
the optimization leads to a much slower execution of the code, 
and each MC step takes much more time to be completed, thus 
giving enough time to PPEs to generate needed random 
trajectories according to the bisection algorithm. This also 
demonstrates the fact that specific details of the optimal porting 
of an application to the Cell architecture can significantly 
depend on the execution run-time parameters. Such situation is 
not frequently encountered on other computing platforms, and 
is here due to the current limitations of the Cell SPUs, as well 
as limitations in their communication model. 

 
Figure 7: Average times of execution of the Cell SPEEDUP code compiled 

without optimization. The number of Monte Carlo steps is decreased to 
Nmc=5120, since the code without optimization is executed much slower. 
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E. Comparison of hardware performance results 
 

The overview of the obtained performance results for all 
tested hardware platforms is presented in Table 3. For Intel and 
POWER6 platform we give the results for the fully optimized 
threaded SPEEDUP code. For the Cell platform we give the 
minimal obtained execution time, as well as the execution time 
obtained with random trajectories generation disabled, which 
corresponds to the full utilization of all SPEs. 

 
Intel Xeon 

5405 Intel Nehalem POWER6 Cell Cell ideal 

190s 95s 235s 770s 260s 
 

Table 3: Minimal average execution time for each tested platform for the 
fully optimized SPEEDUP code. For each platform we have selected the 
optimal implementation. 

The difference in performance of two tested Intel platforms 
can be partially explained by the higher clock frequency of 
2.93 GHz for the Nehalem CPU, compared to only 2.0GHz 
frequency for the Intel Xeon 5405. However, even if we rescale 
the performances of both platforms to the same frequency, we 
still see a 30% better performance of the Nehalem platform. 
Such significantly better performance is due to the improved 
architecture of the newer CPU. 

 

V. CONCLUSIONS 
 

We have ported and optimized Path Integral Monte Carlo 
SPEEDUP code to four different computing architectures 
(Intel Xeon 5405, Intel Nehalem X5570, IBM POWER6 and 
Cell) and used the obtained code for benchmarking of these 
hardware platforms. For Intel and POWER6 platforms full 
optimization was obtained with the straightforward threaded 
version of the code, while the Cell platform required more 
complex changes of the code (implementation of separate PPE 
and SPE sections of the code). For benchmarking purposes we 
have also used different available compilers for each of 
architectures, and our results clearly show that platform-
specific compilers always give much better performance. 

The SPEEDUP code was most easily optimized on the 
both Intel platforms, especially on Intel Nehalem where it 
achieves superior performance compared to all other hardware 
platforms. Contrary to our expectations based on previous 
experiences with the Hyper-Threading technology, it did not 
improve the performance of the code significantly. 

The Cell platform is demonstrated to be able to achieve 
respectable level of performance in the case when individual 
MC steps take more time to complete. In the current 
implementation, due to the missing Cell SPRNG library, 
SPEEDUP code can fully utilize all Cell SPEs only for higher 
effective action levels p. However, the tested Cell CPU is no 
match for POWER6 or latest Intel CPUs. The Nehalem 

platform also significantly outperforms POWER6 CPU, 
despite its much higher frequency of 4.0 GHz. 

The plans for further development and testing include 
porting of SPRNG library to SPEs and implementation of 
platform-specific instructions (vectorization) for each tested 
platform. 
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Path integral formalism presents the concise and flexible formulation of quantum theories at different 

levels, providing also simple description of many other complex physical systems. Recently introduced 
analytical approach that systematically improves convergence of numerically calculated path integrals of a 
generic theory leads to a significant speedup of Path Integral Monte Carlo algorithms. This is implemented in the 
SPEEDUP code. Here we report on optimization, porting and testing of the SPEEDUP code on new computing 
architectures: latest Intel, and IBM POWER6 and PowerXCell CPUs. We find that the code can be highly 
optimized and take substantial advantage of the features of new CPU types. 

1. Introduction 

Path integral Monte Carlo code SPEEDUP [1] is used for various calculations mainly 
for studies of Quantum Mechanical systems and investigation of global and local properties of 
Bose-Einstein condensates. Porting of this code to new computing architectures will enable its 
use on a broader set of clusters and supercomputer facilities. The purpose of the code 
optimization is to fully utilize available computing resources, eliminating bottlenecks that 
may be located in different parts of the code, depending on the details of hardware 
implementation and architecture of the CPU. In some situations even compiling, linking or 
choosing more appropriate (optimized) libraries can lead to significant reduction in program 
execution times. However, the optimization must be performed carefully and the new code 
has to be verified after each change by comparison of its numerical results with the correct 
reference values. 

In addition to obtaining highly optimized code, the above procedure can be also used 
to benchmark different hardware platforms and to compare their performance on a specific 
application/code. Such application-specific benchmarking, based on the assessment of 
hardware performance for the chosen set of applications, can be also used for the proper 
planning of hardware upgrades of computing centers supporting several user communities. 

 
2. SPEEDUP code  

Functional formalism in quantum theories naturally introduces Monte Carlo 
simulations as a method of choice for numerical studies of relevant physical systems. The 
discretization of the phase space (necessary in any numerical calculation) is already built in to 
the functional formalism through the definition of continuous (path) integrals, and can be 
directly translated into the Monte Carlo algorithm. A detail study of the relationship between 
discretization of different coarseness in the case of a general quantum theory leads to 
substantial increase in convergence of path integral to its continuum limit [2-4]. This study 
resulted in an analytic procedure for deriving a hierarchy of effective actions up to an 
arbitrary level p. We will illustrate the use of higher-level effective actions for calculation of 
the transition amplitude A for a quantum system that evolves from the initial state i to the final 
state f in time T. In the path integral formalism, this amplitude is given as N limit of the 
(N-1)-fold integral expression: 

, 

where SN is the discretized action of the theory and ϵN=T/N is the discrete time step. Using 

naively discretized action, the transition amplitude would converge to its continuum limit as 
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slow as 1/N. Numerical simulations based on the use of effective action of the level p have 
much faster convergence, approaching the continuous limit as 1/Np. The effective discretized 
actions up to level p=18 are implemented in the Path Integral Monte Carlo SPEEDUP code 
[1] in C programming language. It is used for efficient calculation of transition amplitudes, 
partition functions, expectation values, as well as low lying energy spectra. 

The algorithm of a serial SPEEDUP code can be divided to the following steps: 

1. Initialize variables; allocate memory; set input parameters of the model, number of 
time and MC steps, and random number generator (RNG) seed. 

2. Main Monte Carlo loop, which accumulates contributions of sampled trajectories to 
intermediate variables; each loop step consists of the following steps: 

a. Generate trajectory using bisection method [5]. The number of time steps is 
N=2s, where s is the discretization level (input parameter), 

b. Calculate effective action for a generated trajectory and each sub-trajectory 
with smaller discretization level (s-1, ..., 1), 

c. Accumulate variables used to calculate observables and their error estimates at 
each discretization level, 

3. Calculate observables and associated errors by averaging variables accumulated in the 
previous step at each discretization level, 

4. Print the results, deallocate memory and exit the program. 
Parallelization of the above Monte Carlo algorithm is very simple, since each loop 

step 2 is independent. Therefore, the total number of Monte Carlo steps can be easily and 
evenly divided to a desired number of CPU threads or parallel processes (in MPI or in other 
available parallelization environment). 

The SPEEDUP code generates large numbers of random trajectories and relies on the 
MC theory to achieve no correlations between the generated trajectories. This necessitates 
high-quality RNG, able to produce large numbers of uncorrelated random numbers from the 
uniform probability density distribution, in a form suitable for parallel simulation. For the 
SPEEDUP code we have used SPRNG - Scalable Parallel Random Number Generator [6], 
which is verified to satisfy all of the above criteria. SPRNG can generate large numbers of 
separate uncorrelated streams of random numbers, making it ideal for parallel applications. 

 
3. Tested hardware architectures 

The hardware platform used for the testing reported in this paper was IBM 
BladeCenter with 3 kinds of servers within the H-type chassis commonly used in high 
performance computing: 

 HX21XM blade Server based on Intel Xeon technology. It features two Intel Xeon 5405 
processors that run on 2.0 GHz with front side bus of 1333MHZ and level two cache (L2) 
of 12MB with support for Intel SSE2, SSE3, SSE4.1 extensions. Along with standard 
GCC (GNU Compiler Collection) compiler (gcc version 4.1.2), Intel C++ Compiler 
Professional Edition 11.1 by Intel Corporation (ICC) [7] that includes advanced 
optimization, multithreading, and processor support, as well as automatic processor 
dispatch, vectorization, and loop unrolling was used for testing in this paper. 

 The BladeCenter JS22 server is a single-wide, 4-core, 2-socket with two cores per socket, 
4.0 GHz POWER6 [8] SCM processors. Each processor includes 64 KB I-cache and 32 
KB D-cache L1 cache per core with 4 MB L2 cache per core. Processors in this blade 
server are based on POWER RISC instruction set architecture (ISA) with AltiVec, a 
single-instruction, multiple-data (SIMD) extensions. IBM provides XL C/C++ compiler 
solution (XLC) [9] that offers automated SIMD capabilities for application code that can 
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be quite help for programmers. Beside GCC compiler IBM XLC/C++ is used for 
benchmark purposes in this paper. 

 The IBM BladeCenter QS22 is based on 2 multi-core IBM PowerXCell 8i processors, 
based on Cell Broadband Engine Architecture (Cell/B.E.) [10]. The Cell Broadband 
Engine is a single-chip multiprocessor with nine processors specialized into two types: 

1. The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded,  
64-bit RISC processor fully compliant with the 64-bit PowerPC Architecture, 
with the Vector/SIMD Multimedia Extension operating at 3.2 GHz. It is 
intended primarily for control processing, running operating systems, managing 
system resources, and managing SPE threads. 

2. The SPE (Synergetic Processing Element) is core optimized for running 
compute-intensive applications. SPEs are single-instruction, multiple-data 
(SIMD) processor elements that are meant to be used for data-rich operations 
allocated to them by the PPE. Each SPE contains a RISC core, 256 KB 
software-controlled locale storage (LS) for instructions and data, and a 128-bit, 
128-entry unified register file. The SPEs provide a deterministic operating 
environment. An SPE accesses both main memory and the local storage of other 
SPE’s exclusively with DMA commands. They do not have caches, so cache 
misses are not a factor in their performance and programmer should to avoid 
branch intensive code. 

The Cell Broadband Engine has one PPE and eight SPEs. 

Such a heterogeneous multi-core architecture of the Cell CPU requires that a 
developer adopts several new programming paradigms in order to fully utilize the full 
potential of Cell B/E processor. In addition to the GNU tools (including C and C++ 
compilers) which are provided with the Software Developer's Kit for Multicore Acceleration 
[11], one can also use IBM XL C/C++ Compiler [9] for Multicore Acceleration, specialized 
for Cell Broadband Engine solution. 

 
4. Results 

Here we describe the performed optimization and the obtained benchmarking results. 
In all benchmarks in this paper we have executed the code with Nmc=5120000 MC samples 
for the quantum-mechanical amplitude of the quartic anharmonic oscillator with the boundary 
conditions q(t=0)=0, q(t=T=1)=1, with zero anharmonicity and with level p=9 effective 
action. We always used the same seed for SPRNG generator so that the results can be easily 
compared. Section 4.1 gives results for a serial SPEEDUP code on each platform with 
different compilers. These results are later used as a reference in benchmarking and in 
verification of the optimized code. Section 4.2 gives results for SPEEDUP MPI code tested on 
Intel platform and Section 4.3 presents the threaded SPEEDUP code and results obtained with 
Intel and POWER architectures. In Section 4.4 we give results for the Cell SPEEDUP code, 
and in Section 4.5 we compare all obtained results. 

4.1. Serial SPEEDUP code 

For Intel Blade server we compiled the serial code with GCC C compiler using 
optimization flags O1 and funroll-loops which give the best performance (better than the O3 
flag, with or without loop unrolling). Along with GCC, we also used ICC compiler with 
maximal optimization flag O2. 

On POWER6 and Cell Blades the code was compiled with both GCC and IBM XLC 
compilers. On Cell Blade we used the flags O3, funroll-loops, mabi=altivec, and maltivec 
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with GCC, and O5, qaltivec and qenablevmx with XLC. Appropriate versions of GCC and 
XLC binaries were used (ppu-gcc and ppuxlc). On POWER6 Blade the O5 flag was used with 
XLC and O3 and funroll-loops with GCC. Results for serial program testing are presented in 
Table 1. 

 
Table 1. Average time of execution of a serial SPEEDUP code on all tested platforms with 

different compilers 
 

          
Compiler 
Platform 

GCC ICC XLC 

Intel (13760±50) s 
(10160±30) 

s 
- 

POWER6 (17000±10) s - (1900±10) s 

Cell (49410±50) s - 
(14020±20) 

s 
 
 
Table 1 demonstrates the significant increase in the speed of the code when platform-

specific compiler is used. We also see that in this specific case the POWER6 platform in 
combination with the XLC compiler shows order of magnitude improvement in the speed 
compared to the Intel platform. On the other hand, it is clear that Cell version, running only 
on the PPE is no match for other two platforms. Real utilization of the Cell platform can be 
achieved only when SPEs are used. 

 
4.2. MPI SPEEDUP code 

On the Intel Blade multicore, we tested the performance of the SPEEDUP code with 
MPI implementation, compiled with GCC and ICC compliers. The results are shown in Fig. 1.  

 

Fig. 1. Average times of execution of the MPI SPEEDUP code on Intel platform compiled 
with ICC (O2 flag) and GCC (O1 and funroll-loops). The curves give fits to the expected 
dependence A + B / (Number of MPI processes). 

As we can see, the MPI version of the code shows excellent scalability with the 
number of MPI processes. When the number of MPI processes exceeds the number of 
physical cores in the system, the operating system is trying to distribute the load among 
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already fully loaded cores, which creates additional overhead. This implementation gives 
minimal execution time of 1320s. 

 
4.3. Modified SPEEDUP code 

To fully optimize the parallel SPEEDUP code, instead of using MPI API we 
implemented its threaded version using POSIX threads (pthreads). Each thread calculates 
Nmc/Nth of Monte Carlo samples where Nth is the number of threads. Also, some minor 
additional modifications of the code were performed, focusing on specific improvements for 
p=9 effective action. The Intel version was compiled with ICC, while the POWER version 
was compiled with XLC. The obtained numerical results are shown in Fig. 2. 

 

Fig. 2. Average times of execution of the threaded SPEEDUP code on Intel and 
POWER platforms 

With the threaded code we obtained a significant increase in the speed of the code, 
even without implementing specific vector instructions (AltiVec on POWER6 or SSE on 
Intel). Again, POWER6 Blade in conjunction with XLC compiler was faster than Intel Blade. 
However, the relative increase in the speed of threaded code was larger on the Intel platform. 
The minimal execution time was 460s on Intel and 250s on POWER Blade. This gives 
relative increase in the speed of the code of 2.8 (threaded vs. MPI) for Intel and 1.3 (one 
thread vs. serial) for POWER6 platform. 

We also note an interesting scaling issue on POWER6 system. While the threaded 
code scales perfectly on Intel Blade, POWER6 Blade shows strange behavior for even 
number of threads, where execution times are slightly higher than expected. When the code is 
compiled with GCC, the same behavior is observed for odd number of threads. Such throttling 
may be related to low-level hardware details that are not properly implemented in different 
compilers. 

 
4.4. Cell SPEEDUP code 

The heterogeneity of the Cell architecture required the slight rearrangement of the 
SPEEDUP code. We used MPI version of the code as a basis, and modified it so as to separate 
parts that are executed on the PPE and parts that are executed in parallel on SPEs. Our 
implementation was to create a number of pthreads on the PPE that will pass control and start 
execution of the code on the dedicated SPE for each pthread. Each SPE performs 
Nmc/Number_of_SPEs MC steps, running the same code, only with different parameters 
passed by the PPE.  After all SPEs finish their work, the final processing of gathered data is 
done on the PPE. 
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The main problem in a proper porting of the SPEEDUP code to the Cell architecture 
was missing Cell SPRNG code that can be compiled for the SPU. For this reason, we have 
compiled SPRNG for the PPE and performed all RNG operations only on the PPEs. This was 
done in parallel through several pthreads, distributed between both PPU processors of a QS22 
Blade. Each pthread is associated with one of SPEs and synchronizes with it using mailbox 
technique, one of the simplest, hardware based, ways of communication within Cell CPU. The 
PPE mailbox checking is implemented through the interrupt, without active waiting (such as 
polling through the loop). Access to the main memory by all SPEs is realized through the 
Direct Memory Access (DMA) transfers. We have one initial transfer where control data from 
the PPE are received, one final transfer where computation results are sent back to the main 
memory and intermediate transfers of generated random numbers for each MC step. The 
XLC-compiled code was superior in the performance compared to the GCC-compiled code. 
The results for the XLC-compiled code are shown in Fig. 3. 

As we can see, the fact that only PPEs are used for generation of random trajectories 
leads to a saturation of the performance when we increase the number of used SPEs to around 
4. In the ideal case, when PPEs would be able to produce enough random trajectories for all 
SPEs, the simulation execution time would be around 250s, as can be seen in Fig. 3 for the 
code without random number generation). We also tested the code with the communication 
part disabled (no DMA memory transfers). From Table 2 we see that the communication does 
not have significant impact on the execution time and does not represent a bottleneck. To 
confirm this, we tested also the code that only generates random trajectories on PPEs, and 
observed the saturation in its performance at about 750s for the given Nmc number. This 
clearly corresponds to the minimal execution time for the full version of the Cell code in 
Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3. Average times of execution of the Cell SPEEDUP code (full version) and for the 

code without generation of random numbers 
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Table 2. Average times of execution of the Cell SPEEDUP code without random 

trajectories generation and without PPE-SPE communication 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
Therefore, as we can see, the missing implementation of the SPRNG library was 

limiting factor in fully utilizing the capabilities of all SPEs of the Cell Blade. This would not 
be the case if individual MC step calculation would require more time to complete, since then 
PPEs would be able to generate random trajectories at a sufficient rate. Such situation can be 
easily achieved e.g. if one uses higher effective action level p code. We have demonstrated 
similar situation in Fig. 4, where we have used unoptimized Cell SPEEDUP code, and where 
we observe perfect scaling of the code with the number of SPEs. Note that we used only 5120 
MC samples for these tests since the code is now executed much slower. 

 

 

Fig. 4. Average times of execution of the Cell SPEEDUP code compiled without optimization 

 

4.5. Comparison of hardware performance results 

The overview of the obtained performance results for all tested hardware platforms is 
presented in Table 3. For Intel and POWER6 platform we give the results for the fully 
optimized threaded SPEEDUP code. For the Cell platform we give the minimal obtained 
execution time, as well as the execution time obtained with random trajectories generation 
disabled, which corresponds to the full utilization of all SPEs.  

 

Number 
of SPEs 

No random 
trajectories 
generation 

No 
communicati

on 

1 (4040±5) s (4020±5) s 

2 (2020±5) s (2010±5) s 

4 (1010±5) s (1000±5) s 

6 (675±5) s (670±5) s 

8 (505±5) s (500±5) s 

10 (405±5) s (400±5) s 

16 (255±5) s (250±5) s 
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Table 3. Minimal average execution time per Blade of the fully optimized SPEEDUP code for 
each tested platform 

Intel POWER6 Cell Cell Ideal 

460s 250s 750s 250s 
 

5. Conclusion 

We have ported and optimized Path Integral Monte Carlo SPEEDUP code to three 
different computing architectures (Intel, POWER6 and Cell) and used the obtained code for 
benchmarking of these hardware platforms. For Intel and POWER6 platforms full 
optimization was obtained with the straightforward threaded version of the code, while the 
Cell platform required more complex changes of the code (implementation of separate PPE 
and SPE parts of the code). For benchmarking purposes we have also used different available 
compilers for each of architectures, and our results clearly show that platform-specific 
compilers always give much better performance. 

The SPEEDUP code was most easily optimized on the POWER6 platform, where it 
also achieves superior performance (per Blade server) compared to all other hardware 
platforms. The Cell platform is demonstrated to be able to achieve the same level of 
performance in the case when individual MC steps take more time to complete. In the current 
implementation, due to the missing Cell SPRNG library, SPEEDUP code can fully utilize all 
Cell SPEs only for higher effective action levels p. The Intel platform shows also very good 
performance and excellent scalability, without any glitches for certain (odd or even) number 
of cores, observed on other platforms. 

The plans for further development and testing include porting of SPRNG library to 
SPEs and implementation of platform-specific instructions (vectorization) for each tested 
platform. 
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Abstract. A recently developed method systematically improved the convergence of generic
path integrals for transition amplitudes, partition functions, expectation values and energy
spectra. This was achieved by analytically constructing a hierarchy of discretized effective
actions indexed by a level number p and converging to the continuum limit as 1/Np. Here
we apply the above general method to numerical calculations using Metropolis Monte Carlo
simulations of energy expectation values and energy spectra. We analyze and compare the
ensuing increase in efficiency of several orders of magnitude.
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1. Introduction

In the middle of the last century Feynman introduced an alternate approach to quantum
mechanics known as the path integral formalism [1, 2, 3]. This approach provided us with a
new intuitive picture for understanding quantum mechanics, it enabled us to make connections
and analogies between different areas of physics, and it also provided a new mathematical
framework for calculating properties of physical systems. In particular, the formalism made it
easy to generalize quantum theories from one particle to many particles and finally to fields in
a relatively straightforward way. Unfortunately, the new formalism did not increase the number
of analytically solvable systems [4, 5]. The fact that it enabled us to treat models that were
previously inaccessible is due to its formulation in terms of discretized quantities, making it
directly amenable to numerical treatment.

In numerical simulations, our poor understanding of the inherent mathematical structure
of path integrals translates into the slow convergence of the sought-after physical quantities.
Substantial increase in efficiency of numerical algorithms for calculating path integrals, can,
therefore, come only through the input of new analytical information about path integrals into
the calculation schemes. A recent series of papers [6, 7, 8] has investigated the relationship
between discretizations of different coarseness in the case of a general quantum theory. The
new found analytical results were then used to construct a more efficient Path Integral Monte
Carlo (PIMC) SPEEDUP code [9] which increased convergence of generic path integrals from
1/N to 1/Np. For computational reasons, the level p is currently limited to p = 13, however,
there are no fundamental barriers to going to even higher levels. This substantial increase in
efficiency results in speedup of path integral calculations and has been applied to calculations of
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amplitudes, partition functions, expectation values, as well as low lying energy spectra [10, 11].
Direct numerical calculations of a variety of different models have confirmed the analytically
derived results.

