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Abstract
This work presents swarm parameters of electrons (the bulk drift velocity, the bulk longitudinal
component of the diffusion tensor, and the effective ionization frequency) in C2Hn, with n=2, 4,
and 6, measured in a scanning drift tube apparatus under time-of-flight conditions over a wide range
of the reduced electric field, 1 Td�E/N�1790 Td (1 Td= 10−21 Vm2). The effective steady-
state Townsend ionization coefficient is also derived from the experimental data. A kinetic
simulation of the experimental drift cell allows estimating the uncertainties introduced in the data
acquisition procedure and provides a correction factor to each of the measured swarm parameters.
These parameters are compared to results of previous experimental studies, as well as to results of
various kinetic swarm calculations: solutions of the electron Boltzmann equation under different
approximations (multiterm and density gradient expansions) and Monte Carlo simulations. The
experimental data are consistent with most of the swarm parameters obtained in earlier studies. In
the case of C2H2, the swarm calculations show that the thermally excited vibrational population
should not be neglected, in particular, in the fitting of cross sections to swarm results.

Supplementary material for this article is available online

Keywords: electron swarm parameters, drift tube measurements, kinetic theory and computations

1. Introduction

Acetylene (C2H2), ethylene (C2H4) and ethane (C2H6) are
relatively simple hydrocarbons useful in specialized applica-
tions such as plasma-assisted combustion [1–6], the fabrica-
tion of diamond-like films [7], graphene and carbon
nanostructures [8], and particle detectors [9]. They are also
involved in various chemical reactions in fusion plasmas [10],
the Earth’s atmosphere [11] and in planetary atmospheric
chemistry [12].

Knowledge on both electron collision cross sections and
electron swarm parameters is needed for the quantitative
modeling of plasmas. However, with the exception of the drift
velocity, which was measured e.g. in [13–17] for C2H2, in
[13, 16–23] for C2H4, and in [13, 15–17, 19, 24, 25] for
C2H6, further experimental transport and ionization coeffi-
cients have less frequently been reported for these hydro-
carbon gases. Measurements of the longitudinal component of
the diffusion tensor under time-of-flight (TOF) conditions
were additionally reported in [14] forC2H2, [18–20] for
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C2H4, and [19, 24] for C2H6. Hasegawa and Date [13] also
determined the effective ionization coefficient by the steady-
state Townsend (SST) method for seven organic gases
including acetylene, ethylene, and ethane. In addition to the
drift velocity for C2H6, Kersten [25] measured the effective
ionization coefficient under TOF conditions for a narrow
range of the reduced electric field, E/N. Furthermore, mea-
sured data for the effective SST ionization coefficient have
been reported e.g. in [26] for C2H2, in [26, 27] for C2H4, and
in [28–30] for C2H6.

The aim of this work is (i) to determine the electron
transport and ionization coefficients in C2H2, C2H4 and C2H6

gases in a wide range of E/N, (ii) to compare these results
with those obtained in earlier investigations of these gases,
and (iii) to compare the experimental data with those obtained
from kinetic calculations and simulations using up-to-date
electron collision cross section sets.

The workflow of our studies can be followed with the aid
of figure 1. The red arrows show the path to the ‘Experimental
transport coefficients’ including the effective ionization fre-
quencies. The first step along this path consists of the

measurements carried out with our scanning drift tube appa-
ratus. This is a pulsed system, which is described in section 2.
It records current traces generated by electrons collected from
clouds that arrive after having flown over the drift region. The
results of the experiments are the so-called ‘swarm maps’
which are collections of these current traces for a number of
drift gap length values. The swarm parameters are derived
from the measured swarm maps via a fitting procedure that
assumes that the current measured in the experiment is pro-
portional to the electron density. For the fitting we use the
theoretical form of the electron density in the presence of an
electric field pointing in the −z direction and under TOF
conditions:
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This is the solution of the spatially one-dimensional con-
tinuity equation and represents a Gaussian pulse drifting
along the z direction with the bulk drift velocity, W, and
diffuses along the center-of-mass according to the bulk
longitudinal component of the diffusion tensor DL. Here n0 is
the electron density at z=0 at time t=0, and νeff is the
effective ionization frequency. From the fitting procedure we
obtain W, DL, and νeff. The application of the relation [31]

⎛
⎝⎜

⎞
⎠⎟ ( )

a n n n
= + -

W W D1

2 2
2

eff eff eff

2
L

eff

allows us to derive the effective SST ionization coefficient,
αeff, as well.

The assumption that the measured current is proportional
to the electron density is, in fact, an approximation, due to
two reasons. First, the measured current is generated by
moving charges in the detector of the system (see later). In
our previous work [32] we have found that the detection
sensitivity depends on the gas pressure and the collision cross
sections, which both influence the free path of the electrons.
This means that any variation of the energy distribution along
the z direction in the electron cloud may results in a distortion
of the detected pulse and a deviation from the analytical fit-
ting function (1) assumed. Second, the measured current is
proportional to the electron flux consisting of the advective
and diffusive component. The advective component is pro-
portional to the electron density, where the coefficient of
proportionality is the flux drift velocity, and the diffusive
component is proportional to the gradient of the electron
density. Using Ramo’s theorem [33], it can be shown that for
the experimental conditions considered in the present work,
the contribution of the diffusive component to the current is
negligible compared to the contribution of the advective
component, except in the early stage of the swarm develop-
ment when the spatial gradients of the electron density are
more significant.

The errors introduced by the first effect mentioned above
can be quantified by a procedure, which is marked by blue
arrows in figure 1. We carry out a (Monte Carlo (MC))
simulation of the electrons’ motion in the experimental sys-
tem. This simulation generates the same type of swarm maps,

Figure 1. Graphical representation of the work reported in this
article. The red arrows indicate the path from the measurements to
the ‘Experimental’ transport coefficients and ionization frequencies
via fitting of the measured ‘swarm maps’. Another ‘Corrected’ set of
experimental data is also derived based on a correction procedure
which is aided by simulations of the experimental setup and related
data acquisition (indicated by blue arrows) and by kinetic
computations of the swarm parameters. The results of these
calculations (‘Computed’ transport coefficients) are also compared to
the experimental data (green arrows).
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which are obtained in the experiments, and a set of swarm
parameters is derived via the same fitting procedure as in the
case of experimental swarm maps. The transport coefficients
and ionization frequencies obtained in this way are compared
with the ‘Computed’ ones, originating from kinetic swarm
calculations. We note that (i) this comparison does not
include any experimental data, (ii) the system’s simulations
use the same cross section set as in the kinetic swarm cal-
culations, and (iii) uncertainties of the collision cross sections
used have little influence on the outcome of the comparison of
the parameter sets obtained by swarm calculations and
simulations of the experimental system. The result of this
comparison is gas- and E/N-dependent correction factors that
are applied to the experimental data, providing sets of ‘Cor-
rected’ experimental transport and ionization coefficients.
Details are given below in section 4.

The two (raw and corrected) sets of experimental results
are compared with swarm parameters derived from kinetic
calculations based on solutions of the electron Boltzmann
equation (BE) and on MC simulations as described in detail in
section 3. The application of these different approaches
allows us to mutually verify the accuracy of the different
methods and test the assumptions used by each method. The
‘flow’ of this process is indicated by the green arrows in
figure 1.

The manuscript is organized as follows: in section 2 we
give a concise description of our experimental setup. A dis-
cussion of the various computational methods and the
resulting swarm parameters is presented in section 3, and
section 4 describes the correction procedure applied to the
experimental data. It is followed by the discussion of the
results in section 5. This section comprises the presentation of
the present experimental results for each gas and their com-
parison with previously available measured data as well as the
comparison between transport parameters and ionization
coefficients computed using the various numerical methods
and the present experimental data. Section 6 gives our con-
cluding remarks.

2. Experimental system

The experiments are based on a ‘scanning’ drift tube appa-
ratus, of which the details have been presented in [34]. This
apparatus has already been applied for the measurements of
transport and ionization coefficients of electrons in various
gases: argon, synthetic air, methane, deuterium [35] and
carbon dioxide [36]. In contrast to previously developed drift
tubes, our system allows for recording of ‘swarm maps’ that
show the spatio-temporal development of electron clouds
under TOF conditions. The simplified scheme of our exper-
imental apparatus is shown in figure 2.

The drift cell is situated within a vacuum chamber made
of stainless steel. The chamber can be evacuated by a tur-
bomolecular pump backed with a rotary pump to a level of
about 1×10−7 mbar. The pressure of the working gases
inside the chamber is measured by a Pfeiffer CMR 362
capacitive gauge.

Ultraviolet light pulses (1.7 μJ, 5 ns) of a frequency-
quadrupled diode-pumped YAG laser enter the chamber via a
feedthrough with a quartz window and fall on the surface of a
Mg disk used as photoemitter. This disk is placed at the center
of a stainless steel electrode with 105 mm diameter that serves
as the cathode of the drift cell. The detector that faces the
cathode at a distance L1 consists of a grounded nickel mesh
(with =T 88% ‘geometric’ transmission and 45 lines/inch
density) and a stainless steel collector electrode that is situated
at a distance of L2=1 mm behind the mesh.

Electrons emitted from the Mg disk fly towards the col-
lector under the influence of an accelerating voltage that is
applied to the cathode. This voltage is established by a BK
Precision 9185B power supply. Its value is adjusted according
to the required E/N for the given experiment and the actual
value of the gap (L1) during the scanning process, where E/N
is ensured to be fixed. The current of the detector system is
generated by the moving charges within the mesh-collector
gap: according to the Shockley–Ramo theorem [33, 37, 38]
the current induced by an electron moving in a gap between
two plane-parallel electrodes with a velocity vz perpendicular
to the electrodes is I=−e0vz/L, where −e0 is the charge of
the electron and L is the distance between the electrodes
(L=L2 in our case). Accordingly, in our setting the mea-
sured current at a given time t is

( ) ( ) ( )å=I t c v t , 3
k

z k,

where c is a constant. The summation goes over all electrons
being present in the volume bounded by the mesh and the
collector at time t, and vz k, is the velocity component of the kth
electron in z direction.

Electrons entering the detector region (the gap between
the nickel mesh and the collector) contribute to the mea-
sured current until their first collisions with the gas mole-
cules, as these collisions randomize the angular distribution
of their velocities. Therefore, the free path of the electrons
plays a central role in the magnitude of the current. For
conditions when this free path is longer than the detector
gap, the electron sticking property of the collector surface
plays a crucial role too, as reflected electrons generate a
current contribution with an opposite sign with respect to
that generated by the ‘incoming’ electrons. According to the
above effects, which have been explored to some details in
[32], the sensitivity of the detector changes with the nature
of the gas (magnitudes and energy dependence of the
electron collision cross sections), the pressure, as well as
the energy distribution of the electrons. This dependence is
the primary reason which calls for a correction of the
measured transport and ionization coefficients as discussed
in more details in section 4.

The collector current is amplified by a high speed current
amplifier (type Femto HCA-400M) connected to the collector,
with a virtually grounded input, and is recorded by a digital
oscilloscope (type Picoscope 6403B) with sub-ns time reso-
lution. Data collection is triggered by a photodiode that senses
the laser light pulses. The low light pulse energy necessitates
averaging over typically 20 000–150 000 pulses. The
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Figure 2. Simplified schematic of the scanning drift tube apparatus.

Figure 3. (a)–(c) Swarm maps recorded in C2H6 for different values of E/N, as indicated. (d) Vertical cuts of the swarm map of (b), which are
the measured current traces at the drift length values given in the legend. The pulses have nearly Gaussian shapes. The ‘shift’ of the pulses
with increasing drift length (L1) is the manifestation of the drift, while their widening is due to (longitudinal) diffusion. As ionization in C2H6

is weak at E/N=100 Td, the amplitude of the pulses decreases with increasing L1 due to the widening of the pulse.
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experiment is fully controlled by a computer using LabView
software.

During the course of the measurements current traces are
recorded for several values of the gap length. The grid and the
collector are moved together by a step motor connected to a
micrometer screw mounted via a vacuum feedthrough to the
vacuum chamber. The distance between the cathode and the
mesh, i.e. the ‘drift length’, can be set within a range of
L1=(7.8–58.3)mm. Here, we use 53 positions within this
domain.

Sequences of the measured current traces are subse-
quently merged to form ‘swarm maps’, which provide
information about the spatio-temporal development of the
electron cloud. Figures 3(a)–(c) illustrates such swarm maps,
obtained in experiments on C2H6, for different values of the
reduced electric field. The qualitative behavior of the swarm
is directly seen in these pictures: the slope of the region with
appreciable current indicates the drift of the cloud, the
widening of this region is related to (longitudinal) diffusion,
while an increasing amplitude (as seen in panel (c)) is an
indication of ionization. Figure 3(d) displays vertical ‘cuts’ of
the map shown in panel (b), for E/N=100 Td. These cuts
are, actually, the current traces recorded in the measurements
at different gap length values.

3. Simulation of the electron swarm

The experimental studies of the electron transport are sup-
plemented by numerical modeling and simulation. In addition
to MC simulations, three different methods are applied to
solve the BE for electron swarms in a background gas with
density N and acted upon by a constant electric field,


E : a

multiterm method for the solution of the time-independent BE
under spatially homogeneous and SST conditions, respec-
tively, and the Sn method applied to a density gradient
expansion of the electron velocity distribution function
(EVDF). They differ in their initial physical assumptions and
in the numerical algorithms used and provide different
properties of the electron swarms

Details of the different BE methods, as well as main
aspects of the MC simulation have been discussed in [36],
and we just provide a brief discussion below.

In the following, the electric field is parallel to the z axis
and points in the negative direction,

 
= -E Eez, and θ is the

angle between

v and


E . Moreover, we assume that the spatial

and time scales, respectively, exceed the energy relaxation
length and time, such that the transport properties of the
electrons do not change with time t and distance z any longer.
That is, the electrons have reached a hydrodynamic regime
characterizing a state of equilibrium of the system where the
effects of collisions and forces are dominant and the EVDF,

( ) 
f r v t, , , has lost any memory of the initial state.

We base our studies on the electron collision cross
section sets from Song et al [39] for acetylene, Fresnet et al
[40] for ethylene and Shishikura et al [24] for ethane. The
cross sections for acetylene and ethane were extended to

electron kinetic energies, ò, of 1000 eV by fitting a function
with a ( ) log dependence, according to the Born-Bethe
high-energy approximation, to the tail of the original cross
sections.

The C2H2 data set includes the momentum transfer cross
section for elastic collisions, three vibrational cross sections
for single quanta excitation of modes v1/v3, v4/v5 and v2 (the
first two unresolved) and one vibrational cross section for two
quanta excitation of v4+v5, three electronic excitation cross
sections, the total electron-impact ionization cross section and
the total dissociative electron attachment cross section for
C2H2 leading to the formation of C2H

−, H− and -C2 ,
respectively.

The C2H4 data set includes the momentum transfer cross
section, two lumped vibrational cross sections with thresholds
at 0.118 and 0.365 eV, three electronic excitation cross
sections, the total electron ionization cross section and a
collision cross section for electron attachment.

Finally, the C2H6 set of collision cross sections includes
the momentum transfer cross section, three lumped vibra-
tional cross sections with thresholds at 0.112, 0.167 and
0.36 eV, two electronic excitation cross sections, the total
electron ionization cross section and an electron attachment
cross section.

All of the above cross section sets were developed
neglecting the population of thermally excited vibrational
states and superelastic processes. The implications of this
approximation are discussed in section 5.4.

3.1. BE methods

3.1.1. Multiterm method for spatially homogeneous
conditions. In this approach, to describe ( ) 

f r v t, ,
(abbreviated by BE 0D in the figures shown in section 5),
we consider that the EVDF is spatially homogeneous (0D)
and the electron density changes exponentially in time
according to ( ) ( )nµn t texpe eff at the scale of the swarm.
Here, the effective ionization frequency n n n= -eff i a is the
difference of the ionization (νi) and attachment (νa)
frequencies. In this case we can neglect the dependence of f
on the space coordinates and write the EVDF under
hydrodynamic conditions as

( ) ˆ ( ) ( ) ( ) 
=f v t F v n t, . 4e

The corresponding microscopic and macroscopic properties
of the electrons are determined by the time-independent,
spatially homogeneous BE for ˆ ( )F v . As this distribution is
symmetric around the field direction, it can be expanded with
respect to the angle θ in Legendre polynomials ( )qP cosn with
n�0. Substituting this expansion in the BE leads to a
hierarchy of partial differential equations for the coefficients
ˆ ( )f vn of this expansion. The resulting set of equations with
typically eight expansion coefficients is solved employing a
generalized version of the multiterm solution technique for
weakly ionized steady-state plasmas [41] adapted to take into
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account the ionizing and attaching electron collision
processes.

Using the computed expansion coefficients ˆ ( )f vn , we
obtain the effective ionization frequency, νeff, and the flux
drift velocity

( )m= -w E, 5

where μ is the flux mobility. Explicit formulas of these
transport parameters obtained by the BE 0D method can be
found in [36].

3.1.2. Multiterm method for SST conditions. This approach to
describe the EVDF (abbreviated by BE SST in the figures
shown in section 5) takes into account that ( ) 

f r v t, , has
reached SST conditions so that the mean transport properties
of the electrons are time-independent, do not vary with
position any longer, and the electron density assumes an
exponential dependence on the distance according to

( ) ( )aµn z zexpe eff . Thus, we can neglect the dependence of
f on time and write the EVDF under SST conditions as

( ) ˜ ( ) ( ) ( )( ) 
=f z v F v n z, , 6S

e

where the upper index (S) denotes SST conditions. In
accordance with the procedure described in section 3.1.1,
the corresponding microscopic and macroscopic properties of
the electrons are determined by the steady-state, spatially
homogeneous BE for ˜ ( )( ) F vS . Since this distribution is again
symmetric around the direction of the field, it can be
expanded in Legendre polynomials ( )qP cosn with n�0.
The substitution of this expansion into the BE leads to a set of
partial differential equations for the expansion coefficients
˜ ( )( )
f vn

S
, which is solved efficiently by a modified version

of the multiterm method [41] adapted to treat SST
conditions [36].

In this approach, the effective SST ionization coefficient
is directly given by

( )
( )

( )a
n

=
v

. 7eff
eff
S

m
S

Here, ( )neff
S and ( )vm

S are the effective ionization frequency and
mean velocity at SST conditions, respectively, which are
calculated by means of the computed expansion coefficients
˜ ( )( )
f vn

S [36].

3.1.3. Density gradient representation. When ionization or
attachment processes become important in TOF experiments,
the electron swarm can no longer be considered homogeneous
and the electron density gradients become significant.

This approach to describe the electron swarm at
hydrodynamic conditions (labeled as BE DG below) is based
on an expansion of the EVDF with respect to space gradients
of the electron density ne, of consecutive order. In this case, f
depends on ( )

r t, only via the density ( )
n r t,e and can be

written as an expansion on the gradient operator ∇ according

to

( ) ( ) ( ) ( ) ( )( )    å= -
=

f r v t F v n r t, , , , 8
j

j
j

j

0
e

where the expansion coefficients ( )( ) F vj are tensors of order j
depending only on


v , and  j indicates a j-fold scalar product

[42]. Note that the first coefficient ( )( ) F v0 corresponds to the
function ˆ ( )F v above, for spatially homogeneous conditions
(see section 3.1.1).

The expansion coefficients F( j) of order j are obtained
from a hierarchy of equations for each component, which all
have the same structure and depend on the previous orders. In
particular, to obtain the transport coefficients measured in
TOF experiments, a total of five equations are required,
namely for the expansion coefficients F(0), ( )Fz

1 , ( )FT
1 , ( )Fzz

2 and
( )FTT
2 . In the present study, these equations are solved using a

variant of the finite element method given in [43] in a
( )qv, cos grid.

From the above expansion coefficients we obtain two sets
of transport coefficients: the flux coefficients, neglecting the
contribution of non-conservative processes and equivalent to
those obtained by the BE 0D approach described in
section 3.1.1, and the bulk coefficients including a contrib-
ution from ionization and attachment. The latter are, the bulk
drift velocity

˜ ( ) ( ) ( )( )  
ò n= +W w v F v vd 9zeff

1

with ˜ ( ) [ ( ) ( )]n s s= -v vN v veff
i a where σi and σa are,

respectively, the ionization and attachment cross sections;
and the longitudinal and transverse components of the
diffusion tensor

( ) ˜ ( ) ( ) ( )( ) ( )   
ò ò n= +D v F v v v F v vd d , 10z z zzL

1
eff

2

{ }( ) ˜ ( ) ( ) ( )( ) ( )   
ò ò n= +D v F v v v F v v

1

2
d d . 11T T TTT

1
eff

2

Note that the first terms of the right-hand side of
equations (9)–(11) are the flux component. Further details can
be found in [36].

The effective or apparent Townsend ionization coeffi-
cient αeff, as determined in SST experiments, can be
computed from the TOF parameters using equation (2).

3.2. MC technique

In the MC simulation technique, we trace the trajectories of
the electrons in the external electric field and under the
influence of collisions. As the degree of ionization under the
swarm conditions considered here is low, only electron-
background gas molecule collisions are taken into account.
The motion of the electrons with mass me between collisions
is described by their equation of motion

( )
 
= -m

r

t
e E

d

d
. 12e

2

2 0

The electron trajectories between collisions are determined by
integrating this equation numerically over time steps of
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duration Δt ranging between 0.5 and 2.5 ps for the various
conditions. While this procedure is totally deterministic, the
collisions are handled in a stochastic manner. The probability
of the occurrence of a collision is computed after each time
step, for each of the electrons, as

( ) [ ( ) ] ( )nsD = - - DP t N v t1 exp . 13T

The occurrence of a collision is determined by comparing P
(Δt) with a random number with a uniform distribution over
the (0, 1) interval. The type of collision is also selected in a
random manner taking into account the values of the cross
sections of all possible processes at the energy of the colliding
electron. For a more detailed description see [36].

The transport parameters (labeled as MC below) are
determined as
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respectively, for the bulk and flux drift velocities, where Ne(t)
is the number of electrons in the swarm at time t. The bulk
longitudinal and transverse components of the diffusion ten-
sor are
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and the effective ionization frequency is given by

( ( )) ( )n =
N t

t

dln

d
. 18eff

e

Furthermore, the effective SST ionization coefficient αeff

is also calculated according to relation (2) using (14), (16)
and (18).

All results of calculated electron swarm parameters pre-
sented in this work were additionally verified by independent
MC simulations and calculations based on multi-term solu-
tions of the electron BE developed by the Belgrade group
[44, 45]. For clarity, these results are not included in the
figures shown in the next sections, but are available from the
authors on request.

As it was already mentioned in the Introduction and is
discussed in somewhat more detail in the next section, MC
simulations are also applied in the simulation of the electrons’
motion in the experimental system, assisting a correction
procedure of the experimental data.

4. Correction of the experimental results

To quantify the effect caused by the variations of the electron
energy distribution along the swarm, that in turn makes the
detection sensitivity time-dependent, MC simulations of the

experimental system have been carried out for most of the sets
of conditions (p, E/N) in the experiments. These simulations
generate swarm maps, similarly to those measured, and a set
of swarm parameters is derived from these maps via exactly
the same fitting procedure as in the case of the experimental
data. The transport parameters and ionization frequencies
obtained from the simulations of the setup are compared with
those obtained from kinetic swarm calculations based on the
solution of the electron BE, where the same electron collision
cross section sets are used. Good agreement between the two
sets of swarm parameters implies that the assumption made in
the fitting of the experimental data, i.e. the use of the theor-
etical form (1) of ne(z, t) as a fit to the measured data, is
acceptable. In contrast, strong deviations indicate that this
assumption is not applicable for the given condition. We note
that no experimental data are involved in this procedure.

In these MC simulations the electrons leaving the cath-
ode had an initial energy of 1 eV, which is a realistic value
considering the photon energy and the work function of the
cathode material. These electrons were started with a uniform
angular distribution over the positive half sphere. The sensi-
tivity of the computed swarm maps on this latter assumption
is not expected to be strong because the collisions quickly
randomize the initial directions of the electrons. As in these
simulations the motion of the electrons in the whole exper-
imental system is described, the dependence of the detector’s
sensitivity on the energy of the electrons entering the mesh-
collector gap is ‘automatically’ included as the detector cur-
rent generated by these electrons is computed directly.

Results of this procedure for each of the gases and for the
whole domain of E/N are presented in figure 4. The panels
correspond to the swarm parameters W, DL, νeff, and αeff,
respectively, and show the differences of each parameter
derived by the simulation of the experimental system with
respect to its theoretical value obtained from the BE solution.
That is, if we denote the values obtained from the simulation
of the experimental system by S, and those obtained from the
BE solution by T, the quantity depicted in figure 4 is (S−T)/
T. The set of ‘Corrected’ transport coefficients can thus be
obtained from the experimentally measured values (Xcorr and
Xexp, respectively) as = =

+ -X X
X T

Scorr
1

expS T

T

exp .

In the case of the bulk drift velocity (figure 4(a), the error
is in the few % range for most of the conditions, and it
approaches ≈10% at the highest E/N values. This indicates
that the determination of the bulk drift velocity values from
the experimental data is quite reliable.

The situation turns out to be much worse for the long-
itudinal component of the diffusion tensor (figure 4(b)). Here,
the error ranges from ≈−40% to ≈+80%, depending on
E/N. The DL data can be considered to be acceptably accurate
at intermediate E/N values only. The much larger error of DL

with respect to that of W can be explained by the fact that the
distribution of the average electron energy along the swarm is
inhomogeneous. In the close vicinity of the maximum of the
spatial distribution of the electron density, the variation of the
average energy along the swarm is comparatively small.
However, by moving away from this maximum, the spatial
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variations of the average energy along the swarm increase. As
the drift velocity is primarily determined by the position of
the maximum of the spatial profile of the electron density
while the diffusion is predominantly determined by the width
of this distribution, it is clear that the width of the distribution
is more affected by non-uniform sensitivity of the detector
with respect to the average electron energy than the position
of the maximum.

Regarding the effective ionization frequency (figure 4(c))
and the strongly related SST ionization coefficient
(figure 4(d)), we observe small errors at high E/N values,
where ionization is appreciable. The error, on the other hand,
grows high when E/N approaches ≈100 Td, where both νeff
and αeff drop rapidly.

5. Results and discussion

The electron swarm parameters have been measured in a wide
range of the reduced electric field, between 1 and 1790 Td at a
gas temperature T of 293 K. The pressure of the gases ranged
between 5 and 1000 Pa in the measurements. The actual value
for any given E/N was set to optimize the measured current
of the drift cell, while paying attention that the corresponding
voltage remains below the breakdown threshold over the
whole range of the electrode distances covered during the
scanning process.

In the following, results of our measurements are pre-
sented for the three hydrocarbon gases C2H2, C2H4, and

C2H6. Besides the transport parameters and ionization coef-
ficients resulting from the experiments via the fitting proce-
dure described in section 1, we also present the corrected
values of these data resulting from the procedure introduced
in section 4. For each swarm parameter, we compare the
present measured data with previous experimental results and
with the results of the kinetic computations based on the
solution of the electron BE or on MC simulations, obtained
with the selected electron collision cross sections. The results
for the flux parameters obtained by methods BE 0D, BE DG
and MC overlap, and so do the bulk parameters obtained from
the BE DG and MC methods. Our experimental results for
each transport parameter and gas (uncorrected and corrected
values) are available in the supplementary data file (online at
stacks.iop.org/PSST/29/045009/mmedia) Furthermore, the
present measured data as well as results of the kinetic com-
putations are available online at [46–48].

5.1. Electron mobility

We start by comparing the values of the gas number density
times mobility, N μ, derived from the bulk drift velocity, with
previous experimental data for the three hydrocarbon gases in
figure 5. We estimate the maximum experimental error of
these values to be around 6%.

Except for the high values of E/N, our measured bulk
drift velocity and mobility results are in excellent agreement
with all previous results. In C2H2, however, at low E/N we
find two distinct sets of results: the present results are

Figure 4. Deviations of the results between the swarm parameters obtained from the simulations of the experimental system (S) versus the
theoretical values (T), i.e. (S−T)/T for the bulk drift velocity (a), the longitudinal component of the diffusion tensor (b), the effective
ionization frequency (c) and the effective SST ionization coefficient (d). Applying these correction factors to the experimental results (Xexp)
leads to the set of ‘Corrected’ transport coefficients (Xcorr) as = =

+ -X X
X T

Scorr
1

expS T

T

exp .
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consistent with the measurements of Bowman and Gordon
[16], while the results of Cottrell and Walker [17] are in
accordance with those of Nakamura [14]. Note that the latter
results were used to obtain the recommended electron col-
lision cross sections for C2H2 [39] used in the present mod-
eling and simulation. At high E/N the present results deviate
from those of Hasegawa and Date [13] in C2H2 and C2H4.
However the latter results are obtained from the mean arrival-
time velocity defined in [49] and are not easily comparable
with the present TOF results in the presence of reaction
processes.

In figure 6 we compare the results of the present mea-
surements with the kinetic computation results. In this figure
the E/N scale is common to the three gases but the Nμ scale
and data for C2H4 and C2H6 have been shifted upwards to
avoid overlapping of the curves. Above 200 Td the contrib-
ution of non-conservative processes becomes visible and the
mobility results are split into a bulk branch (for MC and BE
DG bulk mobilities and the present measurements) and flux
values (respectively for BE 0D, MC and BE DG flux mobi-
lities). Here our measured data show some differences to the
MC and BE DG bulk results for all three gases. In case of
C2H2, as the electron collision cross sections used are based
on the swarm results of Nakamura [14], the modeling results
deviate from the present experimental results below 10 Td.
Note that below 3 Td the modeling results also deviate from
the measurements of Bowman and Gordon [16] as well as of
Cottrell and Walker [17] in figure 5.

5.2. Diffusion tensor

The present experimental results for the gas number density
times the longitudinal component of the diffusion tensor,
N DL, for C2H2, C2H4 and C2H6 are shown in figure 7
together with previously measured data as well as with the
kinetic computation values for the bulk longitudinal and

Figure 5. Mobility in C2H2, C2H4 and C2H6 obtained from drift
velocity results: Bortner et al [23], Hurst et al [22], Cottrell and
Walker [17], Christophorou et al [21], Bowman and Gordon [16],
Wagner et al [20], Cottrell et al [15], Schmidt and Roncossek [19],
Kersten [25], Shishikura et al [24], Nakamura [14], Takatou et al
[18], Hasegawa and Date [13] and present measurements. The
figures share the same E/N scale. ‘Present experiment’ corresponds
to the uncorrected experimental data. The corrected data are not
shown here because of the small correction factors for the bulk drift
velocity and the mobility.

Figure 6.Mobility in C2H2, C2H4 and C2H6: present experiment and
modeling results. The results and Nμ scale for C2H4 and C2H6 have
been shifted. ‘Present experiment’ corresponds to the uncorrected
experimental data. The corrected data are not shown here because of
the small correction factors for the bulk drift velocity/mobility.
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transverse components of the diffusion tensor for each gas.
The present measured values of N DL exhibit larger scatter-
ing, which is explained by the higher uncertainty of the
determination of DL in the experiments (»10%) compared to
that of the drift velocity.

Above 100 Td there is reasonable agreement of the pre-
sent measurements with previous experimental data and the
modeling results for the three gases. Below 100 Td however,
the present measurements evidence the same qualitative
behavior but are systematically above previous measure-
ments. Note that the application of the correction procedure,
detailed in section 4, to our experimental results leads to
much better agreement with previously measured data, in
particular for C2H4 and C2H6. In case of C2H2, we observe a
qualitative difference between our measurements and those
performed by Nakamura [14]. These differences can be
attributed to the non-uniform sensitivity of the detector in our
experimental setup, which has been already discussed in
section 4.

The modeling results for DL in C2H2 and C2H4 below
2 Td and 5 Td, respectively, also deviate from all exper-
imental results indicating that the corresponding cross section
sets require improvement. In each of the three gases, the
values of the transverse component of the diffusion tensor,
DT, obtained by the kinetic computations, are very different
from the longitudinal component, DL. The measurement of
data of this component can provide additional tests for the
fitting of the electron collision cross sections.

5.3. Effective ionization frequency and SST ionization
coefficient

The experimental and modeling results for the reduced
effective ionization frequency, νeff/N, for the three gases

Figure 7. Longitudinal and transverse bulk components of the
diffusion tensor in C2H2, C2H4 and C2H6. Experimental results:
present experiment, Wagner et al [20], Schmidt and Roncossek [19],
Shishikura et al [24], Nakamura [14], Takatou et al [18]. Modeling
results: MC and BE DG (NDL and NDT). The figures share the same
E/N scale. The panels show both the uncorrected and corrected
experimental results of this study.

Figure 8. Reduced effective ionization frequency in C2H2, C2H4 and
C2H6: present experiment and modeling results. The results and E/N
scale for C2H4 and C2H6 are shifted horizontally. ‘Present
experiment’ corresponds to the uncorrected data.
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studied are displayed in figure 8. To our best knowledge this
is the first report of νeff in these three gases for an extended
range of  E N100 Td 1790 Td, for which the estimated
experimental error of the data is 8%. In order to accom-
modate the results on the same figure, all gases share the same
νeff/N axis but the E/N scales for C2H4 and C2H6 have been
shifted to the right.

Good agreement between our measured and calculated
results is generally found for E/N values larger than about
200 Td, indicating that the electron collision cross section sets
for the three gases are reasonably well adapted to allow for an
appropriate determination of the rate coefficients for ground
state ionization. Certain differences are obvious for lower
E/N values. These differences seem to result from the mea-
surement and/or, more likely, from the fitting procedure (see
figure 4).

Our experimental data for the reduced effective SST
ionization coefficient, αeff/N, obtained using equation (2), are
compared with previous measurements and the kinetic com-
putation results in figure 9. As αeff is derived from the set of
parameters {W, DL, νeff}, these results have a higher uncer-
tainty than neff with an estimated experimental error of �10%.
Notice that the kinetic computation results using method BE
SST do not include the approximations involved in
equation (2), but are directly obtained by solving the electron
BE at SST conditions according to (7). In this respect, their
comparison with the BE DG and MC results can indicate the
range of validity of equation (2).

Except for the low values of E/N, our results for the
effective SST ionization coefficient are in excellent agreement
with all previous results and the kinetic computations. At
values close to the threshold, however, the present results are
higher than previous measurements. Notice that Kersten’s
effective Townsend ionization coefficient was measured
under TOF conditions and corresponds to νeff/W [25]. Thus,
it represents the effective SST ionization coefficient αeff

according to(2) only in the absence of diffusion, i.e. DL=0.

5.4. Effect of the vibrationally excited population

The cross sections sets used above were obtained considering
only electron collisions with the ground state of the mole-
cules. However, the correct description of the characteristics
of electrons in molecular gases at low reduced electric fields,
requires to take into account superelastic collisions of elec-
trons with thermally excited molecules. For example, this is
discussed in [50] for the case of molecular hydrogen and
nitrogen. For diatomic molecules superelastic collisions with
rotationally excited molecules have to be taken into account
in calculations for low reduced electric fields (see, for
example [51]).

As polyatomic molecules have multiple vibrational
modes and these modes can be degenerate, in these gases we
can find a significant fraction of molecules in thermally
excited vibrational states at room temperature. In addition to
their contribution to energy losses due to elastic, exciting,
ionizing and attaching collision processes, these excited states
contribute to electron energy gains due to superelastic

collisions and influence the EVDF and transport parameters,
mainly at low to medium E/N field values. The importance of
their effect increases with the energy associated with the
collision and the fractional population of thermally excited
states with that energy. This population, however, decreases

Figure 9. Reduced effective Townsend ionization coefficient in
C2H2, C2H4 and C2H6. Experimental results: present experiment,
Heylen [26, 29], Watts and Heylen [28], Kersten [25] and Hasegawa
and Date [13]. Modeling results: BE SST, MC and BE DG. ‘Present
experiment’ corresponds to the uncorrected data.
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exponentially with energy. From the combination of these
two factors, the effect on the EVDF should be maximum for a
given energy value.

Taking into account the equations for the fractional
populations and statistical weights of polyatomic molecules in
the appendix, we can estimate the populations of the different
states of these gases.

Acetylene has five vibrational modes, with the two bending
modes (v4 and v5) double degenerate and with energies
of, respectively, 0.075 eV and 0.0905 eV [52]. At a gas
temperature of 293.15 K, the vibrational states with
fractional population above 0.1% are indicated in table 1.
At this temperature only around 85% of the acetylene
molecules are in the ground state and the vibrational
population in excited states of modes v4 and v5 is
significant.

Ethylene: In contrast to C2H2, none of the twelve ethylene
vibrational modes [52] is degenerate, where the lowest
threshold energy for vibrational excitation to v10 is
0.102 eV and, at the same temperature, more than 95% of
the molecules are in the ground state.

Ethane: All the degenerate vibrational modes of ethane [52]
have energies above 0.15 eV and at room temperature
their fractional population is small. Overall, however,
only 73% of ethane molecules are in the ground state as
mode v4 has an excitation energy of only 0.036 eV.
Molecules in the two first excited vibrational states of this
mode represent 22% of the total. On the other hand, as
the excitation energy of the v4 mode transitions is very
small, the effect on the EVDF and transport parameters is
also small.

Of the three gases analyzed, the impact of the thermally
excited vibrational population on the EVDF should be largest
in C2H2. The vibrational excitation cross section set for C2H2

[39] is also more complete than the vibrational cross section
sets for C2H4 and C2H6 used in this study. For these reasons
we study the effect of the thermally excited vibrational states
only for acetylene.

Our goal is to single out the contribution of the vibra-
tionally excited molecules due to superelastic collisions and
we will change the electron collision cross sections in such a
way that, if we neglect these collisions, we obtain the same

results as before. Starting from the recommended cross
section set for ethylene [39], we introduce the following
modifications:

(a) We split the lumped cross sections for the vibrational
excitation of modes v1/v3 and v4/v5 into individual cross
sections for each modes, with a value of half of the original cross
section. That is s s s= =v v v v

1

21 3 1 3
and s s s= =v v v v

1

24 5 4 5
.

(b) The threshold for the excitation of modes v1 and v3
and of modes v4 and v5 is set at the same value as before of,
respectively, 0.411 eV and 0.0905 eV.

(c) We assume that all molecules are in one of the three
states (00000), (00010) and (00001), with the fractional
population, δ, of the last two states in thermal equilibrium
with the gas and the ground state fraction given by
δ00000=(1−δ00010−δ00001).

(d) We consider the following vibrational excitation
processes for electron collisions with the ground state
( )00000 :

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

+  +
+  +
+  +
+ « +
+ « +
+ « +

e C H 00000 e C H 10000
e C H 00000 e C H 01000
e C H 00000 e C H 00100
e C H 00000 e C H 00010
e C H 00000 e C H 00001
e C H 00000 e C H 00011

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

where reactions with double-arrows include superelastic
collisions.

(e) We additionally include the following vibrational
excitation processes on collisions with states (00010) and
(00001):

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

+  +
+  +
+  +
+ « +
+ « +
+  +

e C H 00010 e C H 10010
e C H 00010 e C H 01010
e C H 00010 e C H 00110
e C H 00010 e C H 00020
e C H 00010 e C H 00011
e C H 00010 e C H 00021

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

and

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

+  +
+  +
+  +
+ « +
+ « +
+  +

e C H 00001 e C H 10001
e C H 00001 e C H 01001
e C H 00001 e C H 00101
e C H 00001 e C H 00011
e C H 00001 e C H 00002
e C H 00001 e C H 00012

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

adopting for these processes the same cross sections as the
corresponding excitations from the ground state.

(f) We further assume that the electron collision cross
sections for momentum transfer, electronic excitation, ioniz-
ation and attachment with the vibrational states (00010) and
(00001) are the same as for state (00000).

(g) We obtain the superelastic vibrational cross sections
from the corresponding direct processes assuming that the
detailed balance principle is valid.

Note that if we neglect superelastic collisions, the EVDF
and swarm parameters obtained with these modified cross
sections and electron collision reactions are exactly the same

Table 1. Fractional population of the first vibrational levels of C2H2

at 293.15 K.

Vibr. state Short notation g Energy (eV) Frac pop. (%)

(00000) v0 1 0.0 85.37
(10000) v1 1 0.421 5.5×10−6

(01000) v2 1 0.245 5.3×10−3

(00100) v3 1 0.411 8.3×10−6

(00010) v4 2 0.075 8.47
(00020) 3 0.150 0.63
(00001) v5 2 0.0905 4.75
(00002) 3 0.180 0.20
(00011) v4+v5 4 0.165 0.47

12

Plasma Sources Sci. Technol. 29 (2020) 045009 N R Pinhão et al



as with the original set [39] and are independent of the
fractional population of levels (00010) and (00001).

The influence of superelastic collisions is illustrated in
figure 10 which shows the isotropic component ˆ ( )f0 of the
EVDF as a function of the electron kinetic energy,
ò=mev

2/2, calculated at E/N values of 1 Td and 10 Td,
respectively, with and without the inclusion of superelastic
processes. Pronounced differences between the corresponding
isotropic distributions ˆ ( )f0 are found at E/N=1 Td, while
the impact of superelastic electron collision processes is
comparatively small at 10 Td. This finding is not only
reflected by the isotropic distribution but also by different
macroscopic properties.

The influence of superelastic collisions is mostly visible
in the drift velocity and mobility as shown in figure 11. This
figure compares the values of mobility and the longitudinal
and transverse bulk components of the diffusion tensor
obtained with the original cross sections set with the results
obtained using the modified set with and without the inclusion
of superelastic processes. As predicted, the results of the
modified set neglecting superelastic collisions are the same as
those obtained with the original set. Superelastic collisions are
responsible for a reduction of the electron mobility in the
range of low reduced field, visible up to approximately 20 Td.
The influence on the components of the diffusion tensor is
overall smaller than that on the mobility with the largest
differences in the longitudinal component around 10 Td.

As the impact of superelastic collisions decreases
remarkably above about 20 Td, their influence on the effec-
tive ionization frequency and Townsend ionization coefficient
is negligible.

6. Concluding remarks

We have investigated electron swarm parameters in C2H2,
C2H4 and C2H6 experimentally using a scanning drift tube, as

well as computationally by solutions of the electron BE and
via MC simulation, corresponding to both TOF and SST
conditions. The measured data made it possible to derive the
bulk drift velocity, the bulk longitudinal component of the
diffusion tensor and the effective ionization frequency of the
electrons, for the wide range of the reduced electric field from
1 to 1790 Td. The measured TOF transport parameters as well
as the effective SST ionization coefficient, deduced from the
TOF swarm parameters, have been compared to experimental
data obtained in previous studies. Here, generally good
agreement with most of the transport parameters and the
effective SST ionization coefficients obtained in these earlier
studies was found. In the case of the drift velocity or the
mobility, respectively, and the longitudinal component of the
diffusion tensor we found disagreements at low or high values
of E/N.

The experimental data have undergone a correction
procedure, which was supposed to quantify the errors caused
by the dependence of the sensitivity of the detector of the drift

Figure 10. Isotropic component of the EVDF in C2H2 at 293.15 K
for 1 and 10 Td, with and without superelastic collision processes
included.

Figure 11. (a) Mobility and (b) longitudinal and transverse bulk
components of the diffusion tensor in C2H2 at 293.15 K: modeling
results obtained with the electron collision cross sections from [39]
without considering superelastic processes and with a modified set
with and without superelastic processes.
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cell on the energy distribution of the electrons in the swarm
that may have a spatial dependence.

In particular, in case of C2H2 our measured drift velo-
cities at low E/N agree well with previous data of Bowman
and Gordon [16] but not with the results of Cottrell and
Walker [17] as well as of Nakamura [14]. Further measure-
ments in this range are required to clarify this contradiction.

The comparison of the experimental data was also carried
out with swarm parameters resulting from various kinetic
computations, which used the most recently recommended
cross section sets [24, 39, 40]. Here, excellent agreement
between electron BE and MC simulation results verifies the
computational approaches and data for the three gases. The
agreement of the computed data with the present and pre-
viously measured values of the reduced effective ionization
frequency and SST ionization coefficient was generally good.
However, certain differences between kinetic computational
and measured results found for the drift velocities and,
especially, for the longitudinal component of the diffusion
tensor illustrate the need for an improvement of the existing
collision cross section sets for the three hydrocarbon gases
considered.

We have also studied the influence of the thermally
excited vibrational populations on the transport parameters. In
the case of C2H2 we have found that this population has a
significant value and superelastic collisions influence the drift
velocity and the components of the diffusion tensor up to
20 Td. The fitting of electron collision cross sections for this
gas using swarm experiments should include these processes.
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Appendix. Statistical weights and statistical sums

The fractional populations for the levels of a polyatomic
molecule with nv modes and vibrational quantum numbers
(v1v2v3K) are given by

⎛
⎝⎜

⎞
⎠⎟ ( )( )

( ) ( )d = -¼
¼ ¼g

Q k T
exp , A.1v v v

v v v

v

v v v

B
1 2 3

1 2 3 1 2 3

where ( )¼ v v v1 2 3
is the level energy and g the total statistical
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n n
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where dn is the degeneracy multiplicity for mode n, and Qv

the vibrational statistical sum which, in the harmonic oscil-
lator approximation for the vibrational states, is

( ) { } ( )/ n= - = -
=

=
-Q Z Z h k T1 , exp , A.3v

n

n n

n
d

n n B
1

v

n

where h is the Planck constant and νn are the vibrational
frequencies.
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Abstract
We investigate the spatially and temporally resolved electron kinetics in a homogeneous electric
field in argon gas, in the vicinity of an emitting boundary. This (transient) region, where the
electron swarm exhibits non-equilibrium character with energy gain and loss processes taking
place at separate positions (in space and time), is monitored experimentally in a scanning drift
tube apparatus. Depending on the strength of the reduced electric field we observe the
equilibration of the swarm over different length scales, beyond which the energy gain and loss
mechanism becomes locally balanced and transport properties become spatially invariant. The
evolution of the electron swarm in the experimental apparatus is also described by Monte Carlo
simulations, of which the results are in good agreement with the experimental observations, over
the domains of the reduced electric field and the gas pressure covered.

Keywords: electron swarm, drift tube measurement, Monte Carlo simulation

1. Introduction

The description of charged particle transport in plasma
modelling is often based on transport coefficients (e.g.
mobility and diffusion coefficients) that are functions of the
reduced electric field (electric field to gas density ratio, E/N).
These coefficients can be determined experimentally in
swarm experiments in which a cloud of charged particles (e.g.
electrons) moves under the influence of a homogeneous
electric field. The basic tools for measurements of these
coefficients have been drift tubes, e.g. [1–5], which can
operate in different modes (steady-state or pulsed) and give
various transport coefficients [6]. Obtaining precise transport
coefficients experimentally also aids the optimisation of cross
section sets [7–9].

Swarm experiments aimed at the determination of transport
coefficients have to be conducted under the conditions of

equilibrium transport, where the effects of boundaries are neg-
ligible, gradients are weak and the electron velocity distribution
function (VDF, f (v)) is uniquely defined by E/N. As the VDF of
the ‘initial’ electrons (created, e.g. by ultraviolet radiation) in any
experimental system is different from the equilibrium VDF, the
swarm needs a certain length to equilibrate, during which length
the energy (momentum) gain and loss mechanisms get balanced
(see, e.g. [10, 11]). This equilibration domain (within which the
transport has ‘non-hydrodynamic’ or ‘non-local’ character)
should ideally be excluded from the region from which data for
the determination of transport coefficients is collected as here the
characteristics of the swarm vary spatially despite the fact that
the electric field that drives the transport, is homogeneous.
Excluding the equilibration region from the measurements is,
however, normally not possible, but one has to ensure that the
effects of swarm equilibration in the drift region are minimal,
e.g. by setting the drift length significantly longer than the
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equilibration length. Simulations of the electron transport are
indispensable tools for checking this condition.

The equilibration length of any swarm depends on the
type of its constituents (electrons/ions), the electric field,
the gas pressure, and the types of collision processes between
the charged particles and the atoms/molecules of the buffer
gas. In the following we focus only on electron swarms. In the
case of atomic gases, at very low E/N values, where the
electron energy cannot reach the threshold for inelastic pro-
cesses (which is typically several eV), only elastic collisions
take place. At very high E/N values, where several inelastic
channels are open, the electrons can lose several discrete
values of energy in various excitation events, and, in ionis-
ation processes their energy loss can vary continuously.
Under these conditions the equilibration of the swarms pro-
ceeds quickly, over a short spatial domain. There exist,
however, a ‘window’ of E/N values, typically in the range of
several tens of Td-s (1 Td=10−21 V m2), where the equili-
bration takes place over an extended spatial scale [12–15].
The reason for this is that the electrons gain energy slowly
(due to the relatively low electric field) and predominantly
excite only the lowest excited state(s). In these conditions, the
energy-gain—energy-loss cycle may repeat many times, the
local swarm characteristics exhibit a periodic spatial
dependence, before stationary state forms. In the case of
molecular gases, the equilibration of the electron swarms
proceeds more quickly due to the existence of various types
of excitations processes (rotational, vibrational and electronic
excitation), some of them having low threshold energies
[16, 17]. It should be noted that additional control of the
spatial relaxation of electrons under the steady-state condi-
tions can be achieved using a magnetic field [17, 18].

The aim of this work is to examine the equilibration of
electron swarms experimentally, in a drift tube apparatus that
allows the observation of the spatio-temporal development of
the particle cloud [19]. We do not target here the determi-
nation of transport coefficients. Parallel to the experimental
studies we also carry out simulations at the particle level, to
illustrate the phenomenon of swarm equilibration and to
describe particle motion in the actual experimental system.
Our studies are conducted using argon as a buffer gas.

In section 2 we give a brief description of the exper-
imental system and outline the basics of the Monte Carlo
simulation method that we use as a computational tool for our
studies of swarm equilibration. In order to illustrate the
phenomenon of swarm equilibration, in general, we first
present a set of simulation results for a simple setting with a
plane-parallel electrode configuration, for steady-state and
time-dependent conditions, in section 3.1. Subsequently, in
section 3.2, we turn to the presentation of experimental results
and we compare these results with those obtained from
simulations of the experimental system. Subsequently, in
section 3.3, we also present additional simulation results that
aid the understanding the operation of the detector of the drift
tube. Section 4 summarises our findings.

2. Methods

We investigate the equilibration of electron swarms both
experimentally, in a scanning drift tube apparatus [20] and via
particle level simulations based on the Monte Carlo techni-
que. The latter provides a description of particle transport at
the level of kinetic theory, thus it is expected to account fully
for the behaviour of the swarms under the specific (usually
non-hydrodynamic) conditions considered here.

Full description of the experimental apparatus has been
given in [20], thus only the main features of the setup are
presented below, in section 2.1. The basics of the simulation
method are outlined in section 2.2.

2.1. Experimental system

The simplified scheme of the experimental setup is shown in
figure 1. The drift tube is situated within a stainless steel
vacuum chamber that is evacuated by a turbomolecular pump
backed with a rotary pump, down to a level of ∼10−7 mbar. A
feedthrough with a quartz window allows the 1.7 μJ energy,
5 ns long pulses of a frequency-quadrupled diode-pumped
YAG laser (MPL-F-266) to fall on the surface of a Mg disk
used as photoemitter. This disk is mounted at the centre of a
stainless steel electrode (having a diameter of 105 mm) ser-
ving as the cathode of the drift tube, which is connected to a
BK Precision 9185B power supply to establish the accel-
erating voltage for the swarm that moves towards the detector,
situated at a distance L1 from the emitter. The detector con-
sists of a grounded nickel mesh (with T=88% ‘geometric’
transmission and 45 lines/inch density) and a stainless steel
collector electrode that is situated at 1 mm distance behind the
mesh. The mesh and the collector are moved together by a
step motor connected to a micrometre screw mounted via a
vacuum feedthrough to the vacuum chamber. The distance
between the cathode and the mesh can be set within a range of
L1=7.8–58.3 mm. The electric field is kept constant during
the scanning process by automatically adjusting the cathode-
mesh voltage, according to their actual distance. In the
experiments presented here, we used 53 equidistant positions
within the accessible range of L1 given above.

The data collection is triggered with a photodiode, using
a part of the laser light that passes through a hole in the
magnesium disk and leaves the chamber via a window
mounted on its bottom. The current of the detector system is
generated by the moving charges within the mesh-collector
gap (see below). This current is amplified by a high speed
current amplifier (type Femto HCA-400M) connected to the
collector, with a virtually grounded input and is recorded by a
digital oscilloscope (type Picoscope 6403B) with sub-ns time
resolution. During the experiments a slow (∼sccm) flow of
(6.0 purity) argon gas is established by a flow controller, the
gas pressure inside the chamber is measured by a Pfeiffer
CMR 362 capacitive gauge. The low light pulse energy
necessitates averaging over a high number typically
20 000–150 000) of pulses. The experiment is fully controlled
by a computer using LabView software.
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The operation of the drift tube described above can be
understood by the simplified configuration shown in figure 2.
The system consists of two regions, in Region 1 a homogeneous
electric field E1=U/L1 (where U is the voltage applied to the
cathode (emitter)) is present, while, as both the mesh and the
collector reside at ground potential, the electric field in Region 2,
E2, is zero. Electrons from the cathode (situated at x=0) are
emitted by short laser pulses (see above) and are accelerated by
the electric field E1 towards the mesh. During their flight, they
undergo collisions with the background gas, the frequency of
these collisions depends on their energy and the gas pressure.
When the electrons arrive at the mesh, most of them are trans-
mitted due to the high geometric transmission of the mesh, while
a smaller portion is absorbed by/reflected from the mesh. The
electrons, which enter Region 2 with some kinetic energy
through the mesh, move in the field free Region 2. The measured
current at the collector is generated by these moving electrons.

According to the Shockley–Ramo theorem [21–23] the
current induced by an electron moving in a gap between two
plane-parallel electrodes with a velocity v perpendicular to the
electrodes is I=ev/L, where e is the charge of the electron
and L is the distance between the electrodes. Accordingly, in
our setting the measured current at a given time t is:

( ) ( ) ( )å=I t c v t , 1
k

x k,

where c is a constant, the summation goes over all the elec-
trons being present in Region 2 at time t, and vx,k is the
velocity component of the kth electron in the x direction. The
actual value of c is not important as the current is being
measured as well as computed in arbitrary units. In the
experiments, this current is measured at a sequence of spatial
positions of the detector, L1, as explained above. Examples of

I(t) for p=200 Pa and E/N=30 Td are shown in figure 3
for few cathode-mesh separations.

2.2. Simulation method

We use simulations of electron swarms for three different
purposes:

Figure 1. Simplified scheme of the experimental setup.

Figure 2. Scheme of the two regions in the drift tube. A negative
voltage U is applied at the cathode. In the experimental system L1
can be changed between 7.8 and 58.3 mm, the distance L2 is fixed at
1 mm. As the current I(t) is measured with an amplifier that has a
virtually grounded input, Region 2 is field-free. The measured
current is generated by the moving electrons within this region.
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• To illustrate the general features of swarm equilibration
within a plane-parallel electrode gap: in these simula-
tions electrons are emitted from the negatively biased
cathode at x=0 and their tracing continues until the
electrons are absorbed at the grounded anode at x=L,
that has a reflectance R for the electrons. We investigate
both steady-state and time-dependent cases. In the steady-
state case we illustrate the behaviour of the swarm by
presenting the average velocity and the mean electron
energy as a function of position. In the time-dependent
case we show the spatio-temporal evolution of the density
of the swarm, for different E/N values.

• To describe the experimental system: in this case we
adopt the model geometry shown in figure 2. An electric
field is applied only in Region 1, between the cathode and
the mesh. The electrons can pass through the mesh with a
probability that equals its geometric transmission
(T=88%). Electrons interacting with the mesh can be
absorbed/elastically reflected with given probabilities.
Electrons reaching the collector can as well be absorbed/
elastically reflected with given probabilities.

• To study the sensitivity of the detector as a function of
electron energy and gas pressure: in this study we inject
electrons with given energies into Region 2 (the ‘detector
gap’, see figure 2) and analyse the response of the
detector as a function of these parameters.

Our simulations are based on the conventional Monte
Carlo approach. Electrons are emitted from the cathode
(situated at x=0) at t=0, with an initial energy of 1 eV.
The typical number of initial electrons is in the order of
105–106. The electrons move under the influence of a
homogeneous electric field, or in a field-free region, while
interacting with the background gas via collision processes:
elastic and inelastic (excitation and ionisation) collisions.
Between collisions the electrons move on trajectories defined
by their equations of motion that are discretised and solved

with a time step Δt:

( ) ( ) ( ) ( )+ D = + D + Dx t t x t v t t a t
1

2
, 2x

2

( ) ( ) ( )+ D = + Dv t t v t a t, 3x x

with = -a eE

m
, where e is the elementary charge and m is the

electron mass. The directions (y and z) perpendicular to the
direction of the electric field are not resolved.

The probability of a collision to take place after Δt is
given as

( ) [ ( ) ] ( )sD = - - DP t N v v t1 exp , 4T

where N is the gas density, σT is the total scattering cross
section, and v is the velocity of the electron (i.e. we use the
cold-gas approximation, where target atoms are at rest). The
simulation time step is in the order of 10−12 s.

Comparison of P(Δt) with a random number r01 (having
a uniform distribution over the [0, 1) interval) allows deciding
about the occurrence of a collision: if r01�P(Δt) a collision
is simulated. The type of collision is determined in a random
manner. The probability of a process s at a given energy ε is
given by:

( )
( )

( )s e
s e

=P , 5s
s

T

where ( )s es is the cross section of the sth process. In our
simulations the cross sections are adopted from [24]. Colli-
sions are assumed to result in isotropic scattering. Accord-
ingly, we use the elastic momentum transfer cross section. For
a given gas pressure, the background gas number density is
calculated assuming the temperature of 300 K.

3. Results

3.1. Swarm equilibration under steady-state and time-
dependent conditions

The relaxation of electron swarms is first illustrated for
steady-state systems (termed as ‘Steady State Townsend’
(SST) scenario [13, 25–27] in swarm physics). In these
simulations we assume a simple plane-parallel electrode
configuration and consider a continuous source of electrons at
the cathode. The electrode gap is chosen to be the largest
distance of the cathode and the mesh in the experiment,
L=58.3 mm.

Figure 4 shows the average velocity and the mean energy
of the electrons as a function of position in the electrode gap,
for steady-state conditions. Panel (a) shows the results for
E/N=300 Td. The equilibrium transport, with transport
properties specific to a given E/N, is established beyond a
certain distance. Within the ‘transient region’ the local
transport coefficients (like á ñv and eá ñ) and the VDF, f (v),
change with position. Here, the swarm relaxes over a length
of ≈20 mm, beyond this distance from the cathode the
transport acquires equilibrium character, the transport para-
meters reach constant values and f (v) takes a steady shape
(while its magnitude grows according to the increase of the

Figure 3. Time dependence of the measured current in the drift tube
for E/N=30 Td and p=200 Pa, at different values of L1. The
sharp peak at t=0 originates from an interference from the laser
pulse, it is not taken into account in the data acquisition.
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electron density, due to ionising collisions). These char-
acteristics become, however, perturbed again near the anode
that is normally partially reflecting/absorbing for the elec-
trons. The data shown here were obtained with a reflection
coefficient of R=0.5 (that we assume to be independent of
the electron energy and angle of incidence at the surface). As
part of the electrons is absorbed by the anode, in its vicinity
the f (v) distribution function is depleted in the vx<0
domain. This results in a significant increase of the average
velocity and a moderate increase of the mean electron energy
within a distance of a few mm-s from the anode.

At a lower E/N value of 30 Td, the relaxation of the
swarm requires a notably longer distance, as indicated in
figure 4(b). In this case even the full length, L, is too short for
the swarm to acquire the equilibrium character, á ñv and eá ñ
exhibit oscillations over the whole electrode gap. For this
E/N value, simulations were carried out with different
reflection coefficients. As expected, the mean velocity
becomes more perturbed (increased) near the anode when R is
decreased. As in the experiments the measured current

originates from the motion of the electrons in the x direction
near the collector (in Region 2), the above observations have
consequences on the performance of the experimental system.

Next, we turn to time-dependent conditions: figure 5
shows the spatio-temporal evolution of the electron density
for two different values of E/N, same as above. In this case
electrons are emitted in the MC simulations from the cathode
(situated at x=0) at time t=0. Panel (a) displays the case of
300 Td (p=50 Pa). For this E/N we observe a smooth
development of the (density of the) particle cloud. Three basic
effects are visible in this plot: (i) the centre of mass of the
cloud drifts to higher x values with increasing time, (ii) with
increasing time we observe an increasing width of the cloud
due to diffusion, and (iii) the density increases with position
as a consequence of ionising collisions. Except from the
vicinity of the cathode no structures can be seen in the density
distribution, unlike in the case of 30 Td (p=200 Pa), shown
in panel (b) of figure 5. Here, similar to the steady-state case,
a significant spatial variation of the swarm evolution is found.
The ‘lobes’ in figure 5(b) represent local density peaks, where

Figure 4. Average velocity (solid lines, left scale) and mean energy (dashed lines, right scale) of the electrons at (a) 300 Td (p=50 Pa) and
(b) 30 Td (p=200 Pa), in the steady-state case. The cathode is situated at x=0 mm, while the anode is at L=58.3 mm. R denotes the
electron reflection coefficient of the anode. The inset in (b) shows the effect of R on the average velocity in the near-anode region.

Figure 5. The evolution of the electron density in space and time for time-dependent conditions (swarm initiated at x=0 mm and t=0 ns)
at (a) 300 Td (p=50 Pa) and (b) 30 Td (p=200 Pa). The cathode is situated at x=0 mm, while the anode is at L=58.3 mm.
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electrons accumulate. These localised maxima in space and
time are created as a consequence of the repeating energy-
gain—energy-loss cycles. For the given conditions the volt-
age over the gap is 84.5 V, that gives an electric field of
1.45 Vmm−1. For the distance of the peaks, Δx≈9 mm, a
potential drop of ≈13 V over the length scale of Δx is
obtained, which corresponds closely to lowest excitation
energies of argon atoms. As the electrons can excite a number
of energy levels with different threshold energies, their energy
gain/loss cycles are not completely synchronised and there-
fore the density modulation decreases while the swarm
moves, and after a certain distance the modulation disappears,
and the swarm takes the equilibrium character.

3.2. Swarm equilibration in the drift tube—experiment versus
simulation

Following the brief introduction to the equilibration
phenomenon, now we turn to the presentation of experimental
results confirming this behaviour by direct measurements on
electron swarms in argon, and to the comparison of the
experimental results with simulation data obtained at identical
conditions. This comparison is carried out in terms of the
measured/computed currents.

We start with the presentation of the experimentally
recorded ‘swarm maps’ and the corresponding simulation
results. Figure 6 displays the experimental data in the left

Figure 6. Experimentally recorded detector current (a)–(c), at E/N values of 30 Td, 50 Td and 70 Td, respectively, and (d)–(f) corresponding
MC simulation results. p=200 Pa for all results.
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column (panels (a)–(c)) obtained at 30 Td, 50 Td, and 70 Td
values of the reduced electric field, respectively, at a fixed Ar
pressure of p=200 Pa. These swarm maps have been gen-
erated by measuring the I(t) current of the detector at 53
equidistant values within the L1=7.8–58.3 mm range of drift
distances, and by merging these sets of data.

At the lower E/N values the maps clearly show
sequences of ‘lobes’ that correspond to maxima of the mea-
sured currents, localised in both space and time. Taking the
E/N=30 Td case as an example, the distance of the lobes in
space is again approximately Δx=9 mm, as in the case of
the theoretical results for the swarm density, shown in
figure 5(b). Note, however, that while in the density dis-
tribution maxima occur e.g. at about 29 and 38 mm, the
measured current peaks at approximately 27 and 35 mm, i.e.
the peaks are shifted by about 2 mm. The reason for this shift
will be discussed later, based on an analysis of the electron
trajectories in the detector region. When, however, the
experimentally obtained map (of the detector current) is
compared with that obtained from the simulation of the
experimental configuration, a very good agreement is
obtained both in terms of the structure of the map as well as in
the precise positions of the maxima. This confirms the
validity of the model and the correct description of the system
by the simulation.

With increasing E/N, the distance of the lobes decreases
as dictated by the above condition (at a fixed pressure). At

E/N=50 Td a clear sequence of lobes can still be resolved
(figures 6(b) and (e)), while at 70 Td signatures of periodic
structures can still be seen within the first half of the drift
distance, while the second half of the gap shows a smooth
distribution (figures 6(c) and (f)).

Figure 7 presents the results of the variation of the
pressure at fixed E/N=30 Td. As expected, when a lower
pressure of 100 Pa is used in the measurements (and in the
corresponding simulations) compared to the 200 Pa case, for
which the results were presented in figures 6(a) and (d), the
density maxima are separated by a higher distance. Oppo-
sitely, at p=400 Pa, the periodicity of the maxima becomes
two times more dense, as compared to the 200 Pa case.

The experimental results presented above provide a direct
way to observe the equilibration of electron swarms at mod-
erate E/N values, which was mostly studied only theoretically
so far. The good agreement with the corresponding simulation
results confirms the correctness of the data.

3.3. Characterisation of the detector

Now we turn to the analysis of the electrons’ motion in the
detector to answer the question: ‘What property of the swarm
is measured by the detector?’ To answer this question we
need to pay attention to the electron trajectories in the detector
region (‘Region 2’ in figure 2).

Figure 7. Experimentally recorded detector current (a), (b), at pressure values of 100 Pa and 400 Pa, respectively, and (c), (d) corresponding
simulation results, at E/N=30 Td.
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Figure 8 shows basic types of electron trajectories and
their contributions to the detector current. In this analysis, we
assume that (i) electrons pass through the mesh with a velo-
city vector that points in the x direction, (ii) all collision
events results in isotropic scattering (as above), and (iii)
electrons reaching the collector are reflected elastically with a
given probability (taken to be P=0.5, as above). Whenever
we discuss a certain type of trajectory, we have in mind a
large number of electrons (with similar energy and thus a
similar collision free path length) that cross the mesh over
some time interval that is (i) longer than the flight time of the
electrons in the detector region, but (ii) much shorter than
the period during which the whole electron cloud arrives at
the detector.

If the collision free path is much shorter than the width of
the detector region (λ = L2) predominantly type A trajec-
tories (see figure 8) will occur. The free flight length of the
electrons within the detector is in the order of λ. It is
important to recognise that, as collisions result in isotropic
scattering, these electrons give a detector current contribution
only up to the first collision events, because after the colli-
sions the direction of their velocities is randomised.
Accordingly, the further transport of these electrons towards
the two electrodes does not give a contribution to the mea-
sured current.

With an increasing free path the electrons may reach the
collector, where they may be absorbed (type B trajectories) or

reflected (C–F-type trajectories). Note that reflected electrons
give a negative contribution to the measured current as they
move in the negative x direction. The occurrence of type C
trajectories is likely only when λ∼L2, as otherwise reflected
electrons are again expected to have a long free path, that
gives preference to the D-, E-, and F-type trajectories, which
represent electron groups crossing the mesh (type D trajec-
tories), being absorbed by the mesh (type E trajectories), or
being reflected by the mesh (type F). Type F trajectories could
be divided into further sub-types, however, this type of tra-
jectory is not expected to occur frequently, as it requires
reflection of electrons on the collector (P=R=0.5), inter-
action with the mesh (P=0.12, i.e. one minus the geometric
transmission) and reflection there (assumed to have
P=R=0.5), giving an overall probability of P=0.03.
Thus F type trajectories may be excluded as major sources of
the detector current. Returning to the D- and E-types of tra-
jectories, these will give zero contribution on time average,
for a large group of electrons.

Thus in summary,

• Whenever λ = L2, the measured current will be
proportional to the number of electrons entering the
detector per unit time, i.e. their flux, the value of their vx
velocity component (according to equation (1)) and to
their flight time up to the first collision. As the product of
the latter two is actually the path length, the current can
be approximated as being proportional to λ;

• Whenever λ ? L2, the measured current will be
proportional again to the flux of electrons entering the
detector, the value of their vx velocity component and the
probability of their absorption by the collector. Thus, a
strongly reflecting collector will decrease the level of the
measured signal for electrons with a long free path.

These arguments are indeed confirmed by simulation
results obtained with different values of electron reflectivity
of the collector, presented in figure 9. These data have been
obtained at E/N=30 Td and 200 Pa argon pressure. The
reflectivity values are R=0.99 for (a) and R=0.01 for (b).
The conditions are the same in figure 6(b), for which R=0.5
was assumed.

As it can be seen in figure 9(a), the high reflectivity of the
collector has a detriment effect on the detector signal, while a
low reflectivity (figure 9(b)) further increases the quality of
the detector signal, beyond that shown in figure 6(b) for the
realistic choice of R=0.5. These observations confirm the
reasoning presented above and the good agreement between
the experimental and simulation results shown in figure 6 also
confirms that the R=0.5 value, assumed for the reflectivity,
is indeed realistic.

We have conducted additional simulations to determine
the sensitivity of the detector, Sdet, as a function of electron
energy and background gas pressure. The pressure and the
energy were scanned over the domains 3 Pa–240 Pa and
0.4 eV–40 eV, respectively. For each pair of these parameters
105 initial electrons were injected into the detector gap (at

Figure 8. Basic types of electron trajectories (assuming that electrons
enter the detector region have a velocity vector parallel to the x
direction. The small black circles represent incoming electrons, the
big circles represent gas atoms with which the electrons collide.
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t=0), with isotropic angular distribution of their initial
velocity directions over the positive half sphere. (This latter
choice is justified by the fact that the VDF of electrons is
nearly isotropic at low to moderate E/N values, as the average
velocity is much smaller than the thermal velocity.) The
motion of these electrons was traced up to their first collision
only, as the collisions randomise the direction of velocities
resulting in a vanishing subsequent contribution to the cur-
rent. The sensitivity was determined as the time integral of the
induced current, given by equation (1), for this ‘pulse’ of
electrons:

( ) ( )ò=S I t td , 6det

where integration was carried out over times when the pulse
of electrons creates a current. The results of these simulations
are presented in figure 10.

Panel (a) shows the results for the case of a collector with
R=0.5 reflection coefficient, a value that has been assumed
in the simulations of the experimental system, while panel (b)
shows the case of a highly reflecting collector, with R=0.99.
We find that the sensitivity of the detector depends in a
complicated manner on both the gas pressure and the energy
of the incoming electrons.

For the R=0.5 case we find a high sensitivity at low
pressures. Up to about 5 Pa, the response of the detector is
strong for all electron energies. At these low pressures, the
majority of the electrons reaches the collector. Half of these
electrons are absorbed, i.e. their trajectories are of type B (see
figure 8). The other half of the electrons will have trajectories
of types C–F, which may decrease the response by ∼50%.
With an increasing pressure the detector sensitivity decreases,
except for the electrons with very low energies. The electrons
with energies ∼1 eV, or lower, still have a long free path (due
to the Ramsauer minimum in the momentum transfer cross
section) and many of them reach the collector and the above
arguments apply to the types of their trajectories. For elec-
trons with higher energies, however, the sensitivity drops and
shows a minimum around 12 eV, where, actually the mean
free path is the shortest (see later, in figure 11). This drop of

sensitivity is attributed to the A-type trajectories, which have
gradually lower contributions to the detector current when the
electron free flight becomes shorter at higher pressures.

The reflectivity of the collector plays a central role in the
sensitivity as the comparison of the panels of figure 10
reveals. The differences are concentrated, however, to the
low-pressure domain, as at higher pressures, as discussed
above, A-type trajectories form and the electrons do not reach
the collector without collisions. Therefore, above ≈50 Pa, the
panels of figure 10 look identical. At low pressures, however,
the sensitivity of the detector decreases drastically (by about a
factor of 10 at the lowest pressures covered) when the
reflectivity of the collector is increased to 0.99. This is due to
the fact that the B-type trajectories will be replaced by mostly
D–F type trajectories, which result in a cancellation of the
current created by the electrons moving into opposite
directions.

We note that the results shown here are specific for argon
gas, for any other gases the results for Sdet may differ sig-
nificantly because of the different cross sections. The exis-
tence of the Ramsauer minimum for argon, e.g. plays an
important role in the behaviour of slow electrons in the
detector region and influences the sensitivity considerably.

The dependence of the sensitivity of the detector on the
gas pressure and electron energy contributes to the slight shift
of the structures seen in the density of the swarm in a plane-
parallel configuration (figure 5(b)) versus the measured cur-
rent in the experimental system and its computed counterpart
(figures 6(a) and (d)). Figure 11 displays, at two different
positions, the energy resolved fluxes of electrons (i) entering
Region 2 via the mesh (labelled as ‘positive’), (ii) being
absorbed by the collector (labelled as ‘collected’) and (iii)
leaving the detector (Region 2) via the mesh, in the negative
direction (labelled as ‘negative’). Panel (a) corresponds to a
position, L1=30.6 mm, where the measured current is
minimum (see figure 6(a)), while panel (b) corresponds to a
position, L1=34.8 mm, where the current is maximum. In
both cases E/N=30 Td, p=200 Pa, and the reflectivity of
the detector is R=0.5. The mean free path of the electrons is

Figure 9. (a) Simulation results with (a) a highly reflecting (R=0.99) collector and (b) a low-reflection (R=0.01) collector, at
E/N=30 Td and p=200 Pa.
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also shown in figure 11 (as curves labelled ‘free path’). At
L1=30.6 mm one major electron group enters the detector
with energies between 5 and 13 eV. In this case (figure 11(a))
the free path is much smaller than L2=1 mm, therefore only
about a quarter of these electrons, is collected. Compared to
this, at L1=34.8 mm, two electron groups reach the detector.
While for the high energy group the collection efficiency is
also small, for the low energy group, as the free path is longer
(see figure 11(b)) about the half of the electrons are collected.
This shows a drastic change of the sensitivity of the detector,
Sdet, as a function of spatial position under the actual condi-
tions of the experiment, where swarm equilibration is studied.

4. Summary

We have investigated the equilibration of electron swarms in
argon gas. Following the illustration of the general behaviour
of electron swarm equilibration via numerical simulations of
steady-state (SST) and time-dependent systems, we presented

experimental investigations of the equilibration phenomenon
by using a scanning drift tube apparatus that allows obser-
vation of the spatio-temporal development of electron swarms
The experimental studies have been complemented with
numerical simulations of the experimental system. A very
good agreement has been found between the measured and
computed detector currents.

We have also presented a detailed study of the operation of
the detector by analysing types of possible electron trajectories
and by carrying out simulations for the detector sensitivity as a
function of electron energy and the gas pressures. This analysis
has indicated a strong variation of the sensitivity on these two
parameters, which explains the slight differences between the
spatio-temporal distributions of electron density in the swarm
and that of the measured detector current. These differences,
thus, do not originate from uncertainties in the measurements
and/or in the computations, but have well-defined reasons.

Our studies provided an insight into the equilibration effects
from the experimental side, complementing a number of pre-
vious theoretical/simulation studies. The robustness of the

Figure 10. Sensitivity of the detector, Sdet, (in arbitrary units) as a function of the energy of incoming electrons and the buffer gas pressure,
for R=0.5 (a) and for a highly reflecting collector with R=0.99 (b). An isotropic angular distribution of the incoming electrons is assumed.

Figure 11. The distribution (flux) of the electrons according to their energy crossing the mesh in the positive and negative directions (labelled
as ‘positive’ and ‘negative’, respectively), and absorbed at the collector (labelled as ‘collected’). E/N=30 Td, p=200 Pa, R=0.5.
(a) x=30.6 mm and (b) x=34.8 mm. The free path (λ) of the electrons at the given gas pressure is shown on the right axis.
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phenomena investigated allowed us to use simplifications in our
modelling studies, in which we have neglected, e.g. the pene-
tration of the electric field via the mesh, as well as the energy
and angular dependence of the reflection/sticking coefficient of
electrons at the different metal surfaces (mesh and collector).
These, and other possible fine details of the experiment would be
quite difficult to consider (partly because precise data for the
electron-surface interaction are not available), nonetheless, these
seem to be attractive topics for further investigations.
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Abstract
In this work we investigate electron transport, transition from an electron avalanche into a
negative streamer, and propagation of negative streamers in liquid xenon. Our standard Monte
Carlo code, initially developed for dilute neutral gases, is generalized and extended to consider
the transport processes of electrons in liquids by accounting for the coherent and other liquid
scattering effects. The code is validated through a series of benchmark calculations for the
Percus–Yevick model, and the results of the simulations agree very well with those predicted by
a multi term solution of Boltzmann’s equation and other Monte Carlo simulations. Electron
transport coefficients, including mean energy, drift velocity, diffusion tensor, and the first
Townsend coefficient, are calculated for liquid xenon and compared to the available
measurements. It is found that our Monte Carlo method reproduces both the experimental and
theoretical drift velocities and characteristic energies very well. In particular, we discuss the
occurrence of negative differential conductivity in the E/n0 profile of the drift velocity by
considering the spatially-resolved swarm data and energy distribution functions. Calculated
transport coefficients are then used as an input in fluid simulations of negative streamers, which
are realized in a 1.5 dimensional setup. Various scenarios of representing the inelastic energy
losses in liquid xenon, ranging from the case where the energy losses to electronic excitations are
neglected, to the case where some particular excitations are taken into account, and to the case
where all electronic excitations are included, are discussed in light of the available spectroscopy
and photoconductivity experiments. We focus on the way in which electron transport coefficients
and streamer properties are influenced by representation of the inelastic energy losses,
highlighting the need for the correct representation of the elementary scattering processes in the
modeling of liquid discharges.

Keywords: liquid xenon, electron transport, Monte Carlo, inelastic collisions, negative streamers

1. Introduction

Transport of charged particles in liquids, plasma-liquid
interactions and streamer discharges in the liquid phase con-
stitute a growing field of research, which has many important
applications [1, 2]. These applications include plasma medi-
cine [3, 4], plasma water purification [5–9], transformer oils
[10, 11] and particle detectors [12, 13]. In particular, there is a
rich variety of liquid xenon particle detectors [14]. The wide
range of existing and potential applications of these detectors

includes gamma ray astrophysics [13], particle physics [15]
and medical imaging [16], as well as direct dark matter
detection [17, 18]. Liquid xenon is a very good detection
medium, due to its physical properties [14]. Its high values of
density and atomic number make liquid xenon very efficient
in stopping penetrating radiation, while a significant abun-
dance of many isotopes, with different values of nuclear spin,
enables the study of both spin dependent and spin indepen-
dent interactions [14]. Further optimization and understanding
of such applications is dependent on an accurate knowledge
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of the charged particle transport coefficients, streamer prop-
erties and the physical processes involved.

In addition to many useful applications, further theor-
etical and experimental investigation of transport phenomena
in liquids would help in the development of insight into
various effects, which are relevant for the interaction of
charged particles with dense and disordered media [19].
These effects include multiple scattering effects and structure
effects, trapping of charged particles in density fluctuations
and the solvation of charged particles in polar liquids [19, 20].
As liquid rare gases are the simplest liquids, they are a good
starting point for the development of theoretical models of
transport and breakdown phenomena in the liquid phase [19].

1.1. A brief overview of electron transport in liquid rare gases

In recent years the modeling of charged particle transport
processes in neutral gases has matured and a number of
methods to treat this problem have been developed, e.g.
various techniques for solving the Boltzmann equation [21],
the Monte Carlo method [22] and semi-quantitative momen-
tum transfer theory [21, 23]. For the more general case of the
dense gases and liquids, there has been comparatively less
investigation. Most investigations in liquid phase have been
performed for electron transport in the sub-excitation energy
region [19]. Lekner developed an ab initio method for
determining the effective potential and the corresponding
effective cross section for electron scattering on a focus atom
in the liquid phase [24]. This effective potential is determined
by using the potential of a single atom and the pair correlation
function of the liquid. In addition, Cohen and Lekner have
shown that the coherent elastic scattering can be represented
in the Boltzmann equation by combining the effective cross
section for the liquid phase and the static structure factor [25].
By simplifying the arguments of Lekner, Atrazhev and co-
workers have shown that the effective cross section for elastic
scattering in liquid argon, krypton and xenon are constant in
the limit of lower electron energies [26, 27]. This work was
extended by using the partial wave method for determining
the effective cross sections for electron scattering in liquid
argon and liquid xenon [28–31]. Based on these results, they
have calculated mobility, mean energy, and characteristic
energy of electrons in liquid argon and liquid xenon, in the
framework of the Cohen–Lekner theory [30, 31]. The Cohen–
Lekner theory was also used in the study of Sakai and co-
workers, who have investigated the electron transport in
liquid argon, krypton and xenon [32, 33]. In order to improve
the agreement between the calculated and measured drift
velocities, they have modified the cross section for elastic
scattering empirically. In addition, they have demonstrated
that the saturation of drift velocity at higher electric fields,
which was previously observed in experiments, can be ade-
quately described by including an effective inelastic cross
section for vibrational modes. It was argued that these
vibrational modes correspond to the change of the transla-
tional states of the clusters of atoms. More recently, Boyle
et al [19, 34] have evaluated the differential cross sections for
electron scattering in liquid argon and liquid xenon by solving

the Dirac–Fock scattering equations. In these works, Boyle
et al [19, 34] extended Lekner’s theory by considering mul-
tipole polarizabilities and non-local treatment of exchange
[19, 34]. Transport coefficients have been calculated for
electrons using these cross sections as an input into the multi
term Boltzmann equation solution, for the lower values of the
reduced electric field. It is also worth noting that in order to
thermalize electrons to low energies in rare gases (especially
those with Ramsauer–Townsend minimum) in the most effi-
cient way and with a small experimental error, it was neces-
sary to perform swarm experiments at higher pressures, where
high density effects became observable [35–37]. One of the
alternatives to avoid such effects and obtain low-energy cross
sections and scattering lengths was to use molecular hydrogen
in the mixture at low reduced electric fields, where the unique
solution for the rotational energy loss cross sections for
hydrogen exists [38].

Theoretical studies of electron transport processes in
liquid rare gases, at higher electric fields, have been per-
formed by several authors. In 1976, Atrazhev and co-workers
studied the influence of density dependent scattering effects
on the Townsend ionization coefficient [39]. The results of
this work are two estimates of the first Townsend ionization
coefficient, which have been made by considering the two
distinctively different representations of energy losses in the
electronic excitations. Jones and Kunhardt also studied elec-
tron transport in liquid xenon by using Monte Carlo simula-
tions [40]. The semiclassical model used, was previously
applied by Kunhardt for studying electron transport in liquid
argon [41]. In this work, the interaction of electrons with the
liquid is described in the framework of Van Hove’s theory
[42]. The group at Hokkaido University has also studied
ionization in liquid xenon, as well as the electron attachment
in the mixtures of liquid argon and electronegative impurities,
including O2, SF6 and N2O, using previously developed cross
sections [32]. Considerable contributions in this field have
been made by Boyle and co-workers who developed the fluid
equation based model for electrons and positrons in liquids by
utilizing dilute gas phase cross sections together with a
structure factor for the medium [43–46].

1.2. Streamers in liquid rare gases

In comparison to gas phase modeling, there are only a few
modeling studies of streamer propagation in liquids. Simu-
lations of positive streamers in hydrocarbon liquids using
1.5D classical streamer model have been performed by Naidis
and co-workers [10, 47]. Simulations are performed both
without formation of expanding gaseous filaments and in
conditions when such filaments due to vaporization are
formed. Contemporary studies include both the experimental
and numerical studies of propagating streamers inside bubbles
elongated along the external electric field and compressed
bubbles immersed in water [48, 49]. The salient feature of
these studies is that transport coefficients of electrons in
liquids required for streamer simulations are evaluated
approximately, e.g. without taking into account more serious
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perturbations to the transport due to the formation of bubbles
and clusters.

Numerical modeling of streamer dynamics, in liquid
argon and liquid xenon, has been performed by Babaeva and
Naidis [50–52]. They have investigated the formation of a
positive streamer in a strong non-uniform field and its sub-
sequent propagation in a weak uniform field, by employing a
two dimensional fluid model [50, 51]. Among many impor-
tant points in these papers, it has been shown that the nature
of the streamer propagation in the liquid phase is significantly
influenced by the electron-ion recombination [50, 51]. In
addition, they found that the calculated streamer velocities are
of the same order of magnitude as the measured velocity of
the breakdown wave in liquid argon [50, 51].

1.3. Motivational factors for this study

One of the most important conclusions from the previous
studies of electron transport in atomic liquids is the fact that
still there is no consensus on the importance of excitations in
the liquid phase. For example, Atrazhev et al [39] have shown
that if the portion of energy losses due to excitations is
assumed to be just the same as in the gas phase, the first
Townsend coefficient is underestimated. On the other hand, if
the inelastic energy losses are completely neglected then the
first Townsend coefficient is overestimated [39]. Along
similar lines, Nakamura and co-workers also disregarded the
explicit influence of energy losses associated with the elec-
tronic excitations in their calculations of transport properties
of electrons in the liquid phase [20, 53]. Instead, they have
represented the inelastic energy losses by using an effective
inelastic cross section, which corresponds to vibrational
modes [20, 32, 53]. In 1993, Jones and Kunhardt carried out
Monte Carlo simulations in which the inelastic energy losses
due to electronic excitations were included [40]. However, in
this work it has not been specified which electronic excita-
tions are included in the set of cross sections [40]. Atrazhev
et al [39] have shown that a different representation of the
inelastic energy losses leads to a significant difference in the
calculated values of the ionization rate in liquid xenon. Thus,
it is clear that a rigorous analysis of the inelastic energy losses
in studies of electron transport in liquid rare gases is long
overdue and the present study takes the first steps in this
direction. We believe that this is of key importance for
numerical studies of streamer propagation, since ionization
controls the development of a discharge and occurs in both
the streamer head and in the streamer channel.

In this work, we investigate how various representations
of the inelastic energy losses affect transport properties of
electrons and streamer dynamics in liquid xenon. Cross
sections for electronic excitations are taken from the set for
electron scattering in the gas phase compiled by Hayashi [54].
This set of cross sections yields swarm parameters in good
agreement with the available measurements [55]. We identify
and consider the following three global scenarios: (i) no
electronic excitations, (ii) some electronic excitations are
included and some of them are neglected, and (iii) all

electronic excitations are included in the modeling. Various
representations of inelastic energy losses are first discussed
in light of previous spectroscopy and photoconductivity
experiments and then are used in Monte Carlo simulations.
The calculated values of the first Townsend coefficient in
these various cases are compared with respect to the exper-
imental results of Derenzo et al [56]. These calculations are
augmented by those in which gaseous xenon is scaled up to
the liquid density. In addition to the study of transport pro-
cesses, in this work we investigate the propagation of nega-
tive streamers in liquid xenon. The axial profiles of electric
field and number density of electrons are calculated in the
absence of vaporization and the occurrence of bubbles.

1.4. Organization of the paper

In section 2 we give the details of cross sections for elastic
and inelastic scattering of electrons in liquid xenon. We
identify and review the four different cases in three global
scenarios for representing the inelastic energy losses. In
section 3.1 we briefly outline the Monte Carlo method used in
the present work and present the results of benchmark cal-
culations for the Percus–Yevick model in section 3.2. In
section 3.3 we present the basic elements of a fluid theory
used to simulate negative streamers in liquid xenon. In
section 4 we present the electron transport coefficients in
liquid xenon with particular emphasis on the structure
induced negative differential conductivity (NDC). In the same
section, we discuss the transition from an avalanche into a
streamer and propagation of negative streamers. In section 5
we present our conclusions and recommendations for
future work.

2. Cross sections for electron scattering in liquid
xenon

In the gas phase, the electron transport can be represented as a
series of individual collisions, which are separated by free
flights [19]. However, this picture is no longer valid in the
liquid phase. Since no particular volume is owned by a single
atom, due to small interparticle spacings in liquids, as com-
pared to the range of interaction between electrons and the
targets, the potential in which an excess electron is scattered is
determined by many surrounding atoms [19, 24]. Namely, it
has been shown that the polarization potential of a single
atom is significantly screened by polarization potentials of
neighboring atoms [19, 24]. Due to this effect, at low ener-
gies, the effective potential changes from an attractive long
range potential, which corresponds to scattering on an iso-
lated xenon atom, to a repulsive short range potential, which
corresponds to scattering in the liquid phase [24, 28]. In
addition, electron scattering on a focus atom will be influ-
enced by electrostatic terms and non-local exchange terms of
all neighboring atoms [19]. Moreover, the de Broglie wave-
lengths of excess electrons at thermal energies are larger than
the interatomic spacing by several orders of magnitude [19].
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This leads to significant coherent scattering effects, for low
energy electrons, which make the electron scattering structure
dependent and strongly anisotropic [19, 24]. The anisotropy
of coherent scattering leads to a difference between the
effective mean free paths for the transfer of energy and
momentum [24, 57]. It has been shown that the effective
mean free path for the transfer of energy is independent of
the liquid structure, while the effective mean free path for the
transfer of momentum is structure dependent [24, 57]. The
coherent scattering effects and the modification of the scat-
tering potential strongly influence the elastic scattering of the
lower energy electrons. However, these effects are reduced
with an increasing energy becoming negligible for electron
energies higher than approximately 10 eV [39, 57]. This is
demonstrated by the density independence of the measured
drift velocity for swarms of electrons in compressed gases
under high electric fields [58, 59].

Excitations in liquid xenon have been investigated in
spectroscopy experiments [60–65]. It has been shown that the
reflection spectrum of liquid xenon is very similar to the
reflection spectrum of solid xenon [60, 61]. In this spectrum,

intermediate n=1 G⎡⎣ ⎤⎦( )3

2
and ¢ =n 1 G⎡⎣ ⎤⎦( )1

2
excitons have

been observed at 8.2 eV and 9.45 eV, respectively [61–63].
The former has parentage in the excited atomic [ ]s6 3 2 1 state,
while the latter has parentage in the ¢[ ]s6 1 2 1 state [63]. In
addition, a spectral line, which has developed from the two
neighboring [ ]d5 3 2 1 and [ ]s7 3 2 1 states, has been observed
at about 10.32 eV [63, 66]. Another spectral line has been
observed at 9 eV [61–63]. This line belongs to the n=2

G⎡⎣ ⎤⎦( )3

2
Wannier exciton, which does not originate from the

states of an isolated atom [61–63]. Since excitons are closely
related to the electron band structure, the presence of exci-
tonic lines in the reflection spectrum indicates the existence of
the valence band and the conduction band in liquid xenon

[66]. In addition, the value of G( )3

2
band gap has been

determined from the corresponding Wannier series [67]. The
obtained value of the band gap is 9.22 eV, and it is in
excellent agreement with the prediction on the change of the
corresponding band gap in the solid phase [66, 67]. This
value has been further verified by using the measured pho-
toconductivity threshold in liquid xenon (9.202 eV) and the
known difference between the photoconductivity threshold

and the G( )3

2
band gap in the solid xenon (0.013 eV) [67].

Thus, a cross section set for electron scattering in liquid
xenon has to include the cross sections for elastic scattering,
inelastic energy losses and the interband transitions [40, 41].
We employ four different cases for representing the inelastic
energy losses in order to study the influence of the inelastic
collisions on the transport properties of electron swarms and
the dynamics of negative streamers in liquid xenon. Each of
these cases is discussed in light of previous spectroscopy
and photoconductivity experiments. Elastic scattering and the
interband transitions are represented in the same way in all
cases considered.

2.1. Elastic scattering and interband transitions

The elastic scattering of low energy electrons is strongly
influenced by the changes in the scattering potential and the
coherent scattering effects [19, 24, 26, 34]. Moreover, the
effective mean free paths for the transfer of momentum and
energy in liquids are different due to a strong anisotropy
of coherent scattering [24, 57]. These mean free paths are
given by

ò

s

p c c c s c

L =

= -
p

-
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( )
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m0 0
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where n0 is the liquid number density, σsp(ò, χ) is the diff-
erential cross section for elastic scattering of an electron on a
focus atom in the liquid phase, ò is the relative energy in the
center of mass frame, χ is the angle through which the rela-
tive velocity is changed and S(Δk) is the static structure
factor, as a function of the transferred momentum. In these
equations s̃m and σm represent the momentum transfer cross
sections with and without the structure modification, respec-
tively [57].

As proposed by Tattersall and co-workers, the ratio

g = L
L

( ) 0

1
represents the measure of the anisotropy of

coherent scattering [57]. The coherent scattering is modeled
as a combination of three distinct effective scattering pro-
cesses, which give a good representation of the average
transfer of momentum and energy [57]. In the first of these
processes, represented by the σboth cross section, both energy
and momentum are transferred as in an ordinary binary col-
lision [57]. In the second process, represented by the
σmomentum cross section, the electron is scattered in a random
direction, but the speed of the electron remains unchanged.
This leads to a transfer of momentum, without a concomitant
transfer of energy [57]. In the third process represented by the
σenergy cross section the energy of the electron is reduced as in
an ordinary binary collision, but the electron does not change
the direction of its motion. This leads to a transfer of energy,
which is accompanied by a minimal transfer of momentum
[57]. It is important to emphasize that these effective scat-
tering processes do not represent individual microscopic
collisions, but rather provide a good representation of the
average rates of momentum transfer and energy transfer in
structured media [57].

The cross sections for the corresponding effective pro-
cesses are determined from γ(ò) and the momentum transfer
cross section, for electron scattering on a focus atom in the
liquid phase, σm(ò) [57]. The values of σm(ò) and γ(ò), which
are used in the present work, have been determined by Boyle
et al [34].
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For γ(ò)<1 these cross sections are calculated as [57]:
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For γ(ò)>1, these cross sections are given by [57]
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We model the elastic scattering by using these effective
cross sections, for energies up to approximately 10 eV. At
higher energies both σmomentum and σenergy are taken to be
negligible, while σboth is approximated by the elastic cross
section for electron scattering in the gas phase [68]. This is a
good approximation, since both modifications of the scatter-
ing potential and the coherent scattering effects are small for
high energy electrons [39, 57].

The cross section for interband transitions is approxi-
mated by the cross section for the electron impact ionization,
from the Hayashi’s cross section set, which is shifted towards
lower energies. Specifically, the cross section for ionization is
shifted by 2.91 eV, so that its threshold is moved to 9.22 eV.

This value corresponds to the G( )3

2
band gap in liquid xenon,

which is the energy difference between the uppermost valence
band and the bottom of the conduction band [67]. The use of
this cross section gives a good energy balance for the inter-
band transitions, since the energy levels of excess electrons in
the conduction band can be represented by a continuous
energy spectrum, due to a high density of states in the con-
duction band [41].

We should note that the energy of the bottom of the
conduction band in liquid xenon = - ( )V 0.66 0.050 eV
[69, 70] is not explicitly included in our calculations. This is
justified since the system is homogeneous and the inclusion of
V0 would be equivalent to introducing a constant electric
potential of the entire system, which would not influence the
electron dynamics due to the constant value of this potential.
It should also be noted that V0 is implicitly included in the
formula for the difference between the value of the ionization
potential of an isolated atom and the value of the band gap in
the liquid phase [40]. The inclusion of V0 in calculations is
necessary in the case of the gas-liquid interface (and other
situations in which the number density of the background
atoms is inhomogeneous) since the change of V0 across the
interface produces an effective electric field as shown in the
recent study of Garland and co-workers [71]. Thus, in our
calculations we can effectively represent discrete energy
levels of quasi free electrons in the conduction band which
have a minimum of V0 with a continuous energy spectrum of
free electrons which have a minimum of 0 eV.

2.2. Case 1: No electronic excitations

In the first case, the inelastic energy losses are completely
neglected. It was shown by Atrazhev et al that this approach

overestimates the first Townsend coefficient in liquid xenon
[39]. However, this case is considered in our study with the
aim of establishing the influence of electronic excitations on
the first Townsend coefficient. This case will be referred to as
case 1.

2.3. Case 2: Only excitations 6s½3 2�2= and 6s½3 2�1= are
included

In our remaining cases inelastic energy losses are taken into
account, since it has been shown in experiments that both
excitons and perturbed atomic excitations exits in liquid
xenon [62, 63]. Moreover, it has been determined that the
excitation of these electronic states is the main channel of
energy loss of excess electrons in liquid argon, krypton and
xenon under the moderate electric fields [72–74]. However,
no cross sections for the excitation of these discrete states can
be found in the literature. Since intermediate excitons have
unique parentage in the excited states of the atom [62, 63, 75],
we approximate the cross sections for both intermediate
excitons and the perturbed atomic excitations by the cross
sections for the corresponding excitations of an isolated atom.
The cross sections for excitations, which are used in our
work, are those from the Hayashi cross section set for elec-
trons in gaseous xenon [54, 68].

We do not change the values of the thresholds for exci-
tations, since only thresholds for optically allowed excitons
are present in the literature [75], while the optically forbidden
states have to be included in our model as well. Therefore, it
would be somewhat inconsistent to modify the thresholds for
the optically allowed transitions, while leaving the thresholds
for the optically forbidden transitions unchanged. Moreover,
it has been shown that in the reflection spectrum of liquid
xenon, there exists an additional line, next to the n=1

G⎡⎣ ⎤⎦( )3

2
exciton line [62, 63]. This line corresponds to the

perturbed atomic [ ]s6 3 2 1 state [62, 63]. It was determined by
Laporte et al that about 10% of atomic clusters in liquid
xenon, near the triple point, will give rise to the perturbed
atomic line, instead of the corresponding exciton line [62].
This is caused by the fact that these clusters do not have a
sufficient number of atoms for the formation of the exciton
inside a volume which corresponds to the exciton radius
[62, 63]. Therefore, if one was to construct a model which
distinguishes intermediate excitons from the corresponding
perturbed atomic states, one would have to know which
percentage of atomic clusters give rise to the perturbed atomic
lines, instead of the corresponding excitonic lines, for each
atomic excitation. In addition, one would have to know the
thresholds for all excitons and all perturbed atomic excita-
tions, including the optically forbidden states. This is beyond
the scope of our paper, and we model both the intermediate
excitons and the perturbed atomic excitations with the
corresponding excitations of an isolated atom. However, the
difference between these thresholds is less than 5% for all
observed excitons [62, 63, 75]. Thus, we anticipate a small
error is made by using the thresholds from the gas phase.
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We neglect the observed n=2 G( )3

2
Wannier exciton, in

all of our cases, since it does not correspond to any individual
atomic state. No other Wannier exciton, for n>1, has been
identified in the reflection spectra of liquid xenon [61–63, 75].
For simplicity, in the rest of this work the interband transition
and the inelastic collisions will be sometimes referred to as
ionization and excitations, respectively. Comparing to binary
inelastic collisions, these processes are not the same, as every
xenon atom is located in a cluster of the surrounding atoms.
Thus, atomic excitations are replaced either by excitons or by
perturbed atomic excitations, depending on the size of the
atomic cluster [62, 63]. Likewise, binary ionization is
replaced by the excitation of an electron from the valence
band to a quasi free state in the conduction band [66, 67].

In the second case, only excitations with thresholds,
which are lower than the threshold of the interband transition,
are included in the cross section set. This includes [ ]s6 3 2 2

and [ ]s6 3 2 1 atomic states. These two excitations correspond
to the first two inelastic collisions in the Hayashi’s cross
section set [54]. The former of this state is optically for-
bidden, while the latter is optically allowed. Both the n=1

G⎡⎣ ⎤⎦( )3

2
exciton, and the corresponding perturbed atomic

state, which have been observed in experiment [61–63], have
parentage in the second of these excitations.

2.4. Case 3: The first four excitations from the Hayashi’s set of
cross sections are included

In the previous experimental investigation of photo-
conductivity in liquid xenon it has been shown that other
discrete states should also be included in the set of cross
sections. Specifically, a dip has been observed in the photo-
conductivity spectra of liquid xenon at 9.45 eV [67]. This dip
is induced by the competition between continuous band to

band transitions and the discrete ¢ =n 1 G⎡⎣ ⎤⎦( )1

2
exciton [67].

The observed dip in the photoconductivity spectra of liquid
xenon indicates that the corresponding discrete state has
decay channels alternative to dissociation like luminescence
[66]. This indicates that the inelastic energy losses due to this
discrete state should be included in the modeling of electron
transport in liquid xenon. The ¢ =n 1 G( )1

2
exciton has par-

entage in the ¢[ ]s6 1 2 1 atomic state [62, 63]. Another atomic
excitation exists between [ ]s6 3 2 1 and ¢[ ]s6 1 2 1 states [54].
This is the optically forbidden ¢[ ]s6 1 2 0 state. In this case it is
important to take into account both ¢[ ]s6 1 2 0 and ¢[ ]s6 1 2 1

states, in addition to the excitations which are included in the
second case. The ¢[ ]s6 1 2 0 state corresponds to the third
electronic excitation in the set of cross sections developed by
Hayashi [54]. The fourth electronic excitation in the Haya-
shi’s cross section set corresponds to a combination of
¢[ ]s6 1 2 1 and [ ]p6 1 2 1 states [54]. Thus, we include the first

four excitations from the Hayashi’s cross section set in our
third case. This case will be referred to as case 3.

2.5. Case 4: All electronic excitations from Hayashi’s cross
section set are included

In the experimental investigation of the photoconductivity
spectra of liquid xenon near the triple point, no further
structure could be ascertained above 9.45 eV [67], and the
photoconductivity spectra has only been shown for energies
lower than 10eV [67]. However, in a latter experimental
investigation of the density dependence of the photo-
conductivity spectra in fluid xenon by Reininger et al, two
more dips have been observed for densities up to 77.86% of
the triple point density [66]. This is the highest density for
which results are reported in their study. The first of these
dips is at 10.32eV corresponding to the discrete transition,
which is formed from the two neighboring [ ]d5 3 2 1 and

[ ]s7 3 2 1 states [66]. The second dip is caused by the per-
turbed ¢[ ]d5 3 2 1 atomic state and it is observed at
11.6eV [66].

Thus, it is clear that the discrete states with energies
above 10 eV exist in liquid xenon, since a line at 10.32 eV has
been observed in the reflectivity spectra [60, 62, 63]. It is also
clear that they cause dips in the photoconductivity in fluid
xenon up to densities close to the triple point density [66].
This indicates that these states should be included in the
calculation of inelastic energy losses of electrons in fluid
xenon. However, we are not certain if these discrete states
should be included in the representation of the inelastic
energy losses in liquid xenon, or if they dissociate into a
quasi-free electron in the conduction band and a quasi-free
positive hole in the valence band. The presence of the line at
10.32eV in the reflection spectrum of liquid xenon [60, 63]
seems to indicate that these states have alternative decay
channels to dissociation due to luminescence. This means that
they also contribute to inelastic energy losses of excess
electrons. We are not certain which percentage of these dis-
crete states dissociates into a quasi-free electron and a quasi-
free positive hole. This case for representing the inelastic
energy losses in liquid xenon is based on the assumption that
these discrete states always decay through luminescence, or
some other non-dissociative process. Thus, the corresponding
excitations fully contribute to the inelastic energy losses of
excess electrons.

The atomic [ ]d5 3 2 1 state corresponds to the 11th exci-
tation of Hayashi’s cross section set, while the [ ]s7 3 2 1 state
is included in the 12th Hayashi’s excitation [54]. The

¢[ ]d5 3 2 1 atomic excitation, which causes a dip in the pho-
toconductivity at 11.6eV, is not included in Hayashi’s cross
section set. However, the 14th Hayashi’s excitation, which
corresponds to [ ]s9 3 2 2 state, has a threshold of 11.58 eV,
and it gives the effective energy loss for all excitations in this
energy range in the gas phase. All other effective excitations,
from the Hayashi’s set, include contributions from the opti-
cally forbidden states. Therefore, we should include these
excitations in our model, since the absence of the optically
forbidden states in the reflection spectrum does not mean that
these states do not contribute to the energy losses of excess
electrons. Thus, our fourth case for representing the inelastic
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energy losses in liquid xenon includes all excitations from
Hayashi’s cross section set. This case will be referred to as
case 4. The cross sections for electron scattering in liquid
xenon included in all four cases considered in this work are
shown in figure 1.

3. Methods of calculation

3.1. Monte Carlo method

In this work we use the Monte Carlo method to simulate a
swarm of electrons in an infinite space, which is filled with a
homogeneous background liquid, under the action of a static
and uniform electric field. For this purpose, we have modified
our existing Monte Carlo code, which has been developed for
the study of electron transport in the gas phase [76–78]. Since
the dispersion relation for electrons in liquid xenon can be
taken to be parabolic and isotropic [40], the influence of the
liquid on the electron motion is restricted to scattering events.
Thus, the appropriate modification of the scattering dynamics
is sufficient to make our Monte Carlo code applicable to the
study of electron transport in liquid xenon. This modification
has been done by including three effective scattering pro-
cesses, which represent the coherent scattering of low energy
electrons [57]. These scattering processes are described in
section 2.1. Our study of the electron transport is performed
under the assumption that the density of charged particles is
very low (the swarm limit). Thus, we neglect the electron–
electron interactions, the space charge effects and collisions
with the results of previous collisions (holes and excited
states). Therefore, the dynamics of each electron can be fol-
lowed independently.

The dynamics of an individual electron is determined by
the action of the electric field and by collisions between the
electron and the atoms of the background liquid. The integral
equation for the collisional probability is solved numerically
by generating the random numbers from the uniform dis-
tribution on the interval (0,1) [76–78].

The type of the next collision is determined by using an
additional random number, while taking into account the
relative probabilities of all scattering processes for the
corresponding value of the electron energy [76–78]. The
change of direction of the electron motion after a collision is
represented by a pair of angles, i.e. the scattering angle and
the azimuthal angle. Isotropic scattering is assumed for all
scattering processes, except for the effective scattering pro-
cess which corresponds to the σenergy cross section. In this
process the direction of the electron motion is unchanged by
the collision.

After the collision which is represented by the σboth cross
section the electron energy is reduced by the factor
 c-( )1 cosm

M

2 , where m is the electron mass, M is the mass
of a background atom, ò is the initial energy of the electron
and χ is the scattering angle. The same amount of energy is
lost by a low energy electron in the effective scattering pro-
cess, which is represented by σenergy cross section. When an
inelastic collision, or interband transition takes place, the
energy of the incident electron is reduced by the energy loss
(i.e. the threshold energy) of the corresponding process. After
the interband transition, the remaining energy is redistributed
between the primary electron and the secondary electron. The
fraction of the postcollisional energy, which is obtained by
each of these two electrons, is determined by using an addi-
tional random number.

In our Monte Carlo code, monomials of coordinates and
velocity components of each individual electron are sampled
and averaged, over the entire electron ensemble, at discrete
sampling times [76–78]. These expressions are used to cal-
culate both bulk and flux transport coefficients of the swarm,
with explicit formulas given elsewhere [76–78].

As a large number of electrons must be followed, in order
to reduce the statistical fluctuations of the output data, our
Monte Carlo simulations are very time consuming. The
computational time is particularly large for lower values of
reduced electric field, where few inelastic collisions take
place. Under these conditions due to a small rate of energy
transfer in elastic collisions, the relaxation of energy is inef-
ficient. In order to optimize the computational time and speed
of our simulations in the limit of low reduced electric fields,
the simulations are performed with a lower number of elec-
trons until the swarm reaches the steady state. After relaxation
the swarm is multiplied several times, by cloning each elec-
tron, until the desired number of electrons is obtained. When
the multiplication is finished all transport properties are cal-
culated from average monomials of both velocities and
coordinates. For a more detailed description of our Monte
Carlo code, we refer readers to our reviews [76–78].

Figure 1. Cross sections for electron scattering in liquid xenon:
(1) σboth, (2) σmomentum, (3) σenergy, (4) ionization (the interband
transition), effective electronic excitations: (5) [ ]s6 3 2 2, (6)

[ ]s6 3 2 1, (7) ¢[ ]s6 1 2 0, (8) ¢[ ]s6 1 2 1 and [ ]p6 1 2 1, (9) [ ]p6 5 2 2 and
[ ]p6 5 2 3, (10) [ ]p6 3 2 1 and [ ]p6 3 2 2, (11) [ ]d5 1 2 0, [ ]d5 1 2 1,
[ ]p6 1 2 0, [ ]d5 7 2 4 and [ ]d5 3 2 2, (12) [ ]d5 7 2 3, (13) [ ]d5 5 2 2,

(14) [ ]d5 5 2 3, (15) [ ]d5 3 2 1, (16) [ ]s7 3 2 2, [ ]s7 3 2 1, [ ]p7 1 2 1,
[ ]p7 5 2 2, ¢[ ]p6 3 2 1, [ ]p7 5 2 3, [ ]d6 1 2 0, [ ]d6 1 2 1, [ ]p7 3 2 2
[ ]d6 3 2 2, [ ]p7 3 2 1, [ ]p7 1 2 0, [ ]d6 7 2 4, [ ]d6 7 2 3, ¢[ ]p6 3 2 2,
[ ]d6 5 2 2, [ ]p6 1 2 1, [ ]d6 5 2 3, ¢[ ]p6 1 2 0 and [ ]d6 3 2 1, (17)
[ ]s8 3 2 2 and (18) [ ]s9 3 2 2.
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3.2. Benchmark calculations

We present our benchmark calculations for the Percus Yevick
model liquid, in order to test the implementation of the
coherent scattering effects in our Monte Carlo code. The
radial pair correlation function, which corresponds to this
model, is obtained by applying the Percus Yevick approx-
imation as a closure to the Ornstein–Zernike equation and by
representing the interaction between the background mole-
cules by the hard sphere potential [57, 79]. The corresponding
static structure factor is obtained as a Fourier transform of this
pair correlation function [57]. The modified Verlet and Weis
structure factor for the Percus Yevick liquid [80] is used in
this work, as in the study of Tattersall et al [57]. This structure
factor is given by
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[57]. The packing ratio f determines the percentage of space
which is occupied by the hard spheres. This ratio can be

written as f p= r n4

3
3

0, where r and n0 are the hard sphere
radius and the neutral number density respectively [57].

In figure 2 we show our benchmark results for mean
energy, drift velocity and components of the diffusion tensor
for electrons in the Percus Yevick liquid, for several values of
the packing ratio f. For comparison, the benchmark results of
Tattersall et al [57] are included in the same figure. Our
results are represented by lines, while the results of Tattersall
and co-workers are represented by symbols. From a com-
parison between our results and those predicted by Tattersall
et al [57], it is evident that the results are consistent for all
E/n0 and f and for all transport coefficients. This suggests
that the representation of the coherent scattering effects has
been included properly in our Monte Carlo code [81].

In figure 2 we see that all transport properties are dis-
tinctively dependent on f for the lower values of E/n0. Due to
coherent scattering effects, all transport properties increase
with the increase of f. At the higher values of E/n0 , how-
ever, the strong dependence of transport properties on f is
firstly reduced and then entirely removed as the influence of
the coherent scattering is negligible for the high energy
electrons. On the other hand, the behavior of the longitudinal
diffusion coefficient DL is more complex. We see that DL

increases with the increase of f at low electric fields, but this
dependence is inverted for E/n0 between approximately 2 and
10 Td. The mean energy monotonically increases with the
increase of E/n0 for all values of f. The drift velocity exhibits
structure induced NDC, i.e. for E/n0 approximately between

Figure 2. Comparison of our results for mean energy, drift velocity W, longitudinal diffusion coefficient n DL0 and transverse diffusion
coefficient n DT0 of an electron swarm in the Percus–Yevick model liquid, with those of Tattersall et al [57]. Transport properties are
presented as a function of the reduced electric field E/n0 and the Percus–Yevick packing ratio f. The present calculations are represented by
lines, while the results of Tattersall et al [57] are represented by symbols.
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0.5 and 6 Td and for f�0.3, values of drift velocity decrease
as the driving field is increased. The quantitative criterion for
the occurrence of the structure induced NDC has been dis-
cussed by White and Robson [82]. The decrease of the drift
velocity with increasing field can be attributed to the reduc-
tion of the coherent scattering effects, which in turn enhance
the directional motion of low energy electrons. The reduction
of both DL and DT with an increasing E/n0 is also clearly
evident. In the limit of the highest E/n0 considered, all pro-
files approach to that for f=0. It is interesting to note that
the values of E/n0 for this transition decrease with increas-
ing f.

3.3. Fluid model of negative streamers

Our simulations of negative streamers in liquid xenon are
performed by using a 1.5 dimensional fluid model [83, 84]. In
this model, we assume that the space charge is contained
inside a cylinder with radius R0 and that the charge density
varies along the axial direction only. The electron dynamics is
described by the continuity equation for the electron number
density
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where ne(x, t) and np(x, t) are the number densities of elec-
trons and positive holes, respectively, which are functions of
the coordinate x and time t. In this equation DL and W are the
longitudinal diffusion and the drift velocity respectively,

( )Esgn is the sign function of the electric field E which is
oriented along the x-axis, while νi and β are the ionization rate
and the recombination coefficient, respectively.

Since the hole mobility in liquid xenon is much smaller
than the mobility of electrons [85, 86], the positive holes are
assumed to be stationary, on the time scales relevant for this
study. Thus, the time evolution of the number density of
positive holes is described by the number balance equation
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The total electric field in the system is represented as the
sum of the uniform external field and the electric field due to
space charge effects [83, 84]
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where E0 is the external field, e is the elementary charge, ε0
and εr are the vacuum permittivity and the relative permit-
tivity, respectively, and l is the length of the system. The
recombination coefficient is given by the scaled Debye

formula [50–52]
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where βD is the Debye recombination coefficient, μe is the
electron mobility, while ξ is the scaling factor which is taken
to be 0.1 [10, 50, 51].

The above fluid equations are closed assuming the local
field approximation—all transport properties of electrons at a
given value of the coordinate x and time t are determined by
the local instantaneous electric field, E(x, t) and are evaluated
from data computed in Monte Carlo simulations. In the
numerical implementation of our fluid model, the spatial
discretization is performed by using the second order central
finite difference, while the fourth order Runge–Kutta method
is used for the integration in time. In fluid simulations we
follow the transition of an electron avalanche into a negative
streamer and its subsequent propagation in liquid medium.

4. Results and discussion

4.1. Transport coefficients for electrons in liquid xenon

In our study of the transport properties of electrons in liquid
xenon we cover a range of reduced electric fields between
1×10−3 and 2× 103 Td. The number density of xenon
atoms is 1.4×1028 m−3, while the temperature of the
background liquid is 163K. For E/n0 higher than 10 Td, we
follow 106 electrons during the entire simulation. However, at
lower fields our simulations begin with 104 electrons and after
the relaxation to the steady state the electron swarm is gra-
dually scaled up to 106 electrons by cloning each electron at
fixed time intervals. The initial velocities of electrons are
randomly selected from a Maxwell–Boltzmann velocity dis-
tribution which corresponds to a mean energy of 1 eV. All
electrons start their trajectories from the same point in space.
This point is chosen as the origin of our coordinate system.
The cross sections for electron scattering employed in this
work are shown in figure 1. The mean energy, drift velocity
and diffusion coefficients are shown for cases 1 and 4, as
differences between individual cases are too small to be
clearly distinguished on logarithmic scale.

4.1.1. Mean swarm energy. The comparison of the mean
energies of electron swarms in liquid and gaseous xenon is
shown in figure 3. For the lower values of electric fields up
to approximately 0.6 Td, the mean energy is higher in liquid
xenon than in gaseous xenon due to a significant reduction
of the cross section for elastic scattering of the lower energy
electrons in the liquid phase. Such behavior is different at
higher fields as the mean energy of electrons approaches
1 eV, owing to the fact that the electron scattering in atomic
liquids is similar to the scattering in dilute gases for the
electron energies higher than 1 eV [19, 34]. The mean
energy is lower in the liquid phase than in the gas phase for
E/n0 between approximately 0.6 and 350 Td. At the lower
edge of this field region, the difference between the mean
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energies in gaseous and liquid xenon can be attributed to the
greater amount of energy losses in elastic collisions in the
liquid phase in the energy region between approximately
0.4 and 10 eV [34]. This is represented by the combined
effect of the scattering processes which correspond to σboth
and σenergy cross sections. For E/n0 between approximately
3 and 350 Td this energy difference is caused by the
intensive ionization cooling in the liquid phase. Ionization

cooling of an electron swarm in gases has been discussed by
Robson and Ness [87]. At higher fields the mean energy in
the first case for representing excitations in liquid xenon is
slightly higher, while the mean energy in the fourth case is
slightly lower, than the mean energy in the gas phase.

In figure 4 we show the percentage difference between
the calculated mean energy, assuming the first and the
remaining three cases. This difference is negligible for E/n0
less than 2 Td as electrons undergo elastic collisions only. For
E/n0 higher than 2 Td the mean energy reaches the highest
value in the first case due to the absence of inelastic energy
losses. The percentage differences between the values of
mean energy in the first case and the remaining three cases
reach two local maximums at about 5 and 1000 Td, and a
local minimum around 27 Td. The first local maximum occurs
due to the absence of inelastic energy losses, lower than the
threshold energy for ionization, in the first case. The local
minimum appears in the field region in which the energy
losses due to ionization become comparable to the inelastic
energy losses. For E/n0 higher than 50 Td, the mean energy
decreases with the increase of the number of excitations
which are included in the model. This is a consequence of a
significant competition between ionization and excitations
with thresholds higher than 9.22 eV in this field region. The
percentage difference between the mean energy in the first
case and the remaining cases never exceeds 3%, 6% and 16%
for the second, third and fourth cases respectively. Even
though the percentage difference between the values of mean
energy in various cases decreases for E/n0 greater than
1000 Td, the absolute difference continues to rise mono-
tonically in the entire field region covered in this study. For
the values of E/n0 lower than 50 Td, these differences are

Figure 3. Comparison of the mean energies of electrons in gaseous
and liquid xenon. The values of mean energy in liquid xenon,
determined by employing two different methods for representing the
inelastic energy losses, are shown. In the first case all excitations are
neglected, while in the fourth case all excitations from Hayashi’s
cross section set for electron scattering in gaseous xenon [54, 68] are
included.

Figure 4. Percentage difference between the values of mean energy,
for electrons in liquid xenon, which are determined by using
different representations of the inelastic energy losses. All excita-
tions are neglected in the first case. In the second and the third cases
only the first two ( [ ]s6 3 2 2 and [ ]s6 3 2 1) and the first four
( [ ]s6 3 2 2, [ ]s6 3 2 1, ¢[ ]s6 1 2 0 and an effective excitation which
represents both ¢[ ]s6 1 2 1 and [ ]p6 1 2 1) excitations from the cross
section set of Hayashi [54, 68] are included. All excitations from the
cross section set of Hayashi are included in the fourth case.

Figure 5. Comparison of the measured drift velocities in liquid
xenon (Miller et al [88] and Huang and Freeman [89]) with the
theoretical calculations. The theoretically determined drift velocities
in liquid xenon include those of Boyle et al [34] as well as the bulk
drift velocities calculated in this study by employing two different
methods for representing the inelastic energy losses. The bulk drift
velocity of electrons in gaseous xenon is also shown in this figure for
comparison.
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very small and are close to the statistical uncertainty of the
Monte Carlo simulations.

4.1.2. Drift velocity and NDC. In figure 5 we show bulk drift
velocities assuming the first and the fourth cases for
representing the inelastic energy losses as a function of
E/n0. For comparison, the theoretical [34] and experimental
[88, 89] drift velocities in liquid xenon determined by
previous authors are displayed in the same figure, along with
the bulk velocity in gaseous xenon. For the values of E/n0
lower than 1 Td, the drift velocity in the liquid phase exceeds
the drift velocity in the gas phase. This is a consequence of
the significant reduction of the rate for momentum transfer of
the lower energy electrons in liquid xenon due to the
modifications of the scattering potential and the coherent
scattering effects. The lowering of the rate for momentum
transfer enables the electric field to accelerate electrons more
efficiently in liquid xenon than in the gas phase, which leads
to a significant enhancement of the drift velocity compared to
the gaseous xenon. However, this effect is reduced at higher
fields as the scattering of a high energy electron on a xenon
atom is weakly perturbed by the surrounding liquid. Thus, for
the values of E/n0 between approximately 0.02 and 2 Td the
drift velocity in liquid xenon decreases with increasing field,
until it reaches the values that are close to the drift velocity in
gaseous xenon. The reduction of the drift velocity with
increasing E/n0 is a phenomenon that is well known as NDC
[90–92]. While this phenomenon is caused by inelastic and
non-conservative collisions in various gases [90, 92], the
NDC observed in liquid argon and liquid xenon is entirely
structure induced phenomenon [19, 34, 82]. The quantitative

criterion for the occurrence of the structure induced NDC has
been discussed by White and Robson [82]. At the end of the
field region, which corresponds to NDC, the drift velocity in
gaseous xenon slightly exceeds the drift velocity in liquid
xenon. For the values of E/n0 higher than 10 Td the bulk drift
velocity in the first case exceeds the bulk drift velocities in all
other cases as well as the bulk drift velocity in the gas phase
due to the strongest explicit effects of ionization in this case.

In order to understand the occurrence of NDC in liquid
xenon at low electric fields, in figure 6 we show the energy
distribution functions for a few values of E/n0. Results are
presented for the case two only, as the rate coefficients for
those inelastic processes excluded in this case are negligible
over the range of reduced electric fields considered. At low
electric fields, up to approximately 0.008 Td, the majority of
electrons have energies below approximately 0.7 eV. The
cross section for momentum transfer is very small over the
range of energies less than 0.7 eV and hence the drift velocity
in liquid xenon is much greater than in the gas phase.
However, for E/n0 greater than approximately 0.02 Td (at this
particular value of E/n0 NDC begins to develop) a large
fraction of electrons have energies between approximately 0.7
and 2 eV. There is a rapid rise in both σboth and σenergy with
increasing energy in this region. As a consequence, these two
cross sections quickly approach the cross section for elastic
collisions in the gas phase. For E/n0 between 0.2 and 1 Td the
majority of the high energy electrons have energies between
1.5 and 3 eV where the cross sections σboth and σmomentum

increase rapidly and approach their maximal values. The rapid
rise of both σboth and σmomentum leads to a decrease of the drift
velocity with increasing E/n0. For E/n0 higher than
approximately 5 Td a large fraction of electrons have energies

Figure 6. Energy distribution function of the electrons for various E/n0 as indicated on the graph. Calculations are performed assuming the
case 2 where excitations [ ]s6 3 2 2 and [ ]s6 3 2 1 from the set of cross sections developed by Hayashi are included.
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higher than approximately 4 eV, and at these energies the
cross section for elastic scattering rapidly drops off with an
increase of electron energy. In this range of fields, the drift
velocity monotonically increases with E/n0.

We may also observe that over the range of E/n0, where
the structure induced NDC occurs, the high-energy tail of the
distribution function quickly drops off with increasing
energy. This is caused due to rapid increase of energy
transfer associated with the σboth and σenergy. For E/n0 lower
than approximately 0.008 Td and higher than approximately
4 Td, the high-energy tail of the distribution function drops
off more slowly.

In figure 7 we show the spatially-resolved rate coefficient
for the σboth. In order to sample spatially-resolved rate
coefficients we have divided the real space into cells. The
space is divided uniformly into 100 cells in such a way that
cells indexed by - +( )50, 50 correspond to the real
coordinates s( )x 3cm , where xcm is the coordinate of the
center of mass of the swarm, and the σ is the standard
deviation of the x-coordinate of the electrons [93]. Comparing
the leading and trailing edges of the swarm, this property is
higher at the leading edge where the average energy of the
electrons is always greater than at the trailing edge. The slope
of the spatially-resolved rate coefficient is the largest over the
range of E/n0 where NDC occurs. Moreover, we observe that
the maximal values of this property at the leading edge of the
swarm are higher for 0.59 and 0.77 Td than for a higher value
of 5.9 Td. A similar behavior is observed for the spatially-
resolved rate coefficient for the σmomentum.

The drift velocity calculated in our study is in an
excellent agreement with the theoretical results of Boyle et al
[34]. Our values of the drift velocity are close to those
predicted in the experiments of Miller et al and Huang and
Freeman [88, 89]. However, while most theoretical calcula-
tions of the drift velocity predict a structure induced NDC,
this effect has not been observed in the experiments. In the

field region which corresponds to the onset of the structure
induced NDC of the theoretically determined drift velocity,
the experimental drift velocity saturates with increasing field.
At higher fields, no experimental results are available.

This discrepancy between theoretical and experimental
results has been attributed by Sakai et al [32] to the presence
of additional channels of energy loss in liquids, which are not
included in the existing theoretical models. These energy
losses correspond to the changes in the translational states of
pairs and triplets of xenon atoms upon the electron impact,
and they occur for energies much lower than the first
threshold for excitations [20, 32]. Sakai and co-workers have
empirically derived the sets of cross sections for electron
scattering in liquid argon, krypton and xenon [32] which
include effective cross sections for representing these
additional energy losses. However, an alternative explanation
for this discrepancy between theory and experiment could be
the presence of molecular impurities in the liquid rare gases
used in the experiments. Indeed, it has been shown by Sakai
et al [32] that even a small amount of molecular impurities in
liquefied rare gases leads to a significant enhancement of the
electron drift velocity. It might also be the case that the
structure induced NDC would be observed in the profiles of
the experimentally determined drift velocity at higher electric
fields. Further experimental and theoretical investigations are
required for the resolving this discrepancy. Thus, the
measurement of the drift velocity of electrons in liquid xenon
at higher electric fields is of a great importance. In any case,
we do not include the effective cross section developed by
Sakai et al [32] in our model, as it is not adjusted to our cross
section for elastic scattering.

In figure 8 we show the percentage difference between
the calculated drift velocity assuming the first and the
remaining three cases. The flux drift velocity increases with
the decrease of the number of excitations, which are

Figure 7. Spatially-resolved rate coefficient for the σboth. Calcula-
tions are performed assuming the case 2 where excitations [ ]s6 3 2 2
and [ ]s6 3 2 1 from the set of cross sections developed by Hayashi are
included.

Figure 8. Percentege difference between the values of drift
velocities, for electrons in liquid xenon, which are determined by
using different methods for representing the inelastic energy losses.
These methods are described in the caption of figure 4. Flux and bulk
results are represented by solid lines and dashed lines, respectively.
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considered in the model. This is caused by the lowering of the
chaotic component of the electron velocity due to the increase
of the ionization cooling with the reduction of the inelastic
energy losses [87]. In the case of the bulk drift velocity, this
increase is even more pronounced due to the explicit effects
of ionization. The percentage difference between drift
velocities determined in the first case and the remaining
three cases has a local maximum at about 8 Td, as the relative
difference between rates for ionization has the highest values
at low electric fields. This local maximum has a value of
about 8% and 24% for flux and bulk drift velocity,
respectively. For E/n0 higher than 100 Td, the percentage
difference between flux drift velocities in the first case and the
last two cases rises due to increasing rates for inelastic
collisions with thresholds higher than 9.22 eV in this field
region. The percentage difference between the corresponding
bulk drift velocities reaches another local maximum at about
200 Td and 400 Td for the third and the fourth cases
respectively. Although the percentage difference between
bulk drift velocities in different cases decreases after the last
local maximum, the absolute difference monotonically
increases in the entire field region below 2000 Td.

4.1.3. First Townsend coefficient. The first Townsend
coefficient expresses the number of ion pairs generated by
an electron per unit length. It is equal to the ionization
collision frequency divided by the electron drift velocity. Our
calculations of the first Townsend coefficient α determined by
using different representations of the inelastic energy losses in
liquid xenon are shown in figure 9. The first Townsend
coefficient in gaseous xenon is scaled up to the liquid density
and displayed in the same figure for comparison. It can be
seen that α monotonically increases with increasing field in
all four cases for representing the inelastic energy losses. We
also observe that α is reduced with increasing number of

included excitations. In the first case, where all excitations are
neglected, the coefficient α overestimates those calculated in
the remaining three cases over the range of E/n0 considered.
While the absolute difference between the first Townsend
coefficient in the first case and the remaining cases increases
over the entire E/n0 range covered in this study, the relative
difference has the highest values at E/n0 lower than
approximately 20 Td. For E/n0 greater than 20 Td the
ionization rate coefficient in the fourth case, where all
excitations are included, becomes significantly lower than the
corresponding rate coefficients in the other three cases. This is
a consequence of the increasing inelastic energy losses which
have thresholds higher than 9.22 eV in this case.

The first Townsend coefficient in liquid xenon is much
higher than the rescaled coefficient in gaseous xenon for E/n0
lower than 100 Td. In the limit of the highest E/n0 considered
in the present work, however, we observe that the deviations
between the ionization coefficients in liquid and rescaled gas
are significantly reduced. One of the main reasons for the
significant difference between the rate coefficients for
ionization in the scaled gaseous xenon and liquid xenon is
the reduction of the threshold for ionization in the liquid
phase. An electron in gaseous xenon can undergo ionization
only at energies higher than 12.13 eV. Moreover, it can lose a
significant amount of energy in a wide range of inelastic
scattering processes at energies lower than the threshold
energy for ionization. However, in liquid xenon any electron
with the energy higher than 9.22 eV can excite an electron
from the valence band to the conduction band. Furthermore,
there is a far lower number of inelastic scattering processes
with thresholds which are lower than the threshold for
ionization in the liquid phase compared to the gas phase.

In figure 10 we show the first Townsend coefficient
measured by Derenzo et al [56] along with the theoretical
results obtained by previous authors [39, 40, 53]. The values

Figure 9. Variation of the first Townsend coefficient with E/n0 for
electrons in liquid xenon. Calculations are performed by assuming
all four different methods for representing the inelastic energy losses.
These methods are described in the caption of figure 4. The first
Townsend coefficient for gaseous xenon, which is scaled up to liquid
density is also shown, for comparison.

Figure 10. Comparison between the theoretical calculations of the
first Townsend coefficient α determined in this study and the results
of previous authors. These results include the measurements of
Derenzo et al [56] and calculations of Atrazhev et al [39], Jones and
Kunhardt [40] and Nakamura et al [53].
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of the first Townsend coefficient determined in this study by
assuming the first and the fourth cases for representing the
inelastic collisions are displayed in the same figure for
comparison. The experimental results of Derenzo et al [56]
are significantly higher than the values of α for electrons in
gaseous xenon which are scaled to liquid density. An unusual
feature of the first Townsend coefficient measured by
Derenzo and co-workers is a non-monotonous behavior with
the increase of the reduced electric field. However, this non-
monotonicity is not outside the range of experimental
uncertainty.

The two sets of results determined by Atrazhev et al [39]
are calculated by assuming two different methods for
representing the inelastic energy losses. The values of α

represented by curve II are determined under the assumption
that the percentage of inelastic energy losses in the liquid
phase are just the same as in the gas phase [39]. This curve is
significantly below all other curves presented in this figure.
The underestimation of α in curve II demonstrates the
significant reduction of the inelastic energy losses in liquid
xenon compared to gaseous xenon as discussed by Atrazhev
et al [39]. The values of α represented by curve III are
determined by completely neglecting the inelastic energy
losses in liquid xenon. This curve is in the best agreement
with the first two experimental points of Derenzo et al [56]
and with our case 1. The first Townsend coefficient
determined by Jones and Kunhardt [40] is the only present
theoretical result which predicts the non-monotonic behavior
of α and it is in a good agreement with the first four
experimental points of Derenzo et al [56]. However the
values of α at higher fields are not shown in their work. The
results of Nakamura et al [53] agree very well with the last
segment of experimental points of Derenzo et al [56], while
the values at lower fields are not displayed in their paper.

While our case 1 for representing the inelastic energy
losses is in the best agreement with the first two experimental
points of Derenzo et al [56], all other experimental points are
in an excellent agreement with our remaining three cases. No
experimental data are present in the field range in which there
is a significant difference between our last three cases for
representing the inelastic collisions in liquid xenon. However,
the last two experimental points of Derenzo et al [56] are in a
slightly better agreement with our fourth case than with the
remaining cases.

A possible explanation for the high values of the first two
experimental points determined by Derenzo et al [56] is the
presence of another mechanism for populating the conduction
band in liquid xenon, which is more significant than electron
impact ionization at low electric fields. One example of such a
mechanism is the dissociation of high order Wannier excitons
(n>1) due to scattering on the walls of the system, or under
the influence of some other perturbation. Another possible
explanation is the reduction of the inelastic energy losses at
energies lower than 9.22 eV due to some other effects, which
are not included in our model.

4.1.4. Longitudinal and transverse diffusion coefficients. In
figure 11 we show the variation of DL/μ and DT/μ with E/n0
assuming the first and the fourth cases for representing the
inelastic collisions in liquid xenon. The calculated values of
these quantities obtained by Boyle et al [34] are also
displayed in the same figure for comparison, along with the
characteristic energy measured by Shibamura et al [94]. Here
DL and DT denote the longitudinal and the transverse
components of the bulk diffusion tensor, while μ is the
bulk mobility of electrons. The characteristic energy DT/μ
initially increases with increasing E/n0, reaching a local peak
around 2 Td, and then starts to decrease with E/n0. For E/n0
higher than approximately 300 Td, we see that DT/μ again
increases with E/n0. The E/n0 dependence of DL/μ is more
complicated. First, there is a region of slow rise of DL/μ with
increasing E/n0 due to a reduction of the momentum transfer
of the lower energy electrons in liquid xenon. Second, there is
a region of slow decrease for E/n0 between approximately
0.05 and 0.4 Td, and then for E/n0 up to approximately 6 Td
there is again a region of rapid rise. Between approximately
6 and 30 Td DL/μ is reduced as the inelastic collisions start to
exert their influence on the swarm. Finally, DL/μ rises again
as the electrons start to rapidly gain energy from the electric
field. The complex behavior of DL/μ in liquid xenon reflects
the high sensitivity of this property with respect to the details
of cross sections.

We also observe that DL/μ agree very well with the results
of Boyle et al [34] for E/n0 lower than 0.7 Td. However, our
results are lower than those of Boyle and co-workers at higher
electric fields. The discrepancy can be attributed to the
difference in the employed cross sections for the electron
scattering, as Boyle and coworkers have neglected the inelastic
collisions in their study. As the mean energy of electrons is
around 1.8 eV at 1 Td, the most energetic electrons have enough
energy to undergo inelastic collisions. The present calculations

Figure 11. Comparison between the present calculations and those
predicted by a multi term solution of the Boltzmann equation (Boyle
et al [34]) and experimental measurements (Shibamura et al [94]) for
the bulk values of DL/μ and DT/μ. Our results are evaluated by
assuming the cases 1 and 4.
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of DT/μ are in a good agreement with those predicted by Boyle
et al [34] and Shibamura et al [94].

In figure 12 we show the ratio DL/DT for electrons in
liquid xenon assuming the first and the fourth cases for
representing the inelastic energy losses. The values of DL/DT

for electrons in gaseous xenon are shown in the same figure
for comparison. For electrons in liquid xenon this ratio is
decreasing with increasing field up to approximately 1 Td,
due to the rising rates for elastic scattering in this field region.
However, this ratio is increasing at higher fields due to the
reduction of the rate for elastic scattering of high energy
electrons. The E/n0 dependence of this ratio is different for
electrons in gases at low electric fields. For the values of E/n0
lower than 10−2 Td this ratio is constant in the gas phase as
the mean energy of electrons is very close to the thermal
values. There is a narrow range of the reduced electric field
between approximately 10−2 and 2× 10−2 Td in which this
ratio is rising with increasing field, due to the influence of the
Ramsauer–Townsend minimum. At higher fields the qualita-
tive trend of behavior of DL/DT is the same for electrons in
liquid and gaseous xenon though the minimum is more
pronounced in the liquid phase.

4.2. Streamer calculations

In our fluid simulations, we follow the transition of an elec-
tron avalanche into a negative streamer as well as the sub-
sequent propagation of this streamer. The initial condition for
both electrons and positive holes is a Gaussian distribution
which is given by
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This Gaussian is positioned near the cathode. It should be
noted that the initial number densities of electrons and posi-
tive holes are selected so that the space charge effects are

negligible. The values of l and R0 are set to 5×10−5 m and
1×10−5 m respectively. The particular value of R0 is chosen
as an educated guess taking into account the initial distribu-
tion width and the spreading due to transverse diffusion.
This value is in a good agreement with the values evaluated
by the other authors [50, 51]. The length of the system l is
determined by the requirement that the streamer velocity
relaxes to a stationary value. The number of spatial cells used
in our fluid simulations is 25000.

In figures 13 and 14 we show the formation and propa-
gation of a negative streamer, assuming cases 1 and 4 for
representing the inelastic energy losses, under the influence of
the externally applied electric fields of 59 Td and 100 Td,
respectively. For E/n0=59 Td the difference between the
ionization coefficients for liquid phase and rescaled gas is
much higher than for E/n0=100 Td. The simulations in the
liquid phase are augmented by the simulation in which the
transport data for electrons in the gas phase are for the gas
phase scaled to the liquid density. The general features of the
streamer profiles in the liquid xenon are the same as those of
the streamers in gases [95, 96]. However, the space and time
scales of the streamer formation are reduced by about three
orders of magnitude due to a much greater number density of
the background atoms in the liquid phase. The electron
number density has a sharp peak in the streamer head where
the electric field is significantly enhanced by the space charge
effects. However, the number density is greatly reduced in the
streamer channel where the external electric field is sig-
nificantly screened. The further reduction of the number
density of electrons in the streamer channel with increasing
distance from the streamer head is clearly evident in the
streamer profiles. This reduction can be attributed to the
recombination of electrons and positive holes [50, 51]. A
similar decrease of the electron number density in the strea-
mer channel is observed for streamers in electronegative
gases [50, 51].

We observe that the streamer formation as well as
streamer propagation are greatly reduced with an increase of
the number of excitations which are included in the model.
The number density of electrons in both the streamer head
and the streamer channel is also reduced. It can also be seen
that the transition from an electron avalanche into a streamer
is much slower in the case of the rescaled gas than in the first
and the fourth cases of the liquid phase. Comparing figures 13
and 14, we see that this difference is much more pronounced
at 59 Td than at 100 Td. To be specific, at 59 Td the dis-
tribution of electrons modeled in the case of the rescaled gas
is still in the avalanche phase at the time instant when the
streamer in the liquid phase, assuming the first case of
representing inelastic energy losses, crosses the entire length
l. On the other hand, at 100 Td the streamer modeled in the
case of the rescaled gas is almost completely formed by
the time when the streamer modeled in the first case reaches
the boundary of the system. However, the streamer velocity
and the number density of electrons calculated in the rescaled
gas case are well below those in the liquid phase, assuming
both cases 1 and 4, even at 100 Td. The observed streamer
properties may be understood by considering the differences

Figure 12. Comparison of the ratios between the bulk longitudinal
diffusion and the bulk transversal diffusion in liquid xenon assuming
cases 1 and 4 and the same ratio in gaseous xenon. These cases are
described in the caption of figure 3.
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between the ionization coefficients in liquid and gaseous
xenon. These differences are the most dominant at lower
electric fields and gradually decrease with increasing field.

In figure 15 we show the profiles of negative streamers in
liquid xenon for the applied reduced electric fields of 35 Td,
59 Td and 100 Td, respectively, at time 73 ps. The time
instant of 73 ps has been carefully chosen since the fastest
streamer in our simulations reaches the boundary of the sys-
tem exactly at this time. The results are evaluated by con-
sidering all four cases for representing the inelastic energy
losses. We observe that the number density of electrons in the
streamer head and behind the ionization front in the streamer
channel are decreased with the increase of the number of
excitations in the model, independently of the applied electric

field. It can also be seen that the number density of electrons
and the streamer velocity increase with increasing E0/n0.

The streamer velocities determined by employing all four
cases for representing the inelastic energy losses, are shown in
figure 16 along with the streamer velocity calculated by using
the gas phase transport properties which are scaled to liquid
density. For comparison, the bulk drift velocity obtained in
the first case, is shown in the same figure. It can be seen that
the streamer velocity greatly exceeds the bulk drift velocity.
This is expected, as the velocity of a negative streamer is
determined by the combination of the electron velocity and
the rate of the electron impact ionization in the streamer head,
where the electric field is significantly enhanced, as well as by
the strong diffusive fluxes in the streamer front. It can also be

Figure 13. The formation and propagation of a negative streamer in liquid xenon for E0/n0=59 Td. The presented results are determined by
assuming the first and the fourth cases for representing the inelastic energy losses. The results of streamer simulations obtained by using the
gas phase transport properties which are scaled to liquid density are shown in the same figure for comparison. Here ne refers to the electron
number density, while E/n0 refers to the reduced resultant electric field. The direction of the external electric field


E0 is also shown in this

figure.

Figure 14. The formation and propagation of a negative streamer in liquid xenon for E0/n0=100 Td.
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seen that the intensity of the streamer velocity determined in
our fluid simulations strongly depends on the employed case
for representing the inelastic energy losses in the liquid phase.
The difference between the values of streamer velocities,
which are obtained by assuming the first and the fourth cases,
is about 40% at high electric fields. In addition, for the values
of E0/n0 around 100 Td the streamer velocity determined by
using the gas phase transport properties, which are scaled to
liquid density, is about 2.5 times lower than the streamer
velocity obtained in the first case for representing the inelastic
energy losses. This difference is even more pronounced at
lower electric fields. The differences between the calculated
velocities of negative streamers are reflections of the

corresponding differences between the first Townsend coef-
ficient (see figure 9).

5. Conclusion

We have investigated the influence of the inelastic energy
losses in liquid xenon on the transport properties of electrons
and the dynamics of negative streamers, by using Monte
Carlo simulations and the 1.5 dimensional fluid model. Four
cases for representing the inelastic energy losses in liquid
xenon are discussed in light of previous spectroscopy and
photoconductivity experiments. These cases are employed for
determining the transport properties of electrons by using
Monte Carlo simulations. Our Monte Carlo code has been
modified by including three effective scattering processes,
which give a good representation of the coherent scattering of
low energy electrons in non-polar liquids. The validity of our
Monte Carlo code has been tested by calculating the mean
energy, the drift velocity and the components of the diffusion
tensor for electrons in the Percus Yevick model liquid. Our
benchmark results for the Percus Yevick model are in an
excellent agreement with those calculated by Tattersall et al
[57]. We have determined the values of mean energy, drift
velocity, diffusion tensor and the first Townsend coefficient
for electrons in liquid xenon. Our results are in a good
agreement with those of Boyle et al [34], as well as with the
available experiments [56, 88, 89, 94]. However, since our
calculations of transport properties span a range of the
reduced electric field much wider than that investigated in
experiments, one should be cautious to trust the calculated
data outside the range covered in the experiments. This
should be noted since we have approximated the cross
sections for inelastic scattering and interband transitions of
electrons in liquid xenon by using the cross sections for

Figure 15. The spatial profiles of the electron number density ne and the reduced electric field E/n0 for three different values of the external
electric field E0. The displayed spatial profiles are determined by assuming all representations of the inelastic energy losses considered in the
present work. All profiles are shown at 73 ps.

Figure 16. The streamer velocities calculated by assuming all
representations of the inelastic energy losses considered in the
present work. The streamer velocity obtained by using the gas phase
transport data which is scaled to liquid density is displayed for
comparison, as well as the bulk drift velocity of electrons, which is
determined for the first case of representing the inelastic energy
losses.
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electron scattering on an isolated xenon atom. In addition, we
have neglected the electron phonon scattering, and we did not
take into account the structure of the conduction band since
we have approximated each electron by a free particle moving
between individual collisions. It has been shown that there is
a significant difference between the values of the first
Townsend coefficient determined by employing different
representations of the inelastic energy losses. The transport
properties of electrons obtained in our Monte Carlo simula-
tions, are used as input data in our simulations of the streamer
dynamics. These simulations are based on the first order fluid
model, and they follow the transition of an electron avalanche
into a negative streamer and the subsequent streamer propa-
gation. The results of these simulations strongly depend on
the number of excitations which are included in the model.
The intensity of the streamer velocity in the case in which all
excitations are neglected exceeds the corresponding intensity
in the case in which all excitations are included by about 40%,
at high electric fields. This difference is in agreement with
the difference in rates for ionization in these cases. Moreover,
the value of the streamer velocity determined by using the
transport properties from the gas phase, which are scaled to
liquid density, is over 2.5 times lower than the streamer
velocity calculated in the case in which all excitations are
neglected. Furthermore, the speed of transition of an electron
avalanche into a streamer in the rescaled gas phase is sig-
nificantly lower than in the other cases investigated in our
study. This difference is especially pronounced for the
reduced electric fields lower than 100 Td. These results
indicate that the correct representation of the elementary
scattering processes in liquids is of crucial importance for the
modeling of the electron transport and the electrical dis-
charges in the liquid phase.

Our work concerning the modeling of electron transport
in liquid xenon can be extended by employing ab initio cross
sections for inelastic scattering and interband transitions in the
liquid phase after these cross sections are determined. Further
improvement of the model would be achieved by taking into
account electron phonon scattering and trapping of electrons
in density fluctuations as well as by going beyond the free
electron approximation by considering the structure of the
conduction band.

The extension of our streamer calculations by investi-
gating the propagation of positive and negative streamers in
a point to plane geometry and by taking into account non-
locality of the electron mean energy will be covered in
future work. These calculations can be further generalized
by considering the formation of gaseous filaments due to
heating of the liquid, which is important on the nanosecond
time scale.
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Abstract
Using a multi-term solution of the Boltzmann equation and Monte Carlo simulation technique
we study behaviour of the third-order transport coefficients for electrons in model gases,
including the ionisation model of Lucas and Saelee and modified Ness–Robson model of
electron attachment, and in real gases, including N2 and CF4. We observe negative values in
the E/n0-profiles of the longitudinal and transverse third-order transport coefficients for
electrons in CF4 (where E is the electric field and n0 is the gas number density). While
negative values of the longitudinal third-order transport coefficients are caused by the presence
of rapidly increasing cross sections for vibrational excitations of CF4, the transverse
third-order transport coefficient becomes negative over the E/n0-values after the occurrence of
negative differential conductivity. The discrepancy between the two-term approximation and
the full multi-term solution of the Boltzmann equation is investigated for electrons in N2 and
CF4. While the accuracy of the two-term approximation is sufficient to investigate the
behaviour of the third-order transport coefficients in N2, it produces large errors and is not
even qualitatively correct for electrons in CF4. The influence of implicit and explicit effects of
electron attachment and ionisation on the third-order transport tensor is investigated. In
particular, we discuss the effects of attachment heating and attachment cooling on the
third-order transport coefficients for electrons in the modified Ness–Robson model, while the
effects of ionisation are studied for electrons in the ionisation model of Lucas and Saelee, N2

and CF4. The concurrence between the third-order transport coefficients and the components
of the diffusion tensor, and the contribution of the longitudinal component of the third-order
transport tensor to the spatial profile of the swarm are also investigated. For electrons in CF4

and CH4, we found that the contribution of the component of the third-order transport tensor to
the spatial profile of the swarm between approximately 50 Td and 700 Td, is almost identical
to the corresponding contribution for electrons in N2. This suggests that the recent
measurements of third-order transport coefficients for electrons in N2 may be extended and
generalized to other gases, such as CF4 and CH4.
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1. Introduction

Non-equilibrium plasmas have a wide range of important
applications including micro and nano-electronic device fab-
rication [1–4], surface etching [5, 6], sputtering [7, 8], chem-
ical processing [9, 10], and plasma medicine [11–13]. The
modelling of non-equilibrium plasma is important for further
development and optimization of these applications [14–17].
However, this can be quite challenging due to a wide vari-
ety of effects that determine the nature of non-equilibrium
plasma. These effects include collisions of electrons and ions
with neutral particles of the background fluid [18–20], kinet-
ics of excited species [21–23], generation of fast neutrals [24],
space charge effects [25, 26], and plasma-surface interaction
[27, 28]. Despite their simplicity, charged-particle swarms
are at the heart of non-equilibrium plasma modelling [2, 18,
29, 30]. Specifically, transport coefficients that describe the
dynamics of a swarm of charged particles are used as input
data into the fluid models of non-equilibrium plasma [31–38].
In addition, transport coefficients are required in the swarm
procedure for determining the complete and consistent sets of
cross-sections for collisions of charged particles with atoms
and molecules of the background fluid [39–42]. These sets
of cross-sections are employed as input data into the parti-
cle models of non-equilibrium plasma [43–49]. Due to the
sensitivity of plasma models to transport coefficients and
cross-section sets in the case of fluid and particle models,
respectively, a great amount of attention has been dedicated
to the calculation and measurement of transport coefficients
of electrons and ions in numerous atomic and molecular
gases. However, this attention has been limited to the lower-
order transport coefficients such as rate coefficients for non-
conservative processes, drift velocity, and diffusion tensor
components [18, 19, 50].

Transport coefficients of third and higher order have been
implemented to analyse ion swarm experiments [51–55].
However, they have been almost systematically ignored in the
traditional analysis of electron swarm experiments, as they
are difficult to measure and difficult to study by employing
theoretical methods [56–58]. However, Kawaguchi and co-
workers have recently measured third-order transport coeffi-
cients for electrons in molecular nitrogen by employing the
arrival time spectra experiment [59]. In addition, they have
shown that it is necessary to consider the longitudinal com-
ponent of the third-order transport tensor QL in order to cor-
rectly determine the longitudinal component of the diffusion
tensor DL from the arrival time spectra data. The difference
between the values of DL, which are estimated after neglect-
ing QL, and the corresponding values, which are determined
from the expression that includes QL, is greater than the sum

of their experimental errors at high electric fields. Moreover, it
is known that the third-order transport coefficients are required
for the conversion of hydrodynamic flux transport coefficients
into transport parameters that are determined from the steady
state Townsend experiment [60]. Third-order transport coeffi-
cients are more sensitive to energy dependence of the cross
sections for the scattering of charged particles on the con-
stituents of the background medium than drift velocity and
diffusion tensor [56, 61, 62]. For this reason, third-order trans-
port coefficients would be very useful in the swarm procedure
for determining the complete sets of cross sections, if these
transport coefficients were calculated and measured with a suf-
ficient precision. Kawaguchi et al [59] have shown that the
third-order transport coefficients are sensitive to the anisotropy
of electron scattering. Thus, inclusion of the third-order trans-
port coefficients would help in testing the implementation
of anisotropic scattering in transport calculations, if the val-
ues of these transport coefficients were known from experi-
ments [63]. This is important as the correct implementation
of anisotropic scattering is required for determining the values
of the rate coefficient for electron impact ionisation at high
electric fields, with high precision [63, 64].

The structure of the third-order transport tensor in the
electric field only configuration was determined by Wheal-
ton and Mason [65], Vrhovac et al [56] and Koutselos [52].
Simonović and co-workers have determined the structure of
this tensor in all configurations of electric and magnetic field,
and they have investigated the physical interpretation of the
individual components of this tensor [58]. Koutselos stud-
ied the third-order transport coefficients for ions in atomic
gases, by employing molecular dynamics simulations and a
three-temperature method for solving the Boltzmann equation
[52, 66–68]. Third-order transport coefficients for electrons
in noble gases were investigated by Penetrante and Bard-
sley [61], Vrhovac et al [56] and Simonović et al [69].
Penetrante and Bardsley used the two-term approximation for
solving the Boltzmann equation and Monte Carlo (MC) sim-
ulations, Vrhovac et al employed the momentum transfer the-
ory and generalized Einstein relations, while Simonović et al
used a multi-term theory for solving the Boltzmann equation.
Stokes and co-workers investigated the effects of localized and
delocalized electron states on the third-order transport coeffi-
cients [70]. Recently, Kawaguchi et al [71] have shown that
the third-order transport coefficients can be measured in the
arrival time spectra experiment by employing MC simulations,
and they have determined the values of these transport coeffi-
cients for electrons in CH4 and SF6 by using the same method.
They have subsequently measured the longitudinal compo-
nent of the third-order transport tensor for electrons in N2 by
employing the arrival time spectra experiment. Kawaguchi
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et al have further verified these results by using MC simula-
tions [59, 63].

Although the lower-order transport coefficients have been
carefully investigated in the literature, the third-order transport
coefficients are still largely unexplored. For this reason, a num-
ber of questions concerning the properties of these transport
coefficients and their dependence on elementary scattering
processes are still open. How sensitive are these transport coef-
ficients to effects of non-conservative collisions such as ioni-
sation and electron attachment? Are the differences between
the flux and bulk values of the third order transport coeffi-
cients higher or lower than the corresponding differences in
the lower order transport coefficients? Is there any concur-
rence between these transport coefficients and those of lower-
order? If such concurrence exists, how can it be accounted
for? Can third-order transport coefficients be negative, and
what would the negative values of these transport coefficients
mean physically? Some of these issues will be addressed in
this work. Implicit and explicit effects of electron attachment
and ionisation on the third-order transport tensor are investi-
gated, for electrons in Ness–Robson model and Lucas–Saelee
model, respectively, by employing MC simulations and a
multi-term method for solving the Boltzmann equation. In
addition, explicit effects of ionisation on this transport tensor
for electrons in N2 and CF4 are studied. Negative values of the
third-order transport coefficients for electrons in CF4 are also
investigated. The concurrence between these transport coeffi-
cients and diffusion is analysed for electrons in N2 and CF4.
The values of the longitudinal component of the third-order
transport tensor for electrons in N2, that are determined in this
work, are compared with results of Kawaguchi et al. The con-
tribution of the third-order transport coefficients to the spatial
profile of the swarm is determined for electrons in N2, CF4 and
CH4 over a wide range of the reduced electric field. The third-
order transport coefficients are defined in section 2. The meth-
ods for calculating these transport coefficients by employing a
multi-term solution of the Boltzmann equation and MC simu-
lations are discussed in sections 3.1 and 3.2, respectively. The
cross sections for model and real gases, that are used as input
data in this work, are discussed in section 4.1. The variation of
the flux third-order transport tensor with the reduced electric
field for electrons in N2 and CF4 is analysed in section 4.2.
The impact of electron attachment on the third-order trans-
port coefficients for electrons in the modified Ness–Robson
model is studied in section 4.3.1, while the influence of elec-
tron impact ionisation on these transport coefficients for elec-
trons in Lucas–Saelee model, N2 and CF4 is investigated in
section 4.3.2. The longitudinal component of the third-order
transport tensor, that is determined in this study, is compared
with the measurements and calculations of Kawaguchi and co-
workers in section 4.4. Concurrence between the third-order
transport coefficients and individual components of the dif-
fusion tensor for electrons in N2 and CF4 is analysed in this
section as well. In the same section the contribution of the
third-order transport coefficients to the spatial profile of the
swarm is determined for electrons in N2, CF4 and CH4. The
concluding remarks are given in section 5.

2. Theory

Transport coefficients are defined for a swarm of charged par-
ticles in hydrodynamic conditions. A swarm is an ensemble
of charged particles that moves in a neutral background fluid
under the influence of an external electric and/or magnetic
field. The density of charged particles is considered to be small,
so that their mutual interactions, as well as the effects induced
by the space-charge, are neglected. The swarm gains energy
from the external electric field and it dissipates this energy
input into collisions with the particles of the background fluid.
However, the probability of having collisions with molecules
perturbed/excited by the swarm itself is negligible due to a low
swarm particle density.

If the external fields are uniform in space, the swarm relaxes
to a stationary state in which the amount of energy that is
gained per unit time, is equal to the amount of energy that is
dissipated in collisions during this time. The influence of the
swarm on the background fluid and fields is neglected, due to
the low density of charged particles, and it is considered that
this fluid is in a state of thermodynamic equilibrium. Hydrody-
namic conditions are fulfiled for a swarm of charged particles
if the background fluid and the electric/magnetic fields are spa-
tially homogeneous, and if the swarm is far from the bound-
aries of the system and far from sources and sinks of charged
particles. Under these conditions the phase space distribution
function can be expanded into a density gradient series as [72]:

f (r, c, t) =
∞∑

k=0

f (k)(c) � (−∇)kn(r, t), (1)

where r, c and t are radius vector, velocity vector and time,
respectively, f(k)(c) are tensors of rank k, � is tensor contrac-
tion of order k, while n(r, t) is number density of charged par-
ticles. Under hydrodynamic conditions the flux of velocity of
charged particles can be written as [56]:

Γ(r, t) = W(f )n(r, t) − D̂(f) · ∇n(r, t)

+ Q̂(f) � (∇⊗∇)n(r, t) + · · · , (2)

where W(f ), D̂(f) and Q̂(f) are flux drift velocity, flux diffusion
tensor and flux third-order transport tensor, respectively, and⊗
is the tensor product. The equation (2) is truncated at the third
term, as this is sufficient for defining the flux third-order trans-
port tensor. Explicit expressions for the flux transport coef-
ficients in terms of the phase space distribution function are
given in reference [58].

Bulk transport coefficients appear in the generalized diffu-
sion equation [56], which has been truncated at the third-order
gradients for our needs:

∂n(r, t)
∂t

+ W(b) · ∇n(r, t) − D̂(b) : (∇⊗∇)n(r, t)

+ Q̂(b) ... (∇⊗∇⊗∇)n(r, t) = Rin(r, t), (3)

where W(b), D̂(b), Q̂(b) and Ri are bulk drift velocity, bulk dif-
fusion tensor, bulk third-order transport tensor and effective
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rate coefficient for non-conservative processes, respectively,
while : and

... represent tensor contractions of second and
third-order, respectively. Bulk transport coefficients can be
expressed in terms of flux transport coefficients as [58]:

W(b) = W(f) + S(1), D̂(b) = D̂(f) + S(2), Q̂(b) = Q̂(f) + S(3),
(4)

where S(k) is the coefficient in the hydrodynamic expansion
of the source term, that is contracted with kth derivative of
the density gradient. For a swarm of electrons in the presence
of electron impact ionisation and/or electron attachment, the
source term is defined as:

S(r, t) =
∫

n0c (σi(ε) − σa(ε)) f (r, c, t)dc, (5)

where n0, ε, σi(ε) and σa(ε) are number density of the back-
ground molecules, electron energy, and cross sections for
ionisation and electron attachment, respectively.

Implicit effects of non-conservative collisions arise due to
population and depopulation of different parts of the distribu-
tion function in velocity space, that are caused by the energy
dependence of collision frequencies of non-conservative pro-
cesses. These effects refer to the influence of non-conservative
collisions on tensors f(k)(c) in equation (1). Explicit effects of
non-conservative processes arise due to the spatial dependence
of collision frequencies for these processes. This spatial depen-
dence is caused by the energy dependence of the collision
frequencies for non-conservative collisions and spatial vari-
ation of energy of charged particles. Explicit effects of non-
conservative collisions are represented by tensors S(k) from the
equation (4) and they determine the difference between flux
and bulk transport coefficients.

The influence of implicit and explicit effects of non-
conservative collisions on low order transport coefficients has
been thoroughly studied in previous publications [73, 75].
Implicit effects of ionisation on the third-order transport coef-
ficients refer to the influence of ionisation cooling on the asym-
metric component of the diffusive flux, which is represented by
the flux third-order transport tensor. Due to explicit effects of
ionisation more electrons are created at the front of the swarm
than at the back of the swarm, which in turn elongate the spa-
tial distribution of electrons along both longitudinal and trans-
verse directions at the leading edge of the swarm. Similarly,
the implicit effects of electron attachment relate to the influ-
ence of depopulation of low-energy part of the distribution
function, in case of attachment heating, and depopulation of
high-energy part of the distribution function, in case of attach-
ment cooling, on the asymmetric component of the diffusive
flux. Explicit effects of electron attachment on the third-order
transport coefficients refer to the influence of the spatial varia-
tion of electron losses to the compression of the spatial distri-
bution of the swarm in those regions of space where electron
attachment is more frequent.

The studied system is a swarm of electrons which move in a
homogeneous background gas under the influence of a homo-
geneous and constant electric field that is oriented along the
z axis. In this field configuration the flux third-order trans-
port tensor has three independent components Qzzz, Qxxz and
Qzxx . In this field configuration, the following relations are

imposed on the off-diagonal components of the flux third-order
transport tensor: Qxxz = Qxzx = Qyyz = Qyzy and Qzxx = Qzyy

[52, 56, 58, 65]. The structure of the third-order transport ten-
sor and physical interpretation of its individual components
are extensively discussed in our recent work [58]. In particu-
lar, contribution of the third-order transport coefficients to the
spatial profile of the swarm is represented by the following
approximate expression [58]:

n(1) (r, t) = n(0) (r, t)

[
1 +

tQ(b)
L

σ3
z
χz

(
χ2

z − 3
)

+
3tQ(b)

T

σ2
xσz

χz

(
χ2

x + χ2
y − 2

)]
, (6)

where n(0)(r, t) is the solution of the diffusion equation
in which third and higher order transport coefficients
are neglected, QL = Qzzz, QT = 1

3 (Qxxz + Qxzx + Qzxx), σz =√
2D(b)

L t and σx = σy =
√

2D(b)
T t, while χz, χx , χy are defined

as:

χz =
z − W (b)t

σz
, χx =

x
σx

, χy =
y
σy

. (7)

The equation (6) can be derived from the Fourier transform
of the generalized diffusion equation in which third-order
transport coefficients are included [58]. It can be seen from
equation (6) that contribution of the longitudinal component
of the third-order transport tensor to the spatial profile of the
swarm is proportional to Q(b)

L /(D(b)
L )3/2. In statistics the asym-

metry of the probability distribution of a random variable about
its expected value is represented by skewness [74]. There are
several ways to express skewness in statistics including the
third central moment and the third standardized moment of a
random variable [74]. It can be shown that the bulk third-order
transport tensor is proportional to the third central moment of
the position vector, while Q(b)

L /(D(b)
L )3/2 is proportional to the

longitudinal component of the third standardized moment of
the position vector. Likewise, the Q(b)

T /(D(b)
T (D(b)

L )1/2) term is
proportional to the off-diagonal component of the same stan-
dardized moment with the combination of indices πxxz, where
πabc represents any permutation of a, b and c.

The flux third-order transport tensor is defined by the flux
gradient relation. The last two indices of this tensor are con-
tracted with partial derivatives of the charged-particle num-
ber density with respect to spatial coordinates. The third-order
bulk transport tensor is however defined by the generalised dif-
fusion equation, in which the three indices of this tensor are
contracted with partial derivatives. For this reason, all three
indices of the bulk third-order transport tensor commute, as
this transport property is symmetrized in the equation in which
it is defined. The same reasoning applies to the bulk diffu-
sion tensor and higher order bulk transport tensors. Using these
arguments, in the case of bulk third-order transport coefficients
and when the swarm of charged-particles is acted on solely by
an electric field, we can identify only two independent bulk
components Q(b)

L and Q(b)
T . In a more general configuration of

electric and magnetic fields, we can identify those components
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of the bulk third-order transport tensor that are symmetrized
along all three indices. These are third-order transport coeffi-
cients that can be distinguished in our MC simulations, as we
calculate transport coefficients using expressions derived from
the generalized diffusion equation [58].

3. Methodology

3.1. Multi-term solution of the Boltzmann equation

The Boltzmann equation describes the evolution of the phase
space distribution function f (r, c, t). For a swarm of electrons
the Boltzmann equation can be written as:

∂ f (r, c, t)
∂t

+ c · ∂ f (r, c, t)
∂r

+
q
m

E · ∂ f (r, c, t)
∂c

= −J( f , f0),

(8)
where q and m are electron charge and electron mass respec-
tively, E is electric field and J is collision operator. This oper-
ator represents change of the electron distribution function per
unit time, due to collisions with particles of the background
medium. These particles are described by the distribution
function f0.

In the multi-term method for solving Boltzmann’s equation
the phase space distribution function is expanded in terms of
spherical harmonics and Sonine polynomials in angular and
radial parts of the velocity space, respectively. Thus, under
hydrodynamic conditions f (r, c, t) is expanded as follows
[75–79]:

f (r, c, t) = ω(α, c)
∞∑

s=0

s∑
λ=0

λ∑
μ=−λ

∞∑
ν,l=0

l∑
m=−l

F(νlm|sλμ;α)

× Rνl(α, c)Y [l]
m (ĉ)G(sλ)

μ n(r, t), (9)

where F(νlm|sλμ;α) are moments of the distribution function,
ĉ is unit vector in velocity space, Y [l]

m (ĉ) are spherical harmon-
ics, G(sλ)

μ is the spherical form of the gradient tensor operator,
while α, ω(α, c) and Rνl(α, c) are given by:

α2 =
m

kTb
, (10)

ω(α, c) =

(
α2

2π

)3/2

e−α2c2/2, (11)

Rνl(αc) = Nνl

(
αc√

2

)2

S(ν)
l+1/2(α2c2/2), (12)

where k is the Boltzmann constant, Tb is the basis tempera-
ture, which is a parameter for optimizing convergence, S(ν)

l+1/2
is Sonine polynomial, while Nνl is given by:

N2
νl =

2π3/2ν!

Γ(ν + l + 3/2)
, (13)

where Γ(ν + l + 3/2) is gamma function.
The Boltzmann equation is decomposed into a hierarchy

of kinetic equations by applying the relations of orthogonal-
ity for spherical harmonics and Sonnine polynomials [76].
The moments of the distribution function F(νlm|sλμ;α) can

be obtained by solving this system of kinetic equations [75,
80]. The resulting hierarchy of kinetic equations is truncated
at finite values of l = lmax and ν = νmax. Unlike the two-term
approximation, in which small anisotropy in velocity space
is assumed and lmax is set to 1, in the multi-term method
lmax is increased until full convergence of transport coeffi-
cients is obtained, after which the obtained hierarchy is solved
numerically.

Spherical form of the velocity vector is defined as [76]:

c[1]
m =

√
4π
3

cY [1]
m (ĉ). (14)

Cartesian components of a vector can be expressed via spher-
ical form as:

cx =
i√
2

(
c[1]

1 − c[1]
−1

)
, (15)

cy =
1√
2

(
c[1]

1 + c[1]
−1

)
, (16)

cz = −ic[1]
0 . (17)

Spherical form of the flux of velocity of electrons can be
written as [80]:

Γ(1)
m (r, t) =

1
α

∞∑
s=0

s∑
λ=0

λ∑
μ=−λ

F
(
01m|sλμ

)
G(sλ)

μ n (r, t) . (18)

Explicit expressions for the individual components of the flux
third-order transport tensor can be determined from the Carte-
sian components of the flux of velocity from equation (18) after
identifying terms that are contracted with the corresponding
partial derivatives [58].

Expressions for three independent components of the flux
third-order transport tensor in the electric field only configura-
tion defined to be in the z direction, are given by:

Q(f)
xxz =

1√
2α

[
Im(F(011|221;α)) − Im(F(01 − 1|221;α))

]
,

(19)

Q(f)
zxx =− 1

α

[
1√
3

Im(F(010|200;α))

+
1√
6

Im(F(010|220;α))

]

+
1
α

Im
[
F(010|222;α)

]
, (20)

Q(f)
zzz =

1
α

[√
2
3

Im(F(010|220;α))

− 1√
3

Im(F(010|200;α))

]
, (21)

where Im denotes imaginary parts of the moments of the phase
space distribution function.
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3.2. Monte Carlo simulations

In MC simulations, we track the space and time evolution of
a swarm of electrons. The extensive use of random numbers
is required in order to determine the exact moment and the
type of the individual collisions of electrons with the back-
ground molecules, as well as the direction of the post colli-
sional electron velocity. The transport coefficients are com-
puted from the corresponding polynomials of the electron
coordinates and velocity components, which are averaged over
the entire swarm. The details of our MC code are discussed
in our previous publications [75, 81–83]. Bulk third-order
transport coefficients are calculated as:

Q(b) =
1
3!

d
dt
〈r�r�r�〉, (22)

while the flux third-order transport coefficients are determined
from:

Q(f) =
1
3!

〈
d
dt

(
r�r�r�

)〉
, (23)

where r� = r − 〈r〉, and the brackets 〈〉 represent ensemble
averages. Expressions for transport coefficients, that are used
in our MC method, are derived from the generalized diffu-
sion equation, in which all tensor indices are contracted with
partial derivatives. Thus, in the generalized diffusion equation
symmetrization of the third-order transport tensor with respect
to all indices is performed. For this reason, we cannot deter-
mine individual off-diagonal components of the third-order
transport tensor or individual off-diagonal components of
the diffusion tensor in our MC simulations [75]. Instead,
we can determine individual diagonal components such as
QL = Qzzz and averages of those off-diagonal components
that have the same combination of indices like QT = (Qxxz +
Qxzx + Qzxx)/3. It should be noted that Qxxz and Qxzx are equal
due to the commutativity of the last two indices of the third-
order transport tensor [52, 56, 58, 65]. Explicit expressions for
Q(b)

L and Q(b)
T in the electric field only configuration are given

by:

Q(b)
L =

1
6

d
dt

(
〈z3〉 − 3〈z〉〈z2〉+ 2〈z〉3

)
, (24)

Q(b)
T =

1
6

d
dt

(
〈zx2〉 − 〈z〉〈x2〉

)
, (25)

while the corresponding flux components Q(f)
L and Q(f)

T are
given in [58].

It is important to note that numerical differentiation in time
is not used for the calculation of Q(b)

L and Q(b)
T , because of

the statistical fluctuations of the corresponding expressions in
brackets. Direct numerical differentiation of these expressions
would create fluctuations that are much more intense than the
fluctuations of the initial expressions. Instead, the expression
in brackets is fitted to a linear function. The corresponding
time derivative is determined as the slope of this linear func-
tion. This is justified because Q(b)

L and Q(b)
T are independent

of time after relaxation of the swarm, and the corresponding
expressions in brackets in equation (24) and (25) are linear
functions in time. This method for calculating Q(b)

L and Q(b)
T

has been further verified by comparing values of the bulk third-
order transport coefficients, that are obtained by this method,
with the corresponding values that are determined by employ-
ing numerical differentiation in time. An additional check was
obtained by comparing Q(b)

L and Q(b)
T with Q(f)

L and Q(f)
T , respec-

tively, under conditions where non-conservative processes are
absent.

4. Results and discussion

4.1. Preliminaries

In this paper, we consider the transport of electrons in the
Lucas–Saelee model, modified Ness–Robson model, N2 and
CF4. The Ness–Robson model was developed for testing the
multi-term method for solving the Boltzmann equation in the
presence of electron attachment [80]. Nolan and co-workers
presented a new gas model that is based on the Ness–Robson
model and the Lucas–Saelee model [73]. In this model the col-
lision frequency of elastic collisions is independent of energy
while the cross section for inelastic collisions is the same as
in the Lucas–Saeele model. In modifying the Ness–Robson
model, which is introduced by Nolan et al [73], both inelas-
tic collisions and ionisation are present. The ratio of the cross
section for inelastic collisions to the cross section for ionisa-
tion is determined by the F parameter, as in the Lucas–Saelee
model. Two different versions of the modified Ness–Robson
model [73] with different functional dependences of the cross
section for electron attachment are considered in this work. In
both considered versions of the modified Ness–Robson model
the parameter F is set to zero, implying the absence of ionisa-
tion. The details of the modified Ness–Robson model, in the
absence of ionisation, are given by the following equations:

σel(ε) = 4ε−1/2 Å2 (elastic collision )

σex(ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.1(ε− 15.6) Å2, ε � 15.6 eV

(inelastic collision)

0, ε < 15.6 eV

σa(ε) = aεp (electron attachment )

m/m0 = 10−3,

T0 = 0 K, (26)

where σel(ε), σex(ε), σa(ε) are cross sections for elastic col-
lisions, inelastic collisions and electron attachment, respec-
tively, given as functions of electron energy ε, T0 is the tem-
perature of the background gas, while m and m0 are masses of
electrons and of the molecules of the background gas, respec-
tively. In the above equations, the values of the electron energy
are given in eV. Parameters a and p determine the magnitude
and the functional dependence of the cross section for electron
attachment, respectively. The values of p that are considered
in this work include −1.0 and 0.5. These values correspond
to attachment heating and attachment cooling, respectively.
The percentage differences between the third-order transport
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coefficients determined for each of these two models and the
corresponding values in the model where p = −0.5 are con-
sidered in this work. In the third model the collision frequency
for electron attachment is independent of energy. The values of
parameter a, that are used in this work, include 8 × 10−3 Å2

and 5 × 10−4 Å2. The first value is used for the attachment
heating model, while the second value is used for the attach-
ment cooling model. In the model with constant collision fre-
quency for electron attachment, this non-conservative process
is equally frequent at all values of the electron energy, and it
does not affect transport coefficients of any order (excluding
the rate coefficient for electron attachment). In this model the
values of the third-order transport tensor are the same as in the
conservative Lucas–Saelee model, where F = 0.

The Lucas–Saelee ionisation model was introduced in
order to investigate the influence of electron-impact ionisa-
tion on the electron transport by using MC simulations [84].
Ness and Robson investigated the electron transport in this
model, in order to test the validity of the theory and associ-
ated computer code for solving the Boltzmann equation, in the
presence of non-conservative processes [80]. The details of the
Lucas–Saelee model are given by the following equations:

σel(ε) = 4ε−1/2 Å2 (elastic collision)

σex(ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.1(1 − F)(ε− 15.6) Å2, ε � 15.6 eV

(inelastic collision)

0, ε < 15.6 eV

σI(ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.1F(ε− 15.6) Å2, ε � 15.6 eV

(ionisation)

0, ε < 15.6 eV

P(q, ε′) = 1, m/m0 = 10−3,

T0 = 0 K, (27)

where σI(ε) is the cross section for ionisation, P(q, ε) is the
ionisation partition function, and F is the parameter that deter-
mines the magnitudes of cross sections for inelastic collisions
and ionisation. As the scattering is isotropic in this model
σel(ε), σex(ε), and σI(ε) represent total cross sections. Argu-
ments of the ionisation partition function P(q, ε′), q and ε′,
are the ratio of total postcollisional energy, that is given to
the ejected electron, and the energy of the initial electron
before ionisation, respectively. In this model, ionisation parti-
tion function is set to unity, indicating that all values 0 � q � 1
are equally probable.

The set of cross sections for electron scattering in N2,
which is used in this work, is detailed in [64]. It includes
elastic momentum transfer cross section, as well as the total
cross section for rotational excitations, and cross sections
for vibrational excitations, electronic excitations and electron-
impact ionisation. The set of cross sections for electron scat-
tering in CF4, which is employed in this work, was developed

and discussed by Kurihara and co-workers [85]. It includes
elastic momentum transfer cross section, cross sections for
vibrational excitations, electronic excitations, electron attach-
ment, and ionisation. For some aspects of this work, it was nec-
essary to consider the electron transport in CH4. These results
are obtained by using the cross sections developed by Šašić
et al [86].

The results for the model and the real gases were obtained
from the MC simulations and numerical multi-term solution
of the Boltzmann equation. In particular, it was necessary to
follow a large number of electrons (at least 107) in our MC
simulations in order to calculate third-order transport coeffi-
cients accurately, due to high statistical fluctuations of indi-
vidual terms appearing in expressions (24) and (25). It was
also necessary to determine the phase space distribution func-
tion with a high degree of precision in order to calculate the
third-order transport coefficients from the multi-term method.
While the number of spherical harmonics indicates the degree
of anisotropy of the phase space distribution function in veloc-
ity space, the number of Sonine polynomials is indicative of
the deviation of the energy dependence of the distribution
function from a Maxwellian at a particular temperature Tb not
necessarily equal to the gas temperature T0. Third-order trans-
port coefficients are more sensitive to the shape of the phase
space distribution function than transport coefficients of lower
order. For this reason it was necessary to include a large num-
ber of spherical harmonics and Sonine polynomials to achieve
the convergence of the third-order transport coefficients, in the
presence of strong inelastic and/or non-conservativecollisions.
For example, the required numbers of lmax and νmax were 8
and 90, respectively, for electrons in CF4. This was especially
pronounced in the energy region where the cross sections for
vibrational excitations are rapidly rising functions of electron
energy, while the cross section for elastic collisions is being
reduced with increasing electron energy. The solutions of the
Boltzmann equation are not determined for E/n0 > 300 Td, as
the convergence of the transport coefficients was poor in this
field region. For this reason, we have only displayed the MC
results in the field range above 300 Td.

4.2. Variation of the flux third-order transport coefficients
with E/n0 for electrons in N2 and CF4

In figures 1(a) and (b) we show the mean energy for an elec-
tron swarm in N2, and CF4, respectively, as a function of the
reduced electric field, E/n0. At the lowest fields the mean
energy is thermal in both gases, while it is rising with increas-
ing E/n0 at higher fields. The slope of the mean energy is
determined by collisions of electrons with atoms/molecules
of the background gas [85]. The profiles of the mean energy
are useful for analysing the field dependence of the third-order
transport coefficients. From these profiles one can determine
which collisional processes dominate electron transport in a
given field range.

In this section, we study the behaviour of the components
of the flux third-order transport tensor for electrons in N2 and
CF4 in the presence of an electric field. It has been previously
shown that the rise of E/n0 under constant collision frequency
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Figure 1. Mean energy of electron swarm in (a) N2 and (b) CF4, as a function of the reduced electric field. These results are obtained by
using multi term theory for solving the Boltzmann equation up to about 300 Td and by employing MC simulations at higher fields.

Figure 2. Independent components of the flux third-order transport
tensor and n2

0Q(f)
T as functions of E/n0 for electrons in N2. The

results are obtained from numerical multi-term solutions of the
Boltzmann equation.

conditions leads to an increase of the components of the third-
order transport coefficient tensor [58]. It has also been shown
that the increase of the collision frequency with increasing
energy may lead to a decrease of the components of this tensor,
as well as to negative values of these components, if the rise of
the collision frequency is steep enough [58, 69]. For this rea-
son, the E/n0-profile of the third-order transport coefficients
is determined by the complex interplay between the electric
field, which accelerates electrons and acts to direct their move-
ment along the field lines, and collisions between electrons
and atoms/molecules of the background gas, which dissipate
electron energy and momentum. Although it is possible to
analyse E/n0 profiles of the third-order transport coefficients
directly from the mean energy of electrons and collision fre-
quencies for individual collisional processes, such analysis is
often quite complicated and tedious. Therefore, in this section
we briefly discuss the general E/n0-profiles of the third-order
transport coefficients for electrons in N2 and CF4, while a more
detailed analysis is reserved only for the unusual and unex-
pected aspects of the behaviour of these transport properties.

Figure 3. Independent components of the third-order transport
tensor and n2

0Q(f)
T as functions of E/n0 for electrons in CF4. The

results are obtained from numerical multi-term solutions of the
Boltzmann equation.

A more detailed study of the behaviour of Q(f)
zzz and Q(f)

T for
electrons in N2 and CF4 is presented in section 4.4.

In figure 2 we show the independent components of the
third-orderflux transport tensor for electrons in N2 as functions
of E/n0. In addition, we also show the variation of n2

0Q(f)
T with

E/n0. The Q(f)
zxx component is negative, while the remaining

quantities are positive over the entire E/n0 range considered.
Negative values of Q(f)

zxx can be attributed to the rise of the colli-
sion frequency for elastic and inelastic collisions with increas-
ing electron energy. This phenomenon has been observed for
electrons in both model and real gases [58, 62, 69]. It can be
seen from figure 2 that the absolute values of quantities have a
similar qualitative dependence on E/n0. Specifically, the abso-
lute values of these transport coefficients have two local max-
imums at about 1.3 Td and 150 Td, and a local minimum
at around 46 Td.

In figure 3 we show the three independent components of
the flux third-order transport tensor for electrons in CF4 as
functions of E/n0. In the same figure we show the variation
of n2

0Q(f)
T with E/n0. At the lowest fields, all quantities are
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Figure 4. Transverse flux third-order transport coefficients n2
0Q(f)

T and the flux drift velocity W(f) as functions of E/n0 for electrons in (a)
CF4 and (b) CH4. The results are obtained by employing the multi-term theory for solving the Boltzmann equation up to about 300 Td for
electrons in CF4, and up to 600 Td for electrons in CH4, and by using MC simulations at higher fields.

positive, and increasing functions E/n0 up to about 0.14 Td
in the case of Q(f)

zzz, and up to about 0.18 Td in the case of
the remaining quantities. At higher fields these quantities are
being reduced and they become negative. The Q(f)

zxx compo-
nent becomes negative at about 2 Td. The remaining transport
coefficients become negative at about 0.9 Td, and they reach
a local minimum at around 1.6 Td. These quantities become
positive again at about 7.5 Td. The Q(f)

xxz and Q(f)
zzz components

remain positive until the end of the considered range of E/n0,
while the Q(f)

zxx component remains negative. The Q(f)
zzz compo-

nent has two local maximums at about 20 Td and 170 Td and
a local minimum at around 27 Td. The Q(f)

xxz component and
Q(f)

T have a local maximum at about 31 Td and 25 Td, and a
local minimum at around 120 Td and 100 Td, respectively. The
Q(f)

zxx component has a local minimum at about 33 Td. At the
lowest E/n0, all quantities that are displayed in figure 3 are
rising functions of E/n0. This can be attributed to a negligi-
ble rise of the mean energy with increasing field in this E/n0

region, which leads to a small change of the mean collision
frequency for elastic and inelastic collisions. At higher fields,
the rise of the mean energy and mean collision frequency for
vibrational excitations with increasing E/n0, become more sig-
nificant, which in turn induces a decrease of the third-order
transport coefficients.

We now focus on the negative values of the third-order
transport coefficients for electrons in CF4. As discussed else-
where [58, 70], the bulk third-order transport tensor represents
asymmetric deviation of the spatial distribution of the swarm
from an ideal Gaussian. This deviation is caused by different
rates of spread of electrons at the swarm front and at the back
of the swarm. Due to this difference, different parts of the nor-
malized spatial distribution of electrons may seem elongated or
compressed when compared to an ideal Gaussian. Specifically,
Q(b)

zzz component describes elongation/contraction of the spa-
tial distribution of electrons at the leading edge of the swarm,
and the opposite deformation at its trailing edge. A negative
value of the Q(b)

zzz component implies that the normalized spatial
distribution of electrons is compressed (when compared to an
ideal Gaussian) along the longitudinal direction at the front of
the swarm and expanded along the same direction at the back
of the swarm. Similarly, a negative value of Q(b)

T implies that
the normalized spatial distribution of electrons is compressed
(relative to an ideal Gaussian) along the transverse direction at

the swarm front and expanded along the same direction at the
back of the swarm. It is important to emphasize that the spa-
tial distribution of electrons is not being actually compressed
in time. Instead, in some regions of space the effective rate
of spread of electrons, that is represented by both third-order
transport coefficients and diffusion, is smaller than the corre-
sponding rate of spread that would be represented by diffusion
alone. In these regions of space, the normalized spatial distri-
bution of electrons seems compressed when compared to an
ideal Gaussian. For E/n0 less than approximately 10 Td, the
impact of non-conservative collisions is minimal, and thereby
the bulk values of the third-order transport coefficients are
equal to the corresponding flux values (see figure 13). In the
field region around 0.9 Td, where Q(f)

zzz, Q(f)
xxz and Q(f)

T become
negative, electrons with energies that are 3 times higher than
the mean energy are in the energy region around 0.2 eV,
where the cross sections for two vibrational excitations of
the CF4 molecule reach their global maximums [85]. These
cross sections are denoted as Qv1 and Qv3 in table 1 or ref-
erence [85] and their thresholds are 0.108 eV and 0.168 eV,
respectively. Moreover, Qv1 becomes greater than the elastic
momentum transfer cross section in the energy range between
approximately 0.12 eV and 0.58 eV. The same holds for Qv3 in
the energy range between approximately 0.17 eV and 2.6 eV.
Thus, in the field region around 0.9 Td where Q(f)

xxz, Q(f)
zzz and

Q(f)
T become negative, the high energy tail of the distribution

function is in the energy range where the electron transport
is dominated by vibrational excitations. As the mean energy
of electrons is increasing in the positive direction (direction
of the force acting upon electrons), the intense energy losses
due to the vibration excitations create a strong resistance to
the spreading of the swarm at its front in the longitudinal and
transverse directions. This resistance leads to the compression
of the spatial distribution of electrons at the front of the swarm
along both longitudinal and transverse directions, while this
spatial distribution is more expanded along both these direc-
tions at the back of the swarm. Such deviation of the spa-
tial profile of electrons from an ideal Gaussian is manifested
through negative values of Qzzz and QT (in both flux and bulk
case).

In figures 4(a) and (b), we show the variation of n2
0Q(f)

T and
W (f ) with E/n0 for electrons in CF4 and CH4, respectively. It
should be noted that some general aspects of the behaviour of
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third-order transport coefficients for electrons in CH4 were dis-
cussed in our previous publication [62]. CH4 was introduced
here in order to observe relationship of negative values of the
higher order transport coefficients with the negative differen-
tial conductivity (NDC) for drift velocity. We observe from
figures 4(a) and (b) that the drift velocity of electrons in both
CF4 and CH4 exhibits NDC. NDC refers to the decrease in drift
velocity with an increase in the reduced electric field E/n0.
To understand NDC, it is necessary to consider the rates of
momentum and energy transfer in elastic and inelastic col-
lisions [87]. Interestingly, QT has negative values between
approximately 70 Td and 140 Td in CF4. This approximately
corresponds to the field region beyond the end of the NDC
where drift velocity begins to rise rapidly (almost reaching
its maximum value before the NDC). A similar relationship
exists in the E/n0-profile of the electron drift velocity in CH4.
However, in CH4, QT becomes negative at the beginning of the
NDC much earlier than in CF4.

The qualitative behaviour of the individual off-diagonal
components of the third-order transport tensor over the range
of E/n0, where NDC occurs, is different for electrons in CF4

and CH4. For electrons in CF4 the Q(f)
xxz component is pos-

itive, while the Q(f)
zxx component is negative, over the entire

range of E/n0, corresponding to the NDC. For the electrons in
CH4, however, the Q(f)

xxz component becomes negative shortly
after the start of the NDC, while Q(f)

zxx becomes positive at a
slightly larger field. The Q(f)

xxz component becomes positive
again for electrons in CH4, for the value of E/n0 where Q(f)

T
becomes positive. Thus, it is difficult to find out more about
the behaviour of individual off-diagonal components of the
third-order transport tensor, from the presence of NDC in the
E/n0-profile of drift velocity in a given field region, due to
the complexity of various factors that determine the behaviour
of the third-order transport coefficients. However, it is evident
that negative values of Q(f)

T can arise in the vicinity of the field
region where NDC occurs. Negative values of Q(f)

T imply the
compression of the spatial profile of the swarm along the trans-
verse direction at the front of the swarm, and the expansion of
this profile along the same direction at the back of the swarm
[58]. This implies that the rapid increase of collision frequency
for elastic collisions, which leads to a greater randomization of
velocity vectors of the individual electrons and the occurrence
of NDC, can also hinder transverse spreading of electrons at
the swarm front, where the mean energy of electrons is higher
than that at the back of the swarm. This is manifested through
negative values of Q(f)

T . However, this does not lead to negative
values of Q(f)

L , as they occur only when the spatial profile of
the swarm is skewed in the direction opposite to the direction
of drift velocity. This kind of deformation requires a strong
resistance to the motion of electrons in the direction of drift
velocity, which is more easily achieved with inelastic and non-
conservative collisions, when the corresponding cross sections
are large enough. It can be seen that Q(f)

T is negative in the
majority of region where Q(f)

L is negative for electrons in CF4,
as it is easier to achieve negative values of Q(f)

T than negative
values of Q(f)

L . Thus, one may conclude that the concurrence

between drift velocity and Q(f)
T can be attributed to the cor-

responding collisions which lead to the occurrence of NDC
and to the compression of the spatial distribution of the swarm
along the transverse direction at the front of the swarm. How-
ever, we observe that for the electrons in CF4 negative values of
Q(f)

T occur only in a small field range after the NDC. Therefore,
the presence of NDC at a certain value of E/n0 does not neces-
sarily result in a negative value of Q(f)

T for these electric fields,
but again the conditions in the momentum and energy balances
that lead to NDC also favour negative values of QT depending
on the balance of different competing processes. The concur-
rence between the transport coefficients of the third-order and
the drift velocity is therefore much less pronounced than the
concurrence between the transport coefficients of the third-
order and diffusion. It would be interesting to investigate the
behaviour of Q(f)

T and Q(b)
T in strongly attaching gases under

conditions in which NDC occurs only for bulk drift velocity,
due to electron attachment [88, 89]. This will be considered in
the near future.

It is striking that although similar in the shape of the cross
sections the two gases exhibit very different dependences of
the NDC. For CF4 the NDC minimum is much shallower and
occurs at higher E/n0. The depth of the NDC is normally pro-
moted by the separate control of the mean energy and momen-
tum transfer by cross sections that control the energy exchange
and momentum transfer. Positioning of vibrational excitation
cross sections and overlap of their influences will at the same
time affect the magnitude of the peak in drift velocity induced
by the inelastic processes and also the onset and overall effect
of the NDC.

In figures 5 and 6, we show comparison between the two-
term and converged multi-term solutions of the Boltzmann
equation for electrons in N2 and CF4, respectively. The E/n0

profiles of the independent components of the flux third-
order transport tensor, including n2

0Q(f)
xxz, n2

0Q(f)
zxx and n2

0Q(f)
zzz are

shown. In addition, the variation of n2
0Q(f)

T with E/n0 is also
shown. Comparing two-term and multi-term results for elec-
trons in N2, it is evident that for the low values of E/n0 the
agreement is good while the maximum error in the two-term
approximation occurs at the highest fields. For electrons in
CF4, however, there is a significant difference between the two-
term and multi-term solutions of the Boltzmann equation over
the entire range of E/n0 considered in this work, except in the
limit of the lowest E/n0. In contrast to N2, the two-term and
multi-term results are qualitatively different in CF4, indicating
that sometimes the two-term theory predicts physics that is not
entirely correct. The maximum errors of the two-term approx-
imation occur over the range of E/n0 values where n2

0Q(f)
zzz

is negative. This happens at electron energies where elas-
tic momentum transfer is approximately at a minimum while
inelastic collisions which lead to the vibrational excitations
of CF4 molecule became significant and are approximately at
their maximum. This induces a large asymmetry of the distri-
bution function in velocity space which makes the two-term
approximation inadequate for studying the third-order trans-
port coefficients. Thus, it is important to note that neglecting
higher terms in the spherical harmonic expansion of the phase
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Figure 5. Comparison between the flux third-order transport coefficients obtained by the two-term approximation and multi-term theory for
solving the Boltzmann equation. Calculations are performed for electrons in N2.

space distribution function has a much more pronounced effect
for third order transport coefficients than for lower order trans-
port coefficients. For electrons in CF4 the third-order transport
coefficients determined by using the two-term approximation
are not even qualitatively correct.

4.3. The influence of non-conservative processes on the
third-order transport coefficients

4.3.1. The influence of electron attachment on the third-
order transport coefficients for electrons in the modified
Ness–Robson model. The bulk and flux values of the longi-
tudinal and transverse components of the third-order transport
tensor for electrons in the Ness–Robson attachment heating
model, are shown in figures 7(a) and (b), respectively. In this
model the slower electrons at the back of the swarm are pref-
erentially attached. As a consequence, the bulk values of QL

and QT exceed the corresponding flux values for lower values
of E/n0, e.g. up to about 3.8 Td for QL and 5 Td for QT.

For higher values of E/n0, up to about 8 Td for QL and 17 Td
for QT, the flux values are greater than the corresponding bulk
values, although this effect is in the limit of statistical error of
MC simulations in the case of QT. This can be attributed to
a combination of two factors. The first factor is the decreased
number of low-energy electrons at the back of the swarm, due
to the rise of the mean energy with increasing field. The second
factor is the increased number of low-energy electrons at the
front of the swarm, due to the influence of inelastic collisions,
which are more frequent at the front of the swarm. In the limit
of the highest fields, higher than 8 Td for QL and 17 Td for QT,
the difference between flux and bulk values of the third-order
transport coefficients is negligible for electrons in this model
gas.

The bulk and flux values of the longitudinal and transverse
components of the third-order transport tensor for electrons
in the Ness–Robson attachment cooling model, are shown
in figures 8(a) and (b), respectively. In this model the faster
electrons at the front of the swarm, where the mean energy
is higher, are preferentially attached. As a consequence, for
lower values of E/n0 bulk values are lower than the corre-
sponding flux values. We observe that this effect is within the
statistical uncertainty of MC simulations for QT. However, for
higher values of E/n0 (from approximately 5 Td) bulk values
are larger than the corresponding flux values in case of QL,
although this difference is lower than the statistical error of
MC simulations. For E/n0 � 10 Td Q(f)

L and Q(b)
L are practi-

cally equal. Similar behaviour is observed for QT, because for
E/n0 � 7 Td Q(f)

T and Q(b)
T coincide. Between 5 Td and 10 Td,

Q(b)
L exceeds Q(f)

L due to the interplay of inelastic collisions and
the increase of the mean electron energy with increasing E/n0,
as in the case of the attachment heating model.

In figure 9 the percentage difference in the longitudinal
component of the third-order transport tensor calculated using
the modified Ness–Robson models with the attachment heat-
ing and with a constant collision frequency for electron attach-
ment, are shown. Panel (a) shows the difference between
the flux values, while the panel (b) displays the difference
between the bulk values. The percentage differences are cal-
culated using the expression: Qheating

L /Qconstant
L − 1. The differ-

ence between flux values of QL in these two models is caused
by the implicit effects of electron attachment, while the dif-
ference between the corresponding bulk values is induced by
a combined effect of implicit and explicit effects of electron
attachment. Comparing panels (a) and (b) in the limit of the
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Figure 6. Comparison between the flux third-order transport coefficients obtained by the two-term approximation and multi-term theory for
solving the Boltzmann equation. Calculations are performed for electrons in CF4.

Figure 7. Comparison of the bulk and flux values of (a) n2
0QL and (b) n2

0QT for electrons in the modified Ness–Robson attachment heating
model. The results are obtained from numerical multi-term solutions of the Boltzmann equation (MT) and MC simulations.

lowest E/n0, we observe that QL is much higher in the attach-
ment heating model than in the model with a constant collision
frequency for electron attachment, for both bulk and flux val-
ues. It is also evident that these differences are much more pro-
nounced in the case of bulk third-order transport coefficients.
These differences decrease with increasing E/n0 and become
even negative over a limited range of E/n0. As E/n0 further
increases, the differences tend to zero. It should be noted that
negative values of these quantities can be attributed to the influ-
ence of inelastic collisions, although these values are within
the statistical uncertainty of MC simulations.

Similarly, figure 10 shows the difference in QL calculated
using the modified Ness–Robson models with the attach-
ment cooling and with a constant collision frequency for
electron attachment. Results for Q(f)

L and Q(b)
L are shown in

panels (a) and (b), respectively. In this case, the following

expression is used for calculating the percentage difference:
Qcooling

L /Qconstant
L − 1. The values of this expression for the lon-

gitudinal components of both flux and bulk third-order trans-
port tensor are decreasing functions of E/n0 up to about 4 Td
where they reach a local minimum, which is equal to around
−20% and about −50% for Q(f)

L and Q(b)
L , respectively. For

higher values of E/n0 these differences are being increased
and they reach a local maximum at around 10 Td in the case of
Q(f)

L and at about 8 Td in the case of Q(b)
L . This local maximum

has a positive value, although this value is within the statisti-
cal uncertainty of MC simulations. As E/n0 further increases,
these differences converge to zero.

4.3.2. The influence of ionisation on the third-order transport
coefficients for electrons in Lucas–Saelee model,N2 and CF4.
The variation of the flux and bulk QL with E/n0 of electrons

12



Plasma Sources Sci. Technol. 31 (2022) 015003 I Simonovíc et al

Figure 8. Comparison of the bulk and flux values of (a) n2
0QL and (b) n2

0QT for electrons in the modified Ness–Robson attachment cooling
model. The results are obtained from numerical multi-term solutions of the Boltzmann equation (MT) and MC simulations.

Figure 9. Percentage differences between the values of (a) Q(f)
L and (b) Q(b)

L for electrons in two different versions of the modified
Ness–Robson model. Calculations are performed by the MC method in the modified Ness–Robson attachment heating model and in the
modified Ness–Robson model with a constant collision frequency for electron attachment.

Figure 10. Percentage differences between the values of (a) Q(f)
L and (b) Q(b)

L for electrons in two different versions of the modified
Ness–Robson model. Calculations are performed by the MC method in the modified Ness–Robson attachment cooling model and in the
modified Ness–Robson model with a constant collision frequency for electron attachment.

in the Lucas–Saelee model for three values of the parameter
F is displayed in figure 11(a). Likewise, figure 11(b) shows
the flux and bulk QT as a function of E/n0. We observe that
bulk values are larger than the corresponding flux values for
F = 0.5 and F = 1, due to explicit effects of ionisation on the
third-order transport coefficients. Comparing QL and QT, we
see that the difference between bulk and flux values in this
model is much higher for QT. This can be attributed to strong

inelastic and non-conservative collisions that provide strong
resistance to the spread of the swarm in the direction of the
drift velocity. This significantly inhibits the elongation of the
spatial distribution of the swarm in the longitudinal direction
under the influence of ionisation.

We observe from figure 11 that the flux values of QL and
QT are reduced with increasing parameter F due to ionisation
cooling of the swarm. This illustrates the implicit effects
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Figure 11. Comparison of the bulk and flux values of (a) n2
0Qzzz and (b) n2

0QT for electrons in the ionisation model of Lucas and Saelee. The
results are obtained from numerical multi-term solutions of the Boltzmann equation (MT) and MC simulations.

Figure 12. Comparison of the bulk and flux values of (a) n2
0QL and (b) n2

0QT for electrons in N2. The results are obtained from numerical
multi-term solutions of the Boltzmann equation (MT) and MC simulations.

of ionisation on the third-order transport coefficients. We
also note that bulk values of QL and QT are being reduced
with increasing F. This indicates that the influence of the
implicit effects of ionisation on the third-order transport ten-
sor is stronger than the corresponding influence of the explicit
effects.

Figures 12(a) and (b) display the differences between flux
and bulk values of QL and QT respectively, for electrons in N2.
The differences between the flux and bulk values of QL and QT

for electrons in CF4 are shown in figures 13(a) and (b), respec-
tively. We observe that bulk values of QL and QT are larger
than the corresponding flux values in both gasses at high elec-
tric fields, where electrons undergo many ionisation collisions.
Comparing N2 and CF4 on one side, and the Lucas–Saelee ion-
isation model on the other side, we observe that the impact of
the explicit effects on the longitudinal component of the third-
order transport tensor is much stronger for real gases. This
follows from the fact that the minimal impact of the explicit
effects of ionisation on QL for electrons in the ionisation model
of Lucas and Saelee can be attributed to the specific energy
dependence of cross sections for inelastic collisions and ion-
isation. Generally speaking, the qualitative behaviour of the
third-order transport coefficients with increasing E/n0 is the
same in the case of flux and bulk values. However, for elec-
trons in N2, we observe that the bulk values of QL and QT

reach their last local minimum at the lower E/n0 than the cor-
responding flux values. Specifically, Q(b)

L and Q(b)
T reach their

last local minimum at about 220 Td, while Q(f)
L and Q(f)

T reach
their last local minimum at around 370 Td. We also observe
from figures 12 and 13 that the results evaluated by multi term
solution to the Boltzmann equation and those obtained in MC
simulations agree very well.

4.4. Concurrence of the third-order transport coefficients
and diffusion, the contribution of Q(b)

L to the spatial profile of
the swarm and the comparison of Q(b)

L values obtained in
this work with results of previous authors

The concurrence between third-order transport coefficients
and diffusion coefficients for electrons in N2 and CF4 is illus-
trated by figures 14(a) and (b). Preliminary results in the study
of this concurrence for electrons in CH4 and noble gases have
already been discussed [62, 69].

Specifically, for higher values of E/n0 we observe that Q(f)
L

is a rising function of E/n0 when D(f)
L increases as a con-

vex (or linear) function of E/n0 in the log–log scale. One
may also observe that Q(f)

L is reduced when D(f)
L decreases,

or when D(f)
L rises as a concave function of the field in the

log–log scale. This concurrence is absent in the limit of
the lowest E/n0 because the third-order transport coefficients
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Figure 13. Comparison of the bulk and flux values of (a) n2
0QL and (b) n2

0QT for electrons in CF4. The results are obtained from numerical
multi-term solutions of the Boltzmann equation (MT) and MC simulations.

Figure 14. Concurrence of the third-order transport coefficients and
diffusion coefficients for electrons in (a) N2 and (b) CF4. For
E/n0 � 300 Td, the results are calculated from numerical
multi-term solutions of the Boltzmann equation, while for
E/n0 > 300 Td the results are obtained from MC simulations.

vanish in this range of fields unlike diffusion coefficients which
have non-zero thermal values.

As can be seen in figure 14(a) the concurrence between
Q(f)

L and D(f)
L for electrons in N2 is present in the entire field

region above 0.21 Td. For electrons in CF4, we observe that
the concurrence between Q(f)

L and D(f)
L is present in the subset

of the field range above 0.02 Td, where Q(f)
L is positive (see

figure 14(b)). However, this concurrence is absent in the field
range between 1.6 Td and 8.5 Td, as Q(f)

L rises with increasing

E/n0 although D(f)
L is being reduced in this field range. It is

important to note that Q(f)
L has negative values over the range

of E/n0 in this field region. Further increase of the absolute
value of Q(f)

L , while this component is negative, would imply
a further skewing of the spatial profile of the swarm in the
negative direction (opposite to the drift velocity) along the lon-
gitudinal axis. Although the rise of the collision frequency for
vibrational excitations with increasing E/n0 is strong enough
to cause a decrease of D(f)

L , it is not strong enough to induce fur-
ther skewing of the spatial profile of the swarm in the negative
direction. It is interesting to note that the concurrence between
Q(f)

L and D(f)
L is again present at about 8.5 Td, which is slightly

above the field where Q(f)
L becomes positive again (at around

7 Td).
For electrons in N2, the qualitative trends of D(f)

L and D(f)
T

are the same in the field range above 0.21 Td, where the con-
currence between Q(f)

L and D(f)
L is clearly evident. Thus, it is

difficult to determine if the E/n0 profile of Q(f)
T is more related

to the corresponding profile of D(f)
L or D(f)

T in the case of N2.
For electrons in CF4, E/n0 profile of Q(f)

T is related to the cor-
responding profile of D(f)

T in most of the field range where Q(f)
T

is positive. The concurrence between these two transport coef-
ficients in CF4 is equivalent to the concurrence between Q(f)

L

and D(f)
L , which is already discussed in this paper. This con-

currence is absent in the field region between approximately
100 Td and 170 Td. However, Q(f)

T is negative up to around
140 Td. Thus, the field dependence of Q(f)

T is not related to the
field dependence of diffusion in the field range where it is neg-
ative, and in the vicinity of the field where it becomes positive,
similarly to Q(f)

L .
The physical reasons for the observed concurrence between

the third-order transport coefficients and diffusion coeffi-
cients have been discussed in our previous paper [69] for the
example of atomic gases with considerably simpler sets of
cross sections. The third-order transport coefficients represent
a small asymmetric correction to diffusive motion, that is rep-
resented by the components of the diffusion tensor. As dis-
cussed previously [58], the rise of the reduced electric field
leads to an increase of the directional component of elec-
tron velocity (in the absence of NDC) and to an increase of
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Figure 15. The values of the ratio |Q(b)
L |/(D(b)

L )3/2 for electrons in
N2, CF4 and CH4 as functions of E/n0. For E/n0 � 100 Td, where
the differences between the bulk and flux values are negligible, the
results are obtained from numerical multi-term solutions of the
Boltzmann equation, while for higher values of E/n0 the results are
obtained in MC simulations.

Figure 16. Comparison of the values of n2
0Q(b)

L , that are determined
in this work, with the results of Kawaguchi et al [59]. In this figure
n2

0D3L represents simulation results from the reference [59] that are
determined from equation (24) by employing MC simulations, while
n2

0Dα3
3L represents n2

0Q(b)
L that are determined in reference [59] form

alpha parameters, after neglecting alpha parameters of fourth and
higher order. Experimental results of Kawaguchi et al are
represented by black circles, while results that are obtained from
MC simulations are represented by a combination of symbols and
continuous lines.

the electron energy. These two effects favour the increase of
the third-order transport coefficients if the frequency of elec-
tron collisions with atoms/molecules of the background gas
is not rising with increasing energy. However, if the collision
frequency is rising steeply enough with increasing electron
energy, this leads to a reduction of the third-order transport
coefficients. The same holds for the components of the diffu-
sion tensor, which are also quenched by elastic and inelastic
collisions. Comparing these two sets of transport coefficients,
third-order transport coefficients represent a form of motion

that ‘carries’ a smaller amount of energy and momentum, and
as such they are much more sensitive to collisions with the
background gas, than the components of the diffusion tensor.
This suggests that for a sufficiently high E/n0, the third-order
transport coefficients are reduced with increasing E/n0, if the
diffusion is being reduced, and even if the slope of diffusion
in the log–log scale decreases with increasing E/n0. However,
this concurrence is absent at the lowest fields and under con-
ditions in which third-order transport coefficients are negative,
due to reasons that are already discussed in this manuscript.

In figure 15 we show the values of the ratio |Q(b)
L |/(D(b)

L )3/2

for electrons in N2, CF4 and CH4, as functions of E/n0. Cal-
culations are performed assuming the concentration of back-
ground molecules n0 = 3.54 × 1022 m−3. This ratio deter-
mines the contribution of the longitudinal component of the
third-order transport tensor to the spatial profile of the swarm,
as can be seen from equation (6). From this figure, we observe
that the contribution of Q(b)

L to the spatial profile of the swarm
is larger in CH4 than in the remaining two gases for E/n0

lower than 0.1 Td and for E/n0 between 21 Td and 46 Td. For
E/n0 between 0.13 Td and 17 Td the quantity |Q(b)

L |/(D(b)
L )3/2 is

larger in N2 than in CH4 and CF4. For E/n0 between 70 Td and
300 Td this ratio is slightly lower in CH4 than in the remaining
two gases. For E/n0 between 400 Td and 1000 Td this ratio is
lower in CF4 than in N2 and CH4. It is interesting to note that
differences between the values of |Q(b)

L |/(D(b)
L )3/2 in N2, CH4

and CF4 do not exceed the factor of three in the field range
between 50 Td and 700 Td. In most of this region, these dif-
ferences do not exceed the factor of two. Moreover, the values
of this ratio are very close to each other for electrons in these
three gases in the field range between 200 Td and 450 Td. This
indicates that n2

0Q(b)
L can be measured in CH4 and CF4, in the

field range between 50 Td and 700 Td, under similar experi-
mental conditions that were applied for measurements in N2.
Recently Kawaguchi and co-workers using a MC simulation
technique have shown that n2

0Q(b)
L can be measured in CH4 and

SF6 in the arrival time spectra experiment [71].
In figure 16 we show the comparison of the longitudinal

component of the third-order transport tensor n2
0Q(b)

L for elec-
trons in N2 with the corresponding values that are determined
by Kawaguchi et al [59]. In this figure, n2

0D3L is determined
from MC simulations by using equation (24), while n2

0Dα3
3L is

evaluated from the alpha parameters based on equation (25)
from reference [59] by neglecting the alpha parameters of
fourth and higher order. Kawaguchi and co-workers deter-
mined alpha parameters from the arrival time spectra exper-
iment and the MC simulations. All results are in an excellent
agreement up to about 130 Td, while differences between these
sets of results become noticeable at higher values of E/n0. Our
calculated values of n2

0Q(b)
L are somewhat lower than the theo-

retical results of Kawaguchi et al for E/n0 between 130 Td
and 460 Td. For higher values of E/n0 our results are sig-
nificantly lower than n2

0D3L and somewhat below n2
0Dα3

3L until
approximately 770 Td. At around 1000 Td the value of
n2

0Q(b)
L in the present calculations, is somewhat above the the-

oretical values of n2
0Dα3

3L that are determined by Kawaguchi
et al. The difference between our calculations of n2

0Q(b)
L and

those of Kawaguchi and co-workers for n2
0D3L is a clear
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indication of different sets of cross sections used as input data
in MC simulations. The sensitivity of the third-order trans-
port coefficients to the cross sections used in the transport
calculations was demonstrated by Kawaguchi and co-workers
[63]. The deviation of n2

0Dα3
3L from n2

0D3L for higher values
of E/n0 can be attributed to neglecting alpha parameters of
fourth and higher order in equation from which the values
of n2

0Dα3
3L are determined, as discussed by Kawaguchi et al

[59]. Our calculations of n2
0Q(b)

L and experimental values of
n2

0Dα3
3L agree very well up to about 600 Td. If we take a care-

ful look, we observe that our calculations are somewhat below
experimental values up to about 100 Td and somewhat above
experimental results until approximately 500 Td. For higher
values of E/n0, however, our results are significantly below
experimental points. For E/n0 = 600 Td our calculations of
n2

0Q(b)
L are within the experimental error, while at 700 Td they

are significantly below the lower boundary of experimental
results at 700 Td. Strictly speaking, n2

0Q(b)
L and n2

0Dα3
3L cannot

be directly equated, because n2
0Dα3

3L represents an approxima-
tion of n2

0Q(b)
L when the fourth and higher order alpha parame-

ters are negligible. Strict comparison with experimental results
obtained by Kawaguchi and co-workers [59] would be possible
if n2

0Dα3
3L was determined using measured or calculated alpha

parameters.

5. Conclusion

In this paper, we have investigated the behaviour of the third-
order transport coefficients for electrons in N2 and CF4. Cal-
culations have been performed using a multi-term theory for
solving the Boltzmann equation and MC simulation technique.
The initial MC code has been extended to allow the calcu-
lations of third-order transport coefficients in the presence
of non-conservative collisions. We found that the moment
method for solving the Boltzmann equation works very well
for the third-order transport coefficients, and is particularly fast
and accurate for model gases.

One of the most striking phenomena observed in the present
work is the occurrence of negative values in the E/n0-profiles
of n2

0Q(f)
xxz and n2

0Q(f)
zzz for electrons in CF4. After the relax-

ation of the swarm to the steady-state, transport coefficients
of the third-order attain negative values over the range of elec-
tron energies where the most energetic electrons may undergo
many collisions leading to the vibrational excitation of CF4

molecule. We have also noticed that the occurrence of nega-
tive values in the E/n0-profiles of n2

0Q(f)
xxz and n2

0Q(f)
zzz in CF4

takes place in the energy region where the cross sections for
vibrational excitations exceed the cross section for momentum
transfer in elastic collisions. Likewise, we have also observed
that n2

0Q(f)
T has negative values in the field region between the

end of the occurrence of NDC and the field where the drift
velocity reaches 90% of its initial value before the onset of
NDC. Based on the results presented in this work, it may be
assumed that there is a slight concurrence between n2

0Q(f)
T and

drift velocity. This concurrence refers to the occurrence of
negative values of n2

0Q(f)
T that are essentially controlled by the

collision processes, which promote the development of NDC.

As the two-term approximation has become a common-
place in the calculation of electron transport properties in
gases and as it forms the foundations of many publicly avail-
able codes for solving the Boltzmann equations, we have
been motivated to investigate its limitations in the context of
the present research. Comparisons between the two-term and
multi-term calculations were performed for E/n0 less than
300 Td. For electrons in N2, the accuracy of the two-term
approximation is sufficient to investigate the behaviour of the
third-order transport coefficients in the presence of the electric
field. In contrast, for electrons in CF4 the two-term approxi-
mation produces large errors and it is not even qualitatively
correct, particularly over the range of electron energies where
the cross section for transfer of momentum in elastic collisions
is at minimum, while the cross sections of vibrational excita-
tions become significant. This favours a large asymmetry in
the distribution function in the velocity space which in turn
renders the two-term approximation quite inappropriate for the
analysis of third-order transport coefficients.

In the present work, we have studied the implicit and
explicit effects of non-conservative collisions on the third-
order transport coefficients. While implicit effects of non-
conservative collisions are induced by direct population and
depopulation of the distribution function in velocity space,
the explicit effects are caused by the combined effects of the
energy dependence of non-conservative collisions and spatial
variation of the average energy along the swarm. Using the
modified Ness–Robson model with the attachment heating, we
have observed that the bulk values of n2

0QL and n2
0QT are larger

than the corresponding flux values at low electric fields. At
intermediate fields the opposite situation holds: the flux values
are larger than the corresponding bulk values. This behaviour
and relationship between the bulk and flux values of both n2

0QL

and n2
0QT, are inverted for the attachment cooling model.

The effects of electron-impact ionisation on the third-order
transport coefficients are analysed for electrons in the ionisa-
tion model of Lucas and Saelee, N2 and CF4. For all gases we
considered, bulk values of n2

0QL and n2
0QT are larger than the

corresponding flux values for the higher electric fields. In par-
ticular, comparing the explicit influence of ionisation on n2

0Q(b)
L

and n2
0Q(b)

T in the ionisation model of Lucas and Saelee, effects
are more pronounced for n2

0Q(b)
T .

In this work the concurrence between n2
0Q(f)

L and n0D(f)
L is

analysed. For electrons in N2 the concurrence is effective over
the entire range of the considered E/n0. This concurrence is
also present for electrons in CF4 over the range of E/n0 where
n2

0Q(f)
L is positive. However, in the field region where n2

0Q(f)
L is

negative, there is a range of E/n0 values, where n2
0Q(f)

L is rising
although n0D(f)

L is being reduced. This effect is analysed using
the physical interpretation of the negative values of n2

0Q(f)
L . The

concurrence between n2
0Q(f)

T and the components of the diffu-
sion tensor is also investigated. In particular, for electrons in
CF4 we found that the E/n0 profile of n2

0Q(f)
T is more related to

the corresponding profile of n0D(f)
T than to the corresponding

profile of n0D(f)
L .

Contribution of the longitudinal component of the third-
order transport tensor to the spatial profile of the swarm was
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studied for electrons in N2, CF4 and CH4. This contribution
is proportional to the ratio |Q(b)

L |/(D(b)
L )3/2. Between 50 Td to

700 Td differences between the values of this ratio for elec-
trons in N2, CF4 and CH4 do not exceed the factor of 3. More
precisely, we have observed that these differences do not dif-
fer from each other by a factor of 2 over the majority of E/n0

values in the above-mentioned field region. Even though this
result of the study seems modest, it is very important because
it shows that the existing experimental infrastructure used to
measure third-order transport coefficients in N2 can be used
equally successfully for measurements of these quantities in
other gases.

The present calculations of n2
0Q(b)

L for electrons in N2 are
compared with the arrival time spectra measurements and MC
simulations of Kawaguchi and co-workers [59]. The present
calculations and results of Kawaguchi and co-workers agree
very well up to approximately 500 Td. For higher values
of E/n0, the discrepancy between our calculations and those
obtained by Kawaguchi and co-workers in MC simulations,
may be directly attributed to the details of the cross sections
for electron scattering in N2 used as input data in numerical
codes.

It is hoped that the present study will provide an incen-
tive for further theoretical and experimental studies of the
third-order transport coefficients for electrons in gases. Par-
ticular attention has recently been focussed on extracting
cross-sections from swarm data [90, 91]. The inclusion of
these sensitive higher order transport coefficients, may result
in improved cross-section sets, particularly given the new
machine learning algorithms implemented [92–94]. Our plans
for future research include the study of third-order trans-
port coefficients in the presence of pressure dependent effects
and third-order transport coefficients for positrons in gases of
interest for further development and optimization of positron
traps.
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Abstract
We study the transport of electrons and propagation of the negative ionisation fronts in indium
vapour. Electron swarm transport properties are calculated using a Monte Carlo simulation
technique over a wide range of reduced electric fields E/N (where E is the electric field and N
is the gas number density) and indium vapour temperatures in hydrodynamic conditions, and
under non-hydrodynamic conditions in an idealised steady-state Townsend (SST) setup. As
many indium atoms are in the first (5s25p)2P3/2 metastable state at vapour temperatures of a
few thousand Kelvin, the initial Monte Carlo code was extended and generalized to consider
the spatial relaxation and the transport of electrons in an idealised SST experiment, in the
presence of thermal motion of the host-gas atoms and superelastic collisions. We observe a
significant sensitivity of the spatial relaxation of the electrons on the indium vapour
temperature and the initial conditions used to release electrons from the cathode into the space
between the electrodes. The calculated electron transport coefficients are used as input for the
classical fluid model, to investigate the inception and propagation of negative ionisation fronts
in indium vapour at various E/N and vapour temperatures. We calculate the electron density,
electric field, and velocity of ionisation fronts as a function of E/N and indium vapour
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temperature. The presence of indium atoms in the first (5s25p)2P3/2 metastable state
significantly affects the characteristics of the negative ionisation fronts. The transition from an
avalanche into a negative ionisation front occurs faster with increasing indium vapour
temperature, due to enhanced ionisation and more efficient production of electrons at higher
vapour temperatures. For lower values of E/N, the electron density behind the streamer front,
where the electric field is screened, does not decay as one might expect for atomic gases, but it
could be increased due to the accumulation of low-energy electrons that are capable of
initiating ionisation in the streamer interior.

Keywords: indium vapour, electron transport, negative streamers, ionisation, Monte Carlo,
fluid simulations

(Some figures may appear in colour only in the online journal)

1. Introduction

Studies of electron swarm transport processes in metal vapours
go back many years, for example to the Franck–Hertz exper-
iment and the genesis of quantum physics [1]. Yet much
remains to be understood from a fundamental point of view
[2–5]. Early studies of electron transport in metal vapours
were limited to the vapours of mercury, caesium, and other
alkali metals, due to the many technical difficulties associated
with the control of high temperatures in swarm experiments.
In addition to decades of studying the transport of electrons
in mercury vapour [6–11], swarm studies were performed in
the vapours of sodium, potassium, and caesium [12] while the
experimental results of breakdown voltages and V –I charac-
teristics were measured for sodium, potassium, cadmium, and
zinc [13]. The primary driving force behind these early studies
was the modelling and optimization of light sources containing
mercury [8, 14, 15], sodium [16, 17], and zinc [18, 19]. Other
applications include the modelling of a gas laser [20], the mag-
netohydrodynamics of arcs [21], and a post-arc breakdown
plasma [22].

Recently, a new wave of studies on electron scattering in
metal vapours has triggered the modelling and analysis of
electron transport and different types of plasma discharges in
those vapours. The B-spline R-matrix (close-coupling) with
pseudo-states method was employed to calculate the cross
sections for electron collisions with caesium atoms [23, 24],
and those calculated cross sections were then used to model an
excimer-pumped alkali laser with caesium as one of the con-
stituent species [24]. The cross sections for the scattering of
electrons from zinc [25] and magnesium [26] vapours were
recently calculated, using both non-relativistic and relativistic
optical-potential methods. The computed cross-sections were
subsequently used as input to solve the Boltzmann equation to
calculate the electron swarm transport coefficients. The pub-
licly available two-term Boltzmann equation solver BOLSIG+
[27], as well as the Monte Carlo code METHES [28], were
recently used to investigate the electron transport and break-
down in a copper vapour post-arc plasma [22]. The relativistic
complex optical potential method has also been used to study
electron–beryllium scattering [29].

As part of our ongoing investigations of electron scatter-
ing and transport in metal vapours, we report in this paper
on our study of electron transport and propagation of nega-
tive ionisation fronts in indium vapour. Indium (In) is a soft,
grey metallic element with an atomic number of 49. It belongs
to the group-III elements of the periodic table and has two sta-
ble isotopes, 115In and 113In, with abundances of 95.7% and
4.3%, respectively. With an electronic configuration 4d105s25p
indium is the first in a series of the 5p elements in the peri-
odic table, and most commonly donates the three outermost
electrons to become In3+ [30]. In certain cases, however, the
5s-electron pair is not donated, resulting in In+ [31]. Because
of its low melting point of 429.75 K, indium has been recog-
nized as a material with great potential for many technological
applications. For example, as an indium tin oxide it is used to
produce transparent electrodes in liquid-crystal displays [32],
and it is also employed as a light filter in low-pressure sodium
lamps. Furthermore, indium has numerous semi-conductor-
related applications, including the use of InAs and InSb for
low-temperature transistors and InP for high-temperature tran-
sistors [33]. Furthermore, InGaN and InGaP are found in both
light-emitting diodes and laser diodes [34].

Even though the above-mentioned applications of indium
are of great importance in fundamental science and modern
technology, the basic motivating factors in the study of elec-
tron scattering and transport in indium vapour relate to the
modelling of plasma discharges. Since the use of toxic mer-
cury in low-pressure and high-pressure light sources is highly
limited in both the European Union and many other coun-
tries, there is a strong incentive nowadays to find a less toxic
material as an alternative to mercury. For low-pressure dis-
charge lamps, one option would be to use mixtures of halo-
gen–indium compounds with argon [35–37]. The collisional-
radiative models of such systems require the knowledge of
electron swarm transport coefficients, including rate coeffi-
cients for various collisional processes such as ionisation and
electron-impact excitation. It is clear that further optimiza-
tion and understanding of indium-based light sources crucially
depends on an accurate knowledge of the cross sections for
electron–indium scattering, the relevant transport coefficients,
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and in appreciating the physical processes involved in indium
vapour discharges.

While electron scattering in indium vapour has been thor-
oughly discussed in our recent publications [38, 39], in the
present paper we focus on electron transport processes and
the propagation of negative ionisation fronts. To that end,
electron swarm transport coefficients are calculated using a
Monte Carlo simulation technique under hydrodynamic con-
ditions, and also for non-hydrodynamic conditions in an ide-
alised steady-state Townsend (SST) setup, over a wide range
of reduced electric fields (E/N) and indium vapour tem-
peratures. In particular, the initial Monte Carlo code, which
was specifically developed to study the spatial relaxation
of electrons in an idealised SST experiment [40–42], was
extended and generalized for the present work to investigate
the effects of gas temperature in the presence of electron-
impact ionisation of indium atoms in the ground state and the
lowest-lying metastable state. We comprehensively studied the
influence of the indium metastable state (5s25p)2P3/2 at tem-
peratures of several thousand Kelvin on the electron transport
and the spatial relaxation of the electrons. To the best of our
knowledge, we present the first systematic investigation for
the spatial relaxation of electrons in hot metal vapours, where
thermal motion of the background atoms and their influence
on the electrons are rigorously considered by implementing
electron collisions with the indium atoms in the metastable
state (5s25p)2P3/2, including the effects of superelastic
collisions.

The second major objective of the present study is to sim-
ulate negative ionisation fronts in indium vapour. Due to the
high accelerating voltages in high-pressure light sources, the
transition from an electron avalanche into a streamer is a rapid
process, which has been studied both experimentally and by
means of numerical simulations [43, 44]. It has been shown
that streamer-like ionising channels can originate from both
the anode and the cathode, and that they can propagate through
the gas volume as well as along the inner wall of the dis-
charge lamp. In particular, the first phase of the streamer-
breakdown is characterized by a constricted streamer process
between the electrode tips [43]. In combination with mercury,
indium vapour may serve in high-intensity discharge lamps as
a radiation-emitting substance due to its high-vapour pressure
and because its emitted radiation covers the UV and visible
ranges of the spectrum. Therefore, it is clear that studies of the
development of an electron avalanche and its transition into a
streamer in indium vapour may support investigations to find
the optimal discharge conditions and increase the plasma effi-
ciency. In order to simulate the inception and propagation of
negative ionisation fronts in indium vapour, we here apply the
classical fluid model, which is based on the drift–diffusion
approximation, the local field approximation, and Poisson’s
equation. This model is implemented numerically in 1D and
1.5D configurations. Our calculated electron swarm transport
coefficients, including the ionisation coefficient, drift veloc-
ity, and longitudinal diffusion coefficient, are used as input
data in this model. However, it should be noted that in the
present work we are not attempting to model the inception
of the cathode-directed streamers, due to the accumulation of

positive space charge near the cathode, nor do we attempt to
consider the effects of the breakdown voltage on the parame-
ters of the equivalent circuit. Both remain the subject of future
studies. Instead, we isolate and investigate the dynamics of the
negative ionisation fronts only, and in particular we study the
effects of varying the indium vapour temperature on the forma-
tion and development of those negative ionisation fronts under
the action of an externally applied electric field.

The remainder of this paper is organized as follows. In
section 2 we briefly present a set of cross sections for elec-
tron scattering in indium vapour, including those for excita-
tion from the ground state (5s25p)2P1/2 and the first excited
metastable state (5s25p)2P3/2. In section 3.1 we present the
methods of our calculations, including the basic elements of
our Monte Carlo approach for simulating the electron swarm
transport properties under hydrodynamic and SST conditions.
In section 3.2 we present the basic elements of the classical
1.5D fluid model, which is used for studying the development
of an electron avalanche, and its transition into a negative ion-
isation front in indium vapour. The results of this work are
then given in section 4. Specifically, in section 4.2 we show
the variation of the electron swarm transport coefficients with
E/N and indium vapour temperature, while in section 4.3
we present the results of our study under non-hydrodynamic
conditions in an idealised SST setup. Results describing the
development of an electron avalanche and its transition into a
negative ionisation front are presented in section 4.4. Finally,
we summarize our conclusions in section 5 and also provide an
outlook regarding possible future studies of electron transport
and streamer discharges in indium vapour.

2. Cross sections for electron scattering in indium
vapour

2.1. Elastic momentum transfer, electronic excitations and
total ionisation

In this work, we utilize the cross sections for electron scatter-
ing in indium vapour, which have recently been generated and
discussed in detail in our previous publications [38, 39] and
to which we refer the interested reader. Here we simply note
that the elastic momentum transfer cross section, for energies
from 0.001 eV to 10 000 eV, and for scattering from the ground
(5s25p)2P1/2 level, is tabulated in reference [39]. Uncertainty
estimates of ∼ ±20% for electron energies less than 3 eV and
∼ ±15% for energies above 3 eV were quoted [39]. The elas-
tic momentum transfer cross section for scattering from the
lowest-lying (5s25p)2P3/2 metastable state is also tabulated in
reference [39].

Cross sections for discrete inelastic transitions from the
2P1/2 ground state and the close-lying metastable 2P3/2 level
were calculated using a relativistic B-spline R-matrix (DBSR)
method by Hamilton et al [39]. In particular, 21 discrete inelas-
tic cross sections for excitation from the ground state and 21
discrete inelastic cross sections for excitation from the lowest
metastable state were provided [39]. Among many interesting
points, near-threshold structures in the majority of the discrete
inelastic cross sections were reported [39].
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The total ionisation cross section for indium atoms initially
in the electronic ground state was determined for energies
from threshold to 10 000 eV in [39]. The quoted uncertainty
on those data was ∼ ±20% [39]. The total ionisation cross
section for indium atoms in the first (5s25p)2P3/2 metastable
state (0.274 eV), was estimated by simply moving its thresh-
old from that of the ground state (5.786 eV) downward
by 0.274 eV.

2.2. Superelastic collisions

One of the objectives of the present work is to study the
effects of the indium vapour temperatures on electron trans-
port and the propagation of negative ionisation fronts. To do
this, we need to take into account superelastic collisions in our
Monte Carlo simulations and/or the solutions of the Boltzmann
equation. As pointed out in our previous work [39], the ther-
mal energy at T = 1260 K is 3

2 kT ≈ 0.163 eV, i.e. near the
threshold energy of the first (5s25p)2P3/2 metastable state. It
is therefore important to consider the influence of superelastic
collisions on electron transport at indium vapour temperatures
of a few thousand Kelvin.

Cross sections for superelastic collisions can be evaluated
by applying the principle of microscopic reversibility and
detailed balance in a thermal equilibrium. According to this
fundamental principle, the cross section for superelastic col-
lision σs may be calculated from the cross section σ j for the
discrete inelastic transition to the state j, with the threshold
energy ε j and statistical weight gj, as

σs (ε) =
g0

g j

ε+ ε j

ε
σ j

(
ε+ ε j

)
, (1)

where g0 is the statistical weight of the ground state.
In figure 1 we show the fractional populations of indium

atoms in the ground (5s25p)2P1/2 state, the first excited
(5s25p)2P3/2 metastable state, and the sum of all the upper
excited states, as a function of the indium vapour tempera-
ture. At T = 1260 K, we observe that 86% of indium atoms
are in the ground (5s25p)2P1/2 state while the remaining 14%
are in the first (5s25p)2P3/2 metastable state. Similarly, but
now at T = 3260 K, 57% of the indium atoms are in the
ground (5s25p)2P1/2 state while the remaining 43% of indium
atoms are in the metastable state. The fractional populations
of the third and higher excited levels are only larger than 1%
at T = 7260 K and higher temperatures. Thus, we limit our
calculations to an upper limit of T = 5260 K.

The cross sections for electron scattering in indium vapour
from the ground state (5s25p)2P1/2 level and the close-by
metastable (5s25p)2P3/2 level are displayed in figures 2 and
3, respectively. The total cross section for superelastic colli-
sions is multiplied with the corresponding fractional popula-
tions of the first excited metastable state at 1260 K, 3260 K
and 5260 K, and these quantities are also included in figures 2
and 3, respectively. Note that the cross sections for elastic
momentum transfer, inelastic discrete transitions and ioniza-
tion should be multiplied with the corresponding weighting
factors to account for the appropriate fractional populations

Figure 1. Fractional populations of indium atoms in the
(5s25p)2P1/2 ground state, the first excited (5s25p)2P3/2 metastable
state, and the sum of all higher excited states, as a function of the
indium vapour temperature.

of the ground state (5s25p)2P1/2 and the metastable state
(5s25p)2P3/2 at the temperature being considered.

3. Methods of calculations

3.1. Monte Carlo simulations

In Monte Carlo simulations, we follow the spatial and tem-
poral evolution of a large number of electrons moving under
the action of an external electric field in a spatially homoge-
nous indium vapour. Under swarm conditions, the electron
density is sufficiently low, so that only electron collisions with
indium atoms are taken into account. Electrons gain energy
from the externally applied electric field and in superelastic
collisions with excited indium atoms. This energy input is
released through binary collisions between the electrons and
the atoms. Thermal motion of the background indium atoms
and their influence on the electrons are taken into account.
We implemented an algorithm for calculating the collision fre-
quency in the case when thermal motion of the background
indium atoms with a Maxwellian velocity distribution can-
not be neglected [45]. We assume isotropic scattering in the
electronic excitation and ionisation collisions. The anisotropic
nature of elastic collisions is implicitly included through the
use of the elastic momentum transfer cross section. The energy
available for division after an ionising collision is given by
the difference between the incident electron energy and the
indium ionisation energy, here modelled as a constant value
of 5.786 eV for indium atoms in the ground state and a value
of 5.512 eV for indium atoms in the first excited metastable
state. To allocate the available energy to the two-post collision
electrons, a random fraction of the available energy is awarded
to one electron, with the remaining energy being awarded
to the second electron. In other words, the available energy
is distributed assuming a uniform distribution indicating that
all fractions of the available energy post-collision are equally
probable.
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Figure 2. Integral cross sections for electron scattering in indium vapour for atoms in the ground state (5s25p)2P1/2. The left panel shows
the elastic momentum transfer (1), total ionization (2), and quantities that are obtained by multiplying the total cross section for superelastic
collisions with the corresponding fractional populations of the first excited metastable state at indium vapour temperatures of 1260 K,
3260 K, and 5260 K. The left panel also includes the following discrete inelastic transitions: (5s25p)2P3/2 (3), (5s26s)2S1/2 (4), (5s26p)2P1/2

(5), (5s26p)2P3/2 (6), (5s25d)2D3/2 (7), (5s25d)2D5/2 (8), (5s24p)2P1/2 (9), (5s24p)2P3/2 (10), (5s27s)2S1/2 (11) and (5s24p)2P5/2 (12). The
right panel includes the following discrete inelastic transitions: (5s27s)2P1/2 (13), (5s27s)2P3/2 (14), (5p26d)2D3/2 (15), (5p26d)2D5/2 (16),
(5p24 f )2F7/2 (17), (5p24 f )2F5/2 (18), (5p28s)2S1/2 (19), (5p28s)2P1/2 (20), (5s27d)2D3/2 (21), (5s27d)2D5/2 (22) and (5s28p)2P3/2 (23).

Figure 3. Integral cross sections for electron scattering in indium vapour for atoms in the metastable state (5s25p)2P3/2. The left panel
shows the elastic momentum transfer (1), total ionization (2), and quantities that are obtained by multiplying the total cross section for
superelastic collisions with the corresponding fractional populations of the first excited metastable state at indium vapour temperatures of
1260 K, 3260 K, and 5260 K. The quantities obtained as the product of the total cross section for superelastic collisions and the
corresponding fractional populations of the first excited metastable state were subsequently multiplied by factors of 109, 103, and 102, at
indium vapour temperatures of 1260, 3260 and 5260, respectively. The left panel also includes the following discrete inelastic transitions:
(5s26s)2S1/2 (3), (5s26p)2P1/2 (4), (5s26p)2P3/2 (5), (5s25d)2D3/2 (6), (5s25d)2D5/2 (7), (5s24p)2P1/2 (8), (5s24p)2P3/2 (9), (5s27s)2S1/2 (10),
(5s24p)2P5/2 (11) and (5s27s)2P1/2 (12). The right panel includes the following discrete inelastic transitions: (5s27s)2P3/2 (13), (5p26d)2D3/2

(14), (5p26d)2D5/2 (15), (5p24 f )2F7/2 (16), (5p24 f )2F5/2 (17), (5p28s)2S1/2 (18), (5p28s)2P1/2 (19), (5s27d)2D3/2 (20), (5s27d)2D5/2 (21)
and (5s28p)2P3/2 (22).

We then track a large number of electrons between colli-
sions using finite length time steps. The time step is deter-
mined as a fraction of the mean collision time, which is calcu-
lated from the total collision frequency. Finite time steps are
used to solve the integral equation for the collision probabil-
ity, in order to determine the exact time of the next collision

[46, 47]. If the length of these time steps is too large, then
the time of the next collision can be inaccurately computed,
which in turn affects the accuracy of the calculation of the
electron trajectories. On the other hand, too small time steps
lead to an enormous increase of computing time, which is
equally unacceptable. For this investigation, the time step was
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fixed at one hundredth of the mean time between collisions,
regardless of the electron energy. This allows for a precise
determination of the time of the next collision and the trajec-
tory of the electrons.

The equation for the collision probability is solved by
numerical integration using the above-mentioned time steps.
When the moment of the next collision is determined, the next
step is to define the nature of the collision. For this purpose, the
relative probabilities for each collision process are calculated
at the given electron energy. All electron scattering processes
are assumed to be isotropic regardless of their specific nature
and energy. Therefore, the change in direction of the elec-
tron velocity is expressed by a uniformly distributed scattering
angle within the interval [0, π] and by the azimuthal angle that
is uniformly distributed within the interval [0, 2π]. The change
in the electron energy, after elastic and inelastic collisions, is
calculated using the laws of elementary collision dynamics.
For more details the reader is referred to [40, 47].

3.1.1. Sampling of the bulk and flux transport coefficients.
Under hydrodynamic conditions, the electron swarm transport
coefficients are calculated after the relaxation of the swarm
to the stationary state. The measurable and universal trans-
port coefficients are the bulk transport coefficients [48]. They
are calculated in our Monte Carlo simulations from the rate
of change of the appropriate averages of the positions of
the electrons, in configuration space [40, 47]. The number-
changing reaction rate, which for indium vapour is reduced to
the ionisation frequency, is defined by

νION =
d
dt

(ln Ne) , (2)

the bulk drift velocity by

W =
d
dt
〈r〉, (3)

and the bulk diffusion tensor by

D =
1
2

d
dt
〈r�r�〉. (4)

Here Ne is the total number of electrons at any time t, 〈r〉 is the
coordinate of the swarm’s centre of mass, and r� = r − 〈r〉.
The coordinate of the swarm’s centre of mass is given by

〈r〉 = 1
Ne

Ne∑
k=0

rk, (5)

where rk, (k = 1, 2, . . . , Ne) are the coordinates of all
electrons.

The flux transport coefficients are required for some aspects
of plasma modelling and elsewhere [49]. The flux drift velocity
is given by

W� =

〈
dr
dt

〉
= 〈v〉, (6)

and the flux diffusion tensor by

D� =
1
2

〈
d
dt

(
r�r�

)〉
. (7)

The flux drift velocity is in fact the average velocity of the
electrons. It is given by

〈v〉 = 1
Ne

Ne∑
k=0

vk, (8)

where

vk =
drk

dt
. (9)

Although, at first glance, the expressions (3) and (6) look
the same, they are fundamentally different in the presence of
non-conservative collisions. Using expressions (5) and (9), the
equality of the bulk drift velocity and the flux drift velocity is
reduced to

1
Ne

d
dt

Ne∑
k=0

rk =
1

Ne

Ne∑
k=0

d
dt

rk. (10)

In the absence of non-conservative collisions (e.g. ionisation),
the total number of the electrons Ne remains the same dur-
ing the simulation, and hence the time derivative commutes
with the sum. However, in the presence of non-conservative
collisions, the total number of electrons Ne is neither a con-
stant nor a continuous function of time and thus the equality
(10) no longer holds. In other words, in the presence of non-
conservative collisions, the bulk and the flux transport coeffi-
cients are not the same. This is no moot point, as the differ-
ences between the two families of transport coefficients are
often significant, ranging from a few percent to a few orders
of magnitude [50].

For electrons in indium vapour, the differences between the
bulk and flux transport coefficients are induced by the explicit
contribution of ionisation processes. Ionisation is most likely
to occur at the leading edge of the swarm, where the higher-
energy electrons are located. Thus, in the case of drift, ionisa-
tion always acts in such a manner as to push the centre of mass
of the swarm forward, which in turn increases the bulk drift
velocity. Therefore, for electrons in indium vapour, we may
expect that the bulk drift velocity is always larger in magnitude
than the flux drift velocity. Similarly, the increase in electron
numbers, due to ionisation in the indium vapour, enhances
diffusion in both the longitudinal and transverse directions.
These observations will be discussed and illustrated later by
showing the E/N-profiles of the drift velocity and diffusion
coefficients (see section 4.2).

3.1.2. Sampling of spatially-resolved transport data. Under
non-hydrodynamic SST conditions, the electrons are released
from the cathode into the space between the electrodes. In con-
trast to our initial Monte Carlo code, where the electrons were
released one by one from the cathode [40–42], in this work
all electrons are released from the cathode at the same time.
In this way, it is possible to use swarm rescaling procedures
under SST conditions, which is of great importance for the
simulation of electrons at high values of E/N, where a large
number of secondary electrons is formed by ionisation pro-
cesses. Similarly, the code designed in this way permits the
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simulation of transport in strongly-attaching molecular gases
under SST conditions [50]. The back-diffusion of electrons
is not considered, and the electrons are followed until reach-
ing the anode. Note that both electrodes are regarded as per-
fectly absorbing. Due to the presence of the electrodes, both
the implicit and explicit gradients of the electron density exist.
Consequently, the hydrodynamic approximation is not valid
under SST conditions and the concept of transport coefficients
makes no sense, even after reaching the equilibration of the
swarm. The spatially-resolved transport data are thus calcu-
lated using the so-called box-sampling technique [40, 41]:

〈ξ〉 j =

(
1
Δz

∫ z j+Δz/2

z j−Δz/2
fSST (z, v) dr dv

)−1
1
Δz

×
∫ z j+Δz/2

z j−Δz/2
ξ fSST (z, v) dr dv

≈
(

Ne∑
k=1

Δt j
k

)−1 Ne∑
k=1

ξ j
kΔt j

k. (11)

Here fSST (z, v) is the steady-state distribution function, ξk
j is

the value of the quantity to be sampled when the kth electron
is contained in the jth box, Δt j

k is the residence time of the
electron in that box, and Ne is the number of electrons that
appear there.

The spatially-resolved rate coefficients are calculated by
determining the number of collisions of type m in the jth
spatial box located at z j [40, 51]:

Rm(z j) =
Nm

j

Δz Ne(z j)
, (12)

where Nm
j denotes the number of collisions m, Δz is the width

of box, and Ne(z j) is the total number of resident electrons.
The expression (12) was tested in nitrogen and other gases,
by comparing the calculated ionisation coefficient with the
experimental results obtained from the slope of the electron
emission, as well as with the results obtained by integrating
the distribution function and the corresponding cross section
for ionisation [51]. The agreement between these independent
techniques was excellent, indicating the accuracy and validity
of the methodology used for sampling the spatially-resolved
rate coefficients.

3.2. Classical fluid model

The inception and propagation of negative ionisation fronts
were studied using a classical fluid model. The classical model
involves the first two velocity moments of the Boltzmann
equation, i.e. the equation of continuity and the momentum
balance equation. The classical drift–diffusion approximation
is obtained by assuming a steady state of the momentum bal-
ance equation and that the energy of the field-directed motion
is much larger than the thermal contribution. For the full and
strict derivation of this model the reader is referred to [52].
The generalized one-dimensional continuity equation for the

electron number density is

∂ne

∂t
=

∂

∂x

(
W sgn (E) ne + DL

∂ne

∂x

)
+ νIONne, (13)

where W and DL are the electron drift velocity and longitu-
dinal diffusion coefficient, respectively, E is oriented along
the x-axis, while ν ION is the ionisation coefficient. The drift
and diffusion of positive ions are neglected here on the basis
of the time scales of interest in the present work. Likewise,
the discharge model is not coupled to the gas dynamics, even
though the indium vapour may be additionally heated by the
discharge [53, 54].

The model is realized in a 1.5-dimensional (1.5D) setup,
according to which the streamer radius R0 is fixed. Thus, the
total electric field in the system is evaluated as the sum of the
uniform external electric field and the electric field due to space
charge:

E (x, t) = E0 +
e

2ε0

∫ d

0

(
np − ne

) (
sgn

(
x − x′

)

− x − x′√
(x − x′)2 + R2

0

⎞
⎠ dx′, (14)

where E0 and ε0 are the external (applied) electric field and
vacuum permittivity, respectively, and d is the length of the
system.

The above fluid equations are closed, assuming the local
field approximation. According to this approximation, the
input data, including W , DL, and νION, are assumed to be func-
tions of the local instantaneous electric field. Equations (13)
and (14) are solved numerically, imposing the homogeneous
Dirichlet boundary conditions for the electron density ne as

ne (x = 0, t) = 0, ne (x = d, t) = 0, (15)

and initial conditions

ne (x, t = 0) =
Ne0

πR2
0σ0

√
2π

exp

(
−1

2
(x − x0)2

σ 2
0

)
. (16)

Here Ne0 is the initial number of electrons with a Gaus-
sian distribution centred at x0 and a standard deviation σ0.
In the numerical implementation of our fluid model, the spa-
tial discretization is performed by employing the second-
order central finite-difference method, while the fourth order
Runge–Kutta method is used for the integration in time. For
more details, the reader is referred to [52, 55].

4. Results and discussion

4.1. Preliminaries

In Monte Carlo simulations, in which electron transport under
hydrodynamic conditions is studied, we cover a range of
reduced electric fields E/N between 0.01 Td and 10 000 Td.
The pressure of the background gas of indium atoms is fixed
at 1 Torr, and our calculations are performed for the indium
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Figure 4. Variation of the mean energy ε of the electron swarm as a
function of E/N for various indium vapour temperatures.

vapour temperatures of 1260, 3260, and 5260 K. The cold-
gas approximation, according to which the background indium
atoms are at rest (T = 0 K), is also analysed. The number of
electrons in our Monte Carlo simulations, under hydrodynamic
conditions was varied between 2.5 × 105 for lower values of
E/N to 1 × 106 at higher values of E/N. Under SST con-
ditions, however, the number of electrons is varied between
1 × 105 and 5 × 105, depending on the distance between the
electrodes and the applied reduced electric field E/N. In
section 4.2 we present the electron swarm transport coeffi-
cients as a function of the reduced electric field E/N and
indium vapour temperatures, T, while in section 4.3 we present
the electron swarm transport properties and spatial relaxation
profiles as a function of E/N and T. In the latter case the elec-
trons are released from the cathode under two different sets of
initial conditions: (i) the Maxwell–Boltzmann velocity distri-
bution with starting mean energies of 0.1 eV, 1 eV, and 10 eV,
and (ii) the beam initial velocity distribution with the same
starting mean energies. Finally, in section 4.4 the develop-
ment of an electron avalanche and its transition into a negative
ionisation front is considered.

4.2. Electron transport under hydrodynamic conditions

As noted above, in this section we present results showing the
variation of electron swarm transport properties with E/N and
indium vapour temperature, T . Figure 4 illustrates the varia-
tion of the mean energy with E/N for various temperatures.
In the T = 0 K profile, we observe that ε is a monotonically
increasing function of E/N. The rate of increase of the mean
energy varies with E/N, reflecting the energy dependence
of the cross sections for electron scattering. For T = 1260
K, T = 3260 K, and T = 5260 K, the profiles of the mean
energy also exhibit some generic features. At lower values
of E/N, we observe initial plateaus in the profiles, indicat-
ing that the electrons are in near thermal equilibrium with the
indium vapour. In this range of lower values of E/N, which
extends up to approximately 10 Td, the distribution of elec-
trons is of thermal-Maxwellian form, and the mean energy

depends distinctively on the indium vapour temperature. This
low E/N regime can be characterized as a vapour-dominated
regime, where the electrons are essentially thermalized. As
E/N rises, the electrons gain more energy from the electric
field and are no longer thermalized. As a result, the veloc-
ity distribution deviates from a thermal-Maxwellian, but to a
large extent the temperature of the indium vapour still con-
trols the behaviour of the electrons. This is the so-called inter-
mediate regime, which extends from approximately 10 Td to
400 Td. For E/N larger than approximately 400 Td, the mean
energies are considerably higher than the corresponding ther-
mal energies. We observe that the influence of indium vapour
temperature on the mean energy is minimal in this regime. In
what follows, we will refer to this region of electron transport
as the field-dominated regime.

Figure 5 shows the variation of the bulk drift velocity with
E/N for various T. At first glance, for lower values of E/N, we
observe that the drift velocity for T = 0 K varies very slowly
with increasing E/N. However, looking more closely, we in
fact observe that the drift velocity exhibits a region of nega-
tive differential conductivity (NDC), i.e. over a range of E/N
values the drift velocity decreases as the driving electric field
increases [56]. NDC takes place here between approximately
0.03 Td and 0.3 Td, where there is a noticeable transition in
the dominant energy loss mechanism from inelastic to elas-
tic processes. In the transition regime, due to numerous elastic
collisions, the enhanced randomization of the directed motion
decreases the drift velocity even though the mean energy
increases. As E/N increases further, NDC is suppressed due
to numerous elastic and inelastic collisions. Consequently,
for E/N larger than approximately 0.3 Td and at T = 0 K,
the drift velocity is a monotonically increasing function of
E/N. From the E/N-profiles of the bulk drift velocity for
T = 1260 K, T = 3260 K, and T = 5260 K, we observe no
such NDC and that the drift velocities are increasing functions
of E/N. In the vapour-dominated and intermediate regimes,
the drift velocity generally decreases with increasing vapour
temperature. In this low E/N regime, the drift velocities for
T = 1260 K is essentially linear, which is a signature of con-
stant mobility. In the field-dominated regime, the impact of the
vapour temperature on the drift velocity is minimal.

In figures 6 and 7, respectively, we show the variation of
the bulk longitudinal NDL and bulk transverse NDT diffusion
coefficients with E/N, for various vapour temperatures. In the
vapour-dominated and intermediate regimes, at fixed E/N, we
observe that NDL increases with T . On the other hand, in the
field-dominated regime, both NDL and NDT show no sensitiv-
ity with respect to the vapour temperature. We observe a deep
minimum in the E/N-profile of NDL for T = 0 K at around
0.45 Td, which can be attributed to the rapid increase of the
elastic momentum transfer cross section in the limit of the
lowest values of electron energies. For E/N larger than approx-
imately 0.45 Td, NDL is a generally increasing function of
E/N. Similarly, we observe a distinct minimum in the E/N-
profile of NDT for T = 0 K at about 30 Td. The fall in NDT

occurs less rapidly in comparison with that of NDL, but it
extends over a wider range of E/N. As for NDL, the decline in
NDT at T = 0 K reflects the rapidly increasing cross section for
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Figure 5. Variation of the bulk drift velocity of the electron swarm
as a function of E/N for various indium vapour temperatures.

Figure 6. Variation of the bulk longitudinal diffusion coefficient of
the electron swarm as a function of E/N for various indium vapour
temperatures.

momentum transfer in elastic collisions and the cross section
for excitation of the (5s25p)2P3/2 metastable state. In the
vapour-dominated regime, from the E/N-profiles of both NDL

and NDT for T = 1260 K, T = 3260 K, and T = 5260 K, we
observe that the diffusion coefficients have essentially thermal
values. These values of the diffusion coefficients are increasing
functions of the vapour temperature. As expected, the ther-
mal values of NDL and NDT are nearly identical, indicating
that the velocity distribution of the electrons is approximately
thermal-Maxwellian. As E/N increases further, the interme-
diate regime is characterized by non-thermal values of the
diffusion coefficients, which are still temperature dependent.
The temperature dependence of the diffusion coefficients is,
however, minimal upon reaching the field-dominated regime.

The anisotropy of the diffusion tensor, i.e. DL 	= DT,
exists over the entire range of E/N for T = 0 K. Figure 8
exhibits the ratio of NDT to NDL, as a function of E/N, for
T = 1260 K, T = 3260 K, and T = 5260 K. As indicated
on the graph, both the flux and bulk data are shown. Gener-
ally speaking, the anisotropy of the diffusion for electrons in

Figure 7. Variation of the bulk transverse diffusion coefficient of the
electron swarm as a function of E/N for various indium vapour
temperatures.

Figure 8. Variation of the ratio of NDT to NDL of the electron
swarm as a function of E/N for various indium vapour temperatures.

indium vapour, over the range of vapour temperatures consid-
ered in the present work, is relatively low, with the differences
between NDT and NDL not exceeding approximately 30%. In
the limit of the lowest values of E/N, as already emphasized,
the diffusion is nearly isotropic. Small fluctuations of the ratio
between NDT and NDL around unity follow from the statisti-
cal uncertainties of the dynamical properties sampled in our
Monte Carlo simulations, which are required for the calcula-
tion of the diffusion coefficients. As E/N increases further, we
observe that the anisotropy of the diffusion tensor is reduced
for increasing vapour temperature in the intermediate regime.
For higher values of E/N, the sensitivity of the ratio of NDT to
NDL, with respect to the indium vapour temperature, is mini-
mal in the field-dominated regime. It is also interesting to note
that for E/N larger than approximately 200 Td, the bulk val-
ues of NDL are larger than the bulk values of NDT. This is
not the case for the corresponding flux values of the diffusion
coefficients.
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Figure 9. Variation of the ionisation rate of the electron swarm as a
function of E/N for various indium vapour temperatures.

In figure 9 we plot the variation of the ionisation rate
coefficient as a function of E/N for various vapour tem-
peratures. The ionization rate coefficient corresponds to the
density reduced ionization frequency, where the ionization
frequency is given by equation (2). As expected, the ionisa-
tion rate increases with E/N for all temperatures. The E/N-
profiles of ν ion/N, are similar for T = 0 K and T = 1260 K
and resemble the typical behaviour of the ionisation rate in
other gases. This follows from the fact that, as in most cases,
the E/N-profiles of ν ion/N are essentially featureless, as ion-
isation only becomes considerable for higher values of E/N
when sufficient electrons have enough energy to cause ionisa-
tion. However, for higher indium vapour temperatures, e.g. for
T = 3260 K and T = 5260 K, the electrons have enough
energy to cause ionisation even in the vapour-dominated
regime, i.e. in the limit of the lowest E/N considered in the
present work. While at T = 5260 K the ionisation rate essen-
tially remains unaltered, at T = 3260 K the ionisation rate
increases with E/N. Then, as E/N is increased further, the
ionisation rates for both T = 3260 K and T = 5260 K increase
rapidly, reaching the field-dominated regime, where the vapour
temperature does not affect this property.

Figure 10 displays the variation in the rate coefficients for
transfer of momentum in elastic collisions, summed excita-
tion, summed de-excitation, and ionisation as a function of
E/N for various vapour temperatures. At T = 0 K, the elas-
tic momentum transfer rate increases with E/N up to about
1 Td. Then, as E/N further increases, it starts to decrease
slowly in magnitude. For T = 1260 K, T = 3260 K, and
T = 5260 K, however, the elastic momentum transfer rate
essentially remains constant, before decreasing in the limit of
the highest E/N considered in the present work. The summed
excitation rate coefficient for T = 0 K is a rapidly increasing
function of E/N, until ionisation processes start to play a sig-
nificant role at around 200 Td. For T = 1260 K, T = 3260 K,
and T = 5260 K, the summed excitation and de-excitation
rates are identical for lower values of E/N, e.g. in the vapour-
dominated regime. This follows from detailed balancing and
the fact that the electrons are in thermal equilibrium with the

indium vapour. These rate coefficients begin to depart from
each other at approximately 20 Td for T = 1260 K, 30 Td for
3260 K, and 40 Td for 5260 K, with an increase in excitation
events and a decrease in de-excitation events. Comparing the
ionisation rates with the rate coefficients for all the other pro-
cesses considered, we observe that ionisation dominates in the
limit of the highest E/N considered in the present study.

In order to illustrate the explicit effects of ionisation colli-
sions on the drift and diffusion of electrons in indium vapour,
we show in figure 11 the variation of the percentage differ-
ence between the bulk and flux values of the drift velocity
(a), and the bulk and flux values of the longitudinal diffu-
sion coefficient (b), as a function of E/N for various vapour
temperatures. Figure 11 indicates that the influence of ioni-
sation on the drift and diffusion is not apparent until approx-
imately 200 Td. Even though ionisation is considerable for
T = 3260 K and T = 5260 K in the vapour-dominated regime,
the differences between the bulk and flux values of the drift
velocity and longitudinal diffusion coefficient are minimal.
This could be explained by considering the E/N-dependence
of the rate coefficients for the other processes shown in
figure 10. There we observe that competitive processes, includ-
ing electronic excitations and de-excitations, are much more
frequent than ionisation processes. As a consequence, the
explicit contribution of ionisation to the measurable trans-
port coefficients, e.g. the bulk drift velocity and the bulk dif-
fusion coefficients, are reduced. As E/N increases further,
the percentage difference between the bulk and flux values
increases, reaching a maximum of around 45% and 80% for
the drift velocity and the longitudinal diffusion coefficient,
respectively. This indicates that the increase in electron num-
bers due to ionisation enhances both the drift and diffusion of
the electrons in indium vapour. For the highest E/N considered
here, the differences between the bulk and flux values are again
reduced. Generally speaking, the influence of the vapour tem-
perature on the differences between the bulk and flux values
is minimal, reflecting the weak dependence of the drift veloc-
ity and longitudinal diffusion coefficient on the temperature
in the field-dominated regime. In order to better understand
the dual nature of the transport coefficients, and the associated
differences between the bulk and flux values of the transport
coefficients, the reader is referred to our previous publications
[40, 47, 50].

4.3. Electron transport under SST conditions

In this section we present results showing the spatial relax-
ation of electrons and the variation of electron swarm trans-
port properties with E/N and vapour temperature T under
non-hydrodynamicconditions in an idealised SST experiment.
Figure 12 shows the exponential growth of the electron num-
ber, in the region between the electrodes, as a function of
E/N and the temperature. The electrons are released from
the cathode into the space between the electrodes, assuming
a Maxwell–Boltzmann velocity distribution, with the starting
mean energy ε0 = 1 eV. The growth rate in the electron number
increases with increasing E/N, indicating that ionisation pro-
cesses become increasingly important with increasing E/N.
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Figure 10. Variation of the rate coefficients for transfer of momentum in elastic collisions, summed excitation, summed de-excitation, and
ionisation of the electron swarm, as a function of E/N, for various indium vapour temperatures.

Figure 11. Variation of the percentage difference between the bulk and flux values of the drift velocity (a) and longitudinal diffusion
coefficient (b) of the electron swarm, as a function of E/N, for various indium vapour temperatures.

Even though the results are presented on a log–log scale, we
observe that the rate of increase in the number of electrons for
a fixed E/N increases with the vapour temperature. This is a
cumulative effect of the initial spatial relaxation and the fol-
lowing arguments may be used to account for its occurrence.
At a fixed reduced electric field, in the initial phase of spatial
relaxation, thermal effects play a key role in the multiplica-
tion of electrons in ionisation processes. This means that the
higher the indium vapour temperature, the more electrons are
produced at the beginning of the spatial relaxation. After relax-
ation, when a steady-state is achieved, these thermal effects are
considerably reduced. This is indicative of the field-dominated
regime, where swarm behaviour is entirely controlled by the

electric field. In this regime, the ionization coefficient is not
a function of the indium vapour temperature, which can be
clearly seen in figure 9.

Figures 13 and 14 display relaxation profiles of the mean
energy and the average velocity for a range of applied reduced
electric fields E/N, as indicated on each graph. In both plots
the electrons are released from the cathode assuming an initial
beam velocity distribution, with a starting mean energy of 1 eV,
in indium vapour at T = 1260 K. The behaviour of the trans-
port properties is not considered in close vicinity of the anode.
The relaxation profiles of the mean energy and the average
velocity in indium vapour are consistent with earlier investiga-
tions on this topic for other gases [2, 5, 41, 42, 57–59]. First,
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Figure 12. Exponential growth of the number of electrons in an
idealized SST experiment as a function of E/N for various indium
vapour temperatures.

we observe a limited range of E/N, where the mean energy
and average velocity exhibit oscillatory behaviour as they relax
towards the stationary state far downstream from the cathode.
The spatial relaxation characteristics, including the period and
amplitude of the oscillations, and the spatial relaxation length,
are distinctively dependent on the applied E/N.

When electrons undergo elastic collisions in indium vapour,
the energy transfer is a continuous process occurring in rela-
tively small portions of energy. In inelastic collisions, how-
ever, the energy transfer is a discrete process with several
orders of magnitude larger portions of energy. In the pres-
ence of elastic collisions only, the spatial profiles of the trans-
port quantities would be exclusively monotonic and without
oscillations along the relaxation profiles. On the other hand,
in the presence of inelastic collisions only, due to the dis-
crete electron energy losses, the spatial profiles would be peri-
odic, with a period inversely proportional to the electric field
strength, and an energy threshold that is a composite of sev-
eral closely-lying inelastic processes that control the relaxation
process. For electrons in indium vapour under the conditions
considered in the present work, except the zero-temperature
case, the electrons undergo both elastic and inelastic collisions
with the presence of the elastic collisions always tending to
dampen the oscillatory behaviour of the transport properties
and broaden the peaks from the profiles. The key quantity in
this complex interplay between the elastic and inelastic colli-
sional energy loss processes is the mean energy of the swarm.
In the presence of both elastic and inelastic collisions, when
the mean swarm energy is much smaller or much larger than
the lowest energy threshold of the inelastic processes, the col-
lisional energy loss is controlled by the continuous energy loss
processes and, therefore, the spatial relaxation profiles are
monotonic or quasi-monotonic on their way to a spatially
homogeneous form. Conversely, if the collisional energy loss
is primarily controlled by the discrete energy loss processes,
then the spatial profiles are periodically decaying.

The occurrence of oscillatory relaxation is particularly
stimulated when the threshold energies of the various inelas-
tic processes are concentrated in a relatively narrow energy
region. For electrons in indium vapour, the threshold energies
span the energy region between approximately 0.3 eV and 6 eV
[38, 39]. With the exception of the T = 0 K case, for E/N � 1
Td the sensitivity of the relaxation profiles of the mean energy
and the average velocity to E/N is minimal. This follows from
the fact that the electrons are disturbed only in close vicin-
ity of the cathode, while at longer distances they are essen-
tially in quasi-thermal equilibrium with the indium atoms.
As E/N further increases, the oscillatory feature is enhanced,
as more and more electrons undergo inelastic collisions. How-
ever, the relaxation becomes dramatically slower and the
amplitude and period of oscillations are reduced. In particu-
lar, when the mean energy is increased to a level that energy
losses by inelastic collisions become continuous, the oscilla-
tory feature is reduced. The spatial profiles are then monotonic
and the transport properties relax to the spatially uniform states
without oscillations.

Figure 15 displays relaxation profiles of the mean energy
for a range of applied reduced electric fields E/N and indium
vapour temperatures T, as indicated on the graphs. For a fixed
value of E/N and for increasing indium vapour temperature
T, we observe that significant changes in the spatial relaxation
profiles of the mean energy occur. The relaxation proceeds
much quicker and, if oscillations are present in the spatial
profile, they are quickly dampened. Even though the spatial
relaxation of the transport properties is distinctively depen-
dent on E/N, the oscillatory feature is clearly evident for the
lower vapour temperatures. As an illustrative example, for
E/N = 4.6 Td and T = 0 K, we observe a sawtooth profile of
the mean energy, where the amplitude of oscillations reduces
slowly with the distance from the cathode (x). As the tem-
perature T is further increased to 1260 K and 3260 K, the
oscillations are first damped and thereafter entirely removed
from the spatial profile by T = 5260 K. Generally speaking,
the spatial relaxation of the mean energy and the other trans-
port properties is monotonic over the entire range of E/N
considered in the present work for the indium vapour tem-
perature of 5260 K. For T = 3260 K, the relaxation profiles
show reduced irregular oscillations, which are quickly damp-
ened with increasing distance from the cathode. Comparing
the spatial profiles at T = 0 K and T = 1260 K over a wide
range of E/N (not shown here), we have observed that a win-
dow of reduced electric fields, for which the mean energy and
transport properties exhibit oscillatory behaviour, is shifted to
lower values of E/N. This occurs because of the increase in
the mean energy as the indium vapour temperature T rises,
enhancing the energy losses due to inelastic collisions, which
in turn makes the discrete energy losses more continuous.

Figure 16 displays relaxation profiles of the mean
energy for E/N = 13 Td and an indium vapour temperature
T = 1260 K, assuming two different sets of initial conditions,
including the beam initial velocity distribution with mean ener-
gies of 0.1 eV, 1 eV, and 10 eV (the first row), and a Maxwell
velocity distribution with the same starting mean energies (the
second row). Generally speaking, for a certain value of E/N,
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Figure 13. Spatial relaxation of the mean energy for electrons in indium vapour over a range of E/N. The calculations are for a fixed indium
vapour temperature of 1260 K. x denotes the distance from the cathode.

Figure 14. Spatial relaxation of the average velocity for electrons in indium vapour over a range of E/N. The calculations are for a fixed
indium vapour temperature of 1260 K. x denotes the distance from the cathode.

the spatial relaxation of the mean energy or any other transport
property will be different if the initial conditions for the elec-
trons at the cathode or the disturbing source of electrons are
different. On the other hand, the spatially uniform values of
the transport properties are independent of the initial values.
In the first row of figure 16, where the beam initial veloc-
ity distribution is used for the initial conditions, we observe
that increasing the mean energy from 0.1 eV to 1 eV does
not alter the spatial relaxation significantly. However, when the

initial starting mean energy is further increased to 10 eV, the
relaxation is much quicker, i.e. the relaxation length is much
less. In addition, we observe that the modulation amplitude
and the period of oscillations are also strongly affected. When
a Maxwell velocity distribution is used for the initial elec-
trons at the cathode (second row of figure 16), we observe that
increasing the starting mean energy from 0.1 eV to 1 eV damp-
ens the oscillations. Then the relaxation proceeds much faster
in comparison with the previous case, where the initial beam
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Figure 15. Spatial relaxation of the mean energy for electrons in indium vapour over a range of E/N and indium vapour temperatures T. x
denotes the distance from the cathode.

velocity distribution was assumed in the calculations. Regard-
less of the initial conditions, if the mean electron energy is
much higher than the lowest thresholds for inelastic collisions,
then the elastic and inelastic collisions are essentially part
of the continuous energy loss processes. As a consequence,
the oscillatory feature is strongly suppressed and the relax-
ation towards the spatially uniform state is either monotonic or
quasi-monotonic.

Comparing now, in more detail, the spatial profiles in the
first and second rows of figure 16, it can be observed that
the relaxation proceeds much quicker if a Maxwell initial
velocity distribution is employed in the simulations. This is

clearly evident for the starting mean energy of 1 eV. This hap-
pens because, according to Maxwell’s velocity distribution,
the electrons can have a wider range of velocities, so the bal-
ance between energy gains from the field and losses in binary
collisions with indium atoms is achieved more quickly. In addi-
tion to the relaxation length, the modulation amplitude and the
period of oscillations are considerably smaller, indicating that
the spatial relaxation of electrons in indium vapour may be
governed by controlling the initial conditions of the electrons
at the cathode.

In the following, we restrict our discussion to the spa-
tially uniform transport properties in an idealised SST setup

14



Plasma Sources Sci. Technol. 30 (2021) 115019 S Dujko et al

Figure 16. Spatial relaxation of the mean energy for electrons in indium vapour at E/N = 13 Td and an indium vapour temperature
T = 1260 K. The calculations are for two different sets of initial conditions, including the initial beam velocity distribution (first row) and a
Maxwell initial velocity distribution (second row), assuming starting mean energies of 0.1 eV, 1 eV, and 10 eV, as indicated on the graph. x
again denotes the distance from the cathode.

and their comparison with the hydrodynamic transport coef-
ficients. Using exponential growth curves for the number of
electrons under SST conditions, we calculated the density-
reduced ionisation coefficient. The SST ionisation coefficient
is compared with that derived from our hydrodynamic calcu-
lations using the well-known expression [60]

1
α

=
W

2νION
+

√(
W

2νION

)2

− DL

νION
, (17)

where ν ION, W and DL are the ionisation frequency, bulk drift
velocity, and bulk longitudinal diffusion coefficient, respec-
tively. This comparison is shown in figure 17. For all indium
vapour temperatures and up to about 3000 Td, we observe that
the two sets of results agree very well, indicating the validity
of the expression (17). For higher values of E/N, however, we
do observe differences between the two sets of results.

The comparison between the mean energies calculated
under hydrodynamicand SST conditions is shown in figure 18.
Similarly, the comparison between the bulk and flux values
of the drift velocity and the SST average velocity is shown
in figure 19. The calculations were performed assuming the
usual indium vapour temperatures. For higher values of E/N,
we observe that the mean energy and flux drift velocity are
larger than the corresponding SST average velocity and SST
mean energy, respectively. On the other hand, the bulk drift
velocity dominates both the flux drift velocity and the SST
average velocity. This can be explained using the following
physical arguments: when the profile of the electron density
increases exponentially, with the distance in the direction of
the electric field force (see figure 12), then the diffusive flux
induced by this gradient is in opposite direction to the drift

flux. As a result, the diffusive flux acts to reduce the drift
flux (or the field flux), and hence the SST average velocity is
less than the flux drift velocity. As far as the mean energy is
concerned, it is a combination of the spatially homogeneous
mean energy and the energy component induced by the diffu-
sive processes. The spatially homogeneous mean energy rep-
resents a balance of energy accumulated by electrons moving
in the electric field and the losses in binary collisions. Since
the diffusive flux is in the opposite direction to the drifted flux,
the electrons are forced to move against the field force, and
therefore their mean energy is reduced. As a consequence, the
SST mean energy is less than the corresponding hydrodynamic
mean energy. It should be noted that this behaviour of the mean
energy and average velocity in an idealised SST experiment
does not depend on the nature of the atomic gas. This can be
further generalized to molecular gases, but only for electron
energies for which the ionisation contributions are larger than
the losses due to electron attachment [40].

4.4. Development of an electron avalanche and its transition
into a negative ionisation front

In this section we investigate the development of an electron
avalanche and its transition into a negative ionisation front in
indium vapour. All simulations were started with the same ini-
tial Gaussian-type distribution for the electrons and positive
ions
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where l is the distance between the imaginary electrodes and
R0 is the streamer radius, which is calculated to first order by
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Figure 17. Comparison between the SST reduced ionisation coefficient and the reduced ionisation coefficients calculated using the
hydrodynamic values of ionisation frequency, bulk drift velocity, and bulk longitudinal diffusion coefficient. Calculations are performed over
a broad range of E/N and indium vapour temperatures T , as indicated on the graph.

Figure 18. Comparison between the mean energies calculated under hydrodynamic and SST conditions. Calculations are performed over a
broad range of E/N and indium vapour temperatures T , as indicated on the graph.

taking into account the initial electron distribution width and
the spreading due to diffusion along the transverse direction.
The length of the system l is an adjustable parameter, which
is determined by the requirement that the streamer velocity
relaxes to a stationary value. The externally applied electric
field is positive in the x direction, and hence the ionisation
fronts propagate to the left. Unless otherwise specified, the
simulation results are presented from the 1.5D (axisymmet-
ric) model, in which the radius of the streamer is assumed to
be fixed.

Figure 20 exhibits the development of an electron avalanche
and its transition into a negative ionisation front for
E/N = 270 Td and various indium vapour temperatures, as
indicated on the graph. The calculations were performed using
the bulk transport coefficients as input into the system of
fluid equations (13) and (14). The development of an elec-
tron avalanche, and its transition to a negative ionisation front,
occurs here in the same manner as in other gases [52, 61–64].
In the early stage of development, where there are no space-
charge effects, the dynamics of the electron avalanche and
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Figure 19. Comparison between the flux and bulk drift velocity, calculated under hydrodynamic conditions, and the SST average velocity.
Calculations are performed over a broad range of E/N and indium vapour temperatures T, as indicated on the graph.

Figure 20. The formation and propagation of a negative ionisation front in indium vapour for E/N = 270 Td and various indium vapour
temperatures. The calculations are performed using the bulk transport coefficients as input to the classical fluid model.

its spatial and temporal evolution is described by the diffu-
sion equation. The solution of the diffusion equation in free
space, and far away from the physical boundaries, is a Gaus-
sian pulse, the peak of which drifts with the bulk drift velocity
and diffuses around the centre of mass according to the val-
ues of the diffusion coefficient [65]. The electrons drift in the
opposite direction to the electric field, while the positive ions
are effectively motionless, since the mobility of the electrons
is much higher than the mobility of positive ions on the time
scales we consider in this work. As a consequence, charge sep-
aration occurs and the effects of the space charge develop,
which screen the external electric field in the streamer inte-
rior. Since the simulations were performed in 1.5D, the space-
charge effects do not fully screen the external electric field
behind the streamer front. At the same time, at the front of the

streamer, we observe a characteristic field enhancement, which
can lead to the appearance of runaway electrons. In any case,
as the temperature of the indium vapour rises, the electron den-
sity and the streamer velocity increase. This can be explained
by the fact that, as the temperature increases, the concentra-
tion of metastables and the ionisation coefficient are increased,
which in turn accelerate the propagation of the streamer.

In order to better observe the effect of the indium vapour
temperature on the spatial and temporal evolution of the elec-
tron density in the streamer channel, we show in figure 21 the
formation and development of a negative streamer in 1D. The
boundary conditions for the numerical solution of the fluid
equations are modified: for x = 0 we use a homogeneous Neu-
mann boundary condition, to ensure that the electrons that
arrive at this boundary may flow out of the system, while for
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Figure 21. The formation and propagation of a negative ionisation front in indium vapour for E/N = 100 Td and various indium vapour
temperatures. The calculations are performed using the 1D-set up and the bulk transport coefficients as input to the classical fluid model.

Figure 22. The formation and propagation of a negative ionisation front in indium vapour for E/N = 770 Td and T = 1260 K. The
calculations are performed using the bulk and flux transport coefficients as input to the 1.5D classical fluid model.

x = d we employ a homogeneous Dirichlet boundary condi-
tion in order to prevent the outflow of electrons from the sys-
tem. Bulk transport coefficients were used as input data for the
fluid equations. In this case we can observe in figure 21 that
streamers at different indium vapour temperatures propagate
on completely different time scales. When the full streamer is
formed, we may observe a characteristic overshooting effect
in the profile of the electron density at the streamer front.
Comparing results from the 1D and 1.5D models, the electron
density decreases more slowly in the streamer interior behind
the front. For an indium vapour temperature T = 5260 K, we
observe an increase in the electron density at the trailing edge
of the negative streamer, where the external electric field is
completely screened. This is due to the fact that electrons,
even in the limit of thermal energies, where the electric field
is entirely screened, may ionize indium atoms in both the
ground and metastable states. Similar effects were observed

at lower temperatures, but in this case it was necessary to fol-
low the streamers through space and time much longer. The
complete screening of the electric field in the streamer chan-
nel is one of the important features distinguishing the results
of our simulations in 1D and 1.5D.

Figure 22 illustrates the formation and propagation of a
negative ionisation front, under the influence of an exter-
nally applied reduced electric field E0/N of 770 Td. Cal-
culations were performed for an indium vapour temperature
of T = 1260 K, using the flux and the bulk transport coeffi-
cients as input into the system of fluid equations (13) and (14).
Figure 22 clearly indicates that the ionisation front at a time
of 32 picoseconds, obtained with the bulk drift velocity and
the bulk longitudinal diffusion coefficient, is wider while its
height is less than with the flux transport coefficients. Similar
results were found for ionisation fronts in the 1D configuration
and in other gases [52, 61, 64]. As the ionisation rate is the
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Figure 23. Velocities of planar 1D ionisation fronts as a function of the reduced electric field. The bulk and flux drift velocities of electrons
are also included.

same in both cases, figure 22 can be explained by the fact that
the bulk drift velocity and the longitudinal diffusion coefficient
are larger than the corresponding flux data. Thus, in the early
stage of evolution, the motion and diffusion of the centre of
mass are faster with the bulk transport coefficients. The same
trend continues after completing the transition of an electron
avalanche into a negative streamer and during its propagation.

Besides the ionisation level in the streamer interior and the
field enhancement at its front, the front velocity is one of the
most important streamer properties. It is calculated by follow-
ing the evolution of a certain level of the electron density at the
ionisation front [52, 61, 64]. For ionisation fronts in indium
vapour, and for the range of reduced electric fields and vapour
temperatures considered in the present work, we observed
that after the initial stage of acceleration, deceleration follows
towards the quasi-stationary state, where the streamer velocity
does not change in time. For planar ionisation fronts in 1D, the
velocity of the streamer may be calculated using the following
analytical expression [62, 66, 67]:

v = μ(E)E + 2
√

DL(E)μ(E)Eα(E). (19)

Here μ(E) is the electron mobility, E is the electric field
strength, DL is the longitudinal diffusion coefficient, and α is
the first Townsend ionisation coefficient. Figure 23 shows a
comparison between the streamer velocities we obtained in our
simulations and those based on the analytic expression (19).
The motivation behind using the analytical expression (19) is
that, in principle, one may attempt to use swarm data to calcu-
late the streamer velocity. The same figure shows the variation
of the bulk and flux drift velocity with E/N. We observe that

the streamer velocity exceeds the bulk and flux drift veloci-
ties by more than a factor of two for the largest E/N displayed
here. This is one of the common features of streamers in neu-
tral gases [52, 61, 64] and atomic liquids [68]. The velocity of
a negative planar ionisation front is determined by the com-
bination of the electron velocity and the ionisation rate in the
streamer head. In addition, the ionisation front is pushed fur-
ther forward due to a strong diffusive flux, which is induced
by the strong gradient in the electron density.

The front velocities we obtained in our simulations and
those calculated using the analytical expression (19) agree very
well. Regardless of the indium vapour temperature, the differ-
ence between the two sets of data is most pronounced for the
highest E/N value. Finally, we note that the velocities obtained
with the bulk data are always larger than those evaluated by the
flux data.

5. Conclusions and outlook

We studied the electron transport and propagation of negative
ionisation fronts in indium vapour. Among many important
points, the key results originating from this work are:

(a) We utilize the available ab initio electron impact cross
sections for elastic, inelastic, and ionisation processes in
indium vapour [39]. Those calculations were performed
for indium atoms in the ground state (5s25p)2P1/2 and the
close-by metastable state (5s25p)2P3/2.

(b) Cross sections for superelastic collisions were calculated
by applying the principle of microscopic reversibility and
detailed balance in a thermal equilibrium. The fractional
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populations of the excited metastable state (5s25p)2P3/2

were calculated over a range of indium vapour tempera-
tures, and the mixtures of indium atoms in the ground state
and the metastable state were made and prepared as input
for our Monte Carlo simulations of electron transport.

(c) Using a Monte Carlo simulation technique, the electron
swarm transport coefficients were calculated over a range
of reduced electric fields E/N and indium vapour tem-
peratures, T , under hydrodynamic conditions. We iden-
tified three distinct regimes of electron transport. In the
vapour-dominated regime, the velocity distribution func-
tion was approximately thermal Maxwellian, while the
electron swarm transport coefficients were distinctively
dependent on the indium vapour temperature. The inter-
mediate regime was characterized by a non-Maxwellian
velocity distribution function, but the electron swarm
transport coefficients were to a large extent still found to
depend on the indium vapour temperature, T . For higher
values of E/N, we noticed that the influence of the indium
vapour temperature on the velocity distribution func-
tion and transport coefficients was minimal. Under those
condition, the velocity distribution function significantly
deviated from a thermal Maxwellian.

(d) The initial Monte Carlo code was extended and gener-
alized to consider the spatial relaxation of the electrons
and transport under non-hydrodynamic conditions in an
idealised SST experiment, when the background gas is
heated to high temperatures. It was demonstrated that the
spatial relaxation of the mean energy and average veloc-
ity was controlled by the nature of the collisional energy
loss process in question. It was also shown that the nature
of the spatial profiles could be controlled by varying the
temperature of the indium vapour, with the oscillations
along the decaying profile being suppressed by increas-
ing the indium vapour temperature. Similarly, it was
observed that different initial conditions altered the spatial
profiles, including the modulation amplitude, relaxation
length, and the period of oscillations. The spatially uni-
form values of the mean energy and average velocity were
compared with the corresponding hydrodynamic values.
Likewise, the ionisation coefficient evaluated directly
from an idealised SST experiment was compared with
the value estimated using the hydrodynamic results of the
ionisation rate, drift velocity, and longitudinal diffusion
coefficient. That two sets of data agreed very well except
for the highest E/N. The disagreement between the two
sets of data for higher values of E/N was addressed using
physical arguments.

(e) Employing the classical fluid model, which was imple-
mented within the 1D and 1.5D setups, we investigated
the development of an electron avalanche and its transi-
tion into a negative ionisation front. The transition from
an electron avalanche into a negative streamer occurred
faster with increasing indium vapour temperature. The
streamer properties, including the front velocity, the field

enhancement at the streamer front, the ionisation level
behind the front, and the overall distribution of the elec-
tric field, depend on the indium vapour temperature and
the level of presence of metastable indium atoms. This
was especially pronounced at lower values of E/N, where
the differences in the ionisation coefficient were large at
different indium vapour temperatures. Streamers obtained
in simulations with bulk transport coefficients were faster
than those with flux transport coefficients, indicating that
the nature of the transport coefficients in plasma mod-
elling must be carefully considered before their direct
application.

Regarding future studies, the cross sections for electron
scattering in indium vapour might be gainfully applied to
the modelling of electron transport in radio-frequency elec-
tric and magnetic fields. It would be interesting to consider,
for example, the influence of indium metastable states on the
temporal profiles of the transport coefficients, especially under
conditions in which resonant absorption of energy in the oscil-
lating radio-frequency electric and magnetic fields takes place
[69]. Another logical extension of the current work in indium
vapour would be to consider resonances induced by spatial
non-locality, as investigated recently for electrons in argon and
its mixtures with N2 [70]. In the context of further streamer
studies, it will be challenging to study the occurrence of non-
local effects in the profile of the mean energy, in the streamer
interior behind the propagating front, and in the branching
of the streamers, by carrying out particle-in-cell/Monte Carlo
simulations [71] and/or employing a high-order fluid model
[52]. Likewise, another remaining step to be taken is to under-
stand the effects of the breakdown voltages on the parame-
ters of the equivalent circuit in high-intensity discharge lamps,
where the cathode-directed streamers and the kinetics of the
positive indium ions should be carefully considered. All the
above applications will remain the focus of our future work.
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Abstract
The pulsed-Townsend (PT) experiment is a well known swarm technique used to measure
transport properties from a current in an external circuit, the analysis of which is based on the
governing equation of continuity. In this paper, the Brambring representation (1964 Z. Phys.
179 532) of the equation of continuity often used to analyse the PT experiment, is shown to be
fundamentally flawed when non-conservative processes are operative. The Brambring
representation of the continuity equation is not derivable from Boltzmann’s equation and
consequently transport properties defined within the framework are not clearly representable
in terms of the phase-space distribution function. We present a re-analysis of the PT
experiment in terms of the standard diffusion equation which has firm kinetic theory
foundations, furnishing an expression for the current measured by the PT experiment in terms
of the universal bulk transport coefficients (net ionisation rate, bulk drift velocity and bulk
longitudinal diffusion coefficient). Furthermore, a relationship between the transport
properties previously extracted from the PT experiment using the Brambring representation,
and the universal bulk transport coefficients is presented. The validity of the relationship is
tested for two gases Ar and SF6, highlighting also estimates of the differences.

Keywords: pulsed townsend experiment, transport coefficient definition, pulsed townsend
governing equation, kinetic theory, Brambring’s equation

(Some figures may appear in colour only in the online journal)

1. Introduction

The use of accurate electron swarm transport coefficients
in simulations has wide ranging implications for modelling

∗ Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

physics, from atmospheric processes through to medical imag-
ing and therapies [2–21]. For the well established swarm
experimental techniques, the various experimental parame-
ters (such as temperature, sample purity, uniformity of the
applied field, . . . ) are assumed to be highly accurate (within
the reported error bars), and the techniques for extracting the
measured quantities are generally considered to be well under-
stood. Within the swarm community itself, consensus on the
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extraction of transport parameters/coefficients is essential as
this explicitly impacts upon the accuracy of swarm-derived
cross-sections [22–43] that may be subsequently used directly
for modelling of gas and liquid-phase transport [12, 13], or
the direct application of electron swarm transport coefficients
in fluid modelling of plasmas [3, 44]. As such, high accu-
racy is required in both the measurement and definition of the
transport coefficients to ensure applications in technology and
medicine can be made with confidence.

Transport coefficient definition/measurement was an active
area of debate in the 1960–1990s [45–54], and misunderstand-
ings still exist [30]. For example, it is important to under-
stand that different swarm experiments operate in different
regimes—time of flight (TOF) and pulsed-Townsend (PT) for
example in the hydrodynamic regime, where the space-time
dependence of all quantities can be projected onto the number
density, n (r, t) [55], while the steady state Townsend (SST)
approach operates in the non-hydrodynamic regime, where
one has to treat the space (r) and time (t) dependence more
generally [47, 56].

In the hydrodynamic regime, there are two fundamental
types of transport coefficients, which we call flux and bulk10.
The flux coefficients are defined through well-known flux-
gradient relationships, such as Fick’s law. The bulk coeffi-
cients, however, are defined through the diffusion equation,
which applies, for example, to the analysis of the various mea-
sured currents in both the TOF and PT experiments. Thus we
can say quite generally, without reference to the specific form
of the solution of the diffusion equation, for any experiment
amenable to a hydrodynamic description, that it is the bulk
quantities which are extracted and therefore it is these which
are tabulated in the literature. On the other hand, the SST
experiment is inherently non-hydrodynamic, and measures the
microscopic Townsend ionisation coefficient, α, through the
particle density relation n ∼ exp(αz). The SST experiment
cannot be analysed through the diffusion equation [57], and
therefore does not measure any of the hydrodynamic transport
coefficients.

In spite of much discussion over the past 30–60 years
[45–54], there does, however, remain some residual confusion
about what transport coefficients/properties are extracted from
the PT experiment, and how they relate to the standard flux
and bulk transport coefficients11. Currently, the PT experiment
is one of the swarm methods in active use, with key groups in
Switzerland [58, 63] and México [32, 68], as well as the scan-
ning drift tube experiment in Hungary [69–71] and the double-
shutter drift tube experiment in Japan [72], which provide
much of the present-day electron swarm data. Consequently, it
is essential that the transport properties extracted from the PT

10 While some associate them with particular experiments, such nomenclature
hides their fundamental nature [50].
11 With regard to the extracted coefficients, we note that while some PT analy-
ses report αT/n0 (the macroscopic form of Townsend’s first ionisation coeffi-
cient), the quantity Rnet has been extracted directly by Franck and co-workers
[58–64] and Ridenti et al [65], reported for the PT measurements of Aschwan-
den [66] (along with αT/n0) when analysis of the current transients was hin-
dered by the strong electron attachment, and in Phelps and Pitchford [67]
measurements were transformed to Rnet, to illustrate a few examples.

experiments are identified correctly. This represents the focus
of the current study.

We begin this paper with a brief review of fundamental
swarm transport theory and definitions in section 2, in order
to revisit the vexed issue of transport coefficient definition in
relation to the PT experiment and their relation to transport
coefficients which are derivable from the Boltzmann equation.
We demonstrate that the Brambring form of the continu-
ity/diffusion equation [1] generally used to analyse the PT
experiment is fundamentally flawed when non-conservative
processes are operative. A general solution of the full diffu-
sion equation has long been available in the literature [73, 74],
and in section 3 we specifically show how it can be adapted
to the PT experiment to extract the standard definitions of
the transport coefficients with firm foundations in kinetic the-
ory. With our focus on the PT experiment, in section 3 we
demonstrate that the existing transport property measurements
extracted from PT experiments using the fundamentally flawed
Brambring equation for the current in the external circuit [1],
can be transformed to the standard bulk transport coefficient
definitions. Transformation of existing measured PT transport
properties, for the particular examples of Ar and SF6, are pre-
sented in section 4 and compared with the bulk transport coeffi-
cients extracted from TOF experiments and calculated using a
multi-term solution of Boltzmann’s equation. Thereafter, some
concluding remarks are drawn in section 5.

2. Theory

2.1. The exact continuity equation, the hydrodynamic regime
and the diffusion equation

The exact continuity equation can be derived either from first
principles, or from Boltzmann’s equation:

∂f
∂t

+ v · ∇ f + a · ∂f
∂v

= −J( f ), (1)

for the phase-space distribution function, f(z, v, t), a function
of velocity v and time t, with spatial gradients taken along
the z axis, and acceleration a due to external forces, with col-
lisional processes represented by Boltzmann’s collision inte-
gral J. Integrating equation (1) over velocity space yields the
continuity equation (here, in one dimension):

∂n
∂t

+
∂Γ

∂z
= S(z, t), (2)

where n(z, t) is the charged-particle density, Γ(z, t) =
∫
vz f(z,

v, t)dv is the charged-particle flux in the external field direc-
tion and the right-hand side is the rate of production of
particles, given by S(z, t) =

∫
JNC( f)dv, the integral of the

non-conservative collision operator, JNC, for processes such as
attachment and ionisation.

Swarm experiments are traditionally designed to operate
in the hydrodynamic regime [2, 44, 75]. In this regime, the
space-time dependence of f(z, v, t) is a function of the number
density (n), and can be expressed in terms of a density gradient
expansion:

2
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f (z, v, t) = n(z, t) f (0)(v) − f (1)(v)
∂n(z, t)
∂z

+ f (2)(v)
∂2n(z, t)
∂z2

+ · · · , (3)

while normalisation requires
∫

f ( j)(v)dv = δ j0. Hence, the
flux and source terms in the continuity equation (2) can be
identified with:

Γ(z, t) = nW − DL
∂n
∂z

+ ζL
∂2n
∂z2

−+ · · · , (4)

S(z, t) = nRnet − S(1)∂n
∂z

+ S(2)∂
2n

∂z2
+ · · · , (5)

where ζL is the longitudinal component of the third-order
transport coefficient tensor (the skewness tensor) [76].
Equation (4) is familiar as a generalisation of Fick’s law. The
flux drift velocity and the flux longitudinal diffusion coef-
ficient are designated W and DL respectively, with the net
(or effective) production rate given by Rnet = Rionis − Ratt. The
flux transport properties in (4) and non-conservative source
terms in (5) can be written in terms of the appropriate inte-
grals of the f ( j) appearing in equation (3), or otherwise [51,
56, 77, 78].

Substitution of equations (4) and (5) into equation (2), and
grouping coefficients of gradients in the number density, yields
the standard diffusion equation, when higher order terms in the
hydrodynamic expansion are neglected:

∂n
∂t

+ WB
∂n
∂z

− DB,L
∂2n
∂z2

= nRnet, (6)

where we define the bulk (B) transport coefficients in terms
of the flux coefficients and the corrections due to the non-
conservative source terms:

WB = W + S(1), (7)

DB,L = DL + S(2). (8)

In a drift tube experiment, S(1) and S(2) can be interpreted as
modifications to the position of the centre of mass and spread
about the centre of mass, respectively, arising from non-
conservative processes. In general,

S(1) =

∫
JNC( f (1))dv, (9)

S(2) =

∫
JNC( f (2))dv. (10)

Swarm experiments operating in the hydrodynamic regime
may be analysed on the basis of the diffusion equation and
hence generally sample the bulk transport coefficients. The
solution of the diffusion equation for various experimental
arrangements, e.g., for sources distributed in space and/or
emitting for finite times, can be found by appropriate inte-
gration of this fundamental solution over space and/or time
respectively, as we highlight below.

2.2. Townsend’s first ionisation coefficient(s) and the
fundamentally flawed Brambring equation of continuity

The Townsend ionisation coefficient is generally defined under
steady state conditions. Confusion over the definition of the
Townsend coefficient has however existed for an extended
period, with the article by Crompton [45] representing a great
overview and attempt to address this issue. In short, there are
two definitions of the Townsend ionisation coefficient. The
macroscopic version of Townsend’s first (net) ionisation coef-
ficient,αT, (which is the difference of the ionisation and attach-
ment (often referred to as η) coefficients), is defined by the
relation to the particle flux (or current):

Γ ∼ exp (αTz) . (11)

The microscopic version of the Townsend (net) ionisation
coefficient, α, is defined by the relation to the density:

n(z) ∼ exp(αz). (12)

The two definitions are quite different, as are their relation-
ships to the other transport coefficients and to each other, as
we explore below.

The PT experiment [58, 79–82] may be analysed using
the diffusion equation (6). On the other hand, the continuity
equation proposed by Brambring [1] is:

∂n
∂t

+
∂Γ

∂z
= αTΓ, (13)

that is equation (2) with a source term:

S = αTΓ. (14)

It is unclear from the Brambring paper [1] which form of the
Townsend ionisation coefficient was proposed in their con-
tinuity equation, and perhaps their equation defines its own
form of the Townsend ionisation coefficient. We do highlight,
however, that the steady-state solution of equation (13) for the
flux is consistent with the macroscopic form of the Townsend
coefficient (11) and hence we use that form in the Brambring
representation of the equation of continuity. This is a nota-
tional issue, however, which does not impact the following
arguments.

Most importantly, the Brambring form of the continuity
equation (13) is not derivable from the Boltzmann equation (1),
except in the trivial case of no ionisation or attachment, where
S = 0. To illustrate issues associated with the Brambring rep-
resentation of the equation of continuity (13), let us con-
sider a very simple benchmark system: elastic scattering with
an attachment process with a collision frequency, νatt, that
is independent of energy. From the Boltzmann equation, the
attachment collision operator has the form: Jatt( f) = νatt f.
The source term in the exact continuity equation (2) in the
hydrodynamic regime takes the form:

S(z, t) ≡
∫

[Jelast( f ) + Jatt( f )] dv

= 0 + νatt

∫ [
n f (0)(v) − f (1)(v)

∂n
∂z

3
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+ f (2)(v)
∂2n
∂z2

+ · · ·
]

dv

= nνatt

∫
f (0)(v)dv − νatt

∫
f (1)(v)dv

∂n
∂z

+ νatt

∫
f (2)(v)dv

∂2n
∂z2

+ · · ·

= nνatt + 0 + 0 + · · · , (15)

where the last line follows by virtue of the normalisation condi-
tion on the f ( j), and Jelast denotes the elastic collision operator.
In this case, S(z, t) is proportional to the density with no con-
tributions arising from the derivatives of the density. This is
inconsistent with the Brambring form for the source term (14),
which would have additional first and second order density
spatial derivative contributions which are independent of the
energy dependence of the non-conservative processes, viz sub-
stituting the expression for the flux Γ into equation (14). Phys-
ically, if the attachment collision frequency is independent of
energy then it cannot modify the position of the centre of mass
(first moment of the density) nor the rate of spread/diffusion
(second moment of the density) of the pulse. In contrast, the
Brambring equation has explicit modifications to both of these
moments of the pulse, whenever there are non-conservative
processes operative, irrespective of the energy dependence of
the non-conservative collision frequency.

While the Brambring representation of the equation of con-
tinuity is thus fundamentally flawed from a physical view-
point, in the following sections, we highlight how to relate
the transport properties extracted from the PT experiment via
an analysis using the Brambring representation of the conti-
nuity equation (and related equation for the measurable cur-
rent in the external circuit), with the standard definition of the
transport coefficients from a Boltzmann equation/kinetic the-
ory perspective. This will have importance for the application
of PT transport properties in fluid/moment models of plasmas
for example, as well as for the extraction of cross-sections
through the swarm inversion process.

3. Interpreting transport coefficients from the
measured current in the pulsed-Townsend
experiment

3.1. Solution of the standard diffusion equation

Firstly, consider an idealised TOF experiment in a finite geom-
etry 0 � z � L, in which a sharp pulse of n0 charge carriers is
released from a source plane z = z0 at time t = t0, i.e.,

n(z, t0) = n0δ(z − z0). (16)

The solution of the diffusion equation (6) for z0 = 0, t0 = 0
and infinite geometry (L →∞) is the well known travelling
pulse [2, 53]:

n(z, t) =
n0 exp (Rnett)√

4πDB,Lt
exp

[
− (z − WBt)2

4DB,Lt

]
. (17)

In finite geometry, assuming perfectly absorbing boundaries,
and

n(0, t) = 0 = n(L, t), (18)

the solution of the diffusion equation may be obtained using
the Poisson summation theorem [73, 74] as,

n(z, t; z0, t0) =
n0√

4πDB,L (t − t0)
exp

×
{

Rnett +
WB

2DB,L

[
z − z0 −

1
2

WB (t − t0)

]}

×
∞∑

j=−∞

{
exp

[
− (z − z0 − 2 jL)2

4DB,L (t − t0)

]

− exp

[
− (z + z0 − 2 jL)2

4DB,L (t − t0)

]}
. (19)

One can consider more elaborate boundary conditions, how-
ever for the current study the simplified boundary conditions
(18) are sufficient.

It is convenient for the purposes of the following discussion
to consider the situation where the left hand boundary recedes
to −∞. This may be achieved mathematically by an appropri-
ate transformation of coordinates, in which L now denotes the
distance of the right hand boundary from the source, which is
now located at the origin of coordinates. Equation (19) then
becomes, with t0 = 0,

n(z, t; L) =
n0 exp

(
Rnett +

WB
2DB,L

(
z − 1

2 WBt
))

√
4πDB,Lt

×
{

exp

[
− z2

4DB,Lt

]
− exp

[
− (z − 2L)2

4DB,Lt

]}
,

(20)

describing the spatio-temporal variation of n(z, t) in a TOF drift
tube.

3.2. Extracting bulk transport coefficients from the
pulsed-Townsend experiment

Consider now the PT experiment—a plane parallel swarm sys-
tem where all spatial variation is confined to the z direction,
normal to the electrodes. Under typical measurement condi-
tions, the transit time of the electrons is much less than the RC
time constant of the circuit [2] and the current in the external
circuit is given by:

I =
q
L

∫ L

0
Γ(z′, t)dz′. (21)

Using Fick’s law (4), this can be written in terms of the
transport coefficients and is given by:

I(t) =
qW
L

∫ L

0
n(z, t)dz, (22)

where the diffusive contribution has been eliminated due to the
relation:

4
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0
DL

∂n
∂z

dz = DLn(L) − DLn(0) = 0, (23)

for perfectly absorbing boundary conditions. It follows from
(22) that the measurable current in the external circuit is
given by:

I(t) =
n0qW

2L
exp (Rnett)

{[
1 − φ

(
WBt − L√

4DB,Lt

)]

+ exp

([
WB

DB,L

]
L

)[
φ

(
WBt + L√

4DB,Lt

)
− 1

]}
,

(24)

where φ represents the error function. Hence, full current tran-
sients for the current in the external circuit of the PT experi-
ment fitted to equation (24) can yield the bulk transport coef-
ficients: the net ionisation rate coefficient Rnet = Rionis − Ratt,
the bulk drift velocity WB, and the bulk diffusion coefficient
DB,L. Even though the current scales with the flux drift veloc-
ity, W, the time-dependence of the measured current is deter-
mined by the bulk transport coefficients—Rnet, WB and DB,L

via (24). This is consistent with the conclusions of Blevin and
Fletcher [50] and Robson [53]. If the initial number of elec-
trons is known, then we can also simultaneously extract the
flux drift velocity from an analysis of the current in the exter-
nal circuit. This provides an additional transport coefficient
that can be used for cross-section fitting/extraction from swarm
experiments.

4. Relating existing PT transport properties to the
standard transport coefficient definitions

Given the wealth of experimental work and associated extrac-
tion of transport properties and fitting of cross-sections to the
PT data, the obvious question remaining is how do we relate
the PT experimental transport properties to the transport coef-
ficients which are grounded in the Boltzmann equation/kinetic
theory.

Here, we return to the Brambring representation of the
equation of continuity (13) and find the equivalent expression
for the current in an external circuit12. If we substitute Fick’s
law expression (4) into the Brambring equation (13) (retaining

12 While the functional form of the current in the external circuit and its rela-
tion to the transport coefficients can be a source of uncertainty, these are dis-
tinct from the uncertainties that can typically be obtained from approximate
analysis of the current in the external circuit. Indeed, some analyses have used
quite simplified approaches to extract the various transport properties from the
current in the external circuit [58, 65, 79, 83–85], which may lead to further
issues.
For example, extracting W̃, through dividing L by the measured electron transit
time, Te, where the transit time is defined as the difference in times between the
measured current’s rise and fall to the respective half values. This is a measure
of a drift velocity, but not one that is consistent with the flux or bulk drift veloc-
ities, or equation (24). Using that W̃ to then determine any further parameters
(e.g. α̃T or D̃L) will further propagate uncertainties in the other derived coeffi-
cients/parameters. Non-linear curve fitting to the full equation (24) should in
fact be performed (as in, for example, reference [81]) in all cases.

only first order terms in the density gradient expansion13), on
re-arranging we obtain the diffusion-type equation:

∂n
∂t

+
[
W̃ + α̃TD̃L

] ∂n
∂z

− D̃L
∂2n
∂z2

= nα̃TW̃. (25)

The tildes here denote transport properties arising from the
Brambring representation of the diffusion equation. Since the
Brambring representation of the equation of continuity (13)
is not derivable from Boltzmann’s equation/kinetic theory, the
terms drift velocity, diffusion coefficient and alpha as defined
by the Brambring representation do not have a standard kinetic
theory definition (i.e. are not representable in terms of an inte-
gral of the phase-space distribution function and hence can-
not be found directly in terms of a solution of Boltzmann’s
equation or Monte Carlo simulation) when non-conservative
processes are operative and hence may not have the standard
meaning of drift velocity, diffusion, etc, under such conditions.

Following the same procedure as above, but using the
Brambring representation of the diffusion equation (25)
instead of the conventional diffusion equation (6), it follows
that the functional form of the current in the external circuit is
given by:

I(t) =
n0qW

2L
exp

(
α̃TW̃t

)

×
{[

1 − φ

(
(W̃ + α̃TD̃L)t − L√

4D̃Lt

)]

+ exp

([
W̃ + α̃TD̃L

D̃L

]
L

)

×
[
φ

(
(W̃ + α̃TD̃L)t + L√

4D̃Lt

)
− 1

]}
. (26)

This is the same expression as that from the original Bram-
bring paper (see equation (12) of reference [1]) and used by the
experimental groups [58, 79, 83, 84], expressed using the PT
transport properties. It is important to note that the W appear-
ing in the first factor on the rhs of equation (26) is the flux drift
velocity W, not the bulk drift velocity WB or the PT transport
property W̃.

The key to relating the PT transport properties to the
standard transport coefficients is to understand how they are
extracted from the fitting of the current in the external circuit
in a typical analysis of the PT experiment. The expression for
the current in the external circuit, whether it be the expression

In addition, extracting α̃T from the rising component of the measured current
[58] (and W̃ from the earlier step) fails to capture the diffusion contributions
to the current in the external circuit.
Using these simplified processes to establish initial estimates of the parame-

ters, to start the non-linear curve fitting of the measured current (as in reference
[81], for example) is, however, good practice.
13 This representation of the current in the external circuit fails to capture the
second order contributions to the source term and hence the equation cannot be
an accurate representation of the experimentally measured current in the exter-
nal circuit when the product αTζL becomes appreciable relative to DL. While
measurement of the skewness term has not been performed to date, many tran-
sient and stationary effects may skew the profile and require consideration [76,
86, 87].
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arising from the diffusion equation (24) or the expression aris-
ing from the unphysical Brambring equation (26), takes the
same general form, i.e. is mathematically equivalent:

I(t) = a exp (bt)

{[
1 − φ

(
ct − L√

4 dt

)]

+ exp
([ c

d

]
L
) [

φ

(
ct + L√

4 dt

)
− 1

]}
, (27)

where a, b, c and d can be found from the non-linear curve
fitting procedure and are related to the standard bulk trans-
port coefficients/PT transport properties through comparisons
with equations (24)/(26), or equivalently through comparison
of equations (6)/(25). If in the previous analyses of PT exper-
iments expression (26) has been fitted to the current in the
external circuit, it then follows that the PT transport properties
(α̃T, W̃, D̃L) can be related to the bulk transport coefficients
(Rnet, WB, DB,L) via14:

Rnet = α̃TW̃ = b, (30)

WB = W̃ + α̃TD̃L = c, (31)

DB,L = D̃L = d. (32)

If the initial number of electrons n0 is measured accurately,
the fitting parameter a can provide a technique to measure the
flux drift velocity, W —the first experiment able to do so!

We now consider some examples, transforming the
PT transport properties extracted from existing PT mea-
surements, through implementation of the theoretical
relationships (30)–(32), in order to compare with the
bulk transport coefficients which have firm foundations in
kinetic theory/Boltzmann’s equation. TOF measurements are
included as measurements of bulk coefficients since they are
analysed according the diffusion equation (6). It is important
to note:

• The relationships (e.g. WB = W̃ + α̃TD̃L) are presented
only when all transport properties from the PT experiment
(W̃, α̃T, D̃L) are available from a single study to do the
transformation.

• The intent of this section is purely to highlight the validity
of the relationship between the PT transport properties and
the bulk transport coefficients. Hence,

– We do not preference any particular measurement
technique over the other, but rather focus on the pre-
sentation of coefficients with firm theoretical founda-
tions. Assessment of the quality of any experimental
measurements is beyond the scope of the present
work.

14 It is important to make the distinction that the relationship (30),
Rnet = α̃TW̃, is valid for the PT transport properties α̃T and W̃. The relation-
ship between Rnet, the SST αT and the bulk transport coefficients, however, is
given by [53, 56].

Rnet = αTWB − α2
TDB,L + · · · (28)

which, in the limit of small diffusion, may be approximated by

Rnet ≈ αTWB. (29)

– Transport coefficient calculations are obviously
dependent on the cross-section set used. The calcu-
lations presented here are for comparison with the
transformed PT results and should not be interpreted
as the reference for quality of the experimental results
or analysis.

– The error propagation associated with the application
of the theoretical relationships (30)–(32) on exist-
ing PT transport properties results in large error bars.
Ideally, reanalysis of the PT experiment current tran-
sients according to equation (24) would be preferred,
if available, for appropriate determination of experi-
mental error.

In the following subsections we present the results for Ar
and SF6. Ar is considered somewhat of a benchmark gas
known for high accuracy measurements and well known cross-
sections [33], while SF6 provides a good example of when
the differences are quite important due to its strong electron
attachment and ionisation.

The numerical methods employed in the solution of
Boltzmann’s equation (1) for the calculated coefficients have
been described in detail previously, and the reader is referred
to references [88, 89].

4.1. Argon

Figures 1 and 2 present some of the available experimen-
tally measured bulk drift velocities, WB, and ionisation rate
coefficients, Rionis, for electron swarms in Ar. In the upper
panel of figure 1, the WB transformed via the theoretical rela-
tionship (31) from the W̃ extracted from the PT experiment
of de Urquijo et al [90] and Hernández-Ávila et al [91, 92]
are shown with the WB measured from the TOF apparatus of
Kücükarpaci and Lucas [93, 94] and Nakamura and Kurachi
[37], and the WB from the scanning drift tube measurements of
Korolov et al [69]. Measurements of WB are sparse in the E/n0

region where the transformation is most pronounced, although
the trend of the de Urquijo et al WB lies somewhat above the
highest WB datum of Nakamura and Kurachi [37] at 50 Td,
the Kücükarpaci and Lucas [93, 94] WB at around 150 Td, and
the measurements of Korolov et al [69]. In contrast, both the
W̃ and WB measurements of Hernández-Ávila et al [91, 92]
tend to lie below the 50 Td Nakamura and Kurachi [37] value
and the measurements of Korolov et al [69], with the highest
E/n0 measurement of Kücükarpaci and Lucas [93, 94] in good
agreement with the transformed WB. For Ar, the W̃ and WB dif-
fer by up to 4.2% for the de Urquijo et al [90] measurements
and up to 8.2% for the Hernández-Ávila et al [91, 92] mea-
surements, due to the relative magnitudes of the DB,L and α̃
(as shown in figure 11 of de Urquijo et al [90]), the difference
increasing with E/n0. These results highlight the accuracy of
the PT measurements and associated analysis in reference [90].

The bulk and flux drift velocity calculated using the cross-
section set extracted from Magboltz [95] are also displayed in
figure 1 for comparison. While these calculations are depen-
dent on the cross-section set utilised, good agreement is
observed between the calculated WB and the WB transformed
from the PT measurements of de Urquijo et al [90].
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Figure 1. The drift velocity for electron swarms in gaseous argon.
For the PT measurements, the bulk drift velocity WB has been
transformed from the PT measurements of W̃ through the theoretical
relationship (31), and is denoted by the asterisk (∗). (Upper) The
WB transformed from the PT measurements of de Urquijo et al [90]
(transformed using the DB,L first reported in reference [97] although
recorded with the W̃ and α̃T reported in reference [90]) and
Hernández-Ávila et al [91, 92] are compared with the WB TOF
measurements of Kücükarpaci and Lucas [93, 94] and Nakamura
and Kurachi [37], and the WB from the scanning drift tube (SDT)
apparatus of Korolov et al [69]. (Lower) The ratio of the
PT-measured to bulk drift velocities, W̃/WB, for the measurements
of de Urquijo et al [90] and Hernández-Ávila et al [91, 92].
‘Calculated’ represents the flux and bulk drift velocities calculated
from a solution of the Boltzmann equation using the cross-sections
extracted from Magboltz [95].

The lower panel of figure 1 displays the ratio of the PT
drift measurement to the bulk drift velocity, W̃/WB. The ratio
illustrates the difference between the drift velocities, which
increases with increasing E/n0, as expected from the increas-
ing magnitude of the α̃TD̃L term.

Figure 2 shows a comparison of Rionis in Ar which is, to
our knowledge, limited to the transformed PT measurements
of de Urquijo et al [90] and Hernández-Ávila et al [91, 92],
through the theoretical relationship (30), and the Rionis

extracted directly from the PT measurements of Dahl et al [58]
and Haefliger and Franck [63, 96]. At the lower E/n0 of the

Figure 2. The ionisation rate coefficient for electron swarms in
gaseous argon. The Rionis transformed from the PT measurements of
de Urquijo et al [90] and Hernández-Ávila et al [91, 92], through the
theoretical relationship (30) and denoted by the asterisk (∗), are
compared with the (positive) Rionis values reported in Dahl et al [58]
and Haefliger and Franck [63, 96] (the representative measurement
at 10 kPa has been used). ‘Calculated’ represents the Rionis
calculated from a solution of the Boltzmann equation using the
cross-sections extracted from Magboltz [95].

de Urquijo et al measurements, good agreement is observed
with the majority of the Haefliger and Franck coefficients
(measured over a range of pressures, although only the 10 kPa
measurement is displayed in figure 2), and over interme-
diate E/n0 with the Dahl et al measurements. Over the
full E/n0 range of the (positive) Dahl et al measurements,
very good consistency with the transformed Hernández-Ávila
et al [91, 92] Rnet is observed.

4.2. SF6

Figures 3 and 4 present the bulk drift velocity, WB, and net
rate coefficient, Rnet, from some of the available PT and TOF
measurements for electron swarms in SF6. The upper panel of
figure 3 includes WB transformed from the W̃ measurements
of Aschwanden [66] and Xiao et al [98], via the theoretical
relationship (31), and the WB TOF measurements of Naka-
mura [99] and Naidu and Prasad [100]. The transformation
to WB from the measured W̃ of both Aschwanden and Xiao
et al results in a decrease in magnitude below 361 Td, a conse-
quence of the attachment-dominated α̃, and increase in magni-
tude above this E/n0 as ionising collisions dominate the α̃ (and
similarly, Rnet in the lower panel of figure 3). The transforma-
tion of the Aschwanden [66] drift velocity results in a decrease
of up to 4.7% in the attachment-dominated region, and an
increase of up to 9.2% in the ionisation-dominated region, at
the highest E/n0, while the transformation of the Xiao et al
[98] measurements results in a decrease of up to 5.2% in the
attachment-dominated region, and an increase of up to 2.3%
in the ionisation-dominated region. The results shown in the
upper panel of figure 3 highlight, in particular, the accuracy of
the PT measurements and associated analysis in the work of
Aschwanden [66].
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Figure 3. The drift velocity for electron swarms in gaseous SF6. For
the PT measurements, the bulk drift velocity WB has been
transformed from the PT measurements of W̃ through the theoretical
relationship (31), and is denoted by the asterisk (∗). (Upper) The WB

transformed from the PT measurements of Aschwanden [66] (with
the necessary PT transport properties available for E/n0 � 273 Td)
and Xiao et al [98] (with the necessary properties available for
E/n0 = 279–401 Td), are shown alongside the W̃ measured by the
PT apparatus of de Urquijo et al [103] (where, in the absence of
DB,L, WB could not be determined). Also displayed are the WB TOF
measurements of Nakamura [99] and Naidu and Prasad [100]
(digitised from Christophorou and Olthoff [102]). (Lower) The ratio
of the PT-measured to bulk drift velocities, W̃/WB, for the PT
measurements of de Urquijo et al [103], Xiao et al [98] and Xiao
et al [104]. ‘Calculated’ represents the flux and bulk drift velocities
calculated from a solution of the Boltzmann equation using the
cross-section data of Biagi [101] from the LXCat database.

Compared to the other WB measurements (from the
TOF apparatus), the transformation of the Aschwanden data
increases the differences when compared to the measurements
of Nakamura over all E/n0, but decreases the differences
from the Naidu and Prasad WB. Similarly, for the four data
points of the Xiao et al measurements, where all PT transport
properties were reported (279–401 Td), the transformation
to WB increases the differences from the other experimental
measurements.

Figure 4. The ionisation coefficient for electron swarms in gaseous
SF6. The absolute value of the Rnet reported from the PT
measurements of Aschwanden [66] are compared with the Rnet
transformed through the theoretical relationship (30) and denoted by
the asterisk (∗), from the PT measurements of de Urquijo et al [103],
Xiao et al [98] and Xiao et al [104]. ‘Calculated’ represents the Rnet
calculated from a solution of the Boltzmann equation using the
cross-section data of Biagi [101] from the LXCat database.

We are thus unable to reconcile the PT measurements of W̃
from Xiao et al.

The flux and bulk drift velocity and Rnet values calculated
using the cross-section data of Biagi [101] from the LXCat
database, are also shown in figures 3 and 4. These repre-
sentative calculations are dependent on the cross-section set
used, and are included only to indicate the magnitudes of the
transport coefficients, in particular highlighting the effect of
the non-conservative processes on the calculated WB com-
pared to the flux drift velocity, W 15. In both the attachment
and ionisation-dominated regions, the transformation of the
Aschwanden W̃ changes in the direction consistent with the
representative calculations. As a result, the transformed exper-
imental results of Aschwanden are in good agreement with our
representative calculations.

The lower panel of figure 3 displays the ratio of the PT drift
measurement to the bulk drift velocity, W̃/WB. The ratio illus-
trates the contribution of the α̃TD̃L term in relationship (30),
to the transformation to WB. The change in sign of Rnet results
in a decrease to WB relative to the measured W̃ for the lower
E/n0, followed by an increase of WB relative to W̃ . The mag-
nitude of the difference increases further from the breakdown
E/n0 value, consistent with the magnitude of Rnet.

In the absence of any other Rnet measurements in SF6,
to our knowledge16, figure 4 only displays the rate coeffi-
cient of Aschwanden [66], reported directly in that thesis,

15 We make no comment on the validity of that cross-section set here, only to
highlight that we are unable to predict accurately the breakdown reduced field
as shown in figure 4.
16 We note that many values of the attachment rate coefficient have been
reported for SF6 in various buffer gases (see the review of Christophorou
and Olthoff [102]), but in the absence of any mean energy values for the PT
measurements, the comparison of Ratt at a common mean energy cannot be
made.
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and the rate coefficients of de Urquijo et al [103] and Xiao
et al [98, 104], transformed through the relationship (30), with
good agreement observed between all.

5. Concluding remarks

In this study we have addressed, from a fundamental view-
point, the issue of the analysis and interpretation of the PT
experiment. We have shown that the governing equation tra-
ditionally used to analyse the PT experiment—the Brambring
representation of the equation of continuity—is fundamentally
flawed, and transport properties subsequently defined through
that equation do not have a clear representation in terms of
the distribution function. We have presented an expression
for the current in the external circuit of the PT experiment
in terms of the standard diffusion equation and the univer-
sal transport coefficients defined through it—the bulk trans-
port coefficients. In addition, we have developed a relationship
between the transport properties extracted from the PT exper-
iment using the Brambring representation of the equation of
continuity and the bulk transport coefficients, and highlighted
the validity of the relationship for various gases. Given the
errors that are necessarily propagated through this process, we
suggest that all previous transport properties extracted from
PT experimental data where non-conservative processes are
operative be re-analysed according to the diffusion equation
based current expression to enable measurement of standard
bulk transport coefficients prior to any subsequent application
(e.g. evaluating complete and accurate sets of scattering cross-
sections, and further utilisation in modelling of plasmas and
ionised gases [3, 12, 13, 44, 105]).

A consequence of the present analysis is the necessary
reconciliation between experimental and theoretical studies
involving PT measurements.

As a minimum for any swarm study, the exact definition
of any transport property/coefficient measured or used for fur-
ther analyses must be identified. Further, the definition of any
transport property/coefficient must be consistent with those
defined through kinetic theory and representable in terms of
the phase-space distribution function.

In addition, the following are recommended for clear iden-
tification in experimental studies:

• Primary reference to the exact source equation used for
analysis, and any assumptions entailed.

• A description of the method of the analysis of all
measurements.

• A detailed estimate of the error associated with the statisti-
cal analysis (including systematic errors, reproducibility,
etc), alongside the reported experimental uncertainty.

• The applicability of the hydrodynamic or non-
hydrodynamic regime, and the methods used to ensure
sampling under appropriate conditions. This point is
generally well accomplished in the literature.

• Clear uncertainty estimates of all elements (e.g. pressure,
mixture ratio, etc) and how they propagate through to the
final result [106–109].

Prior to the use of any swarm transport measurements in
theoretical models (low temperature plasma models), the effect
of non-conservative collisions must be identified, since it is
when flux and bulk values start to differ significantly that
one needs to pay attention to the nature of the transport data
required in their models. A detailed prescription has been
presented previously [110].

Using ‘wrong’ theory yields results that may be up to a
factor of 10 different under some circumstances, though often
effects are of the order of 10%–30%. However, if one uses a
similar theory to implement the cross-sections obtained from
incorrectly interpreted data one returns to the original experi-
mental data. Plasma modelling is sufficiently robust that small
changes in the transport data are easily compensated by small
self consistent adjustments of the local field. Problems occur
when one uses more exact models to describe plasmas. PIC
codes with a properly implemented and tested Monte Carlo
simulation will provide correct calculation of fluxes and thus
the effect of the cross-sections obtained from the incorrectly
interpreted data may become large, as stated above. Even
more so, as the plasma field is calculated self consistently
small changes in the local E/n0 as compared to the properly
determined values would originate. Some processes with a
high threshold, such as dissociation and ionization, are very
strongly affected by the local normalised electric field, even
by orders of magnitude (see reference [111], for example).

In this vein, it is recommended that theoretical studies
clearly identify the definition of any utilised experimental
measurements and any further analysis of those measurements
(e.g. transformation from one transport coefficient to
another via approximate relationships with associated errors
propagated).

In addition to these recommendations to aid reconciliation
within the literature, the present work also seeds further inves-
tigation, specifically into the analysis and interpretation of the
PT experiment. For example, the impact of the boundary con-
ditions, on the electron density at the electrodes, on the expres-
sion for the current in the external circuit, and the ability to
extract higher order transport coefficients (e.g. skewness) from
the current measured from the PT experiment should also be
studied.

Acknowledgments

The authors would like to thank the Australian Research
Council through its Discovery Programme (DP180101655) for
financial support. S Dujko, D Bošnjaković and I Simonović are
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2017 Eur. Phys. J. D 71 289
[43] Zawadzki M, Chachereau A, Kočišek J, Franck C M and Fedor
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[76] Stokes P W, Simonović I, Philippa B, Cocks D G, Dujko S and

White R D 2018 Sci. Rep. 8 1
[77] Robson R E and Ness K F 1986 Phys. Rev. A 33 2068
[78] White R D, Ness K F and Robson R E 2002 Appl. Surf. Sci.

192 26
[79] de Urquijo J, Arriaga C A, Cisneros C and Alvarez I 1999 J.

Phys. D: Appl. Phys. 32 41
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Phys. 77 1303
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Abstract
The relaxation of the distribution function of the electrons drifting under the influence of a
homogeneous electric field in noble gases is known to take place over an extended spatial
domain at ‘intermediate’ values of the reduced electric field, E/N. We investigate the transport
of electrons in Ar and N2 gases, as well as in their mixtures at such E/N values (∼10–40Td).
After discussing briefly the basic scenario of relaxation in a homogeneous electric field, the
major part of work concentrates on the properties of transport in an electric field that is spatially
modulated within a finite region that obeys periodic boundaries. The spatial distribution of the
mean velocity, the mean energy, and the density of the electrons, the importance of the
excitation channels, as well as the electron energy distribution function are obtained from
Monte Carlo simulations for various lengths of the computational domain, at different mean
values and degrees of modulation of the reduced electric field. At low modulations, the spatial
profiles of the mean velocity and mean energy are nearly harmonic, however their phases with
respect to the electric field perturbation exhibit a complex behaviour as a function of the
parameters. With increasing modulation, an increasing higher harmonic content of these profiles
is observed and at high modulations where an electric field reversal occurs, we observe trapping
of a significant population of the electrons. The effect of mixing a molecular gas, N2, to Ar on
the transport characteristics is also examined. Transition to local transport at high N2 admixture
concentrations and long spatial domains is observed.

Keywords: electron transport, kinetic simulation, distribution functions
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1. Introduction

Under hydrodynamic conditions, the velocity distribution
function (VDF) of electrons subjected to a homogeneous and
stationary electric field is a unique function of the reduced
electric field, E/N. Up to moderate values of E/N (typically up
to few hundred Townsends, 1 Td= 10−21 Vm2) the VDF of
electrons in noble gases generally exhibits only a small aniso-
tropy, i.e. it can be well approximated by an isotropic part and
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small anisotropic part. This behaviour, which is the basis of
the two-term approximation, stems from the effect of frequent
elastic collisions of the electrons with the gas atoms that ran-
domize the directions of velocities and thus their characteristic
thermal velocity strongly exceeds the average (directed) velo-
city. In the hydrodynamic regime, the energy gain and loss of
the electrons compensate each other exactly, however, in dif-
ferent ways depending on the strength of the reduced electric
field [1, 2].

Considering noble gases, at very low E/N (≲10Td) the
energy loss of electrons is mostly due to elastic collisions.
In such events, a fraction of their energy proportional to the
electron/atom mass ratio (m/M) is lost. For an electron energy
of 1 eV, e.g. such a collision results in a loss of≈ 10−5 eV,
in the case of argon gas. At somewhat higher E/N values
(∼tens of Td-s), where the energy of the electrons reaches
the threshold for inelastic processes (∼10 eV), the main chan-
nels of the energy loss become the excitation processes. At
such conditions the lowest excited levels can be reached first.
With increasing E/N, the number of these channels increases
and at some point ionization becomes possible, too. Above
∼100Td, the latter process is usually appreciable. The scen-
ario described above for noble gases changes notably in the
case of molecular gases. There, due to the various (rotational
and vibrational) excitation processes having low threshold
energies the energy dissipation frequency at low energies is
much higher as compared to the case of noble gases.

The spatial evolution of the electron VDF in non-
hydrodynamic regimes is also remarkably different for the E/N
rages distinguished above [3–6]. Non-hydrodynamic transport
establishes under various conditions: (a) when the electric field
varies over a characteristic length that is short compared to
the mean free path of the electrons, (b) when the temporal
change of the field is quicker than the mean time between
electron-neutral collisions, (c) in the presence of sources/sinks
of electrons and/or (d) in the presence of boundaries. In the
latter case, even in the presence of a homogeneous and sta-
tionary electric field, the VDF and the transport parameters
(mean velocity, mean energy, etc) of the electrons vary in
space. A classical example of this scenario is an electrode
that emits electrons with a certain initial velocity distribution
that is defined by the emission process (e.g. photoemission).
This VDF is clearly different from that acquired by the elec-
trons under hydrodynamic conditions for the given E/N that
is present in the volume considered. This implies that a trans-
ition region (‘equilibration region’) must exist within which
the VDF transforms from its initial shape to the equilibrium
shape, see e.g [7, 8].

The fundamental experiment of Franck and Hertz [9],
which provided evidence for the existence of quantised energy
levels of the atoms, actually utilised this effect. Specifically,
this experiment focused on the early phase of the equilibra-
tion, where a prominent periodic structure in the mean energy
of the electrons was present. The experiment was operated in
the ‘window’ of E/N values where such behaviour prevails.
The electron kinetics in this experiment has been investigated
in a number of works, e.g. [10–13].

We note that both at low and high E/N values no, or less
prominent periodic structures can be observed, respectively,
due to the smooth transition mediated by elastic collisions,
and due to the rapid randomisation of the electron energy in
the presence of a high number of inelastic energy loss chan-
nels and the possibility of ionization that creates additional
particles. The extended spatial structures formed at interme-
diate E/N values have attracted much attention [14–16]. The
equilibration of an electron swarm in argon gas atE/N values at
few tens of Td-s was as well observed experimentally recently
in a scanning drift tube apparatus [17] that makes it possible
to follow the spatio-temporal development of electron swarms.
Under the conditions, where the electric field is spatially mod-
ulated a strong modulation of the electron transport character-
istics appears at some E/N values as revealed in studies based
on the solution of the Boltzmann equation by Golubovsky et al
[18, 19]. In the presence of appreciable charge density, the spa-
tial variation of the transport characteristics can itself give rise
to a perturbation of the electric field. As this interplay may
be self-amplifying, stationary or moving spatial structures can
show up in discharge plasmas. Such structures, often termed
as ‘striations’ have thoroughly been investigated for several
decades, see, e.g. the review by Kolobov [20]. The early stud-
ies of striations based on analytic approaches [21, 22] have
later been replaced by kinetic treatment of the electrons [23,
24]. Striations, caused by different mechanisms, are present
in a variety of plasma sources, like dc glow discharges [25],
plasma display panels [26], and inductively coupled radiofre-
quency discharges [27]. Despite the extensive work done in
this field [28, 29], the complex dynamics of striations is still
subject of intensive current research, e.g. [30–33].

Most of the investigations of the electron kinetics have
been based on the solution of the Boltzmann equation [1, 34],
particle based simulations were used only in a fewer number of
cases. As examples for the latter, studies of striations in induct-
ively coupled [35] and capacitively coupled electronegative
[36] plasmas, and in ionization waves in barrier discharges
[37], as well as the most recent studies of the spatial relaxation
of the mean electron energy in inert gases and their mixtures
in a uniform electric field [38] may be mentioned.

Due to the rapid development of computing hardware such
particle based methods became equally suited as the numer-
ical solutions of the Boltzmann equation, for studies of particle
transport in spatially varying fields due to their ability to cap-
ture fully the nonlocal kinetic effects appearing in various set-
tings. In this paper, we use Monte Carlo simulation (see e.g.
[39, 40]) to investigate certain aspects of the transport of elec-
trons in spatially varying electric fields.

The simulation method is discussed in section 2. In
section 3, we briefly introduce some important physical quant-
ities, the characteristic momentum and energy relaxation fre-
quencies and lengths, that help understanding the relaxation
and resonance effects to be discussed later on. The presenta-
tion of the results in section 4 starts with illustrating the spatial
relaxation of electron swarms in Ar and in Ar–N2 mixtures in
a homogeneous electric field. These findings aid choosing the
proper parameter range of the reduced electric field for which
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the studies of the transport in a periodically modulated elec-
tric field are conducted. The results of these simulations for
Ar are presented in section 4.2. We analyse the spatial profiles
of the mean electron energy, velocity and density for various
values of the average E/N and illustrate the effect of the mod-
ulation of E/N on these profiles. Additionally, we investigate
the spatial distribution of the electron energy distribution func-
tion and the distribution of the excitation channels (reaction
rates). Fourier analysis of the profiles of the mean velocity and
energy (a) reveals the phase between them and the modulated
field (at low modulation) and (b) shows how their harmonic
content increases at high modulation. In section 4.3 the effect
of an N2 admixture on the electron transport characteristics is
addressed. A brief summary is given in section 5.

2. Simulation method

Our studies are based on the Monte Carlo (MC) description of
the motion of electrons in (a) homogeneous and (b) spatially
modulated electric fieldE(x). We use the well-establishedMC
algorithm for charged particle transport (e.g. [8, 41–43]) and
solve the discretised version of the equation of the motion of
the electrons,

mr̈= qE(x), (1)

using the Velocity-Verlet method, with constant time steps of
∆t= 1 ps. Here, m and q are the mass and the charge of the
electrons. The probability of a collision to occur during the∆t
time step is:

Pcoll = 1− exp
[
−Nσtot(v)v∆t

]
, (2)

where the total cross section σtot is the sum of the cross
sections of all possible collision processes. Whenever a col-
lision occurs, its type is chosen randomly, taking into account
the values of all cross sections at the actual velocity of the col-
liding electron.

The electron–Ar atom cross section set is based on [44],
includes the elastic momentum transfer cross section, excita-
tion to 25 distinct Ar levels, and the ionisation cross section.
The cross section set for electron–N2 molecule collisions are
taken from [45]. The set includes the elastic momentum trans-
fer cross section, excitation to several vibrational and elec-
tronic states of N2, as well as the ionisation cross section. As
calculations are performed for E/N≫ 1 Td, the cross sections
for rotational excitations are not included in the present study.
Ionisation is treated here as a number conserving process, i.e.
just like an excitation event, to ensure that the number of elec-
trons does not grow in the simulations. This approach is justi-
fied at the E/N values considered here, where ionisation has
a very small rate (which is confirmed by the results). This
simplification could easily be omitted when necessary, e.g. at
higher E/N values. All collisions are assumed to result in iso-
tropic scattering, the thermal motion of the background gas
atoms is disregarded (i.e. the ‘cold gas approximation’ is adop-
ted). Collisions are described in the centre-of-mass coordinate

Figure 1. (a) In the case of a modulated electric field, the electrons’
motion is followed in a simulation box having a width L, with
periodic boundaries. The system is exposed to a sinusoidally
spatially modulated electric field as shown in (b) for the case of an
average reduced electric field of (E/N)0 = 20 Td (indicated by the
dashed horizontal line) and a modulation depth M = 0.1.

frame. The velocity of this frame (w) and the relative velo-
city of the collision partners (g) are calculated. As known from
the classical kinematic treatment of the two-body interaction,
elastic collisions change only direction of the relative velo-
city, while in inelastic collisions its magnitude is decreased as
well by an amount that is defined by the excitation energy. The
value of the relative velocity vector obtained this way, together
with the velocity of the centre-of-mass allows computation of
the post-collision velocity of the electrons.

The electrons do not interact with each other, i.e. we study
classical swarm conditions at low charged particle density. The
simulations are conducted at a pressure of p= 100 Pa and at
the ambient temperature of Tg = 300 K, i.e. at a neutral density
of N∼= 2.42× 1016 cm−3.

Except for the study of swarm relaxation in a homogen-
eous electric field, the particles are restricted to move within
a simulation domain that obeys periodic boundary conditions,
as shown in figure 1(a). Particles leaving this domain in the
±x directions are re-injected into the domain at the opposite
sides. The periodic boundaries emulate an infinite system with
spatially periodic modulation of E/N.

The electric field points in the −x direction, consequently,
the electrons drift in the +x direction. In the following, we
omit the negative sign of E. In the case of a modulated electric
field, the form

E(x) = E0
[
1+M sin(kx)

]
, (3)
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is adopted, where E0 is spatial average of the electric field,
M⩾ 0 is the modulation depth, and k= 2π/L, with L being the
length of the spatial period of modulation (see figure 1(b)).
The voltage drop over the length L is U= (E/N)0 N L, i.e.

U[V]= 0.242 · (E/N)0(Td)×L (cm). (4)

At a given (E/N)0 this relation connects the length of the com-
putational domain and the voltage drop over this domain. We
primarily examine the range of the parameters (E/N)0 and L,
where the energy corresponding to the voltage drop over the
simulation domain, qU, is in the order of the excitation levels
of Ar, the lowest being 11.55 eV.

We present results for the spatial profiles of the mean elec-
tron velocity v(x), the mean energy ε(x), the electron density
n(x), the electron energy distribution function (EEDF) f (x, ε).
These characteristics are studied as a function of the reduced
electric field and the length of the computation cell (that equals
the wavelength of the modulation of E(x).) They are ‘meas-
ured’ within 200 slabs with equal width, covering the simula-
tion domain of length L. A lower spatial resolution is used for
the analysis of the excitation rates and of the spatial distribu-
tion of the EEDF, to ensure a better statistics.

At low values of modulation, the system is expected to give
a linear response for the space-dependent scalar quantities, i.e.
the latter are foreseen to exhibit a harmonic spatial profile.
With increasing perturbation, a non-linear response is expec-
ted to establish. Taking as an example the mean velocity v(x),
the harmonic content as well as the phase shift of the individual
harmonics contributing the spatial profile can be obtained via
Fourier analysis, which allows to construct v(x) as

v(x) =
∑
s

vs sin(skx−φs), (5)

where vs and φs are, respectively, the amplitude and the phase
delay of the sth harmonic. This analysis helps, e.g. identify-
ing the conditions when local transport is approached: in the
case of low modulation (as long as v and ε are monotonic-
ally increasing functions of E/N) we expect vs → 0,∀s> 1 and
φ1 → 0, as E(x) contains only a dc component and one (per-
turbing) harmonic with s= 1. Any deviation from this beha-
viour is the signature of the non-local character of the trans-
port and the non-linear response of the system to the electric
field perturbation. We note that this analysis of the phase shifts
of the ‘macroscopic quantities’, like v(x) and ε(x)with respect
to E(x) does not offer an explanation for the resonance effects,
as these are kinetic by nature. We also need to notice that the
dependence of v on E/N is not necessarily monotonic, this
scenario is called Negative Differential Conductivity (NDC)
[46], which typically occurs in gas mixtures, including Ar–N2

mixtures that are also studied here [47].
For the case of homogeneous electric field, the EEDF res-

ulting from our simulation code has been cross checked with
that obtained from the Bolsig+ Boltzmann solver [48].

Figure 2. (a) Momentum and energy dissipation frequencies νm and
νe, as well as (b) mean free path λm and the energy relaxation length
λe in Ar (solid lines) and N2 (dashed lines). (c) Dependence of the
energy relaxation length on the concentration of N2 in the Ar+N2

mixture. p = 100 Pa and Tg = 300 K.

3. Relaxation frequencies and lengths

Before presenting our results it is useful to illustrate the beha-
viour of few important quantities that have major influence
on the relaxation and resonance effects to be discussed. These
are the momentum and energy dissipation frequencies, νm and
νe, respectively, as well as the mean free path λm and the
energy relaxation length λe. We have computed these quantit-
ies according to the expressions given in [1] and display them
in figure 2. Panel (a) shows the energy dissipation frequency
(νe) and the momentum dissipation frequency (νe) for both Ar
and N2. We find νm to be significantly higher than νe over the

4



J. Phys. D: Appl. Phys. 54 (2021) 135202 A Albert et al

whole range of energies considered. νe is especially low for
Ar below the threshold energy for inelastic loss channels, as in
elastic collisions the fractional energy loss of the electrons is in
the order of the electron/atommass ratio, as alreadymentioned
in section 1. Rapid changes of νe with ε can be observed for
both gases. Whenever the energy distribution of the electrons
spans a range that includes such a change, parts of the elec-
tron population with different energies will behave dissimilar
in terms of energy relaxation, as explained in [1].

The momentum relaxation frequency does not exhibit
abrupt changes as a function of the energy, except for Ar at
low energies, due to the Ramsauer–Townsend minimum in
the elastic collision cross section. Regarding the relaxation
lengths in pure gases, figure 2(b) reveals that the energy relaxa-
tion length (λe) exceeds considerably the mean free path (λm).
Below the inelastic excitation threshold in Ar, e.g. their ratio
amounts about two orders of magnitude. Under such condi-
tions the relaxation of the energy in a swarm is expected to take
place over an extended spatial scale, where a high number of
collisions is required for equilibration. The difference between
λe and λm for Ar decreases as the energy is increased, at 20 eV
the ratio between them drops to a factor of two. As around this
energy the sum of inelastic cross sections approaches the value
of the elastic momentum transfer cross section energy relaxa-
tion becomes efficient. As to N2, λe and λm are relatively close
to each other, meaning that energy relaxation takes place over
a few free flight lengths of the electrons, except at low energies
(below 2 eV) and within the 3 eV⩽ ε⩽ 8 eV interval, where
the collision cross sections are low.

Due to the large disparity of the relaxation frequencies and
lengths in Ar vs. in N2, even a small amount of the latter
causes a significant change of these parameters, as illustrated
in figure 2(c) for the case of λe. With respect to the case of pure
Ar the strongest decrease of λe occurs in the 2 eV⩽ ε⩽ 3 eV
and 8 eV⩽ ε⩽ 11 eV domains of the electron energy as a res-
ult of the addition of N2 to Ar. This is caused by, respectively,
the vibrational and electronic excitation of N2 molecules. In
the first domain, even 1% of N2 decreases λe by a factor
of 10 as it can be seen in figure 2(c). At electron energies
above≈ 15 eV the effect of N2 on λe becomes negligible due
to the availability of a high number of inelastic loss channels.

4. Results

4.1. Homogeneous electric field

To illustrate the equilibration of electron swarms in a homo-
geneous electric field, in figure 3 we depict the mean velocity
and the mean energy of the electrons for a steady state scenario
when electrons are continuously emitted from an electrode at
x = 0 and drift in the gas. In this simulation, the electrons
are emitted with an initial energy of 1 eV and an initial velo-
city directed towards the x direction. Such an initial velocity
distribution is very clearly far from the equilibrium distribu-
tion that is expected to be nearly isotropic with a small drift
component. Figures 3(a) and (b) show the case of pure Ar.
Here, the ensemble of the electrons requires rather significant
‘flight’ lengths to acquire a steady-state mean velocity, for the

whole range of E/N covered. The periodic structures seen dur-
ing this equilibration phase originate from repetitive energy
gain—energy loss cycles of the electrons: gain occurs due to
acceleration in the electric field, loss occurs primarily due to
inelastic collisions. This is especially well seen in the graph of
ε(x) for the 20 Td case, for which the x scale is 10× zoomed
(red dashed line): here saw-tooth like patterns appear, express-
ing the slow energy gain and rapid energy loss.While the peaks
of this function appear nearly at the same position as those of
v(x), the functional forms appear to be significantly different.
The oscillations of the mean velocity persist for the longest
spatial domain for the 20 Td case, both at lower and higher
fields we observe equilibration on a shorter length scale.

Figures 3(c) and (d) illustrate the behaviour of the swarm in
Ar–N2 mixtures, as a function of the N2 concentration, at fixed
E/N = 20 Td. The equilibration of the transport takes place
on a much shorter length scale, as compared to that in pure
Ar. Already 1% of N2 shrinks the equilibration domain by a
factor of∼10. At higher admixture concentrations equilibrium
becomes close to monotonic. This behaviour originates from
thewide range of energies (due to processeswith low threshold
energies, e.g. vibrational channels) of inelastic loss channels
in N2 as compared to Ar. We can note that an increasing N2

concentration results in a remarkable increase of the steady-
state mean velocity and a remarkable decrease of the steady-
state mean energy.

Whenever pronounced structures in transport coefficients
are seen, it is expected that in a spatially modulated electric
field resonances may appear at certain conditions, as it has
been recognised in several earlier studies, e.g. [49]. This is
indeed the foreseen behaviour in pure Ar, while N2 is expected
to have a converse influence on this effect.

The data presented above help setting the proper range of
E/N for the studies of the transport in spatially modulated
fields and the timing of the data collection in the simulations
(see below).

4.2. Transport in periodically modulated electric field in argon

Below, we present the results for the transport properties in
spatially modulated electric field for pure Ar gas. The simu-
lations are initialized by placing N= 2000–20 000 electrons
(depending on the type of the ‘measurement’) at random pos-
itions within the simulation box (of length L) with a velocity
v0 = 0. First, the electrons are traced for ∆T1 = 900µs, and
subsequently for an additional ∆T2 = 100µs, during which
the transport data are collected (unless stated otherwise). This
timing ensures the decay of the initial transients: at 20 Td, e.g.
the relaxation length seen in figure 3 is ∼1 m and the mean
stationary velocity is about v0 ≈ 1.8× 104 ms−1, resulting in
a characteristic relaxation time of≈ 55 µs ≪∆T1.

First, we analyse the results obtained at (E/N)0 = 20 Td as
the longest relaxation length was observed (in figure 3) for this
value of the reduced electric field. Figure 4 shows the effect
of the length of the simulation domain, L, for this (E/N)0 and
for a modulation of M= 0.2. Panel (a) shows the mean velo-
city v(x), (b) the normalised electron density n/n0 (where n0 is
the spatial average of the electron density), and (c) the mean
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Figure 3. Relaxation of the mean velocity (left column) and the mean energy (right column) of electrons in a homogeneous electric field.
The electrons are emitted at x = 0 with an initial velocity pointing into the x direction and corresponding to 1 eV initial energy. p = 100 Pa
and Tg = 300K. (a), (b) Pure Ar at various values of E/N, (c) and (d) Ar–N2 mixtures at E/N= 20 Td and different N2 concentrations. Note
that the domain shown in (c) and (d) is much shorter. The dashed red lines in (a) and (b) correspond to 20 Td, with the x scale 10× zoomed.

energy ε(x). L is varied between 2 and 3 cm, in 0.1 cm steps.
Recall that the effect of L translates directly to the effect of the
voltage drop over the simulation cell, U, via equation (4), i.e.
for the present conditions the voltage is in the 9.68 V ⩽U⩽
14.52 V range.

The characteristics of the spatial profile of the quantities
shown in figures 4(a)–(c) (i.e. the amplitude and shape of the
curves as well as the positions of their extrema) vary in a com-
plicated manner with L. As regards to v, in the limit of small
L values we observe a weak modulation around the equilib-
rium value of v0 ≈ 1.8× 104 m s−1, with a peak close to the
edge of the cell. A notable increase of the amplitude and a shift
of the maximum to higher x/L appear at L= 2.6 cm, while
the highest modulation is observed at L = 2.7 cm, which is,
however, accompanied by a ‘backward’ shift of the profile. At
L> 2.7 cm we observe a decreasing amplitude of the profile,
with maxima approaching x/L= 0. For the given strength of
modulation, M= 0.2, the higher harmonic content of the pro-
files is limited. Therefore the strength of the ‘response’ of v
to the perturbing electric field variation is characterized by the
amplitude and the phase of the first Fourier component, v1 and
φ1, in figure 4(d). This figure confirms the visual observation
of a resonance at L= 2.7 cm (corresponding to U = 13.07 V),
where v1 exhibits a sharp peak. The phase of the profile is near
−80◦ both at low and high L and shows a peak at φ1 ≈ 0◦ at L
= 2.6 cm. As there are no sources and losses in the system, nv

= const. holds due to flux conservation (∇· (nv) = 0). There-
fore, the electron density obtained from the simulation (and
shown in figure 4(b) is directly related to the mean velocity.
The dependence of the spatial profile of the mean electron
energy, ε(x) as a function of L is similar to that of the mean
velocity, as it can be seen in figure 4(c). The phases of the v(x)
and the ε(x) profiles are, however, quite different as revealed
quantitatively in figure 4(d). The phase of the latter exhibits a
monotonic decrease with the increase of L and passes through
0◦ at L = 2.6 cm, near the resonance.

The Electron Energy Distribution Function (EEDF) exhib-
its marked changes as a function of the position when M> 0.
An example of this is shown in figure 5 for (E/N)0 = 20 Td
and M = 0.2, at L= 2.7 cm, i.e. for the resonant case. It is
remarkable that the strongest high-energy tail of the EEDF
develops at the spatial position of x/L= 0.4, where, actually
the mean energy has a minimum (see figure 4(b)). This is not
a contradiction as low-energy part of the EEDF at this posi-
tion is also highly populated. On the other hand, this observa-
tion points out the importance of the whole EEDF in determ-
ining the characteristics of the transport. Revoking figure 2(b)
we can note that the EEDF-s are populated at energies both
below and above the energy where a sudden drop in the energy
relaxation length occurs. Therefore, as pointed out in [1] the
low- and high-energy parts of the electron population behave
in a quite different ways at this resonance. Below the inelastic

6



J. Phys. D: Appl. Phys. 54 (2021) 135202 A Albert et al

Figure 4. Spatially resolved mean velocity (a), normalized density (b) and mean energy (c) of the electrons at (E/N)0 = 20 Td andM = 0.2,
as a function of L. (n0 is the spatial average of the electron density.) The identification of the curves in (c) is the same as in (b). The dashed
black lines in each panel show the spatial variation of E/N, these curves are given without units. (d) Amplitudes (left scale, solid lines) and
phases (right scale, chain lines) of the first ac component of the profiles of the mean velocity and the mean energy, as a function of L. The
amplitudes of v1 and ε1 are given in units of 104 m s−1 and eV, respectively.

Figure 5. EEDF-s at different spatial locations, at (E/N)0 = 20 Td
and M = 0.2 and L = 2.7 cm.

excitation threshold of Ar (11.55 eV) λe is in the order of sev-
eral cm-s while this drops to several mm-s when the energy
is higher than this threshold. The long λe at low ε assists
the electrons to gain energy from the field, without dissip-
ating it. The short λe at ε > 11.55 eV, on the other hand,
allows the electrons to dissipate their energy quickly. Actu-
ally, at ε= 11.55 eV, λe =2.79 cm. The energy accumula-
tion for the resonant case (L= 2.7 cm) is clearly indicated by
the slanted structure in panel (b) of figure 6 that shows the

complete spatial evolution of the EEDF. Remains of this struc-
ture are also seen in figures 6(a) and (c), however, these are far
less pronounced.

The velocity distribution function of the electrons [50], as
a function of the axial and radial components of the velo-
city, f(vx,vr), is plotted in figure 7 at four distinct locations
within the simulation cell, for the conditions L = 2.7 cm,
M= 0.2, and (E/N)0 = 20 Td. The VDF at x/L= 0 (and
at the equivalent position of x/L= 1) exhibits a high pop-
ulation of particles with velocities between 1.5× 106 and
1.8× 106 m s−1, a small additional peak at low velocities
shows that some electrons already suffered a significant energy
loss around these positions. At x/L= 0.25 (figure 7(b)) most
of the electrons have velocities below≈ 1× 106 m s−1, fol-
lowing their inelastic collisions. At the higher x/L values
we observe an expanding ring in the velocity distribution,
which is caused by the fact that electrons re-gain energy
from the electric field (see (figures 7(c) and (d))). Generally,
only a quite small anisotropy can be observed at any posi-
tion, confirming the expected behaviour that at low E/N the
drift velocity of the electrons is much smaller compared to
their random (thermal) speed. The presence of the modula-
tion of the electric field obviously does not change this general
behaviour.

The effect of the modulation depth, M, on the spatial vari-
ation of the mean velocity is depicted in figure 8(a). At the
lower values of L, the v(x) curves are nearly harmonic, an
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Figure 6. Spatial maps of the EEDF for (E/N)0 = 20 Td and
M = 0.2, at various values of L.

increasing anharmonicity can be observed with increasing
modulation. Figure 8(b) shows the harmonic composition of
v(x) as a function of M for the case of L= 2.7 cm and (E/N)0
= 20 Td. Besides the harmonic amplitudes, vs, the phase of the
principal component of the ‘response’, φ1 is also shown. At
low modulation, only v1 differs significantly from zero, how-
ever, with increasing M the harmonic content increases. The
phase is φ1 ≈−40◦ for allM. We can note that the s= 0 com-
ponent slightly increases withM, i.e. the ‘dc component’ vs=0

of v(x), which is the spatially averaged velocity of the elec-
trons, increases as an effect of the modulation.

Counting the number of the different electron-Ar atom
reactions spatially resolved allows construction of a mat-
rix that shows the collision frequencies associated with the
various collision processes. The computational results are
shown in figure 9 for the case of (E/N)0 = 20 Td and L =
2.7 cm, obtained at M = 0.0 (panel a) and M = 0.2 (panel
b). In these plots, excitation processes are identified by num-
bers 1…25, ionisation is process 26. The number of elastic
collisions is orders of magnitude higher, thus this (process 0)
is omitted from the plots. The highest excitation rates are

observed (in both cases) for the four lowest excited levels
of Ar, for processes 1–4, corresponding to excitation to the
1s5, 1s4, 1s3, and 1s2 levels (Paschen notation), respectively.
The energy of these levels is between 11.55 and 11.83 eV. At
M= 0, significant rates are also observed for thewhole domain
for processes 5 and 6 (2p10 and 2p9 levels), 8–10 (2p7,6,5,4
levels), and 13–15 (2p1, 3d5,6 and 3d3 levels). The excitation
threshold of the latter is 13.90 eV. Ionisation (process 26) is
not present with an appreciable rate, justifying our approach of
treating this process as a number conserving one, for the rare
events of occurrence.

AtM= 0.0 (figure 9(a)) the spatial distribution of the excit-
ation events is homogeneous, as expected. At M= 0.2, how-
ever, the modulation of the electric field causes a major per-
turbation to the excitations [51]. We find that (i) the majority
of excitation events is concentrated within the 0.25⩽ x/L⩽ 0.6
spatial domain with a pronounced maximum near x/L= 0.4,
where the most notable high energy tail for the EEDF was
found for the same conditions (see figure 5) and (ii) the accel-
eration of the electrons in the modulated field also opens
excitation channels with higher thresholds: in figure 9(b) we
observe processes with appreciable rates up to #18, which cor-
responds to levels 3d ′ ′

1 and 2s5, with a threshold energy of
14.06 eV [44]. The further increase of the modulation depth,
e.g. to M = 0.5, results in a slightly increased spatial con-
finement of the excitation events. While new higher-threshold
levels get populated as compared to lower M, it is remark-
able that a depletion of the excitation rates of the lowest-
threshold 1s2,3,4,5 levels (processes 1. . .4) is also observed in
the 0.75⩽ x/L⩽ 1 domain because of the prominent energy
deposition of the electrons in the 0.25⩽ x/L⩽ 0.6 domain.

While in the cases described before, the modulation was
kept at moderate levels, here we briefly examine the case of
higher modulation, when the electric field changes sign within
a certain domain (at M> 1). As the presence of a region with
a reversed electric field gives rise to a potential well, elec-
trons can accumulate within these regions. For (E/N)0 = 20
Td, L = 2.7 cm, and M = 1.1, e.g. the depth of this potential
well is≈ 0.1V. As electrons may undergo such collisions in
these regions when their remaining kinetic energy is less than
0.1 eV, such electrons will be trapped as their energy cannot
increase anymore to overcome the barrier. Consequently, after
a sufficiently long time all electrons are expected to be trapped
in our simulation.

While the presence of the reversed field bears some simil-
arity with the case of the negative glow region of dc glow dis-
charges [52–54], in that setting fast electrons arriving from the
sheath can interact with the trapped population and can even-
tually increase the energy of some of the electrons, enabling
them this way to get released from the trap. This effect is
the result of Coulomb collisions, which are however, not
included in the present simulation. Nonetheless, our simula-
tions can follow the time dependence of the trapping phe-
nomenon. This is illustrated in figures 10(a)–(c), where the
results (for the mean velocity, mean energy and normalised
density) are shown as a function of time. The data were col-
lected in 100µs wide time windows at different start times,
as indicated. The graphs indeed exhibit pronounced structures
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Figure 7. f(vx,vr) velocity distribution functions of the electrons at different spatial locations (a) x/L= 0 and x/L= 1 (which are equivalent
positions due to the periodic boundary conditions), (b) x/L= 0.25, (c) x/L= 0.5, and (d) x/L= 0.75. The data have been collected within
domains of half width ∆(x/L)= 0.025 around the positions specified. L = 2.7 cm, M= 0.2, and (E/N)0 = 20 Td.

Figure 8. (a) The effect of modulation depth on the spatially resolved mean velocity. The dashed black line shows the spatial variation of
E/N, this curve is given without units. (b) Harmonic composition of v(x) (solid lines, left scale) and the phase of the first ac component, φ1

(chain curve, right scale) as a function of the modulation depth of the electric field. L = 2.7 cm and (E/N)0 = 20 Td.

around x/L = 0.75, where the reversed electric field peaks.
They show that a slow change follows after an initial high
rate of trapping. From this it follows that the spatial modu-
lation of E actually slows down the trapping process by ‘mov-
ing’ most of the inelastic collisions from a random distribu-
tion to spatial positions that exclude the domain of reversed
field, as shown in figure 9. In accordance with this it is also
interesting to note that the least significant trapping for oth-
erwise same conditions is observed for the resonant case of
L= 2.7 cm, as revealed in figure 10(d). For other values of

L, we observe a much more significant collection of the elec-
trons within the region of the field reversal and more signific-
ant depletion of the density outside this domain. As electrons
are less likely to undergo inelastic collisions in the regions
with reversed electric field, complete trapping takes place
on a time scale much longer than accessible by our simula-
tions. Inclusion of the Coulomb collisions [55] and/or thermal
contribution of the background gas are clearly necessary to
model correctly the stationary state of our system at such high
modulations.
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Figure 9. The spatial distribution of collision frequency (in arbitrary units) of individual inelastic collision processes at (E/N)0 = 20 Td and
L = 2.7 cm (U = 13.07 (V), for (a) M = 0.0, (b) M = 0.2, and (c) M = 0.5. (Note, that for these conditions ionisation (process #26) is
negligible.)

Figure 10. Spatially resolved mean velocity (a), mean energy (b) and normalised density (c) of the electrons at (E/N)0 = 20 Td and L =
2.7 cm, for M = 1.1. The curves correspond to different data collection time windows, as indicated. The legend shown in (c) is valid for
panels (a) and (b), too. Note the slow evolution of the features with time within the domain of the reversed field, centred around x/L = 0.75.
The dashed black lines show the potential energy of the electrons, with zero value set at x = 0. (d) The dependence of the normalised
electron density on L at (E/N)0 = 20 Td and M = 1.1. These data were collected in the default, 900–1000µs time window.

After presenting the results obtained for (E/N)0 = 20 Td,
we analyse cases with lower and higher values, (E/N)0 =
10 Td and 40 Td. The results for these cases are shown in

figures 11(a) and (b), respectively. At (E/N)0 = 10Td, the pro-
file of the mean velocity changes smoothly with increasing L,
without any significant resonance. The phase of the first ac
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Figure 11. Mean electron velocity at different (E/N)0 values:
(a) 10 Td cm, (b) 40 Td. The dashed black lines in both panels show
the spatial variation of E/N, these curves are given without units.

Figure 12. The phase of the first ac component of the mean velocity
at the (E/N)0 values indicated, as a function of the voltage drop
(related to the other parameters via equation (4)) over the
computational cell. M = 0.2.

component v1, changes however, in the same way as it was
found previously for 20 Td. This is presented in figure 12,
whereφ1 is shown as a function of the voltage dropU (in order
to make the data obtained at different (E/N)0 values compar-
able). The maximum of the phase occurs at a higher voltage
drop (higher L) compared to the higher fields. At (E/N)0 = 40

Td, the behaviour of the phase is very similar to that at 20 Td
(a strong peak at≈ 12.5V). The inspection of the amplitude of
v(x) in figure 11(b) does not show a strong resonance unlike in
the case of 20 Td. This may be explained by the higher number
of inelastic loss channels at an expanded energy range of the
electrons at the higher accelerating field. Note, that at E/N =
40 Td a faster spatial relaxation was found also in the homo-
geneous field, as compared to 20 Td, see section 4.1.

4.3. Transport in periodically modulated electric field in
Ar–N2 mixtures and in N2

As discussed above, the pronounced response of the electron
transport parameters on the spatial modulation of the accel-
erating electric field in argon gas is due to the fact that the
number of energy loss channels is limited (excitation predom-
inantly occurs to a few excited states as confirmed by the res-
ults presented in the previous section). As in a molecular gas,
like N2 the possible values of the energy loss in a collision
span a much wider domain as compared to atomic gases, the
response of the system to the modulated electric field is expec-
ted to diminish when even small amounts of molecular gases
are added to Ar.

Figure 13(a) shows v(x)/v0 for various percentages of N2

between 0% and 100%, for (E/N)0 = 20 Td, M = 0.2, and L
= 2.7 cm. The data are normalised by the equilibrium velo-
city v0, which varies (as shown in figure 13(c)) as a function
of the N2 content in the gas mixture. (In the case of 0% N2 the
data are the same as shown in figure 4). With an increasing N2

percentage the phase of the first harmonic of v(x) first slightly
decreases at low nitrogen content, and then increases rapidly to
φ1 ≈−20◦ above 5% N2 (see figure 13(d)). The velocity pro-
files practically overlap at ⩾ 40% N2 content indicating that
excitation of Ar is strongly suppressed at these molecular gas
concentrations. Some of the data points belong to the para-
meter range where Negative Differential Conductivity in the
Ar–N2 mixture is present. As revealed from figure 4 of [47],
NDC at E/N = 20 Td occurs between N2 concentrations of
approx. 5% and 15%. This effect may have an influence on the
behaviour of φ1, clarification of this is, however, left for future
work that needs to consider a broader domain of the paramet-
ers especially the spatial wavelength of the modulation. The
addition of N2 efficiently cools the electrons, as the profiles
of the mean energy, shown in figure 13(b) confirm. Besides
the value of ε the modulation of its spatial profile decreases as
well and the phase of the profile changes also significantly as
shown in figure 13(d).

The presence of N2 in the mixture has a dramatic effects on
the EEDF as well, as shown in figure 14. Already at 1% N2

content, the marked spatial modulation of the EEDF observed
in pure Ar (see figure 6(b)) vanishes almost completely. With
the addition of more N2, the low energy part of the EDDF
gets gradually more populated as a result of the low-threshold-
energy processes in N2.

Finally we present results for the case of pure N2.
Figures 15(a) and (b) display spatial profiles of the mean
electron velocity as a function of L, while panel (c) of the
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Figure 13. Spatial profiles of the mean electron velocity (v(x)) (a) and mean electron energy (ε(x)) (b) as a function of the N2

concentration. The legend in (a) also holds for (b). The data in (a) are normalised by the equilibrium velocity of electrons (v0) that varies as
a function of the Ar/N2 mixing ratio as shown in (c). The results of our calculations are cross checked with the data of [56]. (d) Phase of the
first harmonic of v(x) and ε(x) as a function of the N2 content. (E/N)0 = 20 Td,M = 0.2, and L = 2.7 cm. The dashed black lines in (a) and
(b) show the spatial variation of E/N, this curve is given without units.

same figure shows the behaviour of the mean electron energy.
At large L (i.e. at L>2 cm), both the v(x) and ε(x) pro-
files approximate the spatial dependence of the electric field.
For these conditions, the phases of the first harmonic of
both of these profiles approaches zero, as it is revealed from
figure 15(d). These are signatures of the local character of the
transport. For large L, we indeed find a very slight spatial mod-
ulation of the EEDF as well, as it can be seen in figure 16(c) for
L= 4 cm. The only observable signature there is a small mod-
ulation of the high energy cutoff with x/L, around ε≈ 2.5 eV.
The vast majority of the electrons have energies less than 2 eV.
For such energies, as figure 2(b) reveals, the energy relaxation
length is in the order of λe ≈ 1–2 cm. For any L exceeding
this value we expect that the swarm properties reflect the
local value of the electric field, as it is actually confirmed in
figure 15(a).

5. Summary

In this work, we have investigated via Monte Carlo simu-
lation the characteristics of electron transport in a station-
ary, spatially modulated electric field. The computations have
been executed for Ar and N2 gases and their mixtures at
(spatially averaged) reduced electric fields in the 10–40 Td

range. Particles have been traced in a finite spatial region sub-
jected to periodic boundary conditions.

Within the range of the reduced electric field considered, a
strong response of the transport parameters to the electric field
modulation was observed. At low modulation depths, the spa-
tial profiles of the mean electron velocity and energy exhibited
a harmonic shape. The phase angle between the electric field
and the above quantities, as well as the harmonic content of the
latter at higher modulation depths were revealed by Fourier
analysis. All the quantities analysed showed highly nonlocal
transport, except for the case of pure N2 at long modulation
wavelength, where signatures of local electron transport were
observed.

At conditions, where the high modulation depth of E/N res-
ulted in the appearance of a region where the direction of the
electric field is reversed, we observed trapping of the elec-
trons. The stationary case, where all electrons are supposed
to be trapped was not reached due to the slow accumulation
of the electrons. The latter was found to be caused by the fact
that the modulation of the electric field favours inelastic col-
lisions (that represent high energy loss) outside the domain
of the reversed field. For a realistic description of any experi-
mental setting the inclusion of either Coulomb or thermal col-
lisions is necessary.
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Figure 14. Spatial maps of the EEDF for (E/N)0 = 20 Td and M = 0.2, and L = 2.7 cm, for N2 concentrations of (a) 1%, (b) 5%, and (c)
20%.

Understanding the transport characteristics requires the
analysis of the spatial variation of the electron energy distri-
bution function (EEDF). We have computed this function for
various parameter combinations and have found pronounced
structures at the resonance condition where the potential drop
over the simulation box is≈ 13V in pure Ar. The strongest
resonance was found for (E/N)0 = 20Td. At lower reduced
electric field, elastic collisions play a more prominent role in
the electron energy balance, while at higher field more excita-
tion channels are open due to the higher electron energy, and
this adversely affects the synchronisation of the kinetics of
individual electrons. The analysis of the rates of the inelastic
collision processes at 20 Td showed that for these conditions
only few levels of the Ar atom are preferentially excited.

Even small amounts of N2 admixtures were found to lead
to the vanishing of the structures in the EEDF due to the

wider range of excitation energies of the N2 molecule. Fur-
ther directions of the present study include (a) the clarification
of the combined effects of the modulated electric field and the
Negative Differential Conductivity on the transport character-
istics in the case of Ar–N2 mixtures, (b) investigations of the
transport properties in the presence of non-sinusoidal perturb-
ation of the electric field strength, (c) inclusion of Coulomb
collisions for an accurate prediction of the properties of the
trapped part of the electron population in regions with reversed
electric field, (d) the introduction of the self-consistent com-
putation of the electric field distribution from the perturbed
densities of the electrons via the Poisson equation in order to
predict the range of existence of standing striations, and (e)
extending the range of E/N to higher values, to observe the
effects of appreciable ionisation on the characteristics of the
electron transport.
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Figure 15. (a), (b) Normalized mean electron velocity in pure N2 at (E/N)0 = 20Td and M = 0.2, for various values of L, given in the
legends. (c) Profiles of the mean electron energy for the same conditions. The dashed black lines in each panel show the spatial variation of
E/N, this curve is given without units. (d) Phase of first harmonic of v1 and ε1.

Figure 16. Spatial maps of the EEDF in pure N2, for (E/N)0 = 20Td and M= 0.2, and various values of L.
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[22] Pekarek L and Krejčí V 1962 Cechoslovackij Fiziceskij Zurnal

B 12 450
[23] Sigeneger F, Sukhinin G I and Winkler R 2000 Plasma Chem.

Plasma Process. 20 87
[24] Sukhinin G I and Fedoseev A V 2006 High Temp.

44 157
[25] Raizer Y P and Shneider M N 1997 High Temp. 35 19
[26] Iza F, Yang S S, Kim H C and Lee J K 2005 J. Appl. Phys.

98 043302
[27] Stittsworth J A and Wendt A E 1996 IEEE Trans. Plasma Sci.

24 125

[28] Sigeneger F, Golubovskii Y B, Porokhova I A and Winkler R
1998 Plasma Chem. Plasma Process. 18 153

[29] Sigeneger F and Winkler R 2000 Plasma Chem. Plasma
Process. 20 429

[30] Liu Y X, Schuengel E, Korolov I, Donkó Z, Wang Y N and
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Abstract
Two experimental apparatuses used to obtain electron transport coefficients in gases are
compared based on measurements in CO2 over a wide range of E/N-values. The operation
principles of the two experimental systems as well as their data acquisition methods are
different. One operates under the time of flight (TOF) principle, where the transport coefficients
are obtained by fitting the theoretical form of the electron density of a swarm in an unbounded
region, n(x, t), to the measured current at different values of the drift length, I(L, t). The other
experimental apparatus operates in the Pulsed Townsend (PT) mode, where the electron
transport coefficients are obtained by fitting the spatial integral of n(x, t) over the drift region to
the measured, time-dependent current signal, I(t). In both apparatuses, the measured E/N range
was extended as much as possible to allow a large overlap for the comparison of the results. The
bulk drift velocity, W, obtained by the two systems agrees well (within a few %) over a wide
range of E/N values (100 Td ≤ E/N ≤ 1000 Td). The agreement between the data sets for the
longitudinal component of the bulk diffusion tensor, DL, is less satisfactory, the TOF data show
systematically higher values (by 10–50% depending on E/N) than the PT measurements.
Significant differences are also found below 100 Td in case of the effective ionisation frequency,
νeff, and the (steady state) Townsend ionisation coefficient, αeff, where the TOF apparatus is
unable to give accurate results. Our comparison justifies the correctness of the measured data
over the range of agreement and also indicates the interval in E/N where the data obtained by
each of the experimental systems can be taken to be reliable. The limits of the operating regimes
of the two setups, stemming from the hardware and from the physical limits, are discussed.
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1. Introduction

Transport coefficients of charged particles in gases, besides
having paramount importance in swarm physics, serve as fun-
damental input parameters for fluid modelling of gas dis-
charges. In addition, they can be used to check and adjust
cross section sets of different collision processes relevant for
gas discharge physics, as transport coefficients can accurately
be computed from the cross sections [1]. In order to improve
plasma technologies, a thorough understanding of the chem-
ical and physical processes present in the plasma phase is
required, for which transport coefficients can be of use. As
the most mobile charged particles are electrons in the plasma,
accurate measurements of electron transport coefficients are
crucial.

The gas investigated in this work, CO2, owing to its role
in global warming, has been the subject of several research
works, which mainly focus on its plasma-catalytic splitting
into CO and O2 [2–6], or its conversion into other valuable
chemical compounds through e.g. a reaction with CH4 (so-
called dry reforming) [7–11]. Different types of plasma react-
ors have been applied for this purpose, e.g. dielectric bar-
rier discharges (DBDs) [12–16], microwave plasmas [17–19],
gliding arc [20–22] and spark discharges [23, 24]. The electron
transport in CO2 plays a key role in the optimization of non-
equilibrium atmospheric pressure plasmas [25], in the model-
ing of production of oxygen in the atmosphere ofMars [26, 27]
as well as in many studies of the CO2 lasers [28] and particle
detectors used in high energy physics [29].

The determination of transport coefficients has convention-
ally been based on drift tube measurements, where a low-
density ensemble of electrons (an electron swarm) is created,
which is subject to a homogeneous external electric field
[30–32]. Based on their operation principles, we can distin-
guish between three major types of swarm experiments [33]:

• Time of flight (TOF) systems, where electron swarms are
initiated by short pulses of an UV laser which hits a neg-
atively biased electrode, thus emitting electrons through
photoemission [31, 34, 35]. The system is equipped with
a detector that collects ‘arriving’ charges and gives a signal
that is proportional to the number of these particles. In our
previous works [42, 43] it has been assumed that the detec-
ted signal is (under hydrodynamic conditions) proportional
to the spatio-temporal distribution of the density of the elec-
tron swarm, n(x, t) (see section 3 for definitions). From the
functional form of n(x, t), electron transport coefficients can
be obtained through e.g. a fitting procedure.

• Pulsed Townsend (PT) systems [36–39], where the exper-
imental realization is similar to that of a TOF system,
but in this case the time-dependent displacement current
generated by all the moving electrons within the whole

electrode gap is measured at fixed electrode separation, i.e.
the measured current I(t) is:

I(t)∝
Lˆ

0

n(x, t)dx, (1)

where L is the electrode separation. The measurement can
be repeated with different electrode separations. This way
the consistency of the results can be checked. In a PT
system, essentially the same transport coefficients can be
obtained as in case of a TOF experiment.

• Steady state Townsend (SST) systems, where, unlike the
two other types above, a steady stream of electrons is emit-
ted from the cathode. At sufficiently large distances from
the cathode, the following assumption can be made:

n(x)∝ eαeffx, (2)

where αeff is the effective ionization coefficient [40]. This
transport coefficient can be determined by e.g. measur-
ing the anode current at different gap distances. The other
option under SST conditions would be the measurement of
spatial profiles of emission that could be subsequently nor-
malized at the anode to give spatially resolved net excit-
ation rate. Such measurements in low current Townsend
discharges allow a better understanding of various excit-
ation mechanisms, including excitation by heavy particles
and fast neutrals [41].

Assessing the accuracy of the measured coefficients is as
important as the measured values themselves. Measurements
obtained from a single experiment can only be evaluated with
respect to their precision (which is related to the measurement
scatter) but not with respect to their accuracy (i.e. howwell the
measurements represent the true physical values). An estim-
ation of the measurement accuracy can only be done via a
detailed comparison with other measurements or with simu-
lations. Such comparisons require detailed knowledge of the
experimental conditions and data acquisition procedures for
measurements (respectively simulation settings and underly-
ing assumptions for simulations), in order to identify the cause
of possible differences.

In this work, a comparison of measurements of electron
transport coefficients in CO2 by two state-of-the-art experi-
mental setups working under conceptually different principles
and operating conditions, and using different data acquisi-
tion methods is presented. The transport coefficients investig-
ated are the bulk drift velocity,W, the longitudinal component
of the bulk diffusion tensor, DL, the effective ionization fre-
quency, νeff, and the effective ionization coefficient, αeff. One
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of these setups is a ‘scanning’ drift tube apparatus [30], operat-
ing under TOF conditions, where a given electrode separation
is scanned over, i.e. one measurement consists of a series of
measurements at gap distances between a given minimum and
maximum value, thus enabling the determination of the whole
spatio-temporal distribution of the electron number density,
n(x, t). The other experimental system [36, 37] works under
PT conditions, where for a given point in the parameter space,
(p,U,L), the displacement current from the electrons as well
as the ions is measured. Here p is the pressure,U is the applied
voltage and L is the electrode separation, which determine the
reduced electric field (E/N) value. By integrating the known
analytic formula for n(x, t) (see section 2.2), the same transport
coefficients can be determined as in case of the TOF system,
thus enabling a direct comparison of two different techniques
aiming to reach the same goal. To our knowledge, such a dir-
ect comparison has not yet been conducted for the experiments
currently in active use. Thus, one of the main objectives of the
present paper is to make comparisons between the two exper-
imental systems using the measurements of electron transport
coefficients in CO2. This will allow us to assess the advant-
ages and disadvantages of these two experimental systems,
their accuracy and limits of applicability. The manuscript is
structured as follows: In section 2 the experimental apparat-
uses and the related data acquisition methods are described in
detail (in sections 2.1 and 2.2, respectively, for the TOF and
PT setups). A comparison of the two approaches is given in
section 2.3. The experimental results are presented in section 3
and discussed in section 4 and finally, conclusions are drawn.

2. Description and comparison of the experimental
systems and data acquisition.

Below, in sections 2.1 and 2.2 we provide a detailed descrip-
tion of both experimental setups and the specific data acquis-
ition methods used. In section 2.3 a comparison of the two
techniques is given.

2.1. The time of flight experiment

2.1.1. Description of the experimental setup. TOF exper-
iment is based on a ‘scanning’ drift tube apparatus, which
has been presented in [30]. This apparatus has already been
applied to measure transport coefficients of electrons in vari-
ous gases: argon, synthetic air, methane, deuterium [42], car-
bon dioxide [43], acetylene (C2H2), ethylene (C2H4) and eth-
ane (C2H6) [44]. The simplified scheme of the experimental
apparatus is shown in figure 1.

The drift cell is situated in a stainless steel vacuum cham-
ber. The chamber is evacuated by a turbomolecular pump
coupled to a rotary pump to a pressure of ≈1× 10—5 Pa. The
pressure of the gases used inside the chamber is measured by
a capacitive gauge (Pfeiffer CMR 362). The experiments have
been conducted with a continuous slow (∼ sccm) flow of the
gas. The pressure was varied as a function of E/N (between
300 Pa (at the lowest E/N) to 20 Pa (at the highest E/N)) in

order to optimize the measured current of the drift cell, while
paying attention that the applied voltage remains below the
breakdown threshold over the whole range of the electrode dis-
tances covered during the scanning process.

Ultraviolet light pulses of a frequency-quadrupled diode-
pumped YAG laser enter the chamber with a pulse duration
of 5 ns FWHM and a repetition rate of ∼3 kHz via a feed-
through with a quartz window, traverse the grounded elec-
trode via a hole with a diameter of 5 mm and reach the sur-
face of a Mg disk of 5 mm diameter and 4 mm thickness, used
as a photoemitter. The energy of a single pulse is 1.7 µJ (at
λ= 266 nm). The Mg disk is embedded inside the cathode of
the stainless steel drift cell, which is 105 mm in diameter. The
detector facing the cathode at a distance L1 consists of a groun-
ded nickel mesh with T = 88% ‘geometric’ transmission and
45 lines/inch density (type MN17, manufactured by Precision
Eforming LLC) and a stainless steel collector electrode that is
positioned at L2 = L1 + 1 mm, i.e. 1 mm above the mesh.

Electrons generated by the laser pulses reaching the Mg
disk move towards the collector under the influence of an
accelerating DC voltage applied to the cathode by a BK Pre-
cision 9185B power supply. The voltage is adjusted accord-
ing to the required fixed E/N value for the given exper-
iment and the actual gap distance (L1) during the scan-
ning process. The current of the detector system is gener-
ated by the moving electrons within the mesh-collector gap.
The collector current is amplified by a high speed current
amplifier (type Femto HCA-400 M) connected to the col-
lector, with a virtually grounded input, and is recorded by
a digital oscilloscope (type Picoscope 6403B) with 0.8 ns
time resolution. Data collection is triggered by a photodi-
ode that senses the laser light pulses. Due to the low light
pulse energy an averaging over typically 20 000 to 150 000
pulses is required. The experiment is fully controlled by
a LabView software.

During the measurements, current traces are recorded for
different values of the gap length (L1). The mesh and the
collector are moved together by a step motor connected to a
micrometer screw mounted via a vacuum feedthrough to the
vacuum chamber. The distance between themesh and the cath-
ode can be varied within a range of L1 = 7.8...58.3 mm.Within
this range 53 different gap distances are scanned over in the
experiments reported here. The measurements have been car-
ried out at a lab temperature of T = 20± 2 ◦C.

Our apparatus performs the best at high E/N conditions.
At low E/N we have observed low signal levels, which most
likely originate from a decreasing ‘escape factor’ of the elec-
trons from the cathode. It has been found [64], that at such
conditions many of the electrons emitted from the cathode are
backscattered and absorbed there after a few gas phase elastic
collisions. This effect can significantly reduce the emission
efficiency of the cathode. At higher E/N, where inelastic colli-
sions also occur, these electrons cannot move back to the cath-
ode and the ‘escape factor’ approaches a value of 1.

2.1.2. Data acquisition. The measured displacement current
at the collector is proportional to the flux of the electrons

3



J. Phys. D: Appl. Phys. 54 (2021) 035202 M Vass et al

Figure 1. Schematic of the TOF system.

that enter the mesh-collector gap. Under hydrodynamic con-
ditions, i.e. when electrons reach a stationary (local equilib-
rium) state where the (one particle) electron velocity distri-
bution function, f (v,r, t) has lost memory of its initial state
and all space-time dependence is expressible through linear
functionals of the electron number density, ne(r, t), which
means, that the macroscopic (transport) parameters of the
swarm are space- and time-independent, the electron flux con-
sists of two terms: the advective and diffusive component
(assuming that higher spatial gradients of the electron dens-
ity are negligible) [33]. The advective component is propor-
tional to the electron density, where the proportionality factor
is the flux drift velocity, and the diffusive component equals
the flux diffusion tensor times the electron number density
gradient [67].

Using Ramo’s theorem [68, 69], it can be shown that for
the experimental conditions considered in the present case, the
contribution of the diffusive component to the current is neg-
ligible compared to the contribution of the advective compon-
ent, except in the early stage of the swarm development when
the spatial gradients of the electron number density are more
significant. Therefore, we can assume, that the measured cur-
rent is proportional to the electron number density, which, for
a spatially infinite one dimensional (1D) system has the fol-
lowing analytic form [70]:

ne(x, t) =
n0

(4πDLt)1/2
exp

[
νefft−

(x−Wt)2

4DLt

]
. (3)

This formula is the solution of the spatially one dimen-
sional diffusion equation and describes a Gaussian pulse in
infinite space drifting in the x-direction with bulk drift velo-
city, W, and diffusing with respect to the centre-of-mass with
the longitudinal component of the bulk diffusion tensor, DL.

Furthermore, n0 is the electron number density at the initial
point (i.e. x= 0, t= 0), and νeff is the effective ionization fre-
quency (that is the difference of the ionization frequency and
the attachment frequency). These transport coefficients, i.e.
W, DL and νeff are obtained by fitting equation (3) to the res-
ults of the measurements, the so-called ‘swarm maps’. In the
experiments we record current traces, i.e. the current signal
generated by electrons reaching the collector at a given gap
distance, averaged over many laser pulses. A swarm map is
a collection of such current traces at different gap length val-
ues (see figure 2). From these transport coefficients the ioniz-
ation coefficient, αeff, can also be determined by applying the
relation [67]:

1
αeff

=
W
2νeff

+
νeff
|νeff|

√(
W
2νeff

)2

− DL

νeff
. (4)

The assumption that the measured signal is proportional to
the electron number density (with the analytic form of (3))
is an approximation, because the detection sensitivity to the
‘incoming’ electrons i.e. those entering the mesh-collector gap
was found to depend on the gas pressure and the collision
cross sections, which both influence the mean free path of the
electrons [71]. That is, a variation of the energy distribution
function at different positions within the swarm (i.e. along the
x-direction) may result in a distortion of the detected signal,
which will then deviate from the analytical formula used to
obtain the transport coefficients.

The deviation caused by this effect can be quantified by the
simulation of the electrons motion in the experimental sys-
tem, including the detector region. From such a simulation,
one can derive the time-dependent response of the detector to
the electron cloud at the same conditions as in the experiment
(i.e. at the same pressure, E/N, and gap length L1). When this

4



J. Phys. D: Appl. Phys. 54 (2021) 035202 M Vass et al

Figure 2. Measured and normalized swarm maps for different values of E/N in CO2 (a)–(c), together with vertical cuts of (b) which are the
measured current traces at the gap distances given in the legend (d).

procedure is accomplished for a sequence of gap length val-
ues, a simulated swarm map can be constructed. Applying the
same fitting procedure as described above for the experimental
data, a new set of transport coefficients can be calculated.
Now, if some kind of ‘reference’ transport coefficients are
known, the error created by the experimental method and
related assumptions in the data analysis can readily be quan-
tified. These ‘reference’ transport coefficients can be obtained
from independent kinetic computations, based on either the
solution of the Boltzmann equation or on Monte Carlo simu-
lation, based on cross section set for the electrons’ reactions
in the given gas. For this purpose, we use the cross section set
of Hayashi [45]. The result of the comparison of the transport
coefficients obtained from the fitting of the simulated swarm
maps and the ‘reference’ transport coefficients is a correction
factor at the given p and E/N. Repeating the above procedure
for all the experimental parameter settings yields corrections
factors for all the experimental conditions. (We note that as the
same cross section set is used in the system’s simulation and
in the computation of the ‘reference’ transport coefficients,
any uncertainties in the cross sections vanish in first order.)
Applying the correction factors to the experimental data yields
‘Corrected’ values for the measured transport coefficients
which are expected to be free from the effects of the assump-
tions in the fitting procedure.

A low correction factor indicates that the fitting procedure
using equation (3) is correct, whereas higher values indicate
that this assumption cannot be made for the given conditions.
Figure 3 shows the deviations between the simulation of the

experimental system and the kinetic swarm calculations. In
case of the bulk drift velocity,W (figure 3(a)), the deviation is
within 5% for the whole E/N range, and thus the determination
of this transport coefficient can be taken to be reliable. The
same can be stated about the effective ionization frequency,
νeff and the effective ionization coefficient, αeff (figure 3(c)
and (d), respectively), except for E/N-values between 100 Td
and 200 Td, where the deviation rapidly growswith decreasing
E/N-values. The situation is worse for the longitudinal com-
ponent of the bulk diffusion tensor, DL (figure 3(b)). Here,
the deviation ranges between ≈ −25% to ≈ 20%. The reason
for this is, that this transport coefficient is determined by the
spread of the measured signal, which is more susceptible to a
deviation from the assumed functional form of equation (3), as
the electron energy is inhomogeneous within the swarm (elec-
trons with higher energies tend to be in the front of the swarm,
while those with lower energies tend to ‘fall behind’), thus the
detection sensitivity will not be uniform for the whole swarm.

The uncertainty of the measured data originates from (i)
the finite precision of the components of the experimental sys-
tem (e.g. pressure gauge, power supply, setting of the electrode
gap, etc), (ii) slightly varying external conditions (fluctuations
of the laser light intensity during the course of the scanning
process (typically taking 10–100 min), the gas pressure, the
temperature of the laboratory, etc) and (iii) the finite duration
of the laser pulses and the finite noise level and response time
of the measurement apparatus (amplifiers, oscilloscope, etc)
[42]. Our estimation of these results in an uncertainty for the
drift velocity that is below 5%, for the longitudinal component
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of the diffusion tensor of ≈ 25%. For the effective ionization
frequency, the uncertainty at high E/N is estimated to be in
the order of≈ 15%, which rapidly increases, when this coeffi-
cient decays orders of magnitude towards low E/N values. The
errorbars shown with our experimental data express these val-
ues (only for some measurement points the uncertainty from
the fitting procedure exceeds this value) which results in the
slightly bigger errorbars for these cases.

2.2. The pulsed Townsend experiment

2.2.1. Description of the experimental setup. The PT exper-
iment has already been described in detail in previous works
[36, 37], and has been used to obtain electron and ion
swarm parameters in many fluorinated gases and gas mixtures
[46–59] as well as in Ar, N2, CO2, O2, N2O and mixtures of
those [36, 37, 60–63].

The schematic layout of the experimental apparatus can be
seen in figure 4. The electrodes are encapsulated in a 100 L
stainless-steel vessel. The pressure inside the vessel is meas-
ured using the capacitive diaphragm gauges Pfeiffer CMR364,
CMR371 and CMR372 which have full scale values of 100 Pa,
10 kPa and 100 kPa respectively, as well as a full range gauge
PKR261. The lab temperature is regulated at 21 ◦C, and the
temperature is measured on the external surface of the vessel
with a T-type thermocouple.

When the turbo pump is running, the pressure in the ves-
sel is about 1× 10−5 Pa. Before the measurements, the pipes
connecting the gas bottles are first evacuated through the ves-
sel, and then abundantly flushed with the gas(es) under use.
Then, the vessel is evacuated again and the gate valve is closed.
The pressure in the vessel just before filling the gas is about
1× 10−3 Pa. After filling, the valves are closed and the exper-
iment is performed under fixed gas conditions.

The electrodes used for this experiment have a Rogowski
profile, and have a total diameter of 16.5 cm. A photocathode
of 2.5 cm diameter is mounted at the center of the cathode.
The photocathode is made of quartz coated with two metallic
layers: a 10 nm magnesium layer, topped with a 5 nm pal-
ladium layer. The photocathode is illuminated from the back
with a UV laser of type FQSS 266–200 from Crylas, with a
wavelength of 266 nm, a pulse duration of 1.5 ns FWHM, a
pulse energy of 200 µJ and a repetition rate of 20 Hz, which
releases electrons from the metallic layer. The laser beam is
expanded (‘BE’ in figure 4) to cover about 4 cm2 of the pho-
tocathode surface. The laser intensity is automatically reduced
with a linear attenuator if needed to keep the total charge of the
electron avalanche below 10 pC.

The emitted electrons move towards the grounded elec-
trode under the influence of a negative DC voltage applied to
the cathode using a Heinzinger PNChp power supply (either
PNChp 1500 or PNChp 60 000, depending on the voltage
required). The electrode spacing can be adjusted with a pre-
cision of ±10 µm by moving the grounded electrode with a
Newport UTSPPV6 stepper motor. The displacement current
is measured at the grounded electrode using a transimpedance
amplifier HCA-400M-5 K-C and a voltage amplifier DHPVA-
200 from Femto, and a RTO 1024 oscilloscope. A capacitor of

2 nF and a resistor of 1 MΩ are inserted between the power
supply and the cathode, in order to make sure that the capa-
citive charging current in the circuit is negligible compared to
the current induced to the electrodes by themotion of electrons
and ions. The signals are averaged over approx. 200 measure-
ments to increase the signal-to-noise ratio.

To perform a series ofmeasurements, the change of voltage,
electrode spacing and pressure is automated. For the auto-
matic change of pressure, the gas is initially filled to the
highest measuring pressure, then the pressure is automatically
decreased step-wise by opening the valve to the rotary vane
pump.

2.2.2. Data acquisition. In the PT system, the motion of the
charge carriers (electrons and ions) present throughout the gap
is sensed directly via the induced displacement current which
flows in the outer circuit. Since electron and ion mobilities dif-
fer by orders of magnitude, the measured current is analyzed
on two different timescales, nanoseconds and microseconds.
Hydrodynamic conditions are assumed during the transit time
of charged species. Assuming perfectly absorbing electrodes,
time- and space-independent transport coefficients allow us to
relate the measured displacement current to their total number
via Ramo’s theorem [68]:

I(t) =
∑
k

q0
wk
L
Nk(t) =

∑
k

q0
wk
L

ˆ L

0
nk(x, t)dx, (5)

where Nk is the number of particles of species k, drifting at
constant flux velocity wk between the electrodes of distance
L [67]. In the evaluation method used in this paper, ion spe-
cies are distinguished as two distinct positive and negative ion
swarms with respective mobilities. On the electronic times-
cale, these can reasonably be assumed motionless. Hence, the
temporal evolution of the positive and negative ion densities
depends solely on the electron density and on the ionization or
attachment event frequencies during the transit of electrons.
The total current can then be expressed in terms of the elec-
tron component using equation (5) as:

Itot(t) = Ie(t)+ Iion(t) = Ie(t)+

(
νi
wp

we
+ νa

wn

we

)ˆ t

0
Ie(t

′)dt′,

(6)
where ν i, νa are the ionization and attachment frequencies and
wp, wn and we are the positive and negative ion, and electron
flux velocities, respectively. These are all unknown paramet-
ers at this point. However, it is possible to evaluate the con-
stant in front of the integral by estimating a time T from the
measurements at nanosecond timescale for which the elec-
tron current is zero, i.e. when all electrons have reached the
anode. The electron current is separated by solving iteratively
equation (6) starting with I(0)e (t) = Itot(t) until the sequence
I( j)e (t) converges:

I( j)e (t) = Itot(t)−

(
Itot(T)´ T

0 I
( j−1)
e (t′)dt′

)ˆ t

0
I( j−1)
e (t′)dt′, (7)

where at time T, Itot(T) = Iion(T).
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Figure 3. Deviations of the results between the swarm parameters obtained from the simulations of the experimental system (S) vs. the
theoretical values (T), i.e. (S−T)/T for the bulk drift velocity (a), the longitudinal component of the diffusion tensor (b), the effective
ionization frequency (c) and the effective ionization coefficient (d). Applying these correction factors to the experimental results (Xexp) leads
to the set of ‘Corrected’ transport coefficients (Xcorr) as Xcorr =

Xexp

1+ S−T
T

= T
SXexp.

Assuming that all electrons are emitted at t= 0 (i.e. no ini-
tial broadening of the electron cloud) the electron density is
given by equation (3) and the electron current can be simply
derived analytically as:

Ie(t) =
q0Ne(0)we

2 L
exp(νefft)

(
1− erf

(
Wet−L√
4DLt

))
, (8)

where the bulk drift velocity and longitudinal diffusion coeffi-
cients,We andDL, as well as the effective ionization frequency
νeff = νi − νa are obtained by fitting equation (8) to the extrac-
ted electron current waveforms of given E/N value. Strictly
speaking, equation (8) is derived assuming the cathode is loc-
ated at−∞. An example of measured electron current in CO2

at high E/N and its fit according to equation (8) is shown in
figure 5(a).

The assumption of no initial broadening in equation (8)
leads to an error (overestimation) when fitting the longitudinal
diffusion coefficient NDL. This error is negligible when the
broadening of the electron swarm during the drift is much lar-
ger than the initial broadening σ0, i.e.

√
2DLTe ≫ σ0, where

Te is the electron transit time given by L/We. The condition√
2DLTe ≫ σ0 is fulfilled at sufficiently low pressure and suf-

ficiently large electrode spacing. The amount by which NDL is
overestimated increases with increasing E/N because the drift
time Te decreases, and it also increases with increasing gas

pressure because DL decreases. Consequently, the preferred
values of NDL are those obtained at the lowest available pres-
sure. Figure 6(a) shows two electron currents measured in CO2

at E/N= 40Td, at two different pressures: 0.2 kPa and 60 kPa.
It can be seen that the effect of the diffusion, i.e. the broaden-
ing of the signal, is much larger at 0.2 kPa than at 60 kPa. At
60 kPa, neglecting the initial broadening leads to a significant
overestimation of the diffusion coefficient NDL. Figure 6(b)
shows the values of NDL obtained at different pressures, and
subject to an error because of neglecting the initial broadening.
A clear increase of NDL (and of its associated uncertainty) is
visible with increasing pressure and with increasing E/N. Note
that the error bars shown in figure 6(b) reflect the uncertainty
on NDL due to the fitting procedure and do not include the
error due to neglecting the initial broadening.

In contrast to the diffusion coefficient NDL, it is bene-
ficial to measure the effective ionization coefficient νeff at
the highest possible pressure, because the uncertainty of
νeff/N is inversely proportional to the gas density N. In
figure 6(a), the value of νeff/N can be read much more accur-
ately at 60 kPa than at 0.2 kPa, where the negative slope
of the current is barely visible. Therefore, the preferred val-
ues of νeff/N are those obtained at the highest available
pressure.

Having extracted the electron transport coefficients, the
positive and negative ion currents can be now derived
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Figure 4. Schematic of the PT system.

Figure 5. (a) Extracted electron current and fit according to equation (8). (b) Measured total current and calculated total, negative and
positive ion components according to equation (9) in CO2 at E/N = 774 Td, p= 55 Pa and electrode distance L = 20 mm.

for t≥ Te:

Ip(t
′) = I0

wp

we

νi
νeff

(
eνeffTe − e

νeff
Te
Tp
t′
)

and

In(t
′) = I0

wn

we

νa
νeff

(
eνeffTe(1−

t′
Tn
) − 1

)
, (9)

where t′ = t−Te, I0 =
q0Ne(0)we

L is the initial electron current
and Tn = L/Wn and Tp = L/Wp the transit times of the negat-
ive and positive ion swarms. An example of calculated total,
negative and positive ion currents is given in figure 5(b). The
discussion of the ion transport properties is, however, not the
topic of this work.

In the PT setup, the E/N values are set with an accuracy
of ± 0.5% over a wide range of pressures (0.01 Pa. . .100 kPa
± 0.15%), distances (11 mm. . .35 mm± 10 µm) and voltages
(7.5 V. . .60 kV ± 0.02%) taking also into account the uncer-
tainty on the measured room temperature and the slight

inhomogeneity of the applied electric field in between the elec-
trodes (0.2%) [36]. In the evaluation of the effective ionization
rate at a set of (U,L, p)-values, the main source of uncertainty
is the noise on the signal. To increase the signal to noise ratio
(SNR), the measurements are repeated a large number of times
(200 to 400 repetitions for 20≤ E/N ≤ 1000 Td and more than
1000 repetitions for E/N ≤ 20 Td) and only the average signal
is kept for the evaluation. In addition, the photocathodes are
frequently renewed to maintain a number of initial electrons
above 105. For the drift velocity and the longitudinal diffusion
coefficient, an additional source of error is the limited band-
width of the transimpedance and voltage amplifiers as well as
the finite laser pulse length in the determination of the diffu-
sion coefficient.

The high reproducibility of the measurements demon-
strated in [36] allows a flexibility in choosing the appropriate
range of operating conditions for which the uncertainty on the
evaluated swarm parameters is the lowest as described above.
To get an estimation on the accuracy of the measurement in
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Figure 6. (a) Electron current in CO2 at E/N = 40 Td, with an electrode spacing of about 30 mm, at two different pressures: 0.2 and 60 kPa.
(b) Longitudinal electron diffusion coefficient derived from the measurements in CO2 at different pressures (the vertical error bars reflect
the uncertainty from the fitting procedure, they do not include the error due to neglecting the initial broadening of the swarm). According to
the hydrodynamic approximation, the values of NDL should be independent of pressure. Here, the values of NDL are pressure-dependent,
because neglecting the initial broadening of the swarm leads to overestimating NDL by an amount increasing with pressure and with E/N.
Therefore, the most reliable values are those obtained at the lowest pressure, here 0.18 kPa.

addition to the precision, measurements at a single E/N-value
are repeated for a large set of (U,L, p)-values. The standard
deviation which derives from this is included in the evaluation
of the errorbars and is the largest contributor for 20< E/N<
500Td.

2.3. Comparison of the approaches

Some key differences and limitations of the two experimental
systems are highlighted in this section. Most of the time, these
limitations can be prevented in the experiment itself or over-
come by advanced signal analysis when they are detected and
their origin is known. Because of different design goals, the
two setups typically operate at different experimental condi-
tions and with different hardware:

• electrode diameter: The electrode diameter should be suf-
ficient to ensure that all electrons are collected, taking into
account the transverse diffusion.

• operating pressure: A sufficiently low operating pressure
enables measurements at elevated E/N values because the
electron multiplication is limited and does not lead to elec-
trical breakdown. In contrast, the benefit of a high operating
pressure is to obtain more precise values for the reaction
rate coefficients, and to observe the drift ions, additionally
to that of the electrons. By analyzing the ion current, differ-
ent reaction rate coefficients can be distinguished, not only
the effective ionization rate coefficient. The TOF setup was
primarily designed to operate at low pressure, from a few
10 Pa to a few 100 Pa, whereas the PT was designed to
operate from 1 kPa to 100 kPa. A set of measurements in
the PT setup typically includes different pressures, so that
the rate coefficients of two and three-body processes can be
distinguished. At low pressure, the PT technique is limited
by the physical condition that swarm-equilibration should

be much faster than the drift time of electrons through the
cell. The PT setup is limited at high pressure to 100 kPa
because the experiment was not designed to have internal
over-atmospheric pressure. Regarding the TOF system, the
response time of the data acquisition electronics and the
finite duration of the laser pulses sets the limit of operation
at low pressures, while the vanishing signal level (as dis-
cussed in section 2) limits the operation at high pressures.

• laser power: The pulse energy influences the number of
initial electrons in both setups. The benefit of a low pulse
energy (smaller number of initial electrons) is that it is
easier to avoid problems such as space charge effects,
breakdown and excessive production of excited species.
The benefit of high pulse energy is that less averaging (repe-
titions) are needed to measure the current signals. Addi-
tionally, a high number of initial electrons is required in
case of gases and conditions when strong electron attach-
ment is present. The TOF and PT setups operate at the same
laser wavelength of 266 nm but with different pulse energy:
1.7 µJ per pulse for the TOF setup and adjustable from 2 to
200 µJ per pulse for the PT setup. The higher repetition rate
in the TOF setup makes it easier to perform averaging over
a higher number of pulses, which is necessary at the lower
pulse energy of this system.

• laser pulse length: In both data acquisition methods the
finite duration of the laser pulses is neglected. In reality,
this finite duration (the time-dependent intensity during the
pulse) extends the spatial size of the electron cloud, with
respect to an ‘ideal’ cloud shape that belongs to an instant-
aneous emission of the electrons, of which the mathemat-
ical form (3) is assumed in the data analysis in both sys-
tems. The finite duration of laser pulses of 1.5 and 5 ns,
respectively, for the PT and TOF setups, is however, short
compared to the transport time scales that are typically in
the order of ∼100–1000 ns (see figures 2 and 6). For the
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TOF measurements, the possible effects of the broadening
of the electron cloud has to be kept in mind at high E/N
and low pressure conditions. For the PT setup, in turn, the
effect of initial broadening is particularly noticeable in the
evaluation of the diffusion coefficient at low electrode sep-
aration distance and higher pressure, as mentioned above in
section 2.2.2.

Additionally, the two setups address differently the physical
limitations of the measurements:

• Non-hydrodynamic region: A certain time/drift length is
needed for the photoelectrons emitted from the cathode
to reach the steady-state energy distribution. During this
equilibration time / space, the transport parameters are not
defined and there is no straightforward interpretation for the
measured current. As such effects are not accounted for by
the mathematical form of the spatio-temporal density dis-
tribution of the electron cloud used in the data acquisition
for both systems, working under conditions that ensure a
short equilibration time with respect to the transport time
scale/short equilibration length with respect to the elec-
trode gap is strongly preferred. In the swarmmaps obtained
from the TOF measurements non-equilibrium behavior can
directly be observed [71] and excluded from the analysis.
In the PT setup, in turn, this effect can neither be dir-
ectly observed nor excluded. As the scanning TOF system
has a minimum electrode gap defined by its construction
the most sensitive region cannot be observed. Therefore,
attention has to be paid in both experiments to avoid con-
ditions with excessive equilibration time / length for the
swarms. In general, non-equilibrium effects are most crit-
ical in atomic gases and atE/N values of typically few times
10 Td. Inmolecular gases the effect is less pronounced. Due
to the pressure × length scaling, operation at high pres-
sures is advantageous at low E/N, which favours the use
of the PT system, which is more suited to work under such
conditions.

• Space charge effects: In both setups, accumulation of
space charges may distort the (otherwise) constant electric
field over the electrode gap, thus it is to be avoided. The
TOF setup operates with a lower number of initial elec-
trons because of the low laser pulse energy and is thus less
susceptible to this problem. In the PT setup, space charge
effects aremitigated by illuminating a large area on the pho-
tocathode (4 cm2), which lowers the electron density. Addi-
tionally, the total charge of the avalanches is actively regu-
lated below 10 pC by attenuating the laser light between
1% and 100%. This 10 pC charge is an absolute max-
imum, and the vast majority of measurements have a much
lower charge. This total charge corresponds to approxim-
ately 6× 107 charged particles, which include not only
electrons, but also anions and cations produced. Therefore,
the number of electrons is significantly below Meek’s cri-
terion of 108 electrons for the avalanche to streamer trans-
ition [65]. Decreasing further the total charge is feasible,
but a compromise is needed between avoiding space-charge
effects and maintaining a sufficient SNR ratio [62].

• Presence of excited species: Both setups make efforts to
limit the production and accumulation of excited molecules
and dissociation products, which could affect the transport
parameters by de facto changing the gas composition. The
TOF experiment is pulsed at 3 kHz but a constant gas flow
is maintained to avoid the accumulation of excited species.
In contrast to this, the PT experiment uses no gas flow but
operates with a slower repetition rate of 20 Hz.

• Impact of ion collisional processes: In the present study,
both the TOF and PT analysis in CO2 assume the pres-
ence of electron attachment and electron impact ionization
only. Generally, this assumption should not be taken for
granted. In some cases, ion collisional processes, such as
an electron detachment from negative ions and ion conver-
sion processes can significantly affect the measured cur-
rent [62, 66]. The rates of ion collisional processes depend
on the collision frequency for collisions between ions and
neutral molecules, on the electric field strength and on the
gas pressure. In conditions where these processes are signi-
ficant, the numerical procedures used to analyse the current
signals should be adapted to include their effects.

Additionally to all above-mentioned points, attention must
be paid to unexpected measured current shapes in both exper-
iments, as these could be indications of further limitations
which were not identified, or operation outside the region of
valid assumptions.

3. Results

In this section, results are presented for the transport coef-
ficients (bulk drift velocity, longitudinal component of the
bulk diffusion tensor, effective ionization rate coefficient and
density reduced effective ionization coefficient) over a wide
range of E/N-values: 8 Td ≤ E/N ≤ 2000 Td for W, 10
Td ≤ E/N ≤ 2000 Td for NDL, 3 Td ≤ E/N ≤ 2000 Td for
νeff/N and 80 Td ≤ E/N ≤ 2000 Td for αeff/N. The data
obtained by the two experimental systems are compared.

Figures 7 shows the bulk drift velocity,W for the PT exper-
iment as well as for the TOF experiment along with the cor-
rected values of the latter, whereby the correction method was
carried out as described in section 2.1.2 (a), and their com-
parison to other experimental data (b). For the bulk drift velo-
city, this correction amounts to a few percents. The datasets
from the two systems for the bulk drift velocity have very
good agreement (within ≈5 %) over the whole overlapping
E/N range.

For the PT system, each data point corresponds to the aver-
age over 2 to 8 (U,L, p)-values and the data set extends as
low as 8 Td, below which the low SNR prevents a precise
evaluation of the drift velocity, and as high as 1040 Td. The
TOF-experiment provides high-precision data (within a few
percents) at higher E/N-values (up to 2000 Td) and as low as
12 Td. Both methods give very precise results, i.e. they scat-
ter within percents. As for the comparison with other experi-
mental results, our data agrees very well with the works of the
other authors listed above, except for Schlumbohm [74], who

10



J. Phys. D: Appl. Phys. 54 (2021) 035202 M Vass et al

Figure 7. Comparison of the bulk drift velocity values (W) obtained by the two different experimental setups (a) and comparison of these
values to other experimental data (b): Elford and Haddad [72], Hasegawa et al [73], Schlumbohm [74], Hernandez-Ávila et al [75],
Yoshinaga et al [76]. For the determination procedure of the corrected experimental values in case of the TOF experiment in panel (a),
see section 2.1.2. For most data points, error bars are smaller than the respective symbols.

Figure 8. Comparison of the measured values of the longitudinal component of the bulk diffusion tensor (NDL) obtained by the two
experimental setups (a) and their comparison to other experimental data (b): Hasegawa et al [73], Hernandez-Ávila et al [75], Yoshinaga
et al [76]. In the TOF experiment the pressure ranged between 20 Pa (at the highest E/N) to 300 Pa (at the lowest E/N). The operating
pressures of the PT experiment are indicated in the legend.

also used a PT-method to obtain transport coefficients: in this
case there is an increasing deviation with increasing E/N.

Figure 8 shows the longitudinal component of the bulk dif-
fusion tensor, NDL. In panel (a) the two systems show a gen-
erally good agreement as the error margin of both datasets
overlap. Accordingly to section 2.2.2, for each E/N-value, the
result obtained with the PT system in the lowest gas-pressure
is kept and given here. The discrepancies between the sets of
different pressures is clearly visible in figure 8 and the scat-
ter of the results seems to be enhanced with increasing E/N.
The TOF results have a high uncertainty over the measured

E/N range and increases significantly below 20 Td (as big
as 100 % in some cases), therefore the determination of this
transport coefficient is not reliable at such low E/N values in
the TOF system. The TOF system has a wider range of meas-
urements, i.e. its highest E/N value is 2000 Td . Between 10
Td and 1040 Td , the NDL values obtained by the PT system
are smaller than that of the TOF system, but the two datasets
show a similar trend, in particular in the range between 20
Td and 200 Td. Considering other experimental data shown
in figure 8(b), there is a reasonably good agreement between
our datasets and previous measurements, especially at low and
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Figure 9. (a) Comparison of the effective ionization rate coefficient
(νeff/N) obtained by the two experimental setups. (b) Effective
ionization rate coefficient at low E/N values obtained from the PT
experiment. Note the negative values that indicate the dominance of
electron attachment over ionization.

intermediate (20 Td ≤ E/N ≤ 200 Td) E/N-values. Further-
more, given the higher uncertainty of the TOF-system, the res-
ults of previous measurements are all within the uncertainty
range of the TOF-system.

Figures 9 and 10 show the effective ionization rate coeffi-
cient, νeff/N, and the density reduced effective ionization coef-
ficient, αeff/N, respectively. As mentioned in section 2.2.2,
the effective ionization rate coefficient obtained with the PT
experiment at the highest gas pressure are shown here. The
obtained results with the PT experiment have high precision
over the whole E/N range, i.e. between 3 Td and 1040 Td.
There is a good agreement between the two sets of data at inter-
mediate and high E/N values, i.e. above 150 Td . Below 150

Td, the TOF system does not produce reliable results for the
effective ionization rate coefficient due to the reduced SNR.
As figure 9(b) reveals, electron attachment dominates ioniz-
ation between ∼ 40 Td to ∼ 85 Td, as indicated by a negat-
ive νeff value. The strongest attachment occurs at around 70
Td and vanishes as E/N→ 0. Figure 10 (b) shows the com-
parison of the present measurements with available experi-
mental data for αeff/N. The datasets show very good agree-
ment throughout the whole E/N-range, where data is available
(100 Td ≤ E/N ≤ 2000 Td).

3.1. Discussion

3.1.1. Bulk drift velocity and mobility. Both setups derived
the bulk drift velocity and electron mobility in CO2 with a
high precision. Furthermore, the excellent agreement of the
results in the large overlapping region between 10 and 1000 Td
confirms also the accuracy of the results. This implies that the
physical assumptions underlying the analysis of both experi-
ments are valid.

As an example, one of the physical limits of the PT setup
is the non-equilibrium transport of electrons after their emis-
sion from the cathode. If the duration of the non equilibrium
transport would not be negligible, the values of the bulk drift
velocity would be affected. In contrast to this, the TOF exper-
iment can exclude the non-equilibrium transport period from
the analysis. The agreement of both results confirms the phys-
ical assumption of neglecting non-equilibrium transport under
the present conditions in the PT setup.

3.1.2. Longitudinal component of the bulk diffusion tensor.
In the PT system, the obtained values of the longitudinal com-
ponent of the bulk diffusion tensor are subject to an error due to
the underlying assumption of no initial broadening of the elec-
tron swarm. This error was minimized by selecting the meas-
urements performed at the lowest pressure.

In the TOF system, the obtained values of longitudinal com-
ponent of the bulk diffusion tensor have overall a large uncer-
tainty. As discussed in section 2.1, the correction procedure
of the TOF system yields a greater difference at high E/N
values, as due to the higher energy of the electrons the elec-
tron swarm becomes more anisotropic and hence the detector
sensitivity plays a major role. At low E/N values, the val-
ues of NDL obtained in the TOF setup are subject to a lar-
ger uncertainty due to the reduced SNR. The reduced SNR
affects the ‘width’ of the signal more than the position of
the maximum value. Therefore, significant uncertainties res-
ult in case of the longitudinal component of the bulk diffu-
sion tensor, which are not present in case of the bulk drift
velocity.

Despite these issues in both experiments, a reasonable
agreement of the results can be observed. It seems that in
the case of the longitudinal component of the bulk diffusion
tensor, the PT system yields slightly more accurate at low and
intermediate values of the reduced electric field, whereas the
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Figure 10. Comparison of the density reduced effective ionization coefficient values (αeff/N) obtained by the two experimental setups
(a) and their comparison to other experimental data (b): Bhalla and Craggs [77], Schlumbohm [78], and Townsend [79].

TOF system does the same at high values of E/N. In this sense,
the two experimental setups complement each other.

3.1. 3. Effective ionization rate coefficient and density reduced
effective ionization coefficient. Above 150 Td , a good agree-
ment is observed between the results of the two experiments,
which confirms their accuracy. Below 150 Td the SNR in the
TOF experiment is not sufficient to obtain reliable results for
the effective ionization rate coefficient, and a fortiori for the
density reduced effective ionization coefficient.

4. Conclusions

Electron rate and transport coefficients (bulk drift velocity,
W, the longitudinal component of the bulk diffusion tensor,
NDL, effective ionization rate coefficient, νeff/N, and dens-
ity reduced effective ionization coefficient, αeff/N) have been
measured in CO2 by two independent experimental setups,
which have been compared to each other and to previous
independent measurements found in the literature. The exper-
imental setups operate under the hydrodynamic conditions
where one is a ‘scanning’ drift tube which belongs to a group
of TOF experiments, whereas the other is a typical PT experi-
ment. However, the data acquisition methods are different: in
case of the TOF system, thewhole spatio-temporal distribution
of the density of an electron swarm for an unbound region,
n(x, t) (equation (3)) is fitted to the measured displacement
current, whereas in the PT system its integral over the whole
spatial domain of the drift tube is fitted to the measured time
dependent displacement current. The TOF results undergo a
correction procedure, where the sensitivity of the detector is
taken into account by comparing Monte Carlo simulation res-
ults of the experimental setup and a spatially unbounded region
[44]. Both experimental systems have already been used to
obtain electron transport coefficients in different gases, which
were compared to other, independently measured data.

The results for the bulk drift velocity, W, showed almost
perfect agreement (within ≈ 1–2%) over the whole reduced
electric field (E/N) region, where both measurements have
data (between 10 Td and 1000 Td ). The TOF system has
a wider range of reduced electric field where it can provide
experimental data, up to 2000 Td. The comparison to pre-
vious measurements also showed a very good agreement
except for Schlumbohm [74], where considerable deviation
was observed at high E/N-values. The data obtained for the
longitudinal component of the bulk diffusion tensor, NDL,
showed a generally good agreement, although the PT results
are smaller than that of the TOF system over the whole E/N
range. The PT and TOF setups both show a high repeatability
of results. In the PT setup, to further test the accuracy of meas-
urements, additional measurements are performed by varying
pressure and distance as much a possible while keeping the
same E/N ratio. The results differ more than the repeatability
at a single condition would suggest, as was already observed
in a previous work [36]. This shows that high repeatability
is not sufficient to warranty high measurements accuracy. At
low reduced electric field values the TOF system cannot pro-
duce accurate results, as due to the small SNR the ‘width’
of the signal cannot be properly detected and thus the fitting
yields a high uncertainty. The comparison with other data-
sets yielded reasonably good agreement at low and interme-
diate E/N-values (between 20 Td and 200 Td). Regarding the
effective ionization rate coefficient, νeff/N as well as the dens-
ity reduced effective ionization coefficient, αeff/N, the results
above 100 Td agree within a few percents. Likewise, the agree-
ment is very good between the present results and previous
measurements. Below this threshold, the TOF system cannot
produce reliable results, but it extends the E/N range in the
direction of higher values, up to 2000 Td. Consequently, it
can be stated, that the TOF system gives accurate results for
a wide range of reduced electric field values, but at small val-
ues (below 10 Td for NDL and 100 Td for νeff/N and αeff/N),
due to the small SNR, the data obtained are either not reliable
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or have high uncertainties. For gases such as CO2, which do
not strongly attach electrons, the PT setup preferably operates
below 1000 Td, whereas the TOF system’s maximal value is
2000 Td. In the overlapping region, i.e. at intermediate E/N
values the agreement of the data obtained by the two experi-
mental systems indicate the correctness of the measured elec-
tron transport coefficients.
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da Silva M L, Pintassilgo C D, Alves L L and Guaitella O
2017 Plasma Sources Sci. Technol. 26 11LT01

[28] Jawad E A and Jassim M K 2019 Energy Procedia 157 117–27
[29] Attie D 2009 Nucl. Instrum. Meth. Phys. Res. A 598 89–93
[30] Korolov I, Vass M, Bastykova N K and Donkó Z 2016 Rev.
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Fedor J 2018 J. Chem. Phys. 149 204305

[53] Hösl A, Pachin J, Chachereau A, Kornath A and Franck C M
2018 J. Phys. D: Appl. Phys. 52 055203

[54] Chachereau A, Hösl A and Franck C M 2018 J. Phys. D: Appl.
Phys. 51 335204

[55] Chachereau A and Franck C M 2017 20th Int. Symp. on High
Voltage Engineering

[56] Chachereau A and Franck C M 2017 J. Phys. D: Appl. Phys.
50 445204

[57] Chachereau A and Franck C M 2016 J. Phys. D: Appl. Phys.
49 375201

[58] Chachereau A, Fedor J, Janečková R, Kočišek J, Rabie M
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Third-order transport coefficient tensor of charged-particle swarms in neutral gases in the presence of spatially
uniform electric and magnetic fields is considered using a multiterm solution of Boltzmann’s equation and Monte
Carlo simulation technique. The structure of the third-order transport coefficient tensor and symmetries along
its individual components in varying configurations of electric and magnetic fields are addressed using a group
projector technique and through symmetry considerations of the Boltzmann equation. In addition, we focus upon
the physical interpretation of the third-order transport coefficient tensor by considering the extended diffusion
equation which incorporates the contribution of the third-order transport coefficients to the density profile of
charged particles. Numerical calculations are carried out for electron and ion swarms for a range of model
gases with the aim of establishing accurate benchmarks for third-order transport coefficients. The effects of
ion to neutral-particle mass ratio are also examined. The errors of the two-term approximation for solving the
Boltzmann equation and limitations of previous treatments of the high-order charged-particle transport properties
are also highlighted.

DOI: 10.1103/PhysRevE.101.023203

I. INTRODUCTION

Studies of charged-particle swarms in neutral gases under
the influence of electric and magnetic fields have applica-
tions in diverse areas of science and technology ranging
from swarm experiments used to determine electron- and
ion-neutral cross sections [1–5] to plasma processing tech-
nology [6–9], particle detectors used in high-energy physics
[10,11], high-voltage technology [12], and positron physics
[13,14]. These applications often require knowledge of swarm
transport coefficients in the presence of the reduced electric
and magnetic fields, E/n0 and B/n0, where E and B are the
strengths of electric and magnetic fields, respectively, while
n0 is the neutral number density.

There is a large and growing literature dealing with the
low-order transport coefficients, in which the variation of the
reaction rate, drift velocity and diffusion tensor with E/n0
(and B/n0) for both the electrons and ions [15,16], and since
recently even for positrons [14,17], are reported. In contrast,
little is known about high-order transport coefficients, and
limited data can be found in the literature, particularly for
light charged particles such as electrons or positrons. The
most obvious reason for this situation is the fact that the
transport coefficients of higher-order have been difficult to
measure, difficult to treat theoretically, and even more dif-
ficult to include in plasma models and thus were system-
atically ignored in the traditional interpretation of swarm
experiments [1,3,4,16]. It was usually anticipated that swarm
experiments are performed under conditions in which the

*Corresponding author: sasa.dujko@ipb.ac.rs

effects induced by transport coefficients of higher-order are
negligible [18,19]. On the other hand, in the early 1970s, it
was shown that some arrival-time spectra of ions in drift tubes
significantly deviate from the ideal Gaussian pulses which are
represented in terms of the lower-order transport coefficients
only [20]. To our knowledge, there have been only a few
attempts to measure the third-order transport coefficients, or
to be more accurate to interpret the observed data in terms of
the effects of higher order transport [21–24].

In spite of low interest in higher-order transport coeffi-
cients, it was pointed out by several specialists and research
groups that the third-order transport coefficients for electrons
are very sensitive to the rapid variations with the energy of the
momentum transfer cross section as a function of the energy.
For example, it was pointed out by Penetrante and Bardsley
[18] almost 25 years ago that the third-order transport co-
efficients are at least as sensitive to the depth and position
of the Ramsauer-Townsend minimum for elastic scattering
of the electrons in noble gases as the lower-order transport
coefficients, including the drift velocity and the characteristic
energy. Along similar lines, it was pointed out by Vrhovac
et al. [19] that the third-order transport coefficients would be
very useful for a fine tuning of cross sections for inelastic
collisions in the close vicinity of their thresholds. This implies
that in principle one could use the higher-order transport
coefficients as an additional input for enhancing the reliability
of swarm-derived cross sections.

Early work on the higher-order transport coefficients of
charged-particle swarms in electric fields has been presented
by Whealton and Mason [25]. Using the analytical solution
of Boltzmann’s equation for the Maxwell model of inter-
action, they found that the third-order transport coefficient

2470-0045/2020/101(2)/023203(22) 023203-1 ©2020 American Physical Society
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tensor has seven nonzero elements of which three are in-
dependent. It was also shown that when the electric field
is absent, all components of the third-order transport coef-
ficient tensor vanish. Early studies of the third-order trans-
port coefficients for ion swarms have been performed by
Robson [26] and Larsen et al. [27] using Boltzmann’s equa-
tion solutions.

In 1994, Penetrante and Bardsley [18] carried out the
numerical solution of Boltzmann’s equation for electrons
in noble gases. Among many important points, they found
that the third-order transport coefficients could be detected
and resolved from the arrival time spectra of an electron
swarm. A similar procedure for the determination of the
transport coefficients of both the low and higher order was
earlier proposed by Kondo and Tagashira [28]. Koutselos
used molecular dynamics simulations and a three-temperature
treatment of Boltzmann’s equation with the aim of calculating
the third-order transport coefficients for K+ and Li+ ions in
noble gases [29–32].

Within the framework of the semiquantitative momentum
transfer theory [2,33,34], Vrhovac et al. [19] have developed
the method of calculations of the third-order transport co-
efficients for charged-particle swarms in the presence of an
electric field only. The theory and the associated numerical
code, were used to evaluate the third-order transport coeffi-
cients in noble gases, but only in the limit of the lower values
of E/n0 where electrons undergo elastic collisions only. The
presented results were found to confirm the structure of the
third-order transport coefficient tensor previously determined
by Whealton and Mason [25].

Using the theory of arrival time spectra of an electron
swarm initially developed by Kondo and Tagashira [28] and
a Monte Carlo simulation technique, Kawaguchi and co-
workers derived the relation between the longitudinal third-
order transport coefficient and the α parameters (arrival-time
spectra transport coefficients) [35,36]. Arrival-time spectra
can be measured by a double-shutter drift tube clearly indi-
cating that the longitudinal third-order transport coefficient
can be obtained experimentally from the knowledge of the α

parameters. Along similar lines, it was pointed out by Dujko
et al. [37] that the conversion of hydrodynamic transport
coefficients to those found in the steady-state Townsend ex-
periment requires the knowledge of the third-order transport
coefficients. Petrović and co-workers [38] have also used a
Monte Carlo simulation technique to derive the longitudinal
and transverse third-order transport coefficients in CH4 over
a broad range of the applied reduced electric fields. Among
many important points, it was shown that the transverse third-
order transport coefficient becomes negative in the same range
of the applied electric fields where the negative differential
conductivity occurs. The negativity of the third-order trans-
port coefficients has also been observed for charged-particle
transport in the presence of trapped (localized) states [39].

The signatures of the higher order transport processes have
been observed in the numerical modeling of plasma dis-
charges. For example, in the avalanche phase of the streamer
development, the particle-in-cell Monte Carlo simulations
have shown that a spatial profile of electrons may significantly
deviate from an ideal Gaussian as predicted by fluid models
based on the equation of continuity [40,41]. The clear signs

of high-order transport have been observed in the studies
of the spatiotemporal development of the electron swarms
[42,43]. The pronounced asymmetry in the spatial profiles of
the electron swarm is particularly evident during the transient
phase of relaxation, in the presence of strong nonconservative
interactions [44,45], as well as for electron transport in no-
ble gases with a Ramsauer-Townsend minimum under the
influence of E/n0’s for which the mean electron energies are
well below the first inelastic threshold. It is worth noting
that a similar effect of nonconservative collisions is observed
for positrons in gases where spatially dependent positronium
formation skews the profile of the ensemble to the point that a
Gaussian cannot be recognized and analyzed [46,47].

Furthermore, the transport coefficients of the third and
higher orders are very often used to characterize fractional
transport in a variety of situations, ranging from the trapping
of charge carriers in local imperfections in semiconductors
[48–51] to electron [52–54] and positronium [13,55,56] trap-
ping in bubble states within liquids, and to transport in biolog-
ical cells [57–60].

The above examples clearly show that a rigorous analysis
of the third-order transport coefficients in the context of the
contemporary kinetic theory of charged-particle swarms is a
long overdue, and the present paper takes a few important
steps in this direction. Besides being of intrinsic interest, we
are also motivated by the following questions: What is the
structure of the third-order transport coefficient tensor, and
how can symmetries be identified in varying configurations
of electric and magnetic fields? What is the physical interpre-
tation of third-order transport coefficients, and what is their
contribution to the spatial profile of the swarm in a typical
time-of-flight experiment? Is this contribution more signif-
icant for light charged particles or for more massive ions?
How does the magnetic field affect the third-order transport
coefficients, and how large are the errors of the two-term
approximation for solving the Boltzmann equation? In the
present paper, we will try to address these issues.

This paper is organized as follows. In Sec. II we discuss the
basic elements of the theory, the structure and physical inter-
pretation of the third-order transport coefficient tensor, as well
as our methods of calculations. In Sec. III we present results
of calculations for a range of model gases. Where possible, the
results of the Boltzmann equation analysis are compared with
those calculated by the Monte Carlo method with the goal
of establishing accurate benchmarks for third-order transport
coefficients. As an example of our calculations in real gases,
in Sec. III we discuss the behavior of the third-order transport
coefficients for electron swarms in neon. Last, in Sec. IV we
present our conclusions and future work recommendations.

II. THEORY: DEFINITIONS, SYMMETRIES,
INTERPRETATIONS, AND METHODS

OF CALCULATION

The main physical object of our study is a swarm of
charged particles which moves through a background of
neutral molecules in external electric and magnetic fields
crossed at arbitrary angles. The density of charged parti-
cles is assumed to be sufficiently low so that the following
properties apply: (1) charged-particle–charged-particle inter-
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actions and space charge effects can be neglected, collisions of
transported charged particles and excited or dissociated
species are unlikely, (2) the motion of charged particles
between collisions can be treated classically, and (3) the
presence of charged particles does not perturb the background
particles from thermal equilibrium.

All information on the drift, diffusion, and transport prop-
erties of higher order of charged particles is contained in the
charged-particle phase-space distribution function f (r, c, t ),
where r represents the spatial coordinate of a charged particle
at time t , and c denotes its velocity. In the present work,
the distribution function f (r, c, t ) is determined by solving
Boltzmann’s equation:

∂ f

∂t
+ c · ∂ f

∂r
+ q

m
(E + c×B) · ∂ f

∂c
= −J ( f , f0), (1)

where q and m are the charge and mass of charged parti-
cles, respectively, while the electric and magnetic fields are
assumed to be spatially homogeneous and of magnitudes E
and B. In the present work we employ a coordinate system
in which the z axis is defined by E while B lies in the y-z
plane, making an angle ψ with respect to E. The right-hand
side of (1) denotes the linear charged-particle–neutral-particle
collision operator, accounting for elastic and various types
of inelastic collisions, including nonconservative collisions
(the charged-particle number changing processes, such as
ionization and attachment for electron swarms or positronium
(Ps) formation and annihilation for positron swarms). The
velocity distribution function of the background particles is
denoted by f0, and in the present study it is taken to be a
stationary Maxwellian at fixed temperature. The explicit form
of the collision operator can be found in Refs. [61,62].

A. Definition of the third-order transport coefficient tensor

The continuity of charged particles in the configuration
space requires the following balance equation:

∂n(r, t )

∂t
+ ∇ · �(r, t ) = S(r, t ), (2)

where

n(r, t ) =
∫

f (r, c, t ) dc (3)

is the number density of charged particles while �(r, t ) = n〈c〉
is the charged-particle flux given by

�(r, t ) =
∫

c f (r, c, t ) dc. (4)

The quantity S(r, t ) is the production rate per unit volume
per unit time arising from nonconservative processes. If the
electron-impact ionization and electron attachment are the
only nonconservative processes, then this property for elec-
tron swarms is given as

S(r, t ) =
∫

n0c[σi(ε) − σa(ε)] f (r, c, t ) dc, (5)

where σi(ε) is the cross section for electron impact ionization
while σa is the cross section for electron attachment. The
equation of continuity (2) provides a direct link between ex-
periment and theory, as in the majority of swarm experiments

the experimentally measurable quantities are usually charged-
particle currents or charged-particle densities.

In the present work we follow the conventional definitions
of transport coefficients and assume that the hydrodynamic
conditions prevail, so that all space-time dependence is ex-
pressible through linear functionals of n(r, t ). The hydrody-
namic conditions are not satisfied near the boundaries of the
system or in the vicinity of sources and/or sinks of charged
particles, as well as under conditions in which electric and/or
magnetic fields are not spatially homogeneous. The func-
tional representation of the hydrodynamic approximation is
the well-known density gradient expansion of the phase-space
distribution function [63]:

f (r, c, t ) =
∞∑

k=0

f (k)(c, t ) � (−∇ )kn(r, t ), (6)

where f (k)(c, t ) are time-dependent tensors of rank k and
� denotes a k-fold scalar product. Performing equivalent
representation of the flux �(r, t ) and source term S(r, t ), we
have

�(r, t ) =
∞∑

k=0

�(k+1)(t ) � (−∇)kn(r, t ), (7)

S(r, t ) =
∞∑

k=0

S(k)(t ) � (−∇)kn(r, t ), (8)

where the superscripts (k) and (k + 1) denote the ranks of the
tensors. Equation (7) represents the flux-gradient relation and
truncation of the expansion at k = 2 gives

�(r, t ) = W n(r, t ) − D � ∇n(r, t ) + Q � (∇ ⊗ ∇)n(r, t ),

(9)

where ⊗ is the tensor product, W and D are lower-order
transport coefficients, the flux drift velocity and flux diffu-
sion tensor, respectively, and Q defines the flux third-order
transport coefficient tensor. The flux transport coefficients are
given by

W = �(1) =
∫

c f (1)(c, t ) dc, (10)

D = �(2) =
∫

c f (2)(c, t ) dc, (11)

Q = �(3) =
∫

c f (3)(c, t ) dc, (12)

where f (1)(c, t ), f (2)(c, t ), and f (3)(c, t ) are the expansion
coefficients in the density-gradient expansion of the phase-
space distribution function (6).

Substitution of expansions (7) and (8) into the continuity
equation (2) yields the extended diffusion equation which
incorporates the contribution of the third-order transport co-
efficient tensor,

∂n(r, t )

∂t
+ W (b) � ∇n(r, t ) − D(b) � (∇ ⊗ ∇)n(r, t )

+ Q(b) � (∇ ⊗ ∇ ⊗ ∇)n(r, t ) = −Rnetn(r, t ), (13)
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where Rnet is the net particle loss rate. For electron swarms,
this quantity is given by

Rnet = −S(0) = −
∫∫

n0c[σi(ε) − σa(ε)] f (r, c, t ) dc dr.

(14)
W (b) and D(b) are the bulk drift velocity and bulk diffusion
tensor, respectively, and Q(b) is the bulk third-order transport
coefficient tensor. The connection between the bulk and flux
transport coefficients is given by

W(b) = W + S(1), D(b) = D + S(2), Q(b) = Q + S(3),

(15)

where S(1), S(2), and S(3) are the expansion coefficients in the
hydrodynamic expansion of the source term (8).

The third-order transport coefficient tensor is referred to
as the skewness coefficient by some authors [18], while other
authors use the term skewness to denote just the diagonal
component of this tensor along the direction of the electric
field [19]. For brevity, in the rest of this work we will some-
times refer to the third-order transport coefficient tensor as the
skewness tensor.

In the absence of nonconservative processes (or when the
collision frequencies of these processes are independent of the
energy) the bulk and the flux transport coefficients are equal
[64]. In the presence of nonconservative collisions these two
families of transport coefficients can vary quite substantially
from each other. The physical interpretation, the origin of
differences and the application of the bulk and flux low-order
transport coefficients as well as their application in the model-
ing of plasma discharges have been thoroughly discussed and
illustrated in our previous publications [6,16,41,62]. We defer
a full discussion of the differences between the bulk and flux
third-order tensor coefficients to a future publication.

In order to show the rank of the tensor explicitly, the third-
order transport coefficient tensor in (9) can be rewritten

[Q � (∇ ⊗ ∇)n]i ≡
∑

jk

Qi jk
∂2n(r, t )

∂x j∂xk
, (16)

where the indices i, j, k each run over the space coordinates
x, y, z. We note that there are 27 components in the tensor
Q without considering any symmetry of the system under
permutation operations. However, since the order of differen-
tiation of n is irrelevant, some components of a tensor must be
equal to each other. For example, for the magnetic-field-free
case the maximal number of independent components is three,
while when both the electric and magnetic fields are present
and crossed at an arbitrary angle the maximal number of
independent components is 18. It is clear that the structure of
a tensor and symmetries along individual components depend
on the field configuration.

B. Structure and symmetry considerations of the third-order
transport coefficient tensor

One of the most important tasks in analysis of higher-
order transport coefficients is to identify the symmetries along
individual elements of the tensors. In this section we apply
the group projector method [65] to determine the structure

of the skewness tensor. The group projector method is briefly
discussed in Appendix A.

We first consider a magnetic-field-free case. The symmetry
group of the system in the magnetic-field-free configuration is
C∞V (see Appendix A). This group has two connected com-
ponents. The first component corresponds to rotations Rz(α)
about the z axis through an arbitrary angle α. The second
component corresponds to the composition of a rotation Rz(α)
and a reflection in the symmetry plane σv . Polar vector (PV)
representations of the group elements from the first and the
second connected components are

DPV (Rz(α)) =
⎛⎝cos α − sin α 0

sin α cos α 0
0 0 1

⎞⎠, (17)

DPV (σvRz(α)) =
⎛⎝ cos α − sin α 0

− sin α − cos α 0
0 0 1

⎞⎠, (18)

where α is the angle of rotation around the z axis. Thus,
for the magnetic-field-free case the following structure of the
skewness tensor is derived:

Qxab =
⎛⎝ 0 0 Qxxz

0 0 0
Qxxz 0 0

⎞⎠, Qyab =
⎛⎝0 0 0

0 0 Qxxz

0 Qxxz 0

⎞⎠,

Qzab =
⎛⎝Qzxx 0 0

0 Qzxx 0
0 0 Qzzz

⎞⎠, (19)

where a, b ∈ {x, y, z}. For the magnetic-field-free case the
skewness tensor has seven nonzero elements and only
three independent elements, including Qzzz, Qzxx, and Qxxz

[19,25,31,32]. Furthermore, the following symmetry proper-
ties along the individual elements of the tensor hold:

Qxxz = Qxzx = Qyyz = Qyzy, Qzxx = Qzyy. (20)

For parallel electric and magnetic fields the symmetry
group of the system is C∞ (see Appendix A). This group has
only a single component consisting of rotations Rz(α):

DPV (Rz(α)) =
⎛⎝cos α − sin α 0

sin α cos α 0
0 0 1

⎞⎠. (21)

In this case the structure of the skewness tensor is more
complicated. For instance, the presence of the element Qxyz

is due to the explicit effects of the magnetic field on the
trajectories of the charged particles. It is interesting to note
that this component has exactly the opposite contribution to
the third-order diffusive flux along the x and y directions.
This is analogous to the Dxy component of the diffusion
tensor. Likewise, the third-order flux along the magnetic field
direction is the same as for the magnetic-field-free case. Thus,
for parallel electric and magnetic fields the skewness tensor
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has the following structure:

Qxab =
⎛⎝ 0 0 Qxxz

0 0 Qxyz

Qxxz Qxyz 0

⎞⎠,

Qyab =
⎛⎝ 0 0 −Qxyz

0 0 Qxxz

−Qxyz Qxxz 0

⎞⎠, (22)

Qzab =
⎛⎝Qzxx 0 0

0 Qzxx 0
0 0 Qzzz

⎞⎠.

For parallel electric and magnetic fields the skewness tensor
has 11 nonzero elements and only four independent elements,
including Qzzz, Qzxx, Qxxz, and Qxyz. Furthermore, the follow-
ing symmetry properties along the individual elements of the
tensor may be identified:

Qxxz = Qxzx = Qyyz = Qyzy, Qzxx = Qzyy,

Qxyz = Qxzy = −Qyxz = −Qyzx. (23)

For orthogonal electric and magnetic fields the symmetry
group of the system is C1V . This group has only two elements,
the unity element e and a reflection in the symmetry plane σv ,
which is orthogonal to the direction of the magnetic field. The
PV representations of these two elements are given by

DPV (e) =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠, DPV (σv ) =
⎛⎝1 0 0

0 −1 0
0 0 1

⎞⎠. (24)

Thus, for orthogonal electric and magnetic fields the skewness
tensor has the following structure:

Qxab =
⎛⎝Qxxx 0 Qxxz

0 Qxyy 0
Qxxz 0 Qxzz

⎞⎠,

Qyab =
⎛⎝ 0 Qyyx 0

Qyyx 0 Qyyz

0 Qyyz 0

⎞⎠, (25)

Qzab =
⎛⎝Qzxx 0 Qzzx

0 Qzyy 0
Qzzx 0 Qzzz

⎞⎠.

We observe that for orthogonal fields the skewness tensor has
14 nonzero elements among which 10 are independent. The
following symmetry properties along the individual elements
of the tensor are clearly evident:

Qxxz = Qxzx, Qyyz = Qyzy, Qyyx = Qyxy, Qzzx = Qzxz.

(26)

When electric and magnetic fields are crossed at arbitrary
angles, the symmetry group of the system is the trivial group,
which has only the unity element, e.g.,

DPV (e) =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠. (27)

For this general configuration, the skewness tensor is full,
and it has 27 nonzero elements. However, there are only

18 independent components as the last two indices of the
skewness tensor commute. Thus, the skewness tensor has the
following structure:

Qxab =
⎛⎝Qxxx Qxxy Qxxz

Qxxy Qxyy Qxyz

Qxxz Qxyz Qxzz

⎞⎠,

Qyab =
⎛⎝Qyxx Qyyx Qyxz

Qyyx Qyyy Qyyz

Qyxz Qyyz Qyzz

⎞⎠, (28)

Qzab =
⎛⎝Qzxx Qzxy Qzzx

Qzxy Qzyy Qzzy

Qzzx Qzzy Qzzz

⎞⎠.

For this general configuration, one may identify the follow-
ing symmetry properties along the individual elements:

Qxxy = Qxyx, Qyyx = Qyxy, Qzzx = Qzxz,

Qxxz = Qxzx, Qyyz = Qyzy, Qzzy = Qzyz, (29)

Qxyz = Qxzy, Qyzx = Qyxz, Qzxy = Qzyx.

These symmetry arguments can be extended to any of the
higher-order transport coefficients.

C. Physical interpretation of the third-order
transport coefficients

In this section we discuss the physical meaning of the
third-order transport coefficients. Let us assume that the con-
tribution of the third-order transport coefficients to the density
profile of charged particles is negligibly small. This reduces
the extended diffusion equation (13) to the well-known form

∂n(r, t )

∂t
+ W (b) � ∇n(r, t ) − D(b) � (∇ ⊗ ∇)n(r, t )

= −Rnetn(r, t ). (30)

Swarm experiments are traditionally analyzed by solving the
the diffusion equation (30), which gives the density of charged
particles throughout the bulk of medium. For example, in an
idealized time-of-flight experiment, in which a pulse of N0

particles is released from a plane source at z = 0 at time
t = 0 into an unbounded medium, the initial and boundary
conditions are

n(r, 0) = N0δ(r),

n(r, t ) = 0 (‖r‖ → ∞, t > 0), (31)

respectively, and the solution is

n(0)(r, t ) = N0e−Rnett e
− (z−W (b)t)2

4D(b)
L t

− x2+y2

4D(b)
T t(

4πD(b)
T t

)√
4πD(b)

L t
, (32)

where D(b)
L and D(b)

T are the bulk longitudinal and bulk trans-
verse diffusion coefficients, respectively, while x, y, and z are
the Cartesian coordinates [62]. The solution (32) represents a
Gaussian pulse, the peak of which drifts with the velocity W (b)

and diffuses about the center of mass according to the diffu-
sion coefficients D(b)

L and D(b)
T . For brevity, in what follows
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we omit explicit reference to the type of transport coefficients,
e.g., the superscripting for all transport coefficients.

Assuming the above initial conditions (31), the extended
diffusion equation (13), which incorporates the effects of
the third-order transport coefficient tensor, cannot be solved
analytically. Thus, we have applied the following procedure.
First, the Fourier transform of the charged-particle density
is expanded in terms of the longitudinal QL and transverse
QT components of the third-order transport coefficient tensor.
Using the inverse Fourier transformation of the expansion
coefficients, we have derived the density of charged particles
in which the corrections due to the third-order transport coef-
ficients are included. In the first approximation, in which only
the first-order corrections are assumed, the density of charged
particles is given by

n(1)(r, t ) =
[

1 + QL
t (z − W t )3 − 6DLt2(z − W t )

8(DLt )3

+ QT
3t (z − W t )(x2 + y2 − 4DT t )

8DLt (DT t )2

]
n(0)(r, t ).

(33)

The first-order correction along the longitudinal direction
shown in Eq. (33) has been previously published by Pene-
trante and Bardsley [18]. This equation has a simpler form
in relative coordinates that are defined as

χz = z − W (b)t√
2D(b)

L t
, χx = x√

2D(b)
T t

, χy = y√
2D(b)

T t
. (34)

In these coordinates the approximate solution (32) may be
written as

n(1)(r, t ) = n(0)(r, t )

[
1 + tQ(b)

L

σ 3
z

χz
(
χ2

z − 3
)

+ 3tQ(b)
T

σ 2
x σz

χz
(
χ2

x + χ2
y − 2

)]
. (35)

It can be seen from Eq. (35) that the third-order transport
coefficients describe elongation and compression of the num-
ber density of charged particles along different parts of the
swarm. The detailed physical interpretation of the individual
components of the third-order transport tensor is given in
Appendix B.

D. Multiterm solutions of Boltzmann’s equation

In this section we briefly describe the basic elements of
a multiterm theory for solving the Boltzmann equation that
has been used to calculate the components of the third-order
transport coefficient tensor. The method is by now standard,
and for details the reader is referred to our previous publi-
cations [66–68]. In brief, the dependence of the phase-space
distribution function on the velocity coordinates is represented
by its expansion in terms of spherical harmonics (angular
dependence) and Sonine polynomials (speed dependence).
Likewise, under hydrodynamic conditions a sufficient repre-
sentation of the space dependence is an expansion in terms
of the powers of the density gradient operator. After trun-
cation and discretizing in time, the above expansions allow

a decomposition of the Boltzmann equation into a set of
matrix equations in terms of the expansion coefficients which
represent the moments of the distribution function. This set
of matrix equations can be solved numerically by using the
matrix inversion. Transport properties including mean energy,
drift velocity, and components of the diffusion tensor can then
be calculated directly from the moments of the phase-space
distribution function.

In order to find the explicit expressions for the individual
elements of the third-order transport coefficient tensor we use
the definition of the spherical vector [69]:

c[1]
m =

√
4π

3
cY [1]

m (ĉ). (36)

The connection between Cartesian and spherical components
of the velocity vector is given by

cx = i√
2

(
c[1]

1 − c[1]
−1

)
, cy = 1√

2

(
c[1]

1 + c[1]
−1

)
,

cz = −ic[1]
0 . (37)

Likewise, the flux of charged particles in irreducible tensor
notation is given by

�[1]
m = n

〈
c[1]

m

〉
, (38)

while its connection with the Cartesian components is ex-
pressed by

�x = i√
2

(
�

[1]
1 − �

[1]
−1

)
, �y = 1√

2

(
�

[1]
1 + �

[1]
−1

)
, (39)

�z = −i�[1]
0 .

Using the orthogonality relations for spherical harmonics and
modified Sonnine polynomials [61,69] and relation

cl =
(√

2

α

)
R0l (αc)

N0l
, (40)

after some algebra we get the following expression for the flux
of charged particles in the basis of Sonine polynomials:

�(1)
m = 1

α

∞∑
s=0

s∑
λ=0

λ∑
μ=−λ

F (01m|sλμ)G(sλ)
μ n(r, t ). (41)

Using the explicit expressions for the irreducible gradient ten-
sor operator in the spherical form of the flux-gradient relation
(41) [61], the relationship between the spherical quantities
�(1)

m (where m = −1, 0, 1) and their Cartesian counterparts in
(9) can be established. The explicit expressions for the indi-
vidual elements of the flux third-order transport coefficient
tensor in the absence of a magnetic field are given by

Qxxz = 1√
2α

[Im(F (011|221; α)) − Im(F (01 − 1|221; α))],

(42)

Qzxx = − 1

α

[
1√
3

Im(F (010|200; α))+ 1√
6

Im(F (010|220; α))
]

+ 1

α
Im(F (010|222; α)), (43)
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Qzzz = 1

α

[√
2

3
Im(F (010|220; α)) − 1√

3
Im(F (010|200; α))

]
,

(44)

where Re(·) and Im(·), respectively, represent the real and
imaginary parts of the moments. The explicit expressions for
the individual elements of the flux skewness tensor in varying
configurations of electric and magnetic fields are given in
Appendix C. Expressions for the lower-order transport coeffi-
cients in terms of the moments of the distribution function can
be found in our previous work [66–68,70].

E. Monte Carlo simulation method

The Monte Carlo simulation technique is used in this work
as an independent tool to confirm the numerical accuracy and
integrity of a multiterm solution of Boltzmann’s equation. The
Monte Carlo code applied in this work has been systematically
tested for a range of model and real gases under both the
hydrodynamic and nonhydrodynamic conditions in the
presence of the electric and magnetic fields [67,68,71,72]. The
subject of testing were the lower-order transport coefficients
usually in the presence of nonconservative collisions. In the
present work, we follow a large number of particles (∼107)
moving in an infinite gas under the influence of spatially
homogeneous electric and magnetic fields. Such a large
number of charged particles is followed with the aim of
reducing the statistical fluctuations of the output data required
for the evaluation of the individual elements of the third-order
transport coefficient tensor. The charged-particle trajectories
between collisions are determined by solving the collisionless
equation of motion of a charged particle. The position and
velocity of each charged particle are updated after the time
step �t , which is obtained by solving the equation for
collision probability. The numerical solution of this equation
requires the extensive use of random numbers. The type of
collision is also determined using random numbers as well as
relative probabilities for individual collisional processes. The
details of our Monte Carlo method are given in our several
previous publications [67,71–73].

The third-order transport coefficients are determined after
relaxation to the steady state. The flux third-order transport
coefficient tensor is defined by

Qabc = 1

3!

〈
d

dt

(
r∗

ar∗
br∗

c

)〉
, (45)

where (a, b, c) take values from the set {x, y, z} while the
angular brackets 〈〉 denote ensemble averages in phase space,
and r∗ = r − 〈r〉.

It is important to note that although the third-order trans-
port coefficient tensor has the three independent elements
when the swarm is acted on solely by the electric field, we
are able to identify only two independent elements in our
Monte Carlo simulations. This follows from the fact that the
expressions for sampling the third-order transport coefficients
are derived from the generalized diffusion equation in which
all tensor components are contracted with the corresponding
partial derivatives of charged-particle density with respect
to the coordinates. Thus, the expressions for evaluation the
skewness coefficients represent the sum of all skewness tensor

components Qabc which have the same combination of indi-
cies a, b, c where (a, b, c) take values from the set {x, y, z}.
Therefore, the expressions for skewness coefficients in our
Monte Carlo simulations are symmetric with respect to the
permutation of any two indices. The analogy with the deter-
mination of the off-diagonal elements of the diffusion tensor
is clearly evident. For example, for perpendicular electric and
magnetic fields, we are not able to isolate and evaluate the
individual off-diagonal elements of the diffusion tensor [67].
However, it is possible to determine the sum of the individual
off-diagonal elements which is the well-known Hall diffusion
coefficient. To calculate the individual elements of the third-
order transport coefficient tensor and diffusion tensor, one
must integrate the velocity over the corresponding hydro-
dynamic component of the distribution function in velocity
space. This is beyond the scope of this work, and we defer
this procedure to a future paper.

Due to inability to isolate the individual elements of the
third-order transport coefficient tensor in our Monte Carlo
simulations, we define the following third-order transport
coefficients:

Qzzz ≡ QL, Qπ (xxz) ≡ QT , (46)

where

Qπ (xxz) = 1
3 (Qxxz + Qxzx + Qzxx ), (47)

and π (abc) denote all possible permutations of (a, b, c).
The explicit form of the flux longitudinal and flux trans-

verse third-order coefficients are calculated from

QL = 1
6 (3〈z2cz〉 − 3〈cz〉〈z2〉 − 6〈z〉〈zcz〉 + 6〈z〉〈z〉〈cz〉), (48)

QT = 1
6 (〈x2cz〉 + 2〈zxcx〉 − 〈cz〉〈x2〉 − 2〈z〉〈xcx〉), (49)

where cx, cy, and cz are velocity components. Explicit formu-
las for the elements of the flux third-order transport coefficient
tensor which can be isolated and determined individually in
our Monte Carlo simulations in various configurations of the
electric and magnetic fields are given in the Appendix C.

III. RESULTS

A. Preliminaries

The aim of the present section is to highlight the general
features of the third-order transport coefficients associated
with the light charged-particle swarms in gases when both
the electric and magnetic fields are present. Benchmark cal-
culations are performed for a range of model gases, including
the Maxwell (constant collision frequency) model, the hard-
sphere model and the Reid ramp inelastic model. For the
present study we consider conservative collisions only. We de-
fer the investigation of the explicit effects of nonconservative
collisions on the third-order transport coefficient tensor to a
future study. The utility of model gases lies in the fact that
through the use of simple analytically given cross sections we
can isolate and elucidate physical processes which govern and
control the specific behavior of a charged-particle swarm. This
is particularly important for higher-order transport coefficients
due to complexity of factors which contribute to, or influence,
the corresponding tensors. However, the present theory and
associated codes have been applied to a number of gases
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and mixtures and preliminary results are available elsewhere
[74–76]. Here we present some results for neon and compare
them with the results of calculations that have been presented
elsewhere. We employ the set of cross sections for electron
scattering in neon developed by Hayashi [77] (see Fig. 2 in
Ref. [78]).

In the Boltzmann equation analysis of the third-order
transport coefficients the elastic collisions are treated us-
ing the original Boltzmann collision operator [79], while its
semiclassical generalization is applied for inelastic processes
[80]. All scattering is assumed isotropic and hence for elastic
scattering we use the elastic momentum transfer cross section.
Calculations are performed assuming that the internal states
are governed by a Maxwell-Boltzmann distribution which
essentially places all neutral particles in the ground state for
systems considered. The thermal motion of background par-
ticles is carefully considered in both the Boltzmann equation
analysis and Monte Carlo simulations [81].

The Monte Carlo results are presented with error bars.
These error bars are required since the third-order transport
coefficients are derived from the third-order monomials of
coordinates and velocities which usually have high standard
deviations. The statistical error of the third-order transport
coefficients that are evaluated in our Monte Carlo simulations
is estimated as the standard error. The standard error is equal
to the standard deviation of the third-order transport coeffi-
cients divided by the square root of the number of electrons
followed in the simulation. Thus, it is necessary to follow a
large number of electrons (at least 107) in our Monte Carlo
simulations in order to sufficiently reduce the standard error
of the final results.

When the magnetic field is applied, the results and dis-
cussion are restricted to a crossed field configuration, al-
though the theory and associated codes are valid for arbi-
trary field configurations. We use the unit of the Townsend
(1 Td = 10−21 Vm2) for the reduced electric field and the unit
of the Huxley (1 Hx = 10−27 Tm3) for the reduced magnetic
field.

B. The Maxwell model

In this section we present benchmark results for the third-
order transport coefficients assuming the Maxwell model of
interaction. In this model the electrons undergo elastic colli-
sions only and the collision frequency is independent of the
energy. The details of the model used here are as follows:

σm(ε) = Aε−1/2 Å2 (elastic cross section),

m0 = 4 amu, m = 5.486×10−4 amu, T0 = 293 K,

(50)

where ε is in eV, m is the electron mass and m0 is the neutral
mass. While the magnitude of potential for elastic scattering
A in previous works was usually fixed to a single value of 6
[70,82,83], in the present work its value is varied in order to
investigate the influence of elastic collisions on the third-order
transport coefficients. We consider the reduced electric field
range: 0.1–10 Td.

The results are obtained from the numerical solution of
Boltzmann’s equation and are presented in Table I. The three

TABLE I. Third-order transport coefficients for the Maxwell
model. The results are presented as a function of the reduced electric
field E/n0 and the magnitude of potential for elastic scattering A.

E/n0 n2
0Qxzx n2

0Qzxx n2
0Qzzz

A (Td) (m−3 s−1) (m−3 s−1) (m−3 s−1)

1.0 0.1 5.2930×1045 2.1761×1042 1.0588×1046

1.0 4.3919×1048 1.8055×1045 8.7856×1048

10.0 4.3829×1051 1.8017×1048 8.7676×1051

3.0 0.1 5.1740×1043 2.1279×1040 1.0351×1044

1.0 1.8373×1046 7.5531×1042 3.6754×1046

10.0 1.8039×1049 7.4158×1045 3.6087×1049

6.0 0.1 4.7768×1042 1.9648×1039 9.5557×1042

1.0 6.0575×1044 2.4903×1041 1.2118×1045

10.0 5.6405×1047 2.3187×1044 1.1283×1048

12.0 0.1 5.4425×1041 2.2388×1038 1.0888×1042

1.0 2.2880×1043 9.4070×1039 4.5769×1043

10.0 1.7665×1046 7.2623×1042 3.5340×1046

independent elements of the third-order transport coefficient
tensor are given as a function of the reduced electric field
E/n0 and the magnitude of potential for elastic scattering A.
We observe that n2

0Qxzx, n2
0Qzxx, and n2

0Qzzz are positive and
monotonically increasing functions of E/n0. For brevity, in
what follows we omit n2

0, and n2
0Qabc will be written as Qabc,

where a, b, c ∈ {x, y, z}. In the logarithmic plot, the E/n0

dependence of Qxzx, Qzxx, and Qzzz is linear both for the higher
values of E/n0, where the diffusion deviates significantly
from the thermal values, and for the lower values of E/n0,
where the diffusion is essentially thermal. However, the slope
of these two linear dependencies is not the same. The slope is
greater for those values of E/n0 for which the diffusion is no
longer thermal.

We observe that the Qzxx is less than the remaining el-
ements, Qxzx and Qzzz for all E/n0 and A considered. The
coefficient Qzxx represents the difference in the flux of charged
particles along the z direction between the center of the swarm
and the transverse edges (see Appendix B). Since the collision
frequency for the Maxwell model is independent of energy,
the positive value of Qzxx is a clear sign that the mobility
of the electrons is greater at the transverse edges than at the
center of the swarm, due to a parabolic increase of the mean
energy along the transverse direction. This effect is very small
and hence the coefficient Qzxx is dominated by the coefficients
Qxzx and Qzzz. This physical picture is no more valid for real
gases in which the momentum transfer collision frequency is
usually a complex function of the electron energy.

Comparing Qxzx and Qzzz, we observe that these two co-
efficients are of the same order of magnitude for all E/n0

and A considered. In a certain way this is analogous to
the behavior of the diffusion coefficients. For the Maxwell
model the longitudinal and transverse diffusion coefficients
are equal [82,83]. Likewise, the sum of the coefficients Qxzx

and Qxxz which is proportional to the flux along the transverse
direction, is equal to the coefficient Qzzz which determines
the corresponding flux along the field direction (note that the
coefficient Qzxx is negligible as compared to the coefficients
Qxzx and Qzzz).
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FIG. 1. Influence of the charged-particle to neutral-particle mass
ratio on the variation of the longitudinal third-order transport coef-
ficient n2

0QL with E/n0 for the hard sphere model. Calculations are
performed using a Monte Carlo simulation technique.

C. Effects of the ion to neutral-particle mass ratio

In this section we explore the effects of the ion to neutral
mass ratio on the variation of the third-order transport coef-
ficients with E/n0. Calculations are performed by a Monte
Carlo simulation technique assuming the hard sphere model
[84]. The details of the model are

σm(ε) = 6 Å2 (elastic cross section),

m0 = 4 amu, T0 = 293 K. (51)

We consider the mass ratio range 10−4–1 and the reduced
electric field range 1–100 Td.

In Fig. 1 we show the variation of the coefficient QL as
a function of E/n0 for various charged-particle to neutral-
particle mass ratios, as indicated on the graph. For decreasing
m/m0 the energy transfer in elastic collisions is reduced,
which in turn increases QL. In Monte Carlo simulations, the
reduced energy transfer in elastic collisions for decreasing
m/m0 slows the relaxation of energy. As a consequence,
Monte Carlo simulations require a large computation time
while at the same time the statistical fluctuations deteriorate
the accuracy of the output data. We see in the Fig. 1 that the
error bars are increased for decreasing m/m0.

For a fixed mass ratio we see that QL is increased mono-
tonically with E/n0. In this model, the elastic cross section is
constant rendering collision frequency to be directly propor-
tional to the square root of the charge particle energy. With the
increase of E/n0, the collision frequency also increases, but
not enough to overcome the directed action of the force and
the simultaneous increase of the mobility of charged particles
(see Appendix B). As a consequence, QL rises with rising
E/n0. When it comes to QT , for the entire range of E/n0

considered, it is found that QT > 0 (not shown here). This
indicates that the absolute value of the sum of Qxxz and Qxzx

is greater than the absolute value of the coefficient Qzxx. In
this model, Qzxx < 0 since the collision frequency is directly
proportional to the square root of charged-particle energy. The
negative value of Qzxx due to elastic collisions with a constant
cross section has been observed for the Reid model gas at low

FIG. 2. Variation of the QL to D2
L ratio as a function of E/n0 for

the hard sphere model.

electric fields where the rate for inelastic collisions is negligi-
ble (see Sec. III D). Note that in our Monte Carlo simulations
we are not able to evaluate the individual components Qxxz,
Qxzx and Qzxx, but only their sum [see Eq. (47)].

Figure 1 clearly illustrates that for decreasing m/m0 the
coefficients QL (and QT ) are increased. It should be noted that
for the hard sphere model the third-order transport coefficients
scale with the factor 1√

m0
( m+m0

mA2 )
5/4

[19]. This raises an inter-
esting question: does the spatial profile of the swarm deviate
from a Gaussian distribution more for light charged particles,
including electrons and/or positrons, or for more massive
ions? In order to investigate this issue, in Figs. 2 and 3 we
show the variation of the 1

n0
QL/D3

L and QL/D2
L as a function

of E/n0, respectively, where DL is the longitudinal diffusion
coefficient. Recall that the asymmetric contribution to the spa-
tial profile of the swarm along the field direction is represented
by the two terms; the first term is proportional to QL/D3

L,
while the second one is proportional to QL/D2

L [see Eq. (33)].
We observe that both quantities 1

n0
QL/D3

L and QL/D2
L are

decreased with a decrease of m/m0, which indicates that the
contribution of the third-order transport coefficients to the
spatial profile of the swarm becomes more significant for ions
in comparison with electrons and/or positrons.

FIG. 3. Variation of the QL to D3
L ratio as a function of E/n0 for

the hard sphere model. Calculations are performed assuming the gas
number density n0 = 3.54×1022 m−3.

023203-9
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FIG. 4. Variation of the third-order transport coefficients with
E/n0 for the Reid ramp model. Calculations are performed via a
multiterm theory for solving the Boltzmann equation.

D. The Reid ramp model

The Reid ramp inelastic model of interaction is given by
[85]

σm(ε) = 6 Å2 (elastic cross section),

σinel(ε) =
⎧⎨⎩10(ε − 0.2) Å2, ε � 0.2 eV

(inelastic cross section)
0, ε < 0.2 eV

,

m0 = 4 amu,

T0 = 0 K, (52)

where m0 and T0 represent the mass and temperature of the
neutral gas particles while ε has the units of eV. Initially,
this particular model was developed with the aim of testing
the validity of the two-term approximation for solving the
Boltzmann equation. Since the early work of Reid [85], the
model has been used extensively as a benchmark for a variety
of numerical techniques for solving the Boltzmann equation
and Monte Carlo codes under steady-state [70–72,82,83] and
time-dependent conditions [17,68]. In the present work we
extend the model to consider the behavior of the individual
elements of the third-order transport coefficient tensor in the
presence of both electric and magnetic fields. Thus, the utility
of the Reid ramp model in the present work is twofold: (1) it
will enable us to determine the influence of an energy depen-
dent collision frequency in addition to the influence of strong
inelastic processes on the behavior of the third-order transport
coefficients, and (2) it is a good test of the accuracy of the
two-term approximation for solving Boltzmann’s equation.

In Fig. 4 we show the variation of the coefficients Qzzz,
Qxxz, and Qzxx with the reduced electric field E/n0. Over
the range of E/n0 considered, we see that Qzzz and Qxxz

are positive while Qzxx is negative. Such behavior of the
third-order transport coefficients can be attributed to the fact
that for the Reid ramp model the total collision frequency is
a monotonically increasing function of the electron energy.
Due to the increase of the total collision frequency over the
entire range of E/n0, Qzxx is negative (see Appendix B).
However, this increase is not significant enough to render
Qzzz and Qxxz negative. In any case, the absolute values of

FIG. 5. Comparison between the multiterm Boltzmann equation
results for longitudinal third-order transport coefficient and those
calculated with a Monte Carlo simulation technique.

the third-order transport coefficients are increasing functions
of E/n0 until reaching the particular value of E/n0 value for
which the inelastic collisions begin to play a significant role.
In this case, their direct effect is to enhance collisions and
thereby reduce diffusion which in turn reduces the third-order
transport coefficients. In the limit of the highest E/n0, the
third-order transport coefficients are significantly reduced and
approach zero values.

In Figs. 5 and 6 we show the comparison between the
Boltzmann equation and Monte Carlo results of QL and QT ,
respectively. The comparison is presented only for relatively
higher values of E/n0 where both QL and QT are monotoni-
cally decreasing functions of E/n0. In the limit of lower values
of E/n0, the relaxation of energy is a very slow process and
Monte Carlo simulations require large computation time. The
results from the Monte Carlo simulations are consistent and
agree very well with those predicted by the Boltzmann equa-
tion analysis, validating the theoretical method for solving the
Boltzmann equation and numerical integrity of both methods
of calculations.

In Fig. 7 the percentage differences in the third-order trans-
port coefficients for the Reid ramp model, calculated using
the two-term and the fully converged multiterm solutions

FIG. 6. Comparison between the multiterm Boltzmann equation
results for transverse third-order transport coefficient and those cal-
culated with a Monte Carlo simulation technique.
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FIG. 7. Percentage difference between the two-term (TT) and
multiterm (MT) results for the third-order transport coefficients for
the Reid ramp model.

of Boltzmann’s equation, are shown. We see that maximum
errors in the two-term approximation, for Qzzz and Qzxx, occur
at about 10 Td where the mean energy of the electrons
is close to the threshold of a cross section for inelastic
collisions. On the other hand, the discrepancy between the
two-term and multiterm solutions of Boltzmann’s equation
for Qxxz increases with E/n0 monotonically over the range
of E/n0 considered in this work. For the lower values of
E/n0, the coefficient Qzxx appears to be the most sensitive
with respect to the number of spherical harmonics used for
solving Boltzmann’s equation while for the higher values of
E/n0 the most sensitive coefficient is Qxzx. We observe that
the errors between the two-term and converged multiterm
results can be as high as 500%. The presence of inelastic
collisions produces asymmetry in velocity space which makes
the two-term approximation inadequate for the analysis of
the third-order transport coefficients. It is also important to
note that the differences between the two-term approximation
and multiterm solution of Boltzmann’s equation for third-
order transport coefficients are much higher than those for the
lower-order transport coefficients, e.g., for the drift velocity
and diffusion coefficients. This suggests that the third-order
transport coefficients are more sensitive with respect to the
way of solving the Boltzmann equation. Thus, it seems that
the use of a multiterm theory for solving the Boltzmann
equation is mandatory in the presence of inelastic collisions
when it comes to calculations of the third-order transport
coefficients.

In Fig. 8 we show the variation of the coefficients Qxxx

and Qzzz as a function of B/n0 at E/n0 = 12 Td. As already
discussed, Qzzz describes the deviation from the Gaussian
along the z axis (see Appendix B). For perpendicular electric
and magnetic fields, Qxxx is a measure of the deviation from
the Gaussian along the E×B direction. For B/n0 greater than
approximately 150 Hx, we observe that both Qxxx and Qzzz

monotonically decrease with increasing B/n0. This is a clear
indication of the magnetic-field-controlled regime in which
the cyclotron frequency dominates the collision frequency and
the electrons are held by the magnetic field lines. For B/n0

less than approximately 150 Hx, the behavior of Qxxx and
Qzzz is less intuitive. For these values of B/n0 the collision

FIG. 8. Variation of n2
0Qzzz and n2

0Qxxx with B/n0 for the Reid
ramp model. Calculations are performed by a multiterm theory for
solving the Boltzmann equation in a crossed field configuration. The
reduced electric field E/n0 is set to 12 Td.

frequency is generally higher than the cyclotron frequency,
but on average, an increasing magnetic field acts to increase
the fraction of the orbit completed between collisions. As a
consequence, the collision frequency begins to fall down with
increasing B/n0 and Qzzz raises.

The behavior of Qxxx for the lower values B/n0 is partic-
ularly interesting. Initially, in the limit of the lowest B/n0,
Qxxx is negative due to the Lorentz force and spatial variation
of the energy (and hence spatial variation of the collision
frequency), which on average induces the spatial variation
of the average velocity of the electrons along the negative
direction of the x axis. In this B/n0 region, the negative sign
of Qxxx corresponds to an elongation of the swarm in the
direction of the x component of the drift velocity (along the
negative x axis in this field configuration). This is analogous
to the elongation of the swarm described by the Qzzz element
along the z component of the drift velocity (the qE direction).
With a further increase of B/n0 the influence of collisions
becomes more and more significant which in turn leads to
the compressing or spreading of the swarm along the negative
or positive direction of the x axis. Due to these effects Qxxx

becomes positive and increases with increasing B/n0.
In Fig. 9 we show the remaining components of the third-

order transport coefficient tensor as a function of B/n0 for
perpendicular electric and magnetic fields. For the higher
values of B/n0 all components decrease with an increasing
B/n0 as more and more electrons are held in their orbits by
the magnetic field. For the lower values of B/n0, however,
the behavior of the third-order transport coefficients is com-
plex due to many individual factors which simultaneously
influence the third-order coefficient tensor. These individual
factors include the thermal anisotropy (the chaotic motion
of charged particles is different along different directions),
magnetic anisotropy (the orientation of charged-particle orbits
is controlled by the magnetic field), and spatial variations of
the average velocity and average energy along the longitudinal
and transverse directions. However, comparing the magnetic-
field-free case and crossed electric and magnetic fields the in-
terpretation of the third-order transport coefficients is similar
(see Appendix B). For example, the coefficient Qzyy describes
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FIG. 9. Variation of the third-order transport coefficients with the repeated indices for the Reid ramp model. Calculations are performed
via a multiterm theory for solving the Boltzmann equation in a crossed field configuration. The reduced electric field E/n0 is set to 12 Td. The
components of the n2

0Q tensor are given in units of 1042 m−3s−1.

the differences in the longitudinal spreading in the central part
of the swarm and along its transverse edges in the y direction.
Likewise, the coefficient Qyyz reflects the differences in the
transverse spreading at the front of the swarm (along the
direction given by the positive z) and at the trailing edge
of the swarm (along the direction given by the negative z).
The similar interpretation may be given for the remaining
third-order transport coefficients shown in Fig. 9.

In Fig. 10 we show the comparison between the individual
components of the third-order transport coefficient tensor,
which could be identified in our Monte Carlo simulations,
and the corresponding results, which are obtained from the
numerical solution of the Boltzmann equation. The two sets

of results agree very well, even over the range of E/n0 where
the values of the coefficients are negative. We see that the
error bars are not identical for different third-order transport
coefficients. This indicates that the statistical fluctuations of
the individual dynamical variables required for the evaluation
of the third-order transport coefficients are not the same.
Nevertheless, we see that the results obtained from the nu-
merical solution of the Boltzmann equation are in very good
agreement with those predicted by Monte Carlo simulations.
This validates the theory and numerical scheme for solving
the Boltzmann equation and Monte Carlo method when both
the electric and magnetic fields are present and crossed at the
right angle.

FIG. 10. Comparison between the multiterm Boltzmann equation results (full line) for various third-order transport coefficients and those
calculated by a Monte Carlo simulation technique (symbols with error bars) in a crossed field configuration. The reduced electric field E/n0 is
set to 12 Td. The components of the n2

0Q tensor are given in units of 1042 m−3s−1.
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FIG. 11. Variation of the longitudinal third-order transport coef-
ficient n2

0QL with E/n0 for electrons in neon. Our multiterm Boltz-
mann equation results (MT BE) are compared with those obtained
by two-term approximation for solving the Boltzmann equation
(TTA BE) [18] and momentum transfer theory (MTT) [19].

E. Third-order transport coefficients for electrons in neon

As an example of our calculations in real gases, in Fig. 11
we display the variation of the QL with E/n0 for electrons
in neon. The results obtained from the multiterm solution of
the Boltzmann equation are compared with those predicted
by the two-term approximation [18] and momentum transfer
theory (MTT) [19]. The agreement between our multiterm
results and those obtained by the two-term approximation is
very good. This is a clear sign that there is no significant
difference between the cross sections for elastic collisions of
the electrons in neon used in the present multiterm calcula-
tions and in the previous two-term calculations performed by
Penetrante and Bardsley [18]. The additional factor which fa-
vors the good agreement is the minimal influence of inelastic
collisions. If inelastic collisions would play a more important
role, then undoubtedly the differences between the multiterm
and two-term results would be much higher. In any case, no
calculations of QL were made by Penetrante and Bardsley for
the higher values of E/n0. On the other hand, the discrepancy
between our results and those predicted by the momentum
transfer theory (MTT) is clearly evident. This can be attributed
to the fact that the momentum transfer theory assumes a
very simple energy distribution function based on an effective
mean energy. MTT produces reasonable results for the lowest-
order transport coefficients such as drift velocity and even
diffusion but it is expected to fail for ionization which depends
on the high energy tail and also for higher-order transport
coefficients that are very sensitive on the cross sections and
correspondingly on the distribution function at all energies.
Limitations of the MTT have been discussed many times
[2,16,33,34,66].

In Fig. 12 we show the variation of the individual elements
of the third-order transport coefficient tensor as a function
of E/n0 for electrons in neon. The same generic features
of the third-order transport coefficients observed previously
for the Reid ramp model are clearly evident. Both Qzzz and
Qxxz are positive while the coefficient Qzxx is negative over
the range of E/n0 considered. The total collision frequency

FIG. 12. Variation of the third-order transport coefficients with
E/n0 for electrons in neon. Calculations are performed using a
multiterm approach for solving the Boltzmann equation.

increases with the increase of E/n0, but not sufficiently fast
to induced negative values of Qzzz and Qxxz (see Appendix B).
The oscillatory behavior in the profiles of Qzzz, Qxxz and Qzzz

occurs for E/n0 approximately less than 1 Td reflecting the
energy variation of the cross section for elastic collisions.
For E/n0 approximately greater than 1 Td, inelastic collisions
begin to play a significant role. As for the Reid ramp model,
it appears that significant inelastic processes are required to
suppress the longitudinal and transverse third-order transport
coefficients.

IV. CONCLUSION

In this paper we have discussed the third-order transport
coefficient tensor of charged-particle swarms moving in an
infinite neutral gas under the influence of spatially homoge-
neous electric and magnetic fields. The third-order transport
coefficient tensor is defined in terms of the extended flux gra-
dient relation and the extended diffusion equation. The group
projector method is then used for identifying the structure
of the tensor and symmetries along its individual elements
when both the electric and magnetic fields are present. For
an electric-field-only situation, we have found that the third-
order transport coefficient tensor has seven nonzero and only
three independent elements. For parallel electric and magnetic
fields, rotational invariance implies the third-order transport
coefficient tensor has 11 nonzero and four independent el-
ements, while for orthogonal electric and magnetic fields
the tensor has 14 nonzero and 10 independent elements.
Finally, when electric and magnetic fields are crossed at
an arbitrary angle, it is found that the third-order transport
coefficient tensor has 27 nonzero elements among which 18
are independent. The proposed methodology based on the
group projector method and symmetry considerations of the
Boltzmann equation can be applied to any of the transport
coefficient of an arbitrary tensorial rank.

The second important issue addressed in the present work
is the physical interpretation of the third-order transport coef-
ficients. In order to resolve this issue, we have expanded the
Fourier transform of the number charged-particle density in
terms of the longitudinal and transverse third-order transport
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coefficients. Using the inverse Fourier transformation of the
expansion coefficients, we have derived the expression for the
number density of charged particles in which the effects of
third-order transport coefficients are explicitly included. It is
found that deviations of the Gaussian distribution along the
specific directions are directly related with the sign of the
individual third-order transport coefficients.

Explicit expressions for the third-order transport coeffi-
cients in terms of the moments of the distribution function and
in the absence of nonconservative collisions are derived in the
framework of a multiterm theory for solving the Boltzmann
equation. Using the symmetry properties of the moments,
we have analyzed the structure of the third-order transport
coefficient tensor. We have also developed the Monte Carlo
method in which the third-order transport coefficients are
defined in terms of the moments of charged-particle density
in configuration space. It is found that only two independent
components of the third-order transport coefficient tensor can
be identified, as all tensor components are contracted with the
corresponding spatial partial derivatives of charged-particle
density. Thus, care must be taken when comparing the Monte
Carlo results with those obtained by other theories.

Numerical calculations are performed using a multiterm
solution of the Boltzmann equation for a range of model gases,
including the Maxwell, hard sphere, and Reid ramp models.
The results obtained are in very good agreement with those
predicted by the Monte Carlo method when possible, over the
range of the applied electric and magnetic fields. An important
observation is that the contribution of the third-order transport
coefficients to the spatial profile of the swarm becomes more
pronounced for increasing the charged-particle to neutral-
particle mass ratio. In this work we have also displayed
and emphasized the need for a multiterm solution technique
of Boltzmann’s equation. It is found that the discrepancy
between the two-term and fully converged multiterm results
are much higher for the third-order transport coefficients than
those for the lower order transport coefficients, e.g., drift
velocity and diffusion coefficients. The theory and associated
computer codes in the present work are equally valid for real
gases. The third-order transport coefficients are calculated for
electrons in neon and the results of calculations are compared
with those evaluated by the two-term approximation for solv-
ing the Boltzmann equation and momentum transfer theory.
Comparison with previous theories have shown surprisingly
good agreement with the two-term solution of the Boltzmann
equation and a significant disagreement with the momentum
transfer theory.

The duality of transport coefficients, e.g., the existence of
two different families of transport coefficients, the bulk and
the flux, is well known in the presence of nonconservative
collisions. Third-order transport coefficients are expected to
be more sensitive to the explicit influence of nonconservative
collisions. In order to investigate the effects of nonconser-
vative collisions on the third-order transport coefficients one
must go to third-order in the density gradient expansion to
account for such effects. This remains the focus of our future
investigation. Likewise, the remaining step to be taken, is
to apply the theory and mathematical machinery developed
in this work to investigate the correlation between the third-
order transport coefficients and those of lower order, e.g., the

drift and diffusion coefficients [19]. Additional issues which
should be considered are the effects of anisotropic scattering
and the behavior of the third-order transport coefficients in
time-dependent electric and magnetic fields. Finally, it would
be very challenging to model strong nonequilibrium systems
such as streamer discharges by suitable coupling of the ex-
tended diffusion equation which incorporates the third-order
transport coefficients for both the electrons and ions, and Pois-
son’s equation for the space charge electric field calculation.

The theory presented here covers the structure, symme-
tries, and method of calculation of the third-order transport
coefficients and the advantages that it may bring should it
be applied. In this paper, we focus on physics of ionized
gases (swarms and low-temperature collisional plasmas), but
approach may be extended to other physical systems if one
accounts for the dominant physical interactions and expected
symmetries. One such example where these results may be
applied directly is modeling of positron thermalization in gas
filled traps [86,87] or thermalization of positrons in gases
[88–90].
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APPENDIX A: THE GROUP PROJECTOR METHOD

The structure of tensorial transport coefficients can be
determined by employing group theory, since their structure
reflects the symmetry of the system. The studied system
consists of a swarm of charged particles, neutral background
gas particles and the applied electric and magnetic fields.
The symmetry group of a system is the group of all trans-
formations under which the system is invariant [91–93]. The
symmetry groups of the electric and magnetic fields are
C∞V and C∞h respectively, since the electric field is a polar
vector, and the magnetic field is an axial vector. These are
the symmetry groups of an immobile cone and of a rotating
cylinder, respectively [91]. If both electric and magnetic fields
are present in the system, the symmetry group of the field
configuration is determined by the angle between the fields.
The symmetry group of the parallel fields configuration is
C∞. This is the symmetry group of a rotating cone [91].
Orthogonal field configuration has the symmetry group C1v .
The symmetry group of the general field configuration is
the trivial group C1. Background gas is invariant under all
transformations from the orthogonal group O(3). This is the
symmetry group of a sphere. Therefore, the symmetry group
of the field configuration is also the symmetry group of the
entire system.

The structure of a tensor can be determined from its
invariance, under operations from the symmetry group of the
system. The action of a group G on vectors, from a vector
space H , is represented by a group homomorphism from
G to the general linear group on H , GL(H ) [92,93]. Polar
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vectors, such as drift velocity, are transformed by the polar
vector representation of the symmetry group of the system
Dpv (G). This representation is reducible [65,93] and, for
finite and compact groups, it decomposes into the irreducible
components D(μ)(G) as

Dpv (G) = ⊕r
μ=1aμD(μ)(G). (A1)

Here aμ is the number of times the irreducible representation
D(μ)(G) appears in the decomposition of Dpv (G), and r is
the number of inequivalent irreducible representations of the
group G. In addition, for decomposable representations there
exists a symmetry-adapted basis [65,93], which satisfies the
condition

Dpv (G)|μtμm〉 =
|μ|∑

n=1

D(μ)
nm (G)|μtμn〉. (A2)

This implies that for every irreducible representation D(μ)(G)
from (A1) there will be a subspace in H which transforms by
D(μ)(G) [65,93]. A very important representation, which ex-
ists for every group G, is the trivial irreducible representation
A0. This representation is defined as D(A0 )(g) = 1, ∀g ∈ G.
This representation is irreducible, since it is one dimensional.

It can be seen from (A2) that a vector is invariant under
the action of D(pv)(G) if it belongs to the subspace of the
trivial irreducible representation. This invariant subspace can
be found by employing group projectors. In the case of the
trivial representation, the group projector is simply

P(A0 )(Dpv, G) = 1

|G|
∑
g∈G

Dpv (g) (A3)

for finite groups, where |G| is the order of the group G [65].
For one-parameter Lie groups the group projector for A0 is

P(A0 )(Dpv, G) =
∑

R

∫
Dpv (R) dR. (A4)

Here the summation goes over distinct connected compo-
nents, and integration is taken over the range of the group
parameter [93]. Any vector, from the invariant subspace of
Dpv (G), including the drift velocity, is a linear combination of
the eigenvectors of the projection operator P(A0 )(Dpv, G).

Diffusion tensor is a linear operator which maps the local
density gradient vector ∇n(r, t ) onto the diffusive flux vec-
tor. Therefore diffusion tensor belongs to the range of the
projector P(A0 )(Dpv⊗2

, G) where Dpv⊗2
(G) represents Dpv ⊗

Dpv (G) = Dpv (G) ⊗ Dpv (G). Similarly the skewness tensor
maps the tensor square of the gradient vector, which acts
upon the local density ∇ ⊗ ∇n(r, t ), onto the vector of the
third-order diffusive flux. Thus the skewness tensor belongs
to the range of the projection operator P(A0 )(Dpv ⊗ [Dpv]2, G),
where [Dpv]2 represents the symmetrized tensor square of the
polar vector representation. This symmetrization is a result of
the commutativity of the gradient operators.

Strictly speaking, the action of the group on operators, such
as diffusion tensor and skewness tensor, is represented by

employing superoperators [94]. They are defined as ̂̂D(g)Â =
Dpv (g)ÂDpv (g−1). Therefore, the most straightforward ap-
plication of group theory would require the use of group
superoperators. However, this is not necessary, since every

second rank basis operator |i〉 ⊗ 〈 j| acting on a vector space
H is uniquely paired with a basis vector |i〉 ⊗ | j〉 from the
vector space H ⊗ H . The same applies for the basis op-
erators of the third rank |i〉 ⊗ [〈 j| ⊗ 〈k|] and basis vectors
|i〉 ⊗ [| j〉 ⊗ |k〉] from the vector space H ⊗ [H ⊗ H]. Here
square brackets represent symmetrization of the tensor prod-
uct. Thus, the group projector method can be applied for
representations Dpv (G) ⊗ Dpv (G) and Dpv ⊗ [Dpv]2 in the
corresponding vector spaces. Then eigenvectors of the group
projectors can be mapped into the corresponding basis tensors.
Therefore diffusion tensor and skewness tensor are linear
combinations of the basis tensors, which are obtained from
eigenvectors of the projection operators P(A0 )(Dpv ⊗ Dpv, G)
and P(A0 )(Dpv ⊗ [Dpv]2, G), respectively. Moreover, it is not
necessary to use Dpv ⊗ [Dpv]2 for determining the structure
of the skewness tensor. One can instead use Dpv ⊗ Dpv ⊗ Dpv

and symmetrize the resulting tensors by the last two indices.

APPENDIX B: PHYSICAL INTERPRETATION OF THE
INDIVIDUAL COMPONENTS OF THE THIRD-ORDER
TRANSPORT COEFFICIENT TENSOR AND ANALYSIS

OF THEIR SIGN

Using the flux gradient relation (7), the fluxes of charged
particles induced exclusively by the third-order transport co-
efficient tensor are given by

�Q,z = Qzzz
∂2n(r, t )

∂z2
+ Qzxx

[
∂2n(r, t )

∂x2
+ ∂2n(r, t )

∂y2

]
,

�Q,x = 2Qxxz
∂2n(r, t )

∂x∂z
, (B1)

where Qzzz, Qzxx, and Qxxz are independent components of
the third-order transport coefficient tensor (see Sec. II B).
The leading term in the expansion of the density of charged
particles (33) is of key importance in considering the sign
of the derivative of the charged-particle density. Therefore, in
what follows we consider only this term in the analysis of the
fluxes of charged particles (B1). The second-order derivatives
of the Gaussian (32) are given by

∂2n(0)(r, t )

(∂z)2 = (
z2 − σ 2

z

)n(0)(r, t )

σ 4
z

, (B2)

∂2n(0)(r, t )

(∂x)2 = (
x2 − σ 2

x

)n(0)(r, t )

σ 4
x

, (B3)

∂2n(0)(r, t )

(∂x∂z)
= xz

n(0)(r, t )

σ 2
x σ 2

z

, (B4)

where

σ 2
x = 2DT t, σ 2

z = 2DLt . (B5)

For simplicity, the above derivatives correspond to the co-
ordinate system whose origin is placed at the center of the
Gaussian distribution. Thus, the term z − W t is replaced by
the term z in (B2) and (B4).

In order to visualize these second-order derivatives in the
most efficient way for arbitrarily values of σz, we introduce the
set of new coordinates x/σx = χx, y/σy = χy, and z/σz = χz.
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FIG. 13. The normalized derivative �zz of the density of charged
particles as a function of the relative coordinate χz. The arrows
denote the direction of motion represented by Qzzz if this component
is positive. The field force is oriented along the positive χz direction.

Using the new coordinates, Eqs. (B2)–(B4) become

∂2n(0)

∂χ2
z

= (
χ2

z − 1
)
n(0), (B6)

∂2n(0)

∂χ2
x

= (
χ2

x − 1
)
n(0), (B7)

∂2n(0)

∂χx∂χz
= χxχzn

(0), (B8)

where

n(0)(χ, t ) = Cχ exp
[− 1

2

(
χ2

z + χ2
x + χ2

y

)]
(B9)

and

Cχ = N0e−Rnett

(2π )3/2σ 2
x σz

. (B10)

By combining equations (B6)–(B10) the normalized second-
order derivatives of the density of charged particles can be
written as follows:

�zz ≡ 1

Cχ

∂2n(0)

∂χ2
z

= (
χ2

z − 1
)
e− 1

2 (χ2
z +χ2

x +χ2
y ), (B11)

�xx ≡ 1

Cχ

∂2n(0)

∂χ2
x

= (
χ2

x − 1
)
e− 1

2 (χ2
z +χ2

x +χ2
y ), (B12)

�xz ≡ 1

Cχ

∂2n(0)

∂χx∂χz
= χxχze

− 1
2 (χ2

z +χ2
x +χ2

y ). (B13)

In Fig. 13 we show the quantity �zz as a function of χz.
We see that the representing curve is symmetric with respect
to the origin in which it has a minimum. If Qzzz is positive the
direction of motion represented by this component depends on
the sign of �zz in the following way. When �zz is positive, the
motion described by Qzzz is also directed along the positive
z axis, which is indicated by arrows that are oriented to the
right. Conversely, when �zz is negative, the motion described
by Qzzz is directed along the negative z axis, which is indicated
in this case by arrows that are oriented to the left. Therefore,
when Qzzz > 0 the leading edge of the Gaussian is elongated
while the training edge is compressed to a certain extent. It is

FIG. 14. The normalized derivative �xx of the density of charged
particles as a function of the relative coordinate χx . The arrows de-
note the direction of motion represented by Qzxx if this component is
positive: the arrows directed upwards (downwards) represent motion
in the positive (negative) z direction.

clear that when Qzzz < 0, then the opposite situation holds: the
leading edge of the Gaussian is compressed while the trailing
edge is elongated.

Figure 14 shows the graph of the function �xx. This
function is identical to the one illustrated in Fig. 13. When
Qzxx is positive, the motion described by Qzxx is directed along
the positive z axis at the swarm edges, which is indicated
by arrows that are oriented upwards. However, the motion
represented by Qzxx at the swarm center is directed along the
negative z axis in this case, which is indicated by arrows that
are oriented downwards. Likewise, if Qzxx is negative, then the
motion described by Qzxx is directed along the negative z axis
at the edges of the swarm, and along the positive z axis at the
swarm center.

In Fig. 15 we show the contour plot of the function �xz as a
function of χx and χz. This function is positive in the first and

FIG. 15. The normalized derivative �xz of the density of charged
particles as a function of the relative coordinates χx and χz. The
arrows denote the direction of motion represented by Qxxz if this
component is positive.
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third quadrant and negative in the second and fourth quadrant.
If Qxxz is positive the direction of motion represented by this
component depends on the sign of �xz in the following way.
When �xz is positive the motion described by Qxxz is directed
along the positive x axis which is indicated by arrows that
are oriented to the right. Conversely, when �xz is negative the
motion described by Qxxz is directed along the negative x axis
which is indicated by arrows that are oriented to the left. It is
clear that when Qxxz < 0 the direction of motion represented
by this component is reversed. It should be noted that the joint
contribution of Qzxx and Qxxz leads to a pear-shaped Gaussian
distribution.

In what follows we investigate the effects of the gas pres-
sure on the third-order transport coefficients. Using the set of
new coordinates χx, χy and χz, the number density of charged
particles given by Eq. (33) can be written as

n(1)(r, t ) = n(0)(r, t )

[
1 + tQL

σ 3
z

χz
(
χ2

z − 3
)

+ 3tQT

σ 2
x σz

χz
(
χ2

x + χ2
y − 2

)]
. (B14)

From Eq. (B14) we see that the contribution of the third-
order transport coefficients to the spatial profile of the swarm
is reduced with increasing number density of the neutral
particles n0. This is due to the fact that QL and QT scale as
1/n2

0 while σx and σz scale as 1/
√

n0 with the variation of n0.
From this, it follows that the terms tQL/σ 3

z and 3tQT /σ 2
x σz

scale as 1/
√

n0 with with the variation of n0. In addition, from
Eq. (B14) we can also see that the influence of the third-
order transport coefficients on the spatial profile of charged
particles is reduced as 1/

√
t with increasing t due to the time

dependence of the terms tQL/σ 3
z and 3tQT /σ 2

x σz. Thus, from
the scalings of the third-order transport coefficients and asso-
ciated properties it can be concluded that their experimental
determination would be the most efficient at low pressures.
On the other hand, measurements at low pressures in drift
tubes require optimal gaps and volumes in order to reach the
conditions where hydrodynamic approximation is applicable
(negligible length or relaxation distances as compared to the
overall gap). Special care should be taken in order to avoid
kinetic phenomena [16] such as diffusion cooling [95,96] and
other issues associated with an inability of the swarm to be
fully relaxed due to a small number of collisions of charged
particles and neutral gas particles. In any case, the experimen-
tal determination of third-order transport coefficients requires
large gas volumes and low pressures. Similar findings have
been reported in Ref. [18].

In studies of third-order transport coefficients tensor we
often find it necessary to refer to the sign of the third-order
transport coefficients to explain certain phenomena. Let us
assume that the swarm of charged particles is acted on solely
by an electric field. The following elementary considerations
apply.

The motion of charged particles represented by the longitu-
dinal component Qzzz produces differences in the spreading of
the density profile between the front and trailing edges of the
swarm. When Qzzz > 0, the front edge of the density profile is
elongated, while the trailing edge is compressed. The opposite

situation holds when Qzzz < 0: the front edge of the swarm is
compressed while the trailing edge of the profile is elongated.

Charged particles at the front of the swarm have higher
energies on average, than those at the back of the swarm, as
they are accelerated through the larger potential difference. If
the collision frequency is independent of energy, the spread of
charged particles along the field direction is induced by the
action of the force and by the chaotic motion of particles.
If the collision frequency is a decreasing function of the
charged-particle energy, the friction due to collisions along the
field direction is also decreased contributing additionally in
the spreading of the density profile. When collision frequency
increases with the particle energy, however, the friction will
be enhanced along the field direction which in turn reduces
the spreading of the density profile. Thus, the longitudinal
component Qzzz is positive whenever the growth of collision
frequency and associated energy losses in collisions are not
able to affect the spreading of charged particles due to the
electric field force and chaotic motion of charged particles.
This is exactly what happens in most cases considered in our
calculations.

The motion of a swarm represented by Qxzx produces
differences in the transverse spreading of the density profile.
When Qxzx > 0, the density profile is expanded along the
transverse direction at the front of the swarm while at the back
of the swarm the profile is compressed. When Qxzx < 0, the
density profile is compressed along the transverse direction at
the front and extended at the trailing edge of the swarm.

The electric force does not act along the transverse direc-
tion. This suggests that the spreading of the density profile is
entirely controlled by the chaotic motion of charged particles.
If the collision frequency decreases with energy, this will
further enhance the transverse spread at the front of the swarm
as collisions between charged particles and background gas
molecules are less frequent. If the collision frequency in-
creases with energy, the reverse situation occurs. In this case
it is the high energy electrons, which predominantly exist at
the front of the swarm, have more collisions than those at
the back of the swarm. This results in a greater resistance
to the transverse spreading at the front of the swarm. Thus,
the transverse component Qxzx is positive under conditions in
which the growth of the collision frequency and energy losses
in collisions are not intensive enough to exceed the higher
average speed of charged particles at the front of the swarm.

The off-diagonal component Qzxx describes the differences
in the longitudinal spreading in the central part of the swarm
and along its transverse edges. If Qzxx > 0, the longitudinal
spreading is faster at the transverse edges than in the central
part of the swarm. Conversely, if Qzxx < 0, the reverse situa-
tion occurs: the longitudinal spreading is more pronounced in
the central part of the swarm than at the edges. The parabolic
rise in mean energy along the transverse direction favors the
faster longitudinal spreading at the transverse edges of the
swarm. The parabolic rise in mean energy is due to the fact
that the most energetic electrons quickly cross the distance
between the swarm’s center and its edges, if the increase of the
collision frequency is not large enough to compensate for the
high speed of energetic electrons. If the collision frequency
is independent of energy, this is the only contribution to
the difference in the rate of longitudinal expansion along
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TABLE II. Symmetry properties of the individual components of the skewness tensor. The transformation represents A (parity), B (rotation
of π about the z axis), C (parity and rotation of π about the y axis), and D (parity and rotation of π about the x axis).

Transformation

Tensor component E → −E, B → B E → E, B → (−By, Bz ) E → E, B → (By,−Bz ) E → E, B → −B

Qxxz, Qxzx −Qxxz, −Qxzx Qxxz, Qxzx Qxxz, Qxzx Qxxz, Qxzx

Qyyz, Qyzy −Qyyz, −Qyzy Qyyz, Qyzy Qyyz, Qyzy Qyyz, Qyzy

Qzxx −Qzxx Qzxx Qzxx Qzxx

Qzyy −Qzyy Qzyy Qzyy Qzyy

Qzzz −Qzzz Qzzz Qzzz Qzzz

Qxxx −Qxxx −Qxxx Qxxx −Qxxx

Qxyy −Qxyy −Qxyy Qxyy −Qxyy

Qxzz −Qxzz −Qxzz Qxzz −Qxyy

Qyxy, Qyyx −Qyxy, −Qyyx −Qyxy, −Qyyx Qyxy, Qyyx −Qyxy, −Qyyx

Qzxz, Qzzx −Qzxz, −Qzzx −Qzxz, −Qzzx Qzxz, Qzzx −Qzxz, −Qzzx

Qxyz, Qxzy −Qxyz, −Qxzy Qxyz, Qxzy −Qxyz, −Qxzy −Qxyz,−Qxzy

Qyxz, Qyzx −Qyxz, −Qyzx Qyxz, Qyzx −Qyxz, −Qyzx −Qyxz,−Qyzx

Qzxy, Qzyx −Qzxy, −Qzyx Qzxy, Qzyx −Qzxy, −Qzyx −Qzxy,−Qzyx

Qxxy, Qxyx −Qxxy, −Qxyx −Qxxy, −Qxyx −Qxxy, −Qxyx Qxxy, Qxyx

Qyxx −Qyxx −Qyxx −Qyxx Qyxx

Qyyy −Qyyy −Qyyy −Qyyy Qyyy

Qyzz −Qyzz −Qyzz −Qyzz Qyzz

Qzyz, Qzzy −Qzyz, −Qzzy −Qzyz, −Qzzy −Qzyz, −Qzzy Qzyz, Qzzy

the transverse direction. If the collision frequency decreases
with energy, this is an additional factor which contributes to
the rapid longitudinal spread at the transverse edges of the
swarm. If the collision frequency increases with energy, this
contributes to greater resistance to longitudinal expansion at
the transverse edges than in the center of the swarm. For
a constant collision frequency, Qzxx component is positive,
but much less in comparison to Qzzz and Qxzx. If the col-
lision frequency decreases with energy, this component is
positive and greater in magnitude than in the previous case.
If the collision frequency increases with energy and Qxzx is
positive then the Qzxx component is negative. This could be

expected, since the particles at the transverse edges have a
slightly higher energy, and thus higher collision frequency.
Such behavior of Qzxx has been observed in the case of
electron swarms in most atomic and molecular gases. If the
collision frequency increases with energy and Qxzx is negative
then Qzxx is positive. A possible explanation for this effect is
that when Qxzx is negative the energy of the electrons at the
transverse edges of the swarm is, on average, less than in the
center of the swarm. The high-energy electrons undergo more
and more collisions for increasing electron energy which in
turn prevent them from reaching the transverse edges of the
swarm.

APPENDIX C: EXPRESSIONS FOR THE INDIVIDUAL ELEMENTS OF THE THIRD-ORDER TRANSPORT COEFFICIENT
TENSOR IN THE BOLTZMANN EQUATION ANALYSIS AND MONTE CARLO SIMULATIONS

Using symmetry properties of the moments F (νlm|sλμ) discussed in Ref. [70], the corresponding symmetry properties of
the individual elements of the third-order transport coefficient tensor are detailed in Table II. The structure of the tensor may be
determined by applying the symmetries in Table II in combination with the additional physical arguments that concern fluxes
of charged particles induced by magnetic field. These arguments are necessary to identify the zero elements as well as those
elements of the tensor which are equal between each other for a given configuration of the fields. The similar procedure has been
applied for the vectorial and tensorial transport coefficients of the lower order [70].

In this Appendix we present the explicit expressions for the individual elements of the flux third-order transport coefficient
tensor. These expressions have been derived by considering the flux-gradient relation in the spherical form (41) and explicit
expressions for the irreducible gradient tensor operator [33]. In the following expressions α is omitted from the argument of F
for brevity.

For parallel electric and magnetic fields, the individual elements of the flux tensor are given by

Qxxz = 1√
2α

[Im(F (011|221)) − Im(F (01 − 1|221))], (C1)

Qxyz = 1√
2α

[Re(F (01 − 1|221)) − Re(F (011|221))], (C2)

Qzxx = − 1

α

[
1√
3

Im(F (010|200)) + 1√
6

Im(F (010|220))
]

+ 1

α
Im(F (010|222)), (C3)
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Qzzz = 1

α

[√
2

3
Im(F (010|220)) − 1√

3
Im(F (010|200))

]
. (C4)

For perpendicular electric and magnetic fields, the individual elements of the flux tensor are given by

Qxxx =
√

2

α

[
1√
3

Im(F (011|200)) + 1√
6

Im(F (011|220))
]

+ 1√
2α

[−Im(F (011|222)) + Im(F (01 − 1|222))], (C5)

Qxyy =
√

2

α

[
1√
3

Im(F (011|200)) + 1√
6

Im(F (011|220))
]

+ 1√
2α

[Im(F (011|222)) − Im(F (01 − 1|222))], (C6)

Qxzz =
√

2

α

[
1√
3

Im(F (011|200)) −
√

2

3
Im(F (011|220))

]
, (C7)

Qxxz = 1√
2α(t )

[Im(F (011|221)) − Im(F (01 − 1|221))], (C8)

Qyxy = − 1√
2α

[Im(F (011|222))+Im(F (01 − 1|222))], (C9)

Qyyz = 1√
2α

[Im(F (011|221))+Im(F (01 − 1|221))], (C10)

Qzxz = − 1

α
Im(F (010|221)), (C11)

Qzxx = − 1

α

[
1√
3

Im(F (010|200)) + 1√
6

Im(F (010|220))
]

+ 1

α
Im(F (010|222)), (C12)

Qzyy = − 1

α

[
1√
3

Im(F (010|200)) + 1√
6

Im(F (010|220))
]

− 1

α
Im(F (010|222)), (C13)

Qzzz = 1

α

[√
2

3
Im(F (010|220)) − 1√

3
Im(F (010|200)

]
. (C14)

When electric and magnetic fields are crossed at an arbitrary angle, the individual elements of the flux tensor are given by

Qxxy = 1√
2α

[Re(F (011|222)) − Re(F (01 − 1|222))], (C15)

Qyxx =
√

2

α

[
1√
3

Re(F (011|200)) + 1√
6

Re(F (011|220))
]

+ 1√
2α

[−Re(F (011|222))−Re(F (01−1|222))], (C16)

Qyyy =
√

2

α

[
1√
3

Re(F (011|200)) + 1√
6

Re(F (011|220))
]

+ 1√
2α

[Re(F (011|222)) + Re(F (01 − 1|222))], (C17)

Qyzz =
√

2

α

[
1√
3

Re(F (011|200)) −
√

2

3
Re(F (011|220))

]
, (C18)

Qzxy = − 1

α
Re(F (010|222)), (C19)

Qzyz = 1

α
Re(F (010|221)), (C20)

Qxyz = 1√
2α

[Re(F (01 − 1|221))−Re(F (011|221))], (C21)

Qyxz = 1√
2α

[Re(F (011|221))+Re(F (01−1|221))]. (C22)

The elements of the third-order transport coefficients that are independent in a crossed field configuration, are also independent
when the electric and magnetic fields cross at an arbitrary angle. Thus, the corresponding expressions in the Boltzmann equation
analysis are identical.

In what follows, we present the explicit expressions for the flux components of the third-order transport coefficient tensor that
might be identified and computed in our Monte Carlo simulations.
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For parallel electric and magnetic fields, the explicit expressions of the flux longitudinal and flux transverse third-order
transport coefficients are given by Eqs. (48) and (49), respectively. We are not able to isolate the additional elements of the
tensor in the Monte Carlo method used in the present work. As already discussed in this Appendix, the coefficients Qxxz, Qxyz,
Qzxx, and QL ≡ Qzzz could be identified and computed using Boltzmann equation solutions.

For perpendicular electric and magnetic fields, we are able to identify six components of the third-order transport coefficient
tensor in our Monte Carlo simulations. The tensor components are

QL ≡ Qzzz, QE×B ≡ Qxxx (C23)

and

Qπ (xxz) ≡ 1
3 (Qxxz + Qxzx + Qzxx ), (C24)

Qπ (yyx) ≡ 1
3 (Qyyx + Qyxy + Qxyy) (C25)

Qπ (yyz) ≡ 1
3 (Qyyz + Qyzy + Qzyy), (C26)

Qπ (zzx) ≡ 1
3 (Qzzx + Qzxz + Qxzz ), (C27)

where the cross product E×B defines the x axis while π (abc) denotes all possible permutations of (a, b, c). The explicit
expressions of the flux tensor components are given by

Qzzz = 1
6 (3〈z2cz〉 − 3〈cz〉〈z2〉 − 6〈z〉〈zcz〉 + 6〈z〉〈z〉〈cz〉), (C28)

Qxxx = 1
6 (3〈x2cx〉 − 3〈cx〉〈x2〉 − 6〈x〉〈xcx〉 + 6〈x〉〈x〉〈cx〉), (C29)

Qxzz = 1
6 (〈z2cx〉+ 2〈zxcz〉− 2〈cz〉〈zx〉 − 〈cx〉〈z2〉 − 2〈z〉〈xcz〉 − 2〈z〉〈zcx〉− 2〈x〉〈zcz〉 + 2〈cx〉〈z〉〈z〉+ 4〈x〉〈z〉〈cz〉), (C30)

Qzxx = 1
6 (〈x2cz〉+ 2〈xzcx〉− 2〈cx〉〈xz〉 − 〈cz〉〈x2〉− 2〈x〉〈zcx〉 − 2〈x〉〈xcz〉 − 2〈z〉〈xcx〉 + 2〈cz〉〈x〉〈x〉 + 4〈z〉〈x〉〈cx〉), (C31)

Qzyy = 1
6 (〈y2cz〉 + 2〈yzcy〉 − 〈cz〉〈y2〉 − 2〈z〉〈ycy〉), (C32)

Qxyy = 1
6 (〈y2cx〉 + 2〈yxcy〉 − 〈cx〉〈y2〉 − 2〈x〉〈ycy〉). (C33)

For the most general case when electric and magnetic fields are crossed at an arbitrary angle, we are able to identify 10
components of the third-order transport coefficient tensor in our Monte Carlo simulation code. They include six components
already defined for perpendicular electric and magnetic fields and four additional coefficients, including

QE×(E×B) ≡ Qyyy, (C34)

where the cross product E×(E×B) defines the y axis, and

Qπ (xxy) ≡ 1
3 (Qxxy + Qxyx + Qyxx ), (C35)

Qπ (zzy) ≡ 1
3 (Qzzy + Qzyz + Qyzz ), (C36)

Qπ (xyz) ≡ 1
6 (Qxyz + Qyzx + Qzxy + Qxzy + Qyxz + Qzyx ). (C37)

The remaining explicit expressions for the flux components of the third-order transport coefficient tensor are given by

Qyyy = 1
6 (3〈y2cy〉 − 3〈cy〉〈y2〉 − 6〈y〉〈ycy〉 + 6〈y〉〈y〉〈cy〉), (C38)

Qxyz = 1
6 (〈yzcx〉 + 〈xzcy〉 + 〈xycz〉 − 〈cx〉〈yz〉 − 〈x〉〈zcy〉 − 〈x〉〈ycz〉−〈cy〉〈xz〉 − 〈y〉〈zcx〉 − 〈y〉〈xcz〉−〈cz〉〈xy〉
−〈z〉〈ycx〉 − 〈z〉〈xcy〉 + 2〈cx〉〈y〉〈z〉 + 2〈cy〉〈x〉〈z〉 + 2〈cz〉〈y〉〈x〉), (C39)

Qyxx = 1
6 (〈x2cy〉+ 2〈yxcx〉− 2〈cx〉〈yx〉 − 〈cy〉〈x2〉 − 2〈x〉〈ycx〉 − 2〈x〉〈xcy〉 − 2〈y〉〈xcx〉 + 2〈cy〉〈x〉〈x〉 + 4〈y〉〈x〉〈cx〉),

(C40)

Qyzz = 1
6 (〈z2cy〉 + 2〈yzcz〉 − 2〈cz〉〈yz〉 − 〈cy〉〈z2〉 − 2〈z〉〈ycz〉 − 2〈z〉〈zcy〉 − 2〈y〉〈zcz〉 + 2〈cy〉〈z〉〈z〉 + 4〈y〉〈z〉〈cz〉), (C41)

Qzyy = 1
6 (〈y2cz〉 + 2〈yzcy〉 − 2〈cy〉〈yz〉 − 〈cz〉〈y2〉 − 2〈y〉〈zcy〉 − 2〈y〉〈ycz〉 − 2〈z〉〈ycy〉 + 2〈cz〉〈y〉〈y〉 + 4〈z〉〈y〉〈cy〉), (C42)

Qxyy = 1
6 (〈y2cx〉 + 2〈yxcy〉− 2〈cy〉〈yx〉 − 〈cx〉〈y2〉− 2〈y〉〈xcy〉 − 2〈y〉〈ycx〉− 2〈x〉〈ycy〉 + 2〈cx〉〈y〉〈y〉 + 4〈x〉〈y〉〈cy〉). (C43)
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cations in Microelectronic Device Fabrication (CRC Press,
New York, 2014).

[7] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma
Discharges and Materials Processing (Wiley Interscience,
Hoboken, NJ, 2005).

[8] L. L. Alves, A. Bogaerts, V. Guerra, and M. M. Turner, Plasma
Sources Sci. Technol. 27, 023002 (2018).

[9] I. Adamovich, S. D. Baalrud, A. Bogaerts, P. J. Bruggeman,
M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden,
P. Favia, D. B. Graves, S. Hamaguchi, G. Hieftje, M. Hori,
I. D. Kaganovich, U. Kortshagen, M. J. Kushner, N. J. Mason,
S. Mazouffre, S. Mededovic Thagard, H. R. Metelmann, A.
Mizuno, E. Moreau, A. B. Murphy, B. A. Niemira, G. S.
Oehrlein, Z. Lj. Petrovic, L. C. Pitchford, Y. K. Pu, S. Rauf,
O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K.
Terashima, M. M. Turner, M. C. M. Van De Sanden, and A.
Vardelle, J. Phys. D: Appl. Phys. 50, 323001 (2017).

[10] L. Rolandi, W. Riegler, and W. Blum, Particle Detection with
Drift Chambers (Springer, Berlin, 2008).
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[43] S. Dujko, Z. M. Raspopović, R. D. White, T. Makabe, and Z.
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Z. Mijatović, Contributed Papers and Abstracts of Invited Lec-
tures, Topical Invited Lectures. Progress Reports and Workshop
Lectures (Institute of Physics, Belgrade & Klett izdavacka kuca
d.o.o., Belgrade, 2014), pp. 138–141.
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[76] I. Simonović, Z. Lj. Petrović, R. D. White, D. Bošnjaković, and
S. Dujko, in Proceedings of the 29th Symposium on Physics
of Ionized Gases—SPIG 2018, Belgrade, Serbia, edited by G.
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of Nuclear Sciences, University of Belgrade, Belgrade, 2018),
pp. 67–70.

[77] M. Hayashi (private commutation, 2000).
[78] R. D. White, R. E. Robson, P. Nicoletopoulos, and S. Dujko,

Eur. Phys. J. D 66, 117 (2012).
[79] L. Boltzmann, Wein. Ber. 66, 275 (1872).
[80] C. S. Wang-Chang, G. E. Uhlenbeck, and J. DeBoer, in Studies

in Statistical Mechanics, edited by J. DeBoer and G. E. Uhlen-
beck (Wiley, New York, 1964), Vol. 2, p. 241.
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1. Introduction

The idea of thermodynamic equilibrium (TE) is one of the 
most widely used ideas in the foundations of plasma physics. 
Not only is TE used as a background gas, but it is also used 
as the plasma itself, and, further, TE is implicitly incorpo-
rated in most theories through application of the Maxwell 
Boltzmann distribution function. On the other hand, the 
idea of local thermodynamic equilibrium (LTE) in principle 

means that TE is not maintained, and that energy converted 
into the effective temperature is being used as a fitting 
parameter, but also that all the principles of TE still apply 
for the adjusted (local) temperature. It is often overlooked 
that TE implies that each process is balanced by its inverse 
process. It is difficult to envisage just exactly how this con-
dition could be met under circumstances where most of the 
energy that is fed into the non-equilibrium, low-temperature 
discharges comes from an external electric field. The notion 
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Abstract
In this article we show three quite different examples of low-temperature plasmas, where one 
can follow the connection of the elementary binary processes (occurring at the nanoscopic 
scale) to the macroscopic discharge behavior and to its application. The first example is on 
the nature of the higher-order transport coefficient (second-order diffusion or skewness); 
how it may be used to improve the modelling of plasmas and also on how it may be used to 
discern details of the relevant cross sections. A prerequisite for such modeling and use of 
transport data is that the hydrodynamic approximation is applicable. In the second example, 
we show the actual development of avalanches in a resistive plate chamber particle detector 
by conducting kinetic modelling (although it may also be achieved by using swarm data). 
The current and deposited charge waveforms may be predicted accurately showing temporal 
resolution, which allows us to optimize detectors by adjusting the gas mixture composition 
and external fields. Here kinetic modeling is necessary to establish high accuracy and the 
details of the physics that supports fluid models that allows us to follow the transition to 
streamers. Finally, we show an example of positron traps filled with gas that, for all practical 
purposes, are a weakly ionized gas akin to swarms, and may be modelled in that fashion. 
However, low pressures dictate the need to apply full kinetic modelling and use the energy 
distribution function to explain the kinetics of the system. In this way, it is possible to 
confirm a well established phenomenology, but in a manner that allows precise quantitative 
comparisons and description, and thus open doors to a possible optimization.

Keywords: charged particle swarms, non-equilibrium plasma, skewness, resistive plate 
chambers, positron traps, Monte Carlo simulations, Boltzmann equation

(Some figures may appear in colour only in the online journal)

Z L Petrović et al

Printed in the UK

014026

PLPHBZ

© 2017 IOP Publishing Ltd

2017

59

Plasma Phys. Control. Fusion

PPCF

0741-3335

10.1088/0741-3335/59/1/014026

Paper

1

Plasma Physics and Controlled Fusion

IOP

0741-3335/17/014026+9$33.00

doi:10.1088/0741-3335/59/1/014026Plasma Phys. Control. Fusion 59 (2017) 014026 (9pp)

mailto:zoran@ipb.ac.rs
http://crossmark.crossref.org/dialog/?doi=10.1088/0741-3335/59/1/014026&domain=pdf&date_stamp=2016-11-02
publisher-id
doi
http://dx.doi.org/10.1088/0741-3335/59/1/014026


Z L Petrović et al

2

of non-equilibrium is implemented very well in a wide range 
of plasma models, starting from fluid models and hybrid 
models, all the way to fully kinetic codes such as particle-in-
cell (PIC) modelling.

At end of a field of ionized gases, opposite to the fully 
developed plasma, at the lowest space charge densities, 
electrons are accelerated (gain energy) from the external 
electric field and dissipate in collisions with the background 
gas. This realm is known as a swarm (swarm physics), and 
is often described by simple swarm models. We shall try to 
illustrate how and where one may employ concepts developed 
in low-temperature plasmas for problems that are not 
traditional non-equilibrium plasmas such as positrons in gases 
and gas-filled traps, gas breakdown and particle detectors.

The three selected examples are: the use and properties of 
higher-order transport coefficients (skewness) and how they 
may be implemented to close the system of equations  for 
modeling of atmospheric plasmas; modeling of resistive 
plate chamber (RPC) particle detectors with a focus on the 
development of avalanches, and prediction of the current and 
deposited charge; and, finally, modeling of a generic repre-
sentation of the three stage gas-filled positron trap, where 
the same models as for electrons may be employed in a full 
kinetic description to calculate the temporal development of 
the energy distribution function, and, through that, to describe 
how and when individual elementary processes affect the per-
formance of the trap.

This is a review article as it covers three different topics 
that will (or have been) be presented in detail elsewhere. Yet 
the majority of the results will be developed in this paper. 
Necessarily, as it is a broad review, some finer points will be 
omitted in pursuit of the bigger picture, however, all will be 
covered elsewhere and the relevant literature is cited.

2. Higher-order transport and plasma modeling

The fluid equations often employed in plasma modeling are a 
part of an infinite chain, and whenever the chain is broken one 
needs a higher-order equation and related quantities to close 
the system of equations  (Dujko et  al 2013). That is why a 
closing of the equations is forced, sometimes labeled as ansatz, 
although the closure is not quite arbitrary. It is often based on 
some principles or simplifying arguments (Robson et al 2005) 
involving higher-order equations  and related transport coef-
ficients. Robson et al (2005) claimed that some serious errors 
have been incorporated into fluid equations  that are com-
monly used in plasma modeling, and suggested benchmarks 
to test plasma models.

Equations (1) and (2) shown below, are the flux gradient 
equation  and generalized diffusion equation, respectively, 
truncated at the contribution of the third order transport 
coefficients (also known as skewness). The terms, including 

Q
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the flux of charged particles, charged particle number density, 
flux drift velocity, flux diffusion tensor, flux skewness tensor, 
bulk drift velocity, bulk diffusion tensor, bulk skewness tensor 
and rate for reactions, respectively. If equations (1) and/or (2) 
are coupled to the Poisson equation for an electric field then 
the system of corresponding differential equations might be 
closed in the so-called local field approximation. This means 
that all transport properties are functions of the local electric 
field. The skewness tensor has been systematically ignored 
in previous fluid models of plasma discharges, although its 
contrib ution may be significant for discharges operating at 
high electric fields, and in particular for discharges in which 
the ion dynamics play an important role.

As for experimental determination of the higher-order dif-
fusion of electrons, there have been some attempts, but those 
were mostly regarded as unsuccessful due to the end effects 
(Denman and Schlie 1990). In other words, those experiments 
may have failed to comply with both the requirements for neg-
ligible non-hydrodynamic regions and for lower pressures. An 
estimate was made that reliable skweness experiments would 
have to be up to 10 m long with pressures that are at least ten 
times smaller than those in standard swarm experiments. It 
seems that the only reliable yet very weak result was observed 
for H2 in time of flight (TOF) emission experiments of Blevin 
et al (1976, 1978), as described in the PhD thesis by Hunter 
(1977). This is because the measurement was made away from 
the electrodes, thus providing a hydrodynamic environment.

At the same time some calculations were performed based 
on the available cross sections either by using a Monte Carlo 
simulation (MCS) and two term solutions of the Boltzmann 
equation (BE) (Penetrante and Bardsley 1990) or by using the 
momentum transfer theory (Vrhovac et  al 1999). Whealton 
and Mason (1974) were the first to determine the correct struc-
ture of the skewness tensor in the magnetic field free case. For 
ions there have been more general studies and in particular 
theoretical studies. Koutselos gave a different prediction of 
the structure and symmetry of the tensor (Koutselos 1997) 
but those results were challenged (corrected) by Vrhovac et al 
(1999), who confirmed the structure of the skewness tensor 
previously determined by Whealton and Mason. Subsequently 
Koutselos confirmed the structure of the skewness tensor 
obtained by previous authors (Koutselos 2001).

Finally, having in mind the need for data in fluid modeling 
and the poor likelihood of experimental studies in the near 
future, a systematic study has been completed by Simonović 
et  al (2016) dealing with the symmetry by using the group 
projector method (Barut and Raczka 1980, Tung 1984), 
multi-term Boltzmann equation solutions and MCS results in 
general terms. It should be noted that the third-order transport 
coefficients are often called skewness, but in principle it is the 
term that was to be applied only for the longitudinal diagonal 
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term, which defines most directly the (departure from the) 
shape of the moving Gaussian. We will, however, use the term 
skewness for the entire tensor and all its terms.

The structure of the skewness tensor is the following 
(Whealton and Mason 1974, Vrhovac et al 1999, Koutselos 
2001, Simonović et al 2016):
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where a b x y z, , ,{ }∈  and Qabc are the independent, non-
zero terms in the tensor (although some of them may be 
identical if they are established for different permutations 
of the same derivatives). The components of the tensor 
may be grouped as longitudinal Q QzzzL =  and transverse 

Q Q Q Qzxx xxz xzxT
1

3
( )= + + .

In this paper, we present results for skewness of electron 
swarms in methane. Methane is known for producing 
negative differential conductivity (NDC) and in this work 
we will demonstrate the unusual variation of the longitudinal 
and transverse components of the skewness tensor for E/N 
(electric field over the gas number density) regions in which 
NDC occurs. NDC is characterized by a decrease in the drift 
velocity despite an increase in the magnitude of the applied 
reduced electric field. Cross sections  for electron scattering 
in methane are taken from Šašić et al (2004). For the purpose 
of this calculation we assumed a cold gas approx imation: 
T  =  0 K, which is justified as we covered mostly the E/N  
range where mean energies are considerably higher than the 
thermal energy. The initial number of electrons in the simula-
tions was 107 and those were followed for sufficient time to 
achieve full equilibration with the applied field before sam-
pling was applied. Sampling in an MCS is performed either  

for the flux (velocity space) Q r r rabc t a b c
f 1

3 !

d

d
( )( ) = ∗ ∗ ∗  or for the 

bulk (real space) Q r r rabc t a b c
b 1

3 !

d

d
( ) = ∗ ∗ ∗  components (Simonović 

et al 2016) where r r ra a a= −∗ .
Uncertainties are established as the root mean square devi-

ations. Statistical fluctuations in MCSs are more pronounced 
for skewness than for the lower-order transport coefficients. 
Thus, it is very important to present statistical uncertainties 
(errors) associated with the results. In addition to Monte Carlo 
results, the skewness tensor is calculated from the multi-term 
Boltzmann equation solution. The explicit formulas for skew-
ness tensor elements in terms of moments of the distribution 
function will be given in a forthcoming paper (Simonović 
et al 2016).

In figures 1 and 2 we show the variation of the longitudinal 
and transverse skewness tensor components with E/N for elec-
trons in CH4, respectively. In figure 3 we show the variation 
of independent components of the skewness tensor with E/N. 
The independent components of the skewness tensor have 
been calculated from a multi-term solution of the Boltzmann 
equation.

The first observation that is very important is that the multi-
term Boltzmann equation results agree very well with those 
obtained in MCSs. This is an important cross check and it 
means that the techniques to calculate the skewness are inter-
nally consistent, although two very different approaches are 
implemented (having said that we assume that the solution to 
the Boltzmann equation and the MC are both well established 
and tested (Dujko et al 2010)).

We see that QT becomes negative in the same range of E/N 
where NDC occurs. At the same time QL remains positive. 
Qzxx and the sum of Qxxz and Qxzx are negative in different 
regions of E/N.

Comparing the second- and third-order longitudinal trans-
port coefficients we noticed that if diffusion decreases with 
increasing E/N then the skewness also decreases, but even 
faster (figures  4 and 5). When it comes to the effect of the 
cross sections (or inversely to the ability to determine the cross 
sections from the transport data) it seems that skewness has a 

Figure 1. The longitudinal component of the skewness tensor 
calculated for electrons in methane.

Figure 2. The transverse component of the skewness tensor 
calculated for electrons in methane.
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more pronounced structure, and thus is more useful in fixing 
the shape and absolute values of the cross sections. If the dif-
fusion increases, then we are able to distinguish between the 
two scenarios: if diffusion increases as a concave function, 
then the skewness decreases, while if the diffusion increases 
as a convex (or linear) function then the skewness increases.

We have observed that the transverse skewness is also in 
a good, if not better, correlation with the longitudinal diffu-
sion (figure 5). This is a good example that illustrates that the 
skewness tensor represents directional motion.

Different transverse components have different E/N pro-
files. Qzxx follows the behavior of the drift velocity while the 
remaining components change their trends of behavior near 
the end of the NDC region (figure 6). For different gases we 
have seen different trends and a clear correlation was not 
found (Simonović et al 2016).

Furthermore, but without illustrating it with special figures, 
the explicit effect of non-conservative collisions (ionization 
in this case) has been observed. However, in many cases the 

agreement between multi-term BE results and those obtained 
in MCSs is better than what would be expected based on the 
estimated errors. At the same time it turned out that discrepan-
cies between a two-term and multi-term (MCS) results may be 
quite large, ranging up to a factor of 10.

Possible measurements of higher-order transport coef-
ficients seem possible and also profitable for the sake of 
determining the cross sections. Nevertheless the difficulties 
and possible uncertainties may outweigh the benefits. Thus, 
calculation of the data seems like an optimum choice for 
application in higher-order plasma models. The behavior of 
higher-order transport coefficients provides an insight into 
the effect of individual cross sections (their shape and mag-
nitude), and their features such as the Ramsauer Townsend 
effect or resonances on the overall plasma behavior. The 
transport coefficients as an intermediate step give a guidance, 
especially when they develop special features (kinetic effects 

Figure 4. Comparison between longitudinal diffusion and skewness 
for electrons in methane (the scale for the two different transport 
coefficients are provided in the legend).

Figure 5. Comparison between longitudinal diffusion and 
transverse skewness for electrons in methane (the scale for the two 
different transport coefficients are provided in the legend).

Figure 3. All independent components of the skewness tensor 
calculated for electrons in methane.

Figure 6. Off-diagonal components of skewness compared to 
the drift velocity for electrons in methane (the scale for the two 
different transport coefficients are provided in the legend).
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(Petrović et al 2009)) that may also be easily implemented in 
the determination of the cross sections.

3. Avalanches in resistive plate chambers

The next example of the connection of the elementary pro-
cesses to plasma behavior through intermediate swarm-like 
phenomenology modeling will be modeling of RPC detectors. 
These devices are used for timing and triggering purposes in 
many high-energy physics experiments at CERN and else-
where (The ATLAS Collaboration 2008, Santonico 2012). 
RPCs may be both used for spatial and temporal detection 
while providing large signal amplifications. They are usually 
operated in avalanche (swarm) or plasma (streamer) regimes 
depending on the required amplification and performance 
characteristics. Numerous models have been developed to 
predict RPC performance and modes of operation (Lippmann 
et al 2004, Moshaii et al 2012). We have studied systemati-
cally the swarm data (Bošnjaković et al 2014a) and then the 

model of RPCs (Bošnjaković et  al 2014b) where RPC effi-
ciency and timing resolution have been predicted by MCS 
without any adjustable parameters, and were found to agree 
with experiment very well. Here we show some of the data 
not presented in Bošnjaković et al (2014b), which focuses on 
avalanche development and furthermore the induced current 
and charge.

Calculations of the development of the Townsend 
avalanche have been performed for a timing RPC gas mixture 
of C2H2F4:i-C4H10:SF6  =  85:5:10 with realistic chamber 
geometry (gas gap  =  0.3 mm) at E/N  =  421 Td. We show 
in figure 7 the development of an avalanche in the gap with 
three initial clusters of charges (first generation secondary 
electrons indicated by arrows at 0 ps) formed by an incoming 
high-energy particle. The first cluster (from the left) has one 
electron, the second has nine and the third has 983 initial 
electrons. The distribution over a small group of cells has been 
randomly selected according to well-established distributions. 
At the beginning, the initial condition shapes the profile of 
the ensemble, but eventually a Gaussian is formed that drifts 
under the influence of an electric field and diffuses due to 
numerous collisions.

Figure 8. The time development of (a) electron induced current and 
(b) induced charge in the RPC device.

Figure 9. Schematic drawing of a generic Surko trap consisting of 
three equal potential drops. The composition of the background gas, 
its pressure and geometry are given in table 1.

Table 1. Parameters for simulation of a generic positron Surko trap.

Parameters Stage I Stage II Stage III

Radius (mm) 5 20 20
Length (m) 0.5 0.5 0.5
Pressure (Torr) 10−3 10−4 10−5

Background gas N2 N2 N CF2
0.5

4
0.5+

Magnetic field (G) 530 530 530
Voltage (V) 20 10 0

The initial parameters

Potential of the entrance 
electrode (V)

30

Potential of the source (V) 0.1
Width (FWHM) of the initial 
energy distribution (eV)

1.5

Figure 7. The spatio-temporal development of electron avalanches 
((a) and (b)) in an RPC device. The number of electrons per cell 
(1D integration of a 3D simulation) is shown where the cells 
(1 cell  =  1 µm) are along the discharge axis x. The cathode 
corresponds to x  =  0 while the anode corresponds to x  =  300 µm.
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We will first follow the development of the cluster closest 
to the anode (at 270 µm), as indicated by spatial electron pro-
files at different times in figure 7(a). The largest initial group, 
which is also the closest to the anode, develops the fastest: 
from the initial very sharp profile it quickly establishes a 
Gaussian shape that also very quickly gets absorbed by the 
anode. The second peak (from the right) is quick to follow but 
it is very small and cannot be observed clearly due to interfer-
ence from the first pulse. In figure 7(b), we show the develop-
ment of the first cluster (at 100 µm) for longer times. This 
cluster is the furthest from the anode and it takes the most 
time to reach the anode, again as a well developed moving 
Gaussian. It develops, however, a well-separated and defined 
current pulse (unlike the second cluster of charged particles). 
The induced current and the corresponding induced charge are 
shown in figure 8.

The predictions in figure  8, extended to provide impor-
tant information on the temporal resolution, may be used to 
optim ize the device by changing gas composition, field and 
geometry, and also may be extended to allow for the forma-
tion of the plasma in later stages when a streamer discharge 
may be generated at atmospheric pressure (Bošnjaković 
et  al 2016). Trial and error development of such devices is 
simply too costly to allow for an empirical learning curve. 
Nevertheless, one could argue that it could be possible to 
develop a model based on a standard swarm description of a 
moving Gaussian with drift and diffusion plus the benefit of 
multiplication through ionization. All of these processes have 
their swarm coefficients. However, the very short times of the 
formation of the initial cluster, it being inhomogeneous and a 
very nonlinear growth with a possible separation of faster and 
slower electrons, dictate the need to perform an MCS in order 
to achieve the required accuracy. Thus, this example allows for 
the use of transport coefficients, but is better accomplished by 
full kinetic modeling. Transport coefficients are better taken 
advantage of in fluid modeling of the possibly developing 
streamer (Bošnjaković et al 2016). In any case, the ionized gas 
and the developing plasma channel are both represented very 

accurately (qualitatively and quantitatively). Here we have 
used kinetic swarm modeling, although using transport coef-
ficients may also be an option, albeit a less accurate option.

4. Gas-filled positron (and electron) traps

While it is often assumed that keeping the antimatter away 
from the matter is a way of preserving it longer, the intro-
duction of background gas to the vacuum magnetic field trap 
led to the birth of the so-called Penning Malmberg Surko 
traps (often known simply as Surko traps). These devices 
take advantage of the very narrow region of energies, where 
in nitrogen electronic excitation can compete and even over-
power the otherwise dominant (for almost all other gases and 
inelastic processes) positronium (Ps) formation (Murphy and 
Surko 1992, Cassidy et al 2006, Clarke et al 2006, Sullivan 
et al 2008, Marjanovic et al 2011, Danielson et al 2015). To 
be fair, the principles of the trap have been worked out in great 
detail, but mostly based on beam-like considerations (Murphy 
and Surko 1992, Charlton and Humberston 2000). However 
the device consists of a charge being released in a gas in the 
presence of electric and magnetic fields, and thus it is an ion-
ized gas that is exactly described by a swarm model until the 
space charge effects begin to play a significant role, and then 
it is best described by a plasma model (again with a significant 
reference to collisions and transport). Thus, for quantitative 
representation and accurate modeling of traps, a swarm-like 
model is required and recently two such models were used to 
explain the salient features of Surko traps (Marjanović et al 
2011, Petrović et al 2014, Natisin et al 2015). An explanation 
and quantitative comparisons will be the subject of a special-
ized publication (Marjanović and Petrović 2016). Here we 
only focus on the development of the energy distribution func-
tion, which is the primary medium connecting the large-scale 
behavior of the trap with microscopic binary collisions.

As pressures used in the gas-filled traps are very low, and 
the mean free paths become comparable to the dimensions of 
the trap, one may be assured that the description at the level 
of transport coefficients and fluid models would fail. This 
example thus requires a full kinetic level of description.

The generic (model) trap consists of three stages, each with 
a 10 V potential drop and each of the same length (figure 9). 
The properties, the pressures and other features are listed in 
table  1. A standard, well-tested (for electron benchmarks—
Lucas and Saelee 1975, Reid 1979, Ness and Robson 1986, 
Raspopović et al 1999) Monte Carlo code has been used here. 
Realistic geometry was included along with the boundary con-
ditions (potentials, energy distributions and losses). Special 
care was given to the testing of the modeling of trajectories 
in magnetic fields (Raspopović et al 1999 Dujko et al 2005).

First results are shown in figure 10 where we plot mean 
energies as a function of time in three separate stages 
(chambers) and also averaged for the entire volume. The 
energy steps provided by the potential drops are observable 
for the mean energies in stages II and III. The overall increase 
in energy is also observed in the total volume average. The 
initial plateau of the mean energy is extended mainly due to 

Figure 10. The mean energy of the positron ensemble (swarm) as a 
function of time. Averages for each stage and for the entire volume 
(total) are provided. The energy distribution function is plotted in 
figure 11 for the times marked by the points (a)–(f) in this figure.
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the logarithmic nature of the plot. Following another plateau 
due to inelastic energy losses, the mean energy falls to the 
thermal value for the final thermalization.

The voltage drop in the initial stage is used to accelerate 
the positrons coming from the moderator into the energy 
range where electronic excitation of nitrogen is as efficient 
as Ps formation. Thus the initial distribution in figure 11 is 
a mono-energetic beam at 10 eV. Upon development of the 
group of positrons that have lost energy in excitation (figure 
11(b)), positrons leave the stage I and pass into stages II and 
III so the two new peaks develop at 20 eV and 30 eV (figure 
11(c)). The positrons that have collided form a group peaking 
at around 2 eV. During the next period two processes are 
obvious. The first is the quenching of the initial beams into 
the group, peaking at around 2 eV but extending up to 7 eV, 
where Ps formation removes the particles. The second is the 
process that uses vibrational excitation of CF4 and thermal-
izes the 2 eV group into a low-energy group peaking at around 
0.07 eV (figures 11(d) and (e)). It is interesting to see that the 
peak at around 2 eV is the first to disappear, leaving a group at 
around 5 eV to thermalize more slowly. At this point the low-
energy positrons are also mainly localized in the third stage.

The final stage is characterized by two processes, the 
disappearance of the higher-energy group at around 5 eV and 
the gradual thermalization of the low-energy group at around  
70 meV towards the thermal energy ( f ) of around 40 meV. At 
that point a quasi-thermal Maxwellian is developed. The trans-
ition appears to be rapid but, by the virtue of a logarithmic plot, 
it is the longest transition in the process of thermalization and 

involves bouncing between the potential boundaries of the 
third stage many times. At the same time one should see that 
the properties of the trap are adjusted so that in the first bounce 
across the three stages most particles suffer electronic excitation/
Ps formation collisions and either disappear or are trapped.

The simulation provides many different properties of the 
positron ensemble (swarm) but the point of this paper is to 
show a direct connection between binary collision processes 
and the macroscopic behavior. Using the energy distribution 
one can easily see the dominant processes and predict which 
aspects of the processes are promoted by the clever design of 
the Surko trap. It may also be used to optimize its character-
istics (Marjanović et al 2016). Nevertheless, the principles of 
the trap were properly understood from the initial concepts 
but in this case we have detailed representation of the energy 
distribution, allowing accurate quantitative comparisons. For 
example, one may now adjust the details of the cross sec-
tion in order to fit the measured properties (such as sampled 
mean energy that may be somewhat skewed by the sampling 
process). In that respect the measured observables from the 
trap may play a role in the swarm data that need to be fitted in 
order to tune the cross sections so that the number, momentum 
and energy balances may be preserved. As analysis of the pos-
itron swarm data led to a number of complex kinetic effects 
(Banković et  al 2009, 2012) it would be interesting to see 
whether similar effects may be observed or even affect the 
operation of the traps.

These results are akin to the well-established initial 
equilibration for electrons in gases (Dujko et  al 2014) with 

Figure 11. Positron kinetic energy distribution of the entire swarm sampled at different times (indicated in figure 10). Calculations were 
performed for the Surko trap as shown in figure 9 with the conditions listed in table 1.
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temporal and spatial Holst Oosterhuis luminous layers 
(Hayashi 1982, Fletcher 1985) that are strongly related to the 
well-known Frank Hertz experiment (White et al 2012, Robson 
2014). In addition, it must be noted that even if we were to start 
simulation with a Maxwellian distribution and try to follow 
the thermalization, due to the sharp energy dependence of 
the processes non-Maxwellian distribution function, it would 
develop immediately making it necessary to employ a full 
kinetic treatment. While fluid equations  will not work well 
under the circumstances, and while transport coefficients may 
be difficult to define and even more difficult to implement in 
modeling, kinetic (Monte Carlo) modeling is still a typical 
swarm-like model that needs to be employed. Once we fill the 
trap with sufficient charge to allow for plasma effects, then 
we may need to add-in true plasma modeling based on fluid 
equations and on the calculation of the effective fields.

5. Conclusion

In this review we address three recent examples on how 
swarm based modeling may connect the microscopic binary 
processes to the macroscopic behavior of ionized gases, 
even plasmas. The necessary prerequisite for this approach 
to be effective is that the systems belong to the so-called col-
lisional plasmas (also known as the non-equilibrium or low-
temperature plasmas). The examples are chosen to reveal 
three different aspects of swarm modeling: (a) that based on 
transport coefficients and fluid models and how they may 
be improved, (b) a system that may be described by both 
fluid models and simulations where simulations are used 
here to verify the more basic modeling, while the fluid mod-
eling is allowing us to extend predictions further to plasma 
conditions, and, finally, (c) for the situation where full 
kinetic modeling is required. Thus, these examples should 
be viewed as confirmation of the validity and usefulness 
of the swarm models that are often overlooked by plasma 
modelers. Swarm models are sometimes regarded as a limit 
that is unrealistic and useful only to describe well-designed 
experiments that provide swarm data. One subscribing to that 
view would then need to reply to why the use of swarm data 
and also swarm data based fluid equations is so successful. 
In fact, we believe that often an ‘overkill’ is performed by 
using plasma models to describe inherently swarm-like con-
ditions. One such example is the popular modeling of break-
down by PIC of hybrid codes. If done properly, it is all fine, 
although less transparent due to a more complex nature of 
the codes. However, at the same time such complexity does 
not allow us to add special tests or sampling that may reveal 
more insight into the pertinent physical processes. Examples 
may include details of the energy distribution function, 
adjusting boundary conditions to include detailed represen-
tation of surface processes and observation and inclusion of 
the kinetic phenomena.

In doing modeling of low-temperature plasmas that may 
need to go both more towards the swarm-like and plasma 
conditions we would strongly recommend that all the plasma 
codes need to be verified against swarm benchmarks and 

include sampling of relevant data. It all may become more 
and more difficult as one develops codes for inhomogeneous 
systems with complex geometry, but in the limit of a simple 
geometry and simple swarm conditions all swarm benchmarks 
should be satisfied to the highest of accuracy.

This article may be viewed as an extension of an article 
that has been recently submitted for a special issue on plasma 
modeling covering physical situations where swarm type 
models are valid and useful and accurate. There is no overlap 
of the two papers, although a common idea of the need to pre-
sent the usefulness of the swarm model is obvious. The focus 
here is more on how elementary processes are producing 
an intermediate realm of phenomenology (swarm models 
and properties) that then clearly point at the macroscopic 
behavior. Be it sprite propagation or positron traps these con-
nections not only reveal relevant physics, but also provide a 
means to tailor applications based on elementary processes 
and  low-temperature plasmas.
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Abstract. In this work we extend a multi term solution of the Boltzmann equation for electrons in neutral
gases to consider the third-order transport coefficient tensor. Calculations of the third-order transport
coefficients have been carried out for electrons in noble gases, including helium (He), neon (Ne), argon
(Ar), krypton (Kr) and xenon (Xe) as a function of the reduced electric field, E/n0 (where E is the electric
field while n0 is the gas number density). Three fundamental issues are considered: (i) the correlation
between the longitudinal component of the third-order transport tensor and the longitudinal component
of the diffusion tensor, (ii) the influence of the third-order transport coefficients on the spatial profile of
electron swarm, and (iii) the errors associated with the two term approximation for calculating the third-
order transport coefficients for electron swarms in noble gases. It is found that a very strong correlation
exists between the longitudinal components of the third-order transport coefficient tensor and diffusion
tensor for the higher values of E/n0. The effects of the third-order transport coefficients on the spatial
profile of electron swarms are the most pronounced for noble gases with the Ramsauer-Townsend minimum
in the cross sections for elastic scattering. The largest errors of two term approximation are observed in
the off-diagonal elements of the third-order transport coefficient tensor in Ar, Kr and Xe for the higher
values of E/n0.

1 Introduction

The investigation of charged particle transport in neu-
tral gases has a wide range of applications, ranging from
the modeling of swarm experiments [1–5] and modeling
of low-temperature plasmas [6,7], to high-voltage technol-
ogy [8] and modeling of particle detectors used in high-
energy physics [9,10]. While there is a rich amount of data
concerning the lower-order transport coefficients, includ-
ing the drift velocity, diffusion coefficients and rate coef-
ficients, for both electrons and ions, [11,12] and recently
for positrons [13,14], the third-order transport coefficients
are still largely unexplored as they are difficult to measure,
and difficult to investigate theoretically.

The third-order transport coefficient tensor is required
for the conversion of hydrodynamic transport coefficients
into transport data that are measured in the arrival time

? Contribution to the Topical Issue “Low-Energy Positron
and Positronium Physics and Electron-Molecule Collisions and
Swarms (POSMOL 2019)”, edited by Michael Brunger, David
Cassidy, Saša Dujko, Dragana Marić, Joan Marler, James
Sullivan, Juraj Fedor.

a e-mail: sasa.dujko@ipb.ac.rs

spectra [15,16] and the steady-state Townsend experi-
ments [4]. In addition, the third-order transport coeffi-
cients are needed for the representation of the spatial
distribution of the swarm under conditions where this dis-
tribution deviates from the ideal Gaussian. Moreover, the
third-order transport coefficients would be very useful in
the swarm procedure for determining the sets of cross
sections for the scattering of electrons and/or ions with
neutral particles, if these transport coefficients were both
calculated and measured with sufficient accuracy [17,18].

The third-order transport coefficients have been investi-
gated by several authors. Whealton and Mason have deter-
mined the structure of the third-order transport tensor
for an electric field only situation, and have calculated
third-order transport coefficients for electrons assuming
the constant collision frequency model gas [19]. Penetrante
and Bardsley calculated the third-order transport coeffi-
cients for electrons in He, Ne and Ar by using the Monte
Carlo simulations and a two term approximation for solv-
ing the Boltzmann equation [17]. Vrhovac and co-workers
investigated the third-order transport tensor for electrons
in He, Ne and Ar by employing the momentum transfer
theory [18]. Koutselos studied the third-order transport
coefficients of ions in atomic gases by using the molecular
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dynamics simulations and a three-temperature method
for solving Boltzmann’s equation [21–24]. The equality of
the higher-order transport coefficients between an elec-
tron swarm developing from multiple electron sources
and another originating from a single electron source was
investigated by Sugawara and Sakai [25]. The third-order
transport coefficients for electrons in methane (CH4) and
sulfur hexafluoride (SF6) have been recently investigated
by Kawaguchi and co-workers via Monte Carlo simula-
tions [16]. They have also derived the relation between
the longitudinal third-order transport coefficient and the
alpha-parameters, by using the theory of arrival time spec-
tra of an electron swarm initially developed by Kondo
and Tagashira [15]. Petrović and co-workers also recently
investigated the third-order transport coefficient tensor for
electrons in CH4 by using Monte Carlo simulations and
the multi term method for solving the Boltzmann equa-
tion [26]. Finally, Stokes and co-workers have studied the
third-order transport coefficients for localized and delocal-
ized charged-particle transport [27].

In this work we extend the multi term solution of
Boltzmann’s equation with the aim of investigating behav-
ior of third-order transport coefficients in noble gases. As
noble gases have simpler cross section sets than molecu-
lar gases, they are a good starting point for studying the
third-order transport coefficients. Moreover, it is interest-
ing to investigate the influence of the Ramsauer-Townsend
minimum on the third-order transport tensor for electrons
in Ar, Kr and Xe, as it can be expected that a rapid varia-
tion of the cross section for elastic collisions in these gases
will leave a distinguishable signature on the profiles of the
third-order transport coefficients. Moreover, if the compo-
nents of the third-order transport tensor have very high
values for electrons in Ar, Kr and Xe at low electric fields,
due to the presence of the Ramsauer-Townsend minimum,
they could also have a significant influence on the spatial
profile of a swarm of electrons under these conditions.

The paper is organized as follows. In Section 2.1 we
present the basic elements of the theory and definition
of the third-order transport tensor. In Section 2.2 we
describe the multi term method for solving the Boltzmann
equation used in the present work where special emphasis
is placed on the relating the third-order transport coef-
ficients and the moments of the distribution function.
In Section 3.1 we describe the cross sections used as an
input to solve Boltzmann’s equation and the conditions
of our calculations. In Section 3.2 we analyze the E/n0-
dependence of mean energy for electrons in He, Ar, Kr
and Xe. In Section 3.3 we investigate the variation of the
third-order transport coefficients with E/n0 for electrons
in four noble gases. In Section 3.4 we study correlation
between the longitudinal component of the third-order
transport tensor and the longitudinal component of the
diffusion tensor for electrons in He, Ne, Ar, Kr and Xe.
In Section 3.5 we consider the influence of the third-order
transport coefficients on the spatial profile of the swarm
for electrons in these five gases. Finally, in Section 3.6 we
discuss the errors associated with the two term approxima-
tion for solving the Boltzmann equation in the framework
of calculations of the third-order transport coefficients for

electrons in noble gases. Our conclusions are summarized
in Section 4.

2 Theory: definitions and methods
of calculation

2.1 Definition of the third-order transport coefficient
tensor

In the present work, we consider a swarm of electrons
which moves in an infinite and homogeneous background
gas under the influence of a constant and uniform elec-
tric field. The z axis of the system is oriented along the
direction of the electric field. The number density of elec-
trons is very low and hence, the space charge effects and
collisions between electrons are considered to be negligi-
ble. The background gas is regarded to be in a thermo-
dynamic equilibrium at a temperature T0, and the effect
of the swarm on the state of the background gas can
be neglected. The swarm of electrons is represented by
the phase space distribution function f(r, c, t), which is a
function of position r, velocity c and time t.

The continuity of the swarm in the configuration space
is expressed by the following equation

∂n(r, t)
∂t

+∇ · Γ(r, t) = S(r, t), (1)

where n(r, t) is the number density of electrons, while
Γ(r, t) and S(r, t) are the flux of electrons and the source
term, respectively. The number density of electrons can be
expressed in terms of the phase space distribution function
f(r, c, t) as

n (r, t) =
∫
f (r, c, t) dc, (2)

where integration is performed over the entire velocity
space.

When the swarm is located far from boundaries of
the system, and far from sources and sinks of charged
particles, and when the applied electric field is spatially
uniform, the swarm can enter the hydrodynamic regime
[2,28]. In the hydrodynamic regime all space-time depen-
dence of the phase space distribution function may be
expressed in terms of functionals of the number density
n (r, t). Under the hydrodynamic conditions, the phase
space distribution function can be represented by the fol-
lowing expression

f (r, c, t) =
∞∑
k=0

f (k) (c, t)� (−∇)k n (r, t), (3)

where f (k) (c, t) are time-dependent tensors of rank k
and � denotes a k-fold scalar product. This expres-
sion is known as the density gradient expansion of the
phase space distribution function [28]. If the background
electric field is static, the tensors f (k) (c, t) are inde-
pendent of time, after the swarm has relaxed to a sta-
tionary state. In the hydrodynamic regime, the flux of

https://www.epjd.epj.org
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velocity of charged particles is defined by the flux gradient
relation

Γ (r, t) =
∞∑
k=0

Γ(k+1) � (−∇)k n (r, t), (4)

where the superscripts (k) denote the order of the density
gradient, while (k + 1) denote the ranks of the tensors
Γ(k+1). These tensors represent the flux transport coef-
ficients [29]. By truncating the flux gradient relation at
k = 2, the following equation is obtained

Γ (r, t) = W(f)n (r, t)−D(f) �∇n (r, t)

+ Q(f) � (∇⊗∇)n (r, t) , (5)

where ⊗ is the tensor product, W(f) and D(f) are the flux
drift velocity and the flux diffusion tensor, respectively,
while Q(f) defines the flux third-order transport coefficient
tensor.

For an electric field only configuration, the third-order
transport coefficient tensor has seven non-zero elements of
which three are independent [19]. The independent com-
ponents of the third-order transport tensor are Q(f)

xxz, Q
(f)
zxx

and Q
(f)
zzz. Other non-zero components are related to the

independent components by the following symmetry rela-
tions [19]:

Q(f)
xzx = Q(f)

xxz = Q(f)
yyz = Q(f)

yzy, (6)

Q(f)
zyy = Q(f)

zxx. (7)

The longitudinal and transverse third-order transport
coefficients are defined as:

Q
(f)
L = Q(f)

zzz, Q
(f)
T =

1
3

(Q(f)
xxz +Q(f)

xzx +Q(f)
zxx). (8)

The hydrodynamic expansion of the source term is given
by [28]

S (r, t) =
∑∞
k=0 S(k) � (−∇)k n (r, t), (9)

where the superscripts (k) denote the rank of tensors S(k)

[29]. By substituting equations (5) and (9) into (1) the
generalized diffusion equation, which is truncated at third-
order gradients, is obtained. This equation can be written
as

∂n (r, t)
∂t

+ W(b) �∇n (r, t)−D(b) � (∇⊗∇)n (r, t)

+ Q(b) � (∇⊗∇⊗∇)n (r, t) = Rprodn (r, t) ,
(10)

where Rprod is the net particle production-rate, W(b) and
D(b) are the bulk drift velocity and bulk diffusion tensor,
respectively, and Q(b) is the bulk third-order transport
coefficient tensor. Bulk transport coefficients are related
to the corresponding flux transport coefficients as [2,11,29]

W(b) = W(f) + S(1), (11)

D(b) = D(f) + S(2), (12)

Q(b) = Q(f) + S(3). (13)

Equation (10) cannot be solved analytically, even for
the set of simple boundary conditions found in an ideal-
ized time-of-flight experiment [2]. However, this equation
can be solved approximately if the Fourier transform of
the solution is expanded in a Taylor series in terms of
components of the third-order transport coefficient tensor
[20]. The approximate solution up to the first-order can
be written as [20]
n(1) (r, t) = n(0) (r, t)

×

[

1 +Q
(b)
L

t
(
z −W (b)t

)3

− 6D
(b)
L t2

(
z −W (b)t

)

8
(
D

(b)
L t
)3

+Q
(b)
T

3t
(
z −W (b)t

)(
x2 + y2 − 4D

(b)
T t
)

8D
(b)
L t

(
D

(b)
T t
)2

]

, (14)

where n(0)(r, t) is the solution of the diffusion equation,
which has the form [2]

n(0)(r, t) =
N0e

Rprodte
− (z−W (b)t)2

4D
(b)
L

t
− x2+y2

4D
(b)
T

t(
4πD(b)

T t
)√

4πD(b)
L t

, (15)

while N0, W (b), D(b)
L , D(b)

T , Q(b)
L and Q

(b)
T are the initial

number of particles, bulk drift velocity, bulk longitudinal
diffusion, bulk transverse diffusion, and bulk values of lon-
gitudinal and transverse third-order transport coefficients,
respectively. Expression (14) has a simpler form in the rel-
ative coordinates that are defined as [20]

χz =
z −W (b)t√

2D(b)
L t

, χx =
x√

2D(b)
T t

, χy =
y√

2D(b)
T t

· (16)

In these coordinates the approximate solution (14) is given
by
n(1)(r, t) = n(0)(r, t)

×

(

1 +
tQ

(b)
L

σ3
z

χz(χ
2
z − 3) +

3tQ
(b)
T

σ2
xσz

χz(χ
2
x + χ2

y − 2)

)

,

(17)

where σz =
√

2D(b)
L t and σx = σy =

√
2D(b)

T t. From
this expression it can be seen that the contribution of
the third-order transport coefficient tensor to the spatial
profile of the swarm is proportional to Q(b)

L /(t1/2(D(b)
L )3/2)

and Q
(b)
T /(t1/2

√
D

(b)
L D

(b)
T ) [20].

2.2 Multi term solutions of Boltzmann’s equation

The evolution of the phase space distribution function is
given by the Boltzmann equation. In the case of a swarm
of electrons, which are moving in an infinite and homo-
geneous background gas, the Boltzmann equation can be
written as
∂f

∂t
+ c · ∂f

∂r
+

e

m
(E + c×B) · ∂f

∂c
= −J (f, f0), (18)
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where e and m are the charge and mass of electrons, E
and B are the electric and magnetic fields, and J (f, f0)
is the collision operator. The Boltzmann equation is an
integro-differential equation, which cannot be solved ana-
lytically in the case of electrons in real gases [2,6]. We
employ the moment method where the phase space distri-
bution function is expanded in terms of Burnett functions
[28,30,31,33]:

Φ[νl]
m (αc) = Nνl

(
αc√

2

)l
S

(ν)
l+1/2

(
α2c2

2

)
Y [l]
m (ĉ)

= Rνl(αc)Y [l]
m (ĉ), (19)

where Y [l]
m is a spherical harmonic, while S(ν)

l+1/2 is a Sonine
polynomial, α is a parameter and ĉ is a unit vector in
velocity space [30,32]. The constant Nνl is given by

N2
νl =

2π3/2ν!
Γ (ν + l + 3/2)

, (20)

where Γ (ν + l + 3/2) is the gamma function, while

Rνl(αc) = Nνl

(
αc√

2

)l
S

(ν)
l+1/2

(
α2c2/2

)
, (21)

determines the radial part of the Burnett function. The
Burnett functions satisfy the orthogonality relations [30]:

∫
ω(α, c)Φ(νl)

m (αc)Φ[ν′l′]
m′ (αc)dc = δν′νδl′lδm′m, (22)

where

ω(α, c) =
(
α2

2π

)3/2

e−α
2c2/2, (23)

is the weighting function [30]. Orthogonality of the
Burnett functions is due to orthogonality of the spheri-
cal harmonics and Sonine polynomials. The phase space
distribution function can be expanded as

f(r, c, t) = ω(α, c)
∞∑
ν=0

∞∑
l=0

l∑
m=−l

f (νl)
m (α, r, t)Φ[νl]

m (αc),

(24)
where f (νl)

m (α, r, t) are the expansion coefficients which
depend on the coordinates in the configuration space r
and time t [30,32].

In the hydrodynamic regime the phase space distribu-
tion function can be expanded in terms of powers of the
density gradient operator as [30,33–35]

f(r, c, t) = ω(α, c)
∞∑
s=0

s∑
λ=0

λ∑
µ=−λ

∞∑
ν=0

∞∑
l=0

l∑
m=−l

F (νlm|sλµ;α, t)Rνl(α, c)Y [l]
m (ĉ)G(sλ)

µ n(r, t),
(25)

where F (νlm|sλµ;α, t) are the moments of the phase
space distribution function, while G

(sλ)
µ is the spherical

form of the density gradient operator [30].

When the Boltzmann equation is multiplied by an arbi-
trary moment F (νlm|sλµ;α, t) and integrated over the
entire velocity space, an infinite hierarchy of matrix equa-
tions in terms of moments F (νlm|sλµ;α, t) is obtained
[31,33–35]. This hierarchy is truncated at a finite num-
ber of spherical harmonics l = lmax, and a finite num-
ber of Sonine polynomials ν = νmax. The values of these
numbers are determined by the criterion for convergence.
The resulting system of equations is then solved numer-
ically by using the matrix inversion. In our calculations,
values of lmax = 4 were sometimes required, when the
phase space distribution function substantially deviates
from an isotropy in the velocity space. Likewise, values of
νmax = 80 were required when the distribution function
was far away from a thermal Maxwellian at the basis tem-
perature Tb. The basis temperature is a parameter which
is used to optimize the convergence.

The explicit expressions for determining the flux trans-
port coefficients in terms of moments of the phase space
distribution function can be obtained by expanding the
flux of velocity of the charged particles Γ(r, t) in terms of
these moments and by recognizing terms which are con-
tracted with the corresponding partial derivative of the
number density n(r, t) [33–35]. The expansion of Γ(r, t)
in terms of F (νlm|sλµ;α, t) is given by

Γ [1]
m (r, t) =

∫
c[1]m f(r, c, t)dc

=

∫
c[1]m ω(α, c)

∞∑

s=0

s∑

λ=0

λ∑

µ=−λ

∞∑

ν=0

∞∑

l=0

l∑

m′=−l

F (νlm′|sλµ;α, t)Rνl(α, c)Y
[l]

m′(ĉ)G(sλ)
µ n(r, t)dc,

(26)

where Γ [1]
m (r, t) is the flux of velocity of charged particles

Γ(r, t) written in the spherical form [30]. Cartesian com-
ponents of a vector whose spherical form is given by

c(1)m =

√
4π
3
cY [1]
m (ĉ), (27)

are given by the expressions [30]

cx =
i√
2

(
c
[1]
1 − c

[1]
−1

)
, (28)

cy =
1√
2

(
c
[1]
1 + c

[1]
−1

)
, (29)

cz = −ic[1]0 . (30)

The components of the third-order transport coefficient
tensor for an electric field only configuration are given by

Q(f)
xxz =

1√
2α

(
Im
{
F (011|221)

}
− Im

{
F (01− 1|221)

})
,

(31)

Q(f)
zxx = − 1

α

(
1√
3

Im
{
F (010|200)

}
+

1√
6

Im
{
F (010|220)

})
+

1
α

Im
{
F (010|222)

}
, (32)
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and

Q(f)
zzz =

1
α

(√
2
3

Im
{
F (010|220)

}
− 1√

3
Im
{
F (010|200

})
,

(33)
where Re{} and Im{} refer to the real and imaginary parts
of the moments F (νlm|sλµ;α, t), respectively [20]. The
explicit expressions for the lower order transport coeffi-
cients in terms of moments of the phase space distribu-
tion function can be found in [33–35]. For brevity, in the
following sections the superscript (f) in the flux third-
order transport coefficients (and in the flux diffusion coef-
ficients) will be omitted.

3 Results and discussion

3.1 Preliminaries

In this work we calculate the third-order transport coef-
ficients for electrons in noble gases. Calculations are per-
formed in the E/n0 range between 10−4 Td and 100 Td
(1 Td = 10−21 Vm2). The temperature of the background
gas T0 is 293 K and thermal motion of background atoms
is taken into account. All background atoms are assumed
to be in the ground state. All electron scattering is con-
sidered to be isotropic. Elastic collisions are represented
by the elastic momentum transfer cross section, while the
inelastic collisions are represented by the total inelastic
cross sections. For electrons in He we use the set of cross
sections which has been detailed by Šašić et al. [36] while
for electrons in Ne we use the set of cross sections, initially
developed by Hayashi [37]. Likewise, for electron scatter-
ing in Ar and Xe we use the cross section sets developed
by Hayashi [38,39]. For electrons in Kr we use the cross
section set from a publicly available Monte Carlo code
MAGBOLTZ [40].

3.2 Mean energy

In the following section we often find it necessary to refer
to the mean energy of the electron swarm to understand
and explain certain trends of the behavior of the third-
order transport coefficients. Thus, in Figure 1 we show
the mean energies of electrons in He, Ar, Kr and Xe as a
function of E/n0. Comparing the profiles of mean energy
in He and the remaining three gases, we observe that the
mean energy of electrons in He is different not only quanti-
tatively, but also qualitatively. Specifically, there are four
distinct regions of transport as E/n0 increases for elec-
trons in He and five distinct regions of transport in the
case of Ar, Kr and Xe. First, for electrons in all consid-
ered gases, there is an initial plateau region where the
mean energy is thermal. In the second distinct region of
transport for electrons in He, the mean energy rises with
an approximately constant slope in the log-log plot. The
slope of mean energy is significantly lower in the third
region, due to the influence of inelastic collisions. Finally,
the slope is again increased in the fourth region. This

Fig. 1. Variation of the mean energy with E/n0 for electron
swarms in He, Ar, Kr and Xe.

increase can be attributed to a greater fraction of elec-
trons being in the energy range where the collision fre-
quency for all scattering processes reduces with increasing
energy. For electrons in Ar, Kr and Xe, the rise of mean
energy with increasing E/n0 is very steep in the second
distinct region of transport. A large fraction of electrons is
thus in the energy range where elastic momentum trans-
fer cross section is a monotonically decreasing function of
energy, due to the presence of the Ramsauer-Townsend
minimum. However, the slope of the mean energy is lower
in the third region, in which high energy electrons are
in the energy range where the elastic momentum transfer
cross section is rising sharply. The slope of mean energy is
further reduced in the fourth region where electrons can
undergo inelastic collisions. Finally, this slope increases in
the fifth distinct region of transport, in which the profile
of mean energy changes from a power-law-like behavior
to the more exponential-like increase. In this field region,
the most energetic electrons are in the energy range where
the collision frequency for all scattering processes is being
reduced with increasing energy.

3.3 Variation of the third-order transport coefficients
with E/n0

3.3.1 Brief analysis

In Figure 2 we show the variation of the individual compo-
nents of the third-order transport coefficient tensor with
E/n0 for electrons in He. We observe that n2

0Qxxz and
n2

0Qzzz components are positive over the range of E/n0

considered in the present work. However, the n2
0Qzxx com-

ponent is negative until approximately 10 Td and posi-
tive at higher E/n0. The absolute values of all individual
components of the third-order transport tensor increase
with increasing E/n0 in the sub-excitation field region,
which corresponds to the first two characteristic regions
of the mean energy (see Fig. 1). This can be attributed
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Fig. 2. Variation of n2
0Qxxz, n

2
0Qzxx and n2

0Qzzz components
of the third-order transport coefficient tensor with E/n0 for
electrons in He.

Fig. 3. Variation of n2
0Qxxz, n

2
0Qzxx and n2

0Qzzz components
of the third-order transport coefficient tensor with E/n0 for
electrons in Ar.

to a slow rise of elastic momentum transfer cross section
in the energy range up to about 2 eV, as well as to its
reduction at higher energies. However, the absolute values
of all individual components of the third-order transport
tensor are reduced for the higher values of E/n0, where
the high energy electrons can undergo many inelastic col-
lisions. This field region roughly corresponds to the third
characteristic region of the mean energy. Finally, all three
components are increasing functions of E/n0 in the limit
of the highest fields considered in this work, where the
collision frequency of the high energy electrons decreases
with increasing electron energy.

In Figures 3–5 we show the variation of the individual
components of the third-order transport coefficient tensor
with E/n0 for electrons in Ar, Kr and Xe, respectively. It
can be seen that in these gases all components of the third-
order transport tensor are rapidly rising functions of E/n0

in the limit of the lowest fields, where most of the elec-
trons are in the energy range in which the elastic momen-
tum transfer cross section is reduced with the increase of

Fig. 4. Variation of n2
0Qxxz, n

2
0Qzxx and n2

0Qzzz components
of the third-order transport coefficient tensor with E/n0 for
electrons in Kr.

Fig. 5. Variation of n2
0Qxxz, n

2
0Qzxx and n2

0Qzzz components
of the third-order transport coefficient tensor with E/n0 for
electrons in Xe.

energy, due to the presence of the Ramsauer-Townsend
minimum. This field region corresponds to the first char-
acteristic region of the mean energy, as well as to the
first half of the second characteristic region of the mean
energy, shown in Figure 1. However, all three components
of the third-order transport tensor are rapidly decreas-
ing functions of E/n0 at higher fields, where the most
energetic electrons are in the energy range in which the
elastic momentum transfer cross section has a steep rise
with an increase of energy. This field region corresponds
to the second half of the second characteristic region of
the mean energy. In the remaining field region considered
in this work, n2

0Qzxx and n2
0Qzzz components exhibit a

local minimum and a local maximum, while the n2
0Qxxz

component has a single local minimum only. The positions
of these local maximums and local minimums correspond
to those values of E/n0 where the ratio between the mean
energy and the position of the Ramsauer-Townsend min-
imum or the threshold of the first electronic excitation
have similar values. For instance, the n2

0Qxxz component
becomes negative at the reduced electric field where the
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mean energy is higher than the position of the Ramsauer-
Townsend minimum by a factor that has values in the
range between 1.3 and 1.4 for all three gases. Likewise, this
component reaches the local minimum at approximately
the same field where the n2

0Qzxx component reaches the
second local maximum, and the mean energy is about 1.75
times higher than the energy of the Ramsauer-Townsend
minimum at the position of these local extremes in all
three gases. Moreover, the n2

0Qzzz component reaches the
second local maximum at the value of the reduced electric
field where the mean energy of electrons is about 2.5 times
lower than the threshold of the first electronic excitation
for all three gases (see Fig. 8). At the highest fields, where
the most energetic electrons may undergo many inelastic
collisions with the background atoms, the absolute val-
ues of all components of the third-order transport ten-
sor are reduced with increasing E/n0. This field region
roughly corresponds to the fourth and the fifth charac-
teristic regions of the mean energy in Ar, Kr and Xe. In
the following subsubsection the E/n0-profiles of the indi-
vidual components of the third-order transport coefficient
tensor for electrons in He, Ar, Kr and Xe are analyzed in
a greater detail.

3.3.2 Comprehensive analysis

For electrons in He, the absolute values of all three com-
ponents of the third-order transport tensor are monotoni-
cally increasing functions of E/n0, but only in the limit of
low electric fields. Specifically, n2

0Qxxz and n2
0Qzzz compo-

nents rise in the field region below around 8 Td, where the
mean energy of electrons is lower than 5 eV. Likewise, the
absolute value of n2

0Qzxx increases up to approximately
5.9 Td, where the mean energy is around 3.6 eV. In the
field region, where the absolute values of all three com-
ponents are being increased with increasing E/n0 most
of the electrons undergo elastic collisions only. Moreover,
the elastic momentum transfer cross section is gradually
rising in the energy range between approximately 10−2 eV
and 2 eV, while it is being reduced at higher energies. For
this reason, resistance to diffusive motion that is caused
by collisions of electrons with the background atoms is not
very intensive in the field region up to approximately 5.9
Td. This in turn induces an increase of the absolute values
of all three components of the third-order transport coef-
ficient tensor in this range of E/n0. However, at higher
fields the most energetic electrons can undergo inelastic
collisions with the background atoms, as the threshold for
the first electronic excitation in helium is around 19.82 eV.
This leads to a rapid decrease of n2

0Qxxz and n2
0Qzzz com-

ponents in the field range between approximately 8 Td and
40 Td. Likewise, the increased resistance to the spreading
of the swarm due to inelastic collisions leads to a rapid
decrease of the absolute value of the n2

0Qzxx component
in the field range between approximately 5.9 Td and 8 Td,
and to a gradual increase of this component up to around
40 Td. For the higher values of E/n0, all three compo-
nents of the third-order transport coefficient tensor rise
with increasing E/n0. Over this range of E/n0, the col-
lision frequency of the most energetic electrons decreases

with increasing E/n0 which in turn enhances the third-
order transport coefficients.

For electrons in Ar, Kr and Xe, all components of the
third-order transport tensor are initially, rapidly increased
with increasing E/n0 for the lower values of E/n0, as a
large fraction of electrons is in the energy range where
the elastic momentum transfer cross section markedly
decreases with increasing energy, due to the presence of
the Ramsauer-Townsend minimum in the cross sections
for elastic scattering. These components reach local maxi-
mums in the E/n0 region where the mean energy is lower
than the position of the Ramsauer-Townsend minimum by
a factor which is approximately between 2 and 3 in case
of Ar, and approximately between 2 and 4 in case of Kr
and Xe. Thus, all components of the third-order trans-
port tensor start to decrease with an increase of E/n0

in the E/n0 region where the collision frequencies of the
most energetic electrons increase with the rising energy of
electrons.

The n2
0Qzxx component is the first to reach a local

minimum in all three gases. However, the behavior of
this component is somewhat different in the case of Ar,
as compared to Kr and Xe. Specifically, this component
becomes negative for electrons in Ar, while it remains posi-
tive over the entire considered range of E/n0 for electrons
in Kr and Xe. For electrons in Ar, the n2

0Qzxx compo-
nent becomes negative at the value of E/n0 where the
mean energy is around 1.4 times lower than the position
of the Ramsauer-Townsend minimum. The same compo-
nent reaches a local minimum at the value of E/n0 where
the mean energy of the swarm is approximately equal to
the energy position of the Ramsauer-Townsend minimum.
However, in case of Kr and Xe this component reaches a
local minimum at the value E/n0 where the mean energy
is around 1.25 times higher than the energy position of
the Ramsauer-Townsend minimum. The n2

0Qzxx compo-
nent becomes positive in Ar at approximately the same
field, where the n2

0Qxxz component becomes negative. The
n2

0Qxxz component starts to be negative at the value of
E/n0 where the mean energy is higher than the position of
the Ramsauer-Townsend minimum by a factor of around
1.3 in case of Ar and Xe, and by a factor of approxi-
mately 1.4 in case of Kr. The sign of the n2

0Qxxz com-
ponent remains unaltered until the end of the considered
E/n0 range for Ar, Kr and Xe. The n2

0Qzxx component
reaches the second local maximum at approximately the
same E/n0 where the n2

0Qxxz component reaches the local
minimum. The position of these local extremes for n2

0Qxxz
and n2

0Qzxx components is at the value of E/n0 where
the mean energy is about 1.75 times higher than the posi-
tion of the Ramsauer-Townsend minimum for electrons in
all three gases. For the higher values of E/n0, the abso-
lute values of n2

0Qxxz and n2
0Qzxx are being reduced with

increasing E/n0 until the end of the considered field range.
The n2

0Qzzz component reaches a local minimum at the
value of E/n0 where the electrons with energies that are
between approximately 2 and 3 times higher than mean
energy, are in the energy range where the elastic momen-
tum transfer cross section for electrons in Ar, Kr and
Xe, is reduced (see Fig. 8) with increasing energy. For
the higher E/n0 values, the n2

0Qzzz component rises with
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increasing E/n0. This component reaches a local max-
imum at the value of E/n0 where the electrons with
energies that are about 2.5 times higher than the mean
energy can undergo inelastic collisions with the back-
ground atoms. The absolute values of all three components
of the third-order transport coefficient tensor are reduced
with increasing E/n0 at higher fields until reaching the
end of the considered E/n0 range.

At the qualitative level, the E/n0-profiles of each com-
ponent of the third-order transport coefficient tensor are
very similar for electrons in Ar, Kr and Xe. Specifically,
these components reach local maximums and local mini-
mums at the values of E/n0 at which the ratios between
the mean energy and the position of the Ramsauer-
Townsend minimum and/or the threshold for the first
electronic excitation have very similar values. However,
there is a significant difference in the profile of n2

0Qzxx
component for electrons in Ar, when compared to the
corresponding profiles in Kr and Xe, as this component
becomes negative in Ar. The absence of negative values of
n2

0Qzxx for electrons in Kr and Xe might be attributed to a
steeper rise of the elastic momentum transfer cross section
with an increasing energy, after the Ramsauer-Townsend
minimum, in these two gases. As discussed recently by
Simonović et al. [20] when the collision frequency is rising
with increasing electron energy, one of the off-diagonal
components of the third-order transport tensor (n2

0Qzxx
and n2

0Qxxz) is often negative. If the rise of the collision
frequency with energy is not too steep, n2

0Qzxx compo-
nent is usually negative (and n2

0Qxxz is positive). However,
n2

0Qxxz component is negative (and n2
0Qzxx is positive)

when the rise of the collision frequency with increasing
electron energy is very steep.

3.4 Correlation between the longitudinal components
of the skewness and diffusion tensors

Another issue that is highly relevant for understand-
ing higher-order transport coefficients is the correlation
between higher-order and lower-order transport coeffi-
cients. In this work we investigate the correlation between
the longitudinal component of the third-order transport
tensor and the longitudinal component of the diffusion
tensor of electrons in noble gases. Recently, this correla-
tion has been investigated for electrons in CH4 [26]. It has
been shown that whenever Dzz decreases, then Qzzz is
reduced markedly, and whenever Dzz increases in a decel-
erating way, Qzzz also decreases, but less intensively. The
Qzzz was found to increase only when Dzz increases in an
accelerating manner. It can be expected that this correla-
tion is absent at the lowest E/n0, as n2

0Qzzz represents an
asymmetric correction to diffusive motion and it vanishes
in the limit of the lowest fields, unlike diffusion coeffi-
cients which have non-zero thermal values. For this rea-
son n2

0Qzzz is expected to rise with increasing E/n0 at the
lowest fields, regardless of the field dependence of n0Dzz.
The value of E/n0 at which the correlation between the
profiles of field dependence of n2

0Qzzz and n0Dzz occurs
is different for various gases.

Fig. 6. The correlation of the longitudinal component of the
third-order transport tensor n2

0Qzzz and the longitudinal com-
ponent of the diffusion tenzor n0Dzz for electrons in He.

The correlation between the profiles of n2
0Qzzz and

n0Dzz for electrons in He and Ne is shown in Figures 6
and 7, respectively. For electrons in He, n2

0Qzzz and n0Dzz

rise with increasing E/n0 in the E/n0 region between
approximately 5.9·10−2 Td and 7.5 Td. This increase is
the most intensive for E/n0 between around 2.1 Td
and 7.7 Td. However, between approximately 7.7 Td and
35 Td, the rise of n0Dzz with increasing E/n0 slows down,
and n0Dzz becomes a concave function of E/n0 in the
log-log plot. In this E/n0 region, n2

0Qzzz is reduced with
increasing E/n0. For E/n0 between approximately 35 Td
and 100 Td, the slope of n0Dzz rises with E/n0 and n0Dzz

becomes a convex function of E/n0 in the log-log plot. As
a consequence, in this E/n0 region, n2

0Qzzz rises mono-
tonically with increasing E/n0.

For electrons in Ne, n2
0Qzzz and n0Dzz decrease with

increasing E/n0 between approximately 3.5·10−3 Td and
3.5·10−2, and n2

0Qzzz continues to decrease up to about
5.9·10−2 Td. For the reduced electric fields higher than
approximately 5.9·10−2 Td, both n2

0Qzzz and n0Dzz rise
with increasing field up to around 1.9 Td. This rise is espe-
cially rapid for E/n0 between approximately 1 Td and
1.9 Td. At higher fields, n0Dzz becomes a concave function
of E/n0 in the log-log plot, and it slowly decreases with
increasing field for E/n0 between approximately 5.9 Td
and 30 Td, while it saturates at higher fields. In the E/n0

region between approximately 1.9 Td and 100 Td, n2
0Qzzz

decreases monotonically with increasing E/n0.
The correlation between the profiles of n2

0Qzzz and
n0Dzz for electrons in Ar, Kr and Xe is shown in Figure 8.
As can be seen, there is a very strong correlation between
the profiles of n2

0Qzzz and n0Dzz for all three gases. It can
also be seen that the profiles of n2

0Qzzz and n0Dzz in each
of these gases are very similar. At the lowest E/n0 n

2
0Qzzz

and n0Dzz rise with increasing E/n0 in all three cases, as
most of the electrons are in the energy range in which
the elastic momentum transfer cross section decreases
rapidly with increasing electron energy. The n2

0Qzzz com-
ponent reaches a local maximum at around 2.1·10−3 Td,
1.4·10−2 Td and 3.7 ·10−2 Td for electrons in Ar, Kr, and
Xe, respectively, while n0Dzz reaches a local maximum at
approximately 2.7·10−3 Td, 1.7·10−2 Td and 4.6·10−2 Td,
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Fig. 7. The correlation of the longitudinal component of the
third-order transport tensor n2

0Qzzz and the longitudinal com-
ponent of the diffusion tenzor n0Dzz for electrons in Ne.

for electrons in Ar, Kr and Xe, respectively. In all three
gases n0Dzz reaches a local maximum at a somewhat
higher E/n0 as compared to n2

0Qzzz. After the local max-
imum, n2

0Qzzz and n0Dzz are decreased markedly with
increasing E/n0, up to around 5.9·10−3 Td, 2.9·10−2 Td
and 7.7·10−2 Td for electrons in Ar, Kr and Xe, respec-
tively. For the higher values of E/n0, these two quan-
tities continue to decrease until reaching approximately
2.7 Td for electrons in Ar, and until reaching approxi-
mately 2.1 Td for electrons in Kr and Xe. However, the
rate of decreasing of both n2

0Qzzz and n0Dzz is less inten-
sive in this field region as compared to the lower fields.
At higher fields, n2

0Qzzz and n0Dzz rise with increas-
ing E/n0 in a narrow field range. The n2

0Qzzz compo-
nent reaches the second local maximum at around 5.9 Td,
4.1 Td and 4.2 Td for electrons in Ar, Kr and Xe, respec-
tively. After the second local maximum, the n2

0Qzzz com-
ponent decreases monotonically with increasing E/n0 for
the remaining E/n0 in all three gases. In the field region
around the second local maximum of n2

0Qzzz, the slope of
n0Dzz is significantly reduced with increasing E/n0 up to
about 13 Td for all three gases. At higher fields, n0Dzz is
saturated with increasing E/n0.

In Figures 6–8 we observe a strong correlation between
the profiles of n2

0Qzzz and n0Dzz for electrons in noble
gases. Specifically, at relatively high enough fields n2

0Qzzz
decreases with increasing E/n0 whenever n0Dzz is a
decreasing function of E/n0, or when it increases as a
concave function of E/n0 in the log-log plot. The n2

0Qzzz
increases only at the lowest fields, and in those regions
of E/n0 where n0Dzz raises with increasing field as a
convex (or possibly linear) function in the log-log plot.
The correlation between n2

0Qzzz and n0Dzz can be under-
stood on an intuitive level. The third-order transport
tensor represents an asymmetric deviation of the total
diffusive motion, from the motion which is represented
by the diffusion tensor. Thus, the third-order transport
tensor describes a small correction to total diffusion. For
this reason, the motion which is represented by the third-
order transport tensor ’carries’ a much smaller amount of
energy and momentum than the motion which is described
by the diffusion tensor. As a consequence, this transport

Fig. 8. The correlation of the longitudinal component of the
third-order transport tensor n2

0Qzzz and the longitudinal com-
ponent of the diffusion tenzor n0Dzz for electrons in Ar, Kr
and Xe.

property is much more sensitive with respect to the col-
lisions between the electrons and the background atoms.
This leads to a reduction of the n2

0Qzzz component with
increasing E/n0 (at high enough fields) whenever the
resistance to diffusive motion due to collisions is inten-
sive enough to cause a decrease of n0Dzz or even a decel-
erated rise with increasing E/n0. The correlation of the
longitudinal component of the third-order transport ten-
sor and the longitudinal component of the diffusion tensor
is important for two reasons. Firstly, it enables an eas-
ier understanding of the E/n0-dependence of the third-
order transport coefficients in comparison to the direct
analysis from the cross sections and from the variation of
the mean energy with E/n0, which might be sometimes
difficult. Secondly, the correlation between n2

0Qzzz and
n0Dzz shows that the third-order transport coefficients
are more sensitive with respect to the energy dependence
of the cross sections than the diffusion coefficients. This
suggests that the third-order transport coefficients would
be very useful in swarm procedure for determining and
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Fig. 9. The values of ratio QL/(DL)3/2 for electron swarms
in He, Ne, Ar, Kr and Xe as functions of the reduced electric
field E/n0. Calculations have been performed assuming the gas
number density of 3.54×1022 m−3.

normalizing the cross section sets, if they were both cal-
culated and measured with a sufficient accuracy.

3.5 Effects of the third-order transport coefficients on
the spatial profile of the swarm

In this work, we also investigate the influence of the third-
order transport coefficients on the spatial profiles of the
swarm of electrons in noble gases. As was shown in [27],
the components of the third-order transport tensor rep-
resent an asymmetric deviation of the spatial profile of
the swarm of charged particles from an ideal Gaussian,
which represents the solution of the diffusion equation.
Specifically, the longitudinal component of the third-order
transport tensor describes longitudinal elongation or com-
pressing of the swarm along the longitudinal direction,
while the off-diagonal components describe transverse
elongation or compressing of the swarm along the lon-
gitudinal direction. It can be seen from equation (17)
that the contribution of the third-order transport coef-
ficients to the spatial profile of the swarm is proportional
to QL/(t1/2(DL)3/2) and QT /(t1/2

√
DLDT ).

In Figure 9 we show the ratio QL/(DL)3/2 for electrons
in noble gases as a function of E/n0. It should be empha-
sized that in Figure 9 we show the ratio where the flux
values of QL and DL are assumed, although the influence
of the third-order transport coefficients on the spatial pro-
file of the swarm is proportional to the corresponding ratio
of the bulk values of QL and DL. The reason for this is a
much better accuracy of our multi term results when com-
pared to our Monte Carlo results, and our current inability
to obtain the bulk values from our multi term code. How-
ever, the difference between the flux and the bulk values of
the longitudinal components of the third-order transport
coefficient tensor is within statistical uncertainty of Monte
Carlo simulations up to about 21 Td in He and Ne, and up
to 100 Td in Ar, Kr and Xe. Moreover, we are principally
interested in the field dependence of this ratio for E/n0

less than 10 Td, due to the presence of local maximums

and local minimums in this particular field range. For this
reason, we investigate the field dependence of the ratio
QL/(DL)3/2 assuming the flux values of QL and DL.

We may observe in Figure 9 that the ratio QL/(DL)3/2
increases monotonically with increasing E/n0 in the limit
of the lowest E/n0 (below 10−3 Td). For the higher values
of E/n0 (higher than 10 Td) we see that this property
decreases monotonically with increasing E/n0 for elec-
trons in all considered gases. At intermediate fields, how-
ever, this ratio reaches several local maximums and local
minimums. Specifically, this ratio has only a single local
maximum for electrons in Ne, at around 0.01 Td1. For
electrons in He and Ar, this ratio has two local maxi-
mums and one local minimum. In the case of He these
local maximums are at about 0.21 Td and 5.9 Td, and
both of these maximums are of a similar magnitude. How-
ever, in the case of Ar, the first local maximum at around
10−3 Td is much higher than the other local maximum at
about 4.6 Td. This difference is caused by the presence
of the Ramsauer-Townsend minimum in the elastic cross
section of Ar. The local minimum is shallow, and it is
at around 2.7 Td in both gases. For electrons in Kr and
Xe, the investigated ratio has three local maximums and
two local minimums. The first local maximum occurs at
about 7·10−3 Td and 1.9·10−2 Td for electrons in Kr and
Xe, respectively, and is quite high in both gases, due to
the presence of Ramsauer-Townsend minimum in the cross
sections for elastic scattering. This maximum is followed
by a local minimum at about 2.7·10−2 Td for electrons in
Kr and at around 6.8·10−2 Td for electrons in Xe. The sec-
ond local maximum of this ratio is at around 0.046 Td and
0.13 Td for electrons in Kr and Xe, respectively. The last
local minimum is at about 2.1 Td, and it is quite shallow
in both Kr and Xe. The third local maximum is at about
2.7 Td in both gases. In the case of electrons in Ar, Kr
and Xe the value of E/n0 at which QL/(DL)3/2 reaches
the first local maximum is about 2 times lower than the
value of E/n0 where QL reaches the first local maximum.
This is expected, on a qualitative level, as QL/(DL)3/2
reaches the first local maximum after DL starts rising with
increasing E/n0, but before reaching the first peak.

The ratio QL/(DL)3/2 has the highest values for Ar,
Kr and Xe near the position of the first local maximum.
Thus, the contribution of the third-order transport coeffi-
cients to the spatial profile of the swarm is the most pro-
nounced exactly for these conditions. However, it must
be emphasized that the approximate expression (17) has
been derived under an assumption that transport coeffi-
cients are constant in time, from the initial time (t = 0).
As this condition is satisfied only after relaxation of the
swarm to the stationary state, the expression (17) is
not applicable to the early stages of swam development

1 There is an additional local maximum of this ratio at around
1.5 Td for electrons in neon, that is preceded by a local minimum
at around 1.2 Td. However, both of these local extremes are very
shallow. Specifically, the difference between the value of this ratio at
these two local extremes is about 4 %. For this reason, the authors
are not certain if these two local extremes would appear if a different
cross section set is used, due to the sensitivity of both QL and DL to
the energy dependence of the cross sections for elementary scattering
processes.
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Fig. 10. The absolute value of the percentage difference
between the two term and fully converged, multi term results,
for the third-order transport coefficients of electrons in He
and Ne.

(small values of t). In addition, this expression has been
derived by using the Taylor expansion in terms of the
components of the third-order transport tensor. For this
reason, the expression (17) is applicable only when the
ratios QL/(t1/2(DL)3/2) and QT /(t1/2

√
DLDT ) are not

too large.

3.6 Comparison of the two term and fully converged
multi term results

In Figure 10 we show the absolute value of the percentage
difference between the two term and fully converged, multi
term results, for the third-order transport coefficients of
electrons in He and Ne. The absolute value of the percent-
age difference between the two sets of results for electrons
in Ar, Kr and Xe is shown in Figure 11. The absolute
value of the percentage difference ∆Qabc is calculated as

|∆Qabc| =
∣∣∣∣1− Q

(TT )
abc

Q
(MT )
abc

∣∣∣∣ (34)

where the superscripts TT and MT refer to two term and
multi term results, respectively.

We see that the two sets of results agree very well in the
limit of the lowest E/n0, where electrons undergo elas-
tic collisions only. Specifically, the deviation between the
results that are determined by these two methods is very
low, up to approximately 8 Td, 17 Td, 0.2 Td, 0.35 Td, and
1.3 Td for electrons in He, Ne, Ar, Kr and Xe, respec-
tively. The disagreement between these two methods for
the off-diagonal components increases continuously with
increasing E/n0 until the end of the range of the consid-
ered E/n0. Moreover, the deviation of multi term results
for n2Qxxz and n2Qzxx from the corresponding two term
results is much higher for electrons in Ar, Kr and Xe, as
compared to the case of He and Ne. However, the behav-
ior of the percentage difference between these two sets of
results is somewhat different for the longitudinal compo-
nent. While the disagreement between these two methods
for the longitudinal component in He and Ne increases
with increasing E/n0, these methods, surprisingly, remain
in a very good agreement for electrons in Ar, Kr and Xe,
over the entire range of E/n0 considered in this work.
The percentage difference for the longitudinal component
reaches values up to 30% and 17% for electrons in He

Fig. 11. The absolute value of the percentage difference
between the two term and fully converged, multi term results,
for the third-order transport coefficients of electrons in Ar, Kr
and Xe.

and Ne, respectively, while it remains lower than 5% for
electrons in Ar, Kr and Xe. We expect that the devia-
tions between the two term and multi term results are
much greater for the higher values of E/n0. It should
also be noted that the errors of the two term approxi-
mation are significantly lower for the lower-order trans-
port coefficients, over the same region of E/n0. Therefore,
higher order transport coefficients appear more sensitive
to anisotropy in the velocity distribution function.

4 Conclusion

In this work we have extended a multi term solution of the
Boltzmann equation, initially developed for evaluating the
lower-order transport coefficients, to investigate the third-
order transport coefficients of electrons in noble gases. For
electrons in helium, we have observed that the Qzxx com-
ponent is negative for the lower values of E/n0. In this
field region, the collision frequency for elastic scattering
of a large fraction of electrons is an increasing function
of the electron energy. However, for electrons in argon,
krypton, and xenon all three components of the third-
order transport tensor are positive in the limit of the
lower fields considered in this work, as the collision fre-
quency of the low-energy electrons decreases with increas-
ing energy. For higher fields, the Qxxz component is neg-
ative in argon, krypton and xenon over a wide range of
E/n0. In addition, for electrons in argon, the Qzxx compo-
nent is also negative, but over a narrower field range. For
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electrons in helium in the sub-excitation field region, the
absolute values of all three components of the third-order
transport tensor are increasing functions of E/n0. On the
other hand, for electrons in argon, krypton and xenon,
all components are significantly reduced over the range of
E/n0 where the energy of high-energy electrons exceeds
the position of the Ramsauer-Townsend minimum.

One of the fundamental topics considered in this work
is the existence of the correlation between the longitudinal
component of the third-order transport tensor n2

0Qzzz and
the longitudinal component of the diffusion tensor n0Dzz.
We have observed that at high enough fields whenever
n0Dzz decreases or increases as a concave function of E/n0

(in the log-log plot) n2
0Qzzz is being reduced. We have also

observed that n2
0Qzzz increases when n0Dzz increases as

a convex function of E/n0 (in the log-log plot). However,
this correlation is absent in the limit of the lowest E/n0,
as the third-order transport coefficients vanish in the low-
field limit, unlike diffusion which has non-zero thermal
values. This behavior of n2

0Qzzz can be attributed to a
greater sensitivity of the third-order transport coefficients
with respect to the energy dependence of cross sections
for elementary scattering processes.

Another highly relevant topic that has been investigated
in this work is the influence of the third-order transport
coefficients on the spatial profiles of the swarm in noble
gases. It has been shown that this influence is the most
pronounced for electrons in Ar, Kr and Xe, at low E/n0,
due to the presence of the Ramsauer-Townsend minimum.
Specifically, the ratio QL/(DL)3/2 that describes the con-
tribution of the longitudinal component of the third-order
transport tensor to the spatial profile of the swarm reaches
the first local maximum at about 10−3 Td, 7·10−3 Td, and
1.9·10−2 Td for electrons in Ar, Kr and Xe, respectively.
Around these values of E/n0 the effects of the longitudinal
component of the third-order transport coefficient tensor
on the spatial profile of the electron swarm are the most
significant.

Finally, we investigated the deviation of the two term
approximation from the fully converged multi term results
for the third-order transport coefficients. We have found
that the two term approximation is applicable at the
lowest fields, where electrons undergo elastic collisions
only. However, the two term approximation deviates from
the multi term results for higher fields, where electrons
may undergo inelastic collisions also with the background
atoms. The difference between the two sets of results is
especially pronounced for the off-diagonal components of
the third-order transport tensor. This difference is much
higher for electrons in Ar, Kr and Xe than for electrons in
He and Ne. Conversely, the difference between the two sets
of results for the longitudinal component is much larger
in He and Ne than in Ar, Kr and Xe. This difference is up
to about 30% and 17% for electrons in He and Ne, respec-
tively. Surprisingly, the two term approximation is in an
excellent agreement with the multi term results for the
longitudinal component in the case of Ar, Kr and Xe. The
difference between the results that are obtained by using
these two methods is not higher than approximatelly 5%
in the case of the longitudinal component of the third-
order transport tensor for electrons in Ar, Kr and Xe.
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27. P.W. Stokes, I. Simonović, B. Philippa, D. Cocks, S. Dujko,
R.D. White, Sci. Rep. 8, 2226 (2018)

28. K. Kumar, H.R Skullerud, R.E. Robson, Aust. J. Phys.
33, 343 (1980)

29. R.E. Robson, Aust. J. Phys. 44, 685 (1991)
30. R.E. Robson, K.F. Ness, Phys. Rev. A 33, 2068 (1986)
31. K.F. Ness, R.E. Robson, Phys. Rev. A 34, 2185 (1986)
32. K. Kumar, Phys. Rep. 112, 319 (1984)

33. R.D. White, R.E. Robson, S. Dujko, P. Nicoletopoulos,
B. Li, J. Phys. D: Appl. Phys. 42, 194001 (2009)

34. S. Dujko, R.D. White, Z.Lj. Petrović, R.E. Robson, Phys.
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In this work we explore the connections between transport theory of charged particle swarms and 

modelling of particle detectors used in high-energy physics. In particular, we discuss the physics 

of resistive plate chambers (RPCs), including the electron transport and propagation of streamers 

in the gas filled gaps and signal induction in the electrodes. Electron transport coefficients are 

calculated in a variety of RPC gas mixtures as a function of the reduced electric field, using a 

Boltzmann equation analysis and Monte Carlo simulations. A 1.5D fluid model with 

photoionization is developed to investigate how the nature of transport data affects the calculated 

signals in various RPCs used in high-energy physics experiments at CERN. Electron transport and 

propagation of streamers are also considered in liquid rare gases. Solutions of Boltzmann’s 

equation and Monte Carlo method for electrons in dilute neutral gases, are extended and 

generalized to consider the transport processes of electrons in liquid non-polar gases by accounting 

for the coherent and other liquid scattering effects.  

1. Introduction
Studies of charged particle transport processes in gases and liquids in combined electric and magnetic 

fields are of vital interest in the modelling of non-equilibrium plasmas [1], particle detectors in high-

energy physics [2], and numerous other applications. Further optimization and understanding of such 

applications is dependent on an accurate knowledge of the cross sections for charged particle 

scattering, transport coefficients and the physical processes involved. In particular, the advanced 

technology associated with detection of high-energy particles using various types of gaseous and 

liquid detectors demands the most accurate modelling of charged particle transport. Over the last two 

decades, there has been a lot of progress in the understanding of charged particle transport in 

combined electric and magnetic fields [3,4], but this has not always been taken advantage of by 

physicists working in high-energy physics.      

One of the main goals of the present work is to discuss how to bridge the gap between the modelling 

of particle detectors in high-energy physics and the swarm-plasma nexus that has been thoroughly 

investigated in our recent reviews [3-5]. We discuss how to adopt the well know techniques in plasma 

physics, including the numerical solution of Boltzmann’s equation [4,5], Monte Carlo simulation 

technique [6,7] and fluid equation based models [4,8,9], to model the particle detectors in high-energy 

physics. Indeed, there is a considerable overlap between the two fields and in this work we present the 

methodology, quantitative and qualitative procedures for modelling of gaseous and liquid detectors of 

high-energy particles. 

2. Modeling of resistive plate chambers
In the first part of this work we discuss the transport of electrons in gases, propagation of streamers 

and signal induction in resistive plate chambers (RPCs). RPCs are gaseous detectors often used for 

timing and triggering purposes in many high-energy physics experiments [10-12]. RPCs consist of a 

single or multiple gas filled gaps between the electrodes of high volume resistivity, such as glass or 

bakelite, which are used for the suppression of destructive higher current discharges. Despite the 

simple construction, modeling of RPCs is not a simple task due to many physical processes occurring 

on different time scales, including primary ionization, charge transport and multiplication, electrode 

relaxation and signal formation. After passing through the detector, a high energy charged particle 
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(muon, charged pion and/or kaon, etc.) makes clusters of electrons in the gas, which are drifting 

towards the anode and multiplied in the process of ionization. Electrons move in a homogeneous 

electric field which is provided by the high voltage that is applied to the parallel plate electrodes. 

Depending on the applied electric field strength, geometry and gas mixture, RPCs can be operated in 

an avalanche or streamer mode. Typical gas mixtures used in RPCs are composed of tetrafluoroethane 

(C2H2F4), iso-butane (iso-C4H10) and sulfur hexafluoride (SF6). Each of these gas components has a 

specific purpose: C2H2F4 is a weak electronegative gas with a high primary ionization efficiency while 

iso-C4H10 is a UV-quencher gas. SF6, on the other hand, is a strongly electronegative gas, often used in 

avalanche mode to suppress and control the development of streamers. 

The first building block in the modeling of RPCs is the analysis of cross sections for electron 

scattering in C2H2F4, iso-C4H10 and SF6. In this work, we propose a complete and consistent set of 

cross sections for electron scattering in C2H2F4 [13], while for iso-C4H10 and SF6 we use the sets of 

cross sections found in the literature [14,15]. The set of cross sections for C2H2F4 is validated through 

a series of comparisons between swarm data calculated using a multi term theory for solving the 

Boltzmann equation and Monte Carlo simulations, and the measurements under the pulsed Townsend 

conditions. Other sets of cross sections for electron scattering in C2H2F4 were also used as input in our 

numerical codes with the aim of testing their completeness, consistency and accuracy. The calculated 

swarm parameters are compared with measurements in order to assess the quality of the cross sections 

in providing data for modeling.  
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Figure 1. Bulk and flux drift velocities as a function of E/N for gas mixtures used in ATLAS 

triggering RPC, ALICE timing RPC and timing RPC [17]. 

In addition to pure gases, we investigate electron transport in various C2H2F4/iso-C4H10/SF6 mixtures 

used in RPCs in the ALICE, CMS and ATLAS experiment using a multi term theory for solving the 

Boltzmann equation and Monte Carlo simulation technique [16]. The duality of transport coefficients, 

e.g., the existence of two different families of transport coefficients, the bulk and the flux, in the

presence of non-conservative collisions, is investigated. A multitude of interesting and atypical kinetic 

phenomena, induced by the explicit effects of non-conservative collisions, is observed. Perhaps the 

most striking phenomenon is the occurrence of negative differential conductivity (NDC) in the bulk 

drift velocity with no indication of any NDC for the flux component in the ALICE timing RPC system. 

Figure 1 displays the variation of the bulk and flux drift velocities with the reduced electric field for 

ATLAS triggering RPC (94.7% C2H2F4+5% iso-C4H10+0.3% SF6), ALICE timing RPC (90% 

C2H2F4+5% iso-C4H10+5%SF6) and timing RPC (85% C2H2F4+5% iso-C4H10+10%SF6) [17]. We 

systematically study the origin and mechanisms for such phenomena as well as the possible physical 

implications which arise from their explicit inclusion into models of RPCs. 
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The Boltzmann equation analysis and Monte Carlo simulations are performed assuming the 

hydrodynamic conditions and motion of electrons in an infinite gas. The more realistic RPC 

simulations with implementing gas gap boundaries and primary ionization models have been 

performed using a Monte Carlo simulation technique with the aim of obtaining the performance 

characteristics of a timing RPC [18,19]. Timing resolutions and efficiencies are calculated for a 

specific timing RPC with a 0.3mm gas gap and gas mixture of 85% C2H2F4 + 5% iso-C4H10 + 10% SF6. 

In this work we also present our 1.5D fluid model with photoionization to investigate the transition 

from an electron avalanche into a streamer, propagation of streamers and signal induction in the 

system of electrodes [20]. In particular, we investigate how the duality of transport coefficients affects 

the calculated signals of the ATLAS triggering RPC and ALICE timing RPC used at CERN, and also 

a timing RPC [17] with high SF6 content. Calculations are performed using the classical fluid model in 

which both the bulk and flux transport data are used as an input. In addition, we present a new 

approach in fluid modelling of RPCs based on the equation of continuity and density gradient 

expansion of the source term. The model requires knowledge of the coefficients in the density gradient 

expansion of the source term as a function of the reduced electric field. We apply the Monte Carlo 

method for the determination of these coefficients using the cross sections for electron scattering as a 

set of input data. 
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Figure 2. Electron number density and electric field along the gas gap of ALICE timing RPC at t = 

0.45 ns during avalanche development (left panel), and t = 0.92 ns during positive streamer formation 

(right panel). The external electric field is set to 10.4 MV/m and pressure is 1 atm. Calculations are 

made using a corrected fluid model and classical fluid model with flux and bulk transport data as an 

input [20].  

As an illustrative example of our fluid simulations of RPCs, in figure 2 we show the development of 

an electron avalanche and its transition into a positive streamer. On the left panel we show the electron 

number density and electric field at time instant t = 0.45 ns during avalanche development in ALICE 

timing RPC. We observe that there are no space charge effects and the profiles obtained using 

corrected model match very well with those obtained using classical model with bulk data. Comparing 

avalanches with bulk and flux data, we see that the avalanche with the flux data is slower. This might 

be expected, since the bulk drift velocity is greater than the flux drift velocity for a given electric field. 

During the avalanche phase, the induced current grows exponentially with time. However, the 

exponential rise gradually stops due to both space charge effects and electron absorption at the anode. 

At about t = 0.92 ns, the positive streamers starts to develop (see the right panel in figure 2) and the 

current rises again while the streamer progress towards the cathode. Since the positive streamer move 

against the electron drift direction, it requires a source of electrons ahead of the streamer to support the 

ionization process. This is the reason why photoionization should be included in the modelling. The 

positive streamer stops at about 1 ns and starts to diminish while the induced current slowly drops to 

zero. The differences between the profiles shown in the streamer stage are clearly evident. These 

differences follow from the differences between the bulk and flux drift velocities as well as due to 

representation of the source term employed in these models. 
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3. Electron transport and negative streamers in liquid rare gases 
In the second part of this work we investigate electron transport, transition from an electron avalanche 

into a negative streamer, and propagation of negative streamers in liquid rare gases. Liquid rare gases, 

particularly liquid argon and liquid xenon, are very good detecting media, due to their unique physical 

properties [21]. The high density and high atomic numbers make them very efficient in stopping 

penetration radiation, while a significant abundance of many isotopes with different values of nuclear 

spin enables the study of both spin dependent and spin independent interactions.  

 

In this work we extend and generalize the Monte Carlo method, initially developed for dilute neutral 

gases, to consider the transport processes of electrons in liquids by accounting for the coherent and 

other liquid scattering effects [22]. The extended code is tested through a series of benchmark 

calculations for the Percus-Yevick model. Values and general trends of the mean energy, drift velocity, 

diffusion tensor and ionization coefficient are calculated for liquid rare gases and compared to the 

available measurements. The comparison is also made between the liquid and gas phase results. 

Calculated transport coefficients are then used as an input in fluid simulations of negative streamers, 

which are realized in both 1D and 1.5D setups. In particular, we investigate how various scenarios of 

representing the inelastic energy losses in liquid rare gases affect both electron transport and 

propagation of streamers.  We consider three different cases where: (1) the energy losses to electronic 

excitations are neglected, (2) certain particular excitations are taken into account, and finally (3) all 

electronic excitations are included. These individual cases are discussed in light of the available 

spectroscopy and photoconductivity experiments in liquid rare gases [22]. 
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Figure 3. Comparison of the measured drift velocities in liquid xenon (Miler et al. (1968) [23] and 

Huang and Freeman (1978) [24] with our theoretical calculations. The theoretically calculated drift 

velocities in liquid xenon, include the Boltzmann equation results of Boyle et al. (2016) [25] and the 

present calculations obtained in Monte Carlo simulations. The bulk drift velocity of electrons in 

gaseous xenon is also shown in this figure for comparison [22]. 

  

In figure 3 we show the variation of the bulk drift velocity with E/N for electrons in liquid xenon. Our 

Monte Carlo calculations over a wide range of E/N are compared with those obtained from the 

numerical solution of Boltzmann’s equation for the lower values of E/N, as well as with the available 

measurements. The Boltzmann equation results for gaseous xenon are also included in figure 3. We 

consider the following two cases for representing the inelastic energy losses: (1) no electronic 

excitations, and (2) all electronic excitations are included. The cross sections detailed in [22,25] are 

used in the present study. We observe that for the lower values of E/N (lower than approximately 1 
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Td), the drift velocity in the liquid phase significantly exceeds the drift velocity in the gas phase. This 

is a clear sign of the significant reduction of the rate of momentum transfer of the lower energy 

electrons occurring in liquids. This reduction follows from the modification of the scattering potential 

and the coherent scattering effects. As a consequence, the electric field accelerates electrons more 

efficiently in liquid xenon than in the gas phase. For the higher values of electric fields, however, this 

effect is reduced, as the scattering of a high energy electron on a xenon atom is significantly less 

perturbed by the surrounding liquid. Thus, we see that the drift velocity decreases between 

approximately 0.02 and 2 Td. The reduction of the drift velocity with increasing E/N is the well 

known phenomenon of negative differential conductivity (NDC). In the gas phase, NDC is caused by 

inelastic and/or non-conservative collisions, but in liquid xenon this is structure induced phenomenon. 

We observe that our values of the drift velocity are close to those predicted in the experiments of Miler 

et al. [23] and Huang and Freeman [24]. However, as we can see NDC is not observed in the 

experiments. 
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Figure 4. The formation and propagation of negative streamers in liquid xenon for E/N=100 Td, The 

presented results are determined by assuming the following two cases for representing the inelastic 

energy losses: (1) no electronic excitations (Case 1), and (2) all electronic excitations are included 

(Case 2).  Streamers propagate from the right to the left. 

In figure 4 we show the formation and propagation of a negative streamer in liquid xenon. In the same 

figure we include the simulation in which the transport data for electrons in the gas phase are scaled to 

liquid density (Rescaled gas). The initial condition for both electrons and positive ions is a Gaussian, 

which is positioned near the cathode [22]. In liquid xenon, positive charge carriers are holes, with a 

mobility that is several orders of magnitude less than the electron mobility. Thus, the positive holes are 

assumed to be stationary, on the time scales relevant for this study. 

Comparing streamers in gases and liquids, we observe that the transition from an electron avalanche 

and formation of a negative streamer occur much faster in liquid xenon. We also observe that the 

formation and propagation of a streamer are reduced by including the inelastic energy losses in the 

model (Case 2). The number density of electrons in both the streamer head and the streamer interior is 

also reduced. Other streamer features in liquid xenon are similar as those in the gas phase. We see that 

the electron number density has a sharp peak in the streamer head where the electric field is 

significantly enhanced by the space charge effects. In the streamer interior, however, the number 

density of electrons is reduced. The reason is twofold: (1) As electric field decreases, the contribution 

of ionization is less pronounced, and (2) the recombination of electrons and positive holes is enhanced. 
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ABSTRACT

We discuss how models based on fluid equa-
tions can be applied to investigate the underly-
ing physics of Resistive Plate Chambers (RPCs)
— particle detectors used for timing and trigger-
ing purposes in many high energy physics experi-
ments. In addition to the classical first-order fluid
model, we present a new model based on den-
sity gradient expansion. Both models are numer-
ically implemented in a 1.5-dimensional scenario
and are utilized for studying of streamer and sig-
nal development in two RPC configurations used
at CERN.

1. INTRODUCTION

Owing to their good efficiency, excellent timing
resolution and low cost, Resistive Plate Chambers
(RPCs) became widely used particle detectors for
large area timing and triggering purposes in high
energy physics experiments [1, 2]. They consist
of one or many gas gaps sandwiched between the
electrodes of high volume resistivity such as glass
or bakelite. RPCs also found their way into other
areas such medical imaging, cosmic ray physics
and geophysics [3].

Many approaches were used in simulation and
modeling of RPCs. Stochastic methods, e.g. mi-
croscopic Monte Carlo simulation [4], are useful
for calculating the RPC performance characteris-
tics such as timing resolution and efficiency. How-
ever, these models are often computationally de-
manding and cannot include all relevant physical
processes. On the other hand, numerical models
based on fluid equations [5, 6] can only provide
the mean values of RPC signals but they are fre-
quently used for studying various physical phe-
nomena in RPC operation, in a computationally
efficient manner. However, these were based on

classical fluid model where the diffusion flux was
often neglected and the duality of transport data
used as input was systematically ignored. Namely,
in particle detector community, there seems to be
a lack of awareness of the two types of transport
data named ‘flux’ and ‘bulk’ [7]. The two may dif-
fer considerably when non-conservative collisions
such as attachment and ionization are present [8].

In this work, we employ fluid models to investi-
gate streamer and signal development in two RPC
configurations used in ALICE and ATLAS exper-
iments at CERN. Particular emphasis is placed on
sensitivity of the simulated signals with respect to
the duality of transport data used as input. In addi-
tion, we present a new approach in fluid modeling
of RPCs which is based on density gradient expan-
sion.

2. THEORETICAL METHODS

In order to investigate the development of stream-
ers and signals in RPCs, we use a 1.5-dimensional
classical fluid model based on balance equations
for the number densities of electrons and ions with
the local field approximation [5]. For comparison,
the classical model is used with either flux or bulk
transport data as input. In addition, we have de-
veloped a new ‘corrected’ fluid model based on
hydrodynamic approximation which assumes that
the electron distribution function can be expanded
in terms of gradients of the electron number den-
sity [9]. This assumption is strictly valid for weak
gradients in absence of sources or sinks of elec-
trons. Under these conditions, the continuity equa-
tion for electrons in one-dimensional scenario can
be written as

∂ne
∂t

=
∂

∂x

(
WF sgn(E)ne +DL,F

∂ne
∂x

)
+ Si − Sa + Sph ,

(1)
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where the electric field E is oriented along the x-
axis while WF, DL,F and Sph denote flux drift ve-
locity, flux longitudinal diffusion and source term
due to photoionization, respectively. The drift ve-
locity WF is defined as positive and sgn(E) is the
sign (signum) function. Using hydrodynamic ap-
proximation, the source terms due to ionization
(Si) and attachment (Sa) are also expanded as

Sm = S(0)
m ne + S(1)

m sgn(E)
∂ne
∂x

+ S
(2)
L,m

∂2ne
∂x2

(m = i, a) .

(2)

The ions can be considered as immobile on the
timescale of fast electron signal. Therefore, the
balance equations for number densities of positive
(np) and negative ions (nn) are written as

∂np
∂t

= Si + Sph and
∂nn
∂t

= Sa . (3)

We assume that the charge is contained inside a
cylinder, with radius R0 along the x axis, and dis-
tributed uniformly in the radial direction. For this
case, the expression for electric field along the x
axis is given in [5, 10]. Source term due to pho-
toionization is calculated as in [5, 11] and assumes
that the photon production rate is proportional to
the ionization rate.

Equations (1) and (3) are solved numerically im-
posing homogeneous Dirichlet boundary condi-
tions at the gas gap boundaries. The numeri-
cal scheme uses second-order central finite differ-
ences for discretization of spatial derivatives and
classical fourth-order Runge–Kutta 4 scheme for
integration in time. Finally, the induced current is
calculated using Ramo’s theorem [5, 12]

i(t) =e0 πR
2
0

Ew

Vw

∫ d

0
ne(x, t)

·WF(|E(x, t)|) sgn(E(x, t)) dx ,

(4)

where Ew/Vw is the weighting field and d is the
gas gap length.

3. RESULTS AND DISCUSSION

Both ‘corrected’ fluid model described in previous
section and classical model (with either bulk or
flux transport data) are used to study the streamer
development and signal formation in ATLAS trig-
gering RPC [1] and ALICE timing RPC [2].
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Fig. 1: Electron number density and electric field along the gas
gap of ALICE timing RPC at t = 0.45 ns during avalanche develop-
ment (top), t = 0.92 ns during positive streamer formation (middle)
and t = 1.07 ns during positive streamer propagation (bottom). The
external electric field is set to 10.4 MV/m. Calculations are made
using corrected fluid model and classical fluid model with flux and
bulk transport data as input.

For example, ALICE timing RPC uses five
0.25 mm gas gaps with a gas mixture of 90%
C2H2F4 + 5% iso-C4H10 + 5% SF6. The trans-
port data and source term expansion coefficients
are calculated by our Monte Carlo code [13] us-
ing the cross section set for electron scattering in
C2H2F4 developed by our group [14], cross sec-
tions for iso-C4H10 taken from MAGBOLTZ 7.1
code (developed by S. Biagi [15]), and cross sec-
tions for SF6 taken from Itoh et al. [16].
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Fig. 2: Induced current in ALICE timing RPC calculated us-
ing corrected fluid model and classical fluid model with flux and
bulk transport data as input. The external electric field is set to
10.4 MV/m.
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Fig. 3: Percentage difference between the induced charges cal-
culated using classical fluid model with either flux (Qflux) or bulk
(Qbulk) transport data, and corrected fluid model (Qcorr). Results
are obtained over a range of applied electric fields for ATLAS trig-
gering RPC (top) and ALICE timing RPC (bottom).

We assume that the initial electron distribution at
t = 0 is a Gaussian representing 6 primary elec-
trons. Fig. 1 (top) shows the electron number den-
sity and electric field at time instant t = 0.45 ns
during avalanche development in ALICE timing
RPC. At this moment, there are no space charge
effects and the profiles obtained using corrected
model match with those obtained using classical
model with bulk data. During the avalanche phase,
the induced current grows exponentially with time
(Fig. 2). Afterwards, the exponential rise grad-
ually stops due to both space charge effects and
electron absorption at the anode. At about 0.92 ns,

the positive streamer starts to develop (Fig. 1, mid-
dle) and the current rises again while the streamer
progresses towards the cathode (Fig. 2). The pos-
itive streamer stops at about 1 ns (Fig. 1, bottom)
and starts to diminish while the induced current
slowly drops to zero (Fig. 2). In the streamer stage,
there is an obvious difference between the profiles
and induced currents for the three modeling sce-
narios. The difference is even more pronounced if
we consider the induced charge over a range of ap-
plied electric field strengths (Fig. 3). The induced
charge is defined as an integral of the induced cur-
rent. The difference between the induced charge
calculated using classical model with flux data and
the one calculated using corrected model reaches
a maximum of 70% for ATLAS RPC (Fig. 3, top)
and about 300% for ALICE timing RPC (Fig. 3,
bottom). These discrepancies arise mainly due to
different drift velocities and representation of the
source term employed in fluid models.
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S. Dujko, J. Instrum. 9, P09012 (2014)
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Abstract—The Monte Carlo method, initially developed for 
charged particle swarms in neutral dilute gases, is extended 
and generalized to investigate the transport processes of 
electrons in liquid-phase noble gases by accounting for the 
coherent and other liquid scattering effects. Electron transport 
coefficients, including the electron mobility, diffusion 
coefficients and ionization coefficient, are calculated as a 
function of the reduced electric field in liquid-phase xenon. 
Calculated transport coefficients are then used as an input in 
the classical fluid model to investigate the dynamics of negative 
streamers. Using the language of the contemporary kinetic 
theory of plasma discharges, in the present work among many 
important points, we investigate how various representations 
of inelastic energy losses in inelastic scattering events affect the 
electron transport and the macroscopic streamer properties.         

Keywords—Monte Carlo, liquid noble gases, transport 
coefficients, streamers, fluid models 

I. INTRODUCTION 
 Understanding of the behavior of free electrons under the 
influence of electric field in liquids is of interest in both 
fundamental physics and in numerous technological 
applications. Those applications include the interdisciplinary 
field of plasma medicine [1], liquid dielectrics [2], plasma-
water purification [3] and liquid particle detectors [4].  In 
particular, liquid-phase noble gases are used in the 
technology of the time-projection chambers, which are 
designed for detection of cosmic radiation and neutrinos [4], 
as well as in the search for dark matter particles [4].  Further 
optimization of such applications requires an accurate 
understanding of electron transport coefficients, streamer 
properties and the physical processes involved.  

 In our previous studies, we investigated the elastic 
scattering of electrons from liquid-phase argon [5] and 
liquid-phase xenon [6]. Electron transport coefficients were 
calculated in the sub-excitation energy region, e.g., for those 
values of the reduced electric fields, E/n0, (where E is the 
electric field strength and n0 is the neutral atom density) for 
which the mean energies are well below the  first inelastic 
threshold. More recently, we have investigated the way in 
which electron transport coef�cients are in�uenced by 
various representations of the inelastic energy losses in 
liquid-phase xenon with the special emphasis on the explicit 
effects of ionization (or interband transition having in mind 
that the electrons are quasi-free particles in liquid xenon) [7]. 

We have also discussed the fluid modeling methods with the 
aim of understanding electron transport and streamer 
propagation across the gas-liquid interfacial regions [8]. In 
this paper, as a part of our ongoing investigations of electron 
transport in liquid-phase noble gases in an electric field, we 
study the transition from an electron avalanche into a 
negative streamer ionization front and its propagation in 
liquid xenon. Calculations are performed using  a fluid 
model in local field approximation. Using the electron 
scattering cross sections for both gas and liquid xenon, 
transport coefficients of electrons are calculated in Monte 
Carlo simulations to serve as input data for a fluid model 
used in this study.   

 We begin this study by briefly reviewing the basic 
elements of the fluid theory used to simulate negative 
streamers in liquid xenon in section 2. In section 3.A, we 
present the electron transport coefficients as a function of the 
reduced electric field. In the same section, we briefly discuss 
the cross sections for electron scattering in liquid xenon and 
the basic elements of the Monte Carlo method used for 
calculating electron transport coefficients. The development 
of negative streamers without formation of expanding 
gaseous filaments is discussed in section 3.B. In section 4 we 
present our conclusions and recommendations for future 
work.  

II. THEORETICAL METHOD 
Simulations of negative streamers in liquid xenon are 

performed by using the classical fluid model. In this model 
the electron flux is obtained by assuming a steady-state of 
the momentum balance equation, and that the electron 
energy of the field-directed motion is much greater than the 
thermal contribution [9]. The generalized one-dimensional 
continuity equation for the electron number density is 

������ �	�� 
 ��� �� ������ �	�� � ������� �	������	�
���� � ������ �	����� �	� , 

(1) 

where ����� �	  and ����� �	  are the number densities of 
electrons and positive holes, respectively, which are 
functions of the coordinate x and time t. In this equation DL 
and ��  are the longitudinal diffusion coefficient and the 
electron mobility, respectively, E is the electric field, 
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Research Council.  
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oriented along the x-axis, while ��  and � are the ionization 
rate and the recombination coefficient, respectively.  

In addition to the electron continuity equation (1), the 
time evolution of the number density of positive holes is 
described by the number balance equation 

������ 	� 
 ��� � ������ �	� ����� �	 , (2) 

where transport of positive holes has been neglected over 
the transient time scales considered in this study, owing to 
the significantly reduced mobility and diffusion of positive 
holes in liquid xenon [10].   

The model is realized in a 1.5 dimensional (1.5D) setup. 
Thus, the total electric field in the system is evaluated as the 
sum of the uniform external electric field and the electric 
field due to space charge: 
���� �	 
 �! � �

"#$#% & �'����� � �(	 � �)�*
+��)�*	,-.$,

	/!  

                                               0'�� � ����(� �	'1'2�( , 
(3) 

where �!  is the external electric field, e is the elementary 
charge, 3!  and 34  are the vacuum permittivity and the 
relative permittivity, respectively, and l is the length of the 
system. In this model, the space charge is contained inside  
cylinder with radius 5! and the charge density varies along 
the axial direction only. 

The recombination coefficient is given by the scaled 
Debye formula 

� 
 6�7 
 6 89:��3!34 ''� (4) 

where �7  is the Debye recombination coefficient and 6  is 
the scaling factor which is taken to be 0.1 [11].  

The above fluid equations are closed, assuming the local 
field approximation. According to this approximation the 
input terms, including �� , DL, ��  and �  are assumed to be 
functions of the local instantaneous electric field. In the 
numerical implementation of our �uid model, the spatial 
discretization is performed by using the second order central 
�nite difference, while the fourth order Runge–Kutta 
method is used for the integration in time.   

III. RESULTS AND DISCUSSION 

A. Transport coefficients of electrons in liquid xenon 
In case of electrons, the transport data needed for the 

solution of fluid equations (1) and (2) are �� , DL, and ��; 
These electron transport data are calculated by using the 
Monte Carlo method. The Monte Carlo method, initially 
developed for charged particle swarms in neutral dilute gases 
[12], has been recently extended and generalized by 
including three effective scattering processes, which give a 
good representation of the coherent scattering of low energy 
electrons in non-polar liquids [7]. The validity of our Monte 
Carlo method has been tested by calculating the transport 
properties of electrons in the Percus Yevick model liquid. It 
was found that our results are in an excellent agreement with 
those calculated by Tattersall et al [13].  

In order to account for excitations in liquid xenon, the set 
of inelastic atomic excitation cross sections of the Hayashi 
database was modified to form a set of excitation cross 
sections for intermediate excitons in liquid state. For 
example, the intermediate � 
 < => �?

"�@ and �( 
 < => �A
"�@ 

excitons have been observed at 8.2 eV and 9.45 eV, 
respectively [14]. The former has parentage in the excited 
atomic BCDEFGHIAstate, while the latter has parentage in the BCDE<GHIA  state. As these intermediate excitons have a 
unique parentage, via the isolated atom’s excited states, we 
thus approximate the cross sections for intermediate exciton 
excitations by cross sections of the corresponding atomic 
excitations. Likewise, the cross section for interband 
transitions is approximated by the cross section of the 
electron impact ionization, from the Hayashi’s cross section 
set. However, the cross section is shifted by 2.1 eV, so that 
the threshold of the ioization is 9.22 eV in liquid xenon. This 
value corresponds to the > �?

"�  band gap in liquid xenon, 
which is the energy difference between the uppermost 
valence and the bottom of the conduction band. For 
simplicity, in the rest of this work the interband transition 
and the inelastic collisions will be referred to as ionization 
and excitations, respectively. For more details on the band 
structure and cross sections for electron scattering in liquid 
xenon, the reader is referred to [7].     

In the present calculations, we cover a range of reduced 
electric fields between 10-3 and 103 Td (1 Td = 10-21 Vm2). 
The number density of xenon atoms is 1.4×1028 m-3, while 
the temperature of the background liquid is 163 K. In our 
simulations, we usually follow 106 electrons except in the 
limit of the lowest values of E/n0. Due to numerous elastic 
collisions in which only a fraction of the initial electron 
energy is transferred to a heavy xenon atom, the efficiency of 
energy transfer is very low in the limit of the lowest E/n0. As 
a consequence, the relaxation of energy is very slow and 
requires a large computation time. In order to optimize the 
simulation speed, the simulations were usually begun with 
104 electrons and after the relaxation to the steady state the 
electron swarm  scaled up to 106 electrons. The details of this 
procedure are given elsewhere [7].         

In Fig. 1 we show the dependence of the electron 
mobility on E/n0. It should be noted that the density 
normalized mobility n0μ and density normalized diffusion 
coefficients n0DL and n0DT shown in Fig. 2, are not 
independent of the neutral atom density [15]. These transport 
coefficients are given as a function of E/n0, so that any linear 
dependence on density (as occurs in the dilute-gas limit) has 
been removed. Thus, we have a true comparison of the gas 
and liquid phases.  

Calculations are performed assuming the following two 
scenarios: (i) no electronic excitations (case 1), and (ii) all 
electronic excitations from the gas-phase are included (case 
2). Both the bulk and flux mobility components are shown. 
The bulk transport coefficients, are associated with the 
swarm’s centre of mass transport and spread about its centre 
of mass.  In Monte Carlo simulations, the bulk transport 
coefficients may be determined from the rate of changes of 
the appropriate averages of the positions of the electrons in 
the configuration space. The flux transport coefficients 
should be interpreted in terms of averages over the ensemble 
in velocity space. For example, the flux mobility is 
associated with the average velocity of the ensemble in the 
swarm. In liquid and gas xenon, these two sets of transport 
coefficients are equal in the absence of ionization.  

For comparison, the theoretical [6,7] and experimental 
values [16] of mobility are displayed at the same figure, 
along with the mobility in gaseous xenon. 
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Fig 1. Variation of the electron mobility with E/n0. Our Monte Carlo 
results, for liquid and gaseous xenon, are compared with the measurements 
(Miller et al. (1986)) and theoretical calculations (Boyle et al. (2016)). It 
should be noted that all three dashed lines for the flux properties emerge 
from the solid lines of the same colour above 10 Td.      
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Fig. 2. Variation of the longitudinal (left panel) and transverse diffusion 
coefficients with E/n0. Our Monte Carlo results are compared with the 
theoretical calculations (Boyle et al. (2016)). 

The agreement between our Monte Carlo results and those 
obtained from a multi term solution of the Boltzmann 
equation is excellent. 

For the lower values of E/n0 we observe that the electron 
mobility in the liquid phase exceeds the mobility in the gas 
phase by more than two orders of magnitude. This is a clear 
sign of the reduction of the rate of momentum transfer of the 
lower energy electrons in liquid xenon. The lowering of the 
rate of momentum transfer follows from the modification of 
the scattering potential and the coherent scattering effects. 
Due to these liquid scattering effects, the electric field 
accelerates electrons more efficiently in liquid xenon than in 
gaseous xenon, which in turn leads to a significant 
enhancement of the electron mobility as compared to the gas 
xenon.   

In Fig. 2 we show the variation of the longitudinal and 
the transverse diffusion coefficient as a function of E/n0. 
The agreement between our Monte Carlo results and those 
evaluated from the solution of Boltzmann’s equation for the 
lower values of E/n0 is very good. For the higher values of 
E/n0, we observe that the diffusion coefficients are reduced 
with an increase of the number of excitations used in the 
modeling. Due to the explicit effects of ionization, the bulk 
values of both n0DL and n0DT are greater than the 
corresponding flux values. 

In Fig. 3 we show the variation of the ionization rate 
coefficient with E/n0. We observe that the ionization rate is  
monotonically increasing function of E/n0 for both the 
liquid- and gas-phase xenon. We also observe that the 
ionization rate is increased by reducing the number of  

excitations. Likewise, the ionization coefficient in liquid 
xenon is significantly greater than the ionization coefficient 
in gaseous xenon. This can be expected due to the reduction 
of the threshold for ionization in the liquid phase. In 
addition, electrons can lose a signi�cant amount of energy in 
a wide range of inelastic scattering processes at energies 
lower than the threshold energy for ionization in gaseous 
xenon. Likewise, there is a far lower number of inelastic 
scattering processes with thresholds which are lower than 
the threshold for ionization in the liquid phase compared to 
the gas phase. 

B. Negative streamer fronts in liquid xenon 
In Fig. 4 we show the formation and propagation of a 

negative streamer under the influence of the externally 
applied electric field of 77 Td. The initial Gaussian is 
positioned in the close vicinity of the cathode. The electric 
field is oriented to the right, so the negative fronts propagate 
to the left. The initial densities of electrons and positive 
holes are equal reflecting the macroscopic neutrality of a 
plasma. In addition, these densities are selected in such way 
that the space charge effects are negligible. The values of l 
and R0 are set to 5×10-5 m and 1×10-5 m, respectively. The 
particular value of R0 is chosen as an educated guess taking 
into account the width of the initial distribution and the 
spreading due to transverse diffusion. The length of the 
system l is determined by the requirement that the streamer 
velocity relaxes to a stationary value. The simulation in the 
gaseous xenon employs transport data for electrons for the 
gas phase scaled to the liquid density. We employ the bulk 
transport coefficients as an input in fluid simulations of 
negative streamer fronts in both the liquid and gas phases.  

In the absence of gas filaments and trapping of electrons 
in the density fluctuations, the general features of the 
streamer pro�les in the liquid xenon are the same as those of 
the streamers in gases [7]. We observe that the streamer 
front caries an overshoot of electrons, generating a thin 
space charge layer that screens the electric field in the 
streamer interior behind the front. In this screened interior 
region, the density of charge is not constant. The electron 
number density and the positive hole density are further 
reduced due to the recombination of electrons and positive 
holes. A similar decrease in the electron number density in 
the streamer interior and behind the front, is observed for 
streamers in electronegative gases, where electron 
attachment consumes the lower energy electrons. We 
observe  that  the  streamer  formation  as  well  as  streamer  
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Fig. 3. Variation of the ionization rate coefficient with E/n0. Calculations in 
gaseous xenon are compared with those in liquid xenon. 
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Fig. 4. The formation and propagation of a negative streamer in liquid xenon for E/n0 = 77 Td. Here ne refers to the electron number density while E/n0 refers 
to the reduced resultant electric field. 

propagation are greatly influenced by the number of 
excitations in the model. For example, the streamer velocity   
and the electron number density in the streamer interior are 
increased by reducing the number of excitationsIt can also 
be observed that the transition from an electron avalanche 
into a streamer is much slower in the case of the rescaled 
gas than in the liquid phase.    

IV. CONCLUSION 
Using a Monte Carlo simulation technique and 1.5 

dimensional classical fluid model, we have investigated the 
influence of inelastic energy losses on both the transport 
properties of electrons and dynamics of negative streamers 
in liquid xenon. The cross sections for inelastic scattering 
and interband transitions of electrons in liquid xenon are 
approximated by using the cross sections for electron 
scattering on an isolated xenon atom. The ab initio cross 
section for elastic scattering in liquid xenon is taken and 
adopted  in order to include the effects of coherent scattering 
and atomic potential screening which are critical for low-
energy electron scattering. Calculations in the liquid phase 
are augmented by those in the gas phase. It is found that, 
above approximately 1 Td there is a significant difference 
between the values of transport properties determined by 
employing different representations of the inelastic energy 
losses. The electron mobility and diffusion coefficients, as 
well as the ionization rate coefficient are reduced with 
increasing number of excitations in the model. Likewise, it 
is found that the streamer properties, including the streamer 
velocity, the ionization degree in the streamer interior and 
the distribution of electric field  strongly depend on the 
number of excitations which are included in the model. 

The present work will be extended in a near future by 
investigating the propagation of positive and negative 
streamers in a point-to-plane geometry. We will also 
consider the influence of density fluctuations and gas 
filaments, as well as trapping of electrons in these 
structures, on both the electron transport and the streamer 
dynamics.       
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Abstract—A multi term theory for solving the Boltzmann 
equation and a Monte Carlo simulation technique are used to 
calculate electron transport coefficients in the mixtures of CF3I 
and SF6 as a function of the applied electric field. The 
calculated transport coefficients are then used as an input in 
the fluid equation based models to investigate the transition 
from an electron avalanche into a streamer and streamer 
propagation. Electron transport coefficients are also calculated 
in radio-frequency electric and magnetic fields crossed at 
arbitrary phases and angles. A multitude of kinetic phenomena 
induced by the synergism of the magnetic field and electron 
attachment is observed and discussed using physical 
arguments. 

Keywords—Boltzmann equation, Monte Carlo, transport 
coefficients, streamers, electron attachment, ionization 

I. INTRODUCTION 
Studies of electron transport processes in strongly 

attaching gases in electric and magnetic fields have many 
important applications. These applications range from the 
modelling of magnetically-assisted low-pressure collision 
dominated plasma discharges to the modelling of gaseous 
particle detectors in high-energy physics and to the 
development of a new generation of gaseous dielectrics in 
high-voltage technology. In the present work, we are 
investigating the electron transport and the streamer 
propagation in the mixtures of strongly attaching gases 
trifluoroiodomethane (CF3I) and sulfur hexafluoride (SF6). In 
high-voltage technology, strongly attaching gases and their 
mixtures with other appropriate gases such as N2 and/or CO2 
are used with the aim of controlling and preventing the 
electrical breakdown in electric power systems. The most 
important gaseous dielectric in high voltage technology 
nowadays is SF6. SF6 is a strongly attaching gas, with a high 
dielectric strength, and a breakdown voltage nearly three 
times higher than that of air at atmospheric pressure. 
However, in electrical discharges, SF6 creates highly toxic 
and corrosive compounds such as S2F10 and SOF2. In 
addition, SF6 has an extremely high global warming potential 
(23900 times higher than that of CO2) and an extremely long 
atmospheric lifetime (3200 years) [1]. These facts have 
moved physicists and engineers into finding possible 
substitutes of SF6. One of the most promising candidates is 
CF3I. CF3I is also a strongly attaching gas, but with much 
higher dielectric strength than SF6. The global warming 

potential of CF3I is much less than that of SF6 (approximately 
0.4 times that of CO2), and its lifetime in the atmosphere is 
very short (1.8 days). Using these facts as motivational 
factors, we have undertaken a program to understand 
electron interactions with CF3I as well as the basic properties 
of electron transport and streamer propagation in pure CF3I 
and its mixtures with SF6.  

In the present investigations, we have calculated electron 
transport coefficients in various mixtures of CF3I and SF6 
subjected to an external static electric field. Our results are 
based on a numerical multi term solution of the Boltzmann 
equation [2,3], which is solved for values of E/N ranging 
from approximately 50 to 10 000 Td (1 Td = 10-21 Vm2). For 
the lower values of E/N, due to poor convergence of 
transport coefficients we have applied the Monte Carlo 
method. The Monte Carlo code has been recently optimized 
and specified to consider the transport processes of electrons 
in strongly attaching gases [4]. The poor convergence of 
transport coefficients is a consequence of predominant 
removal of the lower energy electrons due to a strong 
electron attachment, which in turn shifts the bulk of the 
distribution function towards a higher energy. Under these 
conditions, the moment method for solving the Boltzmann 
equation used in the present work usually fails, as it requires 
a prohibitive number of basis functions for resolving the 
energy dependence of the distribution function.  

Calculations have also been performed in the case of 
alternating current (ac) electric and magnetic fields. We 
investigate the way in which the transport coefficients and 
other swarm properties are influenced by the field frequency, 
electric and magnetic field strengths, and the phase 
difference between the fields under conditions in which the 
electron transport is greatly affected by electron attachment. 
The time-dependent behavior of electron swarms in varying 
configurations of electric and magnetic fields is particularly 
important for the modeling of magnetically 
controlled/assisted radio-frequency plasma discharges [3]. In 
addition, the time-dependent studies are useful for a future 
development of sensors for detection of electromagnetic 
waves induced in gas-insulated high-voltage switchgear 
(GIS) by partial discharges. 

Finally, the calculated transport coefficients in a direct 
current (dc) electric field are used as an input in the fluid-
equation based models with the aim of investigating the 
transition from an electron avalanche into a streamer and This work was supported by the Grants No. OI171037 and III41011

from the MPNTRRS and also by the project 155 of the Serbian Academy of
Sciences and Arts. JU acknowledges the support of CONACyT-2400073 
and PAPIIT-IN108417.  
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streamer propagation. Among many important points, in the 
present work we discuss how streamer properties, including 
the electron density, electric field  and streamer velocity are 
affected by introducing CF3I into SF6. 

II. THEORETICAL METHOD 
The behavior of electron swarms in neutral gases under 

the influence of electric and magnetic fields is described by 
the phase-space distribution function ���� �� ��, representing 
the solution of the Boltzmann equation 
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	�
� ����� ��� , (1) 

where r, and c denote the position and velocity coordinates 
respectively, while e and m are the charge and the mass of 
the swarm particle and t is the time. The right-hand side 
J(f,f0) denotes the linear electron-neutral molecule collision 
operator, accounting for elastic, inelastic and non-
conservative collisions. The electric and magnetic fields are 
assumed to be spatially-homogeneous and in the general 
case time-dependent. 

The methods and techniques for solving the Boltzmann 
equation are by now standard and the reader is referred to 
our previous works [3,4]. Nevertheless, we highlight some 
important steps of our methodology for solving the 
Boltzmann equation:   

1) No assumptions on symmetries in velocity space are 
made, and the directional dependence of f(r,c,t) in velocity 
space is represented in terms of a spherical harmonic 
expansion: 

 ���� �� �� � � � ���� �� ����
��������

����
�
���  , (2) 

where ��
������� are spherical harmonics, and �� represents the 

angles of c. In contrast to the frequently used two-term 
approximation which forms the basis of the classical theory 
of electron transport in gases, our method is a truly multi-
term approach. The differences between the two-term 
approximation and our multi-term approach for solving the 
Boltzmann equation will be illustrated for electron transport 
in CF3I in the next section.  

2) Under hydrodynamic conditions (far away from the 
boundaries, sources and sinks of electrons) a sufficient 
representation of the space dependence is an expansion of 
f(r,c,t) in terms of the powers of the density gradient 
operator: 

 ���� �� �� � � �� ���� �� ! ��"� �
 �� #��� �� , (3) 

where �� ���� �� are time-dependent tensors of rank k while 
! denotes a k-fold scalar product. 

3) The energy dependence of f(r,c,t) is represented by an 
expansion about a variety of Maxwellians at an arbitrary 
temperature in terms of Sonine polynomials. 

The combination of spherical harmonics and Sonine 
polynomials yields the well-known Burnett functions. Using 
the appropriate orthogonality relations of the Burnett 
functions, the Boltzmann equation is converted into a 
hierarchy of doubly and infinite coupled inhomogeneous 
matrix equations for the time-dependent moments. The 
finite truncation of the Burnett functions, permits a solution 
of this hierarchy by direct numerical inversion. These 
equations are solved numerically and both families of 

transport coefficients, the bulk and the flux, including other 
transport properties, are expressed in terms of moments of 
the distribution function [2,3]. 

In addition to Boltzmann's equation, in the present work 
we apply a Monte Carlo simulation technique. Our standard 
MC code has been recently extended to consider the 
spatially inhomogeneous electron swarms in strongly 
attaching gases by implementing the rescaling procedures 
[4]. The so-called discrete and continuous rescaling 
procedures are developed and benchmarked in the aim of 
simulating electron transport under conditions of extensive 
losses of seed electrons due to a strong electron attachment.  
In this work, Monte Carlo method is employed as a tool to 
confirm the numerical accuracy and integrity of a multi-term 
theory for solving the Boltzmann equation. However, 
whenever the convergence of transport coefficients was 
poor in the Boltzmann equation analysis, then MC results 
are in turn included in the plots. 

Transition from an avalanche into a streamer, and 
propagation of streamers have been considered by the fluid 
equation based models. We employ the so-called classical 
fluid model in which the equation of continuity is combined 
with the drift-diffusion approximation. The resulting 
equation is coupled with the Poisson equation for the space 
charge electric field calculations. The resulting system of 
partial differential equations is solved numerically assuming 
the local field approximation [5,6]. 

III. RESULTS AND DISCUSSION 

A. Cross sections and inputs 
The development of the complete cross-section set of 

electron scattering in CF3I has been detailed in recent studies 
[4,7], and is based largely on the original set proposed by 
Kimura and Nakamura [8]. The accuracy and the 
completeness of the  initial set developed by Kimura and 
Nakamura was improved by applying the standard swarm 
procedure using the measurements of transport coefficients 
in the mixtures of CF3I with Ar and CO2 under the pulsed-
Townsend (PT) conditions. Cross sections for electron 
scattering in SF6 are taken from Itoh et al. [9]. In the present 
investigation, we consider the density-reduced electric field 
range from 1 to 104 Td. The background gas mixture 
temperature is fixed at 293 K. In the domain time-dependent 
studies, we cover a range of magnetic field amplitudes 
between 0 and 104 Hx (1 Hx = 10-27 Tm-3). 
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Fig. 1. Variation of the flux and bulk drift velocities with E/N for various 
CF3I-SF6 mixtures. 
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B. Transport coefficients in the mixtures of CF3I and SF6  
In Fig. 1 we show the variation of the flux and bulk drift 

velocities with E/N for various CF3I-SF6 mixtures. We 
observe that over the entire range of E/N the flux drift 
velocity is a monotonically increasing function of E/N, while 
the bulk drift velocity in pure CF3I and SF6, as well as in 
their mixtures, exhibits a pronounced negative differential 
conductivity (NDC). NDC is characterized by a decrease in 
the bulk drift velocity despite an increase in the magnitude of 
the applied electric �eld. In the case of strongly attaching 
gases such as CF3I and SF6, NDC is induced by the 
combined effects of attachment heating and inelastic cooling 
of the swarm. In addition, due to attachment heating and 
explicit effects of ionization, the bulk drift velocity 
dominates the flux component over the entire range of E/N 
considered in this work. 

In Fig. 2 we show the variation of the ionization and 
attachment rate coefficients with E/N for various mixtures. 
As expected, the ionization rate coefficient is a 
monotonically increasing function of E/N and becomes 
significant at the higher values of E/N when sufficient 
electrons have enough energy, to cause ionization. We 
observe that the ionization rate is less sensitive with respect 
to the composition of the gas mixture at higher values of 
E/N. The behavior of the attachment rate coefficient is more 
complex, but generally it tends to decrease with increasing 
E/N. 
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Fig. 2. Variation of the attachment and ionization rate coefficients with E/N 
for various CF3I-SF6 mixtures. 
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Fig. 4. Temporal profiles of the flux drift velocity for various CF3I-SF6 
mixtures. The electric field amplitude is 350 Td and the field frequency is 
1000 MHz. 

 

In Fig. 3 we show the variation of the critical electric 
field (or limited electric field) as a function of the per cent 
content of CF3I in the mixture. The critical electric field is a 
value of E/N for which rate coefficients of electron 
attachment and ionization are equal.  This property is of great 
importance not only in studies of low-current dc discharges 
and streamers, but may also be useful for studies of some rf 
discharges. The results obtained by solving the Boltzmann 
equation are compared with the measurements under the PT 
conditions. Our multi term results and measurements agree 
very well for the pure gases. We observe that the TTA 
significantly overestimates the measurements and multi-term 
results for pure CF3I. 

C. Transport coefficients in radio-frequency electric and 
magnetic fields 
In Fig. 4 we show the temporal profiles of the 

longitudinal flux drift velocity for various CF3I-SF6 
mixtures. Calculations are performed in a crossed field 
configuration while the phase difference between the electric 
and magnetic fields is set to π/2 rad. The magnetic field 
amplitudes are 2000 Hx (left panel) and 5000 Hx (right 
panel). We observe that the profiles are asymmetric and 
phase-delay of the WE curves relative to the electric field is 
clearly evident due to temporal non-locality [4]. The 
maximum values of WE are dependent on the gas 
composition. The time-averaged power absorbed by the 
swarm (or plasma or any active medium) is given by: 

 $%&'() �
*

+
, �-.�/��� 0 ����1�
+

�
 , (4) 

where N0 is the number of electrons in the swarm, T=2�/ω is 
the period, W is the time-dependent average velocity and E is 
the time-dependent electric field. From Eq. (4), it is clear that 
the phase difference between the drift velocity and electric 
field controls the power absorption: (i) when the drift 
velocity W and electric field E have the same sign, the 
instantaneous power is positive, and (ii) when the drift 
velocity W and electric field E have the opposite sign, then 
the instantaneous power is negative. This suggests that when 
the power is positive the electric field pumps the energy into 
the system while when the power is negative the energy is 
transferred from an active medium to the external circuit. 

 In Fig. 5 we show the variation of the cycle-averaged 
power as a function of the magnetic field amplitude for 
various CF3I-SF6 mixtures. We observe that the absorbed 
power depends on the gas composition. One of the most 
striking phenomena is the presence of periodic structures in 
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the profile of the absorbed power. Comparing CF3I and SF6, 
these structures are more pronounced for CF3I. For dc 
electric and magnetic fields the absorbed power is always a 
monotonically decreasing function of the applied magnetic 
field, while in this case we may observe a multitude of peaks 
in the B0/N-profiles of this property. This is a clear sign of 
the resonant absorption of energy from the rf electric and 
magnetic fields. We see that these effects are more 
pronounced for the lower values of B0/N, where on the 
average the electrons only complete partial orbits between 
collisions.  

D. Transition from an electron avalanche into a negative 
streamer its propagation in the CF3I-SF6 mixtures   
In Figs. 6 (a) and (b) we show the temporal evolution of 

the electric field and electron density, respectively for 
various CF3I-SF6 mixtures. Calculations are performed in a 
1-dimensional setup. The initial Gaussian grows due to the 
ionization and then charge separation occurs due to the drift 
of positive ions in the opposite direction. As a consequence, 
the initial homogeneous electric field is disturbed and the 
field in the ionized region becomes more and more screened. 
Due to space charge effects the electric field drops off to the 
level in which ionization stops and only attachment occurs. 
As a consequence, the electron density in the streamer 
channel is significantly reduced. By mixing CF3I with SF6, 
the streamers become slower and the screening of the 
externally applied electric field is less pronounced.   
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Fig. 6. Temporal evolution of the electric field (a) and electron density (b) 
in a planar front in various CF3I-SF6 mixtures. The externally applied 
electric field is 480 Td and streamers move from the right to the left.  

IV. CONCLUSION 
In this paper, we have used a multi term theory for solving 
the Boltzmann equation and a Monte Carlo simulation 
technique to investigate electron transport in the mixtures of 
CF3I and SF6. From the point of view of a possible 
application of CF3I and its mixtures with SF6 as gaseous 
dielectrics, we have calculated the drift velocity, rate 
coefficients for electron attachment and ionization and 
critical electric field. The previous studies [10] are extended 
by considering the duality of transport coefficients, e.g. the 
existence of two different families of transport coefficients, 
the bulk and the flux.  Comparing the bulk and flux drift 
velocities, it is found that the bulk component shows a very 
strong NDC and behaves in a qualitatively different fashion. 
Calculations in dc electric fields are augmented by those in 
rf electric and magnetic fields. We have paid a particular 
attention to the power absorption of the swarm. Due to a 
complex interplay of the effects induced by temporal non-
locality, magnetic field and cyclotron resonance, we have 
observed a multitude of peaks in the B0/N profiles of the 
absorbed power. Finally, using the classical fluid model we 
have simulated the transition from an electron avalanche 
into a negative streamer. It is shown that streamers in the 
mixtures with a higher content of CF3I are slower, the 
electron density is reduced and the electric field in the 
streamer interior is enhanced. Thus, by mixing CF3I with 
SF6, the insulation characteristics of the mixtures are 
considerably improved.    

REFERENCES 
 

[1] J. de Urquijo, “Is CF3I a good gaseous dielectric? A comparative 
swarm study of CF3I and SF6,” J. Phys. Conf. Series, vol. 86, 012008, 
2007. 

[2] S. Dujko, R.D. White, Z.Lj. Petrovi� and R.E. Robson, “Benchmark 
calculations of nonconservative charged-particle swarms in dc electric 
and magnetic fields crossed at arbitrary angles,” Phys. Rev. E. vol. 
81, 046403, 2010. 

[3] S. Dujko, R.D. White, Z.Lj. Petrovi� and R.E. Robson, “A multi-term 
solution of the non-conservative Boltzmann equation for the analysis 
of temporal and spatial non-local effects in charged-particle swarms 
in electric and magnetic fields,” Plasma Sources Sci. Technol.  vol.  
20, 024013, 2011. 

[4] J. Miri�, D. Bošnjakovi�, I. Simonovi�, Z.Lj. Petrovi�, “Electron 
swarm properties under the influence of a very strong attachment in 
SF6 and CF3I obtained by Monte Carlo rescaling procedures,” Plasma 
Sources Sci. Technol.  vol.  25, 065010, 2016. 

[5] C. Li, W.J.M.Brok, U.Ebert nd J.J.A. van der Mullen,R. Nicole, 
“Deviations from the local field approximation in negative streamer 
heads,” J. Appl. Phys. vol. 101, 123305,2007.  

[6] D. Bošnjakovi�, Z.Lj. Petrovi� and S. Dujko, “Fluid modeling of 
resistive plate chambers: impact of transport data on development of 
streamers and induced signals,” J. Phys. D: Appl. Phys. vol. 49, 
405201,2016. 

[7] J. Ati� et al. “Scattering cross sections and electron transport in CF3I,” 
unpublished. 

[8] M. Kimura and Y. Nakamura, “Electron swarm parameters in CF3I 
and a set of electron collision cross sections for the CF3I molecule,” J. 
Phys. D: Appl. Phys. vol. 43, 145202, 2010. 

[9] H. Itoh ,T. Matsumura, K. Satoh K, H. Date, Y. Nakano and H. 
Tagashira, “Electron transport coefficients in SF6,” J. Phys. D: Appl. 
Phys. vl. 26, 1975, 1993. 

[10] J. de Urquijo, A. Mitrani, G.R. Vargaz  E. Baurto, “Limited field 
strength and electron swarm coefficients of the CF3I-SF   gas 
mixtures,” J. Phys. D: Appl. Phys. vol. 44, 342001, 2011.        

 

 

4





On the 50th anniversary of  
Journal of Physics D: Applied Physics

This is to certify that the article:

Fluid modeling of resistive plate chambers: impact of transport data on 
development of streamers and induced signals
by D Bošnjaković, Z Lj Petrović and S Dujko
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