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6 It is generally accepted that the dynamical mean field theory gives a good solution of the Holstein model,

7 but only in dimensions greater than two. Here, we show that this theory, which becomes exact in the weak

8 coupling and in the atomic limit, provides an excellent, numerically cheap, approximate solution for the

9 spectral function of the Holstein model in the whole range of parameters, even in one dimension. To

10 establish this, we make a detailed comparison with the spectral functions that we obtain using newly

11 developed the momentum-space numerically exact hierarchical equations of motion method, which yields

12 electronic correlation functions directly in real time. We crosscheck these conclusions with our path

13 integral quantum Monte Carlo and exact diagonalization results, as well as with the available numerically

14 exact results from the literature.

DOI:15

16 The Holstein model is the simplest model that describes

17 an electron that propagates through the crystal and interacts

18 with localized optical phonons [1]. On the example of this

19 model, numerous many-body methods were developed and

20 tested [2]. The Holstein molecular crystal model is also very

21 important in order to understand the role of polarons

22 (quasiparticles formed by an electron dressed by lattice

23 vibrations) in realmaterials [3]. This is still a very active field

24 of research fueled by new directions in theoretical studies

25 [4–12] and advances in experimental techniques [13].

26 The Holstein model can be solved analytically only in the

27 limits of weak and strong electron-phonon coupling [14–

28 16]. Reliable numerical results for the ground state energy

29 and quasiparticle effective mass were obtained in the late

30 1990s using the density matrix renormalization group

31 (DMRG) [17,18] and path integral quantum Monte Carlo

32 (QMC) methods [19], and also within variational appro-

33 aches [20–22]. At the time, numerically exact spectral

34 functions for one-dimensional (1D) systems were obtained

35 onlywithin the DMRGmethod [17,18]. Themain drawback

36 of the QMC method is that it gives correlation functions in

37 imaginary time and obtaining spectral functions and dy-

38 namical response functions is often impossible since the

39 analytical continuation to the real frequency is a numerically

40 ill-defined procedure. Interestingly, at finite temperature the

41 spectral functions were obtained only very recently using

42 finite-T Lanczos (FTLM) [23] and finite-T DMRG [24]

43 methods. All these methods have their strengths and weak-

44 nesses depending on the parameter regime and temperature.

45 As usually happens in a strongly interacting many-body

46 problem, a complete physical picture emerges only by

47 taking into account the solutions obtained with different

48 methods.

49 The hierarchical equations of motion (HEOM) method is

50 a numerically exact technique that has recently gained

51popularity in the chemical physics community [25–28]. It

52has been used to explore the dynamics of an electron (or

53exciton) linearly coupled to a Gaussian bosonic bath.

54Within HEOM, we calculate the correlation functions

55directly on the real time (real frequency) axis [29].

56Nevertheless, the applications of the HEOM method to

57the Holstein model [30–34] have been, so far, scarce

58because of the numerical instabilities stemming from the

59discreteness of phonon baths on a finite lattice.

60Along with numerically exact methods, a number of

61approximate techniques have been developed and applied to

62the Holstein model [35–38]. The dynamical mean field

63theory (DMFT) is a simple nonperturbative technique that

64has emerged as amethod of choice for the studies of theMott

65physics within the Hubbard model [39,40]. It can also be

66applied to the Holstein model giving numerically cheap

67results directly on the real frequency axis [41]. This method

68fully takes into account local quantum fluctuations and it

69becomes exact in the limit of infinite coordination numbers

70when the correlations become completely local. It was soon

71recognized [42,43] that the DMFT gives qualitatively

72correct spectral functions and conductivity for the

73Holstein model in three dimensions. In low-dimensional

74systems the solution is approximate as it neglects the

75nonlocal correlations and one might expect that the

76DMFT solution would not be accurate, particularly in one

77dimension. Surprisingly, to our knowledge, only the DMFT

78solution for the Bethe lattice was used in comparisons with

79the numerically exact results for the ground state properties

80in one dimension [20,44]. The quantitative agreement was

81rather poor, suggesting that the DMFT cannot provide a

82realistic description of the low-dimensional Holstein model

83due to the importance of nonlocal correlations [16,20,44].

84In this Letter, we present a comprehensive solution of the

851D Holstein model: (i) We solve the DMFT equations in all
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86 parameter regimes. At zero temperature we find a remark-

87 able agreement of the DMFT ground state energy and

88 effective mass with the available results from the literature

89 in one, two, and three dimensions. (ii) For intermediate

90 electron-phonon coupling, we obtain numerically exact

91 spectral functions using the recently developed momen-

92 tum-space HEOM approach [45]. For strong coupling we

93 calculate the spectral functions using exact diagonalization

94 (ED). We find a very good agreement with DMFT results

95 and therefore demonstrate that the DMFT is rather accurate,

96 in sharp contrast to current belief in the literature. (iii) We

97 crosscheck the results with our QMC calculations in

98 imaginary time. Overall, we demonstrate that the DMFT

99 emerges as a unique method that gives close to exact

100 spectral functions in the whole parameter space of the

101 Holstein model, both at zero and at finite temperature.

102 Model and methods.—We study the 1d Holstein model

103 given by the Hamiltonian

H ¼ −t0
X

i

ðc†i ciþ1 þ H:c:Þ

− g
X

i

niða†i þ aiÞ þ ω0

X

i

a†i ai: ð1Þ

104105 Here, c†i (a
†
i ) are the electron (phonon) creation operators,

106 t0 is the hopping parameter, and ni ¼ c†i ci. We consider

107 dispersionless optical phonons of frequency ω0, and g

108 denotes the electron-phonon coupling parameter. t0, ℏ, kB,
109 and lattice constant are set to 1. We consider the dynamics

110 of a single electron in the band. It is common to define

111 several dimensionless parameters: adiabatic parameter

112 γ ¼ ω0=2t0, electron-phonon coupling λ ¼ g2=2t0ω0, and

113 α ¼ g=ω0. These parameters correspond to different physi-

114 cal regimes of the Holstein model shown schematically in

115 Fig. 1(a).

116 In order to obtain reliable solutions in the whole para-

117 meter space, we use two approximate methods and three

118 methods that are numerically exact. In the Holstein model,

119 The DMFT reduces to solving the polaron impurity

120 problem in the conduction electron band supplemented

121 by the self-consistency condition [41]. The impurity

122 problem can be solved in terms of the continued fraction

123 expansion, giving the local Green’s function on the real

124 frequency axis (see Ref. [41] and Supplemental Material

125 (SM) [46], Sec. I, for details). A crucial advantage of the

126 DMFT for the Holstein model is that it becomes exact in

127 both the weak coupling and in the atomic limit, and that it

128 can be easily applied in the whole parameter space both at

129 zero and at finite temperature. The DMFT equations can be

130 solved on a personal computer in just a few seconds to a

131 few minutes depending on the parameters. On general

132 grounds, the DMFT is expected to work particularly well at

133 high temperatures when the correlations become more local

134 due to the thermal fluctuations [47,48]. We will compare

135 the DMFT with the well-known self-consistent Migdal

136approximation (SCMA) [49], which becomes exact only in

137the weak coupling limit; see Sec. II of SM [46].

138We have recently developed the momentum-space

139HEOM method [45] that overcomes the numerical insta-

140bilities originating from the discrete bosonic bath. Within

141thismethodwe calculate the time-dependent greaterGreen’s

142functionG>ðk; tÞ, which presents the root of the hierarchy of
143the auxiliary Green’s functions. The hierarchy is, in prin-

144ciple, infinite, and one actually solves the model by

145truncating the hierarchy at certain depth D. The HEOM

146are propagated independently for each allowed value of k up
147to long times (ω0tmax ∼ 500). The propagation takes 5 to

14810 hours on 16 cores per momentum k. The discrete Fourier
149transform is then used to obtain spectral functions without

150introducing any artificial broadening. Numerical error in the

151HEOM solution can originate from the finite-size effects

152since the method is applied on the lattice with N sites, and

153also from the finite depth D. We always use N and D, as

154given in SM [46], which correctly represent the thermody-

155namic limit. Generally, for larger g we need smaller N and

156largerD. This is why the EDmethod with a small number of

157sites could be a better option in the strong coupling regime.

158The EDmethod can be used more efficiently after the initial

159Hamiltonian is transformed by applying the Lang-Firsov

160transformation; see SM [46], Sec. III.

161In the QMC method, we calculate the correlation func-

162tion CkðτÞ ¼ hckðτÞc†kiT;0 in imaginary time. The thermal

(a)

(b) (c)

F1:1FIG. 1. (a) Schematic plot of different regimes in the ðγ; λÞ
F1:2parameter space. The white (black) circles correspond to param-

F1:3eters for which both HEOM and QMC (just QMC) calculations

F1:4were performed. The DMFT results are obtained in practically

F1:5whole space of parameters. (b) Comparison of the DMFT and

F1:6DMRG (taken from Refs. [17,20]) renormalized electron mass at

F1:7T ¼ 0. (c) Comparison of the ground state energy from the

F1:8DMFT and the global-local variational approach (taken from

F1:9Ref. [20]) at T ¼ 0.
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163 expectation value is performed over the states with zero

164 electrons and ckðτÞ ¼ eτHcke
−τH. We use the path integral

165 representation, the discretization of imaginary time, and

166 analytical calculation of integrals over the phonon coor-

167 dinates. We then evaluate a multidimensional sum over the

168 electronic coordinates by a Monte Carlo method. This

169 method is a natural extension of early works where such

170 approach was applied just to thermodynamic quantities

171 [50–52]. Details of the method are presented in Ref. [45].