All of the key properties of path integrals can be seen already on the example of one particle
systems in one dimension. For this reason the current paper limits itself to systems of this kind.
Let us note however that the generalization to more complex systems has also been investigated
and confirms that the previously derived increase in efficiency holds for general many particle
systems as well [12].

PIMC algorithms can be made more efficient either by getting better convergence to the
continuum limit through the use of above mentioned hierarchy of discretized effective actions,
or through better generation of relevant trajectories in the MC method. So far all the numerical
verifications of improved 1/Np convergence have been implemented using a PIMC code in which
paths were generated through a Levy construction. In this paper we numerically investigate
the derived speedup using Metropolis [13, 14, 15] method for generating relevant paths. In
general the Metropolis technique is optimally suited for calculating expectation values. We
have numerically verified the 1/Np convergence, showing explicitly coexistence of improvements
obtained through the use of effective actions and the Metropolis path generation method.

2. Path integrals

As previously stated, we focus on the motion of one particle in one dimension. The central
object is the (Euclidean) amplitude for the quantum system to go from initial position a to final
position b in imaginary time T . Feynman gave us three basic rules for calculating this transition
amplitude:

(i) the contribution of each path is determined by the action functional S[q], and is proportional
to e−S[q],

(ii) one needs to take into account the contributions of all paths consistent with the boundary
conditions,

(iii) contributions of different paths add up linearly, and the ensuing sum is called the part
integral.

For a majority of physically interesting cases the action is of the form

S =

∫ T

0
dt

(

1

2
q̇2 + V (q)

)

. (1)

Note that for simplicity we are working in units where h̄ and particle mass have been set to
unity. The only problem in the outlined procedure is the enumeration of all possible paths.
This is done by discretizing the time of propagation T into N equal time steps ε = T/N . The
contribution of each piecewise linear trajectory is then determined by a discretized action of the
form

SN =
N−1
∑

n=0

ε

(

(qn+1 − qn)2

ε2
+ V (q̄n)

)

, (2)

wherethe potential is evaluated at q̄n = (qn + qn+1)/2, corresponding to the mid-point or Weyl
ordering prescription of the usual operator formalism. The final transition amplitude is given
A(a, b;T ) is given as N → ∞ limit of the discretized amplitude AN (a, b;T )

A(a, b;T ) = (2πε)−N/2
∫

dq1 · · · dqN−1e
−SN [q] , (3)

where qn are the positions at discrete times nε, q0 = a, qN = b, and (2πε)−N/2 is the appropriate
normalization factor.
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The above discretized expression represents an N − 1-fold integral and is directly amenable
to numerical treatment. In general, for large N , such expressions are nest handled using Monte
Carlo techniques [13, 14, 15]. Before we proceed with this, however, let us note that the transition
from continuum to discrete theory is far from unique. Said another way, there exists an infinity of
discretized actions that, in the continuum limit, give the same transition amplitude. The naively
discretized action given in equation (2) is just the simplest representative. While the choice of
different discretized actions does not affect the final continuum amplitude, it may substantially
affect the speed of convergence to that continuum limit. The naive action typically leads to 1/N
convergence. In a previous series of papers [6, 7, 8] we have constructed an explicit procedure for
determining a hierarchy of equivalent discretized actions S(p) which lead to improved convergence
of generic amplitudes as 1/Np. Explicit expression for elements of the hierarchy has so far been
obtained for p ≤ 13 and are available on our web site [9]. There are no practical impediments
to going to higher values of p, the problem of determining the appropriate effective actions just
gets algebraically more complex and requires the use of some package for symbolic calculus (e.g.
MATHEMATICA).

Most often, however, one is interested in calculating not amplitudes but partition functions.
The relation between the two is made apparent in the coordinate basis. As a result, the partition
function can directly be written as a path integral. It is now an N → ∞ limit of discretized
partition function

ZN (T ) =

∫

dq0AN (q0, q0;T ) . (4)

Note therefore that Z(T ) is given as a limit of an N -fold integral over periodic piecewise linear
trajectories. The partition function contains all thee information about the statistical properties
of the system. In particular, we can use it to determine thermodynamic potentials, such as the
free energy F = − 1

T ln Z. The free energy is also the ideal starting point for evaluating the
energy spectrum of a given theory. From evaluating the partition function in the energy eigen-
basis it follows that, in the large T limit, the free energy tends to the ground state energy E0.
Similarly, one can introduce auxiliary functions F (n)

F (n) = −
1

T
ln

(

Z −
n−1
∑

i=0

di e−TEi

)

. (5)

Note that F (n) tends to En in the large T limit. In this way, it is possible to use the free energy
and the above auxiliary functions to numerically evaluate the low lying energy levels. The fact
that F (n) depends on all the lower energy levels and degeneracies results in an accumulation of
numerical error as one looks at higher and higher energy levels. This is illustrated in figure 1
on the case of a particle moving in the quartic potential V (q) = q2/2 + gq4/24.

In addition to amplitudes and partition functions, path integrals are also used to evaluate
expectation values of physical variables. The thermal expectation values of an observable O is
given by

〈O〉 = Tr
(

e−TĤÔ
)

/Tr e−TĤ . (6)

This can be directly written in the form of path integrals as the N → ∞ limit of the discretized
expectation values

〈O〉N = (2πεZN (T ))−N/2
∫

dq0dq1 . . . dqN−1ONe−SN [q] . (7)

In the above expression ON stands for the discretized estimator of the corresponding physical
variable. One needs to be careful in how one chooses estimators. They are not just simple
discretizations of the continuum expressions. In addition, the estimator must be consistently
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Figure 1. Metropolis implementation of PIMC algorithm for the calculation of low lying energy
levels of a quartic potential. The plot shows the dependence of the free energy and the auxiliary
function F (1) and F (2) as functions of T . The asymptotes are the corresponding energy levels
E0, E1 and E2. The parameters of the theory are g = 1, NMC = 107, N = 256. The simulations
were performed with p = 9 level improved effective actions.

paired with the discretized effective action used in order for expectation values to profit from
the same increase in convergence as transition amplitudes. As a particular example, let us look
at energy estimators. The continuum expression E = q̇2/2 + V (q) would naively be discretized
as EN = (qn+1 − qn)2/2ε2 + V (q̄n for any n. Al alternate, more symmetrical estimator would be
EN = N−1∑

[

(qn+1 − qn)2/2ε2 + V (q̄n)
]

, where we have made use of the fact that the energy is
a conserved quantity. Both of these estimators lead to problems in the continuum limit and give
divergent results. This is easily understood if we recall that for short times of propagation each
theory is well approximated by a free particle (random walker), satisfying the diffusion relation
〈(qn+1 − qn)2〉 ∼ ε. As a result, the above naive estimators have a dominant term diverging
as 1/ε. The source of the problem is in the T -dependence of the normalization of the above
expectation value. A better way to derive the energy estimator is to use the relation

〈E〉 = −
∂

∂T
lnZ(T ) . (8)

If we define the discretized energy expectation value to satisfy the same kind of relation with
the discretized partition function, it follows that the consistent energy estimator is given by

EN =
N

2T
−

1

N

N−1
∑

n=0

(qn+1 − qn)2

2ε2
+

1

N

N−1
∑

n=0

V (q̄n) . (9)

The first two terms in the above estimator (9) both diverge in the continuum limit. However,
taken together divergences cancel out and one obtains a finite result. Irrespective of this, the
above (so called kinetic) estimator does not represent a good choice, as it contains within it the
difference of two large numbers, making its standard deviation divergent and such numerical
calculations nontractable. The standard way around this problem is to use the virial theorem

〈

p̂2

2

〉

=

〈

1

2
x̂V ′(x̂)

〉

. (10)
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Using it we obtain what is called the virial energy estimator [16]

Evir
N =

1

2N

N−1
∑

n=0

q̄nV ′(q̄n) +
1

N

N−1
∑

n=0

V (q̄n) . (11)

Each term of this estimator is well behaved and has finite continuum limit and finite standard
deviation. It is important to note that the final form of the energy estimator used follows directly

from the form of the discretized action. As a result, by changing the discretized action to S
(p)
N

we immediately obtain the appropriate p-level generalization of the energy estimator. These
generalized estimators have been derived and studied in [11], where it was shown that they have
the correct improved 1/Np convergence.

3. Metropolis implementation

PIMC algorithms can be made more efficient either by getting better convergence to the
continuum limit through the use of above mentioned hierarchy of discretized effective actions,
or through better generation of relevant trajectories in the MC method. So far all the numerical
verifications of improved 1/Np convergence have been implemented using a PIMC code in
which paths were generated through a Levy construction. The Levy construction [15] samples
paths with 2s time steps through a recursive halving, starting with some boundary conditions
(representing the trajectory with 20 time steps). In the first step we generate one new node at
the moment T/2 and get a new trajectory, with 21 time steps. The procedure is then repeated
recursively for each segment of the trajectory. The new nodes are generated using the free
particle approximation: if the coordinates of the boundaries of the segment are R1 and R2, and
if the current time step is ε, the new node is selected from a Gaussian distribution centered at
(R1 + R2)/2 and with the standard deviation σ2 = ε/2. This method, although powerful and
simple, can sometimes require very long runs in order to give results with the desired precision.
The generated paths are sampled using a free particle approximation, and for models with strong
interactions this way of sampling is far from optimal.

In this section we investigate the analytically derived speedup of path integral calculations
within the framework of a PIMC code based on the Metropolis algorithm [13, 14, 15], a path
generating technique optimally suited for calculating expectation values. Metropolis rejection
algorithm is a special type of Markov process, enabling sampling of arbitrary probability
distributions. The desired probability distribution π(q) is obtained asymptotically, using a
series of transformations (Metropolis moves) of the state of the system. The transformations
are characterized by a transition matrix T (q → q′), and the trial configuration q′ is accepted
according to the following probability

A(q → q′) = min

{

1,
T (q′ → q)π(q′)

T (q → q′)π(q)

}

. (12)

Metropolis moves in PIMC implementations are usually chosen to represent random local
displacements (of given size) of individual nodes. The trajectories generated by the Metropolis
technique are not independent, and we can have large correlations between consecutive paths.
The correlations, however, depend on the physical quantity which is being calculated. The
measure of such correlations is described through the correlation coefficient

ck =
〈(O0 − 〈O〉)(Ok − 〈O〉)〉

〈(O0 − 〈O〉)2〉
, (13)

where Ok is the expectation values of the physical quantity calculated using each k-th
configuration. The correlation length is defined as a minimal value of k for which the correlation
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Figure 2. Correlation coefficient as a function of the correlation length k for the Metropolis
implementation of the quartic anharmonic oscillator with g = 100, T = 5, NMC = 106,
N = 1024. The simulations were performed with p = 9 level improved effective actions.

coefficient ck is sufficiently small (typically ck < 0.1). Figure 2 illustrates the usual behavior of
correlation coefficients for an anharmonic oscillator with quartic coupling.

The described method for correlation reduction is sufficiently good for accurate estimation of
expectation values of physical quantities [14]. However, the estimates of MC errors of numerical
results (standard deviations) can still be affected by the remaining correlations. This is caused
by the deviation of the distribution of MC samples from the Gaussian: the numerically obtained
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3.9e-04

 0  20  40  60  80  100

Figure 3. Standard deviation for Metropolis algorithm as a function of block size for a quartic
anharmonic oscillator with g = 1, T = 5, NMC = 106, N = 1024. The simulations were
performed with p = 5 level improved effective actions.
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distribution can be skewed, or have non-zero kurtosis, or both. This is dealt with by dividing
the generated set of MC samples into blocks of a chosen size, and then by using just the averages
over blocks as a new MC sample. By increasing the block size so that the skew and kurtosis
of the obtained new distribution can be neglected, we may correctly estimate the value of MC
errors. Note that this procedure does not affect the estimate for the expectation value. Figure
3 gives the dependence of the estimated standard deviation on the block size for a Metropolis
implementation of a PIMC calculation of the energy expectation value for a quartic anharmonic
oscillator. From this figure wee see that by using small enough block sizes the MC error can be
substantially underestimated.

In usual implementation of the Metropolis algorithm, the probability distribution that is to
be sampled is given by the exponential of the naively discretized action

πN [q(t)] ∼ e−SN [q(t)] . (14)

In our implementation, the naively discretized action is replaced by one of the improved effective

actions in the hierarchy S
(p)
N , trial paths were sampled using Levy construction, and acceptance

of new trajectories was done according to the Metropolis rule (12). Figure 4 illustrates the typical
behavior that one uncovers. As expected, the implementation of the Metropolis algorithm does
not interfere with the increased convergence obtained through the use of higher level effective
actions. Indeed, by using p level effective actions we again find that the numerical results of a
new PIMC code display improved convergence of the form 1/Np. In fact, far from interfering
negatively, the use of higher level effective actions brings about an improved efficiency of the
Metropolis algorithm per se through the generation of more relevant trajectories. This is seen
through the reduction of the variance of numerical results. A mode detailed investigations of
this would be reported elsewhere. In particular, there we will focus on effective actions with
p ≥ 10 and take into consideration the effects of the increased algebraic complexity of these
expressions on the computation time. For levels p ≤ 10 numerical investigations have shown
that this accumulated complexity does not have significant effects on the computation time.
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Figure 4. Metropolis implementation of the energy expectation value as a function of the
discretization coarseness N for the quartic anharmonic oscillator with g = 1, T = 1, NMC = 107.
The simulations were performed with level p = 1, 2, 3, 4 improved effective actions.
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4. Conclusions

We have given a brief overview of the current state of the research effort behind the construction
of more efficient PIMC algorithms leading to improved convergence of path integral calculations.
In particular, we have outlined how the developed hierarchy of effective actions may be used
to calculate transition amplitudes, partition functions and energy spectra. Particular emphasis
was given to the calculation of expectation values. We outlined a scheme for the derivation of
estimators consistent with the hierarchy of effective actions, i.e. leading to the same increase
in convergence. The second part of the paper centers around a new PIMC code encompassing
the effective actions and derived estimators, implemented using the Metropolis algorithm. The
new PIMC code displays the same 1/Np increase in convergence. Moreover, the use of higher
level effective actions brings about an improved efficiency of the Metropolis algorithm through
the generation of more relevant trajectories. In the future work we will focus on the detailed
investigation of the increase in efficiency of the Metropolis algorithm brought about by the use
of higher level effective actions.
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RID APPROACH TO PATH I TEGRAL MO TE CARLO CALCULATIO S 

Danica Stojiljkovie, Antun Balai, Alek, andar ogoj vi', Alek andar B lie 
Scientific Computing LaboratOlY, Institute a/Physics, Belgr Ide, Serbia 

Ab tract - Approach laken fol' the gridi(ication of the 
developed MOllte Carlo code for 'alculation a/path integrals 
is described. Brief introduction to parlt integrals WId Grids is 
gillen, alld detail 011 the implemelltation ofSPEEDUP in the 
Gn'd ellvironm nt are de 'crib d The numerical result 
obtained by the rridified version of th application are 
shortly presented, demonstrating its usefulness in the 
research in physics and related ar as. 

1. INTROD eno TO PATH TEGRALS 

Feynman functional formalism is known to be the most 
c ncise and tlexible formulation of quantulll theories [1,2]. It 

nabled us to ea ily extcnd quantization procedure to more 
complicated systems, fTom multidimensional many particle 
sy terns, to theory of fields, trings, etc. M, ny different areas 
of physics, such as high-energy physics, condensed matter, 
stmi tical and quantum physics, but also ch mistry, material 
science. mathematics and even modem finance are treated in 
the same manner, using the same mathematical tool. This 
initiated an exchange of key ideas between di er e re earch 
area. Its general mathern, tical framework gi es simple and 
natura! setup for using and applying symmetries, deriving 
various approximati n techniques and 110n-p rturbative 
results and making conn ctions b tween different th~ories . 

Although the number of exactl 
J 

sol able models was not 
enlarged by the introduction of functional formalism, tbe 
analytic I and numerical approaches to path integral gave u 
possibility to trcat large number of sy terns that w re not 
previously accessible. Path integral is the main mathematical 
object in the functional formali, m and it repr sents an infinite 
limit of multiple integral . Most oft n use of appr 3ch fop 
calculation of path integrals is M nte Carlo (MC) mcthod [3], 
which is defined in quite eneral terms a any alg rithm that 
uses random numbers for solving num rical problems. 
Advance g ined by using MC simulati ns for calculating 
multiple integrals is that the tandard deviation of results 
vanishes as 1I..{ii;;; regardless on integral dim nsionality. 

NMC here represents the number of Monte Carlo samples and 
it is lear that by increasing this number we can improve the 
precision oflh results as desired. 

As we already said, path integral is defined a. __<0 

limit of an N-fold integral. Since we can numerically 
calculate only finite number of integrals, her in contrast to 
calculating ordinary N-fold integral an additional source of 
error is present. Naive N-discr ,tized value of the path integral 
differs from its continuum limit by a term of the order UN. A 
recent series of paper' [4, 5, 6 and 7] has focused on the 
d namical implications of stochastic self-similarity by 
studying the relation between path integral discretizations of 
different coarsenes. This has resulted in a systematic 
analytical construction of a hierarchy of N-fold discretized 
effective ctions S, (pi lab led by an integer number p and 
built up from the naively discretized action in the mid-point 
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ordering prescription ( orre. ponding to p=/ . The le\ 
effective actions lead to dlscretized transition amplit 
expressed through path integrals and expectati n .... a 
differing from the continuum limit by a tcrm of th 
UN' The Me code implementing this approach can be Ci 

at LSI. 

2. INTRODUCTJO TO GRIDS 

he abovc described effective action approach c nf 
to the common experience that any analytical knovvled". 
the considered system can be tran lated i.nto vast, peedup 
tbe convergence of numerical approaches used to tackle 11 
c mplex systems. However, path integrals require su .Ia 
computing resource, even in such dramatically impro 
algorithms. In MC approach lliis means that ve still n 
use large numbers of Me samples NMC This is u 'uall)- ­
possible 011 a single parallel cluster in one research insti 
or is very inefficient to wait unn enough resources 
available in one home institute. Therefore, the use 
computing resources distributed across differ nt institutl 
collaborating on jomt RRD projects is the most efficient 
of obtainin a considerable computing resources on demand 
fact. this way each institution involved can obtain \\ ­
needed c mputing re 'ource much greater than it po ­
while other instituti ns can use its reSOUJ'c s when I ­

Resource sharing can b organized on reciprocit princi 
on a commercial basis, or on some other sui 
arrangement. 

While the tnternet provid s a framework service 
sharing the information, a framework for sharing a aila 
computing and data resoW'ces is known as Grid. It consist 
a number of clu ters Lh t provide, computing power 
storage resources. and that are connected and enabled 
interoperate through a series of Grid erviccs. Here we 
Sh0l11y describe Grid established b the "GEE-Ll [9] 

-E- RLD-2 [10] projects, as well as by the AEG 
(Academic and Educational Grid Initiative of Serbia [11 
The services and resourc off< red to interested u 
represent an ideal framework in which M . simulations c 
be eXt:cuted. taking advantage of any idle resources 
ilnproving statistics of path integral calculations. Basic G 
operations offered to a user are job submission managemen 
file transfer, database access, database management a 
monitoring and indexing system information. To allow th 
operations, core services Grid-nodes c lIect informat! ~ 

published by the local information sy tems on each elust 
Grid user does not need to know where his/h r job 
executed, or where the data is stored. The user does not ne 
to be familiar with th architecture and organization of Go 
ervices. He or she ju't needs to log on to a node it 

installed user interface (UI) software, describe j 
I' quirements in a simple file and accompany it wiLh 
necessary programs and input files, and submit it. Later, til 
user can monitor the job and retrieve output files when lIlJ 



job is done. When job is submitted, unique job ill is 
gcnerated which must be saved by the user in order to 
retrieve output or monitor ·ob status at any time. Grid 
servIce allow UI to find available clusters that fulfill job 
requirements specified by user, and distribute it to one of 
those clusters. They monitor status of a job, and collect 
output files after the job is done, so the user could retri ve it 
later. If large amounts or data are used or produced by a 
program. data can be placed on a storage element. That way 
we can avoid unnccessary transfers of data and reduce 
possibility of problems that can ccur due to "0 erloaded" 
network connections of Grid n des. 

In order to ensure secure operations on the Grid, it was 
necessary to introduce authentication and authorization 
mechanisms. Authentication of users and services is done 
through digital certificates base on Public Key Infrastructure 
(PKl . The certificates are issued through a network and 
national and regional certification authorities. The 
authorization for the use of resources and other operations is 
done through Virtual Organizations (VO).One needs to 
become a member of some VO which represents group of 
people working together on the same activity/project. One 
can be a member of more than one VO. What can one do on a 
Grid is determined by his/her VO privileges meaning that one 
can access just the resources on clusters supporting his/her 
VO, and with the fair-shore of those resources specified by 
the local policies. Here the user does not need to adjust 
his/her behavior according to those policies, but rath r the 
policies will be automatically implemented and imposed by 
Grid ervlces. 

At tb time of submission of a job and during its 
~xecution, one needs to have valid credentials, mini­
'eJ'lijicate (proxy) which has no password, propagates 
through Grid and has a significantly limited life time, 
pecified at creation time. If job is not finished by the proxy 

expiration time, it would be abort d, unles the proxy is 
renewed. This should be kept in mind when running long 
jobs. 

J. GRID APPROACH TO Me SIMULAnONS 

Running one or small number of long running jobs on 
rid would n t be its optimal use. There is a large number of 

processors available and if we want to get our results faster it 
IS necessary to divide all computational tasks to a large 
number of shorter programs which can be executed at the 
same time. This can always be done for MC simulations, but 
for some types f problems it may not be possible. There are 
three ways in which we can perfonn this division of tasks: 
arallelization, gridification, r combination of both. 

Parallel program on a usual PC-cluster c9nsists ~ 

cooperative processes, each with its own memory, wllich can 
exchange data. ommunication and distribution of tasks to 
different processors is implemented in a program code by 
using libraries of functions and macros provided by 
implementation of e.g. Message Passing Interface (MPI). 
Parallelizati D f Me simulations is trivial. Each node is 
proce ing same number of MC samples independently, and 
after proces. ing is done master node collects the raw data, 
perfomls final calculations and saves the results in a fde. For 
running parallel program on Grid sit it must have SUPp0l1 
r r MPI, which is not standard configuration.. 

