
Nanoscale

PAPER

Cite this: Nanoscale, 2017, 9, 19337

Received 18th October 2017,
Accepted 15th November 2017

DOI: 10.1039/c7nr07763g

rsc.li/nanoscale

Fortune teller fermions in two-dimensional
materials†

Vladimir Damljanović, *a Igor Popov a,b and Radoš Gajićc

Dirac-like electronic states are the main engines powering tremendous advancements in the research of

graphene, topological insulators and other materials with these states. Zero effective mass, high carrier

mobility and numerous applications are some consequences of linear dispersion that distinguishes Dirac

states. Here we report a new class of linear electronic bands in two-dimensional materials with zero elec-

tron effective mass and sharp band edges, and predict stable materials with such electronic structures uti-

lizing symmetry group analysis and an ab initio approach. We make a full classification of completely

linear bands in two-dimensional materials and find that only two classes exist: Dirac fermions on the one

hand and fortune teller-like states on the other hand. The new class supports zero effective mass similar

to that of graphene and anisotropic electronic properties like that of phosphorene.

1. Introduction

Electrons can move in certain materials as if they have no mass.
Massless fermions in solid state materials have played an increas-
ingly important role since the discovery of graphene,1 a material
where zero electron effective mass is caused by linear Dirac-like
dispersion. While the first mapping of the electronic structure of
graphene to the Dirac equation was an interesting theoretical
curiosity,2 the true significance of the Dirac-like states in solid
state systems became apparent upon identification of many
physical, measurable consequences of the linear dispersion.3 For
instance, the existence of massless fermions in graphene yields
extraordinarily high electron and hole mobilities4 with revolu-
tionary implications in electronics. Other implications include,
and are not limited to, Klein tunneling in single- and bi-layer gra-
phene,5 and the quantum Hall6 and fractional quantum Hall7

effects at room temperature. The two-dimensional (2D) nature of
graphene and related materials brings numerous additional
advantages including mechanical flexibility, optical transpar-
ency,8 and possibilities for engineering heterostructures with the
desired properties by stacking of two or more 2D materials.9

There is a whole plethora of various 2D materials beyond gra-
phene with a linear dispersion in their band structure,10 includ-
ing topological insulators11 and semimetals.12

Although the behavior of electrons in the vicinity of K and K′
points of graphene’s 2D Brillouin zone (BZ) is actually described
by the Weyl equation, such points are, for historical reasons,
called 2D Dirac points (occasionally, 2D Weyl points).13 Their
generalizations to 3D bulk single crystals are called (spin-1/2)
Weyl points. According to the fermion doubling theorem, Weyl
points (fermions) must appear in pairs of opposite chirality in
the BZ. Two such Weyl fermions appearing at the same point in
the BZ are called a 3D Dirac point,14 while a pair of 3D Dirac
points at the same k-vector forms a double Dirac point.15 Note
that at a band crossing, a Weyl point (3D Dirac point, double
Dirac point) is two-fold (four-fold, eight-fold) degenerate.
Generalizations for higher pseudo-spins are possible. Recent
ab initio calculations show spin-1 Weyl and spin-3/2 Rarita–
Schwinger–Weyl fermions in transition metal silicides,16 such
as RhSi.17 An additional type of Dirac point appears in antiferro-
magnetic (AFM) 2D layers.18,19 Here the crossing point is four-
fold degenerate, the corresponding Chern number of each band
is zero and such crossings can appear as a single point in the
BZ. Quasiparticles in solids can even go beyond their Weyl and
Dirac counterparts as shown by the classification of linear and
quadratic three-, six- and eight-band crossings in 3D crystals
with a strong spin–orbit coupling (SOC).20 Other studies also
discuss three-,16 six-,16,17 and eight-fold15 degenerate fermions.
Different types of electronic dispersions are intricately linked to
symmetry, as also exemplified with cone engineering by sym-
metry manipulation,21 whereas new 2D Dirac cones have been
generated in graphene under an external periodic potential.22

Mañes has used space group representations to find sufficient
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conditions for the existence of spin-1/2 Weyl points in the BZ of
3D single crystals, and enumerated the possible T-symmetric
corepresentations of such points for spinless systems (single
groups).23 Recently, a set of symmetry conditions that guaran-
tees 2D Dirac-like dispersion in the vicinity of high symmetry
points in the BZ of any non-magnetic 2D material with negli-
gible SOC has been reported.24,25 Also, the existence of 2D Dirac
fermions in bilayer non-honeycomb crystals using symmetry
analysis has been indicated.26 It has recently been shown that
certain non-symmorphic symmetries induce new band hour-
glass-like dispersion at the surface of some 3D single crystals.27

Non-symmorphic symmetries also cause a similar dispersion in
2D (layer) systems with SOC.28,29 Topologically protected band
touchings (TPBT) were found on the BZ surface of a SnTe 3D
material class30 and the A2B3 family of materials.31 Note that
such band touchings27,30,31 are located away from the high-sym-
metry points of the BZ, and that they can be moved but cannot be
removed by the change of model parameters used to calculate
the band structure. Surprisingly, the existence of classes of
massless fermions other than 2D Dirac-like, in 2D non-mag-
netic, time-reversal symmetric (TRS), materials with negligible
SOC has not been addressed yet.

Here we report that combined TRS and certain crystal non-
symmorphic symmetries of 2D materials lead to the emer-
gence of peculiar massless linearly dispersive bands which we
call fortune teller (FT) states. The geometries of these FT states
in reciprocal space are pyramidal and paper fortune teller-
like, unnoticed in solid state matter before. Our analysis indi-
cates that these states and the Dirac cones are the unique pos-
sibilities for essential linear dispersive bands in all diperiodic
directions of non-magnetic 2D materials without SOC. Our
results are based on the analysis of all eighty layer single
groups, which are all possible symmetries of non-magnetic 2D
materials with negligible SOC. Inclusion of SOC would require
an analysis of eighty layer double groups. These are distinct
mathematical entities, and the results for the SOC-case do not
apply to the non-SOC-case or vice versa. For this reason we
treat here the non-SOC-case and leave analogous analysis for
the SOC-case for future research. Similar search for Dirac-like
and other (unconventional) quasiparticles has already been
performed in the SOC-case.15,20,28,29 Finally, we predict stable
2D materials with our new massless fermions using DFT and
our own-developed software. The ab initio calculations have
confirmed the existence of the predicted electronic dispersion
and quantitatively determined structural and electronic pro-
perties, which can be utilized in further experimental realiz-
ations of the new class of 2D materials.

2. Classification of linear states in 2D
materials

We consider all possible symmetry groups of non-magnetic
crystals with negligible SOC, which are periodic in two spatial
directions and finite in the perpendicular direction. These are
the so-called layer single groups (or diperiodic groups). This

implies that spinful degeneracy of a band is twice the spinless
(orbital) degeneracy. Representation-protected band spinless
degeneracy at the wave vector k0 in the 2D BZ, for bands
belonging to the allowed32 (relevant,33 small34) irreducible rep-
resentation (irrep) R of the group of the wave vector (little
group) G(k0), is given by the dimension of R. For all eighty
layer single groups irreps R are either one- or two-dimen-
sional.32,35 TRS either doubles spinless band-degeneracy at
given k0 or leaves it unchanged.

36 Therefore, possible essential
spinless band-degeneracies are one, two or four.

Since the orbitally (spinless) non-degenerate band is
smooth, its second derivative is finite and the effective mass,
being inversely proportional to the second derivative,37 is
nonzero. Therefore, the bands carrying zero effective mass are
possible only in the vicinity of points in the BZ where the elec-
tron energy is orbitally (spinless) degenerate. We show in the
ESI† that in the vicinity of a spinless double degenerate point,
2D Dirac bands are the only possible massless bands.

The behavior of the bands near four-fold orbitally (spinless)
degenerate points in non-magnetic 2D materials with no SOC
has not been examined thus far and we perform this task as
described in the next section. Before that, we comment on why
we think that four-fold spinless degeneracies can only be
caused by combined TRS and crystal symmetry. It is well-
known that some crystal non-symmorphic symmetries com-
bined with certain topological properties can lead to touching
of two bands somewhere on high symmetry lines in the BZ.
We call this topologically protected band touchings (TPBT). In
such TPBT, band degeneracy is larger than required by dimen-
sionality of irreps of the corresponding little group. Such an
approach started with Zak’s introduction of elementary band
representations38 (EBR) and culminated with the recent classi-
fication of all possible 10 403 band structures in double space
groups.39 Essentially, the presence of TPBT can be established
by investigation of compatibility relationships of irreps along
certain closed loops in the BZ.40 Alternative formulation is in
terms of non-symmorphic symmetry eigenvalues.28,29 It some-
times happens that a band belongs to different irreps at two
end points in the symmetry line and consequently must have
touched another band an odd number of times (most probably
once). The method cannot determine where exactly in the sym-
metry line two bands touch. Such a position depends on the
model used to calculate the band structure. In layer single
groups irreps of little groups for symmetry lines are one-
dimensional inside BZ. BZ edges have either several one-
dimensional irreps or only one two-dimensional irrep or two
one-dimensional irreps related by TRS.32 Corresponding three-
fold (four-fold etc.) spinless degeneracy would require TPBT of
three (four etc.) bands at the same point in the BZ which we
assume is unlikely. In addition, all these three (four etc.)
bands would have to belong to different irreps of the little
group, which at some point becomes impossible. On the other
hand, two double-degenerate bands at the edge of the BZ
belong to the same irrep and therefore cannot touch.41 For
these reasons, we assume that TPBT can lead at most to
double spinless degeneracy and to Dirac-like dispersion. The
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same assumption holds even for band touchings that are not
protected by topology but are model-dependent (accidental
band touchings). Note that above arguments do not apply to
the SOC case. For example, TPBT of two two-fold spinful
degenerate bands exist in some layer double groups.28

3. Fortune teller states

In the following, the functional form of the new linear dis-
persion relation that corresponds to the vicinity of four-fold
spinless degeneracy will be presented and compared to 2D
Dirac-like dispersion. As before, we assume that q is a wave
vector of small modulus, t a real 2D vector, u1, u2 positive
quantities and q1, q2 projections of q along certain, mutually
orthogonal directions. If k0 is a point that hosts a pair of 2D
Dirac cones, then the Taylor expansion of the electron energy
around this point reads:

E1;2ðk0 þ qÞ � E0 þ t � q+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1q12 þ u2q22

p
: ð1Þ

For u1 = u2, 2D Dirac cones are isotropic and for t ≠ 0, the
cones are tilted.42,43 The new electronic dispersion presented
in this paper is:

E1;2;3;4ðk0 þ qÞ � E0 + ju1jq1j + u2jq2jj: ð2Þ
While the 2D Dirac band has the geometric form of a

simple cone with a circular or elliptical cross section, the geo-
metry of dispersion (2) consists of two different geometric
forms. The plus sign under the absolute value yields the geo-
metry of a four-sided pyramid, whereas the minus sign corres-
ponds to a more complex geometry, which looks like the paper
origami called paper fortune tellers [Fig. 2(b)]. Since both
forms always appear together, we label dispersion (2) using
one name – the fortune teller (FT) dispersion.

Next, we state the conditions that lead to four-fold essential
spinless degeneracy. According to Herring,36 there are, in prin-
ciple, two possibilities for achieving this. The first one is:

O1: k0 is equivalent to its inverse −k0,
O2: R is two-dimensional,
O3: R is pseudo-real or complex.
The second one is: k0 is not equivalent to −k0, −k0 is in the

star of k0, R is two-dimensional, Rin = R↑G is pseudo-real or
complex (Rin is the representation of the whole layer single

group G, obtained by induction from R). Detailed case-by-case
study of representations of layer single groups32 shows, by
exhaustion, that the second possibility never occurs in 2D non-
magnetic materials with negligible SOC. A more detailed dis-
cussion on the conditions for four-fold spinless degeneracy
and the classification of all massless bands in non-magnetic
2D materials with weak SOC is given in the ESI.† Therefore

conditions O1–O3 are the only essential four-fold spinless
degeneracies in such systems.

Now we show how the linear dispersion (2) is connected to
TRS and crystal symmetry. A general matrix form of the Taylor
expansion of a four-component Hamiltonian around a given k0
point of BZ is:

Ĥðk0 þ qÞ � E0 Î4 þ Ĥ′; ð3Þ
where

Ĥ′ ¼ ŴðÎ4 � ~qj iÞ; ð4Þ
and

Ŵ ¼ @

@q

� ����Ĥ k0 þ qð Þ
� �

q¼0
: ð5Þ

Î4 is a four-dimensional unit matrix, ⊗ denotes the
Kronecker product, 〈∂/∂q| is the transposed gradient at q = 0,
hence Ŵ is a four-by-eight matrix. We can combine the repre-
sentation R and its complex conjugate R* to obtain one four-
dimensional, physically irreducible, real representation D in
the following way: D = R⊕R*. It follows that we can choose the
basis functions {φ1, …, φ4} for D to be real at k0 so that TRS
imposes the following (* denotes complex conjugation):23

Ĥ*ðk0 þ qÞ ¼ Ĥðk0 � qÞ: ð6Þ
Taking the first order derivative of this equation with

respect to q, at q= 0 gives the following condition for Ŵ:

Ŵ* ¼ �Ŵ : ð7Þ
Taking into account in addition the hermicity of the

Hamiltonian, we obtain for Ĥ′ the following:

Ĥ′ ¼ i

0 v1 � q v2 � q v3 � q
�v1 � q 0 v4 � q v5 � q
�v2 � q �v4 � q 0 v6 � q
�v3 � q �v5 � q �v6 � q 0

0
BB@

1
CCA; ð8Þ

where vj are real 2D vectors. Since Ĥ′ is purely imaginary, for
every eigenstate ψn corresponding to energy Ej, there exists an
eigenstate ψ*

n that corresponds to the energy −Ej. Therefore,
eigenvalues of Ĥ′ come in pairs (Ej, −Ej) and the Hamiltonian
Ĥ′ obeys the particle-hole symmetry. The eigenvalues of Ĥ(k0) +
Ĥ′ given by eqn (9) confirm our statement:

Note that particle-hole symmetry is not accidental, but it is
a consequence of the fact that complex conjugation is a
symmetry operation. More precisely, in our case the
combination of TRS, reality of representation D and the fact
that k0 is time-reversal invariant momentum leads to
purely imaginary Ĥ′, and to particle-hole symmetry with
respect to E0.

E1;2;3;4 ¼ E0 +
1ffiffiffi
2

p


X6
j¼1

ðvj � qÞ2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX6

j¼1

ðvj � qÞ2
" #2

�4 ðv1 � qÞðv6 � qÞ � ðv2 � qÞðv5 � qÞ þ ðv3 � qÞðv4 � qÞ½ �2
vuut

vuuut : ð9Þ
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To further simplify eqn (9) we use the following identity23

valid for every element (in Seitz notation) (ĥ|τĥ + R) of the little
group G(k0):

Ĥðk0 þ qÞ ¼ D̂þððĥjτĥ þ RÞÞĤðk0 þ ĥ′qÞD̂ððĥjτĥ þ RÞÞ; ð10Þ
where D̂((ĥ|τĥ + R)) is the matrix of the representation D that
corresponds to the element (ĥ|τĥ + R) and ĥ′ is the reduction
(as an operator) of ĥ to two-dimensional k-space. After differ-
entiating (10) with respect to q, at q = 0 we obtain (T denotes
transposition):

Ŵ ¼ D̂ððĥjτĥ þ RÞÞŴ ½D̂ððĥjτĥ þ RÞÞ � ĥ′�T: ð11Þ
Eqn (11) is a consequence of crystal symmetry. If we write

the matrix Ŵ as a column-vector |Ŵ〉, eqn (11) becomes:

½D̂ððĥjτĥ þ RÞÞ � D̂ððĥjτĥ þ RÞÞ � ĥ′�jŴi ¼ jŴi: ð12Þ
It follows that the matrix Ŵ belongs to the totally symmetric

part of the representation D⊗D⊗Γ2DPV, where Γ2DPV is a two-
dimensional polar-vector representation. For all groups that
satisfy conditions O1–O3 we have, using Wigner’s method of
group projectors, found the form that symmetry imposes on
the matrix Ŵ and consequently on vectors vj, and inserted the
result in eqn (9). In all cases, the equation for eigenvalues (9)
reduces to the dispersion (2). More details on the application
of group projectors are given in the ESI.†

It turns out that only three out of eighty layer single groups
have allowed representations satisfying the conditions O1–O3.
Groups allowing the dispersion (2) are listed in Table 1. All
three groups are non-symmorphic and belong to the rectangu-
lar system. The component q1 can be chosen as projection of q
along a direction that is parallel to any screw axis 21, q2 is a
projection along the perpendicular direction. The points k0
hosting the dispersion (2) are located at the corners (±π/a,
±π/b) of the rectangle that presents the BZ border. The corres-
ponding space group from Table 1 denotes the space group
that is obtained by periodic repetition of layer groups’
elements along the axis perpendicular to the diperiodic plane.
The diperiodic plane in Table 1 denotes the position of the
layer single group plane within the corresponding 3D space
group. The effective mass of both dispersions (1) and (2) is
zero, as shown in the ESI† using the usual formula for m̂eff.

37

Analogous four-fold degeneracies are present in bulk 3D
systems,16,17 on the surface of 3D systems31 or in 2D AFM crys-
tals.18,19 These are all spinful degeneracies in the presence of

SOC. Dispersion of Rarita–Schwinger–Weyl fermions16 is pro-
portional to Sz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2 þ qy2 þ qz2

p
, where Sz is a projection of

pseudo-spin S = 3/2 along the z-axis, while the unconventional
fermion at the BZ center of RhSi is a combination of two S =
1/2 and two S = 3/2 states with a similar dispersion.17 In 2D
AFM systems the dispersion +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2 þ qy2

p
is double

degenerate,18,19 and the same holds for surface Dirac fer-
mions.31 The dispersion (2) differs from these Dirac-like dis-
persions, it is a property specific to 2D materials and conse-
quently falls into the range of nanophysics.

Orbital wave functions must belong to an allowed irrep at a
given point in the BZ. This statement is valid irrespective of
strength of electronic correlations, since the Coulomb repul-
sion between electrons has the same transformation properties
as the rest of the Hamiltonian. The allowed irreps of the
groups listed in Table 1 are the only ones at these points of the
BZ, hence the electronic correlations cannot change the form
of the dispersion (2) as long as TRS and crystal symmetries are
preserved. Even if the band picture fails the energy of all elec-
trons in the crystal has dispersion (2). If one acts simul-
taneously by a space group element to radius vector of every
electron in the crystal the many-body wave function has the
same symmetry as the single-particle wave function of the
corresponding non-interacting model. On the other hand, a
combination of SOC and Hubbard interaction can result in an
AFM order, which then breaks TRS.46,47 The same effect might
occur even without SOC.48 Our analysis does not refer to such
cases so a detailed ab initio investigation of particular material
should show whether transition to the AFM order occurs.

Symmetry of the crystal lattice is responsible for (an)iso-
tropy of single crystals.49 For example, isotropy of the electric
susceptibility tensor in silicon is caused by the cubic sym-
metry, while the in-plane isotropy of graphene is caused by the
hexagonal symmetry. In our cases, crystal axes are maximally
of the second order, the irreps of the corresponding point
groups are all one-dimensional and the materials belonging to
layer groups listed in Table 1 are expected to be anisotropic.

From the analysis of irreps of layer double groups50 we con-
clude that in the presence of SOC, originally eight-fold, spinful
degeneracy splits into four doubly spinful degenerate levels for
Dg33 and two four-fold spinful degenerate levels for Dg43 and
Dg45. Since Dg43 and Dg45 contain inversion, bands are at
least spinful double-degenerate, so the four-fold spinful degen-
erate level cannot split into four non-degenerate ones along
e.g. the BZ-diagonal. On the other hand, layer double group

Table 1 Layer single groups hosting the dispersion (2) in the vicinity of the BZ corners: k0 = (±π/a, ±π/b). The notation for layer- and space-groups
are according to Kopsky and Litvin44 and Hahn,45 respectively. The x-, y- and z-axes are along a-, b- and c-directions of the orthorhombic 3D unit
cell, respectively. The notation for allowed representation in the last column is according to the Bilbao Crystallographic Server.32 Symbol ⇔ denotes
equivalence between representations. In all three cases the little group G(k0) is the whole layer single group

Layer single group Corresponding space group Diperiodic plane irreps R at k0

Dg33 pb21a 29 Pca21 C2v
5 y = 0 U1 , U*

1
Dg43 p2/b21/a2/a 54 P21/c2/c2/a D2h

8 y = 0 U1, U2 , U*
1

Dg45 p21/b21/m2/a 57 P2/b21/c21/m D2h
11 x = 0 T1, T2 , T*

1
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Dg33 does not support four-fold degeneracy at the BZ corners,
which is necessary for FT dispersion. We conclude that SOC
destroys FT dispersion at BZ corners of layer groups from
Table 1. This result is valid irrespective of the strength of SOC.
The four-fold orbital, and therefore eight-fold spinful degener-
acy in layer single groups from Table 1 leads to electron band
filling of 8n (n = 1, 2, 3, …), as a necessary condition for bands
to be either completely filled or completely empty.51,52 This
requirement remains even in the SOC case.28 In fact Dg33,
Dg43 and Dg45 are the only layer double groups with band
filling 8n necessary for insulating systems.28 In contrast to
layer single groups from Table 1, essential eight-fold spinful
degeneracy does not exist in their double group counterparts.50

Instead, four spinful double-degenerate bands are tangled
together in an hourglass manner in double-Dg43 and Dg45,
while in non-centrosymmetric double-Dg33, eight non-degen-
erate bands form a “cat’s cradle” structure.28 Analysis of band
connectivity28 for double-Dg33, Dg43 and Dg45 confirms our
prediction of SOC splitting for bands at the corners of the BZ
for groups from Table 1.

Since there is only one FT dispersion in the first BZ of each
group from Table 1, it is interesting to investigate if band topo-
logy requires appearance of additional dispersions somewhere
else in the first BZ. According to Chern, the following integral
must be an integer Cn:

Cn ¼ i
2π

ð ð
1st BZ

∇q � hψnðqÞj∇qψnðqÞi � d2S; ð13Þ

where ψn is the eigenstate of nth level, Cn is the Chern number,
while i∇q × 〈ψn(q)|∇qψn(q)〉 is the Berry curvature.11,53 In the
case of graphene, each Dirac point gives contribution of 1/2 to
the Cn and consequently, the number of Dirac points in the
first BZ must be even. This is a 2D version of the Fermion dou-
bling theorem. In contrast to graphene, our dispersion leads
to zero Berry curvature for each of four states in each of the
three groups. Consequently, the Berry phase is zero along any
closed contour in the BZ, which gives Cn = 0 for all n = 1, 2, 3,
4. It follows that topology does not forbid FT to be the only dis-
persion at the Fermi level. Similar conclusion holds for e.g.
AFM Dirac cone, where the contact point is also four-fold
degenerate.18

Next we discuss the behavior of FT dispersion under strain.
Application of strain that deforms the rectangular primitive
cell into an oblique one, lowers the symmetry from a Dg33 to a
Dg5 layer group, i.e. from Dg43 and Dg45 to Dg7. Since both
Dg5 and Dg7 necessarily host the semi-Dirac dispersion,54 FT
dispersion splits into two pairs of semi-Dirac cones. The
Chern number of semi-Dirac dispersion is zero, so such bands
are topologically trivial. It follows that any linear combination
of single band Chern numbers, such as mirror Chern number
or spin Chern number, is also zero in this case. For strain that
does not deform the rectangular primitive cell, the behavior of
FT dispersion is determined by translationengleiche subgroups
of Dg33, Dg43 and Dg45. As detailed analysis of band degen-
eracies in all layer single groups shows, breaking of horizontal

glide plane symmetry of Dg33, splits an FT point into two spin-
less double-degenerate points, both belonging to double spin-
less degenerate lines. Such splitting occurs also in Dg43 and
Dg45, when one breaks any symmetry element of their sub-
group Dg33. On the other hand, breaking of any element
belonging to Dg43 or Dg45 but not to Dg33 gives the final
group Dg33 and FT states are robust against such
deformations.

Density of states (DOS) per unit area/volume for the nth

energy band is given by the following formula:
ρnðεÞ ¼ ð1=2πÞDim

Ð Ð
1st BZ δðε� εnðqÞÞdDimq. Here, the dimen-

sionality Dim is equal to three (two) for 3D (2D) systems. For
Dirac dispersion ±v|q| in 3D (in 2D), it is convenient to change
to spherical (polar) coordinates. DOS is proportional toÐ bzb
0 qDim�1δðε� vqÞdq, where the BZ border bzb depends on
the azimuthal and polar angles. For a sufficiently small energy
ε measured from the bands contact point, we obtain, after
including the particle-hole symmetry, ρn(ε) ∼ |ε| for 2D, i.e.
ρn(ε) ∼ ε2 for 3D Dirac dispersion. In both cases, DOS becomes
vanishingly small in the vicinity of contact points of the cones.
This result refers, among other cases, also to four-fold spinful
degenerate fermions in 3D.16,17 On the other hand, change to
polar coordinates does not help in calculating DOS for dis-
persion (2). It is more convenient to introduce linear trans-
formations of q1 and q2 such that expression under the Dirac
delta function contains only one variable of integration.
Details of calculations are given in the ESI,† while the final
result is:

ρðεÞ � 3
πħ

1
avb

þ 1
bva

� �
; ð14Þ

with degeneracy due to the spin included. Here a and b are
lattice constants while va and vb are Fermi velocities along
a and b. It is worth noting that DOS of FT is constant around
EF in contrast to DOS of Dirac states in graphene. This unique
coexistence of zero electron effective mass and non-zero DOS
at E0 might have consequences on e.g. charge transport pro-
perties. For example, a smaller sensitivity of conductance is
expected when charged impurities are introduced in materials
with FT states.

