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1 Introduction

Recent years have seen a renewed interest in classical and quantum chaos in the context
of high-energy physics, black holes and AdS/CFT, thanks to the relation of chaos to
quantum information theory and the information problems of black holes. Sharp and
reasonably rigorous results such as the celebrated MSS chaos bound [1] and its subsequent
refinements [2, 3] establish a connection between chaos and the fundamental properties of
gravity and black holes [4, 5]. Maximal chaos, with the Lyapunov exponent λ = 2πT at
temperature T , is reached for strongly coupled field theories in the large N limit, which
have a classical gravity dual with a black hole. In [2] and other works it is explicitly shown
how the Lyapunov exponent changes with finite N effects.

However, it has been pointed out many times, also in the pioneering MSS paper [1],
that the multiple notions of quantum chaos in the literature mean different things. The
out-of-time ordered correlation function (OTOC), given by the expectation value of the
commutator of some operators A and B at times 0 and t:

C(t) ≡ 〈| [A(t), B(0)] |2〉, (1.1)
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is a natural quantity in quantum field theories, i.e. many-body systems, and defines the
quantum Lyapunov exponent λ as the exponent of the time growth of OTOC. However,
the classical limit of this exponent does not necessarily have much to do with the classical
Lyapunov exponent λclass, obtained by solving the variational equations [6–8]. The reason is
the noncommutation of the three limits to be taken: the classical limit ~→ 0, the long-time
limit t→∞, and the small initial variation limit δx(0)→ 0. The crucial insight of [7, 8]
is that the mechanism of scrambling may be the chaotic dynamics, in which case λclass is
related though still not identical to the OTOC exponent (quantum Lyapunov exponent) λ,
or it may originate in local instability (hyperbolicity), in which case even regular systems
may have a nonzero λ exponent and likewise chaotic systems may have λ which is completely
unrelated to the classical counterpart.

This mismatch between the classical and quantum Lyapunov exponent is just the tip
of the iceberg. The problem is twofold: not only what is the relation between the quantum
(OTOC) exponent and classical chaos, but also what is the relation between the quantum
Lyapunov exponent λ and other indicators of quantum chaos such as, first and foremost,
level statistics. The bread and butter of quantum chaos is the famous Dyson threefold
way leading to the Wigner surmise, the level repulsion statistics determined solely by the
time reversal properties of the Hamiltonian [10], which follows from the random matrix
approximation of chaotic Hamiltonian operators [11]. It is no secret for several years already
that the black hole quasinormal mode spectra follow the random matrix statistics [12], and
the OTOC of a Gaussian unitary ensemble (GUE) has been computed analytically in terms
of Bessel functions in [13, 14]; the outcome is close to the expected behavior of large-N
field theories only at long timescales, longer than the scrambling time; at shorter timescales
there are important differences. The authors of [13] have reached a deep conclusion in
this respect: random matrices have no notion of locality as the correlation of any pair of
eigenvalues is described by the same universal function. This is why the OTOC of a GUE
system deviates from that of a local field theory at early times, when the perturbation
in field theory has not had time to spread yet (i.e. when it is still localized). Therefore,
the level repulsion does not imply the usual picture of the chaotic (exponential) OTOC
behavior. However, we do not know yet how this correlates to the behavior of few-body or
more precisely few-degrees-of-freedom quantum systems as opposed to the large-N field
theories with a gravity dual. In few-body systems the notion of locality (and a classical
gravity dual) does not exist anyway and the main problem found by [13] is irrelevant; at
the same time, such systems are often very well described by random matrix statistics, i.e.
Wigner-Dyson statistics [10]. In this paper we aim to understand the behavior of OTOC
in such systems. Running a bit forward, we can say that the growth of OTOC is rather
unremarkable: we find no universal trend, and little connection to level statistics. This
confirms the results found for specific examples in [8, 15].

The relation of OTOC, level statistics and the classical Lyapunov exponent was studied
for few-body systems (quantum mechanics) in [8, 15–18] and the picture is inconclusive. One
can have a nonzero growth exponent in integrable systems,1 whereas fast scrambling with

1This actually correlates with the classical variational equations in hyperbolic systems, which show
exponential growth even in absence of chaos.
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the exponent close to 2πT or at least growing linearly in T has not been found even in some
clearly chaotic systems [8, 9]. Arguments for many-body systems such as spin chains even
suggest that quantum-chaotic systems with Gaussian spectral statistics generically never
show fast scrambling [19], but no claims of such generality have been tested or formulated
for few-body quantum chaos.

Various indicators of chaos relevant also for small systems, and their relation to OTOC
and scrambling were studied by [20–27] among others. In particular, in [26] some important
insights can be found: even in small systems devoid of the locality notion, OTOC can be
interpreted as a measure of delocalization of a state in phase space, and the oscillatory
component of the OTOC dynamics has to do with the power spectrum of the system. This
last insight provokes a more general question: can we learn something from the quasi-
stationary regime of OTOC, where no systematic growth is present but only oscillations? In
this paper we provide a partial answer from a detailed study of this saturated (asymptotic,
plateau) OTOC regime: the magnitude of the OTOC average at the plateau has a simple
temperature dependence, and apparently can differentiate between weak chaos (dominantly
Poissonian level distribution with some admixture of the Wigner-Dyson statistics) and
strong chaos (clear Wigner-Dyson level repulsion). We will demonstrate this on three
representative systems: the quantum Henon-Heiles Hamiltonian, whose classical limit has
mixed (regular/chaotic) phase space and thus we expect on average weak chaos, a simplified
BMN matrix model (at small N) exhibiting strong chaos for most initial conditions, and
Gaussian random matrices, the prototype of strong quantum chaos. The long-time limit of
OTOC behaves in subtly different ways in each case.

Before we start, one caveat is in order (we will consider this issue in more detail
later on): one might think that the saturated OTOC value is always trivially determined
by the system size. We typically assume that the OTOC function C as defined in (1.1)
behaves roughly as C(t) ∼ c/N2× exp(λt) with c of order unity, so when t ∼ t∗ ≡ logN2/λ

the growth of C(t) stops and OTOC approximately reaches unity (when appropriately
normalized). But the twist is precisely that c is system-specific and in general poorly known.
The leading N2 behavior indeed determines the OTOC values for N large, but when N
and c are comparable within an order of magnitude the effects of fluctuations and finite N
corrections are significant. This is at the root of our observations in this work.

The plan of the paper is as follows. In section 2 we recapitulate and generalize some
results on computing OTOC in quantum mechanics, and show how OTOC sensitively
depends on both the Hamiltonian and the operators A, B from the definition (1.1). In
section 3 we apply the general formalism to random matrix ensembles and show that the
OTOC growth is a complicated and nonuniversal function but that its asymptotic value
behaves in a rather simple way. Section 4 discusses the behavior of OTOC for deterministic
quantum-chaotic Hamiltonians. Section 5 sums up the conclusions.

2 OTOC in quantum-mechanical systems

Consider a four-point time-disordered correlation function for a quantum-mechanical system
in 0 + 1 dimensions at temperature T = 1/β. Starting from the usual definition (1.1) as the
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squared module of the commutator of the two operators A and B, we can write it out as

C(t) = 1
Z
〈| [A(t), B(0)] |2〉 = 1

Z

∑
n

e−βEn〈n|| [A(t), B(0)] |2|n〉, (2.1)

where the averaging is both thermal and quantum mechanical: 〈. . .〉 = tre−βH〈vac| . . . |vac〉.
We can pick a basis of states and express the above defining expression in terms of matrix
elements of the operators (this closely follows the derivation in [8, 16]):

C(t) = 1
Z

∑
nm

e−βEn〈n| [A(t), B(0)] |m〉〈m| [A(t), B(0)] |n〉 = 1
Z

∑
nm

e−βEn |cmn(t)|2, (2.2)

where we have inserted the completeness relation 1 =
∑
m |m〉〈m|. For a single element

cmn(t) one gets:

cmn(t) = 〈n|
[
eıHtAe−ıHt, B

]
|m〉 =

=
∑
k

(
〈n|eıHtAe−ıHt|k〉〈k|B|m〉 − 〈n|B|k〉〈k|eıHtAe−ıHt|m〉

)
=

=
∑
k

(
〈n|eıEntAe−ıEkt|k〉〈k|B|m〉 − 〈n|B|k〉〈k|eıEktAe−ıEmt|m〉

)
=

=
∑
k

(
ankbkme

−ıEknt − bnkakme−ıEmkt
)
, (2.3)

where in the second line we have again inserted a completeness relation and in the third line
we have used the fact that we work in the energy eigenbasis. The outcome is expressed in
terms of the matrix elements amn, bmn of the operators in the energy basis. In practice, it
may or may not be possible to compute these analytically. Specifically, for A = x,B = p, we
get the analogue of the classical Lyapunov exponent. From now on we call this the kinematic
OTOC as it is directly related to the classical trajectory. Let us now see what general
bounds can be put on (2.3) from the properties of quantum-mechanical Hamiltonians.

2.1 An upper bound on OTOC saturation

We begin with a very general and very formal result, which immediately makes it clear
that in a generic quantum-mechanical system (integrable or nonintegrable) OTOC can be
bounded from above by a quantity which solely depends on the energy spectrum of the
Hamiltonian and the choice of the operators A and B. This upper bound remains valid no
matter what is the time dependence of OTOC, even if it does not have a nonzero growth
exponent at all (which is quite generic in quantum mechanics). Starting from the basic
equations (2.2)–(2.3), let us denote Cnmk = ankbkm i Dnmk = −bnkakm, and estimate a
single coefficient cmn(t) in the sum. We clearly have

|cmn(t)| = |
∑
k

Cnmke
−iEknt +Dnmke

−iEmkt| ≤
∑
k

|Cnmke−iEknt +Dnmke
−iEmkt| ⇒

|cmn(t)|2 ≤
(∑

k

|Cnmke−iEknt +Dnmke
−iEmkt|

)2
≤
∑
k

|Cnmke−iEknt +Dnmke
−iEmkt|2 ≤

≤
∑
k

(
|Cnmk|2 + |Dnmk|2 + 2|Cnmk||Dnmk| cos (Emk − Ekn) t

)
, (2.4)
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where N is the matrix size. In the second and third line we have used the inequality between
the arithmetic and harmonic mean. Now we can bound the value of C(t):

0 ≤ C(t) ≤ 1
Z

∑
nmk

e−βEn
(
|Cnmk|2 + |Dnmk|2 + 2|Cnmk||Dnmk| cos (Emk − Ekn) t

)
(2.5)

This means that C(t) is bounded at all times by an oscillatory function of time, whose
frequencies are linear combinations of three eigenenergies (Emk − Ekn = Em + En − 2Ek).
Such a combination is generically always nonzero for a chaotic system except when the
energies coincide, e.g. Em = En = Ek (according to the non-resonance condition). Therefore,
since OTOC is typically a non-decreasing function of time, the behavior of C(t) for t large is
roughly its maximum value and is likely close to the right-hand side in (2.5). This suggests
that the OTOC dynamics after saturation likely consists of a very complex oscillatory
pattern (with ∼ N3 frequencies if the Hilbert space has dimension N) superimposed on a
plateau. The numerics will indeed confirm such behavior.

Another estimate, which is time-independent and relevant for our main result — the
magnitude of the saturation (plateau) OTOC value, is obtained from the triangle and mean
inequalities:

|cmn(t)|2 ≤ |
∑
k

Cnmke
−iEknt|2 + |

∑
k

Dnmke
−iEmkt|2 ≤ |

∑
k

Cnmk|2 + |
∑
k

Dnmk|2 ⇒

C(t) ≤ 1
Z

∑
nm

e−βEn
(
| (A ·B)nm |

2 + | (B ·A)nm |
2
)
≤ 2
Z

∑
nm

e−βEn | (A ·B)nm |
2,

(2.6)

where we have used the obvious relations
∑
k Cmnk = (A ·B)nm and

∑
kDnmk = (B ·A)nm =

(A · B)∗mn = (A · B)nm, assuming also the hermiticity of the operators. For some models
(e.g. random matrices, Henon-Heiles), this sum can be estimated in a controlled way and
provides an approximation for the plateau of OTOC. These estimates are obviously very
simple and very weak (in the mathematical sense) but provide us with a framework into
which we can insert specific A, B and H (the Hamiltonian with energies En) and perform
back-of-the-envelope calculations which explain the numerical findings.

3 OTOC for random matrix ensembles

Random matrix theory [10, 11] provides a highly detailed and rigorous (within its starting
assumptions) stochastic effective description of the few-body quantum chaos, and allows an
analytic calculation of OTOC along the lines of (2.3). Let us focus on Gaussian ortohogonal
ensembles of size N × N , appropriate when there is full time reversal invariance. It is
known [10] that the joint distribution all the elements of all eigenvectors is obtained simply
from the statistical independence of the eigenvectors from each other and of the elements in
each eigenvector (and the orthogonality of the eigenvectors):

P ({c}) =
(

N∏
n=1

δ

(∑
i

(cni )2 − 1
))( ∏

n<m

δ

(∑
i

cni c
m
i

))
, (3.1)
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where i = 1 . . . N is the component of the eigenvector and 1 ≤ n,m ≤ N count the eigen-
vectors themselves, i.e. the energy levels; so the n-th eigenvector |n〉 is represented by the
column vector ψ(n) with the elements (cn1 , . . . cnN ). Special cases like the probability distribu-
tion for the p-tuple of elements of a single eigenvector are obtained from (3.1) by integrating
out all the other elements [10]. We will also need the probability distribution of the energy
levels {E} = E1, E2, . . . EN , the celebrated Wigner-Dyson distribution function [10]:

P ({E}) = const.×
∏
n<m

|En − Em|b exp
(
−
∑
k

E2
k

σ2

)
, (3.2)

where σ is the standard deviation, fixing the unit of energy, and b = 1, 2 or 4 for orthogonal,
unitary and symplectic ensembles respectively. Most of our work is independent of the
symmetry class, however our default class will be the Gaussian orthogonal ensemble (GOE)
with b = 1 when not specified otherwise.

3.1 Estimate of the OTOC and its plateau

The idea is to use the results recapitulated in the previous section to find the ensemble expec-
tation value of OTOC from the “master formulas” (2.2)–(2.3). Representing the eigenvectors
and the operators as matrices in some (arbitrary) basis we can obviously write out

ank =
∑
ij

ψ
(n)
i ψ

(k)
j Aij ⇒ 〈ank〉 =

∫
dNψ(n)

∫
dNψ(k)P

(
ψ(n), ψ(k)

)
ψ

(n)
i ψ

(k)
j Aij , (3.3)

and similarly for bnk. Inserting the above expression for the matrix elements into (2.3),
multiplying cmn(t) by its complex conjugate taking into account the reality of the eigenvec-
tors and relabelling the indices in the sums where convenient we find (denoting the average
over the random matrix ensemble by 〈C(t)〉):

〈C(t)〉=
∫
dN

2{c}
∫
dN{E}P ({E})P ({c})

∑
n,m

∑
k,k′

∑
i1,2

∑
j1,2

∑
i′1,2

∑
j′1,2

ckj1c
k
i2c

k′

j′1
ck
′

i′2
cni1c

n
i′1
cmj2c

m
j′2
e−βEn×

×
(
Ai1i2Ai′1i′2Bj1j2Bj′1j′2e

ı(Ek′−Ek)t+Ai2j2Ai′2j′2Bi1j1Bi′1j′1e
ı(Ek−Ek′ )t−

−Ai2j2Ai′1i′2Bi1j1Bj′1j′2e
ı(Ek+Ek′−Em−En)t−Ai1i2Ai′2j′2Bj1j2Bi′1j′1e

ı(Em+En−Ek−Ek′ )t
)
,

(3.4)

where {c} determines the whole set of N2 random elements c(n)
j with j, n = 1 . . . N and

likewise {En} is the whole set of eigenenergies. All the sums run from 1 to N . The
integral over the eigenvector elements {c} in (3.4) produces only an overall constant as
these coefficients do not couple to the other quantities (in fact the integral dN2{c} is a
textbook Jeans integral, but we do not need its value as it only produces an N -dependent,
T -independent constant). The remaining integral, over the eigenenergies, is again a sum of
products of Jeans-type integrals but with an additional linear term −βE in the exponent.
Notice that the imaginary (sine) terms in (3.4) cancel out when the sum is performed; this

– 6 –
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is a consequence of the module squared in |cmn|2, i.e. of the reality of OTOC. Now we see
that (3.4) becomes a sum where each term is a product of factors of the form

pi(Ei)e−E
2
i /4σ2−βEi cos(sEit), s ∈ {0, 1},

where pi is some polynomial and s may be zero or unity, i.e. some terms have this factor and
some do not. Every such term is a Jeans-type integral. The number of terms in P ({E})
equals the number of partitions of N(N − 1)b/2, and the sums over the coefficients {c}
bring alltogether N12 terms. When everything is said and done (for details see appendix A),
the final outcome, ignoring the multiplicative constant factors, reads:

〈C(t)〉 =
4∏

a=1

∑
j
αaj=N(N−1)b/2∑
αa1 ,...α

a
N

[
1F1

(
1 + αa

2 ,
1
2 ,
σ2

4 (β − ıt)2
)

+ (β − ıt)1F1

(
2 + αa

2 ,
3
2 ,
σ2

4 (β − ıt)2
)

+ 1F1

(
1 + αa

2 ,
1
2 ,
σ2

4 (β + ıt)2
)

+ (β + ıt)1F1

(
2 + αa

2 ,
3
2 ,
σ2

4 (β + ıt)2
)]

, (3.5)

where 1F1 is the confluent hypergeometric function. The sum runs over all partitions of
N(N −1)b/2, and the product has four terms as each factor |cmn|2 has four matrix elements
of A and B.

3.1.1 Kinematic OTOC

In order to move further we need to specify at least to some extent the operators A and B.
We will consider (1) the kinematic OTOC, with A = x, B = p (2) generic sparse operators,
with O(N) nonzero elements in the matrices amn and bmn, and (3) dense operators A
and B, with O(N2) nonzero elements, in particular the case when the operators A, B are
themselves represented by Gaussian random matrices. Let us estimate OTOC for each case.

For the kinematic OTOC, Aij = xiδij is diagonal and in the large-N limit B can
be approximated as Bij ∼ δij/xi. The Kronecker deltas reduce the number of terms in
the sums over {c} to N4, the number of partitions

∑
j αj = n can be approximated as

p(n) ∼ exp(π
√

2n/3)/
√
n, and the general expression (3.4) becomes2

〈C(t)〉∼ eπ
√

b
3NN3e

σ2β2
4

(
W0 (σβ)+Q1

(
cos σ

2βt

2

)
W1 (σβ)+Q2

(
sin σ

2βt

2

)
W2 (σβ)

)
,

(3.6)
where W0,1,2 are polynomials in σβ of degree N(N − 1)b/2 ∼ N2b/2, Q1 is an even
polynomial (with only even powers) of the same degree, and Q2 is an odd polynomial
of the same degree. Each coefficient in the polynomials W0,1,2 comes from ∼ N2 terms
(appendix A), therefore the size of the coefficients scales approximately with N2. Eq. (3.6)

2One might be surprised by the unusual dependence on N . This happens because we have not normalized
C(t) by the product 〈AA〉〈AA〉 as it is usually done. With appropriate normalization, C(t) would of course
be of order unity.
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is a very complicated oscillating function as many terms are involved. But if we are only
interested in the average value of C(t) at long times, we may simply ignore the oscillations
(which in the first approximation average out to some value of order unity) and write the
estimate for the long-term, saturated or plateau OTOC value that we denote by C∞:

C∞ ∼ 〈C(t→∞)〉 ∼ eπ
√

b
3NN3e

σ2β2
4 W0 (σβ) (3.7)

We deliberately do not write limt→∞ in the above definition as the limit in the strict sense
does not exist because of the oscillatory functions, and in addition our derivation is obviously
nothing but a crude estimate. A similarly rough estimate of the temperature dependence of
C∞ can be obtained in the following way. For sufficiently large σβ, roughly σβ/N2 > 1,
the polynomial W0 is dominated by the highest-degree term and we have, from (3.7):

C∞ ∼ (σβ)
N2b

2 e
σ2β2

4 + . . . ∼ e
σ2

4T2 + . . . , (3.8)

where in the second step we have assumed β � 1 so that the power-law prefactor βN2b/2

becomes negligible compared to the exponential. We deliberately emphasize that there are
other terms in the expansion (. . .), including also a constant term (from the zeroth-order
term in W0). This is important as it tells us that the scaling is in general of the form
C∞ ≈ const.+ exp(σ2/4T 2), i.e. the temperature dependence is superimposed to a constant.
This is also expected as the (appropriately normalized) saturated value C∞ should always
be of order unity, and the temperature dependence will only account for the relatively small
differences between the plateau values of C(t), as we will see later in figures 1 and 2.

On the other hand, for sufficiently small σβ, the polynomial W0 can be estimated as a
geometric sum of monomials in −σβN2 (remember the terms in W0 have alternating signs):

C∞ ∼
e
σ2β2

4

1 + σβN2 ∼ 1− σβN2 +O
(
β2
)
. (3.9)

We have now reached an important point: the plateau OTOC falls off exponentially with
1/T 2 at low temperatures3 and grows as a function of 1/T at high temperatures (we are not
sure which function, as there are higher order terms in addition to the one written in (3.9),
and there is no clearly dominant term like the exponential at large β), with the crossover
temperature:4

Tc ∼ σN2. (3.10)

If we consider a pair of arbitrary sparse operators A and B, the whole above reasoning
remains in place, except that the products of matrix elements such as Ai1i2Ai′1i′2Bj1j2Bj′1j′2
remain as arbitrary constants. Therefore we get the same qualitative behavior with two
regimes and a crossover between them. The crossover temperature is very high for typical
N � 1 (otherwise the random matrix formalism makes little sense) and finite σ (again,
σ → 0 makes little sense). In particular, in the N → ∞ limit the crossover temperature
becomes infinite and the only regime is the exponential decay.

3Actually, the falloff rate equals const./T 2 with some system-specific constant, but for brevity we will
denote it schematically as the 1/T 2 regime throughout the paper.

4The crossover temperature is determined simply as βcσN2 = 1, i.e. whether the terms in W0 grow or
decay at higher and higher order.

– 8 –



J
H
E
P
0
5
(
2
0
2
2
)
0
2
3

3.1.2 OTOC for dense and/or random operators

Now consider the case when the matrix elements in (3.5) are generically all nonzero (and
for now nonrandom, i.e. we fix the operators and do not average over them). The large-t
limit yields the expression

〈C(t)〉 ∼ eπ
√

b
3NN11eσ

2(β2−t2) [q0 (σt)w0 (σβ) + q1 (σt)w1 (σβ + ıt, σβ − ıt)] , (3.11)

where q0,1 and w0 are polynomials of degree N(N−1)b/2 ∼ N2b/2, and w1 is the polynomial
of the same total degree of two variables, σβ + ıt and σβ − ıt. The coefficients of w0,1 are
proportional to products of matrix elements Ai1j1Bk1l1 . . . Ai8j8Bk8l8 , which are roughly
proportional to |A|8|B|8. The long-time limit yields

C∞ ∼
eπ
√

b
3N

N5 (|A||B|)8 e
σ2β2

4 w0(σβ)w1(σβ, σβ), (3.12)

but now a typical coefficient of the polynomials w0,1 behaves as N2 (|A||B|)8. Therefore,
the scaling in the low-temperature regime remains the same as (3.8): C∞ ∼ exp(σ2/T 2).
But the high-temperature regime yields

C∞ ∼ 1− σβN2 (|A||B|)8 +O
(
β2
)
, (3.13)

therefore the crossover now happens at

Tc ∼ σN2 (|A||B|)8 (3.14)

and therefore may be lower than the very high value (3.10), depending on the norm of the
operators A and B.

Finally, if the operators A and B are both random Hermitian matrices (for concreteness,
from the Gaussian unitary ensemble with the distribution function Π and the standard
deviation ξ), we need to average also over the distribution functions for A and B and work
with the double average 〈〈C(t)〉〉:

〈〈C(t)〉〉 ≡
∫
dN{a}

∫
dN{b}Π ({a}) Π ({b}) 〈C(t)〉 ∼ ξN2〈C(t)〉. (3.15)

This estimate is very crude, based simply on the fact that the distribution functions Π have
∼ N2/2 pairs of the form (ai − aj)2. The important point is that the scaling from (3.13)
that behaves essentially as ∼ ξ16 now becomes ∼ ξN2 , therefore the crossover temperature
is significantly reduced compared to (3.14) and behaves as Tc ∼ σN2λN

2 . So for random
operators the crossover may happen at temperatures that are not very high and thus can
be clearly visible in the numerics and experiment.

3.2 Numerical checks

Now we demonstrate numerically that the crude estimates from the previous subsection
indeed make sense and describe the characteristic behavior of OTOC. Our chief goal is to
understand the behavior of C∞, however it is instructive to start from the time dependence
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Figure 1. Numerically computed and averaged kinematic OTOC C(t) for an ensemble of l = 1000
Gaussian orthogonal matrices of size N = 20 for the deviation σ = 0.02 (A, C) and σ = 0.05 (B,
D), at temperatures 0.67 (black), 1.00 (blue), 1.25 (green), 2.50 (magenta), 5 (red). The plots (A,
B) show the linear scale and the plots (C, D) the log-log scale. Crucially, the growth regime is not
exponential and is actually closer to a power law. The growth ends on a plateau with superimposed
oscillations. The plateaus differ slightly for different temperatures — the main effect we look at in
this paper. Times is in units 1/σ in all plots.

of the kinematic OTOC (figure 1). We find the expected pattern of early growth followed by
a plateau, however the growth is closer to a power law than to an exponential; this follows
from the polynomial terms in (3.6), although the power law is not perfect either, as we see
in the panels (A, C). This is in line with the prediction of [13], where the authors find

〈C(t)〉 ≈ J4
1 (2t)/t4 + t(t/2− 1), (3.16)

for a slightly different ensemble of random matrices (J1 is the Bessel function of the first
kind). This function is also neither an exponential nor a power law but at early times it is
best approximated by a power law at leading order (at long times it falls off exponentially
but the saturation is reached already prior to that epoch). In figure 2 we focus on the
plateau behavior. It has the form of a constant function with superimposed aperiodic
oscillations, and the differences of the plateau values are the subject of our theoretical
predictions. These are relatively small and become important only when N is finite and
not very large. In figure 2 we plot again the time dependence of the kinematic OTOC but
now we focus on long timescales, to confirm that the plateau is indeed stable, and to show
the very complex oscillation pattern superimposed on the plateau.
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Figure 2. Numerically computed and averaged kinematic OTOC C(t) for an ensemble of l = 1000
Gaussian orthogonal matrices of size N = 60 for the deviation σ = 0.1, at temperatures 0.67 (black),
1.00 (blue), 1.25 (green), 2.50 (magenta), 5 (red), 10 (orange), 20 (yellow) and 100 gray. In (B) we
plot the same as in (A) but over a longer timescale, showing that the plateau remains stable for
long times, i.e. represents true asymptotic behavior.
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Figure 3. (A) The logarithm of the amplitude of the plateau C∞ of the kinematic OTOC for the
deviations σ = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 (blue to red) as a function of temperature for β values.
The linear dependence is nearly perfect, in accordance with the predicted scaling logC∞ ∝ 1/T 2.
The matrix size is N = 20. (B) Same as (A) but for the deviation σ = 0.4 and varying matrix size
N = 10, 20, 40, 60, 80, 100 and 120 (blue to red). In (C) we bring the zoom-in of the plot (B) for
high temperatures. Appart from a slight deviation near β = 0, the behavior for larger matrices is
still fully consistent with the analytical prediction. The solid lines are just to guide the eye.

Figure 3 confirms our main prediction for the low-temperature regime (again for
the kinematic OTOC) — clear linear scaling of logC∞ with 1/T 2 in a broad range of
temperatures. At small inverse temperatures there is some deviation from the linear scaling
law but this we also expect. Looking now at the OTOC for a pair of random Hermitian
operators in figure 4, we detect also the other regime at small enough temperatures —
logC∞ decays with the inverse temperature. This regime is likely present also in figure 3,
but only at extremely high temperatures (which we have not computed in that figure).

4 OTOC for weakly and strongly chaotic Hamiltonians

For quasi-integrable few-degrees-of-freedom Hamiltonians one would naively expect that
OTOC closely resembles the Lyapunov exponent, at least for high quantum numbers,
approaching the classical regime. As we have already commented in the Introduction, it
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Figure 4. The saturated OTOC C∞(T ) of a pair of dense random operators A and B for the
Gaussian orthogonal random Hamiltonian with σ = 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 (blue to red).
In (A), looking at the full range of C∞ values, it is obvious that the dominant regime is still the
exp(c/T 2) scaling. However, focusing on the low-σ ensembles (B), we notice the high-temperature
growing behavior of the OTOC plateau which is absent for sparse operators.

is known that this is not true in general [6, 8, 9, 16, 17] and that both chaotic systems
with zero quantum Lyapunov exponent and regular systems with a nonzero exponent exist.
We will now try to find some common denominator of OTOC dynamics in (deterministic)
quantum-mechanical systems. It will quickly become clear from our general analysis of
the master formula (2.3) that the function C(t) is as complicated as for random matrices
(indeed, even more so). But we will again construct an upper bound for the saturated
OTOC value and arrive at a rough scaling estimate.

4.1 Weak chaos: perturbation theory

As an example of a quasi-integrable system (of the form H = H0 + εV where H0 is
integrable and the perturbation V makes it nonintegrable for ε 6= 0) consider the Henon-
Heiles Hamiltonian

H = 1
2
(
p2
x + p2

y

)
+ 1

2
(
ω2
xx

2 + ω2
yy

2
)

+ ε

(
x2y − 1

3y
3
)
, (4.1)

a well-known paradigm for classical chaos with applications in galactic dynamics and
condensed matter. For ε = 0 it obviously reduces to a 2D linear harmonic oscillator and
becomes integrable. As we know, nonintegrability does not always imply chaos; indeed, this
is a typical system with mixed phase space, with both chaotic and regular orbits. Chaotic
orbits proliferate only when the perturbation is larger than some finite εc; they are almost
absent at low energies, numerous at intermediate energies and again absent at very high
energies when the potential energy is negligible compared to the kinetic energy [28, 29].
For such a quasi-integrable system our idea is to apply elementary perturbation theory in
the occupation number basis to estimate OTOC starting from (3.4). We will present the
perturbation theory in a fully general way, for an arbitrary Hamiltonian H0 + εV , and some
of the conclusions will also turn out to be quite general. Only at the end we will show the
quantitative results for the Henon-Heiles system (4.1).
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Let us write the perturbative expression for OTOC. Replacing the initial basis states
|n〉 with the first-order5 perturbatively corrected states |n+δn〉 and introducing likewise the
perturbative corrections δamn, δbmn for the matrix elements of A and B, the equation (2.3)
becomes

c(1)
mn = cmn+

∑
k

(δamkbkn+amkδbkn)e−ıEkmt−
∑
k

(δbmkakn+bmkδakn)e−ıEnkt =

= cmn+
∑
kl

(δmlalkbkn+δ∗kla
∗
lmbkn+δklblnamk+δ∗nlb

∗
lkamk)e−ıEkmt+(a↔ b)e−ıEnkt =

= cmn+
(
δ ·A ·B+A† ·δ† ·B+A ·δ ·B+A ·B† ·δ†

)
mn

e−ıEkmt+(A↔B)mn e
−ıEnkt.

(4.2)

Now we insert this result into (2.2) and apply the Cauchy-Schwarz-Bunyakovski inequality:

C(1)(t) = 1
Z

∑
mn

e−βEn |c(1)
mn|2 ≤

≤ 1
Z

∑
mn

e−βEn
(
|cmn|2 + |δ ·A ·B+A† ·δ† ·B+A ·δ ·B+A ·B† ·δ†|2mn+(A↔B)

)
=

=C(t)+ 1
Z

(
4Tr

(
B† ·A† ·δ† · ρ̃2 ·δ ·A ·B

)
+4Tr

(
B† ·δ ·A · ρ̃2 ·A† ·δ† ·B

))
≤

≤C∞+ 8
Z
|ρ̃|2|A|2|B|2|δ|2 ≡C∞+δC∞, (4.3)

where ρ̃ ≡ diag(exp(−βEn)) is the non-normalized density matrix. In the above derivation,
we have also used the definition of trace and the definition of thermal expectation values
〈A〉 ≡ Tr (ρ ·A). The norm of a matrix is defined as usual by |A|2 ≡ TrA†A. This estimate
manifestly replaces C(t) by its asymptotic (maximum) value, as we have replaced the terms
containing the time-dependent phase factors by their time-independent norms.

In order to move further, notice first that |ρ̃|2 =
∑
n exp(−2βEn) = Z(2β) for a

canonical ensemble with the diagonal density matrix that we consider here. This means,
from (4.3), that the temperature dependence is encapsulated in the ratio Z(2β)/Z(β). The
prefactor will again differ between dense and sparse A, B and V . For sparse matrices, we can
write |A|2 ∼ Na2 whereas for dense matrices we have |A|2 ∼ N2a2, assuming that all matrix
elements have some characteristic magnitude a. Obviously, if this is not true the outcome
will be more complicated, but it seems this does not influence the temperature dependence.
For concreteness we assume sparse A and B. For sparse V with nonzero elements of order
v concentrated near the diagonal (this is true for the Henon-Heiles Hamiltonian and in
general for perturbations expressed as low-degree polynomials in coordinates and momenta),
we can estimate |δ|2 ∼ Nv2/ω2. Here we assume an approximately equidistant spectrum of
H0 with frequency (neighboring level spacing) ω. This yields:

C(1)
∞ ∼ C∞ + Z(2β)

Z(β) N
3a2b2 v

2

ω2 . (4.4)

5The whole argument works the same way also for higher-order perturbation theory; we assume first
order just for simplicity.
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Figure 5. The thermal dependence factor of logC∞ for weak perturbative chaotic systems, given
by Z(2β)/Z(β) with β = 1/T the inverse temperature, here given for a 2D linear harmonic oscillator
with the frequencies ωx = ωy = 0.1, with N = 20 levels (blue) and with N = 150 levels (red). We
also plot the sum over N =∞ levels (black). In (A) we zoom in at high β/low temperatures, and
in (B) we focus on smaller β/larger T . The N = 150 plot is aready quite close to the monotonic
N =∞ dependence but at high temperatures there is always a region decaying with β, before the
approximately linear logR(1/T ) dependence sets in, just like in the numerical results. At very low
temperatures the ratio saturates, as we see in the panel (A). This ensures that our estimate for the
saturated OTOC has a finite limite at zero temperature. The overall scale is arbitrary as the R
factor is always multiplied by various other factors.

For a dense perturbation V , the only factor that changes is |δ|. Assuming again the
utterly simple situation where all matrix elements of V are roughly equal v, we have
δmn ∼ v/Emn ∼ v/(ω(m − n)), which yields a series that can be summed analytically.
However, we will not pursue this further as the temperature dependence is universal in all
cases, given by the simple ratio of the partition functions:

C∞ ∝ R(β) ≡ Z(2β)
Z(β) →

∑N
j=1 e

−2βω∑N
j=1 e

−βω
→ eβω

1 + eβω
. (4.5)

The first simplification holds when H0 is a 1D harmonic oscillator, and the second one
when N → ∞. But the basic result (the ratio of partition functions) always holds. We
are in fact more interested in the 2D harmonic oscillator, which is the integrable part of
the Henon-Heiles Hamiltonian. For that case, we plot the sum (for finite N) in figure 5.
Of course, the analysis of the function R(β) is trivial — we plot it in the figure merely to
emphasize the qualitative agreement with the numerics.

As a final remark, what we have found is the correction of the OTOC plateau δC∞.
There is still the unperturbed value of C∞ for the integrable Hamiltonian H0. We know
that this can be nonzero and even quite large because of local instability [6, 7, 9]. We are
mainly interested in the opposite situation, when the scrambling chiefly comes from chaos
so that OTOC does not grow when H = H0. In this case C(1) ≈ δC∞ and the temperature
dependence is primarily determined by (4.4). In the next subsection we will look both at
the Henon-Heiles system where this holds, and a perturbed inverse chaotic oscillator where
H0 is unstable.
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4.2 Weak chaos: examples and numerics

As our main example we can now study the Henon-Heiles system of eq. (4.1). Starting
from the nonperturbed Hamiltonian (2D harmonic oscillator), we will express the nonzero
elements of cmn(t) exactly, i.e. we will not use the estimates (4.3) as the perturbation is
quite simple and amenable to analytic treatment. Denoting a basis state by the quantum
number n = (nx, ny), we can write the amplitudes cnxnyn′xn′y as products of amplitudes of
the two decoupled subsystems cnxnyn′xn′y = Cnxn′xCnyn′y , with

Cnxnx = −ınxωx cos t

Cnx,nx−2 = ı

2
√
nx − 1

(√
nx + 1e−ıωxt −

√
nx + 2eıωxt

)
Cnx,nx+2 = ı

2
√
nx + 1

(√
nx − 1eıωxt −

√
nx − 2e−ıωxt

)
, (4.6)

and all other elements are zero; for the y quantum numbers the coefficients are the same
with (nx, ωx) 7→ (ny, ωy). For nonzero ε, the off-diagonal matrix elements can be represented
exactly as

cnxn′xnyn′y(t) = εδ|nx−n′x|−2δ|ny−n′y |−1

√
mx(mx − 1)

√
my + 1, mx,y ≡ min(nx,y, n′x,y).

(4.7)
The state vectors are now easily calculated in textbook perturbation theory. We have
compared the analytic calculation to the numerics and find that they agree within a relative
error ≤ 0.04; therefore, one may safely use (4.6)–(4.7) in order to speed up the computations
and avoid numerical diagonalization of large matrices.

The magnitude of the plateau value of C(t), computed by long-time averaging similarly
to the random matrix calculations in section 3, are given in figure 6. At large T values,
C∞ decays with 1/T , at intermediate values it shows an exponential growth with 1/T just
like R(1/T ) in figure 5, and as the temperature goes to zero it reaches a finite value. In
figure 7 we consider a system with much reduced state space, with N = 25. We expect
that for small N the existence of two regimes is more clearly visible, and that the crossover
temperature is higher. This is indeed what happens, although the exact form of the function
C∞(1/T ) is not very well described by the analytical result. As we have made many crude
approximations, this is not surprising: our analytical result still explains the existence
of two regimes and the crossover between them.6 One unexpected finding is that the
high-temperature regime is apparently universal for all perturbation strengths and scales
as C∞ ∝ exp(−4π/T ). This is probably specific for the Henon-Heiles system; we do not
understand it at present.

It is instructive to look at the energy level statistics of the Henon-Heiles system for
the same parameters that we have used for the OTOC calculation, in order to understand
the relation of OTOC to chaos. In figure 8 we plot the histograms of the neighboring level

6One might regard such truncation of the state space as artificial and unphysical. It is clearly just a
technical step in order to show the effect we seek for more clearly, however in principle it can be realized
by introducing an additional external potential. In other contexts, e.g. finite spin systems, a finite Hilbert
space is perfectly natural.
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Figure 6. (A) The saturated kinematic OTOC value C∞ for a range of inverse temperatures
β = 10−4, 10−3, 5 × 10−3, 0.01, 0.02, 0.05 and a range of perturbation strengths ε = 1, 2, 5, 10,
15, 20 (black, blue, green, magenta, red, orange). Here we see the scaling C∞ ∝ exp(c/T ), with c
growing with ε. In the (B) panel we zoom in the high-temperature region, to show that for ε ≤ 5
there is also the other regime where C∞ grows with T . Since the number of points in this interval is
small it is not easy to judge the form of T -dependence. In (C) we focus on the opposite regime, at
very low temperature, showing that C∞ saturates as T → 0. This is again in accordance with the
β →∞ limit of Z(2β)/Z(β). The system is truncated to N = 144 levels.
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Figure 7. The saturated kinematic OTOC value C∞(T ) for the truncated Henon-Heiles model
with N = 25 levels. The perturbation strength is ε = 0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 3.0 (black, blue,
green, magenta, red, orange, cyan). Already in (A) we see that for ε ≤ 0.5 there is a finite crossover
temperature Tc so that C∞ grows wth temperature for T > Tc. Since Tc goes down when the
Hilbert space is reduced, we can observe the high-temperature regime very clearly and see that it
collapses to a universal law C∞ ∼ exp(−4π/T ). This is seen in the panel (B) where we zoom in at
the interesting region.

spacing. Even for large ε, the regular (Poisson) component is dominant over the chaotic
(Wigner-Dyson) component. In other words, the classically mixed phase space, with the
increasing chaotic component, is almost completely regular in the quantum regime; quantum
chaos is “weaker”, as is often found in the literature [33]. For us, the fact that the system
is outside the Wigner-Dyson regime means that indeed the behavior of C∞ is a good litmus
test of quantum dynamics, behaving (at low temperatures) as exp(1/T 2) or exp(1/T ) for
strong or weak chaos respectively.7 Indeed, we would not expect that a system which is
well described by perturbation theory shows strong level repulsion.

7In fact, this is only true provided that the scrambling is chaos-related, i.e. that the integrable limit with
ε = 0 and H = H0 does not scramble significantly. We will come to this issue in the next paragraph.
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Figure 8. Distribution of neighboring energy level spacings N(s) for the Henon-Heiles Hamiltonian
with ε = 0.1 (A) and ε = 1.5 (B). In each plot we compare the level distribution to the Poisson law
(exp(−s)) and the Wigner-Dyson law for orthogonal matrices (s exp(−πs2/4)). The distribution
is dominantly Poissonian even for large perturbations, although there is a small admixture of
Wignerian statistics. The perturbative dynamics of the Henon-Heiles system is always weakly chaotic
in quantum mechanics (despite being classically strongly chaotic for large enough ε).
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Figure 9. Temperature dependence of the asymptotic OTOC C∞ for the inverse Henon-Heiles
Hamiltonian, with ω2

x = 4ω2
y = −1, and perturbation strength ε = 0, 0.1, 0.5, 0.9, 1.5 (blue, green,

magenta, red, orange). The curves are more or less flat and without a clear trend, as the scrambling
is rooted in local instability, not chaos.

Finally, it is instructive to look at the inverse Henon-Heiles system, with (ω2
x, ω

2
y) 7→

(−ω2
x,−ω2

y), so that H0 is the inverse harmonic oscillator. As already found in the literature,
scrambling is significant already at ε = 0, and this contribution dominates even at high ε,
at all temperatures. In other words, neither the perturbation nor the temperature have
a significant influence over C∞. This is fully in accordance with the result (4.3) and the
morale is that OTOC directly describes scrambling, and chaos only indirectly, through
the scrambling, if the scrambling originates mainly from chaos; if not, OTOC is largely
insensitive to chaos. Therefore, the temperature dependence of the OTOC value, derived
from the assumptions about the dynamics (perturbative chaos or strong, random-matrix
chaos) cannot be seen when there is a strong non-chaotic component to scrambling (figure 9).
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4.3 Strong chaos: numerics and the return to random matrices

As a final stroke, we will now examine a strongly chaotic system which is also relevant for
black hole scrambling and related problems in high energy physics. This is the bosonic
sector of the D0 brane matrix model known as the BMN (Berenstein-Maldacena-Nastase)
model [30], obtained as a deformation of the BFSS (Banks-Fischler-Shenker-Susskind)
model [31] by a mass term and a Chern-Simons term. This model has been studied in
detail in the context of non-perturbative string and M theory. It is known to describe the
dynamics of M theory on pp-waves and is also related to the type IIA string theory at high
energies; for details one can look at the original papers or the review [32]. Following [33–36],
we focus solely on the bosonic sector which is enough to have strongly chaotic dynamics with
equations of motion that are not too complicated. The quantum-mechanical Hamiltonian
of the BMN bosonic sector reads:8

H = Tr
(1

2ΠiΠi − 1
4
[
Xi, Xj

] [
Xi, Xj

]
+ 1

2ν
2XaXa + 1

8ν
2XαXα + ıνεabcX

aXbXc
)

i ∈ {1 . . . 9}, a, b, c ∈ {1, 2, 3}, α ∈ {4 . . . 9}, (4.8)

where Πi are the canonical momenta, Xi the canonical variables, εabc is the Levi-Civitta
tensor, and ν2 > 0 is the mass deformation which also determines the size of the Chern-
Simons deformation (the last term in (4.8)). Following [35], we will study the “mini-BMN”
model with Xα = 0, so we effectively only have three degrees of freedom. The matrices
X1,2,3 and P1,2,3 are N × N matrices. For this example we have to abandon the master
formulas for OTOC (2.2)–(2.3) as it is very difficult to find the quantities cmn — for this
we would have to perform exact diagonalization of the Hamiltonian (4.8). Instead, we
follow [36] and write a truncated system of equations directly for the expectation values
〈Xa〉 and 〈P a〉 and the two-point correlators 〈XaXb〉, 〈ΠaXb〉 and 〈ΠaΠb〉, where the
expectation value is obtained through the trace over the density matrix: 〈Xa〉 ≡ Tr(ρXa).
The equations read (for their derivation see [36]):

∂t〈Xa〉= 1
N
〈Πa〉

1
N
∂t〈Πa〉= 〈Xb〉〈Xb〉〈Xa〉−2〈Xb〉〈Xa〉〈Xb〉+〈Xa〉〈Xb〉〈Xb〉+ν2〈Xa〉+ıνεabc〈Xb〉〈Xc〉+

+
(
Xa〈XbXb〉−〈XbXb〉Xa+Xb〈XaXb〉−〈XaXb〉Xb+ıνεabc〈XbXc〉

)
, (4.9)

where the last line contains the leading quantum corrections: all possible terms with a
single contraction of the classical equation of motion, and the summation over repeated
indices is understood. The equations of motion for the two-point correlators are obtained
again by writing the classical equations of motion for the bilinears ΠaΠb, ΠaXb and XaXb

8Do not confuse with the classical action considered in [33, 35].
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Figure 10. (A) Time dynamics C(t) for the truncated quantum-mechanical mini-BMN model,
with ν = 0.1, 0.3, 0.5, 1.0 (red, black, blue, red), shows the expected pattern of growth followed by
an oscillating plateau. (B) Temperature dependence of the saturated value C∞(T ) for the same
values of ν (blue to red) has the same exp(1/T 2) scaling as the random matrix ensembles. The level
spacing statistics, shown in (C) for ν = 0.5, is indeed quite close to the Gaussian unitary ensemble
(full red curve) and clearly at odds with the Poisson statistics (full black curve), confirming that
this system is within the scope of our random matrix calculation.

and taking all possible single contractions in each term. This yields:

∂t〈XaXb〉 = 1
N

(
〈ΠaXb〉+ 〈XaΠb〉

)
(4.10)

∂t〈ΠaXb〉 = 1
N
〈ΠaΠb〉+N〈XaXb〉〈XcXc〉 −N〈XcXc〉〈XaXb〉+N〈XbXc〉〈XaXc〉−

−N〈XaXc〉〈XbXc〉+ ν2〈XaXb〉 (4.11)
∂t〈ΠaΠb〉 = N〈XaXb〉〈XcXc〉 −N〈XcXc〉〈XaXb〉+N〈XbXc〉〈XaXc〉−

−N〈XaXc〉〈XbXc〉+ ν2〈XaXb〉+ (a↔ b) . (4.12)

As explained in [36], this truncated system is obtained by assuming a Gaussian approximation
for the wavefunctions. Therefore, we solve the truncated quantum dynamics of the mini-
BMN model — essentially a toy model, but it will serve our purpose. Now that we have set
the stage, we can express the kinematic OTOC as C(t) = 〈XaΠb〉 − 〈ΠaXb〉 and study its
dynamics. The outcome is given in figure 10. We are essentially back to the random matrix
regime of section 3 — there is a clear scaling C∞ ∼ exp(1/T 2) (we do not see the other
regime, but again it may well be there for sufficiently high temperatures), and the level
distribution is a near-perfect fit to the Wigner-Dyson curve. Therefore, if a Hamiltonian is
strongly chaotic, then both the level distribution and the OTOC plateau are well described
by the random matrix theory.

5 Discussion and conclusions

In this paper we have formulated a somewhat unexpected indicator of quantum chaos,
useful mainly in few-body (few-degrees-of-freedom) systems. While OTOC has become
the quintessential object in the studies of quantum chaos and information transport,
characterized mainly by its growth rate — the (quantum) Lyapunov exponent, in our
examples its growth pattern tends to be quite nonuniversal and “noisy” (in the sense that
it depends sensitively on the system at hand and the operators we look at). Our analytic
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treatment of OTOC dynamics is quite sketchy, however both analytical and numerical
results strongly suggest there is no clear exponential growth. At first glance, one might
think that this finding is completely at odds with the established wisdom, however this is
not true. In the literature, exponential growth is mainly characteristic for systems with a
classical gravity dual (and reaches its maximum when the dual contains a thermal black
hole horizon). There are abundant examples of quantum chaotic systems which do not have
an exponentially growing OTOC (we especially like [19] but there are many other published
examples). The exponential growth follows, in the AdS/CFT picture, from the shock wave
dynamics in a classical gravity background, and need not exist when the background is
not classical or when the gravity dual does not exist at all. This is precisely what happens
here: the Henon-Heiles Hamiltonian is certainly nothing like a strongly coupled large N
field theory, while the truncated mini-BMN model comes closer (it is actually related to
discretized Yang-Mills) but we tackle it at finite N and thus away from the fast scrambling
dual. For random matrices, our findings for C(t) are in line with the rigorous results of [13].
As pointed out in that work, the crucial difference between random matrices and strongly
coupled field theories is that the former have no notion of locality neither in time nor in
space. In our small systems, the spatial locality is irrelevant anyway but if the system is
not sufficiently chaotic there will still be long-term temporal correlations in dynamics (this
indeed gives rise to different scaling regimes for strong and weak chaos).

On the other hand, what we have found is that the long-time OTOC behavior, when it
becomes essentially stationary, with a complex oscillation pattern, is surprisingly regular —
behaving as exp(1/T 2) and exp(1/T ) respectively in strong and weak chaos. This indicator
seems to have a stronger connection to quantum chaos in the sense of level statistics than
the Lyapunov exponent; in all examples we have studied the exp(1/T 2) regime and the
Wigner-Dyson level distribution go hand in hand. At very high temperatures we detect also
a different regime, when the OTOC plateau grows with temperature. This regime seems
less universal, and we do not understand it very well. One might think that the plateau
value should not carry any useful information; it is often laconically stated that OTOC
reaches saturation when the initial perturbation has spread all over the system and that
this saturation value is unity when OTOC is appropriately normalized. This is roughly
true, however “spreading all over the system” is not a rigorous notion — depending on the
system and the operators A, B in OTOC, the perturbation may never spread completely
due to symmetry constraints, specific initial conditions, quasi-integrals of motion etc. Such
factors are particularly important in finite systems (quantum mechanics as opposed to
quantum field theory) that we study. Looking at the figures, one sees that differences in
the asymptotic OTOC value C∞ tend to be small, and C∞ tends to be about the same to
an order of magnitude in all cases. We conjecture that such differences would dwindle to
zero in the field limit.

A simple intuitive explanation for the falloff of asymptotic OTOC with temperature is
the following: we expect that higher temperatures lead to faster information spreading and
quicker equilibration. Therefore, it is logical that the plateau value will be lower, so that
the system needs less time to reach it, i.e. it needs less time to equilibrate.
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We note in passing that we have confirmed that scrambling can originate from at
least two distinct mechanisms: local instability and chaos, so in the former case the
relation of OTOC to chaos is largeley lost. This is a known fact in many examples
already [6, 7, 9, 16, 26] and we emphasize it here merely as a reminder to the reader that
the OTOC-chaos connection is really a relation of three elements: OTOC-scrambling-chaos,
and if the second link is missing no attempt should be made to understand chaotic dynamics
from OTOC.

We conclude with some speculations. The OTOC plateau value, as we found, is a
rather universal function of temperature, and it is essentially a finite-size fluctuation of the
correlation function, when the system is small enough that the relative size of fluctuations
does not go to zero. We may then look for universality and the connections to chaotic
dynamics in other similar quantities, e.g. the average fluctuation of the expectation value of
some operator during thermalization. Such a quantity remains nonzero also in AdS/CFT at
large N , and may relate our results to the more familiar fast scrambling, strongly correlated
holographic systems.
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A Detailed structure and calculation of OTOC for Gaussian orthogonal
ensembles

In this appendix we consider the calculation of OTOC for random matrix systems in some
more detail, and describe the detailed structure of the correlation function C(t). Let us
first denote, for the sake of brevity:∑

tot
≡
∑
n,m

∑
k,k′

∑
i1,i2

∑
j1,j2

∑
i′1,i
′
2

∑
j′1,j
′
2

, C ≡ ckj1 . . . c
m
j′2
.

Denote also the products of matrix elements of the operators A,B entering the expres-
sion (3.4) by χ1, χ2, χ3, χ4. Now the expression for 〈C(t)〉 can be written as:

〈C(t)〉 =
∑
tot

∫
P ({c})dN2{c}

∫
P({E})dNEe−βEnC

×
(
χ1e

i(Ek′−Ek)t + . . .+ χ4e
i(Em+En−Ek′−Ek)t

)
(A.1)

As we have noticed in the main text, the integral over C yields just a numerical constant. Let
us therefore evaluate the energy integral I1 =

∫
dN{E}P({E})e−βEnχ1e

i(Ek′−Ek)t. We have:

I1 =
∫ ∫
· · ·
∫
dEn

∫
dEk

∫
dEk′P({E})e−βEn × χ1e

ı(Ek′−Ek)t. (A.2)
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The absolute values of the differences can be written out in the obvious way:∏
n<m

|En − Em| =
∑
i

(−1)π(i)E
α1,i
1 E

α2,i
2 . . . E

αN,i
N , (A.3)

where all αi,j are some (positive) integer exponents and π(i) is the appropriate sign factor
0 or 1. Therefore, I1 can be reorganized as:

I1 =
∑
j

χ1
∏

i 6=n,k,k′

∫
E
αi,j
i e−E

2
i dEi

∫
dEne

−βEne−E
2
n

∫
dEke

iEk′ te−E
2
k′

∫
dEke

−iEkte−E
2
k .

(A.4)
Note that the part

∏
n<m |En − Em|, is not essential for the general behavior, since the

singular integral
∫
E
αi,j
i e−E

2
i dEi is either some constant (if α is even), or zero if α is odd.

Otherwise for i 6= j ∫ ∏
l<i<l′

Eie
−E2

j dEj = const.×
∏

l<i<l′

Ei. (A.5)

Therefore, we only focus on calculating integrals of the form∫
dEn

∫
dEk

∫
dEk′e

−βEn × e−E
2
n−E2

k−E
2
k′χ1e

i(Ek′−Ek)t, (A.6)

which yields the closed-form expression for the temperature dependence of I1:

I1 ∼ δk,k′eβ
2/4 +

(
1− δk,k′

)
eβ

2/4e−t
2/2., (A.7)

where δk,k′ is the Kronecker delta, reminding us that the main contribution comes from the
terms with Ek = Ek′ which generically means k = k′. It is clear that a similar calculation
holds for the other parts of 〈C(t)〉. This produces the temperature scaling found in the
main text for random matrices, of the form 〈C(t)〉 ∼ e1/4T 2 . But the time dependence is
more complicated. In order to see this, we look at the structure of the polynomial factors
in I1 in some more detail. We see immediately that 〈C(t)〉 will also have dependence on
t2n, βn. Start from ∫

Eαii e
−iEite−E

2
i dEi = e−t

2/4
∫

(u− it/2)αie−u2
du, (A.8)

where Ei = u − it/2. Let us look at two cases: αi even and αi odd. For any αi the
polynomial will have the form:

(u− it/2)αi =
αi∑
j=0

γju
j(it/2)αi−j . (A.9)

Assume first that αi is even. This means that j and αi − j are of same parity. For even
j the Gaussian integral evaluates to some constant, but we will also have the prefactor
of (it/2)αi−j , for all even j ≤ αi. The odd powers (j odd) will disappear because of the
symmetric domain of integration. For αi odd, j and αi − j will be of different parity so
again, only even j give a nonzero integral. In conclusion, the integral (A.6) with polynomial
prefactors included will have the form:∫

Eαii e
−iEite−E

2
i dEi = e−t

2/4Q(t2n), (A.10)
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where Q(t2n) is a real polynomial depending on even powers of t, and 2n ≤ αi. Alternatively,
for αi odd, we get: ∫

Eαii e
−iEite−E

2
i dEi = ıe−t

2/4R(t2n+1), (A.11)

where R(t2n+1) is a real polynomial depending on odd powers of t, and 2n + 1 ≤ αi.
Analogous logic holds for the β dependence. Now we look back at I1:

I1 = const.
∫
Eαnn dEn

∫
Eαkk dEk

∫
E
αk′
k′ dEk′e

−βEn × e−E
2
n−E2

k−E
2
k′χ1e

i(Ek′−Ek)t. (A.12)

When we write out the products of energies, we have the following types of monomials in
the resulting polynomial:

1. QQU

2. QRU

3. QQV

4. QRV ,

with the prefactor δk,k′e−t
2/2eβ

2/4. Here, Q,R are polynomials of t and are U/V are
polynomials of even/odd powers of β respectively. Note however that QR and RQ give the
same structure after integration.

The other integral appearing when writing out the master formula for OTOC is

Kn =
∫
Eαnn e−βEne−iEnte−E

2
ndEn. (A.13)

According to the same logic as for I1, it is not hard to get the equivalent form of Kn (leaving
out the exponentially decaying terms):

Kn = eβ
2/4eıβt/2

∫ ∑
j

γju
j(β/2 + it/2)αn−je−u2

du. (A.14)

Now we will use the fact that OTOC is a real function, as we can see also from the
definition (2.2). Therefore, all imaginary parts must vanish. From this fact we reach a few
important conclusions:

1. In the structure of I1, the combination QR is impossible, thus we will only have
polynomials of t with an even exponent, and no restriction for polynomials of β as it
is a real integral, and no term has to vanish.

2. In the structure of Kn, when we have the factor cos(βt/2), only even powers of t and
arbitrary powers of β can survive.

3. In the structure of Kn when we have the factor sin(βt/2), only odd powers of t and
arbitrary powers of β can survive.
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The conclusion of the above analysis gives us a rough idea of what the 〈C(t)〉 looks like:

〈C(t)〉 = e
β2
4 W0(σβ) + e

β2
4

(
cos

(
βt

2

)
Q
(
t2n
)
W1(σβ) + sin

(
βt

2

)
R
(
t2n+1

)
W2 (βn)

)
,

(A.15)
where W0,W1,W2 are arbitrary polynomials of β. This is the form found also in the main
text, with the exception that in the main text we have rescaled the combination βt as βt/σ2

in order to have a dimensionless expression.

A.1 The large matrix limit

In the limit N −→∞ we can say more on the structure of OTOC. We can first schematically
rewrite (A.15) together with any exponentially suppressed corrections as

〈C(t)〉 = e
β2
4 Q

(
t2n
)
W (σβ)

(
L1 + L2e

−t2/2
)
. (A.16)

Here we have first absorbed all time and β dependence of (A.15) into the functions Q and
W respectively, and then we have included the exponentially suppressed correction coming
from the k 6= k′ terms in the integrals I1 and Kn. By L1, L2 we denote the constant (time-
and temperature-independent) factors. In general one can write L1 as

L1 =
N∑
j=1

j∑
i=0

ci

(
j

i

)
(A.17)

We can easily estimate the second sum. Namely, j∑
i=0

ci

(
j

i

)2

≤
( j∑
i=0

c2
i

) j∑
i=0

(
j

i

)2
 , (A.18)

by the Cauchy-Schwarz-Bunyakovski inequality. Next, the well known formula
∑j
i=0

(j
i

)2 =(2j
j

)
yields

j∑
i=0

ci

(
j

i

)
≤ const.×

√√√√(2j
j

)
. (A.19)

To get rid of the binomial coefficient we will use the Stirling’s formula and get√√√√(2j
j

)
=
√

(2j)!
j!j! ≈

√√√√√√4πj (2j)2j

e2j

2πj (jj)2

(ej)2

≈ const.× 2j

j1/4 . (A.20)

Finally we reach the result:

L1 ≈ const.×
N∑
j=1

2j

j1/4 ≈ const.× 2N+1

N1/4 , (A.21)

for N −→∞. Exactly the same logic goes for L2.
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In the large matrix limit it is possible to show explicitly what we know has to happen:
OTOC reaches a plateau. Looking at (A.16), the condition to reach the plateau for times
longer than some scale t0 is

e
−t2

2 Q(t2n)
(
L1 + L2e

−t2/2
)

= const. t > t0. (A.22)

It is more convenient to look at the forms given in (A.15). First let us look at the condition
Q(t2n) = const.× et2/2. The exponential term can be represented as a series; equating it
with Q(t2n) we get ∑

j

αjt
2j = const.×

∑
j

t2j

2jj! , (A.23)

thus, we need αj ∼ 1
2jj! , which we know is the case from (A.9). For the second term the

situation is similar: ∑
j

βjt
2j = const.×

∑
j

t2j

j! , (A.24)

so we need to have βj ∼ 1
j! ; this is true by cos(βt/2) = Q(t2n)W (β2n) and sin(βt/2) =

Q(t2n+1)W (β2n+1), since the terms in the Taylor expansions of the left-hand sides behave
as ∼ 1

j! .
We can also look at the opposite limit in which t −→ 0. Let us rearrange (A.16):

〈C(t)〉 = L′1Q(t2n)e−t2/2 + L′2Q(t2n)e−t2 . (A.25)

Now, simply using the definition of Q and expanding into a series we get:

〈C(t)〉 = L′1

(
1− t2

2 + o
(
t4
))(

qo + q1t
2
)

+ L′2

(
1− t2 + o

(
t4
)) (

qo + q1t
2
)
. (A.26)

After some algebra we get:

〈C(t)〉 = Q0 +Q1t
2 +Q2t

4 + o
(
t4
)

= P (t). (A.27)

We see now that OTOC behaves in a very simple way for early times; this expansion is also
consistent with the result (3.16) of [13].
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Scientific Computing Lab, Center for the Study of Complex Systems,

Institute of Physics Belgrade, University of Belgrade,

Pregrevica 118, 11080 Belgrade, Serbia

E-mail: mcubrovic@gmail.com

Abstract: We perform a systematic study of the maximum Lyapunov exponent values

λ for the motion of classical closed strings in Anti-de Sitter black hole geometries with

spherical, planar and hyperbolic horizons. Analytical estimates from the linearized varia-

tional equations together with numerical integrations predict the bulk Lyapunov exponent

value as λ ≈ 2πTn, where n is the winding number of the string. The celebrated bound

on chaos stating that λ ≤ 2πT is thus systematically modified for winding strings in the

bulk. Within gauge/string duality, such strings apparently correspond to complicated op-

erators which either do not move on Regge trajectories, or move on subleading trajectories

with an unusual slope. Depending on the energy scale, the out-of-time-ordered correlation

functions of these operators may still obey the bound 2πT , or they may violate it like the

bulk exponent. We do not know exactly why the bound on chaos can be modified but the

indication from the gauge/string dual viewpoint is that the correlation functions of the

dual gauge operators never factorize and thus the original derivation of the bound on chaos

does not apply.

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence, Integrable Field

Theories, Black Holes

ArXiv ePrint: 1904.06295

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2019)150

mailto:mcubrovic@gmail.com
https://arxiv.org/abs/1904.06295
https://doi.org/10.1007/JHEP12(2019)150


J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

Contents

1 Introduction 1

2 String dynamics in static black hole backgrounds 5

2.1 Fixed points and near-horizon dynamics 7

3 Lyapunov exponents and the bound on chaos 10

3.1 Variational equations and analytical estimates of Lyapunov exponents 11

3.1.1 Thermal horizon 11

3.1.2 Away from the horizon 12

3.1.3 Extremal horizon 13

3.1.4 Lyapunov time versus event time 14

3.1.5 Dimensionful constants 14

3.2 Numerical checks 15

4 Toward a physical interpretation of the modified bound 15

4.1 Dual gauge theory interpretation 15

4.1.1 Operators dual to a ring string? 16

4.1.2 Planetoid string 18

4.2 The limits of quasiclassicality 20

4.3 Ring string scattering amplitude and the relation to OTOC 20

4.3.1 Eikonal approximation 21

4.3.2 Beyond the eikonal approximation: waves on the string 23

5 Discussion and conclusions 25

A Summary of the numerics 28

1 Introduction

Sharp results like inequalities and no-go theorems are often the cornerstones of our under-

standing of physical phenomena. Besides being appealing and captivating, they are easy to

test as they provide a sharp prediction on a certain quantity, and we can often learn a lot

by understanding the cases when such bounds need to be generalized or abandoned. The

upper bound on the Lyapunov exponent (the rate of the growth of chaos), derived in [1]

inspired by hints found in several earlier works [2–7], is an example of such a result, which

is related to the dynamics of nonstationary correlation functions and provides insight into

the deep and important problem of thermalization and mixing in strongly coupled systems.

– 1 –
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It is clear, as discussed also in the original paper [1], that there are cases when the bound

does not apply: mainly systems in which the correlation functions do not factorize even at

arbitrarily long times, and also systems without a clear separation of short timescales (or

collision times) and long timescales (or scrambling times). A concrete example of bound

violation was found in [8] for a semiclassical system with a conserved angular momentum

(inspired by the Sachdev-Ye-Kitaev (SYK) model [9–12]) and in [13], again for a SYK-

inspired system. In the former case, the reason is clear: the orbits that violate the bound

are precisely those that cannot be treated semiclassically, so the violation just signals that

the model used becomes inaccurate; in the latter case things are more complicated and the

exact reason is not known. Finally, in [14] systematic higher-order quantum corrections to

the bound are considered. The bound is in any case a very useful benchmark, which can

tell us something on long-term dynamics of the system at hand, i.e. if some bound-violating

mechanisms are at work or not.

Although the bound on chaos is mainly formulated for field theories in flat spacetime,

it has an intimate connection to gravity: the prediction is that fields with gravity duals

saturate the bound. This makes dynamics in asymptotically anti-de Sitter (AdS) space-

times with a black hole particularly interesting: they have a field theory dual,1 and black

holes are conjectured to be the fastest scramblers in nature [2, 3], i.e., they minimize the

time for the overlap between the initial and current state to drop by an order of magni-

tude. Some tests of the bound for the motion of particles in the backgrounds of AdS black

holes and an additional external potential were already made [15]; the authors find that

the bound is systematically modified for particles hovering at the horizon and interacting

with higher spin external fields. When the external field becomes scalar, the exact bound

by Maldacena, Shenker and Stanford is recovered (as shown also in [16]).

The idea of this paper is to study the bound on chaos in the context of motion of

strings in AdS black hole geometries. Asymptotically AdS geometry is helpful not only

because of the gauge/gravity duality, but also for another reason: AdS asymptotics pro-

vide a regulator, i.e., put the system in a box, making its dynamics more interesting (in

asymptotically flat space, most orbits immediately escape to infinity with no opportunity

to develop chaos). Now why consider strings instead of geodesics? Because geodesics are

not the best way to probe the chaos generated by black holes: we know that geodesics

in AdS-Schwarzschild, AdS-Reissner-Nordstrom and AdS-Kerr backgrounds (and also in

all axially symmetric and static black hole geometries) are integrable, and yet, since the

horizon in all these cases has a finite Hawking temperature, there should be some ther-

malization and chaos going on. The logical decision is therefore to go for string dynamics,

which is practically always nonintegrable in the presence of a black hole. We look mainly

at the Lyapunov exponents and how they depend on the Hawking temperature. We will

see that the bound of [1] is surprisingly relevant here, even though the bound was formu-

lated for field theories with a classical gravity dual, whereas we look at the bulk dynamics

of strings, which go beyond the realm of Einstein gravity. At first glance, their Lyapunov

exponents should not saturate (let alone violate) the bound; in fact, at first glance, it is not

1Of course, one should be careful when it comes to details; it is known that for some field contents in

the bulk the boundary theory does not exist.
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obvious at all how to relate the Lyapunov exponent of classical bulk orbits to the result [1],

which defines the Lyapunov exponent in terms of the out-of-time ordered correlation func-

tions (OTOC).2 An important discovery in relation to this issue was made in [17], where

the authors consider a holographically more realistic string (open string dual to a quark in

Brownian motion in a heath bath), compute the Lyapunov exponent in dual field theory,

and find that it exactly saturates the bound. However, their world-sheet theory, i.e., their

induced metric itself looks somewhat like gravity on AdS2; therefore, close connection to

the Einstein gravity result is understandable. Our situation is different not only because

the ring string configurations have worldsheet actions very different from Einstein gravity

but also because we look mainly at the Lyapunov exponents of the bulk orbits.3 We will

eventually look also at the OTOC in dual field theory and find that the “quantum” Lya-

punov exponents do not in general coincide with the classical bulk values. However, the

subject of OTOC functions is more complicated as it requires one to consider the backre-

action on the background, and studying the behavior of the ring string in such backreacted

geometry is in general more difficult than for the open string od [17]. Therefore, we mostly

leave the OTOC and quantum Lyapunov exponent for future work.

At this point we come to another question, distinct but certainly related to the chaos

bound: the story of (non)integrability in various curved spacetimes. For point particles (i.e.,

motion on geodesics) it is usually not so difficult to check for integrability, and symmetries

of the problem usually make the answer relatively easy. However, integrability in string

theory remains a difficult topic. Most systematic work was done for top-down backgrounds,

usually based on the differential Galois theory whose application for string integrability

was pioneered in [19]. Systematic study for various top-down configurations was continued

in [20–22]; [21] in particular provides the results for strings in a broad class of brane

backgrounds, including Dp-brane, NS1 and NS5 brane configurations. The bottom line is

that integrable systems are few and far apart, as could be expected. Certainly, AdS5 ×
S5 is an integrable geometry, as could be expected from its duality to the (integrable)

supersymmetric Yang-Mills field theory. In fact, direct product of AdS space and a sphere

is integrable in any dimension, which is obvious from the separability of the coordinates.

But already a marginal deformation destroys integrability; a specific example was found

analytically and numerically in [23], for the β-deformation of super-Yang-Mills and its

top-down dual. More information can be found, e.g., in the review [24].

The first study of integrability in a black hole background was [25], where the

nonintegrability of string motion in asymptotically flat Schwarzschild black hole back-

ground was shown. In [26] the first study for an AdS black hole background (AdS-

Schwarzschild) was performed, putting the problem also in the context of AdS/CFT corre-

spondence. In [27] the work on top-down backgrounds was started, considering the strings

2In addition, the scrambling concept of [2, 4–7] is more complex; it is about the equilibration of the black

hole and its environment after something falls in. In other words, it necessarily includes the perturbation of

the black hole itself. We do not take into account any backreaction so we cannot compute the scrambling

time, only the Lyapunov exponent.
3Another example where the bound is modified (by a factor of 2) in a theory that goes beyond Einstein

gravity is [18].
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on the AdS×T 1,1 geometry generated in a self-consistent top-down way. For the top-

down AdS-Sasaki-Einstein background the nonintegrability was proven analytically [19].

Finally, AdS-soliton and AdS-Reissner-Nordstrom were also found to be nonintegrable

in [28, 29]. So most well-known in AdS/CFT have nonintegrable string dynamics: AdS-

Schwarzschild, AdS-Reissner-Nordstrom, AdS soliton and AdS-Sasaki-Einstein.4 Other

results on (non)integrability can be found in [30–33]; the list is not exhaustive.

Apart from the usual spherical static black holes (neutral and charged), we consider also

non-spherical horizons with constant curvature. Among them are also the zero-curvature

black branes, with infinite planar horizons, which are most popular in applied holography.

But it is known that more general horizons can be embedded in AdS space (in general

not in Minkowski space). Such black holes are usually called topological black holes, first

constructed in [34–37] and generalized in [38]. The term topological is in fact partly mis-

leading, as the backgrounds considered in some of the original papers [35] and also in our

paper are not necessarily of higher topological genus: besides spherical and planar hori-

zons, we mainly consider an infinite, topologically trivial hyperbolic horizon with constant

negative curvature (pseudosphere).5

The reader might wonder how important the non-spherical black holes are from the

physical viewpoint. In fact, as shown in the aforementioned references, they arise naturally

in spaces with negative cosmological constant, i.e., in AdS spaces, for example in the col-

lapse of dust [39], and the topological versions are easily obtained through suitable gluings

(identifications of points on the orbit of some discrete subgroup of the total symmetry

group) of the planar or pseudospherical horizon. Another mechanism is considered in [34],

where topological black holes are pair-created from instanton solutions of the cosmolog-

ical C-metric (describing a pair of black holes moving with uniform acceleration). More

modern work on constant-curvature black holes and some generalizations can be found

in [40–42], and AdS/CFT correspondence was applied to topological black holes in [43].

But our main motivation for considering non-spherical black holes is methodological, to

maximally stretch the testing ground for the chaos bound and to gain insight into various

chaos-generating mechanisms. In hindsight, we find that hyperbolic are roughly speaking

most chaotic, because moving on a manifold of negative curvature provides an additional

chaos-generating mechanism, in addition to the black hole.

The plan of the paper is the following. In the next section we write down the equations

of motion for a closed string in static black hole background, inspect the system analyti-

cally and numerically and show that dynamics is generically non-integrable. In the third

section we compute the Lyapunov exponents numerically and estimate them analytically,

formulating a generalized bound in terms of the local temperature and the string winding

number. The fourth section is a rather speculative attempt to put our results in the context

of the dual field theory and the derivation of the original bound from [1]; we will also try

to clarify the relation of the bulk classical Lyapunov exponent to the decay rates of OTOC

functions in dual field theory. The last section sums up the conclusions.

4In [26, 29] it was shown that Reissner-Nordstrom black holes in asymptotically flat space are also

nonintegrable.
5In fact, constant-curvature black holes would be a more suitable term than topological black holes.
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2 String dynamics in static black hole backgrounds

A constant curvature black hole in N + 1 spacetime dimensions is a geometry of constant

curvature with the metric [34–36]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dσ2

N−1

f(r) = r2 + k − 2m

rN−2
+

q2

r2N−4
, (2.1)

where dσ2
N−1 is the horizon manifold, which has curvature k, and m and q define the

mass and charge of the black hole. It is a vacuum solution of the Einstein equations with

constant negative cosmological constant and thus interpolates to AdS space with radius

1. From now on let us stick to N = 3 unless specified otherwise. For k = 1 we have the

familiar spherical black hole. For k = 0 we get the planar horizon (black brane) popular

in AdS/CFT applications.6 Finally, for k = −1 the horizon is an infinite hyperbolic sheet

(pseudosphere), with the symmetry group SO(2, 1).7 Notice that k can always be rescaled

together with the coordinates on σ2 thus we only consider k = −1, 0, 1. The metric of the

horizon surface takes the form

dσ2
2 = dφ2

1 + sink2φ1dφ
2
2, (2.2)

with sink(x) = sinx for k = 1, sink(x) = x for k = 0 and sink(x) = sinh(x) for k = −1.

A closed string with tension 1/α′ on the worldsheet (τ, σ) with target space Xµ and

the metric Gµν is described by the Polyakov action:

S = − 1

2πα′

∫
dτdσ

√
−hhabGµν(X)∂aX

µ∂bX
ν + εabBµν(X)∂aX

µ∂bX
µ. (2.3)

In our black hole backgrounds we always have Bµν = 0 so we can pick the gauge hab =

ηab = diag(−1, 1). This gives the Virasoro constraints

Gµν

(
ẊµẊν +X ′µX ′ν

)
= 0, GµνẊ

µX ′ν = 0, (2.4)

where we introduce the notation Ẋ ≡ ∂τX,X
′ ≡ ∂σX. The first constraint is the Hamil-

tonian constraint H = 0. We consider closed strings, so 0 ≤ σ ≤ 2π. From the second

constraint the following ansatz is consistent (of course, it is not the only one possible):

T = T (τ), R = R(τ), Φ1 = Φ1(τ), Φ2 = nσ. (2.5)

We denote the (dynamical) target-space coordinates Xµ(τ, σ) by capital letters T , R,Φ1,Φ2,

to differentiate them from the notation for spacetime coordinates t, r, φ1, φ2 in the met-

ric (2.1). The form (2.5) was tried in most papers exploring the integrability and chaos

6With periodic identifications on σ2 one gets instead a toroidal horizon.
7If we identify the points along the orbits of the little group of SO(2, 1), we get a genus g surface with

g ≤ 2, and the horizon becomes compact and topologically nontrivial, hence the term topological black

holes for this case.
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of strings [19, 25–29]. It is not an arbitrary ansatz: the winding of Φ2 follows from the

equations of motion, i.e., from the fact that Φ2 is a cyclic coordinate, leading to the solution

Φ̈2 = 0. Since Φ2 has trivial dynamics, from now on we will denote Φ ≡ Φ1. The equations

of motion follow from (2.3):

∂τ

(
f Ṫ
)

= 0⇒ E ≡ f Ṫ = const. (2.6)

R̈+
f ′

2f
(E2 − Ṙ2) + fR

(
Φ̇2 − n2sink2Φ

)
= 0 (2.7)

Φ̈ +
2Ṙ

R
Φ̇ +

n2

2
sink(2Φ) = 0. (2.8)

Clearly, the stationarity of the metric yields the first integral E with the informal meaning

of mechanical energy for the motion along the R and Φ coordinates (it is not the total

energy in the strict sense). The system is more transparent in Hamiltonian form, with the

canonical momenta PT = −E = −f Ṫ , PR = Ṙ/f, PΦ = R2Φ̇:8

H =
f

2
P 2
R +

1

2R2
P 2

Φ +
n2

2
R2sink2Φ− E2

2f
= 0, (2.9)

the second equality being the Virasoro constraint. We thus have a 2-degrees-of-freedom

system (due to the integral of motion E, i.e., the cyclic coordinate T ), with a constraint,

effectively giving a 1.5-degrees-of-freedom system, moving on a three-dimensional manifold

in the phase space (R,PR,Φ, PΦ). Notice that the motion along a geodesic is obtained

for n = 0; in this case, the system is trivially separable and becomes just motion in a

central potential. For nonzero n, the Hamiltonian (2.9) is not separable and the system is

nonintegrable.9 On the other hand, for a point particle all constant-curvature black holes

have a full set of integrals of motion leading to the integrability of geodesics: for the sphere,

the additional integrals (besides E) are L2 and Lz from SO(3), and for the pseudosphere

these are K2 and Kz from SO(2, 1). For the planar black hole we obviously have Px,y,

the momenta, as the integrals of motion. Of course, if we consider compactified surfaces,

the symmetries become discrete and do not yield integrals of motion anymore. Therefore,

truly topological black holes are in general nonintegrable even for geodesics.10

8In this and the next section we put α′ = 1/π, as we only consider classical equations of motion, which

are independent of α′. In section 4, when calculating the quantities of the dual gauge theory, we restore α′

as it is related to the ’t Hooft coupling, a physical quantity.
9One can prove within Picard-Vessiot theory that no canonical transformation exists that would yield

a separable Hamiltonian, so the system is nonintegrable. We will not derive the proof here, as it is not

very instructive; the nonintegrability of the spherical case was already proven in [26, 29], and the existence

of nonzero Lyapunov exponents will de facto prove the nonintegrability for the other cases. One extra

caveat is in order for the planar case. For k = 0 and sinkΦ = Φ, the Hamiltonian is still not separable,

and dynamics is nonintegrable. One could change variables in the metric (2.1) as (φ1, φ2) 7→ (φ′1 =

φ1 cosφ2, φ
′
2 = φ1 sinφ2), and the string with the wrapping Φ′2 = nσ would provide an integrable system,

with the separable Hamiltonian H ′ = f
2
P 2
R+ 1

2R2P
2
Φ′ + n2

2
R2− E2

2f
. But that is a different system from (2.9):

even though a change of variables is clearly of no physical significance, the wrapping Φ′2 = nσ is physically

different from Φ2 = nσ. Integrability clearly depends on the specific string configuration.
10For special, fine-tuned topologies and parameters, one finds integrable cases (even for string motion!)

but these are special and fine-tuned; we will consider these cases elsewhere as they seem peripheral for our

main story on the chaos bound.
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Figure 1. Poincare section (R,PR) for orbits starting at the apparent horizon (removed for a

distance of 10−4 from the event horizon), at increasing temperatures T = 0.00, 0.05, 0.10, for a

planar black hole with m = 1 and charge parameter q determined by the temperature. The

coordinate and momentum are in units of AdS radius.

2.1 Fixed points and near-horizon dynamics

For a better overall understanding of chaos in string motion, let us sketch the general trends

in dynamics first. For spherical black holes, this job was largely done in [26, 29, 44] and for

similar geometries also in [27, 28]. We will emphasize mainly the properties of near-horizon

dynamics that we find important for the main story.

Typical situation can be grasped from figure 1, where the Poincare sections of orbits

starting near the horizon are shown for increasing temperatures of the horizon, as well as

figures 2 and 3 where we show typical orbits in the x− y plane for different temperatures

and initial conditions.

1. Higher temperatures generally increase chaos, with lower and lower numbers of peri-

odic orbits (continuous lines in the Poincare section in figure 1) and increasing areas

covered with chaotic (area-filling) orbits. This is also obvious from the figure 2.

2. Orbits closer to the horizon are more chaotic than those further away; this will be

quantified by the analysis of the Lyapunov exponents. This is logical, since the

equations of motion for strings in pure AdS space are integrable, and far away from

the horizon the spacetime probed by the string becomes closer and closer to pure

AdS. An example of this behavior is seen in figure 3(A).

3. The previous two trends justify the picture of the thermal horizon as the generator

of chaos. However, for an extremal or near-extremal hyperbolic horizon there is a

slight discrepancy — in this case, moving away from the horizon increases the chaos.

In other words, there is yet another mechanism of chaos generation, independent of

the temperature and not located precisely at the horizon, which is subleading and

not very prominent, except when it is (almost) the only one, i.e., when the horizon

is (near-)extremal. This is demonstrated in figure 3(B).

When we come to the consideration of the Lyapunov exponents, we will identify the horizon-

induced scrambling and the chaotic scattering as the chaos-inducing mechanisms at work

for r → rh and for intermediate r, respectively.

Consider now the radial motion from the Hamiltonian (2.9). Radial motion exhibits an

effective attractive potential E2/2f which diverges at the horizon. The Φ-dependent terms
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Figure 2. Thermal horizon as the generator of chaos. We show the orbits in the vicinity of the

spherical (A) and hyperbolic (B) horizon, at T = 0.01 (left) and T = 0.10 (right); obviously, hot

horizons generate more chaos than cold ones. The light blue dot is the initial condition of the orbit

(the position of the point on the string with Φ = 0 at τ = 0).
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Figure 3. Thermal horizon and hyperbolic scattering as generators of chaos. In (A) and (B), we

show the orbits in the vicinity of the spherical and hyperbolic horizon, respectively, at the small

temperature T = 0.01 and starting at increasing distances from the horizon. In (A), the further

from the horizon, the more regular the orbit becomes. But in the hyperbolic geometry (B), the

thermally-generated chaos is negligible; instead, the orbit becomes chaotic as it explores larger and

larger area of the hyperbolic manifold. Hence for hyperbolic horizons, an additional, non-thermal

generator of chaos exists: it is the hyperbolic scattering. Light blue dots are again the initial

positions of the string origin (Φ = 0).
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proportional to R2 and 1/R2 are repulsive and balance out the gravitational attraction to

some extent but they remain finite for all distances. For R large, the repulsion proportional

to n2 dominates so for large enough distances the string will escape to infinity. For inter-

mediate distances more complex behavior is possible: the string might escape after some

number of bounces from the black hole, or it might escape after completing some (non-

periodic, in general) orbits around the black hole. The phase space has invariant planes

given by (R,PR,Φ, PΦ) = (R0 + Eτ,E/f0, Nπ, 0), with R0 = const. and f0 ≡ f(R0) and

N an integer. It is easy to verify this solution by first plugging in Φ̇ = 0 into (2.8) to find

Φ; eq. (2.7) and the constraint (2.9) then reduce to one and the same condition Ṙ2 = E2.

We discard the solution with the minus sign (with R = R0 − Eτ) as R is bounded from

below. Pictorially, this solution means that a string with a certain orientation just moves

uniformly toward the black hole and falls in, or escapes to infinity at uniform speed, all

the while keeping the same orientation. Besides, there is a trivial fixed point at infinity,

(R,PR,Φ, PΦ) = (∞, 0, Nπ, 0), found also in [26, 29].

We are particularly interested if a string can hover at a fixed radial slice R = r0 =

const.. Let us start from the spherical case. Inserting R = r0, Ṙ = 0 into eq. (2.8) leads

to the solution in terms of the incomplete Jacobi sine integral sn (Jacobi elliptic function

of the first kind, Jacobi E-function), and two integration constants to be determined. The

other equation, (2.7), is a first-order relation for Φ acting as a constraint. Solving it gives

a Jacobi elliptic function again, with one undetermined constant, and we can match the

constants to obtain a consistent solution:

sin Φ(τ) = sn

(
E
√
|f ′0|√

2r0f0
τ,

2n2r0f
2
0

E2|f ′0|

)
. (2.10)

The value of r0 is found from the need to satisfy also the Hamiltonian constraint. The

constraint produces a Jacobi elliptic function with a different argument, and the matching

to (2.10) reads

2f(r0) + r0f
′(r0) = 0. (2.11)

This turns out to be a cubic equation independent of the black hole charge, as the terms

proportional to q cancel out. It has one real solution, which is never above the horizon.

The solution approaches the horizon as f ′(r0), approaches zero, and r = rh is obviously a

solution of (2.11) for f ′(rh) = 0. However, the r → rh limit is subtle in the coordinates we

use because some terms in equations of motion diverge, so we need to plug in f(r) = 0 from

the beginning. Eqs. (2.6), (2.8) then imply Ṙ = E, i.e., there is no solution at constant R

except for E = 0. This is simply because the energy is infinitely red-shifted at the horizon,

i.e., E scales with f (eq. (2.6)), thus indeed unless Ṫ → ∞, which is unphysical, we need

E = 0. Now solving eq. (2.7) gives the same solution as before, of the form sn(C1τ, C2),

with undetermined constants C1,2, which are chosen so as to establish continuity with the

solution (2.10). For an extremal horizon of the from f ∼ a(r − r2
h) ≡ aε2, a smooth and

finite limit is obtained by rescaling E 7→ Eε2. Now expanding the sn function in ε produces

simply a linear function at first order in ε:

Φ(τ) = Eτ/
√
ar0 +O

(
ε3
)
. (2.12)
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Therefore, a string can hover at the extremal horizon, at strict zero temperature, when

its motion (angular rotation) becomes a simple linear winding with a single frequency.

Such an orbit is expected to be linearly stable, and in the next section we show it is also

stable according to Lyapunov and thus has zero Lyapunov exponent. Finally, from (2.7)

and (2.11) the radial velocity Ṙ in the vicinity of a non-extremal horizon behaves as:

Ṙ2 ≈ E2 + 4πTrh(r − rh)2, (2.13)

meaning that Ṙ grows quadratically as the distance from the horizon increases. This will

allow us to consider near-horizon dynamics at not very high temperatures as happening at

nearly constant radius: the string only slowly runs away.

For a hyperbolic horizon the calculation is similar, changing sin 7→ sinh in the solu-

tion (2.10). The constraint (2.11) is also unchanged (save for the sign of k in the redshift

function), and the final conclusion is the same: the string can only balance at the zero

temperature horizon (but now such a horizon need not be charged, as we mentioned previ-

ously). The zero temperature limit is the same linear function (2.12). For a planar horizon

things are different. For Ṙ = 0, we get simply harmonic motion Φ = C1 cosnτ +C2 sinnτ ,

which is consistent with the constraint H = 0. But eq. (2.7) implies exponential motion

instead, D1 sinhnτ + D2 coshnτ . Obviously, there is no way to make these two forms

consistent. Accordingly, no hovering on the horizon (nor at any other fixed radial slice)

is possible for a planar black hole. But the same logic that lead to (2.13) now predicts

oscillating behavior:

R(τ) ≈ E2 + 4πTrh(r − rh)2
(
n2 cos2 nτ − sin2 nτ

)
. (2.14)

Therefore, even though there are no orbits at all which stay at exactly constant R, we

now have orbits which oscillate in the vicinity of the horizon forever. Averaging over long

times now again allows us to talk of a string that probes some definite local temperature,

determined by the average distance from the horizon.

The point of this (perhaps tedious and boring) qualitative analysis of possible orbits

is the following. No orbits at fixed distance from the horizon are possible, but at low

temperatures a string that starts near the horizon will spend a long time in the near-

horizon area. Therefore, we can study the influence of the low-temperature horizon as the

main chaos-generating mechanism by expanding the variational equations for the Lyapunov

exponents in the vicinity of the horizon, This we shall do in the next section.

3 Lyapunov exponents and the bound on chaos

In general, Lyapunov exponents are defined as the coefficients λ of the asymptotic ex-

ponential divergence of initially close orbits; in other words, of the variation δX of a

coordinate X:

λ ≡ lim
t→∞

lim
δX(0)→0

1

t
log
|δX(t)|
|δX(0)|

, (3.1)

and the variation is expected to behave as δX ∼ δX(0) exp(λt) for t large and δX(0)

small enough in practice. This definition makes sense for classical systems; in quantum
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mechanics, the linearity of the state vector evolution guarantees zero exponent but the

intuition that initially small perturbations eventually grow large in a strongly coupled

system remains when we look at appropriately defined correlation functions, like the OTOC

used in [1]. We should first make the following point clear. In a classical nonlinear system,

the presence of deterministic chaos leads to positive Lyapunov exponents even in absence

of temperature or noise. Quantum mechanically, as we explained, the linearity of evolution

means that exponential divergence is only possible in a thermal state, and this situation

leads to the temperature bound on the Lyapunov exponents. This is easy to see upon

restoring dimensionful constants, when the bound from [1] takes the form λ ≤ 2πkBT/~,

and indeed in a classical system where ~→ 0 no bound exists. In the context of our work,

which effectively reduces to the classical Hamiltonian (2.9) which has no gravitational

degrees of freedom, it is not a priori clear if one should expect any connection to the

bound on chaos: instead of a QFT correlation function or its gravity dual, we have classical

dynamics, and the Hawking temperature of the black hole is not the local temperature

probed by the string. But we will soon see that analytical and numerical estimates of λ

nevertheless have a form similar to the chaos bound of [1].

Before we proceed one final clarification is in order. One might worry that the Lya-

punov exponents are gauge-dependent, as we consider equations of motion in terms of the

worldsheet coordinate τ , and for different worldsheet coordinates the variational equations

would be manifestly different; in other words, the definition (3.1) depends on the choice of

the time coordinate (denoted schematically by t in (3.1)). Indeed, the value of λ clearly

changes with coordinate transformations, however it has been proven that the positivity

of the largest exponent (the indicator of chaos) is gauge-invariant; the proof was derived

for classical general relativity [45] and carries over directly to the worldsheet coordinate

transformations. This is all we need, because we will eventually express the τ -exponent in

terms of proper time for an inertial observer, making use of the relation Ṫ = −E/f . This

could fail if a coordinate change could translate an exponential solution into an oscillating

one (because then λ drops to zero and it does not make sense to re-express it units of

proper time); but since we know that cannot happen we are safe.

3.1 Variational equations and analytical estimates of Lyapunov exponents

3.1.1 Thermal horizon

Consider first a thermal black hole horizon at temperature T , with the redshift func-

tion behaving as f = 4πT (r − rh) + O
(

(r − rh)2
)

. Variational equations easily follow

from (2.6)–(2.7):

δR̈− E2

(R− rh)2
δR− 4πT

(
Φ̇2 − n2sink2Φ

)
δR− 8πT (R− 2rh)RΦ̇δΦ̇

+4πn2TRsink(2Φ)δΦ = 0 (3.2)

δΦ̈ + n2sink(2Φ) +
2

rh
Φ̇δṘ = 0, (3.3)

with on-shell solutions R(τ),Φ(τ). This system looks hopeless, but it is not hard to extract

the leading terms near the horizon which, as we explained, makes sense at low temperatures.
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Therefore, we start from the solutions (2.10), (2.12), (2.14), adding a small correction

(r0,Φ (τ))→ (r0 + ∆R (τ) ,Φ(τ) + ∆Φ (τ)). Then we expand in inverse powers of r0 − rh,

and express the angular combinations Φ̇2±sink2Φ making use of the constraint (2.9). When

the dust settles, the leading-order equations simplify to:

δR̈−
(

16 (πT )3 n
2

E2
(r0 − rh)− 32 (πT )3 Cn

E2φ0
(r0 − rh)2

)
δR = 0 (3.4)

δΦ̈ + n2〈cosk2(2Φ)〉δΦ = 0, (3.5)

where C = C(k,E) is a subleading (at low temperature) correction whose form differs for

spherical, planar and hyperbolic horizons. From the above we read off that angular motion

has zero Lyapunov exponent (the variational equation is oscillatory, because 〈cosk2(2Φ)〉 ≥
0) but the radial component has an exponent scaling as

λ̃(T ) ∼ 4
√

(πT )3(r0 − rh)
n

E

(
1− (r − rh)

C

φ0n

)
. (3.6)

Now we have calculated the Lyapunov exponent in worldsheet time τ . The gauge-invariant

quantity, natural also within the black hole scrambling paradigm, is the proper Lyapunov

exponent λ, so that 1/λ is the proper Lyapunov time for an asymptotic observer. To relate

λ̃ to λ, we remember first that the Poincare time t is related to the worldsheet time τ

through (2.6) as |dt| ∼ E/f × dτ . Then we obtain the proper time as tp = t
√
−g00 = t

√
f ,

where near the thermal horizon we can write f ≈ 4πT (r − rh). This gives11

λ(T ) ∼ 2πTn

(
1− ε C

φ0n

)
. (3.7)

At leading order, we get the estimate 2πTn, with the winding number n acting as correction

to the original bound.

3.1.2 Away from the horizon

At intermediate radii we can do a similar linear stability analysis starting from f ∼ r2 +

k + A/r where A is computed by series expansion (with just the AdS term r2 + k in f ,

without the leading black hole contribution A/r, we would trivially have integral motion

and zero λ; but this approximation applies at large, not at intermediate distances). In

this case the equations of motion yield R ∼ τ
√
E2 − 1, and the variational equations, after

some algebra, take the form

δR̈− 2

R
(k +R2)δΦ̇ + E

(
3kR2

R2 + k
+ 1

)
δR = 0. (3.8)

One can show again that δΦ̇ is always bounded in absolute value, thus the third term

determines the Lyapunov exponent. The exponent vanishes for k > −1/3 (because the

equations becomes oscillatory) and for k ≤ −1/3 we get

λ ∼
√
−(3k + 1)E. (3.9)

11We introduce the notation ε ≡ r − rh.
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Since the curvature only takes the values −1, 0, 1, the prediction (3.9) always holds for

hyperbolic horizons. Notice that this same term (the third term in (3.8)) appears as

subleading in the near-horizon expansion, so we can identify it with C(k,E) and write (3.7)

as λ(T ) ∼ 2πTn (1− ε|(3k + 1)E|/ (φ0n)). This holds for any k, and we see that C ≤ 0;

thus the bound is only approached from below as it should be.

In absence of negative curvature, i.e., for k > 0, we have vanishing C at leading or-

der in 1/R but subleading contributions still exist, so both the slight non-saturation of

the limit 2πTn near-horizon (for small ε) and a parametrically small non-zero Lyapunov

exponent at intermediate distances will likely appear, which we see also in the numerics.

That the motion is chaotic on a pseudosphere (negative curvature) is of course no sur-

prise; it is long known that both particles and waves have chaotic scattering dynamics on

pseudospheres [46]. We dub this contribution the scattering contribution to the Lyapunov

exponent, as opposed to the scrambling contribution. It is largely independent of temper-

ature and largely determined by the geometry of the spacetime away from the horizon.

3.1.3 Extremal horizon

For an extremal horizon we replace f by f ∼ a(r − rh)2 = aε2, and plug in this form into

the variational equations. Now the result is (for concreteness, for the spherical horizon)

δR̈−
(

a2ε4r2
hn

2

2aεrh − 2aε2

)
δR = 0 (3.10)

δΦ̈ + n2〈cosk(2Φ)〉δΦ = 0, (3.11)

leading to a vanishing exponent value:

λ̃(T ) ∼
√
arh/2nε

3/2 → 0. (3.12)

Obviously, this also means λ = 0 — there is no chaos at the extremal horizon. This is

despite the fact that the string motion in this case is still nonintegrable, which is seen

from the fact that no new symmetries or integrals of motion arise in the Hamiltonian in

this case. The horizon scrambling is proportional to temperature and does not happen at

T = 0, but the system is still nonintegrable and the chaos from other (scattering) origins

is still present. In particular, the estimate (3.8)–(3.9) remains unchanged.

The estimates (3.7), (3.9), (3.12) are the central sharp results of the paper. We can

understand the following physics from them:

1. At leading order, we reproduce (and saturate) the factor 2πT of the Maldacena-

Shenker-Stanford bound, despite considering classical dynamics only.

2. The bound is however multiplied by the winding number n of the ring string. The

spirit of the bound is thus preserved but an extra factor — the winding number —

enters the story.

3. Taking into account also the scattering chaos described by (3.9), the results are in

striking accordance with the idea of [2]: there are two contributions to chaos, one
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proportional to the black hole temperature and solely determined by the scrambling

on the horizon, with the universal factor 2πT expected from the concept of black

holes as the fastest scramblers in nature, and another determined by the (slower)

propagation of signals from the horizon toward the AdS boundary, which we call the

scattering term, as it is determined also by dynamics at large distances.

4. For a particle (n = 0), we correctly get λ = 0, as the geodesics are integrable.

5. The temperature appearing in (3.7) is always the Hawking temperature of the black

hole T .

In the next section, when we consider the AdS/CFT interpretation, we will try to shed

some more light on where the modification of the bound 2πT 7→ 2πTn comes from.

3.1.4 Lyapunov time versus event time

In the above derivations we have left one point unfinished. We have essentially assumed

that R(τ) ≈ const. = r and treated the difference ε = r − rh as a fixed small parameter.

This is only justified if the local Lyapunov time 1/λ̃ is much shorter than the time to

escape far away from rh and the horizon, or to fall into the black hole. In other words, it

is assumed that the Lyapunov time is much shorter than the “lifetime” of the string (let

us call it event time tE). Now we will show that this is indeed so. For the spherical black

hole, upon averaging over the angle Φ, we are left with a one-dimensional system

Ṙ2 +R2f(R)
E2f ′(R)

Rf2(R)
= E2, (3.13)

which predicts the event time as

tE ∼
∫ rh,∞

r0

dR√
|E − Ef ′(R)Rf2(R)|

≈ πrh√
2

1√
4πTεn

≈ πrh√
2
× λ̃−1

ε
. (3.14)

In other words, the event times are roughly by a factor 1/ε longer than Lyapunov times,

therefore our estimate for λ should be valid. In (3.14), we have considered both the

infalling orbits ending at rh, and the escaping orbits going to infinity (for the latter, we

really integrate to some r∞ > r0 and then expand over 1/r∞). An orbit will be infalling or

escaping depending on the sign of the combination under the square root, and to leading

order both cases yield a time independent of r0 (and the cutoff r∞ for the escaping case).

The hyperbolic case works exactly the same way, and in the planar case since R(τ) oscillates

the event time is even longer (as there is no uniform inward or outward motion). For

extremal horizons, there is no issue either as r = rh is now the fixed point.

3.1.5 Dimensionful constants

One might wonder what happens when dimensionful constants are restored in our results

for the Lyapunov exponents like (3.7) or (3.9): the original chaos bound really states

λ ≤ 2πkBT/~, and we have no ~ in our system so far. The resolution is simple: the role

of ~ is played by the inverse string tension 2πα′, which is obvious from the standard form
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of the string action (2.3); the classical string dynamics is obtained for α′ → 0. Therefore,

the dimensionful bound on chaos for our system reads λ = 2πkBTn/2πα
′ = kBTn/α

′.

Another way to see that α′ takes over the role of ~ in the field-theory derivation [1] is

that the weight in computing the correlation functions for a quantum field is given by the

factor exp
(
−1/~

∫
L
)
, whereas for a string the amplitudes are computed with the weight

exp
(
−1/2πα′

∫
L
)
. In the next section, we will also look for the interpretation in the

framework of dual field theory. In this context, α′ is related to the number of degrees of

freedom in the gauge dual of the string, just like the Newton’s constant GN is related to

the square of the number of colors N2 in the gauge dual of a pure gravity theory. But the

issues of gauge/string correspondence deserve more attention and we treat them in detail

in section 4.

3.2 Numerical checks

We will now inspect the results (3.7), (3.9), (3.12) numerically. Figure 4 tests the basic pre-

diction for the horizon scrambling, λ ≈ 2πTn at low temperatures: both the n-dependence

at fixed temperature (A), and the T -dependence at fixed n (B) are consistent with the

analytical prediction. All calculations were done for the initial condition Ṙ(0) = 0, and

with energy E chosen to ensure a long period of hovering near the horizon. The tempera-

tures are low enough that the scattering contribution is almost negligible. In figure 5 we

look at the scattering term in more detail. First we demonstrate that at zero temperature,

the orbits in non-hyperbolic geometries are regular (A): the scattering term vanishes at

leading order, and the scrambling vanishes at T = 0. In the (B) panel, scattering in hy-

perbolic space at intermediate radial distances gives rise to chaos which is independent of

the winding number, in accordance to (3.7). To further confirm the logic of (3.7), one can

look also at the radial dependence of the Lyapunov exponent: at zero temperature, there

is no chaos near-horizon (scrambling is proportional to T and thus equals zero; scattering

only occurs at finite r−rh), scattering yields a nonzero λ at intermediate distances and the

approach to pure AdS at still larger distances brings it to zero again; at finite temperature,

we start from λ = 2πTn near-horizon, observe a growth due to scattering and fall to zero

approaching pure AdS.

4 Toward a physical interpretation of the modified bound

4.1 Dual gauge theory interpretation

The ring string wrapped along the σ coordinate is a very intuitive geometry from the

viewpoint of bulk dynamics. However it has no obvious interpretation in terms of the

gauge/gravity duality, and the Hamiltonian (2.9) itself, while simple-looking, is rather

featureless at first glance: essentially a forced nonlinear oscillator, it does not ring a bell

on why to expect the systematic modification of the Maldacena-Shenker-Stanford bound

and what the factor n means. Thus it makes sense to do two simple exercises: first, to

estimate the energy and spin of the operators corresponding to (2.5) to understand if it has

to do with some Regge trajectory; second, to consider some other string configurations,

with a more straightforward connection to the operators in gauge theory. Of course, finite
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Figure 4. (A) Logarithm of the relative variation of the coordinate R, for a spherical AdS-Reissner-

Nordstrom black hole, for a fixed temperature T = 0.04 and increasing winding numbers n =

1, 2, 3, 4, 5, 6 (black, blue, green, red, magenta, orange). Full lines are the numerical computational

of the function log (δX (τ) /δX (0)) = λτ , so their slopes equal the Lyapunov exponents λ. Dashed

lines show the analytically predicted bound log δX = 2πTnτ + logX0. Numerically computed

variations almost saturate the bounds denoted by the dashed lines. The calculation for n = 1 is

stopped earlier because in this case the orbit falls in into the black hole earlier than for higher n.

(B) Same as (A) but for a hyperbolic AdS-Schwarzschild black hole, at fixed n = 1 and increasing

temperature T = 0.050, 0.075, 0.100, 0.125, 0.150 (black, blue, green, red, magenta), again with

analytically predicted bounds shown by the dashed lines. For the two highest temperatures (red,

magenta) the computed slopes are slightly above the bound probably because the near-horizon

approximation does not work perfectly well. The short-timescale oscillations superimposed on

the linear growth, as well as the nonlinear regime before the linear growth starts in the panel

(A) are both expected and typical features of the variation δR (Lyapunov exponents are defined

asymptotically, for infinite times).

temperature horizons are crucial for our work on chaos, and saying anything precise about

the gauge theory dual of a string in the black hole background is extremely difficult; we

will only build some qualitative intuition on what our chaotic strings do in field theory,

with no rigorous results at all.

Let us note in passing that the ring string configurations considered so far are almost

insensitive to spacetime dimension. Even if we uplift from the four-dimensional spacetime

described by (t, r, φ1, φ2) to a higher-dimensional spacetime (t, r, φ1, φ2, . . . φN−2), with the

horizon being an N − 2-dimensional sphere/plane/pseudosphere, the form of the equations

of motion does not change if we keep the same ring configuration, with Φ1 = Φ1(τ, σ),Φ2 =

nσ,Φ3 = const., . . .ΦN−2 = const. — this is a solution of the same eqs. (2.6)–(2.8) with the

same constraint (2.9). The difference lies in the redshift function f(r) which depends on

dimensionality. This, however, does not change the main story. We can redo the calculation

of the radial fixed point from the second section, to find a similar result — a string can

oscillate or run away/fall slowly in the vicinity of a horizon, and the variational equations

yield the same result for the Lyapunov exponent as before. It is really different embeddings,

i.e., different Polyakov actions, that might yield different results.

4.1.1 Operators dual to a ring string?

We largely follow the strategy of [47] in calculating the energy and the spin of the string

and relating them to the dual Yang-Mills theory. In fact, the ring string is quite close to
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Figure 5. (A) Logarithm of the radial variation δR for near-horizon orbits with n = 1, 2, 3, 4, 5, 6

(black, blue, green, red, magenta, orange) in a planar extremal Reissner-Nordstrom geometry. All

curved asymptote to a constant, i.e., (almost) zero slope, resulting in λ ≈ 0. (B) Same as previ-

ous for an extremal hyperbolic black hole. Now the Lyapunov exponent is nonzero, and equal for

all winding numbers: in absence of thermal scrambling, the chaos originates solely from scatter-

ing, which is independent of n. (C) The Lyapunov exponent in zero-temperature hyperbolic black

hole background for n = 1 and r = rh, 1.1rh, 1.2rh, 1.3rh (black, blue, green, red) starts at zero (no

scrambling, no scattering), grows to a clear nonzero value for larger radii due to scattering, and again

falls to zero for still larger distances, as the geometry approaches pure AdS (D) Lyapunov exponent

in T = 0.02 hyperbolic black hole background for n = 1 and r = rh, 1.1rh, 1.2rh, 1.3rh, 1.4rh, 1.5rh
(black, blue, green, red, magenta, orange) starts at the scrambling value (black), reaches its max-

imum when both scrambling and scattering are present (blue, green) and then falls to zero when

AdS is approached (red, magenta, orange).

what the authors of [47] call the oscillating string, except that we allow one more angle to

fluctuate independently (thus making the system nonintegrable) and, less crucially, that

in [47] only the winding number n = 1 is considered.

Starting from the action for the ring string (2.3), we write down the expressions for

energy and momentum:

E =
1

2πα′

∫
dτ

∫
dσPT =

E

α′

∫ φ2

φ1

dΦ

Φ̇
(4.1)

S =
1

2πα′

∫
dτ

∫
dσPΦ =

1

α′

∫ φ2

φ1

dΦ

Φ̇
R2(Φ)Φ̇, (4.2)

where the second worldsheet integral gives simply
∫
dσ = 2π as R,Φ do not depend on σ,

and we have expressed dτ = dΦ/Φ̇; finally, the canonical momentum is conserved, PT = E,
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and in the expression for the spin we need to invert the solution Φ(τ) into τ(Φ) in order to

obtain the function R(Φ). We are forced to approximate the integrals. Expressing Φ̇ from

the Hamiltonian constraint (2.4), we can study the energy in two regimes: small amplitude

φ0 � π which translates to E/T � 1, and large amplitude φ0 ∼ π, i.e., E/T ∼ 1. For

these two extreme cases, we get:

E ≈
4r0

√
f(r0)

α′
φ0 =

4E

α′n
, φ0 � π (4.3)

E ≈ πE

α′n
, φ0 ∼ π (4.4)

For the spin similar logic gives

S ≈ 8r0E

α′
√
f(r0)

φ0 =
8E2

α′n

1

f(r0)
≈ 8E2

α′n

1

4πTε
, φ0 � π (4.5)

S ≈ 4E2

α′n

√
2f ′(r0)r0

f3(r0)
≈ 8E2

α′n

√
2π

4πTε
, φ0 ∼ π. (4.6)

The bottom line is that in both extreme regimes (and then presumably also in the inter-

mediate parameter range) we have E ∝ E/α′n and S ∝ E2/α′nTε; as before ε = r − rh
and it should be understood as a physical IR cutoff (formally, for r → rh the spin at finite

temperature diverges; but we know from section 2 that in fact no exact fixed point at con-

stant r exists, and the average radial distance is always at some small but finite distance ε).

Therefore, we have E2 ∝ S/α′nTε.
The presence of temperature in the above calculation makes it hard to compare the

slope to the familiar Regge trajectories. But in absence of the black hole, when f(r) = 1,

we get

E = 4E/α′n, S = 8E2/α′n⇒ E2 = 2S/α′n. (4.7)

For n = 1, this is precisely the leading Regge trajectory. For higher n the slope changes, and

we get a different trajectory. Therefore, the canonical Lyapunov exponent value λ = 2πT

precisely corresponds to the leading Regge trajectory. We can tentatively conclude that

the winding string at finite temperature describes complicated thermal mixing of large-

dimension operators of different dimensions and spins, and these might well be sufficiently

nonlocal that the OTOC never factorizes and the bound from [1] does not apply.

4.1.2 Planetoid string

In this subsubsection we consider so-called planetoid string configurations, also studied

in [47] in the zero-temperature global AdS spacetime and shown to reproduce the leading

Regge trajectory in gauge theory. This is again a closed string in the same black hole

background (2.1) but now the solution is of the form12

T = eτ, R = R(σ), Φ1 = Φ1(τ), Φ2 = Φ2(σ), (4.8)

12The authors of [47] work mostly with the Nambu-Goto action but consider also the Polyakov formulation

in the conformal gauge; we will stick to the Polyakov action from the beginning for notational uniformity

with the previous section. For the same reason we keep the same coordinate system as in (2.1).
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where the auxiliary field e is picked so as to satisfy the conformal gauge, and any additional

coordinates Φ3,Φ4, . . . and Θ1,Θ2, . . . are fixed. The Lagrangian

L = − 1

2f

(
R′
)2 − e2

2
f +

R2

2

(
−Φ̇2

1 + sin2 Φ1Φ′22

)
(4.9)

has the invariant submanifold Φ1 = ωτ,Φ2 = const. when the dynamics becomes effectively

one-dimensional, the system is trivially integrable and, in absence of the black hole, it is

possible to calculate exactly the energy and spin of the dual field theory operator. This is

the integrable case studied in [47, 48], and allowing Φ2 to depend on σ seems to be the only

meaningful generalization, because it leads to another submanifold of integrable dynamics

with R = r0 = const., Φ2 = nσ and the pendulum solution for Φ1:

sin Φ1(τ) = sn

(
`τ,−n

2

`2

)
, (4.10)

where `2 = Φ̇1
2 − n2 sin2 Φ1 is the adiabatic invariant on this submanifold. With two

integrable submanifolds, a generic orbit will wander between them and exhibit chaos. The

variational equations can be analyzed in a similar fashion as in the previous section. Here,

the chaotic degree of freedom is Φ1(τ), with the variational equation

δΦ̈1 − Φ′22 cos(2Φ1) = 0, (4.11)

which in the near-horizon regime yields the Lyapunov exponent

λ = 2πTn, (4.12)

in the vicinity of the submanifold (4.10). In the vicinity of the other solution (Φ1 =

ωτ,Φ2 = const.), we get λ = 0. Chaos only occurs in the vicinity of the winding string

solution, and the winding number again jumps in front of the universal 2πT factor.

Now let us see if this kind of string reproduces a Regge trajectory. In the presence of

the black hole the calculation results in very complicated special functions, but we are only

interested in the leading scaling behavior of the function E2(S). Repeating the calculations

from (4.1)–(4.2), we first reproduce the results of [47] in the vicinity of the solution Φ1 = ωτ :

for short strings, we get E ∼ 2/ωT,S ∼ 2/ω2T 2 and thus E2 ∝ 2S, precisely the result for

the leading Regge trajectory. Now the Regge slope does not depend on the temperature

(in the short string approximation!). This case, as we found, trivially satisfies the original

chaos bound (λ = 0, hence for sure λ < 2πT ). In the vicinity of the other solution, with

R = r0, things are different. Energy has the following behavior:

E ∼ 8π

α′
T

n
, `� 1 (4.13)

E ∼ 8π2

α′
T

`
, `� 1. (4.14)

For the spin, the outcome is

S ∼ 2r2
0

α′
`

n
, `� 1 (4.15)

S ∼ 2r2
0

α′
, `� 1, (4.16)
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so in this case there is no Regge trajectory at all, i.e., no simple relation for E2(S) because

the scale r0 and the quantity ` show up in the E2(S) dependence even at zero temperature.

In conclusion, the strings that can violate the chaos bound have a strange Regge

behavior in the gauge/string duality, in this case in a more extreme way than for the ring

strings (even for n = 1 no Regge trajectory is observed). The strings which have λ = 0

and thus trivially satisfy the bound on the other hand obey the leading Regge trajectory.

4.2 The limits of quasiclassicality

One more thing needs to be taken into account when considering the modification of the

chaos bound. Following [8], one can suspect that the violating cases are not self-consistent

in the sense that they belong to the deep quantum regime when semiclassical equations

(in our case for the string) cease to be valid and quantum effects kill the chaos. For a ring

string this seems not to be the case. To check the consistency of the semiclassical limit,

consider the energy-time uncertainty relation ∆E∆t ≥ 1. The energy uncertainty is of the

order of E/α′n as we found in (4.3)–(4.4), and the time uncertainty is precisely of the order

of the Lyapunov time 1/2πTn; the uncertainty relation then gives E ≥ 2πTn2α′. On the

other hand, we require that the spin S should be large in the classical regime: S � 1. This

implies E2 � 4πTεnα′ or, combining with the uncertainty relation, Tn3α′ � ε. Roughly

speaking, we need to satisfy simultaneously Tn2 ≤ 1/α′ and Tn3 � ε/α′, which is perfectly

possible: first, we need to have small enough α′ (compared to Tn2), as could be expected for

the validity of the semiclassical regime; second, we need to have sufficiently large n/ε� 1,

which can be true even for n = 1 for small ε, and for sure is satisfied for sufficiently large n

even for ε ∼ 1. In conclusion, there is a large window when the dynamics is well-described

by the classical equations (and this window even grows when n � 1 and the violation of

the chaos bound grows).

4.3 Ring string scattering amplitude and the relation to OTOC

So far our efforts to establish a field theory interpretation of a ring string in black hole

background have not been very conclusive, which is not a surprise knowing how hard it is in

general to establish a gauge/string correspondence in finite-temperature backgrounds and

for complicated string geometries. Now we will try a more roundabout route and follow

the logic of [4–6], constructing a gravity dual of the OTOC correlation function, which

has a direct interpretation in field theory; it defines the correlation decay rate and the

scrambling time of some boundary operator. In [17] this formalism was already applied to

study the OTOC of field theory operators (heavy quarks) dual to an open string in BTZ

black hole background, hanging from infinity to infinity through the horizon in eikonal

approximation. That case has a clear interpretation: the endpoints of the string describe

the Brownian motion of a heavy quark in a heath bath. As we already admitted, we do not

have such a clear view of what our case means in field theory, but we can still construct the

out-of-time ordered correlator corresponding to whatever complicated boundary operator

our string describes.

We will be delibarately sketchy in describing the basic framework of the calculation

as it is already given in great detail in [4–6]. The idea is to look at the correlation func-

– 20 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
0

tion 〈〈V̂x1(t1)Ŵx2(t2)V̂x3(t3)Ŵx4(t4)〉〉 of some operators V,W at finite temperature (hence

the expectation value 〈〈(. . .)〉〉 includes both quantum-mechanical and thermal ensemble

averaging). The time moments need not be ordered; we are often interested in the case

<t1 = <t3 ≡ 0,<t2 = <t4 = t.13 This correlation function corresponds to the scattering

amplitude between the in and out states of a perturbation sourced from the boundary. The

propagation of the perturbation is described by the bulk-to-boundary propagators K. The

perturbation has the highest energy at the horizon since the propagation in Schwarzschild

time becomes a boost in Kruskal coordinates, and the pertubation, however small at the

boundary, is boosted to high energy in the vicinity of the horizon. In the Kruskal coordi-

nates defined the usual way:

U = −e
t−r∗
2rh , V = e

t+r∗
2rh , r∗ =

∫ ∞
r

dr

f(r)
, (4.17)

the scattering amplitude becomes

D =

4∏
i=1

∫
d2pi

∫
d2xiK

∗(p3;x3)K∗(p4;x4)K(p1;x1)K(p2;x2)out〈pU3 , pV4 ;x3, x4|pU1 , pV2 ;x1, x2〉in.

(4.18)

The propagators are expressed in terms of the Kruskal momenta pi = (pUi , p
V
i ) and the

coordinates xi = (x1
i , x

2
i ) in the transverse directions. The in-state is defined by (pU3 , x

3)

at U = 0, and by (pV4 , x
4) at V = 0, and analogously for the out-state. The form of the

propagators is only known in the closed form for a BTZ black hole (in 2+1 dimensions), but

we are happy enough with the asymptotic form near the horizon. For simplicity, consider a

scalar probe of zero bulk mass, i.e., the conformal dimension ∆ = D, and at zero black hole

charge, i.e., for a Schwarzschild black hole. The propagator then behaves as (ω̃ ≡ ω/4πT ):

K(pU , pV ) ∼ π

sinh
(
π
T

) 1− e−πω̃

Γ (−ıω̃) Γ (ıω̃)

e−ıω̃t

(pU )1+ıω̃ + (pV )1−ıω̃ e
ı(pUV+pV U). (4.19)

The task is thus to calculate the amplitude (4.18) with the propagators (4.19). In the

eikonal approximation used in most of the literature so far, the problem boils down to

evaluating the classical action at the solution. However, it is not trivial to justify the

eikonal approximation for a ring string. Let us first suppose that the eikonal aproximation

works and then we will see how things change if it doesn’t.

4.3.1 Eikonal approximation

If the energy in the local frame near the horizon is high enough, then we have approximately

pU1 ≈ pU3 ≡ p, pV2 ≈ pV4 ≡ q so that pV1 ≈ pU2 ≈ pV3 ≈ pU4 ≈ 0, and for a short enough

scattering event (again satisfied if the energy and thus the velocity is high enough) the

coordinates are also roughly conserved, therefore the amplitude 〈out|in〉 is diagonal and

can be written as a phase shift exp(ıδ). The point of the eikonal approximation is that the

13In the Schwinger-Keldysh finite-temperature formalism the time is complex, with the imaginary time

axis compactified to the radius of the inverse temperature.
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shift δ equals the classical action. The action of the ring configuration is

S =
1

2πα′

∫
dτ

∫
dσ

(
R2

2

(
Φ̇2

1 − n2 sin2 Φ1

)
+
Ṙ2

2f
+
f

2
Ṫ 2

)
. (4.20)

We will consider again the string falling slowly in the vicinity of the horizon (see eqs. (2.10)–

(2.14)) and put Ṙ → 0, R(τ) ≈ r0, r0 − rh � rh. Now we need to pass to the Kruskal

coordinates and then introduce the new variables T = (V +U)/2, X = (V −U)/2. In these

coordinates the near-horizon geometry in the first approximation is Minkowskian and we

can easily expand around it as required for the eikonal approximation. The action and the

energy (to quartic order in the fluctuations) are now

S =
1

2πα′

∫
dτ

∫
dσ

[
1

2

(
−Ṫ2 + Ẋ2 + r2

0Φ̇2 + r2
0n

2 sin Φ2
)(

1 +
T2 −X2

2

)]
(4.21)

E =
1

2πα′

∫
dτ

∫
dσ

Ṫ
(1− T2 +X2)2

. (4.22)

As a sanity check, for n = 0 the fluctuations of the (T, X) variables in the action (4.21) are

the same as in [17], although we use a different worldsheet parametrization. The dynamics

of the angle Φ crucially depends on the winding number. One consequence is that the

on-shell action is nontrivial already at quadratic order. For the solution (2.10) — the

slowly-moving near-horizon string — we can assume Ṫ, Ẋ � Φ̇, so the equations of motion

yield as approximate on-shell solutions

T = T0e
ınr0τ/

√
2, X = X0e

−ınr0τ/
√

2, (4.23)

so that, as the perturbation dies out, the string approaches the locus T0 = 0⇒ U = −V ⇒
t→∞. Inserting (4.23) into (4.21), we obtain, after regularizing the action:

S(0) =
nr0

2α′
T2

0 + . . . (4.24)

E(0) =

√
2

α′
T0 + . . . . (4.25)

Therefore, S(0) =
(
E(0)

)2 × nrhα′/4 (where we have plugged in r0 ≈ rh): the action is

proportional to the square of energy, which equals E2 = pq in the center-of-mass frame.

This is perfectly in line with the fast scrambling hypothesis. Plugging in δ = S(0) into the

amplitude in (4.18) and rescaling

T13 ≡ e2πTt1 − e2πTt∗3 , T24 ≡ e−2πTt∗4 − e−2πTt2 (4.26)

pU =
p

ı

1

T13
, pV =

q

ı

1

T24
(4.27)

we obtain:

D = N4
ω

(
e2πTt1 − e2πTt∗3

)2 (
e−2πTt∗4 − e−2πTt2

)2
∫
dp

p2

∫
dq

q2
e
−p−q−ı pq

T13T24

α′nrh
4 , (4.28)
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with Nω containing the first two factors in (4.19) which only depend on ω and T . Introduc-

ing the change of variables p = Q sin γ, q = Q cos γ, we can reduce (4.28) to an exponential

integral. With the usual contour choice for OTOC =ti = −εi,<t1 = <t3 = 0,<t2 = <t4 = t,

we end up at leading order with

D ∼ 1 + 2ıα′nrhe
2πTt ⇒ λOTOC ∼ 2πT, t∗ ∼

1

2πT
log

1/α′

nrh
. (4.29)

Therefore, the Lyapunov time as defined by the OTOC in field theory precisely saturates

the predicted bound 2πT , and in the eikonal approximation is not influenced by the winding

number n. On the other hand, the scrambling time t∗ is multipled by a factor of log(1/α′n)

(the horizon radius can be rescaled to an arbitrary value by rescaling the AdS radius, thus

we can ignore the factor of rh). The factor 1/α′ appears also in [17] and plays the role of

a large parameter, analogous to the large N2 factor in large-N field theories: the entropy

of the string (the number of degrees of freedom to be scrambled) certainly grows with

1/α′. For a ring string, this factor is however divided by n, as the number of excitations

is reduced by the implementation of the periodic winding boundary condition. Therefore,

the winding of the ring string indeed speeds up the chaotic diffusion, by speeding up the

scrambling. However, the faster scrambling is not seen in the timescale of local divergence

which, unlike the classical Lyapunov exponent, remains equal to 2πT ; it is only seen in the

timescale on which the perturbation permeates the whole system.

In conclusion, the violation of the Maldacena-Shenker-Stanford limit for the bulk Lya-

punov exponent in AdS space in the eikonal approximation likely corresponds to a decrease

of scrambling time in dual field theory, originating from reduction in the number of degrees

of freedom.

4.3.2 Beyond the eikonal approximation: waves on the string

What is the reason to worry? Even if the scattering is still elastic and happens at high

energies and momenta (therefore the overlap of the initial and final state is diagonal in the

momenta), it might not be diagonal in the coordinates if the string ocillations are excited

during the scattering. These excitations might be relevant for the outcome.14 However, the

quantum mechanics of the string in a non-stationary background is no easy matter and we

plan to address it in a separate work. In short, one should write the amplitude (4.18) in the

worldsheet theory and then evaluate it in a controlled diagrammatic expansion. For the

black hole scrambling scenario, the leading-order stringy corrections are considered in [6];

the Regge (flat-space) limit is the pure gravity black hole scrambling with the Lyapunov

exponent 2πT and scrambling time determined by the large N . We need to do the same

for the string action (4.21) but, as we said, we can only give a rough sketch now.

14With an open string hanging from the boundary to the horizon as in [17] this is not the case, since

it stretches along the radial direction and the scattering event — which is mostly limited to near-horizon

dynamics because this is where the energy is boosted to the highest values — remains confined to a small

segment of the string, whereas any oscillations propagate from end to end. However, a ring string near the

horizon is wholly in the near-horizon region all the time, and the string excitations may happilly propagate

along it when the perturbation reaches the area UV ≈ 0.
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The amplitude (4.18) is given by the worldsheet expectation value

A =
∏
i

∫
d2zi〈V̂ (z1, z̄1)Ŵ (z2, z̄2)V̂ (z3, z̄3)Ŵ (z4, z̄4)〉 (4.30)

with the action (4.20), or (4.21) in the target-space coordinates (T, X) accommodated

to the shock-wave perturbation. Here, we have introduced the usual complex worldsheet

coordinates z = τ + ıσ, z̄ = τ − ıσ. We thus need to compute a closed string scattering

amplitude for the tachyon of the Virasoro-Shapiro type, but with nontrivial target-space

metric and consequently with the vertex operators more complicated than the usual plane-

wave form. This requires some drastic approximations. We must first expand the non-

Gaussian functional integral over the fields T(z, z̄), X(z, z̄), Φ(z, z̄) perturbatively, and

then we can follow [6] and [49] and use the operator-product expansion (OPE) to simplify

the vertex operators and decouple the functional integral over the target-space coordinates

from the worldsheet integration. First we can use the worldsheet reparametrization to fix

as usual z1 = ∞, z2 = z, z3 = 1, z4 = 0. The most relevant regime is that of the highly

boosted pertrubation near the horizon, with |z| ∼ 1/s. At leading order in the expansion

over T, X, the action (4.21) decouples the Gaussian functional integral over the (T, X)

coordinates from the pendulum dynamics of the Φ coordinate. We can just as easily use

the (U, V ) dynamics, with 1/2(Ṫ2− Ẋ2) 7→ −2U̇ V̇ ; this is just a linear transformation and

the functional integral remains Gaussian. The states in U and V coordinates are just the

plane waves with p1 = p3 = p, p2 = p4 = q, but the Φ states are given by some nontrivial

wavefunctions ψ(Φ). Alltogether we get

A=

∫
d2z

∫
DUDVDΦexp

[
− 1

2πα′

∫
d2z′

(
−2U̇ V̇ +r2

h

(
Φ̇2+n2 sin2 Φ

))]
V̂1Ŵ2V̂3Ŵ4

V̂1,3 = g(U1,3)e∓ıpU1ψ∓(Φ1,3), Ŵ2,4 = g(V2,4)e∓ıqV2,4ψ∓(Φ2,4), (4.31)

where we denote by the index i = 1, 2, 3, 4 the coordinates depending on zi and the coordi-

nates in the worldsheet action in the first line depend on z′ which is not explicitly written

out to save space. The higher-order metric corrections in U and V give rise to the weak non-

plane-wave dependence of the vertices on U and V , encapsulated in the functions g above.

We will disregard them completely, in line with considering the decoupled approximation

of the metric as written explicitly in the action in (4.31). The functional integral over U, V

is easily performed but the Φ-integral is formidable. However, for small |z|, we can expand

the ground state solution (2.10) in z, z̄, which corresponds to the linearized oscillatory be-

havior and the functional integral becomes Gaussian: Φ̇2 + n2 sin2 Φ 7→ Φ̇2 + n2Φ2. With

the effective potential for the tachyon Veff(Φ) = n2Φ2, the worldsheet propagator takes

the form

GΦ(z, z̄, z′, z̄′) = K0(n|z − z′|) ∼ log
n|z − z′|2

2
. (4.32)

For the plane wave states we take the ansatz ψ(Φ) = eı`Φ, where ` = l−ıν, with l ∈ Z being

the angular momentum and 0 < ν � 1 the correction from the interactions (fortunately

we will not need the value of ν). The worldhseet propagator for the flat (U, V ) coordinates
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has the standard logarithmic form. Now we use the fact that 1/|z| ∼ s = pq to expand the

vertices for Ŵ2 and Ŵ4 in OPE. The OPE reads

: Ŵ2Ŵ4 :∼ exp
(
ıqz∂V2 + ıqz̄∂̄V2

)
exp

(
ı`z∂Φ2 + ı`z̄∂̄Φ2

)
|z|
−2− 2πα′

r2
h

(`2−n2/2)
, (4.33)

which follow from the action of the Laplace operator on the state eı`Φ. This finally gives

A= const.×
∫
d2z : Ŵ2Ŵ4 : exp

(
−πα

′

2
pq log |1−z|2

)
exp

[
πα′

r2
h

`2
(
GΦ (z)+GΦ (1−z)

)]
.

(4.34)

The above integral results in a complicated ratio of the 1F1 hypergeometric functions and

gamma functions. We still have three possible poles, as in the Virasoro-Shapiro amplitude.

In the stringy regime at large pq, the dominant contribution must come from ` ∼ l = 0,

for the other pole brings us back to the purely gravitational scattering, with S ∝ pq,

whereby the local scrambling rate remains insensitive to n, as we have shown in the eikonal

approximation. The stringy pole yields the momentum-integrated amplitude

D ∼
∫
dp

p2

∫
dq

q2
exp

[
−p− q −

(
pqe−2πTt

)1+πα′

r2
h

n2
]
∼ 1 + const.× e2πT(1+πα′n2)

λOTOC ∼ 2πT
(
1 + πα′n2

)
, (4.35)

showing that the Lyapunov scale 2πT is modified (we again take rh = 1 for simplicity).

We conclude that in the strong stringy regime the Lyapunov exponent in dual field theory

behaves as 2π(1 + πα′n2)T , differing from the expected chaos bound for nonzero winding

numbers n. Thus, if the classical gravity eikonal approximation does not hold, the mod-

ification of the bulk Lyapunov exponent also has an effect on the OTOC decay rate in

field theory.

Once again, the above reasoning has several potential loopholes: (1) we completely

disregard the higher-order terms in the metric, which couple that radial and transverse

dynamics (2) we assume only small oscillations in Φ (3) we disregard the corrections to

vertex operators (4) we disregard the corrections to the OPE coefficients. These issues

remain for future work.

5 Discussion and conclusions

Our study has brought us to a sharp formal result with somewhat mystifying physical

meaning. We have studied classical chaos in the motion of closed strings in black hole

backgrounds, and we have arrived, analytically and numerically, at the estimate λ = 2πTn

for the Lyapunov exponent, with n being the winding number of the string. This is a

correction by the factor of n of the celebrated chaos bound λ ≤ 2πT . However, one

should think twice before connecting these things. From the bulk perspective, what we

have is different from classical gravity — it includes string degrees of freedom, and no

gravity degrees of freedom. Therefore, the fast scrambler hypothesis that the black holes

in Einstein gravity exactly saturate the bound is not expected to be relevant for our system
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anyway, but the question remains why the bound is modified upwards instead of simply

being unsaturated (in other words, we would simply expect to get λ < 2πT ). The twist

is that the Lyapunov exponent in the bulk is related to but in general distinct from the

Lyapunov exponent in field theory, usually defined in terms of OTOC. Apparently, one just

should not uncritically apply the chaos bound proven for the correlation function decay

rates in flat-space quantum fields to worldsheet classical string dynamics.

Therefore, it might be that the field theory Lyapunov time does not violate the bound

at all. The timescale of OTOC decay for a field theory dual to the fluctuating string is

calculated in [17]: OTOC equals the expectation value of the scattering operator for bulk

strings with appropriate boundary conditions. The field-theory Lyapunov time is then

determined by the phase shift of the collision. In particular, [17] finds the saturated bound

λ = 2πT as following from the fact that the phase shift is proportional to the square of

the center-of-mass energy. On the other hand, [6] predicts that the Lyapunov exponent is

lower than the bound when stringy effects are considered. We have done first a completely

classical calculation of OTOC and have found, expectedly perhaps, that the 2πT bound

is exactly obeyed. Then we have followed the approximate scheme of [49] to include the

one-loop closed string tachyon amplitude as the simplest (and hopefully representative

enough?!) stringy process. For a ring string background, this gives an increased value for

the field-theory Lyapunov rate, yielding some credit to the interpretation that complicated

string configurations encode for strongly nonlocal operators, which might indeed violate

the bound. But as we have explained, the approximations we took are rather drastic. We

regard a more systematic study of loop effects in string chaos as one of the primary tasks

for future work.

To gain some more feeling on the dual field theory, we have looked also at the Regge

trajectories. In one configuration, the strings that violate the bound n times are precisely

those whose Regge trajectory has the slope n times smaller than the leading one (and thus

for n = 1 the original bound is obeyed and at the same time we are back to the leading Regge

trajectory). In another configuration, the strings that violate the bound describe no Regge

trajectory at all. However, it is very hard to say anything precise about the gauge theory

operators at finite temperature. Deciphering which operators correspond to our strings

is an important but very ambitious task; we can only dream of moving toward this goal

in very small steps. What we found so far makes it probable that complicated, strongly

non-local operators correspond to the bound-violating strings, so that (as explained in

the original paper [1]) their OTOC cannot be factorized and the bound is not expected

to hold.15

15In relation to the gauge/string duality it is useful to look also at the gauge theories with Nf flavors

added, which corresponds to the geometry deformed by Nf additional D-branes in the bulk. In [50] it was

found that the system becomes nonintegrable in the presence of the flavor branes (expectedly, as it becomes

non-separable), but the Lyapunov exponent does not grow infinitely with the number of flavors, saturating

instead when the number of colors Nc and the number of flavors become comparable. This is expected, as

the D3-D7 brane background of [50] formally becomes separable again when Nf/Nc →∞ (although in fact

this regime cannot be captured, the calculation of the background ceases to be valid in this case). In our

case the winding number n is a property of the string solution, not geometry, and the Hamiltonian (2.9)

seems to have no useful limit for n→∞, thus we do not expect the estimate 2πTn will saturate.
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Preparing the final version of the paper, we have learned also of the work [52] where

the n-point OTOCs are studied following closely the logic of [1] and the outcome is a factor

of n enlargement, formally the same as our result. This is very interesting but, in the light

of the previous paragraph, we have no proof that this result is directly related to ours. It

certainly makes sense to investigate if the winding strings are obtained as some limit of

the gravity dual for the n-point correlations functions. We know that n-point functions

in AdS/CFT are a complicated business. The Witten diagrams include bulk propagators

carrying higher spin fields that might in turn be obtained as string excitations. Just how

far can one go in making all this precise we do not know for now.

In relation to [15, 16] one more clarifying remark should be given. In these works,

particles in the vicinity of the horizon are found to exhibit chaos (either saturating the

bound or violating it, depending on the spin of the background field). At first glance, this

might look inconsistent with our finding that for n = 0, when the string degenerates to

a particle, no chaos occurs; after all, we know that geodesic motion in the background of

spherically symmetric black holes is integrable, having a full set of the integrals of motion.

But in fact there is no problem, because in [15, 16] an additional external potential (scalar,

vector, or higher-spin) is introduced that keeps the particle at the horizon, balancing out

the gravitational attraction. Such a system is of course not integrable anymore, so the

appearance of chaos is expected. The modification of the bound in the presence of higher-

spin fields might have to do with the findings [51] that theories with higher-spin fields can

only have gravity duals in very restricted situations (in particular, higher spin CFTs with

a sparse spectrum and large central charge or, roughly speaking, massive higher spin fields,

are problematic).

Another task on the to-do list, entirely doable although probably demanding in terms

of calculations, is the (necessarily approximate) calculation of the black hole scattering

matrix, i.e., the backreactrion of the black hole upon scattering or absorbing a string,

along the lines of [7]. In this paper we have worked in the probe limit (no backreaction),

whereas the true scrambling is really the relaxation time of the black hole (the time it

needs to become hairless again), which cannot be read off solely from the Lyapunov time;

this is the issue we also mentioned in the Introduction, that local measures of chaos like the

Lyapunov exponent do not tell the whole story of scrambling. Maybe even a leading-order

(tree-level) backreaction calculation can shed some light on this question.
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Figure 6. Check of the Hamiltonian constraint H = 0 during an integration for the spherical,

planar and hyperbolic black hole (black, blue, red respectively), at temperature T = 0.01 (left)

and T = 0.10 (right). The accuracy of the constraint is a good indicator of the overall integration

accuracy, it is never above 10−6 and has no trend of growth but oscillates.

A Summary of the numerics

We feel it necessary to give a short account of the numerical methods used. The string

equations of motion (2.6)–(2.8) present us with a system of two ordinary second-order

differential equations with a constraint. This numerical calculation is not very difficult, and

it would be trivial if it were not for two complicating factors. First, the constraint itself

is the main complication; it is non-holonomic and cannot be easily eliminated. Second,

the system is rather stiff, with Ṙ in particular varying for several orders of magnitude.

We did the integration in the Mathematica package, using mostly the NDSolve routine,

and controlling both the relative and the absolute error during the calculations. The

constraint problem is solved serendipitously by ensuring that the initial conditions satisfy

the constraint and then adjusting the required absolute and relative error tolerance so that

the constraint remains satisfied. A priori, this is a rather unlikely way to succeed but we

find it works in most cases. Only in a few integrations we needed to write a routine which

shoots for the condition H = 0 at every timestep, using the NDSolve routine in the solver;

the shooting itself we wrote using the tangent method which is handier for this problem

than the built-in routines. The usual analytic way, making use of the Lagrange multipliers,

seems completely unsuitable for numerical implementation in this problem. In figure 6 we

show the evolution of the constraint for a few examples, demonstrating the stability of the

integration. We have also checked that the functions R(τ),Φ(τ) converge toward definite

values as the precision and accuracy (relative and absolute error per step) are varied.
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We study vortex patterns in a prototype nonlinear optical system: counterpropagating laser beams in a
photorefractive crystal, with or without the background photonic lattice. The vortices are effectively planar and
have two “flavors” because there are two opposite directions of beam propagation. In a certain parameter range,
the vortices form stable equilibrium configurations which we study using the methods of statistical field theory and
generalize the Berezinsky-Kosterlitz-Thouless transition of the XY model to the “two-flavor” case. In addition to
the familiar conductor and insulator phases, we also have the perfect conductor (vortex proliferation in both beams
or “flavors”) and the frustrated insulator (energy costs of vortex proliferation and vortex annihilation balance each
other). In the presence of disorder in the background lattice, a phase appears which shows long-range correlations
and absence of long-range order, thus being analogous to glasses. An important benefit of this approach is that
qualitative behavior of patterns can be known without intensive numerical work over large areas of the parameter
space. The observed phases are analogous to those in magnetic systems, and make (classical) photorefractive
optics a fruitful testing ground for (quantum) condensed matter systems. As an example, we map our system to
a doped O(3) antiferromagnet with Z2 defects, which has the same structure of the phase diagram.

DOI: 10.1103/PhysRevA.96.053824

I. INTRODUCTION

Nonlinear and pattern-forming systems [1–3] have numer-
ous analogies with strongly correlated systems encountered
in condensed matter physics [4,5], and on the methodological
level they are both united through the language of field theory,
which has become the standard language to describe strongly
correlated electrons [6,7] as well as nonlinear dynamical
systems [8]. In the field of pattern formation, some connections
to condensed matter systems have been observed; see, e.g.,
Ref. [4]. More recently, extensive field-theoretical studies of
laser systems were performed, e.g., Refs. [9–12], and also
compared to experiment [13]. However, this topic is far from
exhausted and we feel many analogies between quantum
many-body systems and pattern-formation dynamics remain
unexplored and unexploited. In particular, nonlinear optical
systems and photonic lattices are flexible and relatively cheap
to build [3] and they can be used to “simulate” a broad spectrum
of phenomena concerning band structure, spin ordering, and
conduction in strongly correlated electron systems; some of
the work in this direction can be found in Refs. [14,15].