GridificatioD of program assumes eparalion Qf 
calculation tasks into a number of -horter independent 
pr grams. In MC imulations this divi ion i perfomled 
naturally. Instead of pr ce ing, for example, 109 

• amples on 
a single node, ta k can be divided to 1000 nod each 
processing just 106 samples. Each process is sa 'ing raw data 
and when all data is collected. final processing can be done 
via cript or some other result proc sing program. This is 
usually performed on d 'ktop computer or u 'er interface. 
This approach is based on independence of individual 
programs. If th re is a malfunction on one node, ",e loose 
only a small amount of data, whil in parallel approach this 
leads to breaking of the whole program and loss of all data. 
In addition, we can submit a many jobs as needed for 
statistics requested, tbus replacing failed jobs with the new 
on s ami ssly. Separate pro 'ram can run D several sites, 
at different times. which enables us to divide the task into 
thousands of small r programs, while parallel approacb 
demands that all the nodes are available on one site at the 
same time. 

Before submitting a job to the Grid it must be specified in 
a file written in the Job Description Language (J L file). 
This fik contains specifications on the type of job, 
executable file and its arguments, location of input files 
required by tb job (input sandbox), names of output files 
that user wants to retrie e (output, andbox), many optional 
requirements for site properties like number of working 
nodes, MPI support, physical closeness to some Storage 
Element, specific site name. maximal allowed expected site 
response time for this job, etc. Executable file can be a 
compiled program or a script tbat contains sequence of 
commands that needs to be executed on a worker node ). 
That way code can be compiled on the worker node itself, at 
the execution time us r can manipulate data directly from 
WN, pack or unpack files, transfer files from and to storage 
elements and execute any command according to his/her VO 
privileges. 

There are few different middleware systems for managing 
jobs on grid such as gLite, L G, Globus, UNlCORE, etc. 
The Grids established by AEGIS, G E-ll and SEE·GRID-2 
are based on L G [12] and gLite [13], but concept on the 
user side is basically the same. User submits job from 
command line of user interface and gets unique job ID. 

andbox and JDL files are sent to a series of Grid services 
which then search for available resources that meet job 
requirements. The job is then being dispatched to one of 
those sites and scheduled in the local site's queue. After job is 
done, files defined to be in the output sandbox are sent back 
to grid services (the actual component used is the Workload 
Management, WMS) which are waiting for the user to 
retrieve the output. This is also done from the command line 
of the user interface. User can also monitor status of 
submitted job at any time after submission. 

For submission, monitoring and retrieving the output of 
large number of MC simu'lations for calculation of path 
integrals we developed a number of scripts. Scripts for job 
submission use the concept of a template JDL fLle (TJDL) for 
creating a large number of JDL files which differs only in 
few program arguments. Jobs are then being submitted one 
by one, and all job IDs are stored in a file, Scripts for 
monitoring of job statuses and retrieving data or canceling 
the jobs are using this file. The scripts can be downloaded 
from [8J. 
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This concept can also b used for other applications, and 
scripts need to be adapted for their use for particu'lar 
probl IDS. Submission of hundreds of jobs can take several 
hour if they are submitted one by one. ew component of 
grid services - WMProxy in gLite - is developed recently to 
handle a large number of job submissions efficiently. New 
typ f job - parametric job - is introduced. It represents a 
set of very similar jobs, differing only in the values of 
parameters, defined by some of JDL attributes. With this type 
of jobs, user just needs to send one JDL file with the 
paramet r changing range specified. This new type of job 
tben creates final JDL files and submits them to Grid on 
behalf of the us r. Another advantage offered is that jobs can 
hare input sandboxes, so when many single jobs are using 

the same input file" those can be transferred only once from 
ill. Disadvantage of this type of job is that, for now, there is 
only one paramet r that can be hanged. 

4. PRELlMlNARY RESULTS AND PERFORMANCE 

We are using path integrals for the calculation of quantum 
mechanics probability amplitudes. Here we will present some 
numerical results obtained lIsing the gridified version of the 
SPEEDUP ode [8J using the scripts described in the 
previous section. The evolution of a physical system during 
the time T can be expressed as a path integral of the quantity 
e's, where S is the action of the system. The integration is 
made over all possible trajectori~s of the system (thus making 
the infinite number of ordinary integrals necessary), and the 
action redu es to the energy of the system in the Euclidean 
tim approach. 

Definition of path integrals makes it necessary to make 
transition from continuum to the discretized theory. Time of 
the evolution is divided in N equal time steps, and instead of 
using continuum value of the action S for each trajectory, e 
are using its discretized value SN' Actions S;v are not uniquely 
defined, and the value of the discretized path integral can 
approach continuum limit in different ways. Although the 
continuum limit of different discretizations will remain the 
ame, the convergence properties can differ. 

We recently developed a series of effective actions SNIP) 
that speeds up the convergence [4, 5} They have been 
applied here for calculation of quantum mechanics transition 
amplitudes, energy levels [6] and expectation values [7], and 
statistical partition functions. It is analytically shown in those 
p pers that transition amplitudes approach their continuum 
values as lIN'. Expressions for S,/P) are derived for p up to 
10, but the develop d procedure enables us to [lOd these 
actions for arbitrary value ofp. This allows us to use smaller 
values of N for evaluation of path integrals and we gain 
speedup of several orders of magnitude. But there is a price 
to be paid. Numerical complexities of expressions for 
effective actions have exponential growth with p, and 
implementation of this analytical speedup will increase the 
required computational time. This growth is shown in Figure 
I for p up to 9. We can see that for p=9 the simulation is 
about 10 times slower, which in fact is small price to pay for 
gain in preci. ion of nine orders of magnitude. 

In statistical mechanics path integrals can be applied for 
calculating values of partition function and thermal free 
energy. MC simulations for calculations of the free energy 
numerically confinncd that the use of effecti ve actions leads 
to the same speed up in convergence [6}. This is illustrated in 

Figure 2 where dependence of discretized free 
(calculated using the corresponding discretiz 
actions) on the number of discretization point • 
levels p from I to 5. We see that for p=5 di:)L ..... --''-=­

differ from their continuum limit by a term w 
than the stochastic error introduced by M me' 
to furtber gain something from the speedup 
higher p levels we need to reduce st b 
increasing number of M samples. This i \ 
use distributed computing resources th, t all 
statistics to be obtained in a short time perio . 

10 

•
• 

4 5 6 

Fig. 1: Relative i/lcrease in computation tim. 
about from the increased complexity oj'expr , 

p levels effective action 

0.146 r-.-----,r----r--.-----,----r--..------. 

0.145 

,Y 

I 
/

/ 
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Fig 2: The dependence o/free energy F/:) 0 

different levels 0/p. The plot is for the anharmoni 
with quartic COl/piing g=l, inverse temperature 

N\1c=107 Me samples. The same kind o/behavior,. 
other parallleters, as well as/or a/her pO/Cllh 

Free energy of the physical system can be ' 
terms of its energ Ileveis 

-{3F!1!! ~ 'PEn e - L.e , 
n=O 

where ~ is inverse temperature. As we can see, 
energy is completely determined by system's energ. 
and vice-versa. By calculating free energy on a 
temperatures, it is possible to extract several lowe l 

levels. Calculations are conducted for several d. ­
models. In case of models that are exactly solvabl 
results agree with exact values, but our approach prl! 
means for calculation of spectra for mOdels that can 
solved analytically, and are not in the perturbatiw r =" 
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Le. which can not be treated by the usual methods. As an 
illustration we give energy I els of anharmonic oscillator 
with the potential of the fonn: 

/. ,I 1 2 g 4V(qj = -q +-q	 (2)
2 4! 

Several values of coupling constant g are considered, and 
results are given in Table 1. Note that the case g=O is exactly 
solvable, while g= I 000 lies deep in non-perturbative domain. 

Table I: Low lying energy levels of the anharmonic oscillator 

with quartic coupling g, calculated lIsing N=256, p=9, and 
NMC=/07 

g Eo E, E; EJ 

0 0.4 993(2) 1.502(2) 2.48(6) 3.6(5) 
0.1 0.50301(2) 1.516(1) 2.54(5) 3.5(2) 

1 0.52765(2) 1.6295(8) 2.85(2) 3.98(7) 
10 0.67335(2) 2.230(1) 4.12(2) 

100 1.16247(4) 4.058(6) 
1000 2.3578(2) 

5.	 CONCLUSIO S 

We presented the Grid approach that can be applied for 
large scale computations if some generic Monte Carlo 
simulations are used. On the important SPEEDUP application 
we demonstrated how an MC application can be gridified and 
e ficiently deployed in production Grid environments, such 
a e-Infrastructure offered by the EGEE-ll of S E-GRID-2 
projects, or the national AEGIS infrastructure. The usefulness 
of this approach is demonstrated through sol ing numerically 
complex problem of energy spectra calculation of different 
quantum mechanical systems. 
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CaApIKaj - OnucaH je npucmyn zpuouifJuKG/.fuju 

pa36ujeHoz MO/llne KapJlo GJ1Z0pUmlW 3a pa"yHalbe 

ifJYHKl1UOHaJlHUX UHmeZpaJla, )Jam je KfJamaK Y600 y 
ifJYHK1luoHaJlHe uHmezpafle u OCH06HU KOHl1enm Tpuo-a, u 
onUCGfIU cy oemwbu uMnJleJHeHlnal1uje "SPEEDUP" 
anJIuKal1uje y Tpuo oKpY:JICefbe. flpeOCmaflJbeHlI cy 

HyMepulfKu pe3YJlmamu 006ujellu nOMony zpuouifJuKo6aHe 

6ep3uje GlVluKGl1llje KOjU llJlycmpyjy fbllX06Y KOpUCHocm 3a 

UCmpaJiCU6Gfba y rjJU3Ul1U U CpOOHUM 06J1Gcmwta. 

fPH.LI: nPHCTYII MOHTE KAPJIO PAl.fYHAIbY 
$YHKUHOHAJIHHXHHTEfPAJIA 

.LI:aHHl\a CTOjHJbKOBHli, AHTyH E31la)/(, 
AneKCaH).(ap EorojeBl1n, AJleKcaH,nap EeJll1li 

/ 
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Abstract

Monolayer and multilayer thin film formation on solid or liquid surfaces is a growing multidisci-
plinary area of research of great interest for new and emerging technologies in photonics, microelec-
tronics, nanotechnology, plasmonics, biosensors, bio-medical devices, etc. Adsorption and deposi-
tion (irreversible adsorption) of colloids, proteins, and other bio-materials on solid/liquid interfaces
are of large significance for many practical and natural processes such as filtration, paper-making,
chromatography, separation of proteins, viruses, bacteria, pathological cells, immunological assays,
thrombosis, biofouling, biomineralization, etc. Controlled adsorption of colloid particles on sites of
nanometric scale can also be exploited for direct visualization of surface features.

The Random Sequential Adsorption (RSA) model is one of the basic models used to describe the
irreversible formation of monolayer deposits of microscopic and mesoscopic particles. Inter-particle
interactions are approximated classically with the hard-core exclusion model, which means that over-
laps between the particles are not allowed. Particles can only adsorb if they are in direct contact with
the substrate. This feature ensures a monolayer deposition. Irreversible adsorption means that the ad-
sorbed particle stays permanently fixed to the substrate and diffusion or desorption processes are not
allowed. Previously adsorbed particles block a certain area of the substrate for new adsorptions and
consequently, the system becomes jammed. Heterogeneities of a substrate impose further limitations
on the positions of adsorbed particles. Our aim is to quantify structural changes in the jammed state
that are introduced by different patterns of substrate heterogeneities. We use the RSA approach to
analyze the deposition of identical spherical particles of a fixed radius on non-uniform flat surfaces
covered by rectangular cells. Two different types of patterns are of interest: randomly positioned cells
and square lattice centred cells.

In the first part of the dissertation, the configuration of the cells (heterogeneities) was produced
by performing RSA simulations to a prescribed coverage fraction θ

(cell)
0 . Adsorption was assumed to

occur if the particle (projected) centre lies within a rectangular cell area, i.e., if the sphere touches one
of the cells. The jammed-state properties of the model were studied for different values of the cell size
α (comparable with the adsorbing particle size) and density θ

(cell)
0 . Numerical simulations were car-

ried out to investigate adsorption kinetics, jamming coverage, and structure of coverings. Structural
properties of the jammed-state coverings were analyzed in terms of the radial distribution function
g(r) and distribution of the Delaunay ‘free’ volumes P(v). It was demonstrated that adsorption kinet-
ics and the jamming coverage decreased significantly, at a fixed density θ

(cell)
0 , when the cell size α

increased. The predictions following our calculation suggest that the porosity (pore volumes) of the
deposited monolayer can be controlled by the size and shape of landing cells, and by the anisotropy
of the cell deposition procedure.
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The second direction of research in this thesis analyses the adsorption of spherical particles of a
fixed diameter on nonuniform surfaces covered by square cells arranged in a square lattice pattern.
To characterize such a pattern two dimensionless parameters are used: the cell size α and the cell-
cell separation β , measured in terms of the particle diameter d0. We focus on the kinetics of the
deposition process in the case when no more than a single disk can be placed onto any square cell
(α < 1/

√
2 ≈ 0.707). We find that the asymptotic approach of the coverage fraction θ(t) to the

jamming limit θJ is algebraic if the parameters α and β satisfy the simple condition, β +α/2 < 1. If
this condition is not satisfied, the late time kinetics of the deposition process is not consistent with the
power-law behaviour. However, if the geometry of the pattern approaches “noninteracting conditions”
(β > 1), when adsorption on each cell can be decoupled, the approach of the coverage fraction θ(t)
to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the
present model allows for interpolating the deposition kinetics between the continuum limit and the
lattice-like behaviour. Structural properties of the jammed-state coverings are studied in terms of
the radial distribution function g(r) and the spatial distribution of particles inside the cell. Various,
non-trivial spatial distributions are observed depending on the geometry parameters of the pattern.

Keywords: random sequential adsorption, heterogeneous substrate, pair correlation function, Delau-
nay ‘free’ volumes
Research field: Physics
Research subfield: Statistical physics
UDC number: 539.233, 536.12
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Сажетак

Формирање jеднослоjних и вишеслоjних танких филмова на чврстим и течним површинама
jе растућа мултидисциплинарна област истраживања од великог интереста у фотоници, ми-
кроелектроници, нанотехнологиjама, плазмоници, за биосензоре, биомедицинске уређаjе, итд.
Адсорпциjа и депозициjа (иреверзибилна адсорпциjа) колоида, протеина и других биоматери-
jала на чврстим/течним површинама су од велике важности за многе практичне и природне
процесе као што су филтрациjа, производња папира, хроматографиjа, сепарациjа протеина, ви-
руса, бактериjа и патолошких ћелиjа, имунолошки тестови, тромбоза, биоминерализациjа, итд.
Контролисана адсорпциjа колоидних честица на структурама на нанометарскоj скали се такође
могу искористит за директну визуализациjу структурних карактеристика.

Модел случаjне секвенциjалне адсорпциjе (RSA модел) jе jедан од основних модела за опи-
сивање формирања jеднослоjних депозита мезоскопских честица. Међучестична интеракциjа jе
апроксимирана класичним моделом крутих тела, што значи да jе забрањено међусобно прекла-
пање честица. Честице се могу адсорбовати jедино ако су у директном контакту са супстратом.
Ова особина доводи до формирања jеднослоjних депозита. Поjам иреверзибилна адсорпциjа
поразумева да су адсорбоване честице траjно причвршћене за подлогу, а процеси дифузиjе
или десорпциjе су забрањени. Претходно адсорбоване честице блокираjу одређени део подло-
ге за адсорпциjу нових честица што доводи до загушења система. Нехомогеност супстрата
намеће додатна ограничења на позициjе адсорбованих честица. Наш циљ jе да квантифику-
jемо структурне промене загушеног стања настале услед разлличитих хетерогених образаца
на адсорбуjоћоj подлози. Користимо RSA приступ за анализу депозициjе идентичних сфер-
них честица на нехомогене равне површине покривене правоугаоним ћелиjама. Од интереса су
два различита типа распореда: случаjно распоређене ћелиjе и ћелиjе распоређене у чворовима
квадратне решетке.

У првом делу истраживања у оквиру ове тезе, конфигурациjа ћелиjа се формира помоћу RSA
симулациjе док се не постигне жељена покривеност супстрата θ

(cell)
0 . До адсорпциjе долази ако

(проjектовани) центар честице лежи унутар правоугаоне ћелиjе, тj. ако сферна честица додируjе
неку од ћелиjа. Особине загушеног стања су изучаване за различите вредности величине ћелиjа
α (упоредивих са величином честице) и различите густине ћелиjа θ

(cell)
0 . Извршене су нумеричке

симулациjе како би истражили кинетику адсорпциjе, покривеност у загушењу и структуру депо-
зита. Структурне особине загушеног стања анализиране су помоћу парне корелационе функциjе
g(r) и дистрибуциjе Делонеjевих слободних површина. Резултати наших симулациjа сугеришу
да се контрола порозности jеднослоjног депозита може постићи подешавањем величине, облика
и ориjентациjе прихватних ћелиjа.
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Други правац истраживања у тези jе анализа адсорпциjе сферних честица фиксног преч-
ника на хетерогеним површинама прекривеним квадратним ћелиjама распоређеним у чворове
квадратне решетке. За карактеризциjу овог шаблона користимо два бездимензиона параметра:
величину квадратне ћелиjе α и размак између две суседне ћелиjе β . За jединицу мере користи-
мо пречник адсорбуjућих ћелиjа d0. У фокусу истраживања jе кинетика процеса депозициjе у
случаjу када било коjа прихватна ћелиjа може да адсорбуjе наjвише jедну честицу (α <

√
2/2).

Покривеност θ(t) асимптотски тежи граничноj вредности θJ по алгебарском закону ако пара-
метри α и β задовољаваjу услов β +α/2 < 1. Ако оваj услов ниjе испуњен, кинетика касне
фазе процеса депозициjе ниjе конзистента са степеном законитошћу. Ипак, како се геометриjа
подлоге приближава неинтерагуjућем режиму (β > 1), асимптотски прилаз покривености се
приближава експоненциjалноj законости. Сходно томе, промена параметара патерна субстрата
у овом моделу омогућуjе интерполациjу између два гранична случаjа адсорпциjе на континууму
и на квадратноj решетки. За изучавање структурних особина загушеног стања користимо парну
корелациону функциjу g(r) и просторну дистрибуциjу честица унутар ћелиjа. Примећене су
разноврсне нетривиjалне просторне дистрибуциjе у зависности од геометриjе патерна подлоге.

Кључне речи: случаjна секвенциjална адсорпциjа, хетерогени супстрати, парна корелациона
функциjа, Делонеjеве слободне површине
Научна област: Физика
Ужа научна област: Статистичка физика
УДК броj: 539.233, 536.12
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Chapter 1

Introduction

Adsorption is a general term for the processes responsible for the formation of deposits (a.k.a adsor-
bates). It represents the adhesion of foreign particles to the solid or liquid surfaces commonly termed
as adsorbants or substrates. It is a common phenomenon that has great scientific and industrial im-
portance as it has been linked to a wide range of applications in biology [3–6], nanotechnology [7, 8],
device physics [9–11], physical chemistry [12, 13], and materials science [14]. Depending on the
application in question, the depositing objects could be colloidal particles, polymer chains, globu-
lar proteins, nanotubes, DNA segments, or general geometrical shapes, such as disks, polygons, etc.
Due to its wide range of applications, there has been a continuous effort to enrich our understand-
ing of deposition processes and experimentally observed structural properties of the adsorbed phase
[7, 15, 16].

One of the basic models for studying a thin film formation is known as Random Sequential Ad-
sorption (RSA). It models the process of adsorption of objects in a sequential manner (one by one).
The new object is randomly positioned on the substrate, and adsorption is successful if it doesn’t
overlap any of the previously adsorbed objects. If overlap occurs, the object is rejected and a new ad-
sorption attempt is made. All accepted objects stay permanently fixed on the substrate, thus forming
a monolayer deposit. They block certain areas of the substrate for the adsorption of new objects. The
blocked area of the substrate expands as the number of adsorbed objects grows, and the adsorption
rate slows down. A finite substrate eventually reaches a jammed state where the complete substrate
is blocked for the adsorption of new objects. When a substrate is infinitely large, the jammed state is
reached in the limit as time goes to infinity.

This is the most general description of the RSA process. The two general terms, ’substrate’ and
’object’, represent suitable entities in any adsorption process we aim to describe. We can choose
whether the substrate is discrete, continuous, pre-patterned, regular, lattice-based, 1D, 2D, 3D, or
(in theory) anything we can think of. In practice, our model will seek to describe a physical system
within a wide range of applications in biology, nanotechnology, device physics, physical chemistry,
and materials science. Most systems of interest would have flat 2D substrates, but other shapes such
as spheres, cylinders and rings can also be of interest. The term ’object’ can stand for line segments,
circles, squares, ellipses, polygons, or any other shape representing real objects such as colloidal
particles, polymer chains, globular proteins, nanotubes, DNA segments, etc. New and emerging
technologies enable us to precisely tailor the shape and size of the deposition objects on micro and
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even nanoscale. All this makes RSA the tool for various interdisciplinary studies.

A desorption is a process in which adsorbed particles detach from a surface. It competes with the
adsorption and slows down or even prevents a deposit growth. Other processes that play their roles
in kinetics and dynamics of adsorbate formation are diffusion, surface relaxation, hoping of particles,
inter-particle interactions, etc. In this work, we will focus on processes in which the time needed
to reach the jammed state is much smaller than the relaxation time. Relaxation processes can be
neglected and we can assume that after each particle is adsorbed, it stays rigidly and irreversibly fixed
to the substrate.

New technologies enable the production of particles with precise shapes on micro and even
nanoscale, and the effects of particle properties on deposits and the adsorption process have been
thoroughly investigated. Besides adsorbate particles, it is evident that adsorbant surface structure is
just as important. Many surfaces of adsorbants are inherently heterogeneous, or they can be mod-
ified by the use of coupling agents bound to interfaces, e.g., polyelectrolytes, ligands, surfactants,
polyvalent ions, or chemical coupling agents. In each stated case, adsorption occurs at heterogeneous
surfaces bearing isolated adsorption sites. This enables us to create deposits with precisely tailored
properties, such as coverage and morphology. A deeper theoretical understanding of these systems
enhances the effectiveness of the process, rather than using the trial-error method.