4. Ab initio search for realistic
materials

Next we report examples of (meta)stable 2D materials with the
desired layer groups predicted using ab initio calculations. We
have developed and utilized software that automatically
searches for materials with a given group, analyzes their stabi-
lity and band structure. The outline of the algorithm is listed
in the ESI.† Since the atomic SOC strength increases as the
fourth power of the atomic number,13 we limited our search
only to light elements of the periodic table. For the sake of
demonstration of the new electronic dispersion in real
materials, we have searched for stable crystals with the above
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stated symmetry groups among a few light elements, including
B, C, Si and P. These are known to build stable 2D materials of
various crystal symmetries and have negligible SOC. Note that
the materials presented here are for demonstration purposes
only, without intent to be a complete list. More elemental crys-
tals with given symmetries are possible, while the list exponen-
tially grows when compounds of two or more elements per
unit cell are considered. Our symmetry arguments do not
determine the position of FT states on the energy scale, so it is
not guaranteed that the Fermi level will cross the energy near
E0. We have applied band filling theory28,51,52 to our groups
and found that the number of valence electrons per primitive
cell must be an odd multiple of four, for FT states to touch
exactly at EF and that no other bands cross the Fermi level. The
simplest structures satisfying these necessary (but non-
sufficient) conditions have four identical nuclei in the primi-
tive cell and belong to Dg45. The structures are listed in
Table 2.

Note that we mean the structural stability here when we
write about stability. Our DFT calculations have been con-
ducted for the materials in an absolute vacuum. This has been
a common approach in related papers.15–18,20,27,30,31 Here we
propose a new class of materials which may include dozens of
materials. Their chemical stability, i.e. stability in the atmo-
sphere and reactivity with oxygen and other chemicals depend
on the particular material’s chemical composition, hence the
chemical stability varies among materials in the class. For
instance, phosphorene (double layer) has a Dg45 symmetry
group (hence it belongs to the new class), while its reactivity
with hydrogen, oxygen and fluorine has been analyzed in
detail.55 Questions of chemical stability of other found and yet
to be found materials in the new class are to be answered in
future research.

A stable structure with FT contact points positioned exactly
at the Fermi level [P(Dg45), marked with bold letters in
Table 2] is shown in Fig. 1(a). It consists of zig-zag chains of P
atoms placed alternately at two parallel planes. The potential
energy surface (PES) of elemental phosphorus has multiple
local minima, i.e. many allotropes have been recently pre-
dicted,56 hence there are numerous (meta)stable phases of
phosphorus with different symmetries. P(Dg45) is a new one,
placed at the distinct local minimum of PES in the configur-
ation subspace with the Dg45 group and 4-fold multiplicity of
Wyckoff positions [Fig. 1(b)]. Its stability is further confirmed
by molecular dynamics simulations at 100 K.

The band structure of P(Dg45) along lines between high
symmetry points is shown in Fig. 2(a). At Y–R–Z section of the
BZ, four states touch at EF (both upper and lower states are
doubly spinless degenerate), yielding 4-fold spinless degener-
acy at the point of contact (EF). Constant and non-zero DOS in
the vicinity of EF confirms our prediction given by eqn (14).
The bands around R point obey the electron–hole symmetry,
in agreement with our discussion related to eqn (9). The Fermi
velocities of these states in the Y–R and R–Z directions are
1.08 × 106 m s−1 and 0.46 × 106 m s−1, which are in the range
of the Fermi velocity of graphene.

The Fermi velocity of P(Dg45) is highly anisotropic.
Therefore anisotropic electronic properties are expected to be
similar to those of doped phosphorene.57 The 2-fold spinless
degeneracy of both lower and upper bands at R is lifted along
the diagonal direction (Γ–R). Note another set of bands
between Z and Γ, with 2-fold spinless degeneracy below EF.
More geometry details of the states around R are visible in
Fig. 2(b). These states look exactly the same as the symmetry
analysis predicted above: the FT states consisting of two
pyramid-like and two paper fortune teller-like bands that
touch at their tips and two lines, respectively. Sharp edges of
the dispersion are unique among the electronic structure of

Fig. 1 Example of a stable structure with FT states at EF. Top and side
views of the optimized geometry of P(Dg45) is shown in panel (a). An
elementary unit cell is marked with a green rectangle together with
lattice vectors. Potential energy surface (atomization energy is given in
eV per atom) in the configuration space constrained by the Dg45 group
and 4-fold multiplicity of Wyckoff positions is shown in (b). The lattice
parameters are given in Angstroms. Calculations are not done in the
white region of panel (b) since the search algorithm predetermined
instability of the crystal in this region.

Table 2 Examples of stable 2D crystals with the Dg45 group. Mult. is multiplicity of Wyckoff position. Eat is atomization energy, b and c are lattice
parameters. Coordinates of only one atom are given for each element. Other coordinates can be obtained from Wyckoff positions. ΔEF = EFT − EF –

energy difference between the Fermi level and nearest FT states. Group velocities vb and vc are calculated using vj ¼ 1

ħ

@Eðk1; k2Þ
@kj

where index

j corresponds to b or c lattice directions. A corresponding stable structure for carbon was not found

Element Eat [eV per atom] b [Å] c [Å] Coordinates [Å] ΔEF [eV] vb [10
6 m s−1] vc [10

6 m s−1]

B −6.51 3.12 2.97 (0.390 0.387 0.743) −0.65 1.22 1.52
Si −5.56 3.74 4.64 (0.765 0.583 1.160) −2.30 0.91 0.79
P −6.03 3.22 5.24 (0.780 0.708 1.310) 0.00 1.08 0.40
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any known crystal, and particularly in contrast to the smooth
features of Dirac cones.

In order to image experimentally the sharp edges as the
unique signature of the FT state, angle-resolved photoemission
spectroscopy (ARPES)58 can be utilized. ARPES can probe the
momentum-dependent electronic band structure of 2D
materials providing detailed information on the band dis-
persion and Fermi surface. Importantly for the fine structural
feature of edges, recent progress of this technique allows
ARPES measurements with a precision of roughly 1 meV
energy resolution and 0.1 degree angular resolution. Prior to
application of ARPES the material should be doped to move
the Fermi level from the contact point and reach a doped
Fermi surface with edges. Doping can be achieved by electron
transfer between the target material and a substrate which acts
as a donor or an acceptor of electrons. In order to preserve the
symmetry, the donor/acceptor should be sputtered to both sur-
faces of the target material. The contact between the substrate
and only one face of the sample would reduce the symmetry of
the system and open a gap. The same holds for gating, when
an electric field is applied perpendicularly to the sample.
These symmetry arguments explain e.g. the gap opening in
bilayer graphene under gating.59 On the other hand, adding
dopant elements to the target material in a way that preserves
the original symmetry does not affect the FT dispersion. Even
though preserving symmetry in highly doped systems is a for-
midable task, a light doping, in percent or even ppm ranges,
would be sufficient for shifting of the Fermi level from the
contact points, depending on a particular material. Light
doping is still negligible for breaking of crystal symmetry.
Other than ARPES, inverse photoemission spectroscopy can be
used to probe the unoccupied states in the electronic band
structure. In addition to the edges as a very unique feature of

the novel FT state, transport measurements would address the
anisotropic electronic nature of the states.

5. Conclusions

In conclusion, we have established a full classification of states
with linear dispersions in non-magnetic, time-reversal sym-
metric 2D materials with a negligible spin–orbit coupling,
based on group theory analysis, and found that only one
additional massless state to the Dirac one is possible. These
states have not only unique and interesting geometric forms,
but they also can open new horizons for both fundamental
research and applications. For instance, these fermions in 2D
materials do not have a counterpart in elementary particle
physics, in analogy to some new fermions predicted for the 3D
space groups.15–17,20 The sharp edges in the electronic bands
have been neither predicted nor measured before, so their
existence in the FT states may spawn new phenomena in solid
state materials. Materials with FT bands can be competitive to
the popular phosphorene due to the importance of anisotropy
of its electronic structure.57 Our unified classification of line-
arly dispersive bands paves the way to engineer new materials
with Dirac and FT states. We hope that findings presented
here will be of great motivation for experimental groups to
bring these materials into existence.
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states and the Berry curvature, and wrote the corresponding

Fig. 2 The band structure of P(Dg45). (a) Electronic band structure along the lines between high-symmetry k-points (left panel) and the corres-
ponding density of states (right panel). (b) FT states consisting of pyramidal (green) and paper fortune teller-like (blue) bands at point R. Energies are
in units of eV relative to EF, k-points are in units of 2π/|b| and 2π/|c|. Coordinates of the R-point are (0.5, 0.5), while the R–Z direction (R–Y direction)
is parallel to the kb (kc) axis.
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Classification of linear states in 2D 

We first show that in the vicinity of spinless double degenerate point, 2D Dirac bands 

are the only possible massless bands. Eigenvalues of any two-component, k-dependent 

Hamiltonian ��(�) are: 

                                    ��,
(�) = �(�) ± �∑ ���(�)�
����  ,                                        (S1) 

where 

                                     (∀� = 0,3����)��(�) = �
 �����(�)����                                           (S2) 

are real functions and ���,
,� (��) are the Pauli matrices (is the unit matrix). If k0 is 

crossing point of two bands and q is a wave vector of small modulus then ��(�) =
�
(�) = ��(�) = 0 and:  

                                  ��,
(� + ") ≈ �(� + ") ± �$%�
&' + (%

&)                           (S3) 

In Eq. (S3), u and v are positive quantities, n1 and n2 are natural numbers and q1 and q2 

are projections of q along certain, mutually orthogonal directions. Since the expression 

under the square root in Eq. (S3) cannot be negative, the powers on q1, q2 must be even. 

Eq. (S3) is obtained by the Taylor expansion of fj, (j=1, 2, 3) around the point k0. In order 

to obtain the effective mass we need second order derivatives with respect to q1, q2 at 
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q=0. If x denotes q1 or q2, the second derivative of |+|& (n=2,3,4,..) depends on whether n 

is even (n=2s, s=1,2,3,..): 

                                          ,),-) |+|
. = 20(20 − 1)+
.3
,  

or odd (n=2s+1): 

                        ,),-) |+|
.4� = 20(20 − 1)|+|
.3� + 40+
.3�6(+) + 2+
.7(+). 

Here θ(x)=1 (θ(x)=-1) for x>0 (x<0) and δ(x) is Dirac delta-function. For n=2 second 

derivative at x=0 is a positive constant, which gives rise to finite effective mass. For n>2 

second derivative is zero at x=0 and the contribution to the effective mass comes from 

second derivatives of f0 in Eq. (S3). Again, the effective mass is finite. The only 

remaining case n1=n2=1 gives zero effective mass and corresponds to 2D Dirac-like 

dispersion (see Eq. (1) of the main text and this text below). 

Next, we classify all possibilities for linear dispersions in the band structure of 2D 

materials. In order to achieve this aim we define a set of parameters, which values 

determine possible existence of linear dispersions in 2D crystals. If 8(�) is the group of 

the wave vector � and R is allowed [32] (relevant [33], small [34]) irreducible 

representation (irrep) of 8(�), then the set of parameters consists of  

-equivalence of � and its inverse −�, 

-dimensionality of representation R, 

-reality of representation R. 



 
 

3 
 

We consider all possible symmetry groups of crystals which are periodic in 2 spatial 

directions and finite in the perpendicular direction. These are the so called layer groups 

(or diperiodic groups). Layer groups have only 1D or 2D allowed irreps [32, 35], while 

they can be real on one hand or pseudo-real or complex on the other hand. When 

complex conjugation is a symmetry operation, reality of irreps determines if it causes 

additional degeneracy. For single crystals the corresponding theory was developed in 

1937 [36]. Therefore, each of these parameters can obtain one of two options; hence there 

are 8 possible combinations, as illustrated in figure S1. 

 

Figure S1. Full classification of linearly dispersive electronic bands in non-magnetic 2D 

materials based on symmetry conditions. Panel (a) corresponds to the case � ⇎ −� 

and panel (b) to the case � ⇔ −�. 2-deg. w/o comp. Dirac. disp. means doubly-

degeneracy without complete Dirac dispersion, non-deg. means a non-degenerate state. 
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Firstly, we consider the case � ⇎ −� (figure S1a). The wave vector � must have a 

locally maximal symmetry, otherwise linear dispersion cannot appear, due to either too 

many band contacts [S1] or none at all. If R is two-dimensional, and the irrep Rin of the 

whole layer group G, which is obtained by induction from R (Rin = R↑G) is real, Dirac-

like dispersion appears [24] (orange upper left section). If Rin is not real, −� is not in the 

star of � [32] than the additional degeneracy due to TRS does not appear. This case also 

leads to Dirac dispersion [24] (orange upper right section). In the last two cases double 

degeneracy at Dirac point is caused by the crystal symmetry. For R one-dimensional and 

Rin real (left panel blue section), the energy level E0  at � is non-degenerate preventing 

Dirac dispersion in the vicinity of �. For R one-dimensional and Rin pseudoreal or 

complex (blue-orange section) there are two possibilities. If −� is not in the star of �, 

E0 is non-degenerate while in the opposite case TRS causes E0 to be double degenerate 

with a complete Dirac-like dispersion around � [25]. Next we consider the case 

� ⇔ −� (figure S1b). If R is one-dimensional and real, the energy level E0 at � is 

non-degenerate and linear dispersion cannot appear (right panel blue section). If R is one-

dimensional and not real (right panel green section down), TRS causes E0 to be double 

degenerate, but complete linear Dirac-like dispersion is not possible since the TRS causes 

u2=0 (u2 is a coefficient in the expression for Dirac dispersion [24], see the expression (1) 

in the main text). The same statement holds for two-dimensional, real R (right panel 

green section up). The remaining case in which R is two-dimensional and pseudoreal or 

complex will be treated in more detail in the main text (right panel red section). 
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Group-theoretical derivations 

We show more details in obtaining the dispersion relation (2) of the manuscript. For 

obtaining irreps R of layer single groups we used Bilbao Crystallographic Server [32] for 

space groups that correspond to the layer single groups of interest. Obtained matrices are 

given in Tables S1-S3. 

 

Table S1 Matrices of representation U1 and 2DPV corresponding to Dg33. Diperiodic 

plane is xz. 

Dg33 ;�<=0>?@ ABC
DE 12 F?�G A��-DE 12 F?�G A��HDE 12 F?� + 12 F?�G 

U1 I1 00 1J I K 00 −KJ I0 −11 0 J I0 KK 0J 

ℎ<′ I1 00 1J I−1 00 1J I1 00 1J I−1 00 1J 

 

Table S2 Matrices of representation U1 and 2DPV corresponding to Dg43. Diperiodic 

plane is xz. 

Dg43 ;�<=0>?@ ABC
DE 12 F?�G ABC
HE 12 F?�G ABC
-E 12 F?� − 12 F?�G 

U1 I1 00 1J I1 00 −1J I0 11 0J I0 −11 0 J 

ℎ<′ I1 00 1J I−1 00 1J I−1 00 −1J I1 00 −1J 

Dg43 ;N̂=0>?@ A��-HE− 12 F?�G A��-DE− 12 F?�G A��HDE 12 F?� − 12 F?�G 

U1 I0 −KK 0 J I0 KK 0J I−K 00 K J I−K 00 −KJ 

ℎ<′ I−1 00 −1J I1 00 −1J I1 00 1J I−1 00 1J 
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Table S3 Matrices of representation T1 and 2DPV corresponding to Dg45. Diperiodic 

plane is yz. 

Dg45 ;�<=0>?@ ABC
DE 12 F?�G ABC
HE 12 F?
 + 12 F?�G ABC
-E 12 F?
G 

T1 I1 00 1J IK 00 −KJ I−K 00 −KJ I1 00 −1J 

ℎ<′ I1 00 1J I−1 00 1J I1 00 −1J I−1 00 −1J 

Dg45 ;N̂=0>?@ A��-HE− 12 F?�G A��-DE− 12 F?
 − 12 F?�G A��HDE− 12 F?
G 

T1 I0 11 0J I0 −KK 0 J I 0 −K−K 0 J I0 −11 0 J 

ℎ<′ I−1 00 −1J I1 00 −1J I−1 00 1J I1 00 1J 

 

We obtain the matrices of representation P = Q⨁Q∗ from matrices in Tables S1-S3 in 

the following way. If functions T� and T
 belong to irreps R from Tables S1-S3, then T�∗  

and T
∗  belong to irrep R
* so functions U� = (T� + T�∗)/2, U
 = (T� − T�∗)/(2K), 

U� = (T
 + T
∗)/2 and UW = (T
 − T
∗)/(2K) transform according to the representation 

D. The final result is given in Tables S4-S6. 

 

Table S4 Matrices of representation D corresponding to Dg33. Diperiodic plane is xz, 

while 1X = −1. 

Dg33 ;�<=0>?@ ABC
DE 12 F?�G A��-DE 12 F?�G A��HDE 12 F?� + 12 F?�G 

D Y1 00 1 0 00 00 00 0 1 00 1Z [0 1�1 0 0 00 00 00 0 0 11� 0\ [0 00 0 1� 00 1�1 00 1 0 00 0\ [0 00 0 0 1�1 00 1�1 0 0 00 0\ 
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Table S5 Matrices of representation D corresponding to Dg43. Diperiodic plane is xz, 

while 1X = −1. 

Dg43 ;�<=0>?@ ABC
DE 12 F?�G ABC
HE 12 F?�G ABC
-E 12 F?� − 12 F?�G 

D Y1 00 1 0 00 00 00 0 1 00 1Z [1 00 1 0 00 00 00 0 1� 00 1�\ Y0 00 0 1 00 11 00 1 0 00 0Z [0 00 0 1� 00 1�1 00 1 0 00 0\ 

Dg43 ;N̂=0>?@ A��-HE− 12 F?�G A��-DE− 12 F?�G A��HDE 12 F?� − 12 F?�G 

D [0 00 0 0 1�1 00 11� 0 0 00 0\ Y0 00 0 0 11� 00 11� 0 0 00 0Z [0 1�1 0 0 00 00 00 0 0 11� 0\ [0 1�1 0 0 00 00 00 0 0 1�1 0\ 

 

 

Table S6 Matrices of representation D corresponding to Dg45. Diperiodic plane is yz, 

while 1X = −1. 

Dg45 ;�<=0>?@ ABC
DE 12 F?�G ABC
HE 12 F?
 + 12 F?�G ABC
-E 12 F?
G 

D Y1 00 1 0 00 00 00 0 1 00 1Z [0 11� 0 0 00 00 00 0 0 1�1 0\ [0 1�1 0 0 00 00 00 0 0 1�1 0\ [1 00 1 0 00 00 00 0 1� 00 1�\ 

Dg45 ;N̂=0>?@ A��-HE− 12 F?�G A��-DE− 12 F?
 − 12 F?�G A��HDE− 12 F?
G 

D Y0 00 0 1 00 11 00 1 0 00 0Z [0 00 0 0 1�1 00 11� 0 0 00 0\ [0 00 0 0 1�1 00 1�1 0 0 00 0\ [0 00 0 1� 00 1�1 00 1 0 00 0\ 

 

Group projector to the totally symmetric irreducible representation is given by: 
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]< = 1|8(�)| ^ P�⨂P� ⊗ ℎ<′ 
where the sum is over little group elements 8(�). In our three cases this included the 

whole layer single group. Obtained projection operator is 32-dimensional. By applying ]< 

to general 32-component vector consistent with TRS-constrained matrix a� : 

                                         a� = K [ 0−〈cd1|c  −〈cd2|c−〈cd3|c  
〈cd1|c0−〈cd4|c−〈cd5|c  

〈cd2|c〈cd4|c0−〈cd6|c   
〈cd3|c〈cd5|c〈cd6|c0 \, 

 we get symmetry constrained vectors d�. Final result is given in the Table S7. 

Table S7 Form of vectors d� (� = 1,2, … ,6) required by symmetry, for the layer single 

groups Dg33, Dg43 and Dg45. Components of vectors are along a- and c-axes for groups 

Dg33 and Dg43, and b- and c-axes for group Dg45 respectively. The a-, b- and c-axes are 

orthorhombic axes for corresponding space groups 29, 54 and 57 respectively.  

 Dg33 Dg43 Dg45 

d� A 0(�hG A 0(�hi G I00J 

d
 I(
j(
h J I(
ji0 J k(
l"(
h" n 

d� A 0(�hG I(�ji0 J A 0(�h" G 

dW A 0(�hG I(�ji0 J A 0(�h" G 

do I (
j−(
hJ I−(
ji0 J k (
l"−(
h" n 

dp A 0(�hG A 0−(�hi G I00J 
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If we insert values for d� into the Eq. (9) of the main text, we get the dispersion (2). Note 

that the form of Hamiltonian ��′ required by the Table S7 is valid only in the basis that 

belongs to the representation D given in Tables S4-S6. On the other hand, eigenvalues of 

��′ are invariant, and are therefore the same in every basis. 

The effective mass calculation 

Next we show that the dispersion (2) leads to zero effective mass. We take the dispersion 

for ��("), obtained from Eq. (2) of the main manuscript by taking plus signs, as an 

example. The proof for other bands, including Dirac-like (1) is analogous. Let us define 

the matrix: 

 

                    qC(%�, %
) = [ r)(rs')) ��(%�, 0) t r)rs'rs) ��(%�, %
)us)�t r)rs)rs' ��(%�, %
)us'� r)(rs))) ��(0, %
) \. 

 

The matrix element t r)rs'rs) ��(%�, %
)us)� means that firstly we take the derivative with 

respect to q2, than take q2=0, and then take derivative with respect to q1 (and analogously 

for the other off-diagonal element). The matrix qC in terms of Dirac delta function reads: 

 qC(%�, %
) = A2$�7(%�) 00 2$
7(%
)G. 

 
Function ��(%�, %
) has minimum for %� = %
 = 0, so the effective mass tensor is:  

 
                                                    mw xyy = ℏ
�qC(%�, %
)�3� c|cs'�s)�. 

 
Using the interpretation of delta-function as being infinite at zero, we get mw xyy = 0<. 
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The density of states calculation 

Here we show how one obtains the density of states (DOS) for FT dispersion, starting 

from the general definition of DOS. First we define: 

   {4 = =$�|%�| + $
|%
|=, 

   {3 = =$�|%�| − $
|%
|=. 

The definition for DOS reads: 

|±({) = 14}
 ~ �%�
�j

3�j
~ �%


�l
3�l 7({ − {±(%�, %
)) = 

   = ��) � �%��� � �%
�� 7({ − {±(%�, %
)), 

where we have reduced integration to the first quadrant. We introduce the substitution: 

   %� = �
�' + + �
�' �, 

   %
 = �
�) + − �
�) �, 

with the corresponding modulus of Jacobian determinant |�| = �
�'�). The range of 

integration in new variables becomes: 

   0 ≤ + ≤ $� �j + $
 �l, 

  − ��)l ≤ � ≤ ��'j . 

 



 
 

11 
 

It follows: 

 |4({) = �
�'�)�) � �+�'��4�)�� � ����'�3��)� 7({ − +) =  

  = ��
� �
�'�)� I�'j + �)l J ; 0 < { < ��'j + �)�l�W�'�)� I�'j + �)l J ; { = 00; { < 0

c 
which, after taking in account the particle-hole symmetry for bands ±{4, gives: 

   |�({) = �
�'�)� I�'j + �)l J, 

for sufficiently small |{|. Similarly, we get for {3: 

  |3({) = �
�'�)�) � �+�'��4�)�� � ����'�3��)� 7({ − |�|) = 

   = ��
� ��'�)� I�'j + �)l J ; 0 < { < �K� ���'j , �)�l ��
�'�)� I�'j + �)l J ; { = 00; { < 0

c. 
Particle-hole symmetry for bands ±{3 implies, for sufficiently small |{|: 
   |
({) = ��'�)� I�'j + �)l J. 

After the inclusion of spin degeneracy, and using $� = ℏ(j , $
 = ℏ(l , the total DOS for 

small |{| reads, in terms of Fermi velocities: 

   |({) ≈ ��ℏ I �j�� + �l��J. 
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Algorithm used in ab initio search 

 

1. One chemical element is chosen from the main groups of the periodic table 

(IIIA, IVA and VA). Particularly we considered B, C, Si or P. 