Our goal is to broaden the connections between the strongly
correlated systems and nonlinear optics and to put to work
the mighty apparatus of field theory to study the patterns in a
nonlinear optical system from the viewpoint of phase transition
theory: Pattern dynamics in certain cases shows critical
behavior which is analogous to phenomena seen in magnetic
systems. To that end, we use the formalism of perturbative field
theory and renormalization group analysis but we also perform
numerical simulations from the first principles, i.e., directly
integrating the equations of motion to provide an independent

*mcubrovic@gmail.com

check of our main conclusions. We also establish a connection
to an O(3) antiferromagnetic model which is encountered in
the study of strongly correlated electron systems. The analogy
is not just qualitative: We construct the phase diagrams of both
systems and find they have the same structure. Introducing
disorder into the system further enriches the physics, and it
is physically motivated: In optics, disorder is rooted in the
imperfections of the photonic lattice, and in magnetic systems
it comes from the quenched spin impurities which are regularly
found in realistic samples. It turns out that in both cases a glassy
phase arises. This is another important research topic and it is
again appealing to realize glasses in photonic lattice systems,
where the parameters are easy to tune.

A. On topology and vortices

The key phenomenon which governs the phenomenology of
the systems studied is the existence of topologically nontrivial
solutions or topological solitons [16]: These are the solutions
which map the physical boundary of the system to the whole
configuration space of the field, so one explores all field
configurations by “going around the system.” For example,
in a two-dimensional system (in the x-y plane) with U(1)
phase symmetry, the configuration space is a circle (the phase
lies between 0 and 2π ) and the boundary of the physical
space (i.e., the two-dimensional plane) is again a circle, the
“boundary” of the plane at infinity. The topological soliton is a
pattern of the U (1) field which spans the whole phase circle (its
phase goes from 0 to 2π ), as one moves around the far-away
circle in the x-y plane. Of course, this is the vortex—the most
famous and best studied topological configuration. Similar
logic leads to the classification of topological defects of other,
more complicated symmetry groups. A potential source of
confusion is that in nonlinear dynamics and theory of partial
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differential equations, the “integrable” solutions, i.e., linearly
(often also nonlinearly) stable solutions which can be obtained
by inverse scattering or similar methods and which propagate
through each other without interacting, are also called solitons,
or more precisely dynamical solitons. In optics, they are often
called spatial solitons. Dynamical solitons in nonlinear optics
are a celebrated and well-studied topic [17–22]; they show an
amazing variety of patterns and phenomena like localization,
Floquet states [14], etc. But in general they do not have a
topological charge. In contrast, topological solitons carry a
topological charge (winding number for vortices) and their
stability is rooted in topological protection (conservation of
topological charge).

The phenomenon of vortices is perhaps best known in
three spatial dimensions. The phase of the wave function can
wind, forming a vortex line. These vortices are stable when
the phase symmetry is broken by magnetic field. Famously,
vortices may coexist with the superconducting order (U (1)
symmetry breaking) in type-II superconductors or exist only
in the normal phase, upon destroying the superconductivity
(type I). The primary example in two spatial dimensions is the
vortex unbinding phase transition of infinite order found by
Berezinsky et al. for the planar XY model [23]. The formal
difference between the two- and three-dimensional vortices is
that the latter gives rise to an emergent gauge field; this does not
happen in the XY -like system in two dimensions [24]. While
the nonlinear optical system we study is three-dimensional, its
geometry and relaxational dynamics make it natural to treat it
as a (2 + 1)-dimensional system (the x and y coordinates are
spatial dimensions, the z direction has the formal role of time,
and physical time t has the role of a parameter). We therefore
have a similar situation to the XY model: pointlike vortices in
the plane (and no gauge field).

Vortex matter is known to emerge in liquid helium [25],
Bose-Einstein condensates [26], and magnetic systems [27].
The basic mechanisms of vortex dynamics are thus well
known. However, unusual physics can arise if the system has
multiple components and each of them can form vortices which
mutually interact. This is precisely our situation: We have a
system of two laser beams propagating in opposite directions,
and we will compare it to a two-component antiferromagnet.
So far, such situations have been explored in multicomponent
superconductors [28] which have attracted some attention,
as they can be realized in magnesium diboride [29]. But
these are again bulk systems, not planar. Vortices in planar
multicomponent systems have not been very popular, an
important exception being the two-component Bose-Einstein
condensates of Ref. [30], which were found to exhibit complex
vortex dynamics; in these systems, contrary to our case, the
two components have an explicit attractive interaction, unlike
our case where they interact indirectly, by coupling to the total
light intensity (of both components).

B. The object of our study

In this paper, we study phases and critical behavior of topo-
logical configurations (vortices and vortex lattices) in a specific
and experimentally realizable nonlinear optical system: laser
beams counterpropagating (CP) through a photorefractive
(PR) crystal. This means we have an elongated PR crystal

(with one longitudinal and two transverse dimensions) and
two laser beams shone onto each end. We thus effectively
have two fields, one forward propagating and one backward
propagating. The optical response of the crystal depends
nonlinearly on the total intensity of both beams, which means
the beams effectively interact with each other. This system
has been thoroughly investigated for phenomena such as
dynamical solitons [17,31,32], vortex stability on the photonic
lattice [18–20,33–36], and global rotation [37]. We will see
that the CP beams are an analog of the two-component planar
antiferromagnet, which can further be related to some realistic
strongly correlated materials [38–40]. The two beams are now
equivalent to two sublattices which interact through a lattice
deformation or external field. The PR crystal is elongated and
the axial propagation direction has the formal role of time,
which has a finite span, the length of the crystal. For the
antiferromagnet, the third axis is the usual imaginary time
compactified to the radius 1/T , i.e., inverse temperature. Both
systems contain vortices as topological defects, i.e., solutions
with integer topological charge. In the PR optical system,
vortices arise as a consequence of the U(1) symmetry of the
electromagnetic field. In the antiferromagnets we consider, the
O(3) symmetry of the antiferromagnet gives rise toZ2-charged
defects, which exhibit the same interactions as the vortices.
The optical system is not subject to noise (i.e., it lives at
zero temperature), and thus the criticality we talk about is
obviously not the same as thermodynamic phase transitions.
Phase transitions happen upon varying the parameters, not
temperature, so they may be described as quantum critical
phenomena in the broad sense taken in Ref. [38]—any
critical behavior controlled not by thermal fluctuations but
by parameter dependence.

In the PR counterpropagating beam system, our focus
are the vortices but in order to study them we need to
do some preparational work. We first recast the system
in Lagrangian and then in Hamiltonian form so it can be
studied as a field theory, which depends parametrically on
the time t . Then we consider the time dynamics of the
system and show that in a broad parameter range the patterns
relax to a static configuration which can be studied within
equilibrium field theory. Along the way, we also study the
stability of topologically trivial (vortex-free) configurations
and then consider the phases of the static vortex configurations.
The analytical insight we obtain also allows us to avoid
overextensive numerics—analytical construction of the phase
diagram tells us which patterns can in principle be expected in
different corners of the parameter space. By “blind” numerical
approach, this result could only be found through many runs
of the numerics.

In the antiferromagnetic spin system, the nontopological
excitations are simple: They are spin waves, perturbed away
from the noninteracting solution by the quartic terms in the
potential. There are no dynamical solitons. But we will see
that topological excitations lead to a phase diagram which,
after reasonable approximations, can be exactly mapped to
the phase diagram of the photorefractive crystal. The reason
is that both can be reduced to an effective Hamiltonian
for a two-component vortex system; i.e., every vortex has
two charges or two “flavors.” In the photorefractive crystal
it happens naturally, as there are two beams, forward and
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backward propagating. In the Heisenberg antiferromagnet it
is less obvious and is a crucial consequence of the collinearity
of the spin pattern. We will focus on common properties of the
two systems and map the phase diagrams onto each other. In
the antiferromagnetic system, different phases are separated
by quantum phase transitions—phase transitions driven by the
quantum fluctuations instead of temperature.

On disorder

It is known that impurities pin the vortices and stabilize
them. This leads to frozen dynamics even though no symmetry
is broken, the phenomenon usually associated with glasses. In
simple systems such as the Ising model with disorder, one
generically has two phases: The disordered (paramagnetic)
phase remains and the ordered (magnetic) phase is replaced
by a regime with algebraic correlations and no true order. In
many cases, such phases are called glasses. The exact definition
of a glass is lacking; normally, they show (i) long-range
correlations, (ii) absence of long-range order, i.e., of a nonzero
macroscopic order parameter, and (iii) “frozen dynamics,”
i.e., free energy landscape with numerous local minima in
which the system can spend a long time [41,42]. While the
most popular example are probably spin glasses in Ising-
like models such as Sherington-Kirkpatrick and Edwards-
Anderson models, glasses are also known to appear in the XY

model with disorder in two dimensions, the Cardy-Ostlund
model, which postulates both random couplings and a random
magnetic field [43–45]. Our model is essentially a two-flavor
generalization of the XY model, although in order to solve it
we need to simplify it. According to Refs. [43–45], the details
differ depending on how the disorder is implemented, but the
two-phase system (paramagnetic, i.e., disordered, and glass) is
ubiquitous. In the two-component version, the phase diagram
becomes richer, and on top of the glassy phase and the insulator
(disordered) phase we find a few other phases. In nonlinear
optics, the topic of random lasers has attracted considerable
attention [9–12,46]. Here one has a complex version of the XY

model, with the additional complication that not only phase but
also amplitude is free to vary, but only with random couplings
(no random field). On top of the glassy and the disordered
phase, one or two additional phases appear.

In the presence of disorder, the relation to magnetic systems
in condensed matter physics is very inspiring, since a number
of complex materials show different ordering mechanisms
(spin and charge density waves, superconductivity, etc.) in
parallel with significant influence of disorder. Just as in the
disorder-free case, we are particularly interested in possible
spin-glass phenomena in doped insulating O(3) antiferromag-
nets [39,40,47–49] and in the last section we will discuss also
the spin-glass phase in such systems.

C. The plan of the paper

The structure of the paper is as follows. In the next section,
we describe the dynamical system which lies at the core of
this paper: counterpropagating laser beams in a photorefractive
crystal. We give the equations of motion and repackage them in
the Lagrangian form. In Sec. III, we study the vortex dynamics:
We construct the vortex Hamiltonian and classify the order
parameters. Then we study the renormalization group (RG)

flow and obtain the phase diagram. Finally, we discuss the
important question of how to recognize the various phases in
experiment: What do the light intensity patterns look like and
how do they depend on the tunable parameters? Section IV
brings the same study for the system with disorder. After
describing the disordered system, we perform the replica trick
for the disordered vortex Hamiltonian and solve the saddle-
point equations to identify the phases and order parameters,
again refining the results with RG calculations. The fifth
section takes a look at a doped collinear antiferromagnet, a
model encountered in the description of many strongly coupled
materials, and shows how the dynamics of topological solitons
is again described by a two-flavor vortex Hamiltonian. We
discuss the relation between the phase diagrams of the two
systems and the possibilities of modeling the condensed matter
systems experimentally by the means of photorefractive optics.
The last section sums up the conclusions. In Appendix A, we
describe the numerical algorithm we use to check the analytical
results for the phase diagram. In Appendix B, we show in detail
that the CP beams are capable of reaching equilibrium (i.e.,
stop changing in time)—if they would not, the application of
equilibrium field theory would not be justified. Appendix C
discusses the stability of nonvortex configurations—although
somewhat peripheral to the main topic of the paper, it is useful
to better understand the geometry of patterns. In Appendix D,
we give the (routine) algebra that yields the vortex interaction
Hamiltonian from the microscopic equations. Appendix E
contains an improved mean-field theory for the clean system,
which we do not use much throughout the paper but we
include it for completeness (we prefer either the simplest
single-vortex mean-field reasoning or the full RG analysis,
which are described in the main text). Appendix F discusses
an important technicality concerning the CP geometry, i.e., the
specific boundary conditions of the CP beam system where the
boundary conditions for one beam are given at the front face
and for the other at the back face of the crystal. Appendix G
contains some details on mean-field and RG calculations of
the phase diagram for the dirty system: The dirty case includes
some tedious algebra we feel appropriate to leave out from the
main text.

II. THE MODEL OF COUNTERPROPAGATING BEAMS IN
THE PHOTOREFRACTIVE CRYSTAL

We consider a photorefractive crystal of length L irradiated
by two laser beams. The beams are paraxial and propagate
head on from the opposite faces of the crystal in the z direction.
Photorefractive crystals induce self-focusing of the beams—
the vacuum (linear) wave equation is modified by the addition
of a frictionlike term, so the diffusion of the light intensity (the
broadening of the beam) is balanced out by the convergence
of the beam onto an “attractor region.” The net result is the
balance between the dissipative and scattering effects, allowing
for stable patterns to form. The physical ground for this is the
redistribution of the charges in the crystal due to the Kerr
effect. The nonlinearity, i.e., the response of the crystal to the
laser light, is contained in the change of the refraction index
which is determined by the local charge density. A sketch of
the system is given in Fig. 1. Before entering the crystal, the
laser beams can be given any desirable pattern of both intensity
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FIG. 1. Sketch of the experimental setup for the study of the CP
beams in the PR crystal. The crystal has the shape of a parallelepiped,
and the beams propagate along the longitudinal, z axis: the forward
(F ) beam from z = 0 to z = L, and the backward (B) beam the other
way round. The intensity patterns are observed at the transverse faces
of the crystal, at z = 0 and z = L.

and phase. In particular, one can create vortices (winding of
the phase) making use of the phase masks [3] or other, more
modern ways.

Assuming the electromagnetic field of the form E =
eiωt+iq·r(Feikz + Be−ikz), we can write equations for the
so-called envelopes F and B of the forward- and backward-
propagating beams along the z axis (the frequency, transverse,
and longitudinal momentum are denoted respectively by
ω,q,k). The wave equations for F and B are now

±i∂z�±(z; x,y; t) + ��±(z; x,y; t)

= �E(z; x,y; t)�±(z; x,y; t), (1)

where the plus and minus signs on the left-hand side stand
for the forward- and backward-propagating component of the
beam amplitude doublet � ≡ (�+,�−) ≡ (F,B), and � is the
dimensionless PR coupling constant. The two beams (flavors
of the field �) will from now on be denoted either by F/B or
more often by �±. We will use α as the general flavor index for
summation, e.g., �1α�2α = �1+�2+ + �1−�2−. The charge
field E on the right-hand side of the equation is the electric
field sourced by the charges in the crystal (i.e., it does not
include the external electric field of the beams). Its evolution
is well represented by a relaxation-type equation [17]:

τ

1 + I (z; x,y; t)
∂tE(z; x,y; t) + E(z; x,y; t)

= − I (z; x,y; t)

1 + I (z; x,y; t)
. (2)

Here, I ≡ I� + Ix is the total light intensity at a given point,
I� ≡ |F |2 + |B|2 is the beam intensity, and Ix the intensity
of the fixed background. The meaning of Ix is that the
crystal is all the time irradiated by some constant light source,
independent of the counterpropagating beams with envelopes
F,B. We will usually take a periodic lattice as the background,
allowing also for the defects (missing cells) in the lattice when
studying the effects of disorder. The relaxation time is τ . The
time derivative ∂tE is divided by 1 + I , meaning that the
polarizability of the crystal depends on the total light intensity:
Strongly irradiated regions react faster. In the numerical
calculations, we solve Eqs. (1) and (2) with no further as-
sumptions, as explained in Appendix A. For analytical results,
we will need to transform them further, assuming a vortex
pattern.

The equation for the charge field has no microscopic basis; it
is completely phenomenological, but it excellently represents

the experimental results [3]. Notice that the derivative ∂tE

in (2) is strictly negative (since intensity is non-negative): It
thus has the form of a relaxation equation, and one expects
that a class of solutions exists where ∂tE(t → ∞) → 0, i.e.,
the system relaxes to a time-independent configuration. We
show this in Appendix B; in the main text we will not discuss
this issue but will simply take the findings of Appendix B for
granted. Notice that there are also parameter values for which
no equilibrium is reached [37,50,51].

For slow time evolution (in the absence of pulses), we can
Laplace transform the equation (2) in time [E(t) �→ E(u) =∫∞

0 dte−utE(t)] to get the algebraic relation

E(z; x,y; u) = − �†� + Ix − τE0

1 + τu + Ix + �†�

= −1 + 1 + τu + τE0

1 + τu + Ix + �†�
. (3)

The original system (1) can now be described by the La-
grangian:

L = i�†σ3∂z� − |∇�|2 + ��†�

−�(1 + τE0 + τu)ln(1 + τu + Ix + �†�), (4)

where σ3 is the Pauli matrix σ3 = diag(1,−1). One can
introduce the effective potential

Veff(�
†,�) = −�ln

e�†�

(1 + τu + Ix + �†�)1+τ (E0+u)
, (5)

so we can write the Lagrangian as L = i�†σ3∂z� − |∇�|2 −
Veff(�†,�). This is the Lagrangian of a nonrelativistic field
theory (a nonlinear Schrödinger field equation) in 2 + 1
dimensions (x,y; z), where the role of time is played by the
longitudinal distance z and the physical time t (or u upon the
Laplace transform) is a parameter. The span of the z coordi-
nate 0 < z < L will influence the behavior of the system, while
the dimensions of the transverse plane are not important for
the effects we consider.

Our main story is now the nature and interactions of the
topologically nontrivial excitations in the system (4). A task
which is in a sense more basic, the analysis of the topologically
trivial vacua of (4) and perturbative calculation of their
stability, is not of our primary interest now, in part because this
was largely accomplished by other methods in Refs. [31,32].
We nevertheless give a quick account in Appendix C; first,
because some conclusions about the geometry of the pat-
terns can be carried over to vortices, and second, to give
another example of applying the field-theoretical formalism
whose power we wish to demonstrate and popularize in this
paper.

III. VORTICES AND MEAN FIELD THEORY
OF VORTEX INTERACTIONS

A. The classification of topological solutions and the vortex
Hamiltonian

Now we discuss the possible topological solitons in our
system. Remember once again that they differ from dynamical
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solitons such as those studied in Ref. [17] and references
therein. In order to classify the topologically nontrivial
solutions, consider first the symmetries of the Lagrangian
(4). It describes a doublet of two-dimensional (2D) complex
fields which interact solely through the phase-invariant total
intensity I = �†� (and the spatial derivative term |∇�|2),
while in the kinetic term �†σ3∂z� the two components have
opposite signs of the “time” derivative, so this term cannot be
reduced to a functional of I . The intensity I has the symmetry
group SU(2) (the isometry group of the three-dimensional
sphere in Euclidean space) and the kinetic term has the group
SU(1,1) (the transformations which leave the combination
|F |2 − |B|2 invariant, i.e., the isometry of the hyperboloid).
The intersection of these two is the product U (1)F ⊗ U (1)B :
The forward- and backward-propagating doublet (F,B) has
phases θF,B which can be transformed independently, as
θF,B �→ θF,B + δθF,B .

The classification of possible topological solitons is
straightforward from the above discussion [52]. They can
be characterized in terms of homotopy groups. We remind
readers that the homotopy group πn of the group G is the
group of transformations which map the group manifold of G

onto the n-dimensional sphere Sn. In D-dimensional space,
the group πD−1 therefore classifies what a field configuration
looks like from far away (from infinity): It classifies the
mappings from the manifold of the internal symmetry group
of the system to the spherical “boundary shell” in physical
space at infinity. Since the beams in our PR crystal effectively
see a two-dimensional space (we regard z as time), we
need the first homotopy group π1 to classify the topological
solitons. Since π1(U (1)) = π1(S1) = Z and π1(G ⊗ G) =
π1(G) ⊗ π1(G) for any group G, the topological solutions
are flavored vortices, and the topological charge is the pair of
integers {QF ,QB}.

Let us now derive the effective interaction Hamiltonian for
the vortices and study the phase diagram. In principle, this story
is well known: For a vortex at r0, in the polar coordinates (r,φ),
we write �(r) = ψ exp (iθ (r)) for |r − r0|/|r0| � 1, and a
vortex of charge Q has θ (φ) = Qφ/2π . In general the phase
has a regular and a singular part, ∇� = ψ(∇δθ + ∇ × ζez),
where finally ζ = Q ln |r − r0|. The difference in the CP beam
system lies in the existence of two beam fields (flavors)
and the nonconstant amplitude field ψ±(r), so the vortex
looks like

�0±(r) = ψ0±(r)eiδθ±(φ)+iθ0±(φ). (6)

When we insert this solution into the equations of motion (or,
equivalently, the Lagrangian), it is just a matter of algebra to
obtain the vortex Hamiltonian, analogous to the well-known
one but with two components (flavors) and their interaction.
We refer the reader to the Appendix D for the full derivation.
The outcome is perhaps expected: We get the straightforward
generalization of the familiar Coulomb gas picture for the XY

model where all interactions of different flavors, F -F , B-B,
and F -B, are allowed. In order to write the Hamiltonian (and
further manipulations with it) in a concise way, it is handy
to introduce shorthand notation 	Q ≡ (Q+,Q−), 	Q1 · 	Q2 ≡
Q1+Q2+ + Q1−Q2−, and 	Q1 × 	Q2 ≡ Q1+Q2− + Q1−Q2+.
For the self-interaction within a vortex 	Q1, we have 	Q1 · 	Q1 =

Q2
1+ + Q2

1− but 	Q1 × 	Q1 ≡ Q1+Q1− (i.e., there is a factor of
2 mismatch with the case of two different vortices). Now for
vortices at locations ri ,i = 1, . . . ,N with charges {Qi+,Qi−}
we get

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑

i

(g0 	Qi · 	Qi + g1 	Qi × 	Qi). (7)

The meaning of the Hamiltonian (7) is obvious. The first
term is the Coulomb interaction of vortices; notice that only
like-flavored charges interact through this term (because the
kinetic term |∇�|2 is homogenous quadratic). The second term
is the forward-backward interaction, also with Coulomb-like
(logarithmic) radial dependence. This interaction comes from
the mixing of the F and B modes in the fourth term in Eq. (D2),
and it is generated, as we commented in Appendix D, when
the amplitude fluctuations δψα(r), which couple linearly to
the phase fluctuations, are integrated out. In a system without
amplitude fluctuations, i.e., classical spin system, this term
would not be generated. The third and fourth terms constitute
the energy of the vortex core. The self-interaction constants
g0,g1 are of course dependent on the vortex core size and
behave roughly as g ln a/ε,g′ ln a/ε, where ε is the UV cutoff.
The final results will not depend on ε, as expected, since g0,g1

can be absorbed in the fugacity y (see the next subsection).
Expressions for the coupling constants in terms of original
parameters are given in (D11).

In three space dimensions, vortices necessitate the introduc-
tion of a gauge field [24] which, in multicomponent systems,
also acquires the additional flavor index [28,53]. In our case,
there is no emergent gauge field and the whole calculation is
a rather basic exercise at the textbook level but the results
are still interesting in the context of nonlinear optics and
analogies to magnetic systems: They imply that the phase
structure (vortex dynamics) can be spotted by looking at the
intensity patterns (light intensity I or local magnetization M;
see the penultimate section).

B. The phase diagram

1. The mean-field theory for vortices

The phases of the system can be classified at the mean field
level, following, e.g., Refs. [24,41]. In order to do that, one
should construct the partition function, assuming that well-
defined time-independent configuration space exists. We have
already mentioned the question of equilibration and address
it in detail in Appendix B. Knowing that the system reaches
equilibrium (in some part of the parameter space), we can
count the ways in which a system of vortices can be placed in
the crystal—this is by definition the partition function Z . First,
the number of vortices N can be anything from 0 to infinity;
second, the vortex charges can be arbitrary; and finally, the
number of ways to place each vortex in the crystal is simply
the total surface section of the crystal divided by the size of the
vortex. Then, each vortex carries a Gibbs weight proportional
to the energy, i.e., the vortex Hamiltonian (7) for a single
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vortex.1 Let us focus first on a single vortex. If the vortex
core has linear dimension a and the crystal cross section linear
dimension �, the vortex can be placed in any of the (�/a)2

cells (and in the mean-field approach we suppose the vortex
survives all the way along the crystal, from z = 0 to z = L,
so there is no additional freedom of placing it along some
subinterval of z). This gives

Z =
∑

Q+,Q−

(
�

a

)2

e−LH1 =
∑

Q+,Q−

e2 ln �
a
−L(g 	Q· 	Q+g′ 	Q× 	Q) ln �

a .

(8)

Remember that H is energy density along the z axis, so it
appears multiplied by L. The factor ln(�/a) in the second term
of the exponent comes from the Coulomb potential of a single
vortex (in a plane of size �). The exponent can be written as
−LF (1), with F (1) = H1 − (1/L)S1, recovering the relation
between the free energy F (1) and entropy S(1) of a single
vortex. The entropy comes from the number of ways to place a
vortex of core size a in the plane of size � � a: S ∼ ln(�/a)2.
Suppose for now that elementary excitations have |Q±| � 1,
as higher values increase the energy but not the entropy, so they
are unlikely (when only a single vortex is present). Now we
can consider the case of single-charge vortices with possible
charges (1,0),(−1,0),(0,1),(0,−1), and the case of two-charge
vortices where F and B charge may be of the same sign or
opposite signs, (1,1),(−1,−1),(1,−1),(−1,1):

F (1)
0 =

(
g − 2

L

)
ln

�

a
, 	Q = (±1,0) or 	Q = (0,±1), (9)

F (1)
1 =

(
2g − g′ − 2

L

)
ln

�

a
, (Q+,Q−) = (±1,∓1),

(10)

F (1)
2 =

(
2g + g′ − 2

L

)
ln

�

a
, (Q+,Q−) = (±1,±1).

(11)

Now we identify four regimes, assuming that g,g′ > 0:2

(1) For L > 2/g, a vortex always has positive free energy
so vortices are unstable like in the low-temperature phase of
the textbook Berezinsky-Kosterlitz-Thouless (BKT) system.
This is the vortex-free phase where the phase U (1)F ⊗ U (1)B
does not wind. This phase we logically call vortex insulator in
analogy with the single-flavor case.

(2) For 2/g > L > 1/(g − g′/2), a double-flavor vortex
always has positive free energy but single-flavor vortices are
stable; in other words, there is proliferation of vortices of
the form 	Q = (Q+,0) or 	Q = (0,Q−). This phase is like the
conductor phase in a single-component XY model, and the

1Again, this is not generally true for out-of-equilibrium configura-
tions but if the system reaches equilibrium, i.e., stable fixed point,
this follows by usual statistical mechanics reasoning.

2One specificity of multicomponent vortices is that the coupling
constants may be negative, as can be seen from (D11). In that case,
the ordering of the four regimes (how they follow each other upon
dialing L) changes but the overall structure remains.

topological excitations exist for the reduced symmetry group,
i.e., for a single U (1). We thus call it vortex conductor; it is
populated mainly by single-flavor vortices (Q,0), (0,Q).

(3) For 1/(g − g′/2) > L > 1/(g + g′/2), double-vortex
formation is only optimal if the vortex has Q+ + Q− = 0,
which corresponds to the topological excitations of the diago-
nal U(1)d symmetry subgroup, the reduction of the total phase
symmetry to the special case (θF ,θB) �→ (θF + δθ,θB − δθ ).
In other words, vortices of the form (Q+,−Q+) proliferate.
Here, higher charge vortices may be more energetically favor-
able than unit-charge ones, contrary to the initial simplistic
assumption, the reason being that the vortex core energy
proportional to gQ2

+ may be more than balanced out by the
intravortex interaction proportional to −g′Q2

+ (depending on
the ratio of g and g′). This further means that there may be
multiple ground states of equal energy (frustration). We thus
call this case frustrated vortex insulator (FI); it is populated
primarily with vortices of charge (Q,−Q).

(4) For 1/(g + g′/2) > L vortex formation always reduces
the free energy, no matter what the relation between Q+ and
Q− is, and each phase can wind separately: (θF ,θB) �→ (θF +
δθF ,θB + δθB). Vortices of both flavors proliferate freely
at no energy cost and for that reason we call this phase
vortex perfect conductor (PC). We deliberately avoid the term
superconductor to avoid the (wrong) association of this phase
with the vortex lines and type I or type II superconductors
familiar from the three-dimensional (3D) vortex systems:
Remember there is no emergent gauge field for the vortices in
two spatial dimensions, and we only have perfect conductivity
in the sense of zero resistance for transporting the (topological)
charge, but no superconductivity in the sense of breaking a
gauge symmetry.

A more systematic mean-field calculation will give the
phase diagram also for an arbitrary number of vortices. This
is not so interesting as it already does not require much less
work than the RG analysis, which is more rigorous and more
accurate for this problem. For completeness, we give the
multivortex mean-field calculation in Appendix E.

One might worry that the our whole approach approach
misses the CP geometry of the problem, i.e., the fact that the
�+ field has a source at z = 0 and the �− field at z = L.
In Appendix F, we show that nothing is missed at the level
of approximations taken in this paper, i.e., mean-field theory
in this subsubsection and the lowest-order perturbative RG in
the next one. Roughly speaking, it is because the sources are
irrelevant in the RG sense—the bulk configuration dominates
over the boundary terms. The appendix states this in much
more precise language.

2. RG analysis

We have classified the symmetries and thus the phases of
our system at the mean-field level. To describe quantitatively
the borders between the phases and the phase diagram, we
will perform the renormalization group (RG) analysis. Here
we follow closely the calculation for conventional vortex
systems [24]. We consider the fluctuation of the partition
function δZ upon the formation of a virtual vortex pair at
positions r1,r2 with charges 	q,−	q (with r1 + r2 = 2r and
r1 − r2 = r12), in the background of a vortex pair at positions
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R1,R2 (with R1 + R2 = 2R and R1 − R2 = R12) with charges
	Q1, 	Q2. This is a straightforward but lengthy calculation and

we state just the main steps. First, it is easy to show that
the creation of single-charge vortices is irrelevant for the
RG flow so we disregard it. Also, we can replace the core
self-interaction constants g0,1 with the fugacity parameter
defined as y ≡ exp [−β(g0 + g1) ln ε]. Here we introduce the
notation β ≡ L in analogy with the inverse temperature β

in standard statistical mechanics, in order to facilitate the
comparison with the literature on vortices in spin systems,
and also with antiferromagnetic systems in Sec. V.3

Now from the vortex Hamiltonian Hvort the fluctuation
equals (at the quadratic order in y and r)

δZ
Z = 1 + y4

4

∑
q±

∫
dr12r

3
12e

g	q·	q+g′ 	q×	q

×
[ ∫

drr2(g 	Q1 · 	q + g′ 	Q1 × 	q)

×∇ ln |R1 − r| + (g 	Q2 · 	q + g′ 	Q2 × 	q)

×∇ ln |R2 − r|
]2

. (12)

Notice that ∇ is taken with respect to r. The above result
is obtained by expanding the Coulomb potential in r12 (the
separation between the virtual vortices being small because
of their mutual interaction) and then expanding the whole
partition function (i.e., the exponent in it) in y around the
equilibrium value Z . The term depending on the separation
r12 is the mutual interaction energy of the virtual charges, and
the subsequent term proportional to r2 is the interaction of the
virtual vortices with the external ones (the term linear in r

cancels out due to isotropy). Then by partial integration and
summation over q± ∈ {1,−1} we find

δZ
Z = 1 + y4[8πg2 	Q1 · 	Q2 + 8π (g′)2 	Q1 · 	Q2

+ 16πgg′ 	Q1 × 	Q2]I3 ln R12

+ y4[4πg(g + g′)( 	Q1 × 	Q1 + 	Q2 × 	Q2)

× I1 + 8(g′)2I1] ln ε, (13)

with In = ∫ �a

εa
drrn+g+g′

. Now, by taking into account the def-
inition of the fugacity y, rescaling � �→ �(1 + �), performing
the spatial integrals, and expanding over �, we can equate the
bare quantities g,g′,y in (7) with their corrected values in
Z + δZ to obtain the RG flow equations:

∂g

∂�
= −16π (g2 + g′2)y4,

∂g′

∂�
= −2πgg′y4,

∂y

∂�
= 2π (1 − g − g′)y. (14)

3Of course, the physical meaning of β in our system is very different:
We have no thermodynamic temperature or thermal noise, and the
third law of thermodynamics is not satisfied for the “temperature”
1/β = 1/L. We merely use the β notation to emphasize the similarity
between free energies of different systems, not as a complete physical
analogy.

Now let us consider the fixed points of the flow equations. If
one puts g′ = 0, they look very much like the textbook XY

model RG flow, except that the fugacity enters as y4 instead
of y2 (simply because every vortex contributes two charges).
They yield the same phases as the mean-field approach as
it has to be, but now we can numerically integrate the flow
equations to find exact phase borders. The fugacity y can
flow to zero (meaning that the vortex creation is suppressed
and the vortices tend to bind) or to infinity, meaning that
vortices can exist at finite density. At y = 0, there is a fixed
line g + g′ = 1. This line is attracting for the half-plane
g + g′ > 1; otherwise, it is repelling. There are three more
attraction regions when g + g′ < 1. First, there is the point
y → ∞,g = g′ = 0 which has no analog in single-component
vortex systems. Then, there are two regions when g → ∞
and g′ → ±∞ (and again y → ∞). Of course, the large
g,g′ regime is strongly interacting and the perturbation theory
eventually breaks down, so in reality the coupling constants
grow to some finite values g∗,g′

∗ and g∗∗,g′
∗∗ rather than to

infinities. The situation is now the following:
(1) The attraction region of the fixed line is the vortex

insulator phase: The creation rate of the vortices is suppressed
to zero.

(2) The zero-coupling fixed point attracts the trajectories in
the vortex perfect conductor phase: Only the fugacity controls
the vortices and arbitrary charge configurations can form.
Numerical integration shows that this point also has a finite
extent in the parameter space.

(3) In the attraction region of the fixed point with g∗ < 0
and g′

∗ > 0 (formally they flow to −∞ and +∞, respectively),
same-sign F and B charges attract each other and those with
the opposite sign which repel each other. This is the frustrated
insulator.

(4) The fixed point with g∗∗,g′
∗∗ < 0 (formally both flow

to −∞) corresponds to the conductor phase.
The RG flows in the g-g′ plane are given in Fig. 2. Full

RG calculation is given in Fig. 2(b); for comparison, we
include also the mean-field phase diagram (following from the
previous subsubsection and Appendix E) in Fig. 2(a). In the
half-plane g + g′ > 1 every point evolves toward a different,
finite point (g,g′) in the same half-plane. In the other half-plane
we see the regions of points moving toward the origin or
toward one of the two directions at infinity. The PC phase
(the attraction region of the point (0,0)) could not be obtained
from the mean field calculation (i.e., it corresponds to the
single point at the origin at the mean field level).

It may be surprising that the coupling constants can be
negative, with like charges repelling and opposite charges
attracting each other. However, this is perfectly allowed in our
system. In the usual XY model, the stiffness is proportional
to the kinetic energy coefficient and thus has to be positive.
Here, the coupling between the fluctuations of F and B

beams introduces other contributions to g,g′ and the resulting
expressions (D11) give bare values of g,g′ that can be negative,
and the stability analysis of the RG flow clearly shows that for
nonzero g′, the flow can go toward negative values even if
starting from a positive value in some parameter range. If
we fix g′ = 0, the flow equations reproduce the ones from
the single-component XY model, and the phase diagram is
reduced to just the g′ = 0 line. If we additionally suppose that
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FIG. 2. Phase diagram for the clean system in the g-g′ plane, at the mean-field level (a) and with RG flows (b). We show the flows for a
grid of initial points, denoted by black dots; red lines are the flows. Four phases exist, whose boundaries are delineated by black dashed lines.
In the mean-field calculation (a) all phase boundaries are analytical. In the RG calculation, the straight line g + g′ = 1 is obtained analytically
whereas the other phase boundaries can only be found by numerical integration of the flow equations (14). The flows going to infinity are the
artifacts of the perturbative RG; they probably correspond to finite values which are beyond the scope of our analytical approach. Notice how
the flows in the g + g′ > 1 phase all terminate at different values.

the bare value of g is non-negative, than we are on the positive
g′ = 0 semiaxis in the phase diagram—here we see only
two phases, insulator (no vortices, g → const.) and perfect
conductor (g → 0). However, for g′ fixed to zero (that is, with
a single flavor only), the perfect conductor reduces to the usual
conductor phase of the single-component XY model—in other
words, we reproduce the expected behavior.

Physically, it is preferable to give the phase diagram in
terms of the quantities �,τ,I,Ix,L that appear in the initial
equations of motion (1) and (2): The light intensities can be
directly measured and controlled, whereas the relaxation time
and the coupling cannot, but at least they have a clear physical
interpretation. The relations between these and the effective
Hamiltonian quantities y,g,g′ are found upon integrating out
the intensity fluctuations to obtain (7) and the explicit relations
are stated in (D11). Making use of these we can easily plot
the phase diagram in terms of the physical quantities for
comparison with experiment. However, for the qualitative
understanding we want to develop here, it is much more
convenient to use g,g′ as the phase structure is much simpler.

As an example, we plot the �-g′ diagram in Fig. 3 (we
have kept g′ to keep the picture more informative; the �-L
and �-I diagrams contain multiple disconnected regions for
each phase). The noninteracting fixed point g = g′ = 0 is now
mapped to � = 0. The tricritical point where the PC, the FI,
and the conductor phases meet is at R = 1. Therefore, the rule
of thumb is that low couplings � produce stable vortices with
conserved charges—the perfect vortex conductor. Increasing
the coupling pumps the instability up, and the kind of
instability (and the resulting phase) is determined by the
relative strength of the photonic lattice compared to the
propagating beams. Obviously, such considerations are only
a rule of thumb and detailed structure of the diagram is more
complex. This is one of the main motives of this study—blind
numerical search for patterns without the theoretical approach

adopted here would require many runs of the numerics for a
good understanding of different phases.

C. Geometry of patterns

Now we discuss what the intensity pattern I (r) looks
like in various phases, for various boundary conditions. This
is very important as this is the only thing which can be
easily measured in experiment—phases θα are not directly
observable, while the intensity distribution is the direct
outcome of the imaging of the crystal [31]. We shall consider
three situations. The first is a single Gaussian beam on zero

FIG. 3. Typical phase diagram for the system without disorder,
in the �-g′ plane. There are two discrete fixed points and the critical
line at � = 0, which corresponds to the critical line g + g′ = 1 in the
previous figure. We also see two discrete fixed points, corresponding
to g∗,∗∗,g′

∗,∗∗. The advantage of physical parameters is that the location
of these fixed points in the �-I plane can be calculated directly from
the numerics (or measured from the experiment).
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background (Ix = 0), with Gaussian initial intensity profile
|F (z = 0,r)|2 = |B(z = L,r)|2 = N exp(−r2/2s2) and pos-
sibly nonzero vortex charges: arg�±(r) ∼ exp (QF,Bφ), with
r = (r cos φ,r sin φ). The second case is a quadratic vortex
lattice of F and B beams, so the initial beam intensity is I0 =∑

i,j exp [−(x − xi)2/2s2
0 − (y − yi)/2s2

0 ], with xi+1 − xi =
yi+1 − yi ≡ b = const., the situation particularly relevant for
analogies with condensed matter systems. In the third case,
we have again a quadratic vortex lattice but now on top
of the background photonic square lattice, which is either
coincident or off phase (shifted for half a lattice spacing) with
the beam lattice. The background intensity is thus of the form
Ix = ∑

i,j exp [−(x − xi)2/2s2 − (y − yi)/2s2].
First of all, it is important to notice that there are two kinds

of instabilities that can arise in a vortex beam:4

(1) There is an instability which originates in the imbalance
between the diffusion and self-focusing (crystal response) in
favor of diffusion in high-gradient regions: If a pattern I (x,y)
has a large gradient ∇I , the kinetic term in the Lagrangian (4),
i.e., the diffusion term in (1) is large and the crystal charge
response is not fast enough to balance it as we travel along
the z axis, so the intensity rapidly dissipates and the pattern
changes. Obviously, the vortex core is a high-gradient region
so we expect it to be vulnerable to this kind of instability. This
is indeed the case: In the center of the vortex the intensity
diminishes, a dark region forms, and the intensity moves
toward the edges. We dub this the core or central instability
(CI), and in the effective theory it can be understood as the
decay of states with low fugacity y, i.e., high self-interaction
constants g0,g1. This instability prevents the formation of
vortices in the insulator phase, or limits it in the frustrated
insulator and conductor phases.

(2) There is an instability stemming from the dominance
of diffusion over self-focusing in low-intensity regions of
sufficient size and/or convenient geometry. At low intensity,
the charge response is nearly proportional to I [from Eq. (2)],
so if I is small diffusion wins and the intensity dissipates.
If there is sufficient inflow of intensity from more strongly
illuminated regions, it may eventually balance the diffusion,
but if the pattern has a long “boundary”, i.e., outer region of low
intensity, it will not happen and the pattern will dissipate out or
reshape itself to reduce the low-intensity region. We call this
case the edge instability (EI). For a vortex, it happens when
the positive and negative vortex charges tend to redistribute
due to Coulomb attraction and repulsion. In our field theory
Hamiltonian (7), this instability dominates in the conductor
and perfect conductor phases.

Let us first show how the CI and EI work for a single beam
with nonzero vortex charge. In Fig. 4, we show the intensity
patterns for a single vortex with charges (1,0) and (3,0) as the
x-y cross sections (transverse profiles) in the middle of the

4They are distinct from the bifurcations which happen also
in topologically trivial beam patterns and lead to the instability
which eventually destroys optical (nontopological) solitons. These
instabilities have been analyzed in Appendix C and in more detail in
Ref. [32], where the authors have found them to start from the edge
of the beam and result in the classical “walk through the dictionary
of patterns.”

(a) (b)

(d)( )c

Q=(1,0) Q=(3,0)

m
m4.2=L

m
m8.4=L

conductor

insulator

conductor

insulator

FIG. 4. Transverse profiles for a single Gaussian beam for two
different propagation distances, L = 2.4 mm (top) and L = 4.8 mm
(bottom), with vortex charges (1,0) [(a), (c)] and (3,0) [(b), (d)],
at the back face of the crystal (z = L). The regime on top [(a),
(b)] corresponds to the conductor phase, which has a single con-
served vortex charge QF . This vortex charge conservation prevents
significant instabilities; nevertheless, the multiquantum vortex (3,0)
shows the onset of CI; notice the reduced intensity and incoherent
distribution of the beam in the central region in the top right panel (the
CI is expected to grow roughly as Q2

+ + Q2
−). The insulator phase

only preserves the F − B invariance but not the vortex charge, and
in the absence of topological protection the vortices can annihilate
into the vacuum. Here we see the EI taking over for both charges;
four unstable regions appear near the boundary, violating the circular
symmetry and dissipating away the intensity of the vortex. Parameter
values: FWHM 40 μm, �I0 = 41, t = 10τ .

crystal, i.e., for z = L/2. The parameters chosen (�,I0,R,L)
correspond to the conductor phase (top) and the insulator phase
(bottom). In top panels, for Q2

+ + Q2
− = 1, the core energy is

not so large and CI is almost invisible. For Q2
+ + Q2

− = 9,
we see the incoherence and the dissipation in the core region,
signifying the CI. The conductor phase allows the proliferation
of vortices but only those with |Q±| � 1 are stable. In the
bottom panels, both vortices have almost dissipated away due
to EI, which starts from discrete poles near the boundary.5

Indeed, the insulator phase has no free vortices, no matter what
the charge. In Fig. 5, we see no instability even for a high-
charge vortex in the perfect conductor phase (top), whereas
the frustrated insulator phase (bottom) shows strong EI for the
like-charged vortex (3,3) since this fixed point has g′

∗ > 0, but
the (3,−3) vortex is stable. Notice that we could not expect

5As a rule, it follows the sequence (C9) found in Appendix C from
the pole structure of the propagator, though some of the steps can be
absent, e.g., for a single Gaussian vortex there is no C2 stage.
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FIG. 5. Transverse profiles for a single Gaussian beam for two
different coupling strengths, �I0 = 20 (top) and �I0 = 40 (bottom),
with vortex charges (3,−3) [(a), (c)] and (3,3) [(b), (d)] at the back
face of the crystal (z = L). The regime on top corresponds to the
perfect conductor phase, where the vortices of all charges freely
proliferate—both vortices are reasonably stable. The bottom case
is in the frustrated insulator phase—the forward-backward coupling
makes the (3,3) vortex unstable from EI while the (3,−3) vortex
survives. Parameter values: FWHM 40 μm, L = 2 mm, t = 10τ .

CI for this case since the sum Q2
+ + Q2

− = 9 is the same in
both cases—if for Q− = −Q+ the vortex has no CI, then for
Q− = Q+ it cannot have it either (since the value Q2

+ + Q2
−

is the same).
We have thus seen what patterns to expect from CI and

EI and also what kind of stable vortices to expect in different
phases: The perfect conductor phase allows free proliferation
of vortices of any charge, the conductor phase allows only
single-quantum vortices (or vortices with sufficiently low
Q2

+ + Q2
−) while others dissipate from CI, the frustrated

insulator supports the vortices with favorable charges (or
favorable charge distribution in multiple-vortex systems) while
others disintegrate from EI, and the insulator phase supports
no vortices—they all dissipate from CI or EI, whichever settles
first (depending on the vortex charges).

The case rich with analogies with condensed matter systems
is the square vortex lattice on the background photonic square
lattice, Fig. 6. Here we can also appreciate the transport
processes. The photonic lattice is coincident with the beam
lattice and equal in intensity, so �(I0 + Ix) = 2�I0. In the
perfect conductor phase [Fig. 6(a)], the vortices are stable
and coherent and keep the uniform lattice structure. In the
conductor phase [Fig. 6(b)], the CI is visible but the lattice
structure survives. The bottom panels show the nonconducting
phases: frustrated insulator [Fig. 6(c)] and insulator [Fig. 6(d)].
The insulator loses both lattice periodicity and the Gaussian
profile of the vortices but the frustrated insulator keeps
the regular structure: From EI the intensity is inverted and
the resulting lattice is dual to the original one [compare
Fig. 6(c) to Fig. 6(a)]. The phase patterns θF (x,y; z = L/2)

(a) ΓI=5 - perfect conductor (b) ΓI=15 - conductor

c) ΓI=20 - frustrated insulator( ΓI=60 - insulator(d)

FIG. 6. Vortex lattice with Gaussian profile for �I = 5 [PC, panel
(a)], �I = 15 [conductor, panel (b)], �I = 20 [FI, panel (c)], and
�I = 60 [insulator, panel (d)]. The perfect conductor phase has
a coherent vortex lattice and no instabilities. Conductor exhibits
a deformation of the vortex lattice and the reduction of the full
O(2) symmetry, starting from the center, whereas the FI exhibits
the reduction of symmetry and the inversion of the lattice due
to edge effects. Notice how both phases have reduced symmetry
compared to PC but retain coherence. Only the insulator phase loses
not only symmetry but also coherence; i.e., the intensity diffuses
and the pattern is smeared out. Transverse size of the lattice is
512 × 512 in computational space; same lattice size, FWHM, and
lattice spacing are used for all subsequent figures unless specified
otherwise. Parameter values: L = 4.8 mm, t = 10τ , FWHM 10 μm,
and lattice spacing equal to FWHM.

and θF (x,z; y = 320 μm) for the perfect conductor (top) and
the frustrated insulator phase (bottom) are shown in Fig. 7.
Here we see the vortex charge transport mechanism in a PC:
The vortices are connected in the sense that the phase θF is
coherently traveling from one vortex to the next. In the FI
phase, the phase is initially frozen along the z axis, until the
transport starts at some z ≈ L/2.

It may be instructive to take a closer look at the lattice
dynamics of the most interesting phase: the frustrated insulator.
In Fig. 8, we inspect square lattices on the photonic lattice
background for several charges of the form (Q+ = 3,Q−). The
first row shows how the vortices lose stability and develop CI as
the total square of the charge grows [from Fig. 8(a) to Fig. 8(c)].
Figures 8(d)–8(i) show how the g′ coupling favors the opposite
sign of Q+ and Q− and how the optimal configuration is
found for Q− = −3. This is easily seen by minimizing the free
energy over Q−: It leads to the conclusion that the forward-
backward coupling favors the “antiferromagnetic” ordering in
the sense that Q+ + Q− = 0.
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FIG. 7. Same system as in panels (a) and (c) from the previous
figure (PC and FI phases) but now we plot the phase θF , as
the transverse cross section θF (x,y; z = L/2) [(a), (b)] and as the
longitudinal section along the PR crystal θ (x,z; y = 320 μm) [(c),
(d)]. The perfect conductor phase has well-defined vortices in contact
which allows the transport of the vortex charge through the lattice
and shows as the periodical modulation of the phase along the z axis
(vortex lines). The frustrated insulator keeps well-defined vorticity
even though the intensity map undergoes inversion [Fig. 6(c)] with
frozen phase along the z axis, so there is no vorticity transport until
some z ≈ L/2 = 2.4 mm, when the phase stripes develop into vortex
lines. The unit on the x and y axis is 1 μm (1 in computational space)
and on the z axis 0.12 mm (120 in computational space).

Finally, it is interesting to see how the FI phase at high
intensities and coupling strengths contains a seed of translation
symmetry breaking which will become important in the
presence of disorder. In Figs. 9 and 10, we give intensity
and phase transverse profiles across the PC-FI transition and
deep into the FI phase at large couplings. The intensity maps
show the familiar inverse square lattice but the phase maps
show stripelike ordering, i.e., translation symmetry breaking
along one direction in Figs. 10(c) and 10(d)—horizontal
and vertical lines with a repeating constant value of the
phase θF on all lattice cells along the line. This is a new
instability, distinct from CI and EI. We cannot easily derive this
instability from the perturbation theory in Appendix C as it is a
collective phenomenon and cannot be understood from a single
beam.

IV. THE SYSTEM WITH DISORDER

Consider now the same system in the presence of quenched
disorder. This is a physically realistic situation: The disorder
corresponds to the holes in the photonic lattice which are
caused by the defects in the material. The defects are in
fixed positions, i.e., they are quenched, whereas the beam is
dynamical and can fluctuate. Now Ix(r) → Ix(r) + Ih(r); i.e.,

FIG. 8. Transverse profiles for vortex lattices with different
charges in the FI phase. In the first row [(a)–(c)], we see how the
CI gets stronger and stronger as the total vortex core energy grow
(with the square of the total charge). The second and third rows
show the growth of CI from (3,0) to (3,±3) (notice the increasingly
reduced intensity in the center and the strong ringlike structure of
the beams) but also the forward-backward interaction which favors
the configurations (3,−3),(3,−2),(3,−1) over (3,3),(3,2),(3,1). In
particular, the (3,−3) lattice is the optimal configuration of all (3,Q−)
configurations even though it has greater CI than say (3,0) (notice the
small dark regions in the center), because the

∑
ij gg′Qi+Qi− ln rij

term minimizes the EI—notice there is no “spilling” of intensity from
one vortex to the next. The parameters are �I = 20,L = 2.5 mm.

the quenched random part Ih(r) is superimposed to the regular
background (whose intensity is Ix). The disorder is given
by some probability distribution, assuming no correlations
between defects at different places. As in the disorder-free
case, the lattice is static and “hard”, i.e., does not backreact
due to the presence of the beams. One should, however,
bear in mind that the backreaction on the background lattice
can sometimes be important as disregarding it violates the
conservation of the angular momentum [37]. Disregarding
the backreaction becomes exact when Ix + Ih � |�|2, i.e.,
when the background irradiation is much stronger than the
propagating beams.

To treat the disorder, we use the well-known replica
formalism [54]. For vortex-free configurations, typical exper-
imental values of the parameters suggest that the influence of
disorder is small [31,33,35]. However, the influence of disorder
becomes dramatic when vortices are present. This is expected,
since holes in the lattice can change the topology of the phase
field θ± (the phase now must wind around the holes). Our
equations of motion are still given by the Lagrangian (4), but
with Ix �→ Ix + Ih. In our analytical calculations, we assume
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(a) ΓI=3 - perfect conductor (b) ΓI=9 - perfect conductor

c) ΓI=15 - frustrated insulator( ΓI=20 - frustrated insulator(d)

FIG. 9. Intensity maps for the quadratic vortex lattice with
charges (1,1), for increasing values of �I = �(I0 + Ix). The tran-
sition from the PC phase [(a), (b)] into the FI phase [(c), (d)]
happens at about �I ≈ 12. The edge instability sets in progressively,
in accordance with what we saw in the previous figure, leading
eventually to an inverse square lattice. Propagation length L = 5 mm.

that a defect in the photonic lattice changes the lattice intensity
from Ix to Ix + Ih, with Gaussian distribution of “holes” in Ih,
which translates to the approximately Gaussian distribution of
the couplings g,g′,g0,g1. In the numerics, however, we do a
further simplification and model the defects in a discrete way;
i.e., at a given spot either there is a lattice cell of intensity I1

(with probability h), or there is not (the intensity is zero, with
probability 1 − h). This corresponds to Ix = I1/2,Ih = ±I1/2
so the disorder is discrete. Due to the central limit theorem,
we expect that the Gaussian analytics should be applicable to
our numerics.

A. The replica formalism at the mean-field level

To study the system with quenched disorder in the photonic
lattice, we need to perform the replica calculation of the free
energy of the vortex Hamiltonian (7). We refer the reader
to the literature [41,42] for an in-depth explanation of the
replica trick. In short, one needs to average over the various
realizations of the disorder prior to calculating the partition
function, i.e., prior to averaging over the dynamical degrees
of freedom (vortices in our case). This means that we need
to perform the disorder average of the free energy, i.e., the
logarithm of the original partition function −lnZ , and not the
partition function Z itself. The final twist is the identity lnZ =
limn→0 (Zn − 1)/n: We study the Hamiltonian consisting of
n copies (replicas) of the original system and then carefully

(a) ΓI=3 - perfect conductor (b) ΓI=9 - perfect conductor

c) ΓI=15 - frustrated insulator( ΓI=20 - frustrated insulator(d)

FIG. 10. Transverse phase maps for the F beam for the same
cases as in Fig. 9. As the coupling strength �I grows toward very large
values (d), the violation of translation symmetry becomes obvious:
Notice the vertical and horizontal phase stripes. This instability gives
rise to the charge density wave ordering in the presence of disorder.

take the n → 0 limit.6 The partition function of the replicated
Hamiltonian reads

Z = lim
n→0

Tr exp

⎡
⎣−

n∑
μ=1

Hvort(Q
(μ))

⎤
⎦, (15)

where Q(μ) are the vortex charges in the μth replica of the
system. In the original Hamiltonian (7), the disorder turns
the interaction constants into quenched random quantities
gij ,g

′
ij ,g0;ij ,g1;ij , so we can compactly write our interaction

term as
Hvort =

∑
ij

∑
αβ

QiαJ
αβ

ij Qjβ (16)

with J++
ij = J−−

ij = gij (1 − δij )lnrij + g0δij , J+−
ij = J−+

ij =
g′

ij (1 − δij )lnrij + g1δij . Now we again make the mean-field
approximation for the long-ranged logarithmic interaction.
Similar to the clean case, for i �= j we approximate glnrij ∼
g′lnrij ∼ ln�, knowing that g,g′ ∼ 1 and assuming that
average intervortex distance is of the same order of magnitude
as the system size �, and for the core energy we likewise get
g0,g1 ∼ lna/ε ∼ −lnε ∼ ln�. The result is that all terms in
J

αβ

ij , both for i �= j and i = j , are on average of the order
ln� � 1, and the mean-field approach is justified. We will
sometimes denote the 2 × 2 matrices in the flavor space by
hats (e.g., Ĵ = J αβ).

6Care is needed as the n → 0 limit does not in general commute
with the thermodynamic limit.
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The final Hamiltonian (16) has the form of the random-
coupling and random-field Ising-like model: Random cou-
plings stem from the stochasticity of Jij values and random
field from the fact that 〈Jij 〉 �= 0 introduces terms linear in Qiα ,
i.e., an effective external field coupling to the “spins.” We have
arrived at this model through three steps of simplification: our
microscopic model is a type of the XY -glass model (Cardy-
Ostlund model [55]), a well-known toy model for disorder. At
this stage, our model is similar to the work of Refs. [9,10], only
with two components instead of one. Then we have written the
effective vortex Hamiltonian with Coulomb-like interaction,
disregarding the topologically trivial configurations. This is
a rather extreme approximation but a necessary one as it is
very complicated to consider the full model with vortices.
Finally, we have approximated the logarithmic potential with
a constant all-to-all vortex coupling. Such an approximation

(essentially the infinite dimension limit) is frequently taken
and lies at the heart of the solvable Sherington-Kirkpatrick
Ising random coupling model [41]. Our case differs from
the Sherington-Kirkpatrick model as it (i) has also a random
field, (ii) has two flavors, and (iii) has the Ising spins taking
arbitrary integer values. From the random XY model it differs
by (i) and (ii) above, and also by considering only vortices and
no nontopological spin configurations. The additional phases
we get in comparison to Refs. [9,10] and its generalization
in Refs. [11,12,46] come from the interactions between the
forward and backward flavors. But bearing in mind the drastic
approximations we take, we stress that we cannot aspire to
solve either the XY model or the resulting Ising-like model
in any rigorous way (certainly not at the level of rigor of
mathematical physics). We merely try to obtain a crude
understanding.

The Gaussian distribution of defects reads p(J αβ

ij ) = exp [−(J αβ

ij − J
αβ

0 )(σ̂−2)αβ(J αβ

ij − J
αβ

0 )], where the second moments are
contained in the matrix σαβ , with σ+− = σ−+. In this case, we get the replicated partition function

Z̄n =
∫

D
[
Q

(μ)
iα

] ∫
D
[
J

αβ

ij

]
exp

⎡
⎣−1

2

N∑
i,j=1

∑
α,β

(
J

αβ

ij − J
αβ

0

)
σ−2

αβ

(
J

αβ

ij − J
αβ

0

)
−

n∑
μ=1

N∑
i,j=1

∑
α,β

βJ
αβ

ij Q
(μ)
iα Q

(μ)
jβ

⎤
⎦. (17)

We can now integrate out the couplings J
αβ

ij in (17) and get

Z̄n = const.
∫

D
[
Q

(μ)
iα

]
exp

⎡
⎣1

2
β2

n∑
μ,ν=1

N∑
i,j=1

∑
α,β

Q
(μ)
iα Q

(ν)
iβ (σ̂ 2)αβQ

(μ)
jα Q

(ν)
jβ − β

n∑
μ=1

N∑
i,j=1

∑
α,β

J
αβ

0 Q
(μ)
iα Q

(μ)
jβ

⎤
⎦. (18)

Integrating out the disorder has generated the nonlocal quartic
term proportional to the elements of σ 2

αβ . The additional
scale given by the average disorder concentration means we
cannot scale out β = L anymore, and it becomes an additional
independent parameter. The partition function can be rewritten
in the following way, usual in the spin-glass literature [42,54].
We can introduce the nonlocal order parameter fields

p(μ)
α = 1

N

N∑
i=1

Q
(μ)
iα , q

(μν)
αβ = 1

N

N∑
i,j=1

Q
(μ)
iα Q

(ν)
jβ , (19)

which have the meaning of overlap between different
metastable states. The rest is just algebra, although rather
tedious: One rewrites the Hamiltonian in terms of new order
parameters, and then one can solve the saddle-point equations
for pα and qαβ , or do an RG analysis. The calculation is found
in Appendix G.

The mean-field analysis yields six phases:
(1) One phase violates both the replica symmetry and

the flavor symmetry, breaking it down to identity. We dub
this phase vortex charge density wave (CDW), as it implies
spatial modulation of the vortex charge, leading to nonzero
net charge density

∑
i Q

(μ)
iα in some parts of the system even if

the boundary conditions are electrically neutral (the total net
charge density must still be zero due to charge conservation).
Vortices take their charges from Z ⊗ Z.

(2) The second phase violates the replica symmetry in both
flavors and reduces the flavor symmetry but does not break it
down to identity. Instead, it reduces it to the diagonal subgroup

U (1)F ⊗ U (1)B → U (1)d , so it has nonzero density of the
vortex charge in a given replica

∑
i Q

(μ)
i+ = −∑

i Q
(μ)
i− . Again,

the charge density is locally nonzero but now with an additional
constraint resulting in frustration (multiple equivalent free
energy minima). This is thus the dirty equivalent of the
frustrated insulator phase and we dub it vortex glass, as
it has long-range correlations (because of the logarithmic
interactions between charged areas), does not break spatial
symmetry, and exhibits frustration; its charges are from
π1[U (1)d ] = Z.

(3) The remaining phases have no nonzero vortex charge
density fluctuation and are similar to the phases in the clean
system. Vortex perfect conductor violates the replica symmetry
of all three fields q++,q−−,q+− and allows free proliferation
of vortices with charges (Q+,Q−) ∈ Z ⊗ Z.

(4) Frustrated vortex insulator preserves the replica sym-
metry of q±± but has nonzero value, with broken replica
symmetry, of the mixed q+− field, which gives U (1)d vortices,
with charges Q+ = −Q− ∈ Z.

(5) Vortex conductor preserves the replica symmetry of the
mixed q+− order parameter but violates it in q±±, resulting in
the proliferation of single-flavor vortices with Z charge.

(6) Vortex insulator fully preserves the replica symmetry,
all order parameters are zero, and vortices cannot proliferate.
RG analysis will show that insulator surivives only at zero
disorder; otherwise it generically becomes CDW.

The phase diagram (given in Fig. 11 in the next sub-
section) now contains six phases (only five are visible for
the parameters chosen in the figure): CDW, insulator, FI,
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FIG. 11. Phase diagram for the system with lattice disorder in the g-g′ plane together with RG flows, with red lines denoting the flows
starting at the initial conditions denoted by black points. The dashed black lines are approximate phase boundaries from mean-field theory,
for σ 2 = 0.4 (a) and σ 2 = 1.2 (b). In panel (a), the area where g + g′ + β2σ 2 > 1 is inhabited by the flows toward nonuniversal values of
(g,g′) which belong to the CDW phase and the opposite region is divided between the attraction regions of (0,0), (g∗ → ∞,g′

∗ → ∞), and
(g∗∗ → ∞,g′

∗∗ → −∞)—the familiar PC, FI, and conductor phases. In panel (b), for σ 2 = 1.2, the disorder becomes relevant in the glass phase
(denoted by “GL”), whose RG flows end on the half-line of fixed points g + g′ + β2σ 2 = 1,g′ < 0. For our parameter values, this line happens
to pass almost through the origin; in general, this is not necessarily the case. The nondisordered phases (flowing to σ 2 = 0) FI, conductor, and
PC have survived. Propagating length is L = 3.0 mm.

conductor, PC, and the glassy phase. The insulator phase is
now of measure zero in the (g,g′,σ 2) plane, existing only for
the points at σ 2 = 0; for generic nonzero values we have a
CDW. For simplicity, we have plotted the phase diagram for
σ 2

++ = σ 2
−− = σ 2

+− ≡ σ 2.

B. RG analysis and the phase diagram

To study the RG flow, we can start from the replicated
partition function (18), inserting the definition of the couplings
J

αβ

ij and keeping the vortex charges Q
(μ)
iα as the degrees of

freedom (without introducing the quantities pμ
α ,q

(μν)
αβ ). The

basic idea is the same: We consider the fluctuation δ(Z̄n) upon
the creation of a vortex pair at r1,2 with charges 	q(μ)

1 ,−	q(μ)
2 ,

in the background of the vortices 	Q(ν)
1,2 at positions R1,2.

Likewise, we introduce the fugacity parameter y(μ) to account
for the vortex core energy. However, this problem is much
harder than the clean problem and one has to resort to many
approximations to perform the calculation. In its most general
form, the problem is still open, in the sense that all known
solutions suppose a certain form of replica symmetry breaking
or truncate the RG equations [42]. The RG analysis is thus
less useful in the disordered case but at least the numerical
integration of the flow equations is supposed to give a more
precise rendering of the phase diagram compared to the mean
field theory. We again describe the calculation in Appendix G
and jump to the results.

The fixed point of the flow equations lies either at infinite y

or at y = 0 like in the clean case. This is again controlled
by the the equation for ∂y/∂� but now depending on the
combination g + g′ + β2σ 2 instead of g + g′ in the clean case
(for simplicity, we consider the case where σ 2

αβ are all equal).
The following cases appear:

(1) When the fugacity flows toward infinity, we reproduce
the phases and the fixed point values (g,g′,σ 2) from the clean
case: The PC flows toward (0,0,0), the FI toward (g∗,g′

∗,0),
and the conductor toward (g∗,g′

∗∗,0) with g∗ → −∞,g′
∗ →

−∞,g′
∗∗ → ∞. Notice that all these phases flow to σ 2 = 0;

i.e., disorder is irrelevant.
(2) When the fixed point lies at y = 0, one possibility is

that all parameters (g,g′,σ 2) flow toward some nonuniversal
nonzero values. The attraction region of this point is the CDW
phase: The disorder term stays finite as well as the couplings.
In particular, the points on the half-plane g + g′ > 0,σ 2 = 0
stay at σ 2 = 0 (with constant coupling values) and this is the
insulator phase from the clean case. Notice that σ 2 > 0 now;
i.e., disorder is relevant. For σ 2 < 1, this are the only fixed
points when y = 0.

(3) However, for sufficiently strong disorder (σ 2 > 1),
there is a new line of fixed points at y = 0 with a finite
attraction region, corresponding to a new phase. For β > 1,
the right-hand side of the second RG equation in (G19) has
a zero at nonzero g′ and there are trajectories flowing toward
(y,g,g′,σ 2) = [0,g,g′(g),σ 2(g)] and not toward an arbitrary
nonuniversal value of σ 2. This is precisely the glass phase,
where disorder is again relevant. At the lowest order, the
relation between g,g′,σ 2 at the fixed point line is given by
the relation g + g′ + β2σ 2 = 1.

Now we have made contact between the mean-field classi-
fication of phases and the fixed points and regions of the RG
flow. The flows in the (g,g′) plane are given in Fig. 11. The
parameter space is four-dimensional so the phase structure is
different at different disorder concentrations σ 2. In Fig. 11(a)
for σ 2 = 0.4, the phase structure is similar to the clean case;
we see the same four phases except that insulator (no stable
vortices) is replaced by the CDW phase with localized vortices.
In Fig. 11(b) for σ 2 = 1.2, the CDW phase is replaced by
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(a) z=0.20 L (b) z=0.40 L

c) z=0.65 L( z=0.95 L(d)

FIG. 12. Transverse profile for the PC phase in a Gaussian
beam lattice on a background lattice, for four different propagation
distances. The vortex charge is (1,1), which is sufficiently low that the
CI does not destroy the vortices. We see some CI-induced symmetry
reduction from O(2) to C4 but the overall lattice structure is preserved.
Parameter values are σ 2 = 0.1,�I = 20,L = 2 mm, FWHM for the
CP beams is 9 μm and for the photonic lattice 6 μm.

another disordered phase, the glasslike regime. Importantly,
the glass phase does not cross the g′ = 0 axis, meaning that
a single-flavor system even with disorder could not support a
glass. We thus conjecture that the transition at σ 2 = 1 is of first
order, as the change is the structure of the (g,g′) phase diagram
is discontinuous, and we do not see how this could happen if
the first derivative ∂F/∂ρ± (the derivative of the free energy
with respect to vortex charge density) is continuous. However,
we have not checked the order of this transition by explicit
calculation. The phase structure is further seen in the σ 2 − g′
diagram, where we see the glass phase emerge at some value
of the disorder. This is discussed further in the next section,
where we study the equivalent antiferromagnetic system (with
the same structure of the phase diagram, Fig. 16).

C. Geometry of patterns

The two previously considered mechanisms of instability—
central instability and edge instability—remain active also in
the presence of disorder. However, in the presence of disorder
there is a third, inherently collective effect that we dub domain
instability (DI). It follows from the fact that the self-focusing
term �E grows with intensity I : More illuminated regions
react faster [Eqs. (1) and (2)]. In the presence of background
lattice, there will be regions of initially zero beam intensity
I0 where the regular lattice cells have some nonzero intensity
Ix . Approximating I = I0 + Ix ≈ Ix = const., our equations
in the vicinity of the defect (hole) in the background lattice

(a) z=0.20 L (b) z=0.40 L

c) z=0.65 L( z=0.95 L(d)

FIG. 13. Transverse profile for the FI phase, present in the same
system as in Fig. 12 but for �I = 40. Now both the CI [low-intensity
regions in the beam center in panels (a) and (b)] and the EI [lattice
inversion in panels (c) and (d)] are present. The net result is the lattice
inversion, and the vortex charge dissipates along the inverse lattice.

becomes the Schrödinger equation in a step potential (equal to
Ix in the regular parts of the photonic lattice, and equal to zero
where a hole is found), so the z-dependent part of the solution is
of the form

∑
k eiλkz and the eigenenergies along z are gapped

by the inverse length: λk > 1/L. For small eigenenergies, the
transmission coefficient is very low, whereas for large energies
it approaches unity. Thus for 1/L large (i.e., there are few λk’s
which are larger than 1/L), most of the intensity remains
confined by the borders of the defect and the intensity does
not spill but for small 1/L the beam profile is deformed by
the “spilling” into the hole regions. For vortices, there is an
additional Coulomb interaction in the x-y plane, meaning the
effective potential is not piecewise constant anymore (even
in the simplest approximation) but the qualitative conclusion
remains: Large L brings global reshaping of the intensity
profile.

The other phases are analogous to the ones in the clean
case, though with a general trend that the presence of disorder
decreases the stability of vortex patterns. The PC and FI phases
are shown in Figs. 12 and 13. In this section, we only look at the
lattices, as the notion of disorder is inapplicable for a single
beam. Consider first the patterns in the PC phase (Fig. 12).
Compared to the clean case [Fig. 6(a)], the symmetry is much
reduced, from O(2) to C4, but the vortices are conserved and the
original lattice structure (outside the holes) is clearly visible.
The FI (Fig. 13) shows mainly EI (and to a smaller extent CI),
which together lead to the lattice inversion. The rule of thumb
for differentiating the conductor and PC on one side from the
CDW and FI on the other side is precisely the presence of
the lattice inversion. The absence of the charge transport is
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MIHAILO ČUBROVIĆ AND MILAN S. PETROVIĆ PHYSICAL REVIEW A 96, 053824 (2017)

FIG. 14. Transverse profiles for the charge density wave [panels
(a) and (c)] and the glass phase [panels (b) and (d)]: intensity maps
(top) and vortex charge density maps (down). The telltale difference is
that the CDW loses the regular lattice as the intensity “flows” between
the regular and the defect regions and we see the DI at work. Glass,
on the other hand, consists of domains with coherent (well-defined)
vortices though with reduced symmetry (C4) mostly due to EI. The
charge density forms a connected network in the glass phase and
transport is possible, whereas in a frustrated insulator the charge is
stuck in isolated points.

best appreciated in the phase images: The charge pins to the
defects and localizes toward the end of the crystal (i.e., for z

near L). Only near the edges we see high vorticity, somewhat
analogous to topological insulators, which only have nonzero
conductivity along the edges of the system.

The CDW versus the glass phase is given in Fig. 14. The
charge density wave [Figs. 14(a) and 14(c), L = 240 μm]
exhibits the diffusion of intensity due to DI, and the vortex
beams are in general asymmetric and not clearly delineated.
In Figs. 14(b) and 14(d), where L = 120 μm with all other
parameters the same, there is a clear border between defects
and the regular parts of the lattice and the intensity is
concentrated in the vortex cores. We give also the vortex charge
density map in Figs. 14(c) and 14(d) in addition to the intensity
maps in Figs. 14(a) and 14(b)] as the charge density shows
why the CDW is insulating: Even though individual beams
diffuse and smear out in intensity, the regions of nonzero vortex
charge are disjoint and no global conduction can occur. Glass
is divided into ordered domains in intensity but the vortex
charges form a connected network which supports transport.
This is analogous to the percolation transition in a disordered
Ising model [56,57] and we may expect that the CDW-glass
transition follows the same scaling laws near the critical point.
However, we have not checked this explicitly and we leave it
for further work.

V. THE CONDENSED MATTER ANALOGY: COLLINEAR
DOPED HEISENBERG ANTIFERROMAGNET

The two-beam photorefractive system can serve as a good
model for quantum magnetic systems. The most obvious
connection is to multicomponent XY antiferromagnets (i.e.,
two-dimensional Heisenberg model): Planar spins are nothing
but complex scalars, and the vortex Hamiltonian remains
identical (π1[SO(2)] = π1[U(1)] = Z). The nonlinearity in
the spin system is different and usually much simpler, but
that typically does not influence the phase diagram (the
symmetry structure remains the same). Such connection is so
obvious it does not require further explanations. Our point
is that the CP beams in a PR crystal can also describe
more general magnetic systems in the presence of topological
solutions described by homotopy groups different from Z.
In particular, we want to point out to a connection with a
two-sublattice antiferromagnetic system which has some time
ago enjoyed considerable popularity as a possible description
of magnetic ordering in numerous planar strongly coupled
electron systems, including cuprate high-Tc superconductors
[5,38,58]. This is the collinear doped antiferromagnet defined
on two sublattices. When coupled to a charge density wave
(speaking about the usual U(1) electromagnetic charge) and a
superconducting order parameter, it becomes a toy model of
cuprate materials (one variant is given in Ref. [58]). In the light
of what we know today, the ability of this model to realistically
describe the cuprate physics is quite questionable; but even so
it is an interesting magnetic system on its own, and it was
already found in Refs. [39,47] to exhibit a spin-glass phase,
though in a slightly different variant (in particular, with spiral
instead of collinear ordering).

Let us formulate the model. While the material is a lattice
on the microscopic level, here we are talking about an effective
field theory model. The order parameter is the staggered
magnetization

M(r) =
∑

α=1,2

Mα(r) cos(n · r), (20)

where α ∈ {1,2} is the sublattice “flavor” index (analogous to
the α index for the F and B beam in the previous sections)7

and each component Mα is a three-component spin, describing
the internal, i.e., spin degree of freedom (we label the spin
axes as X, Y , Z). The total spin is thus the sum of the spins
of the two components, and n is the modulation vector. The
modulation gives rows of alternating staggered magnetization
in opposite directions as in Fig. 15(a). This stands in contrast
with the spiral order, where the modulation vectors become
nα , i.e., differ for the two sublattices, and are themselves space
dependent [39]. The ordered phase of the collinear system has
the nonzero expectation value of the staggered magnetization
along one direction, which can be chosen as the Z axis (“easy
axis”), where the spin fluctuations about the easy axis remain
massless, and the symmetry is broken from O(3) to O(3)/O(2).
The spiral order, on the other hand, breaks the symmetry down
to identity, as the order parameter is a dreibein [39].

7Sometimes we will denote the sublattices by ± instead of 1,2 for
compactness of notation.
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FIG. 15. Numerical realization of the spin pattern (staggered magnetization M1) in the collinear O(3) antiferromagnet. Magnetization is
three dimensional and we give the projection in the XY plane, M1 · nXY ≡ M⊥. In panel (a), we show the characteristic collinear spin pattern
in absence of vortices. In panel (b), we plot M(vort)

1 , a Z2-charged point vortex defect with Q = 1. In panel (c), we give an enlargement of the
vortex from panel (b) shown as the difference M(vort)

1 − M1 to show more clearly the structure of the vortex—now the regular periodic pattern
is absent and we appreciate the pointlike structure of the vortex. The parameters are u = r = 1 and v = 0.5.

The symmetry conditions (isotropy in absence of external
magnetic field) determine the Hamiltonian up to fourth order,
as discussed in Ref. [58]:

Haf = 1

2gM

[(
1

cM

∂τ Mα

)2

+ |∇Mα|2 + r

2
|Mα|2

]

+ u0

2
|Mα|4 − v0(|M1|2 + |M2|2)2. (21)

The antiferromagnetic coupling is gM , the spin stiffness is cM ,
and the effective mass of spin wave excitations is r . The fourth-
order coupling u0 comes from the “soft” implementation of
the constraint |Mα| = 18 and v0 is the anisotropy between the
two sublattices, justified by the microscopic physics [5,58].
The Hamiltonian can be transformed by rescaling τ and x,y,
together with the couplings u0 �→ u and v �→ v0 to set gM =
cM = 1 so that the kinetic term becomes isotropic, giving

Haf = 1

2
(∂τM)2 + 1

2
|∇M|2 + r

2
|M|2 + u

2
(|M|2)2

− v|M1|2|M2|2, (22)

where we have also rewritten the quartic terms for convenience.
Without anisotropy, the energy of the system is a function of
|M1|2 + |M2|2 only and the symmetry group is the full O(6).
With v �= 0, the symmetry is reduced to O(3)1 ⊗ O(3)2: The
internal spin symmetry in each sublattice remains unbroken
but the spatial rotation symmetry between the layers is broken
down to just the discrete flip. Compare this to the U(1) ⊗ U(1)
symmetry in the PR system: There, it is the internal phase
symmetry that remains unbroken.

8One could also enforce the constraint exactly, through the nonlinear
σ model, as was done in Ref. [39]. While the leading term of
the “vortex” Hamiltonian would remain the same in that case, the
amplitude fluctuations have different dynamics which influences
some terms of the Hamiltonian and thus its RG flow (though probably
not the very existence of the glass phase).

A. Z2 vortices

Remember that topological solitons are classified by homo-
topy groups and that we work in a two-dimensional plane. The
relevant group is again the first homotopy group, π1[O(3)] =
Z2. For simplicity, we will call these excitations “vortices,”
bearing in mind that the only possible charges are Qα = ±1
and not all integers. A realization of the vortex with Q = 1
is shown in Fig. 15(b). Since the spins are three-dimensional
(the figure shows the projection in the XY plane), it becomes
clear that vortex charge is only defined modulo 2; i.e., it makes
no sense to talk about charges |Q| > 1. For example, winding
around twice in the XY plane can be done along a closed line
in the XYZ space which can be contracted to a point. That
could not happen for the two-dimensional phase U(1) precisely
because there is no extra dimension. In Fig. 15(b), the vortex is
superimposed onto the regular configuration: It is recognizable
as a contact point between two lines of alternating staggered
magnetization. In Fig. 15(c) we have subtracted the regular
part and only the vortexing spin pattern is shown: Here we see
the vortex interpolates between two opposite spin orientations
in two opposite directions in the plane.

Now let us derive the effective Hamiltonian of the vortices.
For the Z2 vortex, a loop in real space is mapped onto a π arc
in the internal space, so the vortex can be represented as

Mα(r,φ) =
∫

dφ′e
i
2 (φ′−φ)�̂3 mα, (23)

giving (the matrices �1,2,3 represent the so(3) algebra)

Mα =
⎛
⎝ cos φ ∓ sin φ 0

± sin φ cos φ 0
0 0 1

⎞
⎠
⎛
⎝ m1α

m2α

m3α

⎞
⎠, (24)

where mα is the magnetization amplitude, analogous to the
beam amplitude ψα in the optical system. The leading-order,
noninteracting term in (22) gives the following for the energy
of a single vortex of charge 	Q:

E1 = 2π (|mX × eZ|2 + |mY × eZ|2) ln �

= 2π |m⊥α|2 ln �, (25)
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which is in fact independent of the sign of 	Q (as could be
expected, as it is in general proportional to 	Q · 	Q which is a
constant for parity vortices). The vortex singles out an easy
axis (Z axis) around which the staggered magnetization winds
(φ being the winding angle). This allows one to introduce
mα⊥ ≡ (mXα,mYα,0). A vortex pair with charges 	Qi and 	Qj

has the binding energy

E2 = 2π 	Qi · 	Qj (|m1 × eZ|2 + |m2 × eZ|2) ln rij

= 2π |m⊥α|2 	Qi · 	Qj ln rij . (26)

Now we should integrate out the amplitude fluctuations as
we did in Appendix D for the CP beams. This again leads
to the coupling between different flavors, giving a vortex
Hamiltonian analogous to (7):

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qi) ln rij +
∑

i

	μ · 	Qi.

(27)

Two obvious differences with respect to the optical system
are (i) the charges are now limited to the values ±1, and
(ii) there is a term linear in charge density, which acts as a
chemical potential. The latter arises from the coupling of the
three-dimensional spin waves (i.e., the topologically trivial
excitations of the amplitude mα) to the vortices. Remember
that in the CP system, the amplitude fluctuations also couple to
the vortices, but there is no third, Z axis of the order parameter
so no linear term appears. The microscopic expressions for the
effective parameters g,g′,μα read

g = m2
⊥ + 4r + 6um2

⊥(
2v + 3

2um2
⊥ + v

2 m2
⊥
)(

2r + 3
2um2

⊥ − v
2 m2

⊥
) ,
(28)

g′ = − 4vm2
⊥(

2v + 3
2um2

⊥ + v
2 m2

⊥
)(

2r + 3
2um2

⊥ − v
2 m2

⊥
) , (29)

μα = 1

2
m⊥mz, (30)

assuming m1⊥ = m2⊥ ≡ m⊥. Now the RG calculation is
similar to the optical case but the nonzero chemical potential
introduces two differences. First, there is obviously the
additional term proportional to the total charge of the virtual
pair of vortices, μα(q1α + q2α). Second, there is no charge
conservation as the expectation value of the total vortex charge
is now 〈 	Q〉 = ∂F/∂ 	μ �= 0. Thus we need to take into account
not only the fluctuations with zero net charge (virtual vortex
pairs with charges 	q1 ≡ 	q and 	q2 ≡ −	q) but also the situations
with arbitrary pairs 	q1,	q2.9 This modifies the variation of the

9In the CP beam system, the total vortex charge can be nonzero if the
boundary conditions at z = 0,L have nonzero total vorticity. But there
we had no bulk chemical potential so the total vorticity in the crystal
could not change during the propagation along z. Here, we have a
bulk term in the Hamiltonian which violates charge conservation.

partition function from (12) and (13) to

δZ
Z = 1 + y4

4

∑
	q1,2

∫
dr12r

3
12e

−g	q1·	q2−g′ 	q1×	q2−	μ·	q ′

×
[ ∫

drr2(g 	Q1 · 	q + g′ 	Q1 × 	q)∇ ln |δR1|

+ (g 	Q2 · 	q + g′ 	Q2 × 	q)∇ ln |δR2|
]2

+ y4

4

∑
	q1,2

∫
dr12r

3
12e

−g	q1·	q2−g′ 	q1×	q2−	μ·	q1

×
[ ∫

drr2(g 	Q1 · 	q0 + g′ 	Q1 × 	q0) ln |δR1|

+ (g 	Q2 · 	q0 + g′ 	Q2 × 	q0) ln |δR2|
]2

,

where we have introduced 2	q ≡ 	q1 − 	q2,	q0 ≡ 	q1 + 	q2 and
δR1,2 ≡ R1,2 − r. The mixed term which includes both 	q and
	q0 vanishes due to isotropy. By matching the terms in the
resulting expression with the original Hamiltonian, we find
the recursion relations:

∂g

∂�
= −16πy4(g2 + g′2),

∂g′

∂�
= −16πy4gg′,

∂ 	μ
∂�

= 0,
∂y

∂�
= (1 − g − g′ − μ+ − μ−)y. (31)

Crucially, the chemical potential does not run which could
be guessed from dimensional analysis (it couples to dimen-
sionless charge). This is the same system as (14) up to the
trivial rescaling of the coupling constants and the shift of
the critical line g + g′ = 1 in the PR system to the line
g + g′ + μ+ + μ− = 1. It becomes obvious that the phase
diagrams are equivalent and can be mapped onto each other.

B. Influence of disorder

The disorder in a doped antiferromagnet comes from
electrically neutral metallic grains quenched in the bipartite
lattice. Being metallic and neutral, they are naturally modeled
as magnetic dipoles X quenched in the bipartite lattice. This
picture stems from the microscopic considerations in Ref. [48].
We again assume the Gaussian distribution of the disorder as
p(X) ∝ exp(−|X|2/2σ 2

X). The disorder dipoles are one and
the same for both sublattices, so X has no flavor (sublattice)
index. The minimal coupling of the dipoles to the lattice spins
∂i �→ ∂i − i�̂iXi gives

Haf �→ Hdis = Haf + ∇Mα · (X × Mα) + M2X2. (32)

Now the replica calculation requires the multiplication of the
M field into n copies and performing the Gaussian integral
over the disorder. The initial distribution of the disorder p(X)
gives rise to two independent Gaussian distributions: for the
couplings J

αβ

ij with dispersion matrix σ 2
αβ and for the chemical

potential μα
i with the dispersion vector ξ 2

α . The resulting
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Hamiltonian is

Hdis =
n∑

μ=0

(
1

2

∣∣∂τ M(μ)
α

∣∣2 + 1

2

∣∣∇M(μ)
α

∣∣2

+ u

2

∣∣M(μ)
α

∣∣2 − v
∣∣M(μ)

1

∣∣2∣∣M(μ)
2

∣∣2)

+ σ 2

4

n∑
μ,ν=0

(∇M(μ)
α × M(μ)

α

) · (∇M(ν)
α × M(ν)

α

)
, (33)

where we have disregarded the subleading logarithmic term
(∼ln|M(μ)

α |). Now making use of the representation (23) and
plugging it in into (33) gives the disordered vortex Hamiltonian

βHvort =
n∑

μ,ν=1

N∑
i,j=1

[
β2

2
Q

(μ)
iα Q

(ν)
iβ Q

(μ)
jα Q

(ν)
jβ

− βQ
(μ)
iα J

αβ

0 Q
(μ)
jβ + β2Q

(μ)
iα ξ 2Q

(ν)
iα

]

−
n∑

μ=1

N∑
i=1

βξ 2μα
0 Q

(μ)
iα . (34)

Of course, we could have arrived at the same effective
action starting from the vortex Hamiltonian (27), taking the
infinite-range approximation and identifying J αα

ij = gij ln rij

and similarly for other components of J
αβ

ij as we demonstrated
for the PR system. The final result has to be same at leading
order.

The next step is to rewrite the Hamiltonian in terms of
the order parameters p(μ)

α ,q
(μν)
αβ defined in (19). Compared to

the effective action for the photonic lattice with disorder in
Eq. (G4), there are two extra terms in the resulting action Seff :
One is proportional to the dispersion ξ 2 and the other to the
mean chemical potential 	μ0. The former term just introduces
the shift J

αβ

0 �→ J
αβ

0 − σ 2/2β and the latter term, linear in
the vortex charges and proportional to the chemical potential,
introduces solutions with nonzero net vortex charge density.
Looking back at the results of the saddle-point calculation in
Eqs. (19) and (G14), this tells us that the relation between the
phase diagrams is the following. The phases with no net vortex
charge density—insulator, conductor, frustrated insulator, and
perfect conductor—remain the same as in the PR system, since
both the average coupling value J

αβ

0 (which gets shifted) and
the term proportional to the chemical potential μα couple only
to 	p(μ). For brevity, denote J±±

0 ≡ J±
0 and notice that J−+

0 =
J+−

0 . The structure of phases with nonzero 	p(μ) depends on
the zeros of the saddle-point equation

J±
0 p± +

(
J+−

0

β
− β

2
ξ±
)

p∓ + (p±)−1

− μ±
0 (σ±±)2 + μ∓

0 σ 2
+−

β
= 0, (35)

analogous to (G13), where the one-step replica symmetry
breaking implies p±

(μ) = (p±, . . . ,p±). Now the equation is
cubic and the structure of solutions is different from (G14).
We could not find the solution in the closed form but it
is clear that a pair of cubic equations will have either a

single solution (p+,p−) or nine combinations (p+,p−), not
necessarily all different. Numerical analysis of (35) reveals
only two inequivalent solutions, analogous to (G14), i.e., one
of them has a single free energy minimum and the other one
a pair of degenerate minima. Therefore, we again have two
disordered solutions, one of which is glassy (frustrated).

Now we can write down also the RG equations for the
effective action (34). In this calculation, we put ξ 2

α = σ 2
αβ ≡

σ 2 for simplicity. Following the same logic as earlier, the
equations are found to be10

∂g

∂�
= −8π (g + g′)2y4 cosh(2β2σ 2)

× cosh(2β2σ 2) − 8π (g − g′)2y4,

∂g′

∂�
= −π (g + g′)2y4 cosh(2β2σ 2)

× cosh(2β2σ 2) − π (g − g′)2y4,

∂y

∂�
= 2π (1 − g − g′ − μ+ − μ− − β2σ 2)y,

∂μ

∂�
= −8πμ,

∂σ 2

∂�
= −2πβ4σ 4y4. (36)

Like in the clean case, the chemical potential is irrelevant
and the solutions for fixed point are the same as for the PR
beams, including the spin-glass fixed point. We conclude that
the phase structure of the optical system is repeated in strongly
correlated doped antiferromagnets, which also exhibit the spin-
glass phase and have the phase diagram sketched in Fig. 16.
In this context, it is more interesting to plot the phase diagram
in the σ 2 − 1/g′ plane, mimicking the x − T phase diagram
of quantum critical systems [38] (remember that the coupling
constants g,g′ behave roughly as inverse temperature in XY -
like models). Bear in mind that all phases shown are about
vortex dynamics; i.e., one should not compare Fig. 16 to the
textbook phase diagram of high-temperature superconductors,
which accounts also for the charge or stripe order and the
superconducting order. All vortex phases would be located
inside the pseudogap regime of the superconductor, where
various exotic orders can coexist (assuming, of course, that
our model is an adequate approximation of the magnetic order
in a cuprate or similar material, which is a complex question).
Crucially, the spin-glass phase (blue curves) flows toward finite
disorder σ 2, whereas the remaining two phases end up at zero
disorder, either at infinite 1/g′ (PC, red flows) or at zero 1/g′
(conductor, green flows). The RG flows in the conductor phase
are almost invisible in the figure, as the flows are much slower
than in the remaining two phases.

Discussion

Early papers which found and explored the spin-glass
phase in a very similar model are Refs. [39,40,47,49]. The

10For the most general case of different and nonscalar σ 2
αβ and ξ 2

α ,
the flow equations for them complicate significantly and we will not
consider them.
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FIG. 16. The phase diagram of the two-sublattice-doped Heisen-
berg antiferromagnet model in the σ 2-T plane (we have rescaled
σ 2 �→ 12σ 2). Since T ∼ 1/g′, we can alternatively understand
the vertical axis as 1/g′. Black dashed curves are approximate
phase boundaries. RG flows (starting from black dots) are colored
differently according to the phase they belong to: spin glass (blue),
PC (red), and conductor (green). At high temperatures, the vortex
conductor becomes either a perfect vortex conductor or a spin glass.
Spin glass (blue) is recognized by the fact that the RG equations flow
to nonzero disorder at finite and large g′ (low temperatures). The PC
phase (red) flows toward zero disorder and zero coupling (infinite
T ), collapsing practically to a single trajectory. The flows for the
conductor (green) end up at T = σ 2 = 0 but are not shown to scale
in the figure. Parameter values are u = r = 1 with varying v so as to
have g = −0.5 for all trajectories.

main difference is that the papers cited consider the spiral
(noncollinear) spin order. These works are all inspired by
the cuprate materials, the most celebrated brand of high-
temperature superconductors. While Refs. [40,47] explore in
detail the transport properties, we have no pretension either
to provide a realistic model of cuprates or to explore in detail
all the properties of the spin-glass phase. We are content to
see that the PR system of Z vortices reproduces the phase
structure of a certain kind of dirty Heisenberg antiferromagnets
(with O(3) spins and Z2 vortices), besides the more obvious
connection to systems which directly reproduce the Z vortices
in multicomponent U(1) systems like multicomponent Bose-
Einstein condensates and type-1.5 superconductors.

VI. CONCLUSIONS

We have investigated the light intensity patterns in a nonlin-
ear optical system consisting of a pair of counterpropagating
laser beams in a photorefractive crystal. We have studied
this system as a strongly interacting field theory and have
focused mostly on the formation and dynamics of vortices.
The vortices show a remarkable collective behavior and their
patterns are naturally classified in the framework of statistical
field theory: The effective action shows several different

phases with appropriate order parameters, and the system is
essentially an XY model with two flavors, i.e., two kinds of
vortex charge, for the two beams. The interaction between
the flavors is the central reason that the total energy of the
Coulombic interactions between the vortices in general cannot
be locally minimized at every point. In the presence of disorder,
a phase with multiple free energy minima arises, where the
absence of long-range order is complemented by the local
islands of ordered vortex structure, and which resembles spin
glasses.

The phase diagram is simple in terms of the effective
parameters—vortex coupling constants—and quite complex
when expressed in terms of the experimentally controllable
quantities—the intensity of the laser beams, the intensity of the
background photonic lattice, and the properties of the photore-
fractive crystal (the last is not controllable but can be estimated
reasonably well [3]). The lesson is that the approach we adopt
can save us from demanding numerical work if the space of
original parameters is blindly explored. Our phase diagrams
can serve as a starting point for guided numerical simulations,
suggesting what phenomena one should specifically look
for. So far the field-theoretical and statistical approach was
not much used in nonlinear optics (important exceptions are
Refs. [9–12,14,15,50,51,59,60]). We hope to stimulate work in
this direction, which is promising also because of the potential
of the photorefractive systems to serve as models of strongly
correlated condensed matter systems. They make an excellent
testing ground for various models because of the availability
and relatively low cost of experiments.

In this work, we have focused on the relation of the
photorefractive counterpropagating system to the model of an
O(3) doped antiferromagnet with two sublattices. The authors
of previous works on this model [40,47,48,58] were motivated
mainly by the ubiquitous problem of understanding the
pseudogap phase in cuprate superconductors. The applicability
of the model to this particular problem is still an open
question; it may well be that cuprate physics goes far beyond.
Nevertheless, it is an important quantum magnetic system in its
own right and serves as an illustration of how one can simulate
condensed matter systems in photorefractive optics.

Another field where vortices are found as solutions of
a nonlinear Schrödinger equation are cold atom systems
and Bose-Einstein condensates [26]. Notice, however, that
Bose-Einstein condensates in optical traps are usually (but not
always; see Ref. [30]) three-dimensional systems with vortex
lines (rather than XY -type systems with point vortices) and our
formalism would be more complicated there: In three spatial
dimensions, vortices give rise to emergent gauge fields. The
multicomponent systems of this kind give rise to so-called
type-1.5 superconductors [53], which are a natural goal of
further study.

A more complete characterization of the glasslike phase
is also left for further work. The reader will notice we
have devoted very little attention to the correlation functions
in various parameter regimes or the scaling properties of
susceptibility, which should further corroborate the glassy
character of the system. This is quite difficult in general but
very exciting as it offers an opportunity to tune the parameters
(e.g., disorder strength) freely in the optical system and study
the glasslike phase and its dynamics.
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APPENDIX A: NUMERICAL ALGORITHM

In order to solve numerically the system [(1) and (2)], we
employ a variation on the method of Refs. [61,62]. The method
does not make use of any analytical ansatz: It is an ab initio
numerical procedure which integrates the equations of motion.
The system has four independent variables: the transverse
coordinates (x,y), the longitudinal coordinate (formal time) z,
and the (physical) time t . That means we have essentially three
nested loops: (i) At every z slice we integrate the transverse
Laplacian and the interaction terms for the whole z axis, (ii)
we advance the time t , and (iii) we repeat the whole procedure
until reaching some time tf , which certainly should be much
longer than the relaxation time τ .

The important point is the very different natures of the
initial and boundary conditions for various coordinates. The
boundary conditions in the (x,y) plane, i.e., at the crystal edge
are not crucial: We have either just one or a few Gaussian beams
whose intensity drops exponentially away from the center and
is practically zero at the crystal edge, or we have a large lattice
consisting of many (of the order of 50–100) Gaussian beams so
the edge effects only affect a small portion of the whole lattice.
Therefore, imposing periodic boundary conditions (stemming
naturally from the integration in Fourier space, see the next
paragraph) are perfectly satisfying. Crucially, however, the CP
geometry means that F (t ; z = 0; x,y) = F0(x,y) and B(t ; z =
L; x,y) = B0(x,y) are given functions, fixed for all times. We
thus have a two-point boundary value problem along z and
have to iterate the z integration several times until we reach the
right solution. Finally, the initial condition for the relaxation
equation (2) is that the crystal is initially at equilibrium,
meaning that E(t = 0) = −Ix/(1 + Ix); specifically, for zero
background lattice, E(t = 0) = 0.

The algorithm now has the following structure:
(1) The innermost loop integrates in the x-y plane. This

is a Poison-type (elliptic) equation, thus we employ the
operator-split method, integrating the Laplacian operator in the
Fourier space and the interaction term (the EF and EB terms)
in real space, in the second-order leapfrog scheme. Thus, at
every time instant ti = i�t , we start from z = 0 where we set
the condition F (i�t ; z = 0; x,y) = F0(x,y), divide the z axis
into N steps of size �z = L/N , and at every slice z = j�z

perform the frog’s leap: We do the fast Fourier transform
(FFT) to turn the (x,y) dependence into (qx,qy) dependence,11

then we advance the Laplacian for �z/2 as F (i�t ; j�z; q) ≡
F̃

(0)
i,j �→ F̃

(1)
i,j = exp(−iq2�z/2)F̃ (0)

i,j , and then we do the in-
verse FFT and advance the interaction in real space as

11We denote the fields in Fourier space with a tilde, e.g., F̃ .

F
(2)
i,j = exp[i�E(i�t ; j�z; x,y)]F (1)

i,j . Finally we do the FFT
again and advance the Laplacian for the remaining half-step,
F̃i,j+1 = exp (−iq2�z/2)F̃ (2)

i,j . Once we reach j = N , the
integration goes backward, along the same lines, updating
now the B field [starting from B0(x,y)], where all signs in
the exponents of the above formulas are to be reversed. When
we reach z = 0 again, we are done. In this loop, we use the
field E1,j as already known for all j .

(2) The above loop will, in general, produce results
inconsistent with the charge field Ei,j because the equation for
E couples F and B and we have ignored that by integrating
the two fields one after the other instead of simultaneously.
This is, of course, commonplace in two-point boundary value
problems: Either only one boundary condition can be imposed
exactly and the other is shot for or, as in our case, both
are imposed exactly but at the cost of the solution being
inconsistent with the equations, so we have to iterate the
system to arrive at the correct solution everywhere. The second
loop thus iterates the first loop A times, at each step updat-
ing the charge field as E

(a−1)
i,j �→ E

(a)
i,j = Ei−1,j − τ [E(a−1)

i,j +
I

(a−1)
i,j /(1 + I

(a−1)
i,j )]/(1 + I

(a−1)
i,j ). The number of iterations A

is not fixed: We stop iterations when the intensity pattern
stabilizes,

∑
j

∑
x,y(I (a)

i,j − I
(a−1)
i,j ) < ε, for some tolerance ε.

Here, Ii,j refers to total intensity, i.e., |F |2 + |B|2 + Ix .
(3) Finally, the outermost loop integrates in time t , from

t = 0, with the initial condition E(t = 0) = −Ix/(1 + Ix)
given above. The integration time tf is divided into M =
tf /�t intervals, and at the end of each step we update
(Fi,j ,Bi,j ,Ei,j ) �→ (Fi+1,j ,Bi+1,j ,Ei+1,j ). Only the charge
field is directly integrated (as written above), in the first-order,
Euler scheme. The beam envelopes depend on time only
parametrically, through E(t), and they evolve by using an
updated Ei,j in the first two loops at every time step.

This procedure is very close to that in Ref. [61]; the main
difference is that we use a second-order (leapfrog) scheme,
while on the other hand our time integration is of the lowest,
linear order instead of second order as in Ref. [61].

APPENDIX B: TIME-DEPENDENT PERTURBATION
THEORY AND THE EXISTENCE OF EQUILIBRIUM

CONFIGURATIONS

1. Stability analysis: fixed points and limit cycles

In this appendix, we consider the time evolution of the CP
beams and show the existence of a stable equilibrium point
with nonzero intensity. This means that the system reaches a
stationary state for long times, justifying the basic assumption
of the paper that one can study the vortex configurations within
equilibrium statistical mechanics. Not all patterns are stable:
Depending on the boundary conditions and parameter values,
the system may or may not have a stable equilibrium, and
nonequilibrium solutions in photorefractive optics are well
known [37,50]. For our purposes, however, it is enough to
identify the region of parameter space where the equilibrium
exists; other cases are not the topic of this paper.

The time evolution of the beams �α and the charge field
E in (k,q) space is obtained by differentiating Eqs. (1) with
respect to time and plugging in ∂E/∂t from the relaxation
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equation (2):

∂�±
α

∂t
= −�

τ

[(1 + I )E + I ]

αk − q2 − �E
�±

α ,

(B1)
∂E

∂t
= − 1

τ
[(1 + I )E + I ].

This system has three equilibrium points. One is the 0 point,

(�±
+ ,�±

− ,E) =
(

0,0,− Ix

1 + Ix

)
,

and the remaining two are related by a discrete symmetry
�± �→ �∓, so we denote them as “±” points, with the “+”
point being

(�±
+ ,�±

− ,E) =
(√

E(1 + Ix) + Ix

1 + E
eiφ+ ,0,E

)
,

and the “−” point has instead �+ = 0 and �− =√
(E(1 + Ix) + Ix)/(1 + E) exp(iφ−). Notice that the phase

φ± remains free to vary, so this solution supports vortices.
The 0 point is the trivial vacuum, i.e., the zero-intensity
configuration with only background lattice. The fluctuation
equations about this point to quadratic order read

∂tX = −
[

− f+X1X5,−f+X2X5,−f−X3X5,−f−X4X5,

− 1

1 + Ix

(
X2

1 + X2
2 + X2

3 + X2
4

)− (1 + Ix)X5

]
,

(B2)

where we have introduced the real variables X1,3 =
Reδ�±,X2,4 = Imδ�±,X5 = δE and

f± = �(1 + Ix)2

�Ix ∓ (1 + Ix)(k ± q2)
. (B3)

The system (B2) is degenerate at linear order; thus, we need
a quadratic order expansion to analyze stability. The simplest
approach is to construct a Lyapunov function for Eq. (B2). The
function V (X) = X2 is positive for and only for X �= 0, and
its derivative is

dV

dt
= −2f+

(
X2

1 + X2
2

)
X5 − 2f−

(
X2

3 + X2
4

)
X5

− 1

1 + Ix

(
X2

1 + X2
2 + X2

3 + X2
4

)
X5 − (1 + I5)X2

5,

(B4)

which is strictly negative for X nonzero if f± > 0 and X5 > 0.
However, we always have X5 > 0 because dX5/dt in the full
relaxation equations (B1) has a strictly negative right-hand
side and E grows monotonically from zero to −Ix/(1 + Ix),
and at any finite t we have E(t) − E(t = ∞) = X5 > 0. Thus
the trivial equilibrium point is locally stable for f+ > 0,f− >

0, i.e., k > q2. It is much harder to construct the Lyapunov
function for the global equations (B1): In this case, there are no
additional symmetries and the stability of higher dimensional
systems is in general an extremely difficult topic. Thus there
may well be regions far away from the 0 point which do not
flow toward it.

The “±” pair is quite hard to study. All hope of expanding
the system to second order and understanding the resulting
complicated five-variable system is lost. This time, however,
we can do a nontrivial first-order analysis as the system is
nondegenerate and nicely reduces to the (X1,X5) subsystem.
Rescaling X1 �→ (1 + E0)−3/4[Ix + E0(1 + Ix)]1/2 and t �→
t{(1 + E0)/[Ix + E0(1 + Ix)]}1/4, the equation of motion for
the ± point reads

∂t

(
X1

X5

)
=
(

− a±
�E0+k+q2 −1

1 − a±
�E0+k+q2

)(
X1

X5

)

+O
(
X2

1 + X2
5; X2,X3,X4

)
, (B5)

with a± being some (known) positive functions of �,E0,Ix

(independent of k,q). This is precisely the normal form for
the Andronov-Hopf bifurcation [63], and the bifurcation point
lies at k = −�E0 − q2. As a reminder, the bifurcation happens
when the off-diagonal element in the linear term changes sign:
The fixed point is stable when a±/(�E0 + k + q2) is positive.
The sign of the nonlinear term determines the supercritical or
subcritical nature of the bifurcation. A negative sign means
the fixed point is stable everywhere before the bifurcation
and is replaced by a stable limit cycle after the bifurcation
(supercritical). A positive sign means the fixed point coexists
with the stable limit cycle before the bifurcation and the
(X1,X5) plane is divided among their attraction regions; after
the bifurcation there is no stable solution at all (subcritical).12

In conclusion, stable + equilibrium exists for k > −�E0 −
q2 where E0 is best found numerically. Exactly the same
condition holds for the − point. For k < −�E0 + q2, dynam-
ics depends on the sign of the nonlinear term in (B5): For
the positive sign, we expect periodically changing patterns.
If the term is negative and the bifurcation is subcritical,
various possibilities arise: The system may wander chaotically
between the + and the − point, or it may end up in the attraction
region of the 0 point and fall onto the trivial solution with zero
intensity. Naively, the attraction regions of the two fixed points
(± and 0) are separated by the condition −�E0 − q2 = q2, i.e.,
qc = √−�E0(�,τ )/2, where we have emphasized that E0 is
in general nonuniversal. The actual boundary may be more
complex, however, as our analysis is based on finite-order
expansion around the fixed points, which is not valid far away
from them.

The outcome is that the system generically has stable trivial
and nontrivial (nonzero intensity) equilibria, in addition to
time-dependent, periodic, or aperiodic solutions. Numerical
integration gives a similar picture of the stability diagram
in Fig. 17. Numerically we find that the stability limit is
k > � − q2, i.e., E0 ≈ −1. The region of applicability of our
formalism lies in the top right corner of the diagram (nontrivial
equilibrium), above k ≈ 1/L. Formally, both k and q can be
any real numbers. In practice, however, k is discrete and its
minimal value is of the order 1/L. The spatial momentum q

12One should not take the stability in the whole (X1,X5) plane in
the supercritical case too seriously. We have expand the equations of
motion in the vicinity of the fixed points and the expansion ceases to
be valid far away from the origin.

053824-22



QUANTUM CRITICALITY IN PHOTOREFRACTIVE . . . PHYSICAL REVIEW A 96, 053824 (2017)

FIG. 17. Stability diagram in the q-k plane. The onset of insta-
bility for k < kc(q) is found numerically for a range of q values. The
solid lines are the analytical prediction for the stability of the 0 point
(kc = q2, magenta) and of the + point (kc = �E0 − q2 ≈ � − q2,
red). The black dashed line at q = qc ≈ 1 separates the stability
regions of the two points. The domain of applicability of our
main results is the top left corner (nontrivial equilibrium), above
k > kmin ∼ 1/L and for not very large q values. Parameter values:
� = 2,Ix = 0.

lies between the inverse of the transverse length of the crystal
(which is typically an order of magnitude smaller than L, i.e.,
minimal q can be assumed equal to zero) and some typical
small-scale cutoff which in our case is the vortex core size.
We made no attempt to study the nonequilibrium behavior in
detail or to delineate the boundary between the oscillatory and
the chaotic regime since it is irrelevant for the main story of
the paper.

From a practical viewpoint, the �-Ix plane can be divided
into two regions. One of them has a single stable “+” or
“−” equilibrium or a + �→ − limit cycle whose amplitude
vanishes in the thermodynamic limit at all scales, i.e., for all
(k,q). This region can be legitimately described within the
formalism of partition functions and equilibrium field theory.
The second region flows toward the trivial fixed point and does
not support vortices—this can also (trivially) be described
by our formalism, as it always corresponds to the insulator
regime, with no stable vortices. Thus the consistency check
is that our method predicts no other phases in this region but
insulator. In the third regime, long-term dynamics is either a
limit cycle with amplitude of order unity or chaos. This regime
was studied in detail in some earlier publications (e.g., Ref. [3]
and references therein), and it cannot be reached within our
present formalism.

2. Numerical checks

Now we complement the analytical considerations with
numerical evidence that the phases described in the main
text exist as long-term stable configurations. In Fig. 18,
we show the time evolution of a vortex lattice in three
different phases, where a visual inspection clearly suggests
the system approaches equilibrium. In contrast, in Fig. 19 we
see first a pattern that oscillates forever, i.e., follows a limit
cycle [Fig. 19(a)], becomes incoherent [wandering chaotically
over the unstable manifold, Fig. 19(b)], or dissipates away
(reaching the 0-fixed point), in Fig. 19(c). The loss of stability
corresponds to an Andronov-Hopf bifurcation, as found earlier
for nonvortex patterns in Ref. [32].

FIG. 18. Time evolution of patterns at five different times: (a) perfect conductor phase, (b) frustrated insulator phase, and (c) insulator
phase. In all cases, the approach to equilibrium is obvious, and we expect that for long times a thermodynamic description is justified. The
parameters are the same as in Fig. 6, for the corresponding phases.
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FIG. 19. Time evolution of nonequilibrium patterns. In panel (a), the limit cycle leads to permanent oscillatory behavior, in panel (b)
wandering along the unstable manifold between the equilibrium points gives rise to chaos, and in panel (c) dissipation wins and dynamics dies
out. The parameters are the same as in the previous figure, except that the length L is increased three times.

Dynamics can be most easily traced by looking at the
numerically computed relaxation rate

1

X

dX

dt
=
∑

x,y |X(tj+1x,y) − X(tj ; x,y)|2∑
x,y |X(tj ; x,y)|2 , (B6)

FIG. 20. Time evolution of the relaxation rate r for the various
situations from Figs. 18 and 19, illustrating the relaxation to nontrivial
(non-zero-intensity) equilibrium, i.e., “±”-fixed points [Figs. 18(a),
18(c), hollow black circles], limit cycle [Fig. 19(a), full blue circles],
chaos [Fig. 19(b), full red romboids], and the relaxation to trivial
(zero-intensity) equilibrium, i.e., 0 fixed point [Fig. 19(c), full green
squares]. In the main text, we study the cases like the black curves,
where time-independent stable configurations are seen. The symbols
are data points from numerics and the lines are just to guide the eye.

which is expected to reach zero for a generical relaxation
process, where in the vicinity of an asymptotically stable
fixed point X ∼ Xeq + xe−rt will be generically nonzero for
a limit cycle or chaos and will asymptote to a constant for
the 0 point, where Xeq = 0, so we get (1/X)dX/dt ∼ r .
Figure 20 summarizes these possibilities. The black curves,
corresponding to Figs. 18(a) and 18(c), show the situation
which is in the focus of this work—the approach toward static
equilibrium. The blue curve shows the limit cycle leading
to periodic oscillations. The green curve corresponds to the
chaotic regime with aperiodic dynamics and no relaxation, as
in Fig. 19(b). Finally, the red curve corresponding to the pattern
which radiates away in Fig. 19(b) reaches a constant value of
r . In conclusion, the system shows roughly four classes of
dynamics: fixed point, limit cycle, chaos, and incoherence.
Our work only covers the first of the four, but the bifurcation
diagrams in the previous subsection give a good hint of the
part of the parameter space which contains them, facilitating
experimental or numerical verification.

APPENDIX C: PERTURBATION THEORY AND
STABILITY ANALYSIS

In this appendix, we develop the perturbation theory of the
photorefractive beam system starting from the Lagrangian (4).
The perturbation theory yields the criterion for the stability of
the intensity patterns as they propagate along the z axis. For-
mally, it is just the perturbative diagrammatic calculation of the
propagator. This calculation explicitly excludes topologically
nontrivial patterns and thus is somewhat peripheral for our
main goal, understanding the vortex dynamics. But the general
ways by which an envelope �± can evolve along the z axis and
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become unstable remain valid also for vortices. In particular,
we will end up with a classification of geometrical symmetries
of the intensity pattern �†�; the same symmetries are seen in
vortex patterns and are an important guide for numerical and
experimental work—how to recognize instabilities and also
phases of the system.

Our system is strongly nonlinear, thus a naive perturbation
theory about the trivial vacuum, i.e., constant beam intensity
is out of question. The right way is to perturb about a
nontrivial solution, which approximates a stable pattern. This
means we treat the light intensity as constant in time z

but nonconstant in space (x,y). This is the hallmark of
spatial dynamical solitons: They propagate with a constant
profile along the z axis and to a good approximation do
not interact with each other and do not radiate [3]. We thus
write � = �0 + δ�, giving �†� = I0 + F0(δ�†

+ + δ�+) +
B0(δ�†

− + δ�−) + δ�†δ� + O(|δ�|2) with F 2
0 + B2

0 = I0.
The lowest-order Lagrangian for �0 now reads

L0 = �
†
0��0 + �I0 − �(1 + τu + τE0)

× ln(1 + τu + Ix + I0), (C1)

which determines the shape of the solution �0(x,y) in the
first approximation. The dynamical term with ∂z� drops out
(it is proportional to the equation of motion for �). Nontrivial
propagation in time z is obtained from second-order expansion
of the potential which is given in the next appendix in Eq. (D1)
and we will not copy it here. Varying the quadratic expansion
with respect to the fluctuation δ� gives the linearized equation
of motion for δ�:

[±iσ3∂z − q2 + � − (1 + τu + τE0)]δ�∓

∓�
1 + τu + τE0

(1 + τu + Ix + I0)2
δ�± = 0, (C2)

where δ�+ ≡ δ�†,δ�− ≡ δ�. In homogenous spacetime
(z,x,y), we can transform to momentum space in both
transverse and longitudinal directions. In the transverse plane,
we get (x,y) �→ (qx,qy) and � �→ −q2. The longitudinal
coordinate or time z transforms as z �→ kn where kn = πn/L,
so the time maps to discrete frequencies. The reason is, of
course. that its domain is finite, corresponding to the crystal
length L.

Now we can derive the bare propagator (Green’s function)
of the fluctuating dynamical field δ� by inserting the appropri-
ate source S(z) on the right-hand side of Eq. (C2). Normally,
the source in the equation for the Green’s function is just
the Dirac δ function but the counterpropagating nature of our
beams imposes a two-sided source:

S(z) =
(

δ(z) 0

0 δ(z − L)

)
. (C3)

With this source (also Fourier-transformed in z), Eq. (C2) gives
the bare propagator G

(0)
αβ for the fields δ�±

αβ :

G
(0)
αβ(kn,q) = [−iknSαγ (kn) + A∗

αδSδγ (kn) − BαδSδγ (kn)]

× [−k2
n + A∗

γ δAδβ − BγδB
∗
δβ + [A∗,B]γβ

]−1
.

(C4)

The auxiliary matrices A,B are defined as follows:

Aαβ = i

(
P0 + P1 − q2 P0

−P0 −P0 − P1 + q2

)
,

Bαβ = i

(
P0 P0

−P0 −P0

)
, (C5)

where P1 = (1/4)I0�(1 + τu + τE0)/(1 + τu + Ix + I0)2,

P0 = � − �(1 + τu + τE0)/(1 + τu + Ix + I0), and
S(kn) = diag(1,eiknL).

Now we have the basic ingredient of the perturbation
theory: the bare propagator. The self-energy correction � of
the propagator from the potential Veff can be expanded in a
power series over δ�, which gives an infinite tower of vertices.
Simple combinatorial considerations give the expansion

� =
∑

j1,j2,j3∈N

(−1)j1+j2+j3 (j1 + j2 + j3 − 1)!

j1!j2!j3!

× �(1 + τu + τE0)

(1 + τu + I0 + Ix)j1+j2+j3+1
(�†

0δ�)j1

× (�0δ�
†)j2 (δ�†δ�)j3 , (C6)

and the contraction over the internal indices of �±,δ�± is
understood. Now we can formulate the diagrammatic rules.
We have two kinds of propagators, G(0) and its Hermitian
conjugate. The mean-field values �±

0 are external sources.
The term of order (j1,j2,j3) contains j1 + j3 propagator lines
G(0) (j1 of them ending with the source �0) and j2 + j3 lines
(G(0))

†
(j2 of them ending with a source �

†
0); altogether, there

are j ≡ j1 + j2 + 2j3 lines. The expansion has to be truncated
at some j . Since the mass dimension of � is 1, the (j1,j2,j3)
diagram has the scaling dimension 2 − 2(j1 + j2 + 2j3) < 0,
so all diagrams are irrelevant in the IR. This means we can
make a truncation at small j .13 The leading terms are those
where the order of the perturbation in δ�±, which equals j1 +
j2 + 2j3, is the smallest. This gives two classes of diagrams,
one with j1 = 1,j2 = j3 = 0 and another with j2 = 0,j1 =
j3 = 0. They contain a single external source and introduce
the wave-function renormalization, G(0) �→ ZG(0), which does
not influence the stability analysis. The four quadratic terms
[with (j1,j2,j3) = (2,0,0),(0,2,0),(1,1,0),(0,0,1)] introduce a
mass operator. Only the terms (1,1,0) and (0,0,2) are trivial
(noninteracting); the other two are interacting as they contain
(δ�±)2 and require the calculation of an internal loop, giving
the dressed propagator

G−1
αβ (kn,q) = [G(0)(kn,q)]−1

αβ + (m2)αβ, (C7)

where the mass squared is a positive matrix, because the
corresponding coefficients in (C6) have positive signs [from
the term (−1)j1+j2+j3 with j1 + j2 + j3 = 2] and the integral
of the bare propagator is also positive. Explicitly, it reads

(m2)αβ = �(1 + τu + τE0)

(1 + τu + I0 + Ix)2

∑
kn

∫ ∞

0
dqqG

(0)
αβ (kn,q),

(C8)

13We do not worry about the UV divergences: We have an effective
field theory and the UV cutoff is physical and finite.
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FIG. 21. Dispersion relation (position of the poles of the propagator) k(q), where k is the continuous approximation of the discrete effective
momentum kn = πnL, for Ix = 0 [(a), (b)] and Ix = 1 [(c), (d)]. The plots (b) and (d) are enlargements of the plots (a) and (c). Blue lines
denote Rek and red lines show Imk. Notice that the propagator contains only k2

n and q2, so the pole has two copies with opposite signs and is
either real or pure imaginary. Dashed lines are the corrected relations, with dressed propagator instead of the bare one. In the top panels, the
region of instability, with Imkn �= 0, is cured by the nonlinear corrections, whereas in the bottom panels the instability remains. This generically
happens at finite q and corresponds to the edge instability. Parameter values: I0 = 1, � = 15, L = 10 mm.

where the discrete “frequency” kn is summed in steps of π/L.
Other than the mass renormalization, the dressed propagator
has the same structure as the bare one. Now we will consider
what this means for the stability of the patterns.

1. The pole structure, stability, and dispersion relations

Consider the poles of the propagator defined by the zeros
of the eigenvalues of the matrix G−1

αβ (kn,q). The stable solution
corresponds to the situation where the perturbation δ�± dies
out along z, so the stability of the solution is determined by
the condition that the pole in q should have a nonpositive
imaginary part, i.e., that a small perturbation decays. The
denominator depends on kn,q solely through k2

n,q
2; it is

linear in k2
n and quadratic in q2. Therefore, each of the

two eigenvalues λ± defines two pairs of opposite poles,
±q∗+,±q∗−,±q∗∗+,±q∗∗−. Out of these, two pairs are positive
for all parameter values, so no imaginary part can arise, and we
have either two pairs of centrally symmetric imaginary poles,
or one such pair, or none at all. We thus expect the sequence
of symmetry-breaking transitions:

O(2) −→ C4 −→ C2. (C9)

Full circular symmetry is expected when there is no instability.
With a single pair of unstable eigenvalues, we expect a square-
like pattern withC4 symmetry, and with two pairs only a single
reflection symmetry axis remains, yielding the group C2. Only
in the presence of disorder in the background lattice intensity
pattern Ix can we expect the full breaking of the symmetry

group down to unity, but this is an explicit breaking and is not
captured by this analysis.

The dispersion relation for a typical choice of parameter
values is represented in Fig. 21, where we plot the location of
the pole k(q) in the continuous approximation (interpolating
between the kn values), with real parts of the pole in blue
and imaginary in red. Since we have two pairs of opposite
eigenvalues, the dispersion is P symmetric in x,y, and z

(remember that time is really another spatial dimension), and
any dispersion relation with a nonzero imaginary part will
have a branch in the upper half-plane, i.e., an unstable branch.
The only way out of instability is that the pole is purely
real, i.e., infinitely sharp—this quasiparticle-like excitation
signifies a solitonic solution. In Fig. 21, the dashed lines are
drawn with the bare propagator G(0) and the full lines with the
dressed propagator G, for the sets of parameter values. The
perturbation always reduces the instability, i.e., the magnitude
of the imaginary part of the poles—in Figs. 21(a) and 21(b)
completely, resulting in zero imaginary part, and in Figs. 21(c)
and 21(d) only partially. This reduction of instability likely
explains the fact that linear stability analysis works extremely
well for hyper-Gaussian beams (which have most power at
small values of q), as found in Ref. [32].

The fact that the imaginary region always lies at finite q

implies that the instability always starts at a finite scale, which
corresponds to the behavior seen in the edge instability, which
is shown, e.g., in Fig. 4. In order to understand the central
instability, which starts from a single point, corresponding to
q → ∞, one needs to take into account also the higher order
corrections from the potential (C6) which, as we discussed,
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FIG. 22. The movement of the poles in the complex momentum
plane in the case of central instability, for four different values of
the PR coupling constant � = 5,7,9,11. The complex momentum k

is denoted by ω. Starting from the C4-symmetric situation with two
pairs of complex-conjugate poles, we first break the symmetry down
to C2 and eventually lose all geometric symmetry as the two pairs
merge into two real poles. Parameter values I0 = Ix = 1,L = 10 mm.

diverge at q → ∞. While we always have a natural UV
cutoff, it may happen that the corrections become large (though
finite) before that UV scale is reached. We postpone a detailed
account for the subsequent publication, and content ourselves
to give only the diagram of the movement of the poles in
the complex plane. Higher order terms bring q-dependent
corrections and break the inversion symmetry, resulting in the
evolution of poles, as in Fig. 22. The instability corresponds to
the situations where at least one pole has a positive imaginary
part, i.e., the first three situations in the figure. The last pattern,
with no symmetry at all and two real poles, is stable (but not
asymptotically stable, as there is no pole with nonzero negative
imaginary part).

The analysis performed here is obviously incomplete, and
we have contented ourselves merely to give a sketch of how
the instabilities considered in the main text arise, as well
as to formulate a perturbation scheme which allows one
to study such phenomena. Further work along the lines of
Refs. [20,32,36] is possible by making use of our formalism,
and we plan to address this topic in the future.

APPENDIX D: DERIVATION OF THE VORTEX
HAMILTONIAN FROM THE MICROSCOPIC

LAGRANGIAN

Starting from the vortex solution (6), we want to obtain an
effective Hamiltonian for the vortex-vortex interaction. The
task is to separate the kinetic term of the winding phase (with
∇θ0± = ∑

i Q± ln |r − ri |) from (i) the intensity fluctuations
δψ± about some background value ψ0± and (ii) the nonvortex
phase fluctuations (δθ±) in (6). The first task requires us

to integrate out the amplitude fluctuations in the quadratic
approximation. We first write � = �0 + δ� and expand the
Lagrangian to quadratic order:

L = L0 + L2,

L0 = 1

2
∂rψ

†
0∂rψ0 + I0

2r2
|∇θ0α|2,

L2 = 1

2
∂rδ�

†
α∂rδ�α

+ 1

2r2
δ�†

α|∇θ0α|2δ�α + Veff(δ�±),

Veff(δ�
±) = −�δ�†δ� − �

1 + τu + τE0

2(1 + τu + Ix + I0)2

× [(�0δ�
†)2 + (�†

0δ�)2 − 2(1 + τu+ Ix + I0)

× δ�†δ� − (�0σ2δ�
†)(�†

0σ2δ�)]. (D1)

The zeroth-order (nonfluctuating) term L0 determines the in-
tensity I0 = ψ

†
0ψ0 and produces the kinetic term for the vortex

phase θα , which gives just two decoupled copies of the
conventional XY vortex gas. The quadratic part L2 becomes
quite involved when we separate the amplitude δψ and the
phase δθ . Inserting (6) into (D1), one gets a quadratic action
for δψα and δθα . The rest gives a coupled quadratic action
for the amplitude and phase fluctuations. Altogether, the
Lagrangian is

L = 1

2
(δψ ′2

+ + δψ ′2
− ) + 1

2r2
(δψ2

+ + δψ2
−)|∇θα|2

+ δψαK̂αβδψβ + (δψ†
αψα∇θα∇δθα + H.c.) + · · · ,

(D2)

where (· · · ) denote all terms of cubic or higher order in
amplitude or phase fluctuations δψα,δθα , and we have left
out the constant terms independent of all field values. Primes
denote the derivatives with respect to r . The first term
defines the intensity fluctuations through ψα(r), and the
second term (transformed through partial integration) yields
the aforementioned conventional Coulomb gas of vortices
after inserting the vortex solution from (6) for θα . The third
term has the meaning of stiffness or mass matrix for intensity
fluctuations and the last term gives rise to the coupling between
the flavors, upon integrating out δψ . The matrix K̂ is

K̂ = 1(
b + 3

2I0
)(

b − 1
2I0

)
(

b + I0
2 I0

I0 b + I0
2

)
,

(D3)
b = �

1 + τE0

2(1 + τE0)2
(2 + 2Ix + 3I0).

The action is quadratic in δψ ; therefore, we know how to
integrate it out and obtain an effective action depending only on
phase fluctuations. To do that, we need to solve the eigenvalue
equation for δψ obtained from (D2), which reads

∂rrδψα − Kαβδψβ =
( |∇θ |2

2r2
+ λ±

)
δψα, (D4)
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and is solved by diagonalizing the system δψα �→ δχα =
Uαβδψβ and reducing it to the Bessel equation:

δχ±(r) = √
r{C±Jν[

√
2(K11 ∓ K12 − λ±)r]

+D±Yν[
√

2(K11 ∓ K12 − λ±)r]}, (D5)

with ν =
√

1/4 + |∇θ |2, where Jν,Yν are Bessel functions
of the first and second kinds, respectively. For well-defined
behavior close to the vortex core (for r ∼ a), we have D± = 0,
and C± are arbitrary as the equation is linear. The eigenvalues
λn±,n = 0,1, . . . are obtained by requiring that the fluctuation
decays to zero at the crystal edge r = �:√

2K11 ∓ K12 − λn±� = jn(ν), (D6)

where jn is the nth zero of the Bessel function Jν . The values
λn± are impossible to express analytically in closed form;
however, it is not necessary for our purposes as � � a. The
functional determinant obtained after integrating out χ± is now
expressed in terms of the eigenvalues:

Kαβ = ln

(∏
n

λnαλnβ

)−1/2

= −1

2

∑
n

ln

(
K ′

α + K ′
β + 2jn(ν)2

�2

)
∼

− �

2
(K ′

α + K ′
β) + O

(
1

�

)
, (D7)

where K ′
± = 2K11 ∓ K12. Now we are left with a solely phase-

dependent quadratic Lagrangian:

L = ψ0α∇θα∇δθαK̂αβψ0β∇θβ∇δθβ + I0

2r2
|∇θα|2. (D8)

The final task is to integrate out the phase fluctuations, which
is a trivial Gaussian integration, yielding

L = I0

2r2
|∇θα|2 + I0∇θαK−1

αβ ∇θβ. (D9)

The resulting Lagrangian now depends only on the vortexing
phases θα . The first term is carried from the original La-
grangian, and it does not mix the flavors. But the second term,
stemming from the fluctuations, has nonzero mixed ± cross
terms. The quadratic derivative terms can be transformed by
partial integration to the familiar Coulomb gas form of the XY

model, with the same-flavor coupling which is already present
in absence of fluctuations, and the coupling between the
vortices of different flavors. Thus the existence of two beams
together with the fact that amplitude and phase fluctuations do
not decouple give us a richer system, with interaction between
two vortex flavors. For future use, it is more convenient to
look at the vortex Hamiltonian Hvort—the difference from
the Lagrangian lies just in the sign of the term Veff . This
finally yields the Hamiltonian [for Eq. (7), repeated here for
convenience]:

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑

i

(g0 	Qi · 	Qi + g1 	Qi × 	Qi), (D10)

with rij ≡ |ri − rj |, and the indices 1 � i,j � N sum over
all the vortices. The coupling constants g,g′,g0,g1 are the
result of integrating out the intensity fluctuations and in general
are given by rather cumbersome (and not very illustrative)
functions of �,I0,τ . We give the expressions at leading order
just for comparison with numerics:

g = I0 + 4b + 2I0

(2b + 3I0)(2b − I0)
,

g′ = 4I0

(2b + 3I0)(2b − I0)
,

b = �
1 + τ

L
− τ I0+Ix

1+I0+Ix

2
(
1 + τ

L
− τ I0+Ix

1+I0+Ix

)2

(
2 + 2

τ

L
+ 2Ix + 3I0

)
.

(D11)

These expressions are used later to redraw the phase diagram
in the space of physical parameters �,I0,Ix,L.

APPENDIX E: MULTIVORTEX MEAN-FIELD THEORY

For a mean-field treatment of a system with multiple
vortices, we start from the Hamiltonian (7) and introduce
the order parameter fields in the following way. Denote the
number of vortices with charge (1,1) by ρ2+ and the number of
vortices (1,−1) by ρ2−; due to charge conservation, this means
we also have ρ2+ vortices of type (−1,−1) and ρ2− vortices
with charge (−1,1). The number of single-charge vortices of
type (1,0) and (0,1) is denoted by ρ1+ and ρ1−, respectively.
Denote also ρ2 ≡ ρ2+ + ρ2− and δρ2 ≡ ρ2+ − ρ2− (notice that
−ρ2 � δρ2 � ρ2), and finally ρ1 ≡ ρ1+ + ρ1−. We insert this
into the vortex Hamiltonian Hvort and assume that the long-
ranged logarithmic interaction ln rij justifies the mean-field
approximation: For i �= j , we can approximate lnrij ∼ ln�,
assuming that average intervortex distance is of the same order
of magnitude as the system size. For the core energy, we know
that g0,g1 ∼ ln(a/ε) ∼ −lnε ∼ ln�, where in the last equality
we have assumed that the UV cutoff ε is of similar order
of magnitude as the inverse of the IR cutoff 1/�, which is
natural.14 Thus all terms are proportional to Lln� and we can
write

Fmf = βln
�

a
[2(g − 1)ρ2 + 2g′δρ2 + (g − 1)ρ1]

≡ Aρ2 + Bδρ2 + B

2
ρ1. (E1)

We use the notation β ≡ L to emphasize the analogy with the
free energy of spin vortices, where β is the inverse temperature.
The analogy is purely formal as our system is not subject
to thermal noise. Now the ground state is determined by
minimizing the free energy, i.e., the effective action of the
system. Notice that Fmf is linear in the fields ρ2,δρ2,ρ1 so the
optimal configurations have either Fmf = 0 or Fmf → −∞,
and the mean-field densities ρ1,2 are either zero or arbitrary

14Nevertheless, this is clearly not a rigorous argument. Our mean-
field calculation is somewhat sketchy and merely assumes that the
long-range interactions can safely be modeled as a uniform vortex
charge field.
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(formally infinite). This is a well-known property of the 2D
Coulomb gas and has to do with the fact that (assuming
the cutoff dependence has been eliminated) this system is
conformal invariant in the insulator phase, so all finite densities
ρ are equivalent: There is no other scale to compare ρ to.
Likewise, the prefactor β can be absorbed into the definition
of the coupling constants g,g′ and thus is not an independent
parameter (this is well known also from the single-flavor case).
Minimizing (E1) is an elementary exercise and we find again
four regimes, corresponding to the four phases we guessed
based on the single-vortex free energy F (1):

(1) For A > 0,A > |B|, the minimum is reached for ρ2 =
δρ2 = ρ1 = 0. In the ground state, there are no vortices at
all—the system is a vortex insulator.

(2) For B > 0,A + B < 0, giving g + g′ < 1,g′ > 0, the
free energy has its minimum for ρ2 > 0 and δρ2 = −ρ2

(notice that −ρ2 � δρ2 � ρ2). This means ρ2+ = 0,ρ2− > 0,
so opposite-charged vortices (Q,−Q) proliferate, and the
system is dominated by the interactions between the charges.
This is the frustrated vortex insulator regime. Since g′ < 0, the
single-charge vortices (density ρ1) are suppressed.

(3) For B < 0,A + B < 0, i.e., g + g′ < 1,g′ < 0, the
minimum is reached for ρ2 = δρ2 > 0, i.e., ρ2− = 0, so the
vortices (Q,Q) can proliferate. However, since g′ < 0, there
is also nonzero single-flavor density ρ1 and the proliferation
of vortices (Q,0) and (0,Q) which generically dominate over
two-flavor vortices. This is the conductor phase, with mostly
single-flavor vortices (as in the standard XY model).

(4) The point A = B = 0 is special: Naively, from (E1),
arbitrary nonzero ρ1,ρ2,δρ2 are allowed. Of course, higher
order corrections will change, this but the energy cost of vortex
formation will generically be smaller than in previous phases.
This is the vortex perfect conductor phase. In the mean-field
approach, it looks like a single point, but that will turn out to
be an artifact of the mean-field approach: For small nonzero
A,B the system still remains in this phase.

In terms of the original parameters g,g′, one sees the
insulator phase is given by g + g′ > 1, and the conductor and
the FI are separated by the line g′ = 0. We can now sketch
the phase diagram, which is given in Fig. 2(a), side by side
with the more rigorous diagram obtained by the RG flow, in
Sec. III B 2.

APPENDIX F: COUNTERPROPAGATING BOUNDARY
CONDITIONS

In the derivation of the vortex Hamiltonian and its RG
analysis, we have pulled under the rug the treatment of
the CP boundary conditions: The effective Hamiltonian (and
consequently the partition function and the phase diagram)
depends solely on the bulk configuration, and nowhere can one
see the fact that �+(z = 0; r,t) and �−(z = L; r,t) are fixed.
Now we will explicitly show that these boundary conditions
are irrelevant in the RG sense; i.e., they contribute additional,
boundary terms to the effective Hamiltonian, but these terms
do not change the fixed points to which the solution flows.

The full Hamiltonian with correct CP boundary conditions
is obtained by adding the F source at z = 0 and the B source
at z = L to the Lagrangian L from (4) or, equivalently, to the
equations of motion. The sources impose the conditions F (z =

0; x,y; t) = F0(x,y) and B(z = L; x,y; t) = B0(x,y) so they
equal

J+ = F0(x,y)δ(z), J− = B0(x,y)δ(z − L), (F1)

and the full Lagrangian is

LCP = L + J+�+ + J−�− �→ L + F0(x,y)�+(z; x,y; t)

+ eikzB0(x,y)�−(z; x,y; t). (F2)

Unlike the Dirac δ source (C3) for the Green’s function,
now the source has nontrivial dependence on transverse
coordinates. Now we can insert the vortex solution (6) in
both �± and F0,B0 and repeat the steps from the subsequent
derivation. The vortex charges in F0 can be denoted by
	P (+)
i ′ ≡ (Pi ′+,0) and 	P (−)

i ′ ≡ (0,Pi ′−); by definition, the +
component of B0 as well as the − component of F0 are zero and
thus carry no vorticity. The primed indices refer to the vortices
in the input beams, and the nonprimed, like before, to the bulk
vortices. Notice the source term changes sign upon performing
the Legendre transform, appearing as −J+�+ − J−�− in the
Hamiltonian.

Now we will check if the RG flow of the Hamiltonian with
boundary terms is affected by the sources. In the notation
introduced above, the total vortex Hamiltonian is

HCP =
∑
i,j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑
i ′,j

δ(z)Pi ′+(gQj+ + g′Qj−) ln ri ′j

+
∑
i,j ′

δ(z − L)Pj ′−(gQi− + g′Qi+) ln rij ′ . (F3)

Notice there is no source-source interaction: Same-flavor
interaction cannot exist as Pi ′− = Pj ′+ = 0, and cross-flavor
interaction does not exist as J+ and J− exist at different
z values, i.e., the cross term would be proportional to
δ(z)δ(z − L) and thus vanishes. The presence of sources breaks
the spatial homogeneity, complicating the traces (integrals over
the positions of virtual vortex-antivortex pairs), but does not
change the main line of the calculation. The fluctuation of the
partition function due to vortex pair creation is now

δZ
Z = 1 + y4

4

∑
	q

∫
d2r

×
∫

d2r12e
−C(	q,r1;−	q,r2)−∑j ′ [D+

j ′ (	q,r1)−D−
j ′ (	q,r2)]

× [eC( 	Q1,R1;	q,r1)+C( 	Q1,R1;−	q,r2)+C( 	Q2,R2;	q,r1)+C( 	Q2,R2;−	q,r2)

− 1]. (F4)

We have denoted C( 	Q1,R1; 	Q2,R) ≡ (g 	Q1 · 	Q2 +
g′ 	Q1 × 	Q2) ln R12, and the coupling to the sources is
encapsulated in the function

D±
j ′ (	q,r) ≡ δ(z − z±)(g±	q · 	Pj ′ + g′

± 	q × 	Pj ′ ) ln |r − rj±|,
(F5)
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with z+ = 0,z− = L. The coupling constants g±,g′
± are

obtained from g,g′ in (F4) by replacing

I0 �→
√

I0I±, (F6)

with I+ = |F0|,I− = |B0|. Now the exponential of the extra
term with sources also needs to be expanded in r12, as
the combinations 2r = r1 + r2,r12 = r1 − r2 do not decouple
anymore and exact integration is impossible. After writing
D±

j ′ (	q,r1,2) = D±
j ′ (	q,r) ± r12 · ∇D±

j ′ (	q,r) + · · · and similarly
for C, we notice first that the zeroth-order terms from
Dj ′± cancel out: D±

j ′ (	q,r) + D±
j ′ (−	q,r) = 0. Then we get (at

quadratic order in r12 in the integrand):

δZ
Z = 1 + y4

4

∑
j ′

∫
d2r

∫
d2r12e

−C(	q,r12;−	q,0)

×
{

r12 · [∇C( 	Q1,R; 	q,r) + ∇C( 	Q2,R; −	q,r)]

+ r2
12

2

∣∣∣∣∇C( 	Q1,R; 	q,r) + ∇C( 	Q2,R; −	q,r)

∣∣∣∣
2}

× [r12 · [1 − ∇D+
j ′ (	q,r) + ∇D−

j ′ (	q,r)]

+{r12 · [∇D+
j ′ (	q,r) + ∇D−

j ′ (	q,r)]}2] + · · ·

≡ 1 + y4

4

[
I10 + I20 − I11 + O

(
r3

12

)]
. (F7)

The integral Imn is the term with the contribution of order rm
12

from the second line in the integrand and with the contribution
of order rn

12 from the third line. The integrands in Imn are thus
of order m + n in r12, m coming from the expansion of D±

j ′ and
n from the expansion of C. By homogeneity, I01 = 0 and I02

is the same integral that appears in absence of sources, whose
calculation was used in obtaining (13) and which gives the
right-hand side of the RG flow (14). The remaining integral
I11 is the new ingredient, and the only one which depends on
the sources. Representing it as

I11 = π2

4

∑
j ′

∑
α=±

∑
σ=1,2

δ(z − zα)

× (gα
	Qσ · 	Pj ′α + g′

α
	Qσ × 	Pj ′α)

×∇ 1

|R12| · ∇ 1

|rjα| Ĩj ′α, (F8)

we compute the integral Ĩj ′α in polar coordinates:

Ĩj ′α = 1

2

∫ 2π

0
dθj ln

(
r2

12 − 2r12rj ′α cos θj + r2
j ′α
)∣∣�2

�1
,

(F9)

where θj ′α is the angle between rj ′α and r12. Assuming the RG
scale changes as �1 = �,�2 = �(1 + �), for small � we can
expand the integrand, getting

Ĩj ′α =
∫ 2π

0
dθj ′

�2 − �rj ′α cos θj

�2 − 2�rj ′α cos θj + r2
j ′α

� + O(�2)

= 2π� + O(�2). (F10)

The complicated dependence on the positions of the sources
disappears completely in the first order in �.15 Altogether, by
comparing the outcome of (F7) to the original Hamiltonian
(F3), we see that the renormalization of the bulk interaction
between 	Q1 and 	Q2 is unaffacted by the sources, given
as before by the I02 term, and the source-bulk coupling
renormalizes with a strictly negative shift (as Ĩj ′α = 2π > 0).
The flow equations for g,g′ couplings are unchanged, being
the same as in (14). The bulk-to-boundary couplings g±,g′

±
have the flow equations

∂g±
∂�

= −π3N�,
∂g′

±
∂�

= −π3

2
N�, (F11)

where N = ∑
j ′
∑

α 1 is the total vorticity of the sources. This
obviously flows to g±,g′

± = 0.
Intuitively, one may wonder how come such an important

thing as the CP geometry has no bearing on the vortex
dynamics; surely the behavior of a copropagating system
would be expected to differ from a counterpropagating
system. The answer is that the CP geometry does enter our
calculations—the B beam has an extra minus sign in the
equations of motion (1) (alternatively, in the Lagrangian in
Eq. (4)); equivalently, the symmetry group of the effective
potential in the Lagrangian is SU(1,1), not SU(2) as it would
be for two copropagating beams. Finally, let us emphasize
again that in the numerical simulations we directly solve the
propagation equations (1) together with (2); i.e., we directly
take into account the CP boundary conditions—no analytical
approximations whatsoever are used in the numerics, and no
use is made of the effective vortex Hamiltonian.