We are interested in the kinetics of an adsorption process, as well as in the adsorbate structure in
terms of coverage evolution, maximum (jamming) coverage, density/pair correlation function, poros-
ity, etc. Due to the problem complexity, very few simple models can be solved analytically and those
are mostly models of one-dimensional substrate. Pioneer work in this field was done by Paul Flory
who studied the attachment of pendant groups in a polymer chain [17]. This problem translates to
the adsorption of dimers on a one-dimensional regular lattice (see figure 1.1(a)). Flory found that if
unreacted groups of a polymer chain randomly pair with its unreacted neighbour, 13.53% of them are
prevented from reacting due to isolation between reacted pairs. In terms of the adsorption of dimers
on and infinite 1D lattice, the exact jamming coverage is 1− 1/e2 ≈ 08647. In 1958, a Hungarian
mathematician Alfred Rényi solved the following problem: given a street of given length and cars

Figure 1.1: (a) Dimer filling on a 1D lattice; (b)
Dimer filling on a square lattice. Isolated empty
sites, which can never fill, are shown as “o” [15].

Figure 1.2: (a) Continuum “car parking” of unit
length intervals on the line; (b) jammed state for
RSA of aligned squares in the plane [15] .
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of constant length that park on a random free position on the street, what is the density of cars when
there are no more free positions [18]? This translates to the adsorption of line segments of fixed length
onto a one-dimensional continuous substrate (figure 1.2(a)). An exact jamming density on an infinite
parking line is known as the Rényi’s parking constant (≈ 0.7475979203).

Typical configurations of hard sphere deposits created in an RSA process radically differ from
configurations of a gas in thermodynamic equilibrium, as shown by Widom [19]. The RSA process
favors configurations in which pairs of spheres are distant. Radial distribution function of deposit
configurations created in an RSA process that is stopped when the deposit coverage reaches a prede-
termined value θ below the jamming coverage θJ , differs from the one of the equilibrium hard-sphere
gas of the same density θ . Also, the system in equilibrium may be in a state with density θ that is
higher than jamming density θJ , which an RSA system can never surpass. Widom [19] also showed
that if we want to use RSA to approximate equilibrium systems, this will only be correct up to the
second and third virial coefficients, or cluster integrals, but incorrect fourth and higher-order ones.

Many variants of RSA systems have been studied in order to investigate the influence of shape,
size, orientation and dispersion of adsorbing particles, finite-size effects, defects and impurities of
a substrate [20–40]. Main focus of these studies was on systems with homogeneous substrates, but
in many adsorption processes the substrate is manifestly heterogeneous. Motivated by affinity chro-
matography, in which solute particles bind only to ligands that are immobilized on the substrate
surface, Jin et al. [41] investigated the so-called random-site surface model (RSS). They considered
cases of randomly distributed ligands that are much smaller than solute particles and can be modeled
as points. They found an exact mapping between the kinetics of this process and of the adsorption on
a smooth continuous surface. The mapping is given by relation τ = α(1− e−t/α), where t and τ are
measuring the elapsed time in RSS and continuous surface RSA, respectively, and α is a dimension-
less parameter related to the site density.

Based on a substrate type, research studies of RSA processes could be roughly divided into two
groups: adsorption on a continuum substrate and adsorption on discrete sites, usually lattices. The
crossover between two substrate types is usually treated in a way that the continuous substrate is
considered as the limit case of a lattice substrate where distances between neighbouring sites are
infinitely small. Another line of research tackles this crossover differently: particles can be adsorbed
only within non-overlapping finite-size areas or objects, called cells, that are distributed over a flat
substrate and form a desired pattern. This model can also be interpreted as adsorption on a discrete
set of point-like adsorption sites that allow for error in particle positioning of the order of the size of
the cell, thus treating adsorbing sites as cells of finite size.

The first generalization of the RSA model where lattice sites were treated as objects of finite size
was the adsorption of dimers to equidistant adsorbing segments on a line, analyzed analytically and
numerically by Bonnier et al. [42]. In the same fashion, Adamczyk et al. [43, 44] generalized the Ran-
dom Site Surface model and considered surface heterogeneities as finite-size hard disks (or spheres)
of fixed radius, positioned randomly in the preceding RSA process. The RSS model can also be gen-
eralized by using randomly placed adsorption cells of different shapes. A research direction exploited
in this dissertation uses adsorbing cells shaped as squares or rectangles of different elongation.

Araújo et al. [45] and Marques et al. [13] numerically investigated the adsorption of disk-shaped
particles on a two-dimensional pre-patterned substrate that consists of equal square cells centered at
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(a) (b)

Figure 1.3: Typical configuration of jammed state yielded with random sequential adsorption (RSA)
of disks on a flat continuous surface (a) and on a regular pre-patterned surface (b).

the vertices of a square lattice (Fig. 1.3(b)). They studied effects of a regular substrate pattern and
particle polydispersity on the deposit density morphology, as well as on the in-cell particle population.
They focused on the morphology of the final state. In this dissertation we analyze the kinetics of this
model and investigate features of the deposition structure in more depth.

Privman and Yan [1] and Verma and Privman [2] analyzed the extended model of deposition
of segments of length a in one-dimension, on a lattice of spacing l between its sites. Unlike sites
of the precise lattice that have no size, sites of imprecise lattice are symmetrically broadened into
segments of width w in which the centers of the depositing objects can land. They reported that even
an arbitrarily small imprecision in the lattice-site localization (w & 0) changes the convergence to
jamming from fast, exponential, to slow, power-law. Our study in a similar spirit investigates the
rapidity of the approach to the jamming state in the case of a two-dimensional (2D) pre-patterned
substrate, elucidating the crossover between discrete and continuous substrate in a different light.
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This dissertation

This thesis is organized as follows. In chapter 2, following this introduction, we overview the prop-
erties of the system necessary to analyze and understand the growth of a monolayer deposit and its
structure. A historical overview of related research of the Random Sequential Adsorption model on
various substrate types is given in chapter 3. Chapter 4 gives the details of the numerical simula-
tion that we have developed and used to obtain the results presented in this thesis. The classical RSA
model was modified to take into account the substrate inhomogeneities and adsorption was assumed to
occur only if the (projected) particle center lies within a rectangular cell area, i.e., if a sphere touches
one of the cells. In chapter 5, we investigated the RSA of spherical particles on a randomly patterned
substrate, in which the configuration of the cells was produced by performing RSA simulations to
a prescribed coverage fraction. Chapter 6 analyses the adsorption of spherical particles on surfaces
covered by square cells arranged in a square lattice pattern. In the final chapter 7 we summarize the
presented work and give some concluding remarks.
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Chapter 2

Monolayer growth kinetics and structure

In this chapter, we describe the parameters and distributions used for the monolayer deposit character-
ization. The kinetic properties of a deposition process are described by the temporal evolution of the
substrate coverage θ(t). To gain basic insight into the “microstructure” of the jammed state, we use
the radial correlation function and size distribution of pores (patches of unoccupied spaces between
particles).

2.1 Adsorption kinetics, jamming coverage and asymptotic be-
haviour

The most common parameter used to characterize the kinetic properties of a deposition process is
coverage θ(t), defined as a fraction of the substrate area covered by adsorbed particles at moment t.
It is calculated by dividing the size of the occupied substrate space by the total size of the substrate.
In the case of adsorption of mono-dispersed particles, the coverage at a time t is calculated with the
formula

θ(t) = Np(t)
Sp

Ss
, (2.1)

where Np(t) is the number of adsorbed particles at a time t, Sp is the size of the substrate that a
single particle occupies and Ss is the total size of the substrate. In the case of adsorption on a lattice
substrate, Sp is the number of the lattice nodes that are occupied by adsorbed particles and Ss is the
total number of nodes in the substrate sample. In the case of a one-dimensional continuous substrate,
size refers to a length, while in the two-dimensional case it is a surface area. In experiments, the
most relevant case is the adsorption of three-dimensional particles on two-dimensional surfaces, in
which case the particle size Sp is calculated as the area of a particle projection onto the substrate. For
example, adsorption of Np non-overlapping identical spherical particles of radius r0 to a square flat
surface with a side of length L will give the coverage as

θ(t) = Np(t)
r2

0π

L2 . (2.2)
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The adsorption rate u≡ dθ(t)/dt is proportional to the number of particles striking the unit surface
area per second (flux j) and to the so-called sticking coefficient S(θ), which is the probability that
an impinging particle actually sticks to the substrate: u = jS(θ). The sticking coefficient is equal to
the fraction of the substrate surface that is available for new adsorptions B(θ), known as the available
space function or the blocking function, multiplied by the probability P that a particle sticks to the
substrate on contact: S(θ) = PB(θ). RSA model assumes that adsorption is inevitable whenever a
particle strikes the substrate at a location that satisfies the non-overlapping condition. In other words,
the interaction energy between the substrate area and a particle is infinite at contact and equals zero
otherwise and the probability P equals 1. Hence, the sticking coefficient equals the available space
function S(θ) = B(θ).

In the RSA model, the flux of the impinging particles j is considered to be uniform and at a
constant rate. Time scaling t∗ = jt enables us to take the flux to be unitary and yield the adsorption
rate as

u(t∗) =
dθ(t∗)

dt∗
= B(θ(t∗)). (2.3)

in the further text, for the sake of simplicity and without loss of generality, we will only use the scaled
time and omit the asterisk in the scaled time symbol.

Figure 2.1: A typical configuration of particles adsorbed at an interface (dark disks); the white annuli
show the exclusion areas, whereas the shadowed zones represent the areas (targets) available for the
centre of the wandering particle depicted by the white disk. Figure from Adamczyk [46].
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The typical RSA configuration of spherical (disk-like) particles adsorbed on a flat surface is illus-
trated in figure 2.1 [46]. Dark disks represent particle projections, while white annuli around them
compose the space blocked for the centres of new particles. Gray surface is the “free” space available
for the adsorption of new particle centres and its area represents the available space function. We
get coverage versus time dependencies as shown in figure 2.2(a) by calculating the available space
function and solving the equation 2.3. The available space function can be exactly calculated only in
a few simple one-dimensional cases and we rely on numerical Monte Carlo simulations for its esti-
mate. The sum of coverage θ and available space function B(θ) is less than 1 due to unfilled space
around particles that are blocked for centres of new particles (white annuli in figure 2.1). These annuli
overlap each other making the exact calculation of its area practically impossible.

Some features of the temporal evolution of the coverage are common for all RSA systems. At
the start of the process, the entire surface of the substrate is available for adsorption of particles and
all adsorption attempts are successful. Each adsorbed particle blocks the surrounding area for the
adsorption of new particle centres and affects the geometry of all later placements. This is why θ(t)
grows linearly at the start and slows down due to the interaction with previously adsorbed particles
(the non-overlapping condition). Due to the blocking of the substrate area by already adsorbed parti-
cles, the available space function decreases as more particles are being adsorbed and coverage growth
gets slower and slower.

At large times the coverage θ(t) asymptotically approaches the jammed-state value θJ where only
gaps too small to fit new particles are left in the monolayer. In the analysis of the asymptotic approach
to jamming, a plot of θJ−θ(t) on a logarithmic scale strongly depends on the precise calculation of
θJ. Instead, we will examine the adsorption rate u(t), i.e. the coverage growth of adsorbed particles
per unit time and surface area. It is yielded by the differentiation of coverage θ(t) and the adsorption
rate equals zero in the jammed state by definition (u(t → ∞) = 0). A typical shape of the adsorption
rate is shown in figure 2.2(b).
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Figure 2.2: (a) Qualitative dependence of coverage θ on time and (b) corresponding dependence of
the adsorption rate u on time (t).
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2.2 Radial distribution function (pair correlation function)

Radial distribution function g(r), also known as the pair-correlation function, provides a simple yet
powerful encoding of the distribution of inter-particle gaps. It gives information about the long-range
inter-particle correlations and their organization [47]. It is central in experimental applications of
geometrical concepts to physical systems since it defines the scattering function measured in light,
X-ray, and neutron diffraction experiments [48].

By definition, the pair correlation function measures the probability that a particle centre is found
at a distance r from the referent particle, relative to the one of an ideal gas. In two-dimensional
systems, it can be calculated from the expression

g(r) =
Ss

Np

∆Na(r)
2πr∆r

, (2.4)

where r is the radial coordinate, Ss is total surface area, Np is total number of particles adsorbed over
the surface, and ∆Na(r) is the average number of particles within the annulus of radius r and thickness
∆r whose centre coincide with a particle centre (see figure 2.3). If Na(r;r∗) is the number of particles
whose centre lies inside of a circle of radius r centred at a position r∗, then averaging this value over
all circles whose centres coincide with particle centres will give us Na(r). For a set of Np particles

Figure 2.3: Radial distribution function: average density of particles at distance r from the centre of
a reference particle.
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positioned at r1,r2, ...,rNp this is written as

Na(r) =
1

Np

Np

∑
j=1

Na(r;r j) =
1

Np
∑

j
∑
i 6= j

η(r−|r j− ri|), (2.5)

where η(x) is the Heaviside step function. From equation (2.5), we obtain

∆Na(r) =
1

Np
∑

j
∑
i 6= j

[η(r+
∆r
2
−|r j− ri|)−η(r− ∆r

2
−|r j− ri|)], (2.6)

which then gives

g(r) =
Ss

2πr∆rN2
p
∑

j
∑
i6= j

[η(r+
∆r
2
−|r j− ri|)−η(r− ∆r

2
−|r j− ri|)]. (2.7)

Equation (2.7) is used in practice for calculating the pair correlation function of systems generated
in Monte Carlo simulations. For each generated system, we find distances between particles in all
pairs, bin them into a histogram, and normalize the histogram according to equation (2.7). The
histogram is then further averaged over all generated systems.

Special caution should be taken in calculations of a finite system when the reference particle is
closer to the edge of a surface and parts of the circle of radius r around it fall outside of the surface.
Contributions of such points to the histogram should be appropriately corrected and this can be done in

Figure 2.4: The pair correlation function for monolayers of density θ = 0.547: the continuous line
shows the smoothed numerical results for random monolayer and the dashed line shows the theoretical
results for a 2D hard-sphere equilibrium. Figure from Adamczyk [46].
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one of three ways: (i) completely disregarding those particles; (ii) calculating the part of the circle that
falls into the surface, and replacing 2πr∆r with the surface of the truncated annulus; and (iii) using
periodic boundary conditions to extend the surface area and fill in the missing part of the annulus.
The latter can only be done if the periodic boundary condition has been used throughout the entire
simulation and it applies to the generated configurations of a system.

In the case of a system of identical hard spheres, two particles can not be at a distance smaller
than 2r0, hence g(r < 2r0) = 0. Since there can not be correlation between two infinitely separated
particles, g(r) approaches 1 for r→ ∞. As an illustration, figure 2.4 shows the pair correlation func-
tion calculated for the RSA of identical disks on a flat continuous substrate derived from numerical
simulations and theoretical results for the models of hard spheres in equilibrium [46]. Both systems
are at the same density equal to the jamming coverage of the RSA system. For r/r0 > 5, radial distri-
bution function is strongly damped so that the RSA configuration looks uncorrelated (i.e., g(r) = 1),
and it has a logarithmic divergence at contact r = 2r0 [5, 48–50].

2.3 Pore distribution

Gap size distribution is widely used to characterize the structure of a straight line covered with rods
[19, 51–54]. A pore is analogous to a gap in a two-dimensional system and systems of higher di-
mensions. Defining a pore is a challenging task in a more-than-one dimensional system where inter-
particle space is connected. The Delaunay triangulation is commonly used as a geometrical tool to
break apart an inter-particle space into separate pores. The size distribution of pores P(v) is com-
monly used to characterize the structure of disordered granular packings and to quantify the structural
changes during the compaction process [55–59].

Triangulation is a technique for creating a mesh of contiguous, non-overlapping triangles whose
vertices belong to and exhaust a given set of points P. By definition, a triangulation of a finite set of
points on a plane P ⊂ R2 is called a Delaunay triangulation if the circumcircle of every triangle is
empty, that is, there are no points from P in its interior. A prominent characteristic of a Delaunay
triangulation is that it maximizes the minimal angle of all possible triangulations, with a unique prop-
erty of local equiangularity. It is also helpful in defining the nearest neighbours as two vertices of the
same Delaunay triangle. An extensive review and comparison of 9 different Delaunay triangulation
algorithms are given by Su and Scot Drysdale [60]. In this thesis, we used the Quickhull algorithm
[61] in MATLABr programming language to compute the Delaunay triangulation for a given set of
disk centres on a plane.

By definition, the circumcircle of a Delaunay triangle is empty, i.e. it doesn’t contain other points
from the set. Let’s view this in the context of a flat monolayer deposit of hard disks with a fixed
radius r0. The disk centres are the base set of points for a Delaunay triangulation. We single out
any of the triangles and denote the radius of its circumcircle as R. Three particles of diameter r0
lie centred on the triangle vertices, and an imaginary disk with radius R− r0, concentric with the
triangle circumcircle, touches all three particles (red disk in figure 2.5). These inscribed disks are the
definition of inter-particle pores.

The maximum diameter of a circular pore is less than r0 when a monolayer deposit adsorbed on
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a continuous surface is in a jammed state. Otherwise, an additional particle could be adsorbed in the
pore larger than r0 which is contrary to the jammed state definition. This is not true if the substrate is
patterned: even if there is enough space between adsorbed particles to fit a new particle, the second
condition requires that the centre of the particle must fall within the predefined cells. This allows for
bigger pores in the jammed state. On the other hand, a smart design of substrate pattern can impose a
certain ordering of deposit that can lead to a denser packing of particles than the one in the case of a
non-patterned substrate.

The above definition of pores has a few shortcomings. In the first place, circular pores can overlap
each other. This problem can be solved by carefully excluding the smallest among overlapping pores,
which is not a straightforward task in the case of overlaps of multiple pores. Another flaw of this
definition is that a set of circular pores does not fill up the whole volume of the inter-particle space.
To avoid these two problems, we use another definition of a pore as the part of a Delaunay triangle that
is not covered by disk particles (illustrated by the striped area in figure 2.5). The advantage of these
pores over the circular pores is that the former ones completely cover the inter-particle space without
overlapping each other. On the other hand, a pore volume doesn’t indicate if the pore is big enough to
fit an additional particle and can not be used to check if the jammed state condition is satisfied even
in the case of a continuous substrate.

Another analysis at the microscopic scale is based on the Voronoi tessellation [63]. It unambigu-
ously decomposes any arbitrary region occupied by disks into space-filling, non-overlapping convex
polygons. Formally, for any set of points P in a two-dimensional space, a polygonal shape surrounds
each point p from the set P such that any point in the polygon is closer to p than to any other point

Figure 2.5: Inter-particle pore defined as (i) largest disk that is touching all three particles centred at
the vertices of a Delaunay triangle (red disk); (ii) empty part of a Delaunay triangle (striped area).
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Figure 2.6: Delaunay triangulation of a set of
points (black dots) with empty circumcircles and
its centres marked with red dots. Figure copied
from [62].

Figure 2.7: Relation between Delaunay triangu-
lation (black lines) and Voronoi tessellation (red
lines). Centres of empty circumcircles coincide
with vertices of Voronoi polygons. Figure copied
from [62].

from the set P. These polygons are known as Voronoi cells. They are convex and their edges join at
trivalent vertices. Each vertex is equidistant to three neighbouring disks. Voronoi tessellation is dual
to Delaunay triangulation: vertices of Voronoi polygons are centres of Delaunay empty circumcentres
and edges of Voronoi polygons bisect the edges of Delaunay triangles. Two points are considered to
be nearest neighbours if associated Voronoi cells are contiguous, which is equivalent to the definition
of nearest neighbours given earlier in this section.

Figure 2.6 shows an example of a Delaunay triangulation for a set of 10 points, along with all
empty circumcircles and their centres marked with red dots. Figure 2.7 shows a Voronoi diagram for
the same set of points alongside the Delaunay triangulation. Each object (denoted by a black circle)
is located in a separate polygon. Figure 2.7 also illustrates close relation between the Delaunay
triangulation and Voronoi tessellation: centres of empty circumcircles coincide with the vertices of
Voronoi polygons and each side of a polygon bisects one of the triangle sides.
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Chapter 3

Random Sequential Adsorption model

The kinetics of an adsorption process has been mainly studied through the formulation of different
models, aiming to capture the essential features of the process. Random Sequential Adsorption (RSA)
is a simple model that can provide the generic features of the adsorption phenomenon in the case
of a very strong interaction between particles and substrate. The adsorption process is treated as
the sequential addition of particles on the substrate such that at each time step only one particle is
added to the substrate at a randomly selected position. During the process of addition, newly added
particles are forbidden from overlapping with the already adsorbed particles, and any attempt of
adsorption that results in overlap is rejected. The adsorbed particles are permanently fixed at their
spatial positions so that they affect the geometry of all later placements. Under these conditions,
the system evolves rapidly toward non-equilibrium conditions, and the kinetics becomes essentially
dominated by geometrical exclusion effects between particles. Evans [15] gives a thorough historical
review of RSA models and their applications.

It must be stressed that the classical RSA approach can be used for modelling the kinetics of an
idealized process only, consisting of the creation of particles at a given distance from the interface
with a constant rate and in a consecutive manner. For particles of a sub-micrometre size range, in
addition to hydrodynamic and electrostatic forces, Brownian motion significantly affects their trajec-
tories and transport to boundary surfaces. It is not possible, within the framework of the RSA model,
to find a unique relationship between the kinetics of this idealized process and the kinetics of the
particle adsorption process governed by various transport mechanisms. One has, therefore, to rely on
approximate models being useful for specific transport mechanisms of particles [46].

3.1 RSA on a discrete substrate

A discrete substrate represents a set of isolated adsorbing sites, restricting binding positions of par-
ticles only to those sites. A basic example of the RSA on a discrete substrate is the adsorption of
monomers on a lattice when one particle binds to a single site without blocking any other sites.
Eventually, all sites will be occupied, regardless of the dimensionality and lattice configuration,
making the jamming density equal to 1. With the assumption that the particle flux is unitary, from
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dθ(t)/dt = 1−θ(t) it is easy to calculate the time evolution of the coverage and yield that

θ(t) = 1− e−t . (3.1)

The adsorption of dimers on a lattice turns out to be a non-trivial case. A dimer is adsorbed at a
random position and occupies two neighbouring sites. Two adjacent dimers can have a single isolated
site between them that can never be occupied. Consequently, the jamming coverage is smaller than
1. Jamming coverage of a one-dimensional case was first calculated by Flory [17]. He studied the
condensation of pairs of consecutive substituents X of a polymer composed of -CH2-CHX-, and found
that fraction of unreacted groups equals e−2 and the jamming coverage equals 1−e−2 ≈ 0.8647. The
asymptotic approach to jamming limit retains the exponential form in the case of the infinitely long
lattice.