2. Setup of initial parameters. Initial fractional coordinates of a single atom, 

lattice vectors and one of diperiodic groups, Dg33, Dg43 or Dg45, are chosen. 

The initial lattice vectors and coordinates are chosen such that bond lengths in the 

system are as close as possible to typical bond lengths between atoms of a given 

element. This is done manually. Set up the initial value of variable current 

minimal energy to a large value, i.e. DBL_MAX (predefined value in the C++ 

language standard). Set up the initial scaling factors for lattice vectors. Value of 

0.8 was a usual choice.  

3. Scale lattice vectors by the current scaling factors. 

4. Atomic positions of remaining atoms in a unit cell are generated based on 

Wyckoff equivalent positions for the chosen group. 

5. Screening of possibly stable geometries. The generated crystal structure (from 

combination of fractional coordinates and scaled lattice vectors) is checked if it is 

likely stable by analyzing eventual clustering of its atomic positions to disjoined 

set of clusters. The structure is assumed as unstable and disregarded for further 

calculations if it has more than 2 disjoined clusters. Two clusters are considered 

disjoined, if distance between two atoms closest to each other, but belonging to 

different clusters, is larger or smaller by more than n Å than the sum of their 

covalent radii. n = 0.3 Å was usually used for most of elements. Larger values of 
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n up to 0.5 Å are used for carbon, for which it is known to make a larger range of 

possible bond lengths. This step is done in order to speed up the search of stable 

structures. 

6. Symmetry-constrained geometry optimization. If the given structure is not 

disregarded at the step 5 as an unsuitable initial geometry, a geometry 

optimization is conducted with constrained diperiodic group, i.e. its 

corresponding space group. Otherwise, go to the step 9. Density functional theory 

(DFT)-based software Siesta [S2] is used for calculations of energies and atomic 

forces during the group-constrained geometry optimization. 

7. Can the symmetry be preserved? Full unconstrained structural optimization is 

conducted using the Siesta code. Initial geometry for the optimization is the 

geometry obtained at the step 6. The optimized geometry is checked for eventual 

breaking of the symmetry (the diperiodic group, i.e. its corresponding space 

group) after the full structural optimization. Also check the structural stability of 

the crystal using the same method described at the step 5. 

8. If the symmetry is preserved and the structural stability is confirmed at the step 7, 

compare total energy with the current minimal energy. If it is a smaller one then 

promote it to the current minimal energy, and save atomic coordinates of this 

structure. 

9. Increase scaling factors by 0.02. If they are smaller than 1.2 return to the step 3. 

Otherwise continue to the step 10. 

10. Calculate electronic band structure for the most stable system (current minimal) 

using the Siesta code and analyze the band structure. 
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All ab initio calculations were done using DFT as implemented in the Siesta code [S2]. 

Space groups from Table 1 were used, which correspond to diperiodic groups, when unit 

cells were constructed. Lattice vector perpendicular to diperiodic plane was always 15 Ǻ. 

We utilized the Perdew-Burke-Ernzerhof form of the exchange-correlation functional 

[S3]. The behavior of valence electrons was described by norm-conserving Troullier-

Martins pseudopotential [S4]. We used a double-zeta polarized basis. The mesh cutoff 

energy of 250 Ry was used, which was sufficient to achieve a total energy convergence 

of better than 0.1 meV per unit cell during the self-consistency iterations of all 

calculations. Structures were considered as optimized when maximal force on atoms 

dropped below 0.04 eV/Ǻ. In the search algorithm a 8 x 8 k-point Monkhorst-Pack mesh 

in plane of BZ corresponding to the plane of 2D materials was employed and only 

gamma point was used in the perpendicular direction. A denser k-point mesh of 12 x 12 

was used for further optimization and calculation of band structure and density of states 

of the most stable structures obtained by the search algorithm.  

Bands in Fig. 2(b) were obtained on 300 x 300 k-point grid around the corner of BZ 

(point R). 

 

Molecular dynamics simulation, which confirmed the structural stability of P (Dg45) 

system, was conducted for 5 ps in 5000 steps of 1fs. Temperature was fixed at 100 K 

using the Nosé-Hoover thermostat. A super-cell comprising 3 x 3 x 1 repetition of a unit 

cell containing 36 P atoms was employed in the simulation. 
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1. Introduction

Interplay between symmetry and topology of band structures is among the most attractive
topics in contemporary condensed matter physics. Besides topological insulators (TIs), nodal
semimetals take a notable role, being a material realization of relativistic Dirac, Weyl, and
Majorana particles [1–3], or lead to the emergence of unconventional quasiparticles [4–7].
Characterized by band crossings (touching) points (lines) at Fermi level, with energies dis-
persing linearly, they have various interesting properties: Dirac points represent the interphases
between topologically different insulating phases, Weyl points lead to semimetals with chiral
anomaly, Fermi arc surface states etc. Protected by crystal symmetries [8–16], these crossing
points are robust with respect to various symmetry-preserving perturbations. Energy of the
crossing cannot be predicted by symmetry alone; particularly important are those on Fermi
level: when placed at (special) high symmetry points (HSPs) in Brillouin zone (BZ), the
material is known as a symmetry-enforced semimetal.

Leaving accidental degeneracy aside, the band crossings are within group theory related
to the multi-dimensional allowed irreducible representations (IRs) of underlying symme-
tries. Geometrical transformations are gathered into ordinary crystallographic groups. When
time reversal (TR) symmetry (either pure for paramagnetic systems, or combined with spa-
tial symmetries for anti/ferromagnets) is included, gray or black-and-white magnetic groups
[17, 18] are obtained; these are represented by irreducible corepresentations (coIRs), which
have, besides unitary, additional anti-unitary operators. When spin space is included (spinfull
case) to consider spin–orbit (SO) interaction, half-integer irreducible (co)representations of
double groups are assigned to electron bands.

The raising interest in exploring bands topology [19–21], including its symmetry based
aspects, points out the necessity to systematize numerous particular studies, and fill in existing
gaps. In particular, layer groups have been intensively used to predict Dirac and beyond-
Dirac topological semimetals [11, 14, 22–30], but still there is no complete overview of such
symmetry-enforced band structures of layered materials, unlike space groups [31, 32]. Our
thorough and systematic presentation will facilitate both numerical and experimental search for
the materials with preferred symmetry and desirable band topology, as well as sub-dimensional
analysis of 3D crystals [33].

In this paper all band crossings with dispersion equations linear in all BZ directions around
HSPs in quasi-2D crystals are singled out, with the corresponding effective low-energy Bloch
Hamiltonians. We utilize allowed (co)IRs (calculated by POLSym code [34], and recently made
available online [35]) of the symmetry groups of HSPs obtained by the action of layer (LGs),
double layer (DLGs), and corresponding gray magnetic groups (gray LGs and gray DLGs) in
BZ. It turns out that possible dimensions of (co)IRs, and therefore of the effective Hamiltonian
models, are 1, 2, and 4. Among them, two-dimensional ones may correspond to the Hamilto-
nians with completely linear band crossings hosting non-degenerate conical dispersion (1DC),
while four-dimensional (co)IRs support two-degenerate conical (2DC), poppy flower (PF), or
fortune teller (FT) shape of energy. The conical and PF dispersions may characterize semimet-
als, while the presence of FT indicates nodal line metal (where equienergetic lines cross in
HSP). In addition, precise usage of (co)IRs (Clebsch–Gordan series, Wigner’s types), enables
to consider relations between single and double, or ordinary and gray groups enlightening
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the impact of spin–orbit interaction or TR on the dispersions in HSPs. Results on the band
crossings patterns (groups, HSPs, types, effects of spin and TR) are tabulated and discussed,
stressing out the cases complementing or correcting those in literature.

The paper is structured as follows. Establishing basic concepts and notation, section 2
is a brief review of the group-theoretical apparatus within k · p theory. Then in section 3
we single out relevant HSPs in BZ of quasi-2D crystals, model Hamiltonians and the cor-
responding linear dispersions related to HSPs. Besides this, the robustness of the cross-
ings (whether they are essential or not) is addressed in section 4, analyzing impact of spin
and TR.

2. Symmetry of effective Bloch Hamiltonian

Following standard approach, we consider single-particle Hamiltonian H invariant under sym-
metry group G being one of the four types: ordinary group G = L, without TR symmetry θ,
is either purely geometrical layer group, or its double extension (to include spin space and
SO interaction), while with θ it becomes (single or double) gray layer group G = L + θL (for
nonmagnetic systems).

On momentum k from BZ L acts by isogonal point group PI. In this way LG makes strati-
fication of BZ, singling out generic stratum, and special lines and points, each of them being
fixed by characteristic little group (stabilizer) Lk (a subgroup in L) of a representative momen-
tum point k. Coset representatives h from Lagrange partition L =

⋃
h hLk generate star of k,

and the set of representative points of all stars is irreducible domain (ID). Also, due to the
trivial action of translations in BZ, all translations are in Lk, turning it into a (double) layer
group.

While TR symmetry acts trivially on a position vector, it changes the sign of a momen-
tum. Therefore, the addition of TR to the symmetry of layered systems in general changes
stratification of the BZ, and three types of stabilizers Gk (as subgroups in G = L + θL) may
occur. For a TR invariant momentum (TRIM) k the stabilizer is (i) gray group Gk = Lk + θLk;
otherwise, if k is not TRIM, Gk is either (ii) black-and-white Gk = Lk + θhLk (if there is an
non-identity element h such that hk = −k), or (iii) ordinary Gk = Lk (either single or double)
group. Notably, only in the latest case (iii) the star is doubled due to the TR symmetry, while
otherwise it remains the same (cases (i) and (ii)).

Commuting with the translational subgroup, the Hamiltonian reduces into the Bloch spaces.
If g belongs to Gk, meaning that g stabilizes momentum k up to the vector of inverse lattice,
then

[D(g), H(k)] = 0, (1)

where D(Gk) is representation of stabilizer Gk in the Bloch space and H(k) is the Bloch Hamil-
tonian. The TR is antilinear operation in the state space, and therefore linear-antilinear repre-
sentations D(Gk) of magnetic little groups are considered: D(Lk) = d(Lk) are linear operators,
while the other elements are represented by antilinear operators D(θhLk) = d(θhLk)K, where
d(θhLk) are linear factors and K is the complex conjugation. Only matrix parts d(Lk) and d(θh)
of all elements constitute co-representations. For gray groups, h is the identity element, and
d2(θ) = ωI, where ω is 1 for spinless, and −1 for spinfull cases (I is identity matrix). Obvi-
ously, rewritten in the terms of co-representation for the antilinear coset the relation (1) is
d(g−1)H(k)d(g) = H∗(k) (for g ∈ θhLk).

Consequently, symmetry provides that the corresponding Bloch Hamiltonian and the stabi-
lizer representation are reduced in |α|-dimensional subspaces, where |α| is the dimension of
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the allowed irreducible linear(-antilinear) representation D(k,α)(Gk). Eigenvectors |k,α; a〉 of
Bloch Hamiltonian:

H(k)|k,α; a〉 = εα(k)|k,α; a〉, (2)

are assigned by quantum numbers (k,α) of linear(-antilinear) IRs (and allowed representa-
tions), meaning [36] that:

D(g)|k,α; a〉 =
∑

a′
D(k,α)

a′a (g)|k,α; a′〉. (3)

Expansion of the Bloch Hamiltonian in the vicinity of HSP k0 is

H(k0 + k) =
∑
n�0

H(n)(k0 + k),

H(n)(k0 + k) =
1
n!

∑
p1,...,pn

∂nH(k0)
∂kp1 . . . ∂kpn

kp1 . . . kpn , (4)

where pi = 1, 2. Gathering terms with n > 0 within perturbation H′(k0 + k), an effective
Hamiltonian is obtained with help of projector Pα =

∑|α|
a=1| k0,α; a 〉〈 k0,α; a | composed

of the eigenvectors of unperturbed Hamiltonian H(0)(k0) = H(k0) (matrix with zero order term
n = 0). In the first perturbation order, the effective Hamiltonian is H′

α(k) = PαH′(k)Pα, and
the symmetry conditions (1) for each effective term H(n)

α of the expansion (4) becomes:

D(k0,α)(g)H(n)
α (k0 + k)D(k0,α)(g−1) = H(n)

α (k0 + gk). (5)

As before, depending on the type of a considered system, D(kα) = d(kα) is a unitary integer
(spinless) or a half-integer (spinfull) IR of a (double) layer group, or, a linear-antilinear rep-
resentation composed of the unitary matrix of coIR d(kα) (multiplied by operator of complex-
conjugation on the coset accompanied by TR) for a magnetic little group. In all these cases of
layer groups the dimensions of IRs are 1, 2 or 4.

Stabilizer Gk0+k of a representative momentum k0 + k from the generic stratum (dense in
BZ) is a subgroup of Gk0 , and the subduced (co)representation obeys compatibility relations

d(k0α)(Gk0 )↓Gk0+k = ⊕i f id
(k0+k,αi)(Gk0+k), (6)

where f i is frequency number of the irreducible component d(k0+k,αi). For the elements of
Gk0+k the symmetry condition (5) becomes commutation causing that the energy branches in
the vicinity of k0 have degeneracies (1 or 2) of (co)representations d(k0+k,αi)(Gk0+k), while
the degeneracy of the energy at crossing point k0 coincides with the dimension (2 or 4) of
(co)representation d(k0α)(Gk0 ).

3. Linear dispersions

3.1. Effective Hamiltonian

At first, the forms of the effective Hamiltonians having completely linear dispersions in BZ
around HSPs will be derived. According to (4), the matrix elements of the effective low-energy
Hamiltonian linear (n = 1) in momentum are [H(1)

α (k0 + k)]ab =
∑

pw
p
abkp, where parameters

4
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wp
ab = ∂[Hα(k0)]ab/∂kp are constrained by symmetry conditions (5) and hermiticity (wp

ab =
wp∗

ba). The conditions (5) can be rewritten in the super-operator form as:

[
d(k0,α)(g) ⊗ d(k0,α)∗ (g) ⊗ v(g)

]
w = w, for g ∈ Lk0 (7)

[
d(k0,α)(g) ⊗ d(k0,α)∗(g) ⊗ I2

]
w∗ = w, for g = θh, (8)

wherew is a column of parameterswp
ab, which is looked for. The group action in 2D BZ is intro-

duced by usual two-dimensional polar-vector representation v(Lk0 ) of subgroup, and v(θh) =
I2. Since a linear effective Hamiltonian is bi-uniquely related to a non-vanishing column w,
from (7) it follows that w is a fixed point for subgroup representation d(k0,α) ⊗ d(k0,α)∗ ⊗ v,
i.e. linear terms exist if [21] vector representation v(Lk0 ) appears in d(k0,α) ⊗ d(k0,α)∗ (Lk0 ); for
magnetic groups there is additional condition (8) for the antiunitary coset.

Linearly independent columns wab =
(
w1

ab,w2
ab

)T
define linearity rank: number of BZ

directions along which energies are linear in k. Obviously, completely linear dispersions have
linearity rank 2. Since it is beyond the scope of the paper, herein the details about the dispersions
are not studied, we only note in section 4 which groups have linearity rank 1 (the vanishing
linear term could be either nodal line when all higher order terms cancel, or of higher order
dispersion). Linearity rank 0 refers to Hamiltonians without linear terms.

Instead of using absolute basis and parameters wp
ab, it is more convenient to give the effec-

tive Hamiltonians in the basis of Hermitian matrices. With Pauli matrices σi (i = 1, 2, 3)
and identity matrix σ0 = I2, the effective 2D and 4D Hamiltonians (1D does not yield band
crossing) are:

H2 =

3∑
i=0

2∑
p=1

vp
i kpσi, (9)

H4 =

3∑
i, j=0

2∑
p=1

vp
i jkp(σi ⊗ σ j). (10)

Clearly, real parameters vp
i and vp

i j are bi-uniquely related to wp
i and wp

i j, respectively. For
each HSP and its allowed (co)IRs [35] of dimension 2 and 4, the symmetry allowed param-
eters vp

i and vp
i j are to be found. The task is performed assuming that layer is perpendicular

to the z-axis. All calculations follow notation from [34, 35] (labels of HSPs, IDs), including
(co)IRs.

Orthogonal part of any Euclidean transformation from arbitrary layer group leaves both
the xy-plane and the z-axis invariant, having thus block-diagonal 2 × 2 + 1 × 1 form. Action
in 2D BZ is defined by the upper block. As a result, there is 10 different isogonal groups
[35] composed of these 2 × 2 matrices, which, due to torus topology, yield 14 IDs of 2D
BZ. IDs are the same for LG and DLG, while adding TR changes ID of noncentrosymmetric
groups. Ordinals of the IDs are associated to the ordinary (gray) groups in the row ID (ID’) in
figure 2.

There are seven special points (figure 1): Γ = (0, 0), X = (1/2, 0), Y = (0, 1/2), S =
(1/2, 1/2), M = (1/2, 0), K = (1/3, 1/3) and L = (2/3,−1/3), with coordinates given in
primitive basis {b1, b2}. They are distributed over 10 IDs: ID1 and ID3-ID5 have no HSPs;
ID2 and ID8 have Γ, X, Y, and S; ID9 has Γ, Y, and S; ID7 and ID13 have Γ, X, and S; ID6 and
ID12 have Γ, K, and L; ID10 and ID14 have Γ, M, and K; ID11 has Γ and K. For oblique and
rectangular-p groups with all non-symmorphic elements having fractional translations parallel
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Figure 1. HSPs. Each point is shown only in ID (equivalent copies from BZ are
missing). Ordinals of IDs [35] are listed in brackets; IDs are associated to groups in
figure 2. Left panel: oblique and c-centered rectangular (|b1| = |b2|) groups; middle
panel: rectangular-p and square (|b1| = |b2|) groups; right panel: hexagonal groups.

to one direction (for group 45), b1 is perpendicular to that direction (to the symmorphic reflec-
tion plane). For group 34 (32, 33, 43) b1 is along axis (screw axis) of order two. This notation
differs from [37] in the following way (notation in brackets corresponds to [37]): for oblique
groups X(Y), Y(B), S(A); for rectangular-c Y(S), S(Y); for square Y(X), S(M); for rectangular-p
groups 8, 11, 12, 16, 17, 20, 24, 31, 32, 33, 34, 38, 40, 41, 43, 45 X(Y), Y(X). For other cases
the two notations are the same.

All of the HSPs are TRIM except K and L. Therefore, the stabilizer of Γ, X, Y, S, M is a gray
group, while for K it is either a black-and-white (in hexagonal gray LGs: 66, 67, 69, 71–73,
75–78, 80) or an ordinary group (in the hexagonal gray LGs: 65, 68, 70, 74, 79). Stabilizers of
L are ordinary, as it is the HSP only in ordinary groups (68, 70 and 79). In the most of the cases
the stabilizer is the whole group, exceptions are points Y in ID9, K in ID11 and ID14, and X in
ID13 where it is a halving subgroup, and point M in ID14 where the stabilizer is index-three
subgroup.

Altogether we found 42 different effective Hamiltonians with completely linear dispersions
at HSPs: 21 for 2D and 21 for 4D Hamiltonians are presented in tables 1 and 2. Number of
nonzero coefficients vp

i and vp
i j may be 6, 4, 3, 2 or 1, as emphasized; the other vanish due to the

symmetry. In particular, this includes those responsible for slope, which manifests that neither
of the dispersions is tilted.

The results for all of 80 layer group clusters are summarized in figure 2. All HSPs hosting
linearity rank 2 dispersions are listed, once for each of the associated allowed representa-
tions assigning/supporting such dispersions, with indicated effective model (subscript). The
list of linear dispersions systematized in this way may be used for various analyzes, and in the
following sections some of them will be performed.

3.2. Dispersion types

Band crossings of the presented Hamiltonian models have linearity rank 2 with conical, PF
(both can be realized in isotropic or anisotropic forms) or FT shape of dispersion. A conical dis-
persion corresponds to compatibility relations (6) with dimensions 2 → 1 ⊕ 1 (1DC), or 4 →
2 ⊕ 2 (2DC), while the both PF and FT are related to splitting dimensions 4 → 1 ⊕ 1 ⊕ 1 ⊕ 1.
The cases with 1DC and 2DC are usually referred to as Weyl and Dirac fermions respectively.
PF consists of two mutually rotated non-degenerate anisotropic cones (some authors consider
PF as generalized Dirac dispersion [25, 39]), while FT is composed of locally flat bands, with
equienergetic nodal lines.

6
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Table 1. Two-dimensional effective Hamiltonian forms. Non-vanishing symmetry
adapted parameters vp

i in (9) are defined in terms of independent constants ci (obtain-
ing values in concrete problems). Symbol in column S is used in figure 2 to identify
model, while the number of the independent parameters, and corresponding dispersion
equation are in columns Par. and equation; all energy branches are non-degenerate. Two
coefficients v1

0 and v2
0 , vanishing in all models, are omitted.

S v1
1 v1

2 v1
3 v2

1 v2
2 v2

3 Par. Equation

a 0 0 c1 0 c2 0 2 (11b)
b 0 0 c1 c2 0 0 2 (11b)
c 0 0 c1 c2 c3 0 3 (11b)
d 0 −c1 0 c1 0 0 1 (11c)
e 0 c1 0 c1 0 0 1 (11c)
f 0 c2 0 0 0 c1 2 (11b)
g 0 c2 0 c1 0 0 2 (11b)
h c1 0 0 0 c1 0 1 (11c)
i c1 0 0 0 c2 0 2 (11b)
j c1 −c1 0 −c1 −c1 0 1 (11c)
k c1 c1 0 −c1 c1 0 1 (11c)
l

√
3c1 −c1 0 c1

√
3c1 0 1 (11c)

m c1 −
√

3c1 0 −
√

3c1 −c1 0 1 (11c)
n

√
3c1 −

√
3c2 0 c1 3c2 0 2 (11a)

o c1 −c2 0 c2 c1 0 2 (11c)
p c1 c2 0 c2 −c1 0 2 (11c)
q c1 c3 0 c2 c4 0 4 (11a)
r c2 c3 0 0 0 c1 3 (11b)
s

√
3c2

√
3c3

√
3c1 c2 c3 −3c1 3 (11a)

t
√

3c2 −
√

3c3

√
3c1 −3c2 3c3 c1 3 (11a)

u c3 c5 c1 c4 c6 c2 6 (11a)

For completeness, a brief overview of all types of dispersions (of linearity rank 2) are given,
despite some of them have been already studied [11, 23, 24, 28, 29]. For each model (row of the
tables 1 and 2) the Hamiltonian matrix is formed according to (9) or (10) with non-vanishing
vp

i and vp
i j; it is expressed in terms of independent coefficients c1, . . . , c6 (given in the row).

As eigenvalues of these k-dependent matrices, the obtained dispersions are parametrized by
coefficients ci. For example c1(

√
3k1 + k2)σ1 − c2(

√
3k1 − 3k2)σ2 is the matrix for the two

dimensional Hamiltonian in 14th row in table 1 (symbol n).
General anisotropic 1DC dispersion is

ε±(k1, k2) = ±
√

ak2
1 + bk1k2 + ck2

2, (11a)

where a, b, c are ci-related parameters with ranges providing real energies. Equienergetic
curves on this cone are ellipses with semi-axes a′ and c′ ( a

ε2 = cos2 ϕ

a′2
+ sin2 ϕ

c′2
, c

ε2 = sin2 ϕ

a′2
+

cos2 ϕ

c′2
, b
ε2 = 2 cos ϕ sin ϕ

(
1

a′2
− 1

c′2

)
), which are rotated with respect to the k1k2-coordinate

system for the angle ϕ between axes a′ and k1. To illustrate, the Hamiltonian n (table 1)
from the above example has dispersion (11a), with a = 3(c2

1 + c2
2), b =

√
12(c2

1 − 3c2
2) and

c = c2
1 + 9c2

2. For b = 0 the dispersion is still an anisotropic 1DC (but not rotated)

ε±(k1, k2) = ±
√

ak2
1 + ck2

2, (11b)

7
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Table 2. Four-dimensional effective Hamiltonian forms. Non-vanishing symmetry adapted parameters vp
i j in (10) are defined in terms of independent

constants ci (obtaining values in concrete problems). Symbol in column S is used in figure 2 to identify model, while the number of the independent
parameters, corresponding dispersion equation, and the degeneracy of the branches are in columns Par, equation, and Deg. Ten coefficients v1

00, v1
01,

v1
03, v1

32, v2
00, v2

01, v2
03, v2

12, v2
22 and v2

32, vanishing in all models, are omitted.