172 Results at zero temperature.—In Fig. 1(b), we show the

173 DMFT results for the electron effective mass at the bottom

174 of the band,m�=m0 ¼ 1 − dReΣðωÞ=dωjEp
(where ΣðωÞ is

175 the self-energy), over a broad range of parameters covering

176 practically the whole parameter space in the ðγ; λÞ plane.

177 We see that the mass renormalization is in striking agree-

178 ment with the DMRG result [17,20] that presents the best

179 available result from the literature. Small discrepancies are

180 visible only for stronger interaction with small ω0. A

181 similar level of agreement can be seen in the comparison

182 of the ground state (polaron) energy Ep in Fig. 1(c). Here,

183 the results obtained with variational global-local method

184 [20,21] are taken as a reference. While the agreement in the

185 weak coupling and in the atomic limit could be anticipated

186 since the DMFT becomes exact in these limits, we find the

187 quantitative agreement in the crossover regime between

188 these two limits rather surprising, having in mind that the

189 DMFT completely neglects nonlocal correlations. It is also

190 interesting that this was not observed earlier. The only

191 difference from the standard reference of Ciuchi et al. [41]

192 is that we applied the DMFT to the 1D case, as opposed to

193 the Bethe lattice. This is, however, a key difference.

194 Otherwise the DMFT provides only a qualitative descrip-

195 tion of the Holstein model [3,16,20,44,53]. From the

196 technical side, the only difference as compared to the case

197 of the Bethe lattice is in the self-consistency equation. For

198 obtaining a numerically stable and precise solution, it was

199 crucial to use an analytical expression for the self-con-

200 sistency relation (see Sec. IB in SM [46]). We have also

201 calculated the effective mass for two- and three-dimen-

202 sional lattices (see Sec. IC in SM [46]) and the agreement

203 with the QMC calculation from Ref. [19] is excellent. This

204 was now expected since the importance of nonlocal

205 correlations decreases in higher dimensions. A comparison

206 with the Bethe lattice effective mass is illustrated in SM

207 [46], Sec. ID.

208 The next step is to check if the agreement with the

209 numerically exact solution extends also to spectral func-

210 tions. Typical results at k ¼ 0 are illustrated in Fig. 2. We

211 note that at T ¼ 0 the DMFT quasiparticle peak is a delta

212 function (broadened in Fig. 2), while satellite peaks are

213 incoherent having intrinsic nonzero width. In HEOM, the

214 peak broadening due to the finite lattice size N and finite

215 propagation time tmax is generally much smaller than the

216 Lorentzian broadening used in the insets of Figs. 2(a)–2(d).

217 The weights of the DMFT and HEOM quasiparticle peaks

218correspond to the m0=m
� ratio. The satellite peaks are also

219very well captured by the DMFT solution in all parameter

220regimes. For g ¼ 1 we can see two small peaks in the first

221satellite structure of the HEOM solution. We find very

222similar peaks also in the DMFT solution when applied on a

223lattice of the same size, which is here equal to 10 (see SM

224[46], Sec. IV). Hence, we conclude that these peaks are an

225artefact of the finite lattice size. In the strong coupling

226regime ω0 ¼ 1, g ¼ 2, the DMFT is compared with ED

227since the thermodynamic limit is practically reached for

228N ¼ 4; see SM [46], Sec. IV. Here, we notice a pronounced

229excited quasiparticle peak [22,23] whose energy is below

230Ep þ ω0. This peak,which consists of a polaron and a bound

231phonon, is also very well resolved within the DMFT solu-

232tion. For parameters in Fig. 2(d) the lattice sites are nearly

233decoupled, approaching the atomic limit ðt0 ≪ g;ω0Þ, when
234the DMFT becomes exact (see Sec. V in SM [46]). For a

235comparison, we show also the SCMA spectral functions. As

236the interaction increases, the SCMA solution misses the

237position and the weight of the quasiparticle peak and the

238satellite peaks are not properly resolved. Further compar-

239isons of zero temperature spectral functions are shown in

240Sec. VI of SM [46].

241Results at finite temperature.—Reliable finite-T results

242for the spectral functions of the Holstein model have been

243obtained only very recently using the FTLM [23] and

244finite-T DMRG methods [24]. Here, we calculate the

245spectral functions using HEOM or ED and compare them

246extensively with the DMFT. The results are crosschecked

247using the QMC results in imaginary time.

248Typical results for the spectral functions are shown in

249Fig. 3, while additional results for other momenta and other

(a) (b)

(c) (d)

F2:1FIG. 2. Integrated HEOM, DMFT, SCMA, and ED spectral

F2:2weight, IðωÞ ¼
R
ω
−∞ dνAkðνÞ, for k ¼ 0 and T ¼ 0. The insets

F2:3show comparisons of the spectral functions. IðωÞ is obtained

F2:4without broadening, whereas AðωÞ is broadened by Lorentzians

F2:5of half-width η ¼ 0.05.
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250 parameters are shown in Sec. VII of SM [46]. We see that
251 for T > 0 the satellite peaks appear also below the
252 quasiparticle peak. The agreement between the DMFT
253 and the HEOM and ED spectral functions is very good. The
254 agreement remains excellent even for g ¼ 2 where the
255 electrons are strongly renormalized m�=m0 ≈ 10, which is
256 far away from both the atomic and weak coupling limits,
257 where the DMFT is exact. A part of the difference between
258 the DMFTand the HEOM and ED results can be ascribed to
259 the small finite-size effects in the HEOM and ED solutions,
260 as detailed in SM [46], Sec. IV. In accordance with the
261 presented results, it is not surprising that the self-energies
262 are nearly k independent, as shown in SM [46], Sec. VIII. It
263 is also instructive to examine the difference between the
264 SCMA and DMFT (HEOM) solutions. For moderate
265 interaction [Figs. 3(a) and 3(b)], the weight of the
266 SCMA quasiparticle peak is nearly equal to the DMFT
267 (HEOM) quasiparticle weight, and the overall agreement of
268 spectral functions is rather good. This is not the case for
269 stronger electron-phonon coupling [Figs. 3(c)–3(h)] where
270 the SCMA poorly approximates the true spectrum.

271We observe that for g ¼
ffiffiffi
2

p
and k ¼ π the DMFT and

272HEOM satellite peaks are somewhat shifted with respect to

273one another; see Figs. 3(c) and 3(d). This is the most

274challenging regime for the DMFT, representing a crossover

275(λ ¼ 1) between the small and large polaron. Nevertheless,

276the agreement remains very good near the quasiparticle peak

277for k ¼ 0, which will be the most important for transport in

278weakly doped systems. In order to gain further confidence

279into the details of the HEOM spectral functions for g ¼
ffiffiffi
2

p
,

280we compare them with the available results obtained within

281the finite-T DMRG and Lanczos methods. We find an

282excellent agreement, as shown in Figs. 4(a) and 4(b).

283The DMFTand HEOM results are crosschecked with the

284path integral QMC calculations. The quantity that we

285obtain in QMC is the single electron correlation function

286in imaginary time, which can be expressed through the

287spectral function as CkðτÞ ¼
R∞
−∞ dω e−ωτAkðωÞ. Typical

288results are illustrated in Figs. 4(c) and 4(d), while extensive

289comparisons are presented in Sec. IX of SM [46]. At T ¼
2900.4 we can see a small difference in CπðτÞ between the

291DMFT and QMC (HEOM) results. At T ¼ 1, both for k ¼
2920 and k ¼ π, the difference in CkðτÞ is minuscule, well

293below the QMC error bar, which is smaller than the symbol

294size. This confirms that nonlocal correlations are weak.

295Similarly, as for the spectral functions, the SCMA corre-

296lation functions show clear deviation from other solutions.

297We, however, note that great care is needed when drawing

298conclusions from the imaginary axis data since a very small

299difference in the imaginary axis correlation functions can

300correspond to substantial differences in spectral functions.

301Conclusions.—In summary, we have presented a com-

302prehensive solution of the 1D Holstein polaron covering all

(a) (b)

(c) (d)

(e)

(g)

(h)

(f)

F3:1 FIG. 3. Spectral functions at T > 0 for k ¼ 0 and k ¼ π. In
F3:2 panels (e)–(f) only the ED results are broadened by Lorentzians

F3:3 of half-width η ¼ 0.05, while all the curves are broadened in (g)–

F3:4 (h) with the same η. All insets are shown without broadening.