Adsorption of dimers on a 2D square lattice was the subject of several studies [64–66]. Although it
can’t be solved analytically, numerous approximations and numerical calculations showed that θJ =
0.9068 [65]. Vette et al. [66] studied dimers filling on triangular, square and hexagonal lattices.
Further studies of adsorption of k-mers on 2D lattices concluded that in lattice RSA models [27, 67–
69], the approach of the coverage fraction θ(t) to its jamming limit θJ is given by the time dependence:

θJ−θ(t)∼ exp(−t/σ), (3.2)

where parameter σ depends on the orientational freedom of depositing objects, and on the dimen-
sionality of the substrate [68, 69].

3.2 RSA on a continuous substrate

When the adsorbing particles, such as proteins or colloids, are much larger than the structural details
of the substrate surface, the surface can be considered continuous on a mesoscopic scale and the ad-
sorption of particles is an off-lattice process. The one-dimensional case of the RSA of equal rods on
a continuous line is known as Renyi’s car parking problem after the Hungarian mathematician. He
was the first to propose and solve this model [18]. The calculated jamming coverage (θJ = 0.7476...)
is significantly lower than the close packing coverage which equals 1. Late time approach to the
jamming limit displays power-law behavior θJ − θ(t) ∼ t−1. The pair correlation function at long
distances behaves super-exponentially, unlike equilibrium systems with characteristic exponential de-
cay [70].

Feder [5] calculated the jamming coverage of disks on a flat plane to be approximately equal
to 0.547. He used numerical simulations to show that the asymptotic approach of coverage to its
jamming limit obeys the power-law t−p with exponent p ≈ −1/2. Pomeau [50] proposed that the
exponent p equals 1/D where D is the dimensionality of a system. Swendsen [49] pointed to a
geometrical argument which predicts that a late-stage asymptotic approach of coverage for spheroids
obeys the power-law

θJ−θ(t)∼ t−1/D, (3.3)

where D is the dimensionality of the system. For aligned squares, the power-law relation is modified
by a logarithmic factor. The same arguments were used to show that the pair correlation function in
the jammed state diverges logarithmically at contact.
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Relation 3.3 was numerically and analytically confirmed by many investigators [5, 36, 49, 50,
71]. Swendsen’s arguments initially appeared to be valid for any particle shape, but soon it was
proven by numerical calculations that even though the power-law is universal for various shapes
(spherocylinders, ellipses, rectangles, and needles) and elongations, the value of the exponent varies
depending not only on the dimensionality but on the number of degrees of freedom [20–22, 25, 26,
29, 48]. Viot et al. [29] showed that two critical regimes exist in the late stage of the process in
the limit of very small elongations of various objects. In the first regime, the asymptotic approach
obeys Feder’s law, t−1/2, and it is directly followed by a regime in which t−1/3 law is obeyed. They
found that the time when the crossover occurs is directly linked to the parameter that measures the
anisotropy of adsorbing particles.

3.3 RSA on a patterned substrate

Although the basic RSA model may accurately reproduce many experimental situations, its extension
to more complex surfaces having an intrinsic structure is by no means trivial. For example, the
supporting surface may be pre-patterned with preferential sites for specific particle attachments, which
alters the kinetics of the process and the structure of the adsorbed layer. With the use of photo-
lithographic techniques, high-power lasers, chemical treatments, etc., such surface modifications are
routinely realized on the micro-scale, or even on the nano-scale [72–75].

There is well-developed literature on irreversible adsorption of various types of two-dimensional
(2D) patterned surfaces [13, 41, 43, 45, 76–80]. Historically, Jin et al. [41] were the first to study
pre-patterned substrates in a model of irreversible deposition on a random site surface (RSS) where
the sites are represented by randomly distributed points. Their work was motivated by affinity chro-
matography in which ligands are fixed on the adsorbent surface and the desired solute (or a class
of solutes) can attach only to those ligands. They found a remarkable, yet simple mapping between
elapsed time of the adsorption on a continuous surface τ and on a random site surface t, given through
relation

τ = α(1− e−t/α), (3.4)

where α is an average number of adsorbing sites per surface unit. This mapping is valid in any
dimension, but it is applicable only if adsorbing sites are randomly distributed.

The random-site model is only suitable if the size of ligands is much smaller than the size of
adsorbing particles. The finite size of ligands will result in arrangements that are not strictly random,
and the mapping given by the equation (3.4) is inapplicable. Adamczyk et al. [43, 44] have extended
the RSS model to the situation where the size of the landing sites is finite and comparable with the
size of adsorbing spheres. They explored two cases of the ligand shape: circular disks and spherically
shaped sites (see figure 3.1). They concluded that in the case of circular disks, Jin’s mapping holds if
the disk radius is at least ten times smaller than the particle radius, but when its radius exceeds 20%
of the particle radius, the behaviour radically differs from the RSS model. Their results prove that the
spherically shaped sites are much more effective in binding particles than the disk-shaped sites.

Araújo et al. [45] have investigated the adsorption of disk-shaped particles on a patterned substrate
that consists of equal square cells centred at the vertices of a square lattice. They investigated the
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Figure 3.1: A schematic representation of particle adsorption over heterogeneous surfaces bearing
disk-shaped (left) and spherically shaped (right) adsorption sites [43, 44]

phase space of parameters α and β which stand for the size of the square cell side and the cell-cell
separation, respectively, measured in units of adsorbing particle diameter (see figure 3.2). Based on
the size of the square cell α , one can discriminate between a single-particle per cell (SPPC) and a
multiple particles per cell (MPPC) regime. SPPC regime is in force for α <

√
2/2 when at most

single particle can be adsorbed on any cell. Another division is based on the measure of the cell-
cell separation β . If β is greater than 1, the blocked area of a particle attached to a cell can’t reach
any other cells and this mode is named non-interacting cell-cell adsorption. The interacting cell-cell
adsorption regime requires that β is less than 1. The phase diagram is illustrated in figure 3.3. The
main focus of the work of Araújo et al. [45] was on the morphology of the jammed state. The ordering
effect of the substrate competes with the randomness in particle positions and excluded volumes,
yielding a variety of deposit morphologies: lattice-like, locally homogeneous or locally ordered.

In addition, Araújo [81] has discussed the influence of the pattern on the adsorption kinetics. He
has pointed out that time evolution towards the jammed state can be consistent with exponential or
power-law behaviour, depending on the geometry of the pattern. Marques et al. [13] studied the effect
of the presence of a regular substrate pattern and particle polydispersity on the deposit morphology
and density, as well as on the in-cell particle population.
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Figure 3.2: Landing sites are squares of size αr0,
with centres positioned at square lattice with lat-
tice constant (α +β )r0 [45].

Figure 3.3: Phase diagram in (α,β ) space, sep-
arating interacting from non-interacting cell-cell
adsorption, and single particle per cell from mul-
tiple particle per cell mode [45].

3.4 RSA on a patterned straight line

Understanding the kinetics of a model of RSA on a patterned substrate relies heavily on numerical
simulations. However, analytical tools can be used to study cases of one-dimensional substrates. In
[1] and [2] authors studied the adsorption on an imprecise lattice and identified regions of different
types of convergence to jamming that form a repeating pattern in the phase space of model parameters.
Bonnier et al. [42] studied the adsorption of dimers on a dashed line, a model that is equivalent to
a special case of the adsorption on an imprecise lattice, studied in [2]. Both papers report that there
are four types of an asymptotic approach to the jamming limit: continuous-like algebraic, anomalous
algebraic, lattice-like exponential and modified exponential. In this subsection, we outline their main
arguments and results.

The late-stage asymptotic behaviour of the RSA on a continuous surface is explained using the
assumption that there exists a moment ta after which predominant adsorptions of new particles happen
at holes small enough to fit only one particle [49, 50]. The presence of larger holes is negligible and
the probability that a new hole is created after the moment ta equals zero. The probability n(h; t > ta)
that a small hole gets filled is proportional to its size a ∼ hd , where h is the characteristic linear
dimension of a hole and d is the system dimensionality. Therefore, the hole size distribution declines
exponentially with time:

n(h; t > ta) = n(h; ta)e−Rhdt . (3.5)

Difference between the jamming coverage and the coverage at any instant t after the moment ta is
given by:

∆θ(t) = θJ−θ(t) = A
∫ hmax

0
n(h; t)dh

= A
∫ hmax

0
n(h; ta)e−Rhdt dh,

(3.6)

where A is the area of a single particle projection onto the substrate.
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Figure 3.4: Random sequential adsorption of segments on imprecise lattice [1, 2].

The form of the hole size distribution in the small hole limit at moment ta is crucial for determining
the type of asymptotic approach. Pomeau [50] and Swendsen [49] assumed that n(h→ 0, ta) is finite
and that it can be approximated by a constant in the range of interest h ∈ [0,hmax]. As a result of
this assumption, the asymptotic approach to the jamming coverage is algebraic ∆θ(t) ∼ t−1/d for
spheroid particles in d-dimensional space and it has the form of ∆θ(t) ∼ t−1(ln t)d−1 for aligned
hyper-cubes [49]. Other forms of hole size distribution n(h→ 0, ta) appear in models of RSA on
patterned substrates, leading to different asymptotic approaches [2]. This includes cases where it is
impossible to have holes smaller than a threshold hmin, i.e. n(h < hmin, ta) ≡ 0. Accordingly, the
small hole size distribution of interest is in the limit of h slightly larger than the threshold hmin, i.e.
n(h→ h+min, ta).

Privman and Yan [1] and Verma and Privman [2] numerically explored the model of adsorption on
a one-dimensional imprecise lattice. Particles of size a can attach to the substrate if their centres fall
on a lattice site that is symmetrically broadened around the lattice site position without overlapping
previously adsorbed particles (see figure 3.4). The size of a broadened site is w, while the lattice
constant is l. The authors identified regions of different convergence types in the phase space of scaled
parameters of the model, (w/l, a/l), based on the numerical analysis of the hole size distribution in
a late stage of the process. Rectangular blocks of phase space that lie between w/l ∈ [0,1] and
a/l ∈ (k− 1,k], where k = 1,2,3..., are identical in terms of the late-stage asymptotic behavior. A
representative block of the phase diagram for k = 2 is presented in figure 3.5. The authors identified
the following regions with different forms of small hole size distribution, yielding different types of
convergence to jamming:

Figure 3.5: Different regions of convergence to jamming as described in the text [2].
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(i) Triangle ABC, including edges, excluding point B: exponential convergence, exact (k)-mer on
a lattice adsorption dynamics
n(h, ta)∼ δ (h−w) ⇒ ∆θ(t)∼ e−Rt

(ii) Pentagon ADBGE, excluding edges: algebraic convergence
n(h→ 0, ta)∼ const. ⇒ ∆θ(t)∼ 1/t

(iii) Lines (AE], [EG] and [GB): exact car parking solution
n(h→ 0, ta)∼ const. ⇒ ∆θ(t)∼ 1/t

(iv) Triangle ACD, including edge (CD) and excluding edges [AC] and [AD]: modified exponential
convergence
n(h→ h+min, ta)∼ const. and n(h < hmin, ta) = 0 ⇒ ∆θ(t)∼ e−Φhmint/t

(v) Line (AD]: anomalous algebraic convergence
n(h→ 0, ta)∼ h ⇒ ∆θ(t)∼ 1/t2

Bonnier et al. [42] studied the following model: point-like adsorbing sites lie on a straight line
at a distance l apart from each other and rods of length r are sequentially adsorbed at a random
position on a line if they cover exactly one adsorbing site without overlapping any of the previously
adsorbed rods. They pointed out that this model is equivalent to the RSA of dimers of length d + r
on extended adsorption sites of size l, with distance d between every two adjacent sites. Adsorption
occurs if both ends of a dimer fall on two adjacent sites without overlapping each other. Depending on
the ratio r/l, asymptotic approach to the jamming coverage is similar to the normal continuous case
(∆θ(t) = A/t) if r/l ∈ (2/3,3/2), to the monomer adsorption on a lattice if r/l ∈ (0,1/2] or to the
dimer adsorption on a lattice if r/l ∈ [3/2,2) (∆θ(t) = exp(−σt)). In addition to the two usual late-
stage approaches to jamming (algebraic and exponential), authors identified and termed asymptotic
behaviour for r/l ∈ (1/2,2/3) as non-trivial lattice dynamics given by

∆θ(t) = exp(−σt)/t2. (3.7)

and for r/l = 2/3 they found anomalous continuous dynamics:

∆θ(t) = A/t2. (3.8)

We recognized that Bonnier’s model is equivalent to a special case of the RSA on an imprecise
lattice, the model studied in [1, 2]. In the first model, a line segment of length r sticks to the surface if
it falls over exactly one localized site. In the second model, a line segment of length a will stick to an
empty surface if its centre projection falls within an extended site of width w. To find the mapping of
parameters between the two models let’s look at the possible positions of the segment centre relative to
the corresponding adsorbing site (for illustration see figure 3.6). We distinguish between two different
cases:

• r < l: when segment size r is smaller than the distance between two adjacent sites l, its centre
can be as far as r/2 to the left or right from the adsorbing site. This means that the extended
site width is w = r;
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Figure 3.6: Illustration of equivalency of two models: (I) deposition of segments on localized adsorb-
ing sites and (II) deposition of particles on extended lattice sites. On the left is a case of r < l and on
the right a case of l < r < 2l.

• l < r < 2l: when segment size r is larger than the distance between two adjacent sites l, its
centre can be as far as l− r/2 to the left or right from the adsorbing site due to the limitation
that it can cover only one site. This means that the extended site width is w = 2l− r.

Non-overlapping conditions in two models are mutually consistent only if the length of the seg-
ment in the first model is equal to the length of the segment in the second model, i.e. r = a. Therefore,
the first part of the phase space that Bonnier studied, having 0 < r < l, corresponds exactly to a line
a = w in the first quadrant of Verma’s phase diagram (matching the line B-C-D-E in figure 3.5). The
second part, where l < r < 2l, corresponds exactly to the line a = 2l−w in the second quadrant (line
G-C-A).

There is a discrepancy between the results of the two studies [2] and [42] regarding the conver-
gence to the jamming in the range of r ∈ (1/2,2/3) which corresponds to a copy of the line (CD)
in the first quadrant of the phase diagram (figure 3.5). Analytical study presented in [42] claims that
asymptotic approach in this region has the form ∆θ(t) = exp(−σt)/t2. Numerical analysis in [2] sug-
gests the form ∆θ(t) = exp(−σt)/t. The authors presented only results for the second quadrant, but
they claim that the results they obtained for the first quadrant are qualitatively the same. The quadratic
correction to the exponential approach that Bonnier et al. [42] predict would result from a small hole
size distribution that linearly vanishes at a non-zero threshold hmin. This type of distribution was not
found by Verma and Privman [2]. The conclusions regarding the convergence to jamming in other
segments are in complete agreement, with emphasis on point D (w = r = 2l/3) where the anomalous
algebraic approach is found: ∆θ(t) ∼ 1/t2. We will come back to this in section 6.2 where we find
similar anomalous convergence for RSA on a two-dimensional imprecise lattice.
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Chapter 4

Numerical simulation

Manipulation of the substrate pattern can yield monolayer deposits with desired properties. Our
goal is to investigate the influence of substrate inhomogeneities on the coverage growth rate and
the geometry of the final (jammed) state. In two-dimensional systems, it is possible to make some
conjectures and reasonable ad hoc arguments to predict asymptotic behaviours, but for most practical
purposes we turn to numerical simulations that are based on the Monte Carlo method. We developed
a small C++ library to create and position landing cells and particles of various shapes and sizes and
investigate relations between them. Using this library we easily created applications that simulated
the process of random sequential adsorption of particles on a flat 2D pre-patterned substrate.

4.1 Monte Carlo method

The Monte Carlo method relies on random numbers, probability theory and statistics to estimate the
probability of possible outcomes of an uncertain event. It is heavily exploited for numerical calcu-
lations of analytically unsolvable problems or problems with a large number of degrees of freedom
in physics, mathematics, economy, finance, engineering, etc. It is used to estimate the solution of
problems that are deterministic, as well as for predicting the outcomes of problems with inherently
uncertain input variables. We used the Monte Carlo method in our simulation and estimated values of
interest by averaging over a large number of generated RSA configurations.

Randomness is essential in our analysis, not just because we use the Monte Carlo method: the R
in the RSA abbreviation stands for the word random. Adsorption of every particle is attempted at a
randomly chosen position. This is why it was very important to use a good random number genera-
tor, capable of providing a large number of long, reproducible, unique, and independent streams of
random numbers. It is time-consuming and expensive to obtain true random numbers in large quan-
tities and numerical simulations often rely on a pseudo-random number generator. Our choice was
the SPRNG library, available for FORTRAN and C/C++ programming languages. It provides high-
quality pseudo-random numbers in a computationally inexpensive and scalable manner, reproducible
streams of parallel pseudo-random numbers, independent of the number of processors used in the
computation and of the loading produced by sharing of the parallel computer and allows for the cre-
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ation of unique pseudo-random number streams on a parallel machine with minimal inter-processor
communication [82]. Out of 6 available SPRNG generators, we opted for Combined Multiple Recur-
sive Generator (CMRG) because of the good speed/quality ratio in regard to our use case. The period
of this generator is around 2219. The number of distinct streams available is over 108. It ensures that
for a given fixed seed, each one of N total streams is independent of and uncorrelated to any other
stream. To clarify, by stream we mean a unique sequence of random numbers generated by a given
generator. We used the SPRNG library, version 4.4, in all of our simulations.

4.2 Simulation of Random Sequential Adsorption on patterned
substrates

We study irreversible monolayer deposition of identical spherical particles with hard-core exclusion
on a prepared flat nonuniform substrate. The substrate heterogeneities are represented by identical
non-overlapping rectangular cells that are fixed on the substrate surface. The basic assumption of
our model is that a particle can only be adsorbed if it is in contact with one of the cells, i.e. if the
centre of its disk-shaped projection lies within one of the rectangles. The substrate can be prepared
in many ways by arranging the rectangles to form different patterns. In this thesis, we are particularly
interested in two types of patterns: (i) Random pattern, formed by RSA deposition of square or
rectangular cells, arbitrary oriented or aligned, and (ii) square lattice pattern, formed by square cells
with midpoints at the vertices of a square lattice and with sides parallel to the lattice main axes. The
non-overlapping condition for cells is in force in both cases. Consequently, in the case of a square
lattice pattern, the distance between cell centres (lattice constant) must be greater than the cell sides.

In our study, the radius of depositing particles is fixed and comparable with the typical geometrical
cell length. Moreover, we assume that the size of the particles is much larger than the length scale
between binding sites so that adsorption over the length scale of cell linear dimensions can be regarded
as an off-lattice process.

Our model forbids the deposited particles to diffuse along or desorb from the substrate on the time
scale of the dense coverage formation. This means that adsorbed particles are permanently fixed to
their spatial positions. The deposit growth rate depends on a flux of incoming particles, and for all
of our purposes, we considered that this flux is uniform and at a constant rate. To reduce the effects
of a finite substrate, we use periodic boundary conditions in both directions. These assumptions are
typical of the RSA model.

The entire simulation procedure consists of three main stages:

1. Initialization:

Simulation parameters are set in accordance with provided input arguments.

2. Substrate preparation:

Identical rectangle cells are positioned over the simulation area to form a selected type of pat-
tern, with respect to the input parameters. Upon completion of this phase, the substrate is
completely prepared and stays unchanged through the rest of the simulation.
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3. Deposit formation:

An attempt of single-particle deposition is repeated in a loop. The deposition attempt starts by
generating a random position of a test particle within the simulation area. Next, we check if the
disk’s centre falls outside of all landing cells and if it overlaps any of the previously adsorbed
disks. The disk deposition attempt fails if any of these two checks are true. If the deposition
attempt is successful, the particle becomes a permanent part of the deposit at its fixed position.

Simulation input parameters are following: particle radius r0 = d0/2, cell sides α and κα , cell
coverage θ

(cell)
0 (for random pattern) or lattice constant γ =α+β (for regular substrate), substrate size

L, maximum number of adsorption attempts Nmax, maximum number of failed adsorption attempts
Nidle, and random number generator initialization parameters (seed, stream ordinal number and total
number of streams). Simulation outputs the particle position and the ordinal number of deposition
attempts for every successful adsorption. The ordinal number is converted to time as explained later
in section 4.3.

Formations of random and regular patterns in the simulation are governed by different rules and
sets of parameters, and both of them are individually described in the sections that follow. While for
a random pattern we have to prepare substrate differently for every run, a regular pattern is always the
same for the same parameters.

4.2.1 Preparation of randomly patterned substrate

At the start, the simulation substrate surface is an empty flat square area of size L×L. We used L =
256d0, as this value gave us sufficient precision in the available amount of computer time. Substrate
preparation starts by performing the basic RSA algorithm with rectangular cells: a cell is randomly
positioned at the substrate, and it is permanently attached to the surface if it doesn’t overlap any of the
previously adsorbed cells. If an overlap occurs, the adsorption of the cell is rejected. New adsorption
attempts are repeated in the same way, up to the point when we reach the desired coverage fraction.
This coverage must be smaller than the jamming coverage for landing cells (θ (cell)

0 ≤ θ
(cell)
J ). In this

way, we can prepare randomly patterned heterogeneous substrate with a statistically reproducible
density θ

(cell)
0 .

In the random pattern model, each landing cell is a rectangle with sides a and κa (κ ≤ 1) whose
midpoint is located on a continuous substrate. The cells can take arbitrary orientations, but in some
numerical simulations, we introduced alignment in the deposition procedure for landing cells. This
simple modification introduces a preferential direction in the deposition process and, depending on the
aspect ratio of deposited rectangles, imposes specific “patterning” on the deposited layer. We re-scale
the lengths relative to the diameter of the disks d0, and define three dimensionless parameters:

α =
a

2r0
, λ =

a
κa

(4.1)

γ =
α√

θ
(cell)
0

(4.2)

The parameter γ (an average distance between cell centres) is a meaningful measure only if the landing
cells are squares (λ = 1).
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For a few fixed pairs of values of parameters α and λ , simulations were carried out for various
values of θ

(cell)
0 , ranging from 0.10 to 0.50. For each case, the simulations are carried out up to 1010

deposition attempts, or up until L2×104 consecutive deposition attempts are rejected. The results are
obtained by averaging over 100 simulation runs.