S v1
02 v1

10 v1
11 v1

12 v1
13 v1

20 v1
21 v1

22 v1
23 v1

30 v1
31 v1

33 v2
02 v2

10 v2
11 v2

13 v2
20 v2

21 v2
23 v2

30 v2
31 v2

33 Par. Equation Deg.

A 0 0 0 0 0 0 0 0 0 0 0 c1 0 0 0 c2 0 0 c3 0 0 0 3 (11b) 2
B 0 0 0 0 0 0 0 0 0 0 0 c1 0 c2 0 0 c3 0 0 0 0 0 3 (11b) 2
C 0 0 0 0 0 0 0 0 0 0 0 c1 0 c3 0 0 c4 0 0 0 c2 0 4 (11b) 2
D 0 0 0 0 0 0 0 0 0 0 c1 0 0 c2 0 0 c3 0 0 0 0 0 3 (11b) 2
E 0 0 0 0 0 −c1 0 0 0 0 0 0 0 c1 0 0 0 0 0 0 0 0 1 (11c) 2
F 0 0 0 0 0 − c1+c2

2 0 0 c1−c2
2 0 0 0 0 c1+c2

2 0 c1−c2
2 0 0 0 0 0 0 2 (12d) 1

G 0 0 0 0 c2 0 0 0 −c3 0 0 0 0 0 0 0 0 0 0 0 0 c1 3 (11b) 2
H 0 0 0 0 c2 0 0 0 c4 0 0 c1 c3 0 0 0 0 0 0 0 0 0 4 (11b) 2
I 0 0 0 0 c3 0 0 0 c5 0 0 c1 0 0 c4 0 0 c6 0 0 c2 0 6 (12a) 1
J 0 0 0 c3 0 0 0 c1 0 0 0 0 c2 0 0 0 0 0 0 0 0 0 3 (12c) 1
K 0 0 0 c4 0 0 0 c2 0 c1 0 0 c3 0 0 0 0 0 0 0 0 0 4 (12c) 1
L 0 0 c4 0 0 0 c6 0 0 0 c2 0 0 c3 0 0 c5 0 0 c1 0 0 6 (12a) 1
M 0 c1 0 0 0 −c2 0 0 0 0 0 0 0 c2 0 0 c1 0 0 0 0 0 2 (11c) 2
N 0 c2 0 0 0 c3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c1 0 3 (11b) 2
O 0 c2 0 0 0 c4 0 0 0 c1 0 0 c3 0 0 0 0 0 0 0 0 0 4 (12c) 1
P 0 c3 0 0 0 c5 0 0 0 0 c1 0 0 c4 0 0 c6 0 0 0 c2 0 6 (11a) 2
Q 0 c3 0 0 0 c5 0 0 0 c1 0 0 0 0 0 c4 0 0 c6 0 0 c2 6 (12a) 1
R c1 c2 0 0 c3 −c3 0 0 c2 0 c1 0 c1 c2 0 −c3 −c3 0 −c2 0 −c1 0 3 (12b) 1
S c2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c1 0 2 (11b) 2
T c3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c2 0 0 c4 0 0 c1 4 (11b) 2
U c3 0 0 0 0 0 0 0 0 0 0 0 0 c2 0 0 c4 0 0 c1 0 0 4 (12c) 1

8
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Figure 2. HSPs (see figure 1) hosting completely linear dispersions obtained by action of
LG, DLG, and their gray extensions in 2D BZ for each cluster C; ordinals are according
to [38]. Dimensions of the allowed (co)IRs are distinguished by colors: blue stands for
2D, while green corresponds to 4D (co)IRs. The subscript is the label of the Hamiltonian
model in tables 1 and 2. The superscripts correspond to the labels of SO transitions from
the tables 3 and 4. Also, the first column H is holoedry (with lattice type) and isogonal
groups PI are given in the second one. Those groups with inversion symmetry included
are orange colored, while non-symmorphic groups are singled out by red in column C.
In the column ID and ID’ are ordinals of IDs of (gray) LGs according to [35].

which isohypses are ellipses with semi-axes ε/
√

a and ε/
√

c. Finally, isotropic 1DC is obtained
by a = c:

ε±(k1, k2) = ±a|k|. (11c)

As for 4D, general anisotropic PF dispersion [29] is:

ε±,u(k1, k2) = ±
√

ak2
1 + ub|k1k2|+ ck2

2, u = ±1. (12a)

Substituting a = c the isotropic PF is obtained:

ε±,u(k1, k2) = ±
√

ak2 + ub|k1k2|, u = ±1, (12b)

while (12a) for b2 = 4ac becomes nodal line FT dispersion [28]:

ε±,u(k1, k2) = ±
∣∣√a|k1|+ u

√
c|k2|

∣∣, u = ±1. (12c)

Effective model Hamiltonian F from table 2 describes also isotropic PF but slightly modified:

ε±,u(k1, k2) = ±
√

(c2
1 + c2

2)(k2
1 + k2

2) + u|c2
1 − c2

2‖k2
1 − k2

2|
2

, u = ±1; (12d)

substitution k1 ± k2 → k± reduces it to the form (12b). Here, positive ε+,u (as well as negative
ε−,u) branches are touched along the lines k1 = ±k2. The rest of the 4D Hamiltonians result in
2DC (double degenerate cones described by equations discussed in 2D case). All dispersions
are given in figure 3.

9
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Figure 3. Fully linear dispersions in the vicinity of HSPs in quasi-2D systems. For each
type the equation number is given; the value of parameters are set to a = 1, b = 3, c = 7,
unless it is specified otherwise. All the cases can be obtained from the two most general
marked cases; this is denoted by the arrows.

4. Analysis

Having at disposal all possible completely linear dispersions in the HSPs of layered systems,
we analyze their interrelations. In this context the roles of SO coupling and TR symmetry are
examined. In the group-theoretical language inclusion of spin can be seen as transition from
single to double group, while TR relates ordinary and gray group.

4.1. Spin–orbit interaction

SO interaction is taken into account through the relation between integer and half-integer rep-
resentations. Total space is tensor product of the orbital space with two-dimensional spin-half
space, the later carrying spin representation u(Gk0 ) ∈ SU(2). Since composed of SU(2) matri-
ces, u can be either irreducible or reducible u = u1 ⊕ u2 (ui are irreducible). Hence, each integer
irreducible (allowed) co-representation d(k0,α)(Gk0 ) is multiplied by u(Gk0 ), yielding a half-
integer representation, either irreducible itself d(k0,α̃)(Gk0 ) (with frequency number f α̃ = 1 in
the decomposition below), or decomposed onto irreducible components (associated to k0 and
counted by α̃):

d(k0,α)(Gk0 ) ⊗ u(Gk0 ) = ⊕α̃ f α̃d(k0,α̃)(Gk0 ). (13)

However, not all completely linear band crossings remain such when spin space is added.
Besides (13), this depends also on compatibility relation (6) between HSP and generic point
stabilizer (co)IRs. Namely, the tensor product of the both sides of (6) by the spin representation

10
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u can be found: obvious rule u(Gk0↓Gk0+k) = u(Gk0+k) gives (d(k0α)(Gk0 ) ⊗ u(Gk0 ))↓Gk0+k =
⊕i f i(d(k0+k,αi)(Gk0+k) ⊗ u(Gk0+k)). Then right and left sides are reduced in Clebsch–Gordan
series.

As an illustration of mechanism how band splitting (the degeneracy of branches around a
crossing point) is changed after the SO inclusion, let us consider the u-reducible case. The com-
ponents u j ( j = 1, 2) are one-dimensional, and remain irreducible when subduced onto generic
domain. Clearly, following the relation (13), each integer (orbital) (co)IR is decomposed
onto two half-integer (co)IRs d(k0,α̃ j)(Gk0 ) of the same dimension, equivalent to d(k0,α)(Gk0 ) ⊗
u j(Gk0 ), giving essentially two independent energies. Applying further the compatibility
relation leads to (d(k0,α)(Gk0 ) ⊗ u j(Gk0 ))↓Gk0+k =

∑
i f j

i (d
k0+k,αi(Gk0+k) ⊗ u j(Gk0+k)), which

determines the degeneracy of branches around HSP for each group of bands counted by j when
SO is considered.

We calculated the decompositions (13) for the both cases without and with TR symmetry.
Results with crossing bands are presented in the table 3 for ordinary groups and table 4 for gray
groups, together with linearity rank. Extracting the data from these tables, i.e. analyzing (13)
for all possible dimensions (1, 2, and 4) of (co)IRs, different ways how SO may affect band

crossings are listed below, where notation |α| SO−−→⊕α̃|α̃| is used to explicate the dimensions
of the allowed representations in spinless and spinful cases. Non-crossing cases correspond to
linearity rank 0.

• 1
SO−−→ 2. SO induces transition from an orbital nondegenerate band (no crossing) to a

band crossing, with one of the following dispersions:

(α) 1DC;
(β) Linearity rank 1.

• 2
SO−−→ 4. Transitions from 2D integer (co)IR are:

(γ) A two-fold orbital band (no crossing) becomes four-degenerate point with (modified)
PF or 2DC;

(δ) 2D crossing point of linearity rank 1 yields four-degenerate band crossing with PF,
FT or 2DC;

(ε) 2D crossing point of linearity rank 1 becomes 4D crossing with linearity rank 1.

• 2
SO−−→ 2 ⊕ 2. When 2D integer (co)IR produces two 2D half-integer (co)IRs, possible

patterns are:

(ζ) Single two-fold orbital band (no crossing) yields two 1DC (differing in energy);
(η) Single two-fold orbital band (no crossing) becomes a 1DC and a two-fold band

(without crossing);
(θ) Single two-fold orbital band (no crossing) gives two two-degenerate crossings of

linearity rank 1;
(ι) Two-degenerate point of linearity rank 1 gives two 1DC;
(κ) Two-degenerate point of linearity rank 1 gives two two-degenerate linearity rank 1

crossings;
(λ) Spinless 1DC yields two 1DC;
(μ) Spinless 1DC transforms into two two-fold band (gap opening pattern).

• 2
SO−−→ 2 ⊕ 1 ⊕ 1. Transition from a spinless 1DC crossing to:

(ν) 1DC and two non-degenerate bands (cone preserving).

11
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Table 3. Influence of SO coupling to the type of the splitting without TR symmetry:
each row denotes a particular type (label in the column T is used as superscript in figure
2) of transition from spinless case (described s by degeneracy |α| at the crossing point
and linearity rank Lα) to the spinfull case (characterized by frequency f α̃ in decompo-
sition (13), crossing point degeneracy |α̃|, and linearity rank Lα̃). In the last column are
corresponding groups with hosting HSPs (also specified in figure 2).

T |α| Lα f α̃ |α̃| Lα̃ . . . , Group HSP1 HSP2. . . , . . .

α 1 0 1 2 2 19SXYΓ, 20XΓ, 21SΓ, 22SΓ, 23SXYΓ, 24XΓ, 25SΓ, 26SΓ, 53SXΓ, 54SΓ, 55SXΓ,
57SXΓ, 58SΓ, 59SXΓ, 60SΓ, 67Γ, 68KLΓ, 69Γ, 70KLΓ, 71K 72K, 76KMΓ, 77KMΓ
56SΓ

γ 2 0 1 4 2 62S, 64S

ζ 2 0
1

1

2

2

2

2
39S, 46S, 53SΓ, 54SΓ, 55SΓ, 56SΓ, 57SΓ, 58SΓ, 59SΓ, 60SΓ

η 2 0 1
1

2
2

0
2 76Γ, 77Γ

κ
2 1 2 2 1 7S, 7Y, 48Y, 52X

2 1
1

1

2

2

1

1
38SY, 39XY, 41SY, 42XY 43SY, 45SY, 46XY, 62X, 64X

λ 2 2 2 2 2 15SY, 16SY, 17XY

μ 2 2
1

1

2

2

0

0
40SY, 43X, 44XY, 45X, 63X, 78Γ, 79KLΓ, 80K

ν 2 2

1

1

1

1

1

2

0

0

2

67Γ, 68KLΓ, 69Γ, 70KLΓ, 71K, 72K, 76K, 77K

ξ 2 2

1

1

1

1

1

1

1

1

0

0

0

0

20SY, 21XY, 24SY, 25XY, 54X, 56X, 58X, 60X

• 2
SO−−→ 1 ⊕ 1 ⊕ 1 ⊕ 1: another gap opening pattern, where a spinless 1DC splits into

(ξ) Four non-degenerate bands (no crossing).

• 4
SO−−→ 4 ⊕ 4: one way to split spinless FT dispersion (4D allowed integer representation)

is to

(o) Two four-fold crossings of the linearity rank 1.

• 4
SO−−→ 2 ⊕ 2 ⊕ 2 ⊕ 2: also, spinless FT dispersion may be transformed into

(π) Four 2D crossings of linearity rank 1.
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Table 4. Influence of SO coupling to the type of the splitting with TR symmetry: each
row is a particular type (label in the column T is used as superscript in figure 2) of
transition from spinless case (described by degeneracy |α| at the crossing point, linearity
rank Lα, and a number Wα of the subgroup IR) to the spinfull case (characterized by
frequency f α̃ in decomposition (13), crossing point degeneracy |α̃|, linearity rank Lα̃

and Wigner’s kind of subgroup IR Wα̃). In the last column are corresponding groups
with hosting HSPs (also specified in figure 2).

T |α| Lα Wα f α̃ |α̃| Lα̃ Wα̃ . . . , Group HSP1 HSP2. . . , . . .

α 1 0 1 1 2 2 −1 1SXYΓ, 10Y, 13Y, 65M

α 1 0 1 1 2 2 0 3SXYΓ, 8SXYΓ, 9XΓ, 10SΓ, 11SXYΓ, 12XΓ, 13SΓ, 22Y, 26Y, 49SXΓ,
50SXΓ, 65Γ, 67M, 68M, 69M, 70M, 73KMΓ

α 1 0 1 1 2 2 1 19SXYΓ, 20XΓ, 21Γ, 22SΓ, 23SXYΓ, 24XΓ, 25Γ, 26SΓ, 53SXΓ, 54Γ, 55SXΓ,
56Γ, 58Γ, 59SXΓ, 60Γ, 67Γ, 68KΓ, 69Γ, 70KΓ, 76KMΓ, 77KMΓ
57SXΓ

β 1 0 1 1 2 1 0 4SXYΓ, 5XΓ, 35Y, 74M

β 1 0 1 1 2 1 1 27SXYΓ, 28XΓ, 29XΓ, 30XΓ, 31XΓ, 32Γ, 33Γ, 34Γ, 35SΓ, 36SΓ, 78M 79M

γ 2 0 0 1 4 2 −1 21S, 25S

γ 2 0 0 1 4 2 0 54S, 56S, 58S, 60S

γ 2 0 1 1 4 2 0 39S, 46S, 52S, 54S, 56S, 58S, 60S

γ 2 0 1 1 4 2 1 62S, 64S

δ 2 1 0 1 4 2 −1 28SY, 29SY, 30SY, 32X, 33X, 34X

δ 2 1 1 1 4 2 −1 7SY, 15SY, 16SY, 17XY, 48Y, 52X

δ 2 1 1 1 4 2 0 38SY, 39XY, 41SY, 42XY, 43Y, 45Y, 46XY, 62X, 64X

ε 2 1 1 1 4 1 0 40SY, 43X, 44XY, 45X, 63X

ζ 2 0 0
1

1

2

2

2

2

0

0
49SΓ, 50SΓ

ζ 2 0 1
1

1

2

2

2

2

1

1
53SΓ, 54Γ, 55SΓ, 56Γ, 57SΓ, 58Γ, 59SΓ, 60Γ

η 2 0 0
1

1

2

2

0

2

−1

0
65Γ

η 2 0 0
1

1

2

2

0

2

0

0
73Γ

(continued on next page)
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Table 4. Continued.

T |α| Lα Wα f α̃ |α̃| Lα̃ Wα̃ . . . , Group HSP1 HSP2. . . , . . .

η 2 0 1
1

1

2

2

0

2

0

1
67Γ, 68Γ, 69Γ, 70Γ

η 2 0 1
1

1

2

2

0

2

1

1
76Γ, 77Γ

θ 2 0 1
1

1

2

2

1

1

0

0
32S, 34S

ι 2 1 0
1

1

2

2

2

2

−1

−1
5SY, 36Y

ι 2 1 1
1

1

2

2

2

2

0

0
31SY, 32Y, 33Y, 34Y

κ 2 1 0
1

1

2

2

1

1

−1

−1
9SY, 12SY

κ 2 1 1
1

1

2

2

1

1

0

0
20SY, 21XY, 24SY, 25XY, 54X, 56X, 58X, 60X

μ 2 2 0
1

1

2

2

0

0

−1

0
66K

μ 2 2 0
1

1

2

2

0

0

0

0
75K

μ 2 2 1
1

1

2

2

0

0

0

1
71K, 72K

μ 2 2 1
1

1

2

2

0

0

1

1
79K, 80K

ν 2 2 0
1

2

2

1

2

0

0

1
73K

ν 2 2 1

1

1

1

1

1

2

0

0

2

1

1

1

68K, 70K, 76K, 77K

o 4 2 0
1

1

4

4

1

1

−1

−1
43S, 45S

(continued on next page)
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Table 4. Continued.

T |α| Lα Wα f α̃ |α̃| Lα̃ Wα̃ . . . , Group HSP1 HSP2. . . , . . .

π 4 2 −1

1

1

1

1

2

2

2

2

1

1

1

1

−1

−1

−1

−1

33S

4.2. Time-reversal symmetry

The role of TR symmetry is clarified through the transition from ordinary L to gray groups G.
This involves magnetic (black-and-white, as well) little groups, and possibly new strata (with
change of the ID), including HSPs of G not characterizing the corresponding L. An enlarged
stabilizer of a momentum k may give rise to an enlarged degeneracy of the energy in k, while
enlarged star necessarily enlarges the dimension of the associated coIR. In fact, the impact of
TR symmetry is essentially encoded in the algorithm for co-representations construction. Irre-
ducible co-representations [17, 18] of Gk are derived from IRs of Lk: each real IR (Wigner’s
I kind) of Lk is extended to co-IR of Gk, a quaternion IR (II kind, equivalent to its conjugate,
but without equivalent real IR) gives co-IR of the double dimension, while two mutually con-
jugate complex IRs give one co-IR of the double dimension. Hence, besides the case of an
ordinary stabilizer Gk = Lk, TR symmetry preserves the HSP degeneracy also for crossings
hosted by HSP invariant under magnetic group, but with allowed coIR determined by a real
subgroup IR. On the other hand, the HSP degeneracy may be doubled for magnetic stabilizers
with quaternion or complex subgroup IR. However, even when HSP degeneracy remains the
same, the dispersion need not stay completely linear, and its shape may be not preserved. The
enlarged group by TR imposes new conditions on Hamiltonian parameters and also affect the
compatibility relations.

For this purpose to each of the stabilizer’s (co)IR we assign the number [18]
W = 1

Lk

∑
�∈Lk

χ
(
(θh�)2

)
, which shows whether it is composed of two (mutually

non-equivalent W = 0, kind III, or equivalent W = −1, kind II) or one (W = 1, kind I)
subgroup IR. It is given as the last entry in the tables 3 and 4 to enable tracking the role of

TR symmetry. To illustrate, let us consider, for example, the transition 1
SO−−→ 2 (α) to 1DC

described in the subsection 4.1. In the table 4 this appears in 3 rows mutually differing by the
last entry (column Wα̃). In the third case, when both integer and half-integer coIRs carry the
value Wα = Wα̃ = 1, the corresponding groups appear also in table 3; this means that this
type of transition is preserved under TR symmetry. On the contrary, the remaining two cases
(with last entries 0 and −1 for half-integer coIRs) do not appear in table 3. This is expected
since herein a conical dispersion in gray DLG is hosted by the half-integer coIR composed
of two 1D subgroup half-integer IRs. Thus, breaking TR symmetry in these cases leads to
non-crossing bands. The both situations are sketched in figure 4.

One can further similarly analyze relations between ordinary and gray groups case-by-case.
In this way, combining the results from the both tables 4 and 3, different cluster processes can
be found. Some of them are illustrated in figure 4; recall that all the crossings are symmetry
enforced (thus no avoided crossing can appear). The skipped cases are with linearity rank 1
either in spinless or in spinfull case.
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Figure 4. Manifestations of SO coupling and TR symmetry. Each figure describes tran-
sitions within a cluster at HSP (cluster and HSP are indicated at the bottom): horizontal
arrows are for transitions from single to double groups (with the Greek letter indicating
type from tables 3 and 4), while vertical ones are from ordinary to gray (with indicated
kind of hosting coIR from table 4). Color of the bands is degeneracy in orbital-spin
space: red, blue and green are for degeneracy 1, 2 and 4.
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5. Discussion and conclusions

The linear dispersions at HSPs and underlying effective models allowed by integer and half-
integer 2D and 4D (co)IRs are studied. Different dispersion types linear in all directions are
classified and listed, completing thus the results existing in literature. Having these data at
disposal, it was possible to analyze influence of SO coupling and TR symmetry to interrelate
dispersions within the same cluster of the single/double ordinary/gray layer groups.

Obtained classification of the effective Hamiltonians may give some insight to band topol-
ogy. One natural invariant is winding number, along paths around HSP hosting linear disper-
sion, as this point is a sort of singularity. For illustration, we calculated it for Hamiltonian (9),
with result for each of the two bands w = sgn(v1

1v
2
2 − v2

1v
1
2).

Summarizing results, firstly note that the LG clusters 2, 6, 14, 18, 37, 47, 51, 61, all of them
being centrosymmetric, do not support linear band crossing in HSPs at all, while 4, 27, 35 and
74 do not support fully linear (with linearity rank 2), but have linearity rank 1 band crossings
(see table 4). Further, as visible in table 2, the only fully linear 2D band crossing model in
HSPs is 1DC. Notably, these are hosted at TRIM and non-TRIM points in ordinary single, as
well as in ordinary and gray double groups in both symmorphic and non-symmorphic cases.
In the remaining (gray single) groups, 1DC occurs only in K (thus not TRIM) point of some
(symmorphic) groups [23, 24].

As for 4D models, inclusion of spin gives four-fold degenerate point with PF in two double
groups (LG 62 and LG 64), while TR gives rise to FT dispersion [28] in 3 gray LGs. The
presence of both spin and TR give rise to 4D coIRs in 27 gray double layer groups. Only 3
of them (7, 48, 52) are without special lines; their special points are surrounded by generic
points with 2D allowed coIRs, enabling only 2DC dispersions. In all other 4D cases, besides
2DC cases (for 2D generic allowed coIRs), nondegenerate generic coIRs enable also four-
band dispersion structures, but special lines with degenerate coIRs impose touching of pairs
of bands, restricting linear rank 2 dispersions to PF and FT types. PF and FT types appear in
noncentrosymmetric gray DLGs with a non-symmorphic symmetry: FT in 2 groups, and PF in
10 groups in total [29]. Degeneracy of the generic allowed representations in centrosymmetric
gray DLGs admits 2DC dispersions, as it was proposed [11]; actually, this is realized in 15 of
these groups, as in the remaining 3 (40, 44 and 63, nonsymmorphic) the dispersion is linear
along a single direction, while the second one is special line (at BZ edge) with single 4D
allowed coIR, thus becoming four-fold degenerate nodal line. In particular, concerning IDs,
2DC is found in three HSPs X, Y, S (gray DLGs 39, 46), in two HSPs X, S (52, 62, 64), in two
HSPs Y, S (7, 15, 16, 38, 41), in two HSPs X, Y (17, 42), and single point Y (gray DLGs 43,
45, 48). In the groups 43 and 45 additional HSPs with four-fold band crossings, as required by
fermion doubling theorem [15], are at X and S, but have linearity rank 1 (table 4). Concerning
the whole BZ, note that for the groups 48, 52, 62, and 64 points X and Y are symmetry related.
Thus, for engineering Dirac semimetals, it is particularly important to single out group 48,
since effectively one need to tune band contacts only at a single point, i.e. for filling 4n + 2,
both (symmetry related) cones in BZ are on the Fermi level, if there are no additional electron
or hole pockets.

It is interesting that simultaneously 2D and 4D completely linear dispersions are hosted
only by the gray DLGs 21, 25, 32, 33, 34, 54, 56, 58, 60 (note that in these groups there are
also HSPs with linearity rank 1). Note further, our results indicate that fermion doubling is
not a general rule; namely, in some groups FT (e.g. gray LG33, LG43, LG45) and 2DC (e.g.
double gray LG39 and LG46) are the only linear dispersions and appear in odd number of
HSPs. More complex situation is with 1DC and PF, since whenever there are odd number of
these dispersion, there are also other dispersion types.
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Inclusion of the spin–orbit interaction causes various effects on the HSPs’ dispersions,
including gap closing (α, γ, η), gap opening (ξ), cone preserving (ν), cone splitting (λ) scenar-
ios (discussion about the cases with the linearity rank 1 is skipped). For example, an isotropic
1DC in gray LGs [23, 24], which is preserved (ν) by SO perturbation also in gray DLG, is at K
point in symmorphic cluster 68, 70, 73, 76, 77. Similar analysis reported in [30] omitted sym-
morphic gray DLG 73. Concerning the TR symmetry breaking, we found also that the cone
persists at K point in corresponding LGs and DLGs 68, 70, 76, 77, except in the group LG and
DLG 73, where the vanishing TR symmetry opens a gap.