(a) (b)

(c) (d)

F4:1FIG. 4. (a), (b) Comparison of DMFT, HEOM, and finite-T
F4:2DMRG and FTLM (taken from Ref. [24]) spectral functions at

F4:3T ¼ 0.4. All the lines are here broadened by Lorentzians of half-

F4:4width η ¼ 0.05. (c), (d) DMFT, QMC, HEOM, and SCMA

F4:5imaginary time correlation functions at T ¼ 0.4 (T ¼ 1 in the

F4:6insets). Here, g ¼
ffiffiffi
2

p
, ω0 ¼ 1.
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303 parameter regimes. We showed that the DMFT is a

304 remarkably good approximation in the whole parameter

305 space. This approximation is simple, numerically efficient,

306 and can also be easily applied in two and three dimensions.

307 We successfully used momentum-space HEOM and ED

308 methods for comparisons with the DMFT spectral func-

309 tions both at zero and at finite temperature. The compar-

310 isons showed an excellent agreement between the spectral

311 functions in most of the parameter space. For parameters

312 that are most challenging for the DMFT, a very good

313 agreement was found around k ¼ 0 and a reasonably good

314 agreement was obtained at larger values of k. All of the
315 results are crosschecked with the imaginary axis QMC

316 calculations and with the available results from the liter-

317 ature. Both the DMFT and HEOM methods are imple-

318 mented directly in real frequency, without artificial

319 broadening of the spectral functions. This will be crucial

320 in order to calculate dynamical quantities and determine a

321 potential role of the vertex corrections to conductivity by

322 avoiding possible pitfalls of the analytical continuation,

323 which we leave as a challenge for future Letter.
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Here we present numerical results that complement the
main text and we also show some technical details of
the calculations. The Supplemental Material is orga-
nized as follows. The DMFT for the Holstein polaron
is briefly reviewed in Sec. I. Numerical implementation
of the DMFT self-consistency loop is presented in detail
and it is used to calculate the mass renormalization in
one, two and three dimensions and for the Bethe lattice
as well. In Sec. II the self-consistent Migdal approxima-
tion is briefly reviewed and used as a benchmark for the
DMFT in the weak-coupling limit. Sec. III presents the
ED method. In Sec. IV we investigate how the results
depend on the chain length N and on hierarchy depth D.
Sec. V examines the DMFT solution close to the atomic
limit. Additional DMFT, SCMA, ED and HEOM results
for the spectral functions at T = 0 and T > 0 for various
parameter values and for different momenta k are shown
in Secs. VI and VII, respectively. The k-dependence
of the self-energies is shown in Sec. VIII. A detailed
comparison of the DMFT, HEOM and QMC correla-
tion functions is presented in Sec. IX. Sec. X presents
a numerical procedure that was used for the calculation
of the integrated spectral weight. In Sec. XI we show
that the different definitions of spectral functions used
by various methods are all in agreement.

I. DMFT FOR THE HOLSTEIN POLARON

The DMFT solution for the Holstein polaron on the
infinitely-connected Bethe lattice was presented by
Ciuchi et al. in 1997 [S1]. Interestingly, to our knowl-
edge, this method has not been so far implemented on
a finite-dimensional lattice. Details of the implementa-
tion in 1d and in arbitrary number of dimensions are the
main content of this Section.

A. Physical content of the DMFT approximation

The DMFT was developed in the early 1990’s in the
context of the Hubbard model [S2] and has since signif-
icantly contributed to our understanding of the systems
with strong electronic correlations [S3]. The DMFT is
a non-perturbative method that fully takes into account
local quantum fluctuations. It becomes exact in the limit

FIG. S1. DMFT self-consistency loop.

of infinite coordination number [S2], while it can be con-
sidered as an approximation in finite number of dimen-
sions that keeps only local correlations by assuming that
the self-energy Σ(ω) is k-independent.

In practice, the DMFT reduces to solving the (Anderson)
impurity problem in a frequency dependent Weiss field
G0(ω) that needs to be determined self-consistently. The
bare propagator (Weiss field) G0(ω) is responsible for
the electron fluctuations between the impurity and the
reservoir (conduction bath). On-site correlation is taken
into account through the self-energy. The connection
with the lattice problem is established by the require-
ment that the impurity self-energy Σimp(ω) is equal to
the lattice self-energy Σii(ω) (while the nonlocal compo-
nents Σij(ω) are equal to zero within DMFT) and that
the impurity Green’s function Gimp(ω) is equal to the
local lattice Green’s function Gii(ω) = 1

N

P

k
Gk(ω).

The DMFT equations are solved iteratively as shown
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FIG. S2. First few DMFT Feynman diagrams of the self-
energy in the expansion over G0.

schematically in Fig. S1. For a given bare propagator
G0 an impurity solver is used to obtain the self-energy,
and then the self-consistency is imposed by the Dyson
equation. The subscripts for the impurity and the lo-
cal lattice Green’s function are omitted since these two
quantities coincide when the self-consistency is reached.

The DMFT solution for the Holstein polaron follows the
general concepts introduced for the Hubbard model with
an important simplification which comes from the fact
that we consider the dynamics of just a single electron.
We briefly review some key aspects and for details we
refer the reader to Ref. [S1].

The self-energy for the polaron impurity, which is cou-
pled to the reservoir by the bare propagator G0(ω), can
be simply expressed in a form of the continued-fraction
expansion (CFE), which is in a sharp contrast with the
Hubbard model where the numerical solution of the An-
derson impurity model is the most difficult step. Here,
the self-energy at T = 0 is simply given by

Σ(ω) =
g2

G−1
0 (ω − ω0)−

2g2

G−1
0 (ω − 2ω0)− 3g2

G−1
0 (ω−3ω0)−...

(S1)
(For a derivation and generalization to T > 0 see
Ref. [S1].) This expansion has an infinite number of
terms and in practice it needs to be truncated. In order
to understand which condition needs to be fulfilled for a
truncation, we will look at the diagrammatic expansion
of the self-energy.

For a single electron (i.e. in the zero density limit) the
Feynman diagrams of the self-energy consist of a single
electron line accompanied by the lines that describe the
emission and the absorption of phonons. There are no
bubble diagrams and hence there is no renormalization
of the phonon propagator. As an illustration, a diagram-
matic expansion over G0(ω) up to the order g4 is shown
in Fig. S2. These diagrams are included if we keep the
terms up to the second stage in the CFE.

There are two important implications from this diagram-
matic expansion. First, if we keep in the expansion terms
up to the order g2N then only the phonon states |n⟩
with n ≤ N appear as intermediate states. Therefore,
since the importance of the multiphonon effects can be
estimated by the parameter α2 = g2/ω2

0 [S4], we need
to keep N ≫ α2 terms in the CFE. Second, we see

that the vertex corrections (involving the phonons on
the same site in the real-space representation [S5]) are in-
cluded in the DMFT solution. This should be contrasted
with the self-consistent Migdal approximation (SCMA)
which completely neglects the vertex corrections in the
self-energy. However, we note that one should be care-
ful in making a direct comparison to the SCMA, since
the DMFT diagrams are expanded using G0, unlike the
SCMA.

B. Numerical implementation of the DMFT loop

We will now discuss step by step the self-consistency
loop shown in Fig. S1. The DMFT loop starts by guess-
ing the solution for the free propagator G0(ω). Better
guesses lead to fewer number of iterations, so depend-
ing on the parameter regime we take G0(ω) to be either
the Green’s function in the Migdal approximation (S20)
or the Green’s function in the atomic limit (S25), since
both of these expressions are analytically known. They
correspond to the cases of very weak coupling and van-
ishing hopping, respectively. Next, the self-energy Σ(ω)
is calculated using the impurity solver (S1) and its gen-
eralization to finite temperatures [S1]. In practice these
are implemented using the recursion relations, which at
finite temperature read as:

Σ(ω) = G−1
0 (ω)−G−1(ω), (S2a)

G(ω) =

∞
X

n=0

(1− e−ω0/T )e−nω0/T

G−1
0 (ω)−A

(0)
n (ω)−B

(0)
n (ω)

, (S2b)

A(p)
n (ω) =

(n− p)g2

G−1
0 (ω + (p+ 1)ω0)−A

(p+1)
n (ω)

, (S2c)

B(p)
n (ω) =

(n+ p+ 1)g2

G−1
0 (ω − (p+ 1)ω0)−B

(p+1)
n (ω)

, (S2d)

A(n)
n (ω) = 0, B(∞)

n (ω) = 0. (S2e)

Quantities A
(p)
n and B

(p)
n are determined recursively,

starting from (S2e) and going back to (S2d) and (S2c).
Then, G(ω) is calculated using (S2b), which enables us
to use Dyson Eq. (S2a) to obtain Σ(ω). For T = 0 the
equations simplify and the self-energy can be written as

Σ(ω) = B
(0)
0 (ω), which coincides with Eq. (S1). The

physical interpretation of the quantities in Eq. (S2) is
the following: G(ω) is the interacting Green’s function

of the impurity. The quantity A
(0)
n (ω) is just a finite

fraction that takes into account the emission of phonons.

Similarly, B
(0)
n (ω) is an infinite continued fraction, which

takes into account the absorption of phonons. The infi-

nite fraction B
(0)
n (ω) can be calculated accurately even

if we truncate it B
(N)
n (ω) = 0, taking N to be a number

much larger than α2. The infinite series (S2b) can also be
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truncated by using the number of terms nmax ≫ T/ω0

[S1].

Next step in the DMFT loop is calculating the local
Green’s function of the lattice using the self-energy Σ(ω)
from the impurity solver. It is calculated as

G(ω) =

Z

∞

−∞

ρ(ϵ)dϵ

ω − Σ(ω)− ϵ
, (S3)

where ρ(ϵ) is the noninteracting density of states. This
integral is convergent since we are integrating below the
complex pole ϵ = ω − Σ(ω), as a consequence of the
causality ImΣ(ω) < 0. However, numerical instabilities
can arise due to the fact that the complex pole can be
arbitrarily close to the real axis. Hence, the numeri-
cal integration of Eq. (S3) requires additional care. In
Sec. I B 2 we present a numerical procedure which solves
this problem. However, in the 1d case these numerical
instabilities are completely avoided since Eq. (S3) admits
an analytical solution, as shown in Sec. I B 1.

Following the DMFT algorithm from Fig. S1, we now
calculate the next iteration of the free propagator using
the Dyson equation

Gnew
0 (ω) = [G−1(ω) + Σ(ω)]−1. (S4)

We check if |Gnew
0 (ω)−G0(ω)| < εtol (for each ω), where

εtol is the tolerance parameter that we typically set to
εtol ∼ 10−4 or smaller. If this condition is satisfied,
the DMFT loop terminates and Σ, G0 and G are found.
Otherwise, Gnew

0 is used in the impurity solver and the
procedure is repeated until convergence is reached.

After the DMFT loop has been completed, we can use
the calculated self-energy Σ(ω) to find the retarded
Green’s function of our original problem

Gk(ω) =
1

ω − Σ(ω)− εk
. (S5)

The spectral function is then simply given by

Ak(ω) = − 1

π
ImGk(ω). (S6)

1. Self-consistency equation for the local Green’s function

in one dimension

Let us now show how the local Green’s function (S3)
can be analytically evaluated in a 1d system with near-
est neighbor hopping t0. The noninteracting density of
states reads as

ρ(ϵ) =
θ(4t20 − ϵ2)

π
p

4t20 − ϵ2
, (S7)

where θ is the Heaviside step function. Equation (S3)
can be rewritten using the substitution ϵ = 2t0 sinx

G(ω) =
1

4t0π

Z π

−π

dx

B − sinx
, (S8)

where we introduced

B = (ω − Σ(ω))/2t0. (S9)

Additional substitution z = eix leads us to

G(ω) = − 1

2t0π

I

C

dz

(z − z+)(z − z−)
, (S10)

where this represents the counterclockwise complex in-
tegral over the unit circle C and z± = iB±

√
1−B2. In

order to apply the method of residues, we first need to
find out if z± are inside the complex unit circle |z| = 1.
Causality implies that ImΣ(ω) < 0 which means that
ImB > 0. In this case one can show that |z+| < 1 and
|z−| > 1, which means that only the pole at z+ gives a
non-vanishing contribution to the Eq. (S10)

G(ω) =
−i

2t0
√
1−B2

=
1

2t0B
q

1− 1
B2

. (S11)

In Eq. (S11) we wrote the solution in two ways. They
are completely equivalent in our case when ImB > 0,
but can otherwise give different results. Since B can be
arbitrarily close to the real axis, it is important to en-
sure additional numerical stability by requiring that the
expression for G(ω) satisfies that the ImB = 0 solution
coincides with the solution in the limit ImB → 0. This
is not satisfied by the expressions in Eq. (S11), but it
can be achieved by combining their imaginary and real
parts

G(ω) = Re
1

2t0aB
q

1− 1
B2

+ i Im
−i

2t0a
√
1−B2

. (S12)

2. Self-consistency equation for the local Green’s function

in arbitrary number of dimensions

Here we present a numerical procedure for the calcu-
lation of the local Green’s function (S3) for arbitrary
density of states ρ(ϵ), that completely eliminates the po-
tential numerical singularity at ϵ = ω − Σ(ω). This is
particularly important since the techniques presented in
Sec. I B 1 fail when the dispersion relation even slightly
changes. It is also relevant in the higher-dimensional
systems where the density of states is not necessarily
analytically know.

Let us suppose that the self-energy and the density
of states are known only on a finite, equidistant grid
ω0,ω1...ωN−1, where ∆ω = ωi+1 − ωi. Further, sup-
pose that the density of states is vanishing outside some
closed interval [D1, D2] and that the grid is wide enough
so that there are at least a couple of points outside

9



that closed interval: ρ(ω0) = ... = ρ(ω3) = 0 and
ρ(ωN−1) = ... = ρ(ωN−4) = 0. These are quite gen-
eral assumptions that are always satisfied in the systems
we are examining. The local Green’s function can now
be rewritten as

G(ω) =
N−2
X

i=0

Z ωi+1

ωi

dϵ
ρ(ϵ)

ω − Σ(ω)− ϵ
. (S13)

At each sub-interval [ωi,ωi+1] the density of states is
only known at the endpoints, so it is natural to approx-
imate it using a linear function

ρ(ϵ) = ai + bi(ϵ− ωi), (S14)

where ai = ρ(ωi), bi = (ρ(ωi+1) − ρ(ωi))/∆ω. Intro-
ducing a shorthand notation ξ = ω − Σ(ω), we evaluate
Eq. (S13) analytically

G(ω) =
N−2
X

i=0

bi(ωi − ωi+1)

+
N−2
X

i=0

ai [ln(ξ − ωi)− ln(ξ − ωi+1)]

+
N−2
X

i=0

bi(ξ − ωi) [ln(ξ − ωi)− ln(ξ − ωi+1)] .

(S15)

The first line is just a telescoping series that is vanishing

N−2
X

i=0

bi(ωi − ωi+1) = ρ(ω0)− ρ(ωN−1) = 0. (S16)

The last two lines in Eq. (S15) can be transformed by
shifting the indices i+1 → i, taking into account that a
few boundary terms are vanishing and using the identity
ai − ai−1 = (ωi − ωi−1)bi−1

G(ω) =

N−2
X

i=0

ρ(ωi+1)− 2ρ(ωi) + ρ(ωi−1)

∆ω

× (ω − ωi − Σ(ω)) ln (ω − ωi − Σ(ω)) . (S17)

This expression now has no numerical instabilities. This
is most easily seen from the fact that it has the form
x lnx which is well defined even in the limit x → 0, where
it vanishes. Of course, the results were obtained by using
the linear interpolation of the density of states. This is
completely justified if ρ(ϵ) is smooth or has finitely many
cusps. However, the presence of van Hove singularities
in ρ(ϵ) may require some special analytical treatment
around them.
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FIG. S3. (a) Continuous-time QMC (taken from Ref. S6)
vs. DMFT mass renormalization in 1d, 2d and 3d, with ω0 =
1. (b) Comparison of the DMFT mass renormalization on
different lattices.

C. Effective mass in 1d, 2d and 3d

The DMFT mass renormalization is calculated in one,
two and three dimensions. These are then compared to
the continuous-time path-integral quantum Monte Carlo
(QMC) results from Ref. S6. In that paper it was
noted that the numerical accuracy of the QMC method
is 0.1%− 0.3%. The results are presented in Fig. S3(a).

We note that the definition of λ and γ is slightly different
than the one we gave in the main text. Here

λ =
g2

ω0W/2
; γ =

ω0

W/2
, (S18)

where W/2 is the half bandwidth. This coincides with
our previous definition in 1d, but gives an extra normal-
ization in higher dimensions.
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FIG. S4. 1d vs Bethe DMFT local spectral functions.

D. Comparisons with the Bethe lattice results

In the main text we emphasized that the misconception
about the validity of the DMFT in 1d appeared since
only the DMFT results on the Bethe lattice were used in
comparisons with other methods [S7, S8]. In this section
we illustrate why such comparison is inappropriate.

The main difference in practical implementation, com-
pared to 1d, can be ascribed to the self-consistency con-
dition for the Bethe lattice (corresponding to the semi-
elliptic density of states) which can be formulated using
a simple algebraic equation [S1]

G0(ω) =

�

ω − (W/2)2

4
G(ω)

�−1

. (S19)

In Fig. S3(b) we compare the DMFT mass renormaliza-
tion on different lattices using the same half-bandwidth.
There is a clear discrepancy between the 1d and the
Bethe lattice results, in accordance with the already
mentioned earlier works.
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FIG. S5. 2d vs Bethe DMFT local spectral functions.

The Bethe lattice lacks a dispersion relation since it
has no translational symmetry. Therefore in Fig. S4
we compare only the local spectral functions A(ω) =
− 1

π
ImG(ω) = − 1

π
Im 1

N

P

k Gk(ω) of the Bethe and 1d
lattice. For small couplings, the spectral functions re-
semble the noninteracting density of state and we find
a large discrepancy, as shown in panels (a) and (b). In
contrast, close to the atomic limit in Fig. S4(f) spectral
functions become more alike. We note that the regimes
at panels (c)-(f) are the same as in Fig. 3 from the main
text.

It is rather surprising that there is a striking agreement
between the effective mass for 2d and the Bethe lattice
as shown in Fig. S3(b), even though the noninteracting
density of states are different, Fig. S5(a). Interestingly,
we can see from Fig. S5 that the local spectral functions
become very similar already for moderate interactions.
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II. WEAK-COUPLING LIMIT

In this section we introduce the self-consistent Migdal
approximation (SCMA) and use it as a benchmark for
the DMFT in the weak-coupling limit, where SCMA is
exact. More importantly, we can examine a deviation
of SCMA from DMFT for stronger couplings, which is
shown in the main text and in the following sections of
the SM.

A. Migdal approximation

The Migdal approximation [S9], as shown in Fig. S6,
is defined by taking into account only the lowest order
Feynman diagram in the perturbation expansion of the
self-energy.

FIG. S6. Feynman diagrams of the self-energy in the Migdal
approximation

Due to its simplicity it can be evaluated analytically

Σk(ω) = g2(b+ 1)S(ω − ω0) + g2b S(ω + ω0), (S20)

where b ≡ b(ω0) = (eω0/T − 1)−1 and

S(ω) = (ω2 − 4t20)
−1/2 for ω > 0,

while the solution for ω < 0 can be obtained by noting
that ImS(ω) and ReS(ω) are symmetric and antisym-
metric functions, respectively. However, this solution
is accurate only for very small coupling g. For larger
coupling a much better solution is obtained within the
self-consistent Migdal approximation.

B. Self-consistent Migdal approximation

FIG. S7. Feynman diagrams in the SCMA approximation.

In the SCMA, free fermionic propagator from Fig. S6
is replaced with the interacting propagator, as shown in
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FIG. S8. DMFT vs. SCMA spectral functions in the weak-
coupling regime.
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Fig. S7. The corresponding equation for the self-energy
can be written as

Σk(ω) = g2(b+ 1)G(ω − ω0) + g2bG(ω + ω0), (S21)

where G(ω) = 1
N

P

k Gk(ω) is the local Green’s function.
Equation (S21) needs to be solved self-consistently, since
the Green’s function can be expressed in terms of the
self-energy (via the Dyson equation).

Using the expansion with respect to the free propagator,
the formal solution for the self-energy can be written
as an infinite series of non-crossing diagrams, as shown
in Fig. S7. We see that the first term represents the
Feynman diagram in the Migdal approximation. It is
thus not at all surprising that the SCMA range of validity
is much larger than the one-shot Migdal approximation.

We note that the SCMA self-energy is momentum-
independent, which follows from Eq. (S21), making this
method numerically cheap.

C. DMFT vs. SCMA in the weak coupling limit

A comparison of the DMFT and SCMA spectral func-
tions in the weak coupling limit is shown in Fig. S8.
Results almost fully coincide. As the electron-phonon
coupling increases, the SCMA spectral functions starts
to deviate from the exact solution, as we see from the
main text and from the remaining part of the Supple-
mental Material.

13



III. STRONG COUPLING: EXACT

DIAGONALIZATION

In the strong coupling regime we can approach the solu-
tion in the thermodynamic limit by using a small number
of lattice sites. In SM Sec. IV we show that for g = 2,
ω0 = 1 we are close to thermodynamic limit by consid-
ering a chain of just N = 4 sites. In this case we can
reach a solution using the exact diagonalization (ED). In
the following we describe our implementation of the ED
method.

We calculate the spectral function by diagonalizing
the Holstein Hamiltonian in the space spanned by the
vectors Uc†i |n1n2 . . . nN ⟩, where ni is the number of
phonons at site i ∈ {1, . . . , N}, satisfying

P

i ni < nmax,
while U is the unitary operator of the Lang-Firsov trans-
formation [S10] given as

U = e
g

ω0

P
i
c†
i
ci(ai−a†

i ). (S22)

Both N and nmax need to be increased until convergence
is reached. The spectral function is then calculated as

Ak(ω) =
1

Zp

X

p

e−βEp

X

e

δ(ω + Ep − Ee)| ⟨p|ck|e⟩|2,

(S23)
where |p⟩ denotes purely phononic states, the energy of
which is Ep, |e⟩ denotes the states with one electron and
arbitrary number of phonons, the energy of which is Ee

and Zp =
P

p e
−βEp is the phononic partition function.

We found that convergent results for the spectral func-
tion when g = 2, ω0 = 1, N = 4 could be obtained
for nmax = 16. The results are shown in Figs. S16-
S21, as well as in Figs. 2(b) and 3(e)-(f) of the main
text. The spectral functions at k points different than
k = 2π

N i, i ∈ {0, . . . , N − 1} were obtained by employing
so-called twisted boundary conditions, that is by chang-
ing the terms in the Hamiltonian t0c

†
i ci+1 → t0e

iφc†i ci+1

and t0c
†
i+1ci → t0e

−iφc†i+1ci. The spectral function ob-
tained from such a modified Hamiltonian corresponds
then to the spectral function at k + ϕ.
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IV. FINITE-SIZE EFFECTS AND HEOM

DEPTH

The numerically exact HEOM, QMC and ED methods
are implemented on a 1d lattice of length N . Results
which are representative of the thermodynamic limit can
be obtained by taking large enough N . Furthermore,
the hierarchy of HEOM needs to be truncated using
sufficient depth D. In the ED method the number of
phonons in the Hilbert space need to be specified. All
of these parameters should be as large as possible, but
the practical numerical implementation is restricted by
the available computer memory. Finite-N and finite-D
analysis was performed in all parameter regimes where
we have HEOM results. In Figs. S9, S10, and S11 we
briefly illustrate such analysis in the intermediate and
strong coupling regime.

The optimal value of D strongly depends on the interac-
tion strength and temperature. For large interaction we
need large D since many phonon states are populated
even at T = 0. Similarly, larger temperature also re-
quires larger HEOM depth. As illustrated in Fig. S9(a)-
(b), for ω0 = 1, g = 1 the convergence is nearly reached
already for D = 6. For g =

√
2 (Fig. S10(a)-(b)), we

need slightly larger D. However, in the strong-coupling
regime for g = 2 we need much larger D, and from a
comparison with the ED results for N = 4 in Fig. S11
we can conclude that the HEOM result has rather well
converged only for D = 17. We can also observe that the
results at k = 0 typically converge faster with respect to
D than the results at k = π.

The value N for which the spectral functions correspond
to those in the thermodynamic limit also depends on the
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FIG. S9. Finite-N and finite-D effects in the HEOM method
at intermediate coupling ω0 = 1, g = 1, T = 0, which is the
same regime as in Fig. 2(a) of the main text. Here we use
Lorentzian broadening with η = 0.05.
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FIG. S10. Finite-N and finite-D effects in the HEOM at
intermediate coupling ω0 = 1, g =

√
2, T = 0, which is the

same regime as in Fig. 2(c) of the main text. Here we use
Lorentzian broadening with η = 0.05.

parameter regime: for larger interaction g and for higher
T the chain length N can be smaller, while for smaller g
and lower T we need larger N . In panels (c) and (d) of
Figs. S9 and S10 we see that for intermediate coupling
there is some difference in spectral functions for N = 6
and N = 10 (N = 8). At k = 0 it is particularly visible
in the first satellite structure for g = 1. Remarkably,
the DMFT on a finite lattice N = 6 (N = 10) predicts
very similar satellite structure as HEOM for the same N .
This indicates that the correct satellite peak in Fig. 2(a)
of the main text should be closer to DMFT, while HEOM
results have some artefacts because of the finite lattice
size. On the other hand, for g = 2 it is enough to set
N = 4, as we now demonstrate.

It is very efficient to analyze the finite-size effects using
the DMFT applied on a finite system with N sites. This
is very simple to implement in the DMFT loop. The only
difference is in the self-consistency equation: instead of
the integral over the density of states, the local Green
function is obtained as an average over the k vectors

G(ω) =
1

N

N
X

i=1

Gki
(ω). (S24)

We can see from Fig. S12 that there is very little dif-
ference between N = 4, N = 6 and thermodynamic
limit for g = 2, ω0 = 1. We showed only the results
for T = 0.4, but we checked that the conclusions remain
true even for T = 0. Therefore, setting N = 4 in HEOM
and ED calculations is enough. This left enough com-
puter memory to use large D = 17 in HEOM calcula-
tions. Then all three methods give very similar spectral
functions as seen in Fig. S11.

Fig. S13 shows the DMFT finite-size effects close to the
atomic limit, both for the spectral function Ak(ω) and
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for the self-energy Σ(ω). The spectral functions are not
strongly N -dependent. On the other hand, the details
of the self-energy are much more sensitive to finite-size
effects. Finite N results show a kind of a stripe pattern,
while N = ∞ results are smoother.
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FIG. S11. Finite-N and finite-D effects in the strong cou-
pling regime ω0 = 1, g = 2, T = 0.4, which is the same
regime as in Figs. 3(e)-(f) of the main text. ED spectral func-
tions (N = 4) are shown using Lorentzian broadening with
η = 0.05, while other methods are shown without broaden-
ing. DMFT results are in thermodynamic limit.
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FIG. S12. DMFT spectral functions for different N .
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FIG. S13. DMFT finite-size effects close to the atomic limit
ω0 = 3, g =

√
12, T = 1
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V. ATOMIC LIMIT

Here we investigate the DMFT solution close to the
atomic limit. For decoupled sites (t0 = 0), using the
Lang-Firsov transformation [S4, S10], the Green’s func-
tion at T = 0 is given by

G(ω) =
∞
X

n=0

α2ne−α2

n!

1

ω − nω0 − Ep + i0+
, (S25a)

and at T > 0

G(ω) =
∞
X

n=−∞

In

�

2α2
p

b(b+ 1)
�

ω − nω0 − Ep + i0+
e−(2b+1)α2+nω0/2T .

(S25b)
Here Ep = −g2/ω0 is the ground-state energy, In are
the modified Bessel functions of the first kind and b ≡
b(ω0) = (eω0/T−1)−1. We see that the atomic limit spec-
trum consists of a series of delta functions at a distance
ω0 from each other. At T = 0 the lowest energy peak is
at ω = Ep, which corresponds to the ground-state (po-
laron) energy. At finite temperatures more delta peaks
emerge even below the polaron peak.

The integrated DMFT spectral weight at T = 0 is shown
in Fig. S14 and compared to the exact atomic limit. It
was calculated using the numerical procedure introduced
in Sec. X. I(ω) features jumps at frequencies where A(ω)
has peaks and the height of those jumps is equal to the
weight of the peaks. Nonzero hopping in the DMFT so-
lution introduces small momentum dependence of Ik(ω),
which is why Fig. S14 shows the result averaged over all
momenta. A more detailed comparison is presented in
Table S1. It shows the numerical values of the DMFT
I(ω) at the positions of delta peaks (for a given k and
averaged over many k) in comparison with the analytical
t0 = 0 result from Eq. (S25a). These delta peaks, posi-

tioned at nω0+Ep, have the weights equal to α
2ne−α2

/n!
for n = 0, 1 . . .

For T > 0, the peaks are located both below and above
Ep. The DMFT spectra averaged over k are shown in
Fig. S15. They have a characteristic fork-shaped form
at low T , which is the consequence of the 1d density of
states. The weight of the peaks are very close to the ana-
lytical result In(2α

2
p

b(b+ 1))e−(2b+1)α2+nω0/2T . These
spectral weights, averaged over momenta k, are given in
Table S2.
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FIG. S14. DMFT integrated spectral weight for t0 = 0.05
(shaded) and t0 = 10−5 (red dashed line) averaged over all
momenta, I(ω) = 1

N

P
k

R
ω

−∞
Ak(ν)dν, in comparison to the

exact t0 = 0 result (blue solid line).

TABLE S1. Integrated spectral weight I(ω) for ω0 = 1, g =
1 at T = 0. The exact atomic limit corresponds to t0 =
0.00. For t0 = 10−5 the DMFT solution has no k-dependence
within the specified accuracy. We denote the k-values to be
’av.’ if the answer is averaged over all momenta.

k
t0

ω −2 −1 0 1 2 3

0.00 0.00 0.37 0.74 0.92 0.98 1.0
all 10

−5
0.00 0.37 0.74 0.92 0.98 1.0

av. 0.05 0.00 0.37 0.73 0.92 0.98 1.0
0 0.05 0.00 0.40 0.76 0.94 0.99 1.0
π/2 0.05 0.00 0.37 0.74 0.92 0.98 1.0
π 0.05 0.00 0.33 0.71 0.91 0.98 0.99
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FIG. S15. DMFT spectral functions A(ω) = 1

N

P
k
Ak(ω) for

ω0 = 1, g = 1, t0 = 0.05, at several temperatures.
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TABLE S2. Spectral weights of the peaks located at
ω = nω0 + Ep for n = −2,−1, 0, 1, 2, 3. The DMFT spec-
tra, obtained for t0 = 0.05, are averaged over k. The atomic
limit values (t0 = 0.00) are obtained from the analytical for-
mula. Here ω0 = 1, g = 1.

T
t0

ω −2 −1 0 1 2 3

0.4 0.00 0.03 0.34 0.35 0.19 0.07 0.02
0.4 0.05 0.03 0.34 0.34 0.18 0.07 0.02
0.6 0.00 0.06 0.30 0.33 0.19 0.08 0.02
0.6 0.05 0.06 0.30 0.33 0.19 0.08 0.02
0.8 0.00 0.09 0.27 0.30 0.19 0.09 0.03
0.8 0.05 0.09 0.27 0.30 0.19 0.09 0.03
1.0 0.00 0.10 0.25 0.28 0.19 0.09 0.04
1.0 0.05 0.10 0.25 0.28 0.19 0.10 0.04
1.2 0.00 0.11 0.23 0.26 0.19 0.10 0.04
1.2 0.05 0.11 0.23 0.26 0.19 0.10 0.04
1.4 0.00 0.12 0.21 0.24 0.19 0.11 0.05
1.4 0.05 0.12 0.21 0.24 0.19 0.11 0.05
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VI. SPECTRAL FUNCTIONS AT T = 0:

ADDITIONAL RESULTS

Spectral functions and integrated spectral weights at
T = 0 for k = 0 are shown in Fig. 2 of the main text.
In Figs. S16 - S18, we show the results for additional
momenta. We note that the integrated spectral weight
was calculated without broadening, using the numerical
scheme described in Sec. X. The spectral functions are
shown with a small Lorentzian broadening η,

Aη(ω) =
1

π

Z

∞

−∞

dν
ηA(ν)

η2 + (ω − ν)2
, (S26)

We see that there is a very good agreement between
DMFT and HEOM/ED results. In every regime where
HEOM was implemented, we checked that the results
were well converged with respect to the lattice size N
and the maximum hierarchy depth D. These values are
shown in Table S3.

We note that the HEOM/ED method imposes the peri-
odic boundary conditions on a finite lattice. This means
that the HEOM/ED spectral functions are available only
for a discrete values of momenta, unlike the DMFT which
is calculated in the thermodynamical limit. Results for
additional k-values are obtained using twisted boundary
conditions.
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FIG. S16. Integrated spectral weight at T = 0 with no
broadening. The insets show spectral functions with η = 0.05
Lorentzian broadening. Different panels have the following
values of the momenta: (a) k = 8π

25
, (b) k = π

4
, (c) k = π

4
,

(d) k = π

3
.
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FIG. S17. Integrated spectral weight at T = 0 with no
broadening. The insets show spectral functions with η = 0.05
Lorentzian broadening. Different panels have the following
values of the momenta: (a) k = 16π

25
, (b) k = 3π

4
, (c) k = 3π

4
,

(d) k = 2π

3
.
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FIG. S18. Integrated spectral weight at T = 0 with no
broadening. The insets show spectral functions with η = 0.05
Lorentzian broadening. Every panel is calculated for k = π.

TABLE S3. Lattice size N and the maximum hierarchy
depth D used in the HEOM calculations which correspond
to Figs. S16-S18 and Fig. 2 from the main text.

Parameters N D

ω0 = 1 g = 1 10 6

ω0 = 1 g =
√
2 8 7

ω0 = 3 g =
√
12 6 9
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VII. SPECTRAL FUNCTIONS AT T > 0:

ADDITIONAL RESULTS

Spectral functions for k = 0 and k = π, shown in Fig. 3
of the main text, are supplemented with the results for
different k in Fig. S19. Overall, the agreement of DMFT
and HEOM/ED spectra is very good which confirms that
the nonlocal correlations are not pronounced. Results for
different temperatures are shown in Figs. S20 and S21.
We checked that the HEOM results are well converged
with respect to lattice size N and maximum hierarchy
depth D. The values of N and D, used in the calcula-
tions, are shown in Table S4.

TABLE S4. Lattice size N and the maximum hierarchy
depth D used in the HEOM calculations which correspond
to Figs. S19 - S21 and Fig. 3 from the main text.

Parameters N D

ω0 = 1 g = 1 T = 0.7 10 6

ω0 = 1 g = 1 T = 1 10 6

ω0 = 1 g =
√
2 T = 0.4 8 8

ω0 = 1 g =
√
2 T = 0.6 8 7

ω0 = 1 g =
√
2 T = 0.8 8 7

ω0 = 1 g = 2 T = 0.4 4 17

ω0 = 3 g =
√
12 T = 1 6 9

It is common to present the spectral functions as color
plots in the k−ω plane. In Fig. S22 we show the DMFT
color plot for parameters as in Figs. S19 - S21. For com-
parison purposes, in Fig. S23 we also show the DMFT
color plot for the same parameters as in the finite-T
Lanczos results from Fig. 2 of Ref. [S11]. Small differ-
ence in DMFT vs. Lanczos method color plots is due to
the more pronounced peaks in the DMFT spectra.
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FIG. S19. HEOM, DMFT, SCMA and ED spectral functions
for different parameters. On the left panels π/4 ≤ k ≤ π/3,
whereas π/2 ≤ k ≤ 3π/4 on the right. The integrated spec-
tral weight is presented in the insets without broadening. In
panels (g) and (h) Lorentzian broadening with η = 0.05 is
used for all spectral functions, while only ED is broadened in
(e) and (f) using the same η.
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FIG. S20. HEOM, DMFT, SCMA and ED spectral func-
tions for different parameters. On the left panels k = 0,
whereas k = π on the right. The integrated spectral weight
is presented in the insets without broadening. The Lorentzian
broadening with η = 0.05 is used only for ED spectral func-
tions.
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FIG. S21. HEOM, DMFT, SCMA and ED spectral functions
for different parameters. On the left panels π/4 ≤ k ≤ π/3,
whereas π/2 ≤ k ≤ 3π/4 on the right. The integrated spec-
tral weight is presented in the insets without broadening.
The Lorentzian broadening with η = 0.05 is used only for
ED spectral functions.
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FIG. S22. The DMFT spectral functions Ak(ω) for param-
eters as in Figs. S19 - S21. The same color coding is used in
all plots.
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FIG. S23. The DMFT spectral functions Ak(ω) for param-
eters as in Fig. 2 of Ref. [S11]. The same color coding is used
in all plots.
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VIII. HEOM SELF-ENERGIES

The results for the spectral functions, as well as for
the effective mass and ground state energy, have shown
that the DMFT gives an excellent approximate solu-
tion of 1d Holstein model in the whole parameter space.
This indicates that the self-energy is approximately local
which we explicitly demonstrate in this Section. Since
Σk(ω) = Σ−k(ω) we will show only the results for k ≥ 0.

In Fig. S24 we present the HEOM and DMFT self-
energies in the intermediate coupling regime. Panels (a)
and (b) of Fig. S24 show that the self-energies are nearly
local, whereas the DMFT solution interpolates in be-
tween. The self-energy is approximately local also for
g =

√
2, Fig. S24(c)-(d). There is a visible discrepancy

only at higher momenta, which reflects in a shift of the
spectral functions with respect to the DMFT solution in
Fig. 3(d) of the main text.

The results for the strong coupling are presented in
Fig. S25. The DMFT solution for ImΣ falls to zero
between the peaks, as opposed to the HEOM solution
where such behavior is observed only for the first few
peaks. This is why, for the sake of clarity, the DMFT
self-energy is omitted. This is consistent with Fig. S11
where the HEOM results feature the dips, while DMFT
solution has gaps. Nevertheless, the presented HEOM
results are enough to conclude that the self-energy is
nearly local. This is particularly important conclusion
since these parameters correspond to strongly renormal-
ized effective mass, m∗/m ≈ 10.

The regime close to the atomic limit is investigated in
Fig. S26. Panels (c) and (d) show that the results are
nearly local, but have a kind of stripe pattern, unlike the

4 0 4

2

1

0

Im
k

0

1

2

3

4

5(b)

4 0 4

1

0

1

R
e

k

(a)

DMFT

4 0 4

2

0

R
e

k

(c)

4 0 4 3

2

1

Im
k

(d)

4

3

2

1

0

0=1
g=1
T=0.7

0=1

g= 2
T=0.4

FIG. S24. HEOM and DMFT self-energies for intermediate
coupling.
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FIG. S25. HEOM self-energies for strong coupling. Here
N = 4 and D = 17.
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FIG. S26. Panels (a) and (b) show HEOM and DMFT self-
energies close to the atomic limit ω0 = 3, g =

√
12, T = 1.

Panels (c)-(d) show the same HEOM results as in (a)-(b) but
shifted for different values of momenta k.

DMFT solution which is in thermodynamic limit. This is
here just a consequence of the finite-size effects, as shown
in Fig. S13. As discussed in Sec. IV, even though the
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finite-size effects are visible as stripes in the self-energies,
they will not significantly affect the spectral functions.
This is why we see a very good agreement between the
DMFT and N = 6 HEOM spectral functions in panels
(g) and (h) of Fig. 3 in the main text.

24



IX. CORRELATION FUNCTIONS

Here we present a detailed comparison between QMC,
HEOM and DMFT correlation functions. The QMC cor-
relation function is defined by

Ck(τ) = ⟨ck(τ)c†k⟩T,0, (S27)

where ck(τ) = eτHcke
−τH and 0 ≤ τ ≤ 1/T . In

Sec. XID we proved the following relation

Ck(τ) =

Z

∞

−∞

dω e−ωτAk(ω). (S28)

Eq. (S28) can now be used to check whether the spectral
functions that we calculated using other methods are
consistent with the QMC results. A calculation of the
spectral functions from the QMC data would assume an
analytical continuation which is an ill-defined procedure,
particularly problematic when the spectrum has several
pronounced peaks. Therefore, we have to settle for a
comparison on the imaginary axis.

Fig. S27 shows the imaginary time QMC, DMFT and
HEOM correlation functions and their deviation from
the QMC result, for parameters as in Fig. 4 of the main
text. We see that the deviation is very small, the rel-
ative discrepancy being just a fraction of a percent at
T = 1. The discrepancy between the DMFT and QMC
increases at lower temperatures when the nonlocal cor-
relations are expected to be more important, but it re-
mains quite small even at T = 0.4. As we can see, the
DMFT gives better results at k = 0 than at k = π.

In Fig. S28 we present the correlation function compari-
son over a broad set of parameters. The DMFT, HEOM
and QMC are in excellent agreement, with the relative
discrepancy of the order of one percent for τ ∼ 1/T . The
SCMA results are also included for comparison.

From Eq. (S28) we see that the correlation function un-
evenly treats different frequencies from the spectral func-
tion. Because of the exponential term, it takes into
account low-frequency contributions with much larger
weight. Thus, the correct DMFT and HEOM predictions
about correlation function reveal that the low-frequency
parts of the corresponding spectral functions behave ap-
propriately and fall off fast enough. This is very im-
portant property for calculating quantities where the
low-frequency part gives large contribution to the result,
which would be the case for optical conductivity.

Let us now estimate how much a Gaussian centered at
frequency a,

AG
k (ω) =

W

σ
√
2π

e−
(ω−a)2

2σ2 , (S29)

would contribute to the correlation function. Here W
is the spectral weight and σ is the standard deviation
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FIG. S27. DMFT, HEOM and QMC correlation functions
for ω0 = 1, g =

√
2 at k = 0 and k = π at several tem-

peratures. The right panels show the relative discrepancy
between DMFT and HEOM results with respect to QMC.

of the Gaussian. This could model a tiny peak present
due to the noise, or a real physical contribution. The
corresponding part of the correlation function CG

k can
be singled out since Eq. (S28) is linear in Ak. It can be
evaluated analytically, giving

CG
k (τ) = We

σ
2
τ
2

2 −aτ . (S30)

We see that the spectral weight contributes linearly,
while the position of the delta peak contributes expo-
nentially (note that a can be negative). The width of
the Gaussian σ, as well as the imaginary time τ , are
quadratic inside the exponential. Hence, Eq. (S30) ex-
plicitly shows that precise calculation of the correlation
function requires very accurate spectral functions at low
frequencies. Even a small error or noise can produce a
completely wrong result. Reliable comparison of Ck(τ)
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was made possible only due to the high precision of both
DMFT and HEOM calculations.
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FIG. S28. Comparison of DMFT, HEOM, QMC and SCMA correlation functions over a wide range of parameters. The
HEOM results are not available for the parameters in the last row.
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X. TECHNICAL NOTE: NUMERICAL

CALCULATION OF THE INTEGRATED

SPECTRAL WEIGHT

We describe a numerical scheme for calculating the in-
tegrated spectral weight. Integrated spectral weight is
defined as

Ik(ω) =

Z ω

−∞

Ak(ν)dν, (S31)

where Ak(ν) is the spectral function. Straightforward
numerical integration of Eq. (S31) can sometimes lead
to the conclusion that the spectral sum rule Ik(∞) = 1
is violated. This happens because the numerical repre-
sentation of Ak(ν) on a finite grid does not detect the
possible presence of delta function peaks without intro-
ducing artificial broadening. This is why our numeri-
cal scheme calculates Ik(ω) directly from the self-energy
Σ(ω).

Let us suppose that the self-energy data {Σ0,Σ1...ΣN−1}
are known on a grid {ω0,ω1...ωN−1}. The integrated
spectral weight can then be rewritten as

Ik(ωl) = − 1

π
Im

Z ωl

−∞

dν

ν − Σ(ν)− εk

≈ − 1

π
Im

l−1
X

q=0

Z ωq+1

ωq

dν

ν − Σ(ν)− εk
. (S32)

The delta peaks in Eq. (S32) occur whenever our subin-
tegral function is (infinitely) close to the singularity, i.e.
when ImΣ(ν) → 0− and ν − ReΣ(ν)− εk ≈ 0. These are
most easily taken into account by using the linear inter-
polation of the denominator in Eq. (S32) and evaluating
the integral analytically

Ik(ωl) ≈ − 1

π
Im

l−1
X

q=0

Z ωq+1

ωq

dν

ν − εk −
�

Σq + Σ′

q(ν − ωq)
�

= − 1

π
Im

l−1
X

q=0

1

1− Σ′

q

ln

�

ωq+1 − εk − Σq+1

ωq − εk − Σq

�

,

(S33)

where Σ
′

q = (Σq+1 − Σq)/(ωq+1 − ωq). In the last line
of Eq. (S33) we used that lnx − ln y = ln(x/y), which
holds since ImΣq < 0 (for every q).

In the limit when ∆ωq = ωq+1 − ωq is small, Eq. (S33)
predicts that the contribution which corresponds to the
interval (ωq,ωq+1) is equal to

1

1− Σq+1−Σq

ωq+1−ωq

≈ 1

1− ∂ωΣ
, (S34)

if the interval contains a delta peak, whereas it is

− 1

π
Im

�

∆ωq

ωq − εk − Σq

�

(S35)

otherwise. The analytical result for the contribution of
the delta peak coincides with Eq. (S34), while Eq. (S35)
is exactly the term we would get using the standard Rie-
mann sum. Having in mind that the Riemann sum ap-
proach is completely justified in the absence of delta
peaks, we conclude that the integration scheme pre-
sented in Eq. (S33) is perfectly well-suited for the calcu-
lation of the integrated spectral weight.
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XI. TECHNICAL NOTE: EQUIVALENCE OF

SPECTRAL FUNCTIONS FROM DIFFERENT

DEFINITIONS

Throughout this paper we compared spectral and cor-
relation functions obtained with various methods. Each
method uses different definition of the spectral function.
The purpose of this Section is to show that all of them
are equivalent in the case we are considering, which is a
single electron in a system. We also present the relation
which connects the spectral function with the imaginary-
time correlation function obtained from QMC calcula-
tion.

A. Spectral function from greater Green’s function

In the HEOM method, the most natural starting point
is the greater Green’s function [S12]

G>
k
(t) = −i

D

ck (t) c
†
k

E

T,0
. (S36)

Here ck and c†
k
are the electron annihilation and creation

operators, while

ck (t) = eiHtck (0) e
−iHt.

The notation ⟨. . .⟩T,0 denotes the thermal overage over
the space of states containing zero electrons

⟨x⟩T,0 =

P

p ⟨p|e−Hph/Tx|p⟩
P

p ⟨p|e−Hph/T |p⟩
=

1

Zp

X

p

⟨p|e−Hph/Tx|p⟩ .

(S37)
Here |p⟩ denotes the states containing no electrons and
arbitrary number of phonons, Hph is purely phononic
part of the Hamiltonian and Zp is the phononic partition
function. The spectral function is now defined as

Ak (ω) = − 1

2π
ImG>

k
(ω) , (S38)

where

G>
k
(ω) =

Z

∞

−∞

dt eiωt G>
k
(t) . (S39)

These expressions can be cast into explicit form using
the Lehmann spectral representation (using the basis of
energy eigenstates H|n⟩ = En|n⟩)

G>
k
(t) =

−i

Zp

X

p,e

e−Ep/T eiEpt ⟨p|ck|e⟩ e−iEet ⟨e|c†
k
|p⟩ ,

(S40)
where |e⟩ denotes the states containing one electron and
an arbitrary number of phonons. The spectral function

can now be obtained by taking the Fourier transform of
previous expression and using Eq. (S38)

Ak (ω) =
1

Zp

X

p

e−Ep/T
X

e

δ (ω + Ep − Ee) | ⟨p|ck|e⟩|2 .

(S41)

B. Spectral function from retarded and

time-ordered Green’s function

In the DMFT/SCMA, we can start from the time-
ordered Green’s function [S1] with just a single electron
inserted into the system

Gk(t) = −i⟨Tck(t)c†k⟩T,0. (S42)

As in the case of the greater Green’s function, here we
average only over the phonon degrees of freedom. This
means that (S42) gives nonvanishing contribution only
for t > 0

Gk(t) = −iθ(t)⟨ck(t)c†k⟩T,0. (S43)

In our case of a single electron in the system, this coin-
cides with the retarded Green’s function. Ref [S1] ex-
plains in detail how is this connected to the polaron
impurity problem. Now, the spectral function can be
obtained as

Ak(ω) = − 1

π
ImGk(ω), (S44)

where

Gk (ω) = lim
ε→0+

Z

∞

−∞

dt ei(ω+iε)t Gk (t) . (S45)

Let us now check whether the definitions of spectral func-
tions from Secs. XIA and XIB are in agreement with
one another. This can be easily checked by utilizing the
Lehmann spectral representation

Gk (t) =
−iθ (t)

Zp

X

p,e

e−Ep/T ei(Ep−Ee)t | ⟨p|ck|e⟩|2 .

(S46)
The spectral function is now obtained by performing
the Fourier transform, using Eq. (S44) and the Plemelj-
Sokhotski theorem Im limε→0+

1
x+iε = −πδ (x). We ob-

tain the result which coincides with (S41). Furthermore,
these results also coincide with Eq. (S23). This confirms
that all of these approaches are consistent with one an-
other.
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C. Spectral function from grand canonical

ensemble

It is also quite common to work within the grand canoni-
cal ensemble, not restricting ourselves explicitly to a sin-
gle electron in a system. Here we use the usual definition
of the retarded Green’s function

Gk (t) = −iθ (t)
Dn

ck (t) , c
†
k

oE

T
, (S47)

where

ck(t) = eiKtcke
−iKt, (S48)

K = H − µN and N being the electron number oper-
ator. The notation ⟨. . . ⟩T denotes the average value in
the grand canonical ensemble and {, } is the anticommu-
tator. The spectral function is obtained by substituting
Gk (t) from (S47) into Eqs. (S45) and (S44). A more
explicit form can be obtained using the Lehmann spec-
tral representation (using the basis of energy eigenstates
K|n⟩ = Kn|n⟩)

Ak (ω) =
1

Z

X

n1n2

e−βKn1

h

| ⟨n1|ck|n2⟩|2 δ (Kn1 −Kn2 + ω)

+
�

�

�
⟨n1|c

†
k
|n2⟩

�

�

�

2

δ (Kn2
−Kn1

+ ω)

�

,

(S49)

where Z = Tr
�

e−βK
�

is the partition function. Let us
now consider what happens in the case we are interested
in, which is the zero density limit. This corresponds to
µ → −∞.

We note first that the dominant terms in the partition
function Z in this limit are from the states with zero
electrons

Z =
X

n

e−βKn =
X

p

e−βKp = Zp. (S50)

The states containing a larger number of electrons in-
troduce an additional term eβµN which is exponentially
small when µ → −∞. Consequently, we have shown that
Z from Eq. (S49) is the same as Zp from Eq. (S41) in
the limit µ → −∞.

Next, we consider the sum in Eq. (S49). Due to the
e−βKn1 factor, the dominant contribution to the sum
over n1 comes from the states |n1⟩ containing zero elec-
trons. The states containing a larger number of electrons
introduce an additional term eβµN which is exponentially
small when µ → −∞. Therefore, the sum over n1 in Eq.
(S49) can be replaced by a sum over p, where |p⟩ denote
the states containing no electrons. The second term con-
taining ⟨n1|c

†
k
|n2⟩ in Eq. (S49) is then zero, while the

first term containing ⟨n1|ck|n2⟩ is different from zero

only when |n2⟩ is the state containing one electron. The
sum in Eq. (S49) then reads as

Ak (ω) =
1

Zp

X

p,e

e−βKp | ⟨p|ck|e⟩|2 δ (Kp −Ke + ω) ,

(S51)
We further note that the last equation can be also ex-
pressed in the form

Ak (ω − µ) =
1

Zp

X

p,e

e−βEp | ⟨p|ck|e⟩|2 δ (Ep − Ee + ω) .

(S52)
The right hand side in previous equation coincides with
Eq. (S41). This proves that the spectral function within
the grand canonical formalism needs to be considered in
the limit µ → −∞ and also the result needs to be shifted
Ak(ω) → Ak(ω−µ) if we want our result to coincide with
Eq. (S41).

All of these results give us to flexibility to work within
different formalisms knowing that all of them give the
same result. Hence, we proved that the definitions of
spectral functions within HEOM, DMFT, SCMA and
ED are all in agreement.

D. Relation between the spectral function and

imaginary-time correlation function

In QMC we calculate the quantity

Ck(τ) = ⟨ck(τ)c†k⟩T,0, (S53)

where

ck(τ) = eτHcke
−τH . (S54)

Again, using the Lehmann spectral representation in
Eq. (S53) we get

Ck(τ) =
1

Zp

X

p,e

e−βEp | ⟨p|ck|e⟩|2eτ(Ep−Ee). (S55)

By performing straightforward integration, one then
finds from Eqs. (S41) and (S55)

Ck(τ) =

Z

∞

−∞

dω e−ωτAk(ω). (S56)

This proves Eq. (S28), which connects the correlation
functions from QMC with spectral functions, obtained
from other methods.
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