4.2.2 Preparation of regularly patterned substrate

We investigated a regular pattern that consists of square cells whose midpoints are positioned in
the nodes of a regular square lattice. Cell sides are parallel to the main axes of the lattice. The
geometry of the regular pattern is controlled by the two dimensionless parameters, α and β , measured
in terms of the particle diameter d0 = 2r0. Parameter α is the cell side size, and parameter β is the
shortest distance between the parallel sides of the nearest neighbouring cells. The distance between
neighbouring cell midpoints is γ = α +β . We considered only configurations in which cells do not
overlap each other (β > 0). The case of β = 0 is equivalent to a homogeneous substrate for all values
of α . Cases where cells can accommodate one particle at most (α <

√
2/2) and cell-cell separation

is larger than the particle diameter (β > 1) are equivalent to the lattice site adsorption in regard to
kinetics.

One or more disks can attach to each cell depending on the cell size α . For α < 1/
√

2 ≈ 0.707,
at most a single disk can be adsorbed at any given square cell. We denote this case as single-particle
per-cell adsorption (SPCA). For squares with α ≥ 1/

√
2, more than a single disk can be placed in

the square cell, and we denote this as multi-particle per-cell adsorption (MPCA). If distances be-
tween neighbouring cells are smaller than particle diameter (β < 1), a disk attempting adsorption on
a given cell can overlap with a previously adsorbed one belonging to a neighbouring cell, resulting in
a failed adsorption attempt. This excluded volume “interaction” between particles during adsorption
at different cells affects the overall structure of the adsorbed layer and causes a slower asymptotic
approach of the coverage fraction θ(t) to its jamming limit [45, 83]. Such regime is denoted interact-
ing cell-cell adsorption (ICCA). For β > 1, disks attempting adsorption cannot overlap other disks
in neighbouring cells, yielding the non-interacting cell-cell adsorption regime (NICCA). Deposition
kinetics in the regime of NICCA is completely determined by the kinetics of adsorption of particles
on a finite-size substrate (a single cell) with appropriate boundary conditions [45, 83].

We performed the Monte Carlo simulations on a planar substrate with typically 256×256 landing
cells. Some cases of landing-cell configurations required more precise measurements and we had to
increase the size of the substrate to 1024×1024. We also needed to increase the number of average
adsorption attempts per cell, which resulted in a longer simulation execution time.

4.2.3 Particle deposition

After the substrate is prepared, we start the RSA process for identical spherical particles of diameter
d0. Since the adsorption was only possible within the landing cells, we optimized the simulation
accordingly. Adsorption attempts were only made within the randomly selected cell. We omit out-of-
cell adsorption attempts and therefore testing whether particle fell on the cell becomes redundant. To
make up for this omission we have to scale the time step between consecutive attempts by the factor
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(total area)/(total cell area). We generate and position particles, one by one, within a randomly chosen
landing cell, and then test if they do not overlap previously adsorbed particles. If the condition is met,
the test particle becomes a permanent part of the deposit.

The adsorption attempts are repeated until we reach the jammed state, where only gaps too small
to accommodate new particles are left on the cells. In some cases, it can take a very long time to fill in
every single gap. For practical reasons, we modified the simulation termination condition. The simu-
lation ends when a given total number of attempts is reached or when a number of consecutive failed
attempts exceeds the given maximum idle time. These two numbers are given as input parameters to
the simulation at run-time, and they differ depending on the system size and parameters. In the case
of single-particle per cell, an additional condition is given: simulation can end when every cell in the
substrate adsorbs a particle. Note that this condition can never be met for some pattern configurations.

4.3 Time scaling and optimizations

The dimensionless adsorption time t is set to zero at the beginning of the second stage. It is then
gradually increased by an increment ∆t, given by ∆t = πr2

0/L2, each time an attempt is made to
deposit a disk of radius r0 = d0/2 on a square surface (collector) of area L2. Consequently, we define
dimensionless adsorption time t = Nattπr2

0/L2, where Natt is the overall number of attempts to place
disk particles. By plotting coverage θ(t) versus the adsorption time t, defined above, one can simulate
the kinetics of particle adsorption.

To optimize the computing time in the case of a regular pattern, deposition is attempted only inside
the cells. We chose a random cell and attempt to deposit a particle at a random position within that cell.

This optimization affects time scaling, so that the time increment can be calculated as ∆t = πr2
0

L2
(α+β )2

α2 .
In some cases, we wanted to reach very large times which required further optimizations of our
calculations. When cells are small enough and can be occupied by one particle at most, we try to
achieve the deposition events only in free cells. Then, the time t is increased after every deposition

attempt by an increment ∆t = πr2
0

Nfree

(α+β )2

α2 , where Nfree is the number of free cells. These optimizations
do not affect typical jammed state configurations nor the statistically averaged value of θ(t). However,
the standard deviation of θ(t) is significantly reduced.
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Chapter 5

Randomly patterned substrates

This chapter explores the effect of the presence of randomly patterned substrate on the structural
properties of the jammed state of the monolayer deposit. Heterogeneities of a substrate impose further
limitations on the positions of adsorbed particles. We consider the irreversible deposition of disks of
a fixed diameter d0 whose centres must fall inside one of the cells arranged at the surface. For
simplicity, we will use the length scale in which d0 = 1 throughout the whole chapter. The cells
are positioned in a prior, independent RSA process, conducted until the desired cell density θ

(cell)
0 is

reached. Following the rules of RSA, cells do not overlap each other and they are permanently fixed
to their spatial positions. A prepared substrate surface stays unaltered throughout the disk deposition
process.

In the first part of this chapter, we present and discuss the results of numerical simulation for
random deposition of identical disks on pre-patterned substrates covered by randomly positioned
squares of arbitrary orientation. We characterize the jammed state in terms of the radial distribution
function of the particle centres and the distribution of the Delaunay “free” volumes. In addition, we
compare the impact of a regular vs. random pattern on the deposit structure. The second part of this
chapter is devoted to the analysis of the adsorption of disks on randomly positioned rectangular cells
deposited with arbitrary and fixed orientations.

5.1 Square cells

We are interested in the adsorption of disks on substrates prepared by random sequential adsorption
of identical square cells of arbitrary orientation. The cell size α determines how many particles can
attach to a cell, provided that the attachment condition is that a particle centre lies inside of the cell.
We investigate the cells whose size is comparable with the size of adsorbing particles, and the number
of disks adsorbed per cell is a small number (less than five). With αk we denote the largest size of a
square that can fit at most k disks. For α < α1 = 1/

√
2, at most one disk can be adsorbed at any given

square cell. We denote this case as single-particle per-cell adsorption (SPCA). More than one disk
can be placed in the square cell if α ≥ 1/

√
2, and we denote this as multi-particle per-cell adsorption

(MPCA). The cases of up-to-two, -three and -four disks per square cell are obtained, respectively, for
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(a) (b)

Figure 5.1: Typical jammed-state configuration of a region of size 30×30 in units of the disk diameter
d0, for (a) θ

(cell)
0 = 0.3, α4 =

√
2≈ 1.41, and (b) θ

(cell)
0 = 0.5, α2 = (1+

√
3)/(2

√
2)≈ 0.966.

α smaller than α2 = (1+
√

3)/(2
√

2)≈ 0.966, α3 = 1 and α4 =
√

2.

The effect of density of landing cells θ
(cell)
0 on the adsorption process is illustrated in figure 5.1 by

snapshots of the jammed-state coverings for (a) θ
(cell)
0 = 0.3 and (b) θ

(cell)
0 = 0.5, for two values of the

cell size α , namely, α4 =
√

2≈ 1.41 [figure 5.1(a)] and α2 = (1+
√

3)/(2
√

2)≈ 0.966 [figure 5.1(b)].
For low values of θ

(cell)
0 , adsorption on a given cell is weakly affected by disks previously adsorbed

on neighboring cells. Therefore, most of the cells shown in figure 5.1(a) contain at least three discs.
However, in the case shown in figure 5.1(b) one can see a significant impact of the cell-cell excluded
volume interaction on the cell population. Although each cell has enough area to accommodate up to
two disks, only one disk is attached to the majority of the cells.

5.1.1 Adsorption on low cell density substrate

In the low limit of cell density θ
(cell)
0 → 0, the average distance between two cells is much larger

than the diameter of a disk. It is very rare that a particle from one cell can block the available space
in another cell. This limit is called the non-interacting mode in which the cell-cell interactions are
negligible. The adsorption kinetics is then equivalent to the adsorption kinetics on a single cell if time
is appropriately scaled to account for the low cell density. The jamming limit is also dictated by the
RSA on a single cell:

θJ =
〈n(α)〉πθ

(cell)
0

4α2 , (5.1)

where 〈n(α)〉 is the average number of disks on a single jammed cell, attached in a RSA process.
Equation (5.1) estimates the jamming density well for sufficiently low cell densities θ

(cell)
0 . 0.2.
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Figure 5.2: Simulation results for the probability that the configurations with n = 1,2, . . . ,5 disks
occur on square cell of size α in the non-interacting cell-cell adsorption regime (left-hand axis). The
dashed line is plotted against the right-hand axis and gives the simulation results for the average num-
ber of particles per cell 〈n〉 as a function of the cell size α in the non-interacting cell-cell adsorption
regime.

The dashed (black) line in figure 5.2 shows the simulation results for the mean number of particles
per cell 〈n(α)〉 as a function of cell size α in the non-interacting cell-cell adsorption regime (i.e., in the
case of single-cell on a substrate). In addition, in figure 5.2 we show the probabilities that the jammed
square cell of size α captures n = 1, . . . ,5 disks in the non-interacting cell-cell adsorption regime. If
α = α1 ≈ 0.707, each landing cell (square) can contain no more than one disk. If α = α2 ≈ 0.966,
the number of cells with one and two disks is approximately equal and 〈n(α2)〉 . 1.6. However,
if density θ

(cell)
0 is constant, then the increase of the cell size α1 → α2 reduces the total number of

landing cells on the substrate by a factor ≈ 2. A reduction in the number of adsorbed disks is a
consequence of these two effects. In figure 5.2 we see that the growth of 〈n(α)〉 only slightly deviates
from linear in the shown range of α1 < α < 2. Due to the quadratic dumpenning factor in equation
(5.1), which indicates that the jamming density θJ decreases with cell size α at fixed density θ

(cell)
0 ,

which is illustrated in figure 5.3. The solid line shows the relative jamming coverage θJ/θ
(cell)
0 in

the non-interacting mode, while the dashed line represents the case of maximum packing per cell.
Although the maximal packing density function is quite jagged with discontinuous jumps at α = αk,
the randomness in the positioning of particles in an RSA process smooths out the jamming density
function.
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Figure 5.3: RSA jamming density (solid line) vs. maximal packing density (dashed line) relative to
the cell density in the non-interacting mode.

5.1.2 Densification kinetics

Kinetics of the irreversible deposition of disks is illustrated in figures 5.4(a) – 5.4(e) where the plots of
time coverage behavior θ(t) are given for the five values of coverage fraction of landing cells, θ

(cell)
0 =

0.1, 0.2, 0.3, 0.4, 0.5. Here the plots of such time-dependence are shown for various values of the
cell size, αk (k = 1,2,3,4). It can be seen that for a fixed density of landing cells θ

(cell)
0 , jamming

coverage θJ = limt→∞ θ(t) decreases with increasing the cell size αk. This effect is clearly visible
in the case of the lowest density of the landing cells θ

(cell)
0 = 0.1 (figure 5.4(a)), when the average

distance between the squares γ (equation (4.2)) is several times larger than the diameter of the disks,
as discussed in previous section.

As can be seen from figure 5.4, the time coverage behaviour θ(t) is markedly slowed down with
the increase of the cell size α for the fixed density of landing cells θ

(cell)
0 . Indeed, in the MPCA case,

large times are needed for filling small isolated vacant targets on landing cells, remaining in the late
stages of deposition. Furthermore, in this regime, density curves θ(t) show a noticeable slowing down
of the deposition process at coverages that are significantly smaller than jamming densities. Coverage
growth starts to slow down at the moment when the number of adsorbed disks reaches the number
of landing cells. After this initial filling of the landing cells, adsorption events take place on isolated
islands of partially occupied cells. This extends the time interval between successful consecutive
adsorption events and causes a slowing down of the densification.

The results for the time evolution of the coverage θ(t) in the case of up-to-two disks per square cell
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Figure 5.4: Shown here is the time evolution of the coverage fraction θ(t) for the five values of density
of landing cells, θ

(cell)
0 = 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d), 0.5 (e). The curves in each graph correspond

to various values of the cell size, αk (k = 1,2,3,4), as indicated in the legend. The αcont line shows
the time dependence of the coverage θ(t) for RSA of disks on a continuous substrate. The entire αcont
curve can be seen in plot (e).
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to-two disks per square cell (cell size: α2 = (1+
√

3)/(2
√

2) ≈ 0.966). The curves correspond to
various values of density θ

(cell)
0 = 0.1 – 0.5, as indicated in the legend. Thick lines represent results

obtained for regular substrate pattern while thin lines are results for random pattern case.

(α = α2) are shown in figure 5.5 for various values of θ
(cell)
0 . Qualitatively similar results are obtained

with landing cells of other sizes α . As expected, the jamming density θJ increases with higher
coverage fraction of landing cells θ

(cell)
0 . At high values of θ

(cell)
0 . 0.5 when γ ∼ 1, a disk attempting

adsorption can overlap with a previously adsorbed one belonging to a different cell, resulting in a
failed adsorption attempt. This excluded volume interaction between particles during adsorption at
different cells causes an even slower asymptotic approach of the coverage fraction θ(t) to its jamming
limit. In addition, the analysis of the time evolution of the coverage θ(t) was carried out for deposition
on square cells centred at the vertices of a square lattice. Consequently, the temporal evolution of the
coverage θ(t) obtained for regular substrate pattern is included in figure 5.5. Here, the size α and
density θ

(cell)
0 of landing cells are the same as those used in our previous calculations for the random

pattern cases. It can be seen that lower values of the jamming coverage fraction are reached by
the deposition process involving randomness in the pattern compared to a deposition process in the
presence of a regular substrate pattern, regardless of the value of the density θ

(cell)
0 .

5.1.3 Asymptotic behaviour

Below we try to characterize quantitatively the time dependence of the approach to the jammed state
at large times. Depending on the system of interest modelled by RSA, the substrate can be continuous
(off-lattice) or discrete. The asymptotic approach of the coverage fraction θ(t) to its jamming limit,
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θJ = θ(t → ∞), is known to be given by an algebraic time dependence for continuous substrates
[5, 36, 49, 50, 71]:

θ(t)∼ θJ−At−1/d, (5.2)

where A is a constant coefficient and d is interpreted as substrate dimension [49] in the case of spher-
ical particles adsorption or, more generally, as a number of degrees of freedom [48]. For lattice RSA
models, the approach to the jamming coverage is exponential [27, 67–69, 84, 85]:

θ(t)∼ θJ−∆θ exp(−t/σ), (5.3)

where parameters θJ , ∆θ , and σ depend on the shape and orientational freedom of depositing objects
[68, 69].

Representative examples of the double logarithmic plots of the first derivative of coverage θ(t)
with respect to time t are shown in figure 5.6(a), for various values of the cell size, αk (k = 1,2,3,4),
and for high density of landing cells, θ

(cell)
0 = 0.5. The time derivatives of θ(t) are calculated numer-

ically from the simulation data. In the case of the algebraic behavior of the coverage fraction θ(t)
(equation (3.3)), a double logarithmic plot of the first time derivative dθ

dt ∝ t−
1+d

d is a straight line.
One can see that the curves shown in figure 5.6(a) are straight lines in the late stage of a deposition
process. However, the same is not valid for all values of densities of landing cells θ

(cell)
0 . The double

logarithmic plots of the numerically calculated derivatives of θ(t) for the data obtained in the case of
a low density of landing cell θ

(cell)
0 = 0.1 are shown in figure 5.6(b). As it can be seen, at the very late

times of the deposition process the plot of the first derivative of coverage fraction θ(t) with respect to
time t is not linear on a double logarithmic scale, indicating that the approach to the jamming limit is
not consistent with the power-law behaviour given by equation (3.3). The deviation from the power
law is particularly pronounced in the case of single-particle per-cell adsorption (SPCA).

Kinetics of the irreversible deposition under SPCA conditions is illustrated in figure 5.7 where a
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Figure 5.6: Test for the presence of the algebraic law (3.3) in the approach of the coverage θ(t) to
the jamming limit for different densities of landing cells: (a) θ

(cell)
0 = 0.5, and (b) θ

(cell)
0 = 0.1. The

curves in each graph correspond to various values of the cell size, αk (k = 1,2,3,4), as indicated in
the legend. Straight-line sections of the curves show where the law holds. The dashed black line has
the slope −3/2 and is a guide for the eye.
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Figure 5.7: Plots of θJ − θ(t) versus t in the single particle per-cell adsorption case for various
densities of landing cells θ

(cell)
0 = 0.1−0.5. The solid lines are the exponential fit of equation (5.3).

logarithmic plots of θJ−θ(t) vs t are shown for various densities of landing cells θ
(cell)
0 . These plots

are straight lines for the late times of deposition, suggesting that in the case of SPCA the approach to
the jamming limit is indeed exponential, as in lattice RSA models. Indeed, the kinetics of deposition
in the SPCA case is determined by the kinetics of adsorption processes on finite-size landing cells.
The difference relative to the lattice RSA is in the particle positions, which here are uncertain within
the order of the size of the cell.

5.1.4 Radial distribution function

Here we compare quantitatively the structural characteristics of jamming coverings corresponding to
different values of the cell size α for various densities θ

(cell)
0 . In order to gain basic insight into the

“microstructure” of the jammed state, we first consider the radial distribution function g(r) (or pair-
correlation function) which gives information about the long-range inter-particle correlations and their
organization [47]. In absence of external forces, the pair correlation function can be calculated from
the expression

g(r) =
S
N

Na(r)
2πr∆r

, (5.4)

where r is the radial coordinate, S is the surface area, N is the total number of particles adsorbed
over this area, and Na is the averaged number of particles within the annulus of the radius r and the
thickness ∆r. In figure 5.8(a) we compare the radial distribution function g(r) at various densities
θ

(cell)
0 = 0.1− 0.5 in the SPCA case. As expected, the random deposition process never leads to
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correlation distances between the deposited particles exceeding two or three particle diameters. The
position of the first peak measures typical distances between the closest disks. Decreasing the value
of θ

(cell)
0 in the SPCA case increases the uncertainty in the position of the particles which leads to

peak broadening. The shape of radial distribution g(r) is more structured at higher densities, showing
higher first and second peaks, because, when the system gets denser, particles will be deposited closer
to one another. As can be seen from figure 5.8(a), the minima of g(r) curves shift to shorter distances
(∼
√

3) when the density θ
(cell)
0 increases. At very low densities, the broad minima are located near

the distance ∼ 2d0. Indeed, since the particles are added at random, the probability that disks are
connected as a three-bead chain is negligible.

The results for g(r) in the MPCA case are shown in figures 5.8(b) – 5.8(d). The shape of the
radial distribution function g(r) is significantly affected by the values of the cell size α . In the case
of up-to-two disks per square cell (figure 5.8(b)) the peak which appears at a unit distance is the
most pronounced for low densities of landing cells θ

(cell)
0 . For low values of θ

(cell)
0 , one expects

a lower impact of the cell-cell excluded volume interaction on the cell population. However, as
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Figure 5.8: Radial distribution function g(r) for jamming coverings as a function of separation r
(in units of the disk diameter d0) for various values of the cell size α: (a) α1 = 1/

√
2, (b) α2 =

(1+
√

3)/(2
√

2), (c) α3 = 1, (d) α4 =
√

2. The curves in each graph correspond to various values of
density θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.5, as indicated in the legend.
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θ
(cell)
0 increases, the first peak of g(r) becomes broader because excluded volume interaction with

disks belonging to neighbouring cells reduces the average number of adsorbed disks per cell. This is
opposite to what is observed under SPCA conditions (figure 5.8(a)), where the distance to the closest
disk, on average, is determined by the distance of the nearest-neighbour landing cells.

The comparison of figures 5.8(b) and 5.8(c) shows that the results for g(r) in the case of up-
to-two and up-to-three disks per square cell are very similar. This arises as a direct consequence
of the fact that cells with sizes α2 ≈ 0.966 and α3 = 1 have very similar population of particles
(see figure (5.2)). Figure 5.8(d) shows the radial distribution function g(r) of jamming coverings at
several densities θ

(cell)
0 obtained in simulations carried out with the cell size of α4 =

√
2. For this

value of the parameter α , each cell is of sufficient size to accommodate up to four particles. As can
be seen in figures 5.8(b) – 5.8(d), increasing the value of parameter α in the MPCA case increases
the uncertainty in the position of the disk within the cell, i.e., it leads to peak broadening.

5.1.5 Volume distribution of pores

The jammed-state coverings are analyzed in terms of volume distributions of the pores. The con-
venient definition of a pore is based on the Delaunay triangulation (DT), which is a natural way to
subdivide a 2D structure of disks into a system of triangles with vertices at the centres of neighbour-
ing disks. Consequently, the circle circumscribing a Delaunay triangle has its centre at the vertex of a
Voronoı̈ polygon. In this work, we define the pore as a part of the Delaunay triangle not occupied by
the disks (Delaunay “free” volume) [57, 58]. The pore volume v is normalized by the “volume” of the
disks, v0 = d2

0π/4. In figure 5.9 we show Delaunay triangulation of typical jammed-state covering
obtained for the same conditions as in figure 5.1(a) (θ (cell)

0 = 0.3, α4 =
√

2 ≈ 1.41). Looking at the
diagram of figure 5.9, one can observe variations in the area of Delaunay triangles, which indicates
the presence of pores of various sizes in the deposit.

Here we consider the probability distribution P(v) of the Delaunay “free” volume v. The dis-
tribution function P(v) represents the probability of finding a pore with volume v. Fluctuations in
the measurements of P(v) are reduced by averaging over 100 different simulations, performed un-
der the same conditions. We compare volume distribution of the pores P(v) for jamming cover-
ings corresponding to different values of the cell size α and various densities of landing cells θ

(cell)
0 ,

as illustrated in figures 5.10(a) – 5.10(e). Here, the pore distributions P(v) obtained for densities
θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.5 have been plotted. At very low value of θ

(cell)
0 = 0.1 (figure 5.10(a)),

the curves of volume distribution P(v) are asymmetric with a quite long tail on the right-hand side,
which progressively reduces while the cell size α increases at the fixed density. At the same time,
the distribution P(v) becomes narrower and more localized around the low values of the pore vol-
ume v. This behavior of the distribution P(v) was not observed for all densities of landing cells
θ

(cell)
0 = 0.1− 0.5 (see figures 5.10(a) – 5.10(e)). For densities θ

(cell)
0 > 0.2, the pore distributions

P(v) obtained for deposition on square cells of size α2 and α3 are broader and shifted to higher values
of volumes v compared to the pore distribution P(v) corresponding to SPCA case (α1). Qualitative
interpretation of this result is given below.