Besides spinless to spinfull transition, we examined influence of TR symmetry to disper-
sion at crossing point. Addition of TR symmetry may preserve or double the degeneracy in
HSP. Concerning the preserved double degeneracy, our results single out the cases where 1DC
appears both with and without TR symmetry, as well as those when TR even prevent linearity
of dispersion. On the other hand, TR symmetry in centrosymmetric groups 62 and 64, although
does not change four-fold degeneracy, modifies the dispersion type: in ordinary double groups
two generic nondegenerate allowed IRs enable two positive (and two negative) bands touch-
ing along special lines (with single degenerate allowed IR); TR symmetry joins these IRs in a
single 2D allowed coIR, transforming PF to 2DC dispersion.

Focusing on TR symmetric materials without and with SO from the literature, we further
discuss applicability of our results. The frequently elaborated honeycomb lattice belongs to LG
80 with K point hosting Dirac cone being gaped by SO. That is symmetry prediction confirmed
by DFT calculations in honeycomb lattices of C, Si, Ge, Sn or Pb elements [40, 41]. Buckled
honeycomb lattice belongs to LG 72 with the same behavior of bands near K as in LG 80.
Tight binding model on Si, Ge and Se elemental lattices [42] and DFT band structure of As2X2

(X = Cl, F, I, Br) monolayers [43] confirm our predictions. Similarly, Dirac cones split by SO
near K point shows LG 66 with nonmagnetic high buckled Co2C18H12 as DFT-example [44].
On the other hand LG 77 supports Dirac cones at K both without and with SO, with monolayer
FeB2 [45] and HfB2 [46] as DFT-examples. Square LG 64 supports Dirac cones at X and S only
in the presence of SO interaction; this is confirmed by DFT band structure of MX compounds
(M = Sc, Y; X = S, Se, Te) [47] as well as in X point (S point was not discussed since the
corresponding energies are too far from the Fermi level) in ARPES experiments and DFT
calculations in synthesized layered 3D ZrSiS [48] and numerically in monolayer HfGeTe [49].
Experimentally synthesized α-bismuthene belongs to LG 42 and hosts spinfull Dirac cones at
X and Y points, as confirmed by micro-ARPES technique and DFT calculations [50].

Among already reported structures with PF or FT dispersions are monolayer GaXY (X =
Se, Te; Y = Cl, Br, I), with non-centrosymmetric symmetry LG 32 providing SO caused Dirac
cones at X point and PF at Y point. Indeed, fourfold degeneracy at Y point (called Dirac point
in [51]) splits linearly away from it, as justified numerically [51] (dispersion near X point was
not discussed more closely). DFT band structure of monolayer Ta3SiTe6 and Nb3SiTe6 [52]
requires some attention. Corresponding structure with space group Pmc21 (SG 26 in notation
[53]) is obtained by periodic distribution of monolayers along vertical axis. The monolayers
may be of the symmetry either LG 28 or LG 29; these two groups are similar, both with the
horizontal screw axis of order two, and two planes, the vertical one is mirror and the horizontal
glide in LG 28, while in LG 29 the vertical is glide and the horizontal is mirror. LG 28 should
host PF dispersions at the points Y and S, with low energy effective six-parameters Hamiltonian.
However, monolayers Ta3SiTe6 and Nb3SiTe6 have horizontal symmorphic mirror plane [52],
and their symmetry group is LG 29, with FT dispersions (special case of PF) at Y and S points,
and effective Hamiltonian having four independent real parameters. Indeed, linear dispersion
in Y and S points are reported [52] (instead of minimal 4 parameters authors use 6 as for LG
28, which can not affect the result).
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Since surfaces of (semi-infinite) 3D single crystals are also periodic in two directions, some
layer groups are also wallpaper groups being the symmetries of surfaces. Those contain sym-
metry elements that do not flip the surface-normal: perpendicular (to the surface) rotational axes
of order two, three, four, or six, and perpendicular mirror, or glide planes. It may happen that
surface reconstruction or adding atoms at surface in regular manner can lower the symmetry.
Such is the case for thin layer consisting of odd number of silicon (110)-sheets, where FT dis-
persion was found experimentally [54]. FT dispersion was caused by the Coulomb interaction
(described by gray LGs) rather than by the relativistic corrections (described by gray DLGs)
so linear dispersion is maintained over wide energy range. In addition, BZ of reconstructed
surface shrinks, so that another FT dispersion at the center of rectangular surface BZ might be
obtained by intersection from FT bands originating from the corners. This might explain why
FT dispersion at X of Si(110)-surface BZ, seen in ARPES [54], remained intact by different
surface reconstruction types.

3D TIs are known [19] to have large SO coupling that causes Dirac cones at surface states.
Our results apply also to TIs with the remark that only surface states that fall within the bulk
gap are investigated in the literature, since they give rise to surface conductivity. The surface
states with the energy within the bulk gap, are identified by analysis of topological properties
of bulk bands (via bulk-boundary correspondence) and cannot be predicted by group theory
alone. 3D compounds Bi2Se3, Bi2Te3, Sb2Te3 and Sb2Se3 belong to the SG 166 (R3̄m) with
(111) surface with symmetry gray DLG 69 so Dirac cones are expected in Γ and M of the
surface BZ. DFT calculations show that first three materials have surface Dirac cone atΓwithin
the bulk gap, while states near M fall far out of the bulk gap and were not shown. On the
other hand the last compound Sb2Se3 does not have surface states in the gap and it is not TI
[55]. Surface low energy effective Hamiltonian near Γ has one real parameter, in accordance
with our results. Surface Dirac cone in Γ has been seen in ARPES experiments in Bi2Te3

and Sb2Te3 [56]. Similarly, 3D compound LaBi crystallizes in SG 225 (Fm3̄m) with (001)
surface having symmetry LG 55. SOC Dirac cones are expected to appear on S, Γ, and X
points of the BZ. ARPES experiments supported by DFT calculations show Dirac cones at Γ
and S in the bulk gap, while bands near X were outside the gap [57]. Theoretically proposed 3D
compound Sr2Pb3, that belongs to SG 127 (P4/mbm) and its (001) surface to LG 56 (wallpaper
group 12 in notation [53]), is expected to be non-symmorphic TI [15]. Our result show that
SO causes Dirac cone at Γ and PF at M point for LG 56. DFT band structure show linear
dispersions from fourfold degenerate energy at M [15]. Their effective low energy Hamiltonian
has two independent real parameters and suggests that the dispersion is Dirac-like (2DC in our
notation). Necessary splitting that causes bands along M–Γ to be non-degenerate (as required
by symmetry) was attributed to quadratic corrections to the effective Hamiltonian [15]. Our
analysis indicates that the dispersion at M should be PF, with three-parameters Hamiltonian
and with bands along M–Γ being non-degenerate already in the linear approximation.

The presented theoretical framework is straightforwardly extendable to (ferro/anti-ferro)
magnetic systems invariant under black-and-white ordinary or double groups. Also, it can be
used on an equal footing to analyze higher order dispersion terms, dispersions in the vicinity
of special lines which occur in 2D BZ of layer materials, as well as to clarify the cases with
single linear direction in energy.
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Abstract
Symmetry indicates that low energy spectra of materials could be richer than well-known
Dirac, semi-Dirac, or quadratic, hosting some unusual quasiparticles. Performing the
systematic study of exact forms of low energy effective Hamiltonians and dispersions in
high-symmetry points with fourfold degeneracy of bands, we found new, previously
unreported dispersion, which we named poppy flower (PF) after its shape. This massless
fermion exists in non-magnetic two-dimensional (2D) crystals with spin–orbit coupling
(SOC), which are invariant under one of the proposed ten noncentrosymmetric layer groups.
We suggest real three-dimensional (3D) layered materials suitable for exfoliation, having
layers that belong to these symmetry groups as candidates for realization of PF fermions. In
2D systems without spin–orbit interaction, fortune teller (FT)-like fermions were theoretically
predicted, and afterward experimentally verified in the electronic structure of surface layer of
silicon. Herein, we show that such fermions can also be hosted in 2D crystals with SOC,
invariant under additional two noncentrosymmetric layer groups. This prediction is confirmed
by density functional based calculation: layered BiIO4, which has been synthesized already as
a 3D crystal, exfoliates to stable monolayer with symmetry pb21a, and FT fermion is observed
in the band structure. Analytically calculated density of states (DOS) of the PF shows
semimetallic characteristic, in contrast to metallic nature of FT having non-zero DOS at the
bands contact energy. We indicate possibilities for symmetry breaking patterns which
correspond to the robustness of the proposed dispersions as well as to the transition from Dirac
centrosymmetric semimetal to PF.

Keywords: electronic dispersions, spin–orbit coupling, symmetry, new fermions

(Some figures may appear in colour only in the online journal)

1. Introduction

Electronic dispersion essentially determines crystal properties
and it is well known that it is assigned by quantum num-
bers of the underlying symmetry group. These are space,
layer (including wallpaper) or line groups, referring respec-
tively to dimensionality of crystals: 3D, quasi-2D (Q2D),
or quasi-1D. Probably the most famous example of a low-
dimensional material is graphene (there are also related single
layers, such as borophene [1], borophosphene [2], graphynes

3 Author to whom any correspondence should be addressed.

[3], etc), which hosts Dirac like (linear in quasi-momentum)
dispersion in the vicinity of high symmetry Dirac points. Such
shape of energy bands, besides being responsible for some
intriguing phenomena, provides material realization of rel-
ativistic electron. This triggered numerous investigations of
the connection between symmetry of materials and appear-
ance of Dirac and Weyl points in their band structures. These
points are attributed to existence of rotational [4], nonsymmor-
phic [5], mirror [6], space-time inversion [7, 8], time-reversal
plus fractional translation [9], and generalized chiral symme-
try [10]. There are also results on the search forWeyl andDirac
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Figure 1. PF (up) and FT (bottom) dispersions (given by
equations (3.1)): from left to right are all bands, bands E±1,+1, bands
E±1,−1 and horizontal sections of the bands (iso-energetic lines).

points according to group theoretical criteria in Brillouin zones
(BZs) of all space [11], layer [12–14] or wallpaper groups
[15].

In addition, geometrical symmetries impose conditions that
lead to the emergence of unconventional quasiparticles in con-
densed matter systems. In 3D materials, enforced by space
groups, double Dirac points [16], three-component [17, 18]
or hourglass fermions [19] are found, inspiring further theo-
retical and experimental research [20–25]. Concerning Q2D
systems, besides Dirac (as in graphene [26]), there are also
semi-Dirac (Dirac-like in one direction, and quadratic in the
orthogonal one, as in black phosphorus [27]), quadratic (as in
molybdenum disulphide [28]), and fortune teller (FT) disper-
sions [29], which corresponds to the coexistence of a nodal
point and lines. Namely, symmetry analysis of the possible
completely linear dispersions in non-magnetic, Q2D materials
with negligible spin–orbit coupling (SOC) has shown that only
completely massless fermions appearing in layers are Dirac
and FT [29]. Recently, FT dispersion has been experimentally
confirmed in a surface layer of silicon [30].

A question arises whether new types of fermions are possi-
ble in Q2D materials by inclusion of SOC? With help of layer
double groups (LDGs) and time-reversal symmetry (TRS)
(i.e. gray LDG), we made a quite general search for linear
dispersions in the vicinity of high symmetry points (HSPs);
since no reference to nonsymmorphic symmetries is made,
the topological (hour-glass like) band crossing mechanisms
are not a priori assumed, as it is usual. Indeed, it turns out
that there are two peculiar types (figure 1) featuring twelve
nonsymmorphic and noncentrosymmetric groups: two groups
support previously predicted FT, and the remaining ones
poppy flower (PF) dispersion (generalizing both FT and Dirac
types).

After a brief overview of necessary group-theoreticalmeth-
ods, the obtained results are discussed on the basis of effec-
tive low-energy model, calculated densities of states and
symmetry breaking patterns. Also, a list of material can-
didates supporting the new dispersions is provided. The
predicted effect is justified by density functional based
relaxation and band structure calculation in BiIO4 mono-
layer. Synthesis of this layered 3D material was reported
around a decade ago [31]. Numerical band structure con-

firms our group theoretical prediction, which may be the
motivation for future laboratory synthesis of this material as
monolayer.

2. Method

Symmetry determines Bloch Hamiltonian in the vicinity
of high-symmetry BZ wave vector through the allowed
irreducible representations (IRs) of the little group [32].
Allowed IRs of LDGs are subduced from the correspond-
ing space groups IRs (found on Bilbao Crystallographic
Server [33]), and also independently constructed by POL-
Sym code [34]. Concerning LDGs with TRS, the dimen-
sions [33, 35] of the allowed IRs (actually co-representations)
are 1, 2 or 4, and for generic ones, giving bands degener-
acy, this is 1 or 2. Here we focus on the band structures
near quadruple points at high-symmetry momenta. Further,
we do not consider generically degenerate bands, giving dou-
ble degenerate Dirac dispersion (precisely, it consists of two
double spinfull degenerate cones meeting at one fourfold
degenerate point); this automatically excludes centrosymmet-
ric crystals, as Kramers degeneracy in them forbids non-
degenerate bands [36]. Among the remaining groups, only
twelve are with special points with four-dimensional allowed
(co)representation.

Analysis of all allowed IRs R of little groups G (k0) of
HSPs k0 in LDG lacking the inversion symmetry gives the
following conditions for quadruple point: k0 is time-reversal
invariant momentum, R is two-dimensional, either real or
complex IR. Therefore, we consider Ĥ(k) being Hamilto-
nian of the system Ĥ0 (including spin–orbit) in the basis
{|Ψ1〉 , |Ψ2〉 , |θΨ1〉 , |θΨ2〉}, where the spinors |Ψi〉 = |Ψi(k)〉
(i = 1, 2 counts two bands touching each other at k0 also in
the absence of TRS) belong to R at k0 and θ is an anti-unitary
operator of TRS, for which we used θ2 = −σ̂0, since spin-
full case is considered. Throughout the text σ̂0 is two-by-
two unit matrix, and σ̂1, σ̂2, σ̂3 are Pauli matrices. Denoting
the little group elements by � = (h|rĥ + b), where h is crys-
tallographic double point group element, while rĥ and b are
fractional and lattice translation, respectively, one gets the con-
ditions imposed by time-reversal and geometrical symmetries
on Ĥ(k0 + q) in the vicinity of k0 (therefore, the wavevector q
is small):

Ĥ∗(k0 + q) = T̂†Ĥ(k0 − q)T̂ , (2.1)

Ĥ(k0 + q) = D̂†(�)Ĥ(k0 + ĥ′q)D̂(�). (2.2)

Here, D̂ = diag(R̂, R̂∗), and ĥ
′
is an operator reduction of vector

representation ĥ to 2D BZ, while T̂ = −iσ̂2 ⊗ σ̂0 represents
the action of θ on the basis of spinors.

To focus on the terms linear in q, Hamiltonian is expanded

in the form Ĥ(k0 + q) ≈
∑

i=1,2 qi
∂Ĥ(k0+q)

∂qi
|q=0 (energy scale

is conveniently shifted such that Ĥ(k0) = 0). To incorporate
symmetry, the matrix elements of the Hamiltonian gradient
are arranged into the four-by-eight matrix Ŵ, which entries
wpq =

(
w1
pq w

2
pq

)
are pairs wi

pq =
∂Hpq(k0+q)

∂qi
|q=0. The form

2
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Table 1. Groups providing dispersions (3.1). Notations for layer (columns 1 and 2) and space groups (columns 4, 5 and 6) are
according to [37, 38] respectively. IR notation in the eighth column is as in Bilbao Crystallographic Server [33]. Effective
Hamiltonian is indicated in the last column by the nonzero parameters (and their interrelations) of (2.5). For the last four
groups a = c while M̄6 and M̄7 are conjugated pair of IRs.

Layer double group Corresponding space double group

Group IR Group Plane IR Dispersion Nonzero vipq

21 p21212 S̄5 18 P21212 D3
2 z = 0 S̄5 (3.1a) v113, v

1
23, v

1
33, v

2
11, v

2
21, v

2
31

25 pba2 S̄5 32 Pba2 C8
2v z = 0 S̄5 (3.1a) v113, v

1
23, v

1
33, v

2
11, v

2
21, v

2
31

28 pm21b Ȳ5, S̄5 26 Pmc21 C2
2v y = 0 Z̄5, Ū5 (3.1a) v111, v

1
21, v

1
31, v

2
10, v

2
20, v

2
30

29 pb21m Ȳ5, S̄5 26 Pmc21 C2
2v x = 0 Z̄5, T̄5 (3.1b) v102, v

2
10, v

2
20, v

2
30

30 pb2b Ȳ5, S̄5 27 Pcc2 C3
2v x = 0 Z̄5, T̄5 (3.1a) v111, v

1
21, v

1
31, v

2
10, v

2
20, v

2
30

32 pm21n Ȳ5 31 Pmn21 C7
2v y = 0 Z̄5 (3.1a) v113, v

1
23, v

1
33, v

2
10, v

2
20, v

2
30

33 pb21a Ȳ5 29 Pca21 C5
2v y = 0 Z̄5 (3.1b) v133, v

2
11, v

2
21, v

2
30

34 pb2n Ȳ5 30 Pnc2 C6
2v x = 0 Z̄5 (3.1a) v113, v

1
23, v

1
33, v

2
10, v

2
20, v

2
30

54 p4212 (M̄6, M̄7) 90 P4212 D2
4 z = 0 (M̄6, M̄7) (3.1a)

⎧⎪⎪⎨
⎪⎪⎩

v102 = v202 = v131 = −v231

v110 = v210 = v123 = −v223

v113 = −v213 = −v120 = −v220

⎫⎪⎪⎬
⎪⎪⎭

56 p4bm (M̄6, M̄7) 100 P4bm C2
4v z = 0 (M̄6, M̄7) (3.1a)

58 p4̄21m (M̄6, M̄7) 113 P4̄21m D3
2d z = 0 (M̄6, M̄7) (3.1a)

60 p4̄b2 (M̄6, M̄7) 117 P4̄b2 D7
2d z = 0 (M̄6, M̄7) (3.1a)

Ŵ =

⎛
⎜⎜⎝
w11 w12 w13 w14

w∗
12 w22 w14 w24

w∗
13 w∗

14 −w11 −w∗
12

w∗
14 w∗

24 −w12 −w22

⎞
⎟⎟⎠ (2.3)

follows from the relation (2.1), together with wi
pq = wi∗

qp cor-

responding to the requirement that Hamiltonian Ĥ is a Hermi-
tian operator. Note that the form (2.3) of Ŵ leads to the trace-
less Hamiltonian: it excludes the scalar term (which imposes
the tilt of the bands). The geometrical symmetries are incorpo-
rated by (2.2), which is rewritten [11, 29] as an efficient fixed
point condition

∣∣∣Ŵ〉
= D̂⊗ D̂∗ ⊗ ĥ′

∣∣∣Ŵ〉
, (2.4)

on the column vector (32× 1) form
∣∣∣Ŵ〉

of Ŵ . The

equation (2.4) is solved with help of the group projection oper-
ators for all of the twelve noncentrosymmetric groups hosting
quadruple points at high symmetry momenta; in this way, the
symmetry determines form of Ŵ. To explicate this, it is more
convenient to use another general expansion of the effective
low energy Hamiltonian,

Ĥ(q) =
3∑

p,q=0

2∑
i=1

qiv
i
pq σ̂p ⊗ σ̂q, (2.5)

and find the constraints imposed by symmetry on the real
coefficients vipq (simply interrelated with wi

pq).

3. Results and discussion

3.1. Symmetry adapted Hamiltonians and dispersions

Groups hosting new dispersions are listed in table 1. Besides
intrinsic layer group notation (the first part), the space group

of the system obtained by periodic repetition of the layer along
axis perpendicular to it (column plane) according to Bilbao
Crystallographic Server is also given (second part), where the
directions x, y and z are along axes of orthorombic/tetragonal
3Dprimitive unit cell. On the other hand, in POLSymapproach
we used convention that layers are in xy-plane. Orthogonal lat-
tice vectors a1 and a2 span primitive rectangular/square 2D
unit cell, while reciprocal lattice vectors k1 and k2 satisfy
a j · kl = 2πδ j,l and q1, q2 are projections of q along k1 and
k2. Relevant BZs are in figure 2.

Effective Hamiltonians allowed by symmetry group in the
special points of Brillouin’s zone are presented in the last col-
umn of the table 1: the nonzero real coefficients vipq in the
expansion (2.5) are specified, together with the constraints
among them. The listed forms correspond to the group settings
(lattice vectors and coordinate origin) and double valued irre-
ducible co-representations obtained by POLSym code. In fact,
this enabled flexibility in the choice of generators (coordinate
system and translational periods), which finally results in the
form of irreducible co-representations. These are chosen such
to get the same form of the effective Hamiltonian whenever
it is possible (for different groups). Equivalent (but different)
settings (and co-representations) produce different (still equiv-
alent with respect to dispersions) Hamiltonian forms. Clearly,
the exact values of the nonzero coefficients vipq (listed in the
last column of the table 1) are material dependent. The groups’
generators and their representative matrices in the allowed
co-representations associated to the specified high-symmetry
points are in the table 2. It should be remarked that in all the
considered cases this point is fixed by the whole gray group,
i.e. the little group is the gray (double) group, and the allowed
co-representations of the little group are simultaneously the
irreducible co-representations of the gray group. The matri-
ces of the relevant co-representations are four-dimensional.
In all the cases time-reversal corresponds to the matrix T̂;
all other generators are represented by the block-diagonal

3



J. Phys.: Condens. Matter 32 (2020) 485501 V Damljanovíc et al

Figure 2. BZs of the groups (listed in table 1) supporting dispersions (3.1). For layer groups 28, 29, 30, 32, 33 and 34 vector k2 is along
(screw) axis of order two.

matrices D̂ = diag(R̂, R̂∗), with mutually conjugated 2× 2
blocks. Therefore, only this block, R̂, is given in the table 2.

The described technique leads to two new types of disper-
sions (figure 1; crossings are taken at E = 0). The first one is
PF, with four bands (obtained for u, v = ±1):

Ev,u(q) = v
√
aq21 + cq22 + u b |q1q2|. (3.1a)

The expression under the square root is non-negative since
a, b and c are positive quantities (functions of vipq) such that
b2 − 4ac < 0. For quadratic layer groups (54, 56, 58, 60)
c = a, and above dispersion degenerates to the isotropic
one Ev,u = v

√
aq2 + u b |q1q2|. Two groups, 29 and 33,

enforce b2 − 4ac = 0, hosting thus FT dispersions (with bands
counted by u, v = ±1):

Ev,u(q) = v | f |q1|+ u g |q2| |, (3.1b)

with f , g positive quantities, also functions of vipq. Note that
on the other side, the limit b→ 0+ gives Dirac dispersion.

3.2. Density of states

Dispersions (3.1), differing from the well-known Dirac, semi-
Dirac or quadratic, impose specific physical properties. In this
context, one must take into account the range of validity of
these forms, describing the realistic band structures only in the
vicinity of high-symmetry point. In particular, corresponding
density of states (DOS) near E = 0 are:

ρSOCPF =
2|E|

π
√
4ac− b2

, (3.2a)

ρSOCFT ≈ L

4π2
√
f 2 + g2

. (3.2b)

Unlike to PF, but similarly to 3D nodal semimetals [39],
exact calculation of DOS of FT is prevented due to the non-
circular iso-energetic lines (figure 1). Thus, the last expression
corresponds to realistic situations where the horizontal parts
of band crossing lines are of the length L (this is an effective

range of approximation). In non-SOC case calculation of DOS
gives doubled results (3.2), since each energy is spin degener-
ate, which is then decoupled from the orbital one. Non zero
DOS of FT near E = 0 is in contrast to DOS of Dirac or PF
dispersions being proportional to |E|, as well as to semi-Dirac
which is proportional to

√
|E|. This affects many properties,

to mention only charge and spin transport. Further, it can be
shown that the electron effective mass, obtained from band
curvatures, for all dispersions (3.1) vanishes. Let us empha-
size that the higher order terms, neglected in derivation can-
not change the obtained band topology (figure 1), though may
distort bands slightly.

3.3. Symmetry breaking

Despite the obtained dispersions are essential, i.e. resistant to
symmetry preserving perturbation, an interesting additional
insight is gained by considering symmetry breaking. Herein,
taking into account group–subgroup relations, we discuss the
possibilities of robustness or switching between various dis-
persions at the same BZ-point by lowering the symmetry, e.g.
due to strain. It is expected that decreasing the number of sym-
metry elements leads to relaxing the constraints imposed on
Hamiltonians, and consequently increasing (or preserving) the
number of independent parameters. In this context, taking into
account the number of non-zero parameters vipq of (2.5) given
in table 1, it is meaningful to consider the transitions from FT
to anisotropic PF, as well as from isotropic PF to FT, when the
symmetry is lowered. Precisely, the allowed four-band model
Hamiltonian diagonalizing in PF dispersion have six real inde-
pendent parameters, which are reduced to three for quadratic
groups; similarly, there are 4 real independent Hamiltonian
parameters for FT. Before proceeding, let us take a brief look
into the robustness of FT and PF.