APPENDIX G: ORDER PARAMETERS AND RG ANALYSIS
OF THE CP VORTICES IN THE PRESENCE OF DISORDER

1. Saddle-point solutions

We start by rewriting the replicated partition function
Z̄n in terms of pα,qαβ and inserting the constraints which
encapsulate their definition in Eq. (19):

1 �→
∫

D
[
λα

(μ)

]
exp

[
λα

(μ)

(
p(μ)

α − 1

N

N∑
i=1

Q
(μ)
iα

)]
, (G1)

1 �→
∫

D
[
λ

αβ

(μν)

]
exp

⎡
⎣λ

αβ

(μν)

⎛
⎝q

(μν)
αβ − 1

N

N∑
i,j=1

Q
(μ)
iα Q

(ν)
jβ

⎞
⎠
⎤
⎦.

(G2)

We have five constraints, λ++
(μν),λ

−−
(μν),λ

+−
(μν) = λ−+

(μν),λ
+
(μ),λ

−
(μ),

for the corresponding five order parameters in (19). We can
denote

K̂ ≡
(

λ++
(μν) λ+−

(μν)

λ+−
(μν) λ−−

(μν)

)
, 	λ ≡

(
λ+

(μ)
λ−

(μ)

)
. (G3)

We will also sometimes leave out the replica indices μ,ν to
avoid cramming the notation too much. Now we can first
integrate out the vortex degrees of freedom Q

(μ)
iα from (18)

15The additional assumption is that � > rj ′α so the integrand
contains no poles; this is clearly justified as � is the length cutoff.
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to get the effective action

Seff = −β2

4

n∑
μ,ν=1

[σ 2
++(q(μν)

++ )2 + 2σ 2
+−(q(μν)

+− )2 + σ 2
−−(q(μν)

−− )2] − β

n∑
μ=1

[J+
0 (p(μ)

+ )2 + 2J+−
0 p

(μ)
+ p

(μ)
− + J−

0 (p(μ)
− )2]

+ 1

2
ln det K̂ − 1

4
	λK̂−1	λ −

n∑
μ,ν=1

(λ++
(μν)q

(μν)
++ + λ+−

(μν)q
(μν)
+− + λ−−

(μν)q
(μν)
−− ) −

n∑
μ=1

	λ(μ) · 	p(μ). (G4)

The saddle-point equations for the constraints give the con-
straints in terms of the expectation values q(μν),p(μ). Luckily,
the equation for 	λ is easy:

∂Seff

∂	λ = K̂−1	λ − 	p = 0, (G5)

so we immediately solve 	λ = K̂ 	p. Now plugging this into the
equations for the three remaining constraints yields

∂Seff

∂λ±±
= 1

2

Xλ−1
±±

X2 − Y 2
− q±± + 1

4
(p±)2 = 0, (G6)

∂Seff

∂λ+−
= Yλ−1

+−
X2 − Y 2

− q+− + 1

2
p+p− = 0. (G7)

We have denoted X = det λ++ = det λ−−,Y = det λ+− (these
have a well-defined limit for n → 0). It is trivial to write
λ±±,λ+− from the above expressions, and we can feed the
solutions for all the constraints into the effective action and
then solve the saddle-point equations for the order parameters
p±,q++,q−−,q+−. Full equations are too complex to be
solved, even approximately. We will simplify the problem with
the following reasoning. The sums over single-replica order

parameters generically scale as
∑

μ p
(μ)
± ∼ ∑

μ (p(μ)
± )

2 ∼ n,

whereas the double-replica parameters have
∑

μ,ν q
(μν)
αβ ∼ n2.

This means that in the limit n → 0, the p± terms dominate over
qαβ terms. Therefore, if p± �= 0 we can disregard the quantities
qαβ or expand in a series over them, simplifying the equations
significantly. Only if the replica symmetry breaking imposes
p± = 0 (not every replica-symmetry-breaking configuration
does so) are the qαβ order parameters significant, and the
saddle-point equations with p± = 0 are again approachable.

Consider first the case p± = 0. After some algebra, the
effective action is now

Seff = −β2

4

n∑
μ,ν=1

[σ 2
++(q++

(μν))
2 + 2σ 2

+−(q+−
(μν))

2

+ σ 2
−−(q++

(μν))
2] + 1

2
ln(X2|q++|−1 · |q−−|−1

− 4Y 2|q+−|−2). (G8)

Consider first the ansatz when the q±± fields are nonzero,
whereas the mixed-flavor field q+− is zero. In this case,
the second term in (G8), coming from the determinant K̂ ,
simplifies further and we get the saddle-point equation

− β2

2
σ 2

±±q±± − 1

2
(q±±)−1 = 0, (G9)

which is the same as for the infinite-range spin-glass Ising
model [42,54]. One obvious solution is q±± = q+− = 0, the
completely disordered system with no vortex proliferation—
the familiar insulator phase. It is easy to check that this is
indeed a minimum of the effective action Seff . There is also a
replica-symmetric but nontrivial solution

q±±
(μν) = Q±±

0 + (1 − Q±±
0 )δμν, (G10)

which yields the solution Q±±
0 = 1 − 1/(βσ±±). However,

this solution is unstable and is not observable. A stable
nontrivial solution is obtained if the replica symmetry is
broken. The ansatz is well known from the spin-glass literature
(e.g., Ref. [42]) and has a ρ × ρ matrix Q̂±± on the block-
diagonal and the constant zero elsewhere, with

Q̂±± = Q±±
1 + (1 − Q±±

1 )δμν, μ,ν = 1, . . . ,ρ. (G11)

Equation (G9) suggests that Q±±
1 > 0 for sufficiently large β,

i.e., small L. However, no analytical solution for the elements
Q±±

1 exists and they have to be solved for numerically,
by plugging in the solution into the effective action and
minimizing it. This is an easy task (for chosen values of
the parameters and disorder statistics) but we will not do it
here as we do not aim at quantitative accuracy anyway; we
merely want to sketch the phase diagram. Now if the third
field q+− is nonzero, it satisfies the same equation as (G9)
just with σ 2

++ �→ 2σ 2
+−. The three combinations of nonzero

order parameters correspond to the three familiar phases:
q±± �= 0 is the conductor, q+− �= 0 is the frustrated insulator,
and q±±,q+− �= 0 is the perfect conductor.

The solutions with 	p �= 0 yield new physics. In this case, we
have at leading order λ±± = −2X/(X2 − Y 2)(p±)−2,λ+− =
−2Y/(X2 − Y 2)(p+p−)−1, so the effective action is

Seff = −β

n∑
μ=1

[J+
0 (p+

(μ))
2 + 2J+−

0 p+
(μ)p

−
(μ) + J−

0 (p−
(μ))

2]

− ln p+p− + O(|qαβ |2) + O

( |qαβ |
| 	p|2

)
, (G12)

giving the saddle-point equation

J±
0 p±

(μ) + J+−
0

β
p∓

(μ) + (p±
(μ))

−1 = 0, (G13)

which easily gives

p± = s1

√√√√√ 1

J±
0 + s2

J+−
0
β

√
J+

0

J−
0

, (G14)

with s1,2 ∈ {±1}. The solution is the same for every μ and
p±

(μ) = (p±,p±, . . . ,p±). Now, depending on the sign of the
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FIG. 23. Free energy (effective action S
(μ)
eff ) in a given replica

subsystem in a photonic lattice with quenched disorder, for the case
when the order parameter p± = ∑

i Qi± has a nonzero saddle-point
solution for the action in a given subsystem (replica). Darker (blue)
tones are lower values. The ground states of the system are the
local minima. In panel (a) for J + = −J − = 1, there is a single
local minimum. In case (b), for J + = −J − = 1, we see two distinct
minima of equal height, for two different nonzero values of p±. Such
potential energy landscape fits the description of glassy systems.

determinant J+
0 J−

0 − (J+−
0 )

2
, the solutions for different s1,2

may be minima or saddle points. In either case, we have a phase
with nonzero local charge density, which is the meaning of 	p. If
there are multiple minima, we call this phase vortex glass. The
reader may argue that true glass should satisfy more stringent
conditions and that our phase is not a true glass. Depending
on the viewpoint this may well be accepted, and we use the
term “glass phase” merely as shorter and more convenient
than “phase with power-law correlation decay, no long-range
order, and frustrated free energy landscape.” The phase with a
single minimum will be called charge density wave, as it has
a unique ground-state configuration yielding macroscopically
nonzero charge density; i.e., it has a true long-range order.
On the other had, with multiple minima the replica-averaged
charge density sums to zero. The landscape, i.e., the effective
action of the system for given replica (μ) as a function of
p±

(μ), is given in Fig. 23 as the density map of the function
Seff(p+,p−) dependence for J+

0 = −J−
0 = 1 (glass phase, A)

and J+
0 = J−

0 = 1 (charge density wave, B). We see that the
glassy phase shows two inequivalent minima in each replica,
with s1 = −s2 = ±1 in Eq. (G14), so the total action, the
sum of actions of all replica subsystems, can have one and
the same value for many configurations, the definition of a
highly frustrated system, one of the reasons we dub this phase
glass. The charge density wave only has a single minimum for
s1 = s2 = 1.

2. RG flow equations

The starting Hamiltonian is the same as in (18). Now we will write it out more explicitly, keeping the distance-dependent
parts:

βHeff = β

n∑
μ=1

∑
i,j

(
ḡc

	Q(μ)
i · 	Q(μ)

j + ḡ′
c
	Q(μ)

i × 	Q(μ)
j

)
ln rij − β2

2

n∑
μ,ν=1

∑
i,j

Q
(μ)
iα Q

(ν)
iβ σ 2

αβQ
(μ)
jα Q

(ν)
jβ . (G15)

We have denoted the elements of J0 by J++
0 = J−−

0 = ḡc,J
+−
0 = J−+

0 = ḡ′
c (the bars over the letter remind us that these are

disorder-averaged values). The fluctuation of the partition function is completely analogous to the clean case, only it has the
additional nonlocal quartic term. It can again be expanded over r12 as in (12) but the quartic term contains no small parameter for
the power series expansion and has to be kept in the exponential form. Starting from the expression for the fluctuation analogous
to the clean case (12), we get

δZ
Z = 1 + y4

4

∑
	q(ρ),	q(σ )

e− β2

2 (	q(ρ),−	q(σ ),	q(ρ),−	q(σ ))+ β2

2 ( 	Q(μ),	q(ρ), 	Q(ν),	q(σ ))
∫

dr12r
3
12e

g	q(ρ)·	q(ρ)+g′ 	q(ρ)×	q(ρ)

×
[ ∫

drr2
(
g 	Q(μ)

1 · 	q(ρ) + g′ 	Q(μ)
1 × 	q(ρ)

)∇ ln |R1 − r| + (
g 	Q(μ)

2 · 	q(ρ) + g′ 	Q(μ)
2 × 	q(ρ)

)∇ ln |R2 − r|
]2

. (G16)

We have used the notation

(	q1,	q2,	q3,	q4) ≡ σ 2
++q1+q3+q2+q4+ + σ 2

+−(q1+q3−q2+q4− + q1−q3+q2−q4+) + σ 2
−−q1−q3−q2−q4−. (G17)

Now we trace out the fluctuations first by integrating over r and doing some simple algebra:

δZ
Z = [

1 + 16y4(g + g′)2 cosh(β2σ 2
++ + β2σ 2

+−) cosh(β2σ 2
−− + β2σ 2

+−)
( 	Q(μ)

1 · 	Q(ν)
2 + 	Q(μ)

1 × 	Q(ν)
2

)
ln R12

]
× [

1 + 16y4(g − g′)2 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−)
( 	Q(μ)

1 · 	Q(ν)
2 − 	Q(μ)

1 × 	Q(ν)
2

)
ln R12

]
×
[

1 − 2πy4e− β2

2 (σ 2
++(q(μ)

+ q
(ν)
+ )2+σ 2

+−(q(μ)
+ q

(ν)
− )2+σ 2

+−(q(μ)
− q

(ν)
+ )+σ 2

−−(q(μ)
− q

(ν)
− )2)

∫
drr1−β(g	q(μ)·	q(μ)+g′ 	q(μ)×	q(μ))

]
. (G18)

The next step is the summation over all possible ±1 charges of virtual vortices 	q(μ),	q(ν) (the two replica indices mean two
summations from 1 to n), which requires quite some algebra. The renormalized partition function Z̄n finally gives the RG flow
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equations:

∂g

∂�
= −8π (g + g′)2y4 cosh(β2σ 2

++ + β2σ 2
+−) cosh(β2σ 2

−− + β2σ 2
+−)

− 8π (g − g′)2y4 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−),

∂g′

∂�
= −π (g + g′)2y4 cosh(β2σ 2

++ + β2σ 2
+−) cosh(β2σ 2

−− + β2σ 2
+−)

−π (g − g′)2y4 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−),

∂y

∂�
= 2π

[
1 − g − g′ − β2

4
(σ 2

++ + 2σ 2
+− + σ 2

−−)

]
y,

∂σ 2
αβ

∂�
= −2πβ4σ 4

αβy4. (G19)

As discussed in the main text, the fixed point must lie either at y = 0 or y → ∞, depending on the magnitude of g + g′ + β2σ 2.
For y → 0, three clean fixed points remain, which flow to zero disorder: These correspond to PC, FI, and conductor. The
disordered fixed point also has y → 0 but the disorder is nonzero: This is the CDW phase from the mean-field analysis, the dirty
analog of the insulator. Finally, when y → ∞ and nonzero σ 2 at the fixed point, we expect glassy behavior.
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agating pattern dynamics: From narrow to broad beams, Opt.
Commun. 281, 2291 (2008).
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We explore numerically and analytically the pattern formation and symmetry breaking of beams propagating
through left-handed (negative) nonlinear metamaterials. When the input beam is a vortex with topological charge
(winding number) Q, the initially circular (isotropic) beam acquires the symmetry of a polygon with Q, 2Q, or
3Q sides, depending on the details of the response functions of the material. Within an effective field-theory
model, this phenomenon turns out to be a case of spontaneous dynamical symmetry breaking described by a
Landau-Ginzburg functional. Complex nonlinear dependence of the magnetic permittivity on the magnetic field
of the beam plays a central role, as it introduces branch cuts in the mean-field solution, and permutations among
different branches give rise to discrete symmetries of the patterns. By considering loop corrections in the effective
Landau-Ginzburg field theory we obtain reasonably accurate predictions of the numerical results.

DOI: 10.1103/PhysRevA.100.053853

I. INTRODUCTION

The idea of a material with negative refraction index was
first considered long before it could be realized in experiment,
in the now famous paper by Veselago [1], in 1968. He con-
sidered a material with negative electric permeability ε and
magnetic permittivity μ, and predicted a number of interesting
properties in such systems, among them negative refraction.
Only much later did it become possible to combine elements
with negative ε and negative μ at a microscopic level, as a
composite metamaterial. First experimental realizations were
reported in [2,3]. Negativity, or left-handedness, is typically
only achieved in a narrow frequency range, close to the
resonant frequency of the conductive elements of the metama-
terial. This was the original motivation for studying nonlinear
effects in these systems. Nonlinearities can be strengthened
by appropriate design at the microscopic level. The study
of nonlinear phenomena in metamaterials started with [4].
This has become a broad and important field in metamate-
rials research [5]. Nonlinear phenomena like solitons [6,7],
nonlinear surface waves [8], modulational instability [9,10],
and ultrashort pulses [11] were observed. Other work in left-
handed metamaterials relevant for our paper includes, among
others, [12–20]. We have no intention of being exhaustive
in this short review of the literature; we merely mention the
results we have directly used or found particularly inspiring.

The focus of our paper is the dynamics of symmetry
breaking in intensity patterns of electromagnetic waves propa-
gating through a left-handed nonlinear metamaterial. Numer-
ical solutions of the equations of motion reveal that circular

*trivko98@gmail.com
†mcubrovic@gmail.com

(usually Gaussian) input beams turn into polygonal patterns,
with some discrete symmetry. This fits the textbook notion of
symmetry breaking, more specifically dynamical symmetry
breaking. The general theory of dynamical criticality is by
now well developed [21] and has been applied to numer-
ous systems [22]. In [22], a systematic theory of isotropy-
breaking transition is presented, though mainly for periodic
and quasiperiodic structures (convection in fluids, fluctuations
in quasicrystals). The basic mechanism is that the system
develops momentum eigenmodes of a fixed module but with
multiple discrete directions on the sphere |k| = const in mo-
mentum space. In nonlinear negative materials, the situation
is complicated by the strong frequency dependence of the
magnetic permittivity but the same basic logic remains. At
a fundamental level, this situation can be understood from
the viewpoint of a spatially nonuniform Landau-Ginzburg
theory. Quantitative accuracy is, however, hard to achieve; this
requires cumbersome perturbative calculations. Ultimately,
numerical work is the best way to describe the patterns in
detail; they look like polygons or, occasionally, necklaces,
with C3Q, C2Q, or CQ symmetry, depending on the parameter
regime; here, Q is the topological charge of the beam, a
property we will discuss in detail in the next paragraph.
The paper [10] is very important in this context: it starts
from the model derived in [9] and studies mainly necklace
configurations, which consist of discrete beads (spots of high
intensity) distributed more or less uniformly along a circle.
The authors find the same C3Q symmetry that we see. Our
goal is to gain a detailed understanding of the phenomenon,
and move beyond single beams toward collective behavior and
interactions.

We have chosen to study this phenomenon on vortices,
topologically nontrivial solutions where the phase of the
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complex electric and magnetic field winds one or more times
along a closed line encircling the vortex core. Vortices appear
in many systems described by a complex field, i.e., a field
with U(1) phase invariance [23,24]. In optics, this is just the
complex beam envelope of the electric and magnetic field.
The phase of any complex wave function or field can wind
along some closed line around a defect, forming a vortex.
Famously, vortices may coexist with the superconducting
order [U(1) symmetry breaking] in type-II superconductors
or they may exist only in the normal phase, upon destroying
the superconductivity (type I). Pattern-forming systems like
fluids and soft matter often have rich vortex dynamics [22].
Other examples of vortex matter in nature arise in liquid
helium [25], Bose-Einstein condensates [26], and magnetic
systems [27]. In two spatial dimensions, interactions among
the vortices lead to a vortex unbinding phase transition of
infinite order found by Berezinsky, Kosterlitz, and Thouless
for the planar XY model [28]. We study a three-dimensional
metamaterial but with an elongated geometry, so we treat it
as a 2 + 1-dimensional system (the x and y coordinates are
spatial dimensions and the z direction has the formal role
of time). We therefore have a similar situation to the XY
model but with different equations of motion and different
phenomena.

In addition to direct numerical and analytical study of
the equations of motion, we also propose an effective field-
theory Lagrangian which gives slightly different equations but
captures the key properties of the system. The Lagrangian
form makes it easier to understand some of the phenomenol-
ogy we find in numerical simulations; the foundations of
the symmetry breaking are obtained from this model in a
natural way. Numerical work is done with original equations
of motion, as they are directly grounded in the microscopic
physics. The Lagrangian is just a phenomenological tool to
facilitate the theoretical understanding. It is difficult (and
perhaps impossible) to package the exact original equations
in a Lagrangian form because the system is strongly nonlinear
and dissipative. Dissipative systems can be encapsulated in
a Lagrangian (our Lagrangian is also dissipative) but with
some limitations, and there is certainly no general method
to write down a Lagrangian for a broad class of dissipative
systems.

The structure of the paper is the following. In the next
section we describe the model of a nonlinear left-handed
metamaterial, following closely the wave propagation equa-
tions used in previous research, e.g., in [4,6,7] and oth-
ers, which correspond to a specific experimentally realizable
metamaterial. We also formulate and motivate the field-theory
model of the system. In the third section, we describe our
numerical findings, above all the anisotropy of the intensity
patterns. The fourth section offers the theoretical explanation
for the patterns: first by a direct approximate solution of
the propagation equations, and then also from field theory,
which makes the physics of the symmetry breaking partic-
ularly clear. In the fifth section we briefly discuss how to
check our predictions in experiment and how prominent the
effects of symmetry breaking are compared to other possible
instabilities in realistic metamaterials. The last section sums
up the conclusions. We have included some long calculations
in the Appendices.

II. WAVE EQUATIONS IN A NONLINEAR
LEFT-HANDED METAMATERIAL

We adopt the model of [4,7] to describe a left-handed
metamaterial with a nonlinear response. Microscopically, the
material is realized as a lattice of split-ring resonators and
wires. In the terahertz range, this is an experimentally well-
studied system [3]. In [6], a detailed microscopic derivation
is given, starting from the current transport equations in the
resonator-wire system. The outcome is a nonlinearity similar
to that postulated phenomenologically in [4]. We adopt essen-
tially the same model, described by the electric permeability
ε and the magnetic permittivity μ:

ε(E , E†) ≡ ε(|E |2) = (εD0 + α|E |2)

(
1 − ω2

0

ω(ω + ıγ )

)
, (1)

μ(H, H†) ≡ μ(|H |2) = 1 + Fω2

ω2
0NL(|H |2) − ω2 + ı�ω

, (2)

with α = 1 or −1 for self-focusing or self-defocusing non-
linearity, respectively. Frequency is denoted by ω and εD0 is
the linear part of the permittivity. By F , γ , and � we denote
the filling factor of the material and the electric and magnetic
damping coefficients. Equations (1) and (2) allow us to model
also the real (lossless) dielectric response by putting γ = 0.
For the magnetic field, the permittivity will in general stay
complex even for � = 0, as the nonlinear frequency of the
resonator rings ω0NL can always have a nonzero imaginary
part. This frequency is related to the magnetic field through
the relation (X ≡ ω0NL/ω0):

|H |2 = αA2 (1 − X 2)[(X 2 − �2)2 + �2γ 2]

X 6
, (3)

where � ≡ ω/ω0, ω0 is the eigenfrequency of the rings,
and A is a parameter which can be derived microscopically
[4,6,7]; for our purposes, it can be treated just as a phe-
nomenological parameter. This cubic equation yields three
branches for ω2

0NL. All these branches are physical and cor-
respond to different possible nonlinear oscillations [7]. Now
the equations of motion are just the Maxwell equations in a
medium described by (1) and (2), in the approximation of
slowly changing beam envelopes. We assume an elongated
(cylindrical or parallelepipedal) slab of metamaterial, so we
can employ the paraxial beam approximation (e.g., [29]). The
beam is initially collimated along the longitudinal axis z and
focuses or defocuses slowly in the transverse x-y plane due
to the nonlinearity of the material. The electric and magnetic
field Ê (t ; x, y, z) and Ĥ (t ; x, y, z) are directed along the z axis.
From now on, the speed of light is put to unity, c = 1. All the
steps in deriving the nonlinear Schrödinger-like equation are
well known so we merely state the final result here, which is
quite close to the equations used in [13] in 1 + 1 dimension,
or the equations found in [9–11]. Full derivation can be found
in Appendix A. The equations of motion turn out to be

− ı

b
∂zE = ∇2

⊥E + [ω2ε(|E |2)μ(|H |2) − k2]E

− ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − ı

∂zμ(|H |2)

2μ(|H |2)
E , (4)

− ı

b
∂zH = ∇2

⊥H + [ω2ε(|E |2)μ(|H |2) − k2]H. (5)
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Here, ∇⊥ ≡ (∂x, ∂y) is the nabla operator in the transverse
plane, k is the wave vector along the z direction, and b is the
characteristic propagation length along the z axis. Equations
of motion (4) and (5) together with the equations (1) and (3)
for the permittivities contain the following five parameters:
εD0, F, �, γ , and ω0. Realistic values for all the parameters
are discussed in [7]. The natural length scale of the model
is dominated by the 1/ω0 scale. Dimensional analysis of the
terms on the right-hand side of (4) determines the length
scale b in (4) and (5) as b ∼ 1/ω0. Both in analytical and in
numerical calculations, we express the transverse coordinates
(x, y) in millimeters but the longitudinal coordinate z is often
stated in units of b. This is because the length scales of
all patterns in the transverse plane are similar whereas the
propagation lengths along z can vary by an order of magnitude
as γ and � are varied, so it is more natural to express them in
terms of the characteristic distance b.

A. field-theoretical model

For some theoretical considerations it is useful to formulate
a Lagrangian (gradient) model which captures the essential
features of the equations of motion (4) and (5). As it often hap-
pens in studies of complex nonlinear pattern-forming systems,
we cannot easily write the original equations in such a form.
Instead, we construct a field theory which yields equations of
motion somewhat different from the original ones but which
still give the same phenomenology, and are able to explain
the results of numerical calculations with the equations (4)
and (5).

Let us think what such a field theory would look like. The
terms with the gradient of magnetic permittivity obviously
introduce dissipation, which physically originates from the
losses in the inductive rings of the metamaterial. In general,
dissipative systems do not have a Lagrangian, although a
number of generalized Lagrangian approaches exist for dis-
sipative systems: either with more general functional forms of
the Lagrangian, or with a dissipative function in addition to
the Lagrangian, or with extra degrees of freedom [30,31]. We
will take the first, most conventional of the three approaches:
we will consider a conventional Lagrangian (no dissipative
function, no extra degrees of freedom) which gives slightly
generalized equations of motion compared to (4) and (5),
with dissipative terms for both electric and magnetic fields
coming from the complex terms in the effective potential. The
effective action reads

L = LE + LH ,

LE = ı

2μ(|H |2)
(E∂zE

† − E†∂zE )

+ |∇⊥E |2
μ(|H |2)

+ k2|E |2
μ(|H |2)

− ω2ε(|E |2)|E |2,

LH = ı

2ε(|E |2)
(H∂zH

† − H†∂zH )

+ |∇⊥H |2
ε(|E |2)

+ k2|H |2
ε(|E |2)

− ω2
∫ HH†

0
dxμ(x). (6)

The last term in LE equals −ω2
∫ EE†

0 dxε(x), analogously to
the corresponding term in LH , but since ε is polynomial in

E†E the integral can be solved explicitly. Now (6) gives the
equations of motion:

− ı

b
∂zE = ∇2

⊥E + [ε(|E |2)μ(|H |2) − k2]E

− ı∂zμ(|H |2)

μ(|H |2)
E − ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − 	H , (7)

− ı

b
∂zH = ∇2

⊥H + [ε(|E |2)μ(|H |2) − k2]H

− ı∂zε(|E |2)

ε(|E |2)
H − ∇⊥ε(|E |2)

ε(|E |2)
∇⊥H − 	E , (8)

where 	E ,H are related to the fluxes of the electric and
magnetic field (prime denotes the derivative of ε and μ with
respect to their arguments E†E and H†H):

	H = ε′(|E |2)

ε2(|E |2)

(
ı

2
(H∂zH

† − H†∂zH )

+ |∇⊥H |2 + k2|H |2
)

, (9)

	E = μ′(|H |2)

μ2(|H |2)

(
ı

2
(E∂zE

† − E†∂zE )

+ |∇⊥E |2 + k2|E |2
)

. (10)

These are the extra terms compared to the physical equations
(4) and (5).1 Inserting ∂zE± from the equations of motion (7)
and (8) into the above we derive

	E = μ′

μ
∇⊥

(
E∇⊥E† − E†∇⊥E

μ

)
, (11)

and analogously for 	H , with ε ↔ μ, E ↔ H . This term is
proportional to a total derivative, and is therefore related to the
flux (E∇⊥E† − E†∇⊥E )/μ. For slowly changing ε and μ,
which is often the case in our system (i.e., for ε′, μ′ � ε, μ),
this term is small, which partly justifies the choice (6) for
the Lagrangian. But the ultimate justification, as it frequently
happens, is that a posteriori we will find that this model is able
to explain the features observed in the numerics. Therefore we
will not try to interpret the term (11) in detail.

III. GEOMETRY AND STABILITY OF VORTICES

We will now sum up our numerical results which demon-
strate the breaking of the circular symmetry of the vortex
beams and their decay during the propagation. We always start
from a Gaussian input beam with a topological charge Q, of
the form E (r, φ; z = 0) = E0 × e−r2/2σ 2

eiQφ and analogously
for the magnetic field, with amplitude H0 but with the same
vortex charge Q. Therefore, we always give an exact vortex as
an input. The parameters of the model were chosen so that the
permittivities ε and μ, given by (1) and (2), respectively, are of
order unity. This serves to limit the dissipative effects, so that
the propagation along the longitudinal direction can be clearly
observed. Same phenomena are found for arbitrary values of

1The dissipative term proportional to ∇⊥H in (8) is also absent in
the original equations, but that one is easy to interpret: we make both
LE and LH complex, so both fields have dissipative dynamics.
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FIG. 1. The radial profile of μ for a left-handed medium (a) and a right-handed medium (b), for a vortex of charge Q = 1. The profiles
are radially symmetric in accordance with the fact that μ depends strictly on the magnitude of the magnetic-field vector |H |2. The real (blue)
and imaginary (red) values of the complex permeability μ vs the frequency of the beam ω are displayed in (c). For frequencies higher than the
eigenfrequency of the resonator rings ω0, the real part of the permeability is negative, essentially yielding a left-handed medium. The figure is
made for dissipative ε; for lossless ε the behavior is similar.

ε and μ but on a different length scale. We do not aim at
a stamp-collecting exhaustive description of patterns for all
possible parameter values, so we will focus on just a few rel-
evant cases. We are mainly interested in left-handed materials
(ε, μ < 0) and how they compare to right-handed ones, so for
the dielectric constant we always choose the self-defocusing
Kerr nonlinearity (α = −1) with a linear part εD0 = 12.8,
which has both a left-handed and a right-handed regime. To
check the effects of dissipation, we either adopt γ = 0 in (1),
i.e., the lossless case, or we tune γ so that ω2

0/(ω2 + ıγω) =
1/2. In other words, we impose either Imε = 0 or Imε = Reε.
This is for simplicity and to avoid probing a huge parameter
space for all possible γ values; from now on we will call these
cases simply lossless ε and dissipative ε. The filling factor is
F = 0.4 and the magnetic dampening coefficient is � = 109

Hz; these values are kept fixed in all calculations. Numerical
calculations are performed with an operator split algorithm
described in detail in the Appendices of [32].

The nonlinear frequency of the oscillator rings is obtained
as a solution to (3). Of the three branches of the solution,
we take the one that yields a negative real value of μ for
ω > ω0 (Fig. 1). We have freely taken ω = 9.8 × 109 Hz to
represent a left-handed medium, and ω = 7.0 × 109 Hz to
represent a right-handed medium. The transverse profiles are
displayed in Fig. 1. We see there is a well-defined left-handed
regime.

Now we discuss the transverse intensity profile for differ-
ent initial beam configurations, with vortex input beams as
explained in the beginning. We observe the following features.

(1) Circular symmetry of the vortex input always breaks
down to a discrete group.

(a) In a dissipative left-handed medium, the discrete sym-
metry group for a vortex of charge Q is C3Q, before break-
ing down to simple C2 axial symmetry at longer distances
[Fig. 2(a)].

(b) In a dissipative right-handed medium, the discrete sym-
metry group for a vortex of charge Q is C2Q, before breaking
to CQ and then to C2 axial symmetry at longer distances
[Fig. 2(b)].

(c) In a lossless left-handed medium, the discrete symmetry
group for a vortex of charge Q is C3Q for very short distances,
before quickly breaking down to CQ and finally C2 [Fig. 2(c)].

(d) In a lossless right-handed medium, the discrete symme-
try group for a vortex of charge Q is C2Q, before breaking to
simple C2 axial symmetry at longer distances [Fig. 2(d)].

(2) Vortices decay approximately exponentially as they
propagate along the longitudinal axis. Figure 4 shows the
intensity of the beam across the z axis, for various regimes. At
early z values, total intensity may behave nonmonotonically
and nonuniversally but on longer scales it decays exponen-
tially. For different charges, the intensity curves collapse to a
unique exponential function at large z. As could be expected,
lossless and dissipative cases differ somewhat and collapse to
different curves.

The bottom line is that there is a vocabulary of patterns
with CQ,C2Q, and C3Q symmetries. One of them dominates in
each case (left and right handed, dissipative and lossless) but
at longer propagation distances the symmetry can change, be-
fore the intensity drops to near zero from dissipation. The final
stadium of C2 symmetry is only seen at very low intensities,
so it might be practically unobservable in experiment; that is
why we say the vocabulary only has three possible patterns,
excluding C2.

The findings above are further corroborated by Fig. 3,
which shows the vortices with different charges Q =
1, 2, and 3 in the same regime [dissipative left handed (a) and
lossless left handed (b)]. As claimed above, the symmetry is
C3Q in panel (a), and (except at small z values) CQ in panel (b).
Finally, it is obvious that there is some mixing of patterns:
the polygons are never exactly regular, so the groups Cn are
certainly not exact symmetries; we use the Cn nomenclature
merely for convenience.

One interesting phenomenon in Fig. 2(c) is that the pat-
tern rotates along the z axis. This can be understood as
excitation of multiple angular modes (of the form eılz with
various l numbers) as the beam travels along the sam-
ple. This is a well-known consequence of nonlinear terms
[5,29] and typically depends on the relative strength of
nonlinear mode interactions compared to energy density
|E |2 + |H |2 and dissipation γ . We will not explore it in
quantitative detail in this paper as it is only tangential to
our main topic of radial symmetry breaking; as one can
see, the structure remains the same; just the orientation
changes.
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FIG. 2. The patterns for a Q = 1 vortex, in a left- and right-handed dissipative medium [(a) and (b), respectively], and in a left- and
right-handed lossless medium [(c) and (d), respectively], at longitudinal slices z = 2b, 4b, 6b, and 8b, showing the C3Q, C2Q, C3Q/CQ, and C2Q

regimes. The remaining parameters are defined in the text at the beginning of this section.

One might rightly worry that the initial conditions which
contain a vortex in both electric and magnetic field are not
very realistic, as in most materials the electric field dominates
the optical response. Therefore, in experimental practice, one
typically prepares a vortex in the electric field making use of
phase masks or some other method, and the initial magnetic-
field distribution is completely analytic. In Appendix B we
repeat the calculations from Fig. 3 and show that the outcome
is the same, including the vocabulary of patterns and their
Cn shapes. Therefore, the E -H symmetric ansatz is merely a
matter of convenience, and the realistic regime where |H | �
|E | is in fact covered by our paper.

Figure 4 shows that at long times the decay of intensity is
universal for given dielectric dampening coefficient γ , which
suggests the main mechanism of dissipation is in fact the
radiative loss. This is because we deliberately chose ε and μ

with small imaginary parts (for ε it can also be zero), so the
losses in the medium are not so important when it comes to
total energy (they are still important for being nonlinear and
influencing the patterns). One important difference between
the lossless medium (black and blue symbols in Fig. 4) and
the dissipative medium (red, magenta) is that the former has
a short interval of growing intensity, before reaching the
universal regime of radiative decay. The physical reason is
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FIG. 3. The patterns for Q = 1, 2, and 3 vortices (left to right), in a dissipative (a) and lossless (b) left-handed metamaterial. The behavior
for three different charges confirms the previous conclusions for the type of symmetry encountered. All parameters except for the vortex charge
are the same as for Fig. 2. The propagation distance is z = 5b in (a) and z = 8b in (b).

that the polarization, i.e., the rearrangement of charges in the
self-defocusing metamaterial, reduces the overall electrostatic
potential energy of the medium, and this energy becomes
available to the beam, increasing its intensity. Clearly, once
the radiative losses overcome the total potential energy avail-
able, the intensity decays. The growth is clearly a transient
effect which cannot persist for long z intervals. A formal way
to understand this is that the nonconservation of energy is
encoded by the last term in (4), which can have a positive or
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FIG. 4. Decay of the total intensity I = ∫
dx

∫
dy(E 2 + H 2) in

computational units for Q = 1 and 2, for a lossless (blue circles,
black stars) and dissipative (red squares, magenta triangles) left-
handed material. At early times the behavior is complicated and
nonuniversal but at late times it collapses to an exponential curve.
This is expected when loss through radiation dominates. The oscilla-
tory features of the Q = 2 lossless case (black) are likely due to finite
numerical resolution.

negative imaginary part depending on the sign of ∂zμ/μ. At
large values of z, we expect to enter a universal regime where
this sign is constant, because the radiation loss dominates over
nonlinearities and the exchange of energy between the beam
and the medium; this is the universal decay regime in the
figure.

IV. THE THEORY OF VORTEX EVOLUTION

The phenomenology described in the previous section can
be understood on several levels. At the crudest level, we
can introduce a variable-separation ansatz in the equations of
motion and then linearize them in the amplitude (but not in
the phase). This picture explains the C2Q patterns, but not the
C3Q and CQ regimes. It also does not explain the instabilities,
that is, the changes and disappearance of patterns during the z
propagation. For the full picture it is necessary to take into
account the nonlinear effects through the loop corrections,
i.e., to move perturbatively beyond the amplitude-linearized
solution. A qualitative insight of the symmetry breaking can,
however, be obtained also in a simpler and more elegant way,
directly from the symmetry analysis of the model Lagrangian
(6). Therefore, after finishing the amplitude-linearized analy-
sis and the loop corrections from nonlinearity, we will obtain
the same results from a unified mean-field treatment of the
(nonlinear) model Lagrangian.

A note on terminology is in order. The solutions we find
are not the textbook type of vortex with phase dependence
solely of the type eıQφ ; rather, the dependence on the phase
is more complicated, i.e., the phase is doing more than just
the winding, but it is still true that the circulation of the
phase around some point (the location of the vortex core)
is an integer—the topological charge of the vortex. Such
solutions are sometimes called spirals [22] whereas the term
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“vortex” is reserved for the simple winding-phase solutions.
We nevertheless stick to the widespread term “vortex” for any
topologically charged solution under the fundamental group
of the U(1) phase symmetry.

A. Amplitude-linearized solution

We will separate variables in the equations of motion (4)
and (5) [or the Lagrangian equations (7) and (8), which do not
differ from the original equations at the amplitude-linearized
level] and then plug in the vortex ansatz. The vortex ansatz is
a solution which has a winding phase 	 with some winding
number Q, for a constant (averaged) value of the permittivity
μc = const, because we ignore the nonlinear dependence of
μ on |H |. The vortex solution of winding number (topological
charge) Q in cylindrical coordinates (r, φ, z) can be separated
into regular and vortex parts:

E = Ereg + Evort. (12)

We represent the vortex part as

Evort (r, φ, z) = ZE (z)RE (r)eıQφ−ı	(φ), (13)

and analogously for the magnetic field. Along the z axis we
get ZE (z) = eıλz as expected, and the eigenvalue λ is arbitrary
for now, i.e., it is determined by the boundary conditions along
the z axis. Upon inserting (13) into (4), the equation separates
into the angular part and the radial part. The former reads

	′′ − ı(	′)2 + 2ıQ	′ + ıl2 = 0, (14)

where l is the eigenvalue of the angular part. This is the crucial
equation—the phase dynamics is nonlinear because μ is in
general complex and the terms with ∇⊥μ contain nonlinear
dependence on the phase. The equation is easily solved by
first introducing w ≡ 	′ and then reducing it to quadratures.
The outcome is

	(φ) = cos(
√

Q2 + l2φ + Cl ). (15)

In other words, we still stay with a winding solution but
various winding numbers (equal to

√
Q2 + l2) are possible

when multiple modes are excited. Clearly, only the solutions
with integer windings are physical, otherwise they would not
be single valued. The most general solution is thus a su-
perposition of solutions ZE (λ, l; z)	E (λ, l; φ)RE (λ, l; r) with
different l modes so as to result in a single-valued function.
Now the radial part acquires the form

R′′
E + 1

r
R′

E +
(

λ

r2
− k2 + εD0ω̃

2

)
RE + αμcω̃

2

E2
c

R3
E = 0,

(16)
with ω̃ ≡ ω[1 − ω2

0/(ω2 + ıωγ )]. If we disregard the cubic
term (amplitude-linearized approximation),2 the well-known
solution in terms of Bessel functions is obtained:

RE (r) ≈ c(1)
E (λ, l )JQl (ar) + c(2)

E (λ, l )YQl (ar),

Ql ≡
√

Q2 + l2, a ≡
√

λ − εD0μcω̃/ωE2
0 − k2. (17)

2This is justified at least in some interval of z values, as the
system is dissipative and loses power

∫
(E 2 + H 2), so the amplitude

progressively decreases along z.

FIG. 5. Polygonal pattern |E |2 for a vortex of charge Q = 2,
for k = 2, εD0 = 12.8, and μc = 1.004 (values of all parameters and
constants in the main text), at radial slice z = 1, for a single vortex
mode l = 0 (a), and for a linear combination of modes with l =
0, 1, and 2 decaying at infinity (b). The symmetry is C2Q = C4,
which does not explain the CQ and C3Q regimes. Obviously, the crude
picture of breaking the radial symmetry works but full explanation is
lacking. It will come from the loop corrections.

Here, J and Y are the Bessel functions of first and second
kind, respectively. Similar solutions ZH (z),	(φ), and RH (r)
are obtained for the magnetic field. The angular equation is
identical for both fields: for this reason we have one solu-
tion 	 for both E and H . The eigenvalues λ and l and the
values of the constants c(1,2)

E ,H are determined by the boundary
conditions. Obviously, (15) imposes the C2Q symmetry, i f
l = 0. This simplest case is not necessarily the stable solution.
We might have a sum over many l values. In principle,
such sums may yield more complicated patterns, however we
will see that when the physically reasonable boundary con-
ditions are implemented (decay at infinity, single valuedness
everywhere) one typically always has the robust C2Q pattern.
One important consequence of the fact that multiple l modes
are possible is that due to nonlinear effects a new l mode
can be created during the propagation along the z axis. We
have already seen an example in Fig. 2(c). A quantitative
analysis of this phenomenon requires a full nonlinear model
and so can only be studied within the formalism of the next
section.

This solution is not very satisfying but reproduces some of
the features from the numerics, summarized at the start of the
previous section: (1) the reduction of the full O(2) symmetry
down to a discrete symmetry Cn for some n ∈ N, i.e., the
polygonal form of the vortex, and (2) the value n = 2Q is
true in some but not in all situations. We show the solutions
for a single angular mode from (15) and (17) in Fig. 5(a). In
Fig. 5(b), we show a linear combination of angular modes with
l = 0, 1, and 2, with the coefficients c(1,2)

E ,H in (17) chosen so
that the total intensity still decays sufficiently fast at infinity.
The symmetry is still C2Q. Apparently, the regimes with the CQ

and C3Q symmetries require loop corrections from nonlinear
μ to be taken into account.

B. Loop corrections

The origin of the breaking of radial symmetry is the fact
that a discrete set of modes in Fourier space is selected.
This is best seen from the Fourier transform of the solutions
(15) and (17). We will calculate the propagator G(u) at
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constant z, i.e., the Fourier transform r 
→ u of the solution
with a Dirac delta source. This source imposes the boundary
condition RE (0) → ∞,

∫
drr cos φRE (r) = 1, giving c(1)

E =
0, c(2)

E = 2π/�(Q/2) in (17). Fourier transforming (x, y) 
→
(ux, uy) we get for a single mode (17), making use of the
Bessel and Lommel integrals:

GE ,H (u) = 2π

�(Q/2)

eıQ(π/2+φ)

au

(
sin[(u − a)�]

u − a
− cos[(u + a)� − πQ]

u + a

)

+ 2π

�(Q/2)

e−ıQ(π/2+φ)

au

(
cos[(u − a)� + πQ]

u − a
− cos[(u + a)�]

u + a

)
. (18)

Here, � is the ultraviolet (UV) small-length and high-
momentum cutoff, i.e., the Fourier transform is performed by
integrating

∫ ∞
1/�

dr
∫ 2π

0 dφ. The cutoff has a clear physical
meaning: 1/� is the size of the vortex core (where the
vortex ansatz stops working because the gradient of the field
becomes too high). We clearly do not get anything new by
just Fourier transforming. The goal is to move beyond the
amplitude-linearized approximation of the previous section by
considering the effects of nonconstant permittivity μ instead
of constant (averaged) μc. This calculation is essentially ele-
mentary but might be tedious and boring for readers who are
not fond of perturbative field theory. Most of the integrations
are in Appendix C. Even the rest of this subsection can be
skipped until the the equation (22), where we discuss the final
result.

Putting μ from (3) in place of μc requires the solutions
for ω0NL in terms of the magnetic field. The solutions are
readily found from the Cardan formulas (we do not give them
explicitly as they are cumbersome and not very illustrative).
But the form of the H dependence of ω0NL is seen already
from the Viete formula:(

ω
(1)
0NL

)2 + (
ω

(2)
0NL

)2 + (
ω

(3)
0NL

)2 = 1 + 2�2

1 + |H |2/αE2
c

, (19)

so the solutions depend on |H |2 only, with no higher powers of
the magnetic field. Inserting this into L, we get the nonlinear
correction of the form

δL = g2,0,0|∇⊥E |2 + g0,2,0|E |2 + g0,2,2|E |2|H |2
+ g2,0,2|∇⊥E |2|H |2. (20)

We thus have two quartic interaction terms and two quadratic
terms. We do not intend to calculate the loop corrections
in full detail; it is not worth the effort as we only want to
capture the symmetry, i.e., the form of the angular depen-
dence. First of all, the quadratic corrections g2,0,0 and g0,2,0

trivially renormalize the parameters in the bare propagator
and do not change its functional form. Lowest-order non-
trivial loop corrections to the self-energy come from g0,2,2

and g2,0,2. The electric field receives the correction G−1
E 
→

(GE + �
(1)
E + �

(2)
E )

−1
with

�
(1)
E = g0,2,2

∫
du′GH (u′) ≈ g0,2,2e3ıQ/2 sin(πQ) ln �,

�
(2)
E = 3

2
g0,2,2

∫
du′

∫
du′′GH (u′)GH (u′′)GE (u − u′ − u′′)

≈ const × [a3/2 cos(3Qφ/2) − 2ıQ2 ln a]. (21)

We will write all equations for E , because this field receives
interesting corrections from the gradient of μ [Eqs. (4) and
(7)]. The magnetic field does not couple to the permeability
ε in the same way in the original equation (5), and in the
Lagrangian form (8) it does but ε does not contain such
strong (nonpolynomial) nonlinearities as μ. One- and two-
loop corrections appear not only in the self-energy but also
in the vertex operators. However, the vertex corrections only
have a weak momentum dependence and consequently the
coordinate dependence (geometric patterns) of the solution is
not significantly affected by them. For that reason we will not
discuss them in detail.

The correction �
(1)
E is the Hartree correction with a sin-

gle vacuum bubble which is not very interesting: it merely
introduces an additional mass term and does not influence the
momentum dependence and thus the geometry of the patterns.
As could be expected from power counting, it is logarithmi-
cally divergent in the UV cutoff �. Of course, this is not a
problem in an effective theory; we have already explained
the physical meaning of �. The watermelon diagram �

(2)
E ,H

is crucial: it is momentum dependent. Its calculation is found
in Appendix C. An informal way to estimate its effect is the
following: the leading contribution comes from the region
where u ≈ u′ − u′′ because this is a pole of the self-energy
correction. Then we are left with angular integrals only, and
they reduce to integrals of products of three rational functions
[for the three propagators in (21)] of the half angle—this gives
rise to 3φ/2 in the argument of the cosine. Now the dressed
propagator (G−1

E ,H + �)
−1

needs to be Fourier transformed
back to real space. We will only do this approximately (it is
likely impossible to do exactly in closed form). The outcome
is

Evort (r, φ, z) = e(ıλ−2Q2 ln a)z cos(Qφ)√
κr

×
[

c(1)
E (λ, l )

(
1+ (2π )3/2g0,2,2

�(Q/2)3
cos(3Qφ/2)

)

+ c(2)
E (λ, l )

(
1+ (2π )3/2g0,2,2

�(Q/2)3
sin(3Qφ/2)

)]
.

(22)

No doubt the reader sees that the terms
cos(3Qφ/2) and sin(3Qφ/2) give a pattern |Evort|2 with
3Q branches, in addition to the 2Q polygons obtained from
the term cos(Qφ). The interference between the two patterns
might (1) break the symmetry completely and (2) lead to CQ
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symmetry if the relative phase between the leading term and
the corrections is approximately 2π/Q. Both cases are seen
in numerical work: C3Q appears in all left-handed materials
[Figs. 2(a) and 2(c)], and elements of CQ symmetry are
present in almost all cases at long propagation distances z
[Figs. 2(a)–2(c) and 3].

The self-energy has an imaginary part [equivalently, the
solution (22) exhibits exponential decay in z], meaning that
these configurations are not stable—they are only seen up
to some propagation distance z. The exact order (along z)
and stability of each of the patterns depend on the details
of the permeability ε. One important and universal lesson is,
however, that the decay rate [the real part of the exponent in
(22)] is proportional to Q2, therefore the higher the value of
|Q| the faster it decays. This supports the general intuition
that vortices with high winding numbers are not stable. But
unlike the simplest case of the XY model or a superfluid
where the stability only allows Q = ±1 we can in principle
have arbitrarily high Q as we have seen also in the numerics;
their lifetimes are smaller and smaller as Q grows, but still
finite. The exponential decay itself is also confirmed by the
numerics, as seen from Fig. 4.

C. Isotropy breaking: The look from the action

The basic mechanism leading to the symmetry breaking
O(2) 
→ C3Q 
→ C2Q 
→ CQ is seen already from the model
Lagrangian (6). The symmetry breaking is essentially the
consequence of the interplay of the nonlinear-sigma-model
form of the kinetic term and the complex nonlinearity of
the magnetic permittivity μ. Therefore, we can take a static
approximation of the z dynamics, ignoring the z dependence;
clearly, in that framework we can only obtain the vocabulary
of patterns, not the relative stability of CQ,C2Q, and C3Q.3

The separation of variables remains a natural ansatz, and the
vortex nature of the solution implies Evort = E0(r)eı�(φ) with∮

dφ�(φ) = 2πQ and analogously for the magnetic field.
The Lagrangian (6) then becomes

L = (E ′
0)2 + (�′ )2

r2 + k2E2
0

μ
+ (H ′

0)2 + (�′ )2

r2 + k2H2
0

ε
. (23)

The fact that μ contains ω2
0NL(|H |2), which is in turn the

solution of the cubic equation, introduces a branch cut in H
because of the cubic roots. This is the simplest explanation
of the origin of the C3Q symmetry. More quantitatively, the
story follows exactly the Landau-Ginzburg paradigm: while
the initial Lagrangian only depends on |E |2 and |H |2 and thus
preserves isotropy, the saddle-point solution is given by the
equation

ε(∇2
⊥ − H )E − ε′∇⊥E · ∇⊥H

ε2
+ μ′

μ2
|H |−1/3 = 0, (24)

where we have used that μ = μ(ω2
0NL) and ω2

0NL =
ω2

0NL(|H |2/3, |H |4/3) (from the Cardan formulas). With the
ansatz adopted above, the amplitude equation for E0(r) is the

3We could take the ansatz eıλz instead; it would merely modify
k2 
→ k2 − λ.

nonlinear amplitude equation (16). The equation for the phase
part � is more interesting. It reads

(�′)2
(
1 − ε′

ε
E0
H0

) − k

ε
+ 2μ′

3μ2
|H |−1/3 = 0. (25)

The cubic root carries a branch cut, and the last term
really evaluates to 2μ′/3μ2 × H−1/3

0 e−ı�/3+2nπ ı/3 with n =
−1, 0, and 1. The solution �0 which satisfies the phase wind-
ing condition is obtained in implicit form as

ı(�0 + 2πn/3) = Kn ln

[
k
(
1 − ε′

ε
E0
H0

)
E2

0 + H2
0

sec2

(
Q

2
φ

)]
,

(26)

where Kn is a constant determined by the amplitude solution
and depending also on n = −1, 0, and 1; its exact value is
hard to find analytically as we do not know the solution
to the amplitude equation in the nonlinear regime. But that
is not crucial for our general argument. The point is that
the system can choose a solution with any of the values
n = −1, 0, and 1; i.e., even though the equations of motion
(and the Lagrangian) are isotropic, the solution is not. Each n
branch behaves as ≈1/ cos2(Qφ/2), only they are rotated by
±2π/3 with respect to each other, and each of them has a CQ

symmetry. Put together, the three branches give C3Q patterns.
But all that holds if two of the cubic roots are complex. If all
cubic roots are real, the phase remains single valued, and we
only have CQ symmetry, coming directly from (26) if we fix
n = 0, i.e., if we only keep a single branch.4

What is the regime in which cubic roots are real and the
symmetry is CQ, as opposed to the complex roots and C3Q

patterns? The easiest way is to look at the cubic equation (3)
for the magnetic permeability (and the nonlinear frequency
ω0NL). For μ > 0 (right-handed regime), the roots are all real
and C3Q patterns cannot occur. Indeed, the C3Q phase is only
present in Figs. 2(a) and 2(c), in left-handed media.

This approach is much more physical and elegant than the
tour-de-force calculations of the previous two sections but it
does not give explicit solutions for E and H ; it only classifies
the symmetries of the solution. This is why we we still needed
the perturbative linear and two-loop analysis, to arrive at more
quantitative results.

The saddle-point solution (26) is nonlinear, unlike the
linearized solution found in the first subsection (15). It is not
a vacuum in the usual field-theory sense, however, as it is
not constant. We are dealing with dynamical criticality of the
kind discussed in [21]. In the vicinity of this solution, the La-
grangian describes the fluctuations of amplitude δE and δH ,
and the fluctuations of phase δ	. Similar to the O(3)-type spin
models [23] and multibeam optical systems [32], and unlike
simple XY-type models, the phase and amplitude fluctuations
mix. By analyzing the fluctuation equations, it should be
possible to understand analytically also the transition from the
left-handed to the right-handed regime as the parameters are
varied, i.e., what are the instabilities that drive it. We will not

4We use the fact that a cubic equation has either one or all three
solutions real.
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FIG. 6. (a) Frequency dependence of the typical propagation length scale for the dissipation of the vortex a2Q2
(blue dashed line) and for

the evolution of the symmetry-breaking Cn patterns (red dotted line). The symmetry breaking is detectable as long as the pattern evolution is
faster than the dissipation, i.e., as long as the red curve is below the blue one. This is obviously the case for most of the frequency range. We
also plot the frequency dependence of the negative permittivity −μ (black full line; because of the minus sign large positive values in the plot
are really large negative values of μ). The left-handed regime is most prominent at intermediate frequencies, which are also inside the regime
of the symmetry breaking. (b) Frequency dependence of the relative strength of nonlinear interactions ω0NL/ω (blue dashed line) together with
negative permittivity −μ as in (a) (black full line). Our calculations, based on a pair of nonlinear Schrödinger-like equations, are reliable as
long as the nonlinearity is not too strong. This is again the case for all but very small frequencies, and again includes the left-handed regime.

attempt that here; it is a long subject that deserves separate
work.

V. TOWARD EXPERIMENTAL VERIFICATION
AND APPLICATIONS

We will now briefly discuss what an experimentalist can
learn from our results and what to look for in practical
work. Wave propagation through the metamaterial can be
observed by measuring the transmission coefficients Si j . From
these coefficients, one can also reconstruct the electric-field
intensity |E |2, which can be directly compared to our intensity
maps like Figs. 2 and 3 [33]. Another quantity which can
be measured is the voltage waveform, which can be used to
construct amplitude envelopes [34].

Therefore, the predicted symmetry breaking is in principle
directly observable. But the question remains how widespread
it will be for realistic values of the parameters. From a more
applied viewpoint, this question is reversed: how to make a
vortex transmission through a left-handed waveguide stable.
In other words, how not to observe the symmetry breaking. It
is true that the phenomenon disappears as soon as the vortex
charge is zero, i.e., when the beam is not a vortex. However,
the vortex patterns are likely important in applications. First,
as a topologically protected object with conserved charge, a
vortex is among the natural candidates for computational de-
vices and information transmission (for the same reasons that
solitons are also interesting in that regard: they are robust to
noise, carry a discrete “quantum” number, i.e., charge, and are
stable to small local perturbations). Second, in the presence
of impurities in the sample, vortices can form in a nonlinear
metamaterial from the initially nonvortexing beam [23].

Let us focus on the left-handed regime, which is the most
interesting and the most relevant for applications. The first
condition is therefore to be in the frequency regime with
μ(ω) < 0. This can be checked directly from Eq. (2) as
we did in Fig. 1(c). The second issue is that the symmetry
breaking takes some finite time, i.e., some finite propagation
length, which is of order b; as can be seen from Fig. 3 and

directly from Eqs. (4) and (5), this is the length scale over
which the patterns change. On the other hand, the one-loop
calculation (22) shows that the intensity decays with the
rate ∼a−2Q2

. As long as this is less than the characteristic
length b, one will likely not see the symmetry breaking but
just eventual dissipation of the beam. Therefore, these two
scales should be compared for some reasonable parameter
values. We show this in Fig. 6(a) for F = 0.4, εD0 = 12.8,
γ = 1 GHz, and ω0 = 10 GHz. Apparently, the length scale of
the Cn pattern development (red dotted line) is nearly always
shorter than the dissipation scale (blue dashed line), so we
expect that the effect predicted in the paper is readily seen in
experiment, at least for Q = ±1. For larger vortex charges,
the dissipation grows quickly and high Q values are probably
not easily observed. Conversely, if the goal is to keep a stable
radially symmetric vortex pattern, one should remain at small
frequencies, although for ω � ω0 the material is not strongly
left handed, as can be seen from the −μ(ω) dependence, also
given in the figure.

There is still one remaining issue. Our theoretical ap-
proach, based on a pair of nonlinear Schrödinger-like equa-
tions, inherently disregards some effects. It describes a quasi-
monochromatic wave without wave mixing or dissipation due
to higher harmonic generation [5]. Such phenomena become
significant for strong nonlinearities, so we should compare the
nonlinearities in ε and μ to the typical energy (frequency)
scale of the vortex. In Eqs. (1) and (2) the approximate ratios
of the nonlinear to linear terms are given by |E |2/εD0 and
ω0NL/ω0 ∼ (A/H )1/3. The first scale is frequency indepen-
dent and solely depends on the beam intensity. The second
scale depends on frequency and needs to be inspected more
closely. In Fig. 6(b) we plot the nonlinearity ratio for the
magnetic field for a range of frequencies ω, again together
with the permittivity to make sure we are at the same time
in the left-handed regime. The relative nonlinearity strength
quickly saturates around a value 0.06 � 1, so we are rather
confident that our equations of motion still make sense.

Altogether, the conclusion is that the breaking of radial
symmetry is observable by standard means (measuring the
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transport coefficients and reconstructing the intensity map at
the exit face of the metamaterial), as long as the frequency
of the wave is not too low. This kind of instability kicks in
at shorter propagation lengths [of order 0.1 mm in Fig. 6(a)]
than the nonlinear diffraction effects studied for breathers in
[35], suggesting that vortex signals are more fragile and less
convenient for information transmission.

VI. DISCUSSION AND CONCLUSIONS

Our main result is contained already in the title—left-
handedness and nonlinearity together create the breaking of
the O(2) symmetry down to a discrete group, with the pattern
vocabulary consisting of the C3Q,C2Q, and CQ patterns. In the
right-handed system with the same nonlinearity the isotropy
is broken again, but the pattern vocabulary only has C2Q

and CQ stages. How exactly the patterns evolve into each
other and through which instabilities is not universal, and it
depends on the exact form of ε and μ. In our model, the ε

dependence is mainly encapsulated in the dissipation γ : the
left-handed nondissipative case is usually dominated by CQ

after a much shorter C3Q phase, whereas the dissipative left-
handed metamaterials most prominently show C3Q patterns.
For the right-handed materials, nondissipative and dissipative
dynamics show mainly C2Q and CQ patterns, respectively.

A detailed account of the pattern dynamics was only
possible through numerical work. But the vocabulary itself—
the existence of symmetries C3Q,C2Q, and CQ—we were able
to understand analytically. The dynamic Landau-Ginzburg
picture reveals this as a consequence of the cubic root non-
linearity in the magnetic permittivity, and the fact that the
cubic equation has either two complex roots in the left-handed
regime or all three real roots in the right-handed regime,
and the presence or absence of dissipation in the electric
permeability. In the framework of our field theory model,
the second derivative of the free energy (on-shell Lagrangian,
Landau-Ginzburg functional) likely has a jump when the
symmetry changes. This is a strong encouragement that the
phenomena we observe here, and in general the walk through
the pattern vocabulary, can be understood from the viewpoint
of order and disorder transitions.

Similar phenomena were studied also in [15,18] and above
all [10], where C3Q necklaces were found, within a model of
left-handed metamaterials given in [15] and similar to ours.
Clearly, we have not exhausted this subject; more research
is still needed to fully understand the transition between
different symmetries and their instabilities. Vortices in meta-
materials seem to be a promising arena, as in a metamaterial
the nonlinearity and the frequency band where the material
is left-handed can to some extent be tuned at will. Therefore,
the phase diagram of collective vortex interactions can also be
studied, and is an obvious topic for future work.
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION FROM THE MAXWELL EQUATIONS

Start from the definitions D̂ = εÊ and B̂ = μĤ and the
Maxwell equations in the absence of external charges and
currents (ρ = ĵ = 0):

∇ · D̂ = ρ = 0, ∇ · B̂ = 0, ∇ × Ê = −∂t B̂,

∇ × Ĥ = 4π ĵ + ∂t D̂ = ∂t D̂. (A1)

We make the following assumptions.
(1) We assume small gradients of the permittivities ε and

μ, so their second and higher derivatives are disregarded.
Since ω ∝ k, it means that mixed derivatives of the form ∂t∇ε

are also disregarded. In other words, the characteristic length
scale l along the z axis on which ε and μ change is assumed to
be large compared to the characteristic scale b of the changes
in E and H .

(2) We assume that the time dependence is harmonic so
∂t = −ıω.

Acting on the last equation by ∇× and making use of the
identity ∇ × ∇ × Ĥ = −∇2Ĥ + ∇(∇ · Ĥ ), one gets for the
left-hand side

∇ × ∇ × Ĥ = −∇2Ĥ + ∇
(

∇ · B̂

μ

)

= −∇2Ĥ + ∇
(

1

μ
∇ · B̂

)
− ∇

(∇μ

μ2
· B̂

)

= −∇2Ĥ + ∇
(

1

μ
∇ · B̂

)
− ∇ ·

(∇μ

μ2

)
B̂

− ∇μ

μ2
∇ · B̂ = −∇2Ĥ + 0 + O(1/l2) + 0

= −∇2Ĥ, (A2)

where we used ∇ · B̂ = 0 and disregarded the second deriva-
tive of μ. The right-hand side yields

∇ × ∇ × Ĥ = ∇ × (∂t D̂) = −ıω∇ × D̂ = −ıω∇ × (εÊ )

= −ıω(∇ε)Ê − ıωε∇ × Ê

= −ıω(∇ε)Ê − ω2εμĤ = O(1/l2) + ω2εμĤ ,

(A3)

so we obtain

∇2Ĥ + ω2εμĤ = 0. (A4)

For the Ê field we start from the third Maxwell equation, act
by ∇×, and find for the left-hand side

∇ × ∇ × Ê = −∇2Ê + ∇(∇ · Ê ) = −∇2Ê − ∇
(

∇ · D̂

ε

)

= ∇2Ê − ∇
(

1

ε
∇ · D̂

)
+ ∇

(∇ε

ε2

)
εÊ

+ ∇ε

ε2
∇ · D̂ = −∇2Ê + 0 + O(1/l2) + 0

= −∇2Ê , (A5)
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and for the right-hand side we get

∇ × ∇ × Ê = −∂t (∇ × B̂) = −∂t (∇ × B̂)

= −∂t [∇ × (μĤ )] = −∂t [(∇μ)Ĥ + μ∇ × Ĥ ]

= −(∂t∇μ)Ĥ − ∇μ · ∂t Ĥ − ∂t (μ∂t D̂)

= O(1/l2) − ∇μ

μ
∇Ê + ω2εμÊ , (A6)

so

∇2Ê + ω2εμÊ − ∇μ

μ
∇Ê = 0. (A7)

For our geometry we take the paraxial beam approximation,
with the ansatz Ê = E (x, y)eı(kz−ωt ), Ĥ = H (x, y)eı(kz−ωt ), so
the nabla acts as

∇Ê = (∇⊥E , ∂zE + ıkE )eı(kz−ωt ), (A8)

and the Laplacian operator acts as

∇2Ê = (∇2
⊥E + 2ık∂zE − k2E )eı(kz−ωt ), (A9)

and analogously for the magnetic field. Now to write the equa-
tions motion in the final form we rescale E → E × 2kb, H →
H × 2kb, and z 
→ z × 2kb, where b is some characteristic
length scale along the z axis, and divide the equations by
bk2 to obtain the equations (4) and (5), reprinted here for
convenience:

− ı

b
∂zE = ∇2

⊥E + [ω2ε(|E |2)μ(|H |2) − k2]E

− ∇⊥μ(|H |2)

μ(|H |2)
∇⊥E − ı

∂zμ(|H |2)

2μ(|H |2)
E , (A10)

− ı

b
∂zH = ∇2

⊥H + [ω2ε(|E |2)μ(|H |2) − k2]H. (A11)

For comparison to the equations given in [4,7,12], one needs
(1) to rescale H 
→ ω2/c2H to get the term −γ 2H = −k2/ω2

in (A11) and (2) to absorb the factor −k2 in (A10) in the
definition of εD0. This is possible as ε and μ have a constant
term (equal εD0 and 1, respectively) so the product εμ also
has a constant term proportional to εD0, and the contribution
k2E can be absorbed as εD0 
→ εD0 − k2. We thus arrive at a
system identical to that from [4], except for the extra terms for
the propagation along the z axis.

APPENDIX B: CONFIGURATIONS WITH NO VORTICITY
IN THE MAGNETIC FIELD

Here we show that our results stay valid also when only
the electric field has vortex patterns whereas the magnetic
field starts analytic everywhere. As we discuss in the main
text, this situation is experimentally more relevant than the
one assumed in most calculations in the paper (that both the

electric and the magnetic field have a vortex as they enter
the material). The electric field is typically a few orders of
magnitude more intense than the magnetic field, as seen in
[4]. Therefore, one typically controls the electric field directly,
imposing a given boundary condition at the front end of the
material. Despite this fact, the magnetic field remains very
important: the coupled equations of motion (4) and (5) require
both E and H to be nonzero. Indeed, as explained in [4], the
left handedness comes as a consequence of the hysteresis-type
dependence of the magnetic permittivity on H . So while it
is crucial that E and H are both nonzero, it is also true that
the results should remain valid for |H | � |E |, and for the
boundary condition that only has a vortex in E at the front of
the metamaterial, not for H . With such boundary conditions
and the same parameter values as before, Fig. 7 repeats the
calculations of Fig. 3. Obviously, the symmetries remain the
same and the similarity of the results for the two cases is
striking. Obviously, the |E |2 map is insensitive to the details
of the initial magnetic-field pattern, as one expects from
experiments and common wisdom in nonlinear optics. We are
thus content that the numerically simplifying assumption of
identical z = 0 boundary conditions for E and H does not put
into question the findings of our paper.

APPENDIX C: THE CALCULATION
OF THE SELF-ENERGY DIAGRAMS

We discuss here in some more detail the equations (21)
from the main text. First we give the expressions for the
couplings g2,0,0, g0,2,0, g2,0,2, and g0,2,2, which come from
the expansion over the magnetic field H of the nonlinear
dependence μ(H ) in (20):

g2,0,0 = αE4
c ω2

0 − (ω − ı�)ωαE8
c

H0 + αE4
c

[
ω2

0 − (ω − ı�)ωαE2
c

] , (C1)

g0,2,0 = (k2 − λ2)g2,0,0, (C2)

g2,0,2 = 2αE2
c H0

ω2
0 − (ω − ı�)ωαE4

c{
H0 + αE4

c

[
ω2

0 − (ω − ı�)ωαE2
c

]}2 , (C3)

g0,2,2 = (k2 − λ2)g2,0,2. (C4)

For simplicity, we will treat the case when λ = k and thus
g0,2,0 = g0,2,2 = 0. This simplifies the calculations substan-
tially while it does not change the symmetry of the solution.
It is possible to evaluate the diagram �(1) exactly in terms of
sine and cosine integrals Si and Ci. The angular integration
is straightforward; the integration over u results in four com-
binations of the trigonometric integrals, for the four terms in
(18). Three of the four integrals are finite and therefore they
just shift the mass term. The third term of the propagator is
logarithmically divergent:

�
(1)
3 = 4π sin πQ

Q�(Q/2)
e−3ıπQ/2 1

a2
{γE + ln � + (−1)Qa[cos(a�)Ci(a�) + sin(a�)Si(a�)]}. (C5)

To judge the effect of this term, we should extract the mass squared rm of the bare propagator, writing it out for small u:

G(u → 0) = 2π

�(Q/2)

1

u(u2 − a2)
{eıQ(π/2+φ)[cos(a� − πQ) − sin(a�)] + e−ıQ(π/2+φ)[cos(a� + πQ) − cos(a�)]}. (C6)
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FIG. 7. The patterns for Q = 1, 2, and 3 vortices (left to right), in a dissipative (a) and lossless (b) left-handed metamaterial. All parameters
are the same as in Fig. 3 but the boundary condition at z = 0 is now a vortex for the electric field E and a homogenous background for H . The
symmetries and the whole qualitative picture are the same as before, confirming that the predictions of the paper do not require preparing a
vortex in magnetic field at the entry.

Since G−1(u → 0) ∝ u = 0, the bare propagator is massless. The one-loop correction �(1) therefore gives a cutoff-dependent
mass rM ∼ ln �, which could be absorbed in the overall normalization of the propagator. As we declared in the main text, the
one-loop self-energy does not do much.

The crucial diagram �(2), the popular watermelon diagram, cannot be calculated exactly. It can be evaluated in the regime
of small external momentum u, i.e, when u < u′, u′′; more precisely, we can look at the regime when u < u0 < u′, u′′ for some
(arbitrary) scale u0 and expand in a series in u/u0. Let us denote such an entity by �(2)(u; u0): it contains enough information
for our purposes: we are interested mainly in angular integrations which determine the symmetry, and these can be done exactly
as they separate from the integrations over the module u in the small-u limit. For u = 0 the watermelon diagram reads (with∫ ≡ ∫ 2π

0 dφ′ ∫ 2π

0 dφ′′ ∫ du′ ∫ du′′)

�(2) ≈
∫

G(u′)G(u′′)
v

{eıQ[π/2+(φ−φ′−φ′′ )][cos(a� − πQ) − sin(a�)] + e−ıQ[π/2+(φ−φ′−φ′′ )][cos(a� + πQ) − cos(a�)]},

v ≡
√

(u′)2 + (u′′)2 − 2u′u′′ cos(φ − φ′ − φ′′). (C7)

One angular integration is performed by taking φ′ 
→ φ′ + φ′′, which makes the φ′′ integral completely trivial, and the φ′ integral
is evaluated in terms of the elliptic integrals E and K . The outcome is finite, hence it is observable (not only at the cutoff scale)
and reads

�(2)(0; u0) =
(

2π )

a�(Q/2)

)3

e3ıQ/2 cos(3Qφ/2)2
∫

du′
∫

du′′ [(u′)2 − (u′′)2](u′ + u′′)E
(− 4u′u′′

(u′+u′′ )2

)
(u′)2(u′′)2[(u′)2 − a2][(u′′)2 − a2][(u′)2 − (u′′)2]

= 1

4π

(
2π

a�(Q/2)

)3

e3ıQ/2 cos(3Qφ/2)2(a3/2 − 1/�3/2) + O(1/�2). (C8)

In particular, this means that a nontrivial mass term is acquired, of the order a3/2. This mass is anisotropic, and the factor
cos(3Qπ/2)2 is all we need for the 3Q polygon. The leading correction in u/u0 is in fact inessential for the symmetry, but it is
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important as it contains a nonzero imaginary part, introducing a finite lifetime for such patterns. It reads

�(2)(u; u0) =
∫

G(u′)G(u′′)
w

{eıQ[π/2+(φ′−φ′′ )][cos(a� − πQ) − sin(a�)] + e−ıQ[π/2+(φ′−φ′′ )][cos(a� + πQ) − cos(a�)]}

= 1

4π

(
2π

a�(Q/2)

)3

e3ıQ/2

(
2ıa3/2

π
sin(3Qφ/2) + 2�3/2

π
cos(3Qφ/2)

)
,

w ≡
√

(u′)2 + (u′′)2 − 2u′u′′ cos(φ′ − φ′′) − 2u[u′ cos(φ − φ′) + u′′ cos(φ − φ′′)]. (C9)

At leading order, this tedious expression behaves like 1/r3, falling off much quicker than the bare propagator (18), which goes
as 1/

√
r (most obvious from the Bessel-function form of the real-space solution), suggesting that the shape of the vortex, which

is mainly determined by long-distance behavior, is not much influenced by the finite-u correction to �(2).
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of three inactivating mutations (13). Although
highly conserved in gene organization, as well as
primary amino acid sequence of the predicted
TDH open reading frame, the human TDH gene
carries AG-to-GG splice acceptor mutations in
exons 4 and 6, as well as a nonsense mutation
within exon 6 wherein arginine codon 214 is re-
placed by a translational stop codon.Whereas poly-
morphic variation within the human population
has been observed for the exon 4 splice acceptor
mutation, with some individuals carrying the
normalAG splice acceptor dinucleotide and others
carrying the GG variant, all individuals genotyped
to date carry both the splice acceptor and nonsense
mutations in exon 6. Reverse transcriptase–PCR
analysis of TDH transcripts expressed in human
fetal liver tissue showed complete skipping of
exon 4 and either complete skipping or aberrant
splicing of exon 6 (fig. S8). Given that exons 4
and 6 encode segments of the enzyme critical to its
function and that truncation via the nonsense
codon at amino acid 214 would also be predicted
to yield an inactive variant, it appears that the
human gene is incapable of producing an active
TDH enzyme. Remarkably, all metazoans whose
genomes have been sequenced to date, including
chimpanzees, appear to contain an intact TDH
gene (14). Unless humans evolved adaptive ca-
pabilities sufficient to overcome three mutational
lesions, it would appear they are TDH deficient.

Human ES cells grow at a far slower rate than
mouse ES cells, with a doubling time of 35 hours
(15). Whether the slower growth rate of human
ES cells reflects the absence of a functional TDH
enzyme can perhaps be tested by introducing,
into human ES cells, either a repaired human
TDH gene or the intact TDH gene of a closely
related mammal. That this strategy might work is
supported by the expression in human cells of a
functional form of the 2-amino-3-ketobutyrate-

CoA ligase enzyme that converts the short-lived
product of TDH-mediated catabolism of threo-
nine into acetyl-CoA and glycine (Fig. 1B). It is
possible that the culture conditions used to grow
human ES cells do not match the ICM environ-
ment of the human embryo, in which the cell
division cycle is more rapid than the 35-hour
doubling time of cultured human ES cells (16). If
human ES cells do not use the TDH enzyme to
acquire an advantageous metabolic state for rapid
growth, and if conditions can be adapted to facil-
itate the rapid proliferation of human ES cells in
culture, the tools and approaches that we describe
here may prove useful. As often happens in sci-
ence, findings made in one experimental system

can open avenues of investigation useful for
other matters of inquiry. Finally, it is important to
consider whether humans benefit from some
form of selective advantage as a consequence of
mutational inactivation of the TDH gene.
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String Theory, Quantum Phase
Transitions, and the Emergent
Fermi Liquid
Mihailo Čubrović, Jan Zaanen, Koenraad Schalm*

A central problem in quantum condensed matter physics is the critical theory governing the zero-
temperature quantum phase transition between strongly renormalized Fermi liquids as found in
heavy fermion intermetallics and possibly in high–critical temperature superconductors. We found
that the mathematics of string theory is capable of describing such fermionic quantum critical
states. Using the anti–de Sitter/conformal field theory correspondence to relate fermionic quantum
critical fields to a gravitational problem, we computed the spectral functions of fermions in the
field theory. By increasing the fermion density away from the relativistic quantum critical point, a
state emerges with all the features of the Fermi liquid.

Quantum many-particle physics lacks a
general mathematical theory to deal
with fermions at finite density. This is
known as the “fermion sign problem”:

There is no recourse to brute-force lattice mod-
els because the statistical path-integral methods
that work for any bosonic quantum field theory
do not work for finite-density Fermi systems.

100 30 10 3Cys (µM)
E

S
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E
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E
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Fig. 6. Effects of cysteine deprivation on the growth of ES, MEF, and 3T3 cells. Cocultures of ES/MEF or ES/3T3
cells were subjected for 2 days to media containing varying amounts of supplemented cysteine. Cysteine
deprivation severely impeded MEF cell growth at 10 and 3 mM and 3T3 growth at 3 mM (see also fig. S5).
Although colony morphology was altered under the most severe conditions of cysteine deprivation, ES
cell colonies were observed under all culture conditions tested.
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The nonprobabilistic fermion problem is known
to be of exponential complexity (1), and in the
absence of a general mathematical framework,
all that remains is phenomenological guesswork
in the form of the Fermi-liquid theory describing
the state of electrons in normal metals and the
mean-field theories describing superconductivity
and other manifestations of spontaneous sym-
metry breaking. This problem has become par-
ticularly manifest in quantum condensed matter
physics with the discovery of electron systems
undergoing quantum phase transitions that are
reminiscent of the bosonic quantum critical sys-
tems (2) but are governed by fermion statistics.
Empiricallywell-documented examples are found
in the “heavy fermion” intermetallics, where the
zero-temperature transition occurs between dif-
ferent Fermi liquids with quasi-particle masses
that diverge at the quantum critical point [(3) and
references therein]. Such fermionic quantum
critical states are believed to have a direct bearing
on the problem of high–critical temperature
(high-Tc) superconductivity because of the ob-
servation of quantum critical features in the
normal state of optimally doped cuprate high-Tc
superconductors [(4); (5) and references therein].

A large part of the fermion sign problem is
to understand this strongly coupled fermionic
quantum critical state. The emergent scale invari-
ance and conformal symmetry at critical points is
a benefit in isolating deep questions of principle.
The fundamental problem is: How does the
system get rid of the scales of Fermi energy
and Fermi momentum that are intrinsically
rooted in the workings of Fermi-Dirac statistics
(6, 7)? From another perspective, how can one
construct a renormalization group with a rele-
vant “operator” that describes the emergence of
a statistics-controlled (heavy) Fermi liquid from
the critical state (3), or perhaps the emergence
of a high-Tc superconductor? Here, we show
that a mathematical method developed in string
theory has the capacity to answer at least some
of these questions.

String theory for condensed matter. Our
analysis makes use of the AdS/CFT correspon-
dence: a duality relation between classical gravi-
tational physics in a d + 1–dimensional “bulk”
space-timewith an anti–de Sitter (AdS) geometry
and a strongly coupled conformal (quantum
critical) field theory (CFT), with a large number
of degrees of freedom, that occupies a flat or
spherical d-dimensional “boundary” space-time.
Applications of AdS/CFT to quantum critical sys-
tems have already been studied in the context of
the quark-gluon plasma (8, 9), superconductor-
insulator transitions (10–14), and cold atom
systems at the Feshbach resonance (15–17), but
so far the focus has been on bosonic currents
[see (18, 19) and references therein]. Although

AdS/CFT is convenient, in principle the ground
state or any response of a bosonic statistical field
theory can also be computed directly by averag-
ing on a lattice. For fermions, statistical averaging
is not possible because of the sign problem.
There are, however, indications that AdS/CFT
should be able to capture finite-density Fermi
systems as well. Ensembles described through
AdS/CFT can exhibit a specific heat that scales
linearly with the temperature characteristic of Fermi
systems (20), zero sound (20–22), and a mini-
mum energy for fermionic excitations (23, 24).

To address the question of whether AdS/CFT
can describe finite-density Fermi systems and the
Fermi liquid in particular, we compute the single
charged fermion propagators and the associated
spectral functions that are measured experimen-
tally by angle-resolved photoemission spectrosco-
py (“AdS-to-ARPES”) and indirectly by scanning
tunneling microscopy. The spectral functions con-
tain the crucial information regarding the nature
of the fermion states. These are computed on the
AdS side by solving for the on-shell (classical)
Dirac equation in the curved AdS space-time
background with sources at the boundary. A tem-
perature T and finite U(1) chemical potential m0
for electric charge is imposed in the field theory
by studying the Dirac equation in the background
of anAdSReissner-Nordstrom black hole.We do
so with the expectation that the U(1) chemical
potential induces a finite density of the charged
fermions. The procedure to compute the retarded
CFT propagator from the dual AdS description is
then well established (8, 19). Relative to the
algorithm for computing bosonic responses, the
treatment of Dirac waves in AdS is more delicate
but straightforward; details are provided in (25).
The equations obtained this way are solved
numerically and the output is the retarded single
fermion propagator GR(w, k) at finite T. Its
imaginary part is the single fermion spectral
function A(w, k) = –(1/p) Im Tr[ig0GR(w, k)] that
can be directly compared with ARPES experi-
ments (26).

The reference point for this comparison is
the quantum critical point described by a zero
chemical potential (m0 = 0), zero temperature
(T = 0), and conformal and Lorentz invariant
field theory. (Below, we use relativistic notation
where c = 1.) Here the fermion propagators
〈YY〉 ≡ G(w, k) are completely fixed by sym-
metry to be of the form

GCFT
DY

ðw, kÞ ∼ 1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−w2 þ k2
p Þd−2DY

ð1Þ

where DY is the scaling dimension of the fer-
mion field. Through the AdSd+1/CFTd dictio-
nary, DY is related to the mass parameter in
the d + 1–dimensional AdS Dirac equation.
Unitarity bounds this mass from below in units
of the AdS radius mL = DY – d/2 > –1=2 (we set
L = 1 in the remainder). The choice of which
value to use for m will prove essential to show
the emergence of the Fermi liquid. The lower
end of the unitarity-bound m = –1=2 + d, d << 1,
corresponds to introducing a fermionic confor-
mal operator with weight DY = [(d – 1)/2] + d.
This equals the scaling dimension of a nearly
free fermion. Even though the underlying CFT
is strongly coupled, the absence of a large
anomalous dimension for a fermion with mass
m = –1=2 + d argues that such an operator fulfills
a spectator role and is only weakly coupled to
this CFT. We therefore use such values in our
calculations. Our expectation is that the Fermi
liquid, as a system with well-defined quasi-
particle excitations, can be described in terms
of weakly interacting long-range fields. As we
increase m from m = –1=2 + d, the interactions
increase and we can expect the quasi-particle
description to cease to be valid beyond m = 0.
For that value m = 0, and beyond m > 0, the
naïve scaling dimension DO of the fermion-
bilinear ODO

= YY is marginal or irrelevant,
and it is hard to see how the ultraviolet con-
formal theory can flow to a Fermi-liquid state,
assuming that all vacuum state changes are
caused by the condensation of bosonic oper-
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Fig. 1. (A) The phase diagram near a quantum critical point. Gray lines depict lines of constant m0/T;
the spectral function of fermions is unchanged along each line if the momenta are appropriately
rescaled. As we increase m0/T we cross over from the quantum critical regime to the Fermi liquid. (B)
The trajectories in parameter space (m0/T, DY) studied here. We show the crossover from the quantum
critical regime to the Fermi liquid by varying m0/T while keeping DY fixed; we cross back to the critical
regime varying DY→d/2 for m0/T fixed. The boundary region is not an exact curve but only a qualitative
indication.
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ators. This intuition is borne out by our re-
sults: When m ≥ 0, the standard Fermi liquid
disappears. A similar approach to describing
fermionic quantum criticality (27) discusses
the special case m = 0 or DY = d/2 in detail; an
early attempt to describe the m = 0 system is
(28).

The emergent Fermi liquid. With an eye
toward experiment, we consider the AdS4 dual
to a relativistic CFT3 in d = 2 + 1 dimensions
(25). We do not know the detailed microscopic
CFT, nor do we know whether a dual AdS with
fermions as the sole U(1) charged field exists as
a fully quantum-consistent theory for all values
of m = DY – d/2, but the behavior of fermion
spectral functions at a strongly coupled quantum
critical point can be deduced nonetheless. Aside

from DY, the spectral function will depend on
the dimensionless ratio m0/T as well as the U(1)
charge g of the fermion; we set g = 1 from here
on, as we expect that only large changes away
from g = 1 will change our results qualitatively.
We therefore study the system as a function of
m0/T and DY. Our approach is sketched in Fig.
1B. We first study the spectral behavior as a
function of m0/T for fixed DY < 3=2; then we
study the spectral behavior as we vary the scal-
ing dimension DY from 1 to 3=2 for fixed m0/T
coding for an increasingly interacting fermion.
Note that our setup and numerical calculations
necessitate a finite value of m0/T; all our results
are at nonzero T.

Our analysis starts near the reference point
m0/T → 0, where the long-range behavior of

the system is controlled by the quantum critical
point (Fig. 1A). Here we expect to recover con-
formal invariance, as the system forgets about
any well-defined scales, and the spectral func-
tion should be controlled by the branchcut at
w = k in the Green’s function (Eq. 1): (i) Forw < k
it should vanish. (ii) At w = k we expect a sharp
peak, which for w >> k scales as w2DY−d . Figure
2A shows this expected behavior of spectral
function for three different values of the mo-
mentum for a fermionic operator with weight
DY = 5/4 computed from AdS4 following the
setup in (25).

Turning on m0/T while holdingDY = 5/4 fixed
shifts the center location of the two branchcuts to
an effective chemical potential w = meff; this bears
out our expectation that the U(1) chemical po-
tential induces a finite fermion density. Although
the peak at the location of the negative branchcut
w ~ meff – k stays broad, the peak at the other
branchcut w ~ meff + k sharpens distinctly as the
size of m0/T is increased (Fig. 2B). We identify
this peak with the quasi-particle of the Fermi
liquid and its appearance as the crossover be-
tween the quantum critical regime and the Fermi-
liquid regime. The spectral properties of the
Fermi liquid are very well known and display
a number of uniquely identifying characteris-
tics (29, 30). If this identification is correct, all
these characteristics must be present in our spec-
tra as well.

1) The quasi-particle peak should approach
a delta function at the Fermi momentum k =
kF. In Fig. 2B we see the peak narrow as we
increase k, then peak and broaden back out as
we pass k ~ kF (recall that T = 0 is outside our
numerical control and the peak always has some
broadening). In addition, the spectrum should
vanish identically at the Fermi energy A(w = EF,
k) = 0, independent of k (Fig. 2C).

2) The quasi-particle should have linear dis-
persion relation near the Fermi energy with a
renormalized Fermi velocity vF different from
the underlying relativistic speed c = 1. In Fig. 3
we plot the maximum of the peak wmax as a
function of k. At high k we recover the linear
dispersion relation w = |k| underlying the
Lorentz invariant branchcut in Eq. 1. Near the
Fermi energy and Fermi momentum, however,
this dispersion relation changes to a slope vF ≡
limw→EF,k→kF (w – EF)/(k – kF) clearly less than
unity.

Note that the Fermi energy EF is not lo-
cated at zero frequency. Recall, however, that
the AdS chemical potential m0 is the bare U(1)
chemical potential in the CFT. This is con-
firmed in Fig. 3 from the high-k behavior: Its
Dirac point is m0. On the other hand, the chem-
ical potential felt by the IR fermionic degrees of
freedom is renormalized to the value mF = m0 –
EF. As is standard, the effective energy w~ = w –
EF of the quasi-particle is measured with re-
spect to EF.

3) At low temperatures, Fermi-liquid theory
predicts the width of the quasi-particle peak to

Fig. 2. (A) The spectral function A(w,k) for m0/T = 0.01 and m = –1/4. The spectral function has the
asymptotic branchcut behavior of a conformal field of dimension DY = d/2 +m = 5/4: It vanishes for w <
k, save for a finite T tail, and for large w it scales asw2DY−d. (B) The emergence of the quasi-particle peak
as we change the chemical potential to m0/T = –30.9 for the same value DY = 5/4. The three displayed
momenta k/T are rescaled by a factor Teff/T for the most meaningful comparison with those in (A) (25). The
insets show the full scales of the peak heights and the dominance of the quasi-particle peak for k ~ kF.
(C) Vanishing of the spectral function at EF for DY = 1.05 and m0/T = –30.9. The deviation of the dip
location from EF is a finite temperature effect; it decreases with increasing m0/T.
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grow quadratically with temperature. Figure 4,
A and B, shows this distinctive behavior up to a
critical temperature, Tc/m0 ~ 0.16. This temper-

ature behavior directly follows from the fact that
the imaginary part of the self-energy S(w, k) =
w – k – [Tr ig0G(w, k)]–1 should have no linear

term when expanded around EF: Im S(w, k) ~
(w – EF)

2 + ... This is shown in Fig. 4, C and D.
These results give us confidence that we

have identified the characteristic quasi-particles
at the Fermi surface of the Fermi liquid emerg-
ing from the quantum critical point.

We now discuss how this Fermi liquid
evolves when we increase the bare m0 (Fig. 5).
Similar to the fermion chemical potential mF, the
fundamental control parameter of the Fermi
liquid, the fermion density rF, is not directly
related to the AdS m0. We can, however, infer it
from the Fermi momentum kF that is set by the
quasi-particle pole via Luttinger’s theorem rF ~
kF
d–1. The more illustrative figure is therefore

Fig. 5B, which shows the quasi-particle charac-
teristics as a function of kF/T. We find that the
quasi-particle velocities decrease slightly with
increasing kF, rapidly leveling off to a finite
constant less than the relativistic speed. Thus,
the quasi-particles become increasingly heavy as
their mass mF ≡ kF/vF approaches linear growth
with kF. The Fermi energy EF also shows linear
growth. Suppose the heavy Fermi–quasi-particle
system has the underlying canonical nonrel-
ativistic dispersion relation E = k 2/(2mF) =
kF
2/(2mF) + vF(k – kF) + ...; in that case, the
observed Fermi energy EF should equal the
renormalized Fermi energy EF

(ren) ≡ kF
2/(2mF).

Figure 5B shows that these energies EF and EF
(ren)

Fig. 3. Maxima in the spectral function as a function of k/m0 for DY = 1.35 and m0/T = –30.9.
Asymptotically for large k the negative-k branchcut recovers the Lorentz-invariant linear dispersion with
unit velocity, but with the zero shifted to –m0. The peak location of the positive-k branchcut that
changes into the quasi-particle peak changes noticeably. It gives the dispersion relation of the quasi-
particle near (EF, kF). The change of the slope from unity shows renormalization of the Fermi velocity.
This is highlighted in the inset. Note that the Fermi energy EF is not located at wAdS = 0. The AdS
calculation visualizes the renormalization of the bare chemical potential m0 = mAdS to the effective
chemical potential mF = m0 – EF felt by the low-frequency fermions.

Fig. 4. (A) Temper-
ature dependence of
the quasi-particle peak
forDY =5/4 and k/kF≈
0.5; all curves have
been shifted to a com-
mon peak center. (B)
The quasi-particle peak
width d ~ Re S(w, k =
kF) for DY = 5/4 as a
function of T 2; it reflects
the expected behavior
d ~ T 2 up to a critical
temperature Tc/m0, be-
yond which the notion
of a quasi-particle be-
comes untenable. (C and
D) The imaginary part of
the self-energy S(w, k)
near EF, kF forDY =1.4,
m0/T = –30.9. The defin-
ing Im S(w, k) ~ (w –
EF)

2 + … dependence
for Fermi-liquid quasi-
particles is faint in (C)
but obvious in (D). It
shows that the inter-
cept of ∂w Im S(w, k)
vanishes at EF, kF.
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track each other remarkably well. We therefore
infer that the true zero of energy of the Fermi
quasi-particle is set by the renormalized Fermi
energy as deduced from the Fermi velocity and
Fermi momentum.

Although the true quasi-particle behavior
disappears at T > Tc, Fig. 5A indicates that in
the limit kF/T → 0 the quasi-particle pole
strength vanishes, Zk → 0, while the Fermi ve-
locity vF remains finite; vF approaches the bare

velocity vF = 1. This is seemingly at odds with
the heavy Fermi liquid relation Zk ~ mmicro/mF =
mmicrovF/kF. The resolution is the restoration of
Lorentz invariance at zero density. From gen-
eral Fermi liquid considerations it follows that
vF = Zk (1 + ∂k Re S|EF,kF) and Zk = 1/(1 – ∂w Re
S|EF,kF), where ∂k,w Re S refers to the momen-
tum and energy derivatives of the real part of the
fermion self-energy S(w, k) at kF, EF. Lorentz
invariance imposes ∂wS′ = – ∂kS′, which allows

for vanishing Zkwith vF→ 1. Interestingly, the case
has been made that such a relativistic fermionic
behavior might be underlying the physics of cuprate
high-Tc superconductors (31).

Finally, we address the important question of
what happens when we vary the conformal di-
mension DY of the fermionic operator. Figure 6
shows that the Fermi momentum kF stays con-
stant as we increase DY. This completes our
identification of the new phase as the Fermi
liquid: It indicates that the AdS dual obeys
Luttinger’s theorem, if we can interpret the con-
formal dimension of the fermionic operator as a
proxy for the interaction strength. We find fur-
thermore that the quasi-particle pole strength
vanishes as we approach DY = 3=2. This confirms
our earlier assumption that it is essential to study
the system for DY < d/2 and that the point DY =
d/2, where the naïve fermion bilinear becomes
marginal, signals the onset of a new regime.
Because the fermion bilinear is marginal at that
point, this ought to be an interesting regime in
its own right, and we refer to (27) for a discus-
sion thereof (32). Highly remarkable is that the
pole strength vanishes in an exponential fashion
rather than the anticipated algebraic behavior
(6, 7). This could indicate that an essential singu-
larity governs the critical point at DY = d/2, and
we note that such a type of behavior was iden-
tified by Lawler et al. in their analysis of the
Pomeranchuk instability in d = 2 + 1 dimen-
sions using the Haldane patching bosonization
procedure (33). Note that this finite m0/T tran-
sition as we vary DY has no clear symmetry
change, similar to (7). However, this may be an
artifact of the fact that our theory is not quan-
tummechanically complete (25). Note also that
the quasi-particle velocity and the renormalized
Fermi energy EF = vF(k – kF) – E stay finite at the
DY = 3=2 transition with Z → 0, which could in-
dicate an emergent Lorentz invariance for the
reasons discussed above.

Concluding remarks. We have presented
evidence that the AdS dual description of
strongly coupled field theories can describe the
emergence of the Fermi liquid from a quantum
critical state, as a function of both density and
interaction strength, as encoded in the conformal
dimension of the fermionic operators. From the
AdS gravity perspective, it was unclear whether
this would happen. Sharp peaks in the CFT
spectral function correspond to so-called quasi-
normal modes of black holes (34), but Dirac
quasi-normal modes have received little study
[see, e.g., (35)]. It is remarkable that the AdS
calculation processes the Fermi-Dirac statistics
essential to the Fermi liquid correctly. This is
manifested by the emergent renormalized Fermi
energy and the validity of Luttinger’s theorem.
The AdS gravity computation, however, is com-
pletely classical without explicit quantum statis-
tics, although we do probe the system with a
fermion. It would therefore be interesting to
fully understand the AdS description of what is
happening, in particular how the emergent scales

Fig. 5. The quasi-particle
characteristics as a func-
tion of m0/T for DY = 5/4.
(A) The change of kF, vF,
mF, EF, and the pole
strength Z (the total weight
between half-maxima) as
we change m0/T. Beyond
a critical value (m0/T)c we
lose the characteristic T2

broadening of the peak
and there is no longer a
real quasi-particle, although
the peak is still present.
For the Fermi liquid, kF/T
rather than m0/T is the
defining parameter. (B)
We can invert this rela-
tion, and (B) shows the
quasi-particle characteris-
tics as a function of kF/T.
Note the linear relation-
ships of mF and EF to kF
and that the renormal-
ized Fermi energy E (ren) ≡
kF
2/(2mF) matches the em-
pirical value EF remark-
ably well.

Fig. 6. The quasi-particle
characteristics as a func-
tion of the Dirac fermion
mass –1/2 < m < 0 cor-
responding to 1 < DY <
3/2 for m0/T = –30.9. The
upper panel shows the
independence of kF of
the mass. This indicates
Luttinger’s theorem if the
anomalous dimensionDY

is taken as an indicator of
the interaction strength.
Note that vF and EF both
approach finite values as
DY → 3/2. The lower panel
shows the exponential
vanishing pole strength Z
(the integral between the
half-maxima) as m → 0.
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EF and kF feature in the geometry. An early
indication of such scales was seen in (24, 36) in a
variant of the story that geometry is not universal
in string theory: The geometry depends on the
probe used, and different probes experience
different geometric backgrounds. The absence
of these scales in the general relativistic descrip-
tion of the AdS black hole could thus be an
artifact of the Riemannian metric description of
space-time.

Regardless of these questions, AdS/CFT has
shown itself to be a powerful tool to describe
finite-density Fermi systems. The description of
the emergent Fermi liquid presented here argues
that AdS/CFT is uniquely suited as a computa-
tional device for field theory problems suffering
from fermion sign problems. AdS/CFT repre-
sents a rich mathematical environment and a new
approach to qualitatively and quantitatively in-
vestigate important questions in quantum many-
body theory at finite fermion density.
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Radio Imaging of the Very-High-Energy
g-Ray Emission Region in the
Central Engine of a Radio Galaxy
The VERITAS Collaboration, the VLBA 43 GHz M87 Monitoring Team,
the H.E.S.S. Collaboration, the MAGIC Collaboration*

The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets
found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies
exceeding 1012 electron volts and are bright sources of very-high-energy (VHE) g-ray emission, it is
not yet known where the VHE emission originates. Here we report on radio and VHE observations of
the radio galaxy Messier 87, revealing a period of extremely strong VHE g-ray flares accompanied
by a strong increase of the radio flux from its nucleus. These results imply that charged particles
are accelerated to very high energies in the immediate vicinity of the black hole.

Active galactic nuclei (AGN) are extra-
galactic objects thought to be powered
by massive black holes in their centers.

They can show strong emission from the core,
which is often dominated by broadband con-
tinuum radiation ranging from radio to x-rays
and by substantial flux variability on different
time scales. More than 20 AGN have been es-

tablished as very-high-energy (VHE) g-ray emit-
ters with measured energies above 0.1 TeV; the
jets of most of these sources are believed to be
aligned with the line of sight to within a few de-
grees. The size of the VHE g-ray emission region
can generally be constrained by the time scale of
the observed flux variability (1, 2), but its location
remains unknown.

We studied the inner structure of the jet of the
giant radio galaxy Messier 87 (M87), a known
VHE g-ray–emitting AGN (2–5) with a (6.0 T

0.5) × 109 solar mass black hole (6) (scaled by
distance), located 16.7 Mpc (54 million light
years) away in the Virgo cluster of galaxies. The
angle between its plasma jet and the line of
sight is estimated to lie between 15° and 25°
[see supporting online material (SOM) text].
The substructures of the jet, which are ex-
pected to scale with the Schwarzschild radius
Rs of the black hole (7), are resolved in the
x-ray, optical, and radio wave bands (8) (Fig. 1).
High-frequency radio very-long-baseline inter-
ferometry (VLBI) observations with resolu-
tion under a milli–arc second (milli–arc sec)
are starting to probe the collimation region of
the jet (9). With its proximity, bright and well-
resolved jet, and very massive black hole, M87
provides a unique laboratory in which to study
relativistic jet physics in connection with the
mechanisms of VHE g-ray emission in AGN.

VLBI observations of the M87 inner jet
show a well-resolved, edge-brightened structure
extending to within 0.5 milli–arc sec (0.04 pc or
70 Rs) of the core. Closer to the core, the jet has
a wide opening angle, suggesting that this is the
collimation region (9). Generally, the core can
be offset from the actual location of the black
hole by an unknown amount (10), in which case
it could mark the location of a shock structure or
the region where the jet becomes optically thin.
However, in the case of M87, a weak structure

*The full list of authors and affiliations is presented at the
end of this paper.
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gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS

near-boundary behavior and soft wall interior at zero scalar condensate. We study the

cases of neutral and charged condensate separately. In the former case the condensation

breaks the discrete Z2 symmetry while a charged condensate breaks the continuous U(1)

symmetry. After the condensation of the order parameter, the non-zero vacuum expec-

tation value of the scalar couples to the dilaton, changing the soft wall geometry into a

non-confining and anisotropically scale-invariant infrared metric. In other words, the for-

mation of long-range order is immediately followed by the deconfinement transition and the

two critical points coincide. The confined phase has a scale — the confinement scale (en-

ergy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry

of the scalar (Z2 or U(1)) in turn restores the scaling symmetry in the system and neither

phase has a higher overall symmetry than the other. When the scalar is charged the phase

transition is continuous which goes against the Ginzburg-Landau theory where such tran-

sitions generically only occur discontinuously. This phenomenon has some commonalities
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1 Introduction

The gauge/gravity duality, AdS/CFT correspondence or holography [1, 2] is by now a well-

established area, providing insights into fundamental issues of string theory and quantum

gravity but also into strongly-coupled physics in various areas such as quantum chromo-

dynamics (QCD) and condensed matter systems [4]. In such studies, the spacetime has
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anti de Sitter (AdS) geometry at large distances, near the boundary of the space, while

the interior is deformed away from AdS by various matter and gauge fields. This means

that the high-energy behavior (ultraviolet, UV) of the field theory, determined by the near-

boundary geometry, is conformally invariant but the interesting low-energy (infrared, IR)

physics is determined by the geometry of the interior which can look differently for various

configurations of fields and matter. The basic idea is that the radial coordinate on the

gravity side corresponds to the energy scale in field theory: as we travel from the boundary

toward the interior, we probe lower and lower energy scales.

One outstanding problem where AdS/CFT has provided some insights is the confine-

ment/deconfinement transition in strongly coupled gauge theories. In the confined phase,

only gauge-neutral bound states (mesons or baryons) can be observed. In the deconfined

phase, individual gauge-charged particles are also observable. The fact that the gauge-

charged excitations confine to form gauge-neutral bound states means that a gap opens,

as we only see the gauge-neutral bound states at finite energies; the number of the degrees

of freedom is effectively reduced at low energies. In AdS/CFT, this in turn means that

the scale of the spacetime in the dual gravity model shrinks to zero in the interior. Such

geometries are called soft-wall geometries, if the scale shrinks continuously, or hard-wall

geometries if the spacetime is sharply cut off at some finite radius. Soft-wall geometries

(which are more realistic than the hard-wall idealization) are obtained by coupling a neutral

scalar — dilaton — to the metric in a non-minimal way. They were first used in so-called

AdS/QCD studies in [3, 21, 32–34].

Typically, as the temperature rises, the system undergoes a confinement/deconfinement

phase transition: when the system deconfines, the free energy of individual gauge-charged

particles becomes finite, and they can be observed. This is the dominant mechanism in

quark-gluon plasmas in QCD. But confinement/deconfinement is also present in condensed

matter systems. Here the gauge field is not microscopic but emergent in the low-energy

description. In the confined phase the degrees of freedom are bound into gauge-neutral ex-

citations which are seen as normal electrons, i.e. quasiparticles. In the deconfined regime,

the excitations are gauge-charged and not observable by ordinary probes in experiment.

This might explain some non-Fermi liquid materials [10–15]. This topic was addressed

e.g in [29] as well as in a series of very general and systematic studies by Kiritsis and

coworkers [24–26]. In such systems, it is realistic to assume that deconfinement can also

happen as a quantum phase transition, at zero temperature, when some parameter is var-

ied. Deconfined gauge theories in AdS/CFT often have full conformal symmetry (dual

to AdS geometry) or at least some form of anisotropic scale covariance (with different

scaling exponents along different coordinates) which arguably can be expected to hold at

high energies for many realistic gauge theories [3] while a confined theory has an explicit

scale because the energy of gauge-neutral bound states or, equivalently, the position of

the wall zw along the radial direction sets a scale. The confinement/deconfinement tran-

sition can thus be treated also as a symmetry-breaking transition, where scale covariance

is lost. The scaling properties of dilaton spacetimes have recently become known as hy-

perscaling geometries [27, 30, 31] and have attracted attention also independently of the

confinement/deconfinement problems.

– 2 –
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Another class of problems where strongly-coupled models are provided by AdS/CFT

are the order/disorder quantum phase transitions where some field O acquires a vacuum

expectation value (VEV). A textbook example is the famous holographic superconduc-

tor [5–7] where a charged field condenses, breaking the U(1) symmetry, similarly to the

superconducting transition in metals. While many such systems are described by the

Landau-Ginzburg paradigm, this paradigm fails in some strongly-coupled systems. Many

variations of such models have been proposed [36–40] where a dilaton is also present, or

it is precisely the dilaton that condenses. The work [36] in particular addresses the setup

similar as in our study: a scalar which condenses in the presence of a separate dilaton

(however, explicit calculation with backreaction on dilaton and geometry was not done to

check if the confinement/deconfinement transition exists). This opens an alley to study

the interplay of the two transitions, the confinement/deconfinement transition and the

order/disorder transition.

Our idea is to explore the interplay of the two above phenomena: the confine-

ment/deconfinement transition and the condensation of an order parameter. They might

in principle be independent, or one might foster or hinder the other. Well-studied examples

of holographic superconductors [5] or superconductor-dilaton systems [37, 38] suggest that

order parameter condensation often makes the length scale in the interior decrease faster:

a charged black AdS-Reissner-Nordström black hole, which in deep interior has the AdS2

geometry of finite radius, upon condensation turns into a Lifshitz spacetime whose length

scale vanishes in the interior [4, 7]; in [29] this was interpreted as turning a fractionalized

non-Fermi liquid into a system closer to a Fermi liquid. On general grounds one also expects

that an ordered system can be expressed in terms of fewer degrees of freedom (in terms of

the fluctuations of the order parameter rather than all microscopic degrees of freedom).

We will however present an example where the opposite occurs, i.e. the formation of

a condensate destroys the soft-wall geometry and deconfinement takes place. Thus the

phase transition is not a straightforward symmetry-breaking transition: on one hand, the

condensate breaks a symmetry, on the other hand, another symmetry is restored as the

deconfinement happens. This happens because the confinement scale (the energy gap)

vanishes so scale invariance is restored. Our main interest is how this transition looks and

what is its nature. We find that the phase transition can be continuous, contrary to the

prediction of the Ginzburg-Landau theory where such transitions (where the two phases

have different symmetries neither of which is a subgroup of the other) can only occur

through phase coexistence or a first-order transition.

This has some common logic with the deconfined criticality concept of [10, 11]. Denote

the full symmetry group of the non-soft-wall geometry by G1 and its subgroup which

remains after confinement by G2. We do not know what exactly G1,2 are but generically G1

will contain some scale invariance which stems from the scaling behavior of the IR geometry,

while the confined system has a scale (the confinement gap) and thus G2 does not contain

any scaling symmetry. Denote further the symmetry group broken by the condensate

formation by H1 and its residual subgroup by H2 (in our case, we have (H1,H2) = (Z2, I)
for the neutral scalar and (H1,H2) = (U(1), I) for the charged scalar. Now in our paper

we have a transition from the confined-disordered phase (symmetry group G2⊗H1) to the

– 3 –
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deconfined-ordered phase with the symmetry G1 ⊗H2. We have G2 < G1 and H2 < H1 so

the critical point partly breaks, and partly restores symmetry. The same situation occurs in

deconfined criticality scenario but the detailed physics is different: at a deconfined critical

point (only at the critical point) there is an additional topological conserved quantity which

governs the transition. We will comment on this in the paper in more detail, however no

direct relation or equivalence can be established at this level. We cite the deconfined

criticality as an inspiration and possible direction of future work, not something that our

present results are directly relevant for.

Although the specific problem of how condensation of a scalar may influence the con-

finement/deconfinement transition was not studied so far to the best of our knowledge,

a lot of work was done on Einsten-Maxwell-dilaton systems in other contexts. After the

pioneering work in [3] which first drew attention to the AdS/QCD alley of research, con-

finement was studied in [32–34] and more systematically in [22, 23] with finite temperature

behavior further explored in [21]. These authors have studied a neutral Einstein-dilaton

system and have classified geometries which lead to confinement as well as the nature of the

phase transition (first-order or continuous). Charged systems have been studied in [24–27].

The non-condensed phases of our system (without the order parameter) are just a small

subset of the systems studied in [25] and we will frequently compare our case to their

general results throughout the paper. Charged EMD systems are particularly well studied

as top-down constructions regularly include charged fields. The charged case we consider

is also closely related to the dilatonic charged black holes considered in [18–20] as possible

candidates for gravity duals of Fermi liquids. The issue of a scalar condensation in the

presence of dilaton is also rather extensively studied, e.g. in [39, 40] but in these cases

the dilaton does not lead to a soft wall geometry so there is no confinement which can be

destroyed upon condensation. In [35, 37, 38] the dilaton itself is charged (i.e., a charged

scalar is coupled to the curvature) and the phenomenology was found to be similar to the

basic holographic superconductor [5].

In section 2 we give the gravity setup and explain our model. Section 3 sums up dif-

ferent solutions for the geometry, depending on the bulk mass (conformal dimensions) of

the scalar field and classifies the solutions into confined and deconfined ones. In section 4

we explain how the condensation of the order parameter proceeds and how it leads to

deconfinement, and finally construct the phase diagram of the system. In the fifth sec-

tion we study the response functions (conductivity, charge susceptibility and the retarded

propagator of the scalar field) and show how various phases and their symmetries can be

inspected from the response functions which are in principle measurable quantities. The

last section sums up the conclusions and discusses possible directions of further work. The

appendix contains a detailed description of the numerical calculations.

2 Gravity setup

We have the Einstein-(Maxwell)-scalar-dilaton system in asymptotically AdSD+1 space-

time, with or without the Maxwell sector: the metric gµν , the dilaton scalar Φ and the

(neutral or charged) scalar χ. If the system is charged, there is also the electric field Aµ

– 4 –
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where only the electric component A0 is nonzero (we do not consider magnetic systems).

The dilaton Φ couples to the curvature R in the string frame and is always neutral; thus

unlike the models where the dilaton (actually, a non-minimally coupled scalar) is itself

the charged field that condenses, we want the dilaton to perform its usual work, i.e. to

control the scale (and confinement). This will be crucial to study the influence of the order

parameter on the confining properties. We find it more convenient to work in the Einstein

frame where the dilaton does not couple non-minimally to the metric but to the matter

fields only. The scalar χ is minimally coupled to gravity and to the Maxwell field with

charge q (including the possibility q = 0). We now have the action:

S =

∫
dt

∫
dDx
√
−g(R− Λ + LΦ + Lψ + LEM ) (2.1)

LΦ = −ξ (∂Φ)2 − V (Φ) (2.2)

Lχ = −1

2
Z(Φ)(Dχ)2 −

m2
χ

2
χ2 = −1

2
Z(Φ)(∂χ)2 − q2

2f(z)2
Z(Φ)A2

0χ
2 − e−2A

2ξf
m2
χχ

2 (2.3)

LEM = −1

4
T (Φ)F 2 = −1

2
T (Φ)(∂A0)2. (2.4)

This is just the minimal symmetry-allowed action for these fields apart from the exponential

couplings of the dilaton. In string theory we would have ξ = 4/(D−1) but since our model

is purely phenomenological we can leave it as an arbitrary positive constant. We have

subtracted the constant piece, i.e. the cosmological constant Λ = −D(D − 1)/2 from the

dilaton potential, so the AdS solution corresponds to Φ = 0 (and χ = 0). The geometry

is AdSD+1 in the far field (UV, near-boundary) region while, with a suitable choice of

V (Φ), Z(Φ), T (Φ) it narrows into a soft wall in the interior (IR). The AdS radius is

rescaled to L = 1. The potential of the scalar is fixed to just the mass term, like in [5, 6],

as it suffices to achieve condensation (and is a consistent truncation of more elaborate,

top-down potentials). As explained in [5], the field χ, even when charged, can be made

real, i.e. its phase can be put to zero.

Now we come to the question of choosing the model, i.e. the dilaton potentials

V (Φ), Z(Φ), T (Φ). The basic picture of confinement in AdS/CFT means the dilaton po-

tential should produce a soft-wall geometry but we also want to study its interplay with

the establishment of (bosonic) long-range order and condensation. We want to engineer

the dilaton potentials so that the scalar is unstable to condensation into a hairy black hole

with χ(z) 6= 0 for some m2
χ in the soft wall background and that the soft wall dilaton is in

turn unstable to transition into a non-confining (non-soft-wall) solution upon the formation

of scalar hair. This means that, upon dialing m2
χ, we should have two possible solutions

for the scalar, χ(z) = 0 and χ(z) 6= 0, each with a different nonzero solution for the dilaton

Φ(z). The following potentials will serve us well:

V (Φ) = V0Φ
2ν−2
ν e2Φ (2.5)

Z(Φ) = Z0e
γΦ, D − 1 < γ < 2D (2.6)

T (Φ) = T0e
τΦ, τ > 2D − 4, τ2 >

(
γ +

D − 2

8

)2

+
1

D
. (2.7)

– 5 –
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The limitations for γ and τ follow from the requirement that the stress-energy tensor of

the EM field and also of the charged scalar field χ should stay finite and not dominate

over the components of the Einstein tensor. In top-down constructions from supergravity

the functions Z(Φ), V (Φ), T (Φ) are typically all purely exponential in Φ (or linear com-

binations of such exponentials), with fixed exponent values. In our bottom-up approach

these exponents are free parameters and by tuning these we can study the behavior we are

looking for. We have added a power-law prefactor to (2.5) for reasons of better analytical

tractability: the soft wall solution for the scale factor A(z) is simplified with this choice

for V (Φ) and at the leading order reads just A(z) = zν with subleading corrections for

z → ∞ whereas with a purely exponential V (Φ) it would have be more complicated also

at leading order. We conjecture that the phase diagram and overall behavior of the system

would be similar for V ∝ eκΦ. In a companion publication we derive our model from a

superpotential which demonstrates the stability of the system, giving legitimacy to (2.5).

The prefactors Z0, T0 merely rescale the amplitudes of χ,A0 and can be put to unity (they

have no physical meaning). Notice the case ν = 1 is special: then we get the linear dilaton

theory, the potentials V,Z, T become purely exponential and can be embedded in a super-

gravity action. Finally, the potentials (2.5)–(2.7) are the expressions in IR: near the AdS

boundary they are corrected to ensure the AdS asymptotics.

For analytical considerations it is convenient to parametrize the metric as:1

ds2 = e−2A(z)

(
−f(z)dt2 +

dz2

f(z)
+ dx2

)
, (2.8)

with the coordinates (t, z, x1, . . . xD−1), where xi are the transverse spatial coordinates, i.e.

the spatial coordinates in field theory and z is the radial distance in AdS space: the AdS

boundary (UV of the field theory) sits at z = 0 and the interior (IR in field theory) is at

z → ∞. At equilibrium, the fields are static, homogenous and isotropic, so they depend

only on z. The equations of motion read:

A′′ + (A′)2 =
1

D − 1

1

f2
T00 + Tzz =

1

2(D − 1)
Z(χ′)2 +

1

D − 1
ξ(Φ′)2 (2.9)

f ′′ − (D − 1)f ′A′ = 2

(
1

f
T00 + Tii

)
= 2e2AT (A′0)2 (2.10)

Φ′′ +

(
f ′

f
− (D − 1)A′

)
Φ′ − e−2A∂ΦV

ξf
− e2Af

2ξ
(χ′)2∂ΦZ −

e−3A

f
(A′0)2∂ΦT = 0 (2.11)

χ′′ +

(
f ′

f
− (D − 1)A′ + Φ′

∂ΦZ

Z

)
χ′ − 2e−2A

2f
m2
χχ+

q2

f2
ZA2

0χ = 0 (2.12)

A′′0 −
(

(D − 3)A′ − ∂ΦT
T

)
A′0 −

2Z

fT
e−3Aχ2A0 = 0. (2.13)

The prime denotes the radial derivative. As we have only two independent functions in the

metric, it suffices to take two combinations of the Einstein equations. Due to homogeneity

1In numerical calculations we find it convenient to use a different parametrization of the metric. Equa-

tions of motion and the description of the numerical algorithm can be found in appendix A.
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we have Tx1x1 = Tx2x2 = . . . = TxD−1xD−1 ≡ Tii and the off-diagonal components are zero.

The energy-momentum tensor Tµν = TµνΦ + Tµνχ + TµνEM reads

T 00
Φ = ξgzz(Φ′)2 − V, T zzΦ = T iiΦ = −ξgzz(Φ′)2 − V (2.14)

T 00
χ =

Zgzz(χ′)2

2
+
ZgzzA2

0χ
2

2
−m2

χχ
2, T zzχ = T iiχ = −Zg

zz(χ′)2

2
− ZgzzA2

0χ
2

2
−m2

χχ
2

(2.15)

T 00
EM = T zzEM = −T g00gzz(A′0)2, T iiEM = −2T g00gzz(A′0)2 (2.16)

In order to have AdS asymptotics, the metric functions must satisfy A(z → 0) = log z and

f(z → 0) = 1. The near-boundary expansion of the gauge field is of the form

A0(z → 0) = µ− ρzD−2 + . . . (2.17)

which determines the chemical potential µ and the charge density ρ. One can work either

in the canonical ensemble (fixing ρ) or in the grand canonical ensemble (fixing µ). For

our purposes it doesn’t matter much which variant we choose; in the concrete numerical

examples we always fix the chemical potential. The scalar has the near-boundary behavior:

χ = χ−z
∆−(1 + c−1z + c−2z

2 + . . .) + χ+z
∆+(1 + c+1z + c+2z

2 + . . .) (2.18)

where the leading and subleading branches χ∓ have the conformal dimension ∆± = D/2±√
D2/4 +m2

χ. In field theory, one of these is the source of the order parameter Oχ dual

to χ and the other is its the vacuum expectation value (VEV). We pick χ+ as the VEV,

so the formation of the condensate means χ+ 6= 0 for χ− = 0 — nonzero subleading

component (VEV) for zero leading (source) term. It usually turns out that the scalar

can condense for negative enough mass squared, i.e. for m2
χ < m2

BF for some bound mBF

(Breitenlohner-Friedmann bound [17]) that depends on the spacetime, i.e. on geometry;

in AdSD+1 of unit radius it is m2
BF = −D2/4. Similar asymptotics as in (2.18) hold

for the dilaton Φ when the near-boundary form of the potential starts from a quadratic

term: V (Φ(z → 0)) ∼ m2
ΦΦ2 + . . .. We tune m2

Φ above the bound for condensation

because we never consider the condensed state of the dilaton. This leaves Φ− as the

sole free parameter. Obviously, Φ− sources some field theory operator OΦ of dimension

D/2−
√
D2/4 +m2

Φ which does not condense and thus does not break a symmetry. Still, the

value of Φ− influences the bulk solution and consequently may influence the condensation

of χ or the confinement/deconfinement transition. In accordance with the main idea of the

paper, we mainly focus on the condensation of Oχ at fixed Φ and only briefly discuss the

meaning of OΦ.

In absence of the scalar χ and apart from the subleading correction in the dilaton

potential V , our system is one of the many cases of Einstein-dilaton and Einstein-Maxwell-

dilaton systems considered systematically in [25]. Our parameter values are similar to a

solution that the authors of [25] call “near-extremal case”. For each solution, we check

that the value of the parameters we use for γ, δ, ν are consistent with the Gubser criterion

for “good” curvature singularities in IR [16]. A good singularity means that, even though
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the curvature becomes infinite at z → ∞, it can be trapped by a horizon. A systematic

discussion of allowed parameter values (for purely exponential potentials) can be found

in the cited reference [25]. The exponent ν is also a free parameter with the limitation

ν ≥ 1. In numerical calculations, unless specified differently, we take ν = 2 and D = 4 for

calculations, though any D > 2 again leads to similar results. An account of numerical

calculations can be found in the appendix; the procedure is essentially iterative, repeatedly

computing the profile of the scalar χ(z) and then updating the metric and the dilaton in

the presence of χ(z).

3 Solutions in the infrared: soft-wall and AdS-like

3.1 Neutral solutions

3.1.1 No symmetry breaking

At zero temperature (which is central for studying the ground state) the space extends

to z → ∞. The authors of [23] have performed a classification of asymptotically AdS

Einstein-dilaton systems (without other fields), motivated by AdS/QCD studies. Their

results can be summed up as follows. The scale factor A(z) either has a singularity at

finite z, or at z = ∞. In the former case, the metric can be conformally equivalent to

AdS with A(z) ∼ α log z (type Ib geometry), which is never confining whereas the soft-wall

solutions with A(z) ∼ zν (type Ia geometry) are confining for ν ≥ 1. If the singularity is

to be found at finite z = zW , then the logarithmic approach A(z) ∼ log(zW − z) (type IIb

geometry) does not give confinement whereas a power-law A(z) ∼ 1/(zW − z)ν (type IIa

solution) does, for any ν.2 We have nothing to add here: our system is a special case of

the systems considered in [23], with slightly different V (Φ).

To solve our equations of motion (2.9)–(2.12), notice first that the equation (2.10) is

decoupled from all matter fields and yields the solution

f(z) = C0 + C1

∫
dze(D−1)A(z). (3.1)

A growing scale A(z) in the interior would lead to a bad singularity according to the

criterion of Gubser [16].3 Therefore, we need to suppose that A(z) is a monotonically

growing function of z, as also discussed in [23]. This in turn means that the non-constant

term in (3.1) is likewise growing, so C1 < 0 (in order to have a solution for the position

of the horizon, defined by f(zhor) = 0) and for correct AdS asymptotics C0 = 1. Now C1

is determined by the boundary condition in the interior: at zero temperature, the space is

2Let us quickly remind the reader where this comes from. The defining criterion for confinement is

that the Wilson loop operator follows the area law. The Wilson loop, defined as the potential energy of a

quark-antiquark pair separated by distance L, is holographically expressed as the action of a classical string

embedded in spacetime, with a rectangular loop at the AdS boundary with sides equal to L and the time

T . If the metric is of the form (2.8), one can plug it in into the expression for the string action and find

the action scales as e−2A(zs), where zs is a stationary point: A′(zs) = 0. From this the above conclusions

follow, bearing in mind that one may have zs →∞.
3To remind the reader, the paper [16] shows that a curvature singularity is physically meaningful if it

can be obtained as the limit of a geometry with horizon, so that the horizon hides the singularity.
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infinite so C1 = 0, f(z) = 1 as expected for a neutral system. At nonzero temperature T ,

the position of the horizon is determined by the condition f(zh) = 0.

We are left with one Einstein equation for A(z) and two Klein-Gordon-like equations

for the two scalars. It is easiest to start from an ansatz A(z) ∼ zν to get a soft wall

(type Ia) solution

A(z) = zν
(

1 +
a1

z
+
a2

z2
+ . . .

)
f(z) = 1− (D − 1)1/ν

ν

M
zν−1

e(D−1)zν , χ(z) = 0

Φ(z) =

√
D − 1

νξ

√
νz2ν + (ν − 1)zν

(
1 +

φ11

z
+
φ12

z2
+ . . .

)
+

+
ν − 1

ν
√
ξ

log
(
νz

ν
2 +

√
ν2zν + ν2 − ν

)(
1 +

φ21

z
+
φ22

z2
+ . . .

)
. (3.2)

These forms are exact as z → ∞ and the coefficients ai, φij can be found analytically

at arbitrary order in principle. We are not interested in the details of the small z (UV)

geometry, as long as enough free parameters remain that the solution can be continued

to the AdSD+1 boundary conditions. The red shift function includes the rescaled black

hole mass M, which is related to the position of the horizon as M = zν−1
h , the horizon

being determined through the transcendental equation f(4πD/T ) = 0 which we will not

explore here in detail. Importantly, the thermal solution smoothly crosses into the zero

temperature solution and all temperatures down to T = 0 are defined, which is not always

the case with Einstein-(Maxwell)-dilaton systems, see e.g. [25]. There is another solution,

however: starting from the ansatz A(z) ∼ α log z we get a type Ib solution

A(z) = α log z
(

1 +
a1

z
+
a2

z2
+ . . .

)
, α =

ξ

D − 1 + ξ

f(z) = 1− M
α(D − 1)

z(D−1)α, χ(z) = 0

Φ(z) = φ0 log z

(
1 +

φ1

z
+

φ2

z log z
+
φ3

z2
+

φ4

z2 log z
+ . . .

)
, φ0 =

D − 1

D − 1 + ξ
. (3.3)

Which of these is the ground state is to be determined by comparing the free energies, our

task in the next section (it turns out the confining solution Ia is the correct choice). These

solutions have a curvature singularity at z →∞: the Ricci scalar for (3.2) is

R = −D(D − 1)ν2e2zνz2ν−2 + . . . (3.4)

which diverges for z large but can be trapped by a thermal horizon for any finite zh so that

R is finite as zh → 0. This follows from the form of f(z) in (3.2) and makes the solution

physically meaningful.

3.1.2 Symmetry-breaking order parameter

Now consider the symmetry-broken solution with χ(z) 6= 0. If we require the physically

logical (and simplest) choice of purely exponential Z(Φ) as in (2.6), then the only way
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to satisfy (2.9) while keeping the scaling function A(z) ∼ zν is to “reduce” the dilaton,

i.e. make its growth slower than zν : otherwise, an additional source on the r.h.s. of equa-

tion (2.9) can only make A(z) grow even faster, never slower (remember the r.h.s. is the

kinetic energy of the scalar field which cannot be negative; adding a new nonzero field

cannot reduce the sum). Thus we seek for a scalar χ(z) which, when coupled to Φ(z), gives

it a logarithmic behavior Φ(z) ∼ φ0 log z. Such a solution indeed exists. We deliberately

postpone the discussion of the mechanism of the scalar instability to condensation, i.e. of

the scalar fluctuations in background (3.2) which lead to the new solution discussed in this

subsection. This mechanism (and the value of m2
χ at which it happens) will be discussed

in the next section, before constructing the phase diagram. For now we are content to

show that the solution exists. To the best of our knowledge, this kind of solution was not

analytically constructed in earlier work.

The solution is now of type IbC (Ib with condensate):

A(z) = α log z
(

1 +
a1

z
+
a2

z2
+ . . .

)
, α =

γ + 2

2γ − 2(D − 1)

f(z) = 1− M
α(D − 1)

z(D−1)α

Φ(z) = φ0 log z

(
1 +

b1
z

+
b2

z log z
+
b3
z2

+
b4

z2 log z
+ . . .

)
, φ0 =

D + 1

γ + 1−D

χ(z) = χ0z
− γφ0

2 , φ0 =
D + 1

2(γ + 2)
α =

D + 1

γ − (D − 1)

χ0 =

√
2(γ2 + 2γ + 2D2(γ + 2− 2ξ)− 4ξ −D((γ + 2)2 + 8ξ))

(D + 1)γ
. (3.5)

Interestingly, the value of ν does not appear in the solution at leading order (of course,

it does appear in the subleading corrections ai, bi). The solutions for φ0, χ0 show that we

need the condition γ > D− 1 to avoid the growing metric scale in the interior. The crucial

observation in the above discussion was that adding bosonic fields (for which T00/f
2 + Tzz

is always positive) cannot destroy the soft wall solution. We find there is no solution with

two scalars, Φ and χ, and with the couplings (2.5)–(2.6), which has a soft-wall metric

scale behavior A(z) ∼ zν . This can be seen more rigorously from the superpotential

approach. There is thus an interesting bifurcation-like behavior as the amplitude of the

order parameter field is varied: there are two competing solutions for 〈Oχ〉 = χ(z = 0) but

only one of them survives as 〈O〉 grows away from zero. Is this solution acceptable? The

curvature behaves as

R = −4α(3α+ 2)z2α−2 + . . . ∝ z
γ−2D
γ−D+1 , (3.6)

the exponent being positive precisely in the allowed interval of γ values, D − 1 < γ < 2D.

Thus we again have a singularity, and it is again a “good” singularity according to [16].

This is in line with the results of [25] for “near-extremal” solutions: acceptable solutions

are only those with a singularity; those without a curvature singularity are cosmological

solutions with an unacceptable singularity at small z.

– 10 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
2

3.2 Charged solutions

3.2.1 No symmetry breaking

Instead of a neutral scalar we now take a charged scalar, i.e. the typical holographic su-

perconductor setting, coupled to a dilaton. The results should not depend crucially on the

spin of the charged field as long as it is integer; half-integers fields, i.e. fermions may well

behave differently as they have different pressure (spatial components of the stress tensor).

We will not analyze the fermionic case here.

For further convenience we adopt the terminology of [28, 29], used also in [27], to

roughly classify the charged solutions in terms of the charge distribution in the bulk and

how it influences the geometry. On one hand, we have (1) IR-neutral solutions where the

Maxwell contribution to Tµν is subleading so that the IR geometry is not influenced by A0(z)

in the first approximation, as opposed to (2) IR-charged solutions where A0(z) contributes

at leading order. The second criterion is whether the solution is fractionalized or coherent:

(a) fractionalized solutions are those where the charged fields do not contribute to Tµν and

thus to geometry in the IR at leading order whereas in (b) cohesive solutions they con-

tribute. In the fractionalized case the electric flux in the IR
∫
? [T (Φ)F ] is non-zero while it

is zero for cohesive solutions. The physical interpretation of the fractionalized/coherent dy-

chotomy is still unclear. The logical explanation would be that in the fractionalized case the

charge-carrying degrees of freedom are not those which are seen in the spectrum as they are

charged under the gauge group and are not seen by the gauge-neutral probe (”gauginos”),

as opposed to the gauge-neutral composite excitations of the coherent case (”mesinos”).

This interpretation suggests a close relation between the confinement/deconfinement and

coherence/fractionalization. The trouble is that many examples exist both of fractional-

ized but confined systems (the dilatonic black holes of [18–20]) and coherent but deconfined

systems (the electron star and the dilatonic electron star of [29]). While confinement is

about the behavior of the Wilson operator and the gauge field excitations, coherence is

about the emergence of stable composite gauge-neutral excitations. Examples where the

quarks emerge only after the gauge field compactifies are known in AdS/CFT [41] but the

understanding of the phenomenon is lacking. We plan to address this issue in more detail

in future work; here we will just state the fractionalization/coherence nature of our geome-

tries and comment briefly on the interpretation in the conclusions. For more information

on the general problems of fractionalization in this context see [19, 20, 27].

Let us now study the charged solutions. Notice first that a charged solution without

condensate can only exist in the presence of a charged horizon. Such a solution must be

fractionalized as none of the charge carriers have a dual VEV at the boundary. It reads

A(z) = zν
(

1 +
a1

z
+
a2

z2
+ . . .

)
f(z) = 1−M(T )e(D−1)zν +

2Q2

2ν − 3
e(τ+4−2D)zνz3−2ν

(
1 +

f1

z
+
f2

z2
+ . . .

)
Φ(z) = zν

(
1 +

φ1 log z

z
+
φ2

z
+ . . .

)
, χ(z) = 0

A0(z) = a0 −Qe−(τ−(D−3))zνz1−ν
(

1 +
a1

z
+
a2

z2
+ . . .

)
. (3.7)

Now the horizon carries the charge Q and at zero temperature M(T = 0) = 0, so
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the extremal horizon is degenerate and located at z = ∞. Again, we are not inter-

ested in the (complicated) analytical form of M(T ). The electric flux at the horizon is√
−gg00gzzT (Φ)A′0 = T (Φ)A′0 ∼ e−(D−3)zν × eτzνa1e

(D−3−τ)zν ∼ a1 which is a generically

nonzero constant for z → ∞, meaning that the solution is fractionalized. On the other

hand, it is confining, as it is of type Ia (we call it IaQ, as it has charge) and the metric

scale diminishes exponentially in the IR (we call it IaQ to emphasize it is charged). In

fact, this solution is quite similar to the top-down dilatonic black hole with two-exponent

potential discussed in [18–20]. Although fractionalized, it still confining so it fits into our

main story: deconfinement from independent symmetry breaking.

3.2.2 Symmetry-breaking order parameter

Postulating a nonzero profile for the scalar field and requiring that the scalar contributes

at leading order in the equation (2.9), we find the solution IbQC, the non-confining

charged solution:

A(z) = α log z
(

1 +
a1

z
+
a2

z2
+ . . .

)
f(z) = 1−M(T )

z(D−1)α+1

(D − 1)α+ 1
+

2Q2

zβ

(
1 +

f1

z
+
f2

z2
+ . . .

)
Φ(z) = φ0 log z

(
1 +

φ1 log z

z
+
φ2

z
+ . . .

)
χ(z) = χ0z

− γφ0
2

(
1 +

χ1

z
+
χ2

z2
+ . . .

)
A0(z) = a0 −Qz−

10+11γ+9τ
10+10γ+8τ

(
1 +

a1 log z

z
+
a2

z
+ . . .

)
, (3.8)

and the exponents read

α =
4 + 4γ + 3τ

5 + 5γ + 4τ
, β =

2τ + 3γ + 2

4τ + 5γ + 5
, φ0 =

1

4τ + 5γ + 5
. (3.9)

The charged horizon is still degenerate at zero temperature. Comparing the stress tensors

by plugging in the solution (3.8) into (2.14)–(2.16), we easily find that TEM � TΦ, Tχ for

z → ∞, so according to the criterion of [25] the solution is IR neutral. Being of type

Ib (we denote it IbQC, as it is charged and has the condensate), it is not confining, and

the IR flux is z
−2− 9γ+5τ+8

10+10γ+8τ which goes to zero for z → ∞ since γ and τ are positive

and all the coefficients in both numerator and denominator of the exponent are positive.

The solution IbQC is thus coherent and deconfined. On one hand, the fact that the non-

condensed solution IaQ is fractionalized while the condensed solution IbQC is coherent is

perfectly logical, since in the non-condensed case all the charge is on the horizon, whereas

in the presence of the condensate it carries all the charge. The fact that the fractionalized

solution is confined and the coherent one is deconfined may sound strange; e.g. in [27] the

intuition is expressed that confined solutions should be coherent. But as we have already

commented the zoo of field theories in gauge/gravity duality offers many counterexamples.

At least, one expects that the coherent nature of the systems shows up as poles, i.e. bound

states in the bottom half-plane of complex-frequency response functions of matter fields
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(the scalar χ), independently of the presence or absence of confinement. We will check this

in section 5.

Can we get a soft wall with charged condensate? We were unable to find such a

solution either analytically or numerically. The conclusion is again that the competition

of two scalars (dilaton and order parameter) destroys the confining solution. Of course,

by adjusting the potentials V,Z, T we could get many different phase diagrams but in

the present model there is a strict competition between the soft wall and the condensate.

Finally, the singularity properties of both charged solutions are analogous to the charge-

neutral case: the singularities exist but are physically allowed.

3.3 Resume of the geometries

We have found five solutions: Ia, Ib, IaQ, IbC, IbQC. Only two of them compete in the

same regime, Ia and Ib, and the preferred solution has to be found by computing the energy.

Geometries Ia, IaQ are confined whereas Ib, IbC, IbQC are deconfined. Among the charged

geometries, IaQ is fractionalized whereas IbQC is coherent, and both are IR neutral. In

figure 1 we plot the metric functions A(z), f(z) and the bulk profile of the dilaton and the

scalar field Φ(z), χ(z) at zero temperature, at zero chemical potential in the panel (A) and

at finite chemical potential in the panel (B). The most obvious feature of the solutions is

the sharp exponential fall-off of the scale factor e−2A for soft-wall geometries versus much

slower fall-off for deconfined solutions where the blue curve e−2Az2 is almost flat, i.e. the

solution behaves almost as AdS in the IR. This is logical, as the volume in the IR counts the

degrees of freedom of the low-energy excitations; at low enough energies, such excitations

are completely absent in the confined phase. In fact, as can be seen from the analytical

form of the solutions (3.5), (3.8), the factor e−2A in the deconfined phase behaves as a

power law just like in AdS, only with a different power. In [25, 27, 30, 31] such geometries

are classified in terms of hyperscaling exponents, where the time, space and energy (i.e.,

radial distance in AdS) are each scale-covariant but with different exponents. It turns out

these three exponents can be described by combinations of two parameters, the Lifshitz

exponent ζ and the hyperscaling violation exponent θ; if θ = 0 the geometry obeys the

hyperscaling whereas for θ 6= 0 it is hyperscaling-violating. For a Lorentz-invariant system

we have ζ = 1; values different from unity mean that the dispersion relation is nonlinear

and the Lorentz invariance broken. The neutral deconfined geometries (3.3) and (3.5) have

ζ = 1 but the hyperscaling exponent is nontrivial and reads θ = D(1 + α). The charged

version (3.8) has both exponents nontrivial (ζ > 0 6= 1 and θ 6= 0). Note that the ζ < 0

case is hard to interpret physically and thus we have checked that all of our geometries

have ζ > 0.

4 Phase diagram and thermodynamics

We will consider the ground state of our system as a function of the parameters and

external sources of the theory. Parameters of the theory are the exponents ν, τ, γ and

the conformal dimension (bulk mass) ∆χ. The ranges of the allowed values of ν, τ, γ are

chosen in such a way that the dependence on their values is smooth and unlikely to lead to
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(A) (B)

Figure 1. (A) The metric functions e−2A(z)z2, f(z) (blue, red) and the bulk fields Φ(z), χ(z)

(magenta, orange) in the confined regime (geometry Ia, full lines) and in the deconfined regime

(geometry IbC, dashed lines). The blue line corresponds to the ratio of the scale factor in our

system and the AdS scale factor 1/z2. The confining regime has a soft wall in the IR and its IR

scale falls practically to zero already at z ∼ 3. (B) Same as the previous figure but for the charged

field at the chemical potential µ = 1; now we plot also the gauge field A0(z) (green). The basic

phenomenology is the same as in (A): the soft wall broadens and the scale factor e−2A has no

characteristic scale zW at which it falls off rapidly. The plots are in D = 4 and the parameter

values are ν = 2, γ = 4 (both A and B), and τ = 5 for the charged case (B). For the neutral case

we pick m2
χ = 1/4 and m2

χ = −1/4 whereas for the charged case we have m2
χ = 8 and m2

χ = 4.

phase transitions; furthermore, these exponents characterize the running couplings in field

theory, which include also the information at different energy scales and probably cannot be

realistically tuned. Therefore, the dependence of the thermodynamic quantities on ν, τ, γ

will not be explored. The typical procedure in holographic superconductor literature would

be to tune ∆χ = D/2 +
√
D2/4 +m2

χ as a proxy for coupling strength in field theory, and

this is what we shall do. The requirement for condensation fully fixes the solution χ(z),

as we remind below, and we have no sources for Oχ. However, there is one free parameter

in the theory at fixed parameter values: the operator OΦ dual to the dilaton in the UV.