In the case of up-to-four disks per square cell (α4 =
√

2), we observe the appearance of pro-
nounced peak of P(v) at low values of v, approximately at v = 0.15− 0.20. It is easy to understand
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Figure 5.9: Delaunay triangulation of a set of points (centres of disks). Diagram corresponds to
jammed-state covering obtained for density of landing cells θ

(cell)
0 = 0.3 and cell size α4 =

√
2; see

figure 5.1(a) for a typical configuration. The red dots are the centres of the adsorbed disks. Length is
measured in units of the disk diameter d0.

which kind of local configuration contributes mostly to this peak of the P(v). The Delaunay cells
with free dimensionless volume vhex =

√
3/π−1/2≈ 0.051 correspond to the local arrangements of

hexagonal symmetry when three disks are all in touch with each other with centres on the vertices
of a unilateral triangle. The cells with free volume vquad = 2/π−1/2≈ 0.13 correspond to the local
configurations of quadratic symmetry when centres of four touching disks are positioned on the ver-
tices of a square. These are minimal values of pore volumes that can be formed with three and four
disks deposited on a single landing cell of size α4 =

√
2. However, the probability that the previously

described structures of quadratic and hexagonal symmetry arise during the process of random depo-
sition is negligibly small. Therefore, the “free” volumes formed with random deposition of disks into
a single cell are larger than the minimal values vhex ≈ 0.051 and vquad ≈ 0.13, so that observed peak
of P(v) is around v . 0.20.

At high values of density of landing cells θ
(cell)
0 = 0.5 (figure 5.10(e)), distribution P(v) obtained

under SPCA conditions becomes very similar to pore volume distribution for RSA of disks on a
continuous substrate, as expected. The results for the volume distribution of the pores P(v) obtained
in the cases of up-to-two and up-to-three disks per square cell are almost identical at all densities θ

(cell)
0

(see figure 5.10). The similarity of these distributions at small values of pore volumes can be explained
by the results shown in figure 5.2. Small pores appear due to the presence of configurations with three
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Figure 5.10: Volume distribution of the pores P(v) in the case of random pattern are shown for
jamming coverings at different values of density of the landing cells corresponding to θ

(cell)
0 = 0.1

(a), 0.2 (b), 0.3 (c), 0.4 (d), 0.5 (e). The curves in each graph correspond to various values of the cell
size, αk (k = 1,2,3,4), as indicated in the legend. The αcont line shows distribution P(v) for jamming
covering in the case of the irreversible disks deposition on a continuous substrate.
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or more disks on a single landing cell. But, in the case of up-to-three disks per square cell, the number
of in-cell configurations with three disks is considerably smaller than the number of configurations
with one or two disks. Consequently, the broad maximum in P(v), centred at v = 0.4−0.6 is caused
by the contribution of large pores formed mostly in the space between the landing cells.

5.1.6 Impact of pattern regularity

Further, we study the effect of the presence of a regular substrate pattern of squares on the volume
distribution of the pores P(v). Distributions P(v) for jamming coverings corresponding to θ

(cell)
0 = 0.1

– 0.5 and different values of the cell size αk (k = 1,2,3,4) are shown in Figure 5.12. At low density
of landing cells θ

(cell)
0 = 0.1 and for large cell size α > α4 =

√
2 (see figure 5.12(a)) we observe the

appearance of three peaks of P(v). The first peak at v ≈ 0.2 is due to Delaunay triangles with their
vertices inside a single landing cell (see T1 triangle in figure 5.11). The third peak at v≈ 8 corresponds
to Delaunay triangles with vertices located in different landing cells (see T3 triangle in figure 5.11).
The central peak at v≈ 2 arises due to Delaunay triangles with two vertices belonging to a single cell,
while the third one is located in a neighbouring cell (see T2 triangle in figure 5.11). The first peak
at very low values of pore volumes v does not appear for the smaller landing cells, α = α1, α2, α3.
Indeed, if α ≤ α3, the Delaunay triangles that lie within a single landing cell are very rare (α = α3)
or they can not exist (α ≤ α2). In the case of single-particle per-cell adsorption (α = α1) vertices
of each Delaunay triangle are located in three different cells, so that distribution P(v) has only one
broad maximum. As can be seen from figure 5.12, the difference between distribution P(v) for regular
substrate pattern of squares and for random pattern case decreases with the increase of the cell density
θ

(cell)
0 .

Figure 5.11: Various types of Delaunay triangles (T1, T2, T3) depending on the position of vertices.
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Figure 5.12: Volume distribution of the pores P(v) in the case of heterogeneous surface covered by
square cells centred at the vertices of a square lattice for jamming coverings at different values of
density of the landing cells corresponding to θ

(cell)
0 = 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d), 0.5 (e). The

curves in each graph correspond to various values of the cell size, αk (k = 1,2,3,4), as indicated in
the legend.
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5.2 Rectangular cells

We have also performed numerical simulations of random deposition of identical disks on heteroge-
neous surfaces covered by rectangles of arbitrary orientation. In these simulations, each landing cell
is a rectangle with sides α = 8 and α/λ = 1 (in units of the disk diameter d0). The choice of the
value of aspect ratio λ plays important role in our model. Increasing the aspect ratio of the land-
ing cells (rectangles) leads to the formation of domains of increased regularity. The chosen value of
λ = 8 is large enough to provide a significantly different patterned substrate compared with the case
of the square cells. We have verified that usage of different, but large, aspect ratio values λ gives
quantitatively very similar results leading to qualitatively the same phenomenology.

5.2.1 Radial distribution function

To characterize the jammed state we studied radial distribution function g(r) and probability distribu-
tion P(v) of pore volume v for different values of density of landing cells: θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4,

0.45. Figure 5.13 shows the corresponding results for radial distribution function g(r). Comparing
the results from figure 5.13 and figures 5.8(b) – 5.8(d), one can see that the first peak near r/d0 = 1
and local maximum at r/d0 & 2 of g(r) are more pronounced in the case of elongated rectangular
cells than in the case of multi-particle adsorption (MPCA) at squares. This emergence of a better
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Figure 5.13: Radial distribution function g(r) for jamming coverings as a function of separation r (in
units of the disk diameter d0) obtained from simulations carried out using the heterogeneous surface
covered by rectangles of arbitrary orientation. The curves correspond to various values of density
θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.45, as indicated in the legend.
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local order is a correlation effect that develops during the deposition stage due to the formation of
arrays of disks within a single elongated rectangular cell.

5.2.2 Volume distribution of pores

Figure 5.14 compares volume distribution of the pores P(v) for jamming coverings corresponding to
different densities θ

(cell)
0 . Similar to the case of MPCA on square cells, here we observe the peak of

P(v) at small values of v≈ 0.2. As previously mentioned, such small pores are a feature of coverings
which occurs when three or more particles can be adsorbed on a single cell. The observed peak of
the distribution P(v) broadens when density θ

(cell)
0 increases. Deposition of elongated objects at high

densities is characterized by compact domains of parallel objects and large islands of unoccupied
substrate area. Figure 5.15(a) shows a typical snapshot of the jammed-state covering obtained for
rectangular cells of arbitrary orientation and density θ

(cell)
0 = 0.45. Relatively high local packing of

nearly parallel adsorbed rectangles reduces the number of disks effectively adsorbed at a cell. This
process is associated with the appearance of larger interstitial voids, which causes peak broadening.
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Figure 5.14: obtained from simulations carried out using the heterogeneous surface covered by
rectangles of arbitrary orientation. The curves correspond to various values of density θ

(cell)
0 = 0.1,

0.2, 0.3, 0.4, 0.45, as indicated in the legend. Distribution P(v) for jamming covering in the case of
the irreversible disk deposition on a continuous substrate is shown for comparison.
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5.2.3 Impact of pattern anisotropy

It is now useful to explore the interplay between the anisotropy in the deposition procedure for landing
cells and the structural characteristics of jamming coverings. In this case, the orientation of rectangu-
lar cells is fixed to the one preferential direction. The configuration formed in the long time regime
is made up of a large number of domains; see figure 5.15(b) for a typical configuration. As expected,
any such domain contains parallel cells close to each other. This produces better packing of landing
cells and a higher impact of the cell-cell excluded volume interaction on the average cell population.
Hence, anisotropic deposition of landing cells lowers the average cell population, which enhances the
appearance of larger pores, resulting in a peak broadening. Volume distributions of pores P(v) for
jamming coverings of disks corresponding to anisotropic deposition of cells are shown in figure 5.16
with thick lines, while the case of arbitrarily oriented cells from figure 5.14 is drawn with thin lines for
comparison. figure 5.16 clearly shows enhanced peak broadening of P(v) in the case of anisotropic
deposition of landing cells, which is consistent with the previous discussion.

a b

Figure 5.15: Typical jammed-state configuration of a region of size 30× 30 (in units of the disk
diameter d0), for θ

(cell)
0 = 0.45. Orientation of rectangular cells with sides α = 8 and κα = 1 is (a)

arbitrary or (b) fixed to the horizontal direction.
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Figure 5.16: Volume distribution of the pores P(v) obtained from simulations carried out using the
heterogeneous surface covered by rectangles of fixed orientation (thick lines) and arbitrary orienta-
tions (thin lines). The curves correspond to various values of density θ

(cell)
0 = 0.1, 0.2, 0.3, 0.4, 0.45,

as indicated in the legend.
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Chapter 6

Adsorption on imprecise lattice

The difference between deposition on finite-size landing cells and lattice RSA is in the particle posi-
tions, which can be uncertain within the order of the size of the cell in the former case. Recently, Priv-
man and Yan [1] have analyzed both numerically and analytically extended model of one-dimensional
deposition of segments of length a, on a lattice of spacing ` between its sites, which instead of just
being lattice points are symmetrically broadened (about the lattice points) into segments of width w
in which the centres of the depositing objects can land. They reported that even an arbitrarily small
imprecision in the lattice-site localization (w & 0) changes the convergence to jamming from fast,
exponential

θJ−θ(t)∼ exp(−t/σ), (6.1)

to slow, power-law
θJ−θ(t)∼ t−1/d. (6.2)

In a similar spirit, the study presented in this chapter investigates the rapidity of the approach to
the jamming state in the case of two-dimensional (2D) pre-patterned substrate. Unlike the models
studied in chapter 5, here we analyze deposition on the substrates patterned with a square grid of
square-shaped cells onto which the particle can adhere. We consider the process of the irreversible
random sequential adsorption (RSA) of fixed size disks. The present chapter focuses on the effect of
the presence of a regular substrate pattern on the temporal evolution of the coverage fraction θ(t). We
aim to quantify changes in time coverage behaviour θ(t) at densities near jamming limit θJ, associated
with different cell sizes and densities.

A regular substrate pattern that consists of identical square cells centred at nodes of a regular
square lattice is completely defined by two dimensionless parameters: the length of a cell size α and
the length of the smallest gap between two neighbouring cells β (figure. 3.2). These two lengths are
measured in the units of the adsorbing particle radius. As described in section 3.3, parameter β de-
termines whether the adsorption is in interacting (β < 1) or non-interacting mode (β > 1). Parameter
α distinguishes between single vs. multiple particles per cell mode. The phase diagram as defined
by Araújo et al. [45] was discussed earlier in section 3.3 and illustrated in figure. 3.3. In this work,
we focus on the interacting cell-cell adsorption (ICCA) regime in the case of single-particle per-cell
adsorption (SPCA). The non-interacting regime (NICCA) is equivalent to the low cell density limit
case discussed in section 5.1.1. We want to investigate the role of the cell-cell interaction and thus we
limit this study to the SPCA case where α <

√
2/2, which excludes the interaction of the particles at
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the same cell.

6.1 Kinetics

6.1.1 Effect of varying β on the long-time adsorption kinetics

We simulate the adsorption on a substrate with a regular pattern consisting of square cells that are
comparable in size to the adsorbing particles and that satisfy the SPCA condition α <

√
2/2. We

chose the three values of cell size: α = 0.3, 0.5, and 0.7. Figures 6.1(a) – 6.1(c) illustrate the kinetics
of the irreversible deposition of disks. The plots of the time coverage behaviour θ(t) are given for the
three chosen values of α and various values of the gap β between the cells, in the range from β = 0
(continuous substrate and ICCA regime) to β = 1 (upper limit of the parameter β , above which the
NICCA occurs). These 2D plots enable us to analyze how the time evolution of the coverage θ(t) in
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Figure 6.1: Time evolution of the coverage fraction θ(t) depending on the gap size β between two
neighbouring landing cells (in units of the disk diameter d0), for the three values of cell size, α = 0.3
(a), 0.5 (b), and 0.7 (c). For each α , the gap β between cells is varied in the range [0, 1], with the step
of 0.02.
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the case of SPCA depends on the gap size β between the landing cells.

It can be seen that for a fixed size of landing cells α , coverage θ(t) in the early stage of the
deposition process increases faster when the gaps between the cells are smaller. Indeed, at very early
times of the process, when the coverage fraction θ(t) is small, the deposited objects do not “feel” the
presence of the other ones, and the coverage grows rapidly in time. Then, the adsorption process has
an overall rate proportional to the surface density of landing cells onto which the particles can adhere.
Since the flux of incoming particles is fixed, the overall rate at which the coverage θ(t) increases is
progressively reduced with the increase of the gap between the landing cells.

At a late enough time, when the coverage fraction is sufficiently high and “excluded volumes”
of deposited objects begin to overlap, there is a strong dependence of the adsorption rate on the
parameter β . The rate of successful adsorption events reduces when the gap size β decreases. This is
explained by the larger impact of the cell-cell excluded volume interaction when the cells are closer
to each other.

It is interesting to emphasize that the dependence of the jamming coverage θJ is a non-monotonic
function of the gap size β (see figure 6.1). It goes from the jamming coverage value for contin-
uum θ cont

J = 0.5472±0.0002 [86] (β = 0), reaches some local minimum (0 < β < 1), and tends to a
definite value which corresponds to the coverings when each cell is occupied by a single particle. Cor-
responding explanations of such variations of the jamming coverage θ with parameter β are provided
later in section 6.3.

6.2 Asymptotic behaviour

To gain a better insight into the complex kinetics of SPCA in the ICCA regime, it is useful to analyze
in particular the temporal evolution of the first derivative of coverage θ(t) with respect to time t. The
time derivatives of θ(t) are calculated numerically from the simulation data. Representative examples
of double logarithmic plots of the time derivative dθ/dt are shown in figures 6.2(a) – 6.2(c), for the
three values of cell size, α =0.3 (a), 0.5 (b), 0.7 (c). For each α , results are presented for various
values of the gap β between the cells in the range 0.60 6 β 6 0.98. In the case of the algebraic
behavior of the coverage fraction θ(t) (see equation (6.2)), a double logarithmic plot of the first time
derivative dθ/dt ∝ t−(1+d)/d is a straight line. As seen from figure 6.2, if the values of parameter β

for cells of size α = 0.3, 0.5, 0.7 do not exceed, respectively, ≈ 0.84, 0.74 and 0.64, the late time
kinetics of the deposition process is similar to the one observed for disks with equal size, adsorbing
on a clean substrate. Additionally, thin straight lines with the slope −3/2 are shown in figure 6.2,
indicating the late time RSA behaviour for clean continuous substrates [5, 36, 49, 50, 71]. However,
the same is not valid for large values of the parameter β , regardless of the cell size α (obviously,
α < 1/

√
2≈ 0.707 in the case of SPCA). As it can be seen, at the late times of the deposition process

the plots of dθ/dt vs. t are not linear on a double logarithmic scale for sufficiently large values of the
gap β . The deviation from the power-law (6.2) is particularly pronounced for low densities of landing
cells, i.e. when β . 1.

Theoretical arguments supporting Feder’s law (6.2) have been presented by Swendsen [49] and
Pomeau [50]. Their analysis is based on the exclusion of the area of radius d0 around each disc of
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radius d0/2 for selecting the centre of the newly arriving disc. After a certain time, characterizing
the beginning of the asymptotic regime, the area that is available to the centre of a new disc consists
of small disconnected areas that can be occupied by only one additional disc. When power-law (6.2)
holds, a vanishing-small area that is available for the insertion of a new particle can be created with
non-zero probability during the deposition process. Arbitrarily small areas are reached with a very
small probability for a uniform flux of the arriving disks that attempt deposition. In the case of ICCA-
SPCA, since only one particle can fit per cell, the existence of a minimum finite area is related to
particles previously adsorbed on neighbouring cells. As seen from figure 6.3(a), particles adsorbed
on neighbouring cells can completely overlap the cell when the gap β and cell size α satisfies the
relation [81]:

β +α/2 < 1. (6.3)
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Figure 6.2: Test for the presence of the algebraic law (6.2) in the approach of the coverage θ(t) to
the jamming limit θJ for different values of cell size, α = 0.3 (a), 0.5 (b), and 0.7 (c). The curves in
each graph correspond to various values of the gap β between the cells, as indicated in the legend.
Straight-line sections of the curves show where the law holds. The solid straight lines have the slope
−3/2 and are guides for the eye. The dashed straight line has slope -5/2 indicating the late time RSA
behaviour of the system for the critical values of the parameter β : (a) βc = 0.85, (b) 0.75, (c) 0.65
(see equation (6.4)).
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Hence, below the critical value of the parameter β ,

βc = 1−α/2, (6.4)

there is no minimum finite area available to accommodate one particle. However, above the critical
value βc, particles adsorbed on neighbouring cells cannot prevent adsorption inside the cell. Then,
there exist finite regions where the centre of a disk can land without overlapping a previously adsorbed
particle (see figure 6.3(b)). For the critical value of the gap βc, the approach to the jamming coverage
θJ with time is still algebraic (6.2), with the exponent that is approximately equal to -3/2 which does
not depend on the cell size α . A similar anomalous power-law approach was reported in the literature
for the case of adsorption on a one-dimensional imprecise substrate [2, 42]. As explained in more
detail in section 3.3, in one dimension the reason for this behaviour lies in a different kind of small
hole size distribution in the late phase of the process. The distribution of holes available for particle
adsorptions in the late phase of the process for adsorption on a two-dimensional imprecise lattice is
out of the scope of this thesis.

Our numerical results suggest that for βc < β < 1, the asymptotic approach of the coverage frac-
tion θ(t) to its jamming limit θJ is neither algebraic nor exponential. Semi-logarithmic plots of the
time derivative dθ/dt are shown in figures 6.4(a) – 6.4(c), for three values of the cell size, α = 0.3
(a), 0.5 (b), 0.7 (c). For each α , results are displayed for various values of the parameter β above
the corresponding critical values (see equation (6.4)), βc = 0.85 (a), 0.75 (b), 0.65 (c). One observes
that for the fixed value of cell size α , the time derivatives of θ(t) decay at the very late times of the
deposition process more quickly for the larger values of the gap β between the cells. Interestingly,
in the limit of β → 1 approach of coverage θ(t) to the jamming limit θJ is exponential of the form
(6.1). The characteristic timescale σ is found to decrease with the cell size α according to power-law,

(a) (b)

Figure 6.3: Illustration of particles adsorbed in neighbouring cells can prevent adsorption on the
central cell: (a) the overlap of the shadowed regions of the four neighbouring particles completely
overlap the central cell; (b) particles adsorbed on neighbouring cells cannot prevent adsorption inside
the cell.
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Figure 6.4: Plots of the time derivative of coverage dθ/dt for the three values of cell size, α = 0.3
(a), 0.5 (b), 0.7 (c). As indicated in the legend, the results are reported for values of the gap β above
the corresponding critical values (equation (6.4)), βc = 0.85 (a), 0.75 (b), 0.65 (c). Additionally,
the slanted straight line is shown, indicating the exponential approach to the jamming limit (equa-
tion (6.1)), where σ = 8.80 (a), 3.15 (b), and 1.56 (c).

σ ∝ α−2.04±0.02. In other words, the relaxation time σ in equation (6.1) is inversely proportional
to the cell area. It must be stressed that the appearance of even a slight cell-cell excluded volume
interaction violates the exponential asymptotic approach (6.1).

6.3 Jamming coverage

6.3.1 Influence of the pattern on the jamming density θJ

Let us go back to the analysis of the non-monotonic behaviour of the jamming density θJ as a function
of the gap size β between the landing cells observed in figure 6.1. Dependencies of the jamming
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coverage θJ on the separation distance α +β between cell centers are presented in figure 6.5 for the
three values of cell size, α = 0.3, 0.5 and 0.7. For the case of SPCA, jamming coverage θJ can be
exactly calculated for β larger than the critical value βc (equation (6.4)) [45]. Indeed, since each cell
at late enough time contains the centre of a single deposited particle, the jamming coverage is simply

θ
c
J =

r2
0π

(α +β )2 . (6.5)

The solid black line in figure 6.5 indicates values of the jamming coverages calculated from equa-
tion (6.5). The jammed-state value θ cont

J = 0.5472± 0.0002 [86] of the coverage in the case of the
irreversible disks deposition on continuum substrate is marked on the same figure by the horizontal
dashed line. When the gap between the cells β starts to increase, cell-cell excluded volume interac-
tion is still strong, but the substrate area that is available for the insertion of a new particle is reduced,
which leads to a decrease in the jamming coverage below the value for continuum θ cont

J . As a gap
size β increases further, the cell-cell excluded volume interaction weakens, but one expects a higher
impact of patterning of the surface on the local particle arrangements. An increase in the pattern-
induced tendency for semi-ordering of the coverings leads to the formation of jammed-state deposits
of higher density. Then, for sufficiently large values of parameter β , jamming coverage exceeds the
jamming limit θ cont

J for continuum substrate and continues to grow with β . In this case, the theoretical
value of the highest possible coverage fraction is equal to π/4 ≈ 0.7854. This value corresponds to
the local configurations of quadratic symmetry when the disc centres are located at the vertices of a
square with a side of α +β = 1 [87]. However, in the present model this maximum of the jamming
coverage θJ is not reached at α +β = 1. In figure 6.5 we observe the appearance of three pronounced
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Figure 6.5: Jamming coverage θJ as a function of separation distance α + β (in units of the disk
diameter d0) for various values of the cell size α , as indicated in the legend. The solid black line
indicates values of the jamming coverage θ c

J calculated from equation (6.5).
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maxima of θJ on shifted positions, approximately at α +β = 1.04, 1.12 and 1.10, for α = 0.7, 0.5
and 0.3, respectively. These maxima are not positioned at α + β = 1 due to the uncertainty in the
position of the particle within the cell. Actually, for β & 1−α excluded volume interaction with
disks belonging to neighbouring cells still substantially lowers the average number of adsorbed disks
per cell. As the parameter β > 1−α is increased further to the critical value βc (equation (6.4)), the
average cell population rises, and the jamming coverage θJ increases until the appearance of large
void space between the cells when it falls to the value given by equation (6.5).

We also study the influence of varying α on the jamming coverage θJ and on the late time kinetics
of deposition process. We carried out a series of simulations at fixed α +β = 1.0, 1.1, and varied cell
size α . Numerical results regarding the jamming coverages θJ for various α are shown in figure 6.6.
For α +β = 1.1, the criteria (6.3) cannot be satisfied if α < 0.2. Therefore, for α < 0.2 each cell host
exactly one particle in the jamming state so that jamming coverage has the constant value θJ = 0.6491
given by equation (6.5). As α > 0.2 increases, the cell-cell exclusion leads to a further reduction of
the average cell population, thereby making the jamming coverage lower. However, in the case of
α +β = 1 the jamming coverage θJ(α) increases first and reaches the wide maximum at α ≈ 0.5,
after that the curve θJ(α) is lowered to the jamming value for continuum substrate θ cont

J . For α <

1−
√

2/2 ≈ 0.3, a cell can only be blocked by disks deposited at the nearest lateral neighbour cells.
In that case, for more cell-cell exclusion effects, it is needed a smaller cell size. But, when cells are
larger than 1−

√
2/2, a cell can also be blocked by disks deposited at the nearest diagonal neighbour

cells, which enhances the cell-cell excluded volume interaction. These two opposite effects that exist
when cells increase lead to the formation of the maximum of θJ(α) around α ≈ 0.5. Furthermore,
when α +β = 1 there is discontinuity of the function θJ(α) at α = 0, since θJ(0) = π/4 ≈ 0.7854,
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Figure 6.6: Jamming coverage θJ as a function of cell size α (in units of the disk diameter d0) for two
values of separation distance α +β , as indicated in the legend.
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but limα→0+ θJ(α)< θ cont
J ≈ 0.5472.

6.3.2 Effects of varying α on the long-time adsorption kinetics

It is interesting that in the case when α +β = 1, the approach to the jamming coverage θJ is always
algebraic, regardless of the size α of the landing cells. As can be seen from figure. 6.7, we find
that for α > 0.02 the coverage θ reaches a power-law time-behaviour (6.2) within the length of the
simulation. If a cell size α decreases, the value β +α/2 increases and gets closer to unity when the
condition (6.3) ceases to be valid. For very small cells (α & 0), the coverage growth is slowed down
by the creation of a smaller fraction of the layer that is available for the insertion of a new particle.
Consequently, when cell size α decreases the onset of long-time power-law behaviour (6.2) shifts
to later times (figure 6.7). Generally, this effect occurs when the geometry of the pattern is close
to the condition (6.4). In this case, it was necessary to increase the size of the substrate (typically
1024× 1024 cells) to gain a convincing confirmation of the power-law approach of the coverage
fraction θ(t) to the jamming limit θJ at the very late times of the deposition process.

When α +β = 1.1, although there is no change of jamming coverage θJ for α < 0.2 (figure 6.6),
changes in the dynamics of deposition are obvious (see figure 6.8). The criteria (6.3) is satisfied for
α > 0.2 and then the approach to the jamming limit is consistent with the power law behavior given
by equation (6.2). As seen from figure (6.8)(a), at the late times of the deposition process the plots of
dθ/dt vs. t are linear on a double logarithmic scale with the slope of -3/2 for all α > 0.2. However, the
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Figure 6.7: Test for the presence of the algebraic law (6.2) in the approach of the coverage θ(t) to the
jamming limit θJ for different values of parameters α and β that satisfy the condition α +β = 1 (see
legend). Straight-line sections of the curves show where the law holds. The solid straight lines have
the slope −3/2 and are guides for the eye.
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Figure 6.8: Plots of the time derivative of coverage dθ/dt for different values of parameters α and
β that satisfy the condition α +β = 1.1 (see legends): (a) results are shown on a double logarithmic
scale. Solid straight lines have the slope −3/2 and are guides for the eye. Dashed straight line has
slope -5/2 indicating the late time RSA behavior of the system for the critical value of parameter β ,
βc = 0.20 (see equation (6.4)); (b) results for α 6 0.22 are shown on a semi-logarithmic scale. Slanted
straight line is shown, indicating the exponential approach to the jamming limit (equation (6.1)),
where σ = 78.8.

slope of dθ/dt abruptly changes to ≈−5/2 when the cell size α reaches the critical value of α = 0.2
(see equation (6.4)). By reducing the size of cells below the critical value α = 0.2, algebraic approach
disappears. Under conditions when the cell size α decreases towards non-interacting condition (α→
0.10+, β → 1.0−), asymptotic approach of the coverage fraction θ(t) to its jamming limit θJ becomes
closer to the exponential law (6.1) (see figure 6.8(b)).

6.4 Structural properties of the jammed state

To gain additional insight into the late time kinetics of the deposition process onto a nonuniform
substrate, it is useful to analyze in particular the spatial distribution of particles inside the cells. In
figures. 6.9, 6.10, and 6.11 we show the spatial distribution of particles inside the cell at the jammed
state, for α = 0.3, 0.5 and 0.7, respectively, and the twelve different values of parameter β ∈ [0.02
0.98]. To calculate these probability distributions, we divided cell space in mesh with 40× 40 bins
and counted the number of particles falling into bins. The data are averaged over 100 independent
runs for each of the investigated substrate patterns with 256×256 landing cells. Spatial distribution of
particles shown in figures 6.9 – 6.11 are accompanied by corresponding radial distribution functions
g(r) (or pair-correlation functions) defined as

g(r) =
S

N2

〈
N

∑
i=1

N

∑
j=1

δ
[
~r− (~r j−~ri)

]〉
, (6.6)

where~r is the position vector of a point over the adsorption plane (measured from the centre of an
adsorbed particle), δ is the Dirac delta function, ~ri and~r j are the position vectors of the particles i
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and j, respectively, and angle brackets mean the ensemble average. Here, S is the surface area, and
N is the total number of particles adsorbed over this area. Radial distribution g(r) gives information
about the long-range inter-particle correlations and their organization [15, 47]. This function can be
interpreted as an averaged probability of finding a particle at the distance r from another particle, with
the centre located at r = 0. For sake of convenience, the distance r is usually normalized by using the
particle radius d0/2 as a scaling variable. In the absence of external forces, when the system can be
considered isotropic, the vector~r can be replaced with the radial coordinate r and the pair correlation
function may be calculated more directly by converting equation (6.6) to the form

g(r) =
S
N

Na(r)
2πr∆r

, (6.7)

where Na is the averaged number of particles within the annulus of the radius r and the thickness ∆r.

To discuss the effect of the parameter β on the spatial distribution of particles inside the cell at the
jammed state, let us first consider the fixed value α = 0.3, with varying β = 0.02−0.98, as shown in
figure 6.9. In the case of the ICCA regime, the temporal evolution of the coverage θ(t) towards its
jamming state value θJ is a two-stage process. At very early times of the process, when the coverage
fraction is small, the coverage grows rapidly in time. Particles adsorbed during this stage are homoge-
neously distributed in the cells. At a late enough time, when the coverage fraction is sufficient to make
the geometry of the unoccupied substrate complex, the growth of the coverage fraction θ(t) requires
the filling of holes that are large enough for the insertion of an additional particle. Consequently, the
structure of the spatial distribution of particles inside the cell is determined by the late stage of the
deposition process. For β 6 0.02, particles are distributed uniformly throughout the whole substrate
and the shape of radial distribution g(r) is the same as in the case of RSA of disks on a continuous
substrate. Since the cell-cell excluded volume interaction is changing with β , the spatial distribution
of particles inside the cell reveals various preferential regions. From the probability distribution plots
in figure 6.9, we can identify various regions such as corners (f), sides (g), interior ring (h), central
square (i), central peak (j), etc., that are predominantly populated with particles. For β below the
critical value βc (equation (6.4)) particles adsorb preferentially at the cell edges. Approaching the
critical value of βc = 0.85 (α = 0.30), the probability of deposition in the centre of a cell increases.
Close to the critical value, we observe the appearance of a pronounced peak of probability distribu-
tion in the centre of the cell. In addition, as parameter β is increased, one observes that the radial
distribution functions g(r) become more detailed with peaks becoming sharper. There is also peak
splitting, related to a weaker excluded volume interaction between particles deposited into different
cells. For the large β = 0.98, since adsorption on an empty cell is weakly constrained by particles
previously adsorbed on a neighbouring one, adsorption can occur, with almost equal probability all
over the cell (figure 6.9(l)). The radial distribution function now shows a series of well-developed
peaks which correspond to the various cell-defined distances in the square lattice matrix. Finally, in
the NICCA regime (β > 1), the adsorption inside cells is entirely uniform and the shape of the radial
distribution function g(r) is no longer changing (not shown here).

Numerical simulations for the other cell sizes, α = 0.5, 0.7, produce qualitatively similar results
for the spatial distribution of particles inside the cell leading to qualitatively the same phenomenology
(see figures 6.10 and 6.11). However, increasing the value of α in the NICCA-SPCA regime increases
the uncertainty in the position of the particle within the cell, i.e., it leads to peak broadening of the
radial distribution function g(r).
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Figure 6.9: Spatial distribution of particles inside the cell and radial distribution function g(r) at the
jammed state, for the fixed value of cell size α = 0.3 and different values of parameter β .
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Figure 6.10: Spatial distribution of particles inside the cell and radial distribution function g(r) at the
jammed state, for the fixed value of cell size α = 0.5 and different values of parameter β .
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Figure 6.11: Spatial distribution of particles inside the cell and radial distribution function g(r) at the
jammed state, for the fixed value of cell size α = 0.7 and different values of parameter β .
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Chapter 7

Conclusions

In this thesis, we have used the Random Sequential Adsorption model to numerically investigate
the deposition of identical spherical particles of fixed radius onto a flat heterogeneous substrate. A
surface heterogeneities consisted of square or elongated rectangle adsorption cells with the typical
geometrical cell length comparable with the size of the particles. A particle is irreversibly adsorbed at
a random position on the substrate if it does not overlap any of previously adsorbed particles and if it
touches one of the cells on the substrate. The equivalent model is the adsorption of two-dimensional
disks (sphere projections), without overlapping already adsorbed disks and with a condition that the
disk centres lie in the adsorption cells. We studied the influence of the cell size, density and arrange-
ment of the landing cells and emphasized the influence of substrate inhomogeneities on the coverage
growth rate and the geometry of the final (jammed) state. It was shown that manipulation of the
substrate pattern can yield monolayer deposits with desired properties.

In the first part of this thesis research, we presented the results of numerical simulations of RSA
deposition on randomly patterned substrates, with a focus on the jammed-state properties. We found
that for a given density of landing cells, the highest jamming coverage and the fastest kinetics of the
deposition process can be achieved in the single-particle per-cell adsorption (SPCA) case. Because
the densification kinetics is dictated by geometric exclusion effects, the coverage kinetics is severely
slowed down in the multiple-particles per-cell adsorption (MPCA) case.

To examine the short scale structure in the jammed-state coverings, we evaluated the radial corre-
lation function g(r) which measures the particle density-density correlation at distance r for various
shapes and sizes of the landing cells. The oscillation of g(r) quickly decays for all densities of land-
ing cells θ

(cell)
0 , which means that long-range order does not exist in the system. In the MPCA case,

the peak of g(r) which appears at a unit distance is the most pronounced for low densities of landing
cells θ

(cell)
0 . This is opposite to what is observed under SPCA conditions when the shape of radial

distribution g(r) is more structured at higher adsorption cell densities θ
(cell)
0 .

The morphology of deposited disks has been analyzed through the distribution of pore volumes.
The pore is defined as the free area of a Delaunay triangle. Its volume distribution is sensitive to
small structural changes in the covering and it, therefore, describes the degree to which the cell size
and cell density affect the deposit morphology. We have found that pore volumes have a distribution
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with a long tail, particularly at low densities of adsorption cells θ
(cell)
0 . The distribution P(v) becomes

narrower and more localized around the low values of volumes v with the increase of cell density
θ

(cell)
0 . In the case of the largest cells that we examined (α4 =

√
2), we observed the pronounced peak

of distribution P(v) at low values of volume v = 0.15− 0.20, which appears due to the presence of
configurations with three or more disks on a single landing cell. We have also studied the influence
of a regular substrate pattern on the volume distribution of the pores P(v). At low cell densities,
θ

(cell)
0 , distribution function P(v) shows well-developed peaks which correspond to the various types

of Delaunay triangles. A triangle can have three or two vertices in the same cell or all three vertices
in three different cells. Cell-cell excluded volume interaction increases with the cell density θ

(cell)
0 so

that distribution P(v) for regular substrate pattern of squares becomes similar to distribution P(v) for
random pattern case at densities near the jamming limit of adsorption cells.

Numerical simulations of Random Sequential Adsorption on heterogeneous substrates composed
of elongated rectangular adsorption cells have shown that the shape of the pore distribution function
P(v) is affected by the anisotropy in the deposition procedure for landing cells. It is shown that
anisotropic deposition of landing cells lowers the average cell population and reduces the number of
small pores. Our results suggest that the porosity of deposit (pore volumes) can be controlled by the
size and shape of landing cells, and by the anisotropy of the cell deposition procedure. The radial
correlation function g(r) for jamming coverings of disks corresponding to anisotropic deposition of
rectangles is quite similar to g(r) for the case of the isotropic landing-cell pattern.

The second part of this thesis research considered a pattern with the equal square cells, positioned
in a square-lattice matrix. Analysis of numerical simulation of RSA of disk-shaped particles is fo-
cused on the kinetics of the deposition process in the interacting cell-cell adsorption (ICCA) regime.
An efficient numerical algorithm was implemented to simulate the disk deposition in the case of
single-particle per-cell adsorption (SPCA).

It was demonstrated that the two geometrical parameters, the cell size α and the cell-cell separa-
tion β , have a striking influence on the kinetic properties of a deposition process, as well as on the
in-cell particle population. By studying the temporal evolution of the first derivative of coverage θ(t)
we have found that the asymptotic approach of the coverage fraction θ(t) to its jamming limit θJ is
algebraic if the parameters α and β satisfy the simple condition β +α/2 < 1. If this relation is valid,
particles adsorbed on neighbouring cells can block adsorption inside the central cell, so that there is
no minimum finite area available for adsorption. A vanishing-small area can be created with non-zero
probability and an asymptotic approach to the jamming limit in the late stage of the deposition process
obeys the power law.

If the geometry of the pattern does not satisfy the criteria β +α/2 < 1, the approach of the cover-
age fraction θ(t) to the jamming limit is not consistent with the power-law behaviour. The existence
of the minimum finite area where the centre of a disk can land without overlapping a previously ad-
sorbed particle is a sufficient condition for deviation from the algebraic asymptotic approach. When
the geometry of the pattern approaches towards non-interacting condition (β → 1.0−), the asymp-
totic approach of the coverage fraction θ(t) to its jamming limit θJ becomes closer to the exponential
law. It must be stressed that the appearance of even a slight cell-cell excluded volume interaction
violates the exponential asymptotic approach. Consequently, changing the pattern in our numerical
model allows interpolating the deposition kinetics between the continuum limit and the lattice-like
behaviour.
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We found that the asymptotic approach obeys a power-law t−p with a different exponent p =
3/2 on the critical line in the parameter phase space (α,β ), determined by equation β +α/2 = 1.
This line is the boundary of the standard power-law asymptotic behaviour phase with p = 1/2. A
similar anomalous power-law approach was reported in the literature for the case of adsorption on
a one-dimensional imprecise substrate [2, 42]. We are the first to observe and document this kind
of behaviour in two-dimensional RSA systems. In one dimension, this behaviour is explained by a
different kind of small hole size distribution in the late phase of the process. For the normal power-
law approach, this distribution is constant in the limit of the hole size zero, while for the anomalous
power-law approach the small hole distribution vanishes linearly in the same limit. The distribution
of holes available for particle adsorptions in the late phase of the process for adsorption on a two-
dimensional imprecise lattice is out of the scope of this thesis and this topic could be addressed in
further research.

To examine the short scale structure in the jammed-state coverings, we evaluated the spatial dis-
tribution of particles inside the cell and the radial distribution function g(r). Interesting, non-trivial
spatial distributions are observed, with local order resulting not only from the constraint of the pattern
but also due to steric effects that make certain insertions of particles impossible owing to an effective
high local density. Close to the critical values of parameter β determined with βc = 1−α/2, we
observe the appearance of the pronounced peak of probability distribution in the centre of the cell.
Hence, by tuning the pattern parameters on the critical values, it is possible to obtain jammed-state
covering with a highly ordered structure.

In the available literature, various models of thin-film formation were used to investigate the im-
pact of particle properties on the kinetics of adsorption and the structure of the jammed state. With
technological advances and the development of methods to modify substrate surfaces, more studies
are devoted to the influence of the substrate on the deposition process. This direction of research is
largely unexplored and leaves a lot of space for further research. For example, our research can be
extended to different particle and cell shapes, as well as to different substrate patterns. The relaxation
processes in the deposit formation with weaker particle-cell interaction play a more important role and
can not be neglected. Inter-particle interactions, hydrodynamic interactions, and external forces like
gravitation and electromagnetic forces can also be incorporated into an extended model. The exper-
imental measurements of monolayer deposit formations are extremely difficult to realize, especially
when it comes to kinetics. This makes numerical simulations an indispensable tool for advancing our
understanding of the adsorption process.
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Appendix A

Dense packing of equal disks in a square

In this work, we investigated the adsorption of equal hard disks on square cells of different sizes and
arrangements. But what is the maximal number of disks that can fit into a square cell of a given size?
Or stated differently, what is the minimal square cell that can contain centres of n non-overlapping
disks? Finding and prooving the most optimal configuration might be easy for up to 5 disks, but the
cases of 6 and more disks require more creativity and more profound mathematical knowledge.

This appendix lists the sizes of minimal squares that contain the centres of up to ten disks, along
with the coordinates of disk centres in the optimal configuration (see figures A.1 - A.9). Next to each
figure, we give the exact values [88–91], except for the case of 10 disks where we cite approximate
numerical values proposed and prooved by Groot et al. [92]. It is interesting that the optimal solution
for n = 10 is not symmetric and the side of the minimal square is calculated as the smallest real root
of the polynomial of degree 18.

Rigorous mathematical proofs exist for n = 2 to 30, and for n = 36. Best known solutions for up
to≈ 104 disks are summarized in a web page maintained by Eckard Specht [93], most of which found
numerically.

Figure A.1: Dense packing of n = 2 disks in a
square

a2 =
√

2/2
P1 = (0, 0)
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√
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√
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Figure A.2: Dense packing of n = 3 disks in a
square
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Figure A.3: Dense packing of n = 4 disks in a
square

a4 = 1
P1 = (0, 0)
P2 = (0, 1)
P3 = (1, 0)
P4 = (1, 1)

Figure A.4: Dense packing of n = 5
disks in a square
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Figure A.5: Dense packing of n = 6 disks in a
square
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Figure A.6: Dense packing of n = 7 disks in a
square
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Figure A.7: Dense packing of n = 8 disks in a
square
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Figure A.8: Dense packing of n = 9 disks in a
square

a9 = 2
P1 = (0, 0)
P2 = (0, 1)
P3 = (0, 2)
P4 = (1, 0)
P5 = (1, 1)
P6 = (1, 2)
P7 = (2, 0)
P8 = (2, 1)
P9 = (2, 2)

Figure A.9: Dense packing of n = 10 disks in a
square

a10 = 2.87372076161906
P1 = (0, 0.027244965467)
P2 = (0.999628787029, 0)
P3 = (1.999628787029, 0)
P4 = (1.373720761619, 0.927391607978)
P5 = (2.373720761619, 0.927391607978)
P6 = (0, 1.027244965467)
P7 = (0.739425948012, 1.700482863543)
P8 = (2.373720761619, 1.927391607977)
P9 = (0, 2.373720761619)
P10 = (1.478851896025, 2.373720761619)
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[54] N. A. M. Araújo and A. Cadilhe, Jammed state characterization of the random sequential
adsorption of segments of two lengths on a line, Journal of Statistical Mechanics: Theory and
Experiment 2010, P02019, (2010).

[55] P. Philippe and D. Bideau, Numerical model for granular compaction under vertical tapping,
Phys. Rev. E 63, 051304, (2001).

[56] P. Richard, P. Philippe, F. Barbe, S. Bourles, X. Thibault, and D. Bideau, Analysis by x-ray
microtomography of a granular packing undergoing compaction, Phys. Rev. E 68, 020301(R),
(2003).

[57] T. Aste, Variations around disordered close packing, J. Phys.: Condens. Matter 17, S2361 –
S2390, (2005).

[58] T. Aste, Volume fluctuations and geometrical constraints in granular packs, Phys. Rev. Lett. 96,
018002, (2006).
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So far, Danica Stojiljković have published 5 research papers in peer-review international journals:

1. D. Stojiljkovic and S. B. Vrhovac, Kinetics of Particle Deposition at Heterogeneous Surfaces,
Physica A 488, 16-29 (2017)

2. J. R. Scepanovic, D. Stojiljkovic, Z. M. Jaksic, Lj. Budinski-Petkovic, and S. B. Vrhovac,
Response Properties in the Adsorption-desorption Model on a Triangular Lattice, Physica A
451, 213 (2016)

3. D. Stojiljkovic, J. R. Scepanovic, S. B. Vrhovac, and N. M. Svrakic, Structural Properties of
Particle Deposits at Heterogeneous Surfaces, J. Stat. Mech.-Theory Exp. 2015, P06032 (2015)

4. A. Balaz, I. Vidanovic, D. Stojiljkovic, D. Vudragovic, A. Belic, and A. Bogojevic, SPEEDUP
Code for Calculation of Transition Amplitudes Via the Effective Action Approach, Commun.
Comput. Phys. 11, 739 (2012)

5. D. Stojiljkovic, A. Bogojevic, and A. Balaz, Efficient Calculation of Energy Spectra Using Path
Integrals, Phys. Lett. A 360, 205 (2006).

Two of these papers (1. and 3.) are directly related to the research presented in this thesis. She pre-
sented her research at 3 international and one national conference, and edited one book of proceedings
of an international conference.
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