Regarding groups 29 and 33 supporting FT dispersion,
symmetry reduction in which either nonsymmorphic glide
plane or screw axis (but not both) is retained causes that FT at
the Y point splits into two non-degenerate conical dispersions.
Opposite out-of-plane shifts of the adjacent nuclei positioned

4
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Table 2. Allowed irreducible co-representations: for each group and
corresponding HSP, the generators are listed, and the block-diagonal part R̂ of
double valued co-representation D̂ representing these generators (in the same
order). Here, Cnn̂ is rotation for 2π/n around axis n̂ (which is x̂, ŷ, ẑ, or
ĉ = 1√

2
(x̂ + ŷ)), mn̂ is vertical mirror plane which contains n̂ axis, mh is

horizontal mirror plane, and Sn = Cn̂zmh.

Group HSP Generators R̂

21 S (C2x̂| 12 0) (C2̂y|0 1
2 ) σ̂3 σ̂1

25 S (mx̂| 12 0) (mŷ|0 1
2 ) σ̂3 σ̂1

28 Y (I|10) (C2̂y|0 1
2 ) mŷ σ̂0 −σ̂3 −iσ̂2

28 S (I|10) (C2̂y|0 1
2 ) mŷ −σ̂0 −σ̂3 −iσ̂2

29 Y (I|10) (C2̂y|0 1
2 ) mh σ̂0 −σ̂3 −iσ̂2

29 S (I|10) (C2̂y|0 1
2 ) mh −σ̂0 −σ̂3 −iσ̂2

30 Y (I|10) (mŷ|0 1
2 ) C2ŷ σ̂0 −σ̂3 −iσ̂2

30 S (I|10) (mŷ|0 1
2 ) C2ŷ −σ̂0 −σ̂3 −iσ̂2

32 Y (I|10) (mh| 12
1
2 ) mŷ σ̂0 −σ̂3 −iσ̂2

33 Y (mh| 12 0) (C2̂y|0 1
2 ) iσ̂3 σ̂1

34 Y (I|10) (mh| 12
1
2 ) C2ŷ σ̂0 −σ̂3 −iσ̂2

54 M (I|10) (C2̂c| 12
1
2 ) C4̂z −σ̂0 −iσ̂2 e−i 3π4 diag(1, i)

56 M (I|10) (mĉ| 12
1
2 ) C4̂z −σ̂0 −iσ̂2 e−i 3π4 diag(1, i)

58 M (I|10) (mĉ| 12
1
2 ) S4 −σ̂0 −iσ̂2 e−i 3π4 diag(1, i)

60 M (I|10) (C2̂c| 12
1
2 ) S4 −σ̂0 −iσ̂2 e−i 3π4 diag(1, i)

in the mirror plane, transformsmirror into a glide plane, while
doubling the lattice constant; this in turn halves primitive vec-
tor k1 of the reciprocal lattice. Group 29 reduces to 33 and
the S point in 29 becomes Y point in 33. Consequently, FT
in Y and S points in 29 are robust against lowering the sym-
metry to group 33. Similarly, concerning the PF, any homoge-
nous stretching along a1 or a2 axis deforms square primitive
cell to rectangular, reducing the symmetries of layer groups
54 and 58 (56 and 60) to the group 21 (25) and causes PF
to change from isotropic to anisotropic form, which implies
direction-dependent electronic and related properties.

Since PF is a generalized form of FT, one could expect that
the parameters of these dispersions can be interrelated by tun-
ing. However, continuous transformation from FT to PF at the
same point of the BZ is not possible, since neither of groups
supporting FT is a subgroup of any of groups allowing PF, nor
vice-versa. The expression (3.2a) for DOS of PF shows that the
changing parameters such that PF approaches to FT results in a
singularity at zero energy. In the other words, if oppositewould
hold, arbitrarily small displacements of nuclei, being sufficient
to lower the symmetry, would cause a jump of (graphene-like)
negligible DOS of PF to a finite and constant DOS of FT,
which we found unlikely. At the same time, such obstruction
from DOS does not forbid the transition between Dirac (dou-
ble degenerate cones with four-fold degenerate point) and PF,
nor it forbids splitting of FT and PF into two non-degenerate
conical dispersions (with double degenerate point).

Following the above arguments, it is expected that transition
from Dirac cone to PF may be realized by lowering the sym-
metry, since Dirac dispersions has less independent parameters
than PF. According to [5] Dirac semimetals in time-reversal
invariant two-dimensional systems with strong SOC are pos-
sible in nonsymmorphic groups with inversion symmetry. E.g.
let us consider the layer group 46 (pmmn), hosting Dirac cones

at X, Y and S HSPs (the BZ is the same as this one given on
the left panel in figure 2). It is expected that the violation of the
inversion symmetry leads toWeyl points or node [5]. However,
listing all subgroups, it turns out that the two of the subgroups,
32 and 21, actually host PF in the points Y and S, respec-
tively. Indeed, in [46], using spinfull tight-binding model with
four sites (with s-orbitals) per unit cell, authors show that at
fillings 2, 6, system invariant under double layer group 21 is
semimetal, which hosts one fourfold degenerate and fourWeyl
points. A plethora of such cases, where groups allowing PF
from the table 1 are subgroups of symmetry groups of Dirac
semimetals, indicates candidates for transitions between cen-
trosymmetric and noncentrosymmetric crystals with protected
four-fold band crossing point. Moreover, the existence of such
essential fourfolddegeneratepoint simultaneouslywith double
degenerateWeyl points in the same system, makes that the lay-
ers from our list represent possible two-dimensional materials
suitable for the study of their interplay.

3.4. Material realization

Despite the fabrication of freestanding layers is not always
feasible, the above theoretical predictions required material
realizations, or at least numerical simulations. To find realis-
tic material with layer groups from table 1 we searched the
list [41] of 3D layered materials, synthesis of which has been
reported in the literature. In the table 3 we listed potential
material candidates with symmetry groups allowing the pre-
dicted peculiar dispersions. These are laboratory fabricated
3D crystals with layered structures, which could be easily or
potentially exfoliated into layers.

It is interesting to single out our group-theoretical findings
indicated that dispersions (3.1) are not preserved when SOC is
neglected, except for the LDG 33, which supports FT disper-
sion also in that case [29]. Inclusion of SOC moves FT from
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Table 3. Material candidates: layered systems with symmetry groups hosting
the dispersions (3.1). Layer and corresponding space groups are listed for
materials given by a formula and materials project ID. Abbreviations EE and PE
stand for easily and potentially exfoliable, respectively, according to [41].

Layer group Space group Formula ID EE/PE

21 p21212 18 P21212 As2SO6 mp-27230 EE
MgMoTeO6 mp-1210722 EE

25 pba2 32 Pba2 Au2Se2O7 mp-28095 EE
Re2S2O13–I mp-974650 EE

28 pm21b 26 Pmc21 TlP5 mp-27411 EE
KO2H4F mp-983327 PE
NaGe3P3 mp-1104707 PE

29 pb21m 26 Pmc21 WO2Cl2 mp-32539 EE
32 pm21n 31 Pmn21 CuCOCl mp-562090 EE
33 pb21a 29 Pca21 BiIO4 mp-1191266 PE

KPSe6 mp-18625 EE
58 p4̄21m 113 P4̄21m LiReO2F4 mp-554108 EE

Figure 3. Crystal structure of BiIO4 mono-layer: elementary cell
(left) and a part of layer (right).

BZ corners to the Y-point. The material BiIO4 belongs to cor-
responding space group 29 and has layers parallel to the y = 0
plane. Consequently, it should exfoliate to layer group 33 so
we choose it for further DFT investigations, as an example of
achievements of our theory. Since IRs from table 1 are the only
extra IRs in these BZ points, the dispersions (3.1) are unavoid-
able for crystals with symmetry of these groups. On the other
hand, the position of Fermi level cannot be determined solely
by symmetry arguments, nor it can be guaranteed that no other
bands cross or touch the Fermi level.

We determined crystal (figure 3) and band structure
(figure 4) of BiIO4 mono-layer configuration using DFT cal-
culations: full relaxation and bands calculations were per-
formed by QUANTUM ESPRESSO software package [42],
full relativistic PAW pseudopotentials [43, 44], with the
Perdew–Burke–Ernzerhof exchange–correlation functional
[45]. The energy cutoff for electron wavefunction and charge
density of 47 Ry and 476 Ry were chosen, respectively. The
band structures were found in 500 k-points on selected path,
and 2500 k-points for 2D band structure plots in the vicinity of
HSPs.

Crystal structure of mono-layer is shown in figure 3. It
belongs to rectangular lattice of the group 33,with nearly equal
a1 = 0.566 nm and a2 = 0.575 nm. Band structure of BiIO4

Figure 4. Band structure of BiIO4 mono-layer without SOC (top)
and with SOC (bottom), with insets showing magnified FT and split
FT dispersions. The Fermi level is set to zero eV.

mono-layer with and without SOC is shown in figure 4. It
turns out that the system is insulating in undoped and ungated
regime. The closest to Fermi level FT state is at −0.9 eV.
When SOC is neglected energy at the point S is eightfold
degenerate (including spin), which gives electron filling of 8n
that is necessary for insulating systems [40]. With inclusion of
SOC the eightfold spinfull degeneracy at S is lifted, but sets
of eight non-degenerate bands each, form cat’s cradle struc-
ture along ΓX line, as predicted in reference [46]. This gives
again electron filling of 8n [46, 47]. Our electron filling of 184,
derived from DFT calculations, is indeed divisible by 8. Elec-
tron filling for DLG 33 prevents FT to be the only dispersion at
the Fermi level, while for remaininggroups in table 1 the filling
condition necessary for Fermi surface consisting of isolated
points is ν = 4n+ 2.
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Figure 5. Band structures of BiIO4 mono-layer without and with
SOC near points S and Y . Inclusion of SOC turns FT dispersion into
nodal lines in S, and degenerate Dirac line into FT in Y.

Behavior of FT states with inclusion of SOC is shown in
figure 5. In non-SOC case, two pairs of Dirac lines meet at the
point S and form the FT states. SOC splits eightfold degenerate
band at S into four double degenerate ones. Near point Y, SOC
splits fourfold spinfull degenerate Dirac line into one FT state.
Since SOC strength is proportional to the fourth power of the
atomic number [48], heavy elements in the material induced
observable splitting.

4. Conclusions

Characterized by band crossings (touching) points (lines)
at Fermi level from which energies disperse linearly, nodal
metals/semimetals take an important role in investigations
of various topological properties of crystals. Among them,
symmetry-enforced ones represent a class of materials host-
ing such dispersions in HSPs due to increased degeneracy.
In the language of group theory, while the spinless case
is described by the ordinary group of geometrical trans-
formations, the spinfull situation, when system is robust
on spin–orbit perturbation, needs double groups. Additional
inclusion of TRS leads to gray magnetic ordinary or dou-
ble group. The increased degeneracy of energy is enabled by
higher dimensional allowed irreducible (co)representations of
the corresponding underlying crystal symmetry.

New fermions in 2D materials revealed by application
of full gray double layer group symmetry contribute to the
interesting physical phenomena of layered systems: two new
types of dispersions beyond Dirac, PF and FT, accompany the
fourfold degeneracy of bands in high-symmetry points. Our
findings single out list of twelve nonsymmorphic and non-
centrosymmetric layer groups that support such unusual lin-
ear electronic dispersions. As the method is not based on the
topologicalmechanism (invokingnonsymmorphicsymmetry),
the result is general, verifying a posteriori the necessity of
nonsymmorphic elements for the considered dispersions. Pro-
viding this list, numerical simulations aimed to find material
realizations of the peculiar dispersions are facilitated, which is
of a great importance to achieve corresponding physical prop-
erties. PF dispersion occurs in ten groups; in particular, there

are single isolated HSP hosting it in the groups p21212, pba2
(point S), pm21n, pb2n (Y), and p4212, p4bm, p4̄21m, p4̄b2
(M), while the groups pm21b and pb2b have two such points
(Y, S). On the other hand, the FT type of dispersion in the group
pb21a is hosted in single (Y), and in the group pb21m in two
HSPs (Y, S).

Particularly interesting are groups pb21a, supporting FT
dispersion both with and without SOC, as well as pba2 and
p4bm, which are also wallpaper groups, preserved even when
perpendicular, homogenous electric field is applied (e.g. due to
gating). Moreover, coexistence of degenerate point and lines
at the same energy in FT dispersion may lead to some new
phenomena. FT dispersion has constant contribution to DOS,
manifested as a plateau nearby zero energy in FT. This may be
important in technological applications, especially when elec-
tron and/or spin transport are looked for, likematerials for solar
cells [49], spintronic etc. On the contrary, PF dispersion, simi-
larly to Dirac ones, contributes by linear DOSwith no states on
zero energy. It has both isotropic and anisotropic forms which
may be continuously transformed into each other by crystal
deformations.

Our numerical calculations show that layered BiIO4 3D
crystal, exfoliates to stable mono-layer having a symmetry
group from our list. Band structure of BiIO4 mono-layer con-
firms theoretical prediction, but further efforts are necessary in
order to place the Fermi level at right energy.
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Abstract
In the physics of two-dimensional materials, notion semi-Dirac dispersion denotes elec-
tronic dispersion which is Dirac-like along one direction in the reciprocal space, and quad-
ratic along the orthogonal direction. In our earlier publication (Damljanović and Gajić in J 
Phys Condens Matter 29:185503, 2017) we have shown that certain layer groups are par-
ticularly suitable for hosting semi-Dirac dispersion in the vicinity of some points in the 
Brillouin zone (BZ). In the present paper we have considered tight-binding model up to 
seventh nearest neighbors, on a structure belonging to layer group Dg5. According to our 
theory, this group should host semi-Dirac dispersion at A and B points in the BZ. The struc-
ture has four atoms per primitive cell, and it is isostructural with sublattice occupied by 
phosphorus atoms in the layered material SnPSe

3
 . While the first order perturbation theory 

of double degenerate level gives two pairs of semi-Dirac cones and correctly reproduces 
dispersion in the Dirac-like direction, exact diagonalisation of four-by-four tight-binding 
Hamiltonian shows node lines caused by accidental degeneracy in the band structure. We 
discuss these degeneracies in the context of von Neumann–Wigner theorem, and conclude 
that although dispersion remains semi-Dirac in the exact diagonalisation method, the band 
structure does not necessarily form cones. In order to get full picture of behavior of bands 
in the vicinity of semi-Dirac points, first order perturbation theory may not be sufficient 
and one may need higher order corrections.

Keywords Semi-Dirac dispersion · Two-dimensional materials · Layer groups · Tight-
binding model
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1 Introduction

Two-dimensional (2D) materials are materials that are periodic in two spatial directions 
but finite in the third, orthogonal direction. These materials gain particular attention 
after discovery of graphene, a one atom thick layer of carbon atoms arranged in a honey-
comb lattice. In contrast to graphene, in which all atoms belong to a single plane, buckled 
silicene and germanene for example, occupy Wyckoff positions with unequal z-coordinates. 
Existence of massless electrons whose dynamics is described by Dirac (Weyl) equation is 
among notable properties of graphene and related, so called Dirac, materials.

Besides Dirac materials, there is another class of 2D materials in which electronic 
dispersion is Dirac-like (linear) along some direction in the 2D Brillouin zone (BZ), and 
quadratic along the orthogonal direction. Such semi-Dirac dispersion supports both mass-
less and massive electrons at the same point of the BZ, thus giving rise to highly aniso-
tropic material properties. Using density functional theory (DFT), semi-Dirac dispersion 
has been predicted in TiO2/VO2 nanostructures (Pardo and Pickett 2009, 2010), in silicene 
oxide (Zhong et al. 2017) and in square selenene and tellurene (Xian et al. 2017). A tight-
binding model show semi-Dirac dispersion in phosphorene under strain for certain critical 
values of hopping parameters (Duan et al. 2016). First experimental realization of mate-
rial with semi-Dirac dispersion was reported in 2015. It was demonstrated that few-layer 
black phosphorus doped with potassium posses semi-Dirac dispersion at the BZ center for 
certain level of doping (Kim et al. 2015). The behavior of semi-Dirac fermions in external 
magnetic field and consequences that this dispersion imposes on Klein tunneling is exam-
ined in more detail in Banerjee et al. (2009) and Banerjee and Pickett (2012). Evolution of 
Hofstadter spectrum on a square lattice with the application of an on-site uniaxial staggered 
potential shows merging of two Dirac points into a semi-Dirac one (Deplace and Montam-
baux 2010). Analysis of semi-Dirac systems based on DFT show that in some cases, spin-
orbit coupling (SOC) can open a small gap and can lead to topologically non-trivial bands, 
which contribute to non-zero total Chern number (Huang et al. 2015). Such systems are 
then suitable for demonstration of quantum Hall effect. Analogous conclusion is derived 
for semi-Dirac systems under laser light illumination (Saha 2016). On the other hand, 
Narayan (2015) concluded that for semi-Dirac semimetals circularly polarized light does 
not open a band gap. The influence of electronic correlations on semi-Dirac systems was 
also investigated. It was found by renormalization group theory, that interplay of Coulomb 
interaction between electrons and disorder can drive the semi-Dirac system to non-Fermi-
liquid behavior (Zhao et  al. 2016). Similarly, approximate solution of Schwinger–Dyson 
equation show that moderate Coulomb interaction can induce excitonic gap opening in 
semi-Dirac band structure (Wang et al. 2017). Anisotropic properties of semi-Dirac materi-
als have potential applications in electronics (Mannhart and Schlom 2010). For example, 
a p–n junction made from such material would have negative differential conductance for 
certain bias voltage (Saha et al. 2017).

Group theory is a powerful tool in predicting various types of electronic dispersions. 
In some cases mere belonging of a crystal to some space groups, leads unavoidably to 
certain dispersion. For example, Mañes (2012) has found sufficient conditions for exist-
ence of bulk chiral fermions in 3D single crystals and has provided a list of space groups 
that host such dispersion in the vicinity of given points of the BZ. The non-symmorphic 
space group P212121 (No. 19 in notation of Hahn 2005) belongs to Mañes list. Geilhufe 
et al. (2017) have searched the Organic Materials Database and have found six compounds 
that belong to this space group and in addition have only Dirac points at the Fermi level. 
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Another search was performed within reported DFT crystal structures collected in Mate-
rials Project database (Cheon et al. 2017). This search was for 3D crystal structures that 
consist of weakly interacting layers and hence, are suitable for obtaining 2D forms by e.g. 
exfoliation. Recently a list of four layer (diperiodic) groups that host semi-Dirac dispersion 
was given (Damljanović and Gajić 2017). The corresponding theory was formulated for 
non-magnetic, 2D materials with negligible SOC.

In this paper we have searched a list of layered 3D materials (Cheon et al. 2017), for 
structures that consist of layers belonging to layer group p11b (Dg5 in notation of Kopsky 
and Litvin 2002), with layers periodically repeated along the z-axis. The layer group p11b 
hosts semi-Dirac dispersion at A and B points of the BZ (Damljanović and Gajić 2017). 
In what follows, we have considered a tight-binding model from s-orbitals on a system 
isostructural to phosphorus sublattice in the single layer of material SnPSe3 that belongs to 
the list (Cheon et al. 2017).

2  Method and results

Space group P1c1 (No. 7) is obtained by periodic repetition of layer group Dg5 along the 
axis that is perpendicular to diperiodic plane. On the other hand, diperiodic plane is per-
pendicular to the y-axis in the space group P1c1. For these reasons we have searched 3D 
layered materials given in Cheon et al. (2017), belonging to the space group P1c1, such 
that layers are parallel to the unique glide plane. We have found following five materials 
whose structures satisfy these requirements: Al2CdCl8 (Materials Project No. mp-28361 
Bergerhoff et  al. 1983; Staffel and Mayer 1987), Cr(PO3)5 (mp-705019 Bergerhoff et  al. 
1983; Jain et al. 2011; Hautier et al. 2011; El-Horr and Bagieu Beucher 1986), LiTi(PO3)5 
(mp-684059 Bergerhoff et al. 1983; Jain et al. 2011; Hautier et al. 2011; El-Horr and Bag-
ieu Beucher 1986), SnPSe3 (mp-570370 Bergerhoff et  al. 1983; Israel et  al. 1998) and 
SnPS3 (mp-13923 Bergerhoff et al. 1983; Dittmar and Schaefer 1974). If one would neglect 
SOC one would get semi-Dirac dispersion in these materials, irrespectively of the method 
used to calculate the band structure, as long as the approximation used is sufficiently fine 
(Damljanović and Gajić 2017). The inclusion of SOC would require analysis of double 
groups and it may be a topic of future research.

As an illustration, we will investigate electronic dispersion within a tight-binding model 
on a structure that belongs to layer group Dg5. In order to make the structure more real-
istic, we choose it to be isostructural with the sublattice of phosphorus ions in SnPSe3 , a 
material whose stability was confirmed by DFT calculations (Bergerhoff et al. 1983; Israel 
et al. 1998). The crystal structure and corresponding BZ is shown on Fig. 1. The lattice 
parameters are 6.996 and 12.006 Å, while the oblique angle is 124.6◦ . The Wyckoff posi-
tion 2a is occupied twice, with nuclei having (fractional) coordinates (0.12600, 0.56620, 
2.83 Å) and (0.87540, 0.43600, 1.17 Å). The positions of other nuclei are determined by 
symmetry (Kopsky and Litvin 2002). Although our system is isostructural with phospho-
rus sublattice of SnPSe3 , we do not assume that it is made from phosphorus atoms. We 
consider a tight-binding (LCAO MO) model from s-orbitals, in order to make the model 
simple. The internuclear distances and hopping integrals are given in the Table  1. The 
tight-binding Hamiltonian is ( ∗ denotes complex conjugation):
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Fig. 1  a Crystal structure belonging to Dg5 for the tight-binding model. Black parallelogram denotes prim-
itive unit cell. All nuclei are of the same type. Height of nuclei above the drawing plane is denoted by 
colors: blue + 2.83 Å, black + 1.17 Å, gray − 1.17 Å, turquoise − 2.83Å. b Corresponding Brillouin zone 
with basis vectors of the reciprocal lattice and positions of A and B points that host semi-Dirac dispersion. 
(Color figure online)

Table 1  Internuclear distances 
and corresponding hopping 
parameters for the structure from 
Fig. 1

Other distances (higher neighbors of �
1
 or �

3
 ) are bigger than 7.8 Å

Pair of nuclei Internuclear distance (Å) Hopping 
integral

�
1
 , �

1
0 �

11

�
3
 , �

3
0 �

33

�
1
 , �

3
− � − � 2.2677 �

13

�
1
 , �

4
6.0619 �

14

�
3
 , �

4
6.4446 �

34

�
3
 , �

4
+ � 6.4446 �

34

�
1
 , �

3
− � 6.4794 �

′
13

�
3
 , �

4
− � 6.5389 �

′
34

�
3
 , �

4
+ � + � 6.5389 �

′
34

�
1
 , �

4
− � 6.9012 �

′
14

�
1
 , �

1
+ � 6.9960 �

′
11

�
1
 , �

1
− � 6.9960 �

′
11

�
3
 , �

3
+ � 6.9960 �

′
33

�
3
 , �

3
− � 6.9960 �

′
33
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We are interested in the electronic band structure in the vicinity of points 
�A = (−�

�
+ �

�
)∕2 and �B = �

�
∕2 . The band structure for certain ratios of hopping inte-

grals is shown on Fig. 2. We can see in the vicinity of point (0, 0) the presence of disper-
sion which is Dirac-like along one direction in the BZ and quadratic along the perpendicu-
lar direction. In addition, we see that the band structure contains double spinless degenerate 
line (one line per each pair of bands) which is not caused by the TRS nor crystal symmetry. 

To determine more precisely the exact type of dispersion in the vicinity of given BZ 
points, we calculate analytically the band structure, first by the perturbation theory of 
degenerate energy level and later exactly, by solving quartic equation. In order to simplify 
calculations we assume � �

11
= �

�
33

= �
�
13

= �
�
14

= �
�
34

= 0 and, although not required by sym-
metry, �11 = �33(= �1) . The energies at both A and B points are E0 = �1 −

√
�

2

13
+ �

2

14
 and 

E�
0
= �1 +

√
�

2

13
+ �

2

14
 . Both E0 and E′

0
 are doubly degenerate. For the A-point we write 

�(�A + �) = �(�A) + �
� and apply first order perturbation theory of degenerate levels E0 

(1)�(�) =

⎛⎜⎜⎜⎜⎝

�11 + 2� �
11

cos(� ⋅ �) 0 �13e
−i�⋅(�+�) + �

�
13

e
−i�⋅�

�14 + �
�
14

e
−i�⋅�

0 �11 + 2� �
11

cos(� ⋅ �) �14 + �
�
14

e
−i�⋅�

�
�
13
+ �13e

−i�⋅�

�13e
i�⋅(�+�) + �

�
13

e
i�⋅�

�14 + �
�
14

e
i�⋅�

�33 + 2� �
33

cos(� ⋅ �) h34

�14 + �
�
14

e
i�⋅�

�
�
13
+ �13e

i�⋅�
h
∗
34

�33 + 2� �
33

cos(� ⋅ �)

⎞⎟⎟⎟⎟⎠
,

(2)h34 = �34

(
1 + ei�⋅�

)
+ �

�
34

(
e−i�⋅� + ei�⋅(�+�)

)
.

Fig. 2  The electronic band structure in the vicinity of A (a) and B (b) points of the BZ for �
13
∕� �

11
= 18 , 

�
14
∕� �

11
= 10.5 , �

34
∕� �

11
= 8 , �

�
13
∕� �

11
= 6.5 , �

�
34
∕� �

11
= 4.5 , �

�
14
∕� �

11
= 2.5 , �

�
33
∕� �

11
= 0.5 and 

(�
33
− �

11
)∕� �

11
= −0.5 . � is in units 1 / b in the direction parallel to �∕b , and in units 1∕(acos(34.6

◦)) in the 
direction perpendicular to �∕b . Coordinates of the A point in panel a, i.e. B point in panel b, are (0, 0)
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and E′
0
 , with �� = �(�A + �) − �(�A) being perturbation. We do the same for the B-point. 

The final result for the B-point is:

while for the A-point we obtain:

Here � is a vector of small modulus, q1 , q2 , q′1 and q′
2
 are the projections of � along vectors 

�1 , �2 , �3 and �4 , respectively. In addition:

Since u1 , u2 , v1 and v2 are all greater than zero, the obtained dispersion is of semi-Dirac 
type as predicted by Damljanović and Gajić (2017), but the accidental double degeneracy 
is missed.

(3)E1,2 ≈ E�
0
−

1

2
C2q�2

2
±

1

2

√
u2q�2

1
+ v2q�4

2
,

(4)E3,4 ≈ E0 +
1

2
C1q2

2
±

1

2

√
u1q2

1
+ v1q4

2
,

(5)E1,2 ≈ E�
0
−

1

2
C1q2

2
±

1

2

√
u1q2

1
+ v1q4

2
,

(6)E3,4 ≈ E0 +
1

2
C2q�2

2
±

1

2

√
u2q�2

1
+ v2q�4

2
.

(7)u1,2 =

⎡
⎢⎢⎢⎣
2

�13�14�
�

2

13
+ �

2

14

� +

⎛
⎜⎜⎜⎝

�13�14�
�
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Exact solution, based on solving quartic characteristic equation, gives the following condi-
tion for double degeneracy:

which has solution for sufficiently small |�| , irrespectively of relations between �13 , �14 and 
�34 . The Taylor expansion of the exact energy around � = 0 (B-point) gives 
E1,2 ≈ E�

0
± (1∕2)

√
u2

���q�1
��� , in the direction �3 , and E1,2 ≈ E�

0
± (1∕2)w2

|||q�2
|||
3

 , in the direc-

tion perpendicular to �3 . Similarly, E3,4 ≈ E0 ± (1∕2)
√

u1
��q1

�� in the direction �1 and 
E3,4 ≈ E0 ± (1∕2)w1

||q2
||3 , in the direction perpendicular to �1 . Here:

For the A-point we make substitution �13 → −�13 in the above formulas. It follows that the 
first order perturbation theory gives correct BZ-direction of Dirac-like dispersion and cor-
rect behavior of band structure in this direction. For the orthogonal direction as well as 
behavior of bands in complete vicinity of A, B-points the first order perturbation theory is 
not sufficient and higher order corrections are needed.

Regarding line of accidental spinless degeneracy found in exact solution of four-com-
ponent Hamiltonian, one has to note that similar degeneracy occurs in the tight-binding 
example for layer group Dg48 of Damljanović and Gajić (2017). In this case the degen-
eracy is a consequence of the fact that model Hamiltonian is two-component and that third 
order polynomial has at least one real zero. By studding the compatibility relations of all 
four layer single groups found in Damljanović and Gajić (2017) in the vicinity of �0 we get 
that two-dimensional irrep decomposes into two nonequivalent, one-dimensional irreps: 
�2D(G(�0)) = �1D(G(�0 + �)) + �

�
1D
(G(�0 + �)) , where � is small, jet non-zero wave vec-

tor. According to von Neumann–Wigner theorem, two bands touching at �0 do not repel 
each other at nearby points and may cross there too (Landau and Lifshitz 1981).

3  Conclusions

In summary, we have investigated electronic dispersion on a structure belonging to layer 
group Dg5, using tight-binding model from s-orbitals. We applied two methods for obtain-
ing electronic dispersion: the first order perturbation theory of doubly degenerate level 
and exact diagonalization based on solving quartic equation. The first order perturbation 
method gives correct behavior in the Dirac-dispersion direction, while for other directions 
one needs higher order corrections. Accidental node line present in the exact method does 
not appear in the first order perturbation method. Further investigation should show if e.g. 
band topology cause these lines to always appear in four groups from Damljanović and 
Gajić (2017).

In addition, we have pointed out that in the literature there have already been reported 
numerically stable 3D structures, which consist of weakly interacting layers belonging to 
Dg5. Closer ab initio electronic band structure investigations of single layers of these struc-
tures, could give more insight into the particular types of semi-Dirac dispersion that are 
expected to appear.
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Abstract Volume diffraction gratings were created holographically on a dichromated 
pullulan (polysaccharide doped with chromium). Specific and very rare multi-peak struc-
ture in the reflection spectra is observed. It was found that multiple peaks are consequence 
of non-ideal structure of volume diffraction grating. Theoretical analysis and numerical 
simulations confirm that the observed behavior arise from a slight randomness of grating 
parameters: refractive index, grating period, film thickness. The results of calculation are in 
agreement with experimental results.

Keywords Holographic diffraction grating · Reflection spectra · Bifurcation · 
Polysaccharide

1 Introduction

Reflection volume hologram gratings, fabricated using a single-beam method, usually 
have only one Bragg peak in the spectrum. Wang et  al. (2006) noted the appearance 
of multiple peaks in the spectrum of volume diffraction grating recorded in dichro-
mated gelatin, phenomenon that looks like bifurcation within the Bragg plateau. We 
also observed bifurcation phenomena in the reflection spectrum of diffraction gratings 
recorded in dichromated pullulan (DCP), which is a polysaccharide doped with chro-
mium. Compared to dichromated gelatin, the DCP material is simpler to prepare and 
process, it is weakly sensitive to humidity, thus retaining high resolution and diffraction 
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efficiency (Pantelic et al. 1998; Savic et al. 2002; Savic-Ševic and Pantelic 2007). The 
typical number of peaks in the spectrum is between two and four. We have extended the 
research presented in (Wang et al. 2006) by taking into account that the grating param-
eters depend also on x, y coordinates.

In order to understand multi-peak structure of diffraction gratings, experimental results 
were compared with theory. The corresponding model investigates effects of several impor-
tant parameters: absorption of radiation within the photosensitive layer, non-uniform thick-
ness of layers, refractive index modulation and non-uniform spatial period of the grating. 
Reflection spectra of volume Bragg gratings were calculated using method of characteristic 
matrix (Born and Wolf 1980). Our model suggests that multi peak structures are produced 
by uneven modulation of Bragg layers inside the volume hologram. The results of calcu-
lation are in agreement with experimental results. Such behavior of reflection spectra is 
important for effect of broadening bandgaps of photonic crystals. Understanding mecha-
nism of their formations and appearance can help us to establish standard procedure for 
fabrications of such spatially non uniform volume gratings.

2  Fabrication and optical characterization of volume holographic 
gratings

The results presented below were obtained by the following preparation procedure for 
DCP. Holographic photosensitive material was prepared by mixing 10% aqueous solution 
of pullulan (from Sigma–Aldrich) and 10% of the ammonium dichromate. DCP solution 
was stirred and warmed to 50 °C to achieve homogeneity. The solution was coated onto a 
thoroughly cleaned glass slides placed on the flat horizontal surface. Film was dried over-
night under normal laboratory conditions. The thicknesses of the dried layers, was 14 μm.

The experimental setup is shown in Fig.  1. Periodic structures in a DCP were fabri-
cated using a single-beam method schematically shown in Fig.  1a. Hologram recording 
was achieved by exposing DCP to a single longitudinal mode, diode pumped Nd-YAG laser 
(Verdi) at 532 nm. The laser beam was expanded and pullulan layer was exposed at normal 
incidence with 200 mW/cm2 of optical power, for 120 s. After propagation through emul-
sion, the beam was reflected back from a mirror behind the holographic plate. The two 
counter-propagating beams interfere, creating a standing wave pattern within an emulsion.

Plates were chemically processed, after the exposure. Processing involves washing 
the plates in a mixture of water and isopropyl alcohol (3:1 ratio) for 120 s, and drying 
for 60 s in pure isopropyl alcohol. Periodic structure formed below the surface during 
the processing is revealed in cross-sectional view of the DCP grating, Fig. 2.

To measure reflection, and transmission spectra, of the DCP, light from the halogen 
lamp was collimated and directed onto the DCP plate using set-ups given in Fig. 1b, c, 
respectively. Spectra were measured using fiber type spectrometer (Ocean Optics).

The photonic structure obtained under usual experimental conditions looks uniform, 
as in Fig. 3a. However, magnified part of the same sample shows that the structure is not 
ideally uniform across the layer of the DCP, Fig. 3b. In Fig. 3c we show several trans-
mission spectra of the same DCP grating. Spectra were measured using the microscope 
attached to the spectrometer, as schematically presented in Fig. 1c. Transmission spec-
tra were measured at several positions and each spectrum corresponds to area which is 
approximately 50 μm in diameter, with 1 mm distance between two adjacent areas.



Bifurcation in reflection spectra of holographic diffraction…

1 3

Page 3 of 7  195 

Fig. 1  Experimental setup for a 
generating holographic diffrac-
tion gratings in DCP; and for 
measuring reflection and trans-
mission spectra b macroscopi-
cally; and c microscopically

Fig. 2  SEM picture of the cross 
- section of DCP volume diffrac-
tion grating
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3  Numerical simulations

We have calculated reflection spectra of a volume Bragg gratings by the method of character-
istic matrix (Born and Wolf 1980). First, we approximated the refractive index variation along 
the direction perpendicular to the DCP surface, with a function whose mathematical expres-
sion is as follows (Wang et al. 2006, 2008; Liu and Zhou 1994):

Graphical presentation of the function is given in Fig.  4. As can be seen from Eq.  (1), 
z-dependence of the refractive index n(z) incorporates three terms. The first one is the average 
refractive index of the material n0, indicated by the dashed line in Fig. 4.

The second term describes the effects of attenuation of two counter-propagating beams 
leading to global variation of the refractive index Δn1 (described by hyperbolic cosine). The 
last term describes a sinusoidal modulation (with amplitude Δn2) of the index of refraction. 
Additional parameters are: αg—absorption coefficient, T—the material thickness, Λ—grating 
period, N—the number of grating layers. We assume that the grating period is not constant, 
due to uneven expansion of the material during processing. Instead, each period of the grating 
(defined by parameter j; 1 ≤ j ≤ N) is slightly changed, as defined by random variable Mj:

(1)

n(z) = n0 + Δn1 exp(−�gT)ch

{

�g

[

(N − j + 1)� −
z

Mj

]}

+ Δn2 exp(−�gT) cos

(

2� × z

� × Mj

)

(2)Mj = 1.262 −
0.26

N − 1
j +

Rj

45

Fig. 3  a Image of the DCP sample, the scale bar is 5 mm; b zoomed part of the image a obtained using 
×40 objectives, and microscopic set-up shown in Fig. 1c. The scale bar is 10 μm; c transmission spectra 
obtained from different areas (each of diameter of 50 μm) of the DCP sample, with 1 mm distance between 
two adjacent areas

Fig. 4  Refractive index variation 
of a Bragg grating recorded in 
DCP, used in theoretical calcula-
tions
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where Rj is a random number with Gaussian statistics, zero mean value and the standard 
deviation of 1.5. Variation of the layer thickness is small, however, consequences on opti-
cal properties are significant, leading to the band gap broadening.

With the above assumptions, the method of characteristic matrix produces rapidly oscil-
lating spectra. This is different from experimentally recorded smooth spectra. Therefore, 
we had to modify the theoretical model. In previous research (Wang et al. 2006), it was 
assumed that grating parameters vary only along z-axis (i.e. depth of material). As we have 
found from microscope images (Fig. 3b, c) transmission or reflection spectra depend on the 
location on the material surface (x and y coordinates). This means that the grating param-
eters depend on x, y coordinates too. The resulting spectrum (as measured by any finite 
aperture optical device) is an average value of many spectra integrated along the aperture.

Therefore, we introduced an additional random factor rk,j into Eq. (2):

here rk,j is also Gaussian random number with mean value 0 and standard deviation of 1.5. 
The meaning of other parameters is the same as in Eq. (2).

First we use Eq.  (2) to calculate spectrum by the characteristic matrix method. This 
calculation is repeated several times giving typically reflection spectra with 2, 3 and 
4 peaks. The following values for parameters were used: n0= 1.45, Λ = 184  nm, N = 78, 
Δn1 exp(−�gT) = Δn2 exp(−�gT) = 0.08 , T = 14  µm, and �g = 0.02(μm)−1 (measured 
value). Then we fixed Rj and generate arrays rk,j where k is from 1 to 15 and j from 1 to 
78. These way k different spectra were calculated and the result is obtained by averaging 
individual spectra.

The results of the model given in (Wang et al. 2006) show that appearance of multi peak 
band gap can be due to uneven spatial modulation of interference pattern recorded inside 
the material. There are two reasons for uneven modulation, irregular swelling of material 
during processing, and attenuation of radiation inside the emulsion.

The results of our calculations are shown in Fig. 5. We can see that for different vari-
ations of layer thickness after processing, different number of peaks appear. Since differ-
ences in the variations in the layer thickness are exclusively due to presence of random 
parameter with Gaussian distribution, we can assign appearance of peaks to this parameter, 
which is in agreement with (Wang et al. 2006).

Results presented in the upper row in Fig. 5, calculated assuming that thickness of lay-
ers varies (middle row) according to Eq.  (2), contain noise-like, rapidly oscillating part. 
The bottom row in Fig. 5 presents resulting spectra obtained by lateral averaging defined 
by Eq. (3). Averaging over spectrums from several neighboring points eliminates rapidly 
oscillating part. In the bottom row of Fig. 5 we compare reflection spectra obtained experi-
mentally using set-up shown in Fig. 1b (black dotted curves) and by numerical simulation 
(red solid curves). The results of calculation are in agreement with experimental results.

4  Discussion of fabrication of structured band gaps in DCP

Structured reflection spectra under the usual chemical processing are very rare [0.5% prob-
ability (Wang et  al. 2006)]. In order to investigate how special techniques in processing 
volume holograms lead to more frequent appearance of structured reflection spectra, we 
prepared 250 samples of DCP photonic crystals with different concentration of ammonium 

(3)Mj → Mj +
rk,j

45
= 1.262 −

0.26

N − 1
j +

Rj

45
+

rk,j

45
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dichromate (from 10 to 50% by weight of pullulan), different thickness of DCP (6–30 μm) 
and use various chemical processing. Samples were developed in mixture of water and iso-
propyl alcohol. We noticed that probability of obtaining multi peak and wider band gap 
photonic crystals is higher (although by only a few percent), by increasing the water to 
isopropyl ratio. If water to isopropyl ratio is 3:1 or more, analysis of our samples shows 
that probability of obtaining two peak photonic crystals is about 10 and 1.5% for three or 
more peaks.

5  Conclusions

In this paper we investigated bifurcation in the reflection spectra of the holographic DCP 
gratings. Volume holograms in DCP were made using simple, single-beam holographic 
technique. Although these types of diffraction spectra of volume hologram are usually 
rare, there are exact ways to increase the frequency of appearance of multi peak structure 
by using certain techniques in processing of DCP, as described in Sect. 2. Our simulation 
model suggests that multi peak structures are produced by uneven modulation of interfer-
ence pattern inside the volume hologram. In addition, smoothness of reflectivity function is 
due to the difference in layer thickness in neighboring regions of the grating.

Fig. 5  Calculated reflection spectra of photonic structures in DCP showing multiple peaks as result of the 
layer thickness variation (upper row). Layer thickness variation (middle row). Averaged results taking into 
account the different thickness variation of layers in adjacent lateral regions of the film (red solid curve) and 
reflection spectra obtained experimentally (black dotted curve) using set-up shown in Fig. 1b (bottom row). 
(Color figure online)



Bifurcation in reflection spectra of holographic diffraction…

1 3

Page 7 of 7  195 

Acknowledgements This work was funded by the Ministry of Education, Science and Technological 
Development of the Republic of Serbia, under Grants Number OI 171038 and III 45016.

References

Born, M., Wolf, E.: Priciples of Optics. Pergamon, New York (1980)
Liu, D., Zhou, J.: Nonlinear analysis for a reflection hologram. Opt. Commun. 107, 471–479 (1994)
Pantelić, D., Savić, S., Jakovljević, D.: Dichromated pullulan as a novel photosensitive holographic material. 

Opt. Lett. 23, 807–809 (1998)
Savić, S., Pantelić, D., Jakovljević, D.: Real-time and postprocessing holographic effects in dichromated 

pullulan. Appl. Opt. 41, 4484–4488 (2002)
Savić-Šević, S., Pantelić, D.: Dichromated pullulan diffraction gratings: influence of environmental condi-

tions and storage time on their properties. Appl. Opt. 46, 287–291 (2007)
Wang, Z., Liu, D., Zhou, J.: Investigation of a peculiar bifurcation phenomenon in diffraction spectra of vol-

ume holograms. Opt. Lett. 31, 3270–3272 (2006)
Wang, Z., Zhai, T., Zhao, R., Liu, D.: The influence of asymmetric expansion properties and random fluc-

tuation on the bandwidth of a hologram. J. Opt. A Pure Appl. Opt. 10, 085205 (2008)





NN20 Book of Abstracts 

8 

 

 

WS2-Computational 

 

  

16:30-16:45 KEYNOTE (L) 

M. Damnjanovic, University of Belgrade, Serbia  

Topological phases of layers: elementary band representations 
16:45-17:00 

17:00-17:15 INVITED (L) 

V. Damljanović, University of Belgrade, Serbia 

Electronic Dispersions in Two- and Three-Dimensional Single Crystals FromSymmetry Point of 

View 

17:15-17:30 

17:30-17:45 INVITED (L) 

I. Miloević, University of Belgrade, Serbia 

Electronic-band topology of group VI layered transition metal dichalcogenides 
17:45-18:00 

18:00-18:15 INVITED (V) 

M. Zacharias, Cyprus University of Technology, Cyprus 

Temperature dependence of the optical properties of silicon nanocrystals 
18:15-18:30 

18:30-18:45 E. Antoniou Aristotle University of Thessaloniki, Greece (V) 

Ab Initio Computational Investigation of Structure & Magnetic Properties 

of SmCo5-XNiX Intermetallic Compounds 

18:45-19:00 Ronald Columbié-Leyva, Instituto de Investigación en Materiales, UNAM, México. (V) 

Theoretical studies of high-Tc Fe-superconductors based on BaFe2As2 in presence of dopants 

Rh and Pd. 

19:00-19:15 C. Simserides, National and Kapodistrian University of Athens, Greece (V) 

Hole transfer in cumulenic and polyynic carbynes 

19:15-19:30 M. Witkowski , University of Warsaw, Poland (V) 

DFT modeling of SERS spectra of dipeptides: A comprehensive study of vibrational structure for 

Cys-Trp and Trp-Cys adsorbed on Au and Ag 



NN20 Book of Abstracts 

9 

 

Topological phases of layers: elementary band representations 
M. Damnjanovic1 

NanoLab, Faculty of Physics, University of Belgrade Studentski trg 12, 11000 Belgrade, Serbia 

 

 Research of topological phases is probably the main stream of condensed matter physics. In brief, Bloch theory 

transforms band structure of the hamiltonian spectrum into the fibre bundle over Brillouin zone (BZ), in this way 

enabling topological characterization of such bundles. Extensive work is performed within differential-geometric 

framework: Berry phase and derived notions (connection, curvature and Wilson loop e.g.), are used to find 

topological invariants like winding and Chern numbers. However, 30 years ago Mischel and Zak, pathed the 

symmetry based combinatorial way to classify band structures. Reconsidered recently, these results are firmly 

related to topological phases of crystals. This purely algebraic method considers graphs graphs imposed by 

symmetry. The first one is graph of Brillouin zone: as a contractible manifold, each stratum of k-vectors with 

equivalent (conjugated) stabilizers is a vertex of the graph, while (oriented) edges connect neighbouring strata. 

Bands are made of patches over strata, each corresponding to specific allowed irreducible representation (IR) 

associated to the stratum. Contraction of BZ to graph, causes simultaneous contraction of the band patches, and 

the whole band structure becomes IR-graph: vertices are IRs, while edges represent connected patches. These 

edges are subdued to compatibility relations, or better, they depict them. Therefore, having BZ-graph, and 

compatibility relations (the both are directly and fully symmetry-determined), all possible IR-graphs are found in a 

combinatorial manner. This procedure is implemented in POLSym code, and applied to all layer groups (single and 

double, with or without time reversal). The results are presented, together with various analyses. For example, the 

disconnected graphs are looked for, as pointing out topologically non-trivial phases. Also, selected are band 

structures with special subgraphs which indicate possible atomic limits. 

 

Electronic Dispersions in Two- and Three-Dimensional Single Crystals From Symmetry 

Point of View 
V. Damljanović1 

Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade, Serbia 

 

In spatially periodic atomic arrangements, the electronic energy depends on the wave vector and forms a band 

structure. The form of a band in the vicinity of some point in the Brillouin zone is called the electronic dispersion 

and determines many physical properties of a material. Examples of electronic dispersions are Dirac (e.g. in 

graphene), semi-Dirac (e.g. in black phosphorus) and quadratic (e.g. in MoS2). On the other hand, every crystal 

periodic in two (three) directions belongs to one of 80 layer- (230 space-) groups. Here we present deep connection 

between the crystal symmetry and the types of electronic dispersions present in the crystal. Our contribution is 

based on works published for two- [1-3] and three-dimensional [4-7] single crystals. We show that new and 

unexpected types of dispersions often appear as a consequence of crystal symmetry. This may be the clue for 

discovery of new materials with interesting physical properties. 
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Topological quantum chemistry for quasi-one-dimensional systems with either 

translational or helical periodicity

Faculty of Physics, University of Belgrade, Studentski trg 12, Belgrade, Serbia

Abstract: 

By linking symmetry with combinatorial graph theory, topological quantum chemistry [1], in terms of elemen-

tary band representations (EBRs), gives universal description of electronic band structure topology of short-range en-

tangled matter. 

Here, derived are complete sets of nonequivalent (physical) EBRs, for symmetry groups of quasi-one-dimen-

sional systems with either translational or helical periodicity. Apart from the system configuration symmetry described 

by  line groups (LGs), considered also is the additional symmetry of  time-reversal  (grey-LGs) and  the symmetry origi-

nating from spin degree of freedom (double-LGs and double-grey-LGs) [2,3]. The results obtained are complete and 

exhaustive, thus enabling thorough algorithmic search for topological compounds across the one-dimensional matter. 

As an illustration, a topological mirror chain model is considered. 

[1]  B. Bradlyn et al.,  Nature 547 (2017) 298

et al., J. Phys. A 53 (2020) 455204

et al., J. Phys. A (2022) 

Linear dispersions in low-dimensional structures: the role of crystalline 

symmetries, time reversal, and spin-orbit coupling
N. 1, V. 2, M. 3, …

1 NanoLab, Faculty of Physics, University of Belgrade, Studentski trg 12, 11001 Belgrade, Serbia
2 Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

3 Serbian Academy of Sciences and Arts, Kneza Mihaila St. 35, 11000 Belgrade, Serbia

Abstract: Crystalline symmetry imposes requirements on the band structure of material, which have consequences in 

the band topology. Besides gapped topological insulators, lattice symmetries are also important in describing gapless 

semi-metallic phases. They are characterized by band crossings on the Fermi level, and particularly interesting are those 

with linear energy-momentum dependence. Here, we study symmetry-enforced semi-metallic layered materials with 

dispersions linear in all directions around crossings hosted by high-symmetry Brillouin zone points. In particular, single 

and double, ordinary and grey layer groups are used to achieve the complete systematization of such fully linear band 

crossings and corresponding effective Hamiltonians. The resulting dispersion shapes are: single cone (with double de-

generate crossing point and non-degenerate branches, or 4-fold degenerate crossing point with double degenerate 

conical branches), poppy-flower (4-fold degenerate crossing point with two pairs of non-degenerate mutually rotated 

conical branches), and a fortune teller (with nodal lines). Inclusion of spin-orbit interaction is analysed through the 

transition from single to double group; this results in interesting patterns at high symmetry points such as: gap closing, 

gap opening, cone preserving, cone splitting etc. Similarly, the role of time reversal symmetry is clarified through the 

ordinary to grey group transit
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Full classification of linear dispersions in two-dimensional materials 

1 2,3 2 

(1) Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia 

(2) NanoLab, Faculty of Physics, University of Belgrade, Studentski Trg12, 11001 Belgrade, Serbia 

(3) Serbian Academy of Sciences and Arts, Kneza Mihaila St. 35, 11000 Belgrade, Serbia 

Contact: damlja@ipb.ac.rs) 

Abstract. We present group-theoretical classification [1] of all possible dispersions, which 

are linear in all directions, in the vicinity of high-symmetry Brillouin zone points, in non-

magnetic layered materials. Both spinless and spinfull cases in the presence and in the absence 

of time-reversal symmetry are covered. We found that only three types of such dispersions are 

possible: Dirac, fortune teller and poppy flower. Low energy effective Hamiltonians are also 

presented. Special attention will be given to some recently published results not supported by 

our theory [2-5]. 
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An example of two-dimensional crystal structure with semi-Dirac electronic 

dispersion  
 

V. Damljanović1 and R. Gajić2  
1Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia 

2Graphene Laboratory (GLAB) of Center for Solid State Physics and New Materials, Institute of Physics, University of 

Belgrade, Pregrevica 118, Belgrade, 11080, Serbia 

e-mail: damlja@ipb.ac.rs 

 

 

In nanophysics, notion “semi-Dirac dispersion” denotes an electronic dispersion which is Dirac-like along 

certain direction in two-dimensional Brillouin zone (BZ) and quadratic along the orthogonal direction. Semi-

Dirac materials are in the focus of research lately due to their intriguing physical properties. These include 

anisotropic Klein tunneling, characteristic response to magnetic field and peculiar photoresponse to circularly 

polarized light. To help search for new materials with the semi-Dirac cones, we have recently formulated a set 

of group-theoretical conditions that allow such dispersion and have provided the list of symmetry groups 

satisfying them [1]. In present contribution we have considered a tight-binding model on a structure that 

belongs to diperiodic (layer) group p11b (Dg5). This group belongs to our list [1] and should host the semi-

Dirac cones in the vicinity of A and B points in the BZ. We have calculated electronic dispersion in the 

vicinity of these points. Obtained dispersion is of a semi-Dirac type thus confirming our theory. Here we also 

discuss other possible candidates for two-dimensional semi-Dirac materials by search Materials project 

database with particular attention to layered structures published in [2]. 
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Bifurcation in reflection spectra of holographic pullulan diffraction grating  
 

S. Savić-Šević, D. Pantelić, V. Damljanović and B. Jelenković 

Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia  

e-mail:savic@ipb.ac.rs 

 

Reflection volume hologram gratings, fabricated using a single-beam method, usually have only one Bragg 

peak in the spectrum. Z. Wang et al. [1]noted the appearance of multiple peaks in the spectrum of volume 

diffraction grating recorded in dichromated gelatin, phenomenon that looks like bifurcation within the Bragg 

plateau. We also observed bifurcation phenomenain the spectrum of diffraction gratings recorded in 

dichromated pullulan (DCP), which is a polysaccharide doped with chromium. Compared to dichromated 

gelatin, the DCP material is simpler to prepare and process, it is insensitive to humidity, thusretaining high 

resolution and diffraction efficiency [2]. The typical number of appeared peaks in the spectrum is two, three, 

or four. It was found that a multi-peak phenomenon isaccompanied by wider band gap.  

 

In order to understand multi-peak structure of band gaps, experimental results were compared with 

theoretically predicted results. The theoretical model investigates effects of several important parameters: 

absorption of radiation within the photosensitive layer, non-uniform thickness of the layer, refractive index 

modulation and non-uniform spatial period of the grating. Numerical reflection spectra of volume Bragg 

gratings have been calculated by the method of characteristic matrix [3]. Our model suggests that multi peak 

structures are produced by uneven modulation of Bragg layersinside the volume hologram. The results of 

calculation are in agreement with experimental results.  
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Abstract: Magnesium diboride gained significant interest in the materials science community after the
discovery of its superconductivity, with an unusually high critical temperature of 39 K. Many aspects
of the electronic properties and superconductivity of bulk MgB2 and thin sheets of MgB2 have
been determined; however, a single layer of MgB2 has not yet been fully theoretically investigated.
Here, we present a detailed study of the structural, electronic, vibrational, and elastic properties of
monolayer MgB2, based on ab initio methods. First-principles calculations reveal the importance of
reduction of dimensionality on the properties of MgB2 and thoroughly describe the properties of this
novel 2D material. The presence of a negative Poisson ratio, higher density of states at the Fermi
level, and a good dynamic stability under strain make the MgB2 monolayer a prominent material,
both for fundamental research and application studies.

Keywords: magnesium diboride; 2D materials; density functional theory

PACS: 71.15.Mb; 74.70.Ad

1. INTRODUCTION

Magnesium diboride was first synthesized and had its structure confirmed in 1953 [1]. An interest
in its properties has grown ever since 2001, when it was discovered that MgB2 exhibits the highest
superconducting transition temperature Tc of all metallic superconductors. It is an inter-metallic s-wave
compound superconductor with a quasi-two dimensional character [2] and a critical temperature of
superconductive transition at Tc = 39 K. The experimental confirmation of the isotope effect [3] in
MgB2 indicated that it is a phonon-mediated BCS superconductor. A better definition would describe
MgB2 as self-doped semimetal with a crucial σ-bonding band that is nearly filled [4]. The basic aspects
of the electronic structure and pairing is in a rather strong coupling of high frequency boron–boron
stretch modes to the bonding electronic boron–boron states at the Fermi surface. The phonon-mediated
mechanism with different coupling strengths between a particular phonon mode and selected electronic
bands, boron σ- and π-bands [5–13], results in the presence of two superconducting gaps at the Fermi
level. MgB2 has already been fabricated in bulk, as single crystals, and as a thin film, and shows
potential for practical applications.
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The discovery of graphene in 2004 [14] sparked an interest in 2D materials and their properties.
A variety of new properties, which distinguished graphene from graphite [14–22], inspired a search
for other low-dimensional limits of layered materials and possibilities they offered. Interest in a
low-dimensional limit of MgB2 has arisen in past years, showing that it is superconductive even in a
monolayer [23,24].

MgB2 has a distinct layer structure, where boron atoms form a honeycomb layer and
magnesium atoms are located above the center of the hexagons, between every boron plane.
The boron layers alternate with a triangular lattice of magnesium layers. There is a noticeable
structural similarity of MgB2 to graphite-intercalated compounds (GICs), some of which also exhibit
superconductivity [25–29]. Both monolayer and two-layer graphene, decorated/intercalated with
atoms of alkali and alkaline earth metals, exhibit superconductivity and have been thoroughly studied
using ab initio methods and isotropic and anisotropic Eliashberg theory [30–32].

Furthermore, a similarity in the electronic structure between GICs and MgB2 exists. The peculiar
and unique property of MgB2 is a consequence of the incomplete filling of two σ bands corresponding
to strongly covalent sp2-hybrid bonding within the graphite-like boron layers [33].

Here, we present a comprehensive study of the electronic, vibrational, and mechanical properties
of MgB2 using ab initio methods, in order to provide its detail description.

2. Computational Details

MgB2 has a hexagonal unit cell and consists of graphite-like B2 layers stacked with the Mg atoms
in between, as shown in Figure 1. The first-principles calculations were performed within the density
functional theory (DFT) formalism, using a general gradient approximation (GGA) to calculate the
electronic structure. For all electronic and phonon structure, the Quantum Espresso software package
[34] was used with ultra-soft pseudopotentials and a plane-wave cutoff energy of 30 Ry. All calculated
structures are relaxed to their minimum energy configuration, following the internal force on atoms
and stress tensor of the unit cell. We used the Monkhorst-Pack 48× 48× 48 and 40× 40× 1 k-meshes,
for the calculations of the electronic structure of the MgB2 bulk and MgB2 monolayer, respectively.
The phonon frequencies are calculated using Density Functional Perturbation Theory (DPFT) on
the 12× 12× 12 and 20× 20× 1 phonon wave vector mesh for the bulk and monolayer structures,
respectively. In two-dimensional systems, the van der Waals (vdW) interaction was found to play
an important role on the electronic structure [35]; however, as this is study on monolayer MgB2, we
do not treat vdW interactions, especially since, in this case, the effects are minor and including them
would add additional computational costs but would not yield more accurate results.

Figure 1. Crystal structure of the MgB2 monolayer (a) and bulk MgB2 (b), with a hexagonal unit cell.
Green (orange) spheres represent Boron (Magnesium) atoms. Color online.

The crystal structure of MgB2 and the MgB2 monolayer are presented in Figure 1. The lattice
parameters for the bulk MgB2 are in agreement with the experimental results, a = 3.083 Å and
c/a = 1.142 [9]. In order to avoid an interlayer interaction due to the periodicity and to simulate a 2D
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material, an artificial vacuum layer was set to be 25 Å. When the monolayer is modelled, the structure
is geometrically optimized, allowing the atoms to reach a minimum potential energy state. The bond
length between neighbouring atoms remained to be 1.78 Å, but the distance from the boron layer to
the Mg atoms changed from h = 1.76 Å to h = 1.60 Å.

For the molecular dynamics (MD) study, the Siesta code was utilized [36]. The super-cell is
built by repeating the unit cell three times in both in-plane directions, whereas the lattice vector
in the perpendicular direction is 15 Å, providing a large enough vacuum space between the 2D
material and its periodic replica in order to avoid their mutual interaction. The lattice parameters
and the geometry of the unit cell are initially optimized using the conjugate gradient method. The
Perdew-Burke-Ernzerhof form of the exchange-correlation functional [37], the double-zeta polarized
basis set, and the Troulier-Martins pseudopotentials [38] were used in all MD calculations.

The second-order elastic constants were calculated using the ElaStic software package [39]. First,
the direction is projected from the strain tensor and total energies for each deformation are calculated.
Elastic constants are then calculated using the second derivatives of the energy curves, dependent on
the parameter η. In our calculations, the maximum positive and negative amplitudes of 5% Lagrangian
strain were applied, with a step of 0.1%.

For the 2D square, rectangular, or hexagonal lattices, the non-zero second-order elastic constants,
in Voigt notation, are c11, c22, c12, and c66. Due to symmetry, in hexagonal structures c11 = c22 and
c66 = 1

2 (c11 − c12); so, we have 2 independent elastic constants. The layer modulus, which represents
the resistance of a 2D material to stretching, is given as

γ =
1
4
(c11 + c22 + 2c12).

The 2D Young modulus Y for strains in the (10) and (01) directions, Poisson’s ratio ν and the shear
modulus G are obtained from the following relations,

Y =
c2

11 − c2
12

c11
, ν =

c12

c22
, G = c66.

Units for elastic constants and those parameters are N/m.

3. Results and Discussion

In order to determine the stability of a single layer of MgB2, we perform MD simulations based on
DFT and the super-cell approach. Besides the system with optimized (pristine) lattice parameters, we
also consider a biaxially stretched system (up to 3% of tensile strain) and biaxially compressed system
(up to 5% of compressive strain). The MD simulations are conducted in the range of temperatures
between 50–300 K, with a step of 50 K, using the Nosé–Hoover thermostat [40].

Figure 2a shows the average distance between Mg and B atomic layers, as evolved over a time of
1 ps. Throughout the simulation time, there is no further evolution of the z-coordinate and the Mg
atom shows only oscillatory movement around the equilibrium positions (as is shown in Figure 2)
Importantly, the separation indicates that the Mg atoms do not leave the surface of the MgB2 crystal.
The plane in which the Mg atoms reside shifts away from the plane of the B atoms on average by
0.09 Å in a compressed crystal, while the distance between the planes decreases on average by 0.42 Å
in the stretched system. This (relatively larger) shift in the latter case can be understood by analysing
the details of the MgB2 atomic structure. When the crystal is biaxially stretched, its Mg–B bond lengths
increase, which is partially compensated by the nesting of the Mg atoms in the hollow sites closer to
the B sublattice. Despite these atomic shifts, the MD simulations show the structural stability of the
system. The stability from the MD simulations can be further quantitatively derived from the global
Lindemann index, the dependence of which on temperature is shown in Figure 2b. It is calculated
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for the pristine crystal, with a compressive strain of 5% and a tensile strain of 3%, from the local
Lindemann indices, given by the formula

qi =
1

N − 1 ∑
j 6=i

√
〈r2

ij〉 − 〈rij〉2

〈rij〉
,

by averaging over all atoms. Here qi is the local Lindemann index of atom i, N is number of atoms, rij
is a separation between atoms i and j, and the angle brackets denote averaging over time (i.e., MD
steps) [41]. The linear behaviour of the Lindemann indices indicate that systems are stable, at least up
to room temperature.

（a）

（b）

Figure 2. (a): Average distance between the Mg and B atomic layers; and (b): the dependence of the
global Lindemann index as a function of temperature.

The calculated second-order elastic constants and other structural parameters for monolayer
MgB2 are given in Table 1. All elastic constants related to the bulk material (those that have 3, 4, or 5 in
their subscripts), are calculated close to zero, as is expected for the monolayer. Compared to similar
2D materials, the layer modulus of MgB2 of 30.18 N/m is relatively small (in the range of Silicene and
Germanene), roughly five times smaller than that of graphene or h–BN, for example [42,43]. Similar
results are obtained for the Young modulus. Compared to borophene (two-dimensional boron sheets
with rectangular structures) [44], which is a hard and brittle 2D material that exhibits an extremely
large Young’s modulus of 398 N/m along the a direction [45], the MgB2 monolayer has a significantly
smaller value of 63.29 N/m. The most interesting observation in the elastic properties of the MgB2
monolayer is that the c12 constant is negative, which gives a negative Poisson ratio in the a and b
directions, too—although, with a very small negative value of −0.05. However, compared to 2D
borophene, which has an out-of-plane negative Poisson’s ratio (that effectively holds the strong boron
bonds lying along the a direction and makes the boron sheet show superior mechanical flexibility
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along the b direction [46]), we obtain similar values [45]. For comparison, graphene has a Young
modulus of 352.2 N/m and a Poisson ratio of 0.185 [42]. After confirming its stability and determining
the elastic properties of the MgB2 monolayer, we study its electronic properties. In Figure 3, the
electronic structures of bulk MgB2 and the MgB2 monolayer are presented. The band structures for
the bulk along the high-symmetry points Γ-K-M-Γ-A-L, and for the monolayer along Γ-K-M-Γ were
calculated. The Fermi level is set to zero. The band structure of the bulk is in full agreement with
previous studies [10,47–49]. The two bands crossing the Fermi level play a crucial role in the electronic
properties of MgB2. The density of the states around E f are predominantly related to the B atoms
and their p-orbitals, whereas the Mg atom contribution is negligible in this region. Previous studies
described Mg as fully ionized and showed that the electrons donated to the system are not localized
on the anion but, rather, are distributed over the whole crystal [6]. A similarity to graphite can be
observed, with three σ bands, corresponding to the in-plane spx py (sp2) hybridization in the boron
layer and two π-bands of boron pz orbitals [33]. Boron px(y) and pz orbitals contribute as σ and π states.
Analysing projected DOS, one concludes that the σ states are considerably involved in the total density
of states at the Fermi level, while the π states have only a partial contribution. It is worth emphasizing
that the bulk bands of this material at the K-point above the Fermi level present a formation similar to
the Dirac cones in graphene.

In the monolayer, there is an increase in the total density of states at the Fermi level from N(E f )bulk
= 0.72 states/eV to N(E f )mono = 0.97 states/eV. In the same manner as in the bulk, the monolayer
Mg atoms negligibly contribute to the density of states at the Fermi level, and the main contribution
comes from the B p-orbitals. The characteristic Dirac cone-like structure is still present and closer to
the Fermi level. Dg77, as the symmetry group of the MgB2 monolayer, hosts a Dirac-like dispersion in
the vicinity of the K-point in the hexagonal Brillouin zone, if the orbital wave functions belong to the
2D representation E of the C3v point group of the wave vector [50,51]. In the tight-binding case, the
px and py orbitals of two boron ions give rise to one E-representation (and to two one-dimensional
representations), while the s-orbitals form a basis for one E-representation and pz-orbitals form a basis
for one E-representation as well. This explains the presence of the Dirac cones at the K-point in the
band structure of the MgB2 monolayer (as shown in Figure 3b).

Figure 3. The electronic band structure and total density of states in bulk MgB2 (a) and the MgB2

monolayer (b). The blue and red colors represent the B and Mg atoms contributions to the electronic
dispersion, respectively.

Table 1. The calculated elastic stiffness constants, layer modulus γ, Young’s modulus Y, Poisson’s ratio
ν, and shear modulus G for the MgB2 monolayer. All parameters are in units of N/m.

c11 c12 c66 γ Y ν G

63.4 −3.1 33.3 30.18 63.29 −0.05 33.3

Figure 4 shows the phonon dispersions for both the bulk and monolayer. For the bulk
(in Figure 4a), there are four optical modes at the Γ point. Due to the light atomic mass of the B
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atoms and the strong B–B coupling, the two high-frequency modes almost have a pure boron character.
The in-plane stretching mode E2g and the out-of-plane mode (where the atoms move in opposite
directions B1g) are the boron atom modes. E2g is a doubly-degenerate Raman active mode and
experimental studies [6,9] showed that this mode is very sensitive to structural changes and it has a
strong electron-phonon coupling. The low-frequency modes (A2u) and double degenerate (E1u) are
infrared active and they do not involve changes on in-plane bonds. In Figure 4b, the phonon dispersion
of the MgB2 monolayer is presented. In the phonon spectrum there are no imaginary frequencies,
which confirms, once again, the dynamical stability of the system (also demonstrated earlier by the
MD calculations).

Figure 4. The phonon dispersion and the phonon density of states for the MgB2 bulk (a) and
monolayer (b). The blue and red colours represent the B and Mg atom contributions in the phonon
dispersion, respectively.

At the Γ point, there are three acoustic and six optical modes (from which two pairs are doubly
degenerate). The optical modes A1, B1, E1, and E2 are related to the optical modes of the parent material.
Two significant differences between the bulk and monolayer spectrum can be observed: The E1 and A1

mode become energy degenerate in the monolayer, resulting in either a slight softening (hardening)
of the modes which leads to nearly equal frequencies, which opens a gap in the phonon density of
states (DOS) between the acoustic and optical modes. A more significant effect concerns the softening
of the B1 mode and hardening of the E2 mode. As in the bulk E2g mode, the monolayer E2 mode is
strongly coupled to electrons, causing the superconductivity in the monolayer in a similar fashion as
in the bulk. In Figure 5, the vibrational frequencies and normal coordinates for the MgB2 monolayer
are presented. The symmetry group is C6v, and the acoustic modes are A1 and E1. The optical modes
at the Γ point are A1, B1, E1, and E2, where the infrared-active ones are A1 and E1. The Raman-active
modes are A1, E1, and E2, and B1 is silent. In Table 2, the Raman tensor for the MgB2 monolayer is
presented [52]. Similar to graphene, the phonon eigenvectors and the normal coordinates at the Γ-point
are determined by symmetry rules and, therefore, are a model independent.

Table 2. Raman tensor of the MgB2 monolayer.

Raman Tensors

MgB2-mono
Dg77 = TC6v

Oz ||C6
Ox || σv

A1 a 0 0
0 a 0
0 0 b


E1 0 0 c

0 0 0
c 0 0

 0 0 0
0 0 c
0 c 0


E2 d 0 0

0 −d 0
0 0 0

 0 −d 0
−d 0 0
0 0 0
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Figure 5. Vibrational frequencies (in wavenumbers) and the vibration normal coordinates at Γ for the
MgB2 monolayer.

4. Conclusions

The electronic band structure, density of states, phonon dispersion, and elastic constants have
been calculated for the MgB2 monolayer and compared to the bulk material, using first-principles
calculations within the DFT framework. We demonstrated an increase of electronic density of states at
the Fermi level in the monolayer (compared to the bulk) and determined its stability under various
strains. These two features are crucial for the enhancement of electron–phonon coupling and they
enable significant mechanical modification that increases the critical superconducting temperature.
Establishing stability and offering insight into this novel 2D material, we focus on the effects of
ultimate lowering of the dimensionality. The question of reduction of dimensionality to its limit,
a truly atomic-scale 2D system, and the consequences of this [53–61] are highly relevant, not only to
fundamental science but also to applications in nanotechnology.

Author Contributions: Conceptualization, J.P. and R.G.; Validation, K.H., M.B., R.G.; Investigation, J.P., I.P.,
A.Š. and V.D.; Writing—Original Draft Preparation, J.P., I.P., A.Š. and V.D.; Writing—Review & Editing, J.P.;
Supervision, R.G.; Funding Acquisition, K.H., M.B. and R.G.

Funding: This research is supported by Serbian Ministry of Education, Science and Technological Development
under projects OI 171005, III 45018, and III 45016 and by the Qatar National Research Fund, cycle 11, under grant
number NPRP 11S-1126-170033. K. H. acknowledges the support of the European Commission under the H2020
grant TWINFUSYON.GA692034.

Acknowledgments: The DFT calculations were performed using the computational resources at Johannes
Kepler University, Linz, Austria. This work was supported by the Serbian Ministry of Education, Science
and Technological Development under projects OI 171005, III 45018, and III 45016.

Conflicts of Interest: The authors declare no conflict of interest.



Condens. Matter 2019, 4, 37 8 of 10

References

1. Jones, M.E.; Marsh R.E. The preparation and structure of magnesium boride, MgB2. J. Am. Chem. Soc. 1953,
76, 5.

2. Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in
magnesium diboride. Nature 2001, 410, 63.

3. Bud’ko, S.L.; Lapertot, G.; Petrovic, C.; Cunningham, C.E.; Anderson, N.; Canfield, P.C. Boron Isotope Effect
in Superconducting MgB2. Phys. Rev. Lett. 2001, 86, 1877.

4. Pickett, W. Superconductivity: 2D Physics, Unknown Mechanisms, Current Puzzles. Emerg. Phenom. Correl.
Matter Lect. Notes Autumn School Corr. Electron. 2013, 2013, 45.

5. Choi, H.J.; Roundy, D.; Sun, H.; Cohen, M.L.; Steven Louie, G. The origin of the anomalous superconducting
properties of MgB2. Nature 2002, 418, 758.

6. Kortus, J.; Mazin, I.I.; Belaachenko, K.D.; Antropov, V.P.; Boyer, L.L. Superconductivity of Metallic Boron in
MgB2. Phys. Rev. Lett. 2001, 86, 4656.

7. An, J.M.; Pickett, W.E. Superconductivity of MgB2: Covalent Bonds Driven Metallic. Phys. Rev. Lett. 2001, 86,
4366.

8. Liu, A.Y.; Mazin, I.I.; Kortus, J. Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon
Scattering, and Multiple Gaps. Phys. Rev. Lett. 2001, 87, 087005.

9. Kong, Y.; Dolgov, O.V.; Jepsen, O.; Andersen, O.K. Electron-phonon interaction in the normal and
superconducting states of MgB2. Phys. Rev. B 2001, 64, 020501.

10. Bohnen, K.-P.; Heid, R.; Renker, B. Phonon Dispersion and Electron-Phonon Coupling in MgB2 and AlB2.
Phys. Rev. Lett. 2001, 86, 5771.

11. Kunc, K.; Loa, I.; Syassen, K.; Kremer, R.K.; Ahn, K. MgB2 under pressure: phonon calculations, Raman
spectroscopy, and optical reflectance. J. Phys. Condens. Matter 2001, 13 , 9945.

12. Choi, H.J.; Roundy, D.; Sun, H.; Cohen, M.L.; Louie, S.G. First-principles calculation of the superconducting
transition in MgB2 within the anisotropic Eliashberg formalism. Phys. Rev. B 2002, 66, 020513.

13. Canfield, P.C.; Crabtree, G.W. Magnesium Diboride: Better Late than Never. Phys. Today 2003, 56, 34.
14. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.

Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669.
15. Katsnelson, M.I.; Novoselov, K.S.; Geim, A.K. Chiral tunnelling and the Klein paradox in graphene. Nat.

Phys. 2006, 2, 620–625.
16. Katsnelson, M.I. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 2006, 51,

157–160.
17. Rusin, T.M.; Zawadzki, W. Zitterbewegung of electrons in graphene in a magnetic field. Phys. Rev. B 2008,

78, 125419.
18. Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C.; Mauri, F. Breakdown of the

adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.
19. Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A.C.; Robertson, J. Kohn Anomalies and Electron-Phonon

Interactions in Graphite. Phys. Rev. Lett. 2004, 93, 85503.
20. Novoselov, K.S.; Jiang, Z.; Zhang, Y.; Morozov, S.V.; Stormer, H.L.; Zeitler, U.; Maan, J.C.; Boebinger, G.S.;

Kim, P.; Geim, A.K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379.
21. Zhou, S.Y.; Gweon, G.-H.; Fedorov, A.V.; First, P.N.; de Heer, W.A.; Lee, D.-H.; Guinea, F.; Castro Neto, A.H.;

Lanzara, A.; et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770–775.
22. Zhang, Y.; Tan, Y.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s

phase in graphene. Nature 2005, 438, 201–204.
23. Bekaert, J.; Aperis, A.; Partoens, B. Oppeneer, P.M.; Milošević, M.V. Evolution of multigap superconductivity
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