Therefore, the phase transitions are driven by dialing the scaling dimension ∆χ and the

expectation value of the operator OΦ dual to the dilaton. When not explicitly stated, we

will assume a fixed OΦ and study the phase transitions as a function of ∆χ.

4.1 The condensation of the boson at T = 0

We expect that at some ∆χ = ∆c the neutral bosonic operator Oχ acquires a nonzero

expectation value. As we know [5], the expectation value in field theory is given by the

subleading term in the UV expansion (2.18) at zero source term

〈Oχ〉 = χ+|χ−=0. (4.1)

One can also consider an alternative quantization where the VEV is given by χ−, provided

both terms are normalizable, but we will stick with the standard quantization. At this place

one should differentiate between the neutral and the charged case. In the neutral case, no

continuous symmetry is broken and the phase transition is more akin to nucleation, where
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the oscillating modes of the scalar add up to a significant perturbation which eventually

changes the metric. Whether the oscillations are strong enough or not to lead to a new

ground state in principle depends on the parameters of the system. The charged case

is expected to be simpler: here, the instability is supposed to be rooted in the Higgs

mechanism which breaks the U(1) symmetry, and one expects this to happen for any

charged scalar (independently of the m2
χ value). The charged scalar is thus expected to

always condense at T = 0, at least in absence of the dilaton. In the presence of the dilaton,

things can become more complicated, as we shall see.

4.1.1 The neutral case

The critical value of the conformal dimension4 ∆c can be related to the violation of the

Breitenlohner-Freedman (BF) stability bound in the interior. To remind, the idea is to

rewrite the Klein-Gordon equation for the scalar with energy ω as an effective Schrödinger

equation for the rescaled scalar χ̃(z) = χ(z)/B(z) with energy ω2:

χ̃′′ − Veff(z)χ̃ = −ω
2

f2
χ̃(z) (4.2)

and the effective potential

Veff =
e−2A

f
m2
χ −

B′

B

(
f ′

f
+
∂ΦZ

Z
Φ′ − (D − 1)A′

)
− B′′

B
, (4.3)

where the rescaling factor is

B(z) =
e−

D−1
2
A − ∂ΦZ

2Z Φ
√
f

. (4.4)

If the energy of χ becomes imaginary, i.e. the Schrödinger energy ω2 becomes negative,

it means there is an exponentially growing mode which likely signifies an instability, and

the scaling dimension becomes complex [17]. In the Schrödinger formalism, it means that

χ̃ forms a bound state. We are not allowed to violate the bound in the UV, to prevent

violating the AdS asymptotics assumed in the gauge/gravity duality, but an instability in

the interior is perfectly allowed and signifies the change of IR physics, i.e. of the field theory

ground state. In AdS-RN background, the instability of the neutral scalar is given simply

by the BF bound of the near-horizon AdS2, which equals −1/4 [5, 8]. We do not have a

near-horizon AdS region and there is no simple formula for the critical mass (dimension)

m2
c (∆c) but the logic is the same: we are looking for complex energies, i.e. bound states

in the Schrödinger formalism.

In geometry Ia the effective potential reads

Veff = m2
χe
−2zν − (D − γ − 1)ν(ν − 1)

2
zν−2 +

(D − γ − 1)2ν2

4
z2ν−2 (4.5)

which is positive and growing to infinity at large z. For any bound states to exist, we need

to have a sufficiently deep and broad potential well below zero energy, i.e. the potential

4We will use the conformal dimension ∆χ and the bulk mass squared m2
χ interchangeably as they are

uniquely related to each other through ∆χ = D/2 +
√
D2/4 +m2

χ.
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needs to grow to infinity also on the “left-hand side”, for small z, and fall sufficiently low

in-between. Now we remember that for z → 0 the potential certainly goes to positive

infinity because m2
χ > −D2/4 (i.e., we do not want bound states in the far UV region,

sitting at z → 0). Now the question is what the potential looks like for some intermediate

z1 which is still large enough that the IR solution (geometry Ia) is valid. Assuming that

z1 ∼ 1, this depends on the combination m2
χ− (D−γ− 1)ν(ν− 1)/2 + (D−γ− 1)2ν2/4 —

the second and third term are both positive, and the question is whether there is a value

of m2
χ > −D2/4 which is nevertheless sufficiently negative to make Veff negative. This is

obviously a question of numerical calculation but we can see that for γ = D − 1 + ε for

ε small the second and the third term in (4.5) have practically zero coefficients and not

too large |m2
χ| suffices to push Veff below zero in some interval. We conclude that we can

expect a BF-type instability at some critical m2
c . We have seen this means the geometry Ia

is modified, presumably into IbC, and at finite m2
c , analogously to the neutral holographic

superconductor in AdS-RN [5, 8].

Having shown that there is indeed a mechanism for the condensation of the order

parameter in the soft-wall regime, we should also check if the geometry IbC is stable in the

presence of the condensate. In geometry IbC the effective potential is:

Veff = V∞ +
m2
χ

z2α
+
κ(κ+ 1)

z2
(4.6)

where κ = (D−1)α+γφ0

2 and V∞ is a z-independent constant. The inverse square term is

always positive and the power of the mass term varies between −∞ for γ → D − 1 and

−2 for γ = 2D (we see this from the expressions for α, φ0 in (3.5)). Thus the 1/z2 term

dominates at large z for the allowed values of γ (from (2.6)) and approaches zero from

above as z → ∞; this means the potential approaches the constant V∞ from above. This

in turn means there is no room for bound states — the potential in the UV is positive and

decaying and never falls below zero.5 Therefore, the geometry IbC is stable in the presence

of the scalar. Numerical plot of the potential in figure 2 confirms the above discussion. In

the panel (A) there is a potential well with bound states for all masses below some m2
c ∼ 6

which is thus the critical value for the condensation. In panel (B) the well turns out too

shallow to allow the formation of bound states: the geometry is stable. All curves are for

m2
χ ≥ −D2/4 as for this value there is a potential well near z = 0 and the outer AdS region

becomes unstable.

In the numerical calculation, we shoot for the solution of a two-point boundary value

problem which satisfies the boundary condition (2.18) for χ at the AdS boundary and the

expected asymptotics for χ(z) from (3.5) in the interior. We do this as a part of the complete

calculation (with backreaction on geometry, see the appendix). In this way we can find

the dependence of the VEV 〈Oχ〉 on the conformal dimension ∆χ. In figure 3(A), the blue

curve jumps at the transition, signifying that the transition is of first order. This is different

from the infinite-order BKT-type (stretched-exponential) scaling laws found in [5, 8] for

5This picture changes for γ > 2D — then the mass term dominates for z → ∞ and for negative mass

squared it forms a potential well. But in our model one always has γ < 2D so we do not explore this case

in detail.
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(A) (B)

Figure 2. The effective Schrödinger potential Veff(z) defined by (4.3) for a range bulk masses

(conformal dimensions) m2
χ = 6, 2, 0,−2,−4 (blue, magenta, red, pink, orange) and D = 4, ν =

2, γ = 4. The instability corresponds to bound states, i.e. existence of a sufficiently deep and

broad potential well. In (A), we can fit a bound state for all masses shown, for the last one just a

single bound state, thus m2
c ∼ 6 corresponds to the BF bound. For such masses, the geometry will

remorph and we will enter the condensed phase. This phase is stable, as in (B) the potential well

is too shallow to accommodate a bound state. Notice that for m2
χ = −4 the potential develops a

well in the outer region, i.e. this is the BF bound for AdS5.

a neutral scalar in AdS-RN background because the BKT scaling originates in so-called

Efimov states in the IR which depend on the details of the potential for the scalar [8]

and would require a fine tuning of the dilaton potentials too. First-order transition is not

unknown even for a charged scalar if it is non-minimally coupled to the metric [37, 38].

We also expect the condensate to vanish at higher temperatures, a case which we find

too difficult for analytical work so we limit ourselves to numerics. The result is shown in

figure 3: there is again a jump at the critical temperature.

4.1.2 The charged case

The charged problem can usually be understood as the textbook Abelian-Higgs instabil-

ity where the gauge field develops an effective mass term |χ|2A0 and the mass of the

scalar is effectively negative as it acquires a correction −g00A2
0, leading to instability and

condensation. Without dilaton, in AdS-Reissner-Nordstrom background, this correction

to the scalar mass grows fast enough near the horizon to produce an instability even at

positive m2
χ [9]. For our system the equation for the charged scalar in IR geometry IaQ

(eq. (3.7)) reads

χ′′ − ν(τ + 3− γ −D)zν−1χ′ − e(τ−2D+2)zν

ξ

(
m2
χ − ξa2

1q
2z2ν−2e(γ−τ)zν

)
χ = 0 (4.7)

Now the negative correction to the effective mass of the scalar may grow or diminish as

z → ∞, depending essentially on the sign of γ − τ . If γ > τ the correction dominates

the bare mass term and we always have a mode growing at z → ∞ but if γ < τ it is

subleading and does not influence the behavior of χ(z → ∞) at leading order. Looking

– 17 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
2

(A) (B)

Figure 3. (A) Expectation value of the scalar 〈Oχ〉 as a function of temperature for m2
χ = −2, for

the neutral scalar (blue) and the charged scalar with q = 1 (red), in D = 4 and for ν = 2, γ = 4; for

the charged scalar τ = 5. The neutral scalar has a first-order quantum phase transition and its value

jumps from zero, whereas in the charged case the quantum phase transition shows a continuous

BKT-like exponential form exp
(
− (Tc − T )

−1/2
)

. The unit of temperature is Tc — the critical

temperature for the charged case. In (B) we zoom-in near the critical temperature for the neutral

case to make it obvious that there is a jump.

at our conditions (2.5)–(2.6), we see this is always the case. Naively, one may guess that

the critical value is m2
c = 0 but since our analysis ignores all subleading terms one should

check numerically (numerics confirms that this is indeed the critical value, see the phase

diagram in figure 7). Amusingly, the scaling with temperature and conformal dimension is

now consistent with the BKT-like form:

〈Oχ〉 = const.× e
− 1√

−m2
χ . (4.8)

Although the numerical fit to the e−1/(−m2
χ)n law with n = 1/2 is good, we cannot exclude

the possibility that the exponent n weakly depends on ν and that it is not exactly 1/2; we

have no analytical estimate for n. The condensate formation is now, strictly speaking, not

a consequence of the coupling with the gauge field at all (remember the term q2g00A2
0 is

now exponentially suppressed) but merely the consequence of growing modes for negative

scalar mass. Thus the mechanism is essentially the same as for the neutral scalar and

the fact that the neutral scalar undergoes a discontinuous transition reminds us that the

details of this process depend sensitively on the IR geometry. The temperature scaling is

of the same form as the scaling with m2
χ (4.8) and is shown as red points in figure 3.

4.2 Free energies and phases at zero temperature

Now that we have explained the instability that seeds the condensation, we will compute

the free energy (on-shell action) of the system as a function of ∆χ and T , to study the

order of the transition and the full phase diagram. We thus need to evaluate (2.1) on-shell

for solutions Ia and IbC: F =
∫
dDxL|Ia,IbC + Fbnd. The boundary terms are given by

Fbnd =

∮
bnd

√
gind(−2K − λ− 1

2
A0A

′
0 − χ2 − 2ΦΦ′), (4.9)
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Here, gind is the induced metric at the boundary, K is the trace of the extrinsic curvature,

λ is the boundary cosmological constant, and the remaining terms come from the gauge

field, the scalar and the dilaton. The counterterm for the scalar is in accordance with

our choice that χ+ is the VEV; had we chosen χ− for the VEV the counterterm would

be −2χ′χ, analogous to the situation for the dilaton. The comparison of free energies is

best done numerically but even analytically we can draw some conclusions. Let us first

consider the quantum phase transitions as a function of ∆χ at fixed Φ− and discuss the

free energies at zero temperature.6 Our analytical solutions are only valid in the large z

region, whereas for smaller z they cross over into the AdSD+1 forms, so the radial integral

in (4.9) goes from some z1 ∼ 1. The difference between the energy of the solution Ia (we

will show numerically it is indeed preferred to Ib) and IbC is

FIa −FIbC ∼ χ2
+z

2∆χ +

∫ ∞
z1

dz
[
(D2 −D)z−(D−1)α + χ2

0m
2
χz
−γφ0 + . . .

]
. (4.10)

The difference in free energies at leading order has terms proportional to the squared

amplitude of the order parameter (in the UV — χ−, i.e. 〈Oχ〉 and in the IR — χ0) but also

a χ-independent term (coming from the Ricci scalar and cosmological constant terms in

geometry IbC) so we expect that the transition, determined by FIa−FIbC = 0 generically

happens at nonzero amplitudes 〈Oχ〉, χ0 and we can exclude a continuous transition. This

is again in line with the discreteness of the symmetry broken and the discontinuous nature

of the transition. On the other hand, for the charged geometries IaQ and IbQC there is

also the boundary contribution A0(z → 0)A′0(z → 0) so

FIaQ −FIbQC =
µ(ρIaQ − ρIbQC)

2
+ χ2

+z
2∆χ −

∫ ∞
z1

dzz−(D−1)αχ2
0(4 + 7γ)2 + . . . (4.11)

Now there is no χ-independent term and the dominant terms in the energy difference are

proportional to the squared amplitude of the condensate, or to the difference in charge

densities ρIaQ−ρIbQC which, according to the Gauss-Ostrogradsky theorem, also has to be

proportional to the bulk density of the charged field, q2χ(z)2. Therefore, one can expect

that the energy difference grows from zero at 〈Oχ〉 = 0, as in a continuous phase transition.

We have assumed that the chemical potential is kept constant across the transition (grand

canonical ensemble). Now we will check our conclusions numerically.

First of all let us show that the confined solution is indeed the ground state in absence

of the condensate. In figure 4(A) we plot the on-shell action of the solutions Ia (3.2) and

Ib (3.3) and we see that Ia indeed always has lower energy — the system is confining.

Now consider the free energies as functions of m2
χ and the temperature. In figure 4(B) we

compare the free energies as functions of the conformal dimension for the neutral system

and confirm the discontinuous nature of the transition: the curves have different derivatives

at the transition point. Here we also scan for different values of the source Φ−, which

change the value of the transition point ∆χ but, importantly, do not introduce new phases.

This is easily understood from the discussion in section IV.A.1 and also from eq. (4.10).

Dialing Φ− influences the matching between the solutions in the UV and the solutions in

IR without introducing new IR solutions, so we are still left with the choice between Ia

6At T = 0 the free energy is just the total energy E of the system, since F = E − TS. For simplicity of

notation, we will still call it F just like the finite temperature case.
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Figure 4. (A) Free energy at zero temperature as a function of the scaling exponent ν in the absence

of condensate, for geometry Ia (confining, blue)and Ib (nonconfining, magenta). Obviously the soft-

wall geometry always has lower free energy, thus it is always preferred: in absence of condensate

we have a confining soft wall. The units on the vertical axis are arbitrary. (B) Free energy at zero

temperature as a function of the bulk mass m2
χ for geometry Ia (confining, no condensate, blue)

and for geometry IbC (nonconfining, with condensate, red). Both solutions exist before and after

the critical point, where their energies F (m2
χ) intersect at finite angle, thus the phase transition

is of first order. The solid, dashed and dotted lines are from three different values of the source

Φ− = 0.1, 0.2, 0.5 — the source shifts the location of the transition but does not change the behavior

qualitatively. The free energy is in computational units and the parameters are ν = 3/2, γ = D = 4.

and IbC. Concerniing the scalar condensation, different values of Φ− reshape the effective

potential, influencing the point z1 where the geometry crosses over to the IR asymptotics

and thus the width of the potential well, so it starts supporting bound states for different

values of m2
χ. Finally, the free energy difference depends on the IR quantities φ0, χ0 which

are determined by the matching to the UV solution. Their values influence the location of

the transition point but not the nature of the transition.

For the charged case the free energy is given in figure 5. The transition is now con-

tinuous and the zoom-in near the origin clarifies that the critical point lies at m2
χ = 0.

Interestingly, the three values of the OΦ source now all give the same critical point, at zero

mass squared. The curves for different values of OΦ only differ in the deconfined phase,

with nonzero 〈Oχ〉, and coincide as long as no condensate forms. At first, this may sound

strange. However, a look at the effective potential (4.7) shows that the negative term is

now exponentially growing at large z and thus the potential well is always in the deep IR

region, rather than in the middle as in the neutral case (figure 2). It is thus understandable

that it is not affected by the matching to the UV solution with given Φ−.

We have already established that our confinement/deconfinement transition may be

of continuous or discontinuous nature. Both cases are in principle known even in field

theory, and all the more so among the many condensed matter systems where some kind

of fractionalization picture is appropriate.

4.3 Finite temperature thermodynamics

At finite temperature, the free energy is still the value of the on-shell action but the radial

integration now terminates at finite zh. In the leading term of the action in geometry Ia,
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Figure 5. Same as in figure 4(B) but for the charged order parameter with q = 1 (A), with

a zoom-in near m2
c = 0 (B). The new solution with condensate branches off smoothly and with

continuous first derivative, thus the phase transition is continuous. It is consistent with BKT-like

scaling e−1/
√

∆2
c−∆2

. The three values of source (solid, dashed, dotted lines, same as in the previous

figure) leave the critical point m2
c = 0 invariant and only influence the deconfined, condensed phase.

The free energy is in arbitrary units and τ = 6.

which stems from the dilaton potential:

FIa ∼ −V0

∫ zh

z1

dz
e−(D−3)zν

z2
+ . . . (4.12)

we need to perform the radial integration from the crossover-to-AdS-scale z1 to the horizon

zh and expand the result about zh. Therefore, we integrate from “deep IR” at zh to “the

UV of the IR”, i.e. the location where the geometry crosses over to the asymptotic AdSD+1.

Clearly, the integral is dominated by the exponential term and our free energy scales as

F(T → 0) ∝ 1

z2
h

Γ2−1/ν((D − 3)zνh) ∼ const.× e−
D−2
Tν T 3−ν (4.13)

where the power-law correction T 3−ν is in fact unimportant (we don’t consider D < 3 so

the exponent −(D − 2)/T ν is always negative) and the free energy has an extremely slow

growth at low T . Clearly, the entropy S = ∂F/∂T is zero at zero temperature, and is

extremely low at low T (much smaller than for any system with the scaling F ∼ T x for any

power x). Thus the effective number of the degrees of freedom is much reduced because of

the confinement. The same scaling is obtained for the charged case.7 At high temperatures

(compared to the confinement gap) we can expand the action in 1/T and get

F(1/T → 0) ∝ Γ(1− 1/ν)

z2
h

∼ const.× T 2, (4.14)

the quadratic behavior of the free energy and the linear behavior of entropy characteristic

of Fermi liquids.8 This result was found for a dilatonic black hole in [18] and our system

7One may wonder whether this slow growth of entropy can actually be observed. It is possible that

any amount of disorder in the system would make the entropy significantly larger. At least theoretically,

however, an exponentially slow growth is not unusual in dilatonic setups, see e.g. [21].
8For high temperature we get T ∼ 4πD/zh but this is not en exact relation and is not even close at low

T (unlike the textbook Schwarzschild or RN black hole without the dilaton).

– 21 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
2

(A) (B)

Figure 6. Temperature dependence of the free energy F(T ) for the charged system in the confined

phase (m2
χ = 4), for µ = 1, ν = 2, γ = 4, τ = 6. The dashed and the dotted black lines are the

analytical estimates (4.13), (4.14) for the confined phase. In (A) we cover a broad range of temper-

atures, showing both the low-temperature regime with the scaling (4.13) and the high-temperature

regime (4.14). In (B), we zoom in at low temperatures, showing the very slow growth of free energy

and entropy. The analytical estimates for the low-temperature scalings are determined only up to

the UV contribution, which was assumed approximately constant and was fit to the numerics.

behaves similarly at high temperatures (in fact, our confined charged system only differs

from it by the choice of the dilaton potential, which likely influences the low-temperature

behavior but not the high-T asymptotics). Even though we have no fermions in the system,

the quadratic scaling is perhaps not so surprising: one may expect it in any confined system,

where only the gauge-neutral bound states are observable. Notice, however, that at high

temperatures we expect a dimensional scaling to take place

In the deconfined phase, the exponential scaling is gone and we have a simple scaling

law for both low and high temperatures:

F(T ) ∝ z−(D−1)α
h ∼ const.× T x. (4.15)

For high temperatures the exponent is x = (D − 1)α; for low T the relation T (zh) is

complicated but behaves as a power-law, so F still scales as a power law of the temperature.

This anomalous power law for all temperatures is precisely in line with the hyperscaling-

violating nature of the system: the metric has power-law scaling and has no sharp scale

where low-T regime cross over to high-T regime. These findings are illustrated in figure 6,

where we plot the numerical calculation of F(T ) together with analytical scaling laws for

the confined system. We have chosen a large and positive scalar mass m2
χ = 4 to avoid the

phase transition to the condensed deconfined system, since the purpose of the figure is to

study the different scaling regimes in the same phase, not the phase transition (which is

discontinuous in T for the neutral system and of infinite order in T in the charged system,

same as the scaling with m2
χ). Notice that the analytical estimates (4.13)–(4.15) are only

the IR contribution, and the true free energy is obtained by adding the UV contribution,

which is fit as a constant in figure 6 (assuming that the T -dependence in the UV is weak,

though in reality it is certainly not strictly constant).
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4.4 Structure of the phase diagram

We are now in position to construct the whole phase diagram. The phases are the same

both for the neutral and for the charged case, except that the critical line is of different

nature (first-order and smooth, respectively). The phase diagram is sketched in figure 7.

For small enough conformal dimension ∆χ and temperature T , the scalar condenses and the

system deconfines, restoring the scale invariance at low energies. As the temperature rises,

the long-range order of the scalar is lost and we are back to the confined regime. This shows

our main point — the confinement/deconfinement transition is triggered by the long-range

order of O. What does this mean symmetry-wise? On one hand, the condensation of O

certainly breaks a symmetry — Z2 (neutral) or U(1) (charged). But on the other hand the

deconfinement restores a symmetry: as we have explained, the deconfined geometries are

anisotropically scale-covariant (hyperscaling), of the form ds2 = z−2κ(−f0z
−ηdt2 + dx2 +

f−1
0 zηdz2). In absence of charge (f0 = 1, η = 0), all coordinates in field theory can be

rescaled as xµ 7→ λxµ though the energy (dual to z) scales differently (this is sometimes

called generalized conformal symmetry, [25]). With nontrivial f the scaling exponent is

different along different axes but there is still some invariance to dilatatons (rescaling of

coordinates). At the same time, in the soft-wall case with ds2 ∝ e−2zν there is no scale

invariance at all. Overall, neither phase is more symmetric than the other: denoting the

symmetry group of the scaling system in field theory by G1, we expect it to be broken in

the confined phase down to some subgroup G2 < G1, while the symmetry of the scalar

(Z2 or U(1)) is fully broken in the deconfined phase. Since we have a bottom-up model

we don’t have the explicit form of the field theory Lagrangian and so we cannot fully

determine G1,2. Both certainly include the spacetime translations and rotations and G1,

as discussed, contains also dilatations. In special cases, e.g. when the field theory is N = 4

super-Yang-Mills, it will be the full conformal group and the deconfinement will be the

restoration of the full conformal symmetry. In any case, the symmetry at the critical point

changes like

G2 ⊗ Z2 7→ G1 ⊗ I, G2 ⊗U(1) 7→ G1 ⊗ I. (4.16)

The neutral case where the phase transition is discontinuous could be related to the Landau-

Ginzburg theory which generically predicts that in such situations, when no overall sym-

metry reduction occurs, the two phases can be separated by a first-order transition or by

a finite area of phase coexistence. But the charged case where the transition is contin-

uous is of non-Landau-Ginzburg type. This case in particular resembles the concept of

deconfined criticality proposed as an explanation for the physics of some strongly coupled

quantum critical points in D = 3 [10, 11]. We would like to understand how one could

probe such phase diagrams in nature, having in mind the handicap that in a bottom-up

gauge/gravity model we do not know the explicit form of the action to directly inspect

the symmetries of different phases. We would also like to gain a better knowledge of the

confinement/deconfinement transition itself: we cannot directly identify the gauge-charged

and gauge-neutral degrees of freedom but we can detect the existence of bound states in

the confined phase and explore their dispersion relation, a technique particularly used in

AdS/QCD, where the quark confinement is recognized from the linear scaling of bound
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Figure 7. Phase diagram in the ∆χ–T plane for the charged scalar. Blue dots denote the numerical

results for the onset of the condensation of the scalar; the line is just to guide the eye. The

condensed/deconfined phase (geometry IaQ) is located to the left and below the boundary line;

the rest is the non-condensed/deconfined phase (geometry IbQC). For the neutral case the phase

diagram is similar. The key finding is that the deconfinement transition coincides with the onset of

the long-range order. The vertical black line denotes the BF bound for AdS5.

state masses, mn ∝ n [22, 32–34]. We can also look for the signs of symmetry breaking in

the response functions. Bound states can be detected in this way too, since they manifest

as poles of correlation functions in the imaginary half-plane, separated from the possible

quasiparticle peak by a gap (the binding energy).

Finally, one should have in mind that at very high temperatures it is possible that both

confined and deconfined solutions (i.e., all the solutions we have considered) give way to the

solution with zero dilaton profile, i.e. the system becomes just a (neutral, Schwarzschild or

charged, Reissner-Nordstrom) black hole, as pointed out in [39, 40]. This depends on the

parameters of the dilaton potentials; for some values such solutions exist and for some not.

We have not checked the existence of this regime explicitly and will not consider it; it is not

relevant for the low-temperature and zero-temperature phase transitions we consider here.

5 Response functions and bound states

5.1 Definition and equations of motion

In this section we will try to understand better the nature of different phases by computing

the electric AC conductivity σ(ω, k = 0) and charge susceptibility ξ(ω, k) of our system

as well as the retarded propagator GR(ω, k) of the order parameter Oχ, in particular by
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looking at the bottom half of the complex frequency plane where one can find the poles

corresponding to the bound states typical of confined systems. In this section we consider

the T = 0 case as we are interesting in the properties of the ground state (and its excitations

encoded in the pole structure), not the finite-temperature fluctuations. According to the

basic dictionary (e.g. [4]) the conductivity, as the response of the current to the imposed

(transverse) electric field, is proportional to the ratio of the source and VEV terms of the

fluctuation of the spatial component of the bulk electromagnetic field:

δAx(z;ω, k) = δA(0)
x + δA(1)

x z + . . . , σ(ω, k) =
1

ıω

δA
(1)
x

δA
(0)
x

+
1

ıω
R(ω, k), (5.1)

where R(ω, k) is the regulator connected to the boundary counterterms in the action.

Without entering into detailed discussion, we can quote that in D = 3 no regulator is

needed (R = 1) whereas in D = 4 we have R = k2 − ω2 [9]. Charge susceptibility is the

response of the charge density to the applied electric field, and therefore can be computed

analogously from the fluctuation of A0:

δA0(z;ω, k) = δA
(0)
0 + δA

(1)
0 z + . . . , ξ(ω, k) =

δA
(1)
0

δA
(0)
0

=
δρ

δµ
, (5.2)

so the susceptibility can be interpreted as the ratio of the charge density fluctuation and the

fluctuation in chemical potential. The conductivity mainly makes sense at zero momentum

(in the absence of a lattice) whereas susceptibility can also be considered as a function

of momentum, to study the spatial modulation of the charge density, as in [42]. The

equations of motion are really the variational equations from the action (2.1)–(2.4) about

the equilibrium solutions A0(z;ω, k) and Ax(z;ω, k) = 0:

δA′′x −
(

(D − 3)A′ − ∂ΦT
T

Φ′
)
δA′x −

(
ω2

f2
− k2

f
− 2q2e−3A

fT
χ2

)
δAx = 0 (5.3)

δA′′0 −
(

(D − 3)A′ − ∂ΦT
T

Φ′
)
δA′0 −

(
ω2

f2
− k2

f
− 4q2e−3A

fT
A0χ

2

)
δA0 = 0. (5.4)

Even though the fluctuations δA0, δAx are coupled to the fluctuations of the metric, we

do not consider the full system of fluctuation equations here. For a charged system, this

amounts to working in the limit of large charge, where the probe barely has any influence

on the system.

Finally, to study the symmetry breaking we explore also the fluctuation of the scalar

field δχ which determines the retarded propagator GR(ω, k) of the field O in field the-

ory. According to the dictionary, the retarded propagator is again the ratio of the lead-

ing boundary components, χ−/χ+, of the fluctuation ∆χ(z;ω, k) which satisfies exactly

the same Klein-Gordon equation (2.12) as the equilibrium solution, only at finite energy

and momentum:

δχ′′+

(
f ′

f
− (D − 1)A′ − ∂ΦZ

Z
Φ′
)
δχ′−

(
ω2

f2
− k2

f
+
e−2A

f
m2
χ −

q2

f2
eτΦA2

0

)
δχ = 0. (5.5)

Unlike the BF bound calculation, we are not exclusively interested in the case when the

energy ω is pure imaginary but will consider general values of energy (with non-positive

imaginary part, since the poles in the upper half-plane are forbidden).
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5.2 Effective Schrödinger equation for the response functions

It is well-known (e.g. [43, 44]) that the IR behavior of the effective Schrödinger problem for

various quantities like (5.3), (5.4)(5.5) is related to the energy scaling of the corresponding

response functions in field theory, defined as the ratio of the leading and subleading com-

ponent of the bulk field in the boundary. The aforementioned references study the case

when the equation can be written in the form A′′x − V (z)Ax = −ω2Ax (and similarly for

any other field instead of Ax) with V (z) ∼ 1/z2 in the IR. The inverse-square potential is

famous for allowing a conformal-invariant solution, and simple scaling arguments together

with flux conservation lead to the conclusion that the z-scaling of the solutions to the

Schrödinger equation in IR determines the ω-scaling of the response function (essentially,

the solution is a function of ωz only, and since the flux must be conserved (z-independent)

it is also ω-independent, which relates the scaling with z to the scaling with ω). In our

problem, even in the deconfined case with no soft wall, the behavior of the potential is

in general different from 1/z2, and no quantitative results on the frequency scaling can

be drawn. We can, however, decide if the spectrum is gapped or continuous, and if the

gaps are “hard” (zero spectral weight of the response function) or “soft” (exponentially

suppressed nonzero weight).

As the charge susceptibility in dilaton systems was never studied so far, we give a

more detailed analysis of the effective potential. The equation (5.4) can be recast as a

Schrödinger problem with an effective potential

Veff(z;ω, k) = −ω
2

f2
+
k2

f
+
e−2A

f
m2
χ +

X ′′

X
+B

X ′

X
(5.6)

with B = (D − 3)A′ − τΦ′ and X = e−
∫
B/2 = e(D−1)/2A−γΦ/

√
f . Starting from the

confined phase (in the charge-neutral case), we see that the potential for the confining

geometry behaves in the IR as

Veff(z →∞;ω, k) = −ω2+k2−ν(ν − 1(τ −D + 3))

2
zν−2+

3

4
ν2(τ−D+3)2z2ν−2+. . . , (5.7)

thus it grows to infinity in the IR (the subleading terms were left out). For finite z (still

far enough from the AdS boundary), it is positive if ω2 < ω2
0 + k2 for some constant ω0,

i.e. the spectrum is discrete and gapped for small energies. In the bulk, a gap in the

spectrum simply means that there is no tunneling of the infalling solution toward the far

IR at z →∞ (in the terminology of [43], the reflection coefficient is zero). This means that

the integral
∫
dz
√

2Veff(z)/z2 has to diverge at large z. For (5.7) the integral behaves as∫
dzzν−3 and thus diverges for ν ≥ 2. Therefore, the gaps might be hard or soft depending

on the parameters.

For ω >
√
ω2

0 + k2 we expect a continuum, as the effective potential does not have a

well anymore. In the deconfined neutral background, the potential looks like

Veff(z →∞;ω, k) = −(D − 3)α− φ0τ

2z
−ω2 +k2 +

3

4z
((D−3)α−φ0τ)2(log z)2 + . . . , (5.8)

which grows to infinity in the IR but logarithmically slowly, whereas on the other side it

again depends on ω−
√
ω2

0 + k2. The spectrum is thus still gapped and discrete but (since
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the well is now shallow, because of the logarithmic growth) the bound states are expected

to come closer to each other. Also, the tunneling probability behaves as
∫
dz log z/z2

which is finite for z → ∞, and the gaps is always soft. In the charged case, the effective

potential is augmented by a positive term proportional to q2A0χ
2 which is independent

of ω, k. Therefore, the threshold ω0 is increased but the qualitative behavior remains the

same. Similar conclusions hold for the other response functions: the gaps are always soft

for the deconfined phase, and may be hard or soft for the confined phase.

5.3 Numerics

5.3.1 AC conductivity

The AC conductivity best encapsulates the breaking of a continuous symmetry (4.16)

through the existence of the zero mode. The AC conductivity on the real frequency axis,

as well as in the bottom half-plane of complex ω, is given in figure 8. In this plot we show

the conductivity <σ(ω, k = 0) as a function of the real frequency <ω for a range of =ω
values (at zero momentum). We first show the set of curves <σ(<ω) computed at different

=ω values, where the curves at different =ω values are vertically shifted in the figure to be

visible together (panels A, B); the x-axis is the real frequency axis and the y-axis is the

magnitude of the conductivity minus the vertical shift. In parallel we show the same data

as two-dimensional color maps <σ(<ω,=ω) (panels C, D); now the y-axis is the imaginary

part of the frequency, and the lighter areas denote higher values. We use the same recipe

to show the curves =GR(ω, k) and ξ(ω, k) in later figures.

In the charged confined non-condensed system (panels A, C), there is no gap at small

frequencies as the continuous U(1) symmetry is preserved. On the other hand, confinement

means the existence of stable bound states (”glueballs”), i.e. poles on the real axis. These

are seen as sharp peaks in <σ(ω) for real ω. For nonzero =ω the poles apparently turn

into branch cuts (the vertical lines); the resolution of our numerics is limited so we are not

sure if these are branch cuts or strings of poles along the vertical (=ω) axis. Such poles on

the real axis have been seen also in [9] in the simple holographic superconductor (without

dilaton) when the scalar mass is exactly at the BF bound for AdSD+1; the relation to our

result is not clear but this fact is certainly interesting and we plan to look more carefully

into it. Naively, it looks like a bad metal: the AC conductivity is continuous and gapless

but small except on a discrete set of real frequencies where the bound states lie.

After deconfinement and the onset of superconductivity (figure 8B, D), the Dirac delta

peak at ω = 0 is followed by a gap, which shows the breaking of the U(1) symmetry (this is

particularly obvious in the panel B). The bound states do not sit at the real axis anymore.

It is again not clear from the numerics if they turn into branch cuts or strings of poles in

the complex plane but in any case they do not reach the real axis anymore. In this and

further spectral plots, we use the critical temperature as a suitable unit of energy to express

the frequencies and momenta; a more usual choice would be the chemical potential, but it

is absent in the neutral case, so we have opted for Tc as a natural and physical scale.

Therefore, we witness both the breaking of the U(1) symmetry (Dirac delta peak

followed by the gap) and the deconfinement (absence of stable bound states), but not the

restoration of scale invariance since our probe is charged and sees the nonzero chemical
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(A) (B)

(C) (D)

Figure 8. Conductivity <σ(ω) in the confined/non-condensed phase (m2
χ = 2, A,C) and in the

deconfined/condensed phase (m2
χ = −2, B,D) in a U(1)-charged system at µ = 1, for a range of =ω

values starting from zero (the real axis). In the deconfined/superconducting phase there is only the

ω = 0 pole at the real axis (visible for the first curve in the panel B; in the color map panel D it is

hard to recognize since it is very narrow), followed by a gap. The gap is expectedly absent in the

confined/non-superconducting phase, as the continuous U(1) symmetry is preserved. On the other

hand, the confinement/deconfinement transition is visible through the stability of bound states: in

the confined regime these states have an infinite lifetime at T = 0 and thus manifest as sharp peaks

(poles) on the real axis (the bright white spots on the real axis in the density plot). In the deconfined

regime these states are pushed to a finite distance below the real axis and look more like branch cuts.

For all calculations in a charged system in this section we use D = 4, ν = 3/2, γ = 4, τ = 6, µ = 1

and m2
χ = 1/4 for the confined case and m2

χ = −1/4 for the deconfined case.

potential which sets a scale. It is instructive to compare this situation to the charge-neutral

case in figure 9. The superconducting gap now has to vanish from the spectrum. Only the

presence or absence of confinement is now seen — bound states as poles on the real axis

(again apparently continuing as branch cuts below the real axis) in the confined regime and

their absence in the deconfined regime. Notice that our confined phase is fractionalized

and the deconfined phase is coherent — therefore, our poles are not “mesinos”, they are

closer to “glueballs”, i.e. complex bound states which contain charged gauge bosons.
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(A) (B)

(C) (D)

Figure 9. Conductivity <σ(ω) in the confined/non-condensed phase (m2
χ = 8, A,C) and in the

deconfined/condensed phase (m2
χ = 4, B,D) in a neutral system, for a range of =ω values starting

from zero (the real axis). Neither phase is superconducting thus neither phase has a gap but rather a

continuous background behaving as 1/ωn. But the confined case again has long-living bound states

corresponding to poles on the real axis, while upon deconfinement these poles vanish completely.

The parameters are D = 4, ν = 3/2, γ = 4 and m2
χ = 4 for the deconfined case and m2

χ = 8 for the

confined case (also in the remaining plots for the neutral system in this section).

5.3.2 Retarded propagator

A probe which specifically shows the restoration of scale invariance is the retarded propaga-

tor GR(ω, k), given in figure 10. In the confined regime we see well-defined quasiparticles,

due to nonzero chemical potential. But since quasiparticles exist at finite binding energies,

the spectrum is gapped and starts from nonzero energy (A, C). Once the system is decon-

fined, scale invariance is restored and GR(ω) ∼ 1/ωn (B, D). Unlike conductivity, which

is not sensitive confinement/deconfinement, the scalar probe differentiates between them:

in their absence, it shows no quasiparticles. Another way to understand it is that at low

energies (in deep interior) the local chemical potential behaves as e−AA0/
√
f ∼ z−2α+φ0τ/2

while the scale of the metric (the confinement scale) drops faster as z−2α, so the confine-

ment scale is above the chemical potential and the probe sees no chemical potential at all.
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When the system is neutral and the symmetry to be broken is discrete, we expect to see

the presence/absence of scale invariance in much the same way as before but we expect no

quasiparticle in either phase, since the chemical potential is zero. The plot for the neutral

case is shown in figure 11: now there is indeed no quasiparticle in either phase as the

chemical potential and density are zero. But we still detect a scaleful, though continuous

spectrum in the confined case, whereas the deconfined case looks pretty much the same

as with a charged boson — just a power-law decay. Again, this is not about fractional-

ization — the confined phase, with quasiparticles in figure 10(A,C), has “gauginos” which

the gauge-neutral probe cannot see, and the deconfined phase, with no quasiparticles in

figure 10(B,D), has “mesinos” which the gauge probe can see. The bottom line is that the

probe apparently couples mainly to the gauge field bound states, and in general that the

presence/absence of quasiparticles may not be directly related to fractionalization.

5.3.3 Charge susceptibility

Charge susceptibility is interesting as it shows the absence of metallic behavior in both the

confined and deconfined phase. Both phases show a gap followed by a series of dispersing

poles. This is in line with our analytical finding that both backgrounds give a potential

well for δA0, inhabited with bound states. But since the well is rising towards infinity very

slowly in the deconfined phase, the spacing between the bound states is small in this case.

In [42] the authors have explored mainly the momentum dependence of the susceptibility at

zero frequency, finding the Friedel oscillations and the singularity at k = 2kF , as expected

for a system with zero modes at finite momentum, resembling a Fermi surface. In figure 12,

in particular in the ω − k maps (panels B,D) we see that no oscillatory behavior exists for

χ(ω = 0, k) (the bottom edge of figure 12 C,D) and in particular no pole at ω = 0 exists

for any finite k. This tells that our system is different from a normal metal even in the

confined phase, and this is not because it is fractionalized (since the RN black hole studied

in [42] is also fractionalized).

6 Conclusions and discussion

We have considered an Einstein-(Maxwell)-dilaton-scalar system where the scalar can con-

dense (acquire a VEV) and thus break a symmetry, discrete if neutral or continuous if

charged. This in turn remorphs the geometry from a soft-wall, confining form to a decon-

fined, power-law-scaling form. This goes against the common intuition that a condensate

always “narrows” the geometry, which indeed happens in absence of a dilaton with a suit-

ably chosen coupling, e.g. in the textbook holographic superconductor where an AdS-RN

background with a near-horizon AdS2 throat with finite AdS radius typically turns into a

Lifshitz-type geometry whose scale shrinks to zero in the interior. From a general viewpoint,

it is not so surprising that the huge “zoo” of dilatonic theories contains counterexamples

to this behavior, as we have great freedom in choosing the dilaton potentials. But from the

viewpoint of field theory and applied gauge/gravity duality, this is interesting as it tells

us that we can consider situations in which breaking a symmetry with an order parameter
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(A) (B)

(C) (D)

Figure 10. The retarded propagator =GR(ω) for a range of momentum values (0 < k < 1.5) in

a charged system (µ = 1), in the confined regime (m2
χ = −2, A,C) and in the deconfined regime

(m2
χ = 2, B,D). In the confined case we see gapped quasiparticle excitations, starting at ω ≈ 1 > 0

since we see the bound states in the soft wall which have a discrete and gapped spectrum. In field

theory, it means we see gauge-neutral particles. In the deconfined regime, no quasiparticle is present

and we have a featureless power-law spectrum =GR(ω) ∝ 1/ωn. From the gravity viewpoint, it

is because the potential has no bound states. From the field theory viewpoint, it means we have

gauge-colored excitations which are not visible through a gauge-neutral probe. We thus see the

deconfinement transition.

can actually restore another symmetry, since confined systems have a scale (the confine-

ment gap) which vanishes upon condensation. In the simplest case, we can thus expect

that conformal symmetry is restored. In practice, it is not the full conformal symmetry

but some subset of it, i.e. some scale invariance. We therefore see a non-Ginzburg-Landau

phase transition, where neither phase has a higher overall symmetry than the other and the

transition can be continuous (in the charged case). This may be related to the picture of

deconfined criticality proposed in [10, 11]. But one should be careful, since the transition

mechanism in [10, 11] is related to the existence of a new, topological conserved quantity
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(C) (D)

Figure 11. The retarded propagator =GR(ω) in the confined/non-condensed phase (A,C) and in

the deconfined/condensed phase (B,D) in a neutral system. While the deconfined case is again

an almost exact power law, the confined case has a scale but no quasiparticle. The discrete Z2

symmetry has no zero modes upon breaking. The retarded propagator is thus not so useful when

the system is neutral.

which only exists at the critical point. In our setup we cannot study geometry or lattice

effects and definitely cannot argue anything about topology. The connection is thus very

loose and we only see it as inspiration for further work. It would be interesting to consider

a setup where the topologically protected gauge flux analogous to that at a deconfined

critical point can be detected.

In would also be nice to understand our system better from the gravity side, by deriving

our solutions from a superpotential and inspecting how generic this behavior is, which we

address in a subsequent publication. It is also interesting to apply our findings to real-world

systems. While in QCD there is no obvious additional order parameter that may condense,

such situations are abundant in condensed matter systems, mainly in the context of the

fractionalization paradigm, where certain non-Fermi-liquid phases are argued to consist
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Figure 12. Charge susceptibility ξ(ω) in the confined/non-condensed phase (A,C) and in the

deconfined/condensed phase (B,D) in a charged system. Both cases show bound states; this might

look surprising for the deconfined case but is in accordance with the effective potentials in eqs. (5.7)–

(5.8). This probe is thus not very useful for detecting the transition but shows the absence of peaks

at ω = 0 and k = 2kF > 0, indicating that even the confined phase is different from a normal

Fermi liquid.

of gauge-charged excitations which are therefore not observable as quasiparticles. This

is also relevant for the heavy fermion systems, where a long-range order is present (the

antiferromagnetic ordering, the SO(3) equivalent of our scalar neutral order parameter)

and is connected to the disappearance of a normal Fermi liquid, which can be related to

the deconfinement of the gauge-charged spinons and holons (in this case, of course, the

gauge field is emergent and not microscopic) [12–15]. However, great care must be taken

to interpret the fractionalization concept properly, as it is distinct from confinement — in

our case, the confined phase is fractionalized and the deconfined phase is coherent. This

will also be addressed in our future work.
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A A short summary of numerical calculations

For numerical work we find it more convenient to introduce a different coordinate choice

where the metric reads

ds2 = −f(z)h(z)dt2

z2
+
dx2

z2
+

dz2

f(z)z2
. (A.1)

The boundary is again at z = 0 and the space extends to z → ∞. It is easy to derive

the relations between this parametrization and the one used in the main text. Now the

boundary conditions for small z are f(z → 0), h(z → 0)→ 1. The Einstein equations read

zf ′ −Df +D +
2

D − 1
T 00 = 0 (A.2)

h′

h
zf =

2

D − 2
(T 00 − T zz). (A.3)

Therefore, both metric functions have first-order equations and we can omly impose two

boundary conditions for the metric. However, we have more than two physical require-

ments. The physical requirement for h (which is proportional to the scale factor e−2A in the

metric (2.8)) is h(z →∞)→ 0 and for f the first derivative should vanish: f ′(z =∞)→ 0.

In addition, in order to have an asymptotically AdS geometry we need f(z → 0) = 1 and

h(z → 0) = 1. We implement this by introducing some cutoff zΛ and imposing the ana-

lytical solutions we have found for the metric in section III for all z < zΛ (the analytical

solutions of course automatically satisfy the necessary requirements in the interior). Then

we start the integrator at zΛ, using the condition f(z = 0) = h(z = 0) = 1 as the sole

boundary condition for the numerics. At finite temperature, the space terminates at the

horizon zh whose value is determined by the temperature, and in this case f itself vanishes

at the horizon: f(zh) = 0. In practice, it means we use the analytical ansatz for f, h in the

interval zh > z > zh − ε and start the integration at z = zh − ε, again with the boundary

condition h(z) = 1.

The equations of motion for the gauge and matter fields are

Φ′′ −
(
h′

2h
− (D − 1)z

)
Φ′ +

gzz
ξ
∂ΦV −

4

ξ(D − 1)
g00T A2

0 = 0 (A.4)

A′′0 −
(
h′

2h
− (D − 3)z − ∂ΦT

T
Φ′
)
A′0 − 2q2Z

T
√
g00gzz|χ|2 = 0 (A.5)

χ′′ −
(
h′

2h
− (D − 1)z

)
χ′ −

m2
χ

ξz2f
+
q2Z

f2
A2

0χ = 0. (A.6)

Here we have three second-order equations and two boundary conditions per field. For A0,

one condition is that the electric field should vanish in the interior: −A′0(z → ∞) → 0
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and the other is to impose the chemical potential or the charge density at the boundary

(A0(z → 0) = µ or A0(z)/zD−2|z→0 = −ρ). For Φ and χ the only physically obvious

boundary condition is to set the leading branch in the small-z expansion (2.18) to zero

(remember we pick the dilaton potential V in the UV in such a way that the subleading

branch of the dilaton also falls off quickly enough that no condensation occurs). The other

boundary condition for Φ, χ is again set by the analytical expansion for z large, similar as

for the metric.

It is well known that the integration is unstable if started from the boundary. We

therefore start from the interior and impose all boundary conditions in the interior. Physical

requirements for z → 0 are then obtained by shooting. We start from z1 ≡ zΛ at T =

0 or from z1 ≡ zh − ε at finite T and iterate the procedure in two stages. The first

iteration assumes some essentially arbitrary metric in the whole space (AdSD+1 works

well) and solves first the coupled system for f, h,A0,Φ. For f , the boundary condition is

the analytical estimate fanal(z1). We similarly impose the analytical estimate for Φ while

for Φ′ we try an arbitrary value C1. For h we also start from an arbitrary value C2. For

the gauge field we impose the physical boundary condition for the derivative (A′0(z1) = 0)

whereas the other condition is arbitrary (A0(z1) = C3). We thus have three free parameters

C1, C2, C3 so we can shoot for the correct UV behavior of A0,Φ, h. This procedure does

not guarantee the correct behavior for f(0) and h(z1) as we do not shoot for them but

when one lands at the correct solution, these turn out to be automatically satisfied (if not,

one should play around a bit with the starting values of the shooting parameter h(z1)). In

the next stage, we solve the equation for χ with the conditions χ(z1) = C4χanal(z1) and

χ′(z1) = C4χ
′
anal(z1), leaving the overall normalization C4 as a free parameter. Then we

shoot for the required behavior in the UV (this will yield the solution with nonzero VEV,

if it exists; if not, it will give the solution χ(z) = 0). After that, we update the metric and

the stress tensor and repeat the whole procedure, again in two steps, first for f, h,Φ, A0

and then for χ. After 5 − 10 steps (a few minutes of computation time) the procedure

converges. One should check that the solution is independent of the cutoff z1. At zero

temperature, for confining backgrounds the overall scale falls off very sharply and typically

z1 ≈ 3 − 4 is enough while for nonconfining geometries one needs zΛ ≈ 6 − 10. At finite

temperature, the size of the “analytical” region in the interior ε can be made quite small,

of the order 10−3. A cutoff in the UV is also necessary and is roughly of the size 10−6.
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Chapter 21
Holographic Description of Strongly Correlated
Electrons in External Magnetic Fields

E. Gubankova, J. Brill, M. Čubrović, K. Schalm, P. Schijven, and J. Zaanen

21.1 Introduction

The study of strongly interacting fermionic systems at finite density and tempera-
ture is a challenging task in condensed matter and high energy physics. Analytical
methods are limited or not available for strongly coupled systems, and numerical
simulation of fermions at finite density breaks down because of the sign problem
[1, 2]. There has been an increased activity in describing finite density fermionic
matter by a gravity dual using the holographic AdS/CFT correspondence [3]. The
gravitational solution dual to the finite chemical potential system is the electrically
charged AdS-Reissner-Nordström (RN) black hole, which provides a background
where only the metric and Maxwell fields are nontrivial and all matter fields vanish.
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In the classical gravity limit, the decoupling of the Einstein-Maxwell sector holds
and leads to universal results, which is an appealing feature of applied holography.
Indeed, the celebrated result for the ratio of the shear viscosity over the entropy den-
sity [4] is identical for many strongly interacting theories and has been considered a
robust prediction of the AdS/CFT correspondence.

However, an extremal black hole alone is not enough to describe finite density
systems as it does not source the matter fields. In holography, at leading order, the
Fermi surfaces are not evident in the gravitational geometry, but can only be de-
tected by external probes; either probe D-branes [3] or probe bulk fermions [5–8].
Here we shall consider the latter option, where the free Dirac field in the bulk carries
a finite charge density [9]. We ignore electromagnetic and gravitational backreac-
tion of the charged fermions on the bulk spacetime geometry (probe approximation).
At large temperatures, T � μ, this approach provides a reliable hydrodynamic de-
scription of transport at a quantum criticality (in the vicinity of superfluid-insulator
transition) [10]. At small temperatures, T � μ, in some cases sharp Fermi surfaces
emerge with either conventional Fermi-liquid scaling [6] or of a non-Fermi liquid
type [7] with scaling properties that differ significantly from those predicted by the
Landau Fermi liquid theory. The non-trivial scaling behavior of these non-Fermi
liquids has been studied semi-analytically in [8] and is of great interest as high-Tc

superconductors and metals near the critical point are believed to represent non-
Fermi liquids.

What we shall study is the effects of magnetic field on the holographic fermions.
A magnetic field is a probe of finite density matter at low temperatures, where the
Landau level physics reveals the Fermi level structure. The gravity dual system is
described by a AdS dyonic black hole with electric and magnetic charges Q and H ,
respectively, corresponding to a 2 + 1-dimensional field theory at finite chemical
potential in an external magnetic field [11]. Probe fermions in the background of the
dyonic black hole have been considered in [12–14]; and probe bosons in the same
background have been studied in [15]. Quantum magnetism is considered in [16].

The Landau quantization of momenta due to the magnetic field found there,
shows again that the AdS/CFT correspondence has a powerful capacity to unveil
that certain quantum properties known from quantum gases have a much more ubiq-
uitous status than could be anticipated theoretically. A first highlight is the demon-
stration [17] that the Fermi surface of the Fermi gas extends way beyond the realms
of its perturbative extension in the form of the Fermi-liquid. In AdS/CFT it appears
to be gravitationally encoded in the matching along the scaling direction between
the ‘bare’ Dirac waves falling in from the ‘UV’ boundary, and the true IR excitations
living near the black hole horizon. This IR physics can insist on the disappearance
of the quasiparticle but, if so, this ‘critical Fermi-liquid’ is still organized ‘around’ a
Fermi surface. The Landau quantization, the organization of quantum gaseous mat-
ter in quantized energy bands (Landau levels) in a system of two space dimensions
pierced by a magnetic field oriented in the orthogonal spatial direction, is a sec-
ond such quantum gas property. We shall describe here following [12], that despite
the strong interactions in the system, the holographic computation reveals the same
strict Landau-level quantization. Arguably, it is the mean-field nature imposed by
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large N limit inherent in AdS/CFT that explains this. The system is effectively non-
interacting to first order in 1/N . The Landau quantization is not manifest from the
geometry, but as we show this statement is straightforwardly encoded in the sym-
metry correspondences associated with the conformal compactification of AdS on
its flat boundary (i.e., in the UV CFT).

An interesting novel feature in strongly coupled systems arises from the fact that
the background geometry is only sensitive to the total energy density Q2 +H 2 con-
tained in the electric and magnetic fields sourced by the dyonic black hole. Dialing
up the magnetic field is effectively similar to a process where the dyonic black hole
loses its electric charge. At the same time, the fermionic probe with charge q is
essentially only sensitive to the Coulomb interaction gqQ. As shown in [12], one
can therefore map a magnetic to a non-magnetic system with rescaled parameters
(chemical potential, fermion charge) and same symmetries and equations of motion,
as long as the Reissner-Nordström geometry is kept.

Translated to more experiment-compatible language, the above magnetic-electric
mapping means that the spectral functions at nonzero magnetic field h are identi-
cal to the spectral function at h = 0 for a reduced value of the coupling constant
(fermion charge) q , provided the probe fermion is in a Landau level eigenstate. A
striking consequence is that the spectrum shows conformal invariance for arbitrarily
high magnetic fields, as long as the system is at negligible to zero density. Specif-
ically, a detailed analysis of the fermion spectral functions reveals that at strong
magnetic fields the Fermi level structure changes qualitatively. There exists a criti-
cal magnetic field at which the Fermi velocity vanishes. Ignoring the Landau level
quantization, we show that this corresponds to an effective tuning of the system
from a regular Fermi liquid phase with linear dispersion and stable quasiparticles
to a non-Fermi liquid with fractional power law dispersion and unstable excitations.
This phenomenon can be interpreted as a transition from metallic phase to a “strange
metal” at the critical magnetic field and corresponds to the change of the infrared
conformal dimension from ν > 1/2 to ν < 1/2 while the Fermi momentum stays
nonzero and the Fermi surface survives. Increasing the magnetic field further, this
transition is followed by a “strange-metal”-conformal crossover and eventually, for
very strong fields, the system always has near-conformal behavior where kF = 0
and the Fermi surface disappears.

For some Fermi surfaces, this surprising metal-“strange metal” transition is not
physically relevant as the system prefers to directly enter the conformal phase.
Whether a fine tuned system exists that does show a quantum critical phase transi-
tion from a FL to a non-FL is determined by a Diophantine equation for the Landau
quantized Fermi momentum as a function of the magnetic field. Perhaps these are
connected to the magnetically driven phase transition found in AdS5/CFT4 [18]. We
leave this subject for further work.

Overall, the findings of Landau quantization and “discharge” of the Fermi surface
are in line with the expectations: both phenomena have been found in a vast array of
systems [19] and are almost tautologically tied to the notion of a Fermi surface in a
magnetic field. Thus we regard them also as a sanity check of the whole bottom-up
approach of fermionic AdS/CFT [5–7, 17], giving further credit to the holographic
Fermi surfaces as having to do with the real world.
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Next we use the information of magnetic effects the Fermi surfaces extracted
from holography to calculate the quantum Hall and longitudinal conductivities. Gen-
erally speaking, it is difficult to calculate conductivity holographically beyond the
Einstein-Maxwell sector, and extract the contribution of holographic fermions. In
the semiclassical approximation, one-loop corrections in the bulk setup involving
charged fermions have been calculated [17]. In another approach, the backreaction
of charged fermions on the gravity-Maxwell sector has been taken into account and
incorporated in calculations of the electric conductivity [9]. We calculate the one-
loop contribution on the CFT side, which is equivalent to the holographic one-loop
calculations as long as vertex corrections do not modify physical dependencies of
interest [17, 20]. As we dial the magnetic field, the Hall plateau transition happens
when the Fermi surface moves through a Landau level. One can think of a differ-
ence between the Fermi energy and the energy of the Landau level as a gap, which
vanishes at the transition point and the 2 + 1-dimensional theory becomes scale in-
variant. In the holographic D3–D7 brane model of the quantum Hall effect, plateau
transition occurs as D-branes move through one another [21, 22]. In the same model,
a dissipation process has been observed as D-branes fall through the horizon of the
black hole geometry, that is associated with the quantum Hall insulator transition.
In the holographic fermion liquid setting, dissipation is present through interaction
of fermions with the horizon of the black hole. We have also used the analysis of the
conductivities to learn more about the metal-strange metal phase transition as well
as the crossover back to the conformal regime at high magnetic fields.

We conclude with the remark that the findings summarized above are in fact
somewhat puzzling when contrasted to the conventional picture of quantum Hall
physics. It is usually stated that the quantum Hall effect requires three key ingredi-
ents: Landau quantization, quenched disorder1 and (spatial) boundaries, i.e., a finite-
sized sample [23]. The first brings about the quantization of conductivity, the second
prevents the states from spilling between the Landau levels ensuring the existence
of a gap and the last one in fact allows the charge transport to happen (as it is the
boundary states that actually conduct). In our model, only the first condition is satis-
fied. The second is put by hand by assuming that the gap is automatically preserved,
i.e. that there is no mixing between the Landau levels. There is, however, no phys-
ical explanation as to how the boundary states are implicitly taken into account by
AdS/CFT.

We outline the holographic setting of the dyonic black hole geometry and bulk
fermions in Sect. 21.2. In Sect. 21.3 we prove the conservation of conformal symme-
try in the presence of the magnetic fields. Section 21.4 is devoted to the holographic
fermion liquid, where we obtain the Landau level quantization, followed by a de-
tailed study of the Fermi surface properties at zero temperature in Sect. 21.5. We
calculate the DC conductivities in Sect. 21.6, and compare the results with available
data in graphene.

1Quenched disorder means that the dynamics of the impurities is “frozen”, i.e. they can be regarded
as having infinite mass. When coupled to the Fermi liquid, they ensure that below some scale the
system behaves as if consisting of non-interacting quasiparticles only.
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21.2 Holographic Fermions in a Dyonic Black Hole

We first describe the holographic setup with the dyonic black hole, and the dynamics
of Dirac fermions in this background. In this paper, we exclusively work in the probe
limit, i.e., in the limit of large fermion charge q .

21.2.1 Dyonic Black Hole

We consider the gravity dual of 3-dimensional conformal field theory (CFT) with
global U(1) symmetry. At finite charge density and in the presence of magnetic
field, the system can be described by a dyonic black hole in 4-dimensional anti-
de Sitter space-time, AdS4, with the current Jμ in the CFT mapped to a U(1)

gauge field AM in AdS. We use μ,ν,ρ, . . . for the spacetime indices in the CFT
and M,N, . . . for the global spacetime indices in AdS.

The action for a vector field AM coupled to AdS4 gravity can be written as

Sg = 1

2κ2

∫
d4x

√−g

(
R + 6

R2
− R2

g2
F

FMNFMN

)
, (21.1)

where g2
F is an effective dimensionless gauge coupling and R is the curvature radius

of AdS4. The equations of motion following from (21.1) are solved by the geometry
corresponding to a dyonic black hole, having both electric and magnetic charge:

ds2 = gMNdxMdxN = r2

R2

(−f dt2 + dx2 + dy2) + R2

r2

dr2

f
. (21.2)

The redshift factor f and the vector field AM reflect the fact that the system is at a
finite charge density and in an external magnetic field:

f = 1 + Q2 + H 2

r4
− M

r3
,

(21.3)

At = μ

(
1 − r0

r

)
, Ay = hx, Ax = Ar = 0,

where Q and H are the electric and magnetic charge of the black hole, respectively.
Here we chose the Landau gauge; the black hole chemical potential μ and the mag-
netic field h are given by

μ = gF Q

R2r0
, h = gF H

R4
, (21.4)

with r0 is the horizon radius determined by the largest positive root of the redshift
factor f (r0) = 0:

M = r3
0 + Q2 + H 2

r0
. (21.5)
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The boundary of the AdS is reached for r → ∞. The geometry described by (21.2)–
(21.3) describes the boundary theory at finite density, i.e., a system in a charged
medium at the chemical potential μ = μbh and in transverse magnetic field h = hbh,
with charge, energy, and entropy densities given, respectively, by

ρ = 2
Q

κ2R2gF

, ε = M

κ2R4
, s = 2π

κ2

r2
0

R2
. (21.6)

The temperature of the system is identified with the Hawking temperature of the
black hole, TH ∼ |f ′(r0)|/4π ,

T = 3r0

4πR2

(
1 − Q2 + H 2

3r4
0

)
. (21.7)

Since Q and H have dimensions of [L]2, it is convenient to parametrize them as

Q2 = 3r4∗ , Q2 + H 2 = 3r4∗∗. (21.8)

In terms of r0, r∗ and r∗∗ the above expressions become

f = 1 + 3r4∗∗
r4

− r3
0 + 3r4∗∗/r0

r3
, (21.9)

with

μ = √
3gF

r2∗
R2r0

, h = √
3gF

√
r4∗∗ − r4∗
R4

. (21.10)

The expressions for the charge, energy and entropy densities, as well as for the
temperature are simplified as

ρ = 2
√

3

κ2gF

r2∗
R2

, ε = 1

κ2

r3
0 + 3r4∗∗/r0

R4
, s = 2π

κ2

r2
0

R2
,

(21.11)

T = 3

4π

r0

R2

(
1 − r4∗∗

r4
0

)
.

In the zero temperature limit, i.e., for an extremal black hole, we have

T = 0 → r0 = r∗∗, (21.12)

which in the original variables reads Q2 + H 2 = 3r4
0 . In the zero temperature

limit (21.12), the redshift factor f as given by (21.9) develops a double zero at
the horizon:

f = 6
(r − r∗∗)2

r2∗∗
+ O

(
(r − r∗∗)3). (21.13)



21 Holographic Description of Strongly Correlated Electrons 561

As a result, near the horizon the AdS4 metric reduces to AdS2 ×R2 with the curvature
radius of AdS2 given by

R2 = 1√
6
R. (21.14)

This is a very important property of the metric, which considerably simplifies the
calculations, in particular in the magnetic field.

In order to scale away the AdS4 radius R and the horizon radius r0, we introduce
dimensionless variables

r → r0r, r∗ → r0r∗, r∗∗ → r0r∗∗,
(21.15)

M → r3
0 M, Q → r2

0 Q, H → r2
0 H,

and

(t,x) → R2

r0
(t,x), AM → r0

R2
AM, ω → r0

R2
ω,

μ → r0

R2
μ, h → r2

0

R4
h, T → r0

R2
T , (21.16)

ds2 → R2ds2.

Note that the scaling factors in the above equation that describes the quantities of
the boundary field theory involve the curvature radius of AdS4, not AdS2.

In the new variables we have

T = 3

4π

(
1 − r4∗∗

) = 3

4π

(
1 − Q2 + H 2

3

)
, f = 1 + 3r4∗∗

r4
− 1 + 3r4∗∗

r3
,

(21.17)

At = μ

(
1 − 1

r

)
, μ = √

3gF r2∗ = gF Q, h = gF H,

and the metric is given by

ds2 = r2(−f dt2 + dx2 + dy2) + 1

r2

dr2

f
, (21.18)

with the horizon at r = 1, and the conformal boundary at r → ∞.
At T = 0, r∗∗ becomes unity, and the redshift factor develops the double zero

near the horizon,

f = (r − 1)2(r2 + 2r + 3)

r4
. (21.19)

As mentioned before, due to this fact the metric near the horizon reduces to
AdS2 × R2 where the analytical calculations are possible for small frequencies [8].
However, in the chiral limit m = 0, analytical calculations are also possible in the
bulk AdS4 [24], which we utilize in this paper.
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21.2.2 Holographic Fermions

To include the bulk fermions, we consider a spinor field ψ in the AdS4 of charge q

and mass m, which is dual to an operator O in the boundary CFT3 of charge q and
dimension

Δ = 3

2
+ mR, (21.20)

with mR ≥ − 1
2 and in dimensionless units corresponds to Δ = 3

2 + m. In the black
hole geometry, (21.2), the quadratic action for ψ reads as

Sψ = i

∫
d4x

√−g
(
ψ̄Γ MDMψ − mψ̄ψ

)
, (21.21)

where ψ̄ = ψ†Γ t , and

DM = ∂M + 1

4
ωabMΓ ab − iqAM, (21.22)

where ωabM is the spin connection, and Γ ab = 1
2 [Γ a,Γ b]. Here, M and a, b denote

the bulk space-time and tangent space indices respectively, while μ,ν are indices
along the boundary directions, i.e. M = (r,μ). Gamma matrix basis (Minkowski
signature) is given in [8].

We will be interested in spectra and response functions of the boundary fermions
in the presence of magnetic field. This requires solving the Dirac equation in the
bulk [6, 7]: (

Γ MDM − m
)
ψ = 0. (21.23)

From the solution of the Dirac equation at small ω, an analytic expression for the
retarded fermion Green’s function of the boundary CFT at zero magnetic field has
been obtained in [8]. Near the Fermi surface it reads as [8]:

GR(Ω,k) = (−h1vF )

ω − vF k⊥ − Σ(ω,T )
, (21.24)

where k⊥ = k − kF is the perpendicular distance from the Fermi surface in mo-
mentum space, h1 and vF are real constants calculated below, and the self-energy
Σ = Σ1 + iΣ2 is given by [8]

Σ(ω,T )/vF = T 2νg

(
ω

T

)
= (2πT )2νh2eiθ−iπν

Γ ( 1
2 + ν − iω

2πT
+ iμq

6 )

Γ ( 1
2 − ν − iω

2πT
+ iμq

6 )
, (21.25)

where ν is the zero temperature conformal dimension at the Fermi momentum,
ν ≡ νkF

, given by (21.58), μq ≡ μq , h2 is a positive constant and the phase θ is
such that the poles of the Green’s function are located in the lower half of the com-
plex frequency plane. These poles correspond to quasinormal modes of the Dirac
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equation (21.23) and they can be found numerically solving F(ω∗) = 0 [25, 26],
with

F(ω) = k⊥
Γ ( 1

2 + ν − iω
2πT

+ iμq

6 )
− h2eiθ−iπν(2πT )2ν

Γ ( 1
2 − ν − iω

2πT
+ iμq

6 )
, (21.26)

The solution gives the full motion of the quasinormal poles ω
(n)∗ (k⊥) in the complex

ω plane as a function of k⊥. It has been found in [8, 25, 26], that, if the charge of
the fermion is large enough compared to its mass, the pole closest to the real ω axis
bounces off the axis at k⊥ = 0 (and ω = 0). Such behavior is identified with the
existence of the Fermi momentum kF indicative of an underlying strongly coupled
Fermi surface.

At T = 0, the self-energy becomes T 2νg(ω/T ) → ckω
2ν , and the Green’s func-

tion obtained from the solution to the Dirac equation reads [8]

GR(Ω,k) = (−h1vF )

ω − vF k⊥ − h2vF eiθ−iπνω2ν
, (21.27)

where k⊥ = √
k2 − kF . The last term is determined by the IR AdS2 physics near the

horizon. Other terms are determined by the UV physics of the AdS4 bulk.
The solutions to (21.23) have been studied in detail in [6–8]. Here we simply

summarize the novel aspects due to the background magnetic field [27]

• The background magnetic field h introduces a discretization of the momentum:

k → keff = √
2|qh|l, with l ∈ N, (21.28)

with Landau level index l [13, 14, 25, 26]. These discrete values of k are the
analogue of the well-known Landau levels that occur in magnetic systems.

• There exists a (non-invertible) mapping on the level of Green’s functions, from
the magnetic system to the non-magnetic one by sending

(H,Q,q) �→
(

0,
√

Q2 + H 2, q

√
1 − H 2

Q2 + H 2

)
. (21.29)

The Green’s functions in a magnetic system are thus equivalent to those in the
absence of magnetic fields. To better appreciate that, we reformulate (21.29) in
terms of the boundary quantities:

(h,μq,T ) �→
(

0,μq,T

(
1 − h2

12μ2

))
, (21.30)

where we used dimensionless variables defined in (21.15), (21.17). The magnetic
field thus effectively decreases the coupling constant q and increases the chem-
ical potential μ = gF Q such that the combination μq ≡ μq is preserved [12].
This is an important point as the equations of motion actually only depend on this
combination and not on μ and q separately [12]. In other words, (21.30) implies
that the additional scale brought about by the magnetic field can be understood as
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changing μ and T independently in the effective non-magnetic system instead of
only tuning the ratio μ/T . This point is important when considering the thermo-
dynamics.

• The discrete momentum keff = √
2|qh|l must be held fixed in the transforma-

tion (21.29). The bulk-boundary relation is particularly simple in this case, as the
Landau levels can readily be seen in the bulk solution, only to remain identical in
the boundary theory.

• Similar to the non-magnetic system [12], the IR physics is controlled by the near
horizon AdS2 × R2 geometry, which indicates the existence of an IR CFT, char-
acterized by operators Ol , l ∈ N with operator dimensions δ = 1/2 + νl :

νl = 1

6

√
6

(
m2 + 2|qh|l

r2∗∗

)
− μ2

q

r4∗∗
, (21.31)

in dimensionless notation, and μq ≡ μq . At T = 0, when r∗∗ = 1, it becomes

νl = 1

6

√
6
(
m2 + 2|qh|l) − μ2

q . (21.32)

The Green’s function for these operators Ol is found to be G R
l (ω) ∼ ω2νl and the

exponents νl determines the dispersion properties of the quasiparticle excitations.
For ν > 1/2 the system has a stable quasiparticle and a linear dispersion, whereas
for ν ≤ 1/2 one has a non-Fermi liquid with power-law dispersion and an unstable
quasiparticle.

21.3 Magnetic Fields and Conformal Invariance

Despite the fact that a magnetic field introduces a scale, in the absence of a chem-
ical potential, all spectral functions are essentially still determined by conformal
symmetry. To show this, we need to establish certain properties of the near-horizon
geometry of a Reissner-Nordström black hole. This leads to the AdS2 perspective
that was developed in [8]. The result relies on the conformal algebra and its rela-
tion to the magnetic group, from the viewpoint of the infrared CFT that was studied
in [8]. Later on we will see that the insensitivity to the magnetic field also carries
over to AdS4 and the UV CFT in some respects. To simplify the derivations, we
consider the case T = 0.

21.3.1 The Near-Horizon Limit and Dirac Equation in AdS2

It was established in [8] that an electrically charged extremal AdS-Reissner-
Nordström black hole has an AdS2 throat in the inner bulk region. This conclusion
carries over to the magnetic case with some minor differences. We will now give a
quick derivation of the AdS2 formalism for a dyonic black hole, referring the reader
to [8] for more details (that remain largely unchanged in the magnetic field).
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Near the horizon r = r∗∗ of the black hole described by the metric (21.2), the
redshift factor f (r) develops a double zero:

f (r) = 6
(r − r∗∗)2

r2∗∗
+ O

(
(r − r∗∗)3). (21.33)

Now consider the scaling limit

r − r∗∗ = λ
R2

2

ζ
, t = λ−1τ, λ → 0 with τ, ζ finite. (21.34)

In this limit, the metric (21.2) and the gauge field reduce to

ds2 = R2
2

ζ 2

(−dτ 2 + dζ 2) + r2∗∗
R2

(
dx2 + dy2),

(21.35)

Aτ = μR2
2r0

r2∗∗
1

ζ
, Ax = Hx

where R2 = R√
6

. The geometry described by this metric is indeed AdS2 × R2. Phys-
ically, the scaling limit given in (21.34) with finite τ corresponds to the long time
limit of the original time coordinate t , which translates to the low frequency limit of
the boundary theory:

ω

μ
→ 0, (21.36)

where ω is the frequency conjugate to t . (One can think of λ as being the fre-
quency ω.) Near the AdS4 horizon, we expect the AdS2 region of an extremal dyonic
black hole to have a CFT1 dual. We refer to [8] for an account of this AdS2/CFT1
duality. The horizon of AdS2 region is at ζ → ∞ (coefficient in front of dτ van-
ishes at the horizon in (21.35)) and the infrared CFT (IR CFT) lives at the AdS2
boundary at ζ = 0. The scaling picture given by (21.34)–(21.35) suggests that in
the low frequency limit, the 2-dimensional boundary theory is described by this IR
CFT (which is a CFT1). The Green’s function for the operator O in the boundary
theory is obtained through a small frequency expansion and a matching procedure
between the two different regions (inner and outer) along the radial direction, and
can be expressed through the Green’s function of the IR CFT [8].

The explicit form for the Dirac equation in the magnetic field is of little interest
for the analytical results that follow. It can be found in [27]. Of primary interest is
its limit in the IR region with metric given by (21.35):

(
− 1√

gζζ

σ 3∂ζ − m + 1√−gττ

σ 1
(

ω + μqR2
2r0

r2∗∗ζ

)
− 1√

gii iσ 2λl

)
F (l) = 0,

(21.37)

where the effective momentum of the lth Landau level is λl = √
2|qh|l, μq ≡ μq

and we omit the index of the spinor field. To obtain (21.37), it is convenient to
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pick the gamma matrix basis as Γ ζ̂ = −σ3, Γ τ̂ = iσ1 and Γ î = −σ2. We can write
explicitly:

⎛
⎝

ζ
R2

∂ζ + m − ζ
R2

(ω + μqR2
2r0

r2∗∗ζ
) + R

r∗∗ λl

ζ
R2

(ω + μqR2
2r0

r2∗∗ζ
) + R

r∗∗ λl
ζ
R2

∂ζ − m

⎞
⎠

(
y

z

)
= 0. (21.38)

Note that the AdS2 radius R2 enters for the (τ, ζ ) directions. At the AdS2 boundary,
ζ → 0, the Dirac equation to the leading order is given by

ζ∂ζ F
(l) = −UF(l), U = R2

⎛
⎝ m −μqR2r0

r2∗∗
+ R

r∗∗ λl

μqR2r0

r2∗∗
+ R

r∗∗ λl −m

⎞
⎠ . (21.39)

The solution to this equation is given by the scaling function F (l) = Ae+ζ−νl +
Be−ζ νl where e± are the real eigenvectors of U and the exponent is

νl = 1

6

√
6

(
m2 + R2

r2∗∗
2|qh|l

)
R2 − μ2

qR4r2
0

r4∗∗
. (21.40)

The conformal dimension of the operator O in the IR CFT is δl = 1
2 + νl . Compar-

ing (21.40) to the expression for the scaling exponent in [8], we conclude that the
scaling properties and the AdS2 construction are unmodified by the magnetic field,
except that the scaling exponents are now fixed by the Landau quantization. This
“quantization rule” was already exploited in [25, 26] to study de Haas-van Alphen
oscillations.

21.4 Spectral Functions

In this section we will explore some of the properties of the spectral function, in
both plane wave and Landau level basis. We first consider some characteristic cases
in the plane wave basis and make connection with the ARPES measurements.

21.4.1 Relating to the ARPES Measurements

In reality, ARPES measurements cannot be performed in magnetic fields so the
holographic approach, allowing a direct insight into the propagator structure and the
spectral function, is especially helpful. This follows from the observation that the
spectral functions as measured in ARPES are always expressed in the plane wave
basis of the photon, thus in a magnetic field, when the momentum is not a good
quantum number anymore, it becomes impossible to perform the photoemission
spectroscopy.

In order to compute the spectral function, we have to choose a particular
fermionic plane wave as a probe. Since the separation of variables is valid through-
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out the bulk, the basis transformation can be performed at every constant r-slice.
This means that only the x and y coordinates have to be taken into account (the
plane wave probe lives only at the CFT side of the duality). We take a plane wave
propagating in the +x direction with spin up along the r-axis. In its rest frame such
a particle can be described by

Ψprobe = eiωt−ipxx

(
ξ

ξ

)
, ξ =

(
1
0

)
. (21.41)

Near the boundary (at rb → ∞) we can rescale our solutions of the Dirac equation,
details can be found in [27]:

Fl =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
l (x̃)

ξ
(l)
+ (rb)ζ

(1)
l (x̃)

ζ
(2)
l (x̃)

−ξ
(l)
+ (rb)ζ

(2)
l (x̃)

⎞
⎟⎟⎟⎟⎠ , F̃l =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
l (x̃)

ξ
(l)
− (rb)ζ

(1)
l (x̃)

−ζ
(2)
l (x̃)

ξ
(l)
− (rb)ζ

(2)
l (x̃)

⎞
⎟⎟⎟⎟⎠ , (21.42)

with rescaled x̃ defined in [27]. This representation is useful since we calculate the
components ξ±(rb) related to the retarded Green’s function in our numerics (we
keep the notation of [8]).

Let Ol and Õl be the CFT operators dual to respectively Fl and F̃l , and c
†
k , ck

be the creation and annihilation operators for the plane wave state Ψprobe. Since the
states F and F̃ form a complete set in the bulk, we can write

c†
p(ω) =

∑
l

(
U∗

l , Ũ∗
l

)(
O†

l (ω)

Õ†
l (ω)

)
=

∑
l

(
U∗

l O†
l (ω) + Ũ∗

l Õ†
l (ω)

)
(21.43)

where the overlap coefficients Ul(ω) are given by the inner product between Ψprobe
and F :

Ul(px) =
∫

dxF
†
l iΓ 0Ψprobe = −

∫
dxe−ipxxξ+(rb)

(
ζ

(1)†
l (x̃) − ζ

(2)†
l (x̃)

)
,

(21.44)
with F̄ = F †iΓ 0, and similar expression for Ũl involving ξ−(rb). The constants
Ul can be calculated analytically using the numerical value of ξ±(rb), and by not-
ing that the Hermite functions are eigenfunctions of the Fourier transform. We are
interested in the retarded Green’s function, defined as

GR
Ol

(ω,p) = −i

∫
dxdteiωt−ip·xθ(t)GR

Ol
(t, x)

GR
Ol

(t, x) = 〈0|[Ol (t, x), Ōl (0,0)
]|0〉 (21.45)

GR =
(

GO 0
0 G̃O

)
,

where G̃O is the retarded Green’s function for the operator Õ .
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Fig. 21.1 Two examples of spectral functions in the plane wave basis for μ/T = 50 and h/T = 1.
The conformal dimension is Δ = 5/4 (left) and Δ = 3/2 (right). Frequency is in the units of effec-
tive temperature Teff. The plane wave momentum is chosen to be k = 1. Despite the convolution
of many Landau levels, the presence of the discrete levels is obvious

Exploiting the orthogonality of the spinors created by O and O† and us-
ing (21.43), the Green’s function in the plane wave basis can be written as

GR
cp

(ω,px) =
∑

l

tr

(
U

Ũ

)(
U∗, Ũ∗)GR

= (∣∣Ul(px)
∣∣2

GR
Ol

(ω, l) + ∣∣Ũl(px)
∣∣2

G̃R
Ol

(ω, l)
)
. (21.46)

In practice, we cannot perform the sum in (21.46) all the way to infinity, so we have
to introduce a cutoff Landau level lcut. In most cases we are able to make lcut large
enough that the behavior of the spectral function is clear.

Using the above formalism, we have produced spectral functions for two different
conformal dimensions and fixed chemical potential and magnetic field (Fig. 21.1).
Using the plane wave basis allows us to directly detect the Landau levels. The unit
used for plotting the spectra (here and later on in the paper) is the effective temper-
ature Teff [6]:

Teff = T

2

(
1 +

√
1 + 3μ2

(4πT )2

)
. (21.47)

This unit interpolates between μ at T/μ = 0 and T and is of or T/μ → ∞, and is
convenient for the reason that the relevant quantities (e.g., Fermi momentum) are of
order unity for any value of μ and h.

21.4.2 Magnetic Crossover and Disappearance
of the Quasiparticles

Theoretically, it is more convenient to consider the spectral functions in the Landau
level basis. For definiteness let us pick a fixed conformal dimension Δ = 5

4 which
corresponds to m = − 1

4 . In the limit of weak magnetic fields, h/T → 0, we should
reproduce the results that were found in [6].
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In Fig. 21.2(A) we indeed see that the spectral function, corresponding to a low
value of μ/T , behaves as expected for a nearly conformal system. The spectral
function is approximately symmetric about ω = 0, it vanishes for |ω| < k, up to a
small residual tail due to finite temperature, and for |ω| � k it scales as ω2m.

In Fig. 21.2(B), which corresponds to a high value of μ/T , we see the emergence
of a sharp quasiparticle peak. This peak becomes the sharpest when the Landau
level l corresponding to an effective momentum keff = √

2|qh|l coincides with the
Fermi momentum kF . The peaks also broaden out when keff moves away from kF .
A more complete view of the Landau quantization in the quasiparticle regime is
given in Fig. 21.3, where we plot the dispersion relation (ω–k map). Both the sharp
peaks and the Landau levels can be visually identified.

Collectively, the spectra in Fig. 21.2 show that conformality is only broken by
the chemical potential μ and not by the magnetic field. Naively, the magnetic field
introduces a new scale in the system. However, this scale is absent from the spectral
functions, visually validating the discussion in the previous section that the scale h

can be removed by a rescaling of the temperature and chemical potential.
One thus concludes that there is some value h′

c of the magnetic field, depending
on μ/T , such that the spectral function loses its quasiparticle peaks and displays
near-conformal behavior for h > h′

c. The nature of the transition and the underlying
mechanism depends on the parameters (μq,T ,Δ). One mechanism, obvious from
the rescaling in (21.29), is the reduction of the effective coupling q as h increases.
This will make the influence of the scalar potential A0 negligible and push the sys-
tem back toward conformality. Generically, the spectral function shows no sharp
change but is more indicative of a crossover.

A more interesting phenomenon is the disappearance of coherent quasiparticles
at high effective chemical potentials. For the special case m = 0, we can go beyond
numerics and study this transition analytically, combining the exact T = 0 solution
found in [24] and the mapping (21.30). In the next section, we will show that the
transition is controlled by the change in the dispersion of the quasiparticle and corre-
sponds to a sharp phase transition. Increasing the magnetic field leads to a decrease
in phenomenological control parameter νkF

. This can give rise to a transition to a
non-Fermi liquid when νkF

≤ 1/2, and finally to the conformal regime at h = h′
c

when νkF
= 0 and the Fermi surface vanishes.

21.4.3 Density of States

As argued at the beginning of this section, the spectral function can look quite dif-
ferent depending on the particular basis chosen. Though the spectral function is an
attractive quantity to consider due to connection with ARPES experiments, we will
also direct our attention to basis-independent and manifestly gauge invariant quan-
tities. One of them is the density of states (DOS), defined by

D(ω) =
∑

l

A(ω, l), (21.48)
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Fig. 21.2 Some typical examples of spectral functions A(ω,keff) vs. ω in the Landau basis,
keff = √

2|qh|n. The top four correspond to a conformal dimension Δ = 5
4 m = − 1

4 and the bot-

tom four to Δ = 3
2 (m = 0). In each plot we show different Landau levels, labelled by index n, as

a function of μ/T and h/T . The ratios take values (μ/T ,h/T ) = (1,1), (50,1), (1,50), (50,50)

from left to right. Conformal case can be identified when μ/T is small regardless of h/T (plots
in the left panel). Nearly conformal behavior is seen when both μ/T and h/T are large. This
confirms our analytic result that the behavior of the system is primarily governed by μ. Departure
from the conformality and sharp quasiparticle peaks are seen when μ/T is large and h/T is small
in 21.2(B) and 21.2(F). Multiple quasiparticle peaks arise whenever keff = kF . This suggests the
existence of a critical magnetic field, beyond which the quasiparticle description becomes invalid
and the system exhibits a conformal-like behavior. As before, the frequency ω is in units of Teff
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Fig. 21.3 Dispersion relation ω vs. keff for μ/T = 50, h/T = 1 and Δ = 5
4 (m = − 1

4 ). The
spectral function A(ω,keff) is displayed as a density plot. (A) On a large energy and momentum
scale, we clearly sees that the peaks disperse almost linearly (ω ≈ vF k), indicating that we are in
the stable quasiparticle regime. (B) A zoom-in near the location of the Fermi surface shows clear
Landau quantization

Fig. 21.4 Density of states D(ω) for m = − 1
4 and (A) μ/T = 50, h/T = 1, and (B) μ/T = 1,

h/T = 1. Sharp quasiparticle peaks from the splitting of the Fermi surface are clearly visible
in (A). The case (B) shows square-root level spacing characteristic of a (nearly) Lorentz invariant
spectrum such as that of graphene

where the usual integral over the momentum is replaced by a sum since only discrete
values of the momentum are allowed.

In Fig. 21.4, we plot the density of states for two systems. We clearly see the
Landau splitting of the Fermi surface. A peculiar feature of these plots is that the
DOS seems to grow for negative values of ω. This, however, is an artefact of our
calculation. Each individual spectrum in the sum (21.48) has a finite tail that scales
as ω2m for large ω, so each term has a finite contribution for large values of ω.
When the full sum is performed, this fact implies that limω→∞ D(ω) → ∞. The
relevant information on the density of states can be obtained by regularizing the
sum, which in practice is done by summing over a finite number of terms only, and
then considering the peaks that lie on top of the resulting finite-sized envelope. The
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physical point in Fig. 21.4(A) is the linear spacing of Landau levels, corresponding
to a non-relativistic system at finite density. This is to be contrasted with Fig. 21.4B
where the level spacing behaves as ∝ √

h, appropriate for a Lorentz invariant system
and realized in graphene [28].

21.5 Fermi Level Structure at Zero Temperature

In this section, we solve the Dirac equation in the magnetic field for the special
case m = 0 (Δ = 3

2 ). Although there are no additional symmetries in this case, it
is possible to get an analytic solution. Using this solution, we obtain Fermi level
parameters such as kF and vF and consider the process of filling the Landau levels
as the magnetic field is varied.

21.5.1 Dirac Equation with m = 0

In the case m = 0, it is convenient to solve the Dirac equation including the spin
connection (see details in [27]) rather than scaling it out:

(
−

√
gii√
grr

σ 1∂r −
√

gii√−gtt

σ 3(ω + qAt) +
√

gii√−gtt

σ 1 1

2
ωt̂r̂t

− σ 1 1

2
ωx̂r̂x − σ 1 1

2
ωŷr̂y − λl

)
⊗ 1

(
ψ1
ψ2

)
= 0, (21.49)

where λl = √
2|qh|l are the energies of the Landau levels l = 0,1, . . . , gii ≡ gxx =

gyy , At(r) is given by (21.3), and the gamma matrices are defined in [27]. In this
basis the two components ψ1 and ψ2 decouple. Therefore, in what follows we solve
for the first component only (we omit index 1). Substituting the spin connection, we
have [20]:

(
− r2√f

R2
σ 1∂r − 1√

f
σ 3(ω + qAt) − σ 1 r

√
f

2R2

(
3 + rf ′

2f

)
− λl

)
ψ = 0, (21.50)

with ψ = (y1, y2). It is convenient to change to the basis
(

ỹ1
ỹ2

)
=

(
1 −i

−i 1

)(
y1
y2

)
, (21.51)

which diagonalizes the system into a second order differential equation for each
component. We introduce the dimensionless variables as in (21.15)–(21.17), and
make a change of the dimensionless radial variable:

r = 1

1 − z
, (21.52)
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with the horizon now being at z = 0, and the conformal boundary at z = 1. Perform-
ing these transformations in (21.50), the second order differential equations for ỹ1
reads (

f ∂2
z +

(
3f

1 − z
+ f ′

)
∂z + 15f

4(1 − z)2
+ 3f ′

2(1 − z)
+ f ′′

4

+ 1

f

(
(ω + qμz) ± if ′

4

)2

− iqμ − λ2
l

)
ỹ1 = 0. (21.53)

The second component ỹ2 obeys the same equation with μ �→ −μ.
At T = 0,

f = 3z2(z − z0)(z − z̄0), z0 = 1

3
(4 + i

√
2). (21.54)

The solution of this fermion system at zero magnetic field and zero temperature
T = 0 has been found in [24]. To solve (21.53), we use the mapping to a zero
magnetic field system (21.29). The combination μq ≡ μq at non-zero h maps to
μq,eff ≡ μeffqeff at zero h as follows:

μq �→ q

√
1 − H 2

Q2 + H 2
· gF

√
Q2 + H 2 = √

3qgF

√
1 − H 2

3
= μq,eff (21.55)

where at T = 0 we used Q2 + H 2 = 3. We solve (21.53) for zero modes, i.e. ω = 0,
and at the Fermi surface λ = k, and implement (21.55).

Near the horizon (z = 0, f = 6z2), we have

6z2ỹ′′
1;2 + 12zỹ′

1;2 +
(

3

2
+ (μq,eff)

2

6
− k2

F

)
ỹ1;2 = 0, (21.56)

which gives the following behavior:

ỹ1;2 ∼ z− 1
2 ±νk , (21.57)

with the scaling exponent ν following from (21.32):

ν = 1

6

√
6k2 − (μq,eff)2, (21.58)

at the momentum k. Using Maple, we find the zero mode solution of (21.53) with a

regular behavior z− 1
2 +ν at the horizon [20, 24]:

ỹ
(0)
1 = N1(z − 1)

3
2 z− 1

2 +ν(z − z̄0)
− 1

2 −ν

(
z − z0

z − z̄0

) 1
4 (−1−√

2μq,eff/z0)

× 2F1

(
1

2
+ ν −

√
2

3
μq,eff, ν + i

μq,eff

6
,1 + 2ν,

2i
√

2z

3z0(z − z̄0)

)
, (21.59)
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Fig. 21.5 Density of the zero mode ψ0†ψ0 vs. the radial coordinate z (the horizon is at z = 0
and the boundary is at z = 1) for different values of the magnetic field h for the first (with the

largest root for kF ) Fermi surface. We set gF = 1 (h → H ) and q = 15√
3

(μq,eff → 15
√

1 − H 2

3 ).

From right to left the values of the magnetic field are H = {0,1.40,1.50,1.60,1.63,1.65,1.68}.
The amplitudes of the curves are normalized to unity. At weak magnetic fields, the wave function
is supported away from the horizon while at strong fields it is supported near the horizon

and

ỹ
(0)
2 = N2(z − 1)

3
2 z− 1

2 +ν(z − z̄0)
− 1

2 −ν

(
z − z0

z − z̄0

) 1
4 (−1+√

2μq,eff/z0)

× 2F1

(
1

2
+ ν +

√
2

3
μq,eff, ν − i

μq,eff

6
,1 + 2ν,

2i
√

2z

3z0(z − z̄0)

)
, (21.60)

where 2F1 is the hypergeometric function and N1, N2 are normalization factors.
Since normalization factors are constants, we find their relative weight by substitut-
ing solutions given in (21.59) back into the first order differential equations at z ∼ 0,

N1

N2
= −6iν + μq,eff√

6k

(
z0

z̄0

)μq,eff/
√

2z0

. (21.61)

The same relations are obtained when calculations are done for any z. The second

solution η̃
(0)
1;2, with behavior z− 1

2 −ν at the horizon, is obtained by replacing ν → −ν

in (21.59).
To get insight into the zero-mode solution (21.59), we plot the radial profile for

the density function ψ(0)†ψ(0) for different magnetic fields in Fig. 21.5. The mo-
mentum chosen is the Fermi momentum of the first Fermi surface (see the next
section). The curves are normalized to have the same maxima. Magnetic field is
increased from right to left. At small magnetic field, the zero modes are supported
away from the horizon, while at large magnetic field, the zero modes are supported
near the horizon. This means that at large magnetic field the influence of the black
hole to the Fermi level structure becomes more important.
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21.5.2 Magnetic Effects on the Fermi Momentum and Fermi
Velocity

In the presence of a magnetic field there is only a true pole in the Green’s function
whenever the Landau level crosses the Fermi energy [25, 26]

2l|qh| = k2
F . (21.62)

As shown in Fig. 21.2, whenever the equation (21.62) is satisfied the spectral func-
tion A(ω) has a (sharp) peak. This is not surprising since quasiparticles can be easily
excited from the Fermi surface. From (21.62), the spectral function A(ω) and the
density of states on the Fermi surface D(ω) are periodic in 1

h
with the period

Δ

(
1

h

)
= 2πq

AF

, (21.63)

where AF = πk2
F is the area of the Fermi surface [25, 26]. This is a manifestation

of the de Haas-van Alphen quantum oscillations. At T = 0, the electronic proper-
ties of metals depend on the density of states on the Fermi surface. Therefore, an
oscillatory behavior as a function of magnetic field should appear in any quantity
that depends on the density of states on the Fermi energy. Magnetic susceptibility
[25, 26] and magnetization together with the superconducting gap [29] have been
shown to exhibit quantum oscillations. Every Landau level contributes an oscillating
term and the period of the lth level oscillation is determined by the value of the mag-
netic field h that satisfies (21.62) for the given value of kF . Quantum oscillations
(and the quantum Hall effect which we consider later in the paper) are examples of
phenomena in which Landau level physics reveals the presence of the Fermi sur-
face. The superconducting gap found in the quark matter in magnetic fields [29] is
another evidence for the existence of the (highly degenerate) Fermi surface and the
corresponding Fermi momentum.

Generally, a Fermi surface controls the occupation of energy levels in the sys-
tem: the energy levels below the Fermi surface are filled and those above are empty
(or non-existent). Here, however, the association to the Fermi momentum can be
obscured by the fact that the fermions form highly degenerate Landau levels. Thus,
in two dimensions, in the presence of the magnetic field the corresponding effective
Fermi surface is given by a single point in the phase space, that is determined by nF ,
the Landau index of the highest occupied level, i.e., the highest Landau level below
the chemical potential.2 Increasing the magnetic field, Landau levels ‘move up’ in
the phase space leaving only the lower levels occupied, so that the effective Fermi
momentum scales roughly (excluding interactions) as a square root of the magnetic
field, kF ∼ √

nF ∼ kmax
F

√
1 − h/hmax. High magnetic fields drive the effective den-

sity of the charge carriers down, approaching the limit when the Fermi momentum
coincides with the lowest Landau level.

2We would like to thank Igor Shovkovy for clarifying the issue with the Fermi momentum in the
presence of the magnetic field.
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Many phenomena observed in the paper can thus be qualitatively explained by
Landau quantization. As discussed before, the notion of the Fermi momentum is lost
at very high magnetic fields. In what follows, the quantitative Fermi level structure
at zero temperature, described by kF and vF values, is obtained as a function of the
magnetic field using the solution of the Dirac equation given by (21.59), (21.60). As
in [12], we neglect first the discrete nature of the Fermi momentum and velocity in
order to obtain general understanding. Upon taking the quantization into account,
the smooth curves become combinations of step functions following the same trend
as the smooth curves (without quantization). While usually the grand canonical en-
semble is used, where the fixed chemical potential controls the occupation of the
Landau levels [30], in our setup, the Fermi momentum is allowed to change as the
magnetic field is varied, while we keep track of the IR conformal dimension ν.

The Fermi momentum is defined by the matching between IR and UV physics [8],
therefore it is enough to know the solution at ω = 0, where the matching is per-
formed. To obtain the Fermi momentum, we require that the zero mode solution

is regular at the horizon (ψ(0) ∼ z− 1
2 +ν ) and normalizable at the boundary. At the

boundary z ∼ 1, the wave function behaves as

a(1 − z)
3
2 −m

(
1
0

)
+ b(1 − z)

3
2 +m

(
0
1

)
. (21.64)

To require it to be normalizable is to set the first term a = 0; the wave function at
z ∼ 1 is then

ψ(0) ∼ (1 − z)
3
2 +m

(
0
1

)
. (21.65)

Equation (21.65) leads to the condition limz→1(z−1)−3/2(ỹ
(0)
2 + iỹ

(0)
1 ) = 0, which,

together with (21.59), gives the following equation for the Fermi momentum as
function of the magnetic field [20, 24]

2F1(1 + ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))

2F1(ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))

= 6ν − iμq,eff

kF (−2i + √
2)

,

(21.66)
with ν ≡ νkF

given by (21.58). Using Mathematica to evaluate the hypergeometric
functions, we numerically solve the equation for the Fermi surface, which gives
effective momentum as if it were continuous, i.e. when quantization is neglected.
The solutions of (21.66) are given in Fig. 21.6. There are multiple Fermi surfaces
for a given magnetic field h. Here and in all other plots we choose gF = 1, therefore
h → H , and q = 15√

3
. In Fig. 21.6, positive and negative kF correspond to the Fermi

surfaces in the Green’s functions G1 and G2. The relation between two components
is G2(ω, k) = G1(ω,−k) [7], therefore Fig. 21.6 is not symmetric with respect
to the x-axis. Effective momenta terminate at the dashed line νkF

= 0. Taking into
account Landau quantization of kF → √

2|qh|l with l = 1,2 . . . , the plot consists of
stepwise functions tracing the existing curves (we depict only positive kF ). Indeed
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Fig. 21.6 Effective momentum keff vs. the magnetic field h → H (we set gF = 1, q = 15√
3

). As

we increase magnetic field the Fermi surface shrinks. Smooth solid curves represent situation as
if momentum is a continuous parameter (for convenience), stepwise solid functions are the real
Fermi momenta which are discretized due to the Landau level quantization: kF → √

2|qh|l with
l = 1,2, . . . where

√
2|qh|l are Landau levels given by dotted lines (only positive discrete kF are

shown). At a given h there are multiple Fermi surfaces. From right to left are the first, second etc.
Fermi surfaces. The dashed-dotted line is νkF

= 0 where kF is terminated. Positive and negative
keff correspond to Fermi surfaces in two components of the Green’s function

Fig. 21.7 Landau level
numbers n corresponding to
the quantized Fermi momenta
vs. the magnetic field h → H

for the three Fermi surfaces
with positive kF . We set
gF = 1, q = 15√

3
. From right

to left are the first, second and
third Fermi surfaces

Landau quantization can be also seen from the dispersion relation at Fig. 21.3, where
only discrete values of effective momentum are allowed and the Fermi surface has
been chopped up as a result of it Fig. 21.3(B).

Our findings agree with the results for the (largest) Fermi momentum in a three-
dimensional magnetic system considered in [31], compare the stepwise dependence
kF (h) with Fig. 21.5 in [31].

In Fig. 21.7, the Landau level index l is obtained from kF (h) = √
2|qh|l where

kF (h) is a numerical solution of (21.66). Only those Landau levels which are below
the Fermi surface are filled. In Fig. 21.6, as we decrease magnetic field first nothing
happens until the next Landau level crosses the Fermi surface which corresponds to a
jump up to the next step. Therefore, at strong magnetic fields, fewer states contribute
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Fig. 21.8 Left panel. The IR conformal dimension ν ≡ νkF
calculated at the Fermi momentum vs.

the magnetic field h → H (we set gF =1, q = 15√
3

). Calculations are done for the first Fermi surface.

Dashed line is for ν = 1
2 (at Hc = 1.70), which is the border between the Fermi liquids ν > 1

2 and
non-Fermi liquids ν < 1

2 . Right panel. Phase diagram in terms of the chemical potential and the
magnetic field μ2 + h2 = 3 (in dimensionless variables h = gF H , μ = gF Q; we set gF = 1).
Fermi liquids are above the dashed line (H < Hc) and non-Fermi liquids are below the dashed line
(H > Hc)

to transport properties and the lowest Landau level becomes more important (see the
next section). At weak magnetic fields, the sum over many Landau levels has to be
taken, ending with the continuous limit as h → 0, when quantization can be ignored.

In Fig. 21.8, we show the IR conformal dimension as a function of the magnetic
field. We have used the numerical solution for kF . Fermi liquid regime takes place
at magnetic fields h < hc , while non-Fermi liquids exist in a narrow band at hc <

h < h′
c , and at h′

c the system becomes near-conformal.
In this figure we observe the pathway of the possible phase transition exhibited by

the Fermi surface (ignoring Landau quantization): it can vanish at the line νkF
= 0,

undergoing a crossover to the conformal regime, or cross the line νkF
= 1/2 and go

through a non-Fermi liquid regime, and subsequently cross to the conformal phase.
Note that the primary Fermi surface with the highest kF and νkF

seems to directly
cross over to conformality, while the other Fermi surfaces first exhibit a “strange
metal” phase transition. Therefore, all the Fermi momenta with νkF

> 0 contribute
to the transport coefficients of the theory. In particular, at high magnetic fields when
for the first (largest) Fermi surface k

(1)
F is nonzero but small, the lowest Landau

level n = 0 becomes increasingly important contributing to the transport with half
degeneracy factor as compared to the higher Landau levels.

In Fig. 21.9, we plot the Fermi momentum kF as a function of the magnetic field
for the first Fermi surface (the largest root of (21.66)). Quantization is neglected
here. At the left panel, the relatively small region between the dashed lines corre-
sponds to non-Fermi liquids 0 < ν < 1

2 . At large magnetic field, the physics of the
Fermi surface is captured by the near horizon region (see also Fig. 21.5) which is
AdS2 × R2. At the maximum magnetic field, Hmax = √

3 ≈ 1.73, when the black
hole becomes pure magnetically charged, the Fermi momentum vanishes when it
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Fig. 21.9 Fermi momentum kF vs. the magnetic field h → H (we set gF = 1, q = 15√
3

) for the first

Fermi surface. Left panel. The inner (closer to x-axis) dashed line is νkF
= 0 and the outer dashed

line is νkF
= 1

2 , the region between these lines corresponds to non-Fermi liquids 0 < νkF
< 1

2 .
The dashed-dotted line is for the first Landau level k1 = √

2qH . The first Fermi surface hits
the border-line between a Fermi and non-Fermi liquids ν = 1

2 at Hc ≈ 1.70, and it vanishes at

Hmax = √
3 = 1.73. Right panel. Circles are the data points for the Fermi momentum calculated

analytically, solid line is a fit function kmax
F

√
1 − H 2

3 with kmax
F = 12.96

crosses the line νkF
= 0. This only happens for the first Fermi surface. For the higher

Fermi surfaces the Fermi momenta terminate at the line νkF
= 0, Fig. 21.6. Note the

Fermi momentum for the first Fermi surface can be almost fully described by a func-

tion kF = kmax
F

√
1 − H 2

3 . It is tempting to view the behavior kF ∼ √
Hmax − H as

a phase transition in the system although it strictly follows from the linear scaling
for H = 0 by using the mapping (21.29). (Note that also μ = gF Q = gF

√
3 − H 2.)

Taking into account the discretization of kF , the plot will consist of an array of
step functions tracing the existing curve. Our findings agree with the results for
the Fermi momentum in a three dimensional magnetic system considered in [31],
compare with Fig. 21.5 there.

The Fermi velocity given in (21.27) is defined by the UV physics; therefore so-
lutions at non-zero ω are required. The Fermi velocity is extracted from matching
two solutions in the inner and outer regions at the horizon. The Fermi velocity as
function of the magnetic field for ν > 1

2 is [20, 24]

vF = 1

h1

(∫ 1

0
dz

√
g/gttψ

(0)†ψ(0)

)−1

lim
z→1

|ỹ(0)
1 + iỹ

(0)
2 |2

(1 − z)3
,

(21.67)

h1 = lim
z→1

ỹ
(0)
1 + iỹ

(0)
2

∂k(
˜

y
(0)
2 + iỹ

(0)
1 )

,

where the zero mode wavefunction is taken at kF (21.59).
We plot the Fermi velocity for several Fermi surfaces in Fig. 21.10. Quantization

is neglected here. The Fermi velocity is shown for ν > 1
2 . It is interesting that the

Fermi velocity vanishes when the IR conformal dimension is νkF
= 1

2 . Formally,
it follows from the fact that vF ∼ (2ν − 1) [8]. The first Fermi surface is at the
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Fig. 21.10 Fermi velocity vF vs. the magnetic field h → H (we set gF = 1, q = 15√
3

) for the

regime of Fermi liquids ν ≥ 1
2 . Fermi velocity vanishes at νkF

= 1
2 (x-axis). For the first Fermi

surface, the top curve, Fermi velocity vanishes at Hc ≈ 1.70. The region H < Hc corresponds to
the Fermi liquids and quasiparticle description. The multiple lines are for various Fermi surfaces
in ascending order, with the first Fermi surface on the right. The Fermi velocity vF has the same
sign as the Fermi momentum kF . As above, positive and negative vF correspond to Fermi surfaces
in the two components of the Green’s function

far right. Positive and negative vF correspond to the Fermi surfaces in the Green’s
functions G1 and G2, respectively. The Fermi velocity vF has the same sign as the
Fermi momentum kF . At small magnetic field values, the Fermi velocity is very
weakly dependent on H and it is close to the speed of light; at large magnetic field
values, the Fermi velocity rapidly decreases and vanishes (at Hc = 1.70 for the
first Fermi surface). Geometrically, this means that with increasing magnetic field
the zero mode wavefunction is supported near the black hole horizon Fig. 21.5,
where the gravitational redshift reduces the local speed of light as compared to the
boundary value. It was also observed in [8, 24] at small fermion charge values.

21.6 Hall and Longitudinal Conductivities

In this section, we calculate the contributions to Hall σxy and the longitudinal σxx

conductivities directly in the boundary theory. This should be contrasted with the
standard holographic approach, where calculations are performed in the (bulk) grav-
ity theory and then translated to the boundary field theory using the AdS/CFT dic-
tionary. Specifically, the conductivity tensor has been obtained in [11] by calculating
the on-shell renormalized action for the gauge field on the gravity side and using the
gauge/gravity duality AM → jμ to extract the R charge current-current correlator
at the boundary. Here, the Kubo formula involving the current-current correlator is
used directly by utilizing the fermion Green’s functions extracted from holography
in [8]. Therefore, the conductivity is obtained for the charge carriers described by
the fermionic operators of the boundary field theory.
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The use of the conventional Kubo formula to extract the contribution to the trans-
port due to fermions is validated in that it also follows from a direct AdS/CFT com-
putation of the one-loop correction to the on-shell renormalized AdS action [17].
We study in particular stable quasiparticles with ν > 1

2 and at zero temperature.
This regime effectively reduces to the clean limit where the imaginary part of the
self-energy vanishes ImΣ → 0. We use the gravity-“dressed” fermion propagator
from (21.27) and to make the calculations complete, the “dressed” vertex is nec-
essary, to satisfy the Ward identities. As was argued in [17], the boundary vertex
which is obtained from the bulk calculations can be approximated by a constant in
the low temperature limit. Also, according to [32, 33], the vertex only contains sin-
gularities of the product of the Green’s functions. Therefore, dressing the vertex will
not change the dependence of the DC conductivity on the magnetic field [32, 33].
In addition, the zero magnetic field limit of the formulae for conductivity obtained
from holography [17] and from direct boundary calculations [20] are identical.

21.6.1 Integer Quantum Hall Effect

Let us start from the “dressed” retarded and advanced fermion propagators [8]:
GR is given by (21.27) and GA = G∗

R . To perform the Matsubara summation we
use the spectral representation

G(iωn,k) =
∫

dω

2π

A(ω,k)

ω − iωn

, (21.68)

with the spectral function defined as A(ω,k) = − 1
π

ImGR(ω,k) = 1
2πi

(GR(ω,k)−
GA(ω,k)). Generalizing to a non-zero magnetic field and spinor case [30], the spec-
tral function [34] is

A(ω,k) = 1

π
e− k2

|qh|
∞∑
l=0

(−1)l(−h1vF )

×
(

Σ2(ω, kF )f (k)γ 0

(ω + εF + Σ1(ω, kF ) − El)2 + Σ2(ω, kF )2
+ (El → −El)

)
,

(21.69)

where εF = vF kF is the Fermi energy, El = vF

√
2|qh|l is the energy of the Lan-

dau level, f (k) = P−Ll(
2k2

|qh| ) − P+Ll−1(
2k2

|qh| ) with spin projection operators P± =
(1 ± iγ 1γ 2)/2, we take c = 1, the generalized Laguerre polynomials are Lα

n(z) and
by definition Ln(z) = L0

n(z), (we omit the vector part kγ , it does not contribute
to the DC conductivity), all γ ’s are the standard Dirac matrices, h1, vF and kF

are real constants (we keep the same notations for the constants as in [8]). The
self-energy Σ ∼ ω2νkF contains the real and imaginary parts, Σ = Σ1 + iΣ2. The
imaginary part comes from scattering processes of a fermion in the bulk, e.g. from
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pair creation, and from the scattering into the black hole. It is exactly due to in-
elastic/dissipative processes that we are able to obtain finite values for the transport
coefficients, otherwise they are formally infinite.

Using the Kubo formula, the DC electrical conductivity tensor is

σij (Ω) = lim
Ω→0

ImΠR
ij

Ω + i0+ , (21.70)

where Πij (iΩm → Ω + i0+) is the retarded current-current correlation function;
schematically the current density operator is j i(τ,x)=qvF

∑
σ ψ̄σ (τ,x)γ iψσ (τ,x).

Neglecting the vertex correction, it is given by

Πij (iΩm) = q2v2
F T

∞∑
n=−∞

∫
d2k

(2π)2
tr
(
γ iG(iωn,k)γ jG(iωn + iΩm,k)

)
. (21.71)

The sum over the Matsubara frequency is

T
∑
n

1

iωn − ω1

1

iωn + iΩm − ω2
= n(ω1) − n(ω2)

iΩm + ω1 − ω2
. (21.72)

Taking iΩm → Ω + i0+, the polarization operator is now

Πij (Ω) = dω1

2π

dω2

2π

nFD(ω1) − nFD(ω2)

Ω + ω1 − ω2

∫
d2k

(2π)2
tr
(
γ iA(ω1,k)γ jA(ω2,k)

)
,

(21.73)

where the spectral function A(ω,k) is given by (21.69) and nFD(ω) is the Fermi-
Dirac distribution function. Evaluating the traces, we have

σij = −4q2v2
F (h1vF )2|qh|

πΩ

× Re
∞∑

l,k=0

(−1)l+k+1{δij (δl,k−1 + δl−1,k) + iεij sgn(qh)(δl,k−1 − δl−1,k)
}

×
∫

dω1

2π

(
tanh

ω1

2T
− tanh

ω2

2T

)(
Σ2(ω1)

(ω̃1 − El)2 + Σ2
2 (ω1)

+ (El → −El)

)

×
(

Σ2(ω2)

(ω̃2 − Ek)2 + Σ2
2 (ω2)

+ (Ek → −Ek)

)
, (21.74)

with ω2 = ω1 + Ω . We have also introduced ω̃1;2 ≡ ω1;2 + εF + Σ1(ω1;2) with εij

being the antisymmetric tensor (ε12 = 1), and Σ1;2(ω) ≡ Σ1;2(ω, kF ). In the mo-
mentum integral, we use the orthogonality condition for the Laguerre polynomials∫ ∞

0 dxexLl(x)Lk(x) = δlk .
From (21.74), the term symmetric/antisymmetric with respect to exchange ω1 ↔

ω2 contributes to the diagonal/off-diagonal component of the conductivity (note the
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antisymmetric term nFD(ω1) − nFD(ω2)). The longitudinal and Hall DC conductiv-
ities (Ω → 0) are thus

σxx = −2q2(h1vF )2|qh|
πT

∫ ∞

−∞
dω

2π

Σ2
2 (ω)

cosh2 ω
2T

×
∞∑
l=0

(
1

(ω̃ − El)2 + Σ2
2 (ω)

+ (El → −El)

)

×
(

1

(ω̃ − El+1)2 + Σ2
2 (ω)

+ (El+1 → −El+1)

)
, (21.75)

σxy = −q2(h1vF )2 sgn(qh)

π
νh,

(21.76)

νh = 2
∫ ∞

−∞
dω

2π
tanh

ω

2T
Σ2(ω)

∞∑
l=0

αl

(
1

(ω̃ − El)2 + Σ2
2 (ω)

+ (El → −El)

)
,

where ω̃ = ω + εF + Σ1(ω). The filling factor νh is proportional to the density
of carriers: |νh| = π

|qh|h1vF
n (see derivation in [27]). The degeneracy factor of the

Landau levels is αl : α0 = 1 for the lowest Landau level and αl = 2 for l = 1,2 . . . .
Substituting the filling factor νh back to (21.76), the Hall conductivity can be writ-
ten as

σxy = ρ

h
, (21.77)

where ρ is the charge density in the boundary theory, and both the charge q and the
magnetic field h carry a sign (the prefactor (−h1vF ) comes from the normalization
choice in the fermion propagator (21.27), (21.69) as given in [8], which can be
regarded as a factor contributing to the effective charge and is not important for
further considerations). The Hall conductivity (21.77) has been obtained using the
AdS/CFT duality for the Lorentz invariant 2+1-dimensional boundary field theories
in [11]. We recover this formula because in our case the translational invariance is
maintained in the x and y directions of the boundary theory.

Low frequencies give the main contribution in the integrand of (21.76). Since
the self-energy satisfies Σ1(ω) ∼ Σ2(ω) ∼ ω2ν and we consider the regime ν > 1

2 ,
we have Σ1 ∼ Σ2 → 0 at ω ∼ 0 (self-energy goes to zero faster than the ω term).
Therefore, only the simple poles in the upper half-plane ω0 = −εF ±El +Σ1 + iΣ2

contribute to the conductivity where Σ1 ∼ Σ2 ∼ (−εF ± El)
2ν are small. The same

logic of calculation has been used in [30]. We obtain for the longitudinal and Hall
conductivities

σxx = 2q2(h1vF )2Σ2

πT
×

(
1

1 + cosh εF

T

+
∞∑
l=1

4l
1 + cosh εF

T
cosh El

T

(cosh εF

T
+ cosh El

T
)2

)
, (21.78)
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σxy = q2(h1vF )2sgn(qh)

π
× 2

(
tanh

εF

2T
+

∞∑
l=1

(
tanh

εF + El

2T
+ tanh

εF − El

2T

))
,

(21.79)

where the Fermi energy is εF = vF kF and the energy of the Landau level is El =
vF

√
2|qh|l. Similar expressions were obtained in [30]. However, in our case the

filling of the Landau levels is controlled by the magnetic field h through the field-
dependent Fermi energy vF (h)kF (h) instead of the chemical potential μ.

At T = 0, cosh ω
T

→ 1
2 e

ω
T and tanh ω

2T
= 1 − 2nFD(ω) → sgnω. Therefore the

longitudinal and Hall conductivities are

σxx = 2q2(h1vF )2Σ2

πT

∞∑
l=1

lδεF ,El
= 2q2(h1vF )2Σ2

πT
× nδεF ,En, (21.80)

σxy = q2(h1vF )2sgn(qh)

π
2

(
1 + 2

∞∑
l=1

θ(εF − El)

)

= q2(h1vF )2sgn(qh)

π
× 2(1 + 2n)θ(εF − En)θ(En+1 − εF ), (21.81)

where the Landau level index runs n = 0,1, . . . . It can be estimated as n = [ k2
F

2|qh| ]
when vF �= 0 ([ ] denotes the integer part), with the average spacing between the
Landau levels given by the Landau energy vF

√
2|qh|. Note that εF ≡ εF (h). We

can see that (21.81) expresses the integer quantum Hall effect (IQHE). At zero
temperature, as we dial the magnetic field, the Hall conductivity jumps from one
quantized level to another, forming plateaus given by the filling factor

νh = ±2(1 + 2n) = ±4

(
n + 1

2

)
, (21.82)

with n = 0,1, . . . . (Compare to the conventional Hall quantization νh = ±4n, that
appears in thick graphene.) Plateaus of the Hall conductivity at T = 0 follow from
the stepwise behavior of the charge density ρ in (21.77):

ρ ∼ 4

(
n + 1

2

)
θ(εF − En)θ(En+1 − εF ), (21.83)

where n Landau levels are filled and contribute to ρ. The longitudinal conductivity
vanishes except precisely at the transition point between the plateaus. In Fig. 21.11,
we plot the longitudinal and Hall conductivities at T = 0, using only the terms after
× sign in (21.79). In the Hall conductivity, plateau transition occurs when the Fermi
level (in Fig. 21.11) of the first Fermi surface εF = vF (h)kF (h) (Fig. 21.9) crosses
the Landau level energy as we vary the magnetic field. By decreasing the magnetic
field, the plateaus become shorter and increasingly more Landau levels contribute to
the Hall conductivity. This happens because of two factors: the Fermi level moves
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Fig. 21.11 Hall conductivity σxy and longitudinal conductivity σxx vs. the magnetic field h → H

at T = 0 (we set gF = 1, q = 15√
3

). Left panel is for IQHE. Right panel is for FQHE. At strong

magnetic fields, the Hall conductivity plateau νh = 4 appears together with plateaus νh = 2 and
νh = 6 in FQHE (details are in [27]). Irregular pattern in the length of the plateaus for FQHE is
observed in experiments on thin films of graphite at strong magnetic fields [28]

up and the spacing between the Landau levels becomes smaller. This picture does
not depend on the Fermi velocity as long as it is nonzero.

21.6.2 Fractional Quantum Hall Effect

In [27], using the holographic description of fermions, we obtained the filling factor
at strong magnetic fields

νh = ±2j, (21.84)

where j is the effective Landau level index. Equation (21.84) expresses the frac-
tional quantum Hall effect (FQHE). In the quasiparticle picture, the effective index
is integer j = 0,1,2, . . . , but generally it may be fractional. In particular, the fill-
ing factors ν = 2/m where m = 1,2,3, . . . have been proposed by Halperin [35]
for the case of bound electron pairs, i.e. 2e-charge bosons. Indeed, QED becomes
effectively confining in ultraquantum limit at strong magnetic field, and the electron
pairing is driven by the Landau level quantization and gives rise to 2e bosons. In
our holographic description, quasiparticles are valid degrees of freedom only for
ν > 1/2, i.e. for weak magnetic field. At strong magnetic field, poles of the fermion
propagator should be taken into account in calculation of conductivity. This will
probably result in a fractional filling factor. Our pattern for FQHE Fig. 21.11 resem-
bles the one obtained by Kopelevich in Fig. 3 [36] which has been explained using
the fractional filling factor of Halperin [35].

The somewhat regular pattern behind the irregular behavior can be understood
as a consequence of the appearance of a new energy scale: the average distance
between the Fermi levels. For the case of Fig. 21.11, we estimate it to be 〈ε(m)

F −
ε
(m+1)
F 〉 = 4.9 with m = 1,2. The authors of [30] explain the FQHE through the
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opening of a gap in the quasiparticle spectrum, which acts as an order parameter
related to the particle-hole pairing and is enhanced by the magnetic field (magnetic
catalysis). Here, the energy gap arises due to the participation of multiple Fermi
surfaces.

A pattern for the Hall conductivity that is strikingly similar to Fig. 21.11 arises in
the AA and AB-stacked bilayer graphene, which has different transport properties
from the monolayer graphene [37], compare with Figs. 2, 5 there. It is remarkable
that the bilayer graphene also exhibits the insulating behavior in a certain parameter
regime. This agrees with our findings of metal-insulating transition in our system.

21.7 Conclusions

We have studied strongly coupled electron systems in the magnetic field focussing
on the Fermi level structure, using the AdS/CFT correspondence. These systems are
dual to Dirac fermions placed in the background of the electrically and magnetically
charged AdS-Reissner-Nordström black hole. At strong magnetic fields the dual
system “lives” near the black hole horizon, which substantially modifies the Fermi
level structure. As we dial the magnetic field higher, the system exhibits the non-
Fermi liquid behavior and then crosses back to the conformal regime. In our analysis
we have concentrated on the Fermi liquid regime and obtained the dependence of
the Fermi momentum kF and Fermi velocity vF on the magnetic field. Remarkably,
kF exhibits the square root behavior, with vF staying close to the speed of light in
a wide range of magnetic fields, while it rapidly vanishes at a critical magnetic field
which is relatively high. Such behavior indicates that the system may have a phase
transition.

The magnetic system can be rescaled to a zero-field configuration which is ther-
modynamically equivalent to the original one. This simple result can actually be
seen already at the level of field theory: the additional scale brought about by the
magnetic field does not show up in thermodynamic quantities meaning, in particu-
lar, that the behavior in the vicinity of quantum critical points is expected to remain
largely uninfluenced by the magnetic field, retaining its conformal invariance. In the
light of current condensed matter knowledge, this is surprising and might in fact be
a good opportunity to test the applicability of the probe limit in the real world: if
this behavior is not seen, this suggests that one has to include the backreaction to
metric to arrive at a realistic description.

In the field theory frame, we have calculated the DC conductivity using kF and
vF values extracted from holography. The holographic calculation of conductivity
that takes into account the fermions corresponds to the corrections of subleading
order in 1/N in the field theory and is very involved [17]. As we are not interested
in the vertex renormalization due to gravity (it does not change the magnetic field
dependence of the conductivity), we have performed our calculations directly in the
field theory with AdS gravity-dressed fermion propagators. Instead of controlling
the occupancy of the Landau levels by changing the chemical potential (as is usual
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in non-holographic setups), we have controlled the filling of the Landau levels by
varying the Fermi energy level through the magnetic field. At zero temperature, we
have reproduced the integer QHE of the Hall conductivity, which is observed in
graphene at moderate magnetic fields. While the findings on equilibrium physics
(Landau quantization, magnetic phase transitions and crossovers) are within expec-
tations and indeed corroborate the meaningfulness of the AdS/CFT approach as
compared to the well-known facts, the detection of the QHE is somewhat surpris-
ing as the spatial boundary effects are ignored in our setup. We plan to address this
question in further work.

Interestingly, at large magnetic fields we obtain the correct formula for the fill-
ing factor characteristic for FQHE. Moreover our pattern for FQHE resembles the
one obtained in [36] which has been explained using the fractional filling factor of
Halperin [35]. In the quasiparticle picture, which we have used to calculate Hall
conductivity, the filling factor is integer. In our holographic description, quasiparti-
cles are valid degrees of freedom only at weak magnetic field. At strong magnetic
field, the system exhibits non-Fermi liquid behavior. In this case, the poles of the
fermion propagator should be taken into account to calculate the Hall conductivity.
This can probably result in a fractional filling factor. We leave it for future work.

Notably, the AdS-Reissner-Nordström black hole background gives a vanishing
Fermi velocity at high magnetic fields. It happens at the point when the IR confor-
mal dimension of the corresponding field theory is ν = 1

2 , which is the borderline
between the Fermi and non-Fermi liquids. Vanishing Fermi velocity was also ob-
served at high enough fermion charge [24]. As in [24], it is explained by the red shift
on the gravity side, because at strong magnetic fields the fermion wavefunction is
supported near the black hole horizon modifying substantially the Fermi velocity. In
our model, vanishing Fermi velocity leads to zero occupancy of the Landau levels
by stable quasiparticles that results in vanishing regular Fermi liquid contribution
to the Hall conductivity and the longitudinal conductivity. The dominant contribu-
tion to both now comes from the non-Fermi liquid and conformal contributions.
We associate such change in the behavior of conductivities with a metal-“strange
metal” phase transition. Experiments on highly oriented pyrolitic graphite support
the existence of a finite “offset” magnetic field hc at T = 0 where the resistivity
qualitatively changes its behavior [38–41]. At T �= 0, it has been associated with the
metal-semiconducting phase transition [38–41]. It is worthwhile to study the tem-
perature dependence of the conductivity in order to understand this phase transition
better.
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We consider a quantum wire connected to the leads and subjected to dissipation along its length. The dissipation
manifests as tunneling into (out of) the chain from (to) a memoryless environment. The evolution of the system
is described by the Lindblad equation. Already infinitesimally small dissipation along the chain induces a
quantum phase transition (QPT). This is a decoherence QPT: the reduced density matrix of a subsystem in
the nonequilibrium steady state (far from the ends of the chain) can be represented as the tensor product of
single-site density matrices. The QPT is identified from the jump of the current and the entropy per site as
the dissipation becomes nonzero. We also explore the properties of the boundaries of the chain close to the
transition point and observe that the boundaries behave as if they undergo a second-order phase transition as a
function of the dissipation strength: the particle-particle correlation functions and the response to the electric
field exhibit a power-law divergence. Disorder is known to localize one-dimensional systems, but the coupling to
the memoryless environment pushes the system back into the delocalized state even in the presence of disorder.
Interestingly, we observe a similar transition in the classical dissipative counterflow model: the current has a
jump at the ends of the chain introducing an infinitely small dissipation.

DOI: 10.1103/PhysRevB.91.205416 PACS number(s): 03.65.Yz, 72.10.−d, 72.15.Rn, 05.30.Fk

I. INTRODUCTION

Coupling to the environment can significantly change the
properties of a quantum system. Intuitively, the presence of
dissipation leads to a decrease of coherence in the system. It
can induce various types of phase transitions [1–9].

The best known example of such a transition is exhibited
by the spin-boson model: there is a critical value of the
interaction between the two-level system and the bosonic
environment, which localizes the system [10]. A more
complicated example is the superconductor-metal transition
in dissipative nanowires [6,7], which can be modeled as a
dissipative XY -spin chain, with a coupling to the bosonic bath
at every site of the chain. It was shown both analytically and
numerically [6,8,9] that the system experiences a universal
second-order phase transition at the critical value of the
coupling to the environment.

These are examples in the presence of the bosonic bath.
Realistically, especially in condensed matter systems, the bath
can be also fermionic [11]. It is possible to describe it in a sim-
ilar manner as the bosonic bath in the spin-boson model, i.e.,
using the Feynman-Vernon formalism. However, it is rather
complicated to consider more than one or two sites in such
a formulation. The problem is often simplified by studying a
Lindblad-type equation [12,13]. This corresponds to a memo-
ryless bath. Physically, this means that the quasiparticles in the
bath are assumed to have a much smaller dynamical timescale
compared to the excitations in the system. Even the mem-
oryless dissipation induces a novel behavior in the quantum
systems. For example, dissipation along the system can lead to
the algebraic decoherence in strongly interacting systems [14].

Phase transitions have been observed in the presence of
a particle or energy flow in various spin chains [15]. For
example, the equilibrium phase diagram of the transverse field
Ising model has two phases: ordered and disordered; while
in the presence of particle flow a new phase appears, which
carries a nonzero particle flux [16].

The density matrix of the nonequilibrium steady state
(NESS) of a noninteracting fermionic system is associated
with an effective Hamiltonian [3]. In this formalism, phase
transitions can be observed directly from the spectrum of the
effective Hamiltonian, which shows features absent in the
closed system. For example, a topological phase transition
has been found in a cold atomic system subjected to laser
irradiation [3].

Equilibrium phase transitions are characterized by dis-
continuous derivatives of the free energy [17]: the order of
the transition is equal to the order of the first discontinuous
derivative. In a nonequilibrium situation the free energy is not
a well-defined statistical quantity. The partition function, on
the other hand, remains well defined also for a nonequilibrium
system, as well as entropy, which is given by the logarithm of
the number of microstates [18]. Starting from the partition
function or entropy we can define the (nonequilibrium)
susceptibilities even though the free energy is ill defined [17].
The susceptibility diverges at the transition point [19]. For the
second-order quantum phase transition (QPT) the divergence is
physical and detectable, while it is a δ-function-like divergence
for a first-order transition. This means that in an infinite system
undergoing a first-order phase transition, when the divergence
equals the Dirac δ function, we can only observe the step
(discontinuity) in susceptibility, while the (infinitely narrow)
Dirac δ peak is not measurable.

A. Short overview

In this paper we study the fermionic chain connected to the
memoryless bath at every site of the chain, hence we consider
the Lindblad equation for noninteracting fermions [5,20–22].
The ends of the chain are connected to noninteracting memory-
less leads [22,23]. The difference in chemical potential induces
the particle flow in the system. We find a first-order QPT that
separates the regimes of coherent and dissipative transport
along the chain. The coherent state is characterized by the
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MEDVEDYEVA, C̆UBROVIĆ, AND KEHREIN PHYSICAL REVIEW B 91, 205416 (2015)

constant current along the chain, while in the dissipative state
the current induced by the coupling to the reservoirs decays
exponentially inside the chain. QPT between the two happens
already at an infinitesimally small coupling to the environment,
i.e., the critical coupling value is zero. The transition can
be understood microscopically from the fact that the density
matrix is decomposed into the tensor product of one-site
density matrices in the bulk. The phenomenological reason
for the transition is breaking of the time-reversal symmetry by
the dissipation along the chain. From the thermodynamic point
of view, the transition is a consequence of the entropy-per-site
jump. The bulk susceptibility also has a jump at the transition.
These facts make us conclude that it is a first-order phase
transition. We also detect the jump of the steady-state current
at the ends of the chain for sufficiently long chains. We
can observe this nonequilibrium QPT in the spectrum of
the effective Hamiltonian of the NESS: the gap present for
zero dissipation along the chain closes in the presence of
dissipation. A nonequilibrium QPT in the system coupled to
the Markovian bath has also been observed in the XY-spin
chain [2,5] and in the XX-spin chain [1].

The phase transitions are normally considered in the ther-
modynamic limit and the effects of the boundaries (finite-size
effects) are neglected (or, in numerical work, systematically
eliminated, e.g., by finite-size scaling). When we discuss the
transition between the coherent transport through the chain and
decoherent state induced by dissipation, we cannot neglect the
effects of the boundaries, because the particle current is due
to the injection of particles at the ends of the chain. Therefore,
we study the particle-particle correlation functions and the
electrical susceptibility in the NESS at the ends of the chain
and observe power-law divergences as a function of dissipation
strength along the chain.

We also consider the workings of dissipation in the presence
of disorder. We find that any memoryless dissipation extended
along the chain destroys the localization by disorder. This
result supports previous studies by the scattering matrix
approach [24] and the Landauer-type approach with deco-
herence [25]. The phase transition to the dissipative state is
universal and preserved in the presence of disorder.

II. MODEL AND FORMALISM

We are interested in the properties of the nonequilibrium
steady state of a chain of noninteracting fermions linearly
coupled to several noninteracting fermionic baths (reservoirs;
we use the two terms as synonymous). The full Hamiltonian
of such system is

Hfull = Hsys +
∑
i,α

Hi,α,coup +
∑
i,α

Hi,α,bath, (1)

where Hsys is the tight-binding Hamiltonian of the system:

Hsys =
∑
{ij}

tij (a†
i aj + H.c.) +

∑
i

Uia
†
i ai, (2)

with {ij} denoting the links between the sites, tij is the hopping
amplitude between the sites i and j and Ui is an on-site
potential. By Hi,α,bath we denote the Hamiltonian of the bath:
the index i here stands for the site of the chain, while the index

α denotes different baths coupled to the same site:

Hi,α,bath =
∑

k

εi,α,kb
†
i,α,kbi,α,k. (3)

The annihilation operators in the baths are denoted by symbol
bi,α,k , while the annihilation operators in the chain are ai .
Finally Hi,α,coup is the coupling between the system and the
bath, with the coupling strength pi,α,k:

Hi,α,coup =
∑

k

pi,α,k(b†i,α,kai,α + H.c.). (4)

In our model we have exactly two baths at every site which we
can denote as “incoming” and “outgoing”, with α ∈ {(i),(o)}.
The baths are described by the spectral function:

Ji,α(ω) =
∑

k

|pi,α,k|2δ(ω − εi,α,k). (5)

For a noninteracting system it has been shown [11,26] that
under the assumption of constant spectral density in the
reservoirs

Ji,α(ω) = νi,α

and for the plus/minus infinite chemical potential in the
reservoirs the time evolution of the system is described by
the Lindblad equation:

i
dρ

dτ
= Lρ,Lρ

= [H,ρ] + i
∑
j,i/o

{
2	

(i/o)
j ρ	

†(i/o)
j − [

	
†(i/o)
j 	

(i/o)
j ,ρ

]}
,

(6)

where the operator L is called the Liouvillian and 	j are the
Lindblad operators responsible for the coupling to the bath:

	
(i)
j =

√



(i)
j a

†
j , 	

(o)
j =

√



(o)
j aj , (7)



(i)
j = πνj,+∞

∑
k

|pi,+∞,k|2, 

(o)
j = πνj,−∞

∑
k

|pi,−∞,k|2,

(8)

with νj,±∞ being the density of states in reservoirs connected
to the site j with plus/minus infinite chemical potential.
The infinite chemical potential ensures Markovian dynamics
in the bath [27]: in the reservoir at the chemical potential +∞
there are always particles which can hop into the system and
in the reservoir at the chemical potential −∞ there is always
room for new particles hopping out of the system, therefore
such baths are memoryless. The finite bandwidth, finite
chemical potential, and finite temperature of the reservoirs
would make the evolution equation for the density matrix
nonlocal in time [11,26].1 Let us also note that the coefficients

 are not necessarily small, they can have any value. The
difference from the ordinary derivation [13] is that here both

1In the above derivation we have not discussed temperature, as it
does not matter in the case of infinite chemical potential. When the
chemical potential in the reservoirs becomes finite, the temperature
appears as an additional parameter.
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Source Drain

FIG. 1. (Color online) The setup of the problem: one-
dimensional chain is connected to the source and the drain as in
transport experiments. Every site of the chain is coupled to the
environment, which models the dissipation from the leakage of the
current due to imperfect insulation. The environment consists of two
reservoirs at plus/minus infinite chemical potentials coupled at each
site of the chain.

the system and the baths are noninteracting, therefore fewer
assumptions are required to get the Lindblad form of the
evolution equation.

Let us now apply the Lindblad formalism to our model. Our
chain is L sites long and it is coupled to the source and the
drain at infinite bias voltage at its ends:

	
(i)
1 =

√

(i)a

†
1, 	

(o)
1 = 0,

	L(i) = 0, 	
(i)
L =

√

(i)aL.

There is also a dissipation along the chain into a finite
temperature bath, which is represented by sources 	(i)

μ =√
d
(i)

μ a
†
μ and drains 	(o)

μ =
√
d
(o)

μ aμ, for μ = 2, . . . ,L − 1. The
d
 values are not infinitesimal: they are typically much smaller
than 
(i,o) but can take any value in principle; the notation d
 is
just for convenience. Schematically, the dissipative wire setup
we study is depicted in Fig. 1. From now on in the text and in
the plots the 
μ values are measured in the units of the hopping
t , which we assume to be constant along the chain (in other
words we put tij = t = 1).

A. Solving the Lindblad equation

The solution of the Lindblad equations for noninteracting
fermions is notably simplified in the superfermionic repre-
sentation [21,22], which is based on the doubling of the
degrees of freedom as in thermofield theory. Here instead of
solving a differential equation for the evolution of the 2L × 2L

density matrix, the calculations are done with the 2L × 2L

matrices. The observables of the NESS are computed directly.
What is more, the full-counting statistics of the transport
through the ends of the chain can be obtained by introducing
the counting field, which yields the generating function
of the counting statistics [22,23]. We will present the results for
the first cumulant of the generating function, i.e., the current, as
well as for the ratio between the second and the first cumulant,
which characterizes the noise in the system and is called the
Fano factor.

We evaluate the current along the chain by averaging the
local current operator over the NESS:

ĵk = −it(a†
kak+1 − a

†
k+1ak). (9)

At the ends of the chain the current and the Fano factor are
given by the derivatives of the generating function.

The Liouvillian for noninteracting fermions in the super-
fermionic representation becomes quadratic after performing
the particle-hole transformation [22], as the Liouvillian be-
comes diagonal in the basis {f,f ‡,f̃ ,f̃ ‡}, see Appendix. The
density matrix of the NESS is a vacuum for the operators f and
f̃ (see Appendix). As there exists a linear relation between the
initial basis {a,a†,ã,ã†} and the basis {f,f ‡,f̃ ,f̃ ‡}, the density
matrix of the NESS is quadratic:

ρNESS = exp(Hmna
†ã†)|00〉aã

〈I | exp(Hmna†ã†)|00〉aã

, Hjn = κ̃−1
ni κji, (10)

where the matrix κ is connected to the matrix of the eigenvec-
tors P of the transformation which diagonalizes the particle-
hole transformed Liouvillian [22] (see Appendix), namely
T = P −1, κkj = Tkj and κ̃kj = Tk+L,j for k,j = 1, . . . ,L.
Notice that iH is a Hermitian matrix as ρ is Hermitian, and
〈I | is the left vacuum, |I 〉 = ∑

n |nn〉aã [21], where by n we
denote the state in the a basis. Therefore, iH can be considered
as an effective Hamiltonian of the NESS.

III. DISSIPATION-INDUCED PHASE TRANSITION

In this section we first observe the dissipation-induced
phase transition in the transport properties at the ends of the
chain and in the bulk and then we characterize the transition in
the thermodynamic limit. Afterwards we discuss some specific
aspects of the transition at the ends of the chain by studying the
response to electric field and the particle-particle correlation
functions close to the ends and reveal its microscopic nature.
Finally, we study the influence of the dissipation on the
phenomenon of delocalization in disordered systems.

A. Observation of the transition

We model dissipation along the chain as tunneling to the
metallic gate in the absence of good isolation of the one-
dimensional chain from the environment. To implement this
we couple a source and a sink to every site of the chain [21]. We
also allow for disorder in the hybridization strengths d


(i/o)
μ to

account for different tunneling rates to the environment.
The fermionic chain coupled to the reservoirs only at its

ends has a uniform current along its length due to particle
conservation. Let us call the state of such a system coherent
as the current at its ends depends on both couplings. On the
other hand we call the state of the system decoherent when the
current through a given end depends only on the coupling of
the reservoir at this end.

We only expect to find a phase transition and the associated
discontinuities in the thermodynamic limit, i.e., in an infinite
system. For that reason we start by looking at a chain long
enough that there is no dependence on its length, Fig. 2(b). We
see a jump both in the current and in the Fano factor when the
dissipation is switched on, Fig. 2(a). Reference [23] provides
the large deviation calculation for the current distribution
function of the chain coupled to the reservoirs only at its ends.
The current distribution is discontinuous as a function of the
couplings to the reservoirs and the author suggests that this is
the reason of the phase transition also for the system dissipative
along its length.
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FIG. 2. (Color online) (a) The jump of the current, j , and the
Fano factor, F , at infinitesimally small dissipation constant along
the chain d
 = d
(i) = d
(o) (
(i) = 
(o) = 1). (b) Dependence of
the current j and the Fano factor F through the ends of the chain
on the length L for random dissipation along the chain taken from
the range d
(i),d
(o) ∈ (0,0.04) (points with error bars) and for the
constant dissipation with the strength d
(i) = d
(o) = 0.02 (points
and the dashed lines). Here and everywhere else in the text and the
plots the 
μ values are measured in the units of the hopping t .

In order to understand better the nature of the states on
both sides of the transition, let us consider the current along
the chain. We compute the expectation value of the local
current operator (9) in the NESS for every link of the chain.
For a nondissipative system it is constant along the chain
due to the current conservation. For the dissipative case it
decays exponentially inside the system, Fig. 3. One would
certainly expect such behavior in the presence of the drains
only. But in our setup we have both the source and the drain
attached to every site of the chain. Therefore, we conclude
that the exponential decrease of the current is connected
to the coherence losses due to coupling to the memoryless
environment, and not simply to the current leakage into the
drains.

If we allow for a random distribution of the dissipation along
the chain, the current averaged over disorder configurations
decays with the same exponent as the current in the system
with uniform dissipation, with the magnitude equal to the mean
of the distribution of the disordered couplings, Fig. 3.

With increasing dissipation strength, the current through
one end of the chain becomes only weakly dependent on the
coupling at the other end of the chain because the coherence
of the transport through the chain is lost upon adding the

(a)

(b)

FIG. 3. (Color online) Exponential decay of the current along
the chain. (a) Logarithmic scale, different lengths of the system.
The currents in the system without randomness in dissipation are
represented by the regular sets of points (forming solid lines).
Darker, irregularly scattered points represent the current for one
realization of the disorder in dissipation along the chain. (b) The
current through a dissipative chain after averaging over different
disorder realizations. The scale is linear (not logarithmic) to show
the standard deviation of the (fluctuating, random) current. Notice
that the negative values of the current are physical, because some
realization of the (random) couplings d
 can give an overall current
flowing in the opposite direction. The couplings at the ends of the
chain are 
(i) = 
(0) = 1, d
 = 0.05. For the average over disorder
d


(i)
j ,d


(o)
j ∈ (0,0.1), j ∈ (2,L − 1).

dissipation along the chain, Fig. 4. Here we make a plot for
the constant dissipation rate along the chain since the current
averaged over disorder in coupling strengths is the same as in
the case of the constant dissipation (see Fig. 3).

Both the presence of the jump in the transport characteris-
tics at the ends of the chain and the coherence/decoherence
transition in the current along the chain suggest that any
nonzero dissipation along the chain induces the QPT. It is not
a van der Waals-type transition, meaning there is no analog
of the latent heat, that is, excitation of internal degrees of
freedom, but the extra energy is instead exchanged with the
bath.

1. Classical analogue

The Lindblad approximation for the driving at the ends of
the chain and decoherence along the chain make our quantum
model less quantum and more classical. This is exemplified
by comparing our results with a classical model introduced
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FIG. 4. (Color online) Logarithmic plot of the current flowing
from the system into the reservoir at the beginning of the chain
(denoted by 1) as a function of the hopping rates at the ends of the
chain, in the presence of the constant dissipation along the chain,
d
(i) = d
(o) = 0.02. Increasing the dissipation makes the current
through one end independent of the coupling at the other end of the
chain. In this plot we denote 
(i) = 
1, 
(o) = 
2.

by Roche, Derrida, and Doucot [28] for studying the classical
version of the Landauer picture of a quantum conductor, where
we also observe the exponential decay of the current inside the
chain as well as the jump of the steady-state current at the ends
of the chain upon introducing the dissipation along the chain.

We consider a counterflow model [28]: the system is
modeled by an L-site chain, where each of the sites may
contain two particles, one right-moving and one left-moving. It
is analogous to the quantum scattering problem. Let us call the
walls between the sites tunnel barriers. The time is discrete.
At each time step the right-moving state on the left of the
barrier and the left-moving state on the right of the barrier are
transferred to the right-moving state on the right of the barrier
and the left-moving state on the left of the barrier, respectively:

(0r,k−1,0l,k) → (0r,k,0l,k−1), (11)

(1r,k−1,1l,k) → (1r,k,1l,k−1), (12)

(0r,k−1,1l,k) →
{

(0r,k,1l,k−1) with prob. T ,

(1r,k,0l,k−1) with prob. (1 − T )
(13)

(1r,k−1,0l,k) →
{

(1r,k,0l,k−1) with prob. T ,

(0r,k,1l,k−1) with prob. (1 − T ),
(14)

where on the left-hand/right-hand side of the arrow is the
state before/after the time step respectively, 0 and 1 denote the
state of the system (empty/full), the subscripts r/ l stand for
right-/left-moving and k stands for the cell number. The first
and the last cell are updated at every time step to account for

the contact with the reservoirs:

(1r,1,0l,1) with prob. ρR, (15)

(0r,1,0l,1) with prob. (1 − ρR), (16)

(0r,L,1l,L) with prob. ρL, (17)

(1r,L,1l,L) with prob. (1 − ρL). (18)

The configuration space of this process grows exponentially
with the the number of sites: it contains 2L configurations.
This makes it complicated to calculate the counting statistics
using the transition matrix approach [28]. In general, the
described model has a diffusive behavior: the current through
the system decreases with increasing system size [28] (this
happens because each transmission process is a stochastic
process). In our model we obtain pure ballistic behavior by
moving all particles in the middle of the chain (which are
independent of the dynamics on the first and the last site) as a
whole, which is just what ballistic propagation means.

While earlier work [28] considers only the flux of particles
at the end of the chain, we introduce the dissipation in the
middle of the chain as a classical analog of decoherence (from
now on we call it decoherence to emphasize the lack of true
quantum-mechanical coherence in the classical model) as a
spontaneous appearance/disappearance of right/left moving
particles in between two propagation steps. Therefore, our
algorithm of time evolution of the dissipative chain is

(i) Initialize the time step:
(a) generate an arbitrary initial state in the first step;
(b) in the subsequent steps: update first the occupation

on the first and the last site of the chain according to (15)–
(18). Then update the occupation number in the middle,
which changes due to decoherence: if both left- and right-
moving states at the site k are empty, then with probability
d
(i)/2 one of them becomes occupied. If only the left-
or right-moving state is empty, then this state becomes full
with probability d
(i). The analogous update is done for
hopping out of the chain with the rate d
(o).
(ii) Move the particles:

(a) the right/left movers on the site from 2 to (L − 2)/3
to L − 1 from are shifted in the ballistic way (the particle
is moved by one site, if the site with the corresponding
chirality on its way is empty);

(b) make a move of the states around the barriers
according to rules (11)–(14);

(c) shift particles close to the ends if more ballistic
motion is possible with respect to the configuration af-
ter (11)–(14) comparing to the initial configuration.
(iii) Repeat the steps (i) and (ii).
According to our numerical simulation the average over

the time evolution of a single state equals to the average over
different initial states evolved for a fixed time, which is long
enough to approach the steady state, as we would expect in an
ergodic system. We present the long-time averages over time
of the evolution of a single state as it is less computationally
consuming comparing to the other averaging procedure.

The current through the chain can be determined in two
ways: as the difference between the right and left movers at
each cell or as the number of the particle transmissions between
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(a)

(b)

FIG. 5. (Color online) (a) The jump of the current at the end of
the chain upon switching on the decoherence along the chain in the
classical counterflow model. (b) Dependence of the current through
the first site of the chain on the length of the chain. Compare to Fig. 3,
where analogous behavior is observed for the quantum chain modeled
by the Lindblad equation. 


(in)
1 = 


(out)
2 = 0.5

the neighboring cells. Qualitatively these approaches give the
same answer for our decoherent problem.

To compare our numerical simulation with the Lindblad
approach we fix ρR = 1 and ρL = 0 to model the leads at
plus/minus infinite voltage. The time-averaged current decays
exponentially from the ends of the chain toward the middle,
Fig. 6. The saturation of the exponential decay in the middle
happens due to finite time of averaging. The average current

FIG. 6. (Color online) The dependence of the current on the site
index for different decoherence rates d
 in logarithmic scale in the
classical counterflow model: the exponential decay of the current from
the ends toward the middle of the chain is clearly visible, suggesting a
similar mechanism of decoherence as in the quantum chain in Fig. 4.



(in)
1 = 


(out)
2 = 0.5, tmax = 105.

through the end of the chain jumps when decoherence is
introduced in the system, Fig. 5. To observe the clear jump the
number of time steps should be large enough that the system
forgets about its initial configuration, at least about L/d
.

The behavior of the quantum chain is thus qualitatively
reproduced by the classical stochastic model. It might therefore
seem that the term quantum phase transition we have used for
the transition in the quantum chain is a misnomer. This is not
the case, since the classical counterflow model is stochastic and
thus exhibits fluctuations around the expectation values, i.e.,
averaged values. The generating function of the counterflow
model is thus analogous to the action of a quantum system, and
the jump of the suitably defined classical current is formally
analogous to the QPT observed earlier. A truly classical system
(with no fluctuations) would not show such a phase transition.

B. First-order phase transition in the thermodynamic limit

Phase transitions are normally studied using the thermo-
dynamic quantities and the response functions. In a nonequi-
librium situation the partition function and the entropy are
well-defined thermodynamic quantities. Here we concentrate
on the entropy and the response to the electric field, and
eventually explain the microscopic nature of the transition.

1. Entropy

The NESS is Gaussian, Eq. (10), as it can be represented
as an exponent of a quadratic operator. Therefore, its effective
Hamiltonian is a Hamiltonian of noninteracting fermions. In
analogy with equilibrium statistical physics one can connect
the entropy of the NESS to the eigenvalues μi of the effective
Hamiltonian (10) [29]:

S = −
∑

i

(
ln(1 + e−εi ) + εi

1 + eεi

)
, μi = e−εi . (19)

The entropy per unit length S = S/L does not depend on the
system length for sufficiently long systems and experiences a
jump upon turning on the dissipation along the chain, Fig. 7.
For a chain without dissipation the specific entropy always
depends on the couplings to the reservoirs at the ends of the
chain, while for a dissipative system it does not depend on
the couplings to the leads in the thermodynamic limit (the
contribution from the boundaries is of the order of 1/L).
The specific entropy tends to a value depending only on
the ratio of the incoming and outgoing rates along the chain
γ = d
(i)/d
(o):

S = ln(1 + γ ) − γ

1 + γ
ln γ. (20)

This corresponds to the entropy of the single site coupled
to only two baths by the Lindblad operators

√
d
(i)a† and√

d
(o)a. Indeed, the reduced density matrix of a site in the
middle of the chain is the same as for a single site coupled
to two baths up to a factor exponentially small in L. The
coupling to the rest of the chain is irrelevant. The current in
the middle of the chain vanishes, but what is happening is
even stronger: the correlation between two neighboring sites
vanishes exponentially 〈c†i+1ci〉NESS = O[exp(−βi)], where i

is the number of the site in the middle of the chain and β is the
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FIG. 7. (Color online) Entropy jump at the transition point as a
function of the dissipation strength. The dashed line is in agreement
with Eq. (20). Inset: dependence of the entropy on the chain length for
different dissipation strengths d
 = 0.01,0.02,0.03,0.04,0.05,0.06
(from top to bottom solid curve respectively), the dash-dotted line
corresponds to the entropy in the absence of the coupling to the
environment, the point at d
 = 0 at the main plot.

slope of the exponential decay. Therefore, we can write down
the reduced density matrix of the middle part of the system
neglecting the exponentially small correlations between the
sites as a tensor product of the density matrix of one site
connected to two baths.

2. Spatial decoupling in the density matrix

Such a spatial decoupling of a density matrix for a
completely translationally invariant system (without current
injection/removal at the ends) is evident. We can diagonalize
the Liouvillian by the Fourier transform. Indeed, in terms of
Ref. [22] the matrix M after the Fourier transform obtains the
block structure:

L =
∑

k

(a†
k ãk)Mk

(
ak

ã
†
k

)
− i

∑
k

(d
(i) + d
(o)), (21)

Mk =
(

−iδ
 + 2t cos k 2d
(o)

−2d
(i) iδ
 + 2t cos k

)
(22)

with δ
 = d
(i) − d
(o). Each of the matrices Mk can be
diagonalized: Mk = P −1

k DkPk , where Dk is a diagonal matrix
and Pk is a matrix of eigenvectors. This transformation
determines the basis where the Liouvillian is diagonal:(

fk

f̃
‡
k

)
= P

(
ak

ã
†
k

)
, (f ‡

k f̃k) = (a†
k ãk)P −1, (23)

L =
∑

k

(λkf
‡
k fk − λ∗

k f̃
‡
k f̃k). (24)

Here we assumed that Dk = diag(λk,λ
∗
k) and Imλk < 0. This

structure leads to cancellation of the constant term in the
Liouvillian.

The steady state density matrix is determined as the vacuum
of operators fk and f̃k . The transformation to the basis of the

a,a† occupation numbers gives the density matrix:

ρ =
∑

k

exp(Ha
†
kã

†
k)|00〉ak ãk

ak ãk
〈I | exp(Ha

†
kã

†
k)|00〉ak ãk

, (25)

H = i
d
(i)

d
(o)
, |I 〉akãk

= |00〉 + |11〉. (26)

The effective Hamiltonian H is a constant, therefore the
Fourier transform gives the density matrix which is a tensor
product in position space:

ρ = ⊗i

(
d
(o)

d
(o) + d
(i)
|00〉ai ãi

+ d
(i)

d
(o) + d
(i)
|11〉ai ãi

)
.

(27)

We can thus conclude that the density matrix is local in
space. For the case of disordered leakage along the chain
one cannot perform the Fourier transform of the Liouvillian
analytically but numerical calculation shows that the density
matrix averaged over disorder is again represented by the
tensor product of single-site density matrices. For a single
realization of the disorder in the couplings along the chain the
decomposition is not exact, as shown in Fig. 3(a) for the current
through the chain for a single realization of the disorder.

3. Response to the electric field

The response functions are good indicators of the equi-
librium phase transitions. Let us consider a response of the
current to a constant electric field E applied along the chain.
In the tight-binding model it is incorporated as a linearly
growing on-site potential: Um = mEl0, where l0 is the lattice
constant. In most models of the transport one assumes that
the current flow is due to an electric field applied along the
system. Here we have a current through the chain due to the
coupling to the reservoirs. The difference in on-site potential
from site to site can be viewed as applying an additional
field along the chain. For example, in a cold atom system
one can imagine a lattice constructed with varying depths of
the potential well. In the decoherent phase, the electric field
changes the response function only locally: close to the ends
we expect the susceptibility to be different from the middle
of the system due to the presence of coherence because of the
coupling to the reservoirs. The linear response of the current
to the electric field applied along the chain vanishes, and only
the quadratic part is left, Fig. 8, inset:

jNESS(E,d
(i),d
(o); L) − jNESS(0,d
(i),d
(o); L)

= σ (d
(i),d
(o); L)E2. (28)

Here we also notice that there is a scaling with E: the
dependence of the conductivity on length scales with E2 for the
same dissipation rates along the chain d
(i),d
(o). We attribute
the quadratic dependence on E to the structure of the NESS.
The Ohm’s law is an outcome of the linear response theory,
which implies that the current is a consequence of the electric
field applied to the equilibrium system. In our case the situation
is tremendously different—from the physical point of view, the
current is already present in the system due to contact with the
leads even before applying the electric field along the system.
From the viewpoint of the response theory, the response is
considered with respect to the nonequilibrium steady state. It
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FIG. 8. (Color online) Main plot: the convergence of the non-
linear response to the electric field for long systems in the bulk
of the chain. Solid lines correspond to different coupling strength
d
 = 0.005,0.01,0.02,0.03,0.05 (from top to bottom) and the dashed
line is d
 = 0. Inset: quadratic scaling of j (E) − j (0) with the
applied electric field (the scale in logarithmic).

is thus possible that the linear part of the response vanishes
and only the nonlinear part is present.

The nonlinear response to the electric field vanishes in the
bulk of the chain, Fig. 8. The response in the nondissipative
system grows infinitely in the thermodynamic limit because
of the translational invariance in the bulk. Indeed, when we
make the hopping parameters disordered (i.e., make them
vary along the chain), the infinite growth of σ is suppressed.
Therefore, there is a discontinuity in the value of σ for
infinitesimally small d
. It is consistent with the first-order
phase transition.

C. Near-boundary effects

The symmetrized particle-particle correlation function:

Ci(k) = 〈a†
i+kai + a

†
i ai+k〉NESS (29)

provides further information about the transition. The corre-
lations at the ends of the system are present and they decay
exponentially: Ci(k) ∝ exp(−k/ξi),i ∼ 1 or i ∼ L, where ξ is
a correlation length, Fig. 11. We find the power-law divergence
of the correlation length as the function of dissipation at
zero dissipation rate along the chain. Inside infinitely long
systems the correlations vanish: ξi → 0,i ∼ L/2,L → ∞, as
all coherence in the system is lost.

The nonlinear conductivity converges to a nonzero value
at the boundaries of the chain, Fig. 9, unlike in the bulk of
the chain, where it converges to zero. This happens due to
some remaining coherence at the ends of the chain. Even
more, there is a power-law scaling of the conductivity with
dissipation strength, the parameter, which drives the phase
transition, inset of Fig. 9.

To further corroborate the finding of the continuous QPT
at the edges, let us now consider the spectrum of the
effective Hamiltonian, H. For the translationally invariant
dissipative system from Sec. III B 2 the spectrum of the effec-
tive Hamiltonian is a δ function δ(ε − const × d
(i)/d
(o)),

FIG. 9. (Color online) Main plot: the convergence of the non-
linear response to the electric field for long systems at the ends
of the chain. Solid lines correspond to different coupling strength
d
 = 0.005,0.01,0.02,0.03,0.05 (from top to bottom) and the dashed
line is d
 = 0. Notice that the nonlinear conductivity at the ends
points stays nonzero also in the thermodynamic limit. As in Fig. 8,
the conductivity is infinite in the absence of dissipation. Inset:
scaling of σ with disorder strength with power-law fit: σ = αd
β ,
β = 3.161 ± 0.001.

where the constant comes from the freedom of choice of the
effective Hamiltonian, which is connected to the freedom of
choice of constants in front of the left and the right vacuum of
the Liouvillian. When we take into account the whole chain
with the end sites, the spectrum of the effective Hamiltonian
is influenced by the presence of the ends of the chain: in the
absence of the dissipation along the chain the lowest eigenvalue
λmin of H is 0, while in the presence of the dissipation λmin

shifts to a nonzero value, Fig. 10. There is a power-law scaling
of λmin with the strength of the dissipation, Fig. 10(b).

D. Disordered dissipative system

Let us consider a disordered system with random on-site
potential Ui in the Hamiltonian (2). The values Ui are taken
from the uniform distribution with the range (0,dU ).

It is known that in one spatial dimension disorder always
localizes the conservative system [30]. This is the well-known
Anderson localization: it happens because the electron waves
always interfere so that the overall wave function is localized
on the impurities. Such a system is an insulator as the overlap
of the electron wave functions at different positions in the
chain is exponentially small. This reasoning suggests the
scaling hypothesis, which proposes that the conductivity in
a disordered system should decrease exponentially with the
system size, when the system is in the localized regime.

However, the presence of dissipation changes this: dissi-
pation delocalizes the disordered system, as the dissipation
breaks the interference, which is responsible for the localiza-
tion. For averaging over disorder we used only 15 disorder
configurations, as the uncertainties of the average are already
small enough in that case (the error bars in the figure are of
the size of the symbols in the plot). This happens because
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(a)

(b)

FIG. 10. (Color online) (a) The lowest eigenvalue λmin of the
effective Hamiltonian (10) as a function of the system size for the
system without (black dashed line) and with dissipation (blue points:
averages over the disorder from the range (0,d
), purple line: constant
dissipation with d
/2, d
 = 0.025). (b) The scaling of the lowest
eigenvalue with disorder strength, λmin(d
), and the power-law fit
λmin ∝ d
β with β = 0.53 ± 0.01. The couplings to the source and
the drain are 
(i) = 
(o) = 1.

the density matrix of an open quantum system contains the
sectors with different particle numbers, hence the values of the
current in the NESS can be considered as averaged not only

FIG. 11. (Color online) Dependence of the correlation length on
the coupling to the environment for 
(i) = 
(o) = 1 (dots) and the
power-law fit (dashed line). Inset: correlations at one end of the
chain as a function of the position for different couplings strengths
d
 = 0.005, 0.01, 0.02 (from top to bottom: blue, green, red) and
exponential fits, which determine the correlation length (dashed
lines).

FIG. 12. (Color online) Dependence of the current through a
disordered dissipative system on the length of the system for different
values of the dissipation along the system, d
 = 0, 0.02, 0.03, 0.05
(from top to bottom at small L: black, blue, red, green; solid lines:
dU = 0.3, dashed lines: dU = 0; 
1 = 
2 = 1). The current through
the system is independent of the system length for a sufficiently long
system.

over disorder configurations, but also with respect to different
particle numbers.

The general phenomenology of the clean system with
dissipation is thus preserved also in the disordered system.
The current again reaches a finite (though smaller) value in the
thermodynamic limit, and the current at one end only weakly
depends on the coupling at the other end. An example is seen
in Fig. 12, where for simplicity we consider constant couplings
to the environment along the chain and average only over the
disorder realizations of the on-site potential.

IV. CONCLUSIONS AND DISCUSSION

We have considered the transport properties of a one-
dimensional wire with leakage to the environment. In experi-
mental systems, this leakage can happen due to misfabrication
and the presence of the tunneling from the wire to a metallic
region underneath the wire. We observe a first-order phase
transition for infinitely long systems already at infinitesimal
dissipation rate along the chain. From the microscopic point
of view, this QPT means discontinuous behavior of the density
matrix. On the macroscopic level it manifests itself in the jump
in the current and the Fano factor. From the thermodynamic
point of view we can say that the entropy jumps across the
transition. The specific entropy in the dissipative phase is equal
to the entropy of a single site coupled to the source and the
drain.

Essentially, the phase transition is an anomaly: dissipation
breaks the time-reversal invariance [31]. Upon taking the
symmetry-breaking parameter (dissipation strength) to zero,
we do not recover the result for unbroken symmetry. In the
continuum limit it is analogous to the fact that, for example,
viscosity effects in a fluid are nonperturbative and the flow
undergoes a qualitative change for arbitrarily small nonzero
dissipation: the scaling exponents of the correlation functions
of the velocities jump at the transition between an ideal and
viscous liquid [31]. To understand better the universality of
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our finding, we have considered also the classical stochastic
counterflow model, which describes a chain with two classes of
asymmetric exclusion random walkers, left- and right-moving.
In this case, dissipation is modeled by randomly creating
or destroying the random walkers with certain probabilities
at every (discrete) time step. This model, under suitable
assumptions, again shows the same anomaly and the current
jumps for arbitrarily small nonzero values of the dissipation.
In the counterflow model, the role of quantum fluctuations
is taken over by the stochastic fluctuations. In fluid dynamics,
the velocity fluctuations make the system effectively quantum.
The notion of QPT is thus justified, and the observation of
anomaly—breaking of a classical symmetry at the quantum
level, i.e., by the loop contributions to the action—becomes
natural.

In a different context, the transport theory for dissipative
systems has been developed in Refs. [24,32] in the language
of the scattering matrices. Our Lindblad-based approach and
the scattering approach are different in a few respects. First,
let us consider a system without dissipation, coupled to two
reservoirs at the ends. The scattering matrix theory describes
the case when the wave coming from the reservoir into the
system is coherent (just a plane wave), while the Lindblad
approach describes the case of incoherent leads—the hopping
in the chain happens stochastically. This is also reflected
in the transport properties: while for coherent transport the
conductivity is proportional to the number of open channels in
the system, for the transport induced by incoherent hopping it
is not [22]. Now let us move to the dissipative system. In the
scattering matrix approach the dissipation is modeled through
additional channels, which do not contribute to the transport
(for the one-dimensional nondissipative problem the scattering
matrix has the format 2 × 2, for the incoming and the outgoing
channel, while in the dissipative case the scattering matrix has a
larger dimension, and only two channels describe the transport
along the chain whereas the others describe the scattering in
the side channels). The dissipation constructed in this way is
coherent, while the Lindblad-like dissipation is incoherent.

It is interesting that the spin system coupled to the bosonic
bath at every site experiences a second-order phase transition,
and only at finite dissipation strength [6–9]. We do not know if
the order of the transition is related to the presence or absence
of memory or if it is determined by the statistics of the bath.

The phase transition in the quadratic fermionic systems
was studied also in Refs. [2,5]. There, the XY chain coupled
to the reservoirs at both ends was considered. The transition
manifests itself in the change of behavior of the spin-spin
correlation functions and the entanglement entropy, which
does not depend on the system size on one side of the transition
and grows linearly with the system length on the other side. The
authors argue that the transition is of infinite order as all local
observables are analytical across the transition. Subsequently
the critical behavior has been observed also in the XX-spin
chain [1] coupled to the environment at every site of the chain:
the spin-spin correlation functions are short ranged in the
nondissipative case, whereas they decay as a power law in the
presence of the on-site decoherence. The transition we observe
is significantly different from the previously studied cases
since it is of the first order. This probably happens because
the Refs. [2,5] consider the local dissipation (only at the ends

of the chain), while we are interested in the global dissipation.
The difference with respect to the transition in Ref. [1]
lies in the fact that the NESS is not Gaussian (Gaussianity
allows usage of the Wick’s theorem for the calculation of
higher-order correlation functions in terms of two-point ones,
while non-Gaussian states do not allow such expression): in our
case the particle-particle correlation functions in the presence
of dissipation decay exponentially, while for the XX chain with
on-site dephasing there is a power-law decay of correlations.

The current in the steady dissipative state of the system
decays exponentially inside the chain, because the coupling
to the environment decreases the coherence of the quantum
system. For the random dissipation along the chain, we find
that the average current decreases inside the system with the
same exponent as for the chain with the same dissipation at
every site, which equals to the mean of the random coupling.
One can try to measure the current along the dissipative chain
with a scanning tunneling microscope (STM): if it decreases
exponentially uniformly along the chain, then the dissipation
model without disorder is a valid model, if the current inside
the chain fluctuates, then the dissipation inside of the chain
is random. The STM should be in the regime of a very low
tunneling rate to the microscope tip, so that the tunneling to
the tip does not destroy the dissipative state of the system
itself.

We finish with an outlook. The state of the quantum
system depends on the dimensionality, disorder, interaction,
statistics, and symmetries. The dissipation adds one more
axis to the phase diagram. It can lead to new types of
behavior, already investigated in the spin-boson model [10],
arrays of the dissipative Josephson junctions, and dissipative
spin chains [6–9]. In the present paper we have investigated
the behavior of the noninteracting fermionic system coupled
to the Markovian bath and already have seen interesting
quantum critical phenomena upon adding the dissipation along
the chain. There are many unanswered questions: will this
transition remain first order upon adding memory to the
bath; what happens to it in the presence of interactions; do
dimensionality and symmetries influence the behavior of the
dissipative system, etc.
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APPENDIX: TRANSFORMATION OF THE LIOUVILLIAN
TO THE DIAGONAL BASIS

The solution of the Lindblad equation (6) for noninter-
acting fermions is notably simplified in the super-fermionic
representation [21,22]: operators acting from the right on the
density matrix are introduced. They are denoted by a tilde.
Then the Liouvillian can be written after the particle-hole
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transformation ã = b†,ã† = b in the quadratic form:

L = (a†b†)M
(

a

b

)
− i

∑
μ


(o)
μ − i

∑
μ


(i)
μ , (A1)

where the matrix M can be represented as

M = Hδaa + Hδbb + i

(i)
k δkk(−δaa + δbb)

+ i

(o)
k δkk(δaa − δbb) − 2


(i)
k δkkδba + 2


(o)
k δkkδab

(A2)

with H being a tight-binding Hamiltonian of the system, δxy is
the Kronecker symbol, for example δaa denotes the upper-left
L by L part of the matrix M, δkk stands for the diagonal of the
matrix in the site space.

Due to this specific structure of M the constant terms in
the expression (A3) vanish after introducing a new set of the
operators {f,f ‡,f̃ ,f̃ ‡} [22] and even more in this basis the
Liouvillian becomes diagonal:

Lf =
∑

i

λif
‡
i fi −

∑
i

λ∗
i f̃

‡
i f̃i . (A3)

The operators {f ‡,f̃ ‡} are dual to the operators {f,f̃ },
but not Hermitian conjugated, though the operators obey
anticommutation relations. The operators {f,f ‡,f̃ ,f̃ ‡} are

linear combinations of the operators {a,a†,ã,ã†}:
a†

m =
∑
k1

C
(1)
mk1

f
‡
k1 + C

(2)
mk1

f̃k1,

am =
∑
k1

A
(1)
mk1

fk1 + A
(2)
mk1

f̃
‡
k1.

The coefficient matrices C and A are connected to the matrix
of the eigenvectors P of the matrix M (see Ref. [22]):

P =
(

A(1) A(2)

A(3) A4)

)
, (P −1)T =

(
C(1) C(2)

C(3) C(4)

)
. (A4)

In P the eigenvectors are ordered in the following way: first
N of eigenvectors correspond to eigenvalues with a negative
imaginary part, while the second half have a positive imaginary
part and are complex conjugated to the first set. All matrices
A(i) and C(i), i = 1, . . . ,4 have dimension N × N .

In the f basis the Liouvillian operator is diagonal, therefore
the stationary solution of the Lindblad equation (6) is the
vacuum of the operators f :

f |NESS〉 = 0, f̃|NESS〉 = 0.

It allows us to calculate the expectation values in the NESS:
we transform the operator in the a basis to the f basis and take
its expectation value with respect to the vacuum.
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1 Introduction

The problem of fermionic quantum criticality has proven hard enough for condensed matter

physics to keep seeking new angles of attack. The main problem we face is that the

energy scales vary by orders of magnitude between different phases. The macroscopic,

measurable quantities emerge as a result of complex collective phenomena and are difficult

to relate to the microscopic parameters of the system. An illustrative example present the

heavy fermion materials [3] which still behave as Fermi liquids but with vastly (sometimes

hundredfold) renormalized effective masses. On the other hand, the strange metal phase

of cuprate-based superconducting materials [4], while remarkably stable over a range of

doping concentrations, shows distinctly non-Fermi liquid behavior. The condensed matter

problems listed all converge toward a single main question in field-theoretical language. It

is the classification of ground states of interacting fermions at finite density.

In this paper we attempt to understand these ground states in the framework of

AdS/CFT, the duality between the strongly coupled field theories in d dimensions and

a string configuration in d + 1 dimension. Holography (AdS/CFT correspondence) [1, 2]

has become a well-established treatment of strongly correlated electrons by now, but it still

has its perplexities and shortcomings. Since the existence of holographic duals to Fermi

– 1 –
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surfaces has been shown in [8, 9], the next logical step is to achieve the understanding of

the phase diagram: what are the stable phases of matter as predicted by holography, how

do they transform into each other and, ultimately, can we make predictions on quantum

critical behavior of real-world materials based on AdS/CFT.

The classification of ground states now translates into the following question: classify

the stable asymptotically AdS geometries with charged fermionic matter in a black hole

background. Most of the work done so far on AdS/CFT for strongly interacting fermions

relies on bottom-up toy gravity models and does not employ a top-down string action. We

stay with the same reasoning and so will work with Einstein gravity in 3 + 1 dimensions.

We note, however, that top-down constructions of holographic fermions exist [6, 11].

In this paper we construct a model dubbed “WKB star”, alluding to the fact that

we treat the same large occupation number limit as the electron star [10] but go further

from the ideal fluid limit of [10]. The main idea is to solve the fermionic equations of

motion in the WKB limit without taking the fluid limit: the total density is the sum of

the contributions of individual wave functions rather than an integral over them. The

main approximation we introduce is thus just the quasiclassical treatment of fermions,

inherent to WKB. The inverse occupation number serves as the control parameter of this

approximation. In addition, we assume that the correction to the fluid limit is captured

by the correction to the pressure. This assumption cannot be rigorously derived. We

will discuss, however, the robustness of our findings with respect to this assumption. In

addition to simply improving the mathematical treatment of the bulk many-body fermion

system, we will show that some properties of the system change nonperturbatively in the

fluid limit. In particular, the thermodynamic behavior of the system at finite temperature

is changed compared to the electron star.

We will use a simple WKB formalism to approximate the many-body Fermi system

in the AdS bulk. This adds quantum corrections to the Thomas-Fermi (fluid) approxi-

mation by taking into account finite level spacing. In other words, we do not take the

limit of an infinite number of occupied levels but keep the occupation number finite. The

occupation number itself acts as the control parameter of our approximation. The most

notable feature, however, occurs in the transition from the semiclassical approximation at

infinite occupation number to finite occupation number. We find that the finite density

quantum many body phases with fermionic quasiparticles at high enough temperatures

always exhibit a first order transition into the zero density AdS-RN phase. Intuitively,

this can be interpreted as a universal van der Waals liquid-gas transition. On the other

hand in the semiclassical fluid limit underlying the electron star, the transition was found

to be continuous [12, 33]. With this re-emergence of the first order nature of the ther-

mal phase transition at the quantum level our results confirm the intuition that a density

driven phase transition is always first order as also indicated by the Dirac hair approxi-

mation [13]. We thus show with an explicit calculation that in the context of fermionic

questions in AdS/CFT quantum “1/N” corrections can be important and that the semi-

classical fluid limit can be unreliable, at least at finite temperature. While the quantum

corrections likely have important consequences also at T = 0, we have not explored the

zero-temperature physics in this paper.

– 2 –
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The outline of the paper is as follows. In the section 2 we describe the field content

and geometry of our gravity setup, an Einstein-Maxwell-Dirac system in 3 + 1 dimension,

and review the single-particle solution to the bulk Dirac equation. In section 3 we start

from that solution and apply the WKB approximation to derive the Dirac wave function

of a many-particle state in the bulk. Afterwards we calculate density and pressure of the

bulk fermions — the semiclassical estimate and the quantum corrections, thus arriving at

the equation of state. Section 4 contains the numerically self-consistent solution of the set

of equations for fermions, gauge field and the metric. There we also describe our numerical

procedure. Section 5 is the core, where we analyze thermodynamics and spectra of the

field theory side and identify different phases as a function of the three parameters of the

system: chemical potential µ, fermion charge e and conformal dimension ∆. Section 6

sums up the conclusions and offers some insight into possible broader consequences of our

work and into future steps.

2 Holographic fermions in charged background

We wish to construct the gravity dual to a field theory at finite fermion density. We will

specialize to 2+1-dimensional conformal systems of electron matter, dual to AdS4 gravities.

We consider a Dirac fermion of charge e and mass m in an electrically charged gravitational

background with asymptotic AdS geometry. Adopting the AdS radius as the unit length,

we can rescale the metric gµν and the gauge field Aµ:

gµν 7→ gµνL
2, Aµ 7→ LAµ. (2.1)

In these units, the action of the system is:

S =

∫

d4x
√−g

[

1

2κ2
L2 (R+ 6) +

L2

4
F 2 + L3Lf

]

(2.2)

where κ is the gravitational coupling and Fµν = ∂µAν − ∂νAµ is the field strength tensor.

The fermionic Lagrangian is:

Lf = Ψ̄

[

eµAΓ
A

(

∂µ +
1

4
ωBC
µ ΓBC − ieLAµ

)

−mL

]

Ψ (2.3)

where Ψ̄ = iΨ†Γ0, eµA is the vierbein and ωAB
µ is the spin connection.

We shall be interested in asymptotically AdS solutions with an electric field. The

U(1) gauge field is simply A = Φdt and we parametrize our metric in four spacetime

dimensions as:

ds2 =
f(z)e−h(z)

z2
dt2 − 1

z2
(

dx2 + dy2
)

− 1

f(z)z2
dz2 (2.4)

The radial coordinate is defined for z ≥ 0, where z = 0 is the location of AdS boundary.

All coordinates are dimensionless, according to (2.1). This form of the metric is sufficiently

general to model any configuration of static and isotropic charged matter. Development of

a horizon at finite z is signified by the appearance of a zero of the function f(z), f(zH) = 0.

From now on we will set L = 1.

– 3 –
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We will now proceed to derive the equation of motion for the Dirac field. From (2.3),

the equation reads:

eµAΓ
A

(

∂µ +
1

4
ωBC
µ ΓBC − ieAµ

)

Ψ = mΨ. (2.5)

In the metric (2.4) we can always eliminate the spin connection [8] by transforming:

Ψ 7→ (ggzz)−
1
4Ψ =

eh(z)/4z3/2

f(z)1/4
Ψ ≡ a−1(z)Ψ. (2.6)

At this point it is convenient to adopt a specific representation of gamma matrices.

We choose:

Γ0 =

(

1 0

0 −1

)

, Γx,y,z =

(

0 σ1,2,3
−σ1,2,3 0

)

. (2.7)

In this basis we define the radial projections Ψ± as eigenvalues of the projection operator

onto the time axis:

Ψ± =
1

2

(

1± Γ0
)

Ψ, (2.8)

after which the Dirac equation in matrix form becomes:

√

f∂z

(

Ψ+

Ψ−

)

= D̂

(

Ψ+

Ψ−

)

. (2.9)

Here the matrix D̂ is the differential operator along the transverse coordinates (x, y) and

time, which we will specify shortly.

We will now set the stage for solution of the Dirac equation in the WKB approximation.

We can separate the radial dynamics (along the z coordinate) from the motion in the x−y

plane. We can thus make the separation ansatz:
(

Ψ+(t, z, x, y)

Ψ−(t, z, x, y)

)

=

∫

dω

2π

(

F (z)K1(x, y)

−G(z)K2(x, y)

)

e−iωt (2.10)

where the F,G are scalars and the modes K1,2 are in-plane spinors. The Dirac equation

then takes the form:

(

∂zFK1

−∂zGK2

)

=





−∂̂/
√

f(z)
(

Ẽ (ω, z) + M̃ (z)
)

σ3
(

Ẽ (ω, z)− M̃ (z)
)

σ3 −∂̂/
√

f(z)





(

FK1

−GK2

)

(2.11)

We recognize the matrix at the right hand side as D̂/
√
f . The terms Ẽ and M̃ have the

meaning of local energy and mass terms, respectively:

Ẽ(z) = −eh(z)/2

f(z)
(ω + eΦ(z)), M̃(z) =

m

z
√

f(z)
. (2.12)

The in-plane operator ∂̂ acts on each in-plane spinor as:

∂̂ =

(

0 i∂̄

−i∂ 0

)

(2.13)

– 4 –
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with ∂ ≡ ∂x+i∂y. To maintain the separation of variables in (2.11), we require ∂̂Ki = λiKi,

where |λi|2 corresponds the momentum-squared of the in-plane motion of the particle. The

physical requirement that this momentum be the same for both radial projections translates

into the condition |λ2| = |λ1|. Consistency of the separation of variables then shows us that

K2 = σ3K1 and thus λ1 = −λ2 = k. This solves the x, y-dependent part of the equation,

in terms of ρ ≡
√

x2 + y2 and φ = arctan y/x:

Ki(x, y) =

(

Jl−1/2(λiρ)e
i(l−1/2)φ

Jl+1/2(λiρ)e
−i(l+1/2)φ

)

, (2.14)

where Ja is the Bessel function of the first kind of order a (the second branch, with the

modified Bessel function of the first kind Ya, is ruled out as it diverges at x = y = 0). Now

the reduced radial equation becomes:
(

∂zF

∂zG

)

=

(

−k̃ Ẽ + M̃

M̃ − Ẽ k̃

)(

F

G

)

(2.15)

with k̃ = k/
√
f (let us note that eq. (2.15) is for the pair (F,G), whereas the initial

equation (2.11) is written for the bispinor (FK1,−GK2)). For the WKB calculation of

the density, it is useful to remind that the wave function Ψ in eq. (2.10) has two quantum

numbers corresponding to the motion in the (x, y) plane: they are simply the momentum

projections kx, ky (or equivalently the momentum module λ and the angular momentum

l). The radial eigenfunctions in z-direction provide a third quantum number n.

3 Equation of state of the WKB star

In this section we construct the model of the bulk fermions in an improved semiclassical

approximation — the WKB star. We solve the Dirac equation in the WKB approximation,

and the density is computed by summing a large number of energy levels. This is in the

spirit of Thomas-Fermi approximation. However, we perform an exact summation of a

finite number of WKB quantum-mechanical solutions for the wave functions rather than

approximating the sum by an integral as implied in the semiclassical fluid limit. One of

the drawbacks of the Thomas-Fermi fluid limit are sharp bounds (i.e., discontinuous first

derivative) of density and pressure profiles along the radial direction (see e.g. [10, 12, 33]).

As we have already argued, sharp bounds make it hard if not impossible to capture several

phenomena. In this respect summing WKB wave functions goes beyond Thomas-Fermi; it

includes quantum corrections as the number of occupied states is finite and all collective

and individual profiles will be continuous without sharp edges. In further work one might

start from our model and treat the quantum-mechanical (one loop) corrections in a more

systematic way in order to bridge the gap between the electron star [10] and single-particle

quantum mechanical calculation of Dirac hair [13].

3.1 WKB hierarchy and semiclassical calculation of the density

In the framework of quantum-many-body calculations, the first task is to construct the

induced charge density n(z). Physically, the origin of the induced charge in our model is

– 5 –



J
H
E
P
1
2
(
2
0
1
3
)
0
2
5

the pair production in the strong electromagnetic field of the black hole. To remind the

reader, a (negatively) charged black hole in AdS space is unstable at low temperatures, and

spontaneously discharges into the vacuum [24]. This means that there will be a non-zero

net density of electrons n(z). One can calculate n(z) in a Hartree approximation as a

density of non-interacting electrons, compute the collective effect on other fields by this

density and iterate. Our novel approach is to use WKB methods to efficiently compute the

many wave functions enumerated by the quantum numbers (λ, l, n).

The algorithm for the WKB expansion of the wave function for Dirac equation is

adopted from [31]. Even though every single step is elementary, altogether it seems to be

less well known than its Schrödinger equivalent. We consider the Dirac equation in the

form (2.9) and introduce the usual WKB phase expansion:

Ψ(z) = e
∫ z
z0

dzy(z)
√

f(z)
χ(z) (3.1)

with the spinor part χ(z). The phase y(z) can be expressed as the semiclassical expansion

in ~,1

y(z) = y−1(z) + y0(z) + y1(z) + . . . (3.2)

The equations for the perturbative corrections now follow from (3.1)–(3.2):

D̂χ0 = y−1χ0, (3.3)

D̂χ1 = y−1χ1 + y0χ0 +
√

f∂zχ0, (3.4)

. . .

D̂χn = y−1χn +
√

f∂zχn−1 +

n−1
∑

i=0

yn−i−1χi. (3.5)

Notice in particular that y−1/χ0 is an eigenvalue/eigenvector of D̂. In our case the matrix

D̂ has rank two, so there are two eigenvalues/eigenvectors for y−1/χ0: y±−1 and χ±
0 . To

find the first order correction to the phase of the wave function y0, we multiply (3.4) from

the left by the left eigenvalue χ̃±
0 of the matrix D̂ (D̂ is in general not symmetric, so the

right and left eigenvalues are different):

y0 = −(∂zχ
±
0 , χ̃

±
0 )

(χ̃±
0 , χ

±
0 )

. (3.6)

so we can now construct the usual WKB solution of the form Ψ± = eiθ±/
√
q, where q is the

WKB momentum and θ± the phase. The term y0 is just the first order correction to θ±.

Finally, let us recall the applicability criterion of the WKB calculation. It is known that

WKB approximation fails in the vicinity of turning points. The condition of applicability

comes from comparing the leading and the next to leading term in the expansion (3.2):

y0(z)

y−1(z)
≪ 1. (3.7)

1From the very beginning we put ~ = 1. However, to elucidate the semiclassical nature of the expansion

we give it here with explicit ~. Dirac equation becomes ~
√
f∂zΨ̂ = D̂Ψ̂, where Ψ̂ = (Ψ+,Ψ−), yielding the

expansion y(z) = ~
−1

(

y−1(z) + ~y0(z) + ~
2y1(z) + . . .

)

.
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In terms of Ẽ(z) and M̃(z) introduced in eq. (2.12) it gives at k = 0:

M̃(z)∂zẼ(z)− Ẽ(z)∂zM̃(z)

Ẽ(z)(Ẽ(z)− M̃(z))
≪ 1. (3.8)

3.1.1 WKB wave function

According to (3.3), the leading effective WKB momentum for the motion in z direction

q ≡ |y±−1| is:
q2(z) = Ẽ2(z)− M̃2(z)− k̃2(z). (3.9)

The wave function in radial direction, Ψ = (F,−G), is given by the superposition of two

linear independent solutions

Ψ(z) = C+χ+(z)e
iθ(z) + C−χ−(z)e

−iθ(z), (3.10)

with the phase determined by

θ(z) =

∫ z
(

q(z′) + δθ(z′)
)

dz′ (3.11)

δθ(z) =

∫ z k̃∂zk̃ − q∂zq +
(

Ẽ − M̃
)(

∂zẼ + ∂zM̃
)

2k̃q
dz. (3.12)

The constants C+ and C− are related by invoking the textbook boundary conditions [25]

for the behavior of WKB wave function at the boundary of the classically allowed region

(q2(z) > 0) and the classically forbidden region (q2(z) < 0). The wave function in the

classically allowed region then reads:

Ψ(z) =
C

√

q(z)





√

Ẽ(z) + M̃(z) sin (θ(z)− δθ(z))
√

Ẽ(z)− M̃(z) sin θ (z)



 , (3.13)

δθ(z) = ArcSin
q(z)

√

Ẽ2(z)− M̃2(z)
, (3.14)

and C is the only remaining undetermined normalization constant. Integrating the prob-

ability density over all coordinates in the classically allowed region (z1, z2) gives the nor-

malization condition:

C2

∫ 1

0
dz

√

g3d(z)

a(z)2

∫

dx

∫

dyC2
2dΨnkxky(z, x, y)Ψ

†
n′k′xk

′
y
(z, x, y) = 1. (3.15)

The metric factor is g3d(z) = g(z)gtt(z), and a(z) is the conversion factor from (2.6). In

the left-hand side of the equality we took into account the normalization of the continuous

spectrum in the (x, y) plane. The integration in the perpendiular coordinates is trivial for

the solution (2.14), as we can transform the integral into the integral over ρ, φ and the

orthogonality relation for Bessel functions gives the definition of C2
2d:

C−2
2d

∫ ∞

0
J(λρ)J(λ′ρ)ρdρ =

δ(λ− λ′)

λ
(3.16)
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and it allows us to express the normalization constant as:

C =

(

4π

∫

dz

√

gtt√
gzz

Ẽ(z)

q(z)

)−1/2

, (3.17)

where a factor of 2π comes from the integration over φ and an additional factor of 2 from

the summation over the full four-component wave function, i.e. bispinor (each spinor gives

Ẽ(z)/q(z) after averaging over the fast oscillating phase θ). This completes the derivation

of WKB wave function and allows us to compute the density.

3.1.2 WKB density

As in [31] we find the total density by summing single-particle wave functions in the clas-

sically allowed region. The WKB wave function is characterized by the quantum numbers

(λ, l, n) with λ being the linear momentum in the x− y plane, l — the orbital momentum

in the x−y plane and n — the energy level of the central motion in the potential well along

z direction. The bulk density can be expressed as the sum over the cylindrical shells of

the bulk Fermi surface. Each shell satisfies the Luttinger theorem in the transverse (x− y)

direction and so the density carried by each shell nxy(z) can easily be found. We can then

sum over all shells to arrive at the final answer which reads simply
∫

dznz(z)nxy(z). A

similar qualitative logic for summing the Luttinger densities in the x − y plane was used

also in [14] although the model used in that paper is overall very different (see also the

fully consistent treatment with regularization in [38]).

Let us start by noticing that the end points of the classically allowed region determine

the limits of summation over n and λ: q2(ωn, λ) ≥ 0. Thus, the density in the WKB

region is:

n(z) =
2π

a(z)2

∫ 2π

0
dφ

∑

n:q2(ωn,λ)≥0

∫

√
f(z)(Ẽ2(ω,z)−M̃2(z))

0
λdλ

∫ ∞

0
dρρC2

2d|Ψ(z, x, y)|2. (3.18)

The limit of the sum over the level number n is determined by the requirement that WKB

momentum be positive; in other words, we sum over occupied levels inside the potential well

only. Remember that the bulk fields live at zero temperature, hence there is no Fermi-Dirac

factor. The sum over the orbital quantum number l extends to infinity as the (x, y) plane

is homogenous and the orbital number does not couple to the non-trivial dynamics along

the radial direction. We can now invoke the (local) Bohr-Sommerfeld quantization rule:
∫

dzq(z) = NWKBπ (3.19)

to estimate the total number NWKB of radial harmonics in the sum. The expression for

NWKB in combination with (3.17) then give:

Cn =

(

1

4π2

∂ωn

∂n

)1/2

, for q(z) ≫ δθ(z), z ≈ 1. (3.20)

Now we turn the summation over the quantum number n into the integration over energy

and obtain for the bulk electron density (here we also performed the integration over ρ using
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the explicit expression for the wave function (2.11) and the normalization condition (3.16)

for the Bessel functions):

n(z) =
4π

a(z)2

∫ 2π

0
dφ

∫

√
f(z)(Ẽ2(0,z)−M̃2(z))

0
dλλ

∫ µloc

0
dω

Ẽ(ω, z)

4π2q(ω, λ, z)
. (3.21)

After performing first integral over ω and then over λ we get:2

n(z) = z3
q3WKBf

3/2(z)

3π2
(3.22)

with qWKB determined by

q2WKB = Ẽ2(0, z)− M̃2(z). (3.23)

Notice that this formula corresponds with common knowledge on the density of electron

star [10]. However, even though the formal expression is the same, the self-consistent

solution for the metric and gauge field is different because of the quantum correction we

introduce to pressure. The difference is visualized in figure 1A where we preview our

backreacted WKB star solutions and compare them to the semi-classical (electron star)

limit. While the electron star density exhibits a discontinuity at the horizon, the WKB

density smoothly falls off to zero. However, both models have a semiclassical “edge”:

outside the region z1 < z < z2, the density is exactly zero. In reality, quantum tails change

this picture. In [37] we show that (small) nonzero density extends all the way between the

boundary and the horizon. However, it is not expected to change the finite temperature

physics which is in the focus of this paper. We therefore do not take into account the

quantum tails in further calculations, to avoid any distractions from the main message.

3.2 Pressure and equation of state in the semiclassical approximation

Following the logic behind the density calculation, we will now calculate the pressure p

along the radial direction. It will actually prove easier to derive the expression for the

(bulk) internal energy density first and then calculate the pressure. By definition, the

energy density reads

E(z) =
∑

kx,ky

∫

dx

∫

dy

∫ µloc

0
dωωΨ†(z)Ψ(z) =

∑

λ

∫ µloc

0
dωω

Ẽ(z)

4π2q(z)
(3.24)

where Ẽ(z) is defined in (2.12), µloc = µeh(z)/2/f(z) and the sum limits are the same

as in (3.21). Performing the integration in a similar fashion as when computing n(z)

in (3.21)–(3.22), we obtain

E =
3

4
eΦn+

1

2
f2M̃2ArcSinh

Ẽ

M̃
. (3.25)

2The given result for n can be compared to the charge density in the electron star limit given in [17]. The

metric functions used there are related to ours as f 7→ fe−h/z2 and g 7→ 1/fz2, where our metric functions

are on the right hand side. Likewise, our definition of qWKB is related to kF of [17] as qWKB = kF /
√
f .

Now the total bulk charge is expressed in [17] as Q =
∫

dzñe(z) where ñe(z) ∼ n(z)eh/2. In our conventions

Q =
∫

dz
√
−ggzzgttn =

∫

dzn(z)eh/2 thus giving the same result as in [17].
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(A) (B)

(C) (D)

Figure 1. WKB bulk density n(z) (eq. (3.22), blue lines) and electron star density (red dashed

lines). Parameter values (A) (µ, e,m) = (1.7, 1, 0.1), (B) (µ, e,m) = (1.7, 10, 1). The classically

allowed region lies between the turning points z∗ and z∗∗, determined by the condition of vanishing

WKB momentum (q(z∗) = q(z∗∗) = 0). The parameters for (A) are in the classical (electron star)

regime, with NWKB ≫ 1 when WKB approximation is quite accurate. The plot (B) shows a case of

small NWKB where the WKB approximation becomes inadequate and further quantum corrections

are likely to be important. (C) Bulk density for a range of values (µ, e,m) = (1.7, 1, 0.1) (red),

(µ, e,m) = (1.7, 5, 0.1) (violet), (µ, e,m) = (1.7, 10, 1) (green) and (µ, e,m) = (1.7, 20, 1) (blue).

For large specific charge of the fermion (and therefore a large number of WKB levels in the bulk)

the solution is dominated by the classically allowed region and looks similar to the electron star

limit. For smaller e/m values (and thus fewer WKB levels) the quantum correction in the near-

boundary region becomes more important and the curves are visibly different from the fluid limit.

(D) Thermodynamical pressure (eq. (3.34)), for the same parameter values as in (C).

Notice that the first term exactly corresponds to the electrostatic energy while the second

is the one-loop term that encapsulates the quantum fluctuations. The above result is

remarkably close to the Hartree vacuum polarization correction as it appears in various

model energy functionals in literature.

3.2.1 Microscopic pressure

The easiest way to express the pressure is to make use of the first law of thermodynamics,

which states

p(z) =
√
gzz (eΦ (z)− E (z)) . (3.26)

There are two possible approaches to arrive at the pressure also directly from the equa-

tions of motion. We can express the radial pressure p from the microscopic fermionic
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Lagrangian (2.3). By definition it reads

p =
∑

n,λ

(

Ψ†
+σ3∂zΨ− +Ψ†

−σ3∂zΨ+

)

=
1

a2

(

Ẽ(F 2 +G2)− M̃(F 2 −G2)− 2k̃FG
)

(3.27)

The equality follows directly from the Dirac equation, substituting the expressions for ∂zΨ±

from (2.9). Now we can exploit the lowest order WKB solution (3.13) to get

p =
2π

a2

∑

n,λ

C2
n

(

Ẽ − M̃

q
− k̃

)

, (3.28)

which, after the momentum integration, gives:

p = 2π
∑

n

C2
ne

h/2z3
√

f

[

(

Ẽ − M̃
)

q2WKB(z)−
2

3
q3WKB(z)

]

(3.29)

The explicit calculation is tedious but straightforward. Unlike the density case, the final

sum is not readily performed to obtain a closed-form expression. Instead, we integrate

numerically over the energy levels ωn to obtain the function p(z). However, even a quick

look at (3.29) tells that it behaves as q3WKB at leading order, for qWKB large (the first

and the third term will contribute as q3WKB). After the energy integration this term gains

roughly a factor of µ, implying that p ∼ µn ∼ µ4, as we expect to recover in the fluid limit.

We have now calculated the radial pressure, i.e. the fermionic component of the stress

tensor T z
z . Due to local isotropy, it does not depend on the direction and position in the

x − y plane. The same happens in the fluid limit, as shown in [10]. The pressure in the

perpendicular direction (in the x− y plane) is analogously expressed as

p⊥ = −
∑

n,λ

ik
(

Ψ†
+σ1Ψ− +Ψ†

−σ1Ψ+

)

=
2π

a2(z)

∑

n,λ

C2
n

1

q
λẼ (3.30)

The summation over λ, i.e. the value of the in-plane momentum can again be performed

analytically, yielding:

p⊥ = 2π
∑

n

C2
ne

h/2z3fq2WKBẼ. (3.31)

In fact, the above sum has a closed-form limit for NWKB → ∞:

p⊥ = f2eh/2z3
q4WKB

12π2
, (3.32)

which obeys the relation p⊥
√
gii = n

√
g00/3, the covariant version of the relation p = µn/4.

We will not make use of p⊥ as the ii component of the Einstein equations is not functionally

independent of the 00 and zz components; the two metric functions f, h are determined

from the two equations, and the third one can only serve as a consistency check.
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3.2.2 Thermodynamic pressure

In a “near”-classical regime, at large occupation number, thermodynamics ought to work,

so we can express the pressure from the energy density E , as p = −∂E/∂V . This expression

is still hard to calculate exactly. However, we can use the following trick to estimate p at

the leading order. Consider a small change of the number density δn. It will introduce

a small change of energy δE , pressure δp and the volume of the bulk electron gas δV ,

the latter because the classically allowed region where q2WKB > 0 will shift and grow (if

δn > 0). Now since the metric is radially symmetric we can expand the volume V =
∫ z∗∗
z∗

d3x e−h(z)/2

z4
around its initial value and find that the leading term in its variation

behaves as δV = V δℓ/(1− ℓ) + . . ., where ℓ ≡ z∗∗ − z∗ is the (dimensionless) length of the

classically allowed interval along the z axis, i.e. the interval between the zeros of the WKB

momentum qWKB(z) =
√

Ẽ2(z)− M̃2(z). This yields

∂E

∂V
= E + V

∂E
∂V

= E + V
δE(1− ℓ)

V δℓ
=

δE
δℓ

. (3.33)

Since all the processes we study are certainly adiabatic (looking at the whole system of

gravity plus the matter fields), we can replace the variations by partial derivatives and write

p ∼ ∂E/∂ℓ as an approximation for the radial pressure. However, even this expression we

are only able to evaluate in a very crude way. For NWKB ≫ 1, it is natural to assume (and

confirmed by the numerics, see figure 1) that z∗∗ is very close to the horizon, z∗ is quite

far from the horizon and ℓ ≈ 1 − z∗. For z ∼ z∗, we assume that the electric potential

does not deviate much from the linear law: Φ ∼ µ(1 − z), because z∗ is not far from the

boundary. This means that the metric function h(z) can be well approximated by a linear

function h(z) ∼ const.(1− z). Solving the equation q2WKB = Ẽ2(z∗)− M̃2(z∗) = 0, we get

ℓ ∼ 1 − log e2µ2

m2 , and (3.25) gives the thermodynamic pressure. However, we cannot get

the numerical prefactor right in our approach, and this is important in order to satisfy the

first law of thermodynamics, which in the fluid limit predicts p = E/4. We therefore norm

pthd by hand by a constant factor Cthd. This gives:

pthd = −Cthd
∂E
∂Φ

∂Φ

∂µ

∂µ

∂ℓ
∼ 3

4
eµ(1− z)

(

n+
M̃2e−h

z
√

M̃2 + ehẼ2

)

(3.34)

This is the relevant regime to compare with the electron star. We will call the esti-

mate (3.34) thermodynamic pressure and denote it by pthd to differentiate from the exact

summation of WKB wave functions (3.29). These expression are also the equations of

state of the system as they connect the pressure to the density. The thermodynamic

pressure is more convenient for calculations. In spite of its approximate nature, (3.34) in

particular yields a remarkably accurate result when compared with the quantum pressure

at NWKB ≫ 1.

We can make the connection between the exact first law of thermodynamics (3.26) and

the quick estimate (3.34) by showing them to be equal in the limit of small Ẽ, which is

appropriate in the vicinity of the phase transition from WKB star to the RN black hole.
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(A) (B)

Figure 2. Comparison between full quantum pressure (dashed blue lines, eq. (3.29)) and thermo-

dynamic pressure (solid black lines, eq. (3.34)) for two sets of parameters: (µ/T, e,m) = (1.7, 1, 0.1)

(A) and (µ/T, e,m) = (1.7, 5, 1) (B). For comparison we plot also the fluid pressure p = enΦ/2

(dashed green lines). Expectedly, for NWKB ≫ 1 (A) the thermodynamic approximation comes

close to the exact summation while for NWKB small the level spacing is large and the thermody-

namic limit is no longer a good approximation to the sum of the contributions of individual levels.

Notice that both ways of computing pressure yield similar results for large NWKB but deviate at

smaller NWKB.

In this case expanding both equations in Ẽ, we find the same expression:

p ≈ 1

4
eΦn+

f

z
ẼM̃ +O(Ẽ3). (3.35)

Finally, it is illustrative to see how we reproduce the electron star pressure [10] in the

limit of large density. For n → ∞, the first term in E and pthd dominates and we obtain

from (3.25) and (3.34)

pES =
1

4
eΦn (3.36)

as expected for an ideal fluid, which corresponds to the electron star approach. The

physical interpretation of this result (and of the pressure inside the classically allowed

region in general) is that of a Fermi gas pressure which, as we know, survives also in the

limit of classical thermodynamics. The comparison of p, pthd and pES is summarized in

figure 2, for high and low number of levels. While the thermodynamic approximation (3.34)

is good when NWKB ≫ 1, for small NWKB both the fluid limit and the thermodynamic limit

eventually break down and the contributions of individual levels must be taken into account.

Once again, the introduction of Airy corrections would extend the nonzero pressure to the

whole AdS space, which is only expected to be relevant at T = 0 [37].

4 Maxwell-Dirac-Einstein system

We have now arrived at the point where we can look for a numerically self-consistent so-

lution of the Einstein-Maxwell equations. The numerics uses an iterative procedure to

converge toward the solution. Only in the IR region it is possible to use a scaling ansatz

to estimate the scaling behavior of the metric and matter fields, akin to the procedure

used in [20]. This is the first attempt at a numerically self-consistent solution includ-

ing backreaction on the geometry with holographic fermions which goes beyond the fluid

picture of [10].
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Our calculation is similar to the one for relativistic ideal fluid (i.e. electron star) ap-

proximation. Because an ideal fluid is dissipation-less one can construct an action as put

forward in [15] and used in [10, 12]. The Lagrangian of this charged fluid coupled to gravity

and electromagnetism is

S =

∫

d4x

[

1

2κ2
(R+ 6)− 1

2q2
(∂zΦ)

2 + p

]

. (4.1)

In other words, the contribution of fermions reduces to the pressure p. While we do

not take the fluid limit in this paper, within the WKB star model we assume that in

the first approximation the influence of the corrections to fluid limit (NWKB → ∞) is fully

encapsulated by the correction to the classical (or fluid) pressure we found in (3.25)–(3.29).

The emergent isotropy and its implied ideal nature of the fluid at large occupation number

should ensure this.

To construct the backreacted geometry, we therefore “replace” the fermionic terms

in the exact action (2.2) with our effective ideal fluid model in terms of the density and

pressure of the bulk fermions. The total effective action is represented as S = SE+SM+Sf ,

the sum of Einstein, Maxwell and fluid part. The only nonzero component of the gauge field

is Φ and the only non-vanishing derivatives are the radial derivatives ∂z (the others average

out to zero for symmetry reasons). The nonzero fermion pressure p is that considered in

section 3.2 and there is a nonzero (local) charge density

j0e = qn
√

g00 = qn
zeh/2√

f
. (4.2)

The fermion fluid term in the effective action thus becomes

Sf = −
∫

d4x
√−g

(

j0eΦ+ p
)

. (4.3)

Due to the preserved spherical symmetry we may substitute these simplifications directly

in the effective action to arrive at:

Seff =

∫

d4x
√−g

[

1

2κ2
(R+ 6)− z4

2
eh
(

∂Φ

∂z

)2

− j0eΦ+ p

]

. (4.4)

The only components of the stress tensor the fermion kinetic energy contributes to are the

diagonal ones; the others vanish due to homogeneity and isotropy in time and in the x− y

plane. From (4.4) we get the equations for the energy-momentum tensor:

T 0
0 = −1

2
z4eh

(

∂Φ

∂z

)2

+ j0eΦ (4.5)

T z
z = = −1

2
z4eh

(

∂Φ

∂z

)2

+ j0eΦ+mn+ gzzp. (4.6)

With the metric ansatz (2.4), we can now write down our equations of motion:

1√−g

(

∂ze
−h/2∂zΦ

)

= −j0e (4.7)

3f − z∂zf − 3 = T 0
0 (4.8)

3f − z∂zf − 3zf∂zh− 3 = T z
z (4.9)
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Notice that the ii component of the Einstein equations:

1

2
(∂zzf − f∂zzh) +

1

4

(

f∂zh
2 − 3∂zf∂zh

)

+
f∂zh− 2∂zf

z
+

3f

z2
= T i

i (4.10)

with

T i
i = −1

2
z4eh

(

∂Φ

∂z

)2

+ giip⊥ (4.11)

is functionally dependent on the others and drops out. For that reason, (4.7)–(4.9) forms

the complete system of Maxwell-Einstein equations. We do not need to know T i
i or p⊥ nor

to assume the isotropy (in the sense T i
i = T z

z ).

In this article we shall only be interested in finite temperature solutions. The grav-

itational background is therefore a black hole with an horizon: a single zero in the warp

function f(z) at a finite value z = zH .3 Physically the inescapability of the black hole

horizon immediately suggests the following boundary conditions. The black hole horizon

should have no hair so Φ(zH) = 0; h(z) which characterizes the ratio of the UV and IR

speed of light should be finite at the horizon: h(zH) = h0. Note that the effective WKB

potential felt by the fermions blows up at the horizon and that the fermion wavefunctions

therefore manifestly vanish at zH . This same phenomenon is noted in the electron star at

finite temperature which also has an “inner” edge outside the horizon [12, 33].

At AdS infinity the boundary conditions are standard in AdS/CFT: for the gauge

field limz→0Φ(z) = µ fixes the chemical potential at the boundary (z0 → 0). We normal-

ize limz→0 f(z) = 1, limz→0 h(z) = 0. Again the boundedness of the normalized WKB

wavefunctions uniquely fixes the behavior of the fermions.

Finally, it remains to define the units used throughout the paper. The natural unit

of energy and momentum is the chemical potential µ and we will express all quantities in

units of µ. The two thermodynamic parameters are the chemical potential µ and T . As

AdS/CFT is built on conformal field theories which have no intrinsic scale, the physics

only depends on the ratio µ/T .

Let us conclude with an outline of the numerical algorithm, which is not completely

trivial. The boundary conditions to be implemented are given at different points: some

are given at the AdS boundary and some at the horizon. Since the system is nonlinear, it

is necessary to either linearize the system or to shoot for the correct boundary conditions

with the full nonlinear system. After experimenting with both, we have decided to iterate

the full, non-simplified system of equations, integrating from the horizon and shooting

for the conditions at the boundary. The iterative procedure consists of two steps: we

start with the non-backreacted AdS-RN geometry and compute the density (semiclassical

plus the quantum corrections) for the the electron charge equal to e/N (where e is the

physical charge and N some positive integer), then we solve the system of Einstein-Maxwell

equations (4.7)–(4.9), afterwards we increase the fermion charge to 2e/N , calculate the

3At zero temperature, when the horizon vanishes due to fermionic backreaction (this includes also the

case of Lifshitz geometry), the boundary condition for f guarantees also the smoothness of the solution on

the horizon: ∂zf(zH) = 0. This condition ensures that we pick the correct branch of the solution as there

are typically two families of functions f(z) that satisfy the equations of motion and the condition f(z) = 0.

One of them has a vanishing derivative whereas the other has finite derivative as z → 1.
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(A) (B)

Figure 3. Profiles of the metric functions f(z) (red) and e−h(z) (violet), the gauge field Φ(z) (green),

density n(z) (blue) and the pressure p(z) (cyan) at zero temperature, for (µ/T, e,m) = (1.7, 1, 0.1)

(A) and for (µ/T, e,m) = (1.7, 10, 0.1) (B). Solid lines are calculated from our model while dashed

lines are the electron star solution for the same parameter values. For better visibility density

and pressure are rescaled by a constant factor. Near the boundary we always have h(z) → 0 and

Φ(z) = µ+O(z), in accordance with the universal AdS asymptotics of the solution but in the interior

the solutions start to deviate. Most striking is the absence of sharp classical edges in density and

pressure. The difference in pressure will turn out to be crucial in moving away from the fluid limit.

Here we have not shown the solution with NWKB = 4: this case deviates from the electron star

(NWKB → ∞) so strongly that it does not make sense to compare it. Indeed, 4 ≪ ∞!

charge density in the background (f, h,Φ) taken from previous iteration and solve for this

density the Einstein-Maxwell equations (4.7)–(4.9). We repeat this procedure for charge

3e/N , 4e/N etc. After N iterations we have arrived at the physical value of the charge e.

Then we do more iterations with fixed charge e to ensure that the solution has converged,

checking that the set of functions (f, h,Φ) does not change from iteration to iteration. In

this way we achieve the self-consistent numerical solution of the Maxwell-Dirac-Einstein

system of equations. The integration is always done from the horizon, shooting for the

conditions for Φ and h at the boundary, since it is well known that integrating from the

AdS boundary is a risky procedure as it is next to impossible to arrive at the correct branch

of the solution at the horizon.

5 Phases of holographic fermions

We can now analyze the structure of both the bulk and the field theory side as a function

of the parameters T/µ, e and m. We first shortly discuss the nature of the bulk solution for

the geometry and gauge field and notice some qualitative properties. The typical way that

the solutions to the WKB-Fermi-Einstein system (4.7)–(4.9) look is illustrated in figure 3.

The near-horizon scaling of the metric and gauge field is of Lifshitz type, as expected in the

light of earlier models [10, 34]. Notice that we are working at finite temperature and thus

do not impose the IR boundary conditions for the metric functions which correspond to

the Lifshitz geometry. Our finding of Lifshitz scaling is purely numerical, with the simple

boundary conditions discussed above. In the figure, we plot also the electron star solution

for comparison. One should be careful in comparing the two, however, as the electron

star corresponds to the limit e → 0 and thus cannot be compared directly (i.e., for the
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same parameter values) to our WKB star. Our convention is to first define the electron

star by choosing the total charge density Q and the parameter m̂ = m/eκ, where κ is the

gravitational constant whose value is fixed by the normalization of the action (4.1). For

the WKB star, we impose the same value of Q, while the value of m is found as m = m̂eκ

(for WKB star we can control e as an independent parameter). Relative proximity of

the solutions for large N seems to confirm that this is a physically meaningful way of

comparing the models.

5.1 Thermodynamics

We can now use these full solutions to determine the macroscopic characteristics of the

dual strongly coupled fermion system. Let us first derive the free energy of the boundary

field theory. According to the dictionary, it is equal to the (Euclidean) on-shell action,

which contains both bulk and boundary components:

F = Son−shell
bulk + Son−shell

bnd . (5.1)

We have already discussed the bulk action in the previous section. We will again approxi-

mate the fermionic contribution (4.3) by its leading term, the pressure.

In computing the free energy using AdS/CFT a crucial part is often played by boundary

terms in the action. It encapsulates the regularizing terms that eliminate z → 0 divergences,

enforces a Dirichlet boundary condition for the gauge field, but it also provides the kernel

for the fermionic correlation functions [9, 36]

Sbnd =

∮

∂AdS

√
−h

(

1

2
nνF

µνAµ + Ψ̄+Ψ−

)

, (5.2)

with h being the induced metric on the boundary (h = 1
z2
(−1/f(z = 0), 1, 1)) and Ψ+ and

Ψ− are radial projections of the wave function as in eq. (2.8). By ∂AdS we have denoted

the boundary of the AdS space. Let us now briefly show why these boundary fermion

terms do not contribute to the free energy, but that the leading fermion contribution is the

(one-loop) effective pressure. Essentially the point is that only normalizable modes of the

field are occupied and hence they cannot contribute to the boundary action as they die off

too fast. The Dirac field asymptotics at the boundary are given by [13]:

Ψ+ =
iµγ0

2m+ 1
B−z

5/2+m + . . . , Ψ− = B−z
3/2+m + . . . (5.3)

At the same time the electromagnetic boundary term reduces to Φ∂zΦ|z=0 = −µρ, where

ρ is the total boundary (not only fermionic) charge density, read off from the subleading

“response” of the bulk electrostatic potential limz→0Φ(z) = µ− ρz + . . .. The regularized

boundary action now reads

Sbnd = lim
z0→0

S(z0) + lim
z0→0

∫

d3x

[

3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]

, (5.4)

Since m > −1/2 is the fermionic unitarity bound in AdS/CFT, the first term always

vanishes in the limit z0 → 0. The total on-shell action, i.e. the free energy is therefore

F =

∫ zH

z0

dzd3x
√−g

[

R+ 6 +
zeh/2qnΦ

2
√
f

+ p

]

− 1

2
µρ (5.5)
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5.2 Constructing the phase diagram: quantum corrections imply a first order

thermal phase transition to AdS-RN

The condensed matter context in which we are discussing AdS/CFT is that of an emergent

finite density fermionic ground state out of an UV CFT. In the deep UV or at very high

temperatures T/µ the chemical potential should be negligible and we should recover as the

preferred groundstate the UV CFT at finite T/µ. The gravitational dual of this is the AdS-

RN black hole. It describes a conformal critical phase with no Fermi surfaces. As we lower

T/µ an instability should set in towards a state with a finite occupation number of fermions.

In the probe analysis one indeed finds several normalizable wavefunctions signalling the

existence of states with distinct occupation numbers. They are the bulk counterpart of

the existence of non-Fermi-liquid Fermi surfaces [8, 9, 19, 21]. A crucial qualitative aspect

is that due to their fermionic nature the wavefunctions of these normalizable modes can

never “grow”. From a microscopic point of view it therefore appears that any fermion

driven phase transition cannot be second order. In the fluid limit, however, the transition

was found to be third order. There is no conflict because new analytic behavior can emerge

in the fluid scaling limit where the number of Fermi surfaces is taken to infinity.4 It does

mean that one has to be quite careful in the fluid limit as for fermions these corrections can

change macroscopic quantities. For any finite number of Fermi surfaces we should discover

a first order transition. We did indeed find this earlier in the Dirac hair approximation

valid for NWKB = 1 [13]. With the WKB construction put forward here, we will show that

this is indeed so for any finite NWKB.

Figure 4 shows the behavior of the free energy F (T/µ) of the WKB corrected star

construction for different parameters e,m, corresponding to a different number of levels

NWKB (which roughly equals the number of Fermi surfaces. In the high temperature

phase the preferred state with lowest F (T/µ) is that of the pure AdS-RN. Since there are

no occupied fermionic states it is independent of the fermion charge and mass. In the low

temperature phase the preferred phase is the WKB star. Where the phase transition occurs,

one immediately sees the characteristic first order cusp in F (T/µ) whose non-analyticity

indeed becomes clearer as NWKB decreases. The panel (B) of the figure makes this clear

by showing the vicinity of the phase transition.

The first order nature of the phase transition can in fact be understood analytically

with this WKB construction. The argument is along similar lines as for the fluid limit of

the electron star [12]. Assuming that the transition is dominated by the behavior of the

fermions and that the contribution of the geometry change due to backreaction is small

4Note that there is a crucial subtlety in the fluid limit in AdS/CFT with a flat Minkowski-space boundary.

Normally one needs a thermodynamic “fluid” limit to even be able to discuss the notion of a phase transition.

In global AdS, or conventional Tolman-Oppenheimer-Volkov neutron stars, a bound on the number of radial

modes, implies a countable number of states. However, this is not so in AdS/CFT with a flat Minkowski-

space boundary. For each radial mode there is still a formal infinite number of modes distinguished by the

transverse momentum. The phase transition discussed here is where one considers N/Vtransverse → ∞. It

restores one’s intuition that the emergence of each single Fermi surface dual to each single radial mode is

associated with a macroscopic phase transition. We thank Sean Hartnoll for emphasizing this.
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Figure 4. Free energy as a function of temperature F (T ). The abrupt change of the derivative

signifies the first order transition between the finite density phase and the pure black hole (with

zero bulk fermion density), in line with the analytical prediction of the first order transition from

the second term in the bulk free energy in section 5.2. We show the calculations for three different

values (µ, e,m) of the system parameters: (1.7, 3, 0.1), NWKB(T = 0) = 40 in blue, (1.7, 10, 0.1),

NWKB(T = 0) = 20 in red and (1.7, 10, 0.7), NWKB(T = 0) = 11 in violet. Notice how the slope

of F in the low-temperature phase decreases as the number of levels increases: for NWKB → ∞
we reach the electron star limit when the transition becomes continuous. Panel (B) shows the

vicinity of the critical temperature for three sets of parameter values, to make the cusp in F (T )

clearly visible. In the high temperature (RN) phase the curves F (T ) fall on top of each other as

one expects for the RN black hole with n = 0. The behavior in the low-temperature phase (with

non-zero density) is different for the three curves as the value of the charge affects the behavior of

the bulk fermions. For presentation purposes, the curves have been rescaled to the same transition

temperature; in general, however, (T/µ)c is not universal and will differ for different corners of the

parameter space.

near the critical temperature, the relevant part of the free energy of the system is given by

FFermi ≈
∫ zH

0
p =

eµ

2

∫ z∗∗

z∗

(1− z)n+
eµ

2

∫ z∗∗

z∗

M̃2e−h

z
√

M̃2 + ehẼ2
≡ F fluid

Fermi +∆FFermi (5.6)

Starting from low temperatures and nonzero n, at the transition point the bulk density n

vanishes. In the WKB construction that means that the turning points coincide: z∗ → z∗∗.

The first, “fluid limit” term F fluid
Fermi in (5.6) is proportional to Φn and it is analyzed in detail

in [12]. It yields the scaling F fluid
Fermi ∼ (T − Tc)

3. This indicates a third order transition at

the semi-classical level. The new, second, quantum term will change this, however. The

vanishing of the classically allowed region means Ẽ ≈ M̃ in the whole (narrow) region

z∗ < z < z∗∗. One can thus expand Ẽ = M̃ + δz × δẼ/δz + . . . and analyze the leading

terms in δz. It is easy to see that its expansion starts from a constant. Since for vanishing

δz the density can be assumed constant throughout the WKB star, we estimate the integral

in ∆FFermi as

∆FFermi ≈
ΦM̃2e−h

√

M̃2 + ehẼ2
δz = (const.+O (δz)) δz, (5.7)

where δz = z∗∗ − z∗. Therefore, the second term scales as ∆FFermi ∼ δz. Now, for a

vanishing bulk charged fluid/emerging charged black hole, the principle of detailed balance

predicts that the charge of the former equals the charge of the latter: nδz = nBHδzH ,

– 19 –



J
H
E
P
1
2
(
2
0
1
3
)
0
2
5

where the charge densities of the bulk and the black hole are n and nBH, respectively, and

δzH is the change in the position of the black hole horizon. Since the densities can be

assumed constant for vanishing δz and δzH , we find δz ∼ δzH ∼ T − Tc. We can now

write FFermi = F fluid
Fermi +∆FFermi. We know that F fluid

Fermi ∼ (T − Tc)
3 [12], but we have now

shown that

∆FFermi ∼ T − Tc. (5.8)

At the quantum level the transition is always of first order. The quantum correction is

subleading at general T values, but becomes leading as the phase transition point is ap-

proached. Finally, we remark that, if one considers the bulk free (or internal) energy
∫

dzE
given in eq. (3.24) using the similar scaling reasoning, one arrives at the same conclusion:

F ∼ T − Tc. This confirms the intuition that the bulk and boundary thermodynamics are

equivalent at leading order, i.e. the difference Fbulk − F does not contain first-order terms

in T − Tc and thus does not change the order of the transition. Now the exact free energy

differs from our WKB star calculation, as we have assumed that the correction to the fluid

limit is fully captured by the correction to pressure. However, an additional term in F

cannot decrease the order of the transition: it can introduce new singularities (of some

order α, scaling as (T − Tc)
α) but cannot cancel out the term.

The numerics just confirms this analytic prediction of a first order phase transition.

The field theory interpretation of the discontinuous nature of the transition to a phase

with Fermi surfaces is simple: fermions do not break any symmetry but the discharge of

the black hole does signify that the ground state is reconstructed due to the formation of

a rigid Fermi surface. The only way to reconstruct the ground state without breaking any

symmetries is precisely the first order transition of the density van der Waals liquid-gas

type. This is the macroscopic counterpart to the probe analysis where the Grassman nature

of fermions Pauli blocks the growing of mode functions. A van der Waals liquid-gas first

order type transition is indeed seen in [13] for the first order transition from NWKB = 1

Dirac hair state to AdS-RN. The confusing point was that electron star/AdS-RN transition

valid in the strict NWKB → ∞ fluid limit was found to be third order [12, 33]. Here we

show that this change in the nature of the phase transition is an artifact of this NWKB → ∞
limit. Instead the expected first order behavior is recovered for any finite value of NWKB.

6 Discussion and conclusions

In this paper we have constructed the WKB star as an improved semiclassical model of

holographic fermions in AdS4 space, aimed at understanding the phase diagram of strongly

coupled Fermi and non-Fermi liquids. The model combines a WKB approximation with a

Hartree summation to approximate a finite NWKB charged fermion state in AdS coupled

to both gravity and electromagnetism. The dominant effect is a quantum correction to

the pressure and energy density (”vacuum polarization”) of the conventional NWKB → ∞
classical model — the electron star. This finite NWKB approach has allowed us to address

the intermediate fermion charges which cannot be modeled satisfyingly with any of the

previously used models.
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By studying the free energy of the system we can now construct the full phase diagram

of the system. Most importantly, we find a universal first order phase transition from a

finite density to a zero density (Reissner-Nordström, quantum critical) phase. The discon-

tinuity of the density comes from the quantum term in the internal energy. This term is

always present but its relative contribution to the free energy decreases with the inverse

of the number of radial modes NWKB. The extreme limit NWKB → ∞ reproduces the

unexpected third order continuous phase transition found in [12, 33]. Nevertheless, in any

real system with finite fermion charge the discontinuity will be present, which fits into the

general expectation that the thermal phase transition of a fermionic system should be of

the van der Waals (liquid-gas, Ising) type.

So far three distinct approaches aiming at capturing the stable phases of holographic

fermionic matter have appeared: the electron star [10], Dirac hair [13] and the confined

Fermi liquid model [14]. The electron star is essentially a charged fermion rewriting of the

well-known Oppenheimer-Volkov equations for a neutron star in AdS background. The

bulk is thus modeled as a semiclassical fluid. It is a controlled approximation in the certain

limit of the parameter values. The mystery is its field theory dual: it is a hierarchically

ordered (infinite) multiplet of fermionic liquids with stable quasiparticles [17]. On the

other end of the spectrum is Dirac hair, which reduces the bulk fermion matter to a single

radial harmonic. The Dirac hair approach is based on the truncation of the full non-

local equations of motion. As a consequence the field theory dual is a single Fermi liquid,

however its gravitational consistency properties are not yet fully understood. In [18] we

have shown that Dirac hair and electron star can be regarded as the extreme points of a

continuum of models, dialing from deep quantum - a single radial mode - to a classical

regime - a very large occupation number - in the bulk. They correspond to two extreme

phases in the field theory phase diagram: a multiplet of a very large number of Fermi

liquids and a single Fermi liquid. The third approach [14] performs a Hartree summation

of the exact quantum mechanical wave functions to capture the fermion density. While the

paper [14] applies the Hartree method to a specific model (confined Fermi liquid, where

the confinement is intrduced through modifying the bulk geometry), the main idea can be

used in any background. This approach is more general then the single-particle approach

of [13] and it naturally extends the single harmonic Dirac hair state with a single Fermi

surface to a state with multiple Fermi surfaces. Our main motivation is to construct a

complementary model that extends from the other end — the semi-classical fluid — down

to a state with a countable but large number of Fermi surfaces. We aim for a system

which is general enough to encompass the middle ground between extreme quantum and

extreme classical regimes in the original deconfined setup. In the recent model of “quantum

electron star” [16] the same goal is set but the method used is different and is based on

the deconfined limit of [14].

In constructing the WKB star, we were also guided by the strengths and weaknesses

of these existing models. On the one hand, the Dirac hair is a fully quantum-mechanical

model which shows its strength in particular near the boundary (the ultraviolet of the

field theory) but becomes worse in the interior, i.e. close to the horizon (the infrared of

the field theory) where density is high and the resulting state of matter cannot be well

– 21 –



J
H
E
P
1
2
(
2
0
1
3
)
0
2
5

Figure 5. Applicability of various approximations as a function of the ratio of the fermion charge

and the total charge of the system, Q/e: Dirac hair, confined Fermi liquid, our present WKB-model,

electron star. Dirac hair and electron star are the simplest and most flexible approximations but

limited to the extreme ends of the Q/e axis. Compare also to figure 10 in [18].

described by a single wave function. On the other hand, the electron star yields a very

robust description of high-density matter in the interior but its sharp boundary at some

radius rc is clearly incompatible with a fully quantum description. It is thus obvious that

the physically interesting model lies somewhere in-between the two approaches.

How to relate the electron star [10], Dirac hair [13] and the (confined) Hartree Fermi

liquid [14] to our new phase diagram? All models use the same microscopic action for a

Dirac fermion with charge e and mass m, but the system is approximated in different ways.

The electron star is the fluid limit of the equations of motion, yielding the Openheimer-

Volkov equations in the bulk. As explained in [18], this approximation is valid in the

limit of infinite occupation number NWKB → ∞, e → 0 with the total charge density

fixed Q = NWKBe. In addition, the mass m → 0 while m̂ = m/
√
NWKBe is fixed. The

Dirac hair departs from the opposite limit, treating the bulk fermion as a single collective

excitation with NWKB = 1. To obtain a macroscopic charge density one essentially has

to take e ≫ 1. Finally, the confined Fermi liquid of [14] and its deconfined version [16]

improve on the Dirac Hair by using a standard Hartree summation of the non-interacting

bulk Fermi gas. It works for all NWKB ∼ O(1) and this significantly increases the region

of applicability but at the cost of substantial practical complications, in particular if one

wishes to take into account the backreaction on the metric [16]. Our model takes a similar

summation approach but simplifies the wave function calculation drastically by using the

WKB approximation. This inherently assumes semiclassical dynamics and large number of

energy levels NWKB ≫ 1 in the bulk. The WKB star is thus independent of [13] but draws

heavily on the electron star and the dialing concept of [18]. Since we do not make the

assumption of zero energy spacing NWKB → ∞ necessary for the fluid approximation, our

model thus works well in the intermediate regime where NWKB is finite but large compared

to unity. This message is illustrated in figure 5, emphasizing the singular nature of both

the electron star and the Dirac hair.

One obvious downside of the WKB star is that the WKB approximation breaks down

when NWKB, the occupation number, is low. In particular, it means that the accuracy of

our method is lowest close to the phase transition to the RN phase. However, for reasons

outlined in the section 5.2, we can argue that the order of the phase transition cannot

change, i.e. the first-order singularity in the free energy will not be canceled out by the

corrections to WKB. Our treatment is an improvement over the strict NWKB → ∞ limit of
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the electron star model used in [12, 33] to analyze the phase transition, however it remains

a task for further work to approach the transition point with a more accurate method which

is not limited to large occupation numbers. The recent paper [38] constructs a solution

with finite fermion density in AdS4 without using WKB: this turns out to be much more

involved, but allows one to move away from the large NWKB regime.

The natural next step departing from this WKB treatment is to employ a fully

quantum-mechanical density functional method. It is, in fact, not a significant compli-

cation compared to the approach of this paper: the recipe for computing the density n

will be replaced by a somewhat more complicated functional of the gauge field and the

metric, which needs to be computed iteratively. We anticipate that this will not alter the

qualitative picture, although the numbers might change significantly. The main conclusion

of our paper is that the singular fluid limit of bulk fermions when coupled to AdS gravity

can lead to macroscopically anomalous results. Finite NWKB corrections are crucial to get

the correct answer.
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We argue that the electron star and the anti–de Sitter (AdS) Dirac hair solution are two limits of the free

charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of

electron stars have a free parameter that quantifies the number of constituent fermions that make up the

charge and energy density characterizing the electron star solution. The strict electron star limit takes this

number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the

behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of

constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved

holographic Fermi ground state should be a configuration that shares the qualitative properties of both

limits.
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I. INTRODUCTION

The insight provided by the application of the
anti–de Sitter/conformal field theory (AdS/CFT) corre-
spondence to finite density Fermi systems has given
brand-new perspectives on the theoretical robustness of
non-Fermi liquids [1–3]; on an understanding of the non-
perturbative stability of the regular Fermi liquid equivalent
to order parameter universality for bosons [4,5]; and most
importantly on the notion of fermionic criticality, Fermi
systems with no scale. In essence strongly coupled con-
formally invariant Fermi systems are one answer to the
grand theoretical question of fermionic condensed matter:
Are there finite density Fermi systems that do not refer at
any stage to an underlying perturbative Fermi gas?

It is natural to ask to what extent AdS/CFT can provide a
more complete answer to this question. Assuming, almost
tautologically, that the underlying system is strongly
coupled and there is in addition some notion of a large N
limit, the Fermi system is dual to classical general relativ-
ity with a negative cosmological constant coupled to
charged fermions and electromagnetism. As AdS/CFT
maps quantum numbers to quantum numbers, finite density
configurations of the strongly coupled large N system
correspond to solutions of this Einstein-Maxwell-Dirac
theory with finite charge density. Since the AdS fermions
are the only object carrying charge, and the gravity system
is weakly coupled, one is immediately inclined to infer that
the generic solution is a weakly coupled charged Fermi gas
coupled to AdS gravity: in other words an AdS electron

star [6,7], the charged equivalent of a neutron star in
asymptotically anti–de Sitter space [8,9].
Nothing can seem more straightforward. Given the total

charge density Q of interest, one constructs the free fermi-
onic wave functions in this system, and fills them one by
one in increasing energy until the total charge equals Q.
For macroscopic values of Q these fermions themselves
will backreact on the geometry. One can compute this
backreaction; it changes the potential for the free fermions
at subleading order. Correcting the wave functions at this
subleading order, one converges on the true solution order
by order in the gravitational strength �2E2

full system. Here

Efull system is the energy carried by the Fermi system and �2

is the gravitational coupling constant �2 ¼ 8�GNewton in
the AdS gravity system. Perturbation theory in � is dual to
the 1=N expansion in the associated condensed matter
system.
The starting point of the backreaction computation is to

follow Tolman-Oppenheimer-Volkov (TOV) and use a
Thomas-Fermi (TF) approximation for the lowest order
one-loop contribution [6–9]. The Thomas-Fermi approxi-
mation applies when the number of constituent fermions
making up the Fermi gas is infinite. For neutral fermions
this equates to the statement that the energy-spacing be-
tween the levels is negligible compared to the chemical
potential associated with Q, �E=� ! 0. For charged
fermions the Thomas-Fermi limit is more direct: it is the
limit q=Q ! 0, where q is the charge of each constituent
fermion.1

This has been the guiding principle behind the ap-
proaches [6–11] and the recent papers [12,13], with the
natural assumption that all corrections beyond Thomas-
Fermi are small quantitative changes rather than qualitative

*cubrovic@lorentz.leidenuniv.nl
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1For a fermion in an harmonic oscillator potential En ¼
ℏðn� 1=2Þ!, thus �E=Etotal ¼ 1=

P
N
1 ðn� 1=2Þ ¼ 2=N2.
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ones. On closer inspection, however, this completely natu-
ral TF-electron star poses a number of puzzles. The most
prominent perhaps arises from the AdS/CFT correspon-
dence finding that every normalizable fermionic wave
function in the gravitational bulk corresponds to a fermi-
onic quasiparticle excitation in the dual condensed matter
system. In particular occupying a particular wave function
is dual to having a particular Fermi-liquid state [4]. In the
Thomas-Fermi limit the gravity dual thus describes an
infinity of Fermi liquids, whereas the generic condensed
matter expectation would have been that a single (few)
liquid(s) would be the generic ground state away from the
strongly coupled fermionic quantum critical point at zero
charge density. This zoo of Fermi surfaces is already
present in the grand canonical approaches at fixed �
(extremal AdS-Reissner-Nordström [AdS-RN] black
holes) [3] and a natural explanation would be that this is
a large N effect. This idea, that the gravity theory is dual to
a condensed matter system withN species of fermions, and
increasing the charge density ‘‘populates’’ more and more
of the distinct species of Fermi liquids, is very surprising
from the condensed matter perspective. Away from criti-
cality one would expect the generic ground state to be a
single Fermi liquid or some broken state due to pairing. To
pose the puzzle sharply, once one has a fermionic quasi-
particle one should be able to adiabatically continue it to a
free Fermi gas, which would imply that the free limit of the
strongly coupled fermionic CFT is not a single but a system
of order N fermions with an ordered distribution of Fermi
momenta. A possible explanation of the multitude of
Fermi surfaces that is consistent with a single Fermi sur-
face at weak coupling is that AdS/CFT describes so-called
‘‘deconfined and/or fractionalized Fermi liquids’’ where
the number of Fermi surfaces is directly tied to the cou-
pling strength [12–16]. It would argue that fermionic
quantum criticality goes hand in hand with fractionaliza-
tion for which there is currently scant experimental
evidence.

The second puzzle is more technical. Since quantum
numbers in the gravity system equal the quantum numbers
in the dual condensed matter system, one is inclined to
infer that each subsequent AdS fermion wave function has
incrementally higher energy than the previous one. Yet
analyticity of the Dirac equation implies that all normal-
izable wave functions must have strictly vanishing energy
[17]. It poses the question how the order in which the
fermions populate the Fermi gas is determined.

The third puzzle is that in the Thomas-Fermi limit the
Fermi gas is gravitationally strictly confined to a bounded
region; famously, the TOV-neutron star has an edge. In
AdS/CFT, however, all information about the dual con-
densed matter system is read off at asymptotic AdS
infinity. Qualitatively, one can think of AdS/CFT as an
‘‘experiment’’ analogous to probing a spatially confined
Fermi gas with a tunneling microscope held to the exterior

of the trap. Extracting the information of the dual con-
densed matter system is probing the AdS Dirac system
confined by a gravitoelectric trap instead of a magneto-
optical trap for cold atoms. Although the Thomas-Fermi
limit should reliably capture the charge and energy den-
sities in the system, its abrupt nonanalytic change at the
edge (in a trapped system) and effective absence of a
density far away from the center are well known to cause
qualitative deficiencies in the description of the system.
Specifically Friedel oscillations—quantum interference in
the outside tails of the charged fermion density, controlled
by the ratio q=Q and measured by a tunneling micro-
scope—are absent. Analogously, there could be qualitative
features in the AdS asymptotics of both the gravitoelectric
background and the Dirac wave functions in that adjusted
background that are missed by the TF approximation. The
AdS asymptotics in turn specify the physics of the dual
condensed matter system and since our main interest is to
use AdS/CFT to understand quantum critical fermion sys-
tems where q=Q is finite, the possibility of a qualitative
change inherent in the Thomas-Fermi limit should be
considered.
There is another candidate AdS description of the dual

of a strongly coupled finite density Fermi system: the AdS
black hole with Dirac hair [4,5]. One arrives at this solution
when one starts one’s reasoning from the dual condensed
matter system, rather than the Dirac fields in AdS gravity.
Insisting that the system collapses to a generic single
species Fermi-liquid ground state, the dual gravity descrip-
tion is that of an AdS Einstein-Dirac-Maxwell system with
a single nonzero normalizable Dirac wave function. To
have a macroscopic backreaction the charge of this single
Dirac field must be macroscopic. The intuitive way to view
this solution is as the other simplest approximation to free
Fermi gas coupled to gravity. What we mean is that the full
gravitoelectric response is in all cases controlled by the
total charge Q of the solution: as charge is conserved it is
proportional to the constituent charge q times the number
of fermions nFAdS

and the two simple limits correspond to

nF ! 1, q ! 0 with Q ¼ qnF fixed or nF ! 1, q ! Q.
The former is the Thomas-Fermi electron star, the latter is
the AdS Dirac hair solution. In the context of AdS/CFT
there is a significant difference between the two solutions
in that the Dirac hair solution clearly does not give rise to
the puzzles 1, 2 and 3: there is by construction no zoo of
Fermi surfaces and therefore no ordering. Moreover since
the wave function is demanded to be normalizable, it
manifestly encodes the properties of the system at the
AdS boundary. On the other hand the AdS Dirac hair
solution does pose the puzzle that under normal conditions
the total charge Q is much larger than the constituent
charge q both from the gravity/string theory point of
view and the condensed matter perspective. Generically
one would expect a Fermi gas electron star rather than
Dirac hair.
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In this paper we shall provide evidence for this point of
view that the AdS electron star and the AdS Dirac hair
solution are two limits of the same underlying system.
Specifically we shall show that (1) the electron star solu-
tion indeed has the constituent charge as a free parameter
which is formally sent to zero to obtain the Thomas-Fermi
approximation. (2) The number of normalizable wave
functions in the electron star depend on the value of the
constituent charge q. We show this by computing the
electron star spectral functions. They depend in similar
way on q as the first AdS/CFT Fermi system studies in
an AdS-RN background. In the formal limit where q ! Q,
only one normalizable mode remains and the spectral
function wave function resembles the Dirac hair solution,
underlining their underlying equivalence. Since both ap-
proximations have qualitative differences as a description
of the AdS dual to strongly coupled fermionic systems, we
argue that an improved approximation that has character-
istics of both is called for.

The results here are complimentary to and share an
analysis of electron star spectral functions with the two
recent papers [12,13] that appeared in the course of this
work (see also [18] for fermion spectral functions in gen-
eral Lifshitz backgrounds). Our motivation to probe the
system away from the direct electron star limit differs: we
have therefore been more precise in defining this limit and
in the analysis of the Dirac equation in the electron star
background.

II. EINSTEIN-MAXWELL THEORY COUPLED
TO CHARGED FERMIONS

The Lagrangian that describes both the electron star
and Dirac hair approximation is Einstein-Maxwell theory
coupled to charged matter

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2

�
Rþ 6

L2

�
� 1

4q2
F2

þLmatterðeA�; A�Þ
�
; (2.1)

where L is the AdS radius, q is the electric charge, and � is
the gravitational coupling constant. It is useful to scale the
electromagnetic interaction to be of the same order as the
gravitational interaction and measure all lengths in terms
of the AdS radius L,

g�� ! L2g��; A� ! qL

�
A�: (2.2)

The system then becomes

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
L2

2�2

�
Rþ 6� 1

2
F2

�

þ L4Lmatter

�
LeA�;

qL

�
A�

��
: (2.3)

Note that in the rescaled variables the effective charge of
charged matter now depends on the ratio of the electro-
magnetic to gravitational coupling constant, qeff ¼ qL=�.
For the case of interest, charged fermions, the Lagrangian
in these variables is

L4Lfermions

�
LeA�;

qL

�
A�

�

¼�L2

�2
��

�
e
�
A�

A

�
@�þ 1

4
!BC

� �BC� i
qL

�
A�

�
�mL

�
�;

(2.4)

where �� is defined as �� ¼ i�y�0. Compared to the
conventional normalization the Dirac field has been made

dimensionless � ¼ �
ffiffiffiffi
L

p
c conventional. With this normaliza-

tion all terms in the action have a factor L2=�2 and it will
therefore scale out of the equations of motion

R�� � 1

2
g��R� 3g��

¼
�
F��F�

� � 1

4
g��F��F

�� þ Tfermions
��

�
;

D�F
�� ¼ �qeffJ

�
fermions (2.5)

with

Tfermions
�� ¼ 1

2
��eAð��A

�
@�Þ þ 1

4
!BC

�Þ �BC � i
qL

�
A�Þ

�
�

� �2L2

2
g��Lfermions; (2.6)

J�fermions ¼ i ��e�A�
A�; (2.7)

where the symmetrization is defined as Bð�C�Þ ¼ B�C� þ
B�C� and the Dirac equation�

e
�
A�

A

�
@�þ1

4
!BC

� �BC� i
qL

�
A�

�
�mL

�
�¼0: (2.8)

The stress-tensor and current are to be evaluated in the
specific state of the system. For a single excited wave
function, obeying (2.8), this gives the AdS Dirac hair
solution constructed in [4]. (More specifically, the Dirac
hair solution consists of a radially isotropic set of wave

functions with identical momentum size j ~kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
,

such that the Pauli principle plays no role.) For multiple
occupied fermion states, even without backreaction due
to gravity, adding the contributions of each separate solu-
tion to (2.8) rapidly becomes very involved. In such a
many-body system, the collective effect of the multiple
occupied fermion states is better captured in a ‘‘fluid’’
approximation

Tfluid
�� ¼ ð�þ pÞu�u� þ pg��; Nfluid

� ¼ nu� (2.9)
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with

�¼hu�T��u
�imatteronly; n¼�hu�J�imatteronly: (2.10)

In the center-of-mass rest frame of the multiple fermion
system [u� ¼ ðet0; 0; 0; 0Þ], the expressions for the

stress-tensor and charge density are given by the one-
loop equal-time expectation values (as opposed to time-
ordered correlation functions)

� ¼
�
��ðtÞet0�0

�
@t þ 1

4
!AB

t �AB � iqeffAt

�
�ðtÞ

�
: (2.11)

By the optical theorem the expectation value is equal to
twice the imaginary part of the Feynman propagator2

�¼ lim
t!t0

2ImTr

�
et0�

0

�
@tþ1

4
!AB

t �AB� iqeffAt

�
GAdS

F ðt0; tÞ
�
:

(2.12)

In all situations of interest, all background fields will only
have dependence on the radial AdS direction; in that case
the spin connection can be absorbed in the normalization of
the spinor wave function.3 In an adiabatic approximation
for the radial dependence of et0 and At—where �locðrÞ ¼
qeffe

t
0ðrÞAtðrÞ and !ðrÞ ¼ �iet0ðrÞ@t;—this yields the

known expression for a many-body fermion system at finite
chemical potential,

�ðrÞ ¼ lim
�!1

2
Z d3kd!

ð2�Þ4 ½!ðrÞ ��locðrÞ� ImTri�0G�
Fð!; kÞ

¼ lim
�!1

Z dkd!

4�3
½k2ð!��Þ�

�
1

2
� 1

2
tanh

�
�

2
ð!��Þ

��
Trði�0Þ2 �

2

L2
��ðð!��Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmLÞ2

q
Þ

¼ lim
�!1

�2

�2L2

Z
d!fFDð�ð!��ÞÞ½ð!��Þ2 � ðmLÞ2�½!��� ð!��Þ	ð!���mLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!��Þ2 � ðmLÞ2p

¼ 1

�2

�2

L2

Z �loc

mL
dEE2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðmLÞ2

q
: (2.13)

The normalization �2=L2 follows from the unconventional
normalization of the Dirac field in Eq. (2.4).4 Similarly

n ¼ 1

�2

�2

L2

Z �loc

mL
dEE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðmLÞ2

q

¼ 1

3�2

�2

L2
ð�2

loc � ðmLÞ2Þ3=2: (2.14)

The adiabatic approximation is valid for highly localized
wave functions, i.e. the expression must be dominated
by high momenta (especially in the radial direction).
The exact expression on the other hand will not have a

continuum of solutions to the harmonic condition��0!þ
�iki þ �zkz � �0�loc � imL ¼ 0. Normalizable solutions
to the AdS Dirac equations only occur at discrete
momenta—one can think of the gravitational background
as a potential well. The adiabatic approximation is there-
fore equivalent to the Thomas-Fermi approximation for a
Fermi gas in a box.
To get an estimate for the parameter range where the

adiabatic approximation holds, consider the adiabatic
bound @r�locðrÞ � �locðrÞ2. Using the field equation for
A0 ¼ �loc=qeff ,

@2r�loc � q2effn; (2.15)

this bound is equivalent to requiring

@2r�loc � @r�
2
loc )

�
qL

�

�
2
n � 2�loc@r�loc

)
�
qL

�

�
2
n � �3

loc; (2.16)

where in the last line we used the original bound again.
If the chemical potential scale is considerably higher than
the mass of the fermion, we may use (2.14) to approximate

n� �2

L2 �
3
loc. Thus the adiabatic bound is equivalent to

q ¼ qeff�

L
� 1; (2.17)

2From unitarity for the S matrix SyS ¼ 1 one obtains the
optical theorem TyT ¼ 2 ImT for the transition matrix T defined
as S � 1þ iT.

3That is, one can redefine spinors 
ðrÞ ¼ fðrÞ�ðrÞ such that
the connection term is no longer present in the equation of
motion.

4One can see this readily by converting the dimensionless
definition of �, Eq. (2.11), to the standard dimension. Using
capitals for dimensionless quantities and lower-case for dimen-
sionful ones,

�� h�@T�i � �2L2hc @tc i
� �2L2

Z �

m
d��2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p

� �2

L2

Z �L

mL
dEE2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðmLÞ2

q
with �L ¼ �loc above.
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the statement that the constituent charge of the fermions
is infinitesimal. Note that in the rescaled action (2.3) and
(2.4), L=� plays the role of 1=ℏ, and Eq. (2.17) is thus
equivalent to the semiclassical limit ℏ ! 0 with qeff fixed.
Since AdS/CFT relates L=�� Nc this acquires the mean-
ing in the context of holography that there is a large Nc

scaling limit [12,13] of the CFT with fermionic operators
where the renormalization group (RG) flow is ‘‘adiabatic.’’
Returning to the gravitational description the additional
assumption that the chemical potential is much larger
than the mass is equivalent to

Qtotal
phys

Vspatial AdS

¼ LQtotal
eff

�Vspatial AdS

� L

�Vspatial AdS

Z
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ginduced
p ðqeffnÞ

’ 1

Vspatial AdS

Z
dr

ffiffiffiffiffiffiffi�g
p qeff�

L
�3

locðrÞ � qðmLÞ3:

(2.18)

This implies that the total charge density in AdS is much
larger than that of a single charged particle (as long as
mL� 1). The adiabatic limit is therefore equivalent to a
thermodynamic limit where the Fermi gas consists of an
infinite number of constituents, n ! 1, q ! 0 such that
the total charge Q� nq remains finite.

The adiabatic limit of a many-body fermion system
coupled to gravity are the Tolman-Oppenheimer-Volkov
equations. Solving this in asymptotically AdS gives us
the charged neutron or electron star constructed in [7].
Knowing the quantitative form of the adiabatic limit, it is
now easy to distinguish the electron star solution from the
‘‘single wave function’’ Dirac hair solution. The latter is
trivially the single particle limit n ! 1, q ! Q with the
total chargeQ finite. The electron star and Dirac hair black
hole are opposing limit-solutions of the same system. We
shall now make this connection more visible by identifying
a formal dialing parameter that interpolates between the
two solutions.

To do so we shall need the full adiabatic Tolman-
Oppenheimer-Volkov equations for the AdS electron star
[7]. Since the fluid is homogeneous and isotropic, the
background metric and electrostatic potential will respect
these symmetries and will be of the form [recall that we are
already using ‘‘dimensionless’’ lengths, Eq. (2.2)]

ds2 ¼ �fðrÞdt2 þ gðrÞdr2 þ r2ðdx2 þ dy2Þ;
A ¼ hðrÞdt; (2.19)

where fðrÞ, gðrÞ, hðrÞ are functions of r; the horizon is
located at r ¼ 0 and the boundary is at r ¼ 1. Combining
this ansatz with a rescaling mL ¼ qeffm̂ the bosonic back-
ground equations of motion become [7]

1

r

�
f0

f
þg0

g

�
�gh�ffiffiffi

f
p ¼ 0;

�¼q4eff�
2

�2L2

Z h=
ffiffi
f

p

m̂
d��2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� m̂2

p
;

f0

rf
þh02

2f
�gð3þpÞþ 1

r2
¼0;

�¼q4eff�
2

�2L2

Z h=
ffiffi
f

p

m̂
d��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� m̂2

p
;

h00 þ2

r
h0 �g�ffiffiffi

f
p

�
rhh0

2
þf

�
¼ 0; �p¼�� hffiffiffi

f
p �;

(2.20)

where we have used that�loc ¼ qeffh=
ffiffiffi
f

p
and� ¼ nqeff is

the rescaled local charge density. What one immediately
notes is that the Tolman-Oppenheimer-Volkov equations of
motion for the background only depend on the parameters

�̂ � q4
eff
�2

�2L2 and m̂, whereas the original Lagrangian and the

fermion equation of motion also depend on qeff ¼
ð�2L2�̂

�2 Þ1=4. It is therefore natural to guess that the parameter

qeff ¼ qL=�will be the interpolating parameter away from
the adiabatic electron star limit toward the Dirac hair black
hole (BH).
Indeed in these natural electron star variables the adia-

batic bound (2.17) translates into

�̂ � L2

�2
¼ q2eff

q2
: (2.21)

Thus we see that for a given electron star background with

�̂ fixed decreasing �=L improves the adiabatic fluid ap-
proximation whereas increasing �=L makes the adiabatic
approximation poorer and poorer. ‘‘Dialing �=L up/down’’
therefore interpolates between the electron star and the
Dirac hair BH. Counterintuitively improving adiabaticity
by decreasing �=L corresponds to increasing qeff for fixed
q, but this is just a consequence of recasting the system in
natural electron star variables. A better way to view im-
proving adiabaticity is to decrease the microscopic charge
q but while keeping qeff fixed; this shows that a better way
to think of qeff is as the total charge rather than the effective
constituent charge.
The parameter �=L ¼ q=qeff parametrizes the gravita-

tional coupling strength in units of the AdS curvature, and
one might worry that ‘‘dialing �=L up’’ pushes one outside
the regime of classical gravity. This is not the case. One can

easily have �̂ � 1 and tune �=L toward or away from the
adiabatic limit within the regime of classical gravity. From
Eq. (2.17) we see that the edge of validity of the adiabatic

regime �̂ ’ L2=�2 is simply equivalent to a microscopic
charge q ¼ 1 which clearly has a classical gravity descrip-
tion. It is not hard to see that the statement above is the
equivalent of changing the level splitting in the Fermi gas,
while keeping the overall energy/charge fixed. In a Fermi
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gas microscopically both the overall energy and the level
splitting depends on ℏ. Naively increasing ℏ increases
both, but one can move away from the adiabatic limit
either by decreasing the overall charge density, keeping ℏ
fixed, or by keeping the charge density fixed and raising ℏ.
Using again the analogy between �=L and ℏ, the electron
star situation is qualitatively the same, where one should

think of �̂� q4L2=�2 parametrizing the microscopic
charge. One can either insist on keeping �=L fixed and

increase the microscopic charge �̂ to increase the level

splitting or one can keep �̂ fixed and increase �=L. In the
electron star, however, the background geometry changes

with �̂ in addition to the level splitting, and it is therefore

more straightforward to keep �̂ and the geometry fixed,
while dialing �=L.

We will now give evidence for our claim that the elec-
tron star and Dirac hair solution are two opposing limits.
To do so, we need to identify an observable that goes either
beyond the adiabatic background approximation or beyond
the single particle approximation. Since the generic inter-
mediate state is still a many-body fermion system, the
more natural starting point is the electron star background
and to perturb away from there. Realizing then that the
fermion equation of motion already depends directly on
the dialing parameter qeff the obvious observables are the
single fermion spectral functions in the electron star back-
ground. Since one must specify a value for qeff to compute
these, they directly probe the microscopic charge of the
fermion and are thus always beyond the strict electron star
limit q ! 0. In the next two sections wewill compute these
and show that they indeed reflect the interpretation of qeff
as the interpolating parameter between the electron star
and Dirac hair BH.

III. FERMION SPECTRAL FUNCTIONS IN THE
ELECTRON STAR BACKGROUND

To compute the fermion spectral functions in the elec-
tron star background we shall choose a specific represen-

tative of the family of electron stars parametrized by �̂ and

m̂. Rather than using �̂ and m̂ the metric of an electron star
is more conveniently characterized by its Lifshitz-scaling
behavior near the interior horizon r ! 0. From the field
equations (2.20) the limiting interior behavior of fðrÞ, gðrÞ,
hðrÞ is

fðrÞ¼ r2zþ��� ; gðrÞ¼g1
r2

þ��� ; hðrÞ¼h1rzþ��� :
(3.1)

The scaling behavior is determined by the dynamical criti-

cal exponent z, which is a function of �̂, m̂ [7] and it is

conventionally used to classify the metric instead of �̂. The
full electron star metric is then generated from this horizon
scaling behavior by integrating up an irrelevant RG-flow
[19,20]

f ¼ r2zð1þ f1r
�� þ � � �Þ;

g ¼ g1
r2

ð1þ g1r
�� þ � � �Þ;

h ¼ h1rzð1þ h1r
�� þ � � �Þ

(3.2)

with

� ¼ 2þ z

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z3 � 21z2 þ 40z� 28� m̂2zð4� 3zÞ2p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� m̂2Þz� 1

p :

(3.3)

Scaling f1 ! bf1 is equal to a coordinate transformation

r ! b1=�r and t ! bz=�t, and the sign of f1 is fixed to be
negative in order to be able to match onto an asymptoti-
cally AdS4 solution. Thus f1 ¼ �1 and g1 and h1 are then
uniquely determined by the equations of motion.
Famously, integrating the equations of motion up the

RG-flow outward toward the boundary fails at a finite
distance rs. This is the edge of the electron star. Beyond
the edge of the electron star, there is no fluid present and the
spacetime is that of an AdS4-RN black hole with the metric

f¼c2r2�M̂

r
þ Q̂2

2r2
; g¼c2

f
; h¼ �̂�Q̂

r
: (3.4)

Demanding the full metric is smooth at the radius of

electron star rs determines the constants c, M̂, and Q̂.
The dual field theory is defined on the plane ds2 ¼
�c2dt2 þ dx2 þ dy2.
The specific electron star background we shall choose

without loss of generality is the one with z ¼ 2, m̂ ¼ 0:36
(Fig. 1),5 smoothly matched at rs ’ 4:25252 onto an AdS-
RN black hole.
The CFT fermion spectral functions now follow from

solving the Dirac equation in this background [1,2]�
e
�
A�

A

�
@�þ1

4
!�AB�

AB� iqeffA�

�
�meff

�
�¼0; (3.5)

where qeff and meff in terms of the parameters of the
electron star equal

qeff ¼
�
�2L2�̂

�2

�
1=4

;

meff ¼ qeffm̂ ¼ m̂

�
�2L2�̂

�2

�
1=4

:

(3.6)

In other words, we choose the same mass and charge for
the probe fermion and the constituent fermions of the
electron star.6 For a given electron star background, i.e. a

5This background has c ’ 1:021, M̂ ’ 3:601, Q̂ ’ 2:534, �̂ ’
2:132, �̂ ’ 19:951, g1 ’ 1:887, h1 ¼ 1=

ffiffiffi
2

p
, � ’ �1:626, f1 ¼�1, g1 ’ �0:4457, h1 ’ �0:6445.

6One could of course choose a different probe mass and
charge, corresponding to an extra charged fermion in the system.
However, even though the electron star only cares about the
equation of state, this would probably not be a self-consistent
story as this extra fermion should also backreact.
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fixed �̂, m̂ the fermion spectral function will therefore

depend on the ratio L=�. For L=� � �̂1=2 the poles in
these spectral functions characterize the occupied states in
a many-body gravitational Fermi system that is well ap-
proximated by the electron star. As L=� is lowered for

fixed �̂ the electron star background becomes a poorer and
poorer approximation to the true state and we should see
this reflected in both the number of poles in the spectral
function and their location.

Projecting the Dirac equation onto two-component �r

eigenspinors

�� ¼ ð�ggrrÞ�ð1=4Þe�i!tþikix
i y�
z�

� �
(3.7)

and using isotropy to set ky ¼ 0, one can choose a basis of

Dirac matrices where one obtains two decoupled sets of
two simple coupled equations [1]ffiffiffiffiffiffiffiffiffiffiffiffi

giig
rr

p ð@r 	meff

ffiffiffiffiffiffiffi
grr

p Þy� ¼ 	iðkx � uÞz	; (3.8)

ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p ð@r �meff

ffiffiffiffiffiffiffi
grr

p Þz	 ¼ �iðkx þ uÞy�; (3.9)

where u ¼
ffiffiffiffiffiffiffi
gii
�gtt

q
ð!þ qeffhÞ. In this basis of Dirac matri-

ces the CFT Green’s function G ¼ h �Ocþ i
0Ocþi equals

G ¼ lim
�!0

��2mL
�þ 0

0 ��

 !��������r¼ð1=�Þ
; where �þ ¼ iy�

zþ
;

�� ¼ � iz�
yþ

: (3.10)

Rather than solving the coupled equations (3.8) it is con-
venient to solve for �� directly [1],

ffiffiffiffiffiffiffi
gii
grr

s
@r�� ¼ �2meff

ffiffiffiffiffiffi
gii

p
�� 	 ðkx 	 uÞ � ðkx � uÞ�2�:

(3.11)

For the spectral function A ¼ ImTrGR we are interested
in the retarded Green’s function. This is obtained by
imposing infalling boundary conditions near the horizon
r ¼ 0. Since the electron star is a ‘‘zero-temperature’’
solution this requires a more careful analysis than for a
generic horizon. To ensure that the numerical integration
we shall perform to obtain the full spectral function has the
right infalling boundary conditions, we first solve
Eq. (3.11) to first subleading order around r ¼ 0. There
are two distinct branches. When! � 0 and kxr=!, r2=! is
small, the infalling boundary condition near the horizon
r ¼ 0 is (for z ¼ 2)

�þðrÞ¼ i� i
kxr

!
þ i

ðk2x�2imeff!Þr2
2!2

� i
f1kxr

1��

2!
þ���

��ðrÞ¼ iþ i
kxr

!
þ i

ðk2x�2imeff!Þr2
2!2

þ i
f1kxr

1��

2!
þ��� :

(3.12)

When ! ¼ 0, i.e. kxr=! is large, and r=kx ! 0,

�þðrÞ¼�1þðqeffh1þmeffÞr
kx

þ
�
!

kxr
� !

2
ffiffiffiffiffiffiffi
g1

p
k2x

�
þ���

��ðrÞ¼1þðqeffh1�meffÞr
kx

þ
�
!

kxr
� !

2
ffiffiffiffiffiffiffi
g1

p
k2x

�
þ��� ;

(3.13)

the boundary conditions (3.13) become real. As (3.11) are
real equations, the spectral function vanishes in this case.
This is essentially the statement that all poles in the
Green’s function occur at ! ¼ 0 [17]. The fact that the
electron star ! ¼ 0 boundary conditions (3.11) are real
ensures that there is no ‘‘oscillatory region’’ for k less than
some critical value k < ko in the spectral function as is the
case for pure AdS-RN [1,3,21,22]. We discuss this in detail
in the Appendix.

Numerical results and discussion

We can now solve for the spectral functions numerically.
In Fig. 2 we plot the momentum distribution function
(MDF) (the spectral function as a function of k) for
fixed ! ¼ 10�5, z ¼ 2, m̂ ¼ 0:36 while changing the
value of �. Before we comment on the dependence on

qeff � ��1=2 which studies the deviation away from the
adiabatic limit of a given electron star background
(i.e. fixed dimensionless charge and fixed dimensionless
energy density), there are several striking features that are
immediately apparent:

0 2 4 6 8 10
0.0

0.5

1.0

1.5

r

FIG. 1 (color online). Electron star metric for z ¼ 2, m̂ ¼
0:36, c ’ 1:021, M̂ ’ 3:601, Q̂ ’ 2:534, �̂ ’ 2:132 compared
to pure AdS. Shown are fðrÞ=r2 (blue), r2gðrÞ (red), and hðrÞ
(orange). The asymptotic AdS-RN value of hðrÞ is the dashed
blue line. For future use we have also given�loc ¼ h=

ffiffiffi
f

p
(green)

and �qeff ¼
ffiffiffiffiffiffi
gii

p
h=

ffiffiffi
f

p
(red dashed) At the edge of the star rs ’

4:253 (the intersection of the purple dashed line setting the value
of meff with �loc) one sees the convergence to pure AdS in the
constant asymptotes of fðrÞ=r2 and r2gðrÞ.
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(i) As expected, there is a multitude of Fermi surfaces.
They have very narrow width and their spectral
weight decreases rapidly for each higher Fermi mo-
mentum kF (Fig. 3). This agrees with the exponential

width �� expð�ðkz!Þ1=ðz�1ÞÞ predicted by [23] for

gravitational backgrounds that are Lifshitz in the
deep interior, which is the case for the electron
star. This prediction is confirmed in [12,13,18] and
the latter two papers also show that the weight
decreases in a corresponding exponential fashion.
This exponential reduction of both the width and
the weight as kF increases explains why we only
see a finite number of peaks, though we expect a very
large number. In the next section we will be able to

count the number of peaks, even though we cannot
resolve them all numerically.

(ii) The generic value of kF of the peaks with visible
spectral weight is much smaller than the effective
chemical potential � in the boundary field theory.
This is quite different from the AdS-RN case where
the Fermi momentum and chemical potential are of
the same order. A numerical study cannot answer
this, but the recent paper [13] explains this.7

(iii) Consistent with the boundary value analysis, there
is no evidence of an oscillatory region.

(a)
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(b)
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FIG. 2 (color online). (a) Electron star MDF spectral functions as a function of � for z ¼ 2, m̂ ¼ 0:36, ! ¼ 10�5. Because the peak
height and weights decrease exponentially, we present the adjacent ranges k 2 ½0:017; 0:019� and k 2 ½0:019; 0:021� in two different
plots with different vertical scale. (b, c) Locations of peaks of spectral functions as a function of �: comparison between the electron
star (b) for z ¼ 2, m̂ ¼ 0:36, ! ¼ 10�5 [the dashed gray line denotes the artificial separation in the three-dimensional representations
in (a)] and AdS-RN (c) for m ¼ 0 as a function of q in units where � ¼ ffiffiffi

3
p

These two Fermi-surface ‘‘spectra’’ are qualitatively
similar.

7In view of the verification of the Luttinger count for electron
star spectra in [12,13], this had to be so.
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The most relevant property of the spectral functions for
our question is that as � is increased the peak location
kF decreases orderly and peaks disappear at various
threshold values of k. This is the support for our argument
that changing � changes the number of microscopic
constituents in the electron star. Comparing the behavior
of the various Fermi momenta kF in the electron star with
the results in the extremal AdS-RN black hole, they are

qualitatively identical when one equates ��1=2 � qeff with
the charge of the probe fermion. We may therefore infer
from our detailed understanding of the behavior of kF for
AdS-RN that also for the electron star as kF is lowered
peaks truly disappear from the spectrum until by extrapo-
lation ultimately one remains: this is the AdS Dirac hair
solution [4].

We can only make this inference qualitatively as the
rapid decrease in spectral weight of each successive peak
prevents an exact counting of Fermi surfaces in the nu-
merical results for the electron star spectral functions. One
aspect that we can already see is that as � decreases all
present peaks shift to higher k, while new peaks emerge
from the left for smaller kappa. This suggests a fermionic
version of the UV/IR correspondence, where the peak with
lowest kF corresponds to the last occupied level, i.e. high-
est ‘‘energy’’ in the AdS electron star. We will now address
both of these points in more detail.

IV. FERMI SURFACE ORDERING: kF FROM
A SCHRÖDINGER FORMULATION

Our analysis of the behavior of boundary spectral func-
tions as a function of � relies on the numerically quite
evident peaks. Strictly speaking, however, we have not
shown that there is a true singularity in the Green’s func-
tion at ! ¼ 0, k ¼ kF. We will do so by showing that the

AdS Dirac equation, when recast as a Schrödinger prob-
lem, has quasinormalizable solutions at ! ¼ 0 for various
k. As is well known, in AdS/CFT each such solution
corresponds to a true pole in the boundary Green’s func-
tion. Using a WKB approximation for this Schrödinger
problem we will in addition be able to estimate the number
of poles for a fixed � and thereby provide a quantitative
value for the deviation from the adiabatic background.
We wish to emphasize that the analysis here is general

and captures the behavior of spectral functions in all
spherically symmetric and static backgrounds alike,
whether AdS-RN, Dirac hair, or electron star.
The ! ¼ 0 Dirac equation (3.5) for one set of compo-

nents (3.8) and (3.9) with the replacement iy� ! y�,
equalsffiffiffiffiffiffiffiffiffiffiffiffi

giig
rr

p
@ry� þmeff

ffiffiffiffiffiffi
gii

p
y� ¼ �ðk� �̂qeff

Þzþ;ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p

@rzþ �meff

ffiffiffiffiffiffi
gii

p
zþ ¼ �ðkþ �̂qeff

Þy�;
(4.1)

where �̂qeff
¼

ffiffiffiffiffiffiffi
gii
�gtt

q
qeffAt and we will drop the subscript x

on kx. In our conventions zþ (and yþ) is the fundamental
component dual to the source of the fermionic operator in
the CFT [1,2]. Rewriting the coupled first-order Dirac
equations as a single second-order equation for zþ,

@2rzþ þ P@rzþ þQzþ ¼ 0;

P ¼ @rðgiigrrÞ
2giig

rr � @r�̂qeff

kþ �̂qeff

;

Q ¼ �meff@r
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p þmeff

ffiffiffiffiffiffiffi
grr

p
@r�̂qeff

kþ �̂qeff

�m2
effgrr

� k2 � �̂2
qeff

giig
rr ;

(4.2)

the first thing one notes is that both P and Q diverge at
some r ¼ r
, where �̂qeff

þ k ¼ 0. Since �̂qeff
is (chosen to

be) a positive semidefinite function which increases from
�̂qeff

¼ 0 at the horizon, this implies that for negative k

(with �k < �̂qeff
j1) the wave function is qualitatively

different from the wave function with positive k which
experiences no singularity. The analysis is straightforward
if we transform the first derivative away and recast it in the
form of a Schrödinger equation by redefining the radial
coordinate,

ds

dr
¼ exp

�
�
Z r

dr0P
�
) s ¼ c0

Z r

r1
dr0

jkþ �̂qeff
jffiffiffiffiffiffiffiffiffiffiffiffi

giig
rr

p ;

(4.3)

where c0 is an integration constant whose natural scale is of
order c0 � q�1

eff . This is a simpler version of the generalized

k-dependent tortoise coordinate introduced in [3]. In the
new coordinates the equation (4.2) is of the standard form,

@2szþ � VðsÞzþ ¼ 0 (4.4)
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FIG. 3 (color online). Electron star MDF spectral functions
with multiple peaks as a function of k for! ¼ 10�5, z ¼ 2, m̂ ¼
0:36. The blue curve is for � ¼ 0:091; the red curve is for � ¼
0:090. Note that the vertical axis is logarithmic. Visible is the
rapidly decreasing spectral weight and increasingly narrower
width for each successive peak as kF increases.
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with potential

VðsÞ ¼ � giig
rr

c20jkþ �̂qeff
j2 Q: (4.5)

The above potential (4.5) can also be written as

VðsÞ ¼ 1

c20ðkþ �̂qeff
Þ2
�
ðk2 þm2

effgii � �̂2
qeff

Þ

þmeffgii
ffiffiffiffiffiffiffi
grr

p
@r ln

ffiffiffiffiffiffi
gii

p
kþ �̂qeff

�
: (4.6)

We note again the potential singularity for negative k,
but before we discuss this we first need the boundary
conditions. The universal boundary behavior is at spatial
infinity and follows from the asymptotic AdS geometry. In
the adapted coordinates r ! 1 corresponds to s ! 0 as
follows from ds=dr ’ c0ðkþ �̂qeff

j1Þ=r2. The potential

therefore equals

VðsÞ ’ 1

s2
ðmeff þm2

effÞ þ � � � (4.7)

and the asymptotic behavior of the two independent solu-
tions equals zþ ¼ a1s

�meff þ b1s
1þmeff þ � � � . The second

solution is normalizable and we thus demand a1 ¼ 0.
In the interior, the near-horizon geometry generically is

Lifshitz

ds2 ¼ �r2zdt2 þ 1

r2
dr2 þ r2ðdx2 þ dy2Þ þ � � � ;

A ¼ h1rzdtþ � � � ;
(4.8)

with finite dynamical critical exponent z—AdS-RN, which
can be viewed as a special case, where z ! 1, will be
given separately. In adapted coordinates the interior r ! 0
corresponds to s ! �1 and it is easy to show that in this
limit potential behaves as

VðsÞ ’ 1

c20
þ 1

s2
ðmeff

ffiffiffiffiffiffiffi
g1

p þm2
effg1 � h21q2effg1Þ þ � � � :

(4.9)

Near the horizon the two independent solutions for the
wave function zþ therefore behave as

zþ ! a0e
�s=c0 þ b0e

s=c0 : (4.10)

The decaying solution a0 ¼ 0 is the normalizable solution
we seek.
Let us now address the possible singular behavior for

k < 0. To understand what happens, let us first analyze the
potential qualitatively for positive k. Since the potential is
positive semidefinite at the horizon and the boundary, the
Schrödinger system (4.4) only has a zero-energy normal-
izable solution if VðsÞ has a range s1 < s < s2, where it is

negative. This can only occur at locations where k2 <

�̂2
qeff

�m2
effgii �meffgii

ffiffiffiffiffiffiffi
grr

p
@r ln

ffiffiffiffi
gii

p
kþ�̂qeff

. Defining a ‘‘re-

normalized’’ position dependent mass m2
ren ¼ m2

effgii þ
meffgii

ffiffiffiffiffiffiffi
grr

p
@r ln

ffiffiffiffi
gii

p
kþ�̂qeff

this is the intuitive statement that

the momenta must be smaller than the local chemical
potential k2 < �̂2

qeff
�m2

ren. For positive k the saturation

of this bound k2 ¼ �̂2
qeff

�m2
ren has at most two solutions,

which are regular zeroes of the potential. This follows from
the fact that �̂2

qeff
decreases from the boundary toward the

interior. If the magnitude jkj is too large the inequality
cannot be satisfied, the potential is strictly positive, and no
solution exists. For negative k, however, the potential has
in addition a triple pole at k2 ¼ �̂2

qeff
; two poles arise from

the prefactor and the third from the meff@r lnðkþ �̂qeff
Þ

term. This pole always occurs closer to the horizon than the
zeroes and the potential therefore qualitatively looks like
that in Fig. 4. (Since �̂qeff

decreases as we move inward

from the boundary, starting with �̂2
qeff

> �̂2
qeff

��2 > k2,

one first saturates the inequality that gives the zero in the
potential as one moves inward.) Such a potential cannot
support a zero-energy bound state, i.e. Eq. (4.4) has no
solution for negative k. In the case meff ¼ 0 a double zero
changes the triple pole to a single pole and the argument
still holds. This does not mean that there are no k < 0 poles

(a)

V s

(b)

V s

FIG. 4 (color online). The behavior of the Schrödinger potential VðsÞ for zþ when k is negative. Such a potential has no zero-energy
bound state. The potential is rescaled to fit on a finite range. As jkj is lowered below kmax for which the potential is strictly positive, a
triple pole appears which moves toward the horizon on the left (a). The blue, red, orange, and green curves are decreasing in jkj). The
pole hits the horizon for k ¼ 0 and disappears. (b) shows the special casemeff ¼ 0where two zeroes collide with two of the triple poles
to form a single pole.
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in the CFT spectral function. They arise from the other
physical polarization yþ of the bulk fermion �. From the
second set of decoupled first-order equations for the
other components of the Dirac equation (after replacing
iz� ! z�)ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p

@ryþ �meff

ffiffiffiffiffiffi
gii

p
yþ ¼ �ðk� �̂qeff

Þz�;ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p

@rz� þmeff

ffiffiffiffiffiffi
gii

p
z� ¼ �ðkþ �̂qeff

Þyþ;
(4.11)

and the associated second-order differential equation of
motion for yþ,

@2ryþ þ P@ryþ þQ ¼ 0;

P ¼ @rðgiigrrÞ
2giig

rr � @r�̂qeff

�kþ �̂qeff

;

Q ¼ �meff@r
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p þmeff

ffiffiffiffiffiffiffi
grr

p
@r�̂qeff

�kþ �̂qeff

�m2
effgrr

� k2 � �̂2
qeff

giig
rr ;

(4.12)

one sees that the Schrödinger equation for yþ is the
k ! �k image of the equation (4.4) for zþ and thus
yþ will only have zero-energy solutions for k < 0. For
simplicity we will only analyze the zþ case. Note that
this semipositive definite momentum structure of the poles
is a feature of any AdS-to-Lifshitz metric different from
AdS-RN, where one can have negative k solutions [3].

The exact solution of (4.4) with the above boundary
conditions corresponding to poles in the CFT spectral
function is difficult to find. By construction the system is
however equivalent to a Schrödinger problem of finding a
zero-energy solution zþ in the potential (4.5) and can be
solved in the WKB approximation (see e.g. [3,24]). The

WKB approximation holds when j@sVj � jVj3=2. Notice
that this is more general than the background adiabaticity

limit meff � 1, qeff � 1 with �̂, m̂ fixed. Combining
background adiabaticity with a scaling limit k � 1,
meff � 1, qeff � 1 with c0k fixed and k parametrically
larger than �̂qeff

, one recovers the WKB potential solved in

[12,13]. As our aim is to study the deviation away from the
background adiabatic limit we will be more general and
study the WKB limit of the potential itself, without direct
constraints on qeff , meff . And rather than testing the in-

equality j@sVj � jVj3=2 directly, we will rely on the rule of
thumb that the WKB limit is justified when the number of
nodes in the wave function is large. We will therefore
estimate the number n of bound states and use n � 1 as
an empirical justification of our approach.8 With this cri-
terion we will be able to study the normalizable solutions

to the Dirac equation/pole structure of the CFT spectral
functions as a function of �=L.
The potential is bounded both in the AdS boundary and

at the horizon, and decreases toward intermediate values
of r. We therefore have a standard WKB solution consist-
ing of three regions:
(i) In the regions where V > 0, the solution decays

exponentially,

zþ¼c1;2V
�1=4exp

�
�
Z r

r1;2

dr0½c0
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
ðkþ�̂qeff

Þ ffiffiffiffi
V

p �
�
:

(4.13)

Here r1, r2 are the turning points where Vðr1Þ ¼ 0 ¼
Vðr2Þ.

(ii) In the region r1 < r < r2, i.e. V < 0, the solution is

zþ¼c3ð�VÞ�1=4Re

�
exp

�
i
Z r

r1

dr0½c0
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
ðkþ�̂qeff

Þ

� ffiffiffiffiffiffiffiffi�V
p ��i�=4

��
; (4.14)

with the constant phase �i�=4 originating in the
connection formula at the turning point r1.

Finding a WKB solution shows us that the peaks seen
numerically are true poles in the spectral function. But it
also allows us to estimate the number of peaks that the
numerical approach could not resolve. The WKB quanti-
zation conditionZ r2

r1

dr0½c0
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
ðkþ�̂qeff

Þ ffiffiffiffiffiffiffiffi�V
p �¼�ðnþ1=2Þ (4.15)

counts the number of bound states with negative semi-
definite energy. Note that n does not depend on the integral

constant as there is also a factor 1=c0 in
ffiffiffiffiffiffiffiffi�V

p
. Since V

depends on k, we will see that as we increase k this number
decreases. The natural interpretation in the context of a
bulk many-body Fermi system is that this establishes the
ordering of the filling of all the! ¼ 0momentum shells in
the electron star. For a fixed k one counts the modes that
have been previously occupied and, consistent with our
earlier deduction, the lowest/highest kF corresponds to the
last/first occupied state. Though counterintuitive from a
field theory perspective where normally E� kF, this UV/
IR correspondence is very natural from the AdS bulk, if
one thinks of the electron star as a trapped electron gas.
The last occupied state should then be the outermost state
from the center, but this state has the lowest effective
chemical potential and hence lowest kF.
Let us now show this explicitly by analyzing the poten-

tial and the bound states in the electron star and the AdS-
RN case can be found in the Appendix.
The potential (4.6) for the electron star is given in Fig. 5

and the number of bound states as a function of k in Fig. 6.
As stated the number of states decreases with increasing k,
consistent with the analogy of the pole distribution of the

8A large number of bound states n implies j@sVj � jVj3=2 if
the potential has a single minimum but as is well known there are
systems, e.g. the harmonic oscillator, where the WKB approxi-
mation holds for small n as well.
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spectral functions compared with AdS-RN. Moreover, we
clearly see the significant increase in the number of states
as we decrease �=L thereby improving the adiabaticity of
the background. This vividly illustrates that the adiabatic
limit corresponds to a large number of constituents. As all
numbers of states are far larger than 1, the use of the WKB
is justified. From the trend that dialing �=L up there will be
fewer Fermi surfaces one can conjecture that the Dirac hair
has only one Fermi surface and it was shown in [5] that this
is indeed the case.

V. CONCLUSION AND DISCUSSION

These electron star spectral function results directly
answer two of the three questions raised in the introduc-
tion.

(i) They show explicitly how the fermion wave func-
tions in their own gravitating potential well are
ordered despite the fact that they all have strictly
vanishing energy: In a fermionic version of the UV-
IR correspondence they are ordered inversely in k,
with the ‘‘lowest’’/first occupied state having the
highest k and the ‘‘highest’’/last occupied state hav-
ing the lowest k. With the qualitative AdS/CFT

understanding that scale corresponds to distance
away from the interior, one can intuitively picture
this as literally filling geometrical shells of the elec-
tron star, with the outermost/highest/last shell at
large radius corresponding to the wave function
with lowest local chemical potential and hence
lowest k.

(ii) The decrease of the number of bound states—the
number of occupied wave functions in the electron

star—as we decrease qeff ¼ �̂1=4
ffiffiffiffiffi
�L
�

q
for a fixed

electron star background extrapolates naturally to
a limit where the number of bound states is unity.
This extrapolation pushes the solution beyond its
adiabatic regime of validity. In principle we know
what the correct description in this limit is: it is the
AdS Dirac hair solution constructed in [4]. The
dependence of the number of bound states on �=L
therefore illustrates that the electron star and Dirac
hair solutions are two limiting cases of the gravita-
tionally backreacted Fermi gas.

With this knowledge we can schematically classify the
ground state solutions of AdS Einstein-Maxwell gravity
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FIG. 5 (color online). The Schrödinger potential VðsÞ for the fermion component zþ of in the electron star (ES) background m̂ ¼
0:36, z ¼ 2, c0 ¼ 0:1. (a) shows the dependence on the momentum k ¼ 0:0185 (purple), k ¼ 5 (blue), k ¼ 10 (red) for � ¼ 0:092. (b)
shows the dependence on � ¼ 0:086 (purple), � ¼ 0:092 (blue), � ¼ 0:1 (red) for k ¼ 0:0185. Recall that s ¼ 0 is the AdS boundary
and s ¼ �1 is the near-horizon region.
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FIG. 6 (color online). The WKB estimate of the number of bound states n as a function of the momentum k for � ¼ 0:086 (purple),
0.092 (blue), 0.1 (red) (a); for � ¼ 0:001 (purple), 0.002 (blue), 0.003 (red) (b); and for � ¼ 10�5 (purple), 3� 10�5ð (blue), 5� 10�5

(red) (c). Note the parametric increase in number of states as the adiabaticity of the background improves for smaller �. These three
panels are for the electron star background with m̂ ¼ 0:36, z ¼ 2. Since n � 1 in all cases, WKB gives a valid estimate.
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minimally coupled to charged fermions at finite charge
density.9 For large mass mL in units of the constituent
charge q, the only solution is a charged AdS-Reissner-
Nördstrom black hole. For a low enough mass-to-charge
ratio, the black hole becomes unstable and develops hair. If
in addition the total charge density Q is of the order of the
microscopic charge q this hairy solution is the Dirac hair
configuration constructed in [4], whereas in the limit of
large total charge density Q one can make an adiabatic
Thomas-Fermi approximation and arrive à la Tolman-
Oppenheimer-Volkov at an electron star (Fig. 7).

Translating this solution space through the AdS/CFT
correspondence one reads off that in the dual strongly
coupled field theory, one remains in the critical state if
the ratio of the scaling dimension to the charge �=q is
too large. For a small enough value of this ratio, the critical
state is unstable and forms a novel scaleful ground state.
The generic condensed matter expectation of a unique
Fermi liquid is realized if the total charge density is of
the same order as the constituent charge. Following [12–16]
the state for Q � q is some deconfined Fermi liquid.

The gravity description of either limit has some defi-
ciencies, most notably the lack of an electron star wave
function at infinity and the unnatural restriction to Q ¼ q
for the Dirac hair solution. A generic solution for Q � q
with wave function tails extending to infinity as the Dirac
hair would be a more precise holographic dual to the
strongly interacting large N Fermi system. Any CFT in-
formation can then be cleanly read off at the AdS bound-
ary. A naive construction could be to superpose Dirac hair
onto the electron star; in principle one can achieve this

solution by a next-order Hartree-Fock or local density
approximation computation.
This best-of-both-worlds generic solution ought to be

the true holographic dual of the strongly interacting Fermi
ground state. If one is able to answer convincingly how this
system circumvents the wisdom that the ground state of an
interacting many-body system of fermions is a generic
single quasiparticle Landau Fermi liquid, then one would
truly have found a finite density Fermi system that does not
refer at any stage to an underlying perturbative Fermi gas.
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APPENDIX: SCHRÖDINGER ANALYSIS IN THE
REISSNER-NORDSTRÖM CASE

For AdS-RN the Schrödinger analysis requires a sepa-
rate discussion of the near-horizon boundary conditions,
which we present here for completeness and comparison.
The reason is that for AdS-RN there is a special scale ko
below which the boundary condition turns complex
(Eq. (26) in [1]). This scale ko is related to the surprising
existence of an oscillatory region in the spectral function.
For k > ko the boundary conditions are real as they are for
the electron star for all k. AdS-RN boundary conditions are
therefore qualitatively different from electron star spectral
functions, but only for k < ko. This difference is not

FIG. 7 (color online). Schematic diagram of the different ground state solutions of strongly coupled fermions implied by holography
for fixed charge density Q. Here q is the constituent charge of the fermions and mL�� the mass/conformal scaling dimension of the
fermionic operator. One has the gravitational electron star (ES)/Dirac hair (DH) solution for large/small Q=q and small mL=q dual a
deconfined Fermi liquid/regular Fermi liquid in the CFT. For mL=q��=q large the ground state remains the fermionic quantum
critical state dual to AdS-RN.

9One should always keep in mind that the setup under study
here is phenomenological in nature; a full string theory embed-
ding might introduce other fields which could prevent the
electron star or Dirac hair from being the true ground state of
the system.
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relevant to the analogy between electron star spectral
functions and the distinct poles in the AdS-RN spectral
function in Fig. 2 as the latter only occur for k > ko. Part of
this analysis is originally worked out in [3].

The AdS-RN black hole with metric

ds2 ¼ L2

�
�fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ
�
; (A1)

fðrÞ ¼ r2
�
1þ 3

r4
� 4

r3

�
; (A2)

A ¼ �

�
1� 1

r

�
dt; (A3)

has near-horizon geometry AdS2 � R2

ds2 ¼ �6ðr� 1Þ2dt2 þ dr2

6ðr� 1Þ2 þ ðdx2 þ dy2Þ; (A4)

A ¼ ffiffiffi
3

p ðr� 1Þdt: (A5)

A coordinate redefinition of r in Eq. (4.8) to r¼
ðrAdS2 �1Þ1=z shows that this corresponds to a dynamical

critical exponent z ¼ 1 and is outside the validity of the
previous analysis.

Before we proceed, recall that the existence of
AdS2 � R2 near-horizon region allows for a semianalytic
determination of the fermion spectral functions with the

self-energy ��!2�kF controlled by the IR conformal
dimension �k ¼ 1=2þ �k with

�k ¼ 1ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2 � q2

2

s
: (A6)

When �k is imaginary, which for q2 > 2m2 always happens
for small k, the spectral function exhibits oscillatory be-
havior, but generically has finite weight at! ¼ 0. When �k

is real, there are poles in the spectral functions at a finite

number of different Fermi momenta kF. The associated
quasiparticles can characterize a non-Fermi liquid
(�kF < 1=2), a marginal Fermi liquid (�kF ¼ 1=2), or ir-

regular Fermi liquid (�kF > 1=2) with linear dispersion but

width � � !2 [3].
The analytic form of the near-horizon metric allows us

to solve exactly for the near-horizon potential V in terms of

s ¼ c0ffiffi
6

p ðkþ q=
ffiffiffi
2

p Þ lnðr� 1Þ þ � � � . As noted in [3] one

remarkably obtains that the near-horizon potential for
s ! �1 is proportional to the self-energy exponent,
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FIG. 8 (color online). The Schrödinger potential VðsÞ for the fermion component zþ in the AdS-RN background rþ ¼ 1, � ¼ ffiffiffi
3

p
,

gF ¼ 1, mL ¼ 0:4, c0 ¼ 0:1. (a) shows the dependence on the momentum k ¼ 1 (red), k ¼ 2 (purple), k ¼ 3 (blue) for charge q ¼
2:5. (b) shows the dependence on the charge q—analogous to � in the ES background. Shown are the values q ¼ 2 (blue), q ¼ 2:5
(purple), q ¼ 3 (red) for the momentum k ¼ 2. In both panels, the red potentials correspond to the oscillatory region �2

k < 0, the purple
potentials show the generic shape that can support an ! ¼ 0 bound state, and the blue potentials are strictly positive and no zero-
energy bound state is present. Recall that s ¼ 0 is the AdS boundary and s ¼ �1 is the near-horizon region.

VRN s

FIG. 9 (color online). The qualitative behavior for negative k
of the Schrödinger potential VðsÞ for the fermion component zþ
of the AdS-RN background rþ ¼ 1, � ¼ ffiffiffi

3
p

, gF ¼ 1, mL ¼
0:1. The radial coordinate has been rescaled to a finite domain
such that the full potential can be represented in the figure; on the
right is the AdS boundary and left is the near-horizon region and
the range is slightly extended beyond the true horizon, which is
exactly at the short vertical line-segments on the right. Potentials
are given for q ¼ 12=

ffiffiffi
3

p
, with different values of k. For k ¼

�15 (blue), the potential is strictly positive. For k ¼ �10
(purple) and k ¼ �7 (orange), both of their potentials have
triple poles and the pole can be seen to move toward the horizon
on the left as k decreases. For k ¼ �4 (green), the potential has
no pole and reaches a finite negative value at the horizon. The
pole disappears for jkj< q=

ffiffiffi
2

p
leaving a regular bounded po-

tential which can support zero-energy bound states.
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VðsÞ ’ 6

c20ðkþ q=
ffiffiffi
2

p Þ2 �
2
k þ � � � : (A7)

One immediately recognizes the oscillatory region �2
k < 0

of the spectral function as an ! ¼ 0 Schrödinger potential
which is ‘‘free’’ at the horizon s ¼ �1 (Fig. 8) and no
bound state can form. Comparing with our previous results,
we see that this oscillatory region is a distinct property of
AdS-RN. For any Lifshitz near-horizon metric the poten-
tial is always positive-definite near the horizon and all
! ¼ 0 solutions will be bounded (see also [12,13]). As
we increase k, �2

k becomes positive, then the AdS-RN

potential is also positive at the horizon and bound zero-
energy states can form. Increasing k further, one reaches a
maximal kmax, above which the potential is always positive
and no zero-energy bound state exists anymore.

Because the near-horizon boundary conditions for AdS-
RN differ from the general analysis, the possible singular-
ity in the potential for k < 0 also requires a separate study.
This is clearly intimately tied to the existence of an oscil-
latory regime in the spectral function, as the previous
analysis does apply for �2

k > 0. The clearest way to under-

stand what happens for �2
k < 0 is to analyze the potential

explicitly. Again if jkj> kmax the potential is strictly
positive-definite, and no zero-energy bound state exists.
As we decrease the magnitude of k < 0, a triple pole will
form near the boundary when k ¼ ��̂qeff

ðsÞ, soon fol-

lowed by a zero at k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂qeff

ðsÞ2 �mrenðsÞ2
q

(see

Fig. 4). As we approach the horizon, in the general case
where limr!0�̂qeff

¼ h1qeffrþ � � � , this pole at r
 ¼
�k=ðh1qeffÞ hits the horizon and disappears precisely

when k ¼ 0. In AdS-RN, however, where limr!1�̂qeff
¼

qffiffi
2

p þ
ffiffi
2

p
q

3 ðr� 1Þ þ � � � , the pole at rRN
 � 1 ¼ 3ffiffi
2

p
q
ðkþ qffiffi

2
p Þ

hits the horizon and disappears at k ¼ � qffiffi
2

p . For negative

values of k whose magnitude is less than jkj< qffiffi
2

p , the

potential is regular and bounded and can and does have
zero-energy solutions. Figure 9 shows this disappearance
of the pole for the AdS-RN potential.
Counting solutions through WKB is also more compli-

cated for AdS-RN. ForOð1Þ values of q there are only few
Fermi surfaces and the WKB approximation does not
apply. For large q it does, however. For completeness we
show the results in Fig. 10.
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1 Introduction

Fermionic quantum criticality is thought to be an essential ingredient in the full theory
of high Tc superconductivity [1, 2]. The cleanest experimental examples of quantum criti-
cality occur in heavy-fermion systems rather than high Tc cuprates, but the experimental
measurements in heavy fermions raise equally confounding theoretical puzzles [3]. Most
tellingly, the resistivity scales linearly with the temperature from the onset of supercon-
ductivity up to the crystal melting temperature [4] and this linear scaling is in conflict
with single correlation length scaling at criticality [5]. The failure of standard perturbative
theoretical methods to describe such behavior is thought to indicate that the underlying
quantum critical system is strongly coupled [6, 7].

The combination of strong coupling and scale-invariant critical dynamics makes these
systems an ideal arena for the application of the AdS/CFT correspondence: the well-
established relation between strongly coupled conformal field theories (CFT) and gravita-
tional theories in anti-de Sitter (AdS) spacetimes. An AdS/CFT computation of single-
fermion spectral functions — which are directly experimentally accessible via Angle-
Resolved Photoemission Spectroscopy [8–10] — bears out this promise of addressing
fermionic quantum criticality [11–15] (see also [16, 17]). The AdS/CFT single fermion
spectral function exhibits distinct sharp quasiparticle peaks, associated with the forma-
tion of a Fermi surface, emerging from a scale-free state. The fermion liquid which this
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Fermi surface captures is generically singular: it has either a non-linear dispersion or non-
quadratic pole strength [11, 13]. The precise details depend on the parameters of the
AdS model.

From the AdS gravity perspective, peaks with linear dispersion correspond to the ex-
istence of a stable charged fermionic quasinormal mode in the spectrum of a charged AdS
black hole. The existence of a stable charged bosonic quasinormal mode is known to signal
the onset of an instability towards a new ground state with a pervading Bose condensate
extending from the charged black hole horizon to the boundary of AdS. The dual CFT
description of this charged condensate is spontaneous symmetry breaking as in a super-
fluid and a conventional superconductor [18–21]. For fermionic systems empirically the
equivalent robust T = 0 ground state is the Landau Fermi Liquid — the quantum ground
state of a system with a finite number of fermions. The existence of a stable fermionic
quasinormal mode suggests that an AdS dual of a finite fermion density state exists.

Here we shall make a step towards the set of AdS/CFT rules for CFTs with a finite
fermion density. The essential ingredient will be Migdal’s theorem, which relates the char-
acteristic jump in fermion occupation number at the energy ωF of the highest occupied
state to the pole strength of the quasiparticle. The latter we know from the spectral func-
tion analysis and its AdS formulation is therefore known. Using this, we can show that
the fermion number discontinuity is encoded in the probability density of the normalizable
wavefunction of the dual AdS fermion field.

This shows that the AdS dual of a Fermi liquid is given by a system with occupied
fermionic states in the bulk. The Fermi liquid is clearly not a scale invariant state, but any
such states will have energy, momentum/pressure and charge and will change the interior
geometry from AdS to something else. Which particular (set of) state(s) is the right one,
it does not yet tell us, as this conclusion relies only on the asymptotic behavior of fermion
fields near the AdS boundary. Here we shall take the simplest such state: a single fermion.1

Constructing first a set of equations in terms of the spatially averaged density, we find the
associated backreacted asymptotically AdS solution. This approximate solution is already
good enough to solve several problems of principle:

• A charged AdS black hole in the presence of charged fermionic modes has a criti-
cal temperature below which fermionic Dirac “hair” forms. For our effective single
fermion solution, the derivative of the free energy has the characteristic discontinu-
ity of a first order transition. In AdS/CFT this has to be the case: In contrast to
bosonic quasinormal modes, a fermionic quasinormal mode can never cause a linear
instability indicative of a continuous phase transition. In the language of spectral
functions, the pole of the retarded Green’s function can never cross to the upper-half
plane [13].2 The absence of a perturbative instability between this conjectured Dirac
“black hole hair” solution and the “bald” charged AdS black hole can be explained
if the transition is a first order gas-liquid transition. The existence of first order
transition follows from a thermodynamic analysis of the free energy rather than a
spectral analysis of small fluctuations.

1These solutions are therefore the AdS extensions of [22–25].
2Ref. [41] argues that the instability can be second order.
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• This solution with finite fermion profile is the preferred ground state at low tem-
peratures compared to the bare charged AdS black hole. The latter is therefore a
false vacuum in a theory with charged fermions. Confusing a false vacuum with
the true ground state can lead to anomalous results. Indeed the finite temperature
behavior of fermion spectral functions in AdS Reissner-Nordström, exhibited in the
combination of the results of [11, 13] and [12], shows strange behavior. The for-
mer [11, 13] found sharp quasiparticle peaks at a frequency ωF = 0 in natural AdS
units, whereas the latter [12] found sharp quasiparticle peaks at finite Fermi energy
ωF 6= 0. As we will show, both peaks in fact describe the same physics: the ωF 6= 0
peak is a finite temperature manifestation of (one of the) ω = 0 peaks in [13]. Its
shift in location at finite temperature is explained by the existence of the nearby true
finite fermion density ground state, separated by a potential barrier from the AdS
Reissner-Nordström solution.

• The solution we construct here only considers the backreaction on the electrostatic
potential. We show, however, that the gravitational energy density diverges at the
horizon. This ought to be, as one expects the infrared geometry to change due to
fermion profile. The charged AdS-black hole solution corresponds to a CFT system
in a state with large ground state entropy. This is the area of the extremal black-hole
horizon at T = 0. Systems with large ground-state entropy are notoriously unstable
to collapse to a low-entropy state, usually by spontaneous symmetry breaking. In
a fermionic system it should be the collapse to the Fermi liquid. The final state
will generically be a geometry that asymptotes to Lifschitz type, i.e. the background
breaks Lorentz-invariance and has a double-pole horizon with vanishing area, as ex-
pounded in [26]. Indeed the gravitational energy density diverges at the horizon in
a similar way as other systems that are known to gravitationally backreact to a Lif-
shitz solution. The fully backreacted geometry includes important separate physical
aspects — it is relevant to the stability and scaling properties of the Fermi liquid —
and will be considered in a companion article.

The Dirac hair solution thus captures the physics one expects of the dual of a Fermi
liquid. We have based its construction on a derived set of AdS/CFT rules to describe
systems at finite fermion density. Qualitatively the result is as expected: one also needs
occupied fermionic states in the bulk. Next to our effective single fermion approximation,
another simple candidate is the backreacted AdS-Fermi-gas [26]/electron star [27] which
appeared during the course of this work.3 The difference between the two approaches are
the assumptions used to reduce the interacting Fermi system to a tractable solution. Ideally,
one should carefully track all the fermion wavefunctions as in the recent article [38]. As
explained in [31] the Fermi-gas and the single Dirac field are the two “local” approximations
to the generic non-local multiple fermion system in the bulk, in very different regimes of
applicability. The electron-star/Fermi-gas is considered in the Thomas-Fermi limit where
the microscopic charge of the constituent fermions is sent to zero keeping the overall charge

3See also [28, 29]. An alternative approach to back-reacting fermions is [30].
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fixed, whereas the single Dirac field clearly is the ‘limit’ where the microscopic charge equals
the total charge in the system. This is directly evident in the spectral functions of both
systems. The results presented here show that each pole in the CFT spectral function
corresponds to a unique occupied Fermi state in the bulk; the electron star spectra show
a parametrically large number of poles [31–33], whereas the Dirac hair state has a single
quasiparticle pole by construction. The AdS-Dirac-hair black hole derived here therefore
has the benefit of a direct connection with a unique Fermi liquid state in the CFT. This is
in fact the starting point of our derivation.

In the broader context, the existence of both the Dirac hair and backreacted Fermi
gas solution is not a surprise. It is a manifestation of universal physics in the presence of
charged AdS black holes. The results here, and those of [11, 13, 26, 27], together with the
by now extensive literature on holographic superconductors, i.e. Bose condensates, show
that at sufficiently low temperature in units of the black-hole charge, the electric field
stretching to AdS-infinity causes a spontaneous discharge of the bulk vacuum outside of
the horizon into the charged fields of the theory — whatever their nature. The positively
charged excitations are repelled by the black hole, but cannot escape to infinity in AdS and
they form a charge cloud hovering over the horizon. The negatively charged excitations
fall into the black-hole and neutralize the charge, until one is left with an uncharged black
hole with a condensate at finite T or a pure asymptotically AdS-condensate solution at
T = 0. As [26, 27] and we show, the statistics of the charged particle do not matter for
this condensate formation, except in the way it forms: bosons superradiate and fermions
nucleate. The dual CFT perspective of this process is “entropy collapse”. The final state
therefore has negligible ground state entropy and is stable. The study of charged black holes
in AdS/CFT is therefore a novel way to understand the stability of charged interacting
matter which holds much promise.

2 From Green’s function to AdS/CFT rules for a Fermi liquid

We wish to show how a solution with finite fermion number — a Fermi liquid — is encoded
in AdS. The exact connection and derivation will require a review of what we have learned
of Dirac field dynamics in AdS/CFT through Green’s functions analysis. The defining
signature of a Fermi liquid is a quasi-particle pole in the (retarded) fermion propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (2.1)

Phenomenologically a non-zero residue at the pole, Z, also known as the pole strength,
is the indicator of a Fermi liquid state. Migdal famously related the pole strength to the
occupation number discontinuity at the pole ω = 0.

Z = lim
ε→0

[nF (ω − ε)− nF (ω + ε)] (2.2)

where
nF (ω) =

∫
d2kfFD

(ω
T

)
ImGR(ω, k).
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with fFD the Fermi-Dirac distribution function. Vice versa, a Fermi liquid with a Fermi-
Dirac jump in occupation number at the Fermi energy ωF = 0 has a low-lying quasiparticle
excitation. Using our knowledge of fermionic spectral functions in AdS/CFT we shall first
relate the pole-strength Z to known AdS quantities. Then using Migdal’s relation, the dual
of a Fermi liquid is characterized by an asymptotically AdS solution with non-zero value
for these very objects.

The Green’s functions derived in AdS/CFT are those of charged fermionic operators
with scaling dimension ∆, dual to an AdS Dirac field with mass m = ∆ − d

2 . We shall
focus on d = 2 + 1 dimensional CFTs. In its gravitational description this Dirac field is
minimally coupled to 3 + 1 dimensional gravity and electromagnetism with action

S =
∫
d4x
√
−g
[

1
2κ2

(
R+

6
L2

)
− 1

4
F 2
MN − Ψ̄(/D +m)Ψ

]
. (2.3)

For zero background fermions, Ψ = 0, a spherically symmetric solution is a charged AdS4

black-hole background

ds2 =
L2α2

z2

(
−f(z)dt2 + dx2 + dy2

)
+
L2

z2

dz2

f(z)
,

f(z) = (1− z)(1 + z + z2 − q2z3) ,

A
(bg)
0 = 2qα(z − 1) . (2.4)

Here A(bg)
0 is the time-component of the U(1)-vector-potential, L is the AdS radius and the

temperature and chemical potential of the black hole equal

T =
α

4π
(3− q2) , µ0 = −2qα, (2.5)

where q is the black hole charge.
To compute the Green’s functions we need to solve the Dirac equation in the back-

ground of this charged black hole:

eMA ΓA(DM + iegAM )Ψ +mΨ = 0 , (2.6)

where the vielbein eMA , covariant derivative DM and connection AM correspond to the
fixed charged AdS black-hole metric and electrostatic potential (2.4) Denoting A0 = Φ and
taking the standard AdS-fermion projection onto Ψ± = 1

2(1 ± ΓZ)Ψ, the Dirac equation
reduces to

(∂z +A±) Ψ± = ∓ /T Ψ∓ (2.7)

with

A± = − 1
2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (2.8)
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Here γµ are the 2+1-dimensional Dirac matrices, obtained after decomposing the 3+1
dimensional Γµ-matrices.

Explicitly the Green’s function is extracted from the behavior of the solution to the
Dirac equation at the AdS-boundary. The boundary behavior of the bulk fermions is

Ψ+(ω, k; z) = A+z
3
2
−m +B+z

5
2

+m + . . . ,

Ψ−(ω, k; z) = A−z
5
2
−m +B−z

3
2

+m + . . . , (2.9)

where A±(ω, k), B±(ω, k) are not all independent but related by the Dirac equation at the
boundary

A− = − iµ

(2m− 1)
γ0A+ , B+ = − iµ

(2m+ 1)
γ0B− . (2.10)

The CFT Green’s function then equals [11, 12, 34]

GR = lim
z→0

z−2mΨ−(z)
Ψ+(z)

− singular =
B−
A+

. (2.11)

In other words B− is the CFT response to the (infinitesimal) source A+. Since in the
Green’s function the fermion is a fluctuation, the functions Ψ±(z) are now probe solutions
to the Dirac equation in a fixed gravitational and electrostatic background (for ease of
presentation we are considering Ψ±(z) as numbers instead of two-component vectors). The
boundary conditions at the horizon/AdS interior determine which Green’s function one
considers, e.g. infalling horizon boundary conditions yield the retarded Green’s function.
For non-zero chemical potential this fermionic Green’s function can have a pole signalling
the presence of a Fermi surface. This pole occurs precisely for a (quasi-)normalizable mode,
i.e. a specific energy ωF and momentum kF where the external source A+(ω, k) vanishes
(for infalling boundary conditions at the horizon).

Knowing that the energy of the quasinormal mode is always ωF = 0 [11] and follow-
ing [13], we expand GR around ω = 0 as:

GR(ω) =
B

(0)
+ + ωB(1)+ + . . .

A
(0)
+ + ωA

(1)
+ + . . .

. (2.12)

A crucial point is that in this expansion we are assuming that the pole will correspond to a
stable quasiparticle, i.e. there are no fractional powers of ω less than unity in the expansion
around ωF = 0 [13]. Fermions in AdS/CFT are of course famous for allowing more general
pole-structures corresponding to Fermi-surfaces without stable quasiparticles [13], but those
Green’s functions are not of the type (2.1) and we shall therefore not consider them here.
The specific Fermi momentum kF associated with the Fermi surface is the momentum
value for which the first ω-independent term in the denominator vanishes A(0)

+ (kF ) = 0
— for this value of k = kF the presence of a pole in the Green’s functions at ω = 0 is
manifest. Writing A(0)

+ = a+(k− kF ) + . . . and comparing with the standard quasi-particle
propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (2.13)
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we read off that the pole-strength equals

Z = B
(0)
− (kF )/A(1)

+ (kF ).

We thus see that a non-zero pole-strength is ensured by a non-zero value of
B−(ω = 0, k = kF ) — the “response” without corresponding source as A(0)(kF ) ≡ 0. Quan-
titatively the pole-strength also depends on the value of A(1)

+ (kF ) ≡ ∂ωA+(kF )|ω=0, which
is always finite. This is not a truly independent parameter, however. The size of the
pole-strength has only a relative meaning w.r.t. to the integrated spectral density. This
normalization of the pole strength is a global parameter rather than an AdS boundary
issue. We now show this by proving that A(1)

+ (kF ) is inversely proportional to B
(0)
− (kF )

and hence Z is completely set by B
(0)
− (kF ), i.e. Z ∼ |B(0)

− (kF )|2. Consider a transform
W̃ (Ψ+,A,Ψ+,B) of the Wronskian W (Ψ+,A,Ψ+,B) = Ψ+,A∂zΨ+,B − (∂zΨ+,A)Ψ+,B for two
solutions to the second order equivalent of the Dirac equation for the field Ψ+(

∂2
z + P (z)∂z +Q+(z)

)
Ψ+ = 0 (2.14)

that is conserved (detailed expressions for P (z) and Q+(z) are given in eq. (2.21)):

W̃ (Ψ+,A(z),Ψ+,B(z), z; z0) = exp
(∫ z

z0

P (z)
)
W (Ψ+,A(z),Ψ+,B(z)) , ∂zW̃ = 0. (2.15)

Here z0 is the infinitesimal distance away from the boundary at z = 0 which is equivalent to
the UV -cutoff in the CFT. Setting k = kF and choosing for Ψ+,A = A+z

3/2−m∑∞
n=0 anz

n

and Ψ+,B = B+z
5/2+m

∑∞
n=0 bnz

nr the real solutions which asymptote to solutions with
B+(ω, kF ) = 0 and A+(ω, kF ) = 0 respectively, but for a value of ω infinitesimally away
from ωF = 0, we can evaluate W̃ at the boundary to find,4

W̃ = z3
0(1 + 2m)A+B+ = µz3

0A+B− (2.16)

The last step follows from the constraint (2.10) where the reduction from two-component
spinors to functions means that γ0 is replaced by one of its eigenvalues ±i. Taking the
derivative of W̃ at ω = 0 for k = kF and expanding A+(ω, kF ) and B−(ω, kF ) as in (2.12),
we can solve for A(1)

+ (kF ) in terms of B(0)
− (kF ) and arrive at the expression for the pole

strength Z in terms of |B(0)
− (kF )|2:

Z =
µz3

0

∂ωW̃ |ω=0,k=kF

|B(0)
− (kF )|2 . (2.17)

Because ∂ωW̃ , as W̃ , is a number that is independent of z, this expression emphasizes that
it is truly the nonvanishing subleading term B

(0)
− (ωF , kF ) which sets the pole strength,

up to a normalization ∂ωW̃ which is set by the fully integrated spectral density. This
integration is always UV-cut-off dependent and the explicit z0 dependence should therefore

4P (z) = −3/z + . . . near z = 0
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not surprise us.5 We should note that, unlike perturbative Fermi liquid theory, Z is a
dimensionful quantity of mass dimension 2m+ 1 = 2∆− 2, which illustrates more directly
its scaling dependence on the UV-energy scale z0. At the same time Z is real, as it can be
shown that both ∂ωW̃ |ω=0,k=kF = µz3

0A
(1)
+ B

(0)
− and B

(0)
− are real [13].

2.1 The AdS dual of a stable Fermi liquid: applying Migdal’s relation
holographically

We have thus seen that a solution with nonzero B−(ωF , kF ) whose corresponding external
source vanishes (by definition of ωF , kF ), is related to the presence of a quasiparticle pole
in the CFT. Through Migdal’s theorem its pole strength is related to the presence of a
discontinuity of the occupation number, and this discontinuity is normally taken as the
characteristic signature of the presence of a Fermi Liquid. Qualitatively we can already
infer that an AdS gravity solution with non-vanishing B−(ωF , kF ) corresponds to a Fermi
Liquid in the CFT. We thus seek solutions to the Dirac equation with vanishing external
source A+ but non-vanishing response B− coupled to electromagnetism (and gravity). The
construction of the AdS black hole solution with a finite single fermion wavefunction is
thus analogous to the construction of a holographic superconductor [19] with the role of
the scalar field now taken by a Dirac field of mass m.

This route is complicated, however, by the spinor representation of the Dirac fields,
and the related fermion doubling in AdS. Moreover, relativistically the fermion Green’s
function is a matrix and the pole strength Z appears in the time-component of the vector
projection TriγiG. As we take this and the equivalent jump in occupation number to be the
signifying characteristic of a Fermi liquid state in the CFT, it would be much more direct
if we can derive an AdS radial evolution equation for the vector-projected Green’s function
and hence the occupation number discontinuity directly. From the AdS perspective is also
more convenient to work with bilinears such as Green’s functions, since the Dirac fields
always couple pairwise to bosonic fields.

To do so, we start again with the two decoupled second order equations equivalent to
the Dirac equation (2.7)

(
∂2
z + P (z)∂z +Q±(z)

)
Ψ± = 0 (2.20)

5Using that fW is conserved, one can e.g. compute it at the horizon. There each solution Ψ+,A(ω, kF ; z),

Ψ+,B(ω, kF ; z) is a linear combination of the infalling and outgoing solution

Ψ+,A(z) = ᾱ (1− z)−1/4+ıω/4πT + α (1− z)−1/4−ıω/4πT + . . .

Ψ+,B(z) = β̄ (1− z)−1/4+ıω/4πT + β (1− z)−1/4−ıω/4πT + . . . (2.18)

yielding a value of ∂ωfW equal to (P (z) = 1/2(1− z) + . . . near z = 1)

∂ωfW =
i

2πT
N (z0)(ᾱβ − β̄α) (2.19)

with N (z0) = exp
R z
z0
dz
h
P (z)− 1

2(1−z)

i
.
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with

P (z) = (A− +A+)− [∂z, /T ]
/T
T 2

,

Q±(z) = A−A+ + (∂zA±)− [∂z, /T ]
/T
T 2
A± + T 2 . (2.21)

Note that both P (z) and Q±(z) are matrices in spinor space. The general solution to
this second order equation — with the behavior at the horizon/interior appropriate for
the Green’s function one desires — is a matrix valued function (M±(z))αβ and the field

Ψ±(z) equals Ψ±(z) = M±(z)Ψ(hor)
± . Due to the first order nature of the Dirac equation the

horizon values Ψ(hor)
± are not independent but related by a z-independent matrix SΨ(hor)

+ =
Ψ(hor)
− , which can be deduced from the near-horizon behavior of (2.10); specifically S = γ0.

One then obtains the Green’s function from the on-shell boundary action (see e.g. [12, 35])

Sbnd =
∮
z=z0

ddxΨ̄+Ψ− (2.22)

as follows: Given a boundary source ζ+ for Ψ+(z), i.e. Ψ+(z0) ≡ ζ+, one concludes that
Ψ(hor)

+ = M−1
+ (z0)ζ+ and thus Ψ+(z) = M+(z)M−1

+ (z0)ζ+, Ψ−(z) = M−(z)SM−1
+ (z0)ζ+.

Substituting these solutions into the action gives

Sbnd =
∮
z=z0

ddx ζ̄+M−(z0)SM−1
+ (z0)ζ+ (2.23)

The Green’s function is obtained by differentiating w.r.t. ζ̄+ and ζ+ and discarding the
conformal factor z2m

0 with m the AdS mass of the Dirac field (one has to be careful for
mL > 1/2 with analytic terms [35])

G = lim
z0→0

z−2m
0 M−(z0)SM−1

+ (z0) . (2.24)

Since M±(z) are determined by evolution equations in z, it is clear that the Green’s
function itself is also determined by an evolution equation in z, i.e. there is some function
G(z) which reduces in the limit z → 0 to z2m

0 G. One obvious candidate is the function

G(obv)(z) = M−(z)SM−1
+ (z) . (2.25)

Using the original Dirac equations one can see that this function obeys the non-linear
evolution equation

∂zG
(obv)(z) = −A−G(obv)(z)− /TM+SM

−1
+ +A+G

(obv)(z) +G(obv)(z) /T G(obv)(z) . (2.26)

This is the approach used in [11], where a specific choice of momenta is chosen such that
M+ commutes with S. For a generic choice of momenta, consistency requires that one also
considers the evolution equation for M+(z)SM−1

+ (z).
There is, however, another candidate for the extension G(z) which is based on the

underlying boundary action. Rather than extending the kernel M−(z0)M−1
+ (z0) of the

boundary action we extend the constituents of the action itself, based on the individual
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fermion wavefunctions Ψ±(z) = M±(z)S
1
2
∓ 1

2M−1
+ (z0). We define an extension of the matrix

G(z) including an expansion in the complete set ΓI = {11, γi, γij , . . . , γi1,id} (with γ4 = iγ0)

GI(z) = M̄−1
+ (z0)M̄+(z)ΓIM−(z)SM−1

+ (z0) , GI(z0) = ΓIG(z0) (2.27)

where M̄ = iγ0M †iγ0. Using again the original Dirac equations, this function obeys the
evolution equation

∂zG
I(z)=−(Ā++A−)GI(z)−M̄−1

+,0M̄−(z) /̄T ΓIM−(z)SM−1
+,0+M̄

−1
+,0M̄+(z)ΓI /TM+(z)SM−1

+,0

(2.28)
Recall that /T γi1...ip = T [i1γ...ip] + Tjγji1...ip . It is then straightforward to see that for
consistency, we also need to consider the evolution equations of

J I+ = M̄−1
+,0M̄+(z)ΓIM+(z)SM−1

+,0 , J I− = M̄−1
+,0M̄−(z)ΓIM−(z)SM−1

+,0

and
ḠI = M̄−1

+,0M̄−(z)ΓIM+(z)SM−1
+,0.

They are

∂zJ
i1...ip
+ (z) =− 2Re(A+)J i1...ip+ − T̄ [i1Ḡi2...ip](z)

− T̄jḠji1...ip(z)−G[i1...ip−1(z)T ip] −Gi1...ipj(z)Tj
∂zJ

i1...ip
− (z) =− 2Re(A−)J i1...ip− + T̄ [i1Gi2...ip](z)

+ T̄jGji1...ip(z) + Ḡ[i1...ip−1(z)T ip] + Ḡi1...ipj(z)Tj

∂zḠ
i1...ip(z) =− (Ā− +A+)Ḡi1...ip − T̄ [i1J i2...ip]

+ (z)

− T̄jJ
ji1...ip
+ (z)− J [i1...ip−1

− (z)T ip] + J i1...ipj− (z)Tj (2.29)

The significant advantage of these functions GI , ḠI , J I± is that the evolution equations
are now linear. This approach may seem overly complicated. However, if the vector T i

happens to only have a single component nonzero, then the system reduces drastically to
the four fields J i±, G11, Ḡ11. We shall see below that a similar drastic reduction occurs, when
we consider only spatially and temporally averaged functions JI =

∫
dtd2xJ I±.

Now the two extra currents J I± have a clear meaning in the CFT. The current GI(z)
reduces by construction to ΓI times the Green’s function G11(z0) on the boundary, and
clearly ḠI(z) is its hermitian conjugate. The current J I+ reduces at the boundary to
J I+ = ΓIM+,0SM

−1
+,0. Thus J I+ sets the normalization of the linear system (2.29). The

interesting current is the current J I−. Using that S̄ = S̄−1, it can be seen to reduce on the
boundary to the combination J̄ 11

+ Ḡ
11ΓIG11. Thus,

(
J̄ 11

+

)−1 J 11
− is the norm squared of the

Green’s function, i.e. the probability density of the off-shell process.
For an off-shell process or a correlation function the norm-squared has no real functional

meaning. However, we are specifically interested in solutions in the absence of an external
source, i.e. the on-shell correlation functions. In that case the analysis is quite different.
The on-shell condition is equivalent to choosing momenta to saturate the pole in the Green’s
function, i.e. it is precisely choosing dual AdS solutions whose leading external source A±
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vanishes. Then M+ and M− are no longer independent, but M+,0 = δB+/δΨ
(hor)
+ =

− iµγ0

2m+1M−,0S. As a consequence all boundary values of J I−(z0), GI(z0), ḠI(z0) become
proportional; specifically using S = γ0 one has that

J 0
−(z0)|on−shell =

(2m+ 1)
µ

γ0G11(z0)|on−shell (2.30)

is the “on-shell” Green’s function. Now, the meaning of the on-shell correlation function is
most evident in thermal backgrounds. It equals the density of states ρ(ω(k)) = − 1

π ImGR
times the Fermi-Dirac distribution [36]

Triγ0GtF (ωbare(k), k)
∣∣
on−shell

= 2πfFD

(
ωbare(k)− µ

T

)
ρ(ωbare(k)) (2.31)

For a Fermi liquid with the defining off-shell Green’s function (2.1) ωbare(kF )− µ ≡ ω = 0
and ρ(ωbare(k)) = Zz0δ

2(k − kF )δ(ω) + . . .. Thus we see that the boundary value of
J (0)
− (z0)|on−shell = ZfFD(0)δ3(0) indeed captures the pole strength directly times a product

of distributions. This product of distributions can be absorbed in setting the normalization.
An indication that this is correct is that the determining equations for GI , ḠI , J I± remain
unchanged if we multiply GI , ḠI , J I± on both sides with M+,0. If M+,0 is unitary it is just
a similarity transformation. However, from the definition of the Green’s function, one can
see that this transformation precisely removes the pole. This ensures that we obtain finite
values for GI , ḠI , J I± at the specific pole-values ωF , kF where the distributions would
naively blow up.

2.1.1 Boundary conditions and normalizability

We have shown that a normalizable solution to J 0
− from the equations (2.29) correctly

captures the pole strength directly. However, ‘normalizable’ is still defined in terms of an
absence of a source for the fundamental Dirac field Ψ± rather than the composite fields
J I± and GI . One would prefer to determine normalizability directly from the boundary
behavior of the composite fields. This can be done. Under the assumption that the
electrostatic potential Φ is regular, i.e.

Φ = µ− ρz + . . . (2.32)

the “connection” T I is subleading to the connection A near z = 0. Thus the equations of
motion near z = 0 do not mix the various J I±, GI and the composite fields behave as

J I+ = jI3−2mz
3−2m + jI4+

z4 + jI5+2mz
5+2m + . . . ,

J I− = jI5−2mz
5−2m + jI4−z

4 + jI3+2mz
3+2m + . . . ,

GI = II4−2mz
4−2m + II3z

3 + II4+2mz
4+2m + II5z

5 + . . . , (2.33)

with the identification

jI3−2m = Ā+ΓIA+, jI4+
= Ā+ΓIB+ + B̄+ΓIA+, jI5+2m = B̄+ΓIB+ , (2.34)

jI3+2m = Ā−ΓIA−, jI4− = Ā−ΓIB− + B̄−ΓIA−, jI5−2m = B̄−ΓIB− ,

II4−2m = Ā+ΓIA−, II3 = Ā+ΓIB−, I4+2m = B̄+ΓIB−, II5 = B̄+ΓIA− .
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A ‘normalizable’ solution in J I− and thus J 0
− is therefore defined by the vanishing of both

the leading and the subleading term.

3 An AdS black hole with Dirac hair

Having determined a set of AdS evolution equations and boundary conditions that compute
the pole strength Z directly through the currents J (0)

− (z) and GI(z), we can now try to
construct the AdS dual of a system with finite fermion density, including backreaction. As
we remarked in the beginning of section 2.1, the demand that the solutions be normalizable
means that the construction of the AdS black hole solution with a finite single fermion
wavefunction is analogous to the construction of a holographic superconductor [19] with
the role of the scalar field now taken by the Dirac field. The starting point therefore is the
charged AdS4 black-hole background (2.4) and we should show that at low temperatures
this AdS Reissner-Nordström black hole is unstable towards a solution with a finite Dirac
profile. We shall do so in a simplified “large charge” limit where we ignore the gravitational
dynamics, but as is well known from holographic superconductor studies (see e.g. [19–21])
this limit already captures much of the essential physics. In a companion article [37] we
will construct the full backreacted ground state including the gravitational dynamics.

In this large charge non-gravitational limit the equations of motion for the action (2.3)
reduce to those of U(1)-electrodynamics coupled to a fermion with charge g in the back-
ground of this black hole:

DMF
MN = igeNA Ψ̄ΓAΨ ,

0 = eMA ΓA(DM + iegAM )Ψ +mΨ . (3.1)

Thus the vielbein eMA and and covariant derivative DM remain those of the fixed charged
AdS black hole metric (2.4), but the vector-potential now contains a background piece
A

(bg)
0 plus a first-order piece AM = A

(bg)
M + A

(1)
M , which captures the effect of the charge

carried by the fermions.

Following our argument set out in previous section that it is more convenient to work
with the currents J I±(z), GI(z) instead of trying to solve the Dirac equation directly, we
shall first rewrite this coupled non-trivial set of equations of motion in terms of the cur-
rents while at the same time using symmetries to reduce the complexity. Although a system
at finite fermion density need not be homogeneous, the Fermi liquid ground state is. It
therefore natural to make the ansatz that the final AdS solution is static and preserves
translation and rotation along the boundary. As the Dirac field transforms non-trivially
under rotations and boosts, we cannot make this ansatz in the strictest sense. However,
in some average sense which we will make precise, the solution should be static and trans-
lationally invariant. Then translational and rotational invariance allow us to set Ai = 0,
Az = 0, whose equations of motions will turn into contraints for the remaining degrees of
freedom. Again denoting A0 = Φ, the equations reduce to the following after the projection
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onto Ψ± = 1
2(1± ΓZ)Ψ.

∂2
zΦ =

−gL3α

z3
√
f

(
Ψ̄+iγ

0Ψ+ + Ψ̄−iγ0Ψ−
)
,

(∂z +A±) Ψ± = ∓ /T Ψ∓ (3.2)

with

A± = − 1
2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (3.3)

as before.
The difficult part is to “impose” staticity and rotational invariance for the non-invariant

spinor. This can be done by rephrasing the dynamics in terms of fermion current bilinears,
rather than the fermions themselves. We shall first do so rather heuristically, and then
show that the equations obtained this way are in fact the flow equations for the Green’s
functions and composites J I(z), GI(z) constructed in the previous section. In terms of
the local vector currents6

Jµ+(x, z) = Ψ̄+(x, z)iγµΨ+(x, z) , Jµ−(x, z) = Ψ̄−(x, z)iγµΨ−(x, z) , (3.4)

or equivalently

Jµ+(p, z) =
∫
d3kΨ̄+(−k, z)iγµΨ+(p+ k, z) , Jµ−(p, z) =

∫
d3kΨ̄−(−k, z)iγµΨ−(p+ k, z) .

(3.5)
rotational invariance means that spatial components J i± should vanish on the solution
— this solves the constraint from the Ai equation of motion, and the equations can be
rewritten in terms of J0

± only. Staticity and rotational invariance in addition demand that
the bilinear momentum pµ vanish. In other words, we are only considering temporally
and spatially averaged densities: Jµ±(z) =

∫
dtd2xΨ̄(t, x, z)iγµΨ(t, x, z). Analogous to the

bilinear flow equations for the Green’s function, we can act with the Dirac operator on
the currents to obtain an effective equation of motion, and this averaging over the relative
frequencies ω and momenta ki will set all terms with explicit ki-dependence to zero.7

6In our conventions Ψ̄ = Ψ
†
iγ0.

7To see this consider

(∂ + 2A±)Ψ†±(−k)Ψ±(k) = ∓Φ

f

“
Ψ†−iγ

0Ψ+ + Ψ†+iγ
0Ψ−

”
+
iki√
f

“
Ψ†−γ

iΨ+ −Ψ†+γ
iΨ−

”
. (3.6)

The term proportional to Φ is relevant for the solution. The dynamics of the term proportional to ki is

(∂ +A+ +A−)(Ψ†−γ
iΨ+ −Ψ†+γ

iΨ−) = −2i
ki√
f

(Ψ†+γ
0Ψ+ + Ψ†−γ

0Ψ−) . (3.7)

The integral of the r.h.s. over ki vanishes by the assumption of translational and rotational invariance.

Therefore the l.h.s. of (3.7) and thus the second term in eq. (3.6) does so as well.
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Restricting to such averaged currents and absorbing a factor of g/α in Φ and a factor of
g
√
L3 in Ψ±, we obtain effective equations of motion for the bilinears directly

(∂z + 2A±) J0
± = ∓Φ

f
I ,

(∂z +A+ +A−) I =
2Φ
f

(J0
+ − J0

−) ,

∂2
zΦ = − 1

z3
√
f

(J0
+ + J0

−) , (3.8)

with I = Ψ̄−Ψ+ + Ψ̄+Ψ−, and all fields are real. The remaining constraint from the Az
equation of motion decouples. It demands Im(Ψ̄+Ψ−) = i

2(Ψ̄−Ψ+ − Ψ̄+Ψ−) = 0. What
the equations (3.8) tell us is that for nonzero J0

± there is a charged electrostatic source for
the vector potential Φ in the bulk.

Momentarily we will motivate the effective equations (3.8) at a more fundamental level.
Before that there are several remarks to be made

• These equations contain more information than just current conservation ∂µJ
µ = 0.

In an isotropic and static background current conservation is trivially true as ∂µJµ =
∂0J

0 = −i
∫
dωe−iωtωJ0(ω) = 0 as J0(ω 6= 0) = 0.

• We have scaled out the electromagnetic coupling. AdS4/CFT3 duals for which the
underlying string theory is known generically have g = κ/L with κ the gravitational
coupling constant as defined in (2.3). Thus, using standard AdS4/CFT3 scaling, a
finite charge in the new units translates to a macroscopic original charge of order
L/κ ∝ N1/3. This large charge demands that backreaction of the fermions in terms
of its bilinear is taken into account as a source for Φ.

• The equations are local. From the fundamental point of view, that one considers
finite density in the bulk, this is strange to say the least. Generic multi-fermion
configurations are non-local, see e.g. [38]. These equations can therefore never cap-
ture the full bulk fermion dynamics. Our starting point has been a single fermion
perspective, where the Pauli blocking induced non-locality is absent. In that context
local equations are fine. We have also explicitly averaged over all directions parallel
to the boundary and, as we have shown in the previous section (see also footnote 7),
it is this averaging that tremendously simplifies the equations. The most curious part
may be that this unaveraged set of equations — and therefore also eqs (3.8) — are
all local in the radial direction z. From the AdS perspective a many-fermion system
should be non-local democratically and thus also exhibit non-locality in z, yet from
the CFT perspective where z-dynamics encode RG-flow, it is eminently natural. We
leave the resolution of this paradox to future work.

The justification of using (3.8) to construct the AdS dual of a regular Fermi liquid is the
connection between local fermion bilinears and the CFT Green’s function. The complicated
flow equations (2.29) reduce precisely to the first two equations in (3.8) upon performing
the spacetime averaging and the trace, i.e. J0

± =
∫
d3kTrJ 0

± and I =
∫
d3kTr

(
G11 + Ḡ11

)
.
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Combined with the demand that we only consider normalizable solutions and the proof
that J 0

− is proportional to the pole-strength, the radial evolution equations (3.8) are the
(complicated) AdS recasting of the RG-flow for the pole-strength. This novel interpretation
ought to dispel some of the a priori worries about our unconventional treatment of the
fermions through their semi-classical bilinears. There is also support from the gravity side,
however. Recall that for conventional many-body systems and fermions in particular one
first populates a certain set of states and then tries to compute the macroscopic properties
of the collective. In a certain sense the equations (3.8) formulate the same program but
in opposite order: one computes the generic wavefunction charge density with and by
imposing the right boundary conditions, i.e normalizability, one selects only the correct
set of states. This follows directly from the equivalence between normalizable AdS modes
and quasiparticle poles that are characterized by well defined distinct momenta kF (for
ω = ωF ≡ 0). The demand that any non-trivial Dirac hair black hole is constructed
from normalizable solutions of the composite operators (i.e. their leading and subleading
asymptotes vanish8) thus means that one imposes a superselection rule on the spatial
averaging in the definition of JI±:

J0
±(z)|normalizable ≡

∫
d3kΨ̄±(−k)iγ0Ψ±(k)|normalizable

=
∫
d3k δ2(|k| − |kF |)|B(0)

± (k)|2z4+2m±1 + . . . (3.9)

We see that the constraint of normalizability from the bulk point of the view, implies
that one selects precisely the on-shell bulk fermion modes as the building blocks of the
density J0

±.
In turn this means that the true system that eqs. (3.8) describe is somewhat obscured

by the spatial averaging. Clearly even a single fermion wavefunction is in truth the full
set of two-dimensional wavefunctions whose momentum ki has length kF . However, the
averaging could just as well be counting more, as long as there is another set of normalizable
states once the isotropic momentum surface |k| = |kF | is filled. Pushing this thought to
the extreme, one could even speculate that the system (3.8) gives the correct quantum-
mechanical description of the many-body Fermi system: the system which gravitational
reasoning suggests is the true ground state of the charged AdS black hole in the presence
of fermions.

To remind us of the ambiguity introduced by spatial averaging, we shall give the
boundary coefficient of normalizable solution for J0

− =
∫
d3kJ 0

− a separate name. The
quantity J 0

−(z0) is proportional to the pole strength, which via Migdal’s relation quantifies
the characteristic occupation number discontinuity at ωF ≡ 0. We shall therefore call the
coefficient

∫
d3k|B−|2|normalizable = ∆nF .

8One can verify that the discussion in section 2.1.1 holds also for fully backreacted solutions. The

derivation there builds on the assumption that the boundary behavior of the electrostatic potential is

regular. It is straightforward to check in (3.8) that indeed precisely for normalizable solutions, i.e. in the

absence of explicit fermion-sources, when both the leading and subleading terms in J0
± and I vanish, the

boundary behavior the scalar potential remains regular, as required.
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3.1 Thermodynamics

At a very qualitative level the identification J0
−|norm(z) ≡ ∆nF z3+2m + . . . can be argued

to follow from thermodynamics as well. From the free energy for an AdS dual solution to
a Fermi liquid, one finds that the charge density directly due to the fermions is

ρtotal = −2
∂

∂µ
F =

−3
2m+ 1

∆nF
z−1−2m

0

+ ρ+ . . . , (3.10)

with z−1
0 the UV-cutoff as before. The cut-off dependence is a consequence of the fact that

the system is interacting, and one cannot truly separate out the fermions as free particles.
Were one to substitute the naive free fermion scaling dimension ∆ = m + 3/2 = 1, the
cutoff dependence would vanish and the identification would be exact.

We can thus state that in the interacting system there is a contribution to the charge
density from a finite number of fermions proportional to

ρF =
−3

2∆− 2
∆nF
z2−2∆

0

+ . . . , (3.11)

although this contribution formally vanishes in the limit where we send the UV-cutoff z−1
0

to infinity.
To derive eq. (3.10), recall that the free energy is equal to minus the on-shell action of

the AdS dual theory. Since we disregard the gravitational backreaction, the Einstein term
in the AdS theory will not contain any relevant information and we consider the Maxwell
and Dirac term only. We write the action as,

S =
∫ 1

z0

√
−g
[

1
2
ANDMF

MN − Ψ̄/DΨ−mΨ̄Ψ
]

+
∮
z=z0

√
−h
(

Ψ̄+Ψ− +
1
2
AµnαF

αµ

)
,

(3.12)
where we have included an explicit fermionic boundary term that follows from the
AdS/CFT dictionary [12] and nα is a normal vector to the boundary. The boundary
action is not manifestly real, but its on-shell value which contributes to the free energy is
real. Recall that the imaginary part of Ψ̄+Ψ− decouples from eqs. (3.8). The boundary
Dirac term in (3.12) is therefore equal to I = 2Re(Ψ̄+Ψ−).

To write the free energy in terms of the quantities µ, ρ and ∆nF , note that the on-shell
bulk Dirac action vanishes. Importantly the bulk Maxwell action does contribute to the
free energy. Its contribution is

Fbulk = lim
z0→0

∫ 1

z0

dzd3x

[
1
2

Φ∂zzΦ
]

on−shell

= − lim
z0→0

∫ 1

z0

dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)
]

on−shell

, (3.13)

where we have used the equation of motion (3.8). This contribution should be expected,
since the free energy should be dominated by infrared, i.e. near horizon physics. Due to
the logarithmic singularity in the electrostatic potential (eq. (3.17) this bulk contribution
diverges, but this divergence should be compensated by gravitational backreaction. At
the same time the singularity is so mild, however, that the free energy, the integral of the
Maxwell term, remains finite in the absence of the Einstein contribution.
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Formally, i.e. in the limit z0 → 0, the full free energy arises from this bulk contribu-
tion (3.13). The relation (3.10) between the charge density and ∆nF follows only from the
regularized free energy, and is therefore only a qualitative guideline. Empirically, as we
will show, it is however, a very good one (see figure 1 in the next section). Splitting the
regularized bulk integral in two

Fbulk =
∫ 1

z∗
dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)
]

on−shell

+ lim
z0→0

∫ z∗

z0

dzd3x

[
1

2z3
√
f

Φ(J0
++J0

−)
]

on−shell

,

(3.14)
we substitute the normalizable boundary behavior of Ψ+ = B+z

5/2+m + . . ., Ψ− =
B−z

3/2+m + . . . and Φ = µ− ρz + . . ., and obtain for the regularized free energy

F =Fhorizon(z∗)+ lim
z0→0

∫ z∗

z0

d3xdz

[
−1
2z3

µ|B−|2z3+2m+. . .
]
+
∮
d3x

z3
0

[
−B̄+B−z

4+2m
0 +

1
2
µρz3

0

]
.

(3.15)
Using that B+ = −iµγ0B−/(2m + 1) (eq. (2.10)), the second bulk term and boundary
contribution are proportional, and the free energy schematically equals

F = F horizon + lim
z0→0

∫
d3x

[
3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]
. (3.16)

With the UV-regulator z−1
0 finite, this yields the charge density in eq. (3.10) after one

recalls that B̄− = B†−iγ
0.

With the derived rule that the AdS dual to a Fermi liquid has a nonzero normalizable
component in the current J0

−, we will now construct an AdS solution that has this property:
an AdS black hole with Dirac hair. Ignoring backreaction, these are solutions to the density
equations (3.8). In its simplest form the interpretation is that of the backreaction due to a
single fermion wavefunction, but as explained the spatial averaging of the density combined
with the selection rule of normalizability could be capturing a more general solution.

3.2 At the horizon: entropy collapse to a Lifshitz solution

Before we can proceed with the construction of non-trivial Dirac hair solutions to eqs. (3.8),
we must consider the boundary conditions at the horizon necessary to solve the system.
Insisting that the right-hand-side of the dynamical equations (3.8) is subleading at the
horizon, the near-horizon behavior of J0

±, I, Φ is:

J0
± = Jhor,±(1− z)−1/2 + . . . ,

I = Ihor(1− z)−1/2 + . . . ,

Φ = Φ(1)
hor(1− z) ln(1− z) + (Φ(2)

hor − Φ(1)
hor)(1− z) + . . . . (3.17)

If we insist that Φ is regular at the horizon z = 1, i.e. Φ(1)
hor = 0, so that the electric field is

finite, the leading term in J0
± must vanish as well, i.e. Jhor,± = 0, and the system reduces

to a free Maxwell field in the presence of an AdS black hole and there is no fermion density
profile in the bulk. Thus in order to achieve a nonzero fermion profile in the bulk, we
must have an explicit source for the electric-field on the horizon. Strictly speaking, this
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invalidates our neglect of backreaction as the electric field and its energy density at the
location of the source will be infinite. As we argued above, this backreaction is in fact
expected to resolve the finite ground-state entropy problem associated with the presence
of a horizon. The backreaction should remove the horizon completely, and the background
should resemble the horizonless metrics found in [26, 27, 39]; the same horizon logarithmic
behavior in the electrostatic potential was noted there. Nevertheless, as the divergence in
the electric field only increases logarithmically as we approach the horizon, and our results
shall hinge on the properties of the equations at the opposite end near the boundary, we
shall continue to ignore it here. We shall take the sensibility of our result after the fact, as
proof that the logarithmic divergence at the horizon is indeed mild enough to be ignored.

The identification of the boundary value of J0
− with the Fermi liquid characteristic

occupation number jump ∆nF rested on the insistence that the currents are built out
of AdS Dirac fields. This deconstruction also determines a relation between the horizon
boundary conditions of the composite fields J0

±, I. If Ψ±(z) = C±(1 − z)−1/4 + . . . then
Jhor,± = C2

± and Ihor = C+C−. As the solution Φ(1)
hor is independent of the solution Φ(2)

hor

which is regular at the horizon, we match the latter to the vector-potential of the charged
AdS black hole: Φ(2)

hor = −2gq ≡ gµ0/α. Recalling that Φ(1)
hor = −(Jhor,+ + Jhor,−), we see

that the three-parameter family of solutions at the horizon in terms of C±, Φ(2)
hor corresponds

to the three-parameter space of boundary values A+, B− and µ encoding a fermion-source,
the fermion-response/expectation value and the chemical potential.

We can now search whether within this three-parameter family a finite normalizable
fermion density solution with vanishing source A+ = 0 exists for a given temperature T of
the black hole.

3.3 A BH with Dirac hair

The equations are readily solved numerically with a shooting method from the horizon. We
consider both an uncharged AdS-Schwarzschild solution and the charged AdS Reissner-
Nordström solution. Studies of bosonic condensates in AdS/CFT without backreaction
have mostly been done in the AdS-Schwarzschild (AdSS) background ([19, 20] and refer-
ences therein). An exception is [40], which also considers the charged RN black hole. As is
explained in [40], they correspond to two different limits of the exact solution: the AdSS
case requires that ∆nF & µ that is, the total charge of the matter fields should be dominant
compared to the charge of the black hole. On the other hand, the RN limit is appropriate
if ∆nF � µ. It ignores the effect of the energy density of the charged matter sector on the
charged black hole geometry. The AdS Schwarzschild background is only reliable near Tc,
as at low temperatures the finite charged fermion density is comparable to µ. The RN case
is under better control for low temperatures, because near T = 0 the chemical potential
can be tuned to stay larger than fermion density.

We shall therefore focus primarily on the solution in the background of an AdS RN
black hole, i.e. the system with a heat bath with chemical potential µ — non-linearly de-
termined by the value of Φ(2)

hor = µ0 at the horizon — which for low T/µ should show the
characteristic ∆nF of a Fermi liquid. The limit in which we may confidently ignore backre-
action is Φ(1)

hor � µ0 for T . µ0 — for AdSS the appropriate limit is Φ(1)
hor � T for µ0 � T .
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Figure 1. (a) Temperature dependence of the Fermi liquid occupation number discontinuity ∆nF
and operator I for a fermionic field of mass m = −1/4 dual to an operator of dimension ∆ = 5/4.
We see a large density for T/µ small and discontinuously drop to zero at T ≈ 0.05µ. At this same
temperature, the proxy free energy contribution per particle (the negative of I) vanishes. (b) The
free energy F = F fermion + FMaxwell (eq. (3.12)) as a function of T/µ ignoring the contribution
from the gravitational sector. The blue curve shows the total free energy F = FMaxwell, which is
the sum of a bulk and a boundary term. The explicit fermion contribution Ffermion vanishes, but
the effect of a non-zero fermion density is directly encoded in a non-zero FMaxwell

bulk . The figure also
shows this bulk FMaxwell

bulk and the boundary contribution FMaxwell
bulk separately and how they sum to

a continuous Ftotal. Although formally the explicit fermion contribution Ff ∼ I in equation (3.16)
vanishes, the bulk Maxwell contribution is captured remarkably well by its value when the cut-off
is kept finite. The light-green curve in the figure shows Ff for a finite z0 ∼ 10−6. For completeness
we also show the total charge density, eq. (3.10). The dimension of the fermionic operator used in
this figure is ∆ = 1.1.

3.3.1 Finite fermion density solutions in AdS-RN

Figure 1 shows the behavior of the occupation number discontinuity nF ≡ |B−|2 and the
fermion free-energy contribution I as a function of temperature in a search for normalizable
solutions to eqs.(3.8) with the aforementioned boundary conditions. We clearly see a
first order transition to a finite fermion density, as expected. The underlying Dirac field
dynamics can be recognized in that the normalizable solution for J0

−(z) which has no
leading component near the boundary by construction, also has its subleading component
vanishing (figure 2).9

9Although the Dirac hair solution has charged matter in the bulk, there is no Higgs effect for the bulk

gauge field, and thus there is no direct spontaneous symmetry breaking in the boundary. Indeed one would

not expect it for the Fermi liquid ground state. There will be indirect effect on the conductivity similar

to [27]. We thank Andy O’Bannon for his persistent inquiries to this point.

– 19 –



J
H
E
P
1
0
(
2
0
1
1
)
0
1
7

-12 -10 -8 -6 -4 -2
log z

-60

-50

-40

-30

-20

-10

0

l
og

J !
!z"

Figure 2. The boundary behaviour of J−(0) in for a generic solution (blue) to eqs. (3.8) and a
normalizable Dirac-hair solution (red) for m = −1/4 in the background of an AdS-RN black hole
with µ/T = 128.8. The dotted lines show the scaling z11/2 and z4 of the leading and subleading
terms in an expansion of J0

−(z) near z = 0; the dashed line shows the scaling z5/2 of the sub-
subleading expansion whose coefficient is |B−(ωF , kF )|2. That the Dirac hair solution (red) scales
as the subsubleading solution indicates that the current J0

− faithfully captures the density of the
underlying normalizable Dirac field.

Analyzing the transition in more detail in figure 3, we find:

1. The dimensionless number discontinuity ∆nF /µ2∆ scales as T−δ in a certain temper-
ature range TF < T < Tc, with δ > 0 depending on g and ∆, and TF typically very
small. At T = Tc > TF it drops to zero discontinuously, characteristic of a first order
phase transition.

2. At low temperatures, 0 < T < TF , the power-law growth comes to a halt and ends
with a plateau where ∆nF /µ2∆ ∼ const. (figure 3a). It is natural to interpret this
temperature as the Fermi temperature of the boundary Fermi liquid.

3. The fermion free energy contribution I/µ2∆+1 scales as T 1/ν with ν > 1 for 0 < T <

Tc, and drops to zero discontinuously at Tc. As I empirically equals minus the free
energy per particle, it is natural that I(T = 0) = 0, and this in turn supports the
identification of ∆nF (T = 0) as the step in number density at the Fermi energy.

One expects that the exponents δ, ν are controlled by the conformal dimension ∆.10

The dependence of the exponent δ on the conformal dimension is shown in figure 3a. While
a correlation clearly exists, the data are not conclusive enough to determine the relation
δ = δ(∆). The clean power law T−δ scaling regime is actually somewhat puzzling. These
values of the temperature, TF < T < Tc, correspond to a crossover between the true Fermi
liquid regime for T < TF and the conformal phase for T > Tc, hence there is no clear
ground for a universal scaling relation for δ, which seems to be corroborated by the data
(figure 3b). At the same time, the scaling exponent ν appears to obey ν = 2 with great
precision (figure 3b, inset) independent of ∆ and g.

A final consideration, needed to verify the existence of a finite fermion density AdS
solution dual to a Fermi liquid, is to show that the ignored backreaction stays small. In
particular, the divergence of the electric field at the horizon should not affect the result.

10The charge g of the underlying conformal fermionic operator scales out of the solution.
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Figure 3. (a) Approximate power-law scaling of the Fermi liquid characteristic occupation number
discontinuity ∆nF /µ2∆ ∼ T−δ as a function of T/µ for ∆ = 5/4. This figure clearly shows the
saturation of the density at very low T/µ. The saturation effect is naturally interpreted as the
influence of the characteristic Fermi energy. (b) The scaling exponent δ for different values of the
conformal dimension ∆. There is a clear correlation, but the precise relation cannot be determined
numerically. The scaling exponent of the current I/µ2∆+1 ∼ T−1/ν obeys ν = 2 with great accuracy,
on the other hand (Inset).

The total bulk electric field Ez = −∂zΦ is shown in figure 4a, normalized by its value at
z = 1/2. The logarithmic singularity at the horizon is clearly visible. At the same time,
the contribution to the total electric field from the charged fermions is negligible even very
close to the horizon.11 This suggests that our results are robust with respect to the details
of the IR divergence of the electric field.

The diverging backreaction at the horizon is in fact the gravity interpretation of the
first order transition at Tc: an arbitrarily small non-zero density leads to an abrupt change
in the on shell bulk action. As the latter is the free energy in the CFT, it must reflect
the discontinuity of a first order transition. A full account of the singular behavior at the
horizon requires self-consistent treatment including the Einstein equations. At this level, we
can conclude that the divergent energy density at the horizon implies that the near-horizon
physics becomes substantially different from the AdS2 limit of the RN metric. It is natural
to guess that the RN horizon disappears completely, corresponding to a ground state with
zero entropy, as hypothesized in [26]. This matches the expectation that the finite fermi-
density solution in the bulk describes the Fermi-liquid. The underlying assumption in the
above reasoning is that the total charge is conserved.

11It is of the order 10−4, starting from z = 0.9999. We have run our numerics using values between

1− 10−6 and 1− 10−2 and found no detectable difference in quantities at the boundary.
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Figure 4. (a) The radial electric field −Ez = ∂Φ/∂z, normalized to the midpoint value
Ez(z)/Ez(1/2) for whole interior of the finite fermion density AdS-RN solution (upper) and near
the horizon (lower). One clearly sees the soft, log-singularity at the horizon. The colors correspond
to increasing temperatures from T = 0.04µ (lighter) to T = 0.18µ (darker), all with ∆ = 1.1. (b)
The occupation number jump ∆nF and free energy contribution I as a function of temperature in
AdS-Schwarzschild. We see the jump ∆nF saturate at low temperatures and fall off at high T . An
exponential fit to the data (red curve) shows that in the critical region the fall-off is stronger than
exponential, indicating that the transition is first order. The conformal dimension of the fermionic
operator is ∆ = 1.1. (c) The radial electric field −Ez = ∂Φ/∂z, normalized to the midpoint value
(Ez(z)/Ez(1/2)) for the finite fermion density AdS-Schwarzschild background. The divergence of
the electric field Ez is again only noticeable near the horizon and can be neglected in most of the
bulk region.

3.3.2 Finite fermion density in AdSS

For completeness, we will describe the finite fermion-density solutions in the AdS
Schwarzschild geometry as well. In these solutions the charge density is set by the density
of fermions alone. They are therefore not reliable at very low temperatures T � Tc when
gravitational backreaction becomes important. The purpose of this section is to show the
existence of finite density solutions does not depend on the presence of a charged black hole
set by the horizon value Φ(2)

hor = µ0, but that the transition to a finite fermion density can
be driven by the charged fermions themselves.

Figure 4b shows the nearly instantaneous development of a non-vanishing expectation
value for the occupation number discontinuity ∆nF and I in the AdS Schwarzschild back-
ground. The rise is not as sharp as in the RN background. It is, however, steeper than
exponential, and we may conclude that the system undergoes a discontinuous first order
transition to a AdS Dirac hair solution. The constant limit reached by the fermion density
as T → 0 has no meaning as we cannot trust the solution far away from Tc.

The backreaction due to the electric field divergence at the horizon can be neglected,
for the same reason as before (figure 4c).
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Figure 5. The single-fermion spectral function in the probe limit of pure AdS Reissner-Nordström
(red/yellow) minus the spectrum in the finite density system (blue). The conformal dimension is
∆ = 5/4, the probe charge g = 2, and µ/T = 135. We can see two quasiparticle poles near ω = 0, a
non-FL pole with kprobe

F ' 0.11µ and k∆nF

F ' 0.08µ respectively and a FL-pole with kprobe
F ' 0.18µ

and k∆nF

F ' 0.17µ. The dispersion of both poles is visibly similar between the probe and the finite
density backgroudnd. At the same time, the non-FL pole has about 8 times less weight in the finite
density background, whereas the FL-pole has gained about 6.5 times more weight.

3.4 Confirmation from fermion spectral functions

If, as we surmised, the finite fermion density phase is the true Fermi-liquid-like ground state,
the change in the fermion spectral functions should be minimal as the characteristic quasi-
particle peaks are already present in the probe limit, i.e. pure AdS Reissner-Nordström [11,
12]. Figure 5 shows that quasiparticle poles near ω = 0 with similar analytic properties can
be identified in both the probe pure AdS-RN case and the AdS-RN Dirac-hair solution.
The explanation for this similarity is that the electrostatic potential Φ almost completely
determines the spectrum, and the change in Φ due to the presence of a finite fermion
density is quite small. Still, one expects that the finite fermion density system is a more
favorable state. This indeed follows from a detailed comparison between the spectral
functions A(ω; k) in the probe limit and the fermion-liquid phase (figure 5). We see that:

1. All quasiparticle poles present in the probe limit are also present in the Dirac hair
phase, at a slightly shifted value of kF . This shift is a consequence of the change in
the bulk electrostatic potential Φ due to the presence of the charged matter. For a
Fermi-liquid-like quasiparticle corresponding to the second pole in the operator with
∆ = 5/4 and g = 2 we find kprobe

F − k∆nF
F = 0.07µ. The non-Fermi-liquid pole, i.e.

the first pole for the same conformal operator, has kprobe
F − k∆nF

F = 0.03µ.

2. The dispersion exponents ν defined through (ω −EF )2 ∼ (k − kF )2/ν , also maintain
roughly the same values as both solutions. This is visually evident in the near similar
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slopes of the ridges in figure 5. In the AdS Reissner-Nordström background, the
dispersion coefficients are known analytically as a function of the Fermi momentum:

νkF =
√

2k
2
F
µ2 − 1

3 + 1
6 (∆− 3/2)2 [13]. The Fermi-liquid-like quasiparticle correspond-

ing to the second pole in the operator with ∆ = 5/4 and g = 2 has νprobe
kF

= 1.02 vs.
ν∆nF = 1.01. The non-Fermi-liquid pole corresponding to the first pole for the same
conformal operator, has νprobe

kF
≈ 0.10, and ν∆nF = 0.12.

3. The most distinct property of the finite density phase is the redistributed spectral
weight of the poles. The non-Fermi liquid pole reaches its maximum height about 104,
an order of magnitude less than in the probe limit, whereas the second, Fermi liquid-
like pole, increases by an order of magnitude. This suggests that the finite density
state corresponds to the Fermi-liquid like state, rather than a non-Fermi liquid.

4. As we mentioned in the introduction, part of the reason to suspect the existence
of an AdS-RN Dirac-hair solution is that a detailed study of spectral functions in
AdS-RN reveals that the quasiparticle peak is anomalously sensitive to changes in
T . This anomalous temperature dependence disappears in the finite density solution.
Specifically in pure AdS-RN the position ωmax where the peak height is maximum,
denoted EF in [12], does not agree with the value ωpole, where the pole touches
the real axis in the complex ω-plane, for any finite value of T , and is exponentially
sensitive to changes in T (figure 6). In the AdS-RN Dirac hair solution the location
ωmax and the location ωpole do become the same. Figure 6b shows that the maximum
of the quasiparticle peak always sits at ω ' 0 in finite density Dirac hair solution,
while it only reaches this as T → 0 in the probe AdS-RN case.

4 Discussion and conclusion

Empirically we know that the Fermi liquid phase of real matter systems is remarkably
robust and generic. This is corroborated by analyzing effective field theory around the
Fermi surface, but as it assumes the ground state it cannot explain its genericity. If the
Fermi liquid ground state is so robust, this must also be a feature of the recent holographic
approaches to strongly interacting fermionic systems. Our results here indicate that this is
so. We have used Migdal’s relation to construct AdS/CFT rules for the holographic dual of
a Fermi liquid: the characteristic occupation number discontinuity ∆nF is encoded in the
normalizable subsubleading component of the spatially averaged fermion density J0

−(z) ≡∫
d3kΨ̄(ω = 0,−k, z)iγ0Ψ(ω = 0, k, z) near the AdS boundary. This density has its own set

of evolution equations, based on the underlying Dirac field, and insisting on normalizability
automatically selects the on-shell wavefunctions of the underlying Dirac-field.

The simplest AdS solution that has a non-vanishing expectation value for the occupa-
tion number discontinuity ∆nF is that of a single fermion wavefunction. Using the density
approach — which through the averaging appears to describe a class of solutions rather
than one specific solution — we have constructed the limit of this solution where gravita-
tional backreaction is ignored. At low black hole temperatures this solution with fermionic
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Figure 6. (a) Single fermion spectral functions near ω = 0 in pure AdS Reissner-Nordström (blue)
and in the finite fermion density background (red). In the former the position of the maximum
approaches ω = 0 as T is lowered whereas in the latter the position of the maximum stays close to
T = 0 for all values of T . (b) Position of the maximum of the quasiparticle peak in k-ω plane, for
different temperatures and ∆ = 5/4. The probe limit around a AdS-RN black hole (blue) carries a
strong temperature dependence of the ωmax value, with ωmax,T 6=0 6= 0. In the finite fermion density
background, the position of the maximum (red) is nearly independent of temperature and stays
at ω = 0.

“Dirac hair” is the preferred ground state. Through an analysis of the free energy, we
argue that this gravitational solution with a non-zero fermion profile precisely corresponds
to a system with a finite density of fermions. A spectral analysis still reveals a zoo of
Fermi-surfaces in this ground state, but there are indications that in the full gravitation-
ally backreacted solution only a Landau Fermi-liquid type Fermi surface survives. This
follows in part from the relation between the spectral density and the Fermi momentum of
a particular Landau liquid-like Fermi surface; it also agrees with the prediction from Lut-
tinger’s theorem. Furthermore, the spectral analysis in the finite density state shows no
anomalous temperature dependence present in the pure charged black-hole single spectral
functions. This also indicates that the finite density state is the true ground state.

The discovery of this state reveals a new essential component in the study of strongly
coupled fermionic systems through gravitational duals, where one should take into account
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the expectation values of fermion bilinears. Technically the construction of the full grav-
itationally backreacted solution is a first point that is needed to complete our finding. A
complete approach to this problem will have to take into account the many-body physics
in the bulk. Within the approach presented in this paper, it means the inclusion of addi-
tional fermion wavefunctions, filling the bulk Fermi surface. The realization, however, that
expectation values of fermion bilinears can be captured in holographic duals and naturally
encode phase separations in strongly coupled fermion systems should find a large set of
applications in the near future.
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We study the Fermi-level structure of 2þ 1-dimensional strongly interacting electron systems in

external magnetic field using the gague/gravity duality correspondence. The gravity dual of a finite density

fermion system is a Dirac field in the background of the dyonic AdS-Reissner-Nordström black hole. In

the probe limit, the magnetic system can be reduced to the nonmagnetic one, with Landau-quantized

momenta and rescaled thermodynamical variables. We find that at strong enough magnetic fields, the

Fermi surface vanishes and the quasiparticle is lost either through a crossover to conformal regime or

through a phase transition to an unstable Fermi surface. In the latter case, the vanishing Fermi velocity at

the critical magnetic field triggers the non-Fermi-liquid regime with unstable quasiparticles and a change

in transport properties of the system. We associate it with a metal–’’strange-metal’’ phase transition. Next,

we compute the DC Hall and longitudinal conductivities using the gravity-dressed fermion propagators.

For dual fermions with a large charge, many different Fermi surfaces contribute and the Hall conductivity

is quantized as expected for integer quantum Hall effect (QHE). At strong magnetic fields, as additional

Fermi surfaces open up, new plateaus typical for the fractional QHE appear. The somewhat irregular

pattern in the length of fractional QHE plateaus resembles the outcomes of experiments on thin graphite in

a strong magnetic field. Finally, motivated by the absence of the sign problem in holography, we suggest a

lattice approach to the AdS calculations of finite density systems.

DOI: 10.1103/PhysRevD.84.106003 PACS numbers: 11.25.Tq, 71.27.+a

I. INTRODUCTION

The study of strongly interacting fermionic systems at
finite density and temperature is a challenging task in
condensed matter and high energy physics. Analytical
methods are limited or not available for strongly coupled
systems, and numerical simulation of fermions at finite
density breaks down because of the sign problem [1].
There has been an increased activity in describing finite
density fermionic matter by a gravity dual using the holo-
graphic AdS/CFT correspondence [2]. The gravitational
solution which is dual to the finite chemical potential
system is the electrically charged AdS-Reissner-
Nordström black hole, which provides a background where
only the metric and Maxwell fields are nontrivial and all
matter fields vanish. In the classical gravity limit, the
decoupling of the Einstein-Maxwell sector holds and leads
to universal results, which is an appealing feature of ap-
plied holography. Indeed, the celebrated result for the ratio
of the shear viscosity over the entropy density [3] is
identical for many strongly interacting theories and has
been considered a robust prediction of the AdS/CFT
correspondence.

However, an extremal black hole alone is not enough to
describe finite density systems as it does not source the
matter fields. In holography, at leading order, the Fermi

surfaces are not evident in the gravitational geometry, but
can only be detected by external probes; either probe D-
branes [2] or probe bulk fermions [4–7]. Here, we shall
consider the latter option, where the free Dirac field in the
bulk carries a finite charge density [8]. We ignore electro-
magnetic and gravitational backreaction of the charged
fermions on the bulk space-time geometry (probe approxi-
mation). At large temperatures, T � �, this approach
provides a reliable hydrodynamic description of transport
at a quantum criticality (in the vicinity of superfluid-
insulator transition) [9]. At small temperatures, T � �,
in some cases, sharp Fermi surfaces emerge with either
conventional Fermi-liquid scaling [5] or of a non-Fermi-
liquid type [6] with scaling properties that differ signifi-
cantly from those predicted by the Landau Fermi-liquid
theory. The nontrivial scaling behavior of these non-Fermi
liquids has been studied semianalytically in [7] and is of
great interest as high-Tc superconductors and metals near
the critical point are believed to represent non-Fermi
liquids.
What we shall study is the effects of magnetic field

on the holographic fermions. A magnetic field is a probe
of finite density matter at low temperatures, where the
Landau-level physics reveals the Fermi-level structure.
The gravity dual system is described by an AdS dyonic
black hole with electric and magnetic charges Q and H,
respectively, corresponding to a 2þ 1-dimensional field
theory at finite chemical potential in an external magnetic
field [10]. Probe fermions in the background of the dyonic
black hole have been considered in [11,12]; and probe

*Also at ITEP, Moscow, Russia
†Present address: Albert-Ludwigs-Universität Freiburg D-

79104 Freiburg, Germany

PHYSICAL REVIEW D 84, 106003 (2011)

1550-7998=2011=84(10)=106003(27) 106003-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.106003


bosons in the same background have been studied in [13].
Quantum magnetism is considered in [14].

The Landau quantization of momenta due to the mag-
netic field found there shows again that the AdS/CFT
correspondence has a powerful capacity to unveil that
certain quantum properties known from quantum gases
have a much more ubiquitous status than could be antici-
pated theoretically. A first highlight is the demonstration
[15] that the Fermi surface of the Fermi gas extends way
beyond the realms of its perturbative extension in the form
of the Fermi liquid. In AdS/CFT, it appears to be gravita-
tionally encoded in the matching along the scaling direc-
tion between the ‘‘bare’’ Dirac waves falling in from the
‘‘UV’’ boundary and the true IR excitations living near
the black hole horizon. This IR physics can insist on the
disappearance of the quasiparticle but, if so, this ‘‘critical
Fermi liquid’’ is still organized ‘‘around’’ a Fermi surface.
The Landau quantization, the organization of quantum
gaseous matter in quantized energy bands (Landau levels)
in a system of two space dimensions pierced by a magnetic
field oriented in the orthogonal spatial direction, is a sec-
ond such quantum gas property. Following Ref. [11], we
shall describe here that despite the strong interactions in
the system, the holographic computation reveals the same
strict Landau-level quantization. Arguably, it is the mean-
field nature imposed by large N limit inherent in AdS/CFT
that explains this. The system is effectively noninteracting
to first order in 1=N. The Landau quantization is not
manifest from the geometry, but, as we show, this state-
ment is straightforwardly encoded in the symmetry
correspondences associated with the conformal compacti-
fication of AdS on its flat boundary (i.e., in the UV con-
formal field theory [CFT]).

An interesting novel feature in strongly coupled systems
arises from the fact that the background geometry is only
sensitive to the total energy density Q2 þH2 contained in
the electric and magnetic fields sourced by the dyonic
black hole. Dialing up the magnetic field is effectively
similar to a process where the dyonic black hole loses its
electric charge. At the same time, the fermionic probe
with charge q is essentially only sensitive to the Coulomb
interaction gqQ. As shown in [11], one can therefore map
a magnetic to a nonmagnetic system with rescaled pa-
rameters (chemical potential, fermion charge) and same
symmetries and equations of motion, as long as the
Reissner-Nordström geometry is kept.

Translated to more experiment-compatible language, the
above magnetic-electric mapping means that the spectral
functions at nonzero magnetic field h are identical to the
spectral function at h ¼ 0 for a reduced value of the
coupling constant (fermion charge) q, provided the probe
fermion is in a Landau-level eigenstate. A striking conse-
quence is that the spectrum shows conformal invariance for
arbitrarily high magnetic fields, as long as the system is at
negligible to zero density. Specifically, a detailed analysis

of the fermion spectral functions reveals that at strong
magnetic fields, the Fermi-level structure changes qualita-
tively. There exists a critical magnetic field at which the
Fermi velocity vanishes. Ignoring the Landau-level quan-
tization, we show that this corresponds to an effective
tuning of the system from a regular Fermi-liquid phase
with linear dispersion and stable quasiparticles to a non-
Fermi liquid with fractional power-law dispersion and
unstable excitations. This phenomenon can be interpreted
as a transition from metallic phase to a ’’strange metal’’ at
the critical magnetic field and corresponds to the change of
the infrared conformal dimension from � > 1=2 to � <
1=2, while the Fermi momentum stays nonzero and the
Fermi surface survives. Increasing the magnetic field
further, this transition is followed by a strange-metal–
conformal crossover and eventually, for very strong fields,
the system always has near-conformal behavior where
kF ¼ 0 and the Fermi surface disappears.
For some Fermi surfaces, this surprising metal–strange-

metal transition is not physically relevant, as the system
prefers to directly enter the conformal phase. Whether a
fine tuned system exists that does show a quantum critical
phase transition from a Fermi liquid to a non-Fermi liquid
is determined by a Diophantine equation for the Landau-
quantized Fermi momentum as a function of the magnetic
field. Perhaps these are connected to the magnetically
driven phase transition found in AdS5=CFT4 [16]. We
leave this subject for future work.
Overall, the findings of Landau quantization and ‘‘dis-

charge’’ of the Fermi surface are in line with the expecta-
tions: both phenomena have been found in a vast array of
systems [17] and are almost tautologically tied to the
notion of a Fermi surface in a magnetic field. Thus, we
regard them also as a sanity check of the whole bottom-up
approach of fermionic AdS/CFT [4–6,15], giving further
credit to the holographic Fermi surfaces as having to do
with the real world.
Next, we use the information of magnetic effects the

Fermi surfaces extracted from holography to calculate the
quantum Hall and longitudinal conductivities. Generally
speaking, it is difficult to calculate conductivity holograph-
ically beyond the Einstein-Maxwell sector, and extract the
contribution of holographic fermions. In the semiclassical
approximation, one-loop corrections in the bulk setup in-
volving charged fermions have been calculated [15]. In
another approach, the backreaction of charged fermions on
the gravity-Maxwell sector has been taken into account and
incorporated in calculations of the electric conductivity
[8]. We calculate the one-loop contribution on the CFT
side, which is equivalent to the holographic one-loop cal-
culations as long as vertex corrections do not modify
physical dependencies of interest [15,18]. As we dial the
magnetic field, the Hall plateau transition happens when
the Fermi surface moves through a Landau level. One can
think of a difference between the Fermi energy and the
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energy of the Landau level as a gap, which vanishes at the
transition point and the 2þ 1-dimensional theory becomes
scale invariant. In the holographic D3–D7 brane model of
the quantum Hall effect, plateau transition occurs as D-
branes move through one another [19]. In the same model,
a dissipation process has been observed as D-branes fall
through the horizon of the black hole geometry that is
associated with the quantum Hall insulator transition.
In the holographic fermion liquid setting, dissipation is
present through interaction of fermions with the horizon
of the black hole. We have also used the analysis of the
conductivities to learn more about the metal–strange-metal
phase transition, as well as the crossover back to the
conformal regime at high magnetic fields.

We conclude with the remark that the findings summa-
rized above are, in fact, somewhat puzzling when con-
trasted to the conventional picture of quantum Hall
physics. It is usually stated that the quantum Hall effect
requires three key ingredients: Landau quantization,
quenched disorder, 1 and (spatial) boundaries, i.e., a finite-
sized sample [20]. The first brings about the quantization of
conductivity, the second prevents the states from spilling
between the Landau levels, ensuring the existence of a gap,
and the last one, in fact, allows the charge transport to
happen (as it is the boundary states that actually conduct).
In ourmodel, only the first condition is satisfied. The second
is put by hand by assuming that the gap is automatically
preserved, i.e., that there is no mixing between the Landau
levels. There is, however, no physical explanation as to how
the boundary states are implicitly taken into account by
AdS/CFT.

The paper is organized as follows. We outline the holo-
graphic setting of the dyonic black hole geometry and bulk
fermions in Sec. II. In Sec. III, we prove the conservation
of conformal symmetry in the presence of the magnetic
fields. Section IV is devoted to the holographic fermion
liquid, where we obtain the Landau-level quantization,
followed by a detailed study of the Fermi surface proper-
ties at zero temperature in Sec. V. We calculate the DC
conductivities in Sec. VI, and compare the results with
available data in graphene. In Sec. VII, we show that the
fermion sign problem is absent in the holographic setting,
therefore allowing lattice simulations of finite density mat-
ter in principle.

II. HOLOGRAPHIC FERMIONS IN A
DYONIC BLACK HOLE

We first describe the holographic setup with the dyonic
black hole and the dynamics of Dirac fermions in this

background. In this paper, we exclusively work in the
probe limit, i.e., in the limit of large fermion charge q.

A. Dyonic black hole

We consider the gravity dual of 3-dimensional confor-
mal field theory with global Uð1Þ symmetry. At finite
charge density and in the presence of a magnetic field,
the system can be described by a dyonic black hole in 4-
dimensional anti-de Sitter space-time, AdS4, with the cur-
rent J� in the CFT mapped to a Uð1Þ gauge field AM in

AdS. We use �; �; �; . . . ; for the space-time indices in the
CFT and M;N; . . . ; for the global space-time indices in
AdS.
The action for a vector field AM coupled to AdS4 gravity

can be written as

Sg ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Rþ 6

R2
� R2

g2F
FMNF

MN

�
; (1)

where g2F is an effective dimensionless gauge coupling and
R is the curvature radius of AdS4. The equations of motion
following from Eq. (1) are solved by the geometry corre-
sponding to a dyonic black hole, having both electric and
magnetic charge:

ds2 ¼ gMNdx
MdxN

¼ r2

R2
ð�fdt2 þ dx2 þ dy2Þ þ R2

r2
dr2

f
: (2)

The redshift factor f and the vector field AM reflect the fact
that the system is at a finite charge density and in an
external magnetic field:

f ¼ 1þQ2 þH2

r4
�M

r3
;

At ¼ �

�
1� r0

r

�
;

Ay ¼ hx;

Ax ¼ Ar ¼ 0;

(3)

where Q and H are the electric and magnetic charge of the
black hole, respectively. Here, we chose the Landau gauge;
the black hole chemical potential � and the magnetic field
h are given by

� ¼ gFQ

R2r0
; h ¼ gFH

R4
; (4)

with r0 as the horizon radius determined by the largest
positive root of the redshift factor fðr0Þ ¼ 0:

M ¼ r30 þ
Q2 þH2

r0
: (5)

The boundary of the AdS is reached for r ! 1. The
geometry described by Eqs. (2) and (3) describes the
boundary theory at finite density, i.e., a system in a charged

1Quenched disorder means that the dynamics of the impurities
is ‘‘frozen’’, i.e. they can be regarded as having infinite mass.
When coupled to the Fermi liquid, they ensure that below some
scale, the system behaves as if consisting of noninteracting
quasiparticles only.
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medium at the chemical potential � ¼ �bh and in trans-
verse magnetic field h ¼ hbh, with charge, energy, and
entropy densities given, respectively, by

� ¼ 2
Q

�2R2gF
; � ¼ M

�2R4
; s ¼ 2�

�2

r20
R2

: (6)

The temperature of the system is identified with the
Hawking temperature of the black hole, TH � jf0ðr0Þj=4�,

T ¼ 3r0
4�R2

�
1�Q2 þH2

3r40

�
: (7)

Since Q and H have dimensions of ½L�2, it is convenient
to parametrize them as

Q2 ¼ 3r4�; Q2 þH2 ¼ 3r4��: (8)

In terms of r0, r�, and r��, the above expressions become

f ¼ 1þ 3r4��
r4

� r30 þ 3r4��=r0
r3

; (9)

with

� ¼ ffiffiffi
3

p
gF

r2�
R2r0

; h ¼ ffiffiffi
3

p
gF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4�� � r4�

p
R4

: (10)

The expressions for the charge, energy, and entropy den-
sities, as well as for the temperature, are simplified as

� ¼ 2
ffiffiffi
3

p
�2gF

r2�
R2

; � ¼ 1

�2

r30 þ 3r4��=r0
R4

;

s ¼ 2�

�2

r20
R2

; T ¼ 3

4�

r0
R2

�
1� r4��

r40

�
:

(11)

In the zero temperature limit, i.e., for an extremal black
hole, we have

T ¼ 0 ! r0 ¼ r��; (12)

which in the original variables reads Q2 þH2 ¼ 3r40. In
the zero temperature limit (12), the redshift factor f as
given by Eq. (9) develops a double zero at the horizon:

f ¼ 6
ðr� r��Þ2

r2��
þOððr� r��Þ3Þ: (13)

As a result, near the horizon, the AdS4 metric reduces to
AdS2 � R2 with the curvature radius of AdS2 given by

R2 ¼ 1ffiffiffi
6

p R: (14)

This is a very important property of the metric, which
considerably simplifies the calculations, in particular, in
the magnetic field.

In order to scale away theAdS4 radius R and the horizon
radius r0, we introduce dimensionless variables

r ! r0r; r� ! r0r�; r�� ! r0r��;

M ! r30M; Q ! r20Q; H ! r20H;
(15)

and

ðt; ~xÞ !R2

r0
ðt; ~xÞ; AM ! r0

R2
AM; !! r0

R2
!;

�! r0
R2

�; h! r20
R4

h; T! r0
R2

T; ds2 !R2ds2:

(16)

Note that the scaling factors in the above equation that
describes the quantities of the boundary field theory in-
volve the curvature radius of AdS4, not AdS2.
In the new variables, we have

T ¼ 3

4�
ð1� r4��Þ ¼ 3

4�

�
1�Q2 þH2

3

�
;

f ¼ 1þ 3r4��
r4

� 1þ 3r4��
r3

; At ¼ �

�
1� 1

r

�
;

� ¼ ffiffiffi
3

p
gFr

2� ¼ gFQ; h ¼ gFH; (17)

and the metric is given by

ds2 ¼ r2ð�fdt2 þ dx2 þ dy2Þ þ 1

r2
dr2

f
; (18)

with the horizon at r ¼ 1 and the conformal boundary at
r ! 1.
At T ¼ 0, r�� becomes unity, and the redshift factor

develops the double zero near the horizon,

f ¼ ðr� 1Þ2ðr2 þ 2rþ 3Þ
r4

: (19)

As mentioned before, due to this fact, the metric near the
horizon reduces to AdS2 � R2, where the analytical calcu-
lations are possible for small frequencies [7]. However, in
the chiral limit m ¼ 0, analytical calculations are also
possible in the bulk AdS4 [21], which we utilize in this
paper.

B. Holographic fermions

To include the bulk fermions, we consider a spinor field
c in the AdS4 of charge q and mass m, which is dual
to an operator O in the boundary CFT3 of charge q and
dimension

� ¼ 3

2
þmR; (20)

with mR � � 1
2 and in dimensionless units corresponding

to � ¼ 3
2 þm. In the black hole geometry, Eq. (2), the

quadratic action for c reads as

Sc ¼ i
Z

d4x
ffiffiffiffiffiffiffi�g

p ð �c�MDMc �m �c c Þ; (21)
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where �c ¼ c y�t, and

DM ¼ @M þ 1

4
!abM�

ab � iqAM; (22)

where !abM is the spin connection, and �ab ¼ 1
2 ½�a;�b�.

Here, M and a, b denote the bulk space-time and tangent
space indices, respectively, while�, � are indices along the
boundary directions, i.e.,M ¼ ðr; �Þ. Gamma matrix basis
(Minkowski signature) is given by Eq. (A12) as in [7].

We will be interested in spectra and response functions
of the boundary fermions in the presence of magnetic field.
This requires solving the Dirac equation in the bulk [5,6]:

ð�MDM �mÞc ¼ 0: (23)

From the solution of the Dirac equation at small !, an
analytic expression for the retarded fermion Green’s func-
tion of the boundary CFT at zero magnetic field has been
obtained in [7]. Near the Fermi surface, it reads as [7]:

GRð�; kÞ ¼ ð�h1vFÞ
!� vFk? ��ð!; TÞ ; (24)

where k? ¼ k� kF is the perpendicular distance from
the Fermi surface in momentum space, h1 and vF are
real constants calculated below, and the self-energy � ¼
�1 þ i�2 is given by [7]

�ð!; TÞ=vF ¼ T2�g

�
!

T

�

¼ ð2�TÞ2�h2ei��i��
�ð12 þ �� i!

2�T þ i�q

6 Þ
�ð12 � �� i!

2�T þ i�q

6 Þ ;

(25)

where � is the zero temperature conformal dimension at
the Fermi momentum, � 	 �kF , given by Eq. (58),

�q 	 �q, h2 is a positive constant, and the phase � is

such that the poles of the Green’s function are located in
the lower half of the complex frequency plane. These
poles correspond to quasinormal modes of the Dirac
equation (23), and they can be found numerically solving
Fð!�Þ ¼ 0 [22], with

Fð!Þ ¼ k?
�ð12 þ �� i!

2�T þ i�q

6 Þ �
h2e

i��i��ð2�TÞ2�
�ð12 � �� i!

2�T þ i�q

6 Þ :

(26)

The solution gives the full motion of the quasinormal

poles !ðnÞ
� ðk?Þ in the complex ! plane as a function of

k?. It has been found in [7,22], that, if the charge of the
fermion is large enough compared to its mass, the pole
closest to the real ! axis bounces off the axis at k? ¼ 0
(and ! ¼ 0). Such behavior is identified with the exis-
tence of the Fermi momentum kF, indicative of an under-
lying strongly coupled Fermi surface.

At T ¼ 0, the self-energy becomes T2�gð!=TÞ !
ck!

2�, and the Green’s function obtained from the solution
to the Dirac equation reads [7]

GRð�; kÞ ¼ ð�h1vFÞ
!� vFk? � h2vFe

i��i��!2�
; (27)

where k? ¼
ffiffiffiffiffi
k2

p
� kF. The last term is determined by the

IR AdS2 physics near the horizon. Other terms are deter-
mined by the UV physics of the AdS4 bulk.
The solutions to (23) have been studied in detail in

[5–7]. Here, we simply summarize the novel aspects due to
the background magnetic field (formal details can be found
in the Appendix A).
(i) The background magnetic field h introduces a dis-

cretization of the momentum (see Appendix A for
details):

k ! keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q
; with l 2 N; (28)

with Landau-level index l [12,22]. These discrete
values of k are the analogue of the well-known
Landau levels that occur in magnetic systems.

(ii) There exists a (noninvertible) mapping on the level
of Green’s functions, from the magnetic system to
the nonmagnetic one by sending

ðH;Q; qÞ �
0
@0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þH2
q

; q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

Q2 þH2

s 1
A:
(29)

The Green’s functions in a magnetic system are thus
equivalent to those in the absence of magnetic
fields. To better appreciate that, we reformulate
Eq. (29) in terms of the boundary quantities:

ðh;�q; TÞ �
�
0; �q; T

�
1� h2

12�2

��
; (30)

where we used dimensionless variables defined in
Eqs. (15) and (17). The magnetic field thus effec-
tively decreases the coupling constant q and in-
creases the chemical potential � ¼ gFQ, such that
the combination �q 	 �q is preserved [11]. This

is an important point, as the equations of motion
actually only depend on this combination and not
on� and q separately [11]. In other words, Eq. (30)
implies that the additional scale brought about by the
magnetic field can be understood as changing� and
T independently in the effective nonmagnetic system
instead of only tuning the ratio �=T. This point is
important when considering the thermodynamics.

(iii) The discrete momentum keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

must be
held fixed in the transformation (29). The bulk-
boundary relation is particularly simple in this
case, as the Landau levels can readily be seen in
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the bulk solution, only to remain identical in the
boundary theory.

(iv) Similar to the nonmagnetic system [11], the
IR physics is controlled by the near-horizon
AdS2 � R2 geometry, which indicates the existence
of an IR CFT, characterized by operatorsOl, l 2 N
with operator dimensions � ¼ 1=2þ �l:

�l ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�
m2 þ 2jqhjl

r2��

�
��2

q

r4��

s
; (31)

in dimensionless notation, and �q 	 �q. At

T ¼ 0, when r�� ¼ 1, it becomes

�l ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðm2 þ 2jqhjlÞ ��2

q

q
: (32)

The Green’s function for these operators Ol is
found to be GR

l ð!Þ �!2�l , and the exponents �l

determine the dispersion properties of the quasi-
particle excitations. For � > 1=2, the system has
a stable quasiparticle and a linear dispersion,
whereas, for � 
 1=2, one has a non-Fermi liq-
uid with power-law dispersion and an unstable
quasiparticle.

III. MAGNETIC FIELDS AND
CONFORMAL INVARIANCE

Despite the fact that a magnetic field introduces a scale,
in the absence of a chemical potential, all spectral func-
tions are essentially still determined by conformal symme-
try. To show this, we need to establish certain properties of
the near-horizon geometry of a Reissner-Nordström black
hole. This leads to the AdS2 perspective that was devel-
oped in [7]. The result relies on the conformal algebra and
its relation to the magnetic group, from the viewpoint of
the infrared CFT that was studied in [7]. Later on, we will
see that the insensitivity to the magnetic field also carries
over to AdS4 and the UV CFT in some respects. To
simplify the derivations, we consider the case T ¼ 0.

A. The near-horizon limit and Dirac equation in AdS2

It was established in [7] that an electrically charged
extremal AdS-Reissner-Nordström black hole has an
AdS2 throat in the inner bulk region. This conclusion
carries over to the magnetic case with some minor differ-
ences. We will now give a quick derivation of the AdS2
formalism for a dyonic black hole, referring the reader to
[7] for more details (that remain largely unchanged in the
magnetic field).

Near the horizon r ¼ r�� of the black hole described by
the metric (2), the redshift factor fðrÞ develops a double
zero:

fðrÞ ¼ 6
ðr� r��Þ2

r2��
þOððr� r��Þ3Þ: (33)

Now consider the scaling limit

r� r�� ¼ 	
R2
2



; t ¼ 	�1�;

	 ! 0 with �; 
finite:
(34)

In this limit, the metric (2) and the gauge field reduce to

ds2 ¼ R2
2


2
ð�d�2 þ d
2Þ þ r2��

R2
ðdx2 þ dy2Þ

A� ¼ �R2
2r0

r2��

1



; Ax ¼ Hx;

(35)

where R2 ¼ Rffiffi
6

p . The geometry described by this metric is

indeed AdS2 � R2. Physically, the scaling limit given in
Eq. (34) with finite � corresponds to the long time limit of
the original time coordinate t, which translates to the low
frequency limit of the boundary theory:

!

�
! 0; (36)

where ! is the frequency conjugate to t. (One can think of
	 as being the frequency !). Near the AdS4 horizon, we
expect the AdS2 region of an extremal dyonic black hole
to have a CFT1 dual. We refer to [7] for an account of this
AdS2=CFT1 duality. The horizon of AdS2 region is at

 ! 1 (the coefficient in front of d� vanishes at the
horizon in Eq. (35)), and the infrared CFT (IR CFT) lives
at the AdS2 boundary at 
 ¼ 0. The scaling picture given
by Eqs. (34) and (35) suggests that in the low frequency
limit, the 2-dimensional boundary theory is described by
this IR CFT (which is a CFT1). The Green’s function for
the operator O in the boundary theory is obtained through
a small frequency expansion and a matching procedure
between the two different regions (inner and outer) along
the radial direction and can be expressed through the
Green’s function of the IR CFT [7].
The explicit form for the Dirac equation (A28) in the

magnetic field is of little interest for the analytical re-
sults that follow; for completeness, we give it in the
Appendix A. Of primary interest is its limit in the IR region
with metric given by Eq. (35):

�
� 1ffiffiffiffiffiffiffi

g


p �3@
 �mþ 1ffiffiffiffiffiffiffiffiffiffiffi�g��

p �1

�
!þ�qR

2
2r0

r2��


�

� 1ffiffiffiffiffiffi
gii

p
i�2	l

�
FðlÞ ¼ 0; (37)

where the effective momentum of the l-th Landau level is

	l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

, �q 	 �q, and we omit the index of the

spinor field. To obtain Eq. (37), it is convenient to pick

the gamma matrix basis as �
̂ ¼ ��3, ��̂ ¼ i�1, and

�î ¼ ��2. We can write explicitly:
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R2
@
 þm � 


R2

�
!þ �qR

2
2
r0

r2��


�
þ R

r��
	l



R2

�
!þ �qR

2
2
r0

r2��


�
þ R

r��
	l



R2
@
 �m

0
BBB@

1
CCCA

� y

z

 !
¼ 0: (38)

Note that the AdS2 radius R2 enters for the ð�; 
Þ direc-
tions. At the AdS2 boundary, 
 ! 0, the Dirac equation to
the leading order is given by


@
F
ðlÞ ¼ �UFðlÞ;

U ¼ R2

m � �qR2r0
r2��

þ R
r��

	l

�qR2r0
r2��

þ R
r��

	l �m

0
B@

1
CA: (39)

The solution to this equation is given by the scaling

function FðlÞ ¼ Aeþ
��l þ Be�
�l , where e� are the
real eigenvectors of U and the exponent is

�l ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�
m2 þ R2

r2��
2jqhjl

�
R2 ��2

qR
4r20

r4��

s
: (40)

The conformal dimension of the operator O in the IR CFT
is �l ¼ 1

2 þ �l. Comparing Eq. (40) to the expression for

the scaling exponent in [7], we conclude that the scaling
properties and the AdS2 construction are unmodified by
the magnetic field, except that the scaling exponents are
now fixed by the Landau quantization. This ‘‘quantization
rule’’ was already exploited in [22] to study de Haas-
van Alphen oscillations.

IV. SPECTRAL FUNCTIONS

In this section, we will explore some of the properties of
the spectral function, in both plane wave and Landau-level
basis. We first consider some characteristic cases in the
plane wave basis and make connection with the angle-
resolved photoemission spectoscropy (ARPES)
measurements.

A. Relating to the ARPES measurements

In reality, ARPES measurements cannot be performed in
magnetic fields so the holographic approach, allowing a
direct insight into the propagator structure and the spectral
function, is especially helpful. This follows from the ob-
servation that the spectral functions as measured in ARPES
are always expressed in the plane wave basis of the photon.
Thus, in a magnetic field, when the momentum is not a
good quantum number anymore, it becomes impossible to
perform the photoemission spectroscopy.

In order to compute the spectral function, we have to
choose a particular fermionic plane wave as a probe. Since
the separation of variables is valid throughout the bulk, the
basis transformation can be performed at every constant

r-slice. This means that only the x and y coordinates have
to be taken into account (the plane wave probe lives only at
the CFT side of the duality). We take a plane wave prop-
agating in theþx direction with spin up along the r-axis. In
its rest frame, such a particle can be described by

�probe ¼ ei!t�ipxx




 !
;  ¼ 1

0

 !
: (41)

Near the boundary (at rb ! 1), we can rescale our solu-
tions of the Dirac equation making use of Eqs. (A23),
(A24), and (B1):

Fl ¼


 ð1Þl ð~xÞ
ðlÞ
þ ðrbÞ
 ð1Þl ð~xÞ

 ð2Þl ð~xÞ

�ðlÞ
þ ðrbÞ
 ð2Þl ð~xÞ

0
BBBBBBB@

1
CCCCCCCA;

~Fl ¼


 ð1Þl ð~xÞ
ðlÞ� ðrbÞ
 ð1Þl ð~xÞ

�
 ð2Þl ð~xÞ
ðlÞ� ðrbÞ
 ð2Þl ð~xÞ

0
BBBBBBB@

1
CCCCCCCA;

(42)

with rescaled ~x defined after Eq. (A20). This representation
is useful since we calculate the components �ðrbÞ related
to the retarded Green’s function in our numerics (we keep
the notation of [7]).

Let Ol and
~Ol be the CFT operators dual to Fl and ~Fl,

respectively, and cyk , ck be the creation and annihilation

operators for the plane wave state�probe. Since the states F

and ~F form a complete set in the bulk, we can write

cypð!Þ ¼ X
l

ðU�
l ;

~U�
l Þ Oy

l ð!Þ
~Oy
l ð!Þ

 !

¼ X
l

ðU�
lO

y
l ð!Þ þ ~U�

l
~Oy
l ð!ÞÞ; (43)

where the overlap coefficientsUlð!Þ are given by the inner
product between �probe and F:

UlðpxÞ ¼
Z

dxFy
l i�

0�probe

¼ �
Z

dxe�ipxxþðrbÞð
 ð1Þyl ð~xÞ � 
 ð2Þyl ð~xÞÞ; (44)

with �F ¼ Fyi�0 and a similar expression for ~Ul involving
�ðrbÞ. The constants Ul can be calculated analytically
using the numerical value of �ðrbÞ and by noting that the
Hermite functions are eigenfunctions of the Fourier trans-
form. We are interested in the retarded Green’s function,
defined as

GR
Ol
ð!;pÞ ¼ �i

Z
dxdtei!t�ip�x�ðtÞGR

Ol
ðt; xÞ

GR
Ol
ðt; xÞ ¼ h0j½Olðt; xÞ; �Olð0; 0Þ�j0i

GR ¼ GO 0

0 ~GO

 !
;

(45)
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where ~GO is the retarded Green’s function for the

operator ~O.
Exploiting the orthogonality of the spinors created byO

and Oy and using Eq. (43), the Green’s function in the
plane wave basis can be written as

GR
cpð!;pxÞ ¼

X
l

tr

�
U
~U

�
ðU�; ~U�ÞGR

¼ ðjUlðpxÞj2GR
Ol
ð!; lÞ þ j ~UlðpxÞj2 ~GR

Ol
ð!; lÞÞ:

(46)

In practice, we cannot perform the sum in Eq. (46) all the
way to infinity, so we have to introduce a cutoff Landau-
level lcut. In most cases, we are able to make lcut large
enough that the behavior of the spectral function is clear.

Using the above formalism, we have produced spectral
functions for two different conformal dimensions and fixed
chemical potential and magnetic field (Fig. 1). Using the
plane wave basis allows us to directly detect the Landau
levels. The unit used for plotting the spectra (here and later
on in the paper) is the effective temperature Teff [5]:

Teff ¼ T

2

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�2

ð4�TÞ2
s 1

A: (47)

This unit interpolates between � at T=� ¼ 0 and T at
T=� ! 1 and is convenient for the reason that the relevant
quantities (e.g., Fermi momentum) are of order unity for
any value of � and h.

B. Magnetic crossover and disappearance
of the quasiparticles

Theoretically, it is more convenient to consider the
spectral functions in the Landau-level basis. For definite-
ness, let us pick a fixed conformal dimension � ¼ 5

4 which

corresponds to m ¼ � 1
4 . In the limit of weak magnetic

fields, h=T ! 0, we should reproduce the results that were
found in [5].
In Fig. 2(a), we indeed see that the spectral function,

corresponding to a low value of �=T, behaves as expected
for a nearly conformal system. The spectral function is
approximately symmetric about ! ¼ 0, it vanishes for
j!j< k, up to a small residual tail due to finite tempera-
ture, and for j!j � k, it scales as !2m.
In Fig. 2(b), which corresponds to a high value of �=T,

we see the emergence of a sharp quasiparticle peak. This
peak becomes the sharpest when the Landau-level l corre-

sponding to an effective momentum keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

coin-
cides with the Fermi momentum kF. The peaks also
broaden out when keff moves away from kF. A more
complete view of the Landau quantization in the quasipar-
ticle regime is given in Fig. 3, where we plot the dispersion
relation (!-k map). Both the sharp peaks and the Landau
levels can be visually identified.
Collectively, the spectra in Fig. 2 show that conformal-

ity is only broken by the chemical potential � and not by
the magnetic field. Naively, the magnetic field introduces
a new scale in the system. However, this scale is absent
from the spectral functions, visually validating the dis-
cussion in the previous section that the scale h can be
removed by a rescaling of the temperature and chemical
potential.
One thus concludes that there is some value h0c of the

magnetic field, depending on �=T, such that the spectral
function loses its quasiparticle peaks and displays near-
conformal behavior for h > h0c. The nature of the transition
and the underlying mechanism depends on the parameters
ð�q; T;�Þ. One mechanism, obvious from the rescaling in

Eq. (29), is the reduction of the effective coupling q as h
increases. This will make the influence of the scalar po-
tential A0 negligible and push the system back toward
conformality. Generically, the spectral function shows no
sharp change but is more indicative of a crossover.

FIG. 1 (color online). Two examples of spectral functions in the plane wave basis for �=T ¼ 50 and h=T ¼ 1. The conformal
dimension is � ¼ 5=4 (left) and � ¼ 3=2 (right). Frequency is in the units of effective temperature Teff . The plane wave momentum is
chosen to be k ¼ 1. Despite the convolution of many Landau levels, the presence of the discrete levels is obvious.
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FIG. 2 (color online). Some typical examples of spectral functions Að!; keffÞ vs ! in the Landau basis, keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjnp

. The top four
correspond to a conformal dimension � ¼ 5

4 (m ¼ � 1
4 ), and the bottom four to� ¼ 3

2 (m ¼ 0). In each plot, we show different Landau

levels, labeled by index n, as a function of �=T and h=T. The ratios take values ð�=T; h=TÞ ¼ ð1; 1Þ; ð50; 1Þ; ð1; 50Þ; ð50; 50Þ from left
to right. The conformal case can be identified when �=T is small, regardless of h=T (plots in the left panel). Nearly conformal
behavior is seen when both �=T and h=T are large. This confirms our analytic result that the behavior of the system is primarily
governed by �. Departure from the conformality and sharp quasiparticle peaks are seen when �=T is large and h=T is small in
parts (b) and (f). Multiple quasiparticle peaks arise whenever keff ¼ kF. This suggests the existence of a critical magnetic field, beyond
which the quasiparticle description becomes invalid and the system exhibits a conformal-like behavior. As before, the frequency ! is
in units of Teff .
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A more interesting phenomenon is the disappearance of
coherent quasiparticles at high effective chemical poten-
tials. For the special case m ¼ 0, we can go beyond nu-
merics and study this transition analytically, combining the
exact T ¼ 0 solution found in [21] and the mapping (30).
In the next section, we will show that the transition is
controlled by the change in the dispersion of the quasipar-
ticle and corresponds to a sharp phase transition.
Increasing the magnetic field leads to a decrease in phe-
nomenological control parameter �kF . This can give rise to

a transition to a non-Fermi liquid when �kF 
 1=2, and,

finally, to the conformal regime at h ¼ h0c when �kF ¼ 0

and the Fermi surface vanishes.

C. Density of states

As argued at the beginning of this section, the spectral
function can look quite different depending on the particu-
lar basis chosen. Though the spectral function is an attrac-
tive quantity to consider due to connection with ARPES
experiments, we will also direct our attention to basis-
independent and manifestly gauge invariant quantities.
One of them is the density of states, defined by

FIG. 3 (color online). Dispersion relation ! vs keff for �=T ¼ 50, h=T ¼ 1, and � ¼ 5
4 (m ¼ � 1

4 ). The spectral function Að!; keffÞ
is displayed as a density plot. (a) On a large energy and momentum scale, we clearly sees that the peaks disperse almost linearly
(!  vFk), indicating that we are in the stable quasiparticle regime. (b) A zoom-in near the location of the Fermi surface shows clear
Landau quantization.

FIG. 4 (color online). Density of states Dð!Þ for m ¼ � 1
4 and (a) �=T ¼ 50, h=T ¼ 1, and (b) �=T ¼ 1, h=T ¼ 1. Sharp

quasiparticle peaks from the splitting of the Fermi surface are clearly visible in (a). The case (b) shows square-root level spacing
characteristic of a (nearly) Lorentz invariant spectrum, such as that of graphene.
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Dð!Þ ¼ X
l

Að!; lÞ; (48)

where the usual integral over the momentum is replaced by
a sum since only discrete values of the momentum are
allowed.

In Fig. 4, we plot the density of states for two systems.
We clearly see the Landau splitting of the Fermi surface. A
peculiar feature of these plots is that the density of states
seems to grow for negative values of !. This, however, is
an artifact of our calculation. Each individual spectrum in
the sum Eq. (48) has a finite tail that scales as!2m for large
!, so each term has a finite contribution for large values of
!. When the full sum is performed, this fact implies that
lim!!1Dð!Þ ! 1. The relevant information on the den-
sity of states can be obtained by regularizing the sum,
which, in practice, is done by summing over a finite
number of terms only and then considering the peaks that
lie on top of the resulting finite-sized envelope. The physi-
cal point in Fig. 4(a) is the linear spacing of Landau levels,
corresponding to a nonrelativistic system at finite density.
This is to be contrasted with Fig. 4(b), where the level

spacing behaves as / ffiffiffi
h

p
, appropriate for a Lorentz invari-

ant system and realized in graphene [23].

V. FERMI LEVEL STRUCTURE AT
ZERO TEMPERATURE

In this section, we solve the Dirac equation in the
magnetic field for the special case m ¼ 0 (� ¼ 3

2 ).

Although there are no additional symmetries in this case,
it is possible to get an analytic solution. Using this solution,
we obtain Fermi-level parameters such as kF and vF and
consider the process of filling the Landau levels as the
magnetic field is varied.

A. Dirac equation with m ¼ 0

In the case m ¼ 0, it is convenient to solve the Dirac
equation including the spin connection (Eq. (A2)) rather
than scaling it out:

�
�

ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �1@r �
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �3ð!þ qAtÞ þ

ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �1 1

2
!t̂ r̂ t

� �1 1

2
!x̂ r̂ x � �1 1

2
!ŷ r̂ y � 	l

�
� 1

c 1

c 2

 !
¼ 0; (49)

where 	l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

are the energies of the Landau levels
l ¼ 0; 1; . . . , gii 	 gxx ¼ gyy, AtðrÞ is given by Eq. (3), and
the gamma matrices are defined in Eq. (A12). In the basis
of Eq. (A12), the two components c 1 and c 2 decouple.
Therefore, in what follows, we solve for the first compo-
nent only (we omit index 1). Substituting the spin connec-
tion, we have [18]:

�
� r2

ffiffiffi
f

p
R2

�1@r � 1ffiffiffi
f

p �3ð!þ qAtÞ

� �1 r
ffiffiffi
f

p
2R2

�
3þ rf0

2f

�
� 	l

�
c ¼ 0; (50)

with c ¼ ðy1; y2Þ. It is convenient to change to the basis

~y1

~y2

 !
¼ 1 �i

�i 1

 !
y1

y2

 !
; (51)

which diagonalizes the system into a second order differ-
ential equation for each component. We introduce the
dimensionless variables as in Eqs. (15)–(17) and make a
change of the dimensionless radial variable:

r ¼ 1

1� z
; (52)

with the horizon now being at z ¼ 0 and the conformal
boundary at z ¼ 1. Performing these transformations in
Eq. (50), the second order differential equations for ~y1
reads

�
f@2z þ

�
3f

1� z
þ f0

�
@z þ 15f

4ð1� zÞ2 þ
3f0

2ð1� zÞ þ
f00

4

þ 1

f

�
ð!þ q�zÞ � if0

4

�
2 � iq�� 	2

l

�
~y1 ¼ 0: (53)

The second component ~y2 obeys the same equation with
� � ��.
At T ¼ 0,

f ¼ 3z2ðz� z0Þðz� �z0Þ; z0 ¼ 1

3

�
4þ i

ffiffiffi
2

p �
: (54)

The solution of this fermion system at zero magnetic field
and zero temperature T ¼ 0 has been found in [21]. To
solve Eq. (53), we use the mapping to a zero magnetic field
system, Eq. (29). The combination �q 	 �q at nonzero h

maps to �q;eff 	 �effqeff at zero h as follows:

�q � q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

Q2 þH2

s
� gF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þH2

q

¼ ffiffiffi
3

p
qgF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2

3

s
¼ �q;eff ; (55)

where at T ¼ 0, we used Q2 þH2 ¼ 3. We solve Eq. (53)
for zero modes, i. e., ! ¼ 0, and at the Fermi surface
	 ¼ k and implement Eq. (55).
Near the horizon (z ¼ 0, f ¼ 6z2), we have

6z2~y001;2 þ 12z~y01;2 þ
�
3

2
þ ð�q;effÞ2

6
� k2F

�
~y1;2 ¼ 0; (56)

which gives the following behavior:
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~y 1;2 � z�ð1=2Þ��k ; (57)

with the scaling exponent � following from Eq. (32):

� ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6k2 � ð�q;effÞ2

q
; (58)

at the momentum k. Using MAPLE, we find the zero-mode

solution of Eq. (53) with a regular behavior z�ð1=2Þþ� at the
horizon [18,21]:

~yð0Þ1 ¼N1ðz� 1Þ3=2z�ð1=2Þþ�ðz� �z0Þ�ð1=2Þ��

�
�
z� z0
z� �z0

�
1=4ð�1� ffiffi

2
p

�q;eff=z0Þ
2F1

�
1

2
þ��

ffiffiffi
2

p
3
�q;eff ;�

þ i
�q;eff

6
;1þ 2�;

2i
ffiffiffi
2

p
z

3z0ðz� �z0Þ
�
; (59)

and

~yð0Þ2 ¼ N2ðz� 1Þ3=2z�ð1=2Þþ�ðz� �z0Þ�ð1=2Þ��

�
�
z� z0
z� �z0

�
1=4ð�1þ ffiffi

2
p

�q;eff=z0Þ
2F1

�
1

2
þ �þ

ffiffiffi
2

p
3
�q;eff ; �

� i
�q;eff

6
;1þ 2�;

2i
ffiffiffi
2

p
z

3z0ðz� �z0Þ
�
; (60)

where 2F1 is the hypergeometric function and N1, N2 are
normalization factors. Since normalization factors are con-
stants, we find their relative weight by substituting solu-
tions given in Eq. (59) back into the first order differential
equations at z� 0,

N1

N2

¼ � 6i�þ�q;effffiffiffi
6

p
k

�
z0
�z0

�
�q;eff=

ffiffi
2

p
z0
: (61)

The same relations are obtained when calculations are

done for any z. The second solution ~�ð0Þ
1;2, with behavior

z�ð1=2Þ�� at the horizon, is obtained by replacing � ! ��
in Eq. (59).
To get insight into the zero-mode solution (59), we plot

the radial profile for the density function c ð0Þyc ð0Þ for
different magnetic fields in Fig. 5. The momentum chosen
is the Fermi momentum of the first Fermi surface (see the
next section). The curves are normalized to have the same
maxima. Magnetic field is increased from right to left. At
small magnetic field, the zero modes are supported away
from the horizon, while at large magnetic field, the zero
modes are supported near the horizon. This means that at
large magnetic field, the influence of the black hole to the
Fermi level structure becomes more important.

B. Magnetic effects on the Fermi momentum
and Fermi velocity at T ¼ 0

In the presence of a magnetic field, there is only a true
pole in the Green’s function whenever the Landau level
crosses the Fermi energy [22]

2ljqhj ¼ k2F: (62)

As shown in Fig. 2, whenever Eq. (62) is satisfied, the
spectral function Að!Þ has a (sharp) peak. This is not
surprising, since quasiparticles can be easily excited from
the Fermi surface. From Eq. (62), the spectral function
Að!Þ and the density of states on the Fermi surface Dð!Þ
are periodic in 1

h with the period

�

�
1

h

�
¼ 2�q

AF

; (63)

where AF ¼ �k2F is the area of the Fermi surface [22]. This
is a manifestation of the de Haas-van Alphen quantum
oscillations. At T ¼ 0, the electronic properties of metals
depend on the density of states on the Fermi surface.
Therefore, an oscillatory behavior as a function of mag-
netic field should appear in any quantity that depends on
the density of states on the Fermi energy. Magnetic sus-
ceptibility [22] and magnetization together with the super-
conducting gap [24] have been shown to exhibit quantum
oscillations. Every Landau level contributes an oscillating
term, and the period of the l-th level oscillation is deter-
mined by the value of the magnetic field h that satisfies
Eq. (62) for the given value of kF. Quantum oscillations
(and the quantum Hall effect, which we consider later in
the paper) are examples of phenomena in which Landau-
level physics reveals the presence of the Fermi surface.
The superconducting gap found in the quark matter in
magnetic fields [24] is another evidence for the existence
of the (highly degenerate) Fermi surface and the corre-
sponding Fermi momentum.

FIG. 5 (color online). Density of the zero-mode c 0yc 0 vs the
radial coordinate z (the horizon is at z ¼ 0, and the boundary
is at z ¼ 1) for different values of the magnetic field h for the
first (with the largest root for kF) Fermi surface. We set gF ¼ 1

(h ! H) and q ¼ 15ffiffi
3

p (�q;eff ! 15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

3

q
). From right to left,

the values of the magnetic field are H ¼ f0; 1:4; 1:5; 1:6; 1:63;
1:65; 1:68g. The amplitudes of the curves are normalized to
unity. At weak magnetic fields, the wave function is supported
away from the horizon, while, at strong fields, it is supported
near the horizon.
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Generally, a Fermi surface controls the occupation of
energy levels in the system: The energy levels below the
Fermi surface are filled, and those above are empty (or
nonexistent). Here, however, the association to the Fermi
momentum can be obscured by the fact that the fermions
form highly degenerate Landau levels. Thus, in two di-
mensions, in the presence of the magnetic field, the corre-
sponding effective Fermi surface is given by a single point
in the phase space that is determined by nF, the Landau
index of the highest occupied level, i.e., the highest Landau
level below the chemical potential. 2 Increasing the mag-
netic field, Landau levels ‘‘move up’’ in the phase space,
leaving only the lower levels occupied, so that the effective
Fermi momentum scales roughly (excluding interactions)

as a square root of the magnetic field, kF � ffiffiffiffiffiffi
nF

p �
kmax
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h=hmax

p
. High magnetic fields drive the effective

density of the charge carriers down, approaching the limit
when the Fermi momentum coincides with the lowest
Landau level.

Many phenomena observed in the paper can thus be
qualitatively explained by Landau quantization. As dis-
cussed before, the notion of the Fermi momentum is lost
at very high magnetic fields. In what follows, the quanti-
tative Fermi-level structure at zero temperature, described
by kF and vF values, is obtained as a function of the
magnetic field using the solution of the Dirac equation
given by Eqs. (59) and (60). As in [11], we neglect first
the discrete nature of the Fermi momentum and velocity in
order to obtain general understanding. Upon taking the
quantization into account, the smooth curves become com-
binations of step functions following the same trend as the
smooth curves (without quantization). While usually the
grand canonical ensemble is used, where the fixed chemi-
cal potential controls the occupation of the Landau levels
[25], in our setup, the Fermi momentum is allowed to
change as the magnetic field is varied, while we keep track
of the IR conformal dimension �.

The Fermi momentum is defined by the matching be-
tween IR and UV physics [7]. Therefore, it is enough to
know the solution at ! ¼ 0, where the matching is per-
formed. To obtain the Fermi momentum, we require
that the zero-mode solution is regular at the horizon

(c ð0Þ � z�ð1=2Þþ�) and normalizable at the boundary. At
the boundary z� 1, the wave function behaves as

að1� zÞ3=2�m
1

0

 !
þ bð1� zÞ3=2þm

0

1

 !
: (64)

To require it to be normalizable is to set the first term
a ¼ 0; the wave function at z� 1 is then

c ð0Þ � ð1� zÞ3=2þm 0
1

� �
: (65)

Equation (65) leads to the condition limz!1ðz�1Þ�3=2�
ð~yð0Þ2 þ i~yð0Þ1 Þ¼0, which, together with Eq. (59), gives
the following equation for the Fermi momentum as
function of the magnetic field [18,21]:

2F1ð1þ �þ i�q;eff

6 ; 12 þ ��
ffiffi
2

p
�q;eff

3 ; 1þ 2�; 23 ð1� i
ffiffiffi
2

p ÞÞ
2F1ð�þ i�q;eff

6 ; 12 þ ��
ffiffi
2

p
�q;eff

3 ; 1þ 2�; 23 ð1� i
ffiffiffi
2

p ÞÞ

¼ 6�� i�q;eff

kFð�2iþ ffiffiffi
2

p Þ ; (66)

with � 	 �kF given by Eq. (58). Using MATHEMATICA to

evaluate the hypergeometric functions, we numerically
solve the equation for the Fermi surface, which gives
effective momentum as if it were continuous, i.e., when
quantization is neglected. The solutions of Eq. (66) are
given in Fig. 6. There are multiple Fermi surfaces for a
given magnetic field h. Here, and in all other plots,
we choose gF ¼ 1. Therefore, h ! H and q ¼ 15ffiffi

3
p . In

Fig. 6, positive and negative kF correspond to the Fermi
surfaces in the Green’s functions G1 and G2. The
relation between two components is G2ð!; kÞ ¼
G1ð!;�kÞ [6]. Therefore, Fig. 6 is not symmetric
with respect to the x-axis. Effective momenta terminate
at the dashed line �kF ¼ 0. Taking into account Landau

quantization of kF ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

with l ¼ 1; 2 . . . , the plot
consists of stepwise functions tracing the existing
curves (we depict only positive kF). Indeed, Landau

0.5 1.0 1.5
H

10

5

5

10

keff

FIG. 6 (color online). Effective momentum keff vs the mag-
netic field h ! H (we set gF ¼ 1, q ¼ 15ffiffi

3
p ). As we increase the

magnetic field, the Fermi surface shrinks. Smooth solid curves
represent the situation as if momentum is a continuous parameter
(for convenience), stepwise solid functions are the real Fermi
momenta, which are discretized due to the Landau-level quan-

tization: kF ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

, with l ¼ 1; 2; . . . ; where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

are
Landau levels given by dotted lines (only positive discrete kF
are shown). At a given h, there are multiple Fermi surfaces. From
right to left are the first, second, etc., Fermi surfaces. The
dashed-dotted line is �kF ¼ 0, where kF is terminated. Positive

and negative keff correspond to Fermi surfaces in two compo-
nents of the Green’s function.

2We would like to thank Igor Shovkovy for clarifying the issue
with the Fermi momentum in the presence of the magnetic field.
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quantization can be also seen from the dispersion rela-
tion at Fig. 3, where only discrete values of effective
momentum are allowed, and the Fermi surface has been
chopped up as a result of quantization, Fig. 3(b).

Our findings agree with the results for the (largest) Fermi
momentum in a 3-dimensional magnetic system consid-
ered in [26] (compare the stepwise dependence kFðhÞ with
Fig. (5) in [26]).

In Fig. 7, the Landau-level index l is obtained from

kFðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

, where kFðhÞ is a numerical solution of
Eq. (66). Only those Landau levels which are below the
Fermi surface are filled. In Fig. 6, as we decrease magnetic
field, first nothing happens until the next Landau level
crosses the Fermi surface, which corresponds to a jump
up to the next step. Therefore, at strong magnetic fields,

fewer states contribute to transport properties, and the
lowest Landau level becomes more important (see the
next section). At weak magnetic fields, the sum over
many Landau levels has to be taken, ending with the
continuous limit as h ! 0, when quantization can be
ignored.
In Fig. 8, we show the IR conformal dimension as a

function of the magnetic field. We have used the numerical
solution for kF. Fermi-liquid regime takes place at mag-
netic fields h < hc, while non-Fermi liquids exist in a
narrow band at hc < h < h0c, and at h0c the system becomes
near-conformal.
In this figure, we observe the pathway of the possible

phase transition exhibited by the Fermi surface (ignoring
Landau quantization): It can vanish at the line �kF ¼ 0,

undergoing a crossover to the conformal regime, or cross
the line �kF ¼ 1=2 and go through a non-Fermi-liquid

regime, and, subsequently, cross to the conformal phase.
Note that the primary Fermi surface with the highest kF
and �kF seems to directly cross over to conformality, while

the other Fermi surfaces first exhibit a strange-metal phase
transition. Therefore, all the Fermi momenta with �kF > 0

contribute to the transport coefficients of the theory. In
particular, at high magnetic fields, only the first (largest)

Fermi momentum kð1ÞF is nonzero and the lowest Landau
level n ¼ 0 becomes increasingly important. The lowest
Landau level contributes to the transport with half-
degeneracy factor, as compared to the higher Landau
levels.
In Fig. 9, we plot the Fermi momentum kF as a function

of the magnetic field for the first Fermi surface (the largest
root of Eq. (66)). Quantization is neglected here. At the left
panel, the relatively small region between the dashed lines
corresponds to non-Fermi liquids 0< �< 1

2 . At large

magnetic field, the physics of the Fermi surface is captured

0.5 1.0 1.5
H

5

10

15

20

n

FIG. 7 (color online). Landau-level numbers n, corresponding
to the quantized Fermi momenta vs the magnetic field h ! H
for the three Fermi surfaces with positive kF. We set gF ¼ 1,
q ¼ 15ffiffi

3
p . From right to left are the first, second, and third Fermi

surfaces.

FIG. 8 (color online). Left panel: the IR conformal dimension � 	 �kF calculated at the Fermi momentum vs the magnetic field
h ! H (we set gF ¼ 1, q ¼ 15ffiffi

3
p ). Calculations are done for the first Fermi surface. The dashed line is for � ¼ 1

2 (at Hc ¼ 1:7), which is

the border between the Fermi liquids � > 1
2 and non-Fermi liquids � < 1

2 . Right panel: the phase diagram in terms of the chemical

potential and the magnetic field �2 þ h2 ¼ 3 (in dimensionless variables h ¼ gFH, � ¼ gFQ; we set gF ¼ 1). Fermi liquids are
above the dashed line (H <Hc), and non-Fermi liquids are below the dashed line (H >Hc).
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by the near-horizon region (see also Fig. 5), which is

AdS2 � R2. At the maximum magnetic field, Hmax ¼ffiffiffi
3

p  1:73, when the black hole becomes entirely mag-
netically charged, the Fermi momentum vanishes when it
crosses the line �kF ¼ 0. This only happens for the first

Fermi surface. For the higher Fermi surfaces, the Fermi
momenta terminate at the line �kF ¼ 0 (Fig. 6). Note the

Fermi momentum for the first Fermi surface can be almost

fully described by a function kF ¼ kmax
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

3

q
. It is

tempting to view the behavior kF � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hmax �H

p
as a phase

transition in the system, although it strictly follows from
the linear scaling for H ¼ 0 by using the mapping (29).

(Note that also � ¼ gFQ ¼ gF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�H2

p
.) Taking into ac-

count the discretization of kF, the plot will consist of an
array of step functions tracing the existing curve. Our
findings agree with the results for the Fermi momentum
in a 3-dimensional magnetic system considered in [26],
compare to Fig. 5 there.

The Fermi velocity given in Eq. (27) is defined by the
UV physics. Therefore, solutions at nonzero ! are re-
quired. The Fermi velocity is extracted from matching
two solutions in the inner and outer regions at the horizon.
The Fermi velocity as a function of the magnetic field for
� > 1

2 is [18,21]

vF ¼ 1

h1

�Z 1

0
dz

ffiffiffiffiffiffiffiffiffiffiffi
g=gtt

q
c ð0Þyc ð0Þ

��1
lim
z!1

j~yð0Þ1 þ i~yð0Þ2 j2
ð1� zÞ3 ;

h1 ¼ lim
z!1

~yð0Þ1 þ i~yð0Þ2

@kð~yð0Þ2 þ i~yð0Þ1 Þ ; (67)

where the zero-mode wave function is taken at kF
(Eq. (59)).

We plot the Fermi velocity for several Fermi surfaces in
Fig. 10 and for the first Fermi surface in Fig. 11.
Quantization is neglected here. The Fermi velocity is
shown for � > 1

2 . It is interesting that the Fermi velocity

vanishes when the IR conformal dimension is �kF ¼ 1
2 .

Formally, it follows from the fact that vF � ð2�� 1Þ [7].
The first Fermi surface is at the far right. Positive and
negative vF correspond to the Fermi surfaces in the
Green’s functions G1 and G2, respectively. The Fermi
velocity vF has the same sign as the Fermi momentum
kF. At small magnetic field values, the Fermi velocity is

0.5 1.0 1.5
H

2

4

6

8

10

12

kF

FIG. 9 (color online). Fermi momentum kF vs the magnetic field h ! H (we set gF ¼ 1, q ¼ 15ffiffi
3

p ) for the first Fermi surface. Left
panel: The inner (closer to x-axis) dashed line is �kF ¼ 0, and the outer dashed line is �kF ¼ 1

2 . The region between these lines

corresponds to non-Fermi liquids 0< �kF <
1
2 . The dashed-dotted line is for the first Landau level k1 ¼

ffiffiffiffiffiffiffiffiffiffi
2qH

p
. The first Fermi surface

hits the border line between Fermi and non-Fermi liquids � ¼ 1
2 at Hc  1:7, and it vanishes at Hmax ¼

ffiffiffi
3

p ¼ 1:73. Right panel:

Circles are the data points for the Fermi momentum calculated analytically, and the solid line is a fit function kmax
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

3

q
with

kmax
F ¼ 12:96.

FIG. 10 (color online). Fermi velocity vF vs the magnetic field
h ! H (we set gF ¼ 1, q ¼ 15ffiffi

3
p ) for the regime of Fermi liquids

� � 1
2 . Fermi velocity vanishes at �kF ¼ 1

2 (x-axis). The multiple

lines are for various Fermi surfaces in ascending order, with the
first Fermi surface on the right. The Fermi velocity vF has the
same sign as the Fermi momentum kF. As above, positive and
negative vF correspond to Fermi surfaces in the two components
of the Green’s function.
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very weakly dependent onH, and it is close to the speed of
light. At large magnetic field values, the Fermi velocity
rapidly decreases and vanishes (at Hc ¼ 1:70 for the first
Fermi surface (Fig. 11)). Geometrically, this means that,
with increasing magnetic field, the zero-mode wave func-
tion is supported near the black hole horizon (Fig. 5),
where the gravitational redshift reduces the local speed
of light, as compared to the boundary value. It was also
observed in [7,21] at small fermion charge values.

VI. HALL AND LONGITUDINAL
CONDUCTIVITIES

In this section, we calculate the contributions to Hall�xy

and the longitudinal �xx conductivities directly in the
boundary theory. This should be contrasted with the stan-
dard holographic approach, where calculations are per-
formed in the (bulk) gravity theory and then translated to
the boundary field theory using the AdS/CFT dictionary.
Specifically, the conductivity tensor has been obtained in
[10] by calculating the on-shell renormalized action for
the gauge field on the gravity side and using the gauge/
gravity duality AM ! j� to extract the R charge current-

current correlator at the boundary. Here, the Kubo for-
mula involving the current-current correlator is used di-
rectly by utilizing the fermion Green’s functions extracted
from holography in [7]. Therefore, the conductivity is
obtained for the charge carriers described by the fermi-
onic operators of the boundary field theory.

The use of the conventional Kubo formula to extract the
contribution to the transport due to fermions is validated in
that it also follows from a direct AdS/CFT computation of
the one-loop correction to the on-shell renormalized AdS
action [15]. We study, in particular, stable quasiparticles
with � > 1

2 and at zero temperature. This regime effectively

reduces to the clean limit where the imaginary part of the

self-energy vanishes Im� ! 0. We use the gravity-
‘‘dressed’’ fermion propagator from Eq. (27), and, to
make the calculations complete, we need to use the dressed
vertex to satisfy the Ward identities. As was argued in [15],
the boundary vertex, which is obtained from the bulk
calculations, can be approximated by a constant in the
low-temperature limit. Also, according to [27], the vertex
only contains singularities of the product of the Green’s
functions. Therefore, dressing the vertex will not change
the dependence of the DC conductivity on the magnetic
field [27]. In addition, the zero magnetic field limit of the
formulae for conductivity obtained from holography [15]
and from direct boundary calculations [18] are identical.

A. Integer quantum Hall effect

Let us start from the dressed retarded and advanced
fermion propagators [7]: GR is given by Eq. (27) and
GA ¼ G�

R. To perform the Matsubara summation, we use
the spectral representation

Gði!n; ~kÞ ¼
Z d!

2�

Að!; ~kÞ
!� i!n

; (68)

with the spectral function defined as Að!; ~kÞ¼
� 1

� ImGRð!; ~kÞ¼ 1
2�iðGRð!; ~kÞ�GAð!; ~kÞÞ. Generalizing

to a nonzero magnetic field and spinor case [25], the
spectral function [28] is

Að!; ~kÞ ¼ 1

�
e�k2=jqhjX1

l¼0

ð�1Þlð�h1vFÞ

�
�

�2ð!; kFÞfð ~kÞ�0

ð!þ "F þ�1ð!; kFÞ � ElÞ2 þ �2ð!; kFÞ2

þ ðEl ! �ElÞ
�
; (69)

where "F ¼ vFkF is the Fermi energy, El ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

is

the energy of the Landau level, fð ~kÞ ¼ P�Llð2k2jqhjÞ �
PþLl�1ð2k2jqhjÞ with spin projection operators P� ¼
ð1� i�1�2Þ=2, we take c ¼ 1, the generalized Laguerre
polynomials are L�

n ðzÞ and by definition LnðzÞ ¼ L0
nðzÞ,

(we omit the vector part ~k ~� as it does not contribute to
the DC conductivity), all �’s are the standard Dirac
matrices, and h1, vF, and kF are real constants (we
keep the same notations for the constants as in [7]). The

self-energy ��!2�kF contains the real and imaginary
parts, � ¼ �1 þ i�2. The imaginary part comes from
scattering processes of a fermion in the bulk, e.g., from
pair creation, and from the scattering into the black hole.
It is exactly due to inelastic/dissipative processes that we
are able to obtain finite values for the transport coeffi-
cients; otherwise they are formally infinite.

FIG. 11. Fermi velocity vF vs the magnetic field h ! H (we
set gF ¼ 1, q ¼ 15ffiffi

3
p ) for the first Fermi surface. Fermi velocity

vanishes at �kF ¼ 1
2 at Hc  1:7. The region H <Hc corre-

sponds to the Fermi liquids and quasiparticle description.
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Using the Kubo formula, the DC electrical conductivity
tensor is

�ijð�Þ ¼ lim
�!0

Im�R
ij

�þ i0þ
; (70)

where �ijði�m ! �þ i0þÞ is the retarded current-

current correlation function; schematically the current
density operator is jið�; ~xÞ ¼ qvF

P
�
�c �ð�; ~xÞ�ic �ð�; ~xÞ.

Neglecting the vertex correction, it is given by

�ijði�mÞ ¼ q2v2
FT

X1
n¼�1

Z d2k

ð2�Þ2 trð�iGði!n; ~kÞ

� �jGði!n þ i�m; ~kÞÞ: (71)

The sum over the Matsubara frequency is

T
X
n

1

i!n �!1

1

i!n þ i�m �!2

¼ nð!1Þ � nð!2Þ
i�m þ!1 �!2

:

(72)

Taking i�m ! �þ i0þ, the polarization operator is now

�ijð�Þ ¼ d!1

2�

d!2

2�

nFDð!1Þ � nFDð!2Þ
�þ!1 �!2

�
Z d2k

ð2�Þ2 trð�iAð!1; ~kÞ�jAð!2; ~kÞÞ; (73)

where the spectral function Að!; ~kÞ is given by Eq. (69),
and nFDð!Þ is the Fermi-Dirac distribution function.
Evaluating the traces, we have

�ij ¼ � 4q2v2
Fðh1vFÞ2jqhj
��

Re
X1
l;k¼0

ð�1Þlþkþ1f�ijð�l;k�1 þ �l�1;kÞ þ i�ijsgnðqhÞð�l;k�1 � �l�1;kÞg

�
Z d!1

2�

�
tanh

!1

2T
� tanh

!2

2T

��
�2ð!1Þ

ð ~!1 � ElÞ2 þ�2
2ð!1Þ

þ ðEl ! �ElÞ
��

�2ð!2Þ
ð ~!2 � EkÞ2 þ�2

2ð!2Þ
þ ðEk ! �EkÞ

�
;

(74)

with !2 ¼ !1 þ�. We have also introduced ~!1;2 	
!1;2 þ "F þ �1ð!1;2Þ, with �ij being the antisymmetric
tensor (�12 ¼ 1), and �1;2ð!Þ 	 �1;2ð!; kFÞ. In the mo-
mentum integral, we use the orthogonality condition for
the Laguerre polynomials

R1
0 dxexLlðxÞLkðxÞ ¼ �lk.

From Eq. (74), the term symmetric/antisymmetric with
respect to exchange !1 $ !2 contributes to the diagonal/
off-dialgonal component of the conductivity (note the anti-
symmetric term nFDð!1Þ � nFDð!2Þ). The longitudinal and
Hall DC conductivities (� ! 0) are thus

�xx ¼ � 2q2ðh1vFÞ2jqhj
�T

Z 1

�1
d!

2�

�2
2ð!Þ

cosh2 !
2T

X1
l¼0

�
1

ð ~!� ElÞ2 þ �2
2ð!Þ þ ðEl ! �ElÞ

�

�
�

1

ð ~!� Elþ1Þ2 þ �2
2ð!Þ þ ðElþ1 ! �Elþ1Þ

�
; (75)

�xy ¼ �q2ðh1vFÞ2sgnðqhÞ
�

�h; �h ¼ 2
Z 1

�1
d!

2�
tanh

!

2T
�2ð!ÞX1

l¼0

�l

�
1

ð ~!� ElÞ2 þ �2
2ð!Þ þ ðEl ! �ElÞ

�
; (76)

where ~! ¼ !þ "F þ �1ð!ÞÞ. The filling factor �h is
proportional to the density of carriers: j�hj ¼ �

jqhjh1vF
n

(we derive this relation below in Eq. (89)). The degeneracy
factor of the Landau levels is �l: �0 ¼ 1 for the lowest
Landau level, and �l ¼ 2 for l ¼ 1; 2 . . . ; . Substituting the
filling factor �h back to Eq. (76), the Hall conductivity can
be written as

�xy ¼ �

h
; (77)

where � is the charge density in the boundary theory, and
both the charge q and the magnetic field h carry a sign (the
prefactor ð�h1vFÞ comes from the normalization choice in
the fermion propagator, Eqs.(27) and (69), as it was defined

in [7], which can be regarded as a factor contributing to the
effective charge and is not important for further consider-
ations). The Hall conductivity given by Eq. (77) has been
obtained using the AdS/CFT duality for the Lorentz in-
variant 2þ 1-dimensional boundary field theories in [10].
We recover this formula because, in our case, the transla-
tional invariance is maintained in the x and y directions of
the boundary theory.
Low frequencies give the main contribution in the in-

tegrand of Eq. (76). Since the self-energy satisfies�1ð!Þ �
�2ð!Þ �!2� and we consider the regime � > 1

2 , we have

�1 � �2 ! 0 at !� 0 (self-energy goes to zero faster
than the ! term). Therefore, only the simple poles in the
upper half-plane !0 ¼ �"F � El þ �1 þ i�2 contribute
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to the conductivity where �1 ��2 � ð�"F � ElÞ2� are
small. The same logic of calculation has been used in
[25]. We obtain for the longitudinal and Hall conductivities

�xx ¼ 2q2ðh1vFÞ2�2

�T
�
�

1

1þ cosh"FT

þX1
l¼1

4l
1þ cosh"FT coshEl

T

ðcosh"FT þ coshEl

T Þ2
�

(78)

�xy ¼ q2ðh1vFÞ2sgnðqhÞ
�

� 2

�
tanh

"F
2T

þX1
l¼1

�
tanh

"F þ El

2T
þ tanh

"F � El

2T

��
; (79)

where the Fermi energy is "F ¼ vFkF, and the energy of

the Landau level is El ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

. Similar expressions
were obtained in [25]. However, in our case, the filling of
the Landau levels is controlled by the magnetic field h
through the field-dependent Fermi energy vFðhÞkFðhÞ in-
stead of the chemical potential �.

At T ¼ 0, cosh!T ! 1
2 e

!=T and tanh!
2T ¼ 1�

2nFDð!Þ ! sgn!. Therefore, the longitudinal and Hall
conductivities are

�xx ¼ 2q2ðh1vFÞ2�2

�T

X1
l¼1

l�"F;El
¼ 2q2ðh1vFÞ2�2

�T
�n�"F;En

;

(80)

�xy ¼ q2ðh1vFÞ2sgnðqhÞ
�

2

�
1þ 2

X1
l¼1

�ð"F � ElÞ
�

¼ q2ðh1vFÞ2sgnðqhÞ
�

� 2ð1þ 2nÞ�ð"F � EnÞ�ðEnþ1 � "FÞ; (81)

where the Landau-level index runs n ¼ 0; 1; . . . ; . It can be

estimated as n ¼ ½ k2F
2jqhj� when vF � 0 (½� denotes the in-

teger part), with the average spacing between the Landau

levels given by the Landau energy vF

ffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjp

. Note that
"F 	 "FðhÞ. We can see that Eq. (81) expresses the integer
quantum Hall effect (IQHE). At zero temperature, as we
dial the magnetic field, the Hall conductivity jumps from
one quantized level to another, forming plateaus given by
the filling factor

�h ¼ �2ð1þ 2nÞ ¼ �4

�
nþ 1

2

�
; (82)

with n ¼ 0; 1; . . . ; . (Compare to the conventional Hall
quantization �h ¼ �4n that appears in thick graphene).
Plateaus of the Hall conductivity at T ¼ 0 follow from the
stepwise behavior of the charge density � in Eq. (77):

�� 4

�
nþ 1

2

�
�ð"F � EnÞ�ðEnþ1 � "FÞ; (83)

where n Landau levels are filled and contribute to �. The
longitudinal conductivity vanishes, except precisely at the
transition point between the plateaus. In Fig. 12, we plot
the longitudinal and Hall conductivities at T ¼ 0, using
only the terms after the � sign in Eq. (79). In the Hall
conductivity, plateau transition occurs when the Fermi
level (in Fig. 12) of the first Fermi surface "F ¼
vFðhÞkFðhÞ (Figs. 9 and 11) crosses the Landau-level
energy as we vary the magnetic field. By decreasing the

FIG. 12 (color online). Hall conductivity �xy and longitudinal conductivity �xx vs the magnetic field h ! H at T ¼ 0 (we set
gF ¼ 1, q ¼ 15ffiffi

3
p ). Contribution from the first Fermi surface is taken. By decreasing the magnetic field, the Fermi surface crosses the

Landau levels, producing the Hall conductivity plateaus characteristic for IQHE. Longitudinal conductivity has picks at the beginning
of each plateau. The right panel is a zoom-in for large h of the left one.
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magnetic field, the plateaus become shorter, and increas-
ingly more Landau levels contribute to the Hall conduc-
tivity. This happens because of two factors: the Fermi level
moves up, and the spacing between the Landau levels
becomes smaller. This picture does not depend on the
Fermi velocity as long as it is nonzero.

In the boundary field theory, we express the charge
density of the carriers (the difference between the densities
of ‘‘electrons’’ and ‘‘holes’’) through the Fermi energy "F
(as it is done in [25]):

n ¼ trð�0 ~Gð�; 0ÞÞ; � ! 0; (84)

where ~Gð�; ~xÞ is the translation-invariant part of the
Green’s function Gð�; ~xÞ from Eq. (68). Using the spectral
function representation given by Eq. (69), the charge den-
sity reads

n ¼ T
X1

n¼�1

Z d2k

ð2�Þ2
Z 1

�1
d!

2�

trð�0Að!; ~kÞÞ
!� i!n

: (85)

We express the Matsubara sum in terms of the contour
integral over real frequencies:

T
X1

n¼�1
Fði!nÞ ! � i

4�

Z
C
dz tanh

z

2T
FðzÞ; (86)

where C runs anticlockwise and encircles the poles of tanh
along the upper- and lower-half imaginary axis. We have
for the charge density

n ¼ 1

2

Z d2k

ð2�Þ2
Z 1

�1
d!

2�
tanh

!

2T
trð�0Að!; ~kÞÞ: (87)

Substituting the spectral function (69) and integrating over
momenta, we obtain

n ¼ � 2jqhjh1vF

�

Z 1

�1
d!

2�
tanh

!

2T
�2ð!Þ

�X1
l¼0

�l

�
1

ð ~!� ElÞ2 þ �2
2ð!Þ þ ðEl ! �ElÞ

�
; (88)

where the degeneracy factor is �0 ¼ 1 for the lowest
Landau level, and �l ¼ 2 for the higher Landau levels
l � 1, ~! ¼ !þ "F þ�1ð!Þ. Integrating over frequen-
cies and taking into account that �2 is effectively very
small near the Fermi surface, we obtain

n ¼ jqhjh1vF

�
� 2

�
tanh

"F
2T

þX1
l¼1

�
tanh

"F þ El

2T
þ tanh

"F � El

2T

��
: (89)

Comparing this to Eq. (79), we obtain the relation j�hj ¼
�

jqhjh1vF
n. When the Fermi energy vanishes ("F ¼ 0), the

spectral function (69) is even in !. From Eq. (88), the
carrier density of stable quasiparticles vanishes when
"F ¼ 0. At the end of this section, we discuss a situation

with no stable charge carriers and physical consequences
of it.
Equations (79)–(89) are obtained assuming that the

states are localized around the Landau levels. In quantum
Hall effect (QHE) models, impurities are added to prevent
the states from ‘‘spilling’’ between the Landau levels and
to provide the necessary occupation number of the levels.
In our holographic calculations, however, the complex self-
energy arises not from the impurities but from various
scattering processes into the black hole. Here, the limit
Im� ! 0 has been considered, which corresponds to a
simplified field theory model [25] (the cited reference
also considers the case with impurities). This approxima-
tion suffices to obtain the integer QHE [25] and for our
initial studies of the fractional QHE. We leave the imple-
mentation of a physical model with impurities for future
work.

B. Fractional quantum Hall effect

In a holographic setting, using the AdS geometry is
equivalent to a calculation in a box. Therefore, for large
enough fermion charge q, there are multiple Fermi sur-
faces, as shown in Figs. 6 and 10. Labeling the Fermi
surfaces with � > 1

2 by m ¼ 1; 2; . . . , we represent, as in

[21], the spectral function Að!; ~kÞ as a sum over the
spectral functions of individual Fermi surfaces given by
Eq. (69). Ignoring the mixing term, the DC conductivity
becomes a direct sum over the individual conductivities.
By decreasing the magnetic field, new Fermi surfaces
gradually appear, as can be seen in Figs. 6 and 7.
Therefore, the conductivity tensor is

�ij ¼
X
m

�ðmÞ
ij �ðhðmÞ

max � hÞ; (90)

where �ðmÞ
ij involves the Fermi momentum kðmÞ

F and veloc-

ity vðmÞ
F , respectively. At the maximummagnetic field hðmÞ

max,

a new kðmÞ
F opens up; hðmÞ

max is found numerically.
Including one, two, three, and four Fermi surfaces, we

obtain the following quantization rule for the filling factor
in the Hall conductivity:

1FS: �h ¼ 2ð1þ 2nÞ;
plateaus ! 2; 6; 10; . . . ;

2FS0s: �h ¼ 4ð1þ nþ kÞ;
plateaus ! 4; 8; 12; . . . ;

3FS0s: �h ¼ 2ð3þ 2ðnþ kþ pÞÞ;
plateaus ! 6; 10; 14; . . . ;

4FS0s: �h ¼ 4ð2þ nþ kþ pþ rÞ;
plateaus ! 8; 12; 16; . . . ;

(91)

with n; k; p; r ¼ 0; 1; . . . ; . An odd number of Fermi sur-
faces produces the plateaus present in the IQHE, while an
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even number of Fermi surfaces produces the additional
plateaus appearing in the fractional quantum Hall effect
(FQHE). For a large enough fermion charge q, many Fermi
surfaces contribute, and the primary effect of the change in
H is the opening of a new Fermi surface, rather than the
occupation of the next plateau. Thus, at large qwe expect a
filling fraction pattern at large h to become

�h ¼ �2j; (92)

where j ¼ 1; 2; . . . ; is the effective Landau-level index
counting the number of contributing Landau levels. This
is indeed observed in the FQHE at strong magnetic fields.
The quantization rule (91) persists as long as new Fermi
surfaces open up with decreasing h. However, the first two
plateaus present in the FQHE �h ¼ 0;�1 are absent in
Eq. (92). In order to get the Hall plateau �h ¼ �1, the
mixing term between two Fermi surfaces should probably
be taken into account (incoherent superposition), whereas
the conductivity (90) includes the diagonal terms only.
We discuss the issue with �h ¼ 0 further.

In Fig. 13, we plot the Hall and longitudinal conduc-
tivities at T ¼ 0 with three Fermi surfaces contributing

(Eq. (90)), where the individual conductivities �ðmÞ are
given by Eq. (79). We fit the Fermi momenta by

kðmÞ
F ¼ kðmÞ

Fsmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

3

s
þ �ðmÞ; (93)

with kð1ÞFmax ¼ 12:96, �ð1Þ ¼ 0., kð2ÞFmax ¼ 10:29, �ð2Þ ¼
1:5, kð3ÞFmax ¼ 9:75, �ð3Þ ¼ 3, and use Eq. (93) together

with the numerical solutions for vðmÞ
F in Fig. 13. In

Fig. 13, at strong magnetic fields, the Hall conductivity

plateau �h ¼ 4 originates from two Fermi surfaces to-
gether with the plateaus �h ¼ 2 and �h ¼ 6, when one
and three Fermi surfaces contribute, respectively. As we
decrease the magnetic field further, three Fermi surfaces
produce plateaus characteristic for IQHE, Eq. (82). The
longitudinal conductivity shows a Dirac deltalike peak at
the beginning of each plateau. Since a finite contribution
to the conductivity arises as one of the three Fermi
surfaces crosses the next Landau level, the pattern is
less regular (i.e., the plateaus have changing length)
than in the case when only one Fermi surface contributes.
In Fig. 13, we compare the Hall conductivities with one
and three Fermi surfaces participating. The irregular be-
havior of the Hall conductivity is explained naturally
from the picture with multiple Fermi surfaces.
Qualitatively similar regularity of the plateaus’ length is
seen in experiments on thin films of graphite at strong
magnetic fields [23]. The actual physics behind this,
however, might be quite different, as in this system,
multiple sheets of the Fermi surface arise due to the
(hexagonal) lattice on the UV scale, which is an effect
beyond the scope of our current model.
The somewhat regular pattern behind the irregular be-

havior can be understood as a consequence of the appear-
ance of a new energy scale: the average distance between
the Fermi levels. For the case of Fig. 13, we estimate it to

be <"ðmÞ
F � "ðmþ1Þ

F > ¼ 4:9. The authors of [25] explain

the FQHE through the opening of a gap in the quasiparticle
spectrum, which acts as an order parameter related to the
particle-hole pairing and is enhanced by the magnetic field
(magnetic catalysis). Here, the energy gap arises due to the
participation of multiple Fermi surfaces.

FIG. 13 (color online). Hall conductivity �xy and longitudinal conductivity �xx vs the magnetic field h ! H at T ¼ 0 (we set
gF ¼ 1, q ¼ 15ffiffi

3
p ). Contribution from the first three Fermi surfaces are taken. At strong magnetic fields, the Hall conductivity plateau

�h ¼ 4 appears from two Fermi surfaces together with plateaus �h ¼ 2 and �h ¼ 6 when one and three Fermi surfaces contribute,
respectively. This quantization rule is characteristic for the FQHE. At intermediate and weak magnetic fields, the Hall conductivity
plateaus are produced as one of the three Fermi surfaces crosses the Landau levels, resulting in the quantization rule of the IQHE. An
irregular pattern in the length of the plateaus is observed in the experiment on thin films of graphite at strong magnetic fields [23]. The
right panel is a zoom-in for large h of the left one.
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A pattern for the Hall conductivity that is strikingly
similar to Fig. 13 arises in the bilayer graphene (compare
with Figs. 2 and 5 in Ref. [29]), which has different
transport properties from the monolayer graphene [29]. It
is remarkable that the bilayer graphene also exhibits the
insulating behavior in a certain parameter regime. This
agrees with our findings of metal-insulating transition in
our system.

C. Metal–strange-metal phase transition

The previous discussion of conductivities and QHE is
valid provided that the Fermi velocity is nonzero. However,
we have shown that vF vanishes at relatively strong mag-
netic fields (for the first Fermi surface, it happens at hc as in
Fig. 8 and 11). In the AdS/CFT setting, the Fermi velocity
vanishes when the IR anomalous dimension is � ¼ 1

2 ,

signaling the onset of a nontrivial power-law dispersion
in Green’s function G�1ð!Þ �!� vfk? þ!2� (the pole

in the self-energy � ! GIR
R �!2� and the pole in the

prefactor of the linear term �! [7]). Vanishing of vF

was observed in [21] at large enough fermion charge.
Note that if vF is zero for some interval of the magnetic
field, it leads to the Hall plateau with the filling factor
�h ¼ 0 present in FQHE.

The vanishing of the Fermi velocity of the stable quasi-
particle leads to zero carrier density at leading order:

vF ¼ 0 ! n ¼ 0: (94)

This means that all contribution to conductivity comes
from the other terms, containing the contribution from
the non-Fermi-liquid excitations and the conformal re-
gime. This qualitatively changes the transport properties
of the system, as can be seen in Fig. 14.

The finite offset magnetic field has been observed in
experiments on highly oriented pyrolitic graphite in mag-
netic fields [30]. In particular, analyzing the basal-plane
resistivity gave an approximate scaling relation between
the critical temperature of the metal-semiconducting tran-
sition and the magnetic field has been found Tc �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� hc

p
. It suggests that at T ¼ 0, there is a threshold

magnetic field hc above which the resistivity qualitatively
changes. Interestingly, the existence of such a threshold
magnetic field follows from the AdS/CFT calculations (hc
when � ¼ 1

2 ).

A phase transition is usually governed by an order
parameter which exhibits a critical behavior. In our case,
there is no such order parameter. However, it is interesting
to note that the Fermi momentum, according to Eq. (93),
behaves as kF � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hmax � h
p

, which is in line with the
postulated critical behavior in the system, while the
Fermi surface itself behaves as order parameter.
To obtain a complete picture of the metal–strange-metal

phase transition, one needs to perform calculations in the
non-Fermi-liquid regime, taking into account the un-
stable quasiparticle pole. It is also necessary to study
the temperature dependence of the DC conductivities
�xyðTÞ and �xxðTÞ. We leave it for future study.

VII. ABSENCE OF THE SIGN PROBLEM
IN HOLOGRAPHY

In this section, we show that the fermion determinant in
the gravity dual theory does not have a sign problem and
hence can be simulated by a lattice Monte-Carlo algorithm.
Until recently, most of the work on AdS/CFT and applied
holography focused on the classical gravity (leading 1=N
in field theory) limit. However, many thermodynamic and
electric properties depend on matter fields (e.g., the elec-
trical conductivity depends on whether or not the theory
has a Fermi surface). In classical gravity, the Einstein-
Maxwell sector decouples, and matter fields run in loops
representing quantum oscillations. In order to include mat-
ter fields in the bulk, one needs to calculate loop correc-
tions, which corresponds to going beyond the leading order
in 1=N. A study of one-loop bulk physics was done in [31]
and recently in [22]. It shows that analytical calculations of
quantum corrections in the bulk are quite involved. The
study of quantum oscillations in the gravity dual will likely
improve our understanding of finite density systems in
general.
As is well known, a finite density field theory in most

cases cannot be simulated on the lattice because of the
infamous sign problem [1]. In the field theory action,
chemical potential is introduced via the term �c��0c ,
which is Hermitian and therefore gives a complex deter-
minant. At the same time, in the bulk action, finite density
is introduced through the electrically charge black hole,
and does not involve even matter fields. This is the reason
why the applied holography gives universal predictions.

FIG. 14 (color online). Comparison of the Hall conductivities
�xy vs the magnetic field h ! H from one Fermi surface (dashed

line) and from three Fermi surfaces (solid line). We set gF ¼ 1
and q ¼ 15ffiffi

3
p . At strong magnetic fields, a new plateau �h ¼ 4

appears in the multiple-Fermi-surface picture, yielding a pattern
characteristic of FQHE.
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In the leading order, the minimal gravitational dual at finite
density and temperature is the electrically charged AdS-
Reissner-Nordström black hole, where only the metric
and Maxwell fields are present. Therefore, the Einstein-
Maxwell sector gives results which do not depend, for
example, on the charge and mass of matter fields in the
gravitational bulk space-time, i.e., are universal for a class
of field theories with different charge and scaling dimen-
sions of the operators. The fact that the chemical potential
enters via the electric field in the covariant derivative leads
to the real and positive definite fermion determinant, which
is suitable for lattice simulations. We show it formally
below.

In a semiclassical approach to gravity, the action in-
cludes the Einstein-Maxwell sector Sg with fields collec-

tively denoted as g, A in Eq. (1), and the matter sector with
the fermion fields Sc , Eq. (21). The latter is given as

(Euclidean signature):

Sc ¼
Z

d4xE
ffiffiffiffiffiffiffiffiffiffi�gE

p �c ðDþmÞc ; (95)

where D 	 �M
E DM and the covariant derivative is DM ¼

@M þ 1
4!abM�

ab � iqAM. We can always scale away the

spin connection by redefining the spinor field as in
Eq. (A6). Finite density is described by the electrically
charged black hole with chargeQ that generates the imagi-
nary time component of the vector potential AtE (Eq. (17)).

Radial profile of the vector potential AtE ¼ �ð1� 1
rÞ (in

dimensionless units) ensures a finite chemical potential
at the field theory boundary AtE ! � at r ! 1, where

� ¼ gFQ (in dimensionless units). Integrating out the
fermion fields, the gravitational partition function can be
written schematically as

Z ¼ X
g�;A�

detðDðg�; A�Þ þmÞe�Sg½g�;A��; (96)

where Sg is the Euclidean gravitational action at the saddle

points g�, A�. The determinant describes fluctuations about
the saddle point solution g�, A� and corresponds to 1=N
correction to the large N limit of a dual gauge theory.
Because the Euclidean gamma matrices are Hermitian by
convention (the signature of themetric fixes theHermiticity),

we have �0y
E ¼ �0

E and �iy
E ¼ �i

E with i ¼ 1; 2; 3, so the
covariant derivative is anti-Hermitian. Now it remains to be
shown that the determinant of this anti-Hermitian differential
operator is real and positive definite [32].

Using the anticommutation relations f�5
E;�

0;i
E g ¼ 0,

we have

�5
ED�5

E ¼ �D ¼ Dy; (97)

where D 	 Dðg; AÞ. Therefore, the determinant

detD ¼ detð�5
ED�5

EÞ ¼ detDy ¼ ðdetDÞ� (98)

is real. To show the positive definiteness, we remind the
reader that the eigenmodes of an anti-Hermitian deriva-
tive operator come in pairs. If ð	; c Þ is an eigenmode
of D,

Dc ¼ 	c ; (99)

then, from Eq. (99):

Dð�5
Ec Þ ¼ ð�	Þð�5

Ec Þ; (100)

so ð�	;�5
Ec Þ is also an eigenmode of D. Because of

anti-Hermiticity, from Eq. (97),

Dð�5
Ec Þ ¼ 	�ð�5

Ec Þ: (101)

This eigenvalue is completely imaginary (or zero),
�	 ¼ 	�. The determinant is a product of all the paired
eigenvalues,

detðDþmÞ ! �ið	i þmÞð�	i þmÞ ¼ �iðj	i þmj2Þ;
(102)

which is positive definite (or zero).
In field theory, the eigenmodes of the operator Dþ

��4
E þm still come in pairs ð	; c Þ and ð�	; �5

Ec Þ.
However, since ��4

E is Hermitian, 	 is no longer purely
imaginary, and, therefore, detðDþ��4

E þmÞ is not nec-
essarily positive. The sign problem occurs when det is
negative for some gauge configurations, or, in other words,
it is generically present when considering interacting mat-
ter at finite density.

VIII. CONCLUSIONS

We have studied strongly coupled electron systems in
the magnetic field, focusing on the Fermi-level structure,
using the AdS/CFT correspondence. These systems are
dual to Dirac fermions placed in the background of the
electrically and magnetically charged AdS-Reissner-
Nordström black hole. At strong magnetic fields, the dual
system ‘‘lives’’ near the black hole horizon, which
substantially modifies the Fermi-level structure. As we
dial the magnetic field higher, the system exhibits the
non-Fermi-liquid behavior and then crosses back to the
conformal regime. In our analysis, we have concentrated
on the the Fermi-liquid regime and obtained the depen-
dence of the Fermi momentum kF and Fermi velocity vF

on the magnetic field. Remarkably, kF exhibits the square
root behavior, with vF staying close to the speed of light in
a wide range of magnetic fields, while it rapidly vanishes at
a critical magnetic field, which is relatively high. Such
behavior indicates that the system may have a phase
transition.
The magnetic system can be rescaled to a zero-field

configuration, which is thermodynamically equivalent to
the original one. This simple result can actually be seen
already at the level of field theory: The additional scale
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brought about by the magnetic field does not show up in
thermodynamic quantities, meaning, in particular, that the
behavior in the vicinity of quantum critical points is ex-
pected to remain largely uninfluenced by the magnetic
field, retaining its conformal invariance. In light of current
condensed matter knowledge, this is surprising and might
in fact be a good opportunity to test the applicability of the
probe limit in the real world. If this behavior is not seen,
this suggests that one has to include the backreaction to the
metric to arrive at a realistic description.

In the field theory frame, we have calculated the DC
conductivity using kF and vF values extracted from hol-
ography. The holographic calculation of conductivity that
takes into account the fermions corresponds to the correc-
tions of subleading order in 1=N in the field theory and is
very involved [15]. As we are not interested in the vertex
renormalization due to gravity (it does not change the
magnetic field dependence of the conductivity), we have
performed our calculations directly in the field theory with
AdS-gravity-dressed fermion propagators. Instead of con-
trolling the occupancy of the Landau levels by changing
the chemical potential (as is usual in nonholographic set-
ups), we have controlled the filling of the Landau levels by
varying the Fermi energy level through the magnetic field.
At zero temperature, we have reproduced the integer QHE
of the Hall conductivity, which is observed in graphene at
moderate magnetic fields. Our findings on equilibrium
physics (Landau quantization, magnetic phase transitions,
and crossovers) are within expectations and indeed cor-
roborate the meaningfulness of the AdS/CFT approach in
line with the well-known facts. However, the detection of
the QHE is somewhat surprising, as the spatial boundary
effects are ignored in our setup. We plan to address this
question in future work.

Interestingly, the AdS geometry produces several Fermi
surfaces. Theories where the gravity duals have larger
fermion charge q posses more Fermi surfaces. We find
that, in a multi-Fermi surface picture, the Hall conductivity
is quantized in a way reminiscent of fractional QHE. By
reducing the magnetic field, new Fermi surfaces open up
and the quantization of Hall conductivity alternates be-
tween two different patterns, corresponding to odd and
even numbers of Fermi surfaces. It turns out that an odd
number of the Fermi surfaces results in IQHE plateaus,
while an even number of surfaces gives new plateaus
characteristic for the FQHE. In a multi-Fermi surface
picture, the quantum Hall plateaus show a less regular
pattern that agrees with experiments on thin graphite in
strong magnetic field [23]. In our model, it happens due to
the fact that, as one of several Fermi surfaces crosses the
Landau level, the Hall conductivity jumps to a new plateau.
This process is not synchronized between different Fermi
surfaces. We associate the average distance between the
Fermi levels with the energy gap usually arising in the
FQHE.

Notably, the AdS-Reissner-Nordström black hole back-
ground gives a vanishing Fermi velocity at high magnetic
fields. It happens at the point when the IR conformal
dimension of the corresponding field theory is � ¼ 1

2 ,

which is the border line between the Fermi and non-
Fermi liquids. Vanishing Fermi velocity was also observed
at high enough fermion charge [21]. As in [21], it is
explained by the red shift on the gravity side because at
strong magnetic fields, the fermion wave function is sup-
ported near the black hole horizon, modifying substantially
the Fermi velocity. In our model, vanishing Fermi velocity
leads to zero occupancy of the Landau levels by stable
quasiparticles that results in vanishing regular Fermi-liquid
contribution to the Hall conductivity and the longitudinal
conductivity. The dominant contribution to both now
comes from the non-Fermi liquid and conformal contribu-
tions. We associate such change in the behavior of con-
ductivities with a metal–strange-metal phase transition.
Experiments on highly oriented pyrolitic graphite support
the existence of a finite ‘‘offset’’ magnetic field hc at
T ¼ 0, where the resistivity qualitatively changes its be-
havior [30]. At T � 0, it has been associated with the
metal-semiconducting phase transition [30]. It is worth-
while to study the temperature dependence of the conduc-
tivity in order to understand this phase transition better.
Finally, we suggest as a possibly interesting extension of

the current AdS/CFT methodology to compute the gravity
dual of the finite density matter in Monte-Carlo lattice
simulations. This is possible since the sign problem does
not arise in the holographic setting of a finite density
system. Unlike the conventional field theory setup, finite
density in holography is introduced through an electrically
charged black hole, and does not involve matter fields (this
is also the reason why holography gives universal results: It
does not depend on the expectation values of matter fields
at the leading order). In the gravity geometry, Dirac fermi-
ons are coupled minimally to the electric field via the
covariant derivative. We have shown that the covariant
derivative is anti-Hermitian in the Euclidean signature,
leading to the real and positive definite fermion determi-
nant. This makes it possible to simulate finite density
systems on the lattice in the AdS-gravity geometry, using
the curved space-time lattice formulation [33]. The sim-
plest holographic setup which describes a finite charge
density system includes a local Uð1Þ gauge symmetry.
Finite density systems with global Uð1Þ symmetry can
not be simulated numerically in field theory due to the
problem with the Gauss law in the lattice formulation.
Another important advantage of performing the Monte-
Carlo simulation is that it includes the quantum fluctua-
tions for the gauge and gravitational field. So far, most
calculations have been done in the probe limit, with the
frozen background for the metric and gauge fields.
Analytic calculations which include backreaction are usu-
ally involved and are done in the next-to-leading order,
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e.g., [8]. Holographic lattice calculations allow us to con-
sider dynamical gauge and gravity fields with matter,
which mimics complicated strong interactions in finite
density systems and opens a way toward studying novel
state of matter and instability mechanisms.
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APPENDIX A: DIRAC EQUATION
IN MAGNETIC FIELD

Here, we solve analytically the part of the Dirac equa-
tion which depends on magnetic field and space-time
coordinates of the boundary theory. The free spinor action
in the geometry given by Eq. (2) and in the presence of a
magnetic field (3) is given by Eq. (21).

Using the translational invariance,

c ðt; x; y; rÞ ¼
Z

d!dke�i!tþikyc ð!; k; x; rÞ; (A1)

with k 	 ky, the Dirac equation (Eq. (23)) can be written as�
1ffiffiffiffiffiffiffiffiffiffi�gtt

p �t̂

�
�i!þ 1

2
!t̂ r̂ t�

t̂ r̂ � iqAtðrÞ
�
þ 1ffiffiffiffiffiffiffi

grr
p �r̂@r

þ 1ffiffiffiffiffiffi
gii

p �x̂

�
@x þ 1

2
!x̂ r̂ x�

x̂ r̂

�
þ 1ffiffiffiffiffiffi

gii
p �ŷ

�
ikþ 1

2
!ŷ r̂ y�

ŷ r̂

� iqAyðxÞ
�
�m

�
c ð!; k; x; rÞ ¼ 0; (A2)

where gii 	 gxx ¼ gyy, and AtðrÞ ¼ �ð1� r0=rÞ, AyðxÞ ¼
hx. From the torsion-free condition, !a

b ^ eb ¼ �dea,
we find the spin connection [34] for the metric (2),

!t̂ r̂ ¼ �@rð ffiffiffiffiffiffiffiffiffiffi�gtt
p Þffiffiffiffiffiffiffi
grr

p dt; !î r̂ ¼
@rð ffiffiffiffiffiffi

gii
p Þffiffiffiffiffiffiffi
grr

p dxi; (A3)

where i ¼ x; y. Note that

� �t̂�t̂ r̂ ¼ �x̂�x̂ r̂ ¼ �ŷ�ŷ r̂ ¼ �r̂; (A4)

and

1

4
eMâ �

â!b̂ ĉM�
b̂ ĉ ¼ 1

4

1ffiffiffiffiffiffiffiffiffiffi�gtt
p @rð ffiffiffiffiffiffiffiffiffiffi�gtt

p Þffiffiffiffiffiffiffi
grr

p �r̂

þ 2

4

1ffiffiffiffiffiffi
gii

p @r
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �r̂

¼ 1ffiffiffiffiffiffiffi
grr

p �r̂@r ln

�
� g

grr

�
1=4

; (A5)

where g is the determinant of the metric. Therefore, we can
rescale the spinor field:

c ¼
�
� g

grr

��1=4
� (A6)

and remove the spin connection completely. The new co-
variant derivative does not contain the spin connection, so
D0

M ¼ @M � iqAM.
In new field variables, the Dirac equation is given by0

@ ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �r̂@r �
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �t̂i

�
!þ�q

�
1� r0

r

��
� ffiffiffiffiffiffi

gii
p

m

þ �x̂@x þ �ŷiðk� qhxÞ
�
�ð!; k; x; rÞ ¼ 0; (A7)

with �q 	 �q. We separate the x- and r-dependent parts:

PðrÞ ¼
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �r̂@r�
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �t̂i

�
!þ�q

�
1� r0

r

��
� ffiffiffiffiffiffi

gii
p

m;

QðxÞ ¼ �x̂@xþ�ŷiðk�qhxÞ; (A8)

and the Dirac equation is

ðPðrÞ þQðxÞÞ� ¼ 0: (A9)

Even though ½PðrÞ; QðxÞ� � 0, one can find a transforma-
tion matrix U such that ½UPðrÞ; UQðxÞ� ¼ 0 and then look
for common eigenvectors of UPðrÞ and UQðxÞ as they are
commuting Hermitian operators, i.e., the Dirac equation
reads

UPðrÞ�l ¼ �UQðxÞ�l ¼ 	l�l; (A10)

where l labels the Landau levels. We use l for the Landau
index, so as not to confuse it with the Matsubara frequency
index n. Transformation matrix U should satisfy the con-
ditions

fU;�r̂g ¼ 0; fU;�t̂g ¼ 0;

½U;�x̂� ¼ 0; ½U;�ŷ� ¼ 0;
(A11)
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which do not fix U completely. It is convenient to use the
following basis [7]:

�r̂ ¼ ��3 0

0 ��3

 !
; �t̂ ¼ i�1 0

0 i�1

 !
;

�x̂ ¼ ��2 0

0 �2

 !
; �ŷ ¼ 0 �2

�2 0

 !
;

�5̂ ¼ 0 i�2

�i�2 0

 !
:

(A12)

Note that the following relation holds

�5̂ ¼ �0̂�1̂�2̂�3̂ (A13)

as expected, with 0 ! t, 1 ! x, 2 ! y, and 3 ! r. In the
representation of Eq. (A12), we can choose

U ¼ �i�2 0

0 �i�2

 !
: (A14)

We split the 4-component spinors into two 2-component
spinors (we do not write zero entries) F ¼ ðF1; F2ÞT ,
where the index � ¼ 1; 2 is the Dirac index of the bound-
ary theory, using projectors

�� ¼ 1

2
ð1� ð�1Þ��r̂�t̂�1̂Þ;

� ¼ 1; 2; �1 þ�2 ¼ 1;
(A15)

which commute with the Dirac operator of Eq. (37), and
F� ¼ ���, � ¼ 1; 2, decouple from each other. Gamma
matrices in Eq. (A12) were chosen in such a way that this
decoupling is possible.

Writing the Dirac equation (A10) for F ¼ ðF1; F2ÞT ,
we have�
�

ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �1@r þ ffiffiffiffiffiffi
gii

p
i�2m

�
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �3ð!þ�qð1� r0=rÞÞ � 	l

�
� 1

F1

F2

 !
¼ 0

1 � i@x þ 	l ðk� qhxÞ
ðk� qhxÞ �i@x þ 	l

 !
F1

F2

 !
¼ 0; (A16)

where in X � Y, X acts inside F1 or F2, and Y acts
between F1 and F2. In Eq. (A16), the 1 in the first
equation shows that there is no mixing of F1 and F2 by
the operator UPðrÞ, and the 1 in the second equation
shows that there is no mixing inside F1 or F2 by the
operator UQðxÞ. Therefore, the solution can be repre-
sented as

F1

F2

 !
¼

fð1Þl ðrÞgð1Þl ðxÞ
fð2Þl ðrÞgð1Þl ðxÞ
fð1Þl ðrÞgð2Þl ðxÞ
fð2Þl ðrÞgð2Þl ðxÞ

0
BBBBBBB@

1
CCCCCCCA: (A17)

We do not write explicitly the dependence on ! and k.
It is convenient to make a unitary transformation:


 ð1Þ


 ð2Þ

 !
¼ M

gð1Þ

gð2Þ

 !
; M ¼ 1 �i

�i 1

 !
: (A18)

Dirac equations for each component are written as:� ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p @r þ ffiffiffiffiffiffi
gii

p
m

�
fð1Þl ðrÞ

þ
�
�

ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p ð!þ�qð1� r0=rÞÞ þ 	l

�
fð2Þl ðrÞ ¼ 0;

� ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p @r � ffiffiffiffiffiffi
gii

p
m

�
fð2Þl ðrÞ

þ
� ffiffiffiffiffiffi

gii
pffiffiffiffiffiffiffiffiffiffi�gtt
p ð!þ�qð1� r0=rÞÞ þ 	l

�
fð1Þl ðrÞ ¼ 0;

(A19)

ð@~x � ~xÞ
 ð1Þ þ ~	l

ð2Þ ¼ 0; ð@~x þ ~xÞ
 ð2Þ � ~	l


ð1Þ ¼ 0:

(A20)

In Eq. (A20), for the x-dependent part, we have rescaled

~x ¼ ffiffiffiffiffiffiffiffiffijqhjp ðx� k
qhÞwith k 	 ky and 	l ¼

ffiffiffiffiffiffiffiffiffijqhjp
~	l. The sec-

ond order ordinary differential equations

� @2~x

ð�Þ þ ~x2
 ð�Þ � ~	2

l 

� � ð�1Þ�
 ð�Þ ¼ 0; (A21)

with � ¼ 1; 2, are solved by substitution 
 ð�Þ ¼ e�~x2=2 ~
 ð�Þ.
This is exactly the Schrödinger equation for a harmonic
oscillator, so the eigenfunctions are Hermite polynomials,
andwe obtain the following solutions, indexed by an integer

l 2 Z that is related to the eigenvalue 	l by 	l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

:


 ð1Þl ð~xÞ ¼ Nl�1e
�~x2=2Hl�1ð~xÞ 
 ð2Þl ð~xÞ ¼ Nle

�~x2=2Hlð~xÞ:
(A22)

The normalization constant Nl is proportional to 1=
ffiffiffiffiffiffiffiffi
2ll!

p
.

Substituting the solutions fromEq. (A22) into the first order
eigenvalue equation with x-dependence gives the following
solutions:

Fl ¼

fð1Þl ðrÞ
 ð1Þl ð~xÞ
fð2Þl ðrÞ
 ð1Þl ð~xÞ
fð1Þl ðrÞ
 ð2Þl ð~xÞ
�fð2Þl ðrÞ
 ð2Þl ð~xÞ

0
BBBBBBB@

1
CCCCCCCA; 	l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q
; (A23)

and
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~Fl ¼

~fð1Þl ðrÞ
 ð1Þl ð~xÞ
~fð2Þl ðrÞ
 ð1Þl ð~xÞ

�~fð1Þl ðrÞ
 ð2Þl ð~xÞ
~fð2Þl ðrÞ
 ð2Þl ð~xÞ

0
BBBBBBB@

1
CCCCCCCA; 	l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q
: (A24)

Solving the first order x-dependent equation, we get the
same eigenvalue, but slightly different eigenfunctions, for
different signs of qh. In particular, e.g., for F, the pairs

fð1Þð
 ð1Þ; 
 ð2ÞÞT and fð2Þð
 ð1Þ;�
 ð2ÞÞT correspond to qh > 0
and qh < 0, respectively. A different sign of qh stands for
the positive and negative Landau-level index l.

Finally, the general solution to the Dirac equation is
given by a linear combination of Eqs. (A23) and (A24):

Fsol ¼
X
l

ðalFl þ bl ~FlÞ: (A25)

Using the eigenvalues determined by Eqs. (A23) and
(A24) in the equation for the radial part (A19), we get

�
� 1ffiffiffiffiffiffiffi

grr
p �3@r �mþ 1ffiffiffiffiffiffiffiffiffiffi�gtt

p �1ð!þ�qð1� r0=rÞÞ

� 1ffiffiffiffiffiffi
gii

p i�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q �
� 1

F1

F2

 !
¼ 0; (A26)

with l ¼ 0; 1; . . . ; and the same for ~F replacing
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp !

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

. It coincides with eq. (A14) in [7] (Dirac equa-
tion at zero magnetic field) with the momentum replaced
by the Landau-level eigenvalue [22]

k ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q
: (A27)

Equation (A27) also gives a prescription on how to treat
the limit of zero magnetic field h ! 0. The limit is to be
taken keeping, e.g., 2jqhjðlþ 1Þ 	 k2F fixed as h ! 0. In
a compact form, the Dirac equation in a magnetic field
(A7) is given by

�
1ffiffiffiffiffiffiffi
grr

p �r̂@r � 1ffiffiffiffiffiffiffiffiffiffi�gtt
p �t̂ið!þ qAtÞ �m

� 1ffiffiffiffiffiffi
gii

p U�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q �
FðrÞ ¼ 0; (A28)

with F ¼ ðF1; F2ÞT , l ¼ 0; 1; . . . ; for ~F replaceffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp ! � ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jqhjlp
, and U�1 is the matrix inverse to

the matrix given by Eq. (A14):

U�1 ¼ i�2 0

0 i�2

 !
; (A29)

which we use in the main text.

APPENDIX B: SPECTRAL FUNCTION

In what follows, we use the dimensionless variables
(15)–(17). Following the analysis of [7], the flow of the
Green’s function is determined by

GRð!; lÞ ¼ lim
�!0

��2m ðlÞ
þ 0

0 ðlÞ�

 !��������r¼1=�
; (B1)

where ðlÞ
þ ðrÞ ¼ fð2Þ

fð1Þ and ðlÞ� ðrÞ ¼ ~fð2Þ
~fð1Þ

from the solutions

(A23) and (A24). In obtaining this relation, we absorbed
the coefficients appearing in Eq. (A25) into the definitions

of the radial functions. The functions ðlÞ
� satisfy the

following differential equation [7]:

ffiffiffiffiffiffiffi
gii
grr

s
@r

ðlÞ
� ¼ �2m

ffiffiffiffiffiffi
gii

p
ðlÞ
� þ ðuðrÞ � 	lÞ2ððlÞ

� Þ2

þ ðuðrÞ � 	lÞ; (B2)

with uðrÞ given by

uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
gii
�gtt

s
ð!þ qAtðrÞÞ: (B3)

Writing explicitly in the metric given by Eq. (18), we
have

r2
ffiffiffi
f

p
@r

ðlÞ
� ¼ �2mrðlÞ

� þ ðuðrÞ � 	lÞððlÞ
� Þ2 þ ðuðrÞ � 	lÞ;

(B4)

where uðrÞ is given by

uðrÞ ¼ 1ffiffiffi
f

p
�
!þ�q

�
1� 1

r

��
; (B5)

with f ¼ ðr�1Þ2ðr2þ2rþ3Þ
r4

at T ¼ 0. Near the horizon

(r ¼ 1), the flow equation reduces to

r2@r
ðlÞ
� ¼ 1

f
ððlÞ

� þ 1Þ2; (B6)

which, due to the double zero in f, has a regular solution
only if �ðr ¼ 1Þ ¼ �i. Writing the radial equation in
terms of  and choosing the infalling boundary conditions

fixes ðlÞ
� ðr ¼ 1Þ ¼ i.

The key quantity that we extract from the Green’s func-
tion is the fermionic spectral function

Að!; lx; kyÞ ¼ TrðImGRð!; lx; kyÞÞ; (B7)

which we analyze in the main text of the paper.
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We propose a kinetic model of transport in nonintegrable Hamiltonian systems, based on a fractional kinetic
equation with spatially dependent diffusion coefficient. The diffusion coefficient is estimated from the remain-
der of the optimal normal form for the given region of the phase space. After partitioning the phase space into
building blocks, a separate equation can be constructed for each block. Solving the kinetic equations approxi-
mately and estimating the diffusion time scales, we convolve the solutions to get the description of the
macroscopic behavior. We show that, in the limit of infinitely many blocks, one can expect an approximate
scaling relation between the Lyapunov time and the diffusion �or escape� time, which is either an exponential
or a power law. We check our results numerically on over a dozen Hamiltonians and find a good agreement.
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Statistical treatment of chaotic transport is one of the most
difficult problems in nonintegrable Hamiltonian dynamics.
Despite its importance for many practical problems in vari-
ous fields, e.g., plasma physics �1,2� and dynamical as-
tronomy �3�, we still lack a general and consistent kinetic
theory of transport. The main reason is the complicated na-
ture of the phase space of the typical nonintegrable Hamil-
tonian system, since it usually contains a “topological zoo”
of regular and chaotic structures mixed on an arbitrarily
small scale. The most promising way for overcoming these
difficulties is, in our opinion, the so-called fractional kinetics
of the phase space �4�. Fractional kinetics has become a
broad topic of research not only in Hamiltonian dynamics
but also in very different areas such as solid-state physics �5�
and physics of complex systems �6�. The basic advantage of
the fractional kinetic equation �FKE� for describing chaotic
transport is that its fractional nature allows one to include the
self-similarity of phase space and time, which arises from the
first principles, i.e., from the dynamical equations. Especially
important is the phenomenon of the so-called stickiness �3�
or dynamical trapping �7�, which leads to long intervals of
quasiregular motion.

The particular issue that has largely motivated this re-
search is the phenomenon of approximate scaling of diffu-
sion time scales with the Lyapunov exponents or perturba-
tion strength. A number of papers have been published on
this topic, e.g., �8�; we are also inspired by the building block
method of �9�.

The basic idea of our model is to consider a FKE in the
action space with a nonhomogenous diffusion coefficient and
to combine, i.e., convolve the results to obtain the expected
macroscopic behavior. We use the following form of the
FKE:

��P�I,t�
�t� =

���D�I�P�I,t��
� �I��

+ ��I�t−�/��1 − �� , �1�

where 0���1 and 0���2. Its derivation from the
Hamiltonian equations and discussion of assumptions in-
volved can be found, e.g., in �4�. Although, strictly speaking,
one should consider a vector of actions, we shall assume that
diffusion along one action coordinate is independent of the
others and consider I as a scalar; alternatively, one could
interpret that as considering only one action variable,
whereas the diffusion along the others is many orders of
magnitude smaller. Both cases have been described in vari-
ous systems �2,4�.

We estimate the diffusion coefficient D as the remainder
of the normal form for the dynamics in the vicinity of a
stable domain, e.g., invariant torus. Splitting the Hamiltonian
H�I ,�� into an action-only integrable part H0�I�=�I and the
nonintegrable remainder H1�I ,��, one can obtain the esti-
mate for the remainder of the form O(f�I�), i.e., as a function
of the action. Treating the influence of the nonintegrable re-
mainder on the dynamics as the microscopic transport
mechanism, we take f�I� from the above estimate for the
diffusion coefficient. Two optimal normal forms are known
as Nekhoroshev and Birkhoff normal forms. Their remain-
ders �10� give the diffusion coefficients DN and DB;

DN = D0exp�− 1/�I�	� , �2a�

DB = D0�I�	, �2b�

where D0 denotes the constant part, which is, in general,
dependent on the properties of the Hamiltonian. For both
cases, there is a constraint 	
2. The two cases roughly cor-
respond to local nonoverlapping or overlapping of the reso-
nances.

The last step before solving the FKE is the estimation of
the fractional exponents � and �. These are intimately re-
lated to the self-similarity of the structures involved, and can
be determined from the exponents of the renormalization
group of kinetics of the particular system. This has to be*Electronic address: cygnus@eunet.yu
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done numerically for all but the simplest systems �4�. In our
computations, we have employed a “building block” ap-
proach similar to that of �9�, partitioning the phase space into
several regions, each described with its own FKE, with the
diffusion coefficient �2a� or �2b�. However, instead of con-
sidering only ballistic flights and Markovian diffusion, as in
�9�, we propose the adoption of a set of �� ,�� pairs. The
values of the exponents can then be determined by sampling
the flights �longer than a certain threshold T0�, and then fit-
ting the distribution of their lengths and durations as �−�1+��

and t−�1+��, respectively.
It is hardly surprising that we were unable to find the

exact solutions for the FKE �1�, with the diffusion coeffi-
cients �2a� and �2b�, in their most general form. However, the
long-term behavior can be found by expanding the space
derivative on the right-hand side of �1� according to the gen-
eralizations of the Leibniz’s rule and chain rule for the frac-
tional operator d� /d�I��; see, e.g., �11� for mathematical de-
tails. For the case �2a�, we obtain the solution, up to the
normalization factor,

P�I,t� = E��− y0
4/� − y4/��I1�2e−y

D0
3/2� y0

t�y
� , �3�

where I denotes the modified Bessel function of the first
kind, y�I , t�= �I� / ��	−2��D0I	t��, and y0=y�I0 , t�, with I0 de-
noting the value of the action at t=0. The Mittag-Leffler
function is denoted by E�. For the Birkhoff case, one obtains

P�I,t� =
y
�I

E��− y0
4/� − y4/��Ip�2y0y� , �4�

with p= �	−1� / �	−2�. We note that, for I , t�1, both y and
y0 tend to zero. The asymptotic expansions of the Mittag-
Leffler and the Bessel function can then be used to show that
the solutions P�I , t� fall off in the infinity sufficiently sharply
to be valid probability distributions. They are the main exact
result of our analysis. We shall use them here to apply the
more advanced building block model and to obtain the ap-
proximate scaling relations between the diffusion and
Lyapunov time scales.

Convolution over all the solutions ��i=1
N � can be per-

formed in the usual way, with some entrance probabilities
�actually, statistical weights of each block� pi,

Pres�I,t� = �i=1
N piPi�I,t� , �5�

which give the resulting probability distribution Pres�I , t�. We
propose this way for examining the behavior of particular
systems. In the limit of infinitely many blocks �20�, however,
one can derive a generic relation between the short-time and
long-time diffusion scales.

We next proceed to estimate the typical diffusion time
scales. These can be related to the “escape times” one often
encounters in simulations, e.g., �8�. Strictly speaking, the es-
cape time can only be defined in open systems, as the time to
cross the Lyapunov curve �see �13� for a definition�. Other-
wise, escape time is usually a more or less qualitative term
meant to describe, generally, the time needed to enter a large
connected chaotic region �“stochastic see”� or to experience

a qualitative change of dynamical behavior. In what follows,
we shall consider the escape time as the time scale needed to
reach a fixed I; without loss of generality, we may assume
I=1.

For fixed I, the solution �3� has a maximum about
2�y0 / �t�y�	D0

3/2. Solving this for time t, we obtain the es-
timate of the time to reach I=1,

TI=1 	 �16�I/I0�	−2

D0
�1/�

. �6�

Similarly, �4� reaches its peak at 2yy0	1, which gives the
following TI=1:

TI=1 	 � �II0�1−	/2

�	 − 2�D0
�1/�

. �7�

On the other hand, the short �microscopic� time scale of �1�
is about D�I� / ����/��, which may be interpreted as the aver-
age time between two “collisions;” in our case, this corre-
sponds to a time needed to cross a single resonance, bearing
in mind that resonance interactions and overlaps are the main
physical mechanisms of transport. Moreover, this time scale
is often considered to be a valid estimate of the Lyapunov
time TLyap �1,3�.

Let us now notice that the solutions �3� and �4�, with their
exit time scales �6� and �7�, can be written in the form of
Fox’s H functions �6�. By convolving these functions, one
gets, after a straightforward but tedious calculation, a Fox’s
function again, which may have two asymptotic behaviors.
They scale with the short-time scale of �3� and �4� either as
an exponential law or as a power law. The asymptotic behav-
ior depends on the weights pi and on the sum of transport
exponents 2�i /�i for each building block. Accepting this rea-
soning and inserting the above estimate for TLyap into �6� and
�7�, we obtain the approximate scalings for escape time Tesc,

Tesc  exp�TLyap
� � , �8a�

Tesc  TLyap
� . �8b�

Let us hold onto this result for a moment. The scaling of
this type has been conjectured long ago �e.g., �14��, and it is
implicitly suggested also by the classic work of Chirikov
concerning the regimes of resonance nonoverlapping and
overlapping �15� �the first one being known also as the
Nekhoroshev regime�. More recently, transition between the
Nekhoroshev and Chirikov regime has been explored by
Froeschle and others �16�. However, we show here that the
scaling �8a� and �8b� arises from both basic regimes of cha-
otic dynamics, and that its type is determined also by the
fractional exponents � and � of different building blocks.
Physically, this means that the sticky �and thus non-
Markovian� nature of self-similar structures in the phase
space can “mimic” the effects of the resonance nonoverlap-
ping. This is logical, since both phenomena effectively put a
barrier into the transport channels. The scalings can be ex-
pected to be universal for a given system but are clearly
nonuniversal for different systems, since they depend on the
properties of the Hamiltonian. It should also be noted that,
for N-dimensional �N
2� systems, one should take into ac-

MIHAILO ČUBROVIĆ PHYSICAL REVIEW E 72, 025204�R� �2005�

RAPID COMMUNICATIONS

025204-2



count the Arnold diffusion. However, this should be negli-
gible as long as the number of the degrees of freedom is
sufficiently low, especially if we take into account a recent
result which proves its superexponentially slow nature for a
certain class of systems �17�.

We have performed thorough numerical tests of our re-
sults, by integrating ensembles of particles initially placed in
a cell of the phase space of the given Hamiltonian. We have
inspected the behavior of the perturbed �quasi-integrable�
Hamiltonian systems, i.e., of the form H=HInt+�HPert, since
the constant part of the diffusion coefficient D0 can then
easily be estimated as �2. We have observed the time evolu-
tion of the “distribution function,” i.e., concentration of the
particles in the phase space, the escape times, and the scaling
exponents �by fitting to �8a� and �8b��. We have also calcu-
lated the finite time Lyapunov exponent �FTLE, see �18� for
a definition�, as the numerical estimate for 1 /TLyap. The es-
cape time was measured as the time of crossing the
Lyapunov curves, for open systems, or as the time of the
beginning of the first long interval of normal diffusion, for
the closed systems �21�. Details on the simulations and on
the approximate scalings of the form �8a� and �8b� found
numerically are summed up in Table I.

Figure 1 gives the comparison between the analytically
and numerically obtained distribution functions, for each of
the cases �3� and �4�. Overall agreement can be seen, al-
though it is not perfect. Typical results for the Tesc�TLyap�
relation are shown in Fig. 2. Agreement with the predicted
approximate scalings is good. The regimes are rather clearly
separated and the transient regime is short, although it does
exist. This behavior could be described as a phase transition
between two regimes of chaotic transport, an idea which is
not new for dynamical systems.

We are unable to explain the abrupt transition from one
scaling regime into another, which occurs in most of our
simulations, and resembles a phase transition. This kind of
behavior could be better described by a discrete model. An
obvious choice is a multiply branched tree �as proposed in
�19�� or a network, with the transition probabilities derived
from our results for the distribution functions. This would
actually be a formalization of the building block model,
which already �implicitly� includes a network of blocks.

In conclusion, we have proposed a method for obtaining
�and solving� the kinetic equations of chaotic diffusion. The

TABLE I. Hamiltonians of the form HInt+�HPert explored in the simulations. For each Hamiltonian, we give the integrable part HInt, the
perturbation part HPert, the range of the values of � in the simulations, the exponents of the scalings � and �, and the range of the values of
� for the transition regime. Variables �Ii ,�i� denote the action-angle variables, whereas �x ,y ,z� are the physical space coordinates. HO2 and
HO3 denote the harmonic oscillator in two and three dimensions, respectively. HH2 and HH3 refer to the integrable Henon-Heiles Hamil-
tonian �13� in two and three dimensions: �ẋ2+ ẏ2+x2+y2−2/3y3� /2 and �ẋ2+ ẏ2+ ż2+x2+y2+z2−2/3z3� /2, respectively. Hamiltonian H8 is
the egg-crate system taken from �4�, H9 is the sixth-order Toda lattice, i.e., the integrable Henon-Heiles system perturbed with its sixth-order
expansion �1�, and H14 is taken from �16�. See the text for further comments.

H HInt HPert � � � �trans

H1 HO2 �xy 1.00–4.00 0.65±0.07 0.87±0.05 1.50–1.60

H2 HO2 �x2y 0.87–3.50 0.45±0.05 1.98±0.06 1.28–1.32

H3 HO2 −�x2y2 1.50–6.00 1.09±0.03 1.70±0.04 3.32–3.70

H4 HH2 �xy 0.00–3.50 0.77±0.08 0.53±0.03 0.15–0.20

H5 HH2 �x2y 1.00–4.00 0.15±0.03 1.25±0.06 1.12–1.16

H6 HH2 −�x2y 1.00–4.00 0.71±0.05 0.88±0.04 1.55–1.66

H7 HH2 −� /�x2+y2 0.00–3.50 0.33±0.05 0.57±0.03 1.60-1.70

H8 �ẋ2+ ẏ2� /2+cos x+cos y � cos x cos y 0.00–2.00 0.22±0.04 1.12±0.08 0.34–0.37

H9 HH2 sixth-order Toda lattice expansion 0.00–4.00 0.58±0.03 1.44±0.04 0.55–0.60

H10 I1
2 /2+2�I2 ��cos �1+cos��1−�2�� 0.00–3.00 1.21±0.04 1.82±0.07 1.20–1.32

H11 I1
2 /2+2�I2+cos �1 ��cos��1−�2�+cos��1+�2�� 0.00–3.00 0.45±0.05 1.75±0.07 0.85–0.90

H12 HO3 �x2yz 0.00–2.00 0.22±0.03 0.57±0.03 0.33–0.45

H13 HH3 �xz2 0.80–4.00 0.41±0.04 1.03±0.08 1.20–1.31

H14 �I1
2+ I2

2� /2+ I3 � / �cos �1+cos �2+cos �3+4� 0.000–0.100 0.19±0.03 1.00±0.04 0.055–0.060

FIG. 1. Analytical �solid line� and numerical �histogram� distri-
bution functions P�I1 , t� for the Hamiltonian H14. Action is in rela-
tive units. �a� Nonoverlapping resonances for �=0.030. �b� Over-
lapping resonances for �=0.060.
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method is based upon using the normal forms of dynamics as
the basic blocks of kinetics. In general case, some parameters
of the model, including the fractional exponents of FKE,
have to be computed from the simulations, as the current
state of Hamiltonian theory does not allow us to estimate
them from the dynamical equations, as noted also in �4�. We
have also demonstrated a generic approximate scaling of the
macroscopic diffusion time, often regarded to in simulations
as escape time, with the Lyapunov �microscopic� time scale.
We especially underline that both the power law and the
exponential form of scaling can arise from both possible
forms of the diffusion coefficient, and that the scaling behav-
ior arises from combining the two, i.e., as a kind of collective
behavior.
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at the Institute of Physics is supported by the Ministry of
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Abstract. We present a new statistical model of unfolded proteins in which the stiffness of polypeptide
backbone is taken into account. We construct and solve a mean field equation which has the form of a diffu-
sion equation and derive the distribution function for conformations of unfolded polypeptides. Accounting
for the stiffness of the protein backbone results in a more accurate description of general properties of a
polypeptide chain, such as its gyration radius. We then use the distribution function of a semistiff protein
within a previously developed theoretical framework [J. Biomol. NMR 39, 1 (2007)] to determine the nu-
clear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins. The calculated
RDC profiles (dependence of the RDC value on the residue number) exhibit a more prominent bell-like
shape and a better agreement with experimental data as compared to the previous results obtained with
the random flights chain model.

PACS. 87.10.-e General theory and mathematical aspects – 82.56.Pp NMR of biomolecules – 82.56.Dj
High resolution NMR

1 Introduction and motivation

High-resolution, liquid-state nuclear magnetic resonance
(NMR) spectroscopy has proven to be an invaluable tool in
investigation of the structure and dynamics of biomacro-
molecules, including folded and, recently, unfolded pro-
teins. One of the NMR observables from which one can
infer structural and dynamical information is the so-called
residual dipolar couplings (RDCs) [1]. These couplings are
direct dipole-dipole interactions between the spins of two
nuclei, e.g., 15N and a 1H nuclei, detected in NMR experi-
ments by a shift in the resonant frequency of nuclear spin
flip transitions. They can be measured independently for
each amino acid residue in a polypeptide chain.

Analysis of RDC profiles (dependence of the RDC
value on the residue number) has been shown to be very in-
formative in structure validation and refinement of folded
proteins [1]. However, for unfolded proteins reliable in-
terpretation of RDC measurements remains elusive even
though a significant amount of experimental data has
been accumulated (see [2] for a survey). Theoretically,
one can predict the RDC profiles by performing numeri-

a Present address: National Center for Biotechnology Infor-
mation, NLM/NIH, 8600 Rockville Pike, Bethesda, MD 20894,
USA

b e-mail: solovyov@fias.uni-frankfurt.de

cal sampling of the conformational space of the unfolded
polypeptide. For example, in [3,4] ensembles of unfolded
conformations were constructed from amino acid-specific
distributions of Ramachandran angles φ/ψ taken from the
loop regions of high-resolution X-ray structures in the pro-
tein data base. This method allows one to predict the RDC
profiles with a reasonable accuracy, but it lacks the ability
to explain on a basic level the obtained results, serving,
therefore, as a black box with a limited use for interpre-
tation of experimental data.

In [2] it was shown that the basic trends in RDC pro-
files and the underlying physical and mathematical princi-
ples leading to these trends can be revealed by statistical
analysis not based on numerical sampling of conforma-
tional space (see also similar, although less mathemati-
cally rigorous, work [5]). Two general features of RDC
profiles were predicted for unfolded polypeptide chains.
The first one is that shorter chains have larger (in ab-
solute value) RDCs under same experimental conditions.
The second feature predicted in [2,5] is that the RDCs
are larger for the amino acid residues in the middle of the
chain, leading to the bell-like shape of RDC profiles. De-
spite the simplicity of the model (random flights chain)
used in [2,5] to mimic the unfolded polypeptides, both
these trends seem to be present in the experiments carried
out under conditions prohibiting formation of native-like
structures [2].

http://www.epj.org
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Our goal in this paper is to improve the quality of the
model which is used for simulating the unfolded polypep-
tide chain. We formulate here a new statistical model
of unfolded proteins in which the stiffness of polypep-
tide backbone is taken into account. We demonstrate that
accounting for the stiffness of the protein backbone results
in a more accurate description of general properties of a
polypeptide chain, such as its gyration radius.

Stiff polymer model is a well-known concept in poly-
mer physics, much used since the pioneering paper of Sato
et al. [6]. The idea is to introduce an energy cost for bend-
ing of the polymer, thus favoring the extended conforma-
tions. The most versatile formalism for doing so is the
so-called wormlike chain model, in which the bending en-
ergy density is proportional to the square of the curva-
ture of the polymer contour. It has been developed to its
full strength only recently [7], with the introduction of
new theoretical tools to account for various generaliza-
tions and boundary conditions. The starting point in the
papers cited above is the mean-field description which has
the form of a diffusion equation in tangent space. However,
this approximation becomes less and less satisfactory for
polymers with low stiffness [8]. We show in this paper (fol-
lowed by a more technical discussion in [9]) that a better
continuum limit for the case of low stiffness is obtained in
the real space, which turns out to have, again, the form
of the diffusion equation. Also, the question of how the
wormlike chain model arises from discrete stiff chains has,
to the best of our knowledge, not been addressed so far. In
the following section we will start from a discrete model
and pass to a continuum limit, which will turn out to
be exactly the low-stiffness (the usual term in polymer
physics is semiflexible or semistiff) limit of the wormlike
chain model.

The developed semistiff polymer model is applied to
the calculation of RDCs within the theoretical framework
of [2]. The calculated RDC profiles exhibit a more promi-
nent bell-like shape and a better agreement with experi-
mental data as compared to the previous results obtained
with the random flights chain model.

In the concluding section, we will also discuss possible
further steps in interpreting the RDC measurements, as
well as the importance of our results from a more general
perspective.

2 Theory

2.1 Introduction to the problem

We first give a general and informal consideration of the
problem, before describing in more detail the interaction
potential in our system and the procedure to calculate
the necessary quantities. The ultimate goal is finding the
relation between the dipolar couplings and the physical
parameters of the unfolded polypeptide, and extracting
the information on the shape and other properties of the
polypeptide from the RDC measurements. Unfolded poly-
peptides are in many aspects similar to simple linear poly-
mers, having no well-defined secondary structure.

Fig. 1. Schematic picture of a polymer chain in a restricting
medium modelled with a set of parallel barriers. The barrier-
to-barrier distance is L. External magnetic field vector is B0ez.
The vectors r and r0 are the position vectors of points in the
chain, defined in the fourth section. Inset: structure of a single
monomer unit. The angles αNH and Θ are defined for each
segment. The residues (side chains) are denoted by Rj and
Rj+1, while the radius vector of the jth segment is δrj .

For clarity we will pose the problem for a discrete
chain first, although the calculations will be performed in
the continuum limit. The quantity to be calculated is the
dipole-dipole coupling between two nuclei. We will deal
with the 15N–1H couplings in this paper. The energy (ac-
tually, the frequency) of the coupling is given by [2]:

DNH =
μ0�γNγH

4π2r3NH

P2(αNH)〈P2(cosΘ)〉, (1)

where μ0 is the magnetic permeability constant, γN and γH

are gyromagnetic ratios for the nitrogen and the hydrogen
nucleus and rNH is the internuclear distance (assumed to
be fixed). The function P2 stands for the Legendre poly-
nomial of the second order. The angles αNH and Θ char-
acterize the orientation of a chain segment with respect
to the external field. These are in turn determined by the
conformation of the chain, therefore connecting the mea-
sured couplings to the structure of the polypeptide. The
average (denoted by angular brackets) is to be carried out
over all possible conformations of the chain, i.e. over the
state space of the chain.

The meaning of the angles αNH and Θ is best seen
from Figure 1. The former is the angle between the vector
rNH, i.e. the internuclear vector, and the axis of the jth
segment, denoted in Figure 1 by δrj . On the other hand,
Θ stands for the angle between δrj and the z-axis, which
is the direction of the external magnetic field.



M. Čubrović et al.: Semistiff polymer model of unfolded proteins and NMR residual dipolar couplings 43

The origin of non-zero RDCs lies in the restricting
medium (bicelles or polyacrylamide gels, usually) in which
the denaturated protein is solvated in experiments. Actual
shape and geometry of the confining barriers may vary
but the overall effect will be similar and will result in an
effective confinement of the polymer. In the simplest ap-
proximation, one may regard the restricting barriers to be
parallel to each other, at some distance L, as given in the
Figure 1. The influence of the confinement is crucial even
if the distance L is large compared to the length of the
polypeptide (as is the case for typical experimental condi-
tions). Confinement only induces a mild “deformation” of
the average shape of the polypeptide coil. It is this defor-
mation, however, which gives rise to non-zero expectation
value of the term P2(cosΘ). The calculation of this value
will be in focus of the rest of the paper.

2.2 Stiffness of polypeptide chain

The discrete chain in represented as an array of N seg-
ments, each denoted by index j = 1 . . .N . The information
on structure of the chain is contained in the distribution
function P (N, r, r0) which gives probability to find the
chain in a conformation with the end points at r0 and r.
The usual approach of polymer physics would be to write
the action (or, equivalently, path integral) for the chain
based on some empirical potential [10]. As we will, for the
most part, work in the mean-field approximation, we will
refrain from this approach and write directly the equa-
tion for the distribution function. The statistical weight of
each conformation is determined by its Boltzmann weight,
supposing that the system is sufficiently close to equilib-
rium. To specify these weights completely, one needs to
employ an empirical potential for segment-to-segment in-
teractions.

Empirical potentials for polypeptides, generally, may
include the following terms: bond extensibility, bond an-
gle stiffness, rotation about the so-called Ramachandran
dihedral angles (see, e.g., [11]) and non-bonded interac-
tions, including, possibly, Coulombic interactions, hydro-
gen bonds, excluded volume interactions, etc. We will deal
with the non-bonded interactions in a separate publica-
tion [12]; it can be shown that these do not contribute
significantly to the problem of interpreting the NMR
spectroscopic data that we are primarily concerned with
in this paper. Bond extensibility is, in general, negligible
in polypeptides and better results are usually obtained in
the framework of fixed bond lengths [13]. So, all of our
segments are assumed to have the same length a.

The stiffness is an all-present effect in polymer physics
and is usually characterized either by the persistence
length Lp [10] or in terms of the bond angle θ and its dis-
crepancies from some optimal value θ0 [14]. The connec-
tion between the two descriptions is given by Lp = akθβ;
as usual, β = (kT )−1. In our model, for typical values of
kθ and β, Lp is a few segments long. However, Lp is not
very practical for nonzero θ0. Geometrically, it is equal
to the segment length of an effective freely jointed chain

with the same macroscopic properties as the stiff chain.
This geometric analogy is lost for θ0 > 0.

For most polymers, the optimal angle is θ0 = 0; in our
case, the structure of polypeptide backbone –N–C–C–N–
results in a non zero value of θ0 [11], which is actually the
tetrahedral angle characterizing the bond geometry of the
carbon atom. The radius-vector of the jth segment relative
to the end of the previous segment will be denoted by δrj .
The bond stiffness is obviously a nearest-neighbor inter-
action, involving pairs of subsequent segments. Dihedral
angles are for unfolded polypeptides usually considered in
a purely local approximation, thus leading to no site-to-
site interaction. Therefore, the potential of our system is
of the form:

V =
N−1∑

j=1

Vθ(θj) +
N∑

j=1

Vφψ(φj , ψj). (2)

Still, even in this approximation, distribution of dihedral
angles shows nontrivial behavior if the polypeptide is not
a homopolymer, i.e. if various segments have different en-
ergy minima. One final remark is that we assume various
degrees of freedom to be decoupled; it is also a common
approximation, and a necessary one for the problem to be
tractable.

The Ramachandran part of the potential, Vφψ, can-
not be treated in the mean-field approximation for the
reason mentioned in the previous paragraph: the energy
landscape is strongly site-specific and therefore evades a
description in the framework of mean-field theory. On the
other hand, the decoupling of the degrees of freedom sug-
gests that the effects of stiffness can be considered inde-
pendently. In this paper, we will explore exactly the in-
fluence of stiffness, leaving the theory for Ramachandran
angles for further work.

Hence, we are only interested for the potential Vθ. An
often-employed potential in both analytical and numeri-
cal work, with slight differences from author to author,
described in [14], is the following one:

Vθ(θj) = −kθ cos(θ − θ0) +O
(
(θ − θ0)

3
)
. (3)

The correction to the cosine term in (3) can be any func-
tion which is “small” compared to the leading term in the
cosine, i.e. containing only third and higher order terms in
the angular displacement θj−θ0. It will turn out later that
these corrections are, in our method, of secondary impor-
tance anyway, so the exact form of this correction is not
relevant. In other words, the exact form of the anharmonic
terms is not relevant; a different form would produce dif-
ferent higher-order terms for the diffusion coefficient but
these are (by definition) beyond the scope of any model
based on diffusion equation.

In the following subsection, we will give our mean-field
model for a semistiff (semiflexible) chain. For some pur-
poses the mean-field treatment can provide sufficiently ac-
curate estimates and it is also of interest for other prob-
lems, not connected to protein physics.
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2.3 Diffusion equation formalism for semistiff polymers

For the rest of this paper, we will take the continuum
limit. The index of a segment in the chain (chemical coor-
dinate s) is now a variable taking values from the interval
(0, N), where N is the total segment number. This frame-
work is, of course, only suitable for the chains which are
not too short.

The formalism we employ here is best suited for small
stiffness; typical values of kθ in (3) are of the order of
10ε, with ε = 10−23 J (0.624 × 10−4 eV), which is small
compared to systems like double-stranded DNA.

One can start from the statistical weight of the jth
segment having a bond angle θj expressed in terms of its
radius-vector δrj :

p0(δrj) =
βkθ

4πa2 sinhβkθ
δ(δrj − a) exp(βkθ cos θj). (4)

The above equation is nothing but the Boltzmann weight
with appropriate normalization. Since the experiments
with unfolded proteins are usually performed at room tem-
perature, we take T = 300 K for all calculations through-
out the paper. In other words, the chain is modelled as a
random walk with one-step memory (which is implicitly
included in (4) via the bond angle depending on the pre-
vious segment). It is a variation on the persistent random
walk problem, well-known and often encountered in the-
ory of stochastic processes [15]. The usual formalism of
master equations leads to the conclusion that the contin-
uum limit of this process is a diffusion equation; we show
that in more detail in a separate publication [9].

For a three-dimensional model, diffusion coefficient be-
comes the diffusion tensor D̂ represented with a three-by-
three matrix, the component Dij being, by definition:

Dij =
1
2

∫
dδrp0(δr)δriδrj . (5)

A straightforward calculation then shows that the off-
diagonal components vanish; furthermore, the two “trans-
versal” components (perpendicular to the tangent vector
at the given point) are equal and will be denoted by D⊥;
the “longitudinal” one is denoted by D‖. They are ob-
tained to be:

D⊥ =
a2

sinhβkθ

(
coshβkθ
βkθ

− sinhβkθ
β2k2

θ

)
(6)

D‖ =
a2 cos2 θ0
sinhβkθ

(
sinhβkθ
β2k2

θ

+
sinhβkθ

2
− coshβkθ

βkθ

)
.

(7)
The above result was derived by rotating the diffusion ten-
sor in the local tangent coordinate system. The higher or-
der terms can be included to modify the cosine potential,
by means of perturbative corrections (so-called higher-
order correlation terms) to the diffusion coefficient. The
full formalism for computation of these corrections can be
found in [16]. For example, the harmonic potential for the

bond angle, also often employed [14] in various models,
can be modelled in this way. Let us right away define also
the coefficient μ ≡ 2D⊥/D‖, as we will use it throughout
the paper.

The non-isotropic diffusion tensor gives rise to the fol-
lowing diffusion equation:

∂P

∂N
= D‖

∂2P

∂r2
+

2D‖
r

∂P

∂r
+

D⊥
r2

�S2P, (8)

where �S2 is the angular part of the Laplacian in spherical
coordinates, i.e., the two-dimensional Laplace-Beltrami
operator.

We first look for a fundamental solution (in terminol-
ogy of the theory of partial differential equations), i.e. for
a solution in the whole space, vanishing at the infinity
and starting at r0, leading to the initial-boundary condi-
tion P (0, r, r0) = δ(r − r0)/4π. Then one can use well-
developed tools for solving diffusion equations. The eas-
iest way is to rewrite (8) as the Schrödinger equation in
imaginary time for a particle in a spherical potential given
by U(r) =  (+ 1) (μ/2 − 1) /r2. It is easy to see that
U(r) defined in this way is a well only for μ < 2, i.e. for
D⊥ < D‖, otherwise, it is repulsive. The physical inter-
pretation of this fact is that the diffusion with large D⊥
corresponds to the states with high angular momenta (no-
tice the position of D⊥ in (8)). But since arbitrarily high
angular momenta are only possible for unbounded states,
this means the the imaginary time description of the dif-
fusion corresponds to a particle in a repulsive potential.
Conversely, when D‖ dominates over D⊥, the primary con-
tribution to the energy comes from the radial part of the
Laplace operator; hence, angular momentum cannot be
arbitrarily high, which is consistent with a bounded state
in a potential well.

However, one can use the same eigenbasis for both of
the above cases; only the coefficients of the expansion will
be different. The eigenfunctions of the radial part of the
equation read as:

u1(, E , r) =
C1(, E)√

r
Jκ

(
−

√
E
D‖

r

)
(9)

u2(, E , r) =
C2(, E)√

r
Yκ

(
−

√
E
D‖

r

)
, (10)

with κ = [1/4 + μ(+ 1)/2]1/2, and correspond to the
states of definite energy E and angular momentum 
of the particle. The Bessel functions of the first (sec-
ond) kind are denoted by Jα and Yα. Right away we
see that C2 = 0 for all E and , as the Bessel func-
tions of the second kind diverge at short distances.
Hence, only the (9) states contribute to the solution.
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 = 0.9 Fig. 2. (Color online) Top – radial distribution func-

tions P (N, r) for various values of stiffness, with θ0 = 1.9.
Bottom – radial distribution functions P (N, r) for vari-
ous values of θ0, with kθ = 50ε. The length of the chain
N = 50.
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Fig. 3. Dependence of the scaling exponent ν for the
gyration radius on θ0. We have set kθ = 20ε. The
dashed lines denote the interval of the gyration radii
measured experimentally in unfolded polypeptides (about
0.6). The exponent ν is defined through the scaling rela-
tion 〈R2

g〉 ∝ N2ν .

The solution that satisfies our boundary conditions is then
obtained by standard methods and reads as:

P�(N, r, r0) = Cn(κ,N)
(
r

r0

)2κ+1/2 1
D‖N

× exp
(
−r

2 + r20
4D‖N

)
Iκ

( |r · r0|
2D‖N

)
,

(11)

where I stands for the modified Bessel function of the first
kind. The normalization constant Cn(N) is equal to:

Cn(κ,N) = 3π22+κκ(D‖N)1+κ/2Γ (1 + κ)Γ (3κ/2)

×1 F1

(
1 + 3κ/2, 1 + κ,

r20
4D‖N

)
, (12)

with 1F1(a, b, x) denoting the confluent hypergeomet-
ric function of its arguments (see [17] for a def-
inition). We obtain the above result by expanding
(11) into power series, integrating and resuming. De-
pendence of the normalization constant on N and
κ is explicitly written, as this dependence will play a role

in later sections. The large-N asymptotic form of Cn(κ,N)
reads as:

Cn(κ,N) ≈ 3π22+κκ(D‖N)1+κ/2

× Γ

(
3κ
2

) (
1 +

3κ+ 2
2κ+ 2

r20
4D‖N

)
. (13)

We will need this asymptotic form later on. Notice that the
normalization constant is dependent on N , as one would
expect. The solution explicitly depends on . It is actually
the sum of all partial waves (characterized by the value
of ) that provide a solution of finite norm (i.e. no scatter-
ing to infinity, which would correspond to the “blowup”
of the chain) and finite localization radius (i.e. no “falling
to the center”, which would correspond to the collapse of
the chain).

To understand better the general properties of the
model, it is helpful to analyze the behavior of the so-
lution (11) depending on the parameters kθ and θ0. We
will first discuss the radial distribution function P (N, r),
defined as

∫ ∫
dφ dθ sin θr2P (N, r, r0). The results for se-

lected values are given in Figure 2. It is seen that in the
whole physically sensible range of parameters, the stiffness
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kθ, once it moves away from zero, only mildly flattens the
distribution function. On the other hand, the bending an-
gle does influence it significantly. An informal explanation
is that letting kθ grow, provided it is neither too close to
zero nor too large, results in less bending of the chain but
(as kθ is not very large) the chain still does bend rela-
tively often and still has the shape of a slightly flattened
sphere; therefore, various parts of the chain still propa-
gate in almost uncorrelated directions and it is not very
important how long (on average) they are. On the other
hand, large preferential angle θ0 brings a systematic effect,
which accumulates and substantially changes the shape of
the chain.

It is also instructive to look at the behavior of the gyra-
tion radius (expectation value of the squared distance from
the center of mass of the polymer), given in Figure 3. As
one could expect, it grows significantly with θ approach-
ing zero, as in that case, the most extended configura-
tions are preferred. This case agrees with the equations
for the gyration radius cited in [10]. On the other hand,
for values of θ0 close to π, the chain, on a macroscopic
scale, behaves almost as a Gaussian freely jointed chain,
hence ν approaches its Gaussian value 0.5. The gyration
radius for the continuum limit in the case of non-zero θ0
has, to the best of our knowledge, not been addressed so
far. The plot in Figure 3 shows the range of the prefer-
ential bond angle values that correspond to the experi-
mental result, ν ≈ 0.6 [3]. This range roughly corresponds
to the value of θ0 suggested by the geometry of bonds in
polypeptides: θ0 ≈ 1.8 radians [14]; in our calculations, we
use θ0 = 1.83 radians. Hence, our model is able to repro-
duce the observed scaling exponent of the gyration radii
and allows us to conclude that the proximity of its value
to the scaling exponent νsaw of the self-avoiding random
walk (νsaw ≈ 0.59) is pure coincidence. The distribution
of bond angles (which are dominant degrees of freedom in
terms of typical energies and time scales) alone accounts
for the gyration radius scaling, whereas the self-avoidance
(together with other non-bonded interactions) only pro-
duces small corrections (for more details see [12]).

3 The calculation of RDC values

3.1 Basic considerations

Having described our model of unfolded polypeptides, we
now turn to the calculation of RDC values. The general
theory is given in [2] and the basic idea is also mentioned
in the introduction section of this paper. Here we discuss
the more formal aspects of the procedure and state the
results.

We will consider the simplest model, in which the re-
stricting medium is modelled as a set of parallel planar
absorbing barriers at the distance L from each other, as
shown in Figure 1 [2]. This effectively means that all the
paths which intersect the barrier are removed from con-
sideration. The exact solution with these boundary condi-
tions is difficult to find; therefore, we resort to the method

of images, common in problems such as diffusion and elec-
trostatics [19]. Staying at the first order approximation,
the solution reads as [2]:

f(N, r, r0) = P (N, r, r0) − P (N, r′, r0) − P (N, r′′, r0),
(14)

with r′ and r′′ being the points symmetric to r with re-
spect to the barriers, and f(N, r, r0) denoting the proba-
bility density function for the appropriate boundary con-
ditions (whereas P stands for the fundamental solution in
the whole space).

As can be seen from the defining expression, the RDC
of the jth segment is determined by the value of the an-
gle Θ of the Cαj − Cαj+1 segment with respect to the di-
rection of the magnetic field. Therefore, we wish to find
the distribution function for this angle, denoted f(Θ). As
elucidated in more detail in [2], f(Θ) equals the joint cu-
mulative distribution for a chain of length j starting at
rj − δrj/2 and reaching some position r01, and a chain of
length N − j starting at rj + δrj/2 and ending at some
position r02. Cumulative distribution, by definition, enu-
merates the states with prescribed position of one end of
the chain (r ± δrj/2), independently of the coordinate of
the other end (r01 or r02). Therefore, for C(N, r) we have,
in general:

C(N, r) =
∫
dr0f(N, r, r0). (15)

At this point, one should notice that the dependence of
the cumulative distributions on x and y vanishes due to
symmetry. We may therefore denote them by C(N, z). In-
tegrating over the initial positions of the chains, r01 and
r02, we arrive at the following equation for f(Θ):

f(Θ) ∝
∫ L/2

−L/2
dz C

(
j, z − a cosΘ

2

)

× C

(
N − j, z +

a cosΘ
2

)
, (16)

where the proportionality constant is easy to determine
from the previous equations, keeping track of all constant
factors from the beginning. We have exploited the fact
that the segment lengths are all equal (|δrj | = a), as well
as the definition of the angle Θ.

3.2 Angular averaging: elementary method

The final step is performing the necessary integrations,
i.e., calculating the average over f(Θ). Conceptually the
simplest way of doing this is expanding (16) in a power
series and integrating it term by term. This is the most
feasible way for obtaining quick, low-accuracy estimates.
We first sketch this method.

One starts by expanding the cumulative distribution
functions in powers of a cosΘ. The odd terms obviously
vanish. The even terms are then integrated by parts bear-
ing in mind the fact that the distribution f(N, r, r0) van-
ishes at the boundaries due to confinement. The averaging
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in equation (1) is then readily performed. The result up
to the fourth order in a has the form:

DNH = KP2(αNH)×
[
B − 3

8
Cn(κ,N1)Cn(κ,N −N1 − 1)

Cn(κ,N)
a2

− 1
384

Cn(κ− 1, N1)Cn(κ− 1, N)
Cn(κ,N)

a2

+
1
64
Cn(κ− 1, N1)Cn(κ− 1, N −N1 − 1)

Cn(κ− 1, N)
a4

]
.

(17)

The constant K is defined in (1) and reads as:

K =
μ0�γNγH

4π2r3NH

. (18)

The constant term B in (17) is small (about two orders
of magnitude smaller than the a-dependent terms) and
we ignore it in our calculations. When calculating DNH,
we have used the asymptotic form for the normalization
constant, as given in (13). Bearing in mind the limited
accuracy of our formalism (simple toy-model potential,
mean-field approach, etc.), one may safely ignore also the
quartic term, as well as the second quadratic term (due
to its large denominator). We have found for the exam-
ples below that this approximation leads to insignificant
changes of the computed RDC curves.

3.3 Angular averaging: advanced method

A more elaborate but substantially more general scheme,
allowing in principle calculations of arbitrarily high ac-
curacy, is based upon the formalism of quantum theory
of angular momentum. We again start from (16), which is
the exact result (not approximate, like the series expansion
subsequently performed in the previous subsection). The
idea is to refrain from using the closed-form solution (11)
and use the series expansion of P (N, r, r0) over the radial
eigenfunctions (9) and spherical harmonics. The former is
more convenient and more informative for most purposes
but the latter allows us to use numerous identities of the
angular momentum theory to obtain simpler expressions
for the average of P2(cosΘ).

The starting point is the solution in the whole space:

P (N, r, r0) =
∞∑

�=0

A�R�(N, |r − r0|)P�(cos θ), (19)

where A� are the appropriate coefficients determined by
the eigenfunctions (9),R� are radial functions, obtained by
integrating the eigenfunctions over the “energy” variable
E , and θ is the azimuthal angle. Reflections in the planes
z = ±L/2, which give the image solutions, are then read-
ily obtained in the form R̂π,ez P̂ T̂±L

2 ez
P (N, r, r0), which

is easy to prove from elementary considerations. The oper-
ators denote the rotation for a given angle about the given

axis, spatial inversion and spatial translation for a given
vector, in that order. The rotation for π about the z-axis
and the spatial inversion act upon the angular part sim-
ply by multiplying it with (−1)l. Only the translation has
a nontrivial action. A lengthy calculation, making use of
the Wigner functions and identities with Clebsch-Gordan
coefficients as given in [20], results in:

P�(θ′, φ) =K�

∞∑

λ=0

(−1)λ+�fr(λ, , r)

×
�+λ∑

Λ=|�−λ|

(2+ 1)(2λ+ 1)
2Λ+ 1

|〈Λ0|0λ0〉|2. (20)

For the left image, where we have introduced the notation:

K� =
�∑

j=0

(
−L

2

)�−j √
2(− j) − 1

(+ j)!
(− j)!

×
[

(2)!(2j)!
(2+ 2j)!

]1/2

, (21)

fr(λ, , r) =
(2rL)�

(4r2 + L2)λ+�/2
F

×
(

2λ+ 

4
,

2λ+ + 2
4

; λ+
3
2
,

16r2L2

(4r2 + L2)2

)
,

(22)

and the angular brackets stand for the Clebsch-Gordan
coefficients, whereas F is the confluent hypergeometric
function, and the angle in the new coordinate system is
denoted by θ′. The other image looks the same, except
that the functions (22) now contain −L in place of L.
Finding the cumulative distribution is straightforward, in-
serting the expressions for P (N, r, r0) and its two images
in (15) and integrating. Notice that the initial position
is contained only in the radial functions R�, which can
be integrated analytically as their integrals reduce to the
familiar Bessel integrals.

The last step is multiplying the two cumulative distri-
bution functions as in (16) and integrating over z. At this
step the symmetry of the problem nullifies all the terms
containing the product of an even and an odd functions of
z, and the triangle rule for addition of angular momenta
further reduces the number of non-zero terms. We are thus
left with a finite sum which, to the second order, gives the
result for P2(cosΘ) that coincides with (17). The fourth
order term differs from the corresponding term in (17),
however, as in this approach, due to the orthogonality of
the Legendre polynomials, we capture the exact value of
the coefficient in front of the fourth (or any other desired)
order term in the expansion. In the elementary method,
the expansion is in powers of a and in number of images.
The latter expansion is an uncontrollable approximation,
since the 2nth image can contribute a term of the order
2n − 2 in a. The advanced method captures the whole
contribution of given order in a.
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At the present level of accuracy of our model, this in-
crease in accuracy is not crucial. However, the generality
of the formalism applied in this subsection might prove to
be necessary if the subtler effects as the Ramachandran ro-
tations or long-range interactions are included. Also, the
described method allows an equally straightforward calcu-
lation of the expectation value of P�(cosΘ) for any . This
case will appear if other observables in addition to direct
dipole-dipole couplings are measured. We therefore pro-
pose this approach for any further work on this problem.

4 Examples

The purpose of this section is to test our predictions on
experimental data and judge the accuracy and usefulness
of our theory. Therefore, we do not analyze in detail any
of the systems and contend ourselves just to compare our
curves with the experimental ones.

In all the cases that we consider, we take the stiffness
kθ equal to 20ε and preferential bond angle θ0 = 1.83
(in radians). These values have been recommended in [14]
and also according to other authors the peptide bond is
expected to be well described by these values. The inter-
planar distance is taken fixed to L = 100a, where a is
the length of a single segment. In both experiments that
we analyze [21,22], this length is cited to be about 40 nm
while the segment length is 0.38 nm. So, our value for
the interplanar distance roughly corresponds to the ex-
perimental one; exact equality is not essential since the
experimental setup is difficult to control concerning the
interplanar distance [22] and the actual distribution of in-
terplanar values is probably rather fat-tailed. In our the-
ory, the segment length does not enter the final expressions
and therefore can take any arbitrary value.

The first case we consider is the urea-denaturated apo-
myoglobin, an experiment reported in [21], and analyzed
also in the previous study by two of the authors [2]. The
result is seen in Figure 4. The same paper also reports on
measurements of acid denaturated apomyoglobin, which
cannot be well described with our model, probably be-
cause the native-like topology is still present in this case,
as the authors themselves state [21].

Another example is ubiquitin, one of the proteins
which are intrinsically disordered also in their native state.
The measurements are taken from [22].

The second case, in Figure 5, shows somewhat better
agreement with experiment than the first one (χ2 about
30 percent better). In part, this is probably due to the
difference between the two proteins. Ubiquitin is known
to be a strongly disordered protein [22] and behaves es-
sentially as a perfect statistical coil, so various local de-
viations from the mean value of RDCs tend to average
out. On the other hand, apomyoglobin probably retains
some native-like structure even in the unfolded state; this
is particularly probable for the regions formed by several
subsequent segments which are completely above or be-
low the average RDC value, that are visible in the mea-
surements given in Figure 4. These are probably regions
with strong close-neighbor interactions, that behave like

0 50 100 150
−14

−12

−10

−8

−6

−4

−2

0

2

Segment number

D
N

H
 [H

z]

 

 

Fig. 4. (Color online) Comparison of experimental (blue
dashed line) and theoretical (red full line) RDCs for unfolded
apomyoglobin. The prediction of the random flight theory [2]
is also shown (green dash-dotted line). General bell shape is
observed but it is obvious that local conformational properties
induce large deviations from the mean field curve, predicted
by our model.
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Fig. 5. (Color online) Comparison of experimental (blue
dashed line) and theoretical (red full line) RDCs for unfolded
ubiquitin. The random flight theory prediction [2] is also shown
(green dash-dotted line). One again sees the local variations
superimposed on the global bell-shaped curve.

partially folded secondary structures and therefore choose
one of the conformations, some of them with significantly
higher probability than the others. Finally, we point out
that both examples demonstrate that the current model
provides a more realistic description of the polypeptide
than the non-interacting random flight model.
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5 Discussion and conclusion

We have presented a theoretical method for reproducing
the spatial structure of unfolded polypeptides, in partic-
ular the NMR spectroscopic measurements of NH dipolar
couplings. Our approach requires the use of the empirical
potentials and model parameters; therefore, it is not an
ab initio approach. Nevertheless, all the parameters enter-
ing the calculation are either measured (or controlled) in
the experiment itself (temperature, interplanar distance)
or more or less standard and well-known values (optimal
bond angle, bond stiffness). Bond stiffness is the “most
empirical” of them but it also seems to vary very little in
various numerical models [14,18]. The results seem encour-
aging and reveal general properties of disordered proteins.

First, it seems that the assumption of the effective
decoupling of the degrees of freedom is justified by the
RDC curves. The global shape of the chain, which is de-
termined primarily by the statistical nature of polypep-
tide chain conformations in unfolded state and is well de-
scribed within the semistiff polymer model, gives rise to
the bell shape of the curves, also detected in experiments.
On the other hand, the specificities of the segments lead
to the local deviations of the RDC values from the smooth
bell-shaped distribution. We plan to extend our model in
further work, applying the linear response theory in order
to reproduce these local structures.

The method will be subject to a number of improve-
ments in the future. Besides applying the linear response
formalism to improve the results, we also plan to asses in
more detail the influence of long range interactions and in-
trachain contacts. Also, it is possible to use the results of
the numerical work to identify the optimal Ramachandran
angles for unfolded polypeptides. This will allow us to ac-
count for even richer secondary structure than that pro-
duced by a restricted database search, as the problem of
weighting would be eliminated, with the energy values of
different (φ, ψ) points being read off numerically obtained
potential energy surfaces.
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Chapter 21
Holographic Description of Strongly Correlated
Electrons in External Magnetic Fields

E. Gubankova, J. Brill, M. Čubrović, K. Schalm, P. Schijven, and J. Zaanen

21.1 Introduction

The study of strongly interacting fermionic systems at finite density and tempera-
ture is a challenging task in condensed matter and high energy physics. Analytical
methods are limited or not available for strongly coupled systems, and numerical
simulation of fermions at finite density breaks down because of the sign problem
[1, 2]. There has been an increased activity in describing finite density fermionic
matter by a gravity dual using the holographic AdS/CFT correspondence [3]. The
gravitational solution dual to the finite chemical potential system is the electrically
charged AdS-Reissner-Nordström (RN) black hole, which provides a background
where only the metric and Maxwell fields are nontrivial and all matter fields vanish.
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In the classical gravity limit, the decoupling of the Einstein-Maxwell sector holds
and leads to universal results, which is an appealing feature of applied holography.
Indeed, the celebrated result for the ratio of the shear viscosity over the entropy den-
sity [4] is identical for many strongly interacting theories and has been considered a
robust prediction of the AdS/CFT correspondence.

However, an extremal black hole alone is not enough to describe finite density
systems as it does not source the matter fields. In holography, at leading order, the
Fermi surfaces are not evident in the gravitational geometry, but can only be de-
tected by external probes; either probe D-branes [3] or probe bulk fermions [5–8].
Here we shall consider the latter option, where the free Dirac field in the bulk carries
a finite charge density [9]. We ignore electromagnetic and gravitational backreac-
tion of the charged fermions on the bulk spacetime geometry (probe approximation).
At large temperatures, T � μ, this approach provides a reliable hydrodynamic de-
scription of transport at a quantum criticality (in the vicinity of superfluid-insulator
transition) [10]. At small temperatures, T � μ, in some cases sharp Fermi surfaces
emerge with either conventional Fermi-liquid scaling [6] or of a non-Fermi liquid
type [7] with scaling properties that differ significantly from those predicted by the
Landau Fermi liquid theory. The non-trivial scaling behavior of these non-Fermi
liquids has been studied semi-analytically in [8] and is of great interest as high-Tc

superconductors and metals near the critical point are believed to represent non-
Fermi liquids.

What we shall study is the effects of magnetic field on the holographic fermions.
A magnetic field is a probe of finite density matter at low temperatures, where the
Landau level physics reveals the Fermi level structure. The gravity dual system is
described by a AdS dyonic black hole with electric and magnetic charges Q and H ,
respectively, corresponding to a 2 + 1-dimensional field theory at finite chemical
potential in an external magnetic field [11]. Probe fermions in the background of the
dyonic black hole have been considered in [12–14]; and probe bosons in the same
background have been studied in [15]. Quantum magnetism is considered in [16].

The Landau quantization of momenta due to the magnetic field found there,
shows again that the AdS/CFT correspondence has a powerful capacity to unveil
that certain quantum properties known from quantum gases have a much more ubiq-
uitous status than could be anticipated theoretically. A first highlight is the demon-
stration [17] that the Fermi surface of the Fermi gas extends way beyond the realms
of its perturbative extension in the form of the Fermi-liquid. In AdS/CFT it appears
to be gravitationally encoded in the matching along the scaling direction between
the ‘bare’ Dirac waves falling in from the ‘UV’ boundary, and the true IR excitations
living near the black hole horizon. This IR physics can insist on the disappearance
of the quasiparticle but, if so, this ‘critical Fermi-liquid’ is still organized ‘around’ a
Fermi surface. The Landau quantization, the organization of quantum gaseous mat-
ter in quantized energy bands (Landau levels) in a system of two space dimensions
pierced by a magnetic field oriented in the orthogonal spatial direction, is a sec-
ond such quantum gas property. We shall describe here following [12], that despite
the strong interactions in the system, the holographic computation reveals the same
strict Landau-level quantization. Arguably, it is the mean-field nature imposed by
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large N limit inherent in AdS/CFT that explains this. The system is effectively non-
interacting to first order in 1/N . The Landau quantization is not manifest from the
geometry, but as we show this statement is straightforwardly encoded in the sym-
metry correspondences associated with the conformal compactification of AdS on
its flat boundary (i.e., in the UV CFT).

An interesting novel feature in strongly coupled systems arises from the fact that
the background geometry is only sensitive to the total energy density Q2 +H 2 con-
tained in the electric and magnetic fields sourced by the dyonic black hole. Dialing
up the magnetic field is effectively similar to a process where the dyonic black hole
loses its electric charge. At the same time, the fermionic probe with charge q is
essentially only sensitive to the Coulomb interaction gqQ. As shown in [12], one
can therefore map a magnetic to a non-magnetic system with rescaled parameters
(chemical potential, fermion charge) and same symmetries and equations of motion,
as long as the Reissner-Nordström geometry is kept.

Translated to more experiment-compatible language, the above magnetic-electric
mapping means that the spectral functions at nonzero magnetic field h are identi-
cal to the spectral function at h = 0 for a reduced value of the coupling constant
(fermion charge) q , provided the probe fermion is in a Landau level eigenstate. A
striking consequence is that the spectrum shows conformal invariance for arbitrarily
high magnetic fields, as long as the system is at negligible to zero density. Specif-
ically, a detailed analysis of the fermion spectral functions reveals that at strong
magnetic fields the Fermi level structure changes qualitatively. There exists a criti-
cal magnetic field at which the Fermi velocity vanishes. Ignoring the Landau level
quantization, we show that this corresponds to an effective tuning of the system
from a regular Fermi liquid phase with linear dispersion and stable quasiparticles
to a non-Fermi liquid with fractional power law dispersion and unstable excitations.
This phenomenon can be interpreted as a transition from metallic phase to a “strange
metal” at the critical magnetic field and corresponds to the change of the infrared
conformal dimension from ν > 1/2 to ν < 1/2 while the Fermi momentum stays
nonzero and the Fermi surface survives. Increasing the magnetic field further, this
transition is followed by a “strange-metal”-conformal crossover and eventually, for
very strong fields, the system always has near-conformal behavior where kF = 0
and the Fermi surface disappears.

For some Fermi surfaces, this surprising metal-“strange metal” transition is not
physically relevant as the system prefers to directly enter the conformal phase.
Whether a fine tuned system exists that does show a quantum critical phase transi-
tion from a FL to a non-FL is determined by a Diophantine equation for the Landau
quantized Fermi momentum as a function of the magnetic field. Perhaps these are
connected to the magnetically driven phase transition found in AdS5/CFT4 [18]. We
leave this subject for further work.

Overall, the findings of Landau quantization and “discharge” of the Fermi surface
are in line with the expectations: both phenomena have been found in a vast array of
systems [19] and are almost tautologically tied to the notion of a Fermi surface in a
magnetic field. Thus we regard them also as a sanity check of the whole bottom-up
approach of fermionic AdS/CFT [5–7, 17], giving further credit to the holographic
Fermi surfaces as having to do with the real world.
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Next we use the information of magnetic effects the Fermi surfaces extracted
from holography to calculate the quantum Hall and longitudinal conductivities. Gen-
erally speaking, it is difficult to calculate conductivity holographically beyond the
Einstein-Maxwell sector, and extract the contribution of holographic fermions. In
the semiclassical approximation, one-loop corrections in the bulk setup involving
charged fermions have been calculated [17]. In another approach, the backreaction
of charged fermions on the gravity-Maxwell sector has been taken into account and
incorporated in calculations of the electric conductivity [9]. We calculate the one-
loop contribution on the CFT side, which is equivalent to the holographic one-loop
calculations as long as vertex corrections do not modify physical dependencies of
interest [17, 20]. As we dial the magnetic field, the Hall plateau transition happens
when the Fermi surface moves through a Landau level. One can think of a differ-
ence between the Fermi energy and the energy of the Landau level as a gap, which
vanishes at the transition point and the 2 + 1-dimensional theory becomes scale in-
variant. In the holographic D3–D7 brane model of the quantum Hall effect, plateau
transition occurs as D-branes move through one another [21, 22]. In the same model,
a dissipation process has been observed as D-branes fall through the horizon of the
black hole geometry, that is associated with the quantum Hall insulator transition.
In the holographic fermion liquid setting, dissipation is present through interaction
of fermions with the horizon of the black hole. We have also used the analysis of the
conductivities to learn more about the metal-strange metal phase transition as well
as the crossover back to the conformal regime at high magnetic fields.

We conclude with the remark that the findings summarized above are in fact
somewhat puzzling when contrasted to the conventional picture of quantum Hall
physics. It is usually stated that the quantum Hall effect requires three key ingredi-
ents: Landau quantization, quenched disorder1 and (spatial) boundaries, i.e., a finite-
sized sample [23]. The first brings about the quantization of conductivity, the second
prevents the states from spilling between the Landau levels ensuring the existence
of a gap and the last one in fact allows the charge transport to happen (as it is the
boundary states that actually conduct). In our model, only the first condition is satis-
fied. The second is put by hand by assuming that the gap is automatically preserved,
i.e. that there is no mixing between the Landau levels. There is, however, no phys-
ical explanation as to how the boundary states are implicitly taken into account by
AdS/CFT.

We outline the holographic setting of the dyonic black hole geometry and bulk
fermions in Sect. 21.2. In Sect. 21.3 we prove the conservation of conformal symme-
try in the presence of the magnetic fields. Section 21.4 is devoted to the holographic
fermion liquid, where we obtain the Landau level quantization, followed by a de-
tailed study of the Fermi surface properties at zero temperature in Sect. 21.5. We
calculate the DC conductivities in Sect. 21.6, and compare the results with available
data in graphene.

1Quenched disorder means that the dynamics of the impurities is “frozen”, i.e. they can be regarded
as having infinite mass. When coupled to the Fermi liquid, they ensure that below some scale the
system behaves as if consisting of non-interacting quasiparticles only.
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21.2 Holographic Fermions in a Dyonic Black Hole

We first describe the holographic setup with the dyonic black hole, and the dynamics
of Dirac fermions in this background. In this paper, we exclusively work in the probe
limit, i.e., in the limit of large fermion charge q .

21.2.1 Dyonic Black Hole

We consider the gravity dual of 3-dimensional conformal field theory (CFT) with
global U(1) symmetry. At finite charge density and in the presence of magnetic
field, the system can be described by a dyonic black hole in 4-dimensional anti-
de Sitter space-time, AdS4, with the current Jμ in the CFT mapped to a U(1)

gauge field AM in AdS. We use μ,ν,ρ, . . . for the spacetime indices in the CFT
and M,N, . . . for the global spacetime indices in AdS.

The action for a vector field AM coupled to AdS4 gravity can be written as

Sg = 1

2κ2

∫
d4x

√−g

(
R + 6

R2
− R2

g2
F

FMNFMN

)
, (21.1)

where g2
F is an effective dimensionless gauge coupling and R is the curvature radius

of AdS4. The equations of motion following from (21.1) are solved by the geometry
corresponding to a dyonic black hole, having both electric and magnetic charge:

ds2 = gMNdxMdxN = r2

R2

(−f dt2 + dx2 + dy2) + R2

r2

dr2

f
. (21.2)

The redshift factor f and the vector field AM reflect the fact that the system is at a
finite charge density and in an external magnetic field:

f = 1 + Q2 + H 2

r4
− M

r3
,

(21.3)

At = μ

(
1 − r0

r

)
, Ay = hx, Ax = Ar = 0,

where Q and H are the electric and magnetic charge of the black hole, respectively.
Here we chose the Landau gauge; the black hole chemical potential μ and the mag-
netic field h are given by

μ = gF Q

R2r0
, h = gF H

R4
, (21.4)

with r0 is the horizon radius determined by the largest positive root of the redshift
factor f (r0) = 0:

M = r3
0 + Q2 + H 2

r0
. (21.5)
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The boundary of the AdS is reached for r → ∞. The geometry described by (21.2)–
(21.3) describes the boundary theory at finite density, i.e., a system in a charged
medium at the chemical potential μ = μbh and in transverse magnetic field h = hbh,
with charge, energy, and entropy densities given, respectively, by

ρ = 2
Q

κ2R2gF

, ε = M

κ2R4
, s = 2π

κ2

r2
0

R2
. (21.6)

The temperature of the system is identified with the Hawking temperature of the
black hole, TH ∼ |f ′(r0)|/4π ,

T = 3r0

4πR2

(
1 − Q2 + H 2

3r4
0

)
. (21.7)

Since Q and H have dimensions of [L]2, it is convenient to parametrize them as

Q2 = 3r4∗ , Q2 + H 2 = 3r4∗∗. (21.8)

In terms of r0, r∗ and r∗∗ the above expressions become

f = 1 + 3r4∗∗
r4

− r3
0 + 3r4∗∗/r0

r3
, (21.9)

with

μ = √
3gF

r2∗
R2r0

, h = √
3gF

√
r4∗∗ − r4∗
R4

. (21.10)

The expressions for the charge, energy and entropy densities, as well as for the
temperature are simplified as

ρ = 2
√

3

κ2gF

r2∗
R2

, ε = 1

κ2

r3
0 + 3r4∗∗/r0

R4
, s = 2π

κ2

r2
0

R2
,

(21.11)

T = 3

4π

r0

R2

(
1 − r4∗∗

r4
0

)
.

In the zero temperature limit, i.e., for an extremal black hole, we have

T = 0 → r0 = r∗∗, (21.12)

which in the original variables reads Q2 + H 2 = 3r4
0 . In the zero temperature

limit (21.12), the redshift factor f as given by (21.9) develops a double zero at
the horizon:

f = 6
(r − r∗∗)2

r2∗∗
+ O

(
(r − r∗∗)3). (21.13)
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As a result, near the horizon the AdS4 metric reduces to AdS2 ×R2 with the curvature
radius of AdS2 given by

R2 = 1√
6
R. (21.14)

This is a very important property of the metric, which considerably simplifies the
calculations, in particular in the magnetic field.

In order to scale away the AdS4 radius R and the horizon radius r0, we introduce
dimensionless variables

r → r0r, r∗ → r0r∗, r∗∗ → r0r∗∗,
(21.15)

M → r3
0 M, Q → r2

0 Q, H → r2
0 H,

and

(t,x) → R2

r0
(t,x), AM → r0

R2
AM, ω → r0

R2
ω,

μ → r0

R2
μ, h → r2

0

R4
h, T → r0

R2
T , (21.16)

ds2 → R2ds2.

Note that the scaling factors in the above equation that describes the quantities of
the boundary field theory involve the curvature radius of AdS4, not AdS2.

In the new variables we have

T = 3

4π

(
1 − r4∗∗

) = 3

4π

(
1 − Q2 + H 2

3

)
, f = 1 + 3r4∗∗

r4
− 1 + 3r4∗∗

r3
,

(21.17)

At = μ

(
1 − 1

r

)
, μ = √

3gF r2∗ = gF Q, h = gF H,

and the metric is given by

ds2 = r2(−f dt2 + dx2 + dy2) + 1

r2

dr2

f
, (21.18)

with the horizon at r = 1, and the conformal boundary at r → ∞.
At T = 0, r∗∗ becomes unity, and the redshift factor develops the double zero

near the horizon,

f = (r − 1)2(r2 + 2r + 3)

r4
. (21.19)

As mentioned before, due to this fact the metric near the horizon reduces to
AdS2 × R2 where the analytical calculations are possible for small frequencies [8].
However, in the chiral limit m = 0, analytical calculations are also possible in the
bulk AdS4 [24], which we utilize in this paper.



562 E. Gubankova et al.

21.2.2 Holographic Fermions

To include the bulk fermions, we consider a spinor field ψ in the AdS4 of charge q

and mass m, which is dual to an operator O in the boundary CFT3 of charge q and
dimension

Δ = 3

2
+ mR, (21.20)

with mR ≥ − 1
2 and in dimensionless units corresponds to Δ = 3

2 + m. In the black
hole geometry, (21.2), the quadratic action for ψ reads as

Sψ = i

∫
d4x

√−g
(
ψ̄Γ MDMψ − mψ̄ψ

)
, (21.21)

where ψ̄ = ψ†Γ t , and

DM = ∂M + 1

4
ωabMΓ ab − iqAM, (21.22)

where ωabM is the spin connection, and Γ ab = 1
2 [Γ a,Γ b]. Here, M and a, b denote

the bulk space-time and tangent space indices respectively, while μ,ν are indices
along the boundary directions, i.e. M = (r,μ). Gamma matrix basis (Minkowski
signature) is given in [8].

We will be interested in spectra and response functions of the boundary fermions
in the presence of magnetic field. This requires solving the Dirac equation in the
bulk [6, 7]: (

Γ MDM − m
)
ψ = 0. (21.23)

From the solution of the Dirac equation at small ω, an analytic expression for the
retarded fermion Green’s function of the boundary CFT at zero magnetic field has
been obtained in [8]. Near the Fermi surface it reads as [8]:

GR(Ω,k) = (−h1vF )

ω − vF k⊥ − Σ(ω,T )
, (21.24)

where k⊥ = k − kF is the perpendicular distance from the Fermi surface in mo-
mentum space, h1 and vF are real constants calculated below, and the self-energy
Σ = Σ1 + iΣ2 is given by [8]

Σ(ω,T )/vF = T 2νg

(
ω

T

)
= (2πT )2νh2eiθ−iπν

Γ ( 1
2 + ν − iω

2πT
+ iμq

6 )

Γ ( 1
2 − ν − iω

2πT
+ iμq

6 )
, (21.25)

where ν is the zero temperature conformal dimension at the Fermi momentum,
ν ≡ νkF

, given by (21.58), μq ≡ μq , h2 is a positive constant and the phase θ is
such that the poles of the Green’s function are located in the lower half of the com-
plex frequency plane. These poles correspond to quasinormal modes of the Dirac
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equation (21.23) and they can be found numerically solving F(ω∗) = 0 [25, 26],
with

F(ω) = k⊥
Γ ( 1

2 + ν − iω
2πT

+ iμq

6 )
− h2eiθ−iπν(2πT )2ν

Γ ( 1
2 − ν − iω

2πT
+ iμq

6 )
, (21.26)

The solution gives the full motion of the quasinormal poles ω
(n)∗ (k⊥) in the complex

ω plane as a function of k⊥. It has been found in [8, 25, 26], that, if the charge of
the fermion is large enough compared to its mass, the pole closest to the real ω axis
bounces off the axis at k⊥ = 0 (and ω = 0). Such behavior is identified with the
existence of the Fermi momentum kF indicative of an underlying strongly coupled
Fermi surface.

At T = 0, the self-energy becomes T 2νg(ω/T ) → ckω
2ν , and the Green’s func-

tion obtained from the solution to the Dirac equation reads [8]

GR(Ω,k) = (−h1vF )

ω − vF k⊥ − h2vF eiθ−iπνω2ν
, (21.27)

where k⊥ = √
k2 − kF . The last term is determined by the IR AdS2 physics near the

horizon. Other terms are determined by the UV physics of the AdS4 bulk.
The solutions to (21.23) have been studied in detail in [6–8]. Here we simply

summarize the novel aspects due to the background magnetic field [27]

• The background magnetic field h introduces a discretization of the momentum:

k → keff = √
2|qh|l, with l ∈ N, (21.28)

with Landau level index l [13, 14, 25, 26]. These discrete values of k are the
analogue of the well-known Landau levels that occur in magnetic systems.

• There exists a (non-invertible) mapping on the level of Green’s functions, from
the magnetic system to the non-magnetic one by sending

(H,Q,q) �→
(

0,
√

Q2 + H 2, q

√
1 − H 2

Q2 + H 2

)
. (21.29)

The Green’s functions in a magnetic system are thus equivalent to those in the
absence of magnetic fields. To better appreciate that, we reformulate (21.29) in
terms of the boundary quantities:

(h,μq,T ) �→
(

0,μq,T

(
1 − h2

12μ2

))
, (21.30)

where we used dimensionless variables defined in (21.15), (21.17). The magnetic
field thus effectively decreases the coupling constant q and increases the chem-
ical potential μ = gF Q such that the combination μq ≡ μq is preserved [12].
This is an important point as the equations of motion actually only depend on this
combination and not on μ and q separately [12]. In other words, (21.30) implies
that the additional scale brought about by the magnetic field can be understood as



564 E. Gubankova et al.

changing μ and T independently in the effective non-magnetic system instead of
only tuning the ratio μ/T . This point is important when considering the thermo-
dynamics.

• The discrete momentum keff = √
2|qh|l must be held fixed in the transforma-

tion (21.29). The bulk-boundary relation is particularly simple in this case, as the
Landau levels can readily be seen in the bulk solution, only to remain identical in
the boundary theory.

• Similar to the non-magnetic system [12], the IR physics is controlled by the near
horizon AdS2 × R2 geometry, which indicates the existence of an IR CFT, char-
acterized by operators Ol , l ∈ N with operator dimensions δ = 1/2 + νl :

νl = 1

6

√
6

(
m2 + 2|qh|l

r2∗∗

)
− μ2

q

r4∗∗
, (21.31)

in dimensionless notation, and μq ≡ μq . At T = 0, when r∗∗ = 1, it becomes

νl = 1

6

√
6
(
m2 + 2|qh|l) − μ2

q . (21.32)

The Green’s function for these operators Ol is found to be G R
l (ω) ∼ ω2νl and the

exponents νl determines the dispersion properties of the quasiparticle excitations.
For ν > 1/2 the system has a stable quasiparticle and a linear dispersion, whereas
for ν ≤ 1/2 one has a non-Fermi liquid with power-law dispersion and an unstable
quasiparticle.

21.3 Magnetic Fields and Conformal Invariance

Despite the fact that a magnetic field introduces a scale, in the absence of a chem-
ical potential, all spectral functions are essentially still determined by conformal
symmetry. To show this, we need to establish certain properties of the near-horizon
geometry of a Reissner-Nordström black hole. This leads to the AdS2 perspective
that was developed in [8]. The result relies on the conformal algebra and its rela-
tion to the magnetic group, from the viewpoint of the infrared CFT that was studied
in [8]. Later on we will see that the insensitivity to the magnetic field also carries
over to AdS4 and the UV CFT in some respects. To simplify the derivations, we
consider the case T = 0.

21.3.1 The Near-Horizon Limit and Dirac Equation in AdS2

It was established in [8] that an electrically charged extremal AdS-Reissner-
Nordström black hole has an AdS2 throat in the inner bulk region. This conclusion
carries over to the magnetic case with some minor differences. We will now give a
quick derivation of the AdS2 formalism for a dyonic black hole, referring the reader
to [8] for more details (that remain largely unchanged in the magnetic field).
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Near the horizon r = r∗∗ of the black hole described by the metric (21.2), the
redshift factor f (r) develops a double zero:

f (r) = 6
(r − r∗∗)2

r2∗∗
+ O

(
(r − r∗∗)3). (21.33)

Now consider the scaling limit

r − r∗∗ = λ
R2

2

ζ
, t = λ−1τ, λ → 0 with τ, ζ finite. (21.34)

In this limit, the metric (21.2) and the gauge field reduce to

ds2 = R2
2

ζ 2

(−dτ 2 + dζ 2) + r2∗∗
R2

(
dx2 + dy2),

(21.35)

Aτ = μR2
2r0

r2∗∗
1

ζ
, Ax = Hx

where R2 = R√
6

. The geometry described by this metric is indeed AdS2 × R2. Phys-
ically, the scaling limit given in (21.34) with finite τ corresponds to the long time
limit of the original time coordinate t , which translates to the low frequency limit of
the boundary theory:

ω

μ
→ 0, (21.36)

where ω is the frequency conjugate to t . (One can think of λ as being the fre-
quency ω.) Near the AdS4 horizon, we expect the AdS2 region of an extremal dyonic
black hole to have a CFT1 dual. We refer to [8] for an account of this AdS2/CFT1
duality. The horizon of AdS2 region is at ζ → ∞ (coefficient in front of dτ van-
ishes at the horizon in (21.35)) and the infrared CFT (IR CFT) lives at the AdS2
boundary at ζ = 0. The scaling picture given by (21.34)–(21.35) suggests that in
the low frequency limit, the 2-dimensional boundary theory is described by this IR
CFT (which is a CFT1). The Green’s function for the operator O in the boundary
theory is obtained through a small frequency expansion and a matching procedure
between the two different regions (inner and outer) along the radial direction, and
can be expressed through the Green’s function of the IR CFT [8].

The explicit form for the Dirac equation in the magnetic field is of little interest
for the analytical results that follow. It can be found in [27]. Of primary interest is
its limit in the IR region with metric given by (21.35):

(
− 1√

gζζ

σ 3∂ζ − m + 1√−gττ

σ 1
(

ω + μqR2
2r0

r2∗∗ζ

)
− 1√

gii iσ 2λl

)
F (l) = 0,

(21.37)

where the effective momentum of the lth Landau level is λl = √
2|qh|l, μq ≡ μq

and we omit the index of the spinor field. To obtain (21.37), it is convenient to
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pick the gamma matrix basis as Γ ζ̂ = −σ3, Γ τ̂ = iσ1 and Γ î = −σ2. We can write
explicitly:

⎛
⎝

ζ
R2

∂ζ + m − ζ
R2

(ω + μqR2
2r0

r2∗∗ζ
) + R

r∗∗ λl

ζ
R2

(ω + μqR2
2r0

r2∗∗ζ
) + R

r∗∗ λl
ζ
R2

∂ζ − m

⎞
⎠

(
y

z

)
= 0. (21.38)

Note that the AdS2 radius R2 enters for the (τ, ζ ) directions. At the AdS2 boundary,
ζ → 0, the Dirac equation to the leading order is given by

ζ∂ζ F
(l) = −UF(l), U = R2

⎛
⎝ m −μqR2r0

r2∗∗
+ R

r∗∗ λl

μqR2r0

r2∗∗
+ R

r∗∗ λl −m

⎞
⎠ . (21.39)

The solution to this equation is given by the scaling function F (l) = Ae+ζ−νl +
Be−ζ νl where e± are the real eigenvectors of U and the exponent is

νl = 1

6

√
6

(
m2 + R2

r2∗∗
2|qh|l

)
R2 − μ2

qR4r2
0

r4∗∗
. (21.40)

The conformal dimension of the operator O in the IR CFT is δl = 1
2 + νl . Compar-

ing (21.40) to the expression for the scaling exponent in [8], we conclude that the
scaling properties and the AdS2 construction are unmodified by the magnetic field,
except that the scaling exponents are now fixed by the Landau quantization. This
“quantization rule” was already exploited in [25, 26] to study de Haas-van Alphen
oscillations.

21.4 Spectral Functions

In this section we will explore some of the properties of the spectral function, in
both plane wave and Landau level basis. We first consider some characteristic cases
in the plane wave basis and make connection with the ARPES measurements.

21.4.1 Relating to the ARPES Measurements

In reality, ARPES measurements cannot be performed in magnetic fields so the
holographic approach, allowing a direct insight into the propagator structure and the
spectral function, is especially helpful. This follows from the observation that the
spectral functions as measured in ARPES are always expressed in the plane wave
basis of the photon, thus in a magnetic field, when the momentum is not a good
quantum number anymore, it becomes impossible to perform the photoemission
spectroscopy.

In order to compute the spectral function, we have to choose a particular
fermionic plane wave as a probe. Since the separation of variables is valid through-
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out the bulk, the basis transformation can be performed at every constant r-slice.
This means that only the x and y coordinates have to be taken into account (the
plane wave probe lives only at the CFT side of the duality). We take a plane wave
propagating in the +x direction with spin up along the r-axis. In its rest frame such
a particle can be described by

Ψprobe = eiωt−ipxx

(
ξ

ξ

)
, ξ =

(
1
0

)
. (21.41)

Near the boundary (at rb → ∞) we can rescale our solutions of the Dirac equation,
details can be found in [27]:

Fl =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
l (x̃)

ξ
(l)
+ (rb)ζ

(1)
l (x̃)

ζ
(2)
l (x̃)

−ξ
(l)
+ (rb)ζ

(2)
l (x̃)

⎞
⎟⎟⎟⎟⎠ , F̃l =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
l (x̃)

ξ
(l)
− (rb)ζ

(1)
l (x̃)

−ζ
(2)
l (x̃)

ξ
(l)
− (rb)ζ

(2)
l (x̃)

⎞
⎟⎟⎟⎟⎠ , (21.42)

with rescaled x̃ defined in [27]. This representation is useful since we calculate the
components ξ±(rb) related to the retarded Green’s function in our numerics (we
keep the notation of [8]).

Let Ol and Õl be the CFT operators dual to respectively Fl and F̃l , and c
†
k , ck

be the creation and annihilation operators for the plane wave state Ψprobe. Since the
states F and F̃ form a complete set in the bulk, we can write

c†
p(ω) =

∑
l

(
U∗

l , Ũ∗
l

)(
O†

l (ω)

Õ†
l (ω)

)
=

∑
l

(
U∗

l O†
l (ω) + Ũ∗

l Õ†
l (ω)

)
(21.43)

where the overlap coefficients Ul(ω) are given by the inner product between Ψprobe
and F :

Ul(px) =
∫

dxF
†
l iΓ 0Ψprobe = −

∫
dxe−ipxxξ+(rb)

(
ζ

(1)†
l (x̃) − ζ

(2)†
l (x̃)

)
,

(21.44)
with F̄ = F †iΓ 0, and similar expression for Ũl involving ξ−(rb). The constants
Ul can be calculated analytically using the numerical value of ξ±(rb), and by not-
ing that the Hermite functions are eigenfunctions of the Fourier transform. We are
interested in the retarded Green’s function, defined as

GR
Ol

(ω,p) = −i

∫
dxdteiωt−ip·xθ(t)GR

Ol
(t, x)

GR
Ol

(t, x) = 〈0|[Ol (t, x), Ōl (0,0)
]|0〉 (21.45)

GR =
(

GO 0
0 G̃O

)
,

where G̃O is the retarded Green’s function for the operator Õ .
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Fig. 21.1 Two examples of spectral functions in the plane wave basis for μ/T = 50 and h/T = 1.
The conformal dimension is Δ = 5/4 (left) and Δ = 3/2 (right). Frequency is in the units of effec-
tive temperature Teff. The plane wave momentum is chosen to be k = 1. Despite the convolution
of many Landau levels, the presence of the discrete levels is obvious

Exploiting the orthogonality of the spinors created by O and O† and us-
ing (21.43), the Green’s function in the plane wave basis can be written as

GR
cp

(ω,px) =
∑

l

tr

(
U

Ũ

)(
U∗, Ũ∗)GR

= (∣∣Ul(px)
∣∣2

GR
Ol

(ω, l) + ∣∣Ũl(px)
∣∣2

G̃R
Ol

(ω, l)
)
. (21.46)

In practice, we cannot perform the sum in (21.46) all the way to infinity, so we have
to introduce a cutoff Landau level lcut. In most cases we are able to make lcut large
enough that the behavior of the spectral function is clear.

Using the above formalism, we have produced spectral functions for two different
conformal dimensions and fixed chemical potential and magnetic field (Fig. 21.1).
Using the plane wave basis allows us to directly detect the Landau levels. The unit
used for plotting the spectra (here and later on in the paper) is the effective temper-
ature Teff [6]:

Teff = T

2

(
1 +

√
1 + 3μ2

(4πT )2

)
. (21.47)

This unit interpolates between μ at T/μ = 0 and T and is of or T/μ → ∞, and is
convenient for the reason that the relevant quantities (e.g., Fermi momentum) are of
order unity for any value of μ and h.

21.4.2 Magnetic Crossover and Disappearance
of the Quasiparticles

Theoretically, it is more convenient to consider the spectral functions in the Landau
level basis. For definiteness let us pick a fixed conformal dimension Δ = 5

4 which
corresponds to m = − 1

4 . In the limit of weak magnetic fields, h/T → 0, we should
reproduce the results that were found in [6].
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In Fig. 21.2(A) we indeed see that the spectral function, corresponding to a low
value of μ/T , behaves as expected for a nearly conformal system. The spectral
function is approximately symmetric about ω = 0, it vanishes for |ω| < k, up to a
small residual tail due to finite temperature, and for |ω| � k it scales as ω2m.

In Fig. 21.2(B), which corresponds to a high value of μ/T , we see the emergence
of a sharp quasiparticle peak. This peak becomes the sharpest when the Landau
level l corresponding to an effective momentum keff = √

2|qh|l coincides with the
Fermi momentum kF . The peaks also broaden out when keff moves away from kF .
A more complete view of the Landau quantization in the quasiparticle regime is
given in Fig. 21.3, where we plot the dispersion relation (ω–k map). Both the sharp
peaks and the Landau levels can be visually identified.

Collectively, the spectra in Fig. 21.2 show that conformality is only broken by
the chemical potential μ and not by the magnetic field. Naively, the magnetic field
introduces a new scale in the system. However, this scale is absent from the spectral
functions, visually validating the discussion in the previous section that the scale h

can be removed by a rescaling of the temperature and chemical potential.
One thus concludes that there is some value h′

c of the magnetic field, depending
on μ/T , such that the spectral function loses its quasiparticle peaks and displays
near-conformal behavior for h > h′

c. The nature of the transition and the underlying
mechanism depends on the parameters (μq,T ,Δ). One mechanism, obvious from
the rescaling in (21.29), is the reduction of the effective coupling q as h increases.
This will make the influence of the scalar potential A0 negligible and push the sys-
tem back toward conformality. Generically, the spectral function shows no sharp
change but is more indicative of a crossover.

A more interesting phenomenon is the disappearance of coherent quasiparticles
at high effective chemical potentials. For the special case m = 0, we can go beyond
numerics and study this transition analytically, combining the exact T = 0 solution
found in [24] and the mapping (21.30). In the next section, we will show that the
transition is controlled by the change in the dispersion of the quasiparticle and corre-
sponds to a sharp phase transition. Increasing the magnetic field leads to a decrease
in phenomenological control parameter νkF

. This can give rise to a transition to a
non-Fermi liquid when νkF

≤ 1/2, and finally to the conformal regime at h = h′
c

when νkF
= 0 and the Fermi surface vanishes.

21.4.3 Density of States

As argued at the beginning of this section, the spectral function can look quite dif-
ferent depending on the particular basis chosen. Though the spectral function is an
attractive quantity to consider due to connection with ARPES experiments, we will
also direct our attention to basis-independent and manifestly gauge invariant quan-
tities. One of them is the density of states (DOS), defined by

D(ω) =
∑

l

A(ω, l), (21.48)
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Fig. 21.2 Some typical examples of spectral functions A(ω,keff) vs. ω in the Landau basis,
keff = √

2|qh|n. The top four correspond to a conformal dimension Δ = 5
4 m = − 1

4 and the bot-

tom four to Δ = 3
2 (m = 0). In each plot we show different Landau levels, labelled by index n, as

a function of μ/T and h/T . The ratios take values (μ/T ,h/T ) = (1,1), (50,1), (1,50), (50,50)

from left to right. Conformal case can be identified when μ/T is small regardless of h/T (plots
in the left panel). Nearly conformal behavior is seen when both μ/T and h/T are large. This
confirms our analytic result that the behavior of the system is primarily governed by μ. Departure
from the conformality and sharp quasiparticle peaks are seen when μ/T is large and h/T is small
in 21.2(B) and 21.2(F). Multiple quasiparticle peaks arise whenever keff = kF . This suggests the
existence of a critical magnetic field, beyond which the quasiparticle description becomes invalid
and the system exhibits a conformal-like behavior. As before, the frequency ω is in units of Teff
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Fig. 21.3 Dispersion relation ω vs. keff for μ/T = 50, h/T = 1 and Δ = 5
4 (m = − 1

4 ). The
spectral function A(ω,keff) is displayed as a density plot. (A) On a large energy and momentum
scale, we clearly sees that the peaks disperse almost linearly (ω ≈ vF k), indicating that we are in
the stable quasiparticle regime. (B) A zoom-in near the location of the Fermi surface shows clear
Landau quantization

Fig. 21.4 Density of states D(ω) for m = − 1
4 and (A) μ/T = 50, h/T = 1, and (B) μ/T = 1,

h/T = 1. Sharp quasiparticle peaks from the splitting of the Fermi surface are clearly visible
in (A). The case (B) shows square-root level spacing characteristic of a (nearly) Lorentz invariant
spectrum such as that of graphene

where the usual integral over the momentum is replaced by a sum since only discrete
values of the momentum are allowed.

In Fig. 21.4, we plot the density of states for two systems. We clearly see the
Landau splitting of the Fermi surface. A peculiar feature of these plots is that the
DOS seems to grow for negative values of ω. This, however, is an artefact of our
calculation. Each individual spectrum in the sum (21.48) has a finite tail that scales
as ω2m for large ω, so each term has a finite contribution for large values of ω.
When the full sum is performed, this fact implies that limω→∞ D(ω) → ∞. The
relevant information on the density of states can be obtained by regularizing the
sum, which in practice is done by summing over a finite number of terms only, and
then considering the peaks that lie on top of the resulting finite-sized envelope. The
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physical point in Fig. 21.4(A) is the linear spacing of Landau levels, corresponding
to a non-relativistic system at finite density. This is to be contrasted with Fig. 21.4B
where the level spacing behaves as ∝ √

h, appropriate for a Lorentz invariant system
and realized in graphene [28].

21.5 Fermi Level Structure at Zero Temperature

In this section, we solve the Dirac equation in the magnetic field for the special
case m = 0 (Δ = 3

2 ). Although there are no additional symmetries in this case, it
is possible to get an analytic solution. Using this solution, we obtain Fermi level
parameters such as kF and vF and consider the process of filling the Landau levels
as the magnetic field is varied.

21.5.1 Dirac Equation with m = 0

In the case m = 0, it is convenient to solve the Dirac equation including the spin
connection (see details in [27]) rather than scaling it out:

(
−

√
gii√
grr

σ 1∂r −
√

gii√−gtt

σ 3(ω + qAt) +
√

gii√−gtt

σ 1 1

2
ωt̂r̂t

− σ 1 1

2
ωx̂r̂x − σ 1 1

2
ωŷr̂y − λl

)
⊗ 1

(
ψ1
ψ2

)
= 0, (21.49)

where λl = √
2|qh|l are the energies of the Landau levels l = 0,1, . . . , gii ≡ gxx =

gyy , At(r) is given by (21.3), and the gamma matrices are defined in [27]. In this
basis the two components ψ1 and ψ2 decouple. Therefore, in what follows we solve
for the first component only (we omit index 1). Substituting the spin connection, we
have [20]:

(
− r2√f

R2
σ 1∂r − 1√

f
σ 3(ω + qAt) − σ 1 r

√
f

2R2

(
3 + rf ′

2f

)
− λl

)
ψ = 0, (21.50)

with ψ = (y1, y2). It is convenient to change to the basis
(

ỹ1
ỹ2

)
=

(
1 −i

−i 1

)(
y1
y2

)
, (21.51)

which diagonalizes the system into a second order differential equation for each
component. We introduce the dimensionless variables as in (21.15)–(21.17), and
make a change of the dimensionless radial variable:

r = 1

1 − z
, (21.52)
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with the horizon now being at z = 0, and the conformal boundary at z = 1. Perform-
ing these transformations in (21.50), the second order differential equations for ỹ1
reads (

f ∂2
z +

(
3f

1 − z
+ f ′

)
∂z + 15f

4(1 − z)2
+ 3f ′

2(1 − z)
+ f ′′

4

+ 1

f

(
(ω + qμz) ± if ′

4

)2

− iqμ − λ2
l

)
ỹ1 = 0. (21.53)

The second component ỹ2 obeys the same equation with μ �→ −μ.
At T = 0,

f = 3z2(z − z0)(z − z̄0), z0 = 1

3
(4 + i

√
2). (21.54)

The solution of this fermion system at zero magnetic field and zero temperature
T = 0 has been found in [24]. To solve (21.53), we use the mapping to a zero
magnetic field system (21.29). The combination μq ≡ μq at non-zero h maps to
μq,eff ≡ μeffqeff at zero h as follows:

μq �→ q

√
1 − H 2

Q2 + H 2
· gF

√
Q2 + H 2 = √

3qgF

√
1 − H 2

3
= μq,eff (21.55)

where at T = 0 we used Q2 + H 2 = 3. We solve (21.53) for zero modes, i.e. ω = 0,
and at the Fermi surface λ = k, and implement (21.55).

Near the horizon (z = 0, f = 6z2), we have

6z2ỹ′′
1;2 + 12zỹ′

1;2 +
(

3

2
+ (μq,eff)

2

6
− k2

F

)
ỹ1;2 = 0, (21.56)

which gives the following behavior:

ỹ1;2 ∼ z− 1
2 ±νk , (21.57)

with the scaling exponent ν following from (21.32):

ν = 1

6

√
6k2 − (μq,eff)2, (21.58)

at the momentum k. Using Maple, we find the zero mode solution of (21.53) with a

regular behavior z− 1
2 +ν at the horizon [20, 24]:

ỹ
(0)
1 = N1(z − 1)

3
2 z− 1

2 +ν(z − z̄0)
− 1

2 −ν

(
z − z0

z − z̄0

) 1
4 (−1−√

2μq,eff/z0)

× 2F1

(
1

2
+ ν −

√
2

3
μq,eff, ν + i

μq,eff

6
,1 + 2ν,

2i
√

2z

3z0(z − z̄0)

)
, (21.59)
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Fig. 21.5 Density of the zero mode ψ0†ψ0 vs. the radial coordinate z (the horizon is at z = 0
and the boundary is at z = 1) for different values of the magnetic field h for the first (with the

largest root for kF ) Fermi surface. We set gF = 1 (h → H ) and q = 15√
3

(μq,eff → 15
√

1 − H 2

3 ).

From right to left the values of the magnetic field are H = {0,1.40,1.50,1.60,1.63,1.65,1.68}.
The amplitudes of the curves are normalized to unity. At weak magnetic fields, the wave function
is supported away from the horizon while at strong fields it is supported near the horizon

and

ỹ
(0)
2 = N2(z − 1)

3
2 z− 1

2 +ν(z − z̄0)
− 1

2 −ν

(
z − z0

z − z̄0

) 1
4 (−1+√

2μq,eff/z0)

× 2F1

(
1

2
+ ν +

√
2

3
μq,eff, ν − i

μq,eff

6
,1 + 2ν,

2i
√

2z

3z0(z − z̄0)

)
, (21.60)

where 2F1 is the hypergeometric function and N1, N2 are normalization factors.
Since normalization factors are constants, we find their relative weight by substitut-
ing solutions given in (21.59) back into the first order differential equations at z ∼ 0,

N1

N2
= −6iν + μq,eff√

6k

(
z0

z̄0

)μq,eff/
√

2z0

. (21.61)

The same relations are obtained when calculations are done for any z. The second

solution η̃
(0)
1;2, with behavior z− 1

2 −ν at the horizon, is obtained by replacing ν → −ν

in (21.59).
To get insight into the zero-mode solution (21.59), we plot the radial profile for

the density function ψ(0)†ψ(0) for different magnetic fields in Fig. 21.5. The mo-
mentum chosen is the Fermi momentum of the first Fermi surface (see the next
section). The curves are normalized to have the same maxima. Magnetic field is
increased from right to left. At small magnetic field, the zero modes are supported
away from the horizon, while at large magnetic field, the zero modes are supported
near the horizon. This means that at large magnetic field the influence of the black
hole to the Fermi level structure becomes more important.
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21.5.2 Magnetic Effects on the Fermi Momentum and Fermi
Velocity

In the presence of a magnetic field there is only a true pole in the Green’s function
whenever the Landau level crosses the Fermi energy [25, 26]

2l|qh| = k2
F . (21.62)

As shown in Fig. 21.2, whenever the equation (21.62) is satisfied the spectral func-
tion A(ω) has a (sharp) peak. This is not surprising since quasiparticles can be easily
excited from the Fermi surface. From (21.62), the spectral function A(ω) and the
density of states on the Fermi surface D(ω) are periodic in 1

h
with the period

Δ

(
1

h

)
= 2πq

AF

, (21.63)

where AF = πk2
F is the area of the Fermi surface [25, 26]. This is a manifestation

of the de Haas-van Alphen quantum oscillations. At T = 0, the electronic proper-
ties of metals depend on the density of states on the Fermi surface. Therefore, an
oscillatory behavior as a function of magnetic field should appear in any quantity
that depends on the density of states on the Fermi energy. Magnetic susceptibility
[25, 26] and magnetization together with the superconducting gap [29] have been
shown to exhibit quantum oscillations. Every Landau level contributes an oscillating
term and the period of the lth level oscillation is determined by the value of the mag-
netic field h that satisfies (21.62) for the given value of kF . Quantum oscillations
(and the quantum Hall effect which we consider later in the paper) are examples of
phenomena in which Landau level physics reveals the presence of the Fermi sur-
face. The superconducting gap found in the quark matter in magnetic fields [29] is
another evidence for the existence of the (highly degenerate) Fermi surface and the
corresponding Fermi momentum.

Generally, a Fermi surface controls the occupation of energy levels in the sys-
tem: the energy levels below the Fermi surface are filled and those above are empty
(or non-existent). Here, however, the association to the Fermi momentum can be
obscured by the fact that the fermions form highly degenerate Landau levels. Thus,
in two dimensions, in the presence of the magnetic field the corresponding effective
Fermi surface is given by a single point in the phase space, that is determined by nF ,
the Landau index of the highest occupied level, i.e., the highest Landau level below
the chemical potential.2 Increasing the magnetic field, Landau levels ‘move up’ in
the phase space leaving only the lower levels occupied, so that the effective Fermi
momentum scales roughly (excluding interactions) as a square root of the magnetic
field, kF ∼ √

nF ∼ kmax
F

√
1 − h/hmax. High magnetic fields drive the effective den-

sity of the charge carriers down, approaching the limit when the Fermi momentum
coincides with the lowest Landau level.

2We would like to thank Igor Shovkovy for clarifying the issue with the Fermi momentum in the
presence of the magnetic field.
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Many phenomena observed in the paper can thus be qualitatively explained by
Landau quantization. As discussed before, the notion of the Fermi momentum is lost
at very high magnetic fields. In what follows, the quantitative Fermi level structure
at zero temperature, described by kF and vF values, is obtained as a function of the
magnetic field using the solution of the Dirac equation given by (21.59), (21.60). As
in [12], we neglect first the discrete nature of the Fermi momentum and velocity in
order to obtain general understanding. Upon taking the quantization into account,
the smooth curves become combinations of step functions following the same trend
as the smooth curves (without quantization). While usually the grand canonical en-
semble is used, where the fixed chemical potential controls the occupation of the
Landau levels [30], in our setup, the Fermi momentum is allowed to change as the
magnetic field is varied, while we keep track of the IR conformal dimension ν.

The Fermi momentum is defined by the matching between IR and UV physics [8],
therefore it is enough to know the solution at ω = 0, where the matching is per-
formed. To obtain the Fermi momentum, we require that the zero mode solution

is regular at the horizon (ψ(0) ∼ z− 1
2 +ν ) and normalizable at the boundary. At the

boundary z ∼ 1, the wave function behaves as

a(1 − z)
3
2 −m

(
1
0

)
+ b(1 − z)

3
2 +m

(
0
1

)
. (21.64)

To require it to be normalizable is to set the first term a = 0; the wave function at
z ∼ 1 is then

ψ(0) ∼ (1 − z)
3
2 +m

(
0
1

)
. (21.65)

Equation (21.65) leads to the condition limz→1(z−1)−3/2(ỹ
(0)
2 + iỹ

(0)
1 ) = 0, which,

together with (21.59), gives the following equation for the Fermi momentum as
function of the magnetic field [20, 24]

2F1(1 + ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))

2F1(ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))

= 6ν − iμq,eff

kF (−2i + √
2)

,

(21.66)
with ν ≡ νkF

given by (21.58). Using Mathematica to evaluate the hypergeometric
functions, we numerically solve the equation for the Fermi surface, which gives
effective momentum as if it were continuous, i.e. when quantization is neglected.
The solutions of (21.66) are given in Fig. 21.6. There are multiple Fermi surfaces
for a given magnetic field h. Here and in all other plots we choose gF = 1, therefore
h → H , and q = 15√

3
. In Fig. 21.6, positive and negative kF correspond to the Fermi

surfaces in the Green’s functions G1 and G2. The relation between two components
is G2(ω, k) = G1(ω,−k) [7], therefore Fig. 21.6 is not symmetric with respect
to the x-axis. Effective momenta terminate at the dashed line νkF

= 0. Taking into
account Landau quantization of kF → √

2|qh|l with l = 1,2 . . . , the plot consists of
stepwise functions tracing the existing curves (we depict only positive kF ). Indeed
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Fig. 21.6 Effective momentum keff vs. the magnetic field h → H (we set gF = 1, q = 15√
3

). As

we increase magnetic field the Fermi surface shrinks. Smooth solid curves represent situation as
if momentum is a continuous parameter (for convenience), stepwise solid functions are the real
Fermi momenta which are discretized due to the Landau level quantization: kF → √

2|qh|l with
l = 1,2, . . . where

√
2|qh|l are Landau levels given by dotted lines (only positive discrete kF are

shown). At a given h there are multiple Fermi surfaces. From right to left are the first, second etc.
Fermi surfaces. The dashed-dotted line is νkF

= 0 where kF is terminated. Positive and negative
keff correspond to Fermi surfaces in two components of the Green’s function

Fig. 21.7 Landau level
numbers n corresponding to
the quantized Fermi momenta
vs. the magnetic field h → H

for the three Fermi surfaces
with positive kF . We set
gF = 1, q = 15√

3
. From right

to left are the first, second and
third Fermi surfaces

Landau quantization can be also seen from the dispersion relation at Fig. 21.3, where
only discrete values of effective momentum are allowed and the Fermi surface has
been chopped up as a result of it Fig. 21.3(B).

Our findings agree with the results for the (largest) Fermi momentum in a three-
dimensional magnetic system considered in [31], compare the stepwise dependence
kF (h) with Fig. 21.5 in [31].

In Fig. 21.7, the Landau level index l is obtained from kF (h) = √
2|qh|l where

kF (h) is a numerical solution of (21.66). Only those Landau levels which are below
the Fermi surface are filled. In Fig. 21.6, as we decrease magnetic field first nothing
happens until the next Landau level crosses the Fermi surface which corresponds to a
jump up to the next step. Therefore, at strong magnetic fields, fewer states contribute
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Fig. 21.8 Left panel. The IR conformal dimension ν ≡ νkF
calculated at the Fermi momentum vs.

the magnetic field h → H (we set gF =1, q = 15√
3

). Calculations are done for the first Fermi surface.

Dashed line is for ν = 1
2 (at Hc = 1.70), which is the border between the Fermi liquids ν > 1

2 and
non-Fermi liquids ν < 1

2 . Right panel. Phase diagram in terms of the chemical potential and the
magnetic field μ2 + h2 = 3 (in dimensionless variables h = gF H , μ = gF Q; we set gF = 1).
Fermi liquids are above the dashed line (H < Hc) and non-Fermi liquids are below the dashed line
(H > Hc)

to transport properties and the lowest Landau level becomes more important (see the
next section). At weak magnetic fields, the sum over many Landau levels has to be
taken, ending with the continuous limit as h → 0, when quantization can be ignored.

In Fig. 21.8, we show the IR conformal dimension as a function of the magnetic
field. We have used the numerical solution for kF . Fermi liquid regime takes place
at magnetic fields h < hc , while non-Fermi liquids exist in a narrow band at hc <

h < h′
c , and at h′

c the system becomes near-conformal.
In this figure we observe the pathway of the possible phase transition exhibited by

the Fermi surface (ignoring Landau quantization): it can vanish at the line νkF
= 0,

undergoing a crossover to the conformal regime, or cross the line νkF
= 1/2 and go

through a non-Fermi liquid regime, and subsequently cross to the conformal phase.
Note that the primary Fermi surface with the highest kF and νkF

seems to directly
cross over to conformality, while the other Fermi surfaces first exhibit a “strange
metal” phase transition. Therefore, all the Fermi momenta with νkF

> 0 contribute
to the transport coefficients of the theory. In particular, at high magnetic fields when
for the first (largest) Fermi surface k

(1)
F is nonzero but small, the lowest Landau

level n = 0 becomes increasingly important contributing to the transport with half
degeneracy factor as compared to the higher Landau levels.

In Fig. 21.9, we plot the Fermi momentum kF as a function of the magnetic field
for the first Fermi surface (the largest root of (21.66)). Quantization is neglected
here. At the left panel, the relatively small region between the dashed lines corre-
sponds to non-Fermi liquids 0 < ν < 1

2 . At large magnetic field, the physics of the
Fermi surface is captured by the near horizon region (see also Fig. 21.5) which is
AdS2 × R2. At the maximum magnetic field, Hmax = √

3 ≈ 1.73, when the black
hole becomes pure magnetically charged, the Fermi momentum vanishes when it
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Fig. 21.9 Fermi momentum kF vs. the magnetic field h → H (we set gF = 1, q = 15√
3

) for the first

Fermi surface. Left panel. The inner (closer to x-axis) dashed line is νkF
= 0 and the outer dashed

line is νkF
= 1

2 , the region between these lines corresponds to non-Fermi liquids 0 < νkF
< 1

2 .
The dashed-dotted line is for the first Landau level k1 = √

2qH . The first Fermi surface hits
the border-line between a Fermi and non-Fermi liquids ν = 1

2 at Hc ≈ 1.70, and it vanishes at

Hmax = √
3 = 1.73. Right panel. Circles are the data points for the Fermi momentum calculated

analytically, solid line is a fit function kmax
F

√
1 − H 2

3 with kmax
F = 12.96

crosses the line νkF
= 0. This only happens for the first Fermi surface. For the higher

Fermi surfaces the Fermi momenta terminate at the line νkF
= 0, Fig. 21.6. Note the

Fermi momentum for the first Fermi surface can be almost fully described by a func-

tion kF = kmax
F

√
1 − H 2

3 . It is tempting to view the behavior kF ∼ √
Hmax − H as

a phase transition in the system although it strictly follows from the linear scaling
for H = 0 by using the mapping (21.29). (Note that also μ = gF Q = gF

√
3 − H 2.)

Taking into account the discretization of kF , the plot will consist of an array of
step functions tracing the existing curve. Our findings agree with the results for
the Fermi momentum in a three dimensional magnetic system considered in [31],
compare with Fig. 21.5 there.

The Fermi velocity given in (21.27) is defined by the UV physics; therefore so-
lutions at non-zero ω are required. The Fermi velocity is extracted from matching
two solutions in the inner and outer regions at the horizon. The Fermi velocity as
function of the magnetic field for ν > 1

2 is [20, 24]

vF = 1

h1

(∫ 1

0
dz

√
g/gttψ

(0)†ψ(0)

)−1

lim
z→1

|ỹ(0)
1 + iỹ

(0)
2 |2

(1 − z)3
,

(21.67)

h1 = lim
z→1

ỹ
(0)
1 + iỹ

(0)
2

∂k(
˜

y
(0)
2 + iỹ

(0)
1 )

,

where the zero mode wavefunction is taken at kF (21.59).
We plot the Fermi velocity for several Fermi surfaces in Fig. 21.10. Quantization

is neglected here. The Fermi velocity is shown for ν > 1
2 . It is interesting that the

Fermi velocity vanishes when the IR conformal dimension is νkF
= 1

2 . Formally,
it follows from the fact that vF ∼ (2ν − 1) [8]. The first Fermi surface is at the
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Fig. 21.10 Fermi velocity vF vs. the magnetic field h → H (we set gF = 1, q = 15√
3

) for the

regime of Fermi liquids ν ≥ 1
2 . Fermi velocity vanishes at νkF

= 1
2 (x-axis). For the first Fermi

surface, the top curve, Fermi velocity vanishes at Hc ≈ 1.70. The region H < Hc corresponds to
the Fermi liquids and quasiparticle description. The multiple lines are for various Fermi surfaces
in ascending order, with the first Fermi surface on the right. The Fermi velocity vF has the same
sign as the Fermi momentum kF . As above, positive and negative vF correspond to Fermi surfaces
in the two components of the Green’s function

far right. Positive and negative vF correspond to the Fermi surfaces in the Green’s
functions G1 and G2, respectively. The Fermi velocity vF has the same sign as the
Fermi momentum kF . At small magnetic field values, the Fermi velocity is very
weakly dependent on H and it is close to the speed of light; at large magnetic field
values, the Fermi velocity rapidly decreases and vanishes (at Hc = 1.70 for the
first Fermi surface). Geometrically, this means that with increasing magnetic field
the zero mode wavefunction is supported near the black hole horizon Fig. 21.5,
where the gravitational redshift reduces the local speed of light as compared to the
boundary value. It was also observed in [8, 24] at small fermion charge values.

21.6 Hall and Longitudinal Conductivities

In this section, we calculate the contributions to Hall σxy and the longitudinal σxx

conductivities directly in the boundary theory. This should be contrasted with the
standard holographic approach, where calculations are performed in the (bulk) grav-
ity theory and then translated to the boundary field theory using the AdS/CFT dic-
tionary. Specifically, the conductivity tensor has been obtained in [11] by calculating
the on-shell renormalized action for the gauge field on the gravity side and using the
gauge/gravity duality AM → jμ to extract the R charge current-current correlator
at the boundary. Here, the Kubo formula involving the current-current correlator is
used directly by utilizing the fermion Green’s functions extracted from holography
in [8]. Therefore, the conductivity is obtained for the charge carriers described by
the fermionic operators of the boundary field theory.
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The use of the conventional Kubo formula to extract the contribution to the trans-
port due to fermions is validated in that it also follows from a direct AdS/CFT com-
putation of the one-loop correction to the on-shell renormalized AdS action [17].
We study in particular stable quasiparticles with ν > 1

2 and at zero temperature.
This regime effectively reduces to the clean limit where the imaginary part of the
self-energy vanishes ImΣ → 0. We use the gravity-“dressed” fermion propagator
from (21.27) and to make the calculations complete, the “dressed” vertex is nec-
essary, to satisfy the Ward identities. As was argued in [17], the boundary vertex
which is obtained from the bulk calculations can be approximated by a constant in
the low temperature limit. Also, according to [32, 33], the vertex only contains sin-
gularities of the product of the Green’s functions. Therefore, dressing the vertex will
not change the dependence of the DC conductivity on the magnetic field [32, 33].
In addition, the zero magnetic field limit of the formulae for conductivity obtained
from holography [17] and from direct boundary calculations [20] are identical.

21.6.1 Integer Quantum Hall Effect

Let us start from the “dressed” retarded and advanced fermion propagators [8]:
GR is given by (21.27) and GA = G∗

R . To perform the Matsubara summation we
use the spectral representation

G(iωn,k) =
∫

dω

2π

A(ω,k)

ω − iωn

, (21.68)

with the spectral function defined as A(ω,k) = − 1
π

ImGR(ω,k) = 1
2πi

(GR(ω,k)−
GA(ω,k)). Generalizing to a non-zero magnetic field and spinor case [30], the spec-
tral function [34] is

A(ω,k) = 1

π
e− k2

|qh|
∞∑
l=0

(−1)l(−h1vF )

×
(

Σ2(ω, kF )f (k)γ 0

(ω + εF + Σ1(ω, kF ) − El)2 + Σ2(ω, kF )2
+ (El → −El)

)
,

(21.69)

where εF = vF kF is the Fermi energy, El = vF

√
2|qh|l is the energy of the Lan-

dau level, f (k) = P−Ll(
2k2

|qh| ) − P+Ll−1(
2k2

|qh| ) with spin projection operators P± =
(1 ± iγ 1γ 2)/2, we take c = 1, the generalized Laguerre polynomials are Lα

n(z) and
by definition Ln(z) = L0

n(z), (we omit the vector part kγ , it does not contribute
to the DC conductivity), all γ ’s are the standard Dirac matrices, h1, vF and kF

are real constants (we keep the same notations for the constants as in [8]). The
self-energy Σ ∼ ω2νkF contains the real and imaginary parts, Σ = Σ1 + iΣ2. The
imaginary part comes from scattering processes of a fermion in the bulk, e.g. from
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pair creation, and from the scattering into the black hole. It is exactly due to in-
elastic/dissipative processes that we are able to obtain finite values for the transport
coefficients, otherwise they are formally infinite.

Using the Kubo formula, the DC electrical conductivity tensor is

σij (Ω) = lim
Ω→0

ImΠR
ij

Ω + i0+ , (21.70)

where Πij (iΩm → Ω + i0+) is the retarded current-current correlation function;
schematically the current density operator is j i(τ,x)=qvF

∑
σ ψ̄σ (τ,x)γ iψσ (τ,x).

Neglecting the vertex correction, it is given by

Πij (iΩm) = q2v2
F T

∞∑
n=−∞

∫
d2k

(2π)2
tr
(
γ iG(iωn,k)γ jG(iωn + iΩm,k)

)
. (21.71)

The sum over the Matsubara frequency is

T
∑
n

1

iωn − ω1

1

iωn + iΩm − ω2
= n(ω1) − n(ω2)

iΩm + ω1 − ω2
. (21.72)

Taking iΩm → Ω + i0+, the polarization operator is now

Πij (Ω) = dω1

2π

dω2

2π

nFD(ω1) − nFD(ω2)

Ω + ω1 − ω2

∫
d2k

(2π)2
tr
(
γ iA(ω1,k)γ jA(ω2,k)

)
,

(21.73)

where the spectral function A(ω,k) is given by (21.69) and nFD(ω) is the Fermi-
Dirac distribution function. Evaluating the traces, we have

σij = −4q2v2
F (h1vF )2|qh|

πΩ

× Re
∞∑

l,k=0

(−1)l+k+1{δij (δl,k−1 + δl−1,k) + iεij sgn(qh)(δl,k−1 − δl−1,k)
}

×
∫

dω1

2π

(
tanh

ω1

2T
− tanh

ω2

2T

)(
Σ2(ω1)

(ω̃1 − El)2 + Σ2
2 (ω1)

+ (El → −El)

)

×
(

Σ2(ω2)

(ω̃2 − Ek)2 + Σ2
2 (ω2)

+ (Ek → −Ek)

)
, (21.74)

with ω2 = ω1 + Ω . We have also introduced ω̃1;2 ≡ ω1;2 + εF + Σ1(ω1;2) with εij

being the antisymmetric tensor (ε12 = 1), and Σ1;2(ω) ≡ Σ1;2(ω, kF ). In the mo-
mentum integral, we use the orthogonality condition for the Laguerre polynomials∫ ∞

0 dxexLl(x)Lk(x) = δlk .
From (21.74), the term symmetric/antisymmetric with respect to exchange ω1 ↔

ω2 contributes to the diagonal/off-diagonal component of the conductivity (note the
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antisymmetric term nFD(ω1) − nFD(ω2)). The longitudinal and Hall DC conductiv-
ities (Ω → 0) are thus

σxx = −2q2(h1vF )2|qh|
πT

∫ ∞

−∞
dω

2π

Σ2
2 (ω)

cosh2 ω
2T

×
∞∑
l=0

(
1

(ω̃ − El)2 + Σ2
2 (ω)

+ (El → −El)

)

×
(

1

(ω̃ − El+1)2 + Σ2
2 (ω)

+ (El+1 → −El+1)

)
, (21.75)

σxy = −q2(h1vF )2 sgn(qh)

π
νh,

(21.76)

νh = 2
∫ ∞

−∞
dω

2π
tanh

ω

2T
Σ2(ω)

∞∑
l=0

αl

(
1

(ω̃ − El)2 + Σ2
2 (ω)

+ (El → −El)

)
,

where ω̃ = ω + εF + Σ1(ω). The filling factor νh is proportional to the density
of carriers: |νh| = π

|qh|h1vF
n (see derivation in [27]). The degeneracy factor of the

Landau levels is αl : α0 = 1 for the lowest Landau level and αl = 2 for l = 1,2 . . . .
Substituting the filling factor νh back to (21.76), the Hall conductivity can be writ-
ten as

σxy = ρ

h
, (21.77)

where ρ is the charge density in the boundary theory, and both the charge q and the
magnetic field h carry a sign (the prefactor (−h1vF ) comes from the normalization
choice in the fermion propagator (21.27), (21.69) as given in [8], which can be
regarded as a factor contributing to the effective charge and is not important for
further considerations). The Hall conductivity (21.77) has been obtained using the
AdS/CFT duality for the Lorentz invariant 2+1-dimensional boundary field theories
in [11]. We recover this formula because in our case the translational invariance is
maintained in the x and y directions of the boundary theory.

Low frequencies give the main contribution in the integrand of (21.76). Since
the self-energy satisfies Σ1(ω) ∼ Σ2(ω) ∼ ω2ν and we consider the regime ν > 1

2 ,
we have Σ1 ∼ Σ2 → 0 at ω ∼ 0 (self-energy goes to zero faster than the ω term).
Therefore, only the simple poles in the upper half-plane ω0 = −εF ±El +Σ1 + iΣ2

contribute to the conductivity where Σ1 ∼ Σ2 ∼ (−εF ± El)
2ν are small. The same

logic of calculation has been used in [30]. We obtain for the longitudinal and Hall
conductivities

σxx = 2q2(h1vF )2Σ2

πT
×

(
1

1 + cosh εF

T

+
∞∑
l=1

4l
1 + cosh εF

T
cosh El

T

(cosh εF

T
+ cosh El

T
)2

)
, (21.78)
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σxy = q2(h1vF )2sgn(qh)

π
× 2

(
tanh

εF

2T
+

∞∑
l=1

(
tanh

εF + El

2T
+ tanh

εF − El

2T

))
,

(21.79)

where the Fermi energy is εF = vF kF and the energy of the Landau level is El =
vF

√
2|qh|l. Similar expressions were obtained in [30]. However, in our case the

filling of the Landau levels is controlled by the magnetic field h through the field-
dependent Fermi energy vF (h)kF (h) instead of the chemical potential μ.

At T = 0, cosh ω
T

→ 1
2 e

ω
T and tanh ω

2T
= 1 − 2nFD(ω) → sgnω. Therefore the

longitudinal and Hall conductivities are

σxx = 2q2(h1vF )2Σ2

πT

∞∑
l=1

lδεF ,El
= 2q2(h1vF )2Σ2

πT
× nδεF ,En, (21.80)

σxy = q2(h1vF )2sgn(qh)

π
2

(
1 + 2

∞∑
l=1

θ(εF − El)

)

= q2(h1vF )2sgn(qh)

π
× 2(1 + 2n)θ(εF − En)θ(En+1 − εF ), (21.81)

where the Landau level index runs n = 0,1, . . . . It can be estimated as n = [ k2
F

2|qh| ]
when vF �= 0 ([ ] denotes the integer part), with the average spacing between the
Landau levels given by the Landau energy vF

√
2|qh|. Note that εF ≡ εF (h). We

can see that (21.81) expresses the integer quantum Hall effect (IQHE). At zero
temperature, as we dial the magnetic field, the Hall conductivity jumps from one
quantized level to another, forming plateaus given by the filling factor

νh = ±2(1 + 2n) = ±4

(
n + 1

2

)
, (21.82)

with n = 0,1, . . . . (Compare to the conventional Hall quantization νh = ±4n, that
appears in thick graphene.) Plateaus of the Hall conductivity at T = 0 follow from
the stepwise behavior of the charge density ρ in (21.77):

ρ ∼ 4

(
n + 1

2

)
θ(εF − En)θ(En+1 − εF ), (21.83)

where n Landau levels are filled and contribute to ρ. The longitudinal conductivity
vanishes except precisely at the transition point between the plateaus. In Fig. 21.11,
we plot the longitudinal and Hall conductivities at T = 0, using only the terms after
× sign in (21.79). In the Hall conductivity, plateau transition occurs when the Fermi
level (in Fig. 21.11) of the first Fermi surface εF = vF (h)kF (h) (Fig. 21.9) crosses
the Landau level energy as we vary the magnetic field. By decreasing the magnetic
field, the plateaus become shorter and increasingly more Landau levels contribute to
the Hall conductivity. This happens because of two factors: the Fermi level moves
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Fig. 21.11 Hall conductivity σxy and longitudinal conductivity σxx vs. the magnetic field h → H

at T = 0 (we set gF = 1, q = 15√
3

). Left panel is for IQHE. Right panel is for FQHE. At strong

magnetic fields, the Hall conductivity plateau νh = 4 appears together with plateaus νh = 2 and
νh = 6 in FQHE (details are in [27]). Irregular pattern in the length of the plateaus for FQHE is
observed in experiments on thin films of graphite at strong magnetic fields [28]

up and the spacing between the Landau levels becomes smaller. This picture does
not depend on the Fermi velocity as long as it is nonzero.

21.6.2 Fractional Quantum Hall Effect

In [27], using the holographic description of fermions, we obtained the filling factor
at strong magnetic fields

νh = ±2j, (21.84)

where j is the effective Landau level index. Equation (21.84) expresses the frac-
tional quantum Hall effect (FQHE). In the quasiparticle picture, the effective index
is integer j = 0,1,2, . . . , but generally it may be fractional. In particular, the fill-
ing factors ν = 2/m where m = 1,2,3, . . . have been proposed by Halperin [35]
for the case of bound electron pairs, i.e. 2e-charge bosons. Indeed, QED becomes
effectively confining in ultraquantum limit at strong magnetic field, and the electron
pairing is driven by the Landau level quantization and gives rise to 2e bosons. In
our holographic description, quasiparticles are valid degrees of freedom only for
ν > 1/2, i.e. for weak magnetic field. At strong magnetic field, poles of the fermion
propagator should be taken into account in calculation of conductivity. This will
probably result in a fractional filling factor. Our pattern for FQHE Fig. 21.11 resem-
bles the one obtained by Kopelevich in Fig. 3 [36] which has been explained using
the fractional filling factor of Halperin [35].

The somewhat regular pattern behind the irregular behavior can be understood
as a consequence of the appearance of a new energy scale: the average distance
between the Fermi levels. For the case of Fig. 21.11, we estimate it to be 〈ε(m)

F −
ε
(m+1)
F 〉 = 4.9 with m = 1,2. The authors of [30] explain the FQHE through the
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opening of a gap in the quasiparticle spectrum, which acts as an order parameter
related to the particle-hole pairing and is enhanced by the magnetic field (magnetic
catalysis). Here, the energy gap arises due to the participation of multiple Fermi
surfaces.

A pattern for the Hall conductivity that is strikingly similar to Fig. 21.11 arises in
the AA and AB-stacked bilayer graphene, which has different transport properties
from the monolayer graphene [37], compare with Figs. 2, 5 there. It is remarkable
that the bilayer graphene also exhibits the insulating behavior in a certain parameter
regime. This agrees with our findings of metal-insulating transition in our system.

21.7 Conclusions

We have studied strongly coupled electron systems in the magnetic field focussing
on the Fermi level structure, using the AdS/CFT correspondence. These systems are
dual to Dirac fermions placed in the background of the electrically and magnetically
charged AdS-Reissner-Nordström black hole. At strong magnetic fields the dual
system “lives” near the black hole horizon, which substantially modifies the Fermi
level structure. As we dial the magnetic field higher, the system exhibits the non-
Fermi liquid behavior and then crosses back to the conformal regime. In our analysis
we have concentrated on the Fermi liquid regime and obtained the dependence of
the Fermi momentum kF and Fermi velocity vF on the magnetic field. Remarkably,
kF exhibits the square root behavior, with vF staying close to the speed of light in
a wide range of magnetic fields, while it rapidly vanishes at a critical magnetic field
which is relatively high. Such behavior indicates that the system may have a phase
transition.

The magnetic system can be rescaled to a zero-field configuration which is ther-
modynamically equivalent to the original one. This simple result can actually be
seen already at the level of field theory: the additional scale brought about by the
magnetic field does not show up in thermodynamic quantities meaning, in particu-
lar, that the behavior in the vicinity of quantum critical points is expected to remain
largely uninfluenced by the magnetic field, retaining its conformal invariance. In the
light of current condensed matter knowledge, this is surprising and might in fact be
a good opportunity to test the applicability of the probe limit in the real world: if
this behavior is not seen, this suggests that one has to include the backreaction to
metric to arrive at a realistic description.

In the field theory frame, we have calculated the DC conductivity using kF and
vF values extracted from holography. The holographic calculation of conductivity
that takes into account the fermions corresponds to the corrections of subleading
order in 1/N in the field theory and is very involved [17]. As we are not interested
in the vertex renormalization due to gravity (it does not change the magnetic field
dependence of the conductivity), we have performed our calculations directly in the
field theory with AdS gravity-dressed fermion propagators. Instead of controlling
the occupancy of the Landau levels by changing the chemical potential (as is usual
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in non-holographic setups), we have controlled the filling of the Landau levels by
varying the Fermi energy level through the magnetic field. At zero temperature, we
have reproduced the integer QHE of the Hall conductivity, which is observed in
graphene at moderate magnetic fields. While the findings on equilibrium physics
(Landau quantization, magnetic phase transitions and crossovers) are within expec-
tations and indeed corroborate the meaningfulness of the AdS/CFT approach as
compared to the well-known facts, the detection of the QHE is somewhat surpris-
ing as the spatial boundary effects are ignored in our setup. We plan to address this
question in further work.

Interestingly, at large magnetic fields we obtain the correct formula for the fill-
ing factor characteristic for FQHE. Moreover our pattern for FQHE resembles the
one obtained in [36] which has been explained using the fractional filling factor of
Halperin [35]. In the quasiparticle picture, which we have used to calculate Hall
conductivity, the filling factor is integer. In our holographic description, quasiparti-
cles are valid degrees of freedom only at weak magnetic field. At strong magnetic
field, the system exhibits non-Fermi liquid behavior. In this case, the poles of the
fermion propagator should be taken into account to calculate the Hall conductivity.
This can probably result in a fractional filling factor. We leave it for future work.

Notably, the AdS-Reissner-Nordström black hole background gives a vanishing
Fermi velocity at high magnetic fields. It happens at the point when the IR confor-
mal dimension of the corresponding field theory is ν = 1

2 , which is the borderline
between the Fermi and non-Fermi liquids. Vanishing Fermi velocity was also ob-
served at high enough fermion charge [24]. As in [24], it is explained by the red shift
on the gravity side, because at strong magnetic fields the fermion wavefunction is
supported near the black hole horizon modifying substantially the Fermi velocity. In
our model, vanishing Fermi velocity leads to zero occupancy of the Landau levels
by stable quasiparticles that results in vanishing regular Fermi liquid contribution
to the Hall conductivity and the longitudinal conductivity. The dominant contribu-
tion to both now comes from the non-Fermi liquid and conformal contributions.
We associate such change in the behavior of conductivities with a metal-“strange
metal” phase transition. Experiments on highly oriented pyrolitic graphite support
the existence of a finite “offset” magnetic field hc at T = 0 where the resistivity
qualitatively changes its behavior [38–41]. At T �= 0, it has been associated with the
metal-semiconducting phase transition [38–41]. It is worthwhile to study the tem-
perature dependence of the conductivity in order to understand this phase transition
better.
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6. M. Čubrović, J. Zaanen, K. Schalm, String theory, quantum phase transitions and the emergent
Fermi-liquid. Science 325, 439 (2009). arXiv:0904.1993 [hep-th]

7. H. Liu, J. McGreevy, D. Vegh, Non-Fermi liquids from holography. Phys. Rev. D 83, 065029
(2011). arXiv:0903.2477 [hep-th]

8. T. Faulkner, H. Liu, J. McGreevy, D. Vegh, Emergent quantum criticality, Fermi surfaces, and
AdS2. Phys. Rev. D 83, 125002 (2011). arXiv:0907.2694 [hep-th]

9. S.A. Hartnoll, A. Tavanfar, Electron stars for holographic metallic criticality. Phys. Rev. D 83,
046003 (2011). arXiv:1008.2828 [hep-th]

10. S.A. Hartnoll, P.K. Kovtun, M. Mueller, S. Sachdev, Theory of the Nernst effect near quantum
phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502
(2007). arXiv:0706.3215 [hep-th]

11. S.A. Hartnoll, P. Kovtun, Hall conductivity from dyonic black holes. Phys. Rev. D 76, 066001
(2007). arXiv:0704.1160 [hep-th]

12. P. Basu, J.Y. He, A. Mukherjee, H.-H. Shieh, Holographic non-Fermi liquid in a background
magnetic field. arxiv:0908.1436 [hep-th]

13. T. Albash, C.V. Johnson, Landau levels, magnetic fields and holographic Fermi liquids.
J. Phys. A, Math. Theor. 43, 345404 (2010). arXiv:1001.3700 [hep-th]

14. T. Albash, C.V. Johnson, Holographic aspects of Fermi liquids in a background magnetic field.
J. Phys. A, Math. Theor. 43, 345405 (2010). arXiv:0907.5406 [hep-th]

15. T. Albash, C.V. Johnson, A holographic superconductor in an external magnetic field. J. High
Energy Phys. 0809, 121 (2008). arXiv:0804.3466 [hep-th]

16. N. Iqbal, H. Liu, M. Mezei, Q. Si, Quantum phase transitions in holographic models of mag-
netism and superconductors. arXiv:1003.0010 [hep-th]

17. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, D. Vegh, From black holes to strange metals.
arXiv:1003.1728 [hep-th]

18. E. D’Hoker, P. Kraus, J. High Energy Phys. 1005, 083 (2010). arXiv:1003.1302 [hep-th]
19. A. Auerbach, Quantum magnetism approaches to strongly correlated electrons. arxiv:

cond-mat/9801294
20. E. Gubankova, Particle-hole instability in the AdS4 holography. arXiv:1006.4789 [hep-th]
21. J.L. Davis, P. Kraus, A. Shah, Gravity dual of a quantum hall plateau transition. J. High Energy

Phys. 0811, 020 (2008). arXiv:0809.1876 [hep-th]
22. E. Keski-Vakkuri, P. Kraus, Quantum Hall effect in AdS/CFT. J. High Energy Phys. 0809, 130

(2008). arXiv:0805.4643 [hep-th]
23. A.H. MacDonald, Introduction to the physics of the quantum Hall regime. arXiv:cond-mat/

9410047
24. T. Hartman, S.A. Hartnoll, Cooper pairing near charged black holes. arXiv:1003.1918 [hep-

th]
25. F. Denef, S.A. Hartnoll, S. Sachdev, Quantum oscillations and black hole ringing. Phys. Rev. D

80, 126016 (2009). arXiv:0908.1788 [hep-th]
26. F. Denef, S.A. Hartnoll, S. Sachdev, Black hole determinants and quasinormal modes. Class.

Quant. Grav. 27, 125001 (2010). arXiv:0908.2657 [hep-th]

http://arxiv.org/abs/arXiv:1005.0539
http://arxiv.org/abs/arXiv:0912.1061
http://arxiv.org/abs/arXiv:hep-th/0405231
http://arxiv.org/abs/arXiv:0809.3402
http://arxiv.org/abs/arXiv:0904.1993
http://arxiv.org/abs/arXiv:0903.2477
http://arxiv.org/abs/arXiv:0907.2694
http://arxiv.org/abs/arXiv:1008.2828
http://arxiv.org/abs/arXiv:0706.3215
http://arxiv.org/abs/arXiv:0704.1160
http://arxiv.org/abs/arxiv:0908.1436
http://arxiv.org/abs/arXiv:1001.3700
http://arxiv.org/abs/arXiv:0907.5406
http://arxiv.org/abs/arXiv:0804.3466
http://arxiv.org/abs/arXiv:1003.0010
http://arxiv.org/abs/arXiv:1003.1728
http://arxiv.org/abs/arXiv:1003.1302
http://arxiv.org/abs/arxiv:cond-mat/9801294
http://arxiv.org/abs/arxiv:cond-mat/9801294
http://arxiv.org/abs/arXiv:1006.4789
http://arxiv.org/abs/arXiv:0809.1876
http://arxiv.org/abs/arXiv:0805.4643
http://arxiv.org/abs/arXiv:cond-mat/9410047
http://arxiv.org/abs/arXiv:cond-mat/9410047
http://arxiv.org/abs/arXiv:1003.1918
http://arxiv.org/abs/arXiv:0908.1788
http://arxiv.org/abs/arXiv:0908.2657


21 Holographic Description of Strongly Correlated Electrons 589

27. E. Gubankova, J. Brill, M. Cubrovic, K. Schalm, P. Schijven, J. Zaanen, Holographic fermions
in external magnetic fields. Phys. Rev. D 84, 106003 (2011). arXiv:1011.4051 [hep-th]

28. Y. Zhang, Z. Jiang, J.P. Small, M.S. Purewal, Y.-W. Tan, M. Fazlollahi, J.D. Chudow,
J.A. Jaszczak, H.L. Stormer, P. Kim, Landau level splitting in graphene in high magnetic
fields. Phys. Rev. Lett. 96, 136806 (2006). arXiv:cond-mat/0602649

29. J.L. Noronha, I.A. Shovkovy, Color-flavor locked superconductor in a magnetic field. Phys.
Rev. D 76, 105030 (2007). arXiv:0708.0307 [hep-ph]

30. V.P. Gusynin, S.G. Sharapov, Transport of Dirac quasiparticles in graphene: Hall and optical
conductivities. Phys. Rev. B 73, 245411 (2006). arXiv:cond-mat/0512157

31. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Dynamics in the normal ground state of dense
relativistic matter in a magnetic field. Phys. Rev. D 83, 085003 (2011). arXiv:1101.4954 [hep-
th]

32. M.A.V. Basagoiti, Transport coefficients and ladder summation in hot gauge theories. Phys.
Rev. D 66, 045005 (2002). arXiv:hep-ph/0204334

33. J.M.M. Resco, M.A.V. Basagoiti, Color conductivity and ladder summation in hot QCD. Phys.
Rev. D 63, 056008 (2001). arXiv:hep-ph/0009331

34. N. Iqbal, H. Liu, Real-time response in AdS/CFT with application to spinors. Fortschr. Phys.
57, 367 (2009). arXiv:0903.2596 [hep-th]

35. B.I. Halperin, Helv. Phys. Acta 56, 75 (1983)
36. Y. Kopelevich, B. Raquet, M. Goiran, W. Escoffier, R.R. da Silva, J.C. Medina Pantoja,

I.A. Luk’yanchuk, A. Sinchenko, P. Monceau, Searching for the fractional quantum Hall effect
in graphite. Phys. Rev. Lett. 103, 116802 (2009)

37. Y.-F. Hsu, G.-Y. Guo, Anomalous integer quantum Hall effect in AA-stacked bilayer graphene.
Phys. Rev. B 82, 165404 (2010). arXiv:1008.0748 [cond-mat]

38. Y. Kopelevich, V.V. Lemanov, S. Moehlecke, J.H.S. Torrez, Landau level quantization and
possible superconducting instabilities in highly oriented pyrolitic graphite. Fiz. Tverd. Tela
41, 2135 (1999) [Phys. Solid State 41, 1959 (1999)]

39. H. Kempa, Y. Kopelevich, F. Mrowka, A. Setzer, J.H.S. Torrez, R. Hoehne, P. Esquinazi, Solid
State Commun. 115, 539 (2000)

40. M.S. Sercheli, Y. Kopelevich, R.R. da Silva, J.H.S. Torrez, C. Rettori, Solid State Commun.
121, 579 (2002)

41. Y. Kopelevich, P. Esquinazi, J.H.S. Torres, R.R. da Silva, H. Kempa, F. Mrowka,
R. Ocana, Metal-insulator-metal transitions, superconductivity and magnetism in graphite.
Stud. H-Temp. Supercond. 45, 59 (2003). arXiv:cond-mat/0209442

http://arxiv.org/abs/arXiv:1011.4051
http://arxiv.org/abs/arXiv:cond-mat/0602649
http://arxiv.org/abs/arXiv:0708.0307
http://arxiv.org/abs/arXiv:cond-mat/0512157
http://arxiv.org/abs/arXiv:1101.4954
http://arxiv.org/abs/arXiv:hep-ph/0204334
http://arxiv.org/abs/arXiv:hep-ph/0009331
http://arxiv.org/abs/arXiv:0903.2596
http://arxiv.org/abs/arXiv:1008.0748
http://arxiv.org/abs/arXiv:cond-mat/0209442


Vol.:(0123456789)

Optical and Quantum Electronics          (2018) 50:406 
https://doi.org/10.1007/s11082-018-1667-x

1 3

Vortex dynamics of counterpropagting laser beams 
in photorefractive materials

Mihailo Čubrović1  · Milan Petrović2,3

Received: 13 October 2017 / Accepted: 12 October 2018 
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We study vortex patterns of counterpropagating laser beams in a photorefractive crystal, 
with or without the background photonic lattice. The vortices are effectively planar and 
have two “flavors” because there are two opposite directions of beam propagation. In a 
certain parameter range, the vortices form stable equilibrium configurations which we 
study using the methods of statistical field theory and generalize the Berezinsky–Koster-
litz–Thouless transition of the XY model to the “two-flavor” case. In the nonequilibrium 
regime, the patterns exhibit an Andronov–Hopf bifurcation which may lead to oscillations 
(limit cycle), chaos or decay to zero intensity due to radiation losses. We show how to iden-
tify various pathways toward instability from intensity patterns, i.e. from experiment.

Keywords Vortex · BKT transition · Photorefractive optics · Statistical field theory

1 Introduction

Nonlinear optical systems are a rich arena for studies of various fundamental physi-
cal phenomena. The strong response of the nonlinear optical medium to the propagation 
of light makes it a typical strongly correlated system, with many phenomena similar to 
those in other strongly interacting systems in areas such as condensed matter. Their com-
plex dynamics offers an opportunity to study spatiotemporal chaos and optical turbulence 
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(Cross and Hohenberg 1993; Rabinovich et al. 2000). On the other hand, they often also 
exhibit stable, equilibrium confgurations in a certain parameter range, which are nau-
trally studied by statistical physics methods. Vortices and other topological configurations 
(Alexander et al. 2007; Anderson 2007; Fetter 2009), long-range order (Anderson 2007), 
quenched disorder and glassy behavior (Antenucci et al. 2015a, b; Ghofraniha 2015; Per-
ret et al. 2012) are universal in a broad range of systems such as cold atoms (Bagnato et al. 
2015; Malomed et al. 2016) and magnetic systems, and the relative simplicity of experi-
ments in optics makes it an excellent testing ground for strongly coupled models.

In this paper we study a specific and experimentally realizable nonlinear optical system: 
laser beams counterpropagating (CP) through a photorefractive (PR) crystal. This means 
we have an elongated PR crystal (with one longitudinal and two transverse dimensions) 
and two laser beams shone onto each end. We thus effectively have two fields, one forward-
propagating and one backward-propagating. The optical response of the crystal depends 
nonlinearly on the total intensity of both beams, which means the beams effectively inter-
act with each other. This system has been thoroughly investigated for phenomena such as 
dynamical solitons (Denz et al. 2003; Petrović et al. 2011, 2005; Jović et al. 2008), vortex 
stability on the photonic lattice (Alexander et al. 2007; Terhalle et al. 2008; Čubrović and 
Petrović 2017) and topological invariants (Rechtsman et al. 2013).

We first recast the system in Lagrangian and then in Hamiltonian form so it can be stud-
ied as a field theory, which depends parametrically on the time t. Then we consider the 
time dynamics of the system and show that in a broad parameter range the patterns relax to 
a static configuration which can be studied within equilibrium field theory. By renormali-
zation group (RG) analysis, we obtain the phase diagram of static vortex configurations. 
The phase diagram is obviously closely related to the famous Berezinsky–Kosterlitz–Thou-
less (BKT) vortex unbinding transition in the XY model (Berezinsky 1971; Kosterlitz and 
Thouless 1973) except that having two components of the field produces additional phases 
and phase transitions, due to forward–backward beam interaction. The analytical insight 
we obtain also allows us to avoid overextensive numerics – analytical construction of the 
phase diagram tells us which patterns can in principle be expected in different corners of 
the parameter space.

Next we focus on the nonequilibrium regime, classify the fixed points and study pos-
sible routes of instability. We emphasize the pictorial and “rule-of-thumb” criteria to rec-
ognize various instabilities, in order to facilitate experimental checks. At the end we will 
discuss the perspective of studying dynamical criticality, i.e. instablities which consist in 
moving from one vortex phase to another in real time, a phenomenon which is intimately 
connected to the difficult questions of quench dynamics and thermalization in many-body 
systems.

2  Counterpropagating beams in photorefractive medium: equations 
of motion

Consider a photorefractive crystal of length L irradiated by two paraxial head-on laser 
beams which propagate from the opposite faces of the crystal in the z-direction. Photore-
fractive crystals induce self-focusing of the beams—the vacuum (linear) wave equation is 
modified by the addition of a friction-like term, so the diffusion of the light intensity (the 
broadening of the beam) is balanced out by the self-focusing of the beam. The physical 
ground for this is the redistribution of the charges in the crystal due to the Kerr effect. 
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The nonlinearity is contained in the change of the refraction index which is determined by 
the induced charge density. A sketch of the system is given in Fig. 1. Before entering the 
crystal, the laser beams can be given any desirable pattern of both intensity and phase. In 
particular, one can create vortices (winding of the phase) making use of the phase masks 
(Denz et al. 2003).

Assuming the electromagnetic field of the form � = e��t+���
(
Feikz + Be−ikz

)
 , we can 

write equations for the so-called envelopes F and B of the forward- and backward-prop-
agating beams along the z-axis (the frequency, transverse and longitudinal momentum are 
denoted respectively by �, �, k ). The wave equations for F and B are now:

where the plus and minus signs on the left-hand side stand for the forward- and backward-
propagating component of the beam amplitude doublet � ≡ (�+,�−) ≡ (F,B) , and �  is 
the dimensionless PR coupling constant. From now on we will use � ∈ {+,−} to denote 
the two beams (F and B) and call it a flavor index, in analogy with field theory. The vorti-
city (winding number of the phase) will be called vortex charge as usual. The charge field 
E on the right-hand side of the equation is the electric field sourced by the charges in the 
crystal (i.e., it does not include the external electric field of the beams). Its evolution is well 
represented by a relaxation-type equation (notice that the derivative �E is strictly negative) 
(Petrović et al. 2011):

Here, I ≡ I� + Ix is the total light intensity at a given point, I� ≡ |F|2 + |B|2 is the beam 
intensity and Ix the intensity of the fixed background. The meaning of Ix is that the crys-
tal is all the time irradiated by some constant light source, independent of the counter-
propagating beams with envelopes F, B. The relaxation time is � . The form of the non-
linearity accounts for the saturation of the crystal; notice that a simple quartic non-linear 
Schrödinger equation would not account for the saturation.1 In the numerical calculations, 

(1)±��z�±(z;x, y;t) + Δ�±(z;x, y;t) = �E(z;x, y;t)�±(z;x, y;t),

(2)
�

1 + I(z;x, y;t)
�tE(z;x, y;t) + E(z;x, y;t) = −

I(z;x, y;t)

1 + I(z;x, y;t)
.

Fig. 1  Experimental setup for the study of the CP beams in the PR crystal. The crystal has the shape of a 
parallelepiped, and the beams propagate along the longitudinal, z-axis: the forward (F)-beam from z = 0 to 
z = L , and the backward (B)-beam the other way round. The intensity patterns can be observed at the trans-
verse faces of the crystal, at z = 0 and z = L

1 One might also worry that a realistic crystal is anisotropic, while our equation is isotropic. Nevertheless, 
comparison to experiment (Neshev et al. 2004; Fleischer et al. 2004; Dreischuh et al. 2002) shows that this 
model is able to describe actual measurements rather well. Also, the effects of anisotropy can be suppressed 
in experiment by illuminating the crystal by uniform light for very long times before starting the experiment 
(Cohen et al. 2002).
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we solve Eqs. (1), (2) with no further assumptions, using a slightly modified version of the 
beam propagation method (Sandfuchs et al. 2001). For analytical results we will need to 
transform them further assuming a vortex pattern. The Eq. (2) is completely phenomeno-
logical, but it excellently represents the experimental results (Denz et al. 2003). We will 
first consider the equilibrium regime, and then the nonequilibrium dynamics.

For slow time evolution (in absence of pulses), we can Laplace-transform the Eq. (2) in 
time ( E(t) ↦ E(u) = ∫ ∞

0
dte−utE(t) ) to get the algebraic relation

The original system (1) can now be described by the Lagrangian:

where �3 is the Pauli matrix �3 = diag(1,−1) . This has the form 
 = �� †�3�z� − |∇� |2 − Veff (�

†,� ) , i.e. the Lagrangian of a non-relativistic field the-
ory (a two-component nonlinear Schrödinger field equation) in 2 + 1 dimensions (x, y; z), 
where the role of time is played by the longitudinal distance z, and the physical time t (or u 
upon the Laplace transform) is a parameter.

3  Stable vortex configurations and the phase diagram

Following the same steps as for the textbook XY model we can arrive at an effective Ham-
iltonian for stable vortex configurations. For details we refer the reader to Čubrović and 
Petrović (2017). Assuming the vortex solution of the form

where �±(�) is the singular part of the phase and �0±(�) the regular part, we want to inte-
grate out both the amplitude fluctuations and the regular part of the phase and arrive at a 
description of the systems solely in terms of vortex charges. This is done by expanding the 
Lagrangian (4) to quadratic order in both amplitude and phase fluctuations and integrating 
them out. Then the usual Legendre transform yields the vortex Hamiltonian:

We denote the flavor ± by Greek indices, and the summation convention is understood.2 
Furthermore, we denote Q� × Q� ≡ Qi+Qj− + Qi−Qj+ . The first term is the expected Cou-
lomb interaction of vortices from the XY model (Berezinsky 1971; Kosterlitz and Thouless 
1973); notice that only like-flavored charges interact through this term (because the kinetic 
term |∇� |2 is homogenous quadratic). The second term is the forward–backward interac-
tion, also with Coulomb-like (logarithmic) radial dependence. This interaction is gener-
ated by the coupling of amplitude fluctuations ���(r) to the phase fluctuations. In a system 
without amplitude fluctuations, i.e. classical spin system, this term would not be generated. 
The third and fourth term constitute the energy of the vortex core. The self-interaction 

(3)E(z;x, y;u) = −
� †� + Ix − �E0

1 + �u + Ix + � †�
= − 1 +

1 + �u + �E0

1 + �u + Ix + � †�
.

(4) = �� †�3�z� − |∇� |2 + �� †� − � (1 + �E0 + �u) log(1 + �u + Ix + � †� ),

(5)�0±(�) = �0±(r)e
���±(�)+��0±(�),

(6)vort =
∑

i<j

(
gQi𝛼Qj𝛼 + g�Qi𝛼 × Qj𝛽

)
log rij +

∑

i

(
g0Qi𝛼Qi𝛼 + g1Qi𝛼 × Qi𝛽

)
.

2 There is no difference between upper and lower indices as both flavors always enter the sum with positive 
sign.
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constants g0, g1 are of course dependent on the vortex core size and behave roughly as 
g log a∕�, g� log a∕� , where � is the UV cutoff. The final results will not depend on � , as 
expected, since g0, g1 can be absorbed in the fugacity y (see the next subsection). Expres-
sions for the coupling constants in terms of original parameters are given in Čubrović and 
Petrović (2017); they can be used to relate the theoretical phase diagram to experiment.

To describe the phase diagram, we will perform the renormalization group (RG) analy-
sis. Here we follow closely the calculation for conventional vortex systems. We consider 
the fluctuation of the partition function � upon the formation of a virtual vortex pair at 
positions �1, �23 with charges q� ,−q� , (with �1 + �2 = 2� and �1 − �2 = �12 ), in the back-
ground of a vortex pair at positions �1,�2 (with �1 + �2 = 2� and �1 − �2 = �12 ) with 
charges Q1� ,Q2� . It is also convenient to replace the core self-interaction constants g0,1 with 
the fugacity parameter defined as y ≡ exp

[
−�

(
g0 + g1

)
log �

]
 . We also introduce the nota-

tion � ≡ L in analogy with the inverse temperature � in standard statistical mechanics but 
of course the physical meaning of � in our system is very different: we have no thermody-
namic temperature or thermal noise, and the third law of thermodynamics is not satisfied 
for the “temperature” 1∕� . We merely use the �-notation for reasons of formal similarity, 
not as a complete physical analogy.

This is a straightforward but lengthy calculation and we state just the resulting flow 
equations:

Notice that if one puts g� = 0 , they look very much like the textbook XY model RG flow, 
except that the fugacity enters as y4 instead of y2 (simply because every vortex contrib-
utes two charges). We can find fixed points analytically and then numerically integrate 
the flow equations to find exact phase borders. The fugacity y can flow to zero (meaning 
that the vortex creation is suppressed and the vortices tend to bind) or to infinity, meaning 
that vortices can exist at finite density. At y = 0 there is a fixed line g + g� = 1 . This line 
is attracting for the half-plane g + g� > 1 ; otherwise, it is repelling. There are three more 
attraction regions when g + g� < 1 . First, there is the point y → ∞, g = g� = 0 which has 
no analogue in single-component vortex systems. Then, there are two regions when g → ∞ 
and g� → ±∞ (and again y → ∞ ). Of course, the large g, g′ regime is strongly interacting 
and the perturbation theory eventually breaks down. What happens when g, g′ flow toward 
very large values is that the intensity at the vortex core becomes very large, so the lowest-
order, quadratic Hamiltonian needs to be supplemented by higher-order terms in intensity 
fluctuations. To integrate them out, one needs to perform a diagrammatic expansion which 
leads to quartic- and higher-order terms in vortex charges Q� in the effective vortex Ham-
iltonian [Eq. (6)], ultimately correcting the flow at large g, g′ to flow toward finite values 
g∗, g

�
∗
 and g∗∗, g�∗∗.

The RG flows in the g − g� plane are given in Fig. 2. The situation is now the following:

1. The attraction region of the fixed line is the vortex insulator phase (INS): the creation 
rate of the vortices is suppressed to zero. There is no vortex charge conservation.

(7)
�g

��
= − 16�(g2 + g�2)y4,

�g�

��
= − 2�gg�y4,

�y

��
= 2�(1 − g − g�)y.

3 The boldface vectors are the coordinate vectors in the plane.
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2. The zero-coupling fixed point attracts the trajectories in the vortex perfect conductor 
phase (PC): only the fugacity controls the vortices and arbitrary charge configurations 
can form. Each vortex charge, Q+ and Q− , is separately conserved.

3. In the attraction region of the fixed point with g∗ < 0 and g�
∗
> 0 (formally they flow 

to −∞ and +∞ , respectively), same-sign F- and B-charges attract each other and those 
with the opposite sign which repel each other. This is the frustrated insulator (FI): it 
conserves only the combination Q+ + Q− , and only vortices with charge (Q+,−Q+) are 
stable.

4. The fixed point with g∗∗, g�∗∗ < 0 (formally both flow to −∞ ) corresponds to the con-
ductor phase (COND). This phase preserves one of the charges, Q+ or Q− , i.e. either 
(Q+, 0) - or (0,Q−)-vortices proliferate.

In the half-plane g + g� > 1 every point evolves toward a different, finite point (g, g�) in 
the same half-plane. In the other half-plane we see the regions of points moving toward 
the origin or toward one of the two directions at infinity. In the future we plan to apply 
this formalism also to multi-component vortices in Bose–Einstein condensates (Ma et al. 
2016) and in particular in type-1.5 superconductors (Silaev and Babev 2012), where even 
more complex phenomena, including frustration, are observed as a consequence of multi-
component interaction.

Fig. 2  Phase diagram for the clean system in the g−g� plane, at the mean-field level with RG flows. We 
show the flows for a grid of initial points, denoted by black dots; red lines are the flows. Four phases exist, 
whose boundaries are delineated by black dashed lines: conductor (COND), insulator (INS), frustrated insu-
lator (FI) and perfect conductor (PC). The straight line g + g� = 1 is obtained analytically whereas the other 
phase boundaries can only be found by numerical integration of the flow Eq. (7). The flows going to infinity 
are the artifacts of the perturbative RG; they correspond to finite values which are beyond the scope of our 
analytical approach. Notice how the flows in the g + g� > 1 phase all terminate at different values
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An interesting line of research consists in adding disorder to the above system. We con-
sider this problem in Čubrović and Petrović (2017) and find that the system can be approxi-
mated by a random-coupling and random-field two-component XY-like model, related to the 
Cardy–Ostlund model (1982). The replica formalism (Castellana and Parisi 2015) then pre-
dicts a glassy phase with slow dynamics, strong correlations and no long-range order. This is 
however a separate story and we will leave it out here. Interested readers can consult (Čubrović 
and Petrović 2017) and look at related work in Antenucci et al. (2015a, b).

4  Time‑dependent regime

Here our goal is twofols. First, we have to show that at least for some boundary conditions and 
parameter values there is a stable fixed point of the time evolution, so that the system reaches a 
time-independent, equilibrium pattern. The reason is that the whole formalism of the previous 
chapter is only valid for such configurations, as it departs from equilibrium statistical mechan-
ics. Second, we want to check other, non-static behaviors as they are interesting in their own 
right and experimentally relevant (but one should not expect them to be described by an equi-
librium phase diagram like Fig. 2).

Time dynamics can be studied in a straightforward way, making use of the relaxation 
Eq. (2) to write down the first-order evolution equations for �±:

This system has three equilibrium points. One is the trivial equilibrium with zero intensity 
(“0” point):

and the remaining two are related by a discrete symmetry �± ↦ �∓ (“±” points). The “ + ” 
point is

and the “ − ” point has instead �+ = 0 and �− =
√
(E(1 + Ix) + Ix)∕(1 + E) exp(��−) . 

Notice that the phase �± remains free to vary so the “±” solutions support vortices. We 
first ask what is the stability criterion for a nontrivial solution, i.e. one of the “±” points, 
as this is the main criterion for the applicability of the equilibrium statistical mechanics 
methods in the previous section. Introducing the amplitudes of the fluctuations from equi-
librium as X1,3 = ℜ��±,X2,4 = ℑ��±,X5 = �E , we can do a first-order stability analysis 
as the system is non-degenerate. Rescaling X1 ↦ (1 + E0)

−3∕4
(
Ix + E0

(
1 + Ix

))1∕2 and 
t ↦ t

((
1 + E0

)
∕
(
Ix + E0

(
1 + Ix

)))1∕4 , the equation of motion for the “±” point reads

(8)
��±

�

�t
= −

�

�

((1 + I)E + I)

�k − q2 − �E
�±
�
,

�E

�t
= −

1

�
((1 + I)E + I).

(
�±
+
,�±

−
,E

)
=

(
0, 0,−

Ix

1 + Ix

)
,

(
�±
+
,�±

−
,E

)
=

(√
E(1 + Ix) + Ix

1 + E
e��+ , 0,E

)
,

(9)�t

(
X1

X5

)
=

(
−

a±

�E0+k+q
2

− 1

1 −
a±

�E0+k+q
2

)(
X1

X5

)
+ O(X2

1
+ X2

5
;X2,X3,X4),
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with a± being some (known) positive functions of � ,E0, Ix (independent of k, q). This is 
precisely the normal form for the Andronov–Hopf bifurcation (Arnol’d et al. 1994), and 
the bifurcation point lies at k = −�E0 − q2 . To remind, the bifurcation happens when 
the off-diagonal element in the linear term changes sign: the fixed point is stable when 
a±∕(�E0 + k + q2) is positive. The sign of the nonlinear term determines the supercritical/
subcritical nature of the bifurcation.4

Now the textbook analysis of the Andronov–Hopf bifurcation tells us that stable “ + ” 
equilibrium exists for k > −𝛤E0 − q2 where E0 is best found numerically. Exactly the same 
condition holds for the “ − ” point. For k < −𝛤E0 + q2 , dynamics depends on the sign of the 
nonlinear term in Eq. (9). For the positive sign we expect periodically changing patterns 
and for the negative sign (subcritical bifurcation), various possibilities arise: the system 
may wander chaotically between the “ + ” and the “ − ” points, or it may end up in the attrac-
tion region of the “0” point and fall onto the trivial solution with zero intensity. Naively, 
the attraction regions of the two fixed points (“±” and “0”) are separated by the condition 
−�E0 − q2 = q2 , i.e. qc =

√
−�E0(� , �)∕2 , where we have emphasized that E0 is in gen-

eral non-universal. The actual boundary may be more complex however, as our analysis is 
based on finite-order expansion around the fixed points, which is not valid far away from 
them.

The numerical stability diagram is given in Fig.  3. The stability limit turns out to 
be k > 𝛤 − q2 , i.e. E0 ≈ −1 . The curves separating the attraction regions of the three 
equilibrium points follow exactly the quadratic scaling in q as predicted by the analyti-
cal stability analysis. The equilibrium region lies in the top right corner of the diagram 
(nontrivial equilibrium), above k ≈ 1∕L . This is where the patterns evolve towards static 

Fig. 3  Stability diagram in the q−k plane. The onset of instability for k < kc(q) is found numerically for 
a range of q values. The solid lines are the analytical prediction for the stability of the “0” point ( kc = q2 , 
magenta) and of the “ + ” point ( kc = �E0 − q2 ≈ � − q2 , red). The black dashed line at q = qc ≈ 1 sep-
arates the stability regions of the two points. The domain of applicability of our main results is the top 
right corner (nontrivial equilibrium), above k > kmin ∼ 1∕L and for not too large q values. Parameter values: 
� = 2, Ix = 0

4 Negative sign means the fixed point is stable everywhere before the bifurcation and is replaced by a stable 
limit cycle after the bifurcation (supercritical). Positive sign means the fixed point coexists with the stable 
limit cycle before the bifurcation and the (X1,X5) plane is divided among their attraction regions; after the 
bifurcation there is no stable solution at all (subcritical). However, one should not take the stability in the 
whole (X1,X5) plane in the supercritical case too seriously. We have expand the equations of motion in the 
vicinity of the fixed points and the expansion ceases to be valid far away from the origin.



Vortex dynamics of counterpropagting laser beams in…

1 3

Page 9 of 13   406 

long-time configurations. The top left corner describes “boring” situations, when all 
light ultimately radiates away from the crystal and intensity drops to zero. The bottom 
region contains nontrivial dynamics: depending on parameters, it may contain a limit 
cycle (correspinding to oscillating patterns) or aperiodic wandering among an alphabet 
of unstable patterns (chaos).

Formally, both k and q can be any real numbers. In practice, however, k is discrete 
and its minimal value is of the order 1  / L. The spatial momentum q lies between the 
inverse of the transverse length of the crystal (which is typically an order of magnitude 
smaller than L, i.e. minimal q can be assumed equal to zero) and some typical small-
scale cutoff which in our case is the vortex core size.

Now we test our conclusions numerically. A convenient quantity to differentiate 
between different stability regimes is the relaxation rate

which is expected to reach zero for a generic relaxation process, where in the vicinity of 
an asymptotically stable fixed point X ∼ Xeq + xe−rt will be generically nonzero for a limit 
cycle or chaos, and will asymptote to a constant for the “0” point, where Xeq = 0 so we get 
(1∕X)dX∕dt ∼ r.

Figure  4 summarizes these possibilities in terms of the relaxation rate r, whereas 
Figs.  5 and 6 show how the patterns evolve in some representative cases. The black 
curves in Fig.  4 show the situation which is in the focus of this work – the approach 
toward static equilibrium. This corresponds to the phases from Fig. 2. In Fig. 5 we see 
how the equilibrium configurations are reached (for three phases). In each case we start 
with a regular lattice of circular vortices. In the PC phase (Fig. 5a) the vortices expand 
somewhat but in principle retain the original configuration (and charges). The other two 
phases (Fig. 5b, c) have nontrivial transient dynamics and undergo the lattice inversion, 
but eventually (for times about t ≈ 20 − 25� ) they stabilize and form a static inverse lat-
tice (with charges (3,−3) in the FI case and with zero charge in the INS case).

(10)r ≡ 1

X

dX

dt
=

∑
x,y �X

�
tj+1;x, y

�
− X

�
tj;x, y

�
�2

∑
x,y �X

�
tj;x, y

�
�2

,

Fig. 4  Time evolution of the 
relaxation rate r for the various 
situations from Figs. 5 and 6, 
illustrating the relaxation to 
non-trivial (non-zero intensity) 
equilibrium, i.e. “±” fixed points 
(Fig. 5a, c, black), limit cycle 
(6a, blue), chaos (6b, red) and the 
relaxation to trivial (zero inten-
sity) equilibrium, i.e. “0” fixed 
point (6c, green). In the main text 
we mainly study the cases like 
the black curves, where time-
independent stable configurations 
are seen. The circles are data 
points from numerics and the 
lines are just to guide the eye
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Fig. 5  Time evolution of patterns at five different times: a perfect conductor phase, b frustrated insulator 
phase and c insulator phase. In all cases the approach to equilibrium is obvious, and we expect that for long 
times a thermodynamic description is justified

Fig. 6  Time evolution of non-equilibrium patterns. In a the limit cycle leads to permanent oscillatory 
behavior, in b wandering along the unstable manifold between the equilibrium points gives rise to chaos 
and in c dissipation wins and dynamics dies out. The parameters are the same as in the previous figure, 
except that the length L is increased thrice
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The other curves in Fig. 4 describe dynamics which does not result in a nontrivial static 
pattern. The blue curve shows a limit cycle leading to periodic oscillations of the pat-
tern, with half-period about 10� . The corresponding patterns are seen in Fig.  6a, where 
we see how the vortex lattice keeps coming back to the original configuration at times 
≈ 5�, 10�, 15� . The red curve corresponds to the chaotic regime with aperiodic dynamics 
and no relaxation, as in Fig. 6b. Here the pattern keeps changing, wandering among the 
original lattice (for t = 5�, 20� ), the inverse lattice (for t = 10� ) and more or less incoher-
ent patterns (for t = 15�, 25� ). Finally, the green curve in Fig. 4 reaches a constant value of 
r. This corresponds to the pattern which radiates away in Fig. 6c, with total intensity being 
almost zero for t > 20𝜏 . Here one might wonder what happens to the vortex charge when 
the initially regular vortex lattice ends up as an incoherent, low-intensity configuration 
which obviously does not support vortices. The explanation is that the vortex charge flows 
outward, eventually reaching the edges of the crystal. The finite-size effects then invalidate 
the vortex charge conservation, as the usual proof that the winding number of the phase 
is a topological invariant crucially depends on considering the winding at infinity. Vortex 
charge thus dissipates at the edges. This is demonstrated in Fig. 7, which presents the same 
systems as in Fig. 6a–c but shows the ratio of the total bulk vortex charge Qbulk(t) to the 
total initial vortex charge Qtot . Total initial charge is calculated by definition, as the inte-
grated vorticity of the F-beam, Qtot = ∫ dx ∫ dy|�F| , with

and all the quantities are taken at t = 0 . The integral ∫ dx ∫ dy|�F| equals precisely the 
total F-vortex charge summed over all vortices. The bulk charge is computed by subtract-
ing the integrated vorticity flow along the boundary:

(11)�F =
(
cos �F�x�F , sin �F�y�F

)
,

(12)Qbulk(t) = Qtot − ∫
t

0

dt� ∮ d� ⋅ �F(t).

Fig. 7  Same systems as in Fig. 6 but now for the time dependence of the F-vortex charge in the bulk (full 
lines) and the vortex current flow through ther boundary (dashed lines). While the limit cycle (blue) and 
chaos (red) keep all vortex charge in the bulk, dissipation toward the trivial equilibrium (green) has a sys-
tematic vortex flow toward the edges. This is a finite-size effect which would not happen in an infinite field 
(but it does happen in real-world PR crystals which are, of course, finite)



 M. Čubrović, M. Petrović 

1 3

  406  Page 12 of 13

Figure 7 shows that the sum of the bulk charge and the vortex current through the bound-
ary is preserved in all cases, including when chaos or dissipation makes the pattern inco-
herent. In the last case, however, all the vortex charge flows toward the boundaries – this is 
a finite-size effect which would be absent in infinite field but is observable in realistic PR-
crystals which are of finite dimensions. In practice, the matters are even more complicated 
as the boundary surface carries also new physics (surface polarization etc.), so the starting 
equations of motion would have to be modified. We believe, however, that the basic picture 
of vortex charge dissipating at the boundary still remains, because the mapping from the 
internal U(1) phase onto the loop in the coordinate plane is explicitly broken by the bound-
ary (whatever its detailed physics might be), and the vortex charge nonconservation at the 
boundary follows from this breaking.

The next task is to consider in more detail the decay of an ordered phase, either to chaos 
or to a limit cycle (radiating away all intensity is likely a trivial process, fully described by 
the approximately constant decay rate). We plan to address this problem in further work, 
and to relate the results to the question of quench dynamics in vortex systems.
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Fermions, hairy blackholes and hairy wormholes
in anti-de Sitter spaces∗

Mihailo Čubrović†

Center for the Study of Complex Systems,
Institute of Physics Belgrade, Serbia

Abstract

We discuss the existence, properties and construction (analytical and numer-
ical) of hairy black holes with fermionic matter in asymptotically anti-de-Sitter
space. The negative cosmological constant makes hairy black holes stable, and the
nucleation mechanism can make the formation of hair at the horizon energetically
and entropically preferable to conventional black holes. The difficulties intrinsic to
fermions at finite density – the Pauli principle and exchange interactions – require
some drastic approximations in calculating the stress-energy tensor and geome-
try. We will consider several methods on the market – Hartree-Fock, WKB, and
fluid-mechanical methods, and consider the dual field theories of these construc-
tions. Then we will apply the same methods to the construction of wormholes;
fermions are a natural candidate for wormhole source matter as they have a Dirac
sea of negative energies, and negative energy-momentum density is the condition
for wormhole formation. The field theory interpretation of wormholes is still open
but has to do with strongly entangled systems. The paper combines a pedagogical
introduction to the basic methods and results (obtained in the last 10+ years)
with an account of fresh research results, mainly on the wormhole applications
and non-planar black holes.

1. Introduction

AdS black holes are a favorite topic, not only in relation to holography but
also in general: AdS space behaves like a potential box, the cosmological
constant provides an effective repulsive force at large distances and the ex-
istence of a boundary at spatial infinity makes bound states possible. All of

∗ The author acknowledges funding provided by the Institute of Physics Belgrade
through the grant by the Ministry of Education, Science and Technological Develop-
ment. The author acknowledges the use of the Sci-Hub service. The results described here
would never have been possible without the teaching, help and collaboration from Jan Za-
anen, Koenraad Schalm, Yan Liu, Ya-Wen Sun, Elena Gubankova, Mariya Medvedyeva,
Vladan Djukić and Nicolas Chagnet.
† e-mail address: mcubrovic@gmail.com
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this brings about the famous result that hairy black holes are indisputably
possible, and well-studied. In full (global) AdS space, one may have small
black holes, which barely see the boundary and radiate like in asymptot-
ically flat space, and large black holes, which reach an equilibrium state
with the Hawking radiation at given temperature and remain stable for-
ever (eternal AdS black holes). We will focus on the latter, as they can be
treated as (semi)classical stationary systems. Clearly, just like the Hawk-
ing radiation, matter and gauge fields can likewise equilibrate between the
black hole horizon and AdS boundary, possibly forming hair – by definition,
it means nonzero density of some field (and possibly nonzero expectation
values of other operators, like charge density, spin, etc) at the horizon itself.
This in turn means that the geometry changes as opposed to the no-hair
case: the hair itself enters the stress-energy tensor, and the outcome is a
hairy black hole geometry, where a horizon still exists but with a different
metric. At zero temperature, hair tends to remove extremal black holes in
favor of zero-area horizons, with zero Bekenstein-Hawking entropy. We will
soon discuss several explicit examples of this phenomenon.

The above story acquires an additional dimension thanks primarily to
the AdS/CFT correspondence (gauge/gravity duality) [1, 2, 3] – the fact
that the bulk gravity physics is equivalent to a quantum field theory in flat
space in one dimension less, whose operators act as boundary sources of
the AdS (bulk) fields. The actions in AdS (with field Φ) and in CFT (with
field O, which acts as a boundary source to Φ) are equal:

SAdS = SCFT

SAdS =

∫
DΦ exp

(
−
∫
AdS

dD+1x
√
−gLAdS (Φ, ∂µΦ) +

∮
∂

dDx
√
−hOΦ

)
SCFT =

∫
DO exp

(
−
∫
dDxLCFT (O)

)
, (1)

where we have denoted by ∂ the boundary of the AdS space, gµν is the
AdS metric and hµν is the induced metric at the boundary. From now
on, integrals over the bulk of AdS will be dnoted just by

∫
, understanding

that the integral is over the whole space. At this place we do not intend
to explain AdS/CFT and its applications in any detail; suffice to say that
one can obtain thermodynamic potentials and correlation functions in field
theory, which has found important applications in condensed matter theory,
quantum chromodynamics and conformal field theory. Interested readers
can consult [4, 5, 6] for reviews. In this work we deal with the gravity side
of the correspondence – the formation of a hairy black hole with fermionic
matter, which corresponds to a finite electron density phase in field theory.
We assume the familiarity with the basic notions of AdS space and quantum
field theory in curved spacetime, for example at the level of [7] and [8],
respectively.

Mathematically, the topic of this review is the solution of the coupled
Einstein-Maxwell-Dirac system with the total action SAdS = Sbulk + S∂ .
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The bulk action reads:

Sbulk = SE + SM + SDir

SE =

∫
d4x
√
−g (R+ 6)

SM = −
∫
d4x
√
−g F̂

2

4

SDir = −
∫
d4x
√
−g

(
1

2
Ψ̄Dµe

µ
aΓaΨ +

1

2
Ψ̄eµaΓaΨ +mΨ̄Ψ

)
. (2)

Here, F̂µν = ∂µAν−∂νAµ is the electromagnetic (EM) field strength tensor,
and the the cosmological constant in AdS4 is 6/L2, where the AdS radius
L = 1 is set to unity, as we will mainly work on the Poincare patch of
AdS space, so all other dimensionful quantities can be expressed in terms
of L. The Dirac bispinor Ψ has mass m and charge q, and the covariant
derivative

Dµ = eaµDa = ∂µ −
ı

8

[
Γa,Γb

]
ωµab − ıqAµ (3)

depends on the spin connection ωµab and the gauge field Aµ, and the gamma

matrices satisfy the usual relations
[
Γa,Γb

]
= 2ηab, with the Minkowski

metric η. We will be using the mostly plus convention. Obviously, Ψ = 0 is
a solution, and in this case we get a Schwarzschild black hole if the EM field
is also zero, or a charged Reissner-Nordstrom (RN) black hole for nonzero
field strength. The question is, are there other solutions, with nonzero pro-
file Ψ? Such solutions describe hairy black holes at finite temperature: the
horizon is typically still there, but the geometry is changed. At zero tem-
perature, the black hole might disappear. Since AdS space has a boundary,
there is also a boundary contribution to the action, as in (1), depending on
extrinsic curvature K, boundary cosmological constant λ and the boundary
values of the fields:

S∂ =

∮
∂
d3x
√
−h

[
K − λ− 1

2
nµAνF̂

µν − 1

2
Ψ̄Ψ

]
. (4)

The classical equations of motion do not depend on the boundary action.
However, S∂ is still important (1) to make sure there is a good action
principle, i.e., that the on-shell solutions are indeed minima of the action1

(2) to regularize any UV divergences (3) to get correct thermodynamics.
The last point will be particularly important: one way to see that the hairy
black hole and not the bald black hole is the true vacuum will be the fact
that the action on the hairy solution is lower.

Solving the system (2) is a problem in quantum field theory at finite
density. We work with classical general relativity (GR) and classical EM

1Remember that the (bulk) Euler-Lagrange equations are only a necessary condition
for the minimum of the action.
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field, but fermions are never classical ; this is the first important lesson.
The Pauli principle always introduces nonlocal correlations which show as
the exchange interaction. Another way of saying this is that the pressure of
a fermionic gas or fluid always includes the quantum contribution which is
absent in both classical and bosonic gas; that is the reason that organized
matter such as stars, planets, chairs and notebooks has rigidity and does
not collapse onto itself. Therefore, even though we do gravity at h̄ = 0, the
fermions even at leading order need to be tackled quantum-mechanically.
This means calculating the fermionic determinant :

ZDir =

∫
DΨ̄DΨe−SDir ” = ” [det (Dµe

µ
aΓa + eµaΓaDµ +m)]1/2 . (5)

We have put the equality sign under quotation marks because the determi-
nant is actually the product of the eigenenergies of all the modes (an infinity
of them), which is not only badly divergent (that could be regulated) but
is also impossible to calculate because of the fermion sign problem, the
fact that the fermionic modes enter the path integral with a sign that can
be plus or minus. This makes the measure in the path integral (5) non-
probabilistic and makes it impossible to expand around a classical solution
in a controlled way. Fortunately, the AdS metric turns out to simplify the
problem enough that it can be tackled in a way which is tractable and,
while of course not exact, can be systematically improved in a perturba-
tive way. This is in fact the motivation behind AdS/CFT modelling of
strongly correlated electron systems: the fermion sign problem is fatal for
strongly coupled field theories in flat space, but in GR with AdS boundary
conditions it transforms into a difficult but doable task.

Is the journey worthwhile? In line with the broad scope of the Belgrade
Mathematical Physics Meetings, we have anticipated a broad readership of
this paper and thus we have decided to give a very general and perhaps
rather dry introduction to the topic of fermionic hairy black holes. This
necessarily means that we will not touch upon the many interesting appli-
cations: AdS/CFT and its applications to quantum chromodynamics and
condensed matter physics, the black hole information problem, the critical
phenomena in gravitational collapse and the black hole solutions in string
theory. We do discuss one special topic that we currently find very inter-
esting: hairy wormholes generated by fermion matter, where many of the
methods used for hairy black holes can be successfully applied. The main
task of the paper is to provide a tutorial on the basic methodology and
calculation techniques, bringing the reader to the point that he can under-
stand and repeat the calculations from the literature and start doing his
own. The existing literature is rather heterogenuous and there is no single
text to recommend. We will give the references we deem particularly use-
ful throughout the paper, without the pretention of being exhaustive; the
choice of references is certainly dictated also by our prejudices and tastes.

Plan of the paper. In Section 2 we first explain the instabilities of AdS
space and AdS black holes to a nonzero density profile of fermions, and in-
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troduce the basic concepts that will keep appearing throughout the paper:
effective potential and the bound states of the fermionic wavefunctions. In
Section 3 we first treat the problem in the consistent one-loop (Hartree-
Fock) approximation, calculating the determinant (5) by definition, from
the individual wavefunctions for different states. We find this job surpris-
ingly difficult – it is still an active research area. But we are able to give a
qualitative picture of the outcome and sketch the phase diagram, depend-
ing on the chemical potential µ and fermion mass and charge m, q. As
we move toward the high-fermion-density corner of the phase diagram, the
things simplify. The simplest and ”most classical” limit of the problem is
the limit of large density. It is a rule of thumb that for fermions, the role of
interactions diminishes as the density grows. At high density, WKB approx-
imation works very well. At highest densities, we find semiclassical fluid
with an equation of state that takes into account the fermionic pressure,
similar in spirit to the Oppenheimer-Volkov equations for neutron stars.
In section 4 we apply these methods to a different topic – hairy worm-
holes instead of black holes. This problem has recently gained notoriety
and might carry some important messages for the black hole information
problem. The final section sums up the conclusions.

2. Planar AdS black holes and fermion nucleation

In this and the next section we will focus on large planar black holes on the
Poincare patch of AdS space. Large black holes can reach equilibrium with
the AdS boundary so they do not emit Hawking radiation and can exist
eternally. The Poincare patch of AdS4 space is a coordinate chart with a
single boundary on one end and interior on the other end. It does not cover
the whole AdS space but is simpler to work with than global AdS and is
good enough to desribe the instability at the horizon. The metric of pure
AdS space witout a black hole is given by

ds2 = r2
(
−dt2 + d~x2

)
+
dr2

r2
=

1

z2

(
−dt2 + d~x2 + dz2

)
(6)

where r = 1/z is the radial coordinate, t is time and ~x = (x, y) are the
transverse coordinates. The AdS boundary is at r = ∞ (z = 0), and the
interior is at r = 0 (z = ∞). From now on we will mainly use the z
coordinate; we will always specify explicitly if a different radial coordinate
is used. In AdS/CFT, the radial coordinate corresponds to the energy scale
in field theory: the near-boundary region encodes for the physics at high
energies, in the ultraviolet (UV), and the deep interior, with z large, is the
infrared (IR). Even though we do not consider the CFT dual here, we will
still adopt the UV/IR terminology.

In the presence of a point electric charge e we get a Reissner-Nordstrom
(RN) black hole with the horizon at zh = 1, with charge e, mass M and
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temperature T :

ds2 =
1

z2

(
−f(z)dt2 + d~x2 +

dz2

f(z)

)
, f(z) = 1−Mz3 + e2z4

M = z3
h + e2, A =

ezh
2
√
π

(1− z/zh)dt, T =
3zh
4π

(
1− e2

3z4
h

)
(7)

For e = 0 we get the Schwarzschild AdS black hole, and for e =
√

3z2
h

the black hole becomes extremal, with temperature T = 0. To see this,
remember that the black hole temperature is given by f(z → zH) = 4πT (z−
zH) + . . ., so plugging in f from above we indeed get the correct expression
for T . Importantly, the near-horizon region of a black hole is an AdS space
[7]. This IR AdS space (near z = zh) has a priori nothing to do with the
AdS asymptotics in the UV (near z = 0); it is there also for black holes in
flat or dS space. At T = 0, rescaling z − e/

√
3 7→ 1/6εξ and expanding in

ε to lowest order gives the metric

ds2 =
1

6
(−dt2 + dξ2) +

e2

3
d~x2, At =

1√
6ξ
. (8)

The is AdS2×R2 geometry, a direct product of AdS with a plane. At finite
temperature, a similar rescaling can be worked out, yielding again an AdS2

throat. Since the throat describes the near-horizon region, instabilities of
the black hole can be figured out from possible instabilities of this IR AdS
space. Once again, this is not the whole AdS4, which is always stable far
from the horizon, in the UV (otherwise our whole classical gravity approach
crumbles down), it is just a region near the horizon, in IR.

In order to write the equations of motion, we have to choose a basis for
the gamma matrices and the form of the Dirac bispinor (remember that
only two out of four components are really independent degrees of freedom).
A convenient representation is

Γ0 = σ1 ⊗ ıσ2, Γ1 = σ1 ⊗ σ1,Γ
2 = σ1 ⊗ σ3, Γz = σ3 ⊗ 1̂. (9)

so that the Dirac equation in a spherically symmetric metric defined as
diag(gtt, gii, gii, gzz) gives two equivalent decoupled pairs of equations. Tak-
ing the Dirac bispinor in the form Ψ = (ψ1, χ1, ıχ2, ıψ2)T , the equations for
ψ1,2 read [9, 10]:2

∂zψ1,2 ± m̂ψ1,2 −
(
∓Ê + k̂

)
ψ2,1 = 0 (10)

m̂ ≡ m√gzz, µ̂ ≡
√
gzz
−gtt

At, Ê ≡ qµ̂+ E

√
gzz
−gtt

, k̂ ≡
√
gzz
gii
k. (11)

2Since only two components of the Dirac bispinor are independent, the system for
χ1,2 yields no new information.
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We have Fourier-transformed the derivatives over time and transverse spa-
tial dimensions as ∂t = −ıω, ∂x = ıkx, ∂y = ıky, and we have exploited

the spherical symmetry to set kx = k, ky = 0. The quantities Ê, k̂, µ̂ can
be informally interpreted as ”local” values of the energy, momentum and
chemical potential, respectively. The ”local” values equal E, k, µ at the
AdS boundary, grow monotonously toward the horizon and diverge there, a
consequence of the infinite redshift seen by a faraway observer. An impor-
tant idea is to consider the Schrödinger form of the Dirac equation instead,
differentiating (10) once with respect to z, decoupling the equations for
ψ1,2, and elliminating the first derivatives ψ′1,2 by introducing the tortoise
coordinate s instead of z. The resulting picture is that of a zero-energy
Schrödinger equation, of the form ∂2

sψ1,2 − Veff(s)ψ1,2 = 0, in an effective
potential Veff(s).3 Near the horizon, the potential is constant at leading
order [11]:

Veff(s→ −∞) =
m2 + 12k2/µ2 − 2q2

(q/
√

2 + k)2
+ . . . (12)

It is true that the Schrödinger form is only a consequence of the Dirac
equation, not equivalent to it: extra conditions must be imposed on the
Schrödinger solution to make it satisfy the Dirac equation. But the effective
potential is great for qualitative insights and it contains the basic idea of
the black hole instability in a very transparent way. The near-horizon
potential can contain bound states if it is negative, hence the instability
criterion for a fermionic mode with momentum k is that the numerator of
(12) is negative. Fermions fill up the potential well starting from k = 0 up
to some maximum k for which (12) reaches zero. Therefore, the instability
first sets in when Veff is negative for k → 0, so we get our first rule-of-
thumb prediction: the black hole will be surrounded by a gas of fermions
and become hairy when

m < q
√

2. (13)

But this is just one end of the potential well; what happens at the other
end? Plugging in the pure AdS metric (6) into (12) we get

VAdS(s→ 0) =
m2 +m+ k2

(k + µ)2

1

s2
+ . . . , (14)

which is always non-negative, and grows to infinity. This is good – there is
never an instability in the far UV, and the fermionic hair can never come
arbitrarily close to the AdS boundary. It also means that bound states
in the interior will indeed exist whenever (13) is negative. The physical
picture is the following: in the presence of EM and gravitational field of
the black hole, fermions are pair-created. These pairs are virtual, and

3This is a simple exercise that we will do many times; the reader should be able to do
the necessary (straightforward) calculations leading to the expression for s(z) and Veff(s).
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they only have a finite probability of becoming long-living if the external
potential energy is large enough. In that case, bound states form, and there
is a solution of (2) with nonzero fermion density. In the literature, this is
sometimes called fermion nucleation. For scalars, similar logic leads to the
Breitenlohner-Freedman bound, which puts a constraint on the scalar mass
for the stability of the UV (with fermions, as we have seen, UV is always
stable), and in IR it similarly gives a criterion for forming hair [5]. We also
see from (14) and Fig. 1 that the potential well becomes shallower as k
grows, so the bound states only exist up to some maximum k = kF which
is really the Fermi momentum of the bulk Fermi sea.

From (12,14) we can understand the behavior of the effective potential.
In Fig. 1, we give the function V (s) in the whole space, from z = 0 (s = 0),
to z = zh (s = −∞). The fermionic modes fill the potential well until
they reach the energy E = 0. From (12), higher modes correspond to
higher momentum k. The fermionic density is thus given by a sum over
these bound states. The easiest case is in fact an extremely deep well: the
energy levels are so dense and so numerous that they can be approximated
by a continuum; this is called electron star limit. But the most interesting
regime is the one with only a few wavefunctions, which really describes the
transition to a hairy solution. This is a much harder nut to crack.

(A)
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Figure 1: Effective potential Veff , as a function of the tortoise coordinate
s ≡

∫ z
0 dzgzz(z), in the RN metric (A), and in the Lifshitz metric (B),

for q = 1, m = 0.4, µ = 1, and three momentum values increasing from
violet to blue to red: k = 1, 2, 3 (A) and k = 0, 5, 10 (B). In both cases,
the negative potential well becomes shallower and shallower and eventually
disappears as k grows, so we fill the bulk Fermi sea up from k = 0 to
some maximal k = kF . In the black hole background, the potential is
flat for s → −∞, which corresponds to the AdS2 near-horizon region and
signifies an instability as the bound states extend all the way to the horizon
(s = −∞). In the backreacted Lifshitz metric the potential grows for
s→ −∞, suggesting that deep IR is stable: the true vacuum is the Lifshitz
geometry, not RN. Taken over from [14].
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3. Fermionic hair

Now that we have convinced ourselves that hairy solutions, with finite
fermion density, have to exist, we need to solve the full system of Einstein,
Maxwell and Dirac equations to find them. Clearly, a more general ansatz
for the metric than (7) is needed now, and we will write it as

ds2 = −F (z)G(z)

z2
dt2 +

1

z2
d~x2 +

1

F (z)z2
dz2, (15)

leading to Einstein-Maxwell equations

1− F + zF ′/3− T tot
tt FG/3z

2 = 0 (16)

G′ + z(T tot
tt /F

2 + T tot
zz G) = 0 (17)

A′′t −G′/2GA′t + qn
√
G/
√
Fz3 = 0, (18)

where T tot
µν is the total stress-energy tensor, both from the electric field

(which is easy to find) and from the fermions (which is our big problem).
A typical situation in hairy problems is that formulating the physically
meaningful boundary conditions is not so easy. Notice the Einstein equa-
tions are first-order, so we need one boundary condition for each function
(F and G), whereas the Maxwell equation is second-order and requires two
boundary conditions. Let us now summarize what boundary behavior we
expect on physical grounds.

1. The AdS asymptotics for the metric and gauge field require F (z →
0), G(z → 0) = 1, At(z → 0) = µ. So far it’s all simple.

2. The main puzzle for the IR geometry is – does the horizon disappear
or not? At T = 0 we do not expect that the degenerate RN hori-
zon can survive. So we do not expect zeros in F,G but we do expect
their derivatives to vanish in order to have a smooth solution (finite
derivatives at z →∞ would likely give divergent curvature). Thus at
T = 0 we need F ′(z → ∞) = G′(z → ∞) = 0 or, in other words,
F (z → ∞) = const. + O(1/z) and likewise for G. At finite tempera-
ture, general GR arguments suggest there is a horizon at some z = zh
satisfying F ′(z → zh) = 4πT .

3. The IR behavior of the gauge field is related to the question: is all
the charge carried by the fermions, or the charge is shared between the
fermions and the horizon? The Gauss-Ostrogradsky theorem for the
AdS space, with a UV boundary and either a horizon or a smooth
far-away IR takes the form [12]:∮

∂
d3x
√
−h|z→0 ? F̂ =

∫
d4x
√
−gqn+

∮
IR
d3x

√
−hIR|z=zIR ? F̂ (19)

Here, ?F̂ is the coordinate-invariant flux of the 2-form F̂ , and hIR is
the induced metric on the surface normal to the radial direction at
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zIR = zh or zIR = ∞, depending on whether there is a horizon or
not. In principle, the IR charge might be shared between the horizon
and the fermions. However, we will find that in the semiclassical
calculation there are no solutions where the charge is shared – any
backreaction will always expell all the charge from the IR.

4. The boundary conditions for the Dirac equation present no problems
and are pretty standard in AdS space [13]. In the UV, out of the two
branches, we want the subleading one, with the motivation to preserve
the AdS asymptotics, i.e., to perturb the space as little as possible in
the UV. In particular, the near-boundary expansion of (11) gives

ψ1(z → 0) =
E + µq − k

2m− 1
A2z

5/2−m +B1z
3/2+m + . . .

ψ2(z → 0) = A2z
3/2−m +

E + µq + k

2m+ 1
B1z

5/2+m + . . . , (20)

so we pick A2 = 0, as the leading contribution for z → 0 comes
from the z3/2 term. In the IR, the metric determines the boundary
conditions: if there is a horizon, we need Ψ(z = zh)→ 0 for stability, if
not, then to avoid infinite energy density at large z we require ∂zΨ(z →
∞) = 0, for otherwise a nonconstant density profile would give rise
to a diverging curvature. The attentive reader should be alarmed:
this means two boundary conditions for each component (one in UV
and one in IR), but the equations are only first-order. The resolution
is that for given momenta, the energy is not arbitrary but fixed by
the dispersion relation E(k); thus solving the Dirac equation in an
effective potential well introducs energy quantization, as one would
expect.

What remains is to find the fermionic stress tensor. Since spinors couple
to the spin connection eµa and not directly to the metric, the stress tensor
is expressed as

Tµν =

〈
1

4
eµaΨ̄ΓaDνΨ + (µ↔ ν)

〉
, (21)

and the expectation value 〈. . .〉 reminds us that the fermions are never
classical. At zero temperature, the state is pure and can be represented as
the sum of (appropriately normalized) radial modes with energies E`, where
` is the radial quantum number, and the energies E` are all ≤ 0. At finite
temperature, the state is mixed and gets a contribution from both positive
and negative energies E`, with thermal weights w` = exp (−βE`) /Z, the
partition sum being Z =

∑
` exp(−βE`). With this in mind, we can wrote

out (21) as

Ttt = et0

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`ψ1;` + ψ†2;`ψ2;`

)
(E` + qAt)
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Tii = ei1

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`ψ1;` − ψ†2;`ψ2;`

)
k

Tzz = ez3

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`∂zψ2;` − ψ†2;`∂zψ1;`

)
. (22)

For brevity, we write ψ1,2;` ≡ ψ1,2(E`, k; z). We will consider in detail just
the T = 0 case, when the weights w` effectively just pick the ground state
and cut off all the others, but we will later discuss the results (without
details of the calculations) also at finite T . The spectrum is discrete and
gapped in the radial direction, so the integral

∫
dE/2π becomes a sum,

however in the transverse directions the system remains gapless, filling the
whole (spherical) Fermi sea in the k−momentum space, as long as the
dispersion relation E(k) = E` ≤ 0 is satisfied for some `. The highest
such k, for which E` = 0, is the Fermi momentum kF , and the possible
momenta are 0 ≤ k ≤ kF . It is this continuous quantum number k that
makes our life difficult. Here, indeed, our easy path comes to an end,
because a self-consistent calculation of the wavefunctions certainly cannot
be done in a closed form. Here we must resort to approximations. The
number of occupied levels N is a good guide on the kind of approximation
one needs to make. One can rephrase it as the ratio Q/q, where Q is the
total fermion charge

∫
d4x
√
−gqΨ†Ψ. The thermodynamic limit, where the

number of particles goes to infinity and the charge of an individual fermion
to zero so that N → ∞, q → 0, Q = Nq = const., is at one extreme. We
expect that the problem approaches the classical regime in this case, and it
will turn out to be true. The opposite limit is Q/q = 1, with just a single
excitation, the hairy black hole at birth. We expect this to be likewise a
simple limit, however it will turn out not to be quite true. In-between we
dial between the quantum mechanics of N = 1 and the classical field theory
of N →∞ [14].

Phase diagram. Before doing that, we can sum up our qualitative knowl-
edge on a phase diagram (Fig. 2). From (12-14), bound states form for small
enough m values (panel (A)); if (13) is valid beyond the probe approxima-
tion, the borderline is m = q

√
2. Left of this line there is a hairy solution,

to the right of it the AdS2 near-horizon region (and the whole RN black
hole) remain. The hairy solutions are best described in different ways de-
pending on the number of filled levels (N = Q/q); this is the topic od the
rest of this section. One can also plot the situation at finite temperature
(panel (B)). The phases remain the same; more precisely, the extremal black
hole becomes a finite-temperature black hole, and the hairy solutions also
smoothly develop a hairy horizon (thermal horizon with nonzero fermion
density n(zh)). What changes is the order of the phase transition: at T = 0
it is continuous, and at finite temperature it is discontinuous.
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(A)

DH

ES

Hol.Fermi
AdS-RN

1

Q

q

mL

q

Tuesday, June 7, 2011

(B)

Figure 2: (A) Phase diagram as a function of the total-to-fermion-charge
ratio Q/q (y-axis), and the fermion mass (in units of AdS radius L) over
charge ratio mL/q (x-axis). For large masses, the effective potential is pos-
itive and the ground state is the bald RN black hole, with quantum critical
dual field theory. For smaller masses, hair develops, which corresponds to
a Fermi liquid in dual field theory. For Q ∼ q (few wavefunctions), the
single-wavefunction Dirac hair approximation works; for Q/q →∞ we ap-
proach the semiclassical fluid (electron star) limit; between them there is
a smooth crossover with unclear properties, both in AdS and in the holo-
graphic dual. Notice different notational conventions for the total charge
from the main text (e vs. Q). Taken over from [15]. (B) Adding nonzero
temperature as the third axis, we obtain also the thermal phase transitions
between the black hole and the hairy solution, which are generically first
order, smoothing out to an infinite order (BKT) transition at T = 0 – the
red line in (B) is the bold black line between the RN and hairy (blue) region
in (A).

3.1. Quantum hairy black holes

A controlled approximation is to solve the problem perturbatively, at one-
loop order in fermionic fields. This is nothing but the textbook Hartree-
Fock (HF) method, but in curved space. Dynamical spacetime makes a big
difference: it introduces an additional strongly nonlinear component of the
system, making the solution landscape larger and less predictable, and the
UV and IR divergences can appear also in the Einstein equations and need
explicit regulators. In fact, this is still an open problem – nobody has yet
classified the solutions of the Einstein-Maxwell-Dirac system even in the
Hartree-Fock approximation, and we do not know what surprises might
lurk in this corner of the phase diagram. The HF electrodynamics contains
two diagrams, a vacuum bubble that renormalizes the chemical potential
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as µ̂(z) 7→ µ̂(z) + δµ̂(z) (the Hartree term):

δµ̂(z) ≡ q
N∑
`=1

∫
kdk

2π

(
ψ†1(E`, k; z)ψ1(E`, k; z) + ψ†2(E`, k; z)ψ2(E`, k; z)

)
(23)

and the exchange interaction (the Fock term). The explicit z-dependence
of the Hartree correction is a gory reminder that the problem is solved
in inhomogenous background. This is also the reason why already the
Hartree correction is nontrivial: unlike the textbook situation where the
shift δµ merely changes the numbers, here it is a radial function δµ(z) and
its influence is also qualitative. So far, nobody even tried to do the whole
HF calculation, and even just the Hartree term is not easy. We are plagued
(1) by the UV divergences introduced by the modes close to k = kF which,
as we have seen, peak most sharply near the boundary and can shatter the
AdS space into pieces if not properly renormalized (2) by the IR divergences
introduced by the modes with k close to zero, which extend far into large
z values and can make the system unstable to forming a naked singularity.

Hard-wall Fermi liquid. The only case which is under good control is
the hard-wall model of [12]: the UV divergences are resolved simply by not
backreacting on the metric, i.e. solving just the Maxwell-Dirac system in
fixed AdS metric (6) even without a black hole, and the IR divergences
disappear by cutting off the space at some arbitrary z0, so that we simply
elliminate the IR region. The approximations are rather drastic, but they
allow a complete solution. In pure AdS space, the solutions ψ1,2 can be
found analytically in terms of Bessel functions, the states form discrete
and gapped bands, and we only have to solve the Maxwell equation (18).
The outcome is given in Fig. 3. Hard wall acts as an infinite potential
barrier, so the wavefunctions should die on it, and the condition ψ1,2(z0) = 0
determines the dispersion relation. The wall should not be charged, so in
(19) the second term on the right-hand side equals zero, meaning that
A′t(z0) = 0. The picture is that of a Fermi liquid, nicely filling the Fermi
sea at momenta k ≤ kF and having long-living quasiparticles. This model
is an important starting point for more complicated setups, and has the
advantage of being intuitive, but by itself is too simplistic. Indeed, we
want to talk about hairy black holes, and here we don’t even have one, as
it is hidden behind the hard wall!

An attempt to study a simple setup but with a black hole was made
in [16]. In this approach, we are limited to a single energy level, ` = 1.
This is justified only when the hair is just starting to form, right at the
transition point. There is again no backreaction on metric, but the (fixed)
metric is now taken to be the RN black hole. This is actually a big jump
in difficulty: the wavefunctions oscillate near the horizon at any nonzero
energy (Fig. 4(A)), so they can satisfy the IR boundary condition at any
energy and momentum (we can always pick the phase so that ψ′(zh) = 0),
and the spectrum is continuous as there is no wall to create a gap. This
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is what forces us to consider the single-mode case: with the gapped hard-
wall model we could add a finite number of modes, but now there is a
continuum of them, N going to infinity even for arbitrarily small Q/q. The
only way out is to assume there one mode only and solve the resulting Dirac-
Maxwell system. This setup is convenient for understanding the transition
itself, which turns out to be discontinuous (first-order) at finite temperature
(Fig. 4(B), and likely infinite-order (Berezinskii-Kosterlitz-Thouless, BKT)
at zero temperature, as we shall soon see.

(A) (B)
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Figure 3: (A) Dispersion relation E`(k) for the first two electron bands
` = 1, 2 in hard-wall AdS space, for µ = 1,m = 1, q = 2. The first band
from bottom is the hole band, not an an electron band – its contribution can
be absorbed in the redefinition of the parameters and it does not contribute
to hair. The colormap shows the resolvent of the Dirac operator, (DzΓ

z +
~D · ~Γ−m−E)−1, thus the bright white regions show the places where the
resolvent diverges and a discrete bound state is formed. The horizontal axis
is the momentum and the vertical axis the energy, both in computational
units. (B) Wavefunctions ψ1,2 (here for ` = 1 and k = 1) are smooth
everywhere - what happen exactly at the horizon we do not know in this
model, as the space is cut off at z = 3.

Quantum electron star. The single-mode approach has taught us a les-
son: already at the level of the gauge field only, the changes from the finite
fermion density are drastic, and the resulting stress tensor is large at the
horizon, so a change of the black hole metric is certainly expected. How-
ever, when we try to solve the Einstein equatioons, things become almost
intractable. Both UV and IR divergences appear: the former because the
currents diverge in continuous space, and the latter because the discrete
bands fuse into a continuum in IR. The latter issue is most easily regu-
larized by a hard wall, but a hard wall does not make much sense if we
want to backreact on geometry. The regularization of the UV divergences
is systematically discussed in [17, 18] and the bottom line is that there is
a logarithmic short-distance divergence which can be regularized by point
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Figure 4: (A) Wavefunctions ψ1,2in RN background, for ` = 1 and k = 1,
always oscillate and approach an essential singularity at the horizon, which
indicates an instability: the metric changes and the degenerate horizon
disappears. (B) The bulk action (or free energy F , from AdS/CFT cor-
respondence) of the Maxwell (electric field), in blue, consists of the bulk
and boundary contribution (dark green and red), the former practically
identical to the contribution from fermions. All these are computed from
the action (2-4). While the total free energy is continuous, it has a cusp,
made manifest by the slight jump in density (black), a sign of first-order
hair-forming transition.

splitting; in this procedure the cosmological constant becomes renormal-
ized. This is not a drastic change: it will just change the numbers but
not qualitative behavior. The IR problem is still unsolved. The approach
of [18] is to put the system in global AdS space4 whose radial slices are
spheres, not planes, so the AdS radius provides a regulator. A perhaps
more physical approach, motivated by consistent truncations from string
theory, is to introduce a non-minimally coupled scalar, i.e., a dilaton that
introduces a soft wall and suppresses the IR degrees of freedom in a con-
tinuous way, without an abrupt cutoff at some z0, so the total bulk action
is now

Sbulk =

∫
d4x
√
−g

[
R− V (Φ)− 1

2
(∂Φ)2 − Z (Φ)

4
F̂ 2
]
−

−
∫
d4x
√
−gΨ̄

(
1

2
DaΓ

aeΦ +
1

2
eΦDaΓ

a +m

)
Ψ, (24)

where the dilaton potential reproduces the AdS cosmological constant near
the boundary, i.e., Φ(z → 0) = 0 and V (Φ → 0) = 6, Z(Φ → 0) = 1. It
is not clear if one can ever remove the IR regulator. That is precisely the

4Dual field theory then lives on a sphere instad of a plane.
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reason that we regard the dilaton regulator as more physical, since string
theory constructions as a rule contain non-minimally coupled scalars, and
the action (24) can be obtained by consistent truncation; whereas global
AdS is essentially an ad hoc solution, though a very interesting one, with
possible applications in AdS/condensed matter duality, where systems that
live on surfaces (such as a sphere) appear naturally.

While this is still very much a work in progress,5 preliminary results
suggest that the RN-to-hairy-black-hole transition at zero temperature is
an infinite-order (BKT) transition, where all derivatives of S remain smooth
(Fig. 5). This is the point where the potential just starts deviating very
slightly from the flat IR behavior in Fig. 1(A). At the end of this section we
will try to understand this (still conjectural) numerical finding analytically.

3.53.02.5

3.52

3.53

3.54

D

F

Figure 5: The bulk action (here denoted as free energy F , from AdS/CFT
correspondence) as a function of the fermion mass (here denoted as ∆ =
3/2 + m) is very well fit by the BKT function exp(−c/

√
∆c −∆). The

parameter c is determined by the chemical potential (we plot for three val-
ues mu = 1.0, 1.5, 2.0 in violet, blue, green). To the right of the transition
point the action is independent of m as there is no hair, fermion density is
zero, and so nothing depends on the fermion parameters. To the left of the
transition point, the fermions form hair of nonzero density. Nobody knows
yet how the near-horizon metric changes.

3.2. WKB star and electron star

WKB approach. We have followed the logical chain of reasoning from the
point where the hair starts growing, having Q/q ∼ 1 and deforming the
black hole just a slight bit, towards larger and larger hair, eventually reach-
ing the regime Q/q � 1. But this last regime is the easiest to approach,
as the fermions become as close to classical as they can possibly be. A
good starting point is the controlled expansion in h̄, where we solve the

5With N. Chagnet, V. Djukić and K. Schalm.
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Dirac equation in the eikonal approximation or, in other words, the WKB
approach [15]. We express the wavefunction as

ψ1,2 = eıθ±/
√
p, p ≡

√
Ê2 − m̂2 − k̂2, (25)

where p has the role of the canonical momentum. The wavefunction is
nonzero between the turning points z±, determined by the equation p(z±) =
0. The explicit from of the phase θ± as well as higher-order corrections to
the phase can be found in [15], but the reader should in fact have no diffi-
culty in deriving them, following the usual WKB procedure (though for the
Dirac equation instead of the Schrödinger equation). Now the density and
pressure are found by inserting the solution (25) into (22). The procedure
can be iterated to obtain self-consistent solutions, but now we solve the
whole system including the Einstein equations. It is instructive to plot the
total on-shell action (2) as a function of temperature (remember that finite
temperature is imposed through the corresponding boundary condition for
the metric function F ).6 Fig. 6 plots the dependence F(T ) in the vicinity
of the transition value Tc: the derivative ∂F/∂T undergoes a jump which is
nothing but the entropy S ≡ ∂F/∂T . We thus find a first-order phase tran-
sition at the point when Fermi hair starts forming. Of course, don’t forget
that the WKB approach is in fact not to be trusted very near the transition
point: at the transition N changes from 0 to 1, which is far from the regime
N � 1. But the qualitative insight that at finite temperature the system
undergoes a non-symmetry-breaking transition is likely robust and we ex-
pect to prove it also within the more rigorous fully quantum-mechanical
approach of the previous subsection. It is a hairy version of the celebrated
Hawking-Page transition [19], and confirms the intuition that the high-
tmeperature phase is always a black hole; but now, the low-temperature
phase is not simply a gas, but a dense fluid in AdS.

Ploting the density and pressure in Fig. 7(A), one finds that for high
values of N they tend to a constant value in deep interior. This motivates
the fluid ansatz taken in the electron star limit, now to be considered.

Electron star. Electron star is a charged, AdS version of the neutron
stars, described as perfect fluid by the Oppenheimer-Volkov equations. The
idea is to assume that the fermionic matter is a perfect fluid, and then ex-
press the energy density ρ, pressure p and charge density n in terms of
integrals over energy and momenta (i.e., assume that the bound states are
infinitely close, and the gaps between them vanish). The fluid approxi-
mation thus becomes exact in the limit of N → ∞, as we expect from a
semiclassical approximation. Anticipating the current and stress tensor of
the form

Tµν = (ρ+ p)uµuν + pgµν , Nµ = nuµ, (26)

6In AdS/CFT, the bulk on-shell action S precisely equals the free energy F of the
CFT side. But even without considering the details of the CFT, we can still make use
of this interpretation to detect a phase transition in the system.
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Figure 6: (A) The on-shell action or free energy as a function of tempera-
ture, in the presence of fermions. For low temperatures, the fermion density
is finite and the derivative ∂F/∂T jumps at T = Tc, a sign of first-order
transition with the development of the hair. This is in line with the Dirac
hair result in the previous figure, and indeed for the lowest number of levels
NWKB the transition is the sharpest. In (B) we zoom in into the transition
region.

we can write the density starting from (22) and making use the optical
theorem to relate it to the imaginary part of the Feynmann propagator
GF . This spells out as

ρ =

∫ Ê2−k2

0

dE

2π

∫ kF

0

d3k

(2π)3
Ê=TrıΓ0GF (E, k)

=

∫ Ê2−k2

0
dE

∫
k2dk

4π3

1

2

(
1− tanh

(
β

2
Ê

))
Tr(ıΓ0)2δ

(
Ê −

√
k2 +m2

)
=

1

π2

∫ µ̂

m
dEE2

√
E2 −m2. (27)

We similarly find the number density n, whereas the pressure need not be
computed explicitly: since we work with an isotropic free Fermi fluid, its
equation of state has to be p = ρ − qnµ̂. It is here that the approximate
nature of the electron star with respect to the WKB star becomes obvious
(Fig. 7): in WKB star there is an extra term in the pressure, coming from
the nodes of the WKB wavefunction. One can check that the integral in
(27) indeed approaches a constant as we go into deep interior. On the other
hand, at some z∗ when µ̂(z∗) = m the density falls to zero: the star is a
classical object and has a sharp border. So for 0 < z < z∗ we continue the
metric to the RN metric (the metric outside a charged isotropic object).

Since we can express n, ρ, p explicitly, we get a nice system of local
ordinary differential equations in F,G,At, with all quantum expectation
values pulled under the rug. This completes the circle, and brings another
universal message: due to Pauli principle, fermionic operators are never
local, except in two extreme cases: when only one state is occupied (so the
format of the Slater determinant is 1×1, i.e., it contains a single state), or
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when infinitely many states are occupied, so the Slater determinant turns
into a classical, continuous probability density. In Fig. 7 we can see how
the WKB solution captures the quantum ”tails” near the turning points,
which the electron star does not have. It is also instructive to compare this
solution to the Oppenheimer-Volkov equations in flat space: in the latter
case, m̂ ∼ 1/

√
F is always larger than µ̂ ∼ 1/F

√
G, unlike in AdS where

m̂ ∼ 1/z
√
F and for z > z∗ it becomes smaller than the local chemical

potential, so the integral in (27) has a nonzero range. This is because
AdS acts like a potential box that can hold the charged fermions together
against electrostatic repulsion. In flat space that does not happen, and we
have only neutron stars, not electron stars.
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Figure 7: (A) Density of the finite temperature WKB star at various fillings
NWKB; besides the classically allowed region, there are also exponentially
decaying tails in the classically forbidden region, where Veff > 0. (B) In
the electron star (fluid limit), there are no such tails and the star has a
sharp border. Taken over from [15]. (B) Comparison of the WKB solution
(full lines) and the electron star solution (dashed lines) at the same chemical
potential, fermion charge and mass. We plot the metric functions f, h (F,G
in the main text) in red and violet, the gauge field Φ (At in the main text)
in green, and density and pressure n, p in blue and dark green. The metric
solutions do not differ much, despite the long quantum WKB tails, absent
in the electron star.

3.3. Lifshitz metric, BKT transition and the missing pieces

In the framework of the electron star model, the Einstein-Maxwell equations
can be solved analytically, thanks to the fact that, in deep IR, n, ρ, p =
const. and we can employ a scaling ansatz for the metric. The idea is to
match the IR expansion around the scaling solution to the UV expansion
around pure AdS. With ansatz of the form gtt ∝ −1/zα, gii ∝ 1/zβ and
gzz = 1/z2 (one metric component we can fix at will as it amounts to
picking the gauge for the metric), equations of motion give the IR solution

ds2 = − 1

z2ζ
dt2 +

1

z2
d~x2 +

1

zζ
dz2
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At =
1

zζ
, L =

2

z2ζ
+ 6− ∂zA2

t − nA2
t − p⊥, (28)

where in the expression for the total Lagrangian density in the second
line, we have inserted in the action (2) the solutions for the metric and
the gauge field, as well as the constant (z-independent) solution obtained
for ρ in (27) and similarly for n, p. Three important conclusions can be
drawn: (1) the IR metric is scale-invariant, with anisotropic scaling of time
and space, so that the scaling transformation has the form t 7→ λt, ~x 7→
~xλ1/ζ (2) the on-shell Lagrangian density effectively describes a massive
vector field, with mass squared equal to fermion density n (3) the fermionic
contribution to the action equals the pressure. The second point agrees
with the known result that Lifshitz black holes are generated by Proca
fields [21], and what happens is the Abelian-Higgs mechanism: fermion
density acquires a finite expectation value which in turn breaks the U(1)
symmetry, giving the photon a mass. The third point is expected within
a fluid model, since the action of an ideal Lorentz-invariant (semi)classical
fluid equals its pressure [7]. In the fluid limit we can also understand the
first-order transition at finite temperature, because it is just a van der
Waals-type liquid-gas transition.

We have seen that the thermal transition from RN to a Lifshitz black
hole is of first order, and that the T = 0 transition is apparently a BKT
(infinite order) transition. The latter is not quite clear yet because, as
we have emphasized, nobody has yet managed to peek into the deep IR,
it remains hidden behind the hard wall. But if we tentatively accept the
numerical evidence for the infinite-order transition, can we understand it
theoretically? The key lies in understanding how the AdS2 throat dis-
appears. The conformality-breaking mechanism of [22, 23] gives an idea,
though the details are still missing. The crucial moment is that the near-
horizon geometry is AdS2. Right at the horizon (s → −∞) the potential
is approximately constant. In the UV of the AdS2 throat, which is around
some finite value s0, the potential behaves as −c/(s − s0)2. This inverse-
square potential is known to describe conformal quantum mechanics when
c > −1/4. For c = −1/4 the conformal invariance breaks. discrete states
appear and the effective potential is not consistent unless regularized as

Veff =
c

(s− s0)2
− vδ(s− s0), (29)

and the solution of the effective Schrödinger equation is

ψ(r) = c+(s− s0)α+ + c−(s− s0)α− , α± =
1

2
±
√
c+

1

4
, (30)

and the ratio c+/c− is given in terms of Bessel functions J1/2 and J−1/2:

c+

c−
= −εα−−α+

γ + α−
γ + α+

, γ =
√
v
J1/2(

√
v)

J−1/2(
√
v)

(31)
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The solution (30) diverges at s = s0 unless we introduce a cutoff at some
distance ε from s0. Imposing the renormalization condition that c+/c−
remains independent of ε, we get the β-function of the renormalization
group as (` being the RG scale):

β ≡ dγ

d`
= (c+ 1/4)− (γ + 1/2)2. (32)

And we’re done: the fixed points of the above flow equation are easily found
to be −α∓. For γ = −α∓ we get the solution for ψ from (30) with c± = 0
respectively. The free energy scaling is obtained as Son−shell = F ∝

∫
d`/β,

which gives just the form found in Fig. 5. However, the presence of both a
hard-wall cutoff in z and the soft-wall dilaton, completely unaccounted for
in the above analysis, clearly suggest more work is needed for everything
to click together.

4. Wormholes with fermion hair

The lengthy review we have given so far is meant to be self-contained and
helpful for those interested in understanding and contributing to the prob-
lem of black hole instabilities with fermionic matter. As we have seen, it
contains some puzzling questions and is of more than technical interest (af-
ter all, the whole field has been active mostly for the last fifteen years or so).
But we also want to point out that with the methodological powerhouse of
the HF, WKB and fluid methods, one can tackle new problems. A recent
issue where fermions at finite density seem very relevant is the search for
traversable wormholes.

The motivation for this story lies mainly in the celebrated black hole
information paradox: as far as we know, the Hawking radiation is ther-
malized, meaning that the information content of the matter falling into
the black hole is lost. A possible way out or, at least, a way to better un-
derstand the issue, is to consider the maximally extended Carter-Penrose
diagram of a black hole, which contains two horizons and two spacetimes. If
transport between the two were possible, one could imagine that the infor-
mation is not lost because the matter falling into one horizon is entangled
with the matter on the opposite side. This is the idea of the ER=EPR
conjecture [24]. In order to build a traversable wormhole, one needs neg-
ative that the stress-energy tensor averaged over a geodesic be negative,
thus violating the so-called averaged negative energy condition (ANEC)
[25, 26]. This will never happen with conventional classical matter. One
needs either exotic fields or quantum corrections. Recently however, a few
traversable wormholes have been realized with only standard-model matter.
The most ”conservative” is the setup of [27] which creates negative energy
by considering a particle-hole symmetric spectrum of massless fermions in
a mangetic monopole field: because of the negative Landau levels, the net
energy is negative. The starting point is thus a pair of magnetically charged
RN black holes with magnetic charges H and −H, with the hope that the
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negative energy Landau levels will push the averaged stress tensor to large
enough absolute values to open up a wormhole. In this way, [27] constructs
a quasi-stationary (long-living) wormhole in assymptotically flat space. In
AdS, negative energy density can easily be constructed by coupling the two
boundaries nonlocally: in this way temporary wormholes, opening up for
the finite duration of the pertrubation, can be constructed [28], and even
eternal wormholes are possible but at the cost of much more exotic bound-
ary CFTs and their couplings [29, 30, 31]. Here we are interested in making
a wormhole in a more ”down-to-earth” manner, by growing negative-energy
fermion levels as in [27]. The task is to make such wormholes more stable,
and to see if they survive at higher fermion density rather than just a single
wavefunction as in [27]. Here the previously develped methods can help us.

Magnetic electron star. The crucial consequence of the magnetic field is
the Landau quantization. The motion along the x-coordinate is quantized
into discrete levels, whereas the motion along y is not quantized and intro-
duces degeneracy. The quantization along x-axis makes our life somewhat
easier – even without any IR cutoff the ground state wavefunction now
has a discrete quantum number, the Landau level mj . The magnetic field
breaks the spherical symmetry of the wavefunctions down to cylindrical, so
it is convenient to introduce the polar angles θ, φ:

ds2 = −A(z)dt2 +B(z)dz2 + C(z)
(
dθ2 + sin2 θdφ2

)
(33)

and to pick a different gamma matrix basis: Γ0 = ıσ1 ⊗ 1̂, Γ1 = σ2 ⊗ 1̂,
Γ2 = σ3 ⊗ σ1, Γ3 = σ3 ⊗ σ2. Separating the variables and representing the
wavefunction as

Ψ =
j∑

mj=−j
(ψ+ (mj ; z) , ψ− (mj ; z))⊗ (η1 (mj ; θ) , η3 (mj ; θ)) e

ımjφ, (34)

where j is the total number of Landau levels j = (H − 1)/2, we get the
fully spin-polarized solution (η2 = 0) for zero fermion mass:

ψ±(mj ; z) = exp

(
±ıE(mj)

∫ z

0
dz′

√
B(z′)

A(z′)

)
, (35)

η1(mj ; θ) =
eıH sin θ/2

√
sin θ

(
tan

θ

2

)mj

.

For nonzero mass, we can perform a Foldy-Wouthuysen transform starting
from the above solution. Unlike the massless case considered in [27], the
resulting stress-energy tensor will not be traceless, but that is precisely
what will guve us extra stability. The reason this is consistent is the Landau
quantization: the levels for different mj are gapped from each other and
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each Landau level can be treated as a single-particle solution which does
not mix with other Landau levels. This results in the stress tensor

〈Tzz〉 =
En

(1 + z2)2
(sin 2α− cos 2α) , tanα = −m/E(mj). (36)

Fig. 8(A) shows the radial pressure Trr as a function of energy, the outcome
being that positive stress energy tensor is produced for 0 > E > −m. In
order to avoid this positive contribution, the Landau level spacing has to
be large enough, i.e., larger than the mass gap (at zero mass this condition
is trivially satisfied, as it simply means that any finite E(mj = 1) will do;
this is the case studied in [27]). The simplest gapping mechanism we can
think of is the chemical potential, i.e. an electrostatic field in addition to
the magnetostatic one. The black hole thus has to become dyonic, with
magnetic charge H and electric charge e. Assuming we have ensured the
negativity of (36), we can write it in the form Tzz = −τ/(1 + z2)2, with
τ a positive constant. Its magnitude roughly determines the size of the
wormhole opening.
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Figure 8: (A) Radial component of the stress-energy tensor 〈Trr〉 as a
function of the (discrete) fermion energy E. Positive contribution only
comes when > E(mj) > −m. In order to avoid this range of energies we
need a nonzero chemical potential (i.e., electric field, resulting in a dyonic
black hole) to stabilize the wormhole with massive fermionic hair. (B)
The solution for the metric component gtt in the intermediate region, as
a function of the radial coordinate r, for τ = 0, 0.05, 0.10 (black, blue,
red). Wormhole solutions (blue, red) are quantitatively very close to the
unperturbed black hole (black) but qualitativrly different as there is no
zero anymore.

Wormhole solution and matching. Having computed the stress-energy
tensor (36), we can solve the Einstein equations. The strategy is again
matching the expansions, but now we have three regions: the far region
which is asymptotically AdS or even flat (we have mentioned that in the
presence of magnetic field discrete bound states can form even in absence of
AdS boundary), the intemediate region is a slightly perturbed near-horizon
AdS2 region of our magnetic RN geometry, and the inner region, the worm-
hole throat that opens up, turns out to be a global AdS2 at leading order,
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so it has a spherical boundary continuing onto the intermediate regions.
The inner, near-global-AdS2 metric in the form (33) at leading order reads

A(z) = R2
0

[
1 + z2 − 8πτ

(
z2 +

(
3z + z3

)
arctan z − log

(
1 + z2

))]
B(z) = R4

0/A(z), C(z) = R2
0 [1 + 8πτ (1 + z arctan z)] . (37)

This solution is to be matched to the intermediate-region solution. Now
large z corresponds to the wormhole mouth, i.e., the matching is to be
done at large z, where small z is the ”center” of the wormhole throat. The
solution to match onto is the RN black hole metric:

ds2 = −l2f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
l =

R0

2π2τ
, R =

r −
√
π
√
e2 +H2

2π2τ
. (38)

The solution thus exists for any choice of e and H. But for large e (in
other words, for a large chemical potential), the density of the hair will
increase significantly and we should repeat the WKB star or electron star
approach. in AdS this is a simple matter, proving the stability of the
configuration even at high densities. The interesting question is, can it
work also in assymptotically flat space? In absence of magnetic field, the
answer is certainly no – without an AdS boundary, there is nothing to
equilibrate the electrostatic repulsion of electrons. But in the presence of
magnetic field, one might obtain a stable charged hairy wormhole if the
change in the near-horizon geometry is sufficient to effectively decrease the
electrostatic energy density. This is the logical immediate task for future
work.

We finish this short review of our work in progress on hairy wormholes
with a somewhat more ambitious task. The dyonic wormhole model consid-
ered here is obviously quite simplistic and artificial. A much more realistic
model is to start from a pair of Kerr black holes and see if these can open
up a wormhole in a manner analogous to the scenario we have considered.
In this case the magnetic field would be generated self-consistently by the
(rotating) fermionic hair, removing the need for the magnetic monopole
charge. Such an object would come much closer to realistic astrophysical
matter.

5. Instead of a conclusion

We have given a crack and practical review of the insights and technolo-
gies needed to describe and understand hairy black holes in anti-de Sitter
space. The phase diagram in the presence of nonzero fermion density is
quite rich, and it involves two deep and universal phenomena. First, the
finite-temperature hairy black holes develop through a discontinuous phase
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transition akin to the Hawking-Page transition (indeed, it is precisely the
Hawking-Page transition but at finite density). The standard lore that at
high enough temperatures black holes will always form is confirmed. Notice
this is true at any fermion mass and charge, and thus at any occupation
number, from a single wavefunction to the fluid limit, so the finding is
definitely robust. Second, at zero temperature the transition is driven by
the fermionic charge and/or chemical potential, i.e., electric charge of the
black hole. In this case the black hole vanishes infinitely slowly, in a BKT
transition that can be understood as the breaking of the one-dimensional
conformal symmetry of the wavefunctions in the effectve inverse-square po-
tential well. This is solely the consequence of the near-horizon physics,
independent of the AdS boundary. Similar conformality-breaking infinite-
order transitions are known in various backgrounds in string theory. Maybe
one could relate the case described here to some consistent top-down model.

As mentioned in the Introduction, we have deliberately left out exten-
sions and applications of the formalism described, for reasons of space and
also generality of discussion. The field of applications closest to our expe-
rience is the AdS/CFT correspondence. Electrically charged black holes
are dual to field theories at finite U(1) density. The transition from a bald
black hole to a hairy black hole is thus a transition between two phases at
equal chemical potential. How do they differ then? We know that a black
hole is dual to the Coulomb (deconfined) phase of some non-Abelian finite-
temperature gauge theory [1, 4]; in the simplest setup coming from type
IIB string theory, it is the N = 4 supersymmetric SU(N) theory. Coulomb
phase means that the U(1) charge is carried by SU(N)-gauge-charged op-
erators, in our case fermions (”mesinos”) and thus not visible to low-energy
probes, since at low energies all operators are likely SU(N)-gauge-neutral.
The hairy phase describes a dual field theory where the charge is carried
by gauge-neutral operators (”baryons”) and thus visible to probes such as
a photon. This viewpoint was tried and confirmed in [11, 12, 15, 23]. It
has realizations in condensed matter systems such as strange metals and
heavy fermion materials. In this case, the gauge fields are emergent and
arise from the spin-charge separation, and the transition between a black
hole and a hairy geometry is a transition between a non-Fermi liquid, where
most of the charge is carried by complicated excitatons that are nor directly
seen in the spectrum, and a Fermi liquid where the fundamental degrees
of freedom are just renormalized electrons. In QCD, this picture describes
the phase diagram at intermediate energy scales and finite densities, where
a black hole describes quark-gluon plasma, and a hairy solution describes
either the color condensate or conventional barionic matter depending on
the details of the model. One can learn a lot on AdS/condensed matter
and AdS/QCD from [5, 6].

Finally, the search for wormhole solutions and how fermionic hair might
stabilize them is likely to become very important in the future, in connec-
tion to the quantum information theory and the firewall, ER=EPR and
other approaches to the black hole information problem. One can use much
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of the formalism developed for hairy black holes, but the interpretation is
still challanging. It is also unclear how realistic the wormhole proposal is
if we work with only conventional, standard model matter, i.e. is it just an
important proof of concept or a realistic model?
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Averaging, gravity and 
all that

● Exciting story of the black hole information problem and the 
Page curve (2019-present)

● In a nutshell: black hole evaporation reproduces the Page 
curve if the semiclassical partition function includes nontrivial 
spacetime topologies – wormholes 

● Wormholes lead to the factorization problem in AdS/CFT:

Z= +Z 2
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Averaging, gravity and 
all that

● Exciting story of the black hole information problem and the 
Page curve (2019-present)

● In a nutshell: black hole evaporation reproduces the Page 
curve if the semiclassical partition function includes nontrivial 
spacetime topologies – wormholes 

● Wormholes lead to the factorization problem in AdS/CFT:

● Is gravity an ensemble average?

● Is the ensemble fundamental (=disorder) or emergent 
(chaotic dynamics)?

⟨Z ⟩= +⟨Z 2
⟩=



  

Averaging and IIB matrix 
model

● The matrix formulation of type IIB string theory – Ishibashi-
Kawai-Kitazawa-Tsuchiya (IKKT) model

● Perfect testing ground for our puzzle:

 - rich dynamics (full nonpertrubative string theory?)

 - 0-dimensional – no derivatives simpler path integral       
   structure than dynamical models

 - toy models for string theory vacua and black hole solutions

● Inspired by the 0-dimensional (time-frozen) SYK model 
(Saad, Shenker, Stanford & Yan [2103.16754])

● Wormholes and half-wormholes found in 0-dimensional SYK 
but hinge crucially on the Majorana-only structure of the 
model



  

Outline
● Setup: semiclassical D-brane solutions in the IKKT model

● Replicas in the partition functions – wormholes vs. half-
wormholes vs. fraction-holes

● Fraction-holes re-establish factorization and always dominate 
the ensemble in our examples
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IKKT model

● Discretization of the Schild action for type IIB string theory 
in 0 dimensions:

     – bosonic coordinates           Hermitian matrices            
     – Majorana-Weyl spinors           Hermitian matrices    

N. Ishibashi H. Kawai Y. Kitazawa A. Tsuchiya

S=
1
4
[X μ , X ν ]

2
+

1
2
Ψ̄αΓμ [ X

μ ,Ψα ]+β

μ=1…10, α=1…16
X μ N×N
Ψα N×N



  

IKKT model for D-branes
● Discretization of the Schild action for type IIB string theory:

● Non-perturbative formulation of string theory?

● Remember: IIB string theory has      brane excitations with    
    odd:           – D-instantons,         – strings, etc.

● Single       brane solution of the matrix model (IKKT 1997, 
Aoki, Iso, Kawai, Kitazawa, Tada & Tsuchiya 1999):

● Multiple      branes: block-diagonal matrices   

S=
1
4
[X μ , X ν ]

2
+

1
2
Ψ̄αΓμ [ X

μ ,Ψα ]+β μ=1…10, α=1…16

D p

p p=−1 p=1

D p

X μ=(Q1 , P1 ,Q 2 , P2…Q( p+1 )/2 , P( p+1 )/2 ,0,…0 ) , [Qμ , Pν]=i ω
μ ν

N
D p

Qμ →

Qμ 1

Qμ 2

Qμ 3

Qμ M

…

stack of M  D p  branes



  

Quenching of the IKKT 
model

● Divide the fields into slow (quenched, semi-classical) and 
fast degrees of freedom:

● Partition function summed over fast variables only;      play 
the role of semiclassical background fields

● Inspired also by the derivation of the IKKT model from 
discretized 10d Yang-Mills (Eguchi&Kawai 1982, Parisi 1982, 
Gross&Kitazawa 1982)

● Averaged quantities: 

● What is the relation of        to    ? If             then     is "self-
averaging".   

X μ=Aμ+aμ Z = ∫DX μexp (−iS [X μ ]) → ∫ Daμ exp (−iS [Aμ , aμ ] )

Aμ

⟨Z ⟩=∫ DAμ∫ Daμ exp (−iS [Aμ , aμ ])

Z⟨Z ⟩ ⟨Z ⟩∼Z Z



  

Outline
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The question
● IKKT model with quenching

● Background fields: solutions for      branes and stacks of 
wraped     branes

● Expanding the action for small fluctuations    :

● The central question: are the partition functions and 
correlation functions self-averaging? Do they factorize?

⟨Z n ⟩ ?≈? ⟨ Z ⟩n + small corrections

aμ
S = S [AD p

μ , aμ ] = S0 [ AD p ] + aμ Kμ ν [AD p ]a
ν
+ …

D p

D p



  

Setup
● Single      brane (string):

● Assume        are random Hermitian matrices with eigenvalue 
distribution     

● Partition function diverges without a cutoff on

● Often in the literature:     is uniform in the interval

● (Hyper)Gaussian distribution     more amenable to analytical 
work and also arises in a controled way in some setups  

● Compute               vs.  

[−L , L]

S=aμ ( P̂α P̂
α
δμ ν+2 F̂μν )a

ν , P̂α= [Pα ,⋅] , F̂μ ν= [ [Pμ , P ν ] ,⋅]

D1

A1=Q , A2=P , A3=…=A10=0, [Q , P ]=
i

2π L
A1,2

℘(λ i
1,2
) , i=1…N

λ i
μ

℘

℘(λ i
μ
)=exp [ (λ iμ−λ0 )

2m
/2 L2 ] with m=1,λ0=0

Z , Z 2 , Z 4 ⟨Z ⟩ , ⟨Z 2
⟩ ,⟨ Z 4

⟩

℘



  

Collective field 
formalism

● Partition function:

● Can solve exactly for Gaussian eigenvalue distribution (       )

● But we want a general formalism for                  and more 
complicated backgrounds

● The trick: collective fields – used for SYK and similar models 
(Sachdev et al 2017, Saad-Shenker-Stanford-Yao 2021) 

⟨Z ⟩=∫ Daμ∫ Dλ i∏i< j
(λ i−λ j)

2 exp[−aμij (λi2+λ j2 ) aμkl−δ ik δ jl λ i
2

2 L2 ]
m=1

⟨Z 2
⟩ , ⟨Z 4

⟩

⟨Z ⟩=∫ Daα∫D λ i exp [−aμP 2
(λ i )aμ ]℘ (λ i )

W=
1
2

log det ( I2 L
2
+2 aμ

+ aμ−2 I Tr aμ
+ aμ+higher order)



  

Collective field 
formalism

● The trick: collective fields – used for SYK and similar models 
(Sachdev et al 2017, Saad-Shenker-Stanford-Yao 2021)

● Solution:

● For       this is not a very useful result, it merely estimates 
the strength of the fluctuation

● Higher-order corrections likely just small pertrubations

● But the formalism works also for 

⟨Z ⟩=∫ Daμ∫ Dλ i∫ Dg exp[−aμP 2aμ−
4

L2 N−2 (Tr g−Tr aμ aμ )] δ(g−aμ aμ)℘(λ i)
⟨Z ⟩=∫ Daμ∫ Dλ i∫ Dg∫ Ds exp[−aμ P2aμ−

4

L2 N−2 (Tr g−Traμ aμ )−i s (g−aμ aμ)]℘(λ i)
⟨Z ⟩=∫ Dg∫ Ds exp [−1

2
log det s−i s g−

4

L2N−2 Tr g ]
s=2iT I , g=

L2 N−2

4
I

⟨Z n ⟩

⟨Z ⟩



  

Two-replica system
● Two replicas – left (L) and right (R) system

● Now collective fields have the replica index               : 

● Integrating out the fluctuations and averaging:

● Fourth-order potential:

A∈{L , R}

W=aA P
2a A+V (g AB )−V (aAaB )+isAB( g AB−aAa B)

⟨Z 2
⟩=∫ daA

μ∫ Dg AB∫ DsAB exp [−i s AB g AB+ i sABa AaB−V (g AB ) ]

⟨Z 2 ⟩=∫DaA
μ∫ Dλ i∫Dg AB∫DsAB e

−W ℘(λ i)

V 4=
2

L2 N−2 Tr (g L L+ g RR)+
4

L2 N−4 Tr( g L L+g RR)
2
−

4

L2 N−4 Tr ( g L L
2
+g L L g RR+g RR g L L+ g RR

2 )



  

Two-replica system
● Two replicas – left (L) and right (R) system

● Now collective fields have the replica index               : 

● Integrating out the fluctuations and averaging:

● Fourth-order potential:

● Disordered and non-disordered component:

A∈{L , R}

W=aA P
2a A+V (g AB )−V (aAaB )+isAB( g AB−aAa B)

⟨Z 2
⟩=∫ daA

μ∫ Dg AB∫ DsAB exp [−i s AB g AB+ i sABa AaB−V (g AB ) ]

⟨Z 2 ⟩=∫DaA
μ∫ Dλ i∫Dg AB∫DsAB e

−W ℘(λ i)

V 4=
2

L2 N−2 Tr (g L L+ g RR)+
4

L2 N−4 Tr( g L L+g RR)
2
−

4

L2 N−4 Tr ( g L L
2
+g L L g RR+g RR g L L+ g RR

2 )

⟨Z 2
⟩=∫ dsABΦ(s AB , aAaB)χ (s AB , g AB)



  

Four-replica system
● Replicas L, R, L', R'

● Only     contributes further replicas:

● Four-field combinations appear:

● Effective action:

● Solutions

 - trivial solution:

 - wormhole:

 - half-wormhole:

 - wormhole + half wormhole:

Φ ⟨Z 4
⟩∝⟨Φ

2
(s AB , aAaB) ⟩

GAAB ' B '≡a AaAaB' a B ' , S AAB ' B '

W 4=
1
2

log det sAB+
1
2

log det sA' B '+
1
2

log det S AAB ' B '−i S AAB ' B 'G AAB ' B '+
8

L2 N−4 Tr g AATr g BB−
4

L2 N−4 TrGAAB ' B '

⟨Z 4⟩∼⟨Z ⟩4∼Z 4

⟨Z 4⟩∼Z 4≠⟨Z ⟩ 4

⟨Z 4⟩∼⟨Z ⟩4≠Z 4

⟨Z 4
⟩∼⟨ Z ⟩4∼Z 4



  

Trivial solution

Trivial solution: s=g=S=G=0

L R

L' R'



  

Wormhole

Wormhole: s=2iLN−2 Î⊗ Ê , g=
1
4
LN−2 Î⊗Ê

S=G=0

L

L'

R

R'

Î N×N  - internal unit matrix; Ê2×2 - replica space unit matrix



  

Half-wormhole

Half-wormhole:
S L L L' L'=S L LR' R '=S RRL ' L'=S RRR ' R '=4 iL2 N−4 Î

s=g=0

L R

L' R'

L R

R'L'

+

GL L L' L'=GL LR' R '=G RRL' L'=GRRR ' R '=−
1
8
L2 N−4 Î



  

Wormhole + half-wormhole

Wormhole + half wormhole:

L R

L' R'

L R

R'L'

+

s=2iLN−2 Î⊗ Ê , g=
1
4
LN−2 Î⊗Ê

S L L L' L'=S L LR' R '=S RRL ' L'=S RRR ' R '=4 iL2 N−4 Î ,G=−
1
8
L2 N−4 Î

GL L L' L'=GL LR' R '=G RRL' L'=GRRR ' R '=−
1
8
L2 N−4 Î



  

False vacua and the true 
vacuum

● Trivial solution:

● Wormhole:

● Half-wormhole:

● Wormhole + half wormhole:

● Black – trivial; Blue – wormhole; Red – half-hole; Violet – 
whole + half-whole – lowest free energy

s=g=S=G=0

s , g≠0, S=G=0

s=g=0, S ,G≠0

s , g , S ,G≠0



  

Outline
● Setup: semiclassical D-brane solutions in the IKKT model

● Replicas in the partition functions – wormholes vs. half-
wormholes vs. fraction-holes

● Fraction-holes re-establish factorization and always dominate 
the ensemble in our examples



  

Dp brane stacks and 
"black holes" 

● The celebrated 5D extremal black hole in IIB string theory:    
     D1 branes wraped on      and       D5 branes wraped on    

● Here: rough toy model inspired by D1-D5 brane black holes

● D1/D5 branes: block-diagonal matrices 

 

 

● Compactification radii        entries of            discretized:

● Supersymmetry  need to include fermions         

S1 T 5

B1=diag (B 1̄
1 , B 2̄

1…BQ̄ 1

1 ) , Cμ=diag (C 1̄
μ ,C 2̄

μ…C Q̄5

μ
)

μ=1…5:  Aμ=Bμ+Cμ

Q1 Q5

Bμ ,Cμ

Aij
μ , Bij

μ∈
2 πℤ
R1,5

μ=6…10 :  Aμ=0

R1,5



  

Dp brane stacks and 
"black holes" 

● Additional collective fields from fermions:

● Complicated saddle point equations:

● Two gross simplifications:

 - assume              i.e., disregard the compactifiaction

 - assume maximally symmetric structure of  

γAB≡Ψ̄AΨB , A ,B∈{L , L ' , R , R ' }

W D1D5=
1
2

log det s AB+
1
2

log det sA' B '+
1
2

log det S AAB ' B '−log detσ AB+V b+V f

V b=−i S AAB ' B 'G AAB ' B '+
8

L2 N−4 Tr g AATr g BB−
4

L2 N−4 TrGAAB ' B '

V f=
L2

4
γ AB '−γ AA s AA

−1
γ AA+log (ΣLR ΣL' R '−ΣL L' ΣRR '+ΣLR' ΣRL' )

g AA ,γ AB ,G AA , B ' B '

R1,5→∞



  

Wormhole

Wormhole: s=2iLN−2 Î⊗ Ê , g=
1
4
LN−2 Î⊗Ê

S=G=0

L

L'

R

R'

Σ=iL−2 Î⊗(11
1
1) ,γ=

1
4
L−2 Î⊗(11

1
1)

⟨Z 2
⟩ ≈ wormhole

⟨Z 2
⟩−⟨Z ⟩2∼O (1)



  

Wormhole + fraction-holes
Wormhole:

Half-hole:

s=2iLN−2 Î⊗ Ê , g=
1
4
LN−2 Î⊗Ê

Σ=iL−2 Î⊗σ1 , γ=
1
8
L−2 Î⊗(11

1
1)

S L L L' L'=S L LR' R '=S RRL ' L'=S RRR ' R '=4 iL2 N−4 Î ,G=−
1
8
L2 N−4 Î

GL L L' L'=GL LR' R '=G RRL' L'=GRRR ' R '=−
1
8
L2 N−4 Î

L' R' R'L'

+

L LR R



  

Wormhole + fraction-holes
Wormhole:

Quarter-hole:

s=2iLN−2 Î⊗ Ê , g=
1
4
LN−2 Î⊗Ê

Σ= iLN−4 Î⊗σ1 , γ=
1
8
LN−4 Î⊗(11

1
1)

γ ' ABCD≡Ψ̄ AΨB Ψ̄CΨ D

Σ '=4 iL2 N−6 Î⊗σ1⊗σ1 ,γ=
1

32
L2N−6 Î⊗(1 )4×4

L' R' R'L'

+

L LR R

L' R'

L R

+ +…



  

Wormhole + fraction-holes

⟨Z 4⟩ ≈ wormhole + 1/2-hole + 1/4-hole + … ∼ ⟨Z ⟩4

⟨Z 4⟩WH∼ZWH
4 ∼⟨Z ⟩4−⟨Z 4

⟩WH

● Blue – wormhole

Violet – whole + fraction-wholes

● No trivial solution nor fraction-
only solution

● The optimal solution has both 
self-averaging and factorization



  

Morale of the story
● The wormhole/replicas/factorization puzzle can be stated in a 

precise way in the IIB matrix model

● Similar to the SYK/2D gravity models, there are both 
wormhole and half-wormhole solutions but...

● ... here we have an infinite series of fraction-holes for Dp 
brane backgrounds

● The true vacuum is always the wormhole + fraction-holes 
solution  the true vacuum always has both 
factorization and self-averaging

● Many questions: Interpretation? Relation to the wormhole 
saddle which reproduces the Page curve